xref: /openbmc/qemu/linux-user/syscall.c (revision 4f6473ad)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include <elf.h>
29 #include <endian.h>
30 #include <grp.h>
31 #include <sys/ipc.h>
32 #include <sys/msg.h>
33 #include <sys/wait.h>
34 #include <sys/mount.h>
35 #include <sys/file.h>
36 #include <sys/fsuid.h>
37 #include <sys/personality.h>
38 #include <sys/prctl.h>
39 #include <sys/resource.h>
40 #include <sys/swap.h>
41 #include <linux/capability.h>
42 #include <sched.h>
43 #include <sys/timex.h>
44 #include <sys/socket.h>
45 #include <linux/sockios.h>
46 #include <sys/un.h>
47 #include <sys/uio.h>
48 #include <poll.h>
49 #include <sys/times.h>
50 #include <sys/shm.h>
51 #include <sys/sem.h>
52 #include <sys/statfs.h>
53 #include <utime.h>
54 #include <sys/sysinfo.h>
55 #include <sys/signalfd.h>
56 //#include <sys/user.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61 #include <linux/wireless.h>
62 #include <linux/icmp.h>
63 #include <linux/icmpv6.h>
64 #include <linux/if_tun.h>
65 #include <linux/in6.h>
66 #include <linux/errqueue.h>
67 #include <linux/random.h>
68 #ifdef CONFIG_TIMERFD
69 #include <sys/timerfd.h>
70 #endif
71 #ifdef CONFIG_EVENTFD
72 #include <sys/eventfd.h>
73 #endif
74 #ifdef CONFIG_EPOLL
75 #include <sys/epoll.h>
76 #endif
77 #ifdef CONFIG_ATTR
78 #include "qemu/xattr.h"
79 #endif
80 #ifdef CONFIG_SENDFILE
81 #include <sys/sendfile.h>
82 #endif
83 #ifdef HAVE_SYS_KCOV_H
84 #include <sys/kcov.h>
85 #endif
86 
87 #define termios host_termios
88 #define winsize host_winsize
89 #define termio host_termio
90 #define sgttyb host_sgttyb /* same as target */
91 #define tchars host_tchars /* same as target */
92 #define ltchars host_ltchars /* same as target */
93 
94 #include <linux/termios.h>
95 #include <linux/unistd.h>
96 #include <linux/cdrom.h>
97 #include <linux/hdreg.h>
98 #include <linux/soundcard.h>
99 #include <linux/kd.h>
100 #include <linux/mtio.h>
101 #include <linux/fs.h>
102 #include <linux/fd.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
105 #endif
106 #include <linux/fb.h>
107 #if defined(CONFIG_USBFS)
108 #include <linux/usbdevice_fs.h>
109 #include <linux/usb/ch9.h>
110 #endif
111 #include <linux/vt.h>
112 #include <linux/dm-ioctl.h>
113 #include <linux/reboot.h>
114 #include <linux/route.h>
115 #include <linux/filter.h>
116 #include <linux/blkpg.h>
117 #include <netpacket/packet.h>
118 #include <linux/netlink.h>
119 #include <linux/if_alg.h>
120 #include <linux/rtc.h>
121 #include <sound/asound.h>
122 #ifdef HAVE_BTRFS_H
123 #include <linux/btrfs.h>
124 #endif
125 #ifdef HAVE_DRM_H
126 #include <libdrm/drm.h>
127 #include <libdrm/i915_drm.h>
128 #endif
129 #include "linux_loop.h"
130 #include "uname.h"
131 
132 #include "qemu.h"
133 #include "user-internals.h"
134 #include "strace.h"
135 #include "signal-common.h"
136 #include "loader.h"
137 #include "user-mmap.h"
138 #include "user/safe-syscall.h"
139 #include "qemu/guest-random.h"
140 #include "qemu/selfmap.h"
141 #include "user/syscall-trace.h"
142 #include "special-errno.h"
143 #include "qapi/error.h"
144 #include "fd-trans.h"
145 #include "cpu_loop-common.h"
146 
147 #ifndef CLONE_IO
148 #define CLONE_IO                0x80000000      /* Clone io context */
149 #endif
150 
151 /* We can't directly call the host clone syscall, because this will
152  * badly confuse libc (breaking mutexes, for example). So we must
153  * divide clone flags into:
154  *  * flag combinations that look like pthread_create()
155  *  * flag combinations that look like fork()
156  *  * flags we can implement within QEMU itself
157  *  * flags we can't support and will return an error for
158  */
159 /* For thread creation, all these flags must be present; for
160  * fork, none must be present.
161  */
162 #define CLONE_THREAD_FLAGS                              \
163     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
164      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
165 
166 /* These flags are ignored:
167  * CLONE_DETACHED is now ignored by the kernel;
168  * CLONE_IO is just an optimisation hint to the I/O scheduler
169  */
170 #define CLONE_IGNORED_FLAGS                     \
171     (CLONE_DETACHED | CLONE_IO)
172 
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
176 
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS               \
179     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
181 
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
184     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
185      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
186 
187 #define CLONE_INVALID_FORK_FLAGS                                        \
188     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
189 
190 #define CLONE_INVALID_THREAD_FLAGS                                      \
191     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
192        CLONE_IGNORED_FLAGS))
193 
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195  * have almost all been allocated. We cannot support any of
196  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198  * The checks against the invalid thread masks above will catch these.
199  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
200  */
201 
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203  * once. This exercises the codepaths for restart.
204  */
205 //#define DEBUG_ERESTARTSYS
206 
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
212 
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
220 
221 #define _syscall0(type,name)		\
222 static type name (void)			\
223 {					\
224 	return syscall(__NR_##name);	\
225 }
226 
227 #define _syscall1(type,name,type1,arg1)		\
228 static type name (type1 arg1)			\
229 {						\
230 	return syscall(__NR_##name, arg1);	\
231 }
232 
233 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
234 static type name (type1 arg1,type2 arg2)		\
235 {							\
236 	return syscall(__NR_##name, arg1, arg2);	\
237 }
238 
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
240 static type name (type1 arg1,type2 arg2,type3 arg3)		\
241 {								\
242 	return syscall(__NR_##name, arg1, arg2, arg3);		\
243 }
244 
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
249 }
250 
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
252 		  type5,arg5)							\
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
254 {										\
255 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
256 }
257 
258 
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
260 		  type5,arg5,type6,arg6)					\
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
262                   type6 arg6)							\
263 {										\
264 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
265 }
266 
267 
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
283 
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
287 
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
292 
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
297 
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
300 
301 /* For the 64-bit guest on 32-bit host case we must emulate
302  * getdents using getdents64, because otherwise the host
303  * might hand us back more dirent records than we can fit
304  * into the guest buffer after structure format conversion.
305  * Otherwise we emulate getdents with getdents if the host has it.
306  */
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
310 
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
321           loff_t *, res, unsigned int, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325           siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339           const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343           const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350                              unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357           unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360           unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363     uint32_t size;
364     uint32_t sched_policy;
365     uint64_t sched_flags;
366     int32_t sched_nice;
367     uint32_t sched_priority;
368     uint64_t sched_runtime;
369     uint64_t sched_deadline;
370     uint64_t sched_period;
371     uint32_t sched_util_min;
372     uint32_t sched_util_max;
373 };
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376           unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379           unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384           const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387           struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390           const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394           void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396           struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398           struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
408 
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411           unsigned long, idx1, unsigned long, idx2)
412 #endif
413 
414 /*
415  * It is assumed that struct statx is architecture independent.
416  */
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419           unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
424 
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
427   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
428   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
429   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
430   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
431   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
432   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
433   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
434   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
435   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
436   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
437   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
439 #if defined(O_DIRECT)
440   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
441 #endif
442 #if defined(O_NOATIME)
443   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
444 #endif
445 #if defined(O_CLOEXEC)
446   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
447 #endif
448 #if defined(O_PATH)
449   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
450 #endif
451 #if defined(O_TMPFILE)
452   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
453 #endif
454   /* Don't terminate the list prematurely on 64-bit host+guest.  */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
458 };
459 
460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
461 
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
466           const struct timespec *,tsp,int,flags)
467 #else
468 static int sys_utimensat(int dirfd, const char *pathname,
469                          const struct timespec times[2], int flags)
470 {
471     errno = ENOSYS;
472     return -1;
473 }
474 #endif
475 #endif /* TARGET_NR_utimensat */
476 
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
481           const char *, new, unsigned int, flags)
482 #else
483 static int sys_renameat2(int oldfd, const char *old,
484                          int newfd, const char *new, int flags)
485 {
486     if (flags == 0) {
487         return renameat(oldfd, old, newfd, new);
488     }
489     errno = ENOSYS;
490     return -1;
491 }
492 #endif
493 #endif /* TARGET_NR_renameat2 */
494 
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
497 #else
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY  */
504 
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
508 #endif
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64 {
512     uint64_t rlim_cur;
513     uint64_t rlim_max;
514 };
515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
516           const struct host_rlimit64 *, new_limit,
517           struct host_rlimit64 *, old_limit)
518 #endif
519 
520 
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers[GUEST_TIMER_MAX];
525 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
526 
527 static inline int next_free_host_timer(void)
528 {
529     int k;
530     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
531         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
532             return k;
533         }
534     }
535     return -1;
536 }
537 
538 static inline void free_host_timer_slot(int id)
539 {
540     qatomic_store_release(g_posix_timer_allocated + id, 0);
541 }
542 #endif
543 
544 static inline int host_to_target_errno(int host_errno)
545 {
546     switch (host_errno) {
547 #define E(X)  case X: return TARGET_##X;
548 #include "errnos.c.inc"
549 #undef E
550     default:
551         return host_errno;
552     }
553 }
554 
555 static inline int target_to_host_errno(int target_errno)
556 {
557     switch (target_errno) {
558 #define E(X)  case TARGET_##X: return X;
559 #include "errnos.c.inc"
560 #undef E
561     default:
562         return target_errno;
563     }
564 }
565 
566 abi_long get_errno(abi_long ret)
567 {
568     if (ret == -1)
569         return -host_to_target_errno(errno);
570     else
571         return ret;
572 }
573 
574 const char *target_strerror(int err)
575 {
576     if (err == QEMU_ERESTARTSYS) {
577         return "To be restarted";
578     }
579     if (err == QEMU_ESIGRETURN) {
580         return "Successful exit from sigreturn";
581     }
582 
583     return strerror(target_to_host_errno(err));
584 }
585 
586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
587 {
588     int i;
589     uint8_t b;
590     if (usize <= ksize) {
591         return 1;
592     }
593     for (i = ksize; i < usize; i++) {
594         if (get_user_u8(b, addr + i)) {
595             return -TARGET_EFAULT;
596         }
597         if (b != 0) {
598             return 0;
599         }
600     }
601     return 1;
602 }
603 
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
606 { \
607     return safe_syscall(__NR_##name); \
608 }
609 
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
612 { \
613     return safe_syscall(__NR_##name, arg1); \
614 }
615 
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
618 { \
619     return safe_syscall(__NR_##name, arg1, arg2); \
620 }
621 
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
624 { \
625     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
626 }
627 
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
629     type4, arg4) \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
631 { \
632     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
633 }
634 
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636     type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
638     type5 arg5) \
639 { \
640     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
641 }
642 
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644     type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646     type5 arg5, type6 arg6) \
647 { \
648     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
649 }
650 
651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
654               int, flags, mode_t, mode)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
657               struct rusage *, rusage)
658 #endif
659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
660               int, options, struct rusage *, rusage)
661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663               char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671               struct timespec *, tsp, const sigset_t *, sigmask,
672               size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675               int, maxevents, int, timeout, const sigset_t *, sigmask,
676               size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679               const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683               const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692               unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694               unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696               socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706               const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709               int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712               struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715     defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717               const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722               void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730               int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734               long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738               unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741     defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743               size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746     defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748               size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752               int, outfd, loff_t *, poutoff, size_t, length,
753               unsigned int, flags)
754 #endif
755 
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757  * "third argument might be integer or pointer or not present" behaviour of
758  * the libc function.
759  */
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763  *  use the flock64 struct rather than unsuffixed flock
764  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
765  */
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
771 
772 static inline int host_to_target_sock_type(int host_type)
773 {
774     int target_type;
775 
776     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777     case SOCK_DGRAM:
778         target_type = TARGET_SOCK_DGRAM;
779         break;
780     case SOCK_STREAM:
781         target_type = TARGET_SOCK_STREAM;
782         break;
783     default:
784         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785         break;
786     }
787 
788 #if defined(SOCK_CLOEXEC)
789     if (host_type & SOCK_CLOEXEC) {
790         target_type |= TARGET_SOCK_CLOEXEC;
791     }
792 #endif
793 
794 #if defined(SOCK_NONBLOCK)
795     if (host_type & SOCK_NONBLOCK) {
796         target_type |= TARGET_SOCK_NONBLOCK;
797     }
798 #endif
799 
800     return target_type;
801 }
802 
803 static abi_ulong target_brk, initial_target_brk;
804 
805 void target_set_brk(abi_ulong new_brk)
806 {
807     target_brk = TARGET_PAGE_ALIGN(new_brk);
808     initial_target_brk = target_brk;
809 }
810 
811 /* do_brk() must return target values and target errnos. */
812 abi_long do_brk(abi_ulong brk_val)
813 {
814     abi_long mapped_addr;
815     abi_ulong new_brk;
816     abi_ulong old_brk;
817 
818     /* brk pointers are always untagged */
819 
820     /* do not allow to shrink below initial brk value */
821     if (brk_val < initial_target_brk) {
822         return target_brk;
823     }
824 
825     new_brk = TARGET_PAGE_ALIGN(brk_val);
826     old_brk = TARGET_PAGE_ALIGN(target_brk);
827 
828     /* new and old target_brk might be on the same page */
829     if (new_brk == old_brk) {
830         target_brk = brk_val;
831         return target_brk;
832     }
833 
834     /* Release heap if necessary */
835     if (new_brk < old_brk) {
836         target_munmap(new_brk, old_brk - new_brk);
837 
838         target_brk = brk_val;
839         return target_brk;
840     }
841 
842     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
843                               PROT_READ | PROT_WRITE,
844                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
845                               -1, 0);
846 
847     if (mapped_addr == old_brk) {
848         target_brk = brk_val;
849         return target_brk;
850     }
851 
852 #if defined(TARGET_ALPHA)
853     /* We (partially) emulate OSF/1 on Alpha, which requires we
854        return a proper errno, not an unchanged brk value.  */
855     return -TARGET_ENOMEM;
856 #endif
857     /* For everything else, return the previous break. */
858     return target_brk;
859 }
860 
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long copy_from_user_fdset(fd_set *fds,
864                                             abi_ulong target_fds_addr,
865                                             int n)
866 {
867     int i, nw, j, k;
868     abi_ulong b, *target_fds;
869 
870     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
871     if (!(target_fds = lock_user(VERIFY_READ,
872                                  target_fds_addr,
873                                  sizeof(abi_ulong) * nw,
874                                  1)))
875         return -TARGET_EFAULT;
876 
877     FD_ZERO(fds);
878     k = 0;
879     for (i = 0; i < nw; i++) {
880         /* grab the abi_ulong */
881         __get_user(b, &target_fds[i]);
882         for (j = 0; j < TARGET_ABI_BITS; j++) {
883             /* check the bit inside the abi_ulong */
884             if ((b >> j) & 1)
885                 FD_SET(k, fds);
886             k++;
887         }
888     }
889 
890     unlock_user(target_fds, target_fds_addr, 0);
891 
892     return 0;
893 }
894 
895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
896                                                  abi_ulong target_fds_addr,
897                                                  int n)
898 {
899     if (target_fds_addr) {
900         if (copy_from_user_fdset(fds, target_fds_addr, n))
901             return -TARGET_EFAULT;
902         *fds_ptr = fds;
903     } else {
904         *fds_ptr = NULL;
905     }
906     return 0;
907 }
908 
909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
910                                           const fd_set *fds,
911                                           int n)
912 {
913     int i, nw, j, k;
914     abi_long v;
915     abi_ulong *target_fds;
916 
917     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
918     if (!(target_fds = lock_user(VERIFY_WRITE,
919                                  target_fds_addr,
920                                  sizeof(abi_ulong) * nw,
921                                  0)))
922         return -TARGET_EFAULT;
923 
924     k = 0;
925     for (i = 0; i < nw; i++) {
926         v = 0;
927         for (j = 0; j < TARGET_ABI_BITS; j++) {
928             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
929             k++;
930         }
931         __put_user(v, &target_fds[i]);
932     }
933 
934     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
935 
936     return 0;
937 }
938 #endif
939 
940 #if defined(__alpha__)
941 #define HOST_HZ 1024
942 #else
943 #define HOST_HZ 100
944 #endif
945 
946 static inline abi_long host_to_target_clock_t(long ticks)
947 {
948 #if HOST_HZ == TARGET_HZ
949     return ticks;
950 #else
951     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
952 #endif
953 }
954 
955 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
956                                              const struct rusage *rusage)
957 {
958     struct target_rusage *target_rusage;
959 
960     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
961         return -TARGET_EFAULT;
962     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
963     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
964     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
965     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
966     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
967     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
968     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
969     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
970     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
971     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
972     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
973     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
974     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
975     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
976     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
977     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
978     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
979     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
980     unlock_user_struct(target_rusage, target_addr, 1);
981 
982     return 0;
983 }
984 
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
987 {
988     abi_ulong target_rlim_swap;
989     rlim_t result;
990 
991     target_rlim_swap = tswapal(target_rlim);
992     if (target_rlim_swap == TARGET_RLIM_INFINITY)
993         return RLIM_INFINITY;
994 
995     result = target_rlim_swap;
996     if (target_rlim_swap != (rlim_t)result)
997         return RLIM_INFINITY;
998 
999     return result;
1000 }
1001 #endif
1002 
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1005 {
1006     abi_ulong target_rlim_swap;
1007     abi_ulong result;
1008 
1009     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1010         target_rlim_swap = TARGET_RLIM_INFINITY;
1011     else
1012         target_rlim_swap = rlim;
1013     result = tswapal(target_rlim_swap);
1014 
1015     return result;
1016 }
1017 #endif
1018 
1019 static inline int target_to_host_resource(int code)
1020 {
1021     switch (code) {
1022     case TARGET_RLIMIT_AS:
1023         return RLIMIT_AS;
1024     case TARGET_RLIMIT_CORE:
1025         return RLIMIT_CORE;
1026     case TARGET_RLIMIT_CPU:
1027         return RLIMIT_CPU;
1028     case TARGET_RLIMIT_DATA:
1029         return RLIMIT_DATA;
1030     case TARGET_RLIMIT_FSIZE:
1031         return RLIMIT_FSIZE;
1032     case TARGET_RLIMIT_LOCKS:
1033         return RLIMIT_LOCKS;
1034     case TARGET_RLIMIT_MEMLOCK:
1035         return RLIMIT_MEMLOCK;
1036     case TARGET_RLIMIT_MSGQUEUE:
1037         return RLIMIT_MSGQUEUE;
1038     case TARGET_RLIMIT_NICE:
1039         return RLIMIT_NICE;
1040     case TARGET_RLIMIT_NOFILE:
1041         return RLIMIT_NOFILE;
1042     case TARGET_RLIMIT_NPROC:
1043         return RLIMIT_NPROC;
1044     case TARGET_RLIMIT_RSS:
1045         return RLIMIT_RSS;
1046     case TARGET_RLIMIT_RTPRIO:
1047         return RLIMIT_RTPRIO;
1048 #ifdef RLIMIT_RTTIME
1049     case TARGET_RLIMIT_RTTIME:
1050         return RLIMIT_RTTIME;
1051 #endif
1052     case TARGET_RLIMIT_SIGPENDING:
1053         return RLIMIT_SIGPENDING;
1054     case TARGET_RLIMIT_STACK:
1055         return RLIMIT_STACK;
1056     default:
1057         return code;
1058     }
1059 }
1060 
1061 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1062                                               abi_ulong target_tv_addr)
1063 {
1064     struct target_timeval *target_tv;
1065 
1066     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1067         return -TARGET_EFAULT;
1068     }
1069 
1070     __get_user(tv->tv_sec, &target_tv->tv_sec);
1071     __get_user(tv->tv_usec, &target_tv->tv_usec);
1072 
1073     unlock_user_struct(target_tv, target_tv_addr, 0);
1074 
1075     return 0;
1076 }
1077 
1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1079                                             const struct timeval *tv)
1080 {
1081     struct target_timeval *target_tv;
1082 
1083     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1084         return -TARGET_EFAULT;
1085     }
1086 
1087     __put_user(tv->tv_sec, &target_tv->tv_sec);
1088     __put_user(tv->tv_usec, &target_tv->tv_usec);
1089 
1090     unlock_user_struct(target_tv, target_tv_addr, 1);
1091 
1092     return 0;
1093 }
1094 
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1097                                                 abi_ulong target_tv_addr)
1098 {
1099     struct target__kernel_sock_timeval *target_tv;
1100 
1101     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1102         return -TARGET_EFAULT;
1103     }
1104 
1105     __get_user(tv->tv_sec, &target_tv->tv_sec);
1106     __get_user(tv->tv_usec, &target_tv->tv_usec);
1107 
1108     unlock_user_struct(target_tv, target_tv_addr, 0);
1109 
1110     return 0;
1111 }
1112 #endif
1113 
1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1115                                               const struct timeval *tv)
1116 {
1117     struct target__kernel_sock_timeval *target_tv;
1118 
1119     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120         return -TARGET_EFAULT;
1121     }
1122 
1123     __put_user(tv->tv_sec, &target_tv->tv_sec);
1124     __put_user(tv->tv_usec, &target_tv->tv_usec);
1125 
1126     unlock_user_struct(target_tv, target_tv_addr, 1);
1127 
1128     return 0;
1129 }
1130 
1131 #if defined(TARGET_NR_futex) || \
1132     defined(TARGET_NR_rt_sigtimedwait) || \
1133     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138     defined(TARGET_NR_timer_settime) || \
1139     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1141                                                abi_ulong target_addr)
1142 {
1143     struct target_timespec *target_ts;
1144 
1145     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1146         return -TARGET_EFAULT;
1147     }
1148     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1149     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1150     unlock_user_struct(target_ts, target_addr, 0);
1151     return 0;
1152 }
1153 #endif
1154 
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156     defined(TARGET_NR_timer_settime64) || \
1157     defined(TARGET_NR_mq_timedsend_time64) || \
1158     defined(TARGET_NR_mq_timedreceive_time64) || \
1159     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160     defined(TARGET_NR_clock_nanosleep_time64) || \
1161     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162     defined(TARGET_NR_utimensat) || \
1163     defined(TARGET_NR_utimensat_time64) || \
1164     defined(TARGET_NR_semtimedop_time64) || \
1165     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1167                                                  abi_ulong target_addr)
1168 {
1169     struct target__kernel_timespec *target_ts;
1170 
1171     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1172         return -TARGET_EFAULT;
1173     }
1174     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1175     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176     /* in 32bit mode, this drops the padding */
1177     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1178     unlock_user_struct(target_ts, target_addr, 0);
1179     return 0;
1180 }
1181 #endif
1182 
1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1184                                                struct timespec *host_ts)
1185 {
1186     struct target_timespec *target_ts;
1187 
1188     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1189         return -TARGET_EFAULT;
1190     }
1191     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1192     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1193     unlock_user_struct(target_ts, target_addr, 1);
1194     return 0;
1195 }
1196 
1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1198                                                  struct timespec *host_ts)
1199 {
1200     struct target__kernel_timespec *target_ts;
1201 
1202     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1203         return -TARGET_EFAULT;
1204     }
1205     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1206     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1207     unlock_user_struct(target_ts, target_addr, 1);
1208     return 0;
1209 }
1210 
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1213                                              struct timezone *tz)
1214 {
1215     struct target_timezone *target_tz;
1216 
1217     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1218         return -TARGET_EFAULT;
1219     }
1220 
1221     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1222     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1223 
1224     unlock_user_struct(target_tz, target_tz_addr, 1);
1225 
1226     return 0;
1227 }
1228 #endif
1229 
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1232                                                abi_ulong target_tz_addr)
1233 {
1234     struct target_timezone *target_tz;
1235 
1236     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1237         return -TARGET_EFAULT;
1238     }
1239 
1240     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1241     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1242 
1243     unlock_user_struct(target_tz, target_tz_addr, 0);
1244 
1245     return 0;
1246 }
1247 #endif
1248 
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1250 #include <mqueue.h>
1251 
1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1253                                               abi_ulong target_mq_attr_addr)
1254 {
1255     struct target_mq_attr *target_mq_attr;
1256 
1257     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1258                           target_mq_attr_addr, 1))
1259         return -TARGET_EFAULT;
1260 
1261     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1262     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1263     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1264     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1265 
1266     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1267 
1268     return 0;
1269 }
1270 
1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1272                                             const struct mq_attr *attr)
1273 {
1274     struct target_mq_attr *target_mq_attr;
1275 
1276     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1277                           target_mq_attr_addr, 0))
1278         return -TARGET_EFAULT;
1279 
1280     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1281     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1282     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1283     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1284 
1285     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1286 
1287     return 0;
1288 }
1289 #endif
1290 
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long do_select(int n,
1294                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1295                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1296 {
1297     fd_set rfds, wfds, efds;
1298     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1299     struct timeval tv;
1300     struct timespec ts, *ts_ptr;
1301     abi_long ret;
1302 
1303     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1304     if (ret) {
1305         return ret;
1306     }
1307     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1308     if (ret) {
1309         return ret;
1310     }
1311     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1312     if (ret) {
1313         return ret;
1314     }
1315 
1316     if (target_tv_addr) {
1317         if (copy_from_user_timeval(&tv, target_tv_addr))
1318             return -TARGET_EFAULT;
1319         ts.tv_sec = tv.tv_sec;
1320         ts.tv_nsec = tv.tv_usec * 1000;
1321         ts_ptr = &ts;
1322     } else {
1323         ts_ptr = NULL;
1324     }
1325 
1326     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1327                                   ts_ptr, NULL));
1328 
1329     if (!is_error(ret)) {
1330         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1331             return -TARGET_EFAULT;
1332         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1333             return -TARGET_EFAULT;
1334         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1335             return -TARGET_EFAULT;
1336 
1337         if (target_tv_addr) {
1338             tv.tv_sec = ts.tv_sec;
1339             tv.tv_usec = ts.tv_nsec / 1000;
1340             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1341                 return -TARGET_EFAULT;
1342             }
1343         }
1344     }
1345 
1346     return ret;
1347 }
1348 
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long do_old_select(abi_ulong arg1)
1351 {
1352     struct target_sel_arg_struct *sel;
1353     abi_ulong inp, outp, exp, tvp;
1354     long nsel;
1355 
1356     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1357         return -TARGET_EFAULT;
1358     }
1359 
1360     nsel = tswapal(sel->n);
1361     inp = tswapal(sel->inp);
1362     outp = tswapal(sel->outp);
1363     exp = tswapal(sel->exp);
1364     tvp = tswapal(sel->tvp);
1365 
1366     unlock_user_struct(sel, arg1, 0);
1367 
1368     return do_select(nsel, inp, outp, exp, tvp);
1369 }
1370 #endif
1371 #endif
1372 
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1375                             abi_long arg4, abi_long arg5, abi_long arg6,
1376                             bool time64)
1377 {
1378     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1379     fd_set rfds, wfds, efds;
1380     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1381     struct timespec ts, *ts_ptr;
1382     abi_long ret;
1383 
1384     /*
1385      * The 6th arg is actually two args smashed together,
1386      * so we cannot use the C library.
1387      */
1388     struct {
1389         sigset_t *set;
1390         size_t size;
1391     } sig, *sig_ptr;
1392 
1393     abi_ulong arg_sigset, arg_sigsize, *arg7;
1394 
1395     n = arg1;
1396     rfd_addr = arg2;
1397     wfd_addr = arg3;
1398     efd_addr = arg4;
1399     ts_addr = arg5;
1400 
1401     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1402     if (ret) {
1403         return ret;
1404     }
1405     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1406     if (ret) {
1407         return ret;
1408     }
1409     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1410     if (ret) {
1411         return ret;
1412     }
1413 
1414     /*
1415      * This takes a timespec, and not a timeval, so we cannot
1416      * use the do_select() helper ...
1417      */
1418     if (ts_addr) {
1419         if (time64) {
1420             if (target_to_host_timespec64(&ts, ts_addr)) {
1421                 return -TARGET_EFAULT;
1422             }
1423         } else {
1424             if (target_to_host_timespec(&ts, ts_addr)) {
1425                 return -TARGET_EFAULT;
1426             }
1427         }
1428             ts_ptr = &ts;
1429     } else {
1430         ts_ptr = NULL;
1431     }
1432 
1433     /* Extract the two packed args for the sigset */
1434     sig_ptr = NULL;
1435     if (arg6) {
1436         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1437         if (!arg7) {
1438             return -TARGET_EFAULT;
1439         }
1440         arg_sigset = tswapal(arg7[0]);
1441         arg_sigsize = tswapal(arg7[1]);
1442         unlock_user(arg7, arg6, 0);
1443 
1444         if (arg_sigset) {
1445             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1446             if (ret != 0) {
1447                 return ret;
1448             }
1449             sig_ptr = &sig;
1450             sig.size = SIGSET_T_SIZE;
1451         }
1452     }
1453 
1454     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1455                                   ts_ptr, sig_ptr));
1456 
1457     if (sig_ptr) {
1458         finish_sigsuspend_mask(ret);
1459     }
1460 
1461     if (!is_error(ret)) {
1462         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1463             return -TARGET_EFAULT;
1464         }
1465         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1466             return -TARGET_EFAULT;
1467         }
1468         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1469             return -TARGET_EFAULT;
1470         }
1471         if (time64) {
1472             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1473                 return -TARGET_EFAULT;
1474             }
1475         } else {
1476             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1477                 return -TARGET_EFAULT;
1478             }
1479         }
1480     }
1481     return ret;
1482 }
1483 #endif
1484 
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486     defined(TARGET_NR_ppoll_time64)
1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1488                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1489 {
1490     struct target_pollfd *target_pfd;
1491     unsigned int nfds = arg2;
1492     struct pollfd *pfd;
1493     unsigned int i;
1494     abi_long ret;
1495 
1496     pfd = NULL;
1497     target_pfd = NULL;
1498     if (nfds) {
1499         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1500             return -TARGET_EINVAL;
1501         }
1502         target_pfd = lock_user(VERIFY_WRITE, arg1,
1503                                sizeof(struct target_pollfd) * nfds, 1);
1504         if (!target_pfd) {
1505             return -TARGET_EFAULT;
1506         }
1507 
1508         pfd = alloca(sizeof(struct pollfd) * nfds);
1509         for (i = 0; i < nfds; i++) {
1510             pfd[i].fd = tswap32(target_pfd[i].fd);
1511             pfd[i].events = tswap16(target_pfd[i].events);
1512         }
1513     }
1514     if (ppoll) {
1515         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1516         sigset_t *set = NULL;
1517 
1518         if (arg3) {
1519             if (time64) {
1520                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1521                     unlock_user(target_pfd, arg1, 0);
1522                     return -TARGET_EFAULT;
1523                 }
1524             } else {
1525                 if (target_to_host_timespec(timeout_ts, arg3)) {
1526                     unlock_user(target_pfd, arg1, 0);
1527                     return -TARGET_EFAULT;
1528                 }
1529             }
1530         } else {
1531             timeout_ts = NULL;
1532         }
1533 
1534         if (arg4) {
1535             ret = process_sigsuspend_mask(&set, arg4, arg5);
1536             if (ret != 0) {
1537                 unlock_user(target_pfd, arg1, 0);
1538                 return ret;
1539             }
1540         }
1541 
1542         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1543                                    set, SIGSET_T_SIZE));
1544 
1545         if (set) {
1546             finish_sigsuspend_mask(ret);
1547         }
1548         if (!is_error(ret) && arg3) {
1549             if (time64) {
1550                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551                     return -TARGET_EFAULT;
1552                 }
1553             } else {
1554                 if (host_to_target_timespec(arg3, timeout_ts)) {
1555                     return -TARGET_EFAULT;
1556                 }
1557             }
1558         }
1559     } else {
1560           struct timespec ts, *pts;
1561 
1562           if (arg3 >= 0) {
1563               /* Convert ms to secs, ns */
1564               ts.tv_sec = arg3 / 1000;
1565               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1566               pts = &ts;
1567           } else {
1568               /* -ve poll() timeout means "infinite" */
1569               pts = NULL;
1570           }
1571           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1572     }
1573 
1574     if (!is_error(ret)) {
1575         for (i = 0; i < nfds; i++) {
1576             target_pfd[i].revents = tswap16(pfd[i].revents);
1577         }
1578     }
1579     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1580     return ret;
1581 }
1582 #endif
1583 
1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1585                         int flags, int is_pipe2)
1586 {
1587     int host_pipe[2];
1588     abi_long ret;
1589     ret = pipe2(host_pipe, flags);
1590 
1591     if (is_error(ret))
1592         return get_errno(ret);
1593 
1594     /* Several targets have special calling conventions for the original
1595        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1596     if (!is_pipe2) {
1597 #if defined(TARGET_ALPHA)
1598         cpu_env->ir[IR_A4] = host_pipe[1];
1599         return host_pipe[0];
1600 #elif defined(TARGET_MIPS)
1601         cpu_env->active_tc.gpr[3] = host_pipe[1];
1602         return host_pipe[0];
1603 #elif defined(TARGET_SH4)
1604         cpu_env->gregs[1] = host_pipe[1];
1605         return host_pipe[0];
1606 #elif defined(TARGET_SPARC)
1607         cpu_env->regwptr[1] = host_pipe[1];
1608         return host_pipe[0];
1609 #endif
1610     }
1611 
1612     if (put_user_s32(host_pipe[0], pipedes)
1613         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1614         return -TARGET_EFAULT;
1615     return get_errno(ret);
1616 }
1617 
1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1619                                               abi_ulong target_addr,
1620                                               socklen_t len)
1621 {
1622     struct target_ip_mreqn *target_smreqn;
1623 
1624     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1625     if (!target_smreqn)
1626         return -TARGET_EFAULT;
1627     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1628     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1629     if (len == sizeof(struct target_ip_mreqn))
1630         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1631     unlock_user(target_smreqn, target_addr, 0);
1632 
1633     return 0;
1634 }
1635 
1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1637                                                abi_ulong target_addr,
1638                                                socklen_t len)
1639 {
1640     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1641     sa_family_t sa_family;
1642     struct target_sockaddr *target_saddr;
1643 
1644     if (fd_trans_target_to_host_addr(fd)) {
1645         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1646     }
1647 
1648     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1649     if (!target_saddr)
1650         return -TARGET_EFAULT;
1651 
1652     sa_family = tswap16(target_saddr->sa_family);
1653 
1654     /* Oops. The caller might send a incomplete sun_path; sun_path
1655      * must be terminated by \0 (see the manual page), but
1656      * unfortunately it is quite common to specify sockaddr_un
1657      * length as "strlen(x->sun_path)" while it should be
1658      * "strlen(...) + 1". We'll fix that here if needed.
1659      * Linux kernel has a similar feature.
1660      */
1661 
1662     if (sa_family == AF_UNIX) {
1663         if (len < unix_maxlen && len > 0) {
1664             char *cp = (char*)target_saddr;
1665 
1666             if ( cp[len-1] && !cp[len] )
1667                 len++;
1668         }
1669         if (len > unix_maxlen)
1670             len = unix_maxlen;
1671     }
1672 
1673     memcpy(addr, target_saddr, len);
1674     addr->sa_family = sa_family;
1675     if (sa_family == AF_NETLINK) {
1676         struct sockaddr_nl *nladdr;
1677 
1678         nladdr = (struct sockaddr_nl *)addr;
1679         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1680         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1681     } else if (sa_family == AF_PACKET) {
1682 	struct target_sockaddr_ll *lladdr;
1683 
1684 	lladdr = (struct target_sockaddr_ll *)addr;
1685 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1686 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1687     } else if (sa_family == AF_INET6) {
1688         struct sockaddr_in6 *in6addr;
1689 
1690         in6addr = (struct sockaddr_in6 *)addr;
1691         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1692     }
1693     unlock_user(target_saddr, target_addr, 0);
1694 
1695     return 0;
1696 }
1697 
1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1699                                                struct sockaddr *addr,
1700                                                socklen_t len)
1701 {
1702     struct target_sockaddr *target_saddr;
1703 
1704     if (len == 0) {
1705         return 0;
1706     }
1707     assert(addr);
1708 
1709     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1710     if (!target_saddr)
1711         return -TARGET_EFAULT;
1712     memcpy(target_saddr, addr, len);
1713     if (len >= offsetof(struct target_sockaddr, sa_family) +
1714         sizeof(target_saddr->sa_family)) {
1715         target_saddr->sa_family = tswap16(addr->sa_family);
1716     }
1717     if (addr->sa_family == AF_NETLINK &&
1718         len >= sizeof(struct target_sockaddr_nl)) {
1719         struct target_sockaddr_nl *target_nl =
1720                (struct target_sockaddr_nl *)target_saddr;
1721         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1722         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1723     } else if (addr->sa_family == AF_PACKET) {
1724         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1725         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1726         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1727     } else if (addr->sa_family == AF_INET6 &&
1728                len >= sizeof(struct target_sockaddr_in6)) {
1729         struct target_sockaddr_in6 *target_in6 =
1730                (struct target_sockaddr_in6 *)target_saddr;
1731         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1732     }
1733     unlock_user(target_saddr, target_addr, len);
1734 
1735     return 0;
1736 }
1737 
1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1739                                            struct target_msghdr *target_msgh)
1740 {
1741     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1742     abi_long msg_controllen;
1743     abi_ulong target_cmsg_addr;
1744     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1745     socklen_t space = 0;
1746 
1747     msg_controllen = tswapal(target_msgh->msg_controllen);
1748     if (msg_controllen < sizeof (struct target_cmsghdr))
1749         goto the_end;
1750     target_cmsg_addr = tswapal(target_msgh->msg_control);
1751     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1752     target_cmsg_start = target_cmsg;
1753     if (!target_cmsg)
1754         return -TARGET_EFAULT;
1755 
1756     while (cmsg && target_cmsg) {
1757         void *data = CMSG_DATA(cmsg);
1758         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1759 
1760         int len = tswapal(target_cmsg->cmsg_len)
1761             - sizeof(struct target_cmsghdr);
1762 
1763         space += CMSG_SPACE(len);
1764         if (space > msgh->msg_controllen) {
1765             space -= CMSG_SPACE(len);
1766             /* This is a QEMU bug, since we allocated the payload
1767              * area ourselves (unlike overflow in host-to-target
1768              * conversion, which is just the guest giving us a buffer
1769              * that's too small). It can't happen for the payload types
1770              * we currently support; if it becomes an issue in future
1771              * we would need to improve our allocation strategy to
1772              * something more intelligent than "twice the size of the
1773              * target buffer we're reading from".
1774              */
1775             qemu_log_mask(LOG_UNIMP,
1776                           ("Unsupported ancillary data %d/%d: "
1777                            "unhandled msg size\n"),
1778                           tswap32(target_cmsg->cmsg_level),
1779                           tswap32(target_cmsg->cmsg_type));
1780             break;
1781         }
1782 
1783         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1784             cmsg->cmsg_level = SOL_SOCKET;
1785         } else {
1786             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1787         }
1788         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1789         cmsg->cmsg_len = CMSG_LEN(len);
1790 
1791         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1792             int *fd = (int *)data;
1793             int *target_fd = (int *)target_data;
1794             int i, numfds = len / sizeof(int);
1795 
1796             for (i = 0; i < numfds; i++) {
1797                 __get_user(fd[i], target_fd + i);
1798             }
1799         } else if (cmsg->cmsg_level == SOL_SOCKET
1800                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1801             struct ucred *cred = (struct ucred *)data;
1802             struct target_ucred *target_cred =
1803                 (struct target_ucred *)target_data;
1804 
1805             __get_user(cred->pid, &target_cred->pid);
1806             __get_user(cred->uid, &target_cred->uid);
1807             __get_user(cred->gid, &target_cred->gid);
1808         } else if (cmsg->cmsg_level == SOL_ALG) {
1809             uint32_t *dst = (uint32_t *)data;
1810 
1811             memcpy(dst, target_data, len);
1812             /* fix endianness of first 32-bit word */
1813             if (len >= sizeof(uint32_t)) {
1814                 *dst = tswap32(*dst);
1815             }
1816         } else {
1817             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1818                           cmsg->cmsg_level, cmsg->cmsg_type);
1819             memcpy(data, target_data, len);
1820         }
1821 
1822         cmsg = CMSG_NXTHDR(msgh, cmsg);
1823         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1824                                          target_cmsg_start);
1825     }
1826     unlock_user(target_cmsg, target_cmsg_addr, 0);
1827  the_end:
1828     msgh->msg_controllen = space;
1829     return 0;
1830 }
1831 
1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1833                                            struct msghdr *msgh)
1834 {
1835     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1836     abi_long msg_controllen;
1837     abi_ulong target_cmsg_addr;
1838     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1839     socklen_t space = 0;
1840 
1841     msg_controllen = tswapal(target_msgh->msg_controllen);
1842     if (msg_controllen < sizeof (struct target_cmsghdr))
1843         goto the_end;
1844     target_cmsg_addr = tswapal(target_msgh->msg_control);
1845     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1846     target_cmsg_start = target_cmsg;
1847     if (!target_cmsg)
1848         return -TARGET_EFAULT;
1849 
1850     while (cmsg && target_cmsg) {
1851         void *data = CMSG_DATA(cmsg);
1852         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1853 
1854         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1855         int tgt_len, tgt_space;
1856 
1857         /* We never copy a half-header but may copy half-data;
1858          * this is Linux's behaviour in put_cmsg(). Note that
1859          * truncation here is a guest problem (which we report
1860          * to the guest via the CTRUNC bit), unlike truncation
1861          * in target_to_host_cmsg, which is a QEMU bug.
1862          */
1863         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1864             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1865             break;
1866         }
1867 
1868         if (cmsg->cmsg_level == SOL_SOCKET) {
1869             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1870         } else {
1871             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1872         }
1873         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1874 
1875         /* Payload types which need a different size of payload on
1876          * the target must adjust tgt_len here.
1877          */
1878         tgt_len = len;
1879         switch (cmsg->cmsg_level) {
1880         case SOL_SOCKET:
1881             switch (cmsg->cmsg_type) {
1882             case SO_TIMESTAMP:
1883                 tgt_len = sizeof(struct target_timeval);
1884                 break;
1885             default:
1886                 break;
1887             }
1888             break;
1889         default:
1890             break;
1891         }
1892 
1893         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1894             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1895             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1896         }
1897 
1898         /* We must now copy-and-convert len bytes of payload
1899          * into tgt_len bytes of destination space. Bear in mind
1900          * that in both source and destination we may be dealing
1901          * with a truncated value!
1902          */
1903         switch (cmsg->cmsg_level) {
1904         case SOL_SOCKET:
1905             switch (cmsg->cmsg_type) {
1906             case SCM_RIGHTS:
1907             {
1908                 int *fd = (int *)data;
1909                 int *target_fd = (int *)target_data;
1910                 int i, numfds = tgt_len / sizeof(int);
1911 
1912                 for (i = 0; i < numfds; i++) {
1913                     __put_user(fd[i], target_fd + i);
1914                 }
1915                 break;
1916             }
1917             case SO_TIMESTAMP:
1918             {
1919                 struct timeval *tv = (struct timeval *)data;
1920                 struct target_timeval *target_tv =
1921                     (struct target_timeval *)target_data;
1922 
1923                 if (len != sizeof(struct timeval) ||
1924                     tgt_len != sizeof(struct target_timeval)) {
1925                     goto unimplemented;
1926                 }
1927 
1928                 /* copy struct timeval to target */
1929                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1930                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1931                 break;
1932             }
1933             case SCM_CREDENTIALS:
1934             {
1935                 struct ucred *cred = (struct ucred *)data;
1936                 struct target_ucred *target_cred =
1937                     (struct target_ucred *)target_data;
1938 
1939                 __put_user(cred->pid, &target_cred->pid);
1940                 __put_user(cred->uid, &target_cred->uid);
1941                 __put_user(cred->gid, &target_cred->gid);
1942                 break;
1943             }
1944             default:
1945                 goto unimplemented;
1946             }
1947             break;
1948 
1949         case SOL_IP:
1950             switch (cmsg->cmsg_type) {
1951             case IP_TTL:
1952             {
1953                 uint32_t *v = (uint32_t *)data;
1954                 uint32_t *t_int = (uint32_t *)target_data;
1955 
1956                 if (len != sizeof(uint32_t) ||
1957                     tgt_len != sizeof(uint32_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(*v, t_int);
1961                 break;
1962             }
1963             case IP_RECVERR:
1964             {
1965                 struct errhdr_t {
1966                    struct sock_extended_err ee;
1967                    struct sockaddr_in offender;
1968                 };
1969                 struct errhdr_t *errh = (struct errhdr_t *)data;
1970                 struct errhdr_t *target_errh =
1971                     (struct errhdr_t *)target_data;
1972 
1973                 if (len != sizeof(struct errhdr_t) ||
1974                     tgt_len != sizeof(struct errhdr_t)) {
1975                     goto unimplemented;
1976                 }
1977                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1978                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1979                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1980                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1981                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1982                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1983                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1984                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1985                     (void *) &errh->offender, sizeof(errh->offender));
1986                 break;
1987             }
1988             default:
1989                 goto unimplemented;
1990             }
1991             break;
1992 
1993         case SOL_IPV6:
1994             switch (cmsg->cmsg_type) {
1995             case IPV6_HOPLIMIT:
1996             {
1997                 uint32_t *v = (uint32_t *)data;
1998                 uint32_t *t_int = (uint32_t *)target_data;
1999 
2000                 if (len != sizeof(uint32_t) ||
2001                     tgt_len != sizeof(uint32_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(*v, t_int);
2005                 break;
2006             }
2007             case IPV6_RECVERR:
2008             {
2009                 struct errhdr6_t {
2010                    struct sock_extended_err ee;
2011                    struct sockaddr_in6 offender;
2012                 };
2013                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2014                 struct errhdr6_t *target_errh =
2015                     (struct errhdr6_t *)target_data;
2016 
2017                 if (len != sizeof(struct errhdr6_t) ||
2018                     tgt_len != sizeof(struct errhdr6_t)) {
2019                     goto unimplemented;
2020                 }
2021                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2022                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2023                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2024                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2025                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2026                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2027                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2028                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2029                     (void *) &errh->offender, sizeof(errh->offender));
2030                 break;
2031             }
2032             default:
2033                 goto unimplemented;
2034             }
2035             break;
2036 
2037         default:
2038         unimplemented:
2039             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2040                           cmsg->cmsg_level, cmsg->cmsg_type);
2041             memcpy(target_data, data, MIN(len, tgt_len));
2042             if (tgt_len > len) {
2043                 memset(target_data + len, 0, tgt_len - len);
2044             }
2045         }
2046 
2047         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2048         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2049         if (msg_controllen < tgt_space) {
2050             tgt_space = msg_controllen;
2051         }
2052         msg_controllen -= tgt_space;
2053         space += tgt_space;
2054         cmsg = CMSG_NXTHDR(msgh, cmsg);
2055         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2056                                          target_cmsg_start);
2057     }
2058     unlock_user(target_cmsg, target_cmsg_addr, space);
2059  the_end:
2060     target_msgh->msg_controllen = tswapal(space);
2061     return 0;
2062 }
2063 
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long do_setsockopt(int sockfd, int level, int optname,
2066                               abi_ulong optval_addr, socklen_t optlen)
2067 {
2068     abi_long ret;
2069     int val;
2070     struct ip_mreqn *ip_mreq;
2071     struct ip_mreq_source *ip_mreq_source;
2072 
2073     switch(level) {
2074     case SOL_TCP:
2075     case SOL_UDP:
2076         /* TCP and UDP options all take an 'int' value.  */
2077         if (optlen < sizeof(uint32_t))
2078             return -TARGET_EINVAL;
2079 
2080         if (get_user_u32(val, optval_addr))
2081             return -TARGET_EFAULT;
2082         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2083         break;
2084     case SOL_IP:
2085         switch(optname) {
2086         case IP_TOS:
2087         case IP_TTL:
2088         case IP_HDRINCL:
2089         case IP_ROUTER_ALERT:
2090         case IP_RECVOPTS:
2091         case IP_RETOPTS:
2092         case IP_PKTINFO:
2093         case IP_MTU_DISCOVER:
2094         case IP_RECVERR:
2095         case IP_RECVTTL:
2096         case IP_RECVTOS:
2097 #ifdef IP_FREEBIND
2098         case IP_FREEBIND:
2099 #endif
2100         case IP_MULTICAST_TTL:
2101         case IP_MULTICAST_LOOP:
2102             val = 0;
2103             if (optlen >= sizeof(uint32_t)) {
2104                 if (get_user_u32(val, optval_addr))
2105                     return -TARGET_EFAULT;
2106             } else if (optlen >= 1) {
2107                 if (get_user_u8(val, optval_addr))
2108                     return -TARGET_EFAULT;
2109             }
2110             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2111             break;
2112         case IP_ADD_MEMBERSHIP:
2113         case IP_DROP_MEMBERSHIP:
2114             if (optlen < sizeof (struct target_ip_mreq) ||
2115                 optlen > sizeof (struct target_ip_mreqn))
2116                 return -TARGET_EINVAL;
2117 
2118             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2119             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2120             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2121             break;
2122 
2123         case IP_BLOCK_SOURCE:
2124         case IP_UNBLOCK_SOURCE:
2125         case IP_ADD_SOURCE_MEMBERSHIP:
2126         case IP_DROP_SOURCE_MEMBERSHIP:
2127             if (optlen != sizeof (struct target_ip_mreq_source))
2128                 return -TARGET_EINVAL;
2129 
2130             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2131             if (!ip_mreq_source) {
2132                 return -TARGET_EFAULT;
2133             }
2134             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2135             unlock_user (ip_mreq_source, optval_addr, 0);
2136             break;
2137 
2138         default:
2139             goto unimplemented;
2140         }
2141         break;
2142     case SOL_IPV6:
2143         switch (optname) {
2144         case IPV6_MTU_DISCOVER:
2145         case IPV6_MTU:
2146         case IPV6_V6ONLY:
2147         case IPV6_RECVPKTINFO:
2148         case IPV6_UNICAST_HOPS:
2149         case IPV6_MULTICAST_HOPS:
2150         case IPV6_MULTICAST_LOOP:
2151         case IPV6_RECVERR:
2152         case IPV6_RECVHOPLIMIT:
2153         case IPV6_2292HOPLIMIT:
2154         case IPV6_CHECKSUM:
2155         case IPV6_ADDRFORM:
2156         case IPV6_2292PKTINFO:
2157         case IPV6_RECVTCLASS:
2158         case IPV6_RECVRTHDR:
2159         case IPV6_2292RTHDR:
2160         case IPV6_RECVHOPOPTS:
2161         case IPV6_2292HOPOPTS:
2162         case IPV6_RECVDSTOPTS:
2163         case IPV6_2292DSTOPTS:
2164         case IPV6_TCLASS:
2165         case IPV6_ADDR_PREFERENCES:
2166 #ifdef IPV6_RECVPATHMTU
2167         case IPV6_RECVPATHMTU:
2168 #endif
2169 #ifdef IPV6_TRANSPARENT
2170         case IPV6_TRANSPARENT:
2171 #endif
2172 #ifdef IPV6_FREEBIND
2173         case IPV6_FREEBIND:
2174 #endif
2175 #ifdef IPV6_RECVORIGDSTADDR
2176         case IPV6_RECVORIGDSTADDR:
2177 #endif
2178             val = 0;
2179             if (optlen < sizeof(uint32_t)) {
2180                 return -TARGET_EINVAL;
2181             }
2182             if (get_user_u32(val, optval_addr)) {
2183                 return -TARGET_EFAULT;
2184             }
2185             ret = get_errno(setsockopt(sockfd, level, optname,
2186                                        &val, sizeof(val)));
2187             break;
2188         case IPV6_PKTINFO:
2189         {
2190             struct in6_pktinfo pki;
2191 
2192             if (optlen < sizeof(pki)) {
2193                 return -TARGET_EINVAL;
2194             }
2195 
2196             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2197                 return -TARGET_EFAULT;
2198             }
2199 
2200             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2201 
2202             ret = get_errno(setsockopt(sockfd, level, optname,
2203                                        &pki, sizeof(pki)));
2204             break;
2205         }
2206         case IPV6_ADD_MEMBERSHIP:
2207         case IPV6_DROP_MEMBERSHIP:
2208         {
2209             struct ipv6_mreq ipv6mreq;
2210 
2211             if (optlen < sizeof(ipv6mreq)) {
2212                 return -TARGET_EINVAL;
2213             }
2214 
2215             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2216                 return -TARGET_EFAULT;
2217             }
2218 
2219             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2220 
2221             ret = get_errno(setsockopt(sockfd, level, optname,
2222                                        &ipv6mreq, sizeof(ipv6mreq)));
2223             break;
2224         }
2225         default:
2226             goto unimplemented;
2227         }
2228         break;
2229     case SOL_ICMPV6:
2230         switch (optname) {
2231         case ICMPV6_FILTER:
2232         {
2233             struct icmp6_filter icmp6f;
2234 
2235             if (optlen > sizeof(icmp6f)) {
2236                 optlen = sizeof(icmp6f);
2237             }
2238 
2239             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2240                 return -TARGET_EFAULT;
2241             }
2242 
2243             for (val = 0; val < 8; val++) {
2244                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2245             }
2246 
2247             ret = get_errno(setsockopt(sockfd, level, optname,
2248                                        &icmp6f, optlen));
2249             break;
2250         }
2251         default:
2252             goto unimplemented;
2253         }
2254         break;
2255     case SOL_RAW:
2256         switch (optname) {
2257         case ICMP_FILTER:
2258         case IPV6_CHECKSUM:
2259             /* those take an u32 value */
2260             if (optlen < sizeof(uint32_t)) {
2261                 return -TARGET_EINVAL;
2262             }
2263 
2264             if (get_user_u32(val, optval_addr)) {
2265                 return -TARGET_EFAULT;
2266             }
2267             ret = get_errno(setsockopt(sockfd, level, optname,
2268                                        &val, sizeof(val)));
2269             break;
2270 
2271         default:
2272             goto unimplemented;
2273         }
2274         break;
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2276     case SOL_ALG:
2277         switch (optname) {
2278         case ALG_SET_KEY:
2279         {
2280             char *alg_key = g_malloc(optlen);
2281 
2282             if (!alg_key) {
2283                 return -TARGET_ENOMEM;
2284             }
2285             if (copy_from_user(alg_key, optval_addr, optlen)) {
2286                 g_free(alg_key);
2287                 return -TARGET_EFAULT;
2288             }
2289             ret = get_errno(setsockopt(sockfd, level, optname,
2290                                        alg_key, optlen));
2291             g_free(alg_key);
2292             break;
2293         }
2294         case ALG_SET_AEAD_AUTHSIZE:
2295         {
2296             ret = get_errno(setsockopt(sockfd, level, optname,
2297                                        NULL, optlen));
2298             break;
2299         }
2300         default:
2301             goto unimplemented;
2302         }
2303         break;
2304 #endif
2305     case TARGET_SOL_SOCKET:
2306         switch (optname) {
2307         case TARGET_SO_RCVTIMEO:
2308         {
2309                 struct timeval tv;
2310 
2311                 optname = SO_RCVTIMEO;
2312 
2313 set_timeout:
2314                 if (optlen != sizeof(struct target_timeval)) {
2315                     return -TARGET_EINVAL;
2316                 }
2317 
2318                 if (copy_from_user_timeval(&tv, optval_addr)) {
2319                     return -TARGET_EFAULT;
2320                 }
2321 
2322                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2323                                 &tv, sizeof(tv)));
2324                 return ret;
2325         }
2326         case TARGET_SO_SNDTIMEO:
2327                 optname = SO_SNDTIMEO;
2328                 goto set_timeout;
2329         case TARGET_SO_ATTACH_FILTER:
2330         {
2331                 struct target_sock_fprog *tfprog;
2332                 struct target_sock_filter *tfilter;
2333                 struct sock_fprog fprog;
2334                 struct sock_filter *filter;
2335                 int i;
2336 
2337                 if (optlen != sizeof(*tfprog)) {
2338                     return -TARGET_EINVAL;
2339                 }
2340                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2341                     return -TARGET_EFAULT;
2342                 }
2343                 if (!lock_user_struct(VERIFY_READ, tfilter,
2344                                       tswapal(tfprog->filter), 0)) {
2345                     unlock_user_struct(tfprog, optval_addr, 1);
2346                     return -TARGET_EFAULT;
2347                 }
2348 
2349                 fprog.len = tswap16(tfprog->len);
2350                 filter = g_try_new(struct sock_filter, fprog.len);
2351                 if (filter == NULL) {
2352                     unlock_user_struct(tfilter, tfprog->filter, 1);
2353                     unlock_user_struct(tfprog, optval_addr, 1);
2354                     return -TARGET_ENOMEM;
2355                 }
2356                 for (i = 0; i < fprog.len; i++) {
2357                     filter[i].code = tswap16(tfilter[i].code);
2358                     filter[i].jt = tfilter[i].jt;
2359                     filter[i].jf = tfilter[i].jf;
2360                     filter[i].k = tswap32(tfilter[i].k);
2361                 }
2362                 fprog.filter = filter;
2363 
2364                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2365                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2366                 g_free(filter);
2367 
2368                 unlock_user_struct(tfilter, tfprog->filter, 1);
2369                 unlock_user_struct(tfprog, optval_addr, 1);
2370                 return ret;
2371         }
2372 	case TARGET_SO_BINDTODEVICE:
2373 	{
2374 		char *dev_ifname, *addr_ifname;
2375 
2376 		if (optlen > IFNAMSIZ - 1) {
2377 		    optlen = IFNAMSIZ - 1;
2378 		}
2379 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2380 		if (!dev_ifname) {
2381 		    return -TARGET_EFAULT;
2382 		}
2383 		optname = SO_BINDTODEVICE;
2384 		addr_ifname = alloca(IFNAMSIZ);
2385 		memcpy(addr_ifname, dev_ifname, optlen);
2386 		addr_ifname[optlen] = 0;
2387 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2388                                            addr_ifname, optlen));
2389 		unlock_user (dev_ifname, optval_addr, 0);
2390 		return ret;
2391 	}
2392         case TARGET_SO_LINGER:
2393         {
2394                 struct linger lg;
2395                 struct target_linger *tlg;
2396 
2397                 if (optlen != sizeof(struct target_linger)) {
2398                     return -TARGET_EINVAL;
2399                 }
2400                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2401                     return -TARGET_EFAULT;
2402                 }
2403                 __get_user(lg.l_onoff, &tlg->l_onoff);
2404                 __get_user(lg.l_linger, &tlg->l_linger);
2405                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2406                                 &lg, sizeof(lg)));
2407                 unlock_user_struct(tlg, optval_addr, 0);
2408                 return ret;
2409         }
2410             /* Options with 'int' argument.  */
2411         case TARGET_SO_DEBUG:
2412 		optname = SO_DEBUG;
2413 		break;
2414         case TARGET_SO_REUSEADDR:
2415 		optname = SO_REUSEADDR;
2416 		break;
2417 #ifdef SO_REUSEPORT
2418         case TARGET_SO_REUSEPORT:
2419                 optname = SO_REUSEPORT;
2420                 break;
2421 #endif
2422         case TARGET_SO_TYPE:
2423 		optname = SO_TYPE;
2424 		break;
2425         case TARGET_SO_ERROR:
2426 		optname = SO_ERROR;
2427 		break;
2428         case TARGET_SO_DONTROUTE:
2429 		optname = SO_DONTROUTE;
2430 		break;
2431         case TARGET_SO_BROADCAST:
2432 		optname = SO_BROADCAST;
2433 		break;
2434         case TARGET_SO_SNDBUF:
2435 		optname = SO_SNDBUF;
2436 		break;
2437         case TARGET_SO_SNDBUFFORCE:
2438                 optname = SO_SNDBUFFORCE;
2439                 break;
2440         case TARGET_SO_RCVBUF:
2441 		optname = SO_RCVBUF;
2442 		break;
2443         case TARGET_SO_RCVBUFFORCE:
2444                 optname = SO_RCVBUFFORCE;
2445                 break;
2446         case TARGET_SO_KEEPALIVE:
2447 		optname = SO_KEEPALIVE;
2448 		break;
2449         case TARGET_SO_OOBINLINE:
2450 		optname = SO_OOBINLINE;
2451 		break;
2452         case TARGET_SO_NO_CHECK:
2453 		optname = SO_NO_CHECK;
2454 		break;
2455         case TARGET_SO_PRIORITY:
2456 		optname = SO_PRIORITY;
2457 		break;
2458 #ifdef SO_BSDCOMPAT
2459         case TARGET_SO_BSDCOMPAT:
2460 		optname = SO_BSDCOMPAT;
2461 		break;
2462 #endif
2463         case TARGET_SO_PASSCRED:
2464 		optname = SO_PASSCRED;
2465 		break;
2466         case TARGET_SO_PASSSEC:
2467                 optname = SO_PASSSEC;
2468                 break;
2469         case TARGET_SO_TIMESTAMP:
2470 		optname = SO_TIMESTAMP;
2471 		break;
2472         case TARGET_SO_RCVLOWAT:
2473 		optname = SO_RCVLOWAT;
2474 		break;
2475         default:
2476             goto unimplemented;
2477         }
2478 	if (optlen < sizeof(uint32_t))
2479             return -TARGET_EINVAL;
2480 
2481 	if (get_user_u32(val, optval_addr))
2482             return -TARGET_EFAULT;
2483 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2484         break;
2485 #ifdef SOL_NETLINK
2486     case SOL_NETLINK:
2487         switch (optname) {
2488         case NETLINK_PKTINFO:
2489         case NETLINK_ADD_MEMBERSHIP:
2490         case NETLINK_DROP_MEMBERSHIP:
2491         case NETLINK_BROADCAST_ERROR:
2492         case NETLINK_NO_ENOBUFS:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494         case NETLINK_LISTEN_ALL_NSID:
2495         case NETLINK_CAP_ACK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498         case NETLINK_EXT_ACK:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501         case NETLINK_GET_STRICT_CHK:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2503             break;
2504         default:
2505             goto unimplemented;
2506         }
2507         val = 0;
2508         if (optlen < sizeof(uint32_t)) {
2509             return -TARGET_EINVAL;
2510         }
2511         if (get_user_u32(val, optval_addr)) {
2512             return -TARGET_EFAULT;
2513         }
2514         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2515                                    sizeof(val)));
2516         break;
2517 #endif /* SOL_NETLINK */
2518     default:
2519     unimplemented:
2520         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2521                       level, optname);
2522         ret = -TARGET_ENOPROTOOPT;
2523     }
2524     return ret;
2525 }
2526 
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long do_getsockopt(int sockfd, int level, int optname,
2529                               abi_ulong optval_addr, abi_ulong optlen)
2530 {
2531     abi_long ret;
2532     int len, val;
2533     socklen_t lv;
2534 
2535     switch(level) {
2536     case TARGET_SOL_SOCKET:
2537         level = SOL_SOCKET;
2538         switch (optname) {
2539         /* These don't just return a single integer */
2540         case TARGET_SO_PEERNAME:
2541             goto unimplemented;
2542         case TARGET_SO_RCVTIMEO: {
2543             struct timeval tv;
2544             socklen_t tvlen;
2545 
2546             optname = SO_RCVTIMEO;
2547 
2548 get_timeout:
2549             if (get_user_u32(len, optlen)) {
2550                 return -TARGET_EFAULT;
2551             }
2552             if (len < 0) {
2553                 return -TARGET_EINVAL;
2554             }
2555 
2556             tvlen = sizeof(tv);
2557             ret = get_errno(getsockopt(sockfd, level, optname,
2558                                        &tv, &tvlen));
2559             if (ret < 0) {
2560                 return ret;
2561             }
2562             if (len > sizeof(struct target_timeval)) {
2563                 len = sizeof(struct target_timeval);
2564             }
2565             if (copy_to_user_timeval(optval_addr, &tv)) {
2566                 return -TARGET_EFAULT;
2567             }
2568             if (put_user_u32(len, optlen)) {
2569                 return -TARGET_EFAULT;
2570             }
2571             break;
2572         }
2573         case TARGET_SO_SNDTIMEO:
2574             optname = SO_SNDTIMEO;
2575             goto get_timeout;
2576         case TARGET_SO_PEERCRED: {
2577             struct ucred cr;
2578             socklen_t crlen;
2579             struct target_ucred *tcr;
2580 
2581             if (get_user_u32(len, optlen)) {
2582                 return -TARGET_EFAULT;
2583             }
2584             if (len < 0) {
2585                 return -TARGET_EINVAL;
2586             }
2587 
2588             crlen = sizeof(cr);
2589             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2590                                        &cr, &crlen));
2591             if (ret < 0) {
2592                 return ret;
2593             }
2594             if (len > crlen) {
2595                 len = crlen;
2596             }
2597             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2598                 return -TARGET_EFAULT;
2599             }
2600             __put_user(cr.pid, &tcr->pid);
2601             __put_user(cr.uid, &tcr->uid);
2602             __put_user(cr.gid, &tcr->gid);
2603             unlock_user_struct(tcr, optval_addr, 1);
2604             if (put_user_u32(len, optlen)) {
2605                 return -TARGET_EFAULT;
2606             }
2607             break;
2608         }
2609         case TARGET_SO_PEERSEC: {
2610             char *name;
2611 
2612             if (get_user_u32(len, optlen)) {
2613                 return -TARGET_EFAULT;
2614             }
2615             if (len < 0) {
2616                 return -TARGET_EINVAL;
2617             }
2618             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2619             if (!name) {
2620                 return -TARGET_EFAULT;
2621             }
2622             lv = len;
2623             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2624                                        name, &lv));
2625             if (put_user_u32(lv, optlen)) {
2626                 ret = -TARGET_EFAULT;
2627             }
2628             unlock_user(name, optval_addr, lv);
2629             break;
2630         }
2631         case TARGET_SO_LINGER:
2632         {
2633             struct linger lg;
2634             socklen_t lglen;
2635             struct target_linger *tlg;
2636 
2637             if (get_user_u32(len, optlen)) {
2638                 return -TARGET_EFAULT;
2639             }
2640             if (len < 0) {
2641                 return -TARGET_EINVAL;
2642             }
2643 
2644             lglen = sizeof(lg);
2645             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2646                                        &lg, &lglen));
2647             if (ret < 0) {
2648                 return ret;
2649             }
2650             if (len > lglen) {
2651                 len = lglen;
2652             }
2653             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             __put_user(lg.l_onoff, &tlg->l_onoff);
2657             __put_user(lg.l_linger, &tlg->l_linger);
2658             unlock_user_struct(tlg, optval_addr, 1);
2659             if (put_user_u32(len, optlen)) {
2660                 return -TARGET_EFAULT;
2661             }
2662             break;
2663         }
2664         /* Options with 'int' argument.  */
2665         case TARGET_SO_DEBUG:
2666             optname = SO_DEBUG;
2667             goto int_case;
2668         case TARGET_SO_REUSEADDR:
2669             optname = SO_REUSEADDR;
2670             goto int_case;
2671 #ifdef SO_REUSEPORT
2672         case TARGET_SO_REUSEPORT:
2673             optname = SO_REUSEPORT;
2674             goto int_case;
2675 #endif
2676         case TARGET_SO_TYPE:
2677             optname = SO_TYPE;
2678             goto int_case;
2679         case TARGET_SO_ERROR:
2680             optname = SO_ERROR;
2681             goto int_case;
2682         case TARGET_SO_DONTROUTE:
2683             optname = SO_DONTROUTE;
2684             goto int_case;
2685         case TARGET_SO_BROADCAST:
2686             optname = SO_BROADCAST;
2687             goto int_case;
2688         case TARGET_SO_SNDBUF:
2689             optname = SO_SNDBUF;
2690             goto int_case;
2691         case TARGET_SO_RCVBUF:
2692             optname = SO_RCVBUF;
2693             goto int_case;
2694         case TARGET_SO_KEEPALIVE:
2695             optname = SO_KEEPALIVE;
2696             goto int_case;
2697         case TARGET_SO_OOBINLINE:
2698             optname = SO_OOBINLINE;
2699             goto int_case;
2700         case TARGET_SO_NO_CHECK:
2701             optname = SO_NO_CHECK;
2702             goto int_case;
2703         case TARGET_SO_PRIORITY:
2704             optname = SO_PRIORITY;
2705             goto int_case;
2706 #ifdef SO_BSDCOMPAT
2707         case TARGET_SO_BSDCOMPAT:
2708             optname = SO_BSDCOMPAT;
2709             goto int_case;
2710 #endif
2711         case TARGET_SO_PASSCRED:
2712             optname = SO_PASSCRED;
2713             goto int_case;
2714         case TARGET_SO_TIMESTAMP:
2715             optname = SO_TIMESTAMP;
2716             goto int_case;
2717         case TARGET_SO_RCVLOWAT:
2718             optname = SO_RCVLOWAT;
2719             goto int_case;
2720         case TARGET_SO_ACCEPTCONN:
2721             optname = SO_ACCEPTCONN;
2722             goto int_case;
2723         case TARGET_SO_PROTOCOL:
2724             optname = SO_PROTOCOL;
2725             goto int_case;
2726         case TARGET_SO_DOMAIN:
2727             optname = SO_DOMAIN;
2728             goto int_case;
2729         default:
2730             goto int_case;
2731         }
2732         break;
2733     case SOL_TCP:
2734     case SOL_UDP:
2735         /* TCP and UDP options all take an 'int' value.  */
2736     int_case:
2737         if (get_user_u32(len, optlen))
2738             return -TARGET_EFAULT;
2739         if (len < 0)
2740             return -TARGET_EINVAL;
2741         lv = sizeof(lv);
2742         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2743         if (ret < 0)
2744             return ret;
2745         switch (optname) {
2746         case SO_TYPE:
2747             val = host_to_target_sock_type(val);
2748             break;
2749         case SO_ERROR:
2750             val = host_to_target_errno(val);
2751             break;
2752         }
2753         if (len > lv)
2754             len = lv;
2755         if (len == 4) {
2756             if (put_user_u32(val, optval_addr))
2757                 return -TARGET_EFAULT;
2758         } else {
2759             if (put_user_u8(val, optval_addr))
2760                 return -TARGET_EFAULT;
2761         }
2762         if (put_user_u32(len, optlen))
2763             return -TARGET_EFAULT;
2764         break;
2765     case SOL_IP:
2766         switch(optname) {
2767         case IP_TOS:
2768         case IP_TTL:
2769         case IP_HDRINCL:
2770         case IP_ROUTER_ALERT:
2771         case IP_RECVOPTS:
2772         case IP_RETOPTS:
2773         case IP_PKTINFO:
2774         case IP_MTU_DISCOVER:
2775         case IP_RECVERR:
2776         case IP_RECVTOS:
2777 #ifdef IP_FREEBIND
2778         case IP_FREEBIND:
2779 #endif
2780         case IP_MULTICAST_TTL:
2781         case IP_MULTICAST_LOOP:
2782             if (get_user_u32(len, optlen))
2783                 return -TARGET_EFAULT;
2784             if (len < 0)
2785                 return -TARGET_EINVAL;
2786             lv = sizeof(lv);
2787             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2788             if (ret < 0)
2789                 return ret;
2790             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2791                 len = 1;
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u8(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             } else {
2796                 if (len > sizeof(int))
2797                     len = sizeof(int);
2798                 if (put_user_u32(len, optlen)
2799                     || put_user_u32(val, optval_addr))
2800                     return -TARGET_EFAULT;
2801             }
2802             break;
2803         default:
2804             ret = -TARGET_ENOPROTOOPT;
2805             break;
2806         }
2807         break;
2808     case SOL_IPV6:
2809         switch (optname) {
2810         case IPV6_MTU_DISCOVER:
2811         case IPV6_MTU:
2812         case IPV6_V6ONLY:
2813         case IPV6_RECVPKTINFO:
2814         case IPV6_UNICAST_HOPS:
2815         case IPV6_MULTICAST_HOPS:
2816         case IPV6_MULTICAST_LOOP:
2817         case IPV6_RECVERR:
2818         case IPV6_RECVHOPLIMIT:
2819         case IPV6_2292HOPLIMIT:
2820         case IPV6_CHECKSUM:
2821         case IPV6_ADDRFORM:
2822         case IPV6_2292PKTINFO:
2823         case IPV6_RECVTCLASS:
2824         case IPV6_RECVRTHDR:
2825         case IPV6_2292RTHDR:
2826         case IPV6_RECVHOPOPTS:
2827         case IPV6_2292HOPOPTS:
2828         case IPV6_RECVDSTOPTS:
2829         case IPV6_2292DSTOPTS:
2830         case IPV6_TCLASS:
2831         case IPV6_ADDR_PREFERENCES:
2832 #ifdef IPV6_RECVPATHMTU
2833         case IPV6_RECVPATHMTU:
2834 #endif
2835 #ifdef IPV6_TRANSPARENT
2836         case IPV6_TRANSPARENT:
2837 #endif
2838 #ifdef IPV6_FREEBIND
2839         case IPV6_FREEBIND:
2840 #endif
2841 #ifdef IPV6_RECVORIGDSTADDR
2842         case IPV6_RECVORIGDSTADDR:
2843 #endif
2844             if (get_user_u32(len, optlen))
2845                 return -TARGET_EFAULT;
2846             if (len < 0)
2847                 return -TARGET_EINVAL;
2848             lv = sizeof(lv);
2849             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2850             if (ret < 0)
2851                 return ret;
2852             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2853                 len = 1;
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u8(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             } else {
2858                 if (len > sizeof(int))
2859                     len = sizeof(int);
2860                 if (put_user_u32(len, optlen)
2861                     || put_user_u32(val, optval_addr))
2862                     return -TARGET_EFAULT;
2863             }
2864             break;
2865         default:
2866             ret = -TARGET_ENOPROTOOPT;
2867             break;
2868         }
2869         break;
2870 #ifdef SOL_NETLINK
2871     case SOL_NETLINK:
2872         switch (optname) {
2873         case NETLINK_PKTINFO:
2874         case NETLINK_BROADCAST_ERROR:
2875         case NETLINK_NO_ENOBUFS:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877         case NETLINK_LISTEN_ALL_NSID:
2878         case NETLINK_CAP_ACK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881         case NETLINK_EXT_ACK:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884         case NETLINK_GET_STRICT_CHK:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886             if (get_user_u32(len, optlen)) {
2887                 return -TARGET_EFAULT;
2888             }
2889             if (len != sizeof(val)) {
2890                 return -TARGET_EINVAL;
2891             }
2892             lv = len;
2893             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2894             if (ret < 0) {
2895                 return ret;
2896             }
2897             if (put_user_u32(lv, optlen)
2898                 || put_user_u32(val, optval_addr)) {
2899                 return -TARGET_EFAULT;
2900             }
2901             break;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903         case NETLINK_LIST_MEMBERSHIPS:
2904         {
2905             uint32_t *results;
2906             int i;
2907             if (get_user_u32(len, optlen)) {
2908                 return -TARGET_EFAULT;
2909             }
2910             if (len < 0) {
2911                 return -TARGET_EINVAL;
2912             }
2913             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2914             if (!results && len > 0) {
2915                 return -TARGET_EFAULT;
2916             }
2917             lv = len;
2918             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2919             if (ret < 0) {
2920                 unlock_user(results, optval_addr, 0);
2921                 return ret;
2922             }
2923             /* swap host endianness to target endianness. */
2924             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2925                 results[i] = tswap32(results[i]);
2926             }
2927             if (put_user_u32(lv, optlen)) {
2928                 return -TARGET_EFAULT;
2929             }
2930             unlock_user(results, optval_addr, 0);
2931             break;
2932         }
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2934         default:
2935             goto unimplemented;
2936         }
2937         break;
2938 #endif /* SOL_NETLINK */
2939     default:
2940     unimplemented:
2941         qemu_log_mask(LOG_UNIMP,
2942                       "getsockopt level=%d optname=%d not yet supported\n",
2943                       level, optname);
2944         ret = -TARGET_EOPNOTSUPP;
2945         break;
2946     }
2947     return ret;
2948 }
2949 
2950 /* Convert target low/high pair representing file offset into the host
2951  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952  * as the kernel doesn't handle them either.
2953  */
2954 static void target_to_host_low_high(abi_ulong tlow,
2955                                     abi_ulong thigh,
2956                                     unsigned long *hlow,
2957                                     unsigned long *hhigh)
2958 {
2959     uint64_t off = tlow |
2960         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2961         TARGET_LONG_BITS / 2;
2962 
2963     *hlow = off;
2964     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2965 }
2966 
2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2968                                 abi_ulong count, int copy)
2969 {
2970     struct target_iovec *target_vec;
2971     struct iovec *vec;
2972     abi_ulong total_len, max_len;
2973     int i;
2974     int err = 0;
2975     bool bad_address = false;
2976 
2977     if (count == 0) {
2978         errno = 0;
2979         return NULL;
2980     }
2981     if (count > IOV_MAX) {
2982         errno = EINVAL;
2983         return NULL;
2984     }
2985 
2986     vec = g_try_new0(struct iovec, count);
2987     if (vec == NULL) {
2988         errno = ENOMEM;
2989         return NULL;
2990     }
2991 
2992     target_vec = lock_user(VERIFY_READ, target_addr,
2993                            count * sizeof(struct target_iovec), 1);
2994     if (target_vec == NULL) {
2995         err = EFAULT;
2996         goto fail2;
2997     }
2998 
2999     /* ??? If host page size > target page size, this will result in a
3000        value larger than what we can actually support.  */
3001     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3002     total_len = 0;
3003 
3004     for (i = 0; i < count; i++) {
3005         abi_ulong base = tswapal(target_vec[i].iov_base);
3006         abi_long len = tswapal(target_vec[i].iov_len);
3007 
3008         if (len < 0) {
3009             err = EINVAL;
3010             goto fail;
3011         } else if (len == 0) {
3012             /* Zero length pointer is ignored.  */
3013             vec[i].iov_base = 0;
3014         } else {
3015             vec[i].iov_base = lock_user(type, base, len, copy);
3016             /* If the first buffer pointer is bad, this is a fault.  But
3017              * subsequent bad buffers will result in a partial write; this
3018              * is realized by filling the vector with null pointers and
3019              * zero lengths. */
3020             if (!vec[i].iov_base) {
3021                 if (i == 0) {
3022                     err = EFAULT;
3023                     goto fail;
3024                 } else {
3025                     bad_address = true;
3026                 }
3027             }
3028             if (bad_address) {
3029                 len = 0;
3030             }
3031             if (len > max_len - total_len) {
3032                 len = max_len - total_len;
3033             }
3034         }
3035         vec[i].iov_len = len;
3036         total_len += len;
3037     }
3038 
3039     unlock_user(target_vec, target_addr, 0);
3040     return vec;
3041 
3042  fail:
3043     while (--i >= 0) {
3044         if (tswapal(target_vec[i].iov_len) > 0) {
3045             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3046         }
3047     }
3048     unlock_user(target_vec, target_addr, 0);
3049  fail2:
3050     g_free(vec);
3051     errno = err;
3052     return NULL;
3053 }
3054 
3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3056                          abi_ulong count, int copy)
3057 {
3058     struct target_iovec *target_vec;
3059     int i;
3060 
3061     target_vec = lock_user(VERIFY_READ, target_addr,
3062                            count * sizeof(struct target_iovec), 1);
3063     if (target_vec) {
3064         for (i = 0; i < count; i++) {
3065             abi_ulong base = tswapal(target_vec[i].iov_base);
3066             abi_long len = tswapal(target_vec[i].iov_len);
3067             if (len < 0) {
3068                 break;
3069             }
3070             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3071         }
3072         unlock_user(target_vec, target_addr, 0);
3073     }
3074 
3075     g_free(vec);
3076 }
3077 
3078 static inline int target_to_host_sock_type(int *type)
3079 {
3080     int host_type = 0;
3081     int target_type = *type;
3082 
3083     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3084     case TARGET_SOCK_DGRAM:
3085         host_type = SOCK_DGRAM;
3086         break;
3087     case TARGET_SOCK_STREAM:
3088         host_type = SOCK_STREAM;
3089         break;
3090     default:
3091         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3092         break;
3093     }
3094     if (target_type & TARGET_SOCK_CLOEXEC) {
3095 #if defined(SOCK_CLOEXEC)
3096         host_type |= SOCK_CLOEXEC;
3097 #else
3098         return -TARGET_EINVAL;
3099 #endif
3100     }
3101     if (target_type & TARGET_SOCK_NONBLOCK) {
3102 #if defined(SOCK_NONBLOCK)
3103         host_type |= SOCK_NONBLOCK;
3104 #elif !defined(O_NONBLOCK)
3105         return -TARGET_EINVAL;
3106 #endif
3107     }
3108     *type = host_type;
3109     return 0;
3110 }
3111 
3112 /* Try to emulate socket type flags after socket creation.  */
3113 static int sock_flags_fixup(int fd, int target_type)
3114 {
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116     if (target_type & TARGET_SOCK_NONBLOCK) {
3117         int flags = fcntl(fd, F_GETFL);
3118         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3119             close(fd);
3120             return -TARGET_EINVAL;
3121         }
3122     }
3123 #endif
3124     return fd;
3125 }
3126 
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long do_socket(int domain, int type, int protocol)
3129 {
3130     int target_type = type;
3131     int ret;
3132 
3133     ret = target_to_host_sock_type(&type);
3134     if (ret) {
3135         return ret;
3136     }
3137 
3138     if (domain == PF_NETLINK && !(
3139 #ifdef CONFIG_RTNETLINK
3140          protocol == NETLINK_ROUTE ||
3141 #endif
3142          protocol == NETLINK_KOBJECT_UEVENT ||
3143          protocol == NETLINK_AUDIT)) {
3144         return -TARGET_EPROTONOSUPPORT;
3145     }
3146 
3147     if (domain == AF_PACKET ||
3148         (domain == AF_INET && type == SOCK_PACKET)) {
3149         protocol = tswap16(protocol);
3150     }
3151 
3152     ret = get_errno(socket(domain, type, protocol));
3153     if (ret >= 0) {
3154         ret = sock_flags_fixup(ret, target_type);
3155         if (type == SOCK_PACKET) {
3156             /* Manage an obsolete case :
3157              * if socket type is SOCK_PACKET, bind by name
3158              */
3159             fd_trans_register(ret, &target_packet_trans);
3160         } else if (domain == PF_NETLINK) {
3161             switch (protocol) {
3162 #ifdef CONFIG_RTNETLINK
3163             case NETLINK_ROUTE:
3164                 fd_trans_register(ret, &target_netlink_route_trans);
3165                 break;
3166 #endif
3167             case NETLINK_KOBJECT_UEVENT:
3168                 /* nothing to do: messages are strings */
3169                 break;
3170             case NETLINK_AUDIT:
3171                 fd_trans_register(ret, &target_netlink_audit_trans);
3172                 break;
3173             default:
3174                 g_assert_not_reached();
3175             }
3176         }
3177     }
3178     return ret;
3179 }
3180 
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3183                         socklen_t addrlen)
3184 {
3185     void *addr;
3186     abi_long ret;
3187 
3188     if ((int)addrlen < 0) {
3189         return -TARGET_EINVAL;
3190     }
3191 
3192     addr = alloca(addrlen+1);
3193 
3194     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3195     if (ret)
3196         return ret;
3197 
3198     return get_errno(bind(sockfd, addr, addrlen));
3199 }
3200 
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3203                            socklen_t addrlen)
3204 {
3205     void *addr;
3206     abi_long ret;
3207 
3208     if ((int)addrlen < 0) {
3209         return -TARGET_EINVAL;
3210     }
3211 
3212     addr = alloca(addrlen+1);
3213 
3214     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215     if (ret)
3216         return ret;
3217 
3218     return get_errno(safe_connect(sockfd, addr, addrlen));
3219 }
3220 
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3223                                       int flags, int send)
3224 {
3225     abi_long ret, len;
3226     struct msghdr msg;
3227     abi_ulong count;
3228     struct iovec *vec;
3229     abi_ulong target_vec;
3230 
3231     if (msgp->msg_name) {
3232         msg.msg_namelen = tswap32(msgp->msg_namelen);
3233         msg.msg_name = alloca(msg.msg_namelen+1);
3234         ret = target_to_host_sockaddr(fd, msg.msg_name,
3235                                       tswapal(msgp->msg_name),
3236                                       msg.msg_namelen);
3237         if (ret == -TARGET_EFAULT) {
3238             /* For connected sockets msg_name and msg_namelen must
3239              * be ignored, so returning EFAULT immediately is wrong.
3240              * Instead, pass a bad msg_name to the host kernel, and
3241              * let it decide whether to return EFAULT or not.
3242              */
3243             msg.msg_name = (void *)-1;
3244         } else if (ret) {
3245             goto out2;
3246         }
3247     } else {
3248         msg.msg_name = NULL;
3249         msg.msg_namelen = 0;
3250     }
3251     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3252     msg.msg_control = alloca(msg.msg_controllen);
3253     memset(msg.msg_control, 0, msg.msg_controllen);
3254 
3255     msg.msg_flags = tswap32(msgp->msg_flags);
3256 
3257     count = tswapal(msgp->msg_iovlen);
3258     target_vec = tswapal(msgp->msg_iov);
3259 
3260     if (count > IOV_MAX) {
3261         /* sendrcvmsg returns a different errno for this condition than
3262          * readv/writev, so we must catch it here before lock_iovec() does.
3263          */
3264         ret = -TARGET_EMSGSIZE;
3265         goto out2;
3266     }
3267 
3268     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3269                      target_vec, count, send);
3270     if (vec == NULL) {
3271         ret = -host_to_target_errno(errno);
3272         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3273         if (!send || ret) {
3274             goto out2;
3275         }
3276     }
3277     msg.msg_iovlen = count;
3278     msg.msg_iov = vec;
3279 
3280     if (send) {
3281         if (fd_trans_target_to_host_data(fd)) {
3282             void *host_msg;
3283 
3284             host_msg = g_malloc(msg.msg_iov->iov_len);
3285             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3286             ret = fd_trans_target_to_host_data(fd)(host_msg,
3287                                                    msg.msg_iov->iov_len);
3288             if (ret >= 0) {
3289                 msg.msg_iov->iov_base = host_msg;
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292             g_free(host_msg);
3293         } else {
3294             ret = target_to_host_cmsg(&msg, msgp);
3295             if (ret == 0) {
3296                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3297             }
3298         }
3299     } else {
3300         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3301         if (!is_error(ret)) {
3302             len = ret;
3303             if (fd_trans_host_to_target_data(fd)) {
3304                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3305                                                MIN(msg.msg_iov->iov_len, len));
3306             }
3307             if (!is_error(ret)) {
3308                 ret = host_to_target_cmsg(msgp, &msg);
3309             }
3310             if (!is_error(ret)) {
3311                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3312                 msgp->msg_flags = tswap32(msg.msg_flags);
3313                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3314                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3315                                     msg.msg_name, msg.msg_namelen);
3316                     if (ret) {
3317                         goto out;
3318                     }
3319                 }
3320 
3321                 ret = len;
3322             }
3323         }
3324     }
3325 
3326 out:
3327     if (vec) {
3328         unlock_iovec(vec, target_vec, count, !send);
3329     }
3330 out2:
3331     return ret;
3332 }
3333 
3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3335                                int flags, int send)
3336 {
3337     abi_long ret;
3338     struct target_msghdr *msgp;
3339 
3340     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3341                           msgp,
3342                           target_msg,
3343                           send ? 1 : 0)) {
3344         return -TARGET_EFAULT;
3345     }
3346     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3347     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3348     return ret;
3349 }
3350 
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352  * so it might not have this *mmsg-specific flag either.
3353  */
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3356 #endif
3357 
3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3359                                 unsigned int vlen, unsigned int flags,
3360                                 int send)
3361 {
3362     struct target_mmsghdr *mmsgp;
3363     abi_long ret = 0;
3364     int i;
3365 
3366     if (vlen > UIO_MAXIOV) {
3367         vlen = UIO_MAXIOV;
3368     }
3369 
3370     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3371     if (!mmsgp) {
3372         return -TARGET_EFAULT;
3373     }
3374 
3375     for (i = 0; i < vlen; i++) {
3376         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3377         if (is_error(ret)) {
3378             break;
3379         }
3380         mmsgp[i].msg_len = tswap32(ret);
3381         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382         if (flags & MSG_WAITFORONE) {
3383             flags |= MSG_DONTWAIT;
3384         }
3385     }
3386 
3387     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3388 
3389     /* Return number of datagrams sent if we sent any at all;
3390      * otherwise return the error.
3391      */
3392     if (i) {
3393         return i;
3394     }
3395     return ret;
3396 }
3397 
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long do_accept4(int fd, abi_ulong target_addr,
3400                            abi_ulong target_addrlen_addr, int flags)
3401 {
3402     socklen_t addrlen, ret_addrlen;
3403     void *addr;
3404     abi_long ret;
3405     int host_flags;
3406 
3407     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3408         return -TARGET_EINVAL;
3409     }
3410 
3411     host_flags = 0;
3412     if (flags & TARGET_SOCK_NONBLOCK) {
3413         host_flags |= SOCK_NONBLOCK;
3414     }
3415     if (flags & TARGET_SOCK_CLOEXEC) {
3416         host_flags |= SOCK_CLOEXEC;
3417     }
3418 
3419     if (target_addr == 0) {
3420         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3421     }
3422 
3423     /* linux returns EFAULT if addrlen pointer is invalid */
3424     if (get_user_u32(addrlen, target_addrlen_addr))
3425         return -TARGET_EFAULT;
3426 
3427     if ((int)addrlen < 0) {
3428         return -TARGET_EINVAL;
3429     }
3430 
3431     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3432         return -TARGET_EFAULT;
3433     }
3434 
3435     addr = alloca(addrlen);
3436 
3437     ret_addrlen = addrlen;
3438     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3439     if (!is_error(ret)) {
3440         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3441         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3442             ret = -TARGET_EFAULT;
3443         }
3444     }
3445     return ret;
3446 }
3447 
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3450                                abi_ulong target_addrlen_addr)
3451 {
3452     socklen_t addrlen, ret_addrlen;
3453     void *addr;
3454     abi_long ret;
3455 
3456     if (get_user_u32(addrlen, target_addrlen_addr))
3457         return -TARGET_EFAULT;
3458 
3459     if ((int)addrlen < 0) {
3460         return -TARGET_EINVAL;
3461     }
3462 
3463     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3464         return -TARGET_EFAULT;
3465     }
3466 
3467     addr = alloca(addrlen);
3468 
3469     ret_addrlen = addrlen;
3470     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3471     if (!is_error(ret)) {
3472         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3473         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3474             ret = -TARGET_EFAULT;
3475         }
3476     }
3477     return ret;
3478 }
3479 
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3482                                abi_ulong target_addrlen_addr)
3483 {
3484     socklen_t addrlen, ret_addrlen;
3485     void *addr;
3486     abi_long ret;
3487 
3488     if (get_user_u32(addrlen, target_addrlen_addr))
3489         return -TARGET_EFAULT;
3490 
3491     if ((int)addrlen < 0) {
3492         return -TARGET_EINVAL;
3493     }
3494 
3495     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3496         return -TARGET_EFAULT;
3497     }
3498 
3499     addr = alloca(addrlen);
3500 
3501     ret_addrlen = addrlen;
3502     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3503     if (!is_error(ret)) {
3504         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3505         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3506             ret = -TARGET_EFAULT;
3507         }
3508     }
3509     return ret;
3510 }
3511 
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long do_socketpair(int domain, int type, int protocol,
3514                               abi_ulong target_tab_addr)
3515 {
3516     int tab[2];
3517     abi_long ret;
3518 
3519     target_to_host_sock_type(&type);
3520 
3521     ret = get_errno(socketpair(domain, type, protocol, tab));
3522     if (!is_error(ret)) {
3523         if (put_user_s32(tab[0], target_tab_addr)
3524             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3525             ret = -TARGET_EFAULT;
3526     }
3527     return ret;
3528 }
3529 
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3532                           abi_ulong target_addr, socklen_t addrlen)
3533 {
3534     void *addr;
3535     void *host_msg;
3536     void *copy_msg = NULL;
3537     abi_long ret;
3538 
3539     if ((int)addrlen < 0) {
3540         return -TARGET_EINVAL;
3541     }
3542 
3543     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3544     if (!host_msg)
3545         return -TARGET_EFAULT;
3546     if (fd_trans_target_to_host_data(fd)) {
3547         copy_msg = host_msg;
3548         host_msg = g_malloc(len);
3549         memcpy(host_msg, copy_msg, len);
3550         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3551         if (ret < 0) {
3552             goto fail;
3553         }
3554     }
3555     if (target_addr) {
3556         addr = alloca(addrlen+1);
3557         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3558         if (ret) {
3559             goto fail;
3560         }
3561         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3562     } else {
3563         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3564     }
3565 fail:
3566     if (copy_msg) {
3567         g_free(host_msg);
3568         host_msg = copy_msg;
3569     }
3570     unlock_user(host_msg, msg, 0);
3571     return ret;
3572 }
3573 
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3576                             abi_ulong target_addr,
3577                             abi_ulong target_addrlen)
3578 {
3579     socklen_t addrlen, ret_addrlen;
3580     void *addr;
3581     void *host_msg;
3582     abi_long ret;
3583 
3584     if (!msg) {
3585         host_msg = NULL;
3586     } else {
3587         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3588         if (!host_msg) {
3589             return -TARGET_EFAULT;
3590         }
3591     }
3592     if (target_addr) {
3593         if (get_user_u32(addrlen, target_addrlen)) {
3594             ret = -TARGET_EFAULT;
3595             goto fail;
3596         }
3597         if ((int)addrlen < 0) {
3598             ret = -TARGET_EINVAL;
3599             goto fail;
3600         }
3601         addr = alloca(addrlen);
3602         ret_addrlen = addrlen;
3603         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3604                                       addr, &ret_addrlen));
3605     } else {
3606         addr = NULL; /* To keep compiler quiet.  */
3607         addrlen = 0; /* To keep compiler quiet.  */
3608         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3609     }
3610     if (!is_error(ret)) {
3611         if (fd_trans_host_to_target_data(fd)) {
3612             abi_long trans;
3613             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3614             if (is_error(trans)) {
3615                 ret = trans;
3616                 goto fail;
3617             }
3618         }
3619         if (target_addr) {
3620             host_to_target_sockaddr(target_addr, addr,
3621                                     MIN(addrlen, ret_addrlen));
3622             if (put_user_u32(ret_addrlen, target_addrlen)) {
3623                 ret = -TARGET_EFAULT;
3624                 goto fail;
3625             }
3626         }
3627         unlock_user(host_msg, msg, len);
3628     } else {
3629 fail:
3630         unlock_user(host_msg, msg, 0);
3631     }
3632     return ret;
3633 }
3634 
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long do_socketcall(int num, abi_ulong vptr)
3638 {
3639     static const unsigned nargs[] = { /* number of arguments per operation */
3640         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3641         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3642         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3643         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3644         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3645         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3646         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3647         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3648         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3649         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3650         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3651         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3652         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3653         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3654         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3655         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3656         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3657         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3658         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3659         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3660     };
3661     abi_long a[6]; /* max 6 args */
3662     unsigned i;
3663 
3664     /* check the range of the first argument num */
3665     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3667         return -TARGET_EINVAL;
3668     }
3669     /* ensure we have space for args */
3670     if (nargs[num] > ARRAY_SIZE(a)) {
3671         return -TARGET_EINVAL;
3672     }
3673     /* collect the arguments in a[] according to nargs[] */
3674     for (i = 0; i < nargs[num]; ++i) {
3675         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3676             return -TARGET_EFAULT;
3677         }
3678     }
3679     /* now when we have the args, invoke the appropriate underlying function */
3680     switch (num) {
3681     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3682         return do_socket(a[0], a[1], a[2]);
3683     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3684         return do_bind(a[0], a[1], a[2]);
3685     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3686         return do_connect(a[0], a[1], a[2]);
3687     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3688         return get_errno(listen(a[0], a[1]));
3689     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3690         return do_accept4(a[0], a[1], a[2], 0);
3691     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3692         return do_getsockname(a[0], a[1], a[2]);
3693     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3694         return do_getpeername(a[0], a[1], a[2]);
3695     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3696         return do_socketpair(a[0], a[1], a[2], a[3]);
3697     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3698         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3699     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3700         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3701     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3702         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3703     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3704         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3705     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3706         return get_errno(shutdown(a[0], a[1]));
3707     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3708         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3709     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3710         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3711     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3712         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3713     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3714         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3715     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3716         return do_accept4(a[0], a[1], a[2], a[3]);
3717     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3718         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3719     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3720         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3721     default:
3722         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3723         return -TARGET_EINVAL;
3724     }
3725 }
3726 #endif
3727 
3728 #ifndef TARGET_SEMID64_DS
3729 /* asm-generic version of this struct */
3730 struct target_semid64_ds
3731 {
3732   struct target_ipc_perm sem_perm;
3733   abi_ulong sem_otime;
3734 #if TARGET_ABI_BITS == 32
3735   abi_ulong __unused1;
3736 #endif
3737   abi_ulong sem_ctime;
3738 #if TARGET_ABI_BITS == 32
3739   abi_ulong __unused2;
3740 #endif
3741   abi_ulong sem_nsems;
3742   abi_ulong __unused3;
3743   abi_ulong __unused4;
3744 };
3745 #endif
3746 
3747 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3748                                                abi_ulong target_addr)
3749 {
3750     struct target_ipc_perm *target_ip;
3751     struct target_semid64_ds *target_sd;
3752 
3753     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3754         return -TARGET_EFAULT;
3755     target_ip = &(target_sd->sem_perm);
3756     host_ip->__key = tswap32(target_ip->__key);
3757     host_ip->uid = tswap32(target_ip->uid);
3758     host_ip->gid = tswap32(target_ip->gid);
3759     host_ip->cuid = tswap32(target_ip->cuid);
3760     host_ip->cgid = tswap32(target_ip->cgid);
3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3762     host_ip->mode = tswap32(target_ip->mode);
3763 #else
3764     host_ip->mode = tswap16(target_ip->mode);
3765 #endif
3766 #if defined(TARGET_PPC)
3767     host_ip->__seq = tswap32(target_ip->__seq);
3768 #else
3769     host_ip->__seq = tswap16(target_ip->__seq);
3770 #endif
3771     unlock_user_struct(target_sd, target_addr, 0);
3772     return 0;
3773 }
3774 
3775 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3776                                                struct ipc_perm *host_ip)
3777 {
3778     struct target_ipc_perm *target_ip;
3779     struct target_semid64_ds *target_sd;
3780 
3781     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3782         return -TARGET_EFAULT;
3783     target_ip = &(target_sd->sem_perm);
3784     target_ip->__key = tswap32(host_ip->__key);
3785     target_ip->uid = tswap32(host_ip->uid);
3786     target_ip->gid = tswap32(host_ip->gid);
3787     target_ip->cuid = tswap32(host_ip->cuid);
3788     target_ip->cgid = tswap32(host_ip->cgid);
3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3790     target_ip->mode = tswap32(host_ip->mode);
3791 #else
3792     target_ip->mode = tswap16(host_ip->mode);
3793 #endif
3794 #if defined(TARGET_PPC)
3795     target_ip->__seq = tswap32(host_ip->__seq);
3796 #else
3797     target_ip->__seq = tswap16(host_ip->__seq);
3798 #endif
3799     unlock_user_struct(target_sd, target_addr, 1);
3800     return 0;
3801 }
3802 
3803 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3804                                                abi_ulong target_addr)
3805 {
3806     struct target_semid64_ds *target_sd;
3807 
3808     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3809         return -TARGET_EFAULT;
3810     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3811         return -TARGET_EFAULT;
3812     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3813     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3814     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3815     unlock_user_struct(target_sd, target_addr, 0);
3816     return 0;
3817 }
3818 
3819 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3820                                                struct semid_ds *host_sd)
3821 {
3822     struct target_semid64_ds *target_sd;
3823 
3824     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3825         return -TARGET_EFAULT;
3826     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3827         return -TARGET_EFAULT;
3828     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3829     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3830     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3831     unlock_user_struct(target_sd, target_addr, 1);
3832     return 0;
3833 }
3834 
3835 struct target_seminfo {
3836     int semmap;
3837     int semmni;
3838     int semmns;
3839     int semmnu;
3840     int semmsl;
3841     int semopm;
3842     int semume;
3843     int semusz;
3844     int semvmx;
3845     int semaem;
3846 };
3847 
3848 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3849                                               struct seminfo *host_seminfo)
3850 {
3851     struct target_seminfo *target_seminfo;
3852     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3853         return -TARGET_EFAULT;
3854     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3855     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3856     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3857     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3858     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3859     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3860     __put_user(host_seminfo->semume, &target_seminfo->semume);
3861     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3862     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3863     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3864     unlock_user_struct(target_seminfo, target_addr, 1);
3865     return 0;
3866 }
3867 
3868 union semun {
3869 	int val;
3870 	struct semid_ds *buf;
3871 	unsigned short *array;
3872 	struct seminfo *__buf;
3873 };
3874 
3875 union target_semun {
3876 	int val;
3877 	abi_ulong buf;
3878 	abi_ulong array;
3879 	abi_ulong __buf;
3880 };
3881 
3882 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3883                                                abi_ulong target_addr)
3884 {
3885     int nsems;
3886     unsigned short *array;
3887     union semun semun;
3888     struct semid_ds semid_ds;
3889     int i, ret;
3890 
3891     semun.buf = &semid_ds;
3892 
3893     ret = semctl(semid, 0, IPC_STAT, semun);
3894     if (ret == -1)
3895         return get_errno(ret);
3896 
3897     nsems = semid_ds.sem_nsems;
3898 
3899     *host_array = g_try_new(unsigned short, nsems);
3900     if (!*host_array) {
3901         return -TARGET_ENOMEM;
3902     }
3903     array = lock_user(VERIFY_READ, target_addr,
3904                       nsems*sizeof(unsigned short), 1);
3905     if (!array) {
3906         g_free(*host_array);
3907         return -TARGET_EFAULT;
3908     }
3909 
3910     for(i=0; i<nsems; i++) {
3911         __get_user((*host_array)[i], &array[i]);
3912     }
3913     unlock_user(array, target_addr, 0);
3914 
3915     return 0;
3916 }
3917 
3918 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3919                                                unsigned short **host_array)
3920 {
3921     int nsems;
3922     unsigned short *array;
3923     union semun semun;
3924     struct semid_ds semid_ds;
3925     int i, ret;
3926 
3927     semun.buf = &semid_ds;
3928 
3929     ret = semctl(semid, 0, IPC_STAT, semun);
3930     if (ret == -1)
3931         return get_errno(ret);
3932 
3933     nsems = semid_ds.sem_nsems;
3934 
3935     array = lock_user(VERIFY_WRITE, target_addr,
3936                       nsems*sizeof(unsigned short), 0);
3937     if (!array)
3938         return -TARGET_EFAULT;
3939 
3940     for(i=0; i<nsems; i++) {
3941         __put_user((*host_array)[i], &array[i]);
3942     }
3943     g_free(*host_array);
3944     unlock_user(array, target_addr, 1);
3945 
3946     return 0;
3947 }
3948 
3949 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3950                                  abi_ulong target_arg)
3951 {
3952     union target_semun target_su = { .buf = target_arg };
3953     union semun arg;
3954     struct semid_ds dsarg;
3955     unsigned short *array = NULL;
3956     struct seminfo seminfo;
3957     abi_long ret = -TARGET_EINVAL;
3958     abi_long err;
3959     cmd &= 0xff;
3960 
3961     switch( cmd ) {
3962 	case GETVAL:
3963 	case SETVAL:
3964             /* In 64 bit cross-endian situations, we will erroneously pick up
3965              * the wrong half of the union for the "val" element.  To rectify
3966              * this, the entire 8-byte structure is byteswapped, followed by
3967 	     * a swap of the 4 byte val field. In other cases, the data is
3968 	     * already in proper host byte order. */
3969 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3970 		target_su.buf = tswapal(target_su.buf);
3971 		arg.val = tswap32(target_su.val);
3972 	    } else {
3973 		arg.val = target_su.val;
3974 	    }
3975             ret = get_errno(semctl(semid, semnum, cmd, arg));
3976             break;
3977 	case GETALL:
3978 	case SETALL:
3979             err = target_to_host_semarray(semid, &array, target_su.array);
3980             if (err)
3981                 return err;
3982             arg.array = array;
3983             ret = get_errno(semctl(semid, semnum, cmd, arg));
3984             err = host_to_target_semarray(semid, target_su.array, &array);
3985             if (err)
3986                 return err;
3987             break;
3988 	case IPC_STAT:
3989 	case IPC_SET:
3990 	case SEM_STAT:
3991             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3992             if (err)
3993                 return err;
3994             arg.buf = &dsarg;
3995             ret = get_errno(semctl(semid, semnum, cmd, arg));
3996             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3997             if (err)
3998                 return err;
3999             break;
4000 	case IPC_INFO:
4001 	case SEM_INFO:
4002             arg.__buf = &seminfo;
4003             ret = get_errno(semctl(semid, semnum, cmd, arg));
4004             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4005             if (err)
4006                 return err;
4007             break;
4008 	case IPC_RMID:
4009 	case GETPID:
4010 	case GETNCNT:
4011 	case GETZCNT:
4012             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4013             break;
4014     }
4015 
4016     return ret;
4017 }
4018 
4019 struct target_sembuf {
4020     unsigned short sem_num;
4021     short sem_op;
4022     short sem_flg;
4023 };
4024 
4025 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4026                                              abi_ulong target_addr,
4027                                              unsigned nsops)
4028 {
4029     struct target_sembuf *target_sembuf;
4030     int i;
4031 
4032     target_sembuf = lock_user(VERIFY_READ, target_addr,
4033                               nsops*sizeof(struct target_sembuf), 1);
4034     if (!target_sembuf)
4035         return -TARGET_EFAULT;
4036 
4037     for(i=0; i<nsops; i++) {
4038         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4039         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4040         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4041     }
4042 
4043     unlock_user(target_sembuf, target_addr, 0);
4044 
4045     return 0;
4046 }
4047 
4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4049     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4050 
4051 /*
4052  * This macro is required to handle the s390 variants, which passes the
4053  * arguments in a different order than default.
4054  */
4055 #ifdef __s390x__
4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4057   (__nsops), (__timeout), (__sops)
4058 #else
4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4060   (__nsops), 0, (__sops), (__timeout)
4061 #endif
4062 
4063 static inline abi_long do_semtimedop(int semid,
4064                                      abi_long ptr,
4065                                      unsigned nsops,
4066                                      abi_long timeout, bool time64)
4067 {
4068     struct sembuf *sops;
4069     struct timespec ts, *pts = NULL;
4070     abi_long ret;
4071 
4072     if (timeout) {
4073         pts = &ts;
4074         if (time64) {
4075             if (target_to_host_timespec64(pts, timeout)) {
4076                 return -TARGET_EFAULT;
4077             }
4078         } else {
4079             if (target_to_host_timespec(pts, timeout)) {
4080                 return -TARGET_EFAULT;
4081             }
4082         }
4083     }
4084 
4085     if (nsops > TARGET_SEMOPM) {
4086         return -TARGET_E2BIG;
4087     }
4088 
4089     sops = g_new(struct sembuf, nsops);
4090 
4091     if (target_to_host_sembuf(sops, ptr, nsops)) {
4092         g_free(sops);
4093         return -TARGET_EFAULT;
4094     }
4095 
4096     ret = -TARGET_ENOSYS;
4097 #ifdef __NR_semtimedop
4098     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4099 #endif
4100 #ifdef __NR_ipc
4101     if (ret == -TARGET_ENOSYS) {
4102         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4103                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4104     }
4105 #endif
4106     g_free(sops);
4107     return ret;
4108 }
4109 #endif
4110 
4111 struct target_msqid_ds
4112 {
4113     struct target_ipc_perm msg_perm;
4114     abi_ulong msg_stime;
4115 #if TARGET_ABI_BITS == 32
4116     abi_ulong __unused1;
4117 #endif
4118     abi_ulong msg_rtime;
4119 #if TARGET_ABI_BITS == 32
4120     abi_ulong __unused2;
4121 #endif
4122     abi_ulong msg_ctime;
4123 #if TARGET_ABI_BITS == 32
4124     abi_ulong __unused3;
4125 #endif
4126     abi_ulong __msg_cbytes;
4127     abi_ulong msg_qnum;
4128     abi_ulong msg_qbytes;
4129     abi_ulong msg_lspid;
4130     abi_ulong msg_lrpid;
4131     abi_ulong __unused4;
4132     abi_ulong __unused5;
4133 };
4134 
4135 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4136                                                abi_ulong target_addr)
4137 {
4138     struct target_msqid_ds *target_md;
4139 
4140     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4141         return -TARGET_EFAULT;
4142     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4143         return -TARGET_EFAULT;
4144     host_md->msg_stime = tswapal(target_md->msg_stime);
4145     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4146     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4147     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4148     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4149     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4150     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4151     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4152     unlock_user_struct(target_md, target_addr, 0);
4153     return 0;
4154 }
4155 
4156 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4157                                                struct msqid_ds *host_md)
4158 {
4159     struct target_msqid_ds *target_md;
4160 
4161     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4162         return -TARGET_EFAULT;
4163     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4164         return -TARGET_EFAULT;
4165     target_md->msg_stime = tswapal(host_md->msg_stime);
4166     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4167     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4168     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4169     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4170     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4171     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4172     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4173     unlock_user_struct(target_md, target_addr, 1);
4174     return 0;
4175 }
4176 
4177 struct target_msginfo {
4178     int msgpool;
4179     int msgmap;
4180     int msgmax;
4181     int msgmnb;
4182     int msgmni;
4183     int msgssz;
4184     int msgtql;
4185     unsigned short int msgseg;
4186 };
4187 
4188 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4189                                               struct msginfo *host_msginfo)
4190 {
4191     struct target_msginfo *target_msginfo;
4192     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4193         return -TARGET_EFAULT;
4194     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4195     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4196     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4197     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4198     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4199     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4200     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4201     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4202     unlock_user_struct(target_msginfo, target_addr, 1);
4203     return 0;
4204 }
4205 
4206 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4207 {
4208     struct msqid_ds dsarg;
4209     struct msginfo msginfo;
4210     abi_long ret = -TARGET_EINVAL;
4211 
4212     cmd &= 0xff;
4213 
4214     switch (cmd) {
4215     case IPC_STAT:
4216     case IPC_SET:
4217     case MSG_STAT:
4218         if (target_to_host_msqid_ds(&dsarg,ptr))
4219             return -TARGET_EFAULT;
4220         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4221         if (host_to_target_msqid_ds(ptr,&dsarg))
4222             return -TARGET_EFAULT;
4223         break;
4224     case IPC_RMID:
4225         ret = get_errno(msgctl(msgid, cmd, NULL));
4226         break;
4227     case IPC_INFO:
4228     case MSG_INFO:
4229         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4230         if (host_to_target_msginfo(ptr, &msginfo))
4231             return -TARGET_EFAULT;
4232         break;
4233     }
4234 
4235     return ret;
4236 }
4237 
4238 struct target_msgbuf {
4239     abi_long mtype;
4240     char	mtext[1];
4241 };
4242 
4243 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4244                                  ssize_t msgsz, int msgflg)
4245 {
4246     struct target_msgbuf *target_mb;
4247     struct msgbuf *host_mb;
4248     abi_long ret = 0;
4249 
4250     if (msgsz < 0) {
4251         return -TARGET_EINVAL;
4252     }
4253 
4254     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4255         return -TARGET_EFAULT;
4256     host_mb = g_try_malloc(msgsz + sizeof(long));
4257     if (!host_mb) {
4258         unlock_user_struct(target_mb, msgp, 0);
4259         return -TARGET_ENOMEM;
4260     }
4261     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4262     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4263     ret = -TARGET_ENOSYS;
4264 #ifdef __NR_msgsnd
4265     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4266 #endif
4267 #ifdef __NR_ipc
4268     if (ret == -TARGET_ENOSYS) {
4269 #ifdef __s390x__
4270         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4271                                  host_mb));
4272 #else
4273         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4274                                  host_mb, 0));
4275 #endif
4276     }
4277 #endif
4278     g_free(host_mb);
4279     unlock_user_struct(target_mb, msgp, 0);
4280 
4281     return ret;
4282 }
4283 
4284 #ifdef __NR_ipc
4285 #if defined(__sparc__)
4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4288 #elif defined(__s390x__)
4289 /* The s390 sys_ipc variant has only five parameters.  */
4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4291     ((long int[]){(long int)__msgp, __msgtyp})
4292 #else
4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4294     ((long int[]){(long int)__msgp, __msgtyp}), 0
4295 #endif
4296 #endif
4297 
4298 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4299                                  ssize_t msgsz, abi_long msgtyp,
4300                                  int msgflg)
4301 {
4302     struct target_msgbuf *target_mb;
4303     char *target_mtext;
4304     struct msgbuf *host_mb;
4305     abi_long ret = 0;
4306 
4307     if (msgsz < 0) {
4308         return -TARGET_EINVAL;
4309     }
4310 
4311     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4312         return -TARGET_EFAULT;
4313 
4314     host_mb = g_try_malloc(msgsz + sizeof(long));
4315     if (!host_mb) {
4316         ret = -TARGET_ENOMEM;
4317         goto end;
4318     }
4319     ret = -TARGET_ENOSYS;
4320 #ifdef __NR_msgrcv
4321     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4322 #endif
4323 #ifdef __NR_ipc
4324     if (ret == -TARGET_ENOSYS) {
4325         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4326                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4327     }
4328 #endif
4329 
4330     if (ret > 0) {
4331         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4332         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4333         if (!target_mtext) {
4334             ret = -TARGET_EFAULT;
4335             goto end;
4336         }
4337         memcpy(target_mb->mtext, host_mb->mtext, ret);
4338         unlock_user(target_mtext, target_mtext_addr, ret);
4339     }
4340 
4341     target_mb->mtype = tswapal(host_mb->mtype);
4342 
4343 end:
4344     if (target_mb)
4345         unlock_user_struct(target_mb, msgp, 1);
4346     g_free(host_mb);
4347     return ret;
4348 }
4349 
4350 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4351                                                abi_ulong target_addr)
4352 {
4353     struct target_shmid_ds *target_sd;
4354 
4355     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4356         return -TARGET_EFAULT;
4357     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4358         return -TARGET_EFAULT;
4359     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4360     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4361     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4362     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4363     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4364     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4365     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4366     unlock_user_struct(target_sd, target_addr, 0);
4367     return 0;
4368 }
4369 
4370 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4371                                                struct shmid_ds *host_sd)
4372 {
4373     struct target_shmid_ds *target_sd;
4374 
4375     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4376         return -TARGET_EFAULT;
4377     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4378         return -TARGET_EFAULT;
4379     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4380     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4381     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4382     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4383     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4384     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4385     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4386     unlock_user_struct(target_sd, target_addr, 1);
4387     return 0;
4388 }
4389 
4390 struct  target_shminfo {
4391     abi_ulong shmmax;
4392     abi_ulong shmmin;
4393     abi_ulong shmmni;
4394     abi_ulong shmseg;
4395     abi_ulong shmall;
4396 };
4397 
4398 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4399                                               struct shminfo *host_shminfo)
4400 {
4401     struct target_shminfo *target_shminfo;
4402     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4403         return -TARGET_EFAULT;
4404     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4405     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4406     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4407     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4408     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4409     unlock_user_struct(target_shminfo, target_addr, 1);
4410     return 0;
4411 }
4412 
4413 struct target_shm_info {
4414     int used_ids;
4415     abi_ulong shm_tot;
4416     abi_ulong shm_rss;
4417     abi_ulong shm_swp;
4418     abi_ulong swap_attempts;
4419     abi_ulong swap_successes;
4420 };
4421 
4422 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4423                                                struct shm_info *host_shm_info)
4424 {
4425     struct target_shm_info *target_shm_info;
4426     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4427         return -TARGET_EFAULT;
4428     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4429     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4430     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4431     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4432     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4433     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4434     unlock_user_struct(target_shm_info, target_addr, 1);
4435     return 0;
4436 }
4437 
4438 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4439 {
4440     struct shmid_ds dsarg;
4441     struct shminfo shminfo;
4442     struct shm_info shm_info;
4443     abi_long ret = -TARGET_EINVAL;
4444 
4445     cmd &= 0xff;
4446 
4447     switch(cmd) {
4448     case IPC_STAT:
4449     case IPC_SET:
4450     case SHM_STAT:
4451         if (target_to_host_shmid_ds(&dsarg, buf))
4452             return -TARGET_EFAULT;
4453         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4454         if (host_to_target_shmid_ds(buf, &dsarg))
4455             return -TARGET_EFAULT;
4456         break;
4457     case IPC_INFO:
4458         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4459         if (host_to_target_shminfo(buf, &shminfo))
4460             return -TARGET_EFAULT;
4461         break;
4462     case SHM_INFO:
4463         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4464         if (host_to_target_shm_info(buf, &shm_info))
4465             return -TARGET_EFAULT;
4466         break;
4467     case IPC_RMID:
4468     case SHM_LOCK:
4469     case SHM_UNLOCK:
4470         ret = get_errno(shmctl(shmid, cmd, NULL));
4471         break;
4472     }
4473 
4474     return ret;
4475 }
4476 
4477 #ifdef TARGET_NR_ipc
4478 /* ??? This only works with linear mappings.  */
4479 /* do_ipc() must return target values and target errnos. */
4480 static abi_long do_ipc(CPUArchState *cpu_env,
4481                        unsigned int call, abi_long first,
4482                        abi_long second, abi_long third,
4483                        abi_long ptr, abi_long fifth)
4484 {
4485     int version;
4486     abi_long ret = 0;
4487 
4488     version = call >> 16;
4489     call &= 0xffff;
4490 
4491     switch (call) {
4492     case IPCOP_semop:
4493         ret = do_semtimedop(first, ptr, second, 0, false);
4494         break;
4495     case IPCOP_semtimedop:
4496     /*
4497      * The s390 sys_ipc variant has only five parameters instead of six
4498      * (as for default variant) and the only difference is the handling of
4499      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4500      * to a struct timespec where the generic variant uses fifth parameter.
4501      */
4502 #if defined(TARGET_S390X)
4503         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4504 #else
4505         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4506 #endif
4507         break;
4508 
4509     case IPCOP_semget:
4510         ret = get_errno(semget(first, second, third));
4511         break;
4512 
4513     case IPCOP_semctl: {
4514         /* The semun argument to semctl is passed by value, so dereference the
4515          * ptr argument. */
4516         abi_ulong atptr;
4517         get_user_ual(atptr, ptr);
4518         ret = do_semctl(first, second, third, atptr);
4519         break;
4520     }
4521 
4522     case IPCOP_msgget:
4523         ret = get_errno(msgget(first, second));
4524         break;
4525 
4526     case IPCOP_msgsnd:
4527         ret = do_msgsnd(first, ptr, second, third);
4528         break;
4529 
4530     case IPCOP_msgctl:
4531         ret = do_msgctl(first, second, ptr);
4532         break;
4533 
4534     case IPCOP_msgrcv:
4535         switch (version) {
4536         case 0:
4537             {
4538                 struct target_ipc_kludge {
4539                     abi_long msgp;
4540                     abi_long msgtyp;
4541                 } *tmp;
4542 
4543                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4544                     ret = -TARGET_EFAULT;
4545                     break;
4546                 }
4547 
4548                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4549 
4550                 unlock_user_struct(tmp, ptr, 0);
4551                 break;
4552             }
4553         default:
4554             ret = do_msgrcv(first, ptr, second, fifth, third);
4555         }
4556         break;
4557 
4558     case IPCOP_shmat:
4559         switch (version) {
4560         default:
4561         {
4562             abi_ulong raddr;
4563             raddr = target_shmat(cpu_env, first, ptr, second);
4564             if (is_error(raddr))
4565                 return get_errno(raddr);
4566             if (put_user_ual(raddr, third))
4567                 return -TARGET_EFAULT;
4568             break;
4569         }
4570         case 1:
4571             ret = -TARGET_EINVAL;
4572             break;
4573         }
4574 	break;
4575     case IPCOP_shmdt:
4576         ret = target_shmdt(ptr);
4577 	break;
4578 
4579     case IPCOP_shmget:
4580 	/* IPC_* flag values are the same on all linux platforms */
4581 	ret = get_errno(shmget(first, second, third));
4582 	break;
4583 
4584 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4585     case IPCOP_shmctl:
4586         ret = do_shmctl(first, second, ptr);
4587         break;
4588     default:
4589         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4590                       call, version);
4591 	ret = -TARGET_ENOSYS;
4592 	break;
4593     }
4594     return ret;
4595 }
4596 #endif
4597 
4598 /* kernel structure types definitions */
4599 
4600 #define STRUCT(name, ...) STRUCT_ ## name,
4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4602 enum {
4603 #include "syscall_types.h"
4604 STRUCT_MAX
4605 };
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608 
4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4610 #define STRUCT_SPECIAL(name)
4611 #include "syscall_types.h"
4612 #undef STRUCT
4613 #undef STRUCT_SPECIAL
4614 
4615 #define MAX_STRUCT_SIZE 4096
4616 
4617 #ifdef CONFIG_FIEMAP
4618 /* So fiemap access checks don't overflow on 32 bit systems.
4619  * This is very slightly smaller than the limit imposed by
4620  * the underlying kernel.
4621  */
4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4623                             / sizeof(struct fiemap_extent))
4624 
4625 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4626                                        int fd, int cmd, abi_long arg)
4627 {
4628     /* The parameter for this ioctl is a struct fiemap followed
4629      * by an array of struct fiemap_extent whose size is set
4630      * in fiemap->fm_extent_count. The array is filled in by the
4631      * ioctl.
4632      */
4633     int target_size_in, target_size_out;
4634     struct fiemap *fm;
4635     const argtype *arg_type = ie->arg_type;
4636     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4637     void *argptr, *p;
4638     abi_long ret;
4639     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4640     uint32_t outbufsz;
4641     int free_fm = 0;
4642 
4643     assert(arg_type[0] == TYPE_PTR);
4644     assert(ie->access == IOC_RW);
4645     arg_type++;
4646     target_size_in = thunk_type_size(arg_type, 0);
4647     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4648     if (!argptr) {
4649         return -TARGET_EFAULT;
4650     }
4651     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4652     unlock_user(argptr, arg, 0);
4653     fm = (struct fiemap *)buf_temp;
4654     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4655         return -TARGET_EINVAL;
4656     }
4657 
4658     outbufsz = sizeof (*fm) +
4659         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4660 
4661     if (outbufsz > MAX_STRUCT_SIZE) {
4662         /* We can't fit all the extents into the fixed size buffer.
4663          * Allocate one that is large enough and use it instead.
4664          */
4665         fm = g_try_malloc(outbufsz);
4666         if (!fm) {
4667             return -TARGET_ENOMEM;
4668         }
4669         memcpy(fm, buf_temp, sizeof(struct fiemap));
4670         free_fm = 1;
4671     }
4672     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4673     if (!is_error(ret)) {
4674         target_size_out = target_size_in;
4675         /* An extent_count of 0 means we were only counting the extents
4676          * so there are no structs to copy
4677          */
4678         if (fm->fm_extent_count != 0) {
4679             target_size_out += fm->fm_mapped_extents * extent_size;
4680         }
4681         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4682         if (!argptr) {
4683             ret = -TARGET_EFAULT;
4684         } else {
4685             /* Convert the struct fiemap */
4686             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4687             if (fm->fm_extent_count != 0) {
4688                 p = argptr + target_size_in;
4689                 /* ...and then all the struct fiemap_extents */
4690                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4691                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4692                                   THUNK_TARGET);
4693                     p += extent_size;
4694                 }
4695             }
4696             unlock_user(argptr, arg, target_size_out);
4697         }
4698     }
4699     if (free_fm) {
4700         g_free(fm);
4701     }
4702     return ret;
4703 }
4704 #endif
4705 
4706 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4707                                 int fd, int cmd, abi_long arg)
4708 {
4709     const argtype *arg_type = ie->arg_type;
4710     int target_size;
4711     void *argptr;
4712     int ret;
4713     struct ifconf *host_ifconf;
4714     uint32_t outbufsz;
4715     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4716     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4717     int target_ifreq_size;
4718     int nb_ifreq;
4719     int free_buf = 0;
4720     int i;
4721     int target_ifc_len;
4722     abi_long target_ifc_buf;
4723     int host_ifc_len;
4724     char *host_ifc_buf;
4725 
4726     assert(arg_type[0] == TYPE_PTR);
4727     assert(ie->access == IOC_RW);
4728 
4729     arg_type++;
4730     target_size = thunk_type_size(arg_type, 0);
4731 
4732     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4733     if (!argptr)
4734         return -TARGET_EFAULT;
4735     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4736     unlock_user(argptr, arg, 0);
4737 
4738     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4739     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4740     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4741 
4742     if (target_ifc_buf != 0) {
4743         target_ifc_len = host_ifconf->ifc_len;
4744         nb_ifreq = target_ifc_len / target_ifreq_size;
4745         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4746 
4747         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4748         if (outbufsz > MAX_STRUCT_SIZE) {
4749             /*
4750              * We can't fit all the extents into the fixed size buffer.
4751              * Allocate one that is large enough and use it instead.
4752              */
4753             host_ifconf = g_try_malloc(outbufsz);
4754             if (!host_ifconf) {
4755                 return -TARGET_ENOMEM;
4756             }
4757             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4758             free_buf = 1;
4759         }
4760         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4761 
4762         host_ifconf->ifc_len = host_ifc_len;
4763     } else {
4764       host_ifc_buf = NULL;
4765     }
4766     host_ifconf->ifc_buf = host_ifc_buf;
4767 
4768     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4769     if (!is_error(ret)) {
4770 	/* convert host ifc_len to target ifc_len */
4771 
4772         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4773         target_ifc_len = nb_ifreq * target_ifreq_size;
4774         host_ifconf->ifc_len = target_ifc_len;
4775 
4776 	/* restore target ifc_buf */
4777 
4778         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4779 
4780 	/* copy struct ifconf to target user */
4781 
4782         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4783         if (!argptr)
4784             return -TARGET_EFAULT;
4785         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4786         unlock_user(argptr, arg, target_size);
4787 
4788         if (target_ifc_buf != 0) {
4789             /* copy ifreq[] to target user */
4790             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4791             for (i = 0; i < nb_ifreq ; i++) {
4792                 thunk_convert(argptr + i * target_ifreq_size,
4793                               host_ifc_buf + i * sizeof(struct ifreq),
4794                               ifreq_arg_type, THUNK_TARGET);
4795             }
4796             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4797         }
4798     }
4799 
4800     if (free_buf) {
4801         g_free(host_ifconf);
4802     }
4803 
4804     return ret;
4805 }
4806 
4807 #if defined(CONFIG_USBFS)
4808 #if HOST_LONG_BITS > 64
4809 #error USBDEVFS thunks do not support >64 bit hosts yet.
4810 #endif
4811 struct live_urb {
4812     uint64_t target_urb_adr;
4813     uint64_t target_buf_adr;
4814     char *target_buf_ptr;
4815     struct usbdevfs_urb host_urb;
4816 };
4817 
4818 static GHashTable *usbdevfs_urb_hashtable(void)
4819 {
4820     static GHashTable *urb_hashtable;
4821 
4822     if (!urb_hashtable) {
4823         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4824     }
4825     return urb_hashtable;
4826 }
4827 
4828 static void urb_hashtable_insert(struct live_urb *urb)
4829 {
4830     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831     g_hash_table_insert(urb_hashtable, urb, urb);
4832 }
4833 
4834 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4835 {
4836     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4838 }
4839 
4840 static void urb_hashtable_remove(struct live_urb *urb)
4841 {
4842     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4843     g_hash_table_remove(urb_hashtable, urb);
4844 }
4845 
4846 static abi_long
4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4848                           int fd, int cmd, abi_long arg)
4849 {
4850     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4851     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4852     struct live_urb *lurb;
4853     void *argptr;
4854     uint64_t hurb;
4855     int target_size;
4856     uintptr_t target_urb_adr;
4857     abi_long ret;
4858 
4859     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4860 
4861     memset(buf_temp, 0, sizeof(uint64_t));
4862     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4863     if (is_error(ret)) {
4864         return ret;
4865     }
4866 
4867     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4868     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4869     if (!lurb->target_urb_adr) {
4870         return -TARGET_EFAULT;
4871     }
4872     urb_hashtable_remove(lurb);
4873     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4874         lurb->host_urb.buffer_length);
4875     lurb->target_buf_ptr = NULL;
4876 
4877     /* restore the guest buffer pointer */
4878     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4879 
4880     /* update the guest urb struct */
4881     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4882     if (!argptr) {
4883         g_free(lurb);
4884         return -TARGET_EFAULT;
4885     }
4886     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4887     unlock_user(argptr, lurb->target_urb_adr, target_size);
4888 
4889     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4890     /* write back the urb handle */
4891     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4892     if (!argptr) {
4893         g_free(lurb);
4894         return -TARGET_EFAULT;
4895     }
4896 
4897     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4898     target_urb_adr = lurb->target_urb_adr;
4899     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4900     unlock_user(argptr, arg, target_size);
4901 
4902     g_free(lurb);
4903     return ret;
4904 }
4905 
4906 static abi_long
4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4908                              uint8_t *buf_temp __attribute__((unused)),
4909                              int fd, int cmd, abi_long arg)
4910 {
4911     struct live_urb *lurb;
4912 
4913     /* map target address back to host URB with metadata. */
4914     lurb = urb_hashtable_lookup(arg);
4915     if (!lurb) {
4916         return -TARGET_EFAULT;
4917     }
4918     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4919 }
4920 
4921 static abi_long
4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4923                             int fd, int cmd, abi_long arg)
4924 {
4925     const argtype *arg_type = ie->arg_type;
4926     int target_size;
4927     abi_long ret;
4928     void *argptr;
4929     int rw_dir;
4930     struct live_urb *lurb;
4931 
4932     /*
4933      * each submitted URB needs to map to a unique ID for the
4934      * kernel, and that unique ID needs to be a pointer to
4935      * host memory.  hence, we need to malloc for each URB.
4936      * isochronous transfers have a variable length struct.
4937      */
4938     arg_type++;
4939     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4940 
4941     /* construct host copy of urb and metadata */
4942     lurb = g_try_new0(struct live_urb, 1);
4943     if (!lurb) {
4944         return -TARGET_ENOMEM;
4945     }
4946 
4947     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4948     if (!argptr) {
4949         g_free(lurb);
4950         return -TARGET_EFAULT;
4951     }
4952     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4953     unlock_user(argptr, arg, 0);
4954 
4955     lurb->target_urb_adr = arg;
4956     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4957 
4958     /* buffer space used depends on endpoint type so lock the entire buffer */
4959     /* control type urbs should check the buffer contents for true direction */
4960     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4961     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4962         lurb->host_urb.buffer_length, 1);
4963     if (lurb->target_buf_ptr == NULL) {
4964         g_free(lurb);
4965         return -TARGET_EFAULT;
4966     }
4967 
4968     /* update buffer pointer in host copy */
4969     lurb->host_urb.buffer = lurb->target_buf_ptr;
4970 
4971     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4972     if (is_error(ret)) {
4973         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4974         g_free(lurb);
4975     } else {
4976         urb_hashtable_insert(lurb);
4977     }
4978 
4979     return ret;
4980 }
4981 #endif /* CONFIG_USBFS */
4982 
4983 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4984                             int cmd, abi_long arg)
4985 {
4986     void *argptr;
4987     struct dm_ioctl *host_dm;
4988     abi_long guest_data;
4989     uint32_t guest_data_size;
4990     int target_size;
4991     const argtype *arg_type = ie->arg_type;
4992     abi_long ret;
4993     void *big_buf = NULL;
4994     char *host_data;
4995 
4996     arg_type++;
4997     target_size = thunk_type_size(arg_type, 0);
4998     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4999     if (!argptr) {
5000         ret = -TARGET_EFAULT;
5001         goto out;
5002     }
5003     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5004     unlock_user(argptr, arg, 0);
5005 
5006     /* buf_temp is too small, so fetch things into a bigger buffer */
5007     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5008     memcpy(big_buf, buf_temp, target_size);
5009     buf_temp = big_buf;
5010     host_dm = big_buf;
5011 
5012     guest_data = arg + host_dm->data_start;
5013     if ((guest_data - arg) < 0) {
5014         ret = -TARGET_EINVAL;
5015         goto out;
5016     }
5017     guest_data_size = host_dm->data_size - host_dm->data_start;
5018     host_data = (char*)host_dm + host_dm->data_start;
5019 
5020     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5021     if (!argptr) {
5022         ret = -TARGET_EFAULT;
5023         goto out;
5024     }
5025 
5026     switch (ie->host_cmd) {
5027     case DM_REMOVE_ALL:
5028     case DM_LIST_DEVICES:
5029     case DM_DEV_CREATE:
5030     case DM_DEV_REMOVE:
5031     case DM_DEV_SUSPEND:
5032     case DM_DEV_STATUS:
5033     case DM_DEV_WAIT:
5034     case DM_TABLE_STATUS:
5035     case DM_TABLE_CLEAR:
5036     case DM_TABLE_DEPS:
5037     case DM_LIST_VERSIONS:
5038         /* no input data */
5039         break;
5040     case DM_DEV_RENAME:
5041     case DM_DEV_SET_GEOMETRY:
5042         /* data contains only strings */
5043         memcpy(host_data, argptr, guest_data_size);
5044         break;
5045     case DM_TARGET_MSG:
5046         memcpy(host_data, argptr, guest_data_size);
5047         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5048         break;
5049     case DM_TABLE_LOAD:
5050     {
5051         void *gspec = argptr;
5052         void *cur_data = host_data;
5053         const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5054         int spec_size = thunk_type_size(dm_arg_type, 0);
5055         int i;
5056 
5057         for (i = 0; i < host_dm->target_count; i++) {
5058             struct dm_target_spec *spec = cur_data;
5059             uint32_t next;
5060             int slen;
5061 
5062             thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5063             slen = strlen((char*)gspec + spec_size) + 1;
5064             next = spec->next;
5065             spec->next = sizeof(*spec) + slen;
5066             strcpy((char*)&spec[1], gspec + spec_size);
5067             gspec += next;
5068             cur_data += spec->next;
5069         }
5070         break;
5071     }
5072     default:
5073         ret = -TARGET_EINVAL;
5074         unlock_user(argptr, guest_data, 0);
5075         goto out;
5076     }
5077     unlock_user(argptr, guest_data, 0);
5078 
5079     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5080     if (!is_error(ret)) {
5081         guest_data = arg + host_dm->data_start;
5082         guest_data_size = host_dm->data_size - host_dm->data_start;
5083         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5084         switch (ie->host_cmd) {
5085         case DM_REMOVE_ALL:
5086         case DM_DEV_CREATE:
5087         case DM_DEV_REMOVE:
5088         case DM_DEV_RENAME:
5089         case DM_DEV_SUSPEND:
5090         case DM_DEV_STATUS:
5091         case DM_TABLE_LOAD:
5092         case DM_TABLE_CLEAR:
5093         case DM_TARGET_MSG:
5094         case DM_DEV_SET_GEOMETRY:
5095             /* no return data */
5096             break;
5097         case DM_LIST_DEVICES:
5098         {
5099             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5100             uint32_t remaining_data = guest_data_size;
5101             void *cur_data = argptr;
5102             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5103             int nl_size = 12; /* can't use thunk_size due to alignment */
5104 
5105             while (1) {
5106                 uint32_t next = nl->next;
5107                 if (next) {
5108                     nl->next = nl_size + (strlen(nl->name) + 1);
5109                 }
5110                 if (remaining_data < nl->next) {
5111                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5112                     break;
5113                 }
5114                 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5115                 strcpy(cur_data + nl_size, nl->name);
5116                 cur_data += nl->next;
5117                 remaining_data -= nl->next;
5118                 if (!next) {
5119                     break;
5120                 }
5121                 nl = (void*)nl + next;
5122             }
5123             break;
5124         }
5125         case DM_DEV_WAIT:
5126         case DM_TABLE_STATUS:
5127         {
5128             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5129             void *cur_data = argptr;
5130             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5131             int spec_size = thunk_type_size(dm_arg_type, 0);
5132             int i;
5133 
5134             for (i = 0; i < host_dm->target_count; i++) {
5135                 uint32_t next = spec->next;
5136                 int slen = strlen((char*)&spec[1]) + 1;
5137                 spec->next = (cur_data - argptr) + spec_size + slen;
5138                 if (guest_data_size < spec->next) {
5139                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5140                     break;
5141                 }
5142                 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5143                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5144                 cur_data = argptr + spec->next;
5145                 spec = (void*)host_dm + host_dm->data_start + next;
5146             }
5147             break;
5148         }
5149         case DM_TABLE_DEPS:
5150         {
5151             void *hdata = (void*)host_dm + host_dm->data_start;
5152             int count = *(uint32_t*)hdata;
5153             uint64_t *hdev = hdata + 8;
5154             uint64_t *gdev = argptr + 8;
5155             int i;
5156 
5157             *(uint32_t*)argptr = tswap32(count);
5158             for (i = 0; i < count; i++) {
5159                 *gdev = tswap64(*hdev);
5160                 gdev++;
5161                 hdev++;
5162             }
5163             break;
5164         }
5165         case DM_LIST_VERSIONS:
5166         {
5167             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5168             uint32_t remaining_data = guest_data_size;
5169             void *cur_data = argptr;
5170             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5171             int vers_size = thunk_type_size(dm_arg_type, 0);
5172 
5173             while (1) {
5174                 uint32_t next = vers->next;
5175                 if (next) {
5176                     vers->next = vers_size + (strlen(vers->name) + 1);
5177                 }
5178                 if (remaining_data < vers->next) {
5179                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5180                     break;
5181                 }
5182                 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5183                 strcpy(cur_data + vers_size, vers->name);
5184                 cur_data += vers->next;
5185                 remaining_data -= vers->next;
5186                 if (!next) {
5187                     break;
5188                 }
5189                 vers = (void*)vers + next;
5190             }
5191             break;
5192         }
5193         default:
5194             unlock_user(argptr, guest_data, 0);
5195             ret = -TARGET_EINVAL;
5196             goto out;
5197         }
5198         unlock_user(argptr, guest_data, guest_data_size);
5199 
5200         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5201         if (!argptr) {
5202             ret = -TARGET_EFAULT;
5203             goto out;
5204         }
5205         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5206         unlock_user(argptr, arg, target_size);
5207     }
5208 out:
5209     g_free(big_buf);
5210     return ret;
5211 }
5212 
5213 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5214                                int cmd, abi_long arg)
5215 {
5216     void *argptr;
5217     int target_size;
5218     const argtype *arg_type = ie->arg_type;
5219     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5220     abi_long ret;
5221 
5222     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5223     struct blkpg_partition host_part;
5224 
5225     /* Read and convert blkpg */
5226     arg_type++;
5227     target_size = thunk_type_size(arg_type, 0);
5228     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5229     if (!argptr) {
5230         ret = -TARGET_EFAULT;
5231         goto out;
5232     }
5233     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5234     unlock_user(argptr, arg, 0);
5235 
5236     switch (host_blkpg->op) {
5237     case BLKPG_ADD_PARTITION:
5238     case BLKPG_DEL_PARTITION:
5239         /* payload is struct blkpg_partition */
5240         break;
5241     default:
5242         /* Unknown opcode */
5243         ret = -TARGET_EINVAL;
5244         goto out;
5245     }
5246 
5247     /* Read and convert blkpg->data */
5248     arg = (abi_long)(uintptr_t)host_blkpg->data;
5249     target_size = thunk_type_size(part_arg_type, 0);
5250     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5251     if (!argptr) {
5252         ret = -TARGET_EFAULT;
5253         goto out;
5254     }
5255     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5256     unlock_user(argptr, arg, 0);
5257 
5258     /* Swizzle the data pointer to our local copy and call! */
5259     host_blkpg->data = &host_part;
5260     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5261 
5262 out:
5263     return ret;
5264 }
5265 
5266 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5267                                 int fd, int cmd, abi_long arg)
5268 {
5269     const argtype *arg_type = ie->arg_type;
5270     const StructEntry *se;
5271     const argtype *field_types;
5272     const int *dst_offsets, *src_offsets;
5273     int target_size;
5274     void *argptr;
5275     abi_ulong *target_rt_dev_ptr = NULL;
5276     unsigned long *host_rt_dev_ptr = NULL;
5277     abi_long ret;
5278     int i;
5279 
5280     assert(ie->access == IOC_W);
5281     assert(*arg_type == TYPE_PTR);
5282     arg_type++;
5283     assert(*arg_type == TYPE_STRUCT);
5284     target_size = thunk_type_size(arg_type, 0);
5285     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5286     if (!argptr) {
5287         return -TARGET_EFAULT;
5288     }
5289     arg_type++;
5290     assert(*arg_type == (int)STRUCT_rtentry);
5291     se = struct_entries + *arg_type++;
5292     assert(se->convert[0] == NULL);
5293     /* convert struct here to be able to catch rt_dev string */
5294     field_types = se->field_types;
5295     dst_offsets = se->field_offsets[THUNK_HOST];
5296     src_offsets = se->field_offsets[THUNK_TARGET];
5297     for (i = 0; i < se->nb_fields; i++) {
5298         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5299             assert(*field_types == TYPE_PTRVOID);
5300             target_rt_dev_ptr = argptr + src_offsets[i];
5301             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5302             if (*target_rt_dev_ptr != 0) {
5303                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5304                                                   tswapal(*target_rt_dev_ptr));
5305                 if (!*host_rt_dev_ptr) {
5306                     unlock_user(argptr, arg, 0);
5307                     return -TARGET_EFAULT;
5308                 }
5309             } else {
5310                 *host_rt_dev_ptr = 0;
5311             }
5312             field_types++;
5313             continue;
5314         }
5315         field_types = thunk_convert(buf_temp + dst_offsets[i],
5316                                     argptr + src_offsets[i],
5317                                     field_types, THUNK_HOST);
5318     }
5319     unlock_user(argptr, arg, 0);
5320 
5321     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5322 
5323     assert(host_rt_dev_ptr != NULL);
5324     assert(target_rt_dev_ptr != NULL);
5325     if (*host_rt_dev_ptr != 0) {
5326         unlock_user((void *)*host_rt_dev_ptr,
5327                     *target_rt_dev_ptr, 0);
5328     }
5329     return ret;
5330 }
5331 
5332 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5333                                      int fd, int cmd, abi_long arg)
5334 {
5335     int sig = target_to_host_signal(arg);
5336     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5337 }
5338 
5339 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5340                                     int fd, int cmd, abi_long arg)
5341 {
5342     struct timeval tv;
5343     abi_long ret;
5344 
5345     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5346     if (is_error(ret)) {
5347         return ret;
5348     }
5349 
5350     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5351         if (copy_to_user_timeval(arg, &tv)) {
5352             return -TARGET_EFAULT;
5353         }
5354     } else {
5355         if (copy_to_user_timeval64(arg, &tv)) {
5356             return -TARGET_EFAULT;
5357         }
5358     }
5359 
5360     return ret;
5361 }
5362 
5363 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5364                                       int fd, int cmd, abi_long arg)
5365 {
5366     struct timespec ts;
5367     abi_long ret;
5368 
5369     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5370     if (is_error(ret)) {
5371         return ret;
5372     }
5373 
5374     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5375         if (host_to_target_timespec(arg, &ts)) {
5376             return -TARGET_EFAULT;
5377         }
5378     } else{
5379         if (host_to_target_timespec64(arg, &ts)) {
5380             return -TARGET_EFAULT;
5381         }
5382     }
5383 
5384     return ret;
5385 }
5386 
5387 #ifdef TIOCGPTPEER
5388 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5389                                      int fd, int cmd, abi_long arg)
5390 {
5391     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5392     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5393 }
5394 #endif
5395 
5396 #ifdef HAVE_DRM_H
5397 
5398 static void unlock_drm_version(struct drm_version *host_ver,
5399                                struct target_drm_version *target_ver,
5400                                bool copy)
5401 {
5402     unlock_user(host_ver->name, target_ver->name,
5403                                 copy ? host_ver->name_len : 0);
5404     unlock_user(host_ver->date, target_ver->date,
5405                                 copy ? host_ver->date_len : 0);
5406     unlock_user(host_ver->desc, target_ver->desc,
5407                                 copy ? host_ver->desc_len : 0);
5408 }
5409 
5410 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5411                                           struct target_drm_version *target_ver)
5412 {
5413     memset(host_ver, 0, sizeof(*host_ver));
5414 
5415     __get_user(host_ver->name_len, &target_ver->name_len);
5416     if (host_ver->name_len) {
5417         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5418                                    target_ver->name_len, 0);
5419         if (!host_ver->name) {
5420             return -EFAULT;
5421         }
5422     }
5423 
5424     __get_user(host_ver->date_len, &target_ver->date_len);
5425     if (host_ver->date_len) {
5426         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5427                                    target_ver->date_len, 0);
5428         if (!host_ver->date) {
5429             goto err;
5430         }
5431     }
5432 
5433     __get_user(host_ver->desc_len, &target_ver->desc_len);
5434     if (host_ver->desc_len) {
5435         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5436                                    target_ver->desc_len, 0);
5437         if (!host_ver->desc) {
5438             goto err;
5439         }
5440     }
5441 
5442     return 0;
5443 err:
5444     unlock_drm_version(host_ver, target_ver, false);
5445     return -EFAULT;
5446 }
5447 
5448 static inline void host_to_target_drmversion(
5449                                           struct target_drm_version *target_ver,
5450                                           struct drm_version *host_ver)
5451 {
5452     __put_user(host_ver->version_major, &target_ver->version_major);
5453     __put_user(host_ver->version_minor, &target_ver->version_minor);
5454     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5455     __put_user(host_ver->name_len, &target_ver->name_len);
5456     __put_user(host_ver->date_len, &target_ver->date_len);
5457     __put_user(host_ver->desc_len, &target_ver->desc_len);
5458     unlock_drm_version(host_ver, target_ver, true);
5459 }
5460 
5461 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5462                              int fd, int cmd, abi_long arg)
5463 {
5464     struct drm_version *ver;
5465     struct target_drm_version *target_ver;
5466     abi_long ret;
5467 
5468     switch (ie->host_cmd) {
5469     case DRM_IOCTL_VERSION:
5470         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5471             return -TARGET_EFAULT;
5472         }
5473         ver = (struct drm_version *)buf_temp;
5474         ret = target_to_host_drmversion(ver, target_ver);
5475         if (!is_error(ret)) {
5476             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5477             if (is_error(ret)) {
5478                 unlock_drm_version(ver, target_ver, false);
5479             } else {
5480                 host_to_target_drmversion(target_ver, ver);
5481             }
5482         }
5483         unlock_user_struct(target_ver, arg, 0);
5484         return ret;
5485     }
5486     return -TARGET_ENOSYS;
5487 }
5488 
5489 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5490                                            struct drm_i915_getparam *gparam,
5491                                            int fd, abi_long arg)
5492 {
5493     abi_long ret;
5494     int value;
5495     struct target_drm_i915_getparam *target_gparam;
5496 
5497     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5498         return -TARGET_EFAULT;
5499     }
5500 
5501     __get_user(gparam->param, &target_gparam->param);
5502     gparam->value = &value;
5503     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5504     put_user_s32(value, target_gparam->value);
5505 
5506     unlock_user_struct(target_gparam, arg, 0);
5507     return ret;
5508 }
5509 
5510 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5511                                   int fd, int cmd, abi_long arg)
5512 {
5513     switch (ie->host_cmd) {
5514     case DRM_IOCTL_I915_GETPARAM:
5515         return do_ioctl_drm_i915_getparam(ie,
5516                                           (struct drm_i915_getparam *)buf_temp,
5517                                           fd, arg);
5518     default:
5519         return -TARGET_ENOSYS;
5520     }
5521 }
5522 
5523 #endif
5524 
5525 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5526                                         int fd, int cmd, abi_long arg)
5527 {
5528     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5529     struct tun_filter *target_filter;
5530     char *target_addr;
5531 
5532     assert(ie->access == IOC_W);
5533 
5534     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5535     if (!target_filter) {
5536         return -TARGET_EFAULT;
5537     }
5538     filter->flags = tswap16(target_filter->flags);
5539     filter->count = tswap16(target_filter->count);
5540     unlock_user(target_filter, arg, 0);
5541 
5542     if (filter->count) {
5543         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5544             MAX_STRUCT_SIZE) {
5545             return -TARGET_EFAULT;
5546         }
5547 
5548         target_addr = lock_user(VERIFY_READ,
5549                                 arg + offsetof(struct tun_filter, addr),
5550                                 filter->count * ETH_ALEN, 1);
5551         if (!target_addr) {
5552             return -TARGET_EFAULT;
5553         }
5554         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5555         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5556     }
5557 
5558     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5559 }
5560 
5561 IOCTLEntry ioctl_entries[] = {
5562 #define IOCTL(cmd, access, ...) \
5563     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5565     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5566 #define IOCTL_IGNORE(cmd) \
5567     { TARGET_ ## cmd, 0, #cmd },
5568 #include "ioctls.h"
5569     { 0, 0, },
5570 };
5571 
5572 /* ??? Implement proper locking for ioctls.  */
5573 /* do_ioctl() Must return target values and target errnos. */
5574 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5575 {
5576     const IOCTLEntry *ie;
5577     const argtype *arg_type;
5578     abi_long ret;
5579     uint8_t buf_temp[MAX_STRUCT_SIZE];
5580     int target_size;
5581     void *argptr;
5582 
5583     ie = ioctl_entries;
5584     for(;;) {
5585         if (ie->target_cmd == 0) {
5586             qemu_log_mask(
5587                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5588             return -TARGET_ENOTTY;
5589         }
5590         if (ie->target_cmd == cmd)
5591             break;
5592         ie++;
5593     }
5594     arg_type = ie->arg_type;
5595     if (ie->do_ioctl) {
5596         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5597     } else if (!ie->host_cmd) {
5598         /* Some architectures define BSD ioctls in their headers
5599            that are not implemented in Linux.  */
5600         return -TARGET_ENOTTY;
5601     }
5602 
5603     switch(arg_type[0]) {
5604     case TYPE_NULL:
5605         /* no argument */
5606         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5607         break;
5608     case TYPE_PTRVOID:
5609     case TYPE_INT:
5610     case TYPE_LONG:
5611     case TYPE_ULONG:
5612         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5613         break;
5614     case TYPE_PTR:
5615         arg_type++;
5616         target_size = thunk_type_size(arg_type, 0);
5617         switch(ie->access) {
5618         case IOC_R:
5619             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5620             if (!is_error(ret)) {
5621                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5622                 if (!argptr)
5623                     return -TARGET_EFAULT;
5624                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5625                 unlock_user(argptr, arg, target_size);
5626             }
5627             break;
5628         case IOC_W:
5629             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5630             if (!argptr)
5631                 return -TARGET_EFAULT;
5632             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5633             unlock_user(argptr, arg, 0);
5634             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5635             break;
5636         default:
5637         case IOC_RW:
5638             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5639             if (!argptr)
5640                 return -TARGET_EFAULT;
5641             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5642             unlock_user(argptr, arg, 0);
5643             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5644             if (!is_error(ret)) {
5645                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5646                 if (!argptr)
5647                     return -TARGET_EFAULT;
5648                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5649                 unlock_user(argptr, arg, target_size);
5650             }
5651             break;
5652         }
5653         break;
5654     default:
5655         qemu_log_mask(LOG_UNIMP,
5656                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5657                       (long)cmd, arg_type[0]);
5658         ret = -TARGET_ENOTTY;
5659         break;
5660     }
5661     return ret;
5662 }
5663 
5664 static const bitmask_transtbl iflag_tbl[] = {
5665         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5666         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5667         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5668         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5669         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5670         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5671         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5672         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5673         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5674         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5675         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5676         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5677         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5678         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5679         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5680 };
5681 
5682 static const bitmask_transtbl oflag_tbl[] = {
5683 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5684 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5685 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5686 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5687 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5688 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5689 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5690 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5691 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5692 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5693 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5694 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5695 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5696 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5697 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5698 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5699 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5700 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5701 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5702 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5703 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5704 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5705 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5706 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5707 };
5708 
5709 static const bitmask_transtbl cflag_tbl[] = {
5710 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5711 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5712 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5713 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5714 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5715 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5716 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5717 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5718 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5719 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5720 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5721 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5722 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5723 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5724 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5725 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5726 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5727 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5728 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5729 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5730 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5731 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5732 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5733 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5734 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5735 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5736 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5737 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5738 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5739 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5740 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5741 };
5742 
5743 static const bitmask_transtbl lflag_tbl[] = {
5744   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5745   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5746   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5747   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5748   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5749   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5750   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5751   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5752   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5753   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5754   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5755   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5756   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5757   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5758   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5759   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5760 };
5761 
5762 static void target_to_host_termios (void *dst, const void *src)
5763 {
5764     struct host_termios *host = dst;
5765     const struct target_termios *target = src;
5766 
5767     host->c_iflag =
5768         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5769     host->c_oflag =
5770         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5771     host->c_cflag =
5772         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5773     host->c_lflag =
5774         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5775     host->c_line = target->c_line;
5776 
5777     memset(host->c_cc, 0, sizeof(host->c_cc));
5778     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5779     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5780     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5781     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5782     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5783     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5784     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5785     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5786     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5787     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5788     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5789     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5790     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5791     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5792     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5793     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5794     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5795 }
5796 
5797 static void host_to_target_termios (void *dst, const void *src)
5798 {
5799     struct target_termios *target = dst;
5800     const struct host_termios *host = src;
5801 
5802     target->c_iflag =
5803         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5804     target->c_oflag =
5805         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5806     target->c_cflag =
5807         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5808     target->c_lflag =
5809         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5810     target->c_line = host->c_line;
5811 
5812     memset(target->c_cc, 0, sizeof(target->c_cc));
5813     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5814     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5815     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5816     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5817     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5818     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5819     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5820     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5821     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5822     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5823     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5824     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5825     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5826     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5827     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5828     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5829     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5830 }
5831 
5832 static const StructEntry struct_termios_def = {
5833     .convert = { host_to_target_termios, target_to_host_termios },
5834     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5835     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5836     .print = print_termios,
5837 };
5838 
5839 /* If the host does not provide these bits, they may be safely discarded. */
5840 #ifndef MAP_SYNC
5841 #define MAP_SYNC 0
5842 #endif
5843 #ifndef MAP_UNINITIALIZED
5844 #define MAP_UNINITIALIZED 0
5845 #endif
5846 
5847 static const bitmask_transtbl mmap_flags_tbl[] = {
5848     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5849     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5850       MAP_ANONYMOUS, MAP_ANONYMOUS },
5851     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5852       MAP_GROWSDOWN, MAP_GROWSDOWN },
5853     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5854       MAP_DENYWRITE, MAP_DENYWRITE },
5855     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5856       MAP_EXECUTABLE, MAP_EXECUTABLE },
5857     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5858     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5859       MAP_NORESERVE, MAP_NORESERVE },
5860     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5861     /* MAP_STACK had been ignored by the kernel for quite some time.
5862        Recognize it for the target insofar as we do not want to pass
5863        it through to the host.  */
5864     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5865     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5866     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5867     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5868       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5869     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5870       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5871 };
5872 
5873 /*
5874  * Arrange for legacy / undefined architecture specific flags to be
5875  * ignored by mmap handling code.
5876  */
5877 #ifndef TARGET_MAP_32BIT
5878 #define TARGET_MAP_32BIT 0
5879 #endif
5880 #ifndef TARGET_MAP_HUGE_2MB
5881 #define TARGET_MAP_HUGE_2MB 0
5882 #endif
5883 #ifndef TARGET_MAP_HUGE_1GB
5884 #define TARGET_MAP_HUGE_1GB 0
5885 #endif
5886 
5887 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5888                         int target_flags, int fd, off_t offset)
5889 {
5890     /*
5891      * The historical set of flags that all mmap types implicitly support.
5892      */
5893     enum {
5894         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5895                                | TARGET_MAP_PRIVATE
5896                                | TARGET_MAP_FIXED
5897                                | TARGET_MAP_ANONYMOUS
5898                                | TARGET_MAP_DENYWRITE
5899                                | TARGET_MAP_EXECUTABLE
5900                                | TARGET_MAP_UNINITIALIZED
5901                                | TARGET_MAP_GROWSDOWN
5902                                | TARGET_MAP_LOCKED
5903                                | TARGET_MAP_NORESERVE
5904                                | TARGET_MAP_POPULATE
5905                                | TARGET_MAP_NONBLOCK
5906                                | TARGET_MAP_STACK
5907                                | TARGET_MAP_HUGETLB
5908                                | TARGET_MAP_32BIT
5909                                | TARGET_MAP_HUGE_2MB
5910                                | TARGET_MAP_HUGE_1GB
5911     };
5912     int host_flags;
5913 
5914     switch (target_flags & TARGET_MAP_TYPE) {
5915     case TARGET_MAP_PRIVATE:
5916         host_flags = MAP_PRIVATE;
5917         break;
5918     case TARGET_MAP_SHARED:
5919         host_flags = MAP_SHARED;
5920         break;
5921     case TARGET_MAP_SHARED_VALIDATE:
5922         /*
5923          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5924          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5925          */
5926         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5927             return -TARGET_EOPNOTSUPP;
5928         }
5929         host_flags = MAP_SHARED_VALIDATE;
5930         if (target_flags & TARGET_MAP_SYNC) {
5931             host_flags |= MAP_SYNC;
5932         }
5933         break;
5934     default:
5935         return -TARGET_EINVAL;
5936     }
5937     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5938 
5939     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5940 }
5941 
5942 /*
5943  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5944  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5945  */
5946 #if defined(TARGET_I386)
5947 
5948 /* NOTE: there is really one LDT for all the threads */
5949 static uint8_t *ldt_table;
5950 
5951 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5952 {
5953     int size;
5954     void *p;
5955 
5956     if (!ldt_table)
5957         return 0;
5958     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5959     if (size > bytecount)
5960         size = bytecount;
5961     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5962     if (!p)
5963         return -TARGET_EFAULT;
5964     /* ??? Should this by byteswapped?  */
5965     memcpy(p, ldt_table, size);
5966     unlock_user(p, ptr, size);
5967     return size;
5968 }
5969 
5970 /* XXX: add locking support */
5971 static abi_long write_ldt(CPUX86State *env,
5972                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5973 {
5974     struct target_modify_ldt_ldt_s ldt_info;
5975     struct target_modify_ldt_ldt_s *target_ldt_info;
5976     int seg_32bit, contents, read_exec_only, limit_in_pages;
5977     int seg_not_present, useable, lm;
5978     uint32_t *lp, entry_1, entry_2;
5979 
5980     if (bytecount != sizeof(ldt_info))
5981         return -TARGET_EINVAL;
5982     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5983         return -TARGET_EFAULT;
5984     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5985     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5986     ldt_info.limit = tswap32(target_ldt_info->limit);
5987     ldt_info.flags = tswap32(target_ldt_info->flags);
5988     unlock_user_struct(target_ldt_info, ptr, 0);
5989 
5990     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5991         return -TARGET_EINVAL;
5992     seg_32bit = ldt_info.flags & 1;
5993     contents = (ldt_info.flags >> 1) & 3;
5994     read_exec_only = (ldt_info.flags >> 3) & 1;
5995     limit_in_pages = (ldt_info.flags >> 4) & 1;
5996     seg_not_present = (ldt_info.flags >> 5) & 1;
5997     useable = (ldt_info.flags >> 6) & 1;
5998 #ifdef TARGET_ABI32
5999     lm = 0;
6000 #else
6001     lm = (ldt_info.flags >> 7) & 1;
6002 #endif
6003     if (contents == 3) {
6004         if (oldmode)
6005             return -TARGET_EINVAL;
6006         if (seg_not_present == 0)
6007             return -TARGET_EINVAL;
6008     }
6009     /* allocate the LDT */
6010     if (!ldt_table) {
6011         env->ldt.base = target_mmap(0,
6012                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6013                                     PROT_READ|PROT_WRITE,
6014                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6015         if (env->ldt.base == -1)
6016             return -TARGET_ENOMEM;
6017         memset(g2h_untagged(env->ldt.base), 0,
6018                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6019         env->ldt.limit = 0xffff;
6020         ldt_table = g2h_untagged(env->ldt.base);
6021     }
6022 
6023     /* NOTE: same code as Linux kernel */
6024     /* Allow LDTs to be cleared by the user. */
6025     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6026         if (oldmode ||
6027             (contents == 0		&&
6028              read_exec_only == 1	&&
6029              seg_32bit == 0		&&
6030              limit_in_pages == 0	&&
6031              seg_not_present == 1	&&
6032              useable == 0 )) {
6033             entry_1 = 0;
6034             entry_2 = 0;
6035             goto install;
6036         }
6037     }
6038 
6039     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6040         (ldt_info.limit & 0x0ffff);
6041     entry_2 = (ldt_info.base_addr & 0xff000000) |
6042         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6043         (ldt_info.limit & 0xf0000) |
6044         ((read_exec_only ^ 1) << 9) |
6045         (contents << 10) |
6046         ((seg_not_present ^ 1) << 15) |
6047         (seg_32bit << 22) |
6048         (limit_in_pages << 23) |
6049         (lm << 21) |
6050         0x7000;
6051     if (!oldmode)
6052         entry_2 |= (useable << 20);
6053 
6054     /* Install the new entry ...  */
6055 install:
6056     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6057     lp[0] = tswap32(entry_1);
6058     lp[1] = tswap32(entry_2);
6059     return 0;
6060 }
6061 
6062 /* specific and weird i386 syscalls */
6063 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6064                               unsigned long bytecount)
6065 {
6066     abi_long ret;
6067 
6068     switch (func) {
6069     case 0:
6070         ret = read_ldt(ptr, bytecount);
6071         break;
6072     case 1:
6073         ret = write_ldt(env, ptr, bytecount, 1);
6074         break;
6075     case 0x11:
6076         ret = write_ldt(env, ptr, bytecount, 0);
6077         break;
6078     default:
6079         ret = -TARGET_ENOSYS;
6080         break;
6081     }
6082     return ret;
6083 }
6084 
6085 #if defined(TARGET_ABI32)
6086 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6087 {
6088     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6089     struct target_modify_ldt_ldt_s ldt_info;
6090     struct target_modify_ldt_ldt_s *target_ldt_info;
6091     int seg_32bit, contents, read_exec_only, limit_in_pages;
6092     int seg_not_present, useable, lm;
6093     uint32_t *lp, entry_1, entry_2;
6094     int i;
6095 
6096     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6097     if (!target_ldt_info)
6098         return -TARGET_EFAULT;
6099     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6100     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6101     ldt_info.limit = tswap32(target_ldt_info->limit);
6102     ldt_info.flags = tswap32(target_ldt_info->flags);
6103     if (ldt_info.entry_number == -1) {
6104         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6105             if (gdt_table[i] == 0) {
6106                 ldt_info.entry_number = i;
6107                 target_ldt_info->entry_number = tswap32(i);
6108                 break;
6109             }
6110         }
6111     }
6112     unlock_user_struct(target_ldt_info, ptr, 1);
6113 
6114     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6115         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6116            return -TARGET_EINVAL;
6117     seg_32bit = ldt_info.flags & 1;
6118     contents = (ldt_info.flags >> 1) & 3;
6119     read_exec_only = (ldt_info.flags >> 3) & 1;
6120     limit_in_pages = (ldt_info.flags >> 4) & 1;
6121     seg_not_present = (ldt_info.flags >> 5) & 1;
6122     useable = (ldt_info.flags >> 6) & 1;
6123 #ifdef TARGET_ABI32
6124     lm = 0;
6125 #else
6126     lm = (ldt_info.flags >> 7) & 1;
6127 #endif
6128 
6129     if (contents == 3) {
6130         if (seg_not_present == 0)
6131             return -TARGET_EINVAL;
6132     }
6133 
6134     /* NOTE: same code as Linux kernel */
6135     /* Allow LDTs to be cleared by the user. */
6136     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6137         if ((contents == 0             &&
6138              read_exec_only == 1       &&
6139              seg_32bit == 0            &&
6140              limit_in_pages == 0       &&
6141              seg_not_present == 1      &&
6142              useable == 0 )) {
6143             entry_1 = 0;
6144             entry_2 = 0;
6145             goto install;
6146         }
6147     }
6148 
6149     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6150         (ldt_info.limit & 0x0ffff);
6151     entry_2 = (ldt_info.base_addr & 0xff000000) |
6152         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6153         (ldt_info.limit & 0xf0000) |
6154         ((read_exec_only ^ 1) << 9) |
6155         (contents << 10) |
6156         ((seg_not_present ^ 1) << 15) |
6157         (seg_32bit << 22) |
6158         (limit_in_pages << 23) |
6159         (useable << 20) |
6160         (lm << 21) |
6161         0x7000;
6162 
6163     /* Install the new entry ...  */
6164 install:
6165     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6166     lp[0] = tswap32(entry_1);
6167     lp[1] = tswap32(entry_2);
6168     return 0;
6169 }
6170 
6171 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6172 {
6173     struct target_modify_ldt_ldt_s *target_ldt_info;
6174     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6175     uint32_t base_addr, limit, flags;
6176     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6177     int seg_not_present, useable, lm;
6178     uint32_t *lp, entry_1, entry_2;
6179 
6180     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6181     if (!target_ldt_info)
6182         return -TARGET_EFAULT;
6183     idx = tswap32(target_ldt_info->entry_number);
6184     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6185         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6186         unlock_user_struct(target_ldt_info, ptr, 1);
6187         return -TARGET_EINVAL;
6188     }
6189     lp = (uint32_t *)(gdt_table + idx);
6190     entry_1 = tswap32(lp[0]);
6191     entry_2 = tswap32(lp[1]);
6192 
6193     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6194     contents = (entry_2 >> 10) & 3;
6195     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6196     seg_32bit = (entry_2 >> 22) & 1;
6197     limit_in_pages = (entry_2 >> 23) & 1;
6198     useable = (entry_2 >> 20) & 1;
6199 #ifdef TARGET_ABI32
6200     lm = 0;
6201 #else
6202     lm = (entry_2 >> 21) & 1;
6203 #endif
6204     flags = (seg_32bit << 0) | (contents << 1) |
6205         (read_exec_only << 3) | (limit_in_pages << 4) |
6206         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6207     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6208     base_addr = (entry_1 >> 16) |
6209         (entry_2 & 0xff000000) |
6210         ((entry_2 & 0xff) << 16);
6211     target_ldt_info->base_addr = tswapal(base_addr);
6212     target_ldt_info->limit = tswap32(limit);
6213     target_ldt_info->flags = tswap32(flags);
6214     unlock_user_struct(target_ldt_info, ptr, 1);
6215     return 0;
6216 }
6217 
6218 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6219 {
6220     return -TARGET_ENOSYS;
6221 }
6222 #else
6223 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6224 {
6225     abi_long ret = 0;
6226     abi_ulong val;
6227     int idx;
6228 
6229     switch(code) {
6230     case TARGET_ARCH_SET_GS:
6231     case TARGET_ARCH_SET_FS:
6232         if (code == TARGET_ARCH_SET_GS)
6233             idx = R_GS;
6234         else
6235             idx = R_FS;
6236         cpu_x86_load_seg(env, idx, 0);
6237         env->segs[idx].base = addr;
6238         break;
6239     case TARGET_ARCH_GET_GS:
6240     case TARGET_ARCH_GET_FS:
6241         if (code == TARGET_ARCH_GET_GS)
6242             idx = R_GS;
6243         else
6244             idx = R_FS;
6245         val = env->segs[idx].base;
6246         if (put_user(val, addr, abi_ulong))
6247             ret = -TARGET_EFAULT;
6248         break;
6249     default:
6250         ret = -TARGET_EINVAL;
6251         break;
6252     }
6253     return ret;
6254 }
6255 #endif /* defined(TARGET_ABI32 */
6256 #endif /* defined(TARGET_I386) */
6257 
6258 /*
6259  * These constants are generic.  Supply any that are missing from the host.
6260  */
6261 #ifndef PR_SET_NAME
6262 # define PR_SET_NAME    15
6263 # define PR_GET_NAME    16
6264 #endif
6265 #ifndef PR_SET_FP_MODE
6266 # define PR_SET_FP_MODE 45
6267 # define PR_GET_FP_MODE 46
6268 # define PR_FP_MODE_FR   (1 << 0)
6269 # define PR_FP_MODE_FRE  (1 << 1)
6270 #endif
6271 #ifndef PR_SVE_SET_VL
6272 # define PR_SVE_SET_VL  50
6273 # define PR_SVE_GET_VL  51
6274 # define PR_SVE_VL_LEN_MASK  0xffff
6275 # define PR_SVE_VL_INHERIT   (1 << 17)
6276 #endif
6277 #ifndef PR_PAC_RESET_KEYS
6278 # define PR_PAC_RESET_KEYS  54
6279 # define PR_PAC_APIAKEY   (1 << 0)
6280 # define PR_PAC_APIBKEY   (1 << 1)
6281 # define PR_PAC_APDAKEY   (1 << 2)
6282 # define PR_PAC_APDBKEY   (1 << 3)
6283 # define PR_PAC_APGAKEY   (1 << 4)
6284 #endif
6285 #ifndef PR_SET_TAGGED_ADDR_CTRL
6286 # define PR_SET_TAGGED_ADDR_CTRL 55
6287 # define PR_GET_TAGGED_ADDR_CTRL 56
6288 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6289 #endif
6290 #ifndef PR_MTE_TCF_SHIFT
6291 # define PR_MTE_TCF_SHIFT       1
6292 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6293 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6294 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6295 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6296 # define PR_MTE_TAG_SHIFT       3
6297 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6298 #endif
6299 #ifndef PR_SET_IO_FLUSHER
6300 # define PR_SET_IO_FLUSHER 57
6301 # define PR_GET_IO_FLUSHER 58
6302 #endif
6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6304 # define PR_SET_SYSCALL_USER_DISPATCH 59
6305 #endif
6306 #ifndef PR_SME_SET_VL
6307 # define PR_SME_SET_VL  63
6308 # define PR_SME_GET_VL  64
6309 # define PR_SME_VL_LEN_MASK  0xffff
6310 # define PR_SME_VL_INHERIT   (1 << 17)
6311 #endif
6312 
6313 #include "target_prctl.h"
6314 
6315 static abi_long do_prctl_inval0(CPUArchState *env)
6316 {
6317     return -TARGET_EINVAL;
6318 }
6319 
6320 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6321 {
6322     return -TARGET_EINVAL;
6323 }
6324 
6325 #ifndef do_prctl_get_fp_mode
6326 #define do_prctl_get_fp_mode do_prctl_inval0
6327 #endif
6328 #ifndef do_prctl_set_fp_mode
6329 #define do_prctl_set_fp_mode do_prctl_inval1
6330 #endif
6331 #ifndef do_prctl_sve_get_vl
6332 #define do_prctl_sve_get_vl do_prctl_inval0
6333 #endif
6334 #ifndef do_prctl_sve_set_vl
6335 #define do_prctl_sve_set_vl do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_reset_keys
6338 #define do_prctl_reset_keys do_prctl_inval1
6339 #endif
6340 #ifndef do_prctl_set_tagged_addr_ctrl
6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6342 #endif
6343 #ifndef do_prctl_get_tagged_addr_ctrl
6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6345 #endif
6346 #ifndef do_prctl_get_unalign
6347 #define do_prctl_get_unalign do_prctl_inval1
6348 #endif
6349 #ifndef do_prctl_set_unalign
6350 #define do_prctl_set_unalign do_prctl_inval1
6351 #endif
6352 #ifndef do_prctl_sme_get_vl
6353 #define do_prctl_sme_get_vl do_prctl_inval0
6354 #endif
6355 #ifndef do_prctl_sme_set_vl
6356 #define do_prctl_sme_set_vl do_prctl_inval1
6357 #endif
6358 
6359 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6360                          abi_long arg3, abi_long arg4, abi_long arg5)
6361 {
6362     abi_long ret;
6363 
6364     switch (option) {
6365     case PR_GET_PDEATHSIG:
6366         {
6367             int deathsig;
6368             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6369                                   arg3, arg4, arg5));
6370             if (!is_error(ret) &&
6371                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6372                 return -TARGET_EFAULT;
6373             }
6374             return ret;
6375         }
6376     case PR_SET_PDEATHSIG:
6377         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6378                                arg3, arg4, arg5));
6379     case PR_GET_NAME:
6380         {
6381             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6382             if (!name) {
6383                 return -TARGET_EFAULT;
6384             }
6385             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6386                                   arg3, arg4, arg5));
6387             unlock_user(name, arg2, 16);
6388             return ret;
6389         }
6390     case PR_SET_NAME:
6391         {
6392             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6393             if (!name) {
6394                 return -TARGET_EFAULT;
6395             }
6396             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6397                                   arg3, arg4, arg5));
6398             unlock_user(name, arg2, 0);
6399             return ret;
6400         }
6401     case PR_GET_FP_MODE:
6402         return do_prctl_get_fp_mode(env);
6403     case PR_SET_FP_MODE:
6404         return do_prctl_set_fp_mode(env, arg2);
6405     case PR_SVE_GET_VL:
6406         return do_prctl_sve_get_vl(env);
6407     case PR_SVE_SET_VL:
6408         return do_prctl_sve_set_vl(env, arg2);
6409     case PR_SME_GET_VL:
6410         return do_prctl_sme_get_vl(env);
6411     case PR_SME_SET_VL:
6412         return do_prctl_sme_set_vl(env, arg2);
6413     case PR_PAC_RESET_KEYS:
6414         if (arg3 || arg4 || arg5) {
6415             return -TARGET_EINVAL;
6416         }
6417         return do_prctl_reset_keys(env, arg2);
6418     case PR_SET_TAGGED_ADDR_CTRL:
6419         if (arg3 || arg4 || arg5) {
6420             return -TARGET_EINVAL;
6421         }
6422         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6423     case PR_GET_TAGGED_ADDR_CTRL:
6424         if (arg2 || arg3 || arg4 || arg5) {
6425             return -TARGET_EINVAL;
6426         }
6427         return do_prctl_get_tagged_addr_ctrl(env);
6428 
6429     case PR_GET_UNALIGN:
6430         return do_prctl_get_unalign(env, arg2);
6431     case PR_SET_UNALIGN:
6432         return do_prctl_set_unalign(env, arg2);
6433 
6434     case PR_CAP_AMBIENT:
6435     case PR_CAPBSET_READ:
6436     case PR_CAPBSET_DROP:
6437     case PR_GET_DUMPABLE:
6438     case PR_SET_DUMPABLE:
6439     case PR_GET_KEEPCAPS:
6440     case PR_SET_KEEPCAPS:
6441     case PR_GET_SECUREBITS:
6442     case PR_SET_SECUREBITS:
6443     case PR_GET_TIMING:
6444     case PR_SET_TIMING:
6445     case PR_GET_TIMERSLACK:
6446     case PR_SET_TIMERSLACK:
6447     case PR_MCE_KILL:
6448     case PR_MCE_KILL_GET:
6449     case PR_GET_NO_NEW_PRIVS:
6450     case PR_SET_NO_NEW_PRIVS:
6451     case PR_GET_IO_FLUSHER:
6452     case PR_SET_IO_FLUSHER:
6453         /* Some prctl options have no pointer arguments and we can pass on. */
6454         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6455 
6456     case PR_GET_CHILD_SUBREAPER:
6457     case PR_SET_CHILD_SUBREAPER:
6458     case PR_GET_SPECULATION_CTRL:
6459     case PR_SET_SPECULATION_CTRL:
6460     case PR_GET_TID_ADDRESS:
6461         /* TODO */
6462         return -TARGET_EINVAL;
6463 
6464     case PR_GET_FPEXC:
6465     case PR_SET_FPEXC:
6466         /* Was used for SPE on PowerPC. */
6467         return -TARGET_EINVAL;
6468 
6469     case PR_GET_ENDIAN:
6470     case PR_SET_ENDIAN:
6471     case PR_GET_FPEMU:
6472     case PR_SET_FPEMU:
6473     case PR_SET_MM:
6474     case PR_GET_SECCOMP:
6475     case PR_SET_SECCOMP:
6476     case PR_SET_SYSCALL_USER_DISPATCH:
6477     case PR_GET_THP_DISABLE:
6478     case PR_SET_THP_DISABLE:
6479     case PR_GET_TSC:
6480     case PR_SET_TSC:
6481         /* Disable to prevent the target disabling stuff we need. */
6482         return -TARGET_EINVAL;
6483 
6484     default:
6485         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6486                       option);
6487         return -TARGET_EINVAL;
6488     }
6489 }
6490 
6491 #define NEW_STACK_SIZE 0x40000
6492 
6493 
6494 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6495 typedef struct {
6496     CPUArchState *env;
6497     pthread_mutex_t mutex;
6498     pthread_cond_t cond;
6499     pthread_t thread;
6500     uint32_t tid;
6501     abi_ulong child_tidptr;
6502     abi_ulong parent_tidptr;
6503     sigset_t sigmask;
6504 } new_thread_info;
6505 
6506 static void *clone_func(void *arg)
6507 {
6508     new_thread_info *info = arg;
6509     CPUArchState *env;
6510     CPUState *cpu;
6511     TaskState *ts;
6512 
6513     rcu_register_thread();
6514     tcg_register_thread();
6515     env = info->env;
6516     cpu = env_cpu(env);
6517     thread_cpu = cpu;
6518     ts = get_task_state(cpu);
6519     info->tid = sys_gettid();
6520     task_settid(ts);
6521     if (info->child_tidptr)
6522         put_user_u32(info->tid, info->child_tidptr);
6523     if (info->parent_tidptr)
6524         put_user_u32(info->tid, info->parent_tidptr);
6525     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6526     /* Enable signals.  */
6527     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6528     /* Signal to the parent that we're ready.  */
6529     pthread_mutex_lock(&info->mutex);
6530     pthread_cond_broadcast(&info->cond);
6531     pthread_mutex_unlock(&info->mutex);
6532     /* Wait until the parent has finished initializing the tls state.  */
6533     pthread_mutex_lock(&clone_lock);
6534     pthread_mutex_unlock(&clone_lock);
6535     cpu_loop(env);
6536     /* never exits */
6537     return NULL;
6538 }
6539 
6540 /* do_fork() Must return host values and target errnos (unlike most
6541    do_*() functions). */
6542 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6543                    abi_ulong parent_tidptr, target_ulong newtls,
6544                    abi_ulong child_tidptr)
6545 {
6546     CPUState *cpu = env_cpu(env);
6547     int ret;
6548     TaskState *ts;
6549     CPUState *new_cpu;
6550     CPUArchState *new_env;
6551     sigset_t sigmask;
6552 
6553     flags &= ~CLONE_IGNORED_FLAGS;
6554 
6555     /* Emulate vfork() with fork() */
6556     if (flags & CLONE_VFORK)
6557         flags &= ~(CLONE_VFORK | CLONE_VM);
6558 
6559     if (flags & CLONE_VM) {
6560         TaskState *parent_ts = get_task_state(cpu);
6561         new_thread_info info;
6562         pthread_attr_t attr;
6563 
6564         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6565             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6566             return -TARGET_EINVAL;
6567         }
6568 
6569         ts = g_new0(TaskState, 1);
6570         init_task_state(ts);
6571 
6572         /* Grab a mutex so that thread setup appears atomic.  */
6573         pthread_mutex_lock(&clone_lock);
6574 
6575         /*
6576          * If this is our first additional thread, we need to ensure we
6577          * generate code for parallel execution and flush old translations.
6578          * Do this now so that the copy gets CF_PARALLEL too.
6579          */
6580         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6581             cpu->tcg_cflags |= CF_PARALLEL;
6582             tb_flush(cpu);
6583         }
6584 
6585         /* we create a new CPU instance. */
6586         new_env = cpu_copy(env);
6587         /* Init regs that differ from the parent.  */
6588         cpu_clone_regs_child(new_env, newsp, flags);
6589         cpu_clone_regs_parent(env, flags);
6590         new_cpu = env_cpu(new_env);
6591         new_cpu->opaque = ts;
6592         ts->bprm = parent_ts->bprm;
6593         ts->info = parent_ts->info;
6594         ts->signal_mask = parent_ts->signal_mask;
6595 
6596         if (flags & CLONE_CHILD_CLEARTID) {
6597             ts->child_tidptr = child_tidptr;
6598         }
6599 
6600         if (flags & CLONE_SETTLS) {
6601             cpu_set_tls (new_env, newtls);
6602         }
6603 
6604         memset(&info, 0, sizeof(info));
6605         pthread_mutex_init(&info.mutex, NULL);
6606         pthread_mutex_lock(&info.mutex);
6607         pthread_cond_init(&info.cond, NULL);
6608         info.env = new_env;
6609         if (flags & CLONE_CHILD_SETTID) {
6610             info.child_tidptr = child_tidptr;
6611         }
6612         if (flags & CLONE_PARENT_SETTID) {
6613             info.parent_tidptr = parent_tidptr;
6614         }
6615 
6616         ret = pthread_attr_init(&attr);
6617         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6618         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6619         /* It is not safe to deliver signals until the child has finished
6620            initializing, so temporarily block all signals.  */
6621         sigfillset(&sigmask);
6622         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6623         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6624 
6625         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6626         /* TODO: Free new CPU state if thread creation failed.  */
6627 
6628         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6629         pthread_attr_destroy(&attr);
6630         if (ret == 0) {
6631             /* Wait for the child to initialize.  */
6632             pthread_cond_wait(&info.cond, &info.mutex);
6633             ret = info.tid;
6634         } else {
6635             ret = -1;
6636         }
6637         pthread_mutex_unlock(&info.mutex);
6638         pthread_cond_destroy(&info.cond);
6639         pthread_mutex_destroy(&info.mutex);
6640         pthread_mutex_unlock(&clone_lock);
6641     } else {
6642         /* if no CLONE_VM, we consider it is a fork */
6643         if (flags & CLONE_INVALID_FORK_FLAGS) {
6644             return -TARGET_EINVAL;
6645         }
6646 
6647         /* We can't support custom termination signals */
6648         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6649             return -TARGET_EINVAL;
6650         }
6651 
6652 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6653         if (flags & CLONE_PIDFD) {
6654             return -TARGET_EINVAL;
6655         }
6656 #endif
6657 
6658         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6659         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6660             return -TARGET_EINVAL;
6661         }
6662 
6663         if (block_signals()) {
6664             return -QEMU_ERESTARTSYS;
6665         }
6666 
6667         fork_start();
6668         ret = fork();
6669         if (ret == 0) {
6670             /* Child Process.  */
6671             cpu_clone_regs_child(env, newsp, flags);
6672             fork_end(ret);
6673             /* There is a race condition here.  The parent process could
6674                theoretically read the TID in the child process before the child
6675                tid is set.  This would require using either ptrace
6676                (not implemented) or having *_tidptr to point at a shared memory
6677                mapping.  We can't repeat the spinlock hack used above because
6678                the child process gets its own copy of the lock.  */
6679             if (flags & CLONE_CHILD_SETTID)
6680                 put_user_u32(sys_gettid(), child_tidptr);
6681             if (flags & CLONE_PARENT_SETTID)
6682                 put_user_u32(sys_gettid(), parent_tidptr);
6683             ts = get_task_state(cpu);
6684             if (flags & CLONE_SETTLS)
6685                 cpu_set_tls (env, newtls);
6686             if (flags & CLONE_CHILD_CLEARTID)
6687                 ts->child_tidptr = child_tidptr;
6688         } else {
6689             cpu_clone_regs_parent(env, flags);
6690             if (flags & CLONE_PIDFD) {
6691                 int pid_fd = 0;
6692 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6693                 int pid_child = ret;
6694                 pid_fd = pidfd_open(pid_child, 0);
6695                 if (pid_fd >= 0) {
6696                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6697                                                | FD_CLOEXEC);
6698                 } else {
6699                         pid_fd = 0;
6700                 }
6701 #endif
6702                 put_user_u32(pid_fd, parent_tidptr);
6703             }
6704             fork_end(ret);
6705         }
6706         g_assert(!cpu_in_exclusive_context(cpu));
6707     }
6708     return ret;
6709 }
6710 
6711 /* warning : doesn't handle linux specific flags... */
6712 static int target_to_host_fcntl_cmd(int cmd)
6713 {
6714     int ret;
6715 
6716     switch(cmd) {
6717     case TARGET_F_DUPFD:
6718     case TARGET_F_GETFD:
6719     case TARGET_F_SETFD:
6720     case TARGET_F_GETFL:
6721     case TARGET_F_SETFL:
6722     case TARGET_F_OFD_GETLK:
6723     case TARGET_F_OFD_SETLK:
6724     case TARGET_F_OFD_SETLKW:
6725         ret = cmd;
6726         break;
6727     case TARGET_F_GETLK:
6728         ret = F_GETLK64;
6729         break;
6730     case TARGET_F_SETLK:
6731         ret = F_SETLK64;
6732         break;
6733     case TARGET_F_SETLKW:
6734         ret = F_SETLKW64;
6735         break;
6736     case TARGET_F_GETOWN:
6737         ret = F_GETOWN;
6738         break;
6739     case TARGET_F_SETOWN:
6740         ret = F_SETOWN;
6741         break;
6742     case TARGET_F_GETSIG:
6743         ret = F_GETSIG;
6744         break;
6745     case TARGET_F_SETSIG:
6746         ret = F_SETSIG;
6747         break;
6748 #if TARGET_ABI_BITS == 32
6749     case TARGET_F_GETLK64:
6750         ret = F_GETLK64;
6751         break;
6752     case TARGET_F_SETLK64:
6753         ret = F_SETLK64;
6754         break;
6755     case TARGET_F_SETLKW64:
6756         ret = F_SETLKW64;
6757         break;
6758 #endif
6759     case TARGET_F_SETLEASE:
6760         ret = F_SETLEASE;
6761         break;
6762     case TARGET_F_GETLEASE:
6763         ret = F_GETLEASE;
6764         break;
6765 #ifdef F_DUPFD_CLOEXEC
6766     case TARGET_F_DUPFD_CLOEXEC:
6767         ret = F_DUPFD_CLOEXEC;
6768         break;
6769 #endif
6770     case TARGET_F_NOTIFY:
6771         ret = F_NOTIFY;
6772         break;
6773 #ifdef F_GETOWN_EX
6774     case TARGET_F_GETOWN_EX:
6775         ret = F_GETOWN_EX;
6776         break;
6777 #endif
6778 #ifdef F_SETOWN_EX
6779     case TARGET_F_SETOWN_EX:
6780         ret = F_SETOWN_EX;
6781         break;
6782 #endif
6783 #ifdef F_SETPIPE_SZ
6784     case TARGET_F_SETPIPE_SZ:
6785         ret = F_SETPIPE_SZ;
6786         break;
6787     case TARGET_F_GETPIPE_SZ:
6788         ret = F_GETPIPE_SZ;
6789         break;
6790 #endif
6791 #ifdef F_ADD_SEALS
6792     case TARGET_F_ADD_SEALS:
6793         ret = F_ADD_SEALS;
6794         break;
6795     case TARGET_F_GET_SEALS:
6796         ret = F_GET_SEALS;
6797         break;
6798 #endif
6799     default:
6800         ret = -TARGET_EINVAL;
6801         break;
6802     }
6803 
6804 #if defined(__powerpc64__)
6805     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6806      * is not supported by kernel. The glibc fcntl call actually adjusts
6807      * them to 5, 6 and 7 before making the syscall(). Since we make the
6808      * syscall directly, adjust to what is supported by the kernel.
6809      */
6810     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6811         ret -= F_GETLK64 - 5;
6812     }
6813 #endif
6814 
6815     return ret;
6816 }
6817 
6818 #define FLOCK_TRANSTBL \
6819     switch (type) { \
6820     TRANSTBL_CONVERT(F_RDLCK); \
6821     TRANSTBL_CONVERT(F_WRLCK); \
6822     TRANSTBL_CONVERT(F_UNLCK); \
6823     }
6824 
6825 static int target_to_host_flock(int type)
6826 {
6827 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6828     FLOCK_TRANSTBL
6829 #undef  TRANSTBL_CONVERT
6830     return -TARGET_EINVAL;
6831 }
6832 
6833 static int host_to_target_flock(int type)
6834 {
6835 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6836     FLOCK_TRANSTBL
6837 #undef  TRANSTBL_CONVERT
6838     /* if we don't know how to convert the value coming
6839      * from the host we copy to the target field as-is
6840      */
6841     return type;
6842 }
6843 
6844 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6845                                             abi_ulong target_flock_addr)
6846 {
6847     struct target_flock *target_fl;
6848     int l_type;
6849 
6850     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6851         return -TARGET_EFAULT;
6852     }
6853 
6854     __get_user(l_type, &target_fl->l_type);
6855     l_type = target_to_host_flock(l_type);
6856     if (l_type < 0) {
6857         return l_type;
6858     }
6859     fl->l_type = l_type;
6860     __get_user(fl->l_whence, &target_fl->l_whence);
6861     __get_user(fl->l_start, &target_fl->l_start);
6862     __get_user(fl->l_len, &target_fl->l_len);
6863     __get_user(fl->l_pid, &target_fl->l_pid);
6864     unlock_user_struct(target_fl, target_flock_addr, 0);
6865     return 0;
6866 }
6867 
6868 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6869                                           const struct flock64 *fl)
6870 {
6871     struct target_flock *target_fl;
6872     short l_type;
6873 
6874     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6875         return -TARGET_EFAULT;
6876     }
6877 
6878     l_type = host_to_target_flock(fl->l_type);
6879     __put_user(l_type, &target_fl->l_type);
6880     __put_user(fl->l_whence, &target_fl->l_whence);
6881     __put_user(fl->l_start, &target_fl->l_start);
6882     __put_user(fl->l_len, &target_fl->l_len);
6883     __put_user(fl->l_pid, &target_fl->l_pid);
6884     unlock_user_struct(target_fl, target_flock_addr, 1);
6885     return 0;
6886 }
6887 
6888 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6889 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6890 
6891 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6892 struct target_oabi_flock64 {
6893     abi_short l_type;
6894     abi_short l_whence;
6895     abi_llong l_start;
6896     abi_llong l_len;
6897     abi_int   l_pid;
6898 } QEMU_PACKED;
6899 
6900 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6901                                                    abi_ulong target_flock_addr)
6902 {
6903     struct target_oabi_flock64 *target_fl;
6904     int l_type;
6905 
6906     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6907         return -TARGET_EFAULT;
6908     }
6909 
6910     __get_user(l_type, &target_fl->l_type);
6911     l_type = target_to_host_flock(l_type);
6912     if (l_type < 0) {
6913         return l_type;
6914     }
6915     fl->l_type = l_type;
6916     __get_user(fl->l_whence, &target_fl->l_whence);
6917     __get_user(fl->l_start, &target_fl->l_start);
6918     __get_user(fl->l_len, &target_fl->l_len);
6919     __get_user(fl->l_pid, &target_fl->l_pid);
6920     unlock_user_struct(target_fl, target_flock_addr, 0);
6921     return 0;
6922 }
6923 
6924 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6925                                                  const struct flock64 *fl)
6926 {
6927     struct target_oabi_flock64 *target_fl;
6928     short l_type;
6929 
6930     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6931         return -TARGET_EFAULT;
6932     }
6933 
6934     l_type = host_to_target_flock(fl->l_type);
6935     __put_user(l_type, &target_fl->l_type);
6936     __put_user(fl->l_whence, &target_fl->l_whence);
6937     __put_user(fl->l_start, &target_fl->l_start);
6938     __put_user(fl->l_len, &target_fl->l_len);
6939     __put_user(fl->l_pid, &target_fl->l_pid);
6940     unlock_user_struct(target_fl, target_flock_addr, 1);
6941     return 0;
6942 }
6943 #endif
6944 
6945 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6946                                               abi_ulong target_flock_addr)
6947 {
6948     struct target_flock64 *target_fl;
6949     int l_type;
6950 
6951     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6952         return -TARGET_EFAULT;
6953     }
6954 
6955     __get_user(l_type, &target_fl->l_type);
6956     l_type = target_to_host_flock(l_type);
6957     if (l_type < 0) {
6958         return l_type;
6959     }
6960     fl->l_type = l_type;
6961     __get_user(fl->l_whence, &target_fl->l_whence);
6962     __get_user(fl->l_start, &target_fl->l_start);
6963     __get_user(fl->l_len, &target_fl->l_len);
6964     __get_user(fl->l_pid, &target_fl->l_pid);
6965     unlock_user_struct(target_fl, target_flock_addr, 0);
6966     return 0;
6967 }
6968 
6969 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6970                                             const struct flock64 *fl)
6971 {
6972     struct target_flock64 *target_fl;
6973     short l_type;
6974 
6975     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6976         return -TARGET_EFAULT;
6977     }
6978 
6979     l_type = host_to_target_flock(fl->l_type);
6980     __put_user(l_type, &target_fl->l_type);
6981     __put_user(fl->l_whence, &target_fl->l_whence);
6982     __put_user(fl->l_start, &target_fl->l_start);
6983     __put_user(fl->l_len, &target_fl->l_len);
6984     __put_user(fl->l_pid, &target_fl->l_pid);
6985     unlock_user_struct(target_fl, target_flock_addr, 1);
6986     return 0;
6987 }
6988 
6989 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6990 {
6991     struct flock64 fl64;
6992 #ifdef F_GETOWN_EX
6993     struct f_owner_ex fox;
6994     struct target_f_owner_ex *target_fox;
6995 #endif
6996     abi_long ret;
6997     int host_cmd = target_to_host_fcntl_cmd(cmd);
6998 
6999     if (host_cmd == -TARGET_EINVAL)
7000 	    return host_cmd;
7001 
7002     switch(cmd) {
7003     case TARGET_F_GETLK:
7004         ret = copy_from_user_flock(&fl64, arg);
7005         if (ret) {
7006             return ret;
7007         }
7008         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7009         if (ret == 0) {
7010             ret = copy_to_user_flock(arg, &fl64);
7011         }
7012         break;
7013 
7014     case TARGET_F_SETLK:
7015     case TARGET_F_SETLKW:
7016         ret = copy_from_user_flock(&fl64, arg);
7017         if (ret) {
7018             return ret;
7019         }
7020         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7021         break;
7022 
7023     case TARGET_F_GETLK64:
7024     case TARGET_F_OFD_GETLK:
7025         ret = copy_from_user_flock64(&fl64, arg);
7026         if (ret) {
7027             return ret;
7028         }
7029         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7030         if (ret == 0) {
7031             ret = copy_to_user_flock64(arg, &fl64);
7032         }
7033         break;
7034     case TARGET_F_SETLK64:
7035     case TARGET_F_SETLKW64:
7036     case TARGET_F_OFD_SETLK:
7037     case TARGET_F_OFD_SETLKW:
7038         ret = copy_from_user_flock64(&fl64, arg);
7039         if (ret) {
7040             return ret;
7041         }
7042         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7043         break;
7044 
7045     case TARGET_F_GETFL:
7046         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7047         if (ret >= 0) {
7048             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7049             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7050             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7051                 ret |= TARGET_O_LARGEFILE;
7052             }
7053         }
7054         break;
7055 
7056     case TARGET_F_SETFL:
7057         ret = get_errno(safe_fcntl(fd, host_cmd,
7058                                    target_to_host_bitmask(arg,
7059                                                           fcntl_flags_tbl)));
7060         break;
7061 
7062 #ifdef F_GETOWN_EX
7063     case TARGET_F_GETOWN_EX:
7064         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7065         if (ret >= 0) {
7066             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7067                 return -TARGET_EFAULT;
7068             target_fox->type = tswap32(fox.type);
7069             target_fox->pid = tswap32(fox.pid);
7070             unlock_user_struct(target_fox, arg, 1);
7071         }
7072         break;
7073 #endif
7074 
7075 #ifdef F_SETOWN_EX
7076     case TARGET_F_SETOWN_EX:
7077         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7078             return -TARGET_EFAULT;
7079         fox.type = tswap32(target_fox->type);
7080         fox.pid = tswap32(target_fox->pid);
7081         unlock_user_struct(target_fox, arg, 0);
7082         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7083         break;
7084 #endif
7085 
7086     case TARGET_F_SETSIG:
7087         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7088         break;
7089 
7090     case TARGET_F_GETSIG:
7091         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7092         break;
7093 
7094     case TARGET_F_SETOWN:
7095     case TARGET_F_GETOWN:
7096     case TARGET_F_SETLEASE:
7097     case TARGET_F_GETLEASE:
7098     case TARGET_F_SETPIPE_SZ:
7099     case TARGET_F_GETPIPE_SZ:
7100     case TARGET_F_ADD_SEALS:
7101     case TARGET_F_GET_SEALS:
7102         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7103         break;
7104 
7105     default:
7106         ret = get_errno(safe_fcntl(fd, cmd, arg));
7107         break;
7108     }
7109     return ret;
7110 }
7111 
7112 #ifdef USE_UID16
7113 
7114 static inline int high2lowuid(int uid)
7115 {
7116     if (uid > 65535)
7117         return 65534;
7118     else
7119         return uid;
7120 }
7121 
7122 static inline int high2lowgid(int gid)
7123 {
7124     if (gid > 65535)
7125         return 65534;
7126     else
7127         return gid;
7128 }
7129 
7130 static inline int low2highuid(int uid)
7131 {
7132     if ((int16_t)uid == -1)
7133         return -1;
7134     else
7135         return uid;
7136 }
7137 
7138 static inline int low2highgid(int gid)
7139 {
7140     if ((int16_t)gid == -1)
7141         return -1;
7142     else
7143         return gid;
7144 }
7145 static inline int tswapid(int id)
7146 {
7147     return tswap16(id);
7148 }
7149 
7150 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7151 
7152 #else /* !USE_UID16 */
7153 static inline int high2lowuid(int uid)
7154 {
7155     return uid;
7156 }
7157 static inline int high2lowgid(int gid)
7158 {
7159     return gid;
7160 }
7161 static inline int low2highuid(int uid)
7162 {
7163     return uid;
7164 }
7165 static inline int low2highgid(int gid)
7166 {
7167     return gid;
7168 }
7169 static inline int tswapid(int id)
7170 {
7171     return tswap32(id);
7172 }
7173 
7174 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7175 
7176 #endif /* USE_UID16 */
7177 
7178 /* We must do direct syscalls for setting UID/GID, because we want to
7179  * implement the Linux system call semantics of "change only for this thread",
7180  * not the libc/POSIX semantics of "change for all threads in process".
7181  * (See http://ewontfix.com/17/ for more details.)
7182  * We use the 32-bit version of the syscalls if present; if it is not
7183  * then either the host architecture supports 32-bit UIDs natively with
7184  * the standard syscall, or the 16-bit UID is the best we can do.
7185  */
7186 #ifdef __NR_setuid32
7187 #define __NR_sys_setuid __NR_setuid32
7188 #else
7189 #define __NR_sys_setuid __NR_setuid
7190 #endif
7191 #ifdef __NR_setgid32
7192 #define __NR_sys_setgid __NR_setgid32
7193 #else
7194 #define __NR_sys_setgid __NR_setgid
7195 #endif
7196 #ifdef __NR_setresuid32
7197 #define __NR_sys_setresuid __NR_setresuid32
7198 #else
7199 #define __NR_sys_setresuid __NR_setresuid
7200 #endif
7201 #ifdef __NR_setresgid32
7202 #define __NR_sys_setresgid __NR_setresgid32
7203 #else
7204 #define __NR_sys_setresgid __NR_setresgid
7205 #endif
7206 
7207 _syscall1(int, sys_setuid, uid_t, uid)
7208 _syscall1(int, sys_setgid, gid_t, gid)
7209 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7210 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7211 
7212 void syscall_init(void)
7213 {
7214     IOCTLEntry *ie;
7215     const argtype *arg_type;
7216     int size;
7217 
7218     thunk_init(STRUCT_MAX);
7219 
7220 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7221 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7222 #include "syscall_types.h"
7223 #undef STRUCT
7224 #undef STRUCT_SPECIAL
7225 
7226     /* we patch the ioctl size if necessary. We rely on the fact that
7227        no ioctl has all the bits at '1' in the size field */
7228     ie = ioctl_entries;
7229     while (ie->target_cmd != 0) {
7230         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7231             TARGET_IOC_SIZEMASK) {
7232             arg_type = ie->arg_type;
7233             if (arg_type[0] != TYPE_PTR) {
7234                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7235                         ie->target_cmd);
7236                 exit(1);
7237             }
7238             arg_type++;
7239             size = thunk_type_size(arg_type, 0);
7240             ie->target_cmd = (ie->target_cmd &
7241                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7242                 (size << TARGET_IOC_SIZESHIFT);
7243         }
7244 
7245         /* automatic consistency check if same arch */
7246 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7247     (defined(__x86_64__) && defined(TARGET_X86_64))
7248         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7249             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7250                     ie->name, ie->target_cmd, ie->host_cmd);
7251         }
7252 #endif
7253         ie++;
7254     }
7255 }
7256 
7257 #ifdef TARGET_NR_truncate64
7258 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7259                                          abi_long arg2,
7260                                          abi_long arg3,
7261                                          abi_long arg4)
7262 {
7263     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7264         arg2 = arg3;
7265         arg3 = arg4;
7266     }
7267     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7268 }
7269 #endif
7270 
7271 #ifdef TARGET_NR_ftruncate64
7272 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7273                                           abi_long arg2,
7274                                           abi_long arg3,
7275                                           abi_long arg4)
7276 {
7277     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7278         arg2 = arg3;
7279         arg3 = arg4;
7280     }
7281     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7282 }
7283 #endif
7284 
7285 #if defined(TARGET_NR_timer_settime) || \
7286     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7287 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7288                                                  abi_ulong target_addr)
7289 {
7290     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7291                                 offsetof(struct target_itimerspec,
7292                                          it_interval)) ||
7293         target_to_host_timespec(&host_its->it_value, target_addr +
7294                                 offsetof(struct target_itimerspec,
7295                                          it_value))) {
7296         return -TARGET_EFAULT;
7297     }
7298 
7299     return 0;
7300 }
7301 #endif
7302 
7303 #if defined(TARGET_NR_timer_settime64) || \
7304     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7305 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7306                                                    abi_ulong target_addr)
7307 {
7308     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7309                                   offsetof(struct target__kernel_itimerspec,
7310                                            it_interval)) ||
7311         target_to_host_timespec64(&host_its->it_value, target_addr +
7312                                   offsetof(struct target__kernel_itimerspec,
7313                                            it_value))) {
7314         return -TARGET_EFAULT;
7315     }
7316 
7317     return 0;
7318 }
7319 #endif
7320 
7321 #if ((defined(TARGET_NR_timerfd_gettime) || \
7322       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7323       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7324 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7325                                                  struct itimerspec *host_its)
7326 {
7327     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7328                                                        it_interval),
7329                                 &host_its->it_interval) ||
7330         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7331                                                        it_value),
7332                                 &host_its->it_value)) {
7333         return -TARGET_EFAULT;
7334     }
7335     return 0;
7336 }
7337 #endif
7338 
7339 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7340       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7341       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7342 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7343                                                    struct itimerspec *host_its)
7344 {
7345     if (host_to_target_timespec64(target_addr +
7346                                   offsetof(struct target__kernel_itimerspec,
7347                                            it_interval),
7348                                   &host_its->it_interval) ||
7349         host_to_target_timespec64(target_addr +
7350                                   offsetof(struct target__kernel_itimerspec,
7351                                            it_value),
7352                                   &host_its->it_value)) {
7353         return -TARGET_EFAULT;
7354     }
7355     return 0;
7356 }
7357 #endif
7358 
7359 #if defined(TARGET_NR_adjtimex) || \
7360     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7361 static inline abi_long target_to_host_timex(struct timex *host_tx,
7362                                             abi_long target_addr)
7363 {
7364     struct target_timex *target_tx;
7365 
7366     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7367         return -TARGET_EFAULT;
7368     }
7369 
7370     __get_user(host_tx->modes, &target_tx->modes);
7371     __get_user(host_tx->offset, &target_tx->offset);
7372     __get_user(host_tx->freq, &target_tx->freq);
7373     __get_user(host_tx->maxerror, &target_tx->maxerror);
7374     __get_user(host_tx->esterror, &target_tx->esterror);
7375     __get_user(host_tx->status, &target_tx->status);
7376     __get_user(host_tx->constant, &target_tx->constant);
7377     __get_user(host_tx->precision, &target_tx->precision);
7378     __get_user(host_tx->tolerance, &target_tx->tolerance);
7379     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7380     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7381     __get_user(host_tx->tick, &target_tx->tick);
7382     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7383     __get_user(host_tx->jitter, &target_tx->jitter);
7384     __get_user(host_tx->shift, &target_tx->shift);
7385     __get_user(host_tx->stabil, &target_tx->stabil);
7386     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7387     __get_user(host_tx->calcnt, &target_tx->calcnt);
7388     __get_user(host_tx->errcnt, &target_tx->errcnt);
7389     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7390     __get_user(host_tx->tai, &target_tx->tai);
7391 
7392     unlock_user_struct(target_tx, target_addr, 0);
7393     return 0;
7394 }
7395 
7396 static inline abi_long host_to_target_timex(abi_long target_addr,
7397                                             struct timex *host_tx)
7398 {
7399     struct target_timex *target_tx;
7400 
7401     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7402         return -TARGET_EFAULT;
7403     }
7404 
7405     __put_user(host_tx->modes, &target_tx->modes);
7406     __put_user(host_tx->offset, &target_tx->offset);
7407     __put_user(host_tx->freq, &target_tx->freq);
7408     __put_user(host_tx->maxerror, &target_tx->maxerror);
7409     __put_user(host_tx->esterror, &target_tx->esterror);
7410     __put_user(host_tx->status, &target_tx->status);
7411     __put_user(host_tx->constant, &target_tx->constant);
7412     __put_user(host_tx->precision, &target_tx->precision);
7413     __put_user(host_tx->tolerance, &target_tx->tolerance);
7414     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7415     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7416     __put_user(host_tx->tick, &target_tx->tick);
7417     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7418     __put_user(host_tx->jitter, &target_tx->jitter);
7419     __put_user(host_tx->shift, &target_tx->shift);
7420     __put_user(host_tx->stabil, &target_tx->stabil);
7421     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7422     __put_user(host_tx->calcnt, &target_tx->calcnt);
7423     __put_user(host_tx->errcnt, &target_tx->errcnt);
7424     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7425     __put_user(host_tx->tai, &target_tx->tai);
7426 
7427     unlock_user_struct(target_tx, target_addr, 1);
7428     return 0;
7429 }
7430 #endif
7431 
7432 
7433 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7434 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7435                                               abi_long target_addr)
7436 {
7437     struct target__kernel_timex *target_tx;
7438 
7439     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7440                                  offsetof(struct target__kernel_timex,
7441                                           time))) {
7442         return -TARGET_EFAULT;
7443     }
7444 
7445     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7446         return -TARGET_EFAULT;
7447     }
7448 
7449     __get_user(host_tx->modes, &target_tx->modes);
7450     __get_user(host_tx->offset, &target_tx->offset);
7451     __get_user(host_tx->freq, &target_tx->freq);
7452     __get_user(host_tx->maxerror, &target_tx->maxerror);
7453     __get_user(host_tx->esterror, &target_tx->esterror);
7454     __get_user(host_tx->status, &target_tx->status);
7455     __get_user(host_tx->constant, &target_tx->constant);
7456     __get_user(host_tx->precision, &target_tx->precision);
7457     __get_user(host_tx->tolerance, &target_tx->tolerance);
7458     __get_user(host_tx->tick, &target_tx->tick);
7459     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7460     __get_user(host_tx->jitter, &target_tx->jitter);
7461     __get_user(host_tx->shift, &target_tx->shift);
7462     __get_user(host_tx->stabil, &target_tx->stabil);
7463     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7464     __get_user(host_tx->calcnt, &target_tx->calcnt);
7465     __get_user(host_tx->errcnt, &target_tx->errcnt);
7466     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7467     __get_user(host_tx->tai, &target_tx->tai);
7468 
7469     unlock_user_struct(target_tx, target_addr, 0);
7470     return 0;
7471 }
7472 
7473 static inline abi_long host_to_target_timex64(abi_long target_addr,
7474                                               struct timex *host_tx)
7475 {
7476     struct target__kernel_timex *target_tx;
7477 
7478    if (copy_to_user_timeval64(target_addr +
7479                               offsetof(struct target__kernel_timex, time),
7480                               &host_tx->time)) {
7481         return -TARGET_EFAULT;
7482     }
7483 
7484     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7485         return -TARGET_EFAULT;
7486     }
7487 
7488     __put_user(host_tx->modes, &target_tx->modes);
7489     __put_user(host_tx->offset, &target_tx->offset);
7490     __put_user(host_tx->freq, &target_tx->freq);
7491     __put_user(host_tx->maxerror, &target_tx->maxerror);
7492     __put_user(host_tx->esterror, &target_tx->esterror);
7493     __put_user(host_tx->status, &target_tx->status);
7494     __put_user(host_tx->constant, &target_tx->constant);
7495     __put_user(host_tx->precision, &target_tx->precision);
7496     __put_user(host_tx->tolerance, &target_tx->tolerance);
7497     __put_user(host_tx->tick, &target_tx->tick);
7498     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7499     __put_user(host_tx->jitter, &target_tx->jitter);
7500     __put_user(host_tx->shift, &target_tx->shift);
7501     __put_user(host_tx->stabil, &target_tx->stabil);
7502     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7503     __put_user(host_tx->calcnt, &target_tx->calcnt);
7504     __put_user(host_tx->errcnt, &target_tx->errcnt);
7505     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7506     __put_user(host_tx->tai, &target_tx->tai);
7507 
7508     unlock_user_struct(target_tx, target_addr, 1);
7509     return 0;
7510 }
7511 #endif
7512 
7513 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7514 #define sigev_notify_thread_id _sigev_un._tid
7515 #endif
7516 
7517 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7518                                                abi_ulong target_addr)
7519 {
7520     struct target_sigevent *target_sevp;
7521 
7522     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7523         return -TARGET_EFAULT;
7524     }
7525 
7526     /* This union is awkward on 64 bit systems because it has a 32 bit
7527      * integer and a pointer in it; we follow the conversion approach
7528      * used for handling sigval types in signal.c so the guest should get
7529      * the correct value back even if we did a 64 bit byteswap and it's
7530      * using the 32 bit integer.
7531      */
7532     host_sevp->sigev_value.sival_ptr =
7533         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7534     host_sevp->sigev_signo =
7535         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7536     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7537     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7538 
7539     unlock_user_struct(target_sevp, target_addr, 1);
7540     return 0;
7541 }
7542 
7543 #if defined(TARGET_NR_mlockall)
7544 static inline int target_to_host_mlockall_arg(int arg)
7545 {
7546     int result = 0;
7547 
7548     if (arg & TARGET_MCL_CURRENT) {
7549         result |= MCL_CURRENT;
7550     }
7551     if (arg & TARGET_MCL_FUTURE) {
7552         result |= MCL_FUTURE;
7553     }
7554 #ifdef MCL_ONFAULT
7555     if (arg & TARGET_MCL_ONFAULT) {
7556         result |= MCL_ONFAULT;
7557     }
7558 #endif
7559 
7560     return result;
7561 }
7562 #endif
7563 
7564 static inline int target_to_host_msync_arg(abi_long arg)
7565 {
7566     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7567            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7568            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7569            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7570 }
7571 
7572 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7573      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7574      defined(TARGET_NR_newfstatat))
7575 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7576                                              abi_ulong target_addr,
7577                                              struct stat *host_st)
7578 {
7579 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7580     if (cpu_env->eabi) {
7581         struct target_eabi_stat64 *target_st;
7582 
7583         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7584             return -TARGET_EFAULT;
7585         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7586         __put_user(host_st->st_dev, &target_st->st_dev);
7587         __put_user(host_st->st_ino, &target_st->st_ino);
7588 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7589         __put_user(host_st->st_ino, &target_st->__st_ino);
7590 #endif
7591         __put_user(host_st->st_mode, &target_st->st_mode);
7592         __put_user(host_st->st_nlink, &target_st->st_nlink);
7593         __put_user(host_st->st_uid, &target_st->st_uid);
7594         __put_user(host_st->st_gid, &target_st->st_gid);
7595         __put_user(host_st->st_rdev, &target_st->st_rdev);
7596         __put_user(host_st->st_size, &target_st->st_size);
7597         __put_user(host_st->st_blksize, &target_st->st_blksize);
7598         __put_user(host_st->st_blocks, &target_st->st_blocks);
7599         __put_user(host_st->st_atime, &target_st->target_st_atime);
7600         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7601         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7602 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7603         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7604         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7605         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7606 #endif
7607         unlock_user_struct(target_st, target_addr, 1);
7608     } else
7609 #endif
7610     {
7611 #if defined(TARGET_HAS_STRUCT_STAT64)
7612         struct target_stat64 *target_st;
7613 #else
7614         struct target_stat *target_st;
7615 #endif
7616 
7617         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7618             return -TARGET_EFAULT;
7619         memset(target_st, 0, sizeof(*target_st));
7620         __put_user(host_st->st_dev, &target_st->st_dev);
7621         __put_user(host_st->st_ino, &target_st->st_ino);
7622 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7623         __put_user(host_st->st_ino, &target_st->__st_ino);
7624 #endif
7625         __put_user(host_st->st_mode, &target_st->st_mode);
7626         __put_user(host_st->st_nlink, &target_st->st_nlink);
7627         __put_user(host_st->st_uid, &target_st->st_uid);
7628         __put_user(host_st->st_gid, &target_st->st_gid);
7629         __put_user(host_st->st_rdev, &target_st->st_rdev);
7630         /* XXX: better use of kernel struct */
7631         __put_user(host_st->st_size, &target_st->st_size);
7632         __put_user(host_st->st_blksize, &target_st->st_blksize);
7633         __put_user(host_st->st_blocks, &target_st->st_blocks);
7634         __put_user(host_st->st_atime, &target_st->target_st_atime);
7635         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7636         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7637 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7638         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7639         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7640         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7641 #endif
7642         unlock_user_struct(target_st, target_addr, 1);
7643     }
7644 
7645     return 0;
7646 }
7647 #endif
7648 
7649 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7650 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7651                                             abi_ulong target_addr)
7652 {
7653     struct target_statx *target_stx;
7654 
7655     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7656         return -TARGET_EFAULT;
7657     }
7658     memset(target_stx, 0, sizeof(*target_stx));
7659 
7660     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7661     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7662     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7663     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7664     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7665     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7666     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7667     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7668     __put_user(host_stx->stx_size, &target_stx->stx_size);
7669     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7670     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7671     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7672     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7673     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7674     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7675     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7676     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7677     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7678     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7679     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7680     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7681     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7682     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7683 
7684     unlock_user_struct(target_stx, target_addr, 1);
7685 
7686     return 0;
7687 }
7688 #endif
7689 
7690 static int do_sys_futex(int *uaddr, int op, int val,
7691                          const struct timespec *timeout, int *uaddr2,
7692                          int val3)
7693 {
7694 #if HOST_LONG_BITS == 64
7695 #if defined(__NR_futex)
7696     /* always a 64-bit time_t, it doesn't define _time64 version  */
7697     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7698 
7699 #endif
7700 #else /* HOST_LONG_BITS == 64 */
7701 #if defined(__NR_futex_time64)
7702     if (sizeof(timeout->tv_sec) == 8) {
7703         /* _time64 function on 32bit arch */
7704         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7705     }
7706 #endif
7707 #if defined(__NR_futex)
7708     /* old function on 32bit arch */
7709     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7710 #endif
7711 #endif /* HOST_LONG_BITS == 64 */
7712     g_assert_not_reached();
7713 }
7714 
7715 static int do_safe_futex(int *uaddr, int op, int val,
7716                          const struct timespec *timeout, int *uaddr2,
7717                          int val3)
7718 {
7719 #if HOST_LONG_BITS == 64
7720 #if defined(__NR_futex)
7721     /* always a 64-bit time_t, it doesn't define _time64 version  */
7722     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7723 #endif
7724 #else /* HOST_LONG_BITS == 64 */
7725 #if defined(__NR_futex_time64)
7726     if (sizeof(timeout->tv_sec) == 8) {
7727         /* _time64 function on 32bit arch */
7728         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7729                                            val3));
7730     }
7731 #endif
7732 #if defined(__NR_futex)
7733     /* old function on 32bit arch */
7734     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7735 #endif
7736 #endif /* HOST_LONG_BITS == 64 */
7737     return -TARGET_ENOSYS;
7738 }
7739 
7740 /* ??? Using host futex calls even when target atomic operations
7741    are not really atomic probably breaks things.  However implementing
7742    futexes locally would make futexes shared between multiple processes
7743    tricky.  However they're probably useless because guest atomic
7744    operations won't work either.  */
7745 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7746 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7747                     int op, int val, target_ulong timeout,
7748                     target_ulong uaddr2, int val3)
7749 {
7750     struct timespec ts, *pts = NULL;
7751     void *haddr2 = NULL;
7752     int base_op;
7753 
7754     /* We assume FUTEX_* constants are the same on both host and target. */
7755 #ifdef FUTEX_CMD_MASK
7756     base_op = op & FUTEX_CMD_MASK;
7757 #else
7758     base_op = op;
7759 #endif
7760     switch (base_op) {
7761     case FUTEX_WAIT:
7762     case FUTEX_WAIT_BITSET:
7763         val = tswap32(val);
7764         break;
7765     case FUTEX_WAIT_REQUEUE_PI:
7766         val = tswap32(val);
7767         haddr2 = g2h(cpu, uaddr2);
7768         break;
7769     case FUTEX_LOCK_PI:
7770     case FUTEX_LOCK_PI2:
7771         break;
7772     case FUTEX_WAKE:
7773     case FUTEX_WAKE_BITSET:
7774     case FUTEX_TRYLOCK_PI:
7775     case FUTEX_UNLOCK_PI:
7776         timeout = 0;
7777         break;
7778     case FUTEX_FD:
7779         val = target_to_host_signal(val);
7780         timeout = 0;
7781         break;
7782     case FUTEX_CMP_REQUEUE:
7783     case FUTEX_CMP_REQUEUE_PI:
7784         val3 = tswap32(val3);
7785         /* fall through */
7786     case FUTEX_REQUEUE:
7787     case FUTEX_WAKE_OP:
7788         /*
7789          * For these, the 4th argument is not TIMEOUT, but VAL2.
7790          * But the prototype of do_safe_futex takes a pointer, so
7791          * insert casts to satisfy the compiler.  We do not need
7792          * to tswap VAL2 since it's not compared to guest memory.
7793           */
7794         pts = (struct timespec *)(uintptr_t)timeout;
7795         timeout = 0;
7796         haddr2 = g2h(cpu, uaddr2);
7797         break;
7798     default:
7799         return -TARGET_ENOSYS;
7800     }
7801     if (timeout) {
7802         pts = &ts;
7803         if (time64
7804             ? target_to_host_timespec64(pts, timeout)
7805             : target_to_host_timespec(pts, timeout)) {
7806             return -TARGET_EFAULT;
7807         }
7808     }
7809     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7810 }
7811 #endif
7812 
7813 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7814 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7815                                      abi_long handle, abi_long mount_id,
7816                                      abi_long flags)
7817 {
7818     struct file_handle *target_fh;
7819     struct file_handle *fh;
7820     int mid = 0;
7821     abi_long ret;
7822     char *name;
7823     unsigned int size, total_size;
7824 
7825     if (get_user_s32(size, handle)) {
7826         return -TARGET_EFAULT;
7827     }
7828 
7829     name = lock_user_string(pathname);
7830     if (!name) {
7831         return -TARGET_EFAULT;
7832     }
7833 
7834     total_size = sizeof(struct file_handle) + size;
7835     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7836     if (!target_fh) {
7837         unlock_user(name, pathname, 0);
7838         return -TARGET_EFAULT;
7839     }
7840 
7841     fh = g_malloc0(total_size);
7842     fh->handle_bytes = size;
7843 
7844     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7845     unlock_user(name, pathname, 0);
7846 
7847     /* man name_to_handle_at(2):
7848      * Other than the use of the handle_bytes field, the caller should treat
7849      * the file_handle structure as an opaque data type
7850      */
7851 
7852     memcpy(target_fh, fh, total_size);
7853     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7854     target_fh->handle_type = tswap32(fh->handle_type);
7855     g_free(fh);
7856     unlock_user(target_fh, handle, total_size);
7857 
7858     if (put_user_s32(mid, mount_id)) {
7859         return -TARGET_EFAULT;
7860     }
7861 
7862     return ret;
7863 
7864 }
7865 #endif
7866 
7867 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7868 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7869                                      abi_long flags)
7870 {
7871     struct file_handle *target_fh;
7872     struct file_handle *fh;
7873     unsigned int size, total_size;
7874     abi_long ret;
7875 
7876     if (get_user_s32(size, handle)) {
7877         return -TARGET_EFAULT;
7878     }
7879 
7880     total_size = sizeof(struct file_handle) + size;
7881     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7882     if (!target_fh) {
7883         return -TARGET_EFAULT;
7884     }
7885 
7886     fh = g_memdup(target_fh, total_size);
7887     fh->handle_bytes = size;
7888     fh->handle_type = tswap32(target_fh->handle_type);
7889 
7890     ret = get_errno(open_by_handle_at(mount_fd, fh,
7891                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7892 
7893     g_free(fh);
7894 
7895     unlock_user(target_fh, handle, total_size);
7896 
7897     return ret;
7898 }
7899 #endif
7900 
7901 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7902 
7903 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7904 {
7905     int host_flags;
7906     target_sigset_t *target_mask;
7907     sigset_t host_mask;
7908     abi_long ret;
7909 
7910     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7911         return -TARGET_EINVAL;
7912     }
7913     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7914         return -TARGET_EFAULT;
7915     }
7916 
7917     target_to_host_sigset(&host_mask, target_mask);
7918 
7919     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7920 
7921     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7922     if (ret >= 0) {
7923         fd_trans_register(ret, &target_signalfd_trans);
7924     }
7925 
7926     unlock_user_struct(target_mask, mask, 0);
7927 
7928     return ret;
7929 }
7930 #endif
7931 
7932 /* Map host to target signal numbers for the wait family of syscalls.
7933    Assume all other status bits are the same.  */
7934 int host_to_target_waitstatus(int status)
7935 {
7936     if (WIFSIGNALED(status)) {
7937         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7938     }
7939     if (WIFSTOPPED(status)) {
7940         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7941                | (status & 0xff);
7942     }
7943     return status;
7944 }
7945 
7946 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7947 {
7948     CPUState *cpu = env_cpu(cpu_env);
7949     struct linux_binprm *bprm = get_task_state(cpu)->bprm;
7950     int i;
7951 
7952     for (i = 0; i < bprm->argc; i++) {
7953         size_t len = strlen(bprm->argv[i]) + 1;
7954 
7955         if (write(fd, bprm->argv[i], len) != len) {
7956             return -1;
7957         }
7958     }
7959 
7960     return 0;
7961 }
7962 
7963 struct open_self_maps_data {
7964     TaskState *ts;
7965     IntervalTreeRoot *host_maps;
7966     int fd;
7967     bool smaps;
7968 };
7969 
7970 /*
7971  * Subroutine to output one line of /proc/self/maps,
7972  * or one region of /proc/self/smaps.
7973  */
7974 
7975 #ifdef TARGET_HPPA
7976 # define test_stack(S, E, L)  (E == L)
7977 #else
7978 # define test_stack(S, E, L)  (S == L)
7979 #endif
7980 
7981 static void open_self_maps_4(const struct open_self_maps_data *d,
7982                              const MapInfo *mi, abi_ptr start,
7983                              abi_ptr end, unsigned flags)
7984 {
7985     const struct image_info *info = d->ts->info;
7986     const char *path = mi->path;
7987     uint64_t offset;
7988     int fd = d->fd;
7989     int count;
7990 
7991     if (test_stack(start, end, info->stack_limit)) {
7992         path = "[stack]";
7993     } else if (start == info->brk) {
7994         path = "[heap]";
7995     } else if (start == info->vdso) {
7996         path = "[vdso]";
7997 #ifdef TARGET_X86_64
7998     } else if (start == TARGET_VSYSCALL_PAGE) {
7999         path = "[vsyscall]";
8000 #endif
8001     }
8002 
8003     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8004     offset = mi->offset;
8005     if (mi->dev) {
8006         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8007         offset += hstart - mi->itree.start;
8008     }
8009 
8010     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8011                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8012                     start, end,
8013                     (flags & PAGE_READ) ? 'r' : '-',
8014                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8015                     (flags & PAGE_EXEC) ? 'x' : '-',
8016                     mi->is_priv ? 'p' : 's',
8017                     offset, major(mi->dev), minor(mi->dev),
8018                     (uint64_t)mi->inode);
8019     if (path) {
8020         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8021     } else {
8022         dprintf(fd, "\n");
8023     }
8024 
8025     if (d->smaps) {
8026         unsigned long size = end - start;
8027         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8028         unsigned long size_kb = size >> 10;
8029 
8030         dprintf(fd, "Size:                  %lu kB\n"
8031                 "KernelPageSize:        %lu kB\n"
8032                 "MMUPageSize:           %lu kB\n"
8033                 "Rss:                   0 kB\n"
8034                 "Pss:                   0 kB\n"
8035                 "Pss_Dirty:             0 kB\n"
8036                 "Shared_Clean:          0 kB\n"
8037                 "Shared_Dirty:          0 kB\n"
8038                 "Private_Clean:         0 kB\n"
8039                 "Private_Dirty:         0 kB\n"
8040                 "Referenced:            0 kB\n"
8041                 "Anonymous:             %lu kB\n"
8042                 "LazyFree:              0 kB\n"
8043                 "AnonHugePages:         0 kB\n"
8044                 "ShmemPmdMapped:        0 kB\n"
8045                 "FilePmdMapped:         0 kB\n"
8046                 "Shared_Hugetlb:        0 kB\n"
8047                 "Private_Hugetlb:       0 kB\n"
8048                 "Swap:                  0 kB\n"
8049                 "SwapPss:               0 kB\n"
8050                 "Locked:                0 kB\n"
8051                 "THPeligible:    0\n"
8052                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8053                 size_kb, page_size_kb, page_size_kb,
8054                 (flags & PAGE_ANON ? size_kb : 0),
8055                 (flags & PAGE_READ) ? " rd" : "",
8056                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8057                 (flags & PAGE_EXEC) ? " ex" : "",
8058                 mi->is_priv ? "" : " sh",
8059                 (flags & PAGE_READ) ? " mr" : "",
8060                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8061                 (flags & PAGE_EXEC) ? " me" : "",
8062                 mi->is_priv ? "" : " ms");
8063     }
8064 }
8065 
8066 /*
8067  * Callback for walk_memory_regions, when read_self_maps() fails.
8068  * Proceed without the benefit of host /proc/self/maps cross-check.
8069  */
8070 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8071                             target_ulong guest_end, unsigned long flags)
8072 {
8073     static const MapInfo mi = { .is_priv = true };
8074 
8075     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8076     return 0;
8077 }
8078 
8079 /*
8080  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8081  */
8082 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8083                             target_ulong guest_end, unsigned long flags)
8084 {
8085     const struct open_self_maps_data *d = opaque;
8086     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8087     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8088 
8089 #ifdef TARGET_X86_64
8090     /*
8091      * Because of the extremely high position of the page within the guest
8092      * virtual address space, this is not backed by host memory at all.
8093      * Therefore the loop below would fail.  This is the only instance
8094      * of not having host backing memory.
8095      */
8096     if (guest_start == TARGET_VSYSCALL_PAGE) {
8097         return open_self_maps_3(opaque, guest_start, guest_end, flags);
8098     }
8099 #endif
8100 
8101     while (1) {
8102         IntervalTreeNode *n =
8103             interval_tree_iter_first(d->host_maps, host_start, host_start);
8104         MapInfo *mi = container_of(n, MapInfo, itree);
8105         uintptr_t this_hlast = MIN(host_last, n->last);
8106         target_ulong this_gend = h2g(this_hlast) + 1;
8107 
8108         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8109 
8110         if (this_hlast == host_last) {
8111             return 0;
8112         }
8113         host_start = this_hlast + 1;
8114         guest_start = h2g(host_start);
8115     }
8116 }
8117 
8118 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8119 {
8120     struct open_self_maps_data d = {
8121         .ts = env_cpu(env)->opaque,
8122         .host_maps = read_self_maps(),
8123         .fd = fd,
8124         .smaps = smaps
8125     };
8126 
8127     if (d.host_maps) {
8128         walk_memory_regions(&d, open_self_maps_2);
8129         free_self_maps(d.host_maps);
8130     } else {
8131         walk_memory_regions(&d, open_self_maps_3);
8132     }
8133     return 0;
8134 }
8135 
8136 static int open_self_maps(CPUArchState *cpu_env, int fd)
8137 {
8138     return open_self_maps_1(cpu_env, fd, false);
8139 }
8140 
8141 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8142 {
8143     return open_self_maps_1(cpu_env, fd, true);
8144 }
8145 
8146 static int open_self_stat(CPUArchState *cpu_env, int fd)
8147 {
8148     CPUState *cpu = env_cpu(cpu_env);
8149     TaskState *ts = get_task_state(cpu);
8150     g_autoptr(GString) buf = g_string_new(NULL);
8151     int i;
8152 
8153     for (i = 0; i < 44; i++) {
8154         if (i == 0) {
8155             /* pid */
8156             g_string_printf(buf, FMT_pid " ", getpid());
8157         } else if (i == 1) {
8158             /* app name */
8159             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8160             bin = bin ? bin + 1 : ts->bprm->argv[0];
8161             g_string_printf(buf, "(%.15s) ", bin);
8162         } else if (i == 2) {
8163             /* task state */
8164             g_string_assign(buf, "R "); /* we are running right now */
8165         } else if (i == 3) {
8166             /* ppid */
8167             g_string_printf(buf, FMT_pid " ", getppid());
8168         } else if (i == 21) {
8169             /* starttime */
8170             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8171         } else if (i == 27) {
8172             /* stack bottom */
8173             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8174         } else {
8175             /* for the rest, there is MasterCard */
8176             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8177         }
8178 
8179         if (write(fd, buf->str, buf->len) != buf->len) {
8180             return -1;
8181         }
8182     }
8183 
8184     return 0;
8185 }
8186 
8187 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8188 {
8189     CPUState *cpu = env_cpu(cpu_env);
8190     TaskState *ts = get_task_state(cpu);
8191     abi_ulong auxv = ts->info->saved_auxv;
8192     abi_ulong len = ts->info->auxv_len;
8193     char *ptr;
8194 
8195     /*
8196      * Auxiliary vector is stored in target process stack.
8197      * read in whole auxv vector and copy it to file
8198      */
8199     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8200     if (ptr != NULL) {
8201         while (len > 0) {
8202             ssize_t r;
8203             r = write(fd, ptr, len);
8204             if (r <= 0) {
8205                 break;
8206             }
8207             len -= r;
8208             ptr += r;
8209         }
8210         lseek(fd, 0, SEEK_SET);
8211         unlock_user(ptr, auxv, len);
8212     }
8213 
8214     return 0;
8215 }
8216 
8217 static int is_proc_myself(const char *filename, const char *entry)
8218 {
8219     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8220         filename += strlen("/proc/");
8221         if (!strncmp(filename, "self/", strlen("self/"))) {
8222             filename += strlen("self/");
8223         } else if (*filename >= '1' && *filename <= '9') {
8224             char myself[80];
8225             snprintf(myself, sizeof(myself), "%d/", getpid());
8226             if (!strncmp(filename, myself, strlen(myself))) {
8227                 filename += strlen(myself);
8228             } else {
8229                 return 0;
8230             }
8231         } else {
8232             return 0;
8233         }
8234         if (!strcmp(filename, entry)) {
8235             return 1;
8236         }
8237     }
8238     return 0;
8239 }
8240 
8241 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8242                       const char *fmt, int code)
8243 {
8244     if (logfile) {
8245         CPUState *cs = env_cpu(env);
8246 
8247         fprintf(logfile, fmt, code);
8248         fprintf(logfile, "Failing executable: %s\n", exec_path);
8249         cpu_dump_state(cs, logfile, 0);
8250         open_self_maps(env, fileno(logfile));
8251     }
8252 }
8253 
8254 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8255 {
8256     /* dump to console */
8257     excp_dump_file(stderr, env, fmt, code);
8258 
8259     /* dump to log file */
8260     if (qemu_log_separate()) {
8261         FILE *logfile = qemu_log_trylock();
8262 
8263         excp_dump_file(logfile, env, fmt, code);
8264         qemu_log_unlock(logfile);
8265     }
8266 }
8267 
8268 #include "target_proc.h"
8269 
8270 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8271     defined(HAVE_ARCH_PROC_CPUINFO) || \
8272     defined(HAVE_ARCH_PROC_HARDWARE)
8273 static int is_proc(const char *filename, const char *entry)
8274 {
8275     return strcmp(filename, entry) == 0;
8276 }
8277 #endif
8278 
8279 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8280 static int open_net_route(CPUArchState *cpu_env, int fd)
8281 {
8282     FILE *fp;
8283     char *line = NULL;
8284     size_t len = 0;
8285     ssize_t read;
8286 
8287     fp = fopen("/proc/net/route", "r");
8288     if (fp == NULL) {
8289         return -1;
8290     }
8291 
8292     /* read header */
8293 
8294     read = getline(&line, &len, fp);
8295     dprintf(fd, "%s", line);
8296 
8297     /* read routes */
8298 
8299     while ((read = getline(&line, &len, fp)) != -1) {
8300         char iface[16];
8301         uint32_t dest, gw, mask;
8302         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8303         int fields;
8304 
8305         fields = sscanf(line,
8306                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8307                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8308                         &mask, &mtu, &window, &irtt);
8309         if (fields != 11) {
8310             continue;
8311         }
8312         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8313                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8314                 metric, tswap32(mask), mtu, window, irtt);
8315     }
8316 
8317     free(line);
8318     fclose(fp);
8319 
8320     return 0;
8321 }
8322 #endif
8323 
8324 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8325                     int flags, mode_t mode, bool safe)
8326 {
8327     g_autofree char *proc_name = NULL;
8328     const char *pathname;
8329     struct fake_open {
8330         const char *filename;
8331         int (*fill)(CPUArchState *cpu_env, int fd);
8332         int (*cmp)(const char *s1, const char *s2);
8333     };
8334     const struct fake_open *fake_open;
8335     static const struct fake_open fakes[] = {
8336         { "maps", open_self_maps, is_proc_myself },
8337         { "smaps", open_self_smaps, is_proc_myself },
8338         { "stat", open_self_stat, is_proc_myself },
8339         { "auxv", open_self_auxv, is_proc_myself },
8340         { "cmdline", open_self_cmdline, is_proc_myself },
8341 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8342         { "/proc/net/route", open_net_route, is_proc },
8343 #endif
8344 #if defined(HAVE_ARCH_PROC_CPUINFO)
8345         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8346 #endif
8347 #if defined(HAVE_ARCH_PROC_HARDWARE)
8348         { "/proc/hardware", open_hardware, is_proc },
8349 #endif
8350         { NULL, NULL, NULL }
8351     };
8352 
8353     /* if this is a file from /proc/ filesystem, expand full name */
8354     proc_name = realpath(fname, NULL);
8355     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8356         pathname = proc_name;
8357     } else {
8358         pathname = fname;
8359     }
8360 
8361     if (is_proc_myself(pathname, "exe")) {
8362         if (safe) {
8363             return safe_openat(dirfd, exec_path, flags, mode);
8364         } else {
8365             return openat(dirfd, exec_path, flags, mode);
8366         }
8367     }
8368 
8369     for (fake_open = fakes; fake_open->filename; fake_open++) {
8370         if (fake_open->cmp(pathname, fake_open->filename)) {
8371             break;
8372         }
8373     }
8374 
8375     if (fake_open->filename) {
8376         const char *tmpdir;
8377         char filename[PATH_MAX];
8378         int fd, r;
8379 
8380         fd = memfd_create("qemu-open", 0);
8381         if (fd < 0) {
8382             if (errno != ENOSYS) {
8383                 return fd;
8384             }
8385             /* create temporary file to map stat to */
8386             tmpdir = getenv("TMPDIR");
8387             if (!tmpdir)
8388                 tmpdir = "/tmp";
8389             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8390             fd = mkstemp(filename);
8391             if (fd < 0) {
8392                 return fd;
8393             }
8394             unlink(filename);
8395         }
8396 
8397         if ((r = fake_open->fill(cpu_env, fd))) {
8398             int e = errno;
8399             close(fd);
8400             errno = e;
8401             return r;
8402         }
8403         lseek(fd, 0, SEEK_SET);
8404 
8405         return fd;
8406     }
8407 
8408     if (safe) {
8409         return safe_openat(dirfd, path(pathname), flags, mode);
8410     } else {
8411         return openat(dirfd, path(pathname), flags, mode);
8412     }
8413 }
8414 
8415 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8416 {
8417     ssize_t ret;
8418 
8419     if (!pathname || !buf) {
8420         errno = EFAULT;
8421         return -1;
8422     }
8423 
8424     if (!bufsiz) {
8425         /* Short circuit this for the magic exe check. */
8426         errno = EINVAL;
8427         return -1;
8428     }
8429 
8430     if (is_proc_myself((const char *)pathname, "exe")) {
8431         /*
8432          * Don't worry about sign mismatch as earlier mapping
8433          * logic would have thrown a bad address error.
8434          */
8435         ret = MIN(strlen(exec_path), bufsiz);
8436         /* We cannot NUL terminate the string. */
8437         memcpy(buf, exec_path, ret);
8438     } else {
8439         ret = readlink(path(pathname), buf, bufsiz);
8440     }
8441 
8442     return ret;
8443 }
8444 
8445 static int do_execv(CPUArchState *cpu_env, int dirfd,
8446                     abi_long pathname, abi_long guest_argp,
8447                     abi_long guest_envp, int flags, bool is_execveat)
8448 {
8449     int ret;
8450     char **argp, **envp;
8451     int argc, envc;
8452     abi_ulong gp;
8453     abi_ulong addr;
8454     char **q;
8455     void *p;
8456 
8457     argc = 0;
8458 
8459     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8460         if (get_user_ual(addr, gp)) {
8461             return -TARGET_EFAULT;
8462         }
8463         if (!addr) {
8464             break;
8465         }
8466         argc++;
8467     }
8468     envc = 0;
8469     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8470         if (get_user_ual(addr, gp)) {
8471             return -TARGET_EFAULT;
8472         }
8473         if (!addr) {
8474             break;
8475         }
8476         envc++;
8477     }
8478 
8479     argp = g_new0(char *, argc + 1);
8480     envp = g_new0(char *, envc + 1);
8481 
8482     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8483         if (get_user_ual(addr, gp)) {
8484             goto execve_efault;
8485         }
8486         if (!addr) {
8487             break;
8488         }
8489         *q = lock_user_string(addr);
8490         if (!*q) {
8491             goto execve_efault;
8492         }
8493     }
8494     *q = NULL;
8495 
8496     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8497         if (get_user_ual(addr, gp)) {
8498             goto execve_efault;
8499         }
8500         if (!addr) {
8501             break;
8502         }
8503         *q = lock_user_string(addr);
8504         if (!*q) {
8505             goto execve_efault;
8506         }
8507     }
8508     *q = NULL;
8509 
8510     /*
8511      * Although execve() is not an interruptible syscall it is
8512      * a special case where we must use the safe_syscall wrapper:
8513      * if we allow a signal to happen before we make the host
8514      * syscall then we will 'lose' it, because at the point of
8515      * execve the process leaves QEMU's control. So we use the
8516      * safe syscall wrapper to ensure that we either take the
8517      * signal as a guest signal, or else it does not happen
8518      * before the execve completes and makes it the other
8519      * program's problem.
8520      */
8521     p = lock_user_string(pathname);
8522     if (!p) {
8523         goto execve_efault;
8524     }
8525 
8526     const char *exe = p;
8527     if (is_proc_myself(p, "exe")) {
8528         exe = exec_path;
8529     }
8530     ret = is_execveat
8531         ? safe_execveat(dirfd, exe, argp, envp, flags)
8532         : safe_execve(exe, argp, envp);
8533     ret = get_errno(ret);
8534 
8535     unlock_user(p, pathname, 0);
8536 
8537     goto execve_end;
8538 
8539 execve_efault:
8540     ret = -TARGET_EFAULT;
8541 
8542 execve_end:
8543     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8544         if (get_user_ual(addr, gp) || !addr) {
8545             break;
8546         }
8547         unlock_user(*q, addr, 0);
8548     }
8549     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8550         if (get_user_ual(addr, gp) || !addr) {
8551             break;
8552         }
8553         unlock_user(*q, addr, 0);
8554     }
8555 
8556     g_free(argp);
8557     g_free(envp);
8558     return ret;
8559 }
8560 
8561 #define TIMER_MAGIC 0x0caf0000
8562 #define TIMER_MAGIC_MASK 0xffff0000
8563 
8564 /* Convert QEMU provided timer ID back to internal 16bit index format */
8565 static target_timer_t get_timer_id(abi_long arg)
8566 {
8567     target_timer_t timerid = arg;
8568 
8569     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8570         return -TARGET_EINVAL;
8571     }
8572 
8573     timerid &= 0xffff;
8574 
8575     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8576         return -TARGET_EINVAL;
8577     }
8578 
8579     return timerid;
8580 }
8581 
8582 static int target_to_host_cpu_mask(unsigned long *host_mask,
8583                                    size_t host_size,
8584                                    abi_ulong target_addr,
8585                                    size_t target_size)
8586 {
8587     unsigned target_bits = sizeof(abi_ulong) * 8;
8588     unsigned host_bits = sizeof(*host_mask) * 8;
8589     abi_ulong *target_mask;
8590     unsigned i, j;
8591 
8592     assert(host_size >= target_size);
8593 
8594     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8595     if (!target_mask) {
8596         return -TARGET_EFAULT;
8597     }
8598     memset(host_mask, 0, host_size);
8599 
8600     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8601         unsigned bit = i * target_bits;
8602         abi_ulong val;
8603 
8604         __get_user(val, &target_mask[i]);
8605         for (j = 0; j < target_bits; j++, bit++) {
8606             if (val & (1UL << j)) {
8607                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8608             }
8609         }
8610     }
8611 
8612     unlock_user(target_mask, target_addr, 0);
8613     return 0;
8614 }
8615 
8616 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8617                                    size_t host_size,
8618                                    abi_ulong target_addr,
8619                                    size_t target_size)
8620 {
8621     unsigned target_bits = sizeof(abi_ulong) * 8;
8622     unsigned host_bits = sizeof(*host_mask) * 8;
8623     abi_ulong *target_mask;
8624     unsigned i, j;
8625 
8626     assert(host_size >= target_size);
8627 
8628     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8629     if (!target_mask) {
8630         return -TARGET_EFAULT;
8631     }
8632 
8633     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8634         unsigned bit = i * target_bits;
8635         abi_ulong val = 0;
8636 
8637         for (j = 0; j < target_bits; j++, bit++) {
8638             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8639                 val |= 1UL << j;
8640             }
8641         }
8642         __put_user(val, &target_mask[i]);
8643     }
8644 
8645     unlock_user(target_mask, target_addr, target_size);
8646     return 0;
8647 }
8648 
8649 #ifdef TARGET_NR_getdents
8650 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8651 {
8652     g_autofree void *hdirp = NULL;
8653     void *tdirp;
8654     int hlen, hoff, toff;
8655     int hreclen, treclen;
8656     off64_t prev_diroff = 0;
8657 
8658     hdirp = g_try_malloc(count);
8659     if (!hdirp) {
8660         return -TARGET_ENOMEM;
8661     }
8662 
8663 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8664     hlen = sys_getdents(dirfd, hdirp, count);
8665 #else
8666     hlen = sys_getdents64(dirfd, hdirp, count);
8667 #endif
8668 
8669     hlen = get_errno(hlen);
8670     if (is_error(hlen)) {
8671         return hlen;
8672     }
8673 
8674     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8675     if (!tdirp) {
8676         return -TARGET_EFAULT;
8677     }
8678 
8679     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8680 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8681         struct linux_dirent *hde = hdirp + hoff;
8682 #else
8683         struct linux_dirent64 *hde = hdirp + hoff;
8684 #endif
8685         struct target_dirent *tde = tdirp + toff;
8686         int namelen;
8687         uint8_t type;
8688 
8689         namelen = strlen(hde->d_name);
8690         hreclen = hde->d_reclen;
8691         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8692         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8693 
8694         if (toff + treclen > count) {
8695             /*
8696              * If the host struct is smaller than the target struct, or
8697              * requires less alignment and thus packs into less space,
8698              * then the host can return more entries than we can pass
8699              * on to the guest.
8700              */
8701             if (toff == 0) {
8702                 toff = -TARGET_EINVAL; /* result buffer is too small */
8703                 break;
8704             }
8705             /*
8706              * Return what we have, resetting the file pointer to the
8707              * location of the first record not returned.
8708              */
8709             lseek64(dirfd, prev_diroff, SEEK_SET);
8710             break;
8711         }
8712 
8713         prev_diroff = hde->d_off;
8714         tde->d_ino = tswapal(hde->d_ino);
8715         tde->d_off = tswapal(hde->d_off);
8716         tde->d_reclen = tswap16(treclen);
8717         memcpy(tde->d_name, hde->d_name, namelen + 1);
8718 
8719         /*
8720          * The getdents type is in what was formerly a padding byte at the
8721          * end of the structure.
8722          */
8723 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8724         type = *((uint8_t *)hde + hreclen - 1);
8725 #else
8726         type = hde->d_type;
8727 #endif
8728         *((uint8_t *)tde + treclen - 1) = type;
8729     }
8730 
8731     unlock_user(tdirp, arg2, toff);
8732     return toff;
8733 }
8734 #endif /* TARGET_NR_getdents */
8735 
8736 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8737 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8738 {
8739     g_autofree void *hdirp = NULL;
8740     void *tdirp;
8741     int hlen, hoff, toff;
8742     int hreclen, treclen;
8743     off64_t prev_diroff = 0;
8744 
8745     hdirp = g_try_malloc(count);
8746     if (!hdirp) {
8747         return -TARGET_ENOMEM;
8748     }
8749 
8750     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8751     if (is_error(hlen)) {
8752         return hlen;
8753     }
8754 
8755     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8756     if (!tdirp) {
8757         return -TARGET_EFAULT;
8758     }
8759 
8760     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8761         struct linux_dirent64 *hde = hdirp + hoff;
8762         struct target_dirent64 *tde = tdirp + toff;
8763         int namelen;
8764 
8765         namelen = strlen(hde->d_name) + 1;
8766         hreclen = hde->d_reclen;
8767         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8768         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8769 
8770         if (toff + treclen > count) {
8771             /*
8772              * If the host struct is smaller than the target struct, or
8773              * requires less alignment and thus packs into less space,
8774              * then the host can return more entries than we can pass
8775              * on to the guest.
8776              */
8777             if (toff == 0) {
8778                 toff = -TARGET_EINVAL; /* result buffer is too small */
8779                 break;
8780             }
8781             /*
8782              * Return what we have, resetting the file pointer to the
8783              * location of the first record not returned.
8784              */
8785             lseek64(dirfd, prev_diroff, SEEK_SET);
8786             break;
8787         }
8788 
8789         prev_diroff = hde->d_off;
8790         tde->d_ino = tswap64(hde->d_ino);
8791         tde->d_off = tswap64(hde->d_off);
8792         tde->d_reclen = tswap16(treclen);
8793         tde->d_type = hde->d_type;
8794         memcpy(tde->d_name, hde->d_name, namelen);
8795     }
8796 
8797     unlock_user(tdirp, arg2, toff);
8798     return toff;
8799 }
8800 #endif /* TARGET_NR_getdents64 */
8801 
8802 #if defined(TARGET_NR_riscv_hwprobe)
8803 
8804 #define RISCV_HWPROBE_KEY_MVENDORID     0
8805 #define RISCV_HWPROBE_KEY_MARCHID       1
8806 #define RISCV_HWPROBE_KEY_MIMPID        2
8807 
8808 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8809 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8810 
8811 #define RISCV_HWPROBE_KEY_IMA_EXT_0         4
8812 #define     RISCV_HWPROBE_IMA_FD            (1 << 0)
8813 #define     RISCV_HWPROBE_IMA_C             (1 << 1)
8814 #define     RISCV_HWPROBE_IMA_V             (1 << 2)
8815 #define     RISCV_HWPROBE_EXT_ZBA           (1 << 3)
8816 #define     RISCV_HWPROBE_EXT_ZBB           (1 << 4)
8817 #define     RISCV_HWPROBE_EXT_ZBS           (1 << 5)
8818 #define     RISCV_HWPROBE_EXT_ZICBOZ        (1 << 6)
8819 #define     RISCV_HWPROBE_EXT_ZBC           (1 << 7)
8820 #define     RISCV_HWPROBE_EXT_ZBKB          (1 << 8)
8821 #define     RISCV_HWPROBE_EXT_ZBKC          (1 << 9)
8822 #define     RISCV_HWPROBE_EXT_ZBKX          (1 << 10)
8823 #define     RISCV_HWPROBE_EXT_ZKND          (1 << 11)
8824 #define     RISCV_HWPROBE_EXT_ZKNE          (1 << 12)
8825 #define     RISCV_HWPROBE_EXT_ZKNH          (1 << 13)
8826 #define     RISCV_HWPROBE_EXT_ZKSED         (1 << 14)
8827 #define     RISCV_HWPROBE_EXT_ZKSH          (1 << 15)
8828 #define     RISCV_HWPROBE_EXT_ZKT           (1 << 16)
8829 #define     RISCV_HWPROBE_EXT_ZVBB          (1 << 17)
8830 #define     RISCV_HWPROBE_EXT_ZVBC          (1 << 18)
8831 #define     RISCV_HWPROBE_EXT_ZVKB          (1 << 19)
8832 #define     RISCV_HWPROBE_EXT_ZVKG          (1 << 20)
8833 #define     RISCV_HWPROBE_EXT_ZVKNED        (1 << 21)
8834 #define     RISCV_HWPROBE_EXT_ZVKNHA        (1 << 22)
8835 #define     RISCV_HWPROBE_EXT_ZVKNHB        (1 << 23)
8836 #define     RISCV_HWPROBE_EXT_ZVKSED        (1 << 24)
8837 #define     RISCV_HWPROBE_EXT_ZVKSH         (1 << 25)
8838 #define     RISCV_HWPROBE_EXT_ZVKT          (1 << 26)
8839 #define     RISCV_HWPROBE_EXT_ZFH           (1 << 27)
8840 #define     RISCV_HWPROBE_EXT_ZFHMIN        (1 << 28)
8841 #define     RISCV_HWPROBE_EXT_ZIHINTNTL     (1 << 29)
8842 #define     RISCV_HWPROBE_EXT_ZVFH          (1 << 30)
8843 #define     RISCV_HWPROBE_EXT_ZVFHMIN       (1 << 31)
8844 #define     RISCV_HWPROBE_EXT_ZFA           (1ULL << 32)
8845 #define     RISCV_HWPROBE_EXT_ZACAS         (1ULL << 34)
8846 #define     RISCV_HWPROBE_EXT_ZICOND        (1ULL << 35)
8847 
8848 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8849 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8850 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8851 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8852 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8853 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8854 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8855 
8856 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8857 
8858 struct riscv_hwprobe {
8859     abi_llong  key;
8860     abi_ullong value;
8861 };
8862 
8863 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8864                                     struct riscv_hwprobe *pair,
8865                                     size_t pair_count)
8866 {
8867     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8868 
8869     for (; pair_count > 0; pair_count--, pair++) {
8870         abi_llong key;
8871         abi_ullong value;
8872         __put_user(0, &pair->value);
8873         __get_user(key, &pair->key);
8874         switch (key) {
8875         case RISCV_HWPROBE_KEY_MVENDORID:
8876             __put_user(cfg->mvendorid, &pair->value);
8877             break;
8878         case RISCV_HWPROBE_KEY_MARCHID:
8879             __put_user(cfg->marchid, &pair->value);
8880             break;
8881         case RISCV_HWPROBE_KEY_MIMPID:
8882             __put_user(cfg->mimpid, &pair->value);
8883             break;
8884         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8885             value = riscv_has_ext(env, RVI) &&
8886                     riscv_has_ext(env, RVM) &&
8887                     riscv_has_ext(env, RVA) ?
8888                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8889             __put_user(value, &pair->value);
8890             break;
8891         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8892             value = riscv_has_ext(env, RVF) &&
8893                     riscv_has_ext(env, RVD) ?
8894                     RISCV_HWPROBE_IMA_FD : 0;
8895             value |= riscv_has_ext(env, RVC) ?
8896                      RISCV_HWPROBE_IMA_C : 0;
8897             value |= riscv_has_ext(env, RVV) ?
8898                      RISCV_HWPROBE_IMA_V : 0;
8899             value |= cfg->ext_zba ?
8900                      RISCV_HWPROBE_EXT_ZBA : 0;
8901             value |= cfg->ext_zbb ?
8902                      RISCV_HWPROBE_EXT_ZBB : 0;
8903             value |= cfg->ext_zbs ?
8904                      RISCV_HWPROBE_EXT_ZBS : 0;
8905             value |= cfg->ext_zicboz ?
8906                      RISCV_HWPROBE_EXT_ZICBOZ : 0;
8907             value |= cfg->ext_zbc ?
8908                      RISCV_HWPROBE_EXT_ZBC : 0;
8909             value |= cfg->ext_zbkb ?
8910                      RISCV_HWPROBE_EXT_ZBKB : 0;
8911             value |= cfg->ext_zbkc ?
8912                      RISCV_HWPROBE_EXT_ZBKC : 0;
8913             value |= cfg->ext_zbkx ?
8914                      RISCV_HWPROBE_EXT_ZBKX : 0;
8915             value |= cfg->ext_zknd ?
8916                      RISCV_HWPROBE_EXT_ZKND : 0;
8917             value |= cfg->ext_zkne ?
8918                      RISCV_HWPROBE_EXT_ZKNE : 0;
8919             value |= cfg->ext_zknh ?
8920                      RISCV_HWPROBE_EXT_ZKNH : 0;
8921             value |= cfg->ext_zksed ?
8922                      RISCV_HWPROBE_EXT_ZKSED : 0;
8923             value |= cfg->ext_zksh ?
8924                      RISCV_HWPROBE_EXT_ZKSH : 0;
8925             value |= cfg->ext_zkt ?
8926                      RISCV_HWPROBE_EXT_ZKT : 0;
8927             value |= cfg->ext_zvbb ?
8928                      RISCV_HWPROBE_EXT_ZVBB : 0;
8929             value |= cfg->ext_zvbc ?
8930                      RISCV_HWPROBE_EXT_ZVBC : 0;
8931             value |= cfg->ext_zvkb ?
8932                      RISCV_HWPROBE_EXT_ZVKB : 0;
8933             value |= cfg->ext_zvkg ?
8934                      RISCV_HWPROBE_EXT_ZVKG : 0;
8935             value |= cfg->ext_zvkned ?
8936                      RISCV_HWPROBE_EXT_ZVKNED : 0;
8937             value |= cfg->ext_zvknha ?
8938                      RISCV_HWPROBE_EXT_ZVKNHA : 0;
8939             value |= cfg->ext_zvknhb ?
8940                      RISCV_HWPROBE_EXT_ZVKNHB : 0;
8941             value |= cfg->ext_zvksed ?
8942                      RISCV_HWPROBE_EXT_ZVKSED : 0;
8943             value |= cfg->ext_zvksh ?
8944                      RISCV_HWPROBE_EXT_ZVKSH : 0;
8945             value |= cfg->ext_zvkt ?
8946                      RISCV_HWPROBE_EXT_ZVKT : 0;
8947             value |= cfg->ext_zfh ?
8948                      RISCV_HWPROBE_EXT_ZFH : 0;
8949             value |= cfg->ext_zfhmin ?
8950                      RISCV_HWPROBE_EXT_ZFHMIN : 0;
8951             value |= cfg->ext_zihintntl ?
8952                      RISCV_HWPROBE_EXT_ZIHINTNTL : 0;
8953             value |= cfg->ext_zvfh ?
8954                      RISCV_HWPROBE_EXT_ZVFH : 0;
8955             value |= cfg->ext_zvfhmin ?
8956                      RISCV_HWPROBE_EXT_ZVFHMIN : 0;
8957             value |= cfg->ext_zfa ?
8958                      RISCV_HWPROBE_EXT_ZFA : 0;
8959             value |= cfg->ext_zacas ?
8960                      RISCV_HWPROBE_EXT_ZACAS : 0;
8961             value |= cfg->ext_zicond ?
8962                      RISCV_HWPROBE_EXT_ZICOND : 0;
8963             __put_user(value, &pair->value);
8964             break;
8965         case RISCV_HWPROBE_KEY_CPUPERF_0:
8966             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8967             break;
8968         case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8969             value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8970             __put_user(value, &pair->value);
8971             break;
8972         default:
8973             __put_user(-1, &pair->key);
8974             break;
8975         }
8976     }
8977 }
8978 
8979 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8980 {
8981     int ret, i, tmp;
8982     size_t host_mask_size, target_mask_size;
8983     unsigned long *host_mask;
8984 
8985     /*
8986      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8987      * arg3 contains the cpu count.
8988      */
8989     tmp = (8 * sizeof(abi_ulong));
8990     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
8991     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
8992                      ~(sizeof(*host_mask) - 1);
8993 
8994     host_mask = alloca(host_mask_size);
8995 
8996     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
8997                                   arg4, target_mask_size);
8998     if (ret != 0) {
8999         return ret;
9000     }
9001 
9002     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9003         if (host_mask[i] != 0) {
9004             return 0;
9005         }
9006     }
9007     return -TARGET_EINVAL;
9008 }
9009 
9010 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9011                                  abi_long arg2, abi_long arg3,
9012                                  abi_long arg4, abi_long arg5)
9013 {
9014     int ret;
9015     struct riscv_hwprobe *host_pairs;
9016 
9017     /* flags must be 0 */
9018     if (arg5 != 0) {
9019         return -TARGET_EINVAL;
9020     }
9021 
9022     /* check cpu_set */
9023     if (arg3 != 0) {
9024         ret = cpu_set_valid(arg3, arg4);
9025         if (ret != 0) {
9026             return ret;
9027         }
9028     } else if (arg4 != 0) {
9029         return -TARGET_EINVAL;
9030     }
9031 
9032     /* no pairs */
9033     if (arg2 == 0) {
9034         return 0;
9035     }
9036 
9037     host_pairs = lock_user(VERIFY_WRITE, arg1,
9038                            sizeof(*host_pairs) * (size_t)arg2, 0);
9039     if (host_pairs == NULL) {
9040         return -TARGET_EFAULT;
9041     }
9042     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9043     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9044     return 0;
9045 }
9046 #endif /* TARGET_NR_riscv_hwprobe */
9047 
9048 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9049 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9050 #endif
9051 
9052 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9053 #define __NR_sys_open_tree __NR_open_tree
9054 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9055           unsigned int, __flags)
9056 #endif
9057 
9058 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9059 #define __NR_sys_move_mount __NR_move_mount
9060 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9061            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9062 #endif
9063 
9064 /* This is an internal helper for do_syscall so that it is easier
9065  * to have a single return point, so that actions, such as logging
9066  * of syscall results, can be performed.
9067  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9068  */
9069 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9070                             abi_long arg2, abi_long arg3, abi_long arg4,
9071                             abi_long arg5, abi_long arg6, abi_long arg7,
9072                             abi_long arg8)
9073 {
9074     CPUState *cpu = env_cpu(cpu_env);
9075     abi_long ret;
9076 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9077     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9078     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9079     || defined(TARGET_NR_statx)
9080     struct stat st;
9081 #endif
9082 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9083     || defined(TARGET_NR_fstatfs)
9084     struct statfs stfs;
9085 #endif
9086     void *p;
9087 
9088     switch(num) {
9089     case TARGET_NR_exit:
9090         /* In old applications this may be used to implement _exit(2).
9091            However in threaded applications it is used for thread termination,
9092            and _exit_group is used for application termination.
9093            Do thread termination if we have more then one thread.  */
9094 
9095         if (block_signals()) {
9096             return -QEMU_ERESTARTSYS;
9097         }
9098 
9099         pthread_mutex_lock(&clone_lock);
9100 
9101         if (CPU_NEXT(first_cpu)) {
9102             TaskState *ts = get_task_state(cpu);
9103 
9104             if (ts->child_tidptr) {
9105                 put_user_u32(0, ts->child_tidptr);
9106                 do_sys_futex(g2h(cpu, ts->child_tidptr),
9107                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9108             }
9109 
9110             object_unparent(OBJECT(cpu));
9111             object_unref(OBJECT(cpu));
9112             /*
9113              * At this point the CPU should be unrealized and removed
9114              * from cpu lists. We can clean-up the rest of the thread
9115              * data without the lock held.
9116              */
9117 
9118             pthread_mutex_unlock(&clone_lock);
9119 
9120             thread_cpu = NULL;
9121             g_free(ts);
9122             rcu_unregister_thread();
9123             pthread_exit(NULL);
9124         }
9125 
9126         pthread_mutex_unlock(&clone_lock);
9127         preexit_cleanup(cpu_env, arg1);
9128         _exit(arg1);
9129         return 0; /* avoid warning */
9130     case TARGET_NR_read:
9131         if (arg2 == 0 && arg3 == 0) {
9132             return get_errno(safe_read(arg1, 0, 0));
9133         } else {
9134             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9135                 return -TARGET_EFAULT;
9136             ret = get_errno(safe_read(arg1, p, arg3));
9137             if (ret >= 0 &&
9138                 fd_trans_host_to_target_data(arg1)) {
9139                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9140             }
9141             unlock_user(p, arg2, ret);
9142         }
9143         return ret;
9144     case TARGET_NR_write:
9145         if (arg2 == 0 && arg3 == 0) {
9146             return get_errno(safe_write(arg1, 0, 0));
9147         }
9148         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9149             return -TARGET_EFAULT;
9150         if (fd_trans_target_to_host_data(arg1)) {
9151             void *copy = g_malloc(arg3);
9152             memcpy(copy, p, arg3);
9153             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9154             if (ret >= 0) {
9155                 ret = get_errno(safe_write(arg1, copy, ret));
9156             }
9157             g_free(copy);
9158         } else {
9159             ret = get_errno(safe_write(arg1, p, arg3));
9160         }
9161         unlock_user(p, arg2, 0);
9162         return ret;
9163 
9164 #ifdef TARGET_NR_open
9165     case TARGET_NR_open:
9166         if (!(p = lock_user_string(arg1)))
9167             return -TARGET_EFAULT;
9168         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9169                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9170                                   arg3, true));
9171         fd_trans_unregister(ret);
9172         unlock_user(p, arg1, 0);
9173         return ret;
9174 #endif
9175     case TARGET_NR_openat:
9176         if (!(p = lock_user_string(arg2)))
9177             return -TARGET_EFAULT;
9178         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9179                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9180                                   arg4, true));
9181         fd_trans_unregister(ret);
9182         unlock_user(p, arg2, 0);
9183         return ret;
9184 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9185     case TARGET_NR_name_to_handle_at:
9186         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9187         return ret;
9188 #endif
9189 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9190     case TARGET_NR_open_by_handle_at:
9191         ret = do_open_by_handle_at(arg1, arg2, arg3);
9192         fd_trans_unregister(ret);
9193         return ret;
9194 #endif
9195 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9196     case TARGET_NR_pidfd_open:
9197         return get_errno(pidfd_open(arg1, arg2));
9198 #endif
9199 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9200     case TARGET_NR_pidfd_send_signal:
9201         {
9202             siginfo_t uinfo, *puinfo;
9203 
9204             if (arg3) {
9205                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9206                 if (!p) {
9207                     return -TARGET_EFAULT;
9208                  }
9209                  target_to_host_siginfo(&uinfo, p);
9210                  unlock_user(p, arg3, 0);
9211                  puinfo = &uinfo;
9212             } else {
9213                  puinfo = NULL;
9214             }
9215             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9216                                               puinfo, arg4));
9217         }
9218         return ret;
9219 #endif
9220 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9221     case TARGET_NR_pidfd_getfd:
9222         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9223 #endif
9224     case TARGET_NR_close:
9225         fd_trans_unregister(arg1);
9226         return get_errno(close(arg1));
9227 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9228     case TARGET_NR_close_range:
9229         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9230         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9231             abi_long fd, maxfd;
9232             maxfd = MIN(arg2, target_fd_max);
9233             for (fd = arg1; fd < maxfd; fd++) {
9234                 fd_trans_unregister(fd);
9235             }
9236         }
9237         return ret;
9238 #endif
9239 
9240     case TARGET_NR_brk:
9241         return do_brk(arg1);
9242 #ifdef TARGET_NR_fork
9243     case TARGET_NR_fork:
9244         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9245 #endif
9246 #ifdef TARGET_NR_waitpid
9247     case TARGET_NR_waitpid:
9248         {
9249             int status;
9250             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9251             if (!is_error(ret) && arg2 && ret
9252                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9253                 return -TARGET_EFAULT;
9254         }
9255         return ret;
9256 #endif
9257 #ifdef TARGET_NR_waitid
9258     case TARGET_NR_waitid:
9259         {
9260             siginfo_t info;
9261             info.si_pid = 0;
9262             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
9263             if (!is_error(ret) && arg3 && info.si_pid != 0) {
9264                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
9265                     return -TARGET_EFAULT;
9266                 host_to_target_siginfo(p, &info);
9267                 unlock_user(p, arg3, sizeof(target_siginfo_t));
9268             }
9269         }
9270         return ret;
9271 #endif
9272 #ifdef TARGET_NR_creat /* not on alpha */
9273     case TARGET_NR_creat:
9274         if (!(p = lock_user_string(arg1)))
9275             return -TARGET_EFAULT;
9276         ret = get_errno(creat(p, arg2));
9277         fd_trans_unregister(ret);
9278         unlock_user(p, arg1, 0);
9279         return ret;
9280 #endif
9281 #ifdef TARGET_NR_link
9282     case TARGET_NR_link:
9283         {
9284             void * p2;
9285             p = lock_user_string(arg1);
9286             p2 = lock_user_string(arg2);
9287             if (!p || !p2)
9288                 ret = -TARGET_EFAULT;
9289             else
9290                 ret = get_errno(link(p, p2));
9291             unlock_user(p2, arg2, 0);
9292             unlock_user(p, arg1, 0);
9293         }
9294         return ret;
9295 #endif
9296 #if defined(TARGET_NR_linkat)
9297     case TARGET_NR_linkat:
9298         {
9299             void * p2 = NULL;
9300             if (!arg2 || !arg4)
9301                 return -TARGET_EFAULT;
9302             p  = lock_user_string(arg2);
9303             p2 = lock_user_string(arg4);
9304             if (!p || !p2)
9305                 ret = -TARGET_EFAULT;
9306             else
9307                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9308             unlock_user(p, arg2, 0);
9309             unlock_user(p2, arg4, 0);
9310         }
9311         return ret;
9312 #endif
9313 #ifdef TARGET_NR_unlink
9314     case TARGET_NR_unlink:
9315         if (!(p = lock_user_string(arg1)))
9316             return -TARGET_EFAULT;
9317         ret = get_errno(unlink(p));
9318         unlock_user(p, arg1, 0);
9319         return ret;
9320 #endif
9321 #if defined(TARGET_NR_unlinkat)
9322     case TARGET_NR_unlinkat:
9323         if (!(p = lock_user_string(arg2)))
9324             return -TARGET_EFAULT;
9325         ret = get_errno(unlinkat(arg1, p, arg3));
9326         unlock_user(p, arg2, 0);
9327         return ret;
9328 #endif
9329     case TARGET_NR_execveat:
9330         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9331     case TARGET_NR_execve:
9332         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9333     case TARGET_NR_chdir:
9334         if (!(p = lock_user_string(arg1)))
9335             return -TARGET_EFAULT;
9336         ret = get_errno(chdir(p));
9337         unlock_user(p, arg1, 0);
9338         return ret;
9339 #ifdef TARGET_NR_time
9340     case TARGET_NR_time:
9341         {
9342             time_t host_time;
9343             ret = get_errno(time(&host_time));
9344             if (!is_error(ret)
9345                 && arg1
9346                 && put_user_sal(host_time, arg1))
9347                 return -TARGET_EFAULT;
9348         }
9349         return ret;
9350 #endif
9351 #ifdef TARGET_NR_mknod
9352     case TARGET_NR_mknod:
9353         if (!(p = lock_user_string(arg1)))
9354             return -TARGET_EFAULT;
9355         ret = get_errno(mknod(p, arg2, arg3));
9356         unlock_user(p, arg1, 0);
9357         return ret;
9358 #endif
9359 #if defined(TARGET_NR_mknodat)
9360     case TARGET_NR_mknodat:
9361         if (!(p = lock_user_string(arg2)))
9362             return -TARGET_EFAULT;
9363         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9364         unlock_user(p, arg2, 0);
9365         return ret;
9366 #endif
9367 #ifdef TARGET_NR_chmod
9368     case TARGET_NR_chmod:
9369         if (!(p = lock_user_string(arg1)))
9370             return -TARGET_EFAULT;
9371         ret = get_errno(chmod(p, arg2));
9372         unlock_user(p, arg1, 0);
9373         return ret;
9374 #endif
9375 #ifdef TARGET_NR_lseek
9376     case TARGET_NR_lseek:
9377         return get_errno(lseek(arg1, arg2, arg3));
9378 #endif
9379 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9380     /* Alpha specific */
9381     case TARGET_NR_getxpid:
9382         cpu_env->ir[IR_A4] = getppid();
9383         return get_errno(getpid());
9384 #endif
9385 #ifdef TARGET_NR_getpid
9386     case TARGET_NR_getpid:
9387         return get_errno(getpid());
9388 #endif
9389     case TARGET_NR_mount:
9390         {
9391             /* need to look at the data field */
9392             void *p2, *p3;
9393 
9394             if (arg1) {
9395                 p = lock_user_string(arg1);
9396                 if (!p) {
9397                     return -TARGET_EFAULT;
9398                 }
9399             } else {
9400                 p = NULL;
9401             }
9402 
9403             p2 = lock_user_string(arg2);
9404             if (!p2) {
9405                 if (arg1) {
9406                     unlock_user(p, arg1, 0);
9407                 }
9408                 return -TARGET_EFAULT;
9409             }
9410 
9411             if (arg3) {
9412                 p3 = lock_user_string(arg3);
9413                 if (!p3) {
9414                     if (arg1) {
9415                         unlock_user(p, arg1, 0);
9416                     }
9417                     unlock_user(p2, arg2, 0);
9418                     return -TARGET_EFAULT;
9419                 }
9420             } else {
9421                 p3 = NULL;
9422             }
9423 
9424             /* FIXME - arg5 should be locked, but it isn't clear how to
9425              * do that since it's not guaranteed to be a NULL-terminated
9426              * string.
9427              */
9428             if (!arg5) {
9429                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9430             } else {
9431                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9432             }
9433             ret = get_errno(ret);
9434 
9435             if (arg1) {
9436                 unlock_user(p, arg1, 0);
9437             }
9438             unlock_user(p2, arg2, 0);
9439             if (arg3) {
9440                 unlock_user(p3, arg3, 0);
9441             }
9442         }
9443         return ret;
9444 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9445 #if defined(TARGET_NR_umount)
9446     case TARGET_NR_umount:
9447 #endif
9448 #if defined(TARGET_NR_oldumount)
9449     case TARGET_NR_oldumount:
9450 #endif
9451         if (!(p = lock_user_string(arg1)))
9452             return -TARGET_EFAULT;
9453         ret = get_errno(umount(p));
9454         unlock_user(p, arg1, 0);
9455         return ret;
9456 #endif
9457 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9458     case TARGET_NR_move_mount:
9459         {
9460             void *p2, *p4;
9461 
9462             if (!arg2 || !arg4) {
9463                 return -TARGET_EFAULT;
9464             }
9465 
9466             p2 = lock_user_string(arg2);
9467             if (!p2) {
9468                 return -TARGET_EFAULT;
9469             }
9470 
9471             p4 = lock_user_string(arg4);
9472             if (!p4) {
9473                 unlock_user(p2, arg2, 0);
9474                 return -TARGET_EFAULT;
9475             }
9476             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9477 
9478             unlock_user(p2, arg2, 0);
9479             unlock_user(p4, arg4, 0);
9480 
9481             return ret;
9482         }
9483 #endif
9484 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9485     case TARGET_NR_open_tree:
9486         {
9487             void *p2;
9488             int host_flags;
9489 
9490             if (!arg2) {
9491                 return -TARGET_EFAULT;
9492             }
9493 
9494             p2 = lock_user_string(arg2);
9495             if (!p2) {
9496                 return -TARGET_EFAULT;
9497             }
9498 
9499             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9500             if (arg3 & TARGET_O_CLOEXEC) {
9501                 host_flags |= O_CLOEXEC;
9502             }
9503 
9504             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9505 
9506             unlock_user(p2, arg2, 0);
9507 
9508             return ret;
9509         }
9510 #endif
9511 #ifdef TARGET_NR_stime /* not on alpha */
9512     case TARGET_NR_stime:
9513         {
9514             struct timespec ts;
9515             ts.tv_nsec = 0;
9516             if (get_user_sal(ts.tv_sec, arg1)) {
9517                 return -TARGET_EFAULT;
9518             }
9519             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9520         }
9521 #endif
9522 #ifdef TARGET_NR_alarm /* not on alpha */
9523     case TARGET_NR_alarm:
9524         return alarm(arg1);
9525 #endif
9526 #ifdef TARGET_NR_pause /* not on alpha */
9527     case TARGET_NR_pause:
9528         if (!block_signals()) {
9529             sigsuspend(&get_task_state(cpu)->signal_mask);
9530         }
9531         return -TARGET_EINTR;
9532 #endif
9533 #ifdef TARGET_NR_utime
9534     case TARGET_NR_utime:
9535         {
9536             struct utimbuf tbuf, *host_tbuf;
9537             struct target_utimbuf *target_tbuf;
9538             if (arg2) {
9539                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9540                     return -TARGET_EFAULT;
9541                 tbuf.actime = tswapal(target_tbuf->actime);
9542                 tbuf.modtime = tswapal(target_tbuf->modtime);
9543                 unlock_user_struct(target_tbuf, arg2, 0);
9544                 host_tbuf = &tbuf;
9545             } else {
9546                 host_tbuf = NULL;
9547             }
9548             if (!(p = lock_user_string(arg1)))
9549                 return -TARGET_EFAULT;
9550             ret = get_errno(utime(p, host_tbuf));
9551             unlock_user(p, arg1, 0);
9552         }
9553         return ret;
9554 #endif
9555 #ifdef TARGET_NR_utimes
9556     case TARGET_NR_utimes:
9557         {
9558             struct timeval *tvp, tv[2];
9559             if (arg2) {
9560                 if (copy_from_user_timeval(&tv[0], arg2)
9561                     || copy_from_user_timeval(&tv[1],
9562                                               arg2 + sizeof(struct target_timeval)))
9563                     return -TARGET_EFAULT;
9564                 tvp = tv;
9565             } else {
9566                 tvp = NULL;
9567             }
9568             if (!(p = lock_user_string(arg1)))
9569                 return -TARGET_EFAULT;
9570             ret = get_errno(utimes(p, tvp));
9571             unlock_user(p, arg1, 0);
9572         }
9573         return ret;
9574 #endif
9575 #if defined(TARGET_NR_futimesat)
9576     case TARGET_NR_futimesat:
9577         {
9578             struct timeval *tvp, tv[2];
9579             if (arg3) {
9580                 if (copy_from_user_timeval(&tv[0], arg3)
9581                     || copy_from_user_timeval(&tv[1],
9582                                               arg3 + sizeof(struct target_timeval)))
9583                     return -TARGET_EFAULT;
9584                 tvp = tv;
9585             } else {
9586                 tvp = NULL;
9587             }
9588             if (!(p = lock_user_string(arg2))) {
9589                 return -TARGET_EFAULT;
9590             }
9591             ret = get_errno(futimesat(arg1, path(p), tvp));
9592             unlock_user(p, arg2, 0);
9593         }
9594         return ret;
9595 #endif
9596 #ifdef TARGET_NR_access
9597     case TARGET_NR_access:
9598         if (!(p = lock_user_string(arg1))) {
9599             return -TARGET_EFAULT;
9600         }
9601         ret = get_errno(access(path(p), arg2));
9602         unlock_user(p, arg1, 0);
9603         return ret;
9604 #endif
9605 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9606     case TARGET_NR_faccessat:
9607         if (!(p = lock_user_string(arg2))) {
9608             return -TARGET_EFAULT;
9609         }
9610         ret = get_errno(faccessat(arg1, p, arg3, 0));
9611         unlock_user(p, arg2, 0);
9612         return ret;
9613 #endif
9614 #if defined(TARGET_NR_faccessat2)
9615     case TARGET_NR_faccessat2:
9616         if (!(p = lock_user_string(arg2))) {
9617             return -TARGET_EFAULT;
9618         }
9619         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9620         unlock_user(p, arg2, 0);
9621         return ret;
9622 #endif
9623 #ifdef TARGET_NR_nice /* not on alpha */
9624     case TARGET_NR_nice:
9625         return get_errno(nice(arg1));
9626 #endif
9627     case TARGET_NR_sync:
9628         sync();
9629         return 0;
9630 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9631     case TARGET_NR_syncfs:
9632         return get_errno(syncfs(arg1));
9633 #endif
9634     case TARGET_NR_kill:
9635         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9636 #ifdef TARGET_NR_rename
9637     case TARGET_NR_rename:
9638         {
9639             void *p2;
9640             p = lock_user_string(arg1);
9641             p2 = lock_user_string(arg2);
9642             if (!p || !p2)
9643                 ret = -TARGET_EFAULT;
9644             else
9645                 ret = get_errno(rename(p, p2));
9646             unlock_user(p2, arg2, 0);
9647             unlock_user(p, arg1, 0);
9648         }
9649         return ret;
9650 #endif
9651 #if defined(TARGET_NR_renameat)
9652     case TARGET_NR_renameat:
9653         {
9654             void *p2;
9655             p  = lock_user_string(arg2);
9656             p2 = lock_user_string(arg4);
9657             if (!p || !p2)
9658                 ret = -TARGET_EFAULT;
9659             else
9660                 ret = get_errno(renameat(arg1, p, arg3, p2));
9661             unlock_user(p2, arg4, 0);
9662             unlock_user(p, arg2, 0);
9663         }
9664         return ret;
9665 #endif
9666 #if defined(TARGET_NR_renameat2)
9667     case TARGET_NR_renameat2:
9668         {
9669             void *p2;
9670             p  = lock_user_string(arg2);
9671             p2 = lock_user_string(arg4);
9672             if (!p || !p2) {
9673                 ret = -TARGET_EFAULT;
9674             } else {
9675                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9676             }
9677             unlock_user(p2, arg4, 0);
9678             unlock_user(p, arg2, 0);
9679         }
9680         return ret;
9681 #endif
9682 #ifdef TARGET_NR_mkdir
9683     case TARGET_NR_mkdir:
9684         if (!(p = lock_user_string(arg1)))
9685             return -TARGET_EFAULT;
9686         ret = get_errno(mkdir(p, arg2));
9687         unlock_user(p, arg1, 0);
9688         return ret;
9689 #endif
9690 #if defined(TARGET_NR_mkdirat)
9691     case TARGET_NR_mkdirat:
9692         if (!(p = lock_user_string(arg2)))
9693             return -TARGET_EFAULT;
9694         ret = get_errno(mkdirat(arg1, p, arg3));
9695         unlock_user(p, arg2, 0);
9696         return ret;
9697 #endif
9698 #ifdef TARGET_NR_rmdir
9699     case TARGET_NR_rmdir:
9700         if (!(p = lock_user_string(arg1)))
9701             return -TARGET_EFAULT;
9702         ret = get_errno(rmdir(p));
9703         unlock_user(p, arg1, 0);
9704         return ret;
9705 #endif
9706     case TARGET_NR_dup:
9707         ret = get_errno(dup(arg1));
9708         if (ret >= 0) {
9709             fd_trans_dup(arg1, ret);
9710         }
9711         return ret;
9712 #ifdef TARGET_NR_pipe
9713     case TARGET_NR_pipe:
9714         return do_pipe(cpu_env, arg1, 0, 0);
9715 #endif
9716 #ifdef TARGET_NR_pipe2
9717     case TARGET_NR_pipe2:
9718         return do_pipe(cpu_env, arg1,
9719                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9720 #endif
9721     case TARGET_NR_times:
9722         {
9723             struct target_tms *tmsp;
9724             struct tms tms;
9725             ret = get_errno(times(&tms));
9726             if (arg1) {
9727                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9728                 if (!tmsp)
9729                     return -TARGET_EFAULT;
9730                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9731                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9732                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9733                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9734             }
9735             if (!is_error(ret))
9736                 ret = host_to_target_clock_t(ret);
9737         }
9738         return ret;
9739     case TARGET_NR_acct:
9740         if (arg1 == 0) {
9741             ret = get_errno(acct(NULL));
9742         } else {
9743             if (!(p = lock_user_string(arg1))) {
9744                 return -TARGET_EFAULT;
9745             }
9746             ret = get_errno(acct(path(p)));
9747             unlock_user(p, arg1, 0);
9748         }
9749         return ret;
9750 #ifdef TARGET_NR_umount2
9751     case TARGET_NR_umount2:
9752         if (!(p = lock_user_string(arg1)))
9753             return -TARGET_EFAULT;
9754         ret = get_errno(umount2(p, arg2));
9755         unlock_user(p, arg1, 0);
9756         return ret;
9757 #endif
9758     case TARGET_NR_ioctl:
9759         return do_ioctl(arg1, arg2, arg3);
9760 #ifdef TARGET_NR_fcntl
9761     case TARGET_NR_fcntl:
9762         return do_fcntl(arg1, arg2, arg3);
9763 #endif
9764     case TARGET_NR_setpgid:
9765         return get_errno(setpgid(arg1, arg2));
9766     case TARGET_NR_umask:
9767         return get_errno(umask(arg1));
9768     case TARGET_NR_chroot:
9769         if (!(p = lock_user_string(arg1)))
9770             return -TARGET_EFAULT;
9771         ret = get_errno(chroot(p));
9772         unlock_user(p, arg1, 0);
9773         return ret;
9774 #ifdef TARGET_NR_dup2
9775     case TARGET_NR_dup2:
9776         ret = get_errno(dup2(arg1, arg2));
9777         if (ret >= 0) {
9778             fd_trans_dup(arg1, arg2);
9779         }
9780         return ret;
9781 #endif
9782 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9783     case TARGET_NR_dup3:
9784     {
9785         int host_flags;
9786 
9787         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9788             return -EINVAL;
9789         }
9790         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9791         ret = get_errno(dup3(arg1, arg2, host_flags));
9792         if (ret >= 0) {
9793             fd_trans_dup(arg1, arg2);
9794         }
9795         return ret;
9796     }
9797 #endif
9798 #ifdef TARGET_NR_getppid /* not on alpha */
9799     case TARGET_NR_getppid:
9800         return get_errno(getppid());
9801 #endif
9802 #ifdef TARGET_NR_getpgrp
9803     case TARGET_NR_getpgrp:
9804         return get_errno(getpgrp());
9805 #endif
9806     case TARGET_NR_setsid:
9807         return get_errno(setsid());
9808 #ifdef TARGET_NR_sigaction
9809     case TARGET_NR_sigaction:
9810         {
9811 #if defined(TARGET_MIPS)
9812 	    struct target_sigaction act, oact, *pact, *old_act;
9813 
9814 	    if (arg2) {
9815                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9816                     return -TARGET_EFAULT;
9817 		act._sa_handler = old_act->_sa_handler;
9818 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9819 		act.sa_flags = old_act->sa_flags;
9820 		unlock_user_struct(old_act, arg2, 0);
9821 		pact = &act;
9822 	    } else {
9823 		pact = NULL;
9824 	    }
9825 
9826         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9827 
9828 	    if (!is_error(ret) && arg3) {
9829                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9830                     return -TARGET_EFAULT;
9831 		old_act->_sa_handler = oact._sa_handler;
9832 		old_act->sa_flags = oact.sa_flags;
9833 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9834 		old_act->sa_mask.sig[1] = 0;
9835 		old_act->sa_mask.sig[2] = 0;
9836 		old_act->sa_mask.sig[3] = 0;
9837 		unlock_user_struct(old_act, arg3, 1);
9838 	    }
9839 #else
9840             struct target_old_sigaction *old_act;
9841             struct target_sigaction act, oact, *pact;
9842             if (arg2) {
9843                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9844                     return -TARGET_EFAULT;
9845                 act._sa_handler = old_act->_sa_handler;
9846                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9847                 act.sa_flags = old_act->sa_flags;
9848 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9849                 act.sa_restorer = old_act->sa_restorer;
9850 #endif
9851                 unlock_user_struct(old_act, arg2, 0);
9852                 pact = &act;
9853             } else {
9854                 pact = NULL;
9855             }
9856             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9857             if (!is_error(ret) && arg3) {
9858                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9859                     return -TARGET_EFAULT;
9860                 old_act->_sa_handler = oact._sa_handler;
9861                 old_act->sa_mask = oact.sa_mask.sig[0];
9862                 old_act->sa_flags = oact.sa_flags;
9863 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9864                 old_act->sa_restorer = oact.sa_restorer;
9865 #endif
9866                 unlock_user_struct(old_act, arg3, 1);
9867             }
9868 #endif
9869         }
9870         return ret;
9871 #endif
9872     case TARGET_NR_rt_sigaction:
9873         {
9874             /*
9875              * For Alpha and SPARC this is a 5 argument syscall, with
9876              * a 'restorer' parameter which must be copied into the
9877              * sa_restorer field of the sigaction struct.
9878              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9879              * and arg5 is the sigsetsize.
9880              */
9881 #if defined(TARGET_ALPHA)
9882             target_ulong sigsetsize = arg4;
9883             target_ulong restorer = arg5;
9884 #elif defined(TARGET_SPARC)
9885             target_ulong restorer = arg4;
9886             target_ulong sigsetsize = arg5;
9887 #else
9888             target_ulong sigsetsize = arg4;
9889             target_ulong restorer = 0;
9890 #endif
9891             struct target_sigaction *act = NULL;
9892             struct target_sigaction *oact = NULL;
9893 
9894             if (sigsetsize != sizeof(target_sigset_t)) {
9895                 return -TARGET_EINVAL;
9896             }
9897             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9898                 return -TARGET_EFAULT;
9899             }
9900             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9901                 ret = -TARGET_EFAULT;
9902             } else {
9903                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9904                 if (oact) {
9905                     unlock_user_struct(oact, arg3, 1);
9906                 }
9907             }
9908             if (act) {
9909                 unlock_user_struct(act, arg2, 0);
9910             }
9911         }
9912         return ret;
9913 #ifdef TARGET_NR_sgetmask /* not on alpha */
9914     case TARGET_NR_sgetmask:
9915         {
9916             sigset_t cur_set;
9917             abi_ulong target_set;
9918             ret = do_sigprocmask(0, NULL, &cur_set);
9919             if (!ret) {
9920                 host_to_target_old_sigset(&target_set, &cur_set);
9921                 ret = target_set;
9922             }
9923         }
9924         return ret;
9925 #endif
9926 #ifdef TARGET_NR_ssetmask /* not on alpha */
9927     case TARGET_NR_ssetmask:
9928         {
9929             sigset_t set, oset;
9930             abi_ulong target_set = arg1;
9931             target_to_host_old_sigset(&set, &target_set);
9932             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9933             if (!ret) {
9934                 host_to_target_old_sigset(&target_set, &oset);
9935                 ret = target_set;
9936             }
9937         }
9938         return ret;
9939 #endif
9940 #ifdef TARGET_NR_sigprocmask
9941     case TARGET_NR_sigprocmask:
9942         {
9943 #if defined(TARGET_ALPHA)
9944             sigset_t set, oldset;
9945             abi_ulong mask;
9946             int how;
9947 
9948             switch (arg1) {
9949             case TARGET_SIG_BLOCK:
9950                 how = SIG_BLOCK;
9951                 break;
9952             case TARGET_SIG_UNBLOCK:
9953                 how = SIG_UNBLOCK;
9954                 break;
9955             case TARGET_SIG_SETMASK:
9956                 how = SIG_SETMASK;
9957                 break;
9958             default:
9959                 return -TARGET_EINVAL;
9960             }
9961             mask = arg2;
9962             target_to_host_old_sigset(&set, &mask);
9963 
9964             ret = do_sigprocmask(how, &set, &oldset);
9965             if (!is_error(ret)) {
9966                 host_to_target_old_sigset(&mask, &oldset);
9967                 ret = mask;
9968                 cpu_env->ir[IR_V0] = 0; /* force no error */
9969             }
9970 #else
9971             sigset_t set, oldset, *set_ptr;
9972             int how;
9973 
9974             if (arg2) {
9975                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9976                 if (!p) {
9977                     return -TARGET_EFAULT;
9978                 }
9979                 target_to_host_old_sigset(&set, p);
9980                 unlock_user(p, arg2, 0);
9981                 set_ptr = &set;
9982                 switch (arg1) {
9983                 case TARGET_SIG_BLOCK:
9984                     how = SIG_BLOCK;
9985                     break;
9986                 case TARGET_SIG_UNBLOCK:
9987                     how = SIG_UNBLOCK;
9988                     break;
9989                 case TARGET_SIG_SETMASK:
9990                     how = SIG_SETMASK;
9991                     break;
9992                 default:
9993                     return -TARGET_EINVAL;
9994                 }
9995             } else {
9996                 how = 0;
9997                 set_ptr = NULL;
9998             }
9999             ret = do_sigprocmask(how, set_ptr, &oldset);
10000             if (!is_error(ret) && arg3) {
10001                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10002                     return -TARGET_EFAULT;
10003                 host_to_target_old_sigset(p, &oldset);
10004                 unlock_user(p, arg3, sizeof(target_sigset_t));
10005             }
10006 #endif
10007         }
10008         return ret;
10009 #endif
10010     case TARGET_NR_rt_sigprocmask:
10011         {
10012             int how = arg1;
10013             sigset_t set, oldset, *set_ptr;
10014 
10015             if (arg4 != sizeof(target_sigset_t)) {
10016                 return -TARGET_EINVAL;
10017             }
10018 
10019             if (arg2) {
10020                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10021                 if (!p) {
10022                     return -TARGET_EFAULT;
10023                 }
10024                 target_to_host_sigset(&set, p);
10025                 unlock_user(p, arg2, 0);
10026                 set_ptr = &set;
10027                 switch(how) {
10028                 case TARGET_SIG_BLOCK:
10029                     how = SIG_BLOCK;
10030                     break;
10031                 case TARGET_SIG_UNBLOCK:
10032                     how = SIG_UNBLOCK;
10033                     break;
10034                 case TARGET_SIG_SETMASK:
10035                     how = SIG_SETMASK;
10036                     break;
10037                 default:
10038                     return -TARGET_EINVAL;
10039                 }
10040             } else {
10041                 how = 0;
10042                 set_ptr = NULL;
10043             }
10044             ret = do_sigprocmask(how, set_ptr, &oldset);
10045             if (!is_error(ret) && arg3) {
10046                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10047                     return -TARGET_EFAULT;
10048                 host_to_target_sigset(p, &oldset);
10049                 unlock_user(p, arg3, sizeof(target_sigset_t));
10050             }
10051         }
10052         return ret;
10053 #ifdef TARGET_NR_sigpending
10054     case TARGET_NR_sigpending:
10055         {
10056             sigset_t set;
10057             ret = get_errno(sigpending(&set));
10058             if (!is_error(ret)) {
10059                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10060                     return -TARGET_EFAULT;
10061                 host_to_target_old_sigset(p, &set);
10062                 unlock_user(p, arg1, sizeof(target_sigset_t));
10063             }
10064         }
10065         return ret;
10066 #endif
10067     case TARGET_NR_rt_sigpending:
10068         {
10069             sigset_t set;
10070 
10071             /* Yes, this check is >, not != like most. We follow the kernel's
10072              * logic and it does it like this because it implements
10073              * NR_sigpending through the same code path, and in that case
10074              * the old_sigset_t is smaller in size.
10075              */
10076             if (arg2 > sizeof(target_sigset_t)) {
10077                 return -TARGET_EINVAL;
10078             }
10079 
10080             ret = get_errno(sigpending(&set));
10081             if (!is_error(ret)) {
10082                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10083                     return -TARGET_EFAULT;
10084                 host_to_target_sigset(p, &set);
10085                 unlock_user(p, arg1, sizeof(target_sigset_t));
10086             }
10087         }
10088         return ret;
10089 #ifdef TARGET_NR_sigsuspend
10090     case TARGET_NR_sigsuspend:
10091         {
10092             sigset_t *set;
10093 
10094 #if defined(TARGET_ALPHA)
10095             TaskState *ts = get_task_state(cpu);
10096             /* target_to_host_old_sigset will bswap back */
10097             abi_ulong mask = tswapal(arg1);
10098             set = &ts->sigsuspend_mask;
10099             target_to_host_old_sigset(set, &mask);
10100 #else
10101             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10102             if (ret != 0) {
10103                 return ret;
10104             }
10105 #endif
10106             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10107             finish_sigsuspend_mask(ret);
10108         }
10109         return ret;
10110 #endif
10111     case TARGET_NR_rt_sigsuspend:
10112         {
10113             sigset_t *set;
10114 
10115             ret = process_sigsuspend_mask(&set, arg1, arg2);
10116             if (ret != 0) {
10117                 return ret;
10118             }
10119             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10120             finish_sigsuspend_mask(ret);
10121         }
10122         return ret;
10123 #ifdef TARGET_NR_rt_sigtimedwait
10124     case TARGET_NR_rt_sigtimedwait:
10125         {
10126             sigset_t set;
10127             struct timespec uts, *puts;
10128             siginfo_t uinfo;
10129 
10130             if (arg4 != sizeof(target_sigset_t)) {
10131                 return -TARGET_EINVAL;
10132             }
10133 
10134             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10135                 return -TARGET_EFAULT;
10136             target_to_host_sigset(&set, p);
10137             unlock_user(p, arg1, 0);
10138             if (arg3) {
10139                 puts = &uts;
10140                 if (target_to_host_timespec(puts, arg3)) {
10141                     return -TARGET_EFAULT;
10142                 }
10143             } else {
10144                 puts = NULL;
10145             }
10146             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10147                                                  SIGSET_T_SIZE));
10148             if (!is_error(ret)) {
10149                 if (arg2) {
10150                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10151                                   0);
10152                     if (!p) {
10153                         return -TARGET_EFAULT;
10154                     }
10155                     host_to_target_siginfo(p, &uinfo);
10156                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10157                 }
10158                 ret = host_to_target_signal(ret);
10159             }
10160         }
10161         return ret;
10162 #endif
10163 #ifdef TARGET_NR_rt_sigtimedwait_time64
10164     case TARGET_NR_rt_sigtimedwait_time64:
10165         {
10166             sigset_t set;
10167             struct timespec uts, *puts;
10168             siginfo_t uinfo;
10169 
10170             if (arg4 != sizeof(target_sigset_t)) {
10171                 return -TARGET_EINVAL;
10172             }
10173 
10174             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10175             if (!p) {
10176                 return -TARGET_EFAULT;
10177             }
10178             target_to_host_sigset(&set, p);
10179             unlock_user(p, arg1, 0);
10180             if (arg3) {
10181                 puts = &uts;
10182                 if (target_to_host_timespec64(puts, arg3)) {
10183                     return -TARGET_EFAULT;
10184                 }
10185             } else {
10186                 puts = NULL;
10187             }
10188             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10189                                                  SIGSET_T_SIZE));
10190             if (!is_error(ret)) {
10191                 if (arg2) {
10192                     p = lock_user(VERIFY_WRITE, arg2,
10193                                   sizeof(target_siginfo_t), 0);
10194                     if (!p) {
10195                         return -TARGET_EFAULT;
10196                     }
10197                     host_to_target_siginfo(p, &uinfo);
10198                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10199                 }
10200                 ret = host_to_target_signal(ret);
10201             }
10202         }
10203         return ret;
10204 #endif
10205     case TARGET_NR_rt_sigqueueinfo:
10206         {
10207             siginfo_t uinfo;
10208 
10209             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10210             if (!p) {
10211                 return -TARGET_EFAULT;
10212             }
10213             target_to_host_siginfo(&uinfo, p);
10214             unlock_user(p, arg3, 0);
10215             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10216         }
10217         return ret;
10218     case TARGET_NR_rt_tgsigqueueinfo:
10219         {
10220             siginfo_t uinfo;
10221 
10222             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10223             if (!p) {
10224                 return -TARGET_EFAULT;
10225             }
10226             target_to_host_siginfo(&uinfo, p);
10227             unlock_user(p, arg4, 0);
10228             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10229         }
10230         return ret;
10231 #ifdef TARGET_NR_sigreturn
10232     case TARGET_NR_sigreturn:
10233         if (block_signals()) {
10234             return -QEMU_ERESTARTSYS;
10235         }
10236         return do_sigreturn(cpu_env);
10237 #endif
10238     case TARGET_NR_rt_sigreturn:
10239         if (block_signals()) {
10240             return -QEMU_ERESTARTSYS;
10241         }
10242         return do_rt_sigreturn(cpu_env);
10243     case TARGET_NR_sethostname:
10244         if (!(p = lock_user_string(arg1)))
10245             return -TARGET_EFAULT;
10246         ret = get_errno(sethostname(p, arg2));
10247         unlock_user(p, arg1, 0);
10248         return ret;
10249 #ifdef TARGET_NR_setrlimit
10250     case TARGET_NR_setrlimit:
10251         {
10252             int resource = target_to_host_resource(arg1);
10253             struct target_rlimit *target_rlim;
10254             struct rlimit rlim;
10255             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10256                 return -TARGET_EFAULT;
10257             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10258             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10259             unlock_user_struct(target_rlim, arg2, 0);
10260             /*
10261              * If we just passed through resource limit settings for memory then
10262              * they would also apply to QEMU's own allocations, and QEMU will
10263              * crash or hang or die if its allocations fail. Ideally we would
10264              * track the guest allocations in QEMU and apply the limits ourselves.
10265              * For now, just tell the guest the call succeeded but don't actually
10266              * limit anything.
10267              */
10268             if (resource != RLIMIT_AS &&
10269                 resource != RLIMIT_DATA &&
10270                 resource != RLIMIT_STACK) {
10271                 return get_errno(setrlimit(resource, &rlim));
10272             } else {
10273                 return 0;
10274             }
10275         }
10276 #endif
10277 #ifdef TARGET_NR_getrlimit
10278     case TARGET_NR_getrlimit:
10279         {
10280             int resource = target_to_host_resource(arg1);
10281             struct target_rlimit *target_rlim;
10282             struct rlimit rlim;
10283 
10284             ret = get_errno(getrlimit(resource, &rlim));
10285             if (!is_error(ret)) {
10286                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10287                     return -TARGET_EFAULT;
10288                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10289                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10290                 unlock_user_struct(target_rlim, arg2, 1);
10291             }
10292         }
10293         return ret;
10294 #endif
10295     case TARGET_NR_getrusage:
10296         {
10297             struct rusage rusage;
10298             ret = get_errno(getrusage(arg1, &rusage));
10299             if (!is_error(ret)) {
10300                 ret = host_to_target_rusage(arg2, &rusage);
10301             }
10302         }
10303         return ret;
10304 #if defined(TARGET_NR_gettimeofday)
10305     case TARGET_NR_gettimeofday:
10306         {
10307             struct timeval tv;
10308             struct timezone tz;
10309 
10310             ret = get_errno(gettimeofday(&tv, &tz));
10311             if (!is_error(ret)) {
10312                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10313                     return -TARGET_EFAULT;
10314                 }
10315                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10316                     return -TARGET_EFAULT;
10317                 }
10318             }
10319         }
10320         return ret;
10321 #endif
10322 #if defined(TARGET_NR_settimeofday)
10323     case TARGET_NR_settimeofday:
10324         {
10325             struct timeval tv, *ptv = NULL;
10326             struct timezone tz, *ptz = NULL;
10327 
10328             if (arg1) {
10329                 if (copy_from_user_timeval(&tv, arg1)) {
10330                     return -TARGET_EFAULT;
10331                 }
10332                 ptv = &tv;
10333             }
10334 
10335             if (arg2) {
10336                 if (copy_from_user_timezone(&tz, arg2)) {
10337                     return -TARGET_EFAULT;
10338                 }
10339                 ptz = &tz;
10340             }
10341 
10342             return get_errno(settimeofday(ptv, ptz));
10343         }
10344 #endif
10345 #if defined(TARGET_NR_select)
10346     case TARGET_NR_select:
10347 #if defined(TARGET_WANT_NI_OLD_SELECT)
10348         /* some architectures used to have old_select here
10349          * but now ENOSYS it.
10350          */
10351         ret = -TARGET_ENOSYS;
10352 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10353         ret = do_old_select(arg1);
10354 #else
10355         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10356 #endif
10357         return ret;
10358 #endif
10359 #ifdef TARGET_NR_pselect6
10360     case TARGET_NR_pselect6:
10361         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10362 #endif
10363 #ifdef TARGET_NR_pselect6_time64
10364     case TARGET_NR_pselect6_time64:
10365         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10366 #endif
10367 #ifdef TARGET_NR_symlink
10368     case TARGET_NR_symlink:
10369         {
10370             void *p2;
10371             p = lock_user_string(arg1);
10372             p2 = lock_user_string(arg2);
10373             if (!p || !p2)
10374                 ret = -TARGET_EFAULT;
10375             else
10376                 ret = get_errno(symlink(p, p2));
10377             unlock_user(p2, arg2, 0);
10378             unlock_user(p, arg1, 0);
10379         }
10380         return ret;
10381 #endif
10382 #if defined(TARGET_NR_symlinkat)
10383     case TARGET_NR_symlinkat:
10384         {
10385             void *p2;
10386             p  = lock_user_string(arg1);
10387             p2 = lock_user_string(arg3);
10388             if (!p || !p2)
10389                 ret = -TARGET_EFAULT;
10390             else
10391                 ret = get_errno(symlinkat(p, arg2, p2));
10392             unlock_user(p2, arg3, 0);
10393             unlock_user(p, arg1, 0);
10394         }
10395         return ret;
10396 #endif
10397 #ifdef TARGET_NR_readlink
10398     case TARGET_NR_readlink:
10399         {
10400             void *p2;
10401             p = lock_user_string(arg1);
10402             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10403             ret = get_errno(do_guest_readlink(p, p2, arg3));
10404             unlock_user(p2, arg2, ret);
10405             unlock_user(p, arg1, 0);
10406         }
10407         return ret;
10408 #endif
10409 #if defined(TARGET_NR_readlinkat)
10410     case TARGET_NR_readlinkat:
10411         {
10412             void *p2;
10413             p  = lock_user_string(arg2);
10414             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10415             if (!p || !p2) {
10416                 ret = -TARGET_EFAULT;
10417             } else if (!arg4) {
10418                 /* Short circuit this for the magic exe check. */
10419                 ret = -TARGET_EINVAL;
10420             } else if (is_proc_myself((const char *)p, "exe")) {
10421                 /*
10422                  * Don't worry about sign mismatch as earlier mapping
10423                  * logic would have thrown a bad address error.
10424                  */
10425                 ret = MIN(strlen(exec_path), arg4);
10426                 /* We cannot NUL terminate the string. */
10427                 memcpy(p2, exec_path, ret);
10428             } else {
10429                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10430             }
10431             unlock_user(p2, arg3, ret);
10432             unlock_user(p, arg2, 0);
10433         }
10434         return ret;
10435 #endif
10436 #ifdef TARGET_NR_swapon
10437     case TARGET_NR_swapon:
10438         if (!(p = lock_user_string(arg1)))
10439             return -TARGET_EFAULT;
10440         ret = get_errno(swapon(p, arg2));
10441         unlock_user(p, arg1, 0);
10442         return ret;
10443 #endif
10444     case TARGET_NR_reboot:
10445         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10446            /* arg4 must be ignored in all other cases */
10447            p = lock_user_string(arg4);
10448            if (!p) {
10449                return -TARGET_EFAULT;
10450            }
10451            ret = get_errno(reboot(arg1, arg2, arg3, p));
10452            unlock_user(p, arg4, 0);
10453         } else {
10454            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10455         }
10456         return ret;
10457 #ifdef TARGET_NR_mmap
10458     case TARGET_NR_mmap:
10459 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10460     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10461     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10462     || defined(TARGET_S390X)
10463         {
10464             abi_ulong *v;
10465             abi_ulong v1, v2, v3, v4, v5, v6;
10466             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10467                 return -TARGET_EFAULT;
10468             v1 = tswapal(v[0]);
10469             v2 = tswapal(v[1]);
10470             v3 = tswapal(v[2]);
10471             v4 = tswapal(v[3]);
10472             v5 = tswapal(v[4]);
10473             v6 = tswapal(v[5]);
10474             unlock_user(v, arg1, 0);
10475             return do_mmap(v1, v2, v3, v4, v5, v6);
10476         }
10477 #else
10478         /* mmap pointers are always untagged */
10479         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10480 #endif
10481 #endif
10482 #ifdef TARGET_NR_mmap2
10483     case TARGET_NR_mmap2:
10484 #ifndef MMAP_SHIFT
10485 #define MMAP_SHIFT 12
10486 #endif
10487         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10488                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10489 #endif
10490     case TARGET_NR_munmap:
10491         arg1 = cpu_untagged_addr(cpu, arg1);
10492         return get_errno(target_munmap(arg1, arg2));
10493     case TARGET_NR_mprotect:
10494         arg1 = cpu_untagged_addr(cpu, arg1);
10495         {
10496             TaskState *ts = get_task_state(cpu);
10497             /* Special hack to detect libc making the stack executable.  */
10498             if ((arg3 & PROT_GROWSDOWN)
10499                 && arg1 >= ts->info->stack_limit
10500                 && arg1 <= ts->info->start_stack) {
10501                 arg3 &= ~PROT_GROWSDOWN;
10502                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10503                 arg1 = ts->info->stack_limit;
10504             }
10505         }
10506         return get_errno(target_mprotect(arg1, arg2, arg3));
10507 #ifdef TARGET_NR_mremap
10508     case TARGET_NR_mremap:
10509         arg1 = cpu_untagged_addr(cpu, arg1);
10510         /* mremap new_addr (arg5) is always untagged */
10511         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10512 #endif
10513         /* ??? msync/mlock/munlock are broken for softmmu.  */
10514 #ifdef TARGET_NR_msync
10515     case TARGET_NR_msync:
10516         return get_errno(msync(g2h(cpu, arg1), arg2,
10517                                target_to_host_msync_arg(arg3)));
10518 #endif
10519 #ifdef TARGET_NR_mlock
10520     case TARGET_NR_mlock:
10521         return get_errno(mlock(g2h(cpu, arg1), arg2));
10522 #endif
10523 #ifdef TARGET_NR_munlock
10524     case TARGET_NR_munlock:
10525         return get_errno(munlock(g2h(cpu, arg1), arg2));
10526 #endif
10527 #ifdef TARGET_NR_mlockall
10528     case TARGET_NR_mlockall:
10529         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10530 #endif
10531 #ifdef TARGET_NR_munlockall
10532     case TARGET_NR_munlockall:
10533         return get_errno(munlockall());
10534 #endif
10535 #ifdef TARGET_NR_truncate
10536     case TARGET_NR_truncate:
10537         if (!(p = lock_user_string(arg1)))
10538             return -TARGET_EFAULT;
10539         ret = get_errno(truncate(p, arg2));
10540         unlock_user(p, arg1, 0);
10541         return ret;
10542 #endif
10543 #ifdef TARGET_NR_ftruncate
10544     case TARGET_NR_ftruncate:
10545         return get_errno(ftruncate(arg1, arg2));
10546 #endif
10547     case TARGET_NR_fchmod:
10548         return get_errno(fchmod(arg1, arg2));
10549 #if defined(TARGET_NR_fchmodat)
10550     case TARGET_NR_fchmodat:
10551         if (!(p = lock_user_string(arg2)))
10552             return -TARGET_EFAULT;
10553         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10554         unlock_user(p, arg2, 0);
10555         return ret;
10556 #endif
10557     case TARGET_NR_getpriority:
10558         /* Note that negative values are valid for getpriority, so we must
10559            differentiate based on errno settings.  */
10560         errno = 0;
10561         ret = getpriority(arg1, arg2);
10562         if (ret == -1 && errno != 0) {
10563             return -host_to_target_errno(errno);
10564         }
10565 #ifdef TARGET_ALPHA
10566         /* Return value is the unbiased priority.  Signal no error.  */
10567         cpu_env->ir[IR_V0] = 0;
10568 #else
10569         /* Return value is a biased priority to avoid negative numbers.  */
10570         ret = 20 - ret;
10571 #endif
10572         return ret;
10573     case TARGET_NR_setpriority:
10574         return get_errno(setpriority(arg1, arg2, arg3));
10575 #ifdef TARGET_NR_statfs
10576     case TARGET_NR_statfs:
10577         if (!(p = lock_user_string(arg1))) {
10578             return -TARGET_EFAULT;
10579         }
10580         ret = get_errno(statfs(path(p), &stfs));
10581         unlock_user(p, arg1, 0);
10582     convert_statfs:
10583         if (!is_error(ret)) {
10584             struct target_statfs *target_stfs;
10585 
10586             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10587                 return -TARGET_EFAULT;
10588             __put_user(stfs.f_type, &target_stfs->f_type);
10589             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10590             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10591             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10592             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10593             __put_user(stfs.f_files, &target_stfs->f_files);
10594             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10595             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10596             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10597             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10598             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10599 #ifdef _STATFS_F_FLAGS
10600             __put_user(stfs.f_flags, &target_stfs->f_flags);
10601 #else
10602             __put_user(0, &target_stfs->f_flags);
10603 #endif
10604             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10605             unlock_user_struct(target_stfs, arg2, 1);
10606         }
10607         return ret;
10608 #endif
10609 #ifdef TARGET_NR_fstatfs
10610     case TARGET_NR_fstatfs:
10611         ret = get_errno(fstatfs(arg1, &stfs));
10612         goto convert_statfs;
10613 #endif
10614 #ifdef TARGET_NR_statfs64
10615     case TARGET_NR_statfs64:
10616         if (!(p = lock_user_string(arg1))) {
10617             return -TARGET_EFAULT;
10618         }
10619         ret = get_errno(statfs(path(p), &stfs));
10620         unlock_user(p, arg1, 0);
10621     convert_statfs64:
10622         if (!is_error(ret)) {
10623             struct target_statfs64 *target_stfs;
10624 
10625             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10626                 return -TARGET_EFAULT;
10627             __put_user(stfs.f_type, &target_stfs->f_type);
10628             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10629             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10630             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10631             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10632             __put_user(stfs.f_files, &target_stfs->f_files);
10633             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10634             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10635             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10636             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10637             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10638 #ifdef _STATFS_F_FLAGS
10639             __put_user(stfs.f_flags, &target_stfs->f_flags);
10640 #else
10641             __put_user(0, &target_stfs->f_flags);
10642 #endif
10643             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10644             unlock_user_struct(target_stfs, arg3, 1);
10645         }
10646         return ret;
10647     case TARGET_NR_fstatfs64:
10648         ret = get_errno(fstatfs(arg1, &stfs));
10649         goto convert_statfs64;
10650 #endif
10651 #ifdef TARGET_NR_socketcall
10652     case TARGET_NR_socketcall:
10653         return do_socketcall(arg1, arg2);
10654 #endif
10655 #ifdef TARGET_NR_accept
10656     case TARGET_NR_accept:
10657         return do_accept4(arg1, arg2, arg3, 0);
10658 #endif
10659 #ifdef TARGET_NR_accept4
10660     case TARGET_NR_accept4:
10661         return do_accept4(arg1, arg2, arg3, arg4);
10662 #endif
10663 #ifdef TARGET_NR_bind
10664     case TARGET_NR_bind:
10665         return do_bind(arg1, arg2, arg3);
10666 #endif
10667 #ifdef TARGET_NR_connect
10668     case TARGET_NR_connect:
10669         return do_connect(arg1, arg2, arg3);
10670 #endif
10671 #ifdef TARGET_NR_getpeername
10672     case TARGET_NR_getpeername:
10673         return do_getpeername(arg1, arg2, arg3);
10674 #endif
10675 #ifdef TARGET_NR_getsockname
10676     case TARGET_NR_getsockname:
10677         return do_getsockname(arg1, arg2, arg3);
10678 #endif
10679 #ifdef TARGET_NR_getsockopt
10680     case TARGET_NR_getsockopt:
10681         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10682 #endif
10683 #ifdef TARGET_NR_listen
10684     case TARGET_NR_listen:
10685         return get_errno(listen(arg1, arg2));
10686 #endif
10687 #ifdef TARGET_NR_recv
10688     case TARGET_NR_recv:
10689         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10690 #endif
10691 #ifdef TARGET_NR_recvfrom
10692     case TARGET_NR_recvfrom:
10693         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10694 #endif
10695 #ifdef TARGET_NR_recvmsg
10696     case TARGET_NR_recvmsg:
10697         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10698 #endif
10699 #ifdef TARGET_NR_send
10700     case TARGET_NR_send:
10701         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10702 #endif
10703 #ifdef TARGET_NR_sendmsg
10704     case TARGET_NR_sendmsg:
10705         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10706 #endif
10707 #ifdef TARGET_NR_sendmmsg
10708     case TARGET_NR_sendmmsg:
10709         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10710 #endif
10711 #ifdef TARGET_NR_recvmmsg
10712     case TARGET_NR_recvmmsg:
10713         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10714 #endif
10715 #ifdef TARGET_NR_sendto
10716     case TARGET_NR_sendto:
10717         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10718 #endif
10719 #ifdef TARGET_NR_shutdown
10720     case TARGET_NR_shutdown:
10721         return get_errno(shutdown(arg1, arg2));
10722 #endif
10723 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10724     case TARGET_NR_getrandom:
10725         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10726         if (!p) {
10727             return -TARGET_EFAULT;
10728         }
10729         ret = get_errno(getrandom(p, arg2, arg3));
10730         unlock_user(p, arg1, ret);
10731         return ret;
10732 #endif
10733 #ifdef TARGET_NR_socket
10734     case TARGET_NR_socket:
10735         return do_socket(arg1, arg2, arg3);
10736 #endif
10737 #ifdef TARGET_NR_socketpair
10738     case TARGET_NR_socketpair:
10739         return do_socketpair(arg1, arg2, arg3, arg4);
10740 #endif
10741 #ifdef TARGET_NR_setsockopt
10742     case TARGET_NR_setsockopt:
10743         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10744 #endif
10745 #if defined(TARGET_NR_syslog)
10746     case TARGET_NR_syslog:
10747         {
10748             int len = arg2;
10749 
10750             switch (arg1) {
10751             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10752             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10753             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10754             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10755             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10756             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10757             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10758             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10759                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10760             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10761             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10762             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10763                 {
10764                     if (len < 0) {
10765                         return -TARGET_EINVAL;
10766                     }
10767                     if (len == 0) {
10768                         return 0;
10769                     }
10770                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10771                     if (!p) {
10772                         return -TARGET_EFAULT;
10773                     }
10774                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10775                     unlock_user(p, arg2, arg3);
10776                 }
10777                 return ret;
10778             default:
10779                 return -TARGET_EINVAL;
10780             }
10781         }
10782         break;
10783 #endif
10784     case TARGET_NR_setitimer:
10785         {
10786             struct itimerval value, ovalue, *pvalue;
10787 
10788             if (arg2) {
10789                 pvalue = &value;
10790                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10791                     || copy_from_user_timeval(&pvalue->it_value,
10792                                               arg2 + sizeof(struct target_timeval)))
10793                     return -TARGET_EFAULT;
10794             } else {
10795                 pvalue = NULL;
10796             }
10797             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10798             if (!is_error(ret) && arg3) {
10799                 if (copy_to_user_timeval(arg3,
10800                                          &ovalue.it_interval)
10801                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10802                                             &ovalue.it_value))
10803                     return -TARGET_EFAULT;
10804             }
10805         }
10806         return ret;
10807     case TARGET_NR_getitimer:
10808         {
10809             struct itimerval value;
10810 
10811             ret = get_errno(getitimer(arg1, &value));
10812             if (!is_error(ret) && arg2) {
10813                 if (copy_to_user_timeval(arg2,
10814                                          &value.it_interval)
10815                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10816                                             &value.it_value))
10817                     return -TARGET_EFAULT;
10818             }
10819         }
10820         return ret;
10821 #ifdef TARGET_NR_stat
10822     case TARGET_NR_stat:
10823         if (!(p = lock_user_string(arg1))) {
10824             return -TARGET_EFAULT;
10825         }
10826         ret = get_errno(stat(path(p), &st));
10827         unlock_user(p, arg1, 0);
10828         goto do_stat;
10829 #endif
10830 #ifdef TARGET_NR_lstat
10831     case TARGET_NR_lstat:
10832         if (!(p = lock_user_string(arg1))) {
10833             return -TARGET_EFAULT;
10834         }
10835         ret = get_errno(lstat(path(p), &st));
10836         unlock_user(p, arg1, 0);
10837         goto do_stat;
10838 #endif
10839 #ifdef TARGET_NR_fstat
10840     case TARGET_NR_fstat:
10841         {
10842             ret = get_errno(fstat(arg1, &st));
10843 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10844         do_stat:
10845 #endif
10846             if (!is_error(ret)) {
10847                 struct target_stat *target_st;
10848 
10849                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10850                     return -TARGET_EFAULT;
10851                 memset(target_st, 0, sizeof(*target_st));
10852                 __put_user(st.st_dev, &target_st->st_dev);
10853                 __put_user(st.st_ino, &target_st->st_ino);
10854                 __put_user(st.st_mode, &target_st->st_mode);
10855                 __put_user(st.st_uid, &target_st->st_uid);
10856                 __put_user(st.st_gid, &target_st->st_gid);
10857                 __put_user(st.st_nlink, &target_st->st_nlink);
10858                 __put_user(st.st_rdev, &target_st->st_rdev);
10859                 __put_user(st.st_size, &target_st->st_size);
10860                 __put_user(st.st_blksize, &target_st->st_blksize);
10861                 __put_user(st.st_blocks, &target_st->st_blocks);
10862                 __put_user(st.st_atime, &target_st->target_st_atime);
10863                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10864                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10865 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10866                 __put_user(st.st_atim.tv_nsec,
10867                            &target_st->target_st_atime_nsec);
10868                 __put_user(st.st_mtim.tv_nsec,
10869                            &target_st->target_st_mtime_nsec);
10870                 __put_user(st.st_ctim.tv_nsec,
10871                            &target_st->target_st_ctime_nsec);
10872 #endif
10873                 unlock_user_struct(target_st, arg2, 1);
10874             }
10875         }
10876         return ret;
10877 #endif
10878     case TARGET_NR_vhangup:
10879         return get_errno(vhangup());
10880 #ifdef TARGET_NR_syscall
10881     case TARGET_NR_syscall:
10882         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10883                           arg6, arg7, arg8, 0);
10884 #endif
10885 #if defined(TARGET_NR_wait4)
10886     case TARGET_NR_wait4:
10887         {
10888             int status;
10889             abi_long status_ptr = arg2;
10890             struct rusage rusage, *rusage_ptr;
10891             abi_ulong target_rusage = arg4;
10892             abi_long rusage_err;
10893             if (target_rusage)
10894                 rusage_ptr = &rusage;
10895             else
10896                 rusage_ptr = NULL;
10897             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10898             if (!is_error(ret)) {
10899                 if (status_ptr && ret) {
10900                     status = host_to_target_waitstatus(status);
10901                     if (put_user_s32(status, status_ptr))
10902                         return -TARGET_EFAULT;
10903                 }
10904                 if (target_rusage) {
10905                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10906                     if (rusage_err) {
10907                         ret = rusage_err;
10908                     }
10909                 }
10910             }
10911         }
10912         return ret;
10913 #endif
10914 #ifdef TARGET_NR_swapoff
10915     case TARGET_NR_swapoff:
10916         if (!(p = lock_user_string(arg1)))
10917             return -TARGET_EFAULT;
10918         ret = get_errno(swapoff(p));
10919         unlock_user(p, arg1, 0);
10920         return ret;
10921 #endif
10922     case TARGET_NR_sysinfo:
10923         {
10924             struct target_sysinfo *target_value;
10925             struct sysinfo value;
10926             ret = get_errno(sysinfo(&value));
10927             if (!is_error(ret) && arg1)
10928             {
10929                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10930                     return -TARGET_EFAULT;
10931                 __put_user(value.uptime, &target_value->uptime);
10932                 __put_user(value.loads[0], &target_value->loads[0]);
10933                 __put_user(value.loads[1], &target_value->loads[1]);
10934                 __put_user(value.loads[2], &target_value->loads[2]);
10935                 __put_user(value.totalram, &target_value->totalram);
10936                 __put_user(value.freeram, &target_value->freeram);
10937                 __put_user(value.sharedram, &target_value->sharedram);
10938                 __put_user(value.bufferram, &target_value->bufferram);
10939                 __put_user(value.totalswap, &target_value->totalswap);
10940                 __put_user(value.freeswap, &target_value->freeswap);
10941                 __put_user(value.procs, &target_value->procs);
10942                 __put_user(value.totalhigh, &target_value->totalhigh);
10943                 __put_user(value.freehigh, &target_value->freehigh);
10944                 __put_user(value.mem_unit, &target_value->mem_unit);
10945                 unlock_user_struct(target_value, arg1, 1);
10946             }
10947         }
10948         return ret;
10949 #ifdef TARGET_NR_ipc
10950     case TARGET_NR_ipc:
10951         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10952 #endif
10953 #ifdef TARGET_NR_semget
10954     case TARGET_NR_semget:
10955         return get_errno(semget(arg1, arg2, arg3));
10956 #endif
10957 #ifdef TARGET_NR_semop
10958     case TARGET_NR_semop:
10959         return do_semtimedop(arg1, arg2, arg3, 0, false);
10960 #endif
10961 #ifdef TARGET_NR_semtimedop
10962     case TARGET_NR_semtimedop:
10963         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10964 #endif
10965 #ifdef TARGET_NR_semtimedop_time64
10966     case TARGET_NR_semtimedop_time64:
10967         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10968 #endif
10969 #ifdef TARGET_NR_semctl
10970     case TARGET_NR_semctl:
10971         return do_semctl(arg1, arg2, arg3, arg4);
10972 #endif
10973 #ifdef TARGET_NR_msgctl
10974     case TARGET_NR_msgctl:
10975         return do_msgctl(arg1, arg2, arg3);
10976 #endif
10977 #ifdef TARGET_NR_msgget
10978     case TARGET_NR_msgget:
10979         return get_errno(msgget(arg1, arg2));
10980 #endif
10981 #ifdef TARGET_NR_msgrcv
10982     case TARGET_NR_msgrcv:
10983         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10984 #endif
10985 #ifdef TARGET_NR_msgsnd
10986     case TARGET_NR_msgsnd:
10987         return do_msgsnd(arg1, arg2, arg3, arg4);
10988 #endif
10989 #ifdef TARGET_NR_shmget
10990     case TARGET_NR_shmget:
10991         return get_errno(shmget(arg1, arg2, arg3));
10992 #endif
10993 #ifdef TARGET_NR_shmctl
10994     case TARGET_NR_shmctl:
10995         return do_shmctl(arg1, arg2, arg3);
10996 #endif
10997 #ifdef TARGET_NR_shmat
10998     case TARGET_NR_shmat:
10999         return target_shmat(cpu_env, arg1, arg2, arg3);
11000 #endif
11001 #ifdef TARGET_NR_shmdt
11002     case TARGET_NR_shmdt:
11003         return target_shmdt(arg1);
11004 #endif
11005     case TARGET_NR_fsync:
11006         return get_errno(fsync(arg1));
11007     case TARGET_NR_clone:
11008         /* Linux manages to have three different orderings for its
11009          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11010          * match the kernel's CONFIG_CLONE_* settings.
11011          * Microblaze is further special in that it uses a sixth
11012          * implicit argument to clone for the TLS pointer.
11013          */
11014 #if defined(TARGET_MICROBLAZE)
11015         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11016 #elif defined(TARGET_CLONE_BACKWARDS)
11017         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11018 #elif defined(TARGET_CLONE_BACKWARDS2)
11019         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11020 #else
11021         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11022 #endif
11023         return ret;
11024 #ifdef __NR_exit_group
11025         /* new thread calls */
11026     case TARGET_NR_exit_group:
11027         preexit_cleanup(cpu_env, arg1);
11028         return get_errno(exit_group(arg1));
11029 #endif
11030     case TARGET_NR_setdomainname:
11031         if (!(p = lock_user_string(arg1)))
11032             return -TARGET_EFAULT;
11033         ret = get_errno(setdomainname(p, arg2));
11034         unlock_user(p, arg1, 0);
11035         return ret;
11036     case TARGET_NR_uname:
11037         /* no need to transcode because we use the linux syscall */
11038         {
11039             struct new_utsname * buf;
11040 
11041             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11042                 return -TARGET_EFAULT;
11043             ret = get_errno(sys_uname(buf));
11044             if (!is_error(ret)) {
11045                 /* Overwrite the native machine name with whatever is being
11046                    emulated. */
11047                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11048                           sizeof(buf->machine));
11049                 /* Allow the user to override the reported release.  */
11050                 if (qemu_uname_release && *qemu_uname_release) {
11051                     g_strlcpy(buf->release, qemu_uname_release,
11052                               sizeof(buf->release));
11053                 }
11054             }
11055             unlock_user_struct(buf, arg1, 1);
11056         }
11057         return ret;
11058 #ifdef TARGET_I386
11059     case TARGET_NR_modify_ldt:
11060         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11061 #if !defined(TARGET_X86_64)
11062     case TARGET_NR_vm86:
11063         return do_vm86(cpu_env, arg1, arg2);
11064 #endif
11065 #endif
11066 #if defined(TARGET_NR_adjtimex)
11067     case TARGET_NR_adjtimex:
11068         {
11069             struct timex host_buf;
11070 
11071             if (target_to_host_timex(&host_buf, arg1) != 0) {
11072                 return -TARGET_EFAULT;
11073             }
11074             ret = get_errno(adjtimex(&host_buf));
11075             if (!is_error(ret)) {
11076                 if (host_to_target_timex(arg1, &host_buf) != 0) {
11077                     return -TARGET_EFAULT;
11078                 }
11079             }
11080         }
11081         return ret;
11082 #endif
11083 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11084     case TARGET_NR_clock_adjtime:
11085         {
11086             struct timex htx;
11087 
11088             if (target_to_host_timex(&htx, arg2) != 0) {
11089                 return -TARGET_EFAULT;
11090             }
11091             ret = get_errno(clock_adjtime(arg1, &htx));
11092             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11093                 return -TARGET_EFAULT;
11094             }
11095         }
11096         return ret;
11097 #endif
11098 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11099     case TARGET_NR_clock_adjtime64:
11100         {
11101             struct timex htx;
11102 
11103             if (target_to_host_timex64(&htx, arg2) != 0) {
11104                 return -TARGET_EFAULT;
11105             }
11106             ret = get_errno(clock_adjtime(arg1, &htx));
11107             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11108                     return -TARGET_EFAULT;
11109             }
11110         }
11111         return ret;
11112 #endif
11113     case TARGET_NR_getpgid:
11114         return get_errno(getpgid(arg1));
11115     case TARGET_NR_fchdir:
11116         return get_errno(fchdir(arg1));
11117     case TARGET_NR_personality:
11118         return get_errno(personality(arg1));
11119 #ifdef TARGET_NR__llseek /* Not on alpha */
11120     case TARGET_NR__llseek:
11121         {
11122             int64_t res;
11123 #if !defined(__NR_llseek)
11124             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11125             if (res == -1) {
11126                 ret = get_errno(res);
11127             } else {
11128                 ret = 0;
11129             }
11130 #else
11131             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11132 #endif
11133             if ((ret == 0) && put_user_s64(res, arg4)) {
11134                 return -TARGET_EFAULT;
11135             }
11136         }
11137         return ret;
11138 #endif
11139 #ifdef TARGET_NR_getdents
11140     case TARGET_NR_getdents:
11141         return do_getdents(arg1, arg2, arg3);
11142 #endif /* TARGET_NR_getdents */
11143 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11144     case TARGET_NR_getdents64:
11145         return do_getdents64(arg1, arg2, arg3);
11146 #endif /* TARGET_NR_getdents64 */
11147 #if defined(TARGET_NR__newselect)
11148     case TARGET_NR__newselect:
11149         return do_select(arg1, arg2, arg3, arg4, arg5);
11150 #endif
11151 #ifdef TARGET_NR_poll
11152     case TARGET_NR_poll:
11153         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11154 #endif
11155 #ifdef TARGET_NR_ppoll
11156     case TARGET_NR_ppoll:
11157         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11158 #endif
11159 #ifdef TARGET_NR_ppoll_time64
11160     case TARGET_NR_ppoll_time64:
11161         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11162 #endif
11163     case TARGET_NR_flock:
11164         /* NOTE: the flock constant seems to be the same for every
11165            Linux platform */
11166         return get_errno(safe_flock(arg1, arg2));
11167     case TARGET_NR_readv:
11168         {
11169             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11170             if (vec != NULL) {
11171                 ret = get_errno(safe_readv(arg1, vec, arg3));
11172                 unlock_iovec(vec, arg2, arg3, 1);
11173             } else {
11174                 ret = -host_to_target_errno(errno);
11175             }
11176         }
11177         return ret;
11178     case TARGET_NR_writev:
11179         {
11180             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11181             if (vec != NULL) {
11182                 ret = get_errno(safe_writev(arg1, vec, arg3));
11183                 unlock_iovec(vec, arg2, arg3, 0);
11184             } else {
11185                 ret = -host_to_target_errno(errno);
11186             }
11187         }
11188         return ret;
11189 #if defined(TARGET_NR_preadv)
11190     case TARGET_NR_preadv:
11191         {
11192             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11193             if (vec != NULL) {
11194                 unsigned long low, high;
11195 
11196                 target_to_host_low_high(arg4, arg5, &low, &high);
11197                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11198                 unlock_iovec(vec, arg2, arg3, 1);
11199             } else {
11200                 ret = -host_to_target_errno(errno);
11201            }
11202         }
11203         return ret;
11204 #endif
11205 #if defined(TARGET_NR_pwritev)
11206     case TARGET_NR_pwritev:
11207         {
11208             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11209             if (vec != NULL) {
11210                 unsigned long low, high;
11211 
11212                 target_to_host_low_high(arg4, arg5, &low, &high);
11213                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11214                 unlock_iovec(vec, arg2, arg3, 0);
11215             } else {
11216                 ret = -host_to_target_errno(errno);
11217            }
11218         }
11219         return ret;
11220 #endif
11221     case TARGET_NR_getsid:
11222         return get_errno(getsid(arg1));
11223 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11224     case TARGET_NR_fdatasync:
11225         return get_errno(fdatasync(arg1));
11226 #endif
11227     case TARGET_NR_sched_getaffinity:
11228         {
11229             unsigned int mask_size;
11230             unsigned long *mask;
11231 
11232             /*
11233              * sched_getaffinity needs multiples of ulong, so need to take
11234              * care of mismatches between target ulong and host ulong sizes.
11235              */
11236             if (arg2 & (sizeof(abi_ulong) - 1)) {
11237                 return -TARGET_EINVAL;
11238             }
11239             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11240 
11241             mask = alloca(mask_size);
11242             memset(mask, 0, mask_size);
11243             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11244 
11245             if (!is_error(ret)) {
11246                 if (ret > arg2) {
11247                     /* More data returned than the caller's buffer will fit.
11248                      * This only happens if sizeof(abi_long) < sizeof(long)
11249                      * and the caller passed us a buffer holding an odd number
11250                      * of abi_longs. If the host kernel is actually using the
11251                      * extra 4 bytes then fail EINVAL; otherwise we can just
11252                      * ignore them and only copy the interesting part.
11253                      */
11254                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11255                     if (numcpus > arg2 * 8) {
11256                         return -TARGET_EINVAL;
11257                     }
11258                     ret = arg2;
11259                 }
11260 
11261                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11262                     return -TARGET_EFAULT;
11263                 }
11264             }
11265         }
11266         return ret;
11267     case TARGET_NR_sched_setaffinity:
11268         {
11269             unsigned int mask_size;
11270             unsigned long *mask;
11271 
11272             /*
11273              * sched_setaffinity needs multiples of ulong, so need to take
11274              * care of mismatches between target ulong and host ulong sizes.
11275              */
11276             if (arg2 & (sizeof(abi_ulong) - 1)) {
11277                 return -TARGET_EINVAL;
11278             }
11279             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11280             mask = alloca(mask_size);
11281 
11282             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11283             if (ret) {
11284                 return ret;
11285             }
11286 
11287             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11288         }
11289     case TARGET_NR_getcpu:
11290         {
11291             unsigned cpuid, node;
11292             ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11293                                        arg2 ? &node : NULL,
11294                                        NULL));
11295             if (is_error(ret)) {
11296                 return ret;
11297             }
11298             if (arg1 && put_user_u32(cpuid, arg1)) {
11299                 return -TARGET_EFAULT;
11300             }
11301             if (arg2 && put_user_u32(node, arg2)) {
11302                 return -TARGET_EFAULT;
11303             }
11304         }
11305         return ret;
11306     case TARGET_NR_sched_setparam:
11307         {
11308             struct target_sched_param *target_schp;
11309             struct sched_param schp;
11310 
11311             if (arg2 == 0) {
11312                 return -TARGET_EINVAL;
11313             }
11314             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11315                 return -TARGET_EFAULT;
11316             }
11317             schp.sched_priority = tswap32(target_schp->sched_priority);
11318             unlock_user_struct(target_schp, arg2, 0);
11319             return get_errno(sys_sched_setparam(arg1, &schp));
11320         }
11321     case TARGET_NR_sched_getparam:
11322         {
11323             struct target_sched_param *target_schp;
11324             struct sched_param schp;
11325 
11326             if (arg2 == 0) {
11327                 return -TARGET_EINVAL;
11328             }
11329             ret = get_errno(sys_sched_getparam(arg1, &schp));
11330             if (!is_error(ret)) {
11331                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11332                     return -TARGET_EFAULT;
11333                 }
11334                 target_schp->sched_priority = tswap32(schp.sched_priority);
11335                 unlock_user_struct(target_schp, arg2, 1);
11336             }
11337         }
11338         return ret;
11339     case TARGET_NR_sched_setscheduler:
11340         {
11341             struct target_sched_param *target_schp;
11342             struct sched_param schp;
11343             if (arg3 == 0) {
11344                 return -TARGET_EINVAL;
11345             }
11346             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11347                 return -TARGET_EFAULT;
11348             }
11349             schp.sched_priority = tswap32(target_schp->sched_priority);
11350             unlock_user_struct(target_schp, arg3, 0);
11351             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11352         }
11353     case TARGET_NR_sched_getscheduler:
11354         return get_errno(sys_sched_getscheduler(arg1));
11355     case TARGET_NR_sched_getattr:
11356         {
11357             struct target_sched_attr *target_scha;
11358             struct sched_attr scha;
11359             if (arg2 == 0) {
11360                 return -TARGET_EINVAL;
11361             }
11362             if (arg3 > sizeof(scha)) {
11363                 arg3 = sizeof(scha);
11364             }
11365             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11366             if (!is_error(ret)) {
11367                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11368                 if (!target_scha) {
11369                     return -TARGET_EFAULT;
11370                 }
11371                 target_scha->size = tswap32(scha.size);
11372                 target_scha->sched_policy = tswap32(scha.sched_policy);
11373                 target_scha->sched_flags = tswap64(scha.sched_flags);
11374                 target_scha->sched_nice = tswap32(scha.sched_nice);
11375                 target_scha->sched_priority = tswap32(scha.sched_priority);
11376                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11377                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11378                 target_scha->sched_period = tswap64(scha.sched_period);
11379                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11380                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11381                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11382                 }
11383                 unlock_user(target_scha, arg2, arg3);
11384             }
11385             return ret;
11386         }
11387     case TARGET_NR_sched_setattr:
11388         {
11389             struct target_sched_attr *target_scha;
11390             struct sched_attr scha;
11391             uint32_t size;
11392             int zeroed;
11393             if (arg2 == 0) {
11394                 return -TARGET_EINVAL;
11395             }
11396             if (get_user_u32(size, arg2)) {
11397                 return -TARGET_EFAULT;
11398             }
11399             if (!size) {
11400                 size = offsetof(struct target_sched_attr, sched_util_min);
11401             }
11402             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11403                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11404                     return -TARGET_EFAULT;
11405                 }
11406                 return -TARGET_E2BIG;
11407             }
11408 
11409             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11410             if (zeroed < 0) {
11411                 return zeroed;
11412             } else if (zeroed == 0) {
11413                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11414                     return -TARGET_EFAULT;
11415                 }
11416                 return -TARGET_E2BIG;
11417             }
11418             if (size > sizeof(struct target_sched_attr)) {
11419                 size = sizeof(struct target_sched_attr);
11420             }
11421 
11422             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11423             if (!target_scha) {
11424                 return -TARGET_EFAULT;
11425             }
11426             scha.size = size;
11427             scha.sched_policy = tswap32(target_scha->sched_policy);
11428             scha.sched_flags = tswap64(target_scha->sched_flags);
11429             scha.sched_nice = tswap32(target_scha->sched_nice);
11430             scha.sched_priority = tswap32(target_scha->sched_priority);
11431             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11432             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11433             scha.sched_period = tswap64(target_scha->sched_period);
11434             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11435                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11436                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11437             }
11438             unlock_user(target_scha, arg2, 0);
11439             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11440         }
11441     case TARGET_NR_sched_yield:
11442         return get_errno(sched_yield());
11443     case TARGET_NR_sched_get_priority_max:
11444         return get_errno(sched_get_priority_max(arg1));
11445     case TARGET_NR_sched_get_priority_min:
11446         return get_errno(sched_get_priority_min(arg1));
11447 #ifdef TARGET_NR_sched_rr_get_interval
11448     case TARGET_NR_sched_rr_get_interval:
11449         {
11450             struct timespec ts;
11451             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11452             if (!is_error(ret)) {
11453                 ret = host_to_target_timespec(arg2, &ts);
11454             }
11455         }
11456         return ret;
11457 #endif
11458 #ifdef TARGET_NR_sched_rr_get_interval_time64
11459     case TARGET_NR_sched_rr_get_interval_time64:
11460         {
11461             struct timespec ts;
11462             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11463             if (!is_error(ret)) {
11464                 ret = host_to_target_timespec64(arg2, &ts);
11465             }
11466         }
11467         return ret;
11468 #endif
11469 #if defined(TARGET_NR_nanosleep)
11470     case TARGET_NR_nanosleep:
11471         {
11472             struct timespec req, rem;
11473             target_to_host_timespec(&req, arg1);
11474             ret = get_errno(safe_nanosleep(&req, &rem));
11475             if (is_error(ret) && arg2) {
11476                 host_to_target_timespec(arg2, &rem);
11477             }
11478         }
11479         return ret;
11480 #endif
11481     case TARGET_NR_prctl:
11482         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11483         break;
11484 #ifdef TARGET_NR_arch_prctl
11485     case TARGET_NR_arch_prctl:
11486         return do_arch_prctl(cpu_env, arg1, arg2);
11487 #endif
11488 #ifdef TARGET_NR_pread64
11489     case TARGET_NR_pread64:
11490         if (regpairs_aligned(cpu_env, num)) {
11491             arg4 = arg5;
11492             arg5 = arg6;
11493         }
11494         if (arg2 == 0 && arg3 == 0) {
11495             /* Special-case NULL buffer and zero length, which should succeed */
11496             p = 0;
11497         } else {
11498             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11499             if (!p) {
11500                 return -TARGET_EFAULT;
11501             }
11502         }
11503         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11504         unlock_user(p, arg2, ret);
11505         return ret;
11506     case TARGET_NR_pwrite64:
11507         if (regpairs_aligned(cpu_env, num)) {
11508             arg4 = arg5;
11509             arg5 = arg6;
11510         }
11511         if (arg2 == 0 && arg3 == 0) {
11512             /* Special-case NULL buffer and zero length, which should succeed */
11513             p = 0;
11514         } else {
11515             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11516             if (!p) {
11517                 return -TARGET_EFAULT;
11518             }
11519         }
11520         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11521         unlock_user(p, arg2, 0);
11522         return ret;
11523 #endif
11524     case TARGET_NR_getcwd:
11525         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11526             return -TARGET_EFAULT;
11527         ret = get_errno(sys_getcwd1(p, arg2));
11528         unlock_user(p, arg1, ret);
11529         return ret;
11530     case TARGET_NR_capget:
11531     case TARGET_NR_capset:
11532     {
11533         struct target_user_cap_header *target_header;
11534         struct target_user_cap_data *target_data = NULL;
11535         struct __user_cap_header_struct header;
11536         struct __user_cap_data_struct data[2];
11537         struct __user_cap_data_struct *dataptr = NULL;
11538         int i, target_datalen;
11539         int data_items = 1;
11540 
11541         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11542             return -TARGET_EFAULT;
11543         }
11544         header.version = tswap32(target_header->version);
11545         header.pid = tswap32(target_header->pid);
11546 
11547         if (header.version != _LINUX_CAPABILITY_VERSION) {
11548             /* Version 2 and up takes pointer to two user_data structs */
11549             data_items = 2;
11550         }
11551 
11552         target_datalen = sizeof(*target_data) * data_items;
11553 
11554         if (arg2) {
11555             if (num == TARGET_NR_capget) {
11556                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11557             } else {
11558                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11559             }
11560             if (!target_data) {
11561                 unlock_user_struct(target_header, arg1, 0);
11562                 return -TARGET_EFAULT;
11563             }
11564 
11565             if (num == TARGET_NR_capset) {
11566                 for (i = 0; i < data_items; i++) {
11567                     data[i].effective = tswap32(target_data[i].effective);
11568                     data[i].permitted = tswap32(target_data[i].permitted);
11569                     data[i].inheritable = tswap32(target_data[i].inheritable);
11570                 }
11571             }
11572 
11573             dataptr = data;
11574         }
11575 
11576         if (num == TARGET_NR_capget) {
11577             ret = get_errno(capget(&header, dataptr));
11578         } else {
11579             ret = get_errno(capset(&header, dataptr));
11580         }
11581 
11582         /* The kernel always updates version for both capget and capset */
11583         target_header->version = tswap32(header.version);
11584         unlock_user_struct(target_header, arg1, 1);
11585 
11586         if (arg2) {
11587             if (num == TARGET_NR_capget) {
11588                 for (i = 0; i < data_items; i++) {
11589                     target_data[i].effective = tswap32(data[i].effective);
11590                     target_data[i].permitted = tswap32(data[i].permitted);
11591                     target_data[i].inheritable = tswap32(data[i].inheritable);
11592                 }
11593                 unlock_user(target_data, arg2, target_datalen);
11594             } else {
11595                 unlock_user(target_data, arg2, 0);
11596             }
11597         }
11598         return ret;
11599     }
11600     case TARGET_NR_sigaltstack:
11601         return do_sigaltstack(arg1, arg2, cpu_env);
11602 
11603 #ifdef CONFIG_SENDFILE
11604 #ifdef TARGET_NR_sendfile
11605     case TARGET_NR_sendfile:
11606     {
11607         off_t *offp = NULL;
11608         off_t off;
11609         if (arg3) {
11610             ret = get_user_sal(off, arg3);
11611             if (is_error(ret)) {
11612                 return ret;
11613             }
11614             offp = &off;
11615         }
11616         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11617         if (!is_error(ret) && arg3) {
11618             abi_long ret2 = put_user_sal(off, arg3);
11619             if (is_error(ret2)) {
11620                 ret = ret2;
11621             }
11622         }
11623         return ret;
11624     }
11625 #endif
11626 #ifdef TARGET_NR_sendfile64
11627     case TARGET_NR_sendfile64:
11628     {
11629         off_t *offp = NULL;
11630         off_t off;
11631         if (arg3) {
11632             ret = get_user_s64(off, arg3);
11633             if (is_error(ret)) {
11634                 return ret;
11635             }
11636             offp = &off;
11637         }
11638         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11639         if (!is_error(ret) && arg3) {
11640             abi_long ret2 = put_user_s64(off, arg3);
11641             if (is_error(ret2)) {
11642                 ret = ret2;
11643             }
11644         }
11645         return ret;
11646     }
11647 #endif
11648 #endif
11649 #ifdef TARGET_NR_vfork
11650     case TARGET_NR_vfork:
11651         return get_errno(do_fork(cpu_env,
11652                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11653                          0, 0, 0, 0));
11654 #endif
11655 #ifdef TARGET_NR_ugetrlimit
11656     case TARGET_NR_ugetrlimit:
11657     {
11658 	struct rlimit rlim;
11659 	int resource = target_to_host_resource(arg1);
11660 	ret = get_errno(getrlimit(resource, &rlim));
11661 	if (!is_error(ret)) {
11662 	    struct target_rlimit *target_rlim;
11663             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11664                 return -TARGET_EFAULT;
11665 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11666 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11667             unlock_user_struct(target_rlim, arg2, 1);
11668 	}
11669         return ret;
11670     }
11671 #endif
11672 #ifdef TARGET_NR_truncate64
11673     case TARGET_NR_truncate64:
11674         if (!(p = lock_user_string(arg1)))
11675             return -TARGET_EFAULT;
11676 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11677         unlock_user(p, arg1, 0);
11678         return ret;
11679 #endif
11680 #ifdef TARGET_NR_ftruncate64
11681     case TARGET_NR_ftruncate64:
11682         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11683 #endif
11684 #ifdef TARGET_NR_stat64
11685     case TARGET_NR_stat64:
11686         if (!(p = lock_user_string(arg1))) {
11687             return -TARGET_EFAULT;
11688         }
11689         ret = get_errno(stat(path(p), &st));
11690         unlock_user(p, arg1, 0);
11691         if (!is_error(ret))
11692             ret = host_to_target_stat64(cpu_env, arg2, &st);
11693         return ret;
11694 #endif
11695 #ifdef TARGET_NR_lstat64
11696     case TARGET_NR_lstat64:
11697         if (!(p = lock_user_string(arg1))) {
11698             return -TARGET_EFAULT;
11699         }
11700         ret = get_errno(lstat(path(p), &st));
11701         unlock_user(p, arg1, 0);
11702         if (!is_error(ret))
11703             ret = host_to_target_stat64(cpu_env, arg2, &st);
11704         return ret;
11705 #endif
11706 #ifdef TARGET_NR_fstat64
11707     case TARGET_NR_fstat64:
11708         ret = get_errno(fstat(arg1, &st));
11709         if (!is_error(ret))
11710             ret = host_to_target_stat64(cpu_env, arg2, &st);
11711         return ret;
11712 #endif
11713 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11714 #ifdef TARGET_NR_fstatat64
11715     case TARGET_NR_fstatat64:
11716 #endif
11717 #ifdef TARGET_NR_newfstatat
11718     case TARGET_NR_newfstatat:
11719 #endif
11720         if (!(p = lock_user_string(arg2))) {
11721             return -TARGET_EFAULT;
11722         }
11723         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11724         unlock_user(p, arg2, 0);
11725         if (!is_error(ret))
11726             ret = host_to_target_stat64(cpu_env, arg3, &st);
11727         return ret;
11728 #endif
11729 #if defined(TARGET_NR_statx)
11730     case TARGET_NR_statx:
11731         {
11732             struct target_statx *target_stx;
11733             int dirfd = arg1;
11734             int flags = arg3;
11735 
11736             p = lock_user_string(arg2);
11737             if (p == NULL) {
11738                 return -TARGET_EFAULT;
11739             }
11740 #if defined(__NR_statx)
11741             {
11742                 /*
11743                  * It is assumed that struct statx is architecture independent.
11744                  */
11745                 struct target_statx host_stx;
11746                 int mask = arg4;
11747 
11748                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11749                 if (!is_error(ret)) {
11750                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11751                         unlock_user(p, arg2, 0);
11752                         return -TARGET_EFAULT;
11753                     }
11754                 }
11755 
11756                 if (ret != -TARGET_ENOSYS) {
11757                     unlock_user(p, arg2, 0);
11758                     return ret;
11759                 }
11760             }
11761 #endif
11762             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11763             unlock_user(p, arg2, 0);
11764 
11765             if (!is_error(ret)) {
11766                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11767                     return -TARGET_EFAULT;
11768                 }
11769                 memset(target_stx, 0, sizeof(*target_stx));
11770                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11771                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11772                 __put_user(st.st_ino, &target_stx->stx_ino);
11773                 __put_user(st.st_mode, &target_stx->stx_mode);
11774                 __put_user(st.st_uid, &target_stx->stx_uid);
11775                 __put_user(st.st_gid, &target_stx->stx_gid);
11776                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11777                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11778                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11779                 __put_user(st.st_size, &target_stx->stx_size);
11780                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11781                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11782                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11783                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11784                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11785                 unlock_user_struct(target_stx, arg5, 1);
11786             }
11787         }
11788         return ret;
11789 #endif
11790 #ifdef TARGET_NR_lchown
11791     case TARGET_NR_lchown:
11792         if (!(p = lock_user_string(arg1)))
11793             return -TARGET_EFAULT;
11794         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11795         unlock_user(p, arg1, 0);
11796         return ret;
11797 #endif
11798 #ifdef TARGET_NR_getuid
11799     case TARGET_NR_getuid:
11800         return get_errno(high2lowuid(getuid()));
11801 #endif
11802 #ifdef TARGET_NR_getgid
11803     case TARGET_NR_getgid:
11804         return get_errno(high2lowgid(getgid()));
11805 #endif
11806 #ifdef TARGET_NR_geteuid
11807     case TARGET_NR_geteuid:
11808         return get_errno(high2lowuid(geteuid()));
11809 #endif
11810 #ifdef TARGET_NR_getegid
11811     case TARGET_NR_getegid:
11812         return get_errno(high2lowgid(getegid()));
11813 #endif
11814     case TARGET_NR_setreuid:
11815         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11816     case TARGET_NR_setregid:
11817         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11818     case TARGET_NR_getgroups:
11819         { /* the same code as for TARGET_NR_getgroups32 */
11820             int gidsetsize = arg1;
11821             target_id *target_grouplist;
11822             g_autofree gid_t *grouplist = NULL;
11823             int i;
11824 
11825             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11826                 return -TARGET_EINVAL;
11827             }
11828             if (gidsetsize > 0) {
11829                 grouplist = g_try_new(gid_t, gidsetsize);
11830                 if (!grouplist) {
11831                     return -TARGET_ENOMEM;
11832                 }
11833             }
11834             ret = get_errno(getgroups(gidsetsize, grouplist));
11835             if (!is_error(ret) && gidsetsize > 0) {
11836                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11837                                              gidsetsize * sizeof(target_id), 0);
11838                 if (!target_grouplist) {
11839                     return -TARGET_EFAULT;
11840                 }
11841                 for (i = 0; i < ret; i++) {
11842                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11843                 }
11844                 unlock_user(target_grouplist, arg2,
11845                             gidsetsize * sizeof(target_id));
11846             }
11847             return ret;
11848         }
11849     case TARGET_NR_setgroups:
11850         { /* the same code as for TARGET_NR_setgroups32 */
11851             int gidsetsize = arg1;
11852             target_id *target_grouplist;
11853             g_autofree gid_t *grouplist = NULL;
11854             int i;
11855 
11856             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11857                 return -TARGET_EINVAL;
11858             }
11859             if (gidsetsize > 0) {
11860                 grouplist = g_try_new(gid_t, gidsetsize);
11861                 if (!grouplist) {
11862                     return -TARGET_ENOMEM;
11863                 }
11864                 target_grouplist = lock_user(VERIFY_READ, arg2,
11865                                              gidsetsize * sizeof(target_id), 1);
11866                 if (!target_grouplist) {
11867                     return -TARGET_EFAULT;
11868                 }
11869                 for (i = 0; i < gidsetsize; i++) {
11870                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11871                 }
11872                 unlock_user(target_grouplist, arg2,
11873                             gidsetsize * sizeof(target_id));
11874             }
11875             return get_errno(setgroups(gidsetsize, grouplist));
11876         }
11877     case TARGET_NR_fchown:
11878         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11879 #if defined(TARGET_NR_fchownat)
11880     case TARGET_NR_fchownat:
11881         if (!(p = lock_user_string(arg2)))
11882             return -TARGET_EFAULT;
11883         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11884                                  low2highgid(arg4), arg5));
11885         unlock_user(p, arg2, 0);
11886         return ret;
11887 #endif
11888 #ifdef TARGET_NR_setresuid
11889     case TARGET_NR_setresuid:
11890         return get_errno(sys_setresuid(low2highuid(arg1),
11891                                        low2highuid(arg2),
11892                                        low2highuid(arg3)));
11893 #endif
11894 #ifdef TARGET_NR_getresuid
11895     case TARGET_NR_getresuid:
11896         {
11897             uid_t ruid, euid, suid;
11898             ret = get_errno(getresuid(&ruid, &euid, &suid));
11899             if (!is_error(ret)) {
11900                 if (put_user_id(high2lowuid(ruid), arg1)
11901                     || put_user_id(high2lowuid(euid), arg2)
11902                     || put_user_id(high2lowuid(suid), arg3))
11903                     return -TARGET_EFAULT;
11904             }
11905         }
11906         return ret;
11907 #endif
11908 #ifdef TARGET_NR_getresgid
11909     case TARGET_NR_setresgid:
11910         return get_errno(sys_setresgid(low2highgid(arg1),
11911                                        low2highgid(arg2),
11912                                        low2highgid(arg3)));
11913 #endif
11914 #ifdef TARGET_NR_getresgid
11915     case TARGET_NR_getresgid:
11916         {
11917             gid_t rgid, egid, sgid;
11918             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11919             if (!is_error(ret)) {
11920                 if (put_user_id(high2lowgid(rgid), arg1)
11921                     || put_user_id(high2lowgid(egid), arg2)
11922                     || put_user_id(high2lowgid(sgid), arg3))
11923                     return -TARGET_EFAULT;
11924             }
11925         }
11926         return ret;
11927 #endif
11928 #ifdef TARGET_NR_chown
11929     case TARGET_NR_chown:
11930         if (!(p = lock_user_string(arg1)))
11931             return -TARGET_EFAULT;
11932         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11933         unlock_user(p, arg1, 0);
11934         return ret;
11935 #endif
11936     case TARGET_NR_setuid:
11937         return get_errno(sys_setuid(low2highuid(arg1)));
11938     case TARGET_NR_setgid:
11939         return get_errno(sys_setgid(low2highgid(arg1)));
11940     case TARGET_NR_setfsuid:
11941         return get_errno(setfsuid(arg1));
11942     case TARGET_NR_setfsgid:
11943         return get_errno(setfsgid(arg1));
11944 
11945 #ifdef TARGET_NR_lchown32
11946     case TARGET_NR_lchown32:
11947         if (!(p = lock_user_string(arg1)))
11948             return -TARGET_EFAULT;
11949         ret = get_errno(lchown(p, arg2, arg3));
11950         unlock_user(p, arg1, 0);
11951         return ret;
11952 #endif
11953 #ifdef TARGET_NR_getuid32
11954     case TARGET_NR_getuid32:
11955         return get_errno(getuid());
11956 #endif
11957 
11958 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11959    /* Alpha specific */
11960     case TARGET_NR_getxuid:
11961          {
11962             uid_t euid;
11963             euid=geteuid();
11964             cpu_env->ir[IR_A4]=euid;
11965          }
11966         return get_errno(getuid());
11967 #endif
11968 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11969    /* Alpha specific */
11970     case TARGET_NR_getxgid:
11971          {
11972             uid_t egid;
11973             egid=getegid();
11974             cpu_env->ir[IR_A4]=egid;
11975          }
11976         return get_errno(getgid());
11977 #endif
11978 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11979     /* Alpha specific */
11980     case TARGET_NR_osf_getsysinfo:
11981         ret = -TARGET_EOPNOTSUPP;
11982         switch (arg1) {
11983           case TARGET_GSI_IEEE_FP_CONTROL:
11984             {
11985                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11986                 uint64_t swcr = cpu_env->swcr;
11987 
11988                 swcr &= ~SWCR_STATUS_MASK;
11989                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11990 
11991                 if (put_user_u64 (swcr, arg2))
11992                         return -TARGET_EFAULT;
11993                 ret = 0;
11994             }
11995             break;
11996 
11997           /* case GSI_IEEE_STATE_AT_SIGNAL:
11998              -- Not implemented in linux kernel.
11999              case GSI_UACPROC:
12000              -- Retrieves current unaligned access state; not much used.
12001              case GSI_PROC_TYPE:
12002              -- Retrieves implver information; surely not used.
12003              case GSI_GET_HWRPB:
12004              -- Grabs a copy of the HWRPB; surely not used.
12005           */
12006         }
12007         return ret;
12008 #endif
12009 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12010     /* Alpha specific */
12011     case TARGET_NR_osf_setsysinfo:
12012         ret = -TARGET_EOPNOTSUPP;
12013         switch (arg1) {
12014           case TARGET_SSI_IEEE_FP_CONTROL:
12015             {
12016                 uint64_t swcr, fpcr;
12017 
12018                 if (get_user_u64 (swcr, arg2)) {
12019                     return -TARGET_EFAULT;
12020                 }
12021 
12022                 /*
12023                  * The kernel calls swcr_update_status to update the
12024                  * status bits from the fpcr at every point that it
12025                  * could be queried.  Therefore, we store the status
12026                  * bits only in FPCR.
12027                  */
12028                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12029 
12030                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12031                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12032                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12033                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12034                 ret = 0;
12035             }
12036             break;
12037 
12038           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12039             {
12040                 uint64_t exc, fpcr, fex;
12041 
12042                 if (get_user_u64(exc, arg2)) {
12043                     return -TARGET_EFAULT;
12044                 }
12045                 exc &= SWCR_STATUS_MASK;
12046                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12047 
12048                 /* Old exceptions are not signaled.  */
12049                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12050                 fex = exc & ~fex;
12051                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12052                 fex &= (cpu_env)->swcr;
12053 
12054                 /* Update the hardware fpcr.  */
12055                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12056                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12057 
12058                 if (fex) {
12059                     int si_code = TARGET_FPE_FLTUNK;
12060                     target_siginfo_t info;
12061 
12062                     if (fex & SWCR_TRAP_ENABLE_DNO) {
12063                         si_code = TARGET_FPE_FLTUND;
12064                     }
12065                     if (fex & SWCR_TRAP_ENABLE_INE) {
12066                         si_code = TARGET_FPE_FLTRES;
12067                     }
12068                     if (fex & SWCR_TRAP_ENABLE_UNF) {
12069                         si_code = TARGET_FPE_FLTUND;
12070                     }
12071                     if (fex & SWCR_TRAP_ENABLE_OVF) {
12072                         si_code = TARGET_FPE_FLTOVF;
12073                     }
12074                     if (fex & SWCR_TRAP_ENABLE_DZE) {
12075                         si_code = TARGET_FPE_FLTDIV;
12076                     }
12077                     if (fex & SWCR_TRAP_ENABLE_INV) {
12078                         si_code = TARGET_FPE_FLTINV;
12079                     }
12080 
12081                     info.si_signo = SIGFPE;
12082                     info.si_errno = 0;
12083                     info.si_code = si_code;
12084                     info._sifields._sigfault._addr = (cpu_env)->pc;
12085                     queue_signal(cpu_env, info.si_signo,
12086                                  QEMU_SI_FAULT, &info);
12087                 }
12088                 ret = 0;
12089             }
12090             break;
12091 
12092           /* case SSI_NVPAIRS:
12093              -- Used with SSIN_UACPROC to enable unaligned accesses.
12094              case SSI_IEEE_STATE_AT_SIGNAL:
12095              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12096              -- Not implemented in linux kernel
12097           */
12098         }
12099         return ret;
12100 #endif
12101 #ifdef TARGET_NR_osf_sigprocmask
12102     /* Alpha specific.  */
12103     case TARGET_NR_osf_sigprocmask:
12104         {
12105             abi_ulong mask;
12106             int how;
12107             sigset_t set, oldset;
12108 
12109             switch(arg1) {
12110             case TARGET_SIG_BLOCK:
12111                 how = SIG_BLOCK;
12112                 break;
12113             case TARGET_SIG_UNBLOCK:
12114                 how = SIG_UNBLOCK;
12115                 break;
12116             case TARGET_SIG_SETMASK:
12117                 how = SIG_SETMASK;
12118                 break;
12119             default:
12120                 return -TARGET_EINVAL;
12121             }
12122             mask = arg2;
12123             target_to_host_old_sigset(&set, &mask);
12124             ret = do_sigprocmask(how, &set, &oldset);
12125             if (!ret) {
12126                 host_to_target_old_sigset(&mask, &oldset);
12127                 ret = mask;
12128             }
12129         }
12130         return ret;
12131 #endif
12132 
12133 #ifdef TARGET_NR_getgid32
12134     case TARGET_NR_getgid32:
12135         return get_errno(getgid());
12136 #endif
12137 #ifdef TARGET_NR_geteuid32
12138     case TARGET_NR_geteuid32:
12139         return get_errno(geteuid());
12140 #endif
12141 #ifdef TARGET_NR_getegid32
12142     case TARGET_NR_getegid32:
12143         return get_errno(getegid());
12144 #endif
12145 #ifdef TARGET_NR_setreuid32
12146     case TARGET_NR_setreuid32:
12147         return get_errno(setreuid(arg1, arg2));
12148 #endif
12149 #ifdef TARGET_NR_setregid32
12150     case TARGET_NR_setregid32:
12151         return get_errno(setregid(arg1, arg2));
12152 #endif
12153 #ifdef TARGET_NR_getgroups32
12154     case TARGET_NR_getgroups32:
12155         { /* the same code as for TARGET_NR_getgroups */
12156             int gidsetsize = arg1;
12157             uint32_t *target_grouplist;
12158             g_autofree gid_t *grouplist = NULL;
12159             int i;
12160 
12161             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12162                 return -TARGET_EINVAL;
12163             }
12164             if (gidsetsize > 0) {
12165                 grouplist = g_try_new(gid_t, gidsetsize);
12166                 if (!grouplist) {
12167                     return -TARGET_ENOMEM;
12168                 }
12169             }
12170             ret = get_errno(getgroups(gidsetsize, grouplist));
12171             if (!is_error(ret) && gidsetsize > 0) {
12172                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12173                                              gidsetsize * 4, 0);
12174                 if (!target_grouplist) {
12175                     return -TARGET_EFAULT;
12176                 }
12177                 for (i = 0; i < ret; i++) {
12178                     target_grouplist[i] = tswap32(grouplist[i]);
12179                 }
12180                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12181             }
12182             return ret;
12183         }
12184 #endif
12185 #ifdef TARGET_NR_setgroups32
12186     case TARGET_NR_setgroups32:
12187         { /* the same code as for TARGET_NR_setgroups */
12188             int gidsetsize = arg1;
12189             uint32_t *target_grouplist;
12190             g_autofree gid_t *grouplist = NULL;
12191             int i;
12192 
12193             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12194                 return -TARGET_EINVAL;
12195             }
12196             if (gidsetsize > 0) {
12197                 grouplist = g_try_new(gid_t, gidsetsize);
12198                 if (!grouplist) {
12199                     return -TARGET_ENOMEM;
12200                 }
12201                 target_grouplist = lock_user(VERIFY_READ, arg2,
12202                                              gidsetsize * 4, 1);
12203                 if (!target_grouplist) {
12204                     return -TARGET_EFAULT;
12205                 }
12206                 for (i = 0; i < gidsetsize; i++) {
12207                     grouplist[i] = tswap32(target_grouplist[i]);
12208                 }
12209                 unlock_user(target_grouplist, arg2, 0);
12210             }
12211             return get_errno(setgroups(gidsetsize, grouplist));
12212         }
12213 #endif
12214 #ifdef TARGET_NR_fchown32
12215     case TARGET_NR_fchown32:
12216         return get_errno(fchown(arg1, arg2, arg3));
12217 #endif
12218 #ifdef TARGET_NR_setresuid32
12219     case TARGET_NR_setresuid32:
12220         return get_errno(sys_setresuid(arg1, arg2, arg3));
12221 #endif
12222 #ifdef TARGET_NR_getresuid32
12223     case TARGET_NR_getresuid32:
12224         {
12225             uid_t ruid, euid, suid;
12226             ret = get_errno(getresuid(&ruid, &euid, &suid));
12227             if (!is_error(ret)) {
12228                 if (put_user_u32(ruid, arg1)
12229                     || put_user_u32(euid, arg2)
12230                     || put_user_u32(suid, arg3))
12231                     return -TARGET_EFAULT;
12232             }
12233         }
12234         return ret;
12235 #endif
12236 #ifdef TARGET_NR_setresgid32
12237     case TARGET_NR_setresgid32:
12238         return get_errno(sys_setresgid(arg1, arg2, arg3));
12239 #endif
12240 #ifdef TARGET_NR_getresgid32
12241     case TARGET_NR_getresgid32:
12242         {
12243             gid_t rgid, egid, sgid;
12244             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12245             if (!is_error(ret)) {
12246                 if (put_user_u32(rgid, arg1)
12247                     || put_user_u32(egid, arg2)
12248                     || put_user_u32(sgid, arg3))
12249                     return -TARGET_EFAULT;
12250             }
12251         }
12252         return ret;
12253 #endif
12254 #ifdef TARGET_NR_chown32
12255     case TARGET_NR_chown32:
12256         if (!(p = lock_user_string(arg1)))
12257             return -TARGET_EFAULT;
12258         ret = get_errno(chown(p, arg2, arg3));
12259         unlock_user(p, arg1, 0);
12260         return ret;
12261 #endif
12262 #ifdef TARGET_NR_setuid32
12263     case TARGET_NR_setuid32:
12264         return get_errno(sys_setuid(arg1));
12265 #endif
12266 #ifdef TARGET_NR_setgid32
12267     case TARGET_NR_setgid32:
12268         return get_errno(sys_setgid(arg1));
12269 #endif
12270 #ifdef TARGET_NR_setfsuid32
12271     case TARGET_NR_setfsuid32:
12272         return get_errno(setfsuid(arg1));
12273 #endif
12274 #ifdef TARGET_NR_setfsgid32
12275     case TARGET_NR_setfsgid32:
12276         return get_errno(setfsgid(arg1));
12277 #endif
12278 #ifdef TARGET_NR_mincore
12279     case TARGET_NR_mincore:
12280         {
12281             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12282             if (!a) {
12283                 return -TARGET_ENOMEM;
12284             }
12285             p = lock_user_string(arg3);
12286             if (!p) {
12287                 ret = -TARGET_EFAULT;
12288             } else {
12289                 ret = get_errno(mincore(a, arg2, p));
12290                 unlock_user(p, arg3, ret);
12291             }
12292             unlock_user(a, arg1, 0);
12293         }
12294         return ret;
12295 #endif
12296 #ifdef TARGET_NR_arm_fadvise64_64
12297     case TARGET_NR_arm_fadvise64_64:
12298         /* arm_fadvise64_64 looks like fadvise64_64 but
12299          * with different argument order: fd, advice, offset, len
12300          * rather than the usual fd, offset, len, advice.
12301          * Note that offset and len are both 64-bit so appear as
12302          * pairs of 32-bit registers.
12303          */
12304         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12305                             target_offset64(arg5, arg6), arg2);
12306         return -host_to_target_errno(ret);
12307 #endif
12308 
12309 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12310 
12311 #ifdef TARGET_NR_fadvise64_64
12312     case TARGET_NR_fadvise64_64:
12313 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12314         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12315         ret = arg2;
12316         arg2 = arg3;
12317         arg3 = arg4;
12318         arg4 = arg5;
12319         arg5 = arg6;
12320         arg6 = ret;
12321 #else
12322         /* 6 args: fd, offset (high, low), len (high, low), advice */
12323         if (regpairs_aligned(cpu_env, num)) {
12324             /* offset is in (3,4), len in (5,6) and advice in 7 */
12325             arg2 = arg3;
12326             arg3 = arg4;
12327             arg4 = arg5;
12328             arg5 = arg6;
12329             arg6 = arg7;
12330         }
12331 #endif
12332         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12333                             target_offset64(arg4, arg5), arg6);
12334         return -host_to_target_errno(ret);
12335 #endif
12336 
12337 #ifdef TARGET_NR_fadvise64
12338     case TARGET_NR_fadvise64:
12339         /* 5 args: fd, offset (high, low), len, advice */
12340         if (regpairs_aligned(cpu_env, num)) {
12341             /* offset is in (3,4), len in 5 and advice in 6 */
12342             arg2 = arg3;
12343             arg3 = arg4;
12344             arg4 = arg5;
12345             arg5 = arg6;
12346         }
12347         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12348         return -host_to_target_errno(ret);
12349 #endif
12350 
12351 #else /* not a 32-bit ABI */
12352 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12353 #ifdef TARGET_NR_fadvise64_64
12354     case TARGET_NR_fadvise64_64:
12355 #endif
12356 #ifdef TARGET_NR_fadvise64
12357     case TARGET_NR_fadvise64:
12358 #endif
12359 #ifdef TARGET_S390X
12360         switch (arg4) {
12361         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12362         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12363         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12364         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12365         default: break;
12366         }
12367 #endif
12368         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12369 #endif
12370 #endif /* end of 64-bit ABI fadvise handling */
12371 
12372 #ifdef TARGET_NR_madvise
12373     case TARGET_NR_madvise:
12374         return target_madvise(arg1, arg2, arg3);
12375 #endif
12376 #ifdef TARGET_NR_fcntl64
12377     case TARGET_NR_fcntl64:
12378     {
12379         int cmd;
12380         struct flock64 fl;
12381         from_flock64_fn *copyfrom = copy_from_user_flock64;
12382         to_flock64_fn *copyto = copy_to_user_flock64;
12383 
12384 #ifdef TARGET_ARM
12385         if (!cpu_env->eabi) {
12386             copyfrom = copy_from_user_oabi_flock64;
12387             copyto = copy_to_user_oabi_flock64;
12388         }
12389 #endif
12390 
12391         cmd = target_to_host_fcntl_cmd(arg2);
12392         if (cmd == -TARGET_EINVAL) {
12393             return cmd;
12394         }
12395 
12396         switch(arg2) {
12397         case TARGET_F_GETLK64:
12398             ret = copyfrom(&fl, arg3);
12399             if (ret) {
12400                 break;
12401             }
12402             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12403             if (ret == 0) {
12404                 ret = copyto(arg3, &fl);
12405             }
12406 	    break;
12407 
12408         case TARGET_F_SETLK64:
12409         case TARGET_F_SETLKW64:
12410             ret = copyfrom(&fl, arg3);
12411             if (ret) {
12412                 break;
12413             }
12414             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12415 	    break;
12416         default:
12417             ret = do_fcntl(arg1, arg2, arg3);
12418             break;
12419         }
12420         return ret;
12421     }
12422 #endif
12423 #ifdef TARGET_NR_cacheflush
12424     case TARGET_NR_cacheflush:
12425         /* self-modifying code is handled automatically, so nothing needed */
12426         return 0;
12427 #endif
12428 #ifdef TARGET_NR_getpagesize
12429     case TARGET_NR_getpagesize:
12430         return TARGET_PAGE_SIZE;
12431 #endif
12432     case TARGET_NR_gettid:
12433         return get_errno(sys_gettid());
12434 #ifdef TARGET_NR_readahead
12435     case TARGET_NR_readahead:
12436 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12437         if (regpairs_aligned(cpu_env, num)) {
12438             arg2 = arg3;
12439             arg3 = arg4;
12440             arg4 = arg5;
12441         }
12442         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12443 #else
12444         ret = get_errno(readahead(arg1, arg2, arg3));
12445 #endif
12446         return ret;
12447 #endif
12448 #ifdef CONFIG_ATTR
12449 #ifdef TARGET_NR_setxattr
12450     case TARGET_NR_listxattr:
12451     case TARGET_NR_llistxattr:
12452     {
12453         void *b = 0;
12454         if (arg2) {
12455             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12456             if (!b) {
12457                 return -TARGET_EFAULT;
12458             }
12459         }
12460         p = lock_user_string(arg1);
12461         if (p) {
12462             if (num == TARGET_NR_listxattr) {
12463                 ret = get_errno(listxattr(p, b, arg3));
12464             } else {
12465                 ret = get_errno(llistxattr(p, b, arg3));
12466             }
12467         } else {
12468             ret = -TARGET_EFAULT;
12469         }
12470         unlock_user(p, arg1, 0);
12471         unlock_user(b, arg2, arg3);
12472         return ret;
12473     }
12474     case TARGET_NR_flistxattr:
12475     {
12476         void *b = 0;
12477         if (arg2) {
12478             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12479             if (!b) {
12480                 return -TARGET_EFAULT;
12481             }
12482         }
12483         ret = get_errno(flistxattr(arg1, b, arg3));
12484         unlock_user(b, arg2, arg3);
12485         return ret;
12486     }
12487     case TARGET_NR_setxattr:
12488     case TARGET_NR_lsetxattr:
12489         {
12490             void *n, *v = 0;
12491             if (arg3) {
12492                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12493                 if (!v) {
12494                     return -TARGET_EFAULT;
12495                 }
12496             }
12497             p = lock_user_string(arg1);
12498             n = lock_user_string(arg2);
12499             if (p && n) {
12500                 if (num == TARGET_NR_setxattr) {
12501                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12502                 } else {
12503                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12504                 }
12505             } else {
12506                 ret = -TARGET_EFAULT;
12507             }
12508             unlock_user(p, arg1, 0);
12509             unlock_user(n, arg2, 0);
12510             unlock_user(v, arg3, 0);
12511         }
12512         return ret;
12513     case TARGET_NR_fsetxattr:
12514         {
12515             void *n, *v = 0;
12516             if (arg3) {
12517                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12518                 if (!v) {
12519                     return -TARGET_EFAULT;
12520                 }
12521             }
12522             n = lock_user_string(arg2);
12523             if (n) {
12524                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12525             } else {
12526                 ret = -TARGET_EFAULT;
12527             }
12528             unlock_user(n, arg2, 0);
12529             unlock_user(v, arg3, 0);
12530         }
12531         return ret;
12532     case TARGET_NR_getxattr:
12533     case TARGET_NR_lgetxattr:
12534         {
12535             void *n, *v = 0;
12536             if (arg3) {
12537                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12538                 if (!v) {
12539                     return -TARGET_EFAULT;
12540                 }
12541             }
12542             p = lock_user_string(arg1);
12543             n = lock_user_string(arg2);
12544             if (p && n) {
12545                 if (num == TARGET_NR_getxattr) {
12546                     ret = get_errno(getxattr(p, n, v, arg4));
12547                 } else {
12548                     ret = get_errno(lgetxattr(p, n, v, arg4));
12549                 }
12550             } else {
12551                 ret = -TARGET_EFAULT;
12552             }
12553             unlock_user(p, arg1, 0);
12554             unlock_user(n, arg2, 0);
12555             unlock_user(v, arg3, arg4);
12556         }
12557         return ret;
12558     case TARGET_NR_fgetxattr:
12559         {
12560             void *n, *v = 0;
12561             if (arg3) {
12562                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12563                 if (!v) {
12564                     return -TARGET_EFAULT;
12565                 }
12566             }
12567             n = lock_user_string(arg2);
12568             if (n) {
12569                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12570             } else {
12571                 ret = -TARGET_EFAULT;
12572             }
12573             unlock_user(n, arg2, 0);
12574             unlock_user(v, arg3, arg4);
12575         }
12576         return ret;
12577     case TARGET_NR_removexattr:
12578     case TARGET_NR_lremovexattr:
12579         {
12580             void *n;
12581             p = lock_user_string(arg1);
12582             n = lock_user_string(arg2);
12583             if (p && n) {
12584                 if (num == TARGET_NR_removexattr) {
12585                     ret = get_errno(removexattr(p, n));
12586                 } else {
12587                     ret = get_errno(lremovexattr(p, n));
12588                 }
12589             } else {
12590                 ret = -TARGET_EFAULT;
12591             }
12592             unlock_user(p, arg1, 0);
12593             unlock_user(n, arg2, 0);
12594         }
12595         return ret;
12596     case TARGET_NR_fremovexattr:
12597         {
12598             void *n;
12599             n = lock_user_string(arg2);
12600             if (n) {
12601                 ret = get_errno(fremovexattr(arg1, n));
12602             } else {
12603                 ret = -TARGET_EFAULT;
12604             }
12605             unlock_user(n, arg2, 0);
12606         }
12607         return ret;
12608 #endif
12609 #endif /* CONFIG_ATTR */
12610 #ifdef TARGET_NR_set_thread_area
12611     case TARGET_NR_set_thread_area:
12612 #if defined(TARGET_MIPS)
12613       cpu_env->active_tc.CP0_UserLocal = arg1;
12614       return 0;
12615 #elif defined(TARGET_CRIS)
12616       if (arg1 & 0xff)
12617           ret = -TARGET_EINVAL;
12618       else {
12619           cpu_env->pregs[PR_PID] = arg1;
12620           ret = 0;
12621       }
12622       return ret;
12623 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12624       return do_set_thread_area(cpu_env, arg1);
12625 #elif defined(TARGET_M68K)
12626       {
12627           TaskState *ts = get_task_state(cpu);
12628           ts->tp_value = arg1;
12629           return 0;
12630       }
12631 #else
12632       return -TARGET_ENOSYS;
12633 #endif
12634 #endif
12635 #ifdef TARGET_NR_get_thread_area
12636     case TARGET_NR_get_thread_area:
12637 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12638         return do_get_thread_area(cpu_env, arg1);
12639 #elif defined(TARGET_M68K)
12640         {
12641             TaskState *ts = get_task_state(cpu);
12642             return ts->tp_value;
12643         }
12644 #else
12645         return -TARGET_ENOSYS;
12646 #endif
12647 #endif
12648 #ifdef TARGET_NR_getdomainname
12649     case TARGET_NR_getdomainname:
12650         return -TARGET_ENOSYS;
12651 #endif
12652 
12653 #ifdef TARGET_NR_clock_settime
12654     case TARGET_NR_clock_settime:
12655     {
12656         struct timespec ts;
12657 
12658         ret = target_to_host_timespec(&ts, arg2);
12659         if (!is_error(ret)) {
12660             ret = get_errno(clock_settime(arg1, &ts));
12661         }
12662         return ret;
12663     }
12664 #endif
12665 #ifdef TARGET_NR_clock_settime64
12666     case TARGET_NR_clock_settime64:
12667     {
12668         struct timespec ts;
12669 
12670         ret = target_to_host_timespec64(&ts, arg2);
12671         if (!is_error(ret)) {
12672             ret = get_errno(clock_settime(arg1, &ts));
12673         }
12674         return ret;
12675     }
12676 #endif
12677 #ifdef TARGET_NR_clock_gettime
12678     case TARGET_NR_clock_gettime:
12679     {
12680         struct timespec ts;
12681         ret = get_errno(clock_gettime(arg1, &ts));
12682         if (!is_error(ret)) {
12683             ret = host_to_target_timespec(arg2, &ts);
12684         }
12685         return ret;
12686     }
12687 #endif
12688 #ifdef TARGET_NR_clock_gettime64
12689     case TARGET_NR_clock_gettime64:
12690     {
12691         struct timespec ts;
12692         ret = get_errno(clock_gettime(arg1, &ts));
12693         if (!is_error(ret)) {
12694             ret = host_to_target_timespec64(arg2, &ts);
12695         }
12696         return ret;
12697     }
12698 #endif
12699 #ifdef TARGET_NR_clock_getres
12700     case TARGET_NR_clock_getres:
12701     {
12702         struct timespec ts;
12703         ret = get_errno(clock_getres(arg1, &ts));
12704         if (!is_error(ret)) {
12705             host_to_target_timespec(arg2, &ts);
12706         }
12707         return ret;
12708     }
12709 #endif
12710 #ifdef TARGET_NR_clock_getres_time64
12711     case TARGET_NR_clock_getres_time64:
12712     {
12713         struct timespec ts;
12714         ret = get_errno(clock_getres(arg1, &ts));
12715         if (!is_error(ret)) {
12716             host_to_target_timespec64(arg2, &ts);
12717         }
12718         return ret;
12719     }
12720 #endif
12721 #ifdef TARGET_NR_clock_nanosleep
12722     case TARGET_NR_clock_nanosleep:
12723     {
12724         struct timespec ts;
12725         if (target_to_host_timespec(&ts, arg3)) {
12726             return -TARGET_EFAULT;
12727         }
12728         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12729                                              &ts, arg4 ? &ts : NULL));
12730         /*
12731          * if the call is interrupted by a signal handler, it fails
12732          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12733          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12734          */
12735         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12736             host_to_target_timespec(arg4, &ts)) {
12737               return -TARGET_EFAULT;
12738         }
12739 
12740         return ret;
12741     }
12742 #endif
12743 #ifdef TARGET_NR_clock_nanosleep_time64
12744     case TARGET_NR_clock_nanosleep_time64:
12745     {
12746         struct timespec ts;
12747 
12748         if (target_to_host_timespec64(&ts, arg3)) {
12749             return -TARGET_EFAULT;
12750         }
12751 
12752         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12753                                              &ts, arg4 ? &ts : NULL));
12754 
12755         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12756             host_to_target_timespec64(arg4, &ts)) {
12757             return -TARGET_EFAULT;
12758         }
12759         return ret;
12760     }
12761 #endif
12762 
12763 #if defined(TARGET_NR_set_tid_address)
12764     case TARGET_NR_set_tid_address:
12765     {
12766         TaskState *ts = get_task_state(cpu);
12767         ts->child_tidptr = arg1;
12768         /* do not call host set_tid_address() syscall, instead return tid() */
12769         return get_errno(sys_gettid());
12770     }
12771 #endif
12772 
12773     case TARGET_NR_tkill:
12774         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12775 
12776     case TARGET_NR_tgkill:
12777         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12778                          target_to_host_signal(arg3)));
12779 
12780 #ifdef TARGET_NR_set_robust_list
12781     case TARGET_NR_set_robust_list:
12782     case TARGET_NR_get_robust_list:
12783         /* The ABI for supporting robust futexes has userspace pass
12784          * the kernel a pointer to a linked list which is updated by
12785          * userspace after the syscall; the list is walked by the kernel
12786          * when the thread exits. Since the linked list in QEMU guest
12787          * memory isn't a valid linked list for the host and we have
12788          * no way to reliably intercept the thread-death event, we can't
12789          * support these. Silently return ENOSYS so that guest userspace
12790          * falls back to a non-robust futex implementation (which should
12791          * be OK except in the corner case of the guest crashing while
12792          * holding a mutex that is shared with another process via
12793          * shared memory).
12794          */
12795         return -TARGET_ENOSYS;
12796 #endif
12797 
12798 #if defined(TARGET_NR_utimensat)
12799     case TARGET_NR_utimensat:
12800         {
12801             struct timespec *tsp, ts[2];
12802             if (!arg3) {
12803                 tsp = NULL;
12804             } else {
12805                 if (target_to_host_timespec(ts, arg3)) {
12806                     return -TARGET_EFAULT;
12807                 }
12808                 if (target_to_host_timespec(ts + 1, arg3 +
12809                                             sizeof(struct target_timespec))) {
12810                     return -TARGET_EFAULT;
12811                 }
12812                 tsp = ts;
12813             }
12814             if (!arg2)
12815                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12816             else {
12817                 if (!(p = lock_user_string(arg2))) {
12818                     return -TARGET_EFAULT;
12819                 }
12820                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12821                 unlock_user(p, arg2, 0);
12822             }
12823         }
12824         return ret;
12825 #endif
12826 #ifdef TARGET_NR_utimensat_time64
12827     case TARGET_NR_utimensat_time64:
12828         {
12829             struct timespec *tsp, ts[2];
12830             if (!arg3) {
12831                 tsp = NULL;
12832             } else {
12833                 if (target_to_host_timespec64(ts, arg3)) {
12834                     return -TARGET_EFAULT;
12835                 }
12836                 if (target_to_host_timespec64(ts + 1, arg3 +
12837                                      sizeof(struct target__kernel_timespec))) {
12838                     return -TARGET_EFAULT;
12839                 }
12840                 tsp = ts;
12841             }
12842             if (!arg2)
12843                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12844             else {
12845                 p = lock_user_string(arg2);
12846                 if (!p) {
12847                     return -TARGET_EFAULT;
12848                 }
12849                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12850                 unlock_user(p, arg2, 0);
12851             }
12852         }
12853         return ret;
12854 #endif
12855 #ifdef TARGET_NR_futex
12856     case TARGET_NR_futex:
12857         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12858 #endif
12859 #ifdef TARGET_NR_futex_time64
12860     case TARGET_NR_futex_time64:
12861         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12862 #endif
12863 #ifdef CONFIG_INOTIFY
12864 #if defined(TARGET_NR_inotify_init)
12865     case TARGET_NR_inotify_init:
12866         ret = get_errno(inotify_init());
12867         if (ret >= 0) {
12868             fd_trans_register(ret, &target_inotify_trans);
12869         }
12870         return ret;
12871 #endif
12872 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12873     case TARGET_NR_inotify_init1:
12874         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12875                                           fcntl_flags_tbl)));
12876         if (ret >= 0) {
12877             fd_trans_register(ret, &target_inotify_trans);
12878         }
12879         return ret;
12880 #endif
12881 #if defined(TARGET_NR_inotify_add_watch)
12882     case TARGET_NR_inotify_add_watch:
12883         p = lock_user_string(arg2);
12884         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12885         unlock_user(p, arg2, 0);
12886         return ret;
12887 #endif
12888 #if defined(TARGET_NR_inotify_rm_watch)
12889     case TARGET_NR_inotify_rm_watch:
12890         return get_errno(inotify_rm_watch(arg1, arg2));
12891 #endif
12892 #endif
12893 
12894 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12895     case TARGET_NR_mq_open:
12896         {
12897             struct mq_attr posix_mq_attr;
12898             struct mq_attr *pposix_mq_attr;
12899             int host_flags;
12900 
12901             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12902             pposix_mq_attr = NULL;
12903             if (arg4) {
12904                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12905                     return -TARGET_EFAULT;
12906                 }
12907                 pposix_mq_attr = &posix_mq_attr;
12908             }
12909             p = lock_user_string(arg1 - 1);
12910             if (!p) {
12911                 return -TARGET_EFAULT;
12912             }
12913             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12914             unlock_user (p, arg1, 0);
12915         }
12916         return ret;
12917 
12918     case TARGET_NR_mq_unlink:
12919         p = lock_user_string(arg1 - 1);
12920         if (!p) {
12921             return -TARGET_EFAULT;
12922         }
12923         ret = get_errno(mq_unlink(p));
12924         unlock_user (p, arg1, 0);
12925         return ret;
12926 
12927 #ifdef TARGET_NR_mq_timedsend
12928     case TARGET_NR_mq_timedsend:
12929         {
12930             struct timespec ts;
12931 
12932             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12933             if (arg5 != 0) {
12934                 if (target_to_host_timespec(&ts, arg5)) {
12935                     return -TARGET_EFAULT;
12936                 }
12937                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12938                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12939                     return -TARGET_EFAULT;
12940                 }
12941             } else {
12942                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12943             }
12944             unlock_user (p, arg2, arg3);
12945         }
12946         return ret;
12947 #endif
12948 #ifdef TARGET_NR_mq_timedsend_time64
12949     case TARGET_NR_mq_timedsend_time64:
12950         {
12951             struct timespec ts;
12952 
12953             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12954             if (arg5 != 0) {
12955                 if (target_to_host_timespec64(&ts, arg5)) {
12956                     return -TARGET_EFAULT;
12957                 }
12958                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12959                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12960                     return -TARGET_EFAULT;
12961                 }
12962             } else {
12963                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12964             }
12965             unlock_user(p, arg2, arg3);
12966         }
12967         return ret;
12968 #endif
12969 
12970 #ifdef TARGET_NR_mq_timedreceive
12971     case TARGET_NR_mq_timedreceive:
12972         {
12973             struct timespec ts;
12974             unsigned int prio;
12975 
12976             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12977             if (arg5 != 0) {
12978                 if (target_to_host_timespec(&ts, arg5)) {
12979                     return -TARGET_EFAULT;
12980                 }
12981                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12982                                                      &prio, &ts));
12983                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12984                     return -TARGET_EFAULT;
12985                 }
12986             } else {
12987                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12988                                                      &prio, NULL));
12989             }
12990             unlock_user (p, arg2, arg3);
12991             if (arg4 != 0)
12992                 put_user_u32(prio, arg4);
12993         }
12994         return ret;
12995 #endif
12996 #ifdef TARGET_NR_mq_timedreceive_time64
12997     case TARGET_NR_mq_timedreceive_time64:
12998         {
12999             struct timespec ts;
13000             unsigned int prio;
13001 
13002             p = lock_user(VERIFY_READ, arg2, arg3, 1);
13003             if (arg5 != 0) {
13004                 if (target_to_host_timespec64(&ts, arg5)) {
13005                     return -TARGET_EFAULT;
13006                 }
13007                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13008                                                      &prio, &ts));
13009                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13010                     return -TARGET_EFAULT;
13011                 }
13012             } else {
13013                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13014                                                      &prio, NULL));
13015             }
13016             unlock_user(p, arg2, arg3);
13017             if (arg4 != 0) {
13018                 put_user_u32(prio, arg4);
13019             }
13020         }
13021         return ret;
13022 #endif
13023 
13024     /* Not implemented for now... */
13025 /*     case TARGET_NR_mq_notify: */
13026 /*         break; */
13027 
13028     case TARGET_NR_mq_getsetattr:
13029         {
13030             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13031             ret = 0;
13032             if (arg2 != 0) {
13033                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13034                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13035                                            &posix_mq_attr_out));
13036             } else if (arg3 != 0) {
13037                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13038             }
13039             if (ret == 0 && arg3 != 0) {
13040                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13041             }
13042         }
13043         return ret;
13044 #endif
13045 
13046 #ifdef CONFIG_SPLICE
13047 #ifdef TARGET_NR_tee
13048     case TARGET_NR_tee:
13049         {
13050             ret = get_errno(tee(arg1,arg2,arg3,arg4));
13051         }
13052         return ret;
13053 #endif
13054 #ifdef TARGET_NR_splice
13055     case TARGET_NR_splice:
13056         {
13057             loff_t loff_in, loff_out;
13058             loff_t *ploff_in = NULL, *ploff_out = NULL;
13059             if (arg2) {
13060                 if (get_user_u64(loff_in, arg2)) {
13061                     return -TARGET_EFAULT;
13062                 }
13063                 ploff_in = &loff_in;
13064             }
13065             if (arg4) {
13066                 if (get_user_u64(loff_out, arg4)) {
13067                     return -TARGET_EFAULT;
13068                 }
13069                 ploff_out = &loff_out;
13070             }
13071             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13072             if (arg2) {
13073                 if (put_user_u64(loff_in, arg2)) {
13074                     return -TARGET_EFAULT;
13075                 }
13076             }
13077             if (arg4) {
13078                 if (put_user_u64(loff_out, arg4)) {
13079                     return -TARGET_EFAULT;
13080                 }
13081             }
13082         }
13083         return ret;
13084 #endif
13085 #ifdef TARGET_NR_vmsplice
13086 	case TARGET_NR_vmsplice:
13087         {
13088             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13089             if (vec != NULL) {
13090                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13091                 unlock_iovec(vec, arg2, arg3, 0);
13092             } else {
13093                 ret = -host_to_target_errno(errno);
13094             }
13095         }
13096         return ret;
13097 #endif
13098 #endif /* CONFIG_SPLICE */
13099 #ifdef CONFIG_EVENTFD
13100 #if defined(TARGET_NR_eventfd)
13101     case TARGET_NR_eventfd:
13102         ret = get_errno(eventfd(arg1, 0));
13103         if (ret >= 0) {
13104             fd_trans_register(ret, &target_eventfd_trans);
13105         }
13106         return ret;
13107 #endif
13108 #if defined(TARGET_NR_eventfd2)
13109     case TARGET_NR_eventfd2:
13110     {
13111         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13112         if (arg2 & TARGET_O_NONBLOCK) {
13113             host_flags |= O_NONBLOCK;
13114         }
13115         if (arg2 & TARGET_O_CLOEXEC) {
13116             host_flags |= O_CLOEXEC;
13117         }
13118         ret = get_errno(eventfd(arg1, host_flags));
13119         if (ret >= 0) {
13120             fd_trans_register(ret, &target_eventfd_trans);
13121         }
13122         return ret;
13123     }
13124 #endif
13125 #endif /* CONFIG_EVENTFD  */
13126 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13127     case TARGET_NR_fallocate:
13128 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13129         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13130                                   target_offset64(arg5, arg6)));
13131 #else
13132         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13133 #endif
13134         return ret;
13135 #endif
13136 #if defined(CONFIG_SYNC_FILE_RANGE)
13137 #if defined(TARGET_NR_sync_file_range)
13138     case TARGET_NR_sync_file_range:
13139 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13140 #if defined(TARGET_MIPS)
13141         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13142                                         target_offset64(arg5, arg6), arg7));
13143 #else
13144         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13145                                         target_offset64(arg4, arg5), arg6));
13146 #endif /* !TARGET_MIPS */
13147 #else
13148         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13149 #endif
13150         return ret;
13151 #endif
13152 #if defined(TARGET_NR_sync_file_range2) || \
13153     defined(TARGET_NR_arm_sync_file_range)
13154 #if defined(TARGET_NR_sync_file_range2)
13155     case TARGET_NR_sync_file_range2:
13156 #endif
13157 #if defined(TARGET_NR_arm_sync_file_range)
13158     case TARGET_NR_arm_sync_file_range:
13159 #endif
13160         /* This is like sync_file_range but the arguments are reordered */
13161 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13162         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13163                                         target_offset64(arg5, arg6), arg2));
13164 #else
13165         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13166 #endif
13167         return ret;
13168 #endif
13169 #endif
13170 #if defined(TARGET_NR_signalfd4)
13171     case TARGET_NR_signalfd4:
13172         return do_signalfd4(arg1, arg2, arg4);
13173 #endif
13174 #if defined(TARGET_NR_signalfd)
13175     case TARGET_NR_signalfd:
13176         return do_signalfd4(arg1, arg2, 0);
13177 #endif
13178 #if defined(CONFIG_EPOLL)
13179 #if defined(TARGET_NR_epoll_create)
13180     case TARGET_NR_epoll_create:
13181         return get_errno(epoll_create(arg1));
13182 #endif
13183 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13184     case TARGET_NR_epoll_create1:
13185         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13186 #endif
13187 #if defined(TARGET_NR_epoll_ctl)
13188     case TARGET_NR_epoll_ctl:
13189     {
13190         struct epoll_event ep;
13191         struct epoll_event *epp = 0;
13192         if (arg4) {
13193             if (arg2 != EPOLL_CTL_DEL) {
13194                 struct target_epoll_event *target_ep;
13195                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13196                     return -TARGET_EFAULT;
13197                 }
13198                 ep.events = tswap32(target_ep->events);
13199                 /*
13200                  * The epoll_data_t union is just opaque data to the kernel,
13201                  * so we transfer all 64 bits across and need not worry what
13202                  * actual data type it is.
13203                  */
13204                 ep.data.u64 = tswap64(target_ep->data.u64);
13205                 unlock_user_struct(target_ep, arg4, 0);
13206             }
13207             /*
13208              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13209              * non-null pointer, even though this argument is ignored.
13210              *
13211              */
13212             epp = &ep;
13213         }
13214         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13215     }
13216 #endif
13217 
13218 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13219 #if defined(TARGET_NR_epoll_wait)
13220     case TARGET_NR_epoll_wait:
13221 #endif
13222 #if defined(TARGET_NR_epoll_pwait)
13223     case TARGET_NR_epoll_pwait:
13224 #endif
13225     {
13226         struct target_epoll_event *target_ep;
13227         struct epoll_event *ep;
13228         int epfd = arg1;
13229         int maxevents = arg3;
13230         int timeout = arg4;
13231 
13232         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13233             return -TARGET_EINVAL;
13234         }
13235 
13236         target_ep = lock_user(VERIFY_WRITE, arg2,
13237                               maxevents * sizeof(struct target_epoll_event), 1);
13238         if (!target_ep) {
13239             return -TARGET_EFAULT;
13240         }
13241 
13242         ep = g_try_new(struct epoll_event, maxevents);
13243         if (!ep) {
13244             unlock_user(target_ep, arg2, 0);
13245             return -TARGET_ENOMEM;
13246         }
13247 
13248         switch (num) {
13249 #if defined(TARGET_NR_epoll_pwait)
13250         case TARGET_NR_epoll_pwait:
13251         {
13252             sigset_t *set = NULL;
13253 
13254             if (arg5) {
13255                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13256                 if (ret != 0) {
13257                     break;
13258                 }
13259             }
13260 
13261             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13262                                              set, SIGSET_T_SIZE));
13263 
13264             if (set) {
13265                 finish_sigsuspend_mask(ret);
13266             }
13267             break;
13268         }
13269 #endif
13270 #if defined(TARGET_NR_epoll_wait)
13271         case TARGET_NR_epoll_wait:
13272             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13273                                              NULL, 0));
13274             break;
13275 #endif
13276         default:
13277             ret = -TARGET_ENOSYS;
13278         }
13279         if (!is_error(ret)) {
13280             int i;
13281             for (i = 0; i < ret; i++) {
13282                 target_ep[i].events = tswap32(ep[i].events);
13283                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13284             }
13285             unlock_user(target_ep, arg2,
13286                         ret * sizeof(struct target_epoll_event));
13287         } else {
13288             unlock_user(target_ep, arg2, 0);
13289         }
13290         g_free(ep);
13291         return ret;
13292     }
13293 #endif
13294 #endif
13295 #ifdef TARGET_NR_prlimit64
13296     case TARGET_NR_prlimit64:
13297     {
13298         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13299         struct target_rlimit64 *target_rnew, *target_rold;
13300         struct host_rlimit64 rnew, rold, *rnewp = 0;
13301         int resource = target_to_host_resource(arg2);
13302 
13303         if (arg3 && (resource != RLIMIT_AS &&
13304                      resource != RLIMIT_DATA &&
13305                      resource != RLIMIT_STACK)) {
13306             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13307                 return -TARGET_EFAULT;
13308             }
13309             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13310             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13311             unlock_user_struct(target_rnew, arg3, 0);
13312             rnewp = &rnew;
13313         }
13314 
13315         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13316         if (!is_error(ret) && arg4) {
13317             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13318                 return -TARGET_EFAULT;
13319             }
13320             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13321             __put_user(rold.rlim_max, &target_rold->rlim_max);
13322             unlock_user_struct(target_rold, arg4, 1);
13323         }
13324         return ret;
13325     }
13326 #endif
13327 #ifdef TARGET_NR_gethostname
13328     case TARGET_NR_gethostname:
13329     {
13330         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13331         if (name) {
13332             ret = get_errno(gethostname(name, arg2));
13333             unlock_user(name, arg1, arg2);
13334         } else {
13335             ret = -TARGET_EFAULT;
13336         }
13337         return ret;
13338     }
13339 #endif
13340 #ifdef TARGET_NR_atomic_cmpxchg_32
13341     case TARGET_NR_atomic_cmpxchg_32:
13342     {
13343         /* should use start_exclusive from main.c */
13344         abi_ulong mem_value;
13345         if (get_user_u32(mem_value, arg6)) {
13346             target_siginfo_t info;
13347             info.si_signo = SIGSEGV;
13348             info.si_errno = 0;
13349             info.si_code = TARGET_SEGV_MAPERR;
13350             info._sifields._sigfault._addr = arg6;
13351             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13352             ret = 0xdeadbeef;
13353 
13354         }
13355         if (mem_value == arg2)
13356             put_user_u32(arg1, arg6);
13357         return mem_value;
13358     }
13359 #endif
13360 #ifdef TARGET_NR_atomic_barrier
13361     case TARGET_NR_atomic_barrier:
13362         /* Like the kernel implementation and the
13363            qemu arm barrier, no-op this? */
13364         return 0;
13365 #endif
13366 
13367 #ifdef TARGET_NR_timer_create
13368     case TARGET_NR_timer_create:
13369     {
13370         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13371 
13372         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13373 
13374         int clkid = arg1;
13375         int timer_index = next_free_host_timer();
13376 
13377         if (timer_index < 0) {
13378             ret = -TARGET_EAGAIN;
13379         } else {
13380             timer_t *phtimer = g_posix_timers  + timer_index;
13381 
13382             if (arg2) {
13383                 phost_sevp = &host_sevp;
13384                 ret = target_to_host_sigevent(phost_sevp, arg2);
13385                 if (ret != 0) {
13386                     free_host_timer_slot(timer_index);
13387                     return ret;
13388                 }
13389             }
13390 
13391             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13392             if (ret) {
13393                 free_host_timer_slot(timer_index);
13394             } else {
13395                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13396                     timer_delete(*phtimer);
13397                     free_host_timer_slot(timer_index);
13398                     return -TARGET_EFAULT;
13399                 }
13400             }
13401         }
13402         return ret;
13403     }
13404 #endif
13405 
13406 #ifdef TARGET_NR_timer_settime
13407     case TARGET_NR_timer_settime:
13408     {
13409         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13410          * struct itimerspec * old_value */
13411         target_timer_t timerid = get_timer_id(arg1);
13412 
13413         if (timerid < 0) {
13414             ret = timerid;
13415         } else if (arg3 == 0) {
13416             ret = -TARGET_EINVAL;
13417         } else {
13418             timer_t htimer = g_posix_timers[timerid];
13419             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13420 
13421             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13422                 return -TARGET_EFAULT;
13423             }
13424             ret = get_errno(
13425                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13426             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13427                 return -TARGET_EFAULT;
13428             }
13429         }
13430         return ret;
13431     }
13432 #endif
13433 
13434 #ifdef TARGET_NR_timer_settime64
13435     case TARGET_NR_timer_settime64:
13436     {
13437         target_timer_t timerid = get_timer_id(arg1);
13438 
13439         if (timerid < 0) {
13440             ret = timerid;
13441         } else if (arg3 == 0) {
13442             ret = -TARGET_EINVAL;
13443         } else {
13444             timer_t htimer = g_posix_timers[timerid];
13445             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13446 
13447             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13448                 return -TARGET_EFAULT;
13449             }
13450             ret = get_errno(
13451                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13452             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13453                 return -TARGET_EFAULT;
13454             }
13455         }
13456         return ret;
13457     }
13458 #endif
13459 
13460 #ifdef TARGET_NR_timer_gettime
13461     case TARGET_NR_timer_gettime:
13462     {
13463         /* args: timer_t timerid, struct itimerspec *curr_value */
13464         target_timer_t timerid = get_timer_id(arg1);
13465 
13466         if (timerid < 0) {
13467             ret = timerid;
13468         } else if (!arg2) {
13469             ret = -TARGET_EFAULT;
13470         } else {
13471             timer_t htimer = g_posix_timers[timerid];
13472             struct itimerspec hspec;
13473             ret = get_errno(timer_gettime(htimer, &hspec));
13474 
13475             if (host_to_target_itimerspec(arg2, &hspec)) {
13476                 ret = -TARGET_EFAULT;
13477             }
13478         }
13479         return ret;
13480     }
13481 #endif
13482 
13483 #ifdef TARGET_NR_timer_gettime64
13484     case TARGET_NR_timer_gettime64:
13485     {
13486         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13487         target_timer_t timerid = get_timer_id(arg1);
13488 
13489         if (timerid < 0) {
13490             ret = timerid;
13491         } else if (!arg2) {
13492             ret = -TARGET_EFAULT;
13493         } else {
13494             timer_t htimer = g_posix_timers[timerid];
13495             struct itimerspec hspec;
13496             ret = get_errno(timer_gettime(htimer, &hspec));
13497 
13498             if (host_to_target_itimerspec64(arg2, &hspec)) {
13499                 ret = -TARGET_EFAULT;
13500             }
13501         }
13502         return ret;
13503     }
13504 #endif
13505 
13506 #ifdef TARGET_NR_timer_getoverrun
13507     case TARGET_NR_timer_getoverrun:
13508     {
13509         /* args: timer_t timerid */
13510         target_timer_t timerid = get_timer_id(arg1);
13511 
13512         if (timerid < 0) {
13513             ret = timerid;
13514         } else {
13515             timer_t htimer = g_posix_timers[timerid];
13516             ret = get_errno(timer_getoverrun(htimer));
13517         }
13518         return ret;
13519     }
13520 #endif
13521 
13522 #ifdef TARGET_NR_timer_delete
13523     case TARGET_NR_timer_delete:
13524     {
13525         /* args: timer_t timerid */
13526         target_timer_t timerid = get_timer_id(arg1);
13527 
13528         if (timerid < 0) {
13529             ret = timerid;
13530         } else {
13531             timer_t htimer = g_posix_timers[timerid];
13532             ret = get_errno(timer_delete(htimer));
13533             free_host_timer_slot(timerid);
13534         }
13535         return ret;
13536     }
13537 #endif
13538 
13539 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13540     case TARGET_NR_timerfd_create:
13541         ret = get_errno(timerfd_create(arg1,
13542                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13543         if (ret >= 0) {
13544             fd_trans_register(ret, &target_timerfd_trans);
13545         }
13546         return ret;
13547 #endif
13548 
13549 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13550     case TARGET_NR_timerfd_gettime:
13551         {
13552             struct itimerspec its_curr;
13553 
13554             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13555 
13556             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13557                 return -TARGET_EFAULT;
13558             }
13559         }
13560         return ret;
13561 #endif
13562 
13563 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13564     case TARGET_NR_timerfd_gettime64:
13565         {
13566             struct itimerspec its_curr;
13567 
13568             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13569 
13570             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13571                 return -TARGET_EFAULT;
13572             }
13573         }
13574         return ret;
13575 #endif
13576 
13577 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13578     case TARGET_NR_timerfd_settime:
13579         {
13580             struct itimerspec its_new, its_old, *p_new;
13581 
13582             if (arg3) {
13583                 if (target_to_host_itimerspec(&its_new, arg3)) {
13584                     return -TARGET_EFAULT;
13585                 }
13586                 p_new = &its_new;
13587             } else {
13588                 p_new = NULL;
13589             }
13590 
13591             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13592 
13593             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13594                 return -TARGET_EFAULT;
13595             }
13596         }
13597         return ret;
13598 #endif
13599 
13600 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13601     case TARGET_NR_timerfd_settime64:
13602         {
13603             struct itimerspec its_new, its_old, *p_new;
13604 
13605             if (arg3) {
13606                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13607                     return -TARGET_EFAULT;
13608                 }
13609                 p_new = &its_new;
13610             } else {
13611                 p_new = NULL;
13612             }
13613 
13614             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13615 
13616             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13617                 return -TARGET_EFAULT;
13618             }
13619         }
13620         return ret;
13621 #endif
13622 
13623 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13624     case TARGET_NR_ioprio_get:
13625         return get_errno(ioprio_get(arg1, arg2));
13626 #endif
13627 
13628 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13629     case TARGET_NR_ioprio_set:
13630         return get_errno(ioprio_set(arg1, arg2, arg3));
13631 #endif
13632 
13633 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13634     case TARGET_NR_setns:
13635         return get_errno(setns(arg1, arg2));
13636 #endif
13637 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13638     case TARGET_NR_unshare:
13639         return get_errno(unshare(arg1));
13640 #endif
13641 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13642     case TARGET_NR_kcmp:
13643         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13644 #endif
13645 #ifdef TARGET_NR_swapcontext
13646     case TARGET_NR_swapcontext:
13647         /* PowerPC specific.  */
13648         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13649 #endif
13650 #ifdef TARGET_NR_memfd_create
13651     case TARGET_NR_memfd_create:
13652         p = lock_user_string(arg1);
13653         if (!p) {
13654             return -TARGET_EFAULT;
13655         }
13656         ret = get_errno(memfd_create(p, arg2));
13657         fd_trans_unregister(ret);
13658         unlock_user(p, arg1, 0);
13659         return ret;
13660 #endif
13661 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13662     case TARGET_NR_membarrier:
13663         return get_errno(membarrier(arg1, arg2));
13664 #endif
13665 
13666 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13667     case TARGET_NR_copy_file_range:
13668         {
13669             loff_t inoff, outoff;
13670             loff_t *pinoff = NULL, *poutoff = NULL;
13671 
13672             if (arg2) {
13673                 if (get_user_u64(inoff, arg2)) {
13674                     return -TARGET_EFAULT;
13675                 }
13676                 pinoff = &inoff;
13677             }
13678             if (arg4) {
13679                 if (get_user_u64(outoff, arg4)) {
13680                     return -TARGET_EFAULT;
13681                 }
13682                 poutoff = &outoff;
13683             }
13684             /* Do not sign-extend the count parameter. */
13685             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13686                                                  (abi_ulong)arg5, arg6));
13687             if (!is_error(ret) && ret > 0) {
13688                 if (arg2) {
13689                     if (put_user_u64(inoff, arg2)) {
13690                         return -TARGET_EFAULT;
13691                     }
13692                 }
13693                 if (arg4) {
13694                     if (put_user_u64(outoff, arg4)) {
13695                         return -TARGET_EFAULT;
13696                     }
13697                 }
13698             }
13699         }
13700         return ret;
13701 #endif
13702 
13703 #if defined(TARGET_NR_pivot_root)
13704     case TARGET_NR_pivot_root:
13705         {
13706             void *p2;
13707             p = lock_user_string(arg1); /* new_root */
13708             p2 = lock_user_string(arg2); /* put_old */
13709             if (!p || !p2) {
13710                 ret = -TARGET_EFAULT;
13711             } else {
13712                 ret = get_errno(pivot_root(p, p2));
13713             }
13714             unlock_user(p2, arg2, 0);
13715             unlock_user(p, arg1, 0);
13716         }
13717         return ret;
13718 #endif
13719 
13720 #if defined(TARGET_NR_riscv_hwprobe)
13721     case TARGET_NR_riscv_hwprobe:
13722         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13723 #endif
13724 
13725     default:
13726         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13727         return -TARGET_ENOSYS;
13728     }
13729     return ret;
13730 }
13731 
13732 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13733                     abi_long arg2, abi_long arg3, abi_long arg4,
13734                     abi_long arg5, abi_long arg6, abi_long arg7,
13735                     abi_long arg8)
13736 {
13737     CPUState *cpu = env_cpu(cpu_env);
13738     abi_long ret;
13739 
13740 #ifdef DEBUG_ERESTARTSYS
13741     /* Debug-only code for exercising the syscall-restart code paths
13742      * in the per-architecture cpu main loops: restart every syscall
13743      * the guest makes once before letting it through.
13744      */
13745     {
13746         static bool flag;
13747         flag = !flag;
13748         if (flag) {
13749             return -QEMU_ERESTARTSYS;
13750         }
13751     }
13752 #endif
13753 
13754     record_syscall_start(cpu, num, arg1,
13755                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13756 
13757     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13758         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13759     }
13760 
13761     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13762                       arg5, arg6, arg7, arg8);
13763 
13764     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13765         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13766                           arg3, arg4, arg5, arg6);
13767     }
13768 
13769     record_syscall_return(cpu, num, ret);
13770     return ret;
13771 }
13772