xref: /openbmc/qemu/linux-user/syscall.c (revision 6467d9eb)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "target_mman.h"
27 #include <elf.h>
28 #include <endian.h>
29 #include <grp.h>
30 #include <sys/ipc.h>
31 #include <sys/msg.h>
32 #include <sys/wait.h>
33 #include <sys/mount.h>
34 #include <sys/file.h>
35 #include <sys/fsuid.h>
36 #include <sys/personality.h>
37 #include <sys/prctl.h>
38 #include <sys/resource.h>
39 #include <sys/swap.h>
40 #include <linux/capability.h>
41 #include <sched.h>
42 #include <sys/timex.h>
43 #include <sys/socket.h>
44 #include <linux/sockios.h>
45 #include <sys/un.h>
46 #include <sys/uio.h>
47 #include <poll.h>
48 #include <sys/times.h>
49 #include <sys/shm.h>
50 #include <sys/sem.h>
51 #include <sys/statfs.h>
52 #include <utime.h>
53 #include <sys/sysinfo.h>
54 #include <sys/signalfd.h>
55 //#include <sys/user.h>
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <linux/wireless.h>
61 #include <linux/icmp.h>
62 #include <linux/icmpv6.h>
63 #include <linux/if_tun.h>
64 #include <linux/in6.h>
65 #include <linux/errqueue.h>
66 #include <linux/random.h>
67 #ifdef CONFIG_TIMERFD
68 #include <sys/timerfd.h>
69 #endif
70 #ifdef CONFIG_EVENTFD
71 #include <sys/eventfd.h>
72 #endif
73 #ifdef CONFIG_EPOLL
74 #include <sys/epoll.h>
75 #endif
76 #ifdef CONFIG_ATTR
77 #include "qemu/xattr.h"
78 #endif
79 #ifdef CONFIG_SENDFILE
80 #include <sys/sendfile.h>
81 #endif
82 #ifdef HAVE_SYS_KCOV_H
83 #include <sys/kcov.h>
84 #endif
85 
86 #define termios host_termios
87 #define winsize host_winsize
88 #define termio host_termio
89 #define sgttyb host_sgttyb /* same as target */
90 #define tchars host_tchars /* same as target */
91 #define ltchars host_ltchars /* same as target */
92 
93 #include <linux/termios.h>
94 #include <linux/unistd.h>
95 #include <linux/cdrom.h>
96 #include <linux/hdreg.h>
97 #include <linux/soundcard.h>
98 #include <linux/kd.h>
99 #include <linux/mtio.h>
100 #include <linux/fs.h>
101 #include <linux/fd.h>
102 #if defined(CONFIG_FIEMAP)
103 #include <linux/fiemap.h>
104 #endif
105 #include <linux/fb.h>
106 #if defined(CONFIG_USBFS)
107 #include <linux/usbdevice_fs.h>
108 #include <linux/usb/ch9.h>
109 #endif
110 #include <linux/vt.h>
111 #include <linux/dm-ioctl.h>
112 #include <linux/reboot.h>
113 #include <linux/route.h>
114 #include <linux/filter.h>
115 #include <linux/blkpg.h>
116 #include <netpacket/packet.h>
117 #include <linux/netlink.h>
118 #include <linux/if_alg.h>
119 #include <linux/rtc.h>
120 #include <sound/asound.h>
121 #ifdef HAVE_BTRFS_H
122 #include <linux/btrfs.h>
123 #endif
124 #ifdef HAVE_DRM_H
125 #include <libdrm/drm.h>
126 #include <libdrm/i915_drm.h>
127 #endif
128 #include "linux_loop.h"
129 #include "uname.h"
130 
131 #include "qemu.h"
132 #include "user-internals.h"
133 #include "strace.h"
134 #include "signal-common.h"
135 #include "loader.h"
136 #include "user-mmap.h"
137 #include "user/safe-syscall.h"
138 #include "qemu/guest-random.h"
139 #include "qemu/selfmap.h"
140 #include "user/syscall-trace.h"
141 #include "special-errno.h"
142 #include "qapi/error.h"
143 #include "fd-trans.h"
144 #include "tcg/tcg.h"
145 #include "cpu_loop-common.h"
146 
147 #ifndef CLONE_IO
148 #define CLONE_IO                0x80000000      /* Clone io context */
149 #endif
150 
151 /* We can't directly call the host clone syscall, because this will
152  * badly confuse libc (breaking mutexes, for example). So we must
153  * divide clone flags into:
154  *  * flag combinations that look like pthread_create()
155  *  * flag combinations that look like fork()
156  *  * flags we can implement within QEMU itself
157  *  * flags we can't support and will return an error for
158  */
159 /* For thread creation, all these flags must be present; for
160  * fork, none must be present.
161  */
162 #define CLONE_THREAD_FLAGS                              \
163     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
164      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
165 
166 /* These flags are ignored:
167  * CLONE_DETACHED is now ignored by the kernel;
168  * CLONE_IO is just an optimisation hint to the I/O scheduler
169  */
170 #define CLONE_IGNORED_FLAGS                     \
171     (CLONE_DETACHED | CLONE_IO)
172 
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
176 
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS               \
179     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
181 
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
184     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
185      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
186 
187 #define CLONE_INVALID_FORK_FLAGS                                        \
188     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
189 
190 #define CLONE_INVALID_THREAD_FLAGS                                      \
191     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
192        CLONE_IGNORED_FLAGS))
193 
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195  * have almost all been allocated. We cannot support any of
196  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198  * The checks against the invalid thread masks above will catch these.
199  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
200  */
201 
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203  * once. This exercises the codepaths for restart.
204  */
205 //#define DEBUG_ERESTARTSYS
206 
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
212 
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
220 
221 #define _syscall0(type,name)		\
222 static type name (void)			\
223 {					\
224 	return syscall(__NR_##name);	\
225 }
226 
227 #define _syscall1(type,name,type1,arg1)		\
228 static type name (type1 arg1)			\
229 {						\
230 	return syscall(__NR_##name, arg1);	\
231 }
232 
233 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
234 static type name (type1 arg1,type2 arg2)		\
235 {							\
236 	return syscall(__NR_##name, arg1, arg2);	\
237 }
238 
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
240 static type name (type1 arg1,type2 arg2,type3 arg3)		\
241 {								\
242 	return syscall(__NR_##name, arg1, arg2, arg3);		\
243 }
244 
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
249 }
250 
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
252 		  type5,arg5)							\
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
254 {										\
255 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
256 }
257 
258 
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
260 		  type5,arg5,type6,arg6)					\
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
262                   type6 arg6)							\
263 {										\
264 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
265 }
266 
267 
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
283 
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
287 
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
292 
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
297 
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
300 
301 /* For the 64-bit guest on 32-bit host case we must emulate
302  * getdents using getdents64, because otherwise the host
303  * might hand us back more dirent records than we can fit
304  * into the guest buffer after structure format conversion.
305  * Otherwise we emulate getdents with getdents if the host has it.
306  */
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
310 
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
321           loff_t *, res, unsigned int, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325           siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339           const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343           const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350                              unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357           unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360           unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363     uint32_t size;
364     uint32_t sched_policy;
365     uint64_t sched_flags;
366     int32_t sched_nice;
367     uint32_t sched_priority;
368     uint64_t sched_runtime;
369     uint64_t sched_deadline;
370     uint64_t sched_period;
371     uint32_t sched_util_min;
372     uint32_t sched_util_max;
373 };
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376           unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379           unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384           const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387           struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390           const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394           void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396           struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398           struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
408 
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411           unsigned long, idx1, unsigned long, idx2)
412 #endif
413 
414 /*
415  * It is assumed that struct statx is architecture independent.
416  */
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419           unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
424 
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
427   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
428   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
429   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
430   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
431   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
432   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
433   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
434   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
435   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
436   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
437   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
439 #if defined(O_DIRECT)
440   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
441 #endif
442 #if defined(O_NOATIME)
443   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
444 #endif
445 #if defined(O_CLOEXEC)
446   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
447 #endif
448 #if defined(O_PATH)
449   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
450 #endif
451 #if defined(O_TMPFILE)
452   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
453 #endif
454   /* Don't terminate the list prematurely on 64-bit host+guest.  */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
458 };
459 
460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
461 
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
466           const struct timespec *,tsp,int,flags)
467 #else
468 static int sys_utimensat(int dirfd, const char *pathname,
469                          const struct timespec times[2], int flags)
470 {
471     errno = ENOSYS;
472     return -1;
473 }
474 #endif
475 #endif /* TARGET_NR_utimensat */
476 
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
481           const char *, new, unsigned int, flags)
482 #else
483 static int sys_renameat2(int oldfd, const char *old,
484                          int newfd, const char *new, int flags)
485 {
486     if (flags == 0) {
487         return renameat(oldfd, old, newfd, new);
488     }
489     errno = ENOSYS;
490     return -1;
491 }
492 #endif
493 #endif /* TARGET_NR_renameat2 */
494 
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
497 #else
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY  */
504 
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
508 #endif
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64 {
512     uint64_t rlim_cur;
513     uint64_t rlim_max;
514 };
515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
516           const struct host_rlimit64 *, new_limit,
517           struct host_rlimit64 *, old_limit)
518 #endif
519 
520 
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers[GUEST_TIMER_MAX];
525 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
526 
527 static inline int next_free_host_timer(void)
528 {
529     int k;
530     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
531         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
532             return k;
533         }
534     }
535     return -1;
536 }
537 
538 static inline void free_host_timer_slot(int id)
539 {
540     qatomic_store_release(g_posix_timer_allocated + id, 0);
541 }
542 #endif
543 
544 static inline int host_to_target_errno(int host_errno)
545 {
546     switch (host_errno) {
547 #define E(X)  case X: return TARGET_##X;
548 #include "errnos.c.inc"
549 #undef E
550     default:
551         return host_errno;
552     }
553 }
554 
555 static inline int target_to_host_errno(int target_errno)
556 {
557     switch (target_errno) {
558 #define E(X)  case TARGET_##X: return X;
559 #include "errnos.c.inc"
560 #undef E
561     default:
562         return target_errno;
563     }
564 }
565 
566 abi_long get_errno(abi_long ret)
567 {
568     if (ret == -1)
569         return -host_to_target_errno(errno);
570     else
571         return ret;
572 }
573 
574 const char *target_strerror(int err)
575 {
576     if (err == QEMU_ERESTARTSYS) {
577         return "To be restarted";
578     }
579     if (err == QEMU_ESIGRETURN) {
580         return "Successful exit from sigreturn";
581     }
582 
583     return strerror(target_to_host_errno(err));
584 }
585 
586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
587 {
588     int i;
589     uint8_t b;
590     if (usize <= ksize) {
591         return 1;
592     }
593     for (i = ksize; i < usize; i++) {
594         if (get_user_u8(b, addr + i)) {
595             return -TARGET_EFAULT;
596         }
597         if (b != 0) {
598             return 0;
599         }
600     }
601     return 1;
602 }
603 
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
606 { \
607     return safe_syscall(__NR_##name); \
608 }
609 
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
612 { \
613     return safe_syscall(__NR_##name, arg1); \
614 }
615 
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
618 { \
619     return safe_syscall(__NR_##name, arg1, arg2); \
620 }
621 
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
624 { \
625     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
626 }
627 
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
629     type4, arg4) \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
631 { \
632     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
633 }
634 
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636     type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
638     type5 arg5) \
639 { \
640     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
641 }
642 
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644     type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646     type5 arg5, type6 arg6) \
647 { \
648     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
649 }
650 
651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
654               int, flags, mode_t, mode)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
657               struct rusage *, rusage)
658 #endif
659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
660               int, options, struct rusage *, rusage)
661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663               char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671               struct timespec *, tsp, const sigset_t *, sigmask,
672               size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675               int, maxevents, int, timeout, const sigset_t *, sigmask,
676               size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679               const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683               const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692               unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694               unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696               socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706               const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709               int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712               struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715     defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717               const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722               void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730               int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734               long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738               unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741     defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743               size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746     defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748               size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752               int, outfd, loff_t *, poutoff, size_t, length,
753               unsigned int, flags)
754 #endif
755 
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757  * "third argument might be integer or pointer or not present" behaviour of
758  * the libc function.
759  */
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763  *  use the flock64 struct rather than unsuffixed flock
764  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
765  */
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
771 
772 static inline int host_to_target_sock_type(int host_type)
773 {
774     int target_type;
775 
776     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777     case SOCK_DGRAM:
778         target_type = TARGET_SOCK_DGRAM;
779         break;
780     case SOCK_STREAM:
781         target_type = TARGET_SOCK_STREAM;
782         break;
783     default:
784         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785         break;
786     }
787 
788 #if defined(SOCK_CLOEXEC)
789     if (host_type & SOCK_CLOEXEC) {
790         target_type |= TARGET_SOCK_CLOEXEC;
791     }
792 #endif
793 
794 #if defined(SOCK_NONBLOCK)
795     if (host_type & SOCK_NONBLOCK) {
796         target_type |= TARGET_SOCK_NONBLOCK;
797     }
798 #endif
799 
800     return target_type;
801 }
802 
803 static abi_ulong target_brk, initial_target_brk;
804 
805 void target_set_brk(abi_ulong new_brk)
806 {
807     target_brk = TARGET_PAGE_ALIGN(new_brk);
808     initial_target_brk = target_brk;
809 }
810 
811 /* do_brk() must return target values and target errnos. */
812 abi_long do_brk(abi_ulong brk_val)
813 {
814     abi_long mapped_addr;
815     abi_ulong new_brk;
816     abi_ulong old_brk;
817 
818     /* brk pointers are always untagged */
819 
820     /* do not allow to shrink below initial brk value */
821     if (brk_val < initial_target_brk) {
822         return target_brk;
823     }
824 
825     new_brk = TARGET_PAGE_ALIGN(brk_val);
826     old_brk = TARGET_PAGE_ALIGN(target_brk);
827 
828     /* new and old target_brk might be on the same page */
829     if (new_brk == old_brk) {
830         target_brk = brk_val;
831         return target_brk;
832     }
833 
834     /* Release heap if necesary */
835     if (new_brk < old_brk) {
836         target_munmap(new_brk, old_brk - new_brk);
837 
838         target_brk = brk_val;
839         return target_brk;
840     }
841 
842     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
843                               PROT_READ | PROT_WRITE,
844                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
845                               -1, 0);
846 
847     if (mapped_addr == old_brk) {
848         target_brk = brk_val;
849         return target_brk;
850     }
851 
852 #if defined(TARGET_ALPHA)
853     /* We (partially) emulate OSF/1 on Alpha, which requires we
854        return a proper errno, not an unchanged brk value.  */
855     return -TARGET_ENOMEM;
856 #endif
857     /* For everything else, return the previous break. */
858     return target_brk;
859 }
860 
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long copy_from_user_fdset(fd_set *fds,
864                                             abi_ulong target_fds_addr,
865                                             int n)
866 {
867     int i, nw, j, k;
868     abi_ulong b, *target_fds;
869 
870     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
871     if (!(target_fds = lock_user(VERIFY_READ,
872                                  target_fds_addr,
873                                  sizeof(abi_ulong) * nw,
874                                  1)))
875         return -TARGET_EFAULT;
876 
877     FD_ZERO(fds);
878     k = 0;
879     for (i = 0; i < nw; i++) {
880         /* grab the abi_ulong */
881         __get_user(b, &target_fds[i]);
882         for (j = 0; j < TARGET_ABI_BITS; j++) {
883             /* check the bit inside the abi_ulong */
884             if ((b >> j) & 1)
885                 FD_SET(k, fds);
886             k++;
887         }
888     }
889 
890     unlock_user(target_fds, target_fds_addr, 0);
891 
892     return 0;
893 }
894 
895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
896                                                  abi_ulong target_fds_addr,
897                                                  int n)
898 {
899     if (target_fds_addr) {
900         if (copy_from_user_fdset(fds, target_fds_addr, n))
901             return -TARGET_EFAULT;
902         *fds_ptr = fds;
903     } else {
904         *fds_ptr = NULL;
905     }
906     return 0;
907 }
908 
909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
910                                           const fd_set *fds,
911                                           int n)
912 {
913     int i, nw, j, k;
914     abi_long v;
915     abi_ulong *target_fds;
916 
917     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
918     if (!(target_fds = lock_user(VERIFY_WRITE,
919                                  target_fds_addr,
920                                  sizeof(abi_ulong) * nw,
921                                  0)))
922         return -TARGET_EFAULT;
923 
924     k = 0;
925     for (i = 0; i < nw; i++) {
926         v = 0;
927         for (j = 0; j < TARGET_ABI_BITS; j++) {
928             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
929             k++;
930         }
931         __put_user(v, &target_fds[i]);
932     }
933 
934     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
935 
936     return 0;
937 }
938 #endif
939 
940 #if defined(__alpha__)
941 #define HOST_HZ 1024
942 #else
943 #define HOST_HZ 100
944 #endif
945 
946 static inline abi_long host_to_target_clock_t(long ticks)
947 {
948 #if HOST_HZ == TARGET_HZ
949     return ticks;
950 #else
951     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
952 #endif
953 }
954 
955 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
956                                              const struct rusage *rusage)
957 {
958     struct target_rusage *target_rusage;
959 
960     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
961         return -TARGET_EFAULT;
962     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
963     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
964     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
965     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
966     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
967     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
968     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
969     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
970     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
971     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
972     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
973     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
974     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
975     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
976     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
977     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
978     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
979     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
980     unlock_user_struct(target_rusage, target_addr, 1);
981 
982     return 0;
983 }
984 
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
987 {
988     abi_ulong target_rlim_swap;
989     rlim_t result;
990 
991     target_rlim_swap = tswapal(target_rlim);
992     if (target_rlim_swap == TARGET_RLIM_INFINITY)
993         return RLIM_INFINITY;
994 
995     result = target_rlim_swap;
996     if (target_rlim_swap != (rlim_t)result)
997         return RLIM_INFINITY;
998 
999     return result;
1000 }
1001 #endif
1002 
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1005 {
1006     abi_ulong target_rlim_swap;
1007     abi_ulong result;
1008 
1009     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1010         target_rlim_swap = TARGET_RLIM_INFINITY;
1011     else
1012         target_rlim_swap = rlim;
1013     result = tswapal(target_rlim_swap);
1014 
1015     return result;
1016 }
1017 #endif
1018 
1019 static inline int target_to_host_resource(int code)
1020 {
1021     switch (code) {
1022     case TARGET_RLIMIT_AS:
1023         return RLIMIT_AS;
1024     case TARGET_RLIMIT_CORE:
1025         return RLIMIT_CORE;
1026     case TARGET_RLIMIT_CPU:
1027         return RLIMIT_CPU;
1028     case TARGET_RLIMIT_DATA:
1029         return RLIMIT_DATA;
1030     case TARGET_RLIMIT_FSIZE:
1031         return RLIMIT_FSIZE;
1032     case TARGET_RLIMIT_LOCKS:
1033         return RLIMIT_LOCKS;
1034     case TARGET_RLIMIT_MEMLOCK:
1035         return RLIMIT_MEMLOCK;
1036     case TARGET_RLIMIT_MSGQUEUE:
1037         return RLIMIT_MSGQUEUE;
1038     case TARGET_RLIMIT_NICE:
1039         return RLIMIT_NICE;
1040     case TARGET_RLIMIT_NOFILE:
1041         return RLIMIT_NOFILE;
1042     case TARGET_RLIMIT_NPROC:
1043         return RLIMIT_NPROC;
1044     case TARGET_RLIMIT_RSS:
1045         return RLIMIT_RSS;
1046     case TARGET_RLIMIT_RTPRIO:
1047         return RLIMIT_RTPRIO;
1048 #ifdef RLIMIT_RTTIME
1049     case TARGET_RLIMIT_RTTIME:
1050         return RLIMIT_RTTIME;
1051 #endif
1052     case TARGET_RLIMIT_SIGPENDING:
1053         return RLIMIT_SIGPENDING;
1054     case TARGET_RLIMIT_STACK:
1055         return RLIMIT_STACK;
1056     default:
1057         return code;
1058     }
1059 }
1060 
1061 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1062                                               abi_ulong target_tv_addr)
1063 {
1064     struct target_timeval *target_tv;
1065 
1066     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1067         return -TARGET_EFAULT;
1068     }
1069 
1070     __get_user(tv->tv_sec, &target_tv->tv_sec);
1071     __get_user(tv->tv_usec, &target_tv->tv_usec);
1072 
1073     unlock_user_struct(target_tv, target_tv_addr, 0);
1074 
1075     return 0;
1076 }
1077 
1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1079                                             const struct timeval *tv)
1080 {
1081     struct target_timeval *target_tv;
1082 
1083     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1084         return -TARGET_EFAULT;
1085     }
1086 
1087     __put_user(tv->tv_sec, &target_tv->tv_sec);
1088     __put_user(tv->tv_usec, &target_tv->tv_usec);
1089 
1090     unlock_user_struct(target_tv, target_tv_addr, 1);
1091 
1092     return 0;
1093 }
1094 
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1097                                                 abi_ulong target_tv_addr)
1098 {
1099     struct target__kernel_sock_timeval *target_tv;
1100 
1101     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1102         return -TARGET_EFAULT;
1103     }
1104 
1105     __get_user(tv->tv_sec, &target_tv->tv_sec);
1106     __get_user(tv->tv_usec, &target_tv->tv_usec);
1107 
1108     unlock_user_struct(target_tv, target_tv_addr, 0);
1109 
1110     return 0;
1111 }
1112 #endif
1113 
1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1115                                               const struct timeval *tv)
1116 {
1117     struct target__kernel_sock_timeval *target_tv;
1118 
1119     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120         return -TARGET_EFAULT;
1121     }
1122 
1123     __put_user(tv->tv_sec, &target_tv->tv_sec);
1124     __put_user(tv->tv_usec, &target_tv->tv_usec);
1125 
1126     unlock_user_struct(target_tv, target_tv_addr, 1);
1127 
1128     return 0;
1129 }
1130 
1131 #if defined(TARGET_NR_futex) || \
1132     defined(TARGET_NR_rt_sigtimedwait) || \
1133     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138     defined(TARGET_NR_timer_settime) || \
1139     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1141                                                abi_ulong target_addr)
1142 {
1143     struct target_timespec *target_ts;
1144 
1145     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1146         return -TARGET_EFAULT;
1147     }
1148     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1149     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1150     unlock_user_struct(target_ts, target_addr, 0);
1151     return 0;
1152 }
1153 #endif
1154 
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156     defined(TARGET_NR_timer_settime64) || \
1157     defined(TARGET_NR_mq_timedsend_time64) || \
1158     defined(TARGET_NR_mq_timedreceive_time64) || \
1159     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160     defined(TARGET_NR_clock_nanosleep_time64) || \
1161     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162     defined(TARGET_NR_utimensat) || \
1163     defined(TARGET_NR_utimensat_time64) || \
1164     defined(TARGET_NR_semtimedop_time64) || \
1165     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1167                                                  abi_ulong target_addr)
1168 {
1169     struct target__kernel_timespec *target_ts;
1170 
1171     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1172         return -TARGET_EFAULT;
1173     }
1174     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1175     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176     /* in 32bit mode, this drops the padding */
1177     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1178     unlock_user_struct(target_ts, target_addr, 0);
1179     return 0;
1180 }
1181 #endif
1182 
1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1184                                                struct timespec *host_ts)
1185 {
1186     struct target_timespec *target_ts;
1187 
1188     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1189         return -TARGET_EFAULT;
1190     }
1191     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1192     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1193     unlock_user_struct(target_ts, target_addr, 1);
1194     return 0;
1195 }
1196 
1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1198                                                  struct timespec *host_ts)
1199 {
1200     struct target__kernel_timespec *target_ts;
1201 
1202     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1203         return -TARGET_EFAULT;
1204     }
1205     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1206     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1207     unlock_user_struct(target_ts, target_addr, 1);
1208     return 0;
1209 }
1210 
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1213                                              struct timezone *tz)
1214 {
1215     struct target_timezone *target_tz;
1216 
1217     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1218         return -TARGET_EFAULT;
1219     }
1220 
1221     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1222     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1223 
1224     unlock_user_struct(target_tz, target_tz_addr, 1);
1225 
1226     return 0;
1227 }
1228 #endif
1229 
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1232                                                abi_ulong target_tz_addr)
1233 {
1234     struct target_timezone *target_tz;
1235 
1236     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1237         return -TARGET_EFAULT;
1238     }
1239 
1240     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1241     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1242 
1243     unlock_user_struct(target_tz, target_tz_addr, 0);
1244 
1245     return 0;
1246 }
1247 #endif
1248 
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1250 #include <mqueue.h>
1251 
1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1253                                               abi_ulong target_mq_attr_addr)
1254 {
1255     struct target_mq_attr *target_mq_attr;
1256 
1257     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1258                           target_mq_attr_addr, 1))
1259         return -TARGET_EFAULT;
1260 
1261     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1262     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1263     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1264     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1265 
1266     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1267 
1268     return 0;
1269 }
1270 
1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1272                                             const struct mq_attr *attr)
1273 {
1274     struct target_mq_attr *target_mq_attr;
1275 
1276     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1277                           target_mq_attr_addr, 0))
1278         return -TARGET_EFAULT;
1279 
1280     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1281     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1282     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1283     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1284 
1285     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1286 
1287     return 0;
1288 }
1289 #endif
1290 
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long do_select(int n,
1294                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1295                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1296 {
1297     fd_set rfds, wfds, efds;
1298     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1299     struct timeval tv;
1300     struct timespec ts, *ts_ptr;
1301     abi_long ret;
1302 
1303     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1304     if (ret) {
1305         return ret;
1306     }
1307     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1308     if (ret) {
1309         return ret;
1310     }
1311     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1312     if (ret) {
1313         return ret;
1314     }
1315 
1316     if (target_tv_addr) {
1317         if (copy_from_user_timeval(&tv, target_tv_addr))
1318             return -TARGET_EFAULT;
1319         ts.tv_sec = tv.tv_sec;
1320         ts.tv_nsec = tv.tv_usec * 1000;
1321         ts_ptr = &ts;
1322     } else {
1323         ts_ptr = NULL;
1324     }
1325 
1326     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1327                                   ts_ptr, NULL));
1328 
1329     if (!is_error(ret)) {
1330         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1331             return -TARGET_EFAULT;
1332         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1333             return -TARGET_EFAULT;
1334         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1335             return -TARGET_EFAULT;
1336 
1337         if (target_tv_addr) {
1338             tv.tv_sec = ts.tv_sec;
1339             tv.tv_usec = ts.tv_nsec / 1000;
1340             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1341                 return -TARGET_EFAULT;
1342             }
1343         }
1344     }
1345 
1346     return ret;
1347 }
1348 
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long do_old_select(abi_ulong arg1)
1351 {
1352     struct target_sel_arg_struct *sel;
1353     abi_ulong inp, outp, exp, tvp;
1354     long nsel;
1355 
1356     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1357         return -TARGET_EFAULT;
1358     }
1359 
1360     nsel = tswapal(sel->n);
1361     inp = tswapal(sel->inp);
1362     outp = tswapal(sel->outp);
1363     exp = tswapal(sel->exp);
1364     tvp = tswapal(sel->tvp);
1365 
1366     unlock_user_struct(sel, arg1, 0);
1367 
1368     return do_select(nsel, inp, outp, exp, tvp);
1369 }
1370 #endif
1371 #endif
1372 
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1375                             abi_long arg4, abi_long arg5, abi_long arg6,
1376                             bool time64)
1377 {
1378     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1379     fd_set rfds, wfds, efds;
1380     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1381     struct timespec ts, *ts_ptr;
1382     abi_long ret;
1383 
1384     /*
1385      * The 6th arg is actually two args smashed together,
1386      * so we cannot use the C library.
1387      */
1388     struct {
1389         sigset_t *set;
1390         size_t size;
1391     } sig, *sig_ptr;
1392 
1393     abi_ulong arg_sigset, arg_sigsize, *arg7;
1394 
1395     n = arg1;
1396     rfd_addr = arg2;
1397     wfd_addr = arg3;
1398     efd_addr = arg4;
1399     ts_addr = arg5;
1400 
1401     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1402     if (ret) {
1403         return ret;
1404     }
1405     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1406     if (ret) {
1407         return ret;
1408     }
1409     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1410     if (ret) {
1411         return ret;
1412     }
1413 
1414     /*
1415      * This takes a timespec, and not a timeval, so we cannot
1416      * use the do_select() helper ...
1417      */
1418     if (ts_addr) {
1419         if (time64) {
1420             if (target_to_host_timespec64(&ts, ts_addr)) {
1421                 return -TARGET_EFAULT;
1422             }
1423         } else {
1424             if (target_to_host_timespec(&ts, ts_addr)) {
1425                 return -TARGET_EFAULT;
1426             }
1427         }
1428             ts_ptr = &ts;
1429     } else {
1430         ts_ptr = NULL;
1431     }
1432 
1433     /* Extract the two packed args for the sigset */
1434     sig_ptr = NULL;
1435     if (arg6) {
1436         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1437         if (!arg7) {
1438             return -TARGET_EFAULT;
1439         }
1440         arg_sigset = tswapal(arg7[0]);
1441         arg_sigsize = tswapal(arg7[1]);
1442         unlock_user(arg7, arg6, 0);
1443 
1444         if (arg_sigset) {
1445             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1446             if (ret != 0) {
1447                 return ret;
1448             }
1449             sig_ptr = &sig;
1450             sig.size = SIGSET_T_SIZE;
1451         }
1452     }
1453 
1454     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1455                                   ts_ptr, sig_ptr));
1456 
1457     if (sig_ptr) {
1458         finish_sigsuspend_mask(ret);
1459     }
1460 
1461     if (!is_error(ret)) {
1462         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1463             return -TARGET_EFAULT;
1464         }
1465         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1466             return -TARGET_EFAULT;
1467         }
1468         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1469             return -TARGET_EFAULT;
1470         }
1471         if (time64) {
1472             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1473                 return -TARGET_EFAULT;
1474             }
1475         } else {
1476             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1477                 return -TARGET_EFAULT;
1478             }
1479         }
1480     }
1481     return ret;
1482 }
1483 #endif
1484 
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486     defined(TARGET_NR_ppoll_time64)
1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1488                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1489 {
1490     struct target_pollfd *target_pfd;
1491     unsigned int nfds = arg2;
1492     struct pollfd *pfd;
1493     unsigned int i;
1494     abi_long ret;
1495 
1496     pfd = NULL;
1497     target_pfd = NULL;
1498     if (nfds) {
1499         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1500             return -TARGET_EINVAL;
1501         }
1502         target_pfd = lock_user(VERIFY_WRITE, arg1,
1503                                sizeof(struct target_pollfd) * nfds, 1);
1504         if (!target_pfd) {
1505             return -TARGET_EFAULT;
1506         }
1507 
1508         pfd = alloca(sizeof(struct pollfd) * nfds);
1509         for (i = 0; i < nfds; i++) {
1510             pfd[i].fd = tswap32(target_pfd[i].fd);
1511             pfd[i].events = tswap16(target_pfd[i].events);
1512         }
1513     }
1514     if (ppoll) {
1515         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1516         sigset_t *set = NULL;
1517 
1518         if (arg3) {
1519             if (time64) {
1520                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1521                     unlock_user(target_pfd, arg1, 0);
1522                     return -TARGET_EFAULT;
1523                 }
1524             } else {
1525                 if (target_to_host_timespec(timeout_ts, arg3)) {
1526                     unlock_user(target_pfd, arg1, 0);
1527                     return -TARGET_EFAULT;
1528                 }
1529             }
1530         } else {
1531             timeout_ts = NULL;
1532         }
1533 
1534         if (arg4) {
1535             ret = process_sigsuspend_mask(&set, arg4, arg5);
1536             if (ret != 0) {
1537                 unlock_user(target_pfd, arg1, 0);
1538                 return ret;
1539             }
1540         }
1541 
1542         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1543                                    set, SIGSET_T_SIZE));
1544 
1545         if (set) {
1546             finish_sigsuspend_mask(ret);
1547         }
1548         if (!is_error(ret) && arg3) {
1549             if (time64) {
1550                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551                     return -TARGET_EFAULT;
1552                 }
1553             } else {
1554                 if (host_to_target_timespec(arg3, timeout_ts)) {
1555                     return -TARGET_EFAULT;
1556                 }
1557             }
1558         }
1559     } else {
1560           struct timespec ts, *pts;
1561 
1562           if (arg3 >= 0) {
1563               /* Convert ms to secs, ns */
1564               ts.tv_sec = arg3 / 1000;
1565               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1566               pts = &ts;
1567           } else {
1568               /* -ve poll() timeout means "infinite" */
1569               pts = NULL;
1570           }
1571           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1572     }
1573 
1574     if (!is_error(ret)) {
1575         for (i = 0; i < nfds; i++) {
1576             target_pfd[i].revents = tswap16(pfd[i].revents);
1577         }
1578     }
1579     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1580     return ret;
1581 }
1582 #endif
1583 
1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1585                         int flags, int is_pipe2)
1586 {
1587     int host_pipe[2];
1588     abi_long ret;
1589     ret = pipe2(host_pipe, flags);
1590 
1591     if (is_error(ret))
1592         return get_errno(ret);
1593 
1594     /* Several targets have special calling conventions for the original
1595        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1596     if (!is_pipe2) {
1597 #if defined(TARGET_ALPHA)
1598         cpu_env->ir[IR_A4] = host_pipe[1];
1599         return host_pipe[0];
1600 #elif defined(TARGET_MIPS)
1601         cpu_env->active_tc.gpr[3] = host_pipe[1];
1602         return host_pipe[0];
1603 #elif defined(TARGET_SH4)
1604         cpu_env->gregs[1] = host_pipe[1];
1605         return host_pipe[0];
1606 #elif defined(TARGET_SPARC)
1607         cpu_env->regwptr[1] = host_pipe[1];
1608         return host_pipe[0];
1609 #endif
1610     }
1611 
1612     if (put_user_s32(host_pipe[0], pipedes)
1613         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1614         return -TARGET_EFAULT;
1615     return get_errno(ret);
1616 }
1617 
1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1619                                               abi_ulong target_addr,
1620                                               socklen_t len)
1621 {
1622     struct target_ip_mreqn *target_smreqn;
1623 
1624     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1625     if (!target_smreqn)
1626         return -TARGET_EFAULT;
1627     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1628     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1629     if (len == sizeof(struct target_ip_mreqn))
1630         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1631     unlock_user(target_smreqn, target_addr, 0);
1632 
1633     return 0;
1634 }
1635 
1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1637                                                abi_ulong target_addr,
1638                                                socklen_t len)
1639 {
1640     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1641     sa_family_t sa_family;
1642     struct target_sockaddr *target_saddr;
1643 
1644     if (fd_trans_target_to_host_addr(fd)) {
1645         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1646     }
1647 
1648     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1649     if (!target_saddr)
1650         return -TARGET_EFAULT;
1651 
1652     sa_family = tswap16(target_saddr->sa_family);
1653 
1654     /* Oops. The caller might send a incomplete sun_path; sun_path
1655      * must be terminated by \0 (see the manual page), but
1656      * unfortunately it is quite common to specify sockaddr_un
1657      * length as "strlen(x->sun_path)" while it should be
1658      * "strlen(...) + 1". We'll fix that here if needed.
1659      * Linux kernel has a similar feature.
1660      */
1661 
1662     if (sa_family == AF_UNIX) {
1663         if (len < unix_maxlen && len > 0) {
1664             char *cp = (char*)target_saddr;
1665 
1666             if ( cp[len-1] && !cp[len] )
1667                 len++;
1668         }
1669         if (len > unix_maxlen)
1670             len = unix_maxlen;
1671     }
1672 
1673     memcpy(addr, target_saddr, len);
1674     addr->sa_family = sa_family;
1675     if (sa_family == AF_NETLINK) {
1676         struct sockaddr_nl *nladdr;
1677 
1678         nladdr = (struct sockaddr_nl *)addr;
1679         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1680         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1681     } else if (sa_family == AF_PACKET) {
1682 	struct target_sockaddr_ll *lladdr;
1683 
1684 	lladdr = (struct target_sockaddr_ll *)addr;
1685 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1686 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1687     } else if (sa_family == AF_INET6) {
1688         struct sockaddr_in6 *in6addr;
1689 
1690         in6addr = (struct sockaddr_in6 *)addr;
1691         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1692     }
1693     unlock_user(target_saddr, target_addr, 0);
1694 
1695     return 0;
1696 }
1697 
1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1699                                                struct sockaddr *addr,
1700                                                socklen_t len)
1701 {
1702     struct target_sockaddr *target_saddr;
1703 
1704     if (len == 0) {
1705         return 0;
1706     }
1707     assert(addr);
1708 
1709     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1710     if (!target_saddr)
1711         return -TARGET_EFAULT;
1712     memcpy(target_saddr, addr, len);
1713     if (len >= offsetof(struct target_sockaddr, sa_family) +
1714         sizeof(target_saddr->sa_family)) {
1715         target_saddr->sa_family = tswap16(addr->sa_family);
1716     }
1717     if (addr->sa_family == AF_NETLINK &&
1718         len >= sizeof(struct target_sockaddr_nl)) {
1719         struct target_sockaddr_nl *target_nl =
1720                (struct target_sockaddr_nl *)target_saddr;
1721         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1722         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1723     } else if (addr->sa_family == AF_PACKET) {
1724         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1725         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1726         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1727     } else if (addr->sa_family == AF_INET6 &&
1728                len >= sizeof(struct target_sockaddr_in6)) {
1729         struct target_sockaddr_in6 *target_in6 =
1730                (struct target_sockaddr_in6 *)target_saddr;
1731         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1732     }
1733     unlock_user(target_saddr, target_addr, len);
1734 
1735     return 0;
1736 }
1737 
1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1739                                            struct target_msghdr *target_msgh)
1740 {
1741     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1742     abi_long msg_controllen;
1743     abi_ulong target_cmsg_addr;
1744     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1745     socklen_t space = 0;
1746 
1747     msg_controllen = tswapal(target_msgh->msg_controllen);
1748     if (msg_controllen < sizeof (struct target_cmsghdr))
1749         goto the_end;
1750     target_cmsg_addr = tswapal(target_msgh->msg_control);
1751     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1752     target_cmsg_start = target_cmsg;
1753     if (!target_cmsg)
1754         return -TARGET_EFAULT;
1755 
1756     while (cmsg && target_cmsg) {
1757         void *data = CMSG_DATA(cmsg);
1758         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1759 
1760         int len = tswapal(target_cmsg->cmsg_len)
1761             - sizeof(struct target_cmsghdr);
1762 
1763         space += CMSG_SPACE(len);
1764         if (space > msgh->msg_controllen) {
1765             space -= CMSG_SPACE(len);
1766             /* This is a QEMU bug, since we allocated the payload
1767              * area ourselves (unlike overflow in host-to-target
1768              * conversion, which is just the guest giving us a buffer
1769              * that's too small). It can't happen for the payload types
1770              * we currently support; if it becomes an issue in future
1771              * we would need to improve our allocation strategy to
1772              * something more intelligent than "twice the size of the
1773              * target buffer we're reading from".
1774              */
1775             qemu_log_mask(LOG_UNIMP,
1776                           ("Unsupported ancillary data %d/%d: "
1777                            "unhandled msg size\n"),
1778                           tswap32(target_cmsg->cmsg_level),
1779                           tswap32(target_cmsg->cmsg_type));
1780             break;
1781         }
1782 
1783         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1784             cmsg->cmsg_level = SOL_SOCKET;
1785         } else {
1786             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1787         }
1788         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1789         cmsg->cmsg_len = CMSG_LEN(len);
1790 
1791         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1792             int *fd = (int *)data;
1793             int *target_fd = (int *)target_data;
1794             int i, numfds = len / sizeof(int);
1795 
1796             for (i = 0; i < numfds; i++) {
1797                 __get_user(fd[i], target_fd + i);
1798             }
1799         } else if (cmsg->cmsg_level == SOL_SOCKET
1800                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1801             struct ucred *cred = (struct ucred *)data;
1802             struct target_ucred *target_cred =
1803                 (struct target_ucred *)target_data;
1804 
1805             __get_user(cred->pid, &target_cred->pid);
1806             __get_user(cred->uid, &target_cred->uid);
1807             __get_user(cred->gid, &target_cred->gid);
1808         } else if (cmsg->cmsg_level == SOL_ALG) {
1809             uint32_t *dst = (uint32_t *)data;
1810 
1811             memcpy(dst, target_data, len);
1812             /* fix endianess of first 32-bit word */
1813             if (len >= sizeof(uint32_t)) {
1814                 *dst = tswap32(*dst);
1815             }
1816         } else {
1817             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1818                           cmsg->cmsg_level, cmsg->cmsg_type);
1819             memcpy(data, target_data, len);
1820         }
1821 
1822         cmsg = CMSG_NXTHDR(msgh, cmsg);
1823         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1824                                          target_cmsg_start);
1825     }
1826     unlock_user(target_cmsg, target_cmsg_addr, 0);
1827  the_end:
1828     msgh->msg_controllen = space;
1829     return 0;
1830 }
1831 
1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1833                                            struct msghdr *msgh)
1834 {
1835     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1836     abi_long msg_controllen;
1837     abi_ulong target_cmsg_addr;
1838     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1839     socklen_t space = 0;
1840 
1841     msg_controllen = tswapal(target_msgh->msg_controllen);
1842     if (msg_controllen < sizeof (struct target_cmsghdr))
1843         goto the_end;
1844     target_cmsg_addr = tswapal(target_msgh->msg_control);
1845     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1846     target_cmsg_start = target_cmsg;
1847     if (!target_cmsg)
1848         return -TARGET_EFAULT;
1849 
1850     while (cmsg && target_cmsg) {
1851         void *data = CMSG_DATA(cmsg);
1852         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1853 
1854         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1855         int tgt_len, tgt_space;
1856 
1857         /* We never copy a half-header but may copy half-data;
1858          * this is Linux's behaviour in put_cmsg(). Note that
1859          * truncation here is a guest problem (which we report
1860          * to the guest via the CTRUNC bit), unlike truncation
1861          * in target_to_host_cmsg, which is a QEMU bug.
1862          */
1863         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1864             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1865             break;
1866         }
1867 
1868         if (cmsg->cmsg_level == SOL_SOCKET) {
1869             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1870         } else {
1871             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1872         }
1873         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1874 
1875         /* Payload types which need a different size of payload on
1876          * the target must adjust tgt_len here.
1877          */
1878         tgt_len = len;
1879         switch (cmsg->cmsg_level) {
1880         case SOL_SOCKET:
1881             switch (cmsg->cmsg_type) {
1882             case SO_TIMESTAMP:
1883                 tgt_len = sizeof(struct target_timeval);
1884                 break;
1885             default:
1886                 break;
1887             }
1888             break;
1889         default:
1890             break;
1891         }
1892 
1893         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1894             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1895             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1896         }
1897 
1898         /* We must now copy-and-convert len bytes of payload
1899          * into tgt_len bytes of destination space. Bear in mind
1900          * that in both source and destination we may be dealing
1901          * with a truncated value!
1902          */
1903         switch (cmsg->cmsg_level) {
1904         case SOL_SOCKET:
1905             switch (cmsg->cmsg_type) {
1906             case SCM_RIGHTS:
1907             {
1908                 int *fd = (int *)data;
1909                 int *target_fd = (int *)target_data;
1910                 int i, numfds = tgt_len / sizeof(int);
1911 
1912                 for (i = 0; i < numfds; i++) {
1913                     __put_user(fd[i], target_fd + i);
1914                 }
1915                 break;
1916             }
1917             case SO_TIMESTAMP:
1918             {
1919                 struct timeval *tv = (struct timeval *)data;
1920                 struct target_timeval *target_tv =
1921                     (struct target_timeval *)target_data;
1922 
1923                 if (len != sizeof(struct timeval) ||
1924                     tgt_len != sizeof(struct target_timeval)) {
1925                     goto unimplemented;
1926                 }
1927 
1928                 /* copy struct timeval to target */
1929                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1930                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1931                 break;
1932             }
1933             case SCM_CREDENTIALS:
1934             {
1935                 struct ucred *cred = (struct ucred *)data;
1936                 struct target_ucred *target_cred =
1937                     (struct target_ucred *)target_data;
1938 
1939                 __put_user(cred->pid, &target_cred->pid);
1940                 __put_user(cred->uid, &target_cred->uid);
1941                 __put_user(cred->gid, &target_cred->gid);
1942                 break;
1943             }
1944             default:
1945                 goto unimplemented;
1946             }
1947             break;
1948 
1949         case SOL_IP:
1950             switch (cmsg->cmsg_type) {
1951             case IP_TTL:
1952             {
1953                 uint32_t *v = (uint32_t *)data;
1954                 uint32_t *t_int = (uint32_t *)target_data;
1955 
1956                 if (len != sizeof(uint32_t) ||
1957                     tgt_len != sizeof(uint32_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(*v, t_int);
1961                 break;
1962             }
1963             case IP_RECVERR:
1964             {
1965                 struct errhdr_t {
1966                    struct sock_extended_err ee;
1967                    struct sockaddr_in offender;
1968                 };
1969                 struct errhdr_t *errh = (struct errhdr_t *)data;
1970                 struct errhdr_t *target_errh =
1971                     (struct errhdr_t *)target_data;
1972 
1973                 if (len != sizeof(struct errhdr_t) ||
1974                     tgt_len != sizeof(struct errhdr_t)) {
1975                     goto unimplemented;
1976                 }
1977                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1978                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1979                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1980                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1981                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1982                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1983                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1984                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1985                     (void *) &errh->offender, sizeof(errh->offender));
1986                 break;
1987             }
1988             default:
1989                 goto unimplemented;
1990             }
1991             break;
1992 
1993         case SOL_IPV6:
1994             switch (cmsg->cmsg_type) {
1995             case IPV6_HOPLIMIT:
1996             {
1997                 uint32_t *v = (uint32_t *)data;
1998                 uint32_t *t_int = (uint32_t *)target_data;
1999 
2000                 if (len != sizeof(uint32_t) ||
2001                     tgt_len != sizeof(uint32_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(*v, t_int);
2005                 break;
2006             }
2007             case IPV6_RECVERR:
2008             {
2009                 struct errhdr6_t {
2010                    struct sock_extended_err ee;
2011                    struct sockaddr_in6 offender;
2012                 };
2013                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2014                 struct errhdr6_t *target_errh =
2015                     (struct errhdr6_t *)target_data;
2016 
2017                 if (len != sizeof(struct errhdr6_t) ||
2018                     tgt_len != sizeof(struct errhdr6_t)) {
2019                     goto unimplemented;
2020                 }
2021                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2022                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2023                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2024                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2025                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2026                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2027                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2028                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2029                     (void *) &errh->offender, sizeof(errh->offender));
2030                 break;
2031             }
2032             default:
2033                 goto unimplemented;
2034             }
2035             break;
2036 
2037         default:
2038         unimplemented:
2039             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2040                           cmsg->cmsg_level, cmsg->cmsg_type);
2041             memcpy(target_data, data, MIN(len, tgt_len));
2042             if (tgt_len > len) {
2043                 memset(target_data + len, 0, tgt_len - len);
2044             }
2045         }
2046 
2047         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2048         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2049         if (msg_controllen < tgt_space) {
2050             tgt_space = msg_controllen;
2051         }
2052         msg_controllen -= tgt_space;
2053         space += tgt_space;
2054         cmsg = CMSG_NXTHDR(msgh, cmsg);
2055         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2056                                          target_cmsg_start);
2057     }
2058     unlock_user(target_cmsg, target_cmsg_addr, space);
2059  the_end:
2060     target_msgh->msg_controllen = tswapal(space);
2061     return 0;
2062 }
2063 
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long do_setsockopt(int sockfd, int level, int optname,
2066                               abi_ulong optval_addr, socklen_t optlen)
2067 {
2068     abi_long ret;
2069     int val;
2070     struct ip_mreqn *ip_mreq;
2071     struct ip_mreq_source *ip_mreq_source;
2072 
2073     switch(level) {
2074     case SOL_TCP:
2075     case SOL_UDP:
2076         /* TCP and UDP options all take an 'int' value.  */
2077         if (optlen < sizeof(uint32_t))
2078             return -TARGET_EINVAL;
2079 
2080         if (get_user_u32(val, optval_addr))
2081             return -TARGET_EFAULT;
2082         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2083         break;
2084     case SOL_IP:
2085         switch(optname) {
2086         case IP_TOS:
2087         case IP_TTL:
2088         case IP_HDRINCL:
2089         case IP_ROUTER_ALERT:
2090         case IP_RECVOPTS:
2091         case IP_RETOPTS:
2092         case IP_PKTINFO:
2093         case IP_MTU_DISCOVER:
2094         case IP_RECVERR:
2095         case IP_RECVTTL:
2096         case IP_RECVTOS:
2097 #ifdef IP_FREEBIND
2098         case IP_FREEBIND:
2099 #endif
2100         case IP_MULTICAST_TTL:
2101         case IP_MULTICAST_LOOP:
2102             val = 0;
2103             if (optlen >= sizeof(uint32_t)) {
2104                 if (get_user_u32(val, optval_addr))
2105                     return -TARGET_EFAULT;
2106             } else if (optlen >= 1) {
2107                 if (get_user_u8(val, optval_addr))
2108                     return -TARGET_EFAULT;
2109             }
2110             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2111             break;
2112         case IP_ADD_MEMBERSHIP:
2113         case IP_DROP_MEMBERSHIP:
2114             if (optlen < sizeof (struct target_ip_mreq) ||
2115                 optlen > sizeof (struct target_ip_mreqn))
2116                 return -TARGET_EINVAL;
2117 
2118             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2119             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2120             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2121             break;
2122 
2123         case IP_BLOCK_SOURCE:
2124         case IP_UNBLOCK_SOURCE:
2125         case IP_ADD_SOURCE_MEMBERSHIP:
2126         case IP_DROP_SOURCE_MEMBERSHIP:
2127             if (optlen != sizeof (struct target_ip_mreq_source))
2128                 return -TARGET_EINVAL;
2129 
2130             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2131             if (!ip_mreq_source) {
2132                 return -TARGET_EFAULT;
2133             }
2134             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2135             unlock_user (ip_mreq_source, optval_addr, 0);
2136             break;
2137 
2138         default:
2139             goto unimplemented;
2140         }
2141         break;
2142     case SOL_IPV6:
2143         switch (optname) {
2144         case IPV6_MTU_DISCOVER:
2145         case IPV6_MTU:
2146         case IPV6_V6ONLY:
2147         case IPV6_RECVPKTINFO:
2148         case IPV6_UNICAST_HOPS:
2149         case IPV6_MULTICAST_HOPS:
2150         case IPV6_MULTICAST_LOOP:
2151         case IPV6_RECVERR:
2152         case IPV6_RECVHOPLIMIT:
2153         case IPV6_2292HOPLIMIT:
2154         case IPV6_CHECKSUM:
2155         case IPV6_ADDRFORM:
2156         case IPV6_2292PKTINFO:
2157         case IPV6_RECVTCLASS:
2158         case IPV6_RECVRTHDR:
2159         case IPV6_2292RTHDR:
2160         case IPV6_RECVHOPOPTS:
2161         case IPV6_2292HOPOPTS:
2162         case IPV6_RECVDSTOPTS:
2163         case IPV6_2292DSTOPTS:
2164         case IPV6_TCLASS:
2165         case IPV6_ADDR_PREFERENCES:
2166 #ifdef IPV6_RECVPATHMTU
2167         case IPV6_RECVPATHMTU:
2168 #endif
2169 #ifdef IPV6_TRANSPARENT
2170         case IPV6_TRANSPARENT:
2171 #endif
2172 #ifdef IPV6_FREEBIND
2173         case IPV6_FREEBIND:
2174 #endif
2175 #ifdef IPV6_RECVORIGDSTADDR
2176         case IPV6_RECVORIGDSTADDR:
2177 #endif
2178             val = 0;
2179             if (optlen < sizeof(uint32_t)) {
2180                 return -TARGET_EINVAL;
2181             }
2182             if (get_user_u32(val, optval_addr)) {
2183                 return -TARGET_EFAULT;
2184             }
2185             ret = get_errno(setsockopt(sockfd, level, optname,
2186                                        &val, sizeof(val)));
2187             break;
2188         case IPV6_PKTINFO:
2189         {
2190             struct in6_pktinfo pki;
2191 
2192             if (optlen < sizeof(pki)) {
2193                 return -TARGET_EINVAL;
2194             }
2195 
2196             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2197                 return -TARGET_EFAULT;
2198             }
2199 
2200             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2201 
2202             ret = get_errno(setsockopt(sockfd, level, optname,
2203                                        &pki, sizeof(pki)));
2204             break;
2205         }
2206         case IPV6_ADD_MEMBERSHIP:
2207         case IPV6_DROP_MEMBERSHIP:
2208         {
2209             struct ipv6_mreq ipv6mreq;
2210 
2211             if (optlen < sizeof(ipv6mreq)) {
2212                 return -TARGET_EINVAL;
2213             }
2214 
2215             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2216                 return -TARGET_EFAULT;
2217             }
2218 
2219             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2220 
2221             ret = get_errno(setsockopt(sockfd, level, optname,
2222                                        &ipv6mreq, sizeof(ipv6mreq)));
2223             break;
2224         }
2225         default:
2226             goto unimplemented;
2227         }
2228         break;
2229     case SOL_ICMPV6:
2230         switch (optname) {
2231         case ICMPV6_FILTER:
2232         {
2233             struct icmp6_filter icmp6f;
2234 
2235             if (optlen > sizeof(icmp6f)) {
2236                 optlen = sizeof(icmp6f);
2237             }
2238 
2239             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2240                 return -TARGET_EFAULT;
2241             }
2242 
2243             for (val = 0; val < 8; val++) {
2244                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2245             }
2246 
2247             ret = get_errno(setsockopt(sockfd, level, optname,
2248                                        &icmp6f, optlen));
2249             break;
2250         }
2251         default:
2252             goto unimplemented;
2253         }
2254         break;
2255     case SOL_RAW:
2256         switch (optname) {
2257         case ICMP_FILTER:
2258         case IPV6_CHECKSUM:
2259             /* those take an u32 value */
2260             if (optlen < sizeof(uint32_t)) {
2261                 return -TARGET_EINVAL;
2262             }
2263 
2264             if (get_user_u32(val, optval_addr)) {
2265                 return -TARGET_EFAULT;
2266             }
2267             ret = get_errno(setsockopt(sockfd, level, optname,
2268                                        &val, sizeof(val)));
2269             break;
2270 
2271         default:
2272             goto unimplemented;
2273         }
2274         break;
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2276     case SOL_ALG:
2277         switch (optname) {
2278         case ALG_SET_KEY:
2279         {
2280             char *alg_key = g_malloc(optlen);
2281 
2282             if (!alg_key) {
2283                 return -TARGET_ENOMEM;
2284             }
2285             if (copy_from_user(alg_key, optval_addr, optlen)) {
2286                 g_free(alg_key);
2287                 return -TARGET_EFAULT;
2288             }
2289             ret = get_errno(setsockopt(sockfd, level, optname,
2290                                        alg_key, optlen));
2291             g_free(alg_key);
2292             break;
2293         }
2294         case ALG_SET_AEAD_AUTHSIZE:
2295         {
2296             ret = get_errno(setsockopt(sockfd, level, optname,
2297                                        NULL, optlen));
2298             break;
2299         }
2300         default:
2301             goto unimplemented;
2302         }
2303         break;
2304 #endif
2305     case TARGET_SOL_SOCKET:
2306         switch (optname) {
2307         case TARGET_SO_RCVTIMEO:
2308         {
2309                 struct timeval tv;
2310 
2311                 optname = SO_RCVTIMEO;
2312 
2313 set_timeout:
2314                 if (optlen != sizeof(struct target_timeval)) {
2315                     return -TARGET_EINVAL;
2316                 }
2317 
2318                 if (copy_from_user_timeval(&tv, optval_addr)) {
2319                     return -TARGET_EFAULT;
2320                 }
2321 
2322                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2323                                 &tv, sizeof(tv)));
2324                 return ret;
2325         }
2326         case TARGET_SO_SNDTIMEO:
2327                 optname = SO_SNDTIMEO;
2328                 goto set_timeout;
2329         case TARGET_SO_ATTACH_FILTER:
2330         {
2331                 struct target_sock_fprog *tfprog;
2332                 struct target_sock_filter *tfilter;
2333                 struct sock_fprog fprog;
2334                 struct sock_filter *filter;
2335                 int i;
2336 
2337                 if (optlen != sizeof(*tfprog)) {
2338                     return -TARGET_EINVAL;
2339                 }
2340                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2341                     return -TARGET_EFAULT;
2342                 }
2343                 if (!lock_user_struct(VERIFY_READ, tfilter,
2344                                       tswapal(tfprog->filter), 0)) {
2345                     unlock_user_struct(tfprog, optval_addr, 1);
2346                     return -TARGET_EFAULT;
2347                 }
2348 
2349                 fprog.len = tswap16(tfprog->len);
2350                 filter = g_try_new(struct sock_filter, fprog.len);
2351                 if (filter == NULL) {
2352                     unlock_user_struct(tfilter, tfprog->filter, 1);
2353                     unlock_user_struct(tfprog, optval_addr, 1);
2354                     return -TARGET_ENOMEM;
2355                 }
2356                 for (i = 0; i < fprog.len; i++) {
2357                     filter[i].code = tswap16(tfilter[i].code);
2358                     filter[i].jt = tfilter[i].jt;
2359                     filter[i].jf = tfilter[i].jf;
2360                     filter[i].k = tswap32(tfilter[i].k);
2361                 }
2362                 fprog.filter = filter;
2363 
2364                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2365                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2366                 g_free(filter);
2367 
2368                 unlock_user_struct(tfilter, tfprog->filter, 1);
2369                 unlock_user_struct(tfprog, optval_addr, 1);
2370                 return ret;
2371         }
2372 	case TARGET_SO_BINDTODEVICE:
2373 	{
2374 		char *dev_ifname, *addr_ifname;
2375 
2376 		if (optlen > IFNAMSIZ - 1) {
2377 		    optlen = IFNAMSIZ - 1;
2378 		}
2379 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2380 		if (!dev_ifname) {
2381 		    return -TARGET_EFAULT;
2382 		}
2383 		optname = SO_BINDTODEVICE;
2384 		addr_ifname = alloca(IFNAMSIZ);
2385 		memcpy(addr_ifname, dev_ifname, optlen);
2386 		addr_ifname[optlen] = 0;
2387 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2388                                            addr_ifname, optlen));
2389 		unlock_user (dev_ifname, optval_addr, 0);
2390 		return ret;
2391 	}
2392         case TARGET_SO_LINGER:
2393         {
2394                 struct linger lg;
2395                 struct target_linger *tlg;
2396 
2397                 if (optlen != sizeof(struct target_linger)) {
2398                     return -TARGET_EINVAL;
2399                 }
2400                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2401                     return -TARGET_EFAULT;
2402                 }
2403                 __get_user(lg.l_onoff, &tlg->l_onoff);
2404                 __get_user(lg.l_linger, &tlg->l_linger);
2405                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2406                                 &lg, sizeof(lg)));
2407                 unlock_user_struct(tlg, optval_addr, 0);
2408                 return ret;
2409         }
2410             /* Options with 'int' argument.  */
2411         case TARGET_SO_DEBUG:
2412 		optname = SO_DEBUG;
2413 		break;
2414         case TARGET_SO_REUSEADDR:
2415 		optname = SO_REUSEADDR;
2416 		break;
2417 #ifdef SO_REUSEPORT
2418         case TARGET_SO_REUSEPORT:
2419                 optname = SO_REUSEPORT;
2420                 break;
2421 #endif
2422         case TARGET_SO_TYPE:
2423 		optname = SO_TYPE;
2424 		break;
2425         case TARGET_SO_ERROR:
2426 		optname = SO_ERROR;
2427 		break;
2428         case TARGET_SO_DONTROUTE:
2429 		optname = SO_DONTROUTE;
2430 		break;
2431         case TARGET_SO_BROADCAST:
2432 		optname = SO_BROADCAST;
2433 		break;
2434         case TARGET_SO_SNDBUF:
2435 		optname = SO_SNDBUF;
2436 		break;
2437         case TARGET_SO_SNDBUFFORCE:
2438                 optname = SO_SNDBUFFORCE;
2439                 break;
2440         case TARGET_SO_RCVBUF:
2441 		optname = SO_RCVBUF;
2442 		break;
2443         case TARGET_SO_RCVBUFFORCE:
2444                 optname = SO_RCVBUFFORCE;
2445                 break;
2446         case TARGET_SO_KEEPALIVE:
2447 		optname = SO_KEEPALIVE;
2448 		break;
2449         case TARGET_SO_OOBINLINE:
2450 		optname = SO_OOBINLINE;
2451 		break;
2452         case TARGET_SO_NO_CHECK:
2453 		optname = SO_NO_CHECK;
2454 		break;
2455         case TARGET_SO_PRIORITY:
2456 		optname = SO_PRIORITY;
2457 		break;
2458 #ifdef SO_BSDCOMPAT
2459         case TARGET_SO_BSDCOMPAT:
2460 		optname = SO_BSDCOMPAT;
2461 		break;
2462 #endif
2463         case TARGET_SO_PASSCRED:
2464 		optname = SO_PASSCRED;
2465 		break;
2466         case TARGET_SO_PASSSEC:
2467                 optname = SO_PASSSEC;
2468                 break;
2469         case TARGET_SO_TIMESTAMP:
2470 		optname = SO_TIMESTAMP;
2471 		break;
2472         case TARGET_SO_RCVLOWAT:
2473 		optname = SO_RCVLOWAT;
2474 		break;
2475         default:
2476             goto unimplemented;
2477         }
2478 	if (optlen < sizeof(uint32_t))
2479             return -TARGET_EINVAL;
2480 
2481 	if (get_user_u32(val, optval_addr))
2482             return -TARGET_EFAULT;
2483 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2484         break;
2485 #ifdef SOL_NETLINK
2486     case SOL_NETLINK:
2487         switch (optname) {
2488         case NETLINK_PKTINFO:
2489         case NETLINK_ADD_MEMBERSHIP:
2490         case NETLINK_DROP_MEMBERSHIP:
2491         case NETLINK_BROADCAST_ERROR:
2492         case NETLINK_NO_ENOBUFS:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494         case NETLINK_LISTEN_ALL_NSID:
2495         case NETLINK_CAP_ACK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498         case NETLINK_EXT_ACK:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501         case NETLINK_GET_STRICT_CHK:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2503             break;
2504         default:
2505             goto unimplemented;
2506         }
2507         val = 0;
2508         if (optlen < sizeof(uint32_t)) {
2509             return -TARGET_EINVAL;
2510         }
2511         if (get_user_u32(val, optval_addr)) {
2512             return -TARGET_EFAULT;
2513         }
2514         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2515                                    sizeof(val)));
2516         break;
2517 #endif /* SOL_NETLINK */
2518     default:
2519     unimplemented:
2520         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2521                       level, optname);
2522         ret = -TARGET_ENOPROTOOPT;
2523     }
2524     return ret;
2525 }
2526 
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long do_getsockopt(int sockfd, int level, int optname,
2529                               abi_ulong optval_addr, abi_ulong optlen)
2530 {
2531     abi_long ret;
2532     int len, val;
2533     socklen_t lv;
2534 
2535     switch(level) {
2536     case TARGET_SOL_SOCKET:
2537         level = SOL_SOCKET;
2538         switch (optname) {
2539         /* These don't just return a single integer */
2540         case TARGET_SO_PEERNAME:
2541             goto unimplemented;
2542         case TARGET_SO_RCVTIMEO: {
2543             struct timeval tv;
2544             socklen_t tvlen;
2545 
2546             optname = SO_RCVTIMEO;
2547 
2548 get_timeout:
2549             if (get_user_u32(len, optlen)) {
2550                 return -TARGET_EFAULT;
2551             }
2552             if (len < 0) {
2553                 return -TARGET_EINVAL;
2554             }
2555 
2556             tvlen = sizeof(tv);
2557             ret = get_errno(getsockopt(sockfd, level, optname,
2558                                        &tv, &tvlen));
2559             if (ret < 0) {
2560                 return ret;
2561             }
2562             if (len > sizeof(struct target_timeval)) {
2563                 len = sizeof(struct target_timeval);
2564             }
2565             if (copy_to_user_timeval(optval_addr, &tv)) {
2566                 return -TARGET_EFAULT;
2567             }
2568             if (put_user_u32(len, optlen)) {
2569                 return -TARGET_EFAULT;
2570             }
2571             break;
2572         }
2573         case TARGET_SO_SNDTIMEO:
2574             optname = SO_SNDTIMEO;
2575             goto get_timeout;
2576         case TARGET_SO_PEERCRED: {
2577             struct ucred cr;
2578             socklen_t crlen;
2579             struct target_ucred *tcr;
2580 
2581             if (get_user_u32(len, optlen)) {
2582                 return -TARGET_EFAULT;
2583             }
2584             if (len < 0) {
2585                 return -TARGET_EINVAL;
2586             }
2587 
2588             crlen = sizeof(cr);
2589             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2590                                        &cr, &crlen));
2591             if (ret < 0) {
2592                 return ret;
2593             }
2594             if (len > crlen) {
2595                 len = crlen;
2596             }
2597             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2598                 return -TARGET_EFAULT;
2599             }
2600             __put_user(cr.pid, &tcr->pid);
2601             __put_user(cr.uid, &tcr->uid);
2602             __put_user(cr.gid, &tcr->gid);
2603             unlock_user_struct(tcr, optval_addr, 1);
2604             if (put_user_u32(len, optlen)) {
2605                 return -TARGET_EFAULT;
2606             }
2607             break;
2608         }
2609         case TARGET_SO_PEERSEC: {
2610             char *name;
2611 
2612             if (get_user_u32(len, optlen)) {
2613                 return -TARGET_EFAULT;
2614             }
2615             if (len < 0) {
2616                 return -TARGET_EINVAL;
2617             }
2618             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2619             if (!name) {
2620                 return -TARGET_EFAULT;
2621             }
2622             lv = len;
2623             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2624                                        name, &lv));
2625             if (put_user_u32(lv, optlen)) {
2626                 ret = -TARGET_EFAULT;
2627             }
2628             unlock_user(name, optval_addr, lv);
2629             break;
2630         }
2631         case TARGET_SO_LINGER:
2632         {
2633             struct linger lg;
2634             socklen_t lglen;
2635             struct target_linger *tlg;
2636 
2637             if (get_user_u32(len, optlen)) {
2638                 return -TARGET_EFAULT;
2639             }
2640             if (len < 0) {
2641                 return -TARGET_EINVAL;
2642             }
2643 
2644             lglen = sizeof(lg);
2645             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2646                                        &lg, &lglen));
2647             if (ret < 0) {
2648                 return ret;
2649             }
2650             if (len > lglen) {
2651                 len = lglen;
2652             }
2653             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             __put_user(lg.l_onoff, &tlg->l_onoff);
2657             __put_user(lg.l_linger, &tlg->l_linger);
2658             unlock_user_struct(tlg, optval_addr, 1);
2659             if (put_user_u32(len, optlen)) {
2660                 return -TARGET_EFAULT;
2661             }
2662             break;
2663         }
2664         /* Options with 'int' argument.  */
2665         case TARGET_SO_DEBUG:
2666             optname = SO_DEBUG;
2667             goto int_case;
2668         case TARGET_SO_REUSEADDR:
2669             optname = SO_REUSEADDR;
2670             goto int_case;
2671 #ifdef SO_REUSEPORT
2672         case TARGET_SO_REUSEPORT:
2673             optname = SO_REUSEPORT;
2674             goto int_case;
2675 #endif
2676         case TARGET_SO_TYPE:
2677             optname = SO_TYPE;
2678             goto int_case;
2679         case TARGET_SO_ERROR:
2680             optname = SO_ERROR;
2681             goto int_case;
2682         case TARGET_SO_DONTROUTE:
2683             optname = SO_DONTROUTE;
2684             goto int_case;
2685         case TARGET_SO_BROADCAST:
2686             optname = SO_BROADCAST;
2687             goto int_case;
2688         case TARGET_SO_SNDBUF:
2689             optname = SO_SNDBUF;
2690             goto int_case;
2691         case TARGET_SO_RCVBUF:
2692             optname = SO_RCVBUF;
2693             goto int_case;
2694         case TARGET_SO_KEEPALIVE:
2695             optname = SO_KEEPALIVE;
2696             goto int_case;
2697         case TARGET_SO_OOBINLINE:
2698             optname = SO_OOBINLINE;
2699             goto int_case;
2700         case TARGET_SO_NO_CHECK:
2701             optname = SO_NO_CHECK;
2702             goto int_case;
2703         case TARGET_SO_PRIORITY:
2704             optname = SO_PRIORITY;
2705             goto int_case;
2706 #ifdef SO_BSDCOMPAT
2707         case TARGET_SO_BSDCOMPAT:
2708             optname = SO_BSDCOMPAT;
2709             goto int_case;
2710 #endif
2711         case TARGET_SO_PASSCRED:
2712             optname = SO_PASSCRED;
2713             goto int_case;
2714         case TARGET_SO_TIMESTAMP:
2715             optname = SO_TIMESTAMP;
2716             goto int_case;
2717         case TARGET_SO_RCVLOWAT:
2718             optname = SO_RCVLOWAT;
2719             goto int_case;
2720         case TARGET_SO_ACCEPTCONN:
2721             optname = SO_ACCEPTCONN;
2722             goto int_case;
2723         case TARGET_SO_PROTOCOL:
2724             optname = SO_PROTOCOL;
2725             goto int_case;
2726         case TARGET_SO_DOMAIN:
2727             optname = SO_DOMAIN;
2728             goto int_case;
2729         default:
2730             goto int_case;
2731         }
2732         break;
2733     case SOL_TCP:
2734     case SOL_UDP:
2735         /* TCP and UDP options all take an 'int' value.  */
2736     int_case:
2737         if (get_user_u32(len, optlen))
2738             return -TARGET_EFAULT;
2739         if (len < 0)
2740             return -TARGET_EINVAL;
2741         lv = sizeof(lv);
2742         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2743         if (ret < 0)
2744             return ret;
2745         switch (optname) {
2746         case SO_TYPE:
2747             val = host_to_target_sock_type(val);
2748             break;
2749         case SO_ERROR:
2750             val = host_to_target_errno(val);
2751             break;
2752         }
2753         if (len > lv)
2754             len = lv;
2755         if (len == 4) {
2756             if (put_user_u32(val, optval_addr))
2757                 return -TARGET_EFAULT;
2758         } else {
2759             if (put_user_u8(val, optval_addr))
2760                 return -TARGET_EFAULT;
2761         }
2762         if (put_user_u32(len, optlen))
2763             return -TARGET_EFAULT;
2764         break;
2765     case SOL_IP:
2766         switch(optname) {
2767         case IP_TOS:
2768         case IP_TTL:
2769         case IP_HDRINCL:
2770         case IP_ROUTER_ALERT:
2771         case IP_RECVOPTS:
2772         case IP_RETOPTS:
2773         case IP_PKTINFO:
2774         case IP_MTU_DISCOVER:
2775         case IP_RECVERR:
2776         case IP_RECVTOS:
2777 #ifdef IP_FREEBIND
2778         case IP_FREEBIND:
2779 #endif
2780         case IP_MULTICAST_TTL:
2781         case IP_MULTICAST_LOOP:
2782             if (get_user_u32(len, optlen))
2783                 return -TARGET_EFAULT;
2784             if (len < 0)
2785                 return -TARGET_EINVAL;
2786             lv = sizeof(lv);
2787             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2788             if (ret < 0)
2789                 return ret;
2790             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2791                 len = 1;
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u8(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             } else {
2796                 if (len > sizeof(int))
2797                     len = sizeof(int);
2798                 if (put_user_u32(len, optlen)
2799                     || put_user_u32(val, optval_addr))
2800                     return -TARGET_EFAULT;
2801             }
2802             break;
2803         default:
2804             ret = -TARGET_ENOPROTOOPT;
2805             break;
2806         }
2807         break;
2808     case SOL_IPV6:
2809         switch (optname) {
2810         case IPV6_MTU_DISCOVER:
2811         case IPV6_MTU:
2812         case IPV6_V6ONLY:
2813         case IPV6_RECVPKTINFO:
2814         case IPV6_UNICAST_HOPS:
2815         case IPV6_MULTICAST_HOPS:
2816         case IPV6_MULTICAST_LOOP:
2817         case IPV6_RECVERR:
2818         case IPV6_RECVHOPLIMIT:
2819         case IPV6_2292HOPLIMIT:
2820         case IPV6_CHECKSUM:
2821         case IPV6_ADDRFORM:
2822         case IPV6_2292PKTINFO:
2823         case IPV6_RECVTCLASS:
2824         case IPV6_RECVRTHDR:
2825         case IPV6_2292RTHDR:
2826         case IPV6_RECVHOPOPTS:
2827         case IPV6_2292HOPOPTS:
2828         case IPV6_RECVDSTOPTS:
2829         case IPV6_2292DSTOPTS:
2830         case IPV6_TCLASS:
2831         case IPV6_ADDR_PREFERENCES:
2832 #ifdef IPV6_RECVPATHMTU
2833         case IPV6_RECVPATHMTU:
2834 #endif
2835 #ifdef IPV6_TRANSPARENT
2836         case IPV6_TRANSPARENT:
2837 #endif
2838 #ifdef IPV6_FREEBIND
2839         case IPV6_FREEBIND:
2840 #endif
2841 #ifdef IPV6_RECVORIGDSTADDR
2842         case IPV6_RECVORIGDSTADDR:
2843 #endif
2844             if (get_user_u32(len, optlen))
2845                 return -TARGET_EFAULT;
2846             if (len < 0)
2847                 return -TARGET_EINVAL;
2848             lv = sizeof(lv);
2849             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2850             if (ret < 0)
2851                 return ret;
2852             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2853                 len = 1;
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u8(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             } else {
2858                 if (len > sizeof(int))
2859                     len = sizeof(int);
2860                 if (put_user_u32(len, optlen)
2861                     || put_user_u32(val, optval_addr))
2862                     return -TARGET_EFAULT;
2863             }
2864             break;
2865         default:
2866             ret = -TARGET_ENOPROTOOPT;
2867             break;
2868         }
2869         break;
2870 #ifdef SOL_NETLINK
2871     case SOL_NETLINK:
2872         switch (optname) {
2873         case NETLINK_PKTINFO:
2874         case NETLINK_BROADCAST_ERROR:
2875         case NETLINK_NO_ENOBUFS:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877         case NETLINK_LISTEN_ALL_NSID:
2878         case NETLINK_CAP_ACK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881         case NETLINK_EXT_ACK:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884         case NETLINK_GET_STRICT_CHK:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886             if (get_user_u32(len, optlen)) {
2887                 return -TARGET_EFAULT;
2888             }
2889             if (len != sizeof(val)) {
2890                 return -TARGET_EINVAL;
2891             }
2892             lv = len;
2893             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2894             if (ret < 0) {
2895                 return ret;
2896             }
2897             if (put_user_u32(lv, optlen)
2898                 || put_user_u32(val, optval_addr)) {
2899                 return -TARGET_EFAULT;
2900             }
2901             break;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903         case NETLINK_LIST_MEMBERSHIPS:
2904         {
2905             uint32_t *results;
2906             int i;
2907             if (get_user_u32(len, optlen)) {
2908                 return -TARGET_EFAULT;
2909             }
2910             if (len < 0) {
2911                 return -TARGET_EINVAL;
2912             }
2913             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2914             if (!results && len > 0) {
2915                 return -TARGET_EFAULT;
2916             }
2917             lv = len;
2918             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2919             if (ret < 0) {
2920                 unlock_user(results, optval_addr, 0);
2921                 return ret;
2922             }
2923             /* swap host endianess to target endianess. */
2924             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2925                 results[i] = tswap32(results[i]);
2926             }
2927             if (put_user_u32(lv, optlen)) {
2928                 return -TARGET_EFAULT;
2929             }
2930             unlock_user(results, optval_addr, 0);
2931             break;
2932         }
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2934         default:
2935             goto unimplemented;
2936         }
2937         break;
2938 #endif /* SOL_NETLINK */
2939     default:
2940     unimplemented:
2941         qemu_log_mask(LOG_UNIMP,
2942                       "getsockopt level=%d optname=%d not yet supported\n",
2943                       level, optname);
2944         ret = -TARGET_EOPNOTSUPP;
2945         break;
2946     }
2947     return ret;
2948 }
2949 
2950 /* Convert target low/high pair representing file offset into the host
2951  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952  * as the kernel doesn't handle them either.
2953  */
2954 static void target_to_host_low_high(abi_ulong tlow,
2955                                     abi_ulong thigh,
2956                                     unsigned long *hlow,
2957                                     unsigned long *hhigh)
2958 {
2959     uint64_t off = tlow |
2960         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2961         TARGET_LONG_BITS / 2;
2962 
2963     *hlow = off;
2964     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2965 }
2966 
2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2968                                 abi_ulong count, int copy)
2969 {
2970     struct target_iovec *target_vec;
2971     struct iovec *vec;
2972     abi_ulong total_len, max_len;
2973     int i;
2974     int err = 0;
2975     bool bad_address = false;
2976 
2977     if (count == 0) {
2978         errno = 0;
2979         return NULL;
2980     }
2981     if (count > IOV_MAX) {
2982         errno = EINVAL;
2983         return NULL;
2984     }
2985 
2986     vec = g_try_new0(struct iovec, count);
2987     if (vec == NULL) {
2988         errno = ENOMEM;
2989         return NULL;
2990     }
2991 
2992     target_vec = lock_user(VERIFY_READ, target_addr,
2993                            count * sizeof(struct target_iovec), 1);
2994     if (target_vec == NULL) {
2995         err = EFAULT;
2996         goto fail2;
2997     }
2998 
2999     /* ??? If host page size > target page size, this will result in a
3000        value larger than what we can actually support.  */
3001     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3002     total_len = 0;
3003 
3004     for (i = 0; i < count; i++) {
3005         abi_ulong base = tswapal(target_vec[i].iov_base);
3006         abi_long len = tswapal(target_vec[i].iov_len);
3007 
3008         if (len < 0) {
3009             err = EINVAL;
3010             goto fail;
3011         } else if (len == 0) {
3012             /* Zero length pointer is ignored.  */
3013             vec[i].iov_base = 0;
3014         } else {
3015             vec[i].iov_base = lock_user(type, base, len, copy);
3016             /* If the first buffer pointer is bad, this is a fault.  But
3017              * subsequent bad buffers will result in a partial write; this
3018              * is realized by filling the vector with null pointers and
3019              * zero lengths. */
3020             if (!vec[i].iov_base) {
3021                 if (i == 0) {
3022                     err = EFAULT;
3023                     goto fail;
3024                 } else {
3025                     bad_address = true;
3026                 }
3027             }
3028             if (bad_address) {
3029                 len = 0;
3030             }
3031             if (len > max_len - total_len) {
3032                 len = max_len - total_len;
3033             }
3034         }
3035         vec[i].iov_len = len;
3036         total_len += len;
3037     }
3038 
3039     unlock_user(target_vec, target_addr, 0);
3040     return vec;
3041 
3042  fail:
3043     while (--i >= 0) {
3044         if (tswapal(target_vec[i].iov_len) > 0) {
3045             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3046         }
3047     }
3048     unlock_user(target_vec, target_addr, 0);
3049  fail2:
3050     g_free(vec);
3051     errno = err;
3052     return NULL;
3053 }
3054 
3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3056                          abi_ulong count, int copy)
3057 {
3058     struct target_iovec *target_vec;
3059     int i;
3060 
3061     target_vec = lock_user(VERIFY_READ, target_addr,
3062                            count * sizeof(struct target_iovec), 1);
3063     if (target_vec) {
3064         for (i = 0; i < count; i++) {
3065             abi_ulong base = tswapal(target_vec[i].iov_base);
3066             abi_long len = tswapal(target_vec[i].iov_len);
3067             if (len < 0) {
3068                 break;
3069             }
3070             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3071         }
3072         unlock_user(target_vec, target_addr, 0);
3073     }
3074 
3075     g_free(vec);
3076 }
3077 
3078 static inline int target_to_host_sock_type(int *type)
3079 {
3080     int host_type = 0;
3081     int target_type = *type;
3082 
3083     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3084     case TARGET_SOCK_DGRAM:
3085         host_type = SOCK_DGRAM;
3086         break;
3087     case TARGET_SOCK_STREAM:
3088         host_type = SOCK_STREAM;
3089         break;
3090     default:
3091         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3092         break;
3093     }
3094     if (target_type & TARGET_SOCK_CLOEXEC) {
3095 #if defined(SOCK_CLOEXEC)
3096         host_type |= SOCK_CLOEXEC;
3097 #else
3098         return -TARGET_EINVAL;
3099 #endif
3100     }
3101     if (target_type & TARGET_SOCK_NONBLOCK) {
3102 #if defined(SOCK_NONBLOCK)
3103         host_type |= SOCK_NONBLOCK;
3104 #elif !defined(O_NONBLOCK)
3105         return -TARGET_EINVAL;
3106 #endif
3107     }
3108     *type = host_type;
3109     return 0;
3110 }
3111 
3112 /* Try to emulate socket type flags after socket creation.  */
3113 static int sock_flags_fixup(int fd, int target_type)
3114 {
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116     if (target_type & TARGET_SOCK_NONBLOCK) {
3117         int flags = fcntl(fd, F_GETFL);
3118         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3119             close(fd);
3120             return -TARGET_EINVAL;
3121         }
3122     }
3123 #endif
3124     return fd;
3125 }
3126 
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long do_socket(int domain, int type, int protocol)
3129 {
3130     int target_type = type;
3131     int ret;
3132 
3133     ret = target_to_host_sock_type(&type);
3134     if (ret) {
3135         return ret;
3136     }
3137 
3138     if (domain == PF_NETLINK && !(
3139 #ifdef CONFIG_RTNETLINK
3140          protocol == NETLINK_ROUTE ||
3141 #endif
3142          protocol == NETLINK_KOBJECT_UEVENT ||
3143          protocol == NETLINK_AUDIT)) {
3144         return -TARGET_EPROTONOSUPPORT;
3145     }
3146 
3147     if (domain == AF_PACKET ||
3148         (domain == AF_INET && type == SOCK_PACKET)) {
3149         protocol = tswap16(protocol);
3150     }
3151 
3152     ret = get_errno(socket(domain, type, protocol));
3153     if (ret >= 0) {
3154         ret = sock_flags_fixup(ret, target_type);
3155         if (type == SOCK_PACKET) {
3156             /* Manage an obsolete case :
3157              * if socket type is SOCK_PACKET, bind by name
3158              */
3159             fd_trans_register(ret, &target_packet_trans);
3160         } else if (domain == PF_NETLINK) {
3161             switch (protocol) {
3162 #ifdef CONFIG_RTNETLINK
3163             case NETLINK_ROUTE:
3164                 fd_trans_register(ret, &target_netlink_route_trans);
3165                 break;
3166 #endif
3167             case NETLINK_KOBJECT_UEVENT:
3168                 /* nothing to do: messages are strings */
3169                 break;
3170             case NETLINK_AUDIT:
3171                 fd_trans_register(ret, &target_netlink_audit_trans);
3172                 break;
3173             default:
3174                 g_assert_not_reached();
3175             }
3176         }
3177     }
3178     return ret;
3179 }
3180 
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3183                         socklen_t addrlen)
3184 {
3185     void *addr;
3186     abi_long ret;
3187 
3188     if ((int)addrlen < 0) {
3189         return -TARGET_EINVAL;
3190     }
3191 
3192     addr = alloca(addrlen+1);
3193 
3194     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3195     if (ret)
3196         return ret;
3197 
3198     return get_errno(bind(sockfd, addr, addrlen));
3199 }
3200 
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3203                            socklen_t addrlen)
3204 {
3205     void *addr;
3206     abi_long ret;
3207 
3208     if ((int)addrlen < 0) {
3209         return -TARGET_EINVAL;
3210     }
3211 
3212     addr = alloca(addrlen+1);
3213 
3214     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215     if (ret)
3216         return ret;
3217 
3218     return get_errno(safe_connect(sockfd, addr, addrlen));
3219 }
3220 
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3223                                       int flags, int send)
3224 {
3225     abi_long ret, len;
3226     struct msghdr msg;
3227     abi_ulong count;
3228     struct iovec *vec;
3229     abi_ulong target_vec;
3230 
3231     if (msgp->msg_name) {
3232         msg.msg_namelen = tswap32(msgp->msg_namelen);
3233         msg.msg_name = alloca(msg.msg_namelen+1);
3234         ret = target_to_host_sockaddr(fd, msg.msg_name,
3235                                       tswapal(msgp->msg_name),
3236                                       msg.msg_namelen);
3237         if (ret == -TARGET_EFAULT) {
3238             /* For connected sockets msg_name and msg_namelen must
3239              * be ignored, so returning EFAULT immediately is wrong.
3240              * Instead, pass a bad msg_name to the host kernel, and
3241              * let it decide whether to return EFAULT or not.
3242              */
3243             msg.msg_name = (void *)-1;
3244         } else if (ret) {
3245             goto out2;
3246         }
3247     } else {
3248         msg.msg_name = NULL;
3249         msg.msg_namelen = 0;
3250     }
3251     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3252     msg.msg_control = alloca(msg.msg_controllen);
3253     memset(msg.msg_control, 0, msg.msg_controllen);
3254 
3255     msg.msg_flags = tswap32(msgp->msg_flags);
3256 
3257     count = tswapal(msgp->msg_iovlen);
3258     target_vec = tswapal(msgp->msg_iov);
3259 
3260     if (count > IOV_MAX) {
3261         /* sendrcvmsg returns a different errno for this condition than
3262          * readv/writev, so we must catch it here before lock_iovec() does.
3263          */
3264         ret = -TARGET_EMSGSIZE;
3265         goto out2;
3266     }
3267 
3268     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3269                      target_vec, count, send);
3270     if (vec == NULL) {
3271         ret = -host_to_target_errno(errno);
3272         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3273         if (!send || ret) {
3274             goto out2;
3275         }
3276     }
3277     msg.msg_iovlen = count;
3278     msg.msg_iov = vec;
3279 
3280     if (send) {
3281         if (fd_trans_target_to_host_data(fd)) {
3282             void *host_msg;
3283 
3284             host_msg = g_malloc(msg.msg_iov->iov_len);
3285             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3286             ret = fd_trans_target_to_host_data(fd)(host_msg,
3287                                                    msg.msg_iov->iov_len);
3288             if (ret >= 0) {
3289                 msg.msg_iov->iov_base = host_msg;
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292             g_free(host_msg);
3293         } else {
3294             ret = target_to_host_cmsg(&msg, msgp);
3295             if (ret == 0) {
3296                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3297             }
3298         }
3299     } else {
3300         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3301         if (!is_error(ret)) {
3302             len = ret;
3303             if (fd_trans_host_to_target_data(fd)) {
3304                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3305                                                MIN(msg.msg_iov->iov_len, len));
3306             }
3307             if (!is_error(ret)) {
3308                 ret = host_to_target_cmsg(msgp, &msg);
3309             }
3310             if (!is_error(ret)) {
3311                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3312                 msgp->msg_flags = tswap32(msg.msg_flags);
3313                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3314                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3315                                     msg.msg_name, msg.msg_namelen);
3316                     if (ret) {
3317                         goto out;
3318                     }
3319                 }
3320 
3321                 ret = len;
3322             }
3323         }
3324     }
3325 
3326 out:
3327     if (vec) {
3328         unlock_iovec(vec, target_vec, count, !send);
3329     }
3330 out2:
3331     return ret;
3332 }
3333 
3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3335                                int flags, int send)
3336 {
3337     abi_long ret;
3338     struct target_msghdr *msgp;
3339 
3340     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3341                           msgp,
3342                           target_msg,
3343                           send ? 1 : 0)) {
3344         return -TARGET_EFAULT;
3345     }
3346     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3347     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3348     return ret;
3349 }
3350 
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352  * so it might not have this *mmsg-specific flag either.
3353  */
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3356 #endif
3357 
3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3359                                 unsigned int vlen, unsigned int flags,
3360                                 int send)
3361 {
3362     struct target_mmsghdr *mmsgp;
3363     abi_long ret = 0;
3364     int i;
3365 
3366     if (vlen > UIO_MAXIOV) {
3367         vlen = UIO_MAXIOV;
3368     }
3369 
3370     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3371     if (!mmsgp) {
3372         return -TARGET_EFAULT;
3373     }
3374 
3375     for (i = 0; i < vlen; i++) {
3376         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3377         if (is_error(ret)) {
3378             break;
3379         }
3380         mmsgp[i].msg_len = tswap32(ret);
3381         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382         if (flags & MSG_WAITFORONE) {
3383             flags |= MSG_DONTWAIT;
3384         }
3385     }
3386 
3387     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3388 
3389     /* Return number of datagrams sent if we sent any at all;
3390      * otherwise return the error.
3391      */
3392     if (i) {
3393         return i;
3394     }
3395     return ret;
3396 }
3397 
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long do_accept4(int fd, abi_ulong target_addr,
3400                            abi_ulong target_addrlen_addr, int flags)
3401 {
3402     socklen_t addrlen, ret_addrlen;
3403     void *addr;
3404     abi_long ret;
3405     int host_flags;
3406 
3407     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3408         return -TARGET_EINVAL;
3409     }
3410 
3411     host_flags = 0;
3412     if (flags & TARGET_SOCK_NONBLOCK) {
3413         host_flags |= SOCK_NONBLOCK;
3414     }
3415     if (flags & TARGET_SOCK_CLOEXEC) {
3416         host_flags |= SOCK_CLOEXEC;
3417     }
3418 
3419     if (target_addr == 0) {
3420         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3421     }
3422 
3423     /* linux returns EFAULT if addrlen pointer is invalid */
3424     if (get_user_u32(addrlen, target_addrlen_addr))
3425         return -TARGET_EFAULT;
3426 
3427     if ((int)addrlen < 0) {
3428         return -TARGET_EINVAL;
3429     }
3430 
3431     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3432         return -TARGET_EFAULT;
3433     }
3434 
3435     addr = alloca(addrlen);
3436 
3437     ret_addrlen = addrlen;
3438     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3439     if (!is_error(ret)) {
3440         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3441         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3442             ret = -TARGET_EFAULT;
3443         }
3444     }
3445     return ret;
3446 }
3447 
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3450                                abi_ulong target_addrlen_addr)
3451 {
3452     socklen_t addrlen, ret_addrlen;
3453     void *addr;
3454     abi_long ret;
3455 
3456     if (get_user_u32(addrlen, target_addrlen_addr))
3457         return -TARGET_EFAULT;
3458 
3459     if ((int)addrlen < 0) {
3460         return -TARGET_EINVAL;
3461     }
3462 
3463     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3464         return -TARGET_EFAULT;
3465     }
3466 
3467     addr = alloca(addrlen);
3468 
3469     ret_addrlen = addrlen;
3470     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3471     if (!is_error(ret)) {
3472         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3473         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3474             ret = -TARGET_EFAULT;
3475         }
3476     }
3477     return ret;
3478 }
3479 
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3482                                abi_ulong target_addrlen_addr)
3483 {
3484     socklen_t addrlen, ret_addrlen;
3485     void *addr;
3486     abi_long ret;
3487 
3488     if (get_user_u32(addrlen, target_addrlen_addr))
3489         return -TARGET_EFAULT;
3490 
3491     if ((int)addrlen < 0) {
3492         return -TARGET_EINVAL;
3493     }
3494 
3495     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3496         return -TARGET_EFAULT;
3497     }
3498 
3499     addr = alloca(addrlen);
3500 
3501     ret_addrlen = addrlen;
3502     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3503     if (!is_error(ret)) {
3504         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3505         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3506             ret = -TARGET_EFAULT;
3507         }
3508     }
3509     return ret;
3510 }
3511 
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long do_socketpair(int domain, int type, int protocol,
3514                               abi_ulong target_tab_addr)
3515 {
3516     int tab[2];
3517     abi_long ret;
3518 
3519     target_to_host_sock_type(&type);
3520 
3521     ret = get_errno(socketpair(domain, type, protocol, tab));
3522     if (!is_error(ret)) {
3523         if (put_user_s32(tab[0], target_tab_addr)
3524             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3525             ret = -TARGET_EFAULT;
3526     }
3527     return ret;
3528 }
3529 
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3532                           abi_ulong target_addr, socklen_t addrlen)
3533 {
3534     void *addr;
3535     void *host_msg;
3536     void *copy_msg = NULL;
3537     abi_long ret;
3538 
3539     if ((int)addrlen < 0) {
3540         return -TARGET_EINVAL;
3541     }
3542 
3543     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3544     if (!host_msg)
3545         return -TARGET_EFAULT;
3546     if (fd_trans_target_to_host_data(fd)) {
3547         copy_msg = host_msg;
3548         host_msg = g_malloc(len);
3549         memcpy(host_msg, copy_msg, len);
3550         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3551         if (ret < 0) {
3552             goto fail;
3553         }
3554     }
3555     if (target_addr) {
3556         addr = alloca(addrlen+1);
3557         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3558         if (ret) {
3559             goto fail;
3560         }
3561         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3562     } else {
3563         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3564     }
3565 fail:
3566     if (copy_msg) {
3567         g_free(host_msg);
3568         host_msg = copy_msg;
3569     }
3570     unlock_user(host_msg, msg, 0);
3571     return ret;
3572 }
3573 
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3576                             abi_ulong target_addr,
3577                             abi_ulong target_addrlen)
3578 {
3579     socklen_t addrlen, ret_addrlen;
3580     void *addr;
3581     void *host_msg;
3582     abi_long ret;
3583 
3584     if (!msg) {
3585         host_msg = NULL;
3586     } else {
3587         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3588         if (!host_msg) {
3589             return -TARGET_EFAULT;
3590         }
3591     }
3592     if (target_addr) {
3593         if (get_user_u32(addrlen, target_addrlen)) {
3594             ret = -TARGET_EFAULT;
3595             goto fail;
3596         }
3597         if ((int)addrlen < 0) {
3598             ret = -TARGET_EINVAL;
3599             goto fail;
3600         }
3601         addr = alloca(addrlen);
3602         ret_addrlen = addrlen;
3603         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3604                                       addr, &ret_addrlen));
3605     } else {
3606         addr = NULL; /* To keep compiler quiet.  */
3607         addrlen = 0; /* To keep compiler quiet.  */
3608         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3609     }
3610     if (!is_error(ret)) {
3611         if (fd_trans_host_to_target_data(fd)) {
3612             abi_long trans;
3613             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3614             if (is_error(trans)) {
3615                 ret = trans;
3616                 goto fail;
3617             }
3618         }
3619         if (target_addr) {
3620             host_to_target_sockaddr(target_addr, addr,
3621                                     MIN(addrlen, ret_addrlen));
3622             if (put_user_u32(ret_addrlen, target_addrlen)) {
3623                 ret = -TARGET_EFAULT;
3624                 goto fail;
3625             }
3626         }
3627         unlock_user(host_msg, msg, len);
3628     } else {
3629 fail:
3630         unlock_user(host_msg, msg, 0);
3631     }
3632     return ret;
3633 }
3634 
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long do_socketcall(int num, abi_ulong vptr)
3638 {
3639     static const unsigned nargs[] = { /* number of arguments per operation */
3640         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3641         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3642         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3643         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3644         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3645         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3646         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3647         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3648         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3649         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3650         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3651         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3652         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3653         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3654         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3655         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3656         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3657         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3658         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3659         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3660     };
3661     abi_long a[6]; /* max 6 args */
3662     unsigned i;
3663 
3664     /* check the range of the first argument num */
3665     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3667         return -TARGET_EINVAL;
3668     }
3669     /* ensure we have space for args */
3670     if (nargs[num] > ARRAY_SIZE(a)) {
3671         return -TARGET_EINVAL;
3672     }
3673     /* collect the arguments in a[] according to nargs[] */
3674     for (i = 0; i < nargs[num]; ++i) {
3675         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3676             return -TARGET_EFAULT;
3677         }
3678     }
3679     /* now when we have the args, invoke the appropriate underlying function */
3680     switch (num) {
3681     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3682         return do_socket(a[0], a[1], a[2]);
3683     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3684         return do_bind(a[0], a[1], a[2]);
3685     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3686         return do_connect(a[0], a[1], a[2]);
3687     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3688         return get_errno(listen(a[0], a[1]));
3689     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3690         return do_accept4(a[0], a[1], a[2], 0);
3691     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3692         return do_getsockname(a[0], a[1], a[2]);
3693     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3694         return do_getpeername(a[0], a[1], a[2]);
3695     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3696         return do_socketpair(a[0], a[1], a[2], a[3]);
3697     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3698         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3699     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3700         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3701     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3702         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3703     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3704         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3705     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3706         return get_errno(shutdown(a[0], a[1]));
3707     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3708         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3709     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3710         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3711     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3712         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3713     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3714         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3715     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3716         return do_accept4(a[0], a[1], a[2], a[3]);
3717     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3718         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3719     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3720         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3721     default:
3722         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3723         return -TARGET_EINVAL;
3724     }
3725 }
3726 #endif
3727 
3728 #define N_SHM_REGIONS	32
3729 
3730 static struct shm_region {
3731     abi_ulong start;
3732     abi_ulong size;
3733     bool in_use;
3734 } shm_regions[N_SHM_REGIONS];
3735 
3736 #ifndef TARGET_SEMID64_DS
3737 /* asm-generic version of this struct */
3738 struct target_semid64_ds
3739 {
3740   struct target_ipc_perm sem_perm;
3741   abi_ulong sem_otime;
3742 #if TARGET_ABI_BITS == 32
3743   abi_ulong __unused1;
3744 #endif
3745   abi_ulong sem_ctime;
3746 #if TARGET_ABI_BITS == 32
3747   abi_ulong __unused2;
3748 #endif
3749   abi_ulong sem_nsems;
3750   abi_ulong __unused3;
3751   abi_ulong __unused4;
3752 };
3753 #endif
3754 
3755 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3756                                                abi_ulong target_addr)
3757 {
3758     struct target_ipc_perm *target_ip;
3759     struct target_semid64_ds *target_sd;
3760 
3761     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3762         return -TARGET_EFAULT;
3763     target_ip = &(target_sd->sem_perm);
3764     host_ip->__key = tswap32(target_ip->__key);
3765     host_ip->uid = tswap32(target_ip->uid);
3766     host_ip->gid = tswap32(target_ip->gid);
3767     host_ip->cuid = tswap32(target_ip->cuid);
3768     host_ip->cgid = tswap32(target_ip->cgid);
3769 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3770     host_ip->mode = tswap32(target_ip->mode);
3771 #else
3772     host_ip->mode = tswap16(target_ip->mode);
3773 #endif
3774 #if defined(TARGET_PPC)
3775     host_ip->__seq = tswap32(target_ip->__seq);
3776 #else
3777     host_ip->__seq = tswap16(target_ip->__seq);
3778 #endif
3779     unlock_user_struct(target_sd, target_addr, 0);
3780     return 0;
3781 }
3782 
3783 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3784                                                struct ipc_perm *host_ip)
3785 {
3786     struct target_ipc_perm *target_ip;
3787     struct target_semid64_ds *target_sd;
3788 
3789     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3790         return -TARGET_EFAULT;
3791     target_ip = &(target_sd->sem_perm);
3792     target_ip->__key = tswap32(host_ip->__key);
3793     target_ip->uid = tswap32(host_ip->uid);
3794     target_ip->gid = tswap32(host_ip->gid);
3795     target_ip->cuid = tswap32(host_ip->cuid);
3796     target_ip->cgid = tswap32(host_ip->cgid);
3797 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3798     target_ip->mode = tswap32(host_ip->mode);
3799 #else
3800     target_ip->mode = tswap16(host_ip->mode);
3801 #endif
3802 #if defined(TARGET_PPC)
3803     target_ip->__seq = tswap32(host_ip->__seq);
3804 #else
3805     target_ip->__seq = tswap16(host_ip->__seq);
3806 #endif
3807     unlock_user_struct(target_sd, target_addr, 1);
3808     return 0;
3809 }
3810 
3811 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3812                                                abi_ulong target_addr)
3813 {
3814     struct target_semid64_ds *target_sd;
3815 
3816     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3817         return -TARGET_EFAULT;
3818     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3819         return -TARGET_EFAULT;
3820     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3821     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3822     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3823     unlock_user_struct(target_sd, target_addr, 0);
3824     return 0;
3825 }
3826 
3827 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3828                                                struct semid_ds *host_sd)
3829 {
3830     struct target_semid64_ds *target_sd;
3831 
3832     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3833         return -TARGET_EFAULT;
3834     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3835         return -TARGET_EFAULT;
3836     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3837     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3838     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3839     unlock_user_struct(target_sd, target_addr, 1);
3840     return 0;
3841 }
3842 
3843 struct target_seminfo {
3844     int semmap;
3845     int semmni;
3846     int semmns;
3847     int semmnu;
3848     int semmsl;
3849     int semopm;
3850     int semume;
3851     int semusz;
3852     int semvmx;
3853     int semaem;
3854 };
3855 
3856 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3857                                               struct seminfo *host_seminfo)
3858 {
3859     struct target_seminfo *target_seminfo;
3860     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3861         return -TARGET_EFAULT;
3862     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3863     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3864     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3865     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3866     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3867     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3868     __put_user(host_seminfo->semume, &target_seminfo->semume);
3869     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3870     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3871     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3872     unlock_user_struct(target_seminfo, target_addr, 1);
3873     return 0;
3874 }
3875 
3876 union semun {
3877 	int val;
3878 	struct semid_ds *buf;
3879 	unsigned short *array;
3880 	struct seminfo *__buf;
3881 };
3882 
3883 union target_semun {
3884 	int val;
3885 	abi_ulong buf;
3886 	abi_ulong array;
3887 	abi_ulong __buf;
3888 };
3889 
3890 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3891                                                abi_ulong target_addr)
3892 {
3893     int nsems;
3894     unsigned short *array;
3895     union semun semun;
3896     struct semid_ds semid_ds;
3897     int i, ret;
3898 
3899     semun.buf = &semid_ds;
3900 
3901     ret = semctl(semid, 0, IPC_STAT, semun);
3902     if (ret == -1)
3903         return get_errno(ret);
3904 
3905     nsems = semid_ds.sem_nsems;
3906 
3907     *host_array = g_try_new(unsigned short, nsems);
3908     if (!*host_array) {
3909         return -TARGET_ENOMEM;
3910     }
3911     array = lock_user(VERIFY_READ, target_addr,
3912                       nsems*sizeof(unsigned short), 1);
3913     if (!array) {
3914         g_free(*host_array);
3915         return -TARGET_EFAULT;
3916     }
3917 
3918     for(i=0; i<nsems; i++) {
3919         __get_user((*host_array)[i], &array[i]);
3920     }
3921     unlock_user(array, target_addr, 0);
3922 
3923     return 0;
3924 }
3925 
3926 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3927                                                unsigned short **host_array)
3928 {
3929     int nsems;
3930     unsigned short *array;
3931     union semun semun;
3932     struct semid_ds semid_ds;
3933     int i, ret;
3934 
3935     semun.buf = &semid_ds;
3936 
3937     ret = semctl(semid, 0, IPC_STAT, semun);
3938     if (ret == -1)
3939         return get_errno(ret);
3940 
3941     nsems = semid_ds.sem_nsems;
3942 
3943     array = lock_user(VERIFY_WRITE, target_addr,
3944                       nsems*sizeof(unsigned short), 0);
3945     if (!array)
3946         return -TARGET_EFAULT;
3947 
3948     for(i=0; i<nsems; i++) {
3949         __put_user((*host_array)[i], &array[i]);
3950     }
3951     g_free(*host_array);
3952     unlock_user(array, target_addr, 1);
3953 
3954     return 0;
3955 }
3956 
3957 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3958                                  abi_ulong target_arg)
3959 {
3960     union target_semun target_su = { .buf = target_arg };
3961     union semun arg;
3962     struct semid_ds dsarg;
3963     unsigned short *array = NULL;
3964     struct seminfo seminfo;
3965     abi_long ret = -TARGET_EINVAL;
3966     abi_long err;
3967     cmd &= 0xff;
3968 
3969     switch( cmd ) {
3970 	case GETVAL:
3971 	case SETVAL:
3972             /* In 64 bit cross-endian situations, we will erroneously pick up
3973              * the wrong half of the union for the "val" element.  To rectify
3974              * this, the entire 8-byte structure is byteswapped, followed by
3975 	     * a swap of the 4 byte val field. In other cases, the data is
3976 	     * already in proper host byte order. */
3977 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3978 		target_su.buf = tswapal(target_su.buf);
3979 		arg.val = tswap32(target_su.val);
3980 	    } else {
3981 		arg.val = target_su.val;
3982 	    }
3983             ret = get_errno(semctl(semid, semnum, cmd, arg));
3984             break;
3985 	case GETALL:
3986 	case SETALL:
3987             err = target_to_host_semarray(semid, &array, target_su.array);
3988             if (err)
3989                 return err;
3990             arg.array = array;
3991             ret = get_errno(semctl(semid, semnum, cmd, arg));
3992             err = host_to_target_semarray(semid, target_su.array, &array);
3993             if (err)
3994                 return err;
3995             break;
3996 	case IPC_STAT:
3997 	case IPC_SET:
3998 	case SEM_STAT:
3999             err = target_to_host_semid_ds(&dsarg, target_su.buf);
4000             if (err)
4001                 return err;
4002             arg.buf = &dsarg;
4003             ret = get_errno(semctl(semid, semnum, cmd, arg));
4004             err = host_to_target_semid_ds(target_su.buf, &dsarg);
4005             if (err)
4006                 return err;
4007             break;
4008 	case IPC_INFO:
4009 	case SEM_INFO:
4010             arg.__buf = &seminfo;
4011             ret = get_errno(semctl(semid, semnum, cmd, arg));
4012             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4013             if (err)
4014                 return err;
4015             break;
4016 	case IPC_RMID:
4017 	case GETPID:
4018 	case GETNCNT:
4019 	case GETZCNT:
4020             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4021             break;
4022     }
4023 
4024     return ret;
4025 }
4026 
4027 struct target_sembuf {
4028     unsigned short sem_num;
4029     short sem_op;
4030     short sem_flg;
4031 };
4032 
4033 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4034                                              abi_ulong target_addr,
4035                                              unsigned nsops)
4036 {
4037     struct target_sembuf *target_sembuf;
4038     int i;
4039 
4040     target_sembuf = lock_user(VERIFY_READ, target_addr,
4041                               nsops*sizeof(struct target_sembuf), 1);
4042     if (!target_sembuf)
4043         return -TARGET_EFAULT;
4044 
4045     for(i=0; i<nsops; i++) {
4046         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4047         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4048         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4049     }
4050 
4051     unlock_user(target_sembuf, target_addr, 0);
4052 
4053     return 0;
4054 }
4055 
4056 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4057     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4058 
4059 /*
4060  * This macro is required to handle the s390 variants, which passes the
4061  * arguments in a different order than default.
4062  */
4063 #ifdef __s390x__
4064 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4065   (__nsops), (__timeout), (__sops)
4066 #else
4067 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4068   (__nsops), 0, (__sops), (__timeout)
4069 #endif
4070 
4071 static inline abi_long do_semtimedop(int semid,
4072                                      abi_long ptr,
4073                                      unsigned nsops,
4074                                      abi_long timeout, bool time64)
4075 {
4076     struct sembuf *sops;
4077     struct timespec ts, *pts = NULL;
4078     abi_long ret;
4079 
4080     if (timeout) {
4081         pts = &ts;
4082         if (time64) {
4083             if (target_to_host_timespec64(pts, timeout)) {
4084                 return -TARGET_EFAULT;
4085             }
4086         } else {
4087             if (target_to_host_timespec(pts, timeout)) {
4088                 return -TARGET_EFAULT;
4089             }
4090         }
4091     }
4092 
4093     if (nsops > TARGET_SEMOPM) {
4094         return -TARGET_E2BIG;
4095     }
4096 
4097     sops = g_new(struct sembuf, nsops);
4098 
4099     if (target_to_host_sembuf(sops, ptr, nsops)) {
4100         g_free(sops);
4101         return -TARGET_EFAULT;
4102     }
4103 
4104     ret = -TARGET_ENOSYS;
4105 #ifdef __NR_semtimedop
4106     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4107 #endif
4108 #ifdef __NR_ipc
4109     if (ret == -TARGET_ENOSYS) {
4110         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4111                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4112     }
4113 #endif
4114     g_free(sops);
4115     return ret;
4116 }
4117 #endif
4118 
4119 struct target_msqid_ds
4120 {
4121     struct target_ipc_perm msg_perm;
4122     abi_ulong msg_stime;
4123 #if TARGET_ABI_BITS == 32
4124     abi_ulong __unused1;
4125 #endif
4126     abi_ulong msg_rtime;
4127 #if TARGET_ABI_BITS == 32
4128     abi_ulong __unused2;
4129 #endif
4130     abi_ulong msg_ctime;
4131 #if TARGET_ABI_BITS == 32
4132     abi_ulong __unused3;
4133 #endif
4134     abi_ulong __msg_cbytes;
4135     abi_ulong msg_qnum;
4136     abi_ulong msg_qbytes;
4137     abi_ulong msg_lspid;
4138     abi_ulong msg_lrpid;
4139     abi_ulong __unused4;
4140     abi_ulong __unused5;
4141 };
4142 
4143 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4144                                                abi_ulong target_addr)
4145 {
4146     struct target_msqid_ds *target_md;
4147 
4148     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4149         return -TARGET_EFAULT;
4150     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4151         return -TARGET_EFAULT;
4152     host_md->msg_stime = tswapal(target_md->msg_stime);
4153     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4154     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4155     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4156     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4157     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4158     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4159     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4160     unlock_user_struct(target_md, target_addr, 0);
4161     return 0;
4162 }
4163 
4164 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4165                                                struct msqid_ds *host_md)
4166 {
4167     struct target_msqid_ds *target_md;
4168 
4169     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4170         return -TARGET_EFAULT;
4171     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4172         return -TARGET_EFAULT;
4173     target_md->msg_stime = tswapal(host_md->msg_stime);
4174     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4175     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4176     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4177     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4178     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4179     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4180     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4181     unlock_user_struct(target_md, target_addr, 1);
4182     return 0;
4183 }
4184 
4185 struct target_msginfo {
4186     int msgpool;
4187     int msgmap;
4188     int msgmax;
4189     int msgmnb;
4190     int msgmni;
4191     int msgssz;
4192     int msgtql;
4193     unsigned short int msgseg;
4194 };
4195 
4196 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4197                                               struct msginfo *host_msginfo)
4198 {
4199     struct target_msginfo *target_msginfo;
4200     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4201         return -TARGET_EFAULT;
4202     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4203     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4204     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4205     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4206     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4207     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4208     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4209     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4210     unlock_user_struct(target_msginfo, target_addr, 1);
4211     return 0;
4212 }
4213 
4214 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4215 {
4216     struct msqid_ds dsarg;
4217     struct msginfo msginfo;
4218     abi_long ret = -TARGET_EINVAL;
4219 
4220     cmd &= 0xff;
4221 
4222     switch (cmd) {
4223     case IPC_STAT:
4224     case IPC_SET:
4225     case MSG_STAT:
4226         if (target_to_host_msqid_ds(&dsarg,ptr))
4227             return -TARGET_EFAULT;
4228         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4229         if (host_to_target_msqid_ds(ptr,&dsarg))
4230             return -TARGET_EFAULT;
4231         break;
4232     case IPC_RMID:
4233         ret = get_errno(msgctl(msgid, cmd, NULL));
4234         break;
4235     case IPC_INFO:
4236     case MSG_INFO:
4237         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4238         if (host_to_target_msginfo(ptr, &msginfo))
4239             return -TARGET_EFAULT;
4240         break;
4241     }
4242 
4243     return ret;
4244 }
4245 
4246 struct target_msgbuf {
4247     abi_long mtype;
4248     char	mtext[1];
4249 };
4250 
4251 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4252                                  ssize_t msgsz, int msgflg)
4253 {
4254     struct target_msgbuf *target_mb;
4255     struct msgbuf *host_mb;
4256     abi_long ret = 0;
4257 
4258     if (msgsz < 0) {
4259         return -TARGET_EINVAL;
4260     }
4261 
4262     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4263         return -TARGET_EFAULT;
4264     host_mb = g_try_malloc(msgsz + sizeof(long));
4265     if (!host_mb) {
4266         unlock_user_struct(target_mb, msgp, 0);
4267         return -TARGET_ENOMEM;
4268     }
4269     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4270     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4271     ret = -TARGET_ENOSYS;
4272 #ifdef __NR_msgsnd
4273     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4274 #endif
4275 #ifdef __NR_ipc
4276     if (ret == -TARGET_ENOSYS) {
4277 #ifdef __s390x__
4278         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4279                                  host_mb));
4280 #else
4281         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4282                                  host_mb, 0));
4283 #endif
4284     }
4285 #endif
4286     g_free(host_mb);
4287     unlock_user_struct(target_mb, msgp, 0);
4288 
4289     return ret;
4290 }
4291 
4292 #ifdef __NR_ipc
4293 #if defined(__sparc__)
4294 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4295 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4296 #elif defined(__s390x__)
4297 /* The s390 sys_ipc variant has only five parameters.  */
4298 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4299     ((long int[]){(long int)__msgp, __msgtyp})
4300 #else
4301 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4302     ((long int[]){(long int)__msgp, __msgtyp}), 0
4303 #endif
4304 #endif
4305 
4306 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4307                                  ssize_t msgsz, abi_long msgtyp,
4308                                  int msgflg)
4309 {
4310     struct target_msgbuf *target_mb;
4311     char *target_mtext;
4312     struct msgbuf *host_mb;
4313     abi_long ret = 0;
4314 
4315     if (msgsz < 0) {
4316         return -TARGET_EINVAL;
4317     }
4318 
4319     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4320         return -TARGET_EFAULT;
4321 
4322     host_mb = g_try_malloc(msgsz + sizeof(long));
4323     if (!host_mb) {
4324         ret = -TARGET_ENOMEM;
4325         goto end;
4326     }
4327     ret = -TARGET_ENOSYS;
4328 #ifdef __NR_msgrcv
4329     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4330 #endif
4331 #ifdef __NR_ipc
4332     if (ret == -TARGET_ENOSYS) {
4333         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4334                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4335     }
4336 #endif
4337 
4338     if (ret > 0) {
4339         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4340         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4341         if (!target_mtext) {
4342             ret = -TARGET_EFAULT;
4343             goto end;
4344         }
4345         memcpy(target_mb->mtext, host_mb->mtext, ret);
4346         unlock_user(target_mtext, target_mtext_addr, ret);
4347     }
4348 
4349     target_mb->mtype = tswapal(host_mb->mtype);
4350 
4351 end:
4352     if (target_mb)
4353         unlock_user_struct(target_mb, msgp, 1);
4354     g_free(host_mb);
4355     return ret;
4356 }
4357 
4358 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4359                                                abi_ulong target_addr)
4360 {
4361     struct target_shmid_ds *target_sd;
4362 
4363     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4364         return -TARGET_EFAULT;
4365     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4366         return -TARGET_EFAULT;
4367     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4368     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4369     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4370     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4371     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4372     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4373     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4374     unlock_user_struct(target_sd, target_addr, 0);
4375     return 0;
4376 }
4377 
4378 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4379                                                struct shmid_ds *host_sd)
4380 {
4381     struct target_shmid_ds *target_sd;
4382 
4383     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4384         return -TARGET_EFAULT;
4385     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4386         return -TARGET_EFAULT;
4387     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4388     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4389     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4390     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4391     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4392     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4393     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4394     unlock_user_struct(target_sd, target_addr, 1);
4395     return 0;
4396 }
4397 
4398 struct  target_shminfo {
4399     abi_ulong shmmax;
4400     abi_ulong shmmin;
4401     abi_ulong shmmni;
4402     abi_ulong shmseg;
4403     abi_ulong shmall;
4404 };
4405 
4406 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4407                                               struct shminfo *host_shminfo)
4408 {
4409     struct target_shminfo *target_shminfo;
4410     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4411         return -TARGET_EFAULT;
4412     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4413     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4414     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4415     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4416     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4417     unlock_user_struct(target_shminfo, target_addr, 1);
4418     return 0;
4419 }
4420 
4421 struct target_shm_info {
4422     int used_ids;
4423     abi_ulong shm_tot;
4424     abi_ulong shm_rss;
4425     abi_ulong shm_swp;
4426     abi_ulong swap_attempts;
4427     abi_ulong swap_successes;
4428 };
4429 
4430 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4431                                                struct shm_info *host_shm_info)
4432 {
4433     struct target_shm_info *target_shm_info;
4434     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4435         return -TARGET_EFAULT;
4436     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4437     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4438     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4439     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4440     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4441     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4442     unlock_user_struct(target_shm_info, target_addr, 1);
4443     return 0;
4444 }
4445 
4446 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4447 {
4448     struct shmid_ds dsarg;
4449     struct shminfo shminfo;
4450     struct shm_info shm_info;
4451     abi_long ret = -TARGET_EINVAL;
4452 
4453     cmd &= 0xff;
4454 
4455     switch(cmd) {
4456     case IPC_STAT:
4457     case IPC_SET:
4458     case SHM_STAT:
4459         if (target_to_host_shmid_ds(&dsarg, buf))
4460             return -TARGET_EFAULT;
4461         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4462         if (host_to_target_shmid_ds(buf, &dsarg))
4463             return -TARGET_EFAULT;
4464         break;
4465     case IPC_INFO:
4466         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4467         if (host_to_target_shminfo(buf, &shminfo))
4468             return -TARGET_EFAULT;
4469         break;
4470     case SHM_INFO:
4471         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4472         if (host_to_target_shm_info(buf, &shm_info))
4473             return -TARGET_EFAULT;
4474         break;
4475     case IPC_RMID:
4476     case SHM_LOCK:
4477     case SHM_UNLOCK:
4478         ret = get_errno(shmctl(shmid, cmd, NULL));
4479         break;
4480     }
4481 
4482     return ret;
4483 }
4484 
4485 #ifndef TARGET_FORCE_SHMLBA
4486 /* For most architectures, SHMLBA is the same as the page size;
4487  * some architectures have larger values, in which case they should
4488  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4489  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4490  * and defining its own value for SHMLBA.
4491  *
4492  * The kernel also permits SHMLBA to be set by the architecture to a
4493  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4494  * this means that addresses are rounded to the large size if
4495  * SHM_RND is set but addresses not aligned to that size are not rejected
4496  * as long as they are at least page-aligned. Since the only architecture
4497  * which uses this is ia64 this code doesn't provide for that oddity.
4498  */
4499 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4500 {
4501     return TARGET_PAGE_SIZE;
4502 }
4503 #endif
4504 
4505 static abi_ulong do_shmat(CPUArchState *cpu_env, int shmid,
4506                           abi_ulong shmaddr, int shmflg)
4507 {
4508     CPUState *cpu = env_cpu(cpu_env);
4509     abi_ulong raddr;
4510     void *host_raddr;
4511     struct shmid_ds shm_info;
4512     int i, ret;
4513     abi_ulong shmlba;
4514 
4515     /* shmat pointers are always untagged */
4516 
4517     /* find out the length of the shared memory segment */
4518     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4519     if (is_error(ret)) {
4520         /* can't get length, bail out */
4521         return ret;
4522     }
4523 
4524     shmlba = target_shmlba(cpu_env);
4525 
4526     if (shmaddr & (shmlba - 1)) {
4527         if (shmflg & SHM_RND) {
4528             shmaddr &= ~(shmlba - 1);
4529         } else {
4530             return -TARGET_EINVAL;
4531         }
4532     }
4533     if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4534         return -TARGET_EINVAL;
4535     }
4536 
4537     mmap_lock();
4538 
4539     /*
4540      * We're mapping shared memory, so ensure we generate code for parallel
4541      * execution and flush old translations.  This will work up to the level
4542      * supported by the host -- anything that requires EXCP_ATOMIC will not
4543      * be atomic with respect to an external process.
4544      */
4545     if (!(cpu->tcg_cflags & CF_PARALLEL)) {
4546         cpu->tcg_cflags |= CF_PARALLEL;
4547         tb_flush(cpu);
4548     }
4549 
4550     if (shmaddr)
4551         host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4552     else {
4553         abi_ulong mmap_start;
4554 
4555         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4556         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4557 
4558         if (mmap_start == -1) {
4559             errno = ENOMEM;
4560             host_raddr = (void *)-1;
4561         } else
4562             host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4563                                shmflg | SHM_REMAP);
4564     }
4565 
4566     if (host_raddr == (void *)-1) {
4567         mmap_unlock();
4568         return get_errno((intptr_t)host_raddr);
4569     }
4570     raddr = h2g((uintptr_t)host_raddr);
4571 
4572     page_set_flags(raddr, raddr + shm_info.shm_segsz - 1,
4573                    PAGE_VALID | PAGE_RESET | PAGE_READ |
4574                    (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4575 
4576     for (i = 0; i < N_SHM_REGIONS; i++) {
4577         if (!shm_regions[i].in_use) {
4578             shm_regions[i].in_use = true;
4579             shm_regions[i].start = raddr;
4580             shm_regions[i].size = shm_info.shm_segsz;
4581             break;
4582         }
4583     }
4584 
4585     mmap_unlock();
4586     return raddr;
4587 }
4588 
4589 static inline abi_long do_shmdt(abi_ulong shmaddr)
4590 {
4591     int i;
4592     abi_long rv;
4593 
4594     /* shmdt pointers are always untagged */
4595 
4596     mmap_lock();
4597 
4598     for (i = 0; i < N_SHM_REGIONS; ++i) {
4599         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4600             shm_regions[i].in_use = false;
4601             page_set_flags(shmaddr, shmaddr + shm_regions[i].size - 1, 0);
4602             break;
4603         }
4604     }
4605     rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4606 
4607     mmap_unlock();
4608 
4609     return rv;
4610 }
4611 
4612 #ifdef TARGET_NR_ipc
4613 /* ??? This only works with linear mappings.  */
4614 /* do_ipc() must return target values and target errnos. */
4615 static abi_long do_ipc(CPUArchState *cpu_env,
4616                        unsigned int call, abi_long first,
4617                        abi_long second, abi_long third,
4618                        abi_long ptr, abi_long fifth)
4619 {
4620     int version;
4621     abi_long ret = 0;
4622 
4623     version = call >> 16;
4624     call &= 0xffff;
4625 
4626     switch (call) {
4627     case IPCOP_semop:
4628         ret = do_semtimedop(first, ptr, second, 0, false);
4629         break;
4630     case IPCOP_semtimedop:
4631     /*
4632      * The s390 sys_ipc variant has only five parameters instead of six
4633      * (as for default variant) and the only difference is the handling of
4634      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4635      * to a struct timespec where the generic variant uses fifth parameter.
4636      */
4637 #if defined(TARGET_S390X)
4638         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4639 #else
4640         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4641 #endif
4642         break;
4643 
4644     case IPCOP_semget:
4645         ret = get_errno(semget(first, second, third));
4646         break;
4647 
4648     case IPCOP_semctl: {
4649         /* The semun argument to semctl is passed by value, so dereference the
4650          * ptr argument. */
4651         abi_ulong atptr;
4652         get_user_ual(atptr, ptr);
4653         ret = do_semctl(first, second, third, atptr);
4654         break;
4655     }
4656 
4657     case IPCOP_msgget:
4658         ret = get_errno(msgget(first, second));
4659         break;
4660 
4661     case IPCOP_msgsnd:
4662         ret = do_msgsnd(first, ptr, second, third);
4663         break;
4664 
4665     case IPCOP_msgctl:
4666         ret = do_msgctl(first, second, ptr);
4667         break;
4668 
4669     case IPCOP_msgrcv:
4670         switch (version) {
4671         case 0:
4672             {
4673                 struct target_ipc_kludge {
4674                     abi_long msgp;
4675                     abi_long msgtyp;
4676                 } *tmp;
4677 
4678                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4679                     ret = -TARGET_EFAULT;
4680                     break;
4681                 }
4682 
4683                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4684 
4685                 unlock_user_struct(tmp, ptr, 0);
4686                 break;
4687             }
4688         default:
4689             ret = do_msgrcv(first, ptr, second, fifth, third);
4690         }
4691         break;
4692 
4693     case IPCOP_shmat:
4694         switch (version) {
4695         default:
4696         {
4697             abi_ulong raddr;
4698             raddr = do_shmat(cpu_env, first, ptr, second);
4699             if (is_error(raddr))
4700                 return get_errno(raddr);
4701             if (put_user_ual(raddr, third))
4702                 return -TARGET_EFAULT;
4703             break;
4704         }
4705         case 1:
4706             ret = -TARGET_EINVAL;
4707             break;
4708         }
4709 	break;
4710     case IPCOP_shmdt:
4711         ret = do_shmdt(ptr);
4712 	break;
4713 
4714     case IPCOP_shmget:
4715 	/* IPC_* flag values are the same on all linux platforms */
4716 	ret = get_errno(shmget(first, second, third));
4717 	break;
4718 
4719 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4720     case IPCOP_shmctl:
4721         ret = do_shmctl(first, second, ptr);
4722         break;
4723     default:
4724         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4725                       call, version);
4726 	ret = -TARGET_ENOSYS;
4727 	break;
4728     }
4729     return ret;
4730 }
4731 #endif
4732 
4733 /* kernel structure types definitions */
4734 
4735 #define STRUCT(name, ...) STRUCT_ ## name,
4736 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4737 enum {
4738 #include "syscall_types.h"
4739 STRUCT_MAX
4740 };
4741 #undef STRUCT
4742 #undef STRUCT_SPECIAL
4743 
4744 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4745 #define STRUCT_SPECIAL(name)
4746 #include "syscall_types.h"
4747 #undef STRUCT
4748 #undef STRUCT_SPECIAL
4749 
4750 #define MAX_STRUCT_SIZE 4096
4751 
4752 #ifdef CONFIG_FIEMAP
4753 /* So fiemap access checks don't overflow on 32 bit systems.
4754  * This is very slightly smaller than the limit imposed by
4755  * the underlying kernel.
4756  */
4757 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4758                             / sizeof(struct fiemap_extent))
4759 
4760 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4761                                        int fd, int cmd, abi_long arg)
4762 {
4763     /* The parameter for this ioctl is a struct fiemap followed
4764      * by an array of struct fiemap_extent whose size is set
4765      * in fiemap->fm_extent_count. The array is filled in by the
4766      * ioctl.
4767      */
4768     int target_size_in, target_size_out;
4769     struct fiemap *fm;
4770     const argtype *arg_type = ie->arg_type;
4771     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4772     void *argptr, *p;
4773     abi_long ret;
4774     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4775     uint32_t outbufsz;
4776     int free_fm = 0;
4777 
4778     assert(arg_type[0] == TYPE_PTR);
4779     assert(ie->access == IOC_RW);
4780     arg_type++;
4781     target_size_in = thunk_type_size(arg_type, 0);
4782     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4783     if (!argptr) {
4784         return -TARGET_EFAULT;
4785     }
4786     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4787     unlock_user(argptr, arg, 0);
4788     fm = (struct fiemap *)buf_temp;
4789     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4790         return -TARGET_EINVAL;
4791     }
4792 
4793     outbufsz = sizeof (*fm) +
4794         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4795 
4796     if (outbufsz > MAX_STRUCT_SIZE) {
4797         /* We can't fit all the extents into the fixed size buffer.
4798          * Allocate one that is large enough and use it instead.
4799          */
4800         fm = g_try_malloc(outbufsz);
4801         if (!fm) {
4802             return -TARGET_ENOMEM;
4803         }
4804         memcpy(fm, buf_temp, sizeof(struct fiemap));
4805         free_fm = 1;
4806     }
4807     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4808     if (!is_error(ret)) {
4809         target_size_out = target_size_in;
4810         /* An extent_count of 0 means we were only counting the extents
4811          * so there are no structs to copy
4812          */
4813         if (fm->fm_extent_count != 0) {
4814             target_size_out += fm->fm_mapped_extents * extent_size;
4815         }
4816         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4817         if (!argptr) {
4818             ret = -TARGET_EFAULT;
4819         } else {
4820             /* Convert the struct fiemap */
4821             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4822             if (fm->fm_extent_count != 0) {
4823                 p = argptr + target_size_in;
4824                 /* ...and then all the struct fiemap_extents */
4825                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4826                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4827                                   THUNK_TARGET);
4828                     p += extent_size;
4829                 }
4830             }
4831             unlock_user(argptr, arg, target_size_out);
4832         }
4833     }
4834     if (free_fm) {
4835         g_free(fm);
4836     }
4837     return ret;
4838 }
4839 #endif
4840 
4841 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4842                                 int fd, int cmd, abi_long arg)
4843 {
4844     const argtype *arg_type = ie->arg_type;
4845     int target_size;
4846     void *argptr;
4847     int ret;
4848     struct ifconf *host_ifconf;
4849     uint32_t outbufsz;
4850     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4851     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4852     int target_ifreq_size;
4853     int nb_ifreq;
4854     int free_buf = 0;
4855     int i;
4856     int target_ifc_len;
4857     abi_long target_ifc_buf;
4858     int host_ifc_len;
4859     char *host_ifc_buf;
4860 
4861     assert(arg_type[0] == TYPE_PTR);
4862     assert(ie->access == IOC_RW);
4863 
4864     arg_type++;
4865     target_size = thunk_type_size(arg_type, 0);
4866 
4867     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4868     if (!argptr)
4869         return -TARGET_EFAULT;
4870     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4871     unlock_user(argptr, arg, 0);
4872 
4873     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4874     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4875     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4876 
4877     if (target_ifc_buf != 0) {
4878         target_ifc_len = host_ifconf->ifc_len;
4879         nb_ifreq = target_ifc_len / target_ifreq_size;
4880         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4881 
4882         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4883         if (outbufsz > MAX_STRUCT_SIZE) {
4884             /*
4885              * We can't fit all the extents into the fixed size buffer.
4886              * Allocate one that is large enough and use it instead.
4887              */
4888             host_ifconf = g_try_malloc(outbufsz);
4889             if (!host_ifconf) {
4890                 return -TARGET_ENOMEM;
4891             }
4892             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4893             free_buf = 1;
4894         }
4895         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4896 
4897         host_ifconf->ifc_len = host_ifc_len;
4898     } else {
4899       host_ifc_buf = NULL;
4900     }
4901     host_ifconf->ifc_buf = host_ifc_buf;
4902 
4903     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4904     if (!is_error(ret)) {
4905 	/* convert host ifc_len to target ifc_len */
4906 
4907         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4908         target_ifc_len = nb_ifreq * target_ifreq_size;
4909         host_ifconf->ifc_len = target_ifc_len;
4910 
4911 	/* restore target ifc_buf */
4912 
4913         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4914 
4915 	/* copy struct ifconf to target user */
4916 
4917         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4918         if (!argptr)
4919             return -TARGET_EFAULT;
4920         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4921         unlock_user(argptr, arg, target_size);
4922 
4923         if (target_ifc_buf != 0) {
4924             /* copy ifreq[] to target user */
4925             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4926             for (i = 0; i < nb_ifreq ; i++) {
4927                 thunk_convert(argptr + i * target_ifreq_size,
4928                               host_ifc_buf + i * sizeof(struct ifreq),
4929                               ifreq_arg_type, THUNK_TARGET);
4930             }
4931             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4932         }
4933     }
4934 
4935     if (free_buf) {
4936         g_free(host_ifconf);
4937     }
4938 
4939     return ret;
4940 }
4941 
4942 #if defined(CONFIG_USBFS)
4943 #if HOST_LONG_BITS > 64
4944 #error USBDEVFS thunks do not support >64 bit hosts yet.
4945 #endif
4946 struct live_urb {
4947     uint64_t target_urb_adr;
4948     uint64_t target_buf_adr;
4949     char *target_buf_ptr;
4950     struct usbdevfs_urb host_urb;
4951 };
4952 
4953 static GHashTable *usbdevfs_urb_hashtable(void)
4954 {
4955     static GHashTable *urb_hashtable;
4956 
4957     if (!urb_hashtable) {
4958         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4959     }
4960     return urb_hashtable;
4961 }
4962 
4963 static void urb_hashtable_insert(struct live_urb *urb)
4964 {
4965     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4966     g_hash_table_insert(urb_hashtable, urb, urb);
4967 }
4968 
4969 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4970 {
4971     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4972     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4973 }
4974 
4975 static void urb_hashtable_remove(struct live_urb *urb)
4976 {
4977     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4978     g_hash_table_remove(urb_hashtable, urb);
4979 }
4980 
4981 static abi_long
4982 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4983                           int fd, int cmd, abi_long arg)
4984 {
4985     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4986     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4987     struct live_urb *lurb;
4988     void *argptr;
4989     uint64_t hurb;
4990     int target_size;
4991     uintptr_t target_urb_adr;
4992     abi_long ret;
4993 
4994     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4995 
4996     memset(buf_temp, 0, sizeof(uint64_t));
4997     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4998     if (is_error(ret)) {
4999         return ret;
5000     }
5001 
5002     memcpy(&hurb, buf_temp, sizeof(uint64_t));
5003     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
5004     if (!lurb->target_urb_adr) {
5005         return -TARGET_EFAULT;
5006     }
5007     urb_hashtable_remove(lurb);
5008     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
5009         lurb->host_urb.buffer_length);
5010     lurb->target_buf_ptr = NULL;
5011 
5012     /* restore the guest buffer pointer */
5013     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
5014 
5015     /* update the guest urb struct */
5016     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
5017     if (!argptr) {
5018         g_free(lurb);
5019         return -TARGET_EFAULT;
5020     }
5021     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5022     unlock_user(argptr, lurb->target_urb_adr, target_size);
5023 
5024     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5025     /* write back the urb handle */
5026     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5027     if (!argptr) {
5028         g_free(lurb);
5029         return -TARGET_EFAULT;
5030     }
5031 
5032     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5033     target_urb_adr = lurb->target_urb_adr;
5034     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5035     unlock_user(argptr, arg, target_size);
5036 
5037     g_free(lurb);
5038     return ret;
5039 }
5040 
5041 static abi_long
5042 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5043                              uint8_t *buf_temp __attribute__((unused)),
5044                              int fd, int cmd, abi_long arg)
5045 {
5046     struct live_urb *lurb;
5047 
5048     /* map target address back to host URB with metadata. */
5049     lurb = urb_hashtable_lookup(arg);
5050     if (!lurb) {
5051         return -TARGET_EFAULT;
5052     }
5053     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5054 }
5055 
5056 static abi_long
5057 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5058                             int fd, int cmd, abi_long arg)
5059 {
5060     const argtype *arg_type = ie->arg_type;
5061     int target_size;
5062     abi_long ret;
5063     void *argptr;
5064     int rw_dir;
5065     struct live_urb *lurb;
5066 
5067     /*
5068      * each submitted URB needs to map to a unique ID for the
5069      * kernel, and that unique ID needs to be a pointer to
5070      * host memory.  hence, we need to malloc for each URB.
5071      * isochronous transfers have a variable length struct.
5072      */
5073     arg_type++;
5074     target_size = thunk_type_size(arg_type, THUNK_TARGET);
5075 
5076     /* construct host copy of urb and metadata */
5077     lurb = g_try_new0(struct live_urb, 1);
5078     if (!lurb) {
5079         return -TARGET_ENOMEM;
5080     }
5081 
5082     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5083     if (!argptr) {
5084         g_free(lurb);
5085         return -TARGET_EFAULT;
5086     }
5087     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5088     unlock_user(argptr, arg, 0);
5089 
5090     lurb->target_urb_adr = arg;
5091     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5092 
5093     /* buffer space used depends on endpoint type so lock the entire buffer */
5094     /* control type urbs should check the buffer contents for true direction */
5095     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5096     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5097         lurb->host_urb.buffer_length, 1);
5098     if (lurb->target_buf_ptr == NULL) {
5099         g_free(lurb);
5100         return -TARGET_EFAULT;
5101     }
5102 
5103     /* update buffer pointer in host copy */
5104     lurb->host_urb.buffer = lurb->target_buf_ptr;
5105 
5106     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5107     if (is_error(ret)) {
5108         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5109         g_free(lurb);
5110     } else {
5111         urb_hashtable_insert(lurb);
5112     }
5113 
5114     return ret;
5115 }
5116 #endif /* CONFIG_USBFS */
5117 
5118 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5119                             int cmd, abi_long arg)
5120 {
5121     void *argptr;
5122     struct dm_ioctl *host_dm;
5123     abi_long guest_data;
5124     uint32_t guest_data_size;
5125     int target_size;
5126     const argtype *arg_type = ie->arg_type;
5127     abi_long ret;
5128     void *big_buf = NULL;
5129     char *host_data;
5130 
5131     arg_type++;
5132     target_size = thunk_type_size(arg_type, 0);
5133     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5134     if (!argptr) {
5135         ret = -TARGET_EFAULT;
5136         goto out;
5137     }
5138     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5139     unlock_user(argptr, arg, 0);
5140 
5141     /* buf_temp is too small, so fetch things into a bigger buffer */
5142     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5143     memcpy(big_buf, buf_temp, target_size);
5144     buf_temp = big_buf;
5145     host_dm = big_buf;
5146 
5147     guest_data = arg + host_dm->data_start;
5148     if ((guest_data - arg) < 0) {
5149         ret = -TARGET_EINVAL;
5150         goto out;
5151     }
5152     guest_data_size = host_dm->data_size - host_dm->data_start;
5153     host_data = (char*)host_dm + host_dm->data_start;
5154 
5155     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5156     if (!argptr) {
5157         ret = -TARGET_EFAULT;
5158         goto out;
5159     }
5160 
5161     switch (ie->host_cmd) {
5162     case DM_REMOVE_ALL:
5163     case DM_LIST_DEVICES:
5164     case DM_DEV_CREATE:
5165     case DM_DEV_REMOVE:
5166     case DM_DEV_SUSPEND:
5167     case DM_DEV_STATUS:
5168     case DM_DEV_WAIT:
5169     case DM_TABLE_STATUS:
5170     case DM_TABLE_CLEAR:
5171     case DM_TABLE_DEPS:
5172     case DM_LIST_VERSIONS:
5173         /* no input data */
5174         break;
5175     case DM_DEV_RENAME:
5176     case DM_DEV_SET_GEOMETRY:
5177         /* data contains only strings */
5178         memcpy(host_data, argptr, guest_data_size);
5179         break;
5180     case DM_TARGET_MSG:
5181         memcpy(host_data, argptr, guest_data_size);
5182         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5183         break;
5184     case DM_TABLE_LOAD:
5185     {
5186         void *gspec = argptr;
5187         void *cur_data = host_data;
5188         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5189         int spec_size = thunk_type_size(arg_type, 0);
5190         int i;
5191 
5192         for (i = 0; i < host_dm->target_count; i++) {
5193             struct dm_target_spec *spec = cur_data;
5194             uint32_t next;
5195             int slen;
5196 
5197             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5198             slen = strlen((char*)gspec + spec_size) + 1;
5199             next = spec->next;
5200             spec->next = sizeof(*spec) + slen;
5201             strcpy((char*)&spec[1], gspec + spec_size);
5202             gspec += next;
5203             cur_data += spec->next;
5204         }
5205         break;
5206     }
5207     default:
5208         ret = -TARGET_EINVAL;
5209         unlock_user(argptr, guest_data, 0);
5210         goto out;
5211     }
5212     unlock_user(argptr, guest_data, 0);
5213 
5214     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5215     if (!is_error(ret)) {
5216         guest_data = arg + host_dm->data_start;
5217         guest_data_size = host_dm->data_size - host_dm->data_start;
5218         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5219         switch (ie->host_cmd) {
5220         case DM_REMOVE_ALL:
5221         case DM_DEV_CREATE:
5222         case DM_DEV_REMOVE:
5223         case DM_DEV_RENAME:
5224         case DM_DEV_SUSPEND:
5225         case DM_DEV_STATUS:
5226         case DM_TABLE_LOAD:
5227         case DM_TABLE_CLEAR:
5228         case DM_TARGET_MSG:
5229         case DM_DEV_SET_GEOMETRY:
5230             /* no return data */
5231             break;
5232         case DM_LIST_DEVICES:
5233         {
5234             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5235             uint32_t remaining_data = guest_data_size;
5236             void *cur_data = argptr;
5237             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5238             int nl_size = 12; /* can't use thunk_size due to alignment */
5239 
5240             while (1) {
5241                 uint32_t next = nl->next;
5242                 if (next) {
5243                     nl->next = nl_size + (strlen(nl->name) + 1);
5244                 }
5245                 if (remaining_data < nl->next) {
5246                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5247                     break;
5248                 }
5249                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5250                 strcpy(cur_data + nl_size, nl->name);
5251                 cur_data += nl->next;
5252                 remaining_data -= nl->next;
5253                 if (!next) {
5254                     break;
5255                 }
5256                 nl = (void*)nl + next;
5257             }
5258             break;
5259         }
5260         case DM_DEV_WAIT:
5261         case DM_TABLE_STATUS:
5262         {
5263             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5264             void *cur_data = argptr;
5265             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5266             int spec_size = thunk_type_size(arg_type, 0);
5267             int i;
5268 
5269             for (i = 0; i < host_dm->target_count; i++) {
5270                 uint32_t next = spec->next;
5271                 int slen = strlen((char*)&spec[1]) + 1;
5272                 spec->next = (cur_data - argptr) + spec_size + slen;
5273                 if (guest_data_size < spec->next) {
5274                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5275                     break;
5276                 }
5277                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5278                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5279                 cur_data = argptr + spec->next;
5280                 spec = (void*)host_dm + host_dm->data_start + next;
5281             }
5282             break;
5283         }
5284         case DM_TABLE_DEPS:
5285         {
5286             void *hdata = (void*)host_dm + host_dm->data_start;
5287             int count = *(uint32_t*)hdata;
5288             uint64_t *hdev = hdata + 8;
5289             uint64_t *gdev = argptr + 8;
5290             int i;
5291 
5292             *(uint32_t*)argptr = tswap32(count);
5293             for (i = 0; i < count; i++) {
5294                 *gdev = tswap64(*hdev);
5295                 gdev++;
5296                 hdev++;
5297             }
5298             break;
5299         }
5300         case DM_LIST_VERSIONS:
5301         {
5302             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5303             uint32_t remaining_data = guest_data_size;
5304             void *cur_data = argptr;
5305             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5306             int vers_size = thunk_type_size(arg_type, 0);
5307 
5308             while (1) {
5309                 uint32_t next = vers->next;
5310                 if (next) {
5311                     vers->next = vers_size + (strlen(vers->name) + 1);
5312                 }
5313                 if (remaining_data < vers->next) {
5314                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5315                     break;
5316                 }
5317                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5318                 strcpy(cur_data + vers_size, vers->name);
5319                 cur_data += vers->next;
5320                 remaining_data -= vers->next;
5321                 if (!next) {
5322                     break;
5323                 }
5324                 vers = (void*)vers + next;
5325             }
5326             break;
5327         }
5328         default:
5329             unlock_user(argptr, guest_data, 0);
5330             ret = -TARGET_EINVAL;
5331             goto out;
5332         }
5333         unlock_user(argptr, guest_data, guest_data_size);
5334 
5335         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5336         if (!argptr) {
5337             ret = -TARGET_EFAULT;
5338             goto out;
5339         }
5340         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5341         unlock_user(argptr, arg, target_size);
5342     }
5343 out:
5344     g_free(big_buf);
5345     return ret;
5346 }
5347 
5348 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5349                                int cmd, abi_long arg)
5350 {
5351     void *argptr;
5352     int target_size;
5353     const argtype *arg_type = ie->arg_type;
5354     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5355     abi_long ret;
5356 
5357     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5358     struct blkpg_partition host_part;
5359 
5360     /* Read and convert blkpg */
5361     arg_type++;
5362     target_size = thunk_type_size(arg_type, 0);
5363     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5364     if (!argptr) {
5365         ret = -TARGET_EFAULT;
5366         goto out;
5367     }
5368     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5369     unlock_user(argptr, arg, 0);
5370 
5371     switch (host_blkpg->op) {
5372     case BLKPG_ADD_PARTITION:
5373     case BLKPG_DEL_PARTITION:
5374         /* payload is struct blkpg_partition */
5375         break;
5376     default:
5377         /* Unknown opcode */
5378         ret = -TARGET_EINVAL;
5379         goto out;
5380     }
5381 
5382     /* Read and convert blkpg->data */
5383     arg = (abi_long)(uintptr_t)host_blkpg->data;
5384     target_size = thunk_type_size(part_arg_type, 0);
5385     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5386     if (!argptr) {
5387         ret = -TARGET_EFAULT;
5388         goto out;
5389     }
5390     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5391     unlock_user(argptr, arg, 0);
5392 
5393     /* Swizzle the data pointer to our local copy and call! */
5394     host_blkpg->data = &host_part;
5395     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5396 
5397 out:
5398     return ret;
5399 }
5400 
5401 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5402                                 int fd, int cmd, abi_long arg)
5403 {
5404     const argtype *arg_type = ie->arg_type;
5405     const StructEntry *se;
5406     const argtype *field_types;
5407     const int *dst_offsets, *src_offsets;
5408     int target_size;
5409     void *argptr;
5410     abi_ulong *target_rt_dev_ptr = NULL;
5411     unsigned long *host_rt_dev_ptr = NULL;
5412     abi_long ret;
5413     int i;
5414 
5415     assert(ie->access == IOC_W);
5416     assert(*arg_type == TYPE_PTR);
5417     arg_type++;
5418     assert(*arg_type == TYPE_STRUCT);
5419     target_size = thunk_type_size(arg_type, 0);
5420     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5421     if (!argptr) {
5422         return -TARGET_EFAULT;
5423     }
5424     arg_type++;
5425     assert(*arg_type == (int)STRUCT_rtentry);
5426     se = struct_entries + *arg_type++;
5427     assert(se->convert[0] == NULL);
5428     /* convert struct here to be able to catch rt_dev string */
5429     field_types = se->field_types;
5430     dst_offsets = se->field_offsets[THUNK_HOST];
5431     src_offsets = se->field_offsets[THUNK_TARGET];
5432     for (i = 0; i < se->nb_fields; i++) {
5433         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5434             assert(*field_types == TYPE_PTRVOID);
5435             target_rt_dev_ptr = argptr + src_offsets[i];
5436             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5437             if (*target_rt_dev_ptr != 0) {
5438                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5439                                                   tswapal(*target_rt_dev_ptr));
5440                 if (!*host_rt_dev_ptr) {
5441                     unlock_user(argptr, arg, 0);
5442                     return -TARGET_EFAULT;
5443                 }
5444             } else {
5445                 *host_rt_dev_ptr = 0;
5446             }
5447             field_types++;
5448             continue;
5449         }
5450         field_types = thunk_convert(buf_temp + dst_offsets[i],
5451                                     argptr + src_offsets[i],
5452                                     field_types, THUNK_HOST);
5453     }
5454     unlock_user(argptr, arg, 0);
5455 
5456     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5457 
5458     assert(host_rt_dev_ptr != NULL);
5459     assert(target_rt_dev_ptr != NULL);
5460     if (*host_rt_dev_ptr != 0) {
5461         unlock_user((void *)*host_rt_dev_ptr,
5462                     *target_rt_dev_ptr, 0);
5463     }
5464     return ret;
5465 }
5466 
5467 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5468                                      int fd, int cmd, abi_long arg)
5469 {
5470     int sig = target_to_host_signal(arg);
5471     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5472 }
5473 
5474 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5475                                     int fd, int cmd, abi_long arg)
5476 {
5477     struct timeval tv;
5478     abi_long ret;
5479 
5480     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5481     if (is_error(ret)) {
5482         return ret;
5483     }
5484 
5485     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5486         if (copy_to_user_timeval(arg, &tv)) {
5487             return -TARGET_EFAULT;
5488         }
5489     } else {
5490         if (copy_to_user_timeval64(arg, &tv)) {
5491             return -TARGET_EFAULT;
5492         }
5493     }
5494 
5495     return ret;
5496 }
5497 
5498 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5499                                       int fd, int cmd, abi_long arg)
5500 {
5501     struct timespec ts;
5502     abi_long ret;
5503 
5504     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5505     if (is_error(ret)) {
5506         return ret;
5507     }
5508 
5509     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5510         if (host_to_target_timespec(arg, &ts)) {
5511             return -TARGET_EFAULT;
5512         }
5513     } else{
5514         if (host_to_target_timespec64(arg, &ts)) {
5515             return -TARGET_EFAULT;
5516         }
5517     }
5518 
5519     return ret;
5520 }
5521 
5522 #ifdef TIOCGPTPEER
5523 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5524                                      int fd, int cmd, abi_long arg)
5525 {
5526     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5527     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5528 }
5529 #endif
5530 
5531 #ifdef HAVE_DRM_H
5532 
5533 static void unlock_drm_version(struct drm_version *host_ver,
5534                                struct target_drm_version *target_ver,
5535                                bool copy)
5536 {
5537     unlock_user(host_ver->name, target_ver->name,
5538                                 copy ? host_ver->name_len : 0);
5539     unlock_user(host_ver->date, target_ver->date,
5540                                 copy ? host_ver->date_len : 0);
5541     unlock_user(host_ver->desc, target_ver->desc,
5542                                 copy ? host_ver->desc_len : 0);
5543 }
5544 
5545 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5546                                           struct target_drm_version *target_ver)
5547 {
5548     memset(host_ver, 0, sizeof(*host_ver));
5549 
5550     __get_user(host_ver->name_len, &target_ver->name_len);
5551     if (host_ver->name_len) {
5552         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5553                                    target_ver->name_len, 0);
5554         if (!host_ver->name) {
5555             return -EFAULT;
5556         }
5557     }
5558 
5559     __get_user(host_ver->date_len, &target_ver->date_len);
5560     if (host_ver->date_len) {
5561         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5562                                    target_ver->date_len, 0);
5563         if (!host_ver->date) {
5564             goto err;
5565         }
5566     }
5567 
5568     __get_user(host_ver->desc_len, &target_ver->desc_len);
5569     if (host_ver->desc_len) {
5570         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5571                                    target_ver->desc_len, 0);
5572         if (!host_ver->desc) {
5573             goto err;
5574         }
5575     }
5576 
5577     return 0;
5578 err:
5579     unlock_drm_version(host_ver, target_ver, false);
5580     return -EFAULT;
5581 }
5582 
5583 static inline void host_to_target_drmversion(
5584                                           struct target_drm_version *target_ver,
5585                                           struct drm_version *host_ver)
5586 {
5587     __put_user(host_ver->version_major, &target_ver->version_major);
5588     __put_user(host_ver->version_minor, &target_ver->version_minor);
5589     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5590     __put_user(host_ver->name_len, &target_ver->name_len);
5591     __put_user(host_ver->date_len, &target_ver->date_len);
5592     __put_user(host_ver->desc_len, &target_ver->desc_len);
5593     unlock_drm_version(host_ver, target_ver, true);
5594 }
5595 
5596 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5597                              int fd, int cmd, abi_long arg)
5598 {
5599     struct drm_version *ver;
5600     struct target_drm_version *target_ver;
5601     abi_long ret;
5602 
5603     switch (ie->host_cmd) {
5604     case DRM_IOCTL_VERSION:
5605         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5606             return -TARGET_EFAULT;
5607         }
5608         ver = (struct drm_version *)buf_temp;
5609         ret = target_to_host_drmversion(ver, target_ver);
5610         if (!is_error(ret)) {
5611             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5612             if (is_error(ret)) {
5613                 unlock_drm_version(ver, target_ver, false);
5614             } else {
5615                 host_to_target_drmversion(target_ver, ver);
5616             }
5617         }
5618         unlock_user_struct(target_ver, arg, 0);
5619         return ret;
5620     }
5621     return -TARGET_ENOSYS;
5622 }
5623 
5624 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5625                                            struct drm_i915_getparam *gparam,
5626                                            int fd, abi_long arg)
5627 {
5628     abi_long ret;
5629     int value;
5630     struct target_drm_i915_getparam *target_gparam;
5631 
5632     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5633         return -TARGET_EFAULT;
5634     }
5635 
5636     __get_user(gparam->param, &target_gparam->param);
5637     gparam->value = &value;
5638     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5639     put_user_s32(value, target_gparam->value);
5640 
5641     unlock_user_struct(target_gparam, arg, 0);
5642     return ret;
5643 }
5644 
5645 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5646                                   int fd, int cmd, abi_long arg)
5647 {
5648     switch (ie->host_cmd) {
5649     case DRM_IOCTL_I915_GETPARAM:
5650         return do_ioctl_drm_i915_getparam(ie,
5651                                           (struct drm_i915_getparam *)buf_temp,
5652                                           fd, arg);
5653     default:
5654         return -TARGET_ENOSYS;
5655     }
5656 }
5657 
5658 #endif
5659 
5660 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5661                                         int fd, int cmd, abi_long arg)
5662 {
5663     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5664     struct tun_filter *target_filter;
5665     char *target_addr;
5666 
5667     assert(ie->access == IOC_W);
5668 
5669     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5670     if (!target_filter) {
5671         return -TARGET_EFAULT;
5672     }
5673     filter->flags = tswap16(target_filter->flags);
5674     filter->count = tswap16(target_filter->count);
5675     unlock_user(target_filter, arg, 0);
5676 
5677     if (filter->count) {
5678         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5679             MAX_STRUCT_SIZE) {
5680             return -TARGET_EFAULT;
5681         }
5682 
5683         target_addr = lock_user(VERIFY_READ,
5684                                 arg + offsetof(struct tun_filter, addr),
5685                                 filter->count * ETH_ALEN, 1);
5686         if (!target_addr) {
5687             return -TARGET_EFAULT;
5688         }
5689         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5690         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5691     }
5692 
5693     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5694 }
5695 
5696 IOCTLEntry ioctl_entries[] = {
5697 #define IOCTL(cmd, access, ...) \
5698     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5699 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5700     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5701 #define IOCTL_IGNORE(cmd) \
5702     { TARGET_ ## cmd, 0, #cmd },
5703 #include "ioctls.h"
5704     { 0, 0, },
5705 };
5706 
5707 /* ??? Implement proper locking for ioctls.  */
5708 /* do_ioctl() Must return target values and target errnos. */
5709 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5710 {
5711     const IOCTLEntry *ie;
5712     const argtype *arg_type;
5713     abi_long ret;
5714     uint8_t buf_temp[MAX_STRUCT_SIZE];
5715     int target_size;
5716     void *argptr;
5717 
5718     ie = ioctl_entries;
5719     for(;;) {
5720         if (ie->target_cmd == 0) {
5721             qemu_log_mask(
5722                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5723             return -TARGET_ENOTTY;
5724         }
5725         if (ie->target_cmd == cmd)
5726             break;
5727         ie++;
5728     }
5729     arg_type = ie->arg_type;
5730     if (ie->do_ioctl) {
5731         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5732     } else if (!ie->host_cmd) {
5733         /* Some architectures define BSD ioctls in their headers
5734            that are not implemented in Linux.  */
5735         return -TARGET_ENOTTY;
5736     }
5737 
5738     switch(arg_type[0]) {
5739     case TYPE_NULL:
5740         /* no argument */
5741         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5742         break;
5743     case TYPE_PTRVOID:
5744     case TYPE_INT:
5745     case TYPE_LONG:
5746     case TYPE_ULONG:
5747         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5748         break;
5749     case TYPE_PTR:
5750         arg_type++;
5751         target_size = thunk_type_size(arg_type, 0);
5752         switch(ie->access) {
5753         case IOC_R:
5754             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5755             if (!is_error(ret)) {
5756                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5757                 if (!argptr)
5758                     return -TARGET_EFAULT;
5759                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5760                 unlock_user(argptr, arg, target_size);
5761             }
5762             break;
5763         case IOC_W:
5764             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5765             if (!argptr)
5766                 return -TARGET_EFAULT;
5767             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5768             unlock_user(argptr, arg, 0);
5769             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5770             break;
5771         default:
5772         case IOC_RW:
5773             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5774             if (!argptr)
5775                 return -TARGET_EFAULT;
5776             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5777             unlock_user(argptr, arg, 0);
5778             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5779             if (!is_error(ret)) {
5780                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5781                 if (!argptr)
5782                     return -TARGET_EFAULT;
5783                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5784                 unlock_user(argptr, arg, target_size);
5785             }
5786             break;
5787         }
5788         break;
5789     default:
5790         qemu_log_mask(LOG_UNIMP,
5791                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5792                       (long)cmd, arg_type[0]);
5793         ret = -TARGET_ENOTTY;
5794         break;
5795     }
5796     return ret;
5797 }
5798 
5799 static const bitmask_transtbl iflag_tbl[] = {
5800         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5801         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5802         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5803         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5804         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5805         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5806         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5807         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5808         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5809         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5810         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5811         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5812         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5813         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5814         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5815 };
5816 
5817 static const bitmask_transtbl oflag_tbl[] = {
5818 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5819 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5820 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5821 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5822 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5823 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5824 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5825 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5826 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5827 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5828 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5829 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5830 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5831 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5832 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5833 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5834 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5835 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5836 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5837 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5838 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5839 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5840 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5841 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5842 };
5843 
5844 static const bitmask_transtbl cflag_tbl[] = {
5845 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5846 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5847 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5848 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5849 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5850 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5851 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5852 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5853 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5854 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5855 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5856 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5857 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5858 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5859 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5860 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5861 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5862 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5863 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5864 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5865 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5866 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5867 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5868 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5869 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5870 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5871 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5872 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5873 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5874 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5875 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5876 };
5877 
5878 static const bitmask_transtbl lflag_tbl[] = {
5879   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5880   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5881   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5882   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5883   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5884   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5885   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5886   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5887   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5888   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5889   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5890   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5891   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5892   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5893   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5894   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5895 };
5896 
5897 static void target_to_host_termios (void *dst, const void *src)
5898 {
5899     struct host_termios *host = dst;
5900     const struct target_termios *target = src;
5901 
5902     host->c_iflag =
5903         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5904     host->c_oflag =
5905         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5906     host->c_cflag =
5907         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5908     host->c_lflag =
5909         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5910     host->c_line = target->c_line;
5911 
5912     memset(host->c_cc, 0, sizeof(host->c_cc));
5913     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5914     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5915     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5916     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5917     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5918     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5919     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5920     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5921     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5922     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5923     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5924     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5925     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5926     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5927     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5928     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5929     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5930 }
5931 
5932 static void host_to_target_termios (void *dst, const void *src)
5933 {
5934     struct target_termios *target = dst;
5935     const struct host_termios *host = src;
5936 
5937     target->c_iflag =
5938         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5939     target->c_oflag =
5940         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5941     target->c_cflag =
5942         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5943     target->c_lflag =
5944         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5945     target->c_line = host->c_line;
5946 
5947     memset(target->c_cc, 0, sizeof(target->c_cc));
5948     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5949     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5950     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5951     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5952     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5953     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5954     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5955     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5956     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5957     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5958     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5959     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5960     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5961     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5962     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5963     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5964     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5965 }
5966 
5967 static const StructEntry struct_termios_def = {
5968     .convert = { host_to_target_termios, target_to_host_termios },
5969     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5970     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5971     .print = print_termios,
5972 };
5973 
5974 /* If the host does not provide these bits, they may be safely discarded. */
5975 #ifndef MAP_SYNC
5976 #define MAP_SYNC 0
5977 #endif
5978 #ifndef MAP_UNINITIALIZED
5979 #define MAP_UNINITIALIZED 0
5980 #endif
5981 
5982 static const bitmask_transtbl mmap_flags_tbl[] = {
5983     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5984     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5985       MAP_ANONYMOUS, MAP_ANONYMOUS },
5986     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5987       MAP_GROWSDOWN, MAP_GROWSDOWN },
5988     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5989       MAP_DENYWRITE, MAP_DENYWRITE },
5990     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5991       MAP_EXECUTABLE, MAP_EXECUTABLE },
5992     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5993     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5994       MAP_NORESERVE, MAP_NORESERVE },
5995     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5996     /* MAP_STACK had been ignored by the kernel for quite some time.
5997        Recognize it for the target insofar as we do not want to pass
5998        it through to the host.  */
5999     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6000     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
6001     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
6002     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
6003       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
6004     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
6005       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
6006 };
6007 
6008 /*
6009  * Arrange for legacy / undefined architecture specific flags to be
6010  * ignored by mmap handling code.
6011  */
6012 #ifndef TARGET_MAP_32BIT
6013 #define TARGET_MAP_32BIT 0
6014 #endif
6015 #ifndef TARGET_MAP_HUGE_2MB
6016 #define TARGET_MAP_HUGE_2MB 0
6017 #endif
6018 #ifndef TARGET_MAP_HUGE_1GB
6019 #define TARGET_MAP_HUGE_1GB 0
6020 #endif
6021 
6022 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
6023                         int target_flags, int fd, off_t offset)
6024 {
6025     /*
6026      * The historical set of flags that all mmap types implicitly support.
6027      */
6028     enum {
6029         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
6030                                | TARGET_MAP_PRIVATE
6031                                | TARGET_MAP_FIXED
6032                                | TARGET_MAP_ANONYMOUS
6033                                | TARGET_MAP_DENYWRITE
6034                                | TARGET_MAP_EXECUTABLE
6035                                | TARGET_MAP_UNINITIALIZED
6036                                | TARGET_MAP_GROWSDOWN
6037                                | TARGET_MAP_LOCKED
6038                                | TARGET_MAP_NORESERVE
6039                                | TARGET_MAP_POPULATE
6040                                | TARGET_MAP_NONBLOCK
6041                                | TARGET_MAP_STACK
6042                                | TARGET_MAP_HUGETLB
6043                                | TARGET_MAP_32BIT
6044                                | TARGET_MAP_HUGE_2MB
6045                                | TARGET_MAP_HUGE_1GB
6046     };
6047     int host_flags;
6048 
6049     switch (target_flags & TARGET_MAP_TYPE) {
6050     case TARGET_MAP_PRIVATE:
6051         host_flags = MAP_PRIVATE;
6052         break;
6053     case TARGET_MAP_SHARED:
6054         host_flags = MAP_SHARED;
6055         break;
6056     case TARGET_MAP_SHARED_VALIDATE:
6057         /*
6058          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
6059          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
6060          */
6061         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
6062             return -TARGET_EOPNOTSUPP;
6063         }
6064         host_flags = MAP_SHARED_VALIDATE;
6065         if (target_flags & TARGET_MAP_SYNC) {
6066             host_flags |= MAP_SYNC;
6067         }
6068         break;
6069     default:
6070         return -TARGET_EINVAL;
6071     }
6072     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
6073 
6074     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
6075 }
6076 
6077 /*
6078  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
6079  *       TARGET_I386 is defined if TARGET_X86_64 is defined
6080  */
6081 #if defined(TARGET_I386)
6082 
6083 /* NOTE: there is really one LDT for all the threads */
6084 static uint8_t *ldt_table;
6085 
6086 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6087 {
6088     int size;
6089     void *p;
6090 
6091     if (!ldt_table)
6092         return 0;
6093     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6094     if (size > bytecount)
6095         size = bytecount;
6096     p = lock_user(VERIFY_WRITE, ptr, size, 0);
6097     if (!p)
6098         return -TARGET_EFAULT;
6099     /* ??? Should this by byteswapped?  */
6100     memcpy(p, ldt_table, size);
6101     unlock_user(p, ptr, size);
6102     return size;
6103 }
6104 
6105 /* XXX: add locking support */
6106 static abi_long write_ldt(CPUX86State *env,
6107                           abi_ulong ptr, unsigned long bytecount, int oldmode)
6108 {
6109     struct target_modify_ldt_ldt_s ldt_info;
6110     struct target_modify_ldt_ldt_s *target_ldt_info;
6111     int seg_32bit, contents, read_exec_only, limit_in_pages;
6112     int seg_not_present, useable, lm;
6113     uint32_t *lp, entry_1, entry_2;
6114 
6115     if (bytecount != sizeof(ldt_info))
6116         return -TARGET_EINVAL;
6117     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6118         return -TARGET_EFAULT;
6119     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6120     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6121     ldt_info.limit = tswap32(target_ldt_info->limit);
6122     ldt_info.flags = tswap32(target_ldt_info->flags);
6123     unlock_user_struct(target_ldt_info, ptr, 0);
6124 
6125     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6126         return -TARGET_EINVAL;
6127     seg_32bit = ldt_info.flags & 1;
6128     contents = (ldt_info.flags >> 1) & 3;
6129     read_exec_only = (ldt_info.flags >> 3) & 1;
6130     limit_in_pages = (ldt_info.flags >> 4) & 1;
6131     seg_not_present = (ldt_info.flags >> 5) & 1;
6132     useable = (ldt_info.flags >> 6) & 1;
6133 #ifdef TARGET_ABI32
6134     lm = 0;
6135 #else
6136     lm = (ldt_info.flags >> 7) & 1;
6137 #endif
6138     if (contents == 3) {
6139         if (oldmode)
6140             return -TARGET_EINVAL;
6141         if (seg_not_present == 0)
6142             return -TARGET_EINVAL;
6143     }
6144     /* allocate the LDT */
6145     if (!ldt_table) {
6146         env->ldt.base = target_mmap(0,
6147                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6148                                     PROT_READ|PROT_WRITE,
6149                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6150         if (env->ldt.base == -1)
6151             return -TARGET_ENOMEM;
6152         memset(g2h_untagged(env->ldt.base), 0,
6153                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6154         env->ldt.limit = 0xffff;
6155         ldt_table = g2h_untagged(env->ldt.base);
6156     }
6157 
6158     /* NOTE: same code as Linux kernel */
6159     /* Allow LDTs to be cleared by the user. */
6160     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6161         if (oldmode ||
6162             (contents == 0		&&
6163              read_exec_only == 1	&&
6164              seg_32bit == 0		&&
6165              limit_in_pages == 0	&&
6166              seg_not_present == 1	&&
6167              useable == 0 )) {
6168             entry_1 = 0;
6169             entry_2 = 0;
6170             goto install;
6171         }
6172     }
6173 
6174     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6175         (ldt_info.limit & 0x0ffff);
6176     entry_2 = (ldt_info.base_addr & 0xff000000) |
6177         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6178         (ldt_info.limit & 0xf0000) |
6179         ((read_exec_only ^ 1) << 9) |
6180         (contents << 10) |
6181         ((seg_not_present ^ 1) << 15) |
6182         (seg_32bit << 22) |
6183         (limit_in_pages << 23) |
6184         (lm << 21) |
6185         0x7000;
6186     if (!oldmode)
6187         entry_2 |= (useable << 20);
6188 
6189     /* Install the new entry ...  */
6190 install:
6191     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6192     lp[0] = tswap32(entry_1);
6193     lp[1] = tswap32(entry_2);
6194     return 0;
6195 }
6196 
6197 /* specific and weird i386 syscalls */
6198 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6199                               unsigned long bytecount)
6200 {
6201     abi_long ret;
6202 
6203     switch (func) {
6204     case 0:
6205         ret = read_ldt(ptr, bytecount);
6206         break;
6207     case 1:
6208         ret = write_ldt(env, ptr, bytecount, 1);
6209         break;
6210     case 0x11:
6211         ret = write_ldt(env, ptr, bytecount, 0);
6212         break;
6213     default:
6214         ret = -TARGET_ENOSYS;
6215         break;
6216     }
6217     return ret;
6218 }
6219 
6220 #if defined(TARGET_ABI32)
6221 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6222 {
6223     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6224     struct target_modify_ldt_ldt_s ldt_info;
6225     struct target_modify_ldt_ldt_s *target_ldt_info;
6226     int seg_32bit, contents, read_exec_only, limit_in_pages;
6227     int seg_not_present, useable, lm;
6228     uint32_t *lp, entry_1, entry_2;
6229     int i;
6230 
6231     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6232     if (!target_ldt_info)
6233         return -TARGET_EFAULT;
6234     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6235     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6236     ldt_info.limit = tswap32(target_ldt_info->limit);
6237     ldt_info.flags = tswap32(target_ldt_info->flags);
6238     if (ldt_info.entry_number == -1) {
6239         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6240             if (gdt_table[i] == 0) {
6241                 ldt_info.entry_number = i;
6242                 target_ldt_info->entry_number = tswap32(i);
6243                 break;
6244             }
6245         }
6246     }
6247     unlock_user_struct(target_ldt_info, ptr, 1);
6248 
6249     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6250         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6251            return -TARGET_EINVAL;
6252     seg_32bit = ldt_info.flags & 1;
6253     contents = (ldt_info.flags >> 1) & 3;
6254     read_exec_only = (ldt_info.flags >> 3) & 1;
6255     limit_in_pages = (ldt_info.flags >> 4) & 1;
6256     seg_not_present = (ldt_info.flags >> 5) & 1;
6257     useable = (ldt_info.flags >> 6) & 1;
6258 #ifdef TARGET_ABI32
6259     lm = 0;
6260 #else
6261     lm = (ldt_info.flags >> 7) & 1;
6262 #endif
6263 
6264     if (contents == 3) {
6265         if (seg_not_present == 0)
6266             return -TARGET_EINVAL;
6267     }
6268 
6269     /* NOTE: same code as Linux kernel */
6270     /* Allow LDTs to be cleared by the user. */
6271     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6272         if ((contents == 0             &&
6273              read_exec_only == 1       &&
6274              seg_32bit == 0            &&
6275              limit_in_pages == 0       &&
6276              seg_not_present == 1      &&
6277              useable == 0 )) {
6278             entry_1 = 0;
6279             entry_2 = 0;
6280             goto install;
6281         }
6282     }
6283 
6284     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6285         (ldt_info.limit & 0x0ffff);
6286     entry_2 = (ldt_info.base_addr & 0xff000000) |
6287         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6288         (ldt_info.limit & 0xf0000) |
6289         ((read_exec_only ^ 1) << 9) |
6290         (contents << 10) |
6291         ((seg_not_present ^ 1) << 15) |
6292         (seg_32bit << 22) |
6293         (limit_in_pages << 23) |
6294         (useable << 20) |
6295         (lm << 21) |
6296         0x7000;
6297 
6298     /* Install the new entry ...  */
6299 install:
6300     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6301     lp[0] = tswap32(entry_1);
6302     lp[1] = tswap32(entry_2);
6303     return 0;
6304 }
6305 
6306 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6307 {
6308     struct target_modify_ldt_ldt_s *target_ldt_info;
6309     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6310     uint32_t base_addr, limit, flags;
6311     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6312     int seg_not_present, useable, lm;
6313     uint32_t *lp, entry_1, entry_2;
6314 
6315     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6316     if (!target_ldt_info)
6317         return -TARGET_EFAULT;
6318     idx = tswap32(target_ldt_info->entry_number);
6319     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6320         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6321         unlock_user_struct(target_ldt_info, ptr, 1);
6322         return -TARGET_EINVAL;
6323     }
6324     lp = (uint32_t *)(gdt_table + idx);
6325     entry_1 = tswap32(lp[0]);
6326     entry_2 = tswap32(lp[1]);
6327 
6328     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6329     contents = (entry_2 >> 10) & 3;
6330     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6331     seg_32bit = (entry_2 >> 22) & 1;
6332     limit_in_pages = (entry_2 >> 23) & 1;
6333     useable = (entry_2 >> 20) & 1;
6334 #ifdef TARGET_ABI32
6335     lm = 0;
6336 #else
6337     lm = (entry_2 >> 21) & 1;
6338 #endif
6339     flags = (seg_32bit << 0) | (contents << 1) |
6340         (read_exec_only << 3) | (limit_in_pages << 4) |
6341         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6342     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6343     base_addr = (entry_1 >> 16) |
6344         (entry_2 & 0xff000000) |
6345         ((entry_2 & 0xff) << 16);
6346     target_ldt_info->base_addr = tswapal(base_addr);
6347     target_ldt_info->limit = tswap32(limit);
6348     target_ldt_info->flags = tswap32(flags);
6349     unlock_user_struct(target_ldt_info, ptr, 1);
6350     return 0;
6351 }
6352 
6353 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6354 {
6355     return -TARGET_ENOSYS;
6356 }
6357 #else
6358 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6359 {
6360     abi_long ret = 0;
6361     abi_ulong val;
6362     int idx;
6363 
6364     switch(code) {
6365     case TARGET_ARCH_SET_GS:
6366     case TARGET_ARCH_SET_FS:
6367         if (code == TARGET_ARCH_SET_GS)
6368             idx = R_GS;
6369         else
6370             idx = R_FS;
6371         cpu_x86_load_seg(env, idx, 0);
6372         env->segs[idx].base = addr;
6373         break;
6374     case TARGET_ARCH_GET_GS:
6375     case TARGET_ARCH_GET_FS:
6376         if (code == TARGET_ARCH_GET_GS)
6377             idx = R_GS;
6378         else
6379             idx = R_FS;
6380         val = env->segs[idx].base;
6381         if (put_user(val, addr, abi_ulong))
6382             ret = -TARGET_EFAULT;
6383         break;
6384     default:
6385         ret = -TARGET_EINVAL;
6386         break;
6387     }
6388     return ret;
6389 }
6390 #endif /* defined(TARGET_ABI32 */
6391 #endif /* defined(TARGET_I386) */
6392 
6393 /*
6394  * These constants are generic.  Supply any that are missing from the host.
6395  */
6396 #ifndef PR_SET_NAME
6397 # define PR_SET_NAME    15
6398 # define PR_GET_NAME    16
6399 #endif
6400 #ifndef PR_SET_FP_MODE
6401 # define PR_SET_FP_MODE 45
6402 # define PR_GET_FP_MODE 46
6403 # define PR_FP_MODE_FR   (1 << 0)
6404 # define PR_FP_MODE_FRE  (1 << 1)
6405 #endif
6406 #ifndef PR_SVE_SET_VL
6407 # define PR_SVE_SET_VL  50
6408 # define PR_SVE_GET_VL  51
6409 # define PR_SVE_VL_LEN_MASK  0xffff
6410 # define PR_SVE_VL_INHERIT   (1 << 17)
6411 #endif
6412 #ifndef PR_PAC_RESET_KEYS
6413 # define PR_PAC_RESET_KEYS  54
6414 # define PR_PAC_APIAKEY   (1 << 0)
6415 # define PR_PAC_APIBKEY   (1 << 1)
6416 # define PR_PAC_APDAKEY   (1 << 2)
6417 # define PR_PAC_APDBKEY   (1 << 3)
6418 # define PR_PAC_APGAKEY   (1 << 4)
6419 #endif
6420 #ifndef PR_SET_TAGGED_ADDR_CTRL
6421 # define PR_SET_TAGGED_ADDR_CTRL 55
6422 # define PR_GET_TAGGED_ADDR_CTRL 56
6423 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6424 #endif
6425 #ifndef PR_MTE_TCF_SHIFT
6426 # define PR_MTE_TCF_SHIFT       1
6427 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6428 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6429 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6430 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6431 # define PR_MTE_TAG_SHIFT       3
6432 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6433 #endif
6434 #ifndef PR_SET_IO_FLUSHER
6435 # define PR_SET_IO_FLUSHER 57
6436 # define PR_GET_IO_FLUSHER 58
6437 #endif
6438 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6439 # define PR_SET_SYSCALL_USER_DISPATCH 59
6440 #endif
6441 #ifndef PR_SME_SET_VL
6442 # define PR_SME_SET_VL  63
6443 # define PR_SME_GET_VL  64
6444 # define PR_SME_VL_LEN_MASK  0xffff
6445 # define PR_SME_VL_INHERIT   (1 << 17)
6446 #endif
6447 
6448 #include "target_prctl.h"
6449 
6450 static abi_long do_prctl_inval0(CPUArchState *env)
6451 {
6452     return -TARGET_EINVAL;
6453 }
6454 
6455 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6456 {
6457     return -TARGET_EINVAL;
6458 }
6459 
6460 #ifndef do_prctl_get_fp_mode
6461 #define do_prctl_get_fp_mode do_prctl_inval0
6462 #endif
6463 #ifndef do_prctl_set_fp_mode
6464 #define do_prctl_set_fp_mode do_prctl_inval1
6465 #endif
6466 #ifndef do_prctl_sve_get_vl
6467 #define do_prctl_sve_get_vl do_prctl_inval0
6468 #endif
6469 #ifndef do_prctl_sve_set_vl
6470 #define do_prctl_sve_set_vl do_prctl_inval1
6471 #endif
6472 #ifndef do_prctl_reset_keys
6473 #define do_prctl_reset_keys do_prctl_inval1
6474 #endif
6475 #ifndef do_prctl_set_tagged_addr_ctrl
6476 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6477 #endif
6478 #ifndef do_prctl_get_tagged_addr_ctrl
6479 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6480 #endif
6481 #ifndef do_prctl_get_unalign
6482 #define do_prctl_get_unalign do_prctl_inval1
6483 #endif
6484 #ifndef do_prctl_set_unalign
6485 #define do_prctl_set_unalign do_prctl_inval1
6486 #endif
6487 #ifndef do_prctl_sme_get_vl
6488 #define do_prctl_sme_get_vl do_prctl_inval0
6489 #endif
6490 #ifndef do_prctl_sme_set_vl
6491 #define do_prctl_sme_set_vl do_prctl_inval1
6492 #endif
6493 
6494 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6495                          abi_long arg3, abi_long arg4, abi_long arg5)
6496 {
6497     abi_long ret;
6498 
6499     switch (option) {
6500     case PR_GET_PDEATHSIG:
6501         {
6502             int deathsig;
6503             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6504                                   arg3, arg4, arg5));
6505             if (!is_error(ret) &&
6506                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6507                 return -TARGET_EFAULT;
6508             }
6509             return ret;
6510         }
6511     case PR_SET_PDEATHSIG:
6512         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6513                                arg3, arg4, arg5));
6514     case PR_GET_NAME:
6515         {
6516             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6517             if (!name) {
6518                 return -TARGET_EFAULT;
6519             }
6520             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6521                                   arg3, arg4, arg5));
6522             unlock_user(name, arg2, 16);
6523             return ret;
6524         }
6525     case PR_SET_NAME:
6526         {
6527             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6528             if (!name) {
6529                 return -TARGET_EFAULT;
6530             }
6531             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6532                                   arg3, arg4, arg5));
6533             unlock_user(name, arg2, 0);
6534             return ret;
6535         }
6536     case PR_GET_FP_MODE:
6537         return do_prctl_get_fp_mode(env);
6538     case PR_SET_FP_MODE:
6539         return do_prctl_set_fp_mode(env, arg2);
6540     case PR_SVE_GET_VL:
6541         return do_prctl_sve_get_vl(env);
6542     case PR_SVE_SET_VL:
6543         return do_prctl_sve_set_vl(env, arg2);
6544     case PR_SME_GET_VL:
6545         return do_prctl_sme_get_vl(env);
6546     case PR_SME_SET_VL:
6547         return do_prctl_sme_set_vl(env, arg2);
6548     case PR_PAC_RESET_KEYS:
6549         if (arg3 || arg4 || arg5) {
6550             return -TARGET_EINVAL;
6551         }
6552         return do_prctl_reset_keys(env, arg2);
6553     case PR_SET_TAGGED_ADDR_CTRL:
6554         if (arg3 || arg4 || arg5) {
6555             return -TARGET_EINVAL;
6556         }
6557         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6558     case PR_GET_TAGGED_ADDR_CTRL:
6559         if (arg2 || arg3 || arg4 || arg5) {
6560             return -TARGET_EINVAL;
6561         }
6562         return do_prctl_get_tagged_addr_ctrl(env);
6563 
6564     case PR_GET_UNALIGN:
6565         return do_prctl_get_unalign(env, arg2);
6566     case PR_SET_UNALIGN:
6567         return do_prctl_set_unalign(env, arg2);
6568 
6569     case PR_CAP_AMBIENT:
6570     case PR_CAPBSET_READ:
6571     case PR_CAPBSET_DROP:
6572     case PR_GET_DUMPABLE:
6573     case PR_SET_DUMPABLE:
6574     case PR_GET_KEEPCAPS:
6575     case PR_SET_KEEPCAPS:
6576     case PR_GET_SECUREBITS:
6577     case PR_SET_SECUREBITS:
6578     case PR_GET_TIMING:
6579     case PR_SET_TIMING:
6580     case PR_GET_TIMERSLACK:
6581     case PR_SET_TIMERSLACK:
6582     case PR_MCE_KILL:
6583     case PR_MCE_KILL_GET:
6584     case PR_GET_NO_NEW_PRIVS:
6585     case PR_SET_NO_NEW_PRIVS:
6586     case PR_GET_IO_FLUSHER:
6587     case PR_SET_IO_FLUSHER:
6588         /* Some prctl options have no pointer arguments and we can pass on. */
6589         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6590 
6591     case PR_GET_CHILD_SUBREAPER:
6592     case PR_SET_CHILD_SUBREAPER:
6593     case PR_GET_SPECULATION_CTRL:
6594     case PR_SET_SPECULATION_CTRL:
6595     case PR_GET_TID_ADDRESS:
6596         /* TODO */
6597         return -TARGET_EINVAL;
6598 
6599     case PR_GET_FPEXC:
6600     case PR_SET_FPEXC:
6601         /* Was used for SPE on PowerPC. */
6602         return -TARGET_EINVAL;
6603 
6604     case PR_GET_ENDIAN:
6605     case PR_SET_ENDIAN:
6606     case PR_GET_FPEMU:
6607     case PR_SET_FPEMU:
6608     case PR_SET_MM:
6609     case PR_GET_SECCOMP:
6610     case PR_SET_SECCOMP:
6611     case PR_SET_SYSCALL_USER_DISPATCH:
6612     case PR_GET_THP_DISABLE:
6613     case PR_SET_THP_DISABLE:
6614     case PR_GET_TSC:
6615     case PR_SET_TSC:
6616         /* Disable to prevent the target disabling stuff we need. */
6617         return -TARGET_EINVAL;
6618 
6619     default:
6620         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6621                       option);
6622         return -TARGET_EINVAL;
6623     }
6624 }
6625 
6626 #define NEW_STACK_SIZE 0x40000
6627 
6628 
6629 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6630 typedef struct {
6631     CPUArchState *env;
6632     pthread_mutex_t mutex;
6633     pthread_cond_t cond;
6634     pthread_t thread;
6635     uint32_t tid;
6636     abi_ulong child_tidptr;
6637     abi_ulong parent_tidptr;
6638     sigset_t sigmask;
6639 } new_thread_info;
6640 
6641 static void *clone_func(void *arg)
6642 {
6643     new_thread_info *info = arg;
6644     CPUArchState *env;
6645     CPUState *cpu;
6646     TaskState *ts;
6647 
6648     rcu_register_thread();
6649     tcg_register_thread();
6650     env = info->env;
6651     cpu = env_cpu(env);
6652     thread_cpu = cpu;
6653     ts = (TaskState *)cpu->opaque;
6654     info->tid = sys_gettid();
6655     task_settid(ts);
6656     if (info->child_tidptr)
6657         put_user_u32(info->tid, info->child_tidptr);
6658     if (info->parent_tidptr)
6659         put_user_u32(info->tid, info->parent_tidptr);
6660     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6661     /* Enable signals.  */
6662     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6663     /* Signal to the parent that we're ready.  */
6664     pthread_mutex_lock(&info->mutex);
6665     pthread_cond_broadcast(&info->cond);
6666     pthread_mutex_unlock(&info->mutex);
6667     /* Wait until the parent has finished initializing the tls state.  */
6668     pthread_mutex_lock(&clone_lock);
6669     pthread_mutex_unlock(&clone_lock);
6670     cpu_loop(env);
6671     /* never exits */
6672     return NULL;
6673 }
6674 
6675 /* do_fork() Must return host values and target errnos (unlike most
6676    do_*() functions). */
6677 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6678                    abi_ulong parent_tidptr, target_ulong newtls,
6679                    abi_ulong child_tidptr)
6680 {
6681     CPUState *cpu = env_cpu(env);
6682     int ret;
6683     TaskState *ts;
6684     CPUState *new_cpu;
6685     CPUArchState *new_env;
6686     sigset_t sigmask;
6687 
6688     flags &= ~CLONE_IGNORED_FLAGS;
6689 
6690     /* Emulate vfork() with fork() */
6691     if (flags & CLONE_VFORK)
6692         flags &= ~(CLONE_VFORK | CLONE_VM);
6693 
6694     if (flags & CLONE_VM) {
6695         TaskState *parent_ts = (TaskState *)cpu->opaque;
6696         new_thread_info info;
6697         pthread_attr_t attr;
6698 
6699         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6700             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6701             return -TARGET_EINVAL;
6702         }
6703 
6704         ts = g_new0(TaskState, 1);
6705         init_task_state(ts);
6706 
6707         /* Grab a mutex so that thread setup appears atomic.  */
6708         pthread_mutex_lock(&clone_lock);
6709 
6710         /*
6711          * If this is our first additional thread, we need to ensure we
6712          * generate code for parallel execution and flush old translations.
6713          * Do this now so that the copy gets CF_PARALLEL too.
6714          */
6715         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6716             cpu->tcg_cflags |= CF_PARALLEL;
6717             tb_flush(cpu);
6718         }
6719 
6720         /* we create a new CPU instance. */
6721         new_env = cpu_copy(env);
6722         /* Init regs that differ from the parent.  */
6723         cpu_clone_regs_child(new_env, newsp, flags);
6724         cpu_clone_regs_parent(env, flags);
6725         new_cpu = env_cpu(new_env);
6726         new_cpu->opaque = ts;
6727         ts->bprm = parent_ts->bprm;
6728         ts->info = parent_ts->info;
6729         ts->signal_mask = parent_ts->signal_mask;
6730 
6731         if (flags & CLONE_CHILD_CLEARTID) {
6732             ts->child_tidptr = child_tidptr;
6733         }
6734 
6735         if (flags & CLONE_SETTLS) {
6736             cpu_set_tls (new_env, newtls);
6737         }
6738 
6739         memset(&info, 0, sizeof(info));
6740         pthread_mutex_init(&info.mutex, NULL);
6741         pthread_mutex_lock(&info.mutex);
6742         pthread_cond_init(&info.cond, NULL);
6743         info.env = new_env;
6744         if (flags & CLONE_CHILD_SETTID) {
6745             info.child_tidptr = child_tidptr;
6746         }
6747         if (flags & CLONE_PARENT_SETTID) {
6748             info.parent_tidptr = parent_tidptr;
6749         }
6750 
6751         ret = pthread_attr_init(&attr);
6752         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6753         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6754         /* It is not safe to deliver signals until the child has finished
6755            initializing, so temporarily block all signals.  */
6756         sigfillset(&sigmask);
6757         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6758         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6759 
6760         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6761         /* TODO: Free new CPU state if thread creation failed.  */
6762 
6763         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6764         pthread_attr_destroy(&attr);
6765         if (ret == 0) {
6766             /* Wait for the child to initialize.  */
6767             pthread_cond_wait(&info.cond, &info.mutex);
6768             ret = info.tid;
6769         } else {
6770             ret = -1;
6771         }
6772         pthread_mutex_unlock(&info.mutex);
6773         pthread_cond_destroy(&info.cond);
6774         pthread_mutex_destroy(&info.mutex);
6775         pthread_mutex_unlock(&clone_lock);
6776     } else {
6777         /* if no CLONE_VM, we consider it is a fork */
6778         if (flags & CLONE_INVALID_FORK_FLAGS) {
6779             return -TARGET_EINVAL;
6780         }
6781 
6782         /* We can't support custom termination signals */
6783         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6784             return -TARGET_EINVAL;
6785         }
6786 
6787 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6788         if (flags & CLONE_PIDFD) {
6789             return -TARGET_EINVAL;
6790         }
6791 #endif
6792 
6793         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6794         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6795             return -TARGET_EINVAL;
6796         }
6797 
6798         if (block_signals()) {
6799             return -QEMU_ERESTARTSYS;
6800         }
6801 
6802         fork_start();
6803         ret = fork();
6804         if (ret == 0) {
6805             /* Child Process.  */
6806             cpu_clone_regs_child(env, newsp, flags);
6807             fork_end(1);
6808             /* There is a race condition here.  The parent process could
6809                theoretically read the TID in the child process before the child
6810                tid is set.  This would require using either ptrace
6811                (not implemented) or having *_tidptr to point at a shared memory
6812                mapping.  We can't repeat the spinlock hack used above because
6813                the child process gets its own copy of the lock.  */
6814             if (flags & CLONE_CHILD_SETTID)
6815                 put_user_u32(sys_gettid(), child_tidptr);
6816             if (flags & CLONE_PARENT_SETTID)
6817                 put_user_u32(sys_gettid(), parent_tidptr);
6818             ts = (TaskState *)cpu->opaque;
6819             if (flags & CLONE_SETTLS)
6820                 cpu_set_tls (env, newtls);
6821             if (flags & CLONE_CHILD_CLEARTID)
6822                 ts->child_tidptr = child_tidptr;
6823         } else {
6824             cpu_clone_regs_parent(env, flags);
6825             if (flags & CLONE_PIDFD) {
6826                 int pid_fd = 0;
6827 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6828                 int pid_child = ret;
6829                 pid_fd = pidfd_open(pid_child, 0);
6830                 if (pid_fd >= 0) {
6831                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6832                                                | FD_CLOEXEC);
6833                 } else {
6834                         pid_fd = 0;
6835                 }
6836 #endif
6837                 put_user_u32(pid_fd, parent_tidptr);
6838                 }
6839             fork_end(0);
6840         }
6841         g_assert(!cpu_in_exclusive_context(cpu));
6842     }
6843     return ret;
6844 }
6845 
6846 /* warning : doesn't handle linux specific flags... */
6847 static int target_to_host_fcntl_cmd(int cmd)
6848 {
6849     int ret;
6850 
6851     switch(cmd) {
6852     case TARGET_F_DUPFD:
6853     case TARGET_F_GETFD:
6854     case TARGET_F_SETFD:
6855     case TARGET_F_GETFL:
6856     case TARGET_F_SETFL:
6857     case TARGET_F_OFD_GETLK:
6858     case TARGET_F_OFD_SETLK:
6859     case TARGET_F_OFD_SETLKW:
6860         ret = cmd;
6861         break;
6862     case TARGET_F_GETLK:
6863         ret = F_GETLK64;
6864         break;
6865     case TARGET_F_SETLK:
6866         ret = F_SETLK64;
6867         break;
6868     case TARGET_F_SETLKW:
6869         ret = F_SETLKW64;
6870         break;
6871     case TARGET_F_GETOWN:
6872         ret = F_GETOWN;
6873         break;
6874     case TARGET_F_SETOWN:
6875         ret = F_SETOWN;
6876         break;
6877     case TARGET_F_GETSIG:
6878         ret = F_GETSIG;
6879         break;
6880     case TARGET_F_SETSIG:
6881         ret = F_SETSIG;
6882         break;
6883 #if TARGET_ABI_BITS == 32
6884     case TARGET_F_GETLK64:
6885         ret = F_GETLK64;
6886         break;
6887     case TARGET_F_SETLK64:
6888         ret = F_SETLK64;
6889         break;
6890     case TARGET_F_SETLKW64:
6891         ret = F_SETLKW64;
6892         break;
6893 #endif
6894     case TARGET_F_SETLEASE:
6895         ret = F_SETLEASE;
6896         break;
6897     case TARGET_F_GETLEASE:
6898         ret = F_GETLEASE;
6899         break;
6900 #ifdef F_DUPFD_CLOEXEC
6901     case TARGET_F_DUPFD_CLOEXEC:
6902         ret = F_DUPFD_CLOEXEC;
6903         break;
6904 #endif
6905     case TARGET_F_NOTIFY:
6906         ret = F_NOTIFY;
6907         break;
6908 #ifdef F_GETOWN_EX
6909     case TARGET_F_GETOWN_EX:
6910         ret = F_GETOWN_EX;
6911         break;
6912 #endif
6913 #ifdef F_SETOWN_EX
6914     case TARGET_F_SETOWN_EX:
6915         ret = F_SETOWN_EX;
6916         break;
6917 #endif
6918 #ifdef F_SETPIPE_SZ
6919     case TARGET_F_SETPIPE_SZ:
6920         ret = F_SETPIPE_SZ;
6921         break;
6922     case TARGET_F_GETPIPE_SZ:
6923         ret = F_GETPIPE_SZ;
6924         break;
6925 #endif
6926 #ifdef F_ADD_SEALS
6927     case TARGET_F_ADD_SEALS:
6928         ret = F_ADD_SEALS;
6929         break;
6930     case TARGET_F_GET_SEALS:
6931         ret = F_GET_SEALS;
6932         break;
6933 #endif
6934     default:
6935         ret = -TARGET_EINVAL;
6936         break;
6937     }
6938 
6939 #if defined(__powerpc64__)
6940     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6941      * is not supported by kernel. The glibc fcntl call actually adjusts
6942      * them to 5, 6 and 7 before making the syscall(). Since we make the
6943      * syscall directly, adjust to what is supported by the kernel.
6944      */
6945     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6946         ret -= F_GETLK64 - 5;
6947     }
6948 #endif
6949 
6950     return ret;
6951 }
6952 
6953 #define FLOCK_TRANSTBL \
6954     switch (type) { \
6955     TRANSTBL_CONVERT(F_RDLCK); \
6956     TRANSTBL_CONVERT(F_WRLCK); \
6957     TRANSTBL_CONVERT(F_UNLCK); \
6958     }
6959 
6960 static int target_to_host_flock(int type)
6961 {
6962 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6963     FLOCK_TRANSTBL
6964 #undef  TRANSTBL_CONVERT
6965     return -TARGET_EINVAL;
6966 }
6967 
6968 static int host_to_target_flock(int type)
6969 {
6970 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6971     FLOCK_TRANSTBL
6972 #undef  TRANSTBL_CONVERT
6973     /* if we don't know how to convert the value coming
6974      * from the host we copy to the target field as-is
6975      */
6976     return type;
6977 }
6978 
6979 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6980                                             abi_ulong target_flock_addr)
6981 {
6982     struct target_flock *target_fl;
6983     int l_type;
6984 
6985     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6986         return -TARGET_EFAULT;
6987     }
6988 
6989     __get_user(l_type, &target_fl->l_type);
6990     l_type = target_to_host_flock(l_type);
6991     if (l_type < 0) {
6992         return l_type;
6993     }
6994     fl->l_type = l_type;
6995     __get_user(fl->l_whence, &target_fl->l_whence);
6996     __get_user(fl->l_start, &target_fl->l_start);
6997     __get_user(fl->l_len, &target_fl->l_len);
6998     __get_user(fl->l_pid, &target_fl->l_pid);
6999     unlock_user_struct(target_fl, target_flock_addr, 0);
7000     return 0;
7001 }
7002 
7003 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
7004                                           const struct flock64 *fl)
7005 {
7006     struct target_flock *target_fl;
7007     short l_type;
7008 
7009     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7010         return -TARGET_EFAULT;
7011     }
7012 
7013     l_type = host_to_target_flock(fl->l_type);
7014     __put_user(l_type, &target_fl->l_type);
7015     __put_user(fl->l_whence, &target_fl->l_whence);
7016     __put_user(fl->l_start, &target_fl->l_start);
7017     __put_user(fl->l_len, &target_fl->l_len);
7018     __put_user(fl->l_pid, &target_fl->l_pid);
7019     unlock_user_struct(target_fl, target_flock_addr, 1);
7020     return 0;
7021 }
7022 
7023 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
7024 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
7025 
7026 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
7027 struct target_oabi_flock64 {
7028     abi_short l_type;
7029     abi_short l_whence;
7030     abi_llong l_start;
7031     abi_llong l_len;
7032     abi_int   l_pid;
7033 } QEMU_PACKED;
7034 
7035 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
7036                                                    abi_ulong target_flock_addr)
7037 {
7038     struct target_oabi_flock64 *target_fl;
7039     int l_type;
7040 
7041     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
7042         return -TARGET_EFAULT;
7043     }
7044 
7045     __get_user(l_type, &target_fl->l_type);
7046     l_type = target_to_host_flock(l_type);
7047     if (l_type < 0) {
7048         return l_type;
7049     }
7050     fl->l_type = l_type;
7051     __get_user(fl->l_whence, &target_fl->l_whence);
7052     __get_user(fl->l_start, &target_fl->l_start);
7053     __get_user(fl->l_len, &target_fl->l_len);
7054     __get_user(fl->l_pid, &target_fl->l_pid);
7055     unlock_user_struct(target_fl, target_flock_addr, 0);
7056     return 0;
7057 }
7058 
7059 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
7060                                                  const struct flock64 *fl)
7061 {
7062     struct target_oabi_flock64 *target_fl;
7063     short l_type;
7064 
7065     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7066         return -TARGET_EFAULT;
7067     }
7068 
7069     l_type = host_to_target_flock(fl->l_type);
7070     __put_user(l_type, &target_fl->l_type);
7071     __put_user(fl->l_whence, &target_fl->l_whence);
7072     __put_user(fl->l_start, &target_fl->l_start);
7073     __put_user(fl->l_len, &target_fl->l_len);
7074     __put_user(fl->l_pid, &target_fl->l_pid);
7075     unlock_user_struct(target_fl, target_flock_addr, 1);
7076     return 0;
7077 }
7078 #endif
7079 
7080 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
7081                                               abi_ulong target_flock_addr)
7082 {
7083     struct target_flock64 *target_fl;
7084     int l_type;
7085 
7086     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
7087         return -TARGET_EFAULT;
7088     }
7089 
7090     __get_user(l_type, &target_fl->l_type);
7091     l_type = target_to_host_flock(l_type);
7092     if (l_type < 0) {
7093         return l_type;
7094     }
7095     fl->l_type = l_type;
7096     __get_user(fl->l_whence, &target_fl->l_whence);
7097     __get_user(fl->l_start, &target_fl->l_start);
7098     __get_user(fl->l_len, &target_fl->l_len);
7099     __get_user(fl->l_pid, &target_fl->l_pid);
7100     unlock_user_struct(target_fl, target_flock_addr, 0);
7101     return 0;
7102 }
7103 
7104 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
7105                                             const struct flock64 *fl)
7106 {
7107     struct target_flock64 *target_fl;
7108     short l_type;
7109 
7110     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7111         return -TARGET_EFAULT;
7112     }
7113 
7114     l_type = host_to_target_flock(fl->l_type);
7115     __put_user(l_type, &target_fl->l_type);
7116     __put_user(fl->l_whence, &target_fl->l_whence);
7117     __put_user(fl->l_start, &target_fl->l_start);
7118     __put_user(fl->l_len, &target_fl->l_len);
7119     __put_user(fl->l_pid, &target_fl->l_pid);
7120     unlock_user_struct(target_fl, target_flock_addr, 1);
7121     return 0;
7122 }
7123 
7124 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
7125 {
7126     struct flock64 fl64;
7127 #ifdef F_GETOWN_EX
7128     struct f_owner_ex fox;
7129     struct target_f_owner_ex *target_fox;
7130 #endif
7131     abi_long ret;
7132     int host_cmd = target_to_host_fcntl_cmd(cmd);
7133 
7134     if (host_cmd == -TARGET_EINVAL)
7135 	    return host_cmd;
7136 
7137     switch(cmd) {
7138     case TARGET_F_GETLK:
7139         ret = copy_from_user_flock(&fl64, arg);
7140         if (ret) {
7141             return ret;
7142         }
7143         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7144         if (ret == 0) {
7145             ret = copy_to_user_flock(arg, &fl64);
7146         }
7147         break;
7148 
7149     case TARGET_F_SETLK:
7150     case TARGET_F_SETLKW:
7151         ret = copy_from_user_flock(&fl64, arg);
7152         if (ret) {
7153             return ret;
7154         }
7155         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7156         break;
7157 
7158     case TARGET_F_GETLK64:
7159     case TARGET_F_OFD_GETLK:
7160         ret = copy_from_user_flock64(&fl64, arg);
7161         if (ret) {
7162             return ret;
7163         }
7164         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7165         if (ret == 0) {
7166             ret = copy_to_user_flock64(arg, &fl64);
7167         }
7168         break;
7169     case TARGET_F_SETLK64:
7170     case TARGET_F_SETLKW64:
7171     case TARGET_F_OFD_SETLK:
7172     case TARGET_F_OFD_SETLKW:
7173         ret = copy_from_user_flock64(&fl64, arg);
7174         if (ret) {
7175             return ret;
7176         }
7177         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7178         break;
7179 
7180     case TARGET_F_GETFL:
7181         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7182         if (ret >= 0) {
7183             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7184             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7185             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7186                 ret |= TARGET_O_LARGEFILE;
7187             }
7188         }
7189         break;
7190 
7191     case TARGET_F_SETFL:
7192         ret = get_errno(safe_fcntl(fd, host_cmd,
7193                                    target_to_host_bitmask(arg,
7194                                                           fcntl_flags_tbl)));
7195         break;
7196 
7197 #ifdef F_GETOWN_EX
7198     case TARGET_F_GETOWN_EX:
7199         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7200         if (ret >= 0) {
7201             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7202                 return -TARGET_EFAULT;
7203             target_fox->type = tswap32(fox.type);
7204             target_fox->pid = tswap32(fox.pid);
7205             unlock_user_struct(target_fox, arg, 1);
7206         }
7207         break;
7208 #endif
7209 
7210 #ifdef F_SETOWN_EX
7211     case TARGET_F_SETOWN_EX:
7212         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7213             return -TARGET_EFAULT;
7214         fox.type = tswap32(target_fox->type);
7215         fox.pid = tswap32(target_fox->pid);
7216         unlock_user_struct(target_fox, arg, 0);
7217         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7218         break;
7219 #endif
7220 
7221     case TARGET_F_SETSIG:
7222         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7223         break;
7224 
7225     case TARGET_F_GETSIG:
7226         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7227         break;
7228 
7229     case TARGET_F_SETOWN:
7230     case TARGET_F_GETOWN:
7231     case TARGET_F_SETLEASE:
7232     case TARGET_F_GETLEASE:
7233     case TARGET_F_SETPIPE_SZ:
7234     case TARGET_F_GETPIPE_SZ:
7235     case TARGET_F_ADD_SEALS:
7236     case TARGET_F_GET_SEALS:
7237         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7238         break;
7239 
7240     default:
7241         ret = get_errno(safe_fcntl(fd, cmd, arg));
7242         break;
7243     }
7244     return ret;
7245 }
7246 
7247 #ifdef USE_UID16
7248 
7249 static inline int high2lowuid(int uid)
7250 {
7251     if (uid > 65535)
7252         return 65534;
7253     else
7254         return uid;
7255 }
7256 
7257 static inline int high2lowgid(int gid)
7258 {
7259     if (gid > 65535)
7260         return 65534;
7261     else
7262         return gid;
7263 }
7264 
7265 static inline int low2highuid(int uid)
7266 {
7267     if ((int16_t)uid == -1)
7268         return -1;
7269     else
7270         return uid;
7271 }
7272 
7273 static inline int low2highgid(int gid)
7274 {
7275     if ((int16_t)gid == -1)
7276         return -1;
7277     else
7278         return gid;
7279 }
7280 static inline int tswapid(int id)
7281 {
7282     return tswap16(id);
7283 }
7284 
7285 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7286 
7287 #else /* !USE_UID16 */
7288 static inline int high2lowuid(int uid)
7289 {
7290     return uid;
7291 }
7292 static inline int high2lowgid(int gid)
7293 {
7294     return gid;
7295 }
7296 static inline int low2highuid(int uid)
7297 {
7298     return uid;
7299 }
7300 static inline int low2highgid(int gid)
7301 {
7302     return gid;
7303 }
7304 static inline int tswapid(int id)
7305 {
7306     return tswap32(id);
7307 }
7308 
7309 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7310 
7311 #endif /* USE_UID16 */
7312 
7313 /* We must do direct syscalls for setting UID/GID, because we want to
7314  * implement the Linux system call semantics of "change only for this thread",
7315  * not the libc/POSIX semantics of "change for all threads in process".
7316  * (See http://ewontfix.com/17/ for more details.)
7317  * We use the 32-bit version of the syscalls if present; if it is not
7318  * then either the host architecture supports 32-bit UIDs natively with
7319  * the standard syscall, or the 16-bit UID is the best we can do.
7320  */
7321 #ifdef __NR_setuid32
7322 #define __NR_sys_setuid __NR_setuid32
7323 #else
7324 #define __NR_sys_setuid __NR_setuid
7325 #endif
7326 #ifdef __NR_setgid32
7327 #define __NR_sys_setgid __NR_setgid32
7328 #else
7329 #define __NR_sys_setgid __NR_setgid
7330 #endif
7331 #ifdef __NR_setresuid32
7332 #define __NR_sys_setresuid __NR_setresuid32
7333 #else
7334 #define __NR_sys_setresuid __NR_setresuid
7335 #endif
7336 #ifdef __NR_setresgid32
7337 #define __NR_sys_setresgid __NR_setresgid32
7338 #else
7339 #define __NR_sys_setresgid __NR_setresgid
7340 #endif
7341 
7342 _syscall1(int, sys_setuid, uid_t, uid)
7343 _syscall1(int, sys_setgid, gid_t, gid)
7344 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7345 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7346 
7347 void syscall_init(void)
7348 {
7349     IOCTLEntry *ie;
7350     const argtype *arg_type;
7351     int size;
7352 
7353     thunk_init(STRUCT_MAX);
7354 
7355 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7356 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7357 #include "syscall_types.h"
7358 #undef STRUCT
7359 #undef STRUCT_SPECIAL
7360 
7361     /* we patch the ioctl size if necessary. We rely on the fact that
7362        no ioctl has all the bits at '1' in the size field */
7363     ie = ioctl_entries;
7364     while (ie->target_cmd != 0) {
7365         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7366             TARGET_IOC_SIZEMASK) {
7367             arg_type = ie->arg_type;
7368             if (arg_type[0] != TYPE_PTR) {
7369                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7370                         ie->target_cmd);
7371                 exit(1);
7372             }
7373             arg_type++;
7374             size = thunk_type_size(arg_type, 0);
7375             ie->target_cmd = (ie->target_cmd &
7376                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7377                 (size << TARGET_IOC_SIZESHIFT);
7378         }
7379 
7380         /* automatic consistency check if same arch */
7381 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7382     (defined(__x86_64__) && defined(TARGET_X86_64))
7383         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7384             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7385                     ie->name, ie->target_cmd, ie->host_cmd);
7386         }
7387 #endif
7388         ie++;
7389     }
7390 }
7391 
7392 #ifdef TARGET_NR_truncate64
7393 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7394                                          abi_long arg2,
7395                                          abi_long arg3,
7396                                          abi_long arg4)
7397 {
7398     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7399         arg2 = arg3;
7400         arg3 = arg4;
7401     }
7402     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7403 }
7404 #endif
7405 
7406 #ifdef TARGET_NR_ftruncate64
7407 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7408                                           abi_long arg2,
7409                                           abi_long arg3,
7410                                           abi_long arg4)
7411 {
7412     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7413         arg2 = arg3;
7414         arg3 = arg4;
7415     }
7416     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7417 }
7418 #endif
7419 
7420 #if defined(TARGET_NR_timer_settime) || \
7421     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7422 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7423                                                  abi_ulong target_addr)
7424 {
7425     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7426                                 offsetof(struct target_itimerspec,
7427                                          it_interval)) ||
7428         target_to_host_timespec(&host_its->it_value, target_addr +
7429                                 offsetof(struct target_itimerspec,
7430                                          it_value))) {
7431         return -TARGET_EFAULT;
7432     }
7433 
7434     return 0;
7435 }
7436 #endif
7437 
7438 #if defined(TARGET_NR_timer_settime64) || \
7439     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7440 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7441                                                    abi_ulong target_addr)
7442 {
7443     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7444                                   offsetof(struct target__kernel_itimerspec,
7445                                            it_interval)) ||
7446         target_to_host_timespec64(&host_its->it_value, target_addr +
7447                                   offsetof(struct target__kernel_itimerspec,
7448                                            it_value))) {
7449         return -TARGET_EFAULT;
7450     }
7451 
7452     return 0;
7453 }
7454 #endif
7455 
7456 #if ((defined(TARGET_NR_timerfd_gettime) || \
7457       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7458       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7459 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7460                                                  struct itimerspec *host_its)
7461 {
7462     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7463                                                        it_interval),
7464                                 &host_its->it_interval) ||
7465         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7466                                                        it_value),
7467                                 &host_its->it_value)) {
7468         return -TARGET_EFAULT;
7469     }
7470     return 0;
7471 }
7472 #endif
7473 
7474 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7475       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7476       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7477 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7478                                                    struct itimerspec *host_its)
7479 {
7480     if (host_to_target_timespec64(target_addr +
7481                                   offsetof(struct target__kernel_itimerspec,
7482                                            it_interval),
7483                                   &host_its->it_interval) ||
7484         host_to_target_timespec64(target_addr +
7485                                   offsetof(struct target__kernel_itimerspec,
7486                                            it_value),
7487                                   &host_its->it_value)) {
7488         return -TARGET_EFAULT;
7489     }
7490     return 0;
7491 }
7492 #endif
7493 
7494 #if defined(TARGET_NR_adjtimex) || \
7495     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7496 static inline abi_long target_to_host_timex(struct timex *host_tx,
7497                                             abi_long target_addr)
7498 {
7499     struct target_timex *target_tx;
7500 
7501     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7502         return -TARGET_EFAULT;
7503     }
7504 
7505     __get_user(host_tx->modes, &target_tx->modes);
7506     __get_user(host_tx->offset, &target_tx->offset);
7507     __get_user(host_tx->freq, &target_tx->freq);
7508     __get_user(host_tx->maxerror, &target_tx->maxerror);
7509     __get_user(host_tx->esterror, &target_tx->esterror);
7510     __get_user(host_tx->status, &target_tx->status);
7511     __get_user(host_tx->constant, &target_tx->constant);
7512     __get_user(host_tx->precision, &target_tx->precision);
7513     __get_user(host_tx->tolerance, &target_tx->tolerance);
7514     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7515     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7516     __get_user(host_tx->tick, &target_tx->tick);
7517     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7518     __get_user(host_tx->jitter, &target_tx->jitter);
7519     __get_user(host_tx->shift, &target_tx->shift);
7520     __get_user(host_tx->stabil, &target_tx->stabil);
7521     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7522     __get_user(host_tx->calcnt, &target_tx->calcnt);
7523     __get_user(host_tx->errcnt, &target_tx->errcnt);
7524     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7525     __get_user(host_tx->tai, &target_tx->tai);
7526 
7527     unlock_user_struct(target_tx, target_addr, 0);
7528     return 0;
7529 }
7530 
7531 static inline abi_long host_to_target_timex(abi_long target_addr,
7532                                             struct timex *host_tx)
7533 {
7534     struct target_timex *target_tx;
7535 
7536     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7537         return -TARGET_EFAULT;
7538     }
7539 
7540     __put_user(host_tx->modes, &target_tx->modes);
7541     __put_user(host_tx->offset, &target_tx->offset);
7542     __put_user(host_tx->freq, &target_tx->freq);
7543     __put_user(host_tx->maxerror, &target_tx->maxerror);
7544     __put_user(host_tx->esterror, &target_tx->esterror);
7545     __put_user(host_tx->status, &target_tx->status);
7546     __put_user(host_tx->constant, &target_tx->constant);
7547     __put_user(host_tx->precision, &target_tx->precision);
7548     __put_user(host_tx->tolerance, &target_tx->tolerance);
7549     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7550     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7551     __put_user(host_tx->tick, &target_tx->tick);
7552     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7553     __put_user(host_tx->jitter, &target_tx->jitter);
7554     __put_user(host_tx->shift, &target_tx->shift);
7555     __put_user(host_tx->stabil, &target_tx->stabil);
7556     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7557     __put_user(host_tx->calcnt, &target_tx->calcnt);
7558     __put_user(host_tx->errcnt, &target_tx->errcnt);
7559     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7560     __put_user(host_tx->tai, &target_tx->tai);
7561 
7562     unlock_user_struct(target_tx, target_addr, 1);
7563     return 0;
7564 }
7565 #endif
7566 
7567 
7568 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7569 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7570                                               abi_long target_addr)
7571 {
7572     struct target__kernel_timex *target_tx;
7573 
7574     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7575                                  offsetof(struct target__kernel_timex,
7576                                           time))) {
7577         return -TARGET_EFAULT;
7578     }
7579 
7580     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7581         return -TARGET_EFAULT;
7582     }
7583 
7584     __get_user(host_tx->modes, &target_tx->modes);
7585     __get_user(host_tx->offset, &target_tx->offset);
7586     __get_user(host_tx->freq, &target_tx->freq);
7587     __get_user(host_tx->maxerror, &target_tx->maxerror);
7588     __get_user(host_tx->esterror, &target_tx->esterror);
7589     __get_user(host_tx->status, &target_tx->status);
7590     __get_user(host_tx->constant, &target_tx->constant);
7591     __get_user(host_tx->precision, &target_tx->precision);
7592     __get_user(host_tx->tolerance, &target_tx->tolerance);
7593     __get_user(host_tx->tick, &target_tx->tick);
7594     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7595     __get_user(host_tx->jitter, &target_tx->jitter);
7596     __get_user(host_tx->shift, &target_tx->shift);
7597     __get_user(host_tx->stabil, &target_tx->stabil);
7598     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7599     __get_user(host_tx->calcnt, &target_tx->calcnt);
7600     __get_user(host_tx->errcnt, &target_tx->errcnt);
7601     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7602     __get_user(host_tx->tai, &target_tx->tai);
7603 
7604     unlock_user_struct(target_tx, target_addr, 0);
7605     return 0;
7606 }
7607 
7608 static inline abi_long host_to_target_timex64(abi_long target_addr,
7609                                               struct timex *host_tx)
7610 {
7611     struct target__kernel_timex *target_tx;
7612 
7613    if (copy_to_user_timeval64(target_addr +
7614                               offsetof(struct target__kernel_timex, time),
7615                               &host_tx->time)) {
7616         return -TARGET_EFAULT;
7617     }
7618 
7619     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7620         return -TARGET_EFAULT;
7621     }
7622 
7623     __put_user(host_tx->modes, &target_tx->modes);
7624     __put_user(host_tx->offset, &target_tx->offset);
7625     __put_user(host_tx->freq, &target_tx->freq);
7626     __put_user(host_tx->maxerror, &target_tx->maxerror);
7627     __put_user(host_tx->esterror, &target_tx->esterror);
7628     __put_user(host_tx->status, &target_tx->status);
7629     __put_user(host_tx->constant, &target_tx->constant);
7630     __put_user(host_tx->precision, &target_tx->precision);
7631     __put_user(host_tx->tolerance, &target_tx->tolerance);
7632     __put_user(host_tx->tick, &target_tx->tick);
7633     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7634     __put_user(host_tx->jitter, &target_tx->jitter);
7635     __put_user(host_tx->shift, &target_tx->shift);
7636     __put_user(host_tx->stabil, &target_tx->stabil);
7637     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7638     __put_user(host_tx->calcnt, &target_tx->calcnt);
7639     __put_user(host_tx->errcnt, &target_tx->errcnt);
7640     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7641     __put_user(host_tx->tai, &target_tx->tai);
7642 
7643     unlock_user_struct(target_tx, target_addr, 1);
7644     return 0;
7645 }
7646 #endif
7647 
7648 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7649 #define sigev_notify_thread_id _sigev_un._tid
7650 #endif
7651 
7652 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7653                                                abi_ulong target_addr)
7654 {
7655     struct target_sigevent *target_sevp;
7656 
7657     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7658         return -TARGET_EFAULT;
7659     }
7660 
7661     /* This union is awkward on 64 bit systems because it has a 32 bit
7662      * integer and a pointer in it; we follow the conversion approach
7663      * used for handling sigval types in signal.c so the guest should get
7664      * the correct value back even if we did a 64 bit byteswap and it's
7665      * using the 32 bit integer.
7666      */
7667     host_sevp->sigev_value.sival_ptr =
7668         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7669     host_sevp->sigev_signo =
7670         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7671     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7672     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7673 
7674     unlock_user_struct(target_sevp, target_addr, 1);
7675     return 0;
7676 }
7677 
7678 #if defined(TARGET_NR_mlockall)
7679 static inline int target_to_host_mlockall_arg(int arg)
7680 {
7681     int result = 0;
7682 
7683     if (arg & TARGET_MCL_CURRENT) {
7684         result |= MCL_CURRENT;
7685     }
7686     if (arg & TARGET_MCL_FUTURE) {
7687         result |= MCL_FUTURE;
7688     }
7689 #ifdef MCL_ONFAULT
7690     if (arg & TARGET_MCL_ONFAULT) {
7691         result |= MCL_ONFAULT;
7692     }
7693 #endif
7694 
7695     return result;
7696 }
7697 #endif
7698 
7699 static inline int target_to_host_msync_arg(abi_long arg)
7700 {
7701     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7702            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7703            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7704            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7705 }
7706 
7707 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7708      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7709      defined(TARGET_NR_newfstatat))
7710 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7711                                              abi_ulong target_addr,
7712                                              struct stat *host_st)
7713 {
7714 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7715     if (cpu_env->eabi) {
7716         struct target_eabi_stat64 *target_st;
7717 
7718         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7719             return -TARGET_EFAULT;
7720         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7721         __put_user(host_st->st_dev, &target_st->st_dev);
7722         __put_user(host_st->st_ino, &target_st->st_ino);
7723 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7724         __put_user(host_st->st_ino, &target_st->__st_ino);
7725 #endif
7726         __put_user(host_st->st_mode, &target_st->st_mode);
7727         __put_user(host_st->st_nlink, &target_st->st_nlink);
7728         __put_user(host_st->st_uid, &target_st->st_uid);
7729         __put_user(host_st->st_gid, &target_st->st_gid);
7730         __put_user(host_st->st_rdev, &target_st->st_rdev);
7731         __put_user(host_st->st_size, &target_st->st_size);
7732         __put_user(host_st->st_blksize, &target_st->st_blksize);
7733         __put_user(host_st->st_blocks, &target_st->st_blocks);
7734         __put_user(host_st->st_atime, &target_st->target_st_atime);
7735         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7736         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7737 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7738         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7739         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7740         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7741 #endif
7742         unlock_user_struct(target_st, target_addr, 1);
7743     } else
7744 #endif
7745     {
7746 #if defined(TARGET_HAS_STRUCT_STAT64)
7747         struct target_stat64 *target_st;
7748 #else
7749         struct target_stat *target_st;
7750 #endif
7751 
7752         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7753             return -TARGET_EFAULT;
7754         memset(target_st, 0, sizeof(*target_st));
7755         __put_user(host_st->st_dev, &target_st->st_dev);
7756         __put_user(host_st->st_ino, &target_st->st_ino);
7757 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7758         __put_user(host_st->st_ino, &target_st->__st_ino);
7759 #endif
7760         __put_user(host_st->st_mode, &target_st->st_mode);
7761         __put_user(host_st->st_nlink, &target_st->st_nlink);
7762         __put_user(host_st->st_uid, &target_st->st_uid);
7763         __put_user(host_st->st_gid, &target_st->st_gid);
7764         __put_user(host_st->st_rdev, &target_st->st_rdev);
7765         /* XXX: better use of kernel struct */
7766         __put_user(host_st->st_size, &target_st->st_size);
7767         __put_user(host_st->st_blksize, &target_st->st_blksize);
7768         __put_user(host_st->st_blocks, &target_st->st_blocks);
7769         __put_user(host_st->st_atime, &target_st->target_st_atime);
7770         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7771         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7772 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7773         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7774         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7775         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7776 #endif
7777         unlock_user_struct(target_st, target_addr, 1);
7778     }
7779 
7780     return 0;
7781 }
7782 #endif
7783 
7784 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7785 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7786                                             abi_ulong target_addr)
7787 {
7788     struct target_statx *target_stx;
7789 
7790     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7791         return -TARGET_EFAULT;
7792     }
7793     memset(target_stx, 0, sizeof(*target_stx));
7794 
7795     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7796     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7797     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7798     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7799     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7800     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7801     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7802     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7803     __put_user(host_stx->stx_size, &target_stx->stx_size);
7804     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7805     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7806     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7807     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7808     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7809     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7810     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7811     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7812     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7813     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7814     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7815     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7816     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7817     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7818 
7819     unlock_user_struct(target_stx, target_addr, 1);
7820 
7821     return 0;
7822 }
7823 #endif
7824 
7825 static int do_sys_futex(int *uaddr, int op, int val,
7826                          const struct timespec *timeout, int *uaddr2,
7827                          int val3)
7828 {
7829 #if HOST_LONG_BITS == 64
7830 #if defined(__NR_futex)
7831     /* always a 64-bit time_t, it doesn't define _time64 version  */
7832     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7833 
7834 #endif
7835 #else /* HOST_LONG_BITS == 64 */
7836 #if defined(__NR_futex_time64)
7837     if (sizeof(timeout->tv_sec) == 8) {
7838         /* _time64 function on 32bit arch */
7839         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7840     }
7841 #endif
7842 #if defined(__NR_futex)
7843     /* old function on 32bit arch */
7844     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7845 #endif
7846 #endif /* HOST_LONG_BITS == 64 */
7847     g_assert_not_reached();
7848 }
7849 
7850 static int do_safe_futex(int *uaddr, int op, int val,
7851                          const struct timespec *timeout, int *uaddr2,
7852                          int val3)
7853 {
7854 #if HOST_LONG_BITS == 64
7855 #if defined(__NR_futex)
7856     /* always a 64-bit time_t, it doesn't define _time64 version  */
7857     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7858 #endif
7859 #else /* HOST_LONG_BITS == 64 */
7860 #if defined(__NR_futex_time64)
7861     if (sizeof(timeout->tv_sec) == 8) {
7862         /* _time64 function on 32bit arch */
7863         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7864                                            val3));
7865     }
7866 #endif
7867 #if defined(__NR_futex)
7868     /* old function on 32bit arch */
7869     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7870 #endif
7871 #endif /* HOST_LONG_BITS == 64 */
7872     return -TARGET_ENOSYS;
7873 }
7874 
7875 /* ??? Using host futex calls even when target atomic operations
7876    are not really atomic probably breaks things.  However implementing
7877    futexes locally would make futexes shared between multiple processes
7878    tricky.  However they're probably useless because guest atomic
7879    operations won't work either.  */
7880 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7881 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7882                     int op, int val, target_ulong timeout,
7883                     target_ulong uaddr2, int val3)
7884 {
7885     struct timespec ts, *pts = NULL;
7886     void *haddr2 = NULL;
7887     int base_op;
7888 
7889     /* We assume FUTEX_* constants are the same on both host and target. */
7890 #ifdef FUTEX_CMD_MASK
7891     base_op = op & FUTEX_CMD_MASK;
7892 #else
7893     base_op = op;
7894 #endif
7895     switch (base_op) {
7896     case FUTEX_WAIT:
7897     case FUTEX_WAIT_BITSET:
7898         val = tswap32(val);
7899         break;
7900     case FUTEX_WAIT_REQUEUE_PI:
7901         val = tswap32(val);
7902         haddr2 = g2h(cpu, uaddr2);
7903         break;
7904     case FUTEX_LOCK_PI:
7905     case FUTEX_LOCK_PI2:
7906         break;
7907     case FUTEX_WAKE:
7908     case FUTEX_WAKE_BITSET:
7909     case FUTEX_TRYLOCK_PI:
7910     case FUTEX_UNLOCK_PI:
7911         timeout = 0;
7912         break;
7913     case FUTEX_FD:
7914         val = target_to_host_signal(val);
7915         timeout = 0;
7916         break;
7917     case FUTEX_CMP_REQUEUE:
7918     case FUTEX_CMP_REQUEUE_PI:
7919         val3 = tswap32(val3);
7920         /* fall through */
7921     case FUTEX_REQUEUE:
7922     case FUTEX_WAKE_OP:
7923         /*
7924          * For these, the 4th argument is not TIMEOUT, but VAL2.
7925          * But the prototype of do_safe_futex takes a pointer, so
7926          * insert casts to satisfy the compiler.  We do not need
7927          * to tswap VAL2 since it's not compared to guest memory.
7928           */
7929         pts = (struct timespec *)(uintptr_t)timeout;
7930         timeout = 0;
7931         haddr2 = g2h(cpu, uaddr2);
7932         break;
7933     default:
7934         return -TARGET_ENOSYS;
7935     }
7936     if (timeout) {
7937         pts = &ts;
7938         if (time64
7939             ? target_to_host_timespec64(pts, timeout)
7940             : target_to_host_timespec(pts, timeout)) {
7941             return -TARGET_EFAULT;
7942         }
7943     }
7944     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7945 }
7946 #endif
7947 
7948 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7949 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7950                                      abi_long handle, abi_long mount_id,
7951                                      abi_long flags)
7952 {
7953     struct file_handle *target_fh;
7954     struct file_handle *fh;
7955     int mid = 0;
7956     abi_long ret;
7957     char *name;
7958     unsigned int size, total_size;
7959 
7960     if (get_user_s32(size, handle)) {
7961         return -TARGET_EFAULT;
7962     }
7963 
7964     name = lock_user_string(pathname);
7965     if (!name) {
7966         return -TARGET_EFAULT;
7967     }
7968 
7969     total_size = sizeof(struct file_handle) + size;
7970     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7971     if (!target_fh) {
7972         unlock_user(name, pathname, 0);
7973         return -TARGET_EFAULT;
7974     }
7975 
7976     fh = g_malloc0(total_size);
7977     fh->handle_bytes = size;
7978 
7979     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7980     unlock_user(name, pathname, 0);
7981 
7982     /* man name_to_handle_at(2):
7983      * Other than the use of the handle_bytes field, the caller should treat
7984      * the file_handle structure as an opaque data type
7985      */
7986 
7987     memcpy(target_fh, fh, total_size);
7988     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7989     target_fh->handle_type = tswap32(fh->handle_type);
7990     g_free(fh);
7991     unlock_user(target_fh, handle, total_size);
7992 
7993     if (put_user_s32(mid, mount_id)) {
7994         return -TARGET_EFAULT;
7995     }
7996 
7997     return ret;
7998 
7999 }
8000 #endif
8001 
8002 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8003 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
8004                                      abi_long flags)
8005 {
8006     struct file_handle *target_fh;
8007     struct file_handle *fh;
8008     unsigned int size, total_size;
8009     abi_long ret;
8010 
8011     if (get_user_s32(size, handle)) {
8012         return -TARGET_EFAULT;
8013     }
8014 
8015     total_size = sizeof(struct file_handle) + size;
8016     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
8017     if (!target_fh) {
8018         return -TARGET_EFAULT;
8019     }
8020 
8021     fh = g_memdup(target_fh, total_size);
8022     fh->handle_bytes = size;
8023     fh->handle_type = tswap32(target_fh->handle_type);
8024 
8025     ret = get_errno(open_by_handle_at(mount_fd, fh,
8026                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
8027 
8028     g_free(fh);
8029 
8030     unlock_user(target_fh, handle, total_size);
8031 
8032     return ret;
8033 }
8034 #endif
8035 
8036 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
8037 
8038 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
8039 {
8040     int host_flags;
8041     target_sigset_t *target_mask;
8042     sigset_t host_mask;
8043     abi_long ret;
8044 
8045     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
8046         return -TARGET_EINVAL;
8047     }
8048     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
8049         return -TARGET_EFAULT;
8050     }
8051 
8052     target_to_host_sigset(&host_mask, target_mask);
8053 
8054     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
8055 
8056     ret = get_errno(signalfd(fd, &host_mask, host_flags));
8057     if (ret >= 0) {
8058         fd_trans_register(ret, &target_signalfd_trans);
8059     }
8060 
8061     unlock_user_struct(target_mask, mask, 0);
8062 
8063     return ret;
8064 }
8065 #endif
8066 
8067 /* Map host to target signal numbers for the wait family of syscalls.
8068    Assume all other status bits are the same.  */
8069 int host_to_target_waitstatus(int status)
8070 {
8071     if (WIFSIGNALED(status)) {
8072         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
8073     }
8074     if (WIFSTOPPED(status)) {
8075         return (host_to_target_signal(WSTOPSIG(status)) << 8)
8076                | (status & 0xff);
8077     }
8078     return status;
8079 }
8080 
8081 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
8082 {
8083     CPUState *cpu = env_cpu(cpu_env);
8084     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
8085     int i;
8086 
8087     for (i = 0; i < bprm->argc; i++) {
8088         size_t len = strlen(bprm->argv[i]) + 1;
8089 
8090         if (write(fd, bprm->argv[i], len) != len) {
8091             return -1;
8092         }
8093     }
8094 
8095     return 0;
8096 }
8097 
8098 struct open_self_maps_data {
8099     TaskState *ts;
8100     IntervalTreeRoot *host_maps;
8101     int fd;
8102     bool smaps;
8103 };
8104 
8105 /*
8106  * Subroutine to output one line of /proc/self/maps,
8107  * or one region of /proc/self/smaps.
8108  */
8109 
8110 #ifdef TARGET_HPPA
8111 # define test_stack(S, E, L)  (E == L)
8112 #else
8113 # define test_stack(S, E, L)  (S == L)
8114 #endif
8115 
8116 static void open_self_maps_4(const struct open_self_maps_data *d,
8117                              const MapInfo *mi, abi_ptr start,
8118                              abi_ptr end, unsigned flags)
8119 {
8120     const struct image_info *info = d->ts->info;
8121     const char *path = mi->path;
8122     uint64_t offset;
8123     int fd = d->fd;
8124     int count;
8125 
8126     if (test_stack(start, end, info->stack_limit)) {
8127         path = "[stack]";
8128     } else if (start == info->brk) {
8129         path = "[heap]";
8130     }
8131 
8132     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8133     offset = mi->offset;
8134     if (mi->dev) {
8135         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8136         offset += hstart - mi->itree.start;
8137     }
8138 
8139     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8140                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8141                     start, end,
8142                     (flags & PAGE_READ) ? 'r' : '-',
8143                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8144                     (flags & PAGE_EXEC) ? 'x' : '-',
8145                     mi->is_priv ? 'p' : 's',
8146                     offset, major(mi->dev), minor(mi->dev),
8147                     (uint64_t)mi->inode);
8148     if (path) {
8149         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8150     } else {
8151         dprintf(fd, "\n");
8152     }
8153 
8154     if (d->smaps) {
8155         unsigned long size = end - start;
8156         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8157         unsigned long size_kb = size >> 10;
8158 
8159         dprintf(fd, "Size:                  %lu kB\n"
8160                 "KernelPageSize:        %lu kB\n"
8161                 "MMUPageSize:           %lu kB\n"
8162                 "Rss:                   0 kB\n"
8163                 "Pss:                   0 kB\n"
8164                 "Pss_Dirty:             0 kB\n"
8165                 "Shared_Clean:          0 kB\n"
8166                 "Shared_Dirty:          0 kB\n"
8167                 "Private_Clean:         0 kB\n"
8168                 "Private_Dirty:         0 kB\n"
8169                 "Referenced:            0 kB\n"
8170                 "Anonymous:             %lu kB\n"
8171                 "LazyFree:              0 kB\n"
8172                 "AnonHugePages:         0 kB\n"
8173                 "ShmemPmdMapped:        0 kB\n"
8174                 "FilePmdMapped:         0 kB\n"
8175                 "Shared_Hugetlb:        0 kB\n"
8176                 "Private_Hugetlb:       0 kB\n"
8177                 "Swap:                  0 kB\n"
8178                 "SwapPss:               0 kB\n"
8179                 "Locked:                0 kB\n"
8180                 "THPeligible:    0\n"
8181                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8182                 size_kb, page_size_kb, page_size_kb,
8183                 (flags & PAGE_ANON ? size_kb : 0),
8184                 (flags & PAGE_READ) ? " rd" : "",
8185                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8186                 (flags & PAGE_EXEC) ? " ex" : "",
8187                 mi->is_priv ? "" : " sh",
8188                 (flags & PAGE_READ) ? " mr" : "",
8189                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8190                 (flags & PAGE_EXEC) ? " me" : "",
8191                 mi->is_priv ? "" : " ms");
8192     }
8193 }
8194 
8195 /*
8196  * Callback for walk_memory_regions, when read_self_maps() fails.
8197  * Proceed without the benefit of host /proc/self/maps cross-check.
8198  */
8199 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8200                             target_ulong guest_end, unsigned long flags)
8201 {
8202     static const MapInfo mi = { .is_priv = true };
8203 
8204     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8205     return 0;
8206 }
8207 
8208 /*
8209  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8210  */
8211 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8212                             target_ulong guest_end, unsigned long flags)
8213 {
8214     const struct open_self_maps_data *d = opaque;
8215     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8216     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8217 
8218     while (1) {
8219         IntervalTreeNode *n =
8220             interval_tree_iter_first(d->host_maps, host_start, host_start);
8221         MapInfo *mi = container_of(n, MapInfo, itree);
8222         uintptr_t this_hlast = MIN(host_last, n->last);
8223         target_ulong this_gend = h2g(this_hlast) + 1;
8224 
8225         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8226 
8227         if (this_hlast == host_last) {
8228             return 0;
8229         }
8230         host_start = this_hlast + 1;
8231         guest_start = h2g(host_start);
8232     }
8233 }
8234 
8235 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8236 {
8237     struct open_self_maps_data d = {
8238         .ts = env_cpu(env)->opaque,
8239         .host_maps = read_self_maps(),
8240         .fd = fd,
8241         .smaps = smaps
8242     };
8243 
8244     if (d.host_maps) {
8245         walk_memory_regions(&d, open_self_maps_2);
8246         free_self_maps(d.host_maps);
8247     } else {
8248         walk_memory_regions(&d, open_self_maps_3);
8249     }
8250     return 0;
8251 }
8252 
8253 static int open_self_maps(CPUArchState *cpu_env, int fd)
8254 {
8255     return open_self_maps_1(cpu_env, fd, false);
8256 }
8257 
8258 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8259 {
8260     return open_self_maps_1(cpu_env, fd, true);
8261 }
8262 
8263 static int open_self_stat(CPUArchState *cpu_env, int fd)
8264 {
8265     CPUState *cpu = env_cpu(cpu_env);
8266     TaskState *ts = cpu->opaque;
8267     g_autoptr(GString) buf = g_string_new(NULL);
8268     int i;
8269 
8270     for (i = 0; i < 44; i++) {
8271         if (i == 0) {
8272             /* pid */
8273             g_string_printf(buf, FMT_pid " ", getpid());
8274         } else if (i == 1) {
8275             /* app name */
8276             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8277             bin = bin ? bin + 1 : ts->bprm->argv[0];
8278             g_string_printf(buf, "(%.15s) ", bin);
8279         } else if (i == 2) {
8280             /* task state */
8281             g_string_assign(buf, "R "); /* we are running right now */
8282         } else if (i == 3) {
8283             /* ppid */
8284             g_string_printf(buf, FMT_pid " ", getppid());
8285         } else if (i == 21) {
8286             /* starttime */
8287             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8288         } else if (i == 27) {
8289             /* stack bottom */
8290             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8291         } else {
8292             /* for the rest, there is MasterCard */
8293             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8294         }
8295 
8296         if (write(fd, buf->str, buf->len) != buf->len) {
8297             return -1;
8298         }
8299     }
8300 
8301     return 0;
8302 }
8303 
8304 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8305 {
8306     CPUState *cpu = env_cpu(cpu_env);
8307     TaskState *ts = cpu->opaque;
8308     abi_ulong auxv = ts->info->saved_auxv;
8309     abi_ulong len = ts->info->auxv_len;
8310     char *ptr;
8311 
8312     /*
8313      * Auxiliary vector is stored in target process stack.
8314      * read in whole auxv vector and copy it to file
8315      */
8316     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8317     if (ptr != NULL) {
8318         while (len > 0) {
8319             ssize_t r;
8320             r = write(fd, ptr, len);
8321             if (r <= 0) {
8322                 break;
8323             }
8324             len -= r;
8325             ptr += r;
8326         }
8327         lseek(fd, 0, SEEK_SET);
8328         unlock_user(ptr, auxv, len);
8329     }
8330 
8331     return 0;
8332 }
8333 
8334 static int is_proc_myself(const char *filename, const char *entry)
8335 {
8336     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8337         filename += strlen("/proc/");
8338         if (!strncmp(filename, "self/", strlen("self/"))) {
8339             filename += strlen("self/");
8340         } else if (*filename >= '1' && *filename <= '9') {
8341             char myself[80];
8342             snprintf(myself, sizeof(myself), "%d/", getpid());
8343             if (!strncmp(filename, myself, strlen(myself))) {
8344                 filename += strlen(myself);
8345             } else {
8346                 return 0;
8347             }
8348         } else {
8349             return 0;
8350         }
8351         if (!strcmp(filename, entry)) {
8352             return 1;
8353         }
8354     }
8355     return 0;
8356 }
8357 
8358 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8359                       const char *fmt, int code)
8360 {
8361     if (logfile) {
8362         CPUState *cs = env_cpu(env);
8363 
8364         fprintf(logfile, fmt, code);
8365         fprintf(logfile, "Failing executable: %s\n", exec_path);
8366         cpu_dump_state(cs, logfile, 0);
8367         open_self_maps(env, fileno(logfile));
8368     }
8369 }
8370 
8371 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8372 {
8373     /* dump to console */
8374     excp_dump_file(stderr, env, fmt, code);
8375 
8376     /* dump to log file */
8377     if (qemu_log_separate()) {
8378         FILE *logfile = qemu_log_trylock();
8379 
8380         excp_dump_file(logfile, env, fmt, code);
8381         qemu_log_unlock(logfile);
8382     }
8383 }
8384 
8385 #include "target_proc.h"
8386 
8387 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8388     defined(HAVE_ARCH_PROC_CPUINFO) || \
8389     defined(HAVE_ARCH_PROC_HARDWARE)
8390 static int is_proc(const char *filename, const char *entry)
8391 {
8392     return strcmp(filename, entry) == 0;
8393 }
8394 #endif
8395 
8396 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8397 static int open_net_route(CPUArchState *cpu_env, int fd)
8398 {
8399     FILE *fp;
8400     char *line = NULL;
8401     size_t len = 0;
8402     ssize_t read;
8403 
8404     fp = fopen("/proc/net/route", "r");
8405     if (fp == NULL) {
8406         return -1;
8407     }
8408 
8409     /* read header */
8410 
8411     read = getline(&line, &len, fp);
8412     dprintf(fd, "%s", line);
8413 
8414     /* read routes */
8415 
8416     while ((read = getline(&line, &len, fp)) != -1) {
8417         char iface[16];
8418         uint32_t dest, gw, mask;
8419         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8420         int fields;
8421 
8422         fields = sscanf(line,
8423                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8424                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8425                         &mask, &mtu, &window, &irtt);
8426         if (fields != 11) {
8427             continue;
8428         }
8429         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8430                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8431                 metric, tswap32(mask), mtu, window, irtt);
8432     }
8433 
8434     free(line);
8435     fclose(fp);
8436 
8437     return 0;
8438 }
8439 #endif
8440 
8441 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8442                     int flags, mode_t mode, bool safe)
8443 {
8444     g_autofree char *proc_name = NULL;
8445     const char *pathname;
8446     struct fake_open {
8447         const char *filename;
8448         int (*fill)(CPUArchState *cpu_env, int fd);
8449         int (*cmp)(const char *s1, const char *s2);
8450     };
8451     const struct fake_open *fake_open;
8452     static const struct fake_open fakes[] = {
8453         { "maps", open_self_maps, is_proc_myself },
8454         { "smaps", open_self_smaps, is_proc_myself },
8455         { "stat", open_self_stat, is_proc_myself },
8456         { "auxv", open_self_auxv, is_proc_myself },
8457         { "cmdline", open_self_cmdline, is_proc_myself },
8458 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8459         { "/proc/net/route", open_net_route, is_proc },
8460 #endif
8461 #if defined(HAVE_ARCH_PROC_CPUINFO)
8462         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8463 #endif
8464 #if defined(HAVE_ARCH_PROC_HARDWARE)
8465         { "/proc/hardware", open_hardware, is_proc },
8466 #endif
8467         { NULL, NULL, NULL }
8468     };
8469 
8470     /* if this is a file from /proc/ filesystem, expand full name */
8471     proc_name = realpath(fname, NULL);
8472     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8473         pathname = proc_name;
8474     } else {
8475         pathname = fname;
8476     }
8477 
8478     if (is_proc_myself(pathname, "exe")) {
8479         if (safe) {
8480             return safe_openat(dirfd, exec_path, flags, mode);
8481         } else {
8482             return openat(dirfd, exec_path, flags, mode);
8483         }
8484     }
8485 
8486     for (fake_open = fakes; fake_open->filename; fake_open++) {
8487         if (fake_open->cmp(pathname, fake_open->filename)) {
8488             break;
8489         }
8490     }
8491 
8492     if (fake_open->filename) {
8493         const char *tmpdir;
8494         char filename[PATH_MAX];
8495         int fd, r;
8496 
8497         fd = memfd_create("qemu-open", 0);
8498         if (fd < 0) {
8499             if (errno != ENOSYS) {
8500                 return fd;
8501             }
8502             /* create temporary file to map stat to */
8503             tmpdir = getenv("TMPDIR");
8504             if (!tmpdir)
8505                 tmpdir = "/tmp";
8506             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8507             fd = mkstemp(filename);
8508             if (fd < 0) {
8509                 return fd;
8510             }
8511             unlink(filename);
8512         }
8513 
8514         if ((r = fake_open->fill(cpu_env, fd))) {
8515             int e = errno;
8516             close(fd);
8517             errno = e;
8518             return r;
8519         }
8520         lseek(fd, 0, SEEK_SET);
8521 
8522         return fd;
8523     }
8524 
8525     if (safe) {
8526         return safe_openat(dirfd, path(pathname), flags, mode);
8527     } else {
8528         return openat(dirfd, path(pathname), flags, mode);
8529     }
8530 }
8531 
8532 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8533 {
8534     ssize_t ret;
8535 
8536     if (!pathname || !buf) {
8537         errno = EFAULT;
8538         return -1;
8539     }
8540 
8541     if (!bufsiz) {
8542         /* Short circuit this for the magic exe check. */
8543         errno = EINVAL;
8544         return -1;
8545     }
8546 
8547     if (is_proc_myself((const char *)pathname, "exe")) {
8548         /*
8549          * Don't worry about sign mismatch as earlier mapping
8550          * logic would have thrown a bad address error.
8551          */
8552         ret = MIN(strlen(exec_path), bufsiz);
8553         /* We cannot NUL terminate the string. */
8554         memcpy(buf, exec_path, ret);
8555     } else {
8556         ret = readlink(path(pathname), buf, bufsiz);
8557     }
8558 
8559     return ret;
8560 }
8561 
8562 static int do_execv(CPUArchState *cpu_env, int dirfd,
8563                     abi_long pathname, abi_long guest_argp,
8564                     abi_long guest_envp, int flags, bool is_execveat)
8565 {
8566     int ret;
8567     char **argp, **envp;
8568     int argc, envc;
8569     abi_ulong gp;
8570     abi_ulong addr;
8571     char **q;
8572     void *p;
8573 
8574     argc = 0;
8575 
8576     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8577         if (get_user_ual(addr, gp)) {
8578             return -TARGET_EFAULT;
8579         }
8580         if (!addr) {
8581             break;
8582         }
8583         argc++;
8584     }
8585     envc = 0;
8586     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8587         if (get_user_ual(addr, gp)) {
8588             return -TARGET_EFAULT;
8589         }
8590         if (!addr) {
8591             break;
8592         }
8593         envc++;
8594     }
8595 
8596     argp = g_new0(char *, argc + 1);
8597     envp = g_new0(char *, envc + 1);
8598 
8599     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8600         if (get_user_ual(addr, gp)) {
8601             goto execve_efault;
8602         }
8603         if (!addr) {
8604             break;
8605         }
8606         *q = lock_user_string(addr);
8607         if (!*q) {
8608             goto execve_efault;
8609         }
8610     }
8611     *q = NULL;
8612 
8613     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8614         if (get_user_ual(addr, gp)) {
8615             goto execve_efault;
8616         }
8617         if (!addr) {
8618             break;
8619         }
8620         *q = lock_user_string(addr);
8621         if (!*q) {
8622             goto execve_efault;
8623         }
8624     }
8625     *q = NULL;
8626 
8627     /*
8628      * Although execve() is not an interruptible syscall it is
8629      * a special case where we must use the safe_syscall wrapper:
8630      * if we allow a signal to happen before we make the host
8631      * syscall then we will 'lose' it, because at the point of
8632      * execve the process leaves QEMU's control. So we use the
8633      * safe syscall wrapper to ensure that we either take the
8634      * signal as a guest signal, or else it does not happen
8635      * before the execve completes and makes it the other
8636      * program's problem.
8637      */
8638     p = lock_user_string(pathname);
8639     if (!p) {
8640         goto execve_efault;
8641     }
8642 
8643     const char *exe = p;
8644     if (is_proc_myself(p, "exe")) {
8645         exe = exec_path;
8646     }
8647     ret = is_execveat
8648         ? safe_execveat(dirfd, exe, argp, envp, flags)
8649         : safe_execve(exe, argp, envp);
8650     ret = get_errno(ret);
8651 
8652     unlock_user(p, pathname, 0);
8653 
8654     goto execve_end;
8655 
8656 execve_efault:
8657     ret = -TARGET_EFAULT;
8658 
8659 execve_end:
8660     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8661         if (get_user_ual(addr, gp) || !addr) {
8662             break;
8663         }
8664         unlock_user(*q, addr, 0);
8665     }
8666     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8667         if (get_user_ual(addr, gp) || !addr) {
8668             break;
8669         }
8670         unlock_user(*q, addr, 0);
8671     }
8672 
8673     g_free(argp);
8674     g_free(envp);
8675     return ret;
8676 }
8677 
8678 #define TIMER_MAGIC 0x0caf0000
8679 #define TIMER_MAGIC_MASK 0xffff0000
8680 
8681 /* Convert QEMU provided timer ID back to internal 16bit index format */
8682 static target_timer_t get_timer_id(abi_long arg)
8683 {
8684     target_timer_t timerid = arg;
8685 
8686     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8687         return -TARGET_EINVAL;
8688     }
8689 
8690     timerid &= 0xffff;
8691 
8692     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8693         return -TARGET_EINVAL;
8694     }
8695 
8696     return timerid;
8697 }
8698 
8699 static int target_to_host_cpu_mask(unsigned long *host_mask,
8700                                    size_t host_size,
8701                                    abi_ulong target_addr,
8702                                    size_t target_size)
8703 {
8704     unsigned target_bits = sizeof(abi_ulong) * 8;
8705     unsigned host_bits = sizeof(*host_mask) * 8;
8706     abi_ulong *target_mask;
8707     unsigned i, j;
8708 
8709     assert(host_size >= target_size);
8710 
8711     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8712     if (!target_mask) {
8713         return -TARGET_EFAULT;
8714     }
8715     memset(host_mask, 0, host_size);
8716 
8717     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8718         unsigned bit = i * target_bits;
8719         abi_ulong val;
8720 
8721         __get_user(val, &target_mask[i]);
8722         for (j = 0; j < target_bits; j++, bit++) {
8723             if (val & (1UL << j)) {
8724                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8725             }
8726         }
8727     }
8728 
8729     unlock_user(target_mask, target_addr, 0);
8730     return 0;
8731 }
8732 
8733 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8734                                    size_t host_size,
8735                                    abi_ulong target_addr,
8736                                    size_t target_size)
8737 {
8738     unsigned target_bits = sizeof(abi_ulong) * 8;
8739     unsigned host_bits = sizeof(*host_mask) * 8;
8740     abi_ulong *target_mask;
8741     unsigned i, j;
8742 
8743     assert(host_size >= target_size);
8744 
8745     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8746     if (!target_mask) {
8747         return -TARGET_EFAULT;
8748     }
8749 
8750     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8751         unsigned bit = i * target_bits;
8752         abi_ulong val = 0;
8753 
8754         for (j = 0; j < target_bits; j++, bit++) {
8755             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8756                 val |= 1UL << j;
8757             }
8758         }
8759         __put_user(val, &target_mask[i]);
8760     }
8761 
8762     unlock_user(target_mask, target_addr, target_size);
8763     return 0;
8764 }
8765 
8766 #ifdef TARGET_NR_getdents
8767 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8768 {
8769     g_autofree void *hdirp = NULL;
8770     void *tdirp;
8771     int hlen, hoff, toff;
8772     int hreclen, treclen;
8773     off64_t prev_diroff = 0;
8774 
8775     hdirp = g_try_malloc(count);
8776     if (!hdirp) {
8777         return -TARGET_ENOMEM;
8778     }
8779 
8780 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8781     hlen = sys_getdents(dirfd, hdirp, count);
8782 #else
8783     hlen = sys_getdents64(dirfd, hdirp, count);
8784 #endif
8785 
8786     hlen = get_errno(hlen);
8787     if (is_error(hlen)) {
8788         return hlen;
8789     }
8790 
8791     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8792     if (!tdirp) {
8793         return -TARGET_EFAULT;
8794     }
8795 
8796     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8797 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8798         struct linux_dirent *hde = hdirp + hoff;
8799 #else
8800         struct linux_dirent64 *hde = hdirp + hoff;
8801 #endif
8802         struct target_dirent *tde = tdirp + toff;
8803         int namelen;
8804         uint8_t type;
8805 
8806         namelen = strlen(hde->d_name);
8807         hreclen = hde->d_reclen;
8808         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8809         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8810 
8811         if (toff + treclen > count) {
8812             /*
8813              * If the host struct is smaller than the target struct, or
8814              * requires less alignment and thus packs into less space,
8815              * then the host can return more entries than we can pass
8816              * on to the guest.
8817              */
8818             if (toff == 0) {
8819                 toff = -TARGET_EINVAL; /* result buffer is too small */
8820                 break;
8821             }
8822             /*
8823              * Return what we have, resetting the file pointer to the
8824              * location of the first record not returned.
8825              */
8826             lseek64(dirfd, prev_diroff, SEEK_SET);
8827             break;
8828         }
8829 
8830         prev_diroff = hde->d_off;
8831         tde->d_ino = tswapal(hde->d_ino);
8832         tde->d_off = tswapal(hde->d_off);
8833         tde->d_reclen = tswap16(treclen);
8834         memcpy(tde->d_name, hde->d_name, namelen + 1);
8835 
8836         /*
8837          * The getdents type is in what was formerly a padding byte at the
8838          * end of the structure.
8839          */
8840 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8841         type = *((uint8_t *)hde + hreclen - 1);
8842 #else
8843         type = hde->d_type;
8844 #endif
8845         *((uint8_t *)tde + treclen - 1) = type;
8846     }
8847 
8848     unlock_user(tdirp, arg2, toff);
8849     return toff;
8850 }
8851 #endif /* TARGET_NR_getdents */
8852 
8853 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8854 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8855 {
8856     g_autofree void *hdirp = NULL;
8857     void *tdirp;
8858     int hlen, hoff, toff;
8859     int hreclen, treclen;
8860     off64_t prev_diroff = 0;
8861 
8862     hdirp = g_try_malloc(count);
8863     if (!hdirp) {
8864         return -TARGET_ENOMEM;
8865     }
8866 
8867     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8868     if (is_error(hlen)) {
8869         return hlen;
8870     }
8871 
8872     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8873     if (!tdirp) {
8874         return -TARGET_EFAULT;
8875     }
8876 
8877     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8878         struct linux_dirent64 *hde = hdirp + hoff;
8879         struct target_dirent64 *tde = tdirp + toff;
8880         int namelen;
8881 
8882         namelen = strlen(hde->d_name) + 1;
8883         hreclen = hde->d_reclen;
8884         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8885         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8886 
8887         if (toff + treclen > count) {
8888             /*
8889              * If the host struct is smaller than the target struct, or
8890              * requires less alignment and thus packs into less space,
8891              * then the host can return more entries than we can pass
8892              * on to the guest.
8893              */
8894             if (toff == 0) {
8895                 toff = -TARGET_EINVAL; /* result buffer is too small */
8896                 break;
8897             }
8898             /*
8899              * Return what we have, resetting the file pointer to the
8900              * location of the first record not returned.
8901              */
8902             lseek64(dirfd, prev_diroff, SEEK_SET);
8903             break;
8904         }
8905 
8906         prev_diroff = hde->d_off;
8907         tde->d_ino = tswap64(hde->d_ino);
8908         tde->d_off = tswap64(hde->d_off);
8909         tde->d_reclen = tswap16(treclen);
8910         tde->d_type = hde->d_type;
8911         memcpy(tde->d_name, hde->d_name, namelen);
8912     }
8913 
8914     unlock_user(tdirp, arg2, toff);
8915     return toff;
8916 }
8917 #endif /* TARGET_NR_getdents64 */
8918 
8919 #if defined(TARGET_NR_riscv_hwprobe)
8920 
8921 #define RISCV_HWPROBE_KEY_MVENDORID     0
8922 #define RISCV_HWPROBE_KEY_MARCHID       1
8923 #define RISCV_HWPROBE_KEY_MIMPID        2
8924 
8925 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8926 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8927 
8928 #define RISCV_HWPROBE_KEY_IMA_EXT_0     4
8929 #define     RISCV_HWPROBE_IMA_FD       (1 << 0)
8930 #define     RISCV_HWPROBE_IMA_C        (1 << 1)
8931 
8932 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8933 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8934 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8935 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8936 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8937 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8938 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8939 
8940 struct riscv_hwprobe {
8941     abi_llong  key;
8942     abi_ullong value;
8943 };
8944 
8945 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8946                                     struct riscv_hwprobe *pair,
8947                                     size_t pair_count)
8948 {
8949     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8950 
8951     for (; pair_count > 0; pair_count--, pair++) {
8952         abi_llong key;
8953         abi_ullong value;
8954         __put_user(0, &pair->value);
8955         __get_user(key, &pair->key);
8956         switch (key) {
8957         case RISCV_HWPROBE_KEY_MVENDORID:
8958             __put_user(cfg->mvendorid, &pair->value);
8959             break;
8960         case RISCV_HWPROBE_KEY_MARCHID:
8961             __put_user(cfg->marchid, &pair->value);
8962             break;
8963         case RISCV_HWPROBE_KEY_MIMPID:
8964             __put_user(cfg->mimpid, &pair->value);
8965             break;
8966         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8967             value = riscv_has_ext(env, RVI) &&
8968                     riscv_has_ext(env, RVM) &&
8969                     riscv_has_ext(env, RVA) ?
8970                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8971             __put_user(value, &pair->value);
8972             break;
8973         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8974             value = riscv_has_ext(env, RVF) &&
8975                     riscv_has_ext(env, RVD) ?
8976                     RISCV_HWPROBE_IMA_FD : 0;
8977             value |= riscv_has_ext(env, RVC) ?
8978                      RISCV_HWPROBE_IMA_C : pair->value;
8979             __put_user(value, &pair->value);
8980             break;
8981         case RISCV_HWPROBE_KEY_CPUPERF_0:
8982             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8983             break;
8984         default:
8985             __put_user(-1, &pair->key);
8986             break;
8987         }
8988     }
8989 }
8990 
8991 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8992 {
8993     int ret, i, tmp;
8994     size_t host_mask_size, target_mask_size;
8995     unsigned long *host_mask;
8996 
8997     /*
8998      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8999      * arg3 contains the cpu count.
9000      */
9001     tmp = (8 * sizeof(abi_ulong));
9002     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
9003     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
9004                      ~(sizeof(*host_mask) - 1);
9005 
9006     host_mask = alloca(host_mask_size);
9007 
9008     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9009                                   arg4, target_mask_size);
9010     if (ret != 0) {
9011         return ret;
9012     }
9013 
9014     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9015         if (host_mask[i] != 0) {
9016             return 0;
9017         }
9018     }
9019     return -TARGET_EINVAL;
9020 }
9021 
9022 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9023                                  abi_long arg2, abi_long arg3,
9024                                  abi_long arg4, abi_long arg5)
9025 {
9026     int ret;
9027     struct riscv_hwprobe *host_pairs;
9028 
9029     /* flags must be 0 */
9030     if (arg5 != 0) {
9031         return -TARGET_EINVAL;
9032     }
9033 
9034     /* check cpu_set */
9035     if (arg3 != 0) {
9036         ret = cpu_set_valid(arg3, arg4);
9037         if (ret != 0) {
9038             return ret;
9039         }
9040     } else if (arg4 != 0) {
9041         return -TARGET_EINVAL;
9042     }
9043 
9044     /* no pairs */
9045     if (arg2 == 0) {
9046         return 0;
9047     }
9048 
9049     host_pairs = lock_user(VERIFY_WRITE, arg1,
9050                            sizeof(*host_pairs) * (size_t)arg2, 0);
9051     if (host_pairs == NULL) {
9052         return -TARGET_EFAULT;
9053     }
9054     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9055     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9056     return 0;
9057 }
9058 #endif /* TARGET_NR_riscv_hwprobe */
9059 
9060 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9061 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9062 #endif
9063 
9064 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9065 #define __NR_sys_open_tree __NR_open_tree
9066 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9067           unsigned int, __flags)
9068 #endif
9069 
9070 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9071 #define __NR_sys_move_mount __NR_move_mount
9072 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9073            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9074 #endif
9075 
9076 /* This is an internal helper for do_syscall so that it is easier
9077  * to have a single return point, so that actions, such as logging
9078  * of syscall results, can be performed.
9079  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9080  */
9081 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9082                             abi_long arg2, abi_long arg3, abi_long arg4,
9083                             abi_long arg5, abi_long arg6, abi_long arg7,
9084                             abi_long arg8)
9085 {
9086     CPUState *cpu = env_cpu(cpu_env);
9087     abi_long ret;
9088 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9089     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9090     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9091     || defined(TARGET_NR_statx)
9092     struct stat st;
9093 #endif
9094 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9095     || defined(TARGET_NR_fstatfs)
9096     struct statfs stfs;
9097 #endif
9098     void *p;
9099 
9100     switch(num) {
9101     case TARGET_NR_exit:
9102         /* In old applications this may be used to implement _exit(2).
9103            However in threaded applications it is used for thread termination,
9104            and _exit_group is used for application termination.
9105            Do thread termination if we have more then one thread.  */
9106 
9107         if (block_signals()) {
9108             return -QEMU_ERESTARTSYS;
9109         }
9110 
9111         pthread_mutex_lock(&clone_lock);
9112 
9113         if (CPU_NEXT(first_cpu)) {
9114             TaskState *ts = cpu->opaque;
9115 
9116             if (ts->child_tidptr) {
9117                 put_user_u32(0, ts->child_tidptr);
9118                 do_sys_futex(g2h(cpu, ts->child_tidptr),
9119                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9120             }
9121 
9122             object_unparent(OBJECT(cpu));
9123             object_unref(OBJECT(cpu));
9124             /*
9125              * At this point the CPU should be unrealized and removed
9126              * from cpu lists. We can clean-up the rest of the thread
9127              * data without the lock held.
9128              */
9129 
9130             pthread_mutex_unlock(&clone_lock);
9131 
9132             thread_cpu = NULL;
9133             g_free(ts);
9134             rcu_unregister_thread();
9135             pthread_exit(NULL);
9136         }
9137 
9138         pthread_mutex_unlock(&clone_lock);
9139         preexit_cleanup(cpu_env, arg1);
9140         _exit(arg1);
9141         return 0; /* avoid warning */
9142     case TARGET_NR_read:
9143         if (arg2 == 0 && arg3 == 0) {
9144             return get_errno(safe_read(arg1, 0, 0));
9145         } else {
9146             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9147                 return -TARGET_EFAULT;
9148             ret = get_errno(safe_read(arg1, p, arg3));
9149             if (ret >= 0 &&
9150                 fd_trans_host_to_target_data(arg1)) {
9151                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9152             }
9153             unlock_user(p, arg2, ret);
9154         }
9155         return ret;
9156     case TARGET_NR_write:
9157         if (arg2 == 0 && arg3 == 0) {
9158             return get_errno(safe_write(arg1, 0, 0));
9159         }
9160         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9161             return -TARGET_EFAULT;
9162         if (fd_trans_target_to_host_data(arg1)) {
9163             void *copy = g_malloc(arg3);
9164             memcpy(copy, p, arg3);
9165             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9166             if (ret >= 0) {
9167                 ret = get_errno(safe_write(arg1, copy, ret));
9168             }
9169             g_free(copy);
9170         } else {
9171             ret = get_errno(safe_write(arg1, p, arg3));
9172         }
9173         unlock_user(p, arg2, 0);
9174         return ret;
9175 
9176 #ifdef TARGET_NR_open
9177     case TARGET_NR_open:
9178         if (!(p = lock_user_string(arg1)))
9179             return -TARGET_EFAULT;
9180         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9181                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9182                                   arg3, true));
9183         fd_trans_unregister(ret);
9184         unlock_user(p, arg1, 0);
9185         return ret;
9186 #endif
9187     case TARGET_NR_openat:
9188         if (!(p = lock_user_string(arg2)))
9189             return -TARGET_EFAULT;
9190         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9191                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9192                                   arg4, true));
9193         fd_trans_unregister(ret);
9194         unlock_user(p, arg2, 0);
9195         return ret;
9196 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9197     case TARGET_NR_name_to_handle_at:
9198         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9199         return ret;
9200 #endif
9201 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9202     case TARGET_NR_open_by_handle_at:
9203         ret = do_open_by_handle_at(arg1, arg2, arg3);
9204         fd_trans_unregister(ret);
9205         return ret;
9206 #endif
9207 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9208     case TARGET_NR_pidfd_open:
9209         return get_errno(pidfd_open(arg1, arg2));
9210 #endif
9211 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9212     case TARGET_NR_pidfd_send_signal:
9213         {
9214             siginfo_t uinfo, *puinfo;
9215 
9216             if (arg3) {
9217                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9218                 if (!p) {
9219                     return -TARGET_EFAULT;
9220                  }
9221                  target_to_host_siginfo(&uinfo, p);
9222                  unlock_user(p, arg3, 0);
9223                  puinfo = &uinfo;
9224             } else {
9225                  puinfo = NULL;
9226             }
9227             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9228                                               puinfo, arg4));
9229         }
9230         return ret;
9231 #endif
9232 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9233     case TARGET_NR_pidfd_getfd:
9234         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9235 #endif
9236     case TARGET_NR_close:
9237         fd_trans_unregister(arg1);
9238         return get_errno(close(arg1));
9239 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9240     case TARGET_NR_close_range:
9241         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9242         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9243             abi_long fd, maxfd;
9244             maxfd = MIN(arg2, target_fd_max);
9245             for (fd = arg1; fd < maxfd; fd++) {
9246                 fd_trans_unregister(fd);
9247             }
9248         }
9249         return ret;
9250 #endif
9251 
9252     case TARGET_NR_brk:
9253         return do_brk(arg1);
9254 #ifdef TARGET_NR_fork
9255     case TARGET_NR_fork:
9256         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9257 #endif
9258 #ifdef TARGET_NR_waitpid
9259     case TARGET_NR_waitpid:
9260         {
9261             int status;
9262             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9263             if (!is_error(ret) && arg2 && ret
9264                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9265                 return -TARGET_EFAULT;
9266         }
9267         return ret;
9268 #endif
9269 #ifdef TARGET_NR_waitid
9270     case TARGET_NR_waitid:
9271         {
9272             siginfo_t info;
9273             info.si_pid = 0;
9274             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
9275             if (!is_error(ret) && arg3 && info.si_pid != 0) {
9276                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
9277                     return -TARGET_EFAULT;
9278                 host_to_target_siginfo(p, &info);
9279                 unlock_user(p, arg3, sizeof(target_siginfo_t));
9280             }
9281         }
9282         return ret;
9283 #endif
9284 #ifdef TARGET_NR_creat /* not on alpha */
9285     case TARGET_NR_creat:
9286         if (!(p = lock_user_string(arg1)))
9287             return -TARGET_EFAULT;
9288         ret = get_errno(creat(p, arg2));
9289         fd_trans_unregister(ret);
9290         unlock_user(p, arg1, 0);
9291         return ret;
9292 #endif
9293 #ifdef TARGET_NR_link
9294     case TARGET_NR_link:
9295         {
9296             void * p2;
9297             p = lock_user_string(arg1);
9298             p2 = lock_user_string(arg2);
9299             if (!p || !p2)
9300                 ret = -TARGET_EFAULT;
9301             else
9302                 ret = get_errno(link(p, p2));
9303             unlock_user(p2, arg2, 0);
9304             unlock_user(p, arg1, 0);
9305         }
9306         return ret;
9307 #endif
9308 #if defined(TARGET_NR_linkat)
9309     case TARGET_NR_linkat:
9310         {
9311             void * p2 = NULL;
9312             if (!arg2 || !arg4)
9313                 return -TARGET_EFAULT;
9314             p  = lock_user_string(arg2);
9315             p2 = lock_user_string(arg4);
9316             if (!p || !p2)
9317                 ret = -TARGET_EFAULT;
9318             else
9319                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9320             unlock_user(p, arg2, 0);
9321             unlock_user(p2, arg4, 0);
9322         }
9323         return ret;
9324 #endif
9325 #ifdef TARGET_NR_unlink
9326     case TARGET_NR_unlink:
9327         if (!(p = lock_user_string(arg1)))
9328             return -TARGET_EFAULT;
9329         ret = get_errno(unlink(p));
9330         unlock_user(p, arg1, 0);
9331         return ret;
9332 #endif
9333 #if defined(TARGET_NR_unlinkat)
9334     case TARGET_NR_unlinkat:
9335         if (!(p = lock_user_string(arg2)))
9336             return -TARGET_EFAULT;
9337         ret = get_errno(unlinkat(arg1, p, arg3));
9338         unlock_user(p, arg2, 0);
9339         return ret;
9340 #endif
9341     case TARGET_NR_execveat:
9342         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9343     case TARGET_NR_execve:
9344         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9345     case TARGET_NR_chdir:
9346         if (!(p = lock_user_string(arg1)))
9347             return -TARGET_EFAULT;
9348         ret = get_errno(chdir(p));
9349         unlock_user(p, arg1, 0);
9350         return ret;
9351 #ifdef TARGET_NR_time
9352     case TARGET_NR_time:
9353         {
9354             time_t host_time;
9355             ret = get_errno(time(&host_time));
9356             if (!is_error(ret)
9357                 && arg1
9358                 && put_user_sal(host_time, arg1))
9359                 return -TARGET_EFAULT;
9360         }
9361         return ret;
9362 #endif
9363 #ifdef TARGET_NR_mknod
9364     case TARGET_NR_mknod:
9365         if (!(p = lock_user_string(arg1)))
9366             return -TARGET_EFAULT;
9367         ret = get_errno(mknod(p, arg2, arg3));
9368         unlock_user(p, arg1, 0);
9369         return ret;
9370 #endif
9371 #if defined(TARGET_NR_mknodat)
9372     case TARGET_NR_mknodat:
9373         if (!(p = lock_user_string(arg2)))
9374             return -TARGET_EFAULT;
9375         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9376         unlock_user(p, arg2, 0);
9377         return ret;
9378 #endif
9379 #ifdef TARGET_NR_chmod
9380     case TARGET_NR_chmod:
9381         if (!(p = lock_user_string(arg1)))
9382             return -TARGET_EFAULT;
9383         ret = get_errno(chmod(p, arg2));
9384         unlock_user(p, arg1, 0);
9385         return ret;
9386 #endif
9387 #ifdef TARGET_NR_lseek
9388     case TARGET_NR_lseek:
9389         return get_errno(lseek(arg1, arg2, arg3));
9390 #endif
9391 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9392     /* Alpha specific */
9393     case TARGET_NR_getxpid:
9394         cpu_env->ir[IR_A4] = getppid();
9395         return get_errno(getpid());
9396 #endif
9397 #ifdef TARGET_NR_getpid
9398     case TARGET_NR_getpid:
9399         return get_errno(getpid());
9400 #endif
9401     case TARGET_NR_mount:
9402         {
9403             /* need to look at the data field */
9404             void *p2, *p3;
9405 
9406             if (arg1) {
9407                 p = lock_user_string(arg1);
9408                 if (!p) {
9409                     return -TARGET_EFAULT;
9410                 }
9411             } else {
9412                 p = NULL;
9413             }
9414 
9415             p2 = lock_user_string(arg2);
9416             if (!p2) {
9417                 if (arg1) {
9418                     unlock_user(p, arg1, 0);
9419                 }
9420                 return -TARGET_EFAULT;
9421             }
9422 
9423             if (arg3) {
9424                 p3 = lock_user_string(arg3);
9425                 if (!p3) {
9426                     if (arg1) {
9427                         unlock_user(p, arg1, 0);
9428                     }
9429                     unlock_user(p2, arg2, 0);
9430                     return -TARGET_EFAULT;
9431                 }
9432             } else {
9433                 p3 = NULL;
9434             }
9435 
9436             /* FIXME - arg5 should be locked, but it isn't clear how to
9437              * do that since it's not guaranteed to be a NULL-terminated
9438              * string.
9439              */
9440             if (!arg5) {
9441                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9442             } else {
9443                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9444             }
9445             ret = get_errno(ret);
9446 
9447             if (arg1) {
9448                 unlock_user(p, arg1, 0);
9449             }
9450             unlock_user(p2, arg2, 0);
9451             if (arg3) {
9452                 unlock_user(p3, arg3, 0);
9453             }
9454         }
9455         return ret;
9456 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9457 #if defined(TARGET_NR_umount)
9458     case TARGET_NR_umount:
9459 #endif
9460 #if defined(TARGET_NR_oldumount)
9461     case TARGET_NR_oldumount:
9462 #endif
9463         if (!(p = lock_user_string(arg1)))
9464             return -TARGET_EFAULT;
9465         ret = get_errno(umount(p));
9466         unlock_user(p, arg1, 0);
9467         return ret;
9468 #endif
9469 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9470     case TARGET_NR_move_mount:
9471         {
9472             void *p2, *p4;
9473 
9474             if (!arg2 || !arg4) {
9475                 return -TARGET_EFAULT;
9476             }
9477 
9478             p2 = lock_user_string(arg2);
9479             if (!p2) {
9480                 return -TARGET_EFAULT;
9481             }
9482 
9483             p4 = lock_user_string(arg4);
9484             if (!p4) {
9485                 unlock_user(p2, arg2, 0);
9486                 return -TARGET_EFAULT;
9487             }
9488             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9489 
9490             unlock_user(p2, arg2, 0);
9491             unlock_user(p4, arg4, 0);
9492 
9493             return ret;
9494         }
9495 #endif
9496 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9497     case TARGET_NR_open_tree:
9498         {
9499             void *p2;
9500             int host_flags;
9501 
9502             if (!arg2) {
9503                 return -TARGET_EFAULT;
9504             }
9505 
9506             p2 = lock_user_string(arg2);
9507             if (!p2) {
9508                 return -TARGET_EFAULT;
9509             }
9510 
9511             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9512             if (arg3 & TARGET_O_CLOEXEC) {
9513                 host_flags |= O_CLOEXEC;
9514             }
9515 
9516             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9517 
9518             unlock_user(p2, arg2, 0);
9519 
9520             return ret;
9521         }
9522 #endif
9523 #ifdef TARGET_NR_stime /* not on alpha */
9524     case TARGET_NR_stime:
9525         {
9526             struct timespec ts;
9527             ts.tv_nsec = 0;
9528             if (get_user_sal(ts.tv_sec, arg1)) {
9529                 return -TARGET_EFAULT;
9530             }
9531             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9532         }
9533 #endif
9534 #ifdef TARGET_NR_alarm /* not on alpha */
9535     case TARGET_NR_alarm:
9536         return alarm(arg1);
9537 #endif
9538 #ifdef TARGET_NR_pause /* not on alpha */
9539     case TARGET_NR_pause:
9540         if (!block_signals()) {
9541             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9542         }
9543         return -TARGET_EINTR;
9544 #endif
9545 #ifdef TARGET_NR_utime
9546     case TARGET_NR_utime:
9547         {
9548             struct utimbuf tbuf, *host_tbuf;
9549             struct target_utimbuf *target_tbuf;
9550             if (arg2) {
9551                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9552                     return -TARGET_EFAULT;
9553                 tbuf.actime = tswapal(target_tbuf->actime);
9554                 tbuf.modtime = tswapal(target_tbuf->modtime);
9555                 unlock_user_struct(target_tbuf, arg2, 0);
9556                 host_tbuf = &tbuf;
9557             } else {
9558                 host_tbuf = NULL;
9559             }
9560             if (!(p = lock_user_string(arg1)))
9561                 return -TARGET_EFAULT;
9562             ret = get_errno(utime(p, host_tbuf));
9563             unlock_user(p, arg1, 0);
9564         }
9565         return ret;
9566 #endif
9567 #ifdef TARGET_NR_utimes
9568     case TARGET_NR_utimes:
9569         {
9570             struct timeval *tvp, tv[2];
9571             if (arg2) {
9572                 if (copy_from_user_timeval(&tv[0], arg2)
9573                     || copy_from_user_timeval(&tv[1],
9574                                               arg2 + sizeof(struct target_timeval)))
9575                     return -TARGET_EFAULT;
9576                 tvp = tv;
9577             } else {
9578                 tvp = NULL;
9579             }
9580             if (!(p = lock_user_string(arg1)))
9581                 return -TARGET_EFAULT;
9582             ret = get_errno(utimes(p, tvp));
9583             unlock_user(p, arg1, 0);
9584         }
9585         return ret;
9586 #endif
9587 #if defined(TARGET_NR_futimesat)
9588     case TARGET_NR_futimesat:
9589         {
9590             struct timeval *tvp, tv[2];
9591             if (arg3) {
9592                 if (copy_from_user_timeval(&tv[0], arg3)
9593                     || copy_from_user_timeval(&tv[1],
9594                                               arg3 + sizeof(struct target_timeval)))
9595                     return -TARGET_EFAULT;
9596                 tvp = tv;
9597             } else {
9598                 tvp = NULL;
9599             }
9600             if (!(p = lock_user_string(arg2))) {
9601                 return -TARGET_EFAULT;
9602             }
9603             ret = get_errno(futimesat(arg1, path(p), tvp));
9604             unlock_user(p, arg2, 0);
9605         }
9606         return ret;
9607 #endif
9608 #ifdef TARGET_NR_access
9609     case TARGET_NR_access:
9610         if (!(p = lock_user_string(arg1))) {
9611             return -TARGET_EFAULT;
9612         }
9613         ret = get_errno(access(path(p), arg2));
9614         unlock_user(p, arg1, 0);
9615         return ret;
9616 #endif
9617 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9618     case TARGET_NR_faccessat:
9619         if (!(p = lock_user_string(arg2))) {
9620             return -TARGET_EFAULT;
9621         }
9622         ret = get_errno(faccessat(arg1, p, arg3, 0));
9623         unlock_user(p, arg2, 0);
9624         return ret;
9625 #endif
9626 #if defined(TARGET_NR_faccessat2)
9627     case TARGET_NR_faccessat2:
9628         if (!(p = lock_user_string(arg2))) {
9629             return -TARGET_EFAULT;
9630         }
9631         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9632         unlock_user(p, arg2, 0);
9633         return ret;
9634 #endif
9635 #ifdef TARGET_NR_nice /* not on alpha */
9636     case TARGET_NR_nice:
9637         return get_errno(nice(arg1));
9638 #endif
9639     case TARGET_NR_sync:
9640         sync();
9641         return 0;
9642 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9643     case TARGET_NR_syncfs:
9644         return get_errno(syncfs(arg1));
9645 #endif
9646     case TARGET_NR_kill:
9647         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9648 #ifdef TARGET_NR_rename
9649     case TARGET_NR_rename:
9650         {
9651             void *p2;
9652             p = lock_user_string(arg1);
9653             p2 = lock_user_string(arg2);
9654             if (!p || !p2)
9655                 ret = -TARGET_EFAULT;
9656             else
9657                 ret = get_errno(rename(p, p2));
9658             unlock_user(p2, arg2, 0);
9659             unlock_user(p, arg1, 0);
9660         }
9661         return ret;
9662 #endif
9663 #if defined(TARGET_NR_renameat)
9664     case TARGET_NR_renameat:
9665         {
9666             void *p2;
9667             p  = lock_user_string(arg2);
9668             p2 = lock_user_string(arg4);
9669             if (!p || !p2)
9670                 ret = -TARGET_EFAULT;
9671             else
9672                 ret = get_errno(renameat(arg1, p, arg3, p2));
9673             unlock_user(p2, arg4, 0);
9674             unlock_user(p, arg2, 0);
9675         }
9676         return ret;
9677 #endif
9678 #if defined(TARGET_NR_renameat2)
9679     case TARGET_NR_renameat2:
9680         {
9681             void *p2;
9682             p  = lock_user_string(arg2);
9683             p2 = lock_user_string(arg4);
9684             if (!p || !p2) {
9685                 ret = -TARGET_EFAULT;
9686             } else {
9687                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9688             }
9689             unlock_user(p2, arg4, 0);
9690             unlock_user(p, arg2, 0);
9691         }
9692         return ret;
9693 #endif
9694 #ifdef TARGET_NR_mkdir
9695     case TARGET_NR_mkdir:
9696         if (!(p = lock_user_string(arg1)))
9697             return -TARGET_EFAULT;
9698         ret = get_errno(mkdir(p, arg2));
9699         unlock_user(p, arg1, 0);
9700         return ret;
9701 #endif
9702 #if defined(TARGET_NR_mkdirat)
9703     case TARGET_NR_mkdirat:
9704         if (!(p = lock_user_string(arg2)))
9705             return -TARGET_EFAULT;
9706         ret = get_errno(mkdirat(arg1, p, arg3));
9707         unlock_user(p, arg2, 0);
9708         return ret;
9709 #endif
9710 #ifdef TARGET_NR_rmdir
9711     case TARGET_NR_rmdir:
9712         if (!(p = lock_user_string(arg1)))
9713             return -TARGET_EFAULT;
9714         ret = get_errno(rmdir(p));
9715         unlock_user(p, arg1, 0);
9716         return ret;
9717 #endif
9718     case TARGET_NR_dup:
9719         ret = get_errno(dup(arg1));
9720         if (ret >= 0) {
9721             fd_trans_dup(arg1, ret);
9722         }
9723         return ret;
9724 #ifdef TARGET_NR_pipe
9725     case TARGET_NR_pipe:
9726         return do_pipe(cpu_env, arg1, 0, 0);
9727 #endif
9728 #ifdef TARGET_NR_pipe2
9729     case TARGET_NR_pipe2:
9730         return do_pipe(cpu_env, arg1,
9731                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9732 #endif
9733     case TARGET_NR_times:
9734         {
9735             struct target_tms *tmsp;
9736             struct tms tms;
9737             ret = get_errno(times(&tms));
9738             if (arg1) {
9739                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9740                 if (!tmsp)
9741                     return -TARGET_EFAULT;
9742                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9743                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9744                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9745                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9746             }
9747             if (!is_error(ret))
9748                 ret = host_to_target_clock_t(ret);
9749         }
9750         return ret;
9751     case TARGET_NR_acct:
9752         if (arg1 == 0) {
9753             ret = get_errno(acct(NULL));
9754         } else {
9755             if (!(p = lock_user_string(arg1))) {
9756                 return -TARGET_EFAULT;
9757             }
9758             ret = get_errno(acct(path(p)));
9759             unlock_user(p, arg1, 0);
9760         }
9761         return ret;
9762 #ifdef TARGET_NR_umount2
9763     case TARGET_NR_umount2:
9764         if (!(p = lock_user_string(arg1)))
9765             return -TARGET_EFAULT;
9766         ret = get_errno(umount2(p, arg2));
9767         unlock_user(p, arg1, 0);
9768         return ret;
9769 #endif
9770     case TARGET_NR_ioctl:
9771         return do_ioctl(arg1, arg2, arg3);
9772 #ifdef TARGET_NR_fcntl
9773     case TARGET_NR_fcntl:
9774         return do_fcntl(arg1, arg2, arg3);
9775 #endif
9776     case TARGET_NR_setpgid:
9777         return get_errno(setpgid(arg1, arg2));
9778     case TARGET_NR_umask:
9779         return get_errno(umask(arg1));
9780     case TARGET_NR_chroot:
9781         if (!(p = lock_user_string(arg1)))
9782             return -TARGET_EFAULT;
9783         ret = get_errno(chroot(p));
9784         unlock_user(p, arg1, 0);
9785         return ret;
9786 #ifdef TARGET_NR_dup2
9787     case TARGET_NR_dup2:
9788         ret = get_errno(dup2(arg1, arg2));
9789         if (ret >= 0) {
9790             fd_trans_dup(arg1, arg2);
9791         }
9792         return ret;
9793 #endif
9794 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9795     case TARGET_NR_dup3:
9796     {
9797         int host_flags;
9798 
9799         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9800             return -EINVAL;
9801         }
9802         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9803         ret = get_errno(dup3(arg1, arg2, host_flags));
9804         if (ret >= 0) {
9805             fd_trans_dup(arg1, arg2);
9806         }
9807         return ret;
9808     }
9809 #endif
9810 #ifdef TARGET_NR_getppid /* not on alpha */
9811     case TARGET_NR_getppid:
9812         return get_errno(getppid());
9813 #endif
9814 #ifdef TARGET_NR_getpgrp
9815     case TARGET_NR_getpgrp:
9816         return get_errno(getpgrp());
9817 #endif
9818     case TARGET_NR_setsid:
9819         return get_errno(setsid());
9820 #ifdef TARGET_NR_sigaction
9821     case TARGET_NR_sigaction:
9822         {
9823 #if defined(TARGET_MIPS)
9824 	    struct target_sigaction act, oact, *pact, *old_act;
9825 
9826 	    if (arg2) {
9827                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9828                     return -TARGET_EFAULT;
9829 		act._sa_handler = old_act->_sa_handler;
9830 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9831 		act.sa_flags = old_act->sa_flags;
9832 		unlock_user_struct(old_act, arg2, 0);
9833 		pact = &act;
9834 	    } else {
9835 		pact = NULL;
9836 	    }
9837 
9838         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9839 
9840 	    if (!is_error(ret) && arg3) {
9841                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9842                     return -TARGET_EFAULT;
9843 		old_act->_sa_handler = oact._sa_handler;
9844 		old_act->sa_flags = oact.sa_flags;
9845 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9846 		old_act->sa_mask.sig[1] = 0;
9847 		old_act->sa_mask.sig[2] = 0;
9848 		old_act->sa_mask.sig[3] = 0;
9849 		unlock_user_struct(old_act, arg3, 1);
9850 	    }
9851 #else
9852             struct target_old_sigaction *old_act;
9853             struct target_sigaction act, oact, *pact;
9854             if (arg2) {
9855                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9856                     return -TARGET_EFAULT;
9857                 act._sa_handler = old_act->_sa_handler;
9858                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9859                 act.sa_flags = old_act->sa_flags;
9860 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9861                 act.sa_restorer = old_act->sa_restorer;
9862 #endif
9863                 unlock_user_struct(old_act, arg2, 0);
9864                 pact = &act;
9865             } else {
9866                 pact = NULL;
9867             }
9868             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9869             if (!is_error(ret) && arg3) {
9870                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9871                     return -TARGET_EFAULT;
9872                 old_act->_sa_handler = oact._sa_handler;
9873                 old_act->sa_mask = oact.sa_mask.sig[0];
9874                 old_act->sa_flags = oact.sa_flags;
9875 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9876                 old_act->sa_restorer = oact.sa_restorer;
9877 #endif
9878                 unlock_user_struct(old_act, arg3, 1);
9879             }
9880 #endif
9881         }
9882         return ret;
9883 #endif
9884     case TARGET_NR_rt_sigaction:
9885         {
9886             /*
9887              * For Alpha and SPARC this is a 5 argument syscall, with
9888              * a 'restorer' parameter which must be copied into the
9889              * sa_restorer field of the sigaction struct.
9890              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9891              * and arg5 is the sigsetsize.
9892              */
9893 #if defined(TARGET_ALPHA)
9894             target_ulong sigsetsize = arg4;
9895             target_ulong restorer = arg5;
9896 #elif defined(TARGET_SPARC)
9897             target_ulong restorer = arg4;
9898             target_ulong sigsetsize = arg5;
9899 #else
9900             target_ulong sigsetsize = arg4;
9901             target_ulong restorer = 0;
9902 #endif
9903             struct target_sigaction *act = NULL;
9904             struct target_sigaction *oact = NULL;
9905 
9906             if (sigsetsize != sizeof(target_sigset_t)) {
9907                 return -TARGET_EINVAL;
9908             }
9909             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9910                 return -TARGET_EFAULT;
9911             }
9912             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9913                 ret = -TARGET_EFAULT;
9914             } else {
9915                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9916                 if (oact) {
9917                     unlock_user_struct(oact, arg3, 1);
9918                 }
9919             }
9920             if (act) {
9921                 unlock_user_struct(act, arg2, 0);
9922             }
9923         }
9924         return ret;
9925 #ifdef TARGET_NR_sgetmask /* not on alpha */
9926     case TARGET_NR_sgetmask:
9927         {
9928             sigset_t cur_set;
9929             abi_ulong target_set;
9930             ret = do_sigprocmask(0, NULL, &cur_set);
9931             if (!ret) {
9932                 host_to_target_old_sigset(&target_set, &cur_set);
9933                 ret = target_set;
9934             }
9935         }
9936         return ret;
9937 #endif
9938 #ifdef TARGET_NR_ssetmask /* not on alpha */
9939     case TARGET_NR_ssetmask:
9940         {
9941             sigset_t set, oset;
9942             abi_ulong target_set = arg1;
9943             target_to_host_old_sigset(&set, &target_set);
9944             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9945             if (!ret) {
9946                 host_to_target_old_sigset(&target_set, &oset);
9947                 ret = target_set;
9948             }
9949         }
9950         return ret;
9951 #endif
9952 #ifdef TARGET_NR_sigprocmask
9953     case TARGET_NR_sigprocmask:
9954         {
9955 #if defined(TARGET_ALPHA)
9956             sigset_t set, oldset;
9957             abi_ulong mask;
9958             int how;
9959 
9960             switch (arg1) {
9961             case TARGET_SIG_BLOCK:
9962                 how = SIG_BLOCK;
9963                 break;
9964             case TARGET_SIG_UNBLOCK:
9965                 how = SIG_UNBLOCK;
9966                 break;
9967             case TARGET_SIG_SETMASK:
9968                 how = SIG_SETMASK;
9969                 break;
9970             default:
9971                 return -TARGET_EINVAL;
9972             }
9973             mask = arg2;
9974             target_to_host_old_sigset(&set, &mask);
9975 
9976             ret = do_sigprocmask(how, &set, &oldset);
9977             if (!is_error(ret)) {
9978                 host_to_target_old_sigset(&mask, &oldset);
9979                 ret = mask;
9980                 cpu_env->ir[IR_V0] = 0; /* force no error */
9981             }
9982 #else
9983             sigset_t set, oldset, *set_ptr;
9984             int how;
9985 
9986             if (arg2) {
9987                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9988                 if (!p) {
9989                     return -TARGET_EFAULT;
9990                 }
9991                 target_to_host_old_sigset(&set, p);
9992                 unlock_user(p, arg2, 0);
9993                 set_ptr = &set;
9994                 switch (arg1) {
9995                 case TARGET_SIG_BLOCK:
9996                     how = SIG_BLOCK;
9997                     break;
9998                 case TARGET_SIG_UNBLOCK:
9999                     how = SIG_UNBLOCK;
10000                     break;
10001                 case TARGET_SIG_SETMASK:
10002                     how = SIG_SETMASK;
10003                     break;
10004                 default:
10005                     return -TARGET_EINVAL;
10006                 }
10007             } else {
10008                 how = 0;
10009                 set_ptr = NULL;
10010             }
10011             ret = do_sigprocmask(how, set_ptr, &oldset);
10012             if (!is_error(ret) && arg3) {
10013                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10014                     return -TARGET_EFAULT;
10015                 host_to_target_old_sigset(p, &oldset);
10016                 unlock_user(p, arg3, sizeof(target_sigset_t));
10017             }
10018 #endif
10019         }
10020         return ret;
10021 #endif
10022     case TARGET_NR_rt_sigprocmask:
10023         {
10024             int how = arg1;
10025             sigset_t set, oldset, *set_ptr;
10026 
10027             if (arg4 != sizeof(target_sigset_t)) {
10028                 return -TARGET_EINVAL;
10029             }
10030 
10031             if (arg2) {
10032                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10033                 if (!p) {
10034                     return -TARGET_EFAULT;
10035                 }
10036                 target_to_host_sigset(&set, p);
10037                 unlock_user(p, arg2, 0);
10038                 set_ptr = &set;
10039                 switch(how) {
10040                 case TARGET_SIG_BLOCK:
10041                     how = SIG_BLOCK;
10042                     break;
10043                 case TARGET_SIG_UNBLOCK:
10044                     how = SIG_UNBLOCK;
10045                     break;
10046                 case TARGET_SIG_SETMASK:
10047                     how = SIG_SETMASK;
10048                     break;
10049                 default:
10050                     return -TARGET_EINVAL;
10051                 }
10052             } else {
10053                 how = 0;
10054                 set_ptr = NULL;
10055             }
10056             ret = do_sigprocmask(how, set_ptr, &oldset);
10057             if (!is_error(ret) && arg3) {
10058                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10059                     return -TARGET_EFAULT;
10060                 host_to_target_sigset(p, &oldset);
10061                 unlock_user(p, arg3, sizeof(target_sigset_t));
10062             }
10063         }
10064         return ret;
10065 #ifdef TARGET_NR_sigpending
10066     case TARGET_NR_sigpending:
10067         {
10068             sigset_t set;
10069             ret = get_errno(sigpending(&set));
10070             if (!is_error(ret)) {
10071                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10072                     return -TARGET_EFAULT;
10073                 host_to_target_old_sigset(p, &set);
10074                 unlock_user(p, arg1, sizeof(target_sigset_t));
10075             }
10076         }
10077         return ret;
10078 #endif
10079     case TARGET_NR_rt_sigpending:
10080         {
10081             sigset_t set;
10082 
10083             /* Yes, this check is >, not != like most. We follow the kernel's
10084              * logic and it does it like this because it implements
10085              * NR_sigpending through the same code path, and in that case
10086              * the old_sigset_t is smaller in size.
10087              */
10088             if (arg2 > sizeof(target_sigset_t)) {
10089                 return -TARGET_EINVAL;
10090             }
10091 
10092             ret = get_errno(sigpending(&set));
10093             if (!is_error(ret)) {
10094                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10095                     return -TARGET_EFAULT;
10096                 host_to_target_sigset(p, &set);
10097                 unlock_user(p, arg1, sizeof(target_sigset_t));
10098             }
10099         }
10100         return ret;
10101 #ifdef TARGET_NR_sigsuspend
10102     case TARGET_NR_sigsuspend:
10103         {
10104             sigset_t *set;
10105 
10106 #if defined(TARGET_ALPHA)
10107             TaskState *ts = cpu->opaque;
10108             /* target_to_host_old_sigset will bswap back */
10109             abi_ulong mask = tswapal(arg1);
10110             set = &ts->sigsuspend_mask;
10111             target_to_host_old_sigset(set, &mask);
10112 #else
10113             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10114             if (ret != 0) {
10115                 return ret;
10116             }
10117 #endif
10118             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10119             finish_sigsuspend_mask(ret);
10120         }
10121         return ret;
10122 #endif
10123     case TARGET_NR_rt_sigsuspend:
10124         {
10125             sigset_t *set;
10126 
10127             ret = process_sigsuspend_mask(&set, arg1, arg2);
10128             if (ret != 0) {
10129                 return ret;
10130             }
10131             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10132             finish_sigsuspend_mask(ret);
10133         }
10134         return ret;
10135 #ifdef TARGET_NR_rt_sigtimedwait
10136     case TARGET_NR_rt_sigtimedwait:
10137         {
10138             sigset_t set;
10139             struct timespec uts, *puts;
10140             siginfo_t uinfo;
10141 
10142             if (arg4 != sizeof(target_sigset_t)) {
10143                 return -TARGET_EINVAL;
10144             }
10145 
10146             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10147                 return -TARGET_EFAULT;
10148             target_to_host_sigset(&set, p);
10149             unlock_user(p, arg1, 0);
10150             if (arg3) {
10151                 puts = &uts;
10152                 if (target_to_host_timespec(puts, arg3)) {
10153                     return -TARGET_EFAULT;
10154                 }
10155             } else {
10156                 puts = NULL;
10157             }
10158             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10159                                                  SIGSET_T_SIZE));
10160             if (!is_error(ret)) {
10161                 if (arg2) {
10162                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10163                                   0);
10164                     if (!p) {
10165                         return -TARGET_EFAULT;
10166                     }
10167                     host_to_target_siginfo(p, &uinfo);
10168                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10169                 }
10170                 ret = host_to_target_signal(ret);
10171             }
10172         }
10173         return ret;
10174 #endif
10175 #ifdef TARGET_NR_rt_sigtimedwait_time64
10176     case TARGET_NR_rt_sigtimedwait_time64:
10177         {
10178             sigset_t set;
10179             struct timespec uts, *puts;
10180             siginfo_t uinfo;
10181 
10182             if (arg4 != sizeof(target_sigset_t)) {
10183                 return -TARGET_EINVAL;
10184             }
10185 
10186             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10187             if (!p) {
10188                 return -TARGET_EFAULT;
10189             }
10190             target_to_host_sigset(&set, p);
10191             unlock_user(p, arg1, 0);
10192             if (arg3) {
10193                 puts = &uts;
10194                 if (target_to_host_timespec64(puts, arg3)) {
10195                     return -TARGET_EFAULT;
10196                 }
10197             } else {
10198                 puts = NULL;
10199             }
10200             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10201                                                  SIGSET_T_SIZE));
10202             if (!is_error(ret)) {
10203                 if (arg2) {
10204                     p = lock_user(VERIFY_WRITE, arg2,
10205                                   sizeof(target_siginfo_t), 0);
10206                     if (!p) {
10207                         return -TARGET_EFAULT;
10208                     }
10209                     host_to_target_siginfo(p, &uinfo);
10210                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10211                 }
10212                 ret = host_to_target_signal(ret);
10213             }
10214         }
10215         return ret;
10216 #endif
10217     case TARGET_NR_rt_sigqueueinfo:
10218         {
10219             siginfo_t uinfo;
10220 
10221             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10222             if (!p) {
10223                 return -TARGET_EFAULT;
10224             }
10225             target_to_host_siginfo(&uinfo, p);
10226             unlock_user(p, arg3, 0);
10227             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10228         }
10229         return ret;
10230     case TARGET_NR_rt_tgsigqueueinfo:
10231         {
10232             siginfo_t uinfo;
10233 
10234             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10235             if (!p) {
10236                 return -TARGET_EFAULT;
10237             }
10238             target_to_host_siginfo(&uinfo, p);
10239             unlock_user(p, arg4, 0);
10240             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10241         }
10242         return ret;
10243 #ifdef TARGET_NR_sigreturn
10244     case TARGET_NR_sigreturn:
10245         if (block_signals()) {
10246             return -QEMU_ERESTARTSYS;
10247         }
10248         return do_sigreturn(cpu_env);
10249 #endif
10250     case TARGET_NR_rt_sigreturn:
10251         if (block_signals()) {
10252             return -QEMU_ERESTARTSYS;
10253         }
10254         return do_rt_sigreturn(cpu_env);
10255     case TARGET_NR_sethostname:
10256         if (!(p = lock_user_string(arg1)))
10257             return -TARGET_EFAULT;
10258         ret = get_errno(sethostname(p, arg2));
10259         unlock_user(p, arg1, 0);
10260         return ret;
10261 #ifdef TARGET_NR_setrlimit
10262     case TARGET_NR_setrlimit:
10263         {
10264             int resource = target_to_host_resource(arg1);
10265             struct target_rlimit *target_rlim;
10266             struct rlimit rlim;
10267             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10268                 return -TARGET_EFAULT;
10269             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10270             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10271             unlock_user_struct(target_rlim, arg2, 0);
10272             /*
10273              * If we just passed through resource limit settings for memory then
10274              * they would also apply to QEMU's own allocations, and QEMU will
10275              * crash or hang or die if its allocations fail. Ideally we would
10276              * track the guest allocations in QEMU and apply the limits ourselves.
10277              * For now, just tell the guest the call succeeded but don't actually
10278              * limit anything.
10279              */
10280             if (resource != RLIMIT_AS &&
10281                 resource != RLIMIT_DATA &&
10282                 resource != RLIMIT_STACK) {
10283                 return get_errno(setrlimit(resource, &rlim));
10284             } else {
10285                 return 0;
10286             }
10287         }
10288 #endif
10289 #ifdef TARGET_NR_getrlimit
10290     case TARGET_NR_getrlimit:
10291         {
10292             int resource = target_to_host_resource(arg1);
10293             struct target_rlimit *target_rlim;
10294             struct rlimit rlim;
10295 
10296             ret = get_errno(getrlimit(resource, &rlim));
10297             if (!is_error(ret)) {
10298                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10299                     return -TARGET_EFAULT;
10300                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10301                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10302                 unlock_user_struct(target_rlim, arg2, 1);
10303             }
10304         }
10305         return ret;
10306 #endif
10307     case TARGET_NR_getrusage:
10308         {
10309             struct rusage rusage;
10310             ret = get_errno(getrusage(arg1, &rusage));
10311             if (!is_error(ret)) {
10312                 ret = host_to_target_rusage(arg2, &rusage);
10313             }
10314         }
10315         return ret;
10316 #if defined(TARGET_NR_gettimeofday)
10317     case TARGET_NR_gettimeofday:
10318         {
10319             struct timeval tv;
10320             struct timezone tz;
10321 
10322             ret = get_errno(gettimeofday(&tv, &tz));
10323             if (!is_error(ret)) {
10324                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10325                     return -TARGET_EFAULT;
10326                 }
10327                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10328                     return -TARGET_EFAULT;
10329                 }
10330             }
10331         }
10332         return ret;
10333 #endif
10334 #if defined(TARGET_NR_settimeofday)
10335     case TARGET_NR_settimeofday:
10336         {
10337             struct timeval tv, *ptv = NULL;
10338             struct timezone tz, *ptz = NULL;
10339 
10340             if (arg1) {
10341                 if (copy_from_user_timeval(&tv, arg1)) {
10342                     return -TARGET_EFAULT;
10343                 }
10344                 ptv = &tv;
10345             }
10346 
10347             if (arg2) {
10348                 if (copy_from_user_timezone(&tz, arg2)) {
10349                     return -TARGET_EFAULT;
10350                 }
10351                 ptz = &tz;
10352             }
10353 
10354             return get_errno(settimeofday(ptv, ptz));
10355         }
10356 #endif
10357 #if defined(TARGET_NR_select)
10358     case TARGET_NR_select:
10359 #if defined(TARGET_WANT_NI_OLD_SELECT)
10360         /* some architectures used to have old_select here
10361          * but now ENOSYS it.
10362          */
10363         ret = -TARGET_ENOSYS;
10364 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10365         ret = do_old_select(arg1);
10366 #else
10367         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10368 #endif
10369         return ret;
10370 #endif
10371 #ifdef TARGET_NR_pselect6
10372     case TARGET_NR_pselect6:
10373         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10374 #endif
10375 #ifdef TARGET_NR_pselect6_time64
10376     case TARGET_NR_pselect6_time64:
10377         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10378 #endif
10379 #ifdef TARGET_NR_symlink
10380     case TARGET_NR_symlink:
10381         {
10382             void *p2;
10383             p = lock_user_string(arg1);
10384             p2 = lock_user_string(arg2);
10385             if (!p || !p2)
10386                 ret = -TARGET_EFAULT;
10387             else
10388                 ret = get_errno(symlink(p, p2));
10389             unlock_user(p2, arg2, 0);
10390             unlock_user(p, arg1, 0);
10391         }
10392         return ret;
10393 #endif
10394 #if defined(TARGET_NR_symlinkat)
10395     case TARGET_NR_symlinkat:
10396         {
10397             void *p2;
10398             p  = lock_user_string(arg1);
10399             p2 = lock_user_string(arg3);
10400             if (!p || !p2)
10401                 ret = -TARGET_EFAULT;
10402             else
10403                 ret = get_errno(symlinkat(p, arg2, p2));
10404             unlock_user(p2, arg3, 0);
10405             unlock_user(p, arg1, 0);
10406         }
10407         return ret;
10408 #endif
10409 #ifdef TARGET_NR_readlink
10410     case TARGET_NR_readlink:
10411         {
10412             void *p2;
10413             p = lock_user_string(arg1);
10414             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10415             ret = get_errno(do_guest_readlink(p, p2, arg3));
10416             unlock_user(p2, arg2, ret);
10417             unlock_user(p, arg1, 0);
10418         }
10419         return ret;
10420 #endif
10421 #if defined(TARGET_NR_readlinkat)
10422     case TARGET_NR_readlinkat:
10423         {
10424             void *p2;
10425             p  = lock_user_string(arg2);
10426             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10427             if (!p || !p2) {
10428                 ret = -TARGET_EFAULT;
10429             } else if (!arg4) {
10430                 /* Short circuit this for the magic exe check. */
10431                 ret = -TARGET_EINVAL;
10432             } else if (is_proc_myself((const char *)p, "exe")) {
10433                 /*
10434                  * Don't worry about sign mismatch as earlier mapping
10435                  * logic would have thrown a bad address error.
10436                  */
10437                 ret = MIN(strlen(exec_path), arg4);
10438                 /* We cannot NUL terminate the string. */
10439                 memcpy(p2, exec_path, ret);
10440             } else {
10441                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10442             }
10443             unlock_user(p2, arg3, ret);
10444             unlock_user(p, arg2, 0);
10445         }
10446         return ret;
10447 #endif
10448 #ifdef TARGET_NR_swapon
10449     case TARGET_NR_swapon:
10450         if (!(p = lock_user_string(arg1)))
10451             return -TARGET_EFAULT;
10452         ret = get_errno(swapon(p, arg2));
10453         unlock_user(p, arg1, 0);
10454         return ret;
10455 #endif
10456     case TARGET_NR_reboot:
10457         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10458            /* arg4 must be ignored in all other cases */
10459            p = lock_user_string(arg4);
10460            if (!p) {
10461                return -TARGET_EFAULT;
10462            }
10463            ret = get_errno(reboot(arg1, arg2, arg3, p));
10464            unlock_user(p, arg4, 0);
10465         } else {
10466            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10467         }
10468         return ret;
10469 #ifdef TARGET_NR_mmap
10470     case TARGET_NR_mmap:
10471 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10472     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10473     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10474     || defined(TARGET_S390X)
10475         {
10476             abi_ulong *v;
10477             abi_ulong v1, v2, v3, v4, v5, v6;
10478             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10479                 return -TARGET_EFAULT;
10480             v1 = tswapal(v[0]);
10481             v2 = tswapal(v[1]);
10482             v3 = tswapal(v[2]);
10483             v4 = tswapal(v[3]);
10484             v5 = tswapal(v[4]);
10485             v6 = tswapal(v[5]);
10486             unlock_user(v, arg1, 0);
10487             return do_mmap(v1, v2, v3, v4, v5, v6);
10488         }
10489 #else
10490         /* mmap pointers are always untagged */
10491         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10492 #endif
10493 #endif
10494 #ifdef TARGET_NR_mmap2
10495     case TARGET_NR_mmap2:
10496 #ifndef MMAP_SHIFT
10497 #define MMAP_SHIFT 12
10498 #endif
10499         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10500                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10501 #endif
10502     case TARGET_NR_munmap:
10503         arg1 = cpu_untagged_addr(cpu, arg1);
10504         return get_errno(target_munmap(arg1, arg2));
10505     case TARGET_NR_mprotect:
10506         arg1 = cpu_untagged_addr(cpu, arg1);
10507         {
10508             TaskState *ts = cpu->opaque;
10509             /* Special hack to detect libc making the stack executable.  */
10510             if ((arg3 & PROT_GROWSDOWN)
10511                 && arg1 >= ts->info->stack_limit
10512                 && arg1 <= ts->info->start_stack) {
10513                 arg3 &= ~PROT_GROWSDOWN;
10514                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10515                 arg1 = ts->info->stack_limit;
10516             }
10517         }
10518         return get_errno(target_mprotect(arg1, arg2, arg3));
10519 #ifdef TARGET_NR_mremap
10520     case TARGET_NR_mremap:
10521         arg1 = cpu_untagged_addr(cpu, arg1);
10522         /* mremap new_addr (arg5) is always untagged */
10523         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10524 #endif
10525         /* ??? msync/mlock/munlock are broken for softmmu.  */
10526 #ifdef TARGET_NR_msync
10527     case TARGET_NR_msync:
10528         return get_errno(msync(g2h(cpu, arg1), arg2,
10529                                target_to_host_msync_arg(arg3)));
10530 #endif
10531 #ifdef TARGET_NR_mlock
10532     case TARGET_NR_mlock:
10533         return get_errno(mlock(g2h(cpu, arg1), arg2));
10534 #endif
10535 #ifdef TARGET_NR_munlock
10536     case TARGET_NR_munlock:
10537         return get_errno(munlock(g2h(cpu, arg1), arg2));
10538 #endif
10539 #ifdef TARGET_NR_mlockall
10540     case TARGET_NR_mlockall:
10541         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10542 #endif
10543 #ifdef TARGET_NR_munlockall
10544     case TARGET_NR_munlockall:
10545         return get_errno(munlockall());
10546 #endif
10547 #ifdef TARGET_NR_truncate
10548     case TARGET_NR_truncate:
10549         if (!(p = lock_user_string(arg1)))
10550             return -TARGET_EFAULT;
10551         ret = get_errno(truncate(p, arg2));
10552         unlock_user(p, arg1, 0);
10553         return ret;
10554 #endif
10555 #ifdef TARGET_NR_ftruncate
10556     case TARGET_NR_ftruncate:
10557         return get_errno(ftruncate(arg1, arg2));
10558 #endif
10559     case TARGET_NR_fchmod:
10560         return get_errno(fchmod(arg1, arg2));
10561 #if defined(TARGET_NR_fchmodat)
10562     case TARGET_NR_fchmodat:
10563         if (!(p = lock_user_string(arg2)))
10564             return -TARGET_EFAULT;
10565         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10566         unlock_user(p, arg2, 0);
10567         return ret;
10568 #endif
10569     case TARGET_NR_getpriority:
10570         /* Note that negative values are valid for getpriority, so we must
10571            differentiate based on errno settings.  */
10572         errno = 0;
10573         ret = getpriority(arg1, arg2);
10574         if (ret == -1 && errno != 0) {
10575             return -host_to_target_errno(errno);
10576         }
10577 #ifdef TARGET_ALPHA
10578         /* Return value is the unbiased priority.  Signal no error.  */
10579         cpu_env->ir[IR_V0] = 0;
10580 #else
10581         /* Return value is a biased priority to avoid negative numbers.  */
10582         ret = 20 - ret;
10583 #endif
10584         return ret;
10585     case TARGET_NR_setpriority:
10586         return get_errno(setpriority(arg1, arg2, arg3));
10587 #ifdef TARGET_NR_statfs
10588     case TARGET_NR_statfs:
10589         if (!(p = lock_user_string(arg1))) {
10590             return -TARGET_EFAULT;
10591         }
10592         ret = get_errno(statfs(path(p), &stfs));
10593         unlock_user(p, arg1, 0);
10594     convert_statfs:
10595         if (!is_error(ret)) {
10596             struct target_statfs *target_stfs;
10597 
10598             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10599                 return -TARGET_EFAULT;
10600             __put_user(stfs.f_type, &target_stfs->f_type);
10601             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10602             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10603             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10604             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10605             __put_user(stfs.f_files, &target_stfs->f_files);
10606             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10607             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10608             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10609             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10610             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10611 #ifdef _STATFS_F_FLAGS
10612             __put_user(stfs.f_flags, &target_stfs->f_flags);
10613 #else
10614             __put_user(0, &target_stfs->f_flags);
10615 #endif
10616             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10617             unlock_user_struct(target_stfs, arg2, 1);
10618         }
10619         return ret;
10620 #endif
10621 #ifdef TARGET_NR_fstatfs
10622     case TARGET_NR_fstatfs:
10623         ret = get_errno(fstatfs(arg1, &stfs));
10624         goto convert_statfs;
10625 #endif
10626 #ifdef TARGET_NR_statfs64
10627     case TARGET_NR_statfs64:
10628         if (!(p = lock_user_string(arg1))) {
10629             return -TARGET_EFAULT;
10630         }
10631         ret = get_errno(statfs(path(p), &stfs));
10632         unlock_user(p, arg1, 0);
10633     convert_statfs64:
10634         if (!is_error(ret)) {
10635             struct target_statfs64 *target_stfs;
10636 
10637             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10638                 return -TARGET_EFAULT;
10639             __put_user(stfs.f_type, &target_stfs->f_type);
10640             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10641             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10642             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10643             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10644             __put_user(stfs.f_files, &target_stfs->f_files);
10645             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10646             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10647             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10648             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10649             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10650 #ifdef _STATFS_F_FLAGS
10651             __put_user(stfs.f_flags, &target_stfs->f_flags);
10652 #else
10653             __put_user(0, &target_stfs->f_flags);
10654 #endif
10655             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10656             unlock_user_struct(target_stfs, arg3, 1);
10657         }
10658         return ret;
10659     case TARGET_NR_fstatfs64:
10660         ret = get_errno(fstatfs(arg1, &stfs));
10661         goto convert_statfs64;
10662 #endif
10663 #ifdef TARGET_NR_socketcall
10664     case TARGET_NR_socketcall:
10665         return do_socketcall(arg1, arg2);
10666 #endif
10667 #ifdef TARGET_NR_accept
10668     case TARGET_NR_accept:
10669         return do_accept4(arg1, arg2, arg3, 0);
10670 #endif
10671 #ifdef TARGET_NR_accept4
10672     case TARGET_NR_accept4:
10673         return do_accept4(arg1, arg2, arg3, arg4);
10674 #endif
10675 #ifdef TARGET_NR_bind
10676     case TARGET_NR_bind:
10677         return do_bind(arg1, arg2, arg3);
10678 #endif
10679 #ifdef TARGET_NR_connect
10680     case TARGET_NR_connect:
10681         return do_connect(arg1, arg2, arg3);
10682 #endif
10683 #ifdef TARGET_NR_getpeername
10684     case TARGET_NR_getpeername:
10685         return do_getpeername(arg1, arg2, arg3);
10686 #endif
10687 #ifdef TARGET_NR_getsockname
10688     case TARGET_NR_getsockname:
10689         return do_getsockname(arg1, arg2, arg3);
10690 #endif
10691 #ifdef TARGET_NR_getsockopt
10692     case TARGET_NR_getsockopt:
10693         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10694 #endif
10695 #ifdef TARGET_NR_listen
10696     case TARGET_NR_listen:
10697         return get_errno(listen(arg1, arg2));
10698 #endif
10699 #ifdef TARGET_NR_recv
10700     case TARGET_NR_recv:
10701         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10702 #endif
10703 #ifdef TARGET_NR_recvfrom
10704     case TARGET_NR_recvfrom:
10705         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10706 #endif
10707 #ifdef TARGET_NR_recvmsg
10708     case TARGET_NR_recvmsg:
10709         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10710 #endif
10711 #ifdef TARGET_NR_send
10712     case TARGET_NR_send:
10713         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10714 #endif
10715 #ifdef TARGET_NR_sendmsg
10716     case TARGET_NR_sendmsg:
10717         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10718 #endif
10719 #ifdef TARGET_NR_sendmmsg
10720     case TARGET_NR_sendmmsg:
10721         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10722 #endif
10723 #ifdef TARGET_NR_recvmmsg
10724     case TARGET_NR_recvmmsg:
10725         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10726 #endif
10727 #ifdef TARGET_NR_sendto
10728     case TARGET_NR_sendto:
10729         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10730 #endif
10731 #ifdef TARGET_NR_shutdown
10732     case TARGET_NR_shutdown:
10733         return get_errno(shutdown(arg1, arg2));
10734 #endif
10735 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10736     case TARGET_NR_getrandom:
10737         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10738         if (!p) {
10739             return -TARGET_EFAULT;
10740         }
10741         ret = get_errno(getrandom(p, arg2, arg3));
10742         unlock_user(p, arg1, ret);
10743         return ret;
10744 #endif
10745 #ifdef TARGET_NR_socket
10746     case TARGET_NR_socket:
10747         return do_socket(arg1, arg2, arg3);
10748 #endif
10749 #ifdef TARGET_NR_socketpair
10750     case TARGET_NR_socketpair:
10751         return do_socketpair(arg1, arg2, arg3, arg4);
10752 #endif
10753 #ifdef TARGET_NR_setsockopt
10754     case TARGET_NR_setsockopt:
10755         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10756 #endif
10757 #if defined(TARGET_NR_syslog)
10758     case TARGET_NR_syslog:
10759         {
10760             int len = arg2;
10761 
10762             switch (arg1) {
10763             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10764             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10765             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10766             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10767             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10768             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10769             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10770             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10771                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10772             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10773             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10774             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10775                 {
10776                     if (len < 0) {
10777                         return -TARGET_EINVAL;
10778                     }
10779                     if (len == 0) {
10780                         return 0;
10781                     }
10782                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10783                     if (!p) {
10784                         return -TARGET_EFAULT;
10785                     }
10786                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10787                     unlock_user(p, arg2, arg3);
10788                 }
10789                 return ret;
10790             default:
10791                 return -TARGET_EINVAL;
10792             }
10793         }
10794         break;
10795 #endif
10796     case TARGET_NR_setitimer:
10797         {
10798             struct itimerval value, ovalue, *pvalue;
10799 
10800             if (arg2) {
10801                 pvalue = &value;
10802                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10803                     || copy_from_user_timeval(&pvalue->it_value,
10804                                               arg2 + sizeof(struct target_timeval)))
10805                     return -TARGET_EFAULT;
10806             } else {
10807                 pvalue = NULL;
10808             }
10809             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10810             if (!is_error(ret) && arg3) {
10811                 if (copy_to_user_timeval(arg3,
10812                                          &ovalue.it_interval)
10813                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10814                                             &ovalue.it_value))
10815                     return -TARGET_EFAULT;
10816             }
10817         }
10818         return ret;
10819     case TARGET_NR_getitimer:
10820         {
10821             struct itimerval value;
10822 
10823             ret = get_errno(getitimer(arg1, &value));
10824             if (!is_error(ret) && arg2) {
10825                 if (copy_to_user_timeval(arg2,
10826                                          &value.it_interval)
10827                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10828                                             &value.it_value))
10829                     return -TARGET_EFAULT;
10830             }
10831         }
10832         return ret;
10833 #ifdef TARGET_NR_stat
10834     case TARGET_NR_stat:
10835         if (!(p = lock_user_string(arg1))) {
10836             return -TARGET_EFAULT;
10837         }
10838         ret = get_errno(stat(path(p), &st));
10839         unlock_user(p, arg1, 0);
10840         goto do_stat;
10841 #endif
10842 #ifdef TARGET_NR_lstat
10843     case TARGET_NR_lstat:
10844         if (!(p = lock_user_string(arg1))) {
10845             return -TARGET_EFAULT;
10846         }
10847         ret = get_errno(lstat(path(p), &st));
10848         unlock_user(p, arg1, 0);
10849         goto do_stat;
10850 #endif
10851 #ifdef TARGET_NR_fstat
10852     case TARGET_NR_fstat:
10853         {
10854             ret = get_errno(fstat(arg1, &st));
10855 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10856         do_stat:
10857 #endif
10858             if (!is_error(ret)) {
10859                 struct target_stat *target_st;
10860 
10861                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10862                     return -TARGET_EFAULT;
10863                 memset(target_st, 0, sizeof(*target_st));
10864                 __put_user(st.st_dev, &target_st->st_dev);
10865                 __put_user(st.st_ino, &target_st->st_ino);
10866                 __put_user(st.st_mode, &target_st->st_mode);
10867                 __put_user(st.st_uid, &target_st->st_uid);
10868                 __put_user(st.st_gid, &target_st->st_gid);
10869                 __put_user(st.st_nlink, &target_st->st_nlink);
10870                 __put_user(st.st_rdev, &target_st->st_rdev);
10871                 __put_user(st.st_size, &target_st->st_size);
10872                 __put_user(st.st_blksize, &target_st->st_blksize);
10873                 __put_user(st.st_blocks, &target_st->st_blocks);
10874                 __put_user(st.st_atime, &target_st->target_st_atime);
10875                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10876                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10877 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10878                 __put_user(st.st_atim.tv_nsec,
10879                            &target_st->target_st_atime_nsec);
10880                 __put_user(st.st_mtim.tv_nsec,
10881                            &target_st->target_st_mtime_nsec);
10882                 __put_user(st.st_ctim.tv_nsec,
10883                            &target_st->target_st_ctime_nsec);
10884 #endif
10885                 unlock_user_struct(target_st, arg2, 1);
10886             }
10887         }
10888         return ret;
10889 #endif
10890     case TARGET_NR_vhangup:
10891         return get_errno(vhangup());
10892 #ifdef TARGET_NR_syscall
10893     case TARGET_NR_syscall:
10894         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10895                           arg6, arg7, arg8, 0);
10896 #endif
10897 #if defined(TARGET_NR_wait4)
10898     case TARGET_NR_wait4:
10899         {
10900             int status;
10901             abi_long status_ptr = arg2;
10902             struct rusage rusage, *rusage_ptr;
10903             abi_ulong target_rusage = arg4;
10904             abi_long rusage_err;
10905             if (target_rusage)
10906                 rusage_ptr = &rusage;
10907             else
10908                 rusage_ptr = NULL;
10909             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10910             if (!is_error(ret)) {
10911                 if (status_ptr && ret) {
10912                     status = host_to_target_waitstatus(status);
10913                     if (put_user_s32(status, status_ptr))
10914                         return -TARGET_EFAULT;
10915                 }
10916                 if (target_rusage) {
10917                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10918                     if (rusage_err) {
10919                         ret = rusage_err;
10920                     }
10921                 }
10922             }
10923         }
10924         return ret;
10925 #endif
10926 #ifdef TARGET_NR_swapoff
10927     case TARGET_NR_swapoff:
10928         if (!(p = lock_user_string(arg1)))
10929             return -TARGET_EFAULT;
10930         ret = get_errno(swapoff(p));
10931         unlock_user(p, arg1, 0);
10932         return ret;
10933 #endif
10934     case TARGET_NR_sysinfo:
10935         {
10936             struct target_sysinfo *target_value;
10937             struct sysinfo value;
10938             ret = get_errno(sysinfo(&value));
10939             if (!is_error(ret) && arg1)
10940             {
10941                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10942                     return -TARGET_EFAULT;
10943                 __put_user(value.uptime, &target_value->uptime);
10944                 __put_user(value.loads[0], &target_value->loads[0]);
10945                 __put_user(value.loads[1], &target_value->loads[1]);
10946                 __put_user(value.loads[2], &target_value->loads[2]);
10947                 __put_user(value.totalram, &target_value->totalram);
10948                 __put_user(value.freeram, &target_value->freeram);
10949                 __put_user(value.sharedram, &target_value->sharedram);
10950                 __put_user(value.bufferram, &target_value->bufferram);
10951                 __put_user(value.totalswap, &target_value->totalswap);
10952                 __put_user(value.freeswap, &target_value->freeswap);
10953                 __put_user(value.procs, &target_value->procs);
10954                 __put_user(value.totalhigh, &target_value->totalhigh);
10955                 __put_user(value.freehigh, &target_value->freehigh);
10956                 __put_user(value.mem_unit, &target_value->mem_unit);
10957                 unlock_user_struct(target_value, arg1, 1);
10958             }
10959         }
10960         return ret;
10961 #ifdef TARGET_NR_ipc
10962     case TARGET_NR_ipc:
10963         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10964 #endif
10965 #ifdef TARGET_NR_semget
10966     case TARGET_NR_semget:
10967         return get_errno(semget(arg1, arg2, arg3));
10968 #endif
10969 #ifdef TARGET_NR_semop
10970     case TARGET_NR_semop:
10971         return do_semtimedop(arg1, arg2, arg3, 0, false);
10972 #endif
10973 #ifdef TARGET_NR_semtimedop
10974     case TARGET_NR_semtimedop:
10975         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10976 #endif
10977 #ifdef TARGET_NR_semtimedop_time64
10978     case TARGET_NR_semtimedop_time64:
10979         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10980 #endif
10981 #ifdef TARGET_NR_semctl
10982     case TARGET_NR_semctl:
10983         return do_semctl(arg1, arg2, arg3, arg4);
10984 #endif
10985 #ifdef TARGET_NR_msgctl
10986     case TARGET_NR_msgctl:
10987         return do_msgctl(arg1, arg2, arg3);
10988 #endif
10989 #ifdef TARGET_NR_msgget
10990     case TARGET_NR_msgget:
10991         return get_errno(msgget(arg1, arg2));
10992 #endif
10993 #ifdef TARGET_NR_msgrcv
10994     case TARGET_NR_msgrcv:
10995         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10996 #endif
10997 #ifdef TARGET_NR_msgsnd
10998     case TARGET_NR_msgsnd:
10999         return do_msgsnd(arg1, arg2, arg3, arg4);
11000 #endif
11001 #ifdef TARGET_NR_shmget
11002     case TARGET_NR_shmget:
11003         return get_errno(shmget(arg1, arg2, arg3));
11004 #endif
11005 #ifdef TARGET_NR_shmctl
11006     case TARGET_NR_shmctl:
11007         return do_shmctl(arg1, arg2, arg3);
11008 #endif
11009 #ifdef TARGET_NR_shmat
11010     case TARGET_NR_shmat:
11011         return do_shmat(cpu_env, arg1, arg2, arg3);
11012 #endif
11013 #ifdef TARGET_NR_shmdt
11014     case TARGET_NR_shmdt:
11015         return do_shmdt(arg1);
11016 #endif
11017     case TARGET_NR_fsync:
11018         return get_errno(fsync(arg1));
11019     case TARGET_NR_clone:
11020         /* Linux manages to have three different orderings for its
11021          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11022          * match the kernel's CONFIG_CLONE_* settings.
11023          * Microblaze is further special in that it uses a sixth
11024          * implicit argument to clone for the TLS pointer.
11025          */
11026 #if defined(TARGET_MICROBLAZE)
11027         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11028 #elif defined(TARGET_CLONE_BACKWARDS)
11029         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11030 #elif defined(TARGET_CLONE_BACKWARDS2)
11031         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11032 #else
11033         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11034 #endif
11035         return ret;
11036 #ifdef __NR_exit_group
11037         /* new thread calls */
11038     case TARGET_NR_exit_group:
11039         preexit_cleanup(cpu_env, arg1);
11040         return get_errno(exit_group(arg1));
11041 #endif
11042     case TARGET_NR_setdomainname:
11043         if (!(p = lock_user_string(arg1)))
11044             return -TARGET_EFAULT;
11045         ret = get_errno(setdomainname(p, arg2));
11046         unlock_user(p, arg1, 0);
11047         return ret;
11048     case TARGET_NR_uname:
11049         /* no need to transcode because we use the linux syscall */
11050         {
11051             struct new_utsname * buf;
11052 
11053             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11054                 return -TARGET_EFAULT;
11055             ret = get_errno(sys_uname(buf));
11056             if (!is_error(ret)) {
11057                 /* Overwrite the native machine name with whatever is being
11058                    emulated. */
11059                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11060                           sizeof(buf->machine));
11061                 /* Allow the user to override the reported release.  */
11062                 if (qemu_uname_release && *qemu_uname_release) {
11063                     g_strlcpy(buf->release, qemu_uname_release,
11064                               sizeof(buf->release));
11065                 }
11066             }
11067             unlock_user_struct(buf, arg1, 1);
11068         }
11069         return ret;
11070 #ifdef TARGET_I386
11071     case TARGET_NR_modify_ldt:
11072         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11073 #if !defined(TARGET_X86_64)
11074     case TARGET_NR_vm86:
11075         return do_vm86(cpu_env, arg1, arg2);
11076 #endif
11077 #endif
11078 #if defined(TARGET_NR_adjtimex)
11079     case TARGET_NR_adjtimex:
11080         {
11081             struct timex host_buf;
11082 
11083             if (target_to_host_timex(&host_buf, arg1) != 0) {
11084                 return -TARGET_EFAULT;
11085             }
11086             ret = get_errno(adjtimex(&host_buf));
11087             if (!is_error(ret)) {
11088                 if (host_to_target_timex(arg1, &host_buf) != 0) {
11089                     return -TARGET_EFAULT;
11090                 }
11091             }
11092         }
11093         return ret;
11094 #endif
11095 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11096     case TARGET_NR_clock_adjtime:
11097         {
11098             struct timex htx;
11099 
11100             if (target_to_host_timex(&htx, arg2) != 0) {
11101                 return -TARGET_EFAULT;
11102             }
11103             ret = get_errno(clock_adjtime(arg1, &htx));
11104             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11105                 return -TARGET_EFAULT;
11106             }
11107         }
11108         return ret;
11109 #endif
11110 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11111     case TARGET_NR_clock_adjtime64:
11112         {
11113             struct timex htx;
11114 
11115             if (target_to_host_timex64(&htx, arg2) != 0) {
11116                 return -TARGET_EFAULT;
11117             }
11118             ret = get_errno(clock_adjtime(arg1, &htx));
11119             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11120                     return -TARGET_EFAULT;
11121             }
11122         }
11123         return ret;
11124 #endif
11125     case TARGET_NR_getpgid:
11126         return get_errno(getpgid(arg1));
11127     case TARGET_NR_fchdir:
11128         return get_errno(fchdir(arg1));
11129     case TARGET_NR_personality:
11130         return get_errno(personality(arg1));
11131 #ifdef TARGET_NR__llseek /* Not on alpha */
11132     case TARGET_NR__llseek:
11133         {
11134             int64_t res;
11135 #if !defined(__NR_llseek)
11136             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11137             if (res == -1) {
11138                 ret = get_errno(res);
11139             } else {
11140                 ret = 0;
11141             }
11142 #else
11143             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11144 #endif
11145             if ((ret == 0) && put_user_s64(res, arg4)) {
11146                 return -TARGET_EFAULT;
11147             }
11148         }
11149         return ret;
11150 #endif
11151 #ifdef TARGET_NR_getdents
11152     case TARGET_NR_getdents:
11153         return do_getdents(arg1, arg2, arg3);
11154 #endif /* TARGET_NR_getdents */
11155 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11156     case TARGET_NR_getdents64:
11157         return do_getdents64(arg1, arg2, arg3);
11158 #endif /* TARGET_NR_getdents64 */
11159 #if defined(TARGET_NR__newselect)
11160     case TARGET_NR__newselect:
11161         return do_select(arg1, arg2, arg3, arg4, arg5);
11162 #endif
11163 #ifdef TARGET_NR_poll
11164     case TARGET_NR_poll:
11165         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11166 #endif
11167 #ifdef TARGET_NR_ppoll
11168     case TARGET_NR_ppoll:
11169         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11170 #endif
11171 #ifdef TARGET_NR_ppoll_time64
11172     case TARGET_NR_ppoll_time64:
11173         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11174 #endif
11175     case TARGET_NR_flock:
11176         /* NOTE: the flock constant seems to be the same for every
11177            Linux platform */
11178         return get_errno(safe_flock(arg1, arg2));
11179     case TARGET_NR_readv:
11180         {
11181             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11182             if (vec != NULL) {
11183                 ret = get_errno(safe_readv(arg1, vec, arg3));
11184                 unlock_iovec(vec, arg2, arg3, 1);
11185             } else {
11186                 ret = -host_to_target_errno(errno);
11187             }
11188         }
11189         return ret;
11190     case TARGET_NR_writev:
11191         {
11192             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11193             if (vec != NULL) {
11194                 ret = get_errno(safe_writev(arg1, vec, arg3));
11195                 unlock_iovec(vec, arg2, arg3, 0);
11196             } else {
11197                 ret = -host_to_target_errno(errno);
11198             }
11199         }
11200         return ret;
11201 #if defined(TARGET_NR_preadv)
11202     case TARGET_NR_preadv:
11203         {
11204             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11205             if (vec != NULL) {
11206                 unsigned long low, high;
11207 
11208                 target_to_host_low_high(arg4, arg5, &low, &high);
11209                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11210                 unlock_iovec(vec, arg2, arg3, 1);
11211             } else {
11212                 ret = -host_to_target_errno(errno);
11213            }
11214         }
11215         return ret;
11216 #endif
11217 #if defined(TARGET_NR_pwritev)
11218     case TARGET_NR_pwritev:
11219         {
11220             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11221             if (vec != NULL) {
11222                 unsigned long low, high;
11223 
11224                 target_to_host_low_high(arg4, arg5, &low, &high);
11225                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11226                 unlock_iovec(vec, arg2, arg3, 0);
11227             } else {
11228                 ret = -host_to_target_errno(errno);
11229            }
11230         }
11231         return ret;
11232 #endif
11233     case TARGET_NR_getsid:
11234         return get_errno(getsid(arg1));
11235 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11236     case TARGET_NR_fdatasync:
11237         return get_errno(fdatasync(arg1));
11238 #endif
11239     case TARGET_NR_sched_getaffinity:
11240         {
11241             unsigned int mask_size;
11242             unsigned long *mask;
11243 
11244             /*
11245              * sched_getaffinity needs multiples of ulong, so need to take
11246              * care of mismatches between target ulong and host ulong sizes.
11247              */
11248             if (arg2 & (sizeof(abi_ulong) - 1)) {
11249                 return -TARGET_EINVAL;
11250             }
11251             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11252 
11253             mask = alloca(mask_size);
11254             memset(mask, 0, mask_size);
11255             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11256 
11257             if (!is_error(ret)) {
11258                 if (ret > arg2) {
11259                     /* More data returned than the caller's buffer will fit.
11260                      * This only happens if sizeof(abi_long) < sizeof(long)
11261                      * and the caller passed us a buffer holding an odd number
11262                      * of abi_longs. If the host kernel is actually using the
11263                      * extra 4 bytes then fail EINVAL; otherwise we can just
11264                      * ignore them and only copy the interesting part.
11265                      */
11266                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11267                     if (numcpus > arg2 * 8) {
11268                         return -TARGET_EINVAL;
11269                     }
11270                     ret = arg2;
11271                 }
11272 
11273                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11274                     return -TARGET_EFAULT;
11275                 }
11276             }
11277         }
11278         return ret;
11279     case TARGET_NR_sched_setaffinity:
11280         {
11281             unsigned int mask_size;
11282             unsigned long *mask;
11283 
11284             /*
11285              * sched_setaffinity needs multiples of ulong, so need to take
11286              * care of mismatches between target ulong and host ulong sizes.
11287              */
11288             if (arg2 & (sizeof(abi_ulong) - 1)) {
11289                 return -TARGET_EINVAL;
11290             }
11291             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11292             mask = alloca(mask_size);
11293 
11294             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11295             if (ret) {
11296                 return ret;
11297             }
11298 
11299             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11300         }
11301     case TARGET_NR_getcpu:
11302         {
11303             unsigned cpu, node;
11304             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
11305                                        arg2 ? &node : NULL,
11306                                        NULL));
11307             if (is_error(ret)) {
11308                 return ret;
11309             }
11310             if (arg1 && put_user_u32(cpu, arg1)) {
11311                 return -TARGET_EFAULT;
11312             }
11313             if (arg2 && put_user_u32(node, arg2)) {
11314                 return -TARGET_EFAULT;
11315             }
11316         }
11317         return ret;
11318     case TARGET_NR_sched_setparam:
11319         {
11320             struct target_sched_param *target_schp;
11321             struct sched_param schp;
11322 
11323             if (arg2 == 0) {
11324                 return -TARGET_EINVAL;
11325             }
11326             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11327                 return -TARGET_EFAULT;
11328             }
11329             schp.sched_priority = tswap32(target_schp->sched_priority);
11330             unlock_user_struct(target_schp, arg2, 0);
11331             return get_errno(sys_sched_setparam(arg1, &schp));
11332         }
11333     case TARGET_NR_sched_getparam:
11334         {
11335             struct target_sched_param *target_schp;
11336             struct sched_param schp;
11337 
11338             if (arg2 == 0) {
11339                 return -TARGET_EINVAL;
11340             }
11341             ret = get_errno(sys_sched_getparam(arg1, &schp));
11342             if (!is_error(ret)) {
11343                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11344                     return -TARGET_EFAULT;
11345                 }
11346                 target_schp->sched_priority = tswap32(schp.sched_priority);
11347                 unlock_user_struct(target_schp, arg2, 1);
11348             }
11349         }
11350         return ret;
11351     case TARGET_NR_sched_setscheduler:
11352         {
11353             struct target_sched_param *target_schp;
11354             struct sched_param schp;
11355             if (arg3 == 0) {
11356                 return -TARGET_EINVAL;
11357             }
11358             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11359                 return -TARGET_EFAULT;
11360             }
11361             schp.sched_priority = tswap32(target_schp->sched_priority);
11362             unlock_user_struct(target_schp, arg3, 0);
11363             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11364         }
11365     case TARGET_NR_sched_getscheduler:
11366         return get_errno(sys_sched_getscheduler(arg1));
11367     case TARGET_NR_sched_getattr:
11368         {
11369             struct target_sched_attr *target_scha;
11370             struct sched_attr scha;
11371             if (arg2 == 0) {
11372                 return -TARGET_EINVAL;
11373             }
11374             if (arg3 > sizeof(scha)) {
11375                 arg3 = sizeof(scha);
11376             }
11377             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11378             if (!is_error(ret)) {
11379                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11380                 if (!target_scha) {
11381                     return -TARGET_EFAULT;
11382                 }
11383                 target_scha->size = tswap32(scha.size);
11384                 target_scha->sched_policy = tswap32(scha.sched_policy);
11385                 target_scha->sched_flags = tswap64(scha.sched_flags);
11386                 target_scha->sched_nice = tswap32(scha.sched_nice);
11387                 target_scha->sched_priority = tswap32(scha.sched_priority);
11388                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11389                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11390                 target_scha->sched_period = tswap64(scha.sched_period);
11391                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11392                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11393                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11394                 }
11395                 unlock_user(target_scha, arg2, arg3);
11396             }
11397             return ret;
11398         }
11399     case TARGET_NR_sched_setattr:
11400         {
11401             struct target_sched_attr *target_scha;
11402             struct sched_attr scha;
11403             uint32_t size;
11404             int zeroed;
11405             if (arg2 == 0) {
11406                 return -TARGET_EINVAL;
11407             }
11408             if (get_user_u32(size, arg2)) {
11409                 return -TARGET_EFAULT;
11410             }
11411             if (!size) {
11412                 size = offsetof(struct target_sched_attr, sched_util_min);
11413             }
11414             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11415                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11416                     return -TARGET_EFAULT;
11417                 }
11418                 return -TARGET_E2BIG;
11419             }
11420 
11421             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11422             if (zeroed < 0) {
11423                 return zeroed;
11424             } else if (zeroed == 0) {
11425                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11426                     return -TARGET_EFAULT;
11427                 }
11428                 return -TARGET_E2BIG;
11429             }
11430             if (size > sizeof(struct target_sched_attr)) {
11431                 size = sizeof(struct target_sched_attr);
11432             }
11433 
11434             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11435             if (!target_scha) {
11436                 return -TARGET_EFAULT;
11437             }
11438             scha.size = size;
11439             scha.sched_policy = tswap32(target_scha->sched_policy);
11440             scha.sched_flags = tswap64(target_scha->sched_flags);
11441             scha.sched_nice = tswap32(target_scha->sched_nice);
11442             scha.sched_priority = tswap32(target_scha->sched_priority);
11443             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11444             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11445             scha.sched_period = tswap64(target_scha->sched_period);
11446             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11447                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11448                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11449             }
11450             unlock_user(target_scha, arg2, 0);
11451             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11452         }
11453     case TARGET_NR_sched_yield:
11454         return get_errno(sched_yield());
11455     case TARGET_NR_sched_get_priority_max:
11456         return get_errno(sched_get_priority_max(arg1));
11457     case TARGET_NR_sched_get_priority_min:
11458         return get_errno(sched_get_priority_min(arg1));
11459 #ifdef TARGET_NR_sched_rr_get_interval
11460     case TARGET_NR_sched_rr_get_interval:
11461         {
11462             struct timespec ts;
11463             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11464             if (!is_error(ret)) {
11465                 ret = host_to_target_timespec(arg2, &ts);
11466             }
11467         }
11468         return ret;
11469 #endif
11470 #ifdef TARGET_NR_sched_rr_get_interval_time64
11471     case TARGET_NR_sched_rr_get_interval_time64:
11472         {
11473             struct timespec ts;
11474             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11475             if (!is_error(ret)) {
11476                 ret = host_to_target_timespec64(arg2, &ts);
11477             }
11478         }
11479         return ret;
11480 #endif
11481 #if defined(TARGET_NR_nanosleep)
11482     case TARGET_NR_nanosleep:
11483         {
11484             struct timespec req, rem;
11485             target_to_host_timespec(&req, arg1);
11486             ret = get_errno(safe_nanosleep(&req, &rem));
11487             if (is_error(ret) && arg2) {
11488                 host_to_target_timespec(arg2, &rem);
11489             }
11490         }
11491         return ret;
11492 #endif
11493     case TARGET_NR_prctl:
11494         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11495         break;
11496 #ifdef TARGET_NR_arch_prctl
11497     case TARGET_NR_arch_prctl:
11498         return do_arch_prctl(cpu_env, arg1, arg2);
11499 #endif
11500 #ifdef TARGET_NR_pread64
11501     case TARGET_NR_pread64:
11502         if (regpairs_aligned(cpu_env, num)) {
11503             arg4 = arg5;
11504             arg5 = arg6;
11505         }
11506         if (arg2 == 0 && arg3 == 0) {
11507             /* Special-case NULL buffer and zero length, which should succeed */
11508             p = 0;
11509         } else {
11510             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11511             if (!p) {
11512                 return -TARGET_EFAULT;
11513             }
11514         }
11515         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11516         unlock_user(p, arg2, ret);
11517         return ret;
11518     case TARGET_NR_pwrite64:
11519         if (regpairs_aligned(cpu_env, num)) {
11520             arg4 = arg5;
11521             arg5 = arg6;
11522         }
11523         if (arg2 == 0 && arg3 == 0) {
11524             /* Special-case NULL buffer and zero length, which should succeed */
11525             p = 0;
11526         } else {
11527             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11528             if (!p) {
11529                 return -TARGET_EFAULT;
11530             }
11531         }
11532         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11533         unlock_user(p, arg2, 0);
11534         return ret;
11535 #endif
11536     case TARGET_NR_getcwd:
11537         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11538             return -TARGET_EFAULT;
11539         ret = get_errno(sys_getcwd1(p, arg2));
11540         unlock_user(p, arg1, ret);
11541         return ret;
11542     case TARGET_NR_capget:
11543     case TARGET_NR_capset:
11544     {
11545         struct target_user_cap_header *target_header;
11546         struct target_user_cap_data *target_data = NULL;
11547         struct __user_cap_header_struct header;
11548         struct __user_cap_data_struct data[2];
11549         struct __user_cap_data_struct *dataptr = NULL;
11550         int i, target_datalen;
11551         int data_items = 1;
11552 
11553         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11554             return -TARGET_EFAULT;
11555         }
11556         header.version = tswap32(target_header->version);
11557         header.pid = tswap32(target_header->pid);
11558 
11559         if (header.version != _LINUX_CAPABILITY_VERSION) {
11560             /* Version 2 and up takes pointer to two user_data structs */
11561             data_items = 2;
11562         }
11563 
11564         target_datalen = sizeof(*target_data) * data_items;
11565 
11566         if (arg2) {
11567             if (num == TARGET_NR_capget) {
11568                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11569             } else {
11570                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11571             }
11572             if (!target_data) {
11573                 unlock_user_struct(target_header, arg1, 0);
11574                 return -TARGET_EFAULT;
11575             }
11576 
11577             if (num == TARGET_NR_capset) {
11578                 for (i = 0; i < data_items; i++) {
11579                     data[i].effective = tswap32(target_data[i].effective);
11580                     data[i].permitted = tswap32(target_data[i].permitted);
11581                     data[i].inheritable = tswap32(target_data[i].inheritable);
11582                 }
11583             }
11584 
11585             dataptr = data;
11586         }
11587 
11588         if (num == TARGET_NR_capget) {
11589             ret = get_errno(capget(&header, dataptr));
11590         } else {
11591             ret = get_errno(capset(&header, dataptr));
11592         }
11593 
11594         /* The kernel always updates version for both capget and capset */
11595         target_header->version = tswap32(header.version);
11596         unlock_user_struct(target_header, arg1, 1);
11597 
11598         if (arg2) {
11599             if (num == TARGET_NR_capget) {
11600                 for (i = 0; i < data_items; i++) {
11601                     target_data[i].effective = tswap32(data[i].effective);
11602                     target_data[i].permitted = tswap32(data[i].permitted);
11603                     target_data[i].inheritable = tswap32(data[i].inheritable);
11604                 }
11605                 unlock_user(target_data, arg2, target_datalen);
11606             } else {
11607                 unlock_user(target_data, arg2, 0);
11608             }
11609         }
11610         return ret;
11611     }
11612     case TARGET_NR_sigaltstack:
11613         return do_sigaltstack(arg1, arg2, cpu_env);
11614 
11615 #ifdef CONFIG_SENDFILE
11616 #ifdef TARGET_NR_sendfile
11617     case TARGET_NR_sendfile:
11618     {
11619         off_t *offp = NULL;
11620         off_t off;
11621         if (arg3) {
11622             ret = get_user_sal(off, arg3);
11623             if (is_error(ret)) {
11624                 return ret;
11625             }
11626             offp = &off;
11627         }
11628         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11629         if (!is_error(ret) && arg3) {
11630             abi_long ret2 = put_user_sal(off, arg3);
11631             if (is_error(ret2)) {
11632                 ret = ret2;
11633             }
11634         }
11635         return ret;
11636     }
11637 #endif
11638 #ifdef TARGET_NR_sendfile64
11639     case TARGET_NR_sendfile64:
11640     {
11641         off_t *offp = NULL;
11642         off_t off;
11643         if (arg3) {
11644             ret = get_user_s64(off, arg3);
11645             if (is_error(ret)) {
11646                 return ret;
11647             }
11648             offp = &off;
11649         }
11650         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11651         if (!is_error(ret) && arg3) {
11652             abi_long ret2 = put_user_s64(off, arg3);
11653             if (is_error(ret2)) {
11654                 ret = ret2;
11655             }
11656         }
11657         return ret;
11658     }
11659 #endif
11660 #endif
11661 #ifdef TARGET_NR_vfork
11662     case TARGET_NR_vfork:
11663         return get_errno(do_fork(cpu_env,
11664                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11665                          0, 0, 0, 0));
11666 #endif
11667 #ifdef TARGET_NR_ugetrlimit
11668     case TARGET_NR_ugetrlimit:
11669     {
11670 	struct rlimit rlim;
11671 	int resource = target_to_host_resource(arg1);
11672 	ret = get_errno(getrlimit(resource, &rlim));
11673 	if (!is_error(ret)) {
11674 	    struct target_rlimit *target_rlim;
11675             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11676                 return -TARGET_EFAULT;
11677 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11678 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11679             unlock_user_struct(target_rlim, arg2, 1);
11680 	}
11681         return ret;
11682     }
11683 #endif
11684 #ifdef TARGET_NR_truncate64
11685     case TARGET_NR_truncate64:
11686         if (!(p = lock_user_string(arg1)))
11687             return -TARGET_EFAULT;
11688 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11689         unlock_user(p, arg1, 0);
11690         return ret;
11691 #endif
11692 #ifdef TARGET_NR_ftruncate64
11693     case TARGET_NR_ftruncate64:
11694         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11695 #endif
11696 #ifdef TARGET_NR_stat64
11697     case TARGET_NR_stat64:
11698         if (!(p = lock_user_string(arg1))) {
11699             return -TARGET_EFAULT;
11700         }
11701         ret = get_errno(stat(path(p), &st));
11702         unlock_user(p, arg1, 0);
11703         if (!is_error(ret))
11704             ret = host_to_target_stat64(cpu_env, arg2, &st);
11705         return ret;
11706 #endif
11707 #ifdef TARGET_NR_lstat64
11708     case TARGET_NR_lstat64:
11709         if (!(p = lock_user_string(arg1))) {
11710             return -TARGET_EFAULT;
11711         }
11712         ret = get_errno(lstat(path(p), &st));
11713         unlock_user(p, arg1, 0);
11714         if (!is_error(ret))
11715             ret = host_to_target_stat64(cpu_env, arg2, &st);
11716         return ret;
11717 #endif
11718 #ifdef TARGET_NR_fstat64
11719     case TARGET_NR_fstat64:
11720         ret = get_errno(fstat(arg1, &st));
11721         if (!is_error(ret))
11722             ret = host_to_target_stat64(cpu_env, arg2, &st);
11723         return ret;
11724 #endif
11725 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11726 #ifdef TARGET_NR_fstatat64
11727     case TARGET_NR_fstatat64:
11728 #endif
11729 #ifdef TARGET_NR_newfstatat
11730     case TARGET_NR_newfstatat:
11731 #endif
11732         if (!(p = lock_user_string(arg2))) {
11733             return -TARGET_EFAULT;
11734         }
11735         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11736         unlock_user(p, arg2, 0);
11737         if (!is_error(ret))
11738             ret = host_to_target_stat64(cpu_env, arg3, &st);
11739         return ret;
11740 #endif
11741 #if defined(TARGET_NR_statx)
11742     case TARGET_NR_statx:
11743         {
11744             struct target_statx *target_stx;
11745             int dirfd = arg1;
11746             int flags = arg3;
11747 
11748             p = lock_user_string(arg2);
11749             if (p == NULL) {
11750                 return -TARGET_EFAULT;
11751             }
11752 #if defined(__NR_statx)
11753             {
11754                 /*
11755                  * It is assumed that struct statx is architecture independent.
11756                  */
11757                 struct target_statx host_stx;
11758                 int mask = arg4;
11759 
11760                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11761                 if (!is_error(ret)) {
11762                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11763                         unlock_user(p, arg2, 0);
11764                         return -TARGET_EFAULT;
11765                     }
11766                 }
11767 
11768                 if (ret != -TARGET_ENOSYS) {
11769                     unlock_user(p, arg2, 0);
11770                     return ret;
11771                 }
11772             }
11773 #endif
11774             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11775             unlock_user(p, arg2, 0);
11776 
11777             if (!is_error(ret)) {
11778                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11779                     return -TARGET_EFAULT;
11780                 }
11781                 memset(target_stx, 0, sizeof(*target_stx));
11782                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11783                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11784                 __put_user(st.st_ino, &target_stx->stx_ino);
11785                 __put_user(st.st_mode, &target_stx->stx_mode);
11786                 __put_user(st.st_uid, &target_stx->stx_uid);
11787                 __put_user(st.st_gid, &target_stx->stx_gid);
11788                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11789                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11790                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11791                 __put_user(st.st_size, &target_stx->stx_size);
11792                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11793                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11794                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11795                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11796                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11797                 unlock_user_struct(target_stx, arg5, 1);
11798             }
11799         }
11800         return ret;
11801 #endif
11802 #ifdef TARGET_NR_lchown
11803     case TARGET_NR_lchown:
11804         if (!(p = lock_user_string(arg1)))
11805             return -TARGET_EFAULT;
11806         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11807         unlock_user(p, arg1, 0);
11808         return ret;
11809 #endif
11810 #ifdef TARGET_NR_getuid
11811     case TARGET_NR_getuid:
11812         return get_errno(high2lowuid(getuid()));
11813 #endif
11814 #ifdef TARGET_NR_getgid
11815     case TARGET_NR_getgid:
11816         return get_errno(high2lowgid(getgid()));
11817 #endif
11818 #ifdef TARGET_NR_geteuid
11819     case TARGET_NR_geteuid:
11820         return get_errno(high2lowuid(geteuid()));
11821 #endif
11822 #ifdef TARGET_NR_getegid
11823     case TARGET_NR_getegid:
11824         return get_errno(high2lowgid(getegid()));
11825 #endif
11826     case TARGET_NR_setreuid:
11827         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11828     case TARGET_NR_setregid:
11829         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11830     case TARGET_NR_getgroups:
11831         { /* the same code as for TARGET_NR_getgroups32 */
11832             int gidsetsize = arg1;
11833             target_id *target_grouplist;
11834             g_autofree gid_t *grouplist = NULL;
11835             int i;
11836 
11837             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11838                 return -TARGET_EINVAL;
11839             }
11840             if (gidsetsize > 0) {
11841                 grouplist = g_try_new(gid_t, gidsetsize);
11842                 if (!grouplist) {
11843                     return -TARGET_ENOMEM;
11844                 }
11845             }
11846             ret = get_errno(getgroups(gidsetsize, grouplist));
11847             if (!is_error(ret) && gidsetsize > 0) {
11848                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11849                                              gidsetsize * sizeof(target_id), 0);
11850                 if (!target_grouplist) {
11851                     return -TARGET_EFAULT;
11852                 }
11853                 for (i = 0; i < ret; i++) {
11854                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11855                 }
11856                 unlock_user(target_grouplist, arg2,
11857                             gidsetsize * sizeof(target_id));
11858             }
11859             return ret;
11860         }
11861     case TARGET_NR_setgroups:
11862         { /* the same code as for TARGET_NR_setgroups32 */
11863             int gidsetsize = arg1;
11864             target_id *target_grouplist;
11865             g_autofree gid_t *grouplist = NULL;
11866             int i;
11867 
11868             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11869                 return -TARGET_EINVAL;
11870             }
11871             if (gidsetsize > 0) {
11872                 grouplist = g_try_new(gid_t, gidsetsize);
11873                 if (!grouplist) {
11874                     return -TARGET_ENOMEM;
11875                 }
11876                 target_grouplist = lock_user(VERIFY_READ, arg2,
11877                                              gidsetsize * sizeof(target_id), 1);
11878                 if (!target_grouplist) {
11879                     return -TARGET_EFAULT;
11880                 }
11881                 for (i = 0; i < gidsetsize; i++) {
11882                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11883                 }
11884                 unlock_user(target_grouplist, arg2,
11885                             gidsetsize * sizeof(target_id));
11886             }
11887             return get_errno(setgroups(gidsetsize, grouplist));
11888         }
11889     case TARGET_NR_fchown:
11890         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11891 #if defined(TARGET_NR_fchownat)
11892     case TARGET_NR_fchownat:
11893         if (!(p = lock_user_string(arg2)))
11894             return -TARGET_EFAULT;
11895         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11896                                  low2highgid(arg4), arg5));
11897         unlock_user(p, arg2, 0);
11898         return ret;
11899 #endif
11900 #ifdef TARGET_NR_setresuid
11901     case TARGET_NR_setresuid:
11902         return get_errno(sys_setresuid(low2highuid(arg1),
11903                                        low2highuid(arg2),
11904                                        low2highuid(arg3)));
11905 #endif
11906 #ifdef TARGET_NR_getresuid
11907     case TARGET_NR_getresuid:
11908         {
11909             uid_t ruid, euid, suid;
11910             ret = get_errno(getresuid(&ruid, &euid, &suid));
11911             if (!is_error(ret)) {
11912                 if (put_user_id(high2lowuid(ruid), arg1)
11913                     || put_user_id(high2lowuid(euid), arg2)
11914                     || put_user_id(high2lowuid(suid), arg3))
11915                     return -TARGET_EFAULT;
11916             }
11917         }
11918         return ret;
11919 #endif
11920 #ifdef TARGET_NR_getresgid
11921     case TARGET_NR_setresgid:
11922         return get_errno(sys_setresgid(low2highgid(arg1),
11923                                        low2highgid(arg2),
11924                                        low2highgid(arg3)));
11925 #endif
11926 #ifdef TARGET_NR_getresgid
11927     case TARGET_NR_getresgid:
11928         {
11929             gid_t rgid, egid, sgid;
11930             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11931             if (!is_error(ret)) {
11932                 if (put_user_id(high2lowgid(rgid), arg1)
11933                     || put_user_id(high2lowgid(egid), arg2)
11934                     || put_user_id(high2lowgid(sgid), arg3))
11935                     return -TARGET_EFAULT;
11936             }
11937         }
11938         return ret;
11939 #endif
11940 #ifdef TARGET_NR_chown
11941     case TARGET_NR_chown:
11942         if (!(p = lock_user_string(arg1)))
11943             return -TARGET_EFAULT;
11944         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11945         unlock_user(p, arg1, 0);
11946         return ret;
11947 #endif
11948     case TARGET_NR_setuid:
11949         return get_errno(sys_setuid(low2highuid(arg1)));
11950     case TARGET_NR_setgid:
11951         return get_errno(sys_setgid(low2highgid(arg1)));
11952     case TARGET_NR_setfsuid:
11953         return get_errno(setfsuid(arg1));
11954     case TARGET_NR_setfsgid:
11955         return get_errno(setfsgid(arg1));
11956 
11957 #ifdef TARGET_NR_lchown32
11958     case TARGET_NR_lchown32:
11959         if (!(p = lock_user_string(arg1)))
11960             return -TARGET_EFAULT;
11961         ret = get_errno(lchown(p, arg2, arg3));
11962         unlock_user(p, arg1, 0);
11963         return ret;
11964 #endif
11965 #ifdef TARGET_NR_getuid32
11966     case TARGET_NR_getuid32:
11967         return get_errno(getuid());
11968 #endif
11969 
11970 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11971    /* Alpha specific */
11972     case TARGET_NR_getxuid:
11973          {
11974             uid_t euid;
11975             euid=geteuid();
11976             cpu_env->ir[IR_A4]=euid;
11977          }
11978         return get_errno(getuid());
11979 #endif
11980 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11981    /* Alpha specific */
11982     case TARGET_NR_getxgid:
11983          {
11984             uid_t egid;
11985             egid=getegid();
11986             cpu_env->ir[IR_A4]=egid;
11987          }
11988         return get_errno(getgid());
11989 #endif
11990 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11991     /* Alpha specific */
11992     case TARGET_NR_osf_getsysinfo:
11993         ret = -TARGET_EOPNOTSUPP;
11994         switch (arg1) {
11995           case TARGET_GSI_IEEE_FP_CONTROL:
11996             {
11997                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11998                 uint64_t swcr = cpu_env->swcr;
11999 
12000                 swcr &= ~SWCR_STATUS_MASK;
12001                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12002 
12003                 if (put_user_u64 (swcr, arg2))
12004                         return -TARGET_EFAULT;
12005                 ret = 0;
12006             }
12007             break;
12008 
12009           /* case GSI_IEEE_STATE_AT_SIGNAL:
12010              -- Not implemented in linux kernel.
12011              case GSI_UACPROC:
12012              -- Retrieves current unaligned access state; not much used.
12013              case GSI_PROC_TYPE:
12014              -- Retrieves implver information; surely not used.
12015              case GSI_GET_HWRPB:
12016              -- Grabs a copy of the HWRPB; surely not used.
12017           */
12018         }
12019         return ret;
12020 #endif
12021 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12022     /* Alpha specific */
12023     case TARGET_NR_osf_setsysinfo:
12024         ret = -TARGET_EOPNOTSUPP;
12025         switch (arg1) {
12026           case TARGET_SSI_IEEE_FP_CONTROL:
12027             {
12028                 uint64_t swcr, fpcr;
12029 
12030                 if (get_user_u64 (swcr, arg2)) {
12031                     return -TARGET_EFAULT;
12032                 }
12033 
12034                 /*
12035                  * The kernel calls swcr_update_status to update the
12036                  * status bits from the fpcr at every point that it
12037                  * could be queried.  Therefore, we store the status
12038                  * bits only in FPCR.
12039                  */
12040                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12041 
12042                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12043                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12044                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12045                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12046                 ret = 0;
12047             }
12048             break;
12049 
12050           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12051             {
12052                 uint64_t exc, fpcr, fex;
12053 
12054                 if (get_user_u64(exc, arg2)) {
12055                     return -TARGET_EFAULT;
12056                 }
12057                 exc &= SWCR_STATUS_MASK;
12058                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12059 
12060                 /* Old exceptions are not signaled.  */
12061                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12062                 fex = exc & ~fex;
12063                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12064                 fex &= (cpu_env)->swcr;
12065 
12066                 /* Update the hardware fpcr.  */
12067                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12068                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12069 
12070                 if (fex) {
12071                     int si_code = TARGET_FPE_FLTUNK;
12072                     target_siginfo_t info;
12073 
12074                     if (fex & SWCR_TRAP_ENABLE_DNO) {
12075                         si_code = TARGET_FPE_FLTUND;
12076                     }
12077                     if (fex & SWCR_TRAP_ENABLE_INE) {
12078                         si_code = TARGET_FPE_FLTRES;
12079                     }
12080                     if (fex & SWCR_TRAP_ENABLE_UNF) {
12081                         si_code = TARGET_FPE_FLTUND;
12082                     }
12083                     if (fex & SWCR_TRAP_ENABLE_OVF) {
12084                         si_code = TARGET_FPE_FLTOVF;
12085                     }
12086                     if (fex & SWCR_TRAP_ENABLE_DZE) {
12087                         si_code = TARGET_FPE_FLTDIV;
12088                     }
12089                     if (fex & SWCR_TRAP_ENABLE_INV) {
12090                         si_code = TARGET_FPE_FLTINV;
12091                     }
12092 
12093                     info.si_signo = SIGFPE;
12094                     info.si_errno = 0;
12095                     info.si_code = si_code;
12096                     info._sifields._sigfault._addr = (cpu_env)->pc;
12097                     queue_signal(cpu_env, info.si_signo,
12098                                  QEMU_SI_FAULT, &info);
12099                 }
12100                 ret = 0;
12101             }
12102             break;
12103 
12104           /* case SSI_NVPAIRS:
12105              -- Used with SSIN_UACPROC to enable unaligned accesses.
12106              case SSI_IEEE_STATE_AT_SIGNAL:
12107              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12108              -- Not implemented in linux kernel
12109           */
12110         }
12111         return ret;
12112 #endif
12113 #ifdef TARGET_NR_osf_sigprocmask
12114     /* Alpha specific.  */
12115     case TARGET_NR_osf_sigprocmask:
12116         {
12117             abi_ulong mask;
12118             int how;
12119             sigset_t set, oldset;
12120 
12121             switch(arg1) {
12122             case TARGET_SIG_BLOCK:
12123                 how = SIG_BLOCK;
12124                 break;
12125             case TARGET_SIG_UNBLOCK:
12126                 how = SIG_UNBLOCK;
12127                 break;
12128             case TARGET_SIG_SETMASK:
12129                 how = SIG_SETMASK;
12130                 break;
12131             default:
12132                 return -TARGET_EINVAL;
12133             }
12134             mask = arg2;
12135             target_to_host_old_sigset(&set, &mask);
12136             ret = do_sigprocmask(how, &set, &oldset);
12137             if (!ret) {
12138                 host_to_target_old_sigset(&mask, &oldset);
12139                 ret = mask;
12140             }
12141         }
12142         return ret;
12143 #endif
12144 
12145 #ifdef TARGET_NR_getgid32
12146     case TARGET_NR_getgid32:
12147         return get_errno(getgid());
12148 #endif
12149 #ifdef TARGET_NR_geteuid32
12150     case TARGET_NR_geteuid32:
12151         return get_errno(geteuid());
12152 #endif
12153 #ifdef TARGET_NR_getegid32
12154     case TARGET_NR_getegid32:
12155         return get_errno(getegid());
12156 #endif
12157 #ifdef TARGET_NR_setreuid32
12158     case TARGET_NR_setreuid32:
12159         return get_errno(setreuid(arg1, arg2));
12160 #endif
12161 #ifdef TARGET_NR_setregid32
12162     case TARGET_NR_setregid32:
12163         return get_errno(setregid(arg1, arg2));
12164 #endif
12165 #ifdef TARGET_NR_getgroups32
12166     case TARGET_NR_getgroups32:
12167         { /* the same code as for TARGET_NR_getgroups */
12168             int gidsetsize = arg1;
12169             uint32_t *target_grouplist;
12170             g_autofree gid_t *grouplist = NULL;
12171             int i;
12172 
12173             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12174                 return -TARGET_EINVAL;
12175             }
12176             if (gidsetsize > 0) {
12177                 grouplist = g_try_new(gid_t, gidsetsize);
12178                 if (!grouplist) {
12179                     return -TARGET_ENOMEM;
12180                 }
12181             }
12182             ret = get_errno(getgroups(gidsetsize, grouplist));
12183             if (!is_error(ret) && gidsetsize > 0) {
12184                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12185                                              gidsetsize * 4, 0);
12186                 if (!target_grouplist) {
12187                     return -TARGET_EFAULT;
12188                 }
12189                 for (i = 0; i < ret; i++) {
12190                     target_grouplist[i] = tswap32(grouplist[i]);
12191                 }
12192                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12193             }
12194             return ret;
12195         }
12196 #endif
12197 #ifdef TARGET_NR_setgroups32
12198     case TARGET_NR_setgroups32:
12199         { /* the same code as for TARGET_NR_setgroups */
12200             int gidsetsize = arg1;
12201             uint32_t *target_grouplist;
12202             g_autofree gid_t *grouplist = NULL;
12203             int i;
12204 
12205             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12206                 return -TARGET_EINVAL;
12207             }
12208             if (gidsetsize > 0) {
12209                 grouplist = g_try_new(gid_t, gidsetsize);
12210                 if (!grouplist) {
12211                     return -TARGET_ENOMEM;
12212                 }
12213                 target_grouplist = lock_user(VERIFY_READ, arg2,
12214                                              gidsetsize * 4, 1);
12215                 if (!target_grouplist) {
12216                     return -TARGET_EFAULT;
12217                 }
12218                 for (i = 0; i < gidsetsize; i++) {
12219                     grouplist[i] = tswap32(target_grouplist[i]);
12220                 }
12221                 unlock_user(target_grouplist, arg2, 0);
12222             }
12223             return get_errno(setgroups(gidsetsize, grouplist));
12224         }
12225 #endif
12226 #ifdef TARGET_NR_fchown32
12227     case TARGET_NR_fchown32:
12228         return get_errno(fchown(arg1, arg2, arg3));
12229 #endif
12230 #ifdef TARGET_NR_setresuid32
12231     case TARGET_NR_setresuid32:
12232         return get_errno(sys_setresuid(arg1, arg2, arg3));
12233 #endif
12234 #ifdef TARGET_NR_getresuid32
12235     case TARGET_NR_getresuid32:
12236         {
12237             uid_t ruid, euid, suid;
12238             ret = get_errno(getresuid(&ruid, &euid, &suid));
12239             if (!is_error(ret)) {
12240                 if (put_user_u32(ruid, arg1)
12241                     || put_user_u32(euid, arg2)
12242                     || put_user_u32(suid, arg3))
12243                     return -TARGET_EFAULT;
12244             }
12245         }
12246         return ret;
12247 #endif
12248 #ifdef TARGET_NR_setresgid32
12249     case TARGET_NR_setresgid32:
12250         return get_errno(sys_setresgid(arg1, arg2, arg3));
12251 #endif
12252 #ifdef TARGET_NR_getresgid32
12253     case TARGET_NR_getresgid32:
12254         {
12255             gid_t rgid, egid, sgid;
12256             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12257             if (!is_error(ret)) {
12258                 if (put_user_u32(rgid, arg1)
12259                     || put_user_u32(egid, arg2)
12260                     || put_user_u32(sgid, arg3))
12261                     return -TARGET_EFAULT;
12262             }
12263         }
12264         return ret;
12265 #endif
12266 #ifdef TARGET_NR_chown32
12267     case TARGET_NR_chown32:
12268         if (!(p = lock_user_string(arg1)))
12269             return -TARGET_EFAULT;
12270         ret = get_errno(chown(p, arg2, arg3));
12271         unlock_user(p, arg1, 0);
12272         return ret;
12273 #endif
12274 #ifdef TARGET_NR_setuid32
12275     case TARGET_NR_setuid32:
12276         return get_errno(sys_setuid(arg1));
12277 #endif
12278 #ifdef TARGET_NR_setgid32
12279     case TARGET_NR_setgid32:
12280         return get_errno(sys_setgid(arg1));
12281 #endif
12282 #ifdef TARGET_NR_setfsuid32
12283     case TARGET_NR_setfsuid32:
12284         return get_errno(setfsuid(arg1));
12285 #endif
12286 #ifdef TARGET_NR_setfsgid32
12287     case TARGET_NR_setfsgid32:
12288         return get_errno(setfsgid(arg1));
12289 #endif
12290 #ifdef TARGET_NR_mincore
12291     case TARGET_NR_mincore:
12292         {
12293             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12294             if (!a) {
12295                 return -TARGET_ENOMEM;
12296             }
12297             p = lock_user_string(arg3);
12298             if (!p) {
12299                 ret = -TARGET_EFAULT;
12300             } else {
12301                 ret = get_errno(mincore(a, arg2, p));
12302                 unlock_user(p, arg3, ret);
12303             }
12304             unlock_user(a, arg1, 0);
12305         }
12306         return ret;
12307 #endif
12308 #ifdef TARGET_NR_arm_fadvise64_64
12309     case TARGET_NR_arm_fadvise64_64:
12310         /* arm_fadvise64_64 looks like fadvise64_64 but
12311          * with different argument order: fd, advice, offset, len
12312          * rather than the usual fd, offset, len, advice.
12313          * Note that offset and len are both 64-bit so appear as
12314          * pairs of 32-bit registers.
12315          */
12316         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12317                             target_offset64(arg5, arg6), arg2);
12318         return -host_to_target_errno(ret);
12319 #endif
12320 
12321 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12322 
12323 #ifdef TARGET_NR_fadvise64_64
12324     case TARGET_NR_fadvise64_64:
12325 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12326         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12327         ret = arg2;
12328         arg2 = arg3;
12329         arg3 = arg4;
12330         arg4 = arg5;
12331         arg5 = arg6;
12332         arg6 = ret;
12333 #else
12334         /* 6 args: fd, offset (high, low), len (high, low), advice */
12335         if (regpairs_aligned(cpu_env, num)) {
12336             /* offset is in (3,4), len in (5,6) and advice in 7 */
12337             arg2 = arg3;
12338             arg3 = arg4;
12339             arg4 = arg5;
12340             arg5 = arg6;
12341             arg6 = arg7;
12342         }
12343 #endif
12344         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12345                             target_offset64(arg4, arg5), arg6);
12346         return -host_to_target_errno(ret);
12347 #endif
12348 
12349 #ifdef TARGET_NR_fadvise64
12350     case TARGET_NR_fadvise64:
12351         /* 5 args: fd, offset (high, low), len, advice */
12352         if (regpairs_aligned(cpu_env, num)) {
12353             /* offset is in (3,4), len in 5 and advice in 6 */
12354             arg2 = arg3;
12355             arg3 = arg4;
12356             arg4 = arg5;
12357             arg5 = arg6;
12358         }
12359         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12360         return -host_to_target_errno(ret);
12361 #endif
12362 
12363 #else /* not a 32-bit ABI */
12364 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12365 #ifdef TARGET_NR_fadvise64_64
12366     case TARGET_NR_fadvise64_64:
12367 #endif
12368 #ifdef TARGET_NR_fadvise64
12369     case TARGET_NR_fadvise64:
12370 #endif
12371 #ifdef TARGET_S390X
12372         switch (arg4) {
12373         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12374         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12375         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12376         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12377         default: break;
12378         }
12379 #endif
12380         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12381 #endif
12382 #endif /* end of 64-bit ABI fadvise handling */
12383 
12384 #ifdef TARGET_NR_madvise
12385     case TARGET_NR_madvise:
12386         return target_madvise(arg1, arg2, arg3);
12387 #endif
12388 #ifdef TARGET_NR_fcntl64
12389     case TARGET_NR_fcntl64:
12390     {
12391         int cmd;
12392         struct flock64 fl;
12393         from_flock64_fn *copyfrom = copy_from_user_flock64;
12394         to_flock64_fn *copyto = copy_to_user_flock64;
12395 
12396 #ifdef TARGET_ARM
12397         if (!cpu_env->eabi) {
12398             copyfrom = copy_from_user_oabi_flock64;
12399             copyto = copy_to_user_oabi_flock64;
12400         }
12401 #endif
12402 
12403         cmd = target_to_host_fcntl_cmd(arg2);
12404         if (cmd == -TARGET_EINVAL) {
12405             return cmd;
12406         }
12407 
12408         switch(arg2) {
12409         case TARGET_F_GETLK64:
12410             ret = copyfrom(&fl, arg3);
12411             if (ret) {
12412                 break;
12413             }
12414             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12415             if (ret == 0) {
12416                 ret = copyto(arg3, &fl);
12417             }
12418 	    break;
12419 
12420         case TARGET_F_SETLK64:
12421         case TARGET_F_SETLKW64:
12422             ret = copyfrom(&fl, arg3);
12423             if (ret) {
12424                 break;
12425             }
12426             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12427 	    break;
12428         default:
12429             ret = do_fcntl(arg1, arg2, arg3);
12430             break;
12431         }
12432         return ret;
12433     }
12434 #endif
12435 #ifdef TARGET_NR_cacheflush
12436     case TARGET_NR_cacheflush:
12437         /* self-modifying code is handled automatically, so nothing needed */
12438         return 0;
12439 #endif
12440 #ifdef TARGET_NR_getpagesize
12441     case TARGET_NR_getpagesize:
12442         return TARGET_PAGE_SIZE;
12443 #endif
12444     case TARGET_NR_gettid:
12445         return get_errno(sys_gettid());
12446 #ifdef TARGET_NR_readahead
12447     case TARGET_NR_readahead:
12448 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12449         if (regpairs_aligned(cpu_env, num)) {
12450             arg2 = arg3;
12451             arg3 = arg4;
12452             arg4 = arg5;
12453         }
12454         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12455 #else
12456         ret = get_errno(readahead(arg1, arg2, arg3));
12457 #endif
12458         return ret;
12459 #endif
12460 #ifdef CONFIG_ATTR
12461 #ifdef TARGET_NR_setxattr
12462     case TARGET_NR_listxattr:
12463     case TARGET_NR_llistxattr:
12464     {
12465         void *p, *b = 0;
12466         if (arg2) {
12467             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12468             if (!b) {
12469                 return -TARGET_EFAULT;
12470             }
12471         }
12472         p = lock_user_string(arg1);
12473         if (p) {
12474             if (num == TARGET_NR_listxattr) {
12475                 ret = get_errno(listxattr(p, b, arg3));
12476             } else {
12477                 ret = get_errno(llistxattr(p, b, arg3));
12478             }
12479         } else {
12480             ret = -TARGET_EFAULT;
12481         }
12482         unlock_user(p, arg1, 0);
12483         unlock_user(b, arg2, arg3);
12484         return ret;
12485     }
12486     case TARGET_NR_flistxattr:
12487     {
12488         void *b = 0;
12489         if (arg2) {
12490             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12491             if (!b) {
12492                 return -TARGET_EFAULT;
12493             }
12494         }
12495         ret = get_errno(flistxattr(arg1, b, arg3));
12496         unlock_user(b, arg2, arg3);
12497         return ret;
12498     }
12499     case TARGET_NR_setxattr:
12500     case TARGET_NR_lsetxattr:
12501         {
12502             void *p, *n, *v = 0;
12503             if (arg3) {
12504                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12505                 if (!v) {
12506                     return -TARGET_EFAULT;
12507                 }
12508             }
12509             p = lock_user_string(arg1);
12510             n = lock_user_string(arg2);
12511             if (p && n) {
12512                 if (num == TARGET_NR_setxattr) {
12513                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12514                 } else {
12515                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12516                 }
12517             } else {
12518                 ret = -TARGET_EFAULT;
12519             }
12520             unlock_user(p, arg1, 0);
12521             unlock_user(n, arg2, 0);
12522             unlock_user(v, arg3, 0);
12523         }
12524         return ret;
12525     case TARGET_NR_fsetxattr:
12526         {
12527             void *n, *v = 0;
12528             if (arg3) {
12529                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12530                 if (!v) {
12531                     return -TARGET_EFAULT;
12532                 }
12533             }
12534             n = lock_user_string(arg2);
12535             if (n) {
12536                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12537             } else {
12538                 ret = -TARGET_EFAULT;
12539             }
12540             unlock_user(n, arg2, 0);
12541             unlock_user(v, arg3, 0);
12542         }
12543         return ret;
12544     case TARGET_NR_getxattr:
12545     case TARGET_NR_lgetxattr:
12546         {
12547             void *p, *n, *v = 0;
12548             if (arg3) {
12549                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12550                 if (!v) {
12551                     return -TARGET_EFAULT;
12552                 }
12553             }
12554             p = lock_user_string(arg1);
12555             n = lock_user_string(arg2);
12556             if (p && n) {
12557                 if (num == TARGET_NR_getxattr) {
12558                     ret = get_errno(getxattr(p, n, v, arg4));
12559                 } else {
12560                     ret = get_errno(lgetxattr(p, n, v, arg4));
12561                 }
12562             } else {
12563                 ret = -TARGET_EFAULT;
12564             }
12565             unlock_user(p, arg1, 0);
12566             unlock_user(n, arg2, 0);
12567             unlock_user(v, arg3, arg4);
12568         }
12569         return ret;
12570     case TARGET_NR_fgetxattr:
12571         {
12572             void *n, *v = 0;
12573             if (arg3) {
12574                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12575                 if (!v) {
12576                     return -TARGET_EFAULT;
12577                 }
12578             }
12579             n = lock_user_string(arg2);
12580             if (n) {
12581                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12582             } else {
12583                 ret = -TARGET_EFAULT;
12584             }
12585             unlock_user(n, arg2, 0);
12586             unlock_user(v, arg3, arg4);
12587         }
12588         return ret;
12589     case TARGET_NR_removexattr:
12590     case TARGET_NR_lremovexattr:
12591         {
12592             void *p, *n;
12593             p = lock_user_string(arg1);
12594             n = lock_user_string(arg2);
12595             if (p && n) {
12596                 if (num == TARGET_NR_removexattr) {
12597                     ret = get_errno(removexattr(p, n));
12598                 } else {
12599                     ret = get_errno(lremovexattr(p, n));
12600                 }
12601             } else {
12602                 ret = -TARGET_EFAULT;
12603             }
12604             unlock_user(p, arg1, 0);
12605             unlock_user(n, arg2, 0);
12606         }
12607         return ret;
12608     case TARGET_NR_fremovexattr:
12609         {
12610             void *n;
12611             n = lock_user_string(arg2);
12612             if (n) {
12613                 ret = get_errno(fremovexattr(arg1, n));
12614             } else {
12615                 ret = -TARGET_EFAULT;
12616             }
12617             unlock_user(n, arg2, 0);
12618         }
12619         return ret;
12620 #endif
12621 #endif /* CONFIG_ATTR */
12622 #ifdef TARGET_NR_set_thread_area
12623     case TARGET_NR_set_thread_area:
12624 #if defined(TARGET_MIPS)
12625       cpu_env->active_tc.CP0_UserLocal = arg1;
12626       return 0;
12627 #elif defined(TARGET_CRIS)
12628       if (arg1 & 0xff)
12629           ret = -TARGET_EINVAL;
12630       else {
12631           cpu_env->pregs[PR_PID] = arg1;
12632           ret = 0;
12633       }
12634       return ret;
12635 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12636       return do_set_thread_area(cpu_env, arg1);
12637 #elif defined(TARGET_M68K)
12638       {
12639           TaskState *ts = cpu->opaque;
12640           ts->tp_value = arg1;
12641           return 0;
12642       }
12643 #else
12644       return -TARGET_ENOSYS;
12645 #endif
12646 #endif
12647 #ifdef TARGET_NR_get_thread_area
12648     case TARGET_NR_get_thread_area:
12649 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12650         return do_get_thread_area(cpu_env, arg1);
12651 #elif defined(TARGET_M68K)
12652         {
12653             TaskState *ts = cpu->opaque;
12654             return ts->tp_value;
12655         }
12656 #else
12657         return -TARGET_ENOSYS;
12658 #endif
12659 #endif
12660 #ifdef TARGET_NR_getdomainname
12661     case TARGET_NR_getdomainname:
12662         return -TARGET_ENOSYS;
12663 #endif
12664 
12665 #ifdef TARGET_NR_clock_settime
12666     case TARGET_NR_clock_settime:
12667     {
12668         struct timespec ts;
12669 
12670         ret = target_to_host_timespec(&ts, arg2);
12671         if (!is_error(ret)) {
12672             ret = get_errno(clock_settime(arg1, &ts));
12673         }
12674         return ret;
12675     }
12676 #endif
12677 #ifdef TARGET_NR_clock_settime64
12678     case TARGET_NR_clock_settime64:
12679     {
12680         struct timespec ts;
12681 
12682         ret = target_to_host_timespec64(&ts, arg2);
12683         if (!is_error(ret)) {
12684             ret = get_errno(clock_settime(arg1, &ts));
12685         }
12686         return ret;
12687     }
12688 #endif
12689 #ifdef TARGET_NR_clock_gettime
12690     case TARGET_NR_clock_gettime:
12691     {
12692         struct timespec ts;
12693         ret = get_errno(clock_gettime(arg1, &ts));
12694         if (!is_error(ret)) {
12695             ret = host_to_target_timespec(arg2, &ts);
12696         }
12697         return ret;
12698     }
12699 #endif
12700 #ifdef TARGET_NR_clock_gettime64
12701     case TARGET_NR_clock_gettime64:
12702     {
12703         struct timespec ts;
12704         ret = get_errno(clock_gettime(arg1, &ts));
12705         if (!is_error(ret)) {
12706             ret = host_to_target_timespec64(arg2, &ts);
12707         }
12708         return ret;
12709     }
12710 #endif
12711 #ifdef TARGET_NR_clock_getres
12712     case TARGET_NR_clock_getres:
12713     {
12714         struct timespec ts;
12715         ret = get_errno(clock_getres(arg1, &ts));
12716         if (!is_error(ret)) {
12717             host_to_target_timespec(arg2, &ts);
12718         }
12719         return ret;
12720     }
12721 #endif
12722 #ifdef TARGET_NR_clock_getres_time64
12723     case TARGET_NR_clock_getres_time64:
12724     {
12725         struct timespec ts;
12726         ret = get_errno(clock_getres(arg1, &ts));
12727         if (!is_error(ret)) {
12728             host_to_target_timespec64(arg2, &ts);
12729         }
12730         return ret;
12731     }
12732 #endif
12733 #ifdef TARGET_NR_clock_nanosleep
12734     case TARGET_NR_clock_nanosleep:
12735     {
12736         struct timespec ts;
12737         if (target_to_host_timespec(&ts, arg3)) {
12738             return -TARGET_EFAULT;
12739         }
12740         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12741                                              &ts, arg4 ? &ts : NULL));
12742         /*
12743          * if the call is interrupted by a signal handler, it fails
12744          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12745          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12746          */
12747         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12748             host_to_target_timespec(arg4, &ts)) {
12749               return -TARGET_EFAULT;
12750         }
12751 
12752         return ret;
12753     }
12754 #endif
12755 #ifdef TARGET_NR_clock_nanosleep_time64
12756     case TARGET_NR_clock_nanosleep_time64:
12757     {
12758         struct timespec ts;
12759 
12760         if (target_to_host_timespec64(&ts, arg3)) {
12761             return -TARGET_EFAULT;
12762         }
12763 
12764         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12765                                              &ts, arg4 ? &ts : NULL));
12766 
12767         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12768             host_to_target_timespec64(arg4, &ts)) {
12769             return -TARGET_EFAULT;
12770         }
12771         return ret;
12772     }
12773 #endif
12774 
12775 #if defined(TARGET_NR_set_tid_address)
12776     case TARGET_NR_set_tid_address:
12777     {
12778         TaskState *ts = cpu->opaque;
12779         ts->child_tidptr = arg1;
12780         /* do not call host set_tid_address() syscall, instead return tid() */
12781         return get_errno(sys_gettid());
12782     }
12783 #endif
12784 
12785     case TARGET_NR_tkill:
12786         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12787 
12788     case TARGET_NR_tgkill:
12789         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12790                          target_to_host_signal(arg3)));
12791 
12792 #ifdef TARGET_NR_set_robust_list
12793     case TARGET_NR_set_robust_list:
12794     case TARGET_NR_get_robust_list:
12795         /* The ABI for supporting robust futexes has userspace pass
12796          * the kernel a pointer to a linked list which is updated by
12797          * userspace after the syscall; the list is walked by the kernel
12798          * when the thread exits. Since the linked list in QEMU guest
12799          * memory isn't a valid linked list for the host and we have
12800          * no way to reliably intercept the thread-death event, we can't
12801          * support these. Silently return ENOSYS so that guest userspace
12802          * falls back to a non-robust futex implementation (which should
12803          * be OK except in the corner case of the guest crashing while
12804          * holding a mutex that is shared with another process via
12805          * shared memory).
12806          */
12807         return -TARGET_ENOSYS;
12808 #endif
12809 
12810 #if defined(TARGET_NR_utimensat)
12811     case TARGET_NR_utimensat:
12812         {
12813             struct timespec *tsp, ts[2];
12814             if (!arg3) {
12815                 tsp = NULL;
12816             } else {
12817                 if (target_to_host_timespec(ts, arg3)) {
12818                     return -TARGET_EFAULT;
12819                 }
12820                 if (target_to_host_timespec(ts + 1, arg3 +
12821                                             sizeof(struct target_timespec))) {
12822                     return -TARGET_EFAULT;
12823                 }
12824                 tsp = ts;
12825             }
12826             if (!arg2)
12827                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12828             else {
12829                 if (!(p = lock_user_string(arg2))) {
12830                     return -TARGET_EFAULT;
12831                 }
12832                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12833                 unlock_user(p, arg2, 0);
12834             }
12835         }
12836         return ret;
12837 #endif
12838 #ifdef TARGET_NR_utimensat_time64
12839     case TARGET_NR_utimensat_time64:
12840         {
12841             struct timespec *tsp, ts[2];
12842             if (!arg3) {
12843                 tsp = NULL;
12844             } else {
12845                 if (target_to_host_timespec64(ts, arg3)) {
12846                     return -TARGET_EFAULT;
12847                 }
12848                 if (target_to_host_timespec64(ts + 1, arg3 +
12849                                      sizeof(struct target__kernel_timespec))) {
12850                     return -TARGET_EFAULT;
12851                 }
12852                 tsp = ts;
12853             }
12854             if (!arg2)
12855                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12856             else {
12857                 p = lock_user_string(arg2);
12858                 if (!p) {
12859                     return -TARGET_EFAULT;
12860                 }
12861                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12862                 unlock_user(p, arg2, 0);
12863             }
12864         }
12865         return ret;
12866 #endif
12867 #ifdef TARGET_NR_futex
12868     case TARGET_NR_futex:
12869         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12870 #endif
12871 #ifdef TARGET_NR_futex_time64
12872     case TARGET_NR_futex_time64:
12873         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12874 #endif
12875 #ifdef CONFIG_INOTIFY
12876 #if defined(TARGET_NR_inotify_init)
12877     case TARGET_NR_inotify_init:
12878         ret = get_errno(inotify_init());
12879         if (ret >= 0) {
12880             fd_trans_register(ret, &target_inotify_trans);
12881         }
12882         return ret;
12883 #endif
12884 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12885     case TARGET_NR_inotify_init1:
12886         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12887                                           fcntl_flags_tbl)));
12888         if (ret >= 0) {
12889             fd_trans_register(ret, &target_inotify_trans);
12890         }
12891         return ret;
12892 #endif
12893 #if defined(TARGET_NR_inotify_add_watch)
12894     case TARGET_NR_inotify_add_watch:
12895         p = lock_user_string(arg2);
12896         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12897         unlock_user(p, arg2, 0);
12898         return ret;
12899 #endif
12900 #if defined(TARGET_NR_inotify_rm_watch)
12901     case TARGET_NR_inotify_rm_watch:
12902         return get_errno(inotify_rm_watch(arg1, arg2));
12903 #endif
12904 #endif
12905 
12906 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12907     case TARGET_NR_mq_open:
12908         {
12909             struct mq_attr posix_mq_attr;
12910             struct mq_attr *pposix_mq_attr;
12911             int host_flags;
12912 
12913             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12914             pposix_mq_attr = NULL;
12915             if (arg4) {
12916                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12917                     return -TARGET_EFAULT;
12918                 }
12919                 pposix_mq_attr = &posix_mq_attr;
12920             }
12921             p = lock_user_string(arg1 - 1);
12922             if (!p) {
12923                 return -TARGET_EFAULT;
12924             }
12925             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12926             unlock_user (p, arg1, 0);
12927         }
12928         return ret;
12929 
12930     case TARGET_NR_mq_unlink:
12931         p = lock_user_string(arg1 - 1);
12932         if (!p) {
12933             return -TARGET_EFAULT;
12934         }
12935         ret = get_errno(mq_unlink(p));
12936         unlock_user (p, arg1, 0);
12937         return ret;
12938 
12939 #ifdef TARGET_NR_mq_timedsend
12940     case TARGET_NR_mq_timedsend:
12941         {
12942             struct timespec ts;
12943 
12944             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12945             if (arg5 != 0) {
12946                 if (target_to_host_timespec(&ts, arg5)) {
12947                     return -TARGET_EFAULT;
12948                 }
12949                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12950                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12951                     return -TARGET_EFAULT;
12952                 }
12953             } else {
12954                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12955             }
12956             unlock_user (p, arg2, arg3);
12957         }
12958         return ret;
12959 #endif
12960 #ifdef TARGET_NR_mq_timedsend_time64
12961     case TARGET_NR_mq_timedsend_time64:
12962         {
12963             struct timespec ts;
12964 
12965             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12966             if (arg5 != 0) {
12967                 if (target_to_host_timespec64(&ts, arg5)) {
12968                     return -TARGET_EFAULT;
12969                 }
12970                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12971                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12972                     return -TARGET_EFAULT;
12973                 }
12974             } else {
12975                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12976             }
12977             unlock_user(p, arg2, arg3);
12978         }
12979         return ret;
12980 #endif
12981 
12982 #ifdef TARGET_NR_mq_timedreceive
12983     case TARGET_NR_mq_timedreceive:
12984         {
12985             struct timespec ts;
12986             unsigned int prio;
12987 
12988             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12989             if (arg5 != 0) {
12990                 if (target_to_host_timespec(&ts, arg5)) {
12991                     return -TARGET_EFAULT;
12992                 }
12993                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12994                                                      &prio, &ts));
12995                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12996                     return -TARGET_EFAULT;
12997                 }
12998             } else {
12999                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13000                                                      &prio, NULL));
13001             }
13002             unlock_user (p, arg2, arg3);
13003             if (arg4 != 0)
13004                 put_user_u32(prio, arg4);
13005         }
13006         return ret;
13007 #endif
13008 #ifdef TARGET_NR_mq_timedreceive_time64
13009     case TARGET_NR_mq_timedreceive_time64:
13010         {
13011             struct timespec ts;
13012             unsigned int prio;
13013 
13014             p = lock_user(VERIFY_READ, arg2, arg3, 1);
13015             if (arg5 != 0) {
13016                 if (target_to_host_timespec64(&ts, arg5)) {
13017                     return -TARGET_EFAULT;
13018                 }
13019                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13020                                                      &prio, &ts));
13021                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13022                     return -TARGET_EFAULT;
13023                 }
13024             } else {
13025                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13026                                                      &prio, NULL));
13027             }
13028             unlock_user(p, arg2, arg3);
13029             if (arg4 != 0) {
13030                 put_user_u32(prio, arg4);
13031             }
13032         }
13033         return ret;
13034 #endif
13035 
13036     /* Not implemented for now... */
13037 /*     case TARGET_NR_mq_notify: */
13038 /*         break; */
13039 
13040     case TARGET_NR_mq_getsetattr:
13041         {
13042             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13043             ret = 0;
13044             if (arg2 != 0) {
13045                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13046                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13047                                            &posix_mq_attr_out));
13048             } else if (arg3 != 0) {
13049                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13050             }
13051             if (ret == 0 && arg3 != 0) {
13052                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13053             }
13054         }
13055         return ret;
13056 #endif
13057 
13058 #ifdef CONFIG_SPLICE
13059 #ifdef TARGET_NR_tee
13060     case TARGET_NR_tee:
13061         {
13062             ret = get_errno(tee(arg1,arg2,arg3,arg4));
13063         }
13064         return ret;
13065 #endif
13066 #ifdef TARGET_NR_splice
13067     case TARGET_NR_splice:
13068         {
13069             loff_t loff_in, loff_out;
13070             loff_t *ploff_in = NULL, *ploff_out = NULL;
13071             if (arg2) {
13072                 if (get_user_u64(loff_in, arg2)) {
13073                     return -TARGET_EFAULT;
13074                 }
13075                 ploff_in = &loff_in;
13076             }
13077             if (arg4) {
13078                 if (get_user_u64(loff_out, arg4)) {
13079                     return -TARGET_EFAULT;
13080                 }
13081                 ploff_out = &loff_out;
13082             }
13083             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13084             if (arg2) {
13085                 if (put_user_u64(loff_in, arg2)) {
13086                     return -TARGET_EFAULT;
13087                 }
13088             }
13089             if (arg4) {
13090                 if (put_user_u64(loff_out, arg4)) {
13091                     return -TARGET_EFAULT;
13092                 }
13093             }
13094         }
13095         return ret;
13096 #endif
13097 #ifdef TARGET_NR_vmsplice
13098 	case TARGET_NR_vmsplice:
13099         {
13100             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13101             if (vec != NULL) {
13102                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13103                 unlock_iovec(vec, arg2, arg3, 0);
13104             } else {
13105                 ret = -host_to_target_errno(errno);
13106             }
13107         }
13108         return ret;
13109 #endif
13110 #endif /* CONFIG_SPLICE */
13111 #ifdef CONFIG_EVENTFD
13112 #if defined(TARGET_NR_eventfd)
13113     case TARGET_NR_eventfd:
13114         ret = get_errno(eventfd(arg1, 0));
13115         if (ret >= 0) {
13116             fd_trans_register(ret, &target_eventfd_trans);
13117         }
13118         return ret;
13119 #endif
13120 #if defined(TARGET_NR_eventfd2)
13121     case TARGET_NR_eventfd2:
13122     {
13123         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13124         if (arg2 & TARGET_O_NONBLOCK) {
13125             host_flags |= O_NONBLOCK;
13126         }
13127         if (arg2 & TARGET_O_CLOEXEC) {
13128             host_flags |= O_CLOEXEC;
13129         }
13130         ret = get_errno(eventfd(arg1, host_flags));
13131         if (ret >= 0) {
13132             fd_trans_register(ret, &target_eventfd_trans);
13133         }
13134         return ret;
13135     }
13136 #endif
13137 #endif /* CONFIG_EVENTFD  */
13138 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13139     case TARGET_NR_fallocate:
13140 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13141         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13142                                   target_offset64(arg5, arg6)));
13143 #else
13144         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13145 #endif
13146         return ret;
13147 #endif
13148 #if defined(CONFIG_SYNC_FILE_RANGE)
13149 #if defined(TARGET_NR_sync_file_range)
13150     case TARGET_NR_sync_file_range:
13151 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13152 #if defined(TARGET_MIPS)
13153         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13154                                         target_offset64(arg5, arg6), arg7));
13155 #else
13156         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13157                                         target_offset64(arg4, arg5), arg6));
13158 #endif /* !TARGET_MIPS */
13159 #else
13160         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13161 #endif
13162         return ret;
13163 #endif
13164 #if defined(TARGET_NR_sync_file_range2) || \
13165     defined(TARGET_NR_arm_sync_file_range)
13166 #if defined(TARGET_NR_sync_file_range2)
13167     case TARGET_NR_sync_file_range2:
13168 #endif
13169 #if defined(TARGET_NR_arm_sync_file_range)
13170     case TARGET_NR_arm_sync_file_range:
13171 #endif
13172         /* This is like sync_file_range but the arguments are reordered */
13173 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13174         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13175                                         target_offset64(arg5, arg6), arg2));
13176 #else
13177         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13178 #endif
13179         return ret;
13180 #endif
13181 #endif
13182 #if defined(TARGET_NR_signalfd4)
13183     case TARGET_NR_signalfd4:
13184         return do_signalfd4(arg1, arg2, arg4);
13185 #endif
13186 #if defined(TARGET_NR_signalfd)
13187     case TARGET_NR_signalfd:
13188         return do_signalfd4(arg1, arg2, 0);
13189 #endif
13190 #if defined(CONFIG_EPOLL)
13191 #if defined(TARGET_NR_epoll_create)
13192     case TARGET_NR_epoll_create:
13193         return get_errno(epoll_create(arg1));
13194 #endif
13195 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13196     case TARGET_NR_epoll_create1:
13197         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13198 #endif
13199 #if defined(TARGET_NR_epoll_ctl)
13200     case TARGET_NR_epoll_ctl:
13201     {
13202         struct epoll_event ep;
13203         struct epoll_event *epp = 0;
13204         if (arg4) {
13205             if (arg2 != EPOLL_CTL_DEL) {
13206                 struct target_epoll_event *target_ep;
13207                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13208                     return -TARGET_EFAULT;
13209                 }
13210                 ep.events = tswap32(target_ep->events);
13211                 /*
13212                  * The epoll_data_t union is just opaque data to the kernel,
13213                  * so we transfer all 64 bits across and need not worry what
13214                  * actual data type it is.
13215                  */
13216                 ep.data.u64 = tswap64(target_ep->data.u64);
13217                 unlock_user_struct(target_ep, arg4, 0);
13218             }
13219             /*
13220              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13221              * non-null pointer, even though this argument is ignored.
13222              *
13223              */
13224             epp = &ep;
13225         }
13226         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13227     }
13228 #endif
13229 
13230 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13231 #if defined(TARGET_NR_epoll_wait)
13232     case TARGET_NR_epoll_wait:
13233 #endif
13234 #if defined(TARGET_NR_epoll_pwait)
13235     case TARGET_NR_epoll_pwait:
13236 #endif
13237     {
13238         struct target_epoll_event *target_ep;
13239         struct epoll_event *ep;
13240         int epfd = arg1;
13241         int maxevents = arg3;
13242         int timeout = arg4;
13243 
13244         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13245             return -TARGET_EINVAL;
13246         }
13247 
13248         target_ep = lock_user(VERIFY_WRITE, arg2,
13249                               maxevents * sizeof(struct target_epoll_event), 1);
13250         if (!target_ep) {
13251             return -TARGET_EFAULT;
13252         }
13253 
13254         ep = g_try_new(struct epoll_event, maxevents);
13255         if (!ep) {
13256             unlock_user(target_ep, arg2, 0);
13257             return -TARGET_ENOMEM;
13258         }
13259 
13260         switch (num) {
13261 #if defined(TARGET_NR_epoll_pwait)
13262         case TARGET_NR_epoll_pwait:
13263         {
13264             sigset_t *set = NULL;
13265 
13266             if (arg5) {
13267                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13268                 if (ret != 0) {
13269                     break;
13270                 }
13271             }
13272 
13273             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13274                                              set, SIGSET_T_SIZE));
13275 
13276             if (set) {
13277                 finish_sigsuspend_mask(ret);
13278             }
13279             break;
13280         }
13281 #endif
13282 #if defined(TARGET_NR_epoll_wait)
13283         case TARGET_NR_epoll_wait:
13284             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13285                                              NULL, 0));
13286             break;
13287 #endif
13288         default:
13289             ret = -TARGET_ENOSYS;
13290         }
13291         if (!is_error(ret)) {
13292             int i;
13293             for (i = 0; i < ret; i++) {
13294                 target_ep[i].events = tswap32(ep[i].events);
13295                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13296             }
13297             unlock_user(target_ep, arg2,
13298                         ret * sizeof(struct target_epoll_event));
13299         } else {
13300             unlock_user(target_ep, arg2, 0);
13301         }
13302         g_free(ep);
13303         return ret;
13304     }
13305 #endif
13306 #endif
13307 #ifdef TARGET_NR_prlimit64
13308     case TARGET_NR_prlimit64:
13309     {
13310         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13311         struct target_rlimit64 *target_rnew, *target_rold;
13312         struct host_rlimit64 rnew, rold, *rnewp = 0;
13313         int resource = target_to_host_resource(arg2);
13314 
13315         if (arg3 && (resource != RLIMIT_AS &&
13316                      resource != RLIMIT_DATA &&
13317                      resource != RLIMIT_STACK)) {
13318             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13319                 return -TARGET_EFAULT;
13320             }
13321             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13322             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13323             unlock_user_struct(target_rnew, arg3, 0);
13324             rnewp = &rnew;
13325         }
13326 
13327         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13328         if (!is_error(ret) && arg4) {
13329             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13330                 return -TARGET_EFAULT;
13331             }
13332             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13333             __put_user(rold.rlim_max, &target_rold->rlim_max);
13334             unlock_user_struct(target_rold, arg4, 1);
13335         }
13336         return ret;
13337     }
13338 #endif
13339 #ifdef TARGET_NR_gethostname
13340     case TARGET_NR_gethostname:
13341     {
13342         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13343         if (name) {
13344             ret = get_errno(gethostname(name, arg2));
13345             unlock_user(name, arg1, arg2);
13346         } else {
13347             ret = -TARGET_EFAULT;
13348         }
13349         return ret;
13350     }
13351 #endif
13352 #ifdef TARGET_NR_atomic_cmpxchg_32
13353     case TARGET_NR_atomic_cmpxchg_32:
13354     {
13355         /* should use start_exclusive from main.c */
13356         abi_ulong mem_value;
13357         if (get_user_u32(mem_value, arg6)) {
13358             target_siginfo_t info;
13359             info.si_signo = SIGSEGV;
13360             info.si_errno = 0;
13361             info.si_code = TARGET_SEGV_MAPERR;
13362             info._sifields._sigfault._addr = arg6;
13363             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13364             ret = 0xdeadbeef;
13365 
13366         }
13367         if (mem_value == arg2)
13368             put_user_u32(arg1, arg6);
13369         return mem_value;
13370     }
13371 #endif
13372 #ifdef TARGET_NR_atomic_barrier
13373     case TARGET_NR_atomic_barrier:
13374         /* Like the kernel implementation and the
13375            qemu arm barrier, no-op this? */
13376         return 0;
13377 #endif
13378 
13379 #ifdef TARGET_NR_timer_create
13380     case TARGET_NR_timer_create:
13381     {
13382         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13383 
13384         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13385 
13386         int clkid = arg1;
13387         int timer_index = next_free_host_timer();
13388 
13389         if (timer_index < 0) {
13390             ret = -TARGET_EAGAIN;
13391         } else {
13392             timer_t *phtimer = g_posix_timers  + timer_index;
13393 
13394             if (arg2) {
13395                 phost_sevp = &host_sevp;
13396                 ret = target_to_host_sigevent(phost_sevp, arg2);
13397                 if (ret != 0) {
13398                     free_host_timer_slot(timer_index);
13399                     return ret;
13400                 }
13401             }
13402 
13403             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13404             if (ret) {
13405                 free_host_timer_slot(timer_index);
13406             } else {
13407                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13408                     timer_delete(*phtimer);
13409                     free_host_timer_slot(timer_index);
13410                     return -TARGET_EFAULT;
13411                 }
13412             }
13413         }
13414         return ret;
13415     }
13416 #endif
13417 
13418 #ifdef TARGET_NR_timer_settime
13419     case TARGET_NR_timer_settime:
13420     {
13421         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13422          * struct itimerspec * old_value */
13423         target_timer_t timerid = get_timer_id(arg1);
13424 
13425         if (timerid < 0) {
13426             ret = timerid;
13427         } else if (arg3 == 0) {
13428             ret = -TARGET_EINVAL;
13429         } else {
13430             timer_t htimer = g_posix_timers[timerid];
13431             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13432 
13433             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13434                 return -TARGET_EFAULT;
13435             }
13436             ret = get_errno(
13437                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13438             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13439                 return -TARGET_EFAULT;
13440             }
13441         }
13442         return ret;
13443     }
13444 #endif
13445 
13446 #ifdef TARGET_NR_timer_settime64
13447     case TARGET_NR_timer_settime64:
13448     {
13449         target_timer_t timerid = get_timer_id(arg1);
13450 
13451         if (timerid < 0) {
13452             ret = timerid;
13453         } else if (arg3 == 0) {
13454             ret = -TARGET_EINVAL;
13455         } else {
13456             timer_t htimer = g_posix_timers[timerid];
13457             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13458 
13459             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13460                 return -TARGET_EFAULT;
13461             }
13462             ret = get_errno(
13463                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13464             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13465                 return -TARGET_EFAULT;
13466             }
13467         }
13468         return ret;
13469     }
13470 #endif
13471 
13472 #ifdef TARGET_NR_timer_gettime
13473     case TARGET_NR_timer_gettime:
13474     {
13475         /* args: timer_t timerid, struct itimerspec *curr_value */
13476         target_timer_t timerid = get_timer_id(arg1);
13477 
13478         if (timerid < 0) {
13479             ret = timerid;
13480         } else if (!arg2) {
13481             ret = -TARGET_EFAULT;
13482         } else {
13483             timer_t htimer = g_posix_timers[timerid];
13484             struct itimerspec hspec;
13485             ret = get_errno(timer_gettime(htimer, &hspec));
13486 
13487             if (host_to_target_itimerspec(arg2, &hspec)) {
13488                 ret = -TARGET_EFAULT;
13489             }
13490         }
13491         return ret;
13492     }
13493 #endif
13494 
13495 #ifdef TARGET_NR_timer_gettime64
13496     case TARGET_NR_timer_gettime64:
13497     {
13498         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13499         target_timer_t timerid = get_timer_id(arg1);
13500 
13501         if (timerid < 0) {
13502             ret = timerid;
13503         } else if (!arg2) {
13504             ret = -TARGET_EFAULT;
13505         } else {
13506             timer_t htimer = g_posix_timers[timerid];
13507             struct itimerspec hspec;
13508             ret = get_errno(timer_gettime(htimer, &hspec));
13509 
13510             if (host_to_target_itimerspec64(arg2, &hspec)) {
13511                 ret = -TARGET_EFAULT;
13512             }
13513         }
13514         return ret;
13515     }
13516 #endif
13517 
13518 #ifdef TARGET_NR_timer_getoverrun
13519     case TARGET_NR_timer_getoverrun:
13520     {
13521         /* args: timer_t timerid */
13522         target_timer_t timerid = get_timer_id(arg1);
13523 
13524         if (timerid < 0) {
13525             ret = timerid;
13526         } else {
13527             timer_t htimer = g_posix_timers[timerid];
13528             ret = get_errno(timer_getoverrun(htimer));
13529         }
13530         return ret;
13531     }
13532 #endif
13533 
13534 #ifdef TARGET_NR_timer_delete
13535     case TARGET_NR_timer_delete:
13536     {
13537         /* args: timer_t timerid */
13538         target_timer_t timerid = get_timer_id(arg1);
13539 
13540         if (timerid < 0) {
13541             ret = timerid;
13542         } else {
13543             timer_t htimer = g_posix_timers[timerid];
13544             ret = get_errno(timer_delete(htimer));
13545             free_host_timer_slot(timerid);
13546         }
13547         return ret;
13548     }
13549 #endif
13550 
13551 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13552     case TARGET_NR_timerfd_create:
13553         ret = get_errno(timerfd_create(arg1,
13554                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13555         if (ret >= 0) {
13556             fd_trans_register(ret, &target_timerfd_trans);
13557         }
13558         return ret;
13559 #endif
13560 
13561 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13562     case TARGET_NR_timerfd_gettime:
13563         {
13564             struct itimerspec its_curr;
13565 
13566             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13567 
13568             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13569                 return -TARGET_EFAULT;
13570             }
13571         }
13572         return ret;
13573 #endif
13574 
13575 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13576     case TARGET_NR_timerfd_gettime64:
13577         {
13578             struct itimerspec its_curr;
13579 
13580             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13581 
13582             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13583                 return -TARGET_EFAULT;
13584             }
13585         }
13586         return ret;
13587 #endif
13588 
13589 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13590     case TARGET_NR_timerfd_settime:
13591         {
13592             struct itimerspec its_new, its_old, *p_new;
13593 
13594             if (arg3) {
13595                 if (target_to_host_itimerspec(&its_new, arg3)) {
13596                     return -TARGET_EFAULT;
13597                 }
13598                 p_new = &its_new;
13599             } else {
13600                 p_new = NULL;
13601             }
13602 
13603             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13604 
13605             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13606                 return -TARGET_EFAULT;
13607             }
13608         }
13609         return ret;
13610 #endif
13611 
13612 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13613     case TARGET_NR_timerfd_settime64:
13614         {
13615             struct itimerspec its_new, its_old, *p_new;
13616 
13617             if (arg3) {
13618                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13619                     return -TARGET_EFAULT;
13620                 }
13621                 p_new = &its_new;
13622             } else {
13623                 p_new = NULL;
13624             }
13625 
13626             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13627 
13628             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13629                 return -TARGET_EFAULT;
13630             }
13631         }
13632         return ret;
13633 #endif
13634 
13635 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13636     case TARGET_NR_ioprio_get:
13637         return get_errno(ioprio_get(arg1, arg2));
13638 #endif
13639 
13640 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13641     case TARGET_NR_ioprio_set:
13642         return get_errno(ioprio_set(arg1, arg2, arg3));
13643 #endif
13644 
13645 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13646     case TARGET_NR_setns:
13647         return get_errno(setns(arg1, arg2));
13648 #endif
13649 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13650     case TARGET_NR_unshare:
13651         return get_errno(unshare(arg1));
13652 #endif
13653 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13654     case TARGET_NR_kcmp:
13655         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13656 #endif
13657 #ifdef TARGET_NR_swapcontext
13658     case TARGET_NR_swapcontext:
13659         /* PowerPC specific.  */
13660         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13661 #endif
13662 #ifdef TARGET_NR_memfd_create
13663     case TARGET_NR_memfd_create:
13664         p = lock_user_string(arg1);
13665         if (!p) {
13666             return -TARGET_EFAULT;
13667         }
13668         ret = get_errno(memfd_create(p, arg2));
13669         fd_trans_unregister(ret);
13670         unlock_user(p, arg1, 0);
13671         return ret;
13672 #endif
13673 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13674     case TARGET_NR_membarrier:
13675         return get_errno(membarrier(arg1, arg2));
13676 #endif
13677 
13678 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13679     case TARGET_NR_copy_file_range:
13680         {
13681             loff_t inoff, outoff;
13682             loff_t *pinoff = NULL, *poutoff = NULL;
13683 
13684             if (arg2) {
13685                 if (get_user_u64(inoff, arg2)) {
13686                     return -TARGET_EFAULT;
13687                 }
13688                 pinoff = &inoff;
13689             }
13690             if (arg4) {
13691                 if (get_user_u64(outoff, arg4)) {
13692                     return -TARGET_EFAULT;
13693                 }
13694                 poutoff = &outoff;
13695             }
13696             /* Do not sign-extend the count parameter. */
13697             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13698                                                  (abi_ulong)arg5, arg6));
13699             if (!is_error(ret) && ret > 0) {
13700                 if (arg2) {
13701                     if (put_user_u64(inoff, arg2)) {
13702                         return -TARGET_EFAULT;
13703                     }
13704                 }
13705                 if (arg4) {
13706                     if (put_user_u64(outoff, arg4)) {
13707                         return -TARGET_EFAULT;
13708                     }
13709                 }
13710             }
13711         }
13712         return ret;
13713 #endif
13714 
13715 #if defined(TARGET_NR_pivot_root)
13716     case TARGET_NR_pivot_root:
13717         {
13718             void *p2;
13719             p = lock_user_string(arg1); /* new_root */
13720             p2 = lock_user_string(arg2); /* put_old */
13721             if (!p || !p2) {
13722                 ret = -TARGET_EFAULT;
13723             } else {
13724                 ret = get_errno(pivot_root(p, p2));
13725             }
13726             unlock_user(p2, arg2, 0);
13727             unlock_user(p, arg1, 0);
13728         }
13729         return ret;
13730 #endif
13731 
13732 #if defined(TARGET_NR_riscv_hwprobe)
13733     case TARGET_NR_riscv_hwprobe:
13734         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13735 #endif
13736 
13737     default:
13738         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13739         return -TARGET_ENOSYS;
13740     }
13741     return ret;
13742 }
13743 
13744 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13745                     abi_long arg2, abi_long arg3, abi_long arg4,
13746                     abi_long arg5, abi_long arg6, abi_long arg7,
13747                     abi_long arg8)
13748 {
13749     CPUState *cpu = env_cpu(cpu_env);
13750     abi_long ret;
13751 
13752 #ifdef DEBUG_ERESTARTSYS
13753     /* Debug-only code for exercising the syscall-restart code paths
13754      * in the per-architecture cpu main loops: restart every syscall
13755      * the guest makes once before letting it through.
13756      */
13757     {
13758         static bool flag;
13759         flag = !flag;
13760         if (flag) {
13761             return -QEMU_ERESTARTSYS;
13762         }
13763     }
13764 #endif
13765 
13766     record_syscall_start(cpu, num, arg1,
13767                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13768 
13769     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13770         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13771     }
13772 
13773     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13774                       arg5, arg6, arg7, arg8);
13775 
13776     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13777         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13778                           arg3, arg4, arg5, arg6);
13779     }
13780 
13781     record_syscall_return(cpu, num, ret);
13782     return ret;
13783 }
13784