1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include <stdlib.h> 21 #include <stdio.h> 22 #include <stdarg.h> 23 #include <string.h> 24 #include <elf.h> 25 #include <endian.h> 26 #include <errno.h> 27 #include <unistd.h> 28 #include <fcntl.h> 29 #include <time.h> 30 #include <limits.h> 31 #include <grp.h> 32 #include <sys/types.h> 33 #include <sys/ipc.h> 34 #include <sys/msg.h> 35 #include <sys/wait.h> 36 #include <sys/time.h> 37 #include <sys/stat.h> 38 #include <sys/mount.h> 39 #include <sys/file.h> 40 #include <sys/fsuid.h> 41 #include <sys/personality.h> 42 #include <sys/prctl.h> 43 #include <sys/resource.h> 44 #include <sys/mman.h> 45 #include <sys/swap.h> 46 #include <linux/capability.h> 47 #include <signal.h> 48 #include <sched.h> 49 #ifdef __ia64__ 50 int __clone2(int (*fn)(void *), void *child_stack_base, 51 size_t stack_size, int flags, void *arg, ...); 52 #endif 53 #include <sys/socket.h> 54 #include <sys/un.h> 55 #include <sys/uio.h> 56 #include <sys/poll.h> 57 #include <sys/times.h> 58 #include <sys/shm.h> 59 #include <sys/sem.h> 60 #include <sys/statfs.h> 61 #include <utime.h> 62 #include <sys/sysinfo.h> 63 //#include <sys/user.h> 64 #include <netinet/ip.h> 65 #include <netinet/tcp.h> 66 #include <linux/wireless.h> 67 #include <linux/icmp.h> 68 #include "qemu-common.h" 69 #ifdef CONFIG_TIMERFD 70 #include <sys/timerfd.h> 71 #endif 72 #ifdef TARGET_GPROF 73 #include <sys/gmon.h> 74 #endif 75 #ifdef CONFIG_EVENTFD 76 #include <sys/eventfd.h> 77 #endif 78 #ifdef CONFIG_EPOLL 79 #include <sys/epoll.h> 80 #endif 81 #ifdef CONFIG_ATTR 82 #include "qemu/xattr.h" 83 #endif 84 #ifdef CONFIG_SENDFILE 85 #include <sys/sendfile.h> 86 #endif 87 88 #define termios host_termios 89 #define winsize host_winsize 90 #define termio host_termio 91 #define sgttyb host_sgttyb /* same as target */ 92 #define tchars host_tchars /* same as target */ 93 #define ltchars host_ltchars /* same as target */ 94 95 #include <linux/termios.h> 96 #include <linux/unistd.h> 97 #include <linux/cdrom.h> 98 #include <linux/hdreg.h> 99 #include <linux/soundcard.h> 100 #include <linux/kd.h> 101 #include <linux/mtio.h> 102 #include <linux/fs.h> 103 #if defined(CONFIG_FIEMAP) 104 #include <linux/fiemap.h> 105 #endif 106 #include <linux/fb.h> 107 #include <linux/vt.h> 108 #include <linux/dm-ioctl.h> 109 #include <linux/reboot.h> 110 #include <linux/route.h> 111 #include <linux/filter.h> 112 #include <linux/blkpg.h> 113 #include "linux_loop.h" 114 #include "uname.h" 115 116 #include "qemu.h" 117 118 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \ 119 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID) 120 121 //#define DEBUG 122 123 //#include <linux/msdos_fs.h> 124 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 125 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 126 127 128 #undef _syscall0 129 #undef _syscall1 130 #undef _syscall2 131 #undef _syscall3 132 #undef _syscall4 133 #undef _syscall5 134 #undef _syscall6 135 136 #define _syscall0(type,name) \ 137 static type name (void) \ 138 { \ 139 return syscall(__NR_##name); \ 140 } 141 142 #define _syscall1(type,name,type1,arg1) \ 143 static type name (type1 arg1) \ 144 { \ 145 return syscall(__NR_##name, arg1); \ 146 } 147 148 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 149 static type name (type1 arg1,type2 arg2) \ 150 { \ 151 return syscall(__NR_##name, arg1, arg2); \ 152 } 153 154 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 155 static type name (type1 arg1,type2 arg2,type3 arg3) \ 156 { \ 157 return syscall(__NR_##name, arg1, arg2, arg3); \ 158 } 159 160 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 161 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 162 { \ 163 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 164 } 165 166 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 167 type5,arg5) \ 168 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 169 { \ 170 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 171 } 172 173 174 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 175 type5,arg5,type6,arg6) \ 176 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 177 type6 arg6) \ 178 { \ 179 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 180 } 181 182 183 #define __NR_sys_uname __NR_uname 184 #define __NR_sys_getcwd1 __NR_getcwd 185 #define __NR_sys_getdents __NR_getdents 186 #define __NR_sys_getdents64 __NR_getdents64 187 #define __NR_sys_getpriority __NR_getpriority 188 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 189 #define __NR_sys_syslog __NR_syslog 190 #define __NR_sys_tgkill __NR_tgkill 191 #define __NR_sys_tkill __NR_tkill 192 #define __NR_sys_futex __NR_futex 193 #define __NR_sys_inotify_init __NR_inotify_init 194 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 195 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 196 197 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \ 198 defined(__s390x__) 199 #define __NR__llseek __NR_lseek 200 #endif 201 202 /* Newer kernel ports have llseek() instead of _llseek() */ 203 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 204 #define TARGET_NR__llseek TARGET_NR_llseek 205 #endif 206 207 #ifdef __NR_gettid 208 _syscall0(int, gettid) 209 #else 210 /* This is a replacement for the host gettid() and must return a host 211 errno. */ 212 static int gettid(void) { 213 return -ENOSYS; 214 } 215 #endif 216 #ifdef __NR_getdents 217 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 218 #endif 219 #if !defined(__NR_getdents) || \ 220 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 221 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 222 #endif 223 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 224 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 225 loff_t *, res, uint, wh); 226 #endif 227 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo) 228 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 229 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill) 230 _syscall3(int,sys_tgkill,int,tgid,int,pid,int,sig) 231 #endif 232 #if defined(TARGET_NR_tkill) && defined(__NR_tkill) 233 _syscall2(int,sys_tkill,int,tid,int,sig) 234 #endif 235 #ifdef __NR_exit_group 236 _syscall1(int,exit_group,int,error_code) 237 #endif 238 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 239 _syscall1(int,set_tid_address,int *,tidptr) 240 #endif 241 #if defined(TARGET_NR_futex) && defined(__NR_futex) 242 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 243 const struct timespec *,timeout,int *,uaddr2,int,val3) 244 #endif 245 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 246 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 247 unsigned long *, user_mask_ptr); 248 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 249 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 250 unsigned long *, user_mask_ptr); 251 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 252 void *, arg); 253 _syscall2(int, capget, struct __user_cap_header_struct *, header, 254 struct __user_cap_data_struct *, data); 255 _syscall2(int, capset, struct __user_cap_header_struct *, header, 256 struct __user_cap_data_struct *, data); 257 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 258 _syscall2(int, ioprio_get, int, which, int, who) 259 #endif 260 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 261 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 262 #endif 263 264 static bitmask_transtbl fcntl_flags_tbl[] = { 265 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 266 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 267 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 268 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 269 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 270 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 271 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 272 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 273 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 274 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 275 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 276 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 277 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 278 #if defined(O_DIRECT) 279 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 280 #endif 281 #if defined(O_NOATIME) 282 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 283 #endif 284 #if defined(O_CLOEXEC) 285 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 286 #endif 287 #if defined(O_PATH) 288 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 289 #endif 290 /* Don't terminate the list prematurely on 64-bit host+guest. */ 291 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 292 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 293 #endif 294 { 0, 0, 0, 0 } 295 }; 296 297 static int sys_getcwd1(char *buf, size_t size) 298 { 299 if (getcwd(buf, size) == NULL) { 300 /* getcwd() sets errno */ 301 return (-1); 302 } 303 return strlen(buf)+1; 304 } 305 306 static int sys_openat(int dirfd, const char *pathname, int flags, mode_t mode) 307 { 308 /* 309 * open(2) has extra parameter 'mode' when called with 310 * flag O_CREAT. 311 */ 312 if ((flags & O_CREAT) != 0) { 313 return (openat(dirfd, pathname, flags, mode)); 314 } 315 return (openat(dirfd, pathname, flags)); 316 } 317 318 #ifdef TARGET_NR_utimensat 319 #ifdef CONFIG_UTIMENSAT 320 static int sys_utimensat(int dirfd, const char *pathname, 321 const struct timespec times[2], int flags) 322 { 323 if (pathname == NULL) 324 return futimens(dirfd, times); 325 else 326 return utimensat(dirfd, pathname, times, flags); 327 } 328 #elif defined(__NR_utimensat) 329 #define __NR_sys_utimensat __NR_utimensat 330 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 331 const struct timespec *,tsp,int,flags) 332 #else 333 static int sys_utimensat(int dirfd, const char *pathname, 334 const struct timespec times[2], int flags) 335 { 336 errno = ENOSYS; 337 return -1; 338 } 339 #endif 340 #endif /* TARGET_NR_utimensat */ 341 342 #ifdef CONFIG_INOTIFY 343 #include <sys/inotify.h> 344 345 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 346 static int sys_inotify_init(void) 347 { 348 return (inotify_init()); 349 } 350 #endif 351 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 352 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 353 { 354 return (inotify_add_watch(fd, pathname, mask)); 355 } 356 #endif 357 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 358 static int sys_inotify_rm_watch(int fd, int32_t wd) 359 { 360 return (inotify_rm_watch(fd, wd)); 361 } 362 #endif 363 #ifdef CONFIG_INOTIFY1 364 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 365 static int sys_inotify_init1(int flags) 366 { 367 return (inotify_init1(flags)); 368 } 369 #endif 370 #endif 371 #else 372 /* Userspace can usually survive runtime without inotify */ 373 #undef TARGET_NR_inotify_init 374 #undef TARGET_NR_inotify_init1 375 #undef TARGET_NR_inotify_add_watch 376 #undef TARGET_NR_inotify_rm_watch 377 #endif /* CONFIG_INOTIFY */ 378 379 #if defined(TARGET_NR_ppoll) 380 #ifndef __NR_ppoll 381 # define __NR_ppoll -1 382 #endif 383 #define __NR_sys_ppoll __NR_ppoll 384 _syscall5(int, sys_ppoll, struct pollfd *, fds, nfds_t, nfds, 385 struct timespec *, timeout, const sigset_t *, sigmask, 386 size_t, sigsetsize) 387 #endif 388 389 #if defined(TARGET_NR_pselect6) 390 #ifndef __NR_pselect6 391 # define __NR_pselect6 -1 392 #endif 393 #define __NR_sys_pselect6 __NR_pselect6 394 _syscall6(int, sys_pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, 395 fd_set *, exceptfds, struct timespec *, timeout, void *, sig); 396 #endif 397 398 #if defined(TARGET_NR_prlimit64) 399 #ifndef __NR_prlimit64 400 # define __NR_prlimit64 -1 401 #endif 402 #define __NR_sys_prlimit64 __NR_prlimit64 403 /* The glibc rlimit structure may not be that used by the underlying syscall */ 404 struct host_rlimit64 { 405 uint64_t rlim_cur; 406 uint64_t rlim_max; 407 }; 408 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 409 const struct host_rlimit64 *, new_limit, 410 struct host_rlimit64 *, old_limit) 411 #endif 412 413 414 #if defined(TARGET_NR_timer_create) 415 /* Maxiumum of 32 active POSIX timers allowed at any one time. */ 416 static timer_t g_posix_timers[32] = { 0, } ; 417 418 static inline int next_free_host_timer(void) 419 { 420 int k ; 421 /* FIXME: Does finding the next free slot require a lock? */ 422 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 423 if (g_posix_timers[k] == 0) { 424 g_posix_timers[k] = (timer_t) 1; 425 return k; 426 } 427 } 428 return -1; 429 } 430 #endif 431 432 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 433 #ifdef TARGET_ARM 434 static inline int regpairs_aligned(void *cpu_env) { 435 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 436 } 437 #elif defined(TARGET_MIPS) 438 static inline int regpairs_aligned(void *cpu_env) { return 1; } 439 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 440 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 441 * of registers which translates to the same as ARM/MIPS, because we start with 442 * r3 as arg1 */ 443 static inline int regpairs_aligned(void *cpu_env) { return 1; } 444 #else 445 static inline int regpairs_aligned(void *cpu_env) { return 0; } 446 #endif 447 448 #define ERRNO_TABLE_SIZE 1200 449 450 /* target_to_host_errno_table[] is initialized from 451 * host_to_target_errno_table[] in syscall_init(). */ 452 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 453 }; 454 455 /* 456 * This list is the union of errno values overridden in asm-<arch>/errno.h 457 * minus the errnos that are not actually generic to all archs. 458 */ 459 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 460 [EIDRM] = TARGET_EIDRM, 461 [ECHRNG] = TARGET_ECHRNG, 462 [EL2NSYNC] = TARGET_EL2NSYNC, 463 [EL3HLT] = TARGET_EL3HLT, 464 [EL3RST] = TARGET_EL3RST, 465 [ELNRNG] = TARGET_ELNRNG, 466 [EUNATCH] = TARGET_EUNATCH, 467 [ENOCSI] = TARGET_ENOCSI, 468 [EL2HLT] = TARGET_EL2HLT, 469 [EDEADLK] = TARGET_EDEADLK, 470 [ENOLCK] = TARGET_ENOLCK, 471 [EBADE] = TARGET_EBADE, 472 [EBADR] = TARGET_EBADR, 473 [EXFULL] = TARGET_EXFULL, 474 [ENOANO] = TARGET_ENOANO, 475 [EBADRQC] = TARGET_EBADRQC, 476 [EBADSLT] = TARGET_EBADSLT, 477 [EBFONT] = TARGET_EBFONT, 478 [ENOSTR] = TARGET_ENOSTR, 479 [ENODATA] = TARGET_ENODATA, 480 [ETIME] = TARGET_ETIME, 481 [ENOSR] = TARGET_ENOSR, 482 [ENONET] = TARGET_ENONET, 483 [ENOPKG] = TARGET_ENOPKG, 484 [EREMOTE] = TARGET_EREMOTE, 485 [ENOLINK] = TARGET_ENOLINK, 486 [EADV] = TARGET_EADV, 487 [ESRMNT] = TARGET_ESRMNT, 488 [ECOMM] = TARGET_ECOMM, 489 [EPROTO] = TARGET_EPROTO, 490 [EDOTDOT] = TARGET_EDOTDOT, 491 [EMULTIHOP] = TARGET_EMULTIHOP, 492 [EBADMSG] = TARGET_EBADMSG, 493 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 494 [EOVERFLOW] = TARGET_EOVERFLOW, 495 [ENOTUNIQ] = TARGET_ENOTUNIQ, 496 [EBADFD] = TARGET_EBADFD, 497 [EREMCHG] = TARGET_EREMCHG, 498 [ELIBACC] = TARGET_ELIBACC, 499 [ELIBBAD] = TARGET_ELIBBAD, 500 [ELIBSCN] = TARGET_ELIBSCN, 501 [ELIBMAX] = TARGET_ELIBMAX, 502 [ELIBEXEC] = TARGET_ELIBEXEC, 503 [EILSEQ] = TARGET_EILSEQ, 504 [ENOSYS] = TARGET_ENOSYS, 505 [ELOOP] = TARGET_ELOOP, 506 [ERESTART] = TARGET_ERESTART, 507 [ESTRPIPE] = TARGET_ESTRPIPE, 508 [ENOTEMPTY] = TARGET_ENOTEMPTY, 509 [EUSERS] = TARGET_EUSERS, 510 [ENOTSOCK] = TARGET_ENOTSOCK, 511 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 512 [EMSGSIZE] = TARGET_EMSGSIZE, 513 [EPROTOTYPE] = TARGET_EPROTOTYPE, 514 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 515 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 516 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 517 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 518 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 519 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 520 [EADDRINUSE] = TARGET_EADDRINUSE, 521 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 522 [ENETDOWN] = TARGET_ENETDOWN, 523 [ENETUNREACH] = TARGET_ENETUNREACH, 524 [ENETRESET] = TARGET_ENETRESET, 525 [ECONNABORTED] = TARGET_ECONNABORTED, 526 [ECONNRESET] = TARGET_ECONNRESET, 527 [ENOBUFS] = TARGET_ENOBUFS, 528 [EISCONN] = TARGET_EISCONN, 529 [ENOTCONN] = TARGET_ENOTCONN, 530 [EUCLEAN] = TARGET_EUCLEAN, 531 [ENOTNAM] = TARGET_ENOTNAM, 532 [ENAVAIL] = TARGET_ENAVAIL, 533 [EISNAM] = TARGET_EISNAM, 534 [EREMOTEIO] = TARGET_EREMOTEIO, 535 [ESHUTDOWN] = TARGET_ESHUTDOWN, 536 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 537 [ETIMEDOUT] = TARGET_ETIMEDOUT, 538 [ECONNREFUSED] = TARGET_ECONNREFUSED, 539 [EHOSTDOWN] = TARGET_EHOSTDOWN, 540 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 541 [EALREADY] = TARGET_EALREADY, 542 [EINPROGRESS] = TARGET_EINPROGRESS, 543 [ESTALE] = TARGET_ESTALE, 544 [ECANCELED] = TARGET_ECANCELED, 545 [ENOMEDIUM] = TARGET_ENOMEDIUM, 546 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 547 #ifdef ENOKEY 548 [ENOKEY] = TARGET_ENOKEY, 549 #endif 550 #ifdef EKEYEXPIRED 551 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 552 #endif 553 #ifdef EKEYREVOKED 554 [EKEYREVOKED] = TARGET_EKEYREVOKED, 555 #endif 556 #ifdef EKEYREJECTED 557 [EKEYREJECTED] = TARGET_EKEYREJECTED, 558 #endif 559 #ifdef EOWNERDEAD 560 [EOWNERDEAD] = TARGET_EOWNERDEAD, 561 #endif 562 #ifdef ENOTRECOVERABLE 563 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 564 #endif 565 }; 566 567 static inline int host_to_target_errno(int err) 568 { 569 if(host_to_target_errno_table[err]) 570 return host_to_target_errno_table[err]; 571 return err; 572 } 573 574 static inline int target_to_host_errno(int err) 575 { 576 if (target_to_host_errno_table[err]) 577 return target_to_host_errno_table[err]; 578 return err; 579 } 580 581 static inline abi_long get_errno(abi_long ret) 582 { 583 if (ret == -1) 584 return -host_to_target_errno(errno); 585 else 586 return ret; 587 } 588 589 static inline int is_error(abi_long ret) 590 { 591 return (abi_ulong)ret >= (abi_ulong)(-4096); 592 } 593 594 char *target_strerror(int err) 595 { 596 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 597 return NULL; 598 } 599 return strerror(target_to_host_errno(err)); 600 } 601 602 static inline int host_to_target_sock_type(int host_type) 603 { 604 int target_type; 605 606 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 607 case SOCK_DGRAM: 608 target_type = TARGET_SOCK_DGRAM; 609 break; 610 case SOCK_STREAM: 611 target_type = TARGET_SOCK_STREAM; 612 break; 613 default: 614 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 615 break; 616 } 617 618 #if defined(SOCK_CLOEXEC) 619 if (host_type & SOCK_CLOEXEC) { 620 target_type |= TARGET_SOCK_CLOEXEC; 621 } 622 #endif 623 624 #if defined(SOCK_NONBLOCK) 625 if (host_type & SOCK_NONBLOCK) { 626 target_type |= TARGET_SOCK_NONBLOCK; 627 } 628 #endif 629 630 return target_type; 631 } 632 633 static abi_ulong target_brk; 634 static abi_ulong target_original_brk; 635 static abi_ulong brk_page; 636 637 void target_set_brk(abi_ulong new_brk) 638 { 639 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 640 brk_page = HOST_PAGE_ALIGN(target_brk); 641 } 642 643 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 644 #define DEBUGF_BRK(message, args...) 645 646 /* do_brk() must return target values and target errnos. */ 647 abi_long do_brk(abi_ulong new_brk) 648 { 649 abi_long mapped_addr; 650 int new_alloc_size; 651 652 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 653 654 if (!new_brk) { 655 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 656 return target_brk; 657 } 658 if (new_brk < target_original_brk) { 659 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 660 target_brk); 661 return target_brk; 662 } 663 664 /* If the new brk is less than the highest page reserved to the 665 * target heap allocation, set it and we're almost done... */ 666 if (new_brk <= brk_page) { 667 /* Heap contents are initialized to zero, as for anonymous 668 * mapped pages. */ 669 if (new_brk > target_brk) { 670 memset(g2h(target_brk), 0, new_brk - target_brk); 671 } 672 target_brk = new_brk; 673 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 674 return target_brk; 675 } 676 677 /* We need to allocate more memory after the brk... Note that 678 * we don't use MAP_FIXED because that will map over the top of 679 * any existing mapping (like the one with the host libc or qemu 680 * itself); instead we treat "mapped but at wrong address" as 681 * a failure and unmap again. 682 */ 683 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 684 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 685 PROT_READ|PROT_WRITE, 686 MAP_ANON|MAP_PRIVATE, 0, 0)); 687 688 if (mapped_addr == brk_page) { 689 /* Heap contents are initialized to zero, as for anonymous 690 * mapped pages. Technically the new pages are already 691 * initialized to zero since they *are* anonymous mapped 692 * pages, however we have to take care with the contents that 693 * come from the remaining part of the previous page: it may 694 * contains garbage data due to a previous heap usage (grown 695 * then shrunken). */ 696 memset(g2h(target_brk), 0, brk_page - target_brk); 697 698 target_brk = new_brk; 699 brk_page = HOST_PAGE_ALIGN(target_brk); 700 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 701 target_brk); 702 return target_brk; 703 } else if (mapped_addr != -1) { 704 /* Mapped but at wrong address, meaning there wasn't actually 705 * enough space for this brk. 706 */ 707 target_munmap(mapped_addr, new_alloc_size); 708 mapped_addr = -1; 709 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 710 } 711 else { 712 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 713 } 714 715 #if defined(TARGET_ALPHA) 716 /* We (partially) emulate OSF/1 on Alpha, which requires we 717 return a proper errno, not an unchanged brk value. */ 718 return -TARGET_ENOMEM; 719 #endif 720 /* For everything else, return the previous break. */ 721 return target_brk; 722 } 723 724 static inline abi_long copy_from_user_fdset(fd_set *fds, 725 abi_ulong target_fds_addr, 726 int n) 727 { 728 int i, nw, j, k; 729 abi_ulong b, *target_fds; 730 731 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS; 732 if (!(target_fds = lock_user(VERIFY_READ, 733 target_fds_addr, 734 sizeof(abi_ulong) * nw, 735 1))) 736 return -TARGET_EFAULT; 737 738 FD_ZERO(fds); 739 k = 0; 740 for (i = 0; i < nw; i++) { 741 /* grab the abi_ulong */ 742 __get_user(b, &target_fds[i]); 743 for (j = 0; j < TARGET_ABI_BITS; j++) { 744 /* check the bit inside the abi_ulong */ 745 if ((b >> j) & 1) 746 FD_SET(k, fds); 747 k++; 748 } 749 } 750 751 unlock_user(target_fds, target_fds_addr, 0); 752 753 return 0; 754 } 755 756 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 757 abi_ulong target_fds_addr, 758 int n) 759 { 760 if (target_fds_addr) { 761 if (copy_from_user_fdset(fds, target_fds_addr, n)) 762 return -TARGET_EFAULT; 763 *fds_ptr = fds; 764 } else { 765 *fds_ptr = NULL; 766 } 767 return 0; 768 } 769 770 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 771 const fd_set *fds, 772 int n) 773 { 774 int i, nw, j, k; 775 abi_long v; 776 abi_ulong *target_fds; 777 778 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS; 779 if (!(target_fds = lock_user(VERIFY_WRITE, 780 target_fds_addr, 781 sizeof(abi_ulong) * nw, 782 0))) 783 return -TARGET_EFAULT; 784 785 k = 0; 786 for (i = 0; i < nw; i++) { 787 v = 0; 788 for (j = 0; j < TARGET_ABI_BITS; j++) { 789 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 790 k++; 791 } 792 __put_user(v, &target_fds[i]); 793 } 794 795 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 796 797 return 0; 798 } 799 800 #if defined(__alpha__) 801 #define HOST_HZ 1024 802 #else 803 #define HOST_HZ 100 804 #endif 805 806 static inline abi_long host_to_target_clock_t(long ticks) 807 { 808 #if HOST_HZ == TARGET_HZ 809 return ticks; 810 #else 811 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 812 #endif 813 } 814 815 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 816 const struct rusage *rusage) 817 { 818 struct target_rusage *target_rusage; 819 820 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 821 return -TARGET_EFAULT; 822 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 823 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 824 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 825 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 826 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 827 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 828 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 829 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 830 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 831 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 832 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 833 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 834 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 835 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 836 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 837 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 838 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 839 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 840 unlock_user_struct(target_rusage, target_addr, 1); 841 842 return 0; 843 } 844 845 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 846 { 847 abi_ulong target_rlim_swap; 848 rlim_t result; 849 850 target_rlim_swap = tswapal(target_rlim); 851 if (target_rlim_swap == TARGET_RLIM_INFINITY) 852 return RLIM_INFINITY; 853 854 result = target_rlim_swap; 855 if (target_rlim_swap != (rlim_t)result) 856 return RLIM_INFINITY; 857 858 return result; 859 } 860 861 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 862 { 863 abi_ulong target_rlim_swap; 864 abi_ulong result; 865 866 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 867 target_rlim_swap = TARGET_RLIM_INFINITY; 868 else 869 target_rlim_swap = rlim; 870 result = tswapal(target_rlim_swap); 871 872 return result; 873 } 874 875 static inline int target_to_host_resource(int code) 876 { 877 switch (code) { 878 case TARGET_RLIMIT_AS: 879 return RLIMIT_AS; 880 case TARGET_RLIMIT_CORE: 881 return RLIMIT_CORE; 882 case TARGET_RLIMIT_CPU: 883 return RLIMIT_CPU; 884 case TARGET_RLIMIT_DATA: 885 return RLIMIT_DATA; 886 case TARGET_RLIMIT_FSIZE: 887 return RLIMIT_FSIZE; 888 case TARGET_RLIMIT_LOCKS: 889 return RLIMIT_LOCKS; 890 case TARGET_RLIMIT_MEMLOCK: 891 return RLIMIT_MEMLOCK; 892 case TARGET_RLIMIT_MSGQUEUE: 893 return RLIMIT_MSGQUEUE; 894 case TARGET_RLIMIT_NICE: 895 return RLIMIT_NICE; 896 case TARGET_RLIMIT_NOFILE: 897 return RLIMIT_NOFILE; 898 case TARGET_RLIMIT_NPROC: 899 return RLIMIT_NPROC; 900 case TARGET_RLIMIT_RSS: 901 return RLIMIT_RSS; 902 case TARGET_RLIMIT_RTPRIO: 903 return RLIMIT_RTPRIO; 904 case TARGET_RLIMIT_SIGPENDING: 905 return RLIMIT_SIGPENDING; 906 case TARGET_RLIMIT_STACK: 907 return RLIMIT_STACK; 908 default: 909 return code; 910 } 911 } 912 913 static inline abi_long copy_from_user_timeval(struct timeval *tv, 914 abi_ulong target_tv_addr) 915 { 916 struct target_timeval *target_tv; 917 918 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) 919 return -TARGET_EFAULT; 920 921 __get_user(tv->tv_sec, &target_tv->tv_sec); 922 __get_user(tv->tv_usec, &target_tv->tv_usec); 923 924 unlock_user_struct(target_tv, target_tv_addr, 0); 925 926 return 0; 927 } 928 929 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 930 const struct timeval *tv) 931 { 932 struct target_timeval *target_tv; 933 934 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) 935 return -TARGET_EFAULT; 936 937 __put_user(tv->tv_sec, &target_tv->tv_sec); 938 __put_user(tv->tv_usec, &target_tv->tv_usec); 939 940 unlock_user_struct(target_tv, target_tv_addr, 1); 941 942 return 0; 943 } 944 945 static inline abi_long copy_from_user_timezone(struct timezone *tz, 946 abi_ulong target_tz_addr) 947 { 948 struct target_timezone *target_tz; 949 950 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 951 return -TARGET_EFAULT; 952 } 953 954 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 955 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 956 957 unlock_user_struct(target_tz, target_tz_addr, 0); 958 959 return 0; 960 } 961 962 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 963 #include <mqueue.h> 964 965 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 966 abi_ulong target_mq_attr_addr) 967 { 968 struct target_mq_attr *target_mq_attr; 969 970 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 971 target_mq_attr_addr, 1)) 972 return -TARGET_EFAULT; 973 974 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 975 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 976 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 977 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 978 979 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 980 981 return 0; 982 } 983 984 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 985 const struct mq_attr *attr) 986 { 987 struct target_mq_attr *target_mq_attr; 988 989 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 990 target_mq_attr_addr, 0)) 991 return -TARGET_EFAULT; 992 993 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 994 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 995 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 996 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 997 998 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 999 1000 return 0; 1001 } 1002 #endif 1003 1004 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1005 /* do_select() must return target values and target errnos. */ 1006 static abi_long do_select(int n, 1007 abi_ulong rfd_addr, abi_ulong wfd_addr, 1008 abi_ulong efd_addr, abi_ulong target_tv_addr) 1009 { 1010 fd_set rfds, wfds, efds; 1011 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1012 struct timeval tv, *tv_ptr; 1013 abi_long ret; 1014 1015 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1016 if (ret) { 1017 return ret; 1018 } 1019 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1020 if (ret) { 1021 return ret; 1022 } 1023 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1024 if (ret) { 1025 return ret; 1026 } 1027 1028 if (target_tv_addr) { 1029 if (copy_from_user_timeval(&tv, target_tv_addr)) 1030 return -TARGET_EFAULT; 1031 tv_ptr = &tv; 1032 } else { 1033 tv_ptr = NULL; 1034 } 1035 1036 ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr)); 1037 1038 if (!is_error(ret)) { 1039 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1040 return -TARGET_EFAULT; 1041 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1042 return -TARGET_EFAULT; 1043 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1044 return -TARGET_EFAULT; 1045 1046 if (target_tv_addr && copy_to_user_timeval(target_tv_addr, &tv)) 1047 return -TARGET_EFAULT; 1048 } 1049 1050 return ret; 1051 } 1052 #endif 1053 1054 static abi_long do_pipe2(int host_pipe[], int flags) 1055 { 1056 #ifdef CONFIG_PIPE2 1057 return pipe2(host_pipe, flags); 1058 #else 1059 return -ENOSYS; 1060 #endif 1061 } 1062 1063 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1064 int flags, int is_pipe2) 1065 { 1066 int host_pipe[2]; 1067 abi_long ret; 1068 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1069 1070 if (is_error(ret)) 1071 return get_errno(ret); 1072 1073 /* Several targets have special calling conventions for the original 1074 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1075 if (!is_pipe2) { 1076 #if defined(TARGET_ALPHA) 1077 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1078 return host_pipe[0]; 1079 #elif defined(TARGET_MIPS) 1080 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1081 return host_pipe[0]; 1082 #elif defined(TARGET_SH4) 1083 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1084 return host_pipe[0]; 1085 #elif defined(TARGET_SPARC) 1086 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1087 return host_pipe[0]; 1088 #endif 1089 } 1090 1091 if (put_user_s32(host_pipe[0], pipedes) 1092 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1093 return -TARGET_EFAULT; 1094 return get_errno(ret); 1095 } 1096 1097 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1098 abi_ulong target_addr, 1099 socklen_t len) 1100 { 1101 struct target_ip_mreqn *target_smreqn; 1102 1103 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1104 if (!target_smreqn) 1105 return -TARGET_EFAULT; 1106 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1107 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1108 if (len == sizeof(struct target_ip_mreqn)) 1109 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1110 unlock_user(target_smreqn, target_addr, 0); 1111 1112 return 0; 1113 } 1114 1115 static inline abi_long target_to_host_sockaddr(struct sockaddr *addr, 1116 abi_ulong target_addr, 1117 socklen_t len) 1118 { 1119 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1120 sa_family_t sa_family; 1121 struct target_sockaddr *target_saddr; 1122 1123 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1124 if (!target_saddr) 1125 return -TARGET_EFAULT; 1126 1127 sa_family = tswap16(target_saddr->sa_family); 1128 1129 /* Oops. The caller might send a incomplete sun_path; sun_path 1130 * must be terminated by \0 (see the manual page), but 1131 * unfortunately it is quite common to specify sockaddr_un 1132 * length as "strlen(x->sun_path)" while it should be 1133 * "strlen(...) + 1". We'll fix that here if needed. 1134 * Linux kernel has a similar feature. 1135 */ 1136 1137 if (sa_family == AF_UNIX) { 1138 if (len < unix_maxlen && len > 0) { 1139 char *cp = (char*)target_saddr; 1140 1141 if ( cp[len-1] && !cp[len] ) 1142 len++; 1143 } 1144 if (len > unix_maxlen) 1145 len = unix_maxlen; 1146 } 1147 1148 memcpy(addr, target_saddr, len); 1149 addr->sa_family = sa_family; 1150 if (sa_family == AF_PACKET) { 1151 struct target_sockaddr_ll *lladdr; 1152 1153 lladdr = (struct target_sockaddr_ll *)addr; 1154 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1155 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1156 } 1157 unlock_user(target_saddr, target_addr, 0); 1158 1159 return 0; 1160 } 1161 1162 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1163 struct sockaddr *addr, 1164 socklen_t len) 1165 { 1166 struct target_sockaddr *target_saddr; 1167 1168 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1169 if (!target_saddr) 1170 return -TARGET_EFAULT; 1171 memcpy(target_saddr, addr, len); 1172 target_saddr->sa_family = tswap16(addr->sa_family); 1173 unlock_user(target_saddr, target_addr, len); 1174 1175 return 0; 1176 } 1177 1178 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1179 struct target_msghdr *target_msgh) 1180 { 1181 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1182 abi_long msg_controllen; 1183 abi_ulong target_cmsg_addr; 1184 struct target_cmsghdr *target_cmsg; 1185 socklen_t space = 0; 1186 1187 msg_controllen = tswapal(target_msgh->msg_controllen); 1188 if (msg_controllen < sizeof (struct target_cmsghdr)) 1189 goto the_end; 1190 target_cmsg_addr = tswapal(target_msgh->msg_control); 1191 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1192 if (!target_cmsg) 1193 return -TARGET_EFAULT; 1194 1195 while (cmsg && target_cmsg) { 1196 void *data = CMSG_DATA(cmsg); 1197 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1198 1199 int len = tswapal(target_cmsg->cmsg_len) 1200 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr)); 1201 1202 space += CMSG_SPACE(len); 1203 if (space > msgh->msg_controllen) { 1204 space -= CMSG_SPACE(len); 1205 gemu_log("Host cmsg overflow\n"); 1206 break; 1207 } 1208 1209 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1210 cmsg->cmsg_level = SOL_SOCKET; 1211 } else { 1212 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1213 } 1214 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1215 cmsg->cmsg_len = CMSG_LEN(len); 1216 1217 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1218 int *fd = (int *)data; 1219 int *target_fd = (int *)target_data; 1220 int i, numfds = len / sizeof(int); 1221 1222 for (i = 0; i < numfds; i++) 1223 fd[i] = tswap32(target_fd[i]); 1224 } else if (cmsg->cmsg_level == SOL_SOCKET 1225 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1226 struct ucred *cred = (struct ucred *)data; 1227 struct target_ucred *target_cred = 1228 (struct target_ucred *)target_data; 1229 1230 __put_user(target_cred->pid, &cred->pid); 1231 __put_user(target_cred->uid, &cred->uid); 1232 __put_user(target_cred->gid, &cred->gid); 1233 } else { 1234 gemu_log("Unsupported ancillary data: %d/%d\n", 1235 cmsg->cmsg_level, cmsg->cmsg_type); 1236 memcpy(data, target_data, len); 1237 } 1238 1239 cmsg = CMSG_NXTHDR(msgh, cmsg); 1240 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); 1241 } 1242 unlock_user(target_cmsg, target_cmsg_addr, 0); 1243 the_end: 1244 msgh->msg_controllen = space; 1245 return 0; 1246 } 1247 1248 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1249 struct msghdr *msgh) 1250 { 1251 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1252 abi_long msg_controllen; 1253 abi_ulong target_cmsg_addr; 1254 struct target_cmsghdr *target_cmsg; 1255 socklen_t space = 0; 1256 1257 msg_controllen = tswapal(target_msgh->msg_controllen); 1258 if (msg_controllen < sizeof (struct target_cmsghdr)) 1259 goto the_end; 1260 target_cmsg_addr = tswapal(target_msgh->msg_control); 1261 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1262 if (!target_cmsg) 1263 return -TARGET_EFAULT; 1264 1265 while (cmsg && target_cmsg) { 1266 void *data = CMSG_DATA(cmsg); 1267 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1268 1269 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr)); 1270 1271 space += TARGET_CMSG_SPACE(len); 1272 if (space > msg_controllen) { 1273 space -= TARGET_CMSG_SPACE(len); 1274 gemu_log("Target cmsg overflow\n"); 1275 break; 1276 } 1277 1278 if (cmsg->cmsg_level == SOL_SOCKET) { 1279 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1280 } else { 1281 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1282 } 1283 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1284 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(len)); 1285 1286 switch (cmsg->cmsg_level) { 1287 case SOL_SOCKET: 1288 switch (cmsg->cmsg_type) { 1289 case SCM_RIGHTS: 1290 { 1291 int *fd = (int *)data; 1292 int *target_fd = (int *)target_data; 1293 int i, numfds = len / sizeof(int); 1294 1295 for (i = 0; i < numfds; i++) 1296 target_fd[i] = tswap32(fd[i]); 1297 break; 1298 } 1299 case SO_TIMESTAMP: 1300 { 1301 struct timeval *tv = (struct timeval *)data; 1302 struct target_timeval *target_tv = 1303 (struct target_timeval *)target_data; 1304 1305 if (len != sizeof(struct timeval)) 1306 goto unimplemented; 1307 1308 /* copy struct timeval to target */ 1309 target_tv->tv_sec = tswapal(tv->tv_sec); 1310 target_tv->tv_usec = tswapal(tv->tv_usec); 1311 break; 1312 } 1313 case SCM_CREDENTIALS: 1314 { 1315 struct ucred *cred = (struct ucred *)data; 1316 struct target_ucred *target_cred = 1317 (struct target_ucred *)target_data; 1318 1319 __put_user(cred->pid, &target_cred->pid); 1320 __put_user(cred->uid, &target_cred->uid); 1321 __put_user(cred->gid, &target_cred->gid); 1322 break; 1323 } 1324 default: 1325 goto unimplemented; 1326 } 1327 break; 1328 1329 default: 1330 unimplemented: 1331 gemu_log("Unsupported ancillary data: %d/%d\n", 1332 cmsg->cmsg_level, cmsg->cmsg_type); 1333 memcpy(target_data, data, len); 1334 } 1335 1336 cmsg = CMSG_NXTHDR(msgh, cmsg); 1337 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); 1338 } 1339 unlock_user(target_cmsg, target_cmsg_addr, space); 1340 the_end: 1341 target_msgh->msg_controllen = tswapal(space); 1342 return 0; 1343 } 1344 1345 /* do_setsockopt() Must return target values and target errnos. */ 1346 static abi_long do_setsockopt(int sockfd, int level, int optname, 1347 abi_ulong optval_addr, socklen_t optlen) 1348 { 1349 abi_long ret; 1350 int val; 1351 struct ip_mreqn *ip_mreq; 1352 struct ip_mreq_source *ip_mreq_source; 1353 1354 switch(level) { 1355 case SOL_TCP: 1356 /* TCP options all take an 'int' value. */ 1357 if (optlen < sizeof(uint32_t)) 1358 return -TARGET_EINVAL; 1359 1360 if (get_user_u32(val, optval_addr)) 1361 return -TARGET_EFAULT; 1362 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 1363 break; 1364 case SOL_IP: 1365 switch(optname) { 1366 case IP_TOS: 1367 case IP_TTL: 1368 case IP_HDRINCL: 1369 case IP_ROUTER_ALERT: 1370 case IP_RECVOPTS: 1371 case IP_RETOPTS: 1372 case IP_PKTINFO: 1373 case IP_MTU_DISCOVER: 1374 case IP_RECVERR: 1375 case IP_RECVTOS: 1376 #ifdef IP_FREEBIND 1377 case IP_FREEBIND: 1378 #endif 1379 case IP_MULTICAST_TTL: 1380 case IP_MULTICAST_LOOP: 1381 val = 0; 1382 if (optlen >= sizeof(uint32_t)) { 1383 if (get_user_u32(val, optval_addr)) 1384 return -TARGET_EFAULT; 1385 } else if (optlen >= 1) { 1386 if (get_user_u8(val, optval_addr)) 1387 return -TARGET_EFAULT; 1388 } 1389 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 1390 break; 1391 case IP_ADD_MEMBERSHIP: 1392 case IP_DROP_MEMBERSHIP: 1393 if (optlen < sizeof (struct target_ip_mreq) || 1394 optlen > sizeof (struct target_ip_mreqn)) 1395 return -TARGET_EINVAL; 1396 1397 ip_mreq = (struct ip_mreqn *) alloca(optlen); 1398 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 1399 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 1400 break; 1401 1402 case IP_BLOCK_SOURCE: 1403 case IP_UNBLOCK_SOURCE: 1404 case IP_ADD_SOURCE_MEMBERSHIP: 1405 case IP_DROP_SOURCE_MEMBERSHIP: 1406 if (optlen != sizeof (struct target_ip_mreq_source)) 1407 return -TARGET_EINVAL; 1408 1409 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 1410 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 1411 unlock_user (ip_mreq_source, optval_addr, 0); 1412 break; 1413 1414 default: 1415 goto unimplemented; 1416 } 1417 break; 1418 case SOL_IPV6: 1419 switch (optname) { 1420 case IPV6_MTU_DISCOVER: 1421 case IPV6_MTU: 1422 case IPV6_V6ONLY: 1423 case IPV6_RECVPKTINFO: 1424 val = 0; 1425 if (optlen < sizeof(uint32_t)) { 1426 return -TARGET_EINVAL; 1427 } 1428 if (get_user_u32(val, optval_addr)) { 1429 return -TARGET_EFAULT; 1430 } 1431 ret = get_errno(setsockopt(sockfd, level, optname, 1432 &val, sizeof(val))); 1433 break; 1434 default: 1435 goto unimplemented; 1436 } 1437 break; 1438 case SOL_RAW: 1439 switch (optname) { 1440 case ICMP_FILTER: 1441 /* struct icmp_filter takes an u32 value */ 1442 if (optlen < sizeof(uint32_t)) { 1443 return -TARGET_EINVAL; 1444 } 1445 1446 if (get_user_u32(val, optval_addr)) { 1447 return -TARGET_EFAULT; 1448 } 1449 ret = get_errno(setsockopt(sockfd, level, optname, 1450 &val, sizeof(val))); 1451 break; 1452 1453 default: 1454 goto unimplemented; 1455 } 1456 break; 1457 case TARGET_SOL_SOCKET: 1458 switch (optname) { 1459 case TARGET_SO_RCVTIMEO: 1460 { 1461 struct timeval tv; 1462 1463 optname = SO_RCVTIMEO; 1464 1465 set_timeout: 1466 if (optlen != sizeof(struct target_timeval)) { 1467 return -TARGET_EINVAL; 1468 } 1469 1470 if (copy_from_user_timeval(&tv, optval_addr)) { 1471 return -TARGET_EFAULT; 1472 } 1473 1474 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 1475 &tv, sizeof(tv))); 1476 return ret; 1477 } 1478 case TARGET_SO_SNDTIMEO: 1479 optname = SO_SNDTIMEO; 1480 goto set_timeout; 1481 case TARGET_SO_ATTACH_FILTER: 1482 { 1483 struct target_sock_fprog *tfprog; 1484 struct target_sock_filter *tfilter; 1485 struct sock_fprog fprog; 1486 struct sock_filter *filter; 1487 int i; 1488 1489 if (optlen != sizeof(*tfprog)) { 1490 return -TARGET_EINVAL; 1491 } 1492 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 1493 return -TARGET_EFAULT; 1494 } 1495 if (!lock_user_struct(VERIFY_READ, tfilter, 1496 tswapal(tfprog->filter), 0)) { 1497 unlock_user_struct(tfprog, optval_addr, 1); 1498 return -TARGET_EFAULT; 1499 } 1500 1501 fprog.len = tswap16(tfprog->len); 1502 filter = malloc(fprog.len * sizeof(*filter)); 1503 if (filter == NULL) { 1504 unlock_user_struct(tfilter, tfprog->filter, 1); 1505 unlock_user_struct(tfprog, optval_addr, 1); 1506 return -TARGET_ENOMEM; 1507 } 1508 for (i = 0; i < fprog.len; i++) { 1509 filter[i].code = tswap16(tfilter[i].code); 1510 filter[i].jt = tfilter[i].jt; 1511 filter[i].jf = tfilter[i].jf; 1512 filter[i].k = tswap32(tfilter[i].k); 1513 } 1514 fprog.filter = filter; 1515 1516 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 1517 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 1518 free(filter); 1519 1520 unlock_user_struct(tfilter, tfprog->filter, 1); 1521 unlock_user_struct(tfprog, optval_addr, 1); 1522 return ret; 1523 } 1524 case TARGET_SO_BINDTODEVICE: 1525 { 1526 char *dev_ifname, *addr_ifname; 1527 1528 if (optlen > IFNAMSIZ - 1) { 1529 optlen = IFNAMSIZ - 1; 1530 } 1531 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 1532 if (!dev_ifname) { 1533 return -TARGET_EFAULT; 1534 } 1535 optname = SO_BINDTODEVICE; 1536 addr_ifname = alloca(IFNAMSIZ); 1537 memcpy(addr_ifname, dev_ifname, optlen); 1538 addr_ifname[optlen] = 0; 1539 ret = get_errno(setsockopt(sockfd, level, optname, addr_ifname, optlen)); 1540 unlock_user (dev_ifname, optval_addr, 0); 1541 return ret; 1542 } 1543 /* Options with 'int' argument. */ 1544 case TARGET_SO_DEBUG: 1545 optname = SO_DEBUG; 1546 break; 1547 case TARGET_SO_REUSEADDR: 1548 optname = SO_REUSEADDR; 1549 break; 1550 case TARGET_SO_TYPE: 1551 optname = SO_TYPE; 1552 break; 1553 case TARGET_SO_ERROR: 1554 optname = SO_ERROR; 1555 break; 1556 case TARGET_SO_DONTROUTE: 1557 optname = SO_DONTROUTE; 1558 break; 1559 case TARGET_SO_BROADCAST: 1560 optname = SO_BROADCAST; 1561 break; 1562 case TARGET_SO_SNDBUF: 1563 optname = SO_SNDBUF; 1564 break; 1565 case TARGET_SO_SNDBUFFORCE: 1566 optname = SO_SNDBUFFORCE; 1567 break; 1568 case TARGET_SO_RCVBUF: 1569 optname = SO_RCVBUF; 1570 break; 1571 case TARGET_SO_RCVBUFFORCE: 1572 optname = SO_RCVBUFFORCE; 1573 break; 1574 case TARGET_SO_KEEPALIVE: 1575 optname = SO_KEEPALIVE; 1576 break; 1577 case TARGET_SO_OOBINLINE: 1578 optname = SO_OOBINLINE; 1579 break; 1580 case TARGET_SO_NO_CHECK: 1581 optname = SO_NO_CHECK; 1582 break; 1583 case TARGET_SO_PRIORITY: 1584 optname = SO_PRIORITY; 1585 break; 1586 #ifdef SO_BSDCOMPAT 1587 case TARGET_SO_BSDCOMPAT: 1588 optname = SO_BSDCOMPAT; 1589 break; 1590 #endif 1591 case TARGET_SO_PASSCRED: 1592 optname = SO_PASSCRED; 1593 break; 1594 case TARGET_SO_PASSSEC: 1595 optname = SO_PASSSEC; 1596 break; 1597 case TARGET_SO_TIMESTAMP: 1598 optname = SO_TIMESTAMP; 1599 break; 1600 case TARGET_SO_RCVLOWAT: 1601 optname = SO_RCVLOWAT; 1602 break; 1603 break; 1604 default: 1605 goto unimplemented; 1606 } 1607 if (optlen < sizeof(uint32_t)) 1608 return -TARGET_EINVAL; 1609 1610 if (get_user_u32(val, optval_addr)) 1611 return -TARGET_EFAULT; 1612 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 1613 break; 1614 default: 1615 unimplemented: 1616 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname); 1617 ret = -TARGET_ENOPROTOOPT; 1618 } 1619 return ret; 1620 } 1621 1622 /* do_getsockopt() Must return target values and target errnos. */ 1623 static abi_long do_getsockopt(int sockfd, int level, int optname, 1624 abi_ulong optval_addr, abi_ulong optlen) 1625 { 1626 abi_long ret; 1627 int len, val; 1628 socklen_t lv; 1629 1630 switch(level) { 1631 case TARGET_SOL_SOCKET: 1632 level = SOL_SOCKET; 1633 switch (optname) { 1634 /* These don't just return a single integer */ 1635 case TARGET_SO_LINGER: 1636 case TARGET_SO_RCVTIMEO: 1637 case TARGET_SO_SNDTIMEO: 1638 case TARGET_SO_PEERNAME: 1639 goto unimplemented; 1640 case TARGET_SO_PEERCRED: { 1641 struct ucred cr; 1642 socklen_t crlen; 1643 struct target_ucred *tcr; 1644 1645 if (get_user_u32(len, optlen)) { 1646 return -TARGET_EFAULT; 1647 } 1648 if (len < 0) { 1649 return -TARGET_EINVAL; 1650 } 1651 1652 crlen = sizeof(cr); 1653 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 1654 &cr, &crlen)); 1655 if (ret < 0) { 1656 return ret; 1657 } 1658 if (len > crlen) { 1659 len = crlen; 1660 } 1661 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 1662 return -TARGET_EFAULT; 1663 } 1664 __put_user(cr.pid, &tcr->pid); 1665 __put_user(cr.uid, &tcr->uid); 1666 __put_user(cr.gid, &tcr->gid); 1667 unlock_user_struct(tcr, optval_addr, 1); 1668 if (put_user_u32(len, optlen)) { 1669 return -TARGET_EFAULT; 1670 } 1671 break; 1672 } 1673 /* Options with 'int' argument. */ 1674 case TARGET_SO_DEBUG: 1675 optname = SO_DEBUG; 1676 goto int_case; 1677 case TARGET_SO_REUSEADDR: 1678 optname = SO_REUSEADDR; 1679 goto int_case; 1680 case TARGET_SO_TYPE: 1681 optname = SO_TYPE; 1682 goto int_case; 1683 case TARGET_SO_ERROR: 1684 optname = SO_ERROR; 1685 goto int_case; 1686 case TARGET_SO_DONTROUTE: 1687 optname = SO_DONTROUTE; 1688 goto int_case; 1689 case TARGET_SO_BROADCAST: 1690 optname = SO_BROADCAST; 1691 goto int_case; 1692 case TARGET_SO_SNDBUF: 1693 optname = SO_SNDBUF; 1694 goto int_case; 1695 case TARGET_SO_RCVBUF: 1696 optname = SO_RCVBUF; 1697 goto int_case; 1698 case TARGET_SO_KEEPALIVE: 1699 optname = SO_KEEPALIVE; 1700 goto int_case; 1701 case TARGET_SO_OOBINLINE: 1702 optname = SO_OOBINLINE; 1703 goto int_case; 1704 case TARGET_SO_NO_CHECK: 1705 optname = SO_NO_CHECK; 1706 goto int_case; 1707 case TARGET_SO_PRIORITY: 1708 optname = SO_PRIORITY; 1709 goto int_case; 1710 #ifdef SO_BSDCOMPAT 1711 case TARGET_SO_BSDCOMPAT: 1712 optname = SO_BSDCOMPAT; 1713 goto int_case; 1714 #endif 1715 case TARGET_SO_PASSCRED: 1716 optname = SO_PASSCRED; 1717 goto int_case; 1718 case TARGET_SO_TIMESTAMP: 1719 optname = SO_TIMESTAMP; 1720 goto int_case; 1721 case TARGET_SO_RCVLOWAT: 1722 optname = SO_RCVLOWAT; 1723 goto int_case; 1724 case TARGET_SO_ACCEPTCONN: 1725 optname = SO_ACCEPTCONN; 1726 goto int_case; 1727 default: 1728 goto int_case; 1729 } 1730 break; 1731 case SOL_TCP: 1732 /* TCP options all take an 'int' value. */ 1733 int_case: 1734 if (get_user_u32(len, optlen)) 1735 return -TARGET_EFAULT; 1736 if (len < 0) 1737 return -TARGET_EINVAL; 1738 lv = sizeof(lv); 1739 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 1740 if (ret < 0) 1741 return ret; 1742 if (optname == SO_TYPE) { 1743 val = host_to_target_sock_type(val); 1744 } 1745 if (len > lv) 1746 len = lv; 1747 if (len == 4) { 1748 if (put_user_u32(val, optval_addr)) 1749 return -TARGET_EFAULT; 1750 } else { 1751 if (put_user_u8(val, optval_addr)) 1752 return -TARGET_EFAULT; 1753 } 1754 if (put_user_u32(len, optlen)) 1755 return -TARGET_EFAULT; 1756 break; 1757 case SOL_IP: 1758 switch(optname) { 1759 case IP_TOS: 1760 case IP_TTL: 1761 case IP_HDRINCL: 1762 case IP_ROUTER_ALERT: 1763 case IP_RECVOPTS: 1764 case IP_RETOPTS: 1765 case IP_PKTINFO: 1766 case IP_MTU_DISCOVER: 1767 case IP_RECVERR: 1768 case IP_RECVTOS: 1769 #ifdef IP_FREEBIND 1770 case IP_FREEBIND: 1771 #endif 1772 case IP_MULTICAST_TTL: 1773 case IP_MULTICAST_LOOP: 1774 if (get_user_u32(len, optlen)) 1775 return -TARGET_EFAULT; 1776 if (len < 0) 1777 return -TARGET_EINVAL; 1778 lv = sizeof(lv); 1779 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 1780 if (ret < 0) 1781 return ret; 1782 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 1783 len = 1; 1784 if (put_user_u32(len, optlen) 1785 || put_user_u8(val, optval_addr)) 1786 return -TARGET_EFAULT; 1787 } else { 1788 if (len > sizeof(int)) 1789 len = sizeof(int); 1790 if (put_user_u32(len, optlen) 1791 || put_user_u32(val, optval_addr)) 1792 return -TARGET_EFAULT; 1793 } 1794 break; 1795 default: 1796 ret = -TARGET_ENOPROTOOPT; 1797 break; 1798 } 1799 break; 1800 default: 1801 unimplemented: 1802 gemu_log("getsockopt level=%d optname=%d not yet supported\n", 1803 level, optname); 1804 ret = -TARGET_EOPNOTSUPP; 1805 break; 1806 } 1807 return ret; 1808 } 1809 1810 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 1811 int count, int copy) 1812 { 1813 struct target_iovec *target_vec; 1814 struct iovec *vec; 1815 abi_ulong total_len, max_len; 1816 int i; 1817 int err = 0; 1818 bool bad_address = false; 1819 1820 if (count == 0) { 1821 errno = 0; 1822 return NULL; 1823 } 1824 if (count < 0 || count > IOV_MAX) { 1825 errno = EINVAL; 1826 return NULL; 1827 } 1828 1829 vec = calloc(count, sizeof(struct iovec)); 1830 if (vec == NULL) { 1831 errno = ENOMEM; 1832 return NULL; 1833 } 1834 1835 target_vec = lock_user(VERIFY_READ, target_addr, 1836 count * sizeof(struct target_iovec), 1); 1837 if (target_vec == NULL) { 1838 err = EFAULT; 1839 goto fail2; 1840 } 1841 1842 /* ??? If host page size > target page size, this will result in a 1843 value larger than what we can actually support. */ 1844 max_len = 0x7fffffff & TARGET_PAGE_MASK; 1845 total_len = 0; 1846 1847 for (i = 0; i < count; i++) { 1848 abi_ulong base = tswapal(target_vec[i].iov_base); 1849 abi_long len = tswapal(target_vec[i].iov_len); 1850 1851 if (len < 0) { 1852 err = EINVAL; 1853 goto fail; 1854 } else if (len == 0) { 1855 /* Zero length pointer is ignored. */ 1856 vec[i].iov_base = 0; 1857 } else { 1858 vec[i].iov_base = lock_user(type, base, len, copy); 1859 /* If the first buffer pointer is bad, this is a fault. But 1860 * subsequent bad buffers will result in a partial write; this 1861 * is realized by filling the vector with null pointers and 1862 * zero lengths. */ 1863 if (!vec[i].iov_base) { 1864 if (i == 0) { 1865 err = EFAULT; 1866 goto fail; 1867 } else { 1868 bad_address = true; 1869 } 1870 } 1871 if (bad_address) { 1872 len = 0; 1873 } 1874 if (len > max_len - total_len) { 1875 len = max_len - total_len; 1876 } 1877 } 1878 vec[i].iov_len = len; 1879 total_len += len; 1880 } 1881 1882 unlock_user(target_vec, target_addr, 0); 1883 return vec; 1884 1885 fail: 1886 while (--i >= 0) { 1887 if (tswapal(target_vec[i].iov_len) > 0) { 1888 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 1889 } 1890 } 1891 unlock_user(target_vec, target_addr, 0); 1892 fail2: 1893 free(vec); 1894 errno = err; 1895 return NULL; 1896 } 1897 1898 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 1899 int count, int copy) 1900 { 1901 struct target_iovec *target_vec; 1902 int i; 1903 1904 target_vec = lock_user(VERIFY_READ, target_addr, 1905 count * sizeof(struct target_iovec), 1); 1906 if (target_vec) { 1907 for (i = 0; i < count; i++) { 1908 abi_ulong base = tswapal(target_vec[i].iov_base); 1909 abi_long len = tswapal(target_vec[i].iov_len); 1910 if (len < 0) { 1911 break; 1912 } 1913 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 1914 } 1915 unlock_user(target_vec, target_addr, 0); 1916 } 1917 1918 free(vec); 1919 } 1920 1921 static inline int target_to_host_sock_type(int *type) 1922 { 1923 int host_type = 0; 1924 int target_type = *type; 1925 1926 switch (target_type & TARGET_SOCK_TYPE_MASK) { 1927 case TARGET_SOCK_DGRAM: 1928 host_type = SOCK_DGRAM; 1929 break; 1930 case TARGET_SOCK_STREAM: 1931 host_type = SOCK_STREAM; 1932 break; 1933 default: 1934 host_type = target_type & TARGET_SOCK_TYPE_MASK; 1935 break; 1936 } 1937 if (target_type & TARGET_SOCK_CLOEXEC) { 1938 #if defined(SOCK_CLOEXEC) 1939 host_type |= SOCK_CLOEXEC; 1940 #else 1941 return -TARGET_EINVAL; 1942 #endif 1943 } 1944 if (target_type & TARGET_SOCK_NONBLOCK) { 1945 #if defined(SOCK_NONBLOCK) 1946 host_type |= SOCK_NONBLOCK; 1947 #elif !defined(O_NONBLOCK) 1948 return -TARGET_EINVAL; 1949 #endif 1950 } 1951 *type = host_type; 1952 return 0; 1953 } 1954 1955 /* Try to emulate socket type flags after socket creation. */ 1956 static int sock_flags_fixup(int fd, int target_type) 1957 { 1958 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 1959 if (target_type & TARGET_SOCK_NONBLOCK) { 1960 int flags = fcntl(fd, F_GETFL); 1961 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 1962 close(fd); 1963 return -TARGET_EINVAL; 1964 } 1965 } 1966 #endif 1967 return fd; 1968 } 1969 1970 /* do_socket() Must return target values and target errnos. */ 1971 static abi_long do_socket(int domain, int type, int protocol) 1972 { 1973 int target_type = type; 1974 int ret; 1975 1976 ret = target_to_host_sock_type(&type); 1977 if (ret) { 1978 return ret; 1979 } 1980 1981 if (domain == PF_NETLINK) 1982 return -TARGET_EAFNOSUPPORT; 1983 ret = get_errno(socket(domain, type, protocol)); 1984 if (ret >= 0) { 1985 ret = sock_flags_fixup(ret, target_type); 1986 } 1987 return ret; 1988 } 1989 1990 /* do_bind() Must return target values and target errnos. */ 1991 static abi_long do_bind(int sockfd, abi_ulong target_addr, 1992 socklen_t addrlen) 1993 { 1994 void *addr; 1995 abi_long ret; 1996 1997 if ((int)addrlen < 0) { 1998 return -TARGET_EINVAL; 1999 } 2000 2001 addr = alloca(addrlen+1); 2002 2003 ret = target_to_host_sockaddr(addr, target_addr, addrlen); 2004 if (ret) 2005 return ret; 2006 2007 return get_errno(bind(sockfd, addr, addrlen)); 2008 } 2009 2010 /* do_connect() Must return target values and target errnos. */ 2011 static abi_long do_connect(int sockfd, abi_ulong target_addr, 2012 socklen_t addrlen) 2013 { 2014 void *addr; 2015 abi_long ret; 2016 2017 if ((int)addrlen < 0) { 2018 return -TARGET_EINVAL; 2019 } 2020 2021 addr = alloca(addrlen+1); 2022 2023 ret = target_to_host_sockaddr(addr, target_addr, addrlen); 2024 if (ret) 2025 return ret; 2026 2027 return get_errno(connect(sockfd, addr, addrlen)); 2028 } 2029 2030 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 2031 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 2032 int flags, int send) 2033 { 2034 abi_long ret, len; 2035 struct msghdr msg; 2036 int count; 2037 struct iovec *vec; 2038 abi_ulong target_vec; 2039 2040 if (msgp->msg_name) { 2041 msg.msg_namelen = tswap32(msgp->msg_namelen); 2042 msg.msg_name = alloca(msg.msg_namelen+1); 2043 ret = target_to_host_sockaddr(msg.msg_name, tswapal(msgp->msg_name), 2044 msg.msg_namelen); 2045 if (ret) { 2046 goto out2; 2047 } 2048 } else { 2049 msg.msg_name = NULL; 2050 msg.msg_namelen = 0; 2051 } 2052 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 2053 msg.msg_control = alloca(msg.msg_controllen); 2054 msg.msg_flags = tswap32(msgp->msg_flags); 2055 2056 count = tswapal(msgp->msg_iovlen); 2057 target_vec = tswapal(msgp->msg_iov); 2058 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 2059 target_vec, count, send); 2060 if (vec == NULL) { 2061 ret = -host_to_target_errno(errno); 2062 goto out2; 2063 } 2064 msg.msg_iovlen = count; 2065 msg.msg_iov = vec; 2066 2067 if (send) { 2068 ret = target_to_host_cmsg(&msg, msgp); 2069 if (ret == 0) 2070 ret = get_errno(sendmsg(fd, &msg, flags)); 2071 } else { 2072 ret = get_errno(recvmsg(fd, &msg, flags)); 2073 if (!is_error(ret)) { 2074 len = ret; 2075 ret = host_to_target_cmsg(msgp, &msg); 2076 if (!is_error(ret)) { 2077 msgp->msg_namelen = tswap32(msg.msg_namelen); 2078 if (msg.msg_name != NULL) { 2079 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 2080 msg.msg_name, msg.msg_namelen); 2081 if (ret) { 2082 goto out; 2083 } 2084 } 2085 2086 ret = len; 2087 } 2088 } 2089 } 2090 2091 out: 2092 unlock_iovec(vec, target_vec, count, !send); 2093 out2: 2094 return ret; 2095 } 2096 2097 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 2098 int flags, int send) 2099 { 2100 abi_long ret; 2101 struct target_msghdr *msgp; 2102 2103 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 2104 msgp, 2105 target_msg, 2106 send ? 1 : 0)) { 2107 return -TARGET_EFAULT; 2108 } 2109 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 2110 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 2111 return ret; 2112 } 2113 2114 #ifdef TARGET_NR_sendmmsg 2115 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 2116 * so it might not have this *mmsg-specific flag either. 2117 */ 2118 #ifndef MSG_WAITFORONE 2119 #define MSG_WAITFORONE 0x10000 2120 #endif 2121 2122 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 2123 unsigned int vlen, unsigned int flags, 2124 int send) 2125 { 2126 struct target_mmsghdr *mmsgp; 2127 abi_long ret = 0; 2128 int i; 2129 2130 if (vlen > UIO_MAXIOV) { 2131 vlen = UIO_MAXIOV; 2132 } 2133 2134 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 2135 if (!mmsgp) { 2136 return -TARGET_EFAULT; 2137 } 2138 2139 for (i = 0; i < vlen; i++) { 2140 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 2141 if (is_error(ret)) { 2142 break; 2143 } 2144 mmsgp[i].msg_len = tswap32(ret); 2145 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2146 if (flags & MSG_WAITFORONE) { 2147 flags |= MSG_DONTWAIT; 2148 } 2149 } 2150 2151 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 2152 2153 /* Return number of datagrams sent if we sent any at all; 2154 * otherwise return the error. 2155 */ 2156 if (i) { 2157 return i; 2158 } 2159 return ret; 2160 } 2161 #endif 2162 2163 /* If we don't have a system accept4() then just call accept. 2164 * The callsites to do_accept4() will ensure that they don't 2165 * pass a non-zero flags argument in this config. 2166 */ 2167 #ifndef CONFIG_ACCEPT4 2168 static inline int accept4(int sockfd, struct sockaddr *addr, 2169 socklen_t *addrlen, int flags) 2170 { 2171 assert(flags == 0); 2172 return accept(sockfd, addr, addrlen); 2173 } 2174 #endif 2175 2176 /* do_accept4() Must return target values and target errnos. */ 2177 static abi_long do_accept4(int fd, abi_ulong target_addr, 2178 abi_ulong target_addrlen_addr, int flags) 2179 { 2180 socklen_t addrlen; 2181 void *addr; 2182 abi_long ret; 2183 int host_flags; 2184 2185 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 2186 2187 if (target_addr == 0) { 2188 return get_errno(accept4(fd, NULL, NULL, host_flags)); 2189 } 2190 2191 /* linux returns EINVAL if addrlen pointer is invalid */ 2192 if (get_user_u32(addrlen, target_addrlen_addr)) 2193 return -TARGET_EINVAL; 2194 2195 if ((int)addrlen < 0) { 2196 return -TARGET_EINVAL; 2197 } 2198 2199 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 2200 return -TARGET_EINVAL; 2201 2202 addr = alloca(addrlen); 2203 2204 ret = get_errno(accept4(fd, addr, &addrlen, host_flags)); 2205 if (!is_error(ret)) { 2206 host_to_target_sockaddr(target_addr, addr, addrlen); 2207 if (put_user_u32(addrlen, target_addrlen_addr)) 2208 ret = -TARGET_EFAULT; 2209 } 2210 return ret; 2211 } 2212 2213 /* do_getpeername() Must return target values and target errnos. */ 2214 static abi_long do_getpeername(int fd, abi_ulong target_addr, 2215 abi_ulong target_addrlen_addr) 2216 { 2217 socklen_t addrlen; 2218 void *addr; 2219 abi_long ret; 2220 2221 if (get_user_u32(addrlen, target_addrlen_addr)) 2222 return -TARGET_EFAULT; 2223 2224 if ((int)addrlen < 0) { 2225 return -TARGET_EINVAL; 2226 } 2227 2228 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 2229 return -TARGET_EFAULT; 2230 2231 addr = alloca(addrlen); 2232 2233 ret = get_errno(getpeername(fd, addr, &addrlen)); 2234 if (!is_error(ret)) { 2235 host_to_target_sockaddr(target_addr, addr, addrlen); 2236 if (put_user_u32(addrlen, target_addrlen_addr)) 2237 ret = -TARGET_EFAULT; 2238 } 2239 return ret; 2240 } 2241 2242 /* do_getsockname() Must return target values and target errnos. */ 2243 static abi_long do_getsockname(int fd, abi_ulong target_addr, 2244 abi_ulong target_addrlen_addr) 2245 { 2246 socklen_t addrlen; 2247 void *addr; 2248 abi_long ret; 2249 2250 if (get_user_u32(addrlen, target_addrlen_addr)) 2251 return -TARGET_EFAULT; 2252 2253 if ((int)addrlen < 0) { 2254 return -TARGET_EINVAL; 2255 } 2256 2257 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 2258 return -TARGET_EFAULT; 2259 2260 addr = alloca(addrlen); 2261 2262 ret = get_errno(getsockname(fd, addr, &addrlen)); 2263 if (!is_error(ret)) { 2264 host_to_target_sockaddr(target_addr, addr, addrlen); 2265 if (put_user_u32(addrlen, target_addrlen_addr)) 2266 ret = -TARGET_EFAULT; 2267 } 2268 return ret; 2269 } 2270 2271 /* do_socketpair() Must return target values and target errnos. */ 2272 static abi_long do_socketpair(int domain, int type, int protocol, 2273 abi_ulong target_tab_addr) 2274 { 2275 int tab[2]; 2276 abi_long ret; 2277 2278 target_to_host_sock_type(&type); 2279 2280 ret = get_errno(socketpair(domain, type, protocol, tab)); 2281 if (!is_error(ret)) { 2282 if (put_user_s32(tab[0], target_tab_addr) 2283 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 2284 ret = -TARGET_EFAULT; 2285 } 2286 return ret; 2287 } 2288 2289 /* do_sendto() Must return target values and target errnos. */ 2290 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 2291 abi_ulong target_addr, socklen_t addrlen) 2292 { 2293 void *addr; 2294 void *host_msg; 2295 abi_long ret; 2296 2297 if ((int)addrlen < 0) { 2298 return -TARGET_EINVAL; 2299 } 2300 2301 host_msg = lock_user(VERIFY_READ, msg, len, 1); 2302 if (!host_msg) 2303 return -TARGET_EFAULT; 2304 if (target_addr) { 2305 addr = alloca(addrlen+1); 2306 ret = target_to_host_sockaddr(addr, target_addr, addrlen); 2307 if (ret) { 2308 unlock_user(host_msg, msg, 0); 2309 return ret; 2310 } 2311 ret = get_errno(sendto(fd, host_msg, len, flags, addr, addrlen)); 2312 } else { 2313 ret = get_errno(send(fd, host_msg, len, flags)); 2314 } 2315 unlock_user(host_msg, msg, 0); 2316 return ret; 2317 } 2318 2319 /* do_recvfrom() Must return target values and target errnos. */ 2320 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 2321 abi_ulong target_addr, 2322 abi_ulong target_addrlen) 2323 { 2324 socklen_t addrlen; 2325 void *addr; 2326 void *host_msg; 2327 abi_long ret; 2328 2329 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 2330 if (!host_msg) 2331 return -TARGET_EFAULT; 2332 if (target_addr) { 2333 if (get_user_u32(addrlen, target_addrlen)) { 2334 ret = -TARGET_EFAULT; 2335 goto fail; 2336 } 2337 if ((int)addrlen < 0) { 2338 ret = -TARGET_EINVAL; 2339 goto fail; 2340 } 2341 addr = alloca(addrlen); 2342 ret = get_errno(recvfrom(fd, host_msg, len, flags, addr, &addrlen)); 2343 } else { 2344 addr = NULL; /* To keep compiler quiet. */ 2345 ret = get_errno(qemu_recv(fd, host_msg, len, flags)); 2346 } 2347 if (!is_error(ret)) { 2348 if (target_addr) { 2349 host_to_target_sockaddr(target_addr, addr, addrlen); 2350 if (put_user_u32(addrlen, target_addrlen)) { 2351 ret = -TARGET_EFAULT; 2352 goto fail; 2353 } 2354 } 2355 unlock_user(host_msg, msg, len); 2356 } else { 2357 fail: 2358 unlock_user(host_msg, msg, 0); 2359 } 2360 return ret; 2361 } 2362 2363 #ifdef TARGET_NR_socketcall 2364 /* do_socketcall() Must return target values and target errnos. */ 2365 static abi_long do_socketcall(int num, abi_ulong vptr) 2366 { 2367 static const unsigned ac[] = { /* number of arguments per call */ 2368 [SOCKOP_socket] = 3, /* domain, type, protocol */ 2369 [SOCKOP_bind] = 3, /* sockfd, addr, addrlen */ 2370 [SOCKOP_connect] = 3, /* sockfd, addr, addrlen */ 2371 [SOCKOP_listen] = 2, /* sockfd, backlog */ 2372 [SOCKOP_accept] = 3, /* sockfd, addr, addrlen */ 2373 [SOCKOP_accept4] = 4, /* sockfd, addr, addrlen, flags */ 2374 [SOCKOP_getsockname] = 3, /* sockfd, addr, addrlen */ 2375 [SOCKOP_getpeername] = 3, /* sockfd, addr, addrlen */ 2376 [SOCKOP_socketpair] = 4, /* domain, type, protocol, tab */ 2377 [SOCKOP_send] = 4, /* sockfd, msg, len, flags */ 2378 [SOCKOP_recv] = 4, /* sockfd, msg, len, flags */ 2379 [SOCKOP_sendto] = 6, /* sockfd, msg, len, flags, addr, addrlen */ 2380 [SOCKOP_recvfrom] = 6, /* sockfd, msg, len, flags, addr, addrlen */ 2381 [SOCKOP_shutdown] = 2, /* sockfd, how */ 2382 [SOCKOP_sendmsg] = 3, /* sockfd, msg, flags */ 2383 [SOCKOP_recvmsg] = 3, /* sockfd, msg, flags */ 2384 [SOCKOP_setsockopt] = 5, /* sockfd, level, optname, optval, optlen */ 2385 [SOCKOP_getsockopt] = 5, /* sockfd, level, optname, optval, optlen */ 2386 }; 2387 abi_long a[6]; /* max 6 args */ 2388 2389 /* first, collect the arguments in a[] according to ac[] */ 2390 if (num >= 0 && num < ARRAY_SIZE(ac)) { 2391 unsigned i; 2392 assert(ARRAY_SIZE(a) >= ac[num]); /* ensure we have space for args */ 2393 for (i = 0; i < ac[num]; ++i) { 2394 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 2395 return -TARGET_EFAULT; 2396 } 2397 } 2398 } 2399 2400 /* now when we have the args, actually handle the call */ 2401 switch (num) { 2402 case SOCKOP_socket: /* domain, type, protocol */ 2403 return do_socket(a[0], a[1], a[2]); 2404 case SOCKOP_bind: /* sockfd, addr, addrlen */ 2405 return do_bind(a[0], a[1], a[2]); 2406 case SOCKOP_connect: /* sockfd, addr, addrlen */ 2407 return do_connect(a[0], a[1], a[2]); 2408 case SOCKOP_listen: /* sockfd, backlog */ 2409 return get_errno(listen(a[0], a[1])); 2410 case SOCKOP_accept: /* sockfd, addr, addrlen */ 2411 return do_accept4(a[0], a[1], a[2], 0); 2412 case SOCKOP_accept4: /* sockfd, addr, addrlen, flags */ 2413 return do_accept4(a[0], a[1], a[2], a[3]); 2414 case SOCKOP_getsockname: /* sockfd, addr, addrlen */ 2415 return do_getsockname(a[0], a[1], a[2]); 2416 case SOCKOP_getpeername: /* sockfd, addr, addrlen */ 2417 return do_getpeername(a[0], a[1], a[2]); 2418 case SOCKOP_socketpair: /* domain, type, protocol, tab */ 2419 return do_socketpair(a[0], a[1], a[2], a[3]); 2420 case SOCKOP_send: /* sockfd, msg, len, flags */ 2421 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 2422 case SOCKOP_recv: /* sockfd, msg, len, flags */ 2423 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 2424 case SOCKOP_sendto: /* sockfd, msg, len, flags, addr, addrlen */ 2425 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 2426 case SOCKOP_recvfrom: /* sockfd, msg, len, flags, addr, addrlen */ 2427 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 2428 case SOCKOP_shutdown: /* sockfd, how */ 2429 return get_errno(shutdown(a[0], a[1])); 2430 case SOCKOP_sendmsg: /* sockfd, msg, flags */ 2431 return do_sendrecvmsg(a[0], a[1], a[2], 1); 2432 case SOCKOP_recvmsg: /* sockfd, msg, flags */ 2433 return do_sendrecvmsg(a[0], a[1], a[2], 0); 2434 case SOCKOP_setsockopt: /* sockfd, level, optname, optval, optlen */ 2435 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 2436 case SOCKOP_getsockopt: /* sockfd, level, optname, optval, optlen */ 2437 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 2438 default: 2439 gemu_log("Unsupported socketcall: %d\n", num); 2440 return -TARGET_ENOSYS; 2441 } 2442 } 2443 #endif 2444 2445 #define N_SHM_REGIONS 32 2446 2447 static struct shm_region { 2448 abi_ulong start; 2449 abi_ulong size; 2450 } shm_regions[N_SHM_REGIONS]; 2451 2452 struct target_semid_ds 2453 { 2454 struct target_ipc_perm sem_perm; 2455 abi_ulong sem_otime; 2456 #if !defined(TARGET_PPC64) 2457 abi_ulong __unused1; 2458 #endif 2459 abi_ulong sem_ctime; 2460 #if !defined(TARGET_PPC64) 2461 abi_ulong __unused2; 2462 #endif 2463 abi_ulong sem_nsems; 2464 abi_ulong __unused3; 2465 abi_ulong __unused4; 2466 }; 2467 2468 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 2469 abi_ulong target_addr) 2470 { 2471 struct target_ipc_perm *target_ip; 2472 struct target_semid_ds *target_sd; 2473 2474 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 2475 return -TARGET_EFAULT; 2476 target_ip = &(target_sd->sem_perm); 2477 host_ip->__key = tswap32(target_ip->__key); 2478 host_ip->uid = tswap32(target_ip->uid); 2479 host_ip->gid = tswap32(target_ip->gid); 2480 host_ip->cuid = tswap32(target_ip->cuid); 2481 host_ip->cgid = tswap32(target_ip->cgid); 2482 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 2483 host_ip->mode = tswap32(target_ip->mode); 2484 #else 2485 host_ip->mode = tswap16(target_ip->mode); 2486 #endif 2487 #if defined(TARGET_PPC) 2488 host_ip->__seq = tswap32(target_ip->__seq); 2489 #else 2490 host_ip->__seq = tswap16(target_ip->__seq); 2491 #endif 2492 unlock_user_struct(target_sd, target_addr, 0); 2493 return 0; 2494 } 2495 2496 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 2497 struct ipc_perm *host_ip) 2498 { 2499 struct target_ipc_perm *target_ip; 2500 struct target_semid_ds *target_sd; 2501 2502 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 2503 return -TARGET_EFAULT; 2504 target_ip = &(target_sd->sem_perm); 2505 target_ip->__key = tswap32(host_ip->__key); 2506 target_ip->uid = tswap32(host_ip->uid); 2507 target_ip->gid = tswap32(host_ip->gid); 2508 target_ip->cuid = tswap32(host_ip->cuid); 2509 target_ip->cgid = tswap32(host_ip->cgid); 2510 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 2511 target_ip->mode = tswap32(host_ip->mode); 2512 #else 2513 target_ip->mode = tswap16(host_ip->mode); 2514 #endif 2515 #if defined(TARGET_PPC) 2516 target_ip->__seq = tswap32(host_ip->__seq); 2517 #else 2518 target_ip->__seq = tswap16(host_ip->__seq); 2519 #endif 2520 unlock_user_struct(target_sd, target_addr, 1); 2521 return 0; 2522 } 2523 2524 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 2525 abi_ulong target_addr) 2526 { 2527 struct target_semid_ds *target_sd; 2528 2529 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 2530 return -TARGET_EFAULT; 2531 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 2532 return -TARGET_EFAULT; 2533 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 2534 host_sd->sem_otime = tswapal(target_sd->sem_otime); 2535 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 2536 unlock_user_struct(target_sd, target_addr, 0); 2537 return 0; 2538 } 2539 2540 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 2541 struct semid_ds *host_sd) 2542 { 2543 struct target_semid_ds *target_sd; 2544 2545 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 2546 return -TARGET_EFAULT; 2547 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 2548 return -TARGET_EFAULT; 2549 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 2550 target_sd->sem_otime = tswapal(host_sd->sem_otime); 2551 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 2552 unlock_user_struct(target_sd, target_addr, 1); 2553 return 0; 2554 } 2555 2556 struct target_seminfo { 2557 int semmap; 2558 int semmni; 2559 int semmns; 2560 int semmnu; 2561 int semmsl; 2562 int semopm; 2563 int semume; 2564 int semusz; 2565 int semvmx; 2566 int semaem; 2567 }; 2568 2569 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 2570 struct seminfo *host_seminfo) 2571 { 2572 struct target_seminfo *target_seminfo; 2573 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 2574 return -TARGET_EFAULT; 2575 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 2576 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 2577 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 2578 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 2579 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 2580 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 2581 __put_user(host_seminfo->semume, &target_seminfo->semume); 2582 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 2583 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 2584 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 2585 unlock_user_struct(target_seminfo, target_addr, 1); 2586 return 0; 2587 } 2588 2589 union semun { 2590 int val; 2591 struct semid_ds *buf; 2592 unsigned short *array; 2593 struct seminfo *__buf; 2594 }; 2595 2596 union target_semun { 2597 int val; 2598 abi_ulong buf; 2599 abi_ulong array; 2600 abi_ulong __buf; 2601 }; 2602 2603 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 2604 abi_ulong target_addr) 2605 { 2606 int nsems; 2607 unsigned short *array; 2608 union semun semun; 2609 struct semid_ds semid_ds; 2610 int i, ret; 2611 2612 semun.buf = &semid_ds; 2613 2614 ret = semctl(semid, 0, IPC_STAT, semun); 2615 if (ret == -1) 2616 return get_errno(ret); 2617 2618 nsems = semid_ds.sem_nsems; 2619 2620 *host_array = malloc(nsems*sizeof(unsigned short)); 2621 if (!*host_array) { 2622 return -TARGET_ENOMEM; 2623 } 2624 array = lock_user(VERIFY_READ, target_addr, 2625 nsems*sizeof(unsigned short), 1); 2626 if (!array) { 2627 free(*host_array); 2628 return -TARGET_EFAULT; 2629 } 2630 2631 for(i=0; i<nsems; i++) { 2632 __get_user((*host_array)[i], &array[i]); 2633 } 2634 unlock_user(array, target_addr, 0); 2635 2636 return 0; 2637 } 2638 2639 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 2640 unsigned short **host_array) 2641 { 2642 int nsems; 2643 unsigned short *array; 2644 union semun semun; 2645 struct semid_ds semid_ds; 2646 int i, ret; 2647 2648 semun.buf = &semid_ds; 2649 2650 ret = semctl(semid, 0, IPC_STAT, semun); 2651 if (ret == -1) 2652 return get_errno(ret); 2653 2654 nsems = semid_ds.sem_nsems; 2655 2656 array = lock_user(VERIFY_WRITE, target_addr, 2657 nsems*sizeof(unsigned short), 0); 2658 if (!array) 2659 return -TARGET_EFAULT; 2660 2661 for(i=0; i<nsems; i++) { 2662 __put_user((*host_array)[i], &array[i]); 2663 } 2664 free(*host_array); 2665 unlock_user(array, target_addr, 1); 2666 2667 return 0; 2668 } 2669 2670 static inline abi_long do_semctl(int semid, int semnum, int cmd, 2671 union target_semun target_su) 2672 { 2673 union semun arg; 2674 struct semid_ds dsarg; 2675 unsigned short *array = NULL; 2676 struct seminfo seminfo; 2677 abi_long ret = -TARGET_EINVAL; 2678 abi_long err; 2679 cmd &= 0xff; 2680 2681 switch( cmd ) { 2682 case GETVAL: 2683 case SETVAL: 2684 /* In 64 bit cross-endian situations, we will erroneously pick up 2685 * the wrong half of the union for the "val" element. To rectify 2686 * this, the entire 8-byte structure is byteswapped, followed by 2687 * a swap of the 4 byte val field. In other cases, the data is 2688 * already in proper host byte order. */ 2689 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 2690 target_su.buf = tswapal(target_su.buf); 2691 arg.val = tswap32(target_su.val); 2692 } else { 2693 arg.val = target_su.val; 2694 } 2695 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2696 break; 2697 case GETALL: 2698 case SETALL: 2699 err = target_to_host_semarray(semid, &array, target_su.array); 2700 if (err) 2701 return err; 2702 arg.array = array; 2703 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2704 err = host_to_target_semarray(semid, target_su.array, &array); 2705 if (err) 2706 return err; 2707 break; 2708 case IPC_STAT: 2709 case IPC_SET: 2710 case SEM_STAT: 2711 err = target_to_host_semid_ds(&dsarg, target_su.buf); 2712 if (err) 2713 return err; 2714 arg.buf = &dsarg; 2715 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2716 err = host_to_target_semid_ds(target_su.buf, &dsarg); 2717 if (err) 2718 return err; 2719 break; 2720 case IPC_INFO: 2721 case SEM_INFO: 2722 arg.__buf = &seminfo; 2723 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2724 err = host_to_target_seminfo(target_su.__buf, &seminfo); 2725 if (err) 2726 return err; 2727 break; 2728 case IPC_RMID: 2729 case GETPID: 2730 case GETNCNT: 2731 case GETZCNT: 2732 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 2733 break; 2734 } 2735 2736 return ret; 2737 } 2738 2739 struct target_sembuf { 2740 unsigned short sem_num; 2741 short sem_op; 2742 short sem_flg; 2743 }; 2744 2745 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 2746 abi_ulong target_addr, 2747 unsigned nsops) 2748 { 2749 struct target_sembuf *target_sembuf; 2750 int i; 2751 2752 target_sembuf = lock_user(VERIFY_READ, target_addr, 2753 nsops*sizeof(struct target_sembuf), 1); 2754 if (!target_sembuf) 2755 return -TARGET_EFAULT; 2756 2757 for(i=0; i<nsops; i++) { 2758 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 2759 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 2760 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 2761 } 2762 2763 unlock_user(target_sembuf, target_addr, 0); 2764 2765 return 0; 2766 } 2767 2768 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops) 2769 { 2770 struct sembuf sops[nsops]; 2771 2772 if (target_to_host_sembuf(sops, ptr, nsops)) 2773 return -TARGET_EFAULT; 2774 2775 return get_errno(semop(semid, sops, nsops)); 2776 } 2777 2778 struct target_msqid_ds 2779 { 2780 struct target_ipc_perm msg_perm; 2781 abi_ulong msg_stime; 2782 #if TARGET_ABI_BITS == 32 2783 abi_ulong __unused1; 2784 #endif 2785 abi_ulong msg_rtime; 2786 #if TARGET_ABI_BITS == 32 2787 abi_ulong __unused2; 2788 #endif 2789 abi_ulong msg_ctime; 2790 #if TARGET_ABI_BITS == 32 2791 abi_ulong __unused3; 2792 #endif 2793 abi_ulong __msg_cbytes; 2794 abi_ulong msg_qnum; 2795 abi_ulong msg_qbytes; 2796 abi_ulong msg_lspid; 2797 abi_ulong msg_lrpid; 2798 abi_ulong __unused4; 2799 abi_ulong __unused5; 2800 }; 2801 2802 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 2803 abi_ulong target_addr) 2804 { 2805 struct target_msqid_ds *target_md; 2806 2807 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 2808 return -TARGET_EFAULT; 2809 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 2810 return -TARGET_EFAULT; 2811 host_md->msg_stime = tswapal(target_md->msg_stime); 2812 host_md->msg_rtime = tswapal(target_md->msg_rtime); 2813 host_md->msg_ctime = tswapal(target_md->msg_ctime); 2814 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 2815 host_md->msg_qnum = tswapal(target_md->msg_qnum); 2816 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 2817 host_md->msg_lspid = tswapal(target_md->msg_lspid); 2818 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 2819 unlock_user_struct(target_md, target_addr, 0); 2820 return 0; 2821 } 2822 2823 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 2824 struct msqid_ds *host_md) 2825 { 2826 struct target_msqid_ds *target_md; 2827 2828 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 2829 return -TARGET_EFAULT; 2830 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 2831 return -TARGET_EFAULT; 2832 target_md->msg_stime = tswapal(host_md->msg_stime); 2833 target_md->msg_rtime = tswapal(host_md->msg_rtime); 2834 target_md->msg_ctime = tswapal(host_md->msg_ctime); 2835 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 2836 target_md->msg_qnum = tswapal(host_md->msg_qnum); 2837 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 2838 target_md->msg_lspid = tswapal(host_md->msg_lspid); 2839 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 2840 unlock_user_struct(target_md, target_addr, 1); 2841 return 0; 2842 } 2843 2844 struct target_msginfo { 2845 int msgpool; 2846 int msgmap; 2847 int msgmax; 2848 int msgmnb; 2849 int msgmni; 2850 int msgssz; 2851 int msgtql; 2852 unsigned short int msgseg; 2853 }; 2854 2855 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 2856 struct msginfo *host_msginfo) 2857 { 2858 struct target_msginfo *target_msginfo; 2859 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 2860 return -TARGET_EFAULT; 2861 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 2862 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 2863 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 2864 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 2865 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 2866 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 2867 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 2868 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 2869 unlock_user_struct(target_msginfo, target_addr, 1); 2870 return 0; 2871 } 2872 2873 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 2874 { 2875 struct msqid_ds dsarg; 2876 struct msginfo msginfo; 2877 abi_long ret = -TARGET_EINVAL; 2878 2879 cmd &= 0xff; 2880 2881 switch (cmd) { 2882 case IPC_STAT: 2883 case IPC_SET: 2884 case MSG_STAT: 2885 if (target_to_host_msqid_ds(&dsarg,ptr)) 2886 return -TARGET_EFAULT; 2887 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 2888 if (host_to_target_msqid_ds(ptr,&dsarg)) 2889 return -TARGET_EFAULT; 2890 break; 2891 case IPC_RMID: 2892 ret = get_errno(msgctl(msgid, cmd, NULL)); 2893 break; 2894 case IPC_INFO: 2895 case MSG_INFO: 2896 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 2897 if (host_to_target_msginfo(ptr, &msginfo)) 2898 return -TARGET_EFAULT; 2899 break; 2900 } 2901 2902 return ret; 2903 } 2904 2905 struct target_msgbuf { 2906 abi_long mtype; 2907 char mtext[1]; 2908 }; 2909 2910 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 2911 ssize_t msgsz, int msgflg) 2912 { 2913 struct target_msgbuf *target_mb; 2914 struct msgbuf *host_mb; 2915 abi_long ret = 0; 2916 2917 if (msgsz < 0) { 2918 return -TARGET_EINVAL; 2919 } 2920 2921 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 2922 return -TARGET_EFAULT; 2923 host_mb = malloc(msgsz+sizeof(long)); 2924 if (!host_mb) { 2925 unlock_user_struct(target_mb, msgp, 0); 2926 return -TARGET_ENOMEM; 2927 } 2928 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 2929 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 2930 ret = get_errno(msgsnd(msqid, host_mb, msgsz, msgflg)); 2931 free(host_mb); 2932 unlock_user_struct(target_mb, msgp, 0); 2933 2934 return ret; 2935 } 2936 2937 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 2938 unsigned int msgsz, abi_long msgtyp, 2939 int msgflg) 2940 { 2941 struct target_msgbuf *target_mb; 2942 char *target_mtext; 2943 struct msgbuf *host_mb; 2944 abi_long ret = 0; 2945 2946 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 2947 return -TARGET_EFAULT; 2948 2949 host_mb = g_malloc(msgsz+sizeof(long)); 2950 ret = get_errno(msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 2951 2952 if (ret > 0) { 2953 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 2954 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 2955 if (!target_mtext) { 2956 ret = -TARGET_EFAULT; 2957 goto end; 2958 } 2959 memcpy(target_mb->mtext, host_mb->mtext, ret); 2960 unlock_user(target_mtext, target_mtext_addr, ret); 2961 } 2962 2963 target_mb->mtype = tswapal(host_mb->mtype); 2964 2965 end: 2966 if (target_mb) 2967 unlock_user_struct(target_mb, msgp, 1); 2968 g_free(host_mb); 2969 return ret; 2970 } 2971 2972 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 2973 abi_ulong target_addr) 2974 { 2975 struct target_shmid_ds *target_sd; 2976 2977 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 2978 return -TARGET_EFAULT; 2979 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 2980 return -TARGET_EFAULT; 2981 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 2982 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 2983 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 2984 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 2985 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 2986 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 2987 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 2988 unlock_user_struct(target_sd, target_addr, 0); 2989 return 0; 2990 } 2991 2992 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 2993 struct shmid_ds *host_sd) 2994 { 2995 struct target_shmid_ds *target_sd; 2996 2997 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 2998 return -TARGET_EFAULT; 2999 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 3000 return -TARGET_EFAULT; 3001 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 3002 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 3003 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 3004 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 3005 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 3006 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 3007 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 3008 unlock_user_struct(target_sd, target_addr, 1); 3009 return 0; 3010 } 3011 3012 struct target_shminfo { 3013 abi_ulong shmmax; 3014 abi_ulong shmmin; 3015 abi_ulong shmmni; 3016 abi_ulong shmseg; 3017 abi_ulong shmall; 3018 }; 3019 3020 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 3021 struct shminfo *host_shminfo) 3022 { 3023 struct target_shminfo *target_shminfo; 3024 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 3025 return -TARGET_EFAULT; 3026 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 3027 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 3028 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 3029 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 3030 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 3031 unlock_user_struct(target_shminfo, target_addr, 1); 3032 return 0; 3033 } 3034 3035 struct target_shm_info { 3036 int used_ids; 3037 abi_ulong shm_tot; 3038 abi_ulong shm_rss; 3039 abi_ulong shm_swp; 3040 abi_ulong swap_attempts; 3041 abi_ulong swap_successes; 3042 }; 3043 3044 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 3045 struct shm_info *host_shm_info) 3046 { 3047 struct target_shm_info *target_shm_info; 3048 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 3049 return -TARGET_EFAULT; 3050 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 3051 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 3052 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 3053 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 3054 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 3055 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 3056 unlock_user_struct(target_shm_info, target_addr, 1); 3057 return 0; 3058 } 3059 3060 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 3061 { 3062 struct shmid_ds dsarg; 3063 struct shminfo shminfo; 3064 struct shm_info shm_info; 3065 abi_long ret = -TARGET_EINVAL; 3066 3067 cmd &= 0xff; 3068 3069 switch(cmd) { 3070 case IPC_STAT: 3071 case IPC_SET: 3072 case SHM_STAT: 3073 if (target_to_host_shmid_ds(&dsarg, buf)) 3074 return -TARGET_EFAULT; 3075 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 3076 if (host_to_target_shmid_ds(buf, &dsarg)) 3077 return -TARGET_EFAULT; 3078 break; 3079 case IPC_INFO: 3080 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 3081 if (host_to_target_shminfo(buf, &shminfo)) 3082 return -TARGET_EFAULT; 3083 break; 3084 case SHM_INFO: 3085 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 3086 if (host_to_target_shm_info(buf, &shm_info)) 3087 return -TARGET_EFAULT; 3088 break; 3089 case IPC_RMID: 3090 case SHM_LOCK: 3091 case SHM_UNLOCK: 3092 ret = get_errno(shmctl(shmid, cmd, NULL)); 3093 break; 3094 } 3095 3096 return ret; 3097 } 3098 3099 static inline abi_ulong do_shmat(int shmid, abi_ulong shmaddr, int shmflg) 3100 { 3101 abi_long raddr; 3102 void *host_raddr; 3103 struct shmid_ds shm_info; 3104 int i,ret; 3105 3106 /* find out the length of the shared memory segment */ 3107 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 3108 if (is_error(ret)) { 3109 /* can't get length, bail out */ 3110 return ret; 3111 } 3112 3113 mmap_lock(); 3114 3115 if (shmaddr) 3116 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg); 3117 else { 3118 abi_ulong mmap_start; 3119 3120 mmap_start = mmap_find_vma(0, shm_info.shm_segsz); 3121 3122 if (mmap_start == -1) { 3123 errno = ENOMEM; 3124 host_raddr = (void *)-1; 3125 } else 3126 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP); 3127 } 3128 3129 if (host_raddr == (void *)-1) { 3130 mmap_unlock(); 3131 return get_errno((long)host_raddr); 3132 } 3133 raddr=h2g((unsigned long)host_raddr); 3134 3135 page_set_flags(raddr, raddr + shm_info.shm_segsz, 3136 PAGE_VALID | PAGE_READ | 3137 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE)); 3138 3139 for (i = 0; i < N_SHM_REGIONS; i++) { 3140 if (shm_regions[i].start == 0) { 3141 shm_regions[i].start = raddr; 3142 shm_regions[i].size = shm_info.shm_segsz; 3143 break; 3144 } 3145 } 3146 3147 mmap_unlock(); 3148 return raddr; 3149 3150 } 3151 3152 static inline abi_long do_shmdt(abi_ulong shmaddr) 3153 { 3154 int i; 3155 3156 for (i = 0; i < N_SHM_REGIONS; ++i) { 3157 if (shm_regions[i].start == shmaddr) { 3158 shm_regions[i].start = 0; 3159 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 3160 break; 3161 } 3162 } 3163 3164 return get_errno(shmdt(g2h(shmaddr))); 3165 } 3166 3167 #ifdef TARGET_NR_ipc 3168 /* ??? This only works with linear mappings. */ 3169 /* do_ipc() must return target values and target errnos. */ 3170 static abi_long do_ipc(unsigned int call, abi_long first, 3171 abi_long second, abi_long third, 3172 abi_long ptr, abi_long fifth) 3173 { 3174 int version; 3175 abi_long ret = 0; 3176 3177 version = call >> 16; 3178 call &= 0xffff; 3179 3180 switch (call) { 3181 case IPCOP_semop: 3182 ret = do_semop(first, ptr, second); 3183 break; 3184 3185 case IPCOP_semget: 3186 ret = get_errno(semget(first, second, third)); 3187 break; 3188 3189 case IPCOP_semctl: { 3190 /* The semun argument to semctl is passed by value, so dereference the 3191 * ptr argument. */ 3192 abi_ulong atptr; 3193 get_user_ual(atptr, ptr); 3194 ret = do_semctl(first, second, third, 3195 (union target_semun) atptr); 3196 break; 3197 } 3198 3199 case IPCOP_msgget: 3200 ret = get_errno(msgget(first, second)); 3201 break; 3202 3203 case IPCOP_msgsnd: 3204 ret = do_msgsnd(first, ptr, second, third); 3205 break; 3206 3207 case IPCOP_msgctl: 3208 ret = do_msgctl(first, second, ptr); 3209 break; 3210 3211 case IPCOP_msgrcv: 3212 switch (version) { 3213 case 0: 3214 { 3215 struct target_ipc_kludge { 3216 abi_long msgp; 3217 abi_long msgtyp; 3218 } *tmp; 3219 3220 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 3221 ret = -TARGET_EFAULT; 3222 break; 3223 } 3224 3225 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 3226 3227 unlock_user_struct(tmp, ptr, 0); 3228 break; 3229 } 3230 default: 3231 ret = do_msgrcv(first, ptr, second, fifth, third); 3232 } 3233 break; 3234 3235 case IPCOP_shmat: 3236 switch (version) { 3237 default: 3238 { 3239 abi_ulong raddr; 3240 raddr = do_shmat(first, ptr, second); 3241 if (is_error(raddr)) 3242 return get_errno(raddr); 3243 if (put_user_ual(raddr, third)) 3244 return -TARGET_EFAULT; 3245 break; 3246 } 3247 case 1: 3248 ret = -TARGET_EINVAL; 3249 break; 3250 } 3251 break; 3252 case IPCOP_shmdt: 3253 ret = do_shmdt(ptr); 3254 break; 3255 3256 case IPCOP_shmget: 3257 /* IPC_* flag values are the same on all linux platforms */ 3258 ret = get_errno(shmget(first, second, third)); 3259 break; 3260 3261 /* IPC_* and SHM_* command values are the same on all linux platforms */ 3262 case IPCOP_shmctl: 3263 ret = do_shmctl(first, second, ptr); 3264 break; 3265 default: 3266 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version); 3267 ret = -TARGET_ENOSYS; 3268 break; 3269 } 3270 return ret; 3271 } 3272 #endif 3273 3274 /* kernel structure types definitions */ 3275 3276 #define STRUCT(name, ...) STRUCT_ ## name, 3277 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 3278 enum { 3279 #include "syscall_types.h" 3280 }; 3281 #undef STRUCT 3282 #undef STRUCT_SPECIAL 3283 3284 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 3285 #define STRUCT_SPECIAL(name) 3286 #include "syscall_types.h" 3287 #undef STRUCT 3288 #undef STRUCT_SPECIAL 3289 3290 typedef struct IOCTLEntry IOCTLEntry; 3291 3292 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 3293 int fd, abi_long cmd, abi_long arg); 3294 3295 struct IOCTLEntry { 3296 int target_cmd; 3297 unsigned int host_cmd; 3298 const char *name; 3299 int access; 3300 do_ioctl_fn *do_ioctl; 3301 const argtype arg_type[5]; 3302 }; 3303 3304 #define IOC_R 0x0001 3305 #define IOC_W 0x0002 3306 #define IOC_RW (IOC_R | IOC_W) 3307 3308 #define MAX_STRUCT_SIZE 4096 3309 3310 #ifdef CONFIG_FIEMAP 3311 /* So fiemap access checks don't overflow on 32 bit systems. 3312 * This is very slightly smaller than the limit imposed by 3313 * the underlying kernel. 3314 */ 3315 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 3316 / sizeof(struct fiemap_extent)) 3317 3318 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 3319 int fd, abi_long cmd, abi_long arg) 3320 { 3321 /* The parameter for this ioctl is a struct fiemap followed 3322 * by an array of struct fiemap_extent whose size is set 3323 * in fiemap->fm_extent_count. The array is filled in by the 3324 * ioctl. 3325 */ 3326 int target_size_in, target_size_out; 3327 struct fiemap *fm; 3328 const argtype *arg_type = ie->arg_type; 3329 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 3330 void *argptr, *p; 3331 abi_long ret; 3332 int i, extent_size = thunk_type_size(extent_arg_type, 0); 3333 uint32_t outbufsz; 3334 int free_fm = 0; 3335 3336 assert(arg_type[0] == TYPE_PTR); 3337 assert(ie->access == IOC_RW); 3338 arg_type++; 3339 target_size_in = thunk_type_size(arg_type, 0); 3340 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 3341 if (!argptr) { 3342 return -TARGET_EFAULT; 3343 } 3344 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3345 unlock_user(argptr, arg, 0); 3346 fm = (struct fiemap *)buf_temp; 3347 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 3348 return -TARGET_EINVAL; 3349 } 3350 3351 outbufsz = sizeof (*fm) + 3352 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 3353 3354 if (outbufsz > MAX_STRUCT_SIZE) { 3355 /* We can't fit all the extents into the fixed size buffer. 3356 * Allocate one that is large enough and use it instead. 3357 */ 3358 fm = malloc(outbufsz); 3359 if (!fm) { 3360 return -TARGET_ENOMEM; 3361 } 3362 memcpy(fm, buf_temp, sizeof(struct fiemap)); 3363 free_fm = 1; 3364 } 3365 ret = get_errno(ioctl(fd, ie->host_cmd, fm)); 3366 if (!is_error(ret)) { 3367 target_size_out = target_size_in; 3368 /* An extent_count of 0 means we were only counting the extents 3369 * so there are no structs to copy 3370 */ 3371 if (fm->fm_extent_count != 0) { 3372 target_size_out += fm->fm_mapped_extents * extent_size; 3373 } 3374 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 3375 if (!argptr) { 3376 ret = -TARGET_EFAULT; 3377 } else { 3378 /* Convert the struct fiemap */ 3379 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 3380 if (fm->fm_extent_count != 0) { 3381 p = argptr + target_size_in; 3382 /* ...and then all the struct fiemap_extents */ 3383 for (i = 0; i < fm->fm_mapped_extents; i++) { 3384 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 3385 THUNK_TARGET); 3386 p += extent_size; 3387 } 3388 } 3389 unlock_user(argptr, arg, target_size_out); 3390 } 3391 } 3392 if (free_fm) { 3393 free(fm); 3394 } 3395 return ret; 3396 } 3397 #endif 3398 3399 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 3400 int fd, abi_long cmd, abi_long arg) 3401 { 3402 const argtype *arg_type = ie->arg_type; 3403 int target_size; 3404 void *argptr; 3405 int ret; 3406 struct ifconf *host_ifconf; 3407 uint32_t outbufsz; 3408 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 3409 int target_ifreq_size; 3410 int nb_ifreq; 3411 int free_buf = 0; 3412 int i; 3413 int target_ifc_len; 3414 abi_long target_ifc_buf; 3415 int host_ifc_len; 3416 char *host_ifc_buf; 3417 3418 assert(arg_type[0] == TYPE_PTR); 3419 assert(ie->access == IOC_RW); 3420 3421 arg_type++; 3422 target_size = thunk_type_size(arg_type, 0); 3423 3424 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3425 if (!argptr) 3426 return -TARGET_EFAULT; 3427 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3428 unlock_user(argptr, arg, 0); 3429 3430 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 3431 target_ifc_len = host_ifconf->ifc_len; 3432 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 3433 3434 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0); 3435 nb_ifreq = target_ifc_len / target_ifreq_size; 3436 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 3437 3438 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 3439 if (outbufsz > MAX_STRUCT_SIZE) { 3440 /* We can't fit all the extents into the fixed size buffer. 3441 * Allocate one that is large enough and use it instead. 3442 */ 3443 host_ifconf = malloc(outbufsz); 3444 if (!host_ifconf) { 3445 return -TARGET_ENOMEM; 3446 } 3447 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 3448 free_buf = 1; 3449 } 3450 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf); 3451 3452 host_ifconf->ifc_len = host_ifc_len; 3453 host_ifconf->ifc_buf = host_ifc_buf; 3454 3455 ret = get_errno(ioctl(fd, ie->host_cmd, host_ifconf)); 3456 if (!is_error(ret)) { 3457 /* convert host ifc_len to target ifc_len */ 3458 3459 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 3460 target_ifc_len = nb_ifreq * target_ifreq_size; 3461 host_ifconf->ifc_len = target_ifc_len; 3462 3463 /* restore target ifc_buf */ 3464 3465 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 3466 3467 /* copy struct ifconf to target user */ 3468 3469 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3470 if (!argptr) 3471 return -TARGET_EFAULT; 3472 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 3473 unlock_user(argptr, arg, target_size); 3474 3475 /* copy ifreq[] to target user */ 3476 3477 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 3478 for (i = 0; i < nb_ifreq ; i++) { 3479 thunk_convert(argptr + i * target_ifreq_size, 3480 host_ifc_buf + i * sizeof(struct ifreq), 3481 ifreq_arg_type, THUNK_TARGET); 3482 } 3483 unlock_user(argptr, target_ifc_buf, target_ifc_len); 3484 } 3485 3486 if (free_buf) { 3487 free(host_ifconf); 3488 } 3489 3490 return ret; 3491 } 3492 3493 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 3494 abi_long cmd, abi_long arg) 3495 { 3496 void *argptr; 3497 struct dm_ioctl *host_dm; 3498 abi_long guest_data; 3499 uint32_t guest_data_size; 3500 int target_size; 3501 const argtype *arg_type = ie->arg_type; 3502 abi_long ret; 3503 void *big_buf = NULL; 3504 char *host_data; 3505 3506 arg_type++; 3507 target_size = thunk_type_size(arg_type, 0); 3508 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3509 if (!argptr) { 3510 ret = -TARGET_EFAULT; 3511 goto out; 3512 } 3513 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3514 unlock_user(argptr, arg, 0); 3515 3516 /* buf_temp is too small, so fetch things into a bigger buffer */ 3517 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 3518 memcpy(big_buf, buf_temp, target_size); 3519 buf_temp = big_buf; 3520 host_dm = big_buf; 3521 3522 guest_data = arg + host_dm->data_start; 3523 if ((guest_data - arg) < 0) { 3524 ret = -EINVAL; 3525 goto out; 3526 } 3527 guest_data_size = host_dm->data_size - host_dm->data_start; 3528 host_data = (char*)host_dm + host_dm->data_start; 3529 3530 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 3531 switch (ie->host_cmd) { 3532 case DM_REMOVE_ALL: 3533 case DM_LIST_DEVICES: 3534 case DM_DEV_CREATE: 3535 case DM_DEV_REMOVE: 3536 case DM_DEV_SUSPEND: 3537 case DM_DEV_STATUS: 3538 case DM_DEV_WAIT: 3539 case DM_TABLE_STATUS: 3540 case DM_TABLE_CLEAR: 3541 case DM_TABLE_DEPS: 3542 case DM_LIST_VERSIONS: 3543 /* no input data */ 3544 break; 3545 case DM_DEV_RENAME: 3546 case DM_DEV_SET_GEOMETRY: 3547 /* data contains only strings */ 3548 memcpy(host_data, argptr, guest_data_size); 3549 break; 3550 case DM_TARGET_MSG: 3551 memcpy(host_data, argptr, guest_data_size); 3552 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 3553 break; 3554 case DM_TABLE_LOAD: 3555 { 3556 void *gspec = argptr; 3557 void *cur_data = host_data; 3558 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 3559 int spec_size = thunk_type_size(arg_type, 0); 3560 int i; 3561 3562 for (i = 0; i < host_dm->target_count; i++) { 3563 struct dm_target_spec *spec = cur_data; 3564 uint32_t next; 3565 int slen; 3566 3567 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 3568 slen = strlen((char*)gspec + spec_size) + 1; 3569 next = spec->next; 3570 spec->next = sizeof(*spec) + slen; 3571 strcpy((char*)&spec[1], gspec + spec_size); 3572 gspec += next; 3573 cur_data += spec->next; 3574 } 3575 break; 3576 } 3577 default: 3578 ret = -TARGET_EINVAL; 3579 unlock_user(argptr, guest_data, 0); 3580 goto out; 3581 } 3582 unlock_user(argptr, guest_data, 0); 3583 3584 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3585 if (!is_error(ret)) { 3586 guest_data = arg + host_dm->data_start; 3587 guest_data_size = host_dm->data_size - host_dm->data_start; 3588 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 3589 switch (ie->host_cmd) { 3590 case DM_REMOVE_ALL: 3591 case DM_DEV_CREATE: 3592 case DM_DEV_REMOVE: 3593 case DM_DEV_RENAME: 3594 case DM_DEV_SUSPEND: 3595 case DM_DEV_STATUS: 3596 case DM_TABLE_LOAD: 3597 case DM_TABLE_CLEAR: 3598 case DM_TARGET_MSG: 3599 case DM_DEV_SET_GEOMETRY: 3600 /* no return data */ 3601 break; 3602 case DM_LIST_DEVICES: 3603 { 3604 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 3605 uint32_t remaining_data = guest_data_size; 3606 void *cur_data = argptr; 3607 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 3608 int nl_size = 12; /* can't use thunk_size due to alignment */ 3609 3610 while (1) { 3611 uint32_t next = nl->next; 3612 if (next) { 3613 nl->next = nl_size + (strlen(nl->name) + 1); 3614 } 3615 if (remaining_data < nl->next) { 3616 host_dm->flags |= DM_BUFFER_FULL_FLAG; 3617 break; 3618 } 3619 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 3620 strcpy(cur_data + nl_size, nl->name); 3621 cur_data += nl->next; 3622 remaining_data -= nl->next; 3623 if (!next) { 3624 break; 3625 } 3626 nl = (void*)nl + next; 3627 } 3628 break; 3629 } 3630 case DM_DEV_WAIT: 3631 case DM_TABLE_STATUS: 3632 { 3633 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 3634 void *cur_data = argptr; 3635 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 3636 int spec_size = thunk_type_size(arg_type, 0); 3637 int i; 3638 3639 for (i = 0; i < host_dm->target_count; i++) { 3640 uint32_t next = spec->next; 3641 int slen = strlen((char*)&spec[1]) + 1; 3642 spec->next = (cur_data - argptr) + spec_size + slen; 3643 if (guest_data_size < spec->next) { 3644 host_dm->flags |= DM_BUFFER_FULL_FLAG; 3645 break; 3646 } 3647 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 3648 strcpy(cur_data + spec_size, (char*)&spec[1]); 3649 cur_data = argptr + spec->next; 3650 spec = (void*)host_dm + host_dm->data_start + next; 3651 } 3652 break; 3653 } 3654 case DM_TABLE_DEPS: 3655 { 3656 void *hdata = (void*)host_dm + host_dm->data_start; 3657 int count = *(uint32_t*)hdata; 3658 uint64_t *hdev = hdata + 8; 3659 uint64_t *gdev = argptr + 8; 3660 int i; 3661 3662 *(uint32_t*)argptr = tswap32(count); 3663 for (i = 0; i < count; i++) { 3664 *gdev = tswap64(*hdev); 3665 gdev++; 3666 hdev++; 3667 } 3668 break; 3669 } 3670 case DM_LIST_VERSIONS: 3671 { 3672 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 3673 uint32_t remaining_data = guest_data_size; 3674 void *cur_data = argptr; 3675 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 3676 int vers_size = thunk_type_size(arg_type, 0); 3677 3678 while (1) { 3679 uint32_t next = vers->next; 3680 if (next) { 3681 vers->next = vers_size + (strlen(vers->name) + 1); 3682 } 3683 if (remaining_data < vers->next) { 3684 host_dm->flags |= DM_BUFFER_FULL_FLAG; 3685 break; 3686 } 3687 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 3688 strcpy(cur_data + vers_size, vers->name); 3689 cur_data += vers->next; 3690 remaining_data -= vers->next; 3691 if (!next) { 3692 break; 3693 } 3694 vers = (void*)vers + next; 3695 } 3696 break; 3697 } 3698 default: 3699 unlock_user(argptr, guest_data, 0); 3700 ret = -TARGET_EINVAL; 3701 goto out; 3702 } 3703 unlock_user(argptr, guest_data, guest_data_size); 3704 3705 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3706 if (!argptr) { 3707 ret = -TARGET_EFAULT; 3708 goto out; 3709 } 3710 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 3711 unlock_user(argptr, arg, target_size); 3712 } 3713 out: 3714 g_free(big_buf); 3715 return ret; 3716 } 3717 3718 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 3719 abi_long cmd, abi_long arg) 3720 { 3721 void *argptr; 3722 int target_size; 3723 const argtype *arg_type = ie->arg_type; 3724 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 3725 abi_long ret; 3726 3727 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 3728 struct blkpg_partition host_part; 3729 3730 /* Read and convert blkpg */ 3731 arg_type++; 3732 target_size = thunk_type_size(arg_type, 0); 3733 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3734 if (!argptr) { 3735 ret = -TARGET_EFAULT; 3736 goto out; 3737 } 3738 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3739 unlock_user(argptr, arg, 0); 3740 3741 switch (host_blkpg->op) { 3742 case BLKPG_ADD_PARTITION: 3743 case BLKPG_DEL_PARTITION: 3744 /* payload is struct blkpg_partition */ 3745 break; 3746 default: 3747 /* Unknown opcode */ 3748 ret = -TARGET_EINVAL; 3749 goto out; 3750 } 3751 3752 /* Read and convert blkpg->data */ 3753 arg = (abi_long)(uintptr_t)host_blkpg->data; 3754 target_size = thunk_type_size(part_arg_type, 0); 3755 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3756 if (!argptr) { 3757 ret = -TARGET_EFAULT; 3758 goto out; 3759 } 3760 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 3761 unlock_user(argptr, arg, 0); 3762 3763 /* Swizzle the data pointer to our local copy and call! */ 3764 host_blkpg->data = &host_part; 3765 ret = get_errno(ioctl(fd, ie->host_cmd, host_blkpg)); 3766 3767 out: 3768 return ret; 3769 } 3770 3771 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 3772 int fd, abi_long cmd, abi_long arg) 3773 { 3774 const argtype *arg_type = ie->arg_type; 3775 const StructEntry *se; 3776 const argtype *field_types; 3777 const int *dst_offsets, *src_offsets; 3778 int target_size; 3779 void *argptr; 3780 abi_ulong *target_rt_dev_ptr; 3781 unsigned long *host_rt_dev_ptr; 3782 abi_long ret; 3783 int i; 3784 3785 assert(ie->access == IOC_W); 3786 assert(*arg_type == TYPE_PTR); 3787 arg_type++; 3788 assert(*arg_type == TYPE_STRUCT); 3789 target_size = thunk_type_size(arg_type, 0); 3790 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3791 if (!argptr) { 3792 return -TARGET_EFAULT; 3793 } 3794 arg_type++; 3795 assert(*arg_type == (int)STRUCT_rtentry); 3796 se = struct_entries + *arg_type++; 3797 assert(se->convert[0] == NULL); 3798 /* convert struct here to be able to catch rt_dev string */ 3799 field_types = se->field_types; 3800 dst_offsets = se->field_offsets[THUNK_HOST]; 3801 src_offsets = se->field_offsets[THUNK_TARGET]; 3802 for (i = 0; i < se->nb_fields; i++) { 3803 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 3804 assert(*field_types == TYPE_PTRVOID); 3805 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 3806 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 3807 if (*target_rt_dev_ptr != 0) { 3808 *host_rt_dev_ptr = (unsigned long)lock_user_string( 3809 tswapal(*target_rt_dev_ptr)); 3810 if (!*host_rt_dev_ptr) { 3811 unlock_user(argptr, arg, 0); 3812 return -TARGET_EFAULT; 3813 } 3814 } else { 3815 *host_rt_dev_ptr = 0; 3816 } 3817 field_types++; 3818 continue; 3819 } 3820 field_types = thunk_convert(buf_temp + dst_offsets[i], 3821 argptr + src_offsets[i], 3822 field_types, THUNK_HOST); 3823 } 3824 unlock_user(argptr, arg, 0); 3825 3826 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3827 if (*host_rt_dev_ptr != 0) { 3828 unlock_user((void *)*host_rt_dev_ptr, 3829 *target_rt_dev_ptr, 0); 3830 } 3831 return ret; 3832 } 3833 3834 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 3835 int fd, abi_long cmd, abi_long arg) 3836 { 3837 int sig = target_to_host_signal(arg); 3838 return get_errno(ioctl(fd, ie->host_cmd, sig)); 3839 } 3840 3841 static IOCTLEntry ioctl_entries[] = { 3842 #define IOCTL(cmd, access, ...) \ 3843 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 3844 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 3845 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 3846 #include "ioctls.h" 3847 { 0, 0, }, 3848 }; 3849 3850 /* ??? Implement proper locking for ioctls. */ 3851 /* do_ioctl() Must return target values and target errnos. */ 3852 static abi_long do_ioctl(int fd, abi_long cmd, abi_long arg) 3853 { 3854 const IOCTLEntry *ie; 3855 const argtype *arg_type; 3856 abi_long ret; 3857 uint8_t buf_temp[MAX_STRUCT_SIZE]; 3858 int target_size; 3859 void *argptr; 3860 3861 ie = ioctl_entries; 3862 for(;;) { 3863 if (ie->target_cmd == 0) { 3864 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 3865 return -TARGET_ENOSYS; 3866 } 3867 if (ie->target_cmd == cmd) 3868 break; 3869 ie++; 3870 } 3871 arg_type = ie->arg_type; 3872 #if defined(DEBUG) 3873 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name); 3874 #endif 3875 if (ie->do_ioctl) { 3876 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 3877 } 3878 3879 switch(arg_type[0]) { 3880 case TYPE_NULL: 3881 /* no argument */ 3882 ret = get_errno(ioctl(fd, ie->host_cmd)); 3883 break; 3884 case TYPE_PTRVOID: 3885 case TYPE_INT: 3886 /* int argment */ 3887 ret = get_errno(ioctl(fd, ie->host_cmd, arg)); 3888 break; 3889 case TYPE_PTR: 3890 arg_type++; 3891 target_size = thunk_type_size(arg_type, 0); 3892 switch(ie->access) { 3893 case IOC_R: 3894 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3895 if (!is_error(ret)) { 3896 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3897 if (!argptr) 3898 return -TARGET_EFAULT; 3899 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 3900 unlock_user(argptr, arg, target_size); 3901 } 3902 break; 3903 case IOC_W: 3904 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3905 if (!argptr) 3906 return -TARGET_EFAULT; 3907 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3908 unlock_user(argptr, arg, 0); 3909 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3910 break; 3911 default: 3912 case IOC_RW: 3913 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3914 if (!argptr) 3915 return -TARGET_EFAULT; 3916 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3917 unlock_user(argptr, arg, 0); 3918 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3919 if (!is_error(ret)) { 3920 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3921 if (!argptr) 3922 return -TARGET_EFAULT; 3923 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 3924 unlock_user(argptr, arg, target_size); 3925 } 3926 break; 3927 } 3928 break; 3929 default: 3930 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", 3931 (long)cmd, arg_type[0]); 3932 ret = -TARGET_ENOSYS; 3933 break; 3934 } 3935 return ret; 3936 } 3937 3938 static const bitmask_transtbl iflag_tbl[] = { 3939 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 3940 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 3941 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 3942 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 3943 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 3944 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 3945 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 3946 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 3947 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 3948 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 3949 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 3950 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 3951 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 3952 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 3953 { 0, 0, 0, 0 } 3954 }; 3955 3956 static const bitmask_transtbl oflag_tbl[] = { 3957 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 3958 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 3959 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 3960 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 3961 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 3962 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 3963 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 3964 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 3965 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 3966 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 3967 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 3968 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 3969 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 3970 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 3971 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 3972 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 3973 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 3974 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 3975 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 3976 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 3977 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 3978 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 3979 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 3980 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 3981 { 0, 0, 0, 0 } 3982 }; 3983 3984 static const bitmask_transtbl cflag_tbl[] = { 3985 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 3986 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 3987 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 3988 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 3989 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 3990 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 3991 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 3992 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 3993 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 3994 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 3995 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 3996 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 3997 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 3998 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 3999 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 4000 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 4001 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 4002 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 4003 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 4004 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 4005 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 4006 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 4007 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 4008 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 4009 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 4010 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 4011 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 4012 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 4013 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 4014 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 4015 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 4016 { 0, 0, 0, 0 } 4017 }; 4018 4019 static const bitmask_transtbl lflag_tbl[] = { 4020 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 4021 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 4022 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 4023 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 4024 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 4025 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 4026 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 4027 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 4028 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 4029 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 4030 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 4031 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 4032 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 4033 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 4034 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 4035 { 0, 0, 0, 0 } 4036 }; 4037 4038 static void target_to_host_termios (void *dst, const void *src) 4039 { 4040 struct host_termios *host = dst; 4041 const struct target_termios *target = src; 4042 4043 host->c_iflag = 4044 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 4045 host->c_oflag = 4046 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 4047 host->c_cflag = 4048 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 4049 host->c_lflag = 4050 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 4051 host->c_line = target->c_line; 4052 4053 memset(host->c_cc, 0, sizeof(host->c_cc)); 4054 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 4055 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 4056 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 4057 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 4058 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 4059 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 4060 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 4061 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 4062 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 4063 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 4064 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 4065 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 4066 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 4067 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 4068 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 4069 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 4070 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 4071 } 4072 4073 static void host_to_target_termios (void *dst, const void *src) 4074 { 4075 struct target_termios *target = dst; 4076 const struct host_termios *host = src; 4077 4078 target->c_iflag = 4079 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 4080 target->c_oflag = 4081 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 4082 target->c_cflag = 4083 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 4084 target->c_lflag = 4085 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 4086 target->c_line = host->c_line; 4087 4088 memset(target->c_cc, 0, sizeof(target->c_cc)); 4089 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 4090 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 4091 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 4092 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 4093 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 4094 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 4095 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 4096 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 4097 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 4098 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 4099 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 4100 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 4101 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 4102 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 4103 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 4104 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 4105 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 4106 } 4107 4108 static const StructEntry struct_termios_def = { 4109 .convert = { host_to_target_termios, target_to_host_termios }, 4110 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 4111 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 4112 }; 4113 4114 static bitmask_transtbl mmap_flags_tbl[] = { 4115 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 4116 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 4117 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 4118 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS }, 4119 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN }, 4120 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE }, 4121 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE }, 4122 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 4123 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE, 4124 MAP_NORESERVE }, 4125 { 0, 0, 0, 0 } 4126 }; 4127 4128 #if defined(TARGET_I386) 4129 4130 /* NOTE: there is really one LDT for all the threads */ 4131 static uint8_t *ldt_table; 4132 4133 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 4134 { 4135 int size; 4136 void *p; 4137 4138 if (!ldt_table) 4139 return 0; 4140 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 4141 if (size > bytecount) 4142 size = bytecount; 4143 p = lock_user(VERIFY_WRITE, ptr, size, 0); 4144 if (!p) 4145 return -TARGET_EFAULT; 4146 /* ??? Should this by byteswapped? */ 4147 memcpy(p, ldt_table, size); 4148 unlock_user(p, ptr, size); 4149 return size; 4150 } 4151 4152 /* XXX: add locking support */ 4153 static abi_long write_ldt(CPUX86State *env, 4154 abi_ulong ptr, unsigned long bytecount, int oldmode) 4155 { 4156 struct target_modify_ldt_ldt_s ldt_info; 4157 struct target_modify_ldt_ldt_s *target_ldt_info; 4158 int seg_32bit, contents, read_exec_only, limit_in_pages; 4159 int seg_not_present, useable, lm; 4160 uint32_t *lp, entry_1, entry_2; 4161 4162 if (bytecount != sizeof(ldt_info)) 4163 return -TARGET_EINVAL; 4164 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 4165 return -TARGET_EFAULT; 4166 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 4167 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 4168 ldt_info.limit = tswap32(target_ldt_info->limit); 4169 ldt_info.flags = tswap32(target_ldt_info->flags); 4170 unlock_user_struct(target_ldt_info, ptr, 0); 4171 4172 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 4173 return -TARGET_EINVAL; 4174 seg_32bit = ldt_info.flags & 1; 4175 contents = (ldt_info.flags >> 1) & 3; 4176 read_exec_only = (ldt_info.flags >> 3) & 1; 4177 limit_in_pages = (ldt_info.flags >> 4) & 1; 4178 seg_not_present = (ldt_info.flags >> 5) & 1; 4179 useable = (ldt_info.flags >> 6) & 1; 4180 #ifdef TARGET_ABI32 4181 lm = 0; 4182 #else 4183 lm = (ldt_info.flags >> 7) & 1; 4184 #endif 4185 if (contents == 3) { 4186 if (oldmode) 4187 return -TARGET_EINVAL; 4188 if (seg_not_present == 0) 4189 return -TARGET_EINVAL; 4190 } 4191 /* allocate the LDT */ 4192 if (!ldt_table) { 4193 env->ldt.base = target_mmap(0, 4194 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 4195 PROT_READ|PROT_WRITE, 4196 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4197 if (env->ldt.base == -1) 4198 return -TARGET_ENOMEM; 4199 memset(g2h(env->ldt.base), 0, 4200 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 4201 env->ldt.limit = 0xffff; 4202 ldt_table = g2h(env->ldt.base); 4203 } 4204 4205 /* NOTE: same code as Linux kernel */ 4206 /* Allow LDTs to be cleared by the user. */ 4207 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 4208 if (oldmode || 4209 (contents == 0 && 4210 read_exec_only == 1 && 4211 seg_32bit == 0 && 4212 limit_in_pages == 0 && 4213 seg_not_present == 1 && 4214 useable == 0 )) { 4215 entry_1 = 0; 4216 entry_2 = 0; 4217 goto install; 4218 } 4219 } 4220 4221 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 4222 (ldt_info.limit & 0x0ffff); 4223 entry_2 = (ldt_info.base_addr & 0xff000000) | 4224 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 4225 (ldt_info.limit & 0xf0000) | 4226 ((read_exec_only ^ 1) << 9) | 4227 (contents << 10) | 4228 ((seg_not_present ^ 1) << 15) | 4229 (seg_32bit << 22) | 4230 (limit_in_pages << 23) | 4231 (lm << 21) | 4232 0x7000; 4233 if (!oldmode) 4234 entry_2 |= (useable << 20); 4235 4236 /* Install the new entry ... */ 4237 install: 4238 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 4239 lp[0] = tswap32(entry_1); 4240 lp[1] = tswap32(entry_2); 4241 return 0; 4242 } 4243 4244 /* specific and weird i386 syscalls */ 4245 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 4246 unsigned long bytecount) 4247 { 4248 abi_long ret; 4249 4250 switch (func) { 4251 case 0: 4252 ret = read_ldt(ptr, bytecount); 4253 break; 4254 case 1: 4255 ret = write_ldt(env, ptr, bytecount, 1); 4256 break; 4257 case 0x11: 4258 ret = write_ldt(env, ptr, bytecount, 0); 4259 break; 4260 default: 4261 ret = -TARGET_ENOSYS; 4262 break; 4263 } 4264 return ret; 4265 } 4266 4267 #if defined(TARGET_I386) && defined(TARGET_ABI32) 4268 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 4269 { 4270 uint64_t *gdt_table = g2h(env->gdt.base); 4271 struct target_modify_ldt_ldt_s ldt_info; 4272 struct target_modify_ldt_ldt_s *target_ldt_info; 4273 int seg_32bit, contents, read_exec_only, limit_in_pages; 4274 int seg_not_present, useable, lm; 4275 uint32_t *lp, entry_1, entry_2; 4276 int i; 4277 4278 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 4279 if (!target_ldt_info) 4280 return -TARGET_EFAULT; 4281 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 4282 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 4283 ldt_info.limit = tswap32(target_ldt_info->limit); 4284 ldt_info.flags = tswap32(target_ldt_info->flags); 4285 if (ldt_info.entry_number == -1) { 4286 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 4287 if (gdt_table[i] == 0) { 4288 ldt_info.entry_number = i; 4289 target_ldt_info->entry_number = tswap32(i); 4290 break; 4291 } 4292 } 4293 } 4294 unlock_user_struct(target_ldt_info, ptr, 1); 4295 4296 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 4297 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 4298 return -TARGET_EINVAL; 4299 seg_32bit = ldt_info.flags & 1; 4300 contents = (ldt_info.flags >> 1) & 3; 4301 read_exec_only = (ldt_info.flags >> 3) & 1; 4302 limit_in_pages = (ldt_info.flags >> 4) & 1; 4303 seg_not_present = (ldt_info.flags >> 5) & 1; 4304 useable = (ldt_info.flags >> 6) & 1; 4305 #ifdef TARGET_ABI32 4306 lm = 0; 4307 #else 4308 lm = (ldt_info.flags >> 7) & 1; 4309 #endif 4310 4311 if (contents == 3) { 4312 if (seg_not_present == 0) 4313 return -TARGET_EINVAL; 4314 } 4315 4316 /* NOTE: same code as Linux kernel */ 4317 /* Allow LDTs to be cleared by the user. */ 4318 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 4319 if ((contents == 0 && 4320 read_exec_only == 1 && 4321 seg_32bit == 0 && 4322 limit_in_pages == 0 && 4323 seg_not_present == 1 && 4324 useable == 0 )) { 4325 entry_1 = 0; 4326 entry_2 = 0; 4327 goto install; 4328 } 4329 } 4330 4331 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 4332 (ldt_info.limit & 0x0ffff); 4333 entry_2 = (ldt_info.base_addr & 0xff000000) | 4334 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 4335 (ldt_info.limit & 0xf0000) | 4336 ((read_exec_only ^ 1) << 9) | 4337 (contents << 10) | 4338 ((seg_not_present ^ 1) << 15) | 4339 (seg_32bit << 22) | 4340 (limit_in_pages << 23) | 4341 (useable << 20) | 4342 (lm << 21) | 4343 0x7000; 4344 4345 /* Install the new entry ... */ 4346 install: 4347 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 4348 lp[0] = tswap32(entry_1); 4349 lp[1] = tswap32(entry_2); 4350 return 0; 4351 } 4352 4353 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 4354 { 4355 struct target_modify_ldt_ldt_s *target_ldt_info; 4356 uint64_t *gdt_table = g2h(env->gdt.base); 4357 uint32_t base_addr, limit, flags; 4358 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 4359 int seg_not_present, useable, lm; 4360 uint32_t *lp, entry_1, entry_2; 4361 4362 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 4363 if (!target_ldt_info) 4364 return -TARGET_EFAULT; 4365 idx = tswap32(target_ldt_info->entry_number); 4366 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 4367 idx > TARGET_GDT_ENTRY_TLS_MAX) { 4368 unlock_user_struct(target_ldt_info, ptr, 1); 4369 return -TARGET_EINVAL; 4370 } 4371 lp = (uint32_t *)(gdt_table + idx); 4372 entry_1 = tswap32(lp[0]); 4373 entry_2 = tswap32(lp[1]); 4374 4375 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 4376 contents = (entry_2 >> 10) & 3; 4377 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 4378 seg_32bit = (entry_2 >> 22) & 1; 4379 limit_in_pages = (entry_2 >> 23) & 1; 4380 useable = (entry_2 >> 20) & 1; 4381 #ifdef TARGET_ABI32 4382 lm = 0; 4383 #else 4384 lm = (entry_2 >> 21) & 1; 4385 #endif 4386 flags = (seg_32bit << 0) | (contents << 1) | 4387 (read_exec_only << 3) | (limit_in_pages << 4) | 4388 (seg_not_present << 5) | (useable << 6) | (lm << 7); 4389 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 4390 base_addr = (entry_1 >> 16) | 4391 (entry_2 & 0xff000000) | 4392 ((entry_2 & 0xff) << 16); 4393 target_ldt_info->base_addr = tswapal(base_addr); 4394 target_ldt_info->limit = tswap32(limit); 4395 target_ldt_info->flags = tswap32(flags); 4396 unlock_user_struct(target_ldt_info, ptr, 1); 4397 return 0; 4398 } 4399 #endif /* TARGET_I386 && TARGET_ABI32 */ 4400 4401 #ifndef TARGET_ABI32 4402 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 4403 { 4404 abi_long ret = 0; 4405 abi_ulong val; 4406 int idx; 4407 4408 switch(code) { 4409 case TARGET_ARCH_SET_GS: 4410 case TARGET_ARCH_SET_FS: 4411 if (code == TARGET_ARCH_SET_GS) 4412 idx = R_GS; 4413 else 4414 idx = R_FS; 4415 cpu_x86_load_seg(env, idx, 0); 4416 env->segs[idx].base = addr; 4417 break; 4418 case TARGET_ARCH_GET_GS: 4419 case TARGET_ARCH_GET_FS: 4420 if (code == TARGET_ARCH_GET_GS) 4421 idx = R_GS; 4422 else 4423 idx = R_FS; 4424 val = env->segs[idx].base; 4425 if (put_user(val, addr, abi_ulong)) 4426 ret = -TARGET_EFAULT; 4427 break; 4428 default: 4429 ret = -TARGET_EINVAL; 4430 break; 4431 } 4432 return ret; 4433 } 4434 #endif 4435 4436 #endif /* defined(TARGET_I386) */ 4437 4438 #define NEW_STACK_SIZE 0x40000 4439 4440 4441 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 4442 typedef struct { 4443 CPUArchState *env; 4444 pthread_mutex_t mutex; 4445 pthread_cond_t cond; 4446 pthread_t thread; 4447 uint32_t tid; 4448 abi_ulong child_tidptr; 4449 abi_ulong parent_tidptr; 4450 sigset_t sigmask; 4451 } new_thread_info; 4452 4453 static void *clone_func(void *arg) 4454 { 4455 new_thread_info *info = arg; 4456 CPUArchState *env; 4457 CPUState *cpu; 4458 TaskState *ts; 4459 4460 env = info->env; 4461 cpu = ENV_GET_CPU(env); 4462 thread_cpu = cpu; 4463 ts = (TaskState *)cpu->opaque; 4464 info->tid = gettid(); 4465 cpu->host_tid = info->tid; 4466 task_settid(ts); 4467 if (info->child_tidptr) 4468 put_user_u32(info->tid, info->child_tidptr); 4469 if (info->parent_tidptr) 4470 put_user_u32(info->tid, info->parent_tidptr); 4471 /* Enable signals. */ 4472 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 4473 /* Signal to the parent that we're ready. */ 4474 pthread_mutex_lock(&info->mutex); 4475 pthread_cond_broadcast(&info->cond); 4476 pthread_mutex_unlock(&info->mutex); 4477 /* Wait until the parent has finshed initializing the tls state. */ 4478 pthread_mutex_lock(&clone_lock); 4479 pthread_mutex_unlock(&clone_lock); 4480 cpu_loop(env); 4481 /* never exits */ 4482 return NULL; 4483 } 4484 4485 /* do_fork() Must return host values and target errnos (unlike most 4486 do_*() functions). */ 4487 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 4488 abi_ulong parent_tidptr, target_ulong newtls, 4489 abi_ulong child_tidptr) 4490 { 4491 CPUState *cpu = ENV_GET_CPU(env); 4492 int ret; 4493 TaskState *ts; 4494 CPUState *new_cpu; 4495 CPUArchState *new_env; 4496 unsigned int nptl_flags; 4497 sigset_t sigmask; 4498 4499 /* Emulate vfork() with fork() */ 4500 if (flags & CLONE_VFORK) 4501 flags &= ~(CLONE_VFORK | CLONE_VM); 4502 4503 if (flags & CLONE_VM) { 4504 TaskState *parent_ts = (TaskState *)cpu->opaque; 4505 new_thread_info info; 4506 pthread_attr_t attr; 4507 4508 ts = g_malloc0(sizeof(TaskState)); 4509 init_task_state(ts); 4510 /* we create a new CPU instance. */ 4511 new_env = cpu_copy(env); 4512 /* Init regs that differ from the parent. */ 4513 cpu_clone_regs(new_env, newsp); 4514 new_cpu = ENV_GET_CPU(new_env); 4515 new_cpu->opaque = ts; 4516 ts->bprm = parent_ts->bprm; 4517 ts->info = parent_ts->info; 4518 nptl_flags = flags; 4519 flags &= ~CLONE_NPTL_FLAGS2; 4520 4521 if (nptl_flags & CLONE_CHILD_CLEARTID) { 4522 ts->child_tidptr = child_tidptr; 4523 } 4524 4525 if (nptl_flags & CLONE_SETTLS) 4526 cpu_set_tls (new_env, newtls); 4527 4528 /* Grab a mutex so that thread setup appears atomic. */ 4529 pthread_mutex_lock(&clone_lock); 4530 4531 memset(&info, 0, sizeof(info)); 4532 pthread_mutex_init(&info.mutex, NULL); 4533 pthread_mutex_lock(&info.mutex); 4534 pthread_cond_init(&info.cond, NULL); 4535 info.env = new_env; 4536 if (nptl_flags & CLONE_CHILD_SETTID) 4537 info.child_tidptr = child_tidptr; 4538 if (nptl_flags & CLONE_PARENT_SETTID) 4539 info.parent_tidptr = parent_tidptr; 4540 4541 ret = pthread_attr_init(&attr); 4542 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 4543 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 4544 /* It is not safe to deliver signals until the child has finished 4545 initializing, so temporarily block all signals. */ 4546 sigfillset(&sigmask); 4547 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 4548 4549 ret = pthread_create(&info.thread, &attr, clone_func, &info); 4550 /* TODO: Free new CPU state if thread creation failed. */ 4551 4552 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 4553 pthread_attr_destroy(&attr); 4554 if (ret == 0) { 4555 /* Wait for the child to initialize. */ 4556 pthread_cond_wait(&info.cond, &info.mutex); 4557 ret = info.tid; 4558 if (flags & CLONE_PARENT_SETTID) 4559 put_user_u32(ret, parent_tidptr); 4560 } else { 4561 ret = -1; 4562 } 4563 pthread_mutex_unlock(&info.mutex); 4564 pthread_cond_destroy(&info.cond); 4565 pthread_mutex_destroy(&info.mutex); 4566 pthread_mutex_unlock(&clone_lock); 4567 } else { 4568 /* if no CLONE_VM, we consider it is a fork */ 4569 if ((flags & ~(CSIGNAL | CLONE_NPTL_FLAGS2)) != 0) 4570 return -EINVAL; 4571 fork_start(); 4572 ret = fork(); 4573 if (ret == 0) { 4574 /* Child Process. */ 4575 rcu_after_fork(); 4576 cpu_clone_regs(env, newsp); 4577 fork_end(1); 4578 /* There is a race condition here. The parent process could 4579 theoretically read the TID in the child process before the child 4580 tid is set. This would require using either ptrace 4581 (not implemented) or having *_tidptr to point at a shared memory 4582 mapping. We can't repeat the spinlock hack used above because 4583 the child process gets its own copy of the lock. */ 4584 if (flags & CLONE_CHILD_SETTID) 4585 put_user_u32(gettid(), child_tidptr); 4586 if (flags & CLONE_PARENT_SETTID) 4587 put_user_u32(gettid(), parent_tidptr); 4588 ts = (TaskState *)cpu->opaque; 4589 if (flags & CLONE_SETTLS) 4590 cpu_set_tls (env, newtls); 4591 if (flags & CLONE_CHILD_CLEARTID) 4592 ts->child_tidptr = child_tidptr; 4593 } else { 4594 fork_end(0); 4595 } 4596 } 4597 return ret; 4598 } 4599 4600 /* warning : doesn't handle linux specific flags... */ 4601 static int target_to_host_fcntl_cmd(int cmd) 4602 { 4603 switch(cmd) { 4604 case TARGET_F_DUPFD: 4605 case TARGET_F_GETFD: 4606 case TARGET_F_SETFD: 4607 case TARGET_F_GETFL: 4608 case TARGET_F_SETFL: 4609 return cmd; 4610 case TARGET_F_GETLK: 4611 return F_GETLK; 4612 case TARGET_F_SETLK: 4613 return F_SETLK; 4614 case TARGET_F_SETLKW: 4615 return F_SETLKW; 4616 case TARGET_F_GETOWN: 4617 return F_GETOWN; 4618 case TARGET_F_SETOWN: 4619 return F_SETOWN; 4620 case TARGET_F_GETSIG: 4621 return F_GETSIG; 4622 case TARGET_F_SETSIG: 4623 return F_SETSIG; 4624 #if TARGET_ABI_BITS == 32 4625 case TARGET_F_GETLK64: 4626 return F_GETLK64; 4627 case TARGET_F_SETLK64: 4628 return F_SETLK64; 4629 case TARGET_F_SETLKW64: 4630 return F_SETLKW64; 4631 #endif 4632 case TARGET_F_SETLEASE: 4633 return F_SETLEASE; 4634 case TARGET_F_GETLEASE: 4635 return F_GETLEASE; 4636 #ifdef F_DUPFD_CLOEXEC 4637 case TARGET_F_DUPFD_CLOEXEC: 4638 return F_DUPFD_CLOEXEC; 4639 #endif 4640 case TARGET_F_NOTIFY: 4641 return F_NOTIFY; 4642 #ifdef F_GETOWN_EX 4643 case TARGET_F_GETOWN_EX: 4644 return F_GETOWN_EX; 4645 #endif 4646 #ifdef F_SETOWN_EX 4647 case TARGET_F_SETOWN_EX: 4648 return F_SETOWN_EX; 4649 #endif 4650 default: 4651 return -TARGET_EINVAL; 4652 } 4653 return -TARGET_EINVAL; 4654 } 4655 4656 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a } 4657 static const bitmask_transtbl flock_tbl[] = { 4658 TRANSTBL_CONVERT(F_RDLCK), 4659 TRANSTBL_CONVERT(F_WRLCK), 4660 TRANSTBL_CONVERT(F_UNLCK), 4661 TRANSTBL_CONVERT(F_EXLCK), 4662 TRANSTBL_CONVERT(F_SHLCK), 4663 { 0, 0, 0, 0 } 4664 }; 4665 4666 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 4667 { 4668 struct flock fl; 4669 struct target_flock *target_fl; 4670 struct flock64 fl64; 4671 struct target_flock64 *target_fl64; 4672 #ifdef F_GETOWN_EX 4673 struct f_owner_ex fox; 4674 struct target_f_owner_ex *target_fox; 4675 #endif 4676 abi_long ret; 4677 int host_cmd = target_to_host_fcntl_cmd(cmd); 4678 4679 if (host_cmd == -TARGET_EINVAL) 4680 return host_cmd; 4681 4682 switch(cmd) { 4683 case TARGET_F_GETLK: 4684 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1)) 4685 return -TARGET_EFAULT; 4686 fl.l_type = 4687 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl); 4688 fl.l_whence = tswap16(target_fl->l_whence); 4689 fl.l_start = tswapal(target_fl->l_start); 4690 fl.l_len = tswapal(target_fl->l_len); 4691 fl.l_pid = tswap32(target_fl->l_pid); 4692 unlock_user_struct(target_fl, arg, 0); 4693 ret = get_errno(fcntl(fd, host_cmd, &fl)); 4694 if (ret == 0) { 4695 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg, 0)) 4696 return -TARGET_EFAULT; 4697 target_fl->l_type = 4698 host_to_target_bitmask(tswap16(fl.l_type), flock_tbl); 4699 target_fl->l_whence = tswap16(fl.l_whence); 4700 target_fl->l_start = tswapal(fl.l_start); 4701 target_fl->l_len = tswapal(fl.l_len); 4702 target_fl->l_pid = tswap32(fl.l_pid); 4703 unlock_user_struct(target_fl, arg, 1); 4704 } 4705 break; 4706 4707 case TARGET_F_SETLK: 4708 case TARGET_F_SETLKW: 4709 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1)) 4710 return -TARGET_EFAULT; 4711 fl.l_type = 4712 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl); 4713 fl.l_whence = tswap16(target_fl->l_whence); 4714 fl.l_start = tswapal(target_fl->l_start); 4715 fl.l_len = tswapal(target_fl->l_len); 4716 fl.l_pid = tswap32(target_fl->l_pid); 4717 unlock_user_struct(target_fl, arg, 0); 4718 ret = get_errno(fcntl(fd, host_cmd, &fl)); 4719 break; 4720 4721 case TARGET_F_GETLK64: 4722 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1)) 4723 return -TARGET_EFAULT; 4724 fl64.l_type = 4725 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1; 4726 fl64.l_whence = tswap16(target_fl64->l_whence); 4727 fl64.l_start = tswap64(target_fl64->l_start); 4728 fl64.l_len = tswap64(target_fl64->l_len); 4729 fl64.l_pid = tswap32(target_fl64->l_pid); 4730 unlock_user_struct(target_fl64, arg, 0); 4731 ret = get_errno(fcntl(fd, host_cmd, &fl64)); 4732 if (ret == 0) { 4733 if (!lock_user_struct(VERIFY_WRITE, target_fl64, arg, 0)) 4734 return -TARGET_EFAULT; 4735 target_fl64->l_type = 4736 host_to_target_bitmask(tswap16(fl64.l_type), flock_tbl) >> 1; 4737 target_fl64->l_whence = tswap16(fl64.l_whence); 4738 target_fl64->l_start = tswap64(fl64.l_start); 4739 target_fl64->l_len = tswap64(fl64.l_len); 4740 target_fl64->l_pid = tswap32(fl64.l_pid); 4741 unlock_user_struct(target_fl64, arg, 1); 4742 } 4743 break; 4744 case TARGET_F_SETLK64: 4745 case TARGET_F_SETLKW64: 4746 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1)) 4747 return -TARGET_EFAULT; 4748 fl64.l_type = 4749 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1; 4750 fl64.l_whence = tswap16(target_fl64->l_whence); 4751 fl64.l_start = tswap64(target_fl64->l_start); 4752 fl64.l_len = tswap64(target_fl64->l_len); 4753 fl64.l_pid = tswap32(target_fl64->l_pid); 4754 unlock_user_struct(target_fl64, arg, 0); 4755 ret = get_errno(fcntl(fd, host_cmd, &fl64)); 4756 break; 4757 4758 case TARGET_F_GETFL: 4759 ret = get_errno(fcntl(fd, host_cmd, arg)); 4760 if (ret >= 0) { 4761 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 4762 } 4763 break; 4764 4765 case TARGET_F_SETFL: 4766 ret = get_errno(fcntl(fd, host_cmd, target_to_host_bitmask(arg, fcntl_flags_tbl))); 4767 break; 4768 4769 #ifdef F_GETOWN_EX 4770 case TARGET_F_GETOWN_EX: 4771 ret = get_errno(fcntl(fd, host_cmd, &fox)); 4772 if (ret >= 0) { 4773 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 4774 return -TARGET_EFAULT; 4775 target_fox->type = tswap32(fox.type); 4776 target_fox->pid = tswap32(fox.pid); 4777 unlock_user_struct(target_fox, arg, 1); 4778 } 4779 break; 4780 #endif 4781 4782 #ifdef F_SETOWN_EX 4783 case TARGET_F_SETOWN_EX: 4784 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 4785 return -TARGET_EFAULT; 4786 fox.type = tswap32(target_fox->type); 4787 fox.pid = tswap32(target_fox->pid); 4788 unlock_user_struct(target_fox, arg, 0); 4789 ret = get_errno(fcntl(fd, host_cmd, &fox)); 4790 break; 4791 #endif 4792 4793 case TARGET_F_SETOWN: 4794 case TARGET_F_GETOWN: 4795 case TARGET_F_SETSIG: 4796 case TARGET_F_GETSIG: 4797 case TARGET_F_SETLEASE: 4798 case TARGET_F_GETLEASE: 4799 ret = get_errno(fcntl(fd, host_cmd, arg)); 4800 break; 4801 4802 default: 4803 ret = get_errno(fcntl(fd, cmd, arg)); 4804 break; 4805 } 4806 return ret; 4807 } 4808 4809 #ifdef USE_UID16 4810 4811 static inline int high2lowuid(int uid) 4812 { 4813 if (uid > 65535) 4814 return 65534; 4815 else 4816 return uid; 4817 } 4818 4819 static inline int high2lowgid(int gid) 4820 { 4821 if (gid > 65535) 4822 return 65534; 4823 else 4824 return gid; 4825 } 4826 4827 static inline int low2highuid(int uid) 4828 { 4829 if ((int16_t)uid == -1) 4830 return -1; 4831 else 4832 return uid; 4833 } 4834 4835 static inline int low2highgid(int gid) 4836 { 4837 if ((int16_t)gid == -1) 4838 return -1; 4839 else 4840 return gid; 4841 } 4842 static inline int tswapid(int id) 4843 { 4844 return tswap16(id); 4845 } 4846 4847 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 4848 4849 #else /* !USE_UID16 */ 4850 static inline int high2lowuid(int uid) 4851 { 4852 return uid; 4853 } 4854 static inline int high2lowgid(int gid) 4855 { 4856 return gid; 4857 } 4858 static inline int low2highuid(int uid) 4859 { 4860 return uid; 4861 } 4862 static inline int low2highgid(int gid) 4863 { 4864 return gid; 4865 } 4866 static inline int tswapid(int id) 4867 { 4868 return tswap32(id); 4869 } 4870 4871 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 4872 4873 #endif /* USE_UID16 */ 4874 4875 void syscall_init(void) 4876 { 4877 IOCTLEntry *ie; 4878 const argtype *arg_type; 4879 int size; 4880 int i; 4881 4882 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 4883 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 4884 #include "syscall_types.h" 4885 #undef STRUCT 4886 #undef STRUCT_SPECIAL 4887 4888 /* Build target_to_host_errno_table[] table from 4889 * host_to_target_errno_table[]. */ 4890 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 4891 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 4892 } 4893 4894 /* we patch the ioctl size if necessary. We rely on the fact that 4895 no ioctl has all the bits at '1' in the size field */ 4896 ie = ioctl_entries; 4897 while (ie->target_cmd != 0) { 4898 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 4899 TARGET_IOC_SIZEMASK) { 4900 arg_type = ie->arg_type; 4901 if (arg_type[0] != TYPE_PTR) { 4902 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 4903 ie->target_cmd); 4904 exit(1); 4905 } 4906 arg_type++; 4907 size = thunk_type_size(arg_type, 0); 4908 ie->target_cmd = (ie->target_cmd & 4909 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 4910 (size << TARGET_IOC_SIZESHIFT); 4911 } 4912 4913 /* automatic consistency check if same arch */ 4914 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 4915 (defined(__x86_64__) && defined(TARGET_X86_64)) 4916 if (unlikely(ie->target_cmd != ie->host_cmd)) { 4917 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 4918 ie->name, ie->target_cmd, ie->host_cmd); 4919 } 4920 #endif 4921 ie++; 4922 } 4923 } 4924 4925 #if TARGET_ABI_BITS == 32 4926 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 4927 { 4928 #ifdef TARGET_WORDS_BIGENDIAN 4929 return ((uint64_t)word0 << 32) | word1; 4930 #else 4931 return ((uint64_t)word1 << 32) | word0; 4932 #endif 4933 } 4934 #else /* TARGET_ABI_BITS == 32 */ 4935 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 4936 { 4937 return word0; 4938 } 4939 #endif /* TARGET_ABI_BITS != 32 */ 4940 4941 #ifdef TARGET_NR_truncate64 4942 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 4943 abi_long arg2, 4944 abi_long arg3, 4945 abi_long arg4) 4946 { 4947 if (regpairs_aligned(cpu_env)) { 4948 arg2 = arg3; 4949 arg3 = arg4; 4950 } 4951 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 4952 } 4953 #endif 4954 4955 #ifdef TARGET_NR_ftruncate64 4956 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 4957 abi_long arg2, 4958 abi_long arg3, 4959 abi_long arg4) 4960 { 4961 if (regpairs_aligned(cpu_env)) { 4962 arg2 = arg3; 4963 arg3 = arg4; 4964 } 4965 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 4966 } 4967 #endif 4968 4969 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 4970 abi_ulong target_addr) 4971 { 4972 struct target_timespec *target_ts; 4973 4974 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) 4975 return -TARGET_EFAULT; 4976 host_ts->tv_sec = tswapal(target_ts->tv_sec); 4977 host_ts->tv_nsec = tswapal(target_ts->tv_nsec); 4978 unlock_user_struct(target_ts, target_addr, 0); 4979 return 0; 4980 } 4981 4982 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 4983 struct timespec *host_ts) 4984 { 4985 struct target_timespec *target_ts; 4986 4987 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) 4988 return -TARGET_EFAULT; 4989 target_ts->tv_sec = tswapal(host_ts->tv_sec); 4990 target_ts->tv_nsec = tswapal(host_ts->tv_nsec); 4991 unlock_user_struct(target_ts, target_addr, 1); 4992 return 0; 4993 } 4994 4995 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec, 4996 abi_ulong target_addr) 4997 { 4998 struct target_itimerspec *target_itspec; 4999 5000 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) { 5001 return -TARGET_EFAULT; 5002 } 5003 5004 host_itspec->it_interval.tv_sec = 5005 tswapal(target_itspec->it_interval.tv_sec); 5006 host_itspec->it_interval.tv_nsec = 5007 tswapal(target_itspec->it_interval.tv_nsec); 5008 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec); 5009 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec); 5010 5011 unlock_user_struct(target_itspec, target_addr, 1); 5012 return 0; 5013 } 5014 5015 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 5016 struct itimerspec *host_its) 5017 { 5018 struct target_itimerspec *target_itspec; 5019 5020 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) { 5021 return -TARGET_EFAULT; 5022 } 5023 5024 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec); 5025 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec); 5026 5027 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec); 5028 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec); 5029 5030 unlock_user_struct(target_itspec, target_addr, 0); 5031 return 0; 5032 } 5033 5034 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 5035 abi_ulong target_addr) 5036 { 5037 struct target_sigevent *target_sevp; 5038 5039 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 5040 return -TARGET_EFAULT; 5041 } 5042 5043 /* This union is awkward on 64 bit systems because it has a 32 bit 5044 * integer and a pointer in it; we follow the conversion approach 5045 * used for handling sigval types in signal.c so the guest should get 5046 * the correct value back even if we did a 64 bit byteswap and it's 5047 * using the 32 bit integer. 5048 */ 5049 host_sevp->sigev_value.sival_ptr = 5050 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 5051 host_sevp->sigev_signo = 5052 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 5053 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 5054 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid); 5055 5056 unlock_user_struct(target_sevp, target_addr, 1); 5057 return 0; 5058 } 5059 5060 #if defined(TARGET_NR_mlockall) 5061 static inline int target_to_host_mlockall_arg(int arg) 5062 { 5063 int result = 0; 5064 5065 if (arg & TARGET_MLOCKALL_MCL_CURRENT) { 5066 result |= MCL_CURRENT; 5067 } 5068 if (arg & TARGET_MLOCKALL_MCL_FUTURE) { 5069 result |= MCL_FUTURE; 5070 } 5071 return result; 5072 } 5073 #endif 5074 5075 #if defined(TARGET_NR_stat64) || defined(TARGET_NR_newfstatat) 5076 static inline abi_long host_to_target_stat64(void *cpu_env, 5077 abi_ulong target_addr, 5078 struct stat *host_st) 5079 { 5080 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 5081 if (((CPUARMState *)cpu_env)->eabi) { 5082 struct target_eabi_stat64 *target_st; 5083 5084 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 5085 return -TARGET_EFAULT; 5086 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 5087 __put_user(host_st->st_dev, &target_st->st_dev); 5088 __put_user(host_st->st_ino, &target_st->st_ino); 5089 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 5090 __put_user(host_st->st_ino, &target_st->__st_ino); 5091 #endif 5092 __put_user(host_st->st_mode, &target_st->st_mode); 5093 __put_user(host_st->st_nlink, &target_st->st_nlink); 5094 __put_user(host_st->st_uid, &target_st->st_uid); 5095 __put_user(host_st->st_gid, &target_st->st_gid); 5096 __put_user(host_st->st_rdev, &target_st->st_rdev); 5097 __put_user(host_st->st_size, &target_st->st_size); 5098 __put_user(host_st->st_blksize, &target_st->st_blksize); 5099 __put_user(host_st->st_blocks, &target_st->st_blocks); 5100 __put_user(host_st->st_atime, &target_st->target_st_atime); 5101 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 5102 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 5103 unlock_user_struct(target_st, target_addr, 1); 5104 } else 5105 #endif 5106 { 5107 #if defined(TARGET_HAS_STRUCT_STAT64) 5108 struct target_stat64 *target_st; 5109 #else 5110 struct target_stat *target_st; 5111 #endif 5112 5113 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 5114 return -TARGET_EFAULT; 5115 memset(target_st, 0, sizeof(*target_st)); 5116 __put_user(host_st->st_dev, &target_st->st_dev); 5117 __put_user(host_st->st_ino, &target_st->st_ino); 5118 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 5119 __put_user(host_st->st_ino, &target_st->__st_ino); 5120 #endif 5121 __put_user(host_st->st_mode, &target_st->st_mode); 5122 __put_user(host_st->st_nlink, &target_st->st_nlink); 5123 __put_user(host_st->st_uid, &target_st->st_uid); 5124 __put_user(host_st->st_gid, &target_st->st_gid); 5125 __put_user(host_st->st_rdev, &target_st->st_rdev); 5126 /* XXX: better use of kernel struct */ 5127 __put_user(host_st->st_size, &target_st->st_size); 5128 __put_user(host_st->st_blksize, &target_st->st_blksize); 5129 __put_user(host_st->st_blocks, &target_st->st_blocks); 5130 __put_user(host_st->st_atime, &target_st->target_st_atime); 5131 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 5132 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 5133 unlock_user_struct(target_st, target_addr, 1); 5134 } 5135 5136 return 0; 5137 } 5138 #endif 5139 5140 /* ??? Using host futex calls even when target atomic operations 5141 are not really atomic probably breaks things. However implementing 5142 futexes locally would make futexes shared between multiple processes 5143 tricky. However they're probably useless because guest atomic 5144 operations won't work either. */ 5145 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout, 5146 target_ulong uaddr2, int val3) 5147 { 5148 struct timespec ts, *pts; 5149 int base_op; 5150 5151 /* ??? We assume FUTEX_* constants are the same on both host 5152 and target. */ 5153 #ifdef FUTEX_CMD_MASK 5154 base_op = op & FUTEX_CMD_MASK; 5155 #else 5156 base_op = op; 5157 #endif 5158 switch (base_op) { 5159 case FUTEX_WAIT: 5160 case FUTEX_WAIT_BITSET: 5161 if (timeout) { 5162 pts = &ts; 5163 target_to_host_timespec(pts, timeout); 5164 } else { 5165 pts = NULL; 5166 } 5167 return get_errno(sys_futex(g2h(uaddr), op, tswap32(val), 5168 pts, NULL, val3)); 5169 case FUTEX_WAKE: 5170 return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 5171 case FUTEX_FD: 5172 return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 5173 case FUTEX_REQUEUE: 5174 case FUTEX_CMP_REQUEUE: 5175 case FUTEX_WAKE_OP: 5176 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 5177 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 5178 But the prototype takes a `struct timespec *'; insert casts 5179 to satisfy the compiler. We do not need to tswap TIMEOUT 5180 since it's not compared to guest memory. */ 5181 pts = (struct timespec *)(uintptr_t) timeout; 5182 return get_errno(sys_futex(g2h(uaddr), op, val, pts, 5183 g2h(uaddr2), 5184 (base_op == FUTEX_CMP_REQUEUE 5185 ? tswap32(val3) 5186 : val3))); 5187 default: 5188 return -TARGET_ENOSYS; 5189 } 5190 } 5191 5192 /* Map host to target signal numbers for the wait family of syscalls. 5193 Assume all other status bits are the same. */ 5194 int host_to_target_waitstatus(int status) 5195 { 5196 if (WIFSIGNALED(status)) { 5197 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 5198 } 5199 if (WIFSTOPPED(status)) { 5200 return (host_to_target_signal(WSTOPSIG(status)) << 8) 5201 | (status & 0xff); 5202 } 5203 return status; 5204 } 5205 5206 static int open_self_cmdline(void *cpu_env, int fd) 5207 { 5208 int fd_orig = -1; 5209 bool word_skipped = false; 5210 5211 fd_orig = open("/proc/self/cmdline", O_RDONLY); 5212 if (fd_orig < 0) { 5213 return fd_orig; 5214 } 5215 5216 while (true) { 5217 ssize_t nb_read; 5218 char buf[128]; 5219 char *cp_buf = buf; 5220 5221 nb_read = read(fd_orig, buf, sizeof(buf)); 5222 if (nb_read < 0) { 5223 fd_orig = close(fd_orig); 5224 return -1; 5225 } else if (nb_read == 0) { 5226 break; 5227 } 5228 5229 if (!word_skipped) { 5230 /* Skip the first string, which is the path to qemu-*-static 5231 instead of the actual command. */ 5232 cp_buf = memchr(buf, 0, sizeof(buf)); 5233 if (cp_buf) { 5234 /* Null byte found, skip one string */ 5235 cp_buf++; 5236 nb_read -= cp_buf - buf; 5237 word_skipped = true; 5238 } 5239 } 5240 5241 if (word_skipped) { 5242 if (write(fd, cp_buf, nb_read) != nb_read) { 5243 close(fd_orig); 5244 return -1; 5245 } 5246 } 5247 } 5248 5249 return close(fd_orig); 5250 } 5251 5252 static int open_self_maps(void *cpu_env, int fd) 5253 { 5254 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 5255 TaskState *ts = cpu->opaque; 5256 FILE *fp; 5257 char *line = NULL; 5258 size_t len = 0; 5259 ssize_t read; 5260 5261 fp = fopen("/proc/self/maps", "r"); 5262 if (fp == NULL) { 5263 return -EACCES; 5264 } 5265 5266 while ((read = getline(&line, &len, fp)) != -1) { 5267 int fields, dev_maj, dev_min, inode; 5268 uint64_t min, max, offset; 5269 char flag_r, flag_w, flag_x, flag_p; 5270 char path[512] = ""; 5271 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d" 5272 " %512s", &min, &max, &flag_r, &flag_w, &flag_x, 5273 &flag_p, &offset, &dev_maj, &dev_min, &inode, path); 5274 5275 if ((fields < 10) || (fields > 11)) { 5276 continue; 5277 } 5278 if (h2g_valid(min)) { 5279 int flags = page_get_flags(h2g(min)); 5280 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX); 5281 if (page_check_range(h2g(min), max - min, flags) == -1) { 5282 continue; 5283 } 5284 if (h2g(min) == ts->info->stack_limit) { 5285 pstrcpy(path, sizeof(path), " [stack]"); 5286 } 5287 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx 5288 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n", 5289 h2g(min), h2g(max - 1) + 1, flag_r, flag_w, 5290 flag_x, flag_p, offset, dev_maj, dev_min, inode, 5291 path[0] ? " " : "", path); 5292 } 5293 } 5294 5295 free(line); 5296 fclose(fp); 5297 5298 return 0; 5299 } 5300 5301 static int open_self_stat(void *cpu_env, int fd) 5302 { 5303 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 5304 TaskState *ts = cpu->opaque; 5305 abi_ulong start_stack = ts->info->start_stack; 5306 int i; 5307 5308 for (i = 0; i < 44; i++) { 5309 char buf[128]; 5310 int len; 5311 uint64_t val = 0; 5312 5313 if (i == 0) { 5314 /* pid */ 5315 val = getpid(); 5316 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 5317 } else if (i == 1) { 5318 /* app name */ 5319 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]); 5320 } else if (i == 27) { 5321 /* stack bottom */ 5322 val = start_stack; 5323 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 5324 } else { 5325 /* for the rest, there is MasterCard */ 5326 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' '); 5327 } 5328 5329 len = strlen(buf); 5330 if (write(fd, buf, len) != len) { 5331 return -1; 5332 } 5333 } 5334 5335 return 0; 5336 } 5337 5338 static int open_self_auxv(void *cpu_env, int fd) 5339 { 5340 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 5341 TaskState *ts = cpu->opaque; 5342 abi_ulong auxv = ts->info->saved_auxv; 5343 abi_ulong len = ts->info->auxv_len; 5344 char *ptr; 5345 5346 /* 5347 * Auxiliary vector is stored in target process stack. 5348 * read in whole auxv vector and copy it to file 5349 */ 5350 ptr = lock_user(VERIFY_READ, auxv, len, 0); 5351 if (ptr != NULL) { 5352 while (len > 0) { 5353 ssize_t r; 5354 r = write(fd, ptr, len); 5355 if (r <= 0) { 5356 break; 5357 } 5358 len -= r; 5359 ptr += r; 5360 } 5361 lseek(fd, 0, SEEK_SET); 5362 unlock_user(ptr, auxv, len); 5363 } 5364 5365 return 0; 5366 } 5367 5368 static int is_proc_myself(const char *filename, const char *entry) 5369 { 5370 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 5371 filename += strlen("/proc/"); 5372 if (!strncmp(filename, "self/", strlen("self/"))) { 5373 filename += strlen("self/"); 5374 } else if (*filename >= '1' && *filename <= '9') { 5375 char myself[80]; 5376 snprintf(myself, sizeof(myself), "%d/", getpid()); 5377 if (!strncmp(filename, myself, strlen(myself))) { 5378 filename += strlen(myself); 5379 } else { 5380 return 0; 5381 } 5382 } else { 5383 return 0; 5384 } 5385 if (!strcmp(filename, entry)) { 5386 return 1; 5387 } 5388 } 5389 return 0; 5390 } 5391 5392 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 5393 static int is_proc(const char *filename, const char *entry) 5394 { 5395 return strcmp(filename, entry) == 0; 5396 } 5397 5398 static int open_net_route(void *cpu_env, int fd) 5399 { 5400 FILE *fp; 5401 char *line = NULL; 5402 size_t len = 0; 5403 ssize_t read; 5404 5405 fp = fopen("/proc/net/route", "r"); 5406 if (fp == NULL) { 5407 return -EACCES; 5408 } 5409 5410 /* read header */ 5411 5412 read = getline(&line, &len, fp); 5413 dprintf(fd, "%s", line); 5414 5415 /* read routes */ 5416 5417 while ((read = getline(&line, &len, fp)) != -1) { 5418 char iface[16]; 5419 uint32_t dest, gw, mask; 5420 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 5421 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 5422 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 5423 &mask, &mtu, &window, &irtt); 5424 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 5425 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 5426 metric, tswap32(mask), mtu, window, irtt); 5427 } 5428 5429 free(line); 5430 fclose(fp); 5431 5432 return 0; 5433 } 5434 #endif 5435 5436 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 5437 { 5438 struct fake_open { 5439 const char *filename; 5440 int (*fill)(void *cpu_env, int fd); 5441 int (*cmp)(const char *s1, const char *s2); 5442 }; 5443 const struct fake_open *fake_open; 5444 static const struct fake_open fakes[] = { 5445 { "maps", open_self_maps, is_proc_myself }, 5446 { "stat", open_self_stat, is_proc_myself }, 5447 { "auxv", open_self_auxv, is_proc_myself }, 5448 { "cmdline", open_self_cmdline, is_proc_myself }, 5449 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 5450 { "/proc/net/route", open_net_route, is_proc }, 5451 #endif 5452 { NULL, NULL, NULL } 5453 }; 5454 5455 if (is_proc_myself(pathname, "exe")) { 5456 int execfd = qemu_getauxval(AT_EXECFD); 5457 return execfd ? execfd : get_errno(sys_openat(dirfd, exec_path, flags, mode)); 5458 } 5459 5460 for (fake_open = fakes; fake_open->filename; fake_open++) { 5461 if (fake_open->cmp(pathname, fake_open->filename)) { 5462 break; 5463 } 5464 } 5465 5466 if (fake_open->filename) { 5467 const char *tmpdir; 5468 char filename[PATH_MAX]; 5469 int fd, r; 5470 5471 /* create temporary file to map stat to */ 5472 tmpdir = getenv("TMPDIR"); 5473 if (!tmpdir) 5474 tmpdir = "/tmp"; 5475 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 5476 fd = mkstemp(filename); 5477 if (fd < 0) { 5478 return fd; 5479 } 5480 unlink(filename); 5481 5482 if ((r = fake_open->fill(cpu_env, fd))) { 5483 close(fd); 5484 return r; 5485 } 5486 lseek(fd, 0, SEEK_SET); 5487 5488 return fd; 5489 } 5490 5491 return get_errno(sys_openat(dirfd, path(pathname), flags, mode)); 5492 } 5493 5494 #define TIMER_MAGIC 0x0caf0000 5495 #define TIMER_MAGIC_MASK 0xffff0000 5496 5497 /* Convert QEMU provided timer ID back to internal 16bit index format */ 5498 static target_timer_t get_timer_id(abi_long arg) 5499 { 5500 target_timer_t timerid = arg; 5501 5502 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 5503 return -TARGET_EINVAL; 5504 } 5505 5506 timerid &= 0xffff; 5507 5508 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 5509 return -TARGET_EINVAL; 5510 } 5511 5512 return timerid; 5513 } 5514 5515 /* do_syscall() should always have a single exit point at the end so 5516 that actions, such as logging of syscall results, can be performed. 5517 All errnos that do_syscall() returns must be -TARGET_<errcode>. */ 5518 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 5519 abi_long arg2, abi_long arg3, abi_long arg4, 5520 abi_long arg5, abi_long arg6, abi_long arg7, 5521 abi_long arg8) 5522 { 5523 CPUState *cpu = ENV_GET_CPU(cpu_env); 5524 abi_long ret; 5525 struct stat st; 5526 struct statfs stfs; 5527 void *p; 5528 5529 #ifdef DEBUG 5530 gemu_log("syscall %d", num); 5531 #endif 5532 if(do_strace) 5533 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); 5534 5535 switch(num) { 5536 case TARGET_NR_exit: 5537 /* In old applications this may be used to implement _exit(2). 5538 However in threaded applictions it is used for thread termination, 5539 and _exit_group is used for application termination. 5540 Do thread termination if we have more then one thread. */ 5541 /* FIXME: This probably breaks if a signal arrives. We should probably 5542 be disabling signals. */ 5543 if (CPU_NEXT(first_cpu)) { 5544 TaskState *ts; 5545 5546 cpu_list_lock(); 5547 /* Remove the CPU from the list. */ 5548 QTAILQ_REMOVE(&cpus, cpu, node); 5549 cpu_list_unlock(); 5550 ts = cpu->opaque; 5551 if (ts->child_tidptr) { 5552 put_user_u32(0, ts->child_tidptr); 5553 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX, 5554 NULL, NULL, 0); 5555 } 5556 thread_cpu = NULL; 5557 object_unref(OBJECT(cpu)); 5558 g_free(ts); 5559 pthread_exit(NULL); 5560 } 5561 #ifdef TARGET_GPROF 5562 _mcleanup(); 5563 #endif 5564 gdb_exit(cpu_env, arg1); 5565 _exit(arg1); 5566 ret = 0; /* avoid warning */ 5567 break; 5568 case TARGET_NR_read: 5569 if (arg3 == 0) 5570 ret = 0; 5571 else { 5572 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 5573 goto efault; 5574 ret = get_errno(read(arg1, p, arg3)); 5575 unlock_user(p, arg2, ret); 5576 } 5577 break; 5578 case TARGET_NR_write: 5579 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 5580 goto efault; 5581 ret = get_errno(write(arg1, p, arg3)); 5582 unlock_user(p, arg2, 0); 5583 break; 5584 case TARGET_NR_open: 5585 if (!(p = lock_user_string(arg1))) 5586 goto efault; 5587 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 5588 target_to_host_bitmask(arg2, fcntl_flags_tbl), 5589 arg3)); 5590 unlock_user(p, arg1, 0); 5591 break; 5592 case TARGET_NR_openat: 5593 if (!(p = lock_user_string(arg2))) 5594 goto efault; 5595 ret = get_errno(do_openat(cpu_env, arg1, p, 5596 target_to_host_bitmask(arg3, fcntl_flags_tbl), 5597 arg4)); 5598 unlock_user(p, arg2, 0); 5599 break; 5600 case TARGET_NR_close: 5601 ret = get_errno(close(arg1)); 5602 break; 5603 case TARGET_NR_brk: 5604 ret = do_brk(arg1); 5605 break; 5606 case TARGET_NR_fork: 5607 ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0)); 5608 break; 5609 #ifdef TARGET_NR_waitpid 5610 case TARGET_NR_waitpid: 5611 { 5612 int status; 5613 ret = get_errno(waitpid(arg1, &status, arg3)); 5614 if (!is_error(ret) && arg2 && ret 5615 && put_user_s32(host_to_target_waitstatus(status), arg2)) 5616 goto efault; 5617 } 5618 break; 5619 #endif 5620 #ifdef TARGET_NR_waitid 5621 case TARGET_NR_waitid: 5622 { 5623 siginfo_t info; 5624 info.si_pid = 0; 5625 ret = get_errno(waitid(arg1, arg2, &info, arg4)); 5626 if (!is_error(ret) && arg3 && info.si_pid != 0) { 5627 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 5628 goto efault; 5629 host_to_target_siginfo(p, &info); 5630 unlock_user(p, arg3, sizeof(target_siginfo_t)); 5631 } 5632 } 5633 break; 5634 #endif 5635 #ifdef TARGET_NR_creat /* not on alpha */ 5636 case TARGET_NR_creat: 5637 if (!(p = lock_user_string(arg1))) 5638 goto efault; 5639 ret = get_errno(creat(p, arg2)); 5640 unlock_user(p, arg1, 0); 5641 break; 5642 #endif 5643 case TARGET_NR_link: 5644 { 5645 void * p2; 5646 p = lock_user_string(arg1); 5647 p2 = lock_user_string(arg2); 5648 if (!p || !p2) 5649 ret = -TARGET_EFAULT; 5650 else 5651 ret = get_errno(link(p, p2)); 5652 unlock_user(p2, arg2, 0); 5653 unlock_user(p, arg1, 0); 5654 } 5655 break; 5656 #if defined(TARGET_NR_linkat) 5657 case TARGET_NR_linkat: 5658 { 5659 void * p2 = NULL; 5660 if (!arg2 || !arg4) 5661 goto efault; 5662 p = lock_user_string(arg2); 5663 p2 = lock_user_string(arg4); 5664 if (!p || !p2) 5665 ret = -TARGET_EFAULT; 5666 else 5667 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 5668 unlock_user(p, arg2, 0); 5669 unlock_user(p2, arg4, 0); 5670 } 5671 break; 5672 #endif 5673 case TARGET_NR_unlink: 5674 if (!(p = lock_user_string(arg1))) 5675 goto efault; 5676 ret = get_errno(unlink(p)); 5677 unlock_user(p, arg1, 0); 5678 break; 5679 #if defined(TARGET_NR_unlinkat) 5680 case TARGET_NR_unlinkat: 5681 if (!(p = lock_user_string(arg2))) 5682 goto efault; 5683 ret = get_errno(unlinkat(arg1, p, arg3)); 5684 unlock_user(p, arg2, 0); 5685 break; 5686 #endif 5687 case TARGET_NR_execve: 5688 { 5689 char **argp, **envp; 5690 int argc, envc; 5691 abi_ulong gp; 5692 abi_ulong guest_argp; 5693 abi_ulong guest_envp; 5694 abi_ulong addr; 5695 char **q; 5696 int total_size = 0; 5697 5698 argc = 0; 5699 guest_argp = arg2; 5700 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 5701 if (get_user_ual(addr, gp)) 5702 goto efault; 5703 if (!addr) 5704 break; 5705 argc++; 5706 } 5707 envc = 0; 5708 guest_envp = arg3; 5709 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 5710 if (get_user_ual(addr, gp)) 5711 goto efault; 5712 if (!addr) 5713 break; 5714 envc++; 5715 } 5716 5717 argp = alloca((argc + 1) * sizeof(void *)); 5718 envp = alloca((envc + 1) * sizeof(void *)); 5719 5720 for (gp = guest_argp, q = argp; gp; 5721 gp += sizeof(abi_ulong), q++) { 5722 if (get_user_ual(addr, gp)) 5723 goto execve_efault; 5724 if (!addr) 5725 break; 5726 if (!(*q = lock_user_string(addr))) 5727 goto execve_efault; 5728 total_size += strlen(*q) + 1; 5729 } 5730 *q = NULL; 5731 5732 for (gp = guest_envp, q = envp; gp; 5733 gp += sizeof(abi_ulong), q++) { 5734 if (get_user_ual(addr, gp)) 5735 goto execve_efault; 5736 if (!addr) 5737 break; 5738 if (!(*q = lock_user_string(addr))) 5739 goto execve_efault; 5740 total_size += strlen(*q) + 1; 5741 } 5742 *q = NULL; 5743 5744 /* This case will not be caught by the host's execve() if its 5745 page size is bigger than the target's. */ 5746 if (total_size > MAX_ARG_PAGES * TARGET_PAGE_SIZE) { 5747 ret = -TARGET_E2BIG; 5748 goto execve_end; 5749 } 5750 if (!(p = lock_user_string(arg1))) 5751 goto execve_efault; 5752 ret = get_errno(execve(p, argp, envp)); 5753 unlock_user(p, arg1, 0); 5754 5755 goto execve_end; 5756 5757 execve_efault: 5758 ret = -TARGET_EFAULT; 5759 5760 execve_end: 5761 for (gp = guest_argp, q = argp; *q; 5762 gp += sizeof(abi_ulong), q++) { 5763 if (get_user_ual(addr, gp) 5764 || !addr) 5765 break; 5766 unlock_user(*q, addr, 0); 5767 } 5768 for (gp = guest_envp, q = envp; *q; 5769 gp += sizeof(abi_ulong), q++) { 5770 if (get_user_ual(addr, gp) 5771 || !addr) 5772 break; 5773 unlock_user(*q, addr, 0); 5774 } 5775 } 5776 break; 5777 case TARGET_NR_chdir: 5778 if (!(p = lock_user_string(arg1))) 5779 goto efault; 5780 ret = get_errno(chdir(p)); 5781 unlock_user(p, arg1, 0); 5782 break; 5783 #ifdef TARGET_NR_time 5784 case TARGET_NR_time: 5785 { 5786 time_t host_time; 5787 ret = get_errno(time(&host_time)); 5788 if (!is_error(ret) 5789 && arg1 5790 && put_user_sal(host_time, arg1)) 5791 goto efault; 5792 } 5793 break; 5794 #endif 5795 case TARGET_NR_mknod: 5796 if (!(p = lock_user_string(arg1))) 5797 goto efault; 5798 ret = get_errno(mknod(p, arg2, arg3)); 5799 unlock_user(p, arg1, 0); 5800 break; 5801 #if defined(TARGET_NR_mknodat) 5802 case TARGET_NR_mknodat: 5803 if (!(p = lock_user_string(arg2))) 5804 goto efault; 5805 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 5806 unlock_user(p, arg2, 0); 5807 break; 5808 #endif 5809 case TARGET_NR_chmod: 5810 if (!(p = lock_user_string(arg1))) 5811 goto efault; 5812 ret = get_errno(chmod(p, arg2)); 5813 unlock_user(p, arg1, 0); 5814 break; 5815 #ifdef TARGET_NR_break 5816 case TARGET_NR_break: 5817 goto unimplemented; 5818 #endif 5819 #ifdef TARGET_NR_oldstat 5820 case TARGET_NR_oldstat: 5821 goto unimplemented; 5822 #endif 5823 case TARGET_NR_lseek: 5824 ret = get_errno(lseek(arg1, arg2, arg3)); 5825 break; 5826 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 5827 /* Alpha specific */ 5828 case TARGET_NR_getxpid: 5829 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 5830 ret = get_errno(getpid()); 5831 break; 5832 #endif 5833 #ifdef TARGET_NR_getpid 5834 case TARGET_NR_getpid: 5835 ret = get_errno(getpid()); 5836 break; 5837 #endif 5838 case TARGET_NR_mount: 5839 { 5840 /* need to look at the data field */ 5841 void *p2, *p3; 5842 5843 if (arg1) { 5844 p = lock_user_string(arg1); 5845 if (!p) { 5846 goto efault; 5847 } 5848 } else { 5849 p = NULL; 5850 } 5851 5852 p2 = lock_user_string(arg2); 5853 if (!p2) { 5854 if (arg1) { 5855 unlock_user(p, arg1, 0); 5856 } 5857 goto efault; 5858 } 5859 5860 if (arg3) { 5861 p3 = lock_user_string(arg3); 5862 if (!p3) { 5863 if (arg1) { 5864 unlock_user(p, arg1, 0); 5865 } 5866 unlock_user(p2, arg2, 0); 5867 goto efault; 5868 } 5869 } else { 5870 p3 = NULL; 5871 } 5872 5873 /* FIXME - arg5 should be locked, but it isn't clear how to 5874 * do that since it's not guaranteed to be a NULL-terminated 5875 * string. 5876 */ 5877 if (!arg5) { 5878 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 5879 } else { 5880 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)); 5881 } 5882 ret = get_errno(ret); 5883 5884 if (arg1) { 5885 unlock_user(p, arg1, 0); 5886 } 5887 unlock_user(p2, arg2, 0); 5888 if (arg3) { 5889 unlock_user(p3, arg3, 0); 5890 } 5891 } 5892 break; 5893 #ifdef TARGET_NR_umount 5894 case TARGET_NR_umount: 5895 if (!(p = lock_user_string(arg1))) 5896 goto efault; 5897 ret = get_errno(umount(p)); 5898 unlock_user(p, arg1, 0); 5899 break; 5900 #endif 5901 #ifdef TARGET_NR_stime /* not on alpha */ 5902 case TARGET_NR_stime: 5903 { 5904 time_t host_time; 5905 if (get_user_sal(host_time, arg1)) 5906 goto efault; 5907 ret = get_errno(stime(&host_time)); 5908 } 5909 break; 5910 #endif 5911 case TARGET_NR_ptrace: 5912 goto unimplemented; 5913 #ifdef TARGET_NR_alarm /* not on alpha */ 5914 case TARGET_NR_alarm: 5915 ret = alarm(arg1); 5916 break; 5917 #endif 5918 #ifdef TARGET_NR_oldfstat 5919 case TARGET_NR_oldfstat: 5920 goto unimplemented; 5921 #endif 5922 #ifdef TARGET_NR_pause /* not on alpha */ 5923 case TARGET_NR_pause: 5924 ret = get_errno(pause()); 5925 break; 5926 #endif 5927 #ifdef TARGET_NR_utime 5928 case TARGET_NR_utime: 5929 { 5930 struct utimbuf tbuf, *host_tbuf; 5931 struct target_utimbuf *target_tbuf; 5932 if (arg2) { 5933 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 5934 goto efault; 5935 tbuf.actime = tswapal(target_tbuf->actime); 5936 tbuf.modtime = tswapal(target_tbuf->modtime); 5937 unlock_user_struct(target_tbuf, arg2, 0); 5938 host_tbuf = &tbuf; 5939 } else { 5940 host_tbuf = NULL; 5941 } 5942 if (!(p = lock_user_string(arg1))) 5943 goto efault; 5944 ret = get_errno(utime(p, host_tbuf)); 5945 unlock_user(p, arg1, 0); 5946 } 5947 break; 5948 #endif 5949 case TARGET_NR_utimes: 5950 { 5951 struct timeval *tvp, tv[2]; 5952 if (arg2) { 5953 if (copy_from_user_timeval(&tv[0], arg2) 5954 || copy_from_user_timeval(&tv[1], 5955 arg2 + sizeof(struct target_timeval))) 5956 goto efault; 5957 tvp = tv; 5958 } else { 5959 tvp = NULL; 5960 } 5961 if (!(p = lock_user_string(arg1))) 5962 goto efault; 5963 ret = get_errno(utimes(p, tvp)); 5964 unlock_user(p, arg1, 0); 5965 } 5966 break; 5967 #if defined(TARGET_NR_futimesat) 5968 case TARGET_NR_futimesat: 5969 { 5970 struct timeval *tvp, tv[2]; 5971 if (arg3) { 5972 if (copy_from_user_timeval(&tv[0], arg3) 5973 || copy_from_user_timeval(&tv[1], 5974 arg3 + sizeof(struct target_timeval))) 5975 goto efault; 5976 tvp = tv; 5977 } else { 5978 tvp = NULL; 5979 } 5980 if (!(p = lock_user_string(arg2))) 5981 goto efault; 5982 ret = get_errno(futimesat(arg1, path(p), tvp)); 5983 unlock_user(p, arg2, 0); 5984 } 5985 break; 5986 #endif 5987 #ifdef TARGET_NR_stty 5988 case TARGET_NR_stty: 5989 goto unimplemented; 5990 #endif 5991 #ifdef TARGET_NR_gtty 5992 case TARGET_NR_gtty: 5993 goto unimplemented; 5994 #endif 5995 case TARGET_NR_access: 5996 if (!(p = lock_user_string(arg1))) 5997 goto efault; 5998 ret = get_errno(access(path(p), arg2)); 5999 unlock_user(p, arg1, 0); 6000 break; 6001 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 6002 case TARGET_NR_faccessat: 6003 if (!(p = lock_user_string(arg2))) 6004 goto efault; 6005 ret = get_errno(faccessat(arg1, p, arg3, 0)); 6006 unlock_user(p, arg2, 0); 6007 break; 6008 #endif 6009 #ifdef TARGET_NR_nice /* not on alpha */ 6010 case TARGET_NR_nice: 6011 ret = get_errno(nice(arg1)); 6012 break; 6013 #endif 6014 #ifdef TARGET_NR_ftime 6015 case TARGET_NR_ftime: 6016 goto unimplemented; 6017 #endif 6018 case TARGET_NR_sync: 6019 sync(); 6020 ret = 0; 6021 break; 6022 case TARGET_NR_kill: 6023 ret = get_errno(kill(arg1, target_to_host_signal(arg2))); 6024 break; 6025 case TARGET_NR_rename: 6026 { 6027 void *p2; 6028 p = lock_user_string(arg1); 6029 p2 = lock_user_string(arg2); 6030 if (!p || !p2) 6031 ret = -TARGET_EFAULT; 6032 else 6033 ret = get_errno(rename(p, p2)); 6034 unlock_user(p2, arg2, 0); 6035 unlock_user(p, arg1, 0); 6036 } 6037 break; 6038 #if defined(TARGET_NR_renameat) 6039 case TARGET_NR_renameat: 6040 { 6041 void *p2; 6042 p = lock_user_string(arg2); 6043 p2 = lock_user_string(arg4); 6044 if (!p || !p2) 6045 ret = -TARGET_EFAULT; 6046 else 6047 ret = get_errno(renameat(arg1, p, arg3, p2)); 6048 unlock_user(p2, arg4, 0); 6049 unlock_user(p, arg2, 0); 6050 } 6051 break; 6052 #endif 6053 case TARGET_NR_mkdir: 6054 if (!(p = lock_user_string(arg1))) 6055 goto efault; 6056 ret = get_errno(mkdir(p, arg2)); 6057 unlock_user(p, arg1, 0); 6058 break; 6059 #if defined(TARGET_NR_mkdirat) 6060 case TARGET_NR_mkdirat: 6061 if (!(p = lock_user_string(arg2))) 6062 goto efault; 6063 ret = get_errno(mkdirat(arg1, p, arg3)); 6064 unlock_user(p, arg2, 0); 6065 break; 6066 #endif 6067 case TARGET_NR_rmdir: 6068 if (!(p = lock_user_string(arg1))) 6069 goto efault; 6070 ret = get_errno(rmdir(p)); 6071 unlock_user(p, arg1, 0); 6072 break; 6073 case TARGET_NR_dup: 6074 ret = get_errno(dup(arg1)); 6075 break; 6076 case TARGET_NR_pipe: 6077 ret = do_pipe(cpu_env, arg1, 0, 0); 6078 break; 6079 #ifdef TARGET_NR_pipe2 6080 case TARGET_NR_pipe2: 6081 ret = do_pipe(cpu_env, arg1, 6082 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 6083 break; 6084 #endif 6085 case TARGET_NR_times: 6086 { 6087 struct target_tms *tmsp; 6088 struct tms tms; 6089 ret = get_errno(times(&tms)); 6090 if (arg1) { 6091 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 6092 if (!tmsp) 6093 goto efault; 6094 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 6095 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 6096 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 6097 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 6098 } 6099 if (!is_error(ret)) 6100 ret = host_to_target_clock_t(ret); 6101 } 6102 break; 6103 #ifdef TARGET_NR_prof 6104 case TARGET_NR_prof: 6105 goto unimplemented; 6106 #endif 6107 #ifdef TARGET_NR_signal 6108 case TARGET_NR_signal: 6109 goto unimplemented; 6110 #endif 6111 case TARGET_NR_acct: 6112 if (arg1 == 0) { 6113 ret = get_errno(acct(NULL)); 6114 } else { 6115 if (!(p = lock_user_string(arg1))) 6116 goto efault; 6117 ret = get_errno(acct(path(p))); 6118 unlock_user(p, arg1, 0); 6119 } 6120 break; 6121 #ifdef TARGET_NR_umount2 6122 case TARGET_NR_umount2: 6123 if (!(p = lock_user_string(arg1))) 6124 goto efault; 6125 ret = get_errno(umount2(p, arg2)); 6126 unlock_user(p, arg1, 0); 6127 break; 6128 #endif 6129 #ifdef TARGET_NR_lock 6130 case TARGET_NR_lock: 6131 goto unimplemented; 6132 #endif 6133 case TARGET_NR_ioctl: 6134 ret = do_ioctl(arg1, arg2, arg3); 6135 break; 6136 case TARGET_NR_fcntl: 6137 ret = do_fcntl(arg1, arg2, arg3); 6138 break; 6139 #ifdef TARGET_NR_mpx 6140 case TARGET_NR_mpx: 6141 goto unimplemented; 6142 #endif 6143 case TARGET_NR_setpgid: 6144 ret = get_errno(setpgid(arg1, arg2)); 6145 break; 6146 #ifdef TARGET_NR_ulimit 6147 case TARGET_NR_ulimit: 6148 goto unimplemented; 6149 #endif 6150 #ifdef TARGET_NR_oldolduname 6151 case TARGET_NR_oldolduname: 6152 goto unimplemented; 6153 #endif 6154 case TARGET_NR_umask: 6155 ret = get_errno(umask(arg1)); 6156 break; 6157 case TARGET_NR_chroot: 6158 if (!(p = lock_user_string(arg1))) 6159 goto efault; 6160 ret = get_errno(chroot(p)); 6161 unlock_user(p, arg1, 0); 6162 break; 6163 case TARGET_NR_ustat: 6164 goto unimplemented; 6165 case TARGET_NR_dup2: 6166 ret = get_errno(dup2(arg1, arg2)); 6167 break; 6168 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 6169 case TARGET_NR_dup3: 6170 ret = get_errno(dup3(arg1, arg2, arg3)); 6171 break; 6172 #endif 6173 #ifdef TARGET_NR_getppid /* not on alpha */ 6174 case TARGET_NR_getppid: 6175 ret = get_errno(getppid()); 6176 break; 6177 #endif 6178 case TARGET_NR_getpgrp: 6179 ret = get_errno(getpgrp()); 6180 break; 6181 case TARGET_NR_setsid: 6182 ret = get_errno(setsid()); 6183 break; 6184 #ifdef TARGET_NR_sigaction 6185 case TARGET_NR_sigaction: 6186 { 6187 #if defined(TARGET_ALPHA) 6188 struct target_sigaction act, oact, *pact = 0; 6189 struct target_old_sigaction *old_act; 6190 if (arg2) { 6191 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 6192 goto efault; 6193 act._sa_handler = old_act->_sa_handler; 6194 target_siginitset(&act.sa_mask, old_act->sa_mask); 6195 act.sa_flags = old_act->sa_flags; 6196 act.sa_restorer = 0; 6197 unlock_user_struct(old_act, arg2, 0); 6198 pact = &act; 6199 } 6200 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6201 if (!is_error(ret) && arg3) { 6202 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 6203 goto efault; 6204 old_act->_sa_handler = oact._sa_handler; 6205 old_act->sa_mask = oact.sa_mask.sig[0]; 6206 old_act->sa_flags = oact.sa_flags; 6207 unlock_user_struct(old_act, arg3, 1); 6208 } 6209 #elif defined(TARGET_MIPS) 6210 struct target_sigaction act, oact, *pact, *old_act; 6211 6212 if (arg2) { 6213 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 6214 goto efault; 6215 act._sa_handler = old_act->_sa_handler; 6216 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 6217 act.sa_flags = old_act->sa_flags; 6218 unlock_user_struct(old_act, arg2, 0); 6219 pact = &act; 6220 } else { 6221 pact = NULL; 6222 } 6223 6224 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6225 6226 if (!is_error(ret) && arg3) { 6227 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 6228 goto efault; 6229 old_act->_sa_handler = oact._sa_handler; 6230 old_act->sa_flags = oact.sa_flags; 6231 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 6232 old_act->sa_mask.sig[1] = 0; 6233 old_act->sa_mask.sig[2] = 0; 6234 old_act->sa_mask.sig[3] = 0; 6235 unlock_user_struct(old_act, arg3, 1); 6236 } 6237 #else 6238 struct target_old_sigaction *old_act; 6239 struct target_sigaction act, oact, *pact; 6240 if (arg2) { 6241 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 6242 goto efault; 6243 act._sa_handler = old_act->_sa_handler; 6244 target_siginitset(&act.sa_mask, old_act->sa_mask); 6245 act.sa_flags = old_act->sa_flags; 6246 act.sa_restorer = old_act->sa_restorer; 6247 unlock_user_struct(old_act, arg2, 0); 6248 pact = &act; 6249 } else { 6250 pact = NULL; 6251 } 6252 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6253 if (!is_error(ret) && arg3) { 6254 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 6255 goto efault; 6256 old_act->_sa_handler = oact._sa_handler; 6257 old_act->sa_mask = oact.sa_mask.sig[0]; 6258 old_act->sa_flags = oact.sa_flags; 6259 old_act->sa_restorer = oact.sa_restorer; 6260 unlock_user_struct(old_act, arg3, 1); 6261 } 6262 #endif 6263 } 6264 break; 6265 #endif 6266 case TARGET_NR_rt_sigaction: 6267 { 6268 #if defined(TARGET_ALPHA) 6269 struct target_sigaction act, oact, *pact = 0; 6270 struct target_rt_sigaction *rt_act; 6271 /* ??? arg4 == sizeof(sigset_t). */ 6272 if (arg2) { 6273 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1)) 6274 goto efault; 6275 act._sa_handler = rt_act->_sa_handler; 6276 act.sa_mask = rt_act->sa_mask; 6277 act.sa_flags = rt_act->sa_flags; 6278 act.sa_restorer = arg5; 6279 unlock_user_struct(rt_act, arg2, 0); 6280 pact = &act; 6281 } 6282 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6283 if (!is_error(ret) && arg3) { 6284 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0)) 6285 goto efault; 6286 rt_act->_sa_handler = oact._sa_handler; 6287 rt_act->sa_mask = oact.sa_mask; 6288 rt_act->sa_flags = oact.sa_flags; 6289 unlock_user_struct(rt_act, arg3, 1); 6290 } 6291 #else 6292 struct target_sigaction *act; 6293 struct target_sigaction *oact; 6294 6295 if (arg2) { 6296 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) 6297 goto efault; 6298 } else 6299 act = NULL; 6300 if (arg3) { 6301 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 6302 ret = -TARGET_EFAULT; 6303 goto rt_sigaction_fail; 6304 } 6305 } else 6306 oact = NULL; 6307 ret = get_errno(do_sigaction(arg1, act, oact)); 6308 rt_sigaction_fail: 6309 if (act) 6310 unlock_user_struct(act, arg2, 0); 6311 if (oact) 6312 unlock_user_struct(oact, arg3, 1); 6313 #endif 6314 } 6315 break; 6316 #ifdef TARGET_NR_sgetmask /* not on alpha */ 6317 case TARGET_NR_sgetmask: 6318 { 6319 sigset_t cur_set; 6320 abi_ulong target_set; 6321 do_sigprocmask(0, NULL, &cur_set); 6322 host_to_target_old_sigset(&target_set, &cur_set); 6323 ret = target_set; 6324 } 6325 break; 6326 #endif 6327 #ifdef TARGET_NR_ssetmask /* not on alpha */ 6328 case TARGET_NR_ssetmask: 6329 { 6330 sigset_t set, oset, cur_set; 6331 abi_ulong target_set = arg1; 6332 do_sigprocmask(0, NULL, &cur_set); 6333 target_to_host_old_sigset(&set, &target_set); 6334 sigorset(&set, &set, &cur_set); 6335 do_sigprocmask(SIG_SETMASK, &set, &oset); 6336 host_to_target_old_sigset(&target_set, &oset); 6337 ret = target_set; 6338 } 6339 break; 6340 #endif 6341 #ifdef TARGET_NR_sigprocmask 6342 case TARGET_NR_sigprocmask: 6343 { 6344 #if defined(TARGET_ALPHA) 6345 sigset_t set, oldset; 6346 abi_ulong mask; 6347 int how; 6348 6349 switch (arg1) { 6350 case TARGET_SIG_BLOCK: 6351 how = SIG_BLOCK; 6352 break; 6353 case TARGET_SIG_UNBLOCK: 6354 how = SIG_UNBLOCK; 6355 break; 6356 case TARGET_SIG_SETMASK: 6357 how = SIG_SETMASK; 6358 break; 6359 default: 6360 ret = -TARGET_EINVAL; 6361 goto fail; 6362 } 6363 mask = arg2; 6364 target_to_host_old_sigset(&set, &mask); 6365 6366 ret = get_errno(do_sigprocmask(how, &set, &oldset)); 6367 if (!is_error(ret)) { 6368 host_to_target_old_sigset(&mask, &oldset); 6369 ret = mask; 6370 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 6371 } 6372 #else 6373 sigset_t set, oldset, *set_ptr; 6374 int how; 6375 6376 if (arg2) { 6377 switch (arg1) { 6378 case TARGET_SIG_BLOCK: 6379 how = SIG_BLOCK; 6380 break; 6381 case TARGET_SIG_UNBLOCK: 6382 how = SIG_UNBLOCK; 6383 break; 6384 case TARGET_SIG_SETMASK: 6385 how = SIG_SETMASK; 6386 break; 6387 default: 6388 ret = -TARGET_EINVAL; 6389 goto fail; 6390 } 6391 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 6392 goto efault; 6393 target_to_host_old_sigset(&set, p); 6394 unlock_user(p, arg2, 0); 6395 set_ptr = &set; 6396 } else { 6397 how = 0; 6398 set_ptr = NULL; 6399 } 6400 ret = get_errno(do_sigprocmask(how, set_ptr, &oldset)); 6401 if (!is_error(ret) && arg3) { 6402 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 6403 goto efault; 6404 host_to_target_old_sigset(p, &oldset); 6405 unlock_user(p, arg3, sizeof(target_sigset_t)); 6406 } 6407 #endif 6408 } 6409 break; 6410 #endif 6411 case TARGET_NR_rt_sigprocmask: 6412 { 6413 int how = arg1; 6414 sigset_t set, oldset, *set_ptr; 6415 6416 if (arg2) { 6417 switch(how) { 6418 case TARGET_SIG_BLOCK: 6419 how = SIG_BLOCK; 6420 break; 6421 case TARGET_SIG_UNBLOCK: 6422 how = SIG_UNBLOCK; 6423 break; 6424 case TARGET_SIG_SETMASK: 6425 how = SIG_SETMASK; 6426 break; 6427 default: 6428 ret = -TARGET_EINVAL; 6429 goto fail; 6430 } 6431 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 6432 goto efault; 6433 target_to_host_sigset(&set, p); 6434 unlock_user(p, arg2, 0); 6435 set_ptr = &set; 6436 } else { 6437 how = 0; 6438 set_ptr = NULL; 6439 } 6440 ret = get_errno(do_sigprocmask(how, set_ptr, &oldset)); 6441 if (!is_error(ret) && arg3) { 6442 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 6443 goto efault; 6444 host_to_target_sigset(p, &oldset); 6445 unlock_user(p, arg3, sizeof(target_sigset_t)); 6446 } 6447 } 6448 break; 6449 #ifdef TARGET_NR_sigpending 6450 case TARGET_NR_sigpending: 6451 { 6452 sigset_t set; 6453 ret = get_errno(sigpending(&set)); 6454 if (!is_error(ret)) { 6455 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 6456 goto efault; 6457 host_to_target_old_sigset(p, &set); 6458 unlock_user(p, arg1, sizeof(target_sigset_t)); 6459 } 6460 } 6461 break; 6462 #endif 6463 case TARGET_NR_rt_sigpending: 6464 { 6465 sigset_t set; 6466 ret = get_errno(sigpending(&set)); 6467 if (!is_error(ret)) { 6468 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 6469 goto efault; 6470 host_to_target_sigset(p, &set); 6471 unlock_user(p, arg1, sizeof(target_sigset_t)); 6472 } 6473 } 6474 break; 6475 #ifdef TARGET_NR_sigsuspend 6476 case TARGET_NR_sigsuspend: 6477 { 6478 sigset_t set; 6479 #if defined(TARGET_ALPHA) 6480 abi_ulong mask = arg1; 6481 target_to_host_old_sigset(&set, &mask); 6482 #else 6483 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 6484 goto efault; 6485 target_to_host_old_sigset(&set, p); 6486 unlock_user(p, arg1, 0); 6487 #endif 6488 ret = get_errno(sigsuspend(&set)); 6489 } 6490 break; 6491 #endif 6492 case TARGET_NR_rt_sigsuspend: 6493 { 6494 sigset_t set; 6495 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 6496 goto efault; 6497 target_to_host_sigset(&set, p); 6498 unlock_user(p, arg1, 0); 6499 ret = get_errno(sigsuspend(&set)); 6500 } 6501 break; 6502 case TARGET_NR_rt_sigtimedwait: 6503 { 6504 sigset_t set; 6505 struct timespec uts, *puts; 6506 siginfo_t uinfo; 6507 6508 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 6509 goto efault; 6510 target_to_host_sigset(&set, p); 6511 unlock_user(p, arg1, 0); 6512 if (arg3) { 6513 puts = &uts; 6514 target_to_host_timespec(puts, arg3); 6515 } else { 6516 puts = NULL; 6517 } 6518 ret = get_errno(sigtimedwait(&set, &uinfo, puts)); 6519 if (!is_error(ret)) { 6520 if (arg2) { 6521 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 6522 0); 6523 if (!p) { 6524 goto efault; 6525 } 6526 host_to_target_siginfo(p, &uinfo); 6527 unlock_user(p, arg2, sizeof(target_siginfo_t)); 6528 } 6529 ret = host_to_target_signal(ret); 6530 } 6531 } 6532 break; 6533 case TARGET_NR_rt_sigqueueinfo: 6534 { 6535 siginfo_t uinfo; 6536 if (!(p = lock_user(VERIFY_READ, arg3, sizeof(target_sigset_t), 1))) 6537 goto efault; 6538 target_to_host_siginfo(&uinfo, p); 6539 unlock_user(p, arg1, 0); 6540 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 6541 } 6542 break; 6543 #ifdef TARGET_NR_sigreturn 6544 case TARGET_NR_sigreturn: 6545 /* NOTE: ret is eax, so not transcoding must be done */ 6546 ret = do_sigreturn(cpu_env); 6547 break; 6548 #endif 6549 case TARGET_NR_rt_sigreturn: 6550 /* NOTE: ret is eax, so not transcoding must be done */ 6551 ret = do_rt_sigreturn(cpu_env); 6552 break; 6553 case TARGET_NR_sethostname: 6554 if (!(p = lock_user_string(arg1))) 6555 goto efault; 6556 ret = get_errno(sethostname(p, arg2)); 6557 unlock_user(p, arg1, 0); 6558 break; 6559 case TARGET_NR_setrlimit: 6560 { 6561 int resource = target_to_host_resource(arg1); 6562 struct target_rlimit *target_rlim; 6563 struct rlimit rlim; 6564 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 6565 goto efault; 6566 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 6567 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 6568 unlock_user_struct(target_rlim, arg2, 0); 6569 ret = get_errno(setrlimit(resource, &rlim)); 6570 } 6571 break; 6572 case TARGET_NR_getrlimit: 6573 { 6574 int resource = target_to_host_resource(arg1); 6575 struct target_rlimit *target_rlim; 6576 struct rlimit rlim; 6577 6578 ret = get_errno(getrlimit(resource, &rlim)); 6579 if (!is_error(ret)) { 6580 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 6581 goto efault; 6582 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 6583 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 6584 unlock_user_struct(target_rlim, arg2, 1); 6585 } 6586 } 6587 break; 6588 case TARGET_NR_getrusage: 6589 { 6590 struct rusage rusage; 6591 ret = get_errno(getrusage(arg1, &rusage)); 6592 if (!is_error(ret)) { 6593 ret = host_to_target_rusage(arg2, &rusage); 6594 } 6595 } 6596 break; 6597 case TARGET_NR_gettimeofday: 6598 { 6599 struct timeval tv; 6600 ret = get_errno(gettimeofday(&tv, NULL)); 6601 if (!is_error(ret)) { 6602 if (copy_to_user_timeval(arg1, &tv)) 6603 goto efault; 6604 } 6605 } 6606 break; 6607 case TARGET_NR_settimeofday: 6608 { 6609 struct timeval tv, *ptv = NULL; 6610 struct timezone tz, *ptz = NULL; 6611 6612 if (arg1) { 6613 if (copy_from_user_timeval(&tv, arg1)) { 6614 goto efault; 6615 } 6616 ptv = &tv; 6617 } 6618 6619 if (arg2) { 6620 if (copy_from_user_timezone(&tz, arg2)) { 6621 goto efault; 6622 } 6623 ptz = &tz; 6624 } 6625 6626 ret = get_errno(settimeofday(ptv, ptz)); 6627 } 6628 break; 6629 #if defined(TARGET_NR_select) 6630 case TARGET_NR_select: 6631 #if defined(TARGET_S390X) || defined(TARGET_ALPHA) 6632 ret = do_select(arg1, arg2, arg3, arg4, arg5); 6633 #else 6634 { 6635 struct target_sel_arg_struct *sel; 6636 abi_ulong inp, outp, exp, tvp; 6637 long nsel; 6638 6639 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) 6640 goto efault; 6641 nsel = tswapal(sel->n); 6642 inp = tswapal(sel->inp); 6643 outp = tswapal(sel->outp); 6644 exp = tswapal(sel->exp); 6645 tvp = tswapal(sel->tvp); 6646 unlock_user_struct(sel, arg1, 0); 6647 ret = do_select(nsel, inp, outp, exp, tvp); 6648 } 6649 #endif 6650 break; 6651 #endif 6652 #ifdef TARGET_NR_pselect6 6653 case TARGET_NR_pselect6: 6654 { 6655 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 6656 fd_set rfds, wfds, efds; 6657 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 6658 struct timespec ts, *ts_ptr; 6659 6660 /* 6661 * The 6th arg is actually two args smashed together, 6662 * so we cannot use the C library. 6663 */ 6664 sigset_t set; 6665 struct { 6666 sigset_t *set; 6667 size_t size; 6668 } sig, *sig_ptr; 6669 6670 abi_ulong arg_sigset, arg_sigsize, *arg7; 6671 target_sigset_t *target_sigset; 6672 6673 n = arg1; 6674 rfd_addr = arg2; 6675 wfd_addr = arg3; 6676 efd_addr = arg4; 6677 ts_addr = arg5; 6678 6679 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 6680 if (ret) { 6681 goto fail; 6682 } 6683 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 6684 if (ret) { 6685 goto fail; 6686 } 6687 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 6688 if (ret) { 6689 goto fail; 6690 } 6691 6692 /* 6693 * This takes a timespec, and not a timeval, so we cannot 6694 * use the do_select() helper ... 6695 */ 6696 if (ts_addr) { 6697 if (target_to_host_timespec(&ts, ts_addr)) { 6698 goto efault; 6699 } 6700 ts_ptr = &ts; 6701 } else { 6702 ts_ptr = NULL; 6703 } 6704 6705 /* Extract the two packed args for the sigset */ 6706 if (arg6) { 6707 sig_ptr = &sig; 6708 sig.size = _NSIG / 8; 6709 6710 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 6711 if (!arg7) { 6712 goto efault; 6713 } 6714 arg_sigset = tswapal(arg7[0]); 6715 arg_sigsize = tswapal(arg7[1]); 6716 unlock_user(arg7, arg6, 0); 6717 6718 if (arg_sigset) { 6719 sig.set = &set; 6720 if (arg_sigsize != sizeof(*target_sigset)) { 6721 /* Like the kernel, we enforce correct size sigsets */ 6722 ret = -TARGET_EINVAL; 6723 goto fail; 6724 } 6725 target_sigset = lock_user(VERIFY_READ, arg_sigset, 6726 sizeof(*target_sigset), 1); 6727 if (!target_sigset) { 6728 goto efault; 6729 } 6730 target_to_host_sigset(&set, target_sigset); 6731 unlock_user(target_sigset, arg_sigset, 0); 6732 } else { 6733 sig.set = NULL; 6734 } 6735 } else { 6736 sig_ptr = NULL; 6737 } 6738 6739 ret = get_errno(sys_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 6740 ts_ptr, sig_ptr)); 6741 6742 if (!is_error(ret)) { 6743 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 6744 goto efault; 6745 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 6746 goto efault; 6747 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 6748 goto efault; 6749 6750 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) 6751 goto efault; 6752 } 6753 } 6754 break; 6755 #endif 6756 case TARGET_NR_symlink: 6757 { 6758 void *p2; 6759 p = lock_user_string(arg1); 6760 p2 = lock_user_string(arg2); 6761 if (!p || !p2) 6762 ret = -TARGET_EFAULT; 6763 else 6764 ret = get_errno(symlink(p, p2)); 6765 unlock_user(p2, arg2, 0); 6766 unlock_user(p, arg1, 0); 6767 } 6768 break; 6769 #if defined(TARGET_NR_symlinkat) 6770 case TARGET_NR_symlinkat: 6771 { 6772 void *p2; 6773 p = lock_user_string(arg1); 6774 p2 = lock_user_string(arg3); 6775 if (!p || !p2) 6776 ret = -TARGET_EFAULT; 6777 else 6778 ret = get_errno(symlinkat(p, arg2, p2)); 6779 unlock_user(p2, arg3, 0); 6780 unlock_user(p, arg1, 0); 6781 } 6782 break; 6783 #endif 6784 #ifdef TARGET_NR_oldlstat 6785 case TARGET_NR_oldlstat: 6786 goto unimplemented; 6787 #endif 6788 case TARGET_NR_readlink: 6789 { 6790 void *p2; 6791 p = lock_user_string(arg1); 6792 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 6793 if (!p || !p2) { 6794 ret = -TARGET_EFAULT; 6795 } else if (!arg3) { 6796 /* Short circuit this for the magic exe check. */ 6797 ret = -TARGET_EINVAL; 6798 } else if (is_proc_myself((const char *)p, "exe")) { 6799 char real[PATH_MAX], *temp; 6800 temp = realpath(exec_path, real); 6801 /* Return value is # of bytes that we wrote to the buffer. */ 6802 if (temp == NULL) { 6803 ret = get_errno(-1); 6804 } else { 6805 /* Don't worry about sign mismatch as earlier mapping 6806 * logic would have thrown a bad address error. */ 6807 ret = MIN(strlen(real), arg3); 6808 /* We cannot NUL terminate the string. */ 6809 memcpy(p2, real, ret); 6810 } 6811 } else { 6812 ret = get_errno(readlink(path(p), p2, arg3)); 6813 } 6814 unlock_user(p2, arg2, ret); 6815 unlock_user(p, arg1, 0); 6816 } 6817 break; 6818 #if defined(TARGET_NR_readlinkat) 6819 case TARGET_NR_readlinkat: 6820 { 6821 void *p2; 6822 p = lock_user_string(arg2); 6823 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 6824 if (!p || !p2) { 6825 ret = -TARGET_EFAULT; 6826 } else if (is_proc_myself((const char *)p, "exe")) { 6827 char real[PATH_MAX], *temp; 6828 temp = realpath(exec_path, real); 6829 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 6830 snprintf((char *)p2, arg4, "%s", real); 6831 } else { 6832 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 6833 } 6834 unlock_user(p2, arg3, ret); 6835 unlock_user(p, arg2, 0); 6836 } 6837 break; 6838 #endif 6839 #ifdef TARGET_NR_uselib 6840 case TARGET_NR_uselib: 6841 goto unimplemented; 6842 #endif 6843 #ifdef TARGET_NR_swapon 6844 case TARGET_NR_swapon: 6845 if (!(p = lock_user_string(arg1))) 6846 goto efault; 6847 ret = get_errno(swapon(p, arg2)); 6848 unlock_user(p, arg1, 0); 6849 break; 6850 #endif 6851 case TARGET_NR_reboot: 6852 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 6853 /* arg4 must be ignored in all other cases */ 6854 p = lock_user_string(arg4); 6855 if (!p) { 6856 goto efault; 6857 } 6858 ret = get_errno(reboot(arg1, arg2, arg3, p)); 6859 unlock_user(p, arg4, 0); 6860 } else { 6861 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 6862 } 6863 break; 6864 #ifdef TARGET_NR_readdir 6865 case TARGET_NR_readdir: 6866 goto unimplemented; 6867 #endif 6868 #ifdef TARGET_NR_mmap 6869 case TARGET_NR_mmap: 6870 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 6871 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 6872 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 6873 || defined(TARGET_S390X) 6874 { 6875 abi_ulong *v; 6876 abi_ulong v1, v2, v3, v4, v5, v6; 6877 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 6878 goto efault; 6879 v1 = tswapal(v[0]); 6880 v2 = tswapal(v[1]); 6881 v3 = tswapal(v[2]); 6882 v4 = tswapal(v[3]); 6883 v5 = tswapal(v[4]); 6884 v6 = tswapal(v[5]); 6885 unlock_user(v, arg1, 0); 6886 ret = get_errno(target_mmap(v1, v2, v3, 6887 target_to_host_bitmask(v4, mmap_flags_tbl), 6888 v5, v6)); 6889 } 6890 #else 6891 ret = get_errno(target_mmap(arg1, arg2, arg3, 6892 target_to_host_bitmask(arg4, mmap_flags_tbl), 6893 arg5, 6894 arg6)); 6895 #endif 6896 break; 6897 #endif 6898 #ifdef TARGET_NR_mmap2 6899 case TARGET_NR_mmap2: 6900 #ifndef MMAP_SHIFT 6901 #define MMAP_SHIFT 12 6902 #endif 6903 ret = get_errno(target_mmap(arg1, arg2, arg3, 6904 target_to_host_bitmask(arg4, mmap_flags_tbl), 6905 arg5, 6906 arg6 << MMAP_SHIFT)); 6907 break; 6908 #endif 6909 case TARGET_NR_munmap: 6910 ret = get_errno(target_munmap(arg1, arg2)); 6911 break; 6912 case TARGET_NR_mprotect: 6913 { 6914 TaskState *ts = cpu->opaque; 6915 /* Special hack to detect libc making the stack executable. */ 6916 if ((arg3 & PROT_GROWSDOWN) 6917 && arg1 >= ts->info->stack_limit 6918 && arg1 <= ts->info->start_stack) { 6919 arg3 &= ~PROT_GROWSDOWN; 6920 arg2 = arg2 + arg1 - ts->info->stack_limit; 6921 arg1 = ts->info->stack_limit; 6922 } 6923 } 6924 ret = get_errno(target_mprotect(arg1, arg2, arg3)); 6925 break; 6926 #ifdef TARGET_NR_mremap 6927 case TARGET_NR_mremap: 6928 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 6929 break; 6930 #endif 6931 /* ??? msync/mlock/munlock are broken for softmmu. */ 6932 #ifdef TARGET_NR_msync 6933 case TARGET_NR_msync: 6934 ret = get_errno(msync(g2h(arg1), arg2, arg3)); 6935 break; 6936 #endif 6937 #ifdef TARGET_NR_mlock 6938 case TARGET_NR_mlock: 6939 ret = get_errno(mlock(g2h(arg1), arg2)); 6940 break; 6941 #endif 6942 #ifdef TARGET_NR_munlock 6943 case TARGET_NR_munlock: 6944 ret = get_errno(munlock(g2h(arg1), arg2)); 6945 break; 6946 #endif 6947 #ifdef TARGET_NR_mlockall 6948 case TARGET_NR_mlockall: 6949 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 6950 break; 6951 #endif 6952 #ifdef TARGET_NR_munlockall 6953 case TARGET_NR_munlockall: 6954 ret = get_errno(munlockall()); 6955 break; 6956 #endif 6957 case TARGET_NR_truncate: 6958 if (!(p = lock_user_string(arg1))) 6959 goto efault; 6960 ret = get_errno(truncate(p, arg2)); 6961 unlock_user(p, arg1, 0); 6962 break; 6963 case TARGET_NR_ftruncate: 6964 ret = get_errno(ftruncate(arg1, arg2)); 6965 break; 6966 case TARGET_NR_fchmod: 6967 ret = get_errno(fchmod(arg1, arg2)); 6968 break; 6969 #if defined(TARGET_NR_fchmodat) 6970 case TARGET_NR_fchmodat: 6971 if (!(p = lock_user_string(arg2))) 6972 goto efault; 6973 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 6974 unlock_user(p, arg2, 0); 6975 break; 6976 #endif 6977 case TARGET_NR_getpriority: 6978 /* Note that negative values are valid for getpriority, so we must 6979 differentiate based on errno settings. */ 6980 errno = 0; 6981 ret = getpriority(arg1, arg2); 6982 if (ret == -1 && errno != 0) { 6983 ret = -host_to_target_errno(errno); 6984 break; 6985 } 6986 #ifdef TARGET_ALPHA 6987 /* Return value is the unbiased priority. Signal no error. */ 6988 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 6989 #else 6990 /* Return value is a biased priority to avoid negative numbers. */ 6991 ret = 20 - ret; 6992 #endif 6993 break; 6994 case TARGET_NR_setpriority: 6995 ret = get_errno(setpriority(arg1, arg2, arg3)); 6996 break; 6997 #ifdef TARGET_NR_profil 6998 case TARGET_NR_profil: 6999 goto unimplemented; 7000 #endif 7001 case TARGET_NR_statfs: 7002 if (!(p = lock_user_string(arg1))) 7003 goto efault; 7004 ret = get_errno(statfs(path(p), &stfs)); 7005 unlock_user(p, arg1, 0); 7006 convert_statfs: 7007 if (!is_error(ret)) { 7008 struct target_statfs *target_stfs; 7009 7010 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 7011 goto efault; 7012 __put_user(stfs.f_type, &target_stfs->f_type); 7013 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 7014 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 7015 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 7016 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 7017 __put_user(stfs.f_files, &target_stfs->f_files); 7018 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 7019 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 7020 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 7021 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 7022 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 7023 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 7024 unlock_user_struct(target_stfs, arg2, 1); 7025 } 7026 break; 7027 case TARGET_NR_fstatfs: 7028 ret = get_errno(fstatfs(arg1, &stfs)); 7029 goto convert_statfs; 7030 #ifdef TARGET_NR_statfs64 7031 case TARGET_NR_statfs64: 7032 if (!(p = lock_user_string(arg1))) 7033 goto efault; 7034 ret = get_errno(statfs(path(p), &stfs)); 7035 unlock_user(p, arg1, 0); 7036 convert_statfs64: 7037 if (!is_error(ret)) { 7038 struct target_statfs64 *target_stfs; 7039 7040 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 7041 goto efault; 7042 __put_user(stfs.f_type, &target_stfs->f_type); 7043 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 7044 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 7045 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 7046 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 7047 __put_user(stfs.f_files, &target_stfs->f_files); 7048 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 7049 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 7050 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 7051 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 7052 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 7053 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 7054 unlock_user_struct(target_stfs, arg3, 1); 7055 } 7056 break; 7057 case TARGET_NR_fstatfs64: 7058 ret = get_errno(fstatfs(arg1, &stfs)); 7059 goto convert_statfs64; 7060 #endif 7061 #ifdef TARGET_NR_ioperm 7062 case TARGET_NR_ioperm: 7063 goto unimplemented; 7064 #endif 7065 #ifdef TARGET_NR_socketcall 7066 case TARGET_NR_socketcall: 7067 ret = do_socketcall(arg1, arg2); 7068 break; 7069 #endif 7070 #ifdef TARGET_NR_accept 7071 case TARGET_NR_accept: 7072 ret = do_accept4(arg1, arg2, arg3, 0); 7073 break; 7074 #endif 7075 #ifdef TARGET_NR_accept4 7076 case TARGET_NR_accept4: 7077 #ifdef CONFIG_ACCEPT4 7078 ret = do_accept4(arg1, arg2, arg3, arg4); 7079 #else 7080 goto unimplemented; 7081 #endif 7082 break; 7083 #endif 7084 #ifdef TARGET_NR_bind 7085 case TARGET_NR_bind: 7086 ret = do_bind(arg1, arg2, arg3); 7087 break; 7088 #endif 7089 #ifdef TARGET_NR_connect 7090 case TARGET_NR_connect: 7091 ret = do_connect(arg1, arg2, arg3); 7092 break; 7093 #endif 7094 #ifdef TARGET_NR_getpeername 7095 case TARGET_NR_getpeername: 7096 ret = do_getpeername(arg1, arg2, arg3); 7097 break; 7098 #endif 7099 #ifdef TARGET_NR_getsockname 7100 case TARGET_NR_getsockname: 7101 ret = do_getsockname(arg1, arg2, arg3); 7102 break; 7103 #endif 7104 #ifdef TARGET_NR_getsockopt 7105 case TARGET_NR_getsockopt: 7106 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); 7107 break; 7108 #endif 7109 #ifdef TARGET_NR_listen 7110 case TARGET_NR_listen: 7111 ret = get_errno(listen(arg1, arg2)); 7112 break; 7113 #endif 7114 #ifdef TARGET_NR_recv 7115 case TARGET_NR_recv: 7116 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 7117 break; 7118 #endif 7119 #ifdef TARGET_NR_recvfrom 7120 case TARGET_NR_recvfrom: 7121 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 7122 break; 7123 #endif 7124 #ifdef TARGET_NR_recvmsg 7125 case TARGET_NR_recvmsg: 7126 ret = do_sendrecvmsg(arg1, arg2, arg3, 0); 7127 break; 7128 #endif 7129 #ifdef TARGET_NR_send 7130 case TARGET_NR_send: 7131 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0); 7132 break; 7133 #endif 7134 #ifdef TARGET_NR_sendmsg 7135 case TARGET_NR_sendmsg: 7136 ret = do_sendrecvmsg(arg1, arg2, arg3, 1); 7137 break; 7138 #endif 7139 #ifdef TARGET_NR_sendmmsg 7140 case TARGET_NR_sendmmsg: 7141 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 7142 break; 7143 case TARGET_NR_recvmmsg: 7144 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 7145 break; 7146 #endif 7147 #ifdef TARGET_NR_sendto 7148 case TARGET_NR_sendto: 7149 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 7150 break; 7151 #endif 7152 #ifdef TARGET_NR_shutdown 7153 case TARGET_NR_shutdown: 7154 ret = get_errno(shutdown(arg1, arg2)); 7155 break; 7156 #endif 7157 #ifdef TARGET_NR_socket 7158 case TARGET_NR_socket: 7159 ret = do_socket(arg1, arg2, arg3); 7160 break; 7161 #endif 7162 #ifdef TARGET_NR_socketpair 7163 case TARGET_NR_socketpair: 7164 ret = do_socketpair(arg1, arg2, arg3, arg4); 7165 break; 7166 #endif 7167 #ifdef TARGET_NR_setsockopt 7168 case TARGET_NR_setsockopt: 7169 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 7170 break; 7171 #endif 7172 7173 case TARGET_NR_syslog: 7174 if (!(p = lock_user_string(arg2))) 7175 goto efault; 7176 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 7177 unlock_user(p, arg2, 0); 7178 break; 7179 7180 case TARGET_NR_setitimer: 7181 { 7182 struct itimerval value, ovalue, *pvalue; 7183 7184 if (arg2) { 7185 pvalue = &value; 7186 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 7187 || copy_from_user_timeval(&pvalue->it_value, 7188 arg2 + sizeof(struct target_timeval))) 7189 goto efault; 7190 } else { 7191 pvalue = NULL; 7192 } 7193 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 7194 if (!is_error(ret) && arg3) { 7195 if (copy_to_user_timeval(arg3, 7196 &ovalue.it_interval) 7197 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 7198 &ovalue.it_value)) 7199 goto efault; 7200 } 7201 } 7202 break; 7203 case TARGET_NR_getitimer: 7204 { 7205 struct itimerval value; 7206 7207 ret = get_errno(getitimer(arg1, &value)); 7208 if (!is_error(ret) && arg2) { 7209 if (copy_to_user_timeval(arg2, 7210 &value.it_interval) 7211 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 7212 &value.it_value)) 7213 goto efault; 7214 } 7215 } 7216 break; 7217 case TARGET_NR_stat: 7218 if (!(p = lock_user_string(arg1))) 7219 goto efault; 7220 ret = get_errno(stat(path(p), &st)); 7221 unlock_user(p, arg1, 0); 7222 goto do_stat; 7223 case TARGET_NR_lstat: 7224 if (!(p = lock_user_string(arg1))) 7225 goto efault; 7226 ret = get_errno(lstat(path(p), &st)); 7227 unlock_user(p, arg1, 0); 7228 goto do_stat; 7229 case TARGET_NR_fstat: 7230 { 7231 ret = get_errno(fstat(arg1, &st)); 7232 do_stat: 7233 if (!is_error(ret)) { 7234 struct target_stat *target_st; 7235 7236 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 7237 goto efault; 7238 memset(target_st, 0, sizeof(*target_st)); 7239 __put_user(st.st_dev, &target_st->st_dev); 7240 __put_user(st.st_ino, &target_st->st_ino); 7241 __put_user(st.st_mode, &target_st->st_mode); 7242 __put_user(st.st_uid, &target_st->st_uid); 7243 __put_user(st.st_gid, &target_st->st_gid); 7244 __put_user(st.st_nlink, &target_st->st_nlink); 7245 __put_user(st.st_rdev, &target_st->st_rdev); 7246 __put_user(st.st_size, &target_st->st_size); 7247 __put_user(st.st_blksize, &target_st->st_blksize); 7248 __put_user(st.st_blocks, &target_st->st_blocks); 7249 __put_user(st.st_atime, &target_st->target_st_atime); 7250 __put_user(st.st_mtime, &target_st->target_st_mtime); 7251 __put_user(st.st_ctime, &target_st->target_st_ctime); 7252 unlock_user_struct(target_st, arg2, 1); 7253 } 7254 } 7255 break; 7256 #ifdef TARGET_NR_olduname 7257 case TARGET_NR_olduname: 7258 goto unimplemented; 7259 #endif 7260 #ifdef TARGET_NR_iopl 7261 case TARGET_NR_iopl: 7262 goto unimplemented; 7263 #endif 7264 case TARGET_NR_vhangup: 7265 ret = get_errno(vhangup()); 7266 break; 7267 #ifdef TARGET_NR_idle 7268 case TARGET_NR_idle: 7269 goto unimplemented; 7270 #endif 7271 #ifdef TARGET_NR_syscall 7272 case TARGET_NR_syscall: 7273 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 7274 arg6, arg7, arg8, 0); 7275 break; 7276 #endif 7277 case TARGET_NR_wait4: 7278 { 7279 int status; 7280 abi_long status_ptr = arg2; 7281 struct rusage rusage, *rusage_ptr; 7282 abi_ulong target_rusage = arg4; 7283 abi_long rusage_err; 7284 if (target_rusage) 7285 rusage_ptr = &rusage; 7286 else 7287 rusage_ptr = NULL; 7288 ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr)); 7289 if (!is_error(ret)) { 7290 if (status_ptr && ret) { 7291 status = host_to_target_waitstatus(status); 7292 if (put_user_s32(status, status_ptr)) 7293 goto efault; 7294 } 7295 if (target_rusage) { 7296 rusage_err = host_to_target_rusage(target_rusage, &rusage); 7297 if (rusage_err) { 7298 ret = rusage_err; 7299 } 7300 } 7301 } 7302 } 7303 break; 7304 #ifdef TARGET_NR_swapoff 7305 case TARGET_NR_swapoff: 7306 if (!(p = lock_user_string(arg1))) 7307 goto efault; 7308 ret = get_errno(swapoff(p)); 7309 unlock_user(p, arg1, 0); 7310 break; 7311 #endif 7312 case TARGET_NR_sysinfo: 7313 { 7314 struct target_sysinfo *target_value; 7315 struct sysinfo value; 7316 ret = get_errno(sysinfo(&value)); 7317 if (!is_error(ret) && arg1) 7318 { 7319 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 7320 goto efault; 7321 __put_user(value.uptime, &target_value->uptime); 7322 __put_user(value.loads[0], &target_value->loads[0]); 7323 __put_user(value.loads[1], &target_value->loads[1]); 7324 __put_user(value.loads[2], &target_value->loads[2]); 7325 __put_user(value.totalram, &target_value->totalram); 7326 __put_user(value.freeram, &target_value->freeram); 7327 __put_user(value.sharedram, &target_value->sharedram); 7328 __put_user(value.bufferram, &target_value->bufferram); 7329 __put_user(value.totalswap, &target_value->totalswap); 7330 __put_user(value.freeswap, &target_value->freeswap); 7331 __put_user(value.procs, &target_value->procs); 7332 __put_user(value.totalhigh, &target_value->totalhigh); 7333 __put_user(value.freehigh, &target_value->freehigh); 7334 __put_user(value.mem_unit, &target_value->mem_unit); 7335 unlock_user_struct(target_value, arg1, 1); 7336 } 7337 } 7338 break; 7339 #ifdef TARGET_NR_ipc 7340 case TARGET_NR_ipc: 7341 ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6); 7342 break; 7343 #endif 7344 #ifdef TARGET_NR_semget 7345 case TARGET_NR_semget: 7346 ret = get_errno(semget(arg1, arg2, arg3)); 7347 break; 7348 #endif 7349 #ifdef TARGET_NR_semop 7350 case TARGET_NR_semop: 7351 ret = do_semop(arg1, arg2, arg3); 7352 break; 7353 #endif 7354 #ifdef TARGET_NR_semctl 7355 case TARGET_NR_semctl: 7356 ret = do_semctl(arg1, arg2, arg3, (union target_semun)(abi_ulong)arg4); 7357 break; 7358 #endif 7359 #ifdef TARGET_NR_msgctl 7360 case TARGET_NR_msgctl: 7361 ret = do_msgctl(arg1, arg2, arg3); 7362 break; 7363 #endif 7364 #ifdef TARGET_NR_msgget 7365 case TARGET_NR_msgget: 7366 ret = get_errno(msgget(arg1, arg2)); 7367 break; 7368 #endif 7369 #ifdef TARGET_NR_msgrcv 7370 case TARGET_NR_msgrcv: 7371 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5); 7372 break; 7373 #endif 7374 #ifdef TARGET_NR_msgsnd 7375 case TARGET_NR_msgsnd: 7376 ret = do_msgsnd(arg1, arg2, arg3, arg4); 7377 break; 7378 #endif 7379 #ifdef TARGET_NR_shmget 7380 case TARGET_NR_shmget: 7381 ret = get_errno(shmget(arg1, arg2, arg3)); 7382 break; 7383 #endif 7384 #ifdef TARGET_NR_shmctl 7385 case TARGET_NR_shmctl: 7386 ret = do_shmctl(arg1, arg2, arg3); 7387 break; 7388 #endif 7389 #ifdef TARGET_NR_shmat 7390 case TARGET_NR_shmat: 7391 ret = do_shmat(arg1, arg2, arg3); 7392 break; 7393 #endif 7394 #ifdef TARGET_NR_shmdt 7395 case TARGET_NR_shmdt: 7396 ret = do_shmdt(arg1); 7397 break; 7398 #endif 7399 case TARGET_NR_fsync: 7400 ret = get_errno(fsync(arg1)); 7401 break; 7402 case TARGET_NR_clone: 7403 /* Linux manages to have three different orderings for its 7404 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 7405 * match the kernel's CONFIG_CLONE_* settings. 7406 * Microblaze is further special in that it uses a sixth 7407 * implicit argument to clone for the TLS pointer. 7408 */ 7409 #if defined(TARGET_MICROBLAZE) 7410 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 7411 #elif defined(TARGET_CLONE_BACKWARDS) 7412 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 7413 #elif defined(TARGET_CLONE_BACKWARDS2) 7414 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 7415 #else 7416 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 7417 #endif 7418 break; 7419 #ifdef __NR_exit_group 7420 /* new thread calls */ 7421 case TARGET_NR_exit_group: 7422 #ifdef TARGET_GPROF 7423 _mcleanup(); 7424 #endif 7425 gdb_exit(cpu_env, arg1); 7426 ret = get_errno(exit_group(arg1)); 7427 break; 7428 #endif 7429 case TARGET_NR_setdomainname: 7430 if (!(p = lock_user_string(arg1))) 7431 goto efault; 7432 ret = get_errno(setdomainname(p, arg2)); 7433 unlock_user(p, arg1, 0); 7434 break; 7435 case TARGET_NR_uname: 7436 /* no need to transcode because we use the linux syscall */ 7437 { 7438 struct new_utsname * buf; 7439 7440 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 7441 goto efault; 7442 ret = get_errno(sys_uname(buf)); 7443 if (!is_error(ret)) { 7444 /* Overrite the native machine name with whatever is being 7445 emulated. */ 7446 strcpy (buf->machine, cpu_to_uname_machine(cpu_env)); 7447 /* Allow the user to override the reported release. */ 7448 if (qemu_uname_release && *qemu_uname_release) 7449 strcpy (buf->release, qemu_uname_release); 7450 } 7451 unlock_user_struct(buf, arg1, 1); 7452 } 7453 break; 7454 #ifdef TARGET_I386 7455 case TARGET_NR_modify_ldt: 7456 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3); 7457 break; 7458 #if !defined(TARGET_X86_64) 7459 case TARGET_NR_vm86old: 7460 goto unimplemented; 7461 case TARGET_NR_vm86: 7462 ret = do_vm86(cpu_env, arg1, arg2); 7463 break; 7464 #endif 7465 #endif 7466 case TARGET_NR_adjtimex: 7467 goto unimplemented; 7468 #ifdef TARGET_NR_create_module 7469 case TARGET_NR_create_module: 7470 #endif 7471 case TARGET_NR_init_module: 7472 case TARGET_NR_delete_module: 7473 #ifdef TARGET_NR_get_kernel_syms 7474 case TARGET_NR_get_kernel_syms: 7475 #endif 7476 goto unimplemented; 7477 case TARGET_NR_quotactl: 7478 goto unimplemented; 7479 case TARGET_NR_getpgid: 7480 ret = get_errno(getpgid(arg1)); 7481 break; 7482 case TARGET_NR_fchdir: 7483 ret = get_errno(fchdir(arg1)); 7484 break; 7485 #ifdef TARGET_NR_bdflush /* not on x86_64 */ 7486 case TARGET_NR_bdflush: 7487 goto unimplemented; 7488 #endif 7489 #ifdef TARGET_NR_sysfs 7490 case TARGET_NR_sysfs: 7491 goto unimplemented; 7492 #endif 7493 case TARGET_NR_personality: 7494 ret = get_errno(personality(arg1)); 7495 break; 7496 #ifdef TARGET_NR_afs_syscall 7497 case TARGET_NR_afs_syscall: 7498 goto unimplemented; 7499 #endif 7500 #ifdef TARGET_NR__llseek /* Not on alpha */ 7501 case TARGET_NR__llseek: 7502 { 7503 int64_t res; 7504 #if !defined(__NR_llseek) 7505 res = lseek(arg1, ((uint64_t)arg2 << 32) | arg3, arg5); 7506 if (res == -1) { 7507 ret = get_errno(res); 7508 } else { 7509 ret = 0; 7510 } 7511 #else 7512 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 7513 #endif 7514 if ((ret == 0) && put_user_s64(res, arg4)) { 7515 goto efault; 7516 } 7517 } 7518 break; 7519 #endif 7520 case TARGET_NR_getdents: 7521 #ifdef __NR_getdents 7522 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 7523 { 7524 struct target_dirent *target_dirp; 7525 struct linux_dirent *dirp; 7526 abi_long count = arg3; 7527 7528 dirp = malloc(count); 7529 if (!dirp) { 7530 ret = -TARGET_ENOMEM; 7531 goto fail; 7532 } 7533 7534 ret = get_errno(sys_getdents(arg1, dirp, count)); 7535 if (!is_error(ret)) { 7536 struct linux_dirent *de; 7537 struct target_dirent *tde; 7538 int len = ret; 7539 int reclen, treclen; 7540 int count1, tnamelen; 7541 7542 count1 = 0; 7543 de = dirp; 7544 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 7545 goto efault; 7546 tde = target_dirp; 7547 while (len > 0) { 7548 reclen = de->d_reclen; 7549 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 7550 assert(tnamelen >= 0); 7551 treclen = tnamelen + offsetof(struct target_dirent, d_name); 7552 assert(count1 + treclen <= count); 7553 tde->d_reclen = tswap16(treclen); 7554 tde->d_ino = tswapal(de->d_ino); 7555 tde->d_off = tswapal(de->d_off); 7556 memcpy(tde->d_name, de->d_name, tnamelen); 7557 de = (struct linux_dirent *)((char *)de + reclen); 7558 len -= reclen; 7559 tde = (struct target_dirent *)((char *)tde + treclen); 7560 count1 += treclen; 7561 } 7562 ret = count1; 7563 unlock_user(target_dirp, arg2, ret); 7564 } 7565 free(dirp); 7566 } 7567 #else 7568 { 7569 struct linux_dirent *dirp; 7570 abi_long count = arg3; 7571 7572 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 7573 goto efault; 7574 ret = get_errno(sys_getdents(arg1, dirp, count)); 7575 if (!is_error(ret)) { 7576 struct linux_dirent *de; 7577 int len = ret; 7578 int reclen; 7579 de = dirp; 7580 while (len > 0) { 7581 reclen = de->d_reclen; 7582 if (reclen > len) 7583 break; 7584 de->d_reclen = tswap16(reclen); 7585 tswapls(&de->d_ino); 7586 tswapls(&de->d_off); 7587 de = (struct linux_dirent *)((char *)de + reclen); 7588 len -= reclen; 7589 } 7590 } 7591 unlock_user(dirp, arg2, ret); 7592 } 7593 #endif 7594 #else 7595 /* Implement getdents in terms of getdents64 */ 7596 { 7597 struct linux_dirent64 *dirp; 7598 abi_long count = arg3; 7599 7600 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 7601 if (!dirp) { 7602 goto efault; 7603 } 7604 ret = get_errno(sys_getdents64(arg1, dirp, count)); 7605 if (!is_error(ret)) { 7606 /* Convert the dirent64 structs to target dirent. We do this 7607 * in-place, since we can guarantee that a target_dirent is no 7608 * larger than a dirent64; however this means we have to be 7609 * careful to read everything before writing in the new format. 7610 */ 7611 struct linux_dirent64 *de; 7612 struct target_dirent *tde; 7613 int len = ret; 7614 int tlen = 0; 7615 7616 de = dirp; 7617 tde = (struct target_dirent *)dirp; 7618 while (len > 0) { 7619 int namelen, treclen; 7620 int reclen = de->d_reclen; 7621 uint64_t ino = de->d_ino; 7622 int64_t off = de->d_off; 7623 uint8_t type = de->d_type; 7624 7625 namelen = strlen(de->d_name); 7626 treclen = offsetof(struct target_dirent, d_name) 7627 + namelen + 2; 7628 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 7629 7630 memmove(tde->d_name, de->d_name, namelen + 1); 7631 tde->d_ino = tswapal(ino); 7632 tde->d_off = tswapal(off); 7633 tde->d_reclen = tswap16(treclen); 7634 /* The target_dirent type is in what was formerly a padding 7635 * byte at the end of the structure: 7636 */ 7637 *(((char *)tde) + treclen - 1) = type; 7638 7639 de = (struct linux_dirent64 *)((char *)de + reclen); 7640 tde = (struct target_dirent *)((char *)tde + treclen); 7641 len -= reclen; 7642 tlen += treclen; 7643 } 7644 ret = tlen; 7645 } 7646 unlock_user(dirp, arg2, ret); 7647 } 7648 #endif 7649 break; 7650 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 7651 case TARGET_NR_getdents64: 7652 { 7653 struct linux_dirent64 *dirp; 7654 abi_long count = arg3; 7655 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 7656 goto efault; 7657 ret = get_errno(sys_getdents64(arg1, dirp, count)); 7658 if (!is_error(ret)) { 7659 struct linux_dirent64 *de; 7660 int len = ret; 7661 int reclen; 7662 de = dirp; 7663 while (len > 0) { 7664 reclen = de->d_reclen; 7665 if (reclen > len) 7666 break; 7667 de->d_reclen = tswap16(reclen); 7668 tswap64s((uint64_t *)&de->d_ino); 7669 tswap64s((uint64_t *)&de->d_off); 7670 de = (struct linux_dirent64 *)((char *)de + reclen); 7671 len -= reclen; 7672 } 7673 } 7674 unlock_user(dirp, arg2, ret); 7675 } 7676 break; 7677 #endif /* TARGET_NR_getdents64 */ 7678 #if defined(TARGET_NR__newselect) 7679 case TARGET_NR__newselect: 7680 ret = do_select(arg1, arg2, arg3, arg4, arg5); 7681 break; 7682 #endif 7683 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) 7684 # ifdef TARGET_NR_poll 7685 case TARGET_NR_poll: 7686 # endif 7687 # ifdef TARGET_NR_ppoll 7688 case TARGET_NR_ppoll: 7689 # endif 7690 { 7691 struct target_pollfd *target_pfd; 7692 unsigned int nfds = arg2; 7693 int timeout = arg3; 7694 struct pollfd *pfd; 7695 unsigned int i; 7696 7697 target_pfd = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_pollfd) * nfds, 1); 7698 if (!target_pfd) 7699 goto efault; 7700 7701 pfd = alloca(sizeof(struct pollfd) * nfds); 7702 for(i = 0; i < nfds; i++) { 7703 pfd[i].fd = tswap32(target_pfd[i].fd); 7704 pfd[i].events = tswap16(target_pfd[i].events); 7705 } 7706 7707 # ifdef TARGET_NR_ppoll 7708 if (num == TARGET_NR_ppoll) { 7709 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 7710 target_sigset_t *target_set; 7711 sigset_t _set, *set = &_set; 7712 7713 if (arg3) { 7714 if (target_to_host_timespec(timeout_ts, arg3)) { 7715 unlock_user(target_pfd, arg1, 0); 7716 goto efault; 7717 } 7718 } else { 7719 timeout_ts = NULL; 7720 } 7721 7722 if (arg4) { 7723 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1); 7724 if (!target_set) { 7725 unlock_user(target_pfd, arg1, 0); 7726 goto efault; 7727 } 7728 target_to_host_sigset(set, target_set); 7729 } else { 7730 set = NULL; 7731 } 7732 7733 ret = get_errno(sys_ppoll(pfd, nfds, timeout_ts, set, _NSIG/8)); 7734 7735 if (!is_error(ret) && arg3) { 7736 host_to_target_timespec(arg3, timeout_ts); 7737 } 7738 if (arg4) { 7739 unlock_user(target_set, arg4, 0); 7740 } 7741 } else 7742 # endif 7743 ret = get_errno(poll(pfd, nfds, timeout)); 7744 7745 if (!is_error(ret)) { 7746 for(i = 0; i < nfds; i++) { 7747 target_pfd[i].revents = tswap16(pfd[i].revents); 7748 } 7749 } 7750 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 7751 } 7752 break; 7753 #endif 7754 case TARGET_NR_flock: 7755 /* NOTE: the flock constant seems to be the same for every 7756 Linux platform */ 7757 ret = get_errno(flock(arg1, arg2)); 7758 break; 7759 case TARGET_NR_readv: 7760 { 7761 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 7762 if (vec != NULL) { 7763 ret = get_errno(readv(arg1, vec, arg3)); 7764 unlock_iovec(vec, arg2, arg3, 1); 7765 } else { 7766 ret = -host_to_target_errno(errno); 7767 } 7768 } 7769 break; 7770 case TARGET_NR_writev: 7771 { 7772 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 7773 if (vec != NULL) { 7774 ret = get_errno(writev(arg1, vec, arg3)); 7775 unlock_iovec(vec, arg2, arg3, 0); 7776 } else { 7777 ret = -host_to_target_errno(errno); 7778 } 7779 } 7780 break; 7781 case TARGET_NR_getsid: 7782 ret = get_errno(getsid(arg1)); 7783 break; 7784 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 7785 case TARGET_NR_fdatasync: 7786 ret = get_errno(fdatasync(arg1)); 7787 break; 7788 #endif 7789 case TARGET_NR__sysctl: 7790 /* We don't implement this, but ENOTDIR is always a safe 7791 return value. */ 7792 ret = -TARGET_ENOTDIR; 7793 break; 7794 case TARGET_NR_sched_getaffinity: 7795 { 7796 unsigned int mask_size; 7797 unsigned long *mask; 7798 7799 /* 7800 * sched_getaffinity needs multiples of ulong, so need to take 7801 * care of mismatches between target ulong and host ulong sizes. 7802 */ 7803 if (arg2 & (sizeof(abi_ulong) - 1)) { 7804 ret = -TARGET_EINVAL; 7805 break; 7806 } 7807 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 7808 7809 mask = alloca(mask_size); 7810 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 7811 7812 if (!is_error(ret)) { 7813 if (ret > arg2) { 7814 /* More data returned than the caller's buffer will fit. 7815 * This only happens if sizeof(abi_long) < sizeof(long) 7816 * and the caller passed us a buffer holding an odd number 7817 * of abi_longs. If the host kernel is actually using the 7818 * extra 4 bytes then fail EINVAL; otherwise we can just 7819 * ignore them and only copy the interesting part. 7820 */ 7821 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 7822 if (numcpus > arg2 * 8) { 7823 ret = -TARGET_EINVAL; 7824 break; 7825 } 7826 ret = arg2; 7827 } 7828 7829 if (copy_to_user(arg3, mask, ret)) { 7830 goto efault; 7831 } 7832 } 7833 } 7834 break; 7835 case TARGET_NR_sched_setaffinity: 7836 { 7837 unsigned int mask_size; 7838 unsigned long *mask; 7839 7840 /* 7841 * sched_setaffinity needs multiples of ulong, so need to take 7842 * care of mismatches between target ulong and host ulong sizes. 7843 */ 7844 if (arg2 & (sizeof(abi_ulong) - 1)) { 7845 ret = -TARGET_EINVAL; 7846 break; 7847 } 7848 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 7849 7850 mask = alloca(mask_size); 7851 if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) { 7852 goto efault; 7853 } 7854 memcpy(mask, p, arg2); 7855 unlock_user_struct(p, arg2, 0); 7856 7857 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 7858 } 7859 break; 7860 case TARGET_NR_sched_setparam: 7861 { 7862 struct sched_param *target_schp; 7863 struct sched_param schp; 7864 7865 if (arg2 == 0) { 7866 return -TARGET_EINVAL; 7867 } 7868 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 7869 goto efault; 7870 schp.sched_priority = tswap32(target_schp->sched_priority); 7871 unlock_user_struct(target_schp, arg2, 0); 7872 ret = get_errno(sched_setparam(arg1, &schp)); 7873 } 7874 break; 7875 case TARGET_NR_sched_getparam: 7876 { 7877 struct sched_param *target_schp; 7878 struct sched_param schp; 7879 7880 if (arg2 == 0) { 7881 return -TARGET_EINVAL; 7882 } 7883 ret = get_errno(sched_getparam(arg1, &schp)); 7884 if (!is_error(ret)) { 7885 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 7886 goto efault; 7887 target_schp->sched_priority = tswap32(schp.sched_priority); 7888 unlock_user_struct(target_schp, arg2, 1); 7889 } 7890 } 7891 break; 7892 case TARGET_NR_sched_setscheduler: 7893 { 7894 struct sched_param *target_schp; 7895 struct sched_param schp; 7896 if (arg3 == 0) { 7897 return -TARGET_EINVAL; 7898 } 7899 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 7900 goto efault; 7901 schp.sched_priority = tswap32(target_schp->sched_priority); 7902 unlock_user_struct(target_schp, arg3, 0); 7903 ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); 7904 } 7905 break; 7906 case TARGET_NR_sched_getscheduler: 7907 ret = get_errno(sched_getscheduler(arg1)); 7908 break; 7909 case TARGET_NR_sched_yield: 7910 ret = get_errno(sched_yield()); 7911 break; 7912 case TARGET_NR_sched_get_priority_max: 7913 ret = get_errno(sched_get_priority_max(arg1)); 7914 break; 7915 case TARGET_NR_sched_get_priority_min: 7916 ret = get_errno(sched_get_priority_min(arg1)); 7917 break; 7918 case TARGET_NR_sched_rr_get_interval: 7919 { 7920 struct timespec ts; 7921 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 7922 if (!is_error(ret)) { 7923 ret = host_to_target_timespec(arg2, &ts); 7924 } 7925 } 7926 break; 7927 case TARGET_NR_nanosleep: 7928 { 7929 struct timespec req, rem; 7930 target_to_host_timespec(&req, arg1); 7931 ret = get_errno(nanosleep(&req, &rem)); 7932 if (is_error(ret) && arg2) { 7933 host_to_target_timespec(arg2, &rem); 7934 } 7935 } 7936 break; 7937 #ifdef TARGET_NR_query_module 7938 case TARGET_NR_query_module: 7939 goto unimplemented; 7940 #endif 7941 #ifdef TARGET_NR_nfsservctl 7942 case TARGET_NR_nfsservctl: 7943 goto unimplemented; 7944 #endif 7945 case TARGET_NR_prctl: 7946 switch (arg1) { 7947 case PR_GET_PDEATHSIG: 7948 { 7949 int deathsig; 7950 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 7951 if (!is_error(ret) && arg2 7952 && put_user_ual(deathsig, arg2)) { 7953 goto efault; 7954 } 7955 break; 7956 } 7957 #ifdef PR_GET_NAME 7958 case PR_GET_NAME: 7959 { 7960 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 7961 if (!name) { 7962 goto efault; 7963 } 7964 ret = get_errno(prctl(arg1, (unsigned long)name, 7965 arg3, arg4, arg5)); 7966 unlock_user(name, arg2, 16); 7967 break; 7968 } 7969 case PR_SET_NAME: 7970 { 7971 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 7972 if (!name) { 7973 goto efault; 7974 } 7975 ret = get_errno(prctl(arg1, (unsigned long)name, 7976 arg3, arg4, arg5)); 7977 unlock_user(name, arg2, 0); 7978 break; 7979 } 7980 #endif 7981 default: 7982 /* Most prctl options have no pointer arguments */ 7983 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 7984 break; 7985 } 7986 break; 7987 #ifdef TARGET_NR_arch_prctl 7988 case TARGET_NR_arch_prctl: 7989 #if defined(TARGET_I386) && !defined(TARGET_ABI32) 7990 ret = do_arch_prctl(cpu_env, arg1, arg2); 7991 break; 7992 #else 7993 goto unimplemented; 7994 #endif 7995 #endif 7996 #ifdef TARGET_NR_pread64 7997 case TARGET_NR_pread64: 7998 if (regpairs_aligned(cpu_env)) { 7999 arg4 = arg5; 8000 arg5 = arg6; 8001 } 8002 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 8003 goto efault; 8004 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 8005 unlock_user(p, arg2, ret); 8006 break; 8007 case TARGET_NR_pwrite64: 8008 if (regpairs_aligned(cpu_env)) { 8009 arg4 = arg5; 8010 arg5 = arg6; 8011 } 8012 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 8013 goto efault; 8014 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 8015 unlock_user(p, arg2, 0); 8016 break; 8017 #endif 8018 case TARGET_NR_getcwd: 8019 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 8020 goto efault; 8021 ret = get_errno(sys_getcwd1(p, arg2)); 8022 unlock_user(p, arg1, ret); 8023 break; 8024 case TARGET_NR_capget: 8025 case TARGET_NR_capset: 8026 { 8027 struct target_user_cap_header *target_header; 8028 struct target_user_cap_data *target_data = NULL; 8029 struct __user_cap_header_struct header; 8030 struct __user_cap_data_struct data[2]; 8031 struct __user_cap_data_struct *dataptr = NULL; 8032 int i, target_datalen; 8033 int data_items = 1; 8034 8035 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 8036 goto efault; 8037 } 8038 header.version = tswap32(target_header->version); 8039 header.pid = tswap32(target_header->pid); 8040 8041 if (header.version != _LINUX_CAPABILITY_VERSION) { 8042 /* Version 2 and up takes pointer to two user_data structs */ 8043 data_items = 2; 8044 } 8045 8046 target_datalen = sizeof(*target_data) * data_items; 8047 8048 if (arg2) { 8049 if (num == TARGET_NR_capget) { 8050 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 8051 } else { 8052 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 8053 } 8054 if (!target_data) { 8055 unlock_user_struct(target_header, arg1, 0); 8056 goto efault; 8057 } 8058 8059 if (num == TARGET_NR_capset) { 8060 for (i = 0; i < data_items; i++) { 8061 data[i].effective = tswap32(target_data[i].effective); 8062 data[i].permitted = tswap32(target_data[i].permitted); 8063 data[i].inheritable = tswap32(target_data[i].inheritable); 8064 } 8065 } 8066 8067 dataptr = data; 8068 } 8069 8070 if (num == TARGET_NR_capget) { 8071 ret = get_errno(capget(&header, dataptr)); 8072 } else { 8073 ret = get_errno(capset(&header, dataptr)); 8074 } 8075 8076 /* The kernel always updates version for both capget and capset */ 8077 target_header->version = tswap32(header.version); 8078 unlock_user_struct(target_header, arg1, 1); 8079 8080 if (arg2) { 8081 if (num == TARGET_NR_capget) { 8082 for (i = 0; i < data_items; i++) { 8083 target_data[i].effective = tswap32(data[i].effective); 8084 target_data[i].permitted = tswap32(data[i].permitted); 8085 target_data[i].inheritable = tswap32(data[i].inheritable); 8086 } 8087 unlock_user(target_data, arg2, target_datalen); 8088 } else { 8089 unlock_user(target_data, arg2, 0); 8090 } 8091 } 8092 break; 8093 } 8094 case TARGET_NR_sigaltstack: 8095 #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \ 8096 defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \ 8097 defined(TARGET_M68K) || defined(TARGET_S390X) || defined(TARGET_OPENRISC) 8098 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env)); 8099 break; 8100 #else 8101 goto unimplemented; 8102 #endif 8103 8104 #ifdef CONFIG_SENDFILE 8105 case TARGET_NR_sendfile: 8106 { 8107 off_t *offp = NULL; 8108 off_t off; 8109 if (arg3) { 8110 ret = get_user_sal(off, arg3); 8111 if (is_error(ret)) { 8112 break; 8113 } 8114 offp = &off; 8115 } 8116 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 8117 if (!is_error(ret) && arg3) { 8118 abi_long ret2 = put_user_sal(off, arg3); 8119 if (is_error(ret2)) { 8120 ret = ret2; 8121 } 8122 } 8123 break; 8124 } 8125 #ifdef TARGET_NR_sendfile64 8126 case TARGET_NR_sendfile64: 8127 { 8128 off_t *offp = NULL; 8129 off_t off; 8130 if (arg3) { 8131 ret = get_user_s64(off, arg3); 8132 if (is_error(ret)) { 8133 break; 8134 } 8135 offp = &off; 8136 } 8137 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 8138 if (!is_error(ret) && arg3) { 8139 abi_long ret2 = put_user_s64(off, arg3); 8140 if (is_error(ret2)) { 8141 ret = ret2; 8142 } 8143 } 8144 break; 8145 } 8146 #endif 8147 #else 8148 case TARGET_NR_sendfile: 8149 #ifdef TARGET_NR_sendfile64 8150 case TARGET_NR_sendfile64: 8151 #endif 8152 goto unimplemented; 8153 #endif 8154 8155 #ifdef TARGET_NR_getpmsg 8156 case TARGET_NR_getpmsg: 8157 goto unimplemented; 8158 #endif 8159 #ifdef TARGET_NR_putpmsg 8160 case TARGET_NR_putpmsg: 8161 goto unimplemented; 8162 #endif 8163 #ifdef TARGET_NR_vfork 8164 case TARGET_NR_vfork: 8165 ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD, 8166 0, 0, 0, 0)); 8167 break; 8168 #endif 8169 #ifdef TARGET_NR_ugetrlimit 8170 case TARGET_NR_ugetrlimit: 8171 { 8172 struct rlimit rlim; 8173 int resource = target_to_host_resource(arg1); 8174 ret = get_errno(getrlimit(resource, &rlim)); 8175 if (!is_error(ret)) { 8176 struct target_rlimit *target_rlim; 8177 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 8178 goto efault; 8179 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 8180 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 8181 unlock_user_struct(target_rlim, arg2, 1); 8182 } 8183 break; 8184 } 8185 #endif 8186 #ifdef TARGET_NR_truncate64 8187 case TARGET_NR_truncate64: 8188 if (!(p = lock_user_string(arg1))) 8189 goto efault; 8190 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 8191 unlock_user(p, arg1, 0); 8192 break; 8193 #endif 8194 #ifdef TARGET_NR_ftruncate64 8195 case TARGET_NR_ftruncate64: 8196 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 8197 break; 8198 #endif 8199 #ifdef TARGET_NR_stat64 8200 case TARGET_NR_stat64: 8201 if (!(p = lock_user_string(arg1))) 8202 goto efault; 8203 ret = get_errno(stat(path(p), &st)); 8204 unlock_user(p, arg1, 0); 8205 if (!is_error(ret)) 8206 ret = host_to_target_stat64(cpu_env, arg2, &st); 8207 break; 8208 #endif 8209 #ifdef TARGET_NR_lstat64 8210 case TARGET_NR_lstat64: 8211 if (!(p = lock_user_string(arg1))) 8212 goto efault; 8213 ret = get_errno(lstat(path(p), &st)); 8214 unlock_user(p, arg1, 0); 8215 if (!is_error(ret)) 8216 ret = host_to_target_stat64(cpu_env, arg2, &st); 8217 break; 8218 #endif 8219 #ifdef TARGET_NR_fstat64 8220 case TARGET_NR_fstat64: 8221 ret = get_errno(fstat(arg1, &st)); 8222 if (!is_error(ret)) 8223 ret = host_to_target_stat64(cpu_env, arg2, &st); 8224 break; 8225 #endif 8226 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 8227 #ifdef TARGET_NR_fstatat64 8228 case TARGET_NR_fstatat64: 8229 #endif 8230 #ifdef TARGET_NR_newfstatat 8231 case TARGET_NR_newfstatat: 8232 #endif 8233 if (!(p = lock_user_string(arg2))) 8234 goto efault; 8235 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 8236 if (!is_error(ret)) 8237 ret = host_to_target_stat64(cpu_env, arg3, &st); 8238 break; 8239 #endif 8240 case TARGET_NR_lchown: 8241 if (!(p = lock_user_string(arg1))) 8242 goto efault; 8243 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 8244 unlock_user(p, arg1, 0); 8245 break; 8246 #ifdef TARGET_NR_getuid 8247 case TARGET_NR_getuid: 8248 ret = get_errno(high2lowuid(getuid())); 8249 break; 8250 #endif 8251 #ifdef TARGET_NR_getgid 8252 case TARGET_NR_getgid: 8253 ret = get_errno(high2lowgid(getgid())); 8254 break; 8255 #endif 8256 #ifdef TARGET_NR_geteuid 8257 case TARGET_NR_geteuid: 8258 ret = get_errno(high2lowuid(geteuid())); 8259 break; 8260 #endif 8261 #ifdef TARGET_NR_getegid 8262 case TARGET_NR_getegid: 8263 ret = get_errno(high2lowgid(getegid())); 8264 break; 8265 #endif 8266 case TARGET_NR_setreuid: 8267 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 8268 break; 8269 case TARGET_NR_setregid: 8270 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 8271 break; 8272 case TARGET_NR_getgroups: 8273 { 8274 int gidsetsize = arg1; 8275 target_id *target_grouplist; 8276 gid_t *grouplist; 8277 int i; 8278 8279 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8280 ret = get_errno(getgroups(gidsetsize, grouplist)); 8281 if (gidsetsize == 0) 8282 break; 8283 if (!is_error(ret)) { 8284 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 8285 if (!target_grouplist) 8286 goto efault; 8287 for(i = 0;i < ret; i++) 8288 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 8289 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 8290 } 8291 } 8292 break; 8293 case TARGET_NR_setgroups: 8294 { 8295 int gidsetsize = arg1; 8296 target_id *target_grouplist; 8297 gid_t *grouplist = NULL; 8298 int i; 8299 if (gidsetsize) { 8300 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8301 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 8302 if (!target_grouplist) { 8303 ret = -TARGET_EFAULT; 8304 goto fail; 8305 } 8306 for (i = 0; i < gidsetsize; i++) { 8307 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 8308 } 8309 unlock_user(target_grouplist, arg2, 0); 8310 } 8311 ret = get_errno(setgroups(gidsetsize, grouplist)); 8312 } 8313 break; 8314 case TARGET_NR_fchown: 8315 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 8316 break; 8317 #if defined(TARGET_NR_fchownat) 8318 case TARGET_NR_fchownat: 8319 if (!(p = lock_user_string(arg2))) 8320 goto efault; 8321 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 8322 low2highgid(arg4), arg5)); 8323 unlock_user(p, arg2, 0); 8324 break; 8325 #endif 8326 #ifdef TARGET_NR_setresuid 8327 case TARGET_NR_setresuid: 8328 ret = get_errno(setresuid(low2highuid(arg1), 8329 low2highuid(arg2), 8330 low2highuid(arg3))); 8331 break; 8332 #endif 8333 #ifdef TARGET_NR_getresuid 8334 case TARGET_NR_getresuid: 8335 { 8336 uid_t ruid, euid, suid; 8337 ret = get_errno(getresuid(&ruid, &euid, &suid)); 8338 if (!is_error(ret)) { 8339 if (put_user_id(high2lowuid(ruid), arg1) 8340 || put_user_id(high2lowuid(euid), arg2) 8341 || put_user_id(high2lowuid(suid), arg3)) 8342 goto efault; 8343 } 8344 } 8345 break; 8346 #endif 8347 #ifdef TARGET_NR_getresgid 8348 case TARGET_NR_setresgid: 8349 ret = get_errno(setresgid(low2highgid(arg1), 8350 low2highgid(arg2), 8351 low2highgid(arg3))); 8352 break; 8353 #endif 8354 #ifdef TARGET_NR_getresgid 8355 case TARGET_NR_getresgid: 8356 { 8357 gid_t rgid, egid, sgid; 8358 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 8359 if (!is_error(ret)) { 8360 if (put_user_id(high2lowgid(rgid), arg1) 8361 || put_user_id(high2lowgid(egid), arg2) 8362 || put_user_id(high2lowgid(sgid), arg3)) 8363 goto efault; 8364 } 8365 } 8366 break; 8367 #endif 8368 case TARGET_NR_chown: 8369 if (!(p = lock_user_string(arg1))) 8370 goto efault; 8371 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 8372 unlock_user(p, arg1, 0); 8373 break; 8374 case TARGET_NR_setuid: 8375 ret = get_errno(setuid(low2highuid(arg1))); 8376 break; 8377 case TARGET_NR_setgid: 8378 ret = get_errno(setgid(low2highgid(arg1))); 8379 break; 8380 case TARGET_NR_setfsuid: 8381 ret = get_errno(setfsuid(arg1)); 8382 break; 8383 case TARGET_NR_setfsgid: 8384 ret = get_errno(setfsgid(arg1)); 8385 break; 8386 8387 #ifdef TARGET_NR_lchown32 8388 case TARGET_NR_lchown32: 8389 if (!(p = lock_user_string(arg1))) 8390 goto efault; 8391 ret = get_errno(lchown(p, arg2, arg3)); 8392 unlock_user(p, arg1, 0); 8393 break; 8394 #endif 8395 #ifdef TARGET_NR_getuid32 8396 case TARGET_NR_getuid32: 8397 ret = get_errno(getuid()); 8398 break; 8399 #endif 8400 8401 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 8402 /* Alpha specific */ 8403 case TARGET_NR_getxuid: 8404 { 8405 uid_t euid; 8406 euid=geteuid(); 8407 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 8408 } 8409 ret = get_errno(getuid()); 8410 break; 8411 #endif 8412 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 8413 /* Alpha specific */ 8414 case TARGET_NR_getxgid: 8415 { 8416 uid_t egid; 8417 egid=getegid(); 8418 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 8419 } 8420 ret = get_errno(getgid()); 8421 break; 8422 #endif 8423 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 8424 /* Alpha specific */ 8425 case TARGET_NR_osf_getsysinfo: 8426 ret = -TARGET_EOPNOTSUPP; 8427 switch (arg1) { 8428 case TARGET_GSI_IEEE_FP_CONTROL: 8429 { 8430 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env); 8431 8432 /* Copied from linux ieee_fpcr_to_swcr. */ 8433 swcr = (fpcr >> 35) & SWCR_STATUS_MASK; 8434 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ; 8435 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV 8436 | SWCR_TRAP_ENABLE_DZE 8437 | SWCR_TRAP_ENABLE_OVF); 8438 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF 8439 | SWCR_TRAP_ENABLE_INE); 8440 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ; 8441 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO; 8442 8443 if (put_user_u64 (swcr, arg2)) 8444 goto efault; 8445 ret = 0; 8446 } 8447 break; 8448 8449 /* case GSI_IEEE_STATE_AT_SIGNAL: 8450 -- Not implemented in linux kernel. 8451 case GSI_UACPROC: 8452 -- Retrieves current unaligned access state; not much used. 8453 case GSI_PROC_TYPE: 8454 -- Retrieves implver information; surely not used. 8455 case GSI_GET_HWRPB: 8456 -- Grabs a copy of the HWRPB; surely not used. 8457 */ 8458 } 8459 break; 8460 #endif 8461 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 8462 /* Alpha specific */ 8463 case TARGET_NR_osf_setsysinfo: 8464 ret = -TARGET_EOPNOTSUPP; 8465 switch (arg1) { 8466 case TARGET_SSI_IEEE_FP_CONTROL: 8467 { 8468 uint64_t swcr, fpcr, orig_fpcr; 8469 8470 if (get_user_u64 (swcr, arg2)) { 8471 goto efault; 8472 } 8473 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 8474 fpcr = orig_fpcr & FPCR_DYN_MASK; 8475 8476 /* Copied from linux ieee_swcr_to_fpcr. */ 8477 fpcr |= (swcr & SWCR_STATUS_MASK) << 35; 8478 fpcr |= (swcr & SWCR_MAP_DMZ) << 36; 8479 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV 8480 | SWCR_TRAP_ENABLE_DZE 8481 | SWCR_TRAP_ENABLE_OVF)) << 48; 8482 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF 8483 | SWCR_TRAP_ENABLE_INE)) << 57; 8484 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0); 8485 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41; 8486 8487 cpu_alpha_store_fpcr(cpu_env, fpcr); 8488 ret = 0; 8489 } 8490 break; 8491 8492 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 8493 { 8494 uint64_t exc, fpcr, orig_fpcr; 8495 int si_code; 8496 8497 if (get_user_u64(exc, arg2)) { 8498 goto efault; 8499 } 8500 8501 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 8502 8503 /* We only add to the exception status here. */ 8504 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35); 8505 8506 cpu_alpha_store_fpcr(cpu_env, fpcr); 8507 ret = 0; 8508 8509 /* Old exceptions are not signaled. */ 8510 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK); 8511 8512 /* If any exceptions set by this call, 8513 and are unmasked, send a signal. */ 8514 si_code = 0; 8515 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) { 8516 si_code = TARGET_FPE_FLTRES; 8517 } 8518 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) { 8519 si_code = TARGET_FPE_FLTUND; 8520 } 8521 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) { 8522 si_code = TARGET_FPE_FLTOVF; 8523 } 8524 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) { 8525 si_code = TARGET_FPE_FLTDIV; 8526 } 8527 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) { 8528 si_code = TARGET_FPE_FLTINV; 8529 } 8530 if (si_code != 0) { 8531 target_siginfo_t info; 8532 info.si_signo = SIGFPE; 8533 info.si_errno = 0; 8534 info.si_code = si_code; 8535 info._sifields._sigfault._addr 8536 = ((CPUArchState *)cpu_env)->pc; 8537 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info); 8538 } 8539 } 8540 break; 8541 8542 /* case SSI_NVPAIRS: 8543 -- Used with SSIN_UACPROC to enable unaligned accesses. 8544 case SSI_IEEE_STATE_AT_SIGNAL: 8545 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 8546 -- Not implemented in linux kernel 8547 */ 8548 } 8549 break; 8550 #endif 8551 #ifdef TARGET_NR_osf_sigprocmask 8552 /* Alpha specific. */ 8553 case TARGET_NR_osf_sigprocmask: 8554 { 8555 abi_ulong mask; 8556 int how; 8557 sigset_t set, oldset; 8558 8559 switch(arg1) { 8560 case TARGET_SIG_BLOCK: 8561 how = SIG_BLOCK; 8562 break; 8563 case TARGET_SIG_UNBLOCK: 8564 how = SIG_UNBLOCK; 8565 break; 8566 case TARGET_SIG_SETMASK: 8567 how = SIG_SETMASK; 8568 break; 8569 default: 8570 ret = -TARGET_EINVAL; 8571 goto fail; 8572 } 8573 mask = arg2; 8574 target_to_host_old_sigset(&set, &mask); 8575 do_sigprocmask(how, &set, &oldset); 8576 host_to_target_old_sigset(&mask, &oldset); 8577 ret = mask; 8578 } 8579 break; 8580 #endif 8581 8582 #ifdef TARGET_NR_getgid32 8583 case TARGET_NR_getgid32: 8584 ret = get_errno(getgid()); 8585 break; 8586 #endif 8587 #ifdef TARGET_NR_geteuid32 8588 case TARGET_NR_geteuid32: 8589 ret = get_errno(geteuid()); 8590 break; 8591 #endif 8592 #ifdef TARGET_NR_getegid32 8593 case TARGET_NR_getegid32: 8594 ret = get_errno(getegid()); 8595 break; 8596 #endif 8597 #ifdef TARGET_NR_setreuid32 8598 case TARGET_NR_setreuid32: 8599 ret = get_errno(setreuid(arg1, arg2)); 8600 break; 8601 #endif 8602 #ifdef TARGET_NR_setregid32 8603 case TARGET_NR_setregid32: 8604 ret = get_errno(setregid(arg1, arg2)); 8605 break; 8606 #endif 8607 #ifdef TARGET_NR_getgroups32 8608 case TARGET_NR_getgroups32: 8609 { 8610 int gidsetsize = arg1; 8611 uint32_t *target_grouplist; 8612 gid_t *grouplist; 8613 int i; 8614 8615 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8616 ret = get_errno(getgroups(gidsetsize, grouplist)); 8617 if (gidsetsize == 0) 8618 break; 8619 if (!is_error(ret)) { 8620 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 8621 if (!target_grouplist) { 8622 ret = -TARGET_EFAULT; 8623 goto fail; 8624 } 8625 for(i = 0;i < ret; i++) 8626 target_grouplist[i] = tswap32(grouplist[i]); 8627 unlock_user(target_grouplist, arg2, gidsetsize * 4); 8628 } 8629 } 8630 break; 8631 #endif 8632 #ifdef TARGET_NR_setgroups32 8633 case TARGET_NR_setgroups32: 8634 { 8635 int gidsetsize = arg1; 8636 uint32_t *target_grouplist; 8637 gid_t *grouplist; 8638 int i; 8639 8640 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8641 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 8642 if (!target_grouplist) { 8643 ret = -TARGET_EFAULT; 8644 goto fail; 8645 } 8646 for(i = 0;i < gidsetsize; i++) 8647 grouplist[i] = tswap32(target_grouplist[i]); 8648 unlock_user(target_grouplist, arg2, 0); 8649 ret = get_errno(setgroups(gidsetsize, grouplist)); 8650 } 8651 break; 8652 #endif 8653 #ifdef TARGET_NR_fchown32 8654 case TARGET_NR_fchown32: 8655 ret = get_errno(fchown(arg1, arg2, arg3)); 8656 break; 8657 #endif 8658 #ifdef TARGET_NR_setresuid32 8659 case TARGET_NR_setresuid32: 8660 ret = get_errno(setresuid(arg1, arg2, arg3)); 8661 break; 8662 #endif 8663 #ifdef TARGET_NR_getresuid32 8664 case TARGET_NR_getresuid32: 8665 { 8666 uid_t ruid, euid, suid; 8667 ret = get_errno(getresuid(&ruid, &euid, &suid)); 8668 if (!is_error(ret)) { 8669 if (put_user_u32(ruid, arg1) 8670 || put_user_u32(euid, arg2) 8671 || put_user_u32(suid, arg3)) 8672 goto efault; 8673 } 8674 } 8675 break; 8676 #endif 8677 #ifdef TARGET_NR_setresgid32 8678 case TARGET_NR_setresgid32: 8679 ret = get_errno(setresgid(arg1, arg2, arg3)); 8680 break; 8681 #endif 8682 #ifdef TARGET_NR_getresgid32 8683 case TARGET_NR_getresgid32: 8684 { 8685 gid_t rgid, egid, sgid; 8686 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 8687 if (!is_error(ret)) { 8688 if (put_user_u32(rgid, arg1) 8689 || put_user_u32(egid, arg2) 8690 || put_user_u32(sgid, arg3)) 8691 goto efault; 8692 } 8693 } 8694 break; 8695 #endif 8696 #ifdef TARGET_NR_chown32 8697 case TARGET_NR_chown32: 8698 if (!(p = lock_user_string(arg1))) 8699 goto efault; 8700 ret = get_errno(chown(p, arg2, arg3)); 8701 unlock_user(p, arg1, 0); 8702 break; 8703 #endif 8704 #ifdef TARGET_NR_setuid32 8705 case TARGET_NR_setuid32: 8706 ret = get_errno(setuid(arg1)); 8707 break; 8708 #endif 8709 #ifdef TARGET_NR_setgid32 8710 case TARGET_NR_setgid32: 8711 ret = get_errno(setgid(arg1)); 8712 break; 8713 #endif 8714 #ifdef TARGET_NR_setfsuid32 8715 case TARGET_NR_setfsuid32: 8716 ret = get_errno(setfsuid(arg1)); 8717 break; 8718 #endif 8719 #ifdef TARGET_NR_setfsgid32 8720 case TARGET_NR_setfsgid32: 8721 ret = get_errno(setfsgid(arg1)); 8722 break; 8723 #endif 8724 8725 case TARGET_NR_pivot_root: 8726 goto unimplemented; 8727 #ifdef TARGET_NR_mincore 8728 case TARGET_NR_mincore: 8729 { 8730 void *a; 8731 ret = -TARGET_EFAULT; 8732 if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0))) 8733 goto efault; 8734 if (!(p = lock_user_string(arg3))) 8735 goto mincore_fail; 8736 ret = get_errno(mincore(a, arg2, p)); 8737 unlock_user(p, arg3, ret); 8738 mincore_fail: 8739 unlock_user(a, arg1, 0); 8740 } 8741 break; 8742 #endif 8743 #ifdef TARGET_NR_arm_fadvise64_64 8744 case TARGET_NR_arm_fadvise64_64: 8745 { 8746 /* 8747 * arm_fadvise64_64 looks like fadvise64_64 but 8748 * with different argument order 8749 */ 8750 abi_long temp; 8751 temp = arg3; 8752 arg3 = arg4; 8753 arg4 = temp; 8754 } 8755 #endif 8756 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64) 8757 #ifdef TARGET_NR_fadvise64_64 8758 case TARGET_NR_fadvise64_64: 8759 #endif 8760 #ifdef TARGET_NR_fadvise64 8761 case TARGET_NR_fadvise64: 8762 #endif 8763 #ifdef TARGET_S390X 8764 switch (arg4) { 8765 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 8766 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 8767 case 6: arg4 = POSIX_FADV_DONTNEED; break; 8768 case 7: arg4 = POSIX_FADV_NOREUSE; break; 8769 default: break; 8770 } 8771 #endif 8772 ret = -posix_fadvise(arg1, arg2, arg3, arg4); 8773 break; 8774 #endif 8775 #ifdef TARGET_NR_madvise 8776 case TARGET_NR_madvise: 8777 /* A straight passthrough may not be safe because qemu sometimes 8778 turns private file-backed mappings into anonymous mappings. 8779 This will break MADV_DONTNEED. 8780 This is a hint, so ignoring and returning success is ok. */ 8781 ret = get_errno(0); 8782 break; 8783 #endif 8784 #if TARGET_ABI_BITS == 32 8785 case TARGET_NR_fcntl64: 8786 { 8787 int cmd; 8788 struct flock64 fl; 8789 struct target_flock64 *target_fl; 8790 #ifdef TARGET_ARM 8791 struct target_eabi_flock64 *target_efl; 8792 #endif 8793 8794 cmd = target_to_host_fcntl_cmd(arg2); 8795 if (cmd == -TARGET_EINVAL) { 8796 ret = cmd; 8797 break; 8798 } 8799 8800 switch(arg2) { 8801 case TARGET_F_GETLK64: 8802 #ifdef TARGET_ARM 8803 if (((CPUARMState *)cpu_env)->eabi) { 8804 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1)) 8805 goto efault; 8806 fl.l_type = tswap16(target_efl->l_type); 8807 fl.l_whence = tswap16(target_efl->l_whence); 8808 fl.l_start = tswap64(target_efl->l_start); 8809 fl.l_len = tswap64(target_efl->l_len); 8810 fl.l_pid = tswap32(target_efl->l_pid); 8811 unlock_user_struct(target_efl, arg3, 0); 8812 } else 8813 #endif 8814 { 8815 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1)) 8816 goto efault; 8817 fl.l_type = tswap16(target_fl->l_type); 8818 fl.l_whence = tswap16(target_fl->l_whence); 8819 fl.l_start = tswap64(target_fl->l_start); 8820 fl.l_len = tswap64(target_fl->l_len); 8821 fl.l_pid = tswap32(target_fl->l_pid); 8822 unlock_user_struct(target_fl, arg3, 0); 8823 } 8824 ret = get_errno(fcntl(arg1, cmd, &fl)); 8825 if (ret == 0) { 8826 #ifdef TARGET_ARM 8827 if (((CPUARMState *)cpu_env)->eabi) { 8828 if (!lock_user_struct(VERIFY_WRITE, target_efl, arg3, 0)) 8829 goto efault; 8830 target_efl->l_type = tswap16(fl.l_type); 8831 target_efl->l_whence = tswap16(fl.l_whence); 8832 target_efl->l_start = tswap64(fl.l_start); 8833 target_efl->l_len = tswap64(fl.l_len); 8834 target_efl->l_pid = tswap32(fl.l_pid); 8835 unlock_user_struct(target_efl, arg3, 1); 8836 } else 8837 #endif 8838 { 8839 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg3, 0)) 8840 goto efault; 8841 target_fl->l_type = tswap16(fl.l_type); 8842 target_fl->l_whence = tswap16(fl.l_whence); 8843 target_fl->l_start = tswap64(fl.l_start); 8844 target_fl->l_len = tswap64(fl.l_len); 8845 target_fl->l_pid = tswap32(fl.l_pid); 8846 unlock_user_struct(target_fl, arg3, 1); 8847 } 8848 } 8849 break; 8850 8851 case TARGET_F_SETLK64: 8852 case TARGET_F_SETLKW64: 8853 #ifdef TARGET_ARM 8854 if (((CPUARMState *)cpu_env)->eabi) { 8855 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1)) 8856 goto efault; 8857 fl.l_type = tswap16(target_efl->l_type); 8858 fl.l_whence = tswap16(target_efl->l_whence); 8859 fl.l_start = tswap64(target_efl->l_start); 8860 fl.l_len = tswap64(target_efl->l_len); 8861 fl.l_pid = tswap32(target_efl->l_pid); 8862 unlock_user_struct(target_efl, arg3, 0); 8863 } else 8864 #endif 8865 { 8866 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1)) 8867 goto efault; 8868 fl.l_type = tswap16(target_fl->l_type); 8869 fl.l_whence = tswap16(target_fl->l_whence); 8870 fl.l_start = tswap64(target_fl->l_start); 8871 fl.l_len = tswap64(target_fl->l_len); 8872 fl.l_pid = tswap32(target_fl->l_pid); 8873 unlock_user_struct(target_fl, arg3, 0); 8874 } 8875 ret = get_errno(fcntl(arg1, cmd, &fl)); 8876 break; 8877 default: 8878 ret = do_fcntl(arg1, arg2, arg3); 8879 break; 8880 } 8881 break; 8882 } 8883 #endif 8884 #ifdef TARGET_NR_cacheflush 8885 case TARGET_NR_cacheflush: 8886 /* self-modifying code is handled automatically, so nothing needed */ 8887 ret = 0; 8888 break; 8889 #endif 8890 #ifdef TARGET_NR_security 8891 case TARGET_NR_security: 8892 goto unimplemented; 8893 #endif 8894 #ifdef TARGET_NR_getpagesize 8895 case TARGET_NR_getpagesize: 8896 ret = TARGET_PAGE_SIZE; 8897 break; 8898 #endif 8899 case TARGET_NR_gettid: 8900 ret = get_errno(gettid()); 8901 break; 8902 #ifdef TARGET_NR_readahead 8903 case TARGET_NR_readahead: 8904 #if TARGET_ABI_BITS == 32 8905 if (regpairs_aligned(cpu_env)) { 8906 arg2 = arg3; 8907 arg3 = arg4; 8908 arg4 = arg5; 8909 } 8910 ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4)); 8911 #else 8912 ret = get_errno(readahead(arg1, arg2, arg3)); 8913 #endif 8914 break; 8915 #endif 8916 #ifdef CONFIG_ATTR 8917 #ifdef TARGET_NR_setxattr 8918 case TARGET_NR_listxattr: 8919 case TARGET_NR_llistxattr: 8920 { 8921 void *p, *b = 0; 8922 if (arg2) { 8923 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 8924 if (!b) { 8925 ret = -TARGET_EFAULT; 8926 break; 8927 } 8928 } 8929 p = lock_user_string(arg1); 8930 if (p) { 8931 if (num == TARGET_NR_listxattr) { 8932 ret = get_errno(listxattr(p, b, arg3)); 8933 } else { 8934 ret = get_errno(llistxattr(p, b, arg3)); 8935 } 8936 } else { 8937 ret = -TARGET_EFAULT; 8938 } 8939 unlock_user(p, arg1, 0); 8940 unlock_user(b, arg2, arg3); 8941 break; 8942 } 8943 case TARGET_NR_flistxattr: 8944 { 8945 void *b = 0; 8946 if (arg2) { 8947 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 8948 if (!b) { 8949 ret = -TARGET_EFAULT; 8950 break; 8951 } 8952 } 8953 ret = get_errno(flistxattr(arg1, b, arg3)); 8954 unlock_user(b, arg2, arg3); 8955 break; 8956 } 8957 case TARGET_NR_setxattr: 8958 case TARGET_NR_lsetxattr: 8959 { 8960 void *p, *n, *v = 0; 8961 if (arg3) { 8962 v = lock_user(VERIFY_READ, arg3, arg4, 1); 8963 if (!v) { 8964 ret = -TARGET_EFAULT; 8965 break; 8966 } 8967 } 8968 p = lock_user_string(arg1); 8969 n = lock_user_string(arg2); 8970 if (p && n) { 8971 if (num == TARGET_NR_setxattr) { 8972 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 8973 } else { 8974 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 8975 } 8976 } else { 8977 ret = -TARGET_EFAULT; 8978 } 8979 unlock_user(p, arg1, 0); 8980 unlock_user(n, arg2, 0); 8981 unlock_user(v, arg3, 0); 8982 } 8983 break; 8984 case TARGET_NR_fsetxattr: 8985 { 8986 void *n, *v = 0; 8987 if (arg3) { 8988 v = lock_user(VERIFY_READ, arg3, arg4, 1); 8989 if (!v) { 8990 ret = -TARGET_EFAULT; 8991 break; 8992 } 8993 } 8994 n = lock_user_string(arg2); 8995 if (n) { 8996 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 8997 } else { 8998 ret = -TARGET_EFAULT; 8999 } 9000 unlock_user(n, arg2, 0); 9001 unlock_user(v, arg3, 0); 9002 } 9003 break; 9004 case TARGET_NR_getxattr: 9005 case TARGET_NR_lgetxattr: 9006 { 9007 void *p, *n, *v = 0; 9008 if (arg3) { 9009 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9010 if (!v) { 9011 ret = -TARGET_EFAULT; 9012 break; 9013 } 9014 } 9015 p = lock_user_string(arg1); 9016 n = lock_user_string(arg2); 9017 if (p && n) { 9018 if (num == TARGET_NR_getxattr) { 9019 ret = get_errno(getxattr(p, n, v, arg4)); 9020 } else { 9021 ret = get_errno(lgetxattr(p, n, v, arg4)); 9022 } 9023 } else { 9024 ret = -TARGET_EFAULT; 9025 } 9026 unlock_user(p, arg1, 0); 9027 unlock_user(n, arg2, 0); 9028 unlock_user(v, arg3, arg4); 9029 } 9030 break; 9031 case TARGET_NR_fgetxattr: 9032 { 9033 void *n, *v = 0; 9034 if (arg3) { 9035 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9036 if (!v) { 9037 ret = -TARGET_EFAULT; 9038 break; 9039 } 9040 } 9041 n = lock_user_string(arg2); 9042 if (n) { 9043 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 9044 } else { 9045 ret = -TARGET_EFAULT; 9046 } 9047 unlock_user(n, arg2, 0); 9048 unlock_user(v, arg3, arg4); 9049 } 9050 break; 9051 case TARGET_NR_removexattr: 9052 case TARGET_NR_lremovexattr: 9053 { 9054 void *p, *n; 9055 p = lock_user_string(arg1); 9056 n = lock_user_string(arg2); 9057 if (p && n) { 9058 if (num == TARGET_NR_removexattr) { 9059 ret = get_errno(removexattr(p, n)); 9060 } else { 9061 ret = get_errno(lremovexattr(p, n)); 9062 } 9063 } else { 9064 ret = -TARGET_EFAULT; 9065 } 9066 unlock_user(p, arg1, 0); 9067 unlock_user(n, arg2, 0); 9068 } 9069 break; 9070 case TARGET_NR_fremovexattr: 9071 { 9072 void *n; 9073 n = lock_user_string(arg2); 9074 if (n) { 9075 ret = get_errno(fremovexattr(arg1, n)); 9076 } else { 9077 ret = -TARGET_EFAULT; 9078 } 9079 unlock_user(n, arg2, 0); 9080 } 9081 break; 9082 #endif 9083 #endif /* CONFIG_ATTR */ 9084 #ifdef TARGET_NR_set_thread_area 9085 case TARGET_NR_set_thread_area: 9086 #if defined(TARGET_MIPS) 9087 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 9088 ret = 0; 9089 break; 9090 #elif defined(TARGET_CRIS) 9091 if (arg1 & 0xff) 9092 ret = -TARGET_EINVAL; 9093 else { 9094 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 9095 ret = 0; 9096 } 9097 break; 9098 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 9099 ret = do_set_thread_area(cpu_env, arg1); 9100 break; 9101 #elif defined(TARGET_M68K) 9102 { 9103 TaskState *ts = cpu->opaque; 9104 ts->tp_value = arg1; 9105 ret = 0; 9106 break; 9107 } 9108 #else 9109 goto unimplemented_nowarn; 9110 #endif 9111 #endif 9112 #ifdef TARGET_NR_get_thread_area 9113 case TARGET_NR_get_thread_area: 9114 #if defined(TARGET_I386) && defined(TARGET_ABI32) 9115 ret = do_get_thread_area(cpu_env, arg1); 9116 break; 9117 #elif defined(TARGET_M68K) 9118 { 9119 TaskState *ts = cpu->opaque; 9120 ret = ts->tp_value; 9121 break; 9122 } 9123 #else 9124 goto unimplemented_nowarn; 9125 #endif 9126 #endif 9127 #ifdef TARGET_NR_getdomainname 9128 case TARGET_NR_getdomainname: 9129 goto unimplemented_nowarn; 9130 #endif 9131 9132 #ifdef TARGET_NR_clock_gettime 9133 case TARGET_NR_clock_gettime: 9134 { 9135 struct timespec ts; 9136 ret = get_errno(clock_gettime(arg1, &ts)); 9137 if (!is_error(ret)) { 9138 host_to_target_timespec(arg2, &ts); 9139 } 9140 break; 9141 } 9142 #endif 9143 #ifdef TARGET_NR_clock_getres 9144 case TARGET_NR_clock_getres: 9145 { 9146 struct timespec ts; 9147 ret = get_errno(clock_getres(arg1, &ts)); 9148 if (!is_error(ret)) { 9149 host_to_target_timespec(arg2, &ts); 9150 } 9151 break; 9152 } 9153 #endif 9154 #ifdef TARGET_NR_clock_nanosleep 9155 case TARGET_NR_clock_nanosleep: 9156 { 9157 struct timespec ts; 9158 target_to_host_timespec(&ts, arg3); 9159 ret = get_errno(clock_nanosleep(arg1, arg2, &ts, arg4 ? &ts : NULL)); 9160 if (arg4) 9161 host_to_target_timespec(arg4, &ts); 9162 9163 #if defined(TARGET_PPC) 9164 /* clock_nanosleep is odd in that it returns positive errno values. 9165 * On PPC, CR0 bit 3 should be set in such a situation. */ 9166 if (ret) { 9167 ((CPUPPCState *)cpu_env)->crf[0] |= 1; 9168 } 9169 #endif 9170 break; 9171 } 9172 #endif 9173 9174 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 9175 case TARGET_NR_set_tid_address: 9176 ret = get_errno(set_tid_address((int *)g2h(arg1))); 9177 break; 9178 #endif 9179 9180 #if defined(TARGET_NR_tkill) && defined(__NR_tkill) 9181 case TARGET_NR_tkill: 9182 ret = get_errno(sys_tkill((int)arg1, target_to_host_signal(arg2))); 9183 break; 9184 #endif 9185 9186 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill) 9187 case TARGET_NR_tgkill: 9188 ret = get_errno(sys_tgkill((int)arg1, (int)arg2, 9189 target_to_host_signal(arg3))); 9190 break; 9191 #endif 9192 9193 #ifdef TARGET_NR_set_robust_list 9194 case TARGET_NR_set_robust_list: 9195 case TARGET_NR_get_robust_list: 9196 /* The ABI for supporting robust futexes has userspace pass 9197 * the kernel a pointer to a linked list which is updated by 9198 * userspace after the syscall; the list is walked by the kernel 9199 * when the thread exits. Since the linked list in QEMU guest 9200 * memory isn't a valid linked list for the host and we have 9201 * no way to reliably intercept the thread-death event, we can't 9202 * support these. Silently return ENOSYS so that guest userspace 9203 * falls back to a non-robust futex implementation (which should 9204 * be OK except in the corner case of the guest crashing while 9205 * holding a mutex that is shared with another process via 9206 * shared memory). 9207 */ 9208 goto unimplemented_nowarn; 9209 #endif 9210 9211 #if defined(TARGET_NR_utimensat) 9212 case TARGET_NR_utimensat: 9213 { 9214 struct timespec *tsp, ts[2]; 9215 if (!arg3) { 9216 tsp = NULL; 9217 } else { 9218 target_to_host_timespec(ts, arg3); 9219 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec)); 9220 tsp = ts; 9221 } 9222 if (!arg2) 9223 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 9224 else { 9225 if (!(p = lock_user_string(arg2))) { 9226 ret = -TARGET_EFAULT; 9227 goto fail; 9228 } 9229 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 9230 unlock_user(p, arg2, 0); 9231 } 9232 } 9233 break; 9234 #endif 9235 case TARGET_NR_futex: 9236 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6); 9237 break; 9238 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 9239 case TARGET_NR_inotify_init: 9240 ret = get_errno(sys_inotify_init()); 9241 break; 9242 #endif 9243 #ifdef CONFIG_INOTIFY1 9244 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 9245 case TARGET_NR_inotify_init1: 9246 ret = get_errno(sys_inotify_init1(arg1)); 9247 break; 9248 #endif 9249 #endif 9250 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 9251 case TARGET_NR_inotify_add_watch: 9252 p = lock_user_string(arg2); 9253 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 9254 unlock_user(p, arg2, 0); 9255 break; 9256 #endif 9257 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 9258 case TARGET_NR_inotify_rm_watch: 9259 ret = get_errno(sys_inotify_rm_watch(arg1, arg2)); 9260 break; 9261 #endif 9262 9263 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 9264 case TARGET_NR_mq_open: 9265 { 9266 struct mq_attr posix_mq_attr, *attrp; 9267 9268 p = lock_user_string(arg1 - 1); 9269 if (arg4 != 0) { 9270 copy_from_user_mq_attr (&posix_mq_attr, arg4); 9271 attrp = &posix_mq_attr; 9272 } else { 9273 attrp = 0; 9274 } 9275 ret = get_errno(mq_open(p, arg2, arg3, attrp)); 9276 unlock_user (p, arg1, 0); 9277 } 9278 break; 9279 9280 case TARGET_NR_mq_unlink: 9281 p = lock_user_string(arg1 - 1); 9282 ret = get_errno(mq_unlink(p)); 9283 unlock_user (p, arg1, 0); 9284 break; 9285 9286 case TARGET_NR_mq_timedsend: 9287 { 9288 struct timespec ts; 9289 9290 p = lock_user (VERIFY_READ, arg2, arg3, 1); 9291 if (arg5 != 0) { 9292 target_to_host_timespec(&ts, arg5); 9293 ret = get_errno(mq_timedsend(arg1, p, arg3, arg4, &ts)); 9294 host_to_target_timespec(arg5, &ts); 9295 } 9296 else 9297 ret = get_errno(mq_send(arg1, p, arg3, arg4)); 9298 unlock_user (p, arg2, arg3); 9299 } 9300 break; 9301 9302 case TARGET_NR_mq_timedreceive: 9303 { 9304 struct timespec ts; 9305 unsigned int prio; 9306 9307 p = lock_user (VERIFY_READ, arg2, arg3, 1); 9308 if (arg5 != 0) { 9309 target_to_host_timespec(&ts, arg5); 9310 ret = get_errno(mq_timedreceive(arg1, p, arg3, &prio, &ts)); 9311 host_to_target_timespec(arg5, &ts); 9312 } 9313 else 9314 ret = get_errno(mq_receive(arg1, p, arg3, &prio)); 9315 unlock_user (p, arg2, arg3); 9316 if (arg4 != 0) 9317 put_user_u32(prio, arg4); 9318 } 9319 break; 9320 9321 /* Not implemented for now... */ 9322 /* case TARGET_NR_mq_notify: */ 9323 /* break; */ 9324 9325 case TARGET_NR_mq_getsetattr: 9326 { 9327 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 9328 ret = 0; 9329 if (arg3 != 0) { 9330 ret = mq_getattr(arg1, &posix_mq_attr_out); 9331 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 9332 } 9333 if (arg2 != 0) { 9334 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 9335 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out); 9336 } 9337 9338 } 9339 break; 9340 #endif 9341 9342 #ifdef CONFIG_SPLICE 9343 #ifdef TARGET_NR_tee 9344 case TARGET_NR_tee: 9345 { 9346 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 9347 } 9348 break; 9349 #endif 9350 #ifdef TARGET_NR_splice 9351 case TARGET_NR_splice: 9352 { 9353 loff_t loff_in, loff_out; 9354 loff_t *ploff_in = NULL, *ploff_out = NULL; 9355 if (arg2) { 9356 if (get_user_u64(loff_in, arg2)) { 9357 goto efault; 9358 } 9359 ploff_in = &loff_in; 9360 } 9361 if (arg4) { 9362 if (get_user_u64(loff_out, arg4)) { 9363 goto efault; 9364 } 9365 ploff_out = &loff_out; 9366 } 9367 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 9368 if (arg2) { 9369 if (put_user_u64(loff_in, arg2)) { 9370 goto efault; 9371 } 9372 } 9373 if (arg4) { 9374 if (put_user_u64(loff_out, arg4)) { 9375 goto efault; 9376 } 9377 } 9378 } 9379 break; 9380 #endif 9381 #ifdef TARGET_NR_vmsplice 9382 case TARGET_NR_vmsplice: 9383 { 9384 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 9385 if (vec != NULL) { 9386 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 9387 unlock_iovec(vec, arg2, arg3, 0); 9388 } else { 9389 ret = -host_to_target_errno(errno); 9390 } 9391 } 9392 break; 9393 #endif 9394 #endif /* CONFIG_SPLICE */ 9395 #ifdef CONFIG_EVENTFD 9396 #if defined(TARGET_NR_eventfd) 9397 case TARGET_NR_eventfd: 9398 ret = get_errno(eventfd(arg1, 0)); 9399 break; 9400 #endif 9401 #if defined(TARGET_NR_eventfd2) 9402 case TARGET_NR_eventfd2: 9403 { 9404 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)); 9405 if (arg2 & TARGET_O_NONBLOCK) { 9406 host_flags |= O_NONBLOCK; 9407 } 9408 if (arg2 & TARGET_O_CLOEXEC) { 9409 host_flags |= O_CLOEXEC; 9410 } 9411 ret = get_errno(eventfd(arg1, host_flags)); 9412 break; 9413 } 9414 #endif 9415 #endif /* CONFIG_EVENTFD */ 9416 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 9417 case TARGET_NR_fallocate: 9418 #if TARGET_ABI_BITS == 32 9419 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 9420 target_offset64(arg5, arg6))); 9421 #else 9422 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 9423 #endif 9424 break; 9425 #endif 9426 #if defined(CONFIG_SYNC_FILE_RANGE) 9427 #if defined(TARGET_NR_sync_file_range) 9428 case TARGET_NR_sync_file_range: 9429 #if TARGET_ABI_BITS == 32 9430 #if defined(TARGET_MIPS) 9431 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 9432 target_offset64(arg5, arg6), arg7)); 9433 #else 9434 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 9435 target_offset64(arg4, arg5), arg6)); 9436 #endif /* !TARGET_MIPS */ 9437 #else 9438 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 9439 #endif 9440 break; 9441 #endif 9442 #if defined(TARGET_NR_sync_file_range2) 9443 case TARGET_NR_sync_file_range2: 9444 /* This is like sync_file_range but the arguments are reordered */ 9445 #if TARGET_ABI_BITS == 32 9446 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 9447 target_offset64(arg5, arg6), arg2)); 9448 #else 9449 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 9450 #endif 9451 break; 9452 #endif 9453 #endif 9454 #if defined(CONFIG_EPOLL) 9455 #if defined(TARGET_NR_epoll_create) 9456 case TARGET_NR_epoll_create: 9457 ret = get_errno(epoll_create(arg1)); 9458 break; 9459 #endif 9460 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 9461 case TARGET_NR_epoll_create1: 9462 ret = get_errno(epoll_create1(arg1)); 9463 break; 9464 #endif 9465 #if defined(TARGET_NR_epoll_ctl) 9466 case TARGET_NR_epoll_ctl: 9467 { 9468 struct epoll_event ep; 9469 struct epoll_event *epp = 0; 9470 if (arg4) { 9471 struct target_epoll_event *target_ep; 9472 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 9473 goto efault; 9474 } 9475 ep.events = tswap32(target_ep->events); 9476 /* The epoll_data_t union is just opaque data to the kernel, 9477 * so we transfer all 64 bits across and need not worry what 9478 * actual data type it is. 9479 */ 9480 ep.data.u64 = tswap64(target_ep->data.u64); 9481 unlock_user_struct(target_ep, arg4, 0); 9482 epp = &ep; 9483 } 9484 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 9485 break; 9486 } 9487 #endif 9488 9489 #if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT) 9490 #define IMPLEMENT_EPOLL_PWAIT 9491 #endif 9492 #if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT) 9493 #if defined(TARGET_NR_epoll_wait) 9494 case TARGET_NR_epoll_wait: 9495 #endif 9496 #if defined(IMPLEMENT_EPOLL_PWAIT) 9497 case TARGET_NR_epoll_pwait: 9498 #endif 9499 { 9500 struct target_epoll_event *target_ep; 9501 struct epoll_event *ep; 9502 int epfd = arg1; 9503 int maxevents = arg3; 9504 int timeout = arg4; 9505 9506 target_ep = lock_user(VERIFY_WRITE, arg2, 9507 maxevents * sizeof(struct target_epoll_event), 1); 9508 if (!target_ep) { 9509 goto efault; 9510 } 9511 9512 ep = alloca(maxevents * sizeof(struct epoll_event)); 9513 9514 switch (num) { 9515 #if defined(IMPLEMENT_EPOLL_PWAIT) 9516 case TARGET_NR_epoll_pwait: 9517 { 9518 target_sigset_t *target_set; 9519 sigset_t _set, *set = &_set; 9520 9521 if (arg5) { 9522 target_set = lock_user(VERIFY_READ, arg5, 9523 sizeof(target_sigset_t), 1); 9524 if (!target_set) { 9525 unlock_user(target_ep, arg2, 0); 9526 goto efault; 9527 } 9528 target_to_host_sigset(set, target_set); 9529 unlock_user(target_set, arg5, 0); 9530 } else { 9531 set = NULL; 9532 } 9533 9534 ret = get_errno(epoll_pwait(epfd, ep, maxevents, timeout, set)); 9535 break; 9536 } 9537 #endif 9538 #if defined(TARGET_NR_epoll_wait) 9539 case TARGET_NR_epoll_wait: 9540 ret = get_errno(epoll_wait(epfd, ep, maxevents, timeout)); 9541 break; 9542 #endif 9543 default: 9544 ret = -TARGET_ENOSYS; 9545 } 9546 if (!is_error(ret)) { 9547 int i; 9548 for (i = 0; i < ret; i++) { 9549 target_ep[i].events = tswap32(ep[i].events); 9550 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 9551 } 9552 } 9553 unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event)); 9554 break; 9555 } 9556 #endif 9557 #endif 9558 #ifdef TARGET_NR_prlimit64 9559 case TARGET_NR_prlimit64: 9560 { 9561 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 9562 struct target_rlimit64 *target_rnew, *target_rold; 9563 struct host_rlimit64 rnew, rold, *rnewp = 0; 9564 int resource = target_to_host_resource(arg2); 9565 if (arg3) { 9566 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 9567 goto efault; 9568 } 9569 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 9570 rnew.rlim_max = tswap64(target_rnew->rlim_max); 9571 unlock_user_struct(target_rnew, arg3, 0); 9572 rnewp = &rnew; 9573 } 9574 9575 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 9576 if (!is_error(ret) && arg4) { 9577 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 9578 goto efault; 9579 } 9580 target_rold->rlim_cur = tswap64(rold.rlim_cur); 9581 target_rold->rlim_max = tswap64(rold.rlim_max); 9582 unlock_user_struct(target_rold, arg4, 1); 9583 } 9584 break; 9585 } 9586 #endif 9587 #ifdef TARGET_NR_gethostname 9588 case TARGET_NR_gethostname: 9589 { 9590 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 9591 if (name) { 9592 ret = get_errno(gethostname(name, arg2)); 9593 unlock_user(name, arg1, arg2); 9594 } else { 9595 ret = -TARGET_EFAULT; 9596 } 9597 break; 9598 } 9599 #endif 9600 #ifdef TARGET_NR_atomic_cmpxchg_32 9601 case TARGET_NR_atomic_cmpxchg_32: 9602 { 9603 /* should use start_exclusive from main.c */ 9604 abi_ulong mem_value; 9605 if (get_user_u32(mem_value, arg6)) { 9606 target_siginfo_t info; 9607 info.si_signo = SIGSEGV; 9608 info.si_errno = 0; 9609 info.si_code = TARGET_SEGV_MAPERR; 9610 info._sifields._sigfault._addr = arg6; 9611 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info); 9612 ret = 0xdeadbeef; 9613 9614 } 9615 if (mem_value == arg2) 9616 put_user_u32(arg1, arg6); 9617 ret = mem_value; 9618 break; 9619 } 9620 #endif 9621 #ifdef TARGET_NR_atomic_barrier 9622 case TARGET_NR_atomic_barrier: 9623 { 9624 /* Like the kernel implementation and the qemu arm barrier, no-op this? */ 9625 ret = 0; 9626 break; 9627 } 9628 #endif 9629 9630 #ifdef TARGET_NR_timer_create 9631 case TARGET_NR_timer_create: 9632 { 9633 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 9634 9635 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 9636 9637 int clkid = arg1; 9638 int timer_index = next_free_host_timer(); 9639 9640 if (timer_index < 0) { 9641 ret = -TARGET_EAGAIN; 9642 } else { 9643 timer_t *phtimer = g_posix_timers + timer_index; 9644 9645 if (arg2) { 9646 phost_sevp = &host_sevp; 9647 ret = target_to_host_sigevent(phost_sevp, arg2); 9648 if (ret != 0) { 9649 break; 9650 } 9651 } 9652 9653 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 9654 if (ret) { 9655 phtimer = NULL; 9656 } else { 9657 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 9658 goto efault; 9659 } 9660 } 9661 } 9662 break; 9663 } 9664 #endif 9665 9666 #ifdef TARGET_NR_timer_settime 9667 case TARGET_NR_timer_settime: 9668 { 9669 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 9670 * struct itimerspec * old_value */ 9671 target_timer_t timerid = get_timer_id(arg1); 9672 9673 if (timerid < 0) { 9674 ret = timerid; 9675 } else if (arg3 == 0) { 9676 ret = -TARGET_EINVAL; 9677 } else { 9678 timer_t htimer = g_posix_timers[timerid]; 9679 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 9680 9681 target_to_host_itimerspec(&hspec_new, arg3); 9682 ret = get_errno( 9683 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 9684 host_to_target_itimerspec(arg2, &hspec_old); 9685 } 9686 break; 9687 } 9688 #endif 9689 9690 #ifdef TARGET_NR_timer_gettime 9691 case TARGET_NR_timer_gettime: 9692 { 9693 /* args: timer_t timerid, struct itimerspec *curr_value */ 9694 target_timer_t timerid = get_timer_id(arg1); 9695 9696 if (timerid < 0) { 9697 ret = timerid; 9698 } else if (!arg2) { 9699 ret = -TARGET_EFAULT; 9700 } else { 9701 timer_t htimer = g_posix_timers[timerid]; 9702 struct itimerspec hspec; 9703 ret = get_errno(timer_gettime(htimer, &hspec)); 9704 9705 if (host_to_target_itimerspec(arg2, &hspec)) { 9706 ret = -TARGET_EFAULT; 9707 } 9708 } 9709 break; 9710 } 9711 #endif 9712 9713 #ifdef TARGET_NR_timer_getoverrun 9714 case TARGET_NR_timer_getoverrun: 9715 { 9716 /* args: timer_t timerid */ 9717 target_timer_t timerid = get_timer_id(arg1); 9718 9719 if (timerid < 0) { 9720 ret = timerid; 9721 } else { 9722 timer_t htimer = g_posix_timers[timerid]; 9723 ret = get_errno(timer_getoverrun(htimer)); 9724 } 9725 break; 9726 } 9727 #endif 9728 9729 #ifdef TARGET_NR_timer_delete 9730 case TARGET_NR_timer_delete: 9731 { 9732 /* args: timer_t timerid */ 9733 target_timer_t timerid = get_timer_id(arg1); 9734 9735 if (timerid < 0) { 9736 ret = timerid; 9737 } else { 9738 timer_t htimer = g_posix_timers[timerid]; 9739 ret = get_errno(timer_delete(htimer)); 9740 g_posix_timers[timerid] = 0; 9741 } 9742 break; 9743 } 9744 #endif 9745 9746 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 9747 case TARGET_NR_timerfd_create: 9748 ret = get_errno(timerfd_create(arg1, 9749 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 9750 break; 9751 #endif 9752 9753 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 9754 case TARGET_NR_timerfd_gettime: 9755 { 9756 struct itimerspec its_curr; 9757 9758 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 9759 9760 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 9761 goto efault; 9762 } 9763 } 9764 break; 9765 #endif 9766 9767 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 9768 case TARGET_NR_timerfd_settime: 9769 { 9770 struct itimerspec its_new, its_old, *p_new; 9771 9772 if (arg3) { 9773 if (target_to_host_itimerspec(&its_new, arg3)) { 9774 goto efault; 9775 } 9776 p_new = &its_new; 9777 } else { 9778 p_new = NULL; 9779 } 9780 9781 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 9782 9783 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 9784 goto efault; 9785 } 9786 } 9787 break; 9788 #endif 9789 9790 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 9791 case TARGET_NR_ioprio_get: 9792 ret = get_errno(ioprio_get(arg1, arg2)); 9793 break; 9794 #endif 9795 9796 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 9797 case TARGET_NR_ioprio_set: 9798 ret = get_errno(ioprio_set(arg1, arg2, arg3)); 9799 break; 9800 #endif 9801 9802 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 9803 case TARGET_NR_setns: 9804 ret = get_errno(setns(arg1, arg2)); 9805 break; 9806 #endif 9807 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 9808 case TARGET_NR_unshare: 9809 ret = get_errno(unshare(arg1)); 9810 break; 9811 #endif 9812 9813 default: 9814 unimplemented: 9815 gemu_log("qemu: Unsupported syscall: %d\n", num); 9816 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list) 9817 unimplemented_nowarn: 9818 #endif 9819 ret = -TARGET_ENOSYS; 9820 break; 9821 } 9822 fail: 9823 #ifdef DEBUG 9824 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret); 9825 #endif 9826 if(do_strace) 9827 print_syscall_ret(num, ret); 9828 return ret; 9829 efault: 9830 ret = -TARGET_EFAULT; 9831 goto fail; 9832 } 9833