1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include "qemu/memfd.h" 24 #include "qemu/queue.h" 25 #include <elf.h> 26 #include <endian.h> 27 #include <grp.h> 28 #include <sys/ipc.h> 29 #include <sys/msg.h> 30 #include <sys/wait.h> 31 #include <sys/mount.h> 32 #include <sys/file.h> 33 #include <sys/fsuid.h> 34 #include <sys/personality.h> 35 #include <sys/prctl.h> 36 #include <sys/resource.h> 37 #include <sys/swap.h> 38 #include <linux/capability.h> 39 #include <sched.h> 40 #include <sys/timex.h> 41 #include <sys/socket.h> 42 #include <linux/sockios.h> 43 #include <sys/un.h> 44 #include <sys/uio.h> 45 #include <poll.h> 46 #include <sys/times.h> 47 #include <sys/shm.h> 48 #include <sys/sem.h> 49 #include <sys/statfs.h> 50 #include <utime.h> 51 #include <sys/sysinfo.h> 52 #include <sys/signalfd.h> 53 //#include <sys/user.h> 54 #include <netinet/in.h> 55 #include <netinet/ip.h> 56 #include <netinet/tcp.h> 57 #include <netinet/udp.h> 58 #include <linux/wireless.h> 59 #include <linux/icmp.h> 60 #include <linux/icmpv6.h> 61 #include <linux/if_tun.h> 62 #include <linux/in6.h> 63 #include <linux/errqueue.h> 64 #include <linux/random.h> 65 #ifdef CONFIG_TIMERFD 66 #include <sys/timerfd.h> 67 #endif 68 #ifdef CONFIG_EVENTFD 69 #include <sys/eventfd.h> 70 #endif 71 #ifdef CONFIG_EPOLL 72 #include <sys/epoll.h> 73 #endif 74 #ifdef CONFIG_ATTR 75 #include "qemu/xattr.h" 76 #endif 77 #ifdef CONFIG_SENDFILE 78 #include <sys/sendfile.h> 79 #endif 80 #ifdef HAVE_SYS_KCOV_H 81 #include <sys/kcov.h> 82 #endif 83 84 #define termios host_termios 85 #define winsize host_winsize 86 #define termio host_termio 87 #define sgttyb host_sgttyb /* same as target */ 88 #define tchars host_tchars /* same as target */ 89 #define ltchars host_ltchars /* same as target */ 90 91 #include <linux/termios.h> 92 #include <linux/unistd.h> 93 #include <linux/cdrom.h> 94 #include <linux/hdreg.h> 95 #include <linux/soundcard.h> 96 #include <linux/kd.h> 97 #include <linux/mtio.h> 98 #include <linux/fs.h> 99 #include <linux/fd.h> 100 #if defined(CONFIG_FIEMAP) 101 #include <linux/fiemap.h> 102 #endif 103 #include <linux/fb.h> 104 #if defined(CONFIG_USBFS) 105 #include <linux/usbdevice_fs.h> 106 #include <linux/usb/ch9.h> 107 #endif 108 #include <linux/vt.h> 109 #include <linux/dm-ioctl.h> 110 #include <linux/reboot.h> 111 #include <linux/route.h> 112 #include <linux/filter.h> 113 #include <linux/blkpg.h> 114 #include <netpacket/packet.h> 115 #include <linux/netlink.h> 116 #include <linux/if_alg.h> 117 #include <linux/rtc.h> 118 #include <sound/asound.h> 119 #ifdef HAVE_BTRFS_H 120 #include <linux/btrfs.h> 121 #endif 122 #ifdef HAVE_DRM_H 123 #include <libdrm/drm.h> 124 #include <libdrm/i915_drm.h> 125 #endif 126 #include "linux_loop.h" 127 #include "uname.h" 128 129 #include "qemu.h" 130 #include "user-internals.h" 131 #include "strace.h" 132 #include "signal-common.h" 133 #include "loader.h" 134 #include "user-mmap.h" 135 #include "user/safe-syscall.h" 136 #include "qemu/guest-random.h" 137 #include "qemu/selfmap.h" 138 #include "user/syscall-trace.h" 139 #include "special-errno.h" 140 #include "qapi/error.h" 141 #include "fd-trans.h" 142 #include "tcg/tcg.h" 143 144 #ifndef CLONE_IO 145 #define CLONE_IO 0x80000000 /* Clone io context */ 146 #endif 147 148 /* We can't directly call the host clone syscall, because this will 149 * badly confuse libc (breaking mutexes, for example). So we must 150 * divide clone flags into: 151 * * flag combinations that look like pthread_create() 152 * * flag combinations that look like fork() 153 * * flags we can implement within QEMU itself 154 * * flags we can't support and will return an error for 155 */ 156 /* For thread creation, all these flags must be present; for 157 * fork, none must be present. 158 */ 159 #define CLONE_THREAD_FLAGS \ 160 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 161 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 162 163 /* These flags are ignored: 164 * CLONE_DETACHED is now ignored by the kernel; 165 * CLONE_IO is just an optimisation hint to the I/O scheduler 166 */ 167 #define CLONE_IGNORED_FLAGS \ 168 (CLONE_DETACHED | CLONE_IO) 169 170 /* Flags for fork which we can implement within QEMU itself */ 171 #define CLONE_OPTIONAL_FORK_FLAGS \ 172 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 173 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 174 175 /* Flags for thread creation which we can implement within QEMU itself */ 176 #define CLONE_OPTIONAL_THREAD_FLAGS \ 177 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 178 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 179 180 #define CLONE_INVALID_FORK_FLAGS \ 181 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 182 183 #define CLONE_INVALID_THREAD_FLAGS \ 184 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 185 CLONE_IGNORED_FLAGS)) 186 187 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 188 * have almost all been allocated. We cannot support any of 189 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 190 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 191 * The checks against the invalid thread masks above will catch these. 192 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 193 */ 194 195 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 196 * once. This exercises the codepaths for restart. 197 */ 198 //#define DEBUG_ERESTARTSYS 199 200 //#include <linux/msdos_fs.h> 201 #define VFAT_IOCTL_READDIR_BOTH \ 202 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2) 203 #define VFAT_IOCTL_READDIR_SHORT \ 204 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2) 205 206 #undef _syscall0 207 #undef _syscall1 208 #undef _syscall2 209 #undef _syscall3 210 #undef _syscall4 211 #undef _syscall5 212 #undef _syscall6 213 214 #define _syscall0(type,name) \ 215 static type name (void) \ 216 { \ 217 return syscall(__NR_##name); \ 218 } 219 220 #define _syscall1(type,name,type1,arg1) \ 221 static type name (type1 arg1) \ 222 { \ 223 return syscall(__NR_##name, arg1); \ 224 } 225 226 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 227 static type name (type1 arg1,type2 arg2) \ 228 { \ 229 return syscall(__NR_##name, arg1, arg2); \ 230 } 231 232 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 233 static type name (type1 arg1,type2 arg2,type3 arg3) \ 234 { \ 235 return syscall(__NR_##name, arg1, arg2, arg3); \ 236 } 237 238 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 239 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 240 { \ 241 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 242 } 243 244 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 245 type5,arg5) \ 246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 247 { \ 248 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 249 } 250 251 252 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 253 type5,arg5,type6,arg6) \ 254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 255 type6 arg6) \ 256 { \ 257 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 258 } 259 260 261 #define __NR_sys_uname __NR_uname 262 #define __NR_sys_getcwd1 __NR_getcwd 263 #define __NR_sys_getdents __NR_getdents 264 #define __NR_sys_getdents64 __NR_getdents64 265 #define __NR_sys_getpriority __NR_getpriority 266 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 267 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 268 #define __NR_sys_syslog __NR_syslog 269 #if defined(__NR_futex) 270 # define __NR_sys_futex __NR_futex 271 #endif 272 #if defined(__NR_futex_time64) 273 # define __NR_sys_futex_time64 __NR_futex_time64 274 #endif 275 #define __NR_sys_statx __NR_statx 276 277 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 278 #define __NR__llseek __NR_lseek 279 #endif 280 281 /* Newer kernel ports have llseek() instead of _llseek() */ 282 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 283 #define TARGET_NR__llseek TARGET_NR_llseek 284 #endif 285 286 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */ 287 #ifndef TARGET_O_NONBLOCK_MASK 288 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK 289 #endif 290 291 #define __NR_sys_gettid __NR_gettid 292 _syscall0(int, sys_gettid) 293 294 /* For the 64-bit guest on 32-bit host case we must emulate 295 * getdents using getdents64, because otherwise the host 296 * might hand us back more dirent records than we can fit 297 * into the guest buffer after structure format conversion. 298 * Otherwise we emulate getdents with getdents if the host has it. 299 */ 300 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS 301 #define EMULATE_GETDENTS_WITH_GETDENTS 302 #endif 303 304 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS) 305 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 306 #endif 307 #if (defined(TARGET_NR_getdents) && \ 308 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \ 309 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 310 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 311 #endif 312 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 313 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 314 loff_t *, res, uint, wh); 315 #endif 316 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 317 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 318 siginfo_t *, uinfo) 319 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 320 #ifdef __NR_exit_group 321 _syscall1(int,exit_group,int,error_code) 322 #endif 323 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 324 _syscall1(int,set_tid_address,int *,tidptr) 325 #endif 326 #if defined(__NR_futex) 327 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 328 const struct timespec *,timeout,int *,uaddr2,int,val3) 329 #endif 330 #if defined(__NR_futex_time64) 331 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val, 332 const struct timespec *,timeout,int *,uaddr2,int,val3) 333 #endif 334 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 335 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 336 unsigned long *, user_mask_ptr); 337 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 338 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 339 unsigned long *, user_mask_ptr); 340 /* sched_attr is not defined in glibc */ 341 struct sched_attr { 342 uint32_t size; 343 uint32_t sched_policy; 344 uint64_t sched_flags; 345 int32_t sched_nice; 346 uint32_t sched_priority; 347 uint64_t sched_runtime; 348 uint64_t sched_deadline; 349 uint64_t sched_period; 350 uint32_t sched_util_min; 351 uint32_t sched_util_max; 352 }; 353 #define __NR_sys_sched_getattr __NR_sched_getattr 354 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr, 355 unsigned int, size, unsigned int, flags); 356 #define __NR_sys_sched_setattr __NR_sched_setattr 357 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr, 358 unsigned int, flags); 359 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler 360 _syscall1(int, sys_sched_getscheduler, pid_t, pid); 361 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler 362 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy, 363 const struct sched_param *, param); 364 #define __NR_sys_sched_getparam __NR_sched_getparam 365 _syscall2(int, sys_sched_getparam, pid_t, pid, 366 struct sched_param *, param); 367 #define __NR_sys_sched_setparam __NR_sched_setparam 368 _syscall2(int, sys_sched_setparam, pid_t, pid, 369 const struct sched_param *, param); 370 #define __NR_sys_getcpu __NR_getcpu 371 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 372 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 373 void *, arg); 374 _syscall2(int, capget, struct __user_cap_header_struct *, header, 375 struct __user_cap_data_struct *, data); 376 _syscall2(int, capset, struct __user_cap_header_struct *, header, 377 struct __user_cap_data_struct *, data); 378 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 379 _syscall2(int, ioprio_get, int, which, int, who) 380 #endif 381 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 382 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 383 #endif 384 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 385 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 386 #endif 387 388 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 389 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 390 unsigned long, idx1, unsigned long, idx2) 391 #endif 392 393 /* 394 * It is assumed that struct statx is architecture independent. 395 */ 396 #if defined(TARGET_NR_statx) && defined(__NR_statx) 397 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags, 398 unsigned int, mask, struct target_statx *, statxbuf) 399 #endif 400 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier) 401 _syscall2(int, membarrier, int, cmd, int, flags) 402 #endif 403 404 static const bitmask_transtbl fcntl_flags_tbl[] = { 405 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 406 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 407 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 408 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 409 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 410 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 411 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 412 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 413 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 414 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 415 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 416 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 417 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 418 #if defined(O_DIRECT) 419 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 420 #endif 421 #if defined(O_NOATIME) 422 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 423 #endif 424 #if defined(O_CLOEXEC) 425 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 426 #endif 427 #if defined(O_PATH) 428 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 429 #endif 430 #if defined(O_TMPFILE) 431 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 432 #endif 433 /* Don't terminate the list prematurely on 64-bit host+guest. */ 434 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 435 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 436 #endif 437 { 0, 0, 0, 0 } 438 }; 439 440 _syscall2(int, sys_getcwd1, char *, buf, size_t, size) 441 442 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64) 443 #if defined(__NR_utimensat) 444 #define __NR_sys_utimensat __NR_utimensat 445 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 446 const struct timespec *,tsp,int,flags) 447 #else 448 static int sys_utimensat(int dirfd, const char *pathname, 449 const struct timespec times[2], int flags) 450 { 451 errno = ENOSYS; 452 return -1; 453 } 454 #endif 455 #endif /* TARGET_NR_utimensat */ 456 457 #ifdef TARGET_NR_renameat2 458 #if defined(__NR_renameat2) 459 #define __NR_sys_renameat2 __NR_renameat2 460 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 461 const char *, new, unsigned int, flags) 462 #else 463 static int sys_renameat2(int oldfd, const char *old, 464 int newfd, const char *new, int flags) 465 { 466 if (flags == 0) { 467 return renameat(oldfd, old, newfd, new); 468 } 469 errno = ENOSYS; 470 return -1; 471 } 472 #endif 473 #endif /* TARGET_NR_renameat2 */ 474 475 #ifdef CONFIG_INOTIFY 476 #include <sys/inotify.h> 477 #else 478 /* Userspace can usually survive runtime without inotify */ 479 #undef TARGET_NR_inotify_init 480 #undef TARGET_NR_inotify_init1 481 #undef TARGET_NR_inotify_add_watch 482 #undef TARGET_NR_inotify_rm_watch 483 #endif /* CONFIG_INOTIFY */ 484 485 #if defined(TARGET_NR_prlimit64) 486 #ifndef __NR_prlimit64 487 # define __NR_prlimit64 -1 488 #endif 489 #define __NR_sys_prlimit64 __NR_prlimit64 490 /* The glibc rlimit structure may not be that used by the underlying syscall */ 491 struct host_rlimit64 { 492 uint64_t rlim_cur; 493 uint64_t rlim_max; 494 }; 495 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 496 const struct host_rlimit64 *, new_limit, 497 struct host_rlimit64 *, old_limit) 498 #endif 499 500 501 #if defined(TARGET_NR_timer_create) 502 /* Maximum of 32 active POSIX timers allowed at any one time. */ 503 static timer_t g_posix_timers[32] = { 0, } ; 504 505 static inline int next_free_host_timer(void) 506 { 507 int k ; 508 /* FIXME: Does finding the next free slot require a lock? */ 509 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 510 if (g_posix_timers[k] == 0) { 511 g_posix_timers[k] = (timer_t) 1; 512 return k; 513 } 514 } 515 return -1; 516 } 517 #endif 518 519 static inline int host_to_target_errno(int host_errno) 520 { 521 switch (host_errno) { 522 #define E(X) case X: return TARGET_##X; 523 #include "errnos.c.inc" 524 #undef E 525 default: 526 return host_errno; 527 } 528 } 529 530 static inline int target_to_host_errno(int target_errno) 531 { 532 switch (target_errno) { 533 #define E(X) case TARGET_##X: return X; 534 #include "errnos.c.inc" 535 #undef E 536 default: 537 return target_errno; 538 } 539 } 540 541 static inline abi_long get_errno(abi_long ret) 542 { 543 if (ret == -1) 544 return -host_to_target_errno(errno); 545 else 546 return ret; 547 } 548 549 const char *target_strerror(int err) 550 { 551 if (err == QEMU_ERESTARTSYS) { 552 return "To be restarted"; 553 } 554 if (err == QEMU_ESIGRETURN) { 555 return "Successful exit from sigreturn"; 556 } 557 558 return strerror(target_to_host_errno(err)); 559 } 560 561 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize) 562 { 563 int i; 564 uint8_t b; 565 if (usize <= ksize) { 566 return 1; 567 } 568 for (i = ksize; i < usize; i++) { 569 if (get_user_u8(b, addr + i)) { 570 return -TARGET_EFAULT; 571 } 572 if (b != 0) { 573 return 0; 574 } 575 } 576 return 1; 577 } 578 579 #define safe_syscall0(type, name) \ 580 static type safe_##name(void) \ 581 { \ 582 return safe_syscall(__NR_##name); \ 583 } 584 585 #define safe_syscall1(type, name, type1, arg1) \ 586 static type safe_##name(type1 arg1) \ 587 { \ 588 return safe_syscall(__NR_##name, arg1); \ 589 } 590 591 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 592 static type safe_##name(type1 arg1, type2 arg2) \ 593 { \ 594 return safe_syscall(__NR_##name, arg1, arg2); \ 595 } 596 597 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 598 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 599 { \ 600 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 601 } 602 603 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 604 type4, arg4) \ 605 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 606 { \ 607 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 608 } 609 610 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 611 type4, arg4, type5, arg5) \ 612 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 613 type5 arg5) \ 614 { \ 615 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 616 } 617 618 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 619 type4, arg4, type5, arg5, type6, arg6) \ 620 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 621 type5 arg5, type6 arg6) \ 622 { \ 623 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 624 } 625 626 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 627 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 628 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 629 int, flags, mode_t, mode) 630 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid) 631 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 632 struct rusage *, rusage) 633 #endif 634 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 635 int, options, struct rusage *, rusage) 636 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 637 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 638 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 639 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 640 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 641 #endif 642 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64) 643 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 644 struct timespec *, tsp, const sigset_t *, sigmask, 645 size_t, sigsetsize) 646 #endif 647 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 648 int, maxevents, int, timeout, const sigset_t *, sigmask, 649 size_t, sigsetsize) 650 #if defined(__NR_futex) 651 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 652 const struct timespec *,timeout,int *,uaddr2,int,val3) 653 #endif 654 #if defined(__NR_futex_time64) 655 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \ 656 const struct timespec *,timeout,int *,uaddr2,int,val3) 657 #endif 658 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 659 safe_syscall2(int, kill, pid_t, pid, int, sig) 660 safe_syscall2(int, tkill, int, tid, int, sig) 661 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 662 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 663 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 664 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 665 unsigned long, pos_l, unsigned long, pos_h) 666 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 667 unsigned long, pos_l, unsigned long, pos_h) 668 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 669 socklen_t, addrlen) 670 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 671 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 672 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 673 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 674 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 675 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 676 safe_syscall2(int, flock, int, fd, int, operation) 677 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64) 678 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 679 const struct timespec *, uts, size_t, sigsetsize) 680 #endif 681 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 682 int, flags) 683 #if defined(TARGET_NR_nanosleep) 684 safe_syscall2(int, nanosleep, const struct timespec *, req, 685 struct timespec *, rem) 686 #endif 687 #if defined(TARGET_NR_clock_nanosleep) || \ 688 defined(TARGET_NR_clock_nanosleep_time64) 689 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 690 const struct timespec *, req, struct timespec *, rem) 691 #endif 692 #ifdef __NR_ipc 693 #ifdef __s390x__ 694 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third, 695 void *, ptr) 696 #else 697 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 698 void *, ptr, long, fifth) 699 #endif 700 #endif 701 #ifdef __NR_msgsnd 702 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 703 int, flags) 704 #endif 705 #ifdef __NR_msgrcv 706 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 707 long, msgtype, int, flags) 708 #endif 709 #ifdef __NR_semtimedop 710 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 711 unsigned, nsops, const struct timespec *, timeout) 712 #endif 713 #if defined(TARGET_NR_mq_timedsend) || \ 714 defined(TARGET_NR_mq_timedsend_time64) 715 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 716 size_t, len, unsigned, prio, const struct timespec *, timeout) 717 #endif 718 #if defined(TARGET_NR_mq_timedreceive) || \ 719 defined(TARGET_NR_mq_timedreceive_time64) 720 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 721 size_t, len, unsigned *, prio, const struct timespec *, timeout) 722 #endif 723 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 724 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff, 725 int, outfd, loff_t *, poutoff, size_t, length, 726 unsigned int, flags) 727 #endif 728 729 /* We do ioctl like this rather than via safe_syscall3 to preserve the 730 * "third argument might be integer or pointer or not present" behaviour of 731 * the libc function. 732 */ 733 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 734 /* Similarly for fcntl. Note that callers must always: 735 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 736 * use the flock64 struct rather than unsuffixed flock 737 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 738 */ 739 #ifdef __NR_fcntl64 740 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 741 #else 742 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 743 #endif 744 745 static inline int host_to_target_sock_type(int host_type) 746 { 747 int target_type; 748 749 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 750 case SOCK_DGRAM: 751 target_type = TARGET_SOCK_DGRAM; 752 break; 753 case SOCK_STREAM: 754 target_type = TARGET_SOCK_STREAM; 755 break; 756 default: 757 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 758 break; 759 } 760 761 #if defined(SOCK_CLOEXEC) 762 if (host_type & SOCK_CLOEXEC) { 763 target_type |= TARGET_SOCK_CLOEXEC; 764 } 765 #endif 766 767 #if defined(SOCK_NONBLOCK) 768 if (host_type & SOCK_NONBLOCK) { 769 target_type |= TARGET_SOCK_NONBLOCK; 770 } 771 #endif 772 773 return target_type; 774 } 775 776 static abi_ulong target_brk; 777 static abi_ulong target_original_brk; 778 static abi_ulong brk_page; 779 780 void target_set_brk(abi_ulong new_brk) 781 { 782 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 783 brk_page = HOST_PAGE_ALIGN(target_brk); 784 } 785 786 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 787 #define DEBUGF_BRK(message, args...) 788 789 /* do_brk() must return target values and target errnos. */ 790 abi_long do_brk(abi_ulong new_brk) 791 { 792 abi_long mapped_addr; 793 abi_ulong new_alloc_size; 794 795 /* brk pointers are always untagged */ 796 797 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 798 799 if (!new_brk) { 800 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 801 return target_brk; 802 } 803 if (new_brk < target_original_brk) { 804 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 805 target_brk); 806 return target_brk; 807 } 808 809 /* If the new brk is less than the highest page reserved to the 810 * target heap allocation, set it and we're almost done... */ 811 if (new_brk <= brk_page) { 812 /* Heap contents are initialized to zero, as for anonymous 813 * mapped pages. */ 814 if (new_brk > target_brk) { 815 memset(g2h_untagged(target_brk), 0, new_brk - target_brk); 816 } 817 target_brk = new_brk; 818 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 819 return target_brk; 820 } 821 822 /* We need to allocate more memory after the brk... Note that 823 * we don't use MAP_FIXED because that will map over the top of 824 * any existing mapping (like the one with the host libc or qemu 825 * itself); instead we treat "mapped but at wrong address" as 826 * a failure and unmap again. 827 */ 828 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 829 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 830 PROT_READ|PROT_WRITE, 831 MAP_ANON|MAP_PRIVATE, 0, 0)); 832 833 if (mapped_addr == brk_page) { 834 /* Heap contents are initialized to zero, as for anonymous 835 * mapped pages. Technically the new pages are already 836 * initialized to zero since they *are* anonymous mapped 837 * pages, however we have to take care with the contents that 838 * come from the remaining part of the previous page: it may 839 * contains garbage data due to a previous heap usage (grown 840 * then shrunken). */ 841 memset(g2h_untagged(target_brk), 0, brk_page - target_brk); 842 843 target_brk = new_brk; 844 brk_page = HOST_PAGE_ALIGN(target_brk); 845 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 846 target_brk); 847 return target_brk; 848 } else if (mapped_addr != -1) { 849 /* Mapped but at wrong address, meaning there wasn't actually 850 * enough space for this brk. 851 */ 852 target_munmap(mapped_addr, new_alloc_size); 853 mapped_addr = -1; 854 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 855 } 856 else { 857 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 858 } 859 860 #if defined(TARGET_ALPHA) 861 /* We (partially) emulate OSF/1 on Alpha, which requires we 862 return a proper errno, not an unchanged brk value. */ 863 return -TARGET_ENOMEM; 864 #endif 865 /* For everything else, return the previous break. */ 866 return target_brk; 867 } 868 869 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 870 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 871 static inline abi_long copy_from_user_fdset(fd_set *fds, 872 abi_ulong target_fds_addr, 873 int n) 874 { 875 int i, nw, j, k; 876 abi_ulong b, *target_fds; 877 878 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 879 if (!(target_fds = lock_user(VERIFY_READ, 880 target_fds_addr, 881 sizeof(abi_ulong) * nw, 882 1))) 883 return -TARGET_EFAULT; 884 885 FD_ZERO(fds); 886 k = 0; 887 for (i = 0; i < nw; i++) { 888 /* grab the abi_ulong */ 889 __get_user(b, &target_fds[i]); 890 for (j = 0; j < TARGET_ABI_BITS; j++) { 891 /* check the bit inside the abi_ulong */ 892 if ((b >> j) & 1) 893 FD_SET(k, fds); 894 k++; 895 } 896 } 897 898 unlock_user(target_fds, target_fds_addr, 0); 899 900 return 0; 901 } 902 903 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 904 abi_ulong target_fds_addr, 905 int n) 906 { 907 if (target_fds_addr) { 908 if (copy_from_user_fdset(fds, target_fds_addr, n)) 909 return -TARGET_EFAULT; 910 *fds_ptr = fds; 911 } else { 912 *fds_ptr = NULL; 913 } 914 return 0; 915 } 916 917 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 918 const fd_set *fds, 919 int n) 920 { 921 int i, nw, j, k; 922 abi_long v; 923 abi_ulong *target_fds; 924 925 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 926 if (!(target_fds = lock_user(VERIFY_WRITE, 927 target_fds_addr, 928 sizeof(abi_ulong) * nw, 929 0))) 930 return -TARGET_EFAULT; 931 932 k = 0; 933 for (i = 0; i < nw; i++) { 934 v = 0; 935 for (j = 0; j < TARGET_ABI_BITS; j++) { 936 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 937 k++; 938 } 939 __put_user(v, &target_fds[i]); 940 } 941 942 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 943 944 return 0; 945 } 946 #endif 947 948 #if defined(__alpha__) 949 #define HOST_HZ 1024 950 #else 951 #define HOST_HZ 100 952 #endif 953 954 static inline abi_long host_to_target_clock_t(long ticks) 955 { 956 #if HOST_HZ == TARGET_HZ 957 return ticks; 958 #else 959 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 960 #endif 961 } 962 963 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 964 const struct rusage *rusage) 965 { 966 struct target_rusage *target_rusage; 967 968 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 969 return -TARGET_EFAULT; 970 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 971 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 972 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 973 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 974 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 975 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 976 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 977 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 978 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 979 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 980 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 981 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 982 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 983 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 984 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 985 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 986 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 987 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 988 unlock_user_struct(target_rusage, target_addr, 1); 989 990 return 0; 991 } 992 993 #ifdef TARGET_NR_setrlimit 994 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 995 { 996 abi_ulong target_rlim_swap; 997 rlim_t result; 998 999 target_rlim_swap = tswapal(target_rlim); 1000 if (target_rlim_swap == TARGET_RLIM_INFINITY) 1001 return RLIM_INFINITY; 1002 1003 result = target_rlim_swap; 1004 if (target_rlim_swap != (rlim_t)result) 1005 return RLIM_INFINITY; 1006 1007 return result; 1008 } 1009 #endif 1010 1011 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit) 1012 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1013 { 1014 abi_ulong target_rlim_swap; 1015 abi_ulong result; 1016 1017 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1018 target_rlim_swap = TARGET_RLIM_INFINITY; 1019 else 1020 target_rlim_swap = rlim; 1021 result = tswapal(target_rlim_swap); 1022 1023 return result; 1024 } 1025 #endif 1026 1027 static inline int target_to_host_resource(int code) 1028 { 1029 switch (code) { 1030 case TARGET_RLIMIT_AS: 1031 return RLIMIT_AS; 1032 case TARGET_RLIMIT_CORE: 1033 return RLIMIT_CORE; 1034 case TARGET_RLIMIT_CPU: 1035 return RLIMIT_CPU; 1036 case TARGET_RLIMIT_DATA: 1037 return RLIMIT_DATA; 1038 case TARGET_RLIMIT_FSIZE: 1039 return RLIMIT_FSIZE; 1040 case TARGET_RLIMIT_LOCKS: 1041 return RLIMIT_LOCKS; 1042 case TARGET_RLIMIT_MEMLOCK: 1043 return RLIMIT_MEMLOCK; 1044 case TARGET_RLIMIT_MSGQUEUE: 1045 return RLIMIT_MSGQUEUE; 1046 case TARGET_RLIMIT_NICE: 1047 return RLIMIT_NICE; 1048 case TARGET_RLIMIT_NOFILE: 1049 return RLIMIT_NOFILE; 1050 case TARGET_RLIMIT_NPROC: 1051 return RLIMIT_NPROC; 1052 case TARGET_RLIMIT_RSS: 1053 return RLIMIT_RSS; 1054 case TARGET_RLIMIT_RTPRIO: 1055 return RLIMIT_RTPRIO; 1056 case TARGET_RLIMIT_RTTIME: 1057 return RLIMIT_RTTIME; 1058 case TARGET_RLIMIT_SIGPENDING: 1059 return RLIMIT_SIGPENDING; 1060 case TARGET_RLIMIT_STACK: 1061 return RLIMIT_STACK; 1062 default: 1063 return code; 1064 } 1065 } 1066 1067 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1068 abi_ulong target_tv_addr) 1069 { 1070 struct target_timeval *target_tv; 1071 1072 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1073 return -TARGET_EFAULT; 1074 } 1075 1076 __get_user(tv->tv_sec, &target_tv->tv_sec); 1077 __get_user(tv->tv_usec, &target_tv->tv_usec); 1078 1079 unlock_user_struct(target_tv, target_tv_addr, 0); 1080 1081 return 0; 1082 } 1083 1084 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1085 const struct timeval *tv) 1086 { 1087 struct target_timeval *target_tv; 1088 1089 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1090 return -TARGET_EFAULT; 1091 } 1092 1093 __put_user(tv->tv_sec, &target_tv->tv_sec); 1094 __put_user(tv->tv_usec, &target_tv->tv_usec); 1095 1096 unlock_user_struct(target_tv, target_tv_addr, 1); 1097 1098 return 0; 1099 } 1100 1101 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 1102 static inline abi_long copy_from_user_timeval64(struct timeval *tv, 1103 abi_ulong target_tv_addr) 1104 { 1105 struct target__kernel_sock_timeval *target_tv; 1106 1107 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1108 return -TARGET_EFAULT; 1109 } 1110 1111 __get_user(tv->tv_sec, &target_tv->tv_sec); 1112 __get_user(tv->tv_usec, &target_tv->tv_usec); 1113 1114 unlock_user_struct(target_tv, target_tv_addr, 0); 1115 1116 return 0; 1117 } 1118 #endif 1119 1120 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr, 1121 const struct timeval *tv) 1122 { 1123 struct target__kernel_sock_timeval *target_tv; 1124 1125 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1126 return -TARGET_EFAULT; 1127 } 1128 1129 __put_user(tv->tv_sec, &target_tv->tv_sec); 1130 __put_user(tv->tv_usec, &target_tv->tv_usec); 1131 1132 unlock_user_struct(target_tv, target_tv_addr, 1); 1133 1134 return 0; 1135 } 1136 1137 #if defined(TARGET_NR_futex) || \ 1138 defined(TARGET_NR_rt_sigtimedwait) || \ 1139 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \ 1140 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \ 1141 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \ 1142 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \ 1143 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \ 1144 defined(TARGET_NR_timer_settime) || \ 1145 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 1146 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 1147 abi_ulong target_addr) 1148 { 1149 struct target_timespec *target_ts; 1150 1151 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1152 return -TARGET_EFAULT; 1153 } 1154 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1155 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1156 unlock_user_struct(target_ts, target_addr, 0); 1157 return 0; 1158 } 1159 #endif 1160 1161 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \ 1162 defined(TARGET_NR_timer_settime64) || \ 1163 defined(TARGET_NR_mq_timedsend_time64) || \ 1164 defined(TARGET_NR_mq_timedreceive_time64) || \ 1165 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \ 1166 defined(TARGET_NR_clock_nanosleep_time64) || \ 1167 defined(TARGET_NR_rt_sigtimedwait_time64) || \ 1168 defined(TARGET_NR_utimensat) || \ 1169 defined(TARGET_NR_utimensat_time64) || \ 1170 defined(TARGET_NR_semtimedop_time64) || \ 1171 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64) 1172 static inline abi_long target_to_host_timespec64(struct timespec *host_ts, 1173 abi_ulong target_addr) 1174 { 1175 struct target__kernel_timespec *target_ts; 1176 1177 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1178 return -TARGET_EFAULT; 1179 } 1180 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1181 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1182 /* in 32bit mode, this drops the padding */ 1183 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec; 1184 unlock_user_struct(target_ts, target_addr, 0); 1185 return 0; 1186 } 1187 #endif 1188 1189 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 1190 struct timespec *host_ts) 1191 { 1192 struct target_timespec *target_ts; 1193 1194 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1195 return -TARGET_EFAULT; 1196 } 1197 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1198 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1199 unlock_user_struct(target_ts, target_addr, 1); 1200 return 0; 1201 } 1202 1203 static inline abi_long host_to_target_timespec64(abi_ulong target_addr, 1204 struct timespec *host_ts) 1205 { 1206 struct target__kernel_timespec *target_ts; 1207 1208 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1209 return -TARGET_EFAULT; 1210 } 1211 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1212 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1213 unlock_user_struct(target_ts, target_addr, 1); 1214 return 0; 1215 } 1216 1217 #if defined(TARGET_NR_gettimeofday) 1218 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr, 1219 struct timezone *tz) 1220 { 1221 struct target_timezone *target_tz; 1222 1223 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) { 1224 return -TARGET_EFAULT; 1225 } 1226 1227 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1228 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1229 1230 unlock_user_struct(target_tz, target_tz_addr, 1); 1231 1232 return 0; 1233 } 1234 #endif 1235 1236 #if defined(TARGET_NR_settimeofday) 1237 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1238 abi_ulong target_tz_addr) 1239 { 1240 struct target_timezone *target_tz; 1241 1242 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1243 return -TARGET_EFAULT; 1244 } 1245 1246 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1247 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1248 1249 unlock_user_struct(target_tz, target_tz_addr, 0); 1250 1251 return 0; 1252 } 1253 #endif 1254 1255 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1256 #include <mqueue.h> 1257 1258 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1259 abi_ulong target_mq_attr_addr) 1260 { 1261 struct target_mq_attr *target_mq_attr; 1262 1263 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1264 target_mq_attr_addr, 1)) 1265 return -TARGET_EFAULT; 1266 1267 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1268 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1269 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1270 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1271 1272 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1273 1274 return 0; 1275 } 1276 1277 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1278 const struct mq_attr *attr) 1279 { 1280 struct target_mq_attr *target_mq_attr; 1281 1282 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1283 target_mq_attr_addr, 0)) 1284 return -TARGET_EFAULT; 1285 1286 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1287 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1288 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1289 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1290 1291 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1292 1293 return 0; 1294 } 1295 #endif 1296 1297 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1298 /* do_select() must return target values and target errnos. */ 1299 static abi_long do_select(int n, 1300 abi_ulong rfd_addr, abi_ulong wfd_addr, 1301 abi_ulong efd_addr, abi_ulong target_tv_addr) 1302 { 1303 fd_set rfds, wfds, efds; 1304 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1305 struct timeval tv; 1306 struct timespec ts, *ts_ptr; 1307 abi_long ret; 1308 1309 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1310 if (ret) { 1311 return ret; 1312 } 1313 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1314 if (ret) { 1315 return ret; 1316 } 1317 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1318 if (ret) { 1319 return ret; 1320 } 1321 1322 if (target_tv_addr) { 1323 if (copy_from_user_timeval(&tv, target_tv_addr)) 1324 return -TARGET_EFAULT; 1325 ts.tv_sec = tv.tv_sec; 1326 ts.tv_nsec = tv.tv_usec * 1000; 1327 ts_ptr = &ts; 1328 } else { 1329 ts_ptr = NULL; 1330 } 1331 1332 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1333 ts_ptr, NULL)); 1334 1335 if (!is_error(ret)) { 1336 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1337 return -TARGET_EFAULT; 1338 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1339 return -TARGET_EFAULT; 1340 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1341 return -TARGET_EFAULT; 1342 1343 if (target_tv_addr) { 1344 tv.tv_sec = ts.tv_sec; 1345 tv.tv_usec = ts.tv_nsec / 1000; 1346 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1347 return -TARGET_EFAULT; 1348 } 1349 } 1350 } 1351 1352 return ret; 1353 } 1354 1355 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1356 static abi_long do_old_select(abi_ulong arg1) 1357 { 1358 struct target_sel_arg_struct *sel; 1359 abi_ulong inp, outp, exp, tvp; 1360 long nsel; 1361 1362 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1363 return -TARGET_EFAULT; 1364 } 1365 1366 nsel = tswapal(sel->n); 1367 inp = tswapal(sel->inp); 1368 outp = tswapal(sel->outp); 1369 exp = tswapal(sel->exp); 1370 tvp = tswapal(sel->tvp); 1371 1372 unlock_user_struct(sel, arg1, 0); 1373 1374 return do_select(nsel, inp, outp, exp, tvp); 1375 } 1376 #endif 1377 #endif 1378 1379 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 1380 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3, 1381 abi_long arg4, abi_long arg5, abi_long arg6, 1382 bool time64) 1383 { 1384 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 1385 fd_set rfds, wfds, efds; 1386 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1387 struct timespec ts, *ts_ptr; 1388 abi_long ret; 1389 1390 /* 1391 * The 6th arg is actually two args smashed together, 1392 * so we cannot use the C library. 1393 */ 1394 struct { 1395 sigset_t *set; 1396 size_t size; 1397 } sig, *sig_ptr; 1398 1399 abi_ulong arg_sigset, arg_sigsize, *arg7; 1400 1401 n = arg1; 1402 rfd_addr = arg2; 1403 wfd_addr = arg3; 1404 efd_addr = arg4; 1405 ts_addr = arg5; 1406 1407 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1408 if (ret) { 1409 return ret; 1410 } 1411 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1412 if (ret) { 1413 return ret; 1414 } 1415 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1416 if (ret) { 1417 return ret; 1418 } 1419 1420 /* 1421 * This takes a timespec, and not a timeval, so we cannot 1422 * use the do_select() helper ... 1423 */ 1424 if (ts_addr) { 1425 if (time64) { 1426 if (target_to_host_timespec64(&ts, ts_addr)) { 1427 return -TARGET_EFAULT; 1428 } 1429 } else { 1430 if (target_to_host_timespec(&ts, ts_addr)) { 1431 return -TARGET_EFAULT; 1432 } 1433 } 1434 ts_ptr = &ts; 1435 } else { 1436 ts_ptr = NULL; 1437 } 1438 1439 /* Extract the two packed args for the sigset */ 1440 sig_ptr = NULL; 1441 if (arg6) { 1442 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 1443 if (!arg7) { 1444 return -TARGET_EFAULT; 1445 } 1446 arg_sigset = tswapal(arg7[0]); 1447 arg_sigsize = tswapal(arg7[1]); 1448 unlock_user(arg7, arg6, 0); 1449 1450 if (arg_sigset) { 1451 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize); 1452 if (ret != 0) { 1453 return ret; 1454 } 1455 sig_ptr = &sig; 1456 sig.size = SIGSET_T_SIZE; 1457 } 1458 } 1459 1460 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1461 ts_ptr, sig_ptr)); 1462 1463 if (sig_ptr) { 1464 finish_sigsuspend_mask(ret); 1465 } 1466 1467 if (!is_error(ret)) { 1468 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) { 1469 return -TARGET_EFAULT; 1470 } 1471 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) { 1472 return -TARGET_EFAULT; 1473 } 1474 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) { 1475 return -TARGET_EFAULT; 1476 } 1477 if (time64) { 1478 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) { 1479 return -TARGET_EFAULT; 1480 } 1481 } else { 1482 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) { 1483 return -TARGET_EFAULT; 1484 } 1485 } 1486 } 1487 return ret; 1488 } 1489 #endif 1490 1491 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \ 1492 defined(TARGET_NR_ppoll_time64) 1493 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3, 1494 abi_long arg4, abi_long arg5, bool ppoll, bool time64) 1495 { 1496 struct target_pollfd *target_pfd; 1497 unsigned int nfds = arg2; 1498 struct pollfd *pfd; 1499 unsigned int i; 1500 abi_long ret; 1501 1502 pfd = NULL; 1503 target_pfd = NULL; 1504 if (nfds) { 1505 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 1506 return -TARGET_EINVAL; 1507 } 1508 target_pfd = lock_user(VERIFY_WRITE, arg1, 1509 sizeof(struct target_pollfd) * nfds, 1); 1510 if (!target_pfd) { 1511 return -TARGET_EFAULT; 1512 } 1513 1514 pfd = alloca(sizeof(struct pollfd) * nfds); 1515 for (i = 0; i < nfds; i++) { 1516 pfd[i].fd = tswap32(target_pfd[i].fd); 1517 pfd[i].events = tswap16(target_pfd[i].events); 1518 } 1519 } 1520 if (ppoll) { 1521 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 1522 sigset_t *set = NULL; 1523 1524 if (arg3) { 1525 if (time64) { 1526 if (target_to_host_timespec64(timeout_ts, arg3)) { 1527 unlock_user(target_pfd, arg1, 0); 1528 return -TARGET_EFAULT; 1529 } 1530 } else { 1531 if (target_to_host_timespec(timeout_ts, arg3)) { 1532 unlock_user(target_pfd, arg1, 0); 1533 return -TARGET_EFAULT; 1534 } 1535 } 1536 } else { 1537 timeout_ts = NULL; 1538 } 1539 1540 if (arg4) { 1541 ret = process_sigsuspend_mask(&set, arg4, arg5); 1542 if (ret != 0) { 1543 unlock_user(target_pfd, arg1, 0); 1544 return ret; 1545 } 1546 } 1547 1548 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 1549 set, SIGSET_T_SIZE)); 1550 1551 if (set) { 1552 finish_sigsuspend_mask(ret); 1553 } 1554 if (!is_error(ret) && arg3) { 1555 if (time64) { 1556 if (host_to_target_timespec64(arg3, timeout_ts)) { 1557 return -TARGET_EFAULT; 1558 } 1559 } else { 1560 if (host_to_target_timespec(arg3, timeout_ts)) { 1561 return -TARGET_EFAULT; 1562 } 1563 } 1564 } 1565 } else { 1566 struct timespec ts, *pts; 1567 1568 if (arg3 >= 0) { 1569 /* Convert ms to secs, ns */ 1570 ts.tv_sec = arg3 / 1000; 1571 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 1572 pts = &ts; 1573 } else { 1574 /* -ve poll() timeout means "infinite" */ 1575 pts = NULL; 1576 } 1577 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 1578 } 1579 1580 if (!is_error(ret)) { 1581 for (i = 0; i < nfds; i++) { 1582 target_pfd[i].revents = tswap16(pfd[i].revents); 1583 } 1584 } 1585 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 1586 return ret; 1587 } 1588 #endif 1589 1590 static abi_long do_pipe2(int host_pipe[], int flags) 1591 { 1592 #ifdef CONFIG_PIPE2 1593 return pipe2(host_pipe, flags); 1594 #else 1595 return -ENOSYS; 1596 #endif 1597 } 1598 1599 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1600 int flags, int is_pipe2) 1601 { 1602 int host_pipe[2]; 1603 abi_long ret; 1604 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1605 1606 if (is_error(ret)) 1607 return get_errno(ret); 1608 1609 /* Several targets have special calling conventions for the original 1610 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1611 if (!is_pipe2) { 1612 #if defined(TARGET_ALPHA) 1613 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1614 return host_pipe[0]; 1615 #elif defined(TARGET_MIPS) 1616 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1617 return host_pipe[0]; 1618 #elif defined(TARGET_SH4) 1619 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1620 return host_pipe[0]; 1621 #elif defined(TARGET_SPARC) 1622 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1623 return host_pipe[0]; 1624 #endif 1625 } 1626 1627 if (put_user_s32(host_pipe[0], pipedes) 1628 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1629 return -TARGET_EFAULT; 1630 return get_errno(ret); 1631 } 1632 1633 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1634 abi_ulong target_addr, 1635 socklen_t len) 1636 { 1637 struct target_ip_mreqn *target_smreqn; 1638 1639 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1640 if (!target_smreqn) 1641 return -TARGET_EFAULT; 1642 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1643 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1644 if (len == sizeof(struct target_ip_mreqn)) 1645 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1646 unlock_user(target_smreqn, target_addr, 0); 1647 1648 return 0; 1649 } 1650 1651 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1652 abi_ulong target_addr, 1653 socklen_t len) 1654 { 1655 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1656 sa_family_t sa_family; 1657 struct target_sockaddr *target_saddr; 1658 1659 if (fd_trans_target_to_host_addr(fd)) { 1660 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1661 } 1662 1663 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1664 if (!target_saddr) 1665 return -TARGET_EFAULT; 1666 1667 sa_family = tswap16(target_saddr->sa_family); 1668 1669 /* Oops. The caller might send a incomplete sun_path; sun_path 1670 * must be terminated by \0 (see the manual page), but 1671 * unfortunately it is quite common to specify sockaddr_un 1672 * length as "strlen(x->sun_path)" while it should be 1673 * "strlen(...) + 1". We'll fix that here if needed. 1674 * Linux kernel has a similar feature. 1675 */ 1676 1677 if (sa_family == AF_UNIX) { 1678 if (len < unix_maxlen && len > 0) { 1679 char *cp = (char*)target_saddr; 1680 1681 if ( cp[len-1] && !cp[len] ) 1682 len++; 1683 } 1684 if (len > unix_maxlen) 1685 len = unix_maxlen; 1686 } 1687 1688 memcpy(addr, target_saddr, len); 1689 addr->sa_family = sa_family; 1690 if (sa_family == AF_NETLINK) { 1691 struct sockaddr_nl *nladdr; 1692 1693 nladdr = (struct sockaddr_nl *)addr; 1694 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1695 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1696 } else if (sa_family == AF_PACKET) { 1697 struct target_sockaddr_ll *lladdr; 1698 1699 lladdr = (struct target_sockaddr_ll *)addr; 1700 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1701 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1702 } 1703 unlock_user(target_saddr, target_addr, 0); 1704 1705 return 0; 1706 } 1707 1708 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1709 struct sockaddr *addr, 1710 socklen_t len) 1711 { 1712 struct target_sockaddr *target_saddr; 1713 1714 if (len == 0) { 1715 return 0; 1716 } 1717 assert(addr); 1718 1719 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1720 if (!target_saddr) 1721 return -TARGET_EFAULT; 1722 memcpy(target_saddr, addr, len); 1723 if (len >= offsetof(struct target_sockaddr, sa_family) + 1724 sizeof(target_saddr->sa_family)) { 1725 target_saddr->sa_family = tswap16(addr->sa_family); 1726 } 1727 if (addr->sa_family == AF_NETLINK && 1728 len >= sizeof(struct target_sockaddr_nl)) { 1729 struct target_sockaddr_nl *target_nl = 1730 (struct target_sockaddr_nl *)target_saddr; 1731 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1732 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1733 } else if (addr->sa_family == AF_PACKET) { 1734 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1735 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1736 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1737 } else if (addr->sa_family == AF_INET6 && 1738 len >= sizeof(struct target_sockaddr_in6)) { 1739 struct target_sockaddr_in6 *target_in6 = 1740 (struct target_sockaddr_in6 *)target_saddr; 1741 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1742 } 1743 unlock_user(target_saddr, target_addr, len); 1744 1745 return 0; 1746 } 1747 1748 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1749 struct target_msghdr *target_msgh) 1750 { 1751 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1752 abi_long msg_controllen; 1753 abi_ulong target_cmsg_addr; 1754 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1755 socklen_t space = 0; 1756 1757 msg_controllen = tswapal(target_msgh->msg_controllen); 1758 if (msg_controllen < sizeof (struct target_cmsghdr)) 1759 goto the_end; 1760 target_cmsg_addr = tswapal(target_msgh->msg_control); 1761 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1762 target_cmsg_start = target_cmsg; 1763 if (!target_cmsg) 1764 return -TARGET_EFAULT; 1765 1766 while (cmsg && target_cmsg) { 1767 void *data = CMSG_DATA(cmsg); 1768 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1769 1770 int len = tswapal(target_cmsg->cmsg_len) 1771 - sizeof(struct target_cmsghdr); 1772 1773 space += CMSG_SPACE(len); 1774 if (space > msgh->msg_controllen) { 1775 space -= CMSG_SPACE(len); 1776 /* This is a QEMU bug, since we allocated the payload 1777 * area ourselves (unlike overflow in host-to-target 1778 * conversion, which is just the guest giving us a buffer 1779 * that's too small). It can't happen for the payload types 1780 * we currently support; if it becomes an issue in future 1781 * we would need to improve our allocation strategy to 1782 * something more intelligent than "twice the size of the 1783 * target buffer we're reading from". 1784 */ 1785 qemu_log_mask(LOG_UNIMP, 1786 ("Unsupported ancillary data %d/%d: " 1787 "unhandled msg size\n"), 1788 tswap32(target_cmsg->cmsg_level), 1789 tswap32(target_cmsg->cmsg_type)); 1790 break; 1791 } 1792 1793 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1794 cmsg->cmsg_level = SOL_SOCKET; 1795 } else { 1796 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1797 } 1798 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1799 cmsg->cmsg_len = CMSG_LEN(len); 1800 1801 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1802 int *fd = (int *)data; 1803 int *target_fd = (int *)target_data; 1804 int i, numfds = len / sizeof(int); 1805 1806 for (i = 0; i < numfds; i++) { 1807 __get_user(fd[i], target_fd + i); 1808 } 1809 } else if (cmsg->cmsg_level == SOL_SOCKET 1810 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1811 struct ucred *cred = (struct ucred *)data; 1812 struct target_ucred *target_cred = 1813 (struct target_ucred *)target_data; 1814 1815 __get_user(cred->pid, &target_cred->pid); 1816 __get_user(cred->uid, &target_cred->uid); 1817 __get_user(cred->gid, &target_cred->gid); 1818 } else { 1819 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 1820 cmsg->cmsg_level, cmsg->cmsg_type); 1821 memcpy(data, target_data, len); 1822 } 1823 1824 cmsg = CMSG_NXTHDR(msgh, cmsg); 1825 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1826 target_cmsg_start); 1827 } 1828 unlock_user(target_cmsg, target_cmsg_addr, 0); 1829 the_end: 1830 msgh->msg_controllen = space; 1831 return 0; 1832 } 1833 1834 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1835 struct msghdr *msgh) 1836 { 1837 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1838 abi_long msg_controllen; 1839 abi_ulong target_cmsg_addr; 1840 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1841 socklen_t space = 0; 1842 1843 msg_controllen = tswapal(target_msgh->msg_controllen); 1844 if (msg_controllen < sizeof (struct target_cmsghdr)) 1845 goto the_end; 1846 target_cmsg_addr = tswapal(target_msgh->msg_control); 1847 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1848 target_cmsg_start = target_cmsg; 1849 if (!target_cmsg) 1850 return -TARGET_EFAULT; 1851 1852 while (cmsg && target_cmsg) { 1853 void *data = CMSG_DATA(cmsg); 1854 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1855 1856 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1857 int tgt_len, tgt_space; 1858 1859 /* We never copy a half-header but may copy half-data; 1860 * this is Linux's behaviour in put_cmsg(). Note that 1861 * truncation here is a guest problem (which we report 1862 * to the guest via the CTRUNC bit), unlike truncation 1863 * in target_to_host_cmsg, which is a QEMU bug. 1864 */ 1865 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1866 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1867 break; 1868 } 1869 1870 if (cmsg->cmsg_level == SOL_SOCKET) { 1871 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1872 } else { 1873 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1874 } 1875 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1876 1877 /* Payload types which need a different size of payload on 1878 * the target must adjust tgt_len here. 1879 */ 1880 tgt_len = len; 1881 switch (cmsg->cmsg_level) { 1882 case SOL_SOCKET: 1883 switch (cmsg->cmsg_type) { 1884 case SO_TIMESTAMP: 1885 tgt_len = sizeof(struct target_timeval); 1886 break; 1887 default: 1888 break; 1889 } 1890 break; 1891 default: 1892 break; 1893 } 1894 1895 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1896 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1897 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1898 } 1899 1900 /* We must now copy-and-convert len bytes of payload 1901 * into tgt_len bytes of destination space. Bear in mind 1902 * that in both source and destination we may be dealing 1903 * with a truncated value! 1904 */ 1905 switch (cmsg->cmsg_level) { 1906 case SOL_SOCKET: 1907 switch (cmsg->cmsg_type) { 1908 case SCM_RIGHTS: 1909 { 1910 int *fd = (int *)data; 1911 int *target_fd = (int *)target_data; 1912 int i, numfds = tgt_len / sizeof(int); 1913 1914 for (i = 0; i < numfds; i++) { 1915 __put_user(fd[i], target_fd + i); 1916 } 1917 break; 1918 } 1919 case SO_TIMESTAMP: 1920 { 1921 struct timeval *tv = (struct timeval *)data; 1922 struct target_timeval *target_tv = 1923 (struct target_timeval *)target_data; 1924 1925 if (len != sizeof(struct timeval) || 1926 tgt_len != sizeof(struct target_timeval)) { 1927 goto unimplemented; 1928 } 1929 1930 /* copy struct timeval to target */ 1931 __put_user(tv->tv_sec, &target_tv->tv_sec); 1932 __put_user(tv->tv_usec, &target_tv->tv_usec); 1933 break; 1934 } 1935 case SCM_CREDENTIALS: 1936 { 1937 struct ucred *cred = (struct ucred *)data; 1938 struct target_ucred *target_cred = 1939 (struct target_ucred *)target_data; 1940 1941 __put_user(cred->pid, &target_cred->pid); 1942 __put_user(cred->uid, &target_cred->uid); 1943 __put_user(cred->gid, &target_cred->gid); 1944 break; 1945 } 1946 default: 1947 goto unimplemented; 1948 } 1949 break; 1950 1951 case SOL_IP: 1952 switch (cmsg->cmsg_type) { 1953 case IP_TTL: 1954 { 1955 uint32_t *v = (uint32_t *)data; 1956 uint32_t *t_int = (uint32_t *)target_data; 1957 1958 if (len != sizeof(uint32_t) || 1959 tgt_len != sizeof(uint32_t)) { 1960 goto unimplemented; 1961 } 1962 __put_user(*v, t_int); 1963 break; 1964 } 1965 case IP_RECVERR: 1966 { 1967 struct errhdr_t { 1968 struct sock_extended_err ee; 1969 struct sockaddr_in offender; 1970 }; 1971 struct errhdr_t *errh = (struct errhdr_t *)data; 1972 struct errhdr_t *target_errh = 1973 (struct errhdr_t *)target_data; 1974 1975 if (len != sizeof(struct errhdr_t) || 1976 tgt_len != sizeof(struct errhdr_t)) { 1977 goto unimplemented; 1978 } 1979 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1980 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1981 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1982 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1983 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1984 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1985 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1986 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1987 (void *) &errh->offender, sizeof(errh->offender)); 1988 break; 1989 } 1990 default: 1991 goto unimplemented; 1992 } 1993 break; 1994 1995 case SOL_IPV6: 1996 switch (cmsg->cmsg_type) { 1997 case IPV6_HOPLIMIT: 1998 { 1999 uint32_t *v = (uint32_t *)data; 2000 uint32_t *t_int = (uint32_t *)target_data; 2001 2002 if (len != sizeof(uint32_t) || 2003 tgt_len != sizeof(uint32_t)) { 2004 goto unimplemented; 2005 } 2006 __put_user(*v, t_int); 2007 break; 2008 } 2009 case IPV6_RECVERR: 2010 { 2011 struct errhdr6_t { 2012 struct sock_extended_err ee; 2013 struct sockaddr_in6 offender; 2014 }; 2015 struct errhdr6_t *errh = (struct errhdr6_t *)data; 2016 struct errhdr6_t *target_errh = 2017 (struct errhdr6_t *)target_data; 2018 2019 if (len != sizeof(struct errhdr6_t) || 2020 tgt_len != sizeof(struct errhdr6_t)) { 2021 goto unimplemented; 2022 } 2023 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2024 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2025 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2026 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2027 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2028 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2029 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2030 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2031 (void *) &errh->offender, sizeof(errh->offender)); 2032 break; 2033 } 2034 default: 2035 goto unimplemented; 2036 } 2037 break; 2038 2039 default: 2040 unimplemented: 2041 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 2042 cmsg->cmsg_level, cmsg->cmsg_type); 2043 memcpy(target_data, data, MIN(len, tgt_len)); 2044 if (tgt_len > len) { 2045 memset(target_data + len, 0, tgt_len - len); 2046 } 2047 } 2048 2049 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 2050 tgt_space = TARGET_CMSG_SPACE(tgt_len); 2051 if (msg_controllen < tgt_space) { 2052 tgt_space = msg_controllen; 2053 } 2054 msg_controllen -= tgt_space; 2055 space += tgt_space; 2056 cmsg = CMSG_NXTHDR(msgh, cmsg); 2057 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 2058 target_cmsg_start); 2059 } 2060 unlock_user(target_cmsg, target_cmsg_addr, space); 2061 the_end: 2062 target_msgh->msg_controllen = tswapal(space); 2063 return 0; 2064 } 2065 2066 /* do_setsockopt() Must return target values and target errnos. */ 2067 static abi_long do_setsockopt(int sockfd, int level, int optname, 2068 abi_ulong optval_addr, socklen_t optlen) 2069 { 2070 abi_long ret; 2071 int val; 2072 struct ip_mreqn *ip_mreq; 2073 struct ip_mreq_source *ip_mreq_source; 2074 2075 switch(level) { 2076 case SOL_TCP: 2077 case SOL_UDP: 2078 /* TCP and UDP options all take an 'int' value. */ 2079 if (optlen < sizeof(uint32_t)) 2080 return -TARGET_EINVAL; 2081 2082 if (get_user_u32(val, optval_addr)) 2083 return -TARGET_EFAULT; 2084 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2085 break; 2086 case SOL_IP: 2087 switch(optname) { 2088 case IP_TOS: 2089 case IP_TTL: 2090 case IP_HDRINCL: 2091 case IP_ROUTER_ALERT: 2092 case IP_RECVOPTS: 2093 case IP_RETOPTS: 2094 case IP_PKTINFO: 2095 case IP_MTU_DISCOVER: 2096 case IP_RECVERR: 2097 case IP_RECVTTL: 2098 case IP_RECVTOS: 2099 #ifdef IP_FREEBIND 2100 case IP_FREEBIND: 2101 #endif 2102 case IP_MULTICAST_TTL: 2103 case IP_MULTICAST_LOOP: 2104 val = 0; 2105 if (optlen >= sizeof(uint32_t)) { 2106 if (get_user_u32(val, optval_addr)) 2107 return -TARGET_EFAULT; 2108 } else if (optlen >= 1) { 2109 if (get_user_u8(val, optval_addr)) 2110 return -TARGET_EFAULT; 2111 } 2112 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2113 break; 2114 case IP_ADD_MEMBERSHIP: 2115 case IP_DROP_MEMBERSHIP: 2116 if (optlen < sizeof (struct target_ip_mreq) || 2117 optlen > sizeof (struct target_ip_mreqn)) 2118 return -TARGET_EINVAL; 2119 2120 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2121 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2122 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2123 break; 2124 2125 case IP_BLOCK_SOURCE: 2126 case IP_UNBLOCK_SOURCE: 2127 case IP_ADD_SOURCE_MEMBERSHIP: 2128 case IP_DROP_SOURCE_MEMBERSHIP: 2129 if (optlen != sizeof (struct target_ip_mreq_source)) 2130 return -TARGET_EINVAL; 2131 2132 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2133 if (!ip_mreq_source) { 2134 return -TARGET_EFAULT; 2135 } 2136 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2137 unlock_user (ip_mreq_source, optval_addr, 0); 2138 break; 2139 2140 default: 2141 goto unimplemented; 2142 } 2143 break; 2144 case SOL_IPV6: 2145 switch (optname) { 2146 case IPV6_MTU_DISCOVER: 2147 case IPV6_MTU: 2148 case IPV6_V6ONLY: 2149 case IPV6_RECVPKTINFO: 2150 case IPV6_UNICAST_HOPS: 2151 case IPV6_MULTICAST_HOPS: 2152 case IPV6_MULTICAST_LOOP: 2153 case IPV6_RECVERR: 2154 case IPV6_RECVHOPLIMIT: 2155 case IPV6_2292HOPLIMIT: 2156 case IPV6_CHECKSUM: 2157 case IPV6_ADDRFORM: 2158 case IPV6_2292PKTINFO: 2159 case IPV6_RECVTCLASS: 2160 case IPV6_RECVRTHDR: 2161 case IPV6_2292RTHDR: 2162 case IPV6_RECVHOPOPTS: 2163 case IPV6_2292HOPOPTS: 2164 case IPV6_RECVDSTOPTS: 2165 case IPV6_2292DSTOPTS: 2166 case IPV6_TCLASS: 2167 case IPV6_ADDR_PREFERENCES: 2168 #ifdef IPV6_RECVPATHMTU 2169 case IPV6_RECVPATHMTU: 2170 #endif 2171 #ifdef IPV6_TRANSPARENT 2172 case IPV6_TRANSPARENT: 2173 #endif 2174 #ifdef IPV6_FREEBIND 2175 case IPV6_FREEBIND: 2176 #endif 2177 #ifdef IPV6_RECVORIGDSTADDR 2178 case IPV6_RECVORIGDSTADDR: 2179 #endif 2180 val = 0; 2181 if (optlen < sizeof(uint32_t)) { 2182 return -TARGET_EINVAL; 2183 } 2184 if (get_user_u32(val, optval_addr)) { 2185 return -TARGET_EFAULT; 2186 } 2187 ret = get_errno(setsockopt(sockfd, level, optname, 2188 &val, sizeof(val))); 2189 break; 2190 case IPV6_PKTINFO: 2191 { 2192 struct in6_pktinfo pki; 2193 2194 if (optlen < sizeof(pki)) { 2195 return -TARGET_EINVAL; 2196 } 2197 2198 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2199 return -TARGET_EFAULT; 2200 } 2201 2202 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2203 2204 ret = get_errno(setsockopt(sockfd, level, optname, 2205 &pki, sizeof(pki))); 2206 break; 2207 } 2208 case IPV6_ADD_MEMBERSHIP: 2209 case IPV6_DROP_MEMBERSHIP: 2210 { 2211 struct ipv6_mreq ipv6mreq; 2212 2213 if (optlen < sizeof(ipv6mreq)) { 2214 return -TARGET_EINVAL; 2215 } 2216 2217 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) { 2218 return -TARGET_EFAULT; 2219 } 2220 2221 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface); 2222 2223 ret = get_errno(setsockopt(sockfd, level, optname, 2224 &ipv6mreq, sizeof(ipv6mreq))); 2225 break; 2226 } 2227 default: 2228 goto unimplemented; 2229 } 2230 break; 2231 case SOL_ICMPV6: 2232 switch (optname) { 2233 case ICMPV6_FILTER: 2234 { 2235 struct icmp6_filter icmp6f; 2236 2237 if (optlen > sizeof(icmp6f)) { 2238 optlen = sizeof(icmp6f); 2239 } 2240 2241 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 2242 return -TARGET_EFAULT; 2243 } 2244 2245 for (val = 0; val < 8; val++) { 2246 icmp6f.data[val] = tswap32(icmp6f.data[val]); 2247 } 2248 2249 ret = get_errno(setsockopt(sockfd, level, optname, 2250 &icmp6f, optlen)); 2251 break; 2252 } 2253 default: 2254 goto unimplemented; 2255 } 2256 break; 2257 case SOL_RAW: 2258 switch (optname) { 2259 case ICMP_FILTER: 2260 case IPV6_CHECKSUM: 2261 /* those take an u32 value */ 2262 if (optlen < sizeof(uint32_t)) { 2263 return -TARGET_EINVAL; 2264 } 2265 2266 if (get_user_u32(val, optval_addr)) { 2267 return -TARGET_EFAULT; 2268 } 2269 ret = get_errno(setsockopt(sockfd, level, optname, 2270 &val, sizeof(val))); 2271 break; 2272 2273 default: 2274 goto unimplemented; 2275 } 2276 break; 2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE) 2278 case SOL_ALG: 2279 switch (optname) { 2280 case ALG_SET_KEY: 2281 { 2282 char *alg_key = g_malloc(optlen); 2283 2284 if (!alg_key) { 2285 return -TARGET_ENOMEM; 2286 } 2287 if (copy_from_user(alg_key, optval_addr, optlen)) { 2288 g_free(alg_key); 2289 return -TARGET_EFAULT; 2290 } 2291 ret = get_errno(setsockopt(sockfd, level, optname, 2292 alg_key, optlen)); 2293 g_free(alg_key); 2294 break; 2295 } 2296 case ALG_SET_AEAD_AUTHSIZE: 2297 { 2298 ret = get_errno(setsockopt(sockfd, level, optname, 2299 NULL, optlen)); 2300 break; 2301 } 2302 default: 2303 goto unimplemented; 2304 } 2305 break; 2306 #endif 2307 case TARGET_SOL_SOCKET: 2308 switch (optname) { 2309 case TARGET_SO_RCVTIMEO: 2310 { 2311 struct timeval tv; 2312 2313 optname = SO_RCVTIMEO; 2314 2315 set_timeout: 2316 if (optlen != sizeof(struct target_timeval)) { 2317 return -TARGET_EINVAL; 2318 } 2319 2320 if (copy_from_user_timeval(&tv, optval_addr)) { 2321 return -TARGET_EFAULT; 2322 } 2323 2324 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2325 &tv, sizeof(tv))); 2326 return ret; 2327 } 2328 case TARGET_SO_SNDTIMEO: 2329 optname = SO_SNDTIMEO; 2330 goto set_timeout; 2331 case TARGET_SO_ATTACH_FILTER: 2332 { 2333 struct target_sock_fprog *tfprog; 2334 struct target_sock_filter *tfilter; 2335 struct sock_fprog fprog; 2336 struct sock_filter *filter; 2337 int i; 2338 2339 if (optlen != sizeof(*tfprog)) { 2340 return -TARGET_EINVAL; 2341 } 2342 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2343 return -TARGET_EFAULT; 2344 } 2345 if (!lock_user_struct(VERIFY_READ, tfilter, 2346 tswapal(tfprog->filter), 0)) { 2347 unlock_user_struct(tfprog, optval_addr, 1); 2348 return -TARGET_EFAULT; 2349 } 2350 2351 fprog.len = tswap16(tfprog->len); 2352 filter = g_try_new(struct sock_filter, fprog.len); 2353 if (filter == NULL) { 2354 unlock_user_struct(tfilter, tfprog->filter, 1); 2355 unlock_user_struct(tfprog, optval_addr, 1); 2356 return -TARGET_ENOMEM; 2357 } 2358 for (i = 0; i < fprog.len; i++) { 2359 filter[i].code = tswap16(tfilter[i].code); 2360 filter[i].jt = tfilter[i].jt; 2361 filter[i].jf = tfilter[i].jf; 2362 filter[i].k = tswap32(tfilter[i].k); 2363 } 2364 fprog.filter = filter; 2365 2366 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2367 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2368 g_free(filter); 2369 2370 unlock_user_struct(tfilter, tfprog->filter, 1); 2371 unlock_user_struct(tfprog, optval_addr, 1); 2372 return ret; 2373 } 2374 case TARGET_SO_BINDTODEVICE: 2375 { 2376 char *dev_ifname, *addr_ifname; 2377 2378 if (optlen > IFNAMSIZ - 1) { 2379 optlen = IFNAMSIZ - 1; 2380 } 2381 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2382 if (!dev_ifname) { 2383 return -TARGET_EFAULT; 2384 } 2385 optname = SO_BINDTODEVICE; 2386 addr_ifname = alloca(IFNAMSIZ); 2387 memcpy(addr_ifname, dev_ifname, optlen); 2388 addr_ifname[optlen] = 0; 2389 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2390 addr_ifname, optlen)); 2391 unlock_user (dev_ifname, optval_addr, 0); 2392 return ret; 2393 } 2394 case TARGET_SO_LINGER: 2395 { 2396 struct linger lg; 2397 struct target_linger *tlg; 2398 2399 if (optlen != sizeof(struct target_linger)) { 2400 return -TARGET_EINVAL; 2401 } 2402 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) { 2403 return -TARGET_EFAULT; 2404 } 2405 __get_user(lg.l_onoff, &tlg->l_onoff); 2406 __get_user(lg.l_linger, &tlg->l_linger); 2407 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER, 2408 &lg, sizeof(lg))); 2409 unlock_user_struct(tlg, optval_addr, 0); 2410 return ret; 2411 } 2412 /* Options with 'int' argument. */ 2413 case TARGET_SO_DEBUG: 2414 optname = SO_DEBUG; 2415 break; 2416 case TARGET_SO_REUSEADDR: 2417 optname = SO_REUSEADDR; 2418 break; 2419 #ifdef SO_REUSEPORT 2420 case TARGET_SO_REUSEPORT: 2421 optname = SO_REUSEPORT; 2422 break; 2423 #endif 2424 case TARGET_SO_TYPE: 2425 optname = SO_TYPE; 2426 break; 2427 case TARGET_SO_ERROR: 2428 optname = SO_ERROR; 2429 break; 2430 case TARGET_SO_DONTROUTE: 2431 optname = SO_DONTROUTE; 2432 break; 2433 case TARGET_SO_BROADCAST: 2434 optname = SO_BROADCAST; 2435 break; 2436 case TARGET_SO_SNDBUF: 2437 optname = SO_SNDBUF; 2438 break; 2439 case TARGET_SO_SNDBUFFORCE: 2440 optname = SO_SNDBUFFORCE; 2441 break; 2442 case TARGET_SO_RCVBUF: 2443 optname = SO_RCVBUF; 2444 break; 2445 case TARGET_SO_RCVBUFFORCE: 2446 optname = SO_RCVBUFFORCE; 2447 break; 2448 case TARGET_SO_KEEPALIVE: 2449 optname = SO_KEEPALIVE; 2450 break; 2451 case TARGET_SO_OOBINLINE: 2452 optname = SO_OOBINLINE; 2453 break; 2454 case TARGET_SO_NO_CHECK: 2455 optname = SO_NO_CHECK; 2456 break; 2457 case TARGET_SO_PRIORITY: 2458 optname = SO_PRIORITY; 2459 break; 2460 #ifdef SO_BSDCOMPAT 2461 case TARGET_SO_BSDCOMPAT: 2462 optname = SO_BSDCOMPAT; 2463 break; 2464 #endif 2465 case TARGET_SO_PASSCRED: 2466 optname = SO_PASSCRED; 2467 break; 2468 case TARGET_SO_PASSSEC: 2469 optname = SO_PASSSEC; 2470 break; 2471 case TARGET_SO_TIMESTAMP: 2472 optname = SO_TIMESTAMP; 2473 break; 2474 case TARGET_SO_RCVLOWAT: 2475 optname = SO_RCVLOWAT; 2476 break; 2477 default: 2478 goto unimplemented; 2479 } 2480 if (optlen < sizeof(uint32_t)) 2481 return -TARGET_EINVAL; 2482 2483 if (get_user_u32(val, optval_addr)) 2484 return -TARGET_EFAULT; 2485 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 2486 break; 2487 #ifdef SOL_NETLINK 2488 case SOL_NETLINK: 2489 switch (optname) { 2490 case NETLINK_PKTINFO: 2491 case NETLINK_ADD_MEMBERSHIP: 2492 case NETLINK_DROP_MEMBERSHIP: 2493 case NETLINK_BROADCAST_ERROR: 2494 case NETLINK_NO_ENOBUFS: 2495 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2496 case NETLINK_LISTEN_ALL_NSID: 2497 case NETLINK_CAP_ACK: 2498 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2499 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2500 case NETLINK_EXT_ACK: 2501 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2502 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2503 case NETLINK_GET_STRICT_CHK: 2504 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2505 break; 2506 default: 2507 goto unimplemented; 2508 } 2509 val = 0; 2510 if (optlen < sizeof(uint32_t)) { 2511 return -TARGET_EINVAL; 2512 } 2513 if (get_user_u32(val, optval_addr)) { 2514 return -TARGET_EFAULT; 2515 } 2516 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val, 2517 sizeof(val))); 2518 break; 2519 #endif /* SOL_NETLINK */ 2520 default: 2521 unimplemented: 2522 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n", 2523 level, optname); 2524 ret = -TARGET_ENOPROTOOPT; 2525 } 2526 return ret; 2527 } 2528 2529 /* do_getsockopt() Must return target values and target errnos. */ 2530 static abi_long do_getsockopt(int sockfd, int level, int optname, 2531 abi_ulong optval_addr, abi_ulong optlen) 2532 { 2533 abi_long ret; 2534 int len, val; 2535 socklen_t lv; 2536 2537 switch(level) { 2538 case TARGET_SOL_SOCKET: 2539 level = SOL_SOCKET; 2540 switch (optname) { 2541 /* These don't just return a single integer */ 2542 case TARGET_SO_PEERNAME: 2543 goto unimplemented; 2544 case TARGET_SO_RCVTIMEO: { 2545 struct timeval tv; 2546 socklen_t tvlen; 2547 2548 optname = SO_RCVTIMEO; 2549 2550 get_timeout: 2551 if (get_user_u32(len, optlen)) { 2552 return -TARGET_EFAULT; 2553 } 2554 if (len < 0) { 2555 return -TARGET_EINVAL; 2556 } 2557 2558 tvlen = sizeof(tv); 2559 ret = get_errno(getsockopt(sockfd, level, optname, 2560 &tv, &tvlen)); 2561 if (ret < 0) { 2562 return ret; 2563 } 2564 if (len > sizeof(struct target_timeval)) { 2565 len = sizeof(struct target_timeval); 2566 } 2567 if (copy_to_user_timeval(optval_addr, &tv)) { 2568 return -TARGET_EFAULT; 2569 } 2570 if (put_user_u32(len, optlen)) { 2571 return -TARGET_EFAULT; 2572 } 2573 break; 2574 } 2575 case TARGET_SO_SNDTIMEO: 2576 optname = SO_SNDTIMEO; 2577 goto get_timeout; 2578 case TARGET_SO_PEERCRED: { 2579 struct ucred cr; 2580 socklen_t crlen; 2581 struct target_ucred *tcr; 2582 2583 if (get_user_u32(len, optlen)) { 2584 return -TARGET_EFAULT; 2585 } 2586 if (len < 0) { 2587 return -TARGET_EINVAL; 2588 } 2589 2590 crlen = sizeof(cr); 2591 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 2592 &cr, &crlen)); 2593 if (ret < 0) { 2594 return ret; 2595 } 2596 if (len > crlen) { 2597 len = crlen; 2598 } 2599 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 2600 return -TARGET_EFAULT; 2601 } 2602 __put_user(cr.pid, &tcr->pid); 2603 __put_user(cr.uid, &tcr->uid); 2604 __put_user(cr.gid, &tcr->gid); 2605 unlock_user_struct(tcr, optval_addr, 1); 2606 if (put_user_u32(len, optlen)) { 2607 return -TARGET_EFAULT; 2608 } 2609 break; 2610 } 2611 case TARGET_SO_PEERSEC: { 2612 char *name; 2613 2614 if (get_user_u32(len, optlen)) { 2615 return -TARGET_EFAULT; 2616 } 2617 if (len < 0) { 2618 return -TARGET_EINVAL; 2619 } 2620 name = lock_user(VERIFY_WRITE, optval_addr, len, 0); 2621 if (!name) { 2622 return -TARGET_EFAULT; 2623 } 2624 lv = len; 2625 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC, 2626 name, &lv)); 2627 if (put_user_u32(lv, optlen)) { 2628 ret = -TARGET_EFAULT; 2629 } 2630 unlock_user(name, optval_addr, lv); 2631 break; 2632 } 2633 case TARGET_SO_LINGER: 2634 { 2635 struct linger lg; 2636 socklen_t lglen; 2637 struct target_linger *tlg; 2638 2639 if (get_user_u32(len, optlen)) { 2640 return -TARGET_EFAULT; 2641 } 2642 if (len < 0) { 2643 return -TARGET_EINVAL; 2644 } 2645 2646 lglen = sizeof(lg); 2647 ret = get_errno(getsockopt(sockfd, level, SO_LINGER, 2648 &lg, &lglen)); 2649 if (ret < 0) { 2650 return ret; 2651 } 2652 if (len > lglen) { 2653 len = lglen; 2654 } 2655 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) { 2656 return -TARGET_EFAULT; 2657 } 2658 __put_user(lg.l_onoff, &tlg->l_onoff); 2659 __put_user(lg.l_linger, &tlg->l_linger); 2660 unlock_user_struct(tlg, optval_addr, 1); 2661 if (put_user_u32(len, optlen)) { 2662 return -TARGET_EFAULT; 2663 } 2664 break; 2665 } 2666 /* Options with 'int' argument. */ 2667 case TARGET_SO_DEBUG: 2668 optname = SO_DEBUG; 2669 goto int_case; 2670 case TARGET_SO_REUSEADDR: 2671 optname = SO_REUSEADDR; 2672 goto int_case; 2673 #ifdef SO_REUSEPORT 2674 case TARGET_SO_REUSEPORT: 2675 optname = SO_REUSEPORT; 2676 goto int_case; 2677 #endif 2678 case TARGET_SO_TYPE: 2679 optname = SO_TYPE; 2680 goto int_case; 2681 case TARGET_SO_ERROR: 2682 optname = SO_ERROR; 2683 goto int_case; 2684 case TARGET_SO_DONTROUTE: 2685 optname = SO_DONTROUTE; 2686 goto int_case; 2687 case TARGET_SO_BROADCAST: 2688 optname = SO_BROADCAST; 2689 goto int_case; 2690 case TARGET_SO_SNDBUF: 2691 optname = SO_SNDBUF; 2692 goto int_case; 2693 case TARGET_SO_RCVBUF: 2694 optname = SO_RCVBUF; 2695 goto int_case; 2696 case TARGET_SO_KEEPALIVE: 2697 optname = SO_KEEPALIVE; 2698 goto int_case; 2699 case TARGET_SO_OOBINLINE: 2700 optname = SO_OOBINLINE; 2701 goto int_case; 2702 case TARGET_SO_NO_CHECK: 2703 optname = SO_NO_CHECK; 2704 goto int_case; 2705 case TARGET_SO_PRIORITY: 2706 optname = SO_PRIORITY; 2707 goto int_case; 2708 #ifdef SO_BSDCOMPAT 2709 case TARGET_SO_BSDCOMPAT: 2710 optname = SO_BSDCOMPAT; 2711 goto int_case; 2712 #endif 2713 case TARGET_SO_PASSCRED: 2714 optname = SO_PASSCRED; 2715 goto int_case; 2716 case TARGET_SO_TIMESTAMP: 2717 optname = SO_TIMESTAMP; 2718 goto int_case; 2719 case TARGET_SO_RCVLOWAT: 2720 optname = SO_RCVLOWAT; 2721 goto int_case; 2722 case TARGET_SO_ACCEPTCONN: 2723 optname = SO_ACCEPTCONN; 2724 goto int_case; 2725 case TARGET_SO_PROTOCOL: 2726 optname = SO_PROTOCOL; 2727 goto int_case; 2728 case TARGET_SO_DOMAIN: 2729 optname = SO_DOMAIN; 2730 goto int_case; 2731 default: 2732 goto int_case; 2733 } 2734 break; 2735 case SOL_TCP: 2736 case SOL_UDP: 2737 /* TCP and UDP options all take an 'int' value. */ 2738 int_case: 2739 if (get_user_u32(len, optlen)) 2740 return -TARGET_EFAULT; 2741 if (len < 0) 2742 return -TARGET_EINVAL; 2743 lv = sizeof(lv); 2744 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2745 if (ret < 0) 2746 return ret; 2747 if (optname == SO_TYPE) { 2748 val = host_to_target_sock_type(val); 2749 } 2750 if (len > lv) 2751 len = lv; 2752 if (len == 4) { 2753 if (put_user_u32(val, optval_addr)) 2754 return -TARGET_EFAULT; 2755 } else { 2756 if (put_user_u8(val, optval_addr)) 2757 return -TARGET_EFAULT; 2758 } 2759 if (put_user_u32(len, optlen)) 2760 return -TARGET_EFAULT; 2761 break; 2762 case SOL_IP: 2763 switch(optname) { 2764 case IP_TOS: 2765 case IP_TTL: 2766 case IP_HDRINCL: 2767 case IP_ROUTER_ALERT: 2768 case IP_RECVOPTS: 2769 case IP_RETOPTS: 2770 case IP_PKTINFO: 2771 case IP_MTU_DISCOVER: 2772 case IP_RECVERR: 2773 case IP_RECVTOS: 2774 #ifdef IP_FREEBIND 2775 case IP_FREEBIND: 2776 #endif 2777 case IP_MULTICAST_TTL: 2778 case IP_MULTICAST_LOOP: 2779 if (get_user_u32(len, optlen)) 2780 return -TARGET_EFAULT; 2781 if (len < 0) 2782 return -TARGET_EINVAL; 2783 lv = sizeof(lv); 2784 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2785 if (ret < 0) 2786 return ret; 2787 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2788 len = 1; 2789 if (put_user_u32(len, optlen) 2790 || put_user_u8(val, optval_addr)) 2791 return -TARGET_EFAULT; 2792 } else { 2793 if (len > sizeof(int)) 2794 len = sizeof(int); 2795 if (put_user_u32(len, optlen) 2796 || put_user_u32(val, optval_addr)) 2797 return -TARGET_EFAULT; 2798 } 2799 break; 2800 default: 2801 ret = -TARGET_ENOPROTOOPT; 2802 break; 2803 } 2804 break; 2805 case SOL_IPV6: 2806 switch (optname) { 2807 case IPV6_MTU_DISCOVER: 2808 case IPV6_MTU: 2809 case IPV6_V6ONLY: 2810 case IPV6_RECVPKTINFO: 2811 case IPV6_UNICAST_HOPS: 2812 case IPV6_MULTICAST_HOPS: 2813 case IPV6_MULTICAST_LOOP: 2814 case IPV6_RECVERR: 2815 case IPV6_RECVHOPLIMIT: 2816 case IPV6_2292HOPLIMIT: 2817 case IPV6_CHECKSUM: 2818 case IPV6_ADDRFORM: 2819 case IPV6_2292PKTINFO: 2820 case IPV6_RECVTCLASS: 2821 case IPV6_RECVRTHDR: 2822 case IPV6_2292RTHDR: 2823 case IPV6_RECVHOPOPTS: 2824 case IPV6_2292HOPOPTS: 2825 case IPV6_RECVDSTOPTS: 2826 case IPV6_2292DSTOPTS: 2827 case IPV6_TCLASS: 2828 case IPV6_ADDR_PREFERENCES: 2829 #ifdef IPV6_RECVPATHMTU 2830 case IPV6_RECVPATHMTU: 2831 #endif 2832 #ifdef IPV6_TRANSPARENT 2833 case IPV6_TRANSPARENT: 2834 #endif 2835 #ifdef IPV6_FREEBIND 2836 case IPV6_FREEBIND: 2837 #endif 2838 #ifdef IPV6_RECVORIGDSTADDR 2839 case IPV6_RECVORIGDSTADDR: 2840 #endif 2841 if (get_user_u32(len, optlen)) 2842 return -TARGET_EFAULT; 2843 if (len < 0) 2844 return -TARGET_EINVAL; 2845 lv = sizeof(lv); 2846 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2847 if (ret < 0) 2848 return ret; 2849 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2850 len = 1; 2851 if (put_user_u32(len, optlen) 2852 || put_user_u8(val, optval_addr)) 2853 return -TARGET_EFAULT; 2854 } else { 2855 if (len > sizeof(int)) 2856 len = sizeof(int); 2857 if (put_user_u32(len, optlen) 2858 || put_user_u32(val, optval_addr)) 2859 return -TARGET_EFAULT; 2860 } 2861 break; 2862 default: 2863 ret = -TARGET_ENOPROTOOPT; 2864 break; 2865 } 2866 break; 2867 #ifdef SOL_NETLINK 2868 case SOL_NETLINK: 2869 switch (optname) { 2870 case NETLINK_PKTINFO: 2871 case NETLINK_BROADCAST_ERROR: 2872 case NETLINK_NO_ENOBUFS: 2873 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2874 case NETLINK_LISTEN_ALL_NSID: 2875 case NETLINK_CAP_ACK: 2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2878 case NETLINK_EXT_ACK: 2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2881 case NETLINK_GET_STRICT_CHK: 2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2883 if (get_user_u32(len, optlen)) { 2884 return -TARGET_EFAULT; 2885 } 2886 if (len != sizeof(val)) { 2887 return -TARGET_EINVAL; 2888 } 2889 lv = len; 2890 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2891 if (ret < 0) { 2892 return ret; 2893 } 2894 if (put_user_u32(lv, optlen) 2895 || put_user_u32(val, optval_addr)) { 2896 return -TARGET_EFAULT; 2897 } 2898 break; 2899 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2900 case NETLINK_LIST_MEMBERSHIPS: 2901 { 2902 uint32_t *results; 2903 int i; 2904 if (get_user_u32(len, optlen)) { 2905 return -TARGET_EFAULT; 2906 } 2907 if (len < 0) { 2908 return -TARGET_EINVAL; 2909 } 2910 results = lock_user(VERIFY_WRITE, optval_addr, len, 1); 2911 if (!results && len > 0) { 2912 return -TARGET_EFAULT; 2913 } 2914 lv = len; 2915 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv)); 2916 if (ret < 0) { 2917 unlock_user(results, optval_addr, 0); 2918 return ret; 2919 } 2920 /* swap host endianess to target endianess. */ 2921 for (i = 0; i < (len / sizeof(uint32_t)); i++) { 2922 results[i] = tswap32(results[i]); 2923 } 2924 if (put_user_u32(lv, optlen)) { 2925 return -TARGET_EFAULT; 2926 } 2927 unlock_user(results, optval_addr, 0); 2928 break; 2929 } 2930 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2931 default: 2932 goto unimplemented; 2933 } 2934 break; 2935 #endif /* SOL_NETLINK */ 2936 default: 2937 unimplemented: 2938 qemu_log_mask(LOG_UNIMP, 2939 "getsockopt level=%d optname=%d not yet supported\n", 2940 level, optname); 2941 ret = -TARGET_EOPNOTSUPP; 2942 break; 2943 } 2944 return ret; 2945 } 2946 2947 /* Convert target low/high pair representing file offset into the host 2948 * low/high pair. This function doesn't handle offsets bigger than 64 bits 2949 * as the kernel doesn't handle them either. 2950 */ 2951 static void target_to_host_low_high(abi_ulong tlow, 2952 abi_ulong thigh, 2953 unsigned long *hlow, 2954 unsigned long *hhigh) 2955 { 2956 uint64_t off = tlow | 2957 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) << 2958 TARGET_LONG_BITS / 2; 2959 2960 *hlow = off; 2961 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2; 2962 } 2963 2964 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 2965 abi_ulong count, int copy) 2966 { 2967 struct target_iovec *target_vec; 2968 struct iovec *vec; 2969 abi_ulong total_len, max_len; 2970 int i; 2971 int err = 0; 2972 bool bad_address = false; 2973 2974 if (count == 0) { 2975 errno = 0; 2976 return NULL; 2977 } 2978 if (count > IOV_MAX) { 2979 errno = EINVAL; 2980 return NULL; 2981 } 2982 2983 vec = g_try_new0(struct iovec, count); 2984 if (vec == NULL) { 2985 errno = ENOMEM; 2986 return NULL; 2987 } 2988 2989 target_vec = lock_user(VERIFY_READ, target_addr, 2990 count * sizeof(struct target_iovec), 1); 2991 if (target_vec == NULL) { 2992 err = EFAULT; 2993 goto fail2; 2994 } 2995 2996 /* ??? If host page size > target page size, this will result in a 2997 value larger than what we can actually support. */ 2998 max_len = 0x7fffffff & TARGET_PAGE_MASK; 2999 total_len = 0; 3000 3001 for (i = 0; i < count; i++) { 3002 abi_ulong base = tswapal(target_vec[i].iov_base); 3003 abi_long len = tswapal(target_vec[i].iov_len); 3004 3005 if (len < 0) { 3006 err = EINVAL; 3007 goto fail; 3008 } else if (len == 0) { 3009 /* Zero length pointer is ignored. */ 3010 vec[i].iov_base = 0; 3011 } else { 3012 vec[i].iov_base = lock_user(type, base, len, copy); 3013 /* If the first buffer pointer is bad, this is a fault. But 3014 * subsequent bad buffers will result in a partial write; this 3015 * is realized by filling the vector with null pointers and 3016 * zero lengths. */ 3017 if (!vec[i].iov_base) { 3018 if (i == 0) { 3019 err = EFAULT; 3020 goto fail; 3021 } else { 3022 bad_address = true; 3023 } 3024 } 3025 if (bad_address) { 3026 len = 0; 3027 } 3028 if (len > max_len - total_len) { 3029 len = max_len - total_len; 3030 } 3031 } 3032 vec[i].iov_len = len; 3033 total_len += len; 3034 } 3035 3036 unlock_user(target_vec, target_addr, 0); 3037 return vec; 3038 3039 fail: 3040 while (--i >= 0) { 3041 if (tswapal(target_vec[i].iov_len) > 0) { 3042 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3043 } 3044 } 3045 unlock_user(target_vec, target_addr, 0); 3046 fail2: 3047 g_free(vec); 3048 errno = err; 3049 return NULL; 3050 } 3051 3052 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3053 abi_ulong count, int copy) 3054 { 3055 struct target_iovec *target_vec; 3056 int i; 3057 3058 target_vec = lock_user(VERIFY_READ, target_addr, 3059 count * sizeof(struct target_iovec), 1); 3060 if (target_vec) { 3061 for (i = 0; i < count; i++) { 3062 abi_ulong base = tswapal(target_vec[i].iov_base); 3063 abi_long len = tswapal(target_vec[i].iov_len); 3064 if (len < 0) { 3065 break; 3066 } 3067 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3068 } 3069 unlock_user(target_vec, target_addr, 0); 3070 } 3071 3072 g_free(vec); 3073 } 3074 3075 static inline int target_to_host_sock_type(int *type) 3076 { 3077 int host_type = 0; 3078 int target_type = *type; 3079 3080 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3081 case TARGET_SOCK_DGRAM: 3082 host_type = SOCK_DGRAM; 3083 break; 3084 case TARGET_SOCK_STREAM: 3085 host_type = SOCK_STREAM; 3086 break; 3087 default: 3088 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3089 break; 3090 } 3091 if (target_type & TARGET_SOCK_CLOEXEC) { 3092 #if defined(SOCK_CLOEXEC) 3093 host_type |= SOCK_CLOEXEC; 3094 #else 3095 return -TARGET_EINVAL; 3096 #endif 3097 } 3098 if (target_type & TARGET_SOCK_NONBLOCK) { 3099 #if defined(SOCK_NONBLOCK) 3100 host_type |= SOCK_NONBLOCK; 3101 #elif !defined(O_NONBLOCK) 3102 return -TARGET_EINVAL; 3103 #endif 3104 } 3105 *type = host_type; 3106 return 0; 3107 } 3108 3109 /* Try to emulate socket type flags after socket creation. */ 3110 static int sock_flags_fixup(int fd, int target_type) 3111 { 3112 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3113 if (target_type & TARGET_SOCK_NONBLOCK) { 3114 int flags = fcntl(fd, F_GETFL); 3115 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3116 close(fd); 3117 return -TARGET_EINVAL; 3118 } 3119 } 3120 #endif 3121 return fd; 3122 } 3123 3124 /* do_socket() Must return target values and target errnos. */ 3125 static abi_long do_socket(int domain, int type, int protocol) 3126 { 3127 int target_type = type; 3128 int ret; 3129 3130 ret = target_to_host_sock_type(&type); 3131 if (ret) { 3132 return ret; 3133 } 3134 3135 if (domain == PF_NETLINK && !( 3136 #ifdef CONFIG_RTNETLINK 3137 protocol == NETLINK_ROUTE || 3138 #endif 3139 protocol == NETLINK_KOBJECT_UEVENT || 3140 protocol == NETLINK_AUDIT)) { 3141 return -TARGET_EPROTONOSUPPORT; 3142 } 3143 3144 if (domain == AF_PACKET || 3145 (domain == AF_INET && type == SOCK_PACKET)) { 3146 protocol = tswap16(protocol); 3147 } 3148 3149 ret = get_errno(socket(domain, type, protocol)); 3150 if (ret >= 0) { 3151 ret = sock_flags_fixup(ret, target_type); 3152 if (type == SOCK_PACKET) { 3153 /* Manage an obsolete case : 3154 * if socket type is SOCK_PACKET, bind by name 3155 */ 3156 fd_trans_register(ret, &target_packet_trans); 3157 } else if (domain == PF_NETLINK) { 3158 switch (protocol) { 3159 #ifdef CONFIG_RTNETLINK 3160 case NETLINK_ROUTE: 3161 fd_trans_register(ret, &target_netlink_route_trans); 3162 break; 3163 #endif 3164 case NETLINK_KOBJECT_UEVENT: 3165 /* nothing to do: messages are strings */ 3166 break; 3167 case NETLINK_AUDIT: 3168 fd_trans_register(ret, &target_netlink_audit_trans); 3169 break; 3170 default: 3171 g_assert_not_reached(); 3172 } 3173 } 3174 } 3175 return ret; 3176 } 3177 3178 /* do_bind() Must return target values and target errnos. */ 3179 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3180 socklen_t addrlen) 3181 { 3182 void *addr; 3183 abi_long ret; 3184 3185 if ((int)addrlen < 0) { 3186 return -TARGET_EINVAL; 3187 } 3188 3189 addr = alloca(addrlen+1); 3190 3191 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3192 if (ret) 3193 return ret; 3194 3195 return get_errno(bind(sockfd, addr, addrlen)); 3196 } 3197 3198 /* do_connect() Must return target values and target errnos. */ 3199 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3200 socklen_t addrlen) 3201 { 3202 void *addr; 3203 abi_long ret; 3204 3205 if ((int)addrlen < 0) { 3206 return -TARGET_EINVAL; 3207 } 3208 3209 addr = alloca(addrlen+1); 3210 3211 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3212 if (ret) 3213 return ret; 3214 3215 return get_errno(safe_connect(sockfd, addr, addrlen)); 3216 } 3217 3218 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3219 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3220 int flags, int send) 3221 { 3222 abi_long ret, len; 3223 struct msghdr msg; 3224 abi_ulong count; 3225 struct iovec *vec; 3226 abi_ulong target_vec; 3227 3228 if (msgp->msg_name) { 3229 msg.msg_namelen = tswap32(msgp->msg_namelen); 3230 msg.msg_name = alloca(msg.msg_namelen+1); 3231 ret = target_to_host_sockaddr(fd, msg.msg_name, 3232 tswapal(msgp->msg_name), 3233 msg.msg_namelen); 3234 if (ret == -TARGET_EFAULT) { 3235 /* For connected sockets msg_name and msg_namelen must 3236 * be ignored, so returning EFAULT immediately is wrong. 3237 * Instead, pass a bad msg_name to the host kernel, and 3238 * let it decide whether to return EFAULT or not. 3239 */ 3240 msg.msg_name = (void *)-1; 3241 } else if (ret) { 3242 goto out2; 3243 } 3244 } else { 3245 msg.msg_name = NULL; 3246 msg.msg_namelen = 0; 3247 } 3248 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3249 msg.msg_control = alloca(msg.msg_controllen); 3250 memset(msg.msg_control, 0, msg.msg_controllen); 3251 3252 msg.msg_flags = tswap32(msgp->msg_flags); 3253 3254 count = tswapal(msgp->msg_iovlen); 3255 target_vec = tswapal(msgp->msg_iov); 3256 3257 if (count > IOV_MAX) { 3258 /* sendrcvmsg returns a different errno for this condition than 3259 * readv/writev, so we must catch it here before lock_iovec() does. 3260 */ 3261 ret = -TARGET_EMSGSIZE; 3262 goto out2; 3263 } 3264 3265 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3266 target_vec, count, send); 3267 if (vec == NULL) { 3268 ret = -host_to_target_errno(errno); 3269 goto out2; 3270 } 3271 msg.msg_iovlen = count; 3272 msg.msg_iov = vec; 3273 3274 if (send) { 3275 if (fd_trans_target_to_host_data(fd)) { 3276 void *host_msg; 3277 3278 host_msg = g_malloc(msg.msg_iov->iov_len); 3279 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3280 ret = fd_trans_target_to_host_data(fd)(host_msg, 3281 msg.msg_iov->iov_len); 3282 if (ret >= 0) { 3283 msg.msg_iov->iov_base = host_msg; 3284 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3285 } 3286 g_free(host_msg); 3287 } else { 3288 ret = target_to_host_cmsg(&msg, msgp); 3289 if (ret == 0) { 3290 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3291 } 3292 } 3293 } else { 3294 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3295 if (!is_error(ret)) { 3296 len = ret; 3297 if (fd_trans_host_to_target_data(fd)) { 3298 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3299 MIN(msg.msg_iov->iov_len, len)); 3300 } else { 3301 ret = host_to_target_cmsg(msgp, &msg); 3302 } 3303 if (!is_error(ret)) { 3304 msgp->msg_namelen = tswap32(msg.msg_namelen); 3305 msgp->msg_flags = tswap32(msg.msg_flags); 3306 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3307 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3308 msg.msg_name, msg.msg_namelen); 3309 if (ret) { 3310 goto out; 3311 } 3312 } 3313 3314 ret = len; 3315 } 3316 } 3317 } 3318 3319 out: 3320 unlock_iovec(vec, target_vec, count, !send); 3321 out2: 3322 return ret; 3323 } 3324 3325 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3326 int flags, int send) 3327 { 3328 abi_long ret; 3329 struct target_msghdr *msgp; 3330 3331 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3332 msgp, 3333 target_msg, 3334 send ? 1 : 0)) { 3335 return -TARGET_EFAULT; 3336 } 3337 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3338 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3339 return ret; 3340 } 3341 3342 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3343 * so it might not have this *mmsg-specific flag either. 3344 */ 3345 #ifndef MSG_WAITFORONE 3346 #define MSG_WAITFORONE 0x10000 3347 #endif 3348 3349 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3350 unsigned int vlen, unsigned int flags, 3351 int send) 3352 { 3353 struct target_mmsghdr *mmsgp; 3354 abi_long ret = 0; 3355 int i; 3356 3357 if (vlen > UIO_MAXIOV) { 3358 vlen = UIO_MAXIOV; 3359 } 3360 3361 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3362 if (!mmsgp) { 3363 return -TARGET_EFAULT; 3364 } 3365 3366 for (i = 0; i < vlen; i++) { 3367 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3368 if (is_error(ret)) { 3369 break; 3370 } 3371 mmsgp[i].msg_len = tswap32(ret); 3372 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3373 if (flags & MSG_WAITFORONE) { 3374 flags |= MSG_DONTWAIT; 3375 } 3376 } 3377 3378 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3379 3380 /* Return number of datagrams sent if we sent any at all; 3381 * otherwise return the error. 3382 */ 3383 if (i) { 3384 return i; 3385 } 3386 return ret; 3387 } 3388 3389 /* do_accept4() Must return target values and target errnos. */ 3390 static abi_long do_accept4(int fd, abi_ulong target_addr, 3391 abi_ulong target_addrlen_addr, int flags) 3392 { 3393 socklen_t addrlen, ret_addrlen; 3394 void *addr; 3395 abi_long ret; 3396 int host_flags; 3397 3398 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 3399 3400 if (target_addr == 0) { 3401 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3402 } 3403 3404 /* linux returns EFAULT if addrlen pointer is invalid */ 3405 if (get_user_u32(addrlen, target_addrlen_addr)) 3406 return -TARGET_EFAULT; 3407 3408 if ((int)addrlen < 0) { 3409 return -TARGET_EINVAL; 3410 } 3411 3412 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3413 return -TARGET_EFAULT; 3414 } 3415 3416 addr = alloca(addrlen); 3417 3418 ret_addrlen = addrlen; 3419 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags)); 3420 if (!is_error(ret)) { 3421 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3422 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3423 ret = -TARGET_EFAULT; 3424 } 3425 } 3426 return ret; 3427 } 3428 3429 /* do_getpeername() Must return target values and target errnos. */ 3430 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3431 abi_ulong target_addrlen_addr) 3432 { 3433 socklen_t addrlen, ret_addrlen; 3434 void *addr; 3435 abi_long ret; 3436 3437 if (get_user_u32(addrlen, target_addrlen_addr)) 3438 return -TARGET_EFAULT; 3439 3440 if ((int)addrlen < 0) { 3441 return -TARGET_EINVAL; 3442 } 3443 3444 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3445 return -TARGET_EFAULT; 3446 } 3447 3448 addr = alloca(addrlen); 3449 3450 ret_addrlen = addrlen; 3451 ret = get_errno(getpeername(fd, addr, &ret_addrlen)); 3452 if (!is_error(ret)) { 3453 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3454 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3455 ret = -TARGET_EFAULT; 3456 } 3457 } 3458 return ret; 3459 } 3460 3461 /* do_getsockname() Must return target values and target errnos. */ 3462 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3463 abi_ulong target_addrlen_addr) 3464 { 3465 socklen_t addrlen, ret_addrlen; 3466 void *addr; 3467 abi_long ret; 3468 3469 if (get_user_u32(addrlen, target_addrlen_addr)) 3470 return -TARGET_EFAULT; 3471 3472 if ((int)addrlen < 0) { 3473 return -TARGET_EINVAL; 3474 } 3475 3476 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3477 return -TARGET_EFAULT; 3478 } 3479 3480 addr = alloca(addrlen); 3481 3482 ret_addrlen = addrlen; 3483 ret = get_errno(getsockname(fd, addr, &ret_addrlen)); 3484 if (!is_error(ret)) { 3485 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3486 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3487 ret = -TARGET_EFAULT; 3488 } 3489 } 3490 return ret; 3491 } 3492 3493 /* do_socketpair() Must return target values and target errnos. */ 3494 static abi_long do_socketpair(int domain, int type, int protocol, 3495 abi_ulong target_tab_addr) 3496 { 3497 int tab[2]; 3498 abi_long ret; 3499 3500 target_to_host_sock_type(&type); 3501 3502 ret = get_errno(socketpair(domain, type, protocol, tab)); 3503 if (!is_error(ret)) { 3504 if (put_user_s32(tab[0], target_tab_addr) 3505 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3506 ret = -TARGET_EFAULT; 3507 } 3508 return ret; 3509 } 3510 3511 /* do_sendto() Must return target values and target errnos. */ 3512 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3513 abi_ulong target_addr, socklen_t addrlen) 3514 { 3515 void *addr; 3516 void *host_msg; 3517 void *copy_msg = NULL; 3518 abi_long ret; 3519 3520 if ((int)addrlen < 0) { 3521 return -TARGET_EINVAL; 3522 } 3523 3524 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3525 if (!host_msg) 3526 return -TARGET_EFAULT; 3527 if (fd_trans_target_to_host_data(fd)) { 3528 copy_msg = host_msg; 3529 host_msg = g_malloc(len); 3530 memcpy(host_msg, copy_msg, len); 3531 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3532 if (ret < 0) { 3533 goto fail; 3534 } 3535 } 3536 if (target_addr) { 3537 addr = alloca(addrlen+1); 3538 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3539 if (ret) { 3540 goto fail; 3541 } 3542 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3543 } else { 3544 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3545 } 3546 fail: 3547 if (copy_msg) { 3548 g_free(host_msg); 3549 host_msg = copy_msg; 3550 } 3551 unlock_user(host_msg, msg, 0); 3552 return ret; 3553 } 3554 3555 /* do_recvfrom() Must return target values and target errnos. */ 3556 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3557 abi_ulong target_addr, 3558 abi_ulong target_addrlen) 3559 { 3560 socklen_t addrlen, ret_addrlen; 3561 void *addr; 3562 void *host_msg; 3563 abi_long ret; 3564 3565 if (!msg) { 3566 host_msg = NULL; 3567 } else { 3568 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3569 if (!host_msg) { 3570 return -TARGET_EFAULT; 3571 } 3572 } 3573 if (target_addr) { 3574 if (get_user_u32(addrlen, target_addrlen)) { 3575 ret = -TARGET_EFAULT; 3576 goto fail; 3577 } 3578 if ((int)addrlen < 0) { 3579 ret = -TARGET_EINVAL; 3580 goto fail; 3581 } 3582 addr = alloca(addrlen); 3583 ret_addrlen = addrlen; 3584 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3585 addr, &ret_addrlen)); 3586 } else { 3587 addr = NULL; /* To keep compiler quiet. */ 3588 addrlen = 0; /* To keep compiler quiet. */ 3589 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3590 } 3591 if (!is_error(ret)) { 3592 if (fd_trans_host_to_target_data(fd)) { 3593 abi_long trans; 3594 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len)); 3595 if (is_error(trans)) { 3596 ret = trans; 3597 goto fail; 3598 } 3599 } 3600 if (target_addr) { 3601 host_to_target_sockaddr(target_addr, addr, 3602 MIN(addrlen, ret_addrlen)); 3603 if (put_user_u32(ret_addrlen, target_addrlen)) { 3604 ret = -TARGET_EFAULT; 3605 goto fail; 3606 } 3607 } 3608 unlock_user(host_msg, msg, len); 3609 } else { 3610 fail: 3611 unlock_user(host_msg, msg, 0); 3612 } 3613 return ret; 3614 } 3615 3616 #ifdef TARGET_NR_socketcall 3617 /* do_socketcall() must return target values and target errnos. */ 3618 static abi_long do_socketcall(int num, abi_ulong vptr) 3619 { 3620 static const unsigned nargs[] = { /* number of arguments per operation */ 3621 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 3622 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 3623 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 3624 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 3625 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 3626 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 3627 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 3628 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 3629 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 3630 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 3631 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 3632 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 3633 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 3634 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3635 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3636 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 3637 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 3638 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 3639 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 3640 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 3641 }; 3642 abi_long a[6]; /* max 6 args */ 3643 unsigned i; 3644 3645 /* check the range of the first argument num */ 3646 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 3647 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 3648 return -TARGET_EINVAL; 3649 } 3650 /* ensure we have space for args */ 3651 if (nargs[num] > ARRAY_SIZE(a)) { 3652 return -TARGET_EINVAL; 3653 } 3654 /* collect the arguments in a[] according to nargs[] */ 3655 for (i = 0; i < nargs[num]; ++i) { 3656 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3657 return -TARGET_EFAULT; 3658 } 3659 } 3660 /* now when we have the args, invoke the appropriate underlying function */ 3661 switch (num) { 3662 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 3663 return do_socket(a[0], a[1], a[2]); 3664 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 3665 return do_bind(a[0], a[1], a[2]); 3666 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 3667 return do_connect(a[0], a[1], a[2]); 3668 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 3669 return get_errno(listen(a[0], a[1])); 3670 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 3671 return do_accept4(a[0], a[1], a[2], 0); 3672 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 3673 return do_getsockname(a[0], a[1], a[2]); 3674 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 3675 return do_getpeername(a[0], a[1], a[2]); 3676 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 3677 return do_socketpair(a[0], a[1], a[2], a[3]); 3678 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 3679 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3680 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 3681 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3682 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 3683 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3684 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 3685 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3686 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 3687 return get_errno(shutdown(a[0], a[1])); 3688 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3689 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3690 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3691 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3692 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 3693 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3694 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 3695 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3696 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 3697 return do_accept4(a[0], a[1], a[2], a[3]); 3698 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 3699 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 3700 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 3701 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 3702 default: 3703 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num); 3704 return -TARGET_EINVAL; 3705 } 3706 } 3707 #endif 3708 3709 #define N_SHM_REGIONS 32 3710 3711 static struct shm_region { 3712 abi_ulong start; 3713 abi_ulong size; 3714 bool in_use; 3715 } shm_regions[N_SHM_REGIONS]; 3716 3717 #ifndef TARGET_SEMID64_DS 3718 /* asm-generic version of this struct */ 3719 struct target_semid64_ds 3720 { 3721 struct target_ipc_perm sem_perm; 3722 abi_ulong sem_otime; 3723 #if TARGET_ABI_BITS == 32 3724 abi_ulong __unused1; 3725 #endif 3726 abi_ulong sem_ctime; 3727 #if TARGET_ABI_BITS == 32 3728 abi_ulong __unused2; 3729 #endif 3730 abi_ulong sem_nsems; 3731 abi_ulong __unused3; 3732 abi_ulong __unused4; 3733 }; 3734 #endif 3735 3736 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 3737 abi_ulong target_addr) 3738 { 3739 struct target_ipc_perm *target_ip; 3740 struct target_semid64_ds *target_sd; 3741 3742 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3743 return -TARGET_EFAULT; 3744 target_ip = &(target_sd->sem_perm); 3745 host_ip->__key = tswap32(target_ip->__key); 3746 host_ip->uid = tswap32(target_ip->uid); 3747 host_ip->gid = tswap32(target_ip->gid); 3748 host_ip->cuid = tswap32(target_ip->cuid); 3749 host_ip->cgid = tswap32(target_ip->cgid); 3750 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3751 host_ip->mode = tswap32(target_ip->mode); 3752 #else 3753 host_ip->mode = tswap16(target_ip->mode); 3754 #endif 3755 #if defined(TARGET_PPC) 3756 host_ip->__seq = tswap32(target_ip->__seq); 3757 #else 3758 host_ip->__seq = tswap16(target_ip->__seq); 3759 #endif 3760 unlock_user_struct(target_sd, target_addr, 0); 3761 return 0; 3762 } 3763 3764 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 3765 struct ipc_perm *host_ip) 3766 { 3767 struct target_ipc_perm *target_ip; 3768 struct target_semid64_ds *target_sd; 3769 3770 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3771 return -TARGET_EFAULT; 3772 target_ip = &(target_sd->sem_perm); 3773 target_ip->__key = tswap32(host_ip->__key); 3774 target_ip->uid = tswap32(host_ip->uid); 3775 target_ip->gid = tswap32(host_ip->gid); 3776 target_ip->cuid = tswap32(host_ip->cuid); 3777 target_ip->cgid = tswap32(host_ip->cgid); 3778 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3779 target_ip->mode = tswap32(host_ip->mode); 3780 #else 3781 target_ip->mode = tswap16(host_ip->mode); 3782 #endif 3783 #if defined(TARGET_PPC) 3784 target_ip->__seq = tswap32(host_ip->__seq); 3785 #else 3786 target_ip->__seq = tswap16(host_ip->__seq); 3787 #endif 3788 unlock_user_struct(target_sd, target_addr, 1); 3789 return 0; 3790 } 3791 3792 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 3793 abi_ulong target_addr) 3794 { 3795 struct target_semid64_ds *target_sd; 3796 3797 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3798 return -TARGET_EFAULT; 3799 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 3800 return -TARGET_EFAULT; 3801 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 3802 host_sd->sem_otime = tswapal(target_sd->sem_otime); 3803 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 3804 unlock_user_struct(target_sd, target_addr, 0); 3805 return 0; 3806 } 3807 3808 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 3809 struct semid_ds *host_sd) 3810 { 3811 struct target_semid64_ds *target_sd; 3812 3813 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3814 return -TARGET_EFAULT; 3815 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 3816 return -TARGET_EFAULT; 3817 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 3818 target_sd->sem_otime = tswapal(host_sd->sem_otime); 3819 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 3820 unlock_user_struct(target_sd, target_addr, 1); 3821 return 0; 3822 } 3823 3824 struct target_seminfo { 3825 int semmap; 3826 int semmni; 3827 int semmns; 3828 int semmnu; 3829 int semmsl; 3830 int semopm; 3831 int semume; 3832 int semusz; 3833 int semvmx; 3834 int semaem; 3835 }; 3836 3837 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 3838 struct seminfo *host_seminfo) 3839 { 3840 struct target_seminfo *target_seminfo; 3841 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 3842 return -TARGET_EFAULT; 3843 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 3844 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 3845 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 3846 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 3847 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 3848 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 3849 __put_user(host_seminfo->semume, &target_seminfo->semume); 3850 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 3851 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 3852 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 3853 unlock_user_struct(target_seminfo, target_addr, 1); 3854 return 0; 3855 } 3856 3857 union semun { 3858 int val; 3859 struct semid_ds *buf; 3860 unsigned short *array; 3861 struct seminfo *__buf; 3862 }; 3863 3864 union target_semun { 3865 int val; 3866 abi_ulong buf; 3867 abi_ulong array; 3868 abi_ulong __buf; 3869 }; 3870 3871 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 3872 abi_ulong target_addr) 3873 { 3874 int nsems; 3875 unsigned short *array; 3876 union semun semun; 3877 struct semid_ds semid_ds; 3878 int i, ret; 3879 3880 semun.buf = &semid_ds; 3881 3882 ret = semctl(semid, 0, IPC_STAT, semun); 3883 if (ret == -1) 3884 return get_errno(ret); 3885 3886 nsems = semid_ds.sem_nsems; 3887 3888 *host_array = g_try_new(unsigned short, nsems); 3889 if (!*host_array) { 3890 return -TARGET_ENOMEM; 3891 } 3892 array = lock_user(VERIFY_READ, target_addr, 3893 nsems*sizeof(unsigned short), 1); 3894 if (!array) { 3895 g_free(*host_array); 3896 return -TARGET_EFAULT; 3897 } 3898 3899 for(i=0; i<nsems; i++) { 3900 __get_user((*host_array)[i], &array[i]); 3901 } 3902 unlock_user(array, target_addr, 0); 3903 3904 return 0; 3905 } 3906 3907 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 3908 unsigned short **host_array) 3909 { 3910 int nsems; 3911 unsigned short *array; 3912 union semun semun; 3913 struct semid_ds semid_ds; 3914 int i, ret; 3915 3916 semun.buf = &semid_ds; 3917 3918 ret = semctl(semid, 0, IPC_STAT, semun); 3919 if (ret == -1) 3920 return get_errno(ret); 3921 3922 nsems = semid_ds.sem_nsems; 3923 3924 array = lock_user(VERIFY_WRITE, target_addr, 3925 nsems*sizeof(unsigned short), 0); 3926 if (!array) 3927 return -TARGET_EFAULT; 3928 3929 for(i=0; i<nsems; i++) { 3930 __put_user((*host_array)[i], &array[i]); 3931 } 3932 g_free(*host_array); 3933 unlock_user(array, target_addr, 1); 3934 3935 return 0; 3936 } 3937 3938 static inline abi_long do_semctl(int semid, int semnum, int cmd, 3939 abi_ulong target_arg) 3940 { 3941 union target_semun target_su = { .buf = target_arg }; 3942 union semun arg; 3943 struct semid_ds dsarg; 3944 unsigned short *array = NULL; 3945 struct seminfo seminfo; 3946 abi_long ret = -TARGET_EINVAL; 3947 abi_long err; 3948 cmd &= 0xff; 3949 3950 switch( cmd ) { 3951 case GETVAL: 3952 case SETVAL: 3953 /* In 64 bit cross-endian situations, we will erroneously pick up 3954 * the wrong half of the union for the "val" element. To rectify 3955 * this, the entire 8-byte structure is byteswapped, followed by 3956 * a swap of the 4 byte val field. In other cases, the data is 3957 * already in proper host byte order. */ 3958 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 3959 target_su.buf = tswapal(target_su.buf); 3960 arg.val = tswap32(target_su.val); 3961 } else { 3962 arg.val = target_su.val; 3963 } 3964 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3965 break; 3966 case GETALL: 3967 case SETALL: 3968 err = target_to_host_semarray(semid, &array, target_su.array); 3969 if (err) 3970 return err; 3971 arg.array = array; 3972 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3973 err = host_to_target_semarray(semid, target_su.array, &array); 3974 if (err) 3975 return err; 3976 break; 3977 case IPC_STAT: 3978 case IPC_SET: 3979 case SEM_STAT: 3980 err = target_to_host_semid_ds(&dsarg, target_su.buf); 3981 if (err) 3982 return err; 3983 arg.buf = &dsarg; 3984 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3985 err = host_to_target_semid_ds(target_su.buf, &dsarg); 3986 if (err) 3987 return err; 3988 break; 3989 case IPC_INFO: 3990 case SEM_INFO: 3991 arg.__buf = &seminfo; 3992 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3993 err = host_to_target_seminfo(target_su.__buf, &seminfo); 3994 if (err) 3995 return err; 3996 break; 3997 case IPC_RMID: 3998 case GETPID: 3999 case GETNCNT: 4000 case GETZCNT: 4001 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4002 break; 4003 } 4004 4005 return ret; 4006 } 4007 4008 struct target_sembuf { 4009 unsigned short sem_num; 4010 short sem_op; 4011 short sem_flg; 4012 }; 4013 4014 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4015 abi_ulong target_addr, 4016 unsigned nsops) 4017 { 4018 struct target_sembuf *target_sembuf; 4019 int i; 4020 4021 target_sembuf = lock_user(VERIFY_READ, target_addr, 4022 nsops*sizeof(struct target_sembuf), 1); 4023 if (!target_sembuf) 4024 return -TARGET_EFAULT; 4025 4026 for(i=0; i<nsops; i++) { 4027 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4028 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4029 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4030 } 4031 4032 unlock_user(target_sembuf, target_addr, 0); 4033 4034 return 0; 4035 } 4036 4037 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \ 4038 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64) 4039 4040 /* 4041 * This macro is required to handle the s390 variants, which passes the 4042 * arguments in a different order than default. 4043 */ 4044 #ifdef __s390x__ 4045 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4046 (__nsops), (__timeout), (__sops) 4047 #else 4048 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4049 (__nsops), 0, (__sops), (__timeout) 4050 #endif 4051 4052 static inline abi_long do_semtimedop(int semid, 4053 abi_long ptr, 4054 unsigned nsops, 4055 abi_long timeout, bool time64) 4056 { 4057 struct sembuf *sops; 4058 struct timespec ts, *pts = NULL; 4059 abi_long ret; 4060 4061 if (timeout) { 4062 pts = &ts; 4063 if (time64) { 4064 if (target_to_host_timespec64(pts, timeout)) { 4065 return -TARGET_EFAULT; 4066 } 4067 } else { 4068 if (target_to_host_timespec(pts, timeout)) { 4069 return -TARGET_EFAULT; 4070 } 4071 } 4072 } 4073 4074 if (nsops > TARGET_SEMOPM) { 4075 return -TARGET_E2BIG; 4076 } 4077 4078 sops = g_new(struct sembuf, nsops); 4079 4080 if (target_to_host_sembuf(sops, ptr, nsops)) { 4081 g_free(sops); 4082 return -TARGET_EFAULT; 4083 } 4084 4085 ret = -TARGET_ENOSYS; 4086 #ifdef __NR_semtimedop 4087 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts)); 4088 #endif 4089 #ifdef __NR_ipc 4090 if (ret == -TARGET_ENOSYS) { 4091 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, 4092 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts))); 4093 } 4094 #endif 4095 g_free(sops); 4096 return ret; 4097 } 4098 #endif 4099 4100 struct target_msqid_ds 4101 { 4102 struct target_ipc_perm msg_perm; 4103 abi_ulong msg_stime; 4104 #if TARGET_ABI_BITS == 32 4105 abi_ulong __unused1; 4106 #endif 4107 abi_ulong msg_rtime; 4108 #if TARGET_ABI_BITS == 32 4109 abi_ulong __unused2; 4110 #endif 4111 abi_ulong msg_ctime; 4112 #if TARGET_ABI_BITS == 32 4113 abi_ulong __unused3; 4114 #endif 4115 abi_ulong __msg_cbytes; 4116 abi_ulong msg_qnum; 4117 abi_ulong msg_qbytes; 4118 abi_ulong msg_lspid; 4119 abi_ulong msg_lrpid; 4120 abi_ulong __unused4; 4121 abi_ulong __unused5; 4122 }; 4123 4124 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4125 abi_ulong target_addr) 4126 { 4127 struct target_msqid_ds *target_md; 4128 4129 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4130 return -TARGET_EFAULT; 4131 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4132 return -TARGET_EFAULT; 4133 host_md->msg_stime = tswapal(target_md->msg_stime); 4134 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4135 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4136 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4137 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4138 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4139 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4140 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4141 unlock_user_struct(target_md, target_addr, 0); 4142 return 0; 4143 } 4144 4145 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4146 struct msqid_ds *host_md) 4147 { 4148 struct target_msqid_ds *target_md; 4149 4150 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4151 return -TARGET_EFAULT; 4152 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4153 return -TARGET_EFAULT; 4154 target_md->msg_stime = tswapal(host_md->msg_stime); 4155 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4156 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4157 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4158 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4159 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4160 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4161 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4162 unlock_user_struct(target_md, target_addr, 1); 4163 return 0; 4164 } 4165 4166 struct target_msginfo { 4167 int msgpool; 4168 int msgmap; 4169 int msgmax; 4170 int msgmnb; 4171 int msgmni; 4172 int msgssz; 4173 int msgtql; 4174 unsigned short int msgseg; 4175 }; 4176 4177 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4178 struct msginfo *host_msginfo) 4179 { 4180 struct target_msginfo *target_msginfo; 4181 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4182 return -TARGET_EFAULT; 4183 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4184 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4185 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4186 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4187 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4188 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4189 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4190 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4191 unlock_user_struct(target_msginfo, target_addr, 1); 4192 return 0; 4193 } 4194 4195 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4196 { 4197 struct msqid_ds dsarg; 4198 struct msginfo msginfo; 4199 abi_long ret = -TARGET_EINVAL; 4200 4201 cmd &= 0xff; 4202 4203 switch (cmd) { 4204 case IPC_STAT: 4205 case IPC_SET: 4206 case MSG_STAT: 4207 if (target_to_host_msqid_ds(&dsarg,ptr)) 4208 return -TARGET_EFAULT; 4209 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4210 if (host_to_target_msqid_ds(ptr,&dsarg)) 4211 return -TARGET_EFAULT; 4212 break; 4213 case IPC_RMID: 4214 ret = get_errno(msgctl(msgid, cmd, NULL)); 4215 break; 4216 case IPC_INFO: 4217 case MSG_INFO: 4218 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4219 if (host_to_target_msginfo(ptr, &msginfo)) 4220 return -TARGET_EFAULT; 4221 break; 4222 } 4223 4224 return ret; 4225 } 4226 4227 struct target_msgbuf { 4228 abi_long mtype; 4229 char mtext[1]; 4230 }; 4231 4232 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4233 ssize_t msgsz, int msgflg) 4234 { 4235 struct target_msgbuf *target_mb; 4236 struct msgbuf *host_mb; 4237 abi_long ret = 0; 4238 4239 if (msgsz < 0) { 4240 return -TARGET_EINVAL; 4241 } 4242 4243 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4244 return -TARGET_EFAULT; 4245 host_mb = g_try_malloc(msgsz + sizeof(long)); 4246 if (!host_mb) { 4247 unlock_user_struct(target_mb, msgp, 0); 4248 return -TARGET_ENOMEM; 4249 } 4250 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4251 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4252 ret = -TARGET_ENOSYS; 4253 #ifdef __NR_msgsnd 4254 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4255 #endif 4256 #ifdef __NR_ipc 4257 if (ret == -TARGET_ENOSYS) { 4258 #ifdef __s390x__ 4259 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4260 host_mb)); 4261 #else 4262 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4263 host_mb, 0)); 4264 #endif 4265 } 4266 #endif 4267 g_free(host_mb); 4268 unlock_user_struct(target_mb, msgp, 0); 4269 4270 return ret; 4271 } 4272 4273 #ifdef __NR_ipc 4274 #if defined(__sparc__) 4275 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */ 4276 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp 4277 #elif defined(__s390x__) 4278 /* The s390 sys_ipc variant has only five parameters. */ 4279 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4280 ((long int[]){(long int)__msgp, __msgtyp}) 4281 #else 4282 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4283 ((long int[]){(long int)__msgp, __msgtyp}), 0 4284 #endif 4285 #endif 4286 4287 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4288 ssize_t msgsz, abi_long msgtyp, 4289 int msgflg) 4290 { 4291 struct target_msgbuf *target_mb; 4292 char *target_mtext; 4293 struct msgbuf *host_mb; 4294 abi_long ret = 0; 4295 4296 if (msgsz < 0) { 4297 return -TARGET_EINVAL; 4298 } 4299 4300 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4301 return -TARGET_EFAULT; 4302 4303 host_mb = g_try_malloc(msgsz + sizeof(long)); 4304 if (!host_mb) { 4305 ret = -TARGET_ENOMEM; 4306 goto end; 4307 } 4308 ret = -TARGET_ENOSYS; 4309 #ifdef __NR_msgrcv 4310 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4311 #endif 4312 #ifdef __NR_ipc 4313 if (ret == -TARGET_ENOSYS) { 4314 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz, 4315 msgflg, MSGRCV_ARGS(host_mb, msgtyp))); 4316 } 4317 #endif 4318 4319 if (ret > 0) { 4320 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4321 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4322 if (!target_mtext) { 4323 ret = -TARGET_EFAULT; 4324 goto end; 4325 } 4326 memcpy(target_mb->mtext, host_mb->mtext, ret); 4327 unlock_user(target_mtext, target_mtext_addr, ret); 4328 } 4329 4330 target_mb->mtype = tswapal(host_mb->mtype); 4331 4332 end: 4333 if (target_mb) 4334 unlock_user_struct(target_mb, msgp, 1); 4335 g_free(host_mb); 4336 return ret; 4337 } 4338 4339 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4340 abi_ulong target_addr) 4341 { 4342 struct target_shmid_ds *target_sd; 4343 4344 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4345 return -TARGET_EFAULT; 4346 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4347 return -TARGET_EFAULT; 4348 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4349 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4350 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4351 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4352 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4353 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4354 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4355 unlock_user_struct(target_sd, target_addr, 0); 4356 return 0; 4357 } 4358 4359 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4360 struct shmid_ds *host_sd) 4361 { 4362 struct target_shmid_ds *target_sd; 4363 4364 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4365 return -TARGET_EFAULT; 4366 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4367 return -TARGET_EFAULT; 4368 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4369 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4370 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4371 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4372 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4373 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4374 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4375 unlock_user_struct(target_sd, target_addr, 1); 4376 return 0; 4377 } 4378 4379 struct target_shminfo { 4380 abi_ulong shmmax; 4381 abi_ulong shmmin; 4382 abi_ulong shmmni; 4383 abi_ulong shmseg; 4384 abi_ulong shmall; 4385 }; 4386 4387 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4388 struct shminfo *host_shminfo) 4389 { 4390 struct target_shminfo *target_shminfo; 4391 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4392 return -TARGET_EFAULT; 4393 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4394 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4395 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4396 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4397 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4398 unlock_user_struct(target_shminfo, target_addr, 1); 4399 return 0; 4400 } 4401 4402 struct target_shm_info { 4403 int used_ids; 4404 abi_ulong shm_tot; 4405 abi_ulong shm_rss; 4406 abi_ulong shm_swp; 4407 abi_ulong swap_attempts; 4408 abi_ulong swap_successes; 4409 }; 4410 4411 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4412 struct shm_info *host_shm_info) 4413 { 4414 struct target_shm_info *target_shm_info; 4415 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4416 return -TARGET_EFAULT; 4417 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4418 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4419 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4420 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4421 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4422 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4423 unlock_user_struct(target_shm_info, target_addr, 1); 4424 return 0; 4425 } 4426 4427 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4428 { 4429 struct shmid_ds dsarg; 4430 struct shminfo shminfo; 4431 struct shm_info shm_info; 4432 abi_long ret = -TARGET_EINVAL; 4433 4434 cmd &= 0xff; 4435 4436 switch(cmd) { 4437 case IPC_STAT: 4438 case IPC_SET: 4439 case SHM_STAT: 4440 if (target_to_host_shmid_ds(&dsarg, buf)) 4441 return -TARGET_EFAULT; 4442 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4443 if (host_to_target_shmid_ds(buf, &dsarg)) 4444 return -TARGET_EFAULT; 4445 break; 4446 case IPC_INFO: 4447 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4448 if (host_to_target_shminfo(buf, &shminfo)) 4449 return -TARGET_EFAULT; 4450 break; 4451 case SHM_INFO: 4452 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4453 if (host_to_target_shm_info(buf, &shm_info)) 4454 return -TARGET_EFAULT; 4455 break; 4456 case IPC_RMID: 4457 case SHM_LOCK: 4458 case SHM_UNLOCK: 4459 ret = get_errno(shmctl(shmid, cmd, NULL)); 4460 break; 4461 } 4462 4463 return ret; 4464 } 4465 4466 #ifndef TARGET_FORCE_SHMLBA 4467 /* For most architectures, SHMLBA is the same as the page size; 4468 * some architectures have larger values, in which case they should 4469 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function. 4470 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA 4471 * and defining its own value for SHMLBA. 4472 * 4473 * The kernel also permits SHMLBA to be set by the architecture to a 4474 * value larger than the page size without setting __ARCH_FORCE_SHMLBA; 4475 * this means that addresses are rounded to the large size if 4476 * SHM_RND is set but addresses not aligned to that size are not rejected 4477 * as long as they are at least page-aligned. Since the only architecture 4478 * which uses this is ia64 this code doesn't provide for that oddity. 4479 */ 4480 static inline abi_ulong target_shmlba(CPUArchState *cpu_env) 4481 { 4482 return TARGET_PAGE_SIZE; 4483 } 4484 #endif 4485 4486 static inline abi_ulong do_shmat(CPUArchState *cpu_env, 4487 int shmid, abi_ulong shmaddr, int shmflg) 4488 { 4489 CPUState *cpu = env_cpu(cpu_env); 4490 abi_long raddr; 4491 void *host_raddr; 4492 struct shmid_ds shm_info; 4493 int i,ret; 4494 abi_ulong shmlba; 4495 4496 /* shmat pointers are always untagged */ 4497 4498 /* find out the length of the shared memory segment */ 4499 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 4500 if (is_error(ret)) { 4501 /* can't get length, bail out */ 4502 return ret; 4503 } 4504 4505 shmlba = target_shmlba(cpu_env); 4506 4507 if (shmaddr & (shmlba - 1)) { 4508 if (shmflg & SHM_RND) { 4509 shmaddr &= ~(shmlba - 1); 4510 } else { 4511 return -TARGET_EINVAL; 4512 } 4513 } 4514 if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) { 4515 return -TARGET_EINVAL; 4516 } 4517 4518 mmap_lock(); 4519 4520 /* 4521 * We're mapping shared memory, so ensure we generate code for parallel 4522 * execution and flush old translations. This will work up to the level 4523 * supported by the host -- anything that requires EXCP_ATOMIC will not 4524 * be atomic with respect to an external process. 4525 */ 4526 if (!(cpu->tcg_cflags & CF_PARALLEL)) { 4527 cpu->tcg_cflags |= CF_PARALLEL; 4528 tb_flush(cpu); 4529 } 4530 4531 if (shmaddr) 4532 host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg); 4533 else { 4534 abi_ulong mmap_start; 4535 4536 /* In order to use the host shmat, we need to honor host SHMLBA. */ 4537 mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba)); 4538 4539 if (mmap_start == -1) { 4540 errno = ENOMEM; 4541 host_raddr = (void *)-1; 4542 } else 4543 host_raddr = shmat(shmid, g2h_untagged(mmap_start), 4544 shmflg | SHM_REMAP); 4545 } 4546 4547 if (host_raddr == (void *)-1) { 4548 mmap_unlock(); 4549 return get_errno((long)host_raddr); 4550 } 4551 raddr=h2g((unsigned long)host_raddr); 4552 4553 page_set_flags(raddr, raddr + shm_info.shm_segsz, 4554 PAGE_VALID | PAGE_RESET | PAGE_READ | 4555 (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE)); 4556 4557 for (i = 0; i < N_SHM_REGIONS; i++) { 4558 if (!shm_regions[i].in_use) { 4559 shm_regions[i].in_use = true; 4560 shm_regions[i].start = raddr; 4561 shm_regions[i].size = shm_info.shm_segsz; 4562 break; 4563 } 4564 } 4565 4566 mmap_unlock(); 4567 return raddr; 4568 4569 } 4570 4571 static inline abi_long do_shmdt(abi_ulong shmaddr) 4572 { 4573 int i; 4574 abi_long rv; 4575 4576 /* shmdt pointers are always untagged */ 4577 4578 mmap_lock(); 4579 4580 for (i = 0; i < N_SHM_REGIONS; ++i) { 4581 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) { 4582 shm_regions[i].in_use = false; 4583 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 4584 break; 4585 } 4586 } 4587 rv = get_errno(shmdt(g2h_untagged(shmaddr))); 4588 4589 mmap_unlock(); 4590 4591 return rv; 4592 } 4593 4594 #ifdef TARGET_NR_ipc 4595 /* ??? This only works with linear mappings. */ 4596 /* do_ipc() must return target values and target errnos. */ 4597 static abi_long do_ipc(CPUArchState *cpu_env, 4598 unsigned int call, abi_long first, 4599 abi_long second, abi_long third, 4600 abi_long ptr, abi_long fifth) 4601 { 4602 int version; 4603 abi_long ret = 0; 4604 4605 version = call >> 16; 4606 call &= 0xffff; 4607 4608 switch (call) { 4609 case IPCOP_semop: 4610 ret = do_semtimedop(first, ptr, second, 0, false); 4611 break; 4612 case IPCOP_semtimedop: 4613 /* 4614 * The s390 sys_ipc variant has only five parameters instead of six 4615 * (as for default variant) and the only difference is the handling of 4616 * SEMTIMEDOP where on s390 the third parameter is used as a pointer 4617 * to a struct timespec where the generic variant uses fifth parameter. 4618 */ 4619 #if defined(TARGET_S390X) 4620 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64); 4621 #else 4622 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64); 4623 #endif 4624 break; 4625 4626 case IPCOP_semget: 4627 ret = get_errno(semget(first, second, third)); 4628 break; 4629 4630 case IPCOP_semctl: { 4631 /* The semun argument to semctl is passed by value, so dereference the 4632 * ptr argument. */ 4633 abi_ulong atptr; 4634 get_user_ual(atptr, ptr); 4635 ret = do_semctl(first, second, third, atptr); 4636 break; 4637 } 4638 4639 case IPCOP_msgget: 4640 ret = get_errno(msgget(first, second)); 4641 break; 4642 4643 case IPCOP_msgsnd: 4644 ret = do_msgsnd(first, ptr, second, third); 4645 break; 4646 4647 case IPCOP_msgctl: 4648 ret = do_msgctl(first, second, ptr); 4649 break; 4650 4651 case IPCOP_msgrcv: 4652 switch (version) { 4653 case 0: 4654 { 4655 struct target_ipc_kludge { 4656 abi_long msgp; 4657 abi_long msgtyp; 4658 } *tmp; 4659 4660 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4661 ret = -TARGET_EFAULT; 4662 break; 4663 } 4664 4665 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4666 4667 unlock_user_struct(tmp, ptr, 0); 4668 break; 4669 } 4670 default: 4671 ret = do_msgrcv(first, ptr, second, fifth, third); 4672 } 4673 break; 4674 4675 case IPCOP_shmat: 4676 switch (version) { 4677 default: 4678 { 4679 abi_ulong raddr; 4680 raddr = do_shmat(cpu_env, first, ptr, second); 4681 if (is_error(raddr)) 4682 return get_errno(raddr); 4683 if (put_user_ual(raddr, third)) 4684 return -TARGET_EFAULT; 4685 break; 4686 } 4687 case 1: 4688 ret = -TARGET_EINVAL; 4689 break; 4690 } 4691 break; 4692 case IPCOP_shmdt: 4693 ret = do_shmdt(ptr); 4694 break; 4695 4696 case IPCOP_shmget: 4697 /* IPC_* flag values are the same on all linux platforms */ 4698 ret = get_errno(shmget(first, second, third)); 4699 break; 4700 4701 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4702 case IPCOP_shmctl: 4703 ret = do_shmctl(first, second, ptr); 4704 break; 4705 default: 4706 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n", 4707 call, version); 4708 ret = -TARGET_ENOSYS; 4709 break; 4710 } 4711 return ret; 4712 } 4713 #endif 4714 4715 /* kernel structure types definitions */ 4716 4717 #define STRUCT(name, ...) STRUCT_ ## name, 4718 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4719 enum { 4720 #include "syscall_types.h" 4721 STRUCT_MAX 4722 }; 4723 #undef STRUCT 4724 #undef STRUCT_SPECIAL 4725 4726 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4727 #define STRUCT_SPECIAL(name) 4728 #include "syscall_types.h" 4729 #undef STRUCT 4730 #undef STRUCT_SPECIAL 4731 4732 #define MAX_STRUCT_SIZE 4096 4733 4734 #ifdef CONFIG_FIEMAP 4735 /* So fiemap access checks don't overflow on 32 bit systems. 4736 * This is very slightly smaller than the limit imposed by 4737 * the underlying kernel. 4738 */ 4739 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4740 / sizeof(struct fiemap_extent)) 4741 4742 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4743 int fd, int cmd, abi_long arg) 4744 { 4745 /* The parameter for this ioctl is a struct fiemap followed 4746 * by an array of struct fiemap_extent whose size is set 4747 * in fiemap->fm_extent_count. The array is filled in by the 4748 * ioctl. 4749 */ 4750 int target_size_in, target_size_out; 4751 struct fiemap *fm; 4752 const argtype *arg_type = ie->arg_type; 4753 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4754 void *argptr, *p; 4755 abi_long ret; 4756 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4757 uint32_t outbufsz; 4758 int free_fm = 0; 4759 4760 assert(arg_type[0] == TYPE_PTR); 4761 assert(ie->access == IOC_RW); 4762 arg_type++; 4763 target_size_in = thunk_type_size(arg_type, 0); 4764 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4765 if (!argptr) { 4766 return -TARGET_EFAULT; 4767 } 4768 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4769 unlock_user(argptr, arg, 0); 4770 fm = (struct fiemap *)buf_temp; 4771 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4772 return -TARGET_EINVAL; 4773 } 4774 4775 outbufsz = sizeof (*fm) + 4776 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4777 4778 if (outbufsz > MAX_STRUCT_SIZE) { 4779 /* We can't fit all the extents into the fixed size buffer. 4780 * Allocate one that is large enough and use it instead. 4781 */ 4782 fm = g_try_malloc(outbufsz); 4783 if (!fm) { 4784 return -TARGET_ENOMEM; 4785 } 4786 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4787 free_fm = 1; 4788 } 4789 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4790 if (!is_error(ret)) { 4791 target_size_out = target_size_in; 4792 /* An extent_count of 0 means we were only counting the extents 4793 * so there are no structs to copy 4794 */ 4795 if (fm->fm_extent_count != 0) { 4796 target_size_out += fm->fm_mapped_extents * extent_size; 4797 } 4798 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4799 if (!argptr) { 4800 ret = -TARGET_EFAULT; 4801 } else { 4802 /* Convert the struct fiemap */ 4803 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4804 if (fm->fm_extent_count != 0) { 4805 p = argptr + target_size_in; 4806 /* ...and then all the struct fiemap_extents */ 4807 for (i = 0; i < fm->fm_mapped_extents; i++) { 4808 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4809 THUNK_TARGET); 4810 p += extent_size; 4811 } 4812 } 4813 unlock_user(argptr, arg, target_size_out); 4814 } 4815 } 4816 if (free_fm) { 4817 g_free(fm); 4818 } 4819 return ret; 4820 } 4821 #endif 4822 4823 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 4824 int fd, int cmd, abi_long arg) 4825 { 4826 const argtype *arg_type = ie->arg_type; 4827 int target_size; 4828 void *argptr; 4829 int ret; 4830 struct ifconf *host_ifconf; 4831 uint32_t outbufsz; 4832 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 4833 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) }; 4834 int target_ifreq_size; 4835 int nb_ifreq; 4836 int free_buf = 0; 4837 int i; 4838 int target_ifc_len; 4839 abi_long target_ifc_buf; 4840 int host_ifc_len; 4841 char *host_ifc_buf; 4842 4843 assert(arg_type[0] == TYPE_PTR); 4844 assert(ie->access == IOC_RW); 4845 4846 arg_type++; 4847 target_size = thunk_type_size(arg_type, 0); 4848 4849 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4850 if (!argptr) 4851 return -TARGET_EFAULT; 4852 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4853 unlock_user(argptr, arg, 0); 4854 4855 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 4856 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 4857 target_ifreq_size = thunk_type_size(ifreq_max_type, 0); 4858 4859 if (target_ifc_buf != 0) { 4860 target_ifc_len = host_ifconf->ifc_len; 4861 nb_ifreq = target_ifc_len / target_ifreq_size; 4862 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 4863 4864 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 4865 if (outbufsz > MAX_STRUCT_SIZE) { 4866 /* 4867 * We can't fit all the extents into the fixed size buffer. 4868 * Allocate one that is large enough and use it instead. 4869 */ 4870 host_ifconf = g_try_malloc(outbufsz); 4871 if (!host_ifconf) { 4872 return -TARGET_ENOMEM; 4873 } 4874 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 4875 free_buf = 1; 4876 } 4877 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf); 4878 4879 host_ifconf->ifc_len = host_ifc_len; 4880 } else { 4881 host_ifc_buf = NULL; 4882 } 4883 host_ifconf->ifc_buf = host_ifc_buf; 4884 4885 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 4886 if (!is_error(ret)) { 4887 /* convert host ifc_len to target ifc_len */ 4888 4889 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 4890 target_ifc_len = nb_ifreq * target_ifreq_size; 4891 host_ifconf->ifc_len = target_ifc_len; 4892 4893 /* restore target ifc_buf */ 4894 4895 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 4896 4897 /* copy struct ifconf to target user */ 4898 4899 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4900 if (!argptr) 4901 return -TARGET_EFAULT; 4902 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 4903 unlock_user(argptr, arg, target_size); 4904 4905 if (target_ifc_buf != 0) { 4906 /* copy ifreq[] to target user */ 4907 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 4908 for (i = 0; i < nb_ifreq ; i++) { 4909 thunk_convert(argptr + i * target_ifreq_size, 4910 host_ifc_buf + i * sizeof(struct ifreq), 4911 ifreq_arg_type, THUNK_TARGET); 4912 } 4913 unlock_user(argptr, target_ifc_buf, target_ifc_len); 4914 } 4915 } 4916 4917 if (free_buf) { 4918 g_free(host_ifconf); 4919 } 4920 4921 return ret; 4922 } 4923 4924 #if defined(CONFIG_USBFS) 4925 #if HOST_LONG_BITS > 64 4926 #error USBDEVFS thunks do not support >64 bit hosts yet. 4927 #endif 4928 struct live_urb { 4929 uint64_t target_urb_adr; 4930 uint64_t target_buf_adr; 4931 char *target_buf_ptr; 4932 struct usbdevfs_urb host_urb; 4933 }; 4934 4935 static GHashTable *usbdevfs_urb_hashtable(void) 4936 { 4937 static GHashTable *urb_hashtable; 4938 4939 if (!urb_hashtable) { 4940 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal); 4941 } 4942 return urb_hashtable; 4943 } 4944 4945 static void urb_hashtable_insert(struct live_urb *urb) 4946 { 4947 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4948 g_hash_table_insert(urb_hashtable, urb, urb); 4949 } 4950 4951 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr) 4952 { 4953 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4954 return g_hash_table_lookup(urb_hashtable, &target_urb_adr); 4955 } 4956 4957 static void urb_hashtable_remove(struct live_urb *urb) 4958 { 4959 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4960 g_hash_table_remove(urb_hashtable, urb); 4961 } 4962 4963 static abi_long 4964 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp, 4965 int fd, int cmd, abi_long arg) 4966 { 4967 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) }; 4968 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 }; 4969 struct live_urb *lurb; 4970 void *argptr; 4971 uint64_t hurb; 4972 int target_size; 4973 uintptr_t target_urb_adr; 4974 abi_long ret; 4975 4976 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET); 4977 4978 memset(buf_temp, 0, sizeof(uint64_t)); 4979 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4980 if (is_error(ret)) { 4981 return ret; 4982 } 4983 4984 memcpy(&hurb, buf_temp, sizeof(uint64_t)); 4985 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb)); 4986 if (!lurb->target_urb_adr) { 4987 return -TARGET_EFAULT; 4988 } 4989 urb_hashtable_remove(lurb); 4990 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 4991 lurb->host_urb.buffer_length); 4992 lurb->target_buf_ptr = NULL; 4993 4994 /* restore the guest buffer pointer */ 4995 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr; 4996 4997 /* update the guest urb struct */ 4998 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0); 4999 if (!argptr) { 5000 g_free(lurb); 5001 return -TARGET_EFAULT; 5002 } 5003 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET); 5004 unlock_user(argptr, lurb->target_urb_adr, target_size); 5005 5006 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET); 5007 /* write back the urb handle */ 5008 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5009 if (!argptr) { 5010 g_free(lurb); 5011 return -TARGET_EFAULT; 5012 } 5013 5014 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */ 5015 target_urb_adr = lurb->target_urb_adr; 5016 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET); 5017 unlock_user(argptr, arg, target_size); 5018 5019 g_free(lurb); 5020 return ret; 5021 } 5022 5023 static abi_long 5024 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie, 5025 uint8_t *buf_temp __attribute__((unused)), 5026 int fd, int cmd, abi_long arg) 5027 { 5028 struct live_urb *lurb; 5029 5030 /* map target address back to host URB with metadata. */ 5031 lurb = urb_hashtable_lookup(arg); 5032 if (!lurb) { 5033 return -TARGET_EFAULT; 5034 } 5035 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 5036 } 5037 5038 static abi_long 5039 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp, 5040 int fd, int cmd, abi_long arg) 5041 { 5042 const argtype *arg_type = ie->arg_type; 5043 int target_size; 5044 abi_long ret; 5045 void *argptr; 5046 int rw_dir; 5047 struct live_urb *lurb; 5048 5049 /* 5050 * each submitted URB needs to map to a unique ID for the 5051 * kernel, and that unique ID needs to be a pointer to 5052 * host memory. hence, we need to malloc for each URB. 5053 * isochronous transfers have a variable length struct. 5054 */ 5055 arg_type++; 5056 target_size = thunk_type_size(arg_type, THUNK_TARGET); 5057 5058 /* construct host copy of urb and metadata */ 5059 lurb = g_try_new0(struct live_urb, 1); 5060 if (!lurb) { 5061 return -TARGET_ENOMEM; 5062 } 5063 5064 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5065 if (!argptr) { 5066 g_free(lurb); 5067 return -TARGET_EFAULT; 5068 } 5069 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST); 5070 unlock_user(argptr, arg, 0); 5071 5072 lurb->target_urb_adr = arg; 5073 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer; 5074 5075 /* buffer space used depends on endpoint type so lock the entire buffer */ 5076 /* control type urbs should check the buffer contents for true direction */ 5077 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ; 5078 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr, 5079 lurb->host_urb.buffer_length, 1); 5080 if (lurb->target_buf_ptr == NULL) { 5081 g_free(lurb); 5082 return -TARGET_EFAULT; 5083 } 5084 5085 /* update buffer pointer in host copy */ 5086 lurb->host_urb.buffer = lurb->target_buf_ptr; 5087 5088 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 5089 if (is_error(ret)) { 5090 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0); 5091 g_free(lurb); 5092 } else { 5093 urb_hashtable_insert(lurb); 5094 } 5095 5096 return ret; 5097 } 5098 #endif /* CONFIG_USBFS */ 5099 5100 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5101 int cmd, abi_long arg) 5102 { 5103 void *argptr; 5104 struct dm_ioctl *host_dm; 5105 abi_long guest_data; 5106 uint32_t guest_data_size; 5107 int target_size; 5108 const argtype *arg_type = ie->arg_type; 5109 abi_long ret; 5110 void *big_buf = NULL; 5111 char *host_data; 5112 5113 arg_type++; 5114 target_size = thunk_type_size(arg_type, 0); 5115 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5116 if (!argptr) { 5117 ret = -TARGET_EFAULT; 5118 goto out; 5119 } 5120 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5121 unlock_user(argptr, arg, 0); 5122 5123 /* buf_temp is too small, so fetch things into a bigger buffer */ 5124 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5125 memcpy(big_buf, buf_temp, target_size); 5126 buf_temp = big_buf; 5127 host_dm = big_buf; 5128 5129 guest_data = arg + host_dm->data_start; 5130 if ((guest_data - arg) < 0) { 5131 ret = -TARGET_EINVAL; 5132 goto out; 5133 } 5134 guest_data_size = host_dm->data_size - host_dm->data_start; 5135 host_data = (char*)host_dm + host_dm->data_start; 5136 5137 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5138 if (!argptr) { 5139 ret = -TARGET_EFAULT; 5140 goto out; 5141 } 5142 5143 switch (ie->host_cmd) { 5144 case DM_REMOVE_ALL: 5145 case DM_LIST_DEVICES: 5146 case DM_DEV_CREATE: 5147 case DM_DEV_REMOVE: 5148 case DM_DEV_SUSPEND: 5149 case DM_DEV_STATUS: 5150 case DM_DEV_WAIT: 5151 case DM_TABLE_STATUS: 5152 case DM_TABLE_CLEAR: 5153 case DM_TABLE_DEPS: 5154 case DM_LIST_VERSIONS: 5155 /* no input data */ 5156 break; 5157 case DM_DEV_RENAME: 5158 case DM_DEV_SET_GEOMETRY: 5159 /* data contains only strings */ 5160 memcpy(host_data, argptr, guest_data_size); 5161 break; 5162 case DM_TARGET_MSG: 5163 memcpy(host_data, argptr, guest_data_size); 5164 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5165 break; 5166 case DM_TABLE_LOAD: 5167 { 5168 void *gspec = argptr; 5169 void *cur_data = host_data; 5170 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5171 int spec_size = thunk_type_size(arg_type, 0); 5172 int i; 5173 5174 for (i = 0; i < host_dm->target_count; i++) { 5175 struct dm_target_spec *spec = cur_data; 5176 uint32_t next; 5177 int slen; 5178 5179 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 5180 slen = strlen((char*)gspec + spec_size) + 1; 5181 next = spec->next; 5182 spec->next = sizeof(*spec) + slen; 5183 strcpy((char*)&spec[1], gspec + spec_size); 5184 gspec += next; 5185 cur_data += spec->next; 5186 } 5187 break; 5188 } 5189 default: 5190 ret = -TARGET_EINVAL; 5191 unlock_user(argptr, guest_data, 0); 5192 goto out; 5193 } 5194 unlock_user(argptr, guest_data, 0); 5195 5196 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5197 if (!is_error(ret)) { 5198 guest_data = arg + host_dm->data_start; 5199 guest_data_size = host_dm->data_size - host_dm->data_start; 5200 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5201 switch (ie->host_cmd) { 5202 case DM_REMOVE_ALL: 5203 case DM_DEV_CREATE: 5204 case DM_DEV_REMOVE: 5205 case DM_DEV_RENAME: 5206 case DM_DEV_SUSPEND: 5207 case DM_DEV_STATUS: 5208 case DM_TABLE_LOAD: 5209 case DM_TABLE_CLEAR: 5210 case DM_TARGET_MSG: 5211 case DM_DEV_SET_GEOMETRY: 5212 /* no return data */ 5213 break; 5214 case DM_LIST_DEVICES: 5215 { 5216 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5217 uint32_t remaining_data = guest_data_size; 5218 void *cur_data = argptr; 5219 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5220 int nl_size = 12; /* can't use thunk_size due to alignment */ 5221 5222 while (1) { 5223 uint32_t next = nl->next; 5224 if (next) { 5225 nl->next = nl_size + (strlen(nl->name) + 1); 5226 } 5227 if (remaining_data < nl->next) { 5228 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5229 break; 5230 } 5231 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 5232 strcpy(cur_data + nl_size, nl->name); 5233 cur_data += nl->next; 5234 remaining_data -= nl->next; 5235 if (!next) { 5236 break; 5237 } 5238 nl = (void*)nl + next; 5239 } 5240 break; 5241 } 5242 case DM_DEV_WAIT: 5243 case DM_TABLE_STATUS: 5244 { 5245 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5246 void *cur_data = argptr; 5247 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5248 int spec_size = thunk_type_size(arg_type, 0); 5249 int i; 5250 5251 for (i = 0; i < host_dm->target_count; i++) { 5252 uint32_t next = spec->next; 5253 int slen = strlen((char*)&spec[1]) + 1; 5254 spec->next = (cur_data - argptr) + spec_size + slen; 5255 if (guest_data_size < spec->next) { 5256 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5257 break; 5258 } 5259 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 5260 strcpy(cur_data + spec_size, (char*)&spec[1]); 5261 cur_data = argptr + spec->next; 5262 spec = (void*)host_dm + host_dm->data_start + next; 5263 } 5264 break; 5265 } 5266 case DM_TABLE_DEPS: 5267 { 5268 void *hdata = (void*)host_dm + host_dm->data_start; 5269 int count = *(uint32_t*)hdata; 5270 uint64_t *hdev = hdata + 8; 5271 uint64_t *gdev = argptr + 8; 5272 int i; 5273 5274 *(uint32_t*)argptr = tswap32(count); 5275 for (i = 0; i < count; i++) { 5276 *gdev = tswap64(*hdev); 5277 gdev++; 5278 hdev++; 5279 } 5280 break; 5281 } 5282 case DM_LIST_VERSIONS: 5283 { 5284 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5285 uint32_t remaining_data = guest_data_size; 5286 void *cur_data = argptr; 5287 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5288 int vers_size = thunk_type_size(arg_type, 0); 5289 5290 while (1) { 5291 uint32_t next = vers->next; 5292 if (next) { 5293 vers->next = vers_size + (strlen(vers->name) + 1); 5294 } 5295 if (remaining_data < vers->next) { 5296 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5297 break; 5298 } 5299 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 5300 strcpy(cur_data + vers_size, vers->name); 5301 cur_data += vers->next; 5302 remaining_data -= vers->next; 5303 if (!next) { 5304 break; 5305 } 5306 vers = (void*)vers + next; 5307 } 5308 break; 5309 } 5310 default: 5311 unlock_user(argptr, guest_data, 0); 5312 ret = -TARGET_EINVAL; 5313 goto out; 5314 } 5315 unlock_user(argptr, guest_data, guest_data_size); 5316 5317 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5318 if (!argptr) { 5319 ret = -TARGET_EFAULT; 5320 goto out; 5321 } 5322 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5323 unlock_user(argptr, arg, target_size); 5324 } 5325 out: 5326 g_free(big_buf); 5327 return ret; 5328 } 5329 5330 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5331 int cmd, abi_long arg) 5332 { 5333 void *argptr; 5334 int target_size; 5335 const argtype *arg_type = ie->arg_type; 5336 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5337 abi_long ret; 5338 5339 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5340 struct blkpg_partition host_part; 5341 5342 /* Read and convert blkpg */ 5343 arg_type++; 5344 target_size = thunk_type_size(arg_type, 0); 5345 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5346 if (!argptr) { 5347 ret = -TARGET_EFAULT; 5348 goto out; 5349 } 5350 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5351 unlock_user(argptr, arg, 0); 5352 5353 switch (host_blkpg->op) { 5354 case BLKPG_ADD_PARTITION: 5355 case BLKPG_DEL_PARTITION: 5356 /* payload is struct blkpg_partition */ 5357 break; 5358 default: 5359 /* Unknown opcode */ 5360 ret = -TARGET_EINVAL; 5361 goto out; 5362 } 5363 5364 /* Read and convert blkpg->data */ 5365 arg = (abi_long)(uintptr_t)host_blkpg->data; 5366 target_size = thunk_type_size(part_arg_type, 0); 5367 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5368 if (!argptr) { 5369 ret = -TARGET_EFAULT; 5370 goto out; 5371 } 5372 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5373 unlock_user(argptr, arg, 0); 5374 5375 /* Swizzle the data pointer to our local copy and call! */ 5376 host_blkpg->data = &host_part; 5377 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5378 5379 out: 5380 return ret; 5381 } 5382 5383 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5384 int fd, int cmd, abi_long arg) 5385 { 5386 const argtype *arg_type = ie->arg_type; 5387 const StructEntry *se; 5388 const argtype *field_types; 5389 const int *dst_offsets, *src_offsets; 5390 int target_size; 5391 void *argptr; 5392 abi_ulong *target_rt_dev_ptr = NULL; 5393 unsigned long *host_rt_dev_ptr = NULL; 5394 abi_long ret; 5395 int i; 5396 5397 assert(ie->access == IOC_W); 5398 assert(*arg_type == TYPE_PTR); 5399 arg_type++; 5400 assert(*arg_type == TYPE_STRUCT); 5401 target_size = thunk_type_size(arg_type, 0); 5402 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5403 if (!argptr) { 5404 return -TARGET_EFAULT; 5405 } 5406 arg_type++; 5407 assert(*arg_type == (int)STRUCT_rtentry); 5408 se = struct_entries + *arg_type++; 5409 assert(se->convert[0] == NULL); 5410 /* convert struct here to be able to catch rt_dev string */ 5411 field_types = se->field_types; 5412 dst_offsets = se->field_offsets[THUNK_HOST]; 5413 src_offsets = se->field_offsets[THUNK_TARGET]; 5414 for (i = 0; i < se->nb_fields; i++) { 5415 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5416 assert(*field_types == TYPE_PTRVOID); 5417 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 5418 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5419 if (*target_rt_dev_ptr != 0) { 5420 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5421 tswapal(*target_rt_dev_ptr)); 5422 if (!*host_rt_dev_ptr) { 5423 unlock_user(argptr, arg, 0); 5424 return -TARGET_EFAULT; 5425 } 5426 } else { 5427 *host_rt_dev_ptr = 0; 5428 } 5429 field_types++; 5430 continue; 5431 } 5432 field_types = thunk_convert(buf_temp + dst_offsets[i], 5433 argptr + src_offsets[i], 5434 field_types, THUNK_HOST); 5435 } 5436 unlock_user(argptr, arg, 0); 5437 5438 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5439 5440 assert(host_rt_dev_ptr != NULL); 5441 assert(target_rt_dev_ptr != NULL); 5442 if (*host_rt_dev_ptr != 0) { 5443 unlock_user((void *)*host_rt_dev_ptr, 5444 *target_rt_dev_ptr, 0); 5445 } 5446 return ret; 5447 } 5448 5449 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5450 int fd, int cmd, abi_long arg) 5451 { 5452 int sig = target_to_host_signal(arg); 5453 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5454 } 5455 5456 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp, 5457 int fd, int cmd, abi_long arg) 5458 { 5459 struct timeval tv; 5460 abi_long ret; 5461 5462 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv)); 5463 if (is_error(ret)) { 5464 return ret; 5465 } 5466 5467 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) { 5468 if (copy_to_user_timeval(arg, &tv)) { 5469 return -TARGET_EFAULT; 5470 } 5471 } else { 5472 if (copy_to_user_timeval64(arg, &tv)) { 5473 return -TARGET_EFAULT; 5474 } 5475 } 5476 5477 return ret; 5478 } 5479 5480 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp, 5481 int fd, int cmd, abi_long arg) 5482 { 5483 struct timespec ts; 5484 abi_long ret; 5485 5486 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts)); 5487 if (is_error(ret)) { 5488 return ret; 5489 } 5490 5491 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) { 5492 if (host_to_target_timespec(arg, &ts)) { 5493 return -TARGET_EFAULT; 5494 } 5495 } else{ 5496 if (host_to_target_timespec64(arg, &ts)) { 5497 return -TARGET_EFAULT; 5498 } 5499 } 5500 5501 return ret; 5502 } 5503 5504 #ifdef TIOCGPTPEER 5505 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5506 int fd, int cmd, abi_long arg) 5507 { 5508 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5509 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5510 } 5511 #endif 5512 5513 #ifdef HAVE_DRM_H 5514 5515 static void unlock_drm_version(struct drm_version *host_ver, 5516 struct target_drm_version *target_ver, 5517 bool copy) 5518 { 5519 unlock_user(host_ver->name, target_ver->name, 5520 copy ? host_ver->name_len : 0); 5521 unlock_user(host_ver->date, target_ver->date, 5522 copy ? host_ver->date_len : 0); 5523 unlock_user(host_ver->desc, target_ver->desc, 5524 copy ? host_ver->desc_len : 0); 5525 } 5526 5527 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver, 5528 struct target_drm_version *target_ver) 5529 { 5530 memset(host_ver, 0, sizeof(*host_ver)); 5531 5532 __get_user(host_ver->name_len, &target_ver->name_len); 5533 if (host_ver->name_len) { 5534 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name, 5535 target_ver->name_len, 0); 5536 if (!host_ver->name) { 5537 return -EFAULT; 5538 } 5539 } 5540 5541 __get_user(host_ver->date_len, &target_ver->date_len); 5542 if (host_ver->date_len) { 5543 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date, 5544 target_ver->date_len, 0); 5545 if (!host_ver->date) { 5546 goto err; 5547 } 5548 } 5549 5550 __get_user(host_ver->desc_len, &target_ver->desc_len); 5551 if (host_ver->desc_len) { 5552 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc, 5553 target_ver->desc_len, 0); 5554 if (!host_ver->desc) { 5555 goto err; 5556 } 5557 } 5558 5559 return 0; 5560 err: 5561 unlock_drm_version(host_ver, target_ver, false); 5562 return -EFAULT; 5563 } 5564 5565 static inline void host_to_target_drmversion( 5566 struct target_drm_version *target_ver, 5567 struct drm_version *host_ver) 5568 { 5569 __put_user(host_ver->version_major, &target_ver->version_major); 5570 __put_user(host_ver->version_minor, &target_ver->version_minor); 5571 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel); 5572 __put_user(host_ver->name_len, &target_ver->name_len); 5573 __put_user(host_ver->date_len, &target_ver->date_len); 5574 __put_user(host_ver->desc_len, &target_ver->desc_len); 5575 unlock_drm_version(host_ver, target_ver, true); 5576 } 5577 5578 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp, 5579 int fd, int cmd, abi_long arg) 5580 { 5581 struct drm_version *ver; 5582 struct target_drm_version *target_ver; 5583 abi_long ret; 5584 5585 switch (ie->host_cmd) { 5586 case DRM_IOCTL_VERSION: 5587 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) { 5588 return -TARGET_EFAULT; 5589 } 5590 ver = (struct drm_version *)buf_temp; 5591 ret = target_to_host_drmversion(ver, target_ver); 5592 if (!is_error(ret)) { 5593 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver)); 5594 if (is_error(ret)) { 5595 unlock_drm_version(ver, target_ver, false); 5596 } else { 5597 host_to_target_drmversion(target_ver, ver); 5598 } 5599 } 5600 unlock_user_struct(target_ver, arg, 0); 5601 return ret; 5602 } 5603 return -TARGET_ENOSYS; 5604 } 5605 5606 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie, 5607 struct drm_i915_getparam *gparam, 5608 int fd, abi_long arg) 5609 { 5610 abi_long ret; 5611 int value; 5612 struct target_drm_i915_getparam *target_gparam; 5613 5614 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) { 5615 return -TARGET_EFAULT; 5616 } 5617 5618 __get_user(gparam->param, &target_gparam->param); 5619 gparam->value = &value; 5620 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam)); 5621 put_user_s32(value, target_gparam->value); 5622 5623 unlock_user_struct(target_gparam, arg, 0); 5624 return ret; 5625 } 5626 5627 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp, 5628 int fd, int cmd, abi_long arg) 5629 { 5630 switch (ie->host_cmd) { 5631 case DRM_IOCTL_I915_GETPARAM: 5632 return do_ioctl_drm_i915_getparam(ie, 5633 (struct drm_i915_getparam *)buf_temp, 5634 fd, arg); 5635 default: 5636 return -TARGET_ENOSYS; 5637 } 5638 } 5639 5640 #endif 5641 5642 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp, 5643 int fd, int cmd, abi_long arg) 5644 { 5645 struct tun_filter *filter = (struct tun_filter *)buf_temp; 5646 struct tun_filter *target_filter; 5647 char *target_addr; 5648 5649 assert(ie->access == IOC_W); 5650 5651 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1); 5652 if (!target_filter) { 5653 return -TARGET_EFAULT; 5654 } 5655 filter->flags = tswap16(target_filter->flags); 5656 filter->count = tswap16(target_filter->count); 5657 unlock_user(target_filter, arg, 0); 5658 5659 if (filter->count) { 5660 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN > 5661 MAX_STRUCT_SIZE) { 5662 return -TARGET_EFAULT; 5663 } 5664 5665 target_addr = lock_user(VERIFY_READ, 5666 arg + offsetof(struct tun_filter, addr), 5667 filter->count * ETH_ALEN, 1); 5668 if (!target_addr) { 5669 return -TARGET_EFAULT; 5670 } 5671 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN); 5672 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0); 5673 } 5674 5675 return get_errno(safe_ioctl(fd, ie->host_cmd, filter)); 5676 } 5677 5678 IOCTLEntry ioctl_entries[] = { 5679 #define IOCTL(cmd, access, ...) \ 5680 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5681 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5682 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5683 #define IOCTL_IGNORE(cmd) \ 5684 { TARGET_ ## cmd, 0, #cmd }, 5685 #include "ioctls.h" 5686 { 0, 0, }, 5687 }; 5688 5689 /* ??? Implement proper locking for ioctls. */ 5690 /* do_ioctl() Must return target values and target errnos. */ 5691 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5692 { 5693 const IOCTLEntry *ie; 5694 const argtype *arg_type; 5695 abi_long ret; 5696 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5697 int target_size; 5698 void *argptr; 5699 5700 ie = ioctl_entries; 5701 for(;;) { 5702 if (ie->target_cmd == 0) { 5703 qemu_log_mask( 5704 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5705 return -TARGET_ENOSYS; 5706 } 5707 if (ie->target_cmd == cmd) 5708 break; 5709 ie++; 5710 } 5711 arg_type = ie->arg_type; 5712 if (ie->do_ioctl) { 5713 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5714 } else if (!ie->host_cmd) { 5715 /* Some architectures define BSD ioctls in their headers 5716 that are not implemented in Linux. */ 5717 return -TARGET_ENOSYS; 5718 } 5719 5720 switch(arg_type[0]) { 5721 case TYPE_NULL: 5722 /* no argument */ 5723 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5724 break; 5725 case TYPE_PTRVOID: 5726 case TYPE_INT: 5727 case TYPE_LONG: 5728 case TYPE_ULONG: 5729 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5730 break; 5731 case TYPE_PTR: 5732 arg_type++; 5733 target_size = thunk_type_size(arg_type, 0); 5734 switch(ie->access) { 5735 case IOC_R: 5736 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5737 if (!is_error(ret)) { 5738 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5739 if (!argptr) 5740 return -TARGET_EFAULT; 5741 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5742 unlock_user(argptr, arg, target_size); 5743 } 5744 break; 5745 case IOC_W: 5746 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5747 if (!argptr) 5748 return -TARGET_EFAULT; 5749 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5750 unlock_user(argptr, arg, 0); 5751 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5752 break; 5753 default: 5754 case IOC_RW: 5755 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5756 if (!argptr) 5757 return -TARGET_EFAULT; 5758 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5759 unlock_user(argptr, arg, 0); 5760 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5761 if (!is_error(ret)) { 5762 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5763 if (!argptr) 5764 return -TARGET_EFAULT; 5765 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5766 unlock_user(argptr, arg, target_size); 5767 } 5768 break; 5769 } 5770 break; 5771 default: 5772 qemu_log_mask(LOG_UNIMP, 5773 "Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5774 (long)cmd, arg_type[0]); 5775 ret = -TARGET_ENOSYS; 5776 break; 5777 } 5778 return ret; 5779 } 5780 5781 static const bitmask_transtbl iflag_tbl[] = { 5782 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5783 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5784 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5785 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5786 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5787 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5788 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5789 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5790 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5791 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5792 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5793 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5794 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5795 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5796 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8}, 5797 { 0, 0, 0, 0 } 5798 }; 5799 5800 static const bitmask_transtbl oflag_tbl[] = { 5801 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5802 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5803 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5804 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5805 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5806 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5807 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5808 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5809 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5810 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5811 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5812 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5813 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5814 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5815 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5816 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5817 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5818 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5819 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5820 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5821 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5822 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5823 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5824 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5825 { 0, 0, 0, 0 } 5826 }; 5827 5828 static const bitmask_transtbl cflag_tbl[] = { 5829 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5830 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5831 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5832 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5833 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5834 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5835 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5836 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5837 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5838 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5839 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5840 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5841 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5842 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5843 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5844 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5845 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5846 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5847 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5848 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5849 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5850 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5851 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5852 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5853 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5854 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5855 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5856 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5857 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5858 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5859 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5860 { 0, 0, 0, 0 } 5861 }; 5862 5863 static const bitmask_transtbl lflag_tbl[] = { 5864 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5865 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5866 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5867 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5868 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5869 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5870 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5871 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5872 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5873 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5874 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5875 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5876 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5877 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5878 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5879 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC}, 5880 { 0, 0, 0, 0 } 5881 }; 5882 5883 static void target_to_host_termios (void *dst, const void *src) 5884 { 5885 struct host_termios *host = dst; 5886 const struct target_termios *target = src; 5887 5888 host->c_iflag = 5889 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5890 host->c_oflag = 5891 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5892 host->c_cflag = 5893 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5894 host->c_lflag = 5895 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5896 host->c_line = target->c_line; 5897 5898 memset(host->c_cc, 0, sizeof(host->c_cc)); 5899 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5900 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5901 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5902 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5903 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5904 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5905 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5906 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5907 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5908 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5909 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5910 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5911 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5912 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5913 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5914 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5915 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5916 } 5917 5918 static void host_to_target_termios (void *dst, const void *src) 5919 { 5920 struct target_termios *target = dst; 5921 const struct host_termios *host = src; 5922 5923 target->c_iflag = 5924 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5925 target->c_oflag = 5926 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5927 target->c_cflag = 5928 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5929 target->c_lflag = 5930 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5931 target->c_line = host->c_line; 5932 5933 memset(target->c_cc, 0, sizeof(target->c_cc)); 5934 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5935 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5936 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5937 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5938 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5939 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5940 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5941 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5942 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5943 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5944 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5945 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5946 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5947 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5948 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5949 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5950 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5951 } 5952 5953 static const StructEntry struct_termios_def = { 5954 .convert = { host_to_target_termios, target_to_host_termios }, 5955 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5956 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5957 .print = print_termios, 5958 }; 5959 5960 static const bitmask_transtbl mmap_flags_tbl[] = { 5961 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 5962 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 5963 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5964 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 5965 MAP_ANONYMOUS, MAP_ANONYMOUS }, 5966 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 5967 MAP_GROWSDOWN, MAP_GROWSDOWN }, 5968 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 5969 MAP_DENYWRITE, MAP_DENYWRITE }, 5970 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 5971 MAP_EXECUTABLE, MAP_EXECUTABLE }, 5972 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5973 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 5974 MAP_NORESERVE, MAP_NORESERVE }, 5975 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 5976 /* MAP_STACK had been ignored by the kernel for quite some time. 5977 Recognize it for the target insofar as we do not want to pass 5978 it through to the host. */ 5979 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 5980 { 0, 0, 0, 0 } 5981 }; 5982 5983 /* 5984 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64) 5985 * TARGET_I386 is defined if TARGET_X86_64 is defined 5986 */ 5987 #if defined(TARGET_I386) 5988 5989 /* NOTE: there is really one LDT for all the threads */ 5990 static uint8_t *ldt_table; 5991 5992 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5993 { 5994 int size; 5995 void *p; 5996 5997 if (!ldt_table) 5998 return 0; 5999 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 6000 if (size > bytecount) 6001 size = bytecount; 6002 p = lock_user(VERIFY_WRITE, ptr, size, 0); 6003 if (!p) 6004 return -TARGET_EFAULT; 6005 /* ??? Should this by byteswapped? */ 6006 memcpy(p, ldt_table, size); 6007 unlock_user(p, ptr, size); 6008 return size; 6009 } 6010 6011 /* XXX: add locking support */ 6012 static abi_long write_ldt(CPUX86State *env, 6013 abi_ulong ptr, unsigned long bytecount, int oldmode) 6014 { 6015 struct target_modify_ldt_ldt_s ldt_info; 6016 struct target_modify_ldt_ldt_s *target_ldt_info; 6017 int seg_32bit, contents, read_exec_only, limit_in_pages; 6018 int seg_not_present, useable, lm; 6019 uint32_t *lp, entry_1, entry_2; 6020 6021 if (bytecount != sizeof(ldt_info)) 6022 return -TARGET_EINVAL; 6023 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 6024 return -TARGET_EFAULT; 6025 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6026 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6027 ldt_info.limit = tswap32(target_ldt_info->limit); 6028 ldt_info.flags = tswap32(target_ldt_info->flags); 6029 unlock_user_struct(target_ldt_info, ptr, 0); 6030 6031 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 6032 return -TARGET_EINVAL; 6033 seg_32bit = ldt_info.flags & 1; 6034 contents = (ldt_info.flags >> 1) & 3; 6035 read_exec_only = (ldt_info.flags >> 3) & 1; 6036 limit_in_pages = (ldt_info.flags >> 4) & 1; 6037 seg_not_present = (ldt_info.flags >> 5) & 1; 6038 useable = (ldt_info.flags >> 6) & 1; 6039 #ifdef TARGET_ABI32 6040 lm = 0; 6041 #else 6042 lm = (ldt_info.flags >> 7) & 1; 6043 #endif 6044 if (contents == 3) { 6045 if (oldmode) 6046 return -TARGET_EINVAL; 6047 if (seg_not_present == 0) 6048 return -TARGET_EINVAL; 6049 } 6050 /* allocate the LDT */ 6051 if (!ldt_table) { 6052 env->ldt.base = target_mmap(0, 6053 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6054 PROT_READ|PROT_WRITE, 6055 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6056 if (env->ldt.base == -1) 6057 return -TARGET_ENOMEM; 6058 memset(g2h_untagged(env->ldt.base), 0, 6059 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6060 env->ldt.limit = 0xffff; 6061 ldt_table = g2h_untagged(env->ldt.base); 6062 } 6063 6064 /* NOTE: same code as Linux kernel */ 6065 /* Allow LDTs to be cleared by the user. */ 6066 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6067 if (oldmode || 6068 (contents == 0 && 6069 read_exec_only == 1 && 6070 seg_32bit == 0 && 6071 limit_in_pages == 0 && 6072 seg_not_present == 1 && 6073 useable == 0 )) { 6074 entry_1 = 0; 6075 entry_2 = 0; 6076 goto install; 6077 } 6078 } 6079 6080 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6081 (ldt_info.limit & 0x0ffff); 6082 entry_2 = (ldt_info.base_addr & 0xff000000) | 6083 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6084 (ldt_info.limit & 0xf0000) | 6085 ((read_exec_only ^ 1) << 9) | 6086 (contents << 10) | 6087 ((seg_not_present ^ 1) << 15) | 6088 (seg_32bit << 22) | 6089 (limit_in_pages << 23) | 6090 (lm << 21) | 6091 0x7000; 6092 if (!oldmode) 6093 entry_2 |= (useable << 20); 6094 6095 /* Install the new entry ... */ 6096 install: 6097 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6098 lp[0] = tswap32(entry_1); 6099 lp[1] = tswap32(entry_2); 6100 return 0; 6101 } 6102 6103 /* specific and weird i386 syscalls */ 6104 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6105 unsigned long bytecount) 6106 { 6107 abi_long ret; 6108 6109 switch (func) { 6110 case 0: 6111 ret = read_ldt(ptr, bytecount); 6112 break; 6113 case 1: 6114 ret = write_ldt(env, ptr, bytecount, 1); 6115 break; 6116 case 0x11: 6117 ret = write_ldt(env, ptr, bytecount, 0); 6118 break; 6119 default: 6120 ret = -TARGET_ENOSYS; 6121 break; 6122 } 6123 return ret; 6124 } 6125 6126 #if defined(TARGET_ABI32) 6127 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6128 { 6129 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6130 struct target_modify_ldt_ldt_s ldt_info; 6131 struct target_modify_ldt_ldt_s *target_ldt_info; 6132 int seg_32bit, contents, read_exec_only, limit_in_pages; 6133 int seg_not_present, useable, lm; 6134 uint32_t *lp, entry_1, entry_2; 6135 int i; 6136 6137 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6138 if (!target_ldt_info) 6139 return -TARGET_EFAULT; 6140 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6141 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6142 ldt_info.limit = tswap32(target_ldt_info->limit); 6143 ldt_info.flags = tswap32(target_ldt_info->flags); 6144 if (ldt_info.entry_number == -1) { 6145 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6146 if (gdt_table[i] == 0) { 6147 ldt_info.entry_number = i; 6148 target_ldt_info->entry_number = tswap32(i); 6149 break; 6150 } 6151 } 6152 } 6153 unlock_user_struct(target_ldt_info, ptr, 1); 6154 6155 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6156 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6157 return -TARGET_EINVAL; 6158 seg_32bit = ldt_info.flags & 1; 6159 contents = (ldt_info.flags >> 1) & 3; 6160 read_exec_only = (ldt_info.flags >> 3) & 1; 6161 limit_in_pages = (ldt_info.flags >> 4) & 1; 6162 seg_not_present = (ldt_info.flags >> 5) & 1; 6163 useable = (ldt_info.flags >> 6) & 1; 6164 #ifdef TARGET_ABI32 6165 lm = 0; 6166 #else 6167 lm = (ldt_info.flags >> 7) & 1; 6168 #endif 6169 6170 if (contents == 3) { 6171 if (seg_not_present == 0) 6172 return -TARGET_EINVAL; 6173 } 6174 6175 /* NOTE: same code as Linux kernel */ 6176 /* Allow LDTs to be cleared by the user. */ 6177 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6178 if ((contents == 0 && 6179 read_exec_only == 1 && 6180 seg_32bit == 0 && 6181 limit_in_pages == 0 && 6182 seg_not_present == 1 && 6183 useable == 0 )) { 6184 entry_1 = 0; 6185 entry_2 = 0; 6186 goto install; 6187 } 6188 } 6189 6190 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6191 (ldt_info.limit & 0x0ffff); 6192 entry_2 = (ldt_info.base_addr & 0xff000000) | 6193 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6194 (ldt_info.limit & 0xf0000) | 6195 ((read_exec_only ^ 1) << 9) | 6196 (contents << 10) | 6197 ((seg_not_present ^ 1) << 15) | 6198 (seg_32bit << 22) | 6199 (limit_in_pages << 23) | 6200 (useable << 20) | 6201 (lm << 21) | 6202 0x7000; 6203 6204 /* Install the new entry ... */ 6205 install: 6206 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6207 lp[0] = tswap32(entry_1); 6208 lp[1] = tswap32(entry_2); 6209 return 0; 6210 } 6211 6212 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6213 { 6214 struct target_modify_ldt_ldt_s *target_ldt_info; 6215 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6216 uint32_t base_addr, limit, flags; 6217 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6218 int seg_not_present, useable, lm; 6219 uint32_t *lp, entry_1, entry_2; 6220 6221 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6222 if (!target_ldt_info) 6223 return -TARGET_EFAULT; 6224 idx = tswap32(target_ldt_info->entry_number); 6225 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6226 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6227 unlock_user_struct(target_ldt_info, ptr, 1); 6228 return -TARGET_EINVAL; 6229 } 6230 lp = (uint32_t *)(gdt_table + idx); 6231 entry_1 = tswap32(lp[0]); 6232 entry_2 = tswap32(lp[1]); 6233 6234 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6235 contents = (entry_2 >> 10) & 3; 6236 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6237 seg_32bit = (entry_2 >> 22) & 1; 6238 limit_in_pages = (entry_2 >> 23) & 1; 6239 useable = (entry_2 >> 20) & 1; 6240 #ifdef TARGET_ABI32 6241 lm = 0; 6242 #else 6243 lm = (entry_2 >> 21) & 1; 6244 #endif 6245 flags = (seg_32bit << 0) | (contents << 1) | 6246 (read_exec_only << 3) | (limit_in_pages << 4) | 6247 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6248 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6249 base_addr = (entry_1 >> 16) | 6250 (entry_2 & 0xff000000) | 6251 ((entry_2 & 0xff) << 16); 6252 target_ldt_info->base_addr = tswapal(base_addr); 6253 target_ldt_info->limit = tswap32(limit); 6254 target_ldt_info->flags = tswap32(flags); 6255 unlock_user_struct(target_ldt_info, ptr, 1); 6256 return 0; 6257 } 6258 6259 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6260 { 6261 return -TARGET_ENOSYS; 6262 } 6263 #else 6264 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6265 { 6266 abi_long ret = 0; 6267 abi_ulong val; 6268 int idx; 6269 6270 switch(code) { 6271 case TARGET_ARCH_SET_GS: 6272 case TARGET_ARCH_SET_FS: 6273 if (code == TARGET_ARCH_SET_GS) 6274 idx = R_GS; 6275 else 6276 idx = R_FS; 6277 cpu_x86_load_seg(env, idx, 0); 6278 env->segs[idx].base = addr; 6279 break; 6280 case TARGET_ARCH_GET_GS: 6281 case TARGET_ARCH_GET_FS: 6282 if (code == TARGET_ARCH_GET_GS) 6283 idx = R_GS; 6284 else 6285 idx = R_FS; 6286 val = env->segs[idx].base; 6287 if (put_user(val, addr, abi_ulong)) 6288 ret = -TARGET_EFAULT; 6289 break; 6290 default: 6291 ret = -TARGET_EINVAL; 6292 break; 6293 } 6294 return ret; 6295 } 6296 #endif /* defined(TARGET_ABI32 */ 6297 #endif /* defined(TARGET_I386) */ 6298 6299 /* 6300 * These constants are generic. Supply any that are missing from the host. 6301 */ 6302 #ifndef PR_SET_NAME 6303 # define PR_SET_NAME 15 6304 # define PR_GET_NAME 16 6305 #endif 6306 #ifndef PR_SET_FP_MODE 6307 # define PR_SET_FP_MODE 45 6308 # define PR_GET_FP_MODE 46 6309 # define PR_FP_MODE_FR (1 << 0) 6310 # define PR_FP_MODE_FRE (1 << 1) 6311 #endif 6312 #ifndef PR_SVE_SET_VL 6313 # define PR_SVE_SET_VL 50 6314 # define PR_SVE_GET_VL 51 6315 # define PR_SVE_VL_LEN_MASK 0xffff 6316 # define PR_SVE_VL_INHERIT (1 << 17) 6317 #endif 6318 #ifndef PR_PAC_RESET_KEYS 6319 # define PR_PAC_RESET_KEYS 54 6320 # define PR_PAC_APIAKEY (1 << 0) 6321 # define PR_PAC_APIBKEY (1 << 1) 6322 # define PR_PAC_APDAKEY (1 << 2) 6323 # define PR_PAC_APDBKEY (1 << 3) 6324 # define PR_PAC_APGAKEY (1 << 4) 6325 #endif 6326 #ifndef PR_SET_TAGGED_ADDR_CTRL 6327 # define PR_SET_TAGGED_ADDR_CTRL 55 6328 # define PR_GET_TAGGED_ADDR_CTRL 56 6329 # define PR_TAGGED_ADDR_ENABLE (1UL << 0) 6330 #endif 6331 #ifndef PR_MTE_TCF_SHIFT 6332 # define PR_MTE_TCF_SHIFT 1 6333 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT) 6334 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT) 6335 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT) 6336 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT) 6337 # define PR_MTE_TAG_SHIFT 3 6338 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT) 6339 #endif 6340 #ifndef PR_SET_IO_FLUSHER 6341 # define PR_SET_IO_FLUSHER 57 6342 # define PR_GET_IO_FLUSHER 58 6343 #endif 6344 #ifndef PR_SET_SYSCALL_USER_DISPATCH 6345 # define PR_SET_SYSCALL_USER_DISPATCH 59 6346 #endif 6347 6348 #include "target_prctl.h" 6349 6350 static abi_long do_prctl_inval0(CPUArchState *env) 6351 { 6352 return -TARGET_EINVAL; 6353 } 6354 6355 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2) 6356 { 6357 return -TARGET_EINVAL; 6358 } 6359 6360 #ifndef do_prctl_get_fp_mode 6361 #define do_prctl_get_fp_mode do_prctl_inval0 6362 #endif 6363 #ifndef do_prctl_set_fp_mode 6364 #define do_prctl_set_fp_mode do_prctl_inval1 6365 #endif 6366 #ifndef do_prctl_get_vl 6367 #define do_prctl_get_vl do_prctl_inval0 6368 #endif 6369 #ifndef do_prctl_set_vl 6370 #define do_prctl_set_vl do_prctl_inval1 6371 #endif 6372 #ifndef do_prctl_reset_keys 6373 #define do_prctl_reset_keys do_prctl_inval1 6374 #endif 6375 #ifndef do_prctl_set_tagged_addr_ctrl 6376 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1 6377 #endif 6378 #ifndef do_prctl_get_tagged_addr_ctrl 6379 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0 6380 #endif 6381 #ifndef do_prctl_get_unalign 6382 #define do_prctl_get_unalign do_prctl_inval1 6383 #endif 6384 #ifndef do_prctl_set_unalign 6385 #define do_prctl_set_unalign do_prctl_inval1 6386 #endif 6387 6388 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2, 6389 abi_long arg3, abi_long arg4, abi_long arg5) 6390 { 6391 abi_long ret; 6392 6393 switch (option) { 6394 case PR_GET_PDEATHSIG: 6395 { 6396 int deathsig; 6397 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig, 6398 arg3, arg4, arg5)); 6399 if (!is_error(ret) && 6400 put_user_s32(host_to_target_signal(deathsig), arg2)) { 6401 return -TARGET_EFAULT; 6402 } 6403 return ret; 6404 } 6405 case PR_SET_PDEATHSIG: 6406 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2), 6407 arg3, arg4, arg5)); 6408 case PR_GET_NAME: 6409 { 6410 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 6411 if (!name) { 6412 return -TARGET_EFAULT; 6413 } 6414 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name, 6415 arg3, arg4, arg5)); 6416 unlock_user(name, arg2, 16); 6417 return ret; 6418 } 6419 case PR_SET_NAME: 6420 { 6421 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 6422 if (!name) { 6423 return -TARGET_EFAULT; 6424 } 6425 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name, 6426 arg3, arg4, arg5)); 6427 unlock_user(name, arg2, 0); 6428 return ret; 6429 } 6430 case PR_GET_FP_MODE: 6431 return do_prctl_get_fp_mode(env); 6432 case PR_SET_FP_MODE: 6433 return do_prctl_set_fp_mode(env, arg2); 6434 case PR_SVE_GET_VL: 6435 return do_prctl_get_vl(env); 6436 case PR_SVE_SET_VL: 6437 return do_prctl_set_vl(env, arg2); 6438 case PR_PAC_RESET_KEYS: 6439 if (arg3 || arg4 || arg5) { 6440 return -TARGET_EINVAL; 6441 } 6442 return do_prctl_reset_keys(env, arg2); 6443 case PR_SET_TAGGED_ADDR_CTRL: 6444 if (arg3 || arg4 || arg5) { 6445 return -TARGET_EINVAL; 6446 } 6447 return do_prctl_set_tagged_addr_ctrl(env, arg2); 6448 case PR_GET_TAGGED_ADDR_CTRL: 6449 if (arg2 || arg3 || arg4 || arg5) { 6450 return -TARGET_EINVAL; 6451 } 6452 return do_prctl_get_tagged_addr_ctrl(env); 6453 6454 case PR_GET_UNALIGN: 6455 return do_prctl_get_unalign(env, arg2); 6456 case PR_SET_UNALIGN: 6457 return do_prctl_set_unalign(env, arg2); 6458 6459 case PR_CAP_AMBIENT: 6460 case PR_CAPBSET_READ: 6461 case PR_CAPBSET_DROP: 6462 case PR_GET_DUMPABLE: 6463 case PR_SET_DUMPABLE: 6464 case PR_GET_KEEPCAPS: 6465 case PR_SET_KEEPCAPS: 6466 case PR_GET_SECUREBITS: 6467 case PR_SET_SECUREBITS: 6468 case PR_GET_TIMING: 6469 case PR_SET_TIMING: 6470 case PR_GET_TIMERSLACK: 6471 case PR_SET_TIMERSLACK: 6472 case PR_MCE_KILL: 6473 case PR_MCE_KILL_GET: 6474 case PR_GET_NO_NEW_PRIVS: 6475 case PR_SET_NO_NEW_PRIVS: 6476 case PR_GET_IO_FLUSHER: 6477 case PR_SET_IO_FLUSHER: 6478 /* Some prctl options have no pointer arguments and we can pass on. */ 6479 return get_errno(prctl(option, arg2, arg3, arg4, arg5)); 6480 6481 case PR_GET_CHILD_SUBREAPER: 6482 case PR_SET_CHILD_SUBREAPER: 6483 case PR_GET_SPECULATION_CTRL: 6484 case PR_SET_SPECULATION_CTRL: 6485 case PR_GET_TID_ADDRESS: 6486 /* TODO */ 6487 return -TARGET_EINVAL; 6488 6489 case PR_GET_FPEXC: 6490 case PR_SET_FPEXC: 6491 /* Was used for SPE on PowerPC. */ 6492 return -TARGET_EINVAL; 6493 6494 case PR_GET_ENDIAN: 6495 case PR_SET_ENDIAN: 6496 case PR_GET_FPEMU: 6497 case PR_SET_FPEMU: 6498 case PR_SET_MM: 6499 case PR_GET_SECCOMP: 6500 case PR_SET_SECCOMP: 6501 case PR_SET_SYSCALL_USER_DISPATCH: 6502 case PR_GET_THP_DISABLE: 6503 case PR_SET_THP_DISABLE: 6504 case PR_GET_TSC: 6505 case PR_SET_TSC: 6506 /* Disable to prevent the target disabling stuff we need. */ 6507 return -TARGET_EINVAL; 6508 6509 default: 6510 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n", 6511 option); 6512 return -TARGET_EINVAL; 6513 } 6514 } 6515 6516 #define NEW_STACK_SIZE 0x40000 6517 6518 6519 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6520 typedef struct { 6521 CPUArchState *env; 6522 pthread_mutex_t mutex; 6523 pthread_cond_t cond; 6524 pthread_t thread; 6525 uint32_t tid; 6526 abi_ulong child_tidptr; 6527 abi_ulong parent_tidptr; 6528 sigset_t sigmask; 6529 } new_thread_info; 6530 6531 static void *clone_func(void *arg) 6532 { 6533 new_thread_info *info = arg; 6534 CPUArchState *env; 6535 CPUState *cpu; 6536 TaskState *ts; 6537 6538 rcu_register_thread(); 6539 tcg_register_thread(); 6540 env = info->env; 6541 cpu = env_cpu(env); 6542 thread_cpu = cpu; 6543 ts = (TaskState *)cpu->opaque; 6544 info->tid = sys_gettid(); 6545 task_settid(ts); 6546 if (info->child_tidptr) 6547 put_user_u32(info->tid, info->child_tidptr); 6548 if (info->parent_tidptr) 6549 put_user_u32(info->tid, info->parent_tidptr); 6550 qemu_guest_random_seed_thread_part2(cpu->random_seed); 6551 /* Enable signals. */ 6552 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6553 /* Signal to the parent that we're ready. */ 6554 pthread_mutex_lock(&info->mutex); 6555 pthread_cond_broadcast(&info->cond); 6556 pthread_mutex_unlock(&info->mutex); 6557 /* Wait until the parent has finished initializing the tls state. */ 6558 pthread_mutex_lock(&clone_lock); 6559 pthread_mutex_unlock(&clone_lock); 6560 cpu_loop(env); 6561 /* never exits */ 6562 return NULL; 6563 } 6564 6565 /* do_fork() Must return host values and target errnos (unlike most 6566 do_*() functions). */ 6567 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6568 abi_ulong parent_tidptr, target_ulong newtls, 6569 abi_ulong child_tidptr) 6570 { 6571 CPUState *cpu = env_cpu(env); 6572 int ret; 6573 TaskState *ts; 6574 CPUState *new_cpu; 6575 CPUArchState *new_env; 6576 sigset_t sigmask; 6577 6578 flags &= ~CLONE_IGNORED_FLAGS; 6579 6580 /* Emulate vfork() with fork() */ 6581 if (flags & CLONE_VFORK) 6582 flags &= ~(CLONE_VFORK | CLONE_VM); 6583 6584 if (flags & CLONE_VM) { 6585 TaskState *parent_ts = (TaskState *)cpu->opaque; 6586 new_thread_info info; 6587 pthread_attr_t attr; 6588 6589 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6590 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6591 return -TARGET_EINVAL; 6592 } 6593 6594 ts = g_new0(TaskState, 1); 6595 init_task_state(ts); 6596 6597 /* Grab a mutex so that thread setup appears atomic. */ 6598 pthread_mutex_lock(&clone_lock); 6599 6600 /* 6601 * If this is our first additional thread, we need to ensure we 6602 * generate code for parallel execution and flush old translations. 6603 * Do this now so that the copy gets CF_PARALLEL too. 6604 */ 6605 if (!(cpu->tcg_cflags & CF_PARALLEL)) { 6606 cpu->tcg_cflags |= CF_PARALLEL; 6607 tb_flush(cpu); 6608 } 6609 6610 /* we create a new CPU instance. */ 6611 new_env = cpu_copy(env); 6612 /* Init regs that differ from the parent. */ 6613 cpu_clone_regs_child(new_env, newsp, flags); 6614 cpu_clone_regs_parent(env, flags); 6615 new_cpu = env_cpu(new_env); 6616 new_cpu->opaque = ts; 6617 ts->bprm = parent_ts->bprm; 6618 ts->info = parent_ts->info; 6619 ts->signal_mask = parent_ts->signal_mask; 6620 6621 if (flags & CLONE_CHILD_CLEARTID) { 6622 ts->child_tidptr = child_tidptr; 6623 } 6624 6625 if (flags & CLONE_SETTLS) { 6626 cpu_set_tls (new_env, newtls); 6627 } 6628 6629 memset(&info, 0, sizeof(info)); 6630 pthread_mutex_init(&info.mutex, NULL); 6631 pthread_mutex_lock(&info.mutex); 6632 pthread_cond_init(&info.cond, NULL); 6633 info.env = new_env; 6634 if (flags & CLONE_CHILD_SETTID) { 6635 info.child_tidptr = child_tidptr; 6636 } 6637 if (flags & CLONE_PARENT_SETTID) { 6638 info.parent_tidptr = parent_tidptr; 6639 } 6640 6641 ret = pthread_attr_init(&attr); 6642 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6643 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6644 /* It is not safe to deliver signals until the child has finished 6645 initializing, so temporarily block all signals. */ 6646 sigfillset(&sigmask); 6647 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6648 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 6649 6650 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6651 /* TODO: Free new CPU state if thread creation failed. */ 6652 6653 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6654 pthread_attr_destroy(&attr); 6655 if (ret == 0) { 6656 /* Wait for the child to initialize. */ 6657 pthread_cond_wait(&info.cond, &info.mutex); 6658 ret = info.tid; 6659 } else { 6660 ret = -1; 6661 } 6662 pthread_mutex_unlock(&info.mutex); 6663 pthread_cond_destroy(&info.cond); 6664 pthread_mutex_destroy(&info.mutex); 6665 pthread_mutex_unlock(&clone_lock); 6666 } else { 6667 /* if no CLONE_VM, we consider it is a fork */ 6668 if (flags & CLONE_INVALID_FORK_FLAGS) { 6669 return -TARGET_EINVAL; 6670 } 6671 6672 /* We can't support custom termination signals */ 6673 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6674 return -TARGET_EINVAL; 6675 } 6676 6677 if (block_signals()) { 6678 return -QEMU_ERESTARTSYS; 6679 } 6680 6681 fork_start(); 6682 ret = fork(); 6683 if (ret == 0) { 6684 /* Child Process. */ 6685 cpu_clone_regs_child(env, newsp, flags); 6686 fork_end(1); 6687 /* There is a race condition here. The parent process could 6688 theoretically read the TID in the child process before the child 6689 tid is set. This would require using either ptrace 6690 (not implemented) or having *_tidptr to point at a shared memory 6691 mapping. We can't repeat the spinlock hack used above because 6692 the child process gets its own copy of the lock. */ 6693 if (flags & CLONE_CHILD_SETTID) 6694 put_user_u32(sys_gettid(), child_tidptr); 6695 if (flags & CLONE_PARENT_SETTID) 6696 put_user_u32(sys_gettid(), parent_tidptr); 6697 ts = (TaskState *)cpu->opaque; 6698 if (flags & CLONE_SETTLS) 6699 cpu_set_tls (env, newtls); 6700 if (flags & CLONE_CHILD_CLEARTID) 6701 ts->child_tidptr = child_tidptr; 6702 } else { 6703 cpu_clone_regs_parent(env, flags); 6704 fork_end(0); 6705 } 6706 } 6707 return ret; 6708 } 6709 6710 /* warning : doesn't handle linux specific flags... */ 6711 static int target_to_host_fcntl_cmd(int cmd) 6712 { 6713 int ret; 6714 6715 switch(cmd) { 6716 case TARGET_F_DUPFD: 6717 case TARGET_F_GETFD: 6718 case TARGET_F_SETFD: 6719 case TARGET_F_GETFL: 6720 case TARGET_F_SETFL: 6721 case TARGET_F_OFD_GETLK: 6722 case TARGET_F_OFD_SETLK: 6723 case TARGET_F_OFD_SETLKW: 6724 ret = cmd; 6725 break; 6726 case TARGET_F_GETLK: 6727 ret = F_GETLK64; 6728 break; 6729 case TARGET_F_SETLK: 6730 ret = F_SETLK64; 6731 break; 6732 case TARGET_F_SETLKW: 6733 ret = F_SETLKW64; 6734 break; 6735 case TARGET_F_GETOWN: 6736 ret = F_GETOWN; 6737 break; 6738 case TARGET_F_SETOWN: 6739 ret = F_SETOWN; 6740 break; 6741 case TARGET_F_GETSIG: 6742 ret = F_GETSIG; 6743 break; 6744 case TARGET_F_SETSIG: 6745 ret = F_SETSIG; 6746 break; 6747 #if TARGET_ABI_BITS == 32 6748 case TARGET_F_GETLK64: 6749 ret = F_GETLK64; 6750 break; 6751 case TARGET_F_SETLK64: 6752 ret = F_SETLK64; 6753 break; 6754 case TARGET_F_SETLKW64: 6755 ret = F_SETLKW64; 6756 break; 6757 #endif 6758 case TARGET_F_SETLEASE: 6759 ret = F_SETLEASE; 6760 break; 6761 case TARGET_F_GETLEASE: 6762 ret = F_GETLEASE; 6763 break; 6764 #ifdef F_DUPFD_CLOEXEC 6765 case TARGET_F_DUPFD_CLOEXEC: 6766 ret = F_DUPFD_CLOEXEC; 6767 break; 6768 #endif 6769 case TARGET_F_NOTIFY: 6770 ret = F_NOTIFY; 6771 break; 6772 #ifdef F_GETOWN_EX 6773 case TARGET_F_GETOWN_EX: 6774 ret = F_GETOWN_EX; 6775 break; 6776 #endif 6777 #ifdef F_SETOWN_EX 6778 case TARGET_F_SETOWN_EX: 6779 ret = F_SETOWN_EX; 6780 break; 6781 #endif 6782 #ifdef F_SETPIPE_SZ 6783 case TARGET_F_SETPIPE_SZ: 6784 ret = F_SETPIPE_SZ; 6785 break; 6786 case TARGET_F_GETPIPE_SZ: 6787 ret = F_GETPIPE_SZ; 6788 break; 6789 #endif 6790 #ifdef F_ADD_SEALS 6791 case TARGET_F_ADD_SEALS: 6792 ret = F_ADD_SEALS; 6793 break; 6794 case TARGET_F_GET_SEALS: 6795 ret = F_GET_SEALS; 6796 break; 6797 #endif 6798 default: 6799 ret = -TARGET_EINVAL; 6800 break; 6801 } 6802 6803 #if defined(__powerpc64__) 6804 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and 6805 * is not supported by kernel. The glibc fcntl call actually adjusts 6806 * them to 5, 6 and 7 before making the syscall(). Since we make the 6807 * syscall directly, adjust to what is supported by the kernel. 6808 */ 6809 if (ret >= F_GETLK64 && ret <= F_SETLKW64) { 6810 ret -= F_GETLK64 - 5; 6811 } 6812 #endif 6813 6814 return ret; 6815 } 6816 6817 #define FLOCK_TRANSTBL \ 6818 switch (type) { \ 6819 TRANSTBL_CONVERT(F_RDLCK); \ 6820 TRANSTBL_CONVERT(F_WRLCK); \ 6821 TRANSTBL_CONVERT(F_UNLCK); \ 6822 } 6823 6824 static int target_to_host_flock(int type) 6825 { 6826 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a 6827 FLOCK_TRANSTBL 6828 #undef TRANSTBL_CONVERT 6829 return -TARGET_EINVAL; 6830 } 6831 6832 static int host_to_target_flock(int type) 6833 { 6834 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a 6835 FLOCK_TRANSTBL 6836 #undef TRANSTBL_CONVERT 6837 /* if we don't know how to convert the value coming 6838 * from the host we copy to the target field as-is 6839 */ 6840 return type; 6841 } 6842 6843 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6844 abi_ulong target_flock_addr) 6845 { 6846 struct target_flock *target_fl; 6847 int l_type; 6848 6849 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6850 return -TARGET_EFAULT; 6851 } 6852 6853 __get_user(l_type, &target_fl->l_type); 6854 l_type = target_to_host_flock(l_type); 6855 if (l_type < 0) { 6856 return l_type; 6857 } 6858 fl->l_type = l_type; 6859 __get_user(fl->l_whence, &target_fl->l_whence); 6860 __get_user(fl->l_start, &target_fl->l_start); 6861 __get_user(fl->l_len, &target_fl->l_len); 6862 __get_user(fl->l_pid, &target_fl->l_pid); 6863 unlock_user_struct(target_fl, target_flock_addr, 0); 6864 return 0; 6865 } 6866 6867 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6868 const struct flock64 *fl) 6869 { 6870 struct target_flock *target_fl; 6871 short l_type; 6872 6873 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6874 return -TARGET_EFAULT; 6875 } 6876 6877 l_type = host_to_target_flock(fl->l_type); 6878 __put_user(l_type, &target_fl->l_type); 6879 __put_user(fl->l_whence, &target_fl->l_whence); 6880 __put_user(fl->l_start, &target_fl->l_start); 6881 __put_user(fl->l_len, &target_fl->l_len); 6882 __put_user(fl->l_pid, &target_fl->l_pid); 6883 unlock_user_struct(target_fl, target_flock_addr, 1); 6884 return 0; 6885 } 6886 6887 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6888 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6889 6890 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6891 struct target_oabi_flock64 { 6892 abi_short l_type; 6893 abi_short l_whence; 6894 abi_llong l_start; 6895 abi_llong l_len; 6896 abi_int l_pid; 6897 } QEMU_PACKED; 6898 6899 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl, 6900 abi_ulong target_flock_addr) 6901 { 6902 struct target_oabi_flock64 *target_fl; 6903 int l_type; 6904 6905 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6906 return -TARGET_EFAULT; 6907 } 6908 6909 __get_user(l_type, &target_fl->l_type); 6910 l_type = target_to_host_flock(l_type); 6911 if (l_type < 0) { 6912 return l_type; 6913 } 6914 fl->l_type = l_type; 6915 __get_user(fl->l_whence, &target_fl->l_whence); 6916 __get_user(fl->l_start, &target_fl->l_start); 6917 __get_user(fl->l_len, &target_fl->l_len); 6918 __get_user(fl->l_pid, &target_fl->l_pid); 6919 unlock_user_struct(target_fl, target_flock_addr, 0); 6920 return 0; 6921 } 6922 6923 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr, 6924 const struct flock64 *fl) 6925 { 6926 struct target_oabi_flock64 *target_fl; 6927 short l_type; 6928 6929 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6930 return -TARGET_EFAULT; 6931 } 6932 6933 l_type = host_to_target_flock(fl->l_type); 6934 __put_user(l_type, &target_fl->l_type); 6935 __put_user(fl->l_whence, &target_fl->l_whence); 6936 __put_user(fl->l_start, &target_fl->l_start); 6937 __put_user(fl->l_len, &target_fl->l_len); 6938 __put_user(fl->l_pid, &target_fl->l_pid); 6939 unlock_user_struct(target_fl, target_flock_addr, 1); 6940 return 0; 6941 } 6942 #endif 6943 6944 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6945 abi_ulong target_flock_addr) 6946 { 6947 struct target_flock64 *target_fl; 6948 int l_type; 6949 6950 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6951 return -TARGET_EFAULT; 6952 } 6953 6954 __get_user(l_type, &target_fl->l_type); 6955 l_type = target_to_host_flock(l_type); 6956 if (l_type < 0) { 6957 return l_type; 6958 } 6959 fl->l_type = l_type; 6960 __get_user(fl->l_whence, &target_fl->l_whence); 6961 __get_user(fl->l_start, &target_fl->l_start); 6962 __get_user(fl->l_len, &target_fl->l_len); 6963 __get_user(fl->l_pid, &target_fl->l_pid); 6964 unlock_user_struct(target_fl, target_flock_addr, 0); 6965 return 0; 6966 } 6967 6968 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6969 const struct flock64 *fl) 6970 { 6971 struct target_flock64 *target_fl; 6972 short l_type; 6973 6974 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6975 return -TARGET_EFAULT; 6976 } 6977 6978 l_type = host_to_target_flock(fl->l_type); 6979 __put_user(l_type, &target_fl->l_type); 6980 __put_user(fl->l_whence, &target_fl->l_whence); 6981 __put_user(fl->l_start, &target_fl->l_start); 6982 __put_user(fl->l_len, &target_fl->l_len); 6983 __put_user(fl->l_pid, &target_fl->l_pid); 6984 unlock_user_struct(target_fl, target_flock_addr, 1); 6985 return 0; 6986 } 6987 6988 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6989 { 6990 struct flock64 fl64; 6991 #ifdef F_GETOWN_EX 6992 struct f_owner_ex fox; 6993 struct target_f_owner_ex *target_fox; 6994 #endif 6995 abi_long ret; 6996 int host_cmd = target_to_host_fcntl_cmd(cmd); 6997 6998 if (host_cmd == -TARGET_EINVAL) 6999 return host_cmd; 7000 7001 switch(cmd) { 7002 case TARGET_F_GETLK: 7003 ret = copy_from_user_flock(&fl64, arg); 7004 if (ret) { 7005 return ret; 7006 } 7007 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7008 if (ret == 0) { 7009 ret = copy_to_user_flock(arg, &fl64); 7010 } 7011 break; 7012 7013 case TARGET_F_SETLK: 7014 case TARGET_F_SETLKW: 7015 ret = copy_from_user_flock(&fl64, arg); 7016 if (ret) { 7017 return ret; 7018 } 7019 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7020 break; 7021 7022 case TARGET_F_GETLK64: 7023 case TARGET_F_OFD_GETLK: 7024 ret = copy_from_user_flock64(&fl64, arg); 7025 if (ret) { 7026 return ret; 7027 } 7028 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7029 if (ret == 0) { 7030 ret = copy_to_user_flock64(arg, &fl64); 7031 } 7032 break; 7033 case TARGET_F_SETLK64: 7034 case TARGET_F_SETLKW64: 7035 case TARGET_F_OFD_SETLK: 7036 case TARGET_F_OFD_SETLKW: 7037 ret = copy_from_user_flock64(&fl64, arg); 7038 if (ret) { 7039 return ret; 7040 } 7041 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7042 break; 7043 7044 case TARGET_F_GETFL: 7045 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7046 if (ret >= 0) { 7047 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 7048 } 7049 break; 7050 7051 case TARGET_F_SETFL: 7052 ret = get_errno(safe_fcntl(fd, host_cmd, 7053 target_to_host_bitmask(arg, 7054 fcntl_flags_tbl))); 7055 break; 7056 7057 #ifdef F_GETOWN_EX 7058 case TARGET_F_GETOWN_EX: 7059 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7060 if (ret >= 0) { 7061 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 7062 return -TARGET_EFAULT; 7063 target_fox->type = tswap32(fox.type); 7064 target_fox->pid = tswap32(fox.pid); 7065 unlock_user_struct(target_fox, arg, 1); 7066 } 7067 break; 7068 #endif 7069 7070 #ifdef F_SETOWN_EX 7071 case TARGET_F_SETOWN_EX: 7072 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 7073 return -TARGET_EFAULT; 7074 fox.type = tswap32(target_fox->type); 7075 fox.pid = tswap32(target_fox->pid); 7076 unlock_user_struct(target_fox, arg, 0); 7077 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7078 break; 7079 #endif 7080 7081 case TARGET_F_SETSIG: 7082 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg))); 7083 break; 7084 7085 case TARGET_F_GETSIG: 7086 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg))); 7087 break; 7088 7089 case TARGET_F_SETOWN: 7090 case TARGET_F_GETOWN: 7091 case TARGET_F_SETLEASE: 7092 case TARGET_F_GETLEASE: 7093 case TARGET_F_SETPIPE_SZ: 7094 case TARGET_F_GETPIPE_SZ: 7095 case TARGET_F_ADD_SEALS: 7096 case TARGET_F_GET_SEALS: 7097 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7098 break; 7099 7100 default: 7101 ret = get_errno(safe_fcntl(fd, cmd, arg)); 7102 break; 7103 } 7104 return ret; 7105 } 7106 7107 #ifdef USE_UID16 7108 7109 static inline int high2lowuid(int uid) 7110 { 7111 if (uid > 65535) 7112 return 65534; 7113 else 7114 return uid; 7115 } 7116 7117 static inline int high2lowgid(int gid) 7118 { 7119 if (gid > 65535) 7120 return 65534; 7121 else 7122 return gid; 7123 } 7124 7125 static inline int low2highuid(int uid) 7126 { 7127 if ((int16_t)uid == -1) 7128 return -1; 7129 else 7130 return uid; 7131 } 7132 7133 static inline int low2highgid(int gid) 7134 { 7135 if ((int16_t)gid == -1) 7136 return -1; 7137 else 7138 return gid; 7139 } 7140 static inline int tswapid(int id) 7141 { 7142 return tswap16(id); 7143 } 7144 7145 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 7146 7147 #else /* !USE_UID16 */ 7148 static inline int high2lowuid(int uid) 7149 { 7150 return uid; 7151 } 7152 static inline int high2lowgid(int gid) 7153 { 7154 return gid; 7155 } 7156 static inline int low2highuid(int uid) 7157 { 7158 return uid; 7159 } 7160 static inline int low2highgid(int gid) 7161 { 7162 return gid; 7163 } 7164 static inline int tswapid(int id) 7165 { 7166 return tswap32(id); 7167 } 7168 7169 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 7170 7171 #endif /* USE_UID16 */ 7172 7173 /* We must do direct syscalls for setting UID/GID, because we want to 7174 * implement the Linux system call semantics of "change only for this thread", 7175 * not the libc/POSIX semantics of "change for all threads in process". 7176 * (See http://ewontfix.com/17/ for more details.) 7177 * We use the 32-bit version of the syscalls if present; if it is not 7178 * then either the host architecture supports 32-bit UIDs natively with 7179 * the standard syscall, or the 16-bit UID is the best we can do. 7180 */ 7181 #ifdef __NR_setuid32 7182 #define __NR_sys_setuid __NR_setuid32 7183 #else 7184 #define __NR_sys_setuid __NR_setuid 7185 #endif 7186 #ifdef __NR_setgid32 7187 #define __NR_sys_setgid __NR_setgid32 7188 #else 7189 #define __NR_sys_setgid __NR_setgid 7190 #endif 7191 #ifdef __NR_setresuid32 7192 #define __NR_sys_setresuid __NR_setresuid32 7193 #else 7194 #define __NR_sys_setresuid __NR_setresuid 7195 #endif 7196 #ifdef __NR_setresgid32 7197 #define __NR_sys_setresgid __NR_setresgid32 7198 #else 7199 #define __NR_sys_setresgid __NR_setresgid 7200 #endif 7201 7202 _syscall1(int, sys_setuid, uid_t, uid) 7203 _syscall1(int, sys_setgid, gid_t, gid) 7204 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 7205 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 7206 7207 void syscall_init(void) 7208 { 7209 IOCTLEntry *ie; 7210 const argtype *arg_type; 7211 int size; 7212 7213 thunk_init(STRUCT_MAX); 7214 7215 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 7216 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 7217 #include "syscall_types.h" 7218 #undef STRUCT 7219 #undef STRUCT_SPECIAL 7220 7221 /* we patch the ioctl size if necessary. We rely on the fact that 7222 no ioctl has all the bits at '1' in the size field */ 7223 ie = ioctl_entries; 7224 while (ie->target_cmd != 0) { 7225 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 7226 TARGET_IOC_SIZEMASK) { 7227 arg_type = ie->arg_type; 7228 if (arg_type[0] != TYPE_PTR) { 7229 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 7230 ie->target_cmd); 7231 exit(1); 7232 } 7233 arg_type++; 7234 size = thunk_type_size(arg_type, 0); 7235 ie->target_cmd = (ie->target_cmd & 7236 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 7237 (size << TARGET_IOC_SIZESHIFT); 7238 } 7239 7240 /* automatic consistency check if same arch */ 7241 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 7242 (defined(__x86_64__) && defined(TARGET_X86_64)) 7243 if (unlikely(ie->target_cmd != ie->host_cmd)) { 7244 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 7245 ie->name, ie->target_cmd, ie->host_cmd); 7246 } 7247 #endif 7248 ie++; 7249 } 7250 } 7251 7252 #ifdef TARGET_NR_truncate64 7253 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 7254 abi_long arg2, 7255 abi_long arg3, 7256 abi_long arg4) 7257 { 7258 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 7259 arg2 = arg3; 7260 arg3 = arg4; 7261 } 7262 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 7263 } 7264 #endif 7265 7266 #ifdef TARGET_NR_ftruncate64 7267 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 7268 abi_long arg2, 7269 abi_long arg3, 7270 abi_long arg4) 7271 { 7272 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 7273 arg2 = arg3; 7274 arg3 = arg4; 7275 } 7276 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 7277 } 7278 #endif 7279 7280 #if defined(TARGET_NR_timer_settime) || \ 7281 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 7282 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its, 7283 abi_ulong target_addr) 7284 { 7285 if (target_to_host_timespec(&host_its->it_interval, target_addr + 7286 offsetof(struct target_itimerspec, 7287 it_interval)) || 7288 target_to_host_timespec(&host_its->it_value, target_addr + 7289 offsetof(struct target_itimerspec, 7290 it_value))) { 7291 return -TARGET_EFAULT; 7292 } 7293 7294 return 0; 7295 } 7296 #endif 7297 7298 #if defined(TARGET_NR_timer_settime64) || \ 7299 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) 7300 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its, 7301 abi_ulong target_addr) 7302 { 7303 if (target_to_host_timespec64(&host_its->it_interval, target_addr + 7304 offsetof(struct target__kernel_itimerspec, 7305 it_interval)) || 7306 target_to_host_timespec64(&host_its->it_value, target_addr + 7307 offsetof(struct target__kernel_itimerspec, 7308 it_value))) { 7309 return -TARGET_EFAULT; 7310 } 7311 7312 return 0; 7313 } 7314 #endif 7315 7316 #if ((defined(TARGET_NR_timerfd_gettime) || \ 7317 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \ 7318 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime) 7319 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7320 struct itimerspec *host_its) 7321 { 7322 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7323 it_interval), 7324 &host_its->it_interval) || 7325 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7326 it_value), 7327 &host_its->it_value)) { 7328 return -TARGET_EFAULT; 7329 } 7330 return 0; 7331 } 7332 #endif 7333 7334 #if ((defined(TARGET_NR_timerfd_gettime64) || \ 7335 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \ 7336 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64) 7337 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr, 7338 struct itimerspec *host_its) 7339 { 7340 if (host_to_target_timespec64(target_addr + 7341 offsetof(struct target__kernel_itimerspec, 7342 it_interval), 7343 &host_its->it_interval) || 7344 host_to_target_timespec64(target_addr + 7345 offsetof(struct target__kernel_itimerspec, 7346 it_value), 7347 &host_its->it_value)) { 7348 return -TARGET_EFAULT; 7349 } 7350 return 0; 7351 } 7352 #endif 7353 7354 #if defined(TARGET_NR_adjtimex) || \ 7355 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)) 7356 static inline abi_long target_to_host_timex(struct timex *host_tx, 7357 abi_long target_addr) 7358 { 7359 struct target_timex *target_tx; 7360 7361 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7362 return -TARGET_EFAULT; 7363 } 7364 7365 __get_user(host_tx->modes, &target_tx->modes); 7366 __get_user(host_tx->offset, &target_tx->offset); 7367 __get_user(host_tx->freq, &target_tx->freq); 7368 __get_user(host_tx->maxerror, &target_tx->maxerror); 7369 __get_user(host_tx->esterror, &target_tx->esterror); 7370 __get_user(host_tx->status, &target_tx->status); 7371 __get_user(host_tx->constant, &target_tx->constant); 7372 __get_user(host_tx->precision, &target_tx->precision); 7373 __get_user(host_tx->tolerance, &target_tx->tolerance); 7374 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7375 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7376 __get_user(host_tx->tick, &target_tx->tick); 7377 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7378 __get_user(host_tx->jitter, &target_tx->jitter); 7379 __get_user(host_tx->shift, &target_tx->shift); 7380 __get_user(host_tx->stabil, &target_tx->stabil); 7381 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7382 __get_user(host_tx->calcnt, &target_tx->calcnt); 7383 __get_user(host_tx->errcnt, &target_tx->errcnt); 7384 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7385 __get_user(host_tx->tai, &target_tx->tai); 7386 7387 unlock_user_struct(target_tx, target_addr, 0); 7388 return 0; 7389 } 7390 7391 static inline abi_long host_to_target_timex(abi_long target_addr, 7392 struct timex *host_tx) 7393 { 7394 struct target_timex *target_tx; 7395 7396 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7397 return -TARGET_EFAULT; 7398 } 7399 7400 __put_user(host_tx->modes, &target_tx->modes); 7401 __put_user(host_tx->offset, &target_tx->offset); 7402 __put_user(host_tx->freq, &target_tx->freq); 7403 __put_user(host_tx->maxerror, &target_tx->maxerror); 7404 __put_user(host_tx->esterror, &target_tx->esterror); 7405 __put_user(host_tx->status, &target_tx->status); 7406 __put_user(host_tx->constant, &target_tx->constant); 7407 __put_user(host_tx->precision, &target_tx->precision); 7408 __put_user(host_tx->tolerance, &target_tx->tolerance); 7409 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7410 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7411 __put_user(host_tx->tick, &target_tx->tick); 7412 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7413 __put_user(host_tx->jitter, &target_tx->jitter); 7414 __put_user(host_tx->shift, &target_tx->shift); 7415 __put_user(host_tx->stabil, &target_tx->stabil); 7416 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7417 __put_user(host_tx->calcnt, &target_tx->calcnt); 7418 __put_user(host_tx->errcnt, &target_tx->errcnt); 7419 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7420 __put_user(host_tx->tai, &target_tx->tai); 7421 7422 unlock_user_struct(target_tx, target_addr, 1); 7423 return 0; 7424 } 7425 #endif 7426 7427 7428 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 7429 static inline abi_long target_to_host_timex64(struct timex *host_tx, 7430 abi_long target_addr) 7431 { 7432 struct target__kernel_timex *target_tx; 7433 7434 if (copy_from_user_timeval64(&host_tx->time, target_addr + 7435 offsetof(struct target__kernel_timex, 7436 time))) { 7437 return -TARGET_EFAULT; 7438 } 7439 7440 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7441 return -TARGET_EFAULT; 7442 } 7443 7444 __get_user(host_tx->modes, &target_tx->modes); 7445 __get_user(host_tx->offset, &target_tx->offset); 7446 __get_user(host_tx->freq, &target_tx->freq); 7447 __get_user(host_tx->maxerror, &target_tx->maxerror); 7448 __get_user(host_tx->esterror, &target_tx->esterror); 7449 __get_user(host_tx->status, &target_tx->status); 7450 __get_user(host_tx->constant, &target_tx->constant); 7451 __get_user(host_tx->precision, &target_tx->precision); 7452 __get_user(host_tx->tolerance, &target_tx->tolerance); 7453 __get_user(host_tx->tick, &target_tx->tick); 7454 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7455 __get_user(host_tx->jitter, &target_tx->jitter); 7456 __get_user(host_tx->shift, &target_tx->shift); 7457 __get_user(host_tx->stabil, &target_tx->stabil); 7458 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7459 __get_user(host_tx->calcnt, &target_tx->calcnt); 7460 __get_user(host_tx->errcnt, &target_tx->errcnt); 7461 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7462 __get_user(host_tx->tai, &target_tx->tai); 7463 7464 unlock_user_struct(target_tx, target_addr, 0); 7465 return 0; 7466 } 7467 7468 static inline abi_long host_to_target_timex64(abi_long target_addr, 7469 struct timex *host_tx) 7470 { 7471 struct target__kernel_timex *target_tx; 7472 7473 if (copy_to_user_timeval64(target_addr + 7474 offsetof(struct target__kernel_timex, time), 7475 &host_tx->time)) { 7476 return -TARGET_EFAULT; 7477 } 7478 7479 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7480 return -TARGET_EFAULT; 7481 } 7482 7483 __put_user(host_tx->modes, &target_tx->modes); 7484 __put_user(host_tx->offset, &target_tx->offset); 7485 __put_user(host_tx->freq, &target_tx->freq); 7486 __put_user(host_tx->maxerror, &target_tx->maxerror); 7487 __put_user(host_tx->esterror, &target_tx->esterror); 7488 __put_user(host_tx->status, &target_tx->status); 7489 __put_user(host_tx->constant, &target_tx->constant); 7490 __put_user(host_tx->precision, &target_tx->precision); 7491 __put_user(host_tx->tolerance, &target_tx->tolerance); 7492 __put_user(host_tx->tick, &target_tx->tick); 7493 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7494 __put_user(host_tx->jitter, &target_tx->jitter); 7495 __put_user(host_tx->shift, &target_tx->shift); 7496 __put_user(host_tx->stabil, &target_tx->stabil); 7497 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7498 __put_user(host_tx->calcnt, &target_tx->calcnt); 7499 __put_user(host_tx->errcnt, &target_tx->errcnt); 7500 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7501 __put_user(host_tx->tai, &target_tx->tai); 7502 7503 unlock_user_struct(target_tx, target_addr, 1); 7504 return 0; 7505 } 7506 #endif 7507 7508 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID 7509 #define sigev_notify_thread_id _sigev_un._tid 7510 #endif 7511 7512 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7513 abi_ulong target_addr) 7514 { 7515 struct target_sigevent *target_sevp; 7516 7517 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7518 return -TARGET_EFAULT; 7519 } 7520 7521 /* This union is awkward on 64 bit systems because it has a 32 bit 7522 * integer and a pointer in it; we follow the conversion approach 7523 * used for handling sigval types in signal.c so the guest should get 7524 * the correct value back even if we did a 64 bit byteswap and it's 7525 * using the 32 bit integer. 7526 */ 7527 host_sevp->sigev_value.sival_ptr = 7528 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7529 host_sevp->sigev_signo = 7530 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7531 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7532 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid); 7533 7534 unlock_user_struct(target_sevp, target_addr, 1); 7535 return 0; 7536 } 7537 7538 #if defined(TARGET_NR_mlockall) 7539 static inline int target_to_host_mlockall_arg(int arg) 7540 { 7541 int result = 0; 7542 7543 if (arg & TARGET_MCL_CURRENT) { 7544 result |= MCL_CURRENT; 7545 } 7546 if (arg & TARGET_MCL_FUTURE) { 7547 result |= MCL_FUTURE; 7548 } 7549 #ifdef MCL_ONFAULT 7550 if (arg & TARGET_MCL_ONFAULT) { 7551 result |= MCL_ONFAULT; 7552 } 7553 #endif 7554 7555 return result; 7556 } 7557 #endif 7558 7559 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \ 7560 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \ 7561 defined(TARGET_NR_newfstatat)) 7562 static inline abi_long host_to_target_stat64(void *cpu_env, 7563 abi_ulong target_addr, 7564 struct stat *host_st) 7565 { 7566 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7567 if (((CPUARMState *)cpu_env)->eabi) { 7568 struct target_eabi_stat64 *target_st; 7569 7570 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7571 return -TARGET_EFAULT; 7572 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7573 __put_user(host_st->st_dev, &target_st->st_dev); 7574 __put_user(host_st->st_ino, &target_st->st_ino); 7575 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7576 __put_user(host_st->st_ino, &target_st->__st_ino); 7577 #endif 7578 __put_user(host_st->st_mode, &target_st->st_mode); 7579 __put_user(host_st->st_nlink, &target_st->st_nlink); 7580 __put_user(host_st->st_uid, &target_st->st_uid); 7581 __put_user(host_st->st_gid, &target_st->st_gid); 7582 __put_user(host_st->st_rdev, &target_st->st_rdev); 7583 __put_user(host_st->st_size, &target_st->st_size); 7584 __put_user(host_st->st_blksize, &target_st->st_blksize); 7585 __put_user(host_st->st_blocks, &target_st->st_blocks); 7586 __put_user(host_st->st_atime, &target_st->target_st_atime); 7587 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7588 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7589 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7590 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7591 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7592 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7593 #endif 7594 unlock_user_struct(target_st, target_addr, 1); 7595 } else 7596 #endif 7597 { 7598 #if defined(TARGET_HAS_STRUCT_STAT64) 7599 struct target_stat64 *target_st; 7600 #else 7601 struct target_stat *target_st; 7602 #endif 7603 7604 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7605 return -TARGET_EFAULT; 7606 memset(target_st, 0, sizeof(*target_st)); 7607 __put_user(host_st->st_dev, &target_st->st_dev); 7608 __put_user(host_st->st_ino, &target_st->st_ino); 7609 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7610 __put_user(host_st->st_ino, &target_st->__st_ino); 7611 #endif 7612 __put_user(host_st->st_mode, &target_st->st_mode); 7613 __put_user(host_st->st_nlink, &target_st->st_nlink); 7614 __put_user(host_st->st_uid, &target_st->st_uid); 7615 __put_user(host_st->st_gid, &target_st->st_gid); 7616 __put_user(host_st->st_rdev, &target_st->st_rdev); 7617 /* XXX: better use of kernel struct */ 7618 __put_user(host_st->st_size, &target_st->st_size); 7619 __put_user(host_st->st_blksize, &target_st->st_blksize); 7620 __put_user(host_st->st_blocks, &target_st->st_blocks); 7621 __put_user(host_st->st_atime, &target_st->target_st_atime); 7622 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7623 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7624 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7625 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7626 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7627 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7628 #endif 7629 unlock_user_struct(target_st, target_addr, 1); 7630 } 7631 7632 return 0; 7633 } 7634 #endif 7635 7636 #if defined(TARGET_NR_statx) && defined(__NR_statx) 7637 static inline abi_long host_to_target_statx(struct target_statx *host_stx, 7638 abi_ulong target_addr) 7639 { 7640 struct target_statx *target_stx; 7641 7642 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) { 7643 return -TARGET_EFAULT; 7644 } 7645 memset(target_stx, 0, sizeof(*target_stx)); 7646 7647 __put_user(host_stx->stx_mask, &target_stx->stx_mask); 7648 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize); 7649 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes); 7650 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink); 7651 __put_user(host_stx->stx_uid, &target_stx->stx_uid); 7652 __put_user(host_stx->stx_gid, &target_stx->stx_gid); 7653 __put_user(host_stx->stx_mode, &target_stx->stx_mode); 7654 __put_user(host_stx->stx_ino, &target_stx->stx_ino); 7655 __put_user(host_stx->stx_size, &target_stx->stx_size); 7656 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks); 7657 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask); 7658 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec); 7659 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec); 7660 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec); 7661 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec); 7662 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec); 7663 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec); 7664 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec); 7665 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec); 7666 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major); 7667 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor); 7668 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major); 7669 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor); 7670 7671 unlock_user_struct(target_stx, target_addr, 1); 7672 7673 return 0; 7674 } 7675 #endif 7676 7677 static int do_sys_futex(int *uaddr, int op, int val, 7678 const struct timespec *timeout, int *uaddr2, 7679 int val3) 7680 { 7681 #if HOST_LONG_BITS == 64 7682 #if defined(__NR_futex) 7683 /* always a 64-bit time_t, it doesn't define _time64 version */ 7684 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7685 7686 #endif 7687 #else /* HOST_LONG_BITS == 64 */ 7688 #if defined(__NR_futex_time64) 7689 if (sizeof(timeout->tv_sec) == 8) { 7690 /* _time64 function on 32bit arch */ 7691 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3); 7692 } 7693 #endif 7694 #if defined(__NR_futex) 7695 /* old function on 32bit arch */ 7696 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7697 #endif 7698 #endif /* HOST_LONG_BITS == 64 */ 7699 g_assert_not_reached(); 7700 } 7701 7702 static int do_safe_futex(int *uaddr, int op, int val, 7703 const struct timespec *timeout, int *uaddr2, 7704 int val3) 7705 { 7706 #if HOST_LONG_BITS == 64 7707 #if defined(__NR_futex) 7708 /* always a 64-bit time_t, it doesn't define _time64 version */ 7709 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7710 #endif 7711 #else /* HOST_LONG_BITS == 64 */ 7712 #if defined(__NR_futex_time64) 7713 if (sizeof(timeout->tv_sec) == 8) { 7714 /* _time64 function on 32bit arch */ 7715 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2, 7716 val3)); 7717 } 7718 #endif 7719 #if defined(__NR_futex) 7720 /* old function on 32bit arch */ 7721 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7722 #endif 7723 #endif /* HOST_LONG_BITS == 64 */ 7724 return -TARGET_ENOSYS; 7725 } 7726 7727 /* ??? Using host futex calls even when target atomic operations 7728 are not really atomic probably breaks things. However implementing 7729 futexes locally would make futexes shared between multiple processes 7730 tricky. However they're probably useless because guest atomic 7731 operations won't work either. */ 7732 #if defined(TARGET_NR_futex) 7733 static int do_futex(CPUState *cpu, target_ulong uaddr, int op, int val, 7734 target_ulong timeout, target_ulong uaddr2, int val3) 7735 { 7736 struct timespec ts, *pts; 7737 int base_op; 7738 7739 /* ??? We assume FUTEX_* constants are the same on both host 7740 and target. */ 7741 #ifdef FUTEX_CMD_MASK 7742 base_op = op & FUTEX_CMD_MASK; 7743 #else 7744 base_op = op; 7745 #endif 7746 switch (base_op) { 7747 case FUTEX_WAIT: 7748 case FUTEX_WAIT_BITSET: 7749 if (timeout) { 7750 pts = &ts; 7751 target_to_host_timespec(pts, timeout); 7752 } else { 7753 pts = NULL; 7754 } 7755 return do_safe_futex(g2h(cpu, uaddr), 7756 op, tswap32(val), pts, NULL, val3); 7757 case FUTEX_WAKE: 7758 return do_safe_futex(g2h(cpu, uaddr), 7759 op, val, NULL, NULL, 0); 7760 case FUTEX_FD: 7761 return do_safe_futex(g2h(cpu, uaddr), 7762 op, val, NULL, NULL, 0); 7763 case FUTEX_REQUEUE: 7764 case FUTEX_CMP_REQUEUE: 7765 case FUTEX_WAKE_OP: 7766 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 7767 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 7768 But the prototype takes a `struct timespec *'; insert casts 7769 to satisfy the compiler. We do not need to tswap TIMEOUT 7770 since it's not compared to guest memory. */ 7771 pts = (struct timespec *)(uintptr_t) timeout; 7772 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2), 7773 (base_op == FUTEX_CMP_REQUEUE 7774 ? tswap32(val3) : val3)); 7775 default: 7776 return -TARGET_ENOSYS; 7777 } 7778 } 7779 #endif 7780 7781 #if defined(TARGET_NR_futex_time64) 7782 static int do_futex_time64(CPUState *cpu, target_ulong uaddr, int op, 7783 int val, target_ulong timeout, 7784 target_ulong uaddr2, int val3) 7785 { 7786 struct timespec ts, *pts; 7787 int base_op; 7788 7789 /* ??? We assume FUTEX_* constants are the same on both host 7790 and target. */ 7791 #ifdef FUTEX_CMD_MASK 7792 base_op = op & FUTEX_CMD_MASK; 7793 #else 7794 base_op = op; 7795 #endif 7796 switch (base_op) { 7797 case FUTEX_WAIT: 7798 case FUTEX_WAIT_BITSET: 7799 if (timeout) { 7800 pts = &ts; 7801 if (target_to_host_timespec64(pts, timeout)) { 7802 return -TARGET_EFAULT; 7803 } 7804 } else { 7805 pts = NULL; 7806 } 7807 return do_safe_futex(g2h(cpu, uaddr), op, 7808 tswap32(val), pts, NULL, val3); 7809 case FUTEX_WAKE: 7810 return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0); 7811 case FUTEX_FD: 7812 return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0); 7813 case FUTEX_REQUEUE: 7814 case FUTEX_CMP_REQUEUE: 7815 case FUTEX_WAKE_OP: 7816 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 7817 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 7818 But the prototype takes a `struct timespec *'; insert casts 7819 to satisfy the compiler. We do not need to tswap TIMEOUT 7820 since it's not compared to guest memory. */ 7821 pts = (struct timespec *)(uintptr_t) timeout; 7822 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2), 7823 (base_op == FUTEX_CMP_REQUEUE 7824 ? tswap32(val3) : val3)); 7825 default: 7826 return -TARGET_ENOSYS; 7827 } 7828 } 7829 #endif 7830 7831 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7832 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7833 abi_long handle, abi_long mount_id, 7834 abi_long flags) 7835 { 7836 struct file_handle *target_fh; 7837 struct file_handle *fh; 7838 int mid = 0; 7839 abi_long ret; 7840 char *name; 7841 unsigned int size, total_size; 7842 7843 if (get_user_s32(size, handle)) { 7844 return -TARGET_EFAULT; 7845 } 7846 7847 name = lock_user_string(pathname); 7848 if (!name) { 7849 return -TARGET_EFAULT; 7850 } 7851 7852 total_size = sizeof(struct file_handle) + size; 7853 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7854 if (!target_fh) { 7855 unlock_user(name, pathname, 0); 7856 return -TARGET_EFAULT; 7857 } 7858 7859 fh = g_malloc0(total_size); 7860 fh->handle_bytes = size; 7861 7862 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7863 unlock_user(name, pathname, 0); 7864 7865 /* man name_to_handle_at(2): 7866 * Other than the use of the handle_bytes field, the caller should treat 7867 * the file_handle structure as an opaque data type 7868 */ 7869 7870 memcpy(target_fh, fh, total_size); 7871 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7872 target_fh->handle_type = tswap32(fh->handle_type); 7873 g_free(fh); 7874 unlock_user(target_fh, handle, total_size); 7875 7876 if (put_user_s32(mid, mount_id)) { 7877 return -TARGET_EFAULT; 7878 } 7879 7880 return ret; 7881 7882 } 7883 #endif 7884 7885 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7886 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7887 abi_long flags) 7888 { 7889 struct file_handle *target_fh; 7890 struct file_handle *fh; 7891 unsigned int size, total_size; 7892 abi_long ret; 7893 7894 if (get_user_s32(size, handle)) { 7895 return -TARGET_EFAULT; 7896 } 7897 7898 total_size = sizeof(struct file_handle) + size; 7899 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7900 if (!target_fh) { 7901 return -TARGET_EFAULT; 7902 } 7903 7904 fh = g_memdup(target_fh, total_size); 7905 fh->handle_bytes = size; 7906 fh->handle_type = tswap32(target_fh->handle_type); 7907 7908 ret = get_errno(open_by_handle_at(mount_fd, fh, 7909 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7910 7911 g_free(fh); 7912 7913 unlock_user(target_fh, handle, total_size); 7914 7915 return ret; 7916 } 7917 #endif 7918 7919 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7920 7921 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7922 { 7923 int host_flags; 7924 target_sigset_t *target_mask; 7925 sigset_t host_mask; 7926 abi_long ret; 7927 7928 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) { 7929 return -TARGET_EINVAL; 7930 } 7931 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7932 return -TARGET_EFAULT; 7933 } 7934 7935 target_to_host_sigset(&host_mask, target_mask); 7936 7937 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7938 7939 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7940 if (ret >= 0) { 7941 fd_trans_register(ret, &target_signalfd_trans); 7942 } 7943 7944 unlock_user_struct(target_mask, mask, 0); 7945 7946 return ret; 7947 } 7948 #endif 7949 7950 /* Map host to target signal numbers for the wait family of syscalls. 7951 Assume all other status bits are the same. */ 7952 int host_to_target_waitstatus(int status) 7953 { 7954 if (WIFSIGNALED(status)) { 7955 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7956 } 7957 if (WIFSTOPPED(status)) { 7958 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7959 | (status & 0xff); 7960 } 7961 return status; 7962 } 7963 7964 static int open_self_cmdline(void *cpu_env, int fd) 7965 { 7966 CPUState *cpu = env_cpu((CPUArchState *)cpu_env); 7967 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm; 7968 int i; 7969 7970 for (i = 0; i < bprm->argc; i++) { 7971 size_t len = strlen(bprm->argv[i]) + 1; 7972 7973 if (write(fd, bprm->argv[i], len) != len) { 7974 return -1; 7975 } 7976 } 7977 7978 return 0; 7979 } 7980 7981 static int open_self_maps(void *cpu_env, int fd) 7982 { 7983 CPUState *cpu = env_cpu((CPUArchState *)cpu_env); 7984 TaskState *ts = cpu->opaque; 7985 GSList *map_info = read_self_maps(); 7986 GSList *s; 7987 int count; 7988 7989 for (s = map_info; s; s = g_slist_next(s)) { 7990 MapInfo *e = (MapInfo *) s->data; 7991 7992 if (h2g_valid(e->start)) { 7993 unsigned long min = e->start; 7994 unsigned long max = e->end; 7995 int flags = page_get_flags(h2g(min)); 7996 const char *path; 7997 7998 max = h2g_valid(max - 1) ? 7999 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1; 8000 8001 if (page_check_range(h2g(min), max - min, flags) == -1) { 8002 continue; 8003 } 8004 8005 if (h2g(min) == ts->info->stack_limit) { 8006 path = "[stack]"; 8007 } else { 8008 path = e->path; 8009 } 8010 8011 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr 8012 " %c%c%c%c %08" PRIx64 " %s %"PRId64, 8013 h2g(min), h2g(max - 1) + 1, 8014 (flags & PAGE_READ) ? 'r' : '-', 8015 (flags & PAGE_WRITE_ORG) ? 'w' : '-', 8016 (flags & PAGE_EXEC) ? 'x' : '-', 8017 e->is_priv ? 'p' : 's', 8018 (uint64_t) e->offset, e->dev, e->inode); 8019 if (path) { 8020 dprintf(fd, "%*s%s\n", 73 - count, "", path); 8021 } else { 8022 dprintf(fd, "\n"); 8023 } 8024 } 8025 } 8026 8027 free_self_maps(map_info); 8028 8029 #ifdef TARGET_VSYSCALL_PAGE 8030 /* 8031 * We only support execution from the vsyscall page. 8032 * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3. 8033 */ 8034 count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx 8035 " --xp 00000000 00:00 0", 8036 TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE); 8037 dprintf(fd, "%*s%s\n", 73 - count, "", "[vsyscall]"); 8038 #endif 8039 8040 return 0; 8041 } 8042 8043 static int open_self_stat(void *cpu_env, int fd) 8044 { 8045 CPUState *cpu = env_cpu((CPUArchState *)cpu_env); 8046 TaskState *ts = cpu->opaque; 8047 g_autoptr(GString) buf = g_string_new(NULL); 8048 int i; 8049 8050 for (i = 0; i < 44; i++) { 8051 if (i == 0) { 8052 /* pid */ 8053 g_string_printf(buf, FMT_pid " ", getpid()); 8054 } else if (i == 1) { 8055 /* app name */ 8056 gchar *bin = g_strrstr(ts->bprm->argv[0], "/"); 8057 bin = bin ? bin + 1 : ts->bprm->argv[0]; 8058 g_string_printf(buf, "(%.15s) ", bin); 8059 } else if (i == 3) { 8060 /* ppid */ 8061 g_string_printf(buf, FMT_pid " ", getppid()); 8062 } else if (i == 21) { 8063 /* starttime */ 8064 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime); 8065 } else if (i == 27) { 8066 /* stack bottom */ 8067 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack); 8068 } else { 8069 /* for the rest, there is MasterCard */ 8070 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' '); 8071 } 8072 8073 if (write(fd, buf->str, buf->len) != buf->len) { 8074 return -1; 8075 } 8076 } 8077 8078 return 0; 8079 } 8080 8081 static int open_self_auxv(void *cpu_env, int fd) 8082 { 8083 CPUState *cpu = env_cpu((CPUArchState *)cpu_env); 8084 TaskState *ts = cpu->opaque; 8085 abi_ulong auxv = ts->info->saved_auxv; 8086 abi_ulong len = ts->info->auxv_len; 8087 char *ptr; 8088 8089 /* 8090 * Auxiliary vector is stored in target process stack. 8091 * read in whole auxv vector and copy it to file 8092 */ 8093 ptr = lock_user(VERIFY_READ, auxv, len, 0); 8094 if (ptr != NULL) { 8095 while (len > 0) { 8096 ssize_t r; 8097 r = write(fd, ptr, len); 8098 if (r <= 0) { 8099 break; 8100 } 8101 len -= r; 8102 ptr += r; 8103 } 8104 lseek(fd, 0, SEEK_SET); 8105 unlock_user(ptr, auxv, len); 8106 } 8107 8108 return 0; 8109 } 8110 8111 static int is_proc_myself(const char *filename, const char *entry) 8112 { 8113 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 8114 filename += strlen("/proc/"); 8115 if (!strncmp(filename, "self/", strlen("self/"))) { 8116 filename += strlen("self/"); 8117 } else if (*filename >= '1' && *filename <= '9') { 8118 char myself[80]; 8119 snprintf(myself, sizeof(myself), "%d/", getpid()); 8120 if (!strncmp(filename, myself, strlen(myself))) { 8121 filename += strlen(myself); 8122 } else { 8123 return 0; 8124 } 8125 } else { 8126 return 0; 8127 } 8128 if (!strcmp(filename, entry)) { 8129 return 1; 8130 } 8131 } 8132 return 0; 8133 } 8134 8135 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \ 8136 defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA) 8137 static int is_proc(const char *filename, const char *entry) 8138 { 8139 return strcmp(filename, entry) == 0; 8140 } 8141 #endif 8142 8143 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8144 static int open_net_route(void *cpu_env, int fd) 8145 { 8146 FILE *fp; 8147 char *line = NULL; 8148 size_t len = 0; 8149 ssize_t read; 8150 8151 fp = fopen("/proc/net/route", "r"); 8152 if (fp == NULL) { 8153 return -1; 8154 } 8155 8156 /* read header */ 8157 8158 read = getline(&line, &len, fp); 8159 dprintf(fd, "%s", line); 8160 8161 /* read routes */ 8162 8163 while ((read = getline(&line, &len, fp)) != -1) { 8164 char iface[16]; 8165 uint32_t dest, gw, mask; 8166 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 8167 int fields; 8168 8169 fields = sscanf(line, 8170 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8171 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 8172 &mask, &mtu, &window, &irtt); 8173 if (fields != 11) { 8174 continue; 8175 } 8176 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8177 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 8178 metric, tswap32(mask), mtu, window, irtt); 8179 } 8180 8181 free(line); 8182 fclose(fp); 8183 8184 return 0; 8185 } 8186 #endif 8187 8188 #if defined(TARGET_SPARC) 8189 static int open_cpuinfo(void *cpu_env, int fd) 8190 { 8191 dprintf(fd, "type\t\t: sun4u\n"); 8192 return 0; 8193 } 8194 #endif 8195 8196 #if defined(TARGET_HPPA) 8197 static int open_cpuinfo(void *cpu_env, int fd) 8198 { 8199 dprintf(fd, "cpu family\t: PA-RISC 1.1e\n"); 8200 dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n"); 8201 dprintf(fd, "capabilities\t: os32\n"); 8202 dprintf(fd, "model\t\t: 9000/778/B160L\n"); 8203 dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n"); 8204 return 0; 8205 } 8206 #endif 8207 8208 #if defined(TARGET_M68K) 8209 static int open_hardware(void *cpu_env, int fd) 8210 { 8211 dprintf(fd, "Model:\t\tqemu-m68k\n"); 8212 return 0; 8213 } 8214 #endif 8215 8216 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 8217 { 8218 struct fake_open { 8219 const char *filename; 8220 int (*fill)(void *cpu_env, int fd); 8221 int (*cmp)(const char *s1, const char *s2); 8222 }; 8223 const struct fake_open *fake_open; 8224 static const struct fake_open fakes[] = { 8225 { "maps", open_self_maps, is_proc_myself }, 8226 { "stat", open_self_stat, is_proc_myself }, 8227 { "auxv", open_self_auxv, is_proc_myself }, 8228 { "cmdline", open_self_cmdline, is_proc_myself }, 8229 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8230 { "/proc/net/route", open_net_route, is_proc }, 8231 #endif 8232 #if defined(TARGET_SPARC) || defined(TARGET_HPPA) 8233 { "/proc/cpuinfo", open_cpuinfo, is_proc }, 8234 #endif 8235 #if defined(TARGET_M68K) 8236 { "/proc/hardware", open_hardware, is_proc }, 8237 #endif 8238 { NULL, NULL, NULL } 8239 }; 8240 8241 if (is_proc_myself(pathname, "exe")) { 8242 int execfd = qemu_getauxval(AT_EXECFD); 8243 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode); 8244 } 8245 8246 for (fake_open = fakes; fake_open->filename; fake_open++) { 8247 if (fake_open->cmp(pathname, fake_open->filename)) { 8248 break; 8249 } 8250 } 8251 8252 if (fake_open->filename) { 8253 const char *tmpdir; 8254 char filename[PATH_MAX]; 8255 int fd, r; 8256 8257 /* create temporary file to map stat to */ 8258 tmpdir = getenv("TMPDIR"); 8259 if (!tmpdir) 8260 tmpdir = "/tmp"; 8261 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 8262 fd = mkstemp(filename); 8263 if (fd < 0) { 8264 return fd; 8265 } 8266 unlink(filename); 8267 8268 if ((r = fake_open->fill(cpu_env, fd))) { 8269 int e = errno; 8270 close(fd); 8271 errno = e; 8272 return r; 8273 } 8274 lseek(fd, 0, SEEK_SET); 8275 8276 return fd; 8277 } 8278 8279 return safe_openat(dirfd, path(pathname), flags, mode); 8280 } 8281 8282 #define TIMER_MAGIC 0x0caf0000 8283 #define TIMER_MAGIC_MASK 0xffff0000 8284 8285 /* Convert QEMU provided timer ID back to internal 16bit index format */ 8286 static target_timer_t get_timer_id(abi_long arg) 8287 { 8288 target_timer_t timerid = arg; 8289 8290 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 8291 return -TARGET_EINVAL; 8292 } 8293 8294 timerid &= 0xffff; 8295 8296 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 8297 return -TARGET_EINVAL; 8298 } 8299 8300 return timerid; 8301 } 8302 8303 static int target_to_host_cpu_mask(unsigned long *host_mask, 8304 size_t host_size, 8305 abi_ulong target_addr, 8306 size_t target_size) 8307 { 8308 unsigned target_bits = sizeof(abi_ulong) * 8; 8309 unsigned host_bits = sizeof(*host_mask) * 8; 8310 abi_ulong *target_mask; 8311 unsigned i, j; 8312 8313 assert(host_size >= target_size); 8314 8315 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 8316 if (!target_mask) { 8317 return -TARGET_EFAULT; 8318 } 8319 memset(host_mask, 0, host_size); 8320 8321 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8322 unsigned bit = i * target_bits; 8323 abi_ulong val; 8324 8325 __get_user(val, &target_mask[i]); 8326 for (j = 0; j < target_bits; j++, bit++) { 8327 if (val & (1UL << j)) { 8328 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 8329 } 8330 } 8331 } 8332 8333 unlock_user(target_mask, target_addr, 0); 8334 return 0; 8335 } 8336 8337 static int host_to_target_cpu_mask(const unsigned long *host_mask, 8338 size_t host_size, 8339 abi_ulong target_addr, 8340 size_t target_size) 8341 { 8342 unsigned target_bits = sizeof(abi_ulong) * 8; 8343 unsigned host_bits = sizeof(*host_mask) * 8; 8344 abi_ulong *target_mask; 8345 unsigned i, j; 8346 8347 assert(host_size >= target_size); 8348 8349 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 8350 if (!target_mask) { 8351 return -TARGET_EFAULT; 8352 } 8353 8354 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8355 unsigned bit = i * target_bits; 8356 abi_ulong val = 0; 8357 8358 for (j = 0; j < target_bits; j++, bit++) { 8359 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 8360 val |= 1UL << j; 8361 } 8362 } 8363 __put_user(val, &target_mask[i]); 8364 } 8365 8366 unlock_user(target_mask, target_addr, target_size); 8367 return 0; 8368 } 8369 8370 #ifdef TARGET_NR_getdents 8371 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count) 8372 { 8373 g_autofree void *hdirp = NULL; 8374 void *tdirp; 8375 int hlen, hoff, toff; 8376 int hreclen, treclen; 8377 off64_t prev_diroff = 0; 8378 8379 hdirp = g_try_malloc(count); 8380 if (!hdirp) { 8381 return -TARGET_ENOMEM; 8382 } 8383 8384 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8385 hlen = sys_getdents(dirfd, hdirp, count); 8386 #else 8387 hlen = sys_getdents64(dirfd, hdirp, count); 8388 #endif 8389 8390 hlen = get_errno(hlen); 8391 if (is_error(hlen)) { 8392 return hlen; 8393 } 8394 8395 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8396 if (!tdirp) { 8397 return -TARGET_EFAULT; 8398 } 8399 8400 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8401 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8402 struct linux_dirent *hde = hdirp + hoff; 8403 #else 8404 struct linux_dirent64 *hde = hdirp + hoff; 8405 #endif 8406 struct target_dirent *tde = tdirp + toff; 8407 int namelen; 8408 uint8_t type; 8409 8410 namelen = strlen(hde->d_name); 8411 hreclen = hde->d_reclen; 8412 treclen = offsetof(struct target_dirent, d_name) + namelen + 2; 8413 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent)); 8414 8415 if (toff + treclen > count) { 8416 /* 8417 * If the host struct is smaller than the target struct, or 8418 * requires less alignment and thus packs into less space, 8419 * then the host can return more entries than we can pass 8420 * on to the guest. 8421 */ 8422 if (toff == 0) { 8423 toff = -TARGET_EINVAL; /* result buffer is too small */ 8424 break; 8425 } 8426 /* 8427 * Return what we have, resetting the file pointer to the 8428 * location of the first record not returned. 8429 */ 8430 lseek64(dirfd, prev_diroff, SEEK_SET); 8431 break; 8432 } 8433 8434 prev_diroff = hde->d_off; 8435 tde->d_ino = tswapal(hde->d_ino); 8436 tde->d_off = tswapal(hde->d_off); 8437 tde->d_reclen = tswap16(treclen); 8438 memcpy(tde->d_name, hde->d_name, namelen + 1); 8439 8440 /* 8441 * The getdents type is in what was formerly a padding byte at the 8442 * end of the structure. 8443 */ 8444 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8445 type = *((uint8_t *)hde + hreclen - 1); 8446 #else 8447 type = hde->d_type; 8448 #endif 8449 *((uint8_t *)tde + treclen - 1) = type; 8450 } 8451 8452 unlock_user(tdirp, arg2, toff); 8453 return toff; 8454 } 8455 #endif /* TARGET_NR_getdents */ 8456 8457 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 8458 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count) 8459 { 8460 g_autofree void *hdirp = NULL; 8461 void *tdirp; 8462 int hlen, hoff, toff; 8463 int hreclen, treclen; 8464 off64_t prev_diroff = 0; 8465 8466 hdirp = g_try_malloc(count); 8467 if (!hdirp) { 8468 return -TARGET_ENOMEM; 8469 } 8470 8471 hlen = get_errno(sys_getdents64(dirfd, hdirp, count)); 8472 if (is_error(hlen)) { 8473 return hlen; 8474 } 8475 8476 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8477 if (!tdirp) { 8478 return -TARGET_EFAULT; 8479 } 8480 8481 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8482 struct linux_dirent64 *hde = hdirp + hoff; 8483 struct target_dirent64 *tde = tdirp + toff; 8484 int namelen; 8485 8486 namelen = strlen(hde->d_name) + 1; 8487 hreclen = hde->d_reclen; 8488 treclen = offsetof(struct target_dirent64, d_name) + namelen; 8489 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64)); 8490 8491 if (toff + treclen > count) { 8492 /* 8493 * If the host struct is smaller than the target struct, or 8494 * requires less alignment and thus packs into less space, 8495 * then the host can return more entries than we can pass 8496 * on to the guest. 8497 */ 8498 if (toff == 0) { 8499 toff = -TARGET_EINVAL; /* result buffer is too small */ 8500 break; 8501 } 8502 /* 8503 * Return what we have, resetting the file pointer to the 8504 * location of the first record not returned. 8505 */ 8506 lseek64(dirfd, prev_diroff, SEEK_SET); 8507 break; 8508 } 8509 8510 prev_diroff = hde->d_off; 8511 tde->d_ino = tswap64(hde->d_ino); 8512 tde->d_off = tswap64(hde->d_off); 8513 tde->d_reclen = tswap16(treclen); 8514 tde->d_type = hde->d_type; 8515 memcpy(tde->d_name, hde->d_name, namelen); 8516 } 8517 8518 unlock_user(tdirp, arg2, toff); 8519 return toff; 8520 } 8521 #endif /* TARGET_NR_getdents64 */ 8522 8523 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root) 8524 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old) 8525 #endif 8526 8527 /* This is an internal helper for do_syscall so that it is easier 8528 * to have a single return point, so that actions, such as logging 8529 * of syscall results, can be performed. 8530 * All errnos that do_syscall() returns must be -TARGET_<errcode>. 8531 */ 8532 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1, 8533 abi_long arg2, abi_long arg3, abi_long arg4, 8534 abi_long arg5, abi_long arg6, abi_long arg7, 8535 abi_long arg8) 8536 { 8537 CPUState *cpu = env_cpu(cpu_env); 8538 abi_long ret; 8539 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \ 8540 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \ 8541 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \ 8542 || defined(TARGET_NR_statx) 8543 struct stat st; 8544 #endif 8545 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \ 8546 || defined(TARGET_NR_fstatfs) 8547 struct statfs stfs; 8548 #endif 8549 void *p; 8550 8551 switch(num) { 8552 case TARGET_NR_exit: 8553 /* In old applications this may be used to implement _exit(2). 8554 However in threaded applications it is used for thread termination, 8555 and _exit_group is used for application termination. 8556 Do thread termination if we have more then one thread. */ 8557 8558 if (block_signals()) { 8559 return -QEMU_ERESTARTSYS; 8560 } 8561 8562 pthread_mutex_lock(&clone_lock); 8563 8564 if (CPU_NEXT(first_cpu)) { 8565 TaskState *ts = cpu->opaque; 8566 8567 object_property_set_bool(OBJECT(cpu), "realized", false, NULL); 8568 object_unref(OBJECT(cpu)); 8569 /* 8570 * At this point the CPU should be unrealized and removed 8571 * from cpu lists. We can clean-up the rest of the thread 8572 * data without the lock held. 8573 */ 8574 8575 pthread_mutex_unlock(&clone_lock); 8576 8577 if (ts->child_tidptr) { 8578 put_user_u32(0, ts->child_tidptr); 8579 do_sys_futex(g2h(cpu, ts->child_tidptr), 8580 FUTEX_WAKE, INT_MAX, NULL, NULL, 0); 8581 } 8582 thread_cpu = NULL; 8583 g_free(ts); 8584 rcu_unregister_thread(); 8585 pthread_exit(NULL); 8586 } 8587 8588 pthread_mutex_unlock(&clone_lock); 8589 preexit_cleanup(cpu_env, arg1); 8590 _exit(arg1); 8591 return 0; /* avoid warning */ 8592 case TARGET_NR_read: 8593 if (arg2 == 0 && arg3 == 0) { 8594 return get_errno(safe_read(arg1, 0, 0)); 8595 } else { 8596 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 8597 return -TARGET_EFAULT; 8598 ret = get_errno(safe_read(arg1, p, arg3)); 8599 if (ret >= 0 && 8600 fd_trans_host_to_target_data(arg1)) { 8601 ret = fd_trans_host_to_target_data(arg1)(p, ret); 8602 } 8603 unlock_user(p, arg2, ret); 8604 } 8605 return ret; 8606 case TARGET_NR_write: 8607 if (arg2 == 0 && arg3 == 0) { 8608 return get_errno(safe_write(arg1, 0, 0)); 8609 } 8610 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 8611 return -TARGET_EFAULT; 8612 if (fd_trans_target_to_host_data(arg1)) { 8613 void *copy = g_malloc(arg3); 8614 memcpy(copy, p, arg3); 8615 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 8616 if (ret >= 0) { 8617 ret = get_errno(safe_write(arg1, copy, ret)); 8618 } 8619 g_free(copy); 8620 } else { 8621 ret = get_errno(safe_write(arg1, p, arg3)); 8622 } 8623 unlock_user(p, arg2, 0); 8624 return ret; 8625 8626 #ifdef TARGET_NR_open 8627 case TARGET_NR_open: 8628 if (!(p = lock_user_string(arg1))) 8629 return -TARGET_EFAULT; 8630 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 8631 target_to_host_bitmask(arg2, fcntl_flags_tbl), 8632 arg3)); 8633 fd_trans_unregister(ret); 8634 unlock_user(p, arg1, 0); 8635 return ret; 8636 #endif 8637 case TARGET_NR_openat: 8638 if (!(p = lock_user_string(arg2))) 8639 return -TARGET_EFAULT; 8640 ret = get_errno(do_openat(cpu_env, arg1, p, 8641 target_to_host_bitmask(arg3, fcntl_flags_tbl), 8642 arg4)); 8643 fd_trans_unregister(ret); 8644 unlock_user(p, arg2, 0); 8645 return ret; 8646 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 8647 case TARGET_NR_name_to_handle_at: 8648 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 8649 return ret; 8650 #endif 8651 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 8652 case TARGET_NR_open_by_handle_at: 8653 ret = do_open_by_handle_at(arg1, arg2, arg3); 8654 fd_trans_unregister(ret); 8655 return ret; 8656 #endif 8657 case TARGET_NR_close: 8658 fd_trans_unregister(arg1); 8659 return get_errno(close(arg1)); 8660 8661 case TARGET_NR_brk: 8662 return do_brk(arg1); 8663 #ifdef TARGET_NR_fork 8664 case TARGET_NR_fork: 8665 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 8666 #endif 8667 #ifdef TARGET_NR_waitpid 8668 case TARGET_NR_waitpid: 8669 { 8670 int status; 8671 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 8672 if (!is_error(ret) && arg2 && ret 8673 && put_user_s32(host_to_target_waitstatus(status), arg2)) 8674 return -TARGET_EFAULT; 8675 } 8676 return ret; 8677 #endif 8678 #ifdef TARGET_NR_waitid 8679 case TARGET_NR_waitid: 8680 { 8681 siginfo_t info; 8682 info.si_pid = 0; 8683 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 8684 if (!is_error(ret) && arg3 && info.si_pid != 0) { 8685 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 8686 return -TARGET_EFAULT; 8687 host_to_target_siginfo(p, &info); 8688 unlock_user(p, arg3, sizeof(target_siginfo_t)); 8689 } 8690 } 8691 return ret; 8692 #endif 8693 #ifdef TARGET_NR_creat /* not on alpha */ 8694 case TARGET_NR_creat: 8695 if (!(p = lock_user_string(arg1))) 8696 return -TARGET_EFAULT; 8697 ret = get_errno(creat(p, arg2)); 8698 fd_trans_unregister(ret); 8699 unlock_user(p, arg1, 0); 8700 return ret; 8701 #endif 8702 #ifdef TARGET_NR_link 8703 case TARGET_NR_link: 8704 { 8705 void * p2; 8706 p = lock_user_string(arg1); 8707 p2 = lock_user_string(arg2); 8708 if (!p || !p2) 8709 ret = -TARGET_EFAULT; 8710 else 8711 ret = get_errno(link(p, p2)); 8712 unlock_user(p2, arg2, 0); 8713 unlock_user(p, arg1, 0); 8714 } 8715 return ret; 8716 #endif 8717 #if defined(TARGET_NR_linkat) 8718 case TARGET_NR_linkat: 8719 { 8720 void * p2 = NULL; 8721 if (!arg2 || !arg4) 8722 return -TARGET_EFAULT; 8723 p = lock_user_string(arg2); 8724 p2 = lock_user_string(arg4); 8725 if (!p || !p2) 8726 ret = -TARGET_EFAULT; 8727 else 8728 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 8729 unlock_user(p, arg2, 0); 8730 unlock_user(p2, arg4, 0); 8731 } 8732 return ret; 8733 #endif 8734 #ifdef TARGET_NR_unlink 8735 case TARGET_NR_unlink: 8736 if (!(p = lock_user_string(arg1))) 8737 return -TARGET_EFAULT; 8738 ret = get_errno(unlink(p)); 8739 unlock_user(p, arg1, 0); 8740 return ret; 8741 #endif 8742 #if defined(TARGET_NR_unlinkat) 8743 case TARGET_NR_unlinkat: 8744 if (!(p = lock_user_string(arg2))) 8745 return -TARGET_EFAULT; 8746 ret = get_errno(unlinkat(arg1, p, arg3)); 8747 unlock_user(p, arg2, 0); 8748 return ret; 8749 #endif 8750 case TARGET_NR_execve: 8751 { 8752 char **argp, **envp; 8753 int argc, envc; 8754 abi_ulong gp; 8755 abi_ulong guest_argp; 8756 abi_ulong guest_envp; 8757 abi_ulong addr; 8758 char **q; 8759 8760 argc = 0; 8761 guest_argp = arg2; 8762 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8763 if (get_user_ual(addr, gp)) 8764 return -TARGET_EFAULT; 8765 if (!addr) 8766 break; 8767 argc++; 8768 } 8769 envc = 0; 8770 guest_envp = arg3; 8771 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8772 if (get_user_ual(addr, gp)) 8773 return -TARGET_EFAULT; 8774 if (!addr) 8775 break; 8776 envc++; 8777 } 8778 8779 argp = g_new0(char *, argc + 1); 8780 envp = g_new0(char *, envc + 1); 8781 8782 for (gp = guest_argp, q = argp; gp; 8783 gp += sizeof(abi_ulong), q++) { 8784 if (get_user_ual(addr, gp)) 8785 goto execve_efault; 8786 if (!addr) 8787 break; 8788 if (!(*q = lock_user_string(addr))) 8789 goto execve_efault; 8790 } 8791 *q = NULL; 8792 8793 for (gp = guest_envp, q = envp; gp; 8794 gp += sizeof(abi_ulong), q++) { 8795 if (get_user_ual(addr, gp)) 8796 goto execve_efault; 8797 if (!addr) 8798 break; 8799 if (!(*q = lock_user_string(addr))) 8800 goto execve_efault; 8801 } 8802 *q = NULL; 8803 8804 if (!(p = lock_user_string(arg1))) 8805 goto execve_efault; 8806 /* Although execve() is not an interruptible syscall it is 8807 * a special case where we must use the safe_syscall wrapper: 8808 * if we allow a signal to happen before we make the host 8809 * syscall then we will 'lose' it, because at the point of 8810 * execve the process leaves QEMU's control. So we use the 8811 * safe syscall wrapper to ensure that we either take the 8812 * signal as a guest signal, or else it does not happen 8813 * before the execve completes and makes it the other 8814 * program's problem. 8815 */ 8816 ret = get_errno(safe_execve(p, argp, envp)); 8817 unlock_user(p, arg1, 0); 8818 8819 goto execve_end; 8820 8821 execve_efault: 8822 ret = -TARGET_EFAULT; 8823 8824 execve_end: 8825 for (gp = guest_argp, q = argp; *q; 8826 gp += sizeof(abi_ulong), q++) { 8827 if (get_user_ual(addr, gp) 8828 || !addr) 8829 break; 8830 unlock_user(*q, addr, 0); 8831 } 8832 for (gp = guest_envp, q = envp; *q; 8833 gp += sizeof(abi_ulong), q++) { 8834 if (get_user_ual(addr, gp) 8835 || !addr) 8836 break; 8837 unlock_user(*q, addr, 0); 8838 } 8839 8840 g_free(argp); 8841 g_free(envp); 8842 } 8843 return ret; 8844 case TARGET_NR_chdir: 8845 if (!(p = lock_user_string(arg1))) 8846 return -TARGET_EFAULT; 8847 ret = get_errno(chdir(p)); 8848 unlock_user(p, arg1, 0); 8849 return ret; 8850 #ifdef TARGET_NR_time 8851 case TARGET_NR_time: 8852 { 8853 time_t host_time; 8854 ret = get_errno(time(&host_time)); 8855 if (!is_error(ret) 8856 && arg1 8857 && put_user_sal(host_time, arg1)) 8858 return -TARGET_EFAULT; 8859 } 8860 return ret; 8861 #endif 8862 #ifdef TARGET_NR_mknod 8863 case TARGET_NR_mknod: 8864 if (!(p = lock_user_string(arg1))) 8865 return -TARGET_EFAULT; 8866 ret = get_errno(mknod(p, arg2, arg3)); 8867 unlock_user(p, arg1, 0); 8868 return ret; 8869 #endif 8870 #if defined(TARGET_NR_mknodat) 8871 case TARGET_NR_mknodat: 8872 if (!(p = lock_user_string(arg2))) 8873 return -TARGET_EFAULT; 8874 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 8875 unlock_user(p, arg2, 0); 8876 return ret; 8877 #endif 8878 #ifdef TARGET_NR_chmod 8879 case TARGET_NR_chmod: 8880 if (!(p = lock_user_string(arg1))) 8881 return -TARGET_EFAULT; 8882 ret = get_errno(chmod(p, arg2)); 8883 unlock_user(p, arg1, 0); 8884 return ret; 8885 #endif 8886 #ifdef TARGET_NR_lseek 8887 case TARGET_NR_lseek: 8888 return get_errno(lseek(arg1, arg2, arg3)); 8889 #endif 8890 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 8891 /* Alpha specific */ 8892 case TARGET_NR_getxpid: 8893 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 8894 return get_errno(getpid()); 8895 #endif 8896 #ifdef TARGET_NR_getpid 8897 case TARGET_NR_getpid: 8898 return get_errno(getpid()); 8899 #endif 8900 case TARGET_NR_mount: 8901 { 8902 /* need to look at the data field */ 8903 void *p2, *p3; 8904 8905 if (arg1) { 8906 p = lock_user_string(arg1); 8907 if (!p) { 8908 return -TARGET_EFAULT; 8909 } 8910 } else { 8911 p = NULL; 8912 } 8913 8914 p2 = lock_user_string(arg2); 8915 if (!p2) { 8916 if (arg1) { 8917 unlock_user(p, arg1, 0); 8918 } 8919 return -TARGET_EFAULT; 8920 } 8921 8922 if (arg3) { 8923 p3 = lock_user_string(arg3); 8924 if (!p3) { 8925 if (arg1) { 8926 unlock_user(p, arg1, 0); 8927 } 8928 unlock_user(p2, arg2, 0); 8929 return -TARGET_EFAULT; 8930 } 8931 } else { 8932 p3 = NULL; 8933 } 8934 8935 /* FIXME - arg5 should be locked, but it isn't clear how to 8936 * do that since it's not guaranteed to be a NULL-terminated 8937 * string. 8938 */ 8939 if (!arg5) { 8940 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 8941 } else { 8942 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5)); 8943 } 8944 ret = get_errno(ret); 8945 8946 if (arg1) { 8947 unlock_user(p, arg1, 0); 8948 } 8949 unlock_user(p2, arg2, 0); 8950 if (arg3) { 8951 unlock_user(p3, arg3, 0); 8952 } 8953 } 8954 return ret; 8955 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount) 8956 #if defined(TARGET_NR_umount) 8957 case TARGET_NR_umount: 8958 #endif 8959 #if defined(TARGET_NR_oldumount) 8960 case TARGET_NR_oldumount: 8961 #endif 8962 if (!(p = lock_user_string(arg1))) 8963 return -TARGET_EFAULT; 8964 ret = get_errno(umount(p)); 8965 unlock_user(p, arg1, 0); 8966 return ret; 8967 #endif 8968 #ifdef TARGET_NR_stime /* not on alpha */ 8969 case TARGET_NR_stime: 8970 { 8971 struct timespec ts; 8972 ts.tv_nsec = 0; 8973 if (get_user_sal(ts.tv_sec, arg1)) { 8974 return -TARGET_EFAULT; 8975 } 8976 return get_errno(clock_settime(CLOCK_REALTIME, &ts)); 8977 } 8978 #endif 8979 #ifdef TARGET_NR_alarm /* not on alpha */ 8980 case TARGET_NR_alarm: 8981 return alarm(arg1); 8982 #endif 8983 #ifdef TARGET_NR_pause /* not on alpha */ 8984 case TARGET_NR_pause: 8985 if (!block_signals()) { 8986 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask); 8987 } 8988 return -TARGET_EINTR; 8989 #endif 8990 #ifdef TARGET_NR_utime 8991 case TARGET_NR_utime: 8992 { 8993 struct utimbuf tbuf, *host_tbuf; 8994 struct target_utimbuf *target_tbuf; 8995 if (arg2) { 8996 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 8997 return -TARGET_EFAULT; 8998 tbuf.actime = tswapal(target_tbuf->actime); 8999 tbuf.modtime = tswapal(target_tbuf->modtime); 9000 unlock_user_struct(target_tbuf, arg2, 0); 9001 host_tbuf = &tbuf; 9002 } else { 9003 host_tbuf = NULL; 9004 } 9005 if (!(p = lock_user_string(arg1))) 9006 return -TARGET_EFAULT; 9007 ret = get_errno(utime(p, host_tbuf)); 9008 unlock_user(p, arg1, 0); 9009 } 9010 return ret; 9011 #endif 9012 #ifdef TARGET_NR_utimes 9013 case TARGET_NR_utimes: 9014 { 9015 struct timeval *tvp, tv[2]; 9016 if (arg2) { 9017 if (copy_from_user_timeval(&tv[0], arg2) 9018 || copy_from_user_timeval(&tv[1], 9019 arg2 + sizeof(struct target_timeval))) 9020 return -TARGET_EFAULT; 9021 tvp = tv; 9022 } else { 9023 tvp = NULL; 9024 } 9025 if (!(p = lock_user_string(arg1))) 9026 return -TARGET_EFAULT; 9027 ret = get_errno(utimes(p, tvp)); 9028 unlock_user(p, arg1, 0); 9029 } 9030 return ret; 9031 #endif 9032 #if defined(TARGET_NR_futimesat) 9033 case TARGET_NR_futimesat: 9034 { 9035 struct timeval *tvp, tv[2]; 9036 if (arg3) { 9037 if (copy_from_user_timeval(&tv[0], arg3) 9038 || copy_from_user_timeval(&tv[1], 9039 arg3 + sizeof(struct target_timeval))) 9040 return -TARGET_EFAULT; 9041 tvp = tv; 9042 } else { 9043 tvp = NULL; 9044 } 9045 if (!(p = lock_user_string(arg2))) { 9046 return -TARGET_EFAULT; 9047 } 9048 ret = get_errno(futimesat(arg1, path(p), tvp)); 9049 unlock_user(p, arg2, 0); 9050 } 9051 return ret; 9052 #endif 9053 #ifdef TARGET_NR_access 9054 case TARGET_NR_access: 9055 if (!(p = lock_user_string(arg1))) { 9056 return -TARGET_EFAULT; 9057 } 9058 ret = get_errno(access(path(p), arg2)); 9059 unlock_user(p, arg1, 0); 9060 return ret; 9061 #endif 9062 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 9063 case TARGET_NR_faccessat: 9064 if (!(p = lock_user_string(arg2))) { 9065 return -TARGET_EFAULT; 9066 } 9067 ret = get_errno(faccessat(arg1, p, arg3, 0)); 9068 unlock_user(p, arg2, 0); 9069 return ret; 9070 #endif 9071 #ifdef TARGET_NR_nice /* not on alpha */ 9072 case TARGET_NR_nice: 9073 return get_errno(nice(arg1)); 9074 #endif 9075 case TARGET_NR_sync: 9076 sync(); 9077 return 0; 9078 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 9079 case TARGET_NR_syncfs: 9080 return get_errno(syncfs(arg1)); 9081 #endif 9082 case TARGET_NR_kill: 9083 return get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 9084 #ifdef TARGET_NR_rename 9085 case TARGET_NR_rename: 9086 { 9087 void *p2; 9088 p = lock_user_string(arg1); 9089 p2 = lock_user_string(arg2); 9090 if (!p || !p2) 9091 ret = -TARGET_EFAULT; 9092 else 9093 ret = get_errno(rename(p, p2)); 9094 unlock_user(p2, arg2, 0); 9095 unlock_user(p, arg1, 0); 9096 } 9097 return ret; 9098 #endif 9099 #if defined(TARGET_NR_renameat) 9100 case TARGET_NR_renameat: 9101 { 9102 void *p2; 9103 p = lock_user_string(arg2); 9104 p2 = lock_user_string(arg4); 9105 if (!p || !p2) 9106 ret = -TARGET_EFAULT; 9107 else 9108 ret = get_errno(renameat(arg1, p, arg3, p2)); 9109 unlock_user(p2, arg4, 0); 9110 unlock_user(p, arg2, 0); 9111 } 9112 return ret; 9113 #endif 9114 #if defined(TARGET_NR_renameat2) 9115 case TARGET_NR_renameat2: 9116 { 9117 void *p2; 9118 p = lock_user_string(arg2); 9119 p2 = lock_user_string(arg4); 9120 if (!p || !p2) { 9121 ret = -TARGET_EFAULT; 9122 } else { 9123 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 9124 } 9125 unlock_user(p2, arg4, 0); 9126 unlock_user(p, arg2, 0); 9127 } 9128 return ret; 9129 #endif 9130 #ifdef TARGET_NR_mkdir 9131 case TARGET_NR_mkdir: 9132 if (!(p = lock_user_string(arg1))) 9133 return -TARGET_EFAULT; 9134 ret = get_errno(mkdir(p, arg2)); 9135 unlock_user(p, arg1, 0); 9136 return ret; 9137 #endif 9138 #if defined(TARGET_NR_mkdirat) 9139 case TARGET_NR_mkdirat: 9140 if (!(p = lock_user_string(arg2))) 9141 return -TARGET_EFAULT; 9142 ret = get_errno(mkdirat(arg1, p, arg3)); 9143 unlock_user(p, arg2, 0); 9144 return ret; 9145 #endif 9146 #ifdef TARGET_NR_rmdir 9147 case TARGET_NR_rmdir: 9148 if (!(p = lock_user_string(arg1))) 9149 return -TARGET_EFAULT; 9150 ret = get_errno(rmdir(p)); 9151 unlock_user(p, arg1, 0); 9152 return ret; 9153 #endif 9154 case TARGET_NR_dup: 9155 ret = get_errno(dup(arg1)); 9156 if (ret >= 0) { 9157 fd_trans_dup(arg1, ret); 9158 } 9159 return ret; 9160 #ifdef TARGET_NR_pipe 9161 case TARGET_NR_pipe: 9162 return do_pipe(cpu_env, arg1, 0, 0); 9163 #endif 9164 #ifdef TARGET_NR_pipe2 9165 case TARGET_NR_pipe2: 9166 return do_pipe(cpu_env, arg1, 9167 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 9168 #endif 9169 case TARGET_NR_times: 9170 { 9171 struct target_tms *tmsp; 9172 struct tms tms; 9173 ret = get_errno(times(&tms)); 9174 if (arg1) { 9175 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 9176 if (!tmsp) 9177 return -TARGET_EFAULT; 9178 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 9179 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 9180 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 9181 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 9182 } 9183 if (!is_error(ret)) 9184 ret = host_to_target_clock_t(ret); 9185 } 9186 return ret; 9187 case TARGET_NR_acct: 9188 if (arg1 == 0) { 9189 ret = get_errno(acct(NULL)); 9190 } else { 9191 if (!(p = lock_user_string(arg1))) { 9192 return -TARGET_EFAULT; 9193 } 9194 ret = get_errno(acct(path(p))); 9195 unlock_user(p, arg1, 0); 9196 } 9197 return ret; 9198 #ifdef TARGET_NR_umount2 9199 case TARGET_NR_umount2: 9200 if (!(p = lock_user_string(arg1))) 9201 return -TARGET_EFAULT; 9202 ret = get_errno(umount2(p, arg2)); 9203 unlock_user(p, arg1, 0); 9204 return ret; 9205 #endif 9206 case TARGET_NR_ioctl: 9207 return do_ioctl(arg1, arg2, arg3); 9208 #ifdef TARGET_NR_fcntl 9209 case TARGET_NR_fcntl: 9210 return do_fcntl(arg1, arg2, arg3); 9211 #endif 9212 case TARGET_NR_setpgid: 9213 return get_errno(setpgid(arg1, arg2)); 9214 case TARGET_NR_umask: 9215 return get_errno(umask(arg1)); 9216 case TARGET_NR_chroot: 9217 if (!(p = lock_user_string(arg1))) 9218 return -TARGET_EFAULT; 9219 ret = get_errno(chroot(p)); 9220 unlock_user(p, arg1, 0); 9221 return ret; 9222 #ifdef TARGET_NR_dup2 9223 case TARGET_NR_dup2: 9224 ret = get_errno(dup2(arg1, arg2)); 9225 if (ret >= 0) { 9226 fd_trans_dup(arg1, arg2); 9227 } 9228 return ret; 9229 #endif 9230 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 9231 case TARGET_NR_dup3: 9232 { 9233 int host_flags; 9234 9235 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 9236 return -EINVAL; 9237 } 9238 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 9239 ret = get_errno(dup3(arg1, arg2, host_flags)); 9240 if (ret >= 0) { 9241 fd_trans_dup(arg1, arg2); 9242 } 9243 return ret; 9244 } 9245 #endif 9246 #ifdef TARGET_NR_getppid /* not on alpha */ 9247 case TARGET_NR_getppid: 9248 return get_errno(getppid()); 9249 #endif 9250 #ifdef TARGET_NR_getpgrp 9251 case TARGET_NR_getpgrp: 9252 return get_errno(getpgrp()); 9253 #endif 9254 case TARGET_NR_setsid: 9255 return get_errno(setsid()); 9256 #ifdef TARGET_NR_sigaction 9257 case TARGET_NR_sigaction: 9258 { 9259 #if defined(TARGET_MIPS) 9260 struct target_sigaction act, oact, *pact, *old_act; 9261 9262 if (arg2) { 9263 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9264 return -TARGET_EFAULT; 9265 act._sa_handler = old_act->_sa_handler; 9266 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 9267 act.sa_flags = old_act->sa_flags; 9268 unlock_user_struct(old_act, arg2, 0); 9269 pact = &act; 9270 } else { 9271 pact = NULL; 9272 } 9273 9274 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9275 9276 if (!is_error(ret) && arg3) { 9277 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9278 return -TARGET_EFAULT; 9279 old_act->_sa_handler = oact._sa_handler; 9280 old_act->sa_flags = oact.sa_flags; 9281 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 9282 old_act->sa_mask.sig[1] = 0; 9283 old_act->sa_mask.sig[2] = 0; 9284 old_act->sa_mask.sig[3] = 0; 9285 unlock_user_struct(old_act, arg3, 1); 9286 } 9287 #else 9288 struct target_old_sigaction *old_act; 9289 struct target_sigaction act, oact, *pact; 9290 if (arg2) { 9291 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9292 return -TARGET_EFAULT; 9293 act._sa_handler = old_act->_sa_handler; 9294 target_siginitset(&act.sa_mask, old_act->sa_mask); 9295 act.sa_flags = old_act->sa_flags; 9296 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9297 act.sa_restorer = old_act->sa_restorer; 9298 #endif 9299 unlock_user_struct(old_act, arg2, 0); 9300 pact = &act; 9301 } else { 9302 pact = NULL; 9303 } 9304 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9305 if (!is_error(ret) && arg3) { 9306 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9307 return -TARGET_EFAULT; 9308 old_act->_sa_handler = oact._sa_handler; 9309 old_act->sa_mask = oact.sa_mask.sig[0]; 9310 old_act->sa_flags = oact.sa_flags; 9311 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9312 old_act->sa_restorer = oact.sa_restorer; 9313 #endif 9314 unlock_user_struct(old_act, arg3, 1); 9315 } 9316 #endif 9317 } 9318 return ret; 9319 #endif 9320 case TARGET_NR_rt_sigaction: 9321 { 9322 /* 9323 * For Alpha and SPARC this is a 5 argument syscall, with 9324 * a 'restorer' parameter which must be copied into the 9325 * sa_restorer field of the sigaction struct. 9326 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 9327 * and arg5 is the sigsetsize. 9328 */ 9329 #if defined(TARGET_ALPHA) 9330 target_ulong sigsetsize = arg4; 9331 target_ulong restorer = arg5; 9332 #elif defined(TARGET_SPARC) 9333 target_ulong restorer = arg4; 9334 target_ulong sigsetsize = arg5; 9335 #else 9336 target_ulong sigsetsize = arg4; 9337 target_ulong restorer = 0; 9338 #endif 9339 struct target_sigaction *act = NULL; 9340 struct target_sigaction *oact = NULL; 9341 9342 if (sigsetsize != sizeof(target_sigset_t)) { 9343 return -TARGET_EINVAL; 9344 } 9345 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) { 9346 return -TARGET_EFAULT; 9347 } 9348 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 9349 ret = -TARGET_EFAULT; 9350 } else { 9351 ret = get_errno(do_sigaction(arg1, act, oact, restorer)); 9352 if (oact) { 9353 unlock_user_struct(oact, arg3, 1); 9354 } 9355 } 9356 if (act) { 9357 unlock_user_struct(act, arg2, 0); 9358 } 9359 } 9360 return ret; 9361 #ifdef TARGET_NR_sgetmask /* not on alpha */ 9362 case TARGET_NR_sgetmask: 9363 { 9364 sigset_t cur_set; 9365 abi_ulong target_set; 9366 ret = do_sigprocmask(0, NULL, &cur_set); 9367 if (!ret) { 9368 host_to_target_old_sigset(&target_set, &cur_set); 9369 ret = target_set; 9370 } 9371 } 9372 return ret; 9373 #endif 9374 #ifdef TARGET_NR_ssetmask /* not on alpha */ 9375 case TARGET_NR_ssetmask: 9376 { 9377 sigset_t set, oset; 9378 abi_ulong target_set = arg1; 9379 target_to_host_old_sigset(&set, &target_set); 9380 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 9381 if (!ret) { 9382 host_to_target_old_sigset(&target_set, &oset); 9383 ret = target_set; 9384 } 9385 } 9386 return ret; 9387 #endif 9388 #ifdef TARGET_NR_sigprocmask 9389 case TARGET_NR_sigprocmask: 9390 { 9391 #if defined(TARGET_ALPHA) 9392 sigset_t set, oldset; 9393 abi_ulong mask; 9394 int how; 9395 9396 switch (arg1) { 9397 case TARGET_SIG_BLOCK: 9398 how = SIG_BLOCK; 9399 break; 9400 case TARGET_SIG_UNBLOCK: 9401 how = SIG_UNBLOCK; 9402 break; 9403 case TARGET_SIG_SETMASK: 9404 how = SIG_SETMASK; 9405 break; 9406 default: 9407 return -TARGET_EINVAL; 9408 } 9409 mask = arg2; 9410 target_to_host_old_sigset(&set, &mask); 9411 9412 ret = do_sigprocmask(how, &set, &oldset); 9413 if (!is_error(ret)) { 9414 host_to_target_old_sigset(&mask, &oldset); 9415 ret = mask; 9416 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 9417 } 9418 #else 9419 sigset_t set, oldset, *set_ptr; 9420 int how; 9421 9422 if (arg2) { 9423 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 9424 if (!p) { 9425 return -TARGET_EFAULT; 9426 } 9427 target_to_host_old_sigset(&set, p); 9428 unlock_user(p, arg2, 0); 9429 set_ptr = &set; 9430 switch (arg1) { 9431 case TARGET_SIG_BLOCK: 9432 how = SIG_BLOCK; 9433 break; 9434 case TARGET_SIG_UNBLOCK: 9435 how = SIG_UNBLOCK; 9436 break; 9437 case TARGET_SIG_SETMASK: 9438 how = SIG_SETMASK; 9439 break; 9440 default: 9441 return -TARGET_EINVAL; 9442 } 9443 } else { 9444 how = 0; 9445 set_ptr = NULL; 9446 } 9447 ret = do_sigprocmask(how, set_ptr, &oldset); 9448 if (!is_error(ret) && arg3) { 9449 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 9450 return -TARGET_EFAULT; 9451 host_to_target_old_sigset(p, &oldset); 9452 unlock_user(p, arg3, sizeof(target_sigset_t)); 9453 } 9454 #endif 9455 } 9456 return ret; 9457 #endif 9458 case TARGET_NR_rt_sigprocmask: 9459 { 9460 int how = arg1; 9461 sigset_t set, oldset, *set_ptr; 9462 9463 if (arg4 != sizeof(target_sigset_t)) { 9464 return -TARGET_EINVAL; 9465 } 9466 9467 if (arg2) { 9468 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 9469 if (!p) { 9470 return -TARGET_EFAULT; 9471 } 9472 target_to_host_sigset(&set, p); 9473 unlock_user(p, arg2, 0); 9474 set_ptr = &set; 9475 switch(how) { 9476 case TARGET_SIG_BLOCK: 9477 how = SIG_BLOCK; 9478 break; 9479 case TARGET_SIG_UNBLOCK: 9480 how = SIG_UNBLOCK; 9481 break; 9482 case TARGET_SIG_SETMASK: 9483 how = SIG_SETMASK; 9484 break; 9485 default: 9486 return -TARGET_EINVAL; 9487 } 9488 } else { 9489 how = 0; 9490 set_ptr = NULL; 9491 } 9492 ret = do_sigprocmask(how, set_ptr, &oldset); 9493 if (!is_error(ret) && arg3) { 9494 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 9495 return -TARGET_EFAULT; 9496 host_to_target_sigset(p, &oldset); 9497 unlock_user(p, arg3, sizeof(target_sigset_t)); 9498 } 9499 } 9500 return ret; 9501 #ifdef TARGET_NR_sigpending 9502 case TARGET_NR_sigpending: 9503 { 9504 sigset_t set; 9505 ret = get_errno(sigpending(&set)); 9506 if (!is_error(ret)) { 9507 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 9508 return -TARGET_EFAULT; 9509 host_to_target_old_sigset(p, &set); 9510 unlock_user(p, arg1, sizeof(target_sigset_t)); 9511 } 9512 } 9513 return ret; 9514 #endif 9515 case TARGET_NR_rt_sigpending: 9516 { 9517 sigset_t set; 9518 9519 /* Yes, this check is >, not != like most. We follow the kernel's 9520 * logic and it does it like this because it implements 9521 * NR_sigpending through the same code path, and in that case 9522 * the old_sigset_t is smaller in size. 9523 */ 9524 if (arg2 > sizeof(target_sigset_t)) { 9525 return -TARGET_EINVAL; 9526 } 9527 9528 ret = get_errno(sigpending(&set)); 9529 if (!is_error(ret)) { 9530 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 9531 return -TARGET_EFAULT; 9532 host_to_target_sigset(p, &set); 9533 unlock_user(p, arg1, sizeof(target_sigset_t)); 9534 } 9535 } 9536 return ret; 9537 #ifdef TARGET_NR_sigsuspend 9538 case TARGET_NR_sigsuspend: 9539 { 9540 sigset_t *set; 9541 9542 #if defined(TARGET_ALPHA) 9543 TaskState *ts = cpu->opaque; 9544 /* target_to_host_old_sigset will bswap back */ 9545 abi_ulong mask = tswapal(arg1); 9546 set = &ts->sigsuspend_mask; 9547 target_to_host_old_sigset(set, &mask); 9548 #else 9549 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t)); 9550 if (ret != 0) { 9551 return ret; 9552 } 9553 #endif 9554 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 9555 finish_sigsuspend_mask(ret); 9556 } 9557 return ret; 9558 #endif 9559 case TARGET_NR_rt_sigsuspend: 9560 { 9561 sigset_t *set; 9562 9563 ret = process_sigsuspend_mask(&set, arg1, arg2); 9564 if (ret != 0) { 9565 return ret; 9566 } 9567 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 9568 finish_sigsuspend_mask(ret); 9569 } 9570 return ret; 9571 #ifdef TARGET_NR_rt_sigtimedwait 9572 case TARGET_NR_rt_sigtimedwait: 9573 { 9574 sigset_t set; 9575 struct timespec uts, *puts; 9576 siginfo_t uinfo; 9577 9578 if (arg4 != sizeof(target_sigset_t)) { 9579 return -TARGET_EINVAL; 9580 } 9581 9582 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9583 return -TARGET_EFAULT; 9584 target_to_host_sigset(&set, p); 9585 unlock_user(p, arg1, 0); 9586 if (arg3) { 9587 puts = &uts; 9588 if (target_to_host_timespec(puts, arg3)) { 9589 return -TARGET_EFAULT; 9590 } 9591 } else { 9592 puts = NULL; 9593 } 9594 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 9595 SIGSET_T_SIZE)); 9596 if (!is_error(ret)) { 9597 if (arg2) { 9598 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 9599 0); 9600 if (!p) { 9601 return -TARGET_EFAULT; 9602 } 9603 host_to_target_siginfo(p, &uinfo); 9604 unlock_user(p, arg2, sizeof(target_siginfo_t)); 9605 } 9606 ret = host_to_target_signal(ret); 9607 } 9608 } 9609 return ret; 9610 #endif 9611 #ifdef TARGET_NR_rt_sigtimedwait_time64 9612 case TARGET_NR_rt_sigtimedwait_time64: 9613 { 9614 sigset_t set; 9615 struct timespec uts, *puts; 9616 siginfo_t uinfo; 9617 9618 if (arg4 != sizeof(target_sigset_t)) { 9619 return -TARGET_EINVAL; 9620 } 9621 9622 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1); 9623 if (!p) { 9624 return -TARGET_EFAULT; 9625 } 9626 target_to_host_sigset(&set, p); 9627 unlock_user(p, arg1, 0); 9628 if (arg3) { 9629 puts = &uts; 9630 if (target_to_host_timespec64(puts, arg3)) { 9631 return -TARGET_EFAULT; 9632 } 9633 } else { 9634 puts = NULL; 9635 } 9636 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 9637 SIGSET_T_SIZE)); 9638 if (!is_error(ret)) { 9639 if (arg2) { 9640 p = lock_user(VERIFY_WRITE, arg2, 9641 sizeof(target_siginfo_t), 0); 9642 if (!p) { 9643 return -TARGET_EFAULT; 9644 } 9645 host_to_target_siginfo(p, &uinfo); 9646 unlock_user(p, arg2, sizeof(target_siginfo_t)); 9647 } 9648 ret = host_to_target_signal(ret); 9649 } 9650 } 9651 return ret; 9652 #endif 9653 case TARGET_NR_rt_sigqueueinfo: 9654 { 9655 siginfo_t uinfo; 9656 9657 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9658 if (!p) { 9659 return -TARGET_EFAULT; 9660 } 9661 target_to_host_siginfo(&uinfo, p); 9662 unlock_user(p, arg3, 0); 9663 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 9664 } 9665 return ret; 9666 case TARGET_NR_rt_tgsigqueueinfo: 9667 { 9668 siginfo_t uinfo; 9669 9670 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 9671 if (!p) { 9672 return -TARGET_EFAULT; 9673 } 9674 target_to_host_siginfo(&uinfo, p); 9675 unlock_user(p, arg4, 0); 9676 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo)); 9677 } 9678 return ret; 9679 #ifdef TARGET_NR_sigreturn 9680 case TARGET_NR_sigreturn: 9681 if (block_signals()) { 9682 return -QEMU_ERESTARTSYS; 9683 } 9684 return do_sigreturn(cpu_env); 9685 #endif 9686 case TARGET_NR_rt_sigreturn: 9687 if (block_signals()) { 9688 return -QEMU_ERESTARTSYS; 9689 } 9690 return do_rt_sigreturn(cpu_env); 9691 case TARGET_NR_sethostname: 9692 if (!(p = lock_user_string(arg1))) 9693 return -TARGET_EFAULT; 9694 ret = get_errno(sethostname(p, arg2)); 9695 unlock_user(p, arg1, 0); 9696 return ret; 9697 #ifdef TARGET_NR_setrlimit 9698 case TARGET_NR_setrlimit: 9699 { 9700 int resource = target_to_host_resource(arg1); 9701 struct target_rlimit *target_rlim; 9702 struct rlimit rlim; 9703 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 9704 return -TARGET_EFAULT; 9705 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 9706 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 9707 unlock_user_struct(target_rlim, arg2, 0); 9708 /* 9709 * If we just passed through resource limit settings for memory then 9710 * they would also apply to QEMU's own allocations, and QEMU will 9711 * crash or hang or die if its allocations fail. Ideally we would 9712 * track the guest allocations in QEMU and apply the limits ourselves. 9713 * For now, just tell the guest the call succeeded but don't actually 9714 * limit anything. 9715 */ 9716 if (resource != RLIMIT_AS && 9717 resource != RLIMIT_DATA && 9718 resource != RLIMIT_STACK) { 9719 return get_errno(setrlimit(resource, &rlim)); 9720 } else { 9721 return 0; 9722 } 9723 } 9724 #endif 9725 #ifdef TARGET_NR_getrlimit 9726 case TARGET_NR_getrlimit: 9727 { 9728 int resource = target_to_host_resource(arg1); 9729 struct target_rlimit *target_rlim; 9730 struct rlimit rlim; 9731 9732 ret = get_errno(getrlimit(resource, &rlim)); 9733 if (!is_error(ret)) { 9734 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 9735 return -TARGET_EFAULT; 9736 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 9737 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 9738 unlock_user_struct(target_rlim, arg2, 1); 9739 } 9740 } 9741 return ret; 9742 #endif 9743 case TARGET_NR_getrusage: 9744 { 9745 struct rusage rusage; 9746 ret = get_errno(getrusage(arg1, &rusage)); 9747 if (!is_error(ret)) { 9748 ret = host_to_target_rusage(arg2, &rusage); 9749 } 9750 } 9751 return ret; 9752 #if defined(TARGET_NR_gettimeofday) 9753 case TARGET_NR_gettimeofday: 9754 { 9755 struct timeval tv; 9756 struct timezone tz; 9757 9758 ret = get_errno(gettimeofday(&tv, &tz)); 9759 if (!is_error(ret)) { 9760 if (arg1 && copy_to_user_timeval(arg1, &tv)) { 9761 return -TARGET_EFAULT; 9762 } 9763 if (arg2 && copy_to_user_timezone(arg2, &tz)) { 9764 return -TARGET_EFAULT; 9765 } 9766 } 9767 } 9768 return ret; 9769 #endif 9770 #if defined(TARGET_NR_settimeofday) 9771 case TARGET_NR_settimeofday: 9772 { 9773 struct timeval tv, *ptv = NULL; 9774 struct timezone tz, *ptz = NULL; 9775 9776 if (arg1) { 9777 if (copy_from_user_timeval(&tv, arg1)) { 9778 return -TARGET_EFAULT; 9779 } 9780 ptv = &tv; 9781 } 9782 9783 if (arg2) { 9784 if (copy_from_user_timezone(&tz, arg2)) { 9785 return -TARGET_EFAULT; 9786 } 9787 ptz = &tz; 9788 } 9789 9790 return get_errno(settimeofday(ptv, ptz)); 9791 } 9792 #endif 9793 #if defined(TARGET_NR_select) 9794 case TARGET_NR_select: 9795 #if defined(TARGET_WANT_NI_OLD_SELECT) 9796 /* some architectures used to have old_select here 9797 * but now ENOSYS it. 9798 */ 9799 ret = -TARGET_ENOSYS; 9800 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 9801 ret = do_old_select(arg1); 9802 #else 9803 ret = do_select(arg1, arg2, arg3, arg4, arg5); 9804 #endif 9805 return ret; 9806 #endif 9807 #ifdef TARGET_NR_pselect6 9808 case TARGET_NR_pselect6: 9809 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false); 9810 #endif 9811 #ifdef TARGET_NR_pselect6_time64 9812 case TARGET_NR_pselect6_time64: 9813 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true); 9814 #endif 9815 #ifdef TARGET_NR_symlink 9816 case TARGET_NR_symlink: 9817 { 9818 void *p2; 9819 p = lock_user_string(arg1); 9820 p2 = lock_user_string(arg2); 9821 if (!p || !p2) 9822 ret = -TARGET_EFAULT; 9823 else 9824 ret = get_errno(symlink(p, p2)); 9825 unlock_user(p2, arg2, 0); 9826 unlock_user(p, arg1, 0); 9827 } 9828 return ret; 9829 #endif 9830 #if defined(TARGET_NR_symlinkat) 9831 case TARGET_NR_symlinkat: 9832 { 9833 void *p2; 9834 p = lock_user_string(arg1); 9835 p2 = lock_user_string(arg3); 9836 if (!p || !p2) 9837 ret = -TARGET_EFAULT; 9838 else 9839 ret = get_errno(symlinkat(p, arg2, p2)); 9840 unlock_user(p2, arg3, 0); 9841 unlock_user(p, arg1, 0); 9842 } 9843 return ret; 9844 #endif 9845 #ifdef TARGET_NR_readlink 9846 case TARGET_NR_readlink: 9847 { 9848 void *p2; 9849 p = lock_user_string(arg1); 9850 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9851 if (!p || !p2) { 9852 ret = -TARGET_EFAULT; 9853 } else if (!arg3) { 9854 /* Short circuit this for the magic exe check. */ 9855 ret = -TARGET_EINVAL; 9856 } else if (is_proc_myself((const char *)p, "exe")) { 9857 char real[PATH_MAX], *temp; 9858 temp = realpath(exec_path, real); 9859 /* Return value is # of bytes that we wrote to the buffer. */ 9860 if (temp == NULL) { 9861 ret = get_errno(-1); 9862 } else { 9863 /* Don't worry about sign mismatch as earlier mapping 9864 * logic would have thrown a bad address error. */ 9865 ret = MIN(strlen(real), arg3); 9866 /* We cannot NUL terminate the string. */ 9867 memcpy(p2, real, ret); 9868 } 9869 } else { 9870 ret = get_errno(readlink(path(p), p2, arg3)); 9871 } 9872 unlock_user(p2, arg2, ret); 9873 unlock_user(p, arg1, 0); 9874 } 9875 return ret; 9876 #endif 9877 #if defined(TARGET_NR_readlinkat) 9878 case TARGET_NR_readlinkat: 9879 { 9880 void *p2; 9881 p = lock_user_string(arg2); 9882 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9883 if (!p || !p2) { 9884 ret = -TARGET_EFAULT; 9885 } else if (is_proc_myself((const char *)p, "exe")) { 9886 char real[PATH_MAX], *temp; 9887 temp = realpath(exec_path, real); 9888 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 9889 snprintf((char *)p2, arg4, "%s", real); 9890 } else { 9891 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 9892 } 9893 unlock_user(p2, arg3, ret); 9894 unlock_user(p, arg2, 0); 9895 } 9896 return ret; 9897 #endif 9898 #ifdef TARGET_NR_swapon 9899 case TARGET_NR_swapon: 9900 if (!(p = lock_user_string(arg1))) 9901 return -TARGET_EFAULT; 9902 ret = get_errno(swapon(p, arg2)); 9903 unlock_user(p, arg1, 0); 9904 return ret; 9905 #endif 9906 case TARGET_NR_reboot: 9907 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 9908 /* arg4 must be ignored in all other cases */ 9909 p = lock_user_string(arg4); 9910 if (!p) { 9911 return -TARGET_EFAULT; 9912 } 9913 ret = get_errno(reboot(arg1, arg2, arg3, p)); 9914 unlock_user(p, arg4, 0); 9915 } else { 9916 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 9917 } 9918 return ret; 9919 #ifdef TARGET_NR_mmap 9920 case TARGET_NR_mmap: 9921 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 9922 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 9923 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 9924 || defined(TARGET_S390X) 9925 { 9926 abi_ulong *v; 9927 abi_ulong v1, v2, v3, v4, v5, v6; 9928 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 9929 return -TARGET_EFAULT; 9930 v1 = tswapal(v[0]); 9931 v2 = tswapal(v[1]); 9932 v3 = tswapal(v[2]); 9933 v4 = tswapal(v[3]); 9934 v5 = tswapal(v[4]); 9935 v6 = tswapal(v[5]); 9936 unlock_user(v, arg1, 0); 9937 ret = get_errno(target_mmap(v1, v2, v3, 9938 target_to_host_bitmask(v4, mmap_flags_tbl), 9939 v5, v6)); 9940 } 9941 #else 9942 /* mmap pointers are always untagged */ 9943 ret = get_errno(target_mmap(arg1, arg2, arg3, 9944 target_to_host_bitmask(arg4, mmap_flags_tbl), 9945 arg5, 9946 arg6)); 9947 #endif 9948 return ret; 9949 #endif 9950 #ifdef TARGET_NR_mmap2 9951 case TARGET_NR_mmap2: 9952 #ifndef MMAP_SHIFT 9953 #define MMAP_SHIFT 12 9954 #endif 9955 ret = target_mmap(arg1, arg2, arg3, 9956 target_to_host_bitmask(arg4, mmap_flags_tbl), 9957 arg5, arg6 << MMAP_SHIFT); 9958 return get_errno(ret); 9959 #endif 9960 case TARGET_NR_munmap: 9961 arg1 = cpu_untagged_addr(cpu, arg1); 9962 return get_errno(target_munmap(arg1, arg2)); 9963 case TARGET_NR_mprotect: 9964 arg1 = cpu_untagged_addr(cpu, arg1); 9965 { 9966 TaskState *ts = cpu->opaque; 9967 /* Special hack to detect libc making the stack executable. */ 9968 if ((arg3 & PROT_GROWSDOWN) 9969 && arg1 >= ts->info->stack_limit 9970 && arg1 <= ts->info->start_stack) { 9971 arg3 &= ~PROT_GROWSDOWN; 9972 arg2 = arg2 + arg1 - ts->info->stack_limit; 9973 arg1 = ts->info->stack_limit; 9974 } 9975 } 9976 return get_errno(target_mprotect(arg1, arg2, arg3)); 9977 #ifdef TARGET_NR_mremap 9978 case TARGET_NR_mremap: 9979 arg1 = cpu_untagged_addr(cpu, arg1); 9980 /* mremap new_addr (arg5) is always untagged */ 9981 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 9982 #endif 9983 /* ??? msync/mlock/munlock are broken for softmmu. */ 9984 #ifdef TARGET_NR_msync 9985 case TARGET_NR_msync: 9986 return get_errno(msync(g2h(cpu, arg1), arg2, arg3)); 9987 #endif 9988 #ifdef TARGET_NR_mlock 9989 case TARGET_NR_mlock: 9990 return get_errno(mlock(g2h(cpu, arg1), arg2)); 9991 #endif 9992 #ifdef TARGET_NR_munlock 9993 case TARGET_NR_munlock: 9994 return get_errno(munlock(g2h(cpu, arg1), arg2)); 9995 #endif 9996 #ifdef TARGET_NR_mlockall 9997 case TARGET_NR_mlockall: 9998 return get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 9999 #endif 10000 #ifdef TARGET_NR_munlockall 10001 case TARGET_NR_munlockall: 10002 return get_errno(munlockall()); 10003 #endif 10004 #ifdef TARGET_NR_truncate 10005 case TARGET_NR_truncate: 10006 if (!(p = lock_user_string(arg1))) 10007 return -TARGET_EFAULT; 10008 ret = get_errno(truncate(p, arg2)); 10009 unlock_user(p, arg1, 0); 10010 return ret; 10011 #endif 10012 #ifdef TARGET_NR_ftruncate 10013 case TARGET_NR_ftruncate: 10014 return get_errno(ftruncate(arg1, arg2)); 10015 #endif 10016 case TARGET_NR_fchmod: 10017 return get_errno(fchmod(arg1, arg2)); 10018 #if defined(TARGET_NR_fchmodat) 10019 case TARGET_NR_fchmodat: 10020 if (!(p = lock_user_string(arg2))) 10021 return -TARGET_EFAULT; 10022 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 10023 unlock_user(p, arg2, 0); 10024 return ret; 10025 #endif 10026 case TARGET_NR_getpriority: 10027 /* Note that negative values are valid for getpriority, so we must 10028 differentiate based on errno settings. */ 10029 errno = 0; 10030 ret = getpriority(arg1, arg2); 10031 if (ret == -1 && errno != 0) { 10032 return -host_to_target_errno(errno); 10033 } 10034 #ifdef TARGET_ALPHA 10035 /* Return value is the unbiased priority. Signal no error. */ 10036 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 10037 #else 10038 /* Return value is a biased priority to avoid negative numbers. */ 10039 ret = 20 - ret; 10040 #endif 10041 return ret; 10042 case TARGET_NR_setpriority: 10043 return get_errno(setpriority(arg1, arg2, arg3)); 10044 #ifdef TARGET_NR_statfs 10045 case TARGET_NR_statfs: 10046 if (!(p = lock_user_string(arg1))) { 10047 return -TARGET_EFAULT; 10048 } 10049 ret = get_errno(statfs(path(p), &stfs)); 10050 unlock_user(p, arg1, 0); 10051 convert_statfs: 10052 if (!is_error(ret)) { 10053 struct target_statfs *target_stfs; 10054 10055 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 10056 return -TARGET_EFAULT; 10057 __put_user(stfs.f_type, &target_stfs->f_type); 10058 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10059 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10060 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10061 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10062 __put_user(stfs.f_files, &target_stfs->f_files); 10063 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10064 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10065 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10066 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10067 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10068 #ifdef _STATFS_F_FLAGS 10069 __put_user(stfs.f_flags, &target_stfs->f_flags); 10070 #else 10071 __put_user(0, &target_stfs->f_flags); 10072 #endif 10073 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10074 unlock_user_struct(target_stfs, arg2, 1); 10075 } 10076 return ret; 10077 #endif 10078 #ifdef TARGET_NR_fstatfs 10079 case TARGET_NR_fstatfs: 10080 ret = get_errno(fstatfs(arg1, &stfs)); 10081 goto convert_statfs; 10082 #endif 10083 #ifdef TARGET_NR_statfs64 10084 case TARGET_NR_statfs64: 10085 if (!(p = lock_user_string(arg1))) { 10086 return -TARGET_EFAULT; 10087 } 10088 ret = get_errno(statfs(path(p), &stfs)); 10089 unlock_user(p, arg1, 0); 10090 convert_statfs64: 10091 if (!is_error(ret)) { 10092 struct target_statfs64 *target_stfs; 10093 10094 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 10095 return -TARGET_EFAULT; 10096 __put_user(stfs.f_type, &target_stfs->f_type); 10097 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10098 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10099 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10100 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10101 __put_user(stfs.f_files, &target_stfs->f_files); 10102 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10103 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10104 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10105 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10106 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10107 #ifdef _STATFS_F_FLAGS 10108 __put_user(stfs.f_flags, &target_stfs->f_flags); 10109 #else 10110 __put_user(0, &target_stfs->f_flags); 10111 #endif 10112 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10113 unlock_user_struct(target_stfs, arg3, 1); 10114 } 10115 return ret; 10116 case TARGET_NR_fstatfs64: 10117 ret = get_errno(fstatfs(arg1, &stfs)); 10118 goto convert_statfs64; 10119 #endif 10120 #ifdef TARGET_NR_socketcall 10121 case TARGET_NR_socketcall: 10122 return do_socketcall(arg1, arg2); 10123 #endif 10124 #ifdef TARGET_NR_accept 10125 case TARGET_NR_accept: 10126 return do_accept4(arg1, arg2, arg3, 0); 10127 #endif 10128 #ifdef TARGET_NR_accept4 10129 case TARGET_NR_accept4: 10130 return do_accept4(arg1, arg2, arg3, arg4); 10131 #endif 10132 #ifdef TARGET_NR_bind 10133 case TARGET_NR_bind: 10134 return do_bind(arg1, arg2, arg3); 10135 #endif 10136 #ifdef TARGET_NR_connect 10137 case TARGET_NR_connect: 10138 return do_connect(arg1, arg2, arg3); 10139 #endif 10140 #ifdef TARGET_NR_getpeername 10141 case TARGET_NR_getpeername: 10142 return do_getpeername(arg1, arg2, arg3); 10143 #endif 10144 #ifdef TARGET_NR_getsockname 10145 case TARGET_NR_getsockname: 10146 return do_getsockname(arg1, arg2, arg3); 10147 #endif 10148 #ifdef TARGET_NR_getsockopt 10149 case TARGET_NR_getsockopt: 10150 return do_getsockopt(arg1, arg2, arg3, arg4, arg5); 10151 #endif 10152 #ifdef TARGET_NR_listen 10153 case TARGET_NR_listen: 10154 return get_errno(listen(arg1, arg2)); 10155 #endif 10156 #ifdef TARGET_NR_recv 10157 case TARGET_NR_recv: 10158 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 10159 #endif 10160 #ifdef TARGET_NR_recvfrom 10161 case TARGET_NR_recvfrom: 10162 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 10163 #endif 10164 #ifdef TARGET_NR_recvmsg 10165 case TARGET_NR_recvmsg: 10166 return do_sendrecvmsg(arg1, arg2, arg3, 0); 10167 #endif 10168 #ifdef TARGET_NR_send 10169 case TARGET_NR_send: 10170 return do_sendto(arg1, arg2, arg3, arg4, 0, 0); 10171 #endif 10172 #ifdef TARGET_NR_sendmsg 10173 case TARGET_NR_sendmsg: 10174 return do_sendrecvmsg(arg1, arg2, arg3, 1); 10175 #endif 10176 #ifdef TARGET_NR_sendmmsg 10177 case TARGET_NR_sendmmsg: 10178 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 10179 #endif 10180 #ifdef TARGET_NR_recvmmsg 10181 case TARGET_NR_recvmmsg: 10182 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 10183 #endif 10184 #ifdef TARGET_NR_sendto 10185 case TARGET_NR_sendto: 10186 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 10187 #endif 10188 #ifdef TARGET_NR_shutdown 10189 case TARGET_NR_shutdown: 10190 return get_errno(shutdown(arg1, arg2)); 10191 #endif 10192 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 10193 case TARGET_NR_getrandom: 10194 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 10195 if (!p) { 10196 return -TARGET_EFAULT; 10197 } 10198 ret = get_errno(getrandom(p, arg2, arg3)); 10199 unlock_user(p, arg1, ret); 10200 return ret; 10201 #endif 10202 #ifdef TARGET_NR_socket 10203 case TARGET_NR_socket: 10204 return do_socket(arg1, arg2, arg3); 10205 #endif 10206 #ifdef TARGET_NR_socketpair 10207 case TARGET_NR_socketpair: 10208 return do_socketpair(arg1, arg2, arg3, arg4); 10209 #endif 10210 #ifdef TARGET_NR_setsockopt 10211 case TARGET_NR_setsockopt: 10212 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 10213 #endif 10214 #if defined(TARGET_NR_syslog) 10215 case TARGET_NR_syslog: 10216 { 10217 int len = arg2; 10218 10219 switch (arg1) { 10220 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 10221 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 10222 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 10223 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 10224 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 10225 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 10226 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 10227 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 10228 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 10229 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 10230 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 10231 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 10232 { 10233 if (len < 0) { 10234 return -TARGET_EINVAL; 10235 } 10236 if (len == 0) { 10237 return 0; 10238 } 10239 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10240 if (!p) { 10241 return -TARGET_EFAULT; 10242 } 10243 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 10244 unlock_user(p, arg2, arg3); 10245 } 10246 return ret; 10247 default: 10248 return -TARGET_EINVAL; 10249 } 10250 } 10251 break; 10252 #endif 10253 case TARGET_NR_setitimer: 10254 { 10255 struct itimerval value, ovalue, *pvalue; 10256 10257 if (arg2) { 10258 pvalue = &value; 10259 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 10260 || copy_from_user_timeval(&pvalue->it_value, 10261 arg2 + sizeof(struct target_timeval))) 10262 return -TARGET_EFAULT; 10263 } else { 10264 pvalue = NULL; 10265 } 10266 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 10267 if (!is_error(ret) && arg3) { 10268 if (copy_to_user_timeval(arg3, 10269 &ovalue.it_interval) 10270 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 10271 &ovalue.it_value)) 10272 return -TARGET_EFAULT; 10273 } 10274 } 10275 return ret; 10276 case TARGET_NR_getitimer: 10277 { 10278 struct itimerval value; 10279 10280 ret = get_errno(getitimer(arg1, &value)); 10281 if (!is_error(ret) && arg2) { 10282 if (copy_to_user_timeval(arg2, 10283 &value.it_interval) 10284 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 10285 &value.it_value)) 10286 return -TARGET_EFAULT; 10287 } 10288 } 10289 return ret; 10290 #ifdef TARGET_NR_stat 10291 case TARGET_NR_stat: 10292 if (!(p = lock_user_string(arg1))) { 10293 return -TARGET_EFAULT; 10294 } 10295 ret = get_errno(stat(path(p), &st)); 10296 unlock_user(p, arg1, 0); 10297 goto do_stat; 10298 #endif 10299 #ifdef TARGET_NR_lstat 10300 case TARGET_NR_lstat: 10301 if (!(p = lock_user_string(arg1))) { 10302 return -TARGET_EFAULT; 10303 } 10304 ret = get_errno(lstat(path(p), &st)); 10305 unlock_user(p, arg1, 0); 10306 goto do_stat; 10307 #endif 10308 #ifdef TARGET_NR_fstat 10309 case TARGET_NR_fstat: 10310 { 10311 ret = get_errno(fstat(arg1, &st)); 10312 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 10313 do_stat: 10314 #endif 10315 if (!is_error(ret)) { 10316 struct target_stat *target_st; 10317 10318 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 10319 return -TARGET_EFAULT; 10320 memset(target_st, 0, sizeof(*target_st)); 10321 __put_user(st.st_dev, &target_st->st_dev); 10322 __put_user(st.st_ino, &target_st->st_ino); 10323 __put_user(st.st_mode, &target_st->st_mode); 10324 __put_user(st.st_uid, &target_st->st_uid); 10325 __put_user(st.st_gid, &target_st->st_gid); 10326 __put_user(st.st_nlink, &target_st->st_nlink); 10327 __put_user(st.st_rdev, &target_st->st_rdev); 10328 __put_user(st.st_size, &target_st->st_size); 10329 __put_user(st.st_blksize, &target_st->st_blksize); 10330 __put_user(st.st_blocks, &target_st->st_blocks); 10331 __put_user(st.st_atime, &target_st->target_st_atime); 10332 __put_user(st.st_mtime, &target_st->target_st_mtime); 10333 __put_user(st.st_ctime, &target_st->target_st_ctime); 10334 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC) 10335 __put_user(st.st_atim.tv_nsec, 10336 &target_st->target_st_atime_nsec); 10337 __put_user(st.st_mtim.tv_nsec, 10338 &target_st->target_st_mtime_nsec); 10339 __put_user(st.st_ctim.tv_nsec, 10340 &target_st->target_st_ctime_nsec); 10341 #endif 10342 unlock_user_struct(target_st, arg2, 1); 10343 } 10344 } 10345 return ret; 10346 #endif 10347 case TARGET_NR_vhangup: 10348 return get_errno(vhangup()); 10349 #ifdef TARGET_NR_syscall 10350 case TARGET_NR_syscall: 10351 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 10352 arg6, arg7, arg8, 0); 10353 #endif 10354 #if defined(TARGET_NR_wait4) 10355 case TARGET_NR_wait4: 10356 { 10357 int status; 10358 abi_long status_ptr = arg2; 10359 struct rusage rusage, *rusage_ptr; 10360 abi_ulong target_rusage = arg4; 10361 abi_long rusage_err; 10362 if (target_rusage) 10363 rusage_ptr = &rusage; 10364 else 10365 rusage_ptr = NULL; 10366 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 10367 if (!is_error(ret)) { 10368 if (status_ptr && ret) { 10369 status = host_to_target_waitstatus(status); 10370 if (put_user_s32(status, status_ptr)) 10371 return -TARGET_EFAULT; 10372 } 10373 if (target_rusage) { 10374 rusage_err = host_to_target_rusage(target_rusage, &rusage); 10375 if (rusage_err) { 10376 ret = rusage_err; 10377 } 10378 } 10379 } 10380 } 10381 return ret; 10382 #endif 10383 #ifdef TARGET_NR_swapoff 10384 case TARGET_NR_swapoff: 10385 if (!(p = lock_user_string(arg1))) 10386 return -TARGET_EFAULT; 10387 ret = get_errno(swapoff(p)); 10388 unlock_user(p, arg1, 0); 10389 return ret; 10390 #endif 10391 case TARGET_NR_sysinfo: 10392 { 10393 struct target_sysinfo *target_value; 10394 struct sysinfo value; 10395 ret = get_errno(sysinfo(&value)); 10396 if (!is_error(ret) && arg1) 10397 { 10398 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 10399 return -TARGET_EFAULT; 10400 __put_user(value.uptime, &target_value->uptime); 10401 __put_user(value.loads[0], &target_value->loads[0]); 10402 __put_user(value.loads[1], &target_value->loads[1]); 10403 __put_user(value.loads[2], &target_value->loads[2]); 10404 __put_user(value.totalram, &target_value->totalram); 10405 __put_user(value.freeram, &target_value->freeram); 10406 __put_user(value.sharedram, &target_value->sharedram); 10407 __put_user(value.bufferram, &target_value->bufferram); 10408 __put_user(value.totalswap, &target_value->totalswap); 10409 __put_user(value.freeswap, &target_value->freeswap); 10410 __put_user(value.procs, &target_value->procs); 10411 __put_user(value.totalhigh, &target_value->totalhigh); 10412 __put_user(value.freehigh, &target_value->freehigh); 10413 __put_user(value.mem_unit, &target_value->mem_unit); 10414 unlock_user_struct(target_value, arg1, 1); 10415 } 10416 } 10417 return ret; 10418 #ifdef TARGET_NR_ipc 10419 case TARGET_NR_ipc: 10420 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 10421 #endif 10422 #ifdef TARGET_NR_semget 10423 case TARGET_NR_semget: 10424 return get_errno(semget(arg1, arg2, arg3)); 10425 #endif 10426 #ifdef TARGET_NR_semop 10427 case TARGET_NR_semop: 10428 return do_semtimedop(arg1, arg2, arg3, 0, false); 10429 #endif 10430 #ifdef TARGET_NR_semtimedop 10431 case TARGET_NR_semtimedop: 10432 return do_semtimedop(arg1, arg2, arg3, arg4, false); 10433 #endif 10434 #ifdef TARGET_NR_semtimedop_time64 10435 case TARGET_NR_semtimedop_time64: 10436 return do_semtimedop(arg1, arg2, arg3, arg4, true); 10437 #endif 10438 #ifdef TARGET_NR_semctl 10439 case TARGET_NR_semctl: 10440 return do_semctl(arg1, arg2, arg3, arg4); 10441 #endif 10442 #ifdef TARGET_NR_msgctl 10443 case TARGET_NR_msgctl: 10444 return do_msgctl(arg1, arg2, arg3); 10445 #endif 10446 #ifdef TARGET_NR_msgget 10447 case TARGET_NR_msgget: 10448 return get_errno(msgget(arg1, arg2)); 10449 #endif 10450 #ifdef TARGET_NR_msgrcv 10451 case TARGET_NR_msgrcv: 10452 return do_msgrcv(arg1, arg2, arg3, arg4, arg5); 10453 #endif 10454 #ifdef TARGET_NR_msgsnd 10455 case TARGET_NR_msgsnd: 10456 return do_msgsnd(arg1, arg2, arg3, arg4); 10457 #endif 10458 #ifdef TARGET_NR_shmget 10459 case TARGET_NR_shmget: 10460 return get_errno(shmget(arg1, arg2, arg3)); 10461 #endif 10462 #ifdef TARGET_NR_shmctl 10463 case TARGET_NR_shmctl: 10464 return do_shmctl(arg1, arg2, arg3); 10465 #endif 10466 #ifdef TARGET_NR_shmat 10467 case TARGET_NR_shmat: 10468 return do_shmat(cpu_env, arg1, arg2, arg3); 10469 #endif 10470 #ifdef TARGET_NR_shmdt 10471 case TARGET_NR_shmdt: 10472 return do_shmdt(arg1); 10473 #endif 10474 case TARGET_NR_fsync: 10475 return get_errno(fsync(arg1)); 10476 case TARGET_NR_clone: 10477 /* Linux manages to have three different orderings for its 10478 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 10479 * match the kernel's CONFIG_CLONE_* settings. 10480 * Microblaze is further special in that it uses a sixth 10481 * implicit argument to clone for the TLS pointer. 10482 */ 10483 #if defined(TARGET_MICROBLAZE) 10484 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 10485 #elif defined(TARGET_CLONE_BACKWARDS) 10486 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 10487 #elif defined(TARGET_CLONE_BACKWARDS2) 10488 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 10489 #else 10490 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 10491 #endif 10492 return ret; 10493 #ifdef __NR_exit_group 10494 /* new thread calls */ 10495 case TARGET_NR_exit_group: 10496 preexit_cleanup(cpu_env, arg1); 10497 return get_errno(exit_group(arg1)); 10498 #endif 10499 case TARGET_NR_setdomainname: 10500 if (!(p = lock_user_string(arg1))) 10501 return -TARGET_EFAULT; 10502 ret = get_errno(setdomainname(p, arg2)); 10503 unlock_user(p, arg1, 0); 10504 return ret; 10505 case TARGET_NR_uname: 10506 /* no need to transcode because we use the linux syscall */ 10507 { 10508 struct new_utsname * buf; 10509 10510 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 10511 return -TARGET_EFAULT; 10512 ret = get_errno(sys_uname(buf)); 10513 if (!is_error(ret)) { 10514 /* Overwrite the native machine name with whatever is being 10515 emulated. */ 10516 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env), 10517 sizeof(buf->machine)); 10518 /* Allow the user to override the reported release. */ 10519 if (qemu_uname_release && *qemu_uname_release) { 10520 g_strlcpy(buf->release, qemu_uname_release, 10521 sizeof(buf->release)); 10522 } 10523 } 10524 unlock_user_struct(buf, arg1, 1); 10525 } 10526 return ret; 10527 #ifdef TARGET_I386 10528 case TARGET_NR_modify_ldt: 10529 return do_modify_ldt(cpu_env, arg1, arg2, arg3); 10530 #if !defined(TARGET_X86_64) 10531 case TARGET_NR_vm86: 10532 return do_vm86(cpu_env, arg1, arg2); 10533 #endif 10534 #endif 10535 #if defined(TARGET_NR_adjtimex) 10536 case TARGET_NR_adjtimex: 10537 { 10538 struct timex host_buf; 10539 10540 if (target_to_host_timex(&host_buf, arg1) != 0) { 10541 return -TARGET_EFAULT; 10542 } 10543 ret = get_errno(adjtimex(&host_buf)); 10544 if (!is_error(ret)) { 10545 if (host_to_target_timex(arg1, &host_buf) != 0) { 10546 return -TARGET_EFAULT; 10547 } 10548 } 10549 } 10550 return ret; 10551 #endif 10552 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 10553 case TARGET_NR_clock_adjtime: 10554 { 10555 struct timex htx, *phtx = &htx; 10556 10557 if (target_to_host_timex(phtx, arg2) != 0) { 10558 return -TARGET_EFAULT; 10559 } 10560 ret = get_errno(clock_adjtime(arg1, phtx)); 10561 if (!is_error(ret) && phtx) { 10562 if (host_to_target_timex(arg2, phtx) != 0) { 10563 return -TARGET_EFAULT; 10564 } 10565 } 10566 } 10567 return ret; 10568 #endif 10569 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 10570 case TARGET_NR_clock_adjtime64: 10571 { 10572 struct timex htx; 10573 10574 if (target_to_host_timex64(&htx, arg2) != 0) { 10575 return -TARGET_EFAULT; 10576 } 10577 ret = get_errno(clock_adjtime(arg1, &htx)); 10578 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) { 10579 return -TARGET_EFAULT; 10580 } 10581 } 10582 return ret; 10583 #endif 10584 case TARGET_NR_getpgid: 10585 return get_errno(getpgid(arg1)); 10586 case TARGET_NR_fchdir: 10587 return get_errno(fchdir(arg1)); 10588 case TARGET_NR_personality: 10589 return get_errno(personality(arg1)); 10590 #ifdef TARGET_NR__llseek /* Not on alpha */ 10591 case TARGET_NR__llseek: 10592 { 10593 int64_t res; 10594 #if !defined(__NR_llseek) 10595 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 10596 if (res == -1) { 10597 ret = get_errno(res); 10598 } else { 10599 ret = 0; 10600 } 10601 #else 10602 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 10603 #endif 10604 if ((ret == 0) && put_user_s64(res, arg4)) { 10605 return -TARGET_EFAULT; 10606 } 10607 } 10608 return ret; 10609 #endif 10610 #ifdef TARGET_NR_getdents 10611 case TARGET_NR_getdents: 10612 return do_getdents(arg1, arg2, arg3); 10613 #endif /* TARGET_NR_getdents */ 10614 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 10615 case TARGET_NR_getdents64: 10616 return do_getdents64(arg1, arg2, arg3); 10617 #endif /* TARGET_NR_getdents64 */ 10618 #if defined(TARGET_NR__newselect) 10619 case TARGET_NR__newselect: 10620 return do_select(arg1, arg2, arg3, arg4, arg5); 10621 #endif 10622 #ifdef TARGET_NR_poll 10623 case TARGET_NR_poll: 10624 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false); 10625 #endif 10626 #ifdef TARGET_NR_ppoll 10627 case TARGET_NR_ppoll: 10628 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false); 10629 #endif 10630 #ifdef TARGET_NR_ppoll_time64 10631 case TARGET_NR_ppoll_time64: 10632 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true); 10633 #endif 10634 case TARGET_NR_flock: 10635 /* NOTE: the flock constant seems to be the same for every 10636 Linux platform */ 10637 return get_errno(safe_flock(arg1, arg2)); 10638 case TARGET_NR_readv: 10639 { 10640 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10641 if (vec != NULL) { 10642 ret = get_errno(safe_readv(arg1, vec, arg3)); 10643 unlock_iovec(vec, arg2, arg3, 1); 10644 } else { 10645 ret = -host_to_target_errno(errno); 10646 } 10647 } 10648 return ret; 10649 case TARGET_NR_writev: 10650 { 10651 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10652 if (vec != NULL) { 10653 ret = get_errno(safe_writev(arg1, vec, arg3)); 10654 unlock_iovec(vec, arg2, arg3, 0); 10655 } else { 10656 ret = -host_to_target_errno(errno); 10657 } 10658 } 10659 return ret; 10660 #if defined(TARGET_NR_preadv) 10661 case TARGET_NR_preadv: 10662 { 10663 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10664 if (vec != NULL) { 10665 unsigned long low, high; 10666 10667 target_to_host_low_high(arg4, arg5, &low, &high); 10668 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high)); 10669 unlock_iovec(vec, arg2, arg3, 1); 10670 } else { 10671 ret = -host_to_target_errno(errno); 10672 } 10673 } 10674 return ret; 10675 #endif 10676 #if defined(TARGET_NR_pwritev) 10677 case TARGET_NR_pwritev: 10678 { 10679 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10680 if (vec != NULL) { 10681 unsigned long low, high; 10682 10683 target_to_host_low_high(arg4, arg5, &low, &high); 10684 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high)); 10685 unlock_iovec(vec, arg2, arg3, 0); 10686 } else { 10687 ret = -host_to_target_errno(errno); 10688 } 10689 } 10690 return ret; 10691 #endif 10692 case TARGET_NR_getsid: 10693 return get_errno(getsid(arg1)); 10694 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 10695 case TARGET_NR_fdatasync: 10696 return get_errno(fdatasync(arg1)); 10697 #endif 10698 case TARGET_NR_sched_getaffinity: 10699 { 10700 unsigned int mask_size; 10701 unsigned long *mask; 10702 10703 /* 10704 * sched_getaffinity needs multiples of ulong, so need to take 10705 * care of mismatches between target ulong and host ulong sizes. 10706 */ 10707 if (arg2 & (sizeof(abi_ulong) - 1)) { 10708 return -TARGET_EINVAL; 10709 } 10710 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10711 10712 mask = alloca(mask_size); 10713 memset(mask, 0, mask_size); 10714 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 10715 10716 if (!is_error(ret)) { 10717 if (ret > arg2) { 10718 /* More data returned than the caller's buffer will fit. 10719 * This only happens if sizeof(abi_long) < sizeof(long) 10720 * and the caller passed us a buffer holding an odd number 10721 * of abi_longs. If the host kernel is actually using the 10722 * extra 4 bytes then fail EINVAL; otherwise we can just 10723 * ignore them and only copy the interesting part. 10724 */ 10725 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 10726 if (numcpus > arg2 * 8) { 10727 return -TARGET_EINVAL; 10728 } 10729 ret = arg2; 10730 } 10731 10732 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 10733 return -TARGET_EFAULT; 10734 } 10735 } 10736 } 10737 return ret; 10738 case TARGET_NR_sched_setaffinity: 10739 { 10740 unsigned int mask_size; 10741 unsigned long *mask; 10742 10743 /* 10744 * sched_setaffinity needs multiples of ulong, so need to take 10745 * care of mismatches between target ulong and host ulong sizes. 10746 */ 10747 if (arg2 & (sizeof(abi_ulong) - 1)) { 10748 return -TARGET_EINVAL; 10749 } 10750 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10751 mask = alloca(mask_size); 10752 10753 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 10754 if (ret) { 10755 return ret; 10756 } 10757 10758 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 10759 } 10760 case TARGET_NR_getcpu: 10761 { 10762 unsigned cpu, node; 10763 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL, 10764 arg2 ? &node : NULL, 10765 NULL)); 10766 if (is_error(ret)) { 10767 return ret; 10768 } 10769 if (arg1 && put_user_u32(cpu, arg1)) { 10770 return -TARGET_EFAULT; 10771 } 10772 if (arg2 && put_user_u32(node, arg2)) { 10773 return -TARGET_EFAULT; 10774 } 10775 } 10776 return ret; 10777 case TARGET_NR_sched_setparam: 10778 { 10779 struct target_sched_param *target_schp; 10780 struct sched_param schp; 10781 10782 if (arg2 == 0) { 10783 return -TARGET_EINVAL; 10784 } 10785 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) { 10786 return -TARGET_EFAULT; 10787 } 10788 schp.sched_priority = tswap32(target_schp->sched_priority); 10789 unlock_user_struct(target_schp, arg2, 0); 10790 return get_errno(sys_sched_setparam(arg1, &schp)); 10791 } 10792 case TARGET_NR_sched_getparam: 10793 { 10794 struct target_sched_param *target_schp; 10795 struct sched_param schp; 10796 10797 if (arg2 == 0) { 10798 return -TARGET_EINVAL; 10799 } 10800 ret = get_errno(sys_sched_getparam(arg1, &schp)); 10801 if (!is_error(ret)) { 10802 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) { 10803 return -TARGET_EFAULT; 10804 } 10805 target_schp->sched_priority = tswap32(schp.sched_priority); 10806 unlock_user_struct(target_schp, arg2, 1); 10807 } 10808 } 10809 return ret; 10810 case TARGET_NR_sched_setscheduler: 10811 { 10812 struct target_sched_param *target_schp; 10813 struct sched_param schp; 10814 if (arg3 == 0) { 10815 return -TARGET_EINVAL; 10816 } 10817 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) { 10818 return -TARGET_EFAULT; 10819 } 10820 schp.sched_priority = tswap32(target_schp->sched_priority); 10821 unlock_user_struct(target_schp, arg3, 0); 10822 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp)); 10823 } 10824 case TARGET_NR_sched_getscheduler: 10825 return get_errno(sys_sched_getscheduler(arg1)); 10826 case TARGET_NR_sched_getattr: 10827 { 10828 struct target_sched_attr *target_scha; 10829 struct sched_attr scha; 10830 if (arg2 == 0) { 10831 return -TARGET_EINVAL; 10832 } 10833 if (arg3 > sizeof(scha)) { 10834 arg3 = sizeof(scha); 10835 } 10836 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4)); 10837 if (!is_error(ret)) { 10838 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10839 if (!target_scha) { 10840 return -TARGET_EFAULT; 10841 } 10842 target_scha->size = tswap32(scha.size); 10843 target_scha->sched_policy = tswap32(scha.sched_policy); 10844 target_scha->sched_flags = tswap64(scha.sched_flags); 10845 target_scha->sched_nice = tswap32(scha.sched_nice); 10846 target_scha->sched_priority = tswap32(scha.sched_priority); 10847 target_scha->sched_runtime = tswap64(scha.sched_runtime); 10848 target_scha->sched_deadline = tswap64(scha.sched_deadline); 10849 target_scha->sched_period = tswap64(scha.sched_period); 10850 if (scha.size > offsetof(struct sched_attr, sched_util_min)) { 10851 target_scha->sched_util_min = tswap32(scha.sched_util_min); 10852 target_scha->sched_util_max = tswap32(scha.sched_util_max); 10853 } 10854 unlock_user(target_scha, arg2, arg3); 10855 } 10856 return ret; 10857 } 10858 case TARGET_NR_sched_setattr: 10859 { 10860 struct target_sched_attr *target_scha; 10861 struct sched_attr scha; 10862 uint32_t size; 10863 int zeroed; 10864 if (arg2 == 0) { 10865 return -TARGET_EINVAL; 10866 } 10867 if (get_user_u32(size, arg2)) { 10868 return -TARGET_EFAULT; 10869 } 10870 if (!size) { 10871 size = offsetof(struct target_sched_attr, sched_util_min); 10872 } 10873 if (size < offsetof(struct target_sched_attr, sched_util_min)) { 10874 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 10875 return -TARGET_EFAULT; 10876 } 10877 return -TARGET_E2BIG; 10878 } 10879 10880 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size); 10881 if (zeroed < 0) { 10882 return zeroed; 10883 } else if (zeroed == 0) { 10884 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 10885 return -TARGET_EFAULT; 10886 } 10887 return -TARGET_E2BIG; 10888 } 10889 if (size > sizeof(struct target_sched_attr)) { 10890 size = sizeof(struct target_sched_attr); 10891 } 10892 10893 target_scha = lock_user(VERIFY_READ, arg2, size, 1); 10894 if (!target_scha) { 10895 return -TARGET_EFAULT; 10896 } 10897 scha.size = size; 10898 scha.sched_policy = tswap32(target_scha->sched_policy); 10899 scha.sched_flags = tswap64(target_scha->sched_flags); 10900 scha.sched_nice = tswap32(target_scha->sched_nice); 10901 scha.sched_priority = tswap32(target_scha->sched_priority); 10902 scha.sched_runtime = tswap64(target_scha->sched_runtime); 10903 scha.sched_deadline = tswap64(target_scha->sched_deadline); 10904 scha.sched_period = tswap64(target_scha->sched_period); 10905 if (size > offsetof(struct target_sched_attr, sched_util_min)) { 10906 scha.sched_util_min = tswap32(target_scha->sched_util_min); 10907 scha.sched_util_max = tswap32(target_scha->sched_util_max); 10908 } 10909 unlock_user(target_scha, arg2, 0); 10910 return get_errno(sys_sched_setattr(arg1, &scha, arg3)); 10911 } 10912 case TARGET_NR_sched_yield: 10913 return get_errno(sched_yield()); 10914 case TARGET_NR_sched_get_priority_max: 10915 return get_errno(sched_get_priority_max(arg1)); 10916 case TARGET_NR_sched_get_priority_min: 10917 return get_errno(sched_get_priority_min(arg1)); 10918 #ifdef TARGET_NR_sched_rr_get_interval 10919 case TARGET_NR_sched_rr_get_interval: 10920 { 10921 struct timespec ts; 10922 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 10923 if (!is_error(ret)) { 10924 ret = host_to_target_timespec(arg2, &ts); 10925 } 10926 } 10927 return ret; 10928 #endif 10929 #ifdef TARGET_NR_sched_rr_get_interval_time64 10930 case TARGET_NR_sched_rr_get_interval_time64: 10931 { 10932 struct timespec ts; 10933 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 10934 if (!is_error(ret)) { 10935 ret = host_to_target_timespec64(arg2, &ts); 10936 } 10937 } 10938 return ret; 10939 #endif 10940 #if defined(TARGET_NR_nanosleep) 10941 case TARGET_NR_nanosleep: 10942 { 10943 struct timespec req, rem; 10944 target_to_host_timespec(&req, arg1); 10945 ret = get_errno(safe_nanosleep(&req, &rem)); 10946 if (is_error(ret) && arg2) { 10947 host_to_target_timespec(arg2, &rem); 10948 } 10949 } 10950 return ret; 10951 #endif 10952 case TARGET_NR_prctl: 10953 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5); 10954 break; 10955 #ifdef TARGET_NR_arch_prctl 10956 case TARGET_NR_arch_prctl: 10957 return do_arch_prctl(cpu_env, arg1, arg2); 10958 #endif 10959 #ifdef TARGET_NR_pread64 10960 case TARGET_NR_pread64: 10961 if (regpairs_aligned(cpu_env, num)) { 10962 arg4 = arg5; 10963 arg5 = arg6; 10964 } 10965 if (arg2 == 0 && arg3 == 0) { 10966 /* Special-case NULL buffer and zero length, which should succeed */ 10967 p = 0; 10968 } else { 10969 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10970 if (!p) { 10971 return -TARGET_EFAULT; 10972 } 10973 } 10974 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 10975 unlock_user(p, arg2, ret); 10976 return ret; 10977 case TARGET_NR_pwrite64: 10978 if (regpairs_aligned(cpu_env, num)) { 10979 arg4 = arg5; 10980 arg5 = arg6; 10981 } 10982 if (arg2 == 0 && arg3 == 0) { 10983 /* Special-case NULL buffer and zero length, which should succeed */ 10984 p = 0; 10985 } else { 10986 p = lock_user(VERIFY_READ, arg2, arg3, 1); 10987 if (!p) { 10988 return -TARGET_EFAULT; 10989 } 10990 } 10991 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 10992 unlock_user(p, arg2, 0); 10993 return ret; 10994 #endif 10995 case TARGET_NR_getcwd: 10996 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 10997 return -TARGET_EFAULT; 10998 ret = get_errno(sys_getcwd1(p, arg2)); 10999 unlock_user(p, arg1, ret); 11000 return ret; 11001 case TARGET_NR_capget: 11002 case TARGET_NR_capset: 11003 { 11004 struct target_user_cap_header *target_header; 11005 struct target_user_cap_data *target_data = NULL; 11006 struct __user_cap_header_struct header; 11007 struct __user_cap_data_struct data[2]; 11008 struct __user_cap_data_struct *dataptr = NULL; 11009 int i, target_datalen; 11010 int data_items = 1; 11011 11012 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 11013 return -TARGET_EFAULT; 11014 } 11015 header.version = tswap32(target_header->version); 11016 header.pid = tswap32(target_header->pid); 11017 11018 if (header.version != _LINUX_CAPABILITY_VERSION) { 11019 /* Version 2 and up takes pointer to two user_data structs */ 11020 data_items = 2; 11021 } 11022 11023 target_datalen = sizeof(*target_data) * data_items; 11024 11025 if (arg2) { 11026 if (num == TARGET_NR_capget) { 11027 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 11028 } else { 11029 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 11030 } 11031 if (!target_data) { 11032 unlock_user_struct(target_header, arg1, 0); 11033 return -TARGET_EFAULT; 11034 } 11035 11036 if (num == TARGET_NR_capset) { 11037 for (i = 0; i < data_items; i++) { 11038 data[i].effective = tswap32(target_data[i].effective); 11039 data[i].permitted = tswap32(target_data[i].permitted); 11040 data[i].inheritable = tswap32(target_data[i].inheritable); 11041 } 11042 } 11043 11044 dataptr = data; 11045 } 11046 11047 if (num == TARGET_NR_capget) { 11048 ret = get_errno(capget(&header, dataptr)); 11049 } else { 11050 ret = get_errno(capset(&header, dataptr)); 11051 } 11052 11053 /* The kernel always updates version for both capget and capset */ 11054 target_header->version = tswap32(header.version); 11055 unlock_user_struct(target_header, arg1, 1); 11056 11057 if (arg2) { 11058 if (num == TARGET_NR_capget) { 11059 for (i = 0; i < data_items; i++) { 11060 target_data[i].effective = tswap32(data[i].effective); 11061 target_data[i].permitted = tswap32(data[i].permitted); 11062 target_data[i].inheritable = tswap32(data[i].inheritable); 11063 } 11064 unlock_user(target_data, arg2, target_datalen); 11065 } else { 11066 unlock_user(target_data, arg2, 0); 11067 } 11068 } 11069 return ret; 11070 } 11071 case TARGET_NR_sigaltstack: 11072 return do_sigaltstack(arg1, arg2, cpu_env); 11073 11074 #ifdef CONFIG_SENDFILE 11075 #ifdef TARGET_NR_sendfile 11076 case TARGET_NR_sendfile: 11077 { 11078 off_t *offp = NULL; 11079 off_t off; 11080 if (arg3) { 11081 ret = get_user_sal(off, arg3); 11082 if (is_error(ret)) { 11083 return ret; 11084 } 11085 offp = &off; 11086 } 11087 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11088 if (!is_error(ret) && arg3) { 11089 abi_long ret2 = put_user_sal(off, arg3); 11090 if (is_error(ret2)) { 11091 ret = ret2; 11092 } 11093 } 11094 return ret; 11095 } 11096 #endif 11097 #ifdef TARGET_NR_sendfile64 11098 case TARGET_NR_sendfile64: 11099 { 11100 off_t *offp = NULL; 11101 off_t off; 11102 if (arg3) { 11103 ret = get_user_s64(off, arg3); 11104 if (is_error(ret)) { 11105 return ret; 11106 } 11107 offp = &off; 11108 } 11109 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11110 if (!is_error(ret) && arg3) { 11111 abi_long ret2 = put_user_s64(off, arg3); 11112 if (is_error(ret2)) { 11113 ret = ret2; 11114 } 11115 } 11116 return ret; 11117 } 11118 #endif 11119 #endif 11120 #ifdef TARGET_NR_vfork 11121 case TARGET_NR_vfork: 11122 return get_errno(do_fork(cpu_env, 11123 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 11124 0, 0, 0, 0)); 11125 #endif 11126 #ifdef TARGET_NR_ugetrlimit 11127 case TARGET_NR_ugetrlimit: 11128 { 11129 struct rlimit rlim; 11130 int resource = target_to_host_resource(arg1); 11131 ret = get_errno(getrlimit(resource, &rlim)); 11132 if (!is_error(ret)) { 11133 struct target_rlimit *target_rlim; 11134 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 11135 return -TARGET_EFAULT; 11136 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 11137 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 11138 unlock_user_struct(target_rlim, arg2, 1); 11139 } 11140 return ret; 11141 } 11142 #endif 11143 #ifdef TARGET_NR_truncate64 11144 case TARGET_NR_truncate64: 11145 if (!(p = lock_user_string(arg1))) 11146 return -TARGET_EFAULT; 11147 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 11148 unlock_user(p, arg1, 0); 11149 return ret; 11150 #endif 11151 #ifdef TARGET_NR_ftruncate64 11152 case TARGET_NR_ftruncate64: 11153 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 11154 #endif 11155 #ifdef TARGET_NR_stat64 11156 case TARGET_NR_stat64: 11157 if (!(p = lock_user_string(arg1))) { 11158 return -TARGET_EFAULT; 11159 } 11160 ret = get_errno(stat(path(p), &st)); 11161 unlock_user(p, arg1, 0); 11162 if (!is_error(ret)) 11163 ret = host_to_target_stat64(cpu_env, arg2, &st); 11164 return ret; 11165 #endif 11166 #ifdef TARGET_NR_lstat64 11167 case TARGET_NR_lstat64: 11168 if (!(p = lock_user_string(arg1))) { 11169 return -TARGET_EFAULT; 11170 } 11171 ret = get_errno(lstat(path(p), &st)); 11172 unlock_user(p, arg1, 0); 11173 if (!is_error(ret)) 11174 ret = host_to_target_stat64(cpu_env, arg2, &st); 11175 return ret; 11176 #endif 11177 #ifdef TARGET_NR_fstat64 11178 case TARGET_NR_fstat64: 11179 ret = get_errno(fstat(arg1, &st)); 11180 if (!is_error(ret)) 11181 ret = host_to_target_stat64(cpu_env, arg2, &st); 11182 return ret; 11183 #endif 11184 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 11185 #ifdef TARGET_NR_fstatat64 11186 case TARGET_NR_fstatat64: 11187 #endif 11188 #ifdef TARGET_NR_newfstatat 11189 case TARGET_NR_newfstatat: 11190 #endif 11191 if (!(p = lock_user_string(arg2))) { 11192 return -TARGET_EFAULT; 11193 } 11194 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 11195 unlock_user(p, arg2, 0); 11196 if (!is_error(ret)) 11197 ret = host_to_target_stat64(cpu_env, arg3, &st); 11198 return ret; 11199 #endif 11200 #if defined(TARGET_NR_statx) 11201 case TARGET_NR_statx: 11202 { 11203 struct target_statx *target_stx; 11204 int dirfd = arg1; 11205 int flags = arg3; 11206 11207 p = lock_user_string(arg2); 11208 if (p == NULL) { 11209 return -TARGET_EFAULT; 11210 } 11211 #if defined(__NR_statx) 11212 { 11213 /* 11214 * It is assumed that struct statx is architecture independent. 11215 */ 11216 struct target_statx host_stx; 11217 int mask = arg4; 11218 11219 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx)); 11220 if (!is_error(ret)) { 11221 if (host_to_target_statx(&host_stx, arg5) != 0) { 11222 unlock_user(p, arg2, 0); 11223 return -TARGET_EFAULT; 11224 } 11225 } 11226 11227 if (ret != -TARGET_ENOSYS) { 11228 unlock_user(p, arg2, 0); 11229 return ret; 11230 } 11231 } 11232 #endif 11233 ret = get_errno(fstatat(dirfd, path(p), &st, flags)); 11234 unlock_user(p, arg2, 0); 11235 11236 if (!is_error(ret)) { 11237 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) { 11238 return -TARGET_EFAULT; 11239 } 11240 memset(target_stx, 0, sizeof(*target_stx)); 11241 __put_user(major(st.st_dev), &target_stx->stx_dev_major); 11242 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor); 11243 __put_user(st.st_ino, &target_stx->stx_ino); 11244 __put_user(st.st_mode, &target_stx->stx_mode); 11245 __put_user(st.st_uid, &target_stx->stx_uid); 11246 __put_user(st.st_gid, &target_stx->stx_gid); 11247 __put_user(st.st_nlink, &target_stx->stx_nlink); 11248 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major); 11249 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor); 11250 __put_user(st.st_size, &target_stx->stx_size); 11251 __put_user(st.st_blksize, &target_stx->stx_blksize); 11252 __put_user(st.st_blocks, &target_stx->stx_blocks); 11253 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec); 11254 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec); 11255 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec); 11256 unlock_user_struct(target_stx, arg5, 1); 11257 } 11258 } 11259 return ret; 11260 #endif 11261 #ifdef TARGET_NR_lchown 11262 case TARGET_NR_lchown: 11263 if (!(p = lock_user_string(arg1))) 11264 return -TARGET_EFAULT; 11265 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 11266 unlock_user(p, arg1, 0); 11267 return ret; 11268 #endif 11269 #ifdef TARGET_NR_getuid 11270 case TARGET_NR_getuid: 11271 return get_errno(high2lowuid(getuid())); 11272 #endif 11273 #ifdef TARGET_NR_getgid 11274 case TARGET_NR_getgid: 11275 return get_errno(high2lowgid(getgid())); 11276 #endif 11277 #ifdef TARGET_NR_geteuid 11278 case TARGET_NR_geteuid: 11279 return get_errno(high2lowuid(geteuid())); 11280 #endif 11281 #ifdef TARGET_NR_getegid 11282 case TARGET_NR_getegid: 11283 return get_errno(high2lowgid(getegid())); 11284 #endif 11285 case TARGET_NR_setreuid: 11286 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11287 case TARGET_NR_setregid: 11288 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11289 case TARGET_NR_getgroups: 11290 { 11291 int gidsetsize = arg1; 11292 target_id *target_grouplist; 11293 gid_t *grouplist; 11294 int i; 11295 11296 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11297 ret = get_errno(getgroups(gidsetsize, grouplist)); 11298 if (gidsetsize == 0) 11299 return ret; 11300 if (!is_error(ret)) { 11301 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 11302 if (!target_grouplist) 11303 return -TARGET_EFAULT; 11304 for(i = 0;i < ret; i++) 11305 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11306 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 11307 } 11308 } 11309 return ret; 11310 case TARGET_NR_setgroups: 11311 { 11312 int gidsetsize = arg1; 11313 target_id *target_grouplist; 11314 gid_t *grouplist = NULL; 11315 int i; 11316 if (gidsetsize) { 11317 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11318 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 11319 if (!target_grouplist) { 11320 return -TARGET_EFAULT; 11321 } 11322 for (i = 0; i < gidsetsize; i++) { 11323 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11324 } 11325 unlock_user(target_grouplist, arg2, 0); 11326 } 11327 return get_errno(setgroups(gidsetsize, grouplist)); 11328 } 11329 case TARGET_NR_fchown: 11330 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11331 #if defined(TARGET_NR_fchownat) 11332 case TARGET_NR_fchownat: 11333 if (!(p = lock_user_string(arg2))) 11334 return -TARGET_EFAULT; 11335 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11336 low2highgid(arg4), arg5)); 11337 unlock_user(p, arg2, 0); 11338 return ret; 11339 #endif 11340 #ifdef TARGET_NR_setresuid 11341 case TARGET_NR_setresuid: 11342 return get_errno(sys_setresuid(low2highuid(arg1), 11343 low2highuid(arg2), 11344 low2highuid(arg3))); 11345 #endif 11346 #ifdef TARGET_NR_getresuid 11347 case TARGET_NR_getresuid: 11348 { 11349 uid_t ruid, euid, suid; 11350 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11351 if (!is_error(ret)) { 11352 if (put_user_id(high2lowuid(ruid), arg1) 11353 || put_user_id(high2lowuid(euid), arg2) 11354 || put_user_id(high2lowuid(suid), arg3)) 11355 return -TARGET_EFAULT; 11356 } 11357 } 11358 return ret; 11359 #endif 11360 #ifdef TARGET_NR_getresgid 11361 case TARGET_NR_setresgid: 11362 return get_errno(sys_setresgid(low2highgid(arg1), 11363 low2highgid(arg2), 11364 low2highgid(arg3))); 11365 #endif 11366 #ifdef TARGET_NR_getresgid 11367 case TARGET_NR_getresgid: 11368 { 11369 gid_t rgid, egid, sgid; 11370 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11371 if (!is_error(ret)) { 11372 if (put_user_id(high2lowgid(rgid), arg1) 11373 || put_user_id(high2lowgid(egid), arg2) 11374 || put_user_id(high2lowgid(sgid), arg3)) 11375 return -TARGET_EFAULT; 11376 } 11377 } 11378 return ret; 11379 #endif 11380 #ifdef TARGET_NR_chown 11381 case TARGET_NR_chown: 11382 if (!(p = lock_user_string(arg1))) 11383 return -TARGET_EFAULT; 11384 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11385 unlock_user(p, arg1, 0); 11386 return ret; 11387 #endif 11388 case TARGET_NR_setuid: 11389 return get_errno(sys_setuid(low2highuid(arg1))); 11390 case TARGET_NR_setgid: 11391 return get_errno(sys_setgid(low2highgid(arg1))); 11392 case TARGET_NR_setfsuid: 11393 return get_errno(setfsuid(arg1)); 11394 case TARGET_NR_setfsgid: 11395 return get_errno(setfsgid(arg1)); 11396 11397 #ifdef TARGET_NR_lchown32 11398 case TARGET_NR_lchown32: 11399 if (!(p = lock_user_string(arg1))) 11400 return -TARGET_EFAULT; 11401 ret = get_errno(lchown(p, arg2, arg3)); 11402 unlock_user(p, arg1, 0); 11403 return ret; 11404 #endif 11405 #ifdef TARGET_NR_getuid32 11406 case TARGET_NR_getuid32: 11407 return get_errno(getuid()); 11408 #endif 11409 11410 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11411 /* Alpha specific */ 11412 case TARGET_NR_getxuid: 11413 { 11414 uid_t euid; 11415 euid=geteuid(); 11416 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 11417 } 11418 return get_errno(getuid()); 11419 #endif 11420 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11421 /* Alpha specific */ 11422 case TARGET_NR_getxgid: 11423 { 11424 uid_t egid; 11425 egid=getegid(); 11426 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 11427 } 11428 return get_errno(getgid()); 11429 #endif 11430 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 11431 /* Alpha specific */ 11432 case TARGET_NR_osf_getsysinfo: 11433 ret = -TARGET_EOPNOTSUPP; 11434 switch (arg1) { 11435 case TARGET_GSI_IEEE_FP_CONTROL: 11436 { 11437 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env); 11438 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr; 11439 11440 swcr &= ~SWCR_STATUS_MASK; 11441 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK; 11442 11443 if (put_user_u64 (swcr, arg2)) 11444 return -TARGET_EFAULT; 11445 ret = 0; 11446 } 11447 break; 11448 11449 /* case GSI_IEEE_STATE_AT_SIGNAL: 11450 -- Not implemented in linux kernel. 11451 case GSI_UACPROC: 11452 -- Retrieves current unaligned access state; not much used. 11453 case GSI_PROC_TYPE: 11454 -- Retrieves implver information; surely not used. 11455 case GSI_GET_HWRPB: 11456 -- Grabs a copy of the HWRPB; surely not used. 11457 */ 11458 } 11459 return ret; 11460 #endif 11461 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 11462 /* Alpha specific */ 11463 case TARGET_NR_osf_setsysinfo: 11464 ret = -TARGET_EOPNOTSUPP; 11465 switch (arg1) { 11466 case TARGET_SSI_IEEE_FP_CONTROL: 11467 { 11468 uint64_t swcr, fpcr; 11469 11470 if (get_user_u64 (swcr, arg2)) { 11471 return -TARGET_EFAULT; 11472 } 11473 11474 /* 11475 * The kernel calls swcr_update_status to update the 11476 * status bits from the fpcr at every point that it 11477 * could be queried. Therefore, we store the status 11478 * bits only in FPCR. 11479 */ 11480 ((CPUAlphaState *)cpu_env)->swcr 11481 = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK); 11482 11483 fpcr = cpu_alpha_load_fpcr(cpu_env); 11484 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32); 11485 fpcr |= alpha_ieee_swcr_to_fpcr(swcr); 11486 cpu_alpha_store_fpcr(cpu_env, fpcr); 11487 ret = 0; 11488 } 11489 break; 11490 11491 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 11492 { 11493 uint64_t exc, fpcr, fex; 11494 11495 if (get_user_u64(exc, arg2)) { 11496 return -TARGET_EFAULT; 11497 } 11498 exc &= SWCR_STATUS_MASK; 11499 fpcr = cpu_alpha_load_fpcr(cpu_env); 11500 11501 /* Old exceptions are not signaled. */ 11502 fex = alpha_ieee_fpcr_to_swcr(fpcr); 11503 fex = exc & ~fex; 11504 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT; 11505 fex &= ((CPUArchState *)cpu_env)->swcr; 11506 11507 /* Update the hardware fpcr. */ 11508 fpcr |= alpha_ieee_swcr_to_fpcr(exc); 11509 cpu_alpha_store_fpcr(cpu_env, fpcr); 11510 11511 if (fex) { 11512 int si_code = TARGET_FPE_FLTUNK; 11513 target_siginfo_t info; 11514 11515 if (fex & SWCR_TRAP_ENABLE_DNO) { 11516 si_code = TARGET_FPE_FLTUND; 11517 } 11518 if (fex & SWCR_TRAP_ENABLE_INE) { 11519 si_code = TARGET_FPE_FLTRES; 11520 } 11521 if (fex & SWCR_TRAP_ENABLE_UNF) { 11522 si_code = TARGET_FPE_FLTUND; 11523 } 11524 if (fex & SWCR_TRAP_ENABLE_OVF) { 11525 si_code = TARGET_FPE_FLTOVF; 11526 } 11527 if (fex & SWCR_TRAP_ENABLE_DZE) { 11528 si_code = TARGET_FPE_FLTDIV; 11529 } 11530 if (fex & SWCR_TRAP_ENABLE_INV) { 11531 si_code = TARGET_FPE_FLTINV; 11532 } 11533 11534 info.si_signo = SIGFPE; 11535 info.si_errno = 0; 11536 info.si_code = si_code; 11537 info._sifields._sigfault._addr 11538 = ((CPUArchState *)cpu_env)->pc; 11539 queue_signal((CPUArchState *)cpu_env, info.si_signo, 11540 QEMU_SI_FAULT, &info); 11541 } 11542 ret = 0; 11543 } 11544 break; 11545 11546 /* case SSI_NVPAIRS: 11547 -- Used with SSIN_UACPROC to enable unaligned accesses. 11548 case SSI_IEEE_STATE_AT_SIGNAL: 11549 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 11550 -- Not implemented in linux kernel 11551 */ 11552 } 11553 return ret; 11554 #endif 11555 #ifdef TARGET_NR_osf_sigprocmask 11556 /* Alpha specific. */ 11557 case TARGET_NR_osf_sigprocmask: 11558 { 11559 abi_ulong mask; 11560 int how; 11561 sigset_t set, oldset; 11562 11563 switch(arg1) { 11564 case TARGET_SIG_BLOCK: 11565 how = SIG_BLOCK; 11566 break; 11567 case TARGET_SIG_UNBLOCK: 11568 how = SIG_UNBLOCK; 11569 break; 11570 case TARGET_SIG_SETMASK: 11571 how = SIG_SETMASK; 11572 break; 11573 default: 11574 return -TARGET_EINVAL; 11575 } 11576 mask = arg2; 11577 target_to_host_old_sigset(&set, &mask); 11578 ret = do_sigprocmask(how, &set, &oldset); 11579 if (!ret) { 11580 host_to_target_old_sigset(&mask, &oldset); 11581 ret = mask; 11582 } 11583 } 11584 return ret; 11585 #endif 11586 11587 #ifdef TARGET_NR_getgid32 11588 case TARGET_NR_getgid32: 11589 return get_errno(getgid()); 11590 #endif 11591 #ifdef TARGET_NR_geteuid32 11592 case TARGET_NR_geteuid32: 11593 return get_errno(geteuid()); 11594 #endif 11595 #ifdef TARGET_NR_getegid32 11596 case TARGET_NR_getegid32: 11597 return get_errno(getegid()); 11598 #endif 11599 #ifdef TARGET_NR_setreuid32 11600 case TARGET_NR_setreuid32: 11601 return get_errno(setreuid(arg1, arg2)); 11602 #endif 11603 #ifdef TARGET_NR_setregid32 11604 case TARGET_NR_setregid32: 11605 return get_errno(setregid(arg1, arg2)); 11606 #endif 11607 #ifdef TARGET_NR_getgroups32 11608 case TARGET_NR_getgroups32: 11609 { 11610 int gidsetsize = arg1; 11611 uint32_t *target_grouplist; 11612 gid_t *grouplist; 11613 int i; 11614 11615 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11616 ret = get_errno(getgroups(gidsetsize, grouplist)); 11617 if (gidsetsize == 0) 11618 return ret; 11619 if (!is_error(ret)) { 11620 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 11621 if (!target_grouplist) { 11622 return -TARGET_EFAULT; 11623 } 11624 for(i = 0;i < ret; i++) 11625 target_grouplist[i] = tswap32(grouplist[i]); 11626 unlock_user(target_grouplist, arg2, gidsetsize * 4); 11627 } 11628 } 11629 return ret; 11630 #endif 11631 #ifdef TARGET_NR_setgroups32 11632 case TARGET_NR_setgroups32: 11633 { 11634 int gidsetsize = arg1; 11635 uint32_t *target_grouplist; 11636 gid_t *grouplist; 11637 int i; 11638 11639 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11640 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 11641 if (!target_grouplist) { 11642 return -TARGET_EFAULT; 11643 } 11644 for(i = 0;i < gidsetsize; i++) 11645 grouplist[i] = tswap32(target_grouplist[i]); 11646 unlock_user(target_grouplist, arg2, 0); 11647 return get_errno(setgroups(gidsetsize, grouplist)); 11648 } 11649 #endif 11650 #ifdef TARGET_NR_fchown32 11651 case TARGET_NR_fchown32: 11652 return get_errno(fchown(arg1, arg2, arg3)); 11653 #endif 11654 #ifdef TARGET_NR_setresuid32 11655 case TARGET_NR_setresuid32: 11656 return get_errno(sys_setresuid(arg1, arg2, arg3)); 11657 #endif 11658 #ifdef TARGET_NR_getresuid32 11659 case TARGET_NR_getresuid32: 11660 { 11661 uid_t ruid, euid, suid; 11662 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11663 if (!is_error(ret)) { 11664 if (put_user_u32(ruid, arg1) 11665 || put_user_u32(euid, arg2) 11666 || put_user_u32(suid, arg3)) 11667 return -TARGET_EFAULT; 11668 } 11669 } 11670 return ret; 11671 #endif 11672 #ifdef TARGET_NR_setresgid32 11673 case TARGET_NR_setresgid32: 11674 return get_errno(sys_setresgid(arg1, arg2, arg3)); 11675 #endif 11676 #ifdef TARGET_NR_getresgid32 11677 case TARGET_NR_getresgid32: 11678 { 11679 gid_t rgid, egid, sgid; 11680 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11681 if (!is_error(ret)) { 11682 if (put_user_u32(rgid, arg1) 11683 || put_user_u32(egid, arg2) 11684 || put_user_u32(sgid, arg3)) 11685 return -TARGET_EFAULT; 11686 } 11687 } 11688 return ret; 11689 #endif 11690 #ifdef TARGET_NR_chown32 11691 case TARGET_NR_chown32: 11692 if (!(p = lock_user_string(arg1))) 11693 return -TARGET_EFAULT; 11694 ret = get_errno(chown(p, arg2, arg3)); 11695 unlock_user(p, arg1, 0); 11696 return ret; 11697 #endif 11698 #ifdef TARGET_NR_setuid32 11699 case TARGET_NR_setuid32: 11700 return get_errno(sys_setuid(arg1)); 11701 #endif 11702 #ifdef TARGET_NR_setgid32 11703 case TARGET_NR_setgid32: 11704 return get_errno(sys_setgid(arg1)); 11705 #endif 11706 #ifdef TARGET_NR_setfsuid32 11707 case TARGET_NR_setfsuid32: 11708 return get_errno(setfsuid(arg1)); 11709 #endif 11710 #ifdef TARGET_NR_setfsgid32 11711 case TARGET_NR_setfsgid32: 11712 return get_errno(setfsgid(arg1)); 11713 #endif 11714 #ifdef TARGET_NR_mincore 11715 case TARGET_NR_mincore: 11716 { 11717 void *a = lock_user(VERIFY_READ, arg1, arg2, 0); 11718 if (!a) { 11719 return -TARGET_ENOMEM; 11720 } 11721 p = lock_user_string(arg3); 11722 if (!p) { 11723 ret = -TARGET_EFAULT; 11724 } else { 11725 ret = get_errno(mincore(a, arg2, p)); 11726 unlock_user(p, arg3, ret); 11727 } 11728 unlock_user(a, arg1, 0); 11729 } 11730 return ret; 11731 #endif 11732 #ifdef TARGET_NR_arm_fadvise64_64 11733 case TARGET_NR_arm_fadvise64_64: 11734 /* arm_fadvise64_64 looks like fadvise64_64 but 11735 * with different argument order: fd, advice, offset, len 11736 * rather than the usual fd, offset, len, advice. 11737 * Note that offset and len are both 64-bit so appear as 11738 * pairs of 32-bit registers. 11739 */ 11740 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 11741 target_offset64(arg5, arg6), arg2); 11742 return -host_to_target_errno(ret); 11743 #endif 11744 11745 #if TARGET_ABI_BITS == 32 11746 11747 #ifdef TARGET_NR_fadvise64_64 11748 case TARGET_NR_fadvise64_64: 11749 #if defined(TARGET_PPC) || defined(TARGET_XTENSA) 11750 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 11751 ret = arg2; 11752 arg2 = arg3; 11753 arg3 = arg4; 11754 arg4 = arg5; 11755 arg5 = arg6; 11756 arg6 = ret; 11757 #else 11758 /* 6 args: fd, offset (high, low), len (high, low), advice */ 11759 if (regpairs_aligned(cpu_env, num)) { 11760 /* offset is in (3,4), len in (5,6) and advice in 7 */ 11761 arg2 = arg3; 11762 arg3 = arg4; 11763 arg4 = arg5; 11764 arg5 = arg6; 11765 arg6 = arg7; 11766 } 11767 #endif 11768 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), 11769 target_offset64(arg4, arg5), arg6); 11770 return -host_to_target_errno(ret); 11771 #endif 11772 11773 #ifdef TARGET_NR_fadvise64 11774 case TARGET_NR_fadvise64: 11775 /* 5 args: fd, offset (high, low), len, advice */ 11776 if (regpairs_aligned(cpu_env, num)) { 11777 /* offset is in (3,4), len in 5 and advice in 6 */ 11778 arg2 = arg3; 11779 arg3 = arg4; 11780 arg4 = arg5; 11781 arg5 = arg6; 11782 } 11783 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5); 11784 return -host_to_target_errno(ret); 11785 #endif 11786 11787 #else /* not a 32-bit ABI */ 11788 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 11789 #ifdef TARGET_NR_fadvise64_64 11790 case TARGET_NR_fadvise64_64: 11791 #endif 11792 #ifdef TARGET_NR_fadvise64 11793 case TARGET_NR_fadvise64: 11794 #endif 11795 #ifdef TARGET_S390X 11796 switch (arg4) { 11797 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 11798 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 11799 case 6: arg4 = POSIX_FADV_DONTNEED; break; 11800 case 7: arg4 = POSIX_FADV_NOREUSE; break; 11801 default: break; 11802 } 11803 #endif 11804 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 11805 #endif 11806 #endif /* end of 64-bit ABI fadvise handling */ 11807 11808 #ifdef TARGET_NR_madvise 11809 case TARGET_NR_madvise: 11810 /* A straight passthrough may not be safe because qemu sometimes 11811 turns private file-backed mappings into anonymous mappings. 11812 This will break MADV_DONTNEED. 11813 This is a hint, so ignoring and returning success is ok. */ 11814 return 0; 11815 #endif 11816 #ifdef TARGET_NR_fcntl64 11817 case TARGET_NR_fcntl64: 11818 { 11819 int cmd; 11820 struct flock64 fl; 11821 from_flock64_fn *copyfrom = copy_from_user_flock64; 11822 to_flock64_fn *copyto = copy_to_user_flock64; 11823 11824 #ifdef TARGET_ARM 11825 if (!((CPUARMState *)cpu_env)->eabi) { 11826 copyfrom = copy_from_user_oabi_flock64; 11827 copyto = copy_to_user_oabi_flock64; 11828 } 11829 #endif 11830 11831 cmd = target_to_host_fcntl_cmd(arg2); 11832 if (cmd == -TARGET_EINVAL) { 11833 return cmd; 11834 } 11835 11836 switch(arg2) { 11837 case TARGET_F_GETLK64: 11838 ret = copyfrom(&fl, arg3); 11839 if (ret) { 11840 break; 11841 } 11842 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11843 if (ret == 0) { 11844 ret = copyto(arg3, &fl); 11845 } 11846 break; 11847 11848 case TARGET_F_SETLK64: 11849 case TARGET_F_SETLKW64: 11850 ret = copyfrom(&fl, arg3); 11851 if (ret) { 11852 break; 11853 } 11854 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11855 break; 11856 default: 11857 ret = do_fcntl(arg1, arg2, arg3); 11858 break; 11859 } 11860 return ret; 11861 } 11862 #endif 11863 #ifdef TARGET_NR_cacheflush 11864 case TARGET_NR_cacheflush: 11865 /* self-modifying code is handled automatically, so nothing needed */ 11866 return 0; 11867 #endif 11868 #ifdef TARGET_NR_getpagesize 11869 case TARGET_NR_getpagesize: 11870 return TARGET_PAGE_SIZE; 11871 #endif 11872 case TARGET_NR_gettid: 11873 return get_errno(sys_gettid()); 11874 #ifdef TARGET_NR_readahead 11875 case TARGET_NR_readahead: 11876 #if TARGET_ABI_BITS == 32 11877 if (regpairs_aligned(cpu_env, num)) { 11878 arg2 = arg3; 11879 arg3 = arg4; 11880 arg4 = arg5; 11881 } 11882 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 11883 #else 11884 ret = get_errno(readahead(arg1, arg2, arg3)); 11885 #endif 11886 return ret; 11887 #endif 11888 #ifdef CONFIG_ATTR 11889 #ifdef TARGET_NR_setxattr 11890 case TARGET_NR_listxattr: 11891 case TARGET_NR_llistxattr: 11892 { 11893 void *p, *b = 0; 11894 if (arg2) { 11895 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11896 if (!b) { 11897 return -TARGET_EFAULT; 11898 } 11899 } 11900 p = lock_user_string(arg1); 11901 if (p) { 11902 if (num == TARGET_NR_listxattr) { 11903 ret = get_errno(listxattr(p, b, arg3)); 11904 } else { 11905 ret = get_errno(llistxattr(p, b, arg3)); 11906 } 11907 } else { 11908 ret = -TARGET_EFAULT; 11909 } 11910 unlock_user(p, arg1, 0); 11911 unlock_user(b, arg2, arg3); 11912 return ret; 11913 } 11914 case TARGET_NR_flistxattr: 11915 { 11916 void *b = 0; 11917 if (arg2) { 11918 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11919 if (!b) { 11920 return -TARGET_EFAULT; 11921 } 11922 } 11923 ret = get_errno(flistxattr(arg1, b, arg3)); 11924 unlock_user(b, arg2, arg3); 11925 return ret; 11926 } 11927 case TARGET_NR_setxattr: 11928 case TARGET_NR_lsetxattr: 11929 { 11930 void *p, *n, *v = 0; 11931 if (arg3) { 11932 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11933 if (!v) { 11934 return -TARGET_EFAULT; 11935 } 11936 } 11937 p = lock_user_string(arg1); 11938 n = lock_user_string(arg2); 11939 if (p && n) { 11940 if (num == TARGET_NR_setxattr) { 11941 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 11942 } else { 11943 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 11944 } 11945 } else { 11946 ret = -TARGET_EFAULT; 11947 } 11948 unlock_user(p, arg1, 0); 11949 unlock_user(n, arg2, 0); 11950 unlock_user(v, arg3, 0); 11951 } 11952 return ret; 11953 case TARGET_NR_fsetxattr: 11954 { 11955 void *n, *v = 0; 11956 if (arg3) { 11957 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11958 if (!v) { 11959 return -TARGET_EFAULT; 11960 } 11961 } 11962 n = lock_user_string(arg2); 11963 if (n) { 11964 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 11965 } else { 11966 ret = -TARGET_EFAULT; 11967 } 11968 unlock_user(n, arg2, 0); 11969 unlock_user(v, arg3, 0); 11970 } 11971 return ret; 11972 case TARGET_NR_getxattr: 11973 case TARGET_NR_lgetxattr: 11974 { 11975 void *p, *n, *v = 0; 11976 if (arg3) { 11977 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11978 if (!v) { 11979 return -TARGET_EFAULT; 11980 } 11981 } 11982 p = lock_user_string(arg1); 11983 n = lock_user_string(arg2); 11984 if (p && n) { 11985 if (num == TARGET_NR_getxattr) { 11986 ret = get_errno(getxattr(p, n, v, arg4)); 11987 } else { 11988 ret = get_errno(lgetxattr(p, n, v, arg4)); 11989 } 11990 } else { 11991 ret = -TARGET_EFAULT; 11992 } 11993 unlock_user(p, arg1, 0); 11994 unlock_user(n, arg2, 0); 11995 unlock_user(v, arg3, arg4); 11996 } 11997 return ret; 11998 case TARGET_NR_fgetxattr: 11999 { 12000 void *n, *v = 0; 12001 if (arg3) { 12002 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12003 if (!v) { 12004 return -TARGET_EFAULT; 12005 } 12006 } 12007 n = lock_user_string(arg2); 12008 if (n) { 12009 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 12010 } else { 12011 ret = -TARGET_EFAULT; 12012 } 12013 unlock_user(n, arg2, 0); 12014 unlock_user(v, arg3, arg4); 12015 } 12016 return ret; 12017 case TARGET_NR_removexattr: 12018 case TARGET_NR_lremovexattr: 12019 { 12020 void *p, *n; 12021 p = lock_user_string(arg1); 12022 n = lock_user_string(arg2); 12023 if (p && n) { 12024 if (num == TARGET_NR_removexattr) { 12025 ret = get_errno(removexattr(p, n)); 12026 } else { 12027 ret = get_errno(lremovexattr(p, n)); 12028 } 12029 } else { 12030 ret = -TARGET_EFAULT; 12031 } 12032 unlock_user(p, arg1, 0); 12033 unlock_user(n, arg2, 0); 12034 } 12035 return ret; 12036 case TARGET_NR_fremovexattr: 12037 { 12038 void *n; 12039 n = lock_user_string(arg2); 12040 if (n) { 12041 ret = get_errno(fremovexattr(arg1, n)); 12042 } else { 12043 ret = -TARGET_EFAULT; 12044 } 12045 unlock_user(n, arg2, 0); 12046 } 12047 return ret; 12048 #endif 12049 #endif /* CONFIG_ATTR */ 12050 #ifdef TARGET_NR_set_thread_area 12051 case TARGET_NR_set_thread_area: 12052 #if defined(TARGET_MIPS) 12053 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 12054 return 0; 12055 #elif defined(TARGET_CRIS) 12056 if (arg1 & 0xff) 12057 ret = -TARGET_EINVAL; 12058 else { 12059 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 12060 ret = 0; 12061 } 12062 return ret; 12063 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 12064 return do_set_thread_area(cpu_env, arg1); 12065 #elif defined(TARGET_M68K) 12066 { 12067 TaskState *ts = cpu->opaque; 12068 ts->tp_value = arg1; 12069 return 0; 12070 } 12071 #else 12072 return -TARGET_ENOSYS; 12073 #endif 12074 #endif 12075 #ifdef TARGET_NR_get_thread_area 12076 case TARGET_NR_get_thread_area: 12077 #if defined(TARGET_I386) && defined(TARGET_ABI32) 12078 return do_get_thread_area(cpu_env, arg1); 12079 #elif defined(TARGET_M68K) 12080 { 12081 TaskState *ts = cpu->opaque; 12082 return ts->tp_value; 12083 } 12084 #else 12085 return -TARGET_ENOSYS; 12086 #endif 12087 #endif 12088 #ifdef TARGET_NR_getdomainname 12089 case TARGET_NR_getdomainname: 12090 return -TARGET_ENOSYS; 12091 #endif 12092 12093 #ifdef TARGET_NR_clock_settime 12094 case TARGET_NR_clock_settime: 12095 { 12096 struct timespec ts; 12097 12098 ret = target_to_host_timespec(&ts, arg2); 12099 if (!is_error(ret)) { 12100 ret = get_errno(clock_settime(arg1, &ts)); 12101 } 12102 return ret; 12103 } 12104 #endif 12105 #ifdef TARGET_NR_clock_settime64 12106 case TARGET_NR_clock_settime64: 12107 { 12108 struct timespec ts; 12109 12110 ret = target_to_host_timespec64(&ts, arg2); 12111 if (!is_error(ret)) { 12112 ret = get_errno(clock_settime(arg1, &ts)); 12113 } 12114 return ret; 12115 } 12116 #endif 12117 #ifdef TARGET_NR_clock_gettime 12118 case TARGET_NR_clock_gettime: 12119 { 12120 struct timespec ts; 12121 ret = get_errno(clock_gettime(arg1, &ts)); 12122 if (!is_error(ret)) { 12123 ret = host_to_target_timespec(arg2, &ts); 12124 } 12125 return ret; 12126 } 12127 #endif 12128 #ifdef TARGET_NR_clock_gettime64 12129 case TARGET_NR_clock_gettime64: 12130 { 12131 struct timespec ts; 12132 ret = get_errno(clock_gettime(arg1, &ts)); 12133 if (!is_error(ret)) { 12134 ret = host_to_target_timespec64(arg2, &ts); 12135 } 12136 return ret; 12137 } 12138 #endif 12139 #ifdef TARGET_NR_clock_getres 12140 case TARGET_NR_clock_getres: 12141 { 12142 struct timespec ts; 12143 ret = get_errno(clock_getres(arg1, &ts)); 12144 if (!is_error(ret)) { 12145 host_to_target_timespec(arg2, &ts); 12146 } 12147 return ret; 12148 } 12149 #endif 12150 #ifdef TARGET_NR_clock_getres_time64 12151 case TARGET_NR_clock_getres_time64: 12152 { 12153 struct timespec ts; 12154 ret = get_errno(clock_getres(arg1, &ts)); 12155 if (!is_error(ret)) { 12156 host_to_target_timespec64(arg2, &ts); 12157 } 12158 return ret; 12159 } 12160 #endif 12161 #ifdef TARGET_NR_clock_nanosleep 12162 case TARGET_NR_clock_nanosleep: 12163 { 12164 struct timespec ts; 12165 if (target_to_host_timespec(&ts, arg3)) { 12166 return -TARGET_EFAULT; 12167 } 12168 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12169 &ts, arg4 ? &ts : NULL)); 12170 /* 12171 * if the call is interrupted by a signal handler, it fails 12172 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not 12173 * TIMER_ABSTIME, it returns the remaining unslept time in arg4. 12174 */ 12175 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12176 host_to_target_timespec(arg4, &ts)) { 12177 return -TARGET_EFAULT; 12178 } 12179 12180 return ret; 12181 } 12182 #endif 12183 #ifdef TARGET_NR_clock_nanosleep_time64 12184 case TARGET_NR_clock_nanosleep_time64: 12185 { 12186 struct timespec ts; 12187 12188 if (target_to_host_timespec64(&ts, arg3)) { 12189 return -TARGET_EFAULT; 12190 } 12191 12192 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12193 &ts, arg4 ? &ts : NULL)); 12194 12195 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12196 host_to_target_timespec64(arg4, &ts)) { 12197 return -TARGET_EFAULT; 12198 } 12199 return ret; 12200 } 12201 #endif 12202 12203 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 12204 case TARGET_NR_set_tid_address: 12205 return get_errno(set_tid_address((int *)g2h(cpu, arg1))); 12206 #endif 12207 12208 case TARGET_NR_tkill: 12209 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 12210 12211 case TARGET_NR_tgkill: 12212 return get_errno(safe_tgkill((int)arg1, (int)arg2, 12213 target_to_host_signal(arg3))); 12214 12215 #ifdef TARGET_NR_set_robust_list 12216 case TARGET_NR_set_robust_list: 12217 case TARGET_NR_get_robust_list: 12218 /* The ABI for supporting robust futexes has userspace pass 12219 * the kernel a pointer to a linked list which is updated by 12220 * userspace after the syscall; the list is walked by the kernel 12221 * when the thread exits. Since the linked list in QEMU guest 12222 * memory isn't a valid linked list for the host and we have 12223 * no way to reliably intercept the thread-death event, we can't 12224 * support these. Silently return ENOSYS so that guest userspace 12225 * falls back to a non-robust futex implementation (which should 12226 * be OK except in the corner case of the guest crashing while 12227 * holding a mutex that is shared with another process via 12228 * shared memory). 12229 */ 12230 return -TARGET_ENOSYS; 12231 #endif 12232 12233 #if defined(TARGET_NR_utimensat) 12234 case TARGET_NR_utimensat: 12235 { 12236 struct timespec *tsp, ts[2]; 12237 if (!arg3) { 12238 tsp = NULL; 12239 } else { 12240 if (target_to_host_timespec(ts, arg3)) { 12241 return -TARGET_EFAULT; 12242 } 12243 if (target_to_host_timespec(ts + 1, arg3 + 12244 sizeof(struct target_timespec))) { 12245 return -TARGET_EFAULT; 12246 } 12247 tsp = ts; 12248 } 12249 if (!arg2) 12250 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12251 else { 12252 if (!(p = lock_user_string(arg2))) { 12253 return -TARGET_EFAULT; 12254 } 12255 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12256 unlock_user(p, arg2, 0); 12257 } 12258 } 12259 return ret; 12260 #endif 12261 #ifdef TARGET_NR_utimensat_time64 12262 case TARGET_NR_utimensat_time64: 12263 { 12264 struct timespec *tsp, ts[2]; 12265 if (!arg3) { 12266 tsp = NULL; 12267 } else { 12268 if (target_to_host_timespec64(ts, arg3)) { 12269 return -TARGET_EFAULT; 12270 } 12271 if (target_to_host_timespec64(ts + 1, arg3 + 12272 sizeof(struct target__kernel_timespec))) { 12273 return -TARGET_EFAULT; 12274 } 12275 tsp = ts; 12276 } 12277 if (!arg2) 12278 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12279 else { 12280 p = lock_user_string(arg2); 12281 if (!p) { 12282 return -TARGET_EFAULT; 12283 } 12284 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12285 unlock_user(p, arg2, 0); 12286 } 12287 } 12288 return ret; 12289 #endif 12290 #ifdef TARGET_NR_futex 12291 case TARGET_NR_futex: 12292 return do_futex(cpu, arg1, arg2, arg3, arg4, arg5, arg6); 12293 #endif 12294 #ifdef TARGET_NR_futex_time64 12295 case TARGET_NR_futex_time64: 12296 return do_futex_time64(cpu, arg1, arg2, arg3, arg4, arg5, arg6); 12297 #endif 12298 #ifdef CONFIG_INOTIFY 12299 #if defined(TARGET_NR_inotify_init) 12300 case TARGET_NR_inotify_init: 12301 ret = get_errno(inotify_init()); 12302 if (ret >= 0) { 12303 fd_trans_register(ret, &target_inotify_trans); 12304 } 12305 return ret; 12306 #endif 12307 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1) 12308 case TARGET_NR_inotify_init1: 12309 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1, 12310 fcntl_flags_tbl))); 12311 if (ret >= 0) { 12312 fd_trans_register(ret, &target_inotify_trans); 12313 } 12314 return ret; 12315 #endif 12316 #if defined(TARGET_NR_inotify_add_watch) 12317 case TARGET_NR_inotify_add_watch: 12318 p = lock_user_string(arg2); 12319 ret = get_errno(inotify_add_watch(arg1, path(p), arg3)); 12320 unlock_user(p, arg2, 0); 12321 return ret; 12322 #endif 12323 #if defined(TARGET_NR_inotify_rm_watch) 12324 case TARGET_NR_inotify_rm_watch: 12325 return get_errno(inotify_rm_watch(arg1, arg2)); 12326 #endif 12327 #endif 12328 12329 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12330 case TARGET_NR_mq_open: 12331 { 12332 struct mq_attr posix_mq_attr; 12333 struct mq_attr *pposix_mq_attr; 12334 int host_flags; 12335 12336 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12337 pposix_mq_attr = NULL; 12338 if (arg4) { 12339 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12340 return -TARGET_EFAULT; 12341 } 12342 pposix_mq_attr = &posix_mq_attr; 12343 } 12344 p = lock_user_string(arg1 - 1); 12345 if (!p) { 12346 return -TARGET_EFAULT; 12347 } 12348 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12349 unlock_user (p, arg1, 0); 12350 } 12351 return ret; 12352 12353 case TARGET_NR_mq_unlink: 12354 p = lock_user_string(arg1 - 1); 12355 if (!p) { 12356 return -TARGET_EFAULT; 12357 } 12358 ret = get_errno(mq_unlink(p)); 12359 unlock_user (p, arg1, 0); 12360 return ret; 12361 12362 #ifdef TARGET_NR_mq_timedsend 12363 case TARGET_NR_mq_timedsend: 12364 { 12365 struct timespec ts; 12366 12367 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12368 if (arg5 != 0) { 12369 if (target_to_host_timespec(&ts, arg5)) { 12370 return -TARGET_EFAULT; 12371 } 12372 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12373 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12374 return -TARGET_EFAULT; 12375 } 12376 } else { 12377 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12378 } 12379 unlock_user (p, arg2, arg3); 12380 } 12381 return ret; 12382 #endif 12383 #ifdef TARGET_NR_mq_timedsend_time64 12384 case TARGET_NR_mq_timedsend_time64: 12385 { 12386 struct timespec ts; 12387 12388 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12389 if (arg5 != 0) { 12390 if (target_to_host_timespec64(&ts, arg5)) { 12391 return -TARGET_EFAULT; 12392 } 12393 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12394 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12395 return -TARGET_EFAULT; 12396 } 12397 } else { 12398 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12399 } 12400 unlock_user(p, arg2, arg3); 12401 } 12402 return ret; 12403 #endif 12404 12405 #ifdef TARGET_NR_mq_timedreceive 12406 case TARGET_NR_mq_timedreceive: 12407 { 12408 struct timespec ts; 12409 unsigned int prio; 12410 12411 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12412 if (arg5 != 0) { 12413 if (target_to_host_timespec(&ts, arg5)) { 12414 return -TARGET_EFAULT; 12415 } 12416 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12417 &prio, &ts)); 12418 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12419 return -TARGET_EFAULT; 12420 } 12421 } else { 12422 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12423 &prio, NULL)); 12424 } 12425 unlock_user (p, arg2, arg3); 12426 if (arg4 != 0) 12427 put_user_u32(prio, arg4); 12428 } 12429 return ret; 12430 #endif 12431 #ifdef TARGET_NR_mq_timedreceive_time64 12432 case TARGET_NR_mq_timedreceive_time64: 12433 { 12434 struct timespec ts; 12435 unsigned int prio; 12436 12437 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12438 if (arg5 != 0) { 12439 if (target_to_host_timespec64(&ts, arg5)) { 12440 return -TARGET_EFAULT; 12441 } 12442 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12443 &prio, &ts)); 12444 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12445 return -TARGET_EFAULT; 12446 } 12447 } else { 12448 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12449 &prio, NULL)); 12450 } 12451 unlock_user(p, arg2, arg3); 12452 if (arg4 != 0) { 12453 put_user_u32(prio, arg4); 12454 } 12455 } 12456 return ret; 12457 #endif 12458 12459 /* Not implemented for now... */ 12460 /* case TARGET_NR_mq_notify: */ 12461 /* break; */ 12462 12463 case TARGET_NR_mq_getsetattr: 12464 { 12465 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 12466 ret = 0; 12467 if (arg2 != 0) { 12468 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 12469 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in, 12470 &posix_mq_attr_out)); 12471 } else if (arg3 != 0) { 12472 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out)); 12473 } 12474 if (ret == 0 && arg3 != 0) { 12475 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 12476 } 12477 } 12478 return ret; 12479 #endif 12480 12481 #ifdef CONFIG_SPLICE 12482 #ifdef TARGET_NR_tee 12483 case TARGET_NR_tee: 12484 { 12485 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 12486 } 12487 return ret; 12488 #endif 12489 #ifdef TARGET_NR_splice 12490 case TARGET_NR_splice: 12491 { 12492 loff_t loff_in, loff_out; 12493 loff_t *ploff_in = NULL, *ploff_out = NULL; 12494 if (arg2) { 12495 if (get_user_u64(loff_in, arg2)) { 12496 return -TARGET_EFAULT; 12497 } 12498 ploff_in = &loff_in; 12499 } 12500 if (arg4) { 12501 if (get_user_u64(loff_out, arg4)) { 12502 return -TARGET_EFAULT; 12503 } 12504 ploff_out = &loff_out; 12505 } 12506 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 12507 if (arg2) { 12508 if (put_user_u64(loff_in, arg2)) { 12509 return -TARGET_EFAULT; 12510 } 12511 } 12512 if (arg4) { 12513 if (put_user_u64(loff_out, arg4)) { 12514 return -TARGET_EFAULT; 12515 } 12516 } 12517 } 12518 return ret; 12519 #endif 12520 #ifdef TARGET_NR_vmsplice 12521 case TARGET_NR_vmsplice: 12522 { 12523 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 12524 if (vec != NULL) { 12525 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 12526 unlock_iovec(vec, arg2, arg3, 0); 12527 } else { 12528 ret = -host_to_target_errno(errno); 12529 } 12530 } 12531 return ret; 12532 #endif 12533 #endif /* CONFIG_SPLICE */ 12534 #ifdef CONFIG_EVENTFD 12535 #if defined(TARGET_NR_eventfd) 12536 case TARGET_NR_eventfd: 12537 ret = get_errno(eventfd(arg1, 0)); 12538 if (ret >= 0) { 12539 fd_trans_register(ret, &target_eventfd_trans); 12540 } 12541 return ret; 12542 #endif 12543 #if defined(TARGET_NR_eventfd2) 12544 case TARGET_NR_eventfd2: 12545 { 12546 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)); 12547 if (arg2 & TARGET_O_NONBLOCK) { 12548 host_flags |= O_NONBLOCK; 12549 } 12550 if (arg2 & TARGET_O_CLOEXEC) { 12551 host_flags |= O_CLOEXEC; 12552 } 12553 ret = get_errno(eventfd(arg1, host_flags)); 12554 if (ret >= 0) { 12555 fd_trans_register(ret, &target_eventfd_trans); 12556 } 12557 return ret; 12558 } 12559 #endif 12560 #endif /* CONFIG_EVENTFD */ 12561 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 12562 case TARGET_NR_fallocate: 12563 #if TARGET_ABI_BITS == 32 12564 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 12565 target_offset64(arg5, arg6))); 12566 #else 12567 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 12568 #endif 12569 return ret; 12570 #endif 12571 #if defined(CONFIG_SYNC_FILE_RANGE) 12572 #if defined(TARGET_NR_sync_file_range) 12573 case TARGET_NR_sync_file_range: 12574 #if TARGET_ABI_BITS == 32 12575 #if defined(TARGET_MIPS) 12576 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12577 target_offset64(arg5, arg6), arg7)); 12578 #else 12579 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 12580 target_offset64(arg4, arg5), arg6)); 12581 #endif /* !TARGET_MIPS */ 12582 #else 12583 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 12584 #endif 12585 return ret; 12586 #endif 12587 #if defined(TARGET_NR_sync_file_range2) || \ 12588 defined(TARGET_NR_arm_sync_file_range) 12589 #if defined(TARGET_NR_sync_file_range2) 12590 case TARGET_NR_sync_file_range2: 12591 #endif 12592 #if defined(TARGET_NR_arm_sync_file_range) 12593 case TARGET_NR_arm_sync_file_range: 12594 #endif 12595 /* This is like sync_file_range but the arguments are reordered */ 12596 #if TARGET_ABI_BITS == 32 12597 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12598 target_offset64(arg5, arg6), arg2)); 12599 #else 12600 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 12601 #endif 12602 return ret; 12603 #endif 12604 #endif 12605 #if defined(TARGET_NR_signalfd4) 12606 case TARGET_NR_signalfd4: 12607 return do_signalfd4(arg1, arg2, arg4); 12608 #endif 12609 #if defined(TARGET_NR_signalfd) 12610 case TARGET_NR_signalfd: 12611 return do_signalfd4(arg1, arg2, 0); 12612 #endif 12613 #if defined(CONFIG_EPOLL) 12614 #if defined(TARGET_NR_epoll_create) 12615 case TARGET_NR_epoll_create: 12616 return get_errno(epoll_create(arg1)); 12617 #endif 12618 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 12619 case TARGET_NR_epoll_create1: 12620 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl))); 12621 #endif 12622 #if defined(TARGET_NR_epoll_ctl) 12623 case TARGET_NR_epoll_ctl: 12624 { 12625 struct epoll_event ep; 12626 struct epoll_event *epp = 0; 12627 if (arg4) { 12628 if (arg2 != EPOLL_CTL_DEL) { 12629 struct target_epoll_event *target_ep; 12630 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 12631 return -TARGET_EFAULT; 12632 } 12633 ep.events = tswap32(target_ep->events); 12634 /* 12635 * The epoll_data_t union is just opaque data to the kernel, 12636 * so we transfer all 64 bits across and need not worry what 12637 * actual data type it is. 12638 */ 12639 ep.data.u64 = tswap64(target_ep->data.u64); 12640 unlock_user_struct(target_ep, arg4, 0); 12641 } 12642 /* 12643 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a 12644 * non-null pointer, even though this argument is ignored. 12645 * 12646 */ 12647 epp = &ep; 12648 } 12649 return get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 12650 } 12651 #endif 12652 12653 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 12654 #if defined(TARGET_NR_epoll_wait) 12655 case TARGET_NR_epoll_wait: 12656 #endif 12657 #if defined(TARGET_NR_epoll_pwait) 12658 case TARGET_NR_epoll_pwait: 12659 #endif 12660 { 12661 struct target_epoll_event *target_ep; 12662 struct epoll_event *ep; 12663 int epfd = arg1; 12664 int maxevents = arg3; 12665 int timeout = arg4; 12666 12667 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 12668 return -TARGET_EINVAL; 12669 } 12670 12671 target_ep = lock_user(VERIFY_WRITE, arg2, 12672 maxevents * sizeof(struct target_epoll_event), 1); 12673 if (!target_ep) { 12674 return -TARGET_EFAULT; 12675 } 12676 12677 ep = g_try_new(struct epoll_event, maxevents); 12678 if (!ep) { 12679 unlock_user(target_ep, arg2, 0); 12680 return -TARGET_ENOMEM; 12681 } 12682 12683 switch (num) { 12684 #if defined(TARGET_NR_epoll_pwait) 12685 case TARGET_NR_epoll_pwait: 12686 { 12687 sigset_t *set = NULL; 12688 12689 if (arg5) { 12690 ret = process_sigsuspend_mask(&set, arg5, arg6); 12691 if (ret != 0) { 12692 break; 12693 } 12694 } 12695 12696 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12697 set, SIGSET_T_SIZE)); 12698 12699 if (set) { 12700 finish_sigsuspend_mask(ret); 12701 } 12702 break; 12703 } 12704 #endif 12705 #if defined(TARGET_NR_epoll_wait) 12706 case TARGET_NR_epoll_wait: 12707 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12708 NULL, 0)); 12709 break; 12710 #endif 12711 default: 12712 ret = -TARGET_ENOSYS; 12713 } 12714 if (!is_error(ret)) { 12715 int i; 12716 for (i = 0; i < ret; i++) { 12717 target_ep[i].events = tswap32(ep[i].events); 12718 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 12719 } 12720 unlock_user(target_ep, arg2, 12721 ret * sizeof(struct target_epoll_event)); 12722 } else { 12723 unlock_user(target_ep, arg2, 0); 12724 } 12725 g_free(ep); 12726 return ret; 12727 } 12728 #endif 12729 #endif 12730 #ifdef TARGET_NR_prlimit64 12731 case TARGET_NR_prlimit64: 12732 { 12733 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 12734 struct target_rlimit64 *target_rnew, *target_rold; 12735 struct host_rlimit64 rnew, rold, *rnewp = 0; 12736 int resource = target_to_host_resource(arg2); 12737 12738 if (arg3 && (resource != RLIMIT_AS && 12739 resource != RLIMIT_DATA && 12740 resource != RLIMIT_STACK)) { 12741 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 12742 return -TARGET_EFAULT; 12743 } 12744 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 12745 rnew.rlim_max = tswap64(target_rnew->rlim_max); 12746 unlock_user_struct(target_rnew, arg3, 0); 12747 rnewp = &rnew; 12748 } 12749 12750 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 12751 if (!is_error(ret) && arg4) { 12752 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 12753 return -TARGET_EFAULT; 12754 } 12755 target_rold->rlim_cur = tswap64(rold.rlim_cur); 12756 target_rold->rlim_max = tswap64(rold.rlim_max); 12757 unlock_user_struct(target_rold, arg4, 1); 12758 } 12759 return ret; 12760 } 12761 #endif 12762 #ifdef TARGET_NR_gethostname 12763 case TARGET_NR_gethostname: 12764 { 12765 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 12766 if (name) { 12767 ret = get_errno(gethostname(name, arg2)); 12768 unlock_user(name, arg1, arg2); 12769 } else { 12770 ret = -TARGET_EFAULT; 12771 } 12772 return ret; 12773 } 12774 #endif 12775 #ifdef TARGET_NR_atomic_cmpxchg_32 12776 case TARGET_NR_atomic_cmpxchg_32: 12777 { 12778 /* should use start_exclusive from main.c */ 12779 abi_ulong mem_value; 12780 if (get_user_u32(mem_value, arg6)) { 12781 target_siginfo_t info; 12782 info.si_signo = SIGSEGV; 12783 info.si_errno = 0; 12784 info.si_code = TARGET_SEGV_MAPERR; 12785 info._sifields._sigfault._addr = arg6; 12786 queue_signal((CPUArchState *)cpu_env, info.si_signo, 12787 QEMU_SI_FAULT, &info); 12788 ret = 0xdeadbeef; 12789 12790 } 12791 if (mem_value == arg2) 12792 put_user_u32(arg1, arg6); 12793 return mem_value; 12794 } 12795 #endif 12796 #ifdef TARGET_NR_atomic_barrier 12797 case TARGET_NR_atomic_barrier: 12798 /* Like the kernel implementation and the 12799 qemu arm barrier, no-op this? */ 12800 return 0; 12801 #endif 12802 12803 #ifdef TARGET_NR_timer_create 12804 case TARGET_NR_timer_create: 12805 { 12806 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 12807 12808 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 12809 12810 int clkid = arg1; 12811 int timer_index = next_free_host_timer(); 12812 12813 if (timer_index < 0) { 12814 ret = -TARGET_EAGAIN; 12815 } else { 12816 timer_t *phtimer = g_posix_timers + timer_index; 12817 12818 if (arg2) { 12819 phost_sevp = &host_sevp; 12820 ret = target_to_host_sigevent(phost_sevp, arg2); 12821 if (ret != 0) { 12822 return ret; 12823 } 12824 } 12825 12826 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 12827 if (ret) { 12828 phtimer = NULL; 12829 } else { 12830 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 12831 return -TARGET_EFAULT; 12832 } 12833 } 12834 } 12835 return ret; 12836 } 12837 #endif 12838 12839 #ifdef TARGET_NR_timer_settime 12840 case TARGET_NR_timer_settime: 12841 { 12842 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 12843 * struct itimerspec * old_value */ 12844 target_timer_t timerid = get_timer_id(arg1); 12845 12846 if (timerid < 0) { 12847 ret = timerid; 12848 } else if (arg3 == 0) { 12849 ret = -TARGET_EINVAL; 12850 } else { 12851 timer_t htimer = g_posix_timers[timerid]; 12852 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12853 12854 if (target_to_host_itimerspec(&hspec_new, arg3)) { 12855 return -TARGET_EFAULT; 12856 } 12857 ret = get_errno( 12858 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 12859 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 12860 return -TARGET_EFAULT; 12861 } 12862 } 12863 return ret; 12864 } 12865 #endif 12866 12867 #ifdef TARGET_NR_timer_settime64 12868 case TARGET_NR_timer_settime64: 12869 { 12870 target_timer_t timerid = get_timer_id(arg1); 12871 12872 if (timerid < 0) { 12873 ret = timerid; 12874 } else if (arg3 == 0) { 12875 ret = -TARGET_EINVAL; 12876 } else { 12877 timer_t htimer = g_posix_timers[timerid]; 12878 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12879 12880 if (target_to_host_itimerspec64(&hspec_new, arg3)) { 12881 return -TARGET_EFAULT; 12882 } 12883 ret = get_errno( 12884 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 12885 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) { 12886 return -TARGET_EFAULT; 12887 } 12888 } 12889 return ret; 12890 } 12891 #endif 12892 12893 #ifdef TARGET_NR_timer_gettime 12894 case TARGET_NR_timer_gettime: 12895 { 12896 /* args: timer_t timerid, struct itimerspec *curr_value */ 12897 target_timer_t timerid = get_timer_id(arg1); 12898 12899 if (timerid < 0) { 12900 ret = timerid; 12901 } else if (!arg2) { 12902 ret = -TARGET_EFAULT; 12903 } else { 12904 timer_t htimer = g_posix_timers[timerid]; 12905 struct itimerspec hspec; 12906 ret = get_errno(timer_gettime(htimer, &hspec)); 12907 12908 if (host_to_target_itimerspec(arg2, &hspec)) { 12909 ret = -TARGET_EFAULT; 12910 } 12911 } 12912 return ret; 12913 } 12914 #endif 12915 12916 #ifdef TARGET_NR_timer_gettime64 12917 case TARGET_NR_timer_gettime64: 12918 { 12919 /* args: timer_t timerid, struct itimerspec64 *curr_value */ 12920 target_timer_t timerid = get_timer_id(arg1); 12921 12922 if (timerid < 0) { 12923 ret = timerid; 12924 } else if (!arg2) { 12925 ret = -TARGET_EFAULT; 12926 } else { 12927 timer_t htimer = g_posix_timers[timerid]; 12928 struct itimerspec hspec; 12929 ret = get_errno(timer_gettime(htimer, &hspec)); 12930 12931 if (host_to_target_itimerspec64(arg2, &hspec)) { 12932 ret = -TARGET_EFAULT; 12933 } 12934 } 12935 return ret; 12936 } 12937 #endif 12938 12939 #ifdef TARGET_NR_timer_getoverrun 12940 case TARGET_NR_timer_getoverrun: 12941 { 12942 /* args: timer_t timerid */ 12943 target_timer_t timerid = get_timer_id(arg1); 12944 12945 if (timerid < 0) { 12946 ret = timerid; 12947 } else { 12948 timer_t htimer = g_posix_timers[timerid]; 12949 ret = get_errno(timer_getoverrun(htimer)); 12950 } 12951 return ret; 12952 } 12953 #endif 12954 12955 #ifdef TARGET_NR_timer_delete 12956 case TARGET_NR_timer_delete: 12957 { 12958 /* args: timer_t timerid */ 12959 target_timer_t timerid = get_timer_id(arg1); 12960 12961 if (timerid < 0) { 12962 ret = timerid; 12963 } else { 12964 timer_t htimer = g_posix_timers[timerid]; 12965 ret = get_errno(timer_delete(htimer)); 12966 g_posix_timers[timerid] = 0; 12967 } 12968 return ret; 12969 } 12970 #endif 12971 12972 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 12973 case TARGET_NR_timerfd_create: 12974 return get_errno(timerfd_create(arg1, 12975 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 12976 #endif 12977 12978 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 12979 case TARGET_NR_timerfd_gettime: 12980 { 12981 struct itimerspec its_curr; 12982 12983 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 12984 12985 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 12986 return -TARGET_EFAULT; 12987 } 12988 } 12989 return ret; 12990 #endif 12991 12992 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD) 12993 case TARGET_NR_timerfd_gettime64: 12994 { 12995 struct itimerspec its_curr; 12996 12997 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 12998 12999 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) { 13000 return -TARGET_EFAULT; 13001 } 13002 } 13003 return ret; 13004 #endif 13005 13006 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 13007 case TARGET_NR_timerfd_settime: 13008 { 13009 struct itimerspec its_new, its_old, *p_new; 13010 13011 if (arg3) { 13012 if (target_to_host_itimerspec(&its_new, arg3)) { 13013 return -TARGET_EFAULT; 13014 } 13015 p_new = &its_new; 13016 } else { 13017 p_new = NULL; 13018 } 13019 13020 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13021 13022 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 13023 return -TARGET_EFAULT; 13024 } 13025 } 13026 return ret; 13027 #endif 13028 13029 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD) 13030 case TARGET_NR_timerfd_settime64: 13031 { 13032 struct itimerspec its_new, its_old, *p_new; 13033 13034 if (arg3) { 13035 if (target_to_host_itimerspec64(&its_new, arg3)) { 13036 return -TARGET_EFAULT; 13037 } 13038 p_new = &its_new; 13039 } else { 13040 p_new = NULL; 13041 } 13042 13043 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13044 13045 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) { 13046 return -TARGET_EFAULT; 13047 } 13048 } 13049 return ret; 13050 #endif 13051 13052 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 13053 case TARGET_NR_ioprio_get: 13054 return get_errno(ioprio_get(arg1, arg2)); 13055 #endif 13056 13057 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 13058 case TARGET_NR_ioprio_set: 13059 return get_errno(ioprio_set(arg1, arg2, arg3)); 13060 #endif 13061 13062 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 13063 case TARGET_NR_setns: 13064 return get_errno(setns(arg1, arg2)); 13065 #endif 13066 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 13067 case TARGET_NR_unshare: 13068 return get_errno(unshare(arg1)); 13069 #endif 13070 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 13071 case TARGET_NR_kcmp: 13072 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 13073 #endif 13074 #ifdef TARGET_NR_swapcontext 13075 case TARGET_NR_swapcontext: 13076 /* PowerPC specific. */ 13077 return do_swapcontext(cpu_env, arg1, arg2, arg3); 13078 #endif 13079 #ifdef TARGET_NR_memfd_create 13080 case TARGET_NR_memfd_create: 13081 p = lock_user_string(arg1); 13082 if (!p) { 13083 return -TARGET_EFAULT; 13084 } 13085 ret = get_errno(memfd_create(p, arg2)); 13086 fd_trans_unregister(ret); 13087 unlock_user(p, arg1, 0); 13088 return ret; 13089 #endif 13090 #if defined TARGET_NR_membarrier && defined __NR_membarrier 13091 case TARGET_NR_membarrier: 13092 return get_errno(membarrier(arg1, arg2)); 13093 #endif 13094 13095 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 13096 case TARGET_NR_copy_file_range: 13097 { 13098 loff_t inoff, outoff; 13099 loff_t *pinoff = NULL, *poutoff = NULL; 13100 13101 if (arg2) { 13102 if (get_user_u64(inoff, arg2)) { 13103 return -TARGET_EFAULT; 13104 } 13105 pinoff = &inoff; 13106 } 13107 if (arg4) { 13108 if (get_user_u64(outoff, arg4)) { 13109 return -TARGET_EFAULT; 13110 } 13111 poutoff = &outoff; 13112 } 13113 /* Do not sign-extend the count parameter. */ 13114 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff, 13115 (abi_ulong)arg5, arg6)); 13116 if (!is_error(ret) && ret > 0) { 13117 if (arg2) { 13118 if (put_user_u64(inoff, arg2)) { 13119 return -TARGET_EFAULT; 13120 } 13121 } 13122 if (arg4) { 13123 if (put_user_u64(outoff, arg4)) { 13124 return -TARGET_EFAULT; 13125 } 13126 } 13127 } 13128 } 13129 return ret; 13130 #endif 13131 13132 #if defined(TARGET_NR_pivot_root) 13133 case TARGET_NR_pivot_root: 13134 { 13135 void *p2; 13136 p = lock_user_string(arg1); /* new_root */ 13137 p2 = lock_user_string(arg2); /* put_old */ 13138 if (!p || !p2) { 13139 ret = -TARGET_EFAULT; 13140 } else { 13141 ret = get_errno(pivot_root(p, p2)); 13142 } 13143 unlock_user(p2, arg2, 0); 13144 unlock_user(p, arg1, 0); 13145 } 13146 return ret; 13147 #endif 13148 13149 default: 13150 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); 13151 return -TARGET_ENOSYS; 13152 } 13153 return ret; 13154 } 13155 13156 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 13157 abi_long arg2, abi_long arg3, abi_long arg4, 13158 abi_long arg5, abi_long arg6, abi_long arg7, 13159 abi_long arg8) 13160 { 13161 CPUState *cpu = env_cpu(cpu_env); 13162 abi_long ret; 13163 13164 #ifdef DEBUG_ERESTARTSYS 13165 /* Debug-only code for exercising the syscall-restart code paths 13166 * in the per-architecture cpu main loops: restart every syscall 13167 * the guest makes once before letting it through. 13168 */ 13169 { 13170 static bool flag; 13171 flag = !flag; 13172 if (flag) { 13173 return -QEMU_ERESTARTSYS; 13174 } 13175 } 13176 #endif 13177 13178 record_syscall_start(cpu, num, arg1, 13179 arg2, arg3, arg4, arg5, arg6, arg7, arg8); 13180 13181 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13182 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6); 13183 } 13184 13185 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4, 13186 arg5, arg6, arg7, arg8); 13187 13188 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13189 print_syscall_ret(cpu_env, num, ret, arg1, arg2, 13190 arg3, arg4, arg5, arg6); 13191 } 13192 13193 record_syscall_return(cpu, num, ret); 13194 return ret; 13195 } 13196