1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include "qemu/memfd.h" 24 #include "qemu/queue.h" 25 #include "qemu/plugin.h" 26 #include "tcg/startup.h" 27 #include "target_mman.h" 28 #include <elf.h> 29 #include <endian.h> 30 #include <grp.h> 31 #include <sys/ipc.h> 32 #include <sys/msg.h> 33 #include <sys/wait.h> 34 #include <sys/mount.h> 35 #include <sys/file.h> 36 #include <sys/fsuid.h> 37 #include <sys/personality.h> 38 #include <sys/prctl.h> 39 #include <sys/resource.h> 40 #include <sys/swap.h> 41 #include <linux/capability.h> 42 #include <sched.h> 43 #include <sys/timex.h> 44 #include <sys/socket.h> 45 #include <linux/sockios.h> 46 #include <sys/un.h> 47 #include <sys/uio.h> 48 #include <poll.h> 49 #include <sys/times.h> 50 #include <sys/shm.h> 51 #include <sys/sem.h> 52 #include <sys/statfs.h> 53 #include <utime.h> 54 #include <sys/sysinfo.h> 55 #include <sys/signalfd.h> 56 //#include <sys/user.h> 57 #include <netinet/in.h> 58 #include <netinet/ip.h> 59 #include <netinet/tcp.h> 60 #include <netinet/udp.h> 61 #include <linux/wireless.h> 62 #include <linux/icmp.h> 63 #include <linux/icmpv6.h> 64 #include <linux/if_tun.h> 65 #include <linux/in6.h> 66 #include <linux/errqueue.h> 67 #include <linux/random.h> 68 #ifdef CONFIG_TIMERFD 69 #include <sys/timerfd.h> 70 #endif 71 #ifdef CONFIG_EVENTFD 72 #include <sys/eventfd.h> 73 #endif 74 #ifdef CONFIG_EPOLL 75 #include <sys/epoll.h> 76 #endif 77 #ifdef CONFIG_ATTR 78 #include "qemu/xattr.h" 79 #endif 80 #ifdef CONFIG_SENDFILE 81 #include <sys/sendfile.h> 82 #endif 83 #ifdef HAVE_SYS_KCOV_H 84 #include <sys/kcov.h> 85 #endif 86 87 #define termios host_termios 88 #define winsize host_winsize 89 #define termio host_termio 90 #define sgttyb host_sgttyb /* same as target */ 91 #define tchars host_tchars /* same as target */ 92 #define ltchars host_ltchars /* same as target */ 93 94 #include <linux/termios.h> 95 #include <linux/unistd.h> 96 #include <linux/cdrom.h> 97 #include <linux/hdreg.h> 98 #include <linux/soundcard.h> 99 #include <linux/kd.h> 100 #include <linux/mtio.h> 101 #include <linux/fs.h> 102 #include <linux/fd.h> 103 #if defined(CONFIG_FIEMAP) 104 #include <linux/fiemap.h> 105 #endif 106 #include <linux/fb.h> 107 #if defined(CONFIG_USBFS) 108 #include <linux/usbdevice_fs.h> 109 #include <linux/usb/ch9.h> 110 #endif 111 #include <linux/vt.h> 112 #include <linux/dm-ioctl.h> 113 #include <linux/reboot.h> 114 #include <linux/route.h> 115 #include <linux/filter.h> 116 #include <linux/blkpg.h> 117 #include <netpacket/packet.h> 118 #include <linux/netlink.h> 119 #include <linux/if_alg.h> 120 #include <linux/rtc.h> 121 #include <sound/asound.h> 122 #ifdef HAVE_BTRFS_H 123 #include <linux/btrfs.h> 124 #endif 125 #ifdef HAVE_DRM_H 126 #include <libdrm/drm.h> 127 #include <libdrm/i915_drm.h> 128 #endif 129 #include "linux_loop.h" 130 #include "uname.h" 131 132 #include "qemu.h" 133 #include "user-internals.h" 134 #include "strace.h" 135 #include "signal-common.h" 136 #include "loader.h" 137 #include "user-mmap.h" 138 #include "user/safe-syscall.h" 139 #include "qemu/guest-random.h" 140 #include "qemu/selfmap.h" 141 #include "user/syscall-trace.h" 142 #include "special-errno.h" 143 #include "qapi/error.h" 144 #include "fd-trans.h" 145 #include "cpu_loop-common.h" 146 147 #ifndef CLONE_IO 148 #define CLONE_IO 0x80000000 /* Clone io context */ 149 #endif 150 151 /* We can't directly call the host clone syscall, because this will 152 * badly confuse libc (breaking mutexes, for example). So we must 153 * divide clone flags into: 154 * * flag combinations that look like pthread_create() 155 * * flag combinations that look like fork() 156 * * flags we can implement within QEMU itself 157 * * flags we can't support and will return an error for 158 */ 159 /* For thread creation, all these flags must be present; for 160 * fork, none must be present. 161 */ 162 #define CLONE_THREAD_FLAGS \ 163 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 164 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 165 166 /* These flags are ignored: 167 * CLONE_DETACHED is now ignored by the kernel; 168 * CLONE_IO is just an optimisation hint to the I/O scheduler 169 */ 170 #define CLONE_IGNORED_FLAGS \ 171 (CLONE_DETACHED | CLONE_IO) 172 173 #ifndef CLONE_PIDFD 174 # define CLONE_PIDFD 0x00001000 175 #endif 176 177 /* Flags for fork which we can implement within QEMU itself */ 178 #define CLONE_OPTIONAL_FORK_FLAGS \ 179 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \ 180 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 181 182 /* Flags for thread creation which we can implement within QEMU itself */ 183 #define CLONE_OPTIONAL_THREAD_FLAGS \ 184 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 185 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 186 187 #define CLONE_INVALID_FORK_FLAGS \ 188 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 189 190 #define CLONE_INVALID_THREAD_FLAGS \ 191 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 192 CLONE_IGNORED_FLAGS)) 193 194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 195 * have almost all been allocated. We cannot support any of 196 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 197 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 198 * The checks against the invalid thread masks above will catch these. 199 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 200 */ 201 202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 203 * once. This exercises the codepaths for restart. 204 */ 205 //#define DEBUG_ERESTARTSYS 206 207 //#include <linux/msdos_fs.h> 208 #define VFAT_IOCTL_READDIR_BOTH \ 209 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2) 210 #define VFAT_IOCTL_READDIR_SHORT \ 211 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2) 212 213 #undef _syscall0 214 #undef _syscall1 215 #undef _syscall2 216 #undef _syscall3 217 #undef _syscall4 218 #undef _syscall5 219 #undef _syscall6 220 221 #define _syscall0(type,name) \ 222 static type name (void) \ 223 { \ 224 return syscall(__NR_##name); \ 225 } 226 227 #define _syscall1(type,name,type1,arg1) \ 228 static type name (type1 arg1) \ 229 { \ 230 return syscall(__NR_##name, arg1); \ 231 } 232 233 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 234 static type name (type1 arg1,type2 arg2) \ 235 { \ 236 return syscall(__NR_##name, arg1, arg2); \ 237 } 238 239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 240 static type name (type1 arg1,type2 arg2,type3 arg3) \ 241 { \ 242 return syscall(__NR_##name, arg1, arg2, arg3); \ 243 } 244 245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 247 { \ 248 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 249 } 250 251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 252 type5,arg5) \ 253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 254 { \ 255 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 256 } 257 258 259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 260 type5,arg5,type6,arg6) \ 261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 262 type6 arg6) \ 263 { \ 264 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 265 } 266 267 268 #define __NR_sys_uname __NR_uname 269 #define __NR_sys_getcwd1 __NR_getcwd 270 #define __NR_sys_getdents __NR_getdents 271 #define __NR_sys_getdents64 __NR_getdents64 272 #define __NR_sys_getpriority __NR_getpriority 273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 275 #define __NR_sys_syslog __NR_syslog 276 #if defined(__NR_futex) 277 # define __NR_sys_futex __NR_futex 278 #endif 279 #if defined(__NR_futex_time64) 280 # define __NR_sys_futex_time64 __NR_futex_time64 281 #endif 282 #define __NR_sys_statx __NR_statx 283 284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 285 #define __NR__llseek __NR_lseek 286 #endif 287 288 /* Newer kernel ports have llseek() instead of _llseek() */ 289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 290 #define TARGET_NR__llseek TARGET_NR_llseek 291 #endif 292 293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */ 294 #ifndef TARGET_O_NONBLOCK_MASK 295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK 296 #endif 297 298 #define __NR_sys_gettid __NR_gettid 299 _syscall0(int, sys_gettid) 300 301 /* For the 64-bit guest on 32-bit host case we must emulate 302 * getdents using getdents64, because otherwise the host 303 * might hand us back more dirent records than we can fit 304 * into the guest buffer after structure format conversion. 305 * Otherwise we emulate getdents with getdents if the host has it. 306 */ 307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS 308 #define EMULATE_GETDENTS_WITH_GETDENTS 309 #endif 310 311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS) 312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count); 313 #endif 314 #if (defined(TARGET_NR_getdents) && \ 315 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \ 316 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count); 318 #endif 319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 320 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo, 321 loff_t *, res, unsigned int, wh); 322 #endif 323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 325 siginfo_t *, uinfo) 326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 327 #ifdef __NR_exit_group 328 _syscall1(int,exit_group,int,error_code) 329 #endif 330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 331 #define __NR_sys_close_range __NR_close_range 332 _syscall3(int,sys_close_range,int,first,int,last,int,flags) 333 #ifndef CLOSE_RANGE_CLOEXEC 334 #define CLOSE_RANGE_CLOEXEC (1U << 2) 335 #endif 336 #endif 337 #if defined(__NR_futex) 338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 339 const struct timespec *,timeout,int *,uaddr2,int,val3) 340 #endif 341 #if defined(__NR_futex_time64) 342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val, 343 const struct timespec *,timeout,int *,uaddr2,int,val3) 344 #endif 345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags); 347 #endif 348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info, 350 unsigned int, flags); 351 #endif 352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags); 354 #endif 355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 357 unsigned long *, user_mask_ptr); 358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 360 unsigned long *, user_mask_ptr); 361 /* sched_attr is not defined in glibc */ 362 struct sched_attr { 363 uint32_t size; 364 uint32_t sched_policy; 365 uint64_t sched_flags; 366 int32_t sched_nice; 367 uint32_t sched_priority; 368 uint64_t sched_runtime; 369 uint64_t sched_deadline; 370 uint64_t sched_period; 371 uint32_t sched_util_min; 372 uint32_t sched_util_max; 373 }; 374 #define __NR_sys_sched_getattr __NR_sched_getattr 375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr, 376 unsigned int, size, unsigned int, flags); 377 #define __NR_sys_sched_setattr __NR_sched_setattr 378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr, 379 unsigned int, flags); 380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler 381 _syscall1(int, sys_sched_getscheduler, pid_t, pid); 382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler 383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy, 384 const struct sched_param *, param); 385 #define __NR_sys_sched_getparam __NR_sched_getparam 386 _syscall2(int, sys_sched_getparam, pid_t, pid, 387 struct sched_param *, param); 388 #define __NR_sys_sched_setparam __NR_sched_setparam 389 _syscall2(int, sys_sched_setparam, pid_t, pid, 390 const struct sched_param *, param); 391 #define __NR_sys_getcpu __NR_getcpu 392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 394 void *, arg); 395 _syscall2(int, capget, struct __user_cap_header_struct *, header, 396 struct __user_cap_data_struct *, data); 397 _syscall2(int, capset, struct __user_cap_header_struct *, header, 398 struct __user_cap_data_struct *, data); 399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 400 _syscall2(int, ioprio_get, int, which, int, who) 401 #endif 402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 404 #endif 405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 407 #endif 408 409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 411 unsigned long, idx1, unsigned long, idx2) 412 #endif 413 414 /* 415 * It is assumed that struct statx is architecture independent. 416 */ 417 #if defined(TARGET_NR_statx) && defined(__NR_statx) 418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags, 419 unsigned int, mask, struct target_statx *, statxbuf) 420 #endif 421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier) 422 _syscall2(int, membarrier, int, cmd, int, flags) 423 #endif 424 425 static const bitmask_transtbl fcntl_flags_tbl[] = { 426 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 427 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 428 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 429 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 430 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 431 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 432 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 433 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 434 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 435 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 436 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 437 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 438 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 439 #if defined(O_DIRECT) 440 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 441 #endif 442 #if defined(O_NOATIME) 443 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 444 #endif 445 #if defined(O_CLOEXEC) 446 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 447 #endif 448 #if defined(O_PATH) 449 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 450 #endif 451 #if defined(O_TMPFILE) 452 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 453 #endif 454 /* Don't terminate the list prematurely on 64-bit host+guest. */ 455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 456 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 457 #endif 458 }; 459 460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size) 461 462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64) 463 #if defined(__NR_utimensat) 464 #define __NR_sys_utimensat __NR_utimensat 465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 466 const struct timespec *,tsp,int,flags) 467 #else 468 static int sys_utimensat(int dirfd, const char *pathname, 469 const struct timespec times[2], int flags) 470 { 471 errno = ENOSYS; 472 return -1; 473 } 474 #endif 475 #endif /* TARGET_NR_utimensat */ 476 477 #ifdef TARGET_NR_renameat2 478 #if defined(__NR_renameat2) 479 #define __NR_sys_renameat2 __NR_renameat2 480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 481 const char *, new, unsigned int, flags) 482 #else 483 static int sys_renameat2(int oldfd, const char *old, 484 int newfd, const char *new, int flags) 485 { 486 if (flags == 0) { 487 return renameat(oldfd, old, newfd, new); 488 } 489 errno = ENOSYS; 490 return -1; 491 } 492 #endif 493 #endif /* TARGET_NR_renameat2 */ 494 495 #ifdef CONFIG_INOTIFY 496 #include <sys/inotify.h> 497 #else 498 /* Userspace can usually survive runtime without inotify */ 499 #undef TARGET_NR_inotify_init 500 #undef TARGET_NR_inotify_init1 501 #undef TARGET_NR_inotify_add_watch 502 #undef TARGET_NR_inotify_rm_watch 503 #endif /* CONFIG_INOTIFY */ 504 505 #if defined(TARGET_NR_prlimit64) 506 #ifndef __NR_prlimit64 507 # define __NR_prlimit64 -1 508 #endif 509 #define __NR_sys_prlimit64 __NR_prlimit64 510 /* The glibc rlimit structure may not be that used by the underlying syscall */ 511 struct host_rlimit64 { 512 uint64_t rlim_cur; 513 uint64_t rlim_max; 514 }; 515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 516 const struct host_rlimit64 *, new_limit, 517 struct host_rlimit64 *, old_limit) 518 #endif 519 520 521 #if defined(TARGET_NR_timer_create) 522 /* Maximum of 32 active POSIX timers allowed at any one time. */ 523 #define GUEST_TIMER_MAX 32 524 static timer_t g_posix_timers[GUEST_TIMER_MAX]; 525 static int g_posix_timer_allocated[GUEST_TIMER_MAX]; 526 527 static inline int next_free_host_timer(void) 528 { 529 int k; 530 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) { 531 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) { 532 return k; 533 } 534 } 535 return -1; 536 } 537 538 static inline void free_host_timer_slot(int id) 539 { 540 qatomic_store_release(g_posix_timer_allocated + id, 0); 541 } 542 #endif 543 544 static inline int host_to_target_errno(int host_errno) 545 { 546 switch (host_errno) { 547 #define E(X) case X: return TARGET_##X; 548 #include "errnos.c.inc" 549 #undef E 550 default: 551 return host_errno; 552 } 553 } 554 555 static inline int target_to_host_errno(int target_errno) 556 { 557 switch (target_errno) { 558 #define E(X) case TARGET_##X: return X; 559 #include "errnos.c.inc" 560 #undef E 561 default: 562 return target_errno; 563 } 564 } 565 566 abi_long get_errno(abi_long ret) 567 { 568 if (ret == -1) 569 return -host_to_target_errno(errno); 570 else 571 return ret; 572 } 573 574 const char *target_strerror(int err) 575 { 576 if (err == QEMU_ERESTARTSYS) { 577 return "To be restarted"; 578 } 579 if (err == QEMU_ESIGRETURN) { 580 return "Successful exit from sigreturn"; 581 } 582 583 return strerror(target_to_host_errno(err)); 584 } 585 586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize) 587 { 588 int i; 589 uint8_t b; 590 if (usize <= ksize) { 591 return 1; 592 } 593 for (i = ksize; i < usize; i++) { 594 if (get_user_u8(b, addr + i)) { 595 return -TARGET_EFAULT; 596 } 597 if (b != 0) { 598 return 0; 599 } 600 } 601 return 1; 602 } 603 604 #define safe_syscall0(type, name) \ 605 static type safe_##name(void) \ 606 { \ 607 return safe_syscall(__NR_##name); \ 608 } 609 610 #define safe_syscall1(type, name, type1, arg1) \ 611 static type safe_##name(type1 arg1) \ 612 { \ 613 return safe_syscall(__NR_##name, arg1); \ 614 } 615 616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 617 static type safe_##name(type1 arg1, type2 arg2) \ 618 { \ 619 return safe_syscall(__NR_##name, arg1, arg2); \ 620 } 621 622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 624 { \ 625 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 626 } 627 628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 629 type4, arg4) \ 630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 631 { \ 632 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 633 } 634 635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 636 type4, arg4, type5, arg5) \ 637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 638 type5 arg5) \ 639 { \ 640 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 641 } 642 643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 644 type4, arg4, type5, arg5, type6, arg6) \ 645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 646 type5 arg5, type6 arg6) \ 647 { \ 648 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 649 } 650 651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 654 int, flags, mode_t, mode) 655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid) 656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 657 struct rusage *, rusage) 658 #endif 659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 660 int, options, struct rusage *, rusage) 661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 662 safe_syscall5(int, execveat, int, dirfd, const char *, filename, 663 char **, argv, char **, envp, int, flags) 664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 665 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 667 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 668 #endif 669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64) 670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 671 struct timespec *, tsp, const sigset_t *, sigmask, 672 size_t, sigsetsize) 673 #endif 674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 675 int, maxevents, int, timeout, const sigset_t *, sigmask, 676 size_t, sigsetsize) 677 #if defined(__NR_futex) 678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 679 const struct timespec *,timeout,int *,uaddr2,int,val3) 680 #endif 681 #if defined(__NR_futex_time64) 682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \ 683 const struct timespec *,timeout,int *,uaddr2,int,val3) 684 #endif 685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 686 safe_syscall2(int, kill, pid_t, pid, int, sig) 687 safe_syscall2(int, tkill, int, tid, int, sig) 688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 692 unsigned long, pos_l, unsigned long, pos_h) 693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 694 unsigned long, pos_l, unsigned long, pos_h) 695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 696 socklen_t, addrlen) 697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 698 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 700 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 703 safe_syscall2(int, flock, int, fd, int, operation) 704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64) 705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 706 const struct timespec *, uts, size_t, sigsetsize) 707 #endif 708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 709 int, flags) 710 #if defined(TARGET_NR_nanosleep) 711 safe_syscall2(int, nanosleep, const struct timespec *, req, 712 struct timespec *, rem) 713 #endif 714 #if defined(TARGET_NR_clock_nanosleep) || \ 715 defined(TARGET_NR_clock_nanosleep_time64) 716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 717 const struct timespec *, req, struct timespec *, rem) 718 #endif 719 #ifdef __NR_ipc 720 #ifdef __s390x__ 721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third, 722 void *, ptr) 723 #else 724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 725 void *, ptr, long, fifth) 726 #endif 727 #endif 728 #ifdef __NR_msgsnd 729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 730 int, flags) 731 #endif 732 #ifdef __NR_msgrcv 733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 734 long, msgtype, int, flags) 735 #endif 736 #ifdef __NR_semtimedop 737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 738 unsigned, nsops, const struct timespec *, timeout) 739 #endif 740 #if defined(TARGET_NR_mq_timedsend) || \ 741 defined(TARGET_NR_mq_timedsend_time64) 742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 743 size_t, len, unsigned, prio, const struct timespec *, timeout) 744 #endif 745 #if defined(TARGET_NR_mq_timedreceive) || \ 746 defined(TARGET_NR_mq_timedreceive_time64) 747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 748 size_t, len, unsigned *, prio, const struct timespec *, timeout) 749 #endif 750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff, 752 int, outfd, loff_t *, poutoff, size_t, length, 753 unsigned int, flags) 754 #endif 755 756 /* We do ioctl like this rather than via safe_syscall3 to preserve the 757 * "third argument might be integer or pointer or not present" behaviour of 758 * the libc function. 759 */ 760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 761 /* Similarly for fcntl. Note that callers must always: 762 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 763 * use the flock64 struct rather than unsuffixed flock 764 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 765 */ 766 #ifdef __NR_fcntl64 767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 768 #else 769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 770 #endif 771 772 static inline int host_to_target_sock_type(int host_type) 773 { 774 int target_type; 775 776 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 777 case SOCK_DGRAM: 778 target_type = TARGET_SOCK_DGRAM; 779 break; 780 case SOCK_STREAM: 781 target_type = TARGET_SOCK_STREAM; 782 break; 783 default: 784 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 785 break; 786 } 787 788 #if defined(SOCK_CLOEXEC) 789 if (host_type & SOCK_CLOEXEC) { 790 target_type |= TARGET_SOCK_CLOEXEC; 791 } 792 #endif 793 794 #if defined(SOCK_NONBLOCK) 795 if (host_type & SOCK_NONBLOCK) { 796 target_type |= TARGET_SOCK_NONBLOCK; 797 } 798 #endif 799 800 return target_type; 801 } 802 803 static abi_ulong target_brk, initial_target_brk; 804 805 void target_set_brk(abi_ulong new_brk) 806 { 807 target_brk = TARGET_PAGE_ALIGN(new_brk); 808 initial_target_brk = target_brk; 809 } 810 811 /* do_brk() must return target values and target errnos. */ 812 abi_long do_brk(abi_ulong brk_val) 813 { 814 abi_long mapped_addr; 815 abi_ulong new_brk; 816 abi_ulong old_brk; 817 818 /* brk pointers are always untagged */ 819 820 /* do not allow to shrink below initial brk value */ 821 if (brk_val < initial_target_brk) { 822 return target_brk; 823 } 824 825 new_brk = TARGET_PAGE_ALIGN(brk_val); 826 old_brk = TARGET_PAGE_ALIGN(target_brk); 827 828 /* new and old target_brk might be on the same page */ 829 if (new_brk == old_brk) { 830 target_brk = brk_val; 831 return target_brk; 832 } 833 834 /* Release heap if necessary */ 835 if (new_brk < old_brk) { 836 target_munmap(new_brk, old_brk - new_brk); 837 838 target_brk = brk_val; 839 return target_brk; 840 } 841 842 mapped_addr = target_mmap(old_brk, new_brk - old_brk, 843 PROT_READ | PROT_WRITE, 844 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE, 845 -1, 0); 846 847 if (mapped_addr == old_brk) { 848 target_brk = brk_val; 849 return target_brk; 850 } 851 852 #if defined(TARGET_ALPHA) 853 /* We (partially) emulate OSF/1 on Alpha, which requires we 854 return a proper errno, not an unchanged brk value. */ 855 return -TARGET_ENOMEM; 856 #endif 857 /* For everything else, return the previous break. */ 858 return target_brk; 859 } 860 861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 862 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 863 static inline abi_long copy_from_user_fdset(fd_set *fds, 864 abi_ulong target_fds_addr, 865 int n) 866 { 867 int i, nw, j, k; 868 abi_ulong b, *target_fds; 869 870 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 871 if (!(target_fds = lock_user(VERIFY_READ, 872 target_fds_addr, 873 sizeof(abi_ulong) * nw, 874 1))) 875 return -TARGET_EFAULT; 876 877 FD_ZERO(fds); 878 k = 0; 879 for (i = 0; i < nw; i++) { 880 /* grab the abi_ulong */ 881 __get_user(b, &target_fds[i]); 882 for (j = 0; j < TARGET_ABI_BITS; j++) { 883 /* check the bit inside the abi_ulong */ 884 if ((b >> j) & 1) 885 FD_SET(k, fds); 886 k++; 887 } 888 } 889 890 unlock_user(target_fds, target_fds_addr, 0); 891 892 return 0; 893 } 894 895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 896 abi_ulong target_fds_addr, 897 int n) 898 { 899 if (target_fds_addr) { 900 if (copy_from_user_fdset(fds, target_fds_addr, n)) 901 return -TARGET_EFAULT; 902 *fds_ptr = fds; 903 } else { 904 *fds_ptr = NULL; 905 } 906 return 0; 907 } 908 909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 910 const fd_set *fds, 911 int n) 912 { 913 int i, nw, j, k; 914 abi_long v; 915 abi_ulong *target_fds; 916 917 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 918 if (!(target_fds = lock_user(VERIFY_WRITE, 919 target_fds_addr, 920 sizeof(abi_ulong) * nw, 921 0))) 922 return -TARGET_EFAULT; 923 924 k = 0; 925 for (i = 0; i < nw; i++) { 926 v = 0; 927 for (j = 0; j < TARGET_ABI_BITS; j++) { 928 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 929 k++; 930 } 931 __put_user(v, &target_fds[i]); 932 } 933 934 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 935 936 return 0; 937 } 938 #endif 939 940 #if defined(__alpha__) 941 #define HOST_HZ 1024 942 #else 943 #define HOST_HZ 100 944 #endif 945 946 static inline abi_long host_to_target_clock_t(long ticks) 947 { 948 #if HOST_HZ == TARGET_HZ 949 return ticks; 950 #else 951 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 952 #endif 953 } 954 955 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 956 const struct rusage *rusage) 957 { 958 struct target_rusage *target_rusage; 959 960 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 961 return -TARGET_EFAULT; 962 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 963 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 964 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 965 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 966 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 967 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 968 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 969 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 970 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 971 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 972 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 973 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 974 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 975 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 976 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 977 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 978 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 979 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 980 unlock_user_struct(target_rusage, target_addr, 1); 981 982 return 0; 983 } 984 985 #ifdef TARGET_NR_setrlimit 986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 987 { 988 abi_ulong target_rlim_swap; 989 rlim_t result; 990 991 target_rlim_swap = tswapal(target_rlim); 992 if (target_rlim_swap == TARGET_RLIM_INFINITY) 993 return RLIM_INFINITY; 994 995 result = target_rlim_swap; 996 if (target_rlim_swap != (rlim_t)result) 997 return RLIM_INFINITY; 998 999 return result; 1000 } 1001 #endif 1002 1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit) 1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1005 { 1006 abi_ulong target_rlim_swap; 1007 abi_ulong result; 1008 1009 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1010 target_rlim_swap = TARGET_RLIM_INFINITY; 1011 else 1012 target_rlim_swap = rlim; 1013 result = tswapal(target_rlim_swap); 1014 1015 return result; 1016 } 1017 #endif 1018 1019 static inline int target_to_host_resource(int code) 1020 { 1021 switch (code) { 1022 case TARGET_RLIMIT_AS: 1023 return RLIMIT_AS; 1024 case TARGET_RLIMIT_CORE: 1025 return RLIMIT_CORE; 1026 case TARGET_RLIMIT_CPU: 1027 return RLIMIT_CPU; 1028 case TARGET_RLIMIT_DATA: 1029 return RLIMIT_DATA; 1030 case TARGET_RLIMIT_FSIZE: 1031 return RLIMIT_FSIZE; 1032 case TARGET_RLIMIT_LOCKS: 1033 return RLIMIT_LOCKS; 1034 case TARGET_RLIMIT_MEMLOCK: 1035 return RLIMIT_MEMLOCK; 1036 case TARGET_RLIMIT_MSGQUEUE: 1037 return RLIMIT_MSGQUEUE; 1038 case TARGET_RLIMIT_NICE: 1039 return RLIMIT_NICE; 1040 case TARGET_RLIMIT_NOFILE: 1041 return RLIMIT_NOFILE; 1042 case TARGET_RLIMIT_NPROC: 1043 return RLIMIT_NPROC; 1044 case TARGET_RLIMIT_RSS: 1045 return RLIMIT_RSS; 1046 case TARGET_RLIMIT_RTPRIO: 1047 return RLIMIT_RTPRIO; 1048 #ifdef RLIMIT_RTTIME 1049 case TARGET_RLIMIT_RTTIME: 1050 return RLIMIT_RTTIME; 1051 #endif 1052 case TARGET_RLIMIT_SIGPENDING: 1053 return RLIMIT_SIGPENDING; 1054 case TARGET_RLIMIT_STACK: 1055 return RLIMIT_STACK; 1056 default: 1057 return code; 1058 } 1059 } 1060 1061 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1062 abi_ulong target_tv_addr) 1063 { 1064 struct target_timeval *target_tv; 1065 1066 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1067 return -TARGET_EFAULT; 1068 } 1069 1070 __get_user(tv->tv_sec, &target_tv->tv_sec); 1071 __get_user(tv->tv_usec, &target_tv->tv_usec); 1072 1073 unlock_user_struct(target_tv, target_tv_addr, 0); 1074 1075 return 0; 1076 } 1077 1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1079 const struct timeval *tv) 1080 { 1081 struct target_timeval *target_tv; 1082 1083 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1084 return -TARGET_EFAULT; 1085 } 1086 1087 __put_user(tv->tv_sec, &target_tv->tv_sec); 1088 __put_user(tv->tv_usec, &target_tv->tv_usec); 1089 1090 unlock_user_struct(target_tv, target_tv_addr, 1); 1091 1092 return 0; 1093 } 1094 1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv, 1097 abi_ulong target_tv_addr) 1098 { 1099 struct target__kernel_sock_timeval *target_tv; 1100 1101 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1102 return -TARGET_EFAULT; 1103 } 1104 1105 __get_user(tv->tv_sec, &target_tv->tv_sec); 1106 __get_user(tv->tv_usec, &target_tv->tv_usec); 1107 1108 unlock_user_struct(target_tv, target_tv_addr, 0); 1109 1110 return 0; 1111 } 1112 #endif 1113 1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr, 1115 const struct timeval *tv) 1116 { 1117 struct target__kernel_sock_timeval *target_tv; 1118 1119 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1120 return -TARGET_EFAULT; 1121 } 1122 1123 __put_user(tv->tv_sec, &target_tv->tv_sec); 1124 __put_user(tv->tv_usec, &target_tv->tv_usec); 1125 1126 unlock_user_struct(target_tv, target_tv_addr, 1); 1127 1128 return 0; 1129 } 1130 1131 #if defined(TARGET_NR_futex) || \ 1132 defined(TARGET_NR_rt_sigtimedwait) || \ 1133 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \ 1134 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \ 1135 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \ 1136 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \ 1137 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \ 1138 defined(TARGET_NR_timer_settime) || \ 1139 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 1141 abi_ulong target_addr) 1142 { 1143 struct target_timespec *target_ts; 1144 1145 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1146 return -TARGET_EFAULT; 1147 } 1148 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1149 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1150 unlock_user_struct(target_ts, target_addr, 0); 1151 return 0; 1152 } 1153 #endif 1154 1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \ 1156 defined(TARGET_NR_timer_settime64) || \ 1157 defined(TARGET_NR_mq_timedsend_time64) || \ 1158 defined(TARGET_NR_mq_timedreceive_time64) || \ 1159 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \ 1160 defined(TARGET_NR_clock_nanosleep_time64) || \ 1161 defined(TARGET_NR_rt_sigtimedwait_time64) || \ 1162 defined(TARGET_NR_utimensat) || \ 1163 defined(TARGET_NR_utimensat_time64) || \ 1164 defined(TARGET_NR_semtimedop_time64) || \ 1165 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64) 1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts, 1167 abi_ulong target_addr) 1168 { 1169 struct target__kernel_timespec *target_ts; 1170 1171 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1172 return -TARGET_EFAULT; 1173 } 1174 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1175 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1176 /* in 32bit mode, this drops the padding */ 1177 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec; 1178 unlock_user_struct(target_ts, target_addr, 0); 1179 return 0; 1180 } 1181 #endif 1182 1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 1184 struct timespec *host_ts) 1185 { 1186 struct target_timespec *target_ts; 1187 1188 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1189 return -TARGET_EFAULT; 1190 } 1191 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1192 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1193 unlock_user_struct(target_ts, target_addr, 1); 1194 return 0; 1195 } 1196 1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr, 1198 struct timespec *host_ts) 1199 { 1200 struct target__kernel_timespec *target_ts; 1201 1202 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1203 return -TARGET_EFAULT; 1204 } 1205 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1206 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1207 unlock_user_struct(target_ts, target_addr, 1); 1208 return 0; 1209 } 1210 1211 #if defined(TARGET_NR_gettimeofday) 1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr, 1213 struct timezone *tz) 1214 { 1215 struct target_timezone *target_tz; 1216 1217 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) { 1218 return -TARGET_EFAULT; 1219 } 1220 1221 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1222 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1223 1224 unlock_user_struct(target_tz, target_tz_addr, 1); 1225 1226 return 0; 1227 } 1228 #endif 1229 1230 #if defined(TARGET_NR_settimeofday) 1231 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1232 abi_ulong target_tz_addr) 1233 { 1234 struct target_timezone *target_tz; 1235 1236 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1237 return -TARGET_EFAULT; 1238 } 1239 1240 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1241 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1242 1243 unlock_user_struct(target_tz, target_tz_addr, 0); 1244 1245 return 0; 1246 } 1247 #endif 1248 1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1250 #include <mqueue.h> 1251 1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1253 abi_ulong target_mq_attr_addr) 1254 { 1255 struct target_mq_attr *target_mq_attr; 1256 1257 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1258 target_mq_attr_addr, 1)) 1259 return -TARGET_EFAULT; 1260 1261 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1262 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1263 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1264 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1265 1266 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1267 1268 return 0; 1269 } 1270 1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1272 const struct mq_attr *attr) 1273 { 1274 struct target_mq_attr *target_mq_attr; 1275 1276 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1277 target_mq_attr_addr, 0)) 1278 return -TARGET_EFAULT; 1279 1280 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1281 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1282 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1283 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1284 1285 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1286 1287 return 0; 1288 } 1289 #endif 1290 1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1292 /* do_select() must return target values and target errnos. */ 1293 static abi_long do_select(int n, 1294 abi_ulong rfd_addr, abi_ulong wfd_addr, 1295 abi_ulong efd_addr, abi_ulong target_tv_addr) 1296 { 1297 fd_set rfds, wfds, efds; 1298 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1299 struct timeval tv; 1300 struct timespec ts, *ts_ptr; 1301 abi_long ret; 1302 1303 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1304 if (ret) { 1305 return ret; 1306 } 1307 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1308 if (ret) { 1309 return ret; 1310 } 1311 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1312 if (ret) { 1313 return ret; 1314 } 1315 1316 if (target_tv_addr) { 1317 if (copy_from_user_timeval(&tv, target_tv_addr)) 1318 return -TARGET_EFAULT; 1319 ts.tv_sec = tv.tv_sec; 1320 ts.tv_nsec = tv.tv_usec * 1000; 1321 ts_ptr = &ts; 1322 } else { 1323 ts_ptr = NULL; 1324 } 1325 1326 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1327 ts_ptr, NULL)); 1328 1329 if (!is_error(ret)) { 1330 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1331 return -TARGET_EFAULT; 1332 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1333 return -TARGET_EFAULT; 1334 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1335 return -TARGET_EFAULT; 1336 1337 if (target_tv_addr) { 1338 tv.tv_sec = ts.tv_sec; 1339 tv.tv_usec = ts.tv_nsec / 1000; 1340 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1341 return -TARGET_EFAULT; 1342 } 1343 } 1344 } 1345 1346 return ret; 1347 } 1348 1349 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1350 static abi_long do_old_select(abi_ulong arg1) 1351 { 1352 struct target_sel_arg_struct *sel; 1353 abi_ulong inp, outp, exp, tvp; 1354 long nsel; 1355 1356 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1357 return -TARGET_EFAULT; 1358 } 1359 1360 nsel = tswapal(sel->n); 1361 inp = tswapal(sel->inp); 1362 outp = tswapal(sel->outp); 1363 exp = tswapal(sel->exp); 1364 tvp = tswapal(sel->tvp); 1365 1366 unlock_user_struct(sel, arg1, 0); 1367 1368 return do_select(nsel, inp, outp, exp, tvp); 1369 } 1370 #endif 1371 #endif 1372 1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3, 1375 abi_long arg4, abi_long arg5, abi_long arg6, 1376 bool time64) 1377 { 1378 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 1379 fd_set rfds, wfds, efds; 1380 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1381 struct timespec ts, *ts_ptr; 1382 abi_long ret; 1383 1384 /* 1385 * The 6th arg is actually two args smashed together, 1386 * so we cannot use the C library. 1387 */ 1388 struct { 1389 sigset_t *set; 1390 size_t size; 1391 } sig, *sig_ptr; 1392 1393 abi_ulong arg_sigset, arg_sigsize, *arg7; 1394 1395 n = arg1; 1396 rfd_addr = arg2; 1397 wfd_addr = arg3; 1398 efd_addr = arg4; 1399 ts_addr = arg5; 1400 1401 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1402 if (ret) { 1403 return ret; 1404 } 1405 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1406 if (ret) { 1407 return ret; 1408 } 1409 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1410 if (ret) { 1411 return ret; 1412 } 1413 1414 /* 1415 * This takes a timespec, and not a timeval, so we cannot 1416 * use the do_select() helper ... 1417 */ 1418 if (ts_addr) { 1419 if (time64) { 1420 if (target_to_host_timespec64(&ts, ts_addr)) { 1421 return -TARGET_EFAULT; 1422 } 1423 } else { 1424 if (target_to_host_timespec(&ts, ts_addr)) { 1425 return -TARGET_EFAULT; 1426 } 1427 } 1428 ts_ptr = &ts; 1429 } else { 1430 ts_ptr = NULL; 1431 } 1432 1433 /* Extract the two packed args for the sigset */ 1434 sig_ptr = NULL; 1435 if (arg6) { 1436 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 1437 if (!arg7) { 1438 return -TARGET_EFAULT; 1439 } 1440 arg_sigset = tswapal(arg7[0]); 1441 arg_sigsize = tswapal(arg7[1]); 1442 unlock_user(arg7, arg6, 0); 1443 1444 if (arg_sigset) { 1445 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize); 1446 if (ret != 0) { 1447 return ret; 1448 } 1449 sig_ptr = &sig; 1450 sig.size = SIGSET_T_SIZE; 1451 } 1452 } 1453 1454 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1455 ts_ptr, sig_ptr)); 1456 1457 if (sig_ptr) { 1458 finish_sigsuspend_mask(ret); 1459 } 1460 1461 if (!is_error(ret)) { 1462 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) { 1463 return -TARGET_EFAULT; 1464 } 1465 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) { 1466 return -TARGET_EFAULT; 1467 } 1468 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) { 1469 return -TARGET_EFAULT; 1470 } 1471 if (time64) { 1472 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) { 1473 return -TARGET_EFAULT; 1474 } 1475 } else { 1476 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) { 1477 return -TARGET_EFAULT; 1478 } 1479 } 1480 } 1481 return ret; 1482 } 1483 #endif 1484 1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \ 1486 defined(TARGET_NR_ppoll_time64) 1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3, 1488 abi_long arg4, abi_long arg5, bool ppoll, bool time64) 1489 { 1490 struct target_pollfd *target_pfd; 1491 unsigned int nfds = arg2; 1492 struct pollfd *pfd; 1493 unsigned int i; 1494 abi_long ret; 1495 1496 pfd = NULL; 1497 target_pfd = NULL; 1498 if (nfds) { 1499 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 1500 return -TARGET_EINVAL; 1501 } 1502 target_pfd = lock_user(VERIFY_WRITE, arg1, 1503 sizeof(struct target_pollfd) * nfds, 1); 1504 if (!target_pfd) { 1505 return -TARGET_EFAULT; 1506 } 1507 1508 pfd = alloca(sizeof(struct pollfd) * nfds); 1509 for (i = 0; i < nfds; i++) { 1510 pfd[i].fd = tswap32(target_pfd[i].fd); 1511 pfd[i].events = tswap16(target_pfd[i].events); 1512 } 1513 } 1514 if (ppoll) { 1515 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 1516 sigset_t *set = NULL; 1517 1518 if (arg3) { 1519 if (time64) { 1520 if (target_to_host_timespec64(timeout_ts, arg3)) { 1521 unlock_user(target_pfd, arg1, 0); 1522 return -TARGET_EFAULT; 1523 } 1524 } else { 1525 if (target_to_host_timespec(timeout_ts, arg3)) { 1526 unlock_user(target_pfd, arg1, 0); 1527 return -TARGET_EFAULT; 1528 } 1529 } 1530 } else { 1531 timeout_ts = NULL; 1532 } 1533 1534 if (arg4) { 1535 ret = process_sigsuspend_mask(&set, arg4, arg5); 1536 if (ret != 0) { 1537 unlock_user(target_pfd, arg1, 0); 1538 return ret; 1539 } 1540 } 1541 1542 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 1543 set, SIGSET_T_SIZE)); 1544 1545 if (set) { 1546 finish_sigsuspend_mask(ret); 1547 } 1548 if (!is_error(ret) && arg3) { 1549 if (time64) { 1550 if (host_to_target_timespec64(arg3, timeout_ts)) { 1551 return -TARGET_EFAULT; 1552 } 1553 } else { 1554 if (host_to_target_timespec(arg3, timeout_ts)) { 1555 return -TARGET_EFAULT; 1556 } 1557 } 1558 } 1559 } else { 1560 struct timespec ts, *pts; 1561 1562 if (arg3 >= 0) { 1563 /* Convert ms to secs, ns */ 1564 ts.tv_sec = arg3 / 1000; 1565 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 1566 pts = &ts; 1567 } else { 1568 /* -ve poll() timeout means "infinite" */ 1569 pts = NULL; 1570 } 1571 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 1572 } 1573 1574 if (!is_error(ret)) { 1575 for (i = 0; i < nfds; i++) { 1576 target_pfd[i].revents = tswap16(pfd[i].revents); 1577 } 1578 } 1579 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 1580 return ret; 1581 } 1582 #endif 1583 1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes, 1585 int flags, int is_pipe2) 1586 { 1587 int host_pipe[2]; 1588 abi_long ret; 1589 ret = pipe2(host_pipe, flags); 1590 1591 if (is_error(ret)) 1592 return get_errno(ret); 1593 1594 /* Several targets have special calling conventions for the original 1595 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1596 if (!is_pipe2) { 1597 #if defined(TARGET_ALPHA) 1598 cpu_env->ir[IR_A4] = host_pipe[1]; 1599 return host_pipe[0]; 1600 #elif defined(TARGET_MIPS) 1601 cpu_env->active_tc.gpr[3] = host_pipe[1]; 1602 return host_pipe[0]; 1603 #elif defined(TARGET_SH4) 1604 cpu_env->gregs[1] = host_pipe[1]; 1605 return host_pipe[0]; 1606 #elif defined(TARGET_SPARC) 1607 cpu_env->regwptr[1] = host_pipe[1]; 1608 return host_pipe[0]; 1609 #endif 1610 } 1611 1612 if (put_user_s32(host_pipe[0], pipedes) 1613 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int))) 1614 return -TARGET_EFAULT; 1615 return get_errno(ret); 1616 } 1617 1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1619 abi_ulong target_addr, 1620 socklen_t len) 1621 { 1622 struct target_ip_mreqn *target_smreqn; 1623 1624 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1625 if (!target_smreqn) 1626 return -TARGET_EFAULT; 1627 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1628 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1629 if (len == sizeof(struct target_ip_mreqn)) 1630 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1631 unlock_user(target_smreqn, target_addr, 0); 1632 1633 return 0; 1634 } 1635 1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1637 abi_ulong target_addr, 1638 socklen_t len) 1639 { 1640 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1641 sa_family_t sa_family; 1642 struct target_sockaddr *target_saddr; 1643 1644 if (fd_trans_target_to_host_addr(fd)) { 1645 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1646 } 1647 1648 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1649 if (!target_saddr) 1650 return -TARGET_EFAULT; 1651 1652 sa_family = tswap16(target_saddr->sa_family); 1653 1654 /* Oops. The caller might send a incomplete sun_path; sun_path 1655 * must be terminated by \0 (see the manual page), but 1656 * unfortunately it is quite common to specify sockaddr_un 1657 * length as "strlen(x->sun_path)" while it should be 1658 * "strlen(...) + 1". We'll fix that here if needed. 1659 * Linux kernel has a similar feature. 1660 */ 1661 1662 if (sa_family == AF_UNIX) { 1663 if (len < unix_maxlen && len > 0) { 1664 char *cp = (char*)target_saddr; 1665 1666 if ( cp[len-1] && !cp[len] ) 1667 len++; 1668 } 1669 if (len > unix_maxlen) 1670 len = unix_maxlen; 1671 } 1672 1673 memcpy(addr, target_saddr, len); 1674 addr->sa_family = sa_family; 1675 if (sa_family == AF_NETLINK) { 1676 struct sockaddr_nl *nladdr; 1677 1678 nladdr = (struct sockaddr_nl *)addr; 1679 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1680 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1681 } else if (sa_family == AF_PACKET) { 1682 struct target_sockaddr_ll *lladdr; 1683 1684 lladdr = (struct target_sockaddr_ll *)addr; 1685 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1686 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1687 } else if (sa_family == AF_INET6) { 1688 struct sockaddr_in6 *in6addr; 1689 1690 in6addr = (struct sockaddr_in6 *)addr; 1691 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id); 1692 } 1693 unlock_user(target_saddr, target_addr, 0); 1694 1695 return 0; 1696 } 1697 1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1699 struct sockaddr *addr, 1700 socklen_t len) 1701 { 1702 struct target_sockaddr *target_saddr; 1703 1704 if (len == 0) { 1705 return 0; 1706 } 1707 assert(addr); 1708 1709 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1710 if (!target_saddr) 1711 return -TARGET_EFAULT; 1712 memcpy(target_saddr, addr, len); 1713 if (len >= offsetof(struct target_sockaddr, sa_family) + 1714 sizeof(target_saddr->sa_family)) { 1715 target_saddr->sa_family = tswap16(addr->sa_family); 1716 } 1717 if (addr->sa_family == AF_NETLINK && 1718 len >= sizeof(struct target_sockaddr_nl)) { 1719 struct target_sockaddr_nl *target_nl = 1720 (struct target_sockaddr_nl *)target_saddr; 1721 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1722 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1723 } else if (addr->sa_family == AF_PACKET) { 1724 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1725 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1726 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1727 } else if (addr->sa_family == AF_INET6 && 1728 len >= sizeof(struct target_sockaddr_in6)) { 1729 struct target_sockaddr_in6 *target_in6 = 1730 (struct target_sockaddr_in6 *)target_saddr; 1731 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1732 } 1733 unlock_user(target_saddr, target_addr, len); 1734 1735 return 0; 1736 } 1737 1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1739 struct target_msghdr *target_msgh) 1740 { 1741 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1742 abi_long msg_controllen; 1743 abi_ulong target_cmsg_addr; 1744 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1745 socklen_t space = 0; 1746 1747 msg_controllen = tswapal(target_msgh->msg_controllen); 1748 if (msg_controllen < sizeof (struct target_cmsghdr)) 1749 goto the_end; 1750 target_cmsg_addr = tswapal(target_msgh->msg_control); 1751 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1752 target_cmsg_start = target_cmsg; 1753 if (!target_cmsg) 1754 return -TARGET_EFAULT; 1755 1756 while (cmsg && target_cmsg) { 1757 void *data = CMSG_DATA(cmsg); 1758 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1759 1760 int len = tswapal(target_cmsg->cmsg_len) 1761 - sizeof(struct target_cmsghdr); 1762 1763 space += CMSG_SPACE(len); 1764 if (space > msgh->msg_controllen) { 1765 space -= CMSG_SPACE(len); 1766 /* This is a QEMU bug, since we allocated the payload 1767 * area ourselves (unlike overflow in host-to-target 1768 * conversion, which is just the guest giving us a buffer 1769 * that's too small). It can't happen for the payload types 1770 * we currently support; if it becomes an issue in future 1771 * we would need to improve our allocation strategy to 1772 * something more intelligent than "twice the size of the 1773 * target buffer we're reading from". 1774 */ 1775 qemu_log_mask(LOG_UNIMP, 1776 ("Unsupported ancillary data %d/%d: " 1777 "unhandled msg size\n"), 1778 tswap32(target_cmsg->cmsg_level), 1779 tswap32(target_cmsg->cmsg_type)); 1780 break; 1781 } 1782 1783 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1784 cmsg->cmsg_level = SOL_SOCKET; 1785 } else { 1786 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1787 } 1788 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1789 cmsg->cmsg_len = CMSG_LEN(len); 1790 1791 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1792 int *fd = (int *)data; 1793 int *target_fd = (int *)target_data; 1794 int i, numfds = len / sizeof(int); 1795 1796 for (i = 0; i < numfds; i++) { 1797 __get_user(fd[i], target_fd + i); 1798 } 1799 } else if (cmsg->cmsg_level == SOL_SOCKET 1800 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1801 struct ucred *cred = (struct ucred *)data; 1802 struct target_ucred *target_cred = 1803 (struct target_ucred *)target_data; 1804 1805 __get_user(cred->pid, &target_cred->pid); 1806 __get_user(cred->uid, &target_cred->uid); 1807 __get_user(cred->gid, &target_cred->gid); 1808 } else if (cmsg->cmsg_level == SOL_ALG) { 1809 uint32_t *dst = (uint32_t *)data; 1810 1811 memcpy(dst, target_data, len); 1812 /* fix endianness of first 32-bit word */ 1813 if (len >= sizeof(uint32_t)) { 1814 *dst = tswap32(*dst); 1815 } 1816 } else { 1817 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 1818 cmsg->cmsg_level, cmsg->cmsg_type); 1819 memcpy(data, target_data, len); 1820 } 1821 1822 cmsg = CMSG_NXTHDR(msgh, cmsg); 1823 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1824 target_cmsg_start); 1825 } 1826 unlock_user(target_cmsg, target_cmsg_addr, 0); 1827 the_end: 1828 msgh->msg_controllen = space; 1829 return 0; 1830 } 1831 1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1833 struct msghdr *msgh) 1834 { 1835 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1836 abi_long msg_controllen; 1837 abi_ulong target_cmsg_addr; 1838 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1839 socklen_t space = 0; 1840 1841 msg_controllen = tswapal(target_msgh->msg_controllen); 1842 if (msg_controllen < sizeof (struct target_cmsghdr)) 1843 goto the_end; 1844 target_cmsg_addr = tswapal(target_msgh->msg_control); 1845 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1846 target_cmsg_start = target_cmsg; 1847 if (!target_cmsg) 1848 return -TARGET_EFAULT; 1849 1850 while (cmsg && target_cmsg) { 1851 void *data = CMSG_DATA(cmsg); 1852 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1853 1854 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1855 int tgt_len, tgt_space; 1856 1857 /* We never copy a half-header but may copy half-data; 1858 * this is Linux's behaviour in put_cmsg(). Note that 1859 * truncation here is a guest problem (which we report 1860 * to the guest via the CTRUNC bit), unlike truncation 1861 * in target_to_host_cmsg, which is a QEMU bug. 1862 */ 1863 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1864 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1865 break; 1866 } 1867 1868 if (cmsg->cmsg_level == SOL_SOCKET) { 1869 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1870 } else { 1871 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1872 } 1873 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1874 1875 /* Payload types which need a different size of payload on 1876 * the target must adjust tgt_len here. 1877 */ 1878 tgt_len = len; 1879 switch (cmsg->cmsg_level) { 1880 case SOL_SOCKET: 1881 switch (cmsg->cmsg_type) { 1882 case SO_TIMESTAMP: 1883 tgt_len = sizeof(struct target_timeval); 1884 break; 1885 default: 1886 break; 1887 } 1888 break; 1889 default: 1890 break; 1891 } 1892 1893 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1894 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1895 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1896 } 1897 1898 /* We must now copy-and-convert len bytes of payload 1899 * into tgt_len bytes of destination space. Bear in mind 1900 * that in both source and destination we may be dealing 1901 * with a truncated value! 1902 */ 1903 switch (cmsg->cmsg_level) { 1904 case SOL_SOCKET: 1905 switch (cmsg->cmsg_type) { 1906 case SCM_RIGHTS: 1907 { 1908 int *fd = (int *)data; 1909 int *target_fd = (int *)target_data; 1910 int i, numfds = tgt_len / sizeof(int); 1911 1912 for (i = 0; i < numfds; i++) { 1913 __put_user(fd[i], target_fd + i); 1914 } 1915 break; 1916 } 1917 case SO_TIMESTAMP: 1918 { 1919 struct timeval *tv = (struct timeval *)data; 1920 struct target_timeval *target_tv = 1921 (struct target_timeval *)target_data; 1922 1923 if (len != sizeof(struct timeval) || 1924 tgt_len != sizeof(struct target_timeval)) { 1925 goto unimplemented; 1926 } 1927 1928 /* copy struct timeval to target */ 1929 __put_user(tv->tv_sec, &target_tv->tv_sec); 1930 __put_user(tv->tv_usec, &target_tv->tv_usec); 1931 break; 1932 } 1933 case SCM_CREDENTIALS: 1934 { 1935 struct ucred *cred = (struct ucred *)data; 1936 struct target_ucred *target_cred = 1937 (struct target_ucred *)target_data; 1938 1939 __put_user(cred->pid, &target_cred->pid); 1940 __put_user(cred->uid, &target_cred->uid); 1941 __put_user(cred->gid, &target_cred->gid); 1942 break; 1943 } 1944 default: 1945 goto unimplemented; 1946 } 1947 break; 1948 1949 case SOL_IP: 1950 switch (cmsg->cmsg_type) { 1951 case IP_TTL: 1952 { 1953 uint32_t *v = (uint32_t *)data; 1954 uint32_t *t_int = (uint32_t *)target_data; 1955 1956 if (len != sizeof(uint32_t) || 1957 tgt_len != sizeof(uint32_t)) { 1958 goto unimplemented; 1959 } 1960 __put_user(*v, t_int); 1961 break; 1962 } 1963 case IP_RECVERR: 1964 { 1965 struct errhdr_t { 1966 struct sock_extended_err ee; 1967 struct sockaddr_in offender; 1968 }; 1969 struct errhdr_t *errh = (struct errhdr_t *)data; 1970 struct errhdr_t *target_errh = 1971 (struct errhdr_t *)target_data; 1972 1973 if (len != sizeof(struct errhdr_t) || 1974 tgt_len != sizeof(struct errhdr_t)) { 1975 goto unimplemented; 1976 } 1977 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1978 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1979 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1980 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1981 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1982 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1983 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1984 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1985 (void *) &errh->offender, sizeof(errh->offender)); 1986 break; 1987 } 1988 default: 1989 goto unimplemented; 1990 } 1991 break; 1992 1993 case SOL_IPV6: 1994 switch (cmsg->cmsg_type) { 1995 case IPV6_HOPLIMIT: 1996 { 1997 uint32_t *v = (uint32_t *)data; 1998 uint32_t *t_int = (uint32_t *)target_data; 1999 2000 if (len != sizeof(uint32_t) || 2001 tgt_len != sizeof(uint32_t)) { 2002 goto unimplemented; 2003 } 2004 __put_user(*v, t_int); 2005 break; 2006 } 2007 case IPV6_RECVERR: 2008 { 2009 struct errhdr6_t { 2010 struct sock_extended_err ee; 2011 struct sockaddr_in6 offender; 2012 }; 2013 struct errhdr6_t *errh = (struct errhdr6_t *)data; 2014 struct errhdr6_t *target_errh = 2015 (struct errhdr6_t *)target_data; 2016 2017 if (len != sizeof(struct errhdr6_t) || 2018 tgt_len != sizeof(struct errhdr6_t)) { 2019 goto unimplemented; 2020 } 2021 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2022 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2023 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2024 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2025 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2026 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2027 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2028 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2029 (void *) &errh->offender, sizeof(errh->offender)); 2030 break; 2031 } 2032 default: 2033 goto unimplemented; 2034 } 2035 break; 2036 2037 default: 2038 unimplemented: 2039 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 2040 cmsg->cmsg_level, cmsg->cmsg_type); 2041 memcpy(target_data, data, MIN(len, tgt_len)); 2042 if (tgt_len > len) { 2043 memset(target_data + len, 0, tgt_len - len); 2044 } 2045 } 2046 2047 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 2048 tgt_space = TARGET_CMSG_SPACE(tgt_len); 2049 if (msg_controllen < tgt_space) { 2050 tgt_space = msg_controllen; 2051 } 2052 msg_controllen -= tgt_space; 2053 space += tgt_space; 2054 cmsg = CMSG_NXTHDR(msgh, cmsg); 2055 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 2056 target_cmsg_start); 2057 } 2058 unlock_user(target_cmsg, target_cmsg_addr, space); 2059 the_end: 2060 target_msgh->msg_controllen = tswapal(space); 2061 return 0; 2062 } 2063 2064 /* do_setsockopt() Must return target values and target errnos. */ 2065 static abi_long do_setsockopt(int sockfd, int level, int optname, 2066 abi_ulong optval_addr, socklen_t optlen) 2067 { 2068 abi_long ret; 2069 int val; 2070 struct ip_mreqn *ip_mreq; 2071 struct ip_mreq_source *ip_mreq_source; 2072 2073 switch(level) { 2074 case SOL_TCP: 2075 case SOL_UDP: 2076 /* TCP and UDP options all take an 'int' value. */ 2077 if (optlen < sizeof(uint32_t)) 2078 return -TARGET_EINVAL; 2079 2080 if (get_user_u32(val, optval_addr)) 2081 return -TARGET_EFAULT; 2082 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2083 break; 2084 case SOL_IP: 2085 switch(optname) { 2086 case IP_TOS: 2087 case IP_TTL: 2088 case IP_HDRINCL: 2089 case IP_ROUTER_ALERT: 2090 case IP_RECVOPTS: 2091 case IP_RETOPTS: 2092 case IP_PKTINFO: 2093 case IP_MTU_DISCOVER: 2094 case IP_RECVERR: 2095 case IP_RECVTTL: 2096 case IP_RECVTOS: 2097 #ifdef IP_FREEBIND 2098 case IP_FREEBIND: 2099 #endif 2100 case IP_MULTICAST_TTL: 2101 case IP_MULTICAST_LOOP: 2102 val = 0; 2103 if (optlen >= sizeof(uint32_t)) { 2104 if (get_user_u32(val, optval_addr)) 2105 return -TARGET_EFAULT; 2106 } else if (optlen >= 1) { 2107 if (get_user_u8(val, optval_addr)) 2108 return -TARGET_EFAULT; 2109 } 2110 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2111 break; 2112 case IP_ADD_MEMBERSHIP: 2113 case IP_DROP_MEMBERSHIP: 2114 if (optlen < sizeof (struct target_ip_mreq) || 2115 optlen > sizeof (struct target_ip_mreqn)) 2116 return -TARGET_EINVAL; 2117 2118 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2119 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2120 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2121 break; 2122 2123 case IP_BLOCK_SOURCE: 2124 case IP_UNBLOCK_SOURCE: 2125 case IP_ADD_SOURCE_MEMBERSHIP: 2126 case IP_DROP_SOURCE_MEMBERSHIP: 2127 if (optlen != sizeof (struct target_ip_mreq_source)) 2128 return -TARGET_EINVAL; 2129 2130 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2131 if (!ip_mreq_source) { 2132 return -TARGET_EFAULT; 2133 } 2134 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2135 unlock_user (ip_mreq_source, optval_addr, 0); 2136 break; 2137 2138 default: 2139 goto unimplemented; 2140 } 2141 break; 2142 case SOL_IPV6: 2143 switch (optname) { 2144 case IPV6_MTU_DISCOVER: 2145 case IPV6_MTU: 2146 case IPV6_V6ONLY: 2147 case IPV6_RECVPKTINFO: 2148 case IPV6_UNICAST_HOPS: 2149 case IPV6_MULTICAST_HOPS: 2150 case IPV6_MULTICAST_LOOP: 2151 case IPV6_RECVERR: 2152 case IPV6_RECVHOPLIMIT: 2153 case IPV6_2292HOPLIMIT: 2154 case IPV6_CHECKSUM: 2155 case IPV6_ADDRFORM: 2156 case IPV6_2292PKTINFO: 2157 case IPV6_RECVTCLASS: 2158 case IPV6_RECVRTHDR: 2159 case IPV6_2292RTHDR: 2160 case IPV6_RECVHOPOPTS: 2161 case IPV6_2292HOPOPTS: 2162 case IPV6_RECVDSTOPTS: 2163 case IPV6_2292DSTOPTS: 2164 case IPV6_TCLASS: 2165 case IPV6_ADDR_PREFERENCES: 2166 #ifdef IPV6_RECVPATHMTU 2167 case IPV6_RECVPATHMTU: 2168 #endif 2169 #ifdef IPV6_TRANSPARENT 2170 case IPV6_TRANSPARENT: 2171 #endif 2172 #ifdef IPV6_FREEBIND 2173 case IPV6_FREEBIND: 2174 #endif 2175 #ifdef IPV6_RECVORIGDSTADDR 2176 case IPV6_RECVORIGDSTADDR: 2177 #endif 2178 val = 0; 2179 if (optlen < sizeof(uint32_t)) { 2180 return -TARGET_EINVAL; 2181 } 2182 if (get_user_u32(val, optval_addr)) { 2183 return -TARGET_EFAULT; 2184 } 2185 ret = get_errno(setsockopt(sockfd, level, optname, 2186 &val, sizeof(val))); 2187 break; 2188 case IPV6_PKTINFO: 2189 { 2190 struct in6_pktinfo pki; 2191 2192 if (optlen < sizeof(pki)) { 2193 return -TARGET_EINVAL; 2194 } 2195 2196 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2197 return -TARGET_EFAULT; 2198 } 2199 2200 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2201 2202 ret = get_errno(setsockopt(sockfd, level, optname, 2203 &pki, sizeof(pki))); 2204 break; 2205 } 2206 case IPV6_ADD_MEMBERSHIP: 2207 case IPV6_DROP_MEMBERSHIP: 2208 { 2209 struct ipv6_mreq ipv6mreq; 2210 2211 if (optlen < sizeof(ipv6mreq)) { 2212 return -TARGET_EINVAL; 2213 } 2214 2215 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) { 2216 return -TARGET_EFAULT; 2217 } 2218 2219 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface); 2220 2221 ret = get_errno(setsockopt(sockfd, level, optname, 2222 &ipv6mreq, sizeof(ipv6mreq))); 2223 break; 2224 } 2225 default: 2226 goto unimplemented; 2227 } 2228 break; 2229 case SOL_ICMPV6: 2230 switch (optname) { 2231 case ICMPV6_FILTER: 2232 { 2233 struct icmp6_filter icmp6f; 2234 2235 if (optlen > sizeof(icmp6f)) { 2236 optlen = sizeof(icmp6f); 2237 } 2238 2239 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 2240 return -TARGET_EFAULT; 2241 } 2242 2243 for (val = 0; val < 8; val++) { 2244 icmp6f.data[val] = tswap32(icmp6f.data[val]); 2245 } 2246 2247 ret = get_errno(setsockopt(sockfd, level, optname, 2248 &icmp6f, optlen)); 2249 break; 2250 } 2251 default: 2252 goto unimplemented; 2253 } 2254 break; 2255 case SOL_RAW: 2256 switch (optname) { 2257 case ICMP_FILTER: 2258 case IPV6_CHECKSUM: 2259 /* those take an u32 value */ 2260 if (optlen < sizeof(uint32_t)) { 2261 return -TARGET_EINVAL; 2262 } 2263 2264 if (get_user_u32(val, optval_addr)) { 2265 return -TARGET_EFAULT; 2266 } 2267 ret = get_errno(setsockopt(sockfd, level, optname, 2268 &val, sizeof(val))); 2269 break; 2270 2271 default: 2272 goto unimplemented; 2273 } 2274 break; 2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE) 2276 case SOL_ALG: 2277 switch (optname) { 2278 case ALG_SET_KEY: 2279 { 2280 char *alg_key = g_malloc(optlen); 2281 2282 if (!alg_key) { 2283 return -TARGET_ENOMEM; 2284 } 2285 if (copy_from_user(alg_key, optval_addr, optlen)) { 2286 g_free(alg_key); 2287 return -TARGET_EFAULT; 2288 } 2289 ret = get_errno(setsockopt(sockfd, level, optname, 2290 alg_key, optlen)); 2291 g_free(alg_key); 2292 break; 2293 } 2294 case ALG_SET_AEAD_AUTHSIZE: 2295 { 2296 ret = get_errno(setsockopt(sockfd, level, optname, 2297 NULL, optlen)); 2298 break; 2299 } 2300 default: 2301 goto unimplemented; 2302 } 2303 break; 2304 #endif 2305 case TARGET_SOL_SOCKET: 2306 switch (optname) { 2307 case TARGET_SO_RCVTIMEO: 2308 { 2309 struct timeval tv; 2310 2311 optname = SO_RCVTIMEO; 2312 2313 set_timeout: 2314 if (optlen != sizeof(struct target_timeval)) { 2315 return -TARGET_EINVAL; 2316 } 2317 2318 if (copy_from_user_timeval(&tv, optval_addr)) { 2319 return -TARGET_EFAULT; 2320 } 2321 2322 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2323 &tv, sizeof(tv))); 2324 return ret; 2325 } 2326 case TARGET_SO_SNDTIMEO: 2327 optname = SO_SNDTIMEO; 2328 goto set_timeout; 2329 case TARGET_SO_ATTACH_FILTER: 2330 { 2331 struct target_sock_fprog *tfprog; 2332 struct target_sock_filter *tfilter; 2333 struct sock_fprog fprog; 2334 struct sock_filter *filter; 2335 int i; 2336 2337 if (optlen != sizeof(*tfprog)) { 2338 return -TARGET_EINVAL; 2339 } 2340 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2341 return -TARGET_EFAULT; 2342 } 2343 if (!lock_user_struct(VERIFY_READ, tfilter, 2344 tswapal(tfprog->filter), 0)) { 2345 unlock_user_struct(tfprog, optval_addr, 1); 2346 return -TARGET_EFAULT; 2347 } 2348 2349 fprog.len = tswap16(tfprog->len); 2350 filter = g_try_new(struct sock_filter, fprog.len); 2351 if (filter == NULL) { 2352 unlock_user_struct(tfilter, tfprog->filter, 1); 2353 unlock_user_struct(tfprog, optval_addr, 1); 2354 return -TARGET_ENOMEM; 2355 } 2356 for (i = 0; i < fprog.len; i++) { 2357 filter[i].code = tswap16(tfilter[i].code); 2358 filter[i].jt = tfilter[i].jt; 2359 filter[i].jf = tfilter[i].jf; 2360 filter[i].k = tswap32(tfilter[i].k); 2361 } 2362 fprog.filter = filter; 2363 2364 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2365 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2366 g_free(filter); 2367 2368 unlock_user_struct(tfilter, tfprog->filter, 1); 2369 unlock_user_struct(tfprog, optval_addr, 1); 2370 return ret; 2371 } 2372 case TARGET_SO_BINDTODEVICE: 2373 { 2374 char *dev_ifname, *addr_ifname; 2375 2376 if (optlen > IFNAMSIZ - 1) { 2377 optlen = IFNAMSIZ - 1; 2378 } 2379 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2380 if (!dev_ifname) { 2381 return -TARGET_EFAULT; 2382 } 2383 optname = SO_BINDTODEVICE; 2384 addr_ifname = alloca(IFNAMSIZ); 2385 memcpy(addr_ifname, dev_ifname, optlen); 2386 addr_ifname[optlen] = 0; 2387 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2388 addr_ifname, optlen)); 2389 unlock_user (dev_ifname, optval_addr, 0); 2390 return ret; 2391 } 2392 case TARGET_SO_LINGER: 2393 { 2394 struct linger lg; 2395 struct target_linger *tlg; 2396 2397 if (optlen != sizeof(struct target_linger)) { 2398 return -TARGET_EINVAL; 2399 } 2400 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) { 2401 return -TARGET_EFAULT; 2402 } 2403 __get_user(lg.l_onoff, &tlg->l_onoff); 2404 __get_user(lg.l_linger, &tlg->l_linger); 2405 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER, 2406 &lg, sizeof(lg))); 2407 unlock_user_struct(tlg, optval_addr, 0); 2408 return ret; 2409 } 2410 /* Options with 'int' argument. */ 2411 case TARGET_SO_DEBUG: 2412 optname = SO_DEBUG; 2413 break; 2414 case TARGET_SO_REUSEADDR: 2415 optname = SO_REUSEADDR; 2416 break; 2417 #ifdef SO_REUSEPORT 2418 case TARGET_SO_REUSEPORT: 2419 optname = SO_REUSEPORT; 2420 break; 2421 #endif 2422 case TARGET_SO_TYPE: 2423 optname = SO_TYPE; 2424 break; 2425 case TARGET_SO_ERROR: 2426 optname = SO_ERROR; 2427 break; 2428 case TARGET_SO_DONTROUTE: 2429 optname = SO_DONTROUTE; 2430 break; 2431 case TARGET_SO_BROADCAST: 2432 optname = SO_BROADCAST; 2433 break; 2434 case TARGET_SO_SNDBUF: 2435 optname = SO_SNDBUF; 2436 break; 2437 case TARGET_SO_SNDBUFFORCE: 2438 optname = SO_SNDBUFFORCE; 2439 break; 2440 case TARGET_SO_RCVBUF: 2441 optname = SO_RCVBUF; 2442 break; 2443 case TARGET_SO_RCVBUFFORCE: 2444 optname = SO_RCVBUFFORCE; 2445 break; 2446 case TARGET_SO_KEEPALIVE: 2447 optname = SO_KEEPALIVE; 2448 break; 2449 case TARGET_SO_OOBINLINE: 2450 optname = SO_OOBINLINE; 2451 break; 2452 case TARGET_SO_NO_CHECK: 2453 optname = SO_NO_CHECK; 2454 break; 2455 case TARGET_SO_PRIORITY: 2456 optname = SO_PRIORITY; 2457 break; 2458 #ifdef SO_BSDCOMPAT 2459 case TARGET_SO_BSDCOMPAT: 2460 optname = SO_BSDCOMPAT; 2461 break; 2462 #endif 2463 case TARGET_SO_PASSCRED: 2464 optname = SO_PASSCRED; 2465 break; 2466 case TARGET_SO_PASSSEC: 2467 optname = SO_PASSSEC; 2468 break; 2469 case TARGET_SO_TIMESTAMP: 2470 optname = SO_TIMESTAMP; 2471 break; 2472 case TARGET_SO_RCVLOWAT: 2473 optname = SO_RCVLOWAT; 2474 break; 2475 default: 2476 goto unimplemented; 2477 } 2478 if (optlen < sizeof(uint32_t)) 2479 return -TARGET_EINVAL; 2480 2481 if (get_user_u32(val, optval_addr)) 2482 return -TARGET_EFAULT; 2483 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 2484 break; 2485 #ifdef SOL_NETLINK 2486 case SOL_NETLINK: 2487 switch (optname) { 2488 case NETLINK_PKTINFO: 2489 case NETLINK_ADD_MEMBERSHIP: 2490 case NETLINK_DROP_MEMBERSHIP: 2491 case NETLINK_BROADCAST_ERROR: 2492 case NETLINK_NO_ENOBUFS: 2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2494 case NETLINK_LISTEN_ALL_NSID: 2495 case NETLINK_CAP_ACK: 2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2498 case NETLINK_EXT_ACK: 2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2501 case NETLINK_GET_STRICT_CHK: 2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2503 break; 2504 default: 2505 goto unimplemented; 2506 } 2507 val = 0; 2508 if (optlen < sizeof(uint32_t)) { 2509 return -TARGET_EINVAL; 2510 } 2511 if (get_user_u32(val, optval_addr)) { 2512 return -TARGET_EFAULT; 2513 } 2514 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val, 2515 sizeof(val))); 2516 break; 2517 #endif /* SOL_NETLINK */ 2518 default: 2519 unimplemented: 2520 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n", 2521 level, optname); 2522 ret = -TARGET_ENOPROTOOPT; 2523 } 2524 return ret; 2525 } 2526 2527 /* do_getsockopt() Must return target values and target errnos. */ 2528 static abi_long do_getsockopt(int sockfd, int level, int optname, 2529 abi_ulong optval_addr, abi_ulong optlen) 2530 { 2531 abi_long ret; 2532 int len, val; 2533 socklen_t lv; 2534 2535 switch(level) { 2536 case TARGET_SOL_SOCKET: 2537 level = SOL_SOCKET; 2538 switch (optname) { 2539 /* These don't just return a single integer */ 2540 case TARGET_SO_PEERNAME: 2541 goto unimplemented; 2542 case TARGET_SO_RCVTIMEO: { 2543 struct timeval tv; 2544 socklen_t tvlen; 2545 2546 optname = SO_RCVTIMEO; 2547 2548 get_timeout: 2549 if (get_user_u32(len, optlen)) { 2550 return -TARGET_EFAULT; 2551 } 2552 if (len < 0) { 2553 return -TARGET_EINVAL; 2554 } 2555 2556 tvlen = sizeof(tv); 2557 ret = get_errno(getsockopt(sockfd, level, optname, 2558 &tv, &tvlen)); 2559 if (ret < 0) { 2560 return ret; 2561 } 2562 if (len > sizeof(struct target_timeval)) { 2563 len = sizeof(struct target_timeval); 2564 } 2565 if (copy_to_user_timeval(optval_addr, &tv)) { 2566 return -TARGET_EFAULT; 2567 } 2568 if (put_user_u32(len, optlen)) { 2569 return -TARGET_EFAULT; 2570 } 2571 break; 2572 } 2573 case TARGET_SO_SNDTIMEO: 2574 optname = SO_SNDTIMEO; 2575 goto get_timeout; 2576 case TARGET_SO_PEERCRED: { 2577 struct ucred cr; 2578 socklen_t crlen; 2579 struct target_ucred *tcr; 2580 2581 if (get_user_u32(len, optlen)) { 2582 return -TARGET_EFAULT; 2583 } 2584 if (len < 0) { 2585 return -TARGET_EINVAL; 2586 } 2587 2588 crlen = sizeof(cr); 2589 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 2590 &cr, &crlen)); 2591 if (ret < 0) { 2592 return ret; 2593 } 2594 if (len > crlen) { 2595 len = crlen; 2596 } 2597 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 2598 return -TARGET_EFAULT; 2599 } 2600 __put_user(cr.pid, &tcr->pid); 2601 __put_user(cr.uid, &tcr->uid); 2602 __put_user(cr.gid, &tcr->gid); 2603 unlock_user_struct(tcr, optval_addr, 1); 2604 if (put_user_u32(len, optlen)) { 2605 return -TARGET_EFAULT; 2606 } 2607 break; 2608 } 2609 case TARGET_SO_PEERSEC: { 2610 char *name; 2611 2612 if (get_user_u32(len, optlen)) { 2613 return -TARGET_EFAULT; 2614 } 2615 if (len < 0) { 2616 return -TARGET_EINVAL; 2617 } 2618 name = lock_user(VERIFY_WRITE, optval_addr, len, 0); 2619 if (!name) { 2620 return -TARGET_EFAULT; 2621 } 2622 lv = len; 2623 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC, 2624 name, &lv)); 2625 if (put_user_u32(lv, optlen)) { 2626 ret = -TARGET_EFAULT; 2627 } 2628 unlock_user(name, optval_addr, lv); 2629 break; 2630 } 2631 case TARGET_SO_LINGER: 2632 { 2633 struct linger lg; 2634 socklen_t lglen; 2635 struct target_linger *tlg; 2636 2637 if (get_user_u32(len, optlen)) { 2638 return -TARGET_EFAULT; 2639 } 2640 if (len < 0) { 2641 return -TARGET_EINVAL; 2642 } 2643 2644 lglen = sizeof(lg); 2645 ret = get_errno(getsockopt(sockfd, level, SO_LINGER, 2646 &lg, &lglen)); 2647 if (ret < 0) { 2648 return ret; 2649 } 2650 if (len > lglen) { 2651 len = lglen; 2652 } 2653 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) { 2654 return -TARGET_EFAULT; 2655 } 2656 __put_user(lg.l_onoff, &tlg->l_onoff); 2657 __put_user(lg.l_linger, &tlg->l_linger); 2658 unlock_user_struct(tlg, optval_addr, 1); 2659 if (put_user_u32(len, optlen)) { 2660 return -TARGET_EFAULT; 2661 } 2662 break; 2663 } 2664 /* Options with 'int' argument. */ 2665 case TARGET_SO_DEBUG: 2666 optname = SO_DEBUG; 2667 goto int_case; 2668 case TARGET_SO_REUSEADDR: 2669 optname = SO_REUSEADDR; 2670 goto int_case; 2671 #ifdef SO_REUSEPORT 2672 case TARGET_SO_REUSEPORT: 2673 optname = SO_REUSEPORT; 2674 goto int_case; 2675 #endif 2676 case TARGET_SO_TYPE: 2677 optname = SO_TYPE; 2678 goto int_case; 2679 case TARGET_SO_ERROR: 2680 optname = SO_ERROR; 2681 goto int_case; 2682 case TARGET_SO_DONTROUTE: 2683 optname = SO_DONTROUTE; 2684 goto int_case; 2685 case TARGET_SO_BROADCAST: 2686 optname = SO_BROADCAST; 2687 goto int_case; 2688 case TARGET_SO_SNDBUF: 2689 optname = SO_SNDBUF; 2690 goto int_case; 2691 case TARGET_SO_RCVBUF: 2692 optname = SO_RCVBUF; 2693 goto int_case; 2694 case TARGET_SO_KEEPALIVE: 2695 optname = SO_KEEPALIVE; 2696 goto int_case; 2697 case TARGET_SO_OOBINLINE: 2698 optname = SO_OOBINLINE; 2699 goto int_case; 2700 case TARGET_SO_NO_CHECK: 2701 optname = SO_NO_CHECK; 2702 goto int_case; 2703 case TARGET_SO_PRIORITY: 2704 optname = SO_PRIORITY; 2705 goto int_case; 2706 #ifdef SO_BSDCOMPAT 2707 case TARGET_SO_BSDCOMPAT: 2708 optname = SO_BSDCOMPAT; 2709 goto int_case; 2710 #endif 2711 case TARGET_SO_PASSCRED: 2712 optname = SO_PASSCRED; 2713 goto int_case; 2714 case TARGET_SO_TIMESTAMP: 2715 optname = SO_TIMESTAMP; 2716 goto int_case; 2717 case TARGET_SO_RCVLOWAT: 2718 optname = SO_RCVLOWAT; 2719 goto int_case; 2720 case TARGET_SO_ACCEPTCONN: 2721 optname = SO_ACCEPTCONN; 2722 goto int_case; 2723 case TARGET_SO_PROTOCOL: 2724 optname = SO_PROTOCOL; 2725 goto int_case; 2726 case TARGET_SO_DOMAIN: 2727 optname = SO_DOMAIN; 2728 goto int_case; 2729 default: 2730 goto int_case; 2731 } 2732 break; 2733 case SOL_TCP: 2734 case SOL_UDP: 2735 /* TCP and UDP options all take an 'int' value. */ 2736 int_case: 2737 if (get_user_u32(len, optlen)) 2738 return -TARGET_EFAULT; 2739 if (len < 0) 2740 return -TARGET_EINVAL; 2741 lv = sizeof(lv); 2742 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2743 if (ret < 0) 2744 return ret; 2745 switch (optname) { 2746 case SO_TYPE: 2747 val = host_to_target_sock_type(val); 2748 break; 2749 case SO_ERROR: 2750 val = host_to_target_errno(val); 2751 break; 2752 } 2753 if (len > lv) 2754 len = lv; 2755 if (len == 4) { 2756 if (put_user_u32(val, optval_addr)) 2757 return -TARGET_EFAULT; 2758 } else { 2759 if (put_user_u8(val, optval_addr)) 2760 return -TARGET_EFAULT; 2761 } 2762 if (put_user_u32(len, optlen)) 2763 return -TARGET_EFAULT; 2764 break; 2765 case SOL_IP: 2766 switch(optname) { 2767 case IP_TOS: 2768 case IP_TTL: 2769 case IP_HDRINCL: 2770 case IP_ROUTER_ALERT: 2771 case IP_RECVOPTS: 2772 case IP_RETOPTS: 2773 case IP_PKTINFO: 2774 case IP_MTU_DISCOVER: 2775 case IP_RECVERR: 2776 case IP_RECVTOS: 2777 #ifdef IP_FREEBIND 2778 case IP_FREEBIND: 2779 #endif 2780 case IP_MULTICAST_TTL: 2781 case IP_MULTICAST_LOOP: 2782 if (get_user_u32(len, optlen)) 2783 return -TARGET_EFAULT; 2784 if (len < 0) 2785 return -TARGET_EINVAL; 2786 lv = sizeof(lv); 2787 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2788 if (ret < 0) 2789 return ret; 2790 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2791 len = 1; 2792 if (put_user_u32(len, optlen) 2793 || put_user_u8(val, optval_addr)) 2794 return -TARGET_EFAULT; 2795 } else { 2796 if (len > sizeof(int)) 2797 len = sizeof(int); 2798 if (put_user_u32(len, optlen) 2799 || put_user_u32(val, optval_addr)) 2800 return -TARGET_EFAULT; 2801 } 2802 break; 2803 default: 2804 ret = -TARGET_ENOPROTOOPT; 2805 break; 2806 } 2807 break; 2808 case SOL_IPV6: 2809 switch (optname) { 2810 case IPV6_MTU_DISCOVER: 2811 case IPV6_MTU: 2812 case IPV6_V6ONLY: 2813 case IPV6_RECVPKTINFO: 2814 case IPV6_UNICAST_HOPS: 2815 case IPV6_MULTICAST_HOPS: 2816 case IPV6_MULTICAST_LOOP: 2817 case IPV6_RECVERR: 2818 case IPV6_RECVHOPLIMIT: 2819 case IPV6_2292HOPLIMIT: 2820 case IPV6_CHECKSUM: 2821 case IPV6_ADDRFORM: 2822 case IPV6_2292PKTINFO: 2823 case IPV6_RECVTCLASS: 2824 case IPV6_RECVRTHDR: 2825 case IPV6_2292RTHDR: 2826 case IPV6_RECVHOPOPTS: 2827 case IPV6_2292HOPOPTS: 2828 case IPV6_RECVDSTOPTS: 2829 case IPV6_2292DSTOPTS: 2830 case IPV6_TCLASS: 2831 case IPV6_ADDR_PREFERENCES: 2832 #ifdef IPV6_RECVPATHMTU 2833 case IPV6_RECVPATHMTU: 2834 #endif 2835 #ifdef IPV6_TRANSPARENT 2836 case IPV6_TRANSPARENT: 2837 #endif 2838 #ifdef IPV6_FREEBIND 2839 case IPV6_FREEBIND: 2840 #endif 2841 #ifdef IPV6_RECVORIGDSTADDR 2842 case IPV6_RECVORIGDSTADDR: 2843 #endif 2844 if (get_user_u32(len, optlen)) 2845 return -TARGET_EFAULT; 2846 if (len < 0) 2847 return -TARGET_EINVAL; 2848 lv = sizeof(lv); 2849 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2850 if (ret < 0) 2851 return ret; 2852 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2853 len = 1; 2854 if (put_user_u32(len, optlen) 2855 || put_user_u8(val, optval_addr)) 2856 return -TARGET_EFAULT; 2857 } else { 2858 if (len > sizeof(int)) 2859 len = sizeof(int); 2860 if (put_user_u32(len, optlen) 2861 || put_user_u32(val, optval_addr)) 2862 return -TARGET_EFAULT; 2863 } 2864 break; 2865 default: 2866 ret = -TARGET_ENOPROTOOPT; 2867 break; 2868 } 2869 break; 2870 #ifdef SOL_NETLINK 2871 case SOL_NETLINK: 2872 switch (optname) { 2873 case NETLINK_PKTINFO: 2874 case NETLINK_BROADCAST_ERROR: 2875 case NETLINK_NO_ENOBUFS: 2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2877 case NETLINK_LISTEN_ALL_NSID: 2878 case NETLINK_CAP_ACK: 2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2881 case NETLINK_EXT_ACK: 2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2884 case NETLINK_GET_STRICT_CHK: 2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2886 if (get_user_u32(len, optlen)) { 2887 return -TARGET_EFAULT; 2888 } 2889 if (len != sizeof(val)) { 2890 return -TARGET_EINVAL; 2891 } 2892 lv = len; 2893 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2894 if (ret < 0) { 2895 return ret; 2896 } 2897 if (put_user_u32(lv, optlen) 2898 || put_user_u32(val, optval_addr)) { 2899 return -TARGET_EFAULT; 2900 } 2901 break; 2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2903 case NETLINK_LIST_MEMBERSHIPS: 2904 { 2905 uint32_t *results; 2906 int i; 2907 if (get_user_u32(len, optlen)) { 2908 return -TARGET_EFAULT; 2909 } 2910 if (len < 0) { 2911 return -TARGET_EINVAL; 2912 } 2913 results = lock_user(VERIFY_WRITE, optval_addr, len, 1); 2914 if (!results && len > 0) { 2915 return -TARGET_EFAULT; 2916 } 2917 lv = len; 2918 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv)); 2919 if (ret < 0) { 2920 unlock_user(results, optval_addr, 0); 2921 return ret; 2922 } 2923 /* swap host endianness to target endianness. */ 2924 for (i = 0; i < (len / sizeof(uint32_t)); i++) { 2925 results[i] = tswap32(results[i]); 2926 } 2927 if (put_user_u32(lv, optlen)) { 2928 return -TARGET_EFAULT; 2929 } 2930 unlock_user(results, optval_addr, 0); 2931 break; 2932 } 2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2934 default: 2935 goto unimplemented; 2936 } 2937 break; 2938 #endif /* SOL_NETLINK */ 2939 default: 2940 unimplemented: 2941 qemu_log_mask(LOG_UNIMP, 2942 "getsockopt level=%d optname=%d not yet supported\n", 2943 level, optname); 2944 ret = -TARGET_EOPNOTSUPP; 2945 break; 2946 } 2947 return ret; 2948 } 2949 2950 /* Convert target low/high pair representing file offset into the host 2951 * low/high pair. This function doesn't handle offsets bigger than 64 bits 2952 * as the kernel doesn't handle them either. 2953 */ 2954 static void target_to_host_low_high(abi_ulong tlow, 2955 abi_ulong thigh, 2956 unsigned long *hlow, 2957 unsigned long *hhigh) 2958 { 2959 uint64_t off = tlow | 2960 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) << 2961 TARGET_LONG_BITS / 2; 2962 2963 *hlow = off; 2964 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2; 2965 } 2966 2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 2968 abi_ulong count, int copy) 2969 { 2970 struct target_iovec *target_vec; 2971 struct iovec *vec; 2972 abi_ulong total_len, max_len; 2973 int i; 2974 int err = 0; 2975 bool bad_address = false; 2976 2977 if (count == 0) { 2978 errno = 0; 2979 return NULL; 2980 } 2981 if (count > IOV_MAX) { 2982 errno = EINVAL; 2983 return NULL; 2984 } 2985 2986 vec = g_try_new0(struct iovec, count); 2987 if (vec == NULL) { 2988 errno = ENOMEM; 2989 return NULL; 2990 } 2991 2992 target_vec = lock_user(VERIFY_READ, target_addr, 2993 count * sizeof(struct target_iovec), 1); 2994 if (target_vec == NULL) { 2995 err = EFAULT; 2996 goto fail2; 2997 } 2998 2999 /* ??? If host page size > target page size, this will result in a 3000 value larger than what we can actually support. */ 3001 max_len = 0x7fffffff & TARGET_PAGE_MASK; 3002 total_len = 0; 3003 3004 for (i = 0; i < count; i++) { 3005 abi_ulong base = tswapal(target_vec[i].iov_base); 3006 abi_long len = tswapal(target_vec[i].iov_len); 3007 3008 if (len < 0) { 3009 err = EINVAL; 3010 goto fail; 3011 } else if (len == 0) { 3012 /* Zero length pointer is ignored. */ 3013 vec[i].iov_base = 0; 3014 } else { 3015 vec[i].iov_base = lock_user(type, base, len, copy); 3016 /* If the first buffer pointer is bad, this is a fault. But 3017 * subsequent bad buffers will result in a partial write; this 3018 * is realized by filling the vector with null pointers and 3019 * zero lengths. */ 3020 if (!vec[i].iov_base) { 3021 if (i == 0) { 3022 err = EFAULT; 3023 goto fail; 3024 } else { 3025 bad_address = true; 3026 } 3027 } 3028 if (bad_address) { 3029 len = 0; 3030 } 3031 if (len > max_len - total_len) { 3032 len = max_len - total_len; 3033 } 3034 } 3035 vec[i].iov_len = len; 3036 total_len += len; 3037 } 3038 3039 unlock_user(target_vec, target_addr, 0); 3040 return vec; 3041 3042 fail: 3043 while (--i >= 0) { 3044 if (tswapal(target_vec[i].iov_len) > 0) { 3045 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3046 } 3047 } 3048 unlock_user(target_vec, target_addr, 0); 3049 fail2: 3050 g_free(vec); 3051 errno = err; 3052 return NULL; 3053 } 3054 3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3056 abi_ulong count, int copy) 3057 { 3058 struct target_iovec *target_vec; 3059 int i; 3060 3061 target_vec = lock_user(VERIFY_READ, target_addr, 3062 count * sizeof(struct target_iovec), 1); 3063 if (target_vec) { 3064 for (i = 0; i < count; i++) { 3065 abi_ulong base = tswapal(target_vec[i].iov_base); 3066 abi_long len = tswapal(target_vec[i].iov_len); 3067 if (len < 0) { 3068 break; 3069 } 3070 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3071 } 3072 unlock_user(target_vec, target_addr, 0); 3073 } 3074 3075 g_free(vec); 3076 } 3077 3078 static inline int target_to_host_sock_type(int *type) 3079 { 3080 int host_type = 0; 3081 int target_type = *type; 3082 3083 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3084 case TARGET_SOCK_DGRAM: 3085 host_type = SOCK_DGRAM; 3086 break; 3087 case TARGET_SOCK_STREAM: 3088 host_type = SOCK_STREAM; 3089 break; 3090 default: 3091 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3092 break; 3093 } 3094 if (target_type & TARGET_SOCK_CLOEXEC) { 3095 #if defined(SOCK_CLOEXEC) 3096 host_type |= SOCK_CLOEXEC; 3097 #else 3098 return -TARGET_EINVAL; 3099 #endif 3100 } 3101 if (target_type & TARGET_SOCK_NONBLOCK) { 3102 #if defined(SOCK_NONBLOCK) 3103 host_type |= SOCK_NONBLOCK; 3104 #elif !defined(O_NONBLOCK) 3105 return -TARGET_EINVAL; 3106 #endif 3107 } 3108 *type = host_type; 3109 return 0; 3110 } 3111 3112 /* Try to emulate socket type flags after socket creation. */ 3113 static int sock_flags_fixup(int fd, int target_type) 3114 { 3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3116 if (target_type & TARGET_SOCK_NONBLOCK) { 3117 int flags = fcntl(fd, F_GETFL); 3118 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3119 close(fd); 3120 return -TARGET_EINVAL; 3121 } 3122 } 3123 #endif 3124 return fd; 3125 } 3126 3127 /* do_socket() Must return target values and target errnos. */ 3128 static abi_long do_socket(int domain, int type, int protocol) 3129 { 3130 int target_type = type; 3131 int ret; 3132 3133 ret = target_to_host_sock_type(&type); 3134 if (ret) { 3135 return ret; 3136 } 3137 3138 if (domain == PF_NETLINK && !( 3139 #ifdef CONFIG_RTNETLINK 3140 protocol == NETLINK_ROUTE || 3141 #endif 3142 protocol == NETLINK_KOBJECT_UEVENT || 3143 protocol == NETLINK_AUDIT)) { 3144 return -TARGET_EPROTONOSUPPORT; 3145 } 3146 3147 if (domain == AF_PACKET || 3148 (domain == AF_INET && type == SOCK_PACKET)) { 3149 protocol = tswap16(protocol); 3150 } 3151 3152 ret = get_errno(socket(domain, type, protocol)); 3153 if (ret >= 0) { 3154 ret = sock_flags_fixup(ret, target_type); 3155 if (type == SOCK_PACKET) { 3156 /* Manage an obsolete case : 3157 * if socket type is SOCK_PACKET, bind by name 3158 */ 3159 fd_trans_register(ret, &target_packet_trans); 3160 } else if (domain == PF_NETLINK) { 3161 switch (protocol) { 3162 #ifdef CONFIG_RTNETLINK 3163 case NETLINK_ROUTE: 3164 fd_trans_register(ret, &target_netlink_route_trans); 3165 break; 3166 #endif 3167 case NETLINK_KOBJECT_UEVENT: 3168 /* nothing to do: messages are strings */ 3169 break; 3170 case NETLINK_AUDIT: 3171 fd_trans_register(ret, &target_netlink_audit_trans); 3172 break; 3173 default: 3174 g_assert_not_reached(); 3175 } 3176 } 3177 } 3178 return ret; 3179 } 3180 3181 /* do_bind() Must return target values and target errnos. */ 3182 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3183 socklen_t addrlen) 3184 { 3185 void *addr; 3186 abi_long ret; 3187 3188 if ((int)addrlen < 0) { 3189 return -TARGET_EINVAL; 3190 } 3191 3192 addr = alloca(addrlen+1); 3193 3194 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3195 if (ret) 3196 return ret; 3197 3198 return get_errno(bind(sockfd, addr, addrlen)); 3199 } 3200 3201 /* do_connect() Must return target values and target errnos. */ 3202 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3203 socklen_t addrlen) 3204 { 3205 void *addr; 3206 abi_long ret; 3207 3208 if ((int)addrlen < 0) { 3209 return -TARGET_EINVAL; 3210 } 3211 3212 addr = alloca(addrlen+1); 3213 3214 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3215 if (ret) 3216 return ret; 3217 3218 return get_errno(safe_connect(sockfd, addr, addrlen)); 3219 } 3220 3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3223 int flags, int send) 3224 { 3225 abi_long ret, len; 3226 struct msghdr msg; 3227 abi_ulong count; 3228 struct iovec *vec; 3229 abi_ulong target_vec; 3230 3231 if (msgp->msg_name) { 3232 msg.msg_namelen = tswap32(msgp->msg_namelen); 3233 msg.msg_name = alloca(msg.msg_namelen+1); 3234 ret = target_to_host_sockaddr(fd, msg.msg_name, 3235 tswapal(msgp->msg_name), 3236 msg.msg_namelen); 3237 if (ret == -TARGET_EFAULT) { 3238 /* For connected sockets msg_name and msg_namelen must 3239 * be ignored, so returning EFAULT immediately is wrong. 3240 * Instead, pass a bad msg_name to the host kernel, and 3241 * let it decide whether to return EFAULT or not. 3242 */ 3243 msg.msg_name = (void *)-1; 3244 } else if (ret) { 3245 goto out2; 3246 } 3247 } else { 3248 msg.msg_name = NULL; 3249 msg.msg_namelen = 0; 3250 } 3251 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3252 msg.msg_control = alloca(msg.msg_controllen); 3253 memset(msg.msg_control, 0, msg.msg_controllen); 3254 3255 msg.msg_flags = tswap32(msgp->msg_flags); 3256 3257 count = tswapal(msgp->msg_iovlen); 3258 target_vec = tswapal(msgp->msg_iov); 3259 3260 if (count > IOV_MAX) { 3261 /* sendrcvmsg returns a different errno for this condition than 3262 * readv/writev, so we must catch it here before lock_iovec() does. 3263 */ 3264 ret = -TARGET_EMSGSIZE; 3265 goto out2; 3266 } 3267 3268 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3269 target_vec, count, send); 3270 if (vec == NULL) { 3271 ret = -host_to_target_errno(errno); 3272 /* allow sending packet without any iov, e.g. with MSG_MORE flag */ 3273 if (!send || ret) { 3274 goto out2; 3275 } 3276 } 3277 msg.msg_iovlen = count; 3278 msg.msg_iov = vec; 3279 3280 if (send) { 3281 if (fd_trans_target_to_host_data(fd)) { 3282 void *host_msg; 3283 3284 host_msg = g_malloc(msg.msg_iov->iov_len); 3285 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3286 ret = fd_trans_target_to_host_data(fd)(host_msg, 3287 msg.msg_iov->iov_len); 3288 if (ret >= 0) { 3289 msg.msg_iov->iov_base = host_msg; 3290 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3291 } 3292 g_free(host_msg); 3293 } else { 3294 ret = target_to_host_cmsg(&msg, msgp); 3295 if (ret == 0) { 3296 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3297 } 3298 } 3299 } else { 3300 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3301 if (!is_error(ret)) { 3302 len = ret; 3303 if (fd_trans_host_to_target_data(fd)) { 3304 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3305 MIN(msg.msg_iov->iov_len, len)); 3306 } 3307 if (!is_error(ret)) { 3308 ret = host_to_target_cmsg(msgp, &msg); 3309 } 3310 if (!is_error(ret)) { 3311 msgp->msg_namelen = tswap32(msg.msg_namelen); 3312 msgp->msg_flags = tswap32(msg.msg_flags); 3313 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3314 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3315 msg.msg_name, msg.msg_namelen); 3316 if (ret) { 3317 goto out; 3318 } 3319 } 3320 3321 ret = len; 3322 } 3323 } 3324 } 3325 3326 out: 3327 if (vec) { 3328 unlock_iovec(vec, target_vec, count, !send); 3329 } 3330 out2: 3331 return ret; 3332 } 3333 3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3335 int flags, int send) 3336 { 3337 abi_long ret; 3338 struct target_msghdr *msgp; 3339 3340 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3341 msgp, 3342 target_msg, 3343 send ? 1 : 0)) { 3344 return -TARGET_EFAULT; 3345 } 3346 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3347 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3348 return ret; 3349 } 3350 3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3352 * so it might not have this *mmsg-specific flag either. 3353 */ 3354 #ifndef MSG_WAITFORONE 3355 #define MSG_WAITFORONE 0x10000 3356 #endif 3357 3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3359 unsigned int vlen, unsigned int flags, 3360 int send) 3361 { 3362 struct target_mmsghdr *mmsgp; 3363 abi_long ret = 0; 3364 int i; 3365 3366 if (vlen > UIO_MAXIOV) { 3367 vlen = UIO_MAXIOV; 3368 } 3369 3370 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3371 if (!mmsgp) { 3372 return -TARGET_EFAULT; 3373 } 3374 3375 for (i = 0; i < vlen; i++) { 3376 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3377 if (is_error(ret)) { 3378 break; 3379 } 3380 mmsgp[i].msg_len = tswap32(ret); 3381 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3382 if (flags & MSG_WAITFORONE) { 3383 flags |= MSG_DONTWAIT; 3384 } 3385 } 3386 3387 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3388 3389 /* Return number of datagrams sent if we sent any at all; 3390 * otherwise return the error. 3391 */ 3392 if (i) { 3393 return i; 3394 } 3395 return ret; 3396 } 3397 3398 /* do_accept4() Must return target values and target errnos. */ 3399 static abi_long do_accept4(int fd, abi_ulong target_addr, 3400 abi_ulong target_addrlen_addr, int flags) 3401 { 3402 socklen_t addrlen, ret_addrlen; 3403 void *addr; 3404 abi_long ret; 3405 int host_flags; 3406 3407 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) { 3408 return -TARGET_EINVAL; 3409 } 3410 3411 host_flags = 0; 3412 if (flags & TARGET_SOCK_NONBLOCK) { 3413 host_flags |= SOCK_NONBLOCK; 3414 } 3415 if (flags & TARGET_SOCK_CLOEXEC) { 3416 host_flags |= SOCK_CLOEXEC; 3417 } 3418 3419 if (target_addr == 0) { 3420 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3421 } 3422 3423 /* linux returns EFAULT if addrlen pointer is invalid */ 3424 if (get_user_u32(addrlen, target_addrlen_addr)) 3425 return -TARGET_EFAULT; 3426 3427 if ((int)addrlen < 0) { 3428 return -TARGET_EINVAL; 3429 } 3430 3431 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3432 return -TARGET_EFAULT; 3433 } 3434 3435 addr = alloca(addrlen); 3436 3437 ret_addrlen = addrlen; 3438 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags)); 3439 if (!is_error(ret)) { 3440 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3441 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3442 ret = -TARGET_EFAULT; 3443 } 3444 } 3445 return ret; 3446 } 3447 3448 /* do_getpeername() Must return target values and target errnos. */ 3449 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3450 abi_ulong target_addrlen_addr) 3451 { 3452 socklen_t addrlen, ret_addrlen; 3453 void *addr; 3454 abi_long ret; 3455 3456 if (get_user_u32(addrlen, target_addrlen_addr)) 3457 return -TARGET_EFAULT; 3458 3459 if ((int)addrlen < 0) { 3460 return -TARGET_EINVAL; 3461 } 3462 3463 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3464 return -TARGET_EFAULT; 3465 } 3466 3467 addr = alloca(addrlen); 3468 3469 ret_addrlen = addrlen; 3470 ret = get_errno(getpeername(fd, addr, &ret_addrlen)); 3471 if (!is_error(ret)) { 3472 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3473 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3474 ret = -TARGET_EFAULT; 3475 } 3476 } 3477 return ret; 3478 } 3479 3480 /* do_getsockname() Must return target values and target errnos. */ 3481 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3482 abi_ulong target_addrlen_addr) 3483 { 3484 socklen_t addrlen, ret_addrlen; 3485 void *addr; 3486 abi_long ret; 3487 3488 if (get_user_u32(addrlen, target_addrlen_addr)) 3489 return -TARGET_EFAULT; 3490 3491 if ((int)addrlen < 0) { 3492 return -TARGET_EINVAL; 3493 } 3494 3495 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3496 return -TARGET_EFAULT; 3497 } 3498 3499 addr = alloca(addrlen); 3500 3501 ret_addrlen = addrlen; 3502 ret = get_errno(getsockname(fd, addr, &ret_addrlen)); 3503 if (!is_error(ret)) { 3504 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3505 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3506 ret = -TARGET_EFAULT; 3507 } 3508 } 3509 return ret; 3510 } 3511 3512 /* do_socketpair() Must return target values and target errnos. */ 3513 static abi_long do_socketpair(int domain, int type, int protocol, 3514 abi_ulong target_tab_addr) 3515 { 3516 int tab[2]; 3517 abi_long ret; 3518 3519 target_to_host_sock_type(&type); 3520 3521 ret = get_errno(socketpair(domain, type, protocol, tab)); 3522 if (!is_error(ret)) { 3523 if (put_user_s32(tab[0], target_tab_addr) 3524 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3525 ret = -TARGET_EFAULT; 3526 } 3527 return ret; 3528 } 3529 3530 /* do_sendto() Must return target values and target errnos. */ 3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3532 abi_ulong target_addr, socklen_t addrlen) 3533 { 3534 void *addr; 3535 void *host_msg; 3536 void *copy_msg = NULL; 3537 abi_long ret; 3538 3539 if ((int)addrlen < 0) { 3540 return -TARGET_EINVAL; 3541 } 3542 3543 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3544 if (!host_msg) 3545 return -TARGET_EFAULT; 3546 if (fd_trans_target_to_host_data(fd)) { 3547 copy_msg = host_msg; 3548 host_msg = g_malloc(len); 3549 memcpy(host_msg, copy_msg, len); 3550 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3551 if (ret < 0) { 3552 goto fail; 3553 } 3554 } 3555 if (target_addr) { 3556 addr = alloca(addrlen+1); 3557 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3558 if (ret) { 3559 goto fail; 3560 } 3561 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3562 } else { 3563 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3564 } 3565 fail: 3566 if (copy_msg) { 3567 g_free(host_msg); 3568 host_msg = copy_msg; 3569 } 3570 unlock_user(host_msg, msg, 0); 3571 return ret; 3572 } 3573 3574 /* do_recvfrom() Must return target values and target errnos. */ 3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3576 abi_ulong target_addr, 3577 abi_ulong target_addrlen) 3578 { 3579 socklen_t addrlen, ret_addrlen; 3580 void *addr; 3581 void *host_msg; 3582 abi_long ret; 3583 3584 if (!msg) { 3585 host_msg = NULL; 3586 } else { 3587 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3588 if (!host_msg) { 3589 return -TARGET_EFAULT; 3590 } 3591 } 3592 if (target_addr) { 3593 if (get_user_u32(addrlen, target_addrlen)) { 3594 ret = -TARGET_EFAULT; 3595 goto fail; 3596 } 3597 if ((int)addrlen < 0) { 3598 ret = -TARGET_EINVAL; 3599 goto fail; 3600 } 3601 addr = alloca(addrlen); 3602 ret_addrlen = addrlen; 3603 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3604 addr, &ret_addrlen)); 3605 } else { 3606 addr = NULL; /* To keep compiler quiet. */ 3607 addrlen = 0; /* To keep compiler quiet. */ 3608 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3609 } 3610 if (!is_error(ret)) { 3611 if (fd_trans_host_to_target_data(fd)) { 3612 abi_long trans; 3613 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len)); 3614 if (is_error(trans)) { 3615 ret = trans; 3616 goto fail; 3617 } 3618 } 3619 if (target_addr) { 3620 host_to_target_sockaddr(target_addr, addr, 3621 MIN(addrlen, ret_addrlen)); 3622 if (put_user_u32(ret_addrlen, target_addrlen)) { 3623 ret = -TARGET_EFAULT; 3624 goto fail; 3625 } 3626 } 3627 unlock_user(host_msg, msg, len); 3628 } else { 3629 fail: 3630 unlock_user(host_msg, msg, 0); 3631 } 3632 return ret; 3633 } 3634 3635 #ifdef TARGET_NR_socketcall 3636 /* do_socketcall() must return target values and target errnos. */ 3637 static abi_long do_socketcall(int num, abi_ulong vptr) 3638 { 3639 static const unsigned nargs[] = { /* number of arguments per operation */ 3640 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 3641 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 3642 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 3643 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 3644 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 3645 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 3646 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 3647 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 3648 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 3649 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 3650 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 3651 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 3652 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 3653 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3654 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3655 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 3656 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 3657 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 3658 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 3659 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 3660 }; 3661 abi_long a[6]; /* max 6 args */ 3662 unsigned i; 3663 3664 /* check the range of the first argument num */ 3665 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 3666 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 3667 return -TARGET_EINVAL; 3668 } 3669 /* ensure we have space for args */ 3670 if (nargs[num] > ARRAY_SIZE(a)) { 3671 return -TARGET_EINVAL; 3672 } 3673 /* collect the arguments in a[] according to nargs[] */ 3674 for (i = 0; i < nargs[num]; ++i) { 3675 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3676 return -TARGET_EFAULT; 3677 } 3678 } 3679 /* now when we have the args, invoke the appropriate underlying function */ 3680 switch (num) { 3681 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 3682 return do_socket(a[0], a[1], a[2]); 3683 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 3684 return do_bind(a[0], a[1], a[2]); 3685 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 3686 return do_connect(a[0], a[1], a[2]); 3687 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 3688 return get_errno(listen(a[0], a[1])); 3689 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 3690 return do_accept4(a[0], a[1], a[2], 0); 3691 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 3692 return do_getsockname(a[0], a[1], a[2]); 3693 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 3694 return do_getpeername(a[0], a[1], a[2]); 3695 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 3696 return do_socketpair(a[0], a[1], a[2], a[3]); 3697 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 3698 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3699 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 3700 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3701 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 3702 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3703 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 3704 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3705 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 3706 return get_errno(shutdown(a[0], a[1])); 3707 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3708 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3709 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3710 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3711 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 3712 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3713 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 3714 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3715 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 3716 return do_accept4(a[0], a[1], a[2], a[3]); 3717 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 3718 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 3719 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 3720 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 3721 default: 3722 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num); 3723 return -TARGET_EINVAL; 3724 } 3725 } 3726 #endif 3727 3728 #ifndef TARGET_SEMID64_DS 3729 /* asm-generic version of this struct */ 3730 struct target_semid64_ds 3731 { 3732 struct target_ipc_perm sem_perm; 3733 abi_ulong sem_otime; 3734 #if TARGET_ABI_BITS == 32 3735 abi_ulong __unused1; 3736 #endif 3737 abi_ulong sem_ctime; 3738 #if TARGET_ABI_BITS == 32 3739 abi_ulong __unused2; 3740 #endif 3741 abi_ulong sem_nsems; 3742 abi_ulong __unused3; 3743 abi_ulong __unused4; 3744 }; 3745 #endif 3746 3747 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 3748 abi_ulong target_addr) 3749 { 3750 struct target_ipc_perm *target_ip; 3751 struct target_semid64_ds *target_sd; 3752 3753 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3754 return -TARGET_EFAULT; 3755 target_ip = &(target_sd->sem_perm); 3756 host_ip->__key = tswap32(target_ip->__key); 3757 host_ip->uid = tswap32(target_ip->uid); 3758 host_ip->gid = tswap32(target_ip->gid); 3759 host_ip->cuid = tswap32(target_ip->cuid); 3760 host_ip->cgid = tswap32(target_ip->cgid); 3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3762 host_ip->mode = tswap32(target_ip->mode); 3763 #else 3764 host_ip->mode = tswap16(target_ip->mode); 3765 #endif 3766 #if defined(TARGET_PPC) 3767 host_ip->__seq = tswap32(target_ip->__seq); 3768 #else 3769 host_ip->__seq = tswap16(target_ip->__seq); 3770 #endif 3771 unlock_user_struct(target_sd, target_addr, 0); 3772 return 0; 3773 } 3774 3775 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 3776 struct ipc_perm *host_ip) 3777 { 3778 struct target_ipc_perm *target_ip; 3779 struct target_semid64_ds *target_sd; 3780 3781 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3782 return -TARGET_EFAULT; 3783 target_ip = &(target_sd->sem_perm); 3784 target_ip->__key = tswap32(host_ip->__key); 3785 target_ip->uid = tswap32(host_ip->uid); 3786 target_ip->gid = tswap32(host_ip->gid); 3787 target_ip->cuid = tswap32(host_ip->cuid); 3788 target_ip->cgid = tswap32(host_ip->cgid); 3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3790 target_ip->mode = tswap32(host_ip->mode); 3791 #else 3792 target_ip->mode = tswap16(host_ip->mode); 3793 #endif 3794 #if defined(TARGET_PPC) 3795 target_ip->__seq = tswap32(host_ip->__seq); 3796 #else 3797 target_ip->__seq = tswap16(host_ip->__seq); 3798 #endif 3799 unlock_user_struct(target_sd, target_addr, 1); 3800 return 0; 3801 } 3802 3803 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 3804 abi_ulong target_addr) 3805 { 3806 struct target_semid64_ds *target_sd; 3807 3808 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3809 return -TARGET_EFAULT; 3810 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 3811 return -TARGET_EFAULT; 3812 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 3813 host_sd->sem_otime = tswapal(target_sd->sem_otime); 3814 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 3815 unlock_user_struct(target_sd, target_addr, 0); 3816 return 0; 3817 } 3818 3819 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 3820 struct semid_ds *host_sd) 3821 { 3822 struct target_semid64_ds *target_sd; 3823 3824 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3825 return -TARGET_EFAULT; 3826 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 3827 return -TARGET_EFAULT; 3828 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 3829 target_sd->sem_otime = tswapal(host_sd->sem_otime); 3830 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 3831 unlock_user_struct(target_sd, target_addr, 1); 3832 return 0; 3833 } 3834 3835 struct target_seminfo { 3836 int semmap; 3837 int semmni; 3838 int semmns; 3839 int semmnu; 3840 int semmsl; 3841 int semopm; 3842 int semume; 3843 int semusz; 3844 int semvmx; 3845 int semaem; 3846 }; 3847 3848 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 3849 struct seminfo *host_seminfo) 3850 { 3851 struct target_seminfo *target_seminfo; 3852 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 3853 return -TARGET_EFAULT; 3854 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 3855 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 3856 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 3857 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 3858 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 3859 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 3860 __put_user(host_seminfo->semume, &target_seminfo->semume); 3861 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 3862 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 3863 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 3864 unlock_user_struct(target_seminfo, target_addr, 1); 3865 return 0; 3866 } 3867 3868 union semun { 3869 int val; 3870 struct semid_ds *buf; 3871 unsigned short *array; 3872 struct seminfo *__buf; 3873 }; 3874 3875 union target_semun { 3876 int val; 3877 abi_ulong buf; 3878 abi_ulong array; 3879 abi_ulong __buf; 3880 }; 3881 3882 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 3883 abi_ulong target_addr) 3884 { 3885 int nsems; 3886 unsigned short *array; 3887 union semun semun; 3888 struct semid_ds semid_ds; 3889 int i, ret; 3890 3891 semun.buf = &semid_ds; 3892 3893 ret = semctl(semid, 0, IPC_STAT, semun); 3894 if (ret == -1) 3895 return get_errno(ret); 3896 3897 nsems = semid_ds.sem_nsems; 3898 3899 *host_array = g_try_new(unsigned short, nsems); 3900 if (!*host_array) { 3901 return -TARGET_ENOMEM; 3902 } 3903 array = lock_user(VERIFY_READ, target_addr, 3904 nsems*sizeof(unsigned short), 1); 3905 if (!array) { 3906 g_free(*host_array); 3907 return -TARGET_EFAULT; 3908 } 3909 3910 for(i=0; i<nsems; i++) { 3911 __get_user((*host_array)[i], &array[i]); 3912 } 3913 unlock_user(array, target_addr, 0); 3914 3915 return 0; 3916 } 3917 3918 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 3919 unsigned short **host_array) 3920 { 3921 int nsems; 3922 unsigned short *array; 3923 union semun semun; 3924 struct semid_ds semid_ds; 3925 int i, ret; 3926 3927 semun.buf = &semid_ds; 3928 3929 ret = semctl(semid, 0, IPC_STAT, semun); 3930 if (ret == -1) 3931 return get_errno(ret); 3932 3933 nsems = semid_ds.sem_nsems; 3934 3935 array = lock_user(VERIFY_WRITE, target_addr, 3936 nsems*sizeof(unsigned short), 0); 3937 if (!array) 3938 return -TARGET_EFAULT; 3939 3940 for(i=0; i<nsems; i++) { 3941 __put_user((*host_array)[i], &array[i]); 3942 } 3943 g_free(*host_array); 3944 unlock_user(array, target_addr, 1); 3945 3946 return 0; 3947 } 3948 3949 static inline abi_long do_semctl(int semid, int semnum, int cmd, 3950 abi_ulong target_arg) 3951 { 3952 union target_semun target_su = { .buf = target_arg }; 3953 union semun arg; 3954 struct semid_ds dsarg; 3955 unsigned short *array = NULL; 3956 struct seminfo seminfo; 3957 abi_long ret = -TARGET_EINVAL; 3958 abi_long err; 3959 cmd &= 0xff; 3960 3961 switch( cmd ) { 3962 case GETVAL: 3963 case SETVAL: 3964 /* In 64 bit cross-endian situations, we will erroneously pick up 3965 * the wrong half of the union for the "val" element. To rectify 3966 * this, the entire 8-byte structure is byteswapped, followed by 3967 * a swap of the 4 byte val field. In other cases, the data is 3968 * already in proper host byte order. */ 3969 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 3970 target_su.buf = tswapal(target_su.buf); 3971 arg.val = tswap32(target_su.val); 3972 } else { 3973 arg.val = target_su.val; 3974 } 3975 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3976 break; 3977 case GETALL: 3978 case SETALL: 3979 err = target_to_host_semarray(semid, &array, target_su.array); 3980 if (err) 3981 return err; 3982 arg.array = array; 3983 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3984 err = host_to_target_semarray(semid, target_su.array, &array); 3985 if (err) 3986 return err; 3987 break; 3988 case IPC_STAT: 3989 case IPC_SET: 3990 case SEM_STAT: 3991 err = target_to_host_semid_ds(&dsarg, target_su.buf); 3992 if (err) 3993 return err; 3994 arg.buf = &dsarg; 3995 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3996 err = host_to_target_semid_ds(target_su.buf, &dsarg); 3997 if (err) 3998 return err; 3999 break; 4000 case IPC_INFO: 4001 case SEM_INFO: 4002 arg.__buf = &seminfo; 4003 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4004 err = host_to_target_seminfo(target_su.__buf, &seminfo); 4005 if (err) 4006 return err; 4007 break; 4008 case IPC_RMID: 4009 case GETPID: 4010 case GETNCNT: 4011 case GETZCNT: 4012 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4013 break; 4014 } 4015 4016 return ret; 4017 } 4018 4019 struct target_sembuf { 4020 unsigned short sem_num; 4021 short sem_op; 4022 short sem_flg; 4023 }; 4024 4025 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4026 abi_ulong target_addr, 4027 unsigned nsops) 4028 { 4029 struct target_sembuf *target_sembuf; 4030 int i; 4031 4032 target_sembuf = lock_user(VERIFY_READ, target_addr, 4033 nsops*sizeof(struct target_sembuf), 1); 4034 if (!target_sembuf) 4035 return -TARGET_EFAULT; 4036 4037 for(i=0; i<nsops; i++) { 4038 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4039 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4040 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4041 } 4042 4043 unlock_user(target_sembuf, target_addr, 0); 4044 4045 return 0; 4046 } 4047 4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \ 4049 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64) 4050 4051 /* 4052 * This macro is required to handle the s390 variants, which passes the 4053 * arguments in a different order than default. 4054 */ 4055 #ifdef __s390x__ 4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4057 (__nsops), (__timeout), (__sops) 4058 #else 4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4060 (__nsops), 0, (__sops), (__timeout) 4061 #endif 4062 4063 static inline abi_long do_semtimedop(int semid, 4064 abi_long ptr, 4065 unsigned nsops, 4066 abi_long timeout, bool time64) 4067 { 4068 struct sembuf *sops; 4069 struct timespec ts, *pts = NULL; 4070 abi_long ret; 4071 4072 if (timeout) { 4073 pts = &ts; 4074 if (time64) { 4075 if (target_to_host_timespec64(pts, timeout)) { 4076 return -TARGET_EFAULT; 4077 } 4078 } else { 4079 if (target_to_host_timespec(pts, timeout)) { 4080 return -TARGET_EFAULT; 4081 } 4082 } 4083 } 4084 4085 if (nsops > TARGET_SEMOPM) { 4086 return -TARGET_E2BIG; 4087 } 4088 4089 sops = g_new(struct sembuf, nsops); 4090 4091 if (target_to_host_sembuf(sops, ptr, nsops)) { 4092 g_free(sops); 4093 return -TARGET_EFAULT; 4094 } 4095 4096 ret = -TARGET_ENOSYS; 4097 #ifdef __NR_semtimedop 4098 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts)); 4099 #endif 4100 #ifdef __NR_ipc 4101 if (ret == -TARGET_ENOSYS) { 4102 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, 4103 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts))); 4104 } 4105 #endif 4106 g_free(sops); 4107 return ret; 4108 } 4109 #endif 4110 4111 struct target_msqid_ds 4112 { 4113 struct target_ipc_perm msg_perm; 4114 abi_ulong msg_stime; 4115 #if TARGET_ABI_BITS == 32 4116 abi_ulong __unused1; 4117 #endif 4118 abi_ulong msg_rtime; 4119 #if TARGET_ABI_BITS == 32 4120 abi_ulong __unused2; 4121 #endif 4122 abi_ulong msg_ctime; 4123 #if TARGET_ABI_BITS == 32 4124 abi_ulong __unused3; 4125 #endif 4126 abi_ulong __msg_cbytes; 4127 abi_ulong msg_qnum; 4128 abi_ulong msg_qbytes; 4129 abi_ulong msg_lspid; 4130 abi_ulong msg_lrpid; 4131 abi_ulong __unused4; 4132 abi_ulong __unused5; 4133 }; 4134 4135 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4136 abi_ulong target_addr) 4137 { 4138 struct target_msqid_ds *target_md; 4139 4140 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4141 return -TARGET_EFAULT; 4142 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4143 return -TARGET_EFAULT; 4144 host_md->msg_stime = tswapal(target_md->msg_stime); 4145 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4146 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4147 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4148 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4149 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4150 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4151 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4152 unlock_user_struct(target_md, target_addr, 0); 4153 return 0; 4154 } 4155 4156 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4157 struct msqid_ds *host_md) 4158 { 4159 struct target_msqid_ds *target_md; 4160 4161 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4162 return -TARGET_EFAULT; 4163 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4164 return -TARGET_EFAULT; 4165 target_md->msg_stime = tswapal(host_md->msg_stime); 4166 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4167 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4168 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4169 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4170 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4171 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4172 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4173 unlock_user_struct(target_md, target_addr, 1); 4174 return 0; 4175 } 4176 4177 struct target_msginfo { 4178 int msgpool; 4179 int msgmap; 4180 int msgmax; 4181 int msgmnb; 4182 int msgmni; 4183 int msgssz; 4184 int msgtql; 4185 unsigned short int msgseg; 4186 }; 4187 4188 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4189 struct msginfo *host_msginfo) 4190 { 4191 struct target_msginfo *target_msginfo; 4192 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4193 return -TARGET_EFAULT; 4194 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4195 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4196 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4197 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4198 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4199 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4200 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4201 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4202 unlock_user_struct(target_msginfo, target_addr, 1); 4203 return 0; 4204 } 4205 4206 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4207 { 4208 struct msqid_ds dsarg; 4209 struct msginfo msginfo; 4210 abi_long ret = -TARGET_EINVAL; 4211 4212 cmd &= 0xff; 4213 4214 switch (cmd) { 4215 case IPC_STAT: 4216 case IPC_SET: 4217 case MSG_STAT: 4218 if (target_to_host_msqid_ds(&dsarg,ptr)) 4219 return -TARGET_EFAULT; 4220 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4221 if (host_to_target_msqid_ds(ptr,&dsarg)) 4222 return -TARGET_EFAULT; 4223 break; 4224 case IPC_RMID: 4225 ret = get_errno(msgctl(msgid, cmd, NULL)); 4226 break; 4227 case IPC_INFO: 4228 case MSG_INFO: 4229 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4230 if (host_to_target_msginfo(ptr, &msginfo)) 4231 return -TARGET_EFAULT; 4232 break; 4233 } 4234 4235 return ret; 4236 } 4237 4238 struct target_msgbuf { 4239 abi_long mtype; 4240 char mtext[1]; 4241 }; 4242 4243 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4244 ssize_t msgsz, int msgflg) 4245 { 4246 struct target_msgbuf *target_mb; 4247 struct msgbuf *host_mb; 4248 abi_long ret = 0; 4249 4250 if (msgsz < 0) { 4251 return -TARGET_EINVAL; 4252 } 4253 4254 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4255 return -TARGET_EFAULT; 4256 host_mb = g_try_malloc(msgsz + sizeof(long)); 4257 if (!host_mb) { 4258 unlock_user_struct(target_mb, msgp, 0); 4259 return -TARGET_ENOMEM; 4260 } 4261 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4262 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4263 ret = -TARGET_ENOSYS; 4264 #ifdef __NR_msgsnd 4265 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4266 #endif 4267 #ifdef __NR_ipc 4268 if (ret == -TARGET_ENOSYS) { 4269 #ifdef __s390x__ 4270 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4271 host_mb)); 4272 #else 4273 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4274 host_mb, 0)); 4275 #endif 4276 } 4277 #endif 4278 g_free(host_mb); 4279 unlock_user_struct(target_mb, msgp, 0); 4280 4281 return ret; 4282 } 4283 4284 #ifdef __NR_ipc 4285 #if defined(__sparc__) 4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */ 4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp 4288 #elif defined(__s390x__) 4289 /* The s390 sys_ipc variant has only five parameters. */ 4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4291 ((long int[]){(long int)__msgp, __msgtyp}) 4292 #else 4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4294 ((long int[]){(long int)__msgp, __msgtyp}), 0 4295 #endif 4296 #endif 4297 4298 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4299 ssize_t msgsz, abi_long msgtyp, 4300 int msgflg) 4301 { 4302 struct target_msgbuf *target_mb; 4303 char *target_mtext; 4304 struct msgbuf *host_mb; 4305 abi_long ret = 0; 4306 4307 if (msgsz < 0) { 4308 return -TARGET_EINVAL; 4309 } 4310 4311 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4312 return -TARGET_EFAULT; 4313 4314 host_mb = g_try_malloc(msgsz + sizeof(long)); 4315 if (!host_mb) { 4316 ret = -TARGET_ENOMEM; 4317 goto end; 4318 } 4319 ret = -TARGET_ENOSYS; 4320 #ifdef __NR_msgrcv 4321 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4322 #endif 4323 #ifdef __NR_ipc 4324 if (ret == -TARGET_ENOSYS) { 4325 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz, 4326 msgflg, MSGRCV_ARGS(host_mb, msgtyp))); 4327 } 4328 #endif 4329 4330 if (ret > 0) { 4331 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4332 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4333 if (!target_mtext) { 4334 ret = -TARGET_EFAULT; 4335 goto end; 4336 } 4337 memcpy(target_mb->mtext, host_mb->mtext, ret); 4338 unlock_user(target_mtext, target_mtext_addr, ret); 4339 } 4340 4341 target_mb->mtype = tswapal(host_mb->mtype); 4342 4343 end: 4344 if (target_mb) 4345 unlock_user_struct(target_mb, msgp, 1); 4346 g_free(host_mb); 4347 return ret; 4348 } 4349 4350 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4351 abi_ulong target_addr) 4352 { 4353 struct target_shmid_ds *target_sd; 4354 4355 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4356 return -TARGET_EFAULT; 4357 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4358 return -TARGET_EFAULT; 4359 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4360 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4361 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4362 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4363 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4364 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4365 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4366 unlock_user_struct(target_sd, target_addr, 0); 4367 return 0; 4368 } 4369 4370 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4371 struct shmid_ds *host_sd) 4372 { 4373 struct target_shmid_ds *target_sd; 4374 4375 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4376 return -TARGET_EFAULT; 4377 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4378 return -TARGET_EFAULT; 4379 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4380 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4381 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4382 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4383 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4384 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4385 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4386 unlock_user_struct(target_sd, target_addr, 1); 4387 return 0; 4388 } 4389 4390 struct target_shminfo { 4391 abi_ulong shmmax; 4392 abi_ulong shmmin; 4393 abi_ulong shmmni; 4394 abi_ulong shmseg; 4395 abi_ulong shmall; 4396 }; 4397 4398 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4399 struct shminfo *host_shminfo) 4400 { 4401 struct target_shminfo *target_shminfo; 4402 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4403 return -TARGET_EFAULT; 4404 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4405 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4406 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4407 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4408 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4409 unlock_user_struct(target_shminfo, target_addr, 1); 4410 return 0; 4411 } 4412 4413 struct target_shm_info { 4414 int used_ids; 4415 abi_ulong shm_tot; 4416 abi_ulong shm_rss; 4417 abi_ulong shm_swp; 4418 abi_ulong swap_attempts; 4419 abi_ulong swap_successes; 4420 }; 4421 4422 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4423 struct shm_info *host_shm_info) 4424 { 4425 struct target_shm_info *target_shm_info; 4426 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4427 return -TARGET_EFAULT; 4428 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4429 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4430 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4431 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4432 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4433 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4434 unlock_user_struct(target_shm_info, target_addr, 1); 4435 return 0; 4436 } 4437 4438 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4439 { 4440 struct shmid_ds dsarg; 4441 struct shminfo shminfo; 4442 struct shm_info shm_info; 4443 abi_long ret = -TARGET_EINVAL; 4444 4445 cmd &= 0xff; 4446 4447 switch(cmd) { 4448 case IPC_STAT: 4449 case IPC_SET: 4450 case SHM_STAT: 4451 if (target_to_host_shmid_ds(&dsarg, buf)) 4452 return -TARGET_EFAULT; 4453 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4454 if (host_to_target_shmid_ds(buf, &dsarg)) 4455 return -TARGET_EFAULT; 4456 break; 4457 case IPC_INFO: 4458 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4459 if (host_to_target_shminfo(buf, &shminfo)) 4460 return -TARGET_EFAULT; 4461 break; 4462 case SHM_INFO: 4463 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4464 if (host_to_target_shm_info(buf, &shm_info)) 4465 return -TARGET_EFAULT; 4466 break; 4467 case IPC_RMID: 4468 case SHM_LOCK: 4469 case SHM_UNLOCK: 4470 ret = get_errno(shmctl(shmid, cmd, NULL)); 4471 break; 4472 } 4473 4474 return ret; 4475 } 4476 4477 #ifdef TARGET_NR_ipc 4478 /* ??? This only works with linear mappings. */ 4479 /* do_ipc() must return target values and target errnos. */ 4480 static abi_long do_ipc(CPUArchState *cpu_env, 4481 unsigned int call, abi_long first, 4482 abi_long second, abi_long third, 4483 abi_long ptr, abi_long fifth) 4484 { 4485 int version; 4486 abi_long ret = 0; 4487 4488 version = call >> 16; 4489 call &= 0xffff; 4490 4491 switch (call) { 4492 case IPCOP_semop: 4493 ret = do_semtimedop(first, ptr, second, 0, false); 4494 break; 4495 case IPCOP_semtimedop: 4496 /* 4497 * The s390 sys_ipc variant has only five parameters instead of six 4498 * (as for default variant) and the only difference is the handling of 4499 * SEMTIMEDOP where on s390 the third parameter is used as a pointer 4500 * to a struct timespec where the generic variant uses fifth parameter. 4501 */ 4502 #if defined(TARGET_S390X) 4503 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64); 4504 #else 4505 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64); 4506 #endif 4507 break; 4508 4509 case IPCOP_semget: 4510 ret = get_errno(semget(first, second, third)); 4511 break; 4512 4513 case IPCOP_semctl: { 4514 /* The semun argument to semctl is passed by value, so dereference the 4515 * ptr argument. */ 4516 abi_ulong atptr; 4517 get_user_ual(atptr, ptr); 4518 ret = do_semctl(first, second, third, atptr); 4519 break; 4520 } 4521 4522 case IPCOP_msgget: 4523 ret = get_errno(msgget(first, second)); 4524 break; 4525 4526 case IPCOP_msgsnd: 4527 ret = do_msgsnd(first, ptr, second, third); 4528 break; 4529 4530 case IPCOP_msgctl: 4531 ret = do_msgctl(first, second, ptr); 4532 break; 4533 4534 case IPCOP_msgrcv: 4535 switch (version) { 4536 case 0: 4537 { 4538 struct target_ipc_kludge { 4539 abi_long msgp; 4540 abi_long msgtyp; 4541 } *tmp; 4542 4543 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4544 ret = -TARGET_EFAULT; 4545 break; 4546 } 4547 4548 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4549 4550 unlock_user_struct(tmp, ptr, 0); 4551 break; 4552 } 4553 default: 4554 ret = do_msgrcv(first, ptr, second, fifth, third); 4555 } 4556 break; 4557 4558 case IPCOP_shmat: 4559 switch (version) { 4560 default: 4561 { 4562 abi_ulong raddr; 4563 raddr = target_shmat(cpu_env, first, ptr, second); 4564 if (is_error(raddr)) 4565 return get_errno(raddr); 4566 if (put_user_ual(raddr, third)) 4567 return -TARGET_EFAULT; 4568 break; 4569 } 4570 case 1: 4571 ret = -TARGET_EINVAL; 4572 break; 4573 } 4574 break; 4575 case IPCOP_shmdt: 4576 ret = target_shmdt(ptr); 4577 break; 4578 4579 case IPCOP_shmget: 4580 /* IPC_* flag values are the same on all linux platforms */ 4581 ret = get_errno(shmget(first, second, third)); 4582 break; 4583 4584 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4585 case IPCOP_shmctl: 4586 ret = do_shmctl(first, second, ptr); 4587 break; 4588 default: 4589 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n", 4590 call, version); 4591 ret = -TARGET_ENOSYS; 4592 break; 4593 } 4594 return ret; 4595 } 4596 #endif 4597 4598 /* kernel structure types definitions */ 4599 4600 #define STRUCT(name, ...) STRUCT_ ## name, 4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4602 enum { 4603 #include "syscall_types.h" 4604 STRUCT_MAX 4605 }; 4606 #undef STRUCT 4607 #undef STRUCT_SPECIAL 4608 4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4610 #define STRUCT_SPECIAL(name) 4611 #include "syscall_types.h" 4612 #undef STRUCT 4613 #undef STRUCT_SPECIAL 4614 4615 #define MAX_STRUCT_SIZE 4096 4616 4617 #ifdef CONFIG_FIEMAP 4618 /* So fiemap access checks don't overflow on 32 bit systems. 4619 * This is very slightly smaller than the limit imposed by 4620 * the underlying kernel. 4621 */ 4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4623 / sizeof(struct fiemap_extent)) 4624 4625 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4626 int fd, int cmd, abi_long arg) 4627 { 4628 /* The parameter for this ioctl is a struct fiemap followed 4629 * by an array of struct fiemap_extent whose size is set 4630 * in fiemap->fm_extent_count. The array is filled in by the 4631 * ioctl. 4632 */ 4633 int target_size_in, target_size_out; 4634 struct fiemap *fm; 4635 const argtype *arg_type = ie->arg_type; 4636 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4637 void *argptr, *p; 4638 abi_long ret; 4639 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4640 uint32_t outbufsz; 4641 int free_fm = 0; 4642 4643 assert(arg_type[0] == TYPE_PTR); 4644 assert(ie->access == IOC_RW); 4645 arg_type++; 4646 target_size_in = thunk_type_size(arg_type, 0); 4647 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4648 if (!argptr) { 4649 return -TARGET_EFAULT; 4650 } 4651 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4652 unlock_user(argptr, arg, 0); 4653 fm = (struct fiemap *)buf_temp; 4654 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4655 return -TARGET_EINVAL; 4656 } 4657 4658 outbufsz = sizeof (*fm) + 4659 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4660 4661 if (outbufsz > MAX_STRUCT_SIZE) { 4662 /* We can't fit all the extents into the fixed size buffer. 4663 * Allocate one that is large enough and use it instead. 4664 */ 4665 fm = g_try_malloc(outbufsz); 4666 if (!fm) { 4667 return -TARGET_ENOMEM; 4668 } 4669 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4670 free_fm = 1; 4671 } 4672 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4673 if (!is_error(ret)) { 4674 target_size_out = target_size_in; 4675 /* An extent_count of 0 means we were only counting the extents 4676 * so there are no structs to copy 4677 */ 4678 if (fm->fm_extent_count != 0) { 4679 target_size_out += fm->fm_mapped_extents * extent_size; 4680 } 4681 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4682 if (!argptr) { 4683 ret = -TARGET_EFAULT; 4684 } else { 4685 /* Convert the struct fiemap */ 4686 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4687 if (fm->fm_extent_count != 0) { 4688 p = argptr + target_size_in; 4689 /* ...and then all the struct fiemap_extents */ 4690 for (i = 0; i < fm->fm_mapped_extents; i++) { 4691 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4692 THUNK_TARGET); 4693 p += extent_size; 4694 } 4695 } 4696 unlock_user(argptr, arg, target_size_out); 4697 } 4698 } 4699 if (free_fm) { 4700 g_free(fm); 4701 } 4702 return ret; 4703 } 4704 #endif 4705 4706 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 4707 int fd, int cmd, abi_long arg) 4708 { 4709 const argtype *arg_type = ie->arg_type; 4710 int target_size; 4711 void *argptr; 4712 int ret; 4713 struct ifconf *host_ifconf; 4714 uint32_t outbufsz; 4715 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 4716 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) }; 4717 int target_ifreq_size; 4718 int nb_ifreq; 4719 int free_buf = 0; 4720 int i; 4721 int target_ifc_len; 4722 abi_long target_ifc_buf; 4723 int host_ifc_len; 4724 char *host_ifc_buf; 4725 4726 assert(arg_type[0] == TYPE_PTR); 4727 assert(ie->access == IOC_RW); 4728 4729 arg_type++; 4730 target_size = thunk_type_size(arg_type, 0); 4731 4732 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4733 if (!argptr) 4734 return -TARGET_EFAULT; 4735 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4736 unlock_user(argptr, arg, 0); 4737 4738 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 4739 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 4740 target_ifreq_size = thunk_type_size(ifreq_max_type, 0); 4741 4742 if (target_ifc_buf != 0) { 4743 target_ifc_len = host_ifconf->ifc_len; 4744 nb_ifreq = target_ifc_len / target_ifreq_size; 4745 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 4746 4747 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 4748 if (outbufsz > MAX_STRUCT_SIZE) { 4749 /* 4750 * We can't fit all the extents into the fixed size buffer. 4751 * Allocate one that is large enough and use it instead. 4752 */ 4753 host_ifconf = g_try_malloc(outbufsz); 4754 if (!host_ifconf) { 4755 return -TARGET_ENOMEM; 4756 } 4757 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 4758 free_buf = 1; 4759 } 4760 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf); 4761 4762 host_ifconf->ifc_len = host_ifc_len; 4763 } else { 4764 host_ifc_buf = NULL; 4765 } 4766 host_ifconf->ifc_buf = host_ifc_buf; 4767 4768 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 4769 if (!is_error(ret)) { 4770 /* convert host ifc_len to target ifc_len */ 4771 4772 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 4773 target_ifc_len = nb_ifreq * target_ifreq_size; 4774 host_ifconf->ifc_len = target_ifc_len; 4775 4776 /* restore target ifc_buf */ 4777 4778 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 4779 4780 /* copy struct ifconf to target user */ 4781 4782 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4783 if (!argptr) 4784 return -TARGET_EFAULT; 4785 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 4786 unlock_user(argptr, arg, target_size); 4787 4788 if (target_ifc_buf != 0) { 4789 /* copy ifreq[] to target user */ 4790 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 4791 for (i = 0; i < nb_ifreq ; i++) { 4792 thunk_convert(argptr + i * target_ifreq_size, 4793 host_ifc_buf + i * sizeof(struct ifreq), 4794 ifreq_arg_type, THUNK_TARGET); 4795 } 4796 unlock_user(argptr, target_ifc_buf, target_ifc_len); 4797 } 4798 } 4799 4800 if (free_buf) { 4801 g_free(host_ifconf); 4802 } 4803 4804 return ret; 4805 } 4806 4807 #if defined(CONFIG_USBFS) 4808 #if HOST_LONG_BITS > 64 4809 #error USBDEVFS thunks do not support >64 bit hosts yet. 4810 #endif 4811 struct live_urb { 4812 uint64_t target_urb_adr; 4813 uint64_t target_buf_adr; 4814 char *target_buf_ptr; 4815 struct usbdevfs_urb host_urb; 4816 }; 4817 4818 static GHashTable *usbdevfs_urb_hashtable(void) 4819 { 4820 static GHashTable *urb_hashtable; 4821 4822 if (!urb_hashtable) { 4823 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal); 4824 } 4825 return urb_hashtable; 4826 } 4827 4828 static void urb_hashtable_insert(struct live_urb *urb) 4829 { 4830 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4831 g_hash_table_insert(urb_hashtable, urb, urb); 4832 } 4833 4834 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr) 4835 { 4836 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4837 return g_hash_table_lookup(urb_hashtable, &target_urb_adr); 4838 } 4839 4840 static void urb_hashtable_remove(struct live_urb *urb) 4841 { 4842 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4843 g_hash_table_remove(urb_hashtable, urb); 4844 } 4845 4846 static abi_long 4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp, 4848 int fd, int cmd, abi_long arg) 4849 { 4850 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) }; 4851 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 }; 4852 struct live_urb *lurb; 4853 void *argptr; 4854 uint64_t hurb; 4855 int target_size; 4856 uintptr_t target_urb_adr; 4857 abi_long ret; 4858 4859 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET); 4860 4861 memset(buf_temp, 0, sizeof(uint64_t)); 4862 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4863 if (is_error(ret)) { 4864 return ret; 4865 } 4866 4867 memcpy(&hurb, buf_temp, sizeof(uint64_t)); 4868 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb)); 4869 if (!lurb->target_urb_adr) { 4870 return -TARGET_EFAULT; 4871 } 4872 urb_hashtable_remove(lurb); 4873 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 4874 lurb->host_urb.buffer_length); 4875 lurb->target_buf_ptr = NULL; 4876 4877 /* restore the guest buffer pointer */ 4878 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr; 4879 4880 /* update the guest urb struct */ 4881 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0); 4882 if (!argptr) { 4883 g_free(lurb); 4884 return -TARGET_EFAULT; 4885 } 4886 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET); 4887 unlock_user(argptr, lurb->target_urb_adr, target_size); 4888 4889 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET); 4890 /* write back the urb handle */ 4891 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4892 if (!argptr) { 4893 g_free(lurb); 4894 return -TARGET_EFAULT; 4895 } 4896 4897 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */ 4898 target_urb_adr = lurb->target_urb_adr; 4899 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET); 4900 unlock_user(argptr, arg, target_size); 4901 4902 g_free(lurb); 4903 return ret; 4904 } 4905 4906 static abi_long 4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie, 4908 uint8_t *buf_temp __attribute__((unused)), 4909 int fd, int cmd, abi_long arg) 4910 { 4911 struct live_urb *lurb; 4912 4913 /* map target address back to host URB with metadata. */ 4914 lurb = urb_hashtable_lookup(arg); 4915 if (!lurb) { 4916 return -TARGET_EFAULT; 4917 } 4918 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4919 } 4920 4921 static abi_long 4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp, 4923 int fd, int cmd, abi_long arg) 4924 { 4925 const argtype *arg_type = ie->arg_type; 4926 int target_size; 4927 abi_long ret; 4928 void *argptr; 4929 int rw_dir; 4930 struct live_urb *lurb; 4931 4932 /* 4933 * each submitted URB needs to map to a unique ID for the 4934 * kernel, and that unique ID needs to be a pointer to 4935 * host memory. hence, we need to malloc for each URB. 4936 * isochronous transfers have a variable length struct. 4937 */ 4938 arg_type++; 4939 target_size = thunk_type_size(arg_type, THUNK_TARGET); 4940 4941 /* construct host copy of urb and metadata */ 4942 lurb = g_try_new0(struct live_urb, 1); 4943 if (!lurb) { 4944 return -TARGET_ENOMEM; 4945 } 4946 4947 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4948 if (!argptr) { 4949 g_free(lurb); 4950 return -TARGET_EFAULT; 4951 } 4952 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST); 4953 unlock_user(argptr, arg, 0); 4954 4955 lurb->target_urb_adr = arg; 4956 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer; 4957 4958 /* buffer space used depends on endpoint type so lock the entire buffer */ 4959 /* control type urbs should check the buffer contents for true direction */ 4960 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ; 4961 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr, 4962 lurb->host_urb.buffer_length, 1); 4963 if (lurb->target_buf_ptr == NULL) { 4964 g_free(lurb); 4965 return -TARGET_EFAULT; 4966 } 4967 4968 /* update buffer pointer in host copy */ 4969 lurb->host_urb.buffer = lurb->target_buf_ptr; 4970 4971 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4972 if (is_error(ret)) { 4973 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0); 4974 g_free(lurb); 4975 } else { 4976 urb_hashtable_insert(lurb); 4977 } 4978 4979 return ret; 4980 } 4981 #endif /* CONFIG_USBFS */ 4982 4983 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 4984 int cmd, abi_long arg) 4985 { 4986 void *argptr; 4987 struct dm_ioctl *host_dm; 4988 abi_long guest_data; 4989 uint32_t guest_data_size; 4990 int target_size; 4991 const argtype *arg_type = ie->arg_type; 4992 abi_long ret; 4993 void *big_buf = NULL; 4994 char *host_data; 4995 4996 arg_type++; 4997 target_size = thunk_type_size(arg_type, 0); 4998 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4999 if (!argptr) { 5000 ret = -TARGET_EFAULT; 5001 goto out; 5002 } 5003 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5004 unlock_user(argptr, arg, 0); 5005 5006 /* buf_temp is too small, so fetch things into a bigger buffer */ 5007 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5008 memcpy(big_buf, buf_temp, target_size); 5009 buf_temp = big_buf; 5010 host_dm = big_buf; 5011 5012 guest_data = arg + host_dm->data_start; 5013 if ((guest_data - arg) < 0) { 5014 ret = -TARGET_EINVAL; 5015 goto out; 5016 } 5017 guest_data_size = host_dm->data_size - host_dm->data_start; 5018 host_data = (char*)host_dm + host_dm->data_start; 5019 5020 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5021 if (!argptr) { 5022 ret = -TARGET_EFAULT; 5023 goto out; 5024 } 5025 5026 switch (ie->host_cmd) { 5027 case DM_REMOVE_ALL: 5028 case DM_LIST_DEVICES: 5029 case DM_DEV_CREATE: 5030 case DM_DEV_REMOVE: 5031 case DM_DEV_SUSPEND: 5032 case DM_DEV_STATUS: 5033 case DM_DEV_WAIT: 5034 case DM_TABLE_STATUS: 5035 case DM_TABLE_CLEAR: 5036 case DM_TABLE_DEPS: 5037 case DM_LIST_VERSIONS: 5038 /* no input data */ 5039 break; 5040 case DM_DEV_RENAME: 5041 case DM_DEV_SET_GEOMETRY: 5042 /* data contains only strings */ 5043 memcpy(host_data, argptr, guest_data_size); 5044 break; 5045 case DM_TARGET_MSG: 5046 memcpy(host_data, argptr, guest_data_size); 5047 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5048 break; 5049 case DM_TABLE_LOAD: 5050 { 5051 void *gspec = argptr; 5052 void *cur_data = host_data; 5053 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5054 int spec_size = thunk_type_size(dm_arg_type, 0); 5055 int i; 5056 5057 for (i = 0; i < host_dm->target_count; i++) { 5058 struct dm_target_spec *spec = cur_data; 5059 uint32_t next; 5060 int slen; 5061 5062 thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST); 5063 slen = strlen((char*)gspec + spec_size) + 1; 5064 next = spec->next; 5065 spec->next = sizeof(*spec) + slen; 5066 strcpy((char*)&spec[1], gspec + spec_size); 5067 gspec += next; 5068 cur_data += spec->next; 5069 } 5070 break; 5071 } 5072 default: 5073 ret = -TARGET_EINVAL; 5074 unlock_user(argptr, guest_data, 0); 5075 goto out; 5076 } 5077 unlock_user(argptr, guest_data, 0); 5078 5079 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5080 if (!is_error(ret)) { 5081 guest_data = arg + host_dm->data_start; 5082 guest_data_size = host_dm->data_size - host_dm->data_start; 5083 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5084 switch (ie->host_cmd) { 5085 case DM_REMOVE_ALL: 5086 case DM_DEV_CREATE: 5087 case DM_DEV_REMOVE: 5088 case DM_DEV_RENAME: 5089 case DM_DEV_SUSPEND: 5090 case DM_DEV_STATUS: 5091 case DM_TABLE_LOAD: 5092 case DM_TABLE_CLEAR: 5093 case DM_TARGET_MSG: 5094 case DM_DEV_SET_GEOMETRY: 5095 /* no return data */ 5096 break; 5097 case DM_LIST_DEVICES: 5098 { 5099 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5100 uint32_t remaining_data = guest_data_size; 5101 void *cur_data = argptr; 5102 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5103 int nl_size = 12; /* can't use thunk_size due to alignment */ 5104 5105 while (1) { 5106 uint32_t next = nl->next; 5107 if (next) { 5108 nl->next = nl_size + (strlen(nl->name) + 1); 5109 } 5110 if (remaining_data < nl->next) { 5111 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5112 break; 5113 } 5114 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET); 5115 strcpy(cur_data + nl_size, nl->name); 5116 cur_data += nl->next; 5117 remaining_data -= nl->next; 5118 if (!next) { 5119 break; 5120 } 5121 nl = (void*)nl + next; 5122 } 5123 break; 5124 } 5125 case DM_DEV_WAIT: 5126 case DM_TABLE_STATUS: 5127 { 5128 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5129 void *cur_data = argptr; 5130 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5131 int spec_size = thunk_type_size(dm_arg_type, 0); 5132 int i; 5133 5134 for (i = 0; i < host_dm->target_count; i++) { 5135 uint32_t next = spec->next; 5136 int slen = strlen((char*)&spec[1]) + 1; 5137 spec->next = (cur_data - argptr) + spec_size + slen; 5138 if (guest_data_size < spec->next) { 5139 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5140 break; 5141 } 5142 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET); 5143 strcpy(cur_data + spec_size, (char*)&spec[1]); 5144 cur_data = argptr + spec->next; 5145 spec = (void*)host_dm + host_dm->data_start + next; 5146 } 5147 break; 5148 } 5149 case DM_TABLE_DEPS: 5150 { 5151 void *hdata = (void*)host_dm + host_dm->data_start; 5152 int count = *(uint32_t*)hdata; 5153 uint64_t *hdev = hdata + 8; 5154 uint64_t *gdev = argptr + 8; 5155 int i; 5156 5157 *(uint32_t*)argptr = tswap32(count); 5158 for (i = 0; i < count; i++) { 5159 *gdev = tswap64(*hdev); 5160 gdev++; 5161 hdev++; 5162 } 5163 break; 5164 } 5165 case DM_LIST_VERSIONS: 5166 { 5167 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5168 uint32_t remaining_data = guest_data_size; 5169 void *cur_data = argptr; 5170 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5171 int vers_size = thunk_type_size(dm_arg_type, 0); 5172 5173 while (1) { 5174 uint32_t next = vers->next; 5175 if (next) { 5176 vers->next = vers_size + (strlen(vers->name) + 1); 5177 } 5178 if (remaining_data < vers->next) { 5179 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5180 break; 5181 } 5182 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET); 5183 strcpy(cur_data + vers_size, vers->name); 5184 cur_data += vers->next; 5185 remaining_data -= vers->next; 5186 if (!next) { 5187 break; 5188 } 5189 vers = (void*)vers + next; 5190 } 5191 break; 5192 } 5193 default: 5194 unlock_user(argptr, guest_data, 0); 5195 ret = -TARGET_EINVAL; 5196 goto out; 5197 } 5198 unlock_user(argptr, guest_data, guest_data_size); 5199 5200 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5201 if (!argptr) { 5202 ret = -TARGET_EFAULT; 5203 goto out; 5204 } 5205 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5206 unlock_user(argptr, arg, target_size); 5207 } 5208 out: 5209 g_free(big_buf); 5210 return ret; 5211 } 5212 5213 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5214 int cmd, abi_long arg) 5215 { 5216 void *argptr; 5217 int target_size; 5218 const argtype *arg_type = ie->arg_type; 5219 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5220 abi_long ret; 5221 5222 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5223 struct blkpg_partition host_part; 5224 5225 /* Read and convert blkpg */ 5226 arg_type++; 5227 target_size = thunk_type_size(arg_type, 0); 5228 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5229 if (!argptr) { 5230 ret = -TARGET_EFAULT; 5231 goto out; 5232 } 5233 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5234 unlock_user(argptr, arg, 0); 5235 5236 switch (host_blkpg->op) { 5237 case BLKPG_ADD_PARTITION: 5238 case BLKPG_DEL_PARTITION: 5239 /* payload is struct blkpg_partition */ 5240 break; 5241 default: 5242 /* Unknown opcode */ 5243 ret = -TARGET_EINVAL; 5244 goto out; 5245 } 5246 5247 /* Read and convert blkpg->data */ 5248 arg = (abi_long)(uintptr_t)host_blkpg->data; 5249 target_size = thunk_type_size(part_arg_type, 0); 5250 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5251 if (!argptr) { 5252 ret = -TARGET_EFAULT; 5253 goto out; 5254 } 5255 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5256 unlock_user(argptr, arg, 0); 5257 5258 /* Swizzle the data pointer to our local copy and call! */ 5259 host_blkpg->data = &host_part; 5260 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5261 5262 out: 5263 return ret; 5264 } 5265 5266 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5267 int fd, int cmd, abi_long arg) 5268 { 5269 const argtype *arg_type = ie->arg_type; 5270 const StructEntry *se; 5271 const argtype *field_types; 5272 const int *dst_offsets, *src_offsets; 5273 int target_size; 5274 void *argptr; 5275 abi_ulong *target_rt_dev_ptr = NULL; 5276 unsigned long *host_rt_dev_ptr = NULL; 5277 abi_long ret; 5278 int i; 5279 5280 assert(ie->access == IOC_W); 5281 assert(*arg_type == TYPE_PTR); 5282 arg_type++; 5283 assert(*arg_type == TYPE_STRUCT); 5284 target_size = thunk_type_size(arg_type, 0); 5285 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5286 if (!argptr) { 5287 return -TARGET_EFAULT; 5288 } 5289 arg_type++; 5290 assert(*arg_type == (int)STRUCT_rtentry); 5291 se = struct_entries + *arg_type++; 5292 assert(se->convert[0] == NULL); 5293 /* convert struct here to be able to catch rt_dev string */ 5294 field_types = se->field_types; 5295 dst_offsets = se->field_offsets[THUNK_HOST]; 5296 src_offsets = se->field_offsets[THUNK_TARGET]; 5297 for (i = 0; i < se->nb_fields; i++) { 5298 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5299 assert(*field_types == TYPE_PTRVOID); 5300 target_rt_dev_ptr = argptr + src_offsets[i]; 5301 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5302 if (*target_rt_dev_ptr != 0) { 5303 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5304 tswapal(*target_rt_dev_ptr)); 5305 if (!*host_rt_dev_ptr) { 5306 unlock_user(argptr, arg, 0); 5307 return -TARGET_EFAULT; 5308 } 5309 } else { 5310 *host_rt_dev_ptr = 0; 5311 } 5312 field_types++; 5313 continue; 5314 } 5315 field_types = thunk_convert(buf_temp + dst_offsets[i], 5316 argptr + src_offsets[i], 5317 field_types, THUNK_HOST); 5318 } 5319 unlock_user(argptr, arg, 0); 5320 5321 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5322 5323 assert(host_rt_dev_ptr != NULL); 5324 assert(target_rt_dev_ptr != NULL); 5325 if (*host_rt_dev_ptr != 0) { 5326 unlock_user((void *)*host_rt_dev_ptr, 5327 *target_rt_dev_ptr, 0); 5328 } 5329 return ret; 5330 } 5331 5332 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5333 int fd, int cmd, abi_long arg) 5334 { 5335 int sig = target_to_host_signal(arg); 5336 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5337 } 5338 5339 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp, 5340 int fd, int cmd, abi_long arg) 5341 { 5342 struct timeval tv; 5343 abi_long ret; 5344 5345 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv)); 5346 if (is_error(ret)) { 5347 return ret; 5348 } 5349 5350 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) { 5351 if (copy_to_user_timeval(arg, &tv)) { 5352 return -TARGET_EFAULT; 5353 } 5354 } else { 5355 if (copy_to_user_timeval64(arg, &tv)) { 5356 return -TARGET_EFAULT; 5357 } 5358 } 5359 5360 return ret; 5361 } 5362 5363 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp, 5364 int fd, int cmd, abi_long arg) 5365 { 5366 struct timespec ts; 5367 abi_long ret; 5368 5369 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts)); 5370 if (is_error(ret)) { 5371 return ret; 5372 } 5373 5374 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) { 5375 if (host_to_target_timespec(arg, &ts)) { 5376 return -TARGET_EFAULT; 5377 } 5378 } else{ 5379 if (host_to_target_timespec64(arg, &ts)) { 5380 return -TARGET_EFAULT; 5381 } 5382 } 5383 5384 return ret; 5385 } 5386 5387 #ifdef TIOCGPTPEER 5388 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5389 int fd, int cmd, abi_long arg) 5390 { 5391 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5392 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5393 } 5394 #endif 5395 5396 #ifdef HAVE_DRM_H 5397 5398 static void unlock_drm_version(struct drm_version *host_ver, 5399 struct target_drm_version *target_ver, 5400 bool copy) 5401 { 5402 unlock_user(host_ver->name, target_ver->name, 5403 copy ? host_ver->name_len : 0); 5404 unlock_user(host_ver->date, target_ver->date, 5405 copy ? host_ver->date_len : 0); 5406 unlock_user(host_ver->desc, target_ver->desc, 5407 copy ? host_ver->desc_len : 0); 5408 } 5409 5410 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver, 5411 struct target_drm_version *target_ver) 5412 { 5413 memset(host_ver, 0, sizeof(*host_ver)); 5414 5415 __get_user(host_ver->name_len, &target_ver->name_len); 5416 if (host_ver->name_len) { 5417 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name, 5418 target_ver->name_len, 0); 5419 if (!host_ver->name) { 5420 return -EFAULT; 5421 } 5422 } 5423 5424 __get_user(host_ver->date_len, &target_ver->date_len); 5425 if (host_ver->date_len) { 5426 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date, 5427 target_ver->date_len, 0); 5428 if (!host_ver->date) { 5429 goto err; 5430 } 5431 } 5432 5433 __get_user(host_ver->desc_len, &target_ver->desc_len); 5434 if (host_ver->desc_len) { 5435 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc, 5436 target_ver->desc_len, 0); 5437 if (!host_ver->desc) { 5438 goto err; 5439 } 5440 } 5441 5442 return 0; 5443 err: 5444 unlock_drm_version(host_ver, target_ver, false); 5445 return -EFAULT; 5446 } 5447 5448 static inline void host_to_target_drmversion( 5449 struct target_drm_version *target_ver, 5450 struct drm_version *host_ver) 5451 { 5452 __put_user(host_ver->version_major, &target_ver->version_major); 5453 __put_user(host_ver->version_minor, &target_ver->version_minor); 5454 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel); 5455 __put_user(host_ver->name_len, &target_ver->name_len); 5456 __put_user(host_ver->date_len, &target_ver->date_len); 5457 __put_user(host_ver->desc_len, &target_ver->desc_len); 5458 unlock_drm_version(host_ver, target_ver, true); 5459 } 5460 5461 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp, 5462 int fd, int cmd, abi_long arg) 5463 { 5464 struct drm_version *ver; 5465 struct target_drm_version *target_ver; 5466 abi_long ret; 5467 5468 switch (ie->host_cmd) { 5469 case DRM_IOCTL_VERSION: 5470 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) { 5471 return -TARGET_EFAULT; 5472 } 5473 ver = (struct drm_version *)buf_temp; 5474 ret = target_to_host_drmversion(ver, target_ver); 5475 if (!is_error(ret)) { 5476 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver)); 5477 if (is_error(ret)) { 5478 unlock_drm_version(ver, target_ver, false); 5479 } else { 5480 host_to_target_drmversion(target_ver, ver); 5481 } 5482 } 5483 unlock_user_struct(target_ver, arg, 0); 5484 return ret; 5485 } 5486 return -TARGET_ENOSYS; 5487 } 5488 5489 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie, 5490 struct drm_i915_getparam *gparam, 5491 int fd, abi_long arg) 5492 { 5493 abi_long ret; 5494 int value; 5495 struct target_drm_i915_getparam *target_gparam; 5496 5497 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) { 5498 return -TARGET_EFAULT; 5499 } 5500 5501 __get_user(gparam->param, &target_gparam->param); 5502 gparam->value = &value; 5503 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam)); 5504 put_user_s32(value, target_gparam->value); 5505 5506 unlock_user_struct(target_gparam, arg, 0); 5507 return ret; 5508 } 5509 5510 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp, 5511 int fd, int cmd, abi_long arg) 5512 { 5513 switch (ie->host_cmd) { 5514 case DRM_IOCTL_I915_GETPARAM: 5515 return do_ioctl_drm_i915_getparam(ie, 5516 (struct drm_i915_getparam *)buf_temp, 5517 fd, arg); 5518 default: 5519 return -TARGET_ENOSYS; 5520 } 5521 } 5522 5523 #endif 5524 5525 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp, 5526 int fd, int cmd, abi_long arg) 5527 { 5528 struct tun_filter *filter = (struct tun_filter *)buf_temp; 5529 struct tun_filter *target_filter; 5530 char *target_addr; 5531 5532 assert(ie->access == IOC_W); 5533 5534 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1); 5535 if (!target_filter) { 5536 return -TARGET_EFAULT; 5537 } 5538 filter->flags = tswap16(target_filter->flags); 5539 filter->count = tswap16(target_filter->count); 5540 unlock_user(target_filter, arg, 0); 5541 5542 if (filter->count) { 5543 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN > 5544 MAX_STRUCT_SIZE) { 5545 return -TARGET_EFAULT; 5546 } 5547 5548 target_addr = lock_user(VERIFY_READ, 5549 arg + offsetof(struct tun_filter, addr), 5550 filter->count * ETH_ALEN, 1); 5551 if (!target_addr) { 5552 return -TARGET_EFAULT; 5553 } 5554 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN); 5555 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0); 5556 } 5557 5558 return get_errno(safe_ioctl(fd, ie->host_cmd, filter)); 5559 } 5560 5561 IOCTLEntry ioctl_entries[] = { 5562 #define IOCTL(cmd, access, ...) \ 5563 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5565 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5566 #define IOCTL_IGNORE(cmd) \ 5567 { TARGET_ ## cmd, 0, #cmd }, 5568 #include "ioctls.h" 5569 { 0, 0, }, 5570 }; 5571 5572 /* ??? Implement proper locking for ioctls. */ 5573 /* do_ioctl() Must return target values and target errnos. */ 5574 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5575 { 5576 const IOCTLEntry *ie; 5577 const argtype *arg_type; 5578 abi_long ret; 5579 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5580 int target_size; 5581 void *argptr; 5582 5583 ie = ioctl_entries; 5584 for(;;) { 5585 if (ie->target_cmd == 0) { 5586 qemu_log_mask( 5587 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5588 return -TARGET_ENOTTY; 5589 } 5590 if (ie->target_cmd == cmd) 5591 break; 5592 ie++; 5593 } 5594 arg_type = ie->arg_type; 5595 if (ie->do_ioctl) { 5596 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5597 } else if (!ie->host_cmd) { 5598 /* Some architectures define BSD ioctls in their headers 5599 that are not implemented in Linux. */ 5600 return -TARGET_ENOTTY; 5601 } 5602 5603 switch(arg_type[0]) { 5604 case TYPE_NULL: 5605 /* no argument */ 5606 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5607 break; 5608 case TYPE_PTRVOID: 5609 case TYPE_INT: 5610 case TYPE_LONG: 5611 case TYPE_ULONG: 5612 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5613 break; 5614 case TYPE_PTR: 5615 arg_type++; 5616 target_size = thunk_type_size(arg_type, 0); 5617 switch(ie->access) { 5618 case IOC_R: 5619 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5620 if (!is_error(ret)) { 5621 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5622 if (!argptr) 5623 return -TARGET_EFAULT; 5624 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5625 unlock_user(argptr, arg, target_size); 5626 } 5627 break; 5628 case IOC_W: 5629 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5630 if (!argptr) 5631 return -TARGET_EFAULT; 5632 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5633 unlock_user(argptr, arg, 0); 5634 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5635 break; 5636 default: 5637 case IOC_RW: 5638 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5639 if (!argptr) 5640 return -TARGET_EFAULT; 5641 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5642 unlock_user(argptr, arg, 0); 5643 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5644 if (!is_error(ret)) { 5645 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5646 if (!argptr) 5647 return -TARGET_EFAULT; 5648 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5649 unlock_user(argptr, arg, target_size); 5650 } 5651 break; 5652 } 5653 break; 5654 default: 5655 qemu_log_mask(LOG_UNIMP, 5656 "Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5657 (long)cmd, arg_type[0]); 5658 ret = -TARGET_ENOTTY; 5659 break; 5660 } 5661 return ret; 5662 } 5663 5664 static const bitmask_transtbl iflag_tbl[] = { 5665 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5666 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5667 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5668 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5669 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5670 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5671 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5672 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5673 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5674 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5675 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5676 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5677 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5678 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5679 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8}, 5680 }; 5681 5682 static const bitmask_transtbl oflag_tbl[] = { 5683 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5684 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5685 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5686 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5687 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5688 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5689 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5690 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5691 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5692 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5693 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5694 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5695 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5696 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5697 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5698 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5699 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5700 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5701 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5702 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5703 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5704 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5705 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5706 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5707 }; 5708 5709 static const bitmask_transtbl cflag_tbl[] = { 5710 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5711 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5712 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5713 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5714 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5715 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5716 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5717 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5718 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5719 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5720 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5721 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5722 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5723 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5724 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5725 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5726 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5727 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5728 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5729 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5730 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5731 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5732 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5733 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5734 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5735 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5736 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5737 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5738 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5739 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5740 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5741 }; 5742 5743 static const bitmask_transtbl lflag_tbl[] = { 5744 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5745 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5746 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5747 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5748 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5749 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5750 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5751 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5752 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5753 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5754 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5755 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5756 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5757 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5758 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5759 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC}, 5760 }; 5761 5762 static void target_to_host_termios (void *dst, const void *src) 5763 { 5764 struct host_termios *host = dst; 5765 const struct target_termios *target = src; 5766 5767 host->c_iflag = 5768 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5769 host->c_oflag = 5770 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5771 host->c_cflag = 5772 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5773 host->c_lflag = 5774 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5775 host->c_line = target->c_line; 5776 5777 memset(host->c_cc, 0, sizeof(host->c_cc)); 5778 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5779 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5780 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5781 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5782 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5783 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5784 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5785 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5786 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5787 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5788 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5789 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5790 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5791 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5792 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5793 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5794 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5795 } 5796 5797 static void host_to_target_termios (void *dst, const void *src) 5798 { 5799 struct target_termios *target = dst; 5800 const struct host_termios *host = src; 5801 5802 target->c_iflag = 5803 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5804 target->c_oflag = 5805 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5806 target->c_cflag = 5807 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5808 target->c_lflag = 5809 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5810 target->c_line = host->c_line; 5811 5812 memset(target->c_cc, 0, sizeof(target->c_cc)); 5813 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5814 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5815 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5816 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5817 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5818 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5819 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5820 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5821 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5822 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5823 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5824 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5825 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5826 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5827 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5828 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5829 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5830 } 5831 5832 static const StructEntry struct_termios_def = { 5833 .convert = { host_to_target_termios, target_to_host_termios }, 5834 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5835 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5836 .print = print_termios, 5837 }; 5838 5839 /* If the host does not provide these bits, they may be safely discarded. */ 5840 #ifndef MAP_SYNC 5841 #define MAP_SYNC 0 5842 #endif 5843 #ifndef MAP_UNINITIALIZED 5844 #define MAP_UNINITIALIZED 0 5845 #endif 5846 5847 static const bitmask_transtbl mmap_flags_tbl[] = { 5848 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5849 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 5850 MAP_ANONYMOUS, MAP_ANONYMOUS }, 5851 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 5852 MAP_GROWSDOWN, MAP_GROWSDOWN }, 5853 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 5854 MAP_DENYWRITE, MAP_DENYWRITE }, 5855 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 5856 MAP_EXECUTABLE, MAP_EXECUTABLE }, 5857 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5858 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 5859 MAP_NORESERVE, MAP_NORESERVE }, 5860 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 5861 /* MAP_STACK had been ignored by the kernel for quite some time. 5862 Recognize it for the target insofar as we do not want to pass 5863 it through to the host. */ 5864 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 5865 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK }, 5866 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE }, 5867 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE, 5868 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE }, 5869 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED, 5870 MAP_UNINITIALIZED, MAP_UNINITIALIZED }, 5871 }; 5872 5873 /* 5874 * Arrange for legacy / undefined architecture specific flags to be 5875 * ignored by mmap handling code. 5876 */ 5877 #ifndef TARGET_MAP_32BIT 5878 #define TARGET_MAP_32BIT 0 5879 #endif 5880 #ifndef TARGET_MAP_HUGE_2MB 5881 #define TARGET_MAP_HUGE_2MB 0 5882 #endif 5883 #ifndef TARGET_MAP_HUGE_1GB 5884 #define TARGET_MAP_HUGE_1GB 0 5885 #endif 5886 5887 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot, 5888 int target_flags, int fd, off_t offset) 5889 { 5890 /* 5891 * The historical set of flags that all mmap types implicitly support. 5892 */ 5893 enum { 5894 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED 5895 | TARGET_MAP_PRIVATE 5896 | TARGET_MAP_FIXED 5897 | TARGET_MAP_ANONYMOUS 5898 | TARGET_MAP_DENYWRITE 5899 | TARGET_MAP_EXECUTABLE 5900 | TARGET_MAP_UNINITIALIZED 5901 | TARGET_MAP_GROWSDOWN 5902 | TARGET_MAP_LOCKED 5903 | TARGET_MAP_NORESERVE 5904 | TARGET_MAP_POPULATE 5905 | TARGET_MAP_NONBLOCK 5906 | TARGET_MAP_STACK 5907 | TARGET_MAP_HUGETLB 5908 | TARGET_MAP_32BIT 5909 | TARGET_MAP_HUGE_2MB 5910 | TARGET_MAP_HUGE_1GB 5911 }; 5912 int host_flags; 5913 5914 switch (target_flags & TARGET_MAP_TYPE) { 5915 case TARGET_MAP_PRIVATE: 5916 host_flags = MAP_PRIVATE; 5917 break; 5918 case TARGET_MAP_SHARED: 5919 host_flags = MAP_SHARED; 5920 break; 5921 case TARGET_MAP_SHARED_VALIDATE: 5922 /* 5923 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is 5924 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK. 5925 */ 5926 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) { 5927 return -TARGET_EOPNOTSUPP; 5928 } 5929 host_flags = MAP_SHARED_VALIDATE; 5930 if (target_flags & TARGET_MAP_SYNC) { 5931 host_flags |= MAP_SYNC; 5932 } 5933 break; 5934 default: 5935 return -TARGET_EINVAL; 5936 } 5937 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl); 5938 5939 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset)); 5940 } 5941 5942 /* 5943 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64) 5944 * TARGET_I386 is defined if TARGET_X86_64 is defined 5945 */ 5946 #if defined(TARGET_I386) 5947 5948 /* NOTE: there is really one LDT for all the threads */ 5949 static uint8_t *ldt_table; 5950 5951 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5952 { 5953 int size; 5954 void *p; 5955 5956 if (!ldt_table) 5957 return 0; 5958 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5959 if (size > bytecount) 5960 size = bytecount; 5961 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5962 if (!p) 5963 return -TARGET_EFAULT; 5964 /* ??? Should this by byteswapped? */ 5965 memcpy(p, ldt_table, size); 5966 unlock_user(p, ptr, size); 5967 return size; 5968 } 5969 5970 /* XXX: add locking support */ 5971 static abi_long write_ldt(CPUX86State *env, 5972 abi_ulong ptr, unsigned long bytecount, int oldmode) 5973 { 5974 struct target_modify_ldt_ldt_s ldt_info; 5975 struct target_modify_ldt_ldt_s *target_ldt_info; 5976 int seg_32bit, contents, read_exec_only, limit_in_pages; 5977 int seg_not_present, useable, lm; 5978 uint32_t *lp, entry_1, entry_2; 5979 5980 if (bytecount != sizeof(ldt_info)) 5981 return -TARGET_EINVAL; 5982 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5983 return -TARGET_EFAULT; 5984 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5985 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5986 ldt_info.limit = tswap32(target_ldt_info->limit); 5987 ldt_info.flags = tswap32(target_ldt_info->flags); 5988 unlock_user_struct(target_ldt_info, ptr, 0); 5989 5990 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 5991 return -TARGET_EINVAL; 5992 seg_32bit = ldt_info.flags & 1; 5993 contents = (ldt_info.flags >> 1) & 3; 5994 read_exec_only = (ldt_info.flags >> 3) & 1; 5995 limit_in_pages = (ldt_info.flags >> 4) & 1; 5996 seg_not_present = (ldt_info.flags >> 5) & 1; 5997 useable = (ldt_info.flags >> 6) & 1; 5998 #ifdef TARGET_ABI32 5999 lm = 0; 6000 #else 6001 lm = (ldt_info.flags >> 7) & 1; 6002 #endif 6003 if (contents == 3) { 6004 if (oldmode) 6005 return -TARGET_EINVAL; 6006 if (seg_not_present == 0) 6007 return -TARGET_EINVAL; 6008 } 6009 /* allocate the LDT */ 6010 if (!ldt_table) { 6011 env->ldt.base = target_mmap(0, 6012 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6013 PROT_READ|PROT_WRITE, 6014 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6015 if (env->ldt.base == -1) 6016 return -TARGET_ENOMEM; 6017 memset(g2h_untagged(env->ldt.base), 0, 6018 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6019 env->ldt.limit = 0xffff; 6020 ldt_table = g2h_untagged(env->ldt.base); 6021 } 6022 6023 /* NOTE: same code as Linux kernel */ 6024 /* Allow LDTs to be cleared by the user. */ 6025 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6026 if (oldmode || 6027 (contents == 0 && 6028 read_exec_only == 1 && 6029 seg_32bit == 0 && 6030 limit_in_pages == 0 && 6031 seg_not_present == 1 && 6032 useable == 0 )) { 6033 entry_1 = 0; 6034 entry_2 = 0; 6035 goto install; 6036 } 6037 } 6038 6039 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6040 (ldt_info.limit & 0x0ffff); 6041 entry_2 = (ldt_info.base_addr & 0xff000000) | 6042 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6043 (ldt_info.limit & 0xf0000) | 6044 ((read_exec_only ^ 1) << 9) | 6045 (contents << 10) | 6046 ((seg_not_present ^ 1) << 15) | 6047 (seg_32bit << 22) | 6048 (limit_in_pages << 23) | 6049 (lm << 21) | 6050 0x7000; 6051 if (!oldmode) 6052 entry_2 |= (useable << 20); 6053 6054 /* Install the new entry ... */ 6055 install: 6056 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6057 lp[0] = tswap32(entry_1); 6058 lp[1] = tswap32(entry_2); 6059 return 0; 6060 } 6061 6062 /* specific and weird i386 syscalls */ 6063 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6064 unsigned long bytecount) 6065 { 6066 abi_long ret; 6067 6068 switch (func) { 6069 case 0: 6070 ret = read_ldt(ptr, bytecount); 6071 break; 6072 case 1: 6073 ret = write_ldt(env, ptr, bytecount, 1); 6074 break; 6075 case 0x11: 6076 ret = write_ldt(env, ptr, bytecount, 0); 6077 break; 6078 default: 6079 ret = -TARGET_ENOSYS; 6080 break; 6081 } 6082 return ret; 6083 } 6084 6085 #if defined(TARGET_ABI32) 6086 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6087 { 6088 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6089 struct target_modify_ldt_ldt_s ldt_info; 6090 struct target_modify_ldt_ldt_s *target_ldt_info; 6091 int seg_32bit, contents, read_exec_only, limit_in_pages; 6092 int seg_not_present, useable, lm; 6093 uint32_t *lp, entry_1, entry_2; 6094 int i; 6095 6096 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6097 if (!target_ldt_info) 6098 return -TARGET_EFAULT; 6099 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6100 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6101 ldt_info.limit = tswap32(target_ldt_info->limit); 6102 ldt_info.flags = tswap32(target_ldt_info->flags); 6103 if (ldt_info.entry_number == -1) { 6104 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6105 if (gdt_table[i] == 0) { 6106 ldt_info.entry_number = i; 6107 target_ldt_info->entry_number = tswap32(i); 6108 break; 6109 } 6110 } 6111 } 6112 unlock_user_struct(target_ldt_info, ptr, 1); 6113 6114 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6115 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6116 return -TARGET_EINVAL; 6117 seg_32bit = ldt_info.flags & 1; 6118 contents = (ldt_info.flags >> 1) & 3; 6119 read_exec_only = (ldt_info.flags >> 3) & 1; 6120 limit_in_pages = (ldt_info.flags >> 4) & 1; 6121 seg_not_present = (ldt_info.flags >> 5) & 1; 6122 useable = (ldt_info.flags >> 6) & 1; 6123 #ifdef TARGET_ABI32 6124 lm = 0; 6125 #else 6126 lm = (ldt_info.flags >> 7) & 1; 6127 #endif 6128 6129 if (contents == 3) { 6130 if (seg_not_present == 0) 6131 return -TARGET_EINVAL; 6132 } 6133 6134 /* NOTE: same code as Linux kernel */ 6135 /* Allow LDTs to be cleared by the user. */ 6136 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6137 if ((contents == 0 && 6138 read_exec_only == 1 && 6139 seg_32bit == 0 && 6140 limit_in_pages == 0 && 6141 seg_not_present == 1 && 6142 useable == 0 )) { 6143 entry_1 = 0; 6144 entry_2 = 0; 6145 goto install; 6146 } 6147 } 6148 6149 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6150 (ldt_info.limit & 0x0ffff); 6151 entry_2 = (ldt_info.base_addr & 0xff000000) | 6152 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6153 (ldt_info.limit & 0xf0000) | 6154 ((read_exec_only ^ 1) << 9) | 6155 (contents << 10) | 6156 ((seg_not_present ^ 1) << 15) | 6157 (seg_32bit << 22) | 6158 (limit_in_pages << 23) | 6159 (useable << 20) | 6160 (lm << 21) | 6161 0x7000; 6162 6163 /* Install the new entry ... */ 6164 install: 6165 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6166 lp[0] = tswap32(entry_1); 6167 lp[1] = tswap32(entry_2); 6168 return 0; 6169 } 6170 6171 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6172 { 6173 struct target_modify_ldt_ldt_s *target_ldt_info; 6174 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6175 uint32_t base_addr, limit, flags; 6176 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6177 int seg_not_present, useable, lm; 6178 uint32_t *lp, entry_1, entry_2; 6179 6180 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6181 if (!target_ldt_info) 6182 return -TARGET_EFAULT; 6183 idx = tswap32(target_ldt_info->entry_number); 6184 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6185 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6186 unlock_user_struct(target_ldt_info, ptr, 1); 6187 return -TARGET_EINVAL; 6188 } 6189 lp = (uint32_t *)(gdt_table + idx); 6190 entry_1 = tswap32(lp[0]); 6191 entry_2 = tswap32(lp[1]); 6192 6193 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6194 contents = (entry_2 >> 10) & 3; 6195 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6196 seg_32bit = (entry_2 >> 22) & 1; 6197 limit_in_pages = (entry_2 >> 23) & 1; 6198 useable = (entry_2 >> 20) & 1; 6199 #ifdef TARGET_ABI32 6200 lm = 0; 6201 #else 6202 lm = (entry_2 >> 21) & 1; 6203 #endif 6204 flags = (seg_32bit << 0) | (contents << 1) | 6205 (read_exec_only << 3) | (limit_in_pages << 4) | 6206 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6207 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6208 base_addr = (entry_1 >> 16) | 6209 (entry_2 & 0xff000000) | 6210 ((entry_2 & 0xff) << 16); 6211 target_ldt_info->base_addr = tswapal(base_addr); 6212 target_ldt_info->limit = tswap32(limit); 6213 target_ldt_info->flags = tswap32(flags); 6214 unlock_user_struct(target_ldt_info, ptr, 1); 6215 return 0; 6216 } 6217 6218 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6219 { 6220 return -TARGET_ENOSYS; 6221 } 6222 #else 6223 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6224 { 6225 abi_long ret = 0; 6226 abi_ulong val; 6227 int idx; 6228 6229 switch(code) { 6230 case TARGET_ARCH_SET_GS: 6231 case TARGET_ARCH_SET_FS: 6232 if (code == TARGET_ARCH_SET_GS) 6233 idx = R_GS; 6234 else 6235 idx = R_FS; 6236 cpu_x86_load_seg(env, idx, 0); 6237 env->segs[idx].base = addr; 6238 break; 6239 case TARGET_ARCH_GET_GS: 6240 case TARGET_ARCH_GET_FS: 6241 if (code == TARGET_ARCH_GET_GS) 6242 idx = R_GS; 6243 else 6244 idx = R_FS; 6245 val = env->segs[idx].base; 6246 if (put_user(val, addr, abi_ulong)) 6247 ret = -TARGET_EFAULT; 6248 break; 6249 default: 6250 ret = -TARGET_EINVAL; 6251 break; 6252 } 6253 return ret; 6254 } 6255 #endif /* defined(TARGET_ABI32 */ 6256 #endif /* defined(TARGET_I386) */ 6257 6258 /* 6259 * These constants are generic. Supply any that are missing from the host. 6260 */ 6261 #ifndef PR_SET_NAME 6262 # define PR_SET_NAME 15 6263 # define PR_GET_NAME 16 6264 #endif 6265 #ifndef PR_SET_FP_MODE 6266 # define PR_SET_FP_MODE 45 6267 # define PR_GET_FP_MODE 46 6268 # define PR_FP_MODE_FR (1 << 0) 6269 # define PR_FP_MODE_FRE (1 << 1) 6270 #endif 6271 #ifndef PR_SVE_SET_VL 6272 # define PR_SVE_SET_VL 50 6273 # define PR_SVE_GET_VL 51 6274 # define PR_SVE_VL_LEN_MASK 0xffff 6275 # define PR_SVE_VL_INHERIT (1 << 17) 6276 #endif 6277 #ifndef PR_PAC_RESET_KEYS 6278 # define PR_PAC_RESET_KEYS 54 6279 # define PR_PAC_APIAKEY (1 << 0) 6280 # define PR_PAC_APIBKEY (1 << 1) 6281 # define PR_PAC_APDAKEY (1 << 2) 6282 # define PR_PAC_APDBKEY (1 << 3) 6283 # define PR_PAC_APGAKEY (1 << 4) 6284 #endif 6285 #ifndef PR_SET_TAGGED_ADDR_CTRL 6286 # define PR_SET_TAGGED_ADDR_CTRL 55 6287 # define PR_GET_TAGGED_ADDR_CTRL 56 6288 # define PR_TAGGED_ADDR_ENABLE (1UL << 0) 6289 #endif 6290 #ifndef PR_MTE_TCF_SHIFT 6291 # define PR_MTE_TCF_SHIFT 1 6292 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT) 6293 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT) 6294 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT) 6295 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT) 6296 # define PR_MTE_TAG_SHIFT 3 6297 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT) 6298 #endif 6299 #ifndef PR_SET_IO_FLUSHER 6300 # define PR_SET_IO_FLUSHER 57 6301 # define PR_GET_IO_FLUSHER 58 6302 #endif 6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH 6304 # define PR_SET_SYSCALL_USER_DISPATCH 59 6305 #endif 6306 #ifndef PR_SME_SET_VL 6307 # define PR_SME_SET_VL 63 6308 # define PR_SME_GET_VL 64 6309 # define PR_SME_VL_LEN_MASK 0xffff 6310 # define PR_SME_VL_INHERIT (1 << 17) 6311 #endif 6312 6313 #include "target_prctl.h" 6314 6315 static abi_long do_prctl_inval0(CPUArchState *env) 6316 { 6317 return -TARGET_EINVAL; 6318 } 6319 6320 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2) 6321 { 6322 return -TARGET_EINVAL; 6323 } 6324 6325 #ifndef do_prctl_get_fp_mode 6326 #define do_prctl_get_fp_mode do_prctl_inval0 6327 #endif 6328 #ifndef do_prctl_set_fp_mode 6329 #define do_prctl_set_fp_mode do_prctl_inval1 6330 #endif 6331 #ifndef do_prctl_sve_get_vl 6332 #define do_prctl_sve_get_vl do_prctl_inval0 6333 #endif 6334 #ifndef do_prctl_sve_set_vl 6335 #define do_prctl_sve_set_vl do_prctl_inval1 6336 #endif 6337 #ifndef do_prctl_reset_keys 6338 #define do_prctl_reset_keys do_prctl_inval1 6339 #endif 6340 #ifndef do_prctl_set_tagged_addr_ctrl 6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1 6342 #endif 6343 #ifndef do_prctl_get_tagged_addr_ctrl 6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0 6345 #endif 6346 #ifndef do_prctl_get_unalign 6347 #define do_prctl_get_unalign do_prctl_inval1 6348 #endif 6349 #ifndef do_prctl_set_unalign 6350 #define do_prctl_set_unalign do_prctl_inval1 6351 #endif 6352 #ifndef do_prctl_sme_get_vl 6353 #define do_prctl_sme_get_vl do_prctl_inval0 6354 #endif 6355 #ifndef do_prctl_sme_set_vl 6356 #define do_prctl_sme_set_vl do_prctl_inval1 6357 #endif 6358 6359 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2, 6360 abi_long arg3, abi_long arg4, abi_long arg5) 6361 { 6362 abi_long ret; 6363 6364 switch (option) { 6365 case PR_GET_PDEATHSIG: 6366 { 6367 int deathsig; 6368 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig, 6369 arg3, arg4, arg5)); 6370 if (!is_error(ret) && 6371 put_user_s32(host_to_target_signal(deathsig), arg2)) { 6372 return -TARGET_EFAULT; 6373 } 6374 return ret; 6375 } 6376 case PR_SET_PDEATHSIG: 6377 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2), 6378 arg3, arg4, arg5)); 6379 case PR_GET_NAME: 6380 { 6381 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 6382 if (!name) { 6383 return -TARGET_EFAULT; 6384 } 6385 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name, 6386 arg3, arg4, arg5)); 6387 unlock_user(name, arg2, 16); 6388 return ret; 6389 } 6390 case PR_SET_NAME: 6391 { 6392 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 6393 if (!name) { 6394 return -TARGET_EFAULT; 6395 } 6396 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name, 6397 arg3, arg4, arg5)); 6398 unlock_user(name, arg2, 0); 6399 return ret; 6400 } 6401 case PR_GET_FP_MODE: 6402 return do_prctl_get_fp_mode(env); 6403 case PR_SET_FP_MODE: 6404 return do_prctl_set_fp_mode(env, arg2); 6405 case PR_SVE_GET_VL: 6406 return do_prctl_sve_get_vl(env); 6407 case PR_SVE_SET_VL: 6408 return do_prctl_sve_set_vl(env, arg2); 6409 case PR_SME_GET_VL: 6410 return do_prctl_sme_get_vl(env); 6411 case PR_SME_SET_VL: 6412 return do_prctl_sme_set_vl(env, arg2); 6413 case PR_PAC_RESET_KEYS: 6414 if (arg3 || arg4 || arg5) { 6415 return -TARGET_EINVAL; 6416 } 6417 return do_prctl_reset_keys(env, arg2); 6418 case PR_SET_TAGGED_ADDR_CTRL: 6419 if (arg3 || arg4 || arg5) { 6420 return -TARGET_EINVAL; 6421 } 6422 return do_prctl_set_tagged_addr_ctrl(env, arg2); 6423 case PR_GET_TAGGED_ADDR_CTRL: 6424 if (arg2 || arg3 || arg4 || arg5) { 6425 return -TARGET_EINVAL; 6426 } 6427 return do_prctl_get_tagged_addr_ctrl(env); 6428 6429 case PR_GET_UNALIGN: 6430 return do_prctl_get_unalign(env, arg2); 6431 case PR_SET_UNALIGN: 6432 return do_prctl_set_unalign(env, arg2); 6433 6434 case PR_CAP_AMBIENT: 6435 case PR_CAPBSET_READ: 6436 case PR_CAPBSET_DROP: 6437 case PR_GET_DUMPABLE: 6438 case PR_SET_DUMPABLE: 6439 case PR_GET_KEEPCAPS: 6440 case PR_SET_KEEPCAPS: 6441 case PR_GET_SECUREBITS: 6442 case PR_SET_SECUREBITS: 6443 case PR_GET_TIMING: 6444 case PR_SET_TIMING: 6445 case PR_GET_TIMERSLACK: 6446 case PR_SET_TIMERSLACK: 6447 case PR_MCE_KILL: 6448 case PR_MCE_KILL_GET: 6449 case PR_GET_NO_NEW_PRIVS: 6450 case PR_SET_NO_NEW_PRIVS: 6451 case PR_GET_IO_FLUSHER: 6452 case PR_SET_IO_FLUSHER: 6453 case PR_SET_CHILD_SUBREAPER: 6454 case PR_GET_SPECULATION_CTRL: 6455 case PR_SET_SPECULATION_CTRL: 6456 /* Some prctl options have no pointer arguments and we can pass on. */ 6457 return get_errno(prctl(option, arg2, arg3, arg4, arg5)); 6458 6459 case PR_GET_CHILD_SUBREAPER: 6460 { 6461 int val; 6462 ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val, 6463 arg3, arg4, arg5)); 6464 if (!is_error(ret) && put_user_s32(val, arg2)) { 6465 return -TARGET_EFAULT; 6466 } 6467 return ret; 6468 } 6469 6470 case PR_GET_TID_ADDRESS: 6471 { 6472 TaskState *ts = env_cpu(env)->opaque; 6473 return put_user_ual(ts->child_tidptr, arg2); 6474 } 6475 6476 case PR_GET_FPEXC: 6477 case PR_SET_FPEXC: 6478 /* Was used for SPE on PowerPC. */ 6479 return -TARGET_EINVAL; 6480 6481 case PR_GET_ENDIAN: 6482 case PR_SET_ENDIAN: 6483 case PR_GET_FPEMU: 6484 case PR_SET_FPEMU: 6485 case PR_SET_MM: 6486 case PR_GET_SECCOMP: 6487 case PR_SET_SECCOMP: 6488 case PR_SET_SYSCALL_USER_DISPATCH: 6489 case PR_GET_THP_DISABLE: 6490 case PR_SET_THP_DISABLE: 6491 case PR_GET_TSC: 6492 case PR_SET_TSC: 6493 /* Disable to prevent the target disabling stuff we need. */ 6494 return -TARGET_EINVAL; 6495 6496 default: 6497 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n", 6498 option); 6499 return -TARGET_EINVAL; 6500 } 6501 } 6502 6503 #define NEW_STACK_SIZE 0x40000 6504 6505 6506 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6507 typedef struct { 6508 CPUArchState *env; 6509 pthread_mutex_t mutex; 6510 pthread_cond_t cond; 6511 pthread_t thread; 6512 uint32_t tid; 6513 abi_ulong child_tidptr; 6514 abi_ulong parent_tidptr; 6515 sigset_t sigmask; 6516 } new_thread_info; 6517 6518 static void *clone_func(void *arg) 6519 { 6520 new_thread_info *info = arg; 6521 CPUArchState *env; 6522 CPUState *cpu; 6523 TaskState *ts; 6524 6525 rcu_register_thread(); 6526 tcg_register_thread(); 6527 env = info->env; 6528 cpu = env_cpu(env); 6529 thread_cpu = cpu; 6530 ts = get_task_state(cpu); 6531 info->tid = sys_gettid(); 6532 task_settid(ts); 6533 if (info->child_tidptr) 6534 put_user_u32(info->tid, info->child_tidptr); 6535 if (info->parent_tidptr) 6536 put_user_u32(info->tid, info->parent_tidptr); 6537 qemu_guest_random_seed_thread_part2(cpu->random_seed); 6538 /* Enable signals. */ 6539 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6540 /* Signal to the parent that we're ready. */ 6541 pthread_mutex_lock(&info->mutex); 6542 pthread_cond_broadcast(&info->cond); 6543 pthread_mutex_unlock(&info->mutex); 6544 /* Wait until the parent has finished initializing the tls state. */ 6545 pthread_mutex_lock(&clone_lock); 6546 pthread_mutex_unlock(&clone_lock); 6547 cpu_loop(env); 6548 /* never exits */ 6549 return NULL; 6550 } 6551 6552 /* do_fork() Must return host values and target errnos (unlike most 6553 do_*() functions). */ 6554 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6555 abi_ulong parent_tidptr, target_ulong newtls, 6556 abi_ulong child_tidptr) 6557 { 6558 CPUState *cpu = env_cpu(env); 6559 int ret; 6560 TaskState *ts; 6561 CPUState *new_cpu; 6562 CPUArchState *new_env; 6563 sigset_t sigmask; 6564 6565 flags &= ~CLONE_IGNORED_FLAGS; 6566 6567 /* Emulate vfork() with fork() */ 6568 if (flags & CLONE_VFORK) 6569 flags &= ~(CLONE_VFORK | CLONE_VM); 6570 6571 if (flags & CLONE_VM) { 6572 TaskState *parent_ts = get_task_state(cpu); 6573 new_thread_info info; 6574 pthread_attr_t attr; 6575 6576 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6577 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6578 return -TARGET_EINVAL; 6579 } 6580 6581 ts = g_new0(TaskState, 1); 6582 init_task_state(ts); 6583 6584 /* Grab a mutex so that thread setup appears atomic. */ 6585 pthread_mutex_lock(&clone_lock); 6586 6587 /* 6588 * If this is our first additional thread, we need to ensure we 6589 * generate code for parallel execution and flush old translations. 6590 * Do this now so that the copy gets CF_PARALLEL too. 6591 */ 6592 if (!(cpu->tcg_cflags & CF_PARALLEL)) { 6593 cpu->tcg_cflags |= CF_PARALLEL; 6594 tb_flush(cpu); 6595 } 6596 6597 /* we create a new CPU instance. */ 6598 new_env = cpu_copy(env); 6599 /* Init regs that differ from the parent. */ 6600 cpu_clone_regs_child(new_env, newsp, flags); 6601 cpu_clone_regs_parent(env, flags); 6602 new_cpu = env_cpu(new_env); 6603 new_cpu->opaque = ts; 6604 ts->bprm = parent_ts->bprm; 6605 ts->info = parent_ts->info; 6606 ts->signal_mask = parent_ts->signal_mask; 6607 6608 if (flags & CLONE_CHILD_CLEARTID) { 6609 ts->child_tidptr = child_tidptr; 6610 } 6611 6612 if (flags & CLONE_SETTLS) { 6613 cpu_set_tls (new_env, newtls); 6614 } 6615 6616 memset(&info, 0, sizeof(info)); 6617 pthread_mutex_init(&info.mutex, NULL); 6618 pthread_mutex_lock(&info.mutex); 6619 pthread_cond_init(&info.cond, NULL); 6620 info.env = new_env; 6621 if (flags & CLONE_CHILD_SETTID) { 6622 info.child_tidptr = child_tidptr; 6623 } 6624 if (flags & CLONE_PARENT_SETTID) { 6625 info.parent_tidptr = parent_tidptr; 6626 } 6627 6628 ret = pthread_attr_init(&attr); 6629 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6630 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6631 /* It is not safe to deliver signals until the child has finished 6632 initializing, so temporarily block all signals. */ 6633 sigfillset(&sigmask); 6634 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6635 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 6636 6637 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6638 /* TODO: Free new CPU state if thread creation failed. */ 6639 6640 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6641 pthread_attr_destroy(&attr); 6642 if (ret == 0) { 6643 /* Wait for the child to initialize. */ 6644 pthread_cond_wait(&info.cond, &info.mutex); 6645 ret = info.tid; 6646 } else { 6647 ret = -1; 6648 } 6649 pthread_mutex_unlock(&info.mutex); 6650 pthread_cond_destroy(&info.cond); 6651 pthread_mutex_destroy(&info.mutex); 6652 pthread_mutex_unlock(&clone_lock); 6653 } else { 6654 /* if no CLONE_VM, we consider it is a fork */ 6655 if (flags & CLONE_INVALID_FORK_FLAGS) { 6656 return -TARGET_EINVAL; 6657 } 6658 6659 /* We can't support custom termination signals */ 6660 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6661 return -TARGET_EINVAL; 6662 } 6663 6664 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open) 6665 if (flags & CLONE_PIDFD) { 6666 return -TARGET_EINVAL; 6667 } 6668 #endif 6669 6670 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */ 6671 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) { 6672 return -TARGET_EINVAL; 6673 } 6674 6675 if (block_signals()) { 6676 return -QEMU_ERESTARTSYS; 6677 } 6678 6679 fork_start(); 6680 ret = fork(); 6681 if (ret == 0) { 6682 /* Child Process. */ 6683 cpu_clone_regs_child(env, newsp, flags); 6684 fork_end(ret); 6685 /* There is a race condition here. The parent process could 6686 theoretically read the TID in the child process before the child 6687 tid is set. This would require using either ptrace 6688 (not implemented) or having *_tidptr to point at a shared memory 6689 mapping. We can't repeat the spinlock hack used above because 6690 the child process gets its own copy of the lock. */ 6691 if (flags & CLONE_CHILD_SETTID) 6692 put_user_u32(sys_gettid(), child_tidptr); 6693 if (flags & CLONE_PARENT_SETTID) 6694 put_user_u32(sys_gettid(), parent_tidptr); 6695 ts = get_task_state(cpu); 6696 if (flags & CLONE_SETTLS) 6697 cpu_set_tls (env, newtls); 6698 if (flags & CLONE_CHILD_CLEARTID) 6699 ts->child_tidptr = child_tidptr; 6700 } else { 6701 cpu_clone_regs_parent(env, flags); 6702 if (flags & CLONE_PIDFD) { 6703 int pid_fd = 0; 6704 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 6705 int pid_child = ret; 6706 pid_fd = pidfd_open(pid_child, 0); 6707 if (pid_fd >= 0) { 6708 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL) 6709 | FD_CLOEXEC); 6710 } else { 6711 pid_fd = 0; 6712 } 6713 #endif 6714 put_user_u32(pid_fd, parent_tidptr); 6715 } 6716 fork_end(ret); 6717 } 6718 g_assert(!cpu_in_exclusive_context(cpu)); 6719 } 6720 return ret; 6721 } 6722 6723 /* warning : doesn't handle linux specific flags... */ 6724 static int target_to_host_fcntl_cmd(int cmd) 6725 { 6726 int ret; 6727 6728 switch(cmd) { 6729 case TARGET_F_DUPFD: 6730 case TARGET_F_GETFD: 6731 case TARGET_F_SETFD: 6732 case TARGET_F_GETFL: 6733 case TARGET_F_SETFL: 6734 case TARGET_F_OFD_GETLK: 6735 case TARGET_F_OFD_SETLK: 6736 case TARGET_F_OFD_SETLKW: 6737 ret = cmd; 6738 break; 6739 case TARGET_F_GETLK: 6740 ret = F_GETLK64; 6741 break; 6742 case TARGET_F_SETLK: 6743 ret = F_SETLK64; 6744 break; 6745 case TARGET_F_SETLKW: 6746 ret = F_SETLKW64; 6747 break; 6748 case TARGET_F_GETOWN: 6749 ret = F_GETOWN; 6750 break; 6751 case TARGET_F_SETOWN: 6752 ret = F_SETOWN; 6753 break; 6754 case TARGET_F_GETSIG: 6755 ret = F_GETSIG; 6756 break; 6757 case TARGET_F_SETSIG: 6758 ret = F_SETSIG; 6759 break; 6760 #if TARGET_ABI_BITS == 32 6761 case TARGET_F_GETLK64: 6762 ret = F_GETLK64; 6763 break; 6764 case TARGET_F_SETLK64: 6765 ret = F_SETLK64; 6766 break; 6767 case TARGET_F_SETLKW64: 6768 ret = F_SETLKW64; 6769 break; 6770 #endif 6771 case TARGET_F_SETLEASE: 6772 ret = F_SETLEASE; 6773 break; 6774 case TARGET_F_GETLEASE: 6775 ret = F_GETLEASE; 6776 break; 6777 #ifdef F_DUPFD_CLOEXEC 6778 case TARGET_F_DUPFD_CLOEXEC: 6779 ret = F_DUPFD_CLOEXEC; 6780 break; 6781 #endif 6782 case TARGET_F_NOTIFY: 6783 ret = F_NOTIFY; 6784 break; 6785 #ifdef F_GETOWN_EX 6786 case TARGET_F_GETOWN_EX: 6787 ret = F_GETOWN_EX; 6788 break; 6789 #endif 6790 #ifdef F_SETOWN_EX 6791 case TARGET_F_SETOWN_EX: 6792 ret = F_SETOWN_EX; 6793 break; 6794 #endif 6795 #ifdef F_SETPIPE_SZ 6796 case TARGET_F_SETPIPE_SZ: 6797 ret = F_SETPIPE_SZ; 6798 break; 6799 case TARGET_F_GETPIPE_SZ: 6800 ret = F_GETPIPE_SZ; 6801 break; 6802 #endif 6803 #ifdef F_ADD_SEALS 6804 case TARGET_F_ADD_SEALS: 6805 ret = F_ADD_SEALS; 6806 break; 6807 case TARGET_F_GET_SEALS: 6808 ret = F_GET_SEALS; 6809 break; 6810 #endif 6811 default: 6812 ret = -TARGET_EINVAL; 6813 break; 6814 } 6815 6816 #if defined(__powerpc64__) 6817 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and 6818 * is not supported by kernel. The glibc fcntl call actually adjusts 6819 * them to 5, 6 and 7 before making the syscall(). Since we make the 6820 * syscall directly, adjust to what is supported by the kernel. 6821 */ 6822 if (ret >= F_GETLK64 && ret <= F_SETLKW64) { 6823 ret -= F_GETLK64 - 5; 6824 } 6825 #endif 6826 6827 return ret; 6828 } 6829 6830 #define FLOCK_TRANSTBL \ 6831 switch (type) { \ 6832 TRANSTBL_CONVERT(F_RDLCK); \ 6833 TRANSTBL_CONVERT(F_WRLCK); \ 6834 TRANSTBL_CONVERT(F_UNLCK); \ 6835 } 6836 6837 static int target_to_host_flock(int type) 6838 { 6839 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a 6840 FLOCK_TRANSTBL 6841 #undef TRANSTBL_CONVERT 6842 return -TARGET_EINVAL; 6843 } 6844 6845 static int host_to_target_flock(int type) 6846 { 6847 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a 6848 FLOCK_TRANSTBL 6849 #undef TRANSTBL_CONVERT 6850 /* if we don't know how to convert the value coming 6851 * from the host we copy to the target field as-is 6852 */ 6853 return type; 6854 } 6855 6856 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6857 abi_ulong target_flock_addr) 6858 { 6859 struct target_flock *target_fl; 6860 int l_type; 6861 6862 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6863 return -TARGET_EFAULT; 6864 } 6865 6866 __get_user(l_type, &target_fl->l_type); 6867 l_type = target_to_host_flock(l_type); 6868 if (l_type < 0) { 6869 return l_type; 6870 } 6871 fl->l_type = l_type; 6872 __get_user(fl->l_whence, &target_fl->l_whence); 6873 __get_user(fl->l_start, &target_fl->l_start); 6874 __get_user(fl->l_len, &target_fl->l_len); 6875 __get_user(fl->l_pid, &target_fl->l_pid); 6876 unlock_user_struct(target_fl, target_flock_addr, 0); 6877 return 0; 6878 } 6879 6880 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6881 const struct flock64 *fl) 6882 { 6883 struct target_flock *target_fl; 6884 short l_type; 6885 6886 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6887 return -TARGET_EFAULT; 6888 } 6889 6890 l_type = host_to_target_flock(fl->l_type); 6891 __put_user(l_type, &target_fl->l_type); 6892 __put_user(fl->l_whence, &target_fl->l_whence); 6893 __put_user(fl->l_start, &target_fl->l_start); 6894 __put_user(fl->l_len, &target_fl->l_len); 6895 __put_user(fl->l_pid, &target_fl->l_pid); 6896 unlock_user_struct(target_fl, target_flock_addr, 1); 6897 return 0; 6898 } 6899 6900 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6901 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6902 6903 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6904 struct target_oabi_flock64 { 6905 abi_short l_type; 6906 abi_short l_whence; 6907 abi_llong l_start; 6908 abi_llong l_len; 6909 abi_int l_pid; 6910 } QEMU_PACKED; 6911 6912 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl, 6913 abi_ulong target_flock_addr) 6914 { 6915 struct target_oabi_flock64 *target_fl; 6916 int l_type; 6917 6918 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6919 return -TARGET_EFAULT; 6920 } 6921 6922 __get_user(l_type, &target_fl->l_type); 6923 l_type = target_to_host_flock(l_type); 6924 if (l_type < 0) { 6925 return l_type; 6926 } 6927 fl->l_type = l_type; 6928 __get_user(fl->l_whence, &target_fl->l_whence); 6929 __get_user(fl->l_start, &target_fl->l_start); 6930 __get_user(fl->l_len, &target_fl->l_len); 6931 __get_user(fl->l_pid, &target_fl->l_pid); 6932 unlock_user_struct(target_fl, target_flock_addr, 0); 6933 return 0; 6934 } 6935 6936 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr, 6937 const struct flock64 *fl) 6938 { 6939 struct target_oabi_flock64 *target_fl; 6940 short l_type; 6941 6942 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6943 return -TARGET_EFAULT; 6944 } 6945 6946 l_type = host_to_target_flock(fl->l_type); 6947 __put_user(l_type, &target_fl->l_type); 6948 __put_user(fl->l_whence, &target_fl->l_whence); 6949 __put_user(fl->l_start, &target_fl->l_start); 6950 __put_user(fl->l_len, &target_fl->l_len); 6951 __put_user(fl->l_pid, &target_fl->l_pid); 6952 unlock_user_struct(target_fl, target_flock_addr, 1); 6953 return 0; 6954 } 6955 #endif 6956 6957 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6958 abi_ulong target_flock_addr) 6959 { 6960 struct target_flock64 *target_fl; 6961 int l_type; 6962 6963 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6964 return -TARGET_EFAULT; 6965 } 6966 6967 __get_user(l_type, &target_fl->l_type); 6968 l_type = target_to_host_flock(l_type); 6969 if (l_type < 0) { 6970 return l_type; 6971 } 6972 fl->l_type = l_type; 6973 __get_user(fl->l_whence, &target_fl->l_whence); 6974 __get_user(fl->l_start, &target_fl->l_start); 6975 __get_user(fl->l_len, &target_fl->l_len); 6976 __get_user(fl->l_pid, &target_fl->l_pid); 6977 unlock_user_struct(target_fl, target_flock_addr, 0); 6978 return 0; 6979 } 6980 6981 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6982 const struct flock64 *fl) 6983 { 6984 struct target_flock64 *target_fl; 6985 short l_type; 6986 6987 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6988 return -TARGET_EFAULT; 6989 } 6990 6991 l_type = host_to_target_flock(fl->l_type); 6992 __put_user(l_type, &target_fl->l_type); 6993 __put_user(fl->l_whence, &target_fl->l_whence); 6994 __put_user(fl->l_start, &target_fl->l_start); 6995 __put_user(fl->l_len, &target_fl->l_len); 6996 __put_user(fl->l_pid, &target_fl->l_pid); 6997 unlock_user_struct(target_fl, target_flock_addr, 1); 6998 return 0; 6999 } 7000 7001 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 7002 { 7003 struct flock64 fl64; 7004 #ifdef F_GETOWN_EX 7005 struct f_owner_ex fox; 7006 struct target_f_owner_ex *target_fox; 7007 #endif 7008 abi_long ret; 7009 int host_cmd = target_to_host_fcntl_cmd(cmd); 7010 7011 if (host_cmd == -TARGET_EINVAL) 7012 return host_cmd; 7013 7014 switch(cmd) { 7015 case TARGET_F_GETLK: 7016 ret = copy_from_user_flock(&fl64, arg); 7017 if (ret) { 7018 return ret; 7019 } 7020 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7021 if (ret == 0) { 7022 ret = copy_to_user_flock(arg, &fl64); 7023 } 7024 break; 7025 7026 case TARGET_F_SETLK: 7027 case TARGET_F_SETLKW: 7028 ret = copy_from_user_flock(&fl64, arg); 7029 if (ret) { 7030 return ret; 7031 } 7032 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7033 break; 7034 7035 case TARGET_F_GETLK64: 7036 case TARGET_F_OFD_GETLK: 7037 ret = copy_from_user_flock64(&fl64, arg); 7038 if (ret) { 7039 return ret; 7040 } 7041 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7042 if (ret == 0) { 7043 ret = copy_to_user_flock64(arg, &fl64); 7044 } 7045 break; 7046 case TARGET_F_SETLK64: 7047 case TARGET_F_SETLKW64: 7048 case TARGET_F_OFD_SETLK: 7049 case TARGET_F_OFD_SETLKW: 7050 ret = copy_from_user_flock64(&fl64, arg); 7051 if (ret) { 7052 return ret; 7053 } 7054 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7055 break; 7056 7057 case TARGET_F_GETFL: 7058 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7059 if (ret >= 0) { 7060 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 7061 /* tell 32-bit guests it uses largefile on 64-bit hosts: */ 7062 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) { 7063 ret |= TARGET_O_LARGEFILE; 7064 } 7065 } 7066 break; 7067 7068 case TARGET_F_SETFL: 7069 ret = get_errno(safe_fcntl(fd, host_cmd, 7070 target_to_host_bitmask(arg, 7071 fcntl_flags_tbl))); 7072 break; 7073 7074 #ifdef F_GETOWN_EX 7075 case TARGET_F_GETOWN_EX: 7076 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7077 if (ret >= 0) { 7078 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 7079 return -TARGET_EFAULT; 7080 target_fox->type = tswap32(fox.type); 7081 target_fox->pid = tswap32(fox.pid); 7082 unlock_user_struct(target_fox, arg, 1); 7083 } 7084 break; 7085 #endif 7086 7087 #ifdef F_SETOWN_EX 7088 case TARGET_F_SETOWN_EX: 7089 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 7090 return -TARGET_EFAULT; 7091 fox.type = tswap32(target_fox->type); 7092 fox.pid = tswap32(target_fox->pid); 7093 unlock_user_struct(target_fox, arg, 0); 7094 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7095 break; 7096 #endif 7097 7098 case TARGET_F_SETSIG: 7099 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg))); 7100 break; 7101 7102 case TARGET_F_GETSIG: 7103 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg))); 7104 break; 7105 7106 case TARGET_F_SETOWN: 7107 case TARGET_F_GETOWN: 7108 case TARGET_F_SETLEASE: 7109 case TARGET_F_GETLEASE: 7110 case TARGET_F_SETPIPE_SZ: 7111 case TARGET_F_GETPIPE_SZ: 7112 case TARGET_F_ADD_SEALS: 7113 case TARGET_F_GET_SEALS: 7114 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7115 break; 7116 7117 default: 7118 ret = get_errno(safe_fcntl(fd, cmd, arg)); 7119 break; 7120 } 7121 return ret; 7122 } 7123 7124 #ifdef USE_UID16 7125 7126 static inline int high2lowuid(int uid) 7127 { 7128 if (uid > 65535) 7129 return 65534; 7130 else 7131 return uid; 7132 } 7133 7134 static inline int high2lowgid(int gid) 7135 { 7136 if (gid > 65535) 7137 return 65534; 7138 else 7139 return gid; 7140 } 7141 7142 static inline int low2highuid(int uid) 7143 { 7144 if ((int16_t)uid == -1) 7145 return -1; 7146 else 7147 return uid; 7148 } 7149 7150 static inline int low2highgid(int gid) 7151 { 7152 if ((int16_t)gid == -1) 7153 return -1; 7154 else 7155 return gid; 7156 } 7157 static inline int tswapid(int id) 7158 { 7159 return tswap16(id); 7160 } 7161 7162 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 7163 7164 #else /* !USE_UID16 */ 7165 static inline int high2lowuid(int uid) 7166 { 7167 return uid; 7168 } 7169 static inline int high2lowgid(int gid) 7170 { 7171 return gid; 7172 } 7173 static inline int low2highuid(int uid) 7174 { 7175 return uid; 7176 } 7177 static inline int low2highgid(int gid) 7178 { 7179 return gid; 7180 } 7181 static inline int tswapid(int id) 7182 { 7183 return tswap32(id); 7184 } 7185 7186 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 7187 7188 #endif /* USE_UID16 */ 7189 7190 /* We must do direct syscalls for setting UID/GID, because we want to 7191 * implement the Linux system call semantics of "change only for this thread", 7192 * not the libc/POSIX semantics of "change for all threads in process". 7193 * (See http://ewontfix.com/17/ for more details.) 7194 * We use the 32-bit version of the syscalls if present; if it is not 7195 * then either the host architecture supports 32-bit UIDs natively with 7196 * the standard syscall, or the 16-bit UID is the best we can do. 7197 */ 7198 #ifdef __NR_setuid32 7199 #define __NR_sys_setuid __NR_setuid32 7200 #else 7201 #define __NR_sys_setuid __NR_setuid 7202 #endif 7203 #ifdef __NR_setgid32 7204 #define __NR_sys_setgid __NR_setgid32 7205 #else 7206 #define __NR_sys_setgid __NR_setgid 7207 #endif 7208 #ifdef __NR_setresuid32 7209 #define __NR_sys_setresuid __NR_setresuid32 7210 #else 7211 #define __NR_sys_setresuid __NR_setresuid 7212 #endif 7213 #ifdef __NR_setresgid32 7214 #define __NR_sys_setresgid __NR_setresgid32 7215 #else 7216 #define __NR_sys_setresgid __NR_setresgid 7217 #endif 7218 7219 _syscall1(int, sys_setuid, uid_t, uid) 7220 _syscall1(int, sys_setgid, gid_t, gid) 7221 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 7222 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 7223 7224 void syscall_init(void) 7225 { 7226 IOCTLEntry *ie; 7227 const argtype *arg_type; 7228 int size; 7229 7230 thunk_init(STRUCT_MAX); 7231 7232 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 7233 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 7234 #include "syscall_types.h" 7235 #undef STRUCT 7236 #undef STRUCT_SPECIAL 7237 7238 /* we patch the ioctl size if necessary. We rely on the fact that 7239 no ioctl has all the bits at '1' in the size field */ 7240 ie = ioctl_entries; 7241 while (ie->target_cmd != 0) { 7242 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 7243 TARGET_IOC_SIZEMASK) { 7244 arg_type = ie->arg_type; 7245 if (arg_type[0] != TYPE_PTR) { 7246 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 7247 ie->target_cmd); 7248 exit(1); 7249 } 7250 arg_type++; 7251 size = thunk_type_size(arg_type, 0); 7252 ie->target_cmd = (ie->target_cmd & 7253 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 7254 (size << TARGET_IOC_SIZESHIFT); 7255 } 7256 7257 /* automatic consistency check if same arch */ 7258 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 7259 (defined(__x86_64__) && defined(TARGET_X86_64)) 7260 if (unlikely(ie->target_cmd != ie->host_cmd)) { 7261 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 7262 ie->name, ie->target_cmd, ie->host_cmd); 7263 } 7264 #endif 7265 ie++; 7266 } 7267 } 7268 7269 #ifdef TARGET_NR_truncate64 7270 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1, 7271 abi_long arg2, 7272 abi_long arg3, 7273 abi_long arg4) 7274 { 7275 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 7276 arg2 = arg3; 7277 arg3 = arg4; 7278 } 7279 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 7280 } 7281 #endif 7282 7283 #ifdef TARGET_NR_ftruncate64 7284 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1, 7285 abi_long arg2, 7286 abi_long arg3, 7287 abi_long arg4) 7288 { 7289 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 7290 arg2 = arg3; 7291 arg3 = arg4; 7292 } 7293 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 7294 } 7295 #endif 7296 7297 #if defined(TARGET_NR_timer_settime) || \ 7298 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 7299 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its, 7300 abi_ulong target_addr) 7301 { 7302 if (target_to_host_timespec(&host_its->it_interval, target_addr + 7303 offsetof(struct target_itimerspec, 7304 it_interval)) || 7305 target_to_host_timespec(&host_its->it_value, target_addr + 7306 offsetof(struct target_itimerspec, 7307 it_value))) { 7308 return -TARGET_EFAULT; 7309 } 7310 7311 return 0; 7312 } 7313 #endif 7314 7315 #if defined(TARGET_NR_timer_settime64) || \ 7316 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) 7317 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its, 7318 abi_ulong target_addr) 7319 { 7320 if (target_to_host_timespec64(&host_its->it_interval, target_addr + 7321 offsetof(struct target__kernel_itimerspec, 7322 it_interval)) || 7323 target_to_host_timespec64(&host_its->it_value, target_addr + 7324 offsetof(struct target__kernel_itimerspec, 7325 it_value))) { 7326 return -TARGET_EFAULT; 7327 } 7328 7329 return 0; 7330 } 7331 #endif 7332 7333 #if ((defined(TARGET_NR_timerfd_gettime) || \ 7334 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \ 7335 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime) 7336 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7337 struct itimerspec *host_its) 7338 { 7339 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7340 it_interval), 7341 &host_its->it_interval) || 7342 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7343 it_value), 7344 &host_its->it_value)) { 7345 return -TARGET_EFAULT; 7346 } 7347 return 0; 7348 } 7349 #endif 7350 7351 #if ((defined(TARGET_NR_timerfd_gettime64) || \ 7352 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \ 7353 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64) 7354 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr, 7355 struct itimerspec *host_its) 7356 { 7357 if (host_to_target_timespec64(target_addr + 7358 offsetof(struct target__kernel_itimerspec, 7359 it_interval), 7360 &host_its->it_interval) || 7361 host_to_target_timespec64(target_addr + 7362 offsetof(struct target__kernel_itimerspec, 7363 it_value), 7364 &host_its->it_value)) { 7365 return -TARGET_EFAULT; 7366 } 7367 return 0; 7368 } 7369 #endif 7370 7371 #if defined(TARGET_NR_adjtimex) || \ 7372 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)) 7373 static inline abi_long target_to_host_timex(struct timex *host_tx, 7374 abi_long target_addr) 7375 { 7376 struct target_timex *target_tx; 7377 7378 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7379 return -TARGET_EFAULT; 7380 } 7381 7382 __get_user(host_tx->modes, &target_tx->modes); 7383 __get_user(host_tx->offset, &target_tx->offset); 7384 __get_user(host_tx->freq, &target_tx->freq); 7385 __get_user(host_tx->maxerror, &target_tx->maxerror); 7386 __get_user(host_tx->esterror, &target_tx->esterror); 7387 __get_user(host_tx->status, &target_tx->status); 7388 __get_user(host_tx->constant, &target_tx->constant); 7389 __get_user(host_tx->precision, &target_tx->precision); 7390 __get_user(host_tx->tolerance, &target_tx->tolerance); 7391 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7392 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7393 __get_user(host_tx->tick, &target_tx->tick); 7394 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7395 __get_user(host_tx->jitter, &target_tx->jitter); 7396 __get_user(host_tx->shift, &target_tx->shift); 7397 __get_user(host_tx->stabil, &target_tx->stabil); 7398 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7399 __get_user(host_tx->calcnt, &target_tx->calcnt); 7400 __get_user(host_tx->errcnt, &target_tx->errcnt); 7401 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7402 __get_user(host_tx->tai, &target_tx->tai); 7403 7404 unlock_user_struct(target_tx, target_addr, 0); 7405 return 0; 7406 } 7407 7408 static inline abi_long host_to_target_timex(abi_long target_addr, 7409 struct timex *host_tx) 7410 { 7411 struct target_timex *target_tx; 7412 7413 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7414 return -TARGET_EFAULT; 7415 } 7416 7417 __put_user(host_tx->modes, &target_tx->modes); 7418 __put_user(host_tx->offset, &target_tx->offset); 7419 __put_user(host_tx->freq, &target_tx->freq); 7420 __put_user(host_tx->maxerror, &target_tx->maxerror); 7421 __put_user(host_tx->esterror, &target_tx->esterror); 7422 __put_user(host_tx->status, &target_tx->status); 7423 __put_user(host_tx->constant, &target_tx->constant); 7424 __put_user(host_tx->precision, &target_tx->precision); 7425 __put_user(host_tx->tolerance, &target_tx->tolerance); 7426 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7427 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7428 __put_user(host_tx->tick, &target_tx->tick); 7429 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7430 __put_user(host_tx->jitter, &target_tx->jitter); 7431 __put_user(host_tx->shift, &target_tx->shift); 7432 __put_user(host_tx->stabil, &target_tx->stabil); 7433 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7434 __put_user(host_tx->calcnt, &target_tx->calcnt); 7435 __put_user(host_tx->errcnt, &target_tx->errcnt); 7436 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7437 __put_user(host_tx->tai, &target_tx->tai); 7438 7439 unlock_user_struct(target_tx, target_addr, 1); 7440 return 0; 7441 } 7442 #endif 7443 7444 7445 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 7446 static inline abi_long target_to_host_timex64(struct timex *host_tx, 7447 abi_long target_addr) 7448 { 7449 struct target__kernel_timex *target_tx; 7450 7451 if (copy_from_user_timeval64(&host_tx->time, target_addr + 7452 offsetof(struct target__kernel_timex, 7453 time))) { 7454 return -TARGET_EFAULT; 7455 } 7456 7457 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7458 return -TARGET_EFAULT; 7459 } 7460 7461 __get_user(host_tx->modes, &target_tx->modes); 7462 __get_user(host_tx->offset, &target_tx->offset); 7463 __get_user(host_tx->freq, &target_tx->freq); 7464 __get_user(host_tx->maxerror, &target_tx->maxerror); 7465 __get_user(host_tx->esterror, &target_tx->esterror); 7466 __get_user(host_tx->status, &target_tx->status); 7467 __get_user(host_tx->constant, &target_tx->constant); 7468 __get_user(host_tx->precision, &target_tx->precision); 7469 __get_user(host_tx->tolerance, &target_tx->tolerance); 7470 __get_user(host_tx->tick, &target_tx->tick); 7471 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7472 __get_user(host_tx->jitter, &target_tx->jitter); 7473 __get_user(host_tx->shift, &target_tx->shift); 7474 __get_user(host_tx->stabil, &target_tx->stabil); 7475 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7476 __get_user(host_tx->calcnt, &target_tx->calcnt); 7477 __get_user(host_tx->errcnt, &target_tx->errcnt); 7478 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7479 __get_user(host_tx->tai, &target_tx->tai); 7480 7481 unlock_user_struct(target_tx, target_addr, 0); 7482 return 0; 7483 } 7484 7485 static inline abi_long host_to_target_timex64(abi_long target_addr, 7486 struct timex *host_tx) 7487 { 7488 struct target__kernel_timex *target_tx; 7489 7490 if (copy_to_user_timeval64(target_addr + 7491 offsetof(struct target__kernel_timex, time), 7492 &host_tx->time)) { 7493 return -TARGET_EFAULT; 7494 } 7495 7496 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7497 return -TARGET_EFAULT; 7498 } 7499 7500 __put_user(host_tx->modes, &target_tx->modes); 7501 __put_user(host_tx->offset, &target_tx->offset); 7502 __put_user(host_tx->freq, &target_tx->freq); 7503 __put_user(host_tx->maxerror, &target_tx->maxerror); 7504 __put_user(host_tx->esterror, &target_tx->esterror); 7505 __put_user(host_tx->status, &target_tx->status); 7506 __put_user(host_tx->constant, &target_tx->constant); 7507 __put_user(host_tx->precision, &target_tx->precision); 7508 __put_user(host_tx->tolerance, &target_tx->tolerance); 7509 __put_user(host_tx->tick, &target_tx->tick); 7510 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7511 __put_user(host_tx->jitter, &target_tx->jitter); 7512 __put_user(host_tx->shift, &target_tx->shift); 7513 __put_user(host_tx->stabil, &target_tx->stabil); 7514 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7515 __put_user(host_tx->calcnt, &target_tx->calcnt); 7516 __put_user(host_tx->errcnt, &target_tx->errcnt); 7517 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7518 __put_user(host_tx->tai, &target_tx->tai); 7519 7520 unlock_user_struct(target_tx, target_addr, 1); 7521 return 0; 7522 } 7523 #endif 7524 7525 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID 7526 #define sigev_notify_thread_id _sigev_un._tid 7527 #endif 7528 7529 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7530 abi_ulong target_addr) 7531 { 7532 struct target_sigevent *target_sevp; 7533 7534 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7535 return -TARGET_EFAULT; 7536 } 7537 7538 /* This union is awkward on 64 bit systems because it has a 32 bit 7539 * integer and a pointer in it; we follow the conversion approach 7540 * used for handling sigval types in signal.c so the guest should get 7541 * the correct value back even if we did a 64 bit byteswap and it's 7542 * using the 32 bit integer. 7543 */ 7544 host_sevp->sigev_value.sival_ptr = 7545 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7546 host_sevp->sigev_signo = 7547 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7548 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7549 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid); 7550 7551 unlock_user_struct(target_sevp, target_addr, 1); 7552 return 0; 7553 } 7554 7555 #if defined(TARGET_NR_mlockall) 7556 static inline int target_to_host_mlockall_arg(int arg) 7557 { 7558 int result = 0; 7559 7560 if (arg & TARGET_MCL_CURRENT) { 7561 result |= MCL_CURRENT; 7562 } 7563 if (arg & TARGET_MCL_FUTURE) { 7564 result |= MCL_FUTURE; 7565 } 7566 #ifdef MCL_ONFAULT 7567 if (arg & TARGET_MCL_ONFAULT) { 7568 result |= MCL_ONFAULT; 7569 } 7570 #endif 7571 7572 return result; 7573 } 7574 #endif 7575 7576 static inline int target_to_host_msync_arg(abi_long arg) 7577 { 7578 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) | 7579 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) | 7580 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) | 7581 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC)); 7582 } 7583 7584 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \ 7585 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \ 7586 defined(TARGET_NR_newfstatat)) 7587 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env, 7588 abi_ulong target_addr, 7589 struct stat *host_st) 7590 { 7591 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7592 if (cpu_env->eabi) { 7593 struct target_eabi_stat64 *target_st; 7594 7595 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7596 return -TARGET_EFAULT; 7597 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7598 __put_user(host_st->st_dev, &target_st->st_dev); 7599 __put_user(host_st->st_ino, &target_st->st_ino); 7600 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7601 __put_user(host_st->st_ino, &target_st->__st_ino); 7602 #endif 7603 __put_user(host_st->st_mode, &target_st->st_mode); 7604 __put_user(host_st->st_nlink, &target_st->st_nlink); 7605 __put_user(host_st->st_uid, &target_st->st_uid); 7606 __put_user(host_st->st_gid, &target_st->st_gid); 7607 __put_user(host_st->st_rdev, &target_st->st_rdev); 7608 __put_user(host_st->st_size, &target_st->st_size); 7609 __put_user(host_st->st_blksize, &target_st->st_blksize); 7610 __put_user(host_st->st_blocks, &target_st->st_blocks); 7611 __put_user(host_st->st_atime, &target_st->target_st_atime); 7612 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7613 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7614 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7615 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7616 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7617 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7618 #endif 7619 unlock_user_struct(target_st, target_addr, 1); 7620 } else 7621 #endif 7622 { 7623 #if defined(TARGET_HAS_STRUCT_STAT64) 7624 struct target_stat64 *target_st; 7625 #else 7626 struct target_stat *target_st; 7627 #endif 7628 7629 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7630 return -TARGET_EFAULT; 7631 memset(target_st, 0, sizeof(*target_st)); 7632 __put_user(host_st->st_dev, &target_st->st_dev); 7633 __put_user(host_st->st_ino, &target_st->st_ino); 7634 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7635 __put_user(host_st->st_ino, &target_st->__st_ino); 7636 #endif 7637 __put_user(host_st->st_mode, &target_st->st_mode); 7638 __put_user(host_st->st_nlink, &target_st->st_nlink); 7639 __put_user(host_st->st_uid, &target_st->st_uid); 7640 __put_user(host_st->st_gid, &target_st->st_gid); 7641 __put_user(host_st->st_rdev, &target_st->st_rdev); 7642 /* XXX: better use of kernel struct */ 7643 __put_user(host_st->st_size, &target_st->st_size); 7644 __put_user(host_st->st_blksize, &target_st->st_blksize); 7645 __put_user(host_st->st_blocks, &target_st->st_blocks); 7646 __put_user(host_st->st_atime, &target_st->target_st_atime); 7647 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7648 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7649 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7650 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7651 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7652 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7653 #endif 7654 unlock_user_struct(target_st, target_addr, 1); 7655 } 7656 7657 return 0; 7658 } 7659 #endif 7660 7661 #if defined(TARGET_NR_statx) && defined(__NR_statx) 7662 static inline abi_long host_to_target_statx(struct target_statx *host_stx, 7663 abi_ulong target_addr) 7664 { 7665 struct target_statx *target_stx; 7666 7667 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) { 7668 return -TARGET_EFAULT; 7669 } 7670 memset(target_stx, 0, sizeof(*target_stx)); 7671 7672 __put_user(host_stx->stx_mask, &target_stx->stx_mask); 7673 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize); 7674 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes); 7675 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink); 7676 __put_user(host_stx->stx_uid, &target_stx->stx_uid); 7677 __put_user(host_stx->stx_gid, &target_stx->stx_gid); 7678 __put_user(host_stx->stx_mode, &target_stx->stx_mode); 7679 __put_user(host_stx->stx_ino, &target_stx->stx_ino); 7680 __put_user(host_stx->stx_size, &target_stx->stx_size); 7681 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks); 7682 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask); 7683 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec); 7684 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec); 7685 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec); 7686 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec); 7687 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec); 7688 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec); 7689 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec); 7690 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec); 7691 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major); 7692 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor); 7693 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major); 7694 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor); 7695 7696 unlock_user_struct(target_stx, target_addr, 1); 7697 7698 return 0; 7699 } 7700 #endif 7701 7702 static int do_sys_futex(int *uaddr, int op, int val, 7703 const struct timespec *timeout, int *uaddr2, 7704 int val3) 7705 { 7706 #if HOST_LONG_BITS == 64 7707 #if defined(__NR_futex) 7708 /* always a 64-bit time_t, it doesn't define _time64 version */ 7709 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7710 7711 #endif 7712 #else /* HOST_LONG_BITS == 64 */ 7713 #if defined(__NR_futex_time64) 7714 if (sizeof(timeout->tv_sec) == 8) { 7715 /* _time64 function on 32bit arch */ 7716 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3); 7717 } 7718 #endif 7719 #if defined(__NR_futex) 7720 /* old function on 32bit arch */ 7721 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7722 #endif 7723 #endif /* HOST_LONG_BITS == 64 */ 7724 g_assert_not_reached(); 7725 } 7726 7727 static int do_safe_futex(int *uaddr, int op, int val, 7728 const struct timespec *timeout, int *uaddr2, 7729 int val3) 7730 { 7731 #if HOST_LONG_BITS == 64 7732 #if defined(__NR_futex) 7733 /* always a 64-bit time_t, it doesn't define _time64 version */ 7734 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7735 #endif 7736 #else /* HOST_LONG_BITS == 64 */ 7737 #if defined(__NR_futex_time64) 7738 if (sizeof(timeout->tv_sec) == 8) { 7739 /* _time64 function on 32bit arch */ 7740 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2, 7741 val3)); 7742 } 7743 #endif 7744 #if defined(__NR_futex) 7745 /* old function on 32bit arch */ 7746 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7747 #endif 7748 #endif /* HOST_LONG_BITS == 64 */ 7749 return -TARGET_ENOSYS; 7750 } 7751 7752 /* ??? Using host futex calls even when target atomic operations 7753 are not really atomic probably breaks things. However implementing 7754 futexes locally would make futexes shared between multiple processes 7755 tricky. However they're probably useless because guest atomic 7756 operations won't work either. */ 7757 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64) 7758 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr, 7759 int op, int val, target_ulong timeout, 7760 target_ulong uaddr2, int val3) 7761 { 7762 struct timespec ts, *pts = NULL; 7763 void *haddr2 = NULL; 7764 int base_op; 7765 7766 /* We assume FUTEX_* constants are the same on both host and target. */ 7767 #ifdef FUTEX_CMD_MASK 7768 base_op = op & FUTEX_CMD_MASK; 7769 #else 7770 base_op = op; 7771 #endif 7772 switch (base_op) { 7773 case FUTEX_WAIT: 7774 case FUTEX_WAIT_BITSET: 7775 val = tswap32(val); 7776 break; 7777 case FUTEX_WAIT_REQUEUE_PI: 7778 val = tswap32(val); 7779 haddr2 = g2h(cpu, uaddr2); 7780 break; 7781 case FUTEX_LOCK_PI: 7782 case FUTEX_LOCK_PI2: 7783 break; 7784 case FUTEX_WAKE: 7785 case FUTEX_WAKE_BITSET: 7786 case FUTEX_TRYLOCK_PI: 7787 case FUTEX_UNLOCK_PI: 7788 timeout = 0; 7789 break; 7790 case FUTEX_FD: 7791 val = target_to_host_signal(val); 7792 timeout = 0; 7793 break; 7794 case FUTEX_CMP_REQUEUE: 7795 case FUTEX_CMP_REQUEUE_PI: 7796 val3 = tswap32(val3); 7797 /* fall through */ 7798 case FUTEX_REQUEUE: 7799 case FUTEX_WAKE_OP: 7800 /* 7801 * For these, the 4th argument is not TIMEOUT, but VAL2. 7802 * But the prototype of do_safe_futex takes a pointer, so 7803 * insert casts to satisfy the compiler. We do not need 7804 * to tswap VAL2 since it's not compared to guest memory. 7805 */ 7806 pts = (struct timespec *)(uintptr_t)timeout; 7807 timeout = 0; 7808 haddr2 = g2h(cpu, uaddr2); 7809 break; 7810 default: 7811 return -TARGET_ENOSYS; 7812 } 7813 if (timeout) { 7814 pts = &ts; 7815 if (time64 7816 ? target_to_host_timespec64(pts, timeout) 7817 : target_to_host_timespec(pts, timeout)) { 7818 return -TARGET_EFAULT; 7819 } 7820 } 7821 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3); 7822 } 7823 #endif 7824 7825 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7826 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7827 abi_long handle, abi_long mount_id, 7828 abi_long flags) 7829 { 7830 struct file_handle *target_fh; 7831 struct file_handle *fh; 7832 int mid = 0; 7833 abi_long ret; 7834 char *name; 7835 unsigned int size, total_size; 7836 7837 if (get_user_s32(size, handle)) { 7838 return -TARGET_EFAULT; 7839 } 7840 7841 name = lock_user_string(pathname); 7842 if (!name) { 7843 return -TARGET_EFAULT; 7844 } 7845 7846 total_size = sizeof(struct file_handle) + size; 7847 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7848 if (!target_fh) { 7849 unlock_user(name, pathname, 0); 7850 return -TARGET_EFAULT; 7851 } 7852 7853 fh = g_malloc0(total_size); 7854 fh->handle_bytes = size; 7855 7856 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7857 unlock_user(name, pathname, 0); 7858 7859 /* man name_to_handle_at(2): 7860 * Other than the use of the handle_bytes field, the caller should treat 7861 * the file_handle structure as an opaque data type 7862 */ 7863 7864 memcpy(target_fh, fh, total_size); 7865 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7866 target_fh->handle_type = tswap32(fh->handle_type); 7867 g_free(fh); 7868 unlock_user(target_fh, handle, total_size); 7869 7870 if (put_user_s32(mid, mount_id)) { 7871 return -TARGET_EFAULT; 7872 } 7873 7874 return ret; 7875 7876 } 7877 #endif 7878 7879 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7880 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7881 abi_long flags) 7882 { 7883 struct file_handle *target_fh; 7884 struct file_handle *fh; 7885 unsigned int size, total_size; 7886 abi_long ret; 7887 7888 if (get_user_s32(size, handle)) { 7889 return -TARGET_EFAULT; 7890 } 7891 7892 total_size = sizeof(struct file_handle) + size; 7893 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7894 if (!target_fh) { 7895 return -TARGET_EFAULT; 7896 } 7897 7898 fh = g_memdup(target_fh, total_size); 7899 fh->handle_bytes = size; 7900 fh->handle_type = tswap32(target_fh->handle_type); 7901 7902 ret = get_errno(open_by_handle_at(mount_fd, fh, 7903 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7904 7905 g_free(fh); 7906 7907 unlock_user(target_fh, handle, total_size); 7908 7909 return ret; 7910 } 7911 #endif 7912 7913 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7914 7915 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7916 { 7917 int host_flags; 7918 target_sigset_t *target_mask; 7919 sigset_t host_mask; 7920 abi_long ret; 7921 7922 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) { 7923 return -TARGET_EINVAL; 7924 } 7925 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7926 return -TARGET_EFAULT; 7927 } 7928 7929 target_to_host_sigset(&host_mask, target_mask); 7930 7931 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7932 7933 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7934 if (ret >= 0) { 7935 fd_trans_register(ret, &target_signalfd_trans); 7936 } 7937 7938 unlock_user_struct(target_mask, mask, 0); 7939 7940 return ret; 7941 } 7942 #endif 7943 7944 /* Map host to target signal numbers for the wait family of syscalls. 7945 Assume all other status bits are the same. */ 7946 int host_to_target_waitstatus(int status) 7947 { 7948 if (WIFSIGNALED(status)) { 7949 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7950 } 7951 if (WIFSTOPPED(status)) { 7952 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7953 | (status & 0xff); 7954 } 7955 return status; 7956 } 7957 7958 static int open_self_cmdline(CPUArchState *cpu_env, int fd) 7959 { 7960 CPUState *cpu = env_cpu(cpu_env); 7961 struct linux_binprm *bprm = get_task_state(cpu)->bprm; 7962 int i; 7963 7964 for (i = 0; i < bprm->argc; i++) { 7965 size_t len = strlen(bprm->argv[i]) + 1; 7966 7967 if (write(fd, bprm->argv[i], len) != len) { 7968 return -1; 7969 } 7970 } 7971 7972 return 0; 7973 } 7974 7975 struct open_self_maps_data { 7976 TaskState *ts; 7977 IntervalTreeRoot *host_maps; 7978 int fd; 7979 bool smaps; 7980 }; 7981 7982 /* 7983 * Subroutine to output one line of /proc/self/maps, 7984 * or one region of /proc/self/smaps. 7985 */ 7986 7987 #ifdef TARGET_HPPA 7988 # define test_stack(S, E, L) (E == L) 7989 #else 7990 # define test_stack(S, E, L) (S == L) 7991 #endif 7992 7993 static void open_self_maps_4(const struct open_self_maps_data *d, 7994 const MapInfo *mi, abi_ptr start, 7995 abi_ptr end, unsigned flags) 7996 { 7997 const struct image_info *info = d->ts->info; 7998 const char *path = mi->path; 7999 uint64_t offset; 8000 int fd = d->fd; 8001 int count; 8002 8003 if (test_stack(start, end, info->stack_limit)) { 8004 path = "[stack]"; 8005 } else if (start == info->brk) { 8006 path = "[heap]"; 8007 } else if (start == info->vdso) { 8008 path = "[vdso]"; 8009 #ifdef TARGET_X86_64 8010 } else if (start == TARGET_VSYSCALL_PAGE) { 8011 path = "[vsyscall]"; 8012 #endif 8013 } 8014 8015 /* Except null device (MAP_ANON), adjust offset for this fragment. */ 8016 offset = mi->offset; 8017 if (mi->dev) { 8018 uintptr_t hstart = (uintptr_t)g2h_untagged(start); 8019 offset += hstart - mi->itree.start; 8020 } 8021 8022 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr 8023 " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64, 8024 start, end, 8025 (flags & PAGE_READ) ? 'r' : '-', 8026 (flags & PAGE_WRITE_ORG) ? 'w' : '-', 8027 (flags & PAGE_EXEC) ? 'x' : '-', 8028 mi->is_priv ? 'p' : 's', 8029 offset, major(mi->dev), minor(mi->dev), 8030 (uint64_t)mi->inode); 8031 if (path) { 8032 dprintf(fd, "%*s%s\n", 73 - count, "", path); 8033 } else { 8034 dprintf(fd, "\n"); 8035 } 8036 8037 if (d->smaps) { 8038 unsigned long size = end - start; 8039 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10; 8040 unsigned long size_kb = size >> 10; 8041 8042 dprintf(fd, "Size: %lu kB\n" 8043 "KernelPageSize: %lu kB\n" 8044 "MMUPageSize: %lu kB\n" 8045 "Rss: 0 kB\n" 8046 "Pss: 0 kB\n" 8047 "Pss_Dirty: 0 kB\n" 8048 "Shared_Clean: 0 kB\n" 8049 "Shared_Dirty: 0 kB\n" 8050 "Private_Clean: 0 kB\n" 8051 "Private_Dirty: 0 kB\n" 8052 "Referenced: 0 kB\n" 8053 "Anonymous: %lu kB\n" 8054 "LazyFree: 0 kB\n" 8055 "AnonHugePages: 0 kB\n" 8056 "ShmemPmdMapped: 0 kB\n" 8057 "FilePmdMapped: 0 kB\n" 8058 "Shared_Hugetlb: 0 kB\n" 8059 "Private_Hugetlb: 0 kB\n" 8060 "Swap: 0 kB\n" 8061 "SwapPss: 0 kB\n" 8062 "Locked: 0 kB\n" 8063 "THPeligible: 0\n" 8064 "VmFlags:%s%s%s%s%s%s%s%s\n", 8065 size_kb, page_size_kb, page_size_kb, 8066 (flags & PAGE_ANON ? size_kb : 0), 8067 (flags & PAGE_READ) ? " rd" : "", 8068 (flags & PAGE_WRITE_ORG) ? " wr" : "", 8069 (flags & PAGE_EXEC) ? " ex" : "", 8070 mi->is_priv ? "" : " sh", 8071 (flags & PAGE_READ) ? " mr" : "", 8072 (flags & PAGE_WRITE_ORG) ? " mw" : "", 8073 (flags & PAGE_EXEC) ? " me" : "", 8074 mi->is_priv ? "" : " ms"); 8075 } 8076 } 8077 8078 /* 8079 * Callback for walk_memory_regions, when read_self_maps() fails. 8080 * Proceed without the benefit of host /proc/self/maps cross-check. 8081 */ 8082 static int open_self_maps_3(void *opaque, target_ulong guest_start, 8083 target_ulong guest_end, unsigned long flags) 8084 { 8085 static const MapInfo mi = { .is_priv = true }; 8086 8087 open_self_maps_4(opaque, &mi, guest_start, guest_end, flags); 8088 return 0; 8089 } 8090 8091 /* 8092 * Callback for walk_memory_regions, when read_self_maps() succeeds. 8093 */ 8094 static int open_self_maps_2(void *opaque, target_ulong guest_start, 8095 target_ulong guest_end, unsigned long flags) 8096 { 8097 const struct open_self_maps_data *d = opaque; 8098 uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start); 8099 uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1); 8100 8101 #ifdef TARGET_X86_64 8102 /* 8103 * Because of the extremely high position of the page within the guest 8104 * virtual address space, this is not backed by host memory at all. 8105 * Therefore the loop below would fail. This is the only instance 8106 * of not having host backing memory. 8107 */ 8108 if (guest_start == TARGET_VSYSCALL_PAGE) { 8109 return open_self_maps_3(opaque, guest_start, guest_end, flags); 8110 } 8111 #endif 8112 8113 while (1) { 8114 IntervalTreeNode *n = 8115 interval_tree_iter_first(d->host_maps, host_start, host_start); 8116 MapInfo *mi = container_of(n, MapInfo, itree); 8117 uintptr_t this_hlast = MIN(host_last, n->last); 8118 target_ulong this_gend = h2g(this_hlast) + 1; 8119 8120 open_self_maps_4(d, mi, guest_start, this_gend, flags); 8121 8122 if (this_hlast == host_last) { 8123 return 0; 8124 } 8125 host_start = this_hlast + 1; 8126 guest_start = h2g(host_start); 8127 } 8128 } 8129 8130 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps) 8131 { 8132 struct open_self_maps_data d = { 8133 .ts = env_cpu(env)->opaque, 8134 .host_maps = read_self_maps(), 8135 .fd = fd, 8136 .smaps = smaps 8137 }; 8138 8139 if (d.host_maps) { 8140 walk_memory_regions(&d, open_self_maps_2); 8141 free_self_maps(d.host_maps); 8142 } else { 8143 walk_memory_regions(&d, open_self_maps_3); 8144 } 8145 return 0; 8146 } 8147 8148 static int open_self_maps(CPUArchState *cpu_env, int fd) 8149 { 8150 return open_self_maps_1(cpu_env, fd, false); 8151 } 8152 8153 static int open_self_smaps(CPUArchState *cpu_env, int fd) 8154 { 8155 return open_self_maps_1(cpu_env, fd, true); 8156 } 8157 8158 static int open_self_stat(CPUArchState *cpu_env, int fd) 8159 { 8160 CPUState *cpu = env_cpu(cpu_env); 8161 TaskState *ts = get_task_state(cpu); 8162 g_autoptr(GString) buf = g_string_new(NULL); 8163 int i; 8164 8165 for (i = 0; i < 44; i++) { 8166 if (i == 0) { 8167 /* pid */ 8168 g_string_printf(buf, FMT_pid " ", getpid()); 8169 } else if (i == 1) { 8170 /* app name */ 8171 gchar *bin = g_strrstr(ts->bprm->argv[0], "/"); 8172 bin = bin ? bin + 1 : ts->bprm->argv[0]; 8173 g_string_printf(buf, "(%.15s) ", bin); 8174 } else if (i == 2) { 8175 /* task state */ 8176 g_string_assign(buf, "R "); /* we are running right now */ 8177 } else if (i == 3) { 8178 /* ppid */ 8179 g_string_printf(buf, FMT_pid " ", getppid()); 8180 } else if (i == 21) { 8181 /* starttime */ 8182 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime); 8183 } else if (i == 27) { 8184 /* stack bottom */ 8185 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack); 8186 } else { 8187 /* for the rest, there is MasterCard */ 8188 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' '); 8189 } 8190 8191 if (write(fd, buf->str, buf->len) != buf->len) { 8192 return -1; 8193 } 8194 } 8195 8196 return 0; 8197 } 8198 8199 static int open_self_auxv(CPUArchState *cpu_env, int fd) 8200 { 8201 CPUState *cpu = env_cpu(cpu_env); 8202 TaskState *ts = get_task_state(cpu); 8203 abi_ulong auxv = ts->info->saved_auxv; 8204 abi_ulong len = ts->info->auxv_len; 8205 char *ptr; 8206 8207 /* 8208 * Auxiliary vector is stored in target process stack. 8209 * read in whole auxv vector and copy it to file 8210 */ 8211 ptr = lock_user(VERIFY_READ, auxv, len, 0); 8212 if (ptr != NULL) { 8213 while (len > 0) { 8214 ssize_t r; 8215 r = write(fd, ptr, len); 8216 if (r <= 0) { 8217 break; 8218 } 8219 len -= r; 8220 ptr += r; 8221 } 8222 lseek(fd, 0, SEEK_SET); 8223 unlock_user(ptr, auxv, len); 8224 } 8225 8226 return 0; 8227 } 8228 8229 static int is_proc_myself(const char *filename, const char *entry) 8230 { 8231 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 8232 filename += strlen("/proc/"); 8233 if (!strncmp(filename, "self/", strlen("self/"))) { 8234 filename += strlen("self/"); 8235 } else if (*filename >= '1' && *filename <= '9') { 8236 char myself[80]; 8237 snprintf(myself, sizeof(myself), "%d/", getpid()); 8238 if (!strncmp(filename, myself, strlen(myself))) { 8239 filename += strlen(myself); 8240 } else { 8241 return 0; 8242 } 8243 } else { 8244 return 0; 8245 } 8246 if (!strcmp(filename, entry)) { 8247 return 1; 8248 } 8249 } 8250 return 0; 8251 } 8252 8253 static void excp_dump_file(FILE *logfile, CPUArchState *env, 8254 const char *fmt, int code) 8255 { 8256 if (logfile) { 8257 CPUState *cs = env_cpu(env); 8258 8259 fprintf(logfile, fmt, code); 8260 fprintf(logfile, "Failing executable: %s\n", exec_path); 8261 cpu_dump_state(cs, logfile, 0); 8262 open_self_maps(env, fileno(logfile)); 8263 } 8264 } 8265 8266 void target_exception_dump(CPUArchState *env, const char *fmt, int code) 8267 { 8268 /* dump to console */ 8269 excp_dump_file(stderr, env, fmt, code); 8270 8271 /* dump to log file */ 8272 if (qemu_log_separate()) { 8273 FILE *logfile = qemu_log_trylock(); 8274 8275 excp_dump_file(logfile, env, fmt, code); 8276 qemu_log_unlock(logfile); 8277 } 8278 } 8279 8280 #include "target_proc.h" 8281 8282 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \ 8283 defined(HAVE_ARCH_PROC_CPUINFO) || \ 8284 defined(HAVE_ARCH_PROC_HARDWARE) 8285 static int is_proc(const char *filename, const char *entry) 8286 { 8287 return strcmp(filename, entry) == 0; 8288 } 8289 #endif 8290 8291 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8292 static int open_net_route(CPUArchState *cpu_env, int fd) 8293 { 8294 FILE *fp; 8295 char *line = NULL; 8296 size_t len = 0; 8297 ssize_t read; 8298 8299 fp = fopen("/proc/net/route", "r"); 8300 if (fp == NULL) { 8301 return -1; 8302 } 8303 8304 /* read header */ 8305 8306 read = getline(&line, &len, fp); 8307 dprintf(fd, "%s", line); 8308 8309 /* read routes */ 8310 8311 while ((read = getline(&line, &len, fp)) != -1) { 8312 char iface[16]; 8313 uint32_t dest, gw, mask; 8314 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 8315 int fields; 8316 8317 fields = sscanf(line, 8318 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8319 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 8320 &mask, &mtu, &window, &irtt); 8321 if (fields != 11) { 8322 continue; 8323 } 8324 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8325 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 8326 metric, tswap32(mask), mtu, window, irtt); 8327 } 8328 8329 free(line); 8330 fclose(fp); 8331 8332 return 0; 8333 } 8334 #endif 8335 8336 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname, 8337 int flags, mode_t mode, bool safe) 8338 { 8339 g_autofree char *proc_name = NULL; 8340 const char *pathname; 8341 struct fake_open { 8342 const char *filename; 8343 int (*fill)(CPUArchState *cpu_env, int fd); 8344 int (*cmp)(const char *s1, const char *s2); 8345 }; 8346 const struct fake_open *fake_open; 8347 static const struct fake_open fakes[] = { 8348 { "maps", open_self_maps, is_proc_myself }, 8349 { "smaps", open_self_smaps, is_proc_myself }, 8350 { "stat", open_self_stat, is_proc_myself }, 8351 { "auxv", open_self_auxv, is_proc_myself }, 8352 { "cmdline", open_self_cmdline, is_proc_myself }, 8353 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8354 { "/proc/net/route", open_net_route, is_proc }, 8355 #endif 8356 #if defined(HAVE_ARCH_PROC_CPUINFO) 8357 { "/proc/cpuinfo", open_cpuinfo, is_proc }, 8358 #endif 8359 #if defined(HAVE_ARCH_PROC_HARDWARE) 8360 { "/proc/hardware", open_hardware, is_proc }, 8361 #endif 8362 { NULL, NULL, NULL } 8363 }; 8364 8365 /* if this is a file from /proc/ filesystem, expand full name */ 8366 proc_name = realpath(fname, NULL); 8367 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) { 8368 pathname = proc_name; 8369 } else { 8370 pathname = fname; 8371 } 8372 8373 if (is_proc_myself(pathname, "exe")) { 8374 if (safe) { 8375 return safe_openat(dirfd, exec_path, flags, mode); 8376 } else { 8377 return openat(dirfd, exec_path, flags, mode); 8378 } 8379 } 8380 8381 for (fake_open = fakes; fake_open->filename; fake_open++) { 8382 if (fake_open->cmp(pathname, fake_open->filename)) { 8383 break; 8384 } 8385 } 8386 8387 if (fake_open->filename) { 8388 const char *tmpdir; 8389 char filename[PATH_MAX]; 8390 int fd, r; 8391 8392 fd = memfd_create("qemu-open", 0); 8393 if (fd < 0) { 8394 if (errno != ENOSYS) { 8395 return fd; 8396 } 8397 /* create temporary file to map stat to */ 8398 tmpdir = getenv("TMPDIR"); 8399 if (!tmpdir) 8400 tmpdir = "/tmp"; 8401 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 8402 fd = mkstemp(filename); 8403 if (fd < 0) { 8404 return fd; 8405 } 8406 unlink(filename); 8407 } 8408 8409 if ((r = fake_open->fill(cpu_env, fd))) { 8410 int e = errno; 8411 close(fd); 8412 errno = e; 8413 return r; 8414 } 8415 lseek(fd, 0, SEEK_SET); 8416 8417 return fd; 8418 } 8419 8420 if (safe) { 8421 return safe_openat(dirfd, path(pathname), flags, mode); 8422 } else { 8423 return openat(dirfd, path(pathname), flags, mode); 8424 } 8425 } 8426 8427 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz) 8428 { 8429 ssize_t ret; 8430 8431 if (!pathname || !buf) { 8432 errno = EFAULT; 8433 return -1; 8434 } 8435 8436 if (!bufsiz) { 8437 /* Short circuit this for the magic exe check. */ 8438 errno = EINVAL; 8439 return -1; 8440 } 8441 8442 if (is_proc_myself((const char *)pathname, "exe")) { 8443 /* 8444 * Don't worry about sign mismatch as earlier mapping 8445 * logic would have thrown a bad address error. 8446 */ 8447 ret = MIN(strlen(exec_path), bufsiz); 8448 /* We cannot NUL terminate the string. */ 8449 memcpy(buf, exec_path, ret); 8450 } else { 8451 ret = readlink(path(pathname), buf, bufsiz); 8452 } 8453 8454 return ret; 8455 } 8456 8457 static int do_execv(CPUArchState *cpu_env, int dirfd, 8458 abi_long pathname, abi_long guest_argp, 8459 abi_long guest_envp, int flags, bool is_execveat) 8460 { 8461 int ret; 8462 char **argp, **envp; 8463 int argc, envc; 8464 abi_ulong gp; 8465 abi_ulong addr; 8466 char **q; 8467 void *p; 8468 8469 argc = 0; 8470 8471 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8472 if (get_user_ual(addr, gp)) { 8473 return -TARGET_EFAULT; 8474 } 8475 if (!addr) { 8476 break; 8477 } 8478 argc++; 8479 } 8480 envc = 0; 8481 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8482 if (get_user_ual(addr, gp)) { 8483 return -TARGET_EFAULT; 8484 } 8485 if (!addr) { 8486 break; 8487 } 8488 envc++; 8489 } 8490 8491 argp = g_new0(char *, argc + 1); 8492 envp = g_new0(char *, envc + 1); 8493 8494 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) { 8495 if (get_user_ual(addr, gp)) { 8496 goto execve_efault; 8497 } 8498 if (!addr) { 8499 break; 8500 } 8501 *q = lock_user_string(addr); 8502 if (!*q) { 8503 goto execve_efault; 8504 } 8505 } 8506 *q = NULL; 8507 8508 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) { 8509 if (get_user_ual(addr, gp)) { 8510 goto execve_efault; 8511 } 8512 if (!addr) { 8513 break; 8514 } 8515 *q = lock_user_string(addr); 8516 if (!*q) { 8517 goto execve_efault; 8518 } 8519 } 8520 *q = NULL; 8521 8522 /* 8523 * Although execve() is not an interruptible syscall it is 8524 * a special case where we must use the safe_syscall wrapper: 8525 * if we allow a signal to happen before we make the host 8526 * syscall then we will 'lose' it, because at the point of 8527 * execve the process leaves QEMU's control. So we use the 8528 * safe syscall wrapper to ensure that we either take the 8529 * signal as a guest signal, or else it does not happen 8530 * before the execve completes and makes it the other 8531 * program's problem. 8532 */ 8533 p = lock_user_string(pathname); 8534 if (!p) { 8535 goto execve_efault; 8536 } 8537 8538 const char *exe = p; 8539 if (is_proc_myself(p, "exe")) { 8540 exe = exec_path; 8541 } 8542 ret = is_execveat 8543 ? safe_execveat(dirfd, exe, argp, envp, flags) 8544 : safe_execve(exe, argp, envp); 8545 ret = get_errno(ret); 8546 8547 unlock_user(p, pathname, 0); 8548 8549 goto execve_end; 8550 8551 execve_efault: 8552 ret = -TARGET_EFAULT; 8553 8554 execve_end: 8555 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) { 8556 if (get_user_ual(addr, gp) || !addr) { 8557 break; 8558 } 8559 unlock_user(*q, addr, 0); 8560 } 8561 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) { 8562 if (get_user_ual(addr, gp) || !addr) { 8563 break; 8564 } 8565 unlock_user(*q, addr, 0); 8566 } 8567 8568 g_free(argp); 8569 g_free(envp); 8570 return ret; 8571 } 8572 8573 #define TIMER_MAGIC 0x0caf0000 8574 #define TIMER_MAGIC_MASK 0xffff0000 8575 8576 /* Convert QEMU provided timer ID back to internal 16bit index format */ 8577 static target_timer_t get_timer_id(abi_long arg) 8578 { 8579 target_timer_t timerid = arg; 8580 8581 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 8582 return -TARGET_EINVAL; 8583 } 8584 8585 timerid &= 0xffff; 8586 8587 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 8588 return -TARGET_EINVAL; 8589 } 8590 8591 return timerid; 8592 } 8593 8594 static int target_to_host_cpu_mask(unsigned long *host_mask, 8595 size_t host_size, 8596 abi_ulong target_addr, 8597 size_t target_size) 8598 { 8599 unsigned target_bits = sizeof(abi_ulong) * 8; 8600 unsigned host_bits = sizeof(*host_mask) * 8; 8601 abi_ulong *target_mask; 8602 unsigned i, j; 8603 8604 assert(host_size >= target_size); 8605 8606 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 8607 if (!target_mask) { 8608 return -TARGET_EFAULT; 8609 } 8610 memset(host_mask, 0, host_size); 8611 8612 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8613 unsigned bit = i * target_bits; 8614 abi_ulong val; 8615 8616 __get_user(val, &target_mask[i]); 8617 for (j = 0; j < target_bits; j++, bit++) { 8618 if (val & (1UL << j)) { 8619 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 8620 } 8621 } 8622 } 8623 8624 unlock_user(target_mask, target_addr, 0); 8625 return 0; 8626 } 8627 8628 static int host_to_target_cpu_mask(const unsigned long *host_mask, 8629 size_t host_size, 8630 abi_ulong target_addr, 8631 size_t target_size) 8632 { 8633 unsigned target_bits = sizeof(abi_ulong) * 8; 8634 unsigned host_bits = sizeof(*host_mask) * 8; 8635 abi_ulong *target_mask; 8636 unsigned i, j; 8637 8638 assert(host_size >= target_size); 8639 8640 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 8641 if (!target_mask) { 8642 return -TARGET_EFAULT; 8643 } 8644 8645 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8646 unsigned bit = i * target_bits; 8647 abi_ulong val = 0; 8648 8649 for (j = 0; j < target_bits; j++, bit++) { 8650 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 8651 val |= 1UL << j; 8652 } 8653 } 8654 __put_user(val, &target_mask[i]); 8655 } 8656 8657 unlock_user(target_mask, target_addr, target_size); 8658 return 0; 8659 } 8660 8661 #ifdef TARGET_NR_getdents 8662 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count) 8663 { 8664 g_autofree void *hdirp = NULL; 8665 void *tdirp; 8666 int hlen, hoff, toff; 8667 int hreclen, treclen; 8668 off64_t prev_diroff = 0; 8669 8670 hdirp = g_try_malloc(count); 8671 if (!hdirp) { 8672 return -TARGET_ENOMEM; 8673 } 8674 8675 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8676 hlen = sys_getdents(dirfd, hdirp, count); 8677 #else 8678 hlen = sys_getdents64(dirfd, hdirp, count); 8679 #endif 8680 8681 hlen = get_errno(hlen); 8682 if (is_error(hlen)) { 8683 return hlen; 8684 } 8685 8686 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8687 if (!tdirp) { 8688 return -TARGET_EFAULT; 8689 } 8690 8691 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8692 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8693 struct linux_dirent *hde = hdirp + hoff; 8694 #else 8695 struct linux_dirent64 *hde = hdirp + hoff; 8696 #endif 8697 struct target_dirent *tde = tdirp + toff; 8698 int namelen; 8699 uint8_t type; 8700 8701 namelen = strlen(hde->d_name); 8702 hreclen = hde->d_reclen; 8703 treclen = offsetof(struct target_dirent, d_name) + namelen + 2; 8704 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent)); 8705 8706 if (toff + treclen > count) { 8707 /* 8708 * If the host struct is smaller than the target struct, or 8709 * requires less alignment and thus packs into less space, 8710 * then the host can return more entries than we can pass 8711 * on to the guest. 8712 */ 8713 if (toff == 0) { 8714 toff = -TARGET_EINVAL; /* result buffer is too small */ 8715 break; 8716 } 8717 /* 8718 * Return what we have, resetting the file pointer to the 8719 * location of the first record not returned. 8720 */ 8721 lseek64(dirfd, prev_diroff, SEEK_SET); 8722 break; 8723 } 8724 8725 prev_diroff = hde->d_off; 8726 tde->d_ino = tswapal(hde->d_ino); 8727 tde->d_off = tswapal(hde->d_off); 8728 tde->d_reclen = tswap16(treclen); 8729 memcpy(tde->d_name, hde->d_name, namelen + 1); 8730 8731 /* 8732 * The getdents type is in what was formerly a padding byte at the 8733 * end of the structure. 8734 */ 8735 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8736 type = *((uint8_t *)hde + hreclen - 1); 8737 #else 8738 type = hde->d_type; 8739 #endif 8740 *((uint8_t *)tde + treclen - 1) = type; 8741 } 8742 8743 unlock_user(tdirp, arg2, toff); 8744 return toff; 8745 } 8746 #endif /* TARGET_NR_getdents */ 8747 8748 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 8749 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count) 8750 { 8751 g_autofree void *hdirp = NULL; 8752 void *tdirp; 8753 int hlen, hoff, toff; 8754 int hreclen, treclen; 8755 off64_t prev_diroff = 0; 8756 8757 hdirp = g_try_malloc(count); 8758 if (!hdirp) { 8759 return -TARGET_ENOMEM; 8760 } 8761 8762 hlen = get_errno(sys_getdents64(dirfd, hdirp, count)); 8763 if (is_error(hlen)) { 8764 return hlen; 8765 } 8766 8767 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8768 if (!tdirp) { 8769 return -TARGET_EFAULT; 8770 } 8771 8772 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8773 struct linux_dirent64 *hde = hdirp + hoff; 8774 struct target_dirent64 *tde = tdirp + toff; 8775 int namelen; 8776 8777 namelen = strlen(hde->d_name) + 1; 8778 hreclen = hde->d_reclen; 8779 treclen = offsetof(struct target_dirent64, d_name) + namelen; 8780 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64)); 8781 8782 if (toff + treclen > count) { 8783 /* 8784 * If the host struct is smaller than the target struct, or 8785 * requires less alignment and thus packs into less space, 8786 * then the host can return more entries than we can pass 8787 * on to the guest. 8788 */ 8789 if (toff == 0) { 8790 toff = -TARGET_EINVAL; /* result buffer is too small */ 8791 break; 8792 } 8793 /* 8794 * Return what we have, resetting the file pointer to the 8795 * location of the first record not returned. 8796 */ 8797 lseek64(dirfd, prev_diroff, SEEK_SET); 8798 break; 8799 } 8800 8801 prev_diroff = hde->d_off; 8802 tde->d_ino = tswap64(hde->d_ino); 8803 tde->d_off = tswap64(hde->d_off); 8804 tde->d_reclen = tswap16(treclen); 8805 tde->d_type = hde->d_type; 8806 memcpy(tde->d_name, hde->d_name, namelen); 8807 } 8808 8809 unlock_user(tdirp, arg2, toff); 8810 return toff; 8811 } 8812 #endif /* TARGET_NR_getdents64 */ 8813 8814 #if defined(TARGET_NR_riscv_hwprobe) 8815 8816 #define RISCV_HWPROBE_KEY_MVENDORID 0 8817 #define RISCV_HWPROBE_KEY_MARCHID 1 8818 #define RISCV_HWPROBE_KEY_MIMPID 2 8819 8820 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3 8821 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0) 8822 8823 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4 8824 #define RISCV_HWPROBE_IMA_FD (1 << 0) 8825 #define RISCV_HWPROBE_IMA_C (1 << 1) 8826 #define RISCV_HWPROBE_IMA_V (1 << 2) 8827 #define RISCV_HWPROBE_EXT_ZBA (1 << 3) 8828 #define RISCV_HWPROBE_EXT_ZBB (1 << 4) 8829 #define RISCV_HWPROBE_EXT_ZBS (1 << 5) 8830 #define RISCV_HWPROBE_EXT_ZICBOZ (1 << 6) 8831 #define RISCV_HWPROBE_EXT_ZBC (1 << 7) 8832 #define RISCV_HWPROBE_EXT_ZBKB (1 << 8) 8833 #define RISCV_HWPROBE_EXT_ZBKC (1 << 9) 8834 #define RISCV_HWPROBE_EXT_ZBKX (1 << 10) 8835 #define RISCV_HWPROBE_EXT_ZKND (1 << 11) 8836 #define RISCV_HWPROBE_EXT_ZKNE (1 << 12) 8837 #define RISCV_HWPROBE_EXT_ZKNH (1 << 13) 8838 #define RISCV_HWPROBE_EXT_ZKSED (1 << 14) 8839 #define RISCV_HWPROBE_EXT_ZKSH (1 << 15) 8840 #define RISCV_HWPROBE_EXT_ZKT (1 << 16) 8841 #define RISCV_HWPROBE_EXT_ZVBB (1 << 17) 8842 #define RISCV_HWPROBE_EXT_ZVBC (1 << 18) 8843 #define RISCV_HWPROBE_EXT_ZVKB (1 << 19) 8844 #define RISCV_HWPROBE_EXT_ZVKG (1 << 20) 8845 #define RISCV_HWPROBE_EXT_ZVKNED (1 << 21) 8846 #define RISCV_HWPROBE_EXT_ZVKNHA (1 << 22) 8847 #define RISCV_HWPROBE_EXT_ZVKNHB (1 << 23) 8848 #define RISCV_HWPROBE_EXT_ZVKSED (1 << 24) 8849 #define RISCV_HWPROBE_EXT_ZVKSH (1 << 25) 8850 #define RISCV_HWPROBE_EXT_ZVKT (1 << 26) 8851 #define RISCV_HWPROBE_EXT_ZFH (1 << 27) 8852 #define RISCV_HWPROBE_EXT_ZFHMIN (1 << 28) 8853 #define RISCV_HWPROBE_EXT_ZIHINTNTL (1 << 29) 8854 #define RISCV_HWPROBE_EXT_ZVFH (1 << 30) 8855 #define RISCV_HWPROBE_EXT_ZVFHMIN (1 << 31) 8856 #define RISCV_HWPROBE_EXT_ZFA (1ULL << 32) 8857 #define RISCV_HWPROBE_EXT_ZTSO (1ULL << 33) 8858 #define RISCV_HWPROBE_EXT_ZACAS (1ULL << 34) 8859 #define RISCV_HWPROBE_EXT_ZICOND (1ULL << 35) 8860 8861 #define RISCV_HWPROBE_KEY_CPUPERF_0 5 8862 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0) 8863 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0) 8864 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0) 8865 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0) 8866 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0) 8867 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0) 8868 8869 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6 8870 8871 struct riscv_hwprobe { 8872 abi_llong key; 8873 abi_ullong value; 8874 }; 8875 8876 static void risc_hwprobe_fill_pairs(CPURISCVState *env, 8877 struct riscv_hwprobe *pair, 8878 size_t pair_count) 8879 { 8880 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 8881 8882 for (; pair_count > 0; pair_count--, pair++) { 8883 abi_llong key; 8884 abi_ullong value; 8885 __put_user(0, &pair->value); 8886 __get_user(key, &pair->key); 8887 switch (key) { 8888 case RISCV_HWPROBE_KEY_MVENDORID: 8889 __put_user(cfg->mvendorid, &pair->value); 8890 break; 8891 case RISCV_HWPROBE_KEY_MARCHID: 8892 __put_user(cfg->marchid, &pair->value); 8893 break; 8894 case RISCV_HWPROBE_KEY_MIMPID: 8895 __put_user(cfg->mimpid, &pair->value); 8896 break; 8897 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR: 8898 value = riscv_has_ext(env, RVI) && 8899 riscv_has_ext(env, RVM) && 8900 riscv_has_ext(env, RVA) ? 8901 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0; 8902 __put_user(value, &pair->value); 8903 break; 8904 case RISCV_HWPROBE_KEY_IMA_EXT_0: 8905 value = riscv_has_ext(env, RVF) && 8906 riscv_has_ext(env, RVD) ? 8907 RISCV_HWPROBE_IMA_FD : 0; 8908 value |= riscv_has_ext(env, RVC) ? 8909 RISCV_HWPROBE_IMA_C : 0; 8910 value |= riscv_has_ext(env, RVV) ? 8911 RISCV_HWPROBE_IMA_V : 0; 8912 value |= cfg->ext_zba ? 8913 RISCV_HWPROBE_EXT_ZBA : 0; 8914 value |= cfg->ext_zbb ? 8915 RISCV_HWPROBE_EXT_ZBB : 0; 8916 value |= cfg->ext_zbs ? 8917 RISCV_HWPROBE_EXT_ZBS : 0; 8918 value |= cfg->ext_zicboz ? 8919 RISCV_HWPROBE_EXT_ZICBOZ : 0; 8920 value |= cfg->ext_zbc ? 8921 RISCV_HWPROBE_EXT_ZBC : 0; 8922 value |= cfg->ext_zbkb ? 8923 RISCV_HWPROBE_EXT_ZBKB : 0; 8924 value |= cfg->ext_zbkc ? 8925 RISCV_HWPROBE_EXT_ZBKC : 0; 8926 value |= cfg->ext_zbkx ? 8927 RISCV_HWPROBE_EXT_ZBKX : 0; 8928 value |= cfg->ext_zknd ? 8929 RISCV_HWPROBE_EXT_ZKND : 0; 8930 value |= cfg->ext_zkne ? 8931 RISCV_HWPROBE_EXT_ZKNE : 0; 8932 value |= cfg->ext_zknh ? 8933 RISCV_HWPROBE_EXT_ZKNH : 0; 8934 value |= cfg->ext_zksed ? 8935 RISCV_HWPROBE_EXT_ZKSED : 0; 8936 value |= cfg->ext_zksh ? 8937 RISCV_HWPROBE_EXT_ZKSH : 0; 8938 value |= cfg->ext_zkt ? 8939 RISCV_HWPROBE_EXT_ZKT : 0; 8940 value |= cfg->ext_zvbb ? 8941 RISCV_HWPROBE_EXT_ZVBB : 0; 8942 value |= cfg->ext_zvbc ? 8943 RISCV_HWPROBE_EXT_ZVBC : 0; 8944 value |= cfg->ext_zvkb ? 8945 RISCV_HWPROBE_EXT_ZVKB : 0; 8946 value |= cfg->ext_zvkg ? 8947 RISCV_HWPROBE_EXT_ZVKG : 0; 8948 value |= cfg->ext_zvkned ? 8949 RISCV_HWPROBE_EXT_ZVKNED : 0; 8950 value |= cfg->ext_zvknha ? 8951 RISCV_HWPROBE_EXT_ZVKNHA : 0; 8952 value |= cfg->ext_zvknhb ? 8953 RISCV_HWPROBE_EXT_ZVKNHB : 0; 8954 value |= cfg->ext_zvksed ? 8955 RISCV_HWPROBE_EXT_ZVKSED : 0; 8956 value |= cfg->ext_zvksh ? 8957 RISCV_HWPROBE_EXT_ZVKSH : 0; 8958 value |= cfg->ext_zvkt ? 8959 RISCV_HWPROBE_EXT_ZVKT : 0; 8960 value |= cfg->ext_zfh ? 8961 RISCV_HWPROBE_EXT_ZFH : 0; 8962 value |= cfg->ext_zfhmin ? 8963 RISCV_HWPROBE_EXT_ZFHMIN : 0; 8964 value |= cfg->ext_zihintntl ? 8965 RISCV_HWPROBE_EXT_ZIHINTNTL : 0; 8966 value |= cfg->ext_zvfh ? 8967 RISCV_HWPROBE_EXT_ZVFH : 0; 8968 value |= cfg->ext_zvfhmin ? 8969 RISCV_HWPROBE_EXT_ZVFHMIN : 0; 8970 value |= cfg->ext_zfa ? 8971 RISCV_HWPROBE_EXT_ZFA : 0; 8972 value |= cfg->ext_ztso ? 8973 RISCV_HWPROBE_EXT_ZTSO : 0; 8974 value |= cfg->ext_zacas ? 8975 RISCV_HWPROBE_EXT_ZACAS : 0; 8976 value |= cfg->ext_zicond ? 8977 RISCV_HWPROBE_EXT_ZICOND : 0; 8978 __put_user(value, &pair->value); 8979 break; 8980 case RISCV_HWPROBE_KEY_CPUPERF_0: 8981 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value); 8982 break; 8983 case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE: 8984 value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0; 8985 __put_user(value, &pair->value); 8986 break; 8987 default: 8988 __put_user(-1, &pair->key); 8989 break; 8990 } 8991 } 8992 } 8993 8994 static int cpu_set_valid(abi_long arg3, abi_long arg4) 8995 { 8996 int ret, i, tmp; 8997 size_t host_mask_size, target_mask_size; 8998 unsigned long *host_mask; 8999 9000 /* 9001 * cpu_set_t represent CPU masks as bit masks of type unsigned long *. 9002 * arg3 contains the cpu count. 9003 */ 9004 tmp = (8 * sizeof(abi_ulong)); 9005 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong); 9006 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) & 9007 ~(sizeof(*host_mask) - 1); 9008 9009 host_mask = alloca(host_mask_size); 9010 9011 ret = target_to_host_cpu_mask(host_mask, host_mask_size, 9012 arg4, target_mask_size); 9013 if (ret != 0) { 9014 return ret; 9015 } 9016 9017 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) { 9018 if (host_mask[i] != 0) { 9019 return 0; 9020 } 9021 } 9022 return -TARGET_EINVAL; 9023 } 9024 9025 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1, 9026 abi_long arg2, abi_long arg3, 9027 abi_long arg4, abi_long arg5) 9028 { 9029 int ret; 9030 struct riscv_hwprobe *host_pairs; 9031 9032 /* flags must be 0 */ 9033 if (arg5 != 0) { 9034 return -TARGET_EINVAL; 9035 } 9036 9037 /* check cpu_set */ 9038 if (arg3 != 0) { 9039 ret = cpu_set_valid(arg3, arg4); 9040 if (ret != 0) { 9041 return ret; 9042 } 9043 } else if (arg4 != 0) { 9044 return -TARGET_EINVAL; 9045 } 9046 9047 /* no pairs */ 9048 if (arg2 == 0) { 9049 return 0; 9050 } 9051 9052 host_pairs = lock_user(VERIFY_WRITE, arg1, 9053 sizeof(*host_pairs) * (size_t)arg2, 0); 9054 if (host_pairs == NULL) { 9055 return -TARGET_EFAULT; 9056 } 9057 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2); 9058 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2); 9059 return 0; 9060 } 9061 #endif /* TARGET_NR_riscv_hwprobe */ 9062 9063 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root) 9064 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old) 9065 #endif 9066 9067 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9068 #define __NR_sys_open_tree __NR_open_tree 9069 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename, 9070 unsigned int, __flags) 9071 #endif 9072 9073 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9074 #define __NR_sys_move_mount __NR_move_mount 9075 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname, 9076 int, __to_dfd, const char *, __to_pathname, unsigned int, flag) 9077 #endif 9078 9079 /* This is an internal helper for do_syscall so that it is easier 9080 * to have a single return point, so that actions, such as logging 9081 * of syscall results, can be performed. 9082 * All errnos that do_syscall() returns must be -TARGET_<errcode>. 9083 */ 9084 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1, 9085 abi_long arg2, abi_long arg3, abi_long arg4, 9086 abi_long arg5, abi_long arg6, abi_long arg7, 9087 abi_long arg8) 9088 { 9089 CPUState *cpu = env_cpu(cpu_env); 9090 abi_long ret; 9091 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \ 9092 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \ 9093 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \ 9094 || defined(TARGET_NR_statx) 9095 struct stat st; 9096 #endif 9097 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \ 9098 || defined(TARGET_NR_fstatfs) 9099 struct statfs stfs; 9100 #endif 9101 void *p; 9102 9103 switch(num) { 9104 case TARGET_NR_exit: 9105 /* In old applications this may be used to implement _exit(2). 9106 However in threaded applications it is used for thread termination, 9107 and _exit_group is used for application termination. 9108 Do thread termination if we have more then one thread. */ 9109 9110 if (block_signals()) { 9111 return -QEMU_ERESTARTSYS; 9112 } 9113 9114 pthread_mutex_lock(&clone_lock); 9115 9116 if (CPU_NEXT(first_cpu)) { 9117 TaskState *ts = get_task_state(cpu); 9118 9119 if (ts->child_tidptr) { 9120 put_user_u32(0, ts->child_tidptr); 9121 do_sys_futex(g2h(cpu, ts->child_tidptr), 9122 FUTEX_WAKE, INT_MAX, NULL, NULL, 0); 9123 } 9124 9125 object_unparent(OBJECT(cpu)); 9126 object_unref(OBJECT(cpu)); 9127 /* 9128 * At this point the CPU should be unrealized and removed 9129 * from cpu lists. We can clean-up the rest of the thread 9130 * data without the lock held. 9131 */ 9132 9133 pthread_mutex_unlock(&clone_lock); 9134 9135 thread_cpu = NULL; 9136 g_free(ts); 9137 rcu_unregister_thread(); 9138 pthread_exit(NULL); 9139 } 9140 9141 pthread_mutex_unlock(&clone_lock); 9142 preexit_cleanup(cpu_env, arg1); 9143 _exit(arg1); 9144 return 0; /* avoid warning */ 9145 case TARGET_NR_read: 9146 if (arg2 == 0 && arg3 == 0) { 9147 return get_errno(safe_read(arg1, 0, 0)); 9148 } else { 9149 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 9150 return -TARGET_EFAULT; 9151 ret = get_errno(safe_read(arg1, p, arg3)); 9152 if (ret >= 0 && 9153 fd_trans_host_to_target_data(arg1)) { 9154 ret = fd_trans_host_to_target_data(arg1)(p, ret); 9155 } 9156 unlock_user(p, arg2, ret); 9157 } 9158 return ret; 9159 case TARGET_NR_write: 9160 if (arg2 == 0 && arg3 == 0) { 9161 return get_errno(safe_write(arg1, 0, 0)); 9162 } 9163 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 9164 return -TARGET_EFAULT; 9165 if (fd_trans_target_to_host_data(arg1)) { 9166 void *copy = g_malloc(arg3); 9167 memcpy(copy, p, arg3); 9168 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 9169 if (ret >= 0) { 9170 ret = get_errno(safe_write(arg1, copy, ret)); 9171 } 9172 g_free(copy); 9173 } else { 9174 ret = get_errno(safe_write(arg1, p, arg3)); 9175 } 9176 unlock_user(p, arg2, 0); 9177 return ret; 9178 9179 #ifdef TARGET_NR_open 9180 case TARGET_NR_open: 9181 if (!(p = lock_user_string(arg1))) 9182 return -TARGET_EFAULT; 9183 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p, 9184 target_to_host_bitmask(arg2, fcntl_flags_tbl), 9185 arg3, true)); 9186 fd_trans_unregister(ret); 9187 unlock_user(p, arg1, 0); 9188 return ret; 9189 #endif 9190 case TARGET_NR_openat: 9191 if (!(p = lock_user_string(arg2))) 9192 return -TARGET_EFAULT; 9193 ret = get_errno(do_guest_openat(cpu_env, arg1, p, 9194 target_to_host_bitmask(arg3, fcntl_flags_tbl), 9195 arg4, true)); 9196 fd_trans_unregister(ret); 9197 unlock_user(p, arg2, 0); 9198 return ret; 9199 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9200 case TARGET_NR_name_to_handle_at: 9201 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 9202 return ret; 9203 #endif 9204 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9205 case TARGET_NR_open_by_handle_at: 9206 ret = do_open_by_handle_at(arg1, arg2, arg3); 9207 fd_trans_unregister(ret); 9208 return ret; 9209 #endif 9210 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 9211 case TARGET_NR_pidfd_open: 9212 return get_errno(pidfd_open(arg1, arg2)); 9213 #endif 9214 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 9215 case TARGET_NR_pidfd_send_signal: 9216 { 9217 siginfo_t uinfo, *puinfo; 9218 9219 if (arg3) { 9220 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9221 if (!p) { 9222 return -TARGET_EFAULT; 9223 } 9224 target_to_host_siginfo(&uinfo, p); 9225 unlock_user(p, arg3, 0); 9226 puinfo = &uinfo; 9227 } else { 9228 puinfo = NULL; 9229 } 9230 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2), 9231 puinfo, arg4)); 9232 } 9233 return ret; 9234 #endif 9235 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 9236 case TARGET_NR_pidfd_getfd: 9237 return get_errno(pidfd_getfd(arg1, arg2, arg3)); 9238 #endif 9239 case TARGET_NR_close: 9240 fd_trans_unregister(arg1); 9241 return get_errno(close(arg1)); 9242 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 9243 case TARGET_NR_close_range: 9244 ret = get_errno(sys_close_range(arg1, arg2, arg3)); 9245 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) { 9246 abi_long fd, maxfd; 9247 maxfd = MIN(arg2, target_fd_max); 9248 for (fd = arg1; fd < maxfd; fd++) { 9249 fd_trans_unregister(fd); 9250 } 9251 } 9252 return ret; 9253 #endif 9254 9255 case TARGET_NR_brk: 9256 return do_brk(arg1); 9257 #ifdef TARGET_NR_fork 9258 case TARGET_NR_fork: 9259 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 9260 #endif 9261 #ifdef TARGET_NR_waitpid 9262 case TARGET_NR_waitpid: 9263 { 9264 int status; 9265 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 9266 if (!is_error(ret) && arg2 && ret 9267 && put_user_s32(host_to_target_waitstatus(status), arg2)) 9268 return -TARGET_EFAULT; 9269 } 9270 return ret; 9271 #endif 9272 #ifdef TARGET_NR_waitid 9273 case TARGET_NR_waitid: 9274 { 9275 struct rusage ru; 9276 siginfo_t info; 9277 9278 ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL), 9279 arg4, (arg5 ? &ru : NULL))); 9280 if (!is_error(ret)) { 9281 if (arg3) { 9282 p = lock_user(VERIFY_WRITE, arg3, 9283 sizeof(target_siginfo_t), 0); 9284 if (!p) { 9285 return -TARGET_EFAULT; 9286 } 9287 host_to_target_siginfo(p, &info); 9288 unlock_user(p, arg3, sizeof(target_siginfo_t)); 9289 } 9290 if (arg5 && host_to_target_rusage(arg5, &ru)) { 9291 return -TARGET_EFAULT; 9292 } 9293 } 9294 } 9295 return ret; 9296 #endif 9297 #ifdef TARGET_NR_creat /* not on alpha */ 9298 case TARGET_NR_creat: 9299 if (!(p = lock_user_string(arg1))) 9300 return -TARGET_EFAULT; 9301 ret = get_errno(creat(p, arg2)); 9302 fd_trans_unregister(ret); 9303 unlock_user(p, arg1, 0); 9304 return ret; 9305 #endif 9306 #ifdef TARGET_NR_link 9307 case TARGET_NR_link: 9308 { 9309 void * p2; 9310 p = lock_user_string(arg1); 9311 p2 = lock_user_string(arg2); 9312 if (!p || !p2) 9313 ret = -TARGET_EFAULT; 9314 else 9315 ret = get_errno(link(p, p2)); 9316 unlock_user(p2, arg2, 0); 9317 unlock_user(p, arg1, 0); 9318 } 9319 return ret; 9320 #endif 9321 #if defined(TARGET_NR_linkat) 9322 case TARGET_NR_linkat: 9323 { 9324 void * p2 = NULL; 9325 if (!arg2 || !arg4) 9326 return -TARGET_EFAULT; 9327 p = lock_user_string(arg2); 9328 p2 = lock_user_string(arg4); 9329 if (!p || !p2) 9330 ret = -TARGET_EFAULT; 9331 else 9332 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 9333 unlock_user(p, arg2, 0); 9334 unlock_user(p2, arg4, 0); 9335 } 9336 return ret; 9337 #endif 9338 #ifdef TARGET_NR_unlink 9339 case TARGET_NR_unlink: 9340 if (!(p = lock_user_string(arg1))) 9341 return -TARGET_EFAULT; 9342 ret = get_errno(unlink(p)); 9343 unlock_user(p, arg1, 0); 9344 return ret; 9345 #endif 9346 #if defined(TARGET_NR_unlinkat) 9347 case TARGET_NR_unlinkat: 9348 if (!(p = lock_user_string(arg2))) 9349 return -TARGET_EFAULT; 9350 ret = get_errno(unlinkat(arg1, p, arg3)); 9351 unlock_user(p, arg2, 0); 9352 return ret; 9353 #endif 9354 case TARGET_NR_execveat: 9355 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true); 9356 case TARGET_NR_execve: 9357 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false); 9358 case TARGET_NR_chdir: 9359 if (!(p = lock_user_string(arg1))) 9360 return -TARGET_EFAULT; 9361 ret = get_errno(chdir(p)); 9362 unlock_user(p, arg1, 0); 9363 return ret; 9364 #ifdef TARGET_NR_time 9365 case TARGET_NR_time: 9366 { 9367 time_t host_time; 9368 ret = get_errno(time(&host_time)); 9369 if (!is_error(ret) 9370 && arg1 9371 && put_user_sal(host_time, arg1)) 9372 return -TARGET_EFAULT; 9373 } 9374 return ret; 9375 #endif 9376 #ifdef TARGET_NR_mknod 9377 case TARGET_NR_mknod: 9378 if (!(p = lock_user_string(arg1))) 9379 return -TARGET_EFAULT; 9380 ret = get_errno(mknod(p, arg2, arg3)); 9381 unlock_user(p, arg1, 0); 9382 return ret; 9383 #endif 9384 #if defined(TARGET_NR_mknodat) 9385 case TARGET_NR_mknodat: 9386 if (!(p = lock_user_string(arg2))) 9387 return -TARGET_EFAULT; 9388 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 9389 unlock_user(p, arg2, 0); 9390 return ret; 9391 #endif 9392 #ifdef TARGET_NR_chmod 9393 case TARGET_NR_chmod: 9394 if (!(p = lock_user_string(arg1))) 9395 return -TARGET_EFAULT; 9396 ret = get_errno(chmod(p, arg2)); 9397 unlock_user(p, arg1, 0); 9398 return ret; 9399 #endif 9400 #ifdef TARGET_NR_lseek 9401 case TARGET_NR_lseek: 9402 return get_errno(lseek(arg1, arg2, arg3)); 9403 #endif 9404 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 9405 /* Alpha specific */ 9406 case TARGET_NR_getxpid: 9407 cpu_env->ir[IR_A4] = getppid(); 9408 return get_errno(getpid()); 9409 #endif 9410 #ifdef TARGET_NR_getpid 9411 case TARGET_NR_getpid: 9412 return get_errno(getpid()); 9413 #endif 9414 case TARGET_NR_mount: 9415 { 9416 /* need to look at the data field */ 9417 void *p2, *p3; 9418 9419 if (arg1) { 9420 p = lock_user_string(arg1); 9421 if (!p) { 9422 return -TARGET_EFAULT; 9423 } 9424 } else { 9425 p = NULL; 9426 } 9427 9428 p2 = lock_user_string(arg2); 9429 if (!p2) { 9430 if (arg1) { 9431 unlock_user(p, arg1, 0); 9432 } 9433 return -TARGET_EFAULT; 9434 } 9435 9436 if (arg3) { 9437 p3 = lock_user_string(arg3); 9438 if (!p3) { 9439 if (arg1) { 9440 unlock_user(p, arg1, 0); 9441 } 9442 unlock_user(p2, arg2, 0); 9443 return -TARGET_EFAULT; 9444 } 9445 } else { 9446 p3 = NULL; 9447 } 9448 9449 /* FIXME - arg5 should be locked, but it isn't clear how to 9450 * do that since it's not guaranteed to be a NULL-terminated 9451 * string. 9452 */ 9453 if (!arg5) { 9454 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 9455 } else { 9456 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5)); 9457 } 9458 ret = get_errno(ret); 9459 9460 if (arg1) { 9461 unlock_user(p, arg1, 0); 9462 } 9463 unlock_user(p2, arg2, 0); 9464 if (arg3) { 9465 unlock_user(p3, arg3, 0); 9466 } 9467 } 9468 return ret; 9469 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount) 9470 #if defined(TARGET_NR_umount) 9471 case TARGET_NR_umount: 9472 #endif 9473 #if defined(TARGET_NR_oldumount) 9474 case TARGET_NR_oldumount: 9475 #endif 9476 if (!(p = lock_user_string(arg1))) 9477 return -TARGET_EFAULT; 9478 ret = get_errno(umount(p)); 9479 unlock_user(p, arg1, 0); 9480 return ret; 9481 #endif 9482 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9483 case TARGET_NR_move_mount: 9484 { 9485 void *p2, *p4; 9486 9487 if (!arg2 || !arg4) { 9488 return -TARGET_EFAULT; 9489 } 9490 9491 p2 = lock_user_string(arg2); 9492 if (!p2) { 9493 return -TARGET_EFAULT; 9494 } 9495 9496 p4 = lock_user_string(arg4); 9497 if (!p4) { 9498 unlock_user(p2, arg2, 0); 9499 return -TARGET_EFAULT; 9500 } 9501 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5)); 9502 9503 unlock_user(p2, arg2, 0); 9504 unlock_user(p4, arg4, 0); 9505 9506 return ret; 9507 } 9508 #endif 9509 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9510 case TARGET_NR_open_tree: 9511 { 9512 void *p2; 9513 int host_flags; 9514 9515 if (!arg2) { 9516 return -TARGET_EFAULT; 9517 } 9518 9519 p2 = lock_user_string(arg2); 9520 if (!p2) { 9521 return -TARGET_EFAULT; 9522 } 9523 9524 host_flags = arg3 & ~TARGET_O_CLOEXEC; 9525 if (arg3 & TARGET_O_CLOEXEC) { 9526 host_flags |= O_CLOEXEC; 9527 } 9528 9529 ret = get_errno(sys_open_tree(arg1, p2, host_flags)); 9530 9531 unlock_user(p2, arg2, 0); 9532 9533 return ret; 9534 } 9535 #endif 9536 #ifdef TARGET_NR_stime /* not on alpha */ 9537 case TARGET_NR_stime: 9538 { 9539 struct timespec ts; 9540 ts.tv_nsec = 0; 9541 if (get_user_sal(ts.tv_sec, arg1)) { 9542 return -TARGET_EFAULT; 9543 } 9544 return get_errno(clock_settime(CLOCK_REALTIME, &ts)); 9545 } 9546 #endif 9547 #ifdef TARGET_NR_alarm /* not on alpha */ 9548 case TARGET_NR_alarm: 9549 return alarm(arg1); 9550 #endif 9551 #ifdef TARGET_NR_pause /* not on alpha */ 9552 case TARGET_NR_pause: 9553 if (!block_signals()) { 9554 sigsuspend(&get_task_state(cpu)->signal_mask); 9555 } 9556 return -TARGET_EINTR; 9557 #endif 9558 #ifdef TARGET_NR_utime 9559 case TARGET_NR_utime: 9560 { 9561 struct utimbuf tbuf, *host_tbuf; 9562 struct target_utimbuf *target_tbuf; 9563 if (arg2) { 9564 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 9565 return -TARGET_EFAULT; 9566 tbuf.actime = tswapal(target_tbuf->actime); 9567 tbuf.modtime = tswapal(target_tbuf->modtime); 9568 unlock_user_struct(target_tbuf, arg2, 0); 9569 host_tbuf = &tbuf; 9570 } else { 9571 host_tbuf = NULL; 9572 } 9573 if (!(p = lock_user_string(arg1))) 9574 return -TARGET_EFAULT; 9575 ret = get_errno(utime(p, host_tbuf)); 9576 unlock_user(p, arg1, 0); 9577 } 9578 return ret; 9579 #endif 9580 #ifdef TARGET_NR_utimes 9581 case TARGET_NR_utimes: 9582 { 9583 struct timeval *tvp, tv[2]; 9584 if (arg2) { 9585 if (copy_from_user_timeval(&tv[0], arg2) 9586 || copy_from_user_timeval(&tv[1], 9587 arg2 + sizeof(struct target_timeval))) 9588 return -TARGET_EFAULT; 9589 tvp = tv; 9590 } else { 9591 tvp = NULL; 9592 } 9593 if (!(p = lock_user_string(arg1))) 9594 return -TARGET_EFAULT; 9595 ret = get_errno(utimes(p, tvp)); 9596 unlock_user(p, arg1, 0); 9597 } 9598 return ret; 9599 #endif 9600 #if defined(TARGET_NR_futimesat) 9601 case TARGET_NR_futimesat: 9602 { 9603 struct timeval *tvp, tv[2]; 9604 if (arg3) { 9605 if (copy_from_user_timeval(&tv[0], arg3) 9606 || copy_from_user_timeval(&tv[1], 9607 arg3 + sizeof(struct target_timeval))) 9608 return -TARGET_EFAULT; 9609 tvp = tv; 9610 } else { 9611 tvp = NULL; 9612 } 9613 if (!(p = lock_user_string(arg2))) { 9614 return -TARGET_EFAULT; 9615 } 9616 ret = get_errno(futimesat(arg1, path(p), tvp)); 9617 unlock_user(p, arg2, 0); 9618 } 9619 return ret; 9620 #endif 9621 #ifdef TARGET_NR_access 9622 case TARGET_NR_access: 9623 if (!(p = lock_user_string(arg1))) { 9624 return -TARGET_EFAULT; 9625 } 9626 ret = get_errno(access(path(p), arg2)); 9627 unlock_user(p, arg1, 0); 9628 return ret; 9629 #endif 9630 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 9631 case TARGET_NR_faccessat: 9632 if (!(p = lock_user_string(arg2))) { 9633 return -TARGET_EFAULT; 9634 } 9635 ret = get_errno(faccessat(arg1, p, arg3, 0)); 9636 unlock_user(p, arg2, 0); 9637 return ret; 9638 #endif 9639 #if defined(TARGET_NR_faccessat2) 9640 case TARGET_NR_faccessat2: 9641 if (!(p = lock_user_string(arg2))) { 9642 return -TARGET_EFAULT; 9643 } 9644 ret = get_errno(faccessat(arg1, p, arg3, arg4)); 9645 unlock_user(p, arg2, 0); 9646 return ret; 9647 #endif 9648 #ifdef TARGET_NR_nice /* not on alpha */ 9649 case TARGET_NR_nice: 9650 return get_errno(nice(arg1)); 9651 #endif 9652 case TARGET_NR_sync: 9653 sync(); 9654 return 0; 9655 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 9656 case TARGET_NR_syncfs: 9657 return get_errno(syncfs(arg1)); 9658 #endif 9659 case TARGET_NR_kill: 9660 return get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 9661 #ifdef TARGET_NR_rename 9662 case TARGET_NR_rename: 9663 { 9664 void *p2; 9665 p = lock_user_string(arg1); 9666 p2 = lock_user_string(arg2); 9667 if (!p || !p2) 9668 ret = -TARGET_EFAULT; 9669 else 9670 ret = get_errno(rename(p, p2)); 9671 unlock_user(p2, arg2, 0); 9672 unlock_user(p, arg1, 0); 9673 } 9674 return ret; 9675 #endif 9676 #if defined(TARGET_NR_renameat) 9677 case TARGET_NR_renameat: 9678 { 9679 void *p2; 9680 p = lock_user_string(arg2); 9681 p2 = lock_user_string(arg4); 9682 if (!p || !p2) 9683 ret = -TARGET_EFAULT; 9684 else 9685 ret = get_errno(renameat(arg1, p, arg3, p2)); 9686 unlock_user(p2, arg4, 0); 9687 unlock_user(p, arg2, 0); 9688 } 9689 return ret; 9690 #endif 9691 #if defined(TARGET_NR_renameat2) 9692 case TARGET_NR_renameat2: 9693 { 9694 void *p2; 9695 p = lock_user_string(arg2); 9696 p2 = lock_user_string(arg4); 9697 if (!p || !p2) { 9698 ret = -TARGET_EFAULT; 9699 } else { 9700 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 9701 } 9702 unlock_user(p2, arg4, 0); 9703 unlock_user(p, arg2, 0); 9704 } 9705 return ret; 9706 #endif 9707 #ifdef TARGET_NR_mkdir 9708 case TARGET_NR_mkdir: 9709 if (!(p = lock_user_string(arg1))) 9710 return -TARGET_EFAULT; 9711 ret = get_errno(mkdir(p, arg2)); 9712 unlock_user(p, arg1, 0); 9713 return ret; 9714 #endif 9715 #if defined(TARGET_NR_mkdirat) 9716 case TARGET_NR_mkdirat: 9717 if (!(p = lock_user_string(arg2))) 9718 return -TARGET_EFAULT; 9719 ret = get_errno(mkdirat(arg1, p, arg3)); 9720 unlock_user(p, arg2, 0); 9721 return ret; 9722 #endif 9723 #ifdef TARGET_NR_rmdir 9724 case TARGET_NR_rmdir: 9725 if (!(p = lock_user_string(arg1))) 9726 return -TARGET_EFAULT; 9727 ret = get_errno(rmdir(p)); 9728 unlock_user(p, arg1, 0); 9729 return ret; 9730 #endif 9731 case TARGET_NR_dup: 9732 ret = get_errno(dup(arg1)); 9733 if (ret >= 0) { 9734 fd_trans_dup(arg1, ret); 9735 } 9736 return ret; 9737 #ifdef TARGET_NR_pipe 9738 case TARGET_NR_pipe: 9739 return do_pipe(cpu_env, arg1, 0, 0); 9740 #endif 9741 #ifdef TARGET_NR_pipe2 9742 case TARGET_NR_pipe2: 9743 return do_pipe(cpu_env, arg1, 9744 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 9745 #endif 9746 case TARGET_NR_times: 9747 { 9748 struct target_tms *tmsp; 9749 struct tms tms; 9750 ret = get_errno(times(&tms)); 9751 if (arg1) { 9752 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 9753 if (!tmsp) 9754 return -TARGET_EFAULT; 9755 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 9756 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 9757 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 9758 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 9759 } 9760 if (!is_error(ret)) 9761 ret = host_to_target_clock_t(ret); 9762 } 9763 return ret; 9764 case TARGET_NR_acct: 9765 if (arg1 == 0) { 9766 ret = get_errno(acct(NULL)); 9767 } else { 9768 if (!(p = lock_user_string(arg1))) { 9769 return -TARGET_EFAULT; 9770 } 9771 ret = get_errno(acct(path(p))); 9772 unlock_user(p, arg1, 0); 9773 } 9774 return ret; 9775 #ifdef TARGET_NR_umount2 9776 case TARGET_NR_umount2: 9777 if (!(p = lock_user_string(arg1))) 9778 return -TARGET_EFAULT; 9779 ret = get_errno(umount2(p, arg2)); 9780 unlock_user(p, arg1, 0); 9781 return ret; 9782 #endif 9783 case TARGET_NR_ioctl: 9784 return do_ioctl(arg1, arg2, arg3); 9785 #ifdef TARGET_NR_fcntl 9786 case TARGET_NR_fcntl: 9787 return do_fcntl(arg1, arg2, arg3); 9788 #endif 9789 case TARGET_NR_setpgid: 9790 return get_errno(setpgid(arg1, arg2)); 9791 case TARGET_NR_umask: 9792 return get_errno(umask(arg1)); 9793 case TARGET_NR_chroot: 9794 if (!(p = lock_user_string(arg1))) 9795 return -TARGET_EFAULT; 9796 ret = get_errno(chroot(p)); 9797 unlock_user(p, arg1, 0); 9798 return ret; 9799 #ifdef TARGET_NR_dup2 9800 case TARGET_NR_dup2: 9801 ret = get_errno(dup2(arg1, arg2)); 9802 if (ret >= 0) { 9803 fd_trans_dup(arg1, arg2); 9804 } 9805 return ret; 9806 #endif 9807 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 9808 case TARGET_NR_dup3: 9809 { 9810 int host_flags; 9811 9812 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 9813 return -EINVAL; 9814 } 9815 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 9816 ret = get_errno(dup3(arg1, arg2, host_flags)); 9817 if (ret >= 0) { 9818 fd_trans_dup(arg1, arg2); 9819 } 9820 return ret; 9821 } 9822 #endif 9823 #ifdef TARGET_NR_getppid /* not on alpha */ 9824 case TARGET_NR_getppid: 9825 return get_errno(getppid()); 9826 #endif 9827 #ifdef TARGET_NR_getpgrp 9828 case TARGET_NR_getpgrp: 9829 return get_errno(getpgrp()); 9830 #endif 9831 case TARGET_NR_setsid: 9832 return get_errno(setsid()); 9833 #ifdef TARGET_NR_sigaction 9834 case TARGET_NR_sigaction: 9835 { 9836 #if defined(TARGET_MIPS) 9837 struct target_sigaction act, oact, *pact, *old_act; 9838 9839 if (arg2) { 9840 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9841 return -TARGET_EFAULT; 9842 act._sa_handler = old_act->_sa_handler; 9843 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 9844 act.sa_flags = old_act->sa_flags; 9845 unlock_user_struct(old_act, arg2, 0); 9846 pact = &act; 9847 } else { 9848 pact = NULL; 9849 } 9850 9851 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9852 9853 if (!is_error(ret) && arg3) { 9854 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9855 return -TARGET_EFAULT; 9856 old_act->_sa_handler = oact._sa_handler; 9857 old_act->sa_flags = oact.sa_flags; 9858 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 9859 old_act->sa_mask.sig[1] = 0; 9860 old_act->sa_mask.sig[2] = 0; 9861 old_act->sa_mask.sig[3] = 0; 9862 unlock_user_struct(old_act, arg3, 1); 9863 } 9864 #else 9865 struct target_old_sigaction *old_act; 9866 struct target_sigaction act, oact, *pact; 9867 if (arg2) { 9868 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9869 return -TARGET_EFAULT; 9870 act._sa_handler = old_act->_sa_handler; 9871 target_siginitset(&act.sa_mask, old_act->sa_mask); 9872 act.sa_flags = old_act->sa_flags; 9873 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9874 act.sa_restorer = old_act->sa_restorer; 9875 #endif 9876 unlock_user_struct(old_act, arg2, 0); 9877 pact = &act; 9878 } else { 9879 pact = NULL; 9880 } 9881 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9882 if (!is_error(ret) && arg3) { 9883 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9884 return -TARGET_EFAULT; 9885 old_act->_sa_handler = oact._sa_handler; 9886 old_act->sa_mask = oact.sa_mask.sig[0]; 9887 old_act->sa_flags = oact.sa_flags; 9888 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9889 old_act->sa_restorer = oact.sa_restorer; 9890 #endif 9891 unlock_user_struct(old_act, arg3, 1); 9892 } 9893 #endif 9894 } 9895 return ret; 9896 #endif 9897 case TARGET_NR_rt_sigaction: 9898 { 9899 /* 9900 * For Alpha and SPARC this is a 5 argument syscall, with 9901 * a 'restorer' parameter which must be copied into the 9902 * sa_restorer field of the sigaction struct. 9903 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 9904 * and arg5 is the sigsetsize. 9905 */ 9906 #if defined(TARGET_ALPHA) 9907 target_ulong sigsetsize = arg4; 9908 target_ulong restorer = arg5; 9909 #elif defined(TARGET_SPARC) 9910 target_ulong restorer = arg4; 9911 target_ulong sigsetsize = arg5; 9912 #else 9913 target_ulong sigsetsize = arg4; 9914 target_ulong restorer = 0; 9915 #endif 9916 struct target_sigaction *act = NULL; 9917 struct target_sigaction *oact = NULL; 9918 9919 if (sigsetsize != sizeof(target_sigset_t)) { 9920 return -TARGET_EINVAL; 9921 } 9922 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) { 9923 return -TARGET_EFAULT; 9924 } 9925 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 9926 ret = -TARGET_EFAULT; 9927 } else { 9928 ret = get_errno(do_sigaction(arg1, act, oact, restorer)); 9929 if (oact) { 9930 unlock_user_struct(oact, arg3, 1); 9931 } 9932 } 9933 if (act) { 9934 unlock_user_struct(act, arg2, 0); 9935 } 9936 } 9937 return ret; 9938 #ifdef TARGET_NR_sgetmask /* not on alpha */ 9939 case TARGET_NR_sgetmask: 9940 { 9941 sigset_t cur_set; 9942 abi_ulong target_set; 9943 ret = do_sigprocmask(0, NULL, &cur_set); 9944 if (!ret) { 9945 host_to_target_old_sigset(&target_set, &cur_set); 9946 ret = target_set; 9947 } 9948 } 9949 return ret; 9950 #endif 9951 #ifdef TARGET_NR_ssetmask /* not on alpha */ 9952 case TARGET_NR_ssetmask: 9953 { 9954 sigset_t set, oset; 9955 abi_ulong target_set = arg1; 9956 target_to_host_old_sigset(&set, &target_set); 9957 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 9958 if (!ret) { 9959 host_to_target_old_sigset(&target_set, &oset); 9960 ret = target_set; 9961 } 9962 } 9963 return ret; 9964 #endif 9965 #ifdef TARGET_NR_sigprocmask 9966 case TARGET_NR_sigprocmask: 9967 { 9968 #if defined(TARGET_ALPHA) 9969 sigset_t set, oldset; 9970 abi_ulong mask; 9971 int how; 9972 9973 switch (arg1) { 9974 case TARGET_SIG_BLOCK: 9975 how = SIG_BLOCK; 9976 break; 9977 case TARGET_SIG_UNBLOCK: 9978 how = SIG_UNBLOCK; 9979 break; 9980 case TARGET_SIG_SETMASK: 9981 how = SIG_SETMASK; 9982 break; 9983 default: 9984 return -TARGET_EINVAL; 9985 } 9986 mask = arg2; 9987 target_to_host_old_sigset(&set, &mask); 9988 9989 ret = do_sigprocmask(how, &set, &oldset); 9990 if (!is_error(ret)) { 9991 host_to_target_old_sigset(&mask, &oldset); 9992 ret = mask; 9993 cpu_env->ir[IR_V0] = 0; /* force no error */ 9994 } 9995 #else 9996 sigset_t set, oldset, *set_ptr; 9997 int how; 9998 9999 if (arg2) { 10000 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 10001 if (!p) { 10002 return -TARGET_EFAULT; 10003 } 10004 target_to_host_old_sigset(&set, p); 10005 unlock_user(p, arg2, 0); 10006 set_ptr = &set; 10007 switch (arg1) { 10008 case TARGET_SIG_BLOCK: 10009 how = SIG_BLOCK; 10010 break; 10011 case TARGET_SIG_UNBLOCK: 10012 how = SIG_UNBLOCK; 10013 break; 10014 case TARGET_SIG_SETMASK: 10015 how = SIG_SETMASK; 10016 break; 10017 default: 10018 return -TARGET_EINVAL; 10019 } 10020 } else { 10021 how = 0; 10022 set_ptr = NULL; 10023 } 10024 ret = do_sigprocmask(how, set_ptr, &oldset); 10025 if (!is_error(ret) && arg3) { 10026 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10027 return -TARGET_EFAULT; 10028 host_to_target_old_sigset(p, &oldset); 10029 unlock_user(p, arg3, sizeof(target_sigset_t)); 10030 } 10031 #endif 10032 } 10033 return ret; 10034 #endif 10035 case TARGET_NR_rt_sigprocmask: 10036 { 10037 int how = arg1; 10038 sigset_t set, oldset, *set_ptr; 10039 10040 if (arg4 != sizeof(target_sigset_t)) { 10041 return -TARGET_EINVAL; 10042 } 10043 10044 if (arg2) { 10045 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 10046 if (!p) { 10047 return -TARGET_EFAULT; 10048 } 10049 target_to_host_sigset(&set, p); 10050 unlock_user(p, arg2, 0); 10051 set_ptr = &set; 10052 switch(how) { 10053 case TARGET_SIG_BLOCK: 10054 how = SIG_BLOCK; 10055 break; 10056 case TARGET_SIG_UNBLOCK: 10057 how = SIG_UNBLOCK; 10058 break; 10059 case TARGET_SIG_SETMASK: 10060 how = SIG_SETMASK; 10061 break; 10062 default: 10063 return -TARGET_EINVAL; 10064 } 10065 } else { 10066 how = 0; 10067 set_ptr = NULL; 10068 } 10069 ret = do_sigprocmask(how, set_ptr, &oldset); 10070 if (!is_error(ret) && arg3) { 10071 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10072 return -TARGET_EFAULT; 10073 host_to_target_sigset(p, &oldset); 10074 unlock_user(p, arg3, sizeof(target_sigset_t)); 10075 } 10076 } 10077 return ret; 10078 #ifdef TARGET_NR_sigpending 10079 case TARGET_NR_sigpending: 10080 { 10081 sigset_t set; 10082 ret = get_errno(sigpending(&set)); 10083 if (!is_error(ret)) { 10084 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10085 return -TARGET_EFAULT; 10086 host_to_target_old_sigset(p, &set); 10087 unlock_user(p, arg1, sizeof(target_sigset_t)); 10088 } 10089 } 10090 return ret; 10091 #endif 10092 case TARGET_NR_rt_sigpending: 10093 { 10094 sigset_t set; 10095 10096 /* Yes, this check is >, not != like most. We follow the kernel's 10097 * logic and it does it like this because it implements 10098 * NR_sigpending through the same code path, and in that case 10099 * the old_sigset_t is smaller in size. 10100 */ 10101 if (arg2 > sizeof(target_sigset_t)) { 10102 return -TARGET_EINVAL; 10103 } 10104 10105 ret = get_errno(sigpending(&set)); 10106 if (!is_error(ret)) { 10107 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10108 return -TARGET_EFAULT; 10109 host_to_target_sigset(p, &set); 10110 unlock_user(p, arg1, sizeof(target_sigset_t)); 10111 } 10112 } 10113 return ret; 10114 #ifdef TARGET_NR_sigsuspend 10115 case TARGET_NR_sigsuspend: 10116 { 10117 sigset_t *set; 10118 10119 #if defined(TARGET_ALPHA) 10120 TaskState *ts = get_task_state(cpu); 10121 /* target_to_host_old_sigset will bswap back */ 10122 abi_ulong mask = tswapal(arg1); 10123 set = &ts->sigsuspend_mask; 10124 target_to_host_old_sigset(set, &mask); 10125 #else 10126 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t)); 10127 if (ret != 0) { 10128 return ret; 10129 } 10130 #endif 10131 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10132 finish_sigsuspend_mask(ret); 10133 } 10134 return ret; 10135 #endif 10136 case TARGET_NR_rt_sigsuspend: 10137 { 10138 sigset_t *set; 10139 10140 ret = process_sigsuspend_mask(&set, arg1, arg2); 10141 if (ret != 0) { 10142 return ret; 10143 } 10144 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10145 finish_sigsuspend_mask(ret); 10146 } 10147 return ret; 10148 #ifdef TARGET_NR_rt_sigtimedwait 10149 case TARGET_NR_rt_sigtimedwait: 10150 { 10151 sigset_t set; 10152 struct timespec uts, *puts; 10153 siginfo_t uinfo; 10154 10155 if (arg4 != sizeof(target_sigset_t)) { 10156 return -TARGET_EINVAL; 10157 } 10158 10159 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 10160 return -TARGET_EFAULT; 10161 target_to_host_sigset(&set, p); 10162 unlock_user(p, arg1, 0); 10163 if (arg3) { 10164 puts = &uts; 10165 if (target_to_host_timespec(puts, arg3)) { 10166 return -TARGET_EFAULT; 10167 } 10168 } else { 10169 puts = NULL; 10170 } 10171 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10172 SIGSET_T_SIZE)); 10173 if (!is_error(ret)) { 10174 if (arg2) { 10175 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 10176 0); 10177 if (!p) { 10178 return -TARGET_EFAULT; 10179 } 10180 host_to_target_siginfo(p, &uinfo); 10181 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10182 } 10183 ret = host_to_target_signal(ret); 10184 } 10185 } 10186 return ret; 10187 #endif 10188 #ifdef TARGET_NR_rt_sigtimedwait_time64 10189 case TARGET_NR_rt_sigtimedwait_time64: 10190 { 10191 sigset_t set; 10192 struct timespec uts, *puts; 10193 siginfo_t uinfo; 10194 10195 if (arg4 != sizeof(target_sigset_t)) { 10196 return -TARGET_EINVAL; 10197 } 10198 10199 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1); 10200 if (!p) { 10201 return -TARGET_EFAULT; 10202 } 10203 target_to_host_sigset(&set, p); 10204 unlock_user(p, arg1, 0); 10205 if (arg3) { 10206 puts = &uts; 10207 if (target_to_host_timespec64(puts, arg3)) { 10208 return -TARGET_EFAULT; 10209 } 10210 } else { 10211 puts = NULL; 10212 } 10213 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10214 SIGSET_T_SIZE)); 10215 if (!is_error(ret)) { 10216 if (arg2) { 10217 p = lock_user(VERIFY_WRITE, arg2, 10218 sizeof(target_siginfo_t), 0); 10219 if (!p) { 10220 return -TARGET_EFAULT; 10221 } 10222 host_to_target_siginfo(p, &uinfo); 10223 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10224 } 10225 ret = host_to_target_signal(ret); 10226 } 10227 } 10228 return ret; 10229 #endif 10230 case TARGET_NR_rt_sigqueueinfo: 10231 { 10232 siginfo_t uinfo; 10233 10234 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 10235 if (!p) { 10236 return -TARGET_EFAULT; 10237 } 10238 target_to_host_siginfo(&uinfo, p); 10239 unlock_user(p, arg3, 0); 10240 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo)); 10241 } 10242 return ret; 10243 case TARGET_NR_rt_tgsigqueueinfo: 10244 { 10245 siginfo_t uinfo; 10246 10247 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 10248 if (!p) { 10249 return -TARGET_EFAULT; 10250 } 10251 target_to_host_siginfo(&uinfo, p); 10252 unlock_user(p, arg4, 0); 10253 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo)); 10254 } 10255 return ret; 10256 #ifdef TARGET_NR_sigreturn 10257 case TARGET_NR_sigreturn: 10258 if (block_signals()) { 10259 return -QEMU_ERESTARTSYS; 10260 } 10261 return do_sigreturn(cpu_env); 10262 #endif 10263 case TARGET_NR_rt_sigreturn: 10264 if (block_signals()) { 10265 return -QEMU_ERESTARTSYS; 10266 } 10267 return do_rt_sigreturn(cpu_env); 10268 case TARGET_NR_sethostname: 10269 if (!(p = lock_user_string(arg1))) 10270 return -TARGET_EFAULT; 10271 ret = get_errno(sethostname(p, arg2)); 10272 unlock_user(p, arg1, 0); 10273 return ret; 10274 #ifdef TARGET_NR_setrlimit 10275 case TARGET_NR_setrlimit: 10276 { 10277 int resource = target_to_host_resource(arg1); 10278 struct target_rlimit *target_rlim; 10279 struct rlimit rlim; 10280 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 10281 return -TARGET_EFAULT; 10282 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 10283 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 10284 unlock_user_struct(target_rlim, arg2, 0); 10285 /* 10286 * If we just passed through resource limit settings for memory then 10287 * they would also apply to QEMU's own allocations, and QEMU will 10288 * crash or hang or die if its allocations fail. Ideally we would 10289 * track the guest allocations in QEMU and apply the limits ourselves. 10290 * For now, just tell the guest the call succeeded but don't actually 10291 * limit anything. 10292 */ 10293 if (resource != RLIMIT_AS && 10294 resource != RLIMIT_DATA && 10295 resource != RLIMIT_STACK) { 10296 return get_errno(setrlimit(resource, &rlim)); 10297 } else { 10298 return 0; 10299 } 10300 } 10301 #endif 10302 #ifdef TARGET_NR_getrlimit 10303 case TARGET_NR_getrlimit: 10304 { 10305 int resource = target_to_host_resource(arg1); 10306 struct target_rlimit *target_rlim; 10307 struct rlimit rlim; 10308 10309 ret = get_errno(getrlimit(resource, &rlim)); 10310 if (!is_error(ret)) { 10311 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 10312 return -TARGET_EFAULT; 10313 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 10314 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 10315 unlock_user_struct(target_rlim, arg2, 1); 10316 } 10317 } 10318 return ret; 10319 #endif 10320 case TARGET_NR_getrusage: 10321 { 10322 struct rusage rusage; 10323 ret = get_errno(getrusage(arg1, &rusage)); 10324 if (!is_error(ret)) { 10325 ret = host_to_target_rusage(arg2, &rusage); 10326 } 10327 } 10328 return ret; 10329 #if defined(TARGET_NR_gettimeofday) 10330 case TARGET_NR_gettimeofday: 10331 { 10332 struct timeval tv; 10333 struct timezone tz; 10334 10335 ret = get_errno(gettimeofday(&tv, &tz)); 10336 if (!is_error(ret)) { 10337 if (arg1 && copy_to_user_timeval(arg1, &tv)) { 10338 return -TARGET_EFAULT; 10339 } 10340 if (arg2 && copy_to_user_timezone(arg2, &tz)) { 10341 return -TARGET_EFAULT; 10342 } 10343 } 10344 } 10345 return ret; 10346 #endif 10347 #if defined(TARGET_NR_settimeofday) 10348 case TARGET_NR_settimeofday: 10349 { 10350 struct timeval tv, *ptv = NULL; 10351 struct timezone tz, *ptz = NULL; 10352 10353 if (arg1) { 10354 if (copy_from_user_timeval(&tv, arg1)) { 10355 return -TARGET_EFAULT; 10356 } 10357 ptv = &tv; 10358 } 10359 10360 if (arg2) { 10361 if (copy_from_user_timezone(&tz, arg2)) { 10362 return -TARGET_EFAULT; 10363 } 10364 ptz = &tz; 10365 } 10366 10367 return get_errno(settimeofday(ptv, ptz)); 10368 } 10369 #endif 10370 #if defined(TARGET_NR_select) 10371 case TARGET_NR_select: 10372 #if defined(TARGET_WANT_NI_OLD_SELECT) 10373 /* some architectures used to have old_select here 10374 * but now ENOSYS it. 10375 */ 10376 ret = -TARGET_ENOSYS; 10377 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 10378 ret = do_old_select(arg1); 10379 #else 10380 ret = do_select(arg1, arg2, arg3, arg4, arg5); 10381 #endif 10382 return ret; 10383 #endif 10384 #ifdef TARGET_NR_pselect6 10385 case TARGET_NR_pselect6: 10386 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false); 10387 #endif 10388 #ifdef TARGET_NR_pselect6_time64 10389 case TARGET_NR_pselect6_time64: 10390 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true); 10391 #endif 10392 #ifdef TARGET_NR_symlink 10393 case TARGET_NR_symlink: 10394 { 10395 void *p2; 10396 p = lock_user_string(arg1); 10397 p2 = lock_user_string(arg2); 10398 if (!p || !p2) 10399 ret = -TARGET_EFAULT; 10400 else 10401 ret = get_errno(symlink(p, p2)); 10402 unlock_user(p2, arg2, 0); 10403 unlock_user(p, arg1, 0); 10404 } 10405 return ret; 10406 #endif 10407 #if defined(TARGET_NR_symlinkat) 10408 case TARGET_NR_symlinkat: 10409 { 10410 void *p2; 10411 p = lock_user_string(arg1); 10412 p2 = lock_user_string(arg3); 10413 if (!p || !p2) 10414 ret = -TARGET_EFAULT; 10415 else 10416 ret = get_errno(symlinkat(p, arg2, p2)); 10417 unlock_user(p2, arg3, 0); 10418 unlock_user(p, arg1, 0); 10419 } 10420 return ret; 10421 #endif 10422 #ifdef TARGET_NR_readlink 10423 case TARGET_NR_readlink: 10424 { 10425 void *p2; 10426 p = lock_user_string(arg1); 10427 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10428 ret = get_errno(do_guest_readlink(p, p2, arg3)); 10429 unlock_user(p2, arg2, ret); 10430 unlock_user(p, arg1, 0); 10431 } 10432 return ret; 10433 #endif 10434 #if defined(TARGET_NR_readlinkat) 10435 case TARGET_NR_readlinkat: 10436 { 10437 void *p2; 10438 p = lock_user_string(arg2); 10439 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 10440 if (!p || !p2) { 10441 ret = -TARGET_EFAULT; 10442 } else if (!arg4) { 10443 /* Short circuit this for the magic exe check. */ 10444 ret = -TARGET_EINVAL; 10445 } else if (is_proc_myself((const char *)p, "exe")) { 10446 /* 10447 * Don't worry about sign mismatch as earlier mapping 10448 * logic would have thrown a bad address error. 10449 */ 10450 ret = MIN(strlen(exec_path), arg4); 10451 /* We cannot NUL terminate the string. */ 10452 memcpy(p2, exec_path, ret); 10453 } else { 10454 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 10455 } 10456 unlock_user(p2, arg3, ret); 10457 unlock_user(p, arg2, 0); 10458 } 10459 return ret; 10460 #endif 10461 #ifdef TARGET_NR_swapon 10462 case TARGET_NR_swapon: 10463 if (!(p = lock_user_string(arg1))) 10464 return -TARGET_EFAULT; 10465 ret = get_errno(swapon(p, arg2)); 10466 unlock_user(p, arg1, 0); 10467 return ret; 10468 #endif 10469 case TARGET_NR_reboot: 10470 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 10471 /* arg4 must be ignored in all other cases */ 10472 p = lock_user_string(arg4); 10473 if (!p) { 10474 return -TARGET_EFAULT; 10475 } 10476 ret = get_errno(reboot(arg1, arg2, arg3, p)); 10477 unlock_user(p, arg4, 0); 10478 } else { 10479 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 10480 } 10481 return ret; 10482 #ifdef TARGET_NR_mmap 10483 case TARGET_NR_mmap: 10484 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 10485 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 10486 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 10487 || defined(TARGET_S390X) 10488 { 10489 abi_ulong *v; 10490 abi_ulong v1, v2, v3, v4, v5, v6; 10491 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 10492 return -TARGET_EFAULT; 10493 v1 = tswapal(v[0]); 10494 v2 = tswapal(v[1]); 10495 v3 = tswapal(v[2]); 10496 v4 = tswapal(v[3]); 10497 v5 = tswapal(v[4]); 10498 v6 = tswapal(v[5]); 10499 unlock_user(v, arg1, 0); 10500 return do_mmap(v1, v2, v3, v4, v5, v6); 10501 } 10502 #else 10503 /* mmap pointers are always untagged */ 10504 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6); 10505 #endif 10506 #endif 10507 #ifdef TARGET_NR_mmap2 10508 case TARGET_NR_mmap2: 10509 #ifndef MMAP_SHIFT 10510 #define MMAP_SHIFT 12 10511 #endif 10512 return do_mmap(arg1, arg2, arg3, arg4, arg5, 10513 (off_t)(abi_ulong)arg6 << MMAP_SHIFT); 10514 #endif 10515 case TARGET_NR_munmap: 10516 arg1 = cpu_untagged_addr(cpu, arg1); 10517 return get_errno(target_munmap(arg1, arg2)); 10518 case TARGET_NR_mprotect: 10519 arg1 = cpu_untagged_addr(cpu, arg1); 10520 { 10521 TaskState *ts = get_task_state(cpu); 10522 /* Special hack to detect libc making the stack executable. */ 10523 if ((arg3 & PROT_GROWSDOWN) 10524 && arg1 >= ts->info->stack_limit 10525 && arg1 <= ts->info->start_stack) { 10526 arg3 &= ~PROT_GROWSDOWN; 10527 arg2 = arg2 + arg1 - ts->info->stack_limit; 10528 arg1 = ts->info->stack_limit; 10529 } 10530 } 10531 return get_errno(target_mprotect(arg1, arg2, arg3)); 10532 #ifdef TARGET_NR_mremap 10533 case TARGET_NR_mremap: 10534 arg1 = cpu_untagged_addr(cpu, arg1); 10535 /* mremap new_addr (arg5) is always untagged */ 10536 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 10537 #endif 10538 /* ??? msync/mlock/munlock are broken for softmmu. */ 10539 #ifdef TARGET_NR_msync 10540 case TARGET_NR_msync: 10541 return get_errno(msync(g2h(cpu, arg1), arg2, 10542 target_to_host_msync_arg(arg3))); 10543 #endif 10544 #ifdef TARGET_NR_mlock 10545 case TARGET_NR_mlock: 10546 return get_errno(mlock(g2h(cpu, arg1), arg2)); 10547 #endif 10548 #ifdef TARGET_NR_munlock 10549 case TARGET_NR_munlock: 10550 return get_errno(munlock(g2h(cpu, arg1), arg2)); 10551 #endif 10552 #ifdef TARGET_NR_mlockall 10553 case TARGET_NR_mlockall: 10554 return get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 10555 #endif 10556 #ifdef TARGET_NR_munlockall 10557 case TARGET_NR_munlockall: 10558 return get_errno(munlockall()); 10559 #endif 10560 #ifdef TARGET_NR_truncate 10561 case TARGET_NR_truncate: 10562 if (!(p = lock_user_string(arg1))) 10563 return -TARGET_EFAULT; 10564 ret = get_errno(truncate(p, arg2)); 10565 unlock_user(p, arg1, 0); 10566 return ret; 10567 #endif 10568 #ifdef TARGET_NR_ftruncate 10569 case TARGET_NR_ftruncate: 10570 return get_errno(ftruncate(arg1, arg2)); 10571 #endif 10572 case TARGET_NR_fchmod: 10573 return get_errno(fchmod(arg1, arg2)); 10574 #if defined(TARGET_NR_fchmodat) 10575 case TARGET_NR_fchmodat: 10576 if (!(p = lock_user_string(arg2))) 10577 return -TARGET_EFAULT; 10578 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 10579 unlock_user(p, arg2, 0); 10580 return ret; 10581 #endif 10582 case TARGET_NR_getpriority: 10583 /* Note that negative values are valid for getpriority, so we must 10584 differentiate based on errno settings. */ 10585 errno = 0; 10586 ret = getpriority(arg1, arg2); 10587 if (ret == -1 && errno != 0) { 10588 return -host_to_target_errno(errno); 10589 } 10590 #ifdef TARGET_ALPHA 10591 /* Return value is the unbiased priority. Signal no error. */ 10592 cpu_env->ir[IR_V0] = 0; 10593 #else 10594 /* Return value is a biased priority to avoid negative numbers. */ 10595 ret = 20 - ret; 10596 #endif 10597 return ret; 10598 case TARGET_NR_setpriority: 10599 return get_errno(setpriority(arg1, arg2, arg3)); 10600 #ifdef TARGET_NR_statfs 10601 case TARGET_NR_statfs: 10602 if (!(p = lock_user_string(arg1))) { 10603 return -TARGET_EFAULT; 10604 } 10605 ret = get_errno(statfs(path(p), &stfs)); 10606 unlock_user(p, arg1, 0); 10607 convert_statfs: 10608 if (!is_error(ret)) { 10609 struct target_statfs *target_stfs; 10610 10611 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 10612 return -TARGET_EFAULT; 10613 __put_user(stfs.f_type, &target_stfs->f_type); 10614 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10615 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10616 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10617 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10618 __put_user(stfs.f_files, &target_stfs->f_files); 10619 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10620 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10621 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10622 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10623 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10624 #ifdef _STATFS_F_FLAGS 10625 __put_user(stfs.f_flags, &target_stfs->f_flags); 10626 #else 10627 __put_user(0, &target_stfs->f_flags); 10628 #endif 10629 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10630 unlock_user_struct(target_stfs, arg2, 1); 10631 } 10632 return ret; 10633 #endif 10634 #ifdef TARGET_NR_fstatfs 10635 case TARGET_NR_fstatfs: 10636 ret = get_errno(fstatfs(arg1, &stfs)); 10637 goto convert_statfs; 10638 #endif 10639 #ifdef TARGET_NR_statfs64 10640 case TARGET_NR_statfs64: 10641 if (!(p = lock_user_string(arg1))) { 10642 return -TARGET_EFAULT; 10643 } 10644 ret = get_errno(statfs(path(p), &stfs)); 10645 unlock_user(p, arg1, 0); 10646 convert_statfs64: 10647 if (!is_error(ret)) { 10648 struct target_statfs64 *target_stfs; 10649 10650 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 10651 return -TARGET_EFAULT; 10652 __put_user(stfs.f_type, &target_stfs->f_type); 10653 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10654 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10655 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10656 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10657 __put_user(stfs.f_files, &target_stfs->f_files); 10658 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10659 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10660 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10661 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10662 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10663 #ifdef _STATFS_F_FLAGS 10664 __put_user(stfs.f_flags, &target_stfs->f_flags); 10665 #else 10666 __put_user(0, &target_stfs->f_flags); 10667 #endif 10668 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10669 unlock_user_struct(target_stfs, arg3, 1); 10670 } 10671 return ret; 10672 case TARGET_NR_fstatfs64: 10673 ret = get_errno(fstatfs(arg1, &stfs)); 10674 goto convert_statfs64; 10675 #endif 10676 #ifdef TARGET_NR_socketcall 10677 case TARGET_NR_socketcall: 10678 return do_socketcall(arg1, arg2); 10679 #endif 10680 #ifdef TARGET_NR_accept 10681 case TARGET_NR_accept: 10682 return do_accept4(arg1, arg2, arg3, 0); 10683 #endif 10684 #ifdef TARGET_NR_accept4 10685 case TARGET_NR_accept4: 10686 return do_accept4(arg1, arg2, arg3, arg4); 10687 #endif 10688 #ifdef TARGET_NR_bind 10689 case TARGET_NR_bind: 10690 return do_bind(arg1, arg2, arg3); 10691 #endif 10692 #ifdef TARGET_NR_connect 10693 case TARGET_NR_connect: 10694 return do_connect(arg1, arg2, arg3); 10695 #endif 10696 #ifdef TARGET_NR_getpeername 10697 case TARGET_NR_getpeername: 10698 return do_getpeername(arg1, arg2, arg3); 10699 #endif 10700 #ifdef TARGET_NR_getsockname 10701 case TARGET_NR_getsockname: 10702 return do_getsockname(arg1, arg2, arg3); 10703 #endif 10704 #ifdef TARGET_NR_getsockopt 10705 case TARGET_NR_getsockopt: 10706 return do_getsockopt(arg1, arg2, arg3, arg4, arg5); 10707 #endif 10708 #ifdef TARGET_NR_listen 10709 case TARGET_NR_listen: 10710 return get_errno(listen(arg1, arg2)); 10711 #endif 10712 #ifdef TARGET_NR_recv 10713 case TARGET_NR_recv: 10714 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 10715 #endif 10716 #ifdef TARGET_NR_recvfrom 10717 case TARGET_NR_recvfrom: 10718 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 10719 #endif 10720 #ifdef TARGET_NR_recvmsg 10721 case TARGET_NR_recvmsg: 10722 return do_sendrecvmsg(arg1, arg2, arg3, 0); 10723 #endif 10724 #ifdef TARGET_NR_send 10725 case TARGET_NR_send: 10726 return do_sendto(arg1, arg2, arg3, arg4, 0, 0); 10727 #endif 10728 #ifdef TARGET_NR_sendmsg 10729 case TARGET_NR_sendmsg: 10730 return do_sendrecvmsg(arg1, arg2, arg3, 1); 10731 #endif 10732 #ifdef TARGET_NR_sendmmsg 10733 case TARGET_NR_sendmmsg: 10734 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 10735 #endif 10736 #ifdef TARGET_NR_recvmmsg 10737 case TARGET_NR_recvmmsg: 10738 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 10739 #endif 10740 #ifdef TARGET_NR_sendto 10741 case TARGET_NR_sendto: 10742 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 10743 #endif 10744 #ifdef TARGET_NR_shutdown 10745 case TARGET_NR_shutdown: 10746 return get_errno(shutdown(arg1, arg2)); 10747 #endif 10748 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 10749 case TARGET_NR_getrandom: 10750 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 10751 if (!p) { 10752 return -TARGET_EFAULT; 10753 } 10754 ret = get_errno(getrandom(p, arg2, arg3)); 10755 unlock_user(p, arg1, ret); 10756 return ret; 10757 #endif 10758 #ifdef TARGET_NR_socket 10759 case TARGET_NR_socket: 10760 return do_socket(arg1, arg2, arg3); 10761 #endif 10762 #ifdef TARGET_NR_socketpair 10763 case TARGET_NR_socketpair: 10764 return do_socketpair(arg1, arg2, arg3, arg4); 10765 #endif 10766 #ifdef TARGET_NR_setsockopt 10767 case TARGET_NR_setsockopt: 10768 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 10769 #endif 10770 #if defined(TARGET_NR_syslog) 10771 case TARGET_NR_syslog: 10772 { 10773 int len = arg2; 10774 10775 switch (arg1) { 10776 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 10777 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 10778 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 10779 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 10780 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 10781 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 10782 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 10783 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 10784 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 10785 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 10786 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 10787 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 10788 { 10789 if (len < 0) { 10790 return -TARGET_EINVAL; 10791 } 10792 if (len == 0) { 10793 return 0; 10794 } 10795 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10796 if (!p) { 10797 return -TARGET_EFAULT; 10798 } 10799 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 10800 unlock_user(p, arg2, arg3); 10801 } 10802 return ret; 10803 default: 10804 return -TARGET_EINVAL; 10805 } 10806 } 10807 break; 10808 #endif 10809 case TARGET_NR_setitimer: 10810 { 10811 struct itimerval value, ovalue, *pvalue; 10812 10813 if (arg2) { 10814 pvalue = &value; 10815 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 10816 || copy_from_user_timeval(&pvalue->it_value, 10817 arg2 + sizeof(struct target_timeval))) 10818 return -TARGET_EFAULT; 10819 } else { 10820 pvalue = NULL; 10821 } 10822 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 10823 if (!is_error(ret) && arg3) { 10824 if (copy_to_user_timeval(arg3, 10825 &ovalue.it_interval) 10826 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 10827 &ovalue.it_value)) 10828 return -TARGET_EFAULT; 10829 } 10830 } 10831 return ret; 10832 case TARGET_NR_getitimer: 10833 { 10834 struct itimerval value; 10835 10836 ret = get_errno(getitimer(arg1, &value)); 10837 if (!is_error(ret) && arg2) { 10838 if (copy_to_user_timeval(arg2, 10839 &value.it_interval) 10840 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 10841 &value.it_value)) 10842 return -TARGET_EFAULT; 10843 } 10844 } 10845 return ret; 10846 #ifdef TARGET_NR_stat 10847 case TARGET_NR_stat: 10848 if (!(p = lock_user_string(arg1))) { 10849 return -TARGET_EFAULT; 10850 } 10851 ret = get_errno(stat(path(p), &st)); 10852 unlock_user(p, arg1, 0); 10853 goto do_stat; 10854 #endif 10855 #ifdef TARGET_NR_lstat 10856 case TARGET_NR_lstat: 10857 if (!(p = lock_user_string(arg1))) { 10858 return -TARGET_EFAULT; 10859 } 10860 ret = get_errno(lstat(path(p), &st)); 10861 unlock_user(p, arg1, 0); 10862 goto do_stat; 10863 #endif 10864 #ifdef TARGET_NR_fstat 10865 case TARGET_NR_fstat: 10866 { 10867 ret = get_errno(fstat(arg1, &st)); 10868 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 10869 do_stat: 10870 #endif 10871 if (!is_error(ret)) { 10872 struct target_stat *target_st; 10873 10874 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 10875 return -TARGET_EFAULT; 10876 memset(target_st, 0, sizeof(*target_st)); 10877 __put_user(st.st_dev, &target_st->st_dev); 10878 __put_user(st.st_ino, &target_st->st_ino); 10879 __put_user(st.st_mode, &target_st->st_mode); 10880 __put_user(st.st_uid, &target_st->st_uid); 10881 __put_user(st.st_gid, &target_st->st_gid); 10882 __put_user(st.st_nlink, &target_st->st_nlink); 10883 __put_user(st.st_rdev, &target_st->st_rdev); 10884 __put_user(st.st_size, &target_st->st_size); 10885 __put_user(st.st_blksize, &target_st->st_blksize); 10886 __put_user(st.st_blocks, &target_st->st_blocks); 10887 __put_user(st.st_atime, &target_st->target_st_atime); 10888 __put_user(st.st_mtime, &target_st->target_st_mtime); 10889 __put_user(st.st_ctime, &target_st->target_st_ctime); 10890 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC) 10891 __put_user(st.st_atim.tv_nsec, 10892 &target_st->target_st_atime_nsec); 10893 __put_user(st.st_mtim.tv_nsec, 10894 &target_st->target_st_mtime_nsec); 10895 __put_user(st.st_ctim.tv_nsec, 10896 &target_st->target_st_ctime_nsec); 10897 #endif 10898 unlock_user_struct(target_st, arg2, 1); 10899 } 10900 } 10901 return ret; 10902 #endif 10903 case TARGET_NR_vhangup: 10904 return get_errno(vhangup()); 10905 #ifdef TARGET_NR_syscall 10906 case TARGET_NR_syscall: 10907 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 10908 arg6, arg7, arg8, 0); 10909 #endif 10910 #if defined(TARGET_NR_wait4) 10911 case TARGET_NR_wait4: 10912 { 10913 int status; 10914 abi_long status_ptr = arg2; 10915 struct rusage rusage, *rusage_ptr; 10916 abi_ulong target_rusage = arg4; 10917 abi_long rusage_err; 10918 if (target_rusage) 10919 rusage_ptr = &rusage; 10920 else 10921 rusage_ptr = NULL; 10922 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 10923 if (!is_error(ret)) { 10924 if (status_ptr && ret) { 10925 status = host_to_target_waitstatus(status); 10926 if (put_user_s32(status, status_ptr)) 10927 return -TARGET_EFAULT; 10928 } 10929 if (target_rusage) { 10930 rusage_err = host_to_target_rusage(target_rusage, &rusage); 10931 if (rusage_err) { 10932 ret = rusage_err; 10933 } 10934 } 10935 } 10936 } 10937 return ret; 10938 #endif 10939 #ifdef TARGET_NR_swapoff 10940 case TARGET_NR_swapoff: 10941 if (!(p = lock_user_string(arg1))) 10942 return -TARGET_EFAULT; 10943 ret = get_errno(swapoff(p)); 10944 unlock_user(p, arg1, 0); 10945 return ret; 10946 #endif 10947 case TARGET_NR_sysinfo: 10948 { 10949 struct target_sysinfo *target_value; 10950 struct sysinfo value; 10951 ret = get_errno(sysinfo(&value)); 10952 if (!is_error(ret) && arg1) 10953 { 10954 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 10955 return -TARGET_EFAULT; 10956 __put_user(value.uptime, &target_value->uptime); 10957 __put_user(value.loads[0], &target_value->loads[0]); 10958 __put_user(value.loads[1], &target_value->loads[1]); 10959 __put_user(value.loads[2], &target_value->loads[2]); 10960 __put_user(value.totalram, &target_value->totalram); 10961 __put_user(value.freeram, &target_value->freeram); 10962 __put_user(value.sharedram, &target_value->sharedram); 10963 __put_user(value.bufferram, &target_value->bufferram); 10964 __put_user(value.totalswap, &target_value->totalswap); 10965 __put_user(value.freeswap, &target_value->freeswap); 10966 __put_user(value.procs, &target_value->procs); 10967 __put_user(value.totalhigh, &target_value->totalhigh); 10968 __put_user(value.freehigh, &target_value->freehigh); 10969 __put_user(value.mem_unit, &target_value->mem_unit); 10970 unlock_user_struct(target_value, arg1, 1); 10971 } 10972 } 10973 return ret; 10974 #ifdef TARGET_NR_ipc 10975 case TARGET_NR_ipc: 10976 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 10977 #endif 10978 #ifdef TARGET_NR_semget 10979 case TARGET_NR_semget: 10980 return get_errno(semget(arg1, arg2, arg3)); 10981 #endif 10982 #ifdef TARGET_NR_semop 10983 case TARGET_NR_semop: 10984 return do_semtimedop(arg1, arg2, arg3, 0, false); 10985 #endif 10986 #ifdef TARGET_NR_semtimedop 10987 case TARGET_NR_semtimedop: 10988 return do_semtimedop(arg1, arg2, arg3, arg4, false); 10989 #endif 10990 #ifdef TARGET_NR_semtimedop_time64 10991 case TARGET_NR_semtimedop_time64: 10992 return do_semtimedop(arg1, arg2, arg3, arg4, true); 10993 #endif 10994 #ifdef TARGET_NR_semctl 10995 case TARGET_NR_semctl: 10996 return do_semctl(arg1, arg2, arg3, arg4); 10997 #endif 10998 #ifdef TARGET_NR_msgctl 10999 case TARGET_NR_msgctl: 11000 return do_msgctl(arg1, arg2, arg3); 11001 #endif 11002 #ifdef TARGET_NR_msgget 11003 case TARGET_NR_msgget: 11004 return get_errno(msgget(arg1, arg2)); 11005 #endif 11006 #ifdef TARGET_NR_msgrcv 11007 case TARGET_NR_msgrcv: 11008 return do_msgrcv(arg1, arg2, arg3, arg4, arg5); 11009 #endif 11010 #ifdef TARGET_NR_msgsnd 11011 case TARGET_NR_msgsnd: 11012 return do_msgsnd(arg1, arg2, arg3, arg4); 11013 #endif 11014 #ifdef TARGET_NR_shmget 11015 case TARGET_NR_shmget: 11016 return get_errno(shmget(arg1, arg2, arg3)); 11017 #endif 11018 #ifdef TARGET_NR_shmctl 11019 case TARGET_NR_shmctl: 11020 return do_shmctl(arg1, arg2, arg3); 11021 #endif 11022 #ifdef TARGET_NR_shmat 11023 case TARGET_NR_shmat: 11024 return target_shmat(cpu_env, arg1, arg2, arg3); 11025 #endif 11026 #ifdef TARGET_NR_shmdt 11027 case TARGET_NR_shmdt: 11028 return target_shmdt(arg1); 11029 #endif 11030 case TARGET_NR_fsync: 11031 return get_errno(fsync(arg1)); 11032 case TARGET_NR_clone: 11033 /* Linux manages to have three different orderings for its 11034 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 11035 * match the kernel's CONFIG_CLONE_* settings. 11036 * Microblaze is further special in that it uses a sixth 11037 * implicit argument to clone for the TLS pointer. 11038 */ 11039 #if defined(TARGET_MICROBLAZE) 11040 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 11041 #elif defined(TARGET_CLONE_BACKWARDS) 11042 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 11043 #elif defined(TARGET_CLONE_BACKWARDS2) 11044 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 11045 #else 11046 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 11047 #endif 11048 return ret; 11049 #ifdef __NR_exit_group 11050 /* new thread calls */ 11051 case TARGET_NR_exit_group: 11052 preexit_cleanup(cpu_env, arg1); 11053 return get_errno(exit_group(arg1)); 11054 #endif 11055 case TARGET_NR_setdomainname: 11056 if (!(p = lock_user_string(arg1))) 11057 return -TARGET_EFAULT; 11058 ret = get_errno(setdomainname(p, arg2)); 11059 unlock_user(p, arg1, 0); 11060 return ret; 11061 case TARGET_NR_uname: 11062 /* no need to transcode because we use the linux syscall */ 11063 { 11064 struct new_utsname * buf; 11065 11066 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 11067 return -TARGET_EFAULT; 11068 ret = get_errno(sys_uname(buf)); 11069 if (!is_error(ret)) { 11070 /* Overwrite the native machine name with whatever is being 11071 emulated. */ 11072 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env), 11073 sizeof(buf->machine)); 11074 /* Allow the user to override the reported release. */ 11075 if (qemu_uname_release && *qemu_uname_release) { 11076 g_strlcpy(buf->release, qemu_uname_release, 11077 sizeof(buf->release)); 11078 } 11079 } 11080 unlock_user_struct(buf, arg1, 1); 11081 } 11082 return ret; 11083 #ifdef TARGET_I386 11084 case TARGET_NR_modify_ldt: 11085 return do_modify_ldt(cpu_env, arg1, arg2, arg3); 11086 #if !defined(TARGET_X86_64) 11087 case TARGET_NR_vm86: 11088 return do_vm86(cpu_env, arg1, arg2); 11089 #endif 11090 #endif 11091 #if defined(TARGET_NR_adjtimex) 11092 case TARGET_NR_adjtimex: 11093 { 11094 struct timex host_buf; 11095 11096 if (target_to_host_timex(&host_buf, arg1) != 0) { 11097 return -TARGET_EFAULT; 11098 } 11099 ret = get_errno(adjtimex(&host_buf)); 11100 if (!is_error(ret)) { 11101 if (host_to_target_timex(arg1, &host_buf) != 0) { 11102 return -TARGET_EFAULT; 11103 } 11104 } 11105 } 11106 return ret; 11107 #endif 11108 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 11109 case TARGET_NR_clock_adjtime: 11110 { 11111 struct timex htx; 11112 11113 if (target_to_host_timex(&htx, arg2) != 0) { 11114 return -TARGET_EFAULT; 11115 } 11116 ret = get_errno(clock_adjtime(arg1, &htx)); 11117 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) { 11118 return -TARGET_EFAULT; 11119 } 11120 } 11121 return ret; 11122 #endif 11123 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 11124 case TARGET_NR_clock_adjtime64: 11125 { 11126 struct timex htx; 11127 11128 if (target_to_host_timex64(&htx, arg2) != 0) { 11129 return -TARGET_EFAULT; 11130 } 11131 ret = get_errno(clock_adjtime(arg1, &htx)); 11132 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) { 11133 return -TARGET_EFAULT; 11134 } 11135 } 11136 return ret; 11137 #endif 11138 case TARGET_NR_getpgid: 11139 return get_errno(getpgid(arg1)); 11140 case TARGET_NR_fchdir: 11141 return get_errno(fchdir(arg1)); 11142 case TARGET_NR_personality: 11143 return get_errno(personality(arg1)); 11144 #ifdef TARGET_NR__llseek /* Not on alpha */ 11145 case TARGET_NR__llseek: 11146 { 11147 int64_t res; 11148 #if !defined(__NR_llseek) 11149 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 11150 if (res == -1) { 11151 ret = get_errno(res); 11152 } else { 11153 ret = 0; 11154 } 11155 #else 11156 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 11157 #endif 11158 if ((ret == 0) && put_user_s64(res, arg4)) { 11159 return -TARGET_EFAULT; 11160 } 11161 } 11162 return ret; 11163 #endif 11164 #ifdef TARGET_NR_getdents 11165 case TARGET_NR_getdents: 11166 return do_getdents(arg1, arg2, arg3); 11167 #endif /* TARGET_NR_getdents */ 11168 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 11169 case TARGET_NR_getdents64: 11170 return do_getdents64(arg1, arg2, arg3); 11171 #endif /* TARGET_NR_getdents64 */ 11172 #if defined(TARGET_NR__newselect) 11173 case TARGET_NR__newselect: 11174 return do_select(arg1, arg2, arg3, arg4, arg5); 11175 #endif 11176 #ifdef TARGET_NR_poll 11177 case TARGET_NR_poll: 11178 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false); 11179 #endif 11180 #ifdef TARGET_NR_ppoll 11181 case TARGET_NR_ppoll: 11182 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false); 11183 #endif 11184 #ifdef TARGET_NR_ppoll_time64 11185 case TARGET_NR_ppoll_time64: 11186 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true); 11187 #endif 11188 case TARGET_NR_flock: 11189 /* NOTE: the flock constant seems to be the same for every 11190 Linux platform */ 11191 return get_errno(safe_flock(arg1, arg2)); 11192 case TARGET_NR_readv: 11193 { 11194 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11195 if (vec != NULL) { 11196 ret = get_errno(safe_readv(arg1, vec, arg3)); 11197 unlock_iovec(vec, arg2, arg3, 1); 11198 } else { 11199 ret = -host_to_target_errno(errno); 11200 } 11201 } 11202 return ret; 11203 case TARGET_NR_writev: 11204 { 11205 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11206 if (vec != NULL) { 11207 ret = get_errno(safe_writev(arg1, vec, arg3)); 11208 unlock_iovec(vec, arg2, arg3, 0); 11209 } else { 11210 ret = -host_to_target_errno(errno); 11211 } 11212 } 11213 return ret; 11214 #if defined(TARGET_NR_preadv) 11215 case TARGET_NR_preadv: 11216 { 11217 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11218 if (vec != NULL) { 11219 unsigned long low, high; 11220 11221 target_to_host_low_high(arg4, arg5, &low, &high); 11222 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high)); 11223 unlock_iovec(vec, arg2, arg3, 1); 11224 } else { 11225 ret = -host_to_target_errno(errno); 11226 } 11227 } 11228 return ret; 11229 #endif 11230 #if defined(TARGET_NR_pwritev) 11231 case TARGET_NR_pwritev: 11232 { 11233 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11234 if (vec != NULL) { 11235 unsigned long low, high; 11236 11237 target_to_host_low_high(arg4, arg5, &low, &high); 11238 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high)); 11239 unlock_iovec(vec, arg2, arg3, 0); 11240 } else { 11241 ret = -host_to_target_errno(errno); 11242 } 11243 } 11244 return ret; 11245 #endif 11246 case TARGET_NR_getsid: 11247 return get_errno(getsid(arg1)); 11248 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 11249 case TARGET_NR_fdatasync: 11250 return get_errno(fdatasync(arg1)); 11251 #endif 11252 case TARGET_NR_sched_getaffinity: 11253 { 11254 unsigned int mask_size; 11255 unsigned long *mask; 11256 11257 /* 11258 * sched_getaffinity needs multiples of ulong, so need to take 11259 * care of mismatches between target ulong and host ulong sizes. 11260 */ 11261 if (arg2 & (sizeof(abi_ulong) - 1)) { 11262 return -TARGET_EINVAL; 11263 } 11264 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11265 11266 mask = alloca(mask_size); 11267 memset(mask, 0, mask_size); 11268 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 11269 11270 if (!is_error(ret)) { 11271 if (ret > arg2) { 11272 /* More data returned than the caller's buffer will fit. 11273 * This only happens if sizeof(abi_long) < sizeof(long) 11274 * and the caller passed us a buffer holding an odd number 11275 * of abi_longs. If the host kernel is actually using the 11276 * extra 4 bytes then fail EINVAL; otherwise we can just 11277 * ignore them and only copy the interesting part. 11278 */ 11279 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 11280 if (numcpus > arg2 * 8) { 11281 return -TARGET_EINVAL; 11282 } 11283 ret = arg2; 11284 } 11285 11286 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 11287 return -TARGET_EFAULT; 11288 } 11289 } 11290 } 11291 return ret; 11292 case TARGET_NR_sched_setaffinity: 11293 { 11294 unsigned int mask_size; 11295 unsigned long *mask; 11296 11297 /* 11298 * sched_setaffinity needs multiples of ulong, so need to take 11299 * care of mismatches between target ulong and host ulong sizes. 11300 */ 11301 if (arg2 & (sizeof(abi_ulong) - 1)) { 11302 return -TARGET_EINVAL; 11303 } 11304 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11305 mask = alloca(mask_size); 11306 11307 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 11308 if (ret) { 11309 return ret; 11310 } 11311 11312 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 11313 } 11314 case TARGET_NR_getcpu: 11315 { 11316 unsigned cpuid, node; 11317 ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL, 11318 arg2 ? &node : NULL, 11319 NULL)); 11320 if (is_error(ret)) { 11321 return ret; 11322 } 11323 if (arg1 && put_user_u32(cpuid, arg1)) { 11324 return -TARGET_EFAULT; 11325 } 11326 if (arg2 && put_user_u32(node, arg2)) { 11327 return -TARGET_EFAULT; 11328 } 11329 } 11330 return ret; 11331 case TARGET_NR_sched_setparam: 11332 { 11333 struct target_sched_param *target_schp; 11334 struct sched_param schp; 11335 11336 if (arg2 == 0) { 11337 return -TARGET_EINVAL; 11338 } 11339 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) { 11340 return -TARGET_EFAULT; 11341 } 11342 schp.sched_priority = tswap32(target_schp->sched_priority); 11343 unlock_user_struct(target_schp, arg2, 0); 11344 return get_errno(sys_sched_setparam(arg1, &schp)); 11345 } 11346 case TARGET_NR_sched_getparam: 11347 { 11348 struct target_sched_param *target_schp; 11349 struct sched_param schp; 11350 11351 if (arg2 == 0) { 11352 return -TARGET_EINVAL; 11353 } 11354 ret = get_errno(sys_sched_getparam(arg1, &schp)); 11355 if (!is_error(ret)) { 11356 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) { 11357 return -TARGET_EFAULT; 11358 } 11359 target_schp->sched_priority = tswap32(schp.sched_priority); 11360 unlock_user_struct(target_schp, arg2, 1); 11361 } 11362 } 11363 return ret; 11364 case TARGET_NR_sched_setscheduler: 11365 { 11366 struct target_sched_param *target_schp; 11367 struct sched_param schp; 11368 if (arg3 == 0) { 11369 return -TARGET_EINVAL; 11370 } 11371 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) { 11372 return -TARGET_EFAULT; 11373 } 11374 schp.sched_priority = tswap32(target_schp->sched_priority); 11375 unlock_user_struct(target_schp, arg3, 0); 11376 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp)); 11377 } 11378 case TARGET_NR_sched_getscheduler: 11379 return get_errno(sys_sched_getscheduler(arg1)); 11380 case TARGET_NR_sched_getattr: 11381 { 11382 struct target_sched_attr *target_scha; 11383 struct sched_attr scha; 11384 if (arg2 == 0) { 11385 return -TARGET_EINVAL; 11386 } 11387 if (arg3 > sizeof(scha)) { 11388 arg3 = sizeof(scha); 11389 } 11390 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4)); 11391 if (!is_error(ret)) { 11392 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11393 if (!target_scha) { 11394 return -TARGET_EFAULT; 11395 } 11396 target_scha->size = tswap32(scha.size); 11397 target_scha->sched_policy = tswap32(scha.sched_policy); 11398 target_scha->sched_flags = tswap64(scha.sched_flags); 11399 target_scha->sched_nice = tswap32(scha.sched_nice); 11400 target_scha->sched_priority = tswap32(scha.sched_priority); 11401 target_scha->sched_runtime = tswap64(scha.sched_runtime); 11402 target_scha->sched_deadline = tswap64(scha.sched_deadline); 11403 target_scha->sched_period = tswap64(scha.sched_period); 11404 if (scha.size > offsetof(struct sched_attr, sched_util_min)) { 11405 target_scha->sched_util_min = tswap32(scha.sched_util_min); 11406 target_scha->sched_util_max = tswap32(scha.sched_util_max); 11407 } 11408 unlock_user(target_scha, arg2, arg3); 11409 } 11410 return ret; 11411 } 11412 case TARGET_NR_sched_setattr: 11413 { 11414 struct target_sched_attr *target_scha; 11415 struct sched_attr scha; 11416 uint32_t size; 11417 int zeroed; 11418 if (arg2 == 0) { 11419 return -TARGET_EINVAL; 11420 } 11421 if (get_user_u32(size, arg2)) { 11422 return -TARGET_EFAULT; 11423 } 11424 if (!size) { 11425 size = offsetof(struct target_sched_attr, sched_util_min); 11426 } 11427 if (size < offsetof(struct target_sched_attr, sched_util_min)) { 11428 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11429 return -TARGET_EFAULT; 11430 } 11431 return -TARGET_E2BIG; 11432 } 11433 11434 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size); 11435 if (zeroed < 0) { 11436 return zeroed; 11437 } else if (zeroed == 0) { 11438 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11439 return -TARGET_EFAULT; 11440 } 11441 return -TARGET_E2BIG; 11442 } 11443 if (size > sizeof(struct target_sched_attr)) { 11444 size = sizeof(struct target_sched_attr); 11445 } 11446 11447 target_scha = lock_user(VERIFY_READ, arg2, size, 1); 11448 if (!target_scha) { 11449 return -TARGET_EFAULT; 11450 } 11451 scha.size = size; 11452 scha.sched_policy = tswap32(target_scha->sched_policy); 11453 scha.sched_flags = tswap64(target_scha->sched_flags); 11454 scha.sched_nice = tswap32(target_scha->sched_nice); 11455 scha.sched_priority = tswap32(target_scha->sched_priority); 11456 scha.sched_runtime = tswap64(target_scha->sched_runtime); 11457 scha.sched_deadline = tswap64(target_scha->sched_deadline); 11458 scha.sched_period = tswap64(target_scha->sched_period); 11459 if (size > offsetof(struct target_sched_attr, sched_util_min)) { 11460 scha.sched_util_min = tswap32(target_scha->sched_util_min); 11461 scha.sched_util_max = tswap32(target_scha->sched_util_max); 11462 } 11463 unlock_user(target_scha, arg2, 0); 11464 return get_errno(sys_sched_setattr(arg1, &scha, arg3)); 11465 } 11466 case TARGET_NR_sched_yield: 11467 return get_errno(sched_yield()); 11468 case TARGET_NR_sched_get_priority_max: 11469 return get_errno(sched_get_priority_max(arg1)); 11470 case TARGET_NR_sched_get_priority_min: 11471 return get_errno(sched_get_priority_min(arg1)); 11472 #ifdef TARGET_NR_sched_rr_get_interval 11473 case TARGET_NR_sched_rr_get_interval: 11474 { 11475 struct timespec ts; 11476 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11477 if (!is_error(ret)) { 11478 ret = host_to_target_timespec(arg2, &ts); 11479 } 11480 } 11481 return ret; 11482 #endif 11483 #ifdef TARGET_NR_sched_rr_get_interval_time64 11484 case TARGET_NR_sched_rr_get_interval_time64: 11485 { 11486 struct timespec ts; 11487 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11488 if (!is_error(ret)) { 11489 ret = host_to_target_timespec64(arg2, &ts); 11490 } 11491 } 11492 return ret; 11493 #endif 11494 #if defined(TARGET_NR_nanosleep) 11495 case TARGET_NR_nanosleep: 11496 { 11497 struct timespec req, rem; 11498 target_to_host_timespec(&req, arg1); 11499 ret = get_errno(safe_nanosleep(&req, &rem)); 11500 if (is_error(ret) && arg2) { 11501 host_to_target_timespec(arg2, &rem); 11502 } 11503 } 11504 return ret; 11505 #endif 11506 case TARGET_NR_prctl: 11507 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5); 11508 break; 11509 #ifdef TARGET_NR_arch_prctl 11510 case TARGET_NR_arch_prctl: 11511 return do_arch_prctl(cpu_env, arg1, arg2); 11512 #endif 11513 #ifdef TARGET_NR_pread64 11514 case TARGET_NR_pread64: 11515 if (regpairs_aligned(cpu_env, num)) { 11516 arg4 = arg5; 11517 arg5 = arg6; 11518 } 11519 if (arg2 == 0 && arg3 == 0) { 11520 /* Special-case NULL buffer and zero length, which should succeed */ 11521 p = 0; 11522 } else { 11523 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11524 if (!p) { 11525 return -TARGET_EFAULT; 11526 } 11527 } 11528 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 11529 unlock_user(p, arg2, ret); 11530 return ret; 11531 case TARGET_NR_pwrite64: 11532 if (regpairs_aligned(cpu_env, num)) { 11533 arg4 = arg5; 11534 arg5 = arg6; 11535 } 11536 if (arg2 == 0 && arg3 == 0) { 11537 /* Special-case NULL buffer and zero length, which should succeed */ 11538 p = 0; 11539 } else { 11540 p = lock_user(VERIFY_READ, arg2, arg3, 1); 11541 if (!p) { 11542 return -TARGET_EFAULT; 11543 } 11544 } 11545 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 11546 unlock_user(p, arg2, 0); 11547 return ret; 11548 #endif 11549 case TARGET_NR_getcwd: 11550 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 11551 return -TARGET_EFAULT; 11552 ret = get_errno(sys_getcwd1(p, arg2)); 11553 unlock_user(p, arg1, ret); 11554 return ret; 11555 case TARGET_NR_capget: 11556 case TARGET_NR_capset: 11557 { 11558 struct target_user_cap_header *target_header; 11559 struct target_user_cap_data *target_data = NULL; 11560 struct __user_cap_header_struct header; 11561 struct __user_cap_data_struct data[2]; 11562 struct __user_cap_data_struct *dataptr = NULL; 11563 int i, target_datalen; 11564 int data_items = 1; 11565 11566 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 11567 return -TARGET_EFAULT; 11568 } 11569 header.version = tswap32(target_header->version); 11570 header.pid = tswap32(target_header->pid); 11571 11572 if (header.version != _LINUX_CAPABILITY_VERSION) { 11573 /* Version 2 and up takes pointer to two user_data structs */ 11574 data_items = 2; 11575 } 11576 11577 target_datalen = sizeof(*target_data) * data_items; 11578 11579 if (arg2) { 11580 if (num == TARGET_NR_capget) { 11581 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 11582 } else { 11583 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 11584 } 11585 if (!target_data) { 11586 unlock_user_struct(target_header, arg1, 0); 11587 return -TARGET_EFAULT; 11588 } 11589 11590 if (num == TARGET_NR_capset) { 11591 for (i = 0; i < data_items; i++) { 11592 data[i].effective = tswap32(target_data[i].effective); 11593 data[i].permitted = tswap32(target_data[i].permitted); 11594 data[i].inheritable = tswap32(target_data[i].inheritable); 11595 } 11596 } 11597 11598 dataptr = data; 11599 } 11600 11601 if (num == TARGET_NR_capget) { 11602 ret = get_errno(capget(&header, dataptr)); 11603 } else { 11604 ret = get_errno(capset(&header, dataptr)); 11605 } 11606 11607 /* The kernel always updates version for both capget and capset */ 11608 target_header->version = tswap32(header.version); 11609 unlock_user_struct(target_header, arg1, 1); 11610 11611 if (arg2) { 11612 if (num == TARGET_NR_capget) { 11613 for (i = 0; i < data_items; i++) { 11614 target_data[i].effective = tswap32(data[i].effective); 11615 target_data[i].permitted = tswap32(data[i].permitted); 11616 target_data[i].inheritable = tswap32(data[i].inheritable); 11617 } 11618 unlock_user(target_data, arg2, target_datalen); 11619 } else { 11620 unlock_user(target_data, arg2, 0); 11621 } 11622 } 11623 return ret; 11624 } 11625 case TARGET_NR_sigaltstack: 11626 return do_sigaltstack(arg1, arg2, cpu_env); 11627 11628 #ifdef CONFIG_SENDFILE 11629 #ifdef TARGET_NR_sendfile 11630 case TARGET_NR_sendfile: 11631 { 11632 off_t *offp = NULL; 11633 off_t off; 11634 if (arg3) { 11635 ret = get_user_sal(off, arg3); 11636 if (is_error(ret)) { 11637 return ret; 11638 } 11639 offp = &off; 11640 } 11641 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11642 if (!is_error(ret) && arg3) { 11643 abi_long ret2 = put_user_sal(off, arg3); 11644 if (is_error(ret2)) { 11645 ret = ret2; 11646 } 11647 } 11648 return ret; 11649 } 11650 #endif 11651 #ifdef TARGET_NR_sendfile64 11652 case TARGET_NR_sendfile64: 11653 { 11654 off_t *offp = NULL; 11655 off_t off; 11656 if (arg3) { 11657 ret = get_user_s64(off, arg3); 11658 if (is_error(ret)) { 11659 return ret; 11660 } 11661 offp = &off; 11662 } 11663 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11664 if (!is_error(ret) && arg3) { 11665 abi_long ret2 = put_user_s64(off, arg3); 11666 if (is_error(ret2)) { 11667 ret = ret2; 11668 } 11669 } 11670 return ret; 11671 } 11672 #endif 11673 #endif 11674 #ifdef TARGET_NR_vfork 11675 case TARGET_NR_vfork: 11676 return get_errno(do_fork(cpu_env, 11677 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 11678 0, 0, 0, 0)); 11679 #endif 11680 #ifdef TARGET_NR_ugetrlimit 11681 case TARGET_NR_ugetrlimit: 11682 { 11683 struct rlimit rlim; 11684 int resource = target_to_host_resource(arg1); 11685 ret = get_errno(getrlimit(resource, &rlim)); 11686 if (!is_error(ret)) { 11687 struct target_rlimit *target_rlim; 11688 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 11689 return -TARGET_EFAULT; 11690 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 11691 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 11692 unlock_user_struct(target_rlim, arg2, 1); 11693 } 11694 return ret; 11695 } 11696 #endif 11697 #ifdef TARGET_NR_truncate64 11698 case TARGET_NR_truncate64: 11699 if (!(p = lock_user_string(arg1))) 11700 return -TARGET_EFAULT; 11701 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 11702 unlock_user(p, arg1, 0); 11703 return ret; 11704 #endif 11705 #ifdef TARGET_NR_ftruncate64 11706 case TARGET_NR_ftruncate64: 11707 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 11708 #endif 11709 #ifdef TARGET_NR_stat64 11710 case TARGET_NR_stat64: 11711 if (!(p = lock_user_string(arg1))) { 11712 return -TARGET_EFAULT; 11713 } 11714 ret = get_errno(stat(path(p), &st)); 11715 unlock_user(p, arg1, 0); 11716 if (!is_error(ret)) 11717 ret = host_to_target_stat64(cpu_env, arg2, &st); 11718 return ret; 11719 #endif 11720 #ifdef TARGET_NR_lstat64 11721 case TARGET_NR_lstat64: 11722 if (!(p = lock_user_string(arg1))) { 11723 return -TARGET_EFAULT; 11724 } 11725 ret = get_errno(lstat(path(p), &st)); 11726 unlock_user(p, arg1, 0); 11727 if (!is_error(ret)) 11728 ret = host_to_target_stat64(cpu_env, arg2, &st); 11729 return ret; 11730 #endif 11731 #ifdef TARGET_NR_fstat64 11732 case TARGET_NR_fstat64: 11733 ret = get_errno(fstat(arg1, &st)); 11734 if (!is_error(ret)) 11735 ret = host_to_target_stat64(cpu_env, arg2, &st); 11736 return ret; 11737 #endif 11738 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 11739 #ifdef TARGET_NR_fstatat64 11740 case TARGET_NR_fstatat64: 11741 #endif 11742 #ifdef TARGET_NR_newfstatat 11743 case TARGET_NR_newfstatat: 11744 #endif 11745 if (!(p = lock_user_string(arg2))) { 11746 return -TARGET_EFAULT; 11747 } 11748 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 11749 unlock_user(p, arg2, 0); 11750 if (!is_error(ret)) 11751 ret = host_to_target_stat64(cpu_env, arg3, &st); 11752 return ret; 11753 #endif 11754 #if defined(TARGET_NR_statx) 11755 case TARGET_NR_statx: 11756 { 11757 struct target_statx *target_stx; 11758 int dirfd = arg1; 11759 int flags = arg3; 11760 11761 p = lock_user_string(arg2); 11762 if (p == NULL) { 11763 return -TARGET_EFAULT; 11764 } 11765 #if defined(__NR_statx) 11766 { 11767 /* 11768 * It is assumed that struct statx is architecture independent. 11769 */ 11770 struct target_statx host_stx; 11771 int mask = arg4; 11772 11773 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx)); 11774 if (!is_error(ret)) { 11775 if (host_to_target_statx(&host_stx, arg5) != 0) { 11776 unlock_user(p, arg2, 0); 11777 return -TARGET_EFAULT; 11778 } 11779 } 11780 11781 if (ret != -TARGET_ENOSYS) { 11782 unlock_user(p, arg2, 0); 11783 return ret; 11784 } 11785 } 11786 #endif 11787 ret = get_errno(fstatat(dirfd, path(p), &st, flags)); 11788 unlock_user(p, arg2, 0); 11789 11790 if (!is_error(ret)) { 11791 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) { 11792 return -TARGET_EFAULT; 11793 } 11794 memset(target_stx, 0, sizeof(*target_stx)); 11795 __put_user(major(st.st_dev), &target_stx->stx_dev_major); 11796 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor); 11797 __put_user(st.st_ino, &target_stx->stx_ino); 11798 __put_user(st.st_mode, &target_stx->stx_mode); 11799 __put_user(st.st_uid, &target_stx->stx_uid); 11800 __put_user(st.st_gid, &target_stx->stx_gid); 11801 __put_user(st.st_nlink, &target_stx->stx_nlink); 11802 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major); 11803 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor); 11804 __put_user(st.st_size, &target_stx->stx_size); 11805 __put_user(st.st_blksize, &target_stx->stx_blksize); 11806 __put_user(st.st_blocks, &target_stx->stx_blocks); 11807 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec); 11808 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec); 11809 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec); 11810 unlock_user_struct(target_stx, arg5, 1); 11811 } 11812 } 11813 return ret; 11814 #endif 11815 #ifdef TARGET_NR_lchown 11816 case TARGET_NR_lchown: 11817 if (!(p = lock_user_string(arg1))) 11818 return -TARGET_EFAULT; 11819 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 11820 unlock_user(p, arg1, 0); 11821 return ret; 11822 #endif 11823 #ifdef TARGET_NR_getuid 11824 case TARGET_NR_getuid: 11825 return get_errno(high2lowuid(getuid())); 11826 #endif 11827 #ifdef TARGET_NR_getgid 11828 case TARGET_NR_getgid: 11829 return get_errno(high2lowgid(getgid())); 11830 #endif 11831 #ifdef TARGET_NR_geteuid 11832 case TARGET_NR_geteuid: 11833 return get_errno(high2lowuid(geteuid())); 11834 #endif 11835 #ifdef TARGET_NR_getegid 11836 case TARGET_NR_getegid: 11837 return get_errno(high2lowgid(getegid())); 11838 #endif 11839 case TARGET_NR_setreuid: 11840 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11841 case TARGET_NR_setregid: 11842 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11843 case TARGET_NR_getgroups: 11844 { /* the same code as for TARGET_NR_getgroups32 */ 11845 int gidsetsize = arg1; 11846 target_id *target_grouplist; 11847 g_autofree gid_t *grouplist = NULL; 11848 int i; 11849 11850 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11851 return -TARGET_EINVAL; 11852 } 11853 if (gidsetsize > 0) { 11854 grouplist = g_try_new(gid_t, gidsetsize); 11855 if (!grouplist) { 11856 return -TARGET_ENOMEM; 11857 } 11858 } 11859 ret = get_errno(getgroups(gidsetsize, grouplist)); 11860 if (!is_error(ret) && gidsetsize > 0) { 11861 target_grouplist = lock_user(VERIFY_WRITE, arg2, 11862 gidsetsize * sizeof(target_id), 0); 11863 if (!target_grouplist) { 11864 return -TARGET_EFAULT; 11865 } 11866 for (i = 0; i < ret; i++) { 11867 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11868 } 11869 unlock_user(target_grouplist, arg2, 11870 gidsetsize * sizeof(target_id)); 11871 } 11872 return ret; 11873 } 11874 case TARGET_NR_setgroups: 11875 { /* the same code as for TARGET_NR_setgroups32 */ 11876 int gidsetsize = arg1; 11877 target_id *target_grouplist; 11878 g_autofree gid_t *grouplist = NULL; 11879 int i; 11880 11881 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11882 return -TARGET_EINVAL; 11883 } 11884 if (gidsetsize > 0) { 11885 grouplist = g_try_new(gid_t, gidsetsize); 11886 if (!grouplist) { 11887 return -TARGET_ENOMEM; 11888 } 11889 target_grouplist = lock_user(VERIFY_READ, arg2, 11890 gidsetsize * sizeof(target_id), 1); 11891 if (!target_grouplist) { 11892 return -TARGET_EFAULT; 11893 } 11894 for (i = 0; i < gidsetsize; i++) { 11895 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11896 } 11897 unlock_user(target_grouplist, arg2, 11898 gidsetsize * sizeof(target_id)); 11899 } 11900 return get_errno(setgroups(gidsetsize, grouplist)); 11901 } 11902 case TARGET_NR_fchown: 11903 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11904 #if defined(TARGET_NR_fchownat) 11905 case TARGET_NR_fchownat: 11906 if (!(p = lock_user_string(arg2))) 11907 return -TARGET_EFAULT; 11908 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11909 low2highgid(arg4), arg5)); 11910 unlock_user(p, arg2, 0); 11911 return ret; 11912 #endif 11913 #ifdef TARGET_NR_setresuid 11914 case TARGET_NR_setresuid: 11915 return get_errno(sys_setresuid(low2highuid(arg1), 11916 low2highuid(arg2), 11917 low2highuid(arg3))); 11918 #endif 11919 #ifdef TARGET_NR_getresuid 11920 case TARGET_NR_getresuid: 11921 { 11922 uid_t ruid, euid, suid; 11923 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11924 if (!is_error(ret)) { 11925 if (put_user_id(high2lowuid(ruid), arg1) 11926 || put_user_id(high2lowuid(euid), arg2) 11927 || put_user_id(high2lowuid(suid), arg3)) 11928 return -TARGET_EFAULT; 11929 } 11930 } 11931 return ret; 11932 #endif 11933 #ifdef TARGET_NR_getresgid 11934 case TARGET_NR_setresgid: 11935 return get_errno(sys_setresgid(low2highgid(arg1), 11936 low2highgid(arg2), 11937 low2highgid(arg3))); 11938 #endif 11939 #ifdef TARGET_NR_getresgid 11940 case TARGET_NR_getresgid: 11941 { 11942 gid_t rgid, egid, sgid; 11943 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11944 if (!is_error(ret)) { 11945 if (put_user_id(high2lowgid(rgid), arg1) 11946 || put_user_id(high2lowgid(egid), arg2) 11947 || put_user_id(high2lowgid(sgid), arg3)) 11948 return -TARGET_EFAULT; 11949 } 11950 } 11951 return ret; 11952 #endif 11953 #ifdef TARGET_NR_chown 11954 case TARGET_NR_chown: 11955 if (!(p = lock_user_string(arg1))) 11956 return -TARGET_EFAULT; 11957 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11958 unlock_user(p, arg1, 0); 11959 return ret; 11960 #endif 11961 case TARGET_NR_setuid: 11962 return get_errno(sys_setuid(low2highuid(arg1))); 11963 case TARGET_NR_setgid: 11964 return get_errno(sys_setgid(low2highgid(arg1))); 11965 case TARGET_NR_setfsuid: 11966 return get_errno(setfsuid(arg1)); 11967 case TARGET_NR_setfsgid: 11968 return get_errno(setfsgid(arg1)); 11969 11970 #ifdef TARGET_NR_lchown32 11971 case TARGET_NR_lchown32: 11972 if (!(p = lock_user_string(arg1))) 11973 return -TARGET_EFAULT; 11974 ret = get_errno(lchown(p, arg2, arg3)); 11975 unlock_user(p, arg1, 0); 11976 return ret; 11977 #endif 11978 #ifdef TARGET_NR_getuid32 11979 case TARGET_NR_getuid32: 11980 return get_errno(getuid()); 11981 #endif 11982 11983 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11984 /* Alpha specific */ 11985 case TARGET_NR_getxuid: 11986 { 11987 uid_t euid; 11988 euid=geteuid(); 11989 cpu_env->ir[IR_A4]=euid; 11990 } 11991 return get_errno(getuid()); 11992 #endif 11993 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11994 /* Alpha specific */ 11995 case TARGET_NR_getxgid: 11996 { 11997 uid_t egid; 11998 egid=getegid(); 11999 cpu_env->ir[IR_A4]=egid; 12000 } 12001 return get_errno(getgid()); 12002 #endif 12003 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 12004 /* Alpha specific */ 12005 case TARGET_NR_osf_getsysinfo: 12006 ret = -TARGET_EOPNOTSUPP; 12007 switch (arg1) { 12008 case TARGET_GSI_IEEE_FP_CONTROL: 12009 { 12010 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env); 12011 uint64_t swcr = cpu_env->swcr; 12012 12013 swcr &= ~SWCR_STATUS_MASK; 12014 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK; 12015 12016 if (put_user_u64 (swcr, arg2)) 12017 return -TARGET_EFAULT; 12018 ret = 0; 12019 } 12020 break; 12021 12022 /* case GSI_IEEE_STATE_AT_SIGNAL: 12023 -- Not implemented in linux kernel. 12024 case GSI_UACPROC: 12025 -- Retrieves current unaligned access state; not much used. 12026 case GSI_PROC_TYPE: 12027 -- Retrieves implver information; surely not used. 12028 case GSI_GET_HWRPB: 12029 -- Grabs a copy of the HWRPB; surely not used. 12030 */ 12031 } 12032 return ret; 12033 #endif 12034 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 12035 /* Alpha specific */ 12036 case TARGET_NR_osf_setsysinfo: 12037 ret = -TARGET_EOPNOTSUPP; 12038 switch (arg1) { 12039 case TARGET_SSI_IEEE_FP_CONTROL: 12040 { 12041 uint64_t swcr, fpcr; 12042 12043 if (get_user_u64 (swcr, arg2)) { 12044 return -TARGET_EFAULT; 12045 } 12046 12047 /* 12048 * The kernel calls swcr_update_status to update the 12049 * status bits from the fpcr at every point that it 12050 * could be queried. Therefore, we store the status 12051 * bits only in FPCR. 12052 */ 12053 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK); 12054 12055 fpcr = cpu_alpha_load_fpcr(cpu_env); 12056 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32); 12057 fpcr |= alpha_ieee_swcr_to_fpcr(swcr); 12058 cpu_alpha_store_fpcr(cpu_env, fpcr); 12059 ret = 0; 12060 } 12061 break; 12062 12063 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 12064 { 12065 uint64_t exc, fpcr, fex; 12066 12067 if (get_user_u64(exc, arg2)) { 12068 return -TARGET_EFAULT; 12069 } 12070 exc &= SWCR_STATUS_MASK; 12071 fpcr = cpu_alpha_load_fpcr(cpu_env); 12072 12073 /* Old exceptions are not signaled. */ 12074 fex = alpha_ieee_fpcr_to_swcr(fpcr); 12075 fex = exc & ~fex; 12076 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT; 12077 fex &= (cpu_env)->swcr; 12078 12079 /* Update the hardware fpcr. */ 12080 fpcr |= alpha_ieee_swcr_to_fpcr(exc); 12081 cpu_alpha_store_fpcr(cpu_env, fpcr); 12082 12083 if (fex) { 12084 int si_code = TARGET_FPE_FLTUNK; 12085 target_siginfo_t info; 12086 12087 if (fex & SWCR_TRAP_ENABLE_DNO) { 12088 si_code = TARGET_FPE_FLTUND; 12089 } 12090 if (fex & SWCR_TRAP_ENABLE_INE) { 12091 si_code = TARGET_FPE_FLTRES; 12092 } 12093 if (fex & SWCR_TRAP_ENABLE_UNF) { 12094 si_code = TARGET_FPE_FLTUND; 12095 } 12096 if (fex & SWCR_TRAP_ENABLE_OVF) { 12097 si_code = TARGET_FPE_FLTOVF; 12098 } 12099 if (fex & SWCR_TRAP_ENABLE_DZE) { 12100 si_code = TARGET_FPE_FLTDIV; 12101 } 12102 if (fex & SWCR_TRAP_ENABLE_INV) { 12103 si_code = TARGET_FPE_FLTINV; 12104 } 12105 12106 info.si_signo = SIGFPE; 12107 info.si_errno = 0; 12108 info.si_code = si_code; 12109 info._sifields._sigfault._addr = (cpu_env)->pc; 12110 queue_signal(cpu_env, info.si_signo, 12111 QEMU_SI_FAULT, &info); 12112 } 12113 ret = 0; 12114 } 12115 break; 12116 12117 /* case SSI_NVPAIRS: 12118 -- Used with SSIN_UACPROC to enable unaligned accesses. 12119 case SSI_IEEE_STATE_AT_SIGNAL: 12120 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 12121 -- Not implemented in linux kernel 12122 */ 12123 } 12124 return ret; 12125 #endif 12126 #ifdef TARGET_NR_osf_sigprocmask 12127 /* Alpha specific. */ 12128 case TARGET_NR_osf_sigprocmask: 12129 { 12130 abi_ulong mask; 12131 int how; 12132 sigset_t set, oldset; 12133 12134 switch(arg1) { 12135 case TARGET_SIG_BLOCK: 12136 how = SIG_BLOCK; 12137 break; 12138 case TARGET_SIG_UNBLOCK: 12139 how = SIG_UNBLOCK; 12140 break; 12141 case TARGET_SIG_SETMASK: 12142 how = SIG_SETMASK; 12143 break; 12144 default: 12145 return -TARGET_EINVAL; 12146 } 12147 mask = arg2; 12148 target_to_host_old_sigset(&set, &mask); 12149 ret = do_sigprocmask(how, &set, &oldset); 12150 if (!ret) { 12151 host_to_target_old_sigset(&mask, &oldset); 12152 ret = mask; 12153 } 12154 } 12155 return ret; 12156 #endif 12157 12158 #ifdef TARGET_NR_getgid32 12159 case TARGET_NR_getgid32: 12160 return get_errno(getgid()); 12161 #endif 12162 #ifdef TARGET_NR_geteuid32 12163 case TARGET_NR_geteuid32: 12164 return get_errno(geteuid()); 12165 #endif 12166 #ifdef TARGET_NR_getegid32 12167 case TARGET_NR_getegid32: 12168 return get_errno(getegid()); 12169 #endif 12170 #ifdef TARGET_NR_setreuid32 12171 case TARGET_NR_setreuid32: 12172 return get_errno(setreuid(arg1, arg2)); 12173 #endif 12174 #ifdef TARGET_NR_setregid32 12175 case TARGET_NR_setregid32: 12176 return get_errno(setregid(arg1, arg2)); 12177 #endif 12178 #ifdef TARGET_NR_getgroups32 12179 case TARGET_NR_getgroups32: 12180 { /* the same code as for TARGET_NR_getgroups */ 12181 int gidsetsize = arg1; 12182 uint32_t *target_grouplist; 12183 g_autofree gid_t *grouplist = NULL; 12184 int i; 12185 12186 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12187 return -TARGET_EINVAL; 12188 } 12189 if (gidsetsize > 0) { 12190 grouplist = g_try_new(gid_t, gidsetsize); 12191 if (!grouplist) { 12192 return -TARGET_ENOMEM; 12193 } 12194 } 12195 ret = get_errno(getgroups(gidsetsize, grouplist)); 12196 if (!is_error(ret) && gidsetsize > 0) { 12197 target_grouplist = lock_user(VERIFY_WRITE, arg2, 12198 gidsetsize * 4, 0); 12199 if (!target_grouplist) { 12200 return -TARGET_EFAULT; 12201 } 12202 for (i = 0; i < ret; i++) { 12203 target_grouplist[i] = tswap32(grouplist[i]); 12204 } 12205 unlock_user(target_grouplist, arg2, gidsetsize * 4); 12206 } 12207 return ret; 12208 } 12209 #endif 12210 #ifdef TARGET_NR_setgroups32 12211 case TARGET_NR_setgroups32: 12212 { /* the same code as for TARGET_NR_setgroups */ 12213 int gidsetsize = arg1; 12214 uint32_t *target_grouplist; 12215 g_autofree gid_t *grouplist = NULL; 12216 int i; 12217 12218 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12219 return -TARGET_EINVAL; 12220 } 12221 if (gidsetsize > 0) { 12222 grouplist = g_try_new(gid_t, gidsetsize); 12223 if (!grouplist) { 12224 return -TARGET_ENOMEM; 12225 } 12226 target_grouplist = lock_user(VERIFY_READ, arg2, 12227 gidsetsize * 4, 1); 12228 if (!target_grouplist) { 12229 return -TARGET_EFAULT; 12230 } 12231 for (i = 0; i < gidsetsize; i++) { 12232 grouplist[i] = tswap32(target_grouplist[i]); 12233 } 12234 unlock_user(target_grouplist, arg2, 0); 12235 } 12236 return get_errno(setgroups(gidsetsize, grouplist)); 12237 } 12238 #endif 12239 #ifdef TARGET_NR_fchown32 12240 case TARGET_NR_fchown32: 12241 return get_errno(fchown(arg1, arg2, arg3)); 12242 #endif 12243 #ifdef TARGET_NR_setresuid32 12244 case TARGET_NR_setresuid32: 12245 return get_errno(sys_setresuid(arg1, arg2, arg3)); 12246 #endif 12247 #ifdef TARGET_NR_getresuid32 12248 case TARGET_NR_getresuid32: 12249 { 12250 uid_t ruid, euid, suid; 12251 ret = get_errno(getresuid(&ruid, &euid, &suid)); 12252 if (!is_error(ret)) { 12253 if (put_user_u32(ruid, arg1) 12254 || put_user_u32(euid, arg2) 12255 || put_user_u32(suid, arg3)) 12256 return -TARGET_EFAULT; 12257 } 12258 } 12259 return ret; 12260 #endif 12261 #ifdef TARGET_NR_setresgid32 12262 case TARGET_NR_setresgid32: 12263 return get_errno(sys_setresgid(arg1, arg2, arg3)); 12264 #endif 12265 #ifdef TARGET_NR_getresgid32 12266 case TARGET_NR_getresgid32: 12267 { 12268 gid_t rgid, egid, sgid; 12269 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 12270 if (!is_error(ret)) { 12271 if (put_user_u32(rgid, arg1) 12272 || put_user_u32(egid, arg2) 12273 || put_user_u32(sgid, arg3)) 12274 return -TARGET_EFAULT; 12275 } 12276 } 12277 return ret; 12278 #endif 12279 #ifdef TARGET_NR_chown32 12280 case TARGET_NR_chown32: 12281 if (!(p = lock_user_string(arg1))) 12282 return -TARGET_EFAULT; 12283 ret = get_errno(chown(p, arg2, arg3)); 12284 unlock_user(p, arg1, 0); 12285 return ret; 12286 #endif 12287 #ifdef TARGET_NR_setuid32 12288 case TARGET_NR_setuid32: 12289 return get_errno(sys_setuid(arg1)); 12290 #endif 12291 #ifdef TARGET_NR_setgid32 12292 case TARGET_NR_setgid32: 12293 return get_errno(sys_setgid(arg1)); 12294 #endif 12295 #ifdef TARGET_NR_setfsuid32 12296 case TARGET_NR_setfsuid32: 12297 return get_errno(setfsuid(arg1)); 12298 #endif 12299 #ifdef TARGET_NR_setfsgid32 12300 case TARGET_NR_setfsgid32: 12301 return get_errno(setfsgid(arg1)); 12302 #endif 12303 #ifdef TARGET_NR_mincore 12304 case TARGET_NR_mincore: 12305 { 12306 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0); 12307 if (!a) { 12308 return -TARGET_ENOMEM; 12309 } 12310 p = lock_user_string(arg3); 12311 if (!p) { 12312 ret = -TARGET_EFAULT; 12313 } else { 12314 ret = get_errno(mincore(a, arg2, p)); 12315 unlock_user(p, arg3, ret); 12316 } 12317 unlock_user(a, arg1, 0); 12318 } 12319 return ret; 12320 #endif 12321 #ifdef TARGET_NR_arm_fadvise64_64 12322 case TARGET_NR_arm_fadvise64_64: 12323 /* arm_fadvise64_64 looks like fadvise64_64 but 12324 * with different argument order: fd, advice, offset, len 12325 * rather than the usual fd, offset, len, advice. 12326 * Note that offset and len are both 64-bit so appear as 12327 * pairs of 32-bit registers. 12328 */ 12329 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 12330 target_offset64(arg5, arg6), arg2); 12331 return -host_to_target_errno(ret); 12332 #endif 12333 12334 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12335 12336 #ifdef TARGET_NR_fadvise64_64 12337 case TARGET_NR_fadvise64_64: 12338 #if defined(TARGET_PPC) || defined(TARGET_XTENSA) 12339 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 12340 ret = arg2; 12341 arg2 = arg3; 12342 arg3 = arg4; 12343 arg4 = arg5; 12344 arg5 = arg6; 12345 arg6 = ret; 12346 #else 12347 /* 6 args: fd, offset (high, low), len (high, low), advice */ 12348 if (regpairs_aligned(cpu_env, num)) { 12349 /* offset is in (3,4), len in (5,6) and advice in 7 */ 12350 arg2 = arg3; 12351 arg3 = arg4; 12352 arg4 = arg5; 12353 arg5 = arg6; 12354 arg6 = arg7; 12355 } 12356 #endif 12357 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), 12358 target_offset64(arg4, arg5), arg6); 12359 return -host_to_target_errno(ret); 12360 #endif 12361 12362 #ifdef TARGET_NR_fadvise64 12363 case TARGET_NR_fadvise64: 12364 /* 5 args: fd, offset (high, low), len, advice */ 12365 if (regpairs_aligned(cpu_env, num)) { 12366 /* offset is in (3,4), len in 5 and advice in 6 */ 12367 arg2 = arg3; 12368 arg3 = arg4; 12369 arg4 = arg5; 12370 arg5 = arg6; 12371 } 12372 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5); 12373 return -host_to_target_errno(ret); 12374 #endif 12375 12376 #else /* not a 32-bit ABI */ 12377 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 12378 #ifdef TARGET_NR_fadvise64_64 12379 case TARGET_NR_fadvise64_64: 12380 #endif 12381 #ifdef TARGET_NR_fadvise64 12382 case TARGET_NR_fadvise64: 12383 #endif 12384 #ifdef TARGET_S390X 12385 switch (arg4) { 12386 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 12387 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 12388 case 6: arg4 = POSIX_FADV_DONTNEED; break; 12389 case 7: arg4 = POSIX_FADV_NOREUSE; break; 12390 default: break; 12391 } 12392 #endif 12393 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 12394 #endif 12395 #endif /* end of 64-bit ABI fadvise handling */ 12396 12397 #ifdef TARGET_NR_madvise 12398 case TARGET_NR_madvise: 12399 return target_madvise(arg1, arg2, arg3); 12400 #endif 12401 #ifdef TARGET_NR_fcntl64 12402 case TARGET_NR_fcntl64: 12403 { 12404 int cmd; 12405 struct flock64 fl; 12406 from_flock64_fn *copyfrom = copy_from_user_flock64; 12407 to_flock64_fn *copyto = copy_to_user_flock64; 12408 12409 #ifdef TARGET_ARM 12410 if (!cpu_env->eabi) { 12411 copyfrom = copy_from_user_oabi_flock64; 12412 copyto = copy_to_user_oabi_flock64; 12413 } 12414 #endif 12415 12416 cmd = target_to_host_fcntl_cmd(arg2); 12417 if (cmd == -TARGET_EINVAL) { 12418 return cmd; 12419 } 12420 12421 switch(arg2) { 12422 case TARGET_F_GETLK64: 12423 ret = copyfrom(&fl, arg3); 12424 if (ret) { 12425 break; 12426 } 12427 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12428 if (ret == 0) { 12429 ret = copyto(arg3, &fl); 12430 } 12431 break; 12432 12433 case TARGET_F_SETLK64: 12434 case TARGET_F_SETLKW64: 12435 ret = copyfrom(&fl, arg3); 12436 if (ret) { 12437 break; 12438 } 12439 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12440 break; 12441 default: 12442 ret = do_fcntl(arg1, arg2, arg3); 12443 break; 12444 } 12445 return ret; 12446 } 12447 #endif 12448 #ifdef TARGET_NR_cacheflush 12449 case TARGET_NR_cacheflush: 12450 /* self-modifying code is handled automatically, so nothing needed */ 12451 return 0; 12452 #endif 12453 #ifdef TARGET_NR_getpagesize 12454 case TARGET_NR_getpagesize: 12455 return TARGET_PAGE_SIZE; 12456 #endif 12457 case TARGET_NR_gettid: 12458 return get_errno(sys_gettid()); 12459 #ifdef TARGET_NR_readahead 12460 case TARGET_NR_readahead: 12461 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12462 if (regpairs_aligned(cpu_env, num)) { 12463 arg2 = arg3; 12464 arg3 = arg4; 12465 arg4 = arg5; 12466 } 12467 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 12468 #else 12469 ret = get_errno(readahead(arg1, arg2, arg3)); 12470 #endif 12471 return ret; 12472 #endif 12473 #ifdef CONFIG_ATTR 12474 #ifdef TARGET_NR_setxattr 12475 case TARGET_NR_listxattr: 12476 case TARGET_NR_llistxattr: 12477 { 12478 void *b = 0; 12479 if (arg2) { 12480 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12481 if (!b) { 12482 return -TARGET_EFAULT; 12483 } 12484 } 12485 p = lock_user_string(arg1); 12486 if (p) { 12487 if (num == TARGET_NR_listxattr) { 12488 ret = get_errno(listxattr(p, b, arg3)); 12489 } else { 12490 ret = get_errno(llistxattr(p, b, arg3)); 12491 } 12492 } else { 12493 ret = -TARGET_EFAULT; 12494 } 12495 unlock_user(p, arg1, 0); 12496 unlock_user(b, arg2, arg3); 12497 return ret; 12498 } 12499 case TARGET_NR_flistxattr: 12500 { 12501 void *b = 0; 12502 if (arg2) { 12503 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12504 if (!b) { 12505 return -TARGET_EFAULT; 12506 } 12507 } 12508 ret = get_errno(flistxattr(arg1, b, arg3)); 12509 unlock_user(b, arg2, arg3); 12510 return ret; 12511 } 12512 case TARGET_NR_setxattr: 12513 case TARGET_NR_lsetxattr: 12514 { 12515 void *n, *v = 0; 12516 if (arg3) { 12517 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12518 if (!v) { 12519 return -TARGET_EFAULT; 12520 } 12521 } 12522 p = lock_user_string(arg1); 12523 n = lock_user_string(arg2); 12524 if (p && n) { 12525 if (num == TARGET_NR_setxattr) { 12526 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 12527 } else { 12528 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 12529 } 12530 } else { 12531 ret = -TARGET_EFAULT; 12532 } 12533 unlock_user(p, arg1, 0); 12534 unlock_user(n, arg2, 0); 12535 unlock_user(v, arg3, 0); 12536 } 12537 return ret; 12538 case TARGET_NR_fsetxattr: 12539 { 12540 void *n, *v = 0; 12541 if (arg3) { 12542 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12543 if (!v) { 12544 return -TARGET_EFAULT; 12545 } 12546 } 12547 n = lock_user_string(arg2); 12548 if (n) { 12549 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 12550 } else { 12551 ret = -TARGET_EFAULT; 12552 } 12553 unlock_user(n, arg2, 0); 12554 unlock_user(v, arg3, 0); 12555 } 12556 return ret; 12557 case TARGET_NR_getxattr: 12558 case TARGET_NR_lgetxattr: 12559 { 12560 void *n, *v = 0; 12561 if (arg3) { 12562 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12563 if (!v) { 12564 return -TARGET_EFAULT; 12565 } 12566 } 12567 p = lock_user_string(arg1); 12568 n = lock_user_string(arg2); 12569 if (p && n) { 12570 if (num == TARGET_NR_getxattr) { 12571 ret = get_errno(getxattr(p, n, v, arg4)); 12572 } else { 12573 ret = get_errno(lgetxattr(p, n, v, arg4)); 12574 } 12575 } else { 12576 ret = -TARGET_EFAULT; 12577 } 12578 unlock_user(p, arg1, 0); 12579 unlock_user(n, arg2, 0); 12580 unlock_user(v, arg3, arg4); 12581 } 12582 return ret; 12583 case TARGET_NR_fgetxattr: 12584 { 12585 void *n, *v = 0; 12586 if (arg3) { 12587 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12588 if (!v) { 12589 return -TARGET_EFAULT; 12590 } 12591 } 12592 n = lock_user_string(arg2); 12593 if (n) { 12594 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 12595 } else { 12596 ret = -TARGET_EFAULT; 12597 } 12598 unlock_user(n, arg2, 0); 12599 unlock_user(v, arg3, arg4); 12600 } 12601 return ret; 12602 case TARGET_NR_removexattr: 12603 case TARGET_NR_lremovexattr: 12604 { 12605 void *n; 12606 p = lock_user_string(arg1); 12607 n = lock_user_string(arg2); 12608 if (p && n) { 12609 if (num == TARGET_NR_removexattr) { 12610 ret = get_errno(removexattr(p, n)); 12611 } else { 12612 ret = get_errno(lremovexattr(p, n)); 12613 } 12614 } else { 12615 ret = -TARGET_EFAULT; 12616 } 12617 unlock_user(p, arg1, 0); 12618 unlock_user(n, arg2, 0); 12619 } 12620 return ret; 12621 case TARGET_NR_fremovexattr: 12622 { 12623 void *n; 12624 n = lock_user_string(arg2); 12625 if (n) { 12626 ret = get_errno(fremovexattr(arg1, n)); 12627 } else { 12628 ret = -TARGET_EFAULT; 12629 } 12630 unlock_user(n, arg2, 0); 12631 } 12632 return ret; 12633 #endif 12634 #endif /* CONFIG_ATTR */ 12635 #ifdef TARGET_NR_set_thread_area 12636 case TARGET_NR_set_thread_area: 12637 #if defined(TARGET_MIPS) 12638 cpu_env->active_tc.CP0_UserLocal = arg1; 12639 return 0; 12640 #elif defined(TARGET_CRIS) 12641 if (arg1 & 0xff) 12642 ret = -TARGET_EINVAL; 12643 else { 12644 cpu_env->pregs[PR_PID] = arg1; 12645 ret = 0; 12646 } 12647 return ret; 12648 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 12649 return do_set_thread_area(cpu_env, arg1); 12650 #elif defined(TARGET_M68K) 12651 { 12652 TaskState *ts = get_task_state(cpu); 12653 ts->tp_value = arg1; 12654 return 0; 12655 } 12656 #else 12657 return -TARGET_ENOSYS; 12658 #endif 12659 #endif 12660 #ifdef TARGET_NR_get_thread_area 12661 case TARGET_NR_get_thread_area: 12662 #if defined(TARGET_I386) && defined(TARGET_ABI32) 12663 return do_get_thread_area(cpu_env, arg1); 12664 #elif defined(TARGET_M68K) 12665 { 12666 TaskState *ts = get_task_state(cpu); 12667 return ts->tp_value; 12668 } 12669 #else 12670 return -TARGET_ENOSYS; 12671 #endif 12672 #endif 12673 #ifdef TARGET_NR_getdomainname 12674 case TARGET_NR_getdomainname: 12675 return -TARGET_ENOSYS; 12676 #endif 12677 12678 #ifdef TARGET_NR_clock_settime 12679 case TARGET_NR_clock_settime: 12680 { 12681 struct timespec ts; 12682 12683 ret = target_to_host_timespec(&ts, arg2); 12684 if (!is_error(ret)) { 12685 ret = get_errno(clock_settime(arg1, &ts)); 12686 } 12687 return ret; 12688 } 12689 #endif 12690 #ifdef TARGET_NR_clock_settime64 12691 case TARGET_NR_clock_settime64: 12692 { 12693 struct timespec ts; 12694 12695 ret = target_to_host_timespec64(&ts, arg2); 12696 if (!is_error(ret)) { 12697 ret = get_errno(clock_settime(arg1, &ts)); 12698 } 12699 return ret; 12700 } 12701 #endif 12702 #ifdef TARGET_NR_clock_gettime 12703 case TARGET_NR_clock_gettime: 12704 { 12705 struct timespec ts; 12706 ret = get_errno(clock_gettime(arg1, &ts)); 12707 if (!is_error(ret)) { 12708 ret = host_to_target_timespec(arg2, &ts); 12709 } 12710 return ret; 12711 } 12712 #endif 12713 #ifdef TARGET_NR_clock_gettime64 12714 case TARGET_NR_clock_gettime64: 12715 { 12716 struct timespec ts; 12717 ret = get_errno(clock_gettime(arg1, &ts)); 12718 if (!is_error(ret)) { 12719 ret = host_to_target_timespec64(arg2, &ts); 12720 } 12721 return ret; 12722 } 12723 #endif 12724 #ifdef TARGET_NR_clock_getres 12725 case TARGET_NR_clock_getres: 12726 { 12727 struct timespec ts; 12728 ret = get_errno(clock_getres(arg1, &ts)); 12729 if (!is_error(ret)) { 12730 host_to_target_timespec(arg2, &ts); 12731 } 12732 return ret; 12733 } 12734 #endif 12735 #ifdef TARGET_NR_clock_getres_time64 12736 case TARGET_NR_clock_getres_time64: 12737 { 12738 struct timespec ts; 12739 ret = get_errno(clock_getres(arg1, &ts)); 12740 if (!is_error(ret)) { 12741 host_to_target_timespec64(arg2, &ts); 12742 } 12743 return ret; 12744 } 12745 #endif 12746 #ifdef TARGET_NR_clock_nanosleep 12747 case TARGET_NR_clock_nanosleep: 12748 { 12749 struct timespec ts; 12750 if (target_to_host_timespec(&ts, arg3)) { 12751 return -TARGET_EFAULT; 12752 } 12753 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12754 &ts, arg4 ? &ts : NULL)); 12755 /* 12756 * if the call is interrupted by a signal handler, it fails 12757 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not 12758 * TIMER_ABSTIME, it returns the remaining unslept time in arg4. 12759 */ 12760 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12761 host_to_target_timespec(arg4, &ts)) { 12762 return -TARGET_EFAULT; 12763 } 12764 12765 return ret; 12766 } 12767 #endif 12768 #ifdef TARGET_NR_clock_nanosleep_time64 12769 case TARGET_NR_clock_nanosleep_time64: 12770 { 12771 struct timespec ts; 12772 12773 if (target_to_host_timespec64(&ts, arg3)) { 12774 return -TARGET_EFAULT; 12775 } 12776 12777 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12778 &ts, arg4 ? &ts : NULL)); 12779 12780 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12781 host_to_target_timespec64(arg4, &ts)) { 12782 return -TARGET_EFAULT; 12783 } 12784 return ret; 12785 } 12786 #endif 12787 12788 #if defined(TARGET_NR_set_tid_address) 12789 case TARGET_NR_set_tid_address: 12790 { 12791 TaskState *ts = get_task_state(cpu); 12792 ts->child_tidptr = arg1; 12793 /* do not call host set_tid_address() syscall, instead return tid() */ 12794 return get_errno(sys_gettid()); 12795 } 12796 #endif 12797 12798 case TARGET_NR_tkill: 12799 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 12800 12801 case TARGET_NR_tgkill: 12802 return get_errno(safe_tgkill((int)arg1, (int)arg2, 12803 target_to_host_signal(arg3))); 12804 12805 #ifdef TARGET_NR_set_robust_list 12806 case TARGET_NR_set_robust_list: 12807 case TARGET_NR_get_robust_list: 12808 /* The ABI for supporting robust futexes has userspace pass 12809 * the kernel a pointer to a linked list which is updated by 12810 * userspace after the syscall; the list is walked by the kernel 12811 * when the thread exits. Since the linked list in QEMU guest 12812 * memory isn't a valid linked list for the host and we have 12813 * no way to reliably intercept the thread-death event, we can't 12814 * support these. Silently return ENOSYS so that guest userspace 12815 * falls back to a non-robust futex implementation (which should 12816 * be OK except in the corner case of the guest crashing while 12817 * holding a mutex that is shared with another process via 12818 * shared memory). 12819 */ 12820 return -TARGET_ENOSYS; 12821 #endif 12822 12823 #if defined(TARGET_NR_utimensat) 12824 case TARGET_NR_utimensat: 12825 { 12826 struct timespec *tsp, ts[2]; 12827 if (!arg3) { 12828 tsp = NULL; 12829 } else { 12830 if (target_to_host_timespec(ts, arg3)) { 12831 return -TARGET_EFAULT; 12832 } 12833 if (target_to_host_timespec(ts + 1, arg3 + 12834 sizeof(struct target_timespec))) { 12835 return -TARGET_EFAULT; 12836 } 12837 tsp = ts; 12838 } 12839 if (!arg2) 12840 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12841 else { 12842 if (!(p = lock_user_string(arg2))) { 12843 return -TARGET_EFAULT; 12844 } 12845 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12846 unlock_user(p, arg2, 0); 12847 } 12848 } 12849 return ret; 12850 #endif 12851 #ifdef TARGET_NR_utimensat_time64 12852 case TARGET_NR_utimensat_time64: 12853 { 12854 struct timespec *tsp, ts[2]; 12855 if (!arg3) { 12856 tsp = NULL; 12857 } else { 12858 if (target_to_host_timespec64(ts, arg3)) { 12859 return -TARGET_EFAULT; 12860 } 12861 if (target_to_host_timespec64(ts + 1, arg3 + 12862 sizeof(struct target__kernel_timespec))) { 12863 return -TARGET_EFAULT; 12864 } 12865 tsp = ts; 12866 } 12867 if (!arg2) 12868 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12869 else { 12870 p = lock_user_string(arg2); 12871 if (!p) { 12872 return -TARGET_EFAULT; 12873 } 12874 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12875 unlock_user(p, arg2, 0); 12876 } 12877 } 12878 return ret; 12879 #endif 12880 #ifdef TARGET_NR_futex 12881 case TARGET_NR_futex: 12882 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6); 12883 #endif 12884 #ifdef TARGET_NR_futex_time64 12885 case TARGET_NR_futex_time64: 12886 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6); 12887 #endif 12888 #ifdef CONFIG_INOTIFY 12889 #if defined(TARGET_NR_inotify_init) 12890 case TARGET_NR_inotify_init: 12891 ret = get_errno(inotify_init()); 12892 if (ret >= 0) { 12893 fd_trans_register(ret, &target_inotify_trans); 12894 } 12895 return ret; 12896 #endif 12897 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1) 12898 case TARGET_NR_inotify_init1: 12899 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1, 12900 fcntl_flags_tbl))); 12901 if (ret >= 0) { 12902 fd_trans_register(ret, &target_inotify_trans); 12903 } 12904 return ret; 12905 #endif 12906 #if defined(TARGET_NR_inotify_add_watch) 12907 case TARGET_NR_inotify_add_watch: 12908 p = lock_user_string(arg2); 12909 ret = get_errno(inotify_add_watch(arg1, path(p), arg3)); 12910 unlock_user(p, arg2, 0); 12911 return ret; 12912 #endif 12913 #if defined(TARGET_NR_inotify_rm_watch) 12914 case TARGET_NR_inotify_rm_watch: 12915 return get_errno(inotify_rm_watch(arg1, arg2)); 12916 #endif 12917 #endif 12918 12919 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12920 case TARGET_NR_mq_open: 12921 { 12922 struct mq_attr posix_mq_attr; 12923 struct mq_attr *pposix_mq_attr; 12924 int host_flags; 12925 12926 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12927 pposix_mq_attr = NULL; 12928 if (arg4) { 12929 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12930 return -TARGET_EFAULT; 12931 } 12932 pposix_mq_attr = &posix_mq_attr; 12933 } 12934 p = lock_user_string(arg1 - 1); 12935 if (!p) { 12936 return -TARGET_EFAULT; 12937 } 12938 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12939 unlock_user (p, arg1, 0); 12940 } 12941 return ret; 12942 12943 case TARGET_NR_mq_unlink: 12944 p = lock_user_string(arg1 - 1); 12945 if (!p) { 12946 return -TARGET_EFAULT; 12947 } 12948 ret = get_errno(mq_unlink(p)); 12949 unlock_user (p, arg1, 0); 12950 return ret; 12951 12952 #ifdef TARGET_NR_mq_timedsend 12953 case TARGET_NR_mq_timedsend: 12954 { 12955 struct timespec ts; 12956 12957 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12958 if (arg5 != 0) { 12959 if (target_to_host_timespec(&ts, arg5)) { 12960 return -TARGET_EFAULT; 12961 } 12962 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12963 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12964 return -TARGET_EFAULT; 12965 } 12966 } else { 12967 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12968 } 12969 unlock_user (p, arg2, arg3); 12970 } 12971 return ret; 12972 #endif 12973 #ifdef TARGET_NR_mq_timedsend_time64 12974 case TARGET_NR_mq_timedsend_time64: 12975 { 12976 struct timespec ts; 12977 12978 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12979 if (arg5 != 0) { 12980 if (target_to_host_timespec64(&ts, arg5)) { 12981 return -TARGET_EFAULT; 12982 } 12983 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12984 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12985 return -TARGET_EFAULT; 12986 } 12987 } else { 12988 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12989 } 12990 unlock_user(p, arg2, arg3); 12991 } 12992 return ret; 12993 #endif 12994 12995 #ifdef TARGET_NR_mq_timedreceive 12996 case TARGET_NR_mq_timedreceive: 12997 { 12998 struct timespec ts; 12999 unsigned int prio; 13000 13001 p = lock_user (VERIFY_READ, arg2, arg3, 1); 13002 if (arg5 != 0) { 13003 if (target_to_host_timespec(&ts, arg5)) { 13004 return -TARGET_EFAULT; 13005 } 13006 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13007 &prio, &ts)); 13008 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 13009 return -TARGET_EFAULT; 13010 } 13011 } else { 13012 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13013 &prio, NULL)); 13014 } 13015 unlock_user (p, arg2, arg3); 13016 if (arg4 != 0) 13017 put_user_u32(prio, arg4); 13018 } 13019 return ret; 13020 #endif 13021 #ifdef TARGET_NR_mq_timedreceive_time64 13022 case TARGET_NR_mq_timedreceive_time64: 13023 { 13024 struct timespec ts; 13025 unsigned int prio; 13026 13027 p = lock_user(VERIFY_READ, arg2, arg3, 1); 13028 if (arg5 != 0) { 13029 if (target_to_host_timespec64(&ts, arg5)) { 13030 return -TARGET_EFAULT; 13031 } 13032 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13033 &prio, &ts)); 13034 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 13035 return -TARGET_EFAULT; 13036 } 13037 } else { 13038 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13039 &prio, NULL)); 13040 } 13041 unlock_user(p, arg2, arg3); 13042 if (arg4 != 0) { 13043 put_user_u32(prio, arg4); 13044 } 13045 } 13046 return ret; 13047 #endif 13048 13049 /* Not implemented for now... */ 13050 /* case TARGET_NR_mq_notify: */ 13051 /* break; */ 13052 13053 case TARGET_NR_mq_getsetattr: 13054 { 13055 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 13056 ret = 0; 13057 if (arg2 != 0) { 13058 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 13059 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in, 13060 &posix_mq_attr_out)); 13061 } else if (arg3 != 0) { 13062 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out)); 13063 } 13064 if (ret == 0 && arg3 != 0) { 13065 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 13066 } 13067 } 13068 return ret; 13069 #endif 13070 13071 #ifdef CONFIG_SPLICE 13072 #ifdef TARGET_NR_tee 13073 case TARGET_NR_tee: 13074 { 13075 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 13076 } 13077 return ret; 13078 #endif 13079 #ifdef TARGET_NR_splice 13080 case TARGET_NR_splice: 13081 { 13082 loff_t loff_in, loff_out; 13083 loff_t *ploff_in = NULL, *ploff_out = NULL; 13084 if (arg2) { 13085 if (get_user_u64(loff_in, arg2)) { 13086 return -TARGET_EFAULT; 13087 } 13088 ploff_in = &loff_in; 13089 } 13090 if (arg4) { 13091 if (get_user_u64(loff_out, arg4)) { 13092 return -TARGET_EFAULT; 13093 } 13094 ploff_out = &loff_out; 13095 } 13096 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 13097 if (arg2) { 13098 if (put_user_u64(loff_in, arg2)) { 13099 return -TARGET_EFAULT; 13100 } 13101 } 13102 if (arg4) { 13103 if (put_user_u64(loff_out, arg4)) { 13104 return -TARGET_EFAULT; 13105 } 13106 } 13107 } 13108 return ret; 13109 #endif 13110 #ifdef TARGET_NR_vmsplice 13111 case TARGET_NR_vmsplice: 13112 { 13113 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 13114 if (vec != NULL) { 13115 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 13116 unlock_iovec(vec, arg2, arg3, 0); 13117 } else { 13118 ret = -host_to_target_errno(errno); 13119 } 13120 } 13121 return ret; 13122 #endif 13123 #endif /* CONFIG_SPLICE */ 13124 #ifdef CONFIG_EVENTFD 13125 #if defined(TARGET_NR_eventfd) 13126 case TARGET_NR_eventfd: 13127 ret = get_errno(eventfd(arg1, 0)); 13128 if (ret >= 0) { 13129 fd_trans_register(ret, &target_eventfd_trans); 13130 } 13131 return ret; 13132 #endif 13133 #if defined(TARGET_NR_eventfd2) 13134 case TARGET_NR_eventfd2: 13135 { 13136 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)); 13137 if (arg2 & TARGET_O_NONBLOCK) { 13138 host_flags |= O_NONBLOCK; 13139 } 13140 if (arg2 & TARGET_O_CLOEXEC) { 13141 host_flags |= O_CLOEXEC; 13142 } 13143 ret = get_errno(eventfd(arg1, host_flags)); 13144 if (ret >= 0) { 13145 fd_trans_register(ret, &target_eventfd_trans); 13146 } 13147 return ret; 13148 } 13149 #endif 13150 #endif /* CONFIG_EVENTFD */ 13151 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 13152 case TARGET_NR_fallocate: 13153 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13154 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 13155 target_offset64(arg5, arg6))); 13156 #else 13157 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 13158 #endif 13159 return ret; 13160 #endif 13161 #if defined(CONFIG_SYNC_FILE_RANGE) 13162 #if defined(TARGET_NR_sync_file_range) 13163 case TARGET_NR_sync_file_range: 13164 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13165 #if defined(TARGET_MIPS) 13166 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13167 target_offset64(arg5, arg6), arg7)); 13168 #else 13169 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 13170 target_offset64(arg4, arg5), arg6)); 13171 #endif /* !TARGET_MIPS */ 13172 #else 13173 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 13174 #endif 13175 return ret; 13176 #endif 13177 #if defined(TARGET_NR_sync_file_range2) || \ 13178 defined(TARGET_NR_arm_sync_file_range) 13179 #if defined(TARGET_NR_sync_file_range2) 13180 case TARGET_NR_sync_file_range2: 13181 #endif 13182 #if defined(TARGET_NR_arm_sync_file_range) 13183 case TARGET_NR_arm_sync_file_range: 13184 #endif 13185 /* This is like sync_file_range but the arguments are reordered */ 13186 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13187 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13188 target_offset64(arg5, arg6), arg2)); 13189 #else 13190 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 13191 #endif 13192 return ret; 13193 #endif 13194 #endif 13195 #if defined(TARGET_NR_signalfd4) 13196 case TARGET_NR_signalfd4: 13197 return do_signalfd4(arg1, arg2, arg4); 13198 #endif 13199 #if defined(TARGET_NR_signalfd) 13200 case TARGET_NR_signalfd: 13201 return do_signalfd4(arg1, arg2, 0); 13202 #endif 13203 #if defined(CONFIG_EPOLL) 13204 #if defined(TARGET_NR_epoll_create) 13205 case TARGET_NR_epoll_create: 13206 return get_errno(epoll_create(arg1)); 13207 #endif 13208 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 13209 case TARGET_NR_epoll_create1: 13210 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl))); 13211 #endif 13212 #if defined(TARGET_NR_epoll_ctl) 13213 case TARGET_NR_epoll_ctl: 13214 { 13215 struct epoll_event ep; 13216 struct epoll_event *epp = 0; 13217 if (arg4) { 13218 if (arg2 != EPOLL_CTL_DEL) { 13219 struct target_epoll_event *target_ep; 13220 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 13221 return -TARGET_EFAULT; 13222 } 13223 ep.events = tswap32(target_ep->events); 13224 /* 13225 * The epoll_data_t union is just opaque data to the kernel, 13226 * so we transfer all 64 bits across and need not worry what 13227 * actual data type it is. 13228 */ 13229 ep.data.u64 = tswap64(target_ep->data.u64); 13230 unlock_user_struct(target_ep, arg4, 0); 13231 } 13232 /* 13233 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a 13234 * non-null pointer, even though this argument is ignored. 13235 * 13236 */ 13237 epp = &ep; 13238 } 13239 return get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 13240 } 13241 #endif 13242 13243 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 13244 #if defined(TARGET_NR_epoll_wait) 13245 case TARGET_NR_epoll_wait: 13246 #endif 13247 #if defined(TARGET_NR_epoll_pwait) 13248 case TARGET_NR_epoll_pwait: 13249 #endif 13250 { 13251 struct target_epoll_event *target_ep; 13252 struct epoll_event *ep; 13253 int epfd = arg1; 13254 int maxevents = arg3; 13255 int timeout = arg4; 13256 13257 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 13258 return -TARGET_EINVAL; 13259 } 13260 13261 target_ep = lock_user(VERIFY_WRITE, arg2, 13262 maxevents * sizeof(struct target_epoll_event), 1); 13263 if (!target_ep) { 13264 return -TARGET_EFAULT; 13265 } 13266 13267 ep = g_try_new(struct epoll_event, maxevents); 13268 if (!ep) { 13269 unlock_user(target_ep, arg2, 0); 13270 return -TARGET_ENOMEM; 13271 } 13272 13273 switch (num) { 13274 #if defined(TARGET_NR_epoll_pwait) 13275 case TARGET_NR_epoll_pwait: 13276 { 13277 sigset_t *set = NULL; 13278 13279 if (arg5) { 13280 ret = process_sigsuspend_mask(&set, arg5, arg6); 13281 if (ret != 0) { 13282 break; 13283 } 13284 } 13285 13286 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13287 set, SIGSET_T_SIZE)); 13288 13289 if (set) { 13290 finish_sigsuspend_mask(ret); 13291 } 13292 break; 13293 } 13294 #endif 13295 #if defined(TARGET_NR_epoll_wait) 13296 case TARGET_NR_epoll_wait: 13297 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13298 NULL, 0)); 13299 break; 13300 #endif 13301 default: 13302 ret = -TARGET_ENOSYS; 13303 } 13304 if (!is_error(ret)) { 13305 int i; 13306 for (i = 0; i < ret; i++) { 13307 target_ep[i].events = tswap32(ep[i].events); 13308 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 13309 } 13310 unlock_user(target_ep, arg2, 13311 ret * sizeof(struct target_epoll_event)); 13312 } else { 13313 unlock_user(target_ep, arg2, 0); 13314 } 13315 g_free(ep); 13316 return ret; 13317 } 13318 #endif 13319 #endif 13320 #ifdef TARGET_NR_prlimit64 13321 case TARGET_NR_prlimit64: 13322 { 13323 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 13324 struct target_rlimit64 *target_rnew, *target_rold; 13325 struct host_rlimit64 rnew, rold, *rnewp = 0; 13326 int resource = target_to_host_resource(arg2); 13327 13328 if (arg3 && (resource != RLIMIT_AS && 13329 resource != RLIMIT_DATA && 13330 resource != RLIMIT_STACK)) { 13331 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 13332 return -TARGET_EFAULT; 13333 } 13334 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur); 13335 __get_user(rnew.rlim_max, &target_rnew->rlim_max); 13336 unlock_user_struct(target_rnew, arg3, 0); 13337 rnewp = &rnew; 13338 } 13339 13340 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 13341 if (!is_error(ret) && arg4) { 13342 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 13343 return -TARGET_EFAULT; 13344 } 13345 __put_user(rold.rlim_cur, &target_rold->rlim_cur); 13346 __put_user(rold.rlim_max, &target_rold->rlim_max); 13347 unlock_user_struct(target_rold, arg4, 1); 13348 } 13349 return ret; 13350 } 13351 #endif 13352 #ifdef TARGET_NR_gethostname 13353 case TARGET_NR_gethostname: 13354 { 13355 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 13356 if (name) { 13357 ret = get_errno(gethostname(name, arg2)); 13358 unlock_user(name, arg1, arg2); 13359 } else { 13360 ret = -TARGET_EFAULT; 13361 } 13362 return ret; 13363 } 13364 #endif 13365 #ifdef TARGET_NR_atomic_cmpxchg_32 13366 case TARGET_NR_atomic_cmpxchg_32: 13367 { 13368 /* should use start_exclusive from main.c */ 13369 abi_ulong mem_value; 13370 if (get_user_u32(mem_value, arg6)) { 13371 target_siginfo_t info; 13372 info.si_signo = SIGSEGV; 13373 info.si_errno = 0; 13374 info.si_code = TARGET_SEGV_MAPERR; 13375 info._sifields._sigfault._addr = arg6; 13376 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info); 13377 ret = 0xdeadbeef; 13378 13379 } 13380 if (mem_value == arg2) 13381 put_user_u32(arg1, arg6); 13382 return mem_value; 13383 } 13384 #endif 13385 #ifdef TARGET_NR_atomic_barrier 13386 case TARGET_NR_atomic_barrier: 13387 /* Like the kernel implementation and the 13388 qemu arm barrier, no-op this? */ 13389 return 0; 13390 #endif 13391 13392 #ifdef TARGET_NR_timer_create 13393 case TARGET_NR_timer_create: 13394 { 13395 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 13396 13397 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 13398 13399 int clkid = arg1; 13400 int timer_index = next_free_host_timer(); 13401 13402 if (timer_index < 0) { 13403 ret = -TARGET_EAGAIN; 13404 } else { 13405 timer_t *phtimer = g_posix_timers + timer_index; 13406 13407 if (arg2) { 13408 phost_sevp = &host_sevp; 13409 ret = target_to_host_sigevent(phost_sevp, arg2); 13410 if (ret != 0) { 13411 free_host_timer_slot(timer_index); 13412 return ret; 13413 } 13414 } 13415 13416 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 13417 if (ret) { 13418 free_host_timer_slot(timer_index); 13419 } else { 13420 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 13421 timer_delete(*phtimer); 13422 free_host_timer_slot(timer_index); 13423 return -TARGET_EFAULT; 13424 } 13425 } 13426 } 13427 return ret; 13428 } 13429 #endif 13430 13431 #ifdef TARGET_NR_timer_settime 13432 case TARGET_NR_timer_settime: 13433 { 13434 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 13435 * struct itimerspec * old_value */ 13436 target_timer_t timerid = get_timer_id(arg1); 13437 13438 if (timerid < 0) { 13439 ret = timerid; 13440 } else if (arg3 == 0) { 13441 ret = -TARGET_EINVAL; 13442 } else { 13443 timer_t htimer = g_posix_timers[timerid]; 13444 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13445 13446 if (target_to_host_itimerspec(&hspec_new, arg3)) { 13447 return -TARGET_EFAULT; 13448 } 13449 ret = get_errno( 13450 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13451 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 13452 return -TARGET_EFAULT; 13453 } 13454 } 13455 return ret; 13456 } 13457 #endif 13458 13459 #ifdef TARGET_NR_timer_settime64 13460 case TARGET_NR_timer_settime64: 13461 { 13462 target_timer_t timerid = get_timer_id(arg1); 13463 13464 if (timerid < 0) { 13465 ret = timerid; 13466 } else if (arg3 == 0) { 13467 ret = -TARGET_EINVAL; 13468 } else { 13469 timer_t htimer = g_posix_timers[timerid]; 13470 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13471 13472 if (target_to_host_itimerspec64(&hspec_new, arg3)) { 13473 return -TARGET_EFAULT; 13474 } 13475 ret = get_errno( 13476 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13477 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) { 13478 return -TARGET_EFAULT; 13479 } 13480 } 13481 return ret; 13482 } 13483 #endif 13484 13485 #ifdef TARGET_NR_timer_gettime 13486 case TARGET_NR_timer_gettime: 13487 { 13488 /* args: timer_t timerid, struct itimerspec *curr_value */ 13489 target_timer_t timerid = get_timer_id(arg1); 13490 13491 if (timerid < 0) { 13492 ret = timerid; 13493 } else if (!arg2) { 13494 ret = -TARGET_EFAULT; 13495 } else { 13496 timer_t htimer = g_posix_timers[timerid]; 13497 struct itimerspec hspec; 13498 ret = get_errno(timer_gettime(htimer, &hspec)); 13499 13500 if (host_to_target_itimerspec(arg2, &hspec)) { 13501 ret = -TARGET_EFAULT; 13502 } 13503 } 13504 return ret; 13505 } 13506 #endif 13507 13508 #ifdef TARGET_NR_timer_gettime64 13509 case TARGET_NR_timer_gettime64: 13510 { 13511 /* args: timer_t timerid, struct itimerspec64 *curr_value */ 13512 target_timer_t timerid = get_timer_id(arg1); 13513 13514 if (timerid < 0) { 13515 ret = timerid; 13516 } else if (!arg2) { 13517 ret = -TARGET_EFAULT; 13518 } else { 13519 timer_t htimer = g_posix_timers[timerid]; 13520 struct itimerspec hspec; 13521 ret = get_errno(timer_gettime(htimer, &hspec)); 13522 13523 if (host_to_target_itimerspec64(arg2, &hspec)) { 13524 ret = -TARGET_EFAULT; 13525 } 13526 } 13527 return ret; 13528 } 13529 #endif 13530 13531 #ifdef TARGET_NR_timer_getoverrun 13532 case TARGET_NR_timer_getoverrun: 13533 { 13534 /* args: timer_t timerid */ 13535 target_timer_t timerid = get_timer_id(arg1); 13536 13537 if (timerid < 0) { 13538 ret = timerid; 13539 } else { 13540 timer_t htimer = g_posix_timers[timerid]; 13541 ret = get_errno(timer_getoverrun(htimer)); 13542 } 13543 return ret; 13544 } 13545 #endif 13546 13547 #ifdef TARGET_NR_timer_delete 13548 case TARGET_NR_timer_delete: 13549 { 13550 /* args: timer_t timerid */ 13551 target_timer_t timerid = get_timer_id(arg1); 13552 13553 if (timerid < 0) { 13554 ret = timerid; 13555 } else { 13556 timer_t htimer = g_posix_timers[timerid]; 13557 ret = get_errno(timer_delete(htimer)); 13558 free_host_timer_slot(timerid); 13559 } 13560 return ret; 13561 } 13562 #endif 13563 13564 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 13565 case TARGET_NR_timerfd_create: 13566 ret = get_errno(timerfd_create(arg1, 13567 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 13568 if (ret >= 0) { 13569 fd_trans_register(ret, &target_timerfd_trans); 13570 } 13571 return ret; 13572 #endif 13573 13574 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 13575 case TARGET_NR_timerfd_gettime: 13576 { 13577 struct itimerspec its_curr; 13578 13579 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13580 13581 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 13582 return -TARGET_EFAULT; 13583 } 13584 } 13585 return ret; 13586 #endif 13587 13588 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD) 13589 case TARGET_NR_timerfd_gettime64: 13590 { 13591 struct itimerspec its_curr; 13592 13593 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13594 13595 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) { 13596 return -TARGET_EFAULT; 13597 } 13598 } 13599 return ret; 13600 #endif 13601 13602 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 13603 case TARGET_NR_timerfd_settime: 13604 { 13605 struct itimerspec its_new, its_old, *p_new; 13606 13607 if (arg3) { 13608 if (target_to_host_itimerspec(&its_new, arg3)) { 13609 return -TARGET_EFAULT; 13610 } 13611 p_new = &its_new; 13612 } else { 13613 p_new = NULL; 13614 } 13615 13616 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13617 13618 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 13619 return -TARGET_EFAULT; 13620 } 13621 } 13622 return ret; 13623 #endif 13624 13625 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD) 13626 case TARGET_NR_timerfd_settime64: 13627 { 13628 struct itimerspec its_new, its_old, *p_new; 13629 13630 if (arg3) { 13631 if (target_to_host_itimerspec64(&its_new, arg3)) { 13632 return -TARGET_EFAULT; 13633 } 13634 p_new = &its_new; 13635 } else { 13636 p_new = NULL; 13637 } 13638 13639 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13640 13641 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) { 13642 return -TARGET_EFAULT; 13643 } 13644 } 13645 return ret; 13646 #endif 13647 13648 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 13649 case TARGET_NR_ioprio_get: 13650 return get_errno(ioprio_get(arg1, arg2)); 13651 #endif 13652 13653 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 13654 case TARGET_NR_ioprio_set: 13655 return get_errno(ioprio_set(arg1, arg2, arg3)); 13656 #endif 13657 13658 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 13659 case TARGET_NR_setns: 13660 return get_errno(setns(arg1, arg2)); 13661 #endif 13662 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 13663 case TARGET_NR_unshare: 13664 return get_errno(unshare(arg1)); 13665 #endif 13666 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 13667 case TARGET_NR_kcmp: 13668 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 13669 #endif 13670 #ifdef TARGET_NR_swapcontext 13671 case TARGET_NR_swapcontext: 13672 /* PowerPC specific. */ 13673 return do_swapcontext(cpu_env, arg1, arg2, arg3); 13674 #endif 13675 #ifdef TARGET_NR_memfd_create 13676 case TARGET_NR_memfd_create: 13677 p = lock_user_string(arg1); 13678 if (!p) { 13679 return -TARGET_EFAULT; 13680 } 13681 ret = get_errno(memfd_create(p, arg2)); 13682 fd_trans_unregister(ret); 13683 unlock_user(p, arg1, 0); 13684 return ret; 13685 #endif 13686 #if defined TARGET_NR_membarrier && defined __NR_membarrier 13687 case TARGET_NR_membarrier: 13688 return get_errno(membarrier(arg1, arg2)); 13689 #endif 13690 13691 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 13692 case TARGET_NR_copy_file_range: 13693 { 13694 loff_t inoff, outoff; 13695 loff_t *pinoff = NULL, *poutoff = NULL; 13696 13697 if (arg2) { 13698 if (get_user_u64(inoff, arg2)) { 13699 return -TARGET_EFAULT; 13700 } 13701 pinoff = &inoff; 13702 } 13703 if (arg4) { 13704 if (get_user_u64(outoff, arg4)) { 13705 return -TARGET_EFAULT; 13706 } 13707 poutoff = &outoff; 13708 } 13709 /* Do not sign-extend the count parameter. */ 13710 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff, 13711 (abi_ulong)arg5, arg6)); 13712 if (!is_error(ret) && ret > 0) { 13713 if (arg2) { 13714 if (put_user_u64(inoff, arg2)) { 13715 return -TARGET_EFAULT; 13716 } 13717 } 13718 if (arg4) { 13719 if (put_user_u64(outoff, arg4)) { 13720 return -TARGET_EFAULT; 13721 } 13722 } 13723 } 13724 } 13725 return ret; 13726 #endif 13727 13728 #if defined(TARGET_NR_pivot_root) 13729 case TARGET_NR_pivot_root: 13730 { 13731 void *p2; 13732 p = lock_user_string(arg1); /* new_root */ 13733 p2 = lock_user_string(arg2); /* put_old */ 13734 if (!p || !p2) { 13735 ret = -TARGET_EFAULT; 13736 } else { 13737 ret = get_errno(pivot_root(p, p2)); 13738 } 13739 unlock_user(p2, arg2, 0); 13740 unlock_user(p, arg1, 0); 13741 } 13742 return ret; 13743 #endif 13744 13745 #if defined(TARGET_NR_riscv_hwprobe) 13746 case TARGET_NR_riscv_hwprobe: 13747 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5); 13748 #endif 13749 13750 default: 13751 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); 13752 return -TARGET_ENOSYS; 13753 } 13754 return ret; 13755 } 13756 13757 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1, 13758 abi_long arg2, abi_long arg3, abi_long arg4, 13759 abi_long arg5, abi_long arg6, abi_long arg7, 13760 abi_long arg8) 13761 { 13762 CPUState *cpu = env_cpu(cpu_env); 13763 abi_long ret; 13764 13765 #ifdef DEBUG_ERESTARTSYS 13766 /* Debug-only code for exercising the syscall-restart code paths 13767 * in the per-architecture cpu main loops: restart every syscall 13768 * the guest makes once before letting it through. 13769 */ 13770 { 13771 static bool flag; 13772 flag = !flag; 13773 if (flag) { 13774 return -QEMU_ERESTARTSYS; 13775 } 13776 } 13777 #endif 13778 13779 record_syscall_start(cpu, num, arg1, 13780 arg2, arg3, arg4, arg5, arg6, arg7, arg8); 13781 13782 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13783 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6); 13784 } 13785 13786 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4, 13787 arg5, arg6, arg7, arg8); 13788 13789 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13790 print_syscall_ret(cpu_env, num, ret, arg1, arg2, 13791 arg3, arg4, arg5, arg6); 13792 } 13793 13794 record_syscall_return(cpu, num, ret); 13795 return ret; 13796 } 13797