1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include "qemu/memfd.h" 24 #include "qemu/queue.h" 25 #include "qemu/plugin.h" 26 #include "tcg/startup.h" 27 #include "target_mman.h" 28 #include "exec/page-protection.h" 29 #include <elf.h> 30 #include <endian.h> 31 #include <grp.h> 32 #include <sys/ipc.h> 33 #include <sys/msg.h> 34 #include <sys/wait.h> 35 #include <sys/mount.h> 36 #include <sys/file.h> 37 #include <sys/fsuid.h> 38 #include <sys/personality.h> 39 #include <sys/prctl.h> 40 #include <sys/resource.h> 41 #include <sys/swap.h> 42 #include <linux/capability.h> 43 #include <sched.h> 44 #include <sys/timex.h> 45 #include <sys/socket.h> 46 #include <linux/sockios.h> 47 #include <sys/un.h> 48 #include <sys/uio.h> 49 #include <poll.h> 50 #include <sys/times.h> 51 #include <sys/shm.h> 52 #include <sys/sem.h> 53 #include <sys/statfs.h> 54 #include <utime.h> 55 #include <sys/sysinfo.h> 56 #include <sys/signalfd.h> 57 //#include <sys/user.h> 58 #include <netinet/in.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp.h> 61 #include <netinet/udp.h> 62 #include <linux/wireless.h> 63 #include <linux/icmp.h> 64 #include <linux/icmpv6.h> 65 #include <linux/if_tun.h> 66 #include <linux/in6.h> 67 #include <linux/errqueue.h> 68 #include <linux/random.h> 69 #ifdef CONFIG_TIMERFD 70 #include <sys/timerfd.h> 71 #endif 72 #ifdef CONFIG_EVENTFD 73 #include <sys/eventfd.h> 74 #endif 75 #ifdef CONFIG_EPOLL 76 #include <sys/epoll.h> 77 #endif 78 #ifdef CONFIG_ATTR 79 #include "qemu/xattr.h" 80 #endif 81 #ifdef CONFIG_SENDFILE 82 #include <sys/sendfile.h> 83 #endif 84 #ifdef HAVE_SYS_KCOV_H 85 #include <sys/kcov.h> 86 #endif 87 88 #define termios host_termios 89 #define winsize host_winsize 90 #define termio host_termio 91 #define sgttyb host_sgttyb /* same as target */ 92 #define tchars host_tchars /* same as target */ 93 #define ltchars host_ltchars /* same as target */ 94 95 #include <linux/termios.h> 96 #include <linux/unistd.h> 97 #include <linux/cdrom.h> 98 #include <linux/hdreg.h> 99 #include <linux/soundcard.h> 100 #include <linux/kd.h> 101 #include <linux/mtio.h> 102 #include <linux/fs.h> 103 #include <linux/fd.h> 104 #if defined(CONFIG_FIEMAP) 105 #include <linux/fiemap.h> 106 #endif 107 #include <linux/fb.h> 108 #if defined(CONFIG_USBFS) 109 #include <linux/usbdevice_fs.h> 110 #include <linux/usb/ch9.h> 111 #endif 112 #include <linux/vt.h> 113 #include <linux/dm-ioctl.h> 114 #include <linux/reboot.h> 115 #include <linux/route.h> 116 #include <linux/filter.h> 117 #include <linux/blkpg.h> 118 #include <netpacket/packet.h> 119 #include <linux/netlink.h> 120 #include <linux/if_alg.h> 121 #include <linux/rtc.h> 122 #include <sound/asound.h> 123 #ifdef HAVE_BTRFS_H 124 #include <linux/btrfs.h> 125 #endif 126 #ifdef HAVE_DRM_H 127 #include <libdrm/drm.h> 128 #include <libdrm/i915_drm.h> 129 #endif 130 #include "linux_loop.h" 131 #include "uname.h" 132 133 #include "qemu.h" 134 #include "user-internals.h" 135 #include "strace.h" 136 #include "signal-common.h" 137 #include "loader.h" 138 #include "user-mmap.h" 139 #include "user/safe-syscall.h" 140 #include "qemu/guest-random.h" 141 #include "qemu/selfmap.h" 142 #include "user/syscall-trace.h" 143 #include "special-errno.h" 144 #include "qapi/error.h" 145 #include "fd-trans.h" 146 #include "cpu_loop-common.h" 147 148 #ifndef CLONE_IO 149 #define CLONE_IO 0x80000000 /* Clone io context */ 150 #endif 151 152 /* We can't directly call the host clone syscall, because this will 153 * badly confuse libc (breaking mutexes, for example). So we must 154 * divide clone flags into: 155 * * flag combinations that look like pthread_create() 156 * * flag combinations that look like fork() 157 * * flags we can implement within QEMU itself 158 * * flags we can't support and will return an error for 159 */ 160 /* For thread creation, all these flags must be present; for 161 * fork, none must be present. 162 */ 163 #define CLONE_THREAD_FLAGS \ 164 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 165 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 166 167 /* These flags are ignored: 168 * CLONE_DETACHED is now ignored by the kernel; 169 * CLONE_IO is just an optimisation hint to the I/O scheduler 170 */ 171 #define CLONE_IGNORED_FLAGS \ 172 (CLONE_DETACHED | CLONE_IO) 173 174 #ifndef CLONE_PIDFD 175 # define CLONE_PIDFD 0x00001000 176 #endif 177 178 /* Flags for fork which we can implement within QEMU itself */ 179 #define CLONE_OPTIONAL_FORK_FLAGS \ 180 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \ 181 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 182 183 /* Flags for thread creation which we can implement within QEMU itself */ 184 #define CLONE_OPTIONAL_THREAD_FLAGS \ 185 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 186 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 187 188 #define CLONE_INVALID_FORK_FLAGS \ 189 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 190 191 #define CLONE_INVALID_THREAD_FLAGS \ 192 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 193 CLONE_IGNORED_FLAGS)) 194 195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 196 * have almost all been allocated. We cannot support any of 197 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 198 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 199 * The checks against the invalid thread masks above will catch these. 200 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 201 */ 202 203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 204 * once. This exercises the codepaths for restart. 205 */ 206 //#define DEBUG_ERESTARTSYS 207 208 //#include <linux/msdos_fs.h> 209 #define VFAT_IOCTL_READDIR_BOTH \ 210 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2) 211 #define VFAT_IOCTL_READDIR_SHORT \ 212 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2) 213 214 #undef _syscall0 215 #undef _syscall1 216 #undef _syscall2 217 #undef _syscall3 218 #undef _syscall4 219 #undef _syscall5 220 #undef _syscall6 221 222 #define _syscall0(type,name) \ 223 static type name (void) \ 224 { \ 225 return syscall(__NR_##name); \ 226 } 227 228 #define _syscall1(type,name,type1,arg1) \ 229 static type name (type1 arg1) \ 230 { \ 231 return syscall(__NR_##name, arg1); \ 232 } 233 234 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 235 static type name (type1 arg1,type2 arg2) \ 236 { \ 237 return syscall(__NR_##name, arg1, arg2); \ 238 } 239 240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 241 static type name (type1 arg1,type2 arg2,type3 arg3) \ 242 { \ 243 return syscall(__NR_##name, arg1, arg2, arg3); \ 244 } 245 246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 248 { \ 249 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 250 } 251 252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 253 type5,arg5) \ 254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 255 { \ 256 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 257 } 258 259 260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 261 type5,arg5,type6,arg6) \ 262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 263 type6 arg6) \ 264 { \ 265 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 266 } 267 268 269 #define __NR_sys_uname __NR_uname 270 #define __NR_sys_getcwd1 __NR_getcwd 271 #define __NR_sys_getdents __NR_getdents 272 #define __NR_sys_getdents64 __NR_getdents64 273 #define __NR_sys_getpriority __NR_getpriority 274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 276 #define __NR_sys_syslog __NR_syslog 277 #if defined(__NR_futex) 278 # define __NR_sys_futex __NR_futex 279 #endif 280 #if defined(__NR_futex_time64) 281 # define __NR_sys_futex_time64 __NR_futex_time64 282 #endif 283 #define __NR_sys_statx __NR_statx 284 285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 286 #define __NR__llseek __NR_lseek 287 #endif 288 289 /* Newer kernel ports have llseek() instead of _llseek() */ 290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 291 #define TARGET_NR__llseek TARGET_NR_llseek 292 #endif 293 294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */ 295 #ifndef TARGET_O_NONBLOCK_MASK 296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK 297 #endif 298 299 #define __NR_sys_gettid __NR_gettid 300 _syscall0(int, sys_gettid) 301 302 /* For the 64-bit guest on 32-bit host case we must emulate 303 * getdents using getdents64, because otherwise the host 304 * might hand us back more dirent records than we can fit 305 * into the guest buffer after structure format conversion. 306 * Otherwise we emulate getdents with getdents if the host has it. 307 */ 308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS 309 #define EMULATE_GETDENTS_WITH_GETDENTS 310 #endif 311 312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS) 313 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count); 314 #endif 315 #if (defined(TARGET_NR_getdents) && \ 316 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \ 317 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 318 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count); 319 #endif 320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 321 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo, 322 loff_t *, res, unsigned int, wh); 323 #endif 324 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 325 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 326 siginfo_t *, uinfo) 327 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 328 #ifdef __NR_exit_group 329 _syscall1(int,exit_group,int,error_code) 330 #endif 331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 332 #define __NR_sys_close_range __NR_close_range 333 _syscall3(int,sys_close_range,int,first,int,last,int,flags) 334 #ifndef CLOSE_RANGE_CLOEXEC 335 #define CLOSE_RANGE_CLOEXEC (1U << 2) 336 #endif 337 #endif 338 #if defined(__NR_futex) 339 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 340 const struct timespec *,timeout,int *,uaddr2,int,val3) 341 #endif 342 #if defined(__NR_futex_time64) 343 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val, 344 const struct timespec *,timeout,int *,uaddr2,int,val3) 345 #endif 346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 347 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags); 348 #endif 349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 350 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info, 351 unsigned int, flags); 352 #endif 353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 354 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags); 355 #endif 356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 357 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 358 unsigned long *, user_mask_ptr); 359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 360 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 361 unsigned long *, user_mask_ptr); 362 /* sched_attr is not defined in glibc */ 363 struct sched_attr { 364 uint32_t size; 365 uint32_t sched_policy; 366 uint64_t sched_flags; 367 int32_t sched_nice; 368 uint32_t sched_priority; 369 uint64_t sched_runtime; 370 uint64_t sched_deadline; 371 uint64_t sched_period; 372 uint32_t sched_util_min; 373 uint32_t sched_util_max; 374 }; 375 #define __NR_sys_sched_getattr __NR_sched_getattr 376 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr, 377 unsigned int, size, unsigned int, flags); 378 #define __NR_sys_sched_setattr __NR_sched_setattr 379 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr, 380 unsigned int, flags); 381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler 382 _syscall1(int, sys_sched_getscheduler, pid_t, pid); 383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler 384 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy, 385 const struct sched_param *, param); 386 #define __NR_sys_sched_getparam __NR_sched_getparam 387 _syscall2(int, sys_sched_getparam, pid_t, pid, 388 struct sched_param *, param); 389 #define __NR_sys_sched_setparam __NR_sched_setparam 390 _syscall2(int, sys_sched_setparam, pid_t, pid, 391 const struct sched_param *, param); 392 #define __NR_sys_getcpu __NR_getcpu 393 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 394 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 395 void *, arg); 396 _syscall2(int, capget, struct __user_cap_header_struct *, header, 397 struct __user_cap_data_struct *, data); 398 _syscall2(int, capset, struct __user_cap_header_struct *, header, 399 struct __user_cap_data_struct *, data); 400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 401 _syscall2(int, ioprio_get, int, which, int, who) 402 #endif 403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 404 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 405 #endif 406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 407 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 408 #endif 409 410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 411 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 412 unsigned long, idx1, unsigned long, idx2) 413 #endif 414 415 /* 416 * It is assumed that struct statx is architecture independent. 417 */ 418 #if defined(TARGET_NR_statx) && defined(__NR_statx) 419 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags, 420 unsigned int, mask, struct target_statx *, statxbuf) 421 #endif 422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier) 423 _syscall2(int, membarrier, int, cmd, int, flags) 424 #endif 425 426 static const bitmask_transtbl fcntl_flags_tbl[] = { 427 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 428 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 429 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 430 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 431 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 432 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 433 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 434 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 435 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 436 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 437 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 438 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 439 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 440 #if defined(O_DIRECT) 441 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 442 #endif 443 #if defined(O_NOATIME) 444 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 445 #endif 446 #if defined(O_CLOEXEC) 447 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 448 #endif 449 #if defined(O_PATH) 450 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 451 #endif 452 #if defined(O_TMPFILE) 453 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 454 #endif 455 /* Don't terminate the list prematurely on 64-bit host+guest. */ 456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 457 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 458 #endif 459 }; 460 461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size) 462 463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64) 464 #if defined(__NR_utimensat) 465 #define __NR_sys_utimensat __NR_utimensat 466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 467 const struct timespec *,tsp,int,flags) 468 #else 469 static int sys_utimensat(int dirfd, const char *pathname, 470 const struct timespec times[2], int flags) 471 { 472 errno = ENOSYS; 473 return -1; 474 } 475 #endif 476 #endif /* TARGET_NR_utimensat */ 477 478 #ifdef TARGET_NR_renameat2 479 #if defined(__NR_renameat2) 480 #define __NR_sys_renameat2 __NR_renameat2 481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 482 const char *, new, unsigned int, flags) 483 #else 484 static int sys_renameat2(int oldfd, const char *old, 485 int newfd, const char *new, int flags) 486 { 487 if (flags == 0) { 488 return renameat(oldfd, old, newfd, new); 489 } 490 errno = ENOSYS; 491 return -1; 492 } 493 #endif 494 #endif /* TARGET_NR_renameat2 */ 495 496 #ifdef CONFIG_INOTIFY 497 #include <sys/inotify.h> 498 #else 499 /* Userspace can usually survive runtime without inotify */ 500 #undef TARGET_NR_inotify_init 501 #undef TARGET_NR_inotify_init1 502 #undef TARGET_NR_inotify_add_watch 503 #undef TARGET_NR_inotify_rm_watch 504 #endif /* CONFIG_INOTIFY */ 505 506 #if defined(TARGET_NR_prlimit64) 507 #ifndef __NR_prlimit64 508 # define __NR_prlimit64 -1 509 #endif 510 #define __NR_sys_prlimit64 __NR_prlimit64 511 /* The glibc rlimit structure may not be that used by the underlying syscall */ 512 struct host_rlimit64 { 513 uint64_t rlim_cur; 514 uint64_t rlim_max; 515 }; 516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 517 const struct host_rlimit64 *, new_limit, 518 struct host_rlimit64 *, old_limit) 519 #endif 520 521 522 #if defined(TARGET_NR_timer_create) 523 /* Maximum of 32 active POSIX timers allowed at any one time. */ 524 #define GUEST_TIMER_MAX 32 525 static timer_t g_posix_timers[GUEST_TIMER_MAX]; 526 static int g_posix_timer_allocated[GUEST_TIMER_MAX]; 527 528 static inline int next_free_host_timer(void) 529 { 530 int k; 531 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) { 532 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) { 533 return k; 534 } 535 } 536 return -1; 537 } 538 539 static inline void free_host_timer_slot(int id) 540 { 541 qatomic_store_release(g_posix_timer_allocated + id, 0); 542 } 543 #endif 544 545 static inline int host_to_target_errno(int host_errno) 546 { 547 switch (host_errno) { 548 #define E(X) case X: return TARGET_##X; 549 #include "errnos.c.inc" 550 #undef E 551 default: 552 return host_errno; 553 } 554 } 555 556 static inline int target_to_host_errno(int target_errno) 557 { 558 switch (target_errno) { 559 #define E(X) case TARGET_##X: return X; 560 #include "errnos.c.inc" 561 #undef E 562 default: 563 return target_errno; 564 } 565 } 566 567 abi_long get_errno(abi_long ret) 568 { 569 if (ret == -1) 570 return -host_to_target_errno(errno); 571 else 572 return ret; 573 } 574 575 const char *target_strerror(int err) 576 { 577 if (err == QEMU_ERESTARTSYS) { 578 return "To be restarted"; 579 } 580 if (err == QEMU_ESIGRETURN) { 581 return "Successful exit from sigreturn"; 582 } 583 584 return strerror(target_to_host_errno(err)); 585 } 586 587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize) 588 { 589 int i; 590 uint8_t b; 591 if (usize <= ksize) { 592 return 1; 593 } 594 for (i = ksize; i < usize; i++) { 595 if (get_user_u8(b, addr + i)) { 596 return -TARGET_EFAULT; 597 } 598 if (b != 0) { 599 return 0; 600 } 601 } 602 return 1; 603 } 604 605 #define safe_syscall0(type, name) \ 606 static type safe_##name(void) \ 607 { \ 608 return safe_syscall(__NR_##name); \ 609 } 610 611 #define safe_syscall1(type, name, type1, arg1) \ 612 static type safe_##name(type1 arg1) \ 613 { \ 614 return safe_syscall(__NR_##name, arg1); \ 615 } 616 617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 618 static type safe_##name(type1 arg1, type2 arg2) \ 619 { \ 620 return safe_syscall(__NR_##name, arg1, arg2); \ 621 } 622 623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 625 { \ 626 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 627 } 628 629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 630 type4, arg4) \ 631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 632 { \ 633 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 634 } 635 636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 637 type4, arg4, type5, arg5) \ 638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 639 type5 arg5) \ 640 { \ 641 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 642 } 643 644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 645 type4, arg4, type5, arg5, type6, arg6) \ 646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 647 type5 arg5, type6 arg6) \ 648 { \ 649 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 650 } 651 652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 655 int, flags, mode_t, mode) 656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid) 657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 658 struct rusage *, rusage) 659 #endif 660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 661 int, options, struct rusage *, rusage) 662 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 663 safe_syscall5(int, execveat, int, dirfd, const char *, filename, 664 char **, argv, char **, envp, int, flags) 665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 666 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 667 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 668 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 669 #endif 670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64) 671 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 672 struct timespec *, tsp, const sigset_t *, sigmask, 673 size_t, sigsetsize) 674 #endif 675 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 676 int, maxevents, int, timeout, const sigset_t *, sigmask, 677 size_t, sigsetsize) 678 #if defined(__NR_futex) 679 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 680 const struct timespec *,timeout,int *,uaddr2,int,val3) 681 #endif 682 #if defined(__NR_futex_time64) 683 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \ 684 const struct timespec *,timeout,int *,uaddr2,int,val3) 685 #endif 686 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 687 safe_syscall2(int, kill, pid_t, pid, int, sig) 688 safe_syscall2(int, tkill, int, tid, int, sig) 689 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 690 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 691 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 692 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 693 unsigned long, pos_l, unsigned long, pos_h) 694 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 695 unsigned long, pos_l, unsigned long, pos_h) 696 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 697 socklen_t, addrlen) 698 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 699 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 700 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 701 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 702 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 703 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 704 safe_syscall2(int, flock, int, fd, int, operation) 705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64) 706 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 707 const struct timespec *, uts, size_t, sigsetsize) 708 #endif 709 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 710 int, flags) 711 #if defined(TARGET_NR_nanosleep) 712 safe_syscall2(int, nanosleep, const struct timespec *, req, 713 struct timespec *, rem) 714 #endif 715 #if defined(TARGET_NR_clock_nanosleep) || \ 716 defined(TARGET_NR_clock_nanosleep_time64) 717 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 718 const struct timespec *, req, struct timespec *, rem) 719 #endif 720 #ifdef __NR_ipc 721 #ifdef __s390x__ 722 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third, 723 void *, ptr) 724 #else 725 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 726 void *, ptr, long, fifth) 727 #endif 728 #endif 729 #ifdef __NR_msgsnd 730 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 731 int, flags) 732 #endif 733 #ifdef __NR_msgrcv 734 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 735 long, msgtype, int, flags) 736 #endif 737 #ifdef __NR_semtimedop 738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 739 unsigned, nsops, const struct timespec *, timeout) 740 #endif 741 #if defined(TARGET_NR_mq_timedsend) || \ 742 defined(TARGET_NR_mq_timedsend_time64) 743 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 744 size_t, len, unsigned, prio, const struct timespec *, timeout) 745 #endif 746 #if defined(TARGET_NR_mq_timedreceive) || \ 747 defined(TARGET_NR_mq_timedreceive_time64) 748 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 749 size_t, len, unsigned *, prio, const struct timespec *, timeout) 750 #endif 751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 752 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff, 753 int, outfd, loff_t *, poutoff, size_t, length, 754 unsigned int, flags) 755 #endif 756 757 /* We do ioctl like this rather than via safe_syscall3 to preserve the 758 * "third argument might be integer or pointer or not present" behaviour of 759 * the libc function. 760 */ 761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 762 /* Similarly for fcntl. Note that callers must always: 763 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 764 * use the flock64 struct rather than unsuffixed flock 765 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 766 */ 767 #ifdef __NR_fcntl64 768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 769 #else 770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 771 #endif 772 773 static inline int host_to_target_sock_type(int host_type) 774 { 775 int target_type; 776 777 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 778 case SOCK_DGRAM: 779 target_type = TARGET_SOCK_DGRAM; 780 break; 781 case SOCK_STREAM: 782 target_type = TARGET_SOCK_STREAM; 783 break; 784 default: 785 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 786 break; 787 } 788 789 #if defined(SOCK_CLOEXEC) 790 if (host_type & SOCK_CLOEXEC) { 791 target_type |= TARGET_SOCK_CLOEXEC; 792 } 793 #endif 794 795 #if defined(SOCK_NONBLOCK) 796 if (host_type & SOCK_NONBLOCK) { 797 target_type |= TARGET_SOCK_NONBLOCK; 798 } 799 #endif 800 801 return target_type; 802 } 803 804 static abi_ulong target_brk, initial_target_brk; 805 806 void target_set_brk(abi_ulong new_brk) 807 { 808 target_brk = TARGET_PAGE_ALIGN(new_brk); 809 initial_target_brk = target_brk; 810 } 811 812 /* do_brk() must return target values and target errnos. */ 813 abi_long do_brk(abi_ulong brk_val) 814 { 815 abi_long mapped_addr; 816 abi_ulong new_brk; 817 abi_ulong old_brk; 818 819 /* brk pointers are always untagged */ 820 821 /* do not allow to shrink below initial brk value */ 822 if (brk_val < initial_target_brk) { 823 return target_brk; 824 } 825 826 new_brk = TARGET_PAGE_ALIGN(brk_val); 827 old_brk = TARGET_PAGE_ALIGN(target_brk); 828 829 /* new and old target_brk might be on the same page */ 830 if (new_brk == old_brk) { 831 target_brk = brk_val; 832 return target_brk; 833 } 834 835 /* Release heap if necessary */ 836 if (new_brk < old_brk) { 837 target_munmap(new_brk, old_brk - new_brk); 838 839 target_brk = brk_val; 840 return target_brk; 841 } 842 843 mapped_addr = target_mmap(old_brk, new_brk - old_brk, 844 PROT_READ | PROT_WRITE, 845 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE, 846 -1, 0); 847 848 if (mapped_addr == old_brk) { 849 target_brk = brk_val; 850 return target_brk; 851 } 852 853 #if defined(TARGET_ALPHA) 854 /* We (partially) emulate OSF/1 on Alpha, which requires we 855 return a proper errno, not an unchanged brk value. */ 856 return -TARGET_ENOMEM; 857 #endif 858 /* For everything else, return the previous break. */ 859 return target_brk; 860 } 861 862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 863 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 864 static inline abi_long copy_from_user_fdset(fd_set *fds, 865 abi_ulong target_fds_addr, 866 int n) 867 { 868 int i, nw, j, k; 869 abi_ulong b, *target_fds; 870 871 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 872 if (!(target_fds = lock_user(VERIFY_READ, 873 target_fds_addr, 874 sizeof(abi_ulong) * nw, 875 1))) 876 return -TARGET_EFAULT; 877 878 FD_ZERO(fds); 879 k = 0; 880 for (i = 0; i < nw; i++) { 881 /* grab the abi_ulong */ 882 __get_user(b, &target_fds[i]); 883 for (j = 0; j < TARGET_ABI_BITS; j++) { 884 /* check the bit inside the abi_ulong */ 885 if ((b >> j) & 1) 886 FD_SET(k, fds); 887 k++; 888 } 889 } 890 891 unlock_user(target_fds, target_fds_addr, 0); 892 893 return 0; 894 } 895 896 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 897 abi_ulong target_fds_addr, 898 int n) 899 { 900 if (target_fds_addr) { 901 if (copy_from_user_fdset(fds, target_fds_addr, n)) 902 return -TARGET_EFAULT; 903 *fds_ptr = fds; 904 } else { 905 *fds_ptr = NULL; 906 } 907 return 0; 908 } 909 910 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 911 const fd_set *fds, 912 int n) 913 { 914 int i, nw, j, k; 915 abi_long v; 916 abi_ulong *target_fds; 917 918 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 919 if (!(target_fds = lock_user(VERIFY_WRITE, 920 target_fds_addr, 921 sizeof(abi_ulong) * nw, 922 0))) 923 return -TARGET_EFAULT; 924 925 k = 0; 926 for (i = 0; i < nw; i++) { 927 v = 0; 928 for (j = 0; j < TARGET_ABI_BITS; j++) { 929 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 930 k++; 931 } 932 __put_user(v, &target_fds[i]); 933 } 934 935 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 936 937 return 0; 938 } 939 #endif 940 941 #if defined(__alpha__) 942 #define HOST_HZ 1024 943 #else 944 #define HOST_HZ 100 945 #endif 946 947 static inline abi_long host_to_target_clock_t(long ticks) 948 { 949 #if HOST_HZ == TARGET_HZ 950 return ticks; 951 #else 952 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 953 #endif 954 } 955 956 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 957 const struct rusage *rusage) 958 { 959 struct target_rusage *target_rusage; 960 961 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 962 return -TARGET_EFAULT; 963 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 964 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 965 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 966 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 967 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 968 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 969 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 970 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 971 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 972 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 973 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 974 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 975 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 976 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 977 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 978 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 979 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 980 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 981 unlock_user_struct(target_rusage, target_addr, 1); 982 983 return 0; 984 } 985 986 #ifdef TARGET_NR_setrlimit 987 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 988 { 989 abi_ulong target_rlim_swap; 990 rlim_t result; 991 992 target_rlim_swap = tswapal(target_rlim); 993 if (target_rlim_swap == TARGET_RLIM_INFINITY) 994 return RLIM_INFINITY; 995 996 result = target_rlim_swap; 997 if (target_rlim_swap != (rlim_t)result) 998 return RLIM_INFINITY; 999 1000 return result; 1001 } 1002 #endif 1003 1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit) 1005 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1006 { 1007 abi_ulong target_rlim_swap; 1008 abi_ulong result; 1009 1010 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1011 target_rlim_swap = TARGET_RLIM_INFINITY; 1012 else 1013 target_rlim_swap = rlim; 1014 result = tswapal(target_rlim_swap); 1015 1016 return result; 1017 } 1018 #endif 1019 1020 static inline int target_to_host_resource(int code) 1021 { 1022 switch (code) { 1023 case TARGET_RLIMIT_AS: 1024 return RLIMIT_AS; 1025 case TARGET_RLIMIT_CORE: 1026 return RLIMIT_CORE; 1027 case TARGET_RLIMIT_CPU: 1028 return RLIMIT_CPU; 1029 case TARGET_RLIMIT_DATA: 1030 return RLIMIT_DATA; 1031 case TARGET_RLIMIT_FSIZE: 1032 return RLIMIT_FSIZE; 1033 case TARGET_RLIMIT_LOCKS: 1034 return RLIMIT_LOCKS; 1035 case TARGET_RLIMIT_MEMLOCK: 1036 return RLIMIT_MEMLOCK; 1037 case TARGET_RLIMIT_MSGQUEUE: 1038 return RLIMIT_MSGQUEUE; 1039 case TARGET_RLIMIT_NICE: 1040 return RLIMIT_NICE; 1041 case TARGET_RLIMIT_NOFILE: 1042 return RLIMIT_NOFILE; 1043 case TARGET_RLIMIT_NPROC: 1044 return RLIMIT_NPROC; 1045 case TARGET_RLIMIT_RSS: 1046 return RLIMIT_RSS; 1047 case TARGET_RLIMIT_RTPRIO: 1048 return RLIMIT_RTPRIO; 1049 #ifdef RLIMIT_RTTIME 1050 case TARGET_RLIMIT_RTTIME: 1051 return RLIMIT_RTTIME; 1052 #endif 1053 case TARGET_RLIMIT_SIGPENDING: 1054 return RLIMIT_SIGPENDING; 1055 case TARGET_RLIMIT_STACK: 1056 return RLIMIT_STACK; 1057 default: 1058 return code; 1059 } 1060 } 1061 1062 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1063 abi_ulong target_tv_addr) 1064 { 1065 struct target_timeval *target_tv; 1066 1067 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1068 return -TARGET_EFAULT; 1069 } 1070 1071 __get_user(tv->tv_sec, &target_tv->tv_sec); 1072 __get_user(tv->tv_usec, &target_tv->tv_usec); 1073 1074 unlock_user_struct(target_tv, target_tv_addr, 0); 1075 1076 return 0; 1077 } 1078 1079 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1080 const struct timeval *tv) 1081 { 1082 struct target_timeval *target_tv; 1083 1084 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1085 return -TARGET_EFAULT; 1086 } 1087 1088 __put_user(tv->tv_sec, &target_tv->tv_sec); 1089 __put_user(tv->tv_usec, &target_tv->tv_usec); 1090 1091 unlock_user_struct(target_tv, target_tv_addr, 1); 1092 1093 return 0; 1094 } 1095 1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 1097 static inline abi_long copy_from_user_timeval64(struct timeval *tv, 1098 abi_ulong target_tv_addr) 1099 { 1100 struct target__kernel_sock_timeval *target_tv; 1101 1102 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1103 return -TARGET_EFAULT; 1104 } 1105 1106 __get_user(tv->tv_sec, &target_tv->tv_sec); 1107 __get_user(tv->tv_usec, &target_tv->tv_usec); 1108 1109 unlock_user_struct(target_tv, target_tv_addr, 0); 1110 1111 return 0; 1112 } 1113 #endif 1114 1115 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr, 1116 const struct timeval *tv) 1117 { 1118 struct target__kernel_sock_timeval *target_tv; 1119 1120 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1121 return -TARGET_EFAULT; 1122 } 1123 1124 __put_user(tv->tv_sec, &target_tv->tv_sec); 1125 __put_user(tv->tv_usec, &target_tv->tv_usec); 1126 1127 unlock_user_struct(target_tv, target_tv_addr, 1); 1128 1129 return 0; 1130 } 1131 1132 #if defined(TARGET_NR_futex) || \ 1133 defined(TARGET_NR_rt_sigtimedwait) || \ 1134 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \ 1135 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \ 1136 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \ 1137 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \ 1138 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \ 1139 defined(TARGET_NR_timer_settime) || \ 1140 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 1141 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 1142 abi_ulong target_addr) 1143 { 1144 struct target_timespec *target_ts; 1145 1146 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1147 return -TARGET_EFAULT; 1148 } 1149 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1150 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1151 unlock_user_struct(target_ts, target_addr, 0); 1152 return 0; 1153 } 1154 #endif 1155 1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \ 1157 defined(TARGET_NR_timer_settime64) || \ 1158 defined(TARGET_NR_mq_timedsend_time64) || \ 1159 defined(TARGET_NR_mq_timedreceive_time64) || \ 1160 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \ 1161 defined(TARGET_NR_clock_nanosleep_time64) || \ 1162 defined(TARGET_NR_rt_sigtimedwait_time64) || \ 1163 defined(TARGET_NR_utimensat) || \ 1164 defined(TARGET_NR_utimensat_time64) || \ 1165 defined(TARGET_NR_semtimedop_time64) || \ 1166 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64) 1167 static inline abi_long target_to_host_timespec64(struct timespec *host_ts, 1168 abi_ulong target_addr) 1169 { 1170 struct target__kernel_timespec *target_ts; 1171 1172 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1173 return -TARGET_EFAULT; 1174 } 1175 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1176 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1177 /* in 32bit mode, this drops the padding */ 1178 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec; 1179 unlock_user_struct(target_ts, target_addr, 0); 1180 return 0; 1181 } 1182 #endif 1183 1184 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 1185 struct timespec *host_ts) 1186 { 1187 struct target_timespec *target_ts; 1188 1189 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1190 return -TARGET_EFAULT; 1191 } 1192 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1193 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1194 unlock_user_struct(target_ts, target_addr, 1); 1195 return 0; 1196 } 1197 1198 static inline abi_long host_to_target_timespec64(abi_ulong target_addr, 1199 struct timespec *host_ts) 1200 { 1201 struct target__kernel_timespec *target_ts; 1202 1203 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1204 return -TARGET_EFAULT; 1205 } 1206 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1207 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1208 unlock_user_struct(target_ts, target_addr, 1); 1209 return 0; 1210 } 1211 1212 #if defined(TARGET_NR_gettimeofday) 1213 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr, 1214 struct timezone *tz) 1215 { 1216 struct target_timezone *target_tz; 1217 1218 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) { 1219 return -TARGET_EFAULT; 1220 } 1221 1222 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1223 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1224 1225 unlock_user_struct(target_tz, target_tz_addr, 1); 1226 1227 return 0; 1228 } 1229 #endif 1230 1231 #if defined(TARGET_NR_settimeofday) 1232 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1233 abi_ulong target_tz_addr) 1234 { 1235 struct target_timezone *target_tz; 1236 1237 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1238 return -TARGET_EFAULT; 1239 } 1240 1241 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1242 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1243 1244 unlock_user_struct(target_tz, target_tz_addr, 0); 1245 1246 return 0; 1247 } 1248 #endif 1249 1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1251 #include <mqueue.h> 1252 1253 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1254 abi_ulong target_mq_attr_addr) 1255 { 1256 struct target_mq_attr *target_mq_attr; 1257 1258 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1259 target_mq_attr_addr, 1)) 1260 return -TARGET_EFAULT; 1261 1262 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1263 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1264 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1265 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1266 1267 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1268 1269 return 0; 1270 } 1271 1272 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1273 const struct mq_attr *attr) 1274 { 1275 struct target_mq_attr *target_mq_attr; 1276 1277 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1278 target_mq_attr_addr, 0)) 1279 return -TARGET_EFAULT; 1280 1281 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1282 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1283 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1284 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1285 1286 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1287 1288 return 0; 1289 } 1290 #endif 1291 1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1293 /* do_select() must return target values and target errnos. */ 1294 static abi_long do_select(int n, 1295 abi_ulong rfd_addr, abi_ulong wfd_addr, 1296 abi_ulong efd_addr, abi_ulong target_tv_addr) 1297 { 1298 fd_set rfds, wfds, efds; 1299 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1300 struct timeval tv; 1301 struct timespec ts, *ts_ptr; 1302 abi_long ret; 1303 1304 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1305 if (ret) { 1306 return ret; 1307 } 1308 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1309 if (ret) { 1310 return ret; 1311 } 1312 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1313 if (ret) { 1314 return ret; 1315 } 1316 1317 if (target_tv_addr) { 1318 if (copy_from_user_timeval(&tv, target_tv_addr)) 1319 return -TARGET_EFAULT; 1320 ts.tv_sec = tv.tv_sec; 1321 ts.tv_nsec = tv.tv_usec * 1000; 1322 ts_ptr = &ts; 1323 } else { 1324 ts_ptr = NULL; 1325 } 1326 1327 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1328 ts_ptr, NULL)); 1329 1330 if (!is_error(ret)) { 1331 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1332 return -TARGET_EFAULT; 1333 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1334 return -TARGET_EFAULT; 1335 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1336 return -TARGET_EFAULT; 1337 1338 if (target_tv_addr) { 1339 tv.tv_sec = ts.tv_sec; 1340 tv.tv_usec = ts.tv_nsec / 1000; 1341 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1342 return -TARGET_EFAULT; 1343 } 1344 } 1345 } 1346 1347 return ret; 1348 } 1349 1350 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1351 static abi_long do_old_select(abi_ulong arg1) 1352 { 1353 struct target_sel_arg_struct *sel; 1354 abi_ulong inp, outp, exp, tvp; 1355 long nsel; 1356 1357 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1358 return -TARGET_EFAULT; 1359 } 1360 1361 nsel = tswapal(sel->n); 1362 inp = tswapal(sel->inp); 1363 outp = tswapal(sel->outp); 1364 exp = tswapal(sel->exp); 1365 tvp = tswapal(sel->tvp); 1366 1367 unlock_user_struct(sel, arg1, 0); 1368 1369 return do_select(nsel, inp, outp, exp, tvp); 1370 } 1371 #endif 1372 #endif 1373 1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 1375 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3, 1376 abi_long arg4, abi_long arg5, abi_long arg6, 1377 bool time64) 1378 { 1379 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 1380 fd_set rfds, wfds, efds; 1381 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1382 struct timespec ts, *ts_ptr; 1383 abi_long ret; 1384 1385 /* 1386 * The 6th arg is actually two args smashed together, 1387 * so we cannot use the C library. 1388 */ 1389 struct { 1390 sigset_t *set; 1391 size_t size; 1392 } sig, *sig_ptr; 1393 1394 abi_ulong arg_sigset, arg_sigsize, *arg7; 1395 1396 n = arg1; 1397 rfd_addr = arg2; 1398 wfd_addr = arg3; 1399 efd_addr = arg4; 1400 ts_addr = arg5; 1401 1402 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1403 if (ret) { 1404 return ret; 1405 } 1406 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1407 if (ret) { 1408 return ret; 1409 } 1410 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1411 if (ret) { 1412 return ret; 1413 } 1414 1415 /* 1416 * This takes a timespec, and not a timeval, so we cannot 1417 * use the do_select() helper ... 1418 */ 1419 if (ts_addr) { 1420 if (time64) { 1421 if (target_to_host_timespec64(&ts, ts_addr)) { 1422 return -TARGET_EFAULT; 1423 } 1424 } else { 1425 if (target_to_host_timespec(&ts, ts_addr)) { 1426 return -TARGET_EFAULT; 1427 } 1428 } 1429 ts_ptr = &ts; 1430 } else { 1431 ts_ptr = NULL; 1432 } 1433 1434 /* Extract the two packed args for the sigset */ 1435 sig_ptr = NULL; 1436 if (arg6) { 1437 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 1438 if (!arg7) { 1439 return -TARGET_EFAULT; 1440 } 1441 arg_sigset = tswapal(arg7[0]); 1442 arg_sigsize = tswapal(arg7[1]); 1443 unlock_user(arg7, arg6, 0); 1444 1445 if (arg_sigset) { 1446 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize); 1447 if (ret != 0) { 1448 return ret; 1449 } 1450 sig_ptr = &sig; 1451 sig.size = SIGSET_T_SIZE; 1452 } 1453 } 1454 1455 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1456 ts_ptr, sig_ptr)); 1457 1458 if (sig_ptr) { 1459 finish_sigsuspend_mask(ret); 1460 } 1461 1462 if (!is_error(ret)) { 1463 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) { 1464 return -TARGET_EFAULT; 1465 } 1466 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) { 1467 return -TARGET_EFAULT; 1468 } 1469 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) { 1470 return -TARGET_EFAULT; 1471 } 1472 if (time64) { 1473 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) { 1474 return -TARGET_EFAULT; 1475 } 1476 } else { 1477 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) { 1478 return -TARGET_EFAULT; 1479 } 1480 } 1481 } 1482 return ret; 1483 } 1484 #endif 1485 1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \ 1487 defined(TARGET_NR_ppoll_time64) 1488 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3, 1489 abi_long arg4, abi_long arg5, bool ppoll, bool time64) 1490 { 1491 struct target_pollfd *target_pfd; 1492 unsigned int nfds = arg2; 1493 struct pollfd *pfd; 1494 unsigned int i; 1495 abi_long ret; 1496 1497 pfd = NULL; 1498 target_pfd = NULL; 1499 if (nfds) { 1500 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 1501 return -TARGET_EINVAL; 1502 } 1503 target_pfd = lock_user(VERIFY_WRITE, arg1, 1504 sizeof(struct target_pollfd) * nfds, 1); 1505 if (!target_pfd) { 1506 return -TARGET_EFAULT; 1507 } 1508 1509 pfd = alloca(sizeof(struct pollfd) * nfds); 1510 for (i = 0; i < nfds; i++) { 1511 pfd[i].fd = tswap32(target_pfd[i].fd); 1512 pfd[i].events = tswap16(target_pfd[i].events); 1513 } 1514 } 1515 if (ppoll) { 1516 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 1517 sigset_t *set = NULL; 1518 1519 if (arg3) { 1520 if (time64) { 1521 if (target_to_host_timespec64(timeout_ts, arg3)) { 1522 unlock_user(target_pfd, arg1, 0); 1523 return -TARGET_EFAULT; 1524 } 1525 } else { 1526 if (target_to_host_timespec(timeout_ts, arg3)) { 1527 unlock_user(target_pfd, arg1, 0); 1528 return -TARGET_EFAULT; 1529 } 1530 } 1531 } else { 1532 timeout_ts = NULL; 1533 } 1534 1535 if (arg4) { 1536 ret = process_sigsuspend_mask(&set, arg4, arg5); 1537 if (ret != 0) { 1538 unlock_user(target_pfd, arg1, 0); 1539 return ret; 1540 } 1541 } 1542 1543 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 1544 set, SIGSET_T_SIZE)); 1545 1546 if (set) { 1547 finish_sigsuspend_mask(ret); 1548 } 1549 if (!is_error(ret) && arg3) { 1550 if (time64) { 1551 if (host_to_target_timespec64(arg3, timeout_ts)) { 1552 return -TARGET_EFAULT; 1553 } 1554 } else { 1555 if (host_to_target_timespec(arg3, timeout_ts)) { 1556 return -TARGET_EFAULT; 1557 } 1558 } 1559 } 1560 } else { 1561 struct timespec ts, *pts; 1562 1563 if (arg3 >= 0) { 1564 /* Convert ms to secs, ns */ 1565 ts.tv_sec = arg3 / 1000; 1566 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 1567 pts = &ts; 1568 } else { 1569 /* -ve poll() timeout means "infinite" */ 1570 pts = NULL; 1571 } 1572 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 1573 } 1574 1575 if (!is_error(ret)) { 1576 for (i = 0; i < nfds; i++) { 1577 target_pfd[i].revents = tswap16(pfd[i].revents); 1578 } 1579 } 1580 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 1581 return ret; 1582 } 1583 #endif 1584 1585 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes, 1586 int flags, int is_pipe2) 1587 { 1588 int host_pipe[2]; 1589 abi_long ret; 1590 ret = pipe2(host_pipe, flags); 1591 1592 if (is_error(ret)) 1593 return get_errno(ret); 1594 1595 /* Several targets have special calling conventions for the original 1596 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1597 if (!is_pipe2) { 1598 #if defined(TARGET_ALPHA) 1599 cpu_env->ir[IR_A4] = host_pipe[1]; 1600 return host_pipe[0]; 1601 #elif defined(TARGET_MIPS) 1602 cpu_env->active_tc.gpr[3] = host_pipe[1]; 1603 return host_pipe[0]; 1604 #elif defined(TARGET_SH4) 1605 cpu_env->gregs[1] = host_pipe[1]; 1606 return host_pipe[0]; 1607 #elif defined(TARGET_SPARC) 1608 cpu_env->regwptr[1] = host_pipe[1]; 1609 return host_pipe[0]; 1610 #endif 1611 } 1612 1613 if (put_user_s32(host_pipe[0], pipedes) 1614 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int))) 1615 return -TARGET_EFAULT; 1616 return get_errno(ret); 1617 } 1618 1619 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1620 abi_ulong target_addr, 1621 socklen_t len) 1622 { 1623 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1624 sa_family_t sa_family; 1625 struct target_sockaddr *target_saddr; 1626 1627 if (fd_trans_target_to_host_addr(fd)) { 1628 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1629 } 1630 1631 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1632 if (!target_saddr) 1633 return -TARGET_EFAULT; 1634 1635 sa_family = tswap16(target_saddr->sa_family); 1636 1637 /* Oops. The caller might send a incomplete sun_path; sun_path 1638 * must be terminated by \0 (see the manual page), but 1639 * unfortunately it is quite common to specify sockaddr_un 1640 * length as "strlen(x->sun_path)" while it should be 1641 * "strlen(...) + 1". We'll fix that here if needed. 1642 * Linux kernel has a similar feature. 1643 */ 1644 1645 if (sa_family == AF_UNIX) { 1646 if (len < unix_maxlen && len > 0) { 1647 char *cp = (char*)target_saddr; 1648 1649 if ( cp[len-1] && !cp[len] ) 1650 len++; 1651 } 1652 if (len > unix_maxlen) 1653 len = unix_maxlen; 1654 } 1655 1656 memcpy(addr, target_saddr, len); 1657 addr->sa_family = sa_family; 1658 if (sa_family == AF_NETLINK) { 1659 struct sockaddr_nl *nladdr; 1660 1661 nladdr = (struct sockaddr_nl *)addr; 1662 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1663 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1664 } else if (sa_family == AF_PACKET) { 1665 struct target_sockaddr_ll *lladdr; 1666 1667 lladdr = (struct target_sockaddr_ll *)addr; 1668 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1669 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1670 } else if (sa_family == AF_INET6) { 1671 struct sockaddr_in6 *in6addr; 1672 1673 in6addr = (struct sockaddr_in6 *)addr; 1674 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id); 1675 } 1676 unlock_user(target_saddr, target_addr, 0); 1677 1678 return 0; 1679 } 1680 1681 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1682 struct sockaddr *addr, 1683 socklen_t len) 1684 { 1685 struct target_sockaddr *target_saddr; 1686 1687 if (len == 0) { 1688 return 0; 1689 } 1690 assert(addr); 1691 1692 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1693 if (!target_saddr) 1694 return -TARGET_EFAULT; 1695 memcpy(target_saddr, addr, len); 1696 if (len >= offsetof(struct target_sockaddr, sa_family) + 1697 sizeof(target_saddr->sa_family)) { 1698 target_saddr->sa_family = tswap16(addr->sa_family); 1699 } 1700 if (addr->sa_family == AF_NETLINK && 1701 len >= sizeof(struct target_sockaddr_nl)) { 1702 struct target_sockaddr_nl *target_nl = 1703 (struct target_sockaddr_nl *)target_saddr; 1704 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1705 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1706 } else if (addr->sa_family == AF_PACKET) { 1707 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1708 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1709 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1710 } else if (addr->sa_family == AF_INET6 && 1711 len >= sizeof(struct target_sockaddr_in6)) { 1712 struct target_sockaddr_in6 *target_in6 = 1713 (struct target_sockaddr_in6 *)target_saddr; 1714 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1715 } 1716 unlock_user(target_saddr, target_addr, len); 1717 1718 return 0; 1719 } 1720 1721 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1722 struct target_msghdr *target_msgh) 1723 { 1724 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1725 abi_long msg_controllen; 1726 abi_ulong target_cmsg_addr; 1727 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1728 socklen_t space = 0; 1729 1730 msg_controllen = tswapal(target_msgh->msg_controllen); 1731 if (msg_controllen < sizeof (struct target_cmsghdr)) 1732 goto the_end; 1733 target_cmsg_addr = tswapal(target_msgh->msg_control); 1734 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1735 target_cmsg_start = target_cmsg; 1736 if (!target_cmsg) 1737 return -TARGET_EFAULT; 1738 1739 while (cmsg && target_cmsg) { 1740 void *data = CMSG_DATA(cmsg); 1741 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1742 1743 int len = tswapal(target_cmsg->cmsg_len) 1744 - sizeof(struct target_cmsghdr); 1745 1746 space += CMSG_SPACE(len); 1747 if (space > msgh->msg_controllen) { 1748 space -= CMSG_SPACE(len); 1749 /* This is a QEMU bug, since we allocated the payload 1750 * area ourselves (unlike overflow in host-to-target 1751 * conversion, which is just the guest giving us a buffer 1752 * that's too small). It can't happen for the payload types 1753 * we currently support; if it becomes an issue in future 1754 * we would need to improve our allocation strategy to 1755 * something more intelligent than "twice the size of the 1756 * target buffer we're reading from". 1757 */ 1758 qemu_log_mask(LOG_UNIMP, 1759 ("Unsupported ancillary data %d/%d: " 1760 "unhandled msg size\n"), 1761 tswap32(target_cmsg->cmsg_level), 1762 tswap32(target_cmsg->cmsg_type)); 1763 break; 1764 } 1765 1766 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1767 cmsg->cmsg_level = SOL_SOCKET; 1768 } else { 1769 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1770 } 1771 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1772 cmsg->cmsg_len = CMSG_LEN(len); 1773 1774 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1775 int *fd = (int *)data; 1776 int *target_fd = (int *)target_data; 1777 int i, numfds = len / sizeof(int); 1778 1779 for (i = 0; i < numfds; i++) { 1780 __get_user(fd[i], target_fd + i); 1781 } 1782 } else if (cmsg->cmsg_level == SOL_SOCKET 1783 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1784 struct ucred *cred = (struct ucred *)data; 1785 struct target_ucred *target_cred = 1786 (struct target_ucred *)target_data; 1787 1788 __get_user(cred->pid, &target_cred->pid); 1789 __get_user(cred->uid, &target_cred->uid); 1790 __get_user(cred->gid, &target_cred->gid); 1791 } else if (cmsg->cmsg_level == SOL_ALG) { 1792 uint32_t *dst = (uint32_t *)data; 1793 1794 memcpy(dst, target_data, len); 1795 /* fix endianness of first 32-bit word */ 1796 if (len >= sizeof(uint32_t)) { 1797 *dst = tswap32(*dst); 1798 } 1799 } else { 1800 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 1801 cmsg->cmsg_level, cmsg->cmsg_type); 1802 memcpy(data, target_data, len); 1803 } 1804 1805 cmsg = CMSG_NXTHDR(msgh, cmsg); 1806 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1807 target_cmsg_start); 1808 } 1809 unlock_user(target_cmsg, target_cmsg_addr, 0); 1810 the_end: 1811 msgh->msg_controllen = space; 1812 return 0; 1813 } 1814 1815 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1816 struct msghdr *msgh) 1817 { 1818 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1819 abi_long msg_controllen; 1820 abi_ulong target_cmsg_addr; 1821 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1822 socklen_t space = 0; 1823 1824 msg_controllen = tswapal(target_msgh->msg_controllen); 1825 if (msg_controllen < sizeof (struct target_cmsghdr)) 1826 goto the_end; 1827 target_cmsg_addr = tswapal(target_msgh->msg_control); 1828 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1829 target_cmsg_start = target_cmsg; 1830 if (!target_cmsg) 1831 return -TARGET_EFAULT; 1832 1833 while (cmsg && target_cmsg) { 1834 void *data = CMSG_DATA(cmsg); 1835 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1836 1837 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1838 int tgt_len, tgt_space; 1839 1840 /* We never copy a half-header but may copy half-data; 1841 * this is Linux's behaviour in put_cmsg(). Note that 1842 * truncation here is a guest problem (which we report 1843 * to the guest via the CTRUNC bit), unlike truncation 1844 * in target_to_host_cmsg, which is a QEMU bug. 1845 */ 1846 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1847 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1848 break; 1849 } 1850 1851 if (cmsg->cmsg_level == SOL_SOCKET) { 1852 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1853 } else { 1854 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1855 } 1856 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1857 1858 /* Payload types which need a different size of payload on 1859 * the target must adjust tgt_len here. 1860 */ 1861 tgt_len = len; 1862 switch (cmsg->cmsg_level) { 1863 case SOL_SOCKET: 1864 switch (cmsg->cmsg_type) { 1865 case SO_TIMESTAMP: 1866 tgt_len = sizeof(struct target_timeval); 1867 break; 1868 default: 1869 break; 1870 } 1871 break; 1872 default: 1873 break; 1874 } 1875 1876 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1877 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1878 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1879 } 1880 1881 /* We must now copy-and-convert len bytes of payload 1882 * into tgt_len bytes of destination space. Bear in mind 1883 * that in both source and destination we may be dealing 1884 * with a truncated value! 1885 */ 1886 switch (cmsg->cmsg_level) { 1887 case SOL_SOCKET: 1888 switch (cmsg->cmsg_type) { 1889 case SCM_RIGHTS: 1890 { 1891 int *fd = (int *)data; 1892 int *target_fd = (int *)target_data; 1893 int i, numfds = tgt_len / sizeof(int); 1894 1895 for (i = 0; i < numfds; i++) { 1896 __put_user(fd[i], target_fd + i); 1897 } 1898 break; 1899 } 1900 case SO_TIMESTAMP: 1901 { 1902 struct timeval *tv = (struct timeval *)data; 1903 struct target_timeval *target_tv = 1904 (struct target_timeval *)target_data; 1905 1906 if (len != sizeof(struct timeval) || 1907 tgt_len != sizeof(struct target_timeval)) { 1908 goto unimplemented; 1909 } 1910 1911 /* copy struct timeval to target */ 1912 __put_user(tv->tv_sec, &target_tv->tv_sec); 1913 __put_user(tv->tv_usec, &target_tv->tv_usec); 1914 break; 1915 } 1916 case SCM_CREDENTIALS: 1917 { 1918 struct ucred *cred = (struct ucred *)data; 1919 struct target_ucred *target_cred = 1920 (struct target_ucred *)target_data; 1921 1922 __put_user(cred->pid, &target_cred->pid); 1923 __put_user(cred->uid, &target_cred->uid); 1924 __put_user(cred->gid, &target_cred->gid); 1925 break; 1926 } 1927 default: 1928 goto unimplemented; 1929 } 1930 break; 1931 1932 case SOL_IP: 1933 switch (cmsg->cmsg_type) { 1934 case IP_TTL: 1935 { 1936 uint32_t *v = (uint32_t *)data; 1937 uint32_t *t_int = (uint32_t *)target_data; 1938 1939 if (len != sizeof(uint32_t) || 1940 tgt_len != sizeof(uint32_t)) { 1941 goto unimplemented; 1942 } 1943 __put_user(*v, t_int); 1944 break; 1945 } 1946 case IP_RECVERR: 1947 { 1948 struct errhdr_t { 1949 struct sock_extended_err ee; 1950 struct sockaddr_in offender; 1951 }; 1952 struct errhdr_t *errh = (struct errhdr_t *)data; 1953 struct errhdr_t *target_errh = 1954 (struct errhdr_t *)target_data; 1955 1956 if (len != sizeof(struct errhdr_t) || 1957 tgt_len != sizeof(struct errhdr_t)) { 1958 goto unimplemented; 1959 } 1960 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1961 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1962 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1963 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1964 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1965 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1966 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1967 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1968 (void *) &errh->offender, sizeof(errh->offender)); 1969 break; 1970 } 1971 default: 1972 goto unimplemented; 1973 } 1974 break; 1975 1976 case SOL_IPV6: 1977 switch (cmsg->cmsg_type) { 1978 case IPV6_HOPLIMIT: 1979 { 1980 uint32_t *v = (uint32_t *)data; 1981 uint32_t *t_int = (uint32_t *)target_data; 1982 1983 if (len != sizeof(uint32_t) || 1984 tgt_len != sizeof(uint32_t)) { 1985 goto unimplemented; 1986 } 1987 __put_user(*v, t_int); 1988 break; 1989 } 1990 case IPV6_RECVERR: 1991 { 1992 struct errhdr6_t { 1993 struct sock_extended_err ee; 1994 struct sockaddr_in6 offender; 1995 }; 1996 struct errhdr6_t *errh = (struct errhdr6_t *)data; 1997 struct errhdr6_t *target_errh = 1998 (struct errhdr6_t *)target_data; 1999 2000 if (len != sizeof(struct errhdr6_t) || 2001 tgt_len != sizeof(struct errhdr6_t)) { 2002 goto unimplemented; 2003 } 2004 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2005 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2006 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2007 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2008 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2009 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2010 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2011 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2012 (void *) &errh->offender, sizeof(errh->offender)); 2013 break; 2014 } 2015 default: 2016 goto unimplemented; 2017 } 2018 break; 2019 2020 default: 2021 unimplemented: 2022 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 2023 cmsg->cmsg_level, cmsg->cmsg_type); 2024 memcpy(target_data, data, MIN(len, tgt_len)); 2025 if (tgt_len > len) { 2026 memset(target_data + len, 0, tgt_len - len); 2027 } 2028 } 2029 2030 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 2031 tgt_space = TARGET_CMSG_SPACE(tgt_len); 2032 if (msg_controllen < tgt_space) { 2033 tgt_space = msg_controllen; 2034 } 2035 msg_controllen -= tgt_space; 2036 space += tgt_space; 2037 cmsg = CMSG_NXTHDR(msgh, cmsg); 2038 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 2039 target_cmsg_start); 2040 } 2041 unlock_user(target_cmsg, target_cmsg_addr, space); 2042 the_end: 2043 target_msgh->msg_controllen = tswapal(space); 2044 return 0; 2045 } 2046 2047 /* do_setsockopt() Must return target values and target errnos. */ 2048 static abi_long do_setsockopt(int sockfd, int level, int optname, 2049 abi_ulong optval_addr, socklen_t optlen) 2050 { 2051 abi_long ret; 2052 int val; 2053 2054 switch(level) { 2055 case SOL_TCP: 2056 case SOL_UDP: 2057 /* TCP and UDP options all take an 'int' value. */ 2058 if (optlen < sizeof(uint32_t)) 2059 return -TARGET_EINVAL; 2060 2061 if (get_user_u32(val, optval_addr)) 2062 return -TARGET_EFAULT; 2063 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2064 break; 2065 case SOL_IP: 2066 switch(optname) { 2067 case IP_TOS: 2068 case IP_TTL: 2069 case IP_HDRINCL: 2070 case IP_ROUTER_ALERT: 2071 case IP_RECVOPTS: 2072 case IP_RETOPTS: 2073 case IP_PKTINFO: 2074 case IP_MTU_DISCOVER: 2075 case IP_RECVERR: 2076 case IP_RECVTTL: 2077 case IP_RECVTOS: 2078 #ifdef IP_FREEBIND 2079 case IP_FREEBIND: 2080 #endif 2081 case IP_MULTICAST_TTL: 2082 case IP_MULTICAST_LOOP: 2083 val = 0; 2084 if (optlen >= sizeof(uint32_t)) { 2085 if (get_user_u32(val, optval_addr)) 2086 return -TARGET_EFAULT; 2087 } else if (optlen >= 1) { 2088 if (get_user_u8(val, optval_addr)) 2089 return -TARGET_EFAULT; 2090 } 2091 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2092 break; 2093 case IP_ADD_MEMBERSHIP: 2094 case IP_DROP_MEMBERSHIP: 2095 { 2096 struct ip_mreqn ip_mreq; 2097 struct target_ip_mreqn *target_smreqn; 2098 2099 QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq) != 2100 sizeof(struct target_ip_mreq)); 2101 2102 if (optlen < sizeof (struct target_ip_mreq) || 2103 optlen > sizeof (struct target_ip_mreqn)) { 2104 return -TARGET_EINVAL; 2105 } 2106 2107 target_smreqn = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2108 if (!target_smreqn) { 2109 return -TARGET_EFAULT; 2110 } 2111 ip_mreq.imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 2112 ip_mreq.imr_address.s_addr = target_smreqn->imr_address.s_addr; 2113 if (optlen == sizeof(struct target_ip_mreqn)) { 2114 ip_mreq.imr_ifindex = tswapal(target_smreqn->imr_ifindex); 2115 optlen = sizeof(struct ip_mreqn); 2116 } 2117 unlock_user(target_smreqn, optval_addr, 0); 2118 2119 ret = get_errno(setsockopt(sockfd, level, optname, &ip_mreq, optlen)); 2120 break; 2121 } 2122 case IP_BLOCK_SOURCE: 2123 case IP_UNBLOCK_SOURCE: 2124 case IP_ADD_SOURCE_MEMBERSHIP: 2125 case IP_DROP_SOURCE_MEMBERSHIP: 2126 { 2127 struct ip_mreq_source *ip_mreq_source; 2128 2129 if (optlen != sizeof (struct target_ip_mreq_source)) 2130 return -TARGET_EINVAL; 2131 2132 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2133 if (!ip_mreq_source) { 2134 return -TARGET_EFAULT; 2135 } 2136 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2137 unlock_user (ip_mreq_source, optval_addr, 0); 2138 break; 2139 } 2140 default: 2141 goto unimplemented; 2142 } 2143 break; 2144 case SOL_IPV6: 2145 switch (optname) { 2146 case IPV6_MTU_DISCOVER: 2147 case IPV6_MTU: 2148 case IPV6_V6ONLY: 2149 case IPV6_RECVPKTINFO: 2150 case IPV6_UNICAST_HOPS: 2151 case IPV6_MULTICAST_HOPS: 2152 case IPV6_MULTICAST_LOOP: 2153 case IPV6_RECVERR: 2154 case IPV6_RECVHOPLIMIT: 2155 case IPV6_2292HOPLIMIT: 2156 case IPV6_CHECKSUM: 2157 case IPV6_ADDRFORM: 2158 case IPV6_2292PKTINFO: 2159 case IPV6_RECVTCLASS: 2160 case IPV6_RECVRTHDR: 2161 case IPV6_2292RTHDR: 2162 case IPV6_RECVHOPOPTS: 2163 case IPV6_2292HOPOPTS: 2164 case IPV6_RECVDSTOPTS: 2165 case IPV6_2292DSTOPTS: 2166 case IPV6_TCLASS: 2167 case IPV6_ADDR_PREFERENCES: 2168 #ifdef IPV6_RECVPATHMTU 2169 case IPV6_RECVPATHMTU: 2170 #endif 2171 #ifdef IPV6_TRANSPARENT 2172 case IPV6_TRANSPARENT: 2173 #endif 2174 #ifdef IPV6_FREEBIND 2175 case IPV6_FREEBIND: 2176 #endif 2177 #ifdef IPV6_RECVORIGDSTADDR 2178 case IPV6_RECVORIGDSTADDR: 2179 #endif 2180 val = 0; 2181 if (optlen < sizeof(uint32_t)) { 2182 return -TARGET_EINVAL; 2183 } 2184 if (get_user_u32(val, optval_addr)) { 2185 return -TARGET_EFAULT; 2186 } 2187 ret = get_errno(setsockopt(sockfd, level, optname, 2188 &val, sizeof(val))); 2189 break; 2190 case IPV6_PKTINFO: 2191 { 2192 struct in6_pktinfo pki; 2193 2194 if (optlen < sizeof(pki)) { 2195 return -TARGET_EINVAL; 2196 } 2197 2198 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2199 return -TARGET_EFAULT; 2200 } 2201 2202 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2203 2204 ret = get_errno(setsockopt(sockfd, level, optname, 2205 &pki, sizeof(pki))); 2206 break; 2207 } 2208 case IPV6_ADD_MEMBERSHIP: 2209 case IPV6_DROP_MEMBERSHIP: 2210 { 2211 struct ipv6_mreq ipv6mreq; 2212 2213 if (optlen < sizeof(ipv6mreq)) { 2214 return -TARGET_EINVAL; 2215 } 2216 2217 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) { 2218 return -TARGET_EFAULT; 2219 } 2220 2221 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface); 2222 2223 ret = get_errno(setsockopt(sockfd, level, optname, 2224 &ipv6mreq, sizeof(ipv6mreq))); 2225 break; 2226 } 2227 default: 2228 goto unimplemented; 2229 } 2230 break; 2231 case SOL_ICMPV6: 2232 switch (optname) { 2233 case ICMPV6_FILTER: 2234 { 2235 struct icmp6_filter icmp6f; 2236 2237 if (optlen > sizeof(icmp6f)) { 2238 optlen = sizeof(icmp6f); 2239 } 2240 2241 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 2242 return -TARGET_EFAULT; 2243 } 2244 2245 for (val = 0; val < 8; val++) { 2246 icmp6f.data[val] = tswap32(icmp6f.data[val]); 2247 } 2248 2249 ret = get_errno(setsockopt(sockfd, level, optname, 2250 &icmp6f, optlen)); 2251 break; 2252 } 2253 default: 2254 goto unimplemented; 2255 } 2256 break; 2257 case SOL_RAW: 2258 switch (optname) { 2259 case ICMP_FILTER: 2260 case IPV6_CHECKSUM: 2261 /* those take an u32 value */ 2262 if (optlen < sizeof(uint32_t)) { 2263 return -TARGET_EINVAL; 2264 } 2265 2266 if (get_user_u32(val, optval_addr)) { 2267 return -TARGET_EFAULT; 2268 } 2269 ret = get_errno(setsockopt(sockfd, level, optname, 2270 &val, sizeof(val))); 2271 break; 2272 2273 default: 2274 goto unimplemented; 2275 } 2276 break; 2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE) 2278 case SOL_ALG: 2279 switch (optname) { 2280 case ALG_SET_KEY: 2281 { 2282 char *alg_key = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2283 if (!alg_key) { 2284 return -TARGET_EFAULT; 2285 } 2286 ret = get_errno(setsockopt(sockfd, level, optname, 2287 alg_key, optlen)); 2288 unlock_user(alg_key, optval_addr, optlen); 2289 break; 2290 } 2291 case ALG_SET_AEAD_AUTHSIZE: 2292 { 2293 ret = get_errno(setsockopt(sockfd, level, optname, 2294 NULL, optlen)); 2295 break; 2296 } 2297 default: 2298 goto unimplemented; 2299 } 2300 break; 2301 #endif 2302 case TARGET_SOL_SOCKET: 2303 switch (optname) { 2304 case TARGET_SO_RCVTIMEO: 2305 case TARGET_SO_SNDTIMEO: 2306 { 2307 struct timeval tv; 2308 2309 if (optlen != sizeof(struct target_timeval)) { 2310 return -TARGET_EINVAL; 2311 } 2312 2313 if (copy_from_user_timeval(&tv, optval_addr)) { 2314 return -TARGET_EFAULT; 2315 } 2316 2317 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2318 optname == TARGET_SO_RCVTIMEO ? 2319 SO_RCVTIMEO : SO_SNDTIMEO, 2320 &tv, sizeof(tv))); 2321 return ret; 2322 } 2323 case TARGET_SO_ATTACH_FILTER: 2324 { 2325 struct target_sock_fprog *tfprog; 2326 struct target_sock_filter *tfilter; 2327 struct sock_fprog fprog; 2328 struct sock_filter *filter; 2329 int i; 2330 2331 if (optlen != sizeof(*tfprog)) { 2332 return -TARGET_EINVAL; 2333 } 2334 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2335 return -TARGET_EFAULT; 2336 } 2337 if (!lock_user_struct(VERIFY_READ, tfilter, 2338 tswapal(tfprog->filter), 0)) { 2339 unlock_user_struct(tfprog, optval_addr, 1); 2340 return -TARGET_EFAULT; 2341 } 2342 2343 fprog.len = tswap16(tfprog->len); 2344 filter = g_try_new(struct sock_filter, fprog.len); 2345 if (filter == NULL) { 2346 unlock_user_struct(tfilter, tfprog->filter, 1); 2347 unlock_user_struct(tfprog, optval_addr, 1); 2348 return -TARGET_ENOMEM; 2349 } 2350 for (i = 0; i < fprog.len; i++) { 2351 filter[i].code = tswap16(tfilter[i].code); 2352 filter[i].jt = tfilter[i].jt; 2353 filter[i].jf = tfilter[i].jf; 2354 filter[i].k = tswap32(tfilter[i].k); 2355 } 2356 fprog.filter = filter; 2357 2358 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2359 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2360 g_free(filter); 2361 2362 unlock_user_struct(tfilter, tfprog->filter, 1); 2363 unlock_user_struct(tfprog, optval_addr, 1); 2364 return ret; 2365 } 2366 case TARGET_SO_BINDTODEVICE: 2367 { 2368 char *dev_ifname, *addr_ifname; 2369 2370 if (optlen > IFNAMSIZ - 1) { 2371 optlen = IFNAMSIZ - 1; 2372 } 2373 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2374 if (!dev_ifname) { 2375 return -TARGET_EFAULT; 2376 } 2377 optname = SO_BINDTODEVICE; 2378 addr_ifname = alloca(IFNAMSIZ); 2379 memcpy(addr_ifname, dev_ifname, optlen); 2380 addr_ifname[optlen] = 0; 2381 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2382 addr_ifname, optlen)); 2383 unlock_user (dev_ifname, optval_addr, 0); 2384 return ret; 2385 } 2386 case TARGET_SO_LINGER: 2387 { 2388 struct linger lg; 2389 struct target_linger *tlg; 2390 2391 if (optlen != sizeof(struct target_linger)) { 2392 return -TARGET_EINVAL; 2393 } 2394 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) { 2395 return -TARGET_EFAULT; 2396 } 2397 __get_user(lg.l_onoff, &tlg->l_onoff); 2398 __get_user(lg.l_linger, &tlg->l_linger); 2399 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER, 2400 &lg, sizeof(lg))); 2401 unlock_user_struct(tlg, optval_addr, 0); 2402 return ret; 2403 } 2404 /* Options with 'int' argument. */ 2405 case TARGET_SO_DEBUG: 2406 optname = SO_DEBUG; 2407 break; 2408 case TARGET_SO_REUSEADDR: 2409 optname = SO_REUSEADDR; 2410 break; 2411 #ifdef SO_REUSEPORT 2412 case TARGET_SO_REUSEPORT: 2413 optname = SO_REUSEPORT; 2414 break; 2415 #endif 2416 case TARGET_SO_TYPE: 2417 optname = SO_TYPE; 2418 break; 2419 case TARGET_SO_ERROR: 2420 optname = SO_ERROR; 2421 break; 2422 case TARGET_SO_DONTROUTE: 2423 optname = SO_DONTROUTE; 2424 break; 2425 case TARGET_SO_BROADCAST: 2426 optname = SO_BROADCAST; 2427 break; 2428 case TARGET_SO_SNDBUF: 2429 optname = SO_SNDBUF; 2430 break; 2431 case TARGET_SO_SNDBUFFORCE: 2432 optname = SO_SNDBUFFORCE; 2433 break; 2434 case TARGET_SO_RCVBUF: 2435 optname = SO_RCVBUF; 2436 break; 2437 case TARGET_SO_RCVBUFFORCE: 2438 optname = SO_RCVBUFFORCE; 2439 break; 2440 case TARGET_SO_KEEPALIVE: 2441 optname = SO_KEEPALIVE; 2442 break; 2443 case TARGET_SO_OOBINLINE: 2444 optname = SO_OOBINLINE; 2445 break; 2446 case TARGET_SO_NO_CHECK: 2447 optname = SO_NO_CHECK; 2448 break; 2449 case TARGET_SO_PRIORITY: 2450 optname = SO_PRIORITY; 2451 break; 2452 #ifdef SO_BSDCOMPAT 2453 case TARGET_SO_BSDCOMPAT: 2454 optname = SO_BSDCOMPAT; 2455 break; 2456 #endif 2457 case TARGET_SO_PASSCRED: 2458 optname = SO_PASSCRED; 2459 break; 2460 case TARGET_SO_PASSSEC: 2461 optname = SO_PASSSEC; 2462 break; 2463 case TARGET_SO_TIMESTAMP: 2464 optname = SO_TIMESTAMP; 2465 break; 2466 case TARGET_SO_RCVLOWAT: 2467 optname = SO_RCVLOWAT; 2468 break; 2469 default: 2470 goto unimplemented; 2471 } 2472 if (optlen < sizeof(uint32_t)) 2473 return -TARGET_EINVAL; 2474 2475 if (get_user_u32(val, optval_addr)) 2476 return -TARGET_EFAULT; 2477 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 2478 break; 2479 #ifdef SOL_NETLINK 2480 case SOL_NETLINK: 2481 switch (optname) { 2482 case NETLINK_PKTINFO: 2483 case NETLINK_ADD_MEMBERSHIP: 2484 case NETLINK_DROP_MEMBERSHIP: 2485 case NETLINK_BROADCAST_ERROR: 2486 case NETLINK_NO_ENOBUFS: 2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2488 case NETLINK_LISTEN_ALL_NSID: 2489 case NETLINK_CAP_ACK: 2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2492 case NETLINK_EXT_ACK: 2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2495 case NETLINK_GET_STRICT_CHK: 2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2497 break; 2498 default: 2499 goto unimplemented; 2500 } 2501 val = 0; 2502 if (optlen < sizeof(uint32_t)) { 2503 return -TARGET_EINVAL; 2504 } 2505 if (get_user_u32(val, optval_addr)) { 2506 return -TARGET_EFAULT; 2507 } 2508 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val, 2509 sizeof(val))); 2510 break; 2511 #endif /* SOL_NETLINK */ 2512 default: 2513 unimplemented: 2514 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n", 2515 level, optname); 2516 ret = -TARGET_ENOPROTOOPT; 2517 } 2518 return ret; 2519 } 2520 2521 /* do_getsockopt() Must return target values and target errnos. */ 2522 static abi_long do_getsockopt(int sockfd, int level, int optname, 2523 abi_ulong optval_addr, abi_ulong optlen) 2524 { 2525 abi_long ret; 2526 int len, val; 2527 socklen_t lv; 2528 2529 switch(level) { 2530 case TARGET_SOL_SOCKET: 2531 level = SOL_SOCKET; 2532 switch (optname) { 2533 /* These don't just return a single integer */ 2534 case TARGET_SO_PEERNAME: 2535 goto unimplemented; 2536 case TARGET_SO_RCVTIMEO: { 2537 struct timeval tv; 2538 socklen_t tvlen; 2539 2540 optname = SO_RCVTIMEO; 2541 2542 get_timeout: 2543 if (get_user_u32(len, optlen)) { 2544 return -TARGET_EFAULT; 2545 } 2546 if (len < 0) { 2547 return -TARGET_EINVAL; 2548 } 2549 2550 tvlen = sizeof(tv); 2551 ret = get_errno(getsockopt(sockfd, level, optname, 2552 &tv, &tvlen)); 2553 if (ret < 0) { 2554 return ret; 2555 } 2556 if (len > sizeof(struct target_timeval)) { 2557 len = sizeof(struct target_timeval); 2558 } 2559 if (copy_to_user_timeval(optval_addr, &tv)) { 2560 return -TARGET_EFAULT; 2561 } 2562 if (put_user_u32(len, optlen)) { 2563 return -TARGET_EFAULT; 2564 } 2565 break; 2566 } 2567 case TARGET_SO_SNDTIMEO: 2568 optname = SO_SNDTIMEO; 2569 goto get_timeout; 2570 case TARGET_SO_PEERCRED: { 2571 struct ucred cr; 2572 socklen_t crlen; 2573 struct target_ucred *tcr; 2574 2575 if (get_user_u32(len, optlen)) { 2576 return -TARGET_EFAULT; 2577 } 2578 if (len < 0) { 2579 return -TARGET_EINVAL; 2580 } 2581 2582 crlen = sizeof(cr); 2583 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 2584 &cr, &crlen)); 2585 if (ret < 0) { 2586 return ret; 2587 } 2588 if (len > crlen) { 2589 len = crlen; 2590 } 2591 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 2592 return -TARGET_EFAULT; 2593 } 2594 __put_user(cr.pid, &tcr->pid); 2595 __put_user(cr.uid, &tcr->uid); 2596 __put_user(cr.gid, &tcr->gid); 2597 unlock_user_struct(tcr, optval_addr, 1); 2598 if (put_user_u32(len, optlen)) { 2599 return -TARGET_EFAULT; 2600 } 2601 break; 2602 } 2603 case TARGET_SO_PEERSEC: { 2604 char *name; 2605 2606 if (get_user_u32(len, optlen)) { 2607 return -TARGET_EFAULT; 2608 } 2609 if (len < 0) { 2610 return -TARGET_EINVAL; 2611 } 2612 name = lock_user(VERIFY_WRITE, optval_addr, len, 0); 2613 if (!name) { 2614 return -TARGET_EFAULT; 2615 } 2616 lv = len; 2617 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC, 2618 name, &lv)); 2619 if (put_user_u32(lv, optlen)) { 2620 ret = -TARGET_EFAULT; 2621 } 2622 unlock_user(name, optval_addr, lv); 2623 break; 2624 } 2625 case TARGET_SO_LINGER: 2626 { 2627 struct linger lg; 2628 socklen_t lglen; 2629 struct target_linger *tlg; 2630 2631 if (get_user_u32(len, optlen)) { 2632 return -TARGET_EFAULT; 2633 } 2634 if (len < 0) { 2635 return -TARGET_EINVAL; 2636 } 2637 2638 lglen = sizeof(lg); 2639 ret = get_errno(getsockopt(sockfd, level, SO_LINGER, 2640 &lg, &lglen)); 2641 if (ret < 0) { 2642 return ret; 2643 } 2644 if (len > lglen) { 2645 len = lglen; 2646 } 2647 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) { 2648 return -TARGET_EFAULT; 2649 } 2650 __put_user(lg.l_onoff, &tlg->l_onoff); 2651 __put_user(lg.l_linger, &tlg->l_linger); 2652 unlock_user_struct(tlg, optval_addr, 1); 2653 if (put_user_u32(len, optlen)) { 2654 return -TARGET_EFAULT; 2655 } 2656 break; 2657 } 2658 /* Options with 'int' argument. */ 2659 case TARGET_SO_DEBUG: 2660 optname = SO_DEBUG; 2661 goto int_case; 2662 case TARGET_SO_REUSEADDR: 2663 optname = SO_REUSEADDR; 2664 goto int_case; 2665 #ifdef SO_REUSEPORT 2666 case TARGET_SO_REUSEPORT: 2667 optname = SO_REUSEPORT; 2668 goto int_case; 2669 #endif 2670 case TARGET_SO_TYPE: 2671 optname = SO_TYPE; 2672 goto int_case; 2673 case TARGET_SO_ERROR: 2674 optname = SO_ERROR; 2675 goto int_case; 2676 case TARGET_SO_DONTROUTE: 2677 optname = SO_DONTROUTE; 2678 goto int_case; 2679 case TARGET_SO_BROADCAST: 2680 optname = SO_BROADCAST; 2681 goto int_case; 2682 case TARGET_SO_SNDBUF: 2683 optname = SO_SNDBUF; 2684 goto int_case; 2685 case TARGET_SO_RCVBUF: 2686 optname = SO_RCVBUF; 2687 goto int_case; 2688 case TARGET_SO_KEEPALIVE: 2689 optname = SO_KEEPALIVE; 2690 goto int_case; 2691 case TARGET_SO_OOBINLINE: 2692 optname = SO_OOBINLINE; 2693 goto int_case; 2694 case TARGET_SO_NO_CHECK: 2695 optname = SO_NO_CHECK; 2696 goto int_case; 2697 case TARGET_SO_PRIORITY: 2698 optname = SO_PRIORITY; 2699 goto int_case; 2700 #ifdef SO_BSDCOMPAT 2701 case TARGET_SO_BSDCOMPAT: 2702 optname = SO_BSDCOMPAT; 2703 goto int_case; 2704 #endif 2705 case TARGET_SO_PASSCRED: 2706 optname = SO_PASSCRED; 2707 goto int_case; 2708 case TARGET_SO_TIMESTAMP: 2709 optname = SO_TIMESTAMP; 2710 goto int_case; 2711 case TARGET_SO_RCVLOWAT: 2712 optname = SO_RCVLOWAT; 2713 goto int_case; 2714 case TARGET_SO_ACCEPTCONN: 2715 optname = SO_ACCEPTCONN; 2716 goto int_case; 2717 case TARGET_SO_PROTOCOL: 2718 optname = SO_PROTOCOL; 2719 goto int_case; 2720 case TARGET_SO_DOMAIN: 2721 optname = SO_DOMAIN; 2722 goto int_case; 2723 default: 2724 goto int_case; 2725 } 2726 break; 2727 case SOL_TCP: 2728 case SOL_UDP: 2729 /* TCP and UDP options all take an 'int' value. */ 2730 int_case: 2731 if (get_user_u32(len, optlen)) 2732 return -TARGET_EFAULT; 2733 if (len < 0) 2734 return -TARGET_EINVAL; 2735 lv = sizeof(lv); 2736 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2737 if (ret < 0) 2738 return ret; 2739 switch (optname) { 2740 case SO_TYPE: 2741 val = host_to_target_sock_type(val); 2742 break; 2743 case SO_ERROR: 2744 val = host_to_target_errno(val); 2745 break; 2746 } 2747 if (len > lv) 2748 len = lv; 2749 if (len == 4) { 2750 if (put_user_u32(val, optval_addr)) 2751 return -TARGET_EFAULT; 2752 } else { 2753 if (put_user_u8(val, optval_addr)) 2754 return -TARGET_EFAULT; 2755 } 2756 if (put_user_u32(len, optlen)) 2757 return -TARGET_EFAULT; 2758 break; 2759 case SOL_IP: 2760 switch(optname) { 2761 case IP_TOS: 2762 case IP_TTL: 2763 case IP_HDRINCL: 2764 case IP_ROUTER_ALERT: 2765 case IP_RECVOPTS: 2766 case IP_RETOPTS: 2767 case IP_PKTINFO: 2768 case IP_MTU_DISCOVER: 2769 case IP_RECVERR: 2770 case IP_RECVTOS: 2771 #ifdef IP_FREEBIND 2772 case IP_FREEBIND: 2773 #endif 2774 case IP_MULTICAST_TTL: 2775 case IP_MULTICAST_LOOP: 2776 if (get_user_u32(len, optlen)) 2777 return -TARGET_EFAULT; 2778 if (len < 0) 2779 return -TARGET_EINVAL; 2780 lv = sizeof(lv); 2781 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2782 if (ret < 0) 2783 return ret; 2784 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2785 len = 1; 2786 if (put_user_u32(len, optlen) 2787 || put_user_u8(val, optval_addr)) 2788 return -TARGET_EFAULT; 2789 } else { 2790 if (len > sizeof(int)) 2791 len = sizeof(int); 2792 if (put_user_u32(len, optlen) 2793 || put_user_u32(val, optval_addr)) 2794 return -TARGET_EFAULT; 2795 } 2796 break; 2797 default: 2798 ret = -TARGET_ENOPROTOOPT; 2799 break; 2800 } 2801 break; 2802 case SOL_IPV6: 2803 switch (optname) { 2804 case IPV6_MTU_DISCOVER: 2805 case IPV6_MTU: 2806 case IPV6_V6ONLY: 2807 case IPV6_RECVPKTINFO: 2808 case IPV6_UNICAST_HOPS: 2809 case IPV6_MULTICAST_HOPS: 2810 case IPV6_MULTICAST_LOOP: 2811 case IPV6_RECVERR: 2812 case IPV6_RECVHOPLIMIT: 2813 case IPV6_2292HOPLIMIT: 2814 case IPV6_CHECKSUM: 2815 case IPV6_ADDRFORM: 2816 case IPV6_2292PKTINFO: 2817 case IPV6_RECVTCLASS: 2818 case IPV6_RECVRTHDR: 2819 case IPV6_2292RTHDR: 2820 case IPV6_RECVHOPOPTS: 2821 case IPV6_2292HOPOPTS: 2822 case IPV6_RECVDSTOPTS: 2823 case IPV6_2292DSTOPTS: 2824 case IPV6_TCLASS: 2825 case IPV6_ADDR_PREFERENCES: 2826 #ifdef IPV6_RECVPATHMTU 2827 case IPV6_RECVPATHMTU: 2828 #endif 2829 #ifdef IPV6_TRANSPARENT 2830 case IPV6_TRANSPARENT: 2831 #endif 2832 #ifdef IPV6_FREEBIND 2833 case IPV6_FREEBIND: 2834 #endif 2835 #ifdef IPV6_RECVORIGDSTADDR 2836 case IPV6_RECVORIGDSTADDR: 2837 #endif 2838 if (get_user_u32(len, optlen)) 2839 return -TARGET_EFAULT; 2840 if (len < 0) 2841 return -TARGET_EINVAL; 2842 lv = sizeof(lv); 2843 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2844 if (ret < 0) 2845 return ret; 2846 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2847 len = 1; 2848 if (put_user_u32(len, optlen) 2849 || put_user_u8(val, optval_addr)) 2850 return -TARGET_EFAULT; 2851 } else { 2852 if (len > sizeof(int)) 2853 len = sizeof(int); 2854 if (put_user_u32(len, optlen) 2855 || put_user_u32(val, optval_addr)) 2856 return -TARGET_EFAULT; 2857 } 2858 break; 2859 default: 2860 ret = -TARGET_ENOPROTOOPT; 2861 break; 2862 } 2863 break; 2864 #ifdef SOL_NETLINK 2865 case SOL_NETLINK: 2866 switch (optname) { 2867 case NETLINK_PKTINFO: 2868 case NETLINK_BROADCAST_ERROR: 2869 case NETLINK_NO_ENOBUFS: 2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2871 case NETLINK_LISTEN_ALL_NSID: 2872 case NETLINK_CAP_ACK: 2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2875 case NETLINK_EXT_ACK: 2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2878 case NETLINK_GET_STRICT_CHK: 2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2880 if (get_user_u32(len, optlen)) { 2881 return -TARGET_EFAULT; 2882 } 2883 if (len != sizeof(val)) { 2884 return -TARGET_EINVAL; 2885 } 2886 lv = len; 2887 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2888 if (ret < 0) { 2889 return ret; 2890 } 2891 if (put_user_u32(lv, optlen) 2892 || put_user_u32(val, optval_addr)) { 2893 return -TARGET_EFAULT; 2894 } 2895 break; 2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2897 case NETLINK_LIST_MEMBERSHIPS: 2898 { 2899 uint32_t *results; 2900 int i; 2901 if (get_user_u32(len, optlen)) { 2902 return -TARGET_EFAULT; 2903 } 2904 if (len < 0) { 2905 return -TARGET_EINVAL; 2906 } 2907 results = lock_user(VERIFY_WRITE, optval_addr, len, 1); 2908 if (!results && len > 0) { 2909 return -TARGET_EFAULT; 2910 } 2911 lv = len; 2912 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv)); 2913 if (ret < 0) { 2914 unlock_user(results, optval_addr, 0); 2915 return ret; 2916 } 2917 /* swap host endianness to target endianness. */ 2918 for (i = 0; i < (len / sizeof(uint32_t)); i++) { 2919 results[i] = tswap32(results[i]); 2920 } 2921 if (put_user_u32(lv, optlen)) { 2922 return -TARGET_EFAULT; 2923 } 2924 unlock_user(results, optval_addr, 0); 2925 break; 2926 } 2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2928 default: 2929 goto unimplemented; 2930 } 2931 break; 2932 #endif /* SOL_NETLINK */ 2933 default: 2934 unimplemented: 2935 qemu_log_mask(LOG_UNIMP, 2936 "getsockopt level=%d optname=%d not yet supported\n", 2937 level, optname); 2938 ret = -TARGET_EOPNOTSUPP; 2939 break; 2940 } 2941 return ret; 2942 } 2943 2944 /* Convert target low/high pair representing file offset into the host 2945 * low/high pair. This function doesn't handle offsets bigger than 64 bits 2946 * as the kernel doesn't handle them either. 2947 */ 2948 static void target_to_host_low_high(abi_ulong tlow, 2949 abi_ulong thigh, 2950 unsigned long *hlow, 2951 unsigned long *hhigh) 2952 { 2953 uint64_t off = tlow | 2954 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) << 2955 TARGET_LONG_BITS / 2; 2956 2957 *hlow = off; 2958 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2; 2959 } 2960 2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 2962 abi_ulong count, int copy) 2963 { 2964 struct target_iovec *target_vec; 2965 struct iovec *vec; 2966 abi_ulong total_len, max_len; 2967 int i; 2968 int err = 0; 2969 bool bad_address = false; 2970 2971 if (count == 0) { 2972 errno = 0; 2973 return NULL; 2974 } 2975 if (count > IOV_MAX) { 2976 errno = EINVAL; 2977 return NULL; 2978 } 2979 2980 vec = g_try_new0(struct iovec, count); 2981 if (vec == NULL) { 2982 errno = ENOMEM; 2983 return NULL; 2984 } 2985 2986 target_vec = lock_user(VERIFY_READ, target_addr, 2987 count * sizeof(struct target_iovec), 1); 2988 if (target_vec == NULL) { 2989 err = EFAULT; 2990 goto fail2; 2991 } 2992 2993 /* ??? If host page size > target page size, this will result in a 2994 value larger than what we can actually support. */ 2995 max_len = 0x7fffffff & TARGET_PAGE_MASK; 2996 total_len = 0; 2997 2998 for (i = 0; i < count; i++) { 2999 abi_ulong base = tswapal(target_vec[i].iov_base); 3000 abi_long len = tswapal(target_vec[i].iov_len); 3001 3002 if (len < 0) { 3003 err = EINVAL; 3004 goto fail; 3005 } else if (len == 0) { 3006 /* Zero length pointer is ignored. */ 3007 vec[i].iov_base = 0; 3008 } else { 3009 vec[i].iov_base = lock_user(type, base, len, copy); 3010 /* If the first buffer pointer is bad, this is a fault. But 3011 * subsequent bad buffers will result in a partial write; this 3012 * is realized by filling the vector with null pointers and 3013 * zero lengths. */ 3014 if (!vec[i].iov_base) { 3015 if (i == 0) { 3016 err = EFAULT; 3017 goto fail; 3018 } else { 3019 bad_address = true; 3020 } 3021 } 3022 if (bad_address) { 3023 len = 0; 3024 } 3025 if (len > max_len - total_len) { 3026 len = max_len - total_len; 3027 } 3028 } 3029 vec[i].iov_len = len; 3030 total_len += len; 3031 } 3032 3033 unlock_user(target_vec, target_addr, 0); 3034 return vec; 3035 3036 fail: 3037 while (--i >= 0) { 3038 if (tswapal(target_vec[i].iov_len) > 0) { 3039 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3040 } 3041 } 3042 unlock_user(target_vec, target_addr, 0); 3043 fail2: 3044 g_free(vec); 3045 errno = err; 3046 return NULL; 3047 } 3048 3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3050 abi_ulong count, int copy) 3051 { 3052 struct target_iovec *target_vec; 3053 int i; 3054 3055 target_vec = lock_user(VERIFY_READ, target_addr, 3056 count * sizeof(struct target_iovec), 1); 3057 if (target_vec) { 3058 for (i = 0; i < count; i++) { 3059 abi_ulong base = tswapal(target_vec[i].iov_base); 3060 abi_long len = tswapal(target_vec[i].iov_len); 3061 if (len < 0) { 3062 break; 3063 } 3064 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3065 } 3066 unlock_user(target_vec, target_addr, 0); 3067 } 3068 3069 g_free(vec); 3070 } 3071 3072 static inline int target_to_host_sock_type(int *type) 3073 { 3074 int host_type = 0; 3075 int target_type = *type; 3076 3077 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3078 case TARGET_SOCK_DGRAM: 3079 host_type = SOCK_DGRAM; 3080 break; 3081 case TARGET_SOCK_STREAM: 3082 host_type = SOCK_STREAM; 3083 break; 3084 default: 3085 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3086 break; 3087 } 3088 if (target_type & TARGET_SOCK_CLOEXEC) { 3089 #if defined(SOCK_CLOEXEC) 3090 host_type |= SOCK_CLOEXEC; 3091 #else 3092 return -TARGET_EINVAL; 3093 #endif 3094 } 3095 if (target_type & TARGET_SOCK_NONBLOCK) { 3096 #if defined(SOCK_NONBLOCK) 3097 host_type |= SOCK_NONBLOCK; 3098 #elif !defined(O_NONBLOCK) 3099 return -TARGET_EINVAL; 3100 #endif 3101 } 3102 *type = host_type; 3103 return 0; 3104 } 3105 3106 /* Try to emulate socket type flags after socket creation. */ 3107 static int sock_flags_fixup(int fd, int target_type) 3108 { 3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3110 if (target_type & TARGET_SOCK_NONBLOCK) { 3111 int flags = fcntl(fd, F_GETFL); 3112 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3113 close(fd); 3114 return -TARGET_EINVAL; 3115 } 3116 } 3117 #endif 3118 return fd; 3119 } 3120 3121 /* do_socket() Must return target values and target errnos. */ 3122 static abi_long do_socket(int domain, int type, int protocol) 3123 { 3124 int target_type = type; 3125 int ret; 3126 3127 ret = target_to_host_sock_type(&type); 3128 if (ret) { 3129 return ret; 3130 } 3131 3132 if (domain == PF_NETLINK && !( 3133 #ifdef CONFIG_RTNETLINK 3134 protocol == NETLINK_ROUTE || 3135 #endif 3136 protocol == NETLINK_KOBJECT_UEVENT || 3137 protocol == NETLINK_AUDIT)) { 3138 return -TARGET_EPROTONOSUPPORT; 3139 } 3140 3141 if (domain == AF_PACKET || 3142 (domain == AF_INET && type == SOCK_PACKET)) { 3143 protocol = tswap16(protocol); 3144 } 3145 3146 ret = get_errno(socket(domain, type, protocol)); 3147 if (ret >= 0) { 3148 ret = sock_flags_fixup(ret, target_type); 3149 if (type == SOCK_PACKET) { 3150 /* Manage an obsolete case : 3151 * if socket type is SOCK_PACKET, bind by name 3152 */ 3153 fd_trans_register(ret, &target_packet_trans); 3154 } else if (domain == PF_NETLINK) { 3155 switch (protocol) { 3156 #ifdef CONFIG_RTNETLINK 3157 case NETLINK_ROUTE: 3158 fd_trans_register(ret, &target_netlink_route_trans); 3159 break; 3160 #endif 3161 case NETLINK_KOBJECT_UEVENT: 3162 /* nothing to do: messages are strings */ 3163 break; 3164 case NETLINK_AUDIT: 3165 fd_trans_register(ret, &target_netlink_audit_trans); 3166 break; 3167 default: 3168 g_assert_not_reached(); 3169 } 3170 } 3171 } 3172 return ret; 3173 } 3174 3175 /* do_bind() Must return target values and target errnos. */ 3176 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3177 socklen_t addrlen) 3178 { 3179 void *addr; 3180 abi_long ret; 3181 3182 if ((int)addrlen < 0) { 3183 return -TARGET_EINVAL; 3184 } 3185 3186 addr = alloca(addrlen+1); 3187 3188 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3189 if (ret) 3190 return ret; 3191 3192 return get_errno(bind(sockfd, addr, addrlen)); 3193 } 3194 3195 /* do_connect() Must return target values and target errnos. */ 3196 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3197 socklen_t addrlen) 3198 { 3199 void *addr; 3200 abi_long ret; 3201 3202 if ((int)addrlen < 0) { 3203 return -TARGET_EINVAL; 3204 } 3205 3206 addr = alloca(addrlen+1); 3207 3208 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3209 if (ret) 3210 return ret; 3211 3212 return get_errno(safe_connect(sockfd, addr, addrlen)); 3213 } 3214 3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3217 int flags, int send) 3218 { 3219 abi_long ret, len; 3220 struct msghdr msg; 3221 abi_ulong count; 3222 struct iovec *vec; 3223 abi_ulong target_vec; 3224 3225 if (msgp->msg_name) { 3226 msg.msg_namelen = tswap32(msgp->msg_namelen); 3227 msg.msg_name = alloca(msg.msg_namelen+1); 3228 ret = target_to_host_sockaddr(fd, msg.msg_name, 3229 tswapal(msgp->msg_name), 3230 msg.msg_namelen); 3231 if (ret == -TARGET_EFAULT) { 3232 /* For connected sockets msg_name and msg_namelen must 3233 * be ignored, so returning EFAULT immediately is wrong. 3234 * Instead, pass a bad msg_name to the host kernel, and 3235 * let it decide whether to return EFAULT or not. 3236 */ 3237 msg.msg_name = (void *)-1; 3238 } else if (ret) { 3239 goto out2; 3240 } 3241 } else { 3242 msg.msg_name = NULL; 3243 msg.msg_namelen = 0; 3244 } 3245 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3246 msg.msg_control = alloca(msg.msg_controllen); 3247 memset(msg.msg_control, 0, msg.msg_controllen); 3248 3249 msg.msg_flags = tswap32(msgp->msg_flags); 3250 3251 count = tswapal(msgp->msg_iovlen); 3252 target_vec = tswapal(msgp->msg_iov); 3253 3254 if (count > IOV_MAX) { 3255 /* sendrcvmsg returns a different errno for this condition than 3256 * readv/writev, so we must catch it here before lock_iovec() does. 3257 */ 3258 ret = -TARGET_EMSGSIZE; 3259 goto out2; 3260 } 3261 3262 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3263 target_vec, count, send); 3264 if (vec == NULL) { 3265 ret = -host_to_target_errno(errno); 3266 /* allow sending packet without any iov, e.g. with MSG_MORE flag */ 3267 if (!send || ret) { 3268 goto out2; 3269 } 3270 } 3271 msg.msg_iovlen = count; 3272 msg.msg_iov = vec; 3273 3274 if (send) { 3275 if (fd_trans_target_to_host_data(fd)) { 3276 void *host_msg; 3277 3278 host_msg = g_malloc(msg.msg_iov->iov_len); 3279 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3280 ret = fd_trans_target_to_host_data(fd)(host_msg, 3281 msg.msg_iov->iov_len); 3282 if (ret >= 0) { 3283 msg.msg_iov->iov_base = host_msg; 3284 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3285 } 3286 g_free(host_msg); 3287 } else { 3288 ret = target_to_host_cmsg(&msg, msgp); 3289 if (ret == 0) { 3290 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3291 } 3292 } 3293 } else { 3294 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3295 if (!is_error(ret)) { 3296 len = ret; 3297 if (fd_trans_host_to_target_data(fd)) { 3298 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3299 MIN(msg.msg_iov->iov_len, len)); 3300 } 3301 if (!is_error(ret)) { 3302 ret = host_to_target_cmsg(msgp, &msg); 3303 } 3304 if (!is_error(ret)) { 3305 msgp->msg_namelen = tswap32(msg.msg_namelen); 3306 msgp->msg_flags = tswap32(msg.msg_flags); 3307 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3308 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3309 msg.msg_name, msg.msg_namelen); 3310 if (ret) { 3311 goto out; 3312 } 3313 } 3314 3315 ret = len; 3316 } 3317 } 3318 } 3319 3320 out: 3321 if (vec) { 3322 unlock_iovec(vec, target_vec, count, !send); 3323 } 3324 out2: 3325 return ret; 3326 } 3327 3328 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3329 int flags, int send) 3330 { 3331 abi_long ret; 3332 struct target_msghdr *msgp; 3333 3334 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3335 msgp, 3336 target_msg, 3337 send ? 1 : 0)) { 3338 return -TARGET_EFAULT; 3339 } 3340 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3341 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3342 return ret; 3343 } 3344 3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3346 * so it might not have this *mmsg-specific flag either. 3347 */ 3348 #ifndef MSG_WAITFORONE 3349 #define MSG_WAITFORONE 0x10000 3350 #endif 3351 3352 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3353 unsigned int vlen, unsigned int flags, 3354 int send) 3355 { 3356 struct target_mmsghdr *mmsgp; 3357 abi_long ret = 0; 3358 int i; 3359 3360 if (vlen > UIO_MAXIOV) { 3361 vlen = UIO_MAXIOV; 3362 } 3363 3364 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3365 if (!mmsgp) { 3366 return -TARGET_EFAULT; 3367 } 3368 3369 for (i = 0; i < vlen; i++) { 3370 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3371 if (is_error(ret)) { 3372 break; 3373 } 3374 mmsgp[i].msg_len = tswap32(ret); 3375 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3376 if (flags & MSG_WAITFORONE) { 3377 flags |= MSG_DONTWAIT; 3378 } 3379 } 3380 3381 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3382 3383 /* Return number of datagrams sent if we sent any at all; 3384 * otherwise return the error. 3385 */ 3386 if (i) { 3387 return i; 3388 } 3389 return ret; 3390 } 3391 3392 /* do_accept4() Must return target values and target errnos. */ 3393 static abi_long do_accept4(int fd, abi_ulong target_addr, 3394 abi_ulong target_addrlen_addr, int flags) 3395 { 3396 socklen_t addrlen, ret_addrlen; 3397 void *addr; 3398 abi_long ret; 3399 int host_flags; 3400 3401 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) { 3402 return -TARGET_EINVAL; 3403 } 3404 3405 host_flags = 0; 3406 if (flags & TARGET_SOCK_NONBLOCK) { 3407 host_flags |= SOCK_NONBLOCK; 3408 } 3409 if (flags & TARGET_SOCK_CLOEXEC) { 3410 host_flags |= SOCK_CLOEXEC; 3411 } 3412 3413 if (target_addr == 0) { 3414 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3415 } 3416 3417 /* linux returns EFAULT if addrlen pointer is invalid */ 3418 if (get_user_u32(addrlen, target_addrlen_addr)) 3419 return -TARGET_EFAULT; 3420 3421 if ((int)addrlen < 0) { 3422 return -TARGET_EINVAL; 3423 } 3424 3425 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3426 return -TARGET_EFAULT; 3427 } 3428 3429 addr = alloca(addrlen); 3430 3431 ret_addrlen = addrlen; 3432 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags)); 3433 if (!is_error(ret)) { 3434 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3435 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3436 ret = -TARGET_EFAULT; 3437 } 3438 } 3439 return ret; 3440 } 3441 3442 /* do_getpeername() Must return target values and target errnos. */ 3443 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3444 abi_ulong target_addrlen_addr) 3445 { 3446 socklen_t addrlen, ret_addrlen; 3447 void *addr; 3448 abi_long ret; 3449 3450 if (get_user_u32(addrlen, target_addrlen_addr)) 3451 return -TARGET_EFAULT; 3452 3453 if ((int)addrlen < 0) { 3454 return -TARGET_EINVAL; 3455 } 3456 3457 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3458 return -TARGET_EFAULT; 3459 } 3460 3461 addr = alloca(addrlen); 3462 3463 ret_addrlen = addrlen; 3464 ret = get_errno(getpeername(fd, addr, &ret_addrlen)); 3465 if (!is_error(ret)) { 3466 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3467 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3468 ret = -TARGET_EFAULT; 3469 } 3470 } 3471 return ret; 3472 } 3473 3474 /* do_getsockname() Must return target values and target errnos. */ 3475 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3476 abi_ulong target_addrlen_addr) 3477 { 3478 socklen_t addrlen, ret_addrlen; 3479 void *addr; 3480 abi_long ret; 3481 3482 if (get_user_u32(addrlen, target_addrlen_addr)) 3483 return -TARGET_EFAULT; 3484 3485 if ((int)addrlen < 0) { 3486 return -TARGET_EINVAL; 3487 } 3488 3489 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3490 return -TARGET_EFAULT; 3491 } 3492 3493 addr = alloca(addrlen); 3494 3495 ret_addrlen = addrlen; 3496 ret = get_errno(getsockname(fd, addr, &ret_addrlen)); 3497 if (!is_error(ret)) { 3498 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3499 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3500 ret = -TARGET_EFAULT; 3501 } 3502 } 3503 return ret; 3504 } 3505 3506 /* do_socketpair() Must return target values and target errnos. */ 3507 static abi_long do_socketpair(int domain, int type, int protocol, 3508 abi_ulong target_tab_addr) 3509 { 3510 int tab[2]; 3511 abi_long ret; 3512 3513 target_to_host_sock_type(&type); 3514 3515 ret = get_errno(socketpair(domain, type, protocol, tab)); 3516 if (!is_error(ret)) { 3517 if (put_user_s32(tab[0], target_tab_addr) 3518 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3519 ret = -TARGET_EFAULT; 3520 } 3521 return ret; 3522 } 3523 3524 /* do_sendto() Must return target values and target errnos. */ 3525 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3526 abi_ulong target_addr, socklen_t addrlen) 3527 { 3528 void *addr; 3529 void *host_msg; 3530 void *copy_msg = NULL; 3531 abi_long ret; 3532 3533 if ((int)addrlen < 0) { 3534 return -TARGET_EINVAL; 3535 } 3536 3537 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3538 if (!host_msg) 3539 return -TARGET_EFAULT; 3540 if (fd_trans_target_to_host_data(fd)) { 3541 copy_msg = host_msg; 3542 host_msg = g_malloc(len); 3543 memcpy(host_msg, copy_msg, len); 3544 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3545 if (ret < 0) { 3546 goto fail; 3547 } 3548 } 3549 if (target_addr) { 3550 addr = alloca(addrlen+1); 3551 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3552 if (ret) { 3553 goto fail; 3554 } 3555 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3556 } else { 3557 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3558 } 3559 fail: 3560 if (copy_msg) { 3561 g_free(host_msg); 3562 host_msg = copy_msg; 3563 } 3564 unlock_user(host_msg, msg, 0); 3565 return ret; 3566 } 3567 3568 /* do_recvfrom() Must return target values and target errnos. */ 3569 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3570 abi_ulong target_addr, 3571 abi_ulong target_addrlen) 3572 { 3573 socklen_t addrlen, ret_addrlen; 3574 void *addr; 3575 void *host_msg; 3576 abi_long ret; 3577 3578 if (!msg) { 3579 host_msg = NULL; 3580 } else { 3581 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3582 if (!host_msg) { 3583 return -TARGET_EFAULT; 3584 } 3585 } 3586 if (target_addr) { 3587 if (get_user_u32(addrlen, target_addrlen)) { 3588 ret = -TARGET_EFAULT; 3589 goto fail; 3590 } 3591 if ((int)addrlen < 0) { 3592 ret = -TARGET_EINVAL; 3593 goto fail; 3594 } 3595 addr = alloca(addrlen); 3596 ret_addrlen = addrlen; 3597 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3598 addr, &ret_addrlen)); 3599 } else { 3600 addr = NULL; /* To keep compiler quiet. */ 3601 addrlen = 0; /* To keep compiler quiet. */ 3602 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3603 } 3604 if (!is_error(ret)) { 3605 if (fd_trans_host_to_target_data(fd)) { 3606 abi_long trans; 3607 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len)); 3608 if (is_error(trans)) { 3609 ret = trans; 3610 goto fail; 3611 } 3612 } 3613 if (target_addr) { 3614 host_to_target_sockaddr(target_addr, addr, 3615 MIN(addrlen, ret_addrlen)); 3616 if (put_user_u32(ret_addrlen, target_addrlen)) { 3617 ret = -TARGET_EFAULT; 3618 goto fail; 3619 } 3620 } 3621 unlock_user(host_msg, msg, len); 3622 } else { 3623 fail: 3624 unlock_user(host_msg, msg, 0); 3625 } 3626 return ret; 3627 } 3628 3629 #ifdef TARGET_NR_socketcall 3630 /* do_socketcall() must return target values and target errnos. */ 3631 static abi_long do_socketcall(int num, abi_ulong vptr) 3632 { 3633 static const unsigned nargs[] = { /* number of arguments per operation */ 3634 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 3635 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 3636 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 3637 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 3638 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 3639 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 3640 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 3641 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 3642 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 3643 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 3644 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 3645 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 3646 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 3647 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3648 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3649 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 3650 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 3651 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 3652 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 3653 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 3654 }; 3655 abi_long a[6]; /* max 6 args */ 3656 unsigned i; 3657 3658 /* check the range of the first argument num */ 3659 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 3660 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 3661 return -TARGET_EINVAL; 3662 } 3663 /* ensure we have space for args */ 3664 if (nargs[num] > ARRAY_SIZE(a)) { 3665 return -TARGET_EINVAL; 3666 } 3667 /* collect the arguments in a[] according to nargs[] */ 3668 for (i = 0; i < nargs[num]; ++i) { 3669 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3670 return -TARGET_EFAULT; 3671 } 3672 } 3673 /* now when we have the args, invoke the appropriate underlying function */ 3674 switch (num) { 3675 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 3676 return do_socket(a[0], a[1], a[2]); 3677 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 3678 return do_bind(a[0], a[1], a[2]); 3679 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 3680 return do_connect(a[0], a[1], a[2]); 3681 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 3682 return get_errno(listen(a[0], a[1])); 3683 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 3684 return do_accept4(a[0], a[1], a[2], 0); 3685 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 3686 return do_getsockname(a[0], a[1], a[2]); 3687 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 3688 return do_getpeername(a[0], a[1], a[2]); 3689 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 3690 return do_socketpair(a[0], a[1], a[2], a[3]); 3691 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 3692 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3693 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 3694 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3695 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 3696 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3697 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 3698 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3699 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 3700 return get_errno(shutdown(a[0], a[1])); 3701 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3702 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3703 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3704 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3705 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 3706 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3707 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 3708 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3709 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 3710 return do_accept4(a[0], a[1], a[2], a[3]); 3711 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 3712 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 3713 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 3714 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 3715 default: 3716 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num); 3717 return -TARGET_EINVAL; 3718 } 3719 } 3720 #endif 3721 3722 #ifndef TARGET_SEMID64_DS 3723 /* asm-generic version of this struct */ 3724 struct target_semid64_ds 3725 { 3726 struct target_ipc_perm sem_perm; 3727 abi_ulong sem_otime; 3728 #if TARGET_ABI_BITS == 32 3729 abi_ulong __unused1; 3730 #endif 3731 abi_ulong sem_ctime; 3732 #if TARGET_ABI_BITS == 32 3733 abi_ulong __unused2; 3734 #endif 3735 abi_ulong sem_nsems; 3736 abi_ulong __unused3; 3737 abi_ulong __unused4; 3738 }; 3739 #endif 3740 3741 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 3742 abi_ulong target_addr) 3743 { 3744 struct target_ipc_perm *target_ip; 3745 struct target_semid64_ds *target_sd; 3746 3747 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3748 return -TARGET_EFAULT; 3749 target_ip = &(target_sd->sem_perm); 3750 host_ip->__key = tswap32(target_ip->__key); 3751 host_ip->uid = tswap32(target_ip->uid); 3752 host_ip->gid = tswap32(target_ip->gid); 3753 host_ip->cuid = tswap32(target_ip->cuid); 3754 host_ip->cgid = tswap32(target_ip->cgid); 3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3756 host_ip->mode = tswap32(target_ip->mode); 3757 #else 3758 host_ip->mode = tswap16(target_ip->mode); 3759 #endif 3760 #if defined(TARGET_PPC) 3761 host_ip->__seq = tswap32(target_ip->__seq); 3762 #else 3763 host_ip->__seq = tswap16(target_ip->__seq); 3764 #endif 3765 unlock_user_struct(target_sd, target_addr, 0); 3766 return 0; 3767 } 3768 3769 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 3770 struct ipc_perm *host_ip) 3771 { 3772 struct target_ipc_perm *target_ip; 3773 struct target_semid64_ds *target_sd; 3774 3775 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3776 return -TARGET_EFAULT; 3777 target_ip = &(target_sd->sem_perm); 3778 target_ip->__key = tswap32(host_ip->__key); 3779 target_ip->uid = tswap32(host_ip->uid); 3780 target_ip->gid = tswap32(host_ip->gid); 3781 target_ip->cuid = tswap32(host_ip->cuid); 3782 target_ip->cgid = tswap32(host_ip->cgid); 3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3784 target_ip->mode = tswap32(host_ip->mode); 3785 #else 3786 target_ip->mode = tswap16(host_ip->mode); 3787 #endif 3788 #if defined(TARGET_PPC) 3789 target_ip->__seq = tswap32(host_ip->__seq); 3790 #else 3791 target_ip->__seq = tswap16(host_ip->__seq); 3792 #endif 3793 unlock_user_struct(target_sd, target_addr, 1); 3794 return 0; 3795 } 3796 3797 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 3798 abi_ulong target_addr) 3799 { 3800 struct target_semid64_ds *target_sd; 3801 3802 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3803 return -TARGET_EFAULT; 3804 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 3805 return -TARGET_EFAULT; 3806 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 3807 host_sd->sem_otime = tswapal(target_sd->sem_otime); 3808 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 3809 unlock_user_struct(target_sd, target_addr, 0); 3810 return 0; 3811 } 3812 3813 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 3814 struct semid_ds *host_sd) 3815 { 3816 struct target_semid64_ds *target_sd; 3817 3818 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3819 return -TARGET_EFAULT; 3820 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 3821 return -TARGET_EFAULT; 3822 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 3823 target_sd->sem_otime = tswapal(host_sd->sem_otime); 3824 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 3825 unlock_user_struct(target_sd, target_addr, 1); 3826 return 0; 3827 } 3828 3829 struct target_seminfo { 3830 int semmap; 3831 int semmni; 3832 int semmns; 3833 int semmnu; 3834 int semmsl; 3835 int semopm; 3836 int semume; 3837 int semusz; 3838 int semvmx; 3839 int semaem; 3840 }; 3841 3842 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 3843 struct seminfo *host_seminfo) 3844 { 3845 struct target_seminfo *target_seminfo; 3846 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 3847 return -TARGET_EFAULT; 3848 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 3849 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 3850 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 3851 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 3852 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 3853 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 3854 __put_user(host_seminfo->semume, &target_seminfo->semume); 3855 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 3856 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 3857 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 3858 unlock_user_struct(target_seminfo, target_addr, 1); 3859 return 0; 3860 } 3861 3862 union semun { 3863 int val; 3864 struct semid_ds *buf; 3865 unsigned short *array; 3866 struct seminfo *__buf; 3867 }; 3868 3869 union target_semun { 3870 int val; 3871 abi_ulong buf; 3872 abi_ulong array; 3873 abi_ulong __buf; 3874 }; 3875 3876 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 3877 abi_ulong target_addr) 3878 { 3879 int nsems; 3880 unsigned short *array; 3881 union semun semun; 3882 struct semid_ds semid_ds; 3883 int i, ret; 3884 3885 semun.buf = &semid_ds; 3886 3887 ret = semctl(semid, 0, IPC_STAT, semun); 3888 if (ret == -1) 3889 return get_errno(ret); 3890 3891 nsems = semid_ds.sem_nsems; 3892 3893 *host_array = g_try_new(unsigned short, nsems); 3894 if (!*host_array) { 3895 return -TARGET_ENOMEM; 3896 } 3897 array = lock_user(VERIFY_READ, target_addr, 3898 nsems*sizeof(unsigned short), 1); 3899 if (!array) { 3900 g_free(*host_array); 3901 return -TARGET_EFAULT; 3902 } 3903 3904 for(i=0; i<nsems; i++) { 3905 __get_user((*host_array)[i], &array[i]); 3906 } 3907 unlock_user(array, target_addr, 0); 3908 3909 return 0; 3910 } 3911 3912 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 3913 unsigned short **host_array) 3914 { 3915 int nsems; 3916 unsigned short *array; 3917 union semun semun; 3918 struct semid_ds semid_ds; 3919 int i, ret; 3920 3921 semun.buf = &semid_ds; 3922 3923 ret = semctl(semid, 0, IPC_STAT, semun); 3924 if (ret == -1) 3925 return get_errno(ret); 3926 3927 nsems = semid_ds.sem_nsems; 3928 3929 array = lock_user(VERIFY_WRITE, target_addr, 3930 nsems*sizeof(unsigned short), 0); 3931 if (!array) 3932 return -TARGET_EFAULT; 3933 3934 for(i=0; i<nsems; i++) { 3935 __put_user((*host_array)[i], &array[i]); 3936 } 3937 g_free(*host_array); 3938 unlock_user(array, target_addr, 1); 3939 3940 return 0; 3941 } 3942 3943 static inline abi_long do_semctl(int semid, int semnum, int cmd, 3944 abi_ulong target_arg) 3945 { 3946 union target_semun target_su = { .buf = target_arg }; 3947 union semun arg; 3948 struct semid_ds dsarg; 3949 unsigned short *array = NULL; 3950 struct seminfo seminfo; 3951 abi_long ret = -TARGET_EINVAL; 3952 abi_long err; 3953 cmd &= 0xff; 3954 3955 switch( cmd ) { 3956 case GETVAL: 3957 case SETVAL: 3958 /* In 64 bit cross-endian situations, we will erroneously pick up 3959 * the wrong half of the union for the "val" element. To rectify 3960 * this, the entire 8-byte structure is byteswapped, followed by 3961 * a swap of the 4 byte val field. In other cases, the data is 3962 * already in proper host byte order. */ 3963 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 3964 target_su.buf = tswapal(target_su.buf); 3965 arg.val = tswap32(target_su.val); 3966 } else { 3967 arg.val = target_su.val; 3968 } 3969 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3970 break; 3971 case GETALL: 3972 case SETALL: 3973 err = target_to_host_semarray(semid, &array, target_su.array); 3974 if (err) 3975 return err; 3976 arg.array = array; 3977 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3978 err = host_to_target_semarray(semid, target_su.array, &array); 3979 if (err) 3980 return err; 3981 break; 3982 case IPC_STAT: 3983 case IPC_SET: 3984 case SEM_STAT: 3985 err = target_to_host_semid_ds(&dsarg, target_su.buf); 3986 if (err) 3987 return err; 3988 arg.buf = &dsarg; 3989 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3990 err = host_to_target_semid_ds(target_su.buf, &dsarg); 3991 if (err) 3992 return err; 3993 break; 3994 case IPC_INFO: 3995 case SEM_INFO: 3996 arg.__buf = &seminfo; 3997 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3998 err = host_to_target_seminfo(target_su.__buf, &seminfo); 3999 if (err) 4000 return err; 4001 break; 4002 case IPC_RMID: 4003 case GETPID: 4004 case GETNCNT: 4005 case GETZCNT: 4006 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4007 break; 4008 } 4009 4010 return ret; 4011 } 4012 4013 struct target_sembuf { 4014 unsigned short sem_num; 4015 short sem_op; 4016 short sem_flg; 4017 }; 4018 4019 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4020 abi_ulong target_addr, 4021 unsigned nsops) 4022 { 4023 struct target_sembuf *target_sembuf; 4024 int i; 4025 4026 target_sembuf = lock_user(VERIFY_READ, target_addr, 4027 nsops*sizeof(struct target_sembuf), 1); 4028 if (!target_sembuf) 4029 return -TARGET_EFAULT; 4030 4031 for(i=0; i<nsops; i++) { 4032 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4033 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4034 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4035 } 4036 4037 unlock_user(target_sembuf, target_addr, 0); 4038 4039 return 0; 4040 } 4041 4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \ 4043 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64) 4044 4045 /* 4046 * This macro is required to handle the s390 variants, which passes the 4047 * arguments in a different order than default. 4048 */ 4049 #ifdef __s390x__ 4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4051 (__nsops), (__timeout), (__sops) 4052 #else 4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4054 (__nsops), 0, (__sops), (__timeout) 4055 #endif 4056 4057 static inline abi_long do_semtimedop(int semid, 4058 abi_long ptr, 4059 unsigned nsops, 4060 abi_long timeout, bool time64) 4061 { 4062 struct sembuf *sops; 4063 struct timespec ts, *pts = NULL; 4064 abi_long ret; 4065 4066 if (timeout) { 4067 pts = &ts; 4068 if (time64) { 4069 if (target_to_host_timespec64(pts, timeout)) { 4070 return -TARGET_EFAULT; 4071 } 4072 } else { 4073 if (target_to_host_timespec(pts, timeout)) { 4074 return -TARGET_EFAULT; 4075 } 4076 } 4077 } 4078 4079 if (nsops > TARGET_SEMOPM) { 4080 return -TARGET_E2BIG; 4081 } 4082 4083 sops = g_new(struct sembuf, nsops); 4084 4085 if (target_to_host_sembuf(sops, ptr, nsops)) { 4086 g_free(sops); 4087 return -TARGET_EFAULT; 4088 } 4089 4090 ret = -TARGET_ENOSYS; 4091 #ifdef __NR_semtimedop 4092 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts)); 4093 #endif 4094 #ifdef __NR_ipc 4095 if (ret == -TARGET_ENOSYS) { 4096 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, 4097 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts))); 4098 } 4099 #endif 4100 g_free(sops); 4101 return ret; 4102 } 4103 #endif 4104 4105 struct target_msqid_ds 4106 { 4107 struct target_ipc_perm msg_perm; 4108 abi_ulong msg_stime; 4109 #if TARGET_ABI_BITS == 32 4110 abi_ulong __unused1; 4111 #endif 4112 abi_ulong msg_rtime; 4113 #if TARGET_ABI_BITS == 32 4114 abi_ulong __unused2; 4115 #endif 4116 abi_ulong msg_ctime; 4117 #if TARGET_ABI_BITS == 32 4118 abi_ulong __unused3; 4119 #endif 4120 abi_ulong __msg_cbytes; 4121 abi_ulong msg_qnum; 4122 abi_ulong msg_qbytes; 4123 abi_ulong msg_lspid; 4124 abi_ulong msg_lrpid; 4125 abi_ulong __unused4; 4126 abi_ulong __unused5; 4127 }; 4128 4129 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4130 abi_ulong target_addr) 4131 { 4132 struct target_msqid_ds *target_md; 4133 4134 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4135 return -TARGET_EFAULT; 4136 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4137 return -TARGET_EFAULT; 4138 host_md->msg_stime = tswapal(target_md->msg_stime); 4139 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4140 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4141 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4142 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4143 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4144 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4145 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4146 unlock_user_struct(target_md, target_addr, 0); 4147 return 0; 4148 } 4149 4150 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4151 struct msqid_ds *host_md) 4152 { 4153 struct target_msqid_ds *target_md; 4154 4155 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4156 return -TARGET_EFAULT; 4157 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4158 return -TARGET_EFAULT; 4159 target_md->msg_stime = tswapal(host_md->msg_stime); 4160 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4161 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4162 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4163 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4164 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4165 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4166 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4167 unlock_user_struct(target_md, target_addr, 1); 4168 return 0; 4169 } 4170 4171 struct target_msginfo { 4172 int msgpool; 4173 int msgmap; 4174 int msgmax; 4175 int msgmnb; 4176 int msgmni; 4177 int msgssz; 4178 int msgtql; 4179 unsigned short int msgseg; 4180 }; 4181 4182 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4183 struct msginfo *host_msginfo) 4184 { 4185 struct target_msginfo *target_msginfo; 4186 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4187 return -TARGET_EFAULT; 4188 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4189 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4190 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4191 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4192 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4193 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4194 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4195 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4196 unlock_user_struct(target_msginfo, target_addr, 1); 4197 return 0; 4198 } 4199 4200 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4201 { 4202 struct msqid_ds dsarg; 4203 struct msginfo msginfo; 4204 abi_long ret = -TARGET_EINVAL; 4205 4206 cmd &= 0xff; 4207 4208 switch (cmd) { 4209 case IPC_STAT: 4210 case IPC_SET: 4211 case MSG_STAT: 4212 if (target_to_host_msqid_ds(&dsarg,ptr)) 4213 return -TARGET_EFAULT; 4214 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4215 if (host_to_target_msqid_ds(ptr,&dsarg)) 4216 return -TARGET_EFAULT; 4217 break; 4218 case IPC_RMID: 4219 ret = get_errno(msgctl(msgid, cmd, NULL)); 4220 break; 4221 case IPC_INFO: 4222 case MSG_INFO: 4223 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4224 if (host_to_target_msginfo(ptr, &msginfo)) 4225 return -TARGET_EFAULT; 4226 break; 4227 } 4228 4229 return ret; 4230 } 4231 4232 struct target_msgbuf { 4233 abi_long mtype; 4234 char mtext[1]; 4235 }; 4236 4237 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4238 ssize_t msgsz, int msgflg) 4239 { 4240 struct target_msgbuf *target_mb; 4241 struct msgbuf *host_mb; 4242 abi_long ret = 0; 4243 4244 if (msgsz < 0) { 4245 return -TARGET_EINVAL; 4246 } 4247 4248 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4249 return -TARGET_EFAULT; 4250 host_mb = g_try_malloc(msgsz + sizeof(long)); 4251 if (!host_mb) { 4252 unlock_user_struct(target_mb, msgp, 0); 4253 return -TARGET_ENOMEM; 4254 } 4255 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4256 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4257 ret = -TARGET_ENOSYS; 4258 #ifdef __NR_msgsnd 4259 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4260 #endif 4261 #ifdef __NR_ipc 4262 if (ret == -TARGET_ENOSYS) { 4263 #ifdef __s390x__ 4264 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4265 host_mb)); 4266 #else 4267 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4268 host_mb, 0)); 4269 #endif 4270 } 4271 #endif 4272 g_free(host_mb); 4273 unlock_user_struct(target_mb, msgp, 0); 4274 4275 return ret; 4276 } 4277 4278 #ifdef __NR_ipc 4279 #if defined(__sparc__) 4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */ 4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp 4282 #elif defined(__s390x__) 4283 /* The s390 sys_ipc variant has only five parameters. */ 4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4285 ((long int[]){(long int)__msgp, __msgtyp}) 4286 #else 4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4288 ((long int[]){(long int)__msgp, __msgtyp}), 0 4289 #endif 4290 #endif 4291 4292 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4293 ssize_t msgsz, abi_long msgtyp, 4294 int msgflg) 4295 { 4296 struct target_msgbuf *target_mb; 4297 char *target_mtext; 4298 struct msgbuf *host_mb; 4299 abi_long ret = 0; 4300 4301 if (msgsz < 0) { 4302 return -TARGET_EINVAL; 4303 } 4304 4305 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4306 return -TARGET_EFAULT; 4307 4308 host_mb = g_try_malloc(msgsz + sizeof(long)); 4309 if (!host_mb) { 4310 ret = -TARGET_ENOMEM; 4311 goto end; 4312 } 4313 ret = -TARGET_ENOSYS; 4314 #ifdef __NR_msgrcv 4315 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4316 #endif 4317 #ifdef __NR_ipc 4318 if (ret == -TARGET_ENOSYS) { 4319 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz, 4320 msgflg, MSGRCV_ARGS(host_mb, msgtyp))); 4321 } 4322 #endif 4323 4324 if (ret > 0) { 4325 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4326 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4327 if (!target_mtext) { 4328 ret = -TARGET_EFAULT; 4329 goto end; 4330 } 4331 memcpy(target_mb->mtext, host_mb->mtext, ret); 4332 unlock_user(target_mtext, target_mtext_addr, ret); 4333 } 4334 4335 target_mb->mtype = tswapal(host_mb->mtype); 4336 4337 end: 4338 if (target_mb) 4339 unlock_user_struct(target_mb, msgp, 1); 4340 g_free(host_mb); 4341 return ret; 4342 } 4343 4344 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4345 abi_ulong target_addr) 4346 { 4347 struct target_shmid_ds *target_sd; 4348 4349 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4350 return -TARGET_EFAULT; 4351 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4352 return -TARGET_EFAULT; 4353 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4354 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4355 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4356 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4357 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4358 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4359 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4360 unlock_user_struct(target_sd, target_addr, 0); 4361 return 0; 4362 } 4363 4364 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4365 struct shmid_ds *host_sd) 4366 { 4367 struct target_shmid_ds *target_sd; 4368 4369 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4370 return -TARGET_EFAULT; 4371 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4372 return -TARGET_EFAULT; 4373 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4374 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4375 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4376 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4377 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4378 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4379 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4380 unlock_user_struct(target_sd, target_addr, 1); 4381 return 0; 4382 } 4383 4384 struct target_shminfo { 4385 abi_ulong shmmax; 4386 abi_ulong shmmin; 4387 abi_ulong shmmni; 4388 abi_ulong shmseg; 4389 abi_ulong shmall; 4390 }; 4391 4392 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4393 struct shminfo *host_shminfo) 4394 { 4395 struct target_shminfo *target_shminfo; 4396 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4397 return -TARGET_EFAULT; 4398 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4399 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4400 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4401 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4402 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4403 unlock_user_struct(target_shminfo, target_addr, 1); 4404 return 0; 4405 } 4406 4407 struct target_shm_info { 4408 int used_ids; 4409 abi_ulong shm_tot; 4410 abi_ulong shm_rss; 4411 abi_ulong shm_swp; 4412 abi_ulong swap_attempts; 4413 abi_ulong swap_successes; 4414 }; 4415 4416 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4417 struct shm_info *host_shm_info) 4418 { 4419 struct target_shm_info *target_shm_info; 4420 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4421 return -TARGET_EFAULT; 4422 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4423 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4424 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4425 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4426 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4427 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4428 unlock_user_struct(target_shm_info, target_addr, 1); 4429 return 0; 4430 } 4431 4432 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4433 { 4434 struct shmid_ds dsarg; 4435 struct shminfo shminfo; 4436 struct shm_info shm_info; 4437 abi_long ret = -TARGET_EINVAL; 4438 4439 cmd &= 0xff; 4440 4441 switch(cmd) { 4442 case IPC_STAT: 4443 case IPC_SET: 4444 case SHM_STAT: 4445 if (target_to_host_shmid_ds(&dsarg, buf)) 4446 return -TARGET_EFAULT; 4447 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4448 if (host_to_target_shmid_ds(buf, &dsarg)) 4449 return -TARGET_EFAULT; 4450 break; 4451 case IPC_INFO: 4452 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4453 if (host_to_target_shminfo(buf, &shminfo)) 4454 return -TARGET_EFAULT; 4455 break; 4456 case SHM_INFO: 4457 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4458 if (host_to_target_shm_info(buf, &shm_info)) 4459 return -TARGET_EFAULT; 4460 break; 4461 case IPC_RMID: 4462 case SHM_LOCK: 4463 case SHM_UNLOCK: 4464 ret = get_errno(shmctl(shmid, cmd, NULL)); 4465 break; 4466 } 4467 4468 return ret; 4469 } 4470 4471 #ifdef TARGET_NR_ipc 4472 /* ??? This only works with linear mappings. */ 4473 /* do_ipc() must return target values and target errnos. */ 4474 static abi_long do_ipc(CPUArchState *cpu_env, 4475 unsigned int call, abi_long first, 4476 abi_long second, abi_long third, 4477 abi_long ptr, abi_long fifth) 4478 { 4479 int version; 4480 abi_long ret = 0; 4481 4482 version = call >> 16; 4483 call &= 0xffff; 4484 4485 switch (call) { 4486 case IPCOP_semop: 4487 ret = do_semtimedop(first, ptr, second, 0, false); 4488 break; 4489 case IPCOP_semtimedop: 4490 /* 4491 * The s390 sys_ipc variant has only five parameters instead of six 4492 * (as for default variant) and the only difference is the handling of 4493 * SEMTIMEDOP where on s390 the third parameter is used as a pointer 4494 * to a struct timespec where the generic variant uses fifth parameter. 4495 */ 4496 #if defined(TARGET_S390X) 4497 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64); 4498 #else 4499 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64); 4500 #endif 4501 break; 4502 4503 case IPCOP_semget: 4504 ret = get_errno(semget(first, second, third)); 4505 break; 4506 4507 case IPCOP_semctl: { 4508 /* The semun argument to semctl is passed by value, so dereference the 4509 * ptr argument. */ 4510 abi_ulong atptr; 4511 get_user_ual(atptr, ptr); 4512 ret = do_semctl(first, second, third, atptr); 4513 break; 4514 } 4515 4516 case IPCOP_msgget: 4517 ret = get_errno(msgget(first, second)); 4518 break; 4519 4520 case IPCOP_msgsnd: 4521 ret = do_msgsnd(first, ptr, second, third); 4522 break; 4523 4524 case IPCOP_msgctl: 4525 ret = do_msgctl(first, second, ptr); 4526 break; 4527 4528 case IPCOP_msgrcv: 4529 switch (version) { 4530 case 0: 4531 { 4532 struct target_ipc_kludge { 4533 abi_long msgp; 4534 abi_long msgtyp; 4535 } *tmp; 4536 4537 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4538 ret = -TARGET_EFAULT; 4539 break; 4540 } 4541 4542 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4543 4544 unlock_user_struct(tmp, ptr, 0); 4545 break; 4546 } 4547 default: 4548 ret = do_msgrcv(first, ptr, second, fifth, third); 4549 } 4550 break; 4551 4552 case IPCOP_shmat: 4553 switch (version) { 4554 default: 4555 { 4556 abi_ulong raddr; 4557 raddr = target_shmat(cpu_env, first, ptr, second); 4558 if (is_error(raddr)) 4559 return get_errno(raddr); 4560 if (put_user_ual(raddr, third)) 4561 return -TARGET_EFAULT; 4562 break; 4563 } 4564 case 1: 4565 ret = -TARGET_EINVAL; 4566 break; 4567 } 4568 break; 4569 case IPCOP_shmdt: 4570 ret = target_shmdt(ptr); 4571 break; 4572 4573 case IPCOP_shmget: 4574 /* IPC_* flag values are the same on all linux platforms */ 4575 ret = get_errno(shmget(first, second, third)); 4576 break; 4577 4578 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4579 case IPCOP_shmctl: 4580 ret = do_shmctl(first, second, ptr); 4581 break; 4582 default: 4583 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n", 4584 call, version); 4585 ret = -TARGET_ENOSYS; 4586 break; 4587 } 4588 return ret; 4589 } 4590 #endif 4591 4592 /* kernel structure types definitions */ 4593 4594 #define STRUCT(name, ...) STRUCT_ ## name, 4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4596 enum { 4597 #include "syscall_types.h" 4598 STRUCT_MAX 4599 }; 4600 #undef STRUCT 4601 #undef STRUCT_SPECIAL 4602 4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4604 #define STRUCT_SPECIAL(name) 4605 #include "syscall_types.h" 4606 #undef STRUCT 4607 #undef STRUCT_SPECIAL 4608 4609 #define MAX_STRUCT_SIZE 4096 4610 4611 #ifdef CONFIG_FIEMAP 4612 /* So fiemap access checks don't overflow on 32 bit systems. 4613 * This is very slightly smaller than the limit imposed by 4614 * the underlying kernel. 4615 */ 4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4617 / sizeof(struct fiemap_extent)) 4618 4619 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4620 int fd, int cmd, abi_long arg) 4621 { 4622 /* The parameter for this ioctl is a struct fiemap followed 4623 * by an array of struct fiemap_extent whose size is set 4624 * in fiemap->fm_extent_count. The array is filled in by the 4625 * ioctl. 4626 */ 4627 int target_size_in, target_size_out; 4628 struct fiemap *fm; 4629 const argtype *arg_type = ie->arg_type; 4630 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4631 void *argptr, *p; 4632 abi_long ret; 4633 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4634 uint32_t outbufsz; 4635 int free_fm = 0; 4636 4637 assert(arg_type[0] == TYPE_PTR); 4638 assert(ie->access == IOC_RW); 4639 arg_type++; 4640 target_size_in = thunk_type_size(arg_type, 0); 4641 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4642 if (!argptr) { 4643 return -TARGET_EFAULT; 4644 } 4645 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4646 unlock_user(argptr, arg, 0); 4647 fm = (struct fiemap *)buf_temp; 4648 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4649 return -TARGET_EINVAL; 4650 } 4651 4652 outbufsz = sizeof (*fm) + 4653 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4654 4655 if (outbufsz > MAX_STRUCT_SIZE) { 4656 /* We can't fit all the extents into the fixed size buffer. 4657 * Allocate one that is large enough and use it instead. 4658 */ 4659 fm = g_try_malloc(outbufsz); 4660 if (!fm) { 4661 return -TARGET_ENOMEM; 4662 } 4663 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4664 free_fm = 1; 4665 } 4666 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4667 if (!is_error(ret)) { 4668 target_size_out = target_size_in; 4669 /* An extent_count of 0 means we were only counting the extents 4670 * so there are no structs to copy 4671 */ 4672 if (fm->fm_extent_count != 0) { 4673 target_size_out += fm->fm_mapped_extents * extent_size; 4674 } 4675 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4676 if (!argptr) { 4677 ret = -TARGET_EFAULT; 4678 } else { 4679 /* Convert the struct fiemap */ 4680 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4681 if (fm->fm_extent_count != 0) { 4682 p = argptr + target_size_in; 4683 /* ...and then all the struct fiemap_extents */ 4684 for (i = 0; i < fm->fm_mapped_extents; i++) { 4685 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4686 THUNK_TARGET); 4687 p += extent_size; 4688 } 4689 } 4690 unlock_user(argptr, arg, target_size_out); 4691 } 4692 } 4693 if (free_fm) { 4694 g_free(fm); 4695 } 4696 return ret; 4697 } 4698 #endif 4699 4700 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 4701 int fd, int cmd, abi_long arg) 4702 { 4703 const argtype *arg_type = ie->arg_type; 4704 int target_size; 4705 void *argptr; 4706 int ret; 4707 struct ifconf *host_ifconf; 4708 uint32_t outbufsz; 4709 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 4710 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) }; 4711 int target_ifreq_size; 4712 int nb_ifreq; 4713 int free_buf = 0; 4714 int i; 4715 int target_ifc_len; 4716 abi_long target_ifc_buf; 4717 int host_ifc_len; 4718 char *host_ifc_buf; 4719 4720 assert(arg_type[0] == TYPE_PTR); 4721 assert(ie->access == IOC_RW); 4722 4723 arg_type++; 4724 target_size = thunk_type_size(arg_type, 0); 4725 4726 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4727 if (!argptr) 4728 return -TARGET_EFAULT; 4729 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4730 unlock_user(argptr, arg, 0); 4731 4732 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 4733 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 4734 target_ifreq_size = thunk_type_size(ifreq_max_type, 0); 4735 4736 if (target_ifc_buf != 0) { 4737 target_ifc_len = host_ifconf->ifc_len; 4738 nb_ifreq = target_ifc_len / target_ifreq_size; 4739 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 4740 4741 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 4742 if (outbufsz > MAX_STRUCT_SIZE) { 4743 /* 4744 * We can't fit all the extents into the fixed size buffer. 4745 * Allocate one that is large enough and use it instead. 4746 */ 4747 host_ifconf = g_try_malloc(outbufsz); 4748 if (!host_ifconf) { 4749 return -TARGET_ENOMEM; 4750 } 4751 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 4752 free_buf = 1; 4753 } 4754 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf); 4755 4756 host_ifconf->ifc_len = host_ifc_len; 4757 } else { 4758 host_ifc_buf = NULL; 4759 } 4760 host_ifconf->ifc_buf = host_ifc_buf; 4761 4762 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 4763 if (!is_error(ret)) { 4764 /* convert host ifc_len to target ifc_len */ 4765 4766 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 4767 target_ifc_len = nb_ifreq * target_ifreq_size; 4768 host_ifconf->ifc_len = target_ifc_len; 4769 4770 /* restore target ifc_buf */ 4771 4772 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 4773 4774 /* copy struct ifconf to target user */ 4775 4776 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4777 if (!argptr) 4778 return -TARGET_EFAULT; 4779 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 4780 unlock_user(argptr, arg, target_size); 4781 4782 if (target_ifc_buf != 0) { 4783 /* copy ifreq[] to target user */ 4784 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 4785 for (i = 0; i < nb_ifreq ; i++) { 4786 thunk_convert(argptr + i * target_ifreq_size, 4787 host_ifc_buf + i * sizeof(struct ifreq), 4788 ifreq_arg_type, THUNK_TARGET); 4789 } 4790 unlock_user(argptr, target_ifc_buf, target_ifc_len); 4791 } 4792 } 4793 4794 if (free_buf) { 4795 g_free(host_ifconf); 4796 } 4797 4798 return ret; 4799 } 4800 4801 #if defined(CONFIG_USBFS) 4802 #if HOST_LONG_BITS > 64 4803 #error USBDEVFS thunks do not support >64 bit hosts yet. 4804 #endif 4805 struct live_urb { 4806 uint64_t target_urb_adr; 4807 uint64_t target_buf_adr; 4808 char *target_buf_ptr; 4809 struct usbdevfs_urb host_urb; 4810 }; 4811 4812 static GHashTable *usbdevfs_urb_hashtable(void) 4813 { 4814 static GHashTable *urb_hashtable; 4815 4816 if (!urb_hashtable) { 4817 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal); 4818 } 4819 return urb_hashtable; 4820 } 4821 4822 static void urb_hashtable_insert(struct live_urb *urb) 4823 { 4824 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4825 g_hash_table_insert(urb_hashtable, urb, urb); 4826 } 4827 4828 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr) 4829 { 4830 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4831 return g_hash_table_lookup(urb_hashtable, &target_urb_adr); 4832 } 4833 4834 static void urb_hashtable_remove(struct live_urb *urb) 4835 { 4836 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4837 g_hash_table_remove(urb_hashtable, urb); 4838 } 4839 4840 static abi_long 4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp, 4842 int fd, int cmd, abi_long arg) 4843 { 4844 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) }; 4845 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 }; 4846 struct live_urb *lurb; 4847 void *argptr; 4848 uint64_t hurb; 4849 int target_size; 4850 uintptr_t target_urb_adr; 4851 abi_long ret; 4852 4853 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET); 4854 4855 memset(buf_temp, 0, sizeof(uint64_t)); 4856 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4857 if (is_error(ret)) { 4858 return ret; 4859 } 4860 4861 memcpy(&hurb, buf_temp, sizeof(uint64_t)); 4862 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb)); 4863 if (!lurb->target_urb_adr) { 4864 return -TARGET_EFAULT; 4865 } 4866 urb_hashtable_remove(lurb); 4867 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 4868 lurb->host_urb.buffer_length); 4869 lurb->target_buf_ptr = NULL; 4870 4871 /* restore the guest buffer pointer */ 4872 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr; 4873 4874 /* update the guest urb struct */ 4875 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0); 4876 if (!argptr) { 4877 g_free(lurb); 4878 return -TARGET_EFAULT; 4879 } 4880 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET); 4881 unlock_user(argptr, lurb->target_urb_adr, target_size); 4882 4883 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET); 4884 /* write back the urb handle */ 4885 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4886 if (!argptr) { 4887 g_free(lurb); 4888 return -TARGET_EFAULT; 4889 } 4890 4891 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */ 4892 target_urb_adr = lurb->target_urb_adr; 4893 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET); 4894 unlock_user(argptr, arg, target_size); 4895 4896 g_free(lurb); 4897 return ret; 4898 } 4899 4900 static abi_long 4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie, 4902 uint8_t *buf_temp __attribute__((unused)), 4903 int fd, int cmd, abi_long arg) 4904 { 4905 struct live_urb *lurb; 4906 4907 /* map target address back to host URB with metadata. */ 4908 lurb = urb_hashtable_lookup(arg); 4909 if (!lurb) { 4910 return -TARGET_EFAULT; 4911 } 4912 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4913 } 4914 4915 static abi_long 4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp, 4917 int fd, int cmd, abi_long arg) 4918 { 4919 const argtype *arg_type = ie->arg_type; 4920 int target_size; 4921 abi_long ret; 4922 void *argptr; 4923 int rw_dir; 4924 struct live_urb *lurb; 4925 4926 /* 4927 * each submitted URB needs to map to a unique ID for the 4928 * kernel, and that unique ID needs to be a pointer to 4929 * host memory. hence, we need to malloc for each URB. 4930 * isochronous transfers have a variable length struct. 4931 */ 4932 arg_type++; 4933 target_size = thunk_type_size(arg_type, THUNK_TARGET); 4934 4935 /* construct host copy of urb and metadata */ 4936 lurb = g_try_new0(struct live_urb, 1); 4937 if (!lurb) { 4938 return -TARGET_ENOMEM; 4939 } 4940 4941 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4942 if (!argptr) { 4943 g_free(lurb); 4944 return -TARGET_EFAULT; 4945 } 4946 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST); 4947 unlock_user(argptr, arg, 0); 4948 4949 lurb->target_urb_adr = arg; 4950 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer; 4951 4952 /* buffer space used depends on endpoint type so lock the entire buffer */ 4953 /* control type urbs should check the buffer contents for true direction */ 4954 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ; 4955 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr, 4956 lurb->host_urb.buffer_length, 1); 4957 if (lurb->target_buf_ptr == NULL) { 4958 g_free(lurb); 4959 return -TARGET_EFAULT; 4960 } 4961 4962 /* update buffer pointer in host copy */ 4963 lurb->host_urb.buffer = lurb->target_buf_ptr; 4964 4965 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4966 if (is_error(ret)) { 4967 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0); 4968 g_free(lurb); 4969 } else { 4970 urb_hashtable_insert(lurb); 4971 } 4972 4973 return ret; 4974 } 4975 #endif /* CONFIG_USBFS */ 4976 4977 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 4978 int cmd, abi_long arg) 4979 { 4980 void *argptr; 4981 struct dm_ioctl *host_dm; 4982 abi_long guest_data; 4983 uint32_t guest_data_size; 4984 int target_size; 4985 const argtype *arg_type = ie->arg_type; 4986 abi_long ret; 4987 void *big_buf = NULL; 4988 char *host_data; 4989 4990 arg_type++; 4991 target_size = thunk_type_size(arg_type, 0); 4992 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4993 if (!argptr) { 4994 ret = -TARGET_EFAULT; 4995 goto out; 4996 } 4997 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4998 unlock_user(argptr, arg, 0); 4999 5000 /* buf_temp is too small, so fetch things into a bigger buffer */ 5001 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5002 memcpy(big_buf, buf_temp, target_size); 5003 buf_temp = big_buf; 5004 host_dm = big_buf; 5005 5006 guest_data = arg + host_dm->data_start; 5007 if ((guest_data - arg) < 0) { 5008 ret = -TARGET_EINVAL; 5009 goto out; 5010 } 5011 guest_data_size = host_dm->data_size - host_dm->data_start; 5012 host_data = (char*)host_dm + host_dm->data_start; 5013 5014 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5015 if (!argptr) { 5016 ret = -TARGET_EFAULT; 5017 goto out; 5018 } 5019 5020 switch (ie->host_cmd) { 5021 case DM_REMOVE_ALL: 5022 case DM_LIST_DEVICES: 5023 case DM_DEV_CREATE: 5024 case DM_DEV_REMOVE: 5025 case DM_DEV_SUSPEND: 5026 case DM_DEV_STATUS: 5027 case DM_DEV_WAIT: 5028 case DM_TABLE_STATUS: 5029 case DM_TABLE_CLEAR: 5030 case DM_TABLE_DEPS: 5031 case DM_LIST_VERSIONS: 5032 /* no input data */ 5033 break; 5034 case DM_DEV_RENAME: 5035 case DM_DEV_SET_GEOMETRY: 5036 /* data contains only strings */ 5037 memcpy(host_data, argptr, guest_data_size); 5038 break; 5039 case DM_TARGET_MSG: 5040 memcpy(host_data, argptr, guest_data_size); 5041 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5042 break; 5043 case DM_TABLE_LOAD: 5044 { 5045 void *gspec = argptr; 5046 void *cur_data = host_data; 5047 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5048 int spec_size = thunk_type_size(dm_arg_type, 0); 5049 int i; 5050 5051 for (i = 0; i < host_dm->target_count; i++) { 5052 struct dm_target_spec *spec = cur_data; 5053 uint32_t next; 5054 int slen; 5055 5056 thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST); 5057 slen = strlen((char*)gspec + spec_size) + 1; 5058 next = spec->next; 5059 spec->next = sizeof(*spec) + slen; 5060 strcpy((char*)&spec[1], gspec + spec_size); 5061 gspec += next; 5062 cur_data += spec->next; 5063 } 5064 break; 5065 } 5066 default: 5067 ret = -TARGET_EINVAL; 5068 unlock_user(argptr, guest_data, 0); 5069 goto out; 5070 } 5071 unlock_user(argptr, guest_data, 0); 5072 5073 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5074 if (!is_error(ret)) { 5075 guest_data = arg + host_dm->data_start; 5076 guest_data_size = host_dm->data_size - host_dm->data_start; 5077 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5078 switch (ie->host_cmd) { 5079 case DM_REMOVE_ALL: 5080 case DM_DEV_CREATE: 5081 case DM_DEV_REMOVE: 5082 case DM_DEV_RENAME: 5083 case DM_DEV_SUSPEND: 5084 case DM_DEV_STATUS: 5085 case DM_TABLE_LOAD: 5086 case DM_TABLE_CLEAR: 5087 case DM_TARGET_MSG: 5088 case DM_DEV_SET_GEOMETRY: 5089 /* no return data */ 5090 break; 5091 case DM_LIST_DEVICES: 5092 { 5093 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5094 uint32_t remaining_data = guest_data_size; 5095 void *cur_data = argptr; 5096 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5097 int nl_size = 12; /* can't use thunk_size due to alignment */ 5098 5099 while (1) { 5100 uint32_t next = nl->next; 5101 if (next) { 5102 nl->next = nl_size + (strlen(nl->name) + 1); 5103 } 5104 if (remaining_data < nl->next) { 5105 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5106 break; 5107 } 5108 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET); 5109 strcpy(cur_data + nl_size, nl->name); 5110 cur_data += nl->next; 5111 remaining_data -= nl->next; 5112 if (!next) { 5113 break; 5114 } 5115 nl = (void*)nl + next; 5116 } 5117 break; 5118 } 5119 case DM_DEV_WAIT: 5120 case DM_TABLE_STATUS: 5121 { 5122 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5123 void *cur_data = argptr; 5124 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5125 int spec_size = thunk_type_size(dm_arg_type, 0); 5126 int i; 5127 5128 for (i = 0; i < host_dm->target_count; i++) { 5129 uint32_t next = spec->next; 5130 int slen = strlen((char*)&spec[1]) + 1; 5131 spec->next = (cur_data - argptr) + spec_size + slen; 5132 if (guest_data_size < spec->next) { 5133 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5134 break; 5135 } 5136 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET); 5137 strcpy(cur_data + spec_size, (char*)&spec[1]); 5138 cur_data = argptr + spec->next; 5139 spec = (void*)host_dm + host_dm->data_start + next; 5140 } 5141 break; 5142 } 5143 case DM_TABLE_DEPS: 5144 { 5145 void *hdata = (void*)host_dm + host_dm->data_start; 5146 int count = *(uint32_t*)hdata; 5147 uint64_t *hdev = hdata + 8; 5148 uint64_t *gdev = argptr + 8; 5149 int i; 5150 5151 *(uint32_t*)argptr = tswap32(count); 5152 for (i = 0; i < count; i++) { 5153 *gdev = tswap64(*hdev); 5154 gdev++; 5155 hdev++; 5156 } 5157 break; 5158 } 5159 case DM_LIST_VERSIONS: 5160 { 5161 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5162 uint32_t remaining_data = guest_data_size; 5163 void *cur_data = argptr; 5164 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5165 int vers_size = thunk_type_size(dm_arg_type, 0); 5166 5167 while (1) { 5168 uint32_t next = vers->next; 5169 if (next) { 5170 vers->next = vers_size + (strlen(vers->name) + 1); 5171 } 5172 if (remaining_data < vers->next) { 5173 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5174 break; 5175 } 5176 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET); 5177 strcpy(cur_data + vers_size, vers->name); 5178 cur_data += vers->next; 5179 remaining_data -= vers->next; 5180 if (!next) { 5181 break; 5182 } 5183 vers = (void*)vers + next; 5184 } 5185 break; 5186 } 5187 default: 5188 unlock_user(argptr, guest_data, 0); 5189 ret = -TARGET_EINVAL; 5190 goto out; 5191 } 5192 unlock_user(argptr, guest_data, guest_data_size); 5193 5194 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5195 if (!argptr) { 5196 ret = -TARGET_EFAULT; 5197 goto out; 5198 } 5199 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5200 unlock_user(argptr, arg, target_size); 5201 } 5202 out: 5203 g_free(big_buf); 5204 return ret; 5205 } 5206 5207 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5208 int cmd, abi_long arg) 5209 { 5210 void *argptr; 5211 int target_size; 5212 const argtype *arg_type = ie->arg_type; 5213 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5214 abi_long ret; 5215 5216 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5217 struct blkpg_partition host_part; 5218 5219 /* Read and convert blkpg */ 5220 arg_type++; 5221 target_size = thunk_type_size(arg_type, 0); 5222 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5223 if (!argptr) { 5224 ret = -TARGET_EFAULT; 5225 goto out; 5226 } 5227 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5228 unlock_user(argptr, arg, 0); 5229 5230 switch (host_blkpg->op) { 5231 case BLKPG_ADD_PARTITION: 5232 case BLKPG_DEL_PARTITION: 5233 /* payload is struct blkpg_partition */ 5234 break; 5235 default: 5236 /* Unknown opcode */ 5237 ret = -TARGET_EINVAL; 5238 goto out; 5239 } 5240 5241 /* Read and convert blkpg->data */ 5242 arg = (abi_long)(uintptr_t)host_blkpg->data; 5243 target_size = thunk_type_size(part_arg_type, 0); 5244 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5245 if (!argptr) { 5246 ret = -TARGET_EFAULT; 5247 goto out; 5248 } 5249 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5250 unlock_user(argptr, arg, 0); 5251 5252 /* Swizzle the data pointer to our local copy and call! */ 5253 host_blkpg->data = &host_part; 5254 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5255 5256 out: 5257 return ret; 5258 } 5259 5260 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5261 int fd, int cmd, abi_long arg) 5262 { 5263 const argtype *arg_type = ie->arg_type; 5264 const StructEntry *se; 5265 const argtype *field_types; 5266 const int *dst_offsets, *src_offsets; 5267 int target_size; 5268 void *argptr; 5269 abi_ulong *target_rt_dev_ptr = NULL; 5270 unsigned long *host_rt_dev_ptr = NULL; 5271 abi_long ret; 5272 int i; 5273 5274 assert(ie->access == IOC_W); 5275 assert(*arg_type == TYPE_PTR); 5276 arg_type++; 5277 assert(*arg_type == TYPE_STRUCT); 5278 target_size = thunk_type_size(arg_type, 0); 5279 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5280 if (!argptr) { 5281 return -TARGET_EFAULT; 5282 } 5283 arg_type++; 5284 assert(*arg_type == (int)STRUCT_rtentry); 5285 se = struct_entries + *arg_type++; 5286 assert(se->convert[0] == NULL); 5287 /* convert struct here to be able to catch rt_dev string */ 5288 field_types = se->field_types; 5289 dst_offsets = se->field_offsets[THUNK_HOST]; 5290 src_offsets = se->field_offsets[THUNK_TARGET]; 5291 for (i = 0; i < se->nb_fields; i++) { 5292 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5293 assert(*field_types == TYPE_PTRVOID); 5294 target_rt_dev_ptr = argptr + src_offsets[i]; 5295 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5296 if (*target_rt_dev_ptr != 0) { 5297 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5298 tswapal(*target_rt_dev_ptr)); 5299 if (!*host_rt_dev_ptr) { 5300 unlock_user(argptr, arg, 0); 5301 return -TARGET_EFAULT; 5302 } 5303 } else { 5304 *host_rt_dev_ptr = 0; 5305 } 5306 field_types++; 5307 continue; 5308 } 5309 field_types = thunk_convert(buf_temp + dst_offsets[i], 5310 argptr + src_offsets[i], 5311 field_types, THUNK_HOST); 5312 } 5313 unlock_user(argptr, arg, 0); 5314 5315 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5316 5317 assert(host_rt_dev_ptr != NULL); 5318 assert(target_rt_dev_ptr != NULL); 5319 if (*host_rt_dev_ptr != 0) { 5320 unlock_user((void *)*host_rt_dev_ptr, 5321 *target_rt_dev_ptr, 0); 5322 } 5323 return ret; 5324 } 5325 5326 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5327 int fd, int cmd, abi_long arg) 5328 { 5329 int sig = target_to_host_signal(arg); 5330 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5331 } 5332 5333 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp, 5334 int fd, int cmd, abi_long arg) 5335 { 5336 struct timeval tv; 5337 abi_long ret; 5338 5339 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv)); 5340 if (is_error(ret)) { 5341 return ret; 5342 } 5343 5344 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) { 5345 if (copy_to_user_timeval(arg, &tv)) { 5346 return -TARGET_EFAULT; 5347 } 5348 } else { 5349 if (copy_to_user_timeval64(arg, &tv)) { 5350 return -TARGET_EFAULT; 5351 } 5352 } 5353 5354 return ret; 5355 } 5356 5357 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp, 5358 int fd, int cmd, abi_long arg) 5359 { 5360 struct timespec ts; 5361 abi_long ret; 5362 5363 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts)); 5364 if (is_error(ret)) { 5365 return ret; 5366 } 5367 5368 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) { 5369 if (host_to_target_timespec(arg, &ts)) { 5370 return -TARGET_EFAULT; 5371 } 5372 } else{ 5373 if (host_to_target_timespec64(arg, &ts)) { 5374 return -TARGET_EFAULT; 5375 } 5376 } 5377 5378 return ret; 5379 } 5380 5381 #ifdef TIOCGPTPEER 5382 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5383 int fd, int cmd, abi_long arg) 5384 { 5385 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5386 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5387 } 5388 #endif 5389 5390 #ifdef HAVE_DRM_H 5391 5392 static void unlock_drm_version(struct drm_version *host_ver, 5393 struct target_drm_version *target_ver, 5394 bool copy) 5395 { 5396 unlock_user(host_ver->name, target_ver->name, 5397 copy ? host_ver->name_len : 0); 5398 unlock_user(host_ver->date, target_ver->date, 5399 copy ? host_ver->date_len : 0); 5400 unlock_user(host_ver->desc, target_ver->desc, 5401 copy ? host_ver->desc_len : 0); 5402 } 5403 5404 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver, 5405 struct target_drm_version *target_ver) 5406 { 5407 memset(host_ver, 0, sizeof(*host_ver)); 5408 5409 __get_user(host_ver->name_len, &target_ver->name_len); 5410 if (host_ver->name_len) { 5411 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name, 5412 target_ver->name_len, 0); 5413 if (!host_ver->name) { 5414 return -EFAULT; 5415 } 5416 } 5417 5418 __get_user(host_ver->date_len, &target_ver->date_len); 5419 if (host_ver->date_len) { 5420 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date, 5421 target_ver->date_len, 0); 5422 if (!host_ver->date) { 5423 goto err; 5424 } 5425 } 5426 5427 __get_user(host_ver->desc_len, &target_ver->desc_len); 5428 if (host_ver->desc_len) { 5429 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc, 5430 target_ver->desc_len, 0); 5431 if (!host_ver->desc) { 5432 goto err; 5433 } 5434 } 5435 5436 return 0; 5437 err: 5438 unlock_drm_version(host_ver, target_ver, false); 5439 return -EFAULT; 5440 } 5441 5442 static inline void host_to_target_drmversion( 5443 struct target_drm_version *target_ver, 5444 struct drm_version *host_ver) 5445 { 5446 __put_user(host_ver->version_major, &target_ver->version_major); 5447 __put_user(host_ver->version_minor, &target_ver->version_minor); 5448 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel); 5449 __put_user(host_ver->name_len, &target_ver->name_len); 5450 __put_user(host_ver->date_len, &target_ver->date_len); 5451 __put_user(host_ver->desc_len, &target_ver->desc_len); 5452 unlock_drm_version(host_ver, target_ver, true); 5453 } 5454 5455 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp, 5456 int fd, int cmd, abi_long arg) 5457 { 5458 struct drm_version *ver; 5459 struct target_drm_version *target_ver; 5460 abi_long ret; 5461 5462 switch (ie->host_cmd) { 5463 case DRM_IOCTL_VERSION: 5464 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) { 5465 return -TARGET_EFAULT; 5466 } 5467 ver = (struct drm_version *)buf_temp; 5468 ret = target_to_host_drmversion(ver, target_ver); 5469 if (!is_error(ret)) { 5470 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver)); 5471 if (is_error(ret)) { 5472 unlock_drm_version(ver, target_ver, false); 5473 } else { 5474 host_to_target_drmversion(target_ver, ver); 5475 } 5476 } 5477 unlock_user_struct(target_ver, arg, 0); 5478 return ret; 5479 } 5480 return -TARGET_ENOSYS; 5481 } 5482 5483 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie, 5484 struct drm_i915_getparam *gparam, 5485 int fd, abi_long arg) 5486 { 5487 abi_long ret; 5488 int value; 5489 struct target_drm_i915_getparam *target_gparam; 5490 5491 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) { 5492 return -TARGET_EFAULT; 5493 } 5494 5495 __get_user(gparam->param, &target_gparam->param); 5496 gparam->value = &value; 5497 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam)); 5498 put_user_s32(value, target_gparam->value); 5499 5500 unlock_user_struct(target_gparam, arg, 0); 5501 return ret; 5502 } 5503 5504 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp, 5505 int fd, int cmd, abi_long arg) 5506 { 5507 switch (ie->host_cmd) { 5508 case DRM_IOCTL_I915_GETPARAM: 5509 return do_ioctl_drm_i915_getparam(ie, 5510 (struct drm_i915_getparam *)buf_temp, 5511 fd, arg); 5512 default: 5513 return -TARGET_ENOSYS; 5514 } 5515 } 5516 5517 #endif 5518 5519 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp, 5520 int fd, int cmd, abi_long arg) 5521 { 5522 struct tun_filter *filter = (struct tun_filter *)buf_temp; 5523 struct tun_filter *target_filter; 5524 char *target_addr; 5525 5526 assert(ie->access == IOC_W); 5527 5528 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1); 5529 if (!target_filter) { 5530 return -TARGET_EFAULT; 5531 } 5532 filter->flags = tswap16(target_filter->flags); 5533 filter->count = tswap16(target_filter->count); 5534 unlock_user(target_filter, arg, 0); 5535 5536 if (filter->count) { 5537 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN > 5538 MAX_STRUCT_SIZE) { 5539 return -TARGET_EFAULT; 5540 } 5541 5542 target_addr = lock_user(VERIFY_READ, 5543 arg + offsetof(struct tun_filter, addr), 5544 filter->count * ETH_ALEN, 1); 5545 if (!target_addr) { 5546 return -TARGET_EFAULT; 5547 } 5548 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN); 5549 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0); 5550 } 5551 5552 return get_errno(safe_ioctl(fd, ie->host_cmd, filter)); 5553 } 5554 5555 IOCTLEntry ioctl_entries[] = { 5556 #define IOCTL(cmd, access, ...) \ 5557 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5559 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5560 #define IOCTL_IGNORE(cmd) \ 5561 { TARGET_ ## cmd, 0, #cmd }, 5562 #include "ioctls.h" 5563 { 0, 0, }, 5564 }; 5565 5566 /* ??? Implement proper locking for ioctls. */ 5567 /* do_ioctl() Must return target values and target errnos. */ 5568 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5569 { 5570 const IOCTLEntry *ie; 5571 const argtype *arg_type; 5572 abi_long ret; 5573 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5574 int target_size; 5575 void *argptr; 5576 5577 ie = ioctl_entries; 5578 for(;;) { 5579 if (ie->target_cmd == 0) { 5580 qemu_log_mask( 5581 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5582 return -TARGET_ENOTTY; 5583 } 5584 if (ie->target_cmd == cmd) 5585 break; 5586 ie++; 5587 } 5588 arg_type = ie->arg_type; 5589 if (ie->do_ioctl) { 5590 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5591 } else if (!ie->host_cmd) { 5592 /* Some architectures define BSD ioctls in their headers 5593 that are not implemented in Linux. */ 5594 return -TARGET_ENOTTY; 5595 } 5596 5597 switch(arg_type[0]) { 5598 case TYPE_NULL: 5599 /* no argument */ 5600 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5601 break; 5602 case TYPE_PTRVOID: 5603 case TYPE_INT: 5604 case TYPE_LONG: 5605 case TYPE_ULONG: 5606 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5607 break; 5608 case TYPE_PTR: 5609 arg_type++; 5610 target_size = thunk_type_size(arg_type, 0); 5611 switch(ie->access) { 5612 case IOC_R: 5613 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5614 if (!is_error(ret)) { 5615 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5616 if (!argptr) 5617 return -TARGET_EFAULT; 5618 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5619 unlock_user(argptr, arg, target_size); 5620 } 5621 break; 5622 case IOC_W: 5623 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5624 if (!argptr) 5625 return -TARGET_EFAULT; 5626 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5627 unlock_user(argptr, arg, 0); 5628 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5629 break; 5630 default: 5631 case IOC_RW: 5632 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5633 if (!argptr) 5634 return -TARGET_EFAULT; 5635 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5636 unlock_user(argptr, arg, 0); 5637 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5638 if (!is_error(ret)) { 5639 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5640 if (!argptr) 5641 return -TARGET_EFAULT; 5642 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5643 unlock_user(argptr, arg, target_size); 5644 } 5645 break; 5646 } 5647 break; 5648 default: 5649 qemu_log_mask(LOG_UNIMP, 5650 "Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5651 (long)cmd, arg_type[0]); 5652 ret = -TARGET_ENOTTY; 5653 break; 5654 } 5655 return ret; 5656 } 5657 5658 static const bitmask_transtbl iflag_tbl[] = { 5659 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5660 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5661 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5662 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5663 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5664 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5665 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5666 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5667 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5668 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5669 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5670 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5671 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5672 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5673 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8}, 5674 }; 5675 5676 static const bitmask_transtbl oflag_tbl[] = { 5677 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5678 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5679 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5680 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5681 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5682 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5683 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5684 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5685 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5686 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5687 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5688 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5689 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5690 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5691 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5692 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5693 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5694 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5695 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5696 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5697 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5698 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5699 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5700 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5701 }; 5702 5703 static const bitmask_transtbl cflag_tbl[] = { 5704 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5705 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5706 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5707 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5708 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5709 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5710 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5711 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5712 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5713 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5714 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5715 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5716 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5717 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5718 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5719 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5720 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5721 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5722 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5723 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5724 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5725 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5726 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5727 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5728 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5729 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5730 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5731 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5732 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5733 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5734 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5735 }; 5736 5737 static const bitmask_transtbl lflag_tbl[] = { 5738 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5739 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5740 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5741 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5742 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5743 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5744 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5745 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5746 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5747 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5748 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5749 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5750 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5751 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5752 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5753 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC}, 5754 }; 5755 5756 static void target_to_host_termios (void *dst, const void *src) 5757 { 5758 struct host_termios *host = dst; 5759 const struct target_termios *target = src; 5760 5761 host->c_iflag = 5762 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5763 host->c_oflag = 5764 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5765 host->c_cflag = 5766 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5767 host->c_lflag = 5768 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5769 host->c_line = target->c_line; 5770 5771 memset(host->c_cc, 0, sizeof(host->c_cc)); 5772 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5773 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5774 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5775 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5776 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5777 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5778 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5779 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5780 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5781 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5782 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5783 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5784 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5785 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5786 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5787 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5788 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5789 } 5790 5791 static void host_to_target_termios (void *dst, const void *src) 5792 { 5793 struct target_termios *target = dst; 5794 const struct host_termios *host = src; 5795 5796 target->c_iflag = 5797 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5798 target->c_oflag = 5799 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5800 target->c_cflag = 5801 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5802 target->c_lflag = 5803 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5804 target->c_line = host->c_line; 5805 5806 memset(target->c_cc, 0, sizeof(target->c_cc)); 5807 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5808 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5809 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5810 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5811 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5812 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5813 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5814 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5815 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5816 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5817 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5818 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5819 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5820 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5821 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5822 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5823 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5824 } 5825 5826 static const StructEntry struct_termios_def = { 5827 .convert = { host_to_target_termios, target_to_host_termios }, 5828 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5829 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5830 .print = print_termios, 5831 }; 5832 5833 /* If the host does not provide these bits, they may be safely discarded. */ 5834 #ifndef MAP_SYNC 5835 #define MAP_SYNC 0 5836 #endif 5837 #ifndef MAP_UNINITIALIZED 5838 #define MAP_UNINITIALIZED 0 5839 #endif 5840 5841 static const bitmask_transtbl mmap_flags_tbl[] = { 5842 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5843 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 5844 MAP_ANONYMOUS, MAP_ANONYMOUS }, 5845 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 5846 MAP_GROWSDOWN, MAP_GROWSDOWN }, 5847 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 5848 MAP_DENYWRITE, MAP_DENYWRITE }, 5849 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 5850 MAP_EXECUTABLE, MAP_EXECUTABLE }, 5851 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5852 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 5853 MAP_NORESERVE, MAP_NORESERVE }, 5854 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 5855 /* MAP_STACK had been ignored by the kernel for quite some time. 5856 Recognize it for the target insofar as we do not want to pass 5857 it through to the host. */ 5858 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 5859 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK }, 5860 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE }, 5861 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE, 5862 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE }, 5863 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED, 5864 MAP_UNINITIALIZED, MAP_UNINITIALIZED }, 5865 }; 5866 5867 /* 5868 * Arrange for legacy / undefined architecture specific flags to be 5869 * ignored by mmap handling code. 5870 */ 5871 #ifndef TARGET_MAP_32BIT 5872 #define TARGET_MAP_32BIT 0 5873 #endif 5874 #ifndef TARGET_MAP_HUGE_2MB 5875 #define TARGET_MAP_HUGE_2MB 0 5876 #endif 5877 #ifndef TARGET_MAP_HUGE_1GB 5878 #define TARGET_MAP_HUGE_1GB 0 5879 #endif 5880 5881 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot, 5882 int target_flags, int fd, off_t offset) 5883 { 5884 /* 5885 * The historical set of flags that all mmap types implicitly support. 5886 */ 5887 enum { 5888 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED 5889 | TARGET_MAP_PRIVATE 5890 | TARGET_MAP_FIXED 5891 | TARGET_MAP_ANONYMOUS 5892 | TARGET_MAP_DENYWRITE 5893 | TARGET_MAP_EXECUTABLE 5894 | TARGET_MAP_UNINITIALIZED 5895 | TARGET_MAP_GROWSDOWN 5896 | TARGET_MAP_LOCKED 5897 | TARGET_MAP_NORESERVE 5898 | TARGET_MAP_POPULATE 5899 | TARGET_MAP_NONBLOCK 5900 | TARGET_MAP_STACK 5901 | TARGET_MAP_HUGETLB 5902 | TARGET_MAP_32BIT 5903 | TARGET_MAP_HUGE_2MB 5904 | TARGET_MAP_HUGE_1GB 5905 }; 5906 int host_flags; 5907 5908 switch (target_flags & TARGET_MAP_TYPE) { 5909 case TARGET_MAP_PRIVATE: 5910 host_flags = MAP_PRIVATE; 5911 break; 5912 case TARGET_MAP_SHARED: 5913 host_flags = MAP_SHARED; 5914 break; 5915 case TARGET_MAP_SHARED_VALIDATE: 5916 /* 5917 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is 5918 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK. 5919 */ 5920 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) { 5921 return -TARGET_EOPNOTSUPP; 5922 } 5923 host_flags = MAP_SHARED_VALIDATE; 5924 if (target_flags & TARGET_MAP_SYNC) { 5925 host_flags |= MAP_SYNC; 5926 } 5927 break; 5928 default: 5929 return -TARGET_EINVAL; 5930 } 5931 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl); 5932 5933 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset)); 5934 } 5935 5936 /* 5937 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64) 5938 * TARGET_I386 is defined if TARGET_X86_64 is defined 5939 */ 5940 #if defined(TARGET_I386) 5941 5942 /* NOTE: there is really one LDT for all the threads */ 5943 static uint8_t *ldt_table; 5944 5945 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5946 { 5947 int size; 5948 void *p; 5949 5950 if (!ldt_table) 5951 return 0; 5952 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5953 if (size > bytecount) 5954 size = bytecount; 5955 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5956 if (!p) 5957 return -TARGET_EFAULT; 5958 /* ??? Should this by byteswapped? */ 5959 memcpy(p, ldt_table, size); 5960 unlock_user(p, ptr, size); 5961 return size; 5962 } 5963 5964 /* XXX: add locking support */ 5965 static abi_long write_ldt(CPUX86State *env, 5966 abi_ulong ptr, unsigned long bytecount, int oldmode) 5967 { 5968 struct target_modify_ldt_ldt_s ldt_info; 5969 struct target_modify_ldt_ldt_s *target_ldt_info; 5970 int seg_32bit, contents, read_exec_only, limit_in_pages; 5971 int seg_not_present, useable, lm; 5972 uint32_t *lp, entry_1, entry_2; 5973 5974 if (bytecount != sizeof(ldt_info)) 5975 return -TARGET_EINVAL; 5976 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5977 return -TARGET_EFAULT; 5978 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5979 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5980 ldt_info.limit = tswap32(target_ldt_info->limit); 5981 ldt_info.flags = tswap32(target_ldt_info->flags); 5982 unlock_user_struct(target_ldt_info, ptr, 0); 5983 5984 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 5985 return -TARGET_EINVAL; 5986 seg_32bit = ldt_info.flags & 1; 5987 contents = (ldt_info.flags >> 1) & 3; 5988 read_exec_only = (ldt_info.flags >> 3) & 1; 5989 limit_in_pages = (ldt_info.flags >> 4) & 1; 5990 seg_not_present = (ldt_info.flags >> 5) & 1; 5991 useable = (ldt_info.flags >> 6) & 1; 5992 #ifdef TARGET_ABI32 5993 lm = 0; 5994 #else 5995 lm = (ldt_info.flags >> 7) & 1; 5996 #endif 5997 if (contents == 3) { 5998 if (oldmode) 5999 return -TARGET_EINVAL; 6000 if (seg_not_present == 0) 6001 return -TARGET_EINVAL; 6002 } 6003 /* allocate the LDT */ 6004 if (!ldt_table) { 6005 env->ldt.base = target_mmap(0, 6006 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6007 PROT_READ|PROT_WRITE, 6008 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6009 if (env->ldt.base == -1) 6010 return -TARGET_ENOMEM; 6011 memset(g2h_untagged(env->ldt.base), 0, 6012 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6013 env->ldt.limit = 0xffff; 6014 ldt_table = g2h_untagged(env->ldt.base); 6015 } 6016 6017 /* NOTE: same code as Linux kernel */ 6018 /* Allow LDTs to be cleared by the user. */ 6019 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6020 if (oldmode || 6021 (contents == 0 && 6022 read_exec_only == 1 && 6023 seg_32bit == 0 && 6024 limit_in_pages == 0 && 6025 seg_not_present == 1 && 6026 useable == 0 )) { 6027 entry_1 = 0; 6028 entry_2 = 0; 6029 goto install; 6030 } 6031 } 6032 6033 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6034 (ldt_info.limit & 0x0ffff); 6035 entry_2 = (ldt_info.base_addr & 0xff000000) | 6036 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6037 (ldt_info.limit & 0xf0000) | 6038 ((read_exec_only ^ 1) << 9) | 6039 (contents << 10) | 6040 ((seg_not_present ^ 1) << 15) | 6041 (seg_32bit << 22) | 6042 (limit_in_pages << 23) | 6043 (lm << 21) | 6044 0x7000; 6045 if (!oldmode) 6046 entry_2 |= (useable << 20); 6047 6048 /* Install the new entry ... */ 6049 install: 6050 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6051 lp[0] = tswap32(entry_1); 6052 lp[1] = tswap32(entry_2); 6053 return 0; 6054 } 6055 6056 /* specific and weird i386 syscalls */ 6057 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6058 unsigned long bytecount) 6059 { 6060 abi_long ret; 6061 6062 switch (func) { 6063 case 0: 6064 ret = read_ldt(ptr, bytecount); 6065 break; 6066 case 1: 6067 ret = write_ldt(env, ptr, bytecount, 1); 6068 break; 6069 case 0x11: 6070 ret = write_ldt(env, ptr, bytecount, 0); 6071 break; 6072 default: 6073 ret = -TARGET_ENOSYS; 6074 break; 6075 } 6076 return ret; 6077 } 6078 6079 #if defined(TARGET_ABI32) 6080 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6081 { 6082 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6083 struct target_modify_ldt_ldt_s ldt_info; 6084 struct target_modify_ldt_ldt_s *target_ldt_info; 6085 int seg_32bit, contents, read_exec_only, limit_in_pages; 6086 int seg_not_present, useable, lm; 6087 uint32_t *lp, entry_1, entry_2; 6088 int i; 6089 6090 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6091 if (!target_ldt_info) 6092 return -TARGET_EFAULT; 6093 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6094 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6095 ldt_info.limit = tswap32(target_ldt_info->limit); 6096 ldt_info.flags = tswap32(target_ldt_info->flags); 6097 if (ldt_info.entry_number == -1) { 6098 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6099 if (gdt_table[i] == 0) { 6100 ldt_info.entry_number = i; 6101 target_ldt_info->entry_number = tswap32(i); 6102 break; 6103 } 6104 } 6105 } 6106 unlock_user_struct(target_ldt_info, ptr, 1); 6107 6108 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6109 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6110 return -TARGET_EINVAL; 6111 seg_32bit = ldt_info.flags & 1; 6112 contents = (ldt_info.flags >> 1) & 3; 6113 read_exec_only = (ldt_info.flags >> 3) & 1; 6114 limit_in_pages = (ldt_info.flags >> 4) & 1; 6115 seg_not_present = (ldt_info.flags >> 5) & 1; 6116 useable = (ldt_info.flags >> 6) & 1; 6117 #ifdef TARGET_ABI32 6118 lm = 0; 6119 #else 6120 lm = (ldt_info.flags >> 7) & 1; 6121 #endif 6122 6123 if (contents == 3) { 6124 if (seg_not_present == 0) 6125 return -TARGET_EINVAL; 6126 } 6127 6128 /* NOTE: same code as Linux kernel */ 6129 /* Allow LDTs to be cleared by the user. */ 6130 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6131 if ((contents == 0 && 6132 read_exec_only == 1 && 6133 seg_32bit == 0 && 6134 limit_in_pages == 0 && 6135 seg_not_present == 1 && 6136 useable == 0 )) { 6137 entry_1 = 0; 6138 entry_2 = 0; 6139 goto install; 6140 } 6141 } 6142 6143 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6144 (ldt_info.limit & 0x0ffff); 6145 entry_2 = (ldt_info.base_addr & 0xff000000) | 6146 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6147 (ldt_info.limit & 0xf0000) | 6148 ((read_exec_only ^ 1) << 9) | 6149 (contents << 10) | 6150 ((seg_not_present ^ 1) << 15) | 6151 (seg_32bit << 22) | 6152 (limit_in_pages << 23) | 6153 (useable << 20) | 6154 (lm << 21) | 6155 0x7000; 6156 6157 /* Install the new entry ... */ 6158 install: 6159 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6160 lp[0] = tswap32(entry_1); 6161 lp[1] = tswap32(entry_2); 6162 return 0; 6163 } 6164 6165 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6166 { 6167 struct target_modify_ldt_ldt_s *target_ldt_info; 6168 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6169 uint32_t base_addr, limit, flags; 6170 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6171 int seg_not_present, useable, lm; 6172 uint32_t *lp, entry_1, entry_2; 6173 6174 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6175 if (!target_ldt_info) 6176 return -TARGET_EFAULT; 6177 idx = tswap32(target_ldt_info->entry_number); 6178 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6179 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6180 unlock_user_struct(target_ldt_info, ptr, 1); 6181 return -TARGET_EINVAL; 6182 } 6183 lp = (uint32_t *)(gdt_table + idx); 6184 entry_1 = tswap32(lp[0]); 6185 entry_2 = tswap32(lp[1]); 6186 6187 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6188 contents = (entry_2 >> 10) & 3; 6189 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6190 seg_32bit = (entry_2 >> 22) & 1; 6191 limit_in_pages = (entry_2 >> 23) & 1; 6192 useable = (entry_2 >> 20) & 1; 6193 #ifdef TARGET_ABI32 6194 lm = 0; 6195 #else 6196 lm = (entry_2 >> 21) & 1; 6197 #endif 6198 flags = (seg_32bit << 0) | (contents << 1) | 6199 (read_exec_only << 3) | (limit_in_pages << 4) | 6200 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6201 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6202 base_addr = (entry_1 >> 16) | 6203 (entry_2 & 0xff000000) | 6204 ((entry_2 & 0xff) << 16); 6205 target_ldt_info->base_addr = tswapal(base_addr); 6206 target_ldt_info->limit = tswap32(limit); 6207 target_ldt_info->flags = tswap32(flags); 6208 unlock_user_struct(target_ldt_info, ptr, 1); 6209 return 0; 6210 } 6211 6212 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6213 { 6214 return -TARGET_ENOSYS; 6215 } 6216 #else 6217 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6218 { 6219 abi_long ret = 0; 6220 abi_ulong val; 6221 int idx; 6222 6223 switch(code) { 6224 case TARGET_ARCH_SET_GS: 6225 case TARGET_ARCH_SET_FS: 6226 if (code == TARGET_ARCH_SET_GS) 6227 idx = R_GS; 6228 else 6229 idx = R_FS; 6230 cpu_x86_load_seg(env, idx, 0); 6231 env->segs[idx].base = addr; 6232 break; 6233 case TARGET_ARCH_GET_GS: 6234 case TARGET_ARCH_GET_FS: 6235 if (code == TARGET_ARCH_GET_GS) 6236 idx = R_GS; 6237 else 6238 idx = R_FS; 6239 val = env->segs[idx].base; 6240 if (put_user(val, addr, abi_ulong)) 6241 ret = -TARGET_EFAULT; 6242 break; 6243 default: 6244 ret = -TARGET_EINVAL; 6245 break; 6246 } 6247 return ret; 6248 } 6249 #endif /* defined(TARGET_ABI32 */ 6250 #endif /* defined(TARGET_I386) */ 6251 6252 /* 6253 * These constants are generic. Supply any that are missing from the host. 6254 */ 6255 #ifndef PR_SET_NAME 6256 # define PR_SET_NAME 15 6257 # define PR_GET_NAME 16 6258 #endif 6259 #ifndef PR_SET_FP_MODE 6260 # define PR_SET_FP_MODE 45 6261 # define PR_GET_FP_MODE 46 6262 # define PR_FP_MODE_FR (1 << 0) 6263 # define PR_FP_MODE_FRE (1 << 1) 6264 #endif 6265 #ifndef PR_SVE_SET_VL 6266 # define PR_SVE_SET_VL 50 6267 # define PR_SVE_GET_VL 51 6268 # define PR_SVE_VL_LEN_MASK 0xffff 6269 # define PR_SVE_VL_INHERIT (1 << 17) 6270 #endif 6271 #ifndef PR_PAC_RESET_KEYS 6272 # define PR_PAC_RESET_KEYS 54 6273 # define PR_PAC_APIAKEY (1 << 0) 6274 # define PR_PAC_APIBKEY (1 << 1) 6275 # define PR_PAC_APDAKEY (1 << 2) 6276 # define PR_PAC_APDBKEY (1 << 3) 6277 # define PR_PAC_APGAKEY (1 << 4) 6278 #endif 6279 #ifndef PR_SET_TAGGED_ADDR_CTRL 6280 # define PR_SET_TAGGED_ADDR_CTRL 55 6281 # define PR_GET_TAGGED_ADDR_CTRL 56 6282 # define PR_TAGGED_ADDR_ENABLE (1UL << 0) 6283 #endif 6284 #ifndef PR_MTE_TCF_SHIFT 6285 # define PR_MTE_TCF_SHIFT 1 6286 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT) 6287 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT) 6288 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT) 6289 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT) 6290 # define PR_MTE_TAG_SHIFT 3 6291 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT) 6292 #endif 6293 #ifndef PR_SET_IO_FLUSHER 6294 # define PR_SET_IO_FLUSHER 57 6295 # define PR_GET_IO_FLUSHER 58 6296 #endif 6297 #ifndef PR_SET_SYSCALL_USER_DISPATCH 6298 # define PR_SET_SYSCALL_USER_DISPATCH 59 6299 #endif 6300 #ifndef PR_SME_SET_VL 6301 # define PR_SME_SET_VL 63 6302 # define PR_SME_GET_VL 64 6303 # define PR_SME_VL_LEN_MASK 0xffff 6304 # define PR_SME_VL_INHERIT (1 << 17) 6305 #endif 6306 6307 #include "target_prctl.h" 6308 6309 static abi_long do_prctl_inval0(CPUArchState *env) 6310 { 6311 return -TARGET_EINVAL; 6312 } 6313 6314 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2) 6315 { 6316 return -TARGET_EINVAL; 6317 } 6318 6319 #ifndef do_prctl_get_fp_mode 6320 #define do_prctl_get_fp_mode do_prctl_inval0 6321 #endif 6322 #ifndef do_prctl_set_fp_mode 6323 #define do_prctl_set_fp_mode do_prctl_inval1 6324 #endif 6325 #ifndef do_prctl_sve_get_vl 6326 #define do_prctl_sve_get_vl do_prctl_inval0 6327 #endif 6328 #ifndef do_prctl_sve_set_vl 6329 #define do_prctl_sve_set_vl do_prctl_inval1 6330 #endif 6331 #ifndef do_prctl_reset_keys 6332 #define do_prctl_reset_keys do_prctl_inval1 6333 #endif 6334 #ifndef do_prctl_set_tagged_addr_ctrl 6335 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1 6336 #endif 6337 #ifndef do_prctl_get_tagged_addr_ctrl 6338 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0 6339 #endif 6340 #ifndef do_prctl_get_unalign 6341 #define do_prctl_get_unalign do_prctl_inval1 6342 #endif 6343 #ifndef do_prctl_set_unalign 6344 #define do_prctl_set_unalign do_prctl_inval1 6345 #endif 6346 #ifndef do_prctl_sme_get_vl 6347 #define do_prctl_sme_get_vl do_prctl_inval0 6348 #endif 6349 #ifndef do_prctl_sme_set_vl 6350 #define do_prctl_sme_set_vl do_prctl_inval1 6351 #endif 6352 6353 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2, 6354 abi_long arg3, abi_long arg4, abi_long arg5) 6355 { 6356 abi_long ret; 6357 6358 switch (option) { 6359 case PR_GET_PDEATHSIG: 6360 { 6361 int deathsig; 6362 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig, 6363 arg3, arg4, arg5)); 6364 if (!is_error(ret) && 6365 put_user_s32(host_to_target_signal(deathsig), arg2)) { 6366 return -TARGET_EFAULT; 6367 } 6368 return ret; 6369 } 6370 case PR_SET_PDEATHSIG: 6371 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2), 6372 arg3, arg4, arg5)); 6373 case PR_GET_NAME: 6374 { 6375 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 6376 if (!name) { 6377 return -TARGET_EFAULT; 6378 } 6379 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name, 6380 arg3, arg4, arg5)); 6381 unlock_user(name, arg2, 16); 6382 return ret; 6383 } 6384 case PR_SET_NAME: 6385 { 6386 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 6387 if (!name) { 6388 return -TARGET_EFAULT; 6389 } 6390 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name, 6391 arg3, arg4, arg5)); 6392 unlock_user(name, arg2, 0); 6393 return ret; 6394 } 6395 case PR_GET_FP_MODE: 6396 return do_prctl_get_fp_mode(env); 6397 case PR_SET_FP_MODE: 6398 return do_prctl_set_fp_mode(env, arg2); 6399 case PR_SVE_GET_VL: 6400 return do_prctl_sve_get_vl(env); 6401 case PR_SVE_SET_VL: 6402 return do_prctl_sve_set_vl(env, arg2); 6403 case PR_SME_GET_VL: 6404 return do_prctl_sme_get_vl(env); 6405 case PR_SME_SET_VL: 6406 return do_prctl_sme_set_vl(env, arg2); 6407 case PR_PAC_RESET_KEYS: 6408 if (arg3 || arg4 || arg5) { 6409 return -TARGET_EINVAL; 6410 } 6411 return do_prctl_reset_keys(env, arg2); 6412 case PR_SET_TAGGED_ADDR_CTRL: 6413 if (arg3 || arg4 || arg5) { 6414 return -TARGET_EINVAL; 6415 } 6416 return do_prctl_set_tagged_addr_ctrl(env, arg2); 6417 case PR_GET_TAGGED_ADDR_CTRL: 6418 if (arg2 || arg3 || arg4 || arg5) { 6419 return -TARGET_EINVAL; 6420 } 6421 return do_prctl_get_tagged_addr_ctrl(env); 6422 6423 case PR_GET_UNALIGN: 6424 return do_prctl_get_unalign(env, arg2); 6425 case PR_SET_UNALIGN: 6426 return do_prctl_set_unalign(env, arg2); 6427 6428 case PR_CAP_AMBIENT: 6429 case PR_CAPBSET_READ: 6430 case PR_CAPBSET_DROP: 6431 case PR_GET_DUMPABLE: 6432 case PR_SET_DUMPABLE: 6433 case PR_GET_KEEPCAPS: 6434 case PR_SET_KEEPCAPS: 6435 case PR_GET_SECUREBITS: 6436 case PR_SET_SECUREBITS: 6437 case PR_GET_TIMING: 6438 case PR_SET_TIMING: 6439 case PR_GET_TIMERSLACK: 6440 case PR_SET_TIMERSLACK: 6441 case PR_MCE_KILL: 6442 case PR_MCE_KILL_GET: 6443 case PR_GET_NO_NEW_PRIVS: 6444 case PR_SET_NO_NEW_PRIVS: 6445 case PR_GET_IO_FLUSHER: 6446 case PR_SET_IO_FLUSHER: 6447 case PR_SET_CHILD_SUBREAPER: 6448 case PR_GET_SPECULATION_CTRL: 6449 case PR_SET_SPECULATION_CTRL: 6450 /* Some prctl options have no pointer arguments and we can pass on. */ 6451 return get_errno(prctl(option, arg2, arg3, arg4, arg5)); 6452 6453 case PR_GET_CHILD_SUBREAPER: 6454 { 6455 int val; 6456 ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val, 6457 arg3, arg4, arg5)); 6458 if (!is_error(ret) && put_user_s32(val, arg2)) { 6459 return -TARGET_EFAULT; 6460 } 6461 return ret; 6462 } 6463 6464 case PR_GET_TID_ADDRESS: 6465 { 6466 TaskState *ts = get_task_state(env_cpu(env)); 6467 return put_user_ual(ts->child_tidptr, arg2); 6468 } 6469 6470 case PR_GET_FPEXC: 6471 case PR_SET_FPEXC: 6472 /* Was used for SPE on PowerPC. */ 6473 return -TARGET_EINVAL; 6474 6475 case PR_GET_ENDIAN: 6476 case PR_SET_ENDIAN: 6477 case PR_GET_FPEMU: 6478 case PR_SET_FPEMU: 6479 case PR_SET_MM: 6480 case PR_GET_SECCOMP: 6481 case PR_SET_SECCOMP: 6482 case PR_SET_SYSCALL_USER_DISPATCH: 6483 case PR_GET_THP_DISABLE: 6484 case PR_SET_THP_DISABLE: 6485 case PR_GET_TSC: 6486 case PR_SET_TSC: 6487 /* Disable to prevent the target disabling stuff we need. */ 6488 return -TARGET_EINVAL; 6489 6490 default: 6491 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n", 6492 option); 6493 return -TARGET_EINVAL; 6494 } 6495 } 6496 6497 #define NEW_STACK_SIZE 0x40000 6498 6499 6500 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6501 typedef struct { 6502 CPUArchState *env; 6503 pthread_mutex_t mutex; 6504 pthread_cond_t cond; 6505 pthread_t thread; 6506 uint32_t tid; 6507 abi_ulong child_tidptr; 6508 abi_ulong parent_tidptr; 6509 sigset_t sigmask; 6510 } new_thread_info; 6511 6512 static void *clone_func(void *arg) 6513 { 6514 new_thread_info *info = arg; 6515 CPUArchState *env; 6516 CPUState *cpu; 6517 TaskState *ts; 6518 6519 rcu_register_thread(); 6520 tcg_register_thread(); 6521 env = info->env; 6522 cpu = env_cpu(env); 6523 thread_cpu = cpu; 6524 ts = get_task_state(cpu); 6525 info->tid = sys_gettid(); 6526 task_settid(ts); 6527 if (info->child_tidptr) 6528 put_user_u32(info->tid, info->child_tidptr); 6529 if (info->parent_tidptr) 6530 put_user_u32(info->tid, info->parent_tidptr); 6531 qemu_guest_random_seed_thread_part2(cpu->random_seed); 6532 /* Enable signals. */ 6533 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6534 /* Signal to the parent that we're ready. */ 6535 pthread_mutex_lock(&info->mutex); 6536 pthread_cond_broadcast(&info->cond); 6537 pthread_mutex_unlock(&info->mutex); 6538 /* Wait until the parent has finished initializing the tls state. */ 6539 pthread_mutex_lock(&clone_lock); 6540 pthread_mutex_unlock(&clone_lock); 6541 cpu_loop(env); 6542 /* never exits */ 6543 return NULL; 6544 } 6545 6546 /* do_fork() Must return host values and target errnos (unlike most 6547 do_*() functions). */ 6548 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6549 abi_ulong parent_tidptr, target_ulong newtls, 6550 abi_ulong child_tidptr) 6551 { 6552 CPUState *cpu = env_cpu(env); 6553 int ret; 6554 TaskState *ts; 6555 CPUState *new_cpu; 6556 CPUArchState *new_env; 6557 sigset_t sigmask; 6558 6559 flags &= ~CLONE_IGNORED_FLAGS; 6560 6561 /* Emulate vfork() with fork() */ 6562 if (flags & CLONE_VFORK) 6563 flags &= ~(CLONE_VFORK | CLONE_VM); 6564 6565 if (flags & CLONE_VM) { 6566 TaskState *parent_ts = get_task_state(cpu); 6567 new_thread_info info; 6568 pthread_attr_t attr; 6569 6570 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6571 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6572 return -TARGET_EINVAL; 6573 } 6574 6575 ts = g_new0(TaskState, 1); 6576 init_task_state(ts); 6577 6578 /* Grab a mutex so that thread setup appears atomic. */ 6579 pthread_mutex_lock(&clone_lock); 6580 6581 /* 6582 * If this is our first additional thread, we need to ensure we 6583 * generate code for parallel execution and flush old translations. 6584 * Do this now so that the copy gets CF_PARALLEL too. 6585 */ 6586 if (!tcg_cflags_has(cpu, CF_PARALLEL)) { 6587 tcg_cflags_set(cpu, CF_PARALLEL); 6588 tb_flush(cpu); 6589 } 6590 6591 /* we create a new CPU instance. */ 6592 new_env = cpu_copy(env); 6593 /* Init regs that differ from the parent. */ 6594 cpu_clone_regs_child(new_env, newsp, flags); 6595 cpu_clone_regs_parent(env, flags); 6596 new_cpu = env_cpu(new_env); 6597 new_cpu->opaque = ts; 6598 ts->bprm = parent_ts->bprm; 6599 ts->info = parent_ts->info; 6600 ts->signal_mask = parent_ts->signal_mask; 6601 6602 if (flags & CLONE_CHILD_CLEARTID) { 6603 ts->child_tidptr = child_tidptr; 6604 } 6605 6606 if (flags & CLONE_SETTLS) { 6607 cpu_set_tls (new_env, newtls); 6608 } 6609 6610 memset(&info, 0, sizeof(info)); 6611 pthread_mutex_init(&info.mutex, NULL); 6612 pthread_mutex_lock(&info.mutex); 6613 pthread_cond_init(&info.cond, NULL); 6614 info.env = new_env; 6615 if (flags & CLONE_CHILD_SETTID) { 6616 info.child_tidptr = child_tidptr; 6617 } 6618 if (flags & CLONE_PARENT_SETTID) { 6619 info.parent_tidptr = parent_tidptr; 6620 } 6621 6622 ret = pthread_attr_init(&attr); 6623 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6624 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6625 /* It is not safe to deliver signals until the child has finished 6626 initializing, so temporarily block all signals. */ 6627 sigfillset(&sigmask); 6628 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6629 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 6630 6631 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6632 /* TODO: Free new CPU state if thread creation failed. */ 6633 6634 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6635 pthread_attr_destroy(&attr); 6636 if (ret == 0) { 6637 /* Wait for the child to initialize. */ 6638 pthread_cond_wait(&info.cond, &info.mutex); 6639 ret = info.tid; 6640 } else { 6641 ret = -1; 6642 } 6643 pthread_mutex_unlock(&info.mutex); 6644 pthread_cond_destroy(&info.cond); 6645 pthread_mutex_destroy(&info.mutex); 6646 pthread_mutex_unlock(&clone_lock); 6647 } else { 6648 /* if no CLONE_VM, we consider it is a fork */ 6649 if (flags & CLONE_INVALID_FORK_FLAGS) { 6650 return -TARGET_EINVAL; 6651 } 6652 6653 /* We can't support custom termination signals */ 6654 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6655 return -TARGET_EINVAL; 6656 } 6657 6658 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open) 6659 if (flags & CLONE_PIDFD) { 6660 return -TARGET_EINVAL; 6661 } 6662 #endif 6663 6664 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */ 6665 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) { 6666 return -TARGET_EINVAL; 6667 } 6668 6669 if (block_signals()) { 6670 return -QEMU_ERESTARTSYS; 6671 } 6672 6673 fork_start(); 6674 ret = fork(); 6675 if (ret == 0) { 6676 /* Child Process. */ 6677 cpu_clone_regs_child(env, newsp, flags); 6678 fork_end(ret); 6679 /* There is a race condition here. The parent process could 6680 theoretically read the TID in the child process before the child 6681 tid is set. This would require using either ptrace 6682 (not implemented) or having *_tidptr to point at a shared memory 6683 mapping. We can't repeat the spinlock hack used above because 6684 the child process gets its own copy of the lock. */ 6685 if (flags & CLONE_CHILD_SETTID) 6686 put_user_u32(sys_gettid(), child_tidptr); 6687 if (flags & CLONE_PARENT_SETTID) 6688 put_user_u32(sys_gettid(), parent_tidptr); 6689 ts = get_task_state(cpu); 6690 if (flags & CLONE_SETTLS) 6691 cpu_set_tls (env, newtls); 6692 if (flags & CLONE_CHILD_CLEARTID) 6693 ts->child_tidptr = child_tidptr; 6694 } else { 6695 cpu_clone_regs_parent(env, flags); 6696 if (flags & CLONE_PIDFD) { 6697 int pid_fd = 0; 6698 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 6699 int pid_child = ret; 6700 pid_fd = pidfd_open(pid_child, 0); 6701 if (pid_fd >= 0) { 6702 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL) 6703 | FD_CLOEXEC); 6704 } else { 6705 pid_fd = 0; 6706 } 6707 #endif 6708 put_user_u32(pid_fd, parent_tidptr); 6709 } 6710 fork_end(ret); 6711 } 6712 g_assert(!cpu_in_exclusive_context(cpu)); 6713 } 6714 return ret; 6715 } 6716 6717 /* warning : doesn't handle linux specific flags... */ 6718 static int target_to_host_fcntl_cmd(int cmd) 6719 { 6720 int ret; 6721 6722 switch(cmd) { 6723 case TARGET_F_DUPFD: 6724 case TARGET_F_GETFD: 6725 case TARGET_F_SETFD: 6726 case TARGET_F_GETFL: 6727 case TARGET_F_SETFL: 6728 case TARGET_F_OFD_GETLK: 6729 case TARGET_F_OFD_SETLK: 6730 case TARGET_F_OFD_SETLKW: 6731 ret = cmd; 6732 break; 6733 case TARGET_F_GETLK: 6734 ret = F_GETLK64; 6735 break; 6736 case TARGET_F_SETLK: 6737 ret = F_SETLK64; 6738 break; 6739 case TARGET_F_SETLKW: 6740 ret = F_SETLKW64; 6741 break; 6742 case TARGET_F_GETOWN: 6743 ret = F_GETOWN; 6744 break; 6745 case TARGET_F_SETOWN: 6746 ret = F_SETOWN; 6747 break; 6748 case TARGET_F_GETSIG: 6749 ret = F_GETSIG; 6750 break; 6751 case TARGET_F_SETSIG: 6752 ret = F_SETSIG; 6753 break; 6754 #if TARGET_ABI_BITS == 32 6755 case TARGET_F_GETLK64: 6756 ret = F_GETLK64; 6757 break; 6758 case TARGET_F_SETLK64: 6759 ret = F_SETLK64; 6760 break; 6761 case TARGET_F_SETLKW64: 6762 ret = F_SETLKW64; 6763 break; 6764 #endif 6765 case TARGET_F_SETLEASE: 6766 ret = F_SETLEASE; 6767 break; 6768 case TARGET_F_GETLEASE: 6769 ret = F_GETLEASE; 6770 break; 6771 #ifdef F_DUPFD_CLOEXEC 6772 case TARGET_F_DUPFD_CLOEXEC: 6773 ret = F_DUPFD_CLOEXEC; 6774 break; 6775 #endif 6776 case TARGET_F_NOTIFY: 6777 ret = F_NOTIFY; 6778 break; 6779 #ifdef F_GETOWN_EX 6780 case TARGET_F_GETOWN_EX: 6781 ret = F_GETOWN_EX; 6782 break; 6783 #endif 6784 #ifdef F_SETOWN_EX 6785 case TARGET_F_SETOWN_EX: 6786 ret = F_SETOWN_EX; 6787 break; 6788 #endif 6789 #ifdef F_SETPIPE_SZ 6790 case TARGET_F_SETPIPE_SZ: 6791 ret = F_SETPIPE_SZ; 6792 break; 6793 case TARGET_F_GETPIPE_SZ: 6794 ret = F_GETPIPE_SZ; 6795 break; 6796 #endif 6797 #ifdef F_ADD_SEALS 6798 case TARGET_F_ADD_SEALS: 6799 ret = F_ADD_SEALS; 6800 break; 6801 case TARGET_F_GET_SEALS: 6802 ret = F_GET_SEALS; 6803 break; 6804 #endif 6805 default: 6806 ret = -TARGET_EINVAL; 6807 break; 6808 } 6809 6810 #if defined(__powerpc64__) 6811 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and 6812 * is not supported by kernel. The glibc fcntl call actually adjusts 6813 * them to 5, 6 and 7 before making the syscall(). Since we make the 6814 * syscall directly, adjust to what is supported by the kernel. 6815 */ 6816 if (ret >= F_GETLK64 && ret <= F_SETLKW64) { 6817 ret -= F_GETLK64 - 5; 6818 } 6819 #endif 6820 6821 return ret; 6822 } 6823 6824 #define FLOCK_TRANSTBL \ 6825 switch (type) { \ 6826 TRANSTBL_CONVERT(F_RDLCK); \ 6827 TRANSTBL_CONVERT(F_WRLCK); \ 6828 TRANSTBL_CONVERT(F_UNLCK); \ 6829 } 6830 6831 static int target_to_host_flock(int type) 6832 { 6833 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a 6834 FLOCK_TRANSTBL 6835 #undef TRANSTBL_CONVERT 6836 return -TARGET_EINVAL; 6837 } 6838 6839 static int host_to_target_flock(int type) 6840 { 6841 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a 6842 FLOCK_TRANSTBL 6843 #undef TRANSTBL_CONVERT 6844 /* if we don't know how to convert the value coming 6845 * from the host we copy to the target field as-is 6846 */ 6847 return type; 6848 } 6849 6850 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6851 abi_ulong target_flock_addr) 6852 { 6853 struct target_flock *target_fl; 6854 int l_type; 6855 6856 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6857 return -TARGET_EFAULT; 6858 } 6859 6860 __get_user(l_type, &target_fl->l_type); 6861 l_type = target_to_host_flock(l_type); 6862 if (l_type < 0) { 6863 return l_type; 6864 } 6865 fl->l_type = l_type; 6866 __get_user(fl->l_whence, &target_fl->l_whence); 6867 __get_user(fl->l_start, &target_fl->l_start); 6868 __get_user(fl->l_len, &target_fl->l_len); 6869 __get_user(fl->l_pid, &target_fl->l_pid); 6870 unlock_user_struct(target_fl, target_flock_addr, 0); 6871 return 0; 6872 } 6873 6874 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6875 const struct flock64 *fl) 6876 { 6877 struct target_flock *target_fl; 6878 short l_type; 6879 6880 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6881 return -TARGET_EFAULT; 6882 } 6883 6884 l_type = host_to_target_flock(fl->l_type); 6885 __put_user(l_type, &target_fl->l_type); 6886 __put_user(fl->l_whence, &target_fl->l_whence); 6887 __put_user(fl->l_start, &target_fl->l_start); 6888 __put_user(fl->l_len, &target_fl->l_len); 6889 __put_user(fl->l_pid, &target_fl->l_pid); 6890 unlock_user_struct(target_fl, target_flock_addr, 1); 6891 return 0; 6892 } 6893 6894 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6895 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6896 6897 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6898 struct target_oabi_flock64 { 6899 abi_short l_type; 6900 abi_short l_whence; 6901 abi_llong l_start; 6902 abi_llong l_len; 6903 abi_int l_pid; 6904 } QEMU_PACKED; 6905 6906 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl, 6907 abi_ulong target_flock_addr) 6908 { 6909 struct target_oabi_flock64 *target_fl; 6910 int l_type; 6911 6912 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6913 return -TARGET_EFAULT; 6914 } 6915 6916 __get_user(l_type, &target_fl->l_type); 6917 l_type = target_to_host_flock(l_type); 6918 if (l_type < 0) { 6919 return l_type; 6920 } 6921 fl->l_type = l_type; 6922 __get_user(fl->l_whence, &target_fl->l_whence); 6923 __get_user(fl->l_start, &target_fl->l_start); 6924 __get_user(fl->l_len, &target_fl->l_len); 6925 __get_user(fl->l_pid, &target_fl->l_pid); 6926 unlock_user_struct(target_fl, target_flock_addr, 0); 6927 return 0; 6928 } 6929 6930 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr, 6931 const struct flock64 *fl) 6932 { 6933 struct target_oabi_flock64 *target_fl; 6934 short l_type; 6935 6936 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6937 return -TARGET_EFAULT; 6938 } 6939 6940 l_type = host_to_target_flock(fl->l_type); 6941 __put_user(l_type, &target_fl->l_type); 6942 __put_user(fl->l_whence, &target_fl->l_whence); 6943 __put_user(fl->l_start, &target_fl->l_start); 6944 __put_user(fl->l_len, &target_fl->l_len); 6945 __put_user(fl->l_pid, &target_fl->l_pid); 6946 unlock_user_struct(target_fl, target_flock_addr, 1); 6947 return 0; 6948 } 6949 #endif 6950 6951 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6952 abi_ulong target_flock_addr) 6953 { 6954 struct target_flock64 *target_fl; 6955 int l_type; 6956 6957 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6958 return -TARGET_EFAULT; 6959 } 6960 6961 __get_user(l_type, &target_fl->l_type); 6962 l_type = target_to_host_flock(l_type); 6963 if (l_type < 0) { 6964 return l_type; 6965 } 6966 fl->l_type = l_type; 6967 __get_user(fl->l_whence, &target_fl->l_whence); 6968 __get_user(fl->l_start, &target_fl->l_start); 6969 __get_user(fl->l_len, &target_fl->l_len); 6970 __get_user(fl->l_pid, &target_fl->l_pid); 6971 unlock_user_struct(target_fl, target_flock_addr, 0); 6972 return 0; 6973 } 6974 6975 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6976 const struct flock64 *fl) 6977 { 6978 struct target_flock64 *target_fl; 6979 short l_type; 6980 6981 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6982 return -TARGET_EFAULT; 6983 } 6984 6985 l_type = host_to_target_flock(fl->l_type); 6986 __put_user(l_type, &target_fl->l_type); 6987 __put_user(fl->l_whence, &target_fl->l_whence); 6988 __put_user(fl->l_start, &target_fl->l_start); 6989 __put_user(fl->l_len, &target_fl->l_len); 6990 __put_user(fl->l_pid, &target_fl->l_pid); 6991 unlock_user_struct(target_fl, target_flock_addr, 1); 6992 return 0; 6993 } 6994 6995 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6996 { 6997 struct flock64 fl64; 6998 #ifdef F_GETOWN_EX 6999 struct f_owner_ex fox; 7000 struct target_f_owner_ex *target_fox; 7001 #endif 7002 abi_long ret; 7003 int host_cmd = target_to_host_fcntl_cmd(cmd); 7004 7005 if (host_cmd == -TARGET_EINVAL) 7006 return host_cmd; 7007 7008 switch(cmd) { 7009 case TARGET_F_GETLK: 7010 ret = copy_from_user_flock(&fl64, arg); 7011 if (ret) { 7012 return ret; 7013 } 7014 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7015 if (ret == 0) { 7016 ret = copy_to_user_flock(arg, &fl64); 7017 } 7018 break; 7019 7020 case TARGET_F_SETLK: 7021 case TARGET_F_SETLKW: 7022 ret = copy_from_user_flock(&fl64, arg); 7023 if (ret) { 7024 return ret; 7025 } 7026 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7027 break; 7028 7029 case TARGET_F_GETLK64: 7030 case TARGET_F_OFD_GETLK: 7031 ret = copy_from_user_flock64(&fl64, arg); 7032 if (ret) { 7033 return ret; 7034 } 7035 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7036 if (ret == 0) { 7037 ret = copy_to_user_flock64(arg, &fl64); 7038 } 7039 break; 7040 case TARGET_F_SETLK64: 7041 case TARGET_F_SETLKW64: 7042 case TARGET_F_OFD_SETLK: 7043 case TARGET_F_OFD_SETLKW: 7044 ret = copy_from_user_flock64(&fl64, arg); 7045 if (ret) { 7046 return ret; 7047 } 7048 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7049 break; 7050 7051 case TARGET_F_GETFL: 7052 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7053 if (ret >= 0) { 7054 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 7055 /* tell 32-bit guests it uses largefile on 64-bit hosts: */ 7056 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) { 7057 ret |= TARGET_O_LARGEFILE; 7058 } 7059 } 7060 break; 7061 7062 case TARGET_F_SETFL: 7063 ret = get_errno(safe_fcntl(fd, host_cmd, 7064 target_to_host_bitmask(arg, 7065 fcntl_flags_tbl))); 7066 break; 7067 7068 #ifdef F_GETOWN_EX 7069 case TARGET_F_GETOWN_EX: 7070 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7071 if (ret >= 0) { 7072 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 7073 return -TARGET_EFAULT; 7074 target_fox->type = tswap32(fox.type); 7075 target_fox->pid = tswap32(fox.pid); 7076 unlock_user_struct(target_fox, arg, 1); 7077 } 7078 break; 7079 #endif 7080 7081 #ifdef F_SETOWN_EX 7082 case TARGET_F_SETOWN_EX: 7083 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 7084 return -TARGET_EFAULT; 7085 fox.type = tswap32(target_fox->type); 7086 fox.pid = tswap32(target_fox->pid); 7087 unlock_user_struct(target_fox, arg, 0); 7088 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7089 break; 7090 #endif 7091 7092 case TARGET_F_SETSIG: 7093 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg))); 7094 break; 7095 7096 case TARGET_F_GETSIG: 7097 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg))); 7098 break; 7099 7100 case TARGET_F_SETOWN: 7101 case TARGET_F_GETOWN: 7102 case TARGET_F_SETLEASE: 7103 case TARGET_F_GETLEASE: 7104 case TARGET_F_SETPIPE_SZ: 7105 case TARGET_F_GETPIPE_SZ: 7106 case TARGET_F_ADD_SEALS: 7107 case TARGET_F_GET_SEALS: 7108 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7109 break; 7110 7111 default: 7112 ret = get_errno(safe_fcntl(fd, cmd, arg)); 7113 break; 7114 } 7115 return ret; 7116 } 7117 7118 #ifdef USE_UID16 7119 7120 static inline int high2lowuid(int uid) 7121 { 7122 if (uid > 65535) 7123 return 65534; 7124 else 7125 return uid; 7126 } 7127 7128 static inline int high2lowgid(int gid) 7129 { 7130 if (gid > 65535) 7131 return 65534; 7132 else 7133 return gid; 7134 } 7135 7136 static inline int low2highuid(int uid) 7137 { 7138 if ((int16_t)uid == -1) 7139 return -1; 7140 else 7141 return uid; 7142 } 7143 7144 static inline int low2highgid(int gid) 7145 { 7146 if ((int16_t)gid == -1) 7147 return -1; 7148 else 7149 return gid; 7150 } 7151 static inline int tswapid(int id) 7152 { 7153 return tswap16(id); 7154 } 7155 7156 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 7157 7158 #else /* !USE_UID16 */ 7159 static inline int high2lowuid(int uid) 7160 { 7161 return uid; 7162 } 7163 static inline int high2lowgid(int gid) 7164 { 7165 return gid; 7166 } 7167 static inline int low2highuid(int uid) 7168 { 7169 return uid; 7170 } 7171 static inline int low2highgid(int gid) 7172 { 7173 return gid; 7174 } 7175 static inline int tswapid(int id) 7176 { 7177 return tswap32(id); 7178 } 7179 7180 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 7181 7182 #endif /* USE_UID16 */ 7183 7184 /* We must do direct syscalls for setting UID/GID, because we want to 7185 * implement the Linux system call semantics of "change only for this thread", 7186 * not the libc/POSIX semantics of "change for all threads in process". 7187 * (See http://ewontfix.com/17/ for more details.) 7188 * We use the 32-bit version of the syscalls if present; if it is not 7189 * then either the host architecture supports 32-bit UIDs natively with 7190 * the standard syscall, or the 16-bit UID is the best we can do. 7191 */ 7192 #ifdef __NR_setuid32 7193 #define __NR_sys_setuid __NR_setuid32 7194 #else 7195 #define __NR_sys_setuid __NR_setuid 7196 #endif 7197 #ifdef __NR_setgid32 7198 #define __NR_sys_setgid __NR_setgid32 7199 #else 7200 #define __NR_sys_setgid __NR_setgid 7201 #endif 7202 #ifdef __NR_setresuid32 7203 #define __NR_sys_setresuid __NR_setresuid32 7204 #else 7205 #define __NR_sys_setresuid __NR_setresuid 7206 #endif 7207 #ifdef __NR_setresgid32 7208 #define __NR_sys_setresgid __NR_setresgid32 7209 #else 7210 #define __NR_sys_setresgid __NR_setresgid 7211 #endif 7212 7213 _syscall1(int, sys_setuid, uid_t, uid) 7214 _syscall1(int, sys_setgid, gid_t, gid) 7215 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 7216 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 7217 7218 void syscall_init(void) 7219 { 7220 IOCTLEntry *ie; 7221 const argtype *arg_type; 7222 int size; 7223 7224 thunk_init(STRUCT_MAX); 7225 7226 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 7227 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 7228 #include "syscall_types.h" 7229 #undef STRUCT 7230 #undef STRUCT_SPECIAL 7231 7232 /* we patch the ioctl size if necessary. We rely on the fact that 7233 no ioctl has all the bits at '1' in the size field */ 7234 ie = ioctl_entries; 7235 while (ie->target_cmd != 0) { 7236 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 7237 TARGET_IOC_SIZEMASK) { 7238 arg_type = ie->arg_type; 7239 if (arg_type[0] != TYPE_PTR) { 7240 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 7241 ie->target_cmd); 7242 exit(1); 7243 } 7244 arg_type++; 7245 size = thunk_type_size(arg_type, 0); 7246 ie->target_cmd = (ie->target_cmd & 7247 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 7248 (size << TARGET_IOC_SIZESHIFT); 7249 } 7250 7251 /* automatic consistency check if same arch */ 7252 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 7253 (defined(__x86_64__) && defined(TARGET_X86_64)) 7254 if (unlikely(ie->target_cmd != ie->host_cmd)) { 7255 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 7256 ie->name, ie->target_cmd, ie->host_cmd); 7257 } 7258 #endif 7259 ie++; 7260 } 7261 } 7262 7263 #ifdef TARGET_NR_truncate64 7264 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1, 7265 abi_long arg2, 7266 abi_long arg3, 7267 abi_long arg4) 7268 { 7269 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 7270 arg2 = arg3; 7271 arg3 = arg4; 7272 } 7273 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 7274 } 7275 #endif 7276 7277 #ifdef TARGET_NR_ftruncate64 7278 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1, 7279 abi_long arg2, 7280 abi_long arg3, 7281 abi_long arg4) 7282 { 7283 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 7284 arg2 = arg3; 7285 arg3 = arg4; 7286 } 7287 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 7288 } 7289 #endif 7290 7291 #if defined(TARGET_NR_timer_settime) || \ 7292 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 7293 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its, 7294 abi_ulong target_addr) 7295 { 7296 if (target_to_host_timespec(&host_its->it_interval, target_addr + 7297 offsetof(struct target_itimerspec, 7298 it_interval)) || 7299 target_to_host_timespec(&host_its->it_value, target_addr + 7300 offsetof(struct target_itimerspec, 7301 it_value))) { 7302 return -TARGET_EFAULT; 7303 } 7304 7305 return 0; 7306 } 7307 #endif 7308 7309 #if defined(TARGET_NR_timer_settime64) || \ 7310 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) 7311 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its, 7312 abi_ulong target_addr) 7313 { 7314 if (target_to_host_timespec64(&host_its->it_interval, target_addr + 7315 offsetof(struct target__kernel_itimerspec, 7316 it_interval)) || 7317 target_to_host_timespec64(&host_its->it_value, target_addr + 7318 offsetof(struct target__kernel_itimerspec, 7319 it_value))) { 7320 return -TARGET_EFAULT; 7321 } 7322 7323 return 0; 7324 } 7325 #endif 7326 7327 #if ((defined(TARGET_NR_timerfd_gettime) || \ 7328 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \ 7329 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime) 7330 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7331 struct itimerspec *host_its) 7332 { 7333 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7334 it_interval), 7335 &host_its->it_interval) || 7336 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7337 it_value), 7338 &host_its->it_value)) { 7339 return -TARGET_EFAULT; 7340 } 7341 return 0; 7342 } 7343 #endif 7344 7345 #if ((defined(TARGET_NR_timerfd_gettime64) || \ 7346 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \ 7347 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64) 7348 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr, 7349 struct itimerspec *host_its) 7350 { 7351 if (host_to_target_timespec64(target_addr + 7352 offsetof(struct target__kernel_itimerspec, 7353 it_interval), 7354 &host_its->it_interval) || 7355 host_to_target_timespec64(target_addr + 7356 offsetof(struct target__kernel_itimerspec, 7357 it_value), 7358 &host_its->it_value)) { 7359 return -TARGET_EFAULT; 7360 } 7361 return 0; 7362 } 7363 #endif 7364 7365 #if defined(TARGET_NR_adjtimex) || \ 7366 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)) 7367 static inline abi_long target_to_host_timex(struct timex *host_tx, 7368 abi_long target_addr) 7369 { 7370 struct target_timex *target_tx; 7371 7372 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7373 return -TARGET_EFAULT; 7374 } 7375 7376 __get_user(host_tx->modes, &target_tx->modes); 7377 __get_user(host_tx->offset, &target_tx->offset); 7378 __get_user(host_tx->freq, &target_tx->freq); 7379 __get_user(host_tx->maxerror, &target_tx->maxerror); 7380 __get_user(host_tx->esterror, &target_tx->esterror); 7381 __get_user(host_tx->status, &target_tx->status); 7382 __get_user(host_tx->constant, &target_tx->constant); 7383 __get_user(host_tx->precision, &target_tx->precision); 7384 __get_user(host_tx->tolerance, &target_tx->tolerance); 7385 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7386 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7387 __get_user(host_tx->tick, &target_tx->tick); 7388 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7389 __get_user(host_tx->jitter, &target_tx->jitter); 7390 __get_user(host_tx->shift, &target_tx->shift); 7391 __get_user(host_tx->stabil, &target_tx->stabil); 7392 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7393 __get_user(host_tx->calcnt, &target_tx->calcnt); 7394 __get_user(host_tx->errcnt, &target_tx->errcnt); 7395 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7396 __get_user(host_tx->tai, &target_tx->tai); 7397 7398 unlock_user_struct(target_tx, target_addr, 0); 7399 return 0; 7400 } 7401 7402 static inline abi_long host_to_target_timex(abi_long target_addr, 7403 struct timex *host_tx) 7404 { 7405 struct target_timex *target_tx; 7406 7407 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7408 return -TARGET_EFAULT; 7409 } 7410 7411 __put_user(host_tx->modes, &target_tx->modes); 7412 __put_user(host_tx->offset, &target_tx->offset); 7413 __put_user(host_tx->freq, &target_tx->freq); 7414 __put_user(host_tx->maxerror, &target_tx->maxerror); 7415 __put_user(host_tx->esterror, &target_tx->esterror); 7416 __put_user(host_tx->status, &target_tx->status); 7417 __put_user(host_tx->constant, &target_tx->constant); 7418 __put_user(host_tx->precision, &target_tx->precision); 7419 __put_user(host_tx->tolerance, &target_tx->tolerance); 7420 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7421 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7422 __put_user(host_tx->tick, &target_tx->tick); 7423 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7424 __put_user(host_tx->jitter, &target_tx->jitter); 7425 __put_user(host_tx->shift, &target_tx->shift); 7426 __put_user(host_tx->stabil, &target_tx->stabil); 7427 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7428 __put_user(host_tx->calcnt, &target_tx->calcnt); 7429 __put_user(host_tx->errcnt, &target_tx->errcnt); 7430 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7431 __put_user(host_tx->tai, &target_tx->tai); 7432 7433 unlock_user_struct(target_tx, target_addr, 1); 7434 return 0; 7435 } 7436 #endif 7437 7438 7439 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 7440 static inline abi_long target_to_host_timex64(struct timex *host_tx, 7441 abi_long target_addr) 7442 { 7443 struct target__kernel_timex *target_tx; 7444 7445 if (copy_from_user_timeval64(&host_tx->time, target_addr + 7446 offsetof(struct target__kernel_timex, 7447 time))) { 7448 return -TARGET_EFAULT; 7449 } 7450 7451 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7452 return -TARGET_EFAULT; 7453 } 7454 7455 __get_user(host_tx->modes, &target_tx->modes); 7456 __get_user(host_tx->offset, &target_tx->offset); 7457 __get_user(host_tx->freq, &target_tx->freq); 7458 __get_user(host_tx->maxerror, &target_tx->maxerror); 7459 __get_user(host_tx->esterror, &target_tx->esterror); 7460 __get_user(host_tx->status, &target_tx->status); 7461 __get_user(host_tx->constant, &target_tx->constant); 7462 __get_user(host_tx->precision, &target_tx->precision); 7463 __get_user(host_tx->tolerance, &target_tx->tolerance); 7464 __get_user(host_tx->tick, &target_tx->tick); 7465 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7466 __get_user(host_tx->jitter, &target_tx->jitter); 7467 __get_user(host_tx->shift, &target_tx->shift); 7468 __get_user(host_tx->stabil, &target_tx->stabil); 7469 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7470 __get_user(host_tx->calcnt, &target_tx->calcnt); 7471 __get_user(host_tx->errcnt, &target_tx->errcnt); 7472 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7473 __get_user(host_tx->tai, &target_tx->tai); 7474 7475 unlock_user_struct(target_tx, target_addr, 0); 7476 return 0; 7477 } 7478 7479 static inline abi_long host_to_target_timex64(abi_long target_addr, 7480 struct timex *host_tx) 7481 { 7482 struct target__kernel_timex *target_tx; 7483 7484 if (copy_to_user_timeval64(target_addr + 7485 offsetof(struct target__kernel_timex, time), 7486 &host_tx->time)) { 7487 return -TARGET_EFAULT; 7488 } 7489 7490 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7491 return -TARGET_EFAULT; 7492 } 7493 7494 __put_user(host_tx->modes, &target_tx->modes); 7495 __put_user(host_tx->offset, &target_tx->offset); 7496 __put_user(host_tx->freq, &target_tx->freq); 7497 __put_user(host_tx->maxerror, &target_tx->maxerror); 7498 __put_user(host_tx->esterror, &target_tx->esterror); 7499 __put_user(host_tx->status, &target_tx->status); 7500 __put_user(host_tx->constant, &target_tx->constant); 7501 __put_user(host_tx->precision, &target_tx->precision); 7502 __put_user(host_tx->tolerance, &target_tx->tolerance); 7503 __put_user(host_tx->tick, &target_tx->tick); 7504 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7505 __put_user(host_tx->jitter, &target_tx->jitter); 7506 __put_user(host_tx->shift, &target_tx->shift); 7507 __put_user(host_tx->stabil, &target_tx->stabil); 7508 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7509 __put_user(host_tx->calcnt, &target_tx->calcnt); 7510 __put_user(host_tx->errcnt, &target_tx->errcnt); 7511 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7512 __put_user(host_tx->tai, &target_tx->tai); 7513 7514 unlock_user_struct(target_tx, target_addr, 1); 7515 return 0; 7516 } 7517 #endif 7518 7519 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID 7520 #define sigev_notify_thread_id _sigev_un._tid 7521 #endif 7522 7523 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7524 abi_ulong target_addr) 7525 { 7526 struct target_sigevent *target_sevp; 7527 7528 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7529 return -TARGET_EFAULT; 7530 } 7531 7532 /* This union is awkward on 64 bit systems because it has a 32 bit 7533 * integer and a pointer in it; we follow the conversion approach 7534 * used for handling sigval types in signal.c so the guest should get 7535 * the correct value back even if we did a 64 bit byteswap and it's 7536 * using the 32 bit integer. 7537 */ 7538 host_sevp->sigev_value.sival_ptr = 7539 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7540 host_sevp->sigev_signo = 7541 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7542 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7543 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid); 7544 7545 unlock_user_struct(target_sevp, target_addr, 1); 7546 return 0; 7547 } 7548 7549 #if defined(TARGET_NR_mlockall) 7550 static inline int target_to_host_mlockall_arg(int arg) 7551 { 7552 int result = 0; 7553 7554 if (arg & TARGET_MCL_CURRENT) { 7555 result |= MCL_CURRENT; 7556 } 7557 if (arg & TARGET_MCL_FUTURE) { 7558 result |= MCL_FUTURE; 7559 } 7560 #ifdef MCL_ONFAULT 7561 if (arg & TARGET_MCL_ONFAULT) { 7562 result |= MCL_ONFAULT; 7563 } 7564 #endif 7565 7566 return result; 7567 } 7568 #endif 7569 7570 static inline int target_to_host_msync_arg(abi_long arg) 7571 { 7572 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) | 7573 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) | 7574 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) | 7575 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC)); 7576 } 7577 7578 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \ 7579 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \ 7580 defined(TARGET_NR_newfstatat)) 7581 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env, 7582 abi_ulong target_addr, 7583 struct stat *host_st) 7584 { 7585 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7586 if (cpu_env->eabi) { 7587 struct target_eabi_stat64 *target_st; 7588 7589 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7590 return -TARGET_EFAULT; 7591 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7592 __put_user(host_st->st_dev, &target_st->st_dev); 7593 __put_user(host_st->st_ino, &target_st->st_ino); 7594 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7595 __put_user(host_st->st_ino, &target_st->__st_ino); 7596 #endif 7597 __put_user(host_st->st_mode, &target_st->st_mode); 7598 __put_user(host_st->st_nlink, &target_st->st_nlink); 7599 __put_user(host_st->st_uid, &target_st->st_uid); 7600 __put_user(host_st->st_gid, &target_st->st_gid); 7601 __put_user(host_st->st_rdev, &target_st->st_rdev); 7602 __put_user(host_st->st_size, &target_st->st_size); 7603 __put_user(host_st->st_blksize, &target_st->st_blksize); 7604 __put_user(host_st->st_blocks, &target_st->st_blocks); 7605 __put_user(host_st->st_atime, &target_st->target_st_atime); 7606 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7607 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7608 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7609 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7610 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7611 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7612 #endif 7613 unlock_user_struct(target_st, target_addr, 1); 7614 } else 7615 #endif 7616 { 7617 #if defined(TARGET_HAS_STRUCT_STAT64) 7618 struct target_stat64 *target_st; 7619 #else 7620 struct target_stat *target_st; 7621 #endif 7622 7623 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7624 return -TARGET_EFAULT; 7625 memset(target_st, 0, sizeof(*target_st)); 7626 __put_user(host_st->st_dev, &target_st->st_dev); 7627 __put_user(host_st->st_ino, &target_st->st_ino); 7628 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7629 __put_user(host_st->st_ino, &target_st->__st_ino); 7630 #endif 7631 __put_user(host_st->st_mode, &target_st->st_mode); 7632 __put_user(host_st->st_nlink, &target_st->st_nlink); 7633 __put_user(host_st->st_uid, &target_st->st_uid); 7634 __put_user(host_st->st_gid, &target_st->st_gid); 7635 __put_user(host_st->st_rdev, &target_st->st_rdev); 7636 /* XXX: better use of kernel struct */ 7637 __put_user(host_st->st_size, &target_st->st_size); 7638 __put_user(host_st->st_blksize, &target_st->st_blksize); 7639 __put_user(host_st->st_blocks, &target_st->st_blocks); 7640 __put_user(host_st->st_atime, &target_st->target_st_atime); 7641 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7642 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7643 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7644 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7645 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7646 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7647 #endif 7648 unlock_user_struct(target_st, target_addr, 1); 7649 } 7650 7651 return 0; 7652 } 7653 #endif 7654 7655 #if defined(TARGET_NR_statx) && defined(__NR_statx) 7656 static inline abi_long host_to_target_statx(struct target_statx *host_stx, 7657 abi_ulong target_addr) 7658 { 7659 struct target_statx *target_stx; 7660 7661 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) { 7662 return -TARGET_EFAULT; 7663 } 7664 memset(target_stx, 0, sizeof(*target_stx)); 7665 7666 __put_user(host_stx->stx_mask, &target_stx->stx_mask); 7667 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize); 7668 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes); 7669 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink); 7670 __put_user(host_stx->stx_uid, &target_stx->stx_uid); 7671 __put_user(host_stx->stx_gid, &target_stx->stx_gid); 7672 __put_user(host_stx->stx_mode, &target_stx->stx_mode); 7673 __put_user(host_stx->stx_ino, &target_stx->stx_ino); 7674 __put_user(host_stx->stx_size, &target_stx->stx_size); 7675 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks); 7676 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask); 7677 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec); 7678 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec); 7679 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec); 7680 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec); 7681 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec); 7682 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec); 7683 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec); 7684 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec); 7685 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major); 7686 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor); 7687 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major); 7688 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor); 7689 7690 unlock_user_struct(target_stx, target_addr, 1); 7691 7692 return 0; 7693 } 7694 #endif 7695 7696 static int do_sys_futex(int *uaddr, int op, int val, 7697 const struct timespec *timeout, int *uaddr2, 7698 int val3) 7699 { 7700 #if HOST_LONG_BITS == 64 7701 #if defined(__NR_futex) 7702 /* always a 64-bit time_t, it doesn't define _time64 version */ 7703 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7704 7705 #endif 7706 #else /* HOST_LONG_BITS == 64 */ 7707 #if defined(__NR_futex_time64) 7708 if (sizeof(timeout->tv_sec) == 8) { 7709 /* _time64 function on 32bit arch */ 7710 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3); 7711 } 7712 #endif 7713 #if defined(__NR_futex) 7714 /* old function on 32bit arch */ 7715 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7716 #endif 7717 #endif /* HOST_LONG_BITS == 64 */ 7718 g_assert_not_reached(); 7719 } 7720 7721 static int do_safe_futex(int *uaddr, int op, int val, 7722 const struct timespec *timeout, int *uaddr2, 7723 int val3) 7724 { 7725 #if HOST_LONG_BITS == 64 7726 #if defined(__NR_futex) 7727 /* always a 64-bit time_t, it doesn't define _time64 version */ 7728 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7729 #endif 7730 #else /* HOST_LONG_BITS == 64 */ 7731 #if defined(__NR_futex_time64) 7732 if (sizeof(timeout->tv_sec) == 8) { 7733 /* _time64 function on 32bit arch */ 7734 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2, 7735 val3)); 7736 } 7737 #endif 7738 #if defined(__NR_futex) 7739 /* old function on 32bit arch */ 7740 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7741 #endif 7742 #endif /* HOST_LONG_BITS == 64 */ 7743 return -TARGET_ENOSYS; 7744 } 7745 7746 /* ??? Using host futex calls even when target atomic operations 7747 are not really atomic probably breaks things. However implementing 7748 futexes locally would make futexes shared between multiple processes 7749 tricky. However they're probably useless because guest atomic 7750 operations won't work either. */ 7751 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64) 7752 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr, 7753 int op, int val, target_ulong timeout, 7754 target_ulong uaddr2, int val3) 7755 { 7756 struct timespec ts, *pts = NULL; 7757 void *haddr2 = NULL; 7758 int base_op; 7759 7760 /* We assume FUTEX_* constants are the same on both host and target. */ 7761 #ifdef FUTEX_CMD_MASK 7762 base_op = op & FUTEX_CMD_MASK; 7763 #else 7764 base_op = op; 7765 #endif 7766 switch (base_op) { 7767 case FUTEX_WAIT: 7768 case FUTEX_WAIT_BITSET: 7769 val = tswap32(val); 7770 break; 7771 case FUTEX_WAIT_REQUEUE_PI: 7772 val = tswap32(val); 7773 haddr2 = g2h(cpu, uaddr2); 7774 break; 7775 case FUTEX_LOCK_PI: 7776 case FUTEX_LOCK_PI2: 7777 break; 7778 case FUTEX_WAKE: 7779 case FUTEX_WAKE_BITSET: 7780 case FUTEX_TRYLOCK_PI: 7781 case FUTEX_UNLOCK_PI: 7782 timeout = 0; 7783 break; 7784 case FUTEX_FD: 7785 val = target_to_host_signal(val); 7786 timeout = 0; 7787 break; 7788 case FUTEX_CMP_REQUEUE: 7789 case FUTEX_CMP_REQUEUE_PI: 7790 val3 = tswap32(val3); 7791 /* fall through */ 7792 case FUTEX_REQUEUE: 7793 case FUTEX_WAKE_OP: 7794 /* 7795 * For these, the 4th argument is not TIMEOUT, but VAL2. 7796 * But the prototype of do_safe_futex takes a pointer, so 7797 * insert casts to satisfy the compiler. We do not need 7798 * to tswap VAL2 since it's not compared to guest memory. 7799 */ 7800 pts = (struct timespec *)(uintptr_t)timeout; 7801 timeout = 0; 7802 haddr2 = g2h(cpu, uaddr2); 7803 break; 7804 default: 7805 return -TARGET_ENOSYS; 7806 } 7807 if (timeout) { 7808 pts = &ts; 7809 if (time64 7810 ? target_to_host_timespec64(pts, timeout) 7811 : target_to_host_timespec(pts, timeout)) { 7812 return -TARGET_EFAULT; 7813 } 7814 } 7815 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3); 7816 } 7817 #endif 7818 7819 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7820 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7821 abi_long handle, abi_long mount_id, 7822 abi_long flags) 7823 { 7824 struct file_handle *target_fh; 7825 struct file_handle *fh; 7826 int mid = 0; 7827 abi_long ret; 7828 char *name; 7829 unsigned int size, total_size; 7830 7831 if (get_user_s32(size, handle)) { 7832 return -TARGET_EFAULT; 7833 } 7834 7835 name = lock_user_string(pathname); 7836 if (!name) { 7837 return -TARGET_EFAULT; 7838 } 7839 7840 total_size = sizeof(struct file_handle) + size; 7841 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7842 if (!target_fh) { 7843 unlock_user(name, pathname, 0); 7844 return -TARGET_EFAULT; 7845 } 7846 7847 fh = g_malloc0(total_size); 7848 fh->handle_bytes = size; 7849 7850 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7851 unlock_user(name, pathname, 0); 7852 7853 /* man name_to_handle_at(2): 7854 * Other than the use of the handle_bytes field, the caller should treat 7855 * the file_handle structure as an opaque data type 7856 */ 7857 7858 memcpy(target_fh, fh, total_size); 7859 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7860 target_fh->handle_type = tswap32(fh->handle_type); 7861 g_free(fh); 7862 unlock_user(target_fh, handle, total_size); 7863 7864 if (put_user_s32(mid, mount_id)) { 7865 return -TARGET_EFAULT; 7866 } 7867 7868 return ret; 7869 7870 } 7871 #endif 7872 7873 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7874 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7875 abi_long flags) 7876 { 7877 struct file_handle *target_fh; 7878 struct file_handle *fh; 7879 unsigned int size, total_size; 7880 abi_long ret; 7881 7882 if (get_user_s32(size, handle)) { 7883 return -TARGET_EFAULT; 7884 } 7885 7886 total_size = sizeof(struct file_handle) + size; 7887 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7888 if (!target_fh) { 7889 return -TARGET_EFAULT; 7890 } 7891 7892 fh = g_memdup(target_fh, total_size); 7893 fh->handle_bytes = size; 7894 fh->handle_type = tswap32(target_fh->handle_type); 7895 7896 ret = get_errno(open_by_handle_at(mount_fd, fh, 7897 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7898 7899 g_free(fh); 7900 7901 unlock_user(target_fh, handle, total_size); 7902 7903 return ret; 7904 } 7905 #endif 7906 7907 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7908 7909 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7910 { 7911 int host_flags; 7912 target_sigset_t *target_mask; 7913 sigset_t host_mask; 7914 abi_long ret; 7915 7916 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) { 7917 return -TARGET_EINVAL; 7918 } 7919 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7920 return -TARGET_EFAULT; 7921 } 7922 7923 target_to_host_sigset(&host_mask, target_mask); 7924 7925 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7926 7927 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7928 if (ret >= 0) { 7929 fd_trans_register(ret, &target_signalfd_trans); 7930 } 7931 7932 unlock_user_struct(target_mask, mask, 0); 7933 7934 return ret; 7935 } 7936 #endif 7937 7938 /* Map host to target signal numbers for the wait family of syscalls. 7939 Assume all other status bits are the same. */ 7940 int host_to_target_waitstatus(int status) 7941 { 7942 if (WIFSIGNALED(status)) { 7943 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7944 } 7945 if (WIFSTOPPED(status)) { 7946 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7947 | (status & 0xff); 7948 } 7949 return status; 7950 } 7951 7952 static int open_self_cmdline(CPUArchState *cpu_env, int fd) 7953 { 7954 CPUState *cpu = env_cpu(cpu_env); 7955 struct linux_binprm *bprm = get_task_state(cpu)->bprm; 7956 int i; 7957 7958 for (i = 0; i < bprm->argc; i++) { 7959 size_t len = strlen(bprm->argv[i]) + 1; 7960 7961 if (write(fd, bprm->argv[i], len) != len) { 7962 return -1; 7963 } 7964 } 7965 7966 return 0; 7967 } 7968 7969 struct open_self_maps_data { 7970 TaskState *ts; 7971 IntervalTreeRoot *host_maps; 7972 int fd; 7973 bool smaps; 7974 }; 7975 7976 /* 7977 * Subroutine to output one line of /proc/self/maps, 7978 * or one region of /proc/self/smaps. 7979 */ 7980 7981 #ifdef TARGET_HPPA 7982 # define test_stack(S, E, L) (E == L) 7983 #else 7984 # define test_stack(S, E, L) (S == L) 7985 #endif 7986 7987 static void open_self_maps_4(const struct open_self_maps_data *d, 7988 const MapInfo *mi, abi_ptr start, 7989 abi_ptr end, unsigned flags) 7990 { 7991 const struct image_info *info = d->ts->info; 7992 const char *path = mi->path; 7993 uint64_t offset; 7994 int fd = d->fd; 7995 int count; 7996 7997 if (test_stack(start, end, info->stack_limit)) { 7998 path = "[stack]"; 7999 } else if (start == info->brk) { 8000 path = "[heap]"; 8001 } else if (start == info->vdso) { 8002 path = "[vdso]"; 8003 #ifdef TARGET_X86_64 8004 } else if (start == TARGET_VSYSCALL_PAGE) { 8005 path = "[vsyscall]"; 8006 #endif 8007 } 8008 8009 /* Except null device (MAP_ANON), adjust offset for this fragment. */ 8010 offset = mi->offset; 8011 if (mi->dev) { 8012 uintptr_t hstart = (uintptr_t)g2h_untagged(start); 8013 offset += hstart - mi->itree.start; 8014 } 8015 8016 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr 8017 " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64, 8018 start, end, 8019 (flags & PAGE_READ) ? 'r' : '-', 8020 (flags & PAGE_WRITE_ORG) ? 'w' : '-', 8021 (flags & PAGE_EXEC) ? 'x' : '-', 8022 mi->is_priv ? 'p' : 's', 8023 offset, major(mi->dev), minor(mi->dev), 8024 (uint64_t)mi->inode); 8025 if (path) { 8026 dprintf(fd, "%*s%s\n", 73 - count, "", path); 8027 } else { 8028 dprintf(fd, "\n"); 8029 } 8030 8031 if (d->smaps) { 8032 unsigned long size = end - start; 8033 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10; 8034 unsigned long size_kb = size >> 10; 8035 8036 dprintf(fd, "Size: %lu kB\n" 8037 "KernelPageSize: %lu kB\n" 8038 "MMUPageSize: %lu kB\n" 8039 "Rss: 0 kB\n" 8040 "Pss: 0 kB\n" 8041 "Pss_Dirty: 0 kB\n" 8042 "Shared_Clean: 0 kB\n" 8043 "Shared_Dirty: 0 kB\n" 8044 "Private_Clean: 0 kB\n" 8045 "Private_Dirty: 0 kB\n" 8046 "Referenced: 0 kB\n" 8047 "Anonymous: %lu kB\n" 8048 "LazyFree: 0 kB\n" 8049 "AnonHugePages: 0 kB\n" 8050 "ShmemPmdMapped: 0 kB\n" 8051 "FilePmdMapped: 0 kB\n" 8052 "Shared_Hugetlb: 0 kB\n" 8053 "Private_Hugetlb: 0 kB\n" 8054 "Swap: 0 kB\n" 8055 "SwapPss: 0 kB\n" 8056 "Locked: 0 kB\n" 8057 "THPeligible: 0\n" 8058 "VmFlags:%s%s%s%s%s%s%s%s\n", 8059 size_kb, page_size_kb, page_size_kb, 8060 (flags & PAGE_ANON ? size_kb : 0), 8061 (flags & PAGE_READ) ? " rd" : "", 8062 (flags & PAGE_WRITE_ORG) ? " wr" : "", 8063 (flags & PAGE_EXEC) ? " ex" : "", 8064 mi->is_priv ? "" : " sh", 8065 (flags & PAGE_READ) ? " mr" : "", 8066 (flags & PAGE_WRITE_ORG) ? " mw" : "", 8067 (flags & PAGE_EXEC) ? " me" : "", 8068 mi->is_priv ? "" : " ms"); 8069 } 8070 } 8071 8072 /* 8073 * Callback for walk_memory_regions, when read_self_maps() fails. 8074 * Proceed without the benefit of host /proc/self/maps cross-check. 8075 */ 8076 static int open_self_maps_3(void *opaque, target_ulong guest_start, 8077 target_ulong guest_end, unsigned long flags) 8078 { 8079 static const MapInfo mi = { .is_priv = true }; 8080 8081 open_self_maps_4(opaque, &mi, guest_start, guest_end, flags); 8082 return 0; 8083 } 8084 8085 /* 8086 * Callback for walk_memory_regions, when read_self_maps() succeeds. 8087 */ 8088 static int open_self_maps_2(void *opaque, target_ulong guest_start, 8089 target_ulong guest_end, unsigned long flags) 8090 { 8091 const struct open_self_maps_data *d = opaque; 8092 uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start); 8093 uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1); 8094 8095 #ifdef TARGET_X86_64 8096 /* 8097 * Because of the extremely high position of the page within the guest 8098 * virtual address space, this is not backed by host memory at all. 8099 * Therefore the loop below would fail. This is the only instance 8100 * of not having host backing memory. 8101 */ 8102 if (guest_start == TARGET_VSYSCALL_PAGE) { 8103 return open_self_maps_3(opaque, guest_start, guest_end, flags); 8104 } 8105 #endif 8106 8107 while (1) { 8108 IntervalTreeNode *n = 8109 interval_tree_iter_first(d->host_maps, host_start, host_start); 8110 MapInfo *mi = container_of(n, MapInfo, itree); 8111 uintptr_t this_hlast = MIN(host_last, n->last); 8112 target_ulong this_gend = h2g(this_hlast) + 1; 8113 8114 open_self_maps_4(d, mi, guest_start, this_gend, flags); 8115 8116 if (this_hlast == host_last) { 8117 return 0; 8118 } 8119 host_start = this_hlast + 1; 8120 guest_start = h2g(host_start); 8121 } 8122 } 8123 8124 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps) 8125 { 8126 struct open_self_maps_data d = { 8127 .ts = get_task_state(env_cpu(env)), 8128 .host_maps = read_self_maps(), 8129 .fd = fd, 8130 .smaps = smaps 8131 }; 8132 8133 if (d.host_maps) { 8134 walk_memory_regions(&d, open_self_maps_2); 8135 free_self_maps(d.host_maps); 8136 } else { 8137 walk_memory_regions(&d, open_self_maps_3); 8138 } 8139 return 0; 8140 } 8141 8142 static int open_self_maps(CPUArchState *cpu_env, int fd) 8143 { 8144 return open_self_maps_1(cpu_env, fd, false); 8145 } 8146 8147 static int open_self_smaps(CPUArchState *cpu_env, int fd) 8148 { 8149 return open_self_maps_1(cpu_env, fd, true); 8150 } 8151 8152 static int open_self_stat(CPUArchState *cpu_env, int fd) 8153 { 8154 CPUState *cpu = env_cpu(cpu_env); 8155 TaskState *ts = get_task_state(cpu); 8156 g_autoptr(GString) buf = g_string_new(NULL); 8157 int i; 8158 8159 for (i = 0; i < 44; i++) { 8160 if (i == 0) { 8161 /* pid */ 8162 g_string_printf(buf, FMT_pid " ", getpid()); 8163 } else if (i == 1) { 8164 /* app name */ 8165 gchar *bin = g_strrstr(ts->bprm->argv[0], "/"); 8166 bin = bin ? bin + 1 : ts->bprm->argv[0]; 8167 g_string_printf(buf, "(%.15s) ", bin); 8168 } else if (i == 2) { 8169 /* task state */ 8170 g_string_assign(buf, "R "); /* we are running right now */ 8171 } else if (i == 3) { 8172 /* ppid */ 8173 g_string_printf(buf, FMT_pid " ", getppid()); 8174 } else if (i == 21) { 8175 /* starttime */ 8176 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime); 8177 } else if (i == 27) { 8178 /* stack bottom */ 8179 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack); 8180 } else { 8181 /* for the rest, there is MasterCard */ 8182 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' '); 8183 } 8184 8185 if (write(fd, buf->str, buf->len) != buf->len) { 8186 return -1; 8187 } 8188 } 8189 8190 return 0; 8191 } 8192 8193 static int open_self_auxv(CPUArchState *cpu_env, int fd) 8194 { 8195 CPUState *cpu = env_cpu(cpu_env); 8196 TaskState *ts = get_task_state(cpu); 8197 abi_ulong auxv = ts->info->saved_auxv; 8198 abi_ulong len = ts->info->auxv_len; 8199 char *ptr; 8200 8201 /* 8202 * Auxiliary vector is stored in target process stack. 8203 * read in whole auxv vector and copy it to file 8204 */ 8205 ptr = lock_user(VERIFY_READ, auxv, len, 0); 8206 if (ptr != NULL) { 8207 while (len > 0) { 8208 ssize_t r; 8209 r = write(fd, ptr, len); 8210 if (r <= 0) { 8211 break; 8212 } 8213 len -= r; 8214 ptr += r; 8215 } 8216 lseek(fd, 0, SEEK_SET); 8217 unlock_user(ptr, auxv, len); 8218 } 8219 8220 return 0; 8221 } 8222 8223 static int is_proc_myself(const char *filename, const char *entry) 8224 { 8225 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 8226 filename += strlen("/proc/"); 8227 if (!strncmp(filename, "self/", strlen("self/"))) { 8228 filename += strlen("self/"); 8229 } else if (*filename >= '1' && *filename <= '9') { 8230 char myself[80]; 8231 snprintf(myself, sizeof(myself), "%d/", getpid()); 8232 if (!strncmp(filename, myself, strlen(myself))) { 8233 filename += strlen(myself); 8234 } else { 8235 return 0; 8236 } 8237 } else { 8238 return 0; 8239 } 8240 if (!strcmp(filename, entry)) { 8241 return 1; 8242 } 8243 } 8244 return 0; 8245 } 8246 8247 static void excp_dump_file(FILE *logfile, CPUArchState *env, 8248 const char *fmt, int code) 8249 { 8250 if (logfile) { 8251 CPUState *cs = env_cpu(env); 8252 8253 fprintf(logfile, fmt, code); 8254 fprintf(logfile, "Failing executable: %s\n", exec_path); 8255 cpu_dump_state(cs, logfile, 0); 8256 open_self_maps(env, fileno(logfile)); 8257 } 8258 } 8259 8260 void target_exception_dump(CPUArchState *env, const char *fmt, int code) 8261 { 8262 /* dump to console */ 8263 excp_dump_file(stderr, env, fmt, code); 8264 8265 /* dump to log file */ 8266 if (qemu_log_separate()) { 8267 FILE *logfile = qemu_log_trylock(); 8268 8269 excp_dump_file(logfile, env, fmt, code); 8270 qemu_log_unlock(logfile); 8271 } 8272 } 8273 8274 #include "target_proc.h" 8275 8276 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \ 8277 defined(HAVE_ARCH_PROC_CPUINFO) || \ 8278 defined(HAVE_ARCH_PROC_HARDWARE) 8279 static int is_proc(const char *filename, const char *entry) 8280 { 8281 return strcmp(filename, entry) == 0; 8282 } 8283 #endif 8284 8285 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8286 static int open_net_route(CPUArchState *cpu_env, int fd) 8287 { 8288 FILE *fp; 8289 char *line = NULL; 8290 size_t len = 0; 8291 ssize_t read; 8292 8293 fp = fopen("/proc/net/route", "r"); 8294 if (fp == NULL) { 8295 return -1; 8296 } 8297 8298 /* read header */ 8299 8300 read = getline(&line, &len, fp); 8301 dprintf(fd, "%s", line); 8302 8303 /* read routes */ 8304 8305 while ((read = getline(&line, &len, fp)) != -1) { 8306 char iface[16]; 8307 uint32_t dest, gw, mask; 8308 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 8309 int fields; 8310 8311 fields = sscanf(line, 8312 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8313 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 8314 &mask, &mtu, &window, &irtt); 8315 if (fields != 11) { 8316 continue; 8317 } 8318 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8319 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 8320 metric, tswap32(mask), mtu, window, irtt); 8321 } 8322 8323 free(line); 8324 fclose(fp); 8325 8326 return 0; 8327 } 8328 #endif 8329 8330 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname, 8331 int flags, mode_t mode, bool safe) 8332 { 8333 g_autofree char *proc_name = NULL; 8334 const char *pathname; 8335 struct fake_open { 8336 const char *filename; 8337 int (*fill)(CPUArchState *cpu_env, int fd); 8338 int (*cmp)(const char *s1, const char *s2); 8339 }; 8340 const struct fake_open *fake_open; 8341 static const struct fake_open fakes[] = { 8342 { "maps", open_self_maps, is_proc_myself }, 8343 { "smaps", open_self_smaps, is_proc_myself }, 8344 { "stat", open_self_stat, is_proc_myself }, 8345 { "auxv", open_self_auxv, is_proc_myself }, 8346 { "cmdline", open_self_cmdline, is_proc_myself }, 8347 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8348 { "/proc/net/route", open_net_route, is_proc }, 8349 #endif 8350 #if defined(HAVE_ARCH_PROC_CPUINFO) 8351 { "/proc/cpuinfo", open_cpuinfo, is_proc }, 8352 #endif 8353 #if defined(HAVE_ARCH_PROC_HARDWARE) 8354 { "/proc/hardware", open_hardware, is_proc }, 8355 #endif 8356 { NULL, NULL, NULL } 8357 }; 8358 8359 /* if this is a file from /proc/ filesystem, expand full name */ 8360 proc_name = realpath(fname, NULL); 8361 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) { 8362 pathname = proc_name; 8363 } else { 8364 pathname = fname; 8365 } 8366 8367 if (is_proc_myself(pathname, "exe")) { 8368 if (safe) { 8369 return safe_openat(dirfd, exec_path, flags, mode); 8370 } else { 8371 return openat(dirfd, exec_path, flags, mode); 8372 } 8373 } 8374 8375 for (fake_open = fakes; fake_open->filename; fake_open++) { 8376 if (fake_open->cmp(pathname, fake_open->filename)) { 8377 break; 8378 } 8379 } 8380 8381 if (fake_open->filename) { 8382 const char *tmpdir; 8383 char filename[PATH_MAX]; 8384 int fd, r; 8385 8386 fd = memfd_create("qemu-open", 0); 8387 if (fd < 0) { 8388 if (errno != ENOSYS) { 8389 return fd; 8390 } 8391 /* create temporary file to map stat to */ 8392 tmpdir = getenv("TMPDIR"); 8393 if (!tmpdir) 8394 tmpdir = "/tmp"; 8395 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 8396 fd = mkstemp(filename); 8397 if (fd < 0) { 8398 return fd; 8399 } 8400 unlink(filename); 8401 } 8402 8403 if ((r = fake_open->fill(cpu_env, fd))) { 8404 int e = errno; 8405 close(fd); 8406 errno = e; 8407 return r; 8408 } 8409 lseek(fd, 0, SEEK_SET); 8410 8411 return fd; 8412 } 8413 8414 if (safe) { 8415 return safe_openat(dirfd, path(pathname), flags, mode); 8416 } else { 8417 return openat(dirfd, path(pathname), flags, mode); 8418 } 8419 } 8420 8421 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz) 8422 { 8423 ssize_t ret; 8424 8425 if (!pathname || !buf) { 8426 errno = EFAULT; 8427 return -1; 8428 } 8429 8430 if (!bufsiz) { 8431 /* Short circuit this for the magic exe check. */ 8432 errno = EINVAL; 8433 return -1; 8434 } 8435 8436 if (is_proc_myself((const char *)pathname, "exe")) { 8437 /* 8438 * Don't worry about sign mismatch as earlier mapping 8439 * logic would have thrown a bad address error. 8440 */ 8441 ret = MIN(strlen(exec_path), bufsiz); 8442 /* We cannot NUL terminate the string. */ 8443 memcpy(buf, exec_path, ret); 8444 } else { 8445 ret = readlink(path(pathname), buf, bufsiz); 8446 } 8447 8448 return ret; 8449 } 8450 8451 static int do_execv(CPUArchState *cpu_env, int dirfd, 8452 abi_long pathname, abi_long guest_argp, 8453 abi_long guest_envp, int flags, bool is_execveat) 8454 { 8455 int ret; 8456 char **argp, **envp; 8457 int argc, envc; 8458 abi_ulong gp; 8459 abi_ulong addr; 8460 char **q; 8461 void *p; 8462 8463 argc = 0; 8464 8465 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8466 if (get_user_ual(addr, gp)) { 8467 return -TARGET_EFAULT; 8468 } 8469 if (!addr) { 8470 break; 8471 } 8472 argc++; 8473 } 8474 envc = 0; 8475 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8476 if (get_user_ual(addr, gp)) { 8477 return -TARGET_EFAULT; 8478 } 8479 if (!addr) { 8480 break; 8481 } 8482 envc++; 8483 } 8484 8485 argp = g_new0(char *, argc + 1); 8486 envp = g_new0(char *, envc + 1); 8487 8488 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) { 8489 if (get_user_ual(addr, gp)) { 8490 goto execve_efault; 8491 } 8492 if (!addr) { 8493 break; 8494 } 8495 *q = lock_user_string(addr); 8496 if (!*q) { 8497 goto execve_efault; 8498 } 8499 } 8500 *q = NULL; 8501 8502 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) { 8503 if (get_user_ual(addr, gp)) { 8504 goto execve_efault; 8505 } 8506 if (!addr) { 8507 break; 8508 } 8509 *q = lock_user_string(addr); 8510 if (!*q) { 8511 goto execve_efault; 8512 } 8513 } 8514 *q = NULL; 8515 8516 /* 8517 * Although execve() is not an interruptible syscall it is 8518 * a special case where we must use the safe_syscall wrapper: 8519 * if we allow a signal to happen before we make the host 8520 * syscall then we will 'lose' it, because at the point of 8521 * execve the process leaves QEMU's control. So we use the 8522 * safe syscall wrapper to ensure that we either take the 8523 * signal as a guest signal, or else it does not happen 8524 * before the execve completes and makes it the other 8525 * program's problem. 8526 */ 8527 p = lock_user_string(pathname); 8528 if (!p) { 8529 goto execve_efault; 8530 } 8531 8532 const char *exe = p; 8533 if (is_proc_myself(p, "exe")) { 8534 exe = exec_path; 8535 } 8536 ret = is_execveat 8537 ? safe_execveat(dirfd, exe, argp, envp, flags) 8538 : safe_execve(exe, argp, envp); 8539 ret = get_errno(ret); 8540 8541 unlock_user(p, pathname, 0); 8542 8543 goto execve_end; 8544 8545 execve_efault: 8546 ret = -TARGET_EFAULT; 8547 8548 execve_end: 8549 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) { 8550 if (get_user_ual(addr, gp) || !addr) { 8551 break; 8552 } 8553 unlock_user(*q, addr, 0); 8554 } 8555 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) { 8556 if (get_user_ual(addr, gp) || !addr) { 8557 break; 8558 } 8559 unlock_user(*q, addr, 0); 8560 } 8561 8562 g_free(argp); 8563 g_free(envp); 8564 return ret; 8565 } 8566 8567 #define TIMER_MAGIC 0x0caf0000 8568 #define TIMER_MAGIC_MASK 0xffff0000 8569 8570 /* Convert QEMU provided timer ID back to internal 16bit index format */ 8571 static target_timer_t get_timer_id(abi_long arg) 8572 { 8573 target_timer_t timerid = arg; 8574 8575 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 8576 return -TARGET_EINVAL; 8577 } 8578 8579 timerid &= 0xffff; 8580 8581 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 8582 return -TARGET_EINVAL; 8583 } 8584 8585 return timerid; 8586 } 8587 8588 static int target_to_host_cpu_mask(unsigned long *host_mask, 8589 size_t host_size, 8590 abi_ulong target_addr, 8591 size_t target_size) 8592 { 8593 unsigned target_bits = sizeof(abi_ulong) * 8; 8594 unsigned host_bits = sizeof(*host_mask) * 8; 8595 abi_ulong *target_mask; 8596 unsigned i, j; 8597 8598 assert(host_size >= target_size); 8599 8600 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 8601 if (!target_mask) { 8602 return -TARGET_EFAULT; 8603 } 8604 memset(host_mask, 0, host_size); 8605 8606 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8607 unsigned bit = i * target_bits; 8608 abi_ulong val; 8609 8610 __get_user(val, &target_mask[i]); 8611 for (j = 0; j < target_bits; j++, bit++) { 8612 if (val & (1UL << j)) { 8613 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 8614 } 8615 } 8616 } 8617 8618 unlock_user(target_mask, target_addr, 0); 8619 return 0; 8620 } 8621 8622 static int host_to_target_cpu_mask(const unsigned long *host_mask, 8623 size_t host_size, 8624 abi_ulong target_addr, 8625 size_t target_size) 8626 { 8627 unsigned target_bits = sizeof(abi_ulong) * 8; 8628 unsigned host_bits = sizeof(*host_mask) * 8; 8629 abi_ulong *target_mask; 8630 unsigned i, j; 8631 8632 assert(host_size >= target_size); 8633 8634 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 8635 if (!target_mask) { 8636 return -TARGET_EFAULT; 8637 } 8638 8639 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8640 unsigned bit = i * target_bits; 8641 abi_ulong val = 0; 8642 8643 for (j = 0; j < target_bits; j++, bit++) { 8644 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 8645 val |= 1UL << j; 8646 } 8647 } 8648 __put_user(val, &target_mask[i]); 8649 } 8650 8651 unlock_user(target_mask, target_addr, target_size); 8652 return 0; 8653 } 8654 8655 #ifdef TARGET_NR_getdents 8656 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count) 8657 { 8658 g_autofree void *hdirp = NULL; 8659 void *tdirp; 8660 int hlen, hoff, toff; 8661 int hreclen, treclen; 8662 off64_t prev_diroff = 0; 8663 8664 hdirp = g_try_malloc(count); 8665 if (!hdirp) { 8666 return -TARGET_ENOMEM; 8667 } 8668 8669 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8670 hlen = sys_getdents(dirfd, hdirp, count); 8671 #else 8672 hlen = sys_getdents64(dirfd, hdirp, count); 8673 #endif 8674 8675 hlen = get_errno(hlen); 8676 if (is_error(hlen)) { 8677 return hlen; 8678 } 8679 8680 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8681 if (!tdirp) { 8682 return -TARGET_EFAULT; 8683 } 8684 8685 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8686 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8687 struct linux_dirent *hde = hdirp + hoff; 8688 #else 8689 struct linux_dirent64 *hde = hdirp + hoff; 8690 #endif 8691 struct target_dirent *tde = tdirp + toff; 8692 int namelen; 8693 uint8_t type; 8694 8695 namelen = strlen(hde->d_name); 8696 hreclen = hde->d_reclen; 8697 treclen = offsetof(struct target_dirent, d_name) + namelen + 2; 8698 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent)); 8699 8700 if (toff + treclen > count) { 8701 /* 8702 * If the host struct is smaller than the target struct, or 8703 * requires less alignment and thus packs into less space, 8704 * then the host can return more entries than we can pass 8705 * on to the guest. 8706 */ 8707 if (toff == 0) { 8708 toff = -TARGET_EINVAL; /* result buffer is too small */ 8709 break; 8710 } 8711 /* 8712 * Return what we have, resetting the file pointer to the 8713 * location of the first record not returned. 8714 */ 8715 lseek64(dirfd, prev_diroff, SEEK_SET); 8716 break; 8717 } 8718 8719 prev_diroff = hde->d_off; 8720 tde->d_ino = tswapal(hde->d_ino); 8721 tde->d_off = tswapal(hde->d_off); 8722 tde->d_reclen = tswap16(treclen); 8723 memcpy(tde->d_name, hde->d_name, namelen + 1); 8724 8725 /* 8726 * The getdents type is in what was formerly a padding byte at the 8727 * end of the structure. 8728 */ 8729 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8730 type = *((uint8_t *)hde + hreclen - 1); 8731 #else 8732 type = hde->d_type; 8733 #endif 8734 *((uint8_t *)tde + treclen - 1) = type; 8735 } 8736 8737 unlock_user(tdirp, arg2, toff); 8738 return toff; 8739 } 8740 #endif /* TARGET_NR_getdents */ 8741 8742 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 8743 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count) 8744 { 8745 g_autofree void *hdirp = NULL; 8746 void *tdirp; 8747 int hlen, hoff, toff; 8748 int hreclen, treclen; 8749 off64_t prev_diroff = 0; 8750 8751 hdirp = g_try_malloc(count); 8752 if (!hdirp) { 8753 return -TARGET_ENOMEM; 8754 } 8755 8756 hlen = get_errno(sys_getdents64(dirfd, hdirp, count)); 8757 if (is_error(hlen)) { 8758 return hlen; 8759 } 8760 8761 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8762 if (!tdirp) { 8763 return -TARGET_EFAULT; 8764 } 8765 8766 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8767 struct linux_dirent64 *hde = hdirp + hoff; 8768 struct target_dirent64 *tde = tdirp + toff; 8769 int namelen; 8770 8771 namelen = strlen(hde->d_name) + 1; 8772 hreclen = hde->d_reclen; 8773 treclen = offsetof(struct target_dirent64, d_name) + namelen; 8774 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64)); 8775 8776 if (toff + treclen > count) { 8777 /* 8778 * If the host struct is smaller than the target struct, or 8779 * requires less alignment and thus packs into less space, 8780 * then the host can return more entries than we can pass 8781 * on to the guest. 8782 */ 8783 if (toff == 0) { 8784 toff = -TARGET_EINVAL; /* result buffer is too small */ 8785 break; 8786 } 8787 /* 8788 * Return what we have, resetting the file pointer to the 8789 * location of the first record not returned. 8790 */ 8791 lseek64(dirfd, prev_diroff, SEEK_SET); 8792 break; 8793 } 8794 8795 prev_diroff = hde->d_off; 8796 tde->d_ino = tswap64(hde->d_ino); 8797 tde->d_off = tswap64(hde->d_off); 8798 tde->d_reclen = tswap16(treclen); 8799 tde->d_type = hde->d_type; 8800 memcpy(tde->d_name, hde->d_name, namelen); 8801 } 8802 8803 unlock_user(tdirp, arg2, toff); 8804 return toff; 8805 } 8806 #endif /* TARGET_NR_getdents64 */ 8807 8808 #if defined(TARGET_NR_riscv_hwprobe) 8809 8810 #define RISCV_HWPROBE_KEY_MVENDORID 0 8811 #define RISCV_HWPROBE_KEY_MARCHID 1 8812 #define RISCV_HWPROBE_KEY_MIMPID 2 8813 8814 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3 8815 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0) 8816 8817 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4 8818 #define RISCV_HWPROBE_IMA_FD (1 << 0) 8819 #define RISCV_HWPROBE_IMA_C (1 << 1) 8820 #define RISCV_HWPROBE_IMA_V (1 << 2) 8821 #define RISCV_HWPROBE_EXT_ZBA (1 << 3) 8822 #define RISCV_HWPROBE_EXT_ZBB (1 << 4) 8823 #define RISCV_HWPROBE_EXT_ZBS (1 << 5) 8824 #define RISCV_HWPROBE_EXT_ZICBOZ (1 << 6) 8825 #define RISCV_HWPROBE_EXT_ZBC (1 << 7) 8826 #define RISCV_HWPROBE_EXT_ZBKB (1 << 8) 8827 #define RISCV_HWPROBE_EXT_ZBKC (1 << 9) 8828 #define RISCV_HWPROBE_EXT_ZBKX (1 << 10) 8829 #define RISCV_HWPROBE_EXT_ZKND (1 << 11) 8830 #define RISCV_HWPROBE_EXT_ZKNE (1 << 12) 8831 #define RISCV_HWPROBE_EXT_ZKNH (1 << 13) 8832 #define RISCV_HWPROBE_EXT_ZKSED (1 << 14) 8833 #define RISCV_HWPROBE_EXT_ZKSH (1 << 15) 8834 #define RISCV_HWPROBE_EXT_ZKT (1 << 16) 8835 #define RISCV_HWPROBE_EXT_ZVBB (1 << 17) 8836 #define RISCV_HWPROBE_EXT_ZVBC (1 << 18) 8837 #define RISCV_HWPROBE_EXT_ZVKB (1 << 19) 8838 #define RISCV_HWPROBE_EXT_ZVKG (1 << 20) 8839 #define RISCV_HWPROBE_EXT_ZVKNED (1 << 21) 8840 #define RISCV_HWPROBE_EXT_ZVKNHA (1 << 22) 8841 #define RISCV_HWPROBE_EXT_ZVKNHB (1 << 23) 8842 #define RISCV_HWPROBE_EXT_ZVKSED (1 << 24) 8843 #define RISCV_HWPROBE_EXT_ZVKSH (1 << 25) 8844 #define RISCV_HWPROBE_EXT_ZVKT (1 << 26) 8845 #define RISCV_HWPROBE_EXT_ZFH (1 << 27) 8846 #define RISCV_HWPROBE_EXT_ZFHMIN (1 << 28) 8847 #define RISCV_HWPROBE_EXT_ZIHINTNTL (1 << 29) 8848 #define RISCV_HWPROBE_EXT_ZVFH (1 << 30) 8849 #define RISCV_HWPROBE_EXT_ZVFHMIN (1 << 31) 8850 #define RISCV_HWPROBE_EXT_ZFA (1ULL << 32) 8851 #define RISCV_HWPROBE_EXT_ZTSO (1ULL << 33) 8852 #define RISCV_HWPROBE_EXT_ZACAS (1ULL << 34) 8853 #define RISCV_HWPROBE_EXT_ZICOND (1ULL << 35) 8854 8855 #define RISCV_HWPROBE_KEY_CPUPERF_0 5 8856 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0) 8857 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0) 8858 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0) 8859 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0) 8860 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0) 8861 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0) 8862 8863 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6 8864 8865 struct riscv_hwprobe { 8866 abi_llong key; 8867 abi_ullong value; 8868 }; 8869 8870 static void risc_hwprobe_fill_pairs(CPURISCVState *env, 8871 struct riscv_hwprobe *pair, 8872 size_t pair_count) 8873 { 8874 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 8875 8876 for (; pair_count > 0; pair_count--, pair++) { 8877 abi_llong key; 8878 abi_ullong value; 8879 __put_user(0, &pair->value); 8880 __get_user(key, &pair->key); 8881 switch (key) { 8882 case RISCV_HWPROBE_KEY_MVENDORID: 8883 __put_user(cfg->mvendorid, &pair->value); 8884 break; 8885 case RISCV_HWPROBE_KEY_MARCHID: 8886 __put_user(cfg->marchid, &pair->value); 8887 break; 8888 case RISCV_HWPROBE_KEY_MIMPID: 8889 __put_user(cfg->mimpid, &pair->value); 8890 break; 8891 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR: 8892 value = riscv_has_ext(env, RVI) && 8893 riscv_has_ext(env, RVM) && 8894 riscv_has_ext(env, RVA) ? 8895 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0; 8896 __put_user(value, &pair->value); 8897 break; 8898 case RISCV_HWPROBE_KEY_IMA_EXT_0: 8899 value = riscv_has_ext(env, RVF) && 8900 riscv_has_ext(env, RVD) ? 8901 RISCV_HWPROBE_IMA_FD : 0; 8902 value |= riscv_has_ext(env, RVC) ? 8903 RISCV_HWPROBE_IMA_C : 0; 8904 value |= riscv_has_ext(env, RVV) ? 8905 RISCV_HWPROBE_IMA_V : 0; 8906 value |= cfg->ext_zba ? 8907 RISCV_HWPROBE_EXT_ZBA : 0; 8908 value |= cfg->ext_zbb ? 8909 RISCV_HWPROBE_EXT_ZBB : 0; 8910 value |= cfg->ext_zbs ? 8911 RISCV_HWPROBE_EXT_ZBS : 0; 8912 value |= cfg->ext_zicboz ? 8913 RISCV_HWPROBE_EXT_ZICBOZ : 0; 8914 value |= cfg->ext_zbc ? 8915 RISCV_HWPROBE_EXT_ZBC : 0; 8916 value |= cfg->ext_zbkb ? 8917 RISCV_HWPROBE_EXT_ZBKB : 0; 8918 value |= cfg->ext_zbkc ? 8919 RISCV_HWPROBE_EXT_ZBKC : 0; 8920 value |= cfg->ext_zbkx ? 8921 RISCV_HWPROBE_EXT_ZBKX : 0; 8922 value |= cfg->ext_zknd ? 8923 RISCV_HWPROBE_EXT_ZKND : 0; 8924 value |= cfg->ext_zkne ? 8925 RISCV_HWPROBE_EXT_ZKNE : 0; 8926 value |= cfg->ext_zknh ? 8927 RISCV_HWPROBE_EXT_ZKNH : 0; 8928 value |= cfg->ext_zksed ? 8929 RISCV_HWPROBE_EXT_ZKSED : 0; 8930 value |= cfg->ext_zksh ? 8931 RISCV_HWPROBE_EXT_ZKSH : 0; 8932 value |= cfg->ext_zkt ? 8933 RISCV_HWPROBE_EXT_ZKT : 0; 8934 value |= cfg->ext_zvbb ? 8935 RISCV_HWPROBE_EXT_ZVBB : 0; 8936 value |= cfg->ext_zvbc ? 8937 RISCV_HWPROBE_EXT_ZVBC : 0; 8938 value |= cfg->ext_zvkb ? 8939 RISCV_HWPROBE_EXT_ZVKB : 0; 8940 value |= cfg->ext_zvkg ? 8941 RISCV_HWPROBE_EXT_ZVKG : 0; 8942 value |= cfg->ext_zvkned ? 8943 RISCV_HWPROBE_EXT_ZVKNED : 0; 8944 value |= cfg->ext_zvknha ? 8945 RISCV_HWPROBE_EXT_ZVKNHA : 0; 8946 value |= cfg->ext_zvknhb ? 8947 RISCV_HWPROBE_EXT_ZVKNHB : 0; 8948 value |= cfg->ext_zvksed ? 8949 RISCV_HWPROBE_EXT_ZVKSED : 0; 8950 value |= cfg->ext_zvksh ? 8951 RISCV_HWPROBE_EXT_ZVKSH : 0; 8952 value |= cfg->ext_zvkt ? 8953 RISCV_HWPROBE_EXT_ZVKT : 0; 8954 value |= cfg->ext_zfh ? 8955 RISCV_HWPROBE_EXT_ZFH : 0; 8956 value |= cfg->ext_zfhmin ? 8957 RISCV_HWPROBE_EXT_ZFHMIN : 0; 8958 value |= cfg->ext_zihintntl ? 8959 RISCV_HWPROBE_EXT_ZIHINTNTL : 0; 8960 value |= cfg->ext_zvfh ? 8961 RISCV_HWPROBE_EXT_ZVFH : 0; 8962 value |= cfg->ext_zvfhmin ? 8963 RISCV_HWPROBE_EXT_ZVFHMIN : 0; 8964 value |= cfg->ext_zfa ? 8965 RISCV_HWPROBE_EXT_ZFA : 0; 8966 value |= cfg->ext_ztso ? 8967 RISCV_HWPROBE_EXT_ZTSO : 0; 8968 value |= cfg->ext_zacas ? 8969 RISCV_HWPROBE_EXT_ZACAS : 0; 8970 value |= cfg->ext_zicond ? 8971 RISCV_HWPROBE_EXT_ZICOND : 0; 8972 __put_user(value, &pair->value); 8973 break; 8974 case RISCV_HWPROBE_KEY_CPUPERF_0: 8975 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value); 8976 break; 8977 case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE: 8978 value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0; 8979 __put_user(value, &pair->value); 8980 break; 8981 default: 8982 __put_user(-1, &pair->key); 8983 break; 8984 } 8985 } 8986 } 8987 8988 static int cpu_set_valid(abi_long arg3, abi_long arg4) 8989 { 8990 int ret, i, tmp; 8991 size_t host_mask_size, target_mask_size; 8992 unsigned long *host_mask; 8993 8994 /* 8995 * cpu_set_t represent CPU masks as bit masks of type unsigned long *. 8996 * arg3 contains the cpu count. 8997 */ 8998 tmp = (8 * sizeof(abi_ulong)); 8999 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong); 9000 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) & 9001 ~(sizeof(*host_mask) - 1); 9002 9003 host_mask = alloca(host_mask_size); 9004 9005 ret = target_to_host_cpu_mask(host_mask, host_mask_size, 9006 arg4, target_mask_size); 9007 if (ret != 0) { 9008 return ret; 9009 } 9010 9011 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) { 9012 if (host_mask[i] != 0) { 9013 return 0; 9014 } 9015 } 9016 return -TARGET_EINVAL; 9017 } 9018 9019 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1, 9020 abi_long arg2, abi_long arg3, 9021 abi_long arg4, abi_long arg5) 9022 { 9023 int ret; 9024 struct riscv_hwprobe *host_pairs; 9025 9026 /* flags must be 0 */ 9027 if (arg5 != 0) { 9028 return -TARGET_EINVAL; 9029 } 9030 9031 /* check cpu_set */ 9032 if (arg3 != 0) { 9033 ret = cpu_set_valid(arg3, arg4); 9034 if (ret != 0) { 9035 return ret; 9036 } 9037 } else if (arg4 != 0) { 9038 return -TARGET_EINVAL; 9039 } 9040 9041 /* no pairs */ 9042 if (arg2 == 0) { 9043 return 0; 9044 } 9045 9046 host_pairs = lock_user(VERIFY_WRITE, arg1, 9047 sizeof(*host_pairs) * (size_t)arg2, 0); 9048 if (host_pairs == NULL) { 9049 return -TARGET_EFAULT; 9050 } 9051 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2); 9052 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2); 9053 return 0; 9054 } 9055 #endif /* TARGET_NR_riscv_hwprobe */ 9056 9057 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root) 9058 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old) 9059 #endif 9060 9061 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9062 #define __NR_sys_open_tree __NR_open_tree 9063 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename, 9064 unsigned int, __flags) 9065 #endif 9066 9067 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9068 #define __NR_sys_move_mount __NR_move_mount 9069 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname, 9070 int, __to_dfd, const char *, __to_pathname, unsigned int, flag) 9071 #endif 9072 9073 /* This is an internal helper for do_syscall so that it is easier 9074 * to have a single return point, so that actions, such as logging 9075 * of syscall results, can be performed. 9076 * All errnos that do_syscall() returns must be -TARGET_<errcode>. 9077 */ 9078 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1, 9079 abi_long arg2, abi_long arg3, abi_long arg4, 9080 abi_long arg5, abi_long arg6, abi_long arg7, 9081 abi_long arg8) 9082 { 9083 CPUState *cpu = env_cpu(cpu_env); 9084 abi_long ret; 9085 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \ 9086 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \ 9087 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \ 9088 || defined(TARGET_NR_statx) 9089 struct stat st; 9090 #endif 9091 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \ 9092 || defined(TARGET_NR_fstatfs) 9093 struct statfs stfs; 9094 #endif 9095 void *p; 9096 9097 switch(num) { 9098 case TARGET_NR_exit: 9099 /* In old applications this may be used to implement _exit(2). 9100 However in threaded applications it is used for thread termination, 9101 and _exit_group is used for application termination. 9102 Do thread termination if we have more then one thread. */ 9103 9104 if (block_signals()) { 9105 return -QEMU_ERESTARTSYS; 9106 } 9107 9108 pthread_mutex_lock(&clone_lock); 9109 9110 if (CPU_NEXT(first_cpu)) { 9111 TaskState *ts = get_task_state(cpu); 9112 9113 if (ts->child_tidptr) { 9114 put_user_u32(0, ts->child_tidptr); 9115 do_sys_futex(g2h(cpu, ts->child_tidptr), 9116 FUTEX_WAKE, INT_MAX, NULL, NULL, 0); 9117 } 9118 9119 object_unparent(OBJECT(cpu)); 9120 object_unref(OBJECT(cpu)); 9121 /* 9122 * At this point the CPU should be unrealized and removed 9123 * from cpu lists. We can clean-up the rest of the thread 9124 * data without the lock held. 9125 */ 9126 9127 pthread_mutex_unlock(&clone_lock); 9128 9129 thread_cpu = NULL; 9130 g_free(ts); 9131 rcu_unregister_thread(); 9132 pthread_exit(NULL); 9133 } 9134 9135 pthread_mutex_unlock(&clone_lock); 9136 preexit_cleanup(cpu_env, arg1); 9137 _exit(arg1); 9138 return 0; /* avoid warning */ 9139 case TARGET_NR_read: 9140 if (arg2 == 0 && arg3 == 0) { 9141 return get_errno(safe_read(arg1, 0, 0)); 9142 } else { 9143 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 9144 return -TARGET_EFAULT; 9145 ret = get_errno(safe_read(arg1, p, arg3)); 9146 if (ret >= 0 && 9147 fd_trans_host_to_target_data(arg1)) { 9148 ret = fd_trans_host_to_target_data(arg1)(p, ret); 9149 } 9150 unlock_user(p, arg2, ret); 9151 } 9152 return ret; 9153 case TARGET_NR_write: 9154 if (arg2 == 0 && arg3 == 0) { 9155 return get_errno(safe_write(arg1, 0, 0)); 9156 } 9157 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 9158 return -TARGET_EFAULT; 9159 if (fd_trans_target_to_host_data(arg1)) { 9160 void *copy = g_malloc(arg3); 9161 memcpy(copy, p, arg3); 9162 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 9163 if (ret >= 0) { 9164 ret = get_errno(safe_write(arg1, copy, ret)); 9165 } 9166 g_free(copy); 9167 } else { 9168 ret = get_errno(safe_write(arg1, p, arg3)); 9169 } 9170 unlock_user(p, arg2, 0); 9171 return ret; 9172 9173 #ifdef TARGET_NR_open 9174 case TARGET_NR_open: 9175 if (!(p = lock_user_string(arg1))) 9176 return -TARGET_EFAULT; 9177 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p, 9178 target_to_host_bitmask(arg2, fcntl_flags_tbl), 9179 arg3, true)); 9180 fd_trans_unregister(ret); 9181 unlock_user(p, arg1, 0); 9182 return ret; 9183 #endif 9184 case TARGET_NR_openat: 9185 if (!(p = lock_user_string(arg2))) 9186 return -TARGET_EFAULT; 9187 ret = get_errno(do_guest_openat(cpu_env, arg1, p, 9188 target_to_host_bitmask(arg3, fcntl_flags_tbl), 9189 arg4, true)); 9190 fd_trans_unregister(ret); 9191 unlock_user(p, arg2, 0); 9192 return ret; 9193 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9194 case TARGET_NR_name_to_handle_at: 9195 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 9196 return ret; 9197 #endif 9198 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9199 case TARGET_NR_open_by_handle_at: 9200 ret = do_open_by_handle_at(arg1, arg2, arg3); 9201 fd_trans_unregister(ret); 9202 return ret; 9203 #endif 9204 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 9205 case TARGET_NR_pidfd_open: 9206 return get_errno(pidfd_open(arg1, arg2)); 9207 #endif 9208 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 9209 case TARGET_NR_pidfd_send_signal: 9210 { 9211 siginfo_t uinfo, *puinfo; 9212 9213 if (arg3) { 9214 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9215 if (!p) { 9216 return -TARGET_EFAULT; 9217 } 9218 target_to_host_siginfo(&uinfo, p); 9219 unlock_user(p, arg3, 0); 9220 puinfo = &uinfo; 9221 } else { 9222 puinfo = NULL; 9223 } 9224 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2), 9225 puinfo, arg4)); 9226 } 9227 return ret; 9228 #endif 9229 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 9230 case TARGET_NR_pidfd_getfd: 9231 return get_errno(pidfd_getfd(arg1, arg2, arg3)); 9232 #endif 9233 case TARGET_NR_close: 9234 fd_trans_unregister(arg1); 9235 return get_errno(close(arg1)); 9236 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 9237 case TARGET_NR_close_range: 9238 ret = get_errno(sys_close_range(arg1, arg2, arg3)); 9239 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) { 9240 abi_long fd, maxfd; 9241 maxfd = MIN(arg2, target_fd_max); 9242 for (fd = arg1; fd < maxfd; fd++) { 9243 fd_trans_unregister(fd); 9244 } 9245 } 9246 return ret; 9247 #endif 9248 9249 case TARGET_NR_brk: 9250 return do_brk(arg1); 9251 #ifdef TARGET_NR_fork 9252 case TARGET_NR_fork: 9253 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 9254 #endif 9255 #ifdef TARGET_NR_waitpid 9256 case TARGET_NR_waitpid: 9257 { 9258 int status; 9259 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 9260 if (!is_error(ret) && arg2 && ret 9261 && put_user_s32(host_to_target_waitstatus(status), arg2)) 9262 return -TARGET_EFAULT; 9263 } 9264 return ret; 9265 #endif 9266 #ifdef TARGET_NR_waitid 9267 case TARGET_NR_waitid: 9268 { 9269 struct rusage ru; 9270 siginfo_t info; 9271 9272 ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL), 9273 arg4, (arg5 ? &ru : NULL))); 9274 if (!is_error(ret)) { 9275 if (arg3) { 9276 p = lock_user(VERIFY_WRITE, arg3, 9277 sizeof(target_siginfo_t), 0); 9278 if (!p) { 9279 return -TARGET_EFAULT; 9280 } 9281 host_to_target_siginfo(p, &info); 9282 unlock_user(p, arg3, sizeof(target_siginfo_t)); 9283 } 9284 if (arg5 && host_to_target_rusage(arg5, &ru)) { 9285 return -TARGET_EFAULT; 9286 } 9287 } 9288 } 9289 return ret; 9290 #endif 9291 #ifdef TARGET_NR_creat /* not on alpha */ 9292 case TARGET_NR_creat: 9293 if (!(p = lock_user_string(arg1))) 9294 return -TARGET_EFAULT; 9295 ret = get_errno(creat(p, arg2)); 9296 fd_trans_unregister(ret); 9297 unlock_user(p, arg1, 0); 9298 return ret; 9299 #endif 9300 #ifdef TARGET_NR_link 9301 case TARGET_NR_link: 9302 { 9303 void * p2; 9304 p = lock_user_string(arg1); 9305 p2 = lock_user_string(arg2); 9306 if (!p || !p2) 9307 ret = -TARGET_EFAULT; 9308 else 9309 ret = get_errno(link(p, p2)); 9310 unlock_user(p2, arg2, 0); 9311 unlock_user(p, arg1, 0); 9312 } 9313 return ret; 9314 #endif 9315 #if defined(TARGET_NR_linkat) 9316 case TARGET_NR_linkat: 9317 { 9318 void * p2 = NULL; 9319 if (!arg2 || !arg4) 9320 return -TARGET_EFAULT; 9321 p = lock_user_string(arg2); 9322 p2 = lock_user_string(arg4); 9323 if (!p || !p2) 9324 ret = -TARGET_EFAULT; 9325 else 9326 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 9327 unlock_user(p, arg2, 0); 9328 unlock_user(p2, arg4, 0); 9329 } 9330 return ret; 9331 #endif 9332 #ifdef TARGET_NR_unlink 9333 case TARGET_NR_unlink: 9334 if (!(p = lock_user_string(arg1))) 9335 return -TARGET_EFAULT; 9336 ret = get_errno(unlink(p)); 9337 unlock_user(p, arg1, 0); 9338 return ret; 9339 #endif 9340 #if defined(TARGET_NR_unlinkat) 9341 case TARGET_NR_unlinkat: 9342 if (!(p = lock_user_string(arg2))) 9343 return -TARGET_EFAULT; 9344 ret = get_errno(unlinkat(arg1, p, arg3)); 9345 unlock_user(p, arg2, 0); 9346 return ret; 9347 #endif 9348 case TARGET_NR_execveat: 9349 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true); 9350 case TARGET_NR_execve: 9351 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false); 9352 case TARGET_NR_chdir: 9353 if (!(p = lock_user_string(arg1))) 9354 return -TARGET_EFAULT; 9355 ret = get_errno(chdir(p)); 9356 unlock_user(p, arg1, 0); 9357 return ret; 9358 #ifdef TARGET_NR_time 9359 case TARGET_NR_time: 9360 { 9361 time_t host_time; 9362 ret = get_errno(time(&host_time)); 9363 if (!is_error(ret) 9364 && arg1 9365 && put_user_sal(host_time, arg1)) 9366 return -TARGET_EFAULT; 9367 } 9368 return ret; 9369 #endif 9370 #ifdef TARGET_NR_mknod 9371 case TARGET_NR_mknod: 9372 if (!(p = lock_user_string(arg1))) 9373 return -TARGET_EFAULT; 9374 ret = get_errno(mknod(p, arg2, arg3)); 9375 unlock_user(p, arg1, 0); 9376 return ret; 9377 #endif 9378 #if defined(TARGET_NR_mknodat) 9379 case TARGET_NR_mknodat: 9380 if (!(p = lock_user_string(arg2))) 9381 return -TARGET_EFAULT; 9382 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 9383 unlock_user(p, arg2, 0); 9384 return ret; 9385 #endif 9386 #ifdef TARGET_NR_chmod 9387 case TARGET_NR_chmod: 9388 if (!(p = lock_user_string(arg1))) 9389 return -TARGET_EFAULT; 9390 ret = get_errno(chmod(p, arg2)); 9391 unlock_user(p, arg1, 0); 9392 return ret; 9393 #endif 9394 #ifdef TARGET_NR_lseek 9395 case TARGET_NR_lseek: 9396 return get_errno(lseek(arg1, arg2, arg3)); 9397 #endif 9398 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 9399 /* Alpha specific */ 9400 case TARGET_NR_getxpid: 9401 cpu_env->ir[IR_A4] = getppid(); 9402 return get_errno(getpid()); 9403 #endif 9404 #ifdef TARGET_NR_getpid 9405 case TARGET_NR_getpid: 9406 return get_errno(getpid()); 9407 #endif 9408 case TARGET_NR_mount: 9409 { 9410 /* need to look at the data field */ 9411 void *p2, *p3; 9412 9413 if (arg1) { 9414 p = lock_user_string(arg1); 9415 if (!p) { 9416 return -TARGET_EFAULT; 9417 } 9418 } else { 9419 p = NULL; 9420 } 9421 9422 p2 = lock_user_string(arg2); 9423 if (!p2) { 9424 if (arg1) { 9425 unlock_user(p, arg1, 0); 9426 } 9427 return -TARGET_EFAULT; 9428 } 9429 9430 if (arg3) { 9431 p3 = lock_user_string(arg3); 9432 if (!p3) { 9433 if (arg1) { 9434 unlock_user(p, arg1, 0); 9435 } 9436 unlock_user(p2, arg2, 0); 9437 return -TARGET_EFAULT; 9438 } 9439 } else { 9440 p3 = NULL; 9441 } 9442 9443 /* FIXME - arg5 should be locked, but it isn't clear how to 9444 * do that since it's not guaranteed to be a NULL-terminated 9445 * string. 9446 */ 9447 if (!arg5) { 9448 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 9449 } else { 9450 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5)); 9451 } 9452 ret = get_errno(ret); 9453 9454 if (arg1) { 9455 unlock_user(p, arg1, 0); 9456 } 9457 unlock_user(p2, arg2, 0); 9458 if (arg3) { 9459 unlock_user(p3, arg3, 0); 9460 } 9461 } 9462 return ret; 9463 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount) 9464 #if defined(TARGET_NR_umount) 9465 case TARGET_NR_umount: 9466 #endif 9467 #if defined(TARGET_NR_oldumount) 9468 case TARGET_NR_oldumount: 9469 #endif 9470 if (!(p = lock_user_string(arg1))) 9471 return -TARGET_EFAULT; 9472 ret = get_errno(umount(p)); 9473 unlock_user(p, arg1, 0); 9474 return ret; 9475 #endif 9476 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9477 case TARGET_NR_move_mount: 9478 { 9479 void *p2, *p4; 9480 9481 if (!arg2 || !arg4) { 9482 return -TARGET_EFAULT; 9483 } 9484 9485 p2 = lock_user_string(arg2); 9486 if (!p2) { 9487 return -TARGET_EFAULT; 9488 } 9489 9490 p4 = lock_user_string(arg4); 9491 if (!p4) { 9492 unlock_user(p2, arg2, 0); 9493 return -TARGET_EFAULT; 9494 } 9495 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5)); 9496 9497 unlock_user(p2, arg2, 0); 9498 unlock_user(p4, arg4, 0); 9499 9500 return ret; 9501 } 9502 #endif 9503 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9504 case TARGET_NR_open_tree: 9505 { 9506 void *p2; 9507 int host_flags; 9508 9509 if (!arg2) { 9510 return -TARGET_EFAULT; 9511 } 9512 9513 p2 = lock_user_string(arg2); 9514 if (!p2) { 9515 return -TARGET_EFAULT; 9516 } 9517 9518 host_flags = arg3 & ~TARGET_O_CLOEXEC; 9519 if (arg3 & TARGET_O_CLOEXEC) { 9520 host_flags |= O_CLOEXEC; 9521 } 9522 9523 ret = get_errno(sys_open_tree(arg1, p2, host_flags)); 9524 9525 unlock_user(p2, arg2, 0); 9526 9527 return ret; 9528 } 9529 #endif 9530 #ifdef TARGET_NR_stime /* not on alpha */ 9531 case TARGET_NR_stime: 9532 { 9533 struct timespec ts; 9534 ts.tv_nsec = 0; 9535 if (get_user_sal(ts.tv_sec, arg1)) { 9536 return -TARGET_EFAULT; 9537 } 9538 return get_errno(clock_settime(CLOCK_REALTIME, &ts)); 9539 } 9540 #endif 9541 #ifdef TARGET_NR_alarm /* not on alpha */ 9542 case TARGET_NR_alarm: 9543 return alarm(arg1); 9544 #endif 9545 #ifdef TARGET_NR_pause /* not on alpha */ 9546 case TARGET_NR_pause: 9547 if (!block_signals()) { 9548 sigsuspend(&get_task_state(cpu)->signal_mask); 9549 } 9550 return -TARGET_EINTR; 9551 #endif 9552 #ifdef TARGET_NR_utime 9553 case TARGET_NR_utime: 9554 { 9555 struct utimbuf tbuf, *host_tbuf; 9556 struct target_utimbuf *target_tbuf; 9557 if (arg2) { 9558 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 9559 return -TARGET_EFAULT; 9560 tbuf.actime = tswapal(target_tbuf->actime); 9561 tbuf.modtime = tswapal(target_tbuf->modtime); 9562 unlock_user_struct(target_tbuf, arg2, 0); 9563 host_tbuf = &tbuf; 9564 } else { 9565 host_tbuf = NULL; 9566 } 9567 if (!(p = lock_user_string(arg1))) 9568 return -TARGET_EFAULT; 9569 ret = get_errno(utime(p, host_tbuf)); 9570 unlock_user(p, arg1, 0); 9571 } 9572 return ret; 9573 #endif 9574 #ifdef TARGET_NR_utimes 9575 case TARGET_NR_utimes: 9576 { 9577 struct timeval *tvp, tv[2]; 9578 if (arg2) { 9579 if (copy_from_user_timeval(&tv[0], arg2) 9580 || copy_from_user_timeval(&tv[1], 9581 arg2 + sizeof(struct target_timeval))) 9582 return -TARGET_EFAULT; 9583 tvp = tv; 9584 } else { 9585 tvp = NULL; 9586 } 9587 if (!(p = lock_user_string(arg1))) 9588 return -TARGET_EFAULT; 9589 ret = get_errno(utimes(p, tvp)); 9590 unlock_user(p, arg1, 0); 9591 } 9592 return ret; 9593 #endif 9594 #if defined(TARGET_NR_futimesat) 9595 case TARGET_NR_futimesat: 9596 { 9597 struct timeval *tvp, tv[2]; 9598 if (arg3) { 9599 if (copy_from_user_timeval(&tv[0], arg3) 9600 || copy_from_user_timeval(&tv[1], 9601 arg3 + sizeof(struct target_timeval))) 9602 return -TARGET_EFAULT; 9603 tvp = tv; 9604 } else { 9605 tvp = NULL; 9606 } 9607 if (!(p = lock_user_string(arg2))) { 9608 return -TARGET_EFAULT; 9609 } 9610 ret = get_errno(futimesat(arg1, path(p), tvp)); 9611 unlock_user(p, arg2, 0); 9612 } 9613 return ret; 9614 #endif 9615 #ifdef TARGET_NR_access 9616 case TARGET_NR_access: 9617 if (!(p = lock_user_string(arg1))) { 9618 return -TARGET_EFAULT; 9619 } 9620 ret = get_errno(access(path(p), arg2)); 9621 unlock_user(p, arg1, 0); 9622 return ret; 9623 #endif 9624 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 9625 case TARGET_NR_faccessat: 9626 if (!(p = lock_user_string(arg2))) { 9627 return -TARGET_EFAULT; 9628 } 9629 ret = get_errno(faccessat(arg1, p, arg3, 0)); 9630 unlock_user(p, arg2, 0); 9631 return ret; 9632 #endif 9633 #if defined(TARGET_NR_faccessat2) 9634 case TARGET_NR_faccessat2: 9635 if (!(p = lock_user_string(arg2))) { 9636 return -TARGET_EFAULT; 9637 } 9638 ret = get_errno(faccessat(arg1, p, arg3, arg4)); 9639 unlock_user(p, arg2, 0); 9640 return ret; 9641 #endif 9642 #ifdef TARGET_NR_nice /* not on alpha */ 9643 case TARGET_NR_nice: 9644 return get_errno(nice(arg1)); 9645 #endif 9646 case TARGET_NR_sync: 9647 sync(); 9648 return 0; 9649 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 9650 case TARGET_NR_syncfs: 9651 return get_errno(syncfs(arg1)); 9652 #endif 9653 case TARGET_NR_kill: 9654 return get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 9655 #ifdef TARGET_NR_rename 9656 case TARGET_NR_rename: 9657 { 9658 void *p2; 9659 p = lock_user_string(arg1); 9660 p2 = lock_user_string(arg2); 9661 if (!p || !p2) 9662 ret = -TARGET_EFAULT; 9663 else 9664 ret = get_errno(rename(p, p2)); 9665 unlock_user(p2, arg2, 0); 9666 unlock_user(p, arg1, 0); 9667 } 9668 return ret; 9669 #endif 9670 #if defined(TARGET_NR_renameat) 9671 case TARGET_NR_renameat: 9672 { 9673 void *p2; 9674 p = lock_user_string(arg2); 9675 p2 = lock_user_string(arg4); 9676 if (!p || !p2) 9677 ret = -TARGET_EFAULT; 9678 else 9679 ret = get_errno(renameat(arg1, p, arg3, p2)); 9680 unlock_user(p2, arg4, 0); 9681 unlock_user(p, arg2, 0); 9682 } 9683 return ret; 9684 #endif 9685 #if defined(TARGET_NR_renameat2) 9686 case TARGET_NR_renameat2: 9687 { 9688 void *p2; 9689 p = lock_user_string(arg2); 9690 p2 = lock_user_string(arg4); 9691 if (!p || !p2) { 9692 ret = -TARGET_EFAULT; 9693 } else { 9694 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 9695 } 9696 unlock_user(p2, arg4, 0); 9697 unlock_user(p, arg2, 0); 9698 } 9699 return ret; 9700 #endif 9701 #ifdef TARGET_NR_mkdir 9702 case TARGET_NR_mkdir: 9703 if (!(p = lock_user_string(arg1))) 9704 return -TARGET_EFAULT; 9705 ret = get_errno(mkdir(p, arg2)); 9706 unlock_user(p, arg1, 0); 9707 return ret; 9708 #endif 9709 #if defined(TARGET_NR_mkdirat) 9710 case TARGET_NR_mkdirat: 9711 if (!(p = lock_user_string(arg2))) 9712 return -TARGET_EFAULT; 9713 ret = get_errno(mkdirat(arg1, p, arg3)); 9714 unlock_user(p, arg2, 0); 9715 return ret; 9716 #endif 9717 #ifdef TARGET_NR_rmdir 9718 case TARGET_NR_rmdir: 9719 if (!(p = lock_user_string(arg1))) 9720 return -TARGET_EFAULT; 9721 ret = get_errno(rmdir(p)); 9722 unlock_user(p, arg1, 0); 9723 return ret; 9724 #endif 9725 case TARGET_NR_dup: 9726 ret = get_errno(dup(arg1)); 9727 if (ret >= 0) { 9728 fd_trans_dup(arg1, ret); 9729 } 9730 return ret; 9731 #ifdef TARGET_NR_pipe 9732 case TARGET_NR_pipe: 9733 return do_pipe(cpu_env, arg1, 0, 0); 9734 #endif 9735 #ifdef TARGET_NR_pipe2 9736 case TARGET_NR_pipe2: 9737 return do_pipe(cpu_env, arg1, 9738 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 9739 #endif 9740 case TARGET_NR_times: 9741 { 9742 struct target_tms *tmsp; 9743 struct tms tms; 9744 ret = get_errno(times(&tms)); 9745 if (arg1) { 9746 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 9747 if (!tmsp) 9748 return -TARGET_EFAULT; 9749 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 9750 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 9751 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 9752 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 9753 } 9754 if (!is_error(ret)) 9755 ret = host_to_target_clock_t(ret); 9756 } 9757 return ret; 9758 case TARGET_NR_acct: 9759 if (arg1 == 0) { 9760 ret = get_errno(acct(NULL)); 9761 } else { 9762 if (!(p = lock_user_string(arg1))) { 9763 return -TARGET_EFAULT; 9764 } 9765 ret = get_errno(acct(path(p))); 9766 unlock_user(p, arg1, 0); 9767 } 9768 return ret; 9769 #ifdef TARGET_NR_umount2 9770 case TARGET_NR_umount2: 9771 if (!(p = lock_user_string(arg1))) 9772 return -TARGET_EFAULT; 9773 ret = get_errno(umount2(p, arg2)); 9774 unlock_user(p, arg1, 0); 9775 return ret; 9776 #endif 9777 case TARGET_NR_ioctl: 9778 return do_ioctl(arg1, arg2, arg3); 9779 #ifdef TARGET_NR_fcntl 9780 case TARGET_NR_fcntl: 9781 return do_fcntl(arg1, arg2, arg3); 9782 #endif 9783 case TARGET_NR_setpgid: 9784 return get_errno(setpgid(arg1, arg2)); 9785 case TARGET_NR_umask: 9786 return get_errno(umask(arg1)); 9787 case TARGET_NR_chroot: 9788 if (!(p = lock_user_string(arg1))) 9789 return -TARGET_EFAULT; 9790 ret = get_errno(chroot(p)); 9791 unlock_user(p, arg1, 0); 9792 return ret; 9793 #ifdef TARGET_NR_dup2 9794 case TARGET_NR_dup2: 9795 ret = get_errno(dup2(arg1, arg2)); 9796 if (ret >= 0) { 9797 fd_trans_dup(arg1, arg2); 9798 } 9799 return ret; 9800 #endif 9801 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 9802 case TARGET_NR_dup3: 9803 { 9804 int host_flags; 9805 9806 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 9807 return -EINVAL; 9808 } 9809 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 9810 ret = get_errno(dup3(arg1, arg2, host_flags)); 9811 if (ret >= 0) { 9812 fd_trans_dup(arg1, arg2); 9813 } 9814 return ret; 9815 } 9816 #endif 9817 #ifdef TARGET_NR_getppid /* not on alpha */ 9818 case TARGET_NR_getppid: 9819 return get_errno(getppid()); 9820 #endif 9821 #ifdef TARGET_NR_getpgrp 9822 case TARGET_NR_getpgrp: 9823 return get_errno(getpgrp()); 9824 #endif 9825 case TARGET_NR_setsid: 9826 return get_errno(setsid()); 9827 #ifdef TARGET_NR_sigaction 9828 case TARGET_NR_sigaction: 9829 { 9830 #if defined(TARGET_MIPS) 9831 struct target_sigaction act, oact, *pact, *old_act; 9832 9833 if (arg2) { 9834 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9835 return -TARGET_EFAULT; 9836 act._sa_handler = old_act->_sa_handler; 9837 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 9838 act.sa_flags = old_act->sa_flags; 9839 unlock_user_struct(old_act, arg2, 0); 9840 pact = &act; 9841 } else { 9842 pact = NULL; 9843 } 9844 9845 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9846 9847 if (!is_error(ret) && arg3) { 9848 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9849 return -TARGET_EFAULT; 9850 old_act->_sa_handler = oact._sa_handler; 9851 old_act->sa_flags = oact.sa_flags; 9852 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 9853 old_act->sa_mask.sig[1] = 0; 9854 old_act->sa_mask.sig[2] = 0; 9855 old_act->sa_mask.sig[3] = 0; 9856 unlock_user_struct(old_act, arg3, 1); 9857 } 9858 #else 9859 struct target_old_sigaction *old_act; 9860 struct target_sigaction act, oact, *pact; 9861 if (arg2) { 9862 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9863 return -TARGET_EFAULT; 9864 act._sa_handler = old_act->_sa_handler; 9865 target_siginitset(&act.sa_mask, old_act->sa_mask); 9866 act.sa_flags = old_act->sa_flags; 9867 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9868 act.sa_restorer = old_act->sa_restorer; 9869 #endif 9870 unlock_user_struct(old_act, arg2, 0); 9871 pact = &act; 9872 } else { 9873 pact = NULL; 9874 } 9875 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9876 if (!is_error(ret) && arg3) { 9877 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9878 return -TARGET_EFAULT; 9879 old_act->_sa_handler = oact._sa_handler; 9880 old_act->sa_mask = oact.sa_mask.sig[0]; 9881 old_act->sa_flags = oact.sa_flags; 9882 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9883 old_act->sa_restorer = oact.sa_restorer; 9884 #endif 9885 unlock_user_struct(old_act, arg3, 1); 9886 } 9887 #endif 9888 } 9889 return ret; 9890 #endif 9891 case TARGET_NR_rt_sigaction: 9892 { 9893 /* 9894 * For Alpha and SPARC this is a 5 argument syscall, with 9895 * a 'restorer' parameter which must be copied into the 9896 * sa_restorer field of the sigaction struct. 9897 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 9898 * and arg5 is the sigsetsize. 9899 */ 9900 #if defined(TARGET_ALPHA) 9901 target_ulong sigsetsize = arg4; 9902 target_ulong restorer = arg5; 9903 #elif defined(TARGET_SPARC) 9904 target_ulong restorer = arg4; 9905 target_ulong sigsetsize = arg5; 9906 #else 9907 target_ulong sigsetsize = arg4; 9908 target_ulong restorer = 0; 9909 #endif 9910 struct target_sigaction *act = NULL; 9911 struct target_sigaction *oact = NULL; 9912 9913 if (sigsetsize != sizeof(target_sigset_t)) { 9914 return -TARGET_EINVAL; 9915 } 9916 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) { 9917 return -TARGET_EFAULT; 9918 } 9919 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 9920 ret = -TARGET_EFAULT; 9921 } else { 9922 ret = get_errno(do_sigaction(arg1, act, oact, restorer)); 9923 if (oact) { 9924 unlock_user_struct(oact, arg3, 1); 9925 } 9926 } 9927 if (act) { 9928 unlock_user_struct(act, arg2, 0); 9929 } 9930 } 9931 return ret; 9932 #ifdef TARGET_NR_sgetmask /* not on alpha */ 9933 case TARGET_NR_sgetmask: 9934 { 9935 sigset_t cur_set; 9936 abi_ulong target_set; 9937 ret = do_sigprocmask(0, NULL, &cur_set); 9938 if (!ret) { 9939 host_to_target_old_sigset(&target_set, &cur_set); 9940 ret = target_set; 9941 } 9942 } 9943 return ret; 9944 #endif 9945 #ifdef TARGET_NR_ssetmask /* not on alpha */ 9946 case TARGET_NR_ssetmask: 9947 { 9948 sigset_t set, oset; 9949 abi_ulong target_set = arg1; 9950 target_to_host_old_sigset(&set, &target_set); 9951 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 9952 if (!ret) { 9953 host_to_target_old_sigset(&target_set, &oset); 9954 ret = target_set; 9955 } 9956 } 9957 return ret; 9958 #endif 9959 #ifdef TARGET_NR_sigprocmask 9960 case TARGET_NR_sigprocmask: 9961 { 9962 #if defined(TARGET_ALPHA) 9963 sigset_t set, oldset; 9964 abi_ulong mask; 9965 int how; 9966 9967 switch (arg1) { 9968 case TARGET_SIG_BLOCK: 9969 how = SIG_BLOCK; 9970 break; 9971 case TARGET_SIG_UNBLOCK: 9972 how = SIG_UNBLOCK; 9973 break; 9974 case TARGET_SIG_SETMASK: 9975 how = SIG_SETMASK; 9976 break; 9977 default: 9978 return -TARGET_EINVAL; 9979 } 9980 mask = arg2; 9981 target_to_host_old_sigset(&set, &mask); 9982 9983 ret = do_sigprocmask(how, &set, &oldset); 9984 if (!is_error(ret)) { 9985 host_to_target_old_sigset(&mask, &oldset); 9986 ret = mask; 9987 cpu_env->ir[IR_V0] = 0; /* force no error */ 9988 } 9989 #else 9990 sigset_t set, oldset, *set_ptr; 9991 int how; 9992 9993 if (arg2) { 9994 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 9995 if (!p) { 9996 return -TARGET_EFAULT; 9997 } 9998 target_to_host_old_sigset(&set, p); 9999 unlock_user(p, arg2, 0); 10000 set_ptr = &set; 10001 switch (arg1) { 10002 case TARGET_SIG_BLOCK: 10003 how = SIG_BLOCK; 10004 break; 10005 case TARGET_SIG_UNBLOCK: 10006 how = SIG_UNBLOCK; 10007 break; 10008 case TARGET_SIG_SETMASK: 10009 how = SIG_SETMASK; 10010 break; 10011 default: 10012 return -TARGET_EINVAL; 10013 } 10014 } else { 10015 how = 0; 10016 set_ptr = NULL; 10017 } 10018 ret = do_sigprocmask(how, set_ptr, &oldset); 10019 if (!is_error(ret) && arg3) { 10020 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10021 return -TARGET_EFAULT; 10022 host_to_target_old_sigset(p, &oldset); 10023 unlock_user(p, arg3, sizeof(target_sigset_t)); 10024 } 10025 #endif 10026 } 10027 return ret; 10028 #endif 10029 case TARGET_NR_rt_sigprocmask: 10030 { 10031 int how = arg1; 10032 sigset_t set, oldset, *set_ptr; 10033 10034 if (arg4 != sizeof(target_sigset_t)) { 10035 return -TARGET_EINVAL; 10036 } 10037 10038 if (arg2) { 10039 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 10040 if (!p) { 10041 return -TARGET_EFAULT; 10042 } 10043 target_to_host_sigset(&set, p); 10044 unlock_user(p, arg2, 0); 10045 set_ptr = &set; 10046 switch(how) { 10047 case TARGET_SIG_BLOCK: 10048 how = SIG_BLOCK; 10049 break; 10050 case TARGET_SIG_UNBLOCK: 10051 how = SIG_UNBLOCK; 10052 break; 10053 case TARGET_SIG_SETMASK: 10054 how = SIG_SETMASK; 10055 break; 10056 default: 10057 return -TARGET_EINVAL; 10058 } 10059 } else { 10060 how = 0; 10061 set_ptr = NULL; 10062 } 10063 ret = do_sigprocmask(how, set_ptr, &oldset); 10064 if (!is_error(ret) && arg3) { 10065 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10066 return -TARGET_EFAULT; 10067 host_to_target_sigset(p, &oldset); 10068 unlock_user(p, arg3, sizeof(target_sigset_t)); 10069 } 10070 } 10071 return ret; 10072 #ifdef TARGET_NR_sigpending 10073 case TARGET_NR_sigpending: 10074 { 10075 sigset_t set; 10076 ret = get_errno(sigpending(&set)); 10077 if (!is_error(ret)) { 10078 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10079 return -TARGET_EFAULT; 10080 host_to_target_old_sigset(p, &set); 10081 unlock_user(p, arg1, sizeof(target_sigset_t)); 10082 } 10083 } 10084 return ret; 10085 #endif 10086 case TARGET_NR_rt_sigpending: 10087 { 10088 sigset_t set; 10089 10090 /* Yes, this check is >, not != like most. We follow the kernel's 10091 * logic and it does it like this because it implements 10092 * NR_sigpending through the same code path, and in that case 10093 * the old_sigset_t is smaller in size. 10094 */ 10095 if (arg2 > sizeof(target_sigset_t)) { 10096 return -TARGET_EINVAL; 10097 } 10098 10099 ret = get_errno(sigpending(&set)); 10100 if (!is_error(ret)) { 10101 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10102 return -TARGET_EFAULT; 10103 host_to_target_sigset(p, &set); 10104 unlock_user(p, arg1, sizeof(target_sigset_t)); 10105 } 10106 } 10107 return ret; 10108 #ifdef TARGET_NR_sigsuspend 10109 case TARGET_NR_sigsuspend: 10110 { 10111 sigset_t *set; 10112 10113 #if defined(TARGET_ALPHA) 10114 TaskState *ts = get_task_state(cpu); 10115 /* target_to_host_old_sigset will bswap back */ 10116 abi_ulong mask = tswapal(arg1); 10117 set = &ts->sigsuspend_mask; 10118 target_to_host_old_sigset(set, &mask); 10119 #else 10120 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t)); 10121 if (ret != 0) { 10122 return ret; 10123 } 10124 #endif 10125 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10126 finish_sigsuspend_mask(ret); 10127 } 10128 return ret; 10129 #endif 10130 case TARGET_NR_rt_sigsuspend: 10131 { 10132 sigset_t *set; 10133 10134 ret = process_sigsuspend_mask(&set, arg1, arg2); 10135 if (ret != 0) { 10136 return ret; 10137 } 10138 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10139 finish_sigsuspend_mask(ret); 10140 } 10141 return ret; 10142 #ifdef TARGET_NR_rt_sigtimedwait 10143 case TARGET_NR_rt_sigtimedwait: 10144 { 10145 sigset_t set; 10146 struct timespec uts, *puts; 10147 siginfo_t uinfo; 10148 10149 if (arg4 != sizeof(target_sigset_t)) { 10150 return -TARGET_EINVAL; 10151 } 10152 10153 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 10154 return -TARGET_EFAULT; 10155 target_to_host_sigset(&set, p); 10156 unlock_user(p, arg1, 0); 10157 if (arg3) { 10158 puts = &uts; 10159 if (target_to_host_timespec(puts, arg3)) { 10160 return -TARGET_EFAULT; 10161 } 10162 } else { 10163 puts = NULL; 10164 } 10165 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10166 SIGSET_T_SIZE)); 10167 if (!is_error(ret)) { 10168 if (arg2) { 10169 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 10170 0); 10171 if (!p) { 10172 return -TARGET_EFAULT; 10173 } 10174 host_to_target_siginfo(p, &uinfo); 10175 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10176 } 10177 ret = host_to_target_signal(ret); 10178 } 10179 } 10180 return ret; 10181 #endif 10182 #ifdef TARGET_NR_rt_sigtimedwait_time64 10183 case TARGET_NR_rt_sigtimedwait_time64: 10184 { 10185 sigset_t set; 10186 struct timespec uts, *puts; 10187 siginfo_t uinfo; 10188 10189 if (arg4 != sizeof(target_sigset_t)) { 10190 return -TARGET_EINVAL; 10191 } 10192 10193 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1); 10194 if (!p) { 10195 return -TARGET_EFAULT; 10196 } 10197 target_to_host_sigset(&set, p); 10198 unlock_user(p, arg1, 0); 10199 if (arg3) { 10200 puts = &uts; 10201 if (target_to_host_timespec64(puts, arg3)) { 10202 return -TARGET_EFAULT; 10203 } 10204 } else { 10205 puts = NULL; 10206 } 10207 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10208 SIGSET_T_SIZE)); 10209 if (!is_error(ret)) { 10210 if (arg2) { 10211 p = lock_user(VERIFY_WRITE, arg2, 10212 sizeof(target_siginfo_t), 0); 10213 if (!p) { 10214 return -TARGET_EFAULT; 10215 } 10216 host_to_target_siginfo(p, &uinfo); 10217 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10218 } 10219 ret = host_to_target_signal(ret); 10220 } 10221 } 10222 return ret; 10223 #endif 10224 case TARGET_NR_rt_sigqueueinfo: 10225 { 10226 siginfo_t uinfo; 10227 10228 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 10229 if (!p) { 10230 return -TARGET_EFAULT; 10231 } 10232 target_to_host_siginfo(&uinfo, p); 10233 unlock_user(p, arg3, 0); 10234 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo)); 10235 } 10236 return ret; 10237 case TARGET_NR_rt_tgsigqueueinfo: 10238 { 10239 siginfo_t uinfo; 10240 10241 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 10242 if (!p) { 10243 return -TARGET_EFAULT; 10244 } 10245 target_to_host_siginfo(&uinfo, p); 10246 unlock_user(p, arg4, 0); 10247 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo)); 10248 } 10249 return ret; 10250 #ifdef TARGET_NR_sigreturn 10251 case TARGET_NR_sigreturn: 10252 if (block_signals()) { 10253 return -QEMU_ERESTARTSYS; 10254 } 10255 return do_sigreturn(cpu_env); 10256 #endif 10257 case TARGET_NR_rt_sigreturn: 10258 if (block_signals()) { 10259 return -QEMU_ERESTARTSYS; 10260 } 10261 return do_rt_sigreturn(cpu_env); 10262 case TARGET_NR_sethostname: 10263 if (!(p = lock_user_string(arg1))) 10264 return -TARGET_EFAULT; 10265 ret = get_errno(sethostname(p, arg2)); 10266 unlock_user(p, arg1, 0); 10267 return ret; 10268 #ifdef TARGET_NR_setrlimit 10269 case TARGET_NR_setrlimit: 10270 { 10271 int resource = target_to_host_resource(arg1); 10272 struct target_rlimit *target_rlim; 10273 struct rlimit rlim; 10274 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 10275 return -TARGET_EFAULT; 10276 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 10277 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 10278 unlock_user_struct(target_rlim, arg2, 0); 10279 /* 10280 * If we just passed through resource limit settings for memory then 10281 * they would also apply to QEMU's own allocations, and QEMU will 10282 * crash or hang or die if its allocations fail. Ideally we would 10283 * track the guest allocations in QEMU and apply the limits ourselves. 10284 * For now, just tell the guest the call succeeded but don't actually 10285 * limit anything. 10286 */ 10287 if (resource != RLIMIT_AS && 10288 resource != RLIMIT_DATA && 10289 resource != RLIMIT_STACK) { 10290 return get_errno(setrlimit(resource, &rlim)); 10291 } else { 10292 return 0; 10293 } 10294 } 10295 #endif 10296 #ifdef TARGET_NR_getrlimit 10297 case TARGET_NR_getrlimit: 10298 { 10299 int resource = target_to_host_resource(arg1); 10300 struct target_rlimit *target_rlim; 10301 struct rlimit rlim; 10302 10303 ret = get_errno(getrlimit(resource, &rlim)); 10304 if (!is_error(ret)) { 10305 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 10306 return -TARGET_EFAULT; 10307 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 10308 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 10309 unlock_user_struct(target_rlim, arg2, 1); 10310 } 10311 } 10312 return ret; 10313 #endif 10314 case TARGET_NR_getrusage: 10315 { 10316 struct rusage rusage; 10317 ret = get_errno(getrusage(arg1, &rusage)); 10318 if (!is_error(ret)) { 10319 ret = host_to_target_rusage(arg2, &rusage); 10320 } 10321 } 10322 return ret; 10323 #if defined(TARGET_NR_gettimeofday) 10324 case TARGET_NR_gettimeofday: 10325 { 10326 struct timeval tv; 10327 struct timezone tz; 10328 10329 ret = get_errno(gettimeofday(&tv, &tz)); 10330 if (!is_error(ret)) { 10331 if (arg1 && copy_to_user_timeval(arg1, &tv)) { 10332 return -TARGET_EFAULT; 10333 } 10334 if (arg2 && copy_to_user_timezone(arg2, &tz)) { 10335 return -TARGET_EFAULT; 10336 } 10337 } 10338 } 10339 return ret; 10340 #endif 10341 #if defined(TARGET_NR_settimeofday) 10342 case TARGET_NR_settimeofday: 10343 { 10344 struct timeval tv, *ptv = NULL; 10345 struct timezone tz, *ptz = NULL; 10346 10347 if (arg1) { 10348 if (copy_from_user_timeval(&tv, arg1)) { 10349 return -TARGET_EFAULT; 10350 } 10351 ptv = &tv; 10352 } 10353 10354 if (arg2) { 10355 if (copy_from_user_timezone(&tz, arg2)) { 10356 return -TARGET_EFAULT; 10357 } 10358 ptz = &tz; 10359 } 10360 10361 return get_errno(settimeofday(ptv, ptz)); 10362 } 10363 #endif 10364 #if defined(TARGET_NR_select) 10365 case TARGET_NR_select: 10366 #if defined(TARGET_WANT_NI_OLD_SELECT) 10367 /* some architectures used to have old_select here 10368 * but now ENOSYS it. 10369 */ 10370 ret = -TARGET_ENOSYS; 10371 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 10372 ret = do_old_select(arg1); 10373 #else 10374 ret = do_select(arg1, arg2, arg3, arg4, arg5); 10375 #endif 10376 return ret; 10377 #endif 10378 #ifdef TARGET_NR_pselect6 10379 case TARGET_NR_pselect6: 10380 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false); 10381 #endif 10382 #ifdef TARGET_NR_pselect6_time64 10383 case TARGET_NR_pselect6_time64: 10384 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true); 10385 #endif 10386 #ifdef TARGET_NR_symlink 10387 case TARGET_NR_symlink: 10388 { 10389 void *p2; 10390 p = lock_user_string(arg1); 10391 p2 = lock_user_string(arg2); 10392 if (!p || !p2) 10393 ret = -TARGET_EFAULT; 10394 else 10395 ret = get_errno(symlink(p, p2)); 10396 unlock_user(p2, arg2, 0); 10397 unlock_user(p, arg1, 0); 10398 } 10399 return ret; 10400 #endif 10401 #if defined(TARGET_NR_symlinkat) 10402 case TARGET_NR_symlinkat: 10403 { 10404 void *p2; 10405 p = lock_user_string(arg1); 10406 p2 = lock_user_string(arg3); 10407 if (!p || !p2) 10408 ret = -TARGET_EFAULT; 10409 else 10410 ret = get_errno(symlinkat(p, arg2, p2)); 10411 unlock_user(p2, arg3, 0); 10412 unlock_user(p, arg1, 0); 10413 } 10414 return ret; 10415 #endif 10416 #ifdef TARGET_NR_readlink 10417 case TARGET_NR_readlink: 10418 { 10419 void *p2; 10420 p = lock_user_string(arg1); 10421 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10422 ret = get_errno(do_guest_readlink(p, p2, arg3)); 10423 unlock_user(p2, arg2, ret); 10424 unlock_user(p, arg1, 0); 10425 } 10426 return ret; 10427 #endif 10428 #if defined(TARGET_NR_readlinkat) 10429 case TARGET_NR_readlinkat: 10430 { 10431 void *p2; 10432 p = lock_user_string(arg2); 10433 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 10434 if (!p || !p2) { 10435 ret = -TARGET_EFAULT; 10436 } else if (!arg4) { 10437 /* Short circuit this for the magic exe check. */ 10438 ret = -TARGET_EINVAL; 10439 } else if (is_proc_myself((const char *)p, "exe")) { 10440 /* 10441 * Don't worry about sign mismatch as earlier mapping 10442 * logic would have thrown a bad address error. 10443 */ 10444 ret = MIN(strlen(exec_path), arg4); 10445 /* We cannot NUL terminate the string. */ 10446 memcpy(p2, exec_path, ret); 10447 } else { 10448 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 10449 } 10450 unlock_user(p2, arg3, ret); 10451 unlock_user(p, arg2, 0); 10452 } 10453 return ret; 10454 #endif 10455 #ifdef TARGET_NR_swapon 10456 case TARGET_NR_swapon: 10457 if (!(p = lock_user_string(arg1))) 10458 return -TARGET_EFAULT; 10459 ret = get_errno(swapon(p, arg2)); 10460 unlock_user(p, arg1, 0); 10461 return ret; 10462 #endif 10463 case TARGET_NR_reboot: 10464 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 10465 /* arg4 must be ignored in all other cases */ 10466 p = lock_user_string(arg4); 10467 if (!p) { 10468 return -TARGET_EFAULT; 10469 } 10470 ret = get_errno(reboot(arg1, arg2, arg3, p)); 10471 unlock_user(p, arg4, 0); 10472 } else { 10473 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 10474 } 10475 return ret; 10476 #ifdef TARGET_NR_mmap 10477 case TARGET_NR_mmap: 10478 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 10479 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 10480 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 10481 || defined(TARGET_S390X) 10482 { 10483 abi_ulong *v; 10484 abi_ulong v1, v2, v3, v4, v5, v6; 10485 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 10486 return -TARGET_EFAULT; 10487 v1 = tswapal(v[0]); 10488 v2 = tswapal(v[1]); 10489 v3 = tswapal(v[2]); 10490 v4 = tswapal(v[3]); 10491 v5 = tswapal(v[4]); 10492 v6 = tswapal(v[5]); 10493 unlock_user(v, arg1, 0); 10494 return do_mmap(v1, v2, v3, v4, v5, v6); 10495 } 10496 #else 10497 /* mmap pointers are always untagged */ 10498 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6); 10499 #endif 10500 #endif 10501 #ifdef TARGET_NR_mmap2 10502 case TARGET_NR_mmap2: 10503 #ifndef MMAP_SHIFT 10504 #define MMAP_SHIFT 12 10505 #endif 10506 return do_mmap(arg1, arg2, arg3, arg4, arg5, 10507 (off_t)(abi_ulong)arg6 << MMAP_SHIFT); 10508 #endif 10509 case TARGET_NR_munmap: 10510 arg1 = cpu_untagged_addr(cpu, arg1); 10511 return get_errno(target_munmap(arg1, arg2)); 10512 case TARGET_NR_mprotect: 10513 arg1 = cpu_untagged_addr(cpu, arg1); 10514 { 10515 TaskState *ts = get_task_state(cpu); 10516 /* Special hack to detect libc making the stack executable. */ 10517 if ((arg3 & PROT_GROWSDOWN) 10518 && arg1 >= ts->info->stack_limit 10519 && arg1 <= ts->info->start_stack) { 10520 arg3 &= ~PROT_GROWSDOWN; 10521 arg2 = arg2 + arg1 - ts->info->stack_limit; 10522 arg1 = ts->info->stack_limit; 10523 } 10524 } 10525 return get_errno(target_mprotect(arg1, arg2, arg3)); 10526 #ifdef TARGET_NR_mremap 10527 case TARGET_NR_mremap: 10528 arg1 = cpu_untagged_addr(cpu, arg1); 10529 /* mremap new_addr (arg5) is always untagged */ 10530 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 10531 #endif 10532 /* ??? msync/mlock/munlock are broken for softmmu. */ 10533 #ifdef TARGET_NR_msync 10534 case TARGET_NR_msync: 10535 return get_errno(msync(g2h(cpu, arg1), arg2, 10536 target_to_host_msync_arg(arg3))); 10537 #endif 10538 #ifdef TARGET_NR_mlock 10539 case TARGET_NR_mlock: 10540 return get_errno(mlock(g2h(cpu, arg1), arg2)); 10541 #endif 10542 #ifdef TARGET_NR_munlock 10543 case TARGET_NR_munlock: 10544 return get_errno(munlock(g2h(cpu, arg1), arg2)); 10545 #endif 10546 #ifdef TARGET_NR_mlockall 10547 case TARGET_NR_mlockall: 10548 return get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 10549 #endif 10550 #ifdef TARGET_NR_munlockall 10551 case TARGET_NR_munlockall: 10552 return get_errno(munlockall()); 10553 #endif 10554 #ifdef TARGET_NR_truncate 10555 case TARGET_NR_truncate: 10556 if (!(p = lock_user_string(arg1))) 10557 return -TARGET_EFAULT; 10558 ret = get_errno(truncate(p, arg2)); 10559 unlock_user(p, arg1, 0); 10560 return ret; 10561 #endif 10562 #ifdef TARGET_NR_ftruncate 10563 case TARGET_NR_ftruncate: 10564 return get_errno(ftruncate(arg1, arg2)); 10565 #endif 10566 case TARGET_NR_fchmod: 10567 return get_errno(fchmod(arg1, arg2)); 10568 #if defined(TARGET_NR_fchmodat) 10569 case TARGET_NR_fchmodat: 10570 if (!(p = lock_user_string(arg2))) 10571 return -TARGET_EFAULT; 10572 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 10573 unlock_user(p, arg2, 0); 10574 return ret; 10575 #endif 10576 case TARGET_NR_getpriority: 10577 /* Note that negative values are valid for getpriority, so we must 10578 differentiate based on errno settings. */ 10579 errno = 0; 10580 ret = getpriority(arg1, arg2); 10581 if (ret == -1 && errno != 0) { 10582 return -host_to_target_errno(errno); 10583 } 10584 #ifdef TARGET_ALPHA 10585 /* Return value is the unbiased priority. Signal no error. */ 10586 cpu_env->ir[IR_V0] = 0; 10587 #else 10588 /* Return value is a biased priority to avoid negative numbers. */ 10589 ret = 20 - ret; 10590 #endif 10591 return ret; 10592 case TARGET_NR_setpriority: 10593 return get_errno(setpriority(arg1, arg2, arg3)); 10594 #ifdef TARGET_NR_statfs 10595 case TARGET_NR_statfs: 10596 if (!(p = lock_user_string(arg1))) { 10597 return -TARGET_EFAULT; 10598 } 10599 ret = get_errno(statfs(path(p), &stfs)); 10600 unlock_user(p, arg1, 0); 10601 convert_statfs: 10602 if (!is_error(ret)) { 10603 struct target_statfs *target_stfs; 10604 10605 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 10606 return -TARGET_EFAULT; 10607 __put_user(stfs.f_type, &target_stfs->f_type); 10608 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10609 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10610 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10611 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10612 __put_user(stfs.f_files, &target_stfs->f_files); 10613 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10614 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10615 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10616 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10617 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10618 #ifdef _STATFS_F_FLAGS 10619 __put_user(stfs.f_flags, &target_stfs->f_flags); 10620 #else 10621 __put_user(0, &target_stfs->f_flags); 10622 #endif 10623 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10624 unlock_user_struct(target_stfs, arg2, 1); 10625 } 10626 return ret; 10627 #endif 10628 #ifdef TARGET_NR_fstatfs 10629 case TARGET_NR_fstatfs: 10630 ret = get_errno(fstatfs(arg1, &stfs)); 10631 goto convert_statfs; 10632 #endif 10633 #ifdef TARGET_NR_statfs64 10634 case TARGET_NR_statfs64: 10635 if (!(p = lock_user_string(arg1))) { 10636 return -TARGET_EFAULT; 10637 } 10638 ret = get_errno(statfs(path(p), &stfs)); 10639 unlock_user(p, arg1, 0); 10640 convert_statfs64: 10641 if (!is_error(ret)) { 10642 struct target_statfs64 *target_stfs; 10643 10644 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 10645 return -TARGET_EFAULT; 10646 __put_user(stfs.f_type, &target_stfs->f_type); 10647 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10648 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10649 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10650 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10651 __put_user(stfs.f_files, &target_stfs->f_files); 10652 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10653 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10654 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10655 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10656 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10657 #ifdef _STATFS_F_FLAGS 10658 __put_user(stfs.f_flags, &target_stfs->f_flags); 10659 #else 10660 __put_user(0, &target_stfs->f_flags); 10661 #endif 10662 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10663 unlock_user_struct(target_stfs, arg3, 1); 10664 } 10665 return ret; 10666 case TARGET_NR_fstatfs64: 10667 ret = get_errno(fstatfs(arg1, &stfs)); 10668 goto convert_statfs64; 10669 #endif 10670 #ifdef TARGET_NR_socketcall 10671 case TARGET_NR_socketcall: 10672 return do_socketcall(arg1, arg2); 10673 #endif 10674 #ifdef TARGET_NR_accept 10675 case TARGET_NR_accept: 10676 return do_accept4(arg1, arg2, arg3, 0); 10677 #endif 10678 #ifdef TARGET_NR_accept4 10679 case TARGET_NR_accept4: 10680 return do_accept4(arg1, arg2, arg3, arg4); 10681 #endif 10682 #ifdef TARGET_NR_bind 10683 case TARGET_NR_bind: 10684 return do_bind(arg1, arg2, arg3); 10685 #endif 10686 #ifdef TARGET_NR_connect 10687 case TARGET_NR_connect: 10688 return do_connect(arg1, arg2, arg3); 10689 #endif 10690 #ifdef TARGET_NR_getpeername 10691 case TARGET_NR_getpeername: 10692 return do_getpeername(arg1, arg2, arg3); 10693 #endif 10694 #ifdef TARGET_NR_getsockname 10695 case TARGET_NR_getsockname: 10696 return do_getsockname(arg1, arg2, arg3); 10697 #endif 10698 #ifdef TARGET_NR_getsockopt 10699 case TARGET_NR_getsockopt: 10700 return do_getsockopt(arg1, arg2, arg3, arg4, arg5); 10701 #endif 10702 #ifdef TARGET_NR_listen 10703 case TARGET_NR_listen: 10704 return get_errno(listen(arg1, arg2)); 10705 #endif 10706 #ifdef TARGET_NR_recv 10707 case TARGET_NR_recv: 10708 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 10709 #endif 10710 #ifdef TARGET_NR_recvfrom 10711 case TARGET_NR_recvfrom: 10712 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 10713 #endif 10714 #ifdef TARGET_NR_recvmsg 10715 case TARGET_NR_recvmsg: 10716 return do_sendrecvmsg(arg1, arg2, arg3, 0); 10717 #endif 10718 #ifdef TARGET_NR_send 10719 case TARGET_NR_send: 10720 return do_sendto(arg1, arg2, arg3, arg4, 0, 0); 10721 #endif 10722 #ifdef TARGET_NR_sendmsg 10723 case TARGET_NR_sendmsg: 10724 return do_sendrecvmsg(arg1, arg2, arg3, 1); 10725 #endif 10726 #ifdef TARGET_NR_sendmmsg 10727 case TARGET_NR_sendmmsg: 10728 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 10729 #endif 10730 #ifdef TARGET_NR_recvmmsg 10731 case TARGET_NR_recvmmsg: 10732 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 10733 #endif 10734 #ifdef TARGET_NR_sendto 10735 case TARGET_NR_sendto: 10736 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 10737 #endif 10738 #ifdef TARGET_NR_shutdown 10739 case TARGET_NR_shutdown: 10740 return get_errno(shutdown(arg1, arg2)); 10741 #endif 10742 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 10743 case TARGET_NR_getrandom: 10744 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 10745 if (!p) { 10746 return -TARGET_EFAULT; 10747 } 10748 ret = get_errno(getrandom(p, arg2, arg3)); 10749 unlock_user(p, arg1, ret); 10750 return ret; 10751 #endif 10752 #ifdef TARGET_NR_socket 10753 case TARGET_NR_socket: 10754 return do_socket(arg1, arg2, arg3); 10755 #endif 10756 #ifdef TARGET_NR_socketpair 10757 case TARGET_NR_socketpair: 10758 return do_socketpair(arg1, arg2, arg3, arg4); 10759 #endif 10760 #ifdef TARGET_NR_setsockopt 10761 case TARGET_NR_setsockopt: 10762 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 10763 #endif 10764 #if defined(TARGET_NR_syslog) 10765 case TARGET_NR_syslog: 10766 { 10767 int len = arg2; 10768 10769 switch (arg1) { 10770 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 10771 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 10772 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 10773 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 10774 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 10775 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 10776 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 10777 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 10778 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 10779 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 10780 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 10781 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 10782 { 10783 if (len < 0) { 10784 return -TARGET_EINVAL; 10785 } 10786 if (len == 0) { 10787 return 0; 10788 } 10789 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10790 if (!p) { 10791 return -TARGET_EFAULT; 10792 } 10793 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 10794 unlock_user(p, arg2, arg3); 10795 } 10796 return ret; 10797 default: 10798 return -TARGET_EINVAL; 10799 } 10800 } 10801 break; 10802 #endif 10803 case TARGET_NR_setitimer: 10804 { 10805 struct itimerval value, ovalue, *pvalue; 10806 10807 if (arg2) { 10808 pvalue = &value; 10809 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 10810 || copy_from_user_timeval(&pvalue->it_value, 10811 arg2 + sizeof(struct target_timeval))) 10812 return -TARGET_EFAULT; 10813 } else { 10814 pvalue = NULL; 10815 } 10816 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 10817 if (!is_error(ret) && arg3) { 10818 if (copy_to_user_timeval(arg3, 10819 &ovalue.it_interval) 10820 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 10821 &ovalue.it_value)) 10822 return -TARGET_EFAULT; 10823 } 10824 } 10825 return ret; 10826 case TARGET_NR_getitimer: 10827 { 10828 struct itimerval value; 10829 10830 ret = get_errno(getitimer(arg1, &value)); 10831 if (!is_error(ret) && arg2) { 10832 if (copy_to_user_timeval(arg2, 10833 &value.it_interval) 10834 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 10835 &value.it_value)) 10836 return -TARGET_EFAULT; 10837 } 10838 } 10839 return ret; 10840 #ifdef TARGET_NR_stat 10841 case TARGET_NR_stat: 10842 if (!(p = lock_user_string(arg1))) { 10843 return -TARGET_EFAULT; 10844 } 10845 ret = get_errno(stat(path(p), &st)); 10846 unlock_user(p, arg1, 0); 10847 goto do_stat; 10848 #endif 10849 #ifdef TARGET_NR_lstat 10850 case TARGET_NR_lstat: 10851 if (!(p = lock_user_string(arg1))) { 10852 return -TARGET_EFAULT; 10853 } 10854 ret = get_errno(lstat(path(p), &st)); 10855 unlock_user(p, arg1, 0); 10856 goto do_stat; 10857 #endif 10858 #ifdef TARGET_NR_fstat 10859 case TARGET_NR_fstat: 10860 { 10861 ret = get_errno(fstat(arg1, &st)); 10862 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 10863 do_stat: 10864 #endif 10865 if (!is_error(ret)) { 10866 struct target_stat *target_st; 10867 10868 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 10869 return -TARGET_EFAULT; 10870 memset(target_st, 0, sizeof(*target_st)); 10871 __put_user(st.st_dev, &target_st->st_dev); 10872 __put_user(st.st_ino, &target_st->st_ino); 10873 __put_user(st.st_mode, &target_st->st_mode); 10874 __put_user(st.st_uid, &target_st->st_uid); 10875 __put_user(st.st_gid, &target_st->st_gid); 10876 __put_user(st.st_nlink, &target_st->st_nlink); 10877 __put_user(st.st_rdev, &target_st->st_rdev); 10878 __put_user(st.st_size, &target_st->st_size); 10879 __put_user(st.st_blksize, &target_st->st_blksize); 10880 __put_user(st.st_blocks, &target_st->st_blocks); 10881 __put_user(st.st_atime, &target_st->target_st_atime); 10882 __put_user(st.st_mtime, &target_st->target_st_mtime); 10883 __put_user(st.st_ctime, &target_st->target_st_ctime); 10884 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC) 10885 __put_user(st.st_atim.tv_nsec, 10886 &target_st->target_st_atime_nsec); 10887 __put_user(st.st_mtim.tv_nsec, 10888 &target_st->target_st_mtime_nsec); 10889 __put_user(st.st_ctim.tv_nsec, 10890 &target_st->target_st_ctime_nsec); 10891 #endif 10892 unlock_user_struct(target_st, arg2, 1); 10893 } 10894 } 10895 return ret; 10896 #endif 10897 case TARGET_NR_vhangup: 10898 return get_errno(vhangup()); 10899 #ifdef TARGET_NR_syscall 10900 case TARGET_NR_syscall: 10901 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 10902 arg6, arg7, arg8, 0); 10903 #endif 10904 #if defined(TARGET_NR_wait4) 10905 case TARGET_NR_wait4: 10906 { 10907 int status; 10908 abi_long status_ptr = arg2; 10909 struct rusage rusage, *rusage_ptr; 10910 abi_ulong target_rusage = arg4; 10911 abi_long rusage_err; 10912 if (target_rusage) 10913 rusage_ptr = &rusage; 10914 else 10915 rusage_ptr = NULL; 10916 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 10917 if (!is_error(ret)) { 10918 if (status_ptr && ret) { 10919 status = host_to_target_waitstatus(status); 10920 if (put_user_s32(status, status_ptr)) 10921 return -TARGET_EFAULT; 10922 } 10923 if (target_rusage) { 10924 rusage_err = host_to_target_rusage(target_rusage, &rusage); 10925 if (rusage_err) { 10926 ret = rusage_err; 10927 } 10928 } 10929 } 10930 } 10931 return ret; 10932 #endif 10933 #ifdef TARGET_NR_swapoff 10934 case TARGET_NR_swapoff: 10935 if (!(p = lock_user_string(arg1))) 10936 return -TARGET_EFAULT; 10937 ret = get_errno(swapoff(p)); 10938 unlock_user(p, arg1, 0); 10939 return ret; 10940 #endif 10941 case TARGET_NR_sysinfo: 10942 { 10943 struct target_sysinfo *target_value; 10944 struct sysinfo value; 10945 ret = get_errno(sysinfo(&value)); 10946 if (!is_error(ret) && arg1) 10947 { 10948 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 10949 return -TARGET_EFAULT; 10950 __put_user(value.uptime, &target_value->uptime); 10951 __put_user(value.loads[0], &target_value->loads[0]); 10952 __put_user(value.loads[1], &target_value->loads[1]); 10953 __put_user(value.loads[2], &target_value->loads[2]); 10954 __put_user(value.totalram, &target_value->totalram); 10955 __put_user(value.freeram, &target_value->freeram); 10956 __put_user(value.sharedram, &target_value->sharedram); 10957 __put_user(value.bufferram, &target_value->bufferram); 10958 __put_user(value.totalswap, &target_value->totalswap); 10959 __put_user(value.freeswap, &target_value->freeswap); 10960 __put_user(value.procs, &target_value->procs); 10961 __put_user(value.totalhigh, &target_value->totalhigh); 10962 __put_user(value.freehigh, &target_value->freehigh); 10963 __put_user(value.mem_unit, &target_value->mem_unit); 10964 unlock_user_struct(target_value, arg1, 1); 10965 } 10966 } 10967 return ret; 10968 #ifdef TARGET_NR_ipc 10969 case TARGET_NR_ipc: 10970 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 10971 #endif 10972 #ifdef TARGET_NR_semget 10973 case TARGET_NR_semget: 10974 return get_errno(semget(arg1, arg2, arg3)); 10975 #endif 10976 #ifdef TARGET_NR_semop 10977 case TARGET_NR_semop: 10978 return do_semtimedop(arg1, arg2, arg3, 0, false); 10979 #endif 10980 #ifdef TARGET_NR_semtimedop 10981 case TARGET_NR_semtimedop: 10982 return do_semtimedop(arg1, arg2, arg3, arg4, false); 10983 #endif 10984 #ifdef TARGET_NR_semtimedop_time64 10985 case TARGET_NR_semtimedop_time64: 10986 return do_semtimedop(arg1, arg2, arg3, arg4, true); 10987 #endif 10988 #ifdef TARGET_NR_semctl 10989 case TARGET_NR_semctl: 10990 return do_semctl(arg1, arg2, arg3, arg4); 10991 #endif 10992 #ifdef TARGET_NR_msgctl 10993 case TARGET_NR_msgctl: 10994 return do_msgctl(arg1, arg2, arg3); 10995 #endif 10996 #ifdef TARGET_NR_msgget 10997 case TARGET_NR_msgget: 10998 return get_errno(msgget(arg1, arg2)); 10999 #endif 11000 #ifdef TARGET_NR_msgrcv 11001 case TARGET_NR_msgrcv: 11002 return do_msgrcv(arg1, arg2, arg3, arg4, arg5); 11003 #endif 11004 #ifdef TARGET_NR_msgsnd 11005 case TARGET_NR_msgsnd: 11006 return do_msgsnd(arg1, arg2, arg3, arg4); 11007 #endif 11008 #ifdef TARGET_NR_shmget 11009 case TARGET_NR_shmget: 11010 return get_errno(shmget(arg1, arg2, arg3)); 11011 #endif 11012 #ifdef TARGET_NR_shmctl 11013 case TARGET_NR_shmctl: 11014 return do_shmctl(arg1, arg2, arg3); 11015 #endif 11016 #ifdef TARGET_NR_shmat 11017 case TARGET_NR_shmat: 11018 return target_shmat(cpu_env, arg1, arg2, arg3); 11019 #endif 11020 #ifdef TARGET_NR_shmdt 11021 case TARGET_NR_shmdt: 11022 return target_shmdt(arg1); 11023 #endif 11024 case TARGET_NR_fsync: 11025 return get_errno(fsync(arg1)); 11026 case TARGET_NR_clone: 11027 /* Linux manages to have three different orderings for its 11028 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 11029 * match the kernel's CONFIG_CLONE_* settings. 11030 * Microblaze is further special in that it uses a sixth 11031 * implicit argument to clone for the TLS pointer. 11032 */ 11033 #if defined(TARGET_MICROBLAZE) 11034 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 11035 #elif defined(TARGET_CLONE_BACKWARDS) 11036 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 11037 #elif defined(TARGET_CLONE_BACKWARDS2) 11038 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 11039 #else 11040 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 11041 #endif 11042 return ret; 11043 #ifdef __NR_exit_group 11044 /* new thread calls */ 11045 case TARGET_NR_exit_group: 11046 preexit_cleanup(cpu_env, arg1); 11047 return get_errno(exit_group(arg1)); 11048 #endif 11049 case TARGET_NR_setdomainname: 11050 if (!(p = lock_user_string(arg1))) 11051 return -TARGET_EFAULT; 11052 ret = get_errno(setdomainname(p, arg2)); 11053 unlock_user(p, arg1, 0); 11054 return ret; 11055 case TARGET_NR_uname: 11056 /* no need to transcode because we use the linux syscall */ 11057 { 11058 struct new_utsname * buf; 11059 11060 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 11061 return -TARGET_EFAULT; 11062 ret = get_errno(sys_uname(buf)); 11063 if (!is_error(ret)) { 11064 /* Overwrite the native machine name with whatever is being 11065 emulated. */ 11066 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env), 11067 sizeof(buf->machine)); 11068 /* Allow the user to override the reported release. */ 11069 if (qemu_uname_release && *qemu_uname_release) { 11070 g_strlcpy(buf->release, qemu_uname_release, 11071 sizeof(buf->release)); 11072 } 11073 } 11074 unlock_user_struct(buf, arg1, 1); 11075 } 11076 return ret; 11077 #ifdef TARGET_I386 11078 case TARGET_NR_modify_ldt: 11079 return do_modify_ldt(cpu_env, arg1, arg2, arg3); 11080 #if !defined(TARGET_X86_64) 11081 case TARGET_NR_vm86: 11082 return do_vm86(cpu_env, arg1, arg2); 11083 #endif 11084 #endif 11085 #if defined(TARGET_NR_adjtimex) 11086 case TARGET_NR_adjtimex: 11087 { 11088 struct timex host_buf; 11089 11090 if (target_to_host_timex(&host_buf, arg1) != 0) { 11091 return -TARGET_EFAULT; 11092 } 11093 ret = get_errno(adjtimex(&host_buf)); 11094 if (!is_error(ret)) { 11095 if (host_to_target_timex(arg1, &host_buf) != 0) { 11096 return -TARGET_EFAULT; 11097 } 11098 } 11099 } 11100 return ret; 11101 #endif 11102 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 11103 case TARGET_NR_clock_adjtime: 11104 { 11105 struct timex htx; 11106 11107 if (target_to_host_timex(&htx, arg2) != 0) { 11108 return -TARGET_EFAULT; 11109 } 11110 ret = get_errno(clock_adjtime(arg1, &htx)); 11111 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) { 11112 return -TARGET_EFAULT; 11113 } 11114 } 11115 return ret; 11116 #endif 11117 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 11118 case TARGET_NR_clock_adjtime64: 11119 { 11120 struct timex htx; 11121 11122 if (target_to_host_timex64(&htx, arg2) != 0) { 11123 return -TARGET_EFAULT; 11124 } 11125 ret = get_errno(clock_adjtime(arg1, &htx)); 11126 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) { 11127 return -TARGET_EFAULT; 11128 } 11129 } 11130 return ret; 11131 #endif 11132 case TARGET_NR_getpgid: 11133 return get_errno(getpgid(arg1)); 11134 case TARGET_NR_fchdir: 11135 return get_errno(fchdir(arg1)); 11136 case TARGET_NR_personality: 11137 return get_errno(personality(arg1)); 11138 #ifdef TARGET_NR__llseek /* Not on alpha */ 11139 case TARGET_NR__llseek: 11140 { 11141 int64_t res; 11142 #if !defined(__NR_llseek) 11143 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 11144 if (res == -1) { 11145 ret = get_errno(res); 11146 } else { 11147 ret = 0; 11148 } 11149 #else 11150 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 11151 #endif 11152 if ((ret == 0) && put_user_s64(res, arg4)) { 11153 return -TARGET_EFAULT; 11154 } 11155 } 11156 return ret; 11157 #endif 11158 #ifdef TARGET_NR_getdents 11159 case TARGET_NR_getdents: 11160 return do_getdents(arg1, arg2, arg3); 11161 #endif /* TARGET_NR_getdents */ 11162 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 11163 case TARGET_NR_getdents64: 11164 return do_getdents64(arg1, arg2, arg3); 11165 #endif /* TARGET_NR_getdents64 */ 11166 #if defined(TARGET_NR__newselect) 11167 case TARGET_NR__newselect: 11168 return do_select(arg1, arg2, arg3, arg4, arg5); 11169 #endif 11170 #ifdef TARGET_NR_poll 11171 case TARGET_NR_poll: 11172 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false); 11173 #endif 11174 #ifdef TARGET_NR_ppoll 11175 case TARGET_NR_ppoll: 11176 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false); 11177 #endif 11178 #ifdef TARGET_NR_ppoll_time64 11179 case TARGET_NR_ppoll_time64: 11180 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true); 11181 #endif 11182 case TARGET_NR_flock: 11183 /* NOTE: the flock constant seems to be the same for every 11184 Linux platform */ 11185 return get_errno(safe_flock(arg1, arg2)); 11186 case TARGET_NR_readv: 11187 { 11188 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11189 if (vec != NULL) { 11190 ret = get_errno(safe_readv(arg1, vec, arg3)); 11191 unlock_iovec(vec, arg2, arg3, 1); 11192 } else { 11193 ret = -host_to_target_errno(errno); 11194 } 11195 } 11196 return ret; 11197 case TARGET_NR_writev: 11198 { 11199 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11200 if (vec != NULL) { 11201 ret = get_errno(safe_writev(arg1, vec, arg3)); 11202 unlock_iovec(vec, arg2, arg3, 0); 11203 } else { 11204 ret = -host_to_target_errno(errno); 11205 } 11206 } 11207 return ret; 11208 #if defined(TARGET_NR_preadv) 11209 case TARGET_NR_preadv: 11210 { 11211 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11212 if (vec != NULL) { 11213 unsigned long low, high; 11214 11215 target_to_host_low_high(arg4, arg5, &low, &high); 11216 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high)); 11217 unlock_iovec(vec, arg2, arg3, 1); 11218 } else { 11219 ret = -host_to_target_errno(errno); 11220 } 11221 } 11222 return ret; 11223 #endif 11224 #if defined(TARGET_NR_pwritev) 11225 case TARGET_NR_pwritev: 11226 { 11227 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11228 if (vec != NULL) { 11229 unsigned long low, high; 11230 11231 target_to_host_low_high(arg4, arg5, &low, &high); 11232 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high)); 11233 unlock_iovec(vec, arg2, arg3, 0); 11234 } else { 11235 ret = -host_to_target_errno(errno); 11236 } 11237 } 11238 return ret; 11239 #endif 11240 case TARGET_NR_getsid: 11241 return get_errno(getsid(arg1)); 11242 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 11243 case TARGET_NR_fdatasync: 11244 return get_errno(fdatasync(arg1)); 11245 #endif 11246 case TARGET_NR_sched_getaffinity: 11247 { 11248 unsigned int mask_size; 11249 unsigned long *mask; 11250 11251 /* 11252 * sched_getaffinity needs multiples of ulong, so need to take 11253 * care of mismatches between target ulong and host ulong sizes. 11254 */ 11255 if (arg2 & (sizeof(abi_ulong) - 1)) { 11256 return -TARGET_EINVAL; 11257 } 11258 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11259 11260 mask = alloca(mask_size); 11261 memset(mask, 0, mask_size); 11262 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 11263 11264 if (!is_error(ret)) { 11265 if (ret > arg2) { 11266 /* More data returned than the caller's buffer will fit. 11267 * This only happens if sizeof(abi_long) < sizeof(long) 11268 * and the caller passed us a buffer holding an odd number 11269 * of abi_longs. If the host kernel is actually using the 11270 * extra 4 bytes then fail EINVAL; otherwise we can just 11271 * ignore them and only copy the interesting part. 11272 */ 11273 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 11274 if (numcpus > arg2 * 8) { 11275 return -TARGET_EINVAL; 11276 } 11277 ret = arg2; 11278 } 11279 11280 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 11281 return -TARGET_EFAULT; 11282 } 11283 } 11284 } 11285 return ret; 11286 case TARGET_NR_sched_setaffinity: 11287 { 11288 unsigned int mask_size; 11289 unsigned long *mask; 11290 11291 /* 11292 * sched_setaffinity needs multiples of ulong, so need to take 11293 * care of mismatches between target ulong and host ulong sizes. 11294 */ 11295 if (arg2 & (sizeof(abi_ulong) - 1)) { 11296 return -TARGET_EINVAL; 11297 } 11298 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11299 mask = alloca(mask_size); 11300 11301 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 11302 if (ret) { 11303 return ret; 11304 } 11305 11306 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 11307 } 11308 case TARGET_NR_getcpu: 11309 { 11310 unsigned cpuid, node; 11311 ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL, 11312 arg2 ? &node : NULL, 11313 NULL)); 11314 if (is_error(ret)) { 11315 return ret; 11316 } 11317 if (arg1 && put_user_u32(cpuid, arg1)) { 11318 return -TARGET_EFAULT; 11319 } 11320 if (arg2 && put_user_u32(node, arg2)) { 11321 return -TARGET_EFAULT; 11322 } 11323 } 11324 return ret; 11325 case TARGET_NR_sched_setparam: 11326 { 11327 struct target_sched_param *target_schp; 11328 struct sched_param schp; 11329 11330 if (arg2 == 0) { 11331 return -TARGET_EINVAL; 11332 } 11333 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) { 11334 return -TARGET_EFAULT; 11335 } 11336 schp.sched_priority = tswap32(target_schp->sched_priority); 11337 unlock_user_struct(target_schp, arg2, 0); 11338 return get_errno(sys_sched_setparam(arg1, &schp)); 11339 } 11340 case TARGET_NR_sched_getparam: 11341 { 11342 struct target_sched_param *target_schp; 11343 struct sched_param schp; 11344 11345 if (arg2 == 0) { 11346 return -TARGET_EINVAL; 11347 } 11348 ret = get_errno(sys_sched_getparam(arg1, &schp)); 11349 if (!is_error(ret)) { 11350 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) { 11351 return -TARGET_EFAULT; 11352 } 11353 target_schp->sched_priority = tswap32(schp.sched_priority); 11354 unlock_user_struct(target_schp, arg2, 1); 11355 } 11356 } 11357 return ret; 11358 case TARGET_NR_sched_setscheduler: 11359 { 11360 struct target_sched_param *target_schp; 11361 struct sched_param schp; 11362 if (arg3 == 0) { 11363 return -TARGET_EINVAL; 11364 } 11365 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) { 11366 return -TARGET_EFAULT; 11367 } 11368 schp.sched_priority = tswap32(target_schp->sched_priority); 11369 unlock_user_struct(target_schp, arg3, 0); 11370 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp)); 11371 } 11372 case TARGET_NR_sched_getscheduler: 11373 return get_errno(sys_sched_getscheduler(arg1)); 11374 case TARGET_NR_sched_getattr: 11375 { 11376 struct target_sched_attr *target_scha; 11377 struct sched_attr scha; 11378 if (arg2 == 0) { 11379 return -TARGET_EINVAL; 11380 } 11381 if (arg3 > sizeof(scha)) { 11382 arg3 = sizeof(scha); 11383 } 11384 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4)); 11385 if (!is_error(ret)) { 11386 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11387 if (!target_scha) { 11388 return -TARGET_EFAULT; 11389 } 11390 target_scha->size = tswap32(scha.size); 11391 target_scha->sched_policy = tswap32(scha.sched_policy); 11392 target_scha->sched_flags = tswap64(scha.sched_flags); 11393 target_scha->sched_nice = tswap32(scha.sched_nice); 11394 target_scha->sched_priority = tswap32(scha.sched_priority); 11395 target_scha->sched_runtime = tswap64(scha.sched_runtime); 11396 target_scha->sched_deadline = tswap64(scha.sched_deadline); 11397 target_scha->sched_period = tswap64(scha.sched_period); 11398 if (scha.size > offsetof(struct sched_attr, sched_util_min)) { 11399 target_scha->sched_util_min = tswap32(scha.sched_util_min); 11400 target_scha->sched_util_max = tswap32(scha.sched_util_max); 11401 } 11402 unlock_user(target_scha, arg2, arg3); 11403 } 11404 return ret; 11405 } 11406 case TARGET_NR_sched_setattr: 11407 { 11408 struct target_sched_attr *target_scha; 11409 struct sched_attr scha; 11410 uint32_t size; 11411 int zeroed; 11412 if (arg2 == 0) { 11413 return -TARGET_EINVAL; 11414 } 11415 if (get_user_u32(size, arg2)) { 11416 return -TARGET_EFAULT; 11417 } 11418 if (!size) { 11419 size = offsetof(struct target_sched_attr, sched_util_min); 11420 } 11421 if (size < offsetof(struct target_sched_attr, sched_util_min)) { 11422 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11423 return -TARGET_EFAULT; 11424 } 11425 return -TARGET_E2BIG; 11426 } 11427 11428 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size); 11429 if (zeroed < 0) { 11430 return zeroed; 11431 } else if (zeroed == 0) { 11432 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11433 return -TARGET_EFAULT; 11434 } 11435 return -TARGET_E2BIG; 11436 } 11437 if (size > sizeof(struct target_sched_attr)) { 11438 size = sizeof(struct target_sched_attr); 11439 } 11440 11441 target_scha = lock_user(VERIFY_READ, arg2, size, 1); 11442 if (!target_scha) { 11443 return -TARGET_EFAULT; 11444 } 11445 scha.size = size; 11446 scha.sched_policy = tswap32(target_scha->sched_policy); 11447 scha.sched_flags = tswap64(target_scha->sched_flags); 11448 scha.sched_nice = tswap32(target_scha->sched_nice); 11449 scha.sched_priority = tswap32(target_scha->sched_priority); 11450 scha.sched_runtime = tswap64(target_scha->sched_runtime); 11451 scha.sched_deadline = tswap64(target_scha->sched_deadline); 11452 scha.sched_period = tswap64(target_scha->sched_period); 11453 if (size > offsetof(struct target_sched_attr, sched_util_min)) { 11454 scha.sched_util_min = tswap32(target_scha->sched_util_min); 11455 scha.sched_util_max = tswap32(target_scha->sched_util_max); 11456 } 11457 unlock_user(target_scha, arg2, 0); 11458 return get_errno(sys_sched_setattr(arg1, &scha, arg3)); 11459 } 11460 case TARGET_NR_sched_yield: 11461 return get_errno(sched_yield()); 11462 case TARGET_NR_sched_get_priority_max: 11463 return get_errno(sched_get_priority_max(arg1)); 11464 case TARGET_NR_sched_get_priority_min: 11465 return get_errno(sched_get_priority_min(arg1)); 11466 #ifdef TARGET_NR_sched_rr_get_interval 11467 case TARGET_NR_sched_rr_get_interval: 11468 { 11469 struct timespec ts; 11470 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11471 if (!is_error(ret)) { 11472 ret = host_to_target_timespec(arg2, &ts); 11473 } 11474 } 11475 return ret; 11476 #endif 11477 #ifdef TARGET_NR_sched_rr_get_interval_time64 11478 case TARGET_NR_sched_rr_get_interval_time64: 11479 { 11480 struct timespec ts; 11481 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11482 if (!is_error(ret)) { 11483 ret = host_to_target_timespec64(arg2, &ts); 11484 } 11485 } 11486 return ret; 11487 #endif 11488 #if defined(TARGET_NR_nanosleep) 11489 case TARGET_NR_nanosleep: 11490 { 11491 struct timespec req, rem; 11492 target_to_host_timespec(&req, arg1); 11493 ret = get_errno(safe_nanosleep(&req, &rem)); 11494 if (is_error(ret) && arg2) { 11495 host_to_target_timespec(arg2, &rem); 11496 } 11497 } 11498 return ret; 11499 #endif 11500 case TARGET_NR_prctl: 11501 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5); 11502 break; 11503 #ifdef TARGET_NR_arch_prctl 11504 case TARGET_NR_arch_prctl: 11505 return do_arch_prctl(cpu_env, arg1, arg2); 11506 #endif 11507 #ifdef TARGET_NR_pread64 11508 case TARGET_NR_pread64: 11509 if (regpairs_aligned(cpu_env, num)) { 11510 arg4 = arg5; 11511 arg5 = arg6; 11512 } 11513 if (arg2 == 0 && arg3 == 0) { 11514 /* Special-case NULL buffer and zero length, which should succeed */ 11515 p = 0; 11516 } else { 11517 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11518 if (!p) { 11519 return -TARGET_EFAULT; 11520 } 11521 } 11522 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 11523 unlock_user(p, arg2, ret); 11524 return ret; 11525 case TARGET_NR_pwrite64: 11526 if (regpairs_aligned(cpu_env, num)) { 11527 arg4 = arg5; 11528 arg5 = arg6; 11529 } 11530 if (arg2 == 0 && arg3 == 0) { 11531 /* Special-case NULL buffer and zero length, which should succeed */ 11532 p = 0; 11533 } else { 11534 p = lock_user(VERIFY_READ, arg2, arg3, 1); 11535 if (!p) { 11536 return -TARGET_EFAULT; 11537 } 11538 } 11539 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 11540 unlock_user(p, arg2, 0); 11541 return ret; 11542 #endif 11543 case TARGET_NR_getcwd: 11544 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 11545 return -TARGET_EFAULT; 11546 ret = get_errno(sys_getcwd1(p, arg2)); 11547 unlock_user(p, arg1, ret); 11548 return ret; 11549 case TARGET_NR_capget: 11550 case TARGET_NR_capset: 11551 { 11552 struct target_user_cap_header *target_header; 11553 struct target_user_cap_data *target_data = NULL; 11554 struct __user_cap_header_struct header; 11555 struct __user_cap_data_struct data[2]; 11556 struct __user_cap_data_struct *dataptr = NULL; 11557 int i, target_datalen; 11558 int data_items = 1; 11559 11560 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 11561 return -TARGET_EFAULT; 11562 } 11563 header.version = tswap32(target_header->version); 11564 header.pid = tswap32(target_header->pid); 11565 11566 if (header.version != _LINUX_CAPABILITY_VERSION) { 11567 /* Version 2 and up takes pointer to two user_data structs */ 11568 data_items = 2; 11569 } 11570 11571 target_datalen = sizeof(*target_data) * data_items; 11572 11573 if (arg2) { 11574 if (num == TARGET_NR_capget) { 11575 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 11576 } else { 11577 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 11578 } 11579 if (!target_data) { 11580 unlock_user_struct(target_header, arg1, 0); 11581 return -TARGET_EFAULT; 11582 } 11583 11584 if (num == TARGET_NR_capset) { 11585 for (i = 0; i < data_items; i++) { 11586 data[i].effective = tswap32(target_data[i].effective); 11587 data[i].permitted = tswap32(target_data[i].permitted); 11588 data[i].inheritable = tswap32(target_data[i].inheritable); 11589 } 11590 } 11591 11592 dataptr = data; 11593 } 11594 11595 if (num == TARGET_NR_capget) { 11596 ret = get_errno(capget(&header, dataptr)); 11597 } else { 11598 ret = get_errno(capset(&header, dataptr)); 11599 } 11600 11601 /* The kernel always updates version for both capget and capset */ 11602 target_header->version = tswap32(header.version); 11603 unlock_user_struct(target_header, arg1, 1); 11604 11605 if (arg2) { 11606 if (num == TARGET_NR_capget) { 11607 for (i = 0; i < data_items; i++) { 11608 target_data[i].effective = tswap32(data[i].effective); 11609 target_data[i].permitted = tswap32(data[i].permitted); 11610 target_data[i].inheritable = tswap32(data[i].inheritable); 11611 } 11612 unlock_user(target_data, arg2, target_datalen); 11613 } else { 11614 unlock_user(target_data, arg2, 0); 11615 } 11616 } 11617 return ret; 11618 } 11619 case TARGET_NR_sigaltstack: 11620 return do_sigaltstack(arg1, arg2, cpu_env); 11621 11622 #ifdef CONFIG_SENDFILE 11623 #ifdef TARGET_NR_sendfile 11624 case TARGET_NR_sendfile: 11625 { 11626 off_t *offp = NULL; 11627 off_t off; 11628 if (arg3) { 11629 ret = get_user_sal(off, arg3); 11630 if (is_error(ret)) { 11631 return ret; 11632 } 11633 offp = &off; 11634 } 11635 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11636 if (!is_error(ret) && arg3) { 11637 abi_long ret2 = put_user_sal(off, arg3); 11638 if (is_error(ret2)) { 11639 ret = ret2; 11640 } 11641 } 11642 return ret; 11643 } 11644 #endif 11645 #ifdef TARGET_NR_sendfile64 11646 case TARGET_NR_sendfile64: 11647 { 11648 off_t *offp = NULL; 11649 off_t off; 11650 if (arg3) { 11651 ret = get_user_s64(off, arg3); 11652 if (is_error(ret)) { 11653 return ret; 11654 } 11655 offp = &off; 11656 } 11657 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11658 if (!is_error(ret) && arg3) { 11659 abi_long ret2 = put_user_s64(off, arg3); 11660 if (is_error(ret2)) { 11661 ret = ret2; 11662 } 11663 } 11664 return ret; 11665 } 11666 #endif 11667 #endif 11668 #ifdef TARGET_NR_vfork 11669 case TARGET_NR_vfork: 11670 return get_errno(do_fork(cpu_env, 11671 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 11672 0, 0, 0, 0)); 11673 #endif 11674 #ifdef TARGET_NR_ugetrlimit 11675 case TARGET_NR_ugetrlimit: 11676 { 11677 struct rlimit rlim; 11678 int resource = target_to_host_resource(arg1); 11679 ret = get_errno(getrlimit(resource, &rlim)); 11680 if (!is_error(ret)) { 11681 struct target_rlimit *target_rlim; 11682 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 11683 return -TARGET_EFAULT; 11684 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 11685 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 11686 unlock_user_struct(target_rlim, arg2, 1); 11687 } 11688 return ret; 11689 } 11690 #endif 11691 #ifdef TARGET_NR_truncate64 11692 case TARGET_NR_truncate64: 11693 if (!(p = lock_user_string(arg1))) 11694 return -TARGET_EFAULT; 11695 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 11696 unlock_user(p, arg1, 0); 11697 return ret; 11698 #endif 11699 #ifdef TARGET_NR_ftruncate64 11700 case TARGET_NR_ftruncate64: 11701 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 11702 #endif 11703 #ifdef TARGET_NR_stat64 11704 case TARGET_NR_stat64: 11705 if (!(p = lock_user_string(arg1))) { 11706 return -TARGET_EFAULT; 11707 } 11708 ret = get_errno(stat(path(p), &st)); 11709 unlock_user(p, arg1, 0); 11710 if (!is_error(ret)) 11711 ret = host_to_target_stat64(cpu_env, arg2, &st); 11712 return ret; 11713 #endif 11714 #ifdef TARGET_NR_lstat64 11715 case TARGET_NR_lstat64: 11716 if (!(p = lock_user_string(arg1))) { 11717 return -TARGET_EFAULT; 11718 } 11719 ret = get_errno(lstat(path(p), &st)); 11720 unlock_user(p, arg1, 0); 11721 if (!is_error(ret)) 11722 ret = host_to_target_stat64(cpu_env, arg2, &st); 11723 return ret; 11724 #endif 11725 #ifdef TARGET_NR_fstat64 11726 case TARGET_NR_fstat64: 11727 ret = get_errno(fstat(arg1, &st)); 11728 if (!is_error(ret)) 11729 ret = host_to_target_stat64(cpu_env, arg2, &st); 11730 return ret; 11731 #endif 11732 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 11733 #ifdef TARGET_NR_fstatat64 11734 case TARGET_NR_fstatat64: 11735 #endif 11736 #ifdef TARGET_NR_newfstatat 11737 case TARGET_NR_newfstatat: 11738 #endif 11739 if (!(p = lock_user_string(arg2))) { 11740 return -TARGET_EFAULT; 11741 } 11742 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 11743 unlock_user(p, arg2, 0); 11744 if (!is_error(ret)) 11745 ret = host_to_target_stat64(cpu_env, arg3, &st); 11746 return ret; 11747 #endif 11748 #if defined(TARGET_NR_statx) 11749 case TARGET_NR_statx: 11750 { 11751 struct target_statx *target_stx; 11752 int dirfd = arg1; 11753 int flags = arg3; 11754 11755 p = lock_user_string(arg2); 11756 if (p == NULL) { 11757 return -TARGET_EFAULT; 11758 } 11759 #if defined(__NR_statx) 11760 { 11761 /* 11762 * It is assumed that struct statx is architecture independent. 11763 */ 11764 struct target_statx host_stx; 11765 int mask = arg4; 11766 11767 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx)); 11768 if (!is_error(ret)) { 11769 if (host_to_target_statx(&host_stx, arg5) != 0) { 11770 unlock_user(p, arg2, 0); 11771 return -TARGET_EFAULT; 11772 } 11773 } 11774 11775 if (ret != -TARGET_ENOSYS) { 11776 unlock_user(p, arg2, 0); 11777 return ret; 11778 } 11779 } 11780 #endif 11781 ret = get_errno(fstatat(dirfd, path(p), &st, flags)); 11782 unlock_user(p, arg2, 0); 11783 11784 if (!is_error(ret)) { 11785 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) { 11786 return -TARGET_EFAULT; 11787 } 11788 memset(target_stx, 0, sizeof(*target_stx)); 11789 __put_user(major(st.st_dev), &target_stx->stx_dev_major); 11790 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor); 11791 __put_user(st.st_ino, &target_stx->stx_ino); 11792 __put_user(st.st_mode, &target_stx->stx_mode); 11793 __put_user(st.st_uid, &target_stx->stx_uid); 11794 __put_user(st.st_gid, &target_stx->stx_gid); 11795 __put_user(st.st_nlink, &target_stx->stx_nlink); 11796 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major); 11797 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor); 11798 __put_user(st.st_size, &target_stx->stx_size); 11799 __put_user(st.st_blksize, &target_stx->stx_blksize); 11800 __put_user(st.st_blocks, &target_stx->stx_blocks); 11801 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec); 11802 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec); 11803 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec); 11804 unlock_user_struct(target_stx, arg5, 1); 11805 } 11806 } 11807 return ret; 11808 #endif 11809 #ifdef TARGET_NR_lchown 11810 case TARGET_NR_lchown: 11811 if (!(p = lock_user_string(arg1))) 11812 return -TARGET_EFAULT; 11813 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 11814 unlock_user(p, arg1, 0); 11815 return ret; 11816 #endif 11817 #ifdef TARGET_NR_getuid 11818 case TARGET_NR_getuid: 11819 return get_errno(high2lowuid(getuid())); 11820 #endif 11821 #ifdef TARGET_NR_getgid 11822 case TARGET_NR_getgid: 11823 return get_errno(high2lowgid(getgid())); 11824 #endif 11825 #ifdef TARGET_NR_geteuid 11826 case TARGET_NR_geteuid: 11827 return get_errno(high2lowuid(geteuid())); 11828 #endif 11829 #ifdef TARGET_NR_getegid 11830 case TARGET_NR_getegid: 11831 return get_errno(high2lowgid(getegid())); 11832 #endif 11833 case TARGET_NR_setreuid: 11834 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11835 case TARGET_NR_setregid: 11836 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11837 case TARGET_NR_getgroups: 11838 { /* the same code as for TARGET_NR_getgroups32 */ 11839 int gidsetsize = arg1; 11840 target_id *target_grouplist; 11841 g_autofree gid_t *grouplist = NULL; 11842 int i; 11843 11844 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11845 return -TARGET_EINVAL; 11846 } 11847 if (gidsetsize > 0) { 11848 grouplist = g_try_new(gid_t, gidsetsize); 11849 if (!grouplist) { 11850 return -TARGET_ENOMEM; 11851 } 11852 } 11853 ret = get_errno(getgroups(gidsetsize, grouplist)); 11854 if (!is_error(ret) && gidsetsize > 0) { 11855 target_grouplist = lock_user(VERIFY_WRITE, arg2, 11856 gidsetsize * sizeof(target_id), 0); 11857 if (!target_grouplist) { 11858 return -TARGET_EFAULT; 11859 } 11860 for (i = 0; i < ret; i++) { 11861 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11862 } 11863 unlock_user(target_grouplist, arg2, 11864 gidsetsize * sizeof(target_id)); 11865 } 11866 return ret; 11867 } 11868 case TARGET_NR_setgroups: 11869 { /* the same code as for TARGET_NR_setgroups32 */ 11870 int gidsetsize = arg1; 11871 target_id *target_grouplist; 11872 g_autofree gid_t *grouplist = NULL; 11873 int i; 11874 11875 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11876 return -TARGET_EINVAL; 11877 } 11878 if (gidsetsize > 0) { 11879 grouplist = g_try_new(gid_t, gidsetsize); 11880 if (!grouplist) { 11881 return -TARGET_ENOMEM; 11882 } 11883 target_grouplist = lock_user(VERIFY_READ, arg2, 11884 gidsetsize * sizeof(target_id), 1); 11885 if (!target_grouplist) { 11886 return -TARGET_EFAULT; 11887 } 11888 for (i = 0; i < gidsetsize; i++) { 11889 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11890 } 11891 unlock_user(target_grouplist, arg2, 11892 gidsetsize * sizeof(target_id)); 11893 } 11894 return get_errno(setgroups(gidsetsize, grouplist)); 11895 } 11896 case TARGET_NR_fchown: 11897 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11898 #if defined(TARGET_NR_fchownat) 11899 case TARGET_NR_fchownat: 11900 if (!(p = lock_user_string(arg2))) 11901 return -TARGET_EFAULT; 11902 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11903 low2highgid(arg4), arg5)); 11904 unlock_user(p, arg2, 0); 11905 return ret; 11906 #endif 11907 #ifdef TARGET_NR_setresuid 11908 case TARGET_NR_setresuid: 11909 return get_errno(sys_setresuid(low2highuid(arg1), 11910 low2highuid(arg2), 11911 low2highuid(arg3))); 11912 #endif 11913 #ifdef TARGET_NR_getresuid 11914 case TARGET_NR_getresuid: 11915 { 11916 uid_t ruid, euid, suid; 11917 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11918 if (!is_error(ret)) { 11919 if (put_user_id(high2lowuid(ruid), arg1) 11920 || put_user_id(high2lowuid(euid), arg2) 11921 || put_user_id(high2lowuid(suid), arg3)) 11922 return -TARGET_EFAULT; 11923 } 11924 } 11925 return ret; 11926 #endif 11927 #ifdef TARGET_NR_getresgid 11928 case TARGET_NR_setresgid: 11929 return get_errno(sys_setresgid(low2highgid(arg1), 11930 low2highgid(arg2), 11931 low2highgid(arg3))); 11932 #endif 11933 #ifdef TARGET_NR_getresgid 11934 case TARGET_NR_getresgid: 11935 { 11936 gid_t rgid, egid, sgid; 11937 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11938 if (!is_error(ret)) { 11939 if (put_user_id(high2lowgid(rgid), arg1) 11940 || put_user_id(high2lowgid(egid), arg2) 11941 || put_user_id(high2lowgid(sgid), arg3)) 11942 return -TARGET_EFAULT; 11943 } 11944 } 11945 return ret; 11946 #endif 11947 #ifdef TARGET_NR_chown 11948 case TARGET_NR_chown: 11949 if (!(p = lock_user_string(arg1))) 11950 return -TARGET_EFAULT; 11951 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11952 unlock_user(p, arg1, 0); 11953 return ret; 11954 #endif 11955 case TARGET_NR_setuid: 11956 return get_errno(sys_setuid(low2highuid(arg1))); 11957 case TARGET_NR_setgid: 11958 return get_errno(sys_setgid(low2highgid(arg1))); 11959 case TARGET_NR_setfsuid: 11960 return get_errno(setfsuid(arg1)); 11961 case TARGET_NR_setfsgid: 11962 return get_errno(setfsgid(arg1)); 11963 11964 #ifdef TARGET_NR_lchown32 11965 case TARGET_NR_lchown32: 11966 if (!(p = lock_user_string(arg1))) 11967 return -TARGET_EFAULT; 11968 ret = get_errno(lchown(p, arg2, arg3)); 11969 unlock_user(p, arg1, 0); 11970 return ret; 11971 #endif 11972 #ifdef TARGET_NR_getuid32 11973 case TARGET_NR_getuid32: 11974 return get_errno(getuid()); 11975 #endif 11976 11977 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11978 /* Alpha specific */ 11979 case TARGET_NR_getxuid: 11980 { 11981 uid_t euid; 11982 euid=geteuid(); 11983 cpu_env->ir[IR_A4]=euid; 11984 } 11985 return get_errno(getuid()); 11986 #endif 11987 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11988 /* Alpha specific */ 11989 case TARGET_NR_getxgid: 11990 { 11991 uid_t egid; 11992 egid=getegid(); 11993 cpu_env->ir[IR_A4]=egid; 11994 } 11995 return get_errno(getgid()); 11996 #endif 11997 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 11998 /* Alpha specific */ 11999 case TARGET_NR_osf_getsysinfo: 12000 ret = -TARGET_EOPNOTSUPP; 12001 switch (arg1) { 12002 case TARGET_GSI_IEEE_FP_CONTROL: 12003 { 12004 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env); 12005 uint64_t swcr = cpu_env->swcr; 12006 12007 swcr &= ~SWCR_STATUS_MASK; 12008 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK; 12009 12010 if (put_user_u64 (swcr, arg2)) 12011 return -TARGET_EFAULT; 12012 ret = 0; 12013 } 12014 break; 12015 12016 /* case GSI_IEEE_STATE_AT_SIGNAL: 12017 -- Not implemented in linux kernel. 12018 case GSI_UACPROC: 12019 -- Retrieves current unaligned access state; not much used. 12020 case GSI_PROC_TYPE: 12021 -- Retrieves implver information; surely not used. 12022 case GSI_GET_HWRPB: 12023 -- Grabs a copy of the HWRPB; surely not used. 12024 */ 12025 } 12026 return ret; 12027 #endif 12028 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 12029 /* Alpha specific */ 12030 case TARGET_NR_osf_setsysinfo: 12031 ret = -TARGET_EOPNOTSUPP; 12032 switch (arg1) { 12033 case TARGET_SSI_IEEE_FP_CONTROL: 12034 { 12035 uint64_t swcr, fpcr; 12036 12037 if (get_user_u64 (swcr, arg2)) { 12038 return -TARGET_EFAULT; 12039 } 12040 12041 /* 12042 * The kernel calls swcr_update_status to update the 12043 * status bits from the fpcr at every point that it 12044 * could be queried. Therefore, we store the status 12045 * bits only in FPCR. 12046 */ 12047 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK); 12048 12049 fpcr = cpu_alpha_load_fpcr(cpu_env); 12050 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32); 12051 fpcr |= alpha_ieee_swcr_to_fpcr(swcr); 12052 cpu_alpha_store_fpcr(cpu_env, fpcr); 12053 ret = 0; 12054 } 12055 break; 12056 12057 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 12058 { 12059 uint64_t exc, fpcr, fex; 12060 12061 if (get_user_u64(exc, arg2)) { 12062 return -TARGET_EFAULT; 12063 } 12064 exc &= SWCR_STATUS_MASK; 12065 fpcr = cpu_alpha_load_fpcr(cpu_env); 12066 12067 /* Old exceptions are not signaled. */ 12068 fex = alpha_ieee_fpcr_to_swcr(fpcr); 12069 fex = exc & ~fex; 12070 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT; 12071 fex &= (cpu_env)->swcr; 12072 12073 /* Update the hardware fpcr. */ 12074 fpcr |= alpha_ieee_swcr_to_fpcr(exc); 12075 cpu_alpha_store_fpcr(cpu_env, fpcr); 12076 12077 if (fex) { 12078 int si_code = TARGET_FPE_FLTUNK; 12079 target_siginfo_t info; 12080 12081 if (fex & SWCR_TRAP_ENABLE_DNO) { 12082 si_code = TARGET_FPE_FLTUND; 12083 } 12084 if (fex & SWCR_TRAP_ENABLE_INE) { 12085 si_code = TARGET_FPE_FLTRES; 12086 } 12087 if (fex & SWCR_TRAP_ENABLE_UNF) { 12088 si_code = TARGET_FPE_FLTUND; 12089 } 12090 if (fex & SWCR_TRAP_ENABLE_OVF) { 12091 si_code = TARGET_FPE_FLTOVF; 12092 } 12093 if (fex & SWCR_TRAP_ENABLE_DZE) { 12094 si_code = TARGET_FPE_FLTDIV; 12095 } 12096 if (fex & SWCR_TRAP_ENABLE_INV) { 12097 si_code = TARGET_FPE_FLTINV; 12098 } 12099 12100 info.si_signo = SIGFPE; 12101 info.si_errno = 0; 12102 info.si_code = si_code; 12103 info._sifields._sigfault._addr = (cpu_env)->pc; 12104 queue_signal(cpu_env, info.si_signo, 12105 QEMU_SI_FAULT, &info); 12106 } 12107 ret = 0; 12108 } 12109 break; 12110 12111 /* case SSI_NVPAIRS: 12112 -- Used with SSIN_UACPROC to enable unaligned accesses. 12113 case SSI_IEEE_STATE_AT_SIGNAL: 12114 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 12115 -- Not implemented in linux kernel 12116 */ 12117 } 12118 return ret; 12119 #endif 12120 #ifdef TARGET_NR_osf_sigprocmask 12121 /* Alpha specific. */ 12122 case TARGET_NR_osf_sigprocmask: 12123 { 12124 abi_ulong mask; 12125 int how; 12126 sigset_t set, oldset; 12127 12128 switch(arg1) { 12129 case TARGET_SIG_BLOCK: 12130 how = SIG_BLOCK; 12131 break; 12132 case TARGET_SIG_UNBLOCK: 12133 how = SIG_UNBLOCK; 12134 break; 12135 case TARGET_SIG_SETMASK: 12136 how = SIG_SETMASK; 12137 break; 12138 default: 12139 return -TARGET_EINVAL; 12140 } 12141 mask = arg2; 12142 target_to_host_old_sigset(&set, &mask); 12143 ret = do_sigprocmask(how, &set, &oldset); 12144 if (!ret) { 12145 host_to_target_old_sigset(&mask, &oldset); 12146 ret = mask; 12147 } 12148 } 12149 return ret; 12150 #endif 12151 12152 #ifdef TARGET_NR_getgid32 12153 case TARGET_NR_getgid32: 12154 return get_errno(getgid()); 12155 #endif 12156 #ifdef TARGET_NR_geteuid32 12157 case TARGET_NR_geteuid32: 12158 return get_errno(geteuid()); 12159 #endif 12160 #ifdef TARGET_NR_getegid32 12161 case TARGET_NR_getegid32: 12162 return get_errno(getegid()); 12163 #endif 12164 #ifdef TARGET_NR_setreuid32 12165 case TARGET_NR_setreuid32: 12166 return get_errno(setreuid(arg1, arg2)); 12167 #endif 12168 #ifdef TARGET_NR_setregid32 12169 case TARGET_NR_setregid32: 12170 return get_errno(setregid(arg1, arg2)); 12171 #endif 12172 #ifdef TARGET_NR_getgroups32 12173 case TARGET_NR_getgroups32: 12174 { /* the same code as for TARGET_NR_getgroups */ 12175 int gidsetsize = arg1; 12176 uint32_t *target_grouplist; 12177 g_autofree gid_t *grouplist = NULL; 12178 int i; 12179 12180 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12181 return -TARGET_EINVAL; 12182 } 12183 if (gidsetsize > 0) { 12184 grouplist = g_try_new(gid_t, gidsetsize); 12185 if (!grouplist) { 12186 return -TARGET_ENOMEM; 12187 } 12188 } 12189 ret = get_errno(getgroups(gidsetsize, grouplist)); 12190 if (!is_error(ret) && gidsetsize > 0) { 12191 target_grouplist = lock_user(VERIFY_WRITE, arg2, 12192 gidsetsize * 4, 0); 12193 if (!target_grouplist) { 12194 return -TARGET_EFAULT; 12195 } 12196 for (i = 0; i < ret; i++) { 12197 target_grouplist[i] = tswap32(grouplist[i]); 12198 } 12199 unlock_user(target_grouplist, arg2, gidsetsize * 4); 12200 } 12201 return ret; 12202 } 12203 #endif 12204 #ifdef TARGET_NR_setgroups32 12205 case TARGET_NR_setgroups32: 12206 { /* the same code as for TARGET_NR_setgroups */ 12207 int gidsetsize = arg1; 12208 uint32_t *target_grouplist; 12209 g_autofree gid_t *grouplist = NULL; 12210 int i; 12211 12212 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12213 return -TARGET_EINVAL; 12214 } 12215 if (gidsetsize > 0) { 12216 grouplist = g_try_new(gid_t, gidsetsize); 12217 if (!grouplist) { 12218 return -TARGET_ENOMEM; 12219 } 12220 target_grouplist = lock_user(VERIFY_READ, arg2, 12221 gidsetsize * 4, 1); 12222 if (!target_grouplist) { 12223 return -TARGET_EFAULT; 12224 } 12225 for (i = 0; i < gidsetsize; i++) { 12226 grouplist[i] = tswap32(target_grouplist[i]); 12227 } 12228 unlock_user(target_grouplist, arg2, 0); 12229 } 12230 return get_errno(setgroups(gidsetsize, grouplist)); 12231 } 12232 #endif 12233 #ifdef TARGET_NR_fchown32 12234 case TARGET_NR_fchown32: 12235 return get_errno(fchown(arg1, arg2, arg3)); 12236 #endif 12237 #ifdef TARGET_NR_setresuid32 12238 case TARGET_NR_setresuid32: 12239 return get_errno(sys_setresuid(arg1, arg2, arg3)); 12240 #endif 12241 #ifdef TARGET_NR_getresuid32 12242 case TARGET_NR_getresuid32: 12243 { 12244 uid_t ruid, euid, suid; 12245 ret = get_errno(getresuid(&ruid, &euid, &suid)); 12246 if (!is_error(ret)) { 12247 if (put_user_u32(ruid, arg1) 12248 || put_user_u32(euid, arg2) 12249 || put_user_u32(suid, arg3)) 12250 return -TARGET_EFAULT; 12251 } 12252 } 12253 return ret; 12254 #endif 12255 #ifdef TARGET_NR_setresgid32 12256 case TARGET_NR_setresgid32: 12257 return get_errno(sys_setresgid(arg1, arg2, arg3)); 12258 #endif 12259 #ifdef TARGET_NR_getresgid32 12260 case TARGET_NR_getresgid32: 12261 { 12262 gid_t rgid, egid, sgid; 12263 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 12264 if (!is_error(ret)) { 12265 if (put_user_u32(rgid, arg1) 12266 || put_user_u32(egid, arg2) 12267 || put_user_u32(sgid, arg3)) 12268 return -TARGET_EFAULT; 12269 } 12270 } 12271 return ret; 12272 #endif 12273 #ifdef TARGET_NR_chown32 12274 case TARGET_NR_chown32: 12275 if (!(p = lock_user_string(arg1))) 12276 return -TARGET_EFAULT; 12277 ret = get_errno(chown(p, arg2, arg3)); 12278 unlock_user(p, arg1, 0); 12279 return ret; 12280 #endif 12281 #ifdef TARGET_NR_setuid32 12282 case TARGET_NR_setuid32: 12283 return get_errno(sys_setuid(arg1)); 12284 #endif 12285 #ifdef TARGET_NR_setgid32 12286 case TARGET_NR_setgid32: 12287 return get_errno(sys_setgid(arg1)); 12288 #endif 12289 #ifdef TARGET_NR_setfsuid32 12290 case TARGET_NR_setfsuid32: 12291 return get_errno(setfsuid(arg1)); 12292 #endif 12293 #ifdef TARGET_NR_setfsgid32 12294 case TARGET_NR_setfsgid32: 12295 return get_errno(setfsgid(arg1)); 12296 #endif 12297 #ifdef TARGET_NR_mincore 12298 case TARGET_NR_mincore: 12299 { 12300 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0); 12301 if (!a) { 12302 return -TARGET_ENOMEM; 12303 } 12304 p = lock_user_string(arg3); 12305 if (!p) { 12306 ret = -TARGET_EFAULT; 12307 } else { 12308 ret = get_errno(mincore(a, arg2, p)); 12309 unlock_user(p, arg3, ret); 12310 } 12311 unlock_user(a, arg1, 0); 12312 } 12313 return ret; 12314 #endif 12315 #ifdef TARGET_NR_arm_fadvise64_64 12316 case TARGET_NR_arm_fadvise64_64: 12317 /* arm_fadvise64_64 looks like fadvise64_64 but 12318 * with different argument order: fd, advice, offset, len 12319 * rather than the usual fd, offset, len, advice. 12320 * Note that offset and len are both 64-bit so appear as 12321 * pairs of 32-bit registers. 12322 */ 12323 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 12324 target_offset64(arg5, arg6), arg2); 12325 return -host_to_target_errno(ret); 12326 #endif 12327 12328 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12329 12330 #ifdef TARGET_NR_fadvise64_64 12331 case TARGET_NR_fadvise64_64: 12332 #if defined(TARGET_PPC) || defined(TARGET_XTENSA) 12333 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 12334 ret = arg2; 12335 arg2 = arg3; 12336 arg3 = arg4; 12337 arg4 = arg5; 12338 arg5 = arg6; 12339 arg6 = ret; 12340 #else 12341 /* 6 args: fd, offset (high, low), len (high, low), advice */ 12342 if (regpairs_aligned(cpu_env, num)) { 12343 /* offset is in (3,4), len in (5,6) and advice in 7 */ 12344 arg2 = arg3; 12345 arg3 = arg4; 12346 arg4 = arg5; 12347 arg5 = arg6; 12348 arg6 = arg7; 12349 } 12350 #endif 12351 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), 12352 target_offset64(arg4, arg5), arg6); 12353 return -host_to_target_errno(ret); 12354 #endif 12355 12356 #ifdef TARGET_NR_fadvise64 12357 case TARGET_NR_fadvise64: 12358 /* 5 args: fd, offset (high, low), len, advice */ 12359 if (regpairs_aligned(cpu_env, num)) { 12360 /* offset is in (3,4), len in 5 and advice in 6 */ 12361 arg2 = arg3; 12362 arg3 = arg4; 12363 arg4 = arg5; 12364 arg5 = arg6; 12365 } 12366 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5); 12367 return -host_to_target_errno(ret); 12368 #endif 12369 12370 #else /* not a 32-bit ABI */ 12371 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 12372 #ifdef TARGET_NR_fadvise64_64 12373 case TARGET_NR_fadvise64_64: 12374 #endif 12375 #ifdef TARGET_NR_fadvise64 12376 case TARGET_NR_fadvise64: 12377 #endif 12378 #ifdef TARGET_S390X 12379 switch (arg4) { 12380 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 12381 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 12382 case 6: arg4 = POSIX_FADV_DONTNEED; break; 12383 case 7: arg4 = POSIX_FADV_NOREUSE; break; 12384 default: break; 12385 } 12386 #endif 12387 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 12388 #endif 12389 #endif /* end of 64-bit ABI fadvise handling */ 12390 12391 #ifdef TARGET_NR_madvise 12392 case TARGET_NR_madvise: 12393 return target_madvise(arg1, arg2, arg3); 12394 #endif 12395 #ifdef TARGET_NR_fcntl64 12396 case TARGET_NR_fcntl64: 12397 { 12398 int cmd; 12399 struct flock64 fl; 12400 from_flock64_fn *copyfrom = copy_from_user_flock64; 12401 to_flock64_fn *copyto = copy_to_user_flock64; 12402 12403 #ifdef TARGET_ARM 12404 if (!cpu_env->eabi) { 12405 copyfrom = copy_from_user_oabi_flock64; 12406 copyto = copy_to_user_oabi_flock64; 12407 } 12408 #endif 12409 12410 cmd = target_to_host_fcntl_cmd(arg2); 12411 if (cmd == -TARGET_EINVAL) { 12412 return cmd; 12413 } 12414 12415 switch(arg2) { 12416 case TARGET_F_GETLK64: 12417 ret = copyfrom(&fl, arg3); 12418 if (ret) { 12419 break; 12420 } 12421 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12422 if (ret == 0) { 12423 ret = copyto(arg3, &fl); 12424 } 12425 break; 12426 12427 case TARGET_F_SETLK64: 12428 case TARGET_F_SETLKW64: 12429 ret = copyfrom(&fl, arg3); 12430 if (ret) { 12431 break; 12432 } 12433 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12434 break; 12435 default: 12436 ret = do_fcntl(arg1, arg2, arg3); 12437 break; 12438 } 12439 return ret; 12440 } 12441 #endif 12442 #ifdef TARGET_NR_cacheflush 12443 case TARGET_NR_cacheflush: 12444 /* self-modifying code is handled automatically, so nothing needed */ 12445 return 0; 12446 #endif 12447 #ifdef TARGET_NR_getpagesize 12448 case TARGET_NR_getpagesize: 12449 return TARGET_PAGE_SIZE; 12450 #endif 12451 case TARGET_NR_gettid: 12452 return get_errno(sys_gettid()); 12453 #ifdef TARGET_NR_readahead 12454 case TARGET_NR_readahead: 12455 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12456 if (regpairs_aligned(cpu_env, num)) { 12457 arg2 = arg3; 12458 arg3 = arg4; 12459 arg4 = arg5; 12460 } 12461 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 12462 #else 12463 ret = get_errno(readahead(arg1, arg2, arg3)); 12464 #endif 12465 return ret; 12466 #endif 12467 #ifdef CONFIG_ATTR 12468 #ifdef TARGET_NR_setxattr 12469 case TARGET_NR_listxattr: 12470 case TARGET_NR_llistxattr: 12471 { 12472 void *b = 0; 12473 if (arg2) { 12474 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12475 if (!b) { 12476 return -TARGET_EFAULT; 12477 } 12478 } 12479 p = lock_user_string(arg1); 12480 if (p) { 12481 if (num == TARGET_NR_listxattr) { 12482 ret = get_errno(listxattr(p, b, arg3)); 12483 } else { 12484 ret = get_errno(llistxattr(p, b, arg3)); 12485 } 12486 } else { 12487 ret = -TARGET_EFAULT; 12488 } 12489 unlock_user(p, arg1, 0); 12490 unlock_user(b, arg2, arg3); 12491 return ret; 12492 } 12493 case TARGET_NR_flistxattr: 12494 { 12495 void *b = 0; 12496 if (arg2) { 12497 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12498 if (!b) { 12499 return -TARGET_EFAULT; 12500 } 12501 } 12502 ret = get_errno(flistxattr(arg1, b, arg3)); 12503 unlock_user(b, arg2, arg3); 12504 return ret; 12505 } 12506 case TARGET_NR_setxattr: 12507 case TARGET_NR_lsetxattr: 12508 { 12509 void *n, *v = 0; 12510 if (arg3) { 12511 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12512 if (!v) { 12513 return -TARGET_EFAULT; 12514 } 12515 } 12516 p = lock_user_string(arg1); 12517 n = lock_user_string(arg2); 12518 if (p && n) { 12519 if (num == TARGET_NR_setxattr) { 12520 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 12521 } else { 12522 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 12523 } 12524 } else { 12525 ret = -TARGET_EFAULT; 12526 } 12527 unlock_user(p, arg1, 0); 12528 unlock_user(n, arg2, 0); 12529 unlock_user(v, arg3, 0); 12530 } 12531 return ret; 12532 case TARGET_NR_fsetxattr: 12533 { 12534 void *n, *v = 0; 12535 if (arg3) { 12536 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12537 if (!v) { 12538 return -TARGET_EFAULT; 12539 } 12540 } 12541 n = lock_user_string(arg2); 12542 if (n) { 12543 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 12544 } else { 12545 ret = -TARGET_EFAULT; 12546 } 12547 unlock_user(n, arg2, 0); 12548 unlock_user(v, arg3, 0); 12549 } 12550 return ret; 12551 case TARGET_NR_getxattr: 12552 case TARGET_NR_lgetxattr: 12553 { 12554 void *n, *v = 0; 12555 if (arg3) { 12556 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12557 if (!v) { 12558 return -TARGET_EFAULT; 12559 } 12560 } 12561 p = lock_user_string(arg1); 12562 n = lock_user_string(arg2); 12563 if (p && n) { 12564 if (num == TARGET_NR_getxattr) { 12565 ret = get_errno(getxattr(p, n, v, arg4)); 12566 } else { 12567 ret = get_errno(lgetxattr(p, n, v, arg4)); 12568 } 12569 } else { 12570 ret = -TARGET_EFAULT; 12571 } 12572 unlock_user(p, arg1, 0); 12573 unlock_user(n, arg2, 0); 12574 unlock_user(v, arg3, arg4); 12575 } 12576 return ret; 12577 case TARGET_NR_fgetxattr: 12578 { 12579 void *n, *v = 0; 12580 if (arg3) { 12581 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12582 if (!v) { 12583 return -TARGET_EFAULT; 12584 } 12585 } 12586 n = lock_user_string(arg2); 12587 if (n) { 12588 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 12589 } else { 12590 ret = -TARGET_EFAULT; 12591 } 12592 unlock_user(n, arg2, 0); 12593 unlock_user(v, arg3, arg4); 12594 } 12595 return ret; 12596 case TARGET_NR_removexattr: 12597 case TARGET_NR_lremovexattr: 12598 { 12599 void *n; 12600 p = lock_user_string(arg1); 12601 n = lock_user_string(arg2); 12602 if (p && n) { 12603 if (num == TARGET_NR_removexattr) { 12604 ret = get_errno(removexattr(p, n)); 12605 } else { 12606 ret = get_errno(lremovexattr(p, n)); 12607 } 12608 } else { 12609 ret = -TARGET_EFAULT; 12610 } 12611 unlock_user(p, arg1, 0); 12612 unlock_user(n, arg2, 0); 12613 } 12614 return ret; 12615 case TARGET_NR_fremovexattr: 12616 { 12617 void *n; 12618 n = lock_user_string(arg2); 12619 if (n) { 12620 ret = get_errno(fremovexattr(arg1, n)); 12621 } else { 12622 ret = -TARGET_EFAULT; 12623 } 12624 unlock_user(n, arg2, 0); 12625 } 12626 return ret; 12627 #endif 12628 #endif /* CONFIG_ATTR */ 12629 #ifdef TARGET_NR_set_thread_area 12630 case TARGET_NR_set_thread_area: 12631 #if defined(TARGET_MIPS) 12632 cpu_env->active_tc.CP0_UserLocal = arg1; 12633 return 0; 12634 #elif defined(TARGET_CRIS) 12635 if (arg1 & 0xff) 12636 ret = -TARGET_EINVAL; 12637 else { 12638 cpu_env->pregs[PR_PID] = arg1; 12639 ret = 0; 12640 } 12641 return ret; 12642 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 12643 return do_set_thread_area(cpu_env, arg1); 12644 #elif defined(TARGET_M68K) 12645 { 12646 TaskState *ts = get_task_state(cpu); 12647 ts->tp_value = arg1; 12648 return 0; 12649 } 12650 #else 12651 return -TARGET_ENOSYS; 12652 #endif 12653 #endif 12654 #ifdef TARGET_NR_get_thread_area 12655 case TARGET_NR_get_thread_area: 12656 #if defined(TARGET_I386) && defined(TARGET_ABI32) 12657 return do_get_thread_area(cpu_env, arg1); 12658 #elif defined(TARGET_M68K) 12659 { 12660 TaskState *ts = get_task_state(cpu); 12661 return ts->tp_value; 12662 } 12663 #else 12664 return -TARGET_ENOSYS; 12665 #endif 12666 #endif 12667 #ifdef TARGET_NR_getdomainname 12668 case TARGET_NR_getdomainname: 12669 return -TARGET_ENOSYS; 12670 #endif 12671 12672 #ifdef TARGET_NR_clock_settime 12673 case TARGET_NR_clock_settime: 12674 { 12675 struct timespec ts; 12676 12677 ret = target_to_host_timespec(&ts, arg2); 12678 if (!is_error(ret)) { 12679 ret = get_errno(clock_settime(arg1, &ts)); 12680 } 12681 return ret; 12682 } 12683 #endif 12684 #ifdef TARGET_NR_clock_settime64 12685 case TARGET_NR_clock_settime64: 12686 { 12687 struct timespec ts; 12688 12689 ret = target_to_host_timespec64(&ts, arg2); 12690 if (!is_error(ret)) { 12691 ret = get_errno(clock_settime(arg1, &ts)); 12692 } 12693 return ret; 12694 } 12695 #endif 12696 #ifdef TARGET_NR_clock_gettime 12697 case TARGET_NR_clock_gettime: 12698 { 12699 struct timespec ts; 12700 ret = get_errno(clock_gettime(arg1, &ts)); 12701 if (!is_error(ret)) { 12702 ret = host_to_target_timespec(arg2, &ts); 12703 } 12704 return ret; 12705 } 12706 #endif 12707 #ifdef TARGET_NR_clock_gettime64 12708 case TARGET_NR_clock_gettime64: 12709 { 12710 struct timespec ts; 12711 ret = get_errno(clock_gettime(arg1, &ts)); 12712 if (!is_error(ret)) { 12713 ret = host_to_target_timespec64(arg2, &ts); 12714 } 12715 return ret; 12716 } 12717 #endif 12718 #ifdef TARGET_NR_clock_getres 12719 case TARGET_NR_clock_getres: 12720 { 12721 struct timespec ts; 12722 ret = get_errno(clock_getres(arg1, &ts)); 12723 if (!is_error(ret)) { 12724 host_to_target_timespec(arg2, &ts); 12725 } 12726 return ret; 12727 } 12728 #endif 12729 #ifdef TARGET_NR_clock_getres_time64 12730 case TARGET_NR_clock_getres_time64: 12731 { 12732 struct timespec ts; 12733 ret = get_errno(clock_getres(arg1, &ts)); 12734 if (!is_error(ret)) { 12735 host_to_target_timespec64(arg2, &ts); 12736 } 12737 return ret; 12738 } 12739 #endif 12740 #ifdef TARGET_NR_clock_nanosleep 12741 case TARGET_NR_clock_nanosleep: 12742 { 12743 struct timespec ts; 12744 if (target_to_host_timespec(&ts, arg3)) { 12745 return -TARGET_EFAULT; 12746 } 12747 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12748 &ts, arg4 ? &ts : NULL)); 12749 /* 12750 * if the call is interrupted by a signal handler, it fails 12751 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not 12752 * TIMER_ABSTIME, it returns the remaining unslept time in arg4. 12753 */ 12754 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12755 host_to_target_timespec(arg4, &ts)) { 12756 return -TARGET_EFAULT; 12757 } 12758 12759 return ret; 12760 } 12761 #endif 12762 #ifdef TARGET_NR_clock_nanosleep_time64 12763 case TARGET_NR_clock_nanosleep_time64: 12764 { 12765 struct timespec ts; 12766 12767 if (target_to_host_timespec64(&ts, arg3)) { 12768 return -TARGET_EFAULT; 12769 } 12770 12771 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12772 &ts, arg4 ? &ts : NULL)); 12773 12774 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12775 host_to_target_timespec64(arg4, &ts)) { 12776 return -TARGET_EFAULT; 12777 } 12778 return ret; 12779 } 12780 #endif 12781 12782 #if defined(TARGET_NR_set_tid_address) 12783 case TARGET_NR_set_tid_address: 12784 { 12785 TaskState *ts = get_task_state(cpu); 12786 ts->child_tidptr = arg1; 12787 /* do not call host set_tid_address() syscall, instead return tid() */ 12788 return get_errno(sys_gettid()); 12789 } 12790 #endif 12791 12792 case TARGET_NR_tkill: 12793 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 12794 12795 case TARGET_NR_tgkill: 12796 return get_errno(safe_tgkill((int)arg1, (int)arg2, 12797 target_to_host_signal(arg3))); 12798 12799 #ifdef TARGET_NR_set_robust_list 12800 case TARGET_NR_set_robust_list: 12801 case TARGET_NR_get_robust_list: 12802 /* The ABI for supporting robust futexes has userspace pass 12803 * the kernel a pointer to a linked list which is updated by 12804 * userspace after the syscall; the list is walked by the kernel 12805 * when the thread exits. Since the linked list in QEMU guest 12806 * memory isn't a valid linked list for the host and we have 12807 * no way to reliably intercept the thread-death event, we can't 12808 * support these. Silently return ENOSYS so that guest userspace 12809 * falls back to a non-robust futex implementation (which should 12810 * be OK except in the corner case of the guest crashing while 12811 * holding a mutex that is shared with another process via 12812 * shared memory). 12813 */ 12814 return -TARGET_ENOSYS; 12815 #endif 12816 12817 #if defined(TARGET_NR_utimensat) 12818 case TARGET_NR_utimensat: 12819 { 12820 struct timespec *tsp, ts[2]; 12821 if (!arg3) { 12822 tsp = NULL; 12823 } else { 12824 if (target_to_host_timespec(ts, arg3)) { 12825 return -TARGET_EFAULT; 12826 } 12827 if (target_to_host_timespec(ts + 1, arg3 + 12828 sizeof(struct target_timespec))) { 12829 return -TARGET_EFAULT; 12830 } 12831 tsp = ts; 12832 } 12833 if (!arg2) 12834 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12835 else { 12836 if (!(p = lock_user_string(arg2))) { 12837 return -TARGET_EFAULT; 12838 } 12839 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12840 unlock_user(p, arg2, 0); 12841 } 12842 } 12843 return ret; 12844 #endif 12845 #ifdef TARGET_NR_utimensat_time64 12846 case TARGET_NR_utimensat_time64: 12847 { 12848 struct timespec *tsp, ts[2]; 12849 if (!arg3) { 12850 tsp = NULL; 12851 } else { 12852 if (target_to_host_timespec64(ts, arg3)) { 12853 return -TARGET_EFAULT; 12854 } 12855 if (target_to_host_timespec64(ts + 1, arg3 + 12856 sizeof(struct target__kernel_timespec))) { 12857 return -TARGET_EFAULT; 12858 } 12859 tsp = ts; 12860 } 12861 if (!arg2) 12862 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12863 else { 12864 p = lock_user_string(arg2); 12865 if (!p) { 12866 return -TARGET_EFAULT; 12867 } 12868 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12869 unlock_user(p, arg2, 0); 12870 } 12871 } 12872 return ret; 12873 #endif 12874 #ifdef TARGET_NR_futex 12875 case TARGET_NR_futex: 12876 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6); 12877 #endif 12878 #ifdef TARGET_NR_futex_time64 12879 case TARGET_NR_futex_time64: 12880 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6); 12881 #endif 12882 #ifdef CONFIG_INOTIFY 12883 #if defined(TARGET_NR_inotify_init) 12884 case TARGET_NR_inotify_init: 12885 ret = get_errno(inotify_init()); 12886 if (ret >= 0) { 12887 fd_trans_register(ret, &target_inotify_trans); 12888 } 12889 return ret; 12890 #endif 12891 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1) 12892 case TARGET_NR_inotify_init1: 12893 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1, 12894 fcntl_flags_tbl))); 12895 if (ret >= 0) { 12896 fd_trans_register(ret, &target_inotify_trans); 12897 } 12898 return ret; 12899 #endif 12900 #if defined(TARGET_NR_inotify_add_watch) 12901 case TARGET_NR_inotify_add_watch: 12902 p = lock_user_string(arg2); 12903 ret = get_errno(inotify_add_watch(arg1, path(p), arg3)); 12904 unlock_user(p, arg2, 0); 12905 return ret; 12906 #endif 12907 #if defined(TARGET_NR_inotify_rm_watch) 12908 case TARGET_NR_inotify_rm_watch: 12909 return get_errno(inotify_rm_watch(arg1, arg2)); 12910 #endif 12911 #endif 12912 12913 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12914 case TARGET_NR_mq_open: 12915 { 12916 struct mq_attr posix_mq_attr; 12917 struct mq_attr *pposix_mq_attr; 12918 int host_flags; 12919 12920 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12921 pposix_mq_attr = NULL; 12922 if (arg4) { 12923 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12924 return -TARGET_EFAULT; 12925 } 12926 pposix_mq_attr = &posix_mq_attr; 12927 } 12928 p = lock_user_string(arg1 - 1); 12929 if (!p) { 12930 return -TARGET_EFAULT; 12931 } 12932 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12933 unlock_user (p, arg1, 0); 12934 } 12935 return ret; 12936 12937 case TARGET_NR_mq_unlink: 12938 p = lock_user_string(arg1 - 1); 12939 if (!p) { 12940 return -TARGET_EFAULT; 12941 } 12942 ret = get_errno(mq_unlink(p)); 12943 unlock_user (p, arg1, 0); 12944 return ret; 12945 12946 #ifdef TARGET_NR_mq_timedsend 12947 case TARGET_NR_mq_timedsend: 12948 { 12949 struct timespec ts; 12950 12951 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12952 if (arg5 != 0) { 12953 if (target_to_host_timespec(&ts, arg5)) { 12954 return -TARGET_EFAULT; 12955 } 12956 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12957 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12958 return -TARGET_EFAULT; 12959 } 12960 } else { 12961 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12962 } 12963 unlock_user (p, arg2, arg3); 12964 } 12965 return ret; 12966 #endif 12967 #ifdef TARGET_NR_mq_timedsend_time64 12968 case TARGET_NR_mq_timedsend_time64: 12969 { 12970 struct timespec ts; 12971 12972 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12973 if (arg5 != 0) { 12974 if (target_to_host_timespec64(&ts, arg5)) { 12975 return -TARGET_EFAULT; 12976 } 12977 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12978 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12979 return -TARGET_EFAULT; 12980 } 12981 } else { 12982 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12983 } 12984 unlock_user(p, arg2, arg3); 12985 } 12986 return ret; 12987 #endif 12988 12989 #ifdef TARGET_NR_mq_timedreceive 12990 case TARGET_NR_mq_timedreceive: 12991 { 12992 struct timespec ts; 12993 unsigned int prio; 12994 12995 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12996 if (arg5 != 0) { 12997 if (target_to_host_timespec(&ts, arg5)) { 12998 return -TARGET_EFAULT; 12999 } 13000 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13001 &prio, &ts)); 13002 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 13003 return -TARGET_EFAULT; 13004 } 13005 } else { 13006 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13007 &prio, NULL)); 13008 } 13009 unlock_user (p, arg2, arg3); 13010 if (arg4 != 0) 13011 put_user_u32(prio, arg4); 13012 } 13013 return ret; 13014 #endif 13015 #ifdef TARGET_NR_mq_timedreceive_time64 13016 case TARGET_NR_mq_timedreceive_time64: 13017 { 13018 struct timespec ts; 13019 unsigned int prio; 13020 13021 p = lock_user(VERIFY_READ, arg2, arg3, 1); 13022 if (arg5 != 0) { 13023 if (target_to_host_timespec64(&ts, arg5)) { 13024 return -TARGET_EFAULT; 13025 } 13026 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13027 &prio, &ts)); 13028 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 13029 return -TARGET_EFAULT; 13030 } 13031 } else { 13032 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13033 &prio, NULL)); 13034 } 13035 unlock_user(p, arg2, arg3); 13036 if (arg4 != 0) { 13037 put_user_u32(prio, arg4); 13038 } 13039 } 13040 return ret; 13041 #endif 13042 13043 /* Not implemented for now... */ 13044 /* case TARGET_NR_mq_notify: */ 13045 /* break; */ 13046 13047 case TARGET_NR_mq_getsetattr: 13048 { 13049 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 13050 ret = 0; 13051 if (arg2 != 0) { 13052 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 13053 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in, 13054 &posix_mq_attr_out)); 13055 } else if (arg3 != 0) { 13056 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out)); 13057 } 13058 if (ret == 0 && arg3 != 0) { 13059 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 13060 } 13061 } 13062 return ret; 13063 #endif 13064 13065 #ifdef CONFIG_SPLICE 13066 #ifdef TARGET_NR_tee 13067 case TARGET_NR_tee: 13068 { 13069 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 13070 } 13071 return ret; 13072 #endif 13073 #ifdef TARGET_NR_splice 13074 case TARGET_NR_splice: 13075 { 13076 loff_t loff_in, loff_out; 13077 loff_t *ploff_in = NULL, *ploff_out = NULL; 13078 if (arg2) { 13079 if (get_user_u64(loff_in, arg2)) { 13080 return -TARGET_EFAULT; 13081 } 13082 ploff_in = &loff_in; 13083 } 13084 if (arg4) { 13085 if (get_user_u64(loff_out, arg4)) { 13086 return -TARGET_EFAULT; 13087 } 13088 ploff_out = &loff_out; 13089 } 13090 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 13091 if (arg2) { 13092 if (put_user_u64(loff_in, arg2)) { 13093 return -TARGET_EFAULT; 13094 } 13095 } 13096 if (arg4) { 13097 if (put_user_u64(loff_out, arg4)) { 13098 return -TARGET_EFAULT; 13099 } 13100 } 13101 } 13102 return ret; 13103 #endif 13104 #ifdef TARGET_NR_vmsplice 13105 case TARGET_NR_vmsplice: 13106 { 13107 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 13108 if (vec != NULL) { 13109 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 13110 unlock_iovec(vec, arg2, arg3, 0); 13111 } else { 13112 ret = -host_to_target_errno(errno); 13113 } 13114 } 13115 return ret; 13116 #endif 13117 #endif /* CONFIG_SPLICE */ 13118 #ifdef CONFIG_EVENTFD 13119 #if defined(TARGET_NR_eventfd) 13120 case TARGET_NR_eventfd: 13121 ret = get_errno(eventfd(arg1, 0)); 13122 if (ret >= 0) { 13123 fd_trans_register(ret, &target_eventfd_trans); 13124 } 13125 return ret; 13126 #endif 13127 #if defined(TARGET_NR_eventfd2) 13128 case TARGET_NR_eventfd2: 13129 { 13130 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)); 13131 if (arg2 & TARGET_O_NONBLOCK) { 13132 host_flags |= O_NONBLOCK; 13133 } 13134 if (arg2 & TARGET_O_CLOEXEC) { 13135 host_flags |= O_CLOEXEC; 13136 } 13137 ret = get_errno(eventfd(arg1, host_flags)); 13138 if (ret >= 0) { 13139 fd_trans_register(ret, &target_eventfd_trans); 13140 } 13141 return ret; 13142 } 13143 #endif 13144 #endif /* CONFIG_EVENTFD */ 13145 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 13146 case TARGET_NR_fallocate: 13147 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13148 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 13149 target_offset64(arg5, arg6))); 13150 #else 13151 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 13152 #endif 13153 return ret; 13154 #endif 13155 #if defined(CONFIG_SYNC_FILE_RANGE) 13156 #if defined(TARGET_NR_sync_file_range) 13157 case TARGET_NR_sync_file_range: 13158 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13159 #if defined(TARGET_MIPS) 13160 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13161 target_offset64(arg5, arg6), arg7)); 13162 #else 13163 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 13164 target_offset64(arg4, arg5), arg6)); 13165 #endif /* !TARGET_MIPS */ 13166 #else 13167 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 13168 #endif 13169 return ret; 13170 #endif 13171 #if defined(TARGET_NR_sync_file_range2) || \ 13172 defined(TARGET_NR_arm_sync_file_range) 13173 #if defined(TARGET_NR_sync_file_range2) 13174 case TARGET_NR_sync_file_range2: 13175 #endif 13176 #if defined(TARGET_NR_arm_sync_file_range) 13177 case TARGET_NR_arm_sync_file_range: 13178 #endif 13179 /* This is like sync_file_range but the arguments are reordered */ 13180 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13181 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13182 target_offset64(arg5, arg6), arg2)); 13183 #else 13184 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 13185 #endif 13186 return ret; 13187 #endif 13188 #endif 13189 #if defined(TARGET_NR_signalfd4) 13190 case TARGET_NR_signalfd4: 13191 return do_signalfd4(arg1, arg2, arg4); 13192 #endif 13193 #if defined(TARGET_NR_signalfd) 13194 case TARGET_NR_signalfd: 13195 return do_signalfd4(arg1, arg2, 0); 13196 #endif 13197 #if defined(CONFIG_EPOLL) 13198 #if defined(TARGET_NR_epoll_create) 13199 case TARGET_NR_epoll_create: 13200 return get_errno(epoll_create(arg1)); 13201 #endif 13202 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 13203 case TARGET_NR_epoll_create1: 13204 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl))); 13205 #endif 13206 #if defined(TARGET_NR_epoll_ctl) 13207 case TARGET_NR_epoll_ctl: 13208 { 13209 struct epoll_event ep; 13210 struct epoll_event *epp = 0; 13211 if (arg4) { 13212 if (arg2 != EPOLL_CTL_DEL) { 13213 struct target_epoll_event *target_ep; 13214 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 13215 return -TARGET_EFAULT; 13216 } 13217 ep.events = tswap32(target_ep->events); 13218 /* 13219 * The epoll_data_t union is just opaque data to the kernel, 13220 * so we transfer all 64 bits across and need not worry what 13221 * actual data type it is. 13222 */ 13223 ep.data.u64 = tswap64(target_ep->data.u64); 13224 unlock_user_struct(target_ep, arg4, 0); 13225 } 13226 /* 13227 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a 13228 * non-null pointer, even though this argument is ignored. 13229 * 13230 */ 13231 epp = &ep; 13232 } 13233 return get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 13234 } 13235 #endif 13236 13237 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 13238 #if defined(TARGET_NR_epoll_wait) 13239 case TARGET_NR_epoll_wait: 13240 #endif 13241 #if defined(TARGET_NR_epoll_pwait) 13242 case TARGET_NR_epoll_pwait: 13243 #endif 13244 { 13245 struct target_epoll_event *target_ep; 13246 struct epoll_event *ep; 13247 int epfd = arg1; 13248 int maxevents = arg3; 13249 int timeout = arg4; 13250 13251 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 13252 return -TARGET_EINVAL; 13253 } 13254 13255 target_ep = lock_user(VERIFY_WRITE, arg2, 13256 maxevents * sizeof(struct target_epoll_event), 1); 13257 if (!target_ep) { 13258 return -TARGET_EFAULT; 13259 } 13260 13261 ep = g_try_new(struct epoll_event, maxevents); 13262 if (!ep) { 13263 unlock_user(target_ep, arg2, 0); 13264 return -TARGET_ENOMEM; 13265 } 13266 13267 switch (num) { 13268 #if defined(TARGET_NR_epoll_pwait) 13269 case TARGET_NR_epoll_pwait: 13270 { 13271 sigset_t *set = NULL; 13272 13273 if (arg5) { 13274 ret = process_sigsuspend_mask(&set, arg5, arg6); 13275 if (ret != 0) { 13276 break; 13277 } 13278 } 13279 13280 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13281 set, SIGSET_T_SIZE)); 13282 13283 if (set) { 13284 finish_sigsuspend_mask(ret); 13285 } 13286 break; 13287 } 13288 #endif 13289 #if defined(TARGET_NR_epoll_wait) 13290 case TARGET_NR_epoll_wait: 13291 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13292 NULL, 0)); 13293 break; 13294 #endif 13295 default: 13296 ret = -TARGET_ENOSYS; 13297 } 13298 if (!is_error(ret)) { 13299 int i; 13300 for (i = 0; i < ret; i++) { 13301 target_ep[i].events = tswap32(ep[i].events); 13302 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 13303 } 13304 unlock_user(target_ep, arg2, 13305 ret * sizeof(struct target_epoll_event)); 13306 } else { 13307 unlock_user(target_ep, arg2, 0); 13308 } 13309 g_free(ep); 13310 return ret; 13311 } 13312 #endif 13313 #endif 13314 #ifdef TARGET_NR_prlimit64 13315 case TARGET_NR_prlimit64: 13316 { 13317 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 13318 struct target_rlimit64 *target_rnew, *target_rold; 13319 struct host_rlimit64 rnew, rold, *rnewp = 0; 13320 int resource = target_to_host_resource(arg2); 13321 13322 if (arg3 && (resource != RLIMIT_AS && 13323 resource != RLIMIT_DATA && 13324 resource != RLIMIT_STACK)) { 13325 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 13326 return -TARGET_EFAULT; 13327 } 13328 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur); 13329 __get_user(rnew.rlim_max, &target_rnew->rlim_max); 13330 unlock_user_struct(target_rnew, arg3, 0); 13331 rnewp = &rnew; 13332 } 13333 13334 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 13335 if (!is_error(ret) && arg4) { 13336 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 13337 return -TARGET_EFAULT; 13338 } 13339 __put_user(rold.rlim_cur, &target_rold->rlim_cur); 13340 __put_user(rold.rlim_max, &target_rold->rlim_max); 13341 unlock_user_struct(target_rold, arg4, 1); 13342 } 13343 return ret; 13344 } 13345 #endif 13346 #ifdef TARGET_NR_gethostname 13347 case TARGET_NR_gethostname: 13348 { 13349 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 13350 if (name) { 13351 ret = get_errno(gethostname(name, arg2)); 13352 unlock_user(name, arg1, arg2); 13353 } else { 13354 ret = -TARGET_EFAULT; 13355 } 13356 return ret; 13357 } 13358 #endif 13359 #ifdef TARGET_NR_atomic_cmpxchg_32 13360 case TARGET_NR_atomic_cmpxchg_32: 13361 { 13362 /* should use start_exclusive from main.c */ 13363 abi_ulong mem_value; 13364 if (get_user_u32(mem_value, arg6)) { 13365 target_siginfo_t info; 13366 info.si_signo = SIGSEGV; 13367 info.si_errno = 0; 13368 info.si_code = TARGET_SEGV_MAPERR; 13369 info._sifields._sigfault._addr = arg6; 13370 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info); 13371 ret = 0xdeadbeef; 13372 13373 } 13374 if (mem_value == arg2) 13375 put_user_u32(arg1, arg6); 13376 return mem_value; 13377 } 13378 #endif 13379 #ifdef TARGET_NR_atomic_barrier 13380 case TARGET_NR_atomic_barrier: 13381 /* Like the kernel implementation and the 13382 qemu arm barrier, no-op this? */ 13383 return 0; 13384 #endif 13385 13386 #ifdef TARGET_NR_timer_create 13387 case TARGET_NR_timer_create: 13388 { 13389 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 13390 13391 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 13392 13393 int clkid = arg1; 13394 int timer_index = next_free_host_timer(); 13395 13396 if (timer_index < 0) { 13397 ret = -TARGET_EAGAIN; 13398 } else { 13399 timer_t *phtimer = g_posix_timers + timer_index; 13400 13401 if (arg2) { 13402 phost_sevp = &host_sevp; 13403 ret = target_to_host_sigevent(phost_sevp, arg2); 13404 if (ret != 0) { 13405 free_host_timer_slot(timer_index); 13406 return ret; 13407 } 13408 } 13409 13410 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 13411 if (ret) { 13412 free_host_timer_slot(timer_index); 13413 } else { 13414 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 13415 timer_delete(*phtimer); 13416 free_host_timer_slot(timer_index); 13417 return -TARGET_EFAULT; 13418 } 13419 } 13420 } 13421 return ret; 13422 } 13423 #endif 13424 13425 #ifdef TARGET_NR_timer_settime 13426 case TARGET_NR_timer_settime: 13427 { 13428 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 13429 * struct itimerspec * old_value */ 13430 target_timer_t timerid = get_timer_id(arg1); 13431 13432 if (timerid < 0) { 13433 ret = timerid; 13434 } else if (arg3 == 0) { 13435 ret = -TARGET_EINVAL; 13436 } else { 13437 timer_t htimer = g_posix_timers[timerid]; 13438 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13439 13440 if (target_to_host_itimerspec(&hspec_new, arg3)) { 13441 return -TARGET_EFAULT; 13442 } 13443 ret = get_errno( 13444 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13445 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 13446 return -TARGET_EFAULT; 13447 } 13448 } 13449 return ret; 13450 } 13451 #endif 13452 13453 #ifdef TARGET_NR_timer_settime64 13454 case TARGET_NR_timer_settime64: 13455 { 13456 target_timer_t timerid = get_timer_id(arg1); 13457 13458 if (timerid < 0) { 13459 ret = timerid; 13460 } else if (arg3 == 0) { 13461 ret = -TARGET_EINVAL; 13462 } else { 13463 timer_t htimer = g_posix_timers[timerid]; 13464 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13465 13466 if (target_to_host_itimerspec64(&hspec_new, arg3)) { 13467 return -TARGET_EFAULT; 13468 } 13469 ret = get_errno( 13470 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13471 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) { 13472 return -TARGET_EFAULT; 13473 } 13474 } 13475 return ret; 13476 } 13477 #endif 13478 13479 #ifdef TARGET_NR_timer_gettime 13480 case TARGET_NR_timer_gettime: 13481 { 13482 /* args: timer_t timerid, struct itimerspec *curr_value */ 13483 target_timer_t timerid = get_timer_id(arg1); 13484 13485 if (timerid < 0) { 13486 ret = timerid; 13487 } else if (!arg2) { 13488 ret = -TARGET_EFAULT; 13489 } else { 13490 timer_t htimer = g_posix_timers[timerid]; 13491 struct itimerspec hspec; 13492 ret = get_errno(timer_gettime(htimer, &hspec)); 13493 13494 if (host_to_target_itimerspec(arg2, &hspec)) { 13495 ret = -TARGET_EFAULT; 13496 } 13497 } 13498 return ret; 13499 } 13500 #endif 13501 13502 #ifdef TARGET_NR_timer_gettime64 13503 case TARGET_NR_timer_gettime64: 13504 { 13505 /* args: timer_t timerid, struct itimerspec64 *curr_value */ 13506 target_timer_t timerid = get_timer_id(arg1); 13507 13508 if (timerid < 0) { 13509 ret = timerid; 13510 } else if (!arg2) { 13511 ret = -TARGET_EFAULT; 13512 } else { 13513 timer_t htimer = g_posix_timers[timerid]; 13514 struct itimerspec hspec; 13515 ret = get_errno(timer_gettime(htimer, &hspec)); 13516 13517 if (host_to_target_itimerspec64(arg2, &hspec)) { 13518 ret = -TARGET_EFAULT; 13519 } 13520 } 13521 return ret; 13522 } 13523 #endif 13524 13525 #ifdef TARGET_NR_timer_getoverrun 13526 case TARGET_NR_timer_getoverrun: 13527 { 13528 /* args: timer_t timerid */ 13529 target_timer_t timerid = get_timer_id(arg1); 13530 13531 if (timerid < 0) { 13532 ret = timerid; 13533 } else { 13534 timer_t htimer = g_posix_timers[timerid]; 13535 ret = get_errno(timer_getoverrun(htimer)); 13536 } 13537 return ret; 13538 } 13539 #endif 13540 13541 #ifdef TARGET_NR_timer_delete 13542 case TARGET_NR_timer_delete: 13543 { 13544 /* args: timer_t timerid */ 13545 target_timer_t timerid = get_timer_id(arg1); 13546 13547 if (timerid < 0) { 13548 ret = timerid; 13549 } else { 13550 timer_t htimer = g_posix_timers[timerid]; 13551 ret = get_errno(timer_delete(htimer)); 13552 free_host_timer_slot(timerid); 13553 } 13554 return ret; 13555 } 13556 #endif 13557 13558 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 13559 case TARGET_NR_timerfd_create: 13560 ret = get_errno(timerfd_create(arg1, 13561 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 13562 if (ret >= 0) { 13563 fd_trans_register(ret, &target_timerfd_trans); 13564 } 13565 return ret; 13566 #endif 13567 13568 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 13569 case TARGET_NR_timerfd_gettime: 13570 { 13571 struct itimerspec its_curr; 13572 13573 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13574 13575 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 13576 return -TARGET_EFAULT; 13577 } 13578 } 13579 return ret; 13580 #endif 13581 13582 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD) 13583 case TARGET_NR_timerfd_gettime64: 13584 { 13585 struct itimerspec its_curr; 13586 13587 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13588 13589 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) { 13590 return -TARGET_EFAULT; 13591 } 13592 } 13593 return ret; 13594 #endif 13595 13596 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 13597 case TARGET_NR_timerfd_settime: 13598 { 13599 struct itimerspec its_new, its_old, *p_new; 13600 13601 if (arg3) { 13602 if (target_to_host_itimerspec(&its_new, arg3)) { 13603 return -TARGET_EFAULT; 13604 } 13605 p_new = &its_new; 13606 } else { 13607 p_new = NULL; 13608 } 13609 13610 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13611 13612 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 13613 return -TARGET_EFAULT; 13614 } 13615 } 13616 return ret; 13617 #endif 13618 13619 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD) 13620 case TARGET_NR_timerfd_settime64: 13621 { 13622 struct itimerspec its_new, its_old, *p_new; 13623 13624 if (arg3) { 13625 if (target_to_host_itimerspec64(&its_new, arg3)) { 13626 return -TARGET_EFAULT; 13627 } 13628 p_new = &its_new; 13629 } else { 13630 p_new = NULL; 13631 } 13632 13633 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13634 13635 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) { 13636 return -TARGET_EFAULT; 13637 } 13638 } 13639 return ret; 13640 #endif 13641 13642 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 13643 case TARGET_NR_ioprio_get: 13644 return get_errno(ioprio_get(arg1, arg2)); 13645 #endif 13646 13647 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 13648 case TARGET_NR_ioprio_set: 13649 return get_errno(ioprio_set(arg1, arg2, arg3)); 13650 #endif 13651 13652 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 13653 case TARGET_NR_setns: 13654 return get_errno(setns(arg1, arg2)); 13655 #endif 13656 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 13657 case TARGET_NR_unshare: 13658 return get_errno(unshare(arg1)); 13659 #endif 13660 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 13661 case TARGET_NR_kcmp: 13662 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 13663 #endif 13664 #ifdef TARGET_NR_swapcontext 13665 case TARGET_NR_swapcontext: 13666 /* PowerPC specific. */ 13667 return do_swapcontext(cpu_env, arg1, arg2, arg3); 13668 #endif 13669 #ifdef TARGET_NR_memfd_create 13670 case TARGET_NR_memfd_create: 13671 p = lock_user_string(arg1); 13672 if (!p) { 13673 return -TARGET_EFAULT; 13674 } 13675 ret = get_errno(memfd_create(p, arg2)); 13676 fd_trans_unregister(ret); 13677 unlock_user(p, arg1, 0); 13678 return ret; 13679 #endif 13680 #if defined TARGET_NR_membarrier && defined __NR_membarrier 13681 case TARGET_NR_membarrier: 13682 return get_errno(membarrier(arg1, arg2)); 13683 #endif 13684 13685 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 13686 case TARGET_NR_copy_file_range: 13687 { 13688 loff_t inoff, outoff; 13689 loff_t *pinoff = NULL, *poutoff = NULL; 13690 13691 if (arg2) { 13692 if (get_user_u64(inoff, arg2)) { 13693 return -TARGET_EFAULT; 13694 } 13695 pinoff = &inoff; 13696 } 13697 if (arg4) { 13698 if (get_user_u64(outoff, arg4)) { 13699 return -TARGET_EFAULT; 13700 } 13701 poutoff = &outoff; 13702 } 13703 /* Do not sign-extend the count parameter. */ 13704 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff, 13705 (abi_ulong)arg5, arg6)); 13706 if (!is_error(ret) && ret > 0) { 13707 if (arg2) { 13708 if (put_user_u64(inoff, arg2)) { 13709 return -TARGET_EFAULT; 13710 } 13711 } 13712 if (arg4) { 13713 if (put_user_u64(outoff, arg4)) { 13714 return -TARGET_EFAULT; 13715 } 13716 } 13717 } 13718 } 13719 return ret; 13720 #endif 13721 13722 #if defined(TARGET_NR_pivot_root) 13723 case TARGET_NR_pivot_root: 13724 { 13725 void *p2; 13726 p = lock_user_string(arg1); /* new_root */ 13727 p2 = lock_user_string(arg2); /* put_old */ 13728 if (!p || !p2) { 13729 ret = -TARGET_EFAULT; 13730 } else { 13731 ret = get_errno(pivot_root(p, p2)); 13732 } 13733 unlock_user(p2, arg2, 0); 13734 unlock_user(p, arg1, 0); 13735 } 13736 return ret; 13737 #endif 13738 13739 #if defined(TARGET_NR_riscv_hwprobe) 13740 case TARGET_NR_riscv_hwprobe: 13741 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5); 13742 #endif 13743 13744 default: 13745 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); 13746 return -TARGET_ENOSYS; 13747 } 13748 return ret; 13749 } 13750 13751 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1, 13752 abi_long arg2, abi_long arg3, abi_long arg4, 13753 abi_long arg5, abi_long arg6, abi_long arg7, 13754 abi_long arg8) 13755 { 13756 CPUState *cpu = env_cpu(cpu_env); 13757 abi_long ret; 13758 13759 #ifdef DEBUG_ERESTARTSYS 13760 /* Debug-only code for exercising the syscall-restart code paths 13761 * in the per-architecture cpu main loops: restart every syscall 13762 * the guest makes once before letting it through. 13763 */ 13764 { 13765 static bool flag; 13766 flag = !flag; 13767 if (flag) { 13768 return -QEMU_ERESTARTSYS; 13769 } 13770 } 13771 #endif 13772 13773 record_syscall_start(cpu, num, arg1, 13774 arg2, arg3, arg4, arg5, arg6, arg7, arg8); 13775 13776 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13777 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6); 13778 } 13779 13780 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4, 13781 arg5, arg6, arg7, arg8); 13782 13783 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13784 print_syscall_ret(cpu_env, num, ret, arg1, arg2, 13785 arg3, arg4, arg5, arg6); 13786 } 13787 13788 record_syscall_return(cpu, num, ret); 13789 return ret; 13790 } 13791