xref: /openbmc/qemu/linux-user/syscall.c (revision 93a5661d)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/ip.h>
55 #include <netinet/tcp.h>
56 #include <linux/wireless.h>
57 #include <linux/icmp.h>
58 #include <linux/icmpv6.h>
59 #include <linux/errqueue.h>
60 #include <linux/random.h>
61 #ifdef CONFIG_TIMERFD
62 #include <sys/timerfd.h>
63 #endif
64 #ifdef CONFIG_EVENTFD
65 #include <sys/eventfd.h>
66 #endif
67 #ifdef CONFIG_EPOLL
68 #include <sys/epoll.h>
69 #endif
70 #ifdef CONFIG_ATTR
71 #include "qemu/xattr.h"
72 #endif
73 #ifdef CONFIG_SENDFILE
74 #include <sys/sendfile.h>
75 #endif
76 #ifdef CONFIG_KCOV
77 #include <sys/kcov.h>
78 #endif
79 
80 #define termios host_termios
81 #define winsize host_winsize
82 #define termio host_termio
83 #define sgttyb host_sgttyb /* same as target */
84 #define tchars host_tchars /* same as target */
85 #define ltchars host_ltchars /* same as target */
86 
87 #include <linux/termios.h>
88 #include <linux/unistd.h>
89 #include <linux/cdrom.h>
90 #include <linux/hdreg.h>
91 #include <linux/soundcard.h>
92 #include <linux/kd.h>
93 #include <linux/mtio.h>
94 #include <linux/fs.h>
95 #include <linux/fd.h>
96 #if defined(CONFIG_FIEMAP)
97 #include <linux/fiemap.h>
98 #endif
99 #include <linux/fb.h>
100 #if defined(CONFIG_USBFS)
101 #include <linux/usbdevice_fs.h>
102 #include <linux/usb/ch9.h>
103 #endif
104 #include <linux/vt.h>
105 #include <linux/dm-ioctl.h>
106 #include <linux/reboot.h>
107 #include <linux/route.h>
108 #include <linux/filter.h>
109 #include <linux/blkpg.h>
110 #include <netpacket/packet.h>
111 #include <linux/netlink.h>
112 #include <linux/if_alg.h>
113 #include <linux/rtc.h>
114 #include <sound/asound.h>
115 #include "linux_loop.h"
116 #include "uname.h"
117 
118 #include "qemu.h"
119 #include "qemu/guest-random.h"
120 #include "qemu/selfmap.h"
121 #include "user/syscall-trace.h"
122 #include "qapi/error.h"
123 #include "fd-trans.h"
124 #include "tcg/tcg.h"
125 
126 #ifndef CLONE_IO
127 #define CLONE_IO                0x80000000      /* Clone io context */
128 #endif
129 
130 /* We can't directly call the host clone syscall, because this will
131  * badly confuse libc (breaking mutexes, for example). So we must
132  * divide clone flags into:
133  *  * flag combinations that look like pthread_create()
134  *  * flag combinations that look like fork()
135  *  * flags we can implement within QEMU itself
136  *  * flags we can't support and will return an error for
137  */
138 /* For thread creation, all these flags must be present; for
139  * fork, none must be present.
140  */
141 #define CLONE_THREAD_FLAGS                              \
142     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
143      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
144 
145 /* These flags are ignored:
146  * CLONE_DETACHED is now ignored by the kernel;
147  * CLONE_IO is just an optimisation hint to the I/O scheduler
148  */
149 #define CLONE_IGNORED_FLAGS                     \
150     (CLONE_DETACHED | CLONE_IO)
151 
152 /* Flags for fork which we can implement within QEMU itself */
153 #define CLONE_OPTIONAL_FORK_FLAGS               \
154     (CLONE_SETTLS | CLONE_PARENT_SETTID |       \
155      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
156 
157 /* Flags for thread creation which we can implement within QEMU itself */
158 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
159     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
160      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
161 
162 #define CLONE_INVALID_FORK_FLAGS                                        \
163     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
164 
165 #define CLONE_INVALID_THREAD_FLAGS                                      \
166     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
167        CLONE_IGNORED_FLAGS))
168 
169 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
170  * have almost all been allocated. We cannot support any of
171  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
172  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
173  * The checks against the invalid thread masks above will catch these.
174  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
175  */
176 
177 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
178  * once. This exercises the codepaths for restart.
179  */
180 //#define DEBUG_ERESTARTSYS
181 
182 //#include <linux/msdos_fs.h>
183 #define	VFAT_IOCTL_READDIR_BOTH		_IOR('r', 1, struct linux_dirent [2])
184 #define	VFAT_IOCTL_READDIR_SHORT	_IOR('r', 2, struct linux_dirent [2])
185 
186 #undef _syscall0
187 #undef _syscall1
188 #undef _syscall2
189 #undef _syscall3
190 #undef _syscall4
191 #undef _syscall5
192 #undef _syscall6
193 
194 #define _syscall0(type,name)		\
195 static type name (void)			\
196 {					\
197 	return syscall(__NR_##name);	\
198 }
199 
200 #define _syscall1(type,name,type1,arg1)		\
201 static type name (type1 arg1)			\
202 {						\
203 	return syscall(__NR_##name, arg1);	\
204 }
205 
206 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
207 static type name (type1 arg1,type2 arg2)		\
208 {							\
209 	return syscall(__NR_##name, arg1, arg2);	\
210 }
211 
212 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
213 static type name (type1 arg1,type2 arg2,type3 arg3)		\
214 {								\
215 	return syscall(__NR_##name, arg1, arg2, arg3);		\
216 }
217 
218 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
219 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
220 {										\
221 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
222 }
223 
224 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
225 		  type5,arg5)							\
226 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
227 {										\
228 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
229 }
230 
231 
232 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
233 		  type5,arg5,type6,arg6)					\
234 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
235                   type6 arg6)							\
236 {										\
237 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
238 }
239 
240 
241 #define __NR_sys_uname __NR_uname
242 #define __NR_sys_getcwd1 __NR_getcwd
243 #define __NR_sys_getdents __NR_getdents
244 #define __NR_sys_getdents64 __NR_getdents64
245 #define __NR_sys_getpriority __NR_getpriority
246 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
247 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
248 #define __NR_sys_syslog __NR_syslog
249 #if defined(__NR_futex)
250 # define __NR_sys_futex __NR_futex
251 #endif
252 #if defined(__NR_futex_time64)
253 # define __NR_sys_futex_time64 __NR_futex_time64
254 #endif
255 #define __NR_sys_inotify_init __NR_inotify_init
256 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
257 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
258 #define __NR_sys_statx __NR_statx
259 
260 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
261 #define __NR__llseek __NR_lseek
262 #endif
263 
264 /* Newer kernel ports have llseek() instead of _llseek() */
265 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
266 #define TARGET_NR__llseek TARGET_NR_llseek
267 #endif
268 
269 #define __NR_sys_gettid __NR_gettid
270 _syscall0(int, sys_gettid)
271 
272 /* For the 64-bit guest on 32-bit host case we must emulate
273  * getdents using getdents64, because otherwise the host
274  * might hand us back more dirent records than we can fit
275  * into the guest buffer after structure format conversion.
276  * Otherwise we emulate getdents with getdents if the host has it.
277  */
278 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
279 #define EMULATE_GETDENTS_WITH_GETDENTS
280 #endif
281 
282 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
283 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
284 #endif
285 #if (defined(TARGET_NR_getdents) && \
286       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
287     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
288 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
289 #endif
290 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
291 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
292           loff_t *, res, uint, wh);
293 #endif
294 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
295 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
296           siginfo_t *, uinfo)
297 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
298 #ifdef __NR_exit_group
299 _syscall1(int,exit_group,int,error_code)
300 #endif
301 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
302 _syscall1(int,set_tid_address,int *,tidptr)
303 #endif
304 #if defined(__NR_futex)
305 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
306           const struct timespec *,timeout,int *,uaddr2,int,val3)
307 #endif
308 #if defined(__NR_futex_time64)
309 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
310           const struct timespec *,timeout,int *,uaddr2,int,val3)
311 #endif
312 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
313 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
314           unsigned long *, user_mask_ptr);
315 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
316 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
317           unsigned long *, user_mask_ptr);
318 #define __NR_sys_getcpu __NR_getcpu
319 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
320 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
321           void *, arg);
322 _syscall2(int, capget, struct __user_cap_header_struct *, header,
323           struct __user_cap_data_struct *, data);
324 _syscall2(int, capset, struct __user_cap_header_struct *, header,
325           struct __user_cap_data_struct *, data);
326 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
327 _syscall2(int, ioprio_get, int, which, int, who)
328 #endif
329 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
330 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
331 #endif
332 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
333 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
334 #endif
335 
336 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
337 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
338           unsigned long, idx1, unsigned long, idx2)
339 #endif
340 
341 /*
342  * It is assumed that struct statx is architecture independent.
343  */
344 #if defined(TARGET_NR_statx) && defined(__NR_statx)
345 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
346           unsigned int, mask, struct target_statx *, statxbuf)
347 #endif
348 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
349 _syscall2(int, membarrier, int, cmd, int, flags)
350 #endif
351 
352 static bitmask_transtbl fcntl_flags_tbl[] = {
353   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
354   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
355   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
356   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
357   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
358   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
359   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
360   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
361   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
362   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
363   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
364   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
365   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
366 #if defined(O_DIRECT)
367   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
368 #endif
369 #if defined(O_NOATIME)
370   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
371 #endif
372 #if defined(O_CLOEXEC)
373   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
374 #endif
375 #if defined(O_PATH)
376   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
377 #endif
378 #if defined(O_TMPFILE)
379   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
380 #endif
381   /* Don't terminate the list prematurely on 64-bit host+guest.  */
382 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
383   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
384 #endif
385   { 0, 0, 0, 0 }
386 };
387 
388 static int sys_getcwd1(char *buf, size_t size)
389 {
390   if (getcwd(buf, size) == NULL) {
391       /* getcwd() sets errno */
392       return (-1);
393   }
394   return strlen(buf)+1;
395 }
396 
397 #ifdef TARGET_NR_utimensat
398 #if defined(__NR_utimensat)
399 #define __NR_sys_utimensat __NR_utimensat
400 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
401           const struct timespec *,tsp,int,flags)
402 #else
403 static int sys_utimensat(int dirfd, const char *pathname,
404                          const struct timespec times[2], int flags)
405 {
406     errno = ENOSYS;
407     return -1;
408 }
409 #endif
410 #endif /* TARGET_NR_utimensat */
411 
412 #ifdef TARGET_NR_renameat2
413 #if defined(__NR_renameat2)
414 #define __NR_sys_renameat2 __NR_renameat2
415 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
416           const char *, new, unsigned int, flags)
417 #else
418 static int sys_renameat2(int oldfd, const char *old,
419                          int newfd, const char *new, int flags)
420 {
421     if (flags == 0) {
422         return renameat(oldfd, old, newfd, new);
423     }
424     errno = ENOSYS;
425     return -1;
426 }
427 #endif
428 #endif /* TARGET_NR_renameat2 */
429 
430 #ifdef CONFIG_INOTIFY
431 #include <sys/inotify.h>
432 
433 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
434 static int sys_inotify_init(void)
435 {
436   return (inotify_init());
437 }
438 #endif
439 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
440 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
441 {
442   return (inotify_add_watch(fd, pathname, mask));
443 }
444 #endif
445 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
446 static int sys_inotify_rm_watch(int fd, int32_t wd)
447 {
448   return (inotify_rm_watch(fd, wd));
449 }
450 #endif
451 #ifdef CONFIG_INOTIFY1
452 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
453 static int sys_inotify_init1(int flags)
454 {
455   return (inotify_init1(flags));
456 }
457 #endif
458 #endif
459 #else
460 /* Userspace can usually survive runtime without inotify */
461 #undef TARGET_NR_inotify_init
462 #undef TARGET_NR_inotify_init1
463 #undef TARGET_NR_inotify_add_watch
464 #undef TARGET_NR_inotify_rm_watch
465 #endif /* CONFIG_INOTIFY  */
466 
467 #if defined(TARGET_NR_prlimit64)
468 #ifndef __NR_prlimit64
469 # define __NR_prlimit64 -1
470 #endif
471 #define __NR_sys_prlimit64 __NR_prlimit64
472 /* The glibc rlimit structure may not be that used by the underlying syscall */
473 struct host_rlimit64 {
474     uint64_t rlim_cur;
475     uint64_t rlim_max;
476 };
477 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
478           const struct host_rlimit64 *, new_limit,
479           struct host_rlimit64 *, old_limit)
480 #endif
481 
482 
483 #if defined(TARGET_NR_timer_create)
484 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
485 static timer_t g_posix_timers[32] = { 0, } ;
486 
487 static inline int next_free_host_timer(void)
488 {
489     int k ;
490     /* FIXME: Does finding the next free slot require a lock? */
491     for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
492         if (g_posix_timers[k] == 0) {
493             g_posix_timers[k] = (timer_t) 1;
494             return k;
495         }
496     }
497     return -1;
498 }
499 #endif
500 
501 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
502 #ifdef TARGET_ARM
503 static inline int regpairs_aligned(void *cpu_env, int num)
504 {
505     return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
506 }
507 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
508 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
509 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
510 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
511  * of registers which translates to the same as ARM/MIPS, because we start with
512  * r3 as arg1 */
513 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
514 #elif defined(TARGET_SH4)
515 /* SH4 doesn't align register pairs, except for p{read,write}64 */
516 static inline int regpairs_aligned(void *cpu_env, int num)
517 {
518     switch (num) {
519     case TARGET_NR_pread64:
520     case TARGET_NR_pwrite64:
521         return 1;
522 
523     default:
524         return 0;
525     }
526 }
527 #elif defined(TARGET_XTENSA)
528 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
529 #else
530 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
531 #endif
532 
533 #define ERRNO_TABLE_SIZE 1200
534 
535 /* target_to_host_errno_table[] is initialized from
536  * host_to_target_errno_table[] in syscall_init(). */
537 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
538 };
539 
540 /*
541  * This list is the union of errno values overridden in asm-<arch>/errno.h
542  * minus the errnos that are not actually generic to all archs.
543  */
544 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
545     [EAGAIN]		= TARGET_EAGAIN,
546     [EIDRM]		= TARGET_EIDRM,
547     [ECHRNG]		= TARGET_ECHRNG,
548     [EL2NSYNC]		= TARGET_EL2NSYNC,
549     [EL3HLT]		= TARGET_EL3HLT,
550     [EL3RST]		= TARGET_EL3RST,
551     [ELNRNG]		= TARGET_ELNRNG,
552     [EUNATCH]		= TARGET_EUNATCH,
553     [ENOCSI]		= TARGET_ENOCSI,
554     [EL2HLT]		= TARGET_EL2HLT,
555     [EDEADLK]		= TARGET_EDEADLK,
556     [ENOLCK]		= TARGET_ENOLCK,
557     [EBADE]		= TARGET_EBADE,
558     [EBADR]		= TARGET_EBADR,
559     [EXFULL]		= TARGET_EXFULL,
560     [ENOANO]		= TARGET_ENOANO,
561     [EBADRQC]		= TARGET_EBADRQC,
562     [EBADSLT]		= TARGET_EBADSLT,
563     [EBFONT]		= TARGET_EBFONT,
564     [ENOSTR]		= TARGET_ENOSTR,
565     [ENODATA]		= TARGET_ENODATA,
566     [ETIME]		= TARGET_ETIME,
567     [ENOSR]		= TARGET_ENOSR,
568     [ENONET]		= TARGET_ENONET,
569     [ENOPKG]		= TARGET_ENOPKG,
570     [EREMOTE]		= TARGET_EREMOTE,
571     [ENOLINK]		= TARGET_ENOLINK,
572     [EADV]		= TARGET_EADV,
573     [ESRMNT]		= TARGET_ESRMNT,
574     [ECOMM]		= TARGET_ECOMM,
575     [EPROTO]		= TARGET_EPROTO,
576     [EDOTDOT]		= TARGET_EDOTDOT,
577     [EMULTIHOP]		= TARGET_EMULTIHOP,
578     [EBADMSG]		= TARGET_EBADMSG,
579     [ENAMETOOLONG]	= TARGET_ENAMETOOLONG,
580     [EOVERFLOW]		= TARGET_EOVERFLOW,
581     [ENOTUNIQ]		= TARGET_ENOTUNIQ,
582     [EBADFD]		= TARGET_EBADFD,
583     [EREMCHG]		= TARGET_EREMCHG,
584     [ELIBACC]		= TARGET_ELIBACC,
585     [ELIBBAD]		= TARGET_ELIBBAD,
586     [ELIBSCN]		= TARGET_ELIBSCN,
587     [ELIBMAX]		= TARGET_ELIBMAX,
588     [ELIBEXEC]		= TARGET_ELIBEXEC,
589     [EILSEQ]		= TARGET_EILSEQ,
590     [ENOSYS]		= TARGET_ENOSYS,
591     [ELOOP]		= TARGET_ELOOP,
592     [ERESTART]		= TARGET_ERESTART,
593     [ESTRPIPE]		= TARGET_ESTRPIPE,
594     [ENOTEMPTY]		= TARGET_ENOTEMPTY,
595     [EUSERS]		= TARGET_EUSERS,
596     [ENOTSOCK]		= TARGET_ENOTSOCK,
597     [EDESTADDRREQ]	= TARGET_EDESTADDRREQ,
598     [EMSGSIZE]		= TARGET_EMSGSIZE,
599     [EPROTOTYPE]	= TARGET_EPROTOTYPE,
600     [ENOPROTOOPT]	= TARGET_ENOPROTOOPT,
601     [EPROTONOSUPPORT]	= TARGET_EPROTONOSUPPORT,
602     [ESOCKTNOSUPPORT]	= TARGET_ESOCKTNOSUPPORT,
603     [EOPNOTSUPP]	= TARGET_EOPNOTSUPP,
604     [EPFNOSUPPORT]	= TARGET_EPFNOSUPPORT,
605     [EAFNOSUPPORT]	= TARGET_EAFNOSUPPORT,
606     [EADDRINUSE]	= TARGET_EADDRINUSE,
607     [EADDRNOTAVAIL]	= TARGET_EADDRNOTAVAIL,
608     [ENETDOWN]		= TARGET_ENETDOWN,
609     [ENETUNREACH]	= TARGET_ENETUNREACH,
610     [ENETRESET]		= TARGET_ENETRESET,
611     [ECONNABORTED]	= TARGET_ECONNABORTED,
612     [ECONNRESET]	= TARGET_ECONNRESET,
613     [ENOBUFS]		= TARGET_ENOBUFS,
614     [EISCONN]		= TARGET_EISCONN,
615     [ENOTCONN]		= TARGET_ENOTCONN,
616     [EUCLEAN]		= TARGET_EUCLEAN,
617     [ENOTNAM]		= TARGET_ENOTNAM,
618     [ENAVAIL]		= TARGET_ENAVAIL,
619     [EISNAM]		= TARGET_EISNAM,
620     [EREMOTEIO]		= TARGET_EREMOTEIO,
621     [EDQUOT]            = TARGET_EDQUOT,
622     [ESHUTDOWN]		= TARGET_ESHUTDOWN,
623     [ETOOMANYREFS]	= TARGET_ETOOMANYREFS,
624     [ETIMEDOUT]		= TARGET_ETIMEDOUT,
625     [ECONNREFUSED]	= TARGET_ECONNREFUSED,
626     [EHOSTDOWN]		= TARGET_EHOSTDOWN,
627     [EHOSTUNREACH]	= TARGET_EHOSTUNREACH,
628     [EALREADY]		= TARGET_EALREADY,
629     [EINPROGRESS]	= TARGET_EINPROGRESS,
630     [ESTALE]		= TARGET_ESTALE,
631     [ECANCELED]		= TARGET_ECANCELED,
632     [ENOMEDIUM]		= TARGET_ENOMEDIUM,
633     [EMEDIUMTYPE]	= TARGET_EMEDIUMTYPE,
634 #ifdef ENOKEY
635     [ENOKEY]		= TARGET_ENOKEY,
636 #endif
637 #ifdef EKEYEXPIRED
638     [EKEYEXPIRED]	= TARGET_EKEYEXPIRED,
639 #endif
640 #ifdef EKEYREVOKED
641     [EKEYREVOKED]	= TARGET_EKEYREVOKED,
642 #endif
643 #ifdef EKEYREJECTED
644     [EKEYREJECTED]	= TARGET_EKEYREJECTED,
645 #endif
646 #ifdef EOWNERDEAD
647     [EOWNERDEAD]	= TARGET_EOWNERDEAD,
648 #endif
649 #ifdef ENOTRECOVERABLE
650     [ENOTRECOVERABLE]	= TARGET_ENOTRECOVERABLE,
651 #endif
652 #ifdef ENOMSG
653     [ENOMSG]            = TARGET_ENOMSG,
654 #endif
655 #ifdef ERKFILL
656     [ERFKILL]           = TARGET_ERFKILL,
657 #endif
658 #ifdef EHWPOISON
659     [EHWPOISON]         = TARGET_EHWPOISON,
660 #endif
661 };
662 
663 static inline int host_to_target_errno(int err)
664 {
665     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
666         host_to_target_errno_table[err]) {
667         return host_to_target_errno_table[err];
668     }
669     return err;
670 }
671 
672 static inline int target_to_host_errno(int err)
673 {
674     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
675         target_to_host_errno_table[err]) {
676         return target_to_host_errno_table[err];
677     }
678     return err;
679 }
680 
681 static inline abi_long get_errno(abi_long ret)
682 {
683     if (ret == -1)
684         return -host_to_target_errno(errno);
685     else
686         return ret;
687 }
688 
689 const char *target_strerror(int err)
690 {
691     if (err == TARGET_ERESTARTSYS) {
692         return "To be restarted";
693     }
694     if (err == TARGET_QEMU_ESIGRETURN) {
695         return "Successful exit from sigreturn";
696     }
697 
698     if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
699         return NULL;
700     }
701     return strerror(target_to_host_errno(err));
702 }
703 
704 #define safe_syscall0(type, name) \
705 static type safe_##name(void) \
706 { \
707     return safe_syscall(__NR_##name); \
708 }
709 
710 #define safe_syscall1(type, name, type1, arg1) \
711 static type safe_##name(type1 arg1) \
712 { \
713     return safe_syscall(__NR_##name, arg1); \
714 }
715 
716 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
717 static type safe_##name(type1 arg1, type2 arg2) \
718 { \
719     return safe_syscall(__NR_##name, arg1, arg2); \
720 }
721 
722 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
723 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
724 { \
725     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
726 }
727 
728 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
729     type4, arg4) \
730 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
731 { \
732     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
733 }
734 
735 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
736     type4, arg4, type5, arg5) \
737 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
738     type5 arg5) \
739 { \
740     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
741 }
742 
743 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
744     type4, arg4, type5, arg5, type6, arg6) \
745 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
746     type5 arg5, type6 arg6) \
747 { \
748     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
749 }
750 
751 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
752 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
753 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
754               int, flags, mode_t, mode)
755 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
756 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
757               struct rusage *, rusage)
758 #endif
759 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
760               int, options, struct rusage *, rusage)
761 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
762 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
763     defined(TARGET_NR_pselect6)
764 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
765               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
766 #endif
767 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_poll)
768 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
769               struct timespec *, tsp, const sigset_t *, sigmask,
770               size_t, sigsetsize)
771 #endif
772 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
773               int, maxevents, int, timeout, const sigset_t *, sigmask,
774               size_t, sigsetsize)
775 #if defined(__NR_futex)
776 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
777               const struct timespec *,timeout,int *,uaddr2,int,val3)
778 #endif
779 #if defined(__NR_futex_time64)
780 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
781               const struct timespec *,timeout,int *,uaddr2,int,val3)
782 #endif
783 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
784 safe_syscall2(int, kill, pid_t, pid, int, sig)
785 safe_syscall2(int, tkill, int, tid, int, sig)
786 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
787 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
788 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
789 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
790               unsigned long, pos_l, unsigned long, pos_h)
791 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
792               unsigned long, pos_l, unsigned long, pos_h)
793 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
794               socklen_t, addrlen)
795 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
796               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
797 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
798               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
799 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
800 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
801 safe_syscall2(int, flock, int, fd, int, operation)
802 #ifdef TARGET_NR_rt_sigtimedwait
803 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
804               const struct timespec *, uts, size_t, sigsetsize)
805 #endif
806 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
807               int, flags)
808 #if defined(TARGET_NR_nanosleep)
809 safe_syscall2(int, nanosleep, const struct timespec *, req,
810               struct timespec *, rem)
811 #endif
812 #ifdef TARGET_NR_clock_nanosleep
813 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
814               const struct timespec *, req, struct timespec *, rem)
815 #endif
816 #ifdef __NR_ipc
817 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
818               void *, ptr, long, fifth)
819 #endif
820 #ifdef __NR_msgsnd
821 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
822               int, flags)
823 #endif
824 #ifdef __NR_msgrcv
825 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
826               long, msgtype, int, flags)
827 #endif
828 #ifdef __NR_semtimedop
829 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
830               unsigned, nsops, const struct timespec *, timeout)
831 #endif
832 #ifdef TARGET_NR_mq_timedsend
833 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
834               size_t, len, unsigned, prio, const struct timespec *, timeout)
835 #endif
836 #ifdef TARGET_NR_mq_timedreceive
837 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
838               size_t, len, unsigned *, prio, const struct timespec *, timeout)
839 #endif
840 /* We do ioctl like this rather than via safe_syscall3 to preserve the
841  * "third argument might be integer or pointer or not present" behaviour of
842  * the libc function.
843  */
844 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
845 /* Similarly for fcntl. Note that callers must always:
846  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
847  *  use the flock64 struct rather than unsuffixed flock
848  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
849  */
850 #ifdef __NR_fcntl64
851 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
852 #else
853 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
854 #endif
855 
856 static inline int host_to_target_sock_type(int host_type)
857 {
858     int target_type;
859 
860     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
861     case SOCK_DGRAM:
862         target_type = TARGET_SOCK_DGRAM;
863         break;
864     case SOCK_STREAM:
865         target_type = TARGET_SOCK_STREAM;
866         break;
867     default:
868         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
869         break;
870     }
871 
872 #if defined(SOCK_CLOEXEC)
873     if (host_type & SOCK_CLOEXEC) {
874         target_type |= TARGET_SOCK_CLOEXEC;
875     }
876 #endif
877 
878 #if defined(SOCK_NONBLOCK)
879     if (host_type & SOCK_NONBLOCK) {
880         target_type |= TARGET_SOCK_NONBLOCK;
881     }
882 #endif
883 
884     return target_type;
885 }
886 
887 static abi_ulong target_brk;
888 static abi_ulong target_original_brk;
889 static abi_ulong brk_page;
890 
891 void target_set_brk(abi_ulong new_brk)
892 {
893     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
894     brk_page = HOST_PAGE_ALIGN(target_brk);
895 }
896 
897 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
898 #define DEBUGF_BRK(message, args...)
899 
900 /* do_brk() must return target values and target errnos. */
901 abi_long do_brk(abi_ulong new_brk)
902 {
903     abi_long mapped_addr;
904     abi_ulong new_alloc_size;
905 
906     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
907 
908     if (!new_brk) {
909         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
910         return target_brk;
911     }
912     if (new_brk < target_original_brk) {
913         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
914                    target_brk);
915         return target_brk;
916     }
917 
918     /* If the new brk is less than the highest page reserved to the
919      * target heap allocation, set it and we're almost done...  */
920     if (new_brk <= brk_page) {
921         /* Heap contents are initialized to zero, as for anonymous
922          * mapped pages.  */
923         if (new_brk > target_brk) {
924             memset(g2h(target_brk), 0, new_brk - target_brk);
925         }
926 	target_brk = new_brk;
927         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
928 	return target_brk;
929     }
930 
931     /* We need to allocate more memory after the brk... Note that
932      * we don't use MAP_FIXED because that will map over the top of
933      * any existing mapping (like the one with the host libc or qemu
934      * itself); instead we treat "mapped but at wrong address" as
935      * a failure and unmap again.
936      */
937     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
938     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
939                                         PROT_READ|PROT_WRITE,
940                                         MAP_ANON|MAP_PRIVATE, 0, 0));
941 
942     if (mapped_addr == brk_page) {
943         /* Heap contents are initialized to zero, as for anonymous
944          * mapped pages.  Technically the new pages are already
945          * initialized to zero since they *are* anonymous mapped
946          * pages, however we have to take care with the contents that
947          * come from the remaining part of the previous page: it may
948          * contains garbage data due to a previous heap usage (grown
949          * then shrunken).  */
950         memset(g2h(target_brk), 0, brk_page - target_brk);
951 
952         target_brk = new_brk;
953         brk_page = HOST_PAGE_ALIGN(target_brk);
954         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
955             target_brk);
956         return target_brk;
957     } else if (mapped_addr != -1) {
958         /* Mapped but at wrong address, meaning there wasn't actually
959          * enough space for this brk.
960          */
961         target_munmap(mapped_addr, new_alloc_size);
962         mapped_addr = -1;
963         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
964     }
965     else {
966         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
967     }
968 
969 #if defined(TARGET_ALPHA)
970     /* We (partially) emulate OSF/1 on Alpha, which requires we
971        return a proper errno, not an unchanged brk value.  */
972     return -TARGET_ENOMEM;
973 #endif
974     /* For everything else, return the previous break. */
975     return target_brk;
976 }
977 
978 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
979     defined(TARGET_NR_pselect6)
980 static inline abi_long copy_from_user_fdset(fd_set *fds,
981                                             abi_ulong target_fds_addr,
982                                             int n)
983 {
984     int i, nw, j, k;
985     abi_ulong b, *target_fds;
986 
987     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
988     if (!(target_fds = lock_user(VERIFY_READ,
989                                  target_fds_addr,
990                                  sizeof(abi_ulong) * nw,
991                                  1)))
992         return -TARGET_EFAULT;
993 
994     FD_ZERO(fds);
995     k = 0;
996     for (i = 0; i < nw; i++) {
997         /* grab the abi_ulong */
998         __get_user(b, &target_fds[i]);
999         for (j = 0; j < TARGET_ABI_BITS; j++) {
1000             /* check the bit inside the abi_ulong */
1001             if ((b >> j) & 1)
1002                 FD_SET(k, fds);
1003             k++;
1004         }
1005     }
1006 
1007     unlock_user(target_fds, target_fds_addr, 0);
1008 
1009     return 0;
1010 }
1011 
1012 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1013                                                  abi_ulong target_fds_addr,
1014                                                  int n)
1015 {
1016     if (target_fds_addr) {
1017         if (copy_from_user_fdset(fds, target_fds_addr, n))
1018             return -TARGET_EFAULT;
1019         *fds_ptr = fds;
1020     } else {
1021         *fds_ptr = NULL;
1022     }
1023     return 0;
1024 }
1025 
1026 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1027                                           const fd_set *fds,
1028                                           int n)
1029 {
1030     int i, nw, j, k;
1031     abi_long v;
1032     abi_ulong *target_fds;
1033 
1034     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1035     if (!(target_fds = lock_user(VERIFY_WRITE,
1036                                  target_fds_addr,
1037                                  sizeof(abi_ulong) * nw,
1038                                  0)))
1039         return -TARGET_EFAULT;
1040 
1041     k = 0;
1042     for (i = 0; i < nw; i++) {
1043         v = 0;
1044         for (j = 0; j < TARGET_ABI_BITS; j++) {
1045             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1046             k++;
1047         }
1048         __put_user(v, &target_fds[i]);
1049     }
1050 
1051     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1052 
1053     return 0;
1054 }
1055 #endif
1056 
1057 #if defined(__alpha__)
1058 #define HOST_HZ 1024
1059 #else
1060 #define HOST_HZ 100
1061 #endif
1062 
1063 static inline abi_long host_to_target_clock_t(long ticks)
1064 {
1065 #if HOST_HZ == TARGET_HZ
1066     return ticks;
1067 #else
1068     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1069 #endif
1070 }
1071 
1072 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1073                                              const struct rusage *rusage)
1074 {
1075     struct target_rusage *target_rusage;
1076 
1077     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1078         return -TARGET_EFAULT;
1079     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1080     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1081     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1082     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1083     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1084     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1085     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1086     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1087     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1088     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1089     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1090     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1091     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1092     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1093     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1094     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1095     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1096     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1097     unlock_user_struct(target_rusage, target_addr, 1);
1098 
1099     return 0;
1100 }
1101 
1102 #ifdef TARGET_NR_setrlimit
1103 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1104 {
1105     abi_ulong target_rlim_swap;
1106     rlim_t result;
1107 
1108     target_rlim_swap = tswapal(target_rlim);
1109     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1110         return RLIM_INFINITY;
1111 
1112     result = target_rlim_swap;
1113     if (target_rlim_swap != (rlim_t)result)
1114         return RLIM_INFINITY;
1115 
1116     return result;
1117 }
1118 #endif
1119 
1120 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1121 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1122 {
1123     abi_ulong target_rlim_swap;
1124     abi_ulong result;
1125 
1126     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1127         target_rlim_swap = TARGET_RLIM_INFINITY;
1128     else
1129         target_rlim_swap = rlim;
1130     result = tswapal(target_rlim_swap);
1131 
1132     return result;
1133 }
1134 #endif
1135 
1136 static inline int target_to_host_resource(int code)
1137 {
1138     switch (code) {
1139     case TARGET_RLIMIT_AS:
1140         return RLIMIT_AS;
1141     case TARGET_RLIMIT_CORE:
1142         return RLIMIT_CORE;
1143     case TARGET_RLIMIT_CPU:
1144         return RLIMIT_CPU;
1145     case TARGET_RLIMIT_DATA:
1146         return RLIMIT_DATA;
1147     case TARGET_RLIMIT_FSIZE:
1148         return RLIMIT_FSIZE;
1149     case TARGET_RLIMIT_LOCKS:
1150         return RLIMIT_LOCKS;
1151     case TARGET_RLIMIT_MEMLOCK:
1152         return RLIMIT_MEMLOCK;
1153     case TARGET_RLIMIT_MSGQUEUE:
1154         return RLIMIT_MSGQUEUE;
1155     case TARGET_RLIMIT_NICE:
1156         return RLIMIT_NICE;
1157     case TARGET_RLIMIT_NOFILE:
1158         return RLIMIT_NOFILE;
1159     case TARGET_RLIMIT_NPROC:
1160         return RLIMIT_NPROC;
1161     case TARGET_RLIMIT_RSS:
1162         return RLIMIT_RSS;
1163     case TARGET_RLIMIT_RTPRIO:
1164         return RLIMIT_RTPRIO;
1165     case TARGET_RLIMIT_SIGPENDING:
1166         return RLIMIT_SIGPENDING;
1167     case TARGET_RLIMIT_STACK:
1168         return RLIMIT_STACK;
1169     default:
1170         return code;
1171     }
1172 }
1173 
1174 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1175                                               abi_ulong target_tv_addr)
1176 {
1177     struct target_timeval *target_tv;
1178 
1179     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1180         return -TARGET_EFAULT;
1181     }
1182 
1183     __get_user(tv->tv_sec, &target_tv->tv_sec);
1184     __get_user(tv->tv_usec, &target_tv->tv_usec);
1185 
1186     unlock_user_struct(target_tv, target_tv_addr, 0);
1187 
1188     return 0;
1189 }
1190 
1191 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1192                                             const struct timeval *tv)
1193 {
1194     struct target_timeval *target_tv;
1195 
1196     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1197         return -TARGET_EFAULT;
1198     }
1199 
1200     __put_user(tv->tv_sec, &target_tv->tv_sec);
1201     __put_user(tv->tv_usec, &target_tv->tv_usec);
1202 
1203     unlock_user_struct(target_tv, target_tv_addr, 1);
1204 
1205     return 0;
1206 }
1207 
1208 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1209                                              const struct timeval *tv)
1210 {
1211     struct target__kernel_sock_timeval *target_tv;
1212 
1213     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1214         return -TARGET_EFAULT;
1215     }
1216 
1217     __put_user(tv->tv_sec, &target_tv->tv_sec);
1218     __put_user(tv->tv_usec, &target_tv->tv_usec);
1219 
1220     unlock_user_struct(target_tv, target_tv_addr, 1);
1221 
1222     return 0;
1223 }
1224 
1225 #if defined(TARGET_NR_futex) || \
1226     defined(TARGET_NR_rt_sigtimedwait) || \
1227     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1228     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1229     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1230     defined(TARGET_NR_mq_timedreceive)
1231 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1232                                                abi_ulong target_addr)
1233 {
1234     struct target_timespec *target_ts;
1235 
1236     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1237         return -TARGET_EFAULT;
1238     }
1239     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1240     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1241     unlock_user_struct(target_ts, target_addr, 0);
1242     return 0;
1243 }
1244 #endif
1245 
1246 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64)
1247 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1248                                                  abi_ulong target_addr)
1249 {
1250     struct target__kernel_timespec *target_ts;
1251 
1252     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1253         return -TARGET_EFAULT;
1254     }
1255     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1256     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1257     unlock_user_struct(target_ts, target_addr, 0);
1258     return 0;
1259 }
1260 #endif
1261 
1262 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1263                                                struct timespec *host_ts)
1264 {
1265     struct target_timespec *target_ts;
1266 
1267     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1268         return -TARGET_EFAULT;
1269     }
1270     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1271     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1272     unlock_user_struct(target_ts, target_addr, 1);
1273     return 0;
1274 }
1275 
1276 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1277                                                  struct timespec *host_ts)
1278 {
1279     struct target__kernel_timespec *target_ts;
1280 
1281     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1282         return -TARGET_EFAULT;
1283     }
1284     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1285     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1286     unlock_user_struct(target_ts, target_addr, 1);
1287     return 0;
1288 }
1289 
1290 #if defined(TARGET_NR_gettimeofday)
1291 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1292                                              struct timezone *tz)
1293 {
1294     struct target_timezone *target_tz;
1295 
1296     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1297         return -TARGET_EFAULT;
1298     }
1299 
1300     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1301     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1302 
1303     unlock_user_struct(target_tz, target_tz_addr, 1);
1304 
1305     return 0;
1306 }
1307 #endif
1308 
1309 #if defined(TARGET_NR_settimeofday)
1310 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1311                                                abi_ulong target_tz_addr)
1312 {
1313     struct target_timezone *target_tz;
1314 
1315     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1316         return -TARGET_EFAULT;
1317     }
1318 
1319     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1320     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1321 
1322     unlock_user_struct(target_tz, target_tz_addr, 0);
1323 
1324     return 0;
1325 }
1326 #endif
1327 
1328 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1329 #include <mqueue.h>
1330 
1331 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1332                                               abi_ulong target_mq_attr_addr)
1333 {
1334     struct target_mq_attr *target_mq_attr;
1335 
1336     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1337                           target_mq_attr_addr, 1))
1338         return -TARGET_EFAULT;
1339 
1340     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1341     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1342     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1343     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1344 
1345     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1346 
1347     return 0;
1348 }
1349 
1350 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1351                                             const struct mq_attr *attr)
1352 {
1353     struct target_mq_attr *target_mq_attr;
1354 
1355     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1356                           target_mq_attr_addr, 0))
1357         return -TARGET_EFAULT;
1358 
1359     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1360     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1361     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1362     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1363 
1364     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1365 
1366     return 0;
1367 }
1368 #endif
1369 
1370 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1371 /* do_select() must return target values and target errnos. */
1372 static abi_long do_select(int n,
1373                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1374                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1375 {
1376     fd_set rfds, wfds, efds;
1377     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1378     struct timeval tv;
1379     struct timespec ts, *ts_ptr;
1380     abi_long ret;
1381 
1382     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1383     if (ret) {
1384         return ret;
1385     }
1386     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1387     if (ret) {
1388         return ret;
1389     }
1390     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1391     if (ret) {
1392         return ret;
1393     }
1394 
1395     if (target_tv_addr) {
1396         if (copy_from_user_timeval(&tv, target_tv_addr))
1397             return -TARGET_EFAULT;
1398         ts.tv_sec = tv.tv_sec;
1399         ts.tv_nsec = tv.tv_usec * 1000;
1400         ts_ptr = &ts;
1401     } else {
1402         ts_ptr = NULL;
1403     }
1404 
1405     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1406                                   ts_ptr, NULL));
1407 
1408     if (!is_error(ret)) {
1409         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1410             return -TARGET_EFAULT;
1411         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1412             return -TARGET_EFAULT;
1413         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1414             return -TARGET_EFAULT;
1415 
1416         if (target_tv_addr) {
1417             tv.tv_sec = ts.tv_sec;
1418             tv.tv_usec = ts.tv_nsec / 1000;
1419             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1420                 return -TARGET_EFAULT;
1421             }
1422         }
1423     }
1424 
1425     return ret;
1426 }
1427 
1428 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1429 static abi_long do_old_select(abi_ulong arg1)
1430 {
1431     struct target_sel_arg_struct *sel;
1432     abi_ulong inp, outp, exp, tvp;
1433     long nsel;
1434 
1435     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1436         return -TARGET_EFAULT;
1437     }
1438 
1439     nsel = tswapal(sel->n);
1440     inp = tswapal(sel->inp);
1441     outp = tswapal(sel->outp);
1442     exp = tswapal(sel->exp);
1443     tvp = tswapal(sel->tvp);
1444 
1445     unlock_user_struct(sel, arg1, 0);
1446 
1447     return do_select(nsel, inp, outp, exp, tvp);
1448 }
1449 #endif
1450 #endif
1451 
1452 static abi_long do_pipe2(int host_pipe[], int flags)
1453 {
1454 #ifdef CONFIG_PIPE2
1455     return pipe2(host_pipe, flags);
1456 #else
1457     return -ENOSYS;
1458 #endif
1459 }
1460 
1461 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1462                         int flags, int is_pipe2)
1463 {
1464     int host_pipe[2];
1465     abi_long ret;
1466     ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1467 
1468     if (is_error(ret))
1469         return get_errno(ret);
1470 
1471     /* Several targets have special calling conventions for the original
1472        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1473     if (!is_pipe2) {
1474 #if defined(TARGET_ALPHA)
1475         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1476         return host_pipe[0];
1477 #elif defined(TARGET_MIPS)
1478         ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1479         return host_pipe[0];
1480 #elif defined(TARGET_SH4)
1481         ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1482         return host_pipe[0];
1483 #elif defined(TARGET_SPARC)
1484         ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1485         return host_pipe[0];
1486 #endif
1487     }
1488 
1489     if (put_user_s32(host_pipe[0], pipedes)
1490         || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1491         return -TARGET_EFAULT;
1492     return get_errno(ret);
1493 }
1494 
1495 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1496                                               abi_ulong target_addr,
1497                                               socklen_t len)
1498 {
1499     struct target_ip_mreqn *target_smreqn;
1500 
1501     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1502     if (!target_smreqn)
1503         return -TARGET_EFAULT;
1504     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1505     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1506     if (len == sizeof(struct target_ip_mreqn))
1507         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1508     unlock_user(target_smreqn, target_addr, 0);
1509 
1510     return 0;
1511 }
1512 
1513 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1514                                                abi_ulong target_addr,
1515                                                socklen_t len)
1516 {
1517     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1518     sa_family_t sa_family;
1519     struct target_sockaddr *target_saddr;
1520 
1521     if (fd_trans_target_to_host_addr(fd)) {
1522         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1523     }
1524 
1525     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1526     if (!target_saddr)
1527         return -TARGET_EFAULT;
1528 
1529     sa_family = tswap16(target_saddr->sa_family);
1530 
1531     /* Oops. The caller might send a incomplete sun_path; sun_path
1532      * must be terminated by \0 (see the manual page), but
1533      * unfortunately it is quite common to specify sockaddr_un
1534      * length as "strlen(x->sun_path)" while it should be
1535      * "strlen(...) + 1". We'll fix that here if needed.
1536      * Linux kernel has a similar feature.
1537      */
1538 
1539     if (sa_family == AF_UNIX) {
1540         if (len < unix_maxlen && len > 0) {
1541             char *cp = (char*)target_saddr;
1542 
1543             if ( cp[len-1] && !cp[len] )
1544                 len++;
1545         }
1546         if (len > unix_maxlen)
1547             len = unix_maxlen;
1548     }
1549 
1550     memcpy(addr, target_saddr, len);
1551     addr->sa_family = sa_family;
1552     if (sa_family == AF_NETLINK) {
1553         struct sockaddr_nl *nladdr;
1554 
1555         nladdr = (struct sockaddr_nl *)addr;
1556         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1557         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1558     } else if (sa_family == AF_PACKET) {
1559 	struct target_sockaddr_ll *lladdr;
1560 
1561 	lladdr = (struct target_sockaddr_ll *)addr;
1562 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1563 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1564     }
1565     unlock_user(target_saddr, target_addr, 0);
1566 
1567     return 0;
1568 }
1569 
1570 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1571                                                struct sockaddr *addr,
1572                                                socklen_t len)
1573 {
1574     struct target_sockaddr *target_saddr;
1575 
1576     if (len == 0) {
1577         return 0;
1578     }
1579     assert(addr);
1580 
1581     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1582     if (!target_saddr)
1583         return -TARGET_EFAULT;
1584     memcpy(target_saddr, addr, len);
1585     if (len >= offsetof(struct target_sockaddr, sa_family) +
1586         sizeof(target_saddr->sa_family)) {
1587         target_saddr->sa_family = tswap16(addr->sa_family);
1588     }
1589     if (addr->sa_family == AF_NETLINK &&
1590         len >= sizeof(struct target_sockaddr_nl)) {
1591         struct target_sockaddr_nl *target_nl =
1592                (struct target_sockaddr_nl *)target_saddr;
1593         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1594         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1595     } else if (addr->sa_family == AF_PACKET) {
1596         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1597         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1598         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1599     } else if (addr->sa_family == AF_INET6 &&
1600                len >= sizeof(struct target_sockaddr_in6)) {
1601         struct target_sockaddr_in6 *target_in6 =
1602                (struct target_sockaddr_in6 *)target_saddr;
1603         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1604     }
1605     unlock_user(target_saddr, target_addr, len);
1606 
1607     return 0;
1608 }
1609 
1610 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1611                                            struct target_msghdr *target_msgh)
1612 {
1613     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1614     abi_long msg_controllen;
1615     abi_ulong target_cmsg_addr;
1616     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1617     socklen_t space = 0;
1618 
1619     msg_controllen = tswapal(target_msgh->msg_controllen);
1620     if (msg_controllen < sizeof (struct target_cmsghdr))
1621         goto the_end;
1622     target_cmsg_addr = tswapal(target_msgh->msg_control);
1623     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1624     target_cmsg_start = target_cmsg;
1625     if (!target_cmsg)
1626         return -TARGET_EFAULT;
1627 
1628     while (cmsg && target_cmsg) {
1629         void *data = CMSG_DATA(cmsg);
1630         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1631 
1632         int len = tswapal(target_cmsg->cmsg_len)
1633             - sizeof(struct target_cmsghdr);
1634 
1635         space += CMSG_SPACE(len);
1636         if (space > msgh->msg_controllen) {
1637             space -= CMSG_SPACE(len);
1638             /* This is a QEMU bug, since we allocated the payload
1639              * area ourselves (unlike overflow in host-to-target
1640              * conversion, which is just the guest giving us a buffer
1641              * that's too small). It can't happen for the payload types
1642              * we currently support; if it becomes an issue in future
1643              * we would need to improve our allocation strategy to
1644              * something more intelligent than "twice the size of the
1645              * target buffer we're reading from".
1646              */
1647             qemu_log_mask(LOG_UNIMP,
1648                           ("Unsupported ancillary data %d/%d: "
1649                            "unhandled msg size\n"),
1650                           tswap32(target_cmsg->cmsg_level),
1651                           tswap32(target_cmsg->cmsg_type));
1652             break;
1653         }
1654 
1655         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1656             cmsg->cmsg_level = SOL_SOCKET;
1657         } else {
1658             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1659         }
1660         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1661         cmsg->cmsg_len = CMSG_LEN(len);
1662 
1663         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1664             int *fd = (int *)data;
1665             int *target_fd = (int *)target_data;
1666             int i, numfds = len / sizeof(int);
1667 
1668             for (i = 0; i < numfds; i++) {
1669                 __get_user(fd[i], target_fd + i);
1670             }
1671         } else if (cmsg->cmsg_level == SOL_SOCKET
1672                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1673             struct ucred *cred = (struct ucred *)data;
1674             struct target_ucred *target_cred =
1675                 (struct target_ucred *)target_data;
1676 
1677             __get_user(cred->pid, &target_cred->pid);
1678             __get_user(cred->uid, &target_cred->uid);
1679             __get_user(cred->gid, &target_cred->gid);
1680         } else {
1681             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1682                           cmsg->cmsg_level, cmsg->cmsg_type);
1683             memcpy(data, target_data, len);
1684         }
1685 
1686         cmsg = CMSG_NXTHDR(msgh, cmsg);
1687         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1688                                          target_cmsg_start);
1689     }
1690     unlock_user(target_cmsg, target_cmsg_addr, 0);
1691  the_end:
1692     msgh->msg_controllen = space;
1693     return 0;
1694 }
1695 
1696 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1697                                            struct msghdr *msgh)
1698 {
1699     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1700     abi_long msg_controllen;
1701     abi_ulong target_cmsg_addr;
1702     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1703     socklen_t space = 0;
1704 
1705     msg_controllen = tswapal(target_msgh->msg_controllen);
1706     if (msg_controllen < sizeof (struct target_cmsghdr))
1707         goto the_end;
1708     target_cmsg_addr = tswapal(target_msgh->msg_control);
1709     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1710     target_cmsg_start = target_cmsg;
1711     if (!target_cmsg)
1712         return -TARGET_EFAULT;
1713 
1714     while (cmsg && target_cmsg) {
1715         void *data = CMSG_DATA(cmsg);
1716         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1717 
1718         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1719         int tgt_len, tgt_space;
1720 
1721         /* We never copy a half-header but may copy half-data;
1722          * this is Linux's behaviour in put_cmsg(). Note that
1723          * truncation here is a guest problem (which we report
1724          * to the guest via the CTRUNC bit), unlike truncation
1725          * in target_to_host_cmsg, which is a QEMU bug.
1726          */
1727         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1728             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1729             break;
1730         }
1731 
1732         if (cmsg->cmsg_level == SOL_SOCKET) {
1733             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1734         } else {
1735             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1736         }
1737         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1738 
1739         /* Payload types which need a different size of payload on
1740          * the target must adjust tgt_len here.
1741          */
1742         tgt_len = len;
1743         switch (cmsg->cmsg_level) {
1744         case SOL_SOCKET:
1745             switch (cmsg->cmsg_type) {
1746             case SO_TIMESTAMP:
1747                 tgt_len = sizeof(struct target_timeval);
1748                 break;
1749             default:
1750                 break;
1751             }
1752             break;
1753         default:
1754             break;
1755         }
1756 
1757         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1758             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1759             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1760         }
1761 
1762         /* We must now copy-and-convert len bytes of payload
1763          * into tgt_len bytes of destination space. Bear in mind
1764          * that in both source and destination we may be dealing
1765          * with a truncated value!
1766          */
1767         switch (cmsg->cmsg_level) {
1768         case SOL_SOCKET:
1769             switch (cmsg->cmsg_type) {
1770             case SCM_RIGHTS:
1771             {
1772                 int *fd = (int *)data;
1773                 int *target_fd = (int *)target_data;
1774                 int i, numfds = tgt_len / sizeof(int);
1775 
1776                 for (i = 0; i < numfds; i++) {
1777                     __put_user(fd[i], target_fd + i);
1778                 }
1779                 break;
1780             }
1781             case SO_TIMESTAMP:
1782             {
1783                 struct timeval *tv = (struct timeval *)data;
1784                 struct target_timeval *target_tv =
1785                     (struct target_timeval *)target_data;
1786 
1787                 if (len != sizeof(struct timeval) ||
1788                     tgt_len != sizeof(struct target_timeval)) {
1789                     goto unimplemented;
1790                 }
1791 
1792                 /* copy struct timeval to target */
1793                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1794                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1795                 break;
1796             }
1797             case SCM_CREDENTIALS:
1798             {
1799                 struct ucred *cred = (struct ucred *)data;
1800                 struct target_ucred *target_cred =
1801                     (struct target_ucred *)target_data;
1802 
1803                 __put_user(cred->pid, &target_cred->pid);
1804                 __put_user(cred->uid, &target_cred->uid);
1805                 __put_user(cred->gid, &target_cred->gid);
1806                 break;
1807             }
1808             default:
1809                 goto unimplemented;
1810             }
1811             break;
1812 
1813         case SOL_IP:
1814             switch (cmsg->cmsg_type) {
1815             case IP_TTL:
1816             {
1817                 uint32_t *v = (uint32_t *)data;
1818                 uint32_t *t_int = (uint32_t *)target_data;
1819 
1820                 if (len != sizeof(uint32_t) ||
1821                     tgt_len != sizeof(uint32_t)) {
1822                     goto unimplemented;
1823                 }
1824                 __put_user(*v, t_int);
1825                 break;
1826             }
1827             case IP_RECVERR:
1828             {
1829                 struct errhdr_t {
1830                    struct sock_extended_err ee;
1831                    struct sockaddr_in offender;
1832                 };
1833                 struct errhdr_t *errh = (struct errhdr_t *)data;
1834                 struct errhdr_t *target_errh =
1835                     (struct errhdr_t *)target_data;
1836 
1837                 if (len != sizeof(struct errhdr_t) ||
1838                     tgt_len != sizeof(struct errhdr_t)) {
1839                     goto unimplemented;
1840                 }
1841                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1842                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1843                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1844                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1845                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1846                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1847                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1848                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1849                     (void *) &errh->offender, sizeof(errh->offender));
1850                 break;
1851             }
1852             default:
1853                 goto unimplemented;
1854             }
1855             break;
1856 
1857         case SOL_IPV6:
1858             switch (cmsg->cmsg_type) {
1859             case IPV6_HOPLIMIT:
1860             {
1861                 uint32_t *v = (uint32_t *)data;
1862                 uint32_t *t_int = (uint32_t *)target_data;
1863 
1864                 if (len != sizeof(uint32_t) ||
1865                     tgt_len != sizeof(uint32_t)) {
1866                     goto unimplemented;
1867                 }
1868                 __put_user(*v, t_int);
1869                 break;
1870             }
1871             case IPV6_RECVERR:
1872             {
1873                 struct errhdr6_t {
1874                    struct sock_extended_err ee;
1875                    struct sockaddr_in6 offender;
1876                 };
1877                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1878                 struct errhdr6_t *target_errh =
1879                     (struct errhdr6_t *)target_data;
1880 
1881                 if (len != sizeof(struct errhdr6_t) ||
1882                     tgt_len != sizeof(struct errhdr6_t)) {
1883                     goto unimplemented;
1884                 }
1885                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1886                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1887                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1888                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1889                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1890                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1891                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1892                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1893                     (void *) &errh->offender, sizeof(errh->offender));
1894                 break;
1895             }
1896             default:
1897                 goto unimplemented;
1898             }
1899             break;
1900 
1901         default:
1902         unimplemented:
1903             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1904                           cmsg->cmsg_level, cmsg->cmsg_type);
1905             memcpy(target_data, data, MIN(len, tgt_len));
1906             if (tgt_len > len) {
1907                 memset(target_data + len, 0, tgt_len - len);
1908             }
1909         }
1910 
1911         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
1912         tgt_space = TARGET_CMSG_SPACE(tgt_len);
1913         if (msg_controllen < tgt_space) {
1914             tgt_space = msg_controllen;
1915         }
1916         msg_controllen -= tgt_space;
1917         space += tgt_space;
1918         cmsg = CMSG_NXTHDR(msgh, cmsg);
1919         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1920                                          target_cmsg_start);
1921     }
1922     unlock_user(target_cmsg, target_cmsg_addr, space);
1923  the_end:
1924     target_msgh->msg_controllen = tswapal(space);
1925     return 0;
1926 }
1927 
1928 /* do_setsockopt() Must return target values and target errnos. */
1929 static abi_long do_setsockopt(int sockfd, int level, int optname,
1930                               abi_ulong optval_addr, socklen_t optlen)
1931 {
1932     abi_long ret;
1933     int val;
1934     struct ip_mreqn *ip_mreq;
1935     struct ip_mreq_source *ip_mreq_source;
1936 
1937     switch(level) {
1938     case SOL_TCP:
1939         /* TCP options all take an 'int' value.  */
1940         if (optlen < sizeof(uint32_t))
1941             return -TARGET_EINVAL;
1942 
1943         if (get_user_u32(val, optval_addr))
1944             return -TARGET_EFAULT;
1945         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1946         break;
1947     case SOL_IP:
1948         switch(optname) {
1949         case IP_TOS:
1950         case IP_TTL:
1951         case IP_HDRINCL:
1952         case IP_ROUTER_ALERT:
1953         case IP_RECVOPTS:
1954         case IP_RETOPTS:
1955         case IP_PKTINFO:
1956         case IP_MTU_DISCOVER:
1957         case IP_RECVERR:
1958         case IP_RECVTTL:
1959         case IP_RECVTOS:
1960 #ifdef IP_FREEBIND
1961         case IP_FREEBIND:
1962 #endif
1963         case IP_MULTICAST_TTL:
1964         case IP_MULTICAST_LOOP:
1965             val = 0;
1966             if (optlen >= sizeof(uint32_t)) {
1967                 if (get_user_u32(val, optval_addr))
1968                     return -TARGET_EFAULT;
1969             } else if (optlen >= 1) {
1970                 if (get_user_u8(val, optval_addr))
1971                     return -TARGET_EFAULT;
1972             }
1973             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1974             break;
1975         case IP_ADD_MEMBERSHIP:
1976         case IP_DROP_MEMBERSHIP:
1977             if (optlen < sizeof (struct target_ip_mreq) ||
1978                 optlen > sizeof (struct target_ip_mreqn))
1979                 return -TARGET_EINVAL;
1980 
1981             ip_mreq = (struct ip_mreqn *) alloca(optlen);
1982             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
1983             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
1984             break;
1985 
1986         case IP_BLOCK_SOURCE:
1987         case IP_UNBLOCK_SOURCE:
1988         case IP_ADD_SOURCE_MEMBERSHIP:
1989         case IP_DROP_SOURCE_MEMBERSHIP:
1990             if (optlen != sizeof (struct target_ip_mreq_source))
1991                 return -TARGET_EINVAL;
1992 
1993             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
1994             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
1995             unlock_user (ip_mreq_source, optval_addr, 0);
1996             break;
1997 
1998         default:
1999             goto unimplemented;
2000         }
2001         break;
2002     case SOL_IPV6:
2003         switch (optname) {
2004         case IPV6_MTU_DISCOVER:
2005         case IPV6_MTU:
2006         case IPV6_V6ONLY:
2007         case IPV6_RECVPKTINFO:
2008         case IPV6_UNICAST_HOPS:
2009         case IPV6_MULTICAST_HOPS:
2010         case IPV6_MULTICAST_LOOP:
2011         case IPV6_RECVERR:
2012         case IPV6_RECVHOPLIMIT:
2013         case IPV6_2292HOPLIMIT:
2014         case IPV6_CHECKSUM:
2015         case IPV6_ADDRFORM:
2016         case IPV6_2292PKTINFO:
2017         case IPV6_RECVTCLASS:
2018         case IPV6_RECVRTHDR:
2019         case IPV6_2292RTHDR:
2020         case IPV6_RECVHOPOPTS:
2021         case IPV6_2292HOPOPTS:
2022         case IPV6_RECVDSTOPTS:
2023         case IPV6_2292DSTOPTS:
2024         case IPV6_TCLASS:
2025 #ifdef IPV6_RECVPATHMTU
2026         case IPV6_RECVPATHMTU:
2027 #endif
2028 #ifdef IPV6_TRANSPARENT
2029         case IPV6_TRANSPARENT:
2030 #endif
2031 #ifdef IPV6_FREEBIND
2032         case IPV6_FREEBIND:
2033 #endif
2034 #ifdef IPV6_RECVORIGDSTADDR
2035         case IPV6_RECVORIGDSTADDR:
2036 #endif
2037             val = 0;
2038             if (optlen < sizeof(uint32_t)) {
2039                 return -TARGET_EINVAL;
2040             }
2041             if (get_user_u32(val, optval_addr)) {
2042                 return -TARGET_EFAULT;
2043             }
2044             ret = get_errno(setsockopt(sockfd, level, optname,
2045                                        &val, sizeof(val)));
2046             break;
2047         case IPV6_PKTINFO:
2048         {
2049             struct in6_pktinfo pki;
2050 
2051             if (optlen < sizeof(pki)) {
2052                 return -TARGET_EINVAL;
2053             }
2054 
2055             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2056                 return -TARGET_EFAULT;
2057             }
2058 
2059             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2060 
2061             ret = get_errno(setsockopt(sockfd, level, optname,
2062                                        &pki, sizeof(pki)));
2063             break;
2064         }
2065         case IPV6_ADD_MEMBERSHIP:
2066         case IPV6_DROP_MEMBERSHIP:
2067         {
2068             struct ipv6_mreq ipv6mreq;
2069 
2070             if (optlen < sizeof(ipv6mreq)) {
2071                 return -TARGET_EINVAL;
2072             }
2073 
2074             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2075                 return -TARGET_EFAULT;
2076             }
2077 
2078             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2079 
2080             ret = get_errno(setsockopt(sockfd, level, optname,
2081                                        &ipv6mreq, sizeof(ipv6mreq)));
2082             break;
2083         }
2084         default:
2085             goto unimplemented;
2086         }
2087         break;
2088     case SOL_ICMPV6:
2089         switch (optname) {
2090         case ICMPV6_FILTER:
2091         {
2092             struct icmp6_filter icmp6f;
2093 
2094             if (optlen > sizeof(icmp6f)) {
2095                 optlen = sizeof(icmp6f);
2096             }
2097 
2098             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2099                 return -TARGET_EFAULT;
2100             }
2101 
2102             for (val = 0; val < 8; val++) {
2103                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2104             }
2105 
2106             ret = get_errno(setsockopt(sockfd, level, optname,
2107                                        &icmp6f, optlen));
2108             break;
2109         }
2110         default:
2111             goto unimplemented;
2112         }
2113         break;
2114     case SOL_RAW:
2115         switch (optname) {
2116         case ICMP_FILTER:
2117         case IPV6_CHECKSUM:
2118             /* those take an u32 value */
2119             if (optlen < sizeof(uint32_t)) {
2120                 return -TARGET_EINVAL;
2121             }
2122 
2123             if (get_user_u32(val, optval_addr)) {
2124                 return -TARGET_EFAULT;
2125             }
2126             ret = get_errno(setsockopt(sockfd, level, optname,
2127                                        &val, sizeof(val)));
2128             break;
2129 
2130         default:
2131             goto unimplemented;
2132         }
2133         break;
2134 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2135     case SOL_ALG:
2136         switch (optname) {
2137         case ALG_SET_KEY:
2138         {
2139             char *alg_key = g_malloc(optlen);
2140 
2141             if (!alg_key) {
2142                 return -TARGET_ENOMEM;
2143             }
2144             if (copy_from_user(alg_key, optval_addr, optlen)) {
2145                 g_free(alg_key);
2146                 return -TARGET_EFAULT;
2147             }
2148             ret = get_errno(setsockopt(sockfd, level, optname,
2149                                        alg_key, optlen));
2150             g_free(alg_key);
2151             break;
2152         }
2153         case ALG_SET_AEAD_AUTHSIZE:
2154         {
2155             ret = get_errno(setsockopt(sockfd, level, optname,
2156                                        NULL, optlen));
2157             break;
2158         }
2159         default:
2160             goto unimplemented;
2161         }
2162         break;
2163 #endif
2164     case TARGET_SOL_SOCKET:
2165         switch (optname) {
2166         case TARGET_SO_RCVTIMEO:
2167         {
2168                 struct timeval tv;
2169 
2170                 optname = SO_RCVTIMEO;
2171 
2172 set_timeout:
2173                 if (optlen != sizeof(struct target_timeval)) {
2174                     return -TARGET_EINVAL;
2175                 }
2176 
2177                 if (copy_from_user_timeval(&tv, optval_addr)) {
2178                     return -TARGET_EFAULT;
2179                 }
2180 
2181                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2182                                 &tv, sizeof(tv)));
2183                 return ret;
2184         }
2185         case TARGET_SO_SNDTIMEO:
2186                 optname = SO_SNDTIMEO;
2187                 goto set_timeout;
2188         case TARGET_SO_ATTACH_FILTER:
2189         {
2190                 struct target_sock_fprog *tfprog;
2191                 struct target_sock_filter *tfilter;
2192                 struct sock_fprog fprog;
2193                 struct sock_filter *filter;
2194                 int i;
2195 
2196                 if (optlen != sizeof(*tfprog)) {
2197                     return -TARGET_EINVAL;
2198                 }
2199                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2200                     return -TARGET_EFAULT;
2201                 }
2202                 if (!lock_user_struct(VERIFY_READ, tfilter,
2203                                       tswapal(tfprog->filter), 0)) {
2204                     unlock_user_struct(tfprog, optval_addr, 1);
2205                     return -TARGET_EFAULT;
2206                 }
2207 
2208                 fprog.len = tswap16(tfprog->len);
2209                 filter = g_try_new(struct sock_filter, fprog.len);
2210                 if (filter == NULL) {
2211                     unlock_user_struct(tfilter, tfprog->filter, 1);
2212                     unlock_user_struct(tfprog, optval_addr, 1);
2213                     return -TARGET_ENOMEM;
2214                 }
2215                 for (i = 0; i < fprog.len; i++) {
2216                     filter[i].code = tswap16(tfilter[i].code);
2217                     filter[i].jt = tfilter[i].jt;
2218                     filter[i].jf = tfilter[i].jf;
2219                     filter[i].k = tswap32(tfilter[i].k);
2220                 }
2221                 fprog.filter = filter;
2222 
2223                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2224                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2225                 g_free(filter);
2226 
2227                 unlock_user_struct(tfilter, tfprog->filter, 1);
2228                 unlock_user_struct(tfprog, optval_addr, 1);
2229                 return ret;
2230         }
2231 	case TARGET_SO_BINDTODEVICE:
2232 	{
2233 		char *dev_ifname, *addr_ifname;
2234 
2235 		if (optlen > IFNAMSIZ - 1) {
2236 		    optlen = IFNAMSIZ - 1;
2237 		}
2238 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2239 		if (!dev_ifname) {
2240 		    return -TARGET_EFAULT;
2241 		}
2242 		optname = SO_BINDTODEVICE;
2243 		addr_ifname = alloca(IFNAMSIZ);
2244 		memcpy(addr_ifname, dev_ifname, optlen);
2245 		addr_ifname[optlen] = 0;
2246 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2247                                            addr_ifname, optlen));
2248 		unlock_user (dev_ifname, optval_addr, 0);
2249 		return ret;
2250 	}
2251         case TARGET_SO_LINGER:
2252         {
2253                 struct linger lg;
2254                 struct target_linger *tlg;
2255 
2256                 if (optlen != sizeof(struct target_linger)) {
2257                     return -TARGET_EINVAL;
2258                 }
2259                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2260                     return -TARGET_EFAULT;
2261                 }
2262                 __get_user(lg.l_onoff, &tlg->l_onoff);
2263                 __get_user(lg.l_linger, &tlg->l_linger);
2264                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2265                                 &lg, sizeof(lg)));
2266                 unlock_user_struct(tlg, optval_addr, 0);
2267                 return ret;
2268         }
2269             /* Options with 'int' argument.  */
2270         case TARGET_SO_DEBUG:
2271 		optname = SO_DEBUG;
2272 		break;
2273         case TARGET_SO_REUSEADDR:
2274 		optname = SO_REUSEADDR;
2275 		break;
2276 #ifdef SO_REUSEPORT
2277         case TARGET_SO_REUSEPORT:
2278                 optname = SO_REUSEPORT;
2279                 break;
2280 #endif
2281         case TARGET_SO_TYPE:
2282 		optname = SO_TYPE;
2283 		break;
2284         case TARGET_SO_ERROR:
2285 		optname = SO_ERROR;
2286 		break;
2287         case TARGET_SO_DONTROUTE:
2288 		optname = SO_DONTROUTE;
2289 		break;
2290         case TARGET_SO_BROADCAST:
2291 		optname = SO_BROADCAST;
2292 		break;
2293         case TARGET_SO_SNDBUF:
2294 		optname = SO_SNDBUF;
2295 		break;
2296         case TARGET_SO_SNDBUFFORCE:
2297                 optname = SO_SNDBUFFORCE;
2298                 break;
2299         case TARGET_SO_RCVBUF:
2300 		optname = SO_RCVBUF;
2301 		break;
2302         case TARGET_SO_RCVBUFFORCE:
2303                 optname = SO_RCVBUFFORCE;
2304                 break;
2305         case TARGET_SO_KEEPALIVE:
2306 		optname = SO_KEEPALIVE;
2307 		break;
2308         case TARGET_SO_OOBINLINE:
2309 		optname = SO_OOBINLINE;
2310 		break;
2311         case TARGET_SO_NO_CHECK:
2312 		optname = SO_NO_CHECK;
2313 		break;
2314         case TARGET_SO_PRIORITY:
2315 		optname = SO_PRIORITY;
2316 		break;
2317 #ifdef SO_BSDCOMPAT
2318         case TARGET_SO_BSDCOMPAT:
2319 		optname = SO_BSDCOMPAT;
2320 		break;
2321 #endif
2322         case TARGET_SO_PASSCRED:
2323 		optname = SO_PASSCRED;
2324 		break;
2325         case TARGET_SO_PASSSEC:
2326                 optname = SO_PASSSEC;
2327                 break;
2328         case TARGET_SO_TIMESTAMP:
2329 		optname = SO_TIMESTAMP;
2330 		break;
2331         case TARGET_SO_RCVLOWAT:
2332 		optname = SO_RCVLOWAT;
2333 		break;
2334         default:
2335             goto unimplemented;
2336         }
2337 	if (optlen < sizeof(uint32_t))
2338             return -TARGET_EINVAL;
2339 
2340 	if (get_user_u32(val, optval_addr))
2341             return -TARGET_EFAULT;
2342 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2343         break;
2344 #ifdef SOL_NETLINK
2345     case SOL_NETLINK:
2346         switch (optname) {
2347         case NETLINK_PKTINFO:
2348         case NETLINK_ADD_MEMBERSHIP:
2349         case NETLINK_DROP_MEMBERSHIP:
2350         case NETLINK_BROADCAST_ERROR:
2351         case NETLINK_NO_ENOBUFS:
2352 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2353         case NETLINK_LISTEN_ALL_NSID:
2354         case NETLINK_CAP_ACK:
2355 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2356 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2357         case NETLINK_EXT_ACK:
2358 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2359 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2360         case NETLINK_GET_STRICT_CHK:
2361 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2362             break;
2363         default:
2364             goto unimplemented;
2365         }
2366         val = 0;
2367         if (optlen < sizeof(uint32_t)) {
2368             return -TARGET_EINVAL;
2369         }
2370         if (get_user_u32(val, optval_addr)) {
2371             return -TARGET_EFAULT;
2372         }
2373         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2374                                    sizeof(val)));
2375         break;
2376 #endif /* SOL_NETLINK */
2377     default:
2378     unimplemented:
2379         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2380                       level, optname);
2381         ret = -TARGET_ENOPROTOOPT;
2382     }
2383     return ret;
2384 }
2385 
2386 /* do_getsockopt() Must return target values and target errnos. */
2387 static abi_long do_getsockopt(int sockfd, int level, int optname,
2388                               abi_ulong optval_addr, abi_ulong optlen)
2389 {
2390     abi_long ret;
2391     int len, val;
2392     socklen_t lv;
2393 
2394     switch(level) {
2395     case TARGET_SOL_SOCKET:
2396         level = SOL_SOCKET;
2397         switch (optname) {
2398         /* These don't just return a single integer */
2399         case TARGET_SO_PEERNAME:
2400             goto unimplemented;
2401         case TARGET_SO_RCVTIMEO: {
2402             struct timeval tv;
2403             socklen_t tvlen;
2404 
2405             optname = SO_RCVTIMEO;
2406 
2407 get_timeout:
2408             if (get_user_u32(len, optlen)) {
2409                 return -TARGET_EFAULT;
2410             }
2411             if (len < 0) {
2412                 return -TARGET_EINVAL;
2413             }
2414 
2415             tvlen = sizeof(tv);
2416             ret = get_errno(getsockopt(sockfd, level, optname,
2417                                        &tv, &tvlen));
2418             if (ret < 0) {
2419                 return ret;
2420             }
2421             if (len > sizeof(struct target_timeval)) {
2422                 len = sizeof(struct target_timeval);
2423             }
2424             if (copy_to_user_timeval(optval_addr, &tv)) {
2425                 return -TARGET_EFAULT;
2426             }
2427             if (put_user_u32(len, optlen)) {
2428                 return -TARGET_EFAULT;
2429             }
2430             break;
2431         }
2432         case TARGET_SO_SNDTIMEO:
2433             optname = SO_SNDTIMEO;
2434             goto get_timeout;
2435         case TARGET_SO_PEERCRED: {
2436             struct ucred cr;
2437             socklen_t crlen;
2438             struct target_ucred *tcr;
2439 
2440             if (get_user_u32(len, optlen)) {
2441                 return -TARGET_EFAULT;
2442             }
2443             if (len < 0) {
2444                 return -TARGET_EINVAL;
2445             }
2446 
2447             crlen = sizeof(cr);
2448             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2449                                        &cr, &crlen));
2450             if (ret < 0) {
2451                 return ret;
2452             }
2453             if (len > crlen) {
2454                 len = crlen;
2455             }
2456             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2457                 return -TARGET_EFAULT;
2458             }
2459             __put_user(cr.pid, &tcr->pid);
2460             __put_user(cr.uid, &tcr->uid);
2461             __put_user(cr.gid, &tcr->gid);
2462             unlock_user_struct(tcr, optval_addr, 1);
2463             if (put_user_u32(len, optlen)) {
2464                 return -TARGET_EFAULT;
2465             }
2466             break;
2467         }
2468         case TARGET_SO_PEERSEC: {
2469             char *name;
2470 
2471             if (get_user_u32(len, optlen)) {
2472                 return -TARGET_EFAULT;
2473             }
2474             if (len < 0) {
2475                 return -TARGET_EINVAL;
2476             }
2477             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2478             if (!name) {
2479                 return -TARGET_EFAULT;
2480             }
2481             lv = len;
2482             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2483                                        name, &lv));
2484             if (put_user_u32(lv, optlen)) {
2485                 ret = -TARGET_EFAULT;
2486             }
2487             unlock_user(name, optval_addr, lv);
2488             break;
2489         }
2490         case TARGET_SO_LINGER:
2491         {
2492             struct linger lg;
2493             socklen_t lglen;
2494             struct target_linger *tlg;
2495 
2496             if (get_user_u32(len, optlen)) {
2497                 return -TARGET_EFAULT;
2498             }
2499             if (len < 0) {
2500                 return -TARGET_EINVAL;
2501             }
2502 
2503             lglen = sizeof(lg);
2504             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2505                                        &lg, &lglen));
2506             if (ret < 0) {
2507                 return ret;
2508             }
2509             if (len > lglen) {
2510                 len = lglen;
2511             }
2512             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2513                 return -TARGET_EFAULT;
2514             }
2515             __put_user(lg.l_onoff, &tlg->l_onoff);
2516             __put_user(lg.l_linger, &tlg->l_linger);
2517             unlock_user_struct(tlg, optval_addr, 1);
2518             if (put_user_u32(len, optlen)) {
2519                 return -TARGET_EFAULT;
2520             }
2521             break;
2522         }
2523         /* Options with 'int' argument.  */
2524         case TARGET_SO_DEBUG:
2525             optname = SO_DEBUG;
2526             goto int_case;
2527         case TARGET_SO_REUSEADDR:
2528             optname = SO_REUSEADDR;
2529             goto int_case;
2530 #ifdef SO_REUSEPORT
2531         case TARGET_SO_REUSEPORT:
2532             optname = SO_REUSEPORT;
2533             goto int_case;
2534 #endif
2535         case TARGET_SO_TYPE:
2536             optname = SO_TYPE;
2537             goto int_case;
2538         case TARGET_SO_ERROR:
2539             optname = SO_ERROR;
2540             goto int_case;
2541         case TARGET_SO_DONTROUTE:
2542             optname = SO_DONTROUTE;
2543             goto int_case;
2544         case TARGET_SO_BROADCAST:
2545             optname = SO_BROADCAST;
2546             goto int_case;
2547         case TARGET_SO_SNDBUF:
2548             optname = SO_SNDBUF;
2549             goto int_case;
2550         case TARGET_SO_RCVBUF:
2551             optname = SO_RCVBUF;
2552             goto int_case;
2553         case TARGET_SO_KEEPALIVE:
2554             optname = SO_KEEPALIVE;
2555             goto int_case;
2556         case TARGET_SO_OOBINLINE:
2557             optname = SO_OOBINLINE;
2558             goto int_case;
2559         case TARGET_SO_NO_CHECK:
2560             optname = SO_NO_CHECK;
2561             goto int_case;
2562         case TARGET_SO_PRIORITY:
2563             optname = SO_PRIORITY;
2564             goto int_case;
2565 #ifdef SO_BSDCOMPAT
2566         case TARGET_SO_BSDCOMPAT:
2567             optname = SO_BSDCOMPAT;
2568             goto int_case;
2569 #endif
2570         case TARGET_SO_PASSCRED:
2571             optname = SO_PASSCRED;
2572             goto int_case;
2573         case TARGET_SO_TIMESTAMP:
2574             optname = SO_TIMESTAMP;
2575             goto int_case;
2576         case TARGET_SO_RCVLOWAT:
2577             optname = SO_RCVLOWAT;
2578             goto int_case;
2579         case TARGET_SO_ACCEPTCONN:
2580             optname = SO_ACCEPTCONN;
2581             goto int_case;
2582         default:
2583             goto int_case;
2584         }
2585         break;
2586     case SOL_TCP:
2587         /* TCP options all take an 'int' value.  */
2588     int_case:
2589         if (get_user_u32(len, optlen))
2590             return -TARGET_EFAULT;
2591         if (len < 0)
2592             return -TARGET_EINVAL;
2593         lv = sizeof(lv);
2594         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2595         if (ret < 0)
2596             return ret;
2597         if (optname == SO_TYPE) {
2598             val = host_to_target_sock_type(val);
2599         }
2600         if (len > lv)
2601             len = lv;
2602         if (len == 4) {
2603             if (put_user_u32(val, optval_addr))
2604                 return -TARGET_EFAULT;
2605         } else {
2606             if (put_user_u8(val, optval_addr))
2607                 return -TARGET_EFAULT;
2608         }
2609         if (put_user_u32(len, optlen))
2610             return -TARGET_EFAULT;
2611         break;
2612     case SOL_IP:
2613         switch(optname) {
2614         case IP_TOS:
2615         case IP_TTL:
2616         case IP_HDRINCL:
2617         case IP_ROUTER_ALERT:
2618         case IP_RECVOPTS:
2619         case IP_RETOPTS:
2620         case IP_PKTINFO:
2621         case IP_MTU_DISCOVER:
2622         case IP_RECVERR:
2623         case IP_RECVTOS:
2624 #ifdef IP_FREEBIND
2625         case IP_FREEBIND:
2626 #endif
2627         case IP_MULTICAST_TTL:
2628         case IP_MULTICAST_LOOP:
2629             if (get_user_u32(len, optlen))
2630                 return -TARGET_EFAULT;
2631             if (len < 0)
2632                 return -TARGET_EINVAL;
2633             lv = sizeof(lv);
2634             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2635             if (ret < 0)
2636                 return ret;
2637             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2638                 len = 1;
2639                 if (put_user_u32(len, optlen)
2640                     || put_user_u8(val, optval_addr))
2641                     return -TARGET_EFAULT;
2642             } else {
2643                 if (len > sizeof(int))
2644                     len = sizeof(int);
2645                 if (put_user_u32(len, optlen)
2646                     || put_user_u32(val, optval_addr))
2647                     return -TARGET_EFAULT;
2648             }
2649             break;
2650         default:
2651             ret = -TARGET_ENOPROTOOPT;
2652             break;
2653         }
2654         break;
2655     case SOL_IPV6:
2656         switch (optname) {
2657         case IPV6_MTU_DISCOVER:
2658         case IPV6_MTU:
2659         case IPV6_V6ONLY:
2660         case IPV6_RECVPKTINFO:
2661         case IPV6_UNICAST_HOPS:
2662         case IPV6_MULTICAST_HOPS:
2663         case IPV6_MULTICAST_LOOP:
2664         case IPV6_RECVERR:
2665         case IPV6_RECVHOPLIMIT:
2666         case IPV6_2292HOPLIMIT:
2667         case IPV6_CHECKSUM:
2668         case IPV6_ADDRFORM:
2669         case IPV6_2292PKTINFO:
2670         case IPV6_RECVTCLASS:
2671         case IPV6_RECVRTHDR:
2672         case IPV6_2292RTHDR:
2673         case IPV6_RECVHOPOPTS:
2674         case IPV6_2292HOPOPTS:
2675         case IPV6_RECVDSTOPTS:
2676         case IPV6_2292DSTOPTS:
2677         case IPV6_TCLASS:
2678 #ifdef IPV6_RECVPATHMTU
2679         case IPV6_RECVPATHMTU:
2680 #endif
2681 #ifdef IPV6_TRANSPARENT
2682         case IPV6_TRANSPARENT:
2683 #endif
2684 #ifdef IPV6_FREEBIND
2685         case IPV6_FREEBIND:
2686 #endif
2687 #ifdef IPV6_RECVORIGDSTADDR
2688         case IPV6_RECVORIGDSTADDR:
2689 #endif
2690             if (get_user_u32(len, optlen))
2691                 return -TARGET_EFAULT;
2692             if (len < 0)
2693                 return -TARGET_EINVAL;
2694             lv = sizeof(lv);
2695             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2696             if (ret < 0)
2697                 return ret;
2698             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2699                 len = 1;
2700                 if (put_user_u32(len, optlen)
2701                     || put_user_u8(val, optval_addr))
2702                     return -TARGET_EFAULT;
2703             } else {
2704                 if (len > sizeof(int))
2705                     len = sizeof(int);
2706                 if (put_user_u32(len, optlen)
2707                     || put_user_u32(val, optval_addr))
2708                     return -TARGET_EFAULT;
2709             }
2710             break;
2711         default:
2712             ret = -TARGET_ENOPROTOOPT;
2713             break;
2714         }
2715         break;
2716 #ifdef SOL_NETLINK
2717     case SOL_NETLINK:
2718         switch (optname) {
2719         case NETLINK_PKTINFO:
2720         case NETLINK_BROADCAST_ERROR:
2721         case NETLINK_NO_ENOBUFS:
2722 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2723         case NETLINK_LISTEN_ALL_NSID:
2724         case NETLINK_CAP_ACK:
2725 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2726 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2727         case NETLINK_EXT_ACK:
2728 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2729 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2730         case NETLINK_GET_STRICT_CHK:
2731 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2732             if (get_user_u32(len, optlen)) {
2733                 return -TARGET_EFAULT;
2734             }
2735             if (len != sizeof(val)) {
2736                 return -TARGET_EINVAL;
2737             }
2738             lv = len;
2739             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2740             if (ret < 0) {
2741                 return ret;
2742             }
2743             if (put_user_u32(lv, optlen)
2744                 || put_user_u32(val, optval_addr)) {
2745                 return -TARGET_EFAULT;
2746             }
2747             break;
2748 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2749         case NETLINK_LIST_MEMBERSHIPS:
2750         {
2751             uint32_t *results;
2752             int i;
2753             if (get_user_u32(len, optlen)) {
2754                 return -TARGET_EFAULT;
2755             }
2756             if (len < 0) {
2757                 return -TARGET_EINVAL;
2758             }
2759             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2760             if (!results) {
2761                 return -TARGET_EFAULT;
2762             }
2763             lv = len;
2764             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2765             if (ret < 0) {
2766                 unlock_user(results, optval_addr, 0);
2767                 return ret;
2768             }
2769             /* swap host endianess to target endianess. */
2770             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2771                 results[i] = tswap32(results[i]);
2772             }
2773             if (put_user_u32(lv, optlen)) {
2774                 return -TARGET_EFAULT;
2775             }
2776             unlock_user(results, optval_addr, 0);
2777             break;
2778         }
2779 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2780         default:
2781             goto unimplemented;
2782         }
2783         break;
2784 #endif /* SOL_NETLINK */
2785     default:
2786     unimplemented:
2787         qemu_log_mask(LOG_UNIMP,
2788                       "getsockopt level=%d optname=%d not yet supported\n",
2789                       level, optname);
2790         ret = -TARGET_EOPNOTSUPP;
2791         break;
2792     }
2793     return ret;
2794 }
2795 
2796 /* Convert target low/high pair representing file offset into the host
2797  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2798  * as the kernel doesn't handle them either.
2799  */
2800 static void target_to_host_low_high(abi_ulong tlow,
2801                                     abi_ulong thigh,
2802                                     unsigned long *hlow,
2803                                     unsigned long *hhigh)
2804 {
2805     uint64_t off = tlow |
2806         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2807         TARGET_LONG_BITS / 2;
2808 
2809     *hlow = off;
2810     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2811 }
2812 
2813 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2814                                 abi_ulong count, int copy)
2815 {
2816     struct target_iovec *target_vec;
2817     struct iovec *vec;
2818     abi_ulong total_len, max_len;
2819     int i;
2820     int err = 0;
2821     bool bad_address = false;
2822 
2823     if (count == 0) {
2824         errno = 0;
2825         return NULL;
2826     }
2827     if (count > IOV_MAX) {
2828         errno = EINVAL;
2829         return NULL;
2830     }
2831 
2832     vec = g_try_new0(struct iovec, count);
2833     if (vec == NULL) {
2834         errno = ENOMEM;
2835         return NULL;
2836     }
2837 
2838     target_vec = lock_user(VERIFY_READ, target_addr,
2839                            count * sizeof(struct target_iovec), 1);
2840     if (target_vec == NULL) {
2841         err = EFAULT;
2842         goto fail2;
2843     }
2844 
2845     /* ??? If host page size > target page size, this will result in a
2846        value larger than what we can actually support.  */
2847     max_len = 0x7fffffff & TARGET_PAGE_MASK;
2848     total_len = 0;
2849 
2850     for (i = 0; i < count; i++) {
2851         abi_ulong base = tswapal(target_vec[i].iov_base);
2852         abi_long len = tswapal(target_vec[i].iov_len);
2853 
2854         if (len < 0) {
2855             err = EINVAL;
2856             goto fail;
2857         } else if (len == 0) {
2858             /* Zero length pointer is ignored.  */
2859             vec[i].iov_base = 0;
2860         } else {
2861             vec[i].iov_base = lock_user(type, base, len, copy);
2862             /* If the first buffer pointer is bad, this is a fault.  But
2863              * subsequent bad buffers will result in a partial write; this
2864              * is realized by filling the vector with null pointers and
2865              * zero lengths. */
2866             if (!vec[i].iov_base) {
2867                 if (i == 0) {
2868                     err = EFAULT;
2869                     goto fail;
2870                 } else {
2871                     bad_address = true;
2872                 }
2873             }
2874             if (bad_address) {
2875                 len = 0;
2876             }
2877             if (len > max_len - total_len) {
2878                 len = max_len - total_len;
2879             }
2880         }
2881         vec[i].iov_len = len;
2882         total_len += len;
2883     }
2884 
2885     unlock_user(target_vec, target_addr, 0);
2886     return vec;
2887 
2888  fail:
2889     while (--i >= 0) {
2890         if (tswapal(target_vec[i].iov_len) > 0) {
2891             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
2892         }
2893     }
2894     unlock_user(target_vec, target_addr, 0);
2895  fail2:
2896     g_free(vec);
2897     errno = err;
2898     return NULL;
2899 }
2900 
2901 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
2902                          abi_ulong count, int copy)
2903 {
2904     struct target_iovec *target_vec;
2905     int i;
2906 
2907     target_vec = lock_user(VERIFY_READ, target_addr,
2908                            count * sizeof(struct target_iovec), 1);
2909     if (target_vec) {
2910         for (i = 0; i < count; i++) {
2911             abi_ulong base = tswapal(target_vec[i].iov_base);
2912             abi_long len = tswapal(target_vec[i].iov_len);
2913             if (len < 0) {
2914                 break;
2915             }
2916             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
2917         }
2918         unlock_user(target_vec, target_addr, 0);
2919     }
2920 
2921     g_free(vec);
2922 }
2923 
2924 static inline int target_to_host_sock_type(int *type)
2925 {
2926     int host_type = 0;
2927     int target_type = *type;
2928 
2929     switch (target_type & TARGET_SOCK_TYPE_MASK) {
2930     case TARGET_SOCK_DGRAM:
2931         host_type = SOCK_DGRAM;
2932         break;
2933     case TARGET_SOCK_STREAM:
2934         host_type = SOCK_STREAM;
2935         break;
2936     default:
2937         host_type = target_type & TARGET_SOCK_TYPE_MASK;
2938         break;
2939     }
2940     if (target_type & TARGET_SOCK_CLOEXEC) {
2941 #if defined(SOCK_CLOEXEC)
2942         host_type |= SOCK_CLOEXEC;
2943 #else
2944         return -TARGET_EINVAL;
2945 #endif
2946     }
2947     if (target_type & TARGET_SOCK_NONBLOCK) {
2948 #if defined(SOCK_NONBLOCK)
2949         host_type |= SOCK_NONBLOCK;
2950 #elif !defined(O_NONBLOCK)
2951         return -TARGET_EINVAL;
2952 #endif
2953     }
2954     *type = host_type;
2955     return 0;
2956 }
2957 
2958 /* Try to emulate socket type flags after socket creation.  */
2959 static int sock_flags_fixup(int fd, int target_type)
2960 {
2961 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
2962     if (target_type & TARGET_SOCK_NONBLOCK) {
2963         int flags = fcntl(fd, F_GETFL);
2964         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
2965             close(fd);
2966             return -TARGET_EINVAL;
2967         }
2968     }
2969 #endif
2970     return fd;
2971 }
2972 
2973 /* do_socket() Must return target values and target errnos. */
2974 static abi_long do_socket(int domain, int type, int protocol)
2975 {
2976     int target_type = type;
2977     int ret;
2978 
2979     ret = target_to_host_sock_type(&type);
2980     if (ret) {
2981         return ret;
2982     }
2983 
2984     if (domain == PF_NETLINK && !(
2985 #ifdef CONFIG_RTNETLINK
2986          protocol == NETLINK_ROUTE ||
2987 #endif
2988          protocol == NETLINK_KOBJECT_UEVENT ||
2989          protocol == NETLINK_AUDIT)) {
2990         return -TARGET_EPFNOSUPPORT;
2991     }
2992 
2993     if (domain == AF_PACKET ||
2994         (domain == AF_INET && type == SOCK_PACKET)) {
2995         protocol = tswap16(protocol);
2996     }
2997 
2998     ret = get_errno(socket(domain, type, protocol));
2999     if (ret >= 0) {
3000         ret = sock_flags_fixup(ret, target_type);
3001         if (type == SOCK_PACKET) {
3002             /* Manage an obsolete case :
3003              * if socket type is SOCK_PACKET, bind by name
3004              */
3005             fd_trans_register(ret, &target_packet_trans);
3006         } else if (domain == PF_NETLINK) {
3007             switch (protocol) {
3008 #ifdef CONFIG_RTNETLINK
3009             case NETLINK_ROUTE:
3010                 fd_trans_register(ret, &target_netlink_route_trans);
3011                 break;
3012 #endif
3013             case NETLINK_KOBJECT_UEVENT:
3014                 /* nothing to do: messages are strings */
3015                 break;
3016             case NETLINK_AUDIT:
3017                 fd_trans_register(ret, &target_netlink_audit_trans);
3018                 break;
3019             default:
3020                 g_assert_not_reached();
3021             }
3022         }
3023     }
3024     return ret;
3025 }
3026 
3027 /* do_bind() Must return target values and target errnos. */
3028 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3029                         socklen_t addrlen)
3030 {
3031     void *addr;
3032     abi_long ret;
3033 
3034     if ((int)addrlen < 0) {
3035         return -TARGET_EINVAL;
3036     }
3037 
3038     addr = alloca(addrlen+1);
3039 
3040     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3041     if (ret)
3042         return ret;
3043 
3044     return get_errno(bind(sockfd, addr, addrlen));
3045 }
3046 
3047 /* do_connect() Must return target values and target errnos. */
3048 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3049                            socklen_t addrlen)
3050 {
3051     void *addr;
3052     abi_long ret;
3053 
3054     if ((int)addrlen < 0) {
3055         return -TARGET_EINVAL;
3056     }
3057 
3058     addr = alloca(addrlen+1);
3059 
3060     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3061     if (ret)
3062         return ret;
3063 
3064     return get_errno(safe_connect(sockfd, addr, addrlen));
3065 }
3066 
3067 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3068 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3069                                       int flags, int send)
3070 {
3071     abi_long ret, len;
3072     struct msghdr msg;
3073     abi_ulong count;
3074     struct iovec *vec;
3075     abi_ulong target_vec;
3076 
3077     if (msgp->msg_name) {
3078         msg.msg_namelen = tswap32(msgp->msg_namelen);
3079         msg.msg_name = alloca(msg.msg_namelen+1);
3080         ret = target_to_host_sockaddr(fd, msg.msg_name,
3081                                       tswapal(msgp->msg_name),
3082                                       msg.msg_namelen);
3083         if (ret == -TARGET_EFAULT) {
3084             /* For connected sockets msg_name and msg_namelen must
3085              * be ignored, so returning EFAULT immediately is wrong.
3086              * Instead, pass a bad msg_name to the host kernel, and
3087              * let it decide whether to return EFAULT or not.
3088              */
3089             msg.msg_name = (void *)-1;
3090         } else if (ret) {
3091             goto out2;
3092         }
3093     } else {
3094         msg.msg_name = NULL;
3095         msg.msg_namelen = 0;
3096     }
3097     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3098     msg.msg_control = alloca(msg.msg_controllen);
3099     memset(msg.msg_control, 0, msg.msg_controllen);
3100 
3101     msg.msg_flags = tswap32(msgp->msg_flags);
3102 
3103     count = tswapal(msgp->msg_iovlen);
3104     target_vec = tswapal(msgp->msg_iov);
3105 
3106     if (count > IOV_MAX) {
3107         /* sendrcvmsg returns a different errno for this condition than
3108          * readv/writev, so we must catch it here before lock_iovec() does.
3109          */
3110         ret = -TARGET_EMSGSIZE;
3111         goto out2;
3112     }
3113 
3114     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3115                      target_vec, count, send);
3116     if (vec == NULL) {
3117         ret = -host_to_target_errno(errno);
3118         goto out2;
3119     }
3120     msg.msg_iovlen = count;
3121     msg.msg_iov = vec;
3122 
3123     if (send) {
3124         if (fd_trans_target_to_host_data(fd)) {
3125             void *host_msg;
3126 
3127             host_msg = g_malloc(msg.msg_iov->iov_len);
3128             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3129             ret = fd_trans_target_to_host_data(fd)(host_msg,
3130                                                    msg.msg_iov->iov_len);
3131             if (ret >= 0) {
3132                 msg.msg_iov->iov_base = host_msg;
3133                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3134             }
3135             g_free(host_msg);
3136         } else {
3137             ret = target_to_host_cmsg(&msg, msgp);
3138             if (ret == 0) {
3139                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3140             }
3141         }
3142     } else {
3143         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3144         if (!is_error(ret)) {
3145             len = ret;
3146             if (fd_trans_host_to_target_data(fd)) {
3147                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3148                                                MIN(msg.msg_iov->iov_len, len));
3149             } else {
3150                 ret = host_to_target_cmsg(msgp, &msg);
3151             }
3152             if (!is_error(ret)) {
3153                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3154                 msgp->msg_flags = tswap32(msg.msg_flags);
3155                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3156                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3157                                     msg.msg_name, msg.msg_namelen);
3158                     if (ret) {
3159                         goto out;
3160                     }
3161                 }
3162 
3163                 ret = len;
3164             }
3165         }
3166     }
3167 
3168 out:
3169     unlock_iovec(vec, target_vec, count, !send);
3170 out2:
3171     return ret;
3172 }
3173 
3174 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3175                                int flags, int send)
3176 {
3177     abi_long ret;
3178     struct target_msghdr *msgp;
3179 
3180     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3181                           msgp,
3182                           target_msg,
3183                           send ? 1 : 0)) {
3184         return -TARGET_EFAULT;
3185     }
3186     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3187     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3188     return ret;
3189 }
3190 
3191 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3192  * so it might not have this *mmsg-specific flag either.
3193  */
3194 #ifndef MSG_WAITFORONE
3195 #define MSG_WAITFORONE 0x10000
3196 #endif
3197 
3198 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3199                                 unsigned int vlen, unsigned int flags,
3200                                 int send)
3201 {
3202     struct target_mmsghdr *mmsgp;
3203     abi_long ret = 0;
3204     int i;
3205 
3206     if (vlen > UIO_MAXIOV) {
3207         vlen = UIO_MAXIOV;
3208     }
3209 
3210     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3211     if (!mmsgp) {
3212         return -TARGET_EFAULT;
3213     }
3214 
3215     for (i = 0; i < vlen; i++) {
3216         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3217         if (is_error(ret)) {
3218             break;
3219         }
3220         mmsgp[i].msg_len = tswap32(ret);
3221         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3222         if (flags & MSG_WAITFORONE) {
3223             flags |= MSG_DONTWAIT;
3224         }
3225     }
3226 
3227     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3228 
3229     /* Return number of datagrams sent if we sent any at all;
3230      * otherwise return the error.
3231      */
3232     if (i) {
3233         return i;
3234     }
3235     return ret;
3236 }
3237 
3238 /* do_accept4() Must return target values and target errnos. */
3239 static abi_long do_accept4(int fd, abi_ulong target_addr,
3240                            abi_ulong target_addrlen_addr, int flags)
3241 {
3242     socklen_t addrlen, ret_addrlen;
3243     void *addr;
3244     abi_long ret;
3245     int host_flags;
3246 
3247     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3248 
3249     if (target_addr == 0) {
3250         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3251     }
3252 
3253     /* linux returns EINVAL if addrlen pointer is invalid */
3254     if (get_user_u32(addrlen, target_addrlen_addr))
3255         return -TARGET_EINVAL;
3256 
3257     if ((int)addrlen < 0) {
3258         return -TARGET_EINVAL;
3259     }
3260 
3261     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3262         return -TARGET_EINVAL;
3263 
3264     addr = alloca(addrlen);
3265 
3266     ret_addrlen = addrlen;
3267     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3268     if (!is_error(ret)) {
3269         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3270         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3271             ret = -TARGET_EFAULT;
3272         }
3273     }
3274     return ret;
3275 }
3276 
3277 /* do_getpeername() Must return target values and target errnos. */
3278 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3279                                abi_ulong target_addrlen_addr)
3280 {
3281     socklen_t addrlen, ret_addrlen;
3282     void *addr;
3283     abi_long ret;
3284 
3285     if (get_user_u32(addrlen, target_addrlen_addr))
3286         return -TARGET_EFAULT;
3287 
3288     if ((int)addrlen < 0) {
3289         return -TARGET_EINVAL;
3290     }
3291 
3292     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3293         return -TARGET_EFAULT;
3294 
3295     addr = alloca(addrlen);
3296 
3297     ret_addrlen = addrlen;
3298     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3299     if (!is_error(ret)) {
3300         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3301         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3302             ret = -TARGET_EFAULT;
3303         }
3304     }
3305     return ret;
3306 }
3307 
3308 /* do_getsockname() Must return target values and target errnos. */
3309 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3310                                abi_ulong target_addrlen_addr)
3311 {
3312     socklen_t addrlen, ret_addrlen;
3313     void *addr;
3314     abi_long ret;
3315 
3316     if (get_user_u32(addrlen, target_addrlen_addr))
3317         return -TARGET_EFAULT;
3318 
3319     if ((int)addrlen < 0) {
3320         return -TARGET_EINVAL;
3321     }
3322 
3323     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3324         return -TARGET_EFAULT;
3325 
3326     addr = alloca(addrlen);
3327 
3328     ret_addrlen = addrlen;
3329     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3330     if (!is_error(ret)) {
3331         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3332         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3333             ret = -TARGET_EFAULT;
3334         }
3335     }
3336     return ret;
3337 }
3338 
3339 /* do_socketpair() Must return target values and target errnos. */
3340 static abi_long do_socketpair(int domain, int type, int protocol,
3341                               abi_ulong target_tab_addr)
3342 {
3343     int tab[2];
3344     abi_long ret;
3345 
3346     target_to_host_sock_type(&type);
3347 
3348     ret = get_errno(socketpair(domain, type, protocol, tab));
3349     if (!is_error(ret)) {
3350         if (put_user_s32(tab[0], target_tab_addr)
3351             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3352             ret = -TARGET_EFAULT;
3353     }
3354     return ret;
3355 }
3356 
3357 /* do_sendto() Must return target values and target errnos. */
3358 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3359                           abi_ulong target_addr, socklen_t addrlen)
3360 {
3361     void *addr;
3362     void *host_msg;
3363     void *copy_msg = NULL;
3364     abi_long ret;
3365 
3366     if ((int)addrlen < 0) {
3367         return -TARGET_EINVAL;
3368     }
3369 
3370     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3371     if (!host_msg)
3372         return -TARGET_EFAULT;
3373     if (fd_trans_target_to_host_data(fd)) {
3374         copy_msg = host_msg;
3375         host_msg = g_malloc(len);
3376         memcpy(host_msg, copy_msg, len);
3377         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3378         if (ret < 0) {
3379             goto fail;
3380         }
3381     }
3382     if (target_addr) {
3383         addr = alloca(addrlen+1);
3384         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3385         if (ret) {
3386             goto fail;
3387         }
3388         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3389     } else {
3390         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3391     }
3392 fail:
3393     if (copy_msg) {
3394         g_free(host_msg);
3395         host_msg = copy_msg;
3396     }
3397     unlock_user(host_msg, msg, 0);
3398     return ret;
3399 }
3400 
3401 /* do_recvfrom() Must return target values and target errnos. */
3402 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3403                             abi_ulong target_addr,
3404                             abi_ulong target_addrlen)
3405 {
3406     socklen_t addrlen, ret_addrlen;
3407     void *addr;
3408     void *host_msg;
3409     abi_long ret;
3410 
3411     host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3412     if (!host_msg)
3413         return -TARGET_EFAULT;
3414     if (target_addr) {
3415         if (get_user_u32(addrlen, target_addrlen)) {
3416             ret = -TARGET_EFAULT;
3417             goto fail;
3418         }
3419         if ((int)addrlen < 0) {
3420             ret = -TARGET_EINVAL;
3421             goto fail;
3422         }
3423         addr = alloca(addrlen);
3424         ret_addrlen = addrlen;
3425         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3426                                       addr, &ret_addrlen));
3427     } else {
3428         addr = NULL; /* To keep compiler quiet.  */
3429         addrlen = 0; /* To keep compiler quiet.  */
3430         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3431     }
3432     if (!is_error(ret)) {
3433         if (fd_trans_host_to_target_data(fd)) {
3434             abi_long trans;
3435             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3436             if (is_error(trans)) {
3437                 ret = trans;
3438                 goto fail;
3439             }
3440         }
3441         if (target_addr) {
3442             host_to_target_sockaddr(target_addr, addr,
3443                                     MIN(addrlen, ret_addrlen));
3444             if (put_user_u32(ret_addrlen, target_addrlen)) {
3445                 ret = -TARGET_EFAULT;
3446                 goto fail;
3447             }
3448         }
3449         unlock_user(host_msg, msg, len);
3450     } else {
3451 fail:
3452         unlock_user(host_msg, msg, 0);
3453     }
3454     return ret;
3455 }
3456 
3457 #ifdef TARGET_NR_socketcall
3458 /* do_socketcall() must return target values and target errnos. */
3459 static abi_long do_socketcall(int num, abi_ulong vptr)
3460 {
3461     static const unsigned nargs[] = { /* number of arguments per operation */
3462         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3463         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3464         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3465         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3466         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3467         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3468         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3469         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3470         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3471         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3472         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3473         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3474         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3475         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3476         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3477         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3478         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3479         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3480         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3481         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3482     };
3483     abi_long a[6]; /* max 6 args */
3484     unsigned i;
3485 
3486     /* check the range of the first argument num */
3487     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3488     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3489         return -TARGET_EINVAL;
3490     }
3491     /* ensure we have space for args */
3492     if (nargs[num] > ARRAY_SIZE(a)) {
3493         return -TARGET_EINVAL;
3494     }
3495     /* collect the arguments in a[] according to nargs[] */
3496     for (i = 0; i < nargs[num]; ++i) {
3497         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3498             return -TARGET_EFAULT;
3499         }
3500     }
3501     /* now when we have the args, invoke the appropriate underlying function */
3502     switch (num) {
3503     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3504         return do_socket(a[0], a[1], a[2]);
3505     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3506         return do_bind(a[0], a[1], a[2]);
3507     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3508         return do_connect(a[0], a[1], a[2]);
3509     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3510         return get_errno(listen(a[0], a[1]));
3511     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3512         return do_accept4(a[0], a[1], a[2], 0);
3513     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3514         return do_getsockname(a[0], a[1], a[2]);
3515     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3516         return do_getpeername(a[0], a[1], a[2]);
3517     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3518         return do_socketpair(a[0], a[1], a[2], a[3]);
3519     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3520         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3521     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3522         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3523     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3524         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3525     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3526         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3527     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3528         return get_errno(shutdown(a[0], a[1]));
3529     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3530         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3531     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3532         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3533     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3534         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3535     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3536         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3537     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3538         return do_accept4(a[0], a[1], a[2], a[3]);
3539     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3540         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3541     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3542         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3543     default:
3544         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3545         return -TARGET_EINVAL;
3546     }
3547 }
3548 #endif
3549 
3550 #define N_SHM_REGIONS	32
3551 
3552 static struct shm_region {
3553     abi_ulong start;
3554     abi_ulong size;
3555     bool in_use;
3556 } shm_regions[N_SHM_REGIONS];
3557 
3558 #ifndef TARGET_SEMID64_DS
3559 /* asm-generic version of this struct */
3560 struct target_semid64_ds
3561 {
3562   struct target_ipc_perm sem_perm;
3563   abi_ulong sem_otime;
3564 #if TARGET_ABI_BITS == 32
3565   abi_ulong __unused1;
3566 #endif
3567   abi_ulong sem_ctime;
3568 #if TARGET_ABI_BITS == 32
3569   abi_ulong __unused2;
3570 #endif
3571   abi_ulong sem_nsems;
3572   abi_ulong __unused3;
3573   abi_ulong __unused4;
3574 };
3575 #endif
3576 
3577 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3578                                                abi_ulong target_addr)
3579 {
3580     struct target_ipc_perm *target_ip;
3581     struct target_semid64_ds *target_sd;
3582 
3583     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3584         return -TARGET_EFAULT;
3585     target_ip = &(target_sd->sem_perm);
3586     host_ip->__key = tswap32(target_ip->__key);
3587     host_ip->uid = tswap32(target_ip->uid);
3588     host_ip->gid = tswap32(target_ip->gid);
3589     host_ip->cuid = tswap32(target_ip->cuid);
3590     host_ip->cgid = tswap32(target_ip->cgid);
3591 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3592     host_ip->mode = tswap32(target_ip->mode);
3593 #else
3594     host_ip->mode = tswap16(target_ip->mode);
3595 #endif
3596 #if defined(TARGET_PPC)
3597     host_ip->__seq = tswap32(target_ip->__seq);
3598 #else
3599     host_ip->__seq = tswap16(target_ip->__seq);
3600 #endif
3601     unlock_user_struct(target_sd, target_addr, 0);
3602     return 0;
3603 }
3604 
3605 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3606                                                struct ipc_perm *host_ip)
3607 {
3608     struct target_ipc_perm *target_ip;
3609     struct target_semid64_ds *target_sd;
3610 
3611     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3612         return -TARGET_EFAULT;
3613     target_ip = &(target_sd->sem_perm);
3614     target_ip->__key = tswap32(host_ip->__key);
3615     target_ip->uid = tswap32(host_ip->uid);
3616     target_ip->gid = tswap32(host_ip->gid);
3617     target_ip->cuid = tswap32(host_ip->cuid);
3618     target_ip->cgid = tswap32(host_ip->cgid);
3619 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3620     target_ip->mode = tswap32(host_ip->mode);
3621 #else
3622     target_ip->mode = tswap16(host_ip->mode);
3623 #endif
3624 #if defined(TARGET_PPC)
3625     target_ip->__seq = tswap32(host_ip->__seq);
3626 #else
3627     target_ip->__seq = tswap16(host_ip->__seq);
3628 #endif
3629     unlock_user_struct(target_sd, target_addr, 1);
3630     return 0;
3631 }
3632 
3633 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3634                                                abi_ulong target_addr)
3635 {
3636     struct target_semid64_ds *target_sd;
3637 
3638     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3639         return -TARGET_EFAULT;
3640     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3641         return -TARGET_EFAULT;
3642     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3643     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3644     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3645     unlock_user_struct(target_sd, target_addr, 0);
3646     return 0;
3647 }
3648 
3649 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3650                                                struct semid_ds *host_sd)
3651 {
3652     struct target_semid64_ds *target_sd;
3653 
3654     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3655         return -TARGET_EFAULT;
3656     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3657         return -TARGET_EFAULT;
3658     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3659     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3660     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3661     unlock_user_struct(target_sd, target_addr, 1);
3662     return 0;
3663 }
3664 
3665 struct target_seminfo {
3666     int semmap;
3667     int semmni;
3668     int semmns;
3669     int semmnu;
3670     int semmsl;
3671     int semopm;
3672     int semume;
3673     int semusz;
3674     int semvmx;
3675     int semaem;
3676 };
3677 
3678 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3679                                               struct seminfo *host_seminfo)
3680 {
3681     struct target_seminfo *target_seminfo;
3682     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3683         return -TARGET_EFAULT;
3684     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3685     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3686     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3687     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3688     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3689     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3690     __put_user(host_seminfo->semume, &target_seminfo->semume);
3691     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3692     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3693     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3694     unlock_user_struct(target_seminfo, target_addr, 1);
3695     return 0;
3696 }
3697 
3698 union semun {
3699 	int val;
3700 	struct semid_ds *buf;
3701 	unsigned short *array;
3702 	struct seminfo *__buf;
3703 };
3704 
3705 union target_semun {
3706 	int val;
3707 	abi_ulong buf;
3708 	abi_ulong array;
3709 	abi_ulong __buf;
3710 };
3711 
3712 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3713                                                abi_ulong target_addr)
3714 {
3715     int nsems;
3716     unsigned short *array;
3717     union semun semun;
3718     struct semid_ds semid_ds;
3719     int i, ret;
3720 
3721     semun.buf = &semid_ds;
3722 
3723     ret = semctl(semid, 0, IPC_STAT, semun);
3724     if (ret == -1)
3725         return get_errno(ret);
3726 
3727     nsems = semid_ds.sem_nsems;
3728 
3729     *host_array = g_try_new(unsigned short, nsems);
3730     if (!*host_array) {
3731         return -TARGET_ENOMEM;
3732     }
3733     array = lock_user(VERIFY_READ, target_addr,
3734                       nsems*sizeof(unsigned short), 1);
3735     if (!array) {
3736         g_free(*host_array);
3737         return -TARGET_EFAULT;
3738     }
3739 
3740     for(i=0; i<nsems; i++) {
3741         __get_user((*host_array)[i], &array[i]);
3742     }
3743     unlock_user(array, target_addr, 0);
3744 
3745     return 0;
3746 }
3747 
3748 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3749                                                unsigned short **host_array)
3750 {
3751     int nsems;
3752     unsigned short *array;
3753     union semun semun;
3754     struct semid_ds semid_ds;
3755     int i, ret;
3756 
3757     semun.buf = &semid_ds;
3758 
3759     ret = semctl(semid, 0, IPC_STAT, semun);
3760     if (ret == -1)
3761         return get_errno(ret);
3762 
3763     nsems = semid_ds.sem_nsems;
3764 
3765     array = lock_user(VERIFY_WRITE, target_addr,
3766                       nsems*sizeof(unsigned short), 0);
3767     if (!array)
3768         return -TARGET_EFAULT;
3769 
3770     for(i=0; i<nsems; i++) {
3771         __put_user((*host_array)[i], &array[i]);
3772     }
3773     g_free(*host_array);
3774     unlock_user(array, target_addr, 1);
3775 
3776     return 0;
3777 }
3778 
3779 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3780                                  abi_ulong target_arg)
3781 {
3782     union target_semun target_su = { .buf = target_arg };
3783     union semun arg;
3784     struct semid_ds dsarg;
3785     unsigned short *array = NULL;
3786     struct seminfo seminfo;
3787     abi_long ret = -TARGET_EINVAL;
3788     abi_long err;
3789     cmd &= 0xff;
3790 
3791     switch( cmd ) {
3792 	case GETVAL:
3793 	case SETVAL:
3794             /* In 64 bit cross-endian situations, we will erroneously pick up
3795              * the wrong half of the union for the "val" element.  To rectify
3796              * this, the entire 8-byte structure is byteswapped, followed by
3797 	     * a swap of the 4 byte val field. In other cases, the data is
3798 	     * already in proper host byte order. */
3799 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3800 		target_su.buf = tswapal(target_su.buf);
3801 		arg.val = tswap32(target_su.val);
3802 	    } else {
3803 		arg.val = target_su.val;
3804 	    }
3805             ret = get_errno(semctl(semid, semnum, cmd, arg));
3806             break;
3807 	case GETALL:
3808 	case SETALL:
3809             err = target_to_host_semarray(semid, &array, target_su.array);
3810             if (err)
3811                 return err;
3812             arg.array = array;
3813             ret = get_errno(semctl(semid, semnum, cmd, arg));
3814             err = host_to_target_semarray(semid, target_su.array, &array);
3815             if (err)
3816                 return err;
3817             break;
3818 	case IPC_STAT:
3819 	case IPC_SET:
3820 	case SEM_STAT:
3821             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3822             if (err)
3823                 return err;
3824             arg.buf = &dsarg;
3825             ret = get_errno(semctl(semid, semnum, cmd, arg));
3826             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3827             if (err)
3828                 return err;
3829             break;
3830 	case IPC_INFO:
3831 	case SEM_INFO:
3832             arg.__buf = &seminfo;
3833             ret = get_errno(semctl(semid, semnum, cmd, arg));
3834             err = host_to_target_seminfo(target_su.__buf, &seminfo);
3835             if (err)
3836                 return err;
3837             break;
3838 	case IPC_RMID:
3839 	case GETPID:
3840 	case GETNCNT:
3841 	case GETZCNT:
3842             ret = get_errno(semctl(semid, semnum, cmd, NULL));
3843             break;
3844     }
3845 
3846     return ret;
3847 }
3848 
3849 struct target_sembuf {
3850     unsigned short sem_num;
3851     short sem_op;
3852     short sem_flg;
3853 };
3854 
3855 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
3856                                              abi_ulong target_addr,
3857                                              unsigned nsops)
3858 {
3859     struct target_sembuf *target_sembuf;
3860     int i;
3861 
3862     target_sembuf = lock_user(VERIFY_READ, target_addr,
3863                               nsops*sizeof(struct target_sembuf), 1);
3864     if (!target_sembuf)
3865         return -TARGET_EFAULT;
3866 
3867     for(i=0; i<nsops; i++) {
3868         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
3869         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
3870         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
3871     }
3872 
3873     unlock_user(target_sembuf, target_addr, 0);
3874 
3875     return 0;
3876 }
3877 
3878 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
3879 {
3880     struct sembuf sops[nsops];
3881     abi_long ret;
3882 
3883     if (target_to_host_sembuf(sops, ptr, nsops))
3884         return -TARGET_EFAULT;
3885 
3886     ret = -TARGET_ENOSYS;
3887 #ifdef __NR_semtimedop
3888     ret = get_errno(safe_semtimedop(semid, sops, nsops, NULL));
3889 #endif
3890 #ifdef __NR_ipc
3891     if (ret == -TARGET_ENOSYS) {
3892         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, nsops, 0, sops, 0));
3893     }
3894 #endif
3895     return ret;
3896 }
3897 
3898 struct target_msqid_ds
3899 {
3900     struct target_ipc_perm msg_perm;
3901     abi_ulong msg_stime;
3902 #if TARGET_ABI_BITS == 32
3903     abi_ulong __unused1;
3904 #endif
3905     abi_ulong msg_rtime;
3906 #if TARGET_ABI_BITS == 32
3907     abi_ulong __unused2;
3908 #endif
3909     abi_ulong msg_ctime;
3910 #if TARGET_ABI_BITS == 32
3911     abi_ulong __unused3;
3912 #endif
3913     abi_ulong __msg_cbytes;
3914     abi_ulong msg_qnum;
3915     abi_ulong msg_qbytes;
3916     abi_ulong msg_lspid;
3917     abi_ulong msg_lrpid;
3918     abi_ulong __unused4;
3919     abi_ulong __unused5;
3920 };
3921 
3922 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
3923                                                abi_ulong target_addr)
3924 {
3925     struct target_msqid_ds *target_md;
3926 
3927     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
3928         return -TARGET_EFAULT;
3929     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
3930         return -TARGET_EFAULT;
3931     host_md->msg_stime = tswapal(target_md->msg_stime);
3932     host_md->msg_rtime = tswapal(target_md->msg_rtime);
3933     host_md->msg_ctime = tswapal(target_md->msg_ctime);
3934     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
3935     host_md->msg_qnum = tswapal(target_md->msg_qnum);
3936     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
3937     host_md->msg_lspid = tswapal(target_md->msg_lspid);
3938     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
3939     unlock_user_struct(target_md, target_addr, 0);
3940     return 0;
3941 }
3942 
3943 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
3944                                                struct msqid_ds *host_md)
3945 {
3946     struct target_msqid_ds *target_md;
3947 
3948     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
3949         return -TARGET_EFAULT;
3950     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
3951         return -TARGET_EFAULT;
3952     target_md->msg_stime = tswapal(host_md->msg_stime);
3953     target_md->msg_rtime = tswapal(host_md->msg_rtime);
3954     target_md->msg_ctime = tswapal(host_md->msg_ctime);
3955     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
3956     target_md->msg_qnum = tswapal(host_md->msg_qnum);
3957     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
3958     target_md->msg_lspid = tswapal(host_md->msg_lspid);
3959     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
3960     unlock_user_struct(target_md, target_addr, 1);
3961     return 0;
3962 }
3963 
3964 struct target_msginfo {
3965     int msgpool;
3966     int msgmap;
3967     int msgmax;
3968     int msgmnb;
3969     int msgmni;
3970     int msgssz;
3971     int msgtql;
3972     unsigned short int msgseg;
3973 };
3974 
3975 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
3976                                               struct msginfo *host_msginfo)
3977 {
3978     struct target_msginfo *target_msginfo;
3979     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
3980         return -TARGET_EFAULT;
3981     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
3982     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
3983     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
3984     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
3985     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
3986     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
3987     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
3988     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
3989     unlock_user_struct(target_msginfo, target_addr, 1);
3990     return 0;
3991 }
3992 
3993 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
3994 {
3995     struct msqid_ds dsarg;
3996     struct msginfo msginfo;
3997     abi_long ret = -TARGET_EINVAL;
3998 
3999     cmd &= 0xff;
4000 
4001     switch (cmd) {
4002     case IPC_STAT:
4003     case IPC_SET:
4004     case MSG_STAT:
4005         if (target_to_host_msqid_ds(&dsarg,ptr))
4006             return -TARGET_EFAULT;
4007         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4008         if (host_to_target_msqid_ds(ptr,&dsarg))
4009             return -TARGET_EFAULT;
4010         break;
4011     case IPC_RMID:
4012         ret = get_errno(msgctl(msgid, cmd, NULL));
4013         break;
4014     case IPC_INFO:
4015     case MSG_INFO:
4016         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4017         if (host_to_target_msginfo(ptr, &msginfo))
4018             return -TARGET_EFAULT;
4019         break;
4020     }
4021 
4022     return ret;
4023 }
4024 
4025 struct target_msgbuf {
4026     abi_long mtype;
4027     char	mtext[1];
4028 };
4029 
4030 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4031                                  ssize_t msgsz, int msgflg)
4032 {
4033     struct target_msgbuf *target_mb;
4034     struct msgbuf *host_mb;
4035     abi_long ret = 0;
4036 
4037     if (msgsz < 0) {
4038         return -TARGET_EINVAL;
4039     }
4040 
4041     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4042         return -TARGET_EFAULT;
4043     host_mb = g_try_malloc(msgsz + sizeof(long));
4044     if (!host_mb) {
4045         unlock_user_struct(target_mb, msgp, 0);
4046         return -TARGET_ENOMEM;
4047     }
4048     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4049     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4050     ret = -TARGET_ENOSYS;
4051 #ifdef __NR_msgsnd
4052     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4053 #endif
4054 #ifdef __NR_ipc
4055     if (ret == -TARGET_ENOSYS) {
4056         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4057                                  host_mb, 0));
4058     }
4059 #endif
4060     g_free(host_mb);
4061     unlock_user_struct(target_mb, msgp, 0);
4062 
4063     return ret;
4064 }
4065 
4066 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4067                                  ssize_t msgsz, abi_long msgtyp,
4068                                  int msgflg)
4069 {
4070     struct target_msgbuf *target_mb;
4071     char *target_mtext;
4072     struct msgbuf *host_mb;
4073     abi_long ret = 0;
4074 
4075     if (msgsz < 0) {
4076         return -TARGET_EINVAL;
4077     }
4078 
4079     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4080         return -TARGET_EFAULT;
4081 
4082     host_mb = g_try_malloc(msgsz + sizeof(long));
4083     if (!host_mb) {
4084         ret = -TARGET_ENOMEM;
4085         goto end;
4086     }
4087     ret = -TARGET_ENOSYS;
4088 #ifdef __NR_msgrcv
4089     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4090 #endif
4091 #ifdef __NR_ipc
4092     if (ret == -TARGET_ENOSYS) {
4093         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4094                         msgflg, host_mb, msgtyp));
4095     }
4096 #endif
4097 
4098     if (ret > 0) {
4099         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4100         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4101         if (!target_mtext) {
4102             ret = -TARGET_EFAULT;
4103             goto end;
4104         }
4105         memcpy(target_mb->mtext, host_mb->mtext, ret);
4106         unlock_user(target_mtext, target_mtext_addr, ret);
4107     }
4108 
4109     target_mb->mtype = tswapal(host_mb->mtype);
4110 
4111 end:
4112     if (target_mb)
4113         unlock_user_struct(target_mb, msgp, 1);
4114     g_free(host_mb);
4115     return ret;
4116 }
4117 
4118 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4119                                                abi_ulong target_addr)
4120 {
4121     struct target_shmid_ds *target_sd;
4122 
4123     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4124         return -TARGET_EFAULT;
4125     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4126         return -TARGET_EFAULT;
4127     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4128     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4129     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4130     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4131     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4132     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4133     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4134     unlock_user_struct(target_sd, target_addr, 0);
4135     return 0;
4136 }
4137 
4138 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4139                                                struct shmid_ds *host_sd)
4140 {
4141     struct target_shmid_ds *target_sd;
4142 
4143     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4144         return -TARGET_EFAULT;
4145     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4146         return -TARGET_EFAULT;
4147     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4148     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4149     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4150     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4151     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4152     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4153     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4154     unlock_user_struct(target_sd, target_addr, 1);
4155     return 0;
4156 }
4157 
4158 struct  target_shminfo {
4159     abi_ulong shmmax;
4160     abi_ulong shmmin;
4161     abi_ulong shmmni;
4162     abi_ulong shmseg;
4163     abi_ulong shmall;
4164 };
4165 
4166 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4167                                               struct shminfo *host_shminfo)
4168 {
4169     struct target_shminfo *target_shminfo;
4170     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4171         return -TARGET_EFAULT;
4172     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4173     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4174     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4175     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4176     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4177     unlock_user_struct(target_shminfo, target_addr, 1);
4178     return 0;
4179 }
4180 
4181 struct target_shm_info {
4182     int used_ids;
4183     abi_ulong shm_tot;
4184     abi_ulong shm_rss;
4185     abi_ulong shm_swp;
4186     abi_ulong swap_attempts;
4187     abi_ulong swap_successes;
4188 };
4189 
4190 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4191                                                struct shm_info *host_shm_info)
4192 {
4193     struct target_shm_info *target_shm_info;
4194     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4195         return -TARGET_EFAULT;
4196     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4197     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4198     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4199     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4200     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4201     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4202     unlock_user_struct(target_shm_info, target_addr, 1);
4203     return 0;
4204 }
4205 
4206 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4207 {
4208     struct shmid_ds dsarg;
4209     struct shminfo shminfo;
4210     struct shm_info shm_info;
4211     abi_long ret = -TARGET_EINVAL;
4212 
4213     cmd &= 0xff;
4214 
4215     switch(cmd) {
4216     case IPC_STAT:
4217     case IPC_SET:
4218     case SHM_STAT:
4219         if (target_to_host_shmid_ds(&dsarg, buf))
4220             return -TARGET_EFAULT;
4221         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4222         if (host_to_target_shmid_ds(buf, &dsarg))
4223             return -TARGET_EFAULT;
4224         break;
4225     case IPC_INFO:
4226         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4227         if (host_to_target_shminfo(buf, &shminfo))
4228             return -TARGET_EFAULT;
4229         break;
4230     case SHM_INFO:
4231         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4232         if (host_to_target_shm_info(buf, &shm_info))
4233             return -TARGET_EFAULT;
4234         break;
4235     case IPC_RMID:
4236     case SHM_LOCK:
4237     case SHM_UNLOCK:
4238         ret = get_errno(shmctl(shmid, cmd, NULL));
4239         break;
4240     }
4241 
4242     return ret;
4243 }
4244 
4245 #ifndef TARGET_FORCE_SHMLBA
4246 /* For most architectures, SHMLBA is the same as the page size;
4247  * some architectures have larger values, in which case they should
4248  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4249  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4250  * and defining its own value for SHMLBA.
4251  *
4252  * The kernel also permits SHMLBA to be set by the architecture to a
4253  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4254  * this means that addresses are rounded to the large size if
4255  * SHM_RND is set but addresses not aligned to that size are not rejected
4256  * as long as they are at least page-aligned. Since the only architecture
4257  * which uses this is ia64 this code doesn't provide for that oddity.
4258  */
4259 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4260 {
4261     return TARGET_PAGE_SIZE;
4262 }
4263 #endif
4264 
4265 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4266                                  int shmid, abi_ulong shmaddr, int shmflg)
4267 {
4268     abi_long raddr;
4269     void *host_raddr;
4270     struct shmid_ds shm_info;
4271     int i,ret;
4272     abi_ulong shmlba;
4273 
4274     /* find out the length of the shared memory segment */
4275     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4276     if (is_error(ret)) {
4277         /* can't get length, bail out */
4278         return ret;
4279     }
4280 
4281     shmlba = target_shmlba(cpu_env);
4282 
4283     if (shmaddr & (shmlba - 1)) {
4284         if (shmflg & SHM_RND) {
4285             shmaddr &= ~(shmlba - 1);
4286         } else {
4287             return -TARGET_EINVAL;
4288         }
4289     }
4290     if (!guest_range_valid(shmaddr, shm_info.shm_segsz)) {
4291         return -TARGET_EINVAL;
4292     }
4293 
4294     mmap_lock();
4295 
4296     if (shmaddr)
4297         host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
4298     else {
4299         abi_ulong mmap_start;
4300 
4301         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4302         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4303 
4304         if (mmap_start == -1) {
4305             errno = ENOMEM;
4306             host_raddr = (void *)-1;
4307         } else
4308             host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
4309     }
4310 
4311     if (host_raddr == (void *)-1) {
4312         mmap_unlock();
4313         return get_errno((long)host_raddr);
4314     }
4315     raddr=h2g((unsigned long)host_raddr);
4316 
4317     page_set_flags(raddr, raddr + shm_info.shm_segsz,
4318                    PAGE_VALID | PAGE_READ |
4319                    ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
4320 
4321     for (i = 0; i < N_SHM_REGIONS; i++) {
4322         if (!shm_regions[i].in_use) {
4323             shm_regions[i].in_use = true;
4324             shm_regions[i].start = raddr;
4325             shm_regions[i].size = shm_info.shm_segsz;
4326             break;
4327         }
4328     }
4329 
4330     mmap_unlock();
4331     return raddr;
4332 
4333 }
4334 
4335 static inline abi_long do_shmdt(abi_ulong shmaddr)
4336 {
4337     int i;
4338     abi_long rv;
4339 
4340     mmap_lock();
4341 
4342     for (i = 0; i < N_SHM_REGIONS; ++i) {
4343         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4344             shm_regions[i].in_use = false;
4345             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4346             break;
4347         }
4348     }
4349     rv = get_errno(shmdt(g2h(shmaddr)));
4350 
4351     mmap_unlock();
4352 
4353     return rv;
4354 }
4355 
4356 #ifdef TARGET_NR_ipc
4357 /* ??? This only works with linear mappings.  */
4358 /* do_ipc() must return target values and target errnos. */
4359 static abi_long do_ipc(CPUArchState *cpu_env,
4360                        unsigned int call, abi_long first,
4361                        abi_long second, abi_long third,
4362                        abi_long ptr, abi_long fifth)
4363 {
4364     int version;
4365     abi_long ret = 0;
4366 
4367     version = call >> 16;
4368     call &= 0xffff;
4369 
4370     switch (call) {
4371     case IPCOP_semop:
4372         ret = do_semop(first, ptr, second);
4373         break;
4374 
4375     case IPCOP_semget:
4376         ret = get_errno(semget(first, second, third));
4377         break;
4378 
4379     case IPCOP_semctl: {
4380         /* The semun argument to semctl is passed by value, so dereference the
4381          * ptr argument. */
4382         abi_ulong atptr;
4383         get_user_ual(atptr, ptr);
4384         ret = do_semctl(first, second, third, atptr);
4385         break;
4386     }
4387 
4388     case IPCOP_msgget:
4389         ret = get_errno(msgget(first, second));
4390         break;
4391 
4392     case IPCOP_msgsnd:
4393         ret = do_msgsnd(first, ptr, second, third);
4394         break;
4395 
4396     case IPCOP_msgctl:
4397         ret = do_msgctl(first, second, ptr);
4398         break;
4399 
4400     case IPCOP_msgrcv:
4401         switch (version) {
4402         case 0:
4403             {
4404                 struct target_ipc_kludge {
4405                     abi_long msgp;
4406                     abi_long msgtyp;
4407                 } *tmp;
4408 
4409                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4410                     ret = -TARGET_EFAULT;
4411                     break;
4412                 }
4413 
4414                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4415 
4416                 unlock_user_struct(tmp, ptr, 0);
4417                 break;
4418             }
4419         default:
4420             ret = do_msgrcv(first, ptr, second, fifth, third);
4421         }
4422         break;
4423 
4424     case IPCOP_shmat:
4425         switch (version) {
4426         default:
4427         {
4428             abi_ulong raddr;
4429             raddr = do_shmat(cpu_env, first, ptr, second);
4430             if (is_error(raddr))
4431                 return get_errno(raddr);
4432             if (put_user_ual(raddr, third))
4433                 return -TARGET_EFAULT;
4434             break;
4435         }
4436         case 1:
4437             ret = -TARGET_EINVAL;
4438             break;
4439         }
4440 	break;
4441     case IPCOP_shmdt:
4442         ret = do_shmdt(ptr);
4443 	break;
4444 
4445     case IPCOP_shmget:
4446 	/* IPC_* flag values are the same on all linux platforms */
4447 	ret = get_errno(shmget(first, second, third));
4448 	break;
4449 
4450 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4451     case IPCOP_shmctl:
4452         ret = do_shmctl(first, second, ptr);
4453         break;
4454     default:
4455         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4456                       call, version);
4457 	ret = -TARGET_ENOSYS;
4458 	break;
4459     }
4460     return ret;
4461 }
4462 #endif
4463 
4464 /* kernel structure types definitions */
4465 
4466 #define STRUCT(name, ...) STRUCT_ ## name,
4467 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4468 enum {
4469 #include "syscall_types.h"
4470 STRUCT_MAX
4471 };
4472 #undef STRUCT
4473 #undef STRUCT_SPECIAL
4474 
4475 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4476 #define STRUCT_SPECIAL(name)
4477 #include "syscall_types.h"
4478 #undef STRUCT
4479 #undef STRUCT_SPECIAL
4480 
4481 typedef struct IOCTLEntry IOCTLEntry;
4482 
4483 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
4484                              int fd, int cmd, abi_long arg);
4485 
4486 struct IOCTLEntry {
4487     int target_cmd;
4488     unsigned int host_cmd;
4489     const char *name;
4490     int access;
4491     do_ioctl_fn *do_ioctl;
4492     const argtype arg_type[5];
4493 };
4494 
4495 #define IOC_R 0x0001
4496 #define IOC_W 0x0002
4497 #define IOC_RW (IOC_R | IOC_W)
4498 
4499 #define MAX_STRUCT_SIZE 4096
4500 
4501 #ifdef CONFIG_FIEMAP
4502 /* So fiemap access checks don't overflow on 32 bit systems.
4503  * This is very slightly smaller than the limit imposed by
4504  * the underlying kernel.
4505  */
4506 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4507                             / sizeof(struct fiemap_extent))
4508 
4509 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4510                                        int fd, int cmd, abi_long arg)
4511 {
4512     /* The parameter for this ioctl is a struct fiemap followed
4513      * by an array of struct fiemap_extent whose size is set
4514      * in fiemap->fm_extent_count. The array is filled in by the
4515      * ioctl.
4516      */
4517     int target_size_in, target_size_out;
4518     struct fiemap *fm;
4519     const argtype *arg_type = ie->arg_type;
4520     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4521     void *argptr, *p;
4522     abi_long ret;
4523     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4524     uint32_t outbufsz;
4525     int free_fm = 0;
4526 
4527     assert(arg_type[0] == TYPE_PTR);
4528     assert(ie->access == IOC_RW);
4529     arg_type++;
4530     target_size_in = thunk_type_size(arg_type, 0);
4531     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4532     if (!argptr) {
4533         return -TARGET_EFAULT;
4534     }
4535     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4536     unlock_user(argptr, arg, 0);
4537     fm = (struct fiemap *)buf_temp;
4538     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4539         return -TARGET_EINVAL;
4540     }
4541 
4542     outbufsz = sizeof (*fm) +
4543         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4544 
4545     if (outbufsz > MAX_STRUCT_SIZE) {
4546         /* We can't fit all the extents into the fixed size buffer.
4547          * Allocate one that is large enough and use it instead.
4548          */
4549         fm = g_try_malloc(outbufsz);
4550         if (!fm) {
4551             return -TARGET_ENOMEM;
4552         }
4553         memcpy(fm, buf_temp, sizeof(struct fiemap));
4554         free_fm = 1;
4555     }
4556     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4557     if (!is_error(ret)) {
4558         target_size_out = target_size_in;
4559         /* An extent_count of 0 means we were only counting the extents
4560          * so there are no structs to copy
4561          */
4562         if (fm->fm_extent_count != 0) {
4563             target_size_out += fm->fm_mapped_extents * extent_size;
4564         }
4565         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4566         if (!argptr) {
4567             ret = -TARGET_EFAULT;
4568         } else {
4569             /* Convert the struct fiemap */
4570             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4571             if (fm->fm_extent_count != 0) {
4572                 p = argptr + target_size_in;
4573                 /* ...and then all the struct fiemap_extents */
4574                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4575                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4576                                   THUNK_TARGET);
4577                     p += extent_size;
4578                 }
4579             }
4580             unlock_user(argptr, arg, target_size_out);
4581         }
4582     }
4583     if (free_fm) {
4584         g_free(fm);
4585     }
4586     return ret;
4587 }
4588 #endif
4589 
4590 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4591                                 int fd, int cmd, abi_long arg)
4592 {
4593     const argtype *arg_type = ie->arg_type;
4594     int target_size;
4595     void *argptr;
4596     int ret;
4597     struct ifconf *host_ifconf;
4598     uint32_t outbufsz;
4599     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4600     int target_ifreq_size;
4601     int nb_ifreq;
4602     int free_buf = 0;
4603     int i;
4604     int target_ifc_len;
4605     abi_long target_ifc_buf;
4606     int host_ifc_len;
4607     char *host_ifc_buf;
4608 
4609     assert(arg_type[0] == TYPE_PTR);
4610     assert(ie->access == IOC_RW);
4611 
4612     arg_type++;
4613     target_size = thunk_type_size(arg_type, 0);
4614 
4615     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4616     if (!argptr)
4617         return -TARGET_EFAULT;
4618     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4619     unlock_user(argptr, arg, 0);
4620 
4621     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4622     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4623     target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
4624 
4625     if (target_ifc_buf != 0) {
4626         target_ifc_len = host_ifconf->ifc_len;
4627         nb_ifreq = target_ifc_len / target_ifreq_size;
4628         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4629 
4630         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4631         if (outbufsz > MAX_STRUCT_SIZE) {
4632             /*
4633              * We can't fit all the extents into the fixed size buffer.
4634              * Allocate one that is large enough and use it instead.
4635              */
4636             host_ifconf = malloc(outbufsz);
4637             if (!host_ifconf) {
4638                 return -TARGET_ENOMEM;
4639             }
4640             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4641             free_buf = 1;
4642         }
4643         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4644 
4645         host_ifconf->ifc_len = host_ifc_len;
4646     } else {
4647       host_ifc_buf = NULL;
4648     }
4649     host_ifconf->ifc_buf = host_ifc_buf;
4650 
4651     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4652     if (!is_error(ret)) {
4653 	/* convert host ifc_len to target ifc_len */
4654 
4655         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4656         target_ifc_len = nb_ifreq * target_ifreq_size;
4657         host_ifconf->ifc_len = target_ifc_len;
4658 
4659 	/* restore target ifc_buf */
4660 
4661         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4662 
4663 	/* copy struct ifconf to target user */
4664 
4665         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4666         if (!argptr)
4667             return -TARGET_EFAULT;
4668         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4669         unlock_user(argptr, arg, target_size);
4670 
4671         if (target_ifc_buf != 0) {
4672             /* copy ifreq[] to target user */
4673             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4674             for (i = 0; i < nb_ifreq ; i++) {
4675                 thunk_convert(argptr + i * target_ifreq_size,
4676                               host_ifc_buf + i * sizeof(struct ifreq),
4677                               ifreq_arg_type, THUNK_TARGET);
4678             }
4679             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4680         }
4681     }
4682 
4683     if (free_buf) {
4684         free(host_ifconf);
4685     }
4686 
4687     return ret;
4688 }
4689 
4690 #if defined(CONFIG_USBFS)
4691 #if HOST_LONG_BITS > 64
4692 #error USBDEVFS thunks do not support >64 bit hosts yet.
4693 #endif
4694 struct live_urb {
4695     uint64_t target_urb_adr;
4696     uint64_t target_buf_adr;
4697     char *target_buf_ptr;
4698     struct usbdevfs_urb host_urb;
4699 };
4700 
4701 static GHashTable *usbdevfs_urb_hashtable(void)
4702 {
4703     static GHashTable *urb_hashtable;
4704 
4705     if (!urb_hashtable) {
4706         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4707     }
4708     return urb_hashtable;
4709 }
4710 
4711 static void urb_hashtable_insert(struct live_urb *urb)
4712 {
4713     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4714     g_hash_table_insert(urb_hashtable, urb, urb);
4715 }
4716 
4717 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4718 {
4719     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4720     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4721 }
4722 
4723 static void urb_hashtable_remove(struct live_urb *urb)
4724 {
4725     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4726     g_hash_table_remove(urb_hashtable, urb);
4727 }
4728 
4729 static abi_long
4730 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4731                           int fd, int cmd, abi_long arg)
4732 {
4733     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4734     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4735     struct live_urb *lurb;
4736     void *argptr;
4737     uint64_t hurb;
4738     int target_size;
4739     uintptr_t target_urb_adr;
4740     abi_long ret;
4741 
4742     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4743 
4744     memset(buf_temp, 0, sizeof(uint64_t));
4745     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4746     if (is_error(ret)) {
4747         return ret;
4748     }
4749 
4750     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4751     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4752     if (!lurb->target_urb_adr) {
4753         return -TARGET_EFAULT;
4754     }
4755     urb_hashtable_remove(lurb);
4756     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4757         lurb->host_urb.buffer_length);
4758     lurb->target_buf_ptr = NULL;
4759 
4760     /* restore the guest buffer pointer */
4761     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4762 
4763     /* update the guest urb struct */
4764     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4765     if (!argptr) {
4766         g_free(lurb);
4767         return -TARGET_EFAULT;
4768     }
4769     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4770     unlock_user(argptr, lurb->target_urb_adr, target_size);
4771 
4772     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4773     /* write back the urb handle */
4774     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4775     if (!argptr) {
4776         g_free(lurb);
4777         return -TARGET_EFAULT;
4778     }
4779 
4780     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4781     target_urb_adr = lurb->target_urb_adr;
4782     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4783     unlock_user(argptr, arg, target_size);
4784 
4785     g_free(lurb);
4786     return ret;
4787 }
4788 
4789 static abi_long
4790 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4791                              uint8_t *buf_temp __attribute__((unused)),
4792                              int fd, int cmd, abi_long arg)
4793 {
4794     struct live_urb *lurb;
4795 
4796     /* map target address back to host URB with metadata. */
4797     lurb = urb_hashtable_lookup(arg);
4798     if (!lurb) {
4799         return -TARGET_EFAULT;
4800     }
4801     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4802 }
4803 
4804 static abi_long
4805 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4806                             int fd, int cmd, abi_long arg)
4807 {
4808     const argtype *arg_type = ie->arg_type;
4809     int target_size;
4810     abi_long ret;
4811     void *argptr;
4812     int rw_dir;
4813     struct live_urb *lurb;
4814 
4815     /*
4816      * each submitted URB needs to map to a unique ID for the
4817      * kernel, and that unique ID needs to be a pointer to
4818      * host memory.  hence, we need to malloc for each URB.
4819      * isochronous transfers have a variable length struct.
4820      */
4821     arg_type++;
4822     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4823 
4824     /* construct host copy of urb and metadata */
4825     lurb = g_try_malloc0(sizeof(struct live_urb));
4826     if (!lurb) {
4827         return -TARGET_ENOMEM;
4828     }
4829 
4830     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4831     if (!argptr) {
4832         g_free(lurb);
4833         return -TARGET_EFAULT;
4834     }
4835     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4836     unlock_user(argptr, arg, 0);
4837 
4838     lurb->target_urb_adr = arg;
4839     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4840 
4841     /* buffer space used depends on endpoint type so lock the entire buffer */
4842     /* control type urbs should check the buffer contents for true direction */
4843     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4844     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4845         lurb->host_urb.buffer_length, 1);
4846     if (lurb->target_buf_ptr == NULL) {
4847         g_free(lurb);
4848         return -TARGET_EFAULT;
4849     }
4850 
4851     /* update buffer pointer in host copy */
4852     lurb->host_urb.buffer = lurb->target_buf_ptr;
4853 
4854     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4855     if (is_error(ret)) {
4856         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4857         g_free(lurb);
4858     } else {
4859         urb_hashtable_insert(lurb);
4860     }
4861 
4862     return ret;
4863 }
4864 #endif /* CONFIG_USBFS */
4865 
4866 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4867                             int cmd, abi_long arg)
4868 {
4869     void *argptr;
4870     struct dm_ioctl *host_dm;
4871     abi_long guest_data;
4872     uint32_t guest_data_size;
4873     int target_size;
4874     const argtype *arg_type = ie->arg_type;
4875     abi_long ret;
4876     void *big_buf = NULL;
4877     char *host_data;
4878 
4879     arg_type++;
4880     target_size = thunk_type_size(arg_type, 0);
4881     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4882     if (!argptr) {
4883         ret = -TARGET_EFAULT;
4884         goto out;
4885     }
4886     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4887     unlock_user(argptr, arg, 0);
4888 
4889     /* buf_temp is too small, so fetch things into a bigger buffer */
4890     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
4891     memcpy(big_buf, buf_temp, target_size);
4892     buf_temp = big_buf;
4893     host_dm = big_buf;
4894 
4895     guest_data = arg + host_dm->data_start;
4896     if ((guest_data - arg) < 0) {
4897         ret = -TARGET_EINVAL;
4898         goto out;
4899     }
4900     guest_data_size = host_dm->data_size - host_dm->data_start;
4901     host_data = (char*)host_dm + host_dm->data_start;
4902 
4903     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
4904     if (!argptr) {
4905         ret = -TARGET_EFAULT;
4906         goto out;
4907     }
4908 
4909     switch (ie->host_cmd) {
4910     case DM_REMOVE_ALL:
4911     case DM_LIST_DEVICES:
4912     case DM_DEV_CREATE:
4913     case DM_DEV_REMOVE:
4914     case DM_DEV_SUSPEND:
4915     case DM_DEV_STATUS:
4916     case DM_DEV_WAIT:
4917     case DM_TABLE_STATUS:
4918     case DM_TABLE_CLEAR:
4919     case DM_TABLE_DEPS:
4920     case DM_LIST_VERSIONS:
4921         /* no input data */
4922         break;
4923     case DM_DEV_RENAME:
4924     case DM_DEV_SET_GEOMETRY:
4925         /* data contains only strings */
4926         memcpy(host_data, argptr, guest_data_size);
4927         break;
4928     case DM_TARGET_MSG:
4929         memcpy(host_data, argptr, guest_data_size);
4930         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
4931         break;
4932     case DM_TABLE_LOAD:
4933     {
4934         void *gspec = argptr;
4935         void *cur_data = host_data;
4936         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
4937         int spec_size = thunk_type_size(arg_type, 0);
4938         int i;
4939 
4940         for (i = 0; i < host_dm->target_count; i++) {
4941             struct dm_target_spec *spec = cur_data;
4942             uint32_t next;
4943             int slen;
4944 
4945             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
4946             slen = strlen((char*)gspec + spec_size) + 1;
4947             next = spec->next;
4948             spec->next = sizeof(*spec) + slen;
4949             strcpy((char*)&spec[1], gspec + spec_size);
4950             gspec += next;
4951             cur_data += spec->next;
4952         }
4953         break;
4954     }
4955     default:
4956         ret = -TARGET_EINVAL;
4957         unlock_user(argptr, guest_data, 0);
4958         goto out;
4959     }
4960     unlock_user(argptr, guest_data, 0);
4961 
4962     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4963     if (!is_error(ret)) {
4964         guest_data = arg + host_dm->data_start;
4965         guest_data_size = host_dm->data_size - host_dm->data_start;
4966         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
4967         switch (ie->host_cmd) {
4968         case DM_REMOVE_ALL:
4969         case DM_DEV_CREATE:
4970         case DM_DEV_REMOVE:
4971         case DM_DEV_RENAME:
4972         case DM_DEV_SUSPEND:
4973         case DM_DEV_STATUS:
4974         case DM_TABLE_LOAD:
4975         case DM_TABLE_CLEAR:
4976         case DM_TARGET_MSG:
4977         case DM_DEV_SET_GEOMETRY:
4978             /* no return data */
4979             break;
4980         case DM_LIST_DEVICES:
4981         {
4982             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
4983             uint32_t remaining_data = guest_data_size;
4984             void *cur_data = argptr;
4985             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
4986             int nl_size = 12; /* can't use thunk_size due to alignment */
4987 
4988             while (1) {
4989                 uint32_t next = nl->next;
4990                 if (next) {
4991                     nl->next = nl_size + (strlen(nl->name) + 1);
4992                 }
4993                 if (remaining_data < nl->next) {
4994                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
4995                     break;
4996                 }
4997                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
4998                 strcpy(cur_data + nl_size, nl->name);
4999                 cur_data += nl->next;
5000                 remaining_data -= nl->next;
5001                 if (!next) {
5002                     break;
5003                 }
5004                 nl = (void*)nl + next;
5005             }
5006             break;
5007         }
5008         case DM_DEV_WAIT:
5009         case DM_TABLE_STATUS:
5010         {
5011             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5012             void *cur_data = argptr;
5013             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5014             int spec_size = thunk_type_size(arg_type, 0);
5015             int i;
5016 
5017             for (i = 0; i < host_dm->target_count; i++) {
5018                 uint32_t next = spec->next;
5019                 int slen = strlen((char*)&spec[1]) + 1;
5020                 spec->next = (cur_data - argptr) + spec_size + slen;
5021                 if (guest_data_size < spec->next) {
5022                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5023                     break;
5024                 }
5025                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5026                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5027                 cur_data = argptr + spec->next;
5028                 spec = (void*)host_dm + host_dm->data_start + next;
5029             }
5030             break;
5031         }
5032         case DM_TABLE_DEPS:
5033         {
5034             void *hdata = (void*)host_dm + host_dm->data_start;
5035             int count = *(uint32_t*)hdata;
5036             uint64_t *hdev = hdata + 8;
5037             uint64_t *gdev = argptr + 8;
5038             int i;
5039 
5040             *(uint32_t*)argptr = tswap32(count);
5041             for (i = 0; i < count; i++) {
5042                 *gdev = tswap64(*hdev);
5043                 gdev++;
5044                 hdev++;
5045             }
5046             break;
5047         }
5048         case DM_LIST_VERSIONS:
5049         {
5050             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5051             uint32_t remaining_data = guest_data_size;
5052             void *cur_data = argptr;
5053             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5054             int vers_size = thunk_type_size(arg_type, 0);
5055 
5056             while (1) {
5057                 uint32_t next = vers->next;
5058                 if (next) {
5059                     vers->next = vers_size + (strlen(vers->name) + 1);
5060                 }
5061                 if (remaining_data < vers->next) {
5062                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5063                     break;
5064                 }
5065                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5066                 strcpy(cur_data + vers_size, vers->name);
5067                 cur_data += vers->next;
5068                 remaining_data -= vers->next;
5069                 if (!next) {
5070                     break;
5071                 }
5072                 vers = (void*)vers + next;
5073             }
5074             break;
5075         }
5076         default:
5077             unlock_user(argptr, guest_data, 0);
5078             ret = -TARGET_EINVAL;
5079             goto out;
5080         }
5081         unlock_user(argptr, guest_data, guest_data_size);
5082 
5083         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5084         if (!argptr) {
5085             ret = -TARGET_EFAULT;
5086             goto out;
5087         }
5088         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5089         unlock_user(argptr, arg, target_size);
5090     }
5091 out:
5092     g_free(big_buf);
5093     return ret;
5094 }
5095 
5096 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5097                                int cmd, abi_long arg)
5098 {
5099     void *argptr;
5100     int target_size;
5101     const argtype *arg_type = ie->arg_type;
5102     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5103     abi_long ret;
5104 
5105     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5106     struct blkpg_partition host_part;
5107 
5108     /* Read and convert blkpg */
5109     arg_type++;
5110     target_size = thunk_type_size(arg_type, 0);
5111     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5112     if (!argptr) {
5113         ret = -TARGET_EFAULT;
5114         goto out;
5115     }
5116     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5117     unlock_user(argptr, arg, 0);
5118 
5119     switch (host_blkpg->op) {
5120     case BLKPG_ADD_PARTITION:
5121     case BLKPG_DEL_PARTITION:
5122         /* payload is struct blkpg_partition */
5123         break;
5124     default:
5125         /* Unknown opcode */
5126         ret = -TARGET_EINVAL;
5127         goto out;
5128     }
5129 
5130     /* Read and convert blkpg->data */
5131     arg = (abi_long)(uintptr_t)host_blkpg->data;
5132     target_size = thunk_type_size(part_arg_type, 0);
5133     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5134     if (!argptr) {
5135         ret = -TARGET_EFAULT;
5136         goto out;
5137     }
5138     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5139     unlock_user(argptr, arg, 0);
5140 
5141     /* Swizzle the data pointer to our local copy and call! */
5142     host_blkpg->data = &host_part;
5143     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5144 
5145 out:
5146     return ret;
5147 }
5148 
5149 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5150                                 int fd, int cmd, abi_long arg)
5151 {
5152     const argtype *arg_type = ie->arg_type;
5153     const StructEntry *se;
5154     const argtype *field_types;
5155     const int *dst_offsets, *src_offsets;
5156     int target_size;
5157     void *argptr;
5158     abi_ulong *target_rt_dev_ptr = NULL;
5159     unsigned long *host_rt_dev_ptr = NULL;
5160     abi_long ret;
5161     int i;
5162 
5163     assert(ie->access == IOC_W);
5164     assert(*arg_type == TYPE_PTR);
5165     arg_type++;
5166     assert(*arg_type == TYPE_STRUCT);
5167     target_size = thunk_type_size(arg_type, 0);
5168     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5169     if (!argptr) {
5170         return -TARGET_EFAULT;
5171     }
5172     arg_type++;
5173     assert(*arg_type == (int)STRUCT_rtentry);
5174     se = struct_entries + *arg_type++;
5175     assert(se->convert[0] == NULL);
5176     /* convert struct here to be able to catch rt_dev string */
5177     field_types = se->field_types;
5178     dst_offsets = se->field_offsets[THUNK_HOST];
5179     src_offsets = se->field_offsets[THUNK_TARGET];
5180     for (i = 0; i < se->nb_fields; i++) {
5181         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5182             assert(*field_types == TYPE_PTRVOID);
5183             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5184             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5185             if (*target_rt_dev_ptr != 0) {
5186                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5187                                                   tswapal(*target_rt_dev_ptr));
5188                 if (!*host_rt_dev_ptr) {
5189                     unlock_user(argptr, arg, 0);
5190                     return -TARGET_EFAULT;
5191                 }
5192             } else {
5193                 *host_rt_dev_ptr = 0;
5194             }
5195             field_types++;
5196             continue;
5197         }
5198         field_types = thunk_convert(buf_temp + dst_offsets[i],
5199                                     argptr + src_offsets[i],
5200                                     field_types, THUNK_HOST);
5201     }
5202     unlock_user(argptr, arg, 0);
5203 
5204     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5205 
5206     assert(host_rt_dev_ptr != NULL);
5207     assert(target_rt_dev_ptr != NULL);
5208     if (*host_rt_dev_ptr != 0) {
5209         unlock_user((void *)*host_rt_dev_ptr,
5210                     *target_rt_dev_ptr, 0);
5211     }
5212     return ret;
5213 }
5214 
5215 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5216                                      int fd, int cmd, abi_long arg)
5217 {
5218     int sig = target_to_host_signal(arg);
5219     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5220 }
5221 
5222 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5223                                     int fd, int cmd, abi_long arg)
5224 {
5225     struct timeval tv;
5226     abi_long ret;
5227 
5228     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5229     if (is_error(ret)) {
5230         return ret;
5231     }
5232 
5233     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5234         if (copy_to_user_timeval(arg, &tv)) {
5235             return -TARGET_EFAULT;
5236         }
5237     } else {
5238         if (copy_to_user_timeval64(arg, &tv)) {
5239             return -TARGET_EFAULT;
5240         }
5241     }
5242 
5243     return ret;
5244 }
5245 
5246 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5247                                       int fd, int cmd, abi_long arg)
5248 {
5249     struct timespec ts;
5250     abi_long ret;
5251 
5252     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5253     if (is_error(ret)) {
5254         return ret;
5255     }
5256 
5257     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5258         if (host_to_target_timespec(arg, &ts)) {
5259             return -TARGET_EFAULT;
5260         }
5261     } else{
5262         if (host_to_target_timespec64(arg, &ts)) {
5263             return -TARGET_EFAULT;
5264         }
5265     }
5266 
5267     return ret;
5268 }
5269 
5270 #ifdef TIOCGPTPEER
5271 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5272                                      int fd, int cmd, abi_long arg)
5273 {
5274     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5275     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5276 }
5277 #endif
5278 
5279 static IOCTLEntry ioctl_entries[] = {
5280 #define IOCTL(cmd, access, ...) \
5281     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5282 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5283     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5284 #define IOCTL_IGNORE(cmd) \
5285     { TARGET_ ## cmd, 0, #cmd },
5286 #include "ioctls.h"
5287     { 0, 0, },
5288 };
5289 
5290 /* ??? Implement proper locking for ioctls.  */
5291 /* do_ioctl() Must return target values and target errnos. */
5292 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5293 {
5294     const IOCTLEntry *ie;
5295     const argtype *arg_type;
5296     abi_long ret;
5297     uint8_t buf_temp[MAX_STRUCT_SIZE];
5298     int target_size;
5299     void *argptr;
5300 
5301     ie = ioctl_entries;
5302     for(;;) {
5303         if (ie->target_cmd == 0) {
5304             qemu_log_mask(
5305                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5306             return -TARGET_ENOSYS;
5307         }
5308         if (ie->target_cmd == cmd)
5309             break;
5310         ie++;
5311     }
5312     arg_type = ie->arg_type;
5313     if (ie->do_ioctl) {
5314         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5315     } else if (!ie->host_cmd) {
5316         /* Some architectures define BSD ioctls in their headers
5317            that are not implemented in Linux.  */
5318         return -TARGET_ENOSYS;
5319     }
5320 
5321     switch(arg_type[0]) {
5322     case TYPE_NULL:
5323         /* no argument */
5324         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5325         break;
5326     case TYPE_PTRVOID:
5327     case TYPE_INT:
5328     case TYPE_LONG:
5329     case TYPE_ULONG:
5330         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5331         break;
5332     case TYPE_PTR:
5333         arg_type++;
5334         target_size = thunk_type_size(arg_type, 0);
5335         switch(ie->access) {
5336         case IOC_R:
5337             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5338             if (!is_error(ret)) {
5339                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5340                 if (!argptr)
5341                     return -TARGET_EFAULT;
5342                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5343                 unlock_user(argptr, arg, target_size);
5344             }
5345             break;
5346         case IOC_W:
5347             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5348             if (!argptr)
5349                 return -TARGET_EFAULT;
5350             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5351             unlock_user(argptr, arg, 0);
5352             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5353             break;
5354         default:
5355         case IOC_RW:
5356             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5357             if (!argptr)
5358                 return -TARGET_EFAULT;
5359             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5360             unlock_user(argptr, arg, 0);
5361             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5362             if (!is_error(ret)) {
5363                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5364                 if (!argptr)
5365                     return -TARGET_EFAULT;
5366                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5367                 unlock_user(argptr, arg, target_size);
5368             }
5369             break;
5370         }
5371         break;
5372     default:
5373         qemu_log_mask(LOG_UNIMP,
5374                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5375                       (long)cmd, arg_type[0]);
5376         ret = -TARGET_ENOSYS;
5377         break;
5378     }
5379     return ret;
5380 }
5381 
5382 static const bitmask_transtbl iflag_tbl[] = {
5383         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5384         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5385         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5386         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5387         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5388         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5389         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5390         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5391         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5392         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5393         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5394         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5395         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5396         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5397         { 0, 0, 0, 0 }
5398 };
5399 
5400 static const bitmask_transtbl oflag_tbl[] = {
5401 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5402 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5403 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5404 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5405 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5406 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5407 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5408 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5409 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5410 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5411 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5412 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5413 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5414 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5415 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5416 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5417 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5418 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5419 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5420 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5421 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5422 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5423 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5424 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5425 	{ 0, 0, 0, 0 }
5426 };
5427 
5428 static const bitmask_transtbl cflag_tbl[] = {
5429 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5430 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5431 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5432 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5433 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5434 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5435 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5436 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5437 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5438 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5439 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5440 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5441 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5442 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5443 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5444 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5445 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5446 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5447 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5448 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5449 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5450 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5451 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5452 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5453 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5454 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5455 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5456 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5457 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5458 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5459 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5460 	{ 0, 0, 0, 0 }
5461 };
5462 
5463 static const bitmask_transtbl lflag_tbl[] = {
5464 	{ TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5465 	{ TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5466 	{ TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5467 	{ TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5468 	{ TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5469 	{ TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5470 	{ TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5471 	{ TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5472 	{ TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5473 	{ TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5474 	{ TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5475 	{ TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5476 	{ TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5477 	{ TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5478 	{ TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5479 	{ 0, 0, 0, 0 }
5480 };
5481 
5482 static void target_to_host_termios (void *dst, const void *src)
5483 {
5484     struct host_termios *host = dst;
5485     const struct target_termios *target = src;
5486 
5487     host->c_iflag =
5488         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5489     host->c_oflag =
5490         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5491     host->c_cflag =
5492         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5493     host->c_lflag =
5494         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5495     host->c_line = target->c_line;
5496 
5497     memset(host->c_cc, 0, sizeof(host->c_cc));
5498     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5499     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5500     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5501     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5502     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5503     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5504     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5505     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5506     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5507     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5508     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5509     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5510     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5511     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5512     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5513     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5514     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5515 }
5516 
5517 static void host_to_target_termios (void *dst, const void *src)
5518 {
5519     struct target_termios *target = dst;
5520     const struct host_termios *host = src;
5521 
5522     target->c_iflag =
5523         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5524     target->c_oflag =
5525         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5526     target->c_cflag =
5527         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5528     target->c_lflag =
5529         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5530     target->c_line = host->c_line;
5531 
5532     memset(target->c_cc, 0, sizeof(target->c_cc));
5533     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5534     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5535     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5536     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5537     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5538     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5539     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5540     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5541     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5542     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5543     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5544     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5545     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5546     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5547     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5548     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5549     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5550 }
5551 
5552 static const StructEntry struct_termios_def = {
5553     .convert = { host_to_target_termios, target_to_host_termios },
5554     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5555     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5556 };
5557 
5558 static bitmask_transtbl mmap_flags_tbl[] = {
5559     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5560     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5561     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5562     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5563       MAP_ANONYMOUS, MAP_ANONYMOUS },
5564     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5565       MAP_GROWSDOWN, MAP_GROWSDOWN },
5566     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5567       MAP_DENYWRITE, MAP_DENYWRITE },
5568     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5569       MAP_EXECUTABLE, MAP_EXECUTABLE },
5570     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5571     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5572       MAP_NORESERVE, MAP_NORESERVE },
5573     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5574     /* MAP_STACK had been ignored by the kernel for quite some time.
5575        Recognize it for the target insofar as we do not want to pass
5576        it through to the host.  */
5577     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5578     { 0, 0, 0, 0 }
5579 };
5580 
5581 /*
5582  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5583  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5584  */
5585 #if defined(TARGET_I386)
5586 
5587 /* NOTE: there is really one LDT for all the threads */
5588 static uint8_t *ldt_table;
5589 
5590 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5591 {
5592     int size;
5593     void *p;
5594 
5595     if (!ldt_table)
5596         return 0;
5597     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5598     if (size > bytecount)
5599         size = bytecount;
5600     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5601     if (!p)
5602         return -TARGET_EFAULT;
5603     /* ??? Should this by byteswapped?  */
5604     memcpy(p, ldt_table, size);
5605     unlock_user(p, ptr, size);
5606     return size;
5607 }
5608 
5609 /* XXX: add locking support */
5610 static abi_long write_ldt(CPUX86State *env,
5611                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5612 {
5613     struct target_modify_ldt_ldt_s ldt_info;
5614     struct target_modify_ldt_ldt_s *target_ldt_info;
5615     int seg_32bit, contents, read_exec_only, limit_in_pages;
5616     int seg_not_present, useable, lm;
5617     uint32_t *lp, entry_1, entry_2;
5618 
5619     if (bytecount != sizeof(ldt_info))
5620         return -TARGET_EINVAL;
5621     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5622         return -TARGET_EFAULT;
5623     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5624     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5625     ldt_info.limit = tswap32(target_ldt_info->limit);
5626     ldt_info.flags = tswap32(target_ldt_info->flags);
5627     unlock_user_struct(target_ldt_info, ptr, 0);
5628 
5629     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5630         return -TARGET_EINVAL;
5631     seg_32bit = ldt_info.flags & 1;
5632     contents = (ldt_info.flags >> 1) & 3;
5633     read_exec_only = (ldt_info.flags >> 3) & 1;
5634     limit_in_pages = (ldt_info.flags >> 4) & 1;
5635     seg_not_present = (ldt_info.flags >> 5) & 1;
5636     useable = (ldt_info.flags >> 6) & 1;
5637 #ifdef TARGET_ABI32
5638     lm = 0;
5639 #else
5640     lm = (ldt_info.flags >> 7) & 1;
5641 #endif
5642     if (contents == 3) {
5643         if (oldmode)
5644             return -TARGET_EINVAL;
5645         if (seg_not_present == 0)
5646             return -TARGET_EINVAL;
5647     }
5648     /* allocate the LDT */
5649     if (!ldt_table) {
5650         env->ldt.base = target_mmap(0,
5651                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
5652                                     PROT_READ|PROT_WRITE,
5653                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
5654         if (env->ldt.base == -1)
5655             return -TARGET_ENOMEM;
5656         memset(g2h(env->ldt.base), 0,
5657                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
5658         env->ldt.limit = 0xffff;
5659         ldt_table = g2h(env->ldt.base);
5660     }
5661 
5662     /* NOTE: same code as Linux kernel */
5663     /* Allow LDTs to be cleared by the user. */
5664     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5665         if (oldmode ||
5666             (contents == 0		&&
5667              read_exec_only == 1	&&
5668              seg_32bit == 0		&&
5669              limit_in_pages == 0	&&
5670              seg_not_present == 1	&&
5671              useable == 0 )) {
5672             entry_1 = 0;
5673             entry_2 = 0;
5674             goto install;
5675         }
5676     }
5677 
5678     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5679         (ldt_info.limit & 0x0ffff);
5680     entry_2 = (ldt_info.base_addr & 0xff000000) |
5681         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5682         (ldt_info.limit & 0xf0000) |
5683         ((read_exec_only ^ 1) << 9) |
5684         (contents << 10) |
5685         ((seg_not_present ^ 1) << 15) |
5686         (seg_32bit << 22) |
5687         (limit_in_pages << 23) |
5688         (lm << 21) |
5689         0x7000;
5690     if (!oldmode)
5691         entry_2 |= (useable << 20);
5692 
5693     /* Install the new entry ...  */
5694 install:
5695     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
5696     lp[0] = tswap32(entry_1);
5697     lp[1] = tswap32(entry_2);
5698     return 0;
5699 }
5700 
5701 /* specific and weird i386 syscalls */
5702 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
5703                               unsigned long bytecount)
5704 {
5705     abi_long ret;
5706 
5707     switch (func) {
5708     case 0:
5709         ret = read_ldt(ptr, bytecount);
5710         break;
5711     case 1:
5712         ret = write_ldt(env, ptr, bytecount, 1);
5713         break;
5714     case 0x11:
5715         ret = write_ldt(env, ptr, bytecount, 0);
5716         break;
5717     default:
5718         ret = -TARGET_ENOSYS;
5719         break;
5720     }
5721     return ret;
5722 }
5723 
5724 #if defined(TARGET_ABI32)
5725 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
5726 {
5727     uint64_t *gdt_table = g2h(env->gdt.base);
5728     struct target_modify_ldt_ldt_s ldt_info;
5729     struct target_modify_ldt_ldt_s *target_ldt_info;
5730     int seg_32bit, contents, read_exec_only, limit_in_pages;
5731     int seg_not_present, useable, lm;
5732     uint32_t *lp, entry_1, entry_2;
5733     int i;
5734 
5735     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5736     if (!target_ldt_info)
5737         return -TARGET_EFAULT;
5738     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5739     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5740     ldt_info.limit = tswap32(target_ldt_info->limit);
5741     ldt_info.flags = tswap32(target_ldt_info->flags);
5742     if (ldt_info.entry_number == -1) {
5743         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
5744             if (gdt_table[i] == 0) {
5745                 ldt_info.entry_number = i;
5746                 target_ldt_info->entry_number = tswap32(i);
5747                 break;
5748             }
5749         }
5750     }
5751     unlock_user_struct(target_ldt_info, ptr, 1);
5752 
5753     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
5754         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
5755            return -TARGET_EINVAL;
5756     seg_32bit = ldt_info.flags & 1;
5757     contents = (ldt_info.flags >> 1) & 3;
5758     read_exec_only = (ldt_info.flags >> 3) & 1;
5759     limit_in_pages = (ldt_info.flags >> 4) & 1;
5760     seg_not_present = (ldt_info.flags >> 5) & 1;
5761     useable = (ldt_info.flags >> 6) & 1;
5762 #ifdef TARGET_ABI32
5763     lm = 0;
5764 #else
5765     lm = (ldt_info.flags >> 7) & 1;
5766 #endif
5767 
5768     if (contents == 3) {
5769         if (seg_not_present == 0)
5770             return -TARGET_EINVAL;
5771     }
5772 
5773     /* NOTE: same code as Linux kernel */
5774     /* Allow LDTs to be cleared by the user. */
5775     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5776         if ((contents == 0             &&
5777              read_exec_only == 1       &&
5778              seg_32bit == 0            &&
5779              limit_in_pages == 0       &&
5780              seg_not_present == 1      &&
5781              useable == 0 )) {
5782             entry_1 = 0;
5783             entry_2 = 0;
5784             goto install;
5785         }
5786     }
5787 
5788     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5789         (ldt_info.limit & 0x0ffff);
5790     entry_2 = (ldt_info.base_addr & 0xff000000) |
5791         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5792         (ldt_info.limit & 0xf0000) |
5793         ((read_exec_only ^ 1) << 9) |
5794         (contents << 10) |
5795         ((seg_not_present ^ 1) << 15) |
5796         (seg_32bit << 22) |
5797         (limit_in_pages << 23) |
5798         (useable << 20) |
5799         (lm << 21) |
5800         0x7000;
5801 
5802     /* Install the new entry ...  */
5803 install:
5804     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
5805     lp[0] = tswap32(entry_1);
5806     lp[1] = tswap32(entry_2);
5807     return 0;
5808 }
5809 
5810 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
5811 {
5812     struct target_modify_ldt_ldt_s *target_ldt_info;
5813     uint64_t *gdt_table = g2h(env->gdt.base);
5814     uint32_t base_addr, limit, flags;
5815     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
5816     int seg_not_present, useable, lm;
5817     uint32_t *lp, entry_1, entry_2;
5818 
5819     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5820     if (!target_ldt_info)
5821         return -TARGET_EFAULT;
5822     idx = tswap32(target_ldt_info->entry_number);
5823     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
5824         idx > TARGET_GDT_ENTRY_TLS_MAX) {
5825         unlock_user_struct(target_ldt_info, ptr, 1);
5826         return -TARGET_EINVAL;
5827     }
5828     lp = (uint32_t *)(gdt_table + idx);
5829     entry_1 = tswap32(lp[0]);
5830     entry_2 = tswap32(lp[1]);
5831 
5832     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
5833     contents = (entry_2 >> 10) & 3;
5834     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
5835     seg_32bit = (entry_2 >> 22) & 1;
5836     limit_in_pages = (entry_2 >> 23) & 1;
5837     useable = (entry_2 >> 20) & 1;
5838 #ifdef TARGET_ABI32
5839     lm = 0;
5840 #else
5841     lm = (entry_2 >> 21) & 1;
5842 #endif
5843     flags = (seg_32bit << 0) | (contents << 1) |
5844         (read_exec_only << 3) | (limit_in_pages << 4) |
5845         (seg_not_present << 5) | (useable << 6) | (lm << 7);
5846     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
5847     base_addr = (entry_1 >> 16) |
5848         (entry_2 & 0xff000000) |
5849         ((entry_2 & 0xff) << 16);
5850     target_ldt_info->base_addr = tswapal(base_addr);
5851     target_ldt_info->limit = tswap32(limit);
5852     target_ldt_info->flags = tswap32(flags);
5853     unlock_user_struct(target_ldt_info, ptr, 1);
5854     return 0;
5855 }
5856 
5857 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5858 {
5859     return -TARGET_ENOSYS;
5860 }
5861 #else
5862 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5863 {
5864     abi_long ret = 0;
5865     abi_ulong val;
5866     int idx;
5867 
5868     switch(code) {
5869     case TARGET_ARCH_SET_GS:
5870     case TARGET_ARCH_SET_FS:
5871         if (code == TARGET_ARCH_SET_GS)
5872             idx = R_GS;
5873         else
5874             idx = R_FS;
5875         cpu_x86_load_seg(env, idx, 0);
5876         env->segs[idx].base = addr;
5877         break;
5878     case TARGET_ARCH_GET_GS:
5879     case TARGET_ARCH_GET_FS:
5880         if (code == TARGET_ARCH_GET_GS)
5881             idx = R_GS;
5882         else
5883             idx = R_FS;
5884         val = env->segs[idx].base;
5885         if (put_user(val, addr, abi_ulong))
5886             ret = -TARGET_EFAULT;
5887         break;
5888     default:
5889         ret = -TARGET_EINVAL;
5890         break;
5891     }
5892     return ret;
5893 }
5894 #endif /* defined(TARGET_ABI32 */
5895 
5896 #endif /* defined(TARGET_I386) */
5897 
5898 #define NEW_STACK_SIZE 0x40000
5899 
5900 
5901 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
5902 typedef struct {
5903     CPUArchState *env;
5904     pthread_mutex_t mutex;
5905     pthread_cond_t cond;
5906     pthread_t thread;
5907     uint32_t tid;
5908     abi_ulong child_tidptr;
5909     abi_ulong parent_tidptr;
5910     sigset_t sigmask;
5911 } new_thread_info;
5912 
5913 static void *clone_func(void *arg)
5914 {
5915     new_thread_info *info = arg;
5916     CPUArchState *env;
5917     CPUState *cpu;
5918     TaskState *ts;
5919 
5920     rcu_register_thread();
5921     tcg_register_thread();
5922     env = info->env;
5923     cpu = env_cpu(env);
5924     thread_cpu = cpu;
5925     ts = (TaskState *)cpu->opaque;
5926     info->tid = sys_gettid();
5927     task_settid(ts);
5928     if (info->child_tidptr)
5929         put_user_u32(info->tid, info->child_tidptr);
5930     if (info->parent_tidptr)
5931         put_user_u32(info->tid, info->parent_tidptr);
5932     qemu_guest_random_seed_thread_part2(cpu->random_seed);
5933     /* Enable signals.  */
5934     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
5935     /* Signal to the parent that we're ready.  */
5936     pthread_mutex_lock(&info->mutex);
5937     pthread_cond_broadcast(&info->cond);
5938     pthread_mutex_unlock(&info->mutex);
5939     /* Wait until the parent has finished initializing the tls state.  */
5940     pthread_mutex_lock(&clone_lock);
5941     pthread_mutex_unlock(&clone_lock);
5942     cpu_loop(env);
5943     /* never exits */
5944     return NULL;
5945 }
5946 
5947 /* do_fork() Must return host values and target errnos (unlike most
5948    do_*() functions). */
5949 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
5950                    abi_ulong parent_tidptr, target_ulong newtls,
5951                    abi_ulong child_tidptr)
5952 {
5953     CPUState *cpu = env_cpu(env);
5954     int ret;
5955     TaskState *ts;
5956     CPUState *new_cpu;
5957     CPUArchState *new_env;
5958     sigset_t sigmask;
5959 
5960     flags &= ~CLONE_IGNORED_FLAGS;
5961 
5962     /* Emulate vfork() with fork() */
5963     if (flags & CLONE_VFORK)
5964         flags &= ~(CLONE_VFORK | CLONE_VM);
5965 
5966     if (flags & CLONE_VM) {
5967         TaskState *parent_ts = (TaskState *)cpu->opaque;
5968         new_thread_info info;
5969         pthread_attr_t attr;
5970 
5971         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
5972             (flags & CLONE_INVALID_THREAD_FLAGS)) {
5973             return -TARGET_EINVAL;
5974         }
5975 
5976         ts = g_new0(TaskState, 1);
5977         init_task_state(ts);
5978 
5979         /* Grab a mutex so that thread setup appears atomic.  */
5980         pthread_mutex_lock(&clone_lock);
5981 
5982         /* we create a new CPU instance. */
5983         new_env = cpu_copy(env);
5984         /* Init regs that differ from the parent.  */
5985         cpu_clone_regs_child(new_env, newsp, flags);
5986         cpu_clone_regs_parent(env, flags);
5987         new_cpu = env_cpu(new_env);
5988         new_cpu->opaque = ts;
5989         ts->bprm = parent_ts->bprm;
5990         ts->info = parent_ts->info;
5991         ts->signal_mask = parent_ts->signal_mask;
5992 
5993         if (flags & CLONE_CHILD_CLEARTID) {
5994             ts->child_tidptr = child_tidptr;
5995         }
5996 
5997         if (flags & CLONE_SETTLS) {
5998             cpu_set_tls (new_env, newtls);
5999         }
6000 
6001         memset(&info, 0, sizeof(info));
6002         pthread_mutex_init(&info.mutex, NULL);
6003         pthread_mutex_lock(&info.mutex);
6004         pthread_cond_init(&info.cond, NULL);
6005         info.env = new_env;
6006         if (flags & CLONE_CHILD_SETTID) {
6007             info.child_tidptr = child_tidptr;
6008         }
6009         if (flags & CLONE_PARENT_SETTID) {
6010             info.parent_tidptr = parent_tidptr;
6011         }
6012 
6013         ret = pthread_attr_init(&attr);
6014         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6015         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6016         /* It is not safe to deliver signals until the child has finished
6017            initializing, so temporarily block all signals.  */
6018         sigfillset(&sigmask);
6019         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6020         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6021 
6022         /* If this is our first additional thread, we need to ensure we
6023          * generate code for parallel execution and flush old translations.
6024          */
6025         if (!parallel_cpus) {
6026             parallel_cpus = true;
6027             tb_flush(cpu);
6028         }
6029 
6030         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6031         /* TODO: Free new CPU state if thread creation failed.  */
6032 
6033         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6034         pthread_attr_destroy(&attr);
6035         if (ret == 0) {
6036             /* Wait for the child to initialize.  */
6037             pthread_cond_wait(&info.cond, &info.mutex);
6038             ret = info.tid;
6039         } else {
6040             ret = -1;
6041         }
6042         pthread_mutex_unlock(&info.mutex);
6043         pthread_cond_destroy(&info.cond);
6044         pthread_mutex_destroy(&info.mutex);
6045         pthread_mutex_unlock(&clone_lock);
6046     } else {
6047         /* if no CLONE_VM, we consider it is a fork */
6048         if (flags & CLONE_INVALID_FORK_FLAGS) {
6049             return -TARGET_EINVAL;
6050         }
6051 
6052         /* We can't support custom termination signals */
6053         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6054             return -TARGET_EINVAL;
6055         }
6056 
6057         if (block_signals()) {
6058             return -TARGET_ERESTARTSYS;
6059         }
6060 
6061         fork_start();
6062         ret = fork();
6063         if (ret == 0) {
6064             /* Child Process.  */
6065             cpu_clone_regs_child(env, newsp, flags);
6066             fork_end(1);
6067             /* There is a race condition here.  The parent process could
6068                theoretically read the TID in the child process before the child
6069                tid is set.  This would require using either ptrace
6070                (not implemented) or having *_tidptr to point at a shared memory
6071                mapping.  We can't repeat the spinlock hack used above because
6072                the child process gets its own copy of the lock.  */
6073             if (flags & CLONE_CHILD_SETTID)
6074                 put_user_u32(sys_gettid(), child_tidptr);
6075             if (flags & CLONE_PARENT_SETTID)
6076                 put_user_u32(sys_gettid(), parent_tidptr);
6077             ts = (TaskState *)cpu->opaque;
6078             if (flags & CLONE_SETTLS)
6079                 cpu_set_tls (env, newtls);
6080             if (flags & CLONE_CHILD_CLEARTID)
6081                 ts->child_tidptr = child_tidptr;
6082         } else {
6083             cpu_clone_regs_parent(env, flags);
6084             fork_end(0);
6085         }
6086     }
6087     return ret;
6088 }
6089 
6090 /* warning : doesn't handle linux specific flags... */
6091 static int target_to_host_fcntl_cmd(int cmd)
6092 {
6093     int ret;
6094 
6095     switch(cmd) {
6096     case TARGET_F_DUPFD:
6097     case TARGET_F_GETFD:
6098     case TARGET_F_SETFD:
6099     case TARGET_F_GETFL:
6100     case TARGET_F_SETFL:
6101         ret = cmd;
6102         break;
6103     case TARGET_F_GETLK:
6104         ret = F_GETLK64;
6105         break;
6106     case TARGET_F_SETLK:
6107         ret = F_SETLK64;
6108         break;
6109     case TARGET_F_SETLKW:
6110         ret = F_SETLKW64;
6111         break;
6112     case TARGET_F_GETOWN:
6113         ret = F_GETOWN;
6114         break;
6115     case TARGET_F_SETOWN:
6116         ret = F_SETOWN;
6117         break;
6118     case TARGET_F_GETSIG:
6119         ret = F_GETSIG;
6120         break;
6121     case TARGET_F_SETSIG:
6122         ret = F_SETSIG;
6123         break;
6124 #if TARGET_ABI_BITS == 32
6125     case TARGET_F_GETLK64:
6126         ret = F_GETLK64;
6127         break;
6128     case TARGET_F_SETLK64:
6129         ret = F_SETLK64;
6130         break;
6131     case TARGET_F_SETLKW64:
6132         ret = F_SETLKW64;
6133         break;
6134 #endif
6135     case TARGET_F_SETLEASE:
6136         ret = F_SETLEASE;
6137         break;
6138     case TARGET_F_GETLEASE:
6139         ret = F_GETLEASE;
6140         break;
6141 #ifdef F_DUPFD_CLOEXEC
6142     case TARGET_F_DUPFD_CLOEXEC:
6143         ret = F_DUPFD_CLOEXEC;
6144         break;
6145 #endif
6146     case TARGET_F_NOTIFY:
6147         ret = F_NOTIFY;
6148         break;
6149 #ifdef F_GETOWN_EX
6150     case TARGET_F_GETOWN_EX:
6151         ret = F_GETOWN_EX;
6152         break;
6153 #endif
6154 #ifdef F_SETOWN_EX
6155     case TARGET_F_SETOWN_EX:
6156         ret = F_SETOWN_EX;
6157         break;
6158 #endif
6159 #ifdef F_SETPIPE_SZ
6160     case TARGET_F_SETPIPE_SZ:
6161         ret = F_SETPIPE_SZ;
6162         break;
6163     case TARGET_F_GETPIPE_SZ:
6164         ret = F_GETPIPE_SZ;
6165         break;
6166 #endif
6167     default:
6168         ret = -TARGET_EINVAL;
6169         break;
6170     }
6171 
6172 #if defined(__powerpc64__)
6173     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6174      * is not supported by kernel. The glibc fcntl call actually adjusts
6175      * them to 5, 6 and 7 before making the syscall(). Since we make the
6176      * syscall directly, adjust to what is supported by the kernel.
6177      */
6178     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6179         ret -= F_GETLK64 - 5;
6180     }
6181 #endif
6182 
6183     return ret;
6184 }
6185 
6186 #define FLOCK_TRANSTBL \
6187     switch (type) { \
6188     TRANSTBL_CONVERT(F_RDLCK); \
6189     TRANSTBL_CONVERT(F_WRLCK); \
6190     TRANSTBL_CONVERT(F_UNLCK); \
6191     TRANSTBL_CONVERT(F_EXLCK); \
6192     TRANSTBL_CONVERT(F_SHLCK); \
6193     }
6194 
6195 static int target_to_host_flock(int type)
6196 {
6197 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6198     FLOCK_TRANSTBL
6199 #undef  TRANSTBL_CONVERT
6200     return -TARGET_EINVAL;
6201 }
6202 
6203 static int host_to_target_flock(int type)
6204 {
6205 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6206     FLOCK_TRANSTBL
6207 #undef  TRANSTBL_CONVERT
6208     /* if we don't know how to convert the value coming
6209      * from the host we copy to the target field as-is
6210      */
6211     return type;
6212 }
6213 
6214 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6215                                             abi_ulong target_flock_addr)
6216 {
6217     struct target_flock *target_fl;
6218     int l_type;
6219 
6220     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6221         return -TARGET_EFAULT;
6222     }
6223 
6224     __get_user(l_type, &target_fl->l_type);
6225     l_type = target_to_host_flock(l_type);
6226     if (l_type < 0) {
6227         return l_type;
6228     }
6229     fl->l_type = l_type;
6230     __get_user(fl->l_whence, &target_fl->l_whence);
6231     __get_user(fl->l_start, &target_fl->l_start);
6232     __get_user(fl->l_len, &target_fl->l_len);
6233     __get_user(fl->l_pid, &target_fl->l_pid);
6234     unlock_user_struct(target_fl, target_flock_addr, 0);
6235     return 0;
6236 }
6237 
6238 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6239                                           const struct flock64 *fl)
6240 {
6241     struct target_flock *target_fl;
6242     short l_type;
6243 
6244     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6245         return -TARGET_EFAULT;
6246     }
6247 
6248     l_type = host_to_target_flock(fl->l_type);
6249     __put_user(l_type, &target_fl->l_type);
6250     __put_user(fl->l_whence, &target_fl->l_whence);
6251     __put_user(fl->l_start, &target_fl->l_start);
6252     __put_user(fl->l_len, &target_fl->l_len);
6253     __put_user(fl->l_pid, &target_fl->l_pid);
6254     unlock_user_struct(target_fl, target_flock_addr, 1);
6255     return 0;
6256 }
6257 
6258 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6259 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6260 
6261 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6262 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6263                                                    abi_ulong target_flock_addr)
6264 {
6265     struct target_oabi_flock64 *target_fl;
6266     int l_type;
6267 
6268     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6269         return -TARGET_EFAULT;
6270     }
6271 
6272     __get_user(l_type, &target_fl->l_type);
6273     l_type = target_to_host_flock(l_type);
6274     if (l_type < 0) {
6275         return l_type;
6276     }
6277     fl->l_type = l_type;
6278     __get_user(fl->l_whence, &target_fl->l_whence);
6279     __get_user(fl->l_start, &target_fl->l_start);
6280     __get_user(fl->l_len, &target_fl->l_len);
6281     __get_user(fl->l_pid, &target_fl->l_pid);
6282     unlock_user_struct(target_fl, target_flock_addr, 0);
6283     return 0;
6284 }
6285 
6286 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6287                                                  const struct flock64 *fl)
6288 {
6289     struct target_oabi_flock64 *target_fl;
6290     short l_type;
6291 
6292     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6293         return -TARGET_EFAULT;
6294     }
6295 
6296     l_type = host_to_target_flock(fl->l_type);
6297     __put_user(l_type, &target_fl->l_type);
6298     __put_user(fl->l_whence, &target_fl->l_whence);
6299     __put_user(fl->l_start, &target_fl->l_start);
6300     __put_user(fl->l_len, &target_fl->l_len);
6301     __put_user(fl->l_pid, &target_fl->l_pid);
6302     unlock_user_struct(target_fl, target_flock_addr, 1);
6303     return 0;
6304 }
6305 #endif
6306 
6307 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6308                                               abi_ulong target_flock_addr)
6309 {
6310     struct target_flock64 *target_fl;
6311     int l_type;
6312 
6313     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6314         return -TARGET_EFAULT;
6315     }
6316 
6317     __get_user(l_type, &target_fl->l_type);
6318     l_type = target_to_host_flock(l_type);
6319     if (l_type < 0) {
6320         return l_type;
6321     }
6322     fl->l_type = l_type;
6323     __get_user(fl->l_whence, &target_fl->l_whence);
6324     __get_user(fl->l_start, &target_fl->l_start);
6325     __get_user(fl->l_len, &target_fl->l_len);
6326     __get_user(fl->l_pid, &target_fl->l_pid);
6327     unlock_user_struct(target_fl, target_flock_addr, 0);
6328     return 0;
6329 }
6330 
6331 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6332                                             const struct flock64 *fl)
6333 {
6334     struct target_flock64 *target_fl;
6335     short l_type;
6336 
6337     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6338         return -TARGET_EFAULT;
6339     }
6340 
6341     l_type = host_to_target_flock(fl->l_type);
6342     __put_user(l_type, &target_fl->l_type);
6343     __put_user(fl->l_whence, &target_fl->l_whence);
6344     __put_user(fl->l_start, &target_fl->l_start);
6345     __put_user(fl->l_len, &target_fl->l_len);
6346     __put_user(fl->l_pid, &target_fl->l_pid);
6347     unlock_user_struct(target_fl, target_flock_addr, 1);
6348     return 0;
6349 }
6350 
6351 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6352 {
6353     struct flock64 fl64;
6354 #ifdef F_GETOWN_EX
6355     struct f_owner_ex fox;
6356     struct target_f_owner_ex *target_fox;
6357 #endif
6358     abi_long ret;
6359     int host_cmd = target_to_host_fcntl_cmd(cmd);
6360 
6361     if (host_cmd == -TARGET_EINVAL)
6362 	    return host_cmd;
6363 
6364     switch(cmd) {
6365     case TARGET_F_GETLK:
6366         ret = copy_from_user_flock(&fl64, arg);
6367         if (ret) {
6368             return ret;
6369         }
6370         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6371         if (ret == 0) {
6372             ret = copy_to_user_flock(arg, &fl64);
6373         }
6374         break;
6375 
6376     case TARGET_F_SETLK:
6377     case TARGET_F_SETLKW:
6378         ret = copy_from_user_flock(&fl64, arg);
6379         if (ret) {
6380             return ret;
6381         }
6382         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6383         break;
6384 
6385     case TARGET_F_GETLK64:
6386         ret = copy_from_user_flock64(&fl64, arg);
6387         if (ret) {
6388             return ret;
6389         }
6390         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6391         if (ret == 0) {
6392             ret = copy_to_user_flock64(arg, &fl64);
6393         }
6394         break;
6395     case TARGET_F_SETLK64:
6396     case TARGET_F_SETLKW64:
6397         ret = copy_from_user_flock64(&fl64, arg);
6398         if (ret) {
6399             return ret;
6400         }
6401         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6402         break;
6403 
6404     case TARGET_F_GETFL:
6405         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6406         if (ret >= 0) {
6407             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6408         }
6409         break;
6410 
6411     case TARGET_F_SETFL:
6412         ret = get_errno(safe_fcntl(fd, host_cmd,
6413                                    target_to_host_bitmask(arg,
6414                                                           fcntl_flags_tbl)));
6415         break;
6416 
6417 #ifdef F_GETOWN_EX
6418     case TARGET_F_GETOWN_EX:
6419         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6420         if (ret >= 0) {
6421             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6422                 return -TARGET_EFAULT;
6423             target_fox->type = tswap32(fox.type);
6424             target_fox->pid = tswap32(fox.pid);
6425             unlock_user_struct(target_fox, arg, 1);
6426         }
6427         break;
6428 #endif
6429 
6430 #ifdef F_SETOWN_EX
6431     case TARGET_F_SETOWN_EX:
6432         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6433             return -TARGET_EFAULT;
6434         fox.type = tswap32(target_fox->type);
6435         fox.pid = tswap32(target_fox->pid);
6436         unlock_user_struct(target_fox, arg, 0);
6437         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6438         break;
6439 #endif
6440 
6441     case TARGET_F_SETOWN:
6442     case TARGET_F_GETOWN:
6443     case TARGET_F_SETSIG:
6444     case TARGET_F_GETSIG:
6445     case TARGET_F_SETLEASE:
6446     case TARGET_F_GETLEASE:
6447     case TARGET_F_SETPIPE_SZ:
6448     case TARGET_F_GETPIPE_SZ:
6449         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6450         break;
6451 
6452     default:
6453         ret = get_errno(safe_fcntl(fd, cmd, arg));
6454         break;
6455     }
6456     return ret;
6457 }
6458 
6459 #ifdef USE_UID16
6460 
6461 static inline int high2lowuid(int uid)
6462 {
6463     if (uid > 65535)
6464         return 65534;
6465     else
6466         return uid;
6467 }
6468 
6469 static inline int high2lowgid(int gid)
6470 {
6471     if (gid > 65535)
6472         return 65534;
6473     else
6474         return gid;
6475 }
6476 
6477 static inline int low2highuid(int uid)
6478 {
6479     if ((int16_t)uid == -1)
6480         return -1;
6481     else
6482         return uid;
6483 }
6484 
6485 static inline int low2highgid(int gid)
6486 {
6487     if ((int16_t)gid == -1)
6488         return -1;
6489     else
6490         return gid;
6491 }
6492 static inline int tswapid(int id)
6493 {
6494     return tswap16(id);
6495 }
6496 
6497 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6498 
6499 #else /* !USE_UID16 */
6500 static inline int high2lowuid(int uid)
6501 {
6502     return uid;
6503 }
6504 static inline int high2lowgid(int gid)
6505 {
6506     return gid;
6507 }
6508 static inline int low2highuid(int uid)
6509 {
6510     return uid;
6511 }
6512 static inline int low2highgid(int gid)
6513 {
6514     return gid;
6515 }
6516 static inline int tswapid(int id)
6517 {
6518     return tswap32(id);
6519 }
6520 
6521 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6522 
6523 #endif /* USE_UID16 */
6524 
6525 /* We must do direct syscalls for setting UID/GID, because we want to
6526  * implement the Linux system call semantics of "change only for this thread",
6527  * not the libc/POSIX semantics of "change for all threads in process".
6528  * (See http://ewontfix.com/17/ for more details.)
6529  * We use the 32-bit version of the syscalls if present; if it is not
6530  * then either the host architecture supports 32-bit UIDs natively with
6531  * the standard syscall, or the 16-bit UID is the best we can do.
6532  */
6533 #ifdef __NR_setuid32
6534 #define __NR_sys_setuid __NR_setuid32
6535 #else
6536 #define __NR_sys_setuid __NR_setuid
6537 #endif
6538 #ifdef __NR_setgid32
6539 #define __NR_sys_setgid __NR_setgid32
6540 #else
6541 #define __NR_sys_setgid __NR_setgid
6542 #endif
6543 #ifdef __NR_setresuid32
6544 #define __NR_sys_setresuid __NR_setresuid32
6545 #else
6546 #define __NR_sys_setresuid __NR_setresuid
6547 #endif
6548 #ifdef __NR_setresgid32
6549 #define __NR_sys_setresgid __NR_setresgid32
6550 #else
6551 #define __NR_sys_setresgid __NR_setresgid
6552 #endif
6553 
6554 _syscall1(int, sys_setuid, uid_t, uid)
6555 _syscall1(int, sys_setgid, gid_t, gid)
6556 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
6557 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
6558 
6559 void syscall_init(void)
6560 {
6561     IOCTLEntry *ie;
6562     const argtype *arg_type;
6563     int size;
6564     int i;
6565 
6566     thunk_init(STRUCT_MAX);
6567 
6568 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6569 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6570 #include "syscall_types.h"
6571 #undef STRUCT
6572 #undef STRUCT_SPECIAL
6573 
6574     /* Build target_to_host_errno_table[] table from
6575      * host_to_target_errno_table[]. */
6576     for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
6577         target_to_host_errno_table[host_to_target_errno_table[i]] = i;
6578     }
6579 
6580     /* we patch the ioctl size if necessary. We rely on the fact that
6581        no ioctl has all the bits at '1' in the size field */
6582     ie = ioctl_entries;
6583     while (ie->target_cmd != 0) {
6584         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
6585             TARGET_IOC_SIZEMASK) {
6586             arg_type = ie->arg_type;
6587             if (arg_type[0] != TYPE_PTR) {
6588                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
6589                         ie->target_cmd);
6590                 exit(1);
6591             }
6592             arg_type++;
6593             size = thunk_type_size(arg_type, 0);
6594             ie->target_cmd = (ie->target_cmd &
6595                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
6596                 (size << TARGET_IOC_SIZESHIFT);
6597         }
6598 
6599         /* automatic consistency check if same arch */
6600 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6601     (defined(__x86_64__) && defined(TARGET_X86_64))
6602         if (unlikely(ie->target_cmd != ie->host_cmd)) {
6603             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6604                     ie->name, ie->target_cmd, ie->host_cmd);
6605         }
6606 #endif
6607         ie++;
6608     }
6609 }
6610 
6611 #if TARGET_ABI_BITS == 32
6612 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
6613 {
6614 #ifdef TARGET_WORDS_BIGENDIAN
6615     return ((uint64_t)word0 << 32) | word1;
6616 #else
6617     return ((uint64_t)word1 << 32) | word0;
6618 #endif
6619 }
6620 #else /* TARGET_ABI_BITS == 32 */
6621 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
6622 {
6623     return word0;
6624 }
6625 #endif /* TARGET_ABI_BITS != 32 */
6626 
6627 #ifdef TARGET_NR_truncate64
6628 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
6629                                          abi_long arg2,
6630                                          abi_long arg3,
6631                                          abi_long arg4)
6632 {
6633     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
6634         arg2 = arg3;
6635         arg3 = arg4;
6636     }
6637     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
6638 }
6639 #endif
6640 
6641 #ifdef TARGET_NR_ftruncate64
6642 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
6643                                           abi_long arg2,
6644                                           abi_long arg3,
6645                                           abi_long arg4)
6646 {
6647     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
6648         arg2 = arg3;
6649         arg3 = arg4;
6650     }
6651     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
6652 }
6653 #endif
6654 
6655 #if defined(TARGET_NR_timer_settime) || \
6656     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
6657 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
6658                                                  abi_ulong target_addr)
6659 {
6660     struct target_itimerspec *target_itspec;
6661 
6662     if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
6663         return -TARGET_EFAULT;
6664     }
6665 
6666     host_itspec->it_interval.tv_sec =
6667                             tswapal(target_itspec->it_interval.tv_sec);
6668     host_itspec->it_interval.tv_nsec =
6669                             tswapal(target_itspec->it_interval.tv_nsec);
6670     host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
6671     host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
6672 
6673     unlock_user_struct(target_itspec, target_addr, 1);
6674     return 0;
6675 }
6676 #endif
6677 
6678 #if ((defined(TARGET_NR_timerfd_gettime) || \
6679       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
6680     defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
6681 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
6682                                                struct itimerspec *host_its)
6683 {
6684     struct target_itimerspec *target_itspec;
6685 
6686     if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
6687         return -TARGET_EFAULT;
6688     }
6689 
6690     target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
6691     target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
6692 
6693     target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
6694     target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
6695 
6696     unlock_user_struct(target_itspec, target_addr, 0);
6697     return 0;
6698 }
6699 #endif
6700 
6701 #if defined(TARGET_NR_adjtimex) || \
6702     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
6703 static inline abi_long target_to_host_timex(struct timex *host_tx,
6704                                             abi_long target_addr)
6705 {
6706     struct target_timex *target_tx;
6707 
6708     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
6709         return -TARGET_EFAULT;
6710     }
6711 
6712     __get_user(host_tx->modes, &target_tx->modes);
6713     __get_user(host_tx->offset, &target_tx->offset);
6714     __get_user(host_tx->freq, &target_tx->freq);
6715     __get_user(host_tx->maxerror, &target_tx->maxerror);
6716     __get_user(host_tx->esterror, &target_tx->esterror);
6717     __get_user(host_tx->status, &target_tx->status);
6718     __get_user(host_tx->constant, &target_tx->constant);
6719     __get_user(host_tx->precision, &target_tx->precision);
6720     __get_user(host_tx->tolerance, &target_tx->tolerance);
6721     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
6722     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
6723     __get_user(host_tx->tick, &target_tx->tick);
6724     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
6725     __get_user(host_tx->jitter, &target_tx->jitter);
6726     __get_user(host_tx->shift, &target_tx->shift);
6727     __get_user(host_tx->stabil, &target_tx->stabil);
6728     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
6729     __get_user(host_tx->calcnt, &target_tx->calcnt);
6730     __get_user(host_tx->errcnt, &target_tx->errcnt);
6731     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
6732     __get_user(host_tx->tai, &target_tx->tai);
6733 
6734     unlock_user_struct(target_tx, target_addr, 0);
6735     return 0;
6736 }
6737 
6738 static inline abi_long host_to_target_timex(abi_long target_addr,
6739                                             struct timex *host_tx)
6740 {
6741     struct target_timex *target_tx;
6742 
6743     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
6744         return -TARGET_EFAULT;
6745     }
6746 
6747     __put_user(host_tx->modes, &target_tx->modes);
6748     __put_user(host_tx->offset, &target_tx->offset);
6749     __put_user(host_tx->freq, &target_tx->freq);
6750     __put_user(host_tx->maxerror, &target_tx->maxerror);
6751     __put_user(host_tx->esterror, &target_tx->esterror);
6752     __put_user(host_tx->status, &target_tx->status);
6753     __put_user(host_tx->constant, &target_tx->constant);
6754     __put_user(host_tx->precision, &target_tx->precision);
6755     __put_user(host_tx->tolerance, &target_tx->tolerance);
6756     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
6757     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
6758     __put_user(host_tx->tick, &target_tx->tick);
6759     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
6760     __put_user(host_tx->jitter, &target_tx->jitter);
6761     __put_user(host_tx->shift, &target_tx->shift);
6762     __put_user(host_tx->stabil, &target_tx->stabil);
6763     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
6764     __put_user(host_tx->calcnt, &target_tx->calcnt);
6765     __put_user(host_tx->errcnt, &target_tx->errcnt);
6766     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
6767     __put_user(host_tx->tai, &target_tx->tai);
6768 
6769     unlock_user_struct(target_tx, target_addr, 1);
6770     return 0;
6771 }
6772 #endif
6773 
6774 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
6775                                                abi_ulong target_addr)
6776 {
6777     struct target_sigevent *target_sevp;
6778 
6779     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
6780         return -TARGET_EFAULT;
6781     }
6782 
6783     /* This union is awkward on 64 bit systems because it has a 32 bit
6784      * integer and a pointer in it; we follow the conversion approach
6785      * used for handling sigval types in signal.c so the guest should get
6786      * the correct value back even if we did a 64 bit byteswap and it's
6787      * using the 32 bit integer.
6788      */
6789     host_sevp->sigev_value.sival_ptr =
6790         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
6791     host_sevp->sigev_signo =
6792         target_to_host_signal(tswap32(target_sevp->sigev_signo));
6793     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
6794     host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
6795 
6796     unlock_user_struct(target_sevp, target_addr, 1);
6797     return 0;
6798 }
6799 
6800 #if defined(TARGET_NR_mlockall)
6801 static inline int target_to_host_mlockall_arg(int arg)
6802 {
6803     int result = 0;
6804 
6805     if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
6806         result |= MCL_CURRENT;
6807     }
6808     if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
6809         result |= MCL_FUTURE;
6810     }
6811     return result;
6812 }
6813 #endif
6814 
6815 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
6816      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
6817      defined(TARGET_NR_newfstatat))
6818 static inline abi_long host_to_target_stat64(void *cpu_env,
6819                                              abi_ulong target_addr,
6820                                              struct stat *host_st)
6821 {
6822 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
6823     if (((CPUARMState *)cpu_env)->eabi) {
6824         struct target_eabi_stat64 *target_st;
6825 
6826         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6827             return -TARGET_EFAULT;
6828         memset(target_st, 0, sizeof(struct target_eabi_stat64));
6829         __put_user(host_st->st_dev, &target_st->st_dev);
6830         __put_user(host_st->st_ino, &target_st->st_ino);
6831 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6832         __put_user(host_st->st_ino, &target_st->__st_ino);
6833 #endif
6834         __put_user(host_st->st_mode, &target_st->st_mode);
6835         __put_user(host_st->st_nlink, &target_st->st_nlink);
6836         __put_user(host_st->st_uid, &target_st->st_uid);
6837         __put_user(host_st->st_gid, &target_st->st_gid);
6838         __put_user(host_st->st_rdev, &target_st->st_rdev);
6839         __put_user(host_st->st_size, &target_st->st_size);
6840         __put_user(host_st->st_blksize, &target_st->st_blksize);
6841         __put_user(host_st->st_blocks, &target_st->st_blocks);
6842         __put_user(host_st->st_atime, &target_st->target_st_atime);
6843         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6844         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6845 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6846         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
6847         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
6848         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
6849 #endif
6850         unlock_user_struct(target_st, target_addr, 1);
6851     } else
6852 #endif
6853     {
6854 #if defined(TARGET_HAS_STRUCT_STAT64)
6855         struct target_stat64 *target_st;
6856 #else
6857         struct target_stat *target_st;
6858 #endif
6859 
6860         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6861             return -TARGET_EFAULT;
6862         memset(target_st, 0, sizeof(*target_st));
6863         __put_user(host_st->st_dev, &target_st->st_dev);
6864         __put_user(host_st->st_ino, &target_st->st_ino);
6865 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6866         __put_user(host_st->st_ino, &target_st->__st_ino);
6867 #endif
6868         __put_user(host_st->st_mode, &target_st->st_mode);
6869         __put_user(host_st->st_nlink, &target_st->st_nlink);
6870         __put_user(host_st->st_uid, &target_st->st_uid);
6871         __put_user(host_st->st_gid, &target_st->st_gid);
6872         __put_user(host_st->st_rdev, &target_st->st_rdev);
6873         /* XXX: better use of kernel struct */
6874         __put_user(host_st->st_size, &target_st->st_size);
6875         __put_user(host_st->st_blksize, &target_st->st_blksize);
6876         __put_user(host_st->st_blocks, &target_st->st_blocks);
6877         __put_user(host_st->st_atime, &target_st->target_st_atime);
6878         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6879         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6880 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6881         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
6882         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
6883         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
6884 #endif
6885         unlock_user_struct(target_st, target_addr, 1);
6886     }
6887 
6888     return 0;
6889 }
6890 #endif
6891 
6892 #if defined(TARGET_NR_statx) && defined(__NR_statx)
6893 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
6894                                             abi_ulong target_addr)
6895 {
6896     struct target_statx *target_stx;
6897 
6898     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
6899         return -TARGET_EFAULT;
6900     }
6901     memset(target_stx, 0, sizeof(*target_stx));
6902 
6903     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
6904     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
6905     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
6906     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
6907     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
6908     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
6909     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
6910     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
6911     __put_user(host_stx->stx_size, &target_stx->stx_size);
6912     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
6913     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
6914     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
6915     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
6916     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
6917     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
6918     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
6919     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
6920     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
6921     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
6922     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
6923     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
6924     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
6925     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
6926 
6927     unlock_user_struct(target_stx, target_addr, 1);
6928 
6929     return 0;
6930 }
6931 #endif
6932 
6933 static int do_sys_futex(int *uaddr, int op, int val,
6934                          const struct timespec *timeout, int *uaddr2,
6935                          int val3)
6936 {
6937 #if HOST_LONG_BITS == 64
6938 #if defined(__NR_futex)
6939     /* always a 64-bit time_t, it doesn't define _time64 version  */
6940     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
6941 
6942 #endif
6943 #else /* HOST_LONG_BITS == 64 */
6944 #if defined(__NR_futex_time64)
6945     if (sizeof(timeout->tv_sec) == 8) {
6946         /* _time64 function on 32bit arch */
6947         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
6948     }
6949 #endif
6950 #if defined(__NR_futex)
6951     /* old function on 32bit arch */
6952     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
6953 #endif
6954 #endif /* HOST_LONG_BITS == 64 */
6955     g_assert_not_reached();
6956 }
6957 
6958 static int do_safe_futex(int *uaddr, int op, int val,
6959                          const struct timespec *timeout, int *uaddr2,
6960                          int val3)
6961 {
6962 #if HOST_LONG_BITS == 64
6963 #if defined(__NR_futex)
6964     /* always a 64-bit time_t, it doesn't define _time64 version  */
6965     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
6966 #endif
6967 #else /* HOST_LONG_BITS == 64 */
6968 #if defined(__NR_futex_time64)
6969     if (sizeof(timeout->tv_sec) == 8) {
6970         /* _time64 function on 32bit arch */
6971         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
6972                                            val3));
6973     }
6974 #endif
6975 #if defined(__NR_futex)
6976     /* old function on 32bit arch */
6977     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
6978 #endif
6979 #endif /* HOST_LONG_BITS == 64 */
6980     return -TARGET_ENOSYS;
6981 }
6982 
6983 /* ??? Using host futex calls even when target atomic operations
6984    are not really atomic probably breaks things.  However implementing
6985    futexes locally would make futexes shared between multiple processes
6986    tricky.  However they're probably useless because guest atomic
6987    operations won't work either.  */
6988 #if defined(TARGET_NR_futex)
6989 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
6990                     target_ulong uaddr2, int val3)
6991 {
6992     struct timespec ts, *pts;
6993     int base_op;
6994 
6995     /* ??? We assume FUTEX_* constants are the same on both host
6996        and target.  */
6997 #ifdef FUTEX_CMD_MASK
6998     base_op = op & FUTEX_CMD_MASK;
6999 #else
7000     base_op = op;
7001 #endif
7002     switch (base_op) {
7003     case FUTEX_WAIT:
7004     case FUTEX_WAIT_BITSET:
7005         if (timeout) {
7006             pts = &ts;
7007             target_to_host_timespec(pts, timeout);
7008         } else {
7009             pts = NULL;
7010         }
7011         return do_safe_futex(g2h(uaddr), op, tswap32(val), pts, NULL, val3);
7012     case FUTEX_WAKE:
7013         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7014     case FUTEX_FD:
7015         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7016     case FUTEX_REQUEUE:
7017     case FUTEX_CMP_REQUEUE:
7018     case FUTEX_WAKE_OP:
7019         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7020            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7021            But the prototype takes a `struct timespec *'; insert casts
7022            to satisfy the compiler.  We do not need to tswap TIMEOUT
7023            since it's not compared to guest memory.  */
7024         pts = (struct timespec *)(uintptr_t) timeout;
7025         return do_safe_futex(g2h(uaddr), op, val, pts, g2h(uaddr2),
7026                              (base_op == FUTEX_CMP_REQUEUE
7027                                       ? tswap32(val3)
7028                                       : val3));
7029     default:
7030         return -TARGET_ENOSYS;
7031     }
7032 }
7033 #endif
7034 
7035 #if defined(TARGET_NR_futex_time64)
7036 static int do_futex_time64(target_ulong uaddr, int op, int val, target_ulong timeout,
7037                            target_ulong uaddr2, int val3)
7038 {
7039     struct timespec ts, *pts;
7040     int base_op;
7041 
7042     /* ??? We assume FUTEX_* constants are the same on both host
7043        and target.  */
7044 #ifdef FUTEX_CMD_MASK
7045     base_op = op & FUTEX_CMD_MASK;
7046 #else
7047     base_op = op;
7048 #endif
7049     switch (base_op) {
7050     case FUTEX_WAIT:
7051     case FUTEX_WAIT_BITSET:
7052         if (timeout) {
7053             pts = &ts;
7054             target_to_host_timespec64(pts, timeout);
7055         } else {
7056             pts = NULL;
7057         }
7058         return do_safe_futex(g2h(uaddr), op, tswap32(val), pts, NULL, val3);
7059     case FUTEX_WAKE:
7060         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7061     case FUTEX_FD:
7062         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7063     case FUTEX_REQUEUE:
7064     case FUTEX_CMP_REQUEUE:
7065     case FUTEX_WAKE_OP:
7066         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7067            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7068            But the prototype takes a `struct timespec *'; insert casts
7069            to satisfy the compiler.  We do not need to tswap TIMEOUT
7070            since it's not compared to guest memory.  */
7071         pts = (struct timespec *)(uintptr_t) timeout;
7072         return do_safe_futex(g2h(uaddr), op, val, pts, g2h(uaddr2),
7073                              (base_op == FUTEX_CMP_REQUEUE
7074                                       ? tswap32(val3)
7075                                       : val3));
7076     default:
7077         return -TARGET_ENOSYS;
7078     }
7079 }
7080 #endif
7081 
7082 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7083 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7084                                      abi_long handle, abi_long mount_id,
7085                                      abi_long flags)
7086 {
7087     struct file_handle *target_fh;
7088     struct file_handle *fh;
7089     int mid = 0;
7090     abi_long ret;
7091     char *name;
7092     unsigned int size, total_size;
7093 
7094     if (get_user_s32(size, handle)) {
7095         return -TARGET_EFAULT;
7096     }
7097 
7098     name = lock_user_string(pathname);
7099     if (!name) {
7100         return -TARGET_EFAULT;
7101     }
7102 
7103     total_size = sizeof(struct file_handle) + size;
7104     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7105     if (!target_fh) {
7106         unlock_user(name, pathname, 0);
7107         return -TARGET_EFAULT;
7108     }
7109 
7110     fh = g_malloc0(total_size);
7111     fh->handle_bytes = size;
7112 
7113     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7114     unlock_user(name, pathname, 0);
7115 
7116     /* man name_to_handle_at(2):
7117      * Other than the use of the handle_bytes field, the caller should treat
7118      * the file_handle structure as an opaque data type
7119      */
7120 
7121     memcpy(target_fh, fh, total_size);
7122     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7123     target_fh->handle_type = tswap32(fh->handle_type);
7124     g_free(fh);
7125     unlock_user(target_fh, handle, total_size);
7126 
7127     if (put_user_s32(mid, mount_id)) {
7128         return -TARGET_EFAULT;
7129     }
7130 
7131     return ret;
7132 
7133 }
7134 #endif
7135 
7136 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7137 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7138                                      abi_long flags)
7139 {
7140     struct file_handle *target_fh;
7141     struct file_handle *fh;
7142     unsigned int size, total_size;
7143     abi_long ret;
7144 
7145     if (get_user_s32(size, handle)) {
7146         return -TARGET_EFAULT;
7147     }
7148 
7149     total_size = sizeof(struct file_handle) + size;
7150     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7151     if (!target_fh) {
7152         return -TARGET_EFAULT;
7153     }
7154 
7155     fh = g_memdup(target_fh, total_size);
7156     fh->handle_bytes = size;
7157     fh->handle_type = tswap32(target_fh->handle_type);
7158 
7159     ret = get_errno(open_by_handle_at(mount_fd, fh,
7160                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7161 
7162     g_free(fh);
7163 
7164     unlock_user(target_fh, handle, total_size);
7165 
7166     return ret;
7167 }
7168 #endif
7169 
7170 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7171 
7172 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7173 {
7174     int host_flags;
7175     target_sigset_t *target_mask;
7176     sigset_t host_mask;
7177     abi_long ret;
7178 
7179     if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
7180         return -TARGET_EINVAL;
7181     }
7182     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7183         return -TARGET_EFAULT;
7184     }
7185 
7186     target_to_host_sigset(&host_mask, target_mask);
7187 
7188     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7189 
7190     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7191     if (ret >= 0) {
7192         fd_trans_register(ret, &target_signalfd_trans);
7193     }
7194 
7195     unlock_user_struct(target_mask, mask, 0);
7196 
7197     return ret;
7198 }
7199 #endif
7200 
7201 /* Map host to target signal numbers for the wait family of syscalls.
7202    Assume all other status bits are the same.  */
7203 int host_to_target_waitstatus(int status)
7204 {
7205     if (WIFSIGNALED(status)) {
7206         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7207     }
7208     if (WIFSTOPPED(status)) {
7209         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7210                | (status & 0xff);
7211     }
7212     return status;
7213 }
7214 
7215 static int open_self_cmdline(void *cpu_env, int fd)
7216 {
7217     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7218     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7219     int i;
7220 
7221     for (i = 0; i < bprm->argc; i++) {
7222         size_t len = strlen(bprm->argv[i]) + 1;
7223 
7224         if (write(fd, bprm->argv[i], len) != len) {
7225             return -1;
7226         }
7227     }
7228 
7229     return 0;
7230 }
7231 
7232 static int open_self_maps(void *cpu_env, int fd)
7233 {
7234     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7235     TaskState *ts = cpu->opaque;
7236     GSList *map_info = read_self_maps();
7237     GSList *s;
7238     int count;
7239 
7240     for (s = map_info; s; s = g_slist_next(s)) {
7241         MapInfo *e = (MapInfo *) s->data;
7242 
7243         if (h2g_valid(e->start)) {
7244             unsigned long min = e->start;
7245             unsigned long max = e->end;
7246             int flags = page_get_flags(h2g(min));
7247             const char *path;
7248 
7249             max = h2g_valid(max - 1) ?
7250                 max : (uintptr_t) g2h(GUEST_ADDR_MAX) + 1;
7251 
7252             if (page_check_range(h2g(min), max - min, flags) == -1) {
7253                 continue;
7254             }
7255 
7256             if (h2g(min) == ts->info->stack_limit) {
7257                 path = "[stack]";
7258             } else {
7259                 path = e->path;
7260             }
7261 
7262             count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
7263                             " %c%c%c%c %08" PRIx64 " %s %"PRId64,
7264                             h2g(min), h2g(max - 1) + 1,
7265                             e->is_read ? 'r' : '-',
7266                             e->is_write ? 'w' : '-',
7267                             e->is_exec ? 'x' : '-',
7268                             e->is_priv ? 'p' : '-',
7269                             (uint64_t) e->offset, e->dev, e->inode);
7270             if (path) {
7271                 dprintf(fd, "%*s%s\n", 73 - count, "", path);
7272             } else {
7273                 dprintf(fd, "\n");
7274             }
7275         }
7276     }
7277 
7278     free_self_maps(map_info);
7279 
7280 #ifdef TARGET_VSYSCALL_PAGE
7281     /*
7282      * We only support execution from the vsyscall page.
7283      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
7284      */
7285     count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
7286                     " --xp 00000000 00:00 0",
7287                     TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
7288     dprintf(fd, "%*s%s\n", 73 - count, "",  "[vsyscall]");
7289 #endif
7290 
7291     return 0;
7292 }
7293 
7294 static int open_self_stat(void *cpu_env, int fd)
7295 {
7296     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7297     TaskState *ts = cpu->opaque;
7298     g_autoptr(GString) buf = g_string_new(NULL);
7299     int i;
7300 
7301     for (i = 0; i < 44; i++) {
7302         if (i == 0) {
7303             /* pid */
7304             g_string_printf(buf, FMT_pid " ", getpid());
7305         } else if (i == 1) {
7306             /* app name */
7307             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
7308             bin = bin ? bin + 1 : ts->bprm->argv[0];
7309             g_string_printf(buf, "(%.15s) ", bin);
7310         } else if (i == 27) {
7311             /* stack bottom */
7312             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
7313         } else {
7314             /* for the rest, there is MasterCard */
7315             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
7316         }
7317 
7318         if (write(fd, buf->str, buf->len) != buf->len) {
7319             return -1;
7320         }
7321     }
7322 
7323     return 0;
7324 }
7325 
7326 static int open_self_auxv(void *cpu_env, int fd)
7327 {
7328     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7329     TaskState *ts = cpu->opaque;
7330     abi_ulong auxv = ts->info->saved_auxv;
7331     abi_ulong len = ts->info->auxv_len;
7332     char *ptr;
7333 
7334     /*
7335      * Auxiliary vector is stored in target process stack.
7336      * read in whole auxv vector and copy it to file
7337      */
7338     ptr = lock_user(VERIFY_READ, auxv, len, 0);
7339     if (ptr != NULL) {
7340         while (len > 0) {
7341             ssize_t r;
7342             r = write(fd, ptr, len);
7343             if (r <= 0) {
7344                 break;
7345             }
7346             len -= r;
7347             ptr += r;
7348         }
7349         lseek(fd, 0, SEEK_SET);
7350         unlock_user(ptr, auxv, len);
7351     }
7352 
7353     return 0;
7354 }
7355 
7356 static int is_proc_myself(const char *filename, const char *entry)
7357 {
7358     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7359         filename += strlen("/proc/");
7360         if (!strncmp(filename, "self/", strlen("self/"))) {
7361             filename += strlen("self/");
7362         } else if (*filename >= '1' && *filename <= '9') {
7363             char myself[80];
7364             snprintf(myself, sizeof(myself), "%d/", getpid());
7365             if (!strncmp(filename, myself, strlen(myself))) {
7366                 filename += strlen(myself);
7367             } else {
7368                 return 0;
7369             }
7370         } else {
7371             return 0;
7372         }
7373         if (!strcmp(filename, entry)) {
7374             return 1;
7375         }
7376     }
7377     return 0;
7378 }
7379 
7380 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
7381     defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
7382 static int is_proc(const char *filename, const char *entry)
7383 {
7384     return strcmp(filename, entry) == 0;
7385 }
7386 #endif
7387 
7388 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7389 static int open_net_route(void *cpu_env, int fd)
7390 {
7391     FILE *fp;
7392     char *line = NULL;
7393     size_t len = 0;
7394     ssize_t read;
7395 
7396     fp = fopen("/proc/net/route", "r");
7397     if (fp == NULL) {
7398         return -1;
7399     }
7400 
7401     /* read header */
7402 
7403     read = getline(&line, &len, fp);
7404     dprintf(fd, "%s", line);
7405 
7406     /* read routes */
7407 
7408     while ((read = getline(&line, &len, fp)) != -1) {
7409         char iface[16];
7410         uint32_t dest, gw, mask;
7411         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
7412         int fields;
7413 
7414         fields = sscanf(line,
7415                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7416                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
7417                         &mask, &mtu, &window, &irtt);
7418         if (fields != 11) {
7419             continue;
7420         }
7421         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7422                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
7423                 metric, tswap32(mask), mtu, window, irtt);
7424     }
7425 
7426     free(line);
7427     fclose(fp);
7428 
7429     return 0;
7430 }
7431 #endif
7432 
7433 #if defined(TARGET_SPARC)
7434 static int open_cpuinfo(void *cpu_env, int fd)
7435 {
7436     dprintf(fd, "type\t\t: sun4u\n");
7437     return 0;
7438 }
7439 #endif
7440 
7441 #if defined(TARGET_HPPA)
7442 static int open_cpuinfo(void *cpu_env, int fd)
7443 {
7444     dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
7445     dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
7446     dprintf(fd, "capabilities\t: os32\n");
7447     dprintf(fd, "model\t\t: 9000/778/B160L\n");
7448     dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n");
7449     return 0;
7450 }
7451 #endif
7452 
7453 #if defined(TARGET_M68K)
7454 static int open_hardware(void *cpu_env, int fd)
7455 {
7456     dprintf(fd, "Model:\t\tqemu-m68k\n");
7457     return 0;
7458 }
7459 #endif
7460 
7461 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
7462 {
7463     struct fake_open {
7464         const char *filename;
7465         int (*fill)(void *cpu_env, int fd);
7466         int (*cmp)(const char *s1, const char *s2);
7467     };
7468     const struct fake_open *fake_open;
7469     static const struct fake_open fakes[] = {
7470         { "maps", open_self_maps, is_proc_myself },
7471         { "stat", open_self_stat, is_proc_myself },
7472         { "auxv", open_self_auxv, is_proc_myself },
7473         { "cmdline", open_self_cmdline, is_proc_myself },
7474 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7475         { "/proc/net/route", open_net_route, is_proc },
7476 #endif
7477 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
7478         { "/proc/cpuinfo", open_cpuinfo, is_proc },
7479 #endif
7480 #if defined(TARGET_M68K)
7481         { "/proc/hardware", open_hardware, is_proc },
7482 #endif
7483         { NULL, NULL, NULL }
7484     };
7485 
7486     if (is_proc_myself(pathname, "exe")) {
7487         int execfd = qemu_getauxval(AT_EXECFD);
7488         return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
7489     }
7490 
7491     for (fake_open = fakes; fake_open->filename; fake_open++) {
7492         if (fake_open->cmp(pathname, fake_open->filename)) {
7493             break;
7494         }
7495     }
7496 
7497     if (fake_open->filename) {
7498         const char *tmpdir;
7499         char filename[PATH_MAX];
7500         int fd, r;
7501 
7502         /* create temporary file to map stat to */
7503         tmpdir = getenv("TMPDIR");
7504         if (!tmpdir)
7505             tmpdir = "/tmp";
7506         snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
7507         fd = mkstemp(filename);
7508         if (fd < 0) {
7509             return fd;
7510         }
7511         unlink(filename);
7512 
7513         if ((r = fake_open->fill(cpu_env, fd))) {
7514             int e = errno;
7515             close(fd);
7516             errno = e;
7517             return r;
7518         }
7519         lseek(fd, 0, SEEK_SET);
7520 
7521         return fd;
7522     }
7523 
7524     return safe_openat(dirfd, path(pathname), flags, mode);
7525 }
7526 
7527 #define TIMER_MAGIC 0x0caf0000
7528 #define TIMER_MAGIC_MASK 0xffff0000
7529 
7530 /* Convert QEMU provided timer ID back to internal 16bit index format */
7531 static target_timer_t get_timer_id(abi_long arg)
7532 {
7533     target_timer_t timerid = arg;
7534 
7535     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
7536         return -TARGET_EINVAL;
7537     }
7538 
7539     timerid &= 0xffff;
7540 
7541     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
7542         return -TARGET_EINVAL;
7543     }
7544 
7545     return timerid;
7546 }
7547 
7548 static int target_to_host_cpu_mask(unsigned long *host_mask,
7549                                    size_t host_size,
7550                                    abi_ulong target_addr,
7551                                    size_t target_size)
7552 {
7553     unsigned target_bits = sizeof(abi_ulong) * 8;
7554     unsigned host_bits = sizeof(*host_mask) * 8;
7555     abi_ulong *target_mask;
7556     unsigned i, j;
7557 
7558     assert(host_size >= target_size);
7559 
7560     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
7561     if (!target_mask) {
7562         return -TARGET_EFAULT;
7563     }
7564     memset(host_mask, 0, host_size);
7565 
7566     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7567         unsigned bit = i * target_bits;
7568         abi_ulong val;
7569 
7570         __get_user(val, &target_mask[i]);
7571         for (j = 0; j < target_bits; j++, bit++) {
7572             if (val & (1UL << j)) {
7573                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
7574             }
7575         }
7576     }
7577 
7578     unlock_user(target_mask, target_addr, 0);
7579     return 0;
7580 }
7581 
7582 static int host_to_target_cpu_mask(const unsigned long *host_mask,
7583                                    size_t host_size,
7584                                    abi_ulong target_addr,
7585                                    size_t target_size)
7586 {
7587     unsigned target_bits = sizeof(abi_ulong) * 8;
7588     unsigned host_bits = sizeof(*host_mask) * 8;
7589     abi_ulong *target_mask;
7590     unsigned i, j;
7591 
7592     assert(host_size >= target_size);
7593 
7594     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
7595     if (!target_mask) {
7596         return -TARGET_EFAULT;
7597     }
7598 
7599     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7600         unsigned bit = i * target_bits;
7601         abi_ulong val = 0;
7602 
7603         for (j = 0; j < target_bits; j++, bit++) {
7604             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
7605                 val |= 1UL << j;
7606             }
7607         }
7608         __put_user(val, &target_mask[i]);
7609     }
7610 
7611     unlock_user(target_mask, target_addr, target_size);
7612     return 0;
7613 }
7614 
7615 /* This is an internal helper for do_syscall so that it is easier
7616  * to have a single return point, so that actions, such as logging
7617  * of syscall results, can be performed.
7618  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
7619  */
7620 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
7621                             abi_long arg2, abi_long arg3, abi_long arg4,
7622                             abi_long arg5, abi_long arg6, abi_long arg7,
7623                             abi_long arg8)
7624 {
7625     CPUState *cpu = env_cpu(cpu_env);
7626     abi_long ret;
7627 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
7628     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
7629     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
7630     || defined(TARGET_NR_statx)
7631     struct stat st;
7632 #endif
7633 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
7634     || defined(TARGET_NR_fstatfs)
7635     struct statfs stfs;
7636 #endif
7637     void *p;
7638 
7639     switch(num) {
7640     case TARGET_NR_exit:
7641         /* In old applications this may be used to implement _exit(2).
7642            However in threaded applictions it is used for thread termination,
7643            and _exit_group is used for application termination.
7644            Do thread termination if we have more then one thread.  */
7645 
7646         if (block_signals()) {
7647             return -TARGET_ERESTARTSYS;
7648         }
7649 
7650         cpu_list_lock();
7651 
7652         if (CPU_NEXT(first_cpu)) {
7653             TaskState *ts;
7654 
7655             /* Remove the CPU from the list.  */
7656             QTAILQ_REMOVE_RCU(&cpus, cpu, node);
7657 
7658             cpu_list_unlock();
7659 
7660             ts = cpu->opaque;
7661             if (ts->child_tidptr) {
7662                 put_user_u32(0, ts->child_tidptr);
7663                 do_sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
7664                           NULL, NULL, 0);
7665             }
7666             thread_cpu = NULL;
7667             object_unref(OBJECT(cpu));
7668             g_free(ts);
7669             rcu_unregister_thread();
7670             pthread_exit(NULL);
7671         }
7672 
7673         cpu_list_unlock();
7674         preexit_cleanup(cpu_env, arg1);
7675         _exit(arg1);
7676         return 0; /* avoid warning */
7677     case TARGET_NR_read:
7678         if (arg2 == 0 && arg3 == 0) {
7679             return get_errno(safe_read(arg1, 0, 0));
7680         } else {
7681             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
7682                 return -TARGET_EFAULT;
7683             ret = get_errno(safe_read(arg1, p, arg3));
7684             if (ret >= 0 &&
7685                 fd_trans_host_to_target_data(arg1)) {
7686                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
7687             }
7688             unlock_user(p, arg2, ret);
7689         }
7690         return ret;
7691     case TARGET_NR_write:
7692         if (arg2 == 0 && arg3 == 0) {
7693             return get_errno(safe_write(arg1, 0, 0));
7694         }
7695         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
7696             return -TARGET_EFAULT;
7697         if (fd_trans_target_to_host_data(arg1)) {
7698             void *copy = g_malloc(arg3);
7699             memcpy(copy, p, arg3);
7700             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
7701             if (ret >= 0) {
7702                 ret = get_errno(safe_write(arg1, copy, ret));
7703             }
7704             g_free(copy);
7705         } else {
7706             ret = get_errno(safe_write(arg1, p, arg3));
7707         }
7708         unlock_user(p, arg2, 0);
7709         return ret;
7710 
7711 #ifdef TARGET_NR_open
7712     case TARGET_NR_open:
7713         if (!(p = lock_user_string(arg1)))
7714             return -TARGET_EFAULT;
7715         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
7716                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
7717                                   arg3));
7718         fd_trans_unregister(ret);
7719         unlock_user(p, arg1, 0);
7720         return ret;
7721 #endif
7722     case TARGET_NR_openat:
7723         if (!(p = lock_user_string(arg2)))
7724             return -TARGET_EFAULT;
7725         ret = get_errno(do_openat(cpu_env, arg1, p,
7726                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
7727                                   arg4));
7728         fd_trans_unregister(ret);
7729         unlock_user(p, arg2, 0);
7730         return ret;
7731 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7732     case TARGET_NR_name_to_handle_at:
7733         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
7734         return ret;
7735 #endif
7736 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7737     case TARGET_NR_open_by_handle_at:
7738         ret = do_open_by_handle_at(arg1, arg2, arg3);
7739         fd_trans_unregister(ret);
7740         return ret;
7741 #endif
7742     case TARGET_NR_close:
7743         fd_trans_unregister(arg1);
7744         return get_errno(close(arg1));
7745 
7746     case TARGET_NR_brk:
7747         return do_brk(arg1);
7748 #ifdef TARGET_NR_fork
7749     case TARGET_NR_fork:
7750         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
7751 #endif
7752 #ifdef TARGET_NR_waitpid
7753     case TARGET_NR_waitpid:
7754         {
7755             int status;
7756             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
7757             if (!is_error(ret) && arg2 && ret
7758                 && put_user_s32(host_to_target_waitstatus(status), arg2))
7759                 return -TARGET_EFAULT;
7760         }
7761         return ret;
7762 #endif
7763 #ifdef TARGET_NR_waitid
7764     case TARGET_NR_waitid:
7765         {
7766             siginfo_t info;
7767             info.si_pid = 0;
7768             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
7769             if (!is_error(ret) && arg3 && info.si_pid != 0) {
7770                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
7771                     return -TARGET_EFAULT;
7772                 host_to_target_siginfo(p, &info);
7773                 unlock_user(p, arg3, sizeof(target_siginfo_t));
7774             }
7775         }
7776         return ret;
7777 #endif
7778 #ifdef TARGET_NR_creat /* not on alpha */
7779     case TARGET_NR_creat:
7780         if (!(p = lock_user_string(arg1)))
7781             return -TARGET_EFAULT;
7782         ret = get_errno(creat(p, arg2));
7783         fd_trans_unregister(ret);
7784         unlock_user(p, arg1, 0);
7785         return ret;
7786 #endif
7787 #ifdef TARGET_NR_link
7788     case TARGET_NR_link:
7789         {
7790             void * p2;
7791             p = lock_user_string(arg1);
7792             p2 = lock_user_string(arg2);
7793             if (!p || !p2)
7794                 ret = -TARGET_EFAULT;
7795             else
7796                 ret = get_errno(link(p, p2));
7797             unlock_user(p2, arg2, 0);
7798             unlock_user(p, arg1, 0);
7799         }
7800         return ret;
7801 #endif
7802 #if defined(TARGET_NR_linkat)
7803     case TARGET_NR_linkat:
7804         {
7805             void * p2 = NULL;
7806             if (!arg2 || !arg4)
7807                 return -TARGET_EFAULT;
7808             p  = lock_user_string(arg2);
7809             p2 = lock_user_string(arg4);
7810             if (!p || !p2)
7811                 ret = -TARGET_EFAULT;
7812             else
7813                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
7814             unlock_user(p, arg2, 0);
7815             unlock_user(p2, arg4, 0);
7816         }
7817         return ret;
7818 #endif
7819 #ifdef TARGET_NR_unlink
7820     case TARGET_NR_unlink:
7821         if (!(p = lock_user_string(arg1)))
7822             return -TARGET_EFAULT;
7823         ret = get_errno(unlink(p));
7824         unlock_user(p, arg1, 0);
7825         return ret;
7826 #endif
7827 #if defined(TARGET_NR_unlinkat)
7828     case TARGET_NR_unlinkat:
7829         if (!(p = lock_user_string(arg2)))
7830             return -TARGET_EFAULT;
7831         ret = get_errno(unlinkat(arg1, p, arg3));
7832         unlock_user(p, arg2, 0);
7833         return ret;
7834 #endif
7835     case TARGET_NR_execve:
7836         {
7837             char **argp, **envp;
7838             int argc, envc;
7839             abi_ulong gp;
7840             abi_ulong guest_argp;
7841             abi_ulong guest_envp;
7842             abi_ulong addr;
7843             char **q;
7844             int total_size = 0;
7845 
7846             argc = 0;
7847             guest_argp = arg2;
7848             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
7849                 if (get_user_ual(addr, gp))
7850                     return -TARGET_EFAULT;
7851                 if (!addr)
7852                     break;
7853                 argc++;
7854             }
7855             envc = 0;
7856             guest_envp = arg3;
7857             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
7858                 if (get_user_ual(addr, gp))
7859                     return -TARGET_EFAULT;
7860                 if (!addr)
7861                     break;
7862                 envc++;
7863             }
7864 
7865             argp = g_new0(char *, argc + 1);
7866             envp = g_new0(char *, envc + 1);
7867 
7868             for (gp = guest_argp, q = argp; gp;
7869                   gp += sizeof(abi_ulong), q++) {
7870                 if (get_user_ual(addr, gp))
7871                     goto execve_efault;
7872                 if (!addr)
7873                     break;
7874                 if (!(*q = lock_user_string(addr)))
7875                     goto execve_efault;
7876                 total_size += strlen(*q) + 1;
7877             }
7878             *q = NULL;
7879 
7880             for (gp = guest_envp, q = envp; gp;
7881                   gp += sizeof(abi_ulong), q++) {
7882                 if (get_user_ual(addr, gp))
7883                     goto execve_efault;
7884                 if (!addr)
7885                     break;
7886                 if (!(*q = lock_user_string(addr)))
7887                     goto execve_efault;
7888                 total_size += strlen(*q) + 1;
7889             }
7890             *q = NULL;
7891 
7892             if (!(p = lock_user_string(arg1)))
7893                 goto execve_efault;
7894             /* Although execve() is not an interruptible syscall it is
7895              * a special case where we must use the safe_syscall wrapper:
7896              * if we allow a signal to happen before we make the host
7897              * syscall then we will 'lose' it, because at the point of
7898              * execve the process leaves QEMU's control. So we use the
7899              * safe syscall wrapper to ensure that we either take the
7900              * signal as a guest signal, or else it does not happen
7901              * before the execve completes and makes it the other
7902              * program's problem.
7903              */
7904             ret = get_errno(safe_execve(p, argp, envp));
7905             unlock_user(p, arg1, 0);
7906 
7907             goto execve_end;
7908 
7909         execve_efault:
7910             ret = -TARGET_EFAULT;
7911 
7912         execve_end:
7913             for (gp = guest_argp, q = argp; *q;
7914                   gp += sizeof(abi_ulong), q++) {
7915                 if (get_user_ual(addr, gp)
7916                     || !addr)
7917                     break;
7918                 unlock_user(*q, addr, 0);
7919             }
7920             for (gp = guest_envp, q = envp; *q;
7921                   gp += sizeof(abi_ulong), q++) {
7922                 if (get_user_ual(addr, gp)
7923                     || !addr)
7924                     break;
7925                 unlock_user(*q, addr, 0);
7926             }
7927 
7928             g_free(argp);
7929             g_free(envp);
7930         }
7931         return ret;
7932     case TARGET_NR_chdir:
7933         if (!(p = lock_user_string(arg1)))
7934             return -TARGET_EFAULT;
7935         ret = get_errno(chdir(p));
7936         unlock_user(p, arg1, 0);
7937         return ret;
7938 #ifdef TARGET_NR_time
7939     case TARGET_NR_time:
7940         {
7941             time_t host_time;
7942             ret = get_errno(time(&host_time));
7943             if (!is_error(ret)
7944                 && arg1
7945                 && put_user_sal(host_time, arg1))
7946                 return -TARGET_EFAULT;
7947         }
7948         return ret;
7949 #endif
7950 #ifdef TARGET_NR_mknod
7951     case TARGET_NR_mknod:
7952         if (!(p = lock_user_string(arg1)))
7953             return -TARGET_EFAULT;
7954         ret = get_errno(mknod(p, arg2, arg3));
7955         unlock_user(p, arg1, 0);
7956         return ret;
7957 #endif
7958 #if defined(TARGET_NR_mknodat)
7959     case TARGET_NR_mknodat:
7960         if (!(p = lock_user_string(arg2)))
7961             return -TARGET_EFAULT;
7962         ret = get_errno(mknodat(arg1, p, arg3, arg4));
7963         unlock_user(p, arg2, 0);
7964         return ret;
7965 #endif
7966 #ifdef TARGET_NR_chmod
7967     case TARGET_NR_chmod:
7968         if (!(p = lock_user_string(arg1)))
7969             return -TARGET_EFAULT;
7970         ret = get_errno(chmod(p, arg2));
7971         unlock_user(p, arg1, 0);
7972         return ret;
7973 #endif
7974 #ifdef TARGET_NR_lseek
7975     case TARGET_NR_lseek:
7976         return get_errno(lseek(arg1, arg2, arg3));
7977 #endif
7978 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
7979     /* Alpha specific */
7980     case TARGET_NR_getxpid:
7981         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
7982         return get_errno(getpid());
7983 #endif
7984 #ifdef TARGET_NR_getpid
7985     case TARGET_NR_getpid:
7986         return get_errno(getpid());
7987 #endif
7988     case TARGET_NR_mount:
7989         {
7990             /* need to look at the data field */
7991             void *p2, *p3;
7992 
7993             if (arg1) {
7994                 p = lock_user_string(arg1);
7995                 if (!p) {
7996                     return -TARGET_EFAULT;
7997                 }
7998             } else {
7999                 p = NULL;
8000             }
8001 
8002             p2 = lock_user_string(arg2);
8003             if (!p2) {
8004                 if (arg1) {
8005                     unlock_user(p, arg1, 0);
8006                 }
8007                 return -TARGET_EFAULT;
8008             }
8009 
8010             if (arg3) {
8011                 p3 = lock_user_string(arg3);
8012                 if (!p3) {
8013                     if (arg1) {
8014                         unlock_user(p, arg1, 0);
8015                     }
8016                     unlock_user(p2, arg2, 0);
8017                     return -TARGET_EFAULT;
8018                 }
8019             } else {
8020                 p3 = NULL;
8021             }
8022 
8023             /* FIXME - arg5 should be locked, but it isn't clear how to
8024              * do that since it's not guaranteed to be a NULL-terminated
8025              * string.
8026              */
8027             if (!arg5) {
8028                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8029             } else {
8030                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
8031             }
8032             ret = get_errno(ret);
8033 
8034             if (arg1) {
8035                 unlock_user(p, arg1, 0);
8036             }
8037             unlock_user(p2, arg2, 0);
8038             if (arg3) {
8039                 unlock_user(p3, arg3, 0);
8040             }
8041         }
8042         return ret;
8043 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
8044 #if defined(TARGET_NR_umount)
8045     case TARGET_NR_umount:
8046 #endif
8047 #if defined(TARGET_NR_oldumount)
8048     case TARGET_NR_oldumount:
8049 #endif
8050         if (!(p = lock_user_string(arg1)))
8051             return -TARGET_EFAULT;
8052         ret = get_errno(umount(p));
8053         unlock_user(p, arg1, 0);
8054         return ret;
8055 #endif
8056 #ifdef TARGET_NR_stime /* not on alpha */
8057     case TARGET_NR_stime:
8058         {
8059             struct timespec ts;
8060             ts.tv_nsec = 0;
8061             if (get_user_sal(ts.tv_sec, arg1)) {
8062                 return -TARGET_EFAULT;
8063             }
8064             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
8065         }
8066 #endif
8067 #ifdef TARGET_NR_alarm /* not on alpha */
8068     case TARGET_NR_alarm:
8069         return alarm(arg1);
8070 #endif
8071 #ifdef TARGET_NR_pause /* not on alpha */
8072     case TARGET_NR_pause:
8073         if (!block_signals()) {
8074             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
8075         }
8076         return -TARGET_EINTR;
8077 #endif
8078 #ifdef TARGET_NR_utime
8079     case TARGET_NR_utime:
8080         {
8081             struct utimbuf tbuf, *host_tbuf;
8082             struct target_utimbuf *target_tbuf;
8083             if (arg2) {
8084                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
8085                     return -TARGET_EFAULT;
8086                 tbuf.actime = tswapal(target_tbuf->actime);
8087                 tbuf.modtime = tswapal(target_tbuf->modtime);
8088                 unlock_user_struct(target_tbuf, arg2, 0);
8089                 host_tbuf = &tbuf;
8090             } else {
8091                 host_tbuf = NULL;
8092             }
8093             if (!(p = lock_user_string(arg1)))
8094                 return -TARGET_EFAULT;
8095             ret = get_errno(utime(p, host_tbuf));
8096             unlock_user(p, arg1, 0);
8097         }
8098         return ret;
8099 #endif
8100 #ifdef TARGET_NR_utimes
8101     case TARGET_NR_utimes:
8102         {
8103             struct timeval *tvp, tv[2];
8104             if (arg2) {
8105                 if (copy_from_user_timeval(&tv[0], arg2)
8106                     || copy_from_user_timeval(&tv[1],
8107                                               arg2 + sizeof(struct target_timeval)))
8108                     return -TARGET_EFAULT;
8109                 tvp = tv;
8110             } else {
8111                 tvp = NULL;
8112             }
8113             if (!(p = lock_user_string(arg1)))
8114                 return -TARGET_EFAULT;
8115             ret = get_errno(utimes(p, tvp));
8116             unlock_user(p, arg1, 0);
8117         }
8118         return ret;
8119 #endif
8120 #if defined(TARGET_NR_futimesat)
8121     case TARGET_NR_futimesat:
8122         {
8123             struct timeval *tvp, tv[2];
8124             if (arg3) {
8125                 if (copy_from_user_timeval(&tv[0], arg3)
8126                     || copy_from_user_timeval(&tv[1],
8127                                               arg3 + sizeof(struct target_timeval)))
8128                     return -TARGET_EFAULT;
8129                 tvp = tv;
8130             } else {
8131                 tvp = NULL;
8132             }
8133             if (!(p = lock_user_string(arg2))) {
8134                 return -TARGET_EFAULT;
8135             }
8136             ret = get_errno(futimesat(arg1, path(p), tvp));
8137             unlock_user(p, arg2, 0);
8138         }
8139         return ret;
8140 #endif
8141 #ifdef TARGET_NR_access
8142     case TARGET_NR_access:
8143         if (!(p = lock_user_string(arg1))) {
8144             return -TARGET_EFAULT;
8145         }
8146         ret = get_errno(access(path(p), arg2));
8147         unlock_user(p, arg1, 0);
8148         return ret;
8149 #endif
8150 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8151     case TARGET_NR_faccessat:
8152         if (!(p = lock_user_string(arg2))) {
8153             return -TARGET_EFAULT;
8154         }
8155         ret = get_errno(faccessat(arg1, p, arg3, 0));
8156         unlock_user(p, arg2, 0);
8157         return ret;
8158 #endif
8159 #ifdef TARGET_NR_nice /* not on alpha */
8160     case TARGET_NR_nice:
8161         return get_errno(nice(arg1));
8162 #endif
8163     case TARGET_NR_sync:
8164         sync();
8165         return 0;
8166 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8167     case TARGET_NR_syncfs:
8168         return get_errno(syncfs(arg1));
8169 #endif
8170     case TARGET_NR_kill:
8171         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8172 #ifdef TARGET_NR_rename
8173     case TARGET_NR_rename:
8174         {
8175             void *p2;
8176             p = lock_user_string(arg1);
8177             p2 = lock_user_string(arg2);
8178             if (!p || !p2)
8179                 ret = -TARGET_EFAULT;
8180             else
8181                 ret = get_errno(rename(p, p2));
8182             unlock_user(p2, arg2, 0);
8183             unlock_user(p, arg1, 0);
8184         }
8185         return ret;
8186 #endif
8187 #if defined(TARGET_NR_renameat)
8188     case TARGET_NR_renameat:
8189         {
8190             void *p2;
8191             p  = lock_user_string(arg2);
8192             p2 = lock_user_string(arg4);
8193             if (!p || !p2)
8194                 ret = -TARGET_EFAULT;
8195             else
8196                 ret = get_errno(renameat(arg1, p, arg3, p2));
8197             unlock_user(p2, arg4, 0);
8198             unlock_user(p, arg2, 0);
8199         }
8200         return ret;
8201 #endif
8202 #if defined(TARGET_NR_renameat2)
8203     case TARGET_NR_renameat2:
8204         {
8205             void *p2;
8206             p  = lock_user_string(arg2);
8207             p2 = lock_user_string(arg4);
8208             if (!p || !p2) {
8209                 ret = -TARGET_EFAULT;
8210             } else {
8211                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
8212             }
8213             unlock_user(p2, arg4, 0);
8214             unlock_user(p, arg2, 0);
8215         }
8216         return ret;
8217 #endif
8218 #ifdef TARGET_NR_mkdir
8219     case TARGET_NR_mkdir:
8220         if (!(p = lock_user_string(arg1)))
8221             return -TARGET_EFAULT;
8222         ret = get_errno(mkdir(p, arg2));
8223         unlock_user(p, arg1, 0);
8224         return ret;
8225 #endif
8226 #if defined(TARGET_NR_mkdirat)
8227     case TARGET_NR_mkdirat:
8228         if (!(p = lock_user_string(arg2)))
8229             return -TARGET_EFAULT;
8230         ret = get_errno(mkdirat(arg1, p, arg3));
8231         unlock_user(p, arg2, 0);
8232         return ret;
8233 #endif
8234 #ifdef TARGET_NR_rmdir
8235     case TARGET_NR_rmdir:
8236         if (!(p = lock_user_string(arg1)))
8237             return -TARGET_EFAULT;
8238         ret = get_errno(rmdir(p));
8239         unlock_user(p, arg1, 0);
8240         return ret;
8241 #endif
8242     case TARGET_NR_dup:
8243         ret = get_errno(dup(arg1));
8244         if (ret >= 0) {
8245             fd_trans_dup(arg1, ret);
8246         }
8247         return ret;
8248 #ifdef TARGET_NR_pipe
8249     case TARGET_NR_pipe:
8250         return do_pipe(cpu_env, arg1, 0, 0);
8251 #endif
8252 #ifdef TARGET_NR_pipe2
8253     case TARGET_NR_pipe2:
8254         return do_pipe(cpu_env, arg1,
8255                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8256 #endif
8257     case TARGET_NR_times:
8258         {
8259             struct target_tms *tmsp;
8260             struct tms tms;
8261             ret = get_errno(times(&tms));
8262             if (arg1) {
8263                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8264                 if (!tmsp)
8265                     return -TARGET_EFAULT;
8266                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8267                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8268                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8269                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8270             }
8271             if (!is_error(ret))
8272                 ret = host_to_target_clock_t(ret);
8273         }
8274         return ret;
8275     case TARGET_NR_acct:
8276         if (arg1 == 0) {
8277             ret = get_errno(acct(NULL));
8278         } else {
8279             if (!(p = lock_user_string(arg1))) {
8280                 return -TARGET_EFAULT;
8281             }
8282             ret = get_errno(acct(path(p)));
8283             unlock_user(p, arg1, 0);
8284         }
8285         return ret;
8286 #ifdef TARGET_NR_umount2
8287     case TARGET_NR_umount2:
8288         if (!(p = lock_user_string(arg1)))
8289             return -TARGET_EFAULT;
8290         ret = get_errno(umount2(p, arg2));
8291         unlock_user(p, arg1, 0);
8292         return ret;
8293 #endif
8294     case TARGET_NR_ioctl:
8295         return do_ioctl(arg1, arg2, arg3);
8296 #ifdef TARGET_NR_fcntl
8297     case TARGET_NR_fcntl:
8298         return do_fcntl(arg1, arg2, arg3);
8299 #endif
8300     case TARGET_NR_setpgid:
8301         return get_errno(setpgid(arg1, arg2));
8302     case TARGET_NR_umask:
8303         return get_errno(umask(arg1));
8304     case TARGET_NR_chroot:
8305         if (!(p = lock_user_string(arg1)))
8306             return -TARGET_EFAULT;
8307         ret = get_errno(chroot(p));
8308         unlock_user(p, arg1, 0);
8309         return ret;
8310 #ifdef TARGET_NR_dup2
8311     case TARGET_NR_dup2:
8312         ret = get_errno(dup2(arg1, arg2));
8313         if (ret >= 0) {
8314             fd_trans_dup(arg1, arg2);
8315         }
8316         return ret;
8317 #endif
8318 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8319     case TARGET_NR_dup3:
8320     {
8321         int host_flags;
8322 
8323         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
8324             return -EINVAL;
8325         }
8326         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
8327         ret = get_errno(dup3(arg1, arg2, host_flags));
8328         if (ret >= 0) {
8329             fd_trans_dup(arg1, arg2);
8330         }
8331         return ret;
8332     }
8333 #endif
8334 #ifdef TARGET_NR_getppid /* not on alpha */
8335     case TARGET_NR_getppid:
8336         return get_errno(getppid());
8337 #endif
8338 #ifdef TARGET_NR_getpgrp
8339     case TARGET_NR_getpgrp:
8340         return get_errno(getpgrp());
8341 #endif
8342     case TARGET_NR_setsid:
8343         return get_errno(setsid());
8344 #ifdef TARGET_NR_sigaction
8345     case TARGET_NR_sigaction:
8346         {
8347 #if defined(TARGET_ALPHA)
8348             struct target_sigaction act, oact, *pact = 0;
8349             struct target_old_sigaction *old_act;
8350             if (arg2) {
8351                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8352                     return -TARGET_EFAULT;
8353                 act._sa_handler = old_act->_sa_handler;
8354                 target_siginitset(&act.sa_mask, old_act->sa_mask);
8355                 act.sa_flags = old_act->sa_flags;
8356                 act.sa_restorer = 0;
8357                 unlock_user_struct(old_act, arg2, 0);
8358                 pact = &act;
8359             }
8360             ret = get_errno(do_sigaction(arg1, pact, &oact));
8361             if (!is_error(ret) && arg3) {
8362                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8363                     return -TARGET_EFAULT;
8364                 old_act->_sa_handler = oact._sa_handler;
8365                 old_act->sa_mask = oact.sa_mask.sig[0];
8366                 old_act->sa_flags = oact.sa_flags;
8367                 unlock_user_struct(old_act, arg3, 1);
8368             }
8369 #elif defined(TARGET_MIPS)
8370 	    struct target_sigaction act, oact, *pact, *old_act;
8371 
8372 	    if (arg2) {
8373                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8374                     return -TARGET_EFAULT;
8375 		act._sa_handler = old_act->_sa_handler;
8376 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8377 		act.sa_flags = old_act->sa_flags;
8378 		unlock_user_struct(old_act, arg2, 0);
8379 		pact = &act;
8380 	    } else {
8381 		pact = NULL;
8382 	    }
8383 
8384 	    ret = get_errno(do_sigaction(arg1, pact, &oact));
8385 
8386 	    if (!is_error(ret) && arg3) {
8387                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8388                     return -TARGET_EFAULT;
8389 		old_act->_sa_handler = oact._sa_handler;
8390 		old_act->sa_flags = oact.sa_flags;
8391 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
8392 		old_act->sa_mask.sig[1] = 0;
8393 		old_act->sa_mask.sig[2] = 0;
8394 		old_act->sa_mask.sig[3] = 0;
8395 		unlock_user_struct(old_act, arg3, 1);
8396 	    }
8397 #else
8398             struct target_old_sigaction *old_act;
8399             struct target_sigaction act, oact, *pact;
8400             if (arg2) {
8401                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8402                     return -TARGET_EFAULT;
8403                 act._sa_handler = old_act->_sa_handler;
8404                 target_siginitset(&act.sa_mask, old_act->sa_mask);
8405                 act.sa_flags = old_act->sa_flags;
8406                 act.sa_restorer = old_act->sa_restorer;
8407 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8408                 act.ka_restorer = 0;
8409 #endif
8410                 unlock_user_struct(old_act, arg2, 0);
8411                 pact = &act;
8412             } else {
8413                 pact = NULL;
8414             }
8415             ret = get_errno(do_sigaction(arg1, pact, &oact));
8416             if (!is_error(ret) && arg3) {
8417                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8418                     return -TARGET_EFAULT;
8419                 old_act->_sa_handler = oact._sa_handler;
8420                 old_act->sa_mask = oact.sa_mask.sig[0];
8421                 old_act->sa_flags = oact.sa_flags;
8422                 old_act->sa_restorer = oact.sa_restorer;
8423                 unlock_user_struct(old_act, arg3, 1);
8424             }
8425 #endif
8426         }
8427         return ret;
8428 #endif
8429     case TARGET_NR_rt_sigaction:
8430         {
8431 #if defined(TARGET_ALPHA)
8432             /* For Alpha and SPARC this is a 5 argument syscall, with
8433              * a 'restorer' parameter which must be copied into the
8434              * sa_restorer field of the sigaction struct.
8435              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8436              * and arg5 is the sigsetsize.
8437              * Alpha also has a separate rt_sigaction struct that it uses
8438              * here; SPARC uses the usual sigaction struct.
8439              */
8440             struct target_rt_sigaction *rt_act;
8441             struct target_sigaction act, oact, *pact = 0;
8442 
8443             if (arg4 != sizeof(target_sigset_t)) {
8444                 return -TARGET_EINVAL;
8445             }
8446             if (arg2) {
8447                 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
8448                     return -TARGET_EFAULT;
8449                 act._sa_handler = rt_act->_sa_handler;
8450                 act.sa_mask = rt_act->sa_mask;
8451                 act.sa_flags = rt_act->sa_flags;
8452                 act.sa_restorer = arg5;
8453                 unlock_user_struct(rt_act, arg2, 0);
8454                 pact = &act;
8455             }
8456             ret = get_errno(do_sigaction(arg1, pact, &oact));
8457             if (!is_error(ret) && arg3) {
8458                 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
8459                     return -TARGET_EFAULT;
8460                 rt_act->_sa_handler = oact._sa_handler;
8461                 rt_act->sa_mask = oact.sa_mask;
8462                 rt_act->sa_flags = oact.sa_flags;
8463                 unlock_user_struct(rt_act, arg3, 1);
8464             }
8465 #else
8466 #ifdef TARGET_SPARC
8467             target_ulong restorer = arg4;
8468             target_ulong sigsetsize = arg5;
8469 #else
8470             target_ulong sigsetsize = arg4;
8471 #endif
8472             struct target_sigaction *act;
8473             struct target_sigaction *oact;
8474 
8475             if (sigsetsize != sizeof(target_sigset_t)) {
8476                 return -TARGET_EINVAL;
8477             }
8478             if (arg2) {
8479                 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) {
8480                     return -TARGET_EFAULT;
8481                 }
8482 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8483                 act->ka_restorer = restorer;
8484 #endif
8485             } else {
8486                 act = NULL;
8487             }
8488             if (arg3) {
8489                 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
8490                     ret = -TARGET_EFAULT;
8491                     goto rt_sigaction_fail;
8492                 }
8493             } else
8494                 oact = NULL;
8495             ret = get_errno(do_sigaction(arg1, act, oact));
8496 	rt_sigaction_fail:
8497             if (act)
8498                 unlock_user_struct(act, arg2, 0);
8499             if (oact)
8500                 unlock_user_struct(oact, arg3, 1);
8501 #endif
8502         }
8503         return ret;
8504 #ifdef TARGET_NR_sgetmask /* not on alpha */
8505     case TARGET_NR_sgetmask:
8506         {
8507             sigset_t cur_set;
8508             abi_ulong target_set;
8509             ret = do_sigprocmask(0, NULL, &cur_set);
8510             if (!ret) {
8511                 host_to_target_old_sigset(&target_set, &cur_set);
8512                 ret = target_set;
8513             }
8514         }
8515         return ret;
8516 #endif
8517 #ifdef TARGET_NR_ssetmask /* not on alpha */
8518     case TARGET_NR_ssetmask:
8519         {
8520             sigset_t set, oset;
8521             abi_ulong target_set = arg1;
8522             target_to_host_old_sigset(&set, &target_set);
8523             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
8524             if (!ret) {
8525                 host_to_target_old_sigset(&target_set, &oset);
8526                 ret = target_set;
8527             }
8528         }
8529         return ret;
8530 #endif
8531 #ifdef TARGET_NR_sigprocmask
8532     case TARGET_NR_sigprocmask:
8533         {
8534 #if defined(TARGET_ALPHA)
8535             sigset_t set, oldset;
8536             abi_ulong mask;
8537             int how;
8538 
8539             switch (arg1) {
8540             case TARGET_SIG_BLOCK:
8541                 how = SIG_BLOCK;
8542                 break;
8543             case TARGET_SIG_UNBLOCK:
8544                 how = SIG_UNBLOCK;
8545                 break;
8546             case TARGET_SIG_SETMASK:
8547                 how = SIG_SETMASK;
8548                 break;
8549             default:
8550                 return -TARGET_EINVAL;
8551             }
8552             mask = arg2;
8553             target_to_host_old_sigset(&set, &mask);
8554 
8555             ret = do_sigprocmask(how, &set, &oldset);
8556             if (!is_error(ret)) {
8557                 host_to_target_old_sigset(&mask, &oldset);
8558                 ret = mask;
8559                 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
8560             }
8561 #else
8562             sigset_t set, oldset, *set_ptr;
8563             int how;
8564 
8565             if (arg2) {
8566                 switch (arg1) {
8567                 case TARGET_SIG_BLOCK:
8568                     how = SIG_BLOCK;
8569                     break;
8570                 case TARGET_SIG_UNBLOCK:
8571                     how = SIG_UNBLOCK;
8572                     break;
8573                 case TARGET_SIG_SETMASK:
8574                     how = SIG_SETMASK;
8575                     break;
8576                 default:
8577                     return -TARGET_EINVAL;
8578                 }
8579                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8580                     return -TARGET_EFAULT;
8581                 target_to_host_old_sigset(&set, p);
8582                 unlock_user(p, arg2, 0);
8583                 set_ptr = &set;
8584             } else {
8585                 how = 0;
8586                 set_ptr = NULL;
8587             }
8588             ret = do_sigprocmask(how, set_ptr, &oldset);
8589             if (!is_error(ret) && arg3) {
8590                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8591                     return -TARGET_EFAULT;
8592                 host_to_target_old_sigset(p, &oldset);
8593                 unlock_user(p, arg3, sizeof(target_sigset_t));
8594             }
8595 #endif
8596         }
8597         return ret;
8598 #endif
8599     case TARGET_NR_rt_sigprocmask:
8600         {
8601             int how = arg1;
8602             sigset_t set, oldset, *set_ptr;
8603 
8604             if (arg4 != sizeof(target_sigset_t)) {
8605                 return -TARGET_EINVAL;
8606             }
8607 
8608             if (arg2) {
8609                 switch(how) {
8610                 case TARGET_SIG_BLOCK:
8611                     how = SIG_BLOCK;
8612                     break;
8613                 case TARGET_SIG_UNBLOCK:
8614                     how = SIG_UNBLOCK;
8615                     break;
8616                 case TARGET_SIG_SETMASK:
8617                     how = SIG_SETMASK;
8618                     break;
8619                 default:
8620                     return -TARGET_EINVAL;
8621                 }
8622                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8623                     return -TARGET_EFAULT;
8624                 target_to_host_sigset(&set, p);
8625                 unlock_user(p, arg2, 0);
8626                 set_ptr = &set;
8627             } else {
8628                 how = 0;
8629                 set_ptr = NULL;
8630             }
8631             ret = do_sigprocmask(how, set_ptr, &oldset);
8632             if (!is_error(ret) && arg3) {
8633                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8634                     return -TARGET_EFAULT;
8635                 host_to_target_sigset(p, &oldset);
8636                 unlock_user(p, arg3, sizeof(target_sigset_t));
8637             }
8638         }
8639         return ret;
8640 #ifdef TARGET_NR_sigpending
8641     case TARGET_NR_sigpending:
8642         {
8643             sigset_t set;
8644             ret = get_errno(sigpending(&set));
8645             if (!is_error(ret)) {
8646                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8647                     return -TARGET_EFAULT;
8648                 host_to_target_old_sigset(p, &set);
8649                 unlock_user(p, arg1, sizeof(target_sigset_t));
8650             }
8651         }
8652         return ret;
8653 #endif
8654     case TARGET_NR_rt_sigpending:
8655         {
8656             sigset_t set;
8657 
8658             /* Yes, this check is >, not != like most. We follow the kernel's
8659              * logic and it does it like this because it implements
8660              * NR_sigpending through the same code path, and in that case
8661              * the old_sigset_t is smaller in size.
8662              */
8663             if (arg2 > sizeof(target_sigset_t)) {
8664                 return -TARGET_EINVAL;
8665             }
8666 
8667             ret = get_errno(sigpending(&set));
8668             if (!is_error(ret)) {
8669                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8670                     return -TARGET_EFAULT;
8671                 host_to_target_sigset(p, &set);
8672                 unlock_user(p, arg1, sizeof(target_sigset_t));
8673             }
8674         }
8675         return ret;
8676 #ifdef TARGET_NR_sigsuspend
8677     case TARGET_NR_sigsuspend:
8678         {
8679             TaskState *ts = cpu->opaque;
8680 #if defined(TARGET_ALPHA)
8681             abi_ulong mask = arg1;
8682             target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
8683 #else
8684             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8685                 return -TARGET_EFAULT;
8686             target_to_host_old_sigset(&ts->sigsuspend_mask, p);
8687             unlock_user(p, arg1, 0);
8688 #endif
8689             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8690                                                SIGSET_T_SIZE));
8691             if (ret != -TARGET_ERESTARTSYS) {
8692                 ts->in_sigsuspend = 1;
8693             }
8694         }
8695         return ret;
8696 #endif
8697     case TARGET_NR_rt_sigsuspend:
8698         {
8699             TaskState *ts = cpu->opaque;
8700 
8701             if (arg2 != sizeof(target_sigset_t)) {
8702                 return -TARGET_EINVAL;
8703             }
8704             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8705                 return -TARGET_EFAULT;
8706             target_to_host_sigset(&ts->sigsuspend_mask, p);
8707             unlock_user(p, arg1, 0);
8708             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8709                                                SIGSET_T_SIZE));
8710             if (ret != -TARGET_ERESTARTSYS) {
8711                 ts->in_sigsuspend = 1;
8712             }
8713         }
8714         return ret;
8715 #ifdef TARGET_NR_rt_sigtimedwait
8716     case TARGET_NR_rt_sigtimedwait:
8717         {
8718             sigset_t set;
8719             struct timespec uts, *puts;
8720             siginfo_t uinfo;
8721 
8722             if (arg4 != sizeof(target_sigset_t)) {
8723                 return -TARGET_EINVAL;
8724             }
8725 
8726             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8727                 return -TARGET_EFAULT;
8728             target_to_host_sigset(&set, p);
8729             unlock_user(p, arg1, 0);
8730             if (arg3) {
8731                 puts = &uts;
8732                 target_to_host_timespec(puts, arg3);
8733             } else {
8734                 puts = NULL;
8735             }
8736             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
8737                                                  SIGSET_T_SIZE));
8738             if (!is_error(ret)) {
8739                 if (arg2) {
8740                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
8741                                   0);
8742                     if (!p) {
8743                         return -TARGET_EFAULT;
8744                     }
8745                     host_to_target_siginfo(p, &uinfo);
8746                     unlock_user(p, arg2, sizeof(target_siginfo_t));
8747                 }
8748                 ret = host_to_target_signal(ret);
8749             }
8750         }
8751         return ret;
8752 #endif
8753     case TARGET_NR_rt_sigqueueinfo:
8754         {
8755             siginfo_t uinfo;
8756 
8757             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
8758             if (!p) {
8759                 return -TARGET_EFAULT;
8760             }
8761             target_to_host_siginfo(&uinfo, p);
8762             unlock_user(p, arg3, 0);
8763             ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
8764         }
8765         return ret;
8766     case TARGET_NR_rt_tgsigqueueinfo:
8767         {
8768             siginfo_t uinfo;
8769 
8770             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
8771             if (!p) {
8772                 return -TARGET_EFAULT;
8773             }
8774             target_to_host_siginfo(&uinfo, p);
8775             unlock_user(p, arg4, 0);
8776             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
8777         }
8778         return ret;
8779 #ifdef TARGET_NR_sigreturn
8780     case TARGET_NR_sigreturn:
8781         if (block_signals()) {
8782             return -TARGET_ERESTARTSYS;
8783         }
8784         return do_sigreturn(cpu_env);
8785 #endif
8786     case TARGET_NR_rt_sigreturn:
8787         if (block_signals()) {
8788             return -TARGET_ERESTARTSYS;
8789         }
8790         return do_rt_sigreturn(cpu_env);
8791     case TARGET_NR_sethostname:
8792         if (!(p = lock_user_string(arg1)))
8793             return -TARGET_EFAULT;
8794         ret = get_errno(sethostname(p, arg2));
8795         unlock_user(p, arg1, 0);
8796         return ret;
8797 #ifdef TARGET_NR_setrlimit
8798     case TARGET_NR_setrlimit:
8799         {
8800             int resource = target_to_host_resource(arg1);
8801             struct target_rlimit *target_rlim;
8802             struct rlimit rlim;
8803             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
8804                 return -TARGET_EFAULT;
8805             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
8806             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
8807             unlock_user_struct(target_rlim, arg2, 0);
8808             /*
8809              * If we just passed through resource limit settings for memory then
8810              * they would also apply to QEMU's own allocations, and QEMU will
8811              * crash or hang or die if its allocations fail. Ideally we would
8812              * track the guest allocations in QEMU and apply the limits ourselves.
8813              * For now, just tell the guest the call succeeded but don't actually
8814              * limit anything.
8815              */
8816             if (resource != RLIMIT_AS &&
8817                 resource != RLIMIT_DATA &&
8818                 resource != RLIMIT_STACK) {
8819                 return get_errno(setrlimit(resource, &rlim));
8820             } else {
8821                 return 0;
8822             }
8823         }
8824 #endif
8825 #ifdef TARGET_NR_getrlimit
8826     case TARGET_NR_getrlimit:
8827         {
8828             int resource = target_to_host_resource(arg1);
8829             struct target_rlimit *target_rlim;
8830             struct rlimit rlim;
8831 
8832             ret = get_errno(getrlimit(resource, &rlim));
8833             if (!is_error(ret)) {
8834                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
8835                     return -TARGET_EFAULT;
8836                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
8837                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
8838                 unlock_user_struct(target_rlim, arg2, 1);
8839             }
8840         }
8841         return ret;
8842 #endif
8843     case TARGET_NR_getrusage:
8844         {
8845             struct rusage rusage;
8846             ret = get_errno(getrusage(arg1, &rusage));
8847             if (!is_error(ret)) {
8848                 ret = host_to_target_rusage(arg2, &rusage);
8849             }
8850         }
8851         return ret;
8852 #if defined(TARGET_NR_gettimeofday)
8853     case TARGET_NR_gettimeofday:
8854         {
8855             struct timeval tv;
8856             struct timezone tz;
8857 
8858             ret = get_errno(gettimeofday(&tv, &tz));
8859             if (!is_error(ret)) {
8860                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
8861                     return -TARGET_EFAULT;
8862                 }
8863                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
8864                     return -TARGET_EFAULT;
8865                 }
8866             }
8867         }
8868         return ret;
8869 #endif
8870 #if defined(TARGET_NR_settimeofday)
8871     case TARGET_NR_settimeofday:
8872         {
8873             struct timeval tv, *ptv = NULL;
8874             struct timezone tz, *ptz = NULL;
8875 
8876             if (arg1) {
8877                 if (copy_from_user_timeval(&tv, arg1)) {
8878                     return -TARGET_EFAULT;
8879                 }
8880                 ptv = &tv;
8881             }
8882 
8883             if (arg2) {
8884                 if (copy_from_user_timezone(&tz, arg2)) {
8885                     return -TARGET_EFAULT;
8886                 }
8887                 ptz = &tz;
8888             }
8889 
8890             return get_errno(settimeofday(ptv, ptz));
8891         }
8892 #endif
8893 #if defined(TARGET_NR_select)
8894     case TARGET_NR_select:
8895 #if defined(TARGET_WANT_NI_OLD_SELECT)
8896         /* some architectures used to have old_select here
8897          * but now ENOSYS it.
8898          */
8899         ret = -TARGET_ENOSYS;
8900 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
8901         ret = do_old_select(arg1);
8902 #else
8903         ret = do_select(arg1, arg2, arg3, arg4, arg5);
8904 #endif
8905         return ret;
8906 #endif
8907 #ifdef TARGET_NR_pselect6
8908     case TARGET_NR_pselect6:
8909         {
8910             abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
8911             fd_set rfds, wfds, efds;
8912             fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
8913             struct timespec ts, *ts_ptr;
8914 
8915             /*
8916              * The 6th arg is actually two args smashed together,
8917              * so we cannot use the C library.
8918              */
8919             sigset_t set;
8920             struct {
8921                 sigset_t *set;
8922                 size_t size;
8923             } sig, *sig_ptr;
8924 
8925             abi_ulong arg_sigset, arg_sigsize, *arg7;
8926             target_sigset_t *target_sigset;
8927 
8928             n = arg1;
8929             rfd_addr = arg2;
8930             wfd_addr = arg3;
8931             efd_addr = arg4;
8932             ts_addr = arg5;
8933 
8934             ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
8935             if (ret) {
8936                 return ret;
8937             }
8938             ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
8939             if (ret) {
8940                 return ret;
8941             }
8942             ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
8943             if (ret) {
8944                 return ret;
8945             }
8946 
8947             /*
8948              * This takes a timespec, and not a timeval, so we cannot
8949              * use the do_select() helper ...
8950              */
8951             if (ts_addr) {
8952                 if (target_to_host_timespec(&ts, ts_addr)) {
8953                     return -TARGET_EFAULT;
8954                 }
8955                 ts_ptr = &ts;
8956             } else {
8957                 ts_ptr = NULL;
8958             }
8959 
8960             /* Extract the two packed args for the sigset */
8961             if (arg6) {
8962                 sig_ptr = &sig;
8963                 sig.size = SIGSET_T_SIZE;
8964 
8965                 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
8966                 if (!arg7) {
8967                     return -TARGET_EFAULT;
8968                 }
8969                 arg_sigset = tswapal(arg7[0]);
8970                 arg_sigsize = tswapal(arg7[1]);
8971                 unlock_user(arg7, arg6, 0);
8972 
8973                 if (arg_sigset) {
8974                     sig.set = &set;
8975                     if (arg_sigsize != sizeof(*target_sigset)) {
8976                         /* Like the kernel, we enforce correct size sigsets */
8977                         return -TARGET_EINVAL;
8978                     }
8979                     target_sigset = lock_user(VERIFY_READ, arg_sigset,
8980                                               sizeof(*target_sigset), 1);
8981                     if (!target_sigset) {
8982                         return -TARGET_EFAULT;
8983                     }
8984                     target_to_host_sigset(&set, target_sigset);
8985                     unlock_user(target_sigset, arg_sigset, 0);
8986                 } else {
8987                     sig.set = NULL;
8988                 }
8989             } else {
8990                 sig_ptr = NULL;
8991             }
8992 
8993             ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
8994                                           ts_ptr, sig_ptr));
8995 
8996             if (!is_error(ret)) {
8997                 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
8998                     return -TARGET_EFAULT;
8999                 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
9000                     return -TARGET_EFAULT;
9001                 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
9002                     return -TARGET_EFAULT;
9003 
9004                 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
9005                     return -TARGET_EFAULT;
9006             }
9007         }
9008         return ret;
9009 #endif
9010 #ifdef TARGET_NR_symlink
9011     case TARGET_NR_symlink:
9012         {
9013             void *p2;
9014             p = lock_user_string(arg1);
9015             p2 = lock_user_string(arg2);
9016             if (!p || !p2)
9017                 ret = -TARGET_EFAULT;
9018             else
9019                 ret = get_errno(symlink(p, p2));
9020             unlock_user(p2, arg2, 0);
9021             unlock_user(p, arg1, 0);
9022         }
9023         return ret;
9024 #endif
9025 #if defined(TARGET_NR_symlinkat)
9026     case TARGET_NR_symlinkat:
9027         {
9028             void *p2;
9029             p  = lock_user_string(arg1);
9030             p2 = lock_user_string(arg3);
9031             if (!p || !p2)
9032                 ret = -TARGET_EFAULT;
9033             else
9034                 ret = get_errno(symlinkat(p, arg2, p2));
9035             unlock_user(p2, arg3, 0);
9036             unlock_user(p, arg1, 0);
9037         }
9038         return ret;
9039 #endif
9040 #ifdef TARGET_NR_readlink
9041     case TARGET_NR_readlink:
9042         {
9043             void *p2;
9044             p = lock_user_string(arg1);
9045             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9046             if (!p || !p2) {
9047                 ret = -TARGET_EFAULT;
9048             } else if (!arg3) {
9049                 /* Short circuit this for the magic exe check. */
9050                 ret = -TARGET_EINVAL;
9051             } else if (is_proc_myself((const char *)p, "exe")) {
9052                 char real[PATH_MAX], *temp;
9053                 temp = realpath(exec_path, real);
9054                 /* Return value is # of bytes that we wrote to the buffer. */
9055                 if (temp == NULL) {
9056                     ret = get_errno(-1);
9057                 } else {
9058                     /* Don't worry about sign mismatch as earlier mapping
9059                      * logic would have thrown a bad address error. */
9060                     ret = MIN(strlen(real), arg3);
9061                     /* We cannot NUL terminate the string. */
9062                     memcpy(p2, real, ret);
9063                 }
9064             } else {
9065                 ret = get_errno(readlink(path(p), p2, arg3));
9066             }
9067             unlock_user(p2, arg2, ret);
9068             unlock_user(p, arg1, 0);
9069         }
9070         return ret;
9071 #endif
9072 #if defined(TARGET_NR_readlinkat)
9073     case TARGET_NR_readlinkat:
9074         {
9075             void *p2;
9076             p  = lock_user_string(arg2);
9077             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9078             if (!p || !p2) {
9079                 ret = -TARGET_EFAULT;
9080             } else if (is_proc_myself((const char *)p, "exe")) {
9081                 char real[PATH_MAX], *temp;
9082                 temp = realpath(exec_path, real);
9083                 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9084                 snprintf((char *)p2, arg4, "%s", real);
9085             } else {
9086                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9087             }
9088             unlock_user(p2, arg3, ret);
9089             unlock_user(p, arg2, 0);
9090         }
9091         return ret;
9092 #endif
9093 #ifdef TARGET_NR_swapon
9094     case TARGET_NR_swapon:
9095         if (!(p = lock_user_string(arg1)))
9096             return -TARGET_EFAULT;
9097         ret = get_errno(swapon(p, arg2));
9098         unlock_user(p, arg1, 0);
9099         return ret;
9100 #endif
9101     case TARGET_NR_reboot:
9102         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9103            /* arg4 must be ignored in all other cases */
9104            p = lock_user_string(arg4);
9105            if (!p) {
9106                return -TARGET_EFAULT;
9107            }
9108            ret = get_errno(reboot(arg1, arg2, arg3, p));
9109            unlock_user(p, arg4, 0);
9110         } else {
9111            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9112         }
9113         return ret;
9114 #ifdef TARGET_NR_mmap
9115     case TARGET_NR_mmap:
9116 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9117     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9118     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9119     || defined(TARGET_S390X)
9120         {
9121             abi_ulong *v;
9122             abi_ulong v1, v2, v3, v4, v5, v6;
9123             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9124                 return -TARGET_EFAULT;
9125             v1 = tswapal(v[0]);
9126             v2 = tswapal(v[1]);
9127             v3 = tswapal(v[2]);
9128             v4 = tswapal(v[3]);
9129             v5 = tswapal(v[4]);
9130             v6 = tswapal(v[5]);
9131             unlock_user(v, arg1, 0);
9132             ret = get_errno(target_mmap(v1, v2, v3,
9133                                         target_to_host_bitmask(v4, mmap_flags_tbl),
9134                                         v5, v6));
9135         }
9136 #else
9137         ret = get_errno(target_mmap(arg1, arg2, arg3,
9138                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
9139                                     arg5,
9140                                     arg6));
9141 #endif
9142         return ret;
9143 #endif
9144 #ifdef TARGET_NR_mmap2
9145     case TARGET_NR_mmap2:
9146 #ifndef MMAP_SHIFT
9147 #define MMAP_SHIFT 12
9148 #endif
9149         ret = target_mmap(arg1, arg2, arg3,
9150                           target_to_host_bitmask(arg4, mmap_flags_tbl),
9151                           arg5, arg6 << MMAP_SHIFT);
9152         return get_errno(ret);
9153 #endif
9154     case TARGET_NR_munmap:
9155         return get_errno(target_munmap(arg1, arg2));
9156     case TARGET_NR_mprotect:
9157         {
9158             TaskState *ts = cpu->opaque;
9159             /* Special hack to detect libc making the stack executable.  */
9160             if ((arg3 & PROT_GROWSDOWN)
9161                 && arg1 >= ts->info->stack_limit
9162                 && arg1 <= ts->info->start_stack) {
9163                 arg3 &= ~PROT_GROWSDOWN;
9164                 arg2 = arg2 + arg1 - ts->info->stack_limit;
9165                 arg1 = ts->info->stack_limit;
9166             }
9167         }
9168         return get_errno(target_mprotect(arg1, arg2, arg3));
9169 #ifdef TARGET_NR_mremap
9170     case TARGET_NR_mremap:
9171         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
9172 #endif
9173         /* ??? msync/mlock/munlock are broken for softmmu.  */
9174 #ifdef TARGET_NR_msync
9175     case TARGET_NR_msync:
9176         return get_errno(msync(g2h(arg1), arg2, arg3));
9177 #endif
9178 #ifdef TARGET_NR_mlock
9179     case TARGET_NR_mlock:
9180         return get_errno(mlock(g2h(arg1), arg2));
9181 #endif
9182 #ifdef TARGET_NR_munlock
9183     case TARGET_NR_munlock:
9184         return get_errno(munlock(g2h(arg1), arg2));
9185 #endif
9186 #ifdef TARGET_NR_mlockall
9187     case TARGET_NR_mlockall:
9188         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9189 #endif
9190 #ifdef TARGET_NR_munlockall
9191     case TARGET_NR_munlockall:
9192         return get_errno(munlockall());
9193 #endif
9194 #ifdef TARGET_NR_truncate
9195     case TARGET_NR_truncate:
9196         if (!(p = lock_user_string(arg1)))
9197             return -TARGET_EFAULT;
9198         ret = get_errno(truncate(p, arg2));
9199         unlock_user(p, arg1, 0);
9200         return ret;
9201 #endif
9202 #ifdef TARGET_NR_ftruncate
9203     case TARGET_NR_ftruncate:
9204         return get_errno(ftruncate(arg1, arg2));
9205 #endif
9206     case TARGET_NR_fchmod:
9207         return get_errno(fchmod(arg1, arg2));
9208 #if defined(TARGET_NR_fchmodat)
9209     case TARGET_NR_fchmodat:
9210         if (!(p = lock_user_string(arg2)))
9211             return -TARGET_EFAULT;
9212         ret = get_errno(fchmodat(arg1, p, arg3, 0));
9213         unlock_user(p, arg2, 0);
9214         return ret;
9215 #endif
9216     case TARGET_NR_getpriority:
9217         /* Note that negative values are valid for getpriority, so we must
9218            differentiate based on errno settings.  */
9219         errno = 0;
9220         ret = getpriority(arg1, arg2);
9221         if (ret == -1 && errno != 0) {
9222             return -host_to_target_errno(errno);
9223         }
9224 #ifdef TARGET_ALPHA
9225         /* Return value is the unbiased priority.  Signal no error.  */
9226         ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9227 #else
9228         /* Return value is a biased priority to avoid negative numbers.  */
9229         ret = 20 - ret;
9230 #endif
9231         return ret;
9232     case TARGET_NR_setpriority:
9233         return get_errno(setpriority(arg1, arg2, arg3));
9234 #ifdef TARGET_NR_statfs
9235     case TARGET_NR_statfs:
9236         if (!(p = lock_user_string(arg1))) {
9237             return -TARGET_EFAULT;
9238         }
9239         ret = get_errno(statfs(path(p), &stfs));
9240         unlock_user(p, arg1, 0);
9241     convert_statfs:
9242         if (!is_error(ret)) {
9243             struct target_statfs *target_stfs;
9244 
9245             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9246                 return -TARGET_EFAULT;
9247             __put_user(stfs.f_type, &target_stfs->f_type);
9248             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9249             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9250             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9251             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9252             __put_user(stfs.f_files, &target_stfs->f_files);
9253             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9254             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9255             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9256             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9257             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9258 #ifdef _STATFS_F_FLAGS
9259             __put_user(stfs.f_flags, &target_stfs->f_flags);
9260 #else
9261             __put_user(0, &target_stfs->f_flags);
9262 #endif
9263             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9264             unlock_user_struct(target_stfs, arg2, 1);
9265         }
9266         return ret;
9267 #endif
9268 #ifdef TARGET_NR_fstatfs
9269     case TARGET_NR_fstatfs:
9270         ret = get_errno(fstatfs(arg1, &stfs));
9271         goto convert_statfs;
9272 #endif
9273 #ifdef TARGET_NR_statfs64
9274     case TARGET_NR_statfs64:
9275         if (!(p = lock_user_string(arg1))) {
9276             return -TARGET_EFAULT;
9277         }
9278         ret = get_errno(statfs(path(p), &stfs));
9279         unlock_user(p, arg1, 0);
9280     convert_statfs64:
9281         if (!is_error(ret)) {
9282             struct target_statfs64 *target_stfs;
9283 
9284             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9285                 return -TARGET_EFAULT;
9286             __put_user(stfs.f_type, &target_stfs->f_type);
9287             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9288             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9289             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9290             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9291             __put_user(stfs.f_files, &target_stfs->f_files);
9292             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9293             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9294             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9295             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9296             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9297             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9298             unlock_user_struct(target_stfs, arg3, 1);
9299         }
9300         return ret;
9301     case TARGET_NR_fstatfs64:
9302         ret = get_errno(fstatfs(arg1, &stfs));
9303         goto convert_statfs64;
9304 #endif
9305 #ifdef TARGET_NR_socketcall
9306     case TARGET_NR_socketcall:
9307         return do_socketcall(arg1, arg2);
9308 #endif
9309 #ifdef TARGET_NR_accept
9310     case TARGET_NR_accept:
9311         return do_accept4(arg1, arg2, arg3, 0);
9312 #endif
9313 #ifdef TARGET_NR_accept4
9314     case TARGET_NR_accept4:
9315         return do_accept4(arg1, arg2, arg3, arg4);
9316 #endif
9317 #ifdef TARGET_NR_bind
9318     case TARGET_NR_bind:
9319         return do_bind(arg1, arg2, arg3);
9320 #endif
9321 #ifdef TARGET_NR_connect
9322     case TARGET_NR_connect:
9323         return do_connect(arg1, arg2, arg3);
9324 #endif
9325 #ifdef TARGET_NR_getpeername
9326     case TARGET_NR_getpeername:
9327         return do_getpeername(arg1, arg2, arg3);
9328 #endif
9329 #ifdef TARGET_NR_getsockname
9330     case TARGET_NR_getsockname:
9331         return do_getsockname(arg1, arg2, arg3);
9332 #endif
9333 #ifdef TARGET_NR_getsockopt
9334     case TARGET_NR_getsockopt:
9335         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9336 #endif
9337 #ifdef TARGET_NR_listen
9338     case TARGET_NR_listen:
9339         return get_errno(listen(arg1, arg2));
9340 #endif
9341 #ifdef TARGET_NR_recv
9342     case TARGET_NR_recv:
9343         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9344 #endif
9345 #ifdef TARGET_NR_recvfrom
9346     case TARGET_NR_recvfrom:
9347         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9348 #endif
9349 #ifdef TARGET_NR_recvmsg
9350     case TARGET_NR_recvmsg:
9351         return do_sendrecvmsg(arg1, arg2, arg3, 0);
9352 #endif
9353 #ifdef TARGET_NR_send
9354     case TARGET_NR_send:
9355         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9356 #endif
9357 #ifdef TARGET_NR_sendmsg
9358     case TARGET_NR_sendmsg:
9359         return do_sendrecvmsg(arg1, arg2, arg3, 1);
9360 #endif
9361 #ifdef TARGET_NR_sendmmsg
9362     case TARGET_NR_sendmmsg:
9363         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9364 #endif
9365 #ifdef TARGET_NR_recvmmsg
9366     case TARGET_NR_recvmmsg:
9367         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9368 #endif
9369 #ifdef TARGET_NR_sendto
9370     case TARGET_NR_sendto:
9371         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9372 #endif
9373 #ifdef TARGET_NR_shutdown
9374     case TARGET_NR_shutdown:
9375         return get_errno(shutdown(arg1, arg2));
9376 #endif
9377 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9378     case TARGET_NR_getrandom:
9379         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9380         if (!p) {
9381             return -TARGET_EFAULT;
9382         }
9383         ret = get_errno(getrandom(p, arg2, arg3));
9384         unlock_user(p, arg1, ret);
9385         return ret;
9386 #endif
9387 #ifdef TARGET_NR_socket
9388     case TARGET_NR_socket:
9389         return do_socket(arg1, arg2, arg3);
9390 #endif
9391 #ifdef TARGET_NR_socketpair
9392     case TARGET_NR_socketpair:
9393         return do_socketpair(arg1, arg2, arg3, arg4);
9394 #endif
9395 #ifdef TARGET_NR_setsockopt
9396     case TARGET_NR_setsockopt:
9397         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9398 #endif
9399 #if defined(TARGET_NR_syslog)
9400     case TARGET_NR_syslog:
9401         {
9402             int len = arg2;
9403 
9404             switch (arg1) {
9405             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
9406             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
9407             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
9408             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
9409             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
9410             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
9411             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
9412             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
9413                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
9414             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
9415             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
9416             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
9417                 {
9418                     if (len < 0) {
9419                         return -TARGET_EINVAL;
9420                     }
9421                     if (len == 0) {
9422                         return 0;
9423                     }
9424                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9425                     if (!p) {
9426                         return -TARGET_EFAULT;
9427                     }
9428                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9429                     unlock_user(p, arg2, arg3);
9430                 }
9431                 return ret;
9432             default:
9433                 return -TARGET_EINVAL;
9434             }
9435         }
9436         break;
9437 #endif
9438     case TARGET_NR_setitimer:
9439         {
9440             struct itimerval value, ovalue, *pvalue;
9441 
9442             if (arg2) {
9443                 pvalue = &value;
9444                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9445                     || copy_from_user_timeval(&pvalue->it_value,
9446                                               arg2 + sizeof(struct target_timeval)))
9447                     return -TARGET_EFAULT;
9448             } else {
9449                 pvalue = NULL;
9450             }
9451             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9452             if (!is_error(ret) && arg3) {
9453                 if (copy_to_user_timeval(arg3,
9454                                          &ovalue.it_interval)
9455                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
9456                                             &ovalue.it_value))
9457                     return -TARGET_EFAULT;
9458             }
9459         }
9460         return ret;
9461     case TARGET_NR_getitimer:
9462         {
9463             struct itimerval value;
9464 
9465             ret = get_errno(getitimer(arg1, &value));
9466             if (!is_error(ret) && arg2) {
9467                 if (copy_to_user_timeval(arg2,
9468                                          &value.it_interval)
9469                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
9470                                             &value.it_value))
9471                     return -TARGET_EFAULT;
9472             }
9473         }
9474         return ret;
9475 #ifdef TARGET_NR_stat
9476     case TARGET_NR_stat:
9477         if (!(p = lock_user_string(arg1))) {
9478             return -TARGET_EFAULT;
9479         }
9480         ret = get_errno(stat(path(p), &st));
9481         unlock_user(p, arg1, 0);
9482         goto do_stat;
9483 #endif
9484 #ifdef TARGET_NR_lstat
9485     case TARGET_NR_lstat:
9486         if (!(p = lock_user_string(arg1))) {
9487             return -TARGET_EFAULT;
9488         }
9489         ret = get_errno(lstat(path(p), &st));
9490         unlock_user(p, arg1, 0);
9491         goto do_stat;
9492 #endif
9493 #ifdef TARGET_NR_fstat
9494     case TARGET_NR_fstat:
9495         {
9496             ret = get_errno(fstat(arg1, &st));
9497 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9498         do_stat:
9499 #endif
9500             if (!is_error(ret)) {
9501                 struct target_stat *target_st;
9502 
9503                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
9504                     return -TARGET_EFAULT;
9505                 memset(target_st, 0, sizeof(*target_st));
9506                 __put_user(st.st_dev, &target_st->st_dev);
9507                 __put_user(st.st_ino, &target_st->st_ino);
9508                 __put_user(st.st_mode, &target_st->st_mode);
9509                 __put_user(st.st_uid, &target_st->st_uid);
9510                 __put_user(st.st_gid, &target_st->st_gid);
9511                 __put_user(st.st_nlink, &target_st->st_nlink);
9512                 __put_user(st.st_rdev, &target_st->st_rdev);
9513                 __put_user(st.st_size, &target_st->st_size);
9514                 __put_user(st.st_blksize, &target_st->st_blksize);
9515                 __put_user(st.st_blocks, &target_st->st_blocks);
9516                 __put_user(st.st_atime, &target_st->target_st_atime);
9517                 __put_user(st.st_mtime, &target_st->target_st_mtime);
9518                 __put_user(st.st_ctime, &target_st->target_st_ctime);
9519 #if (_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700) && \
9520     defined(TARGET_STAT_HAVE_NSEC)
9521                 __put_user(st.st_atim.tv_nsec,
9522                            &target_st->target_st_atime_nsec);
9523                 __put_user(st.st_mtim.tv_nsec,
9524                            &target_st->target_st_mtime_nsec);
9525                 __put_user(st.st_ctim.tv_nsec,
9526                            &target_st->target_st_ctime_nsec);
9527 #endif
9528                 unlock_user_struct(target_st, arg2, 1);
9529             }
9530         }
9531         return ret;
9532 #endif
9533     case TARGET_NR_vhangup:
9534         return get_errno(vhangup());
9535 #ifdef TARGET_NR_syscall
9536     case TARGET_NR_syscall:
9537         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
9538                           arg6, arg7, arg8, 0);
9539 #endif
9540 #if defined(TARGET_NR_wait4)
9541     case TARGET_NR_wait4:
9542         {
9543             int status;
9544             abi_long status_ptr = arg2;
9545             struct rusage rusage, *rusage_ptr;
9546             abi_ulong target_rusage = arg4;
9547             abi_long rusage_err;
9548             if (target_rusage)
9549                 rusage_ptr = &rusage;
9550             else
9551                 rusage_ptr = NULL;
9552             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
9553             if (!is_error(ret)) {
9554                 if (status_ptr && ret) {
9555                     status = host_to_target_waitstatus(status);
9556                     if (put_user_s32(status, status_ptr))
9557                         return -TARGET_EFAULT;
9558                 }
9559                 if (target_rusage) {
9560                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
9561                     if (rusage_err) {
9562                         ret = rusage_err;
9563                     }
9564                 }
9565             }
9566         }
9567         return ret;
9568 #endif
9569 #ifdef TARGET_NR_swapoff
9570     case TARGET_NR_swapoff:
9571         if (!(p = lock_user_string(arg1)))
9572             return -TARGET_EFAULT;
9573         ret = get_errno(swapoff(p));
9574         unlock_user(p, arg1, 0);
9575         return ret;
9576 #endif
9577     case TARGET_NR_sysinfo:
9578         {
9579             struct target_sysinfo *target_value;
9580             struct sysinfo value;
9581             ret = get_errno(sysinfo(&value));
9582             if (!is_error(ret) && arg1)
9583             {
9584                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
9585                     return -TARGET_EFAULT;
9586                 __put_user(value.uptime, &target_value->uptime);
9587                 __put_user(value.loads[0], &target_value->loads[0]);
9588                 __put_user(value.loads[1], &target_value->loads[1]);
9589                 __put_user(value.loads[2], &target_value->loads[2]);
9590                 __put_user(value.totalram, &target_value->totalram);
9591                 __put_user(value.freeram, &target_value->freeram);
9592                 __put_user(value.sharedram, &target_value->sharedram);
9593                 __put_user(value.bufferram, &target_value->bufferram);
9594                 __put_user(value.totalswap, &target_value->totalswap);
9595                 __put_user(value.freeswap, &target_value->freeswap);
9596                 __put_user(value.procs, &target_value->procs);
9597                 __put_user(value.totalhigh, &target_value->totalhigh);
9598                 __put_user(value.freehigh, &target_value->freehigh);
9599                 __put_user(value.mem_unit, &target_value->mem_unit);
9600                 unlock_user_struct(target_value, arg1, 1);
9601             }
9602         }
9603         return ret;
9604 #ifdef TARGET_NR_ipc
9605     case TARGET_NR_ipc:
9606         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
9607 #endif
9608 #ifdef TARGET_NR_semget
9609     case TARGET_NR_semget:
9610         return get_errno(semget(arg1, arg2, arg3));
9611 #endif
9612 #ifdef TARGET_NR_semop
9613     case TARGET_NR_semop:
9614         return do_semop(arg1, arg2, arg3);
9615 #endif
9616 #ifdef TARGET_NR_semctl
9617     case TARGET_NR_semctl:
9618         return do_semctl(arg1, arg2, arg3, arg4);
9619 #endif
9620 #ifdef TARGET_NR_msgctl
9621     case TARGET_NR_msgctl:
9622         return do_msgctl(arg1, arg2, arg3);
9623 #endif
9624 #ifdef TARGET_NR_msgget
9625     case TARGET_NR_msgget:
9626         return get_errno(msgget(arg1, arg2));
9627 #endif
9628 #ifdef TARGET_NR_msgrcv
9629     case TARGET_NR_msgrcv:
9630         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
9631 #endif
9632 #ifdef TARGET_NR_msgsnd
9633     case TARGET_NR_msgsnd:
9634         return do_msgsnd(arg1, arg2, arg3, arg4);
9635 #endif
9636 #ifdef TARGET_NR_shmget
9637     case TARGET_NR_shmget:
9638         return get_errno(shmget(arg1, arg2, arg3));
9639 #endif
9640 #ifdef TARGET_NR_shmctl
9641     case TARGET_NR_shmctl:
9642         return do_shmctl(arg1, arg2, arg3);
9643 #endif
9644 #ifdef TARGET_NR_shmat
9645     case TARGET_NR_shmat:
9646         return do_shmat(cpu_env, arg1, arg2, arg3);
9647 #endif
9648 #ifdef TARGET_NR_shmdt
9649     case TARGET_NR_shmdt:
9650         return do_shmdt(arg1);
9651 #endif
9652     case TARGET_NR_fsync:
9653         return get_errno(fsync(arg1));
9654     case TARGET_NR_clone:
9655         /* Linux manages to have three different orderings for its
9656          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
9657          * match the kernel's CONFIG_CLONE_* settings.
9658          * Microblaze is further special in that it uses a sixth
9659          * implicit argument to clone for the TLS pointer.
9660          */
9661 #if defined(TARGET_MICROBLAZE)
9662         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
9663 #elif defined(TARGET_CLONE_BACKWARDS)
9664         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
9665 #elif defined(TARGET_CLONE_BACKWARDS2)
9666         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
9667 #else
9668         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
9669 #endif
9670         return ret;
9671 #ifdef __NR_exit_group
9672         /* new thread calls */
9673     case TARGET_NR_exit_group:
9674         preexit_cleanup(cpu_env, arg1);
9675         return get_errno(exit_group(arg1));
9676 #endif
9677     case TARGET_NR_setdomainname:
9678         if (!(p = lock_user_string(arg1)))
9679             return -TARGET_EFAULT;
9680         ret = get_errno(setdomainname(p, arg2));
9681         unlock_user(p, arg1, 0);
9682         return ret;
9683     case TARGET_NR_uname:
9684         /* no need to transcode because we use the linux syscall */
9685         {
9686             struct new_utsname * buf;
9687 
9688             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
9689                 return -TARGET_EFAULT;
9690             ret = get_errno(sys_uname(buf));
9691             if (!is_error(ret)) {
9692                 /* Overwrite the native machine name with whatever is being
9693                    emulated. */
9694                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
9695                           sizeof(buf->machine));
9696                 /* Allow the user to override the reported release.  */
9697                 if (qemu_uname_release && *qemu_uname_release) {
9698                     g_strlcpy(buf->release, qemu_uname_release,
9699                               sizeof(buf->release));
9700                 }
9701             }
9702             unlock_user_struct(buf, arg1, 1);
9703         }
9704         return ret;
9705 #ifdef TARGET_I386
9706     case TARGET_NR_modify_ldt:
9707         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
9708 #if !defined(TARGET_X86_64)
9709     case TARGET_NR_vm86:
9710         return do_vm86(cpu_env, arg1, arg2);
9711 #endif
9712 #endif
9713 #if defined(TARGET_NR_adjtimex)
9714     case TARGET_NR_adjtimex:
9715         {
9716             struct timex host_buf;
9717 
9718             if (target_to_host_timex(&host_buf, arg1) != 0) {
9719                 return -TARGET_EFAULT;
9720             }
9721             ret = get_errno(adjtimex(&host_buf));
9722             if (!is_error(ret)) {
9723                 if (host_to_target_timex(arg1, &host_buf) != 0) {
9724                     return -TARGET_EFAULT;
9725                 }
9726             }
9727         }
9728         return ret;
9729 #endif
9730 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
9731     case TARGET_NR_clock_adjtime:
9732         {
9733             struct timex htx, *phtx = &htx;
9734 
9735             if (target_to_host_timex(phtx, arg2) != 0) {
9736                 return -TARGET_EFAULT;
9737             }
9738             ret = get_errno(clock_adjtime(arg1, phtx));
9739             if (!is_error(ret) && phtx) {
9740                 if (host_to_target_timex(arg2, phtx) != 0) {
9741                     return -TARGET_EFAULT;
9742                 }
9743             }
9744         }
9745         return ret;
9746 #endif
9747     case TARGET_NR_getpgid:
9748         return get_errno(getpgid(arg1));
9749     case TARGET_NR_fchdir:
9750         return get_errno(fchdir(arg1));
9751     case TARGET_NR_personality:
9752         return get_errno(personality(arg1));
9753 #ifdef TARGET_NR__llseek /* Not on alpha */
9754     case TARGET_NR__llseek:
9755         {
9756             int64_t res;
9757 #if !defined(__NR_llseek)
9758             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
9759             if (res == -1) {
9760                 ret = get_errno(res);
9761             } else {
9762                 ret = 0;
9763             }
9764 #else
9765             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
9766 #endif
9767             if ((ret == 0) && put_user_s64(res, arg4)) {
9768                 return -TARGET_EFAULT;
9769             }
9770         }
9771         return ret;
9772 #endif
9773 #ifdef TARGET_NR_getdents
9774     case TARGET_NR_getdents:
9775 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
9776 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
9777         {
9778             struct target_dirent *target_dirp;
9779             struct linux_dirent *dirp;
9780             abi_long count = arg3;
9781 
9782             dirp = g_try_malloc(count);
9783             if (!dirp) {
9784                 return -TARGET_ENOMEM;
9785             }
9786 
9787             ret = get_errno(sys_getdents(arg1, dirp, count));
9788             if (!is_error(ret)) {
9789                 struct linux_dirent *de;
9790 		struct target_dirent *tde;
9791                 int len = ret;
9792                 int reclen, treclen;
9793 		int count1, tnamelen;
9794 
9795 		count1 = 0;
9796                 de = dirp;
9797                 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9798                     return -TARGET_EFAULT;
9799 		tde = target_dirp;
9800                 while (len > 0) {
9801                     reclen = de->d_reclen;
9802                     tnamelen = reclen - offsetof(struct linux_dirent, d_name);
9803                     assert(tnamelen >= 0);
9804                     treclen = tnamelen + offsetof(struct target_dirent, d_name);
9805                     assert(count1 + treclen <= count);
9806                     tde->d_reclen = tswap16(treclen);
9807                     tde->d_ino = tswapal(de->d_ino);
9808                     tde->d_off = tswapal(de->d_off);
9809                     memcpy(tde->d_name, de->d_name, tnamelen);
9810                     de = (struct linux_dirent *)((char *)de + reclen);
9811                     len -= reclen;
9812                     tde = (struct target_dirent *)((char *)tde + treclen);
9813 		    count1 += treclen;
9814                 }
9815 		ret = count1;
9816                 unlock_user(target_dirp, arg2, ret);
9817             }
9818             g_free(dirp);
9819         }
9820 #else
9821         {
9822             struct linux_dirent *dirp;
9823             abi_long count = arg3;
9824 
9825             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9826                 return -TARGET_EFAULT;
9827             ret = get_errno(sys_getdents(arg1, dirp, count));
9828             if (!is_error(ret)) {
9829                 struct linux_dirent *de;
9830                 int len = ret;
9831                 int reclen;
9832                 de = dirp;
9833                 while (len > 0) {
9834                     reclen = de->d_reclen;
9835                     if (reclen > len)
9836                         break;
9837                     de->d_reclen = tswap16(reclen);
9838                     tswapls(&de->d_ino);
9839                     tswapls(&de->d_off);
9840                     de = (struct linux_dirent *)((char *)de + reclen);
9841                     len -= reclen;
9842                 }
9843             }
9844             unlock_user(dirp, arg2, ret);
9845         }
9846 #endif
9847 #else
9848         /* Implement getdents in terms of getdents64 */
9849         {
9850             struct linux_dirent64 *dirp;
9851             abi_long count = arg3;
9852 
9853             dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
9854             if (!dirp) {
9855                 return -TARGET_EFAULT;
9856             }
9857             ret = get_errno(sys_getdents64(arg1, dirp, count));
9858             if (!is_error(ret)) {
9859                 /* Convert the dirent64 structs to target dirent.  We do this
9860                  * in-place, since we can guarantee that a target_dirent is no
9861                  * larger than a dirent64; however this means we have to be
9862                  * careful to read everything before writing in the new format.
9863                  */
9864                 struct linux_dirent64 *de;
9865                 struct target_dirent *tde;
9866                 int len = ret;
9867                 int tlen = 0;
9868 
9869                 de = dirp;
9870                 tde = (struct target_dirent *)dirp;
9871                 while (len > 0) {
9872                     int namelen, treclen;
9873                     int reclen = de->d_reclen;
9874                     uint64_t ino = de->d_ino;
9875                     int64_t off = de->d_off;
9876                     uint8_t type = de->d_type;
9877 
9878                     namelen = strlen(de->d_name);
9879                     treclen = offsetof(struct target_dirent, d_name)
9880                         + namelen + 2;
9881                     treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
9882 
9883                     memmove(tde->d_name, de->d_name, namelen + 1);
9884                     tde->d_ino = tswapal(ino);
9885                     tde->d_off = tswapal(off);
9886                     tde->d_reclen = tswap16(treclen);
9887                     /* The target_dirent type is in what was formerly a padding
9888                      * byte at the end of the structure:
9889                      */
9890                     *(((char *)tde) + treclen - 1) = type;
9891 
9892                     de = (struct linux_dirent64 *)((char *)de + reclen);
9893                     tde = (struct target_dirent *)((char *)tde + treclen);
9894                     len -= reclen;
9895                     tlen += treclen;
9896                 }
9897                 ret = tlen;
9898             }
9899             unlock_user(dirp, arg2, ret);
9900         }
9901 #endif
9902         return ret;
9903 #endif /* TARGET_NR_getdents */
9904 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
9905     case TARGET_NR_getdents64:
9906         {
9907             struct linux_dirent64 *dirp;
9908             abi_long count = arg3;
9909             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9910                 return -TARGET_EFAULT;
9911             ret = get_errno(sys_getdents64(arg1, dirp, count));
9912             if (!is_error(ret)) {
9913                 struct linux_dirent64 *de;
9914                 int len = ret;
9915                 int reclen;
9916                 de = dirp;
9917                 while (len > 0) {
9918                     reclen = de->d_reclen;
9919                     if (reclen > len)
9920                         break;
9921                     de->d_reclen = tswap16(reclen);
9922                     tswap64s((uint64_t *)&de->d_ino);
9923                     tswap64s((uint64_t *)&de->d_off);
9924                     de = (struct linux_dirent64 *)((char *)de + reclen);
9925                     len -= reclen;
9926                 }
9927             }
9928             unlock_user(dirp, arg2, ret);
9929         }
9930         return ret;
9931 #endif /* TARGET_NR_getdents64 */
9932 #if defined(TARGET_NR__newselect)
9933     case TARGET_NR__newselect:
9934         return do_select(arg1, arg2, arg3, arg4, arg5);
9935 #endif
9936 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
9937 # ifdef TARGET_NR_poll
9938     case TARGET_NR_poll:
9939 # endif
9940 # ifdef TARGET_NR_ppoll
9941     case TARGET_NR_ppoll:
9942 # endif
9943         {
9944             struct target_pollfd *target_pfd;
9945             unsigned int nfds = arg2;
9946             struct pollfd *pfd;
9947             unsigned int i;
9948 
9949             pfd = NULL;
9950             target_pfd = NULL;
9951             if (nfds) {
9952                 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
9953                     return -TARGET_EINVAL;
9954                 }
9955 
9956                 target_pfd = lock_user(VERIFY_WRITE, arg1,
9957                                        sizeof(struct target_pollfd) * nfds, 1);
9958                 if (!target_pfd) {
9959                     return -TARGET_EFAULT;
9960                 }
9961 
9962                 pfd = alloca(sizeof(struct pollfd) * nfds);
9963                 for (i = 0; i < nfds; i++) {
9964                     pfd[i].fd = tswap32(target_pfd[i].fd);
9965                     pfd[i].events = tswap16(target_pfd[i].events);
9966                 }
9967             }
9968 
9969             switch (num) {
9970 # ifdef TARGET_NR_ppoll
9971             case TARGET_NR_ppoll:
9972             {
9973                 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
9974                 target_sigset_t *target_set;
9975                 sigset_t _set, *set = &_set;
9976 
9977                 if (arg3) {
9978                     if (target_to_host_timespec(timeout_ts, arg3)) {
9979                         unlock_user(target_pfd, arg1, 0);
9980                         return -TARGET_EFAULT;
9981                     }
9982                 } else {
9983                     timeout_ts = NULL;
9984                 }
9985 
9986                 if (arg4) {
9987                     if (arg5 != sizeof(target_sigset_t)) {
9988                         unlock_user(target_pfd, arg1, 0);
9989                         return -TARGET_EINVAL;
9990                     }
9991 
9992                     target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
9993                     if (!target_set) {
9994                         unlock_user(target_pfd, arg1, 0);
9995                         return -TARGET_EFAULT;
9996                     }
9997                     target_to_host_sigset(set, target_set);
9998                 } else {
9999                     set = NULL;
10000                 }
10001 
10002                 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
10003                                            set, SIGSET_T_SIZE));
10004 
10005                 if (!is_error(ret) && arg3) {
10006                     host_to_target_timespec(arg3, timeout_ts);
10007                 }
10008                 if (arg4) {
10009                     unlock_user(target_set, arg4, 0);
10010                 }
10011                 break;
10012             }
10013 # endif
10014 # ifdef TARGET_NR_poll
10015             case TARGET_NR_poll:
10016             {
10017                 struct timespec ts, *pts;
10018 
10019                 if (arg3 >= 0) {
10020                     /* Convert ms to secs, ns */
10021                     ts.tv_sec = arg3 / 1000;
10022                     ts.tv_nsec = (arg3 % 1000) * 1000000LL;
10023                     pts = &ts;
10024                 } else {
10025                     /* -ve poll() timeout means "infinite" */
10026                     pts = NULL;
10027                 }
10028                 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
10029                 break;
10030             }
10031 # endif
10032             default:
10033                 g_assert_not_reached();
10034             }
10035 
10036             if (!is_error(ret)) {
10037                 for(i = 0; i < nfds; i++) {
10038                     target_pfd[i].revents = tswap16(pfd[i].revents);
10039                 }
10040             }
10041             unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
10042         }
10043         return ret;
10044 #endif
10045     case TARGET_NR_flock:
10046         /* NOTE: the flock constant seems to be the same for every
10047            Linux platform */
10048         return get_errno(safe_flock(arg1, arg2));
10049     case TARGET_NR_readv:
10050         {
10051             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10052             if (vec != NULL) {
10053                 ret = get_errno(safe_readv(arg1, vec, arg3));
10054                 unlock_iovec(vec, arg2, arg3, 1);
10055             } else {
10056                 ret = -host_to_target_errno(errno);
10057             }
10058         }
10059         return ret;
10060     case TARGET_NR_writev:
10061         {
10062             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10063             if (vec != NULL) {
10064                 ret = get_errno(safe_writev(arg1, vec, arg3));
10065                 unlock_iovec(vec, arg2, arg3, 0);
10066             } else {
10067                 ret = -host_to_target_errno(errno);
10068             }
10069         }
10070         return ret;
10071 #if defined(TARGET_NR_preadv)
10072     case TARGET_NR_preadv:
10073         {
10074             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10075             if (vec != NULL) {
10076                 unsigned long low, high;
10077 
10078                 target_to_host_low_high(arg4, arg5, &low, &high);
10079                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10080                 unlock_iovec(vec, arg2, arg3, 1);
10081             } else {
10082                 ret = -host_to_target_errno(errno);
10083            }
10084         }
10085         return ret;
10086 #endif
10087 #if defined(TARGET_NR_pwritev)
10088     case TARGET_NR_pwritev:
10089         {
10090             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10091             if (vec != NULL) {
10092                 unsigned long low, high;
10093 
10094                 target_to_host_low_high(arg4, arg5, &low, &high);
10095                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10096                 unlock_iovec(vec, arg2, arg3, 0);
10097             } else {
10098                 ret = -host_to_target_errno(errno);
10099            }
10100         }
10101         return ret;
10102 #endif
10103     case TARGET_NR_getsid:
10104         return get_errno(getsid(arg1));
10105 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10106     case TARGET_NR_fdatasync:
10107         return get_errno(fdatasync(arg1));
10108 #endif
10109 #ifdef TARGET_NR__sysctl
10110     case TARGET_NR__sysctl:
10111         /* We don't implement this, but ENOTDIR is always a safe
10112            return value. */
10113         return -TARGET_ENOTDIR;
10114 #endif
10115     case TARGET_NR_sched_getaffinity:
10116         {
10117             unsigned int mask_size;
10118             unsigned long *mask;
10119 
10120             /*
10121              * sched_getaffinity needs multiples of ulong, so need to take
10122              * care of mismatches between target ulong and host ulong sizes.
10123              */
10124             if (arg2 & (sizeof(abi_ulong) - 1)) {
10125                 return -TARGET_EINVAL;
10126             }
10127             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10128 
10129             mask = alloca(mask_size);
10130             memset(mask, 0, mask_size);
10131             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10132 
10133             if (!is_error(ret)) {
10134                 if (ret > arg2) {
10135                     /* More data returned than the caller's buffer will fit.
10136                      * This only happens if sizeof(abi_long) < sizeof(long)
10137                      * and the caller passed us a buffer holding an odd number
10138                      * of abi_longs. If the host kernel is actually using the
10139                      * extra 4 bytes then fail EINVAL; otherwise we can just
10140                      * ignore them and only copy the interesting part.
10141                      */
10142                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10143                     if (numcpus > arg2 * 8) {
10144                         return -TARGET_EINVAL;
10145                     }
10146                     ret = arg2;
10147                 }
10148 
10149                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10150                     return -TARGET_EFAULT;
10151                 }
10152             }
10153         }
10154         return ret;
10155     case TARGET_NR_sched_setaffinity:
10156         {
10157             unsigned int mask_size;
10158             unsigned long *mask;
10159 
10160             /*
10161              * sched_setaffinity needs multiples of ulong, so need to take
10162              * care of mismatches between target ulong and host ulong sizes.
10163              */
10164             if (arg2 & (sizeof(abi_ulong) - 1)) {
10165                 return -TARGET_EINVAL;
10166             }
10167             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10168             mask = alloca(mask_size);
10169 
10170             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10171             if (ret) {
10172                 return ret;
10173             }
10174 
10175             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10176         }
10177     case TARGET_NR_getcpu:
10178         {
10179             unsigned cpu, node;
10180             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10181                                        arg2 ? &node : NULL,
10182                                        NULL));
10183             if (is_error(ret)) {
10184                 return ret;
10185             }
10186             if (arg1 && put_user_u32(cpu, arg1)) {
10187                 return -TARGET_EFAULT;
10188             }
10189             if (arg2 && put_user_u32(node, arg2)) {
10190                 return -TARGET_EFAULT;
10191             }
10192         }
10193         return ret;
10194     case TARGET_NR_sched_setparam:
10195         {
10196             struct sched_param *target_schp;
10197             struct sched_param schp;
10198 
10199             if (arg2 == 0) {
10200                 return -TARGET_EINVAL;
10201             }
10202             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
10203                 return -TARGET_EFAULT;
10204             schp.sched_priority = tswap32(target_schp->sched_priority);
10205             unlock_user_struct(target_schp, arg2, 0);
10206             return get_errno(sched_setparam(arg1, &schp));
10207         }
10208     case TARGET_NR_sched_getparam:
10209         {
10210             struct sched_param *target_schp;
10211             struct sched_param schp;
10212 
10213             if (arg2 == 0) {
10214                 return -TARGET_EINVAL;
10215             }
10216             ret = get_errno(sched_getparam(arg1, &schp));
10217             if (!is_error(ret)) {
10218                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10219                     return -TARGET_EFAULT;
10220                 target_schp->sched_priority = tswap32(schp.sched_priority);
10221                 unlock_user_struct(target_schp, arg2, 1);
10222             }
10223         }
10224         return ret;
10225     case TARGET_NR_sched_setscheduler:
10226         {
10227             struct sched_param *target_schp;
10228             struct sched_param schp;
10229             if (arg3 == 0) {
10230                 return -TARGET_EINVAL;
10231             }
10232             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10233                 return -TARGET_EFAULT;
10234             schp.sched_priority = tswap32(target_schp->sched_priority);
10235             unlock_user_struct(target_schp, arg3, 0);
10236             return get_errno(sched_setscheduler(arg1, arg2, &schp));
10237         }
10238     case TARGET_NR_sched_getscheduler:
10239         return get_errno(sched_getscheduler(arg1));
10240     case TARGET_NR_sched_yield:
10241         return get_errno(sched_yield());
10242     case TARGET_NR_sched_get_priority_max:
10243         return get_errno(sched_get_priority_max(arg1));
10244     case TARGET_NR_sched_get_priority_min:
10245         return get_errno(sched_get_priority_min(arg1));
10246 #ifdef TARGET_NR_sched_rr_get_interval
10247     case TARGET_NR_sched_rr_get_interval:
10248         {
10249             struct timespec ts;
10250             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10251             if (!is_error(ret)) {
10252                 ret = host_to_target_timespec(arg2, &ts);
10253             }
10254         }
10255         return ret;
10256 #endif
10257 #if defined(TARGET_NR_nanosleep)
10258     case TARGET_NR_nanosleep:
10259         {
10260             struct timespec req, rem;
10261             target_to_host_timespec(&req, arg1);
10262             ret = get_errno(safe_nanosleep(&req, &rem));
10263             if (is_error(ret) && arg2) {
10264                 host_to_target_timespec(arg2, &rem);
10265             }
10266         }
10267         return ret;
10268 #endif
10269     case TARGET_NR_prctl:
10270         switch (arg1) {
10271         case PR_GET_PDEATHSIG:
10272         {
10273             int deathsig;
10274             ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10275             if (!is_error(ret) && arg2
10276                 && put_user_ual(deathsig, arg2)) {
10277                 return -TARGET_EFAULT;
10278             }
10279             return ret;
10280         }
10281 #ifdef PR_GET_NAME
10282         case PR_GET_NAME:
10283         {
10284             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10285             if (!name) {
10286                 return -TARGET_EFAULT;
10287             }
10288             ret = get_errno(prctl(arg1, (unsigned long)name,
10289                                   arg3, arg4, arg5));
10290             unlock_user(name, arg2, 16);
10291             return ret;
10292         }
10293         case PR_SET_NAME:
10294         {
10295             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10296             if (!name) {
10297                 return -TARGET_EFAULT;
10298             }
10299             ret = get_errno(prctl(arg1, (unsigned long)name,
10300                                   arg3, arg4, arg5));
10301             unlock_user(name, arg2, 0);
10302             return ret;
10303         }
10304 #endif
10305 #ifdef TARGET_MIPS
10306         case TARGET_PR_GET_FP_MODE:
10307         {
10308             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10309             ret = 0;
10310             if (env->CP0_Status & (1 << CP0St_FR)) {
10311                 ret |= TARGET_PR_FP_MODE_FR;
10312             }
10313             if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
10314                 ret |= TARGET_PR_FP_MODE_FRE;
10315             }
10316             return ret;
10317         }
10318         case TARGET_PR_SET_FP_MODE:
10319         {
10320             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10321             bool old_fr = env->CP0_Status & (1 << CP0St_FR);
10322             bool old_fre = env->CP0_Config5 & (1 << CP0C5_FRE);
10323             bool new_fr = arg2 & TARGET_PR_FP_MODE_FR;
10324             bool new_fre = arg2 & TARGET_PR_FP_MODE_FRE;
10325 
10326             const unsigned int known_bits = TARGET_PR_FP_MODE_FR |
10327                                             TARGET_PR_FP_MODE_FRE;
10328 
10329             /* If nothing to change, return right away, successfully.  */
10330             if (old_fr == new_fr && old_fre == new_fre) {
10331                 return 0;
10332             }
10333             /* Check the value is valid */
10334             if (arg2 & ~known_bits) {
10335                 return -TARGET_EOPNOTSUPP;
10336             }
10337             /* Setting FRE without FR is not supported.  */
10338             if (new_fre && !new_fr) {
10339                 return -TARGET_EOPNOTSUPP;
10340             }
10341             if (new_fr && !(env->active_fpu.fcr0 & (1 << FCR0_F64))) {
10342                 /* FR1 is not supported */
10343                 return -TARGET_EOPNOTSUPP;
10344             }
10345             if (!new_fr && (env->active_fpu.fcr0 & (1 << FCR0_F64))
10346                 && !(env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) {
10347                 /* cannot set FR=0 */
10348                 return -TARGET_EOPNOTSUPP;
10349             }
10350             if (new_fre && !(env->active_fpu.fcr0 & (1 << FCR0_FREP))) {
10351                 /* Cannot set FRE=1 */
10352                 return -TARGET_EOPNOTSUPP;
10353             }
10354 
10355             int i;
10356             fpr_t *fpr = env->active_fpu.fpr;
10357             for (i = 0; i < 32 ; i += 2) {
10358                 if (!old_fr && new_fr) {
10359                     fpr[i].w[!FP_ENDIAN_IDX] = fpr[i + 1].w[FP_ENDIAN_IDX];
10360                 } else if (old_fr && !new_fr) {
10361                     fpr[i + 1].w[FP_ENDIAN_IDX] = fpr[i].w[!FP_ENDIAN_IDX];
10362                 }
10363             }
10364 
10365             if (new_fr) {
10366                 env->CP0_Status |= (1 << CP0St_FR);
10367                 env->hflags |= MIPS_HFLAG_F64;
10368             } else {
10369                 env->CP0_Status &= ~(1 << CP0St_FR);
10370                 env->hflags &= ~MIPS_HFLAG_F64;
10371             }
10372             if (new_fre) {
10373                 env->CP0_Config5 |= (1 << CP0C5_FRE);
10374                 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
10375                     env->hflags |= MIPS_HFLAG_FRE;
10376                 }
10377             } else {
10378                 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
10379                 env->hflags &= ~MIPS_HFLAG_FRE;
10380             }
10381 
10382             return 0;
10383         }
10384 #endif /* MIPS */
10385 #ifdef TARGET_AARCH64
10386         case TARGET_PR_SVE_SET_VL:
10387             /*
10388              * We cannot support either PR_SVE_SET_VL_ONEXEC or
10389              * PR_SVE_VL_INHERIT.  Note the kernel definition
10390              * of sve_vl_valid allows for VQ=512, i.e. VL=8192,
10391              * even though the current architectural maximum is VQ=16.
10392              */
10393             ret = -TARGET_EINVAL;
10394             if (cpu_isar_feature(aa64_sve, env_archcpu(cpu_env))
10395                 && arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) {
10396                 CPUARMState *env = cpu_env;
10397                 ARMCPU *cpu = env_archcpu(env);
10398                 uint32_t vq, old_vq;
10399 
10400                 old_vq = (env->vfp.zcr_el[1] & 0xf) + 1;
10401                 vq = MAX(arg2 / 16, 1);
10402                 vq = MIN(vq, cpu->sve_max_vq);
10403 
10404                 if (vq < old_vq) {
10405                     aarch64_sve_narrow_vq(env, vq);
10406                 }
10407                 env->vfp.zcr_el[1] = vq - 1;
10408                 arm_rebuild_hflags(env);
10409                 ret = vq * 16;
10410             }
10411             return ret;
10412         case TARGET_PR_SVE_GET_VL:
10413             ret = -TARGET_EINVAL;
10414             {
10415                 ARMCPU *cpu = env_archcpu(cpu_env);
10416                 if (cpu_isar_feature(aa64_sve, cpu)) {
10417                     ret = ((cpu->env.vfp.zcr_el[1] & 0xf) + 1) * 16;
10418                 }
10419             }
10420             return ret;
10421         case TARGET_PR_PAC_RESET_KEYS:
10422             {
10423                 CPUARMState *env = cpu_env;
10424                 ARMCPU *cpu = env_archcpu(env);
10425 
10426                 if (arg3 || arg4 || arg5) {
10427                     return -TARGET_EINVAL;
10428                 }
10429                 if (cpu_isar_feature(aa64_pauth, cpu)) {
10430                     int all = (TARGET_PR_PAC_APIAKEY | TARGET_PR_PAC_APIBKEY |
10431                                TARGET_PR_PAC_APDAKEY | TARGET_PR_PAC_APDBKEY |
10432                                TARGET_PR_PAC_APGAKEY);
10433                     int ret = 0;
10434                     Error *err = NULL;
10435 
10436                     if (arg2 == 0) {
10437                         arg2 = all;
10438                     } else if (arg2 & ~all) {
10439                         return -TARGET_EINVAL;
10440                     }
10441                     if (arg2 & TARGET_PR_PAC_APIAKEY) {
10442                         ret |= qemu_guest_getrandom(&env->keys.apia,
10443                                                     sizeof(ARMPACKey), &err);
10444                     }
10445                     if (arg2 & TARGET_PR_PAC_APIBKEY) {
10446                         ret |= qemu_guest_getrandom(&env->keys.apib,
10447                                                     sizeof(ARMPACKey), &err);
10448                     }
10449                     if (arg2 & TARGET_PR_PAC_APDAKEY) {
10450                         ret |= qemu_guest_getrandom(&env->keys.apda,
10451                                                     sizeof(ARMPACKey), &err);
10452                     }
10453                     if (arg2 & TARGET_PR_PAC_APDBKEY) {
10454                         ret |= qemu_guest_getrandom(&env->keys.apdb,
10455                                                     sizeof(ARMPACKey), &err);
10456                     }
10457                     if (arg2 & TARGET_PR_PAC_APGAKEY) {
10458                         ret |= qemu_guest_getrandom(&env->keys.apga,
10459                                                     sizeof(ARMPACKey), &err);
10460                     }
10461                     if (ret != 0) {
10462                         /*
10463                          * Some unknown failure in the crypto.  The best
10464                          * we can do is log it and fail the syscall.
10465                          * The real syscall cannot fail this way.
10466                          */
10467                         qemu_log_mask(LOG_UNIMP,
10468                                       "PR_PAC_RESET_KEYS: Crypto failure: %s",
10469                                       error_get_pretty(err));
10470                         error_free(err);
10471                         return -TARGET_EIO;
10472                     }
10473                     return 0;
10474                 }
10475             }
10476             return -TARGET_EINVAL;
10477 #endif /* AARCH64 */
10478         case PR_GET_SECCOMP:
10479         case PR_SET_SECCOMP:
10480             /* Disable seccomp to prevent the target disabling syscalls we
10481              * need. */
10482             return -TARGET_EINVAL;
10483         default:
10484             /* Most prctl options have no pointer arguments */
10485             return get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
10486         }
10487         break;
10488 #ifdef TARGET_NR_arch_prctl
10489     case TARGET_NR_arch_prctl:
10490         return do_arch_prctl(cpu_env, arg1, arg2);
10491 #endif
10492 #ifdef TARGET_NR_pread64
10493     case TARGET_NR_pread64:
10494         if (regpairs_aligned(cpu_env, num)) {
10495             arg4 = arg5;
10496             arg5 = arg6;
10497         }
10498         if (arg2 == 0 && arg3 == 0) {
10499             /* Special-case NULL buffer and zero length, which should succeed */
10500             p = 0;
10501         } else {
10502             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10503             if (!p) {
10504                 return -TARGET_EFAULT;
10505             }
10506         }
10507         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
10508         unlock_user(p, arg2, ret);
10509         return ret;
10510     case TARGET_NR_pwrite64:
10511         if (regpairs_aligned(cpu_env, num)) {
10512             arg4 = arg5;
10513             arg5 = arg6;
10514         }
10515         if (arg2 == 0 && arg3 == 0) {
10516             /* Special-case NULL buffer and zero length, which should succeed */
10517             p = 0;
10518         } else {
10519             p = lock_user(VERIFY_READ, arg2, arg3, 1);
10520             if (!p) {
10521                 return -TARGET_EFAULT;
10522             }
10523         }
10524         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
10525         unlock_user(p, arg2, 0);
10526         return ret;
10527 #endif
10528     case TARGET_NR_getcwd:
10529         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
10530             return -TARGET_EFAULT;
10531         ret = get_errno(sys_getcwd1(p, arg2));
10532         unlock_user(p, arg1, ret);
10533         return ret;
10534     case TARGET_NR_capget:
10535     case TARGET_NR_capset:
10536     {
10537         struct target_user_cap_header *target_header;
10538         struct target_user_cap_data *target_data = NULL;
10539         struct __user_cap_header_struct header;
10540         struct __user_cap_data_struct data[2];
10541         struct __user_cap_data_struct *dataptr = NULL;
10542         int i, target_datalen;
10543         int data_items = 1;
10544 
10545         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
10546             return -TARGET_EFAULT;
10547         }
10548         header.version = tswap32(target_header->version);
10549         header.pid = tswap32(target_header->pid);
10550 
10551         if (header.version != _LINUX_CAPABILITY_VERSION) {
10552             /* Version 2 and up takes pointer to two user_data structs */
10553             data_items = 2;
10554         }
10555 
10556         target_datalen = sizeof(*target_data) * data_items;
10557 
10558         if (arg2) {
10559             if (num == TARGET_NR_capget) {
10560                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
10561             } else {
10562                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
10563             }
10564             if (!target_data) {
10565                 unlock_user_struct(target_header, arg1, 0);
10566                 return -TARGET_EFAULT;
10567             }
10568 
10569             if (num == TARGET_NR_capset) {
10570                 for (i = 0; i < data_items; i++) {
10571                     data[i].effective = tswap32(target_data[i].effective);
10572                     data[i].permitted = tswap32(target_data[i].permitted);
10573                     data[i].inheritable = tswap32(target_data[i].inheritable);
10574                 }
10575             }
10576 
10577             dataptr = data;
10578         }
10579 
10580         if (num == TARGET_NR_capget) {
10581             ret = get_errno(capget(&header, dataptr));
10582         } else {
10583             ret = get_errno(capset(&header, dataptr));
10584         }
10585 
10586         /* The kernel always updates version for both capget and capset */
10587         target_header->version = tswap32(header.version);
10588         unlock_user_struct(target_header, arg1, 1);
10589 
10590         if (arg2) {
10591             if (num == TARGET_NR_capget) {
10592                 for (i = 0; i < data_items; i++) {
10593                     target_data[i].effective = tswap32(data[i].effective);
10594                     target_data[i].permitted = tswap32(data[i].permitted);
10595                     target_data[i].inheritable = tswap32(data[i].inheritable);
10596                 }
10597                 unlock_user(target_data, arg2, target_datalen);
10598             } else {
10599                 unlock_user(target_data, arg2, 0);
10600             }
10601         }
10602         return ret;
10603     }
10604     case TARGET_NR_sigaltstack:
10605         return do_sigaltstack(arg1, arg2,
10606                               get_sp_from_cpustate((CPUArchState *)cpu_env));
10607 
10608 #ifdef CONFIG_SENDFILE
10609 #ifdef TARGET_NR_sendfile
10610     case TARGET_NR_sendfile:
10611     {
10612         off_t *offp = NULL;
10613         off_t off;
10614         if (arg3) {
10615             ret = get_user_sal(off, arg3);
10616             if (is_error(ret)) {
10617                 return ret;
10618             }
10619             offp = &off;
10620         }
10621         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10622         if (!is_error(ret) && arg3) {
10623             abi_long ret2 = put_user_sal(off, arg3);
10624             if (is_error(ret2)) {
10625                 ret = ret2;
10626             }
10627         }
10628         return ret;
10629     }
10630 #endif
10631 #ifdef TARGET_NR_sendfile64
10632     case TARGET_NR_sendfile64:
10633     {
10634         off_t *offp = NULL;
10635         off_t off;
10636         if (arg3) {
10637             ret = get_user_s64(off, arg3);
10638             if (is_error(ret)) {
10639                 return ret;
10640             }
10641             offp = &off;
10642         }
10643         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10644         if (!is_error(ret) && arg3) {
10645             abi_long ret2 = put_user_s64(off, arg3);
10646             if (is_error(ret2)) {
10647                 ret = ret2;
10648             }
10649         }
10650         return ret;
10651     }
10652 #endif
10653 #endif
10654 #ifdef TARGET_NR_vfork
10655     case TARGET_NR_vfork:
10656         return get_errno(do_fork(cpu_env,
10657                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
10658                          0, 0, 0, 0));
10659 #endif
10660 #ifdef TARGET_NR_ugetrlimit
10661     case TARGET_NR_ugetrlimit:
10662     {
10663 	struct rlimit rlim;
10664 	int resource = target_to_host_resource(arg1);
10665 	ret = get_errno(getrlimit(resource, &rlim));
10666 	if (!is_error(ret)) {
10667 	    struct target_rlimit *target_rlim;
10668             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10669                 return -TARGET_EFAULT;
10670 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10671 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10672             unlock_user_struct(target_rlim, arg2, 1);
10673 	}
10674         return ret;
10675     }
10676 #endif
10677 #ifdef TARGET_NR_truncate64
10678     case TARGET_NR_truncate64:
10679         if (!(p = lock_user_string(arg1)))
10680             return -TARGET_EFAULT;
10681 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
10682         unlock_user(p, arg1, 0);
10683         return ret;
10684 #endif
10685 #ifdef TARGET_NR_ftruncate64
10686     case TARGET_NR_ftruncate64:
10687         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
10688 #endif
10689 #ifdef TARGET_NR_stat64
10690     case TARGET_NR_stat64:
10691         if (!(p = lock_user_string(arg1))) {
10692             return -TARGET_EFAULT;
10693         }
10694         ret = get_errno(stat(path(p), &st));
10695         unlock_user(p, arg1, 0);
10696         if (!is_error(ret))
10697             ret = host_to_target_stat64(cpu_env, arg2, &st);
10698         return ret;
10699 #endif
10700 #ifdef TARGET_NR_lstat64
10701     case TARGET_NR_lstat64:
10702         if (!(p = lock_user_string(arg1))) {
10703             return -TARGET_EFAULT;
10704         }
10705         ret = get_errno(lstat(path(p), &st));
10706         unlock_user(p, arg1, 0);
10707         if (!is_error(ret))
10708             ret = host_to_target_stat64(cpu_env, arg2, &st);
10709         return ret;
10710 #endif
10711 #ifdef TARGET_NR_fstat64
10712     case TARGET_NR_fstat64:
10713         ret = get_errno(fstat(arg1, &st));
10714         if (!is_error(ret))
10715             ret = host_to_target_stat64(cpu_env, arg2, &st);
10716         return ret;
10717 #endif
10718 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10719 #ifdef TARGET_NR_fstatat64
10720     case TARGET_NR_fstatat64:
10721 #endif
10722 #ifdef TARGET_NR_newfstatat
10723     case TARGET_NR_newfstatat:
10724 #endif
10725         if (!(p = lock_user_string(arg2))) {
10726             return -TARGET_EFAULT;
10727         }
10728         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
10729         unlock_user(p, arg2, 0);
10730         if (!is_error(ret))
10731             ret = host_to_target_stat64(cpu_env, arg3, &st);
10732         return ret;
10733 #endif
10734 #if defined(TARGET_NR_statx)
10735     case TARGET_NR_statx:
10736         {
10737             struct target_statx *target_stx;
10738             int dirfd = arg1;
10739             int flags = arg3;
10740 
10741             p = lock_user_string(arg2);
10742             if (p == NULL) {
10743                 return -TARGET_EFAULT;
10744             }
10745 #if defined(__NR_statx)
10746             {
10747                 /*
10748                  * It is assumed that struct statx is architecture independent.
10749                  */
10750                 struct target_statx host_stx;
10751                 int mask = arg4;
10752 
10753                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
10754                 if (!is_error(ret)) {
10755                     if (host_to_target_statx(&host_stx, arg5) != 0) {
10756                         unlock_user(p, arg2, 0);
10757                         return -TARGET_EFAULT;
10758                     }
10759                 }
10760 
10761                 if (ret != -TARGET_ENOSYS) {
10762                     unlock_user(p, arg2, 0);
10763                     return ret;
10764                 }
10765             }
10766 #endif
10767             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
10768             unlock_user(p, arg2, 0);
10769 
10770             if (!is_error(ret)) {
10771                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
10772                     return -TARGET_EFAULT;
10773                 }
10774                 memset(target_stx, 0, sizeof(*target_stx));
10775                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
10776                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
10777                 __put_user(st.st_ino, &target_stx->stx_ino);
10778                 __put_user(st.st_mode, &target_stx->stx_mode);
10779                 __put_user(st.st_uid, &target_stx->stx_uid);
10780                 __put_user(st.st_gid, &target_stx->stx_gid);
10781                 __put_user(st.st_nlink, &target_stx->stx_nlink);
10782                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
10783                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
10784                 __put_user(st.st_size, &target_stx->stx_size);
10785                 __put_user(st.st_blksize, &target_stx->stx_blksize);
10786                 __put_user(st.st_blocks, &target_stx->stx_blocks);
10787                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
10788                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
10789                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
10790                 unlock_user_struct(target_stx, arg5, 1);
10791             }
10792         }
10793         return ret;
10794 #endif
10795 #ifdef TARGET_NR_lchown
10796     case TARGET_NR_lchown:
10797         if (!(p = lock_user_string(arg1)))
10798             return -TARGET_EFAULT;
10799         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
10800         unlock_user(p, arg1, 0);
10801         return ret;
10802 #endif
10803 #ifdef TARGET_NR_getuid
10804     case TARGET_NR_getuid:
10805         return get_errno(high2lowuid(getuid()));
10806 #endif
10807 #ifdef TARGET_NR_getgid
10808     case TARGET_NR_getgid:
10809         return get_errno(high2lowgid(getgid()));
10810 #endif
10811 #ifdef TARGET_NR_geteuid
10812     case TARGET_NR_geteuid:
10813         return get_errno(high2lowuid(geteuid()));
10814 #endif
10815 #ifdef TARGET_NR_getegid
10816     case TARGET_NR_getegid:
10817         return get_errno(high2lowgid(getegid()));
10818 #endif
10819     case TARGET_NR_setreuid:
10820         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
10821     case TARGET_NR_setregid:
10822         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
10823     case TARGET_NR_getgroups:
10824         {
10825             int gidsetsize = arg1;
10826             target_id *target_grouplist;
10827             gid_t *grouplist;
10828             int i;
10829 
10830             grouplist = alloca(gidsetsize * sizeof(gid_t));
10831             ret = get_errno(getgroups(gidsetsize, grouplist));
10832             if (gidsetsize == 0)
10833                 return ret;
10834             if (!is_error(ret)) {
10835                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
10836                 if (!target_grouplist)
10837                     return -TARGET_EFAULT;
10838                 for(i = 0;i < ret; i++)
10839                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
10840                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
10841             }
10842         }
10843         return ret;
10844     case TARGET_NR_setgroups:
10845         {
10846             int gidsetsize = arg1;
10847             target_id *target_grouplist;
10848             gid_t *grouplist = NULL;
10849             int i;
10850             if (gidsetsize) {
10851                 grouplist = alloca(gidsetsize * sizeof(gid_t));
10852                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
10853                 if (!target_grouplist) {
10854                     return -TARGET_EFAULT;
10855                 }
10856                 for (i = 0; i < gidsetsize; i++) {
10857                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
10858                 }
10859                 unlock_user(target_grouplist, arg2, 0);
10860             }
10861             return get_errno(setgroups(gidsetsize, grouplist));
10862         }
10863     case TARGET_NR_fchown:
10864         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
10865 #if defined(TARGET_NR_fchownat)
10866     case TARGET_NR_fchownat:
10867         if (!(p = lock_user_string(arg2)))
10868             return -TARGET_EFAULT;
10869         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
10870                                  low2highgid(arg4), arg5));
10871         unlock_user(p, arg2, 0);
10872         return ret;
10873 #endif
10874 #ifdef TARGET_NR_setresuid
10875     case TARGET_NR_setresuid:
10876         return get_errno(sys_setresuid(low2highuid(arg1),
10877                                        low2highuid(arg2),
10878                                        low2highuid(arg3)));
10879 #endif
10880 #ifdef TARGET_NR_getresuid
10881     case TARGET_NR_getresuid:
10882         {
10883             uid_t ruid, euid, suid;
10884             ret = get_errno(getresuid(&ruid, &euid, &suid));
10885             if (!is_error(ret)) {
10886                 if (put_user_id(high2lowuid(ruid), arg1)
10887                     || put_user_id(high2lowuid(euid), arg2)
10888                     || put_user_id(high2lowuid(suid), arg3))
10889                     return -TARGET_EFAULT;
10890             }
10891         }
10892         return ret;
10893 #endif
10894 #ifdef TARGET_NR_getresgid
10895     case TARGET_NR_setresgid:
10896         return get_errno(sys_setresgid(low2highgid(arg1),
10897                                        low2highgid(arg2),
10898                                        low2highgid(arg3)));
10899 #endif
10900 #ifdef TARGET_NR_getresgid
10901     case TARGET_NR_getresgid:
10902         {
10903             gid_t rgid, egid, sgid;
10904             ret = get_errno(getresgid(&rgid, &egid, &sgid));
10905             if (!is_error(ret)) {
10906                 if (put_user_id(high2lowgid(rgid), arg1)
10907                     || put_user_id(high2lowgid(egid), arg2)
10908                     || put_user_id(high2lowgid(sgid), arg3))
10909                     return -TARGET_EFAULT;
10910             }
10911         }
10912         return ret;
10913 #endif
10914 #ifdef TARGET_NR_chown
10915     case TARGET_NR_chown:
10916         if (!(p = lock_user_string(arg1)))
10917             return -TARGET_EFAULT;
10918         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
10919         unlock_user(p, arg1, 0);
10920         return ret;
10921 #endif
10922     case TARGET_NR_setuid:
10923         return get_errno(sys_setuid(low2highuid(arg1)));
10924     case TARGET_NR_setgid:
10925         return get_errno(sys_setgid(low2highgid(arg1)));
10926     case TARGET_NR_setfsuid:
10927         return get_errno(setfsuid(arg1));
10928     case TARGET_NR_setfsgid:
10929         return get_errno(setfsgid(arg1));
10930 
10931 #ifdef TARGET_NR_lchown32
10932     case TARGET_NR_lchown32:
10933         if (!(p = lock_user_string(arg1)))
10934             return -TARGET_EFAULT;
10935         ret = get_errno(lchown(p, arg2, arg3));
10936         unlock_user(p, arg1, 0);
10937         return ret;
10938 #endif
10939 #ifdef TARGET_NR_getuid32
10940     case TARGET_NR_getuid32:
10941         return get_errno(getuid());
10942 #endif
10943 
10944 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
10945    /* Alpha specific */
10946     case TARGET_NR_getxuid:
10947          {
10948             uid_t euid;
10949             euid=geteuid();
10950             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
10951          }
10952         return get_errno(getuid());
10953 #endif
10954 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
10955    /* Alpha specific */
10956     case TARGET_NR_getxgid:
10957          {
10958             uid_t egid;
10959             egid=getegid();
10960             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
10961          }
10962         return get_errno(getgid());
10963 #endif
10964 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
10965     /* Alpha specific */
10966     case TARGET_NR_osf_getsysinfo:
10967         ret = -TARGET_EOPNOTSUPP;
10968         switch (arg1) {
10969           case TARGET_GSI_IEEE_FP_CONTROL:
10970             {
10971                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
10972                 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr;
10973 
10974                 swcr &= ~SWCR_STATUS_MASK;
10975                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
10976 
10977                 if (put_user_u64 (swcr, arg2))
10978                         return -TARGET_EFAULT;
10979                 ret = 0;
10980             }
10981             break;
10982 
10983           /* case GSI_IEEE_STATE_AT_SIGNAL:
10984              -- Not implemented in linux kernel.
10985              case GSI_UACPROC:
10986              -- Retrieves current unaligned access state; not much used.
10987              case GSI_PROC_TYPE:
10988              -- Retrieves implver information; surely not used.
10989              case GSI_GET_HWRPB:
10990              -- Grabs a copy of the HWRPB; surely not used.
10991           */
10992         }
10993         return ret;
10994 #endif
10995 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
10996     /* Alpha specific */
10997     case TARGET_NR_osf_setsysinfo:
10998         ret = -TARGET_EOPNOTSUPP;
10999         switch (arg1) {
11000           case TARGET_SSI_IEEE_FP_CONTROL:
11001             {
11002                 uint64_t swcr, fpcr;
11003 
11004                 if (get_user_u64 (swcr, arg2)) {
11005                     return -TARGET_EFAULT;
11006                 }
11007 
11008                 /*
11009                  * The kernel calls swcr_update_status to update the
11010                  * status bits from the fpcr at every point that it
11011                  * could be queried.  Therefore, we store the status
11012                  * bits only in FPCR.
11013                  */
11014                 ((CPUAlphaState *)cpu_env)->swcr
11015                     = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11016 
11017                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11018                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11019                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11020                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11021                 ret = 0;
11022             }
11023             break;
11024 
11025           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11026             {
11027                 uint64_t exc, fpcr, fex;
11028 
11029                 if (get_user_u64(exc, arg2)) {
11030                     return -TARGET_EFAULT;
11031                 }
11032                 exc &= SWCR_STATUS_MASK;
11033                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11034 
11035                 /* Old exceptions are not signaled.  */
11036                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11037                 fex = exc & ~fex;
11038                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11039                 fex &= ((CPUArchState *)cpu_env)->swcr;
11040 
11041                 /* Update the hardware fpcr.  */
11042                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11043                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11044 
11045                 if (fex) {
11046                     int si_code = TARGET_FPE_FLTUNK;
11047                     target_siginfo_t info;
11048 
11049                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11050                         si_code = TARGET_FPE_FLTUND;
11051                     }
11052                     if (fex & SWCR_TRAP_ENABLE_INE) {
11053                         si_code = TARGET_FPE_FLTRES;
11054                     }
11055                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11056                         si_code = TARGET_FPE_FLTUND;
11057                     }
11058                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11059                         si_code = TARGET_FPE_FLTOVF;
11060                     }
11061                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11062                         si_code = TARGET_FPE_FLTDIV;
11063                     }
11064                     if (fex & SWCR_TRAP_ENABLE_INV) {
11065                         si_code = TARGET_FPE_FLTINV;
11066                     }
11067 
11068                     info.si_signo = SIGFPE;
11069                     info.si_errno = 0;
11070                     info.si_code = si_code;
11071                     info._sifields._sigfault._addr
11072                         = ((CPUArchState *)cpu_env)->pc;
11073                     queue_signal((CPUArchState *)cpu_env, info.si_signo,
11074                                  QEMU_SI_FAULT, &info);
11075                 }
11076                 ret = 0;
11077             }
11078             break;
11079 
11080           /* case SSI_NVPAIRS:
11081              -- Used with SSIN_UACPROC to enable unaligned accesses.
11082              case SSI_IEEE_STATE_AT_SIGNAL:
11083              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11084              -- Not implemented in linux kernel
11085           */
11086         }
11087         return ret;
11088 #endif
11089 #ifdef TARGET_NR_osf_sigprocmask
11090     /* Alpha specific.  */
11091     case TARGET_NR_osf_sigprocmask:
11092         {
11093             abi_ulong mask;
11094             int how;
11095             sigset_t set, oldset;
11096 
11097             switch(arg1) {
11098             case TARGET_SIG_BLOCK:
11099                 how = SIG_BLOCK;
11100                 break;
11101             case TARGET_SIG_UNBLOCK:
11102                 how = SIG_UNBLOCK;
11103                 break;
11104             case TARGET_SIG_SETMASK:
11105                 how = SIG_SETMASK;
11106                 break;
11107             default:
11108                 return -TARGET_EINVAL;
11109             }
11110             mask = arg2;
11111             target_to_host_old_sigset(&set, &mask);
11112             ret = do_sigprocmask(how, &set, &oldset);
11113             if (!ret) {
11114                 host_to_target_old_sigset(&mask, &oldset);
11115                 ret = mask;
11116             }
11117         }
11118         return ret;
11119 #endif
11120 
11121 #ifdef TARGET_NR_getgid32
11122     case TARGET_NR_getgid32:
11123         return get_errno(getgid());
11124 #endif
11125 #ifdef TARGET_NR_geteuid32
11126     case TARGET_NR_geteuid32:
11127         return get_errno(geteuid());
11128 #endif
11129 #ifdef TARGET_NR_getegid32
11130     case TARGET_NR_getegid32:
11131         return get_errno(getegid());
11132 #endif
11133 #ifdef TARGET_NR_setreuid32
11134     case TARGET_NR_setreuid32:
11135         return get_errno(setreuid(arg1, arg2));
11136 #endif
11137 #ifdef TARGET_NR_setregid32
11138     case TARGET_NR_setregid32:
11139         return get_errno(setregid(arg1, arg2));
11140 #endif
11141 #ifdef TARGET_NR_getgroups32
11142     case TARGET_NR_getgroups32:
11143         {
11144             int gidsetsize = arg1;
11145             uint32_t *target_grouplist;
11146             gid_t *grouplist;
11147             int i;
11148 
11149             grouplist = alloca(gidsetsize * sizeof(gid_t));
11150             ret = get_errno(getgroups(gidsetsize, grouplist));
11151             if (gidsetsize == 0)
11152                 return ret;
11153             if (!is_error(ret)) {
11154                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11155                 if (!target_grouplist) {
11156                     return -TARGET_EFAULT;
11157                 }
11158                 for(i = 0;i < ret; i++)
11159                     target_grouplist[i] = tswap32(grouplist[i]);
11160                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11161             }
11162         }
11163         return ret;
11164 #endif
11165 #ifdef TARGET_NR_setgroups32
11166     case TARGET_NR_setgroups32:
11167         {
11168             int gidsetsize = arg1;
11169             uint32_t *target_grouplist;
11170             gid_t *grouplist;
11171             int i;
11172 
11173             grouplist = alloca(gidsetsize * sizeof(gid_t));
11174             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11175             if (!target_grouplist) {
11176                 return -TARGET_EFAULT;
11177             }
11178             for(i = 0;i < gidsetsize; i++)
11179                 grouplist[i] = tswap32(target_grouplist[i]);
11180             unlock_user(target_grouplist, arg2, 0);
11181             return get_errno(setgroups(gidsetsize, grouplist));
11182         }
11183 #endif
11184 #ifdef TARGET_NR_fchown32
11185     case TARGET_NR_fchown32:
11186         return get_errno(fchown(arg1, arg2, arg3));
11187 #endif
11188 #ifdef TARGET_NR_setresuid32
11189     case TARGET_NR_setresuid32:
11190         return get_errno(sys_setresuid(arg1, arg2, arg3));
11191 #endif
11192 #ifdef TARGET_NR_getresuid32
11193     case TARGET_NR_getresuid32:
11194         {
11195             uid_t ruid, euid, suid;
11196             ret = get_errno(getresuid(&ruid, &euid, &suid));
11197             if (!is_error(ret)) {
11198                 if (put_user_u32(ruid, arg1)
11199                     || put_user_u32(euid, arg2)
11200                     || put_user_u32(suid, arg3))
11201                     return -TARGET_EFAULT;
11202             }
11203         }
11204         return ret;
11205 #endif
11206 #ifdef TARGET_NR_setresgid32
11207     case TARGET_NR_setresgid32:
11208         return get_errno(sys_setresgid(arg1, arg2, arg3));
11209 #endif
11210 #ifdef TARGET_NR_getresgid32
11211     case TARGET_NR_getresgid32:
11212         {
11213             gid_t rgid, egid, sgid;
11214             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11215             if (!is_error(ret)) {
11216                 if (put_user_u32(rgid, arg1)
11217                     || put_user_u32(egid, arg2)
11218                     || put_user_u32(sgid, arg3))
11219                     return -TARGET_EFAULT;
11220             }
11221         }
11222         return ret;
11223 #endif
11224 #ifdef TARGET_NR_chown32
11225     case TARGET_NR_chown32:
11226         if (!(p = lock_user_string(arg1)))
11227             return -TARGET_EFAULT;
11228         ret = get_errno(chown(p, arg2, arg3));
11229         unlock_user(p, arg1, 0);
11230         return ret;
11231 #endif
11232 #ifdef TARGET_NR_setuid32
11233     case TARGET_NR_setuid32:
11234         return get_errno(sys_setuid(arg1));
11235 #endif
11236 #ifdef TARGET_NR_setgid32
11237     case TARGET_NR_setgid32:
11238         return get_errno(sys_setgid(arg1));
11239 #endif
11240 #ifdef TARGET_NR_setfsuid32
11241     case TARGET_NR_setfsuid32:
11242         return get_errno(setfsuid(arg1));
11243 #endif
11244 #ifdef TARGET_NR_setfsgid32
11245     case TARGET_NR_setfsgid32:
11246         return get_errno(setfsgid(arg1));
11247 #endif
11248 #ifdef TARGET_NR_mincore
11249     case TARGET_NR_mincore:
11250         {
11251             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11252             if (!a) {
11253                 return -TARGET_ENOMEM;
11254             }
11255             p = lock_user_string(arg3);
11256             if (!p) {
11257                 ret = -TARGET_EFAULT;
11258             } else {
11259                 ret = get_errno(mincore(a, arg2, p));
11260                 unlock_user(p, arg3, ret);
11261             }
11262             unlock_user(a, arg1, 0);
11263         }
11264         return ret;
11265 #endif
11266 #ifdef TARGET_NR_arm_fadvise64_64
11267     case TARGET_NR_arm_fadvise64_64:
11268         /* arm_fadvise64_64 looks like fadvise64_64 but
11269          * with different argument order: fd, advice, offset, len
11270          * rather than the usual fd, offset, len, advice.
11271          * Note that offset and len are both 64-bit so appear as
11272          * pairs of 32-bit registers.
11273          */
11274         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11275                             target_offset64(arg5, arg6), arg2);
11276         return -host_to_target_errno(ret);
11277 #endif
11278 
11279 #if TARGET_ABI_BITS == 32
11280 
11281 #ifdef TARGET_NR_fadvise64_64
11282     case TARGET_NR_fadvise64_64:
11283 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11284         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11285         ret = arg2;
11286         arg2 = arg3;
11287         arg3 = arg4;
11288         arg4 = arg5;
11289         arg5 = arg6;
11290         arg6 = ret;
11291 #else
11292         /* 6 args: fd, offset (high, low), len (high, low), advice */
11293         if (regpairs_aligned(cpu_env, num)) {
11294             /* offset is in (3,4), len in (5,6) and advice in 7 */
11295             arg2 = arg3;
11296             arg3 = arg4;
11297             arg4 = arg5;
11298             arg5 = arg6;
11299             arg6 = arg7;
11300         }
11301 #endif
11302         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11303                             target_offset64(arg4, arg5), arg6);
11304         return -host_to_target_errno(ret);
11305 #endif
11306 
11307 #ifdef TARGET_NR_fadvise64
11308     case TARGET_NR_fadvise64:
11309         /* 5 args: fd, offset (high, low), len, advice */
11310         if (regpairs_aligned(cpu_env, num)) {
11311             /* offset is in (3,4), len in 5 and advice in 6 */
11312             arg2 = arg3;
11313             arg3 = arg4;
11314             arg4 = arg5;
11315             arg5 = arg6;
11316         }
11317         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11318         return -host_to_target_errno(ret);
11319 #endif
11320 
11321 #else /* not a 32-bit ABI */
11322 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11323 #ifdef TARGET_NR_fadvise64_64
11324     case TARGET_NR_fadvise64_64:
11325 #endif
11326 #ifdef TARGET_NR_fadvise64
11327     case TARGET_NR_fadvise64:
11328 #endif
11329 #ifdef TARGET_S390X
11330         switch (arg4) {
11331         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11332         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11333         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11334         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11335         default: break;
11336         }
11337 #endif
11338         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11339 #endif
11340 #endif /* end of 64-bit ABI fadvise handling */
11341 
11342 #ifdef TARGET_NR_madvise
11343     case TARGET_NR_madvise:
11344         /* A straight passthrough may not be safe because qemu sometimes
11345            turns private file-backed mappings into anonymous mappings.
11346            This will break MADV_DONTNEED.
11347            This is a hint, so ignoring and returning success is ok.  */
11348         return 0;
11349 #endif
11350 #ifdef TARGET_NR_fcntl64
11351     case TARGET_NR_fcntl64:
11352     {
11353         int cmd;
11354         struct flock64 fl;
11355         from_flock64_fn *copyfrom = copy_from_user_flock64;
11356         to_flock64_fn *copyto = copy_to_user_flock64;
11357 
11358 #ifdef TARGET_ARM
11359         if (!((CPUARMState *)cpu_env)->eabi) {
11360             copyfrom = copy_from_user_oabi_flock64;
11361             copyto = copy_to_user_oabi_flock64;
11362         }
11363 #endif
11364 
11365         cmd = target_to_host_fcntl_cmd(arg2);
11366         if (cmd == -TARGET_EINVAL) {
11367             return cmd;
11368         }
11369 
11370         switch(arg2) {
11371         case TARGET_F_GETLK64:
11372             ret = copyfrom(&fl, arg3);
11373             if (ret) {
11374                 break;
11375             }
11376             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11377             if (ret == 0) {
11378                 ret = copyto(arg3, &fl);
11379             }
11380 	    break;
11381 
11382         case TARGET_F_SETLK64:
11383         case TARGET_F_SETLKW64:
11384             ret = copyfrom(&fl, arg3);
11385             if (ret) {
11386                 break;
11387             }
11388             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11389 	    break;
11390         default:
11391             ret = do_fcntl(arg1, arg2, arg3);
11392             break;
11393         }
11394         return ret;
11395     }
11396 #endif
11397 #ifdef TARGET_NR_cacheflush
11398     case TARGET_NR_cacheflush:
11399         /* self-modifying code is handled automatically, so nothing needed */
11400         return 0;
11401 #endif
11402 #ifdef TARGET_NR_getpagesize
11403     case TARGET_NR_getpagesize:
11404         return TARGET_PAGE_SIZE;
11405 #endif
11406     case TARGET_NR_gettid:
11407         return get_errno(sys_gettid());
11408 #ifdef TARGET_NR_readahead
11409     case TARGET_NR_readahead:
11410 #if TARGET_ABI_BITS == 32
11411         if (regpairs_aligned(cpu_env, num)) {
11412             arg2 = arg3;
11413             arg3 = arg4;
11414             arg4 = arg5;
11415         }
11416         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11417 #else
11418         ret = get_errno(readahead(arg1, arg2, arg3));
11419 #endif
11420         return ret;
11421 #endif
11422 #ifdef CONFIG_ATTR
11423 #ifdef TARGET_NR_setxattr
11424     case TARGET_NR_listxattr:
11425     case TARGET_NR_llistxattr:
11426     {
11427         void *p, *b = 0;
11428         if (arg2) {
11429             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11430             if (!b) {
11431                 return -TARGET_EFAULT;
11432             }
11433         }
11434         p = lock_user_string(arg1);
11435         if (p) {
11436             if (num == TARGET_NR_listxattr) {
11437                 ret = get_errno(listxattr(p, b, arg3));
11438             } else {
11439                 ret = get_errno(llistxattr(p, b, arg3));
11440             }
11441         } else {
11442             ret = -TARGET_EFAULT;
11443         }
11444         unlock_user(p, arg1, 0);
11445         unlock_user(b, arg2, arg3);
11446         return ret;
11447     }
11448     case TARGET_NR_flistxattr:
11449     {
11450         void *b = 0;
11451         if (arg2) {
11452             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11453             if (!b) {
11454                 return -TARGET_EFAULT;
11455             }
11456         }
11457         ret = get_errno(flistxattr(arg1, b, arg3));
11458         unlock_user(b, arg2, arg3);
11459         return ret;
11460     }
11461     case TARGET_NR_setxattr:
11462     case TARGET_NR_lsetxattr:
11463         {
11464             void *p, *n, *v = 0;
11465             if (arg3) {
11466                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11467                 if (!v) {
11468                     return -TARGET_EFAULT;
11469                 }
11470             }
11471             p = lock_user_string(arg1);
11472             n = lock_user_string(arg2);
11473             if (p && n) {
11474                 if (num == TARGET_NR_setxattr) {
11475                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
11476                 } else {
11477                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11478                 }
11479             } else {
11480                 ret = -TARGET_EFAULT;
11481             }
11482             unlock_user(p, arg1, 0);
11483             unlock_user(n, arg2, 0);
11484             unlock_user(v, arg3, 0);
11485         }
11486         return ret;
11487     case TARGET_NR_fsetxattr:
11488         {
11489             void *n, *v = 0;
11490             if (arg3) {
11491                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11492                 if (!v) {
11493                     return -TARGET_EFAULT;
11494                 }
11495             }
11496             n = lock_user_string(arg2);
11497             if (n) {
11498                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11499             } else {
11500                 ret = -TARGET_EFAULT;
11501             }
11502             unlock_user(n, arg2, 0);
11503             unlock_user(v, arg3, 0);
11504         }
11505         return ret;
11506     case TARGET_NR_getxattr:
11507     case TARGET_NR_lgetxattr:
11508         {
11509             void *p, *n, *v = 0;
11510             if (arg3) {
11511                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11512                 if (!v) {
11513                     return -TARGET_EFAULT;
11514                 }
11515             }
11516             p = lock_user_string(arg1);
11517             n = lock_user_string(arg2);
11518             if (p && n) {
11519                 if (num == TARGET_NR_getxattr) {
11520                     ret = get_errno(getxattr(p, n, v, arg4));
11521                 } else {
11522                     ret = get_errno(lgetxattr(p, n, v, arg4));
11523                 }
11524             } else {
11525                 ret = -TARGET_EFAULT;
11526             }
11527             unlock_user(p, arg1, 0);
11528             unlock_user(n, arg2, 0);
11529             unlock_user(v, arg3, arg4);
11530         }
11531         return ret;
11532     case TARGET_NR_fgetxattr:
11533         {
11534             void *n, *v = 0;
11535             if (arg3) {
11536                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11537                 if (!v) {
11538                     return -TARGET_EFAULT;
11539                 }
11540             }
11541             n = lock_user_string(arg2);
11542             if (n) {
11543                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
11544             } else {
11545                 ret = -TARGET_EFAULT;
11546             }
11547             unlock_user(n, arg2, 0);
11548             unlock_user(v, arg3, arg4);
11549         }
11550         return ret;
11551     case TARGET_NR_removexattr:
11552     case TARGET_NR_lremovexattr:
11553         {
11554             void *p, *n;
11555             p = lock_user_string(arg1);
11556             n = lock_user_string(arg2);
11557             if (p && n) {
11558                 if (num == TARGET_NR_removexattr) {
11559                     ret = get_errno(removexattr(p, n));
11560                 } else {
11561                     ret = get_errno(lremovexattr(p, n));
11562                 }
11563             } else {
11564                 ret = -TARGET_EFAULT;
11565             }
11566             unlock_user(p, arg1, 0);
11567             unlock_user(n, arg2, 0);
11568         }
11569         return ret;
11570     case TARGET_NR_fremovexattr:
11571         {
11572             void *n;
11573             n = lock_user_string(arg2);
11574             if (n) {
11575                 ret = get_errno(fremovexattr(arg1, n));
11576             } else {
11577                 ret = -TARGET_EFAULT;
11578             }
11579             unlock_user(n, arg2, 0);
11580         }
11581         return ret;
11582 #endif
11583 #endif /* CONFIG_ATTR */
11584 #ifdef TARGET_NR_set_thread_area
11585     case TARGET_NR_set_thread_area:
11586 #if defined(TARGET_MIPS)
11587       ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
11588       return 0;
11589 #elif defined(TARGET_CRIS)
11590       if (arg1 & 0xff)
11591           ret = -TARGET_EINVAL;
11592       else {
11593           ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
11594           ret = 0;
11595       }
11596       return ret;
11597 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11598       return do_set_thread_area(cpu_env, arg1);
11599 #elif defined(TARGET_M68K)
11600       {
11601           TaskState *ts = cpu->opaque;
11602           ts->tp_value = arg1;
11603           return 0;
11604       }
11605 #else
11606       return -TARGET_ENOSYS;
11607 #endif
11608 #endif
11609 #ifdef TARGET_NR_get_thread_area
11610     case TARGET_NR_get_thread_area:
11611 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11612         return do_get_thread_area(cpu_env, arg1);
11613 #elif defined(TARGET_M68K)
11614         {
11615             TaskState *ts = cpu->opaque;
11616             return ts->tp_value;
11617         }
11618 #else
11619         return -TARGET_ENOSYS;
11620 #endif
11621 #endif
11622 #ifdef TARGET_NR_getdomainname
11623     case TARGET_NR_getdomainname:
11624         return -TARGET_ENOSYS;
11625 #endif
11626 
11627 #ifdef TARGET_NR_clock_settime
11628     case TARGET_NR_clock_settime:
11629     {
11630         struct timespec ts;
11631 
11632         ret = target_to_host_timespec(&ts, arg2);
11633         if (!is_error(ret)) {
11634             ret = get_errno(clock_settime(arg1, &ts));
11635         }
11636         return ret;
11637     }
11638 #endif
11639 #ifdef TARGET_NR_clock_settime64
11640     case TARGET_NR_clock_settime64:
11641     {
11642         struct timespec ts;
11643 
11644         ret = target_to_host_timespec64(&ts, arg2);
11645         if (!is_error(ret)) {
11646             ret = get_errno(clock_settime(arg1, &ts));
11647         }
11648         return ret;
11649     }
11650 #endif
11651 #ifdef TARGET_NR_clock_gettime
11652     case TARGET_NR_clock_gettime:
11653     {
11654         struct timespec ts;
11655         ret = get_errno(clock_gettime(arg1, &ts));
11656         if (!is_error(ret)) {
11657             ret = host_to_target_timespec(arg2, &ts);
11658         }
11659         return ret;
11660     }
11661 #endif
11662 #ifdef TARGET_NR_clock_gettime64
11663     case TARGET_NR_clock_gettime64:
11664     {
11665         struct timespec ts;
11666         ret = get_errno(clock_gettime(arg1, &ts));
11667         if (!is_error(ret)) {
11668             ret = host_to_target_timespec64(arg2, &ts);
11669         }
11670         return ret;
11671     }
11672 #endif
11673 #ifdef TARGET_NR_clock_getres
11674     case TARGET_NR_clock_getres:
11675     {
11676         struct timespec ts;
11677         ret = get_errno(clock_getres(arg1, &ts));
11678         if (!is_error(ret)) {
11679             host_to_target_timespec(arg2, &ts);
11680         }
11681         return ret;
11682     }
11683 #endif
11684 #ifdef TARGET_NR_clock_nanosleep
11685     case TARGET_NR_clock_nanosleep:
11686     {
11687         struct timespec ts;
11688         target_to_host_timespec(&ts, arg3);
11689         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
11690                                              &ts, arg4 ? &ts : NULL));
11691         if (arg4)
11692             host_to_target_timespec(arg4, &ts);
11693 
11694 #if defined(TARGET_PPC)
11695         /* clock_nanosleep is odd in that it returns positive errno values.
11696          * On PPC, CR0 bit 3 should be set in such a situation. */
11697         if (ret && ret != -TARGET_ERESTARTSYS) {
11698             ((CPUPPCState *)cpu_env)->crf[0] |= 1;
11699         }
11700 #endif
11701         return ret;
11702     }
11703 #endif
11704 
11705 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11706     case TARGET_NR_set_tid_address:
11707         return get_errno(set_tid_address((int *)g2h(arg1)));
11708 #endif
11709 
11710     case TARGET_NR_tkill:
11711         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
11712 
11713     case TARGET_NR_tgkill:
11714         return get_errno(safe_tgkill((int)arg1, (int)arg2,
11715                          target_to_host_signal(arg3)));
11716 
11717 #ifdef TARGET_NR_set_robust_list
11718     case TARGET_NR_set_robust_list:
11719     case TARGET_NR_get_robust_list:
11720         /* The ABI for supporting robust futexes has userspace pass
11721          * the kernel a pointer to a linked list which is updated by
11722          * userspace after the syscall; the list is walked by the kernel
11723          * when the thread exits. Since the linked list in QEMU guest
11724          * memory isn't a valid linked list for the host and we have
11725          * no way to reliably intercept the thread-death event, we can't
11726          * support these. Silently return ENOSYS so that guest userspace
11727          * falls back to a non-robust futex implementation (which should
11728          * be OK except in the corner case of the guest crashing while
11729          * holding a mutex that is shared with another process via
11730          * shared memory).
11731          */
11732         return -TARGET_ENOSYS;
11733 #endif
11734 
11735 #if defined(TARGET_NR_utimensat)
11736     case TARGET_NR_utimensat:
11737         {
11738             struct timespec *tsp, ts[2];
11739             if (!arg3) {
11740                 tsp = NULL;
11741             } else {
11742                 target_to_host_timespec(ts, arg3);
11743                 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
11744                 tsp = ts;
11745             }
11746             if (!arg2)
11747                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
11748             else {
11749                 if (!(p = lock_user_string(arg2))) {
11750                     return -TARGET_EFAULT;
11751                 }
11752                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
11753                 unlock_user(p, arg2, 0);
11754             }
11755         }
11756         return ret;
11757 #endif
11758 #ifdef TARGET_NR_futex
11759     case TARGET_NR_futex:
11760         return do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
11761 #endif
11762 #ifdef TARGET_NR_futex_time64
11763     case TARGET_NR_futex_time64:
11764         return do_futex_time64(arg1, arg2, arg3, arg4, arg5, arg6);
11765 #endif
11766 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
11767     case TARGET_NR_inotify_init:
11768         ret = get_errno(sys_inotify_init());
11769         if (ret >= 0) {
11770             fd_trans_register(ret, &target_inotify_trans);
11771         }
11772         return ret;
11773 #endif
11774 #ifdef CONFIG_INOTIFY1
11775 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
11776     case TARGET_NR_inotify_init1:
11777         ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
11778                                           fcntl_flags_tbl)));
11779         if (ret >= 0) {
11780             fd_trans_register(ret, &target_inotify_trans);
11781         }
11782         return ret;
11783 #endif
11784 #endif
11785 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
11786     case TARGET_NR_inotify_add_watch:
11787         p = lock_user_string(arg2);
11788         ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
11789         unlock_user(p, arg2, 0);
11790         return ret;
11791 #endif
11792 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
11793     case TARGET_NR_inotify_rm_watch:
11794         return get_errno(sys_inotify_rm_watch(arg1, arg2));
11795 #endif
11796 
11797 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
11798     case TARGET_NR_mq_open:
11799         {
11800             struct mq_attr posix_mq_attr;
11801             struct mq_attr *pposix_mq_attr;
11802             int host_flags;
11803 
11804             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
11805             pposix_mq_attr = NULL;
11806             if (arg4) {
11807                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
11808                     return -TARGET_EFAULT;
11809                 }
11810                 pposix_mq_attr = &posix_mq_attr;
11811             }
11812             p = lock_user_string(arg1 - 1);
11813             if (!p) {
11814                 return -TARGET_EFAULT;
11815             }
11816             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
11817             unlock_user (p, arg1, 0);
11818         }
11819         return ret;
11820 
11821     case TARGET_NR_mq_unlink:
11822         p = lock_user_string(arg1 - 1);
11823         if (!p) {
11824             return -TARGET_EFAULT;
11825         }
11826         ret = get_errno(mq_unlink(p));
11827         unlock_user (p, arg1, 0);
11828         return ret;
11829 
11830 #ifdef TARGET_NR_mq_timedsend
11831     case TARGET_NR_mq_timedsend:
11832         {
11833             struct timespec ts;
11834 
11835             p = lock_user (VERIFY_READ, arg2, arg3, 1);
11836             if (arg5 != 0) {
11837                 target_to_host_timespec(&ts, arg5);
11838                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
11839                 host_to_target_timespec(arg5, &ts);
11840             } else {
11841                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
11842             }
11843             unlock_user (p, arg2, arg3);
11844         }
11845         return ret;
11846 #endif
11847 
11848 #ifdef TARGET_NR_mq_timedreceive
11849     case TARGET_NR_mq_timedreceive:
11850         {
11851             struct timespec ts;
11852             unsigned int prio;
11853 
11854             p = lock_user (VERIFY_READ, arg2, arg3, 1);
11855             if (arg5 != 0) {
11856                 target_to_host_timespec(&ts, arg5);
11857                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11858                                                      &prio, &ts));
11859                 host_to_target_timespec(arg5, &ts);
11860             } else {
11861                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11862                                                      &prio, NULL));
11863             }
11864             unlock_user (p, arg2, arg3);
11865             if (arg4 != 0)
11866                 put_user_u32(prio, arg4);
11867         }
11868         return ret;
11869 #endif
11870 
11871     /* Not implemented for now... */
11872 /*     case TARGET_NR_mq_notify: */
11873 /*         break; */
11874 
11875     case TARGET_NR_mq_getsetattr:
11876         {
11877             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
11878             ret = 0;
11879             if (arg2 != 0) {
11880                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
11881                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
11882                                            &posix_mq_attr_out));
11883             } else if (arg3 != 0) {
11884                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
11885             }
11886             if (ret == 0 && arg3 != 0) {
11887                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
11888             }
11889         }
11890         return ret;
11891 #endif
11892 
11893 #ifdef CONFIG_SPLICE
11894 #ifdef TARGET_NR_tee
11895     case TARGET_NR_tee:
11896         {
11897             ret = get_errno(tee(arg1,arg2,arg3,arg4));
11898         }
11899         return ret;
11900 #endif
11901 #ifdef TARGET_NR_splice
11902     case TARGET_NR_splice:
11903         {
11904             loff_t loff_in, loff_out;
11905             loff_t *ploff_in = NULL, *ploff_out = NULL;
11906             if (arg2) {
11907                 if (get_user_u64(loff_in, arg2)) {
11908                     return -TARGET_EFAULT;
11909                 }
11910                 ploff_in = &loff_in;
11911             }
11912             if (arg4) {
11913                 if (get_user_u64(loff_out, arg4)) {
11914                     return -TARGET_EFAULT;
11915                 }
11916                 ploff_out = &loff_out;
11917             }
11918             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
11919             if (arg2) {
11920                 if (put_user_u64(loff_in, arg2)) {
11921                     return -TARGET_EFAULT;
11922                 }
11923             }
11924             if (arg4) {
11925                 if (put_user_u64(loff_out, arg4)) {
11926                     return -TARGET_EFAULT;
11927                 }
11928             }
11929         }
11930         return ret;
11931 #endif
11932 #ifdef TARGET_NR_vmsplice
11933 	case TARGET_NR_vmsplice:
11934         {
11935             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11936             if (vec != NULL) {
11937                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
11938                 unlock_iovec(vec, arg2, arg3, 0);
11939             } else {
11940                 ret = -host_to_target_errno(errno);
11941             }
11942         }
11943         return ret;
11944 #endif
11945 #endif /* CONFIG_SPLICE */
11946 #ifdef CONFIG_EVENTFD
11947 #if defined(TARGET_NR_eventfd)
11948     case TARGET_NR_eventfd:
11949         ret = get_errno(eventfd(arg1, 0));
11950         if (ret >= 0) {
11951             fd_trans_register(ret, &target_eventfd_trans);
11952         }
11953         return ret;
11954 #endif
11955 #if defined(TARGET_NR_eventfd2)
11956     case TARGET_NR_eventfd2:
11957     {
11958         int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
11959         if (arg2 & TARGET_O_NONBLOCK) {
11960             host_flags |= O_NONBLOCK;
11961         }
11962         if (arg2 & TARGET_O_CLOEXEC) {
11963             host_flags |= O_CLOEXEC;
11964         }
11965         ret = get_errno(eventfd(arg1, host_flags));
11966         if (ret >= 0) {
11967             fd_trans_register(ret, &target_eventfd_trans);
11968         }
11969         return ret;
11970     }
11971 #endif
11972 #endif /* CONFIG_EVENTFD  */
11973 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
11974     case TARGET_NR_fallocate:
11975 #if TARGET_ABI_BITS == 32
11976         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
11977                                   target_offset64(arg5, arg6)));
11978 #else
11979         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
11980 #endif
11981         return ret;
11982 #endif
11983 #if defined(CONFIG_SYNC_FILE_RANGE)
11984 #if defined(TARGET_NR_sync_file_range)
11985     case TARGET_NR_sync_file_range:
11986 #if TARGET_ABI_BITS == 32
11987 #if defined(TARGET_MIPS)
11988         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
11989                                         target_offset64(arg5, arg6), arg7));
11990 #else
11991         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
11992                                         target_offset64(arg4, arg5), arg6));
11993 #endif /* !TARGET_MIPS */
11994 #else
11995         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
11996 #endif
11997         return ret;
11998 #endif
11999 #if defined(TARGET_NR_sync_file_range2) || \
12000     defined(TARGET_NR_arm_sync_file_range)
12001 #if defined(TARGET_NR_sync_file_range2)
12002     case TARGET_NR_sync_file_range2:
12003 #endif
12004 #if defined(TARGET_NR_arm_sync_file_range)
12005     case TARGET_NR_arm_sync_file_range:
12006 #endif
12007         /* This is like sync_file_range but the arguments are reordered */
12008 #if TARGET_ABI_BITS == 32
12009         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12010                                         target_offset64(arg5, arg6), arg2));
12011 #else
12012         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12013 #endif
12014         return ret;
12015 #endif
12016 #endif
12017 #if defined(TARGET_NR_signalfd4)
12018     case TARGET_NR_signalfd4:
12019         return do_signalfd4(arg1, arg2, arg4);
12020 #endif
12021 #if defined(TARGET_NR_signalfd)
12022     case TARGET_NR_signalfd:
12023         return do_signalfd4(arg1, arg2, 0);
12024 #endif
12025 #if defined(CONFIG_EPOLL)
12026 #if defined(TARGET_NR_epoll_create)
12027     case TARGET_NR_epoll_create:
12028         return get_errno(epoll_create(arg1));
12029 #endif
12030 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12031     case TARGET_NR_epoll_create1:
12032         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12033 #endif
12034 #if defined(TARGET_NR_epoll_ctl)
12035     case TARGET_NR_epoll_ctl:
12036     {
12037         struct epoll_event ep;
12038         struct epoll_event *epp = 0;
12039         if (arg4) {
12040             struct target_epoll_event *target_ep;
12041             if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12042                 return -TARGET_EFAULT;
12043             }
12044             ep.events = tswap32(target_ep->events);
12045             /* The epoll_data_t union is just opaque data to the kernel,
12046              * so we transfer all 64 bits across and need not worry what
12047              * actual data type it is.
12048              */
12049             ep.data.u64 = tswap64(target_ep->data.u64);
12050             unlock_user_struct(target_ep, arg4, 0);
12051             epp = &ep;
12052         }
12053         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12054     }
12055 #endif
12056 
12057 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12058 #if defined(TARGET_NR_epoll_wait)
12059     case TARGET_NR_epoll_wait:
12060 #endif
12061 #if defined(TARGET_NR_epoll_pwait)
12062     case TARGET_NR_epoll_pwait:
12063 #endif
12064     {
12065         struct target_epoll_event *target_ep;
12066         struct epoll_event *ep;
12067         int epfd = arg1;
12068         int maxevents = arg3;
12069         int timeout = arg4;
12070 
12071         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12072             return -TARGET_EINVAL;
12073         }
12074 
12075         target_ep = lock_user(VERIFY_WRITE, arg2,
12076                               maxevents * sizeof(struct target_epoll_event), 1);
12077         if (!target_ep) {
12078             return -TARGET_EFAULT;
12079         }
12080 
12081         ep = g_try_new(struct epoll_event, maxevents);
12082         if (!ep) {
12083             unlock_user(target_ep, arg2, 0);
12084             return -TARGET_ENOMEM;
12085         }
12086 
12087         switch (num) {
12088 #if defined(TARGET_NR_epoll_pwait)
12089         case TARGET_NR_epoll_pwait:
12090         {
12091             target_sigset_t *target_set;
12092             sigset_t _set, *set = &_set;
12093 
12094             if (arg5) {
12095                 if (arg6 != sizeof(target_sigset_t)) {
12096                     ret = -TARGET_EINVAL;
12097                     break;
12098                 }
12099 
12100                 target_set = lock_user(VERIFY_READ, arg5,
12101                                        sizeof(target_sigset_t), 1);
12102                 if (!target_set) {
12103                     ret = -TARGET_EFAULT;
12104                     break;
12105                 }
12106                 target_to_host_sigset(set, target_set);
12107                 unlock_user(target_set, arg5, 0);
12108             } else {
12109                 set = NULL;
12110             }
12111 
12112             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12113                                              set, SIGSET_T_SIZE));
12114             break;
12115         }
12116 #endif
12117 #if defined(TARGET_NR_epoll_wait)
12118         case TARGET_NR_epoll_wait:
12119             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12120                                              NULL, 0));
12121             break;
12122 #endif
12123         default:
12124             ret = -TARGET_ENOSYS;
12125         }
12126         if (!is_error(ret)) {
12127             int i;
12128             for (i = 0; i < ret; i++) {
12129                 target_ep[i].events = tswap32(ep[i].events);
12130                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12131             }
12132             unlock_user(target_ep, arg2,
12133                         ret * sizeof(struct target_epoll_event));
12134         } else {
12135             unlock_user(target_ep, arg2, 0);
12136         }
12137         g_free(ep);
12138         return ret;
12139     }
12140 #endif
12141 #endif
12142 #ifdef TARGET_NR_prlimit64
12143     case TARGET_NR_prlimit64:
12144     {
12145         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12146         struct target_rlimit64 *target_rnew, *target_rold;
12147         struct host_rlimit64 rnew, rold, *rnewp = 0;
12148         int resource = target_to_host_resource(arg2);
12149 
12150         if (arg3 && (resource != RLIMIT_AS &&
12151                      resource != RLIMIT_DATA &&
12152                      resource != RLIMIT_STACK)) {
12153             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12154                 return -TARGET_EFAULT;
12155             }
12156             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12157             rnew.rlim_max = tswap64(target_rnew->rlim_max);
12158             unlock_user_struct(target_rnew, arg3, 0);
12159             rnewp = &rnew;
12160         }
12161 
12162         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12163         if (!is_error(ret) && arg4) {
12164             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12165                 return -TARGET_EFAULT;
12166             }
12167             target_rold->rlim_cur = tswap64(rold.rlim_cur);
12168             target_rold->rlim_max = tswap64(rold.rlim_max);
12169             unlock_user_struct(target_rold, arg4, 1);
12170         }
12171         return ret;
12172     }
12173 #endif
12174 #ifdef TARGET_NR_gethostname
12175     case TARGET_NR_gethostname:
12176     {
12177         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12178         if (name) {
12179             ret = get_errno(gethostname(name, arg2));
12180             unlock_user(name, arg1, arg2);
12181         } else {
12182             ret = -TARGET_EFAULT;
12183         }
12184         return ret;
12185     }
12186 #endif
12187 #ifdef TARGET_NR_atomic_cmpxchg_32
12188     case TARGET_NR_atomic_cmpxchg_32:
12189     {
12190         /* should use start_exclusive from main.c */
12191         abi_ulong mem_value;
12192         if (get_user_u32(mem_value, arg6)) {
12193             target_siginfo_t info;
12194             info.si_signo = SIGSEGV;
12195             info.si_errno = 0;
12196             info.si_code = TARGET_SEGV_MAPERR;
12197             info._sifields._sigfault._addr = arg6;
12198             queue_signal((CPUArchState *)cpu_env, info.si_signo,
12199                          QEMU_SI_FAULT, &info);
12200             ret = 0xdeadbeef;
12201 
12202         }
12203         if (mem_value == arg2)
12204             put_user_u32(arg1, arg6);
12205         return mem_value;
12206     }
12207 #endif
12208 #ifdef TARGET_NR_atomic_barrier
12209     case TARGET_NR_atomic_barrier:
12210         /* Like the kernel implementation and the
12211            qemu arm barrier, no-op this? */
12212         return 0;
12213 #endif
12214 
12215 #ifdef TARGET_NR_timer_create
12216     case TARGET_NR_timer_create:
12217     {
12218         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12219 
12220         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12221 
12222         int clkid = arg1;
12223         int timer_index = next_free_host_timer();
12224 
12225         if (timer_index < 0) {
12226             ret = -TARGET_EAGAIN;
12227         } else {
12228             timer_t *phtimer = g_posix_timers  + timer_index;
12229 
12230             if (arg2) {
12231                 phost_sevp = &host_sevp;
12232                 ret = target_to_host_sigevent(phost_sevp, arg2);
12233                 if (ret != 0) {
12234                     return ret;
12235                 }
12236             }
12237 
12238             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12239             if (ret) {
12240                 phtimer = NULL;
12241             } else {
12242                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12243                     return -TARGET_EFAULT;
12244                 }
12245             }
12246         }
12247         return ret;
12248     }
12249 #endif
12250 
12251 #ifdef TARGET_NR_timer_settime
12252     case TARGET_NR_timer_settime:
12253     {
12254         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12255          * struct itimerspec * old_value */
12256         target_timer_t timerid = get_timer_id(arg1);
12257 
12258         if (timerid < 0) {
12259             ret = timerid;
12260         } else if (arg3 == 0) {
12261             ret = -TARGET_EINVAL;
12262         } else {
12263             timer_t htimer = g_posix_timers[timerid];
12264             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12265 
12266             if (target_to_host_itimerspec(&hspec_new, arg3)) {
12267                 return -TARGET_EFAULT;
12268             }
12269             ret = get_errno(
12270                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12271             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12272                 return -TARGET_EFAULT;
12273             }
12274         }
12275         return ret;
12276     }
12277 #endif
12278 
12279 #ifdef TARGET_NR_timer_gettime
12280     case TARGET_NR_timer_gettime:
12281     {
12282         /* args: timer_t timerid, struct itimerspec *curr_value */
12283         target_timer_t timerid = get_timer_id(arg1);
12284 
12285         if (timerid < 0) {
12286             ret = timerid;
12287         } else if (!arg2) {
12288             ret = -TARGET_EFAULT;
12289         } else {
12290             timer_t htimer = g_posix_timers[timerid];
12291             struct itimerspec hspec;
12292             ret = get_errno(timer_gettime(htimer, &hspec));
12293 
12294             if (host_to_target_itimerspec(arg2, &hspec)) {
12295                 ret = -TARGET_EFAULT;
12296             }
12297         }
12298         return ret;
12299     }
12300 #endif
12301 
12302 #ifdef TARGET_NR_timer_getoverrun
12303     case TARGET_NR_timer_getoverrun:
12304     {
12305         /* args: timer_t timerid */
12306         target_timer_t timerid = get_timer_id(arg1);
12307 
12308         if (timerid < 0) {
12309             ret = timerid;
12310         } else {
12311             timer_t htimer = g_posix_timers[timerid];
12312             ret = get_errno(timer_getoverrun(htimer));
12313         }
12314         return ret;
12315     }
12316 #endif
12317 
12318 #ifdef TARGET_NR_timer_delete
12319     case TARGET_NR_timer_delete:
12320     {
12321         /* args: timer_t timerid */
12322         target_timer_t timerid = get_timer_id(arg1);
12323 
12324         if (timerid < 0) {
12325             ret = timerid;
12326         } else {
12327             timer_t htimer = g_posix_timers[timerid];
12328             ret = get_errno(timer_delete(htimer));
12329             g_posix_timers[timerid] = 0;
12330         }
12331         return ret;
12332     }
12333 #endif
12334 
12335 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12336     case TARGET_NR_timerfd_create:
12337         return get_errno(timerfd_create(arg1,
12338                           target_to_host_bitmask(arg2, fcntl_flags_tbl)));
12339 #endif
12340 
12341 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12342     case TARGET_NR_timerfd_gettime:
12343         {
12344             struct itimerspec its_curr;
12345 
12346             ret = get_errno(timerfd_gettime(arg1, &its_curr));
12347 
12348             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
12349                 return -TARGET_EFAULT;
12350             }
12351         }
12352         return ret;
12353 #endif
12354 
12355 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12356     case TARGET_NR_timerfd_settime:
12357         {
12358             struct itimerspec its_new, its_old, *p_new;
12359 
12360             if (arg3) {
12361                 if (target_to_host_itimerspec(&its_new, arg3)) {
12362                     return -TARGET_EFAULT;
12363                 }
12364                 p_new = &its_new;
12365             } else {
12366                 p_new = NULL;
12367             }
12368 
12369             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
12370 
12371             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
12372                 return -TARGET_EFAULT;
12373             }
12374         }
12375         return ret;
12376 #endif
12377 
12378 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12379     case TARGET_NR_ioprio_get:
12380         return get_errno(ioprio_get(arg1, arg2));
12381 #endif
12382 
12383 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12384     case TARGET_NR_ioprio_set:
12385         return get_errno(ioprio_set(arg1, arg2, arg3));
12386 #endif
12387 
12388 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12389     case TARGET_NR_setns:
12390         return get_errno(setns(arg1, arg2));
12391 #endif
12392 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12393     case TARGET_NR_unshare:
12394         return get_errno(unshare(arg1));
12395 #endif
12396 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12397     case TARGET_NR_kcmp:
12398         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
12399 #endif
12400 #ifdef TARGET_NR_swapcontext
12401     case TARGET_NR_swapcontext:
12402         /* PowerPC specific.  */
12403         return do_swapcontext(cpu_env, arg1, arg2, arg3);
12404 #endif
12405 #ifdef TARGET_NR_memfd_create
12406     case TARGET_NR_memfd_create:
12407         p = lock_user_string(arg1);
12408         if (!p) {
12409             return -TARGET_EFAULT;
12410         }
12411         ret = get_errno(memfd_create(p, arg2));
12412         fd_trans_unregister(ret);
12413         unlock_user(p, arg1, 0);
12414         return ret;
12415 #endif
12416 #if defined TARGET_NR_membarrier && defined __NR_membarrier
12417     case TARGET_NR_membarrier:
12418         return get_errno(membarrier(arg1, arg2));
12419 #endif
12420 
12421     default:
12422         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
12423         return -TARGET_ENOSYS;
12424     }
12425     return ret;
12426 }
12427 
12428 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
12429                     abi_long arg2, abi_long arg3, abi_long arg4,
12430                     abi_long arg5, abi_long arg6, abi_long arg7,
12431                     abi_long arg8)
12432 {
12433     CPUState *cpu = env_cpu(cpu_env);
12434     abi_long ret;
12435 
12436 #ifdef DEBUG_ERESTARTSYS
12437     /* Debug-only code for exercising the syscall-restart code paths
12438      * in the per-architecture cpu main loops: restart every syscall
12439      * the guest makes once before letting it through.
12440      */
12441     {
12442         static bool flag;
12443         flag = !flag;
12444         if (flag) {
12445             return -TARGET_ERESTARTSYS;
12446         }
12447     }
12448 #endif
12449 
12450     record_syscall_start(cpu, num, arg1,
12451                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
12452 
12453     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
12454         print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
12455     }
12456 
12457     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
12458                       arg5, arg6, arg7, arg8);
12459 
12460     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
12461         print_syscall_ret(num, ret);
12462     }
12463 
12464     record_syscall_return(cpu, num, ret);
12465     return ret;
12466 }
12467