1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include "qemu/memfd.h" 24 #include "qemu/queue.h" 25 #include "qemu/plugin.h" 26 #include "tcg/startup.h" 27 #include "target_mman.h" 28 #include <elf.h> 29 #include <endian.h> 30 #include <grp.h> 31 #include <sys/ipc.h> 32 #include <sys/msg.h> 33 #include <sys/wait.h> 34 #include <sys/mount.h> 35 #include <sys/file.h> 36 #include <sys/fsuid.h> 37 #include <sys/personality.h> 38 #include <sys/prctl.h> 39 #include <sys/resource.h> 40 #include <sys/swap.h> 41 #include <linux/capability.h> 42 #include <sched.h> 43 #include <sys/timex.h> 44 #include <sys/socket.h> 45 #include <linux/sockios.h> 46 #include <sys/un.h> 47 #include <sys/uio.h> 48 #include <poll.h> 49 #include <sys/times.h> 50 #include <sys/shm.h> 51 #include <sys/sem.h> 52 #include <sys/statfs.h> 53 #include <utime.h> 54 #include <sys/sysinfo.h> 55 #include <sys/signalfd.h> 56 //#include <sys/user.h> 57 #include <netinet/in.h> 58 #include <netinet/ip.h> 59 #include <netinet/tcp.h> 60 #include <netinet/udp.h> 61 #include <linux/wireless.h> 62 #include <linux/icmp.h> 63 #include <linux/icmpv6.h> 64 #include <linux/if_tun.h> 65 #include <linux/in6.h> 66 #include <linux/errqueue.h> 67 #include <linux/random.h> 68 #ifdef CONFIG_TIMERFD 69 #include <sys/timerfd.h> 70 #endif 71 #ifdef CONFIG_EVENTFD 72 #include <sys/eventfd.h> 73 #endif 74 #ifdef CONFIG_EPOLL 75 #include <sys/epoll.h> 76 #endif 77 #ifdef CONFIG_ATTR 78 #include "qemu/xattr.h" 79 #endif 80 #ifdef CONFIG_SENDFILE 81 #include <sys/sendfile.h> 82 #endif 83 #ifdef HAVE_SYS_KCOV_H 84 #include <sys/kcov.h> 85 #endif 86 87 #define termios host_termios 88 #define winsize host_winsize 89 #define termio host_termio 90 #define sgttyb host_sgttyb /* same as target */ 91 #define tchars host_tchars /* same as target */ 92 #define ltchars host_ltchars /* same as target */ 93 94 #include <linux/termios.h> 95 #include <linux/unistd.h> 96 #include <linux/cdrom.h> 97 #include <linux/hdreg.h> 98 #include <linux/soundcard.h> 99 #include <linux/kd.h> 100 #include <linux/mtio.h> 101 #include <linux/fs.h> 102 #include <linux/fd.h> 103 #if defined(CONFIG_FIEMAP) 104 #include <linux/fiemap.h> 105 #endif 106 #include <linux/fb.h> 107 #if defined(CONFIG_USBFS) 108 #include <linux/usbdevice_fs.h> 109 #include <linux/usb/ch9.h> 110 #endif 111 #include <linux/vt.h> 112 #include <linux/dm-ioctl.h> 113 #include <linux/reboot.h> 114 #include <linux/route.h> 115 #include <linux/filter.h> 116 #include <linux/blkpg.h> 117 #include <netpacket/packet.h> 118 #include <linux/netlink.h> 119 #include <linux/if_alg.h> 120 #include <linux/rtc.h> 121 #include <sound/asound.h> 122 #ifdef HAVE_BTRFS_H 123 #include <linux/btrfs.h> 124 #endif 125 #ifdef HAVE_DRM_H 126 #include <libdrm/drm.h> 127 #include <libdrm/i915_drm.h> 128 #endif 129 #include "linux_loop.h" 130 #include "uname.h" 131 132 #include "qemu.h" 133 #include "user-internals.h" 134 #include "strace.h" 135 #include "signal-common.h" 136 #include "loader.h" 137 #include "user-mmap.h" 138 #include "user/safe-syscall.h" 139 #include "qemu/guest-random.h" 140 #include "qemu/selfmap.h" 141 #include "user/syscall-trace.h" 142 #include "special-errno.h" 143 #include "qapi/error.h" 144 #include "fd-trans.h" 145 #include "cpu_loop-common.h" 146 147 #ifndef CLONE_IO 148 #define CLONE_IO 0x80000000 /* Clone io context */ 149 #endif 150 151 /* We can't directly call the host clone syscall, because this will 152 * badly confuse libc (breaking mutexes, for example). So we must 153 * divide clone flags into: 154 * * flag combinations that look like pthread_create() 155 * * flag combinations that look like fork() 156 * * flags we can implement within QEMU itself 157 * * flags we can't support and will return an error for 158 */ 159 /* For thread creation, all these flags must be present; for 160 * fork, none must be present. 161 */ 162 #define CLONE_THREAD_FLAGS \ 163 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 164 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 165 166 /* These flags are ignored: 167 * CLONE_DETACHED is now ignored by the kernel; 168 * CLONE_IO is just an optimisation hint to the I/O scheduler 169 */ 170 #define CLONE_IGNORED_FLAGS \ 171 (CLONE_DETACHED | CLONE_IO) 172 173 #ifndef CLONE_PIDFD 174 # define CLONE_PIDFD 0x00001000 175 #endif 176 177 /* Flags for fork which we can implement within QEMU itself */ 178 #define CLONE_OPTIONAL_FORK_FLAGS \ 179 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \ 180 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 181 182 /* Flags for thread creation which we can implement within QEMU itself */ 183 #define CLONE_OPTIONAL_THREAD_FLAGS \ 184 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 185 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 186 187 #define CLONE_INVALID_FORK_FLAGS \ 188 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 189 190 #define CLONE_INVALID_THREAD_FLAGS \ 191 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 192 CLONE_IGNORED_FLAGS)) 193 194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 195 * have almost all been allocated. We cannot support any of 196 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 197 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 198 * The checks against the invalid thread masks above will catch these. 199 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 200 */ 201 202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 203 * once. This exercises the codepaths for restart. 204 */ 205 //#define DEBUG_ERESTARTSYS 206 207 //#include <linux/msdos_fs.h> 208 #define VFAT_IOCTL_READDIR_BOTH \ 209 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2) 210 #define VFAT_IOCTL_READDIR_SHORT \ 211 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2) 212 213 #undef _syscall0 214 #undef _syscall1 215 #undef _syscall2 216 #undef _syscall3 217 #undef _syscall4 218 #undef _syscall5 219 #undef _syscall6 220 221 #define _syscall0(type,name) \ 222 static type name (void) \ 223 { \ 224 return syscall(__NR_##name); \ 225 } 226 227 #define _syscall1(type,name,type1,arg1) \ 228 static type name (type1 arg1) \ 229 { \ 230 return syscall(__NR_##name, arg1); \ 231 } 232 233 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 234 static type name (type1 arg1,type2 arg2) \ 235 { \ 236 return syscall(__NR_##name, arg1, arg2); \ 237 } 238 239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 240 static type name (type1 arg1,type2 arg2,type3 arg3) \ 241 { \ 242 return syscall(__NR_##name, arg1, arg2, arg3); \ 243 } 244 245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 247 { \ 248 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 249 } 250 251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 252 type5,arg5) \ 253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 254 { \ 255 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 256 } 257 258 259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 260 type5,arg5,type6,arg6) \ 261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 262 type6 arg6) \ 263 { \ 264 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 265 } 266 267 268 #define __NR_sys_uname __NR_uname 269 #define __NR_sys_getcwd1 __NR_getcwd 270 #define __NR_sys_getdents __NR_getdents 271 #define __NR_sys_getdents64 __NR_getdents64 272 #define __NR_sys_getpriority __NR_getpriority 273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 275 #define __NR_sys_syslog __NR_syslog 276 #if defined(__NR_futex) 277 # define __NR_sys_futex __NR_futex 278 #endif 279 #if defined(__NR_futex_time64) 280 # define __NR_sys_futex_time64 __NR_futex_time64 281 #endif 282 #define __NR_sys_statx __NR_statx 283 284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 285 #define __NR__llseek __NR_lseek 286 #endif 287 288 /* Newer kernel ports have llseek() instead of _llseek() */ 289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 290 #define TARGET_NR__llseek TARGET_NR_llseek 291 #endif 292 293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */ 294 #ifndef TARGET_O_NONBLOCK_MASK 295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK 296 #endif 297 298 #define __NR_sys_gettid __NR_gettid 299 _syscall0(int, sys_gettid) 300 301 /* For the 64-bit guest on 32-bit host case we must emulate 302 * getdents using getdents64, because otherwise the host 303 * might hand us back more dirent records than we can fit 304 * into the guest buffer after structure format conversion. 305 * Otherwise we emulate getdents with getdents if the host has it. 306 */ 307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS 308 #define EMULATE_GETDENTS_WITH_GETDENTS 309 #endif 310 311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS) 312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count); 313 #endif 314 #if (defined(TARGET_NR_getdents) && \ 315 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \ 316 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count); 318 #endif 319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 320 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo, 321 loff_t *, res, unsigned int, wh); 322 #endif 323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 325 siginfo_t *, uinfo) 326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 327 #ifdef __NR_exit_group 328 _syscall1(int,exit_group,int,error_code) 329 #endif 330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 331 #define __NR_sys_close_range __NR_close_range 332 _syscall3(int,sys_close_range,int,first,int,last,int,flags) 333 #ifndef CLOSE_RANGE_CLOEXEC 334 #define CLOSE_RANGE_CLOEXEC (1U << 2) 335 #endif 336 #endif 337 #if defined(__NR_futex) 338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 339 const struct timespec *,timeout,int *,uaddr2,int,val3) 340 #endif 341 #if defined(__NR_futex_time64) 342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val, 343 const struct timespec *,timeout,int *,uaddr2,int,val3) 344 #endif 345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags); 347 #endif 348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info, 350 unsigned int, flags); 351 #endif 352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags); 354 #endif 355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 357 unsigned long *, user_mask_ptr); 358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 360 unsigned long *, user_mask_ptr); 361 /* sched_attr is not defined in glibc */ 362 struct sched_attr { 363 uint32_t size; 364 uint32_t sched_policy; 365 uint64_t sched_flags; 366 int32_t sched_nice; 367 uint32_t sched_priority; 368 uint64_t sched_runtime; 369 uint64_t sched_deadline; 370 uint64_t sched_period; 371 uint32_t sched_util_min; 372 uint32_t sched_util_max; 373 }; 374 #define __NR_sys_sched_getattr __NR_sched_getattr 375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr, 376 unsigned int, size, unsigned int, flags); 377 #define __NR_sys_sched_setattr __NR_sched_setattr 378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr, 379 unsigned int, flags); 380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler 381 _syscall1(int, sys_sched_getscheduler, pid_t, pid); 382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler 383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy, 384 const struct sched_param *, param); 385 #define __NR_sys_sched_getparam __NR_sched_getparam 386 _syscall2(int, sys_sched_getparam, pid_t, pid, 387 struct sched_param *, param); 388 #define __NR_sys_sched_setparam __NR_sched_setparam 389 _syscall2(int, sys_sched_setparam, pid_t, pid, 390 const struct sched_param *, param); 391 #define __NR_sys_getcpu __NR_getcpu 392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 394 void *, arg); 395 _syscall2(int, capget, struct __user_cap_header_struct *, header, 396 struct __user_cap_data_struct *, data); 397 _syscall2(int, capset, struct __user_cap_header_struct *, header, 398 struct __user_cap_data_struct *, data); 399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 400 _syscall2(int, ioprio_get, int, which, int, who) 401 #endif 402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 404 #endif 405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 407 #endif 408 409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 411 unsigned long, idx1, unsigned long, idx2) 412 #endif 413 414 /* 415 * It is assumed that struct statx is architecture independent. 416 */ 417 #if defined(TARGET_NR_statx) && defined(__NR_statx) 418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags, 419 unsigned int, mask, struct target_statx *, statxbuf) 420 #endif 421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier) 422 _syscall2(int, membarrier, int, cmd, int, flags) 423 #endif 424 425 static const bitmask_transtbl fcntl_flags_tbl[] = { 426 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 427 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 428 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 429 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 430 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 431 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 432 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 433 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 434 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 435 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 436 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 437 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 438 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 439 #if defined(O_DIRECT) 440 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 441 #endif 442 #if defined(O_NOATIME) 443 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 444 #endif 445 #if defined(O_CLOEXEC) 446 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 447 #endif 448 #if defined(O_PATH) 449 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 450 #endif 451 #if defined(O_TMPFILE) 452 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 453 #endif 454 /* Don't terminate the list prematurely on 64-bit host+guest. */ 455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 456 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 457 #endif 458 }; 459 460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size) 461 462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64) 463 #if defined(__NR_utimensat) 464 #define __NR_sys_utimensat __NR_utimensat 465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 466 const struct timespec *,tsp,int,flags) 467 #else 468 static int sys_utimensat(int dirfd, const char *pathname, 469 const struct timespec times[2], int flags) 470 { 471 errno = ENOSYS; 472 return -1; 473 } 474 #endif 475 #endif /* TARGET_NR_utimensat */ 476 477 #ifdef TARGET_NR_renameat2 478 #if defined(__NR_renameat2) 479 #define __NR_sys_renameat2 __NR_renameat2 480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 481 const char *, new, unsigned int, flags) 482 #else 483 static int sys_renameat2(int oldfd, const char *old, 484 int newfd, const char *new, int flags) 485 { 486 if (flags == 0) { 487 return renameat(oldfd, old, newfd, new); 488 } 489 errno = ENOSYS; 490 return -1; 491 } 492 #endif 493 #endif /* TARGET_NR_renameat2 */ 494 495 #ifdef CONFIG_INOTIFY 496 #include <sys/inotify.h> 497 #else 498 /* Userspace can usually survive runtime without inotify */ 499 #undef TARGET_NR_inotify_init 500 #undef TARGET_NR_inotify_init1 501 #undef TARGET_NR_inotify_add_watch 502 #undef TARGET_NR_inotify_rm_watch 503 #endif /* CONFIG_INOTIFY */ 504 505 #if defined(TARGET_NR_prlimit64) 506 #ifndef __NR_prlimit64 507 # define __NR_prlimit64 -1 508 #endif 509 #define __NR_sys_prlimit64 __NR_prlimit64 510 /* The glibc rlimit structure may not be that used by the underlying syscall */ 511 struct host_rlimit64 { 512 uint64_t rlim_cur; 513 uint64_t rlim_max; 514 }; 515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 516 const struct host_rlimit64 *, new_limit, 517 struct host_rlimit64 *, old_limit) 518 #endif 519 520 521 #if defined(TARGET_NR_timer_create) 522 /* Maximum of 32 active POSIX timers allowed at any one time. */ 523 #define GUEST_TIMER_MAX 32 524 static timer_t g_posix_timers[GUEST_TIMER_MAX]; 525 static int g_posix_timer_allocated[GUEST_TIMER_MAX]; 526 527 static inline int next_free_host_timer(void) 528 { 529 int k; 530 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) { 531 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) { 532 return k; 533 } 534 } 535 return -1; 536 } 537 538 static inline void free_host_timer_slot(int id) 539 { 540 qatomic_store_release(g_posix_timer_allocated + id, 0); 541 } 542 #endif 543 544 static inline int host_to_target_errno(int host_errno) 545 { 546 switch (host_errno) { 547 #define E(X) case X: return TARGET_##X; 548 #include "errnos.c.inc" 549 #undef E 550 default: 551 return host_errno; 552 } 553 } 554 555 static inline int target_to_host_errno(int target_errno) 556 { 557 switch (target_errno) { 558 #define E(X) case TARGET_##X: return X; 559 #include "errnos.c.inc" 560 #undef E 561 default: 562 return target_errno; 563 } 564 } 565 566 abi_long get_errno(abi_long ret) 567 { 568 if (ret == -1) 569 return -host_to_target_errno(errno); 570 else 571 return ret; 572 } 573 574 const char *target_strerror(int err) 575 { 576 if (err == QEMU_ERESTARTSYS) { 577 return "To be restarted"; 578 } 579 if (err == QEMU_ESIGRETURN) { 580 return "Successful exit from sigreturn"; 581 } 582 583 return strerror(target_to_host_errno(err)); 584 } 585 586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize) 587 { 588 int i; 589 uint8_t b; 590 if (usize <= ksize) { 591 return 1; 592 } 593 for (i = ksize; i < usize; i++) { 594 if (get_user_u8(b, addr + i)) { 595 return -TARGET_EFAULT; 596 } 597 if (b != 0) { 598 return 0; 599 } 600 } 601 return 1; 602 } 603 604 #define safe_syscall0(type, name) \ 605 static type safe_##name(void) \ 606 { \ 607 return safe_syscall(__NR_##name); \ 608 } 609 610 #define safe_syscall1(type, name, type1, arg1) \ 611 static type safe_##name(type1 arg1) \ 612 { \ 613 return safe_syscall(__NR_##name, arg1); \ 614 } 615 616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 617 static type safe_##name(type1 arg1, type2 arg2) \ 618 { \ 619 return safe_syscall(__NR_##name, arg1, arg2); \ 620 } 621 622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 624 { \ 625 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 626 } 627 628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 629 type4, arg4) \ 630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 631 { \ 632 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 633 } 634 635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 636 type4, arg4, type5, arg5) \ 637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 638 type5 arg5) \ 639 { \ 640 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 641 } 642 643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 644 type4, arg4, type5, arg5, type6, arg6) \ 645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 646 type5 arg5, type6 arg6) \ 647 { \ 648 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 649 } 650 651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 654 int, flags, mode_t, mode) 655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid) 656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 657 struct rusage *, rusage) 658 #endif 659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 660 int, options, struct rusage *, rusage) 661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 662 safe_syscall5(int, execveat, int, dirfd, const char *, filename, 663 char **, argv, char **, envp, int, flags) 664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 665 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 667 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 668 #endif 669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64) 670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 671 struct timespec *, tsp, const sigset_t *, sigmask, 672 size_t, sigsetsize) 673 #endif 674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 675 int, maxevents, int, timeout, const sigset_t *, sigmask, 676 size_t, sigsetsize) 677 #if defined(__NR_futex) 678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 679 const struct timespec *,timeout,int *,uaddr2,int,val3) 680 #endif 681 #if defined(__NR_futex_time64) 682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \ 683 const struct timespec *,timeout,int *,uaddr2,int,val3) 684 #endif 685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 686 safe_syscall2(int, kill, pid_t, pid, int, sig) 687 safe_syscall2(int, tkill, int, tid, int, sig) 688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 692 unsigned long, pos_l, unsigned long, pos_h) 693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 694 unsigned long, pos_l, unsigned long, pos_h) 695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 696 socklen_t, addrlen) 697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 698 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 700 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 703 safe_syscall2(int, flock, int, fd, int, operation) 704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64) 705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 706 const struct timespec *, uts, size_t, sigsetsize) 707 #endif 708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 709 int, flags) 710 #if defined(TARGET_NR_nanosleep) 711 safe_syscall2(int, nanosleep, const struct timespec *, req, 712 struct timespec *, rem) 713 #endif 714 #if defined(TARGET_NR_clock_nanosleep) || \ 715 defined(TARGET_NR_clock_nanosleep_time64) 716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 717 const struct timespec *, req, struct timespec *, rem) 718 #endif 719 #ifdef __NR_ipc 720 #ifdef __s390x__ 721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third, 722 void *, ptr) 723 #else 724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 725 void *, ptr, long, fifth) 726 #endif 727 #endif 728 #ifdef __NR_msgsnd 729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 730 int, flags) 731 #endif 732 #ifdef __NR_msgrcv 733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 734 long, msgtype, int, flags) 735 #endif 736 #ifdef __NR_semtimedop 737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 738 unsigned, nsops, const struct timespec *, timeout) 739 #endif 740 #if defined(TARGET_NR_mq_timedsend) || \ 741 defined(TARGET_NR_mq_timedsend_time64) 742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 743 size_t, len, unsigned, prio, const struct timespec *, timeout) 744 #endif 745 #if defined(TARGET_NR_mq_timedreceive) || \ 746 defined(TARGET_NR_mq_timedreceive_time64) 747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 748 size_t, len, unsigned *, prio, const struct timespec *, timeout) 749 #endif 750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff, 752 int, outfd, loff_t *, poutoff, size_t, length, 753 unsigned int, flags) 754 #endif 755 756 /* We do ioctl like this rather than via safe_syscall3 to preserve the 757 * "third argument might be integer or pointer or not present" behaviour of 758 * the libc function. 759 */ 760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 761 /* Similarly for fcntl. Note that callers must always: 762 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 763 * use the flock64 struct rather than unsuffixed flock 764 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 765 */ 766 #ifdef __NR_fcntl64 767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 768 #else 769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 770 #endif 771 772 static inline int host_to_target_sock_type(int host_type) 773 { 774 int target_type; 775 776 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 777 case SOCK_DGRAM: 778 target_type = TARGET_SOCK_DGRAM; 779 break; 780 case SOCK_STREAM: 781 target_type = TARGET_SOCK_STREAM; 782 break; 783 default: 784 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 785 break; 786 } 787 788 #if defined(SOCK_CLOEXEC) 789 if (host_type & SOCK_CLOEXEC) { 790 target_type |= TARGET_SOCK_CLOEXEC; 791 } 792 #endif 793 794 #if defined(SOCK_NONBLOCK) 795 if (host_type & SOCK_NONBLOCK) { 796 target_type |= TARGET_SOCK_NONBLOCK; 797 } 798 #endif 799 800 return target_type; 801 } 802 803 static abi_ulong target_brk, initial_target_brk; 804 805 void target_set_brk(abi_ulong new_brk) 806 { 807 target_brk = TARGET_PAGE_ALIGN(new_brk); 808 initial_target_brk = target_brk; 809 } 810 811 /* do_brk() must return target values and target errnos. */ 812 abi_long do_brk(abi_ulong brk_val) 813 { 814 abi_long mapped_addr; 815 abi_ulong new_brk; 816 abi_ulong old_brk; 817 818 /* brk pointers are always untagged */ 819 820 /* do not allow to shrink below initial brk value */ 821 if (brk_val < initial_target_brk) { 822 return target_brk; 823 } 824 825 new_brk = TARGET_PAGE_ALIGN(brk_val); 826 old_brk = TARGET_PAGE_ALIGN(target_brk); 827 828 /* new and old target_brk might be on the same page */ 829 if (new_brk == old_brk) { 830 target_brk = brk_val; 831 return target_brk; 832 } 833 834 /* Release heap if necessary */ 835 if (new_brk < old_brk) { 836 target_munmap(new_brk, old_brk - new_brk); 837 838 target_brk = brk_val; 839 return target_brk; 840 } 841 842 mapped_addr = target_mmap(old_brk, new_brk - old_brk, 843 PROT_READ | PROT_WRITE, 844 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE, 845 -1, 0); 846 847 if (mapped_addr == old_brk) { 848 target_brk = brk_val; 849 return target_brk; 850 } 851 852 #if defined(TARGET_ALPHA) 853 /* We (partially) emulate OSF/1 on Alpha, which requires we 854 return a proper errno, not an unchanged brk value. */ 855 return -TARGET_ENOMEM; 856 #endif 857 /* For everything else, return the previous break. */ 858 return target_brk; 859 } 860 861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 862 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 863 static inline abi_long copy_from_user_fdset(fd_set *fds, 864 abi_ulong target_fds_addr, 865 int n) 866 { 867 int i, nw, j, k; 868 abi_ulong b, *target_fds; 869 870 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 871 if (!(target_fds = lock_user(VERIFY_READ, 872 target_fds_addr, 873 sizeof(abi_ulong) * nw, 874 1))) 875 return -TARGET_EFAULT; 876 877 FD_ZERO(fds); 878 k = 0; 879 for (i = 0; i < nw; i++) { 880 /* grab the abi_ulong */ 881 __get_user(b, &target_fds[i]); 882 for (j = 0; j < TARGET_ABI_BITS; j++) { 883 /* check the bit inside the abi_ulong */ 884 if ((b >> j) & 1) 885 FD_SET(k, fds); 886 k++; 887 } 888 } 889 890 unlock_user(target_fds, target_fds_addr, 0); 891 892 return 0; 893 } 894 895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 896 abi_ulong target_fds_addr, 897 int n) 898 { 899 if (target_fds_addr) { 900 if (copy_from_user_fdset(fds, target_fds_addr, n)) 901 return -TARGET_EFAULT; 902 *fds_ptr = fds; 903 } else { 904 *fds_ptr = NULL; 905 } 906 return 0; 907 } 908 909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 910 const fd_set *fds, 911 int n) 912 { 913 int i, nw, j, k; 914 abi_long v; 915 abi_ulong *target_fds; 916 917 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 918 if (!(target_fds = lock_user(VERIFY_WRITE, 919 target_fds_addr, 920 sizeof(abi_ulong) * nw, 921 0))) 922 return -TARGET_EFAULT; 923 924 k = 0; 925 for (i = 0; i < nw; i++) { 926 v = 0; 927 for (j = 0; j < TARGET_ABI_BITS; j++) { 928 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 929 k++; 930 } 931 __put_user(v, &target_fds[i]); 932 } 933 934 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 935 936 return 0; 937 } 938 #endif 939 940 #if defined(__alpha__) 941 #define HOST_HZ 1024 942 #else 943 #define HOST_HZ 100 944 #endif 945 946 static inline abi_long host_to_target_clock_t(long ticks) 947 { 948 #if HOST_HZ == TARGET_HZ 949 return ticks; 950 #else 951 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 952 #endif 953 } 954 955 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 956 const struct rusage *rusage) 957 { 958 struct target_rusage *target_rusage; 959 960 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 961 return -TARGET_EFAULT; 962 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 963 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 964 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 965 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 966 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 967 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 968 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 969 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 970 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 971 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 972 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 973 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 974 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 975 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 976 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 977 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 978 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 979 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 980 unlock_user_struct(target_rusage, target_addr, 1); 981 982 return 0; 983 } 984 985 #ifdef TARGET_NR_setrlimit 986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 987 { 988 abi_ulong target_rlim_swap; 989 rlim_t result; 990 991 target_rlim_swap = tswapal(target_rlim); 992 if (target_rlim_swap == TARGET_RLIM_INFINITY) 993 return RLIM_INFINITY; 994 995 result = target_rlim_swap; 996 if (target_rlim_swap != (rlim_t)result) 997 return RLIM_INFINITY; 998 999 return result; 1000 } 1001 #endif 1002 1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit) 1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1005 { 1006 abi_ulong target_rlim_swap; 1007 abi_ulong result; 1008 1009 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1010 target_rlim_swap = TARGET_RLIM_INFINITY; 1011 else 1012 target_rlim_swap = rlim; 1013 result = tswapal(target_rlim_swap); 1014 1015 return result; 1016 } 1017 #endif 1018 1019 static inline int target_to_host_resource(int code) 1020 { 1021 switch (code) { 1022 case TARGET_RLIMIT_AS: 1023 return RLIMIT_AS; 1024 case TARGET_RLIMIT_CORE: 1025 return RLIMIT_CORE; 1026 case TARGET_RLIMIT_CPU: 1027 return RLIMIT_CPU; 1028 case TARGET_RLIMIT_DATA: 1029 return RLIMIT_DATA; 1030 case TARGET_RLIMIT_FSIZE: 1031 return RLIMIT_FSIZE; 1032 case TARGET_RLIMIT_LOCKS: 1033 return RLIMIT_LOCKS; 1034 case TARGET_RLIMIT_MEMLOCK: 1035 return RLIMIT_MEMLOCK; 1036 case TARGET_RLIMIT_MSGQUEUE: 1037 return RLIMIT_MSGQUEUE; 1038 case TARGET_RLIMIT_NICE: 1039 return RLIMIT_NICE; 1040 case TARGET_RLIMIT_NOFILE: 1041 return RLIMIT_NOFILE; 1042 case TARGET_RLIMIT_NPROC: 1043 return RLIMIT_NPROC; 1044 case TARGET_RLIMIT_RSS: 1045 return RLIMIT_RSS; 1046 case TARGET_RLIMIT_RTPRIO: 1047 return RLIMIT_RTPRIO; 1048 #ifdef RLIMIT_RTTIME 1049 case TARGET_RLIMIT_RTTIME: 1050 return RLIMIT_RTTIME; 1051 #endif 1052 case TARGET_RLIMIT_SIGPENDING: 1053 return RLIMIT_SIGPENDING; 1054 case TARGET_RLIMIT_STACK: 1055 return RLIMIT_STACK; 1056 default: 1057 return code; 1058 } 1059 } 1060 1061 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1062 abi_ulong target_tv_addr) 1063 { 1064 struct target_timeval *target_tv; 1065 1066 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1067 return -TARGET_EFAULT; 1068 } 1069 1070 __get_user(tv->tv_sec, &target_tv->tv_sec); 1071 __get_user(tv->tv_usec, &target_tv->tv_usec); 1072 1073 unlock_user_struct(target_tv, target_tv_addr, 0); 1074 1075 return 0; 1076 } 1077 1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1079 const struct timeval *tv) 1080 { 1081 struct target_timeval *target_tv; 1082 1083 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1084 return -TARGET_EFAULT; 1085 } 1086 1087 __put_user(tv->tv_sec, &target_tv->tv_sec); 1088 __put_user(tv->tv_usec, &target_tv->tv_usec); 1089 1090 unlock_user_struct(target_tv, target_tv_addr, 1); 1091 1092 return 0; 1093 } 1094 1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv, 1097 abi_ulong target_tv_addr) 1098 { 1099 struct target__kernel_sock_timeval *target_tv; 1100 1101 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1102 return -TARGET_EFAULT; 1103 } 1104 1105 __get_user(tv->tv_sec, &target_tv->tv_sec); 1106 __get_user(tv->tv_usec, &target_tv->tv_usec); 1107 1108 unlock_user_struct(target_tv, target_tv_addr, 0); 1109 1110 return 0; 1111 } 1112 #endif 1113 1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr, 1115 const struct timeval *tv) 1116 { 1117 struct target__kernel_sock_timeval *target_tv; 1118 1119 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1120 return -TARGET_EFAULT; 1121 } 1122 1123 __put_user(tv->tv_sec, &target_tv->tv_sec); 1124 __put_user(tv->tv_usec, &target_tv->tv_usec); 1125 1126 unlock_user_struct(target_tv, target_tv_addr, 1); 1127 1128 return 0; 1129 } 1130 1131 #if defined(TARGET_NR_futex) || \ 1132 defined(TARGET_NR_rt_sigtimedwait) || \ 1133 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \ 1134 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \ 1135 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \ 1136 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \ 1137 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \ 1138 defined(TARGET_NR_timer_settime) || \ 1139 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 1141 abi_ulong target_addr) 1142 { 1143 struct target_timespec *target_ts; 1144 1145 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1146 return -TARGET_EFAULT; 1147 } 1148 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1149 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1150 unlock_user_struct(target_ts, target_addr, 0); 1151 return 0; 1152 } 1153 #endif 1154 1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \ 1156 defined(TARGET_NR_timer_settime64) || \ 1157 defined(TARGET_NR_mq_timedsend_time64) || \ 1158 defined(TARGET_NR_mq_timedreceive_time64) || \ 1159 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \ 1160 defined(TARGET_NR_clock_nanosleep_time64) || \ 1161 defined(TARGET_NR_rt_sigtimedwait_time64) || \ 1162 defined(TARGET_NR_utimensat) || \ 1163 defined(TARGET_NR_utimensat_time64) || \ 1164 defined(TARGET_NR_semtimedop_time64) || \ 1165 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64) 1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts, 1167 abi_ulong target_addr) 1168 { 1169 struct target__kernel_timespec *target_ts; 1170 1171 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1172 return -TARGET_EFAULT; 1173 } 1174 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1175 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1176 /* in 32bit mode, this drops the padding */ 1177 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec; 1178 unlock_user_struct(target_ts, target_addr, 0); 1179 return 0; 1180 } 1181 #endif 1182 1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 1184 struct timespec *host_ts) 1185 { 1186 struct target_timespec *target_ts; 1187 1188 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1189 return -TARGET_EFAULT; 1190 } 1191 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1192 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1193 unlock_user_struct(target_ts, target_addr, 1); 1194 return 0; 1195 } 1196 1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr, 1198 struct timespec *host_ts) 1199 { 1200 struct target__kernel_timespec *target_ts; 1201 1202 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1203 return -TARGET_EFAULT; 1204 } 1205 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1206 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1207 unlock_user_struct(target_ts, target_addr, 1); 1208 return 0; 1209 } 1210 1211 #if defined(TARGET_NR_gettimeofday) 1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr, 1213 struct timezone *tz) 1214 { 1215 struct target_timezone *target_tz; 1216 1217 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) { 1218 return -TARGET_EFAULT; 1219 } 1220 1221 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1222 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1223 1224 unlock_user_struct(target_tz, target_tz_addr, 1); 1225 1226 return 0; 1227 } 1228 #endif 1229 1230 #if defined(TARGET_NR_settimeofday) 1231 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1232 abi_ulong target_tz_addr) 1233 { 1234 struct target_timezone *target_tz; 1235 1236 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1237 return -TARGET_EFAULT; 1238 } 1239 1240 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1241 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1242 1243 unlock_user_struct(target_tz, target_tz_addr, 0); 1244 1245 return 0; 1246 } 1247 #endif 1248 1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1250 #include <mqueue.h> 1251 1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1253 abi_ulong target_mq_attr_addr) 1254 { 1255 struct target_mq_attr *target_mq_attr; 1256 1257 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1258 target_mq_attr_addr, 1)) 1259 return -TARGET_EFAULT; 1260 1261 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1262 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1263 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1264 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1265 1266 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1267 1268 return 0; 1269 } 1270 1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1272 const struct mq_attr *attr) 1273 { 1274 struct target_mq_attr *target_mq_attr; 1275 1276 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1277 target_mq_attr_addr, 0)) 1278 return -TARGET_EFAULT; 1279 1280 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1281 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1282 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1283 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1284 1285 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1286 1287 return 0; 1288 } 1289 #endif 1290 1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1292 /* do_select() must return target values and target errnos. */ 1293 static abi_long do_select(int n, 1294 abi_ulong rfd_addr, abi_ulong wfd_addr, 1295 abi_ulong efd_addr, abi_ulong target_tv_addr) 1296 { 1297 fd_set rfds, wfds, efds; 1298 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1299 struct timeval tv; 1300 struct timespec ts, *ts_ptr; 1301 abi_long ret; 1302 1303 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1304 if (ret) { 1305 return ret; 1306 } 1307 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1308 if (ret) { 1309 return ret; 1310 } 1311 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1312 if (ret) { 1313 return ret; 1314 } 1315 1316 if (target_tv_addr) { 1317 if (copy_from_user_timeval(&tv, target_tv_addr)) 1318 return -TARGET_EFAULT; 1319 ts.tv_sec = tv.tv_sec; 1320 ts.tv_nsec = tv.tv_usec * 1000; 1321 ts_ptr = &ts; 1322 } else { 1323 ts_ptr = NULL; 1324 } 1325 1326 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1327 ts_ptr, NULL)); 1328 1329 if (!is_error(ret)) { 1330 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1331 return -TARGET_EFAULT; 1332 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1333 return -TARGET_EFAULT; 1334 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1335 return -TARGET_EFAULT; 1336 1337 if (target_tv_addr) { 1338 tv.tv_sec = ts.tv_sec; 1339 tv.tv_usec = ts.tv_nsec / 1000; 1340 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1341 return -TARGET_EFAULT; 1342 } 1343 } 1344 } 1345 1346 return ret; 1347 } 1348 1349 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1350 static abi_long do_old_select(abi_ulong arg1) 1351 { 1352 struct target_sel_arg_struct *sel; 1353 abi_ulong inp, outp, exp, tvp; 1354 long nsel; 1355 1356 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1357 return -TARGET_EFAULT; 1358 } 1359 1360 nsel = tswapal(sel->n); 1361 inp = tswapal(sel->inp); 1362 outp = tswapal(sel->outp); 1363 exp = tswapal(sel->exp); 1364 tvp = tswapal(sel->tvp); 1365 1366 unlock_user_struct(sel, arg1, 0); 1367 1368 return do_select(nsel, inp, outp, exp, tvp); 1369 } 1370 #endif 1371 #endif 1372 1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3, 1375 abi_long arg4, abi_long arg5, abi_long arg6, 1376 bool time64) 1377 { 1378 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 1379 fd_set rfds, wfds, efds; 1380 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1381 struct timespec ts, *ts_ptr; 1382 abi_long ret; 1383 1384 /* 1385 * The 6th arg is actually two args smashed together, 1386 * so we cannot use the C library. 1387 */ 1388 struct { 1389 sigset_t *set; 1390 size_t size; 1391 } sig, *sig_ptr; 1392 1393 abi_ulong arg_sigset, arg_sigsize, *arg7; 1394 1395 n = arg1; 1396 rfd_addr = arg2; 1397 wfd_addr = arg3; 1398 efd_addr = arg4; 1399 ts_addr = arg5; 1400 1401 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1402 if (ret) { 1403 return ret; 1404 } 1405 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1406 if (ret) { 1407 return ret; 1408 } 1409 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1410 if (ret) { 1411 return ret; 1412 } 1413 1414 /* 1415 * This takes a timespec, and not a timeval, so we cannot 1416 * use the do_select() helper ... 1417 */ 1418 if (ts_addr) { 1419 if (time64) { 1420 if (target_to_host_timespec64(&ts, ts_addr)) { 1421 return -TARGET_EFAULT; 1422 } 1423 } else { 1424 if (target_to_host_timespec(&ts, ts_addr)) { 1425 return -TARGET_EFAULT; 1426 } 1427 } 1428 ts_ptr = &ts; 1429 } else { 1430 ts_ptr = NULL; 1431 } 1432 1433 /* Extract the two packed args for the sigset */ 1434 sig_ptr = NULL; 1435 if (arg6) { 1436 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 1437 if (!arg7) { 1438 return -TARGET_EFAULT; 1439 } 1440 arg_sigset = tswapal(arg7[0]); 1441 arg_sigsize = tswapal(arg7[1]); 1442 unlock_user(arg7, arg6, 0); 1443 1444 if (arg_sigset) { 1445 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize); 1446 if (ret != 0) { 1447 return ret; 1448 } 1449 sig_ptr = &sig; 1450 sig.size = SIGSET_T_SIZE; 1451 } 1452 } 1453 1454 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1455 ts_ptr, sig_ptr)); 1456 1457 if (sig_ptr) { 1458 finish_sigsuspend_mask(ret); 1459 } 1460 1461 if (!is_error(ret)) { 1462 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) { 1463 return -TARGET_EFAULT; 1464 } 1465 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) { 1466 return -TARGET_EFAULT; 1467 } 1468 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) { 1469 return -TARGET_EFAULT; 1470 } 1471 if (time64) { 1472 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) { 1473 return -TARGET_EFAULT; 1474 } 1475 } else { 1476 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) { 1477 return -TARGET_EFAULT; 1478 } 1479 } 1480 } 1481 return ret; 1482 } 1483 #endif 1484 1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \ 1486 defined(TARGET_NR_ppoll_time64) 1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3, 1488 abi_long arg4, abi_long arg5, bool ppoll, bool time64) 1489 { 1490 struct target_pollfd *target_pfd; 1491 unsigned int nfds = arg2; 1492 struct pollfd *pfd; 1493 unsigned int i; 1494 abi_long ret; 1495 1496 pfd = NULL; 1497 target_pfd = NULL; 1498 if (nfds) { 1499 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 1500 return -TARGET_EINVAL; 1501 } 1502 target_pfd = lock_user(VERIFY_WRITE, arg1, 1503 sizeof(struct target_pollfd) * nfds, 1); 1504 if (!target_pfd) { 1505 return -TARGET_EFAULT; 1506 } 1507 1508 pfd = alloca(sizeof(struct pollfd) * nfds); 1509 for (i = 0; i < nfds; i++) { 1510 pfd[i].fd = tswap32(target_pfd[i].fd); 1511 pfd[i].events = tswap16(target_pfd[i].events); 1512 } 1513 } 1514 if (ppoll) { 1515 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 1516 sigset_t *set = NULL; 1517 1518 if (arg3) { 1519 if (time64) { 1520 if (target_to_host_timespec64(timeout_ts, arg3)) { 1521 unlock_user(target_pfd, arg1, 0); 1522 return -TARGET_EFAULT; 1523 } 1524 } else { 1525 if (target_to_host_timespec(timeout_ts, arg3)) { 1526 unlock_user(target_pfd, arg1, 0); 1527 return -TARGET_EFAULT; 1528 } 1529 } 1530 } else { 1531 timeout_ts = NULL; 1532 } 1533 1534 if (arg4) { 1535 ret = process_sigsuspend_mask(&set, arg4, arg5); 1536 if (ret != 0) { 1537 unlock_user(target_pfd, arg1, 0); 1538 return ret; 1539 } 1540 } 1541 1542 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 1543 set, SIGSET_T_SIZE)); 1544 1545 if (set) { 1546 finish_sigsuspend_mask(ret); 1547 } 1548 if (!is_error(ret) && arg3) { 1549 if (time64) { 1550 if (host_to_target_timespec64(arg3, timeout_ts)) { 1551 return -TARGET_EFAULT; 1552 } 1553 } else { 1554 if (host_to_target_timespec(arg3, timeout_ts)) { 1555 return -TARGET_EFAULT; 1556 } 1557 } 1558 } 1559 } else { 1560 struct timespec ts, *pts; 1561 1562 if (arg3 >= 0) { 1563 /* Convert ms to secs, ns */ 1564 ts.tv_sec = arg3 / 1000; 1565 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 1566 pts = &ts; 1567 } else { 1568 /* -ve poll() timeout means "infinite" */ 1569 pts = NULL; 1570 } 1571 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 1572 } 1573 1574 if (!is_error(ret)) { 1575 for (i = 0; i < nfds; i++) { 1576 target_pfd[i].revents = tswap16(pfd[i].revents); 1577 } 1578 } 1579 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 1580 return ret; 1581 } 1582 #endif 1583 1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes, 1585 int flags, int is_pipe2) 1586 { 1587 int host_pipe[2]; 1588 abi_long ret; 1589 ret = pipe2(host_pipe, flags); 1590 1591 if (is_error(ret)) 1592 return get_errno(ret); 1593 1594 /* Several targets have special calling conventions for the original 1595 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1596 if (!is_pipe2) { 1597 #if defined(TARGET_ALPHA) 1598 cpu_env->ir[IR_A4] = host_pipe[1]; 1599 return host_pipe[0]; 1600 #elif defined(TARGET_MIPS) 1601 cpu_env->active_tc.gpr[3] = host_pipe[1]; 1602 return host_pipe[0]; 1603 #elif defined(TARGET_SH4) 1604 cpu_env->gregs[1] = host_pipe[1]; 1605 return host_pipe[0]; 1606 #elif defined(TARGET_SPARC) 1607 cpu_env->regwptr[1] = host_pipe[1]; 1608 return host_pipe[0]; 1609 #endif 1610 } 1611 1612 if (put_user_s32(host_pipe[0], pipedes) 1613 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int))) 1614 return -TARGET_EFAULT; 1615 return get_errno(ret); 1616 } 1617 1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1619 abi_ulong target_addr, 1620 socklen_t len) 1621 { 1622 struct target_ip_mreqn *target_smreqn; 1623 1624 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1625 if (!target_smreqn) 1626 return -TARGET_EFAULT; 1627 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1628 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1629 if (len == sizeof(struct target_ip_mreqn)) 1630 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1631 unlock_user(target_smreqn, target_addr, 0); 1632 1633 return 0; 1634 } 1635 1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1637 abi_ulong target_addr, 1638 socklen_t len) 1639 { 1640 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1641 sa_family_t sa_family; 1642 struct target_sockaddr *target_saddr; 1643 1644 if (fd_trans_target_to_host_addr(fd)) { 1645 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1646 } 1647 1648 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1649 if (!target_saddr) 1650 return -TARGET_EFAULT; 1651 1652 sa_family = tswap16(target_saddr->sa_family); 1653 1654 /* Oops. The caller might send a incomplete sun_path; sun_path 1655 * must be terminated by \0 (see the manual page), but 1656 * unfortunately it is quite common to specify sockaddr_un 1657 * length as "strlen(x->sun_path)" while it should be 1658 * "strlen(...) + 1". We'll fix that here if needed. 1659 * Linux kernel has a similar feature. 1660 */ 1661 1662 if (sa_family == AF_UNIX) { 1663 if (len < unix_maxlen && len > 0) { 1664 char *cp = (char*)target_saddr; 1665 1666 if ( cp[len-1] && !cp[len] ) 1667 len++; 1668 } 1669 if (len > unix_maxlen) 1670 len = unix_maxlen; 1671 } 1672 1673 memcpy(addr, target_saddr, len); 1674 addr->sa_family = sa_family; 1675 if (sa_family == AF_NETLINK) { 1676 struct sockaddr_nl *nladdr; 1677 1678 nladdr = (struct sockaddr_nl *)addr; 1679 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1680 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1681 } else if (sa_family == AF_PACKET) { 1682 struct target_sockaddr_ll *lladdr; 1683 1684 lladdr = (struct target_sockaddr_ll *)addr; 1685 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1686 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1687 } else if (sa_family == AF_INET6) { 1688 struct sockaddr_in6 *in6addr; 1689 1690 in6addr = (struct sockaddr_in6 *)addr; 1691 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id); 1692 } 1693 unlock_user(target_saddr, target_addr, 0); 1694 1695 return 0; 1696 } 1697 1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1699 struct sockaddr *addr, 1700 socklen_t len) 1701 { 1702 struct target_sockaddr *target_saddr; 1703 1704 if (len == 0) { 1705 return 0; 1706 } 1707 assert(addr); 1708 1709 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1710 if (!target_saddr) 1711 return -TARGET_EFAULT; 1712 memcpy(target_saddr, addr, len); 1713 if (len >= offsetof(struct target_sockaddr, sa_family) + 1714 sizeof(target_saddr->sa_family)) { 1715 target_saddr->sa_family = tswap16(addr->sa_family); 1716 } 1717 if (addr->sa_family == AF_NETLINK && 1718 len >= sizeof(struct target_sockaddr_nl)) { 1719 struct target_sockaddr_nl *target_nl = 1720 (struct target_sockaddr_nl *)target_saddr; 1721 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1722 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1723 } else if (addr->sa_family == AF_PACKET) { 1724 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1725 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1726 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1727 } else if (addr->sa_family == AF_INET6 && 1728 len >= sizeof(struct target_sockaddr_in6)) { 1729 struct target_sockaddr_in6 *target_in6 = 1730 (struct target_sockaddr_in6 *)target_saddr; 1731 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1732 } 1733 unlock_user(target_saddr, target_addr, len); 1734 1735 return 0; 1736 } 1737 1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1739 struct target_msghdr *target_msgh) 1740 { 1741 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1742 abi_long msg_controllen; 1743 abi_ulong target_cmsg_addr; 1744 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1745 socklen_t space = 0; 1746 1747 msg_controllen = tswapal(target_msgh->msg_controllen); 1748 if (msg_controllen < sizeof (struct target_cmsghdr)) 1749 goto the_end; 1750 target_cmsg_addr = tswapal(target_msgh->msg_control); 1751 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1752 target_cmsg_start = target_cmsg; 1753 if (!target_cmsg) 1754 return -TARGET_EFAULT; 1755 1756 while (cmsg && target_cmsg) { 1757 void *data = CMSG_DATA(cmsg); 1758 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1759 1760 int len = tswapal(target_cmsg->cmsg_len) 1761 - sizeof(struct target_cmsghdr); 1762 1763 space += CMSG_SPACE(len); 1764 if (space > msgh->msg_controllen) { 1765 space -= CMSG_SPACE(len); 1766 /* This is a QEMU bug, since we allocated the payload 1767 * area ourselves (unlike overflow in host-to-target 1768 * conversion, which is just the guest giving us a buffer 1769 * that's too small). It can't happen for the payload types 1770 * we currently support; if it becomes an issue in future 1771 * we would need to improve our allocation strategy to 1772 * something more intelligent than "twice the size of the 1773 * target buffer we're reading from". 1774 */ 1775 qemu_log_mask(LOG_UNIMP, 1776 ("Unsupported ancillary data %d/%d: " 1777 "unhandled msg size\n"), 1778 tswap32(target_cmsg->cmsg_level), 1779 tswap32(target_cmsg->cmsg_type)); 1780 break; 1781 } 1782 1783 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1784 cmsg->cmsg_level = SOL_SOCKET; 1785 } else { 1786 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1787 } 1788 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1789 cmsg->cmsg_len = CMSG_LEN(len); 1790 1791 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1792 int *fd = (int *)data; 1793 int *target_fd = (int *)target_data; 1794 int i, numfds = len / sizeof(int); 1795 1796 for (i = 0; i < numfds; i++) { 1797 __get_user(fd[i], target_fd + i); 1798 } 1799 } else if (cmsg->cmsg_level == SOL_SOCKET 1800 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1801 struct ucred *cred = (struct ucred *)data; 1802 struct target_ucred *target_cred = 1803 (struct target_ucred *)target_data; 1804 1805 __get_user(cred->pid, &target_cred->pid); 1806 __get_user(cred->uid, &target_cred->uid); 1807 __get_user(cred->gid, &target_cred->gid); 1808 } else if (cmsg->cmsg_level == SOL_ALG) { 1809 uint32_t *dst = (uint32_t *)data; 1810 1811 memcpy(dst, target_data, len); 1812 /* fix endianness of first 32-bit word */ 1813 if (len >= sizeof(uint32_t)) { 1814 *dst = tswap32(*dst); 1815 } 1816 } else { 1817 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 1818 cmsg->cmsg_level, cmsg->cmsg_type); 1819 memcpy(data, target_data, len); 1820 } 1821 1822 cmsg = CMSG_NXTHDR(msgh, cmsg); 1823 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1824 target_cmsg_start); 1825 } 1826 unlock_user(target_cmsg, target_cmsg_addr, 0); 1827 the_end: 1828 msgh->msg_controllen = space; 1829 return 0; 1830 } 1831 1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1833 struct msghdr *msgh) 1834 { 1835 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1836 abi_long msg_controllen; 1837 abi_ulong target_cmsg_addr; 1838 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1839 socklen_t space = 0; 1840 1841 msg_controllen = tswapal(target_msgh->msg_controllen); 1842 if (msg_controllen < sizeof (struct target_cmsghdr)) 1843 goto the_end; 1844 target_cmsg_addr = tswapal(target_msgh->msg_control); 1845 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1846 target_cmsg_start = target_cmsg; 1847 if (!target_cmsg) 1848 return -TARGET_EFAULT; 1849 1850 while (cmsg && target_cmsg) { 1851 void *data = CMSG_DATA(cmsg); 1852 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1853 1854 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1855 int tgt_len, tgt_space; 1856 1857 /* We never copy a half-header but may copy half-data; 1858 * this is Linux's behaviour in put_cmsg(). Note that 1859 * truncation here is a guest problem (which we report 1860 * to the guest via the CTRUNC bit), unlike truncation 1861 * in target_to_host_cmsg, which is a QEMU bug. 1862 */ 1863 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1864 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1865 break; 1866 } 1867 1868 if (cmsg->cmsg_level == SOL_SOCKET) { 1869 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1870 } else { 1871 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1872 } 1873 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1874 1875 /* Payload types which need a different size of payload on 1876 * the target must adjust tgt_len here. 1877 */ 1878 tgt_len = len; 1879 switch (cmsg->cmsg_level) { 1880 case SOL_SOCKET: 1881 switch (cmsg->cmsg_type) { 1882 case SO_TIMESTAMP: 1883 tgt_len = sizeof(struct target_timeval); 1884 break; 1885 default: 1886 break; 1887 } 1888 break; 1889 default: 1890 break; 1891 } 1892 1893 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1894 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1895 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1896 } 1897 1898 /* We must now copy-and-convert len bytes of payload 1899 * into tgt_len bytes of destination space. Bear in mind 1900 * that in both source and destination we may be dealing 1901 * with a truncated value! 1902 */ 1903 switch (cmsg->cmsg_level) { 1904 case SOL_SOCKET: 1905 switch (cmsg->cmsg_type) { 1906 case SCM_RIGHTS: 1907 { 1908 int *fd = (int *)data; 1909 int *target_fd = (int *)target_data; 1910 int i, numfds = tgt_len / sizeof(int); 1911 1912 for (i = 0; i < numfds; i++) { 1913 __put_user(fd[i], target_fd + i); 1914 } 1915 break; 1916 } 1917 case SO_TIMESTAMP: 1918 { 1919 struct timeval *tv = (struct timeval *)data; 1920 struct target_timeval *target_tv = 1921 (struct target_timeval *)target_data; 1922 1923 if (len != sizeof(struct timeval) || 1924 tgt_len != sizeof(struct target_timeval)) { 1925 goto unimplemented; 1926 } 1927 1928 /* copy struct timeval to target */ 1929 __put_user(tv->tv_sec, &target_tv->tv_sec); 1930 __put_user(tv->tv_usec, &target_tv->tv_usec); 1931 break; 1932 } 1933 case SCM_CREDENTIALS: 1934 { 1935 struct ucred *cred = (struct ucred *)data; 1936 struct target_ucred *target_cred = 1937 (struct target_ucred *)target_data; 1938 1939 __put_user(cred->pid, &target_cred->pid); 1940 __put_user(cred->uid, &target_cred->uid); 1941 __put_user(cred->gid, &target_cred->gid); 1942 break; 1943 } 1944 default: 1945 goto unimplemented; 1946 } 1947 break; 1948 1949 case SOL_IP: 1950 switch (cmsg->cmsg_type) { 1951 case IP_TTL: 1952 { 1953 uint32_t *v = (uint32_t *)data; 1954 uint32_t *t_int = (uint32_t *)target_data; 1955 1956 if (len != sizeof(uint32_t) || 1957 tgt_len != sizeof(uint32_t)) { 1958 goto unimplemented; 1959 } 1960 __put_user(*v, t_int); 1961 break; 1962 } 1963 case IP_RECVERR: 1964 { 1965 struct errhdr_t { 1966 struct sock_extended_err ee; 1967 struct sockaddr_in offender; 1968 }; 1969 struct errhdr_t *errh = (struct errhdr_t *)data; 1970 struct errhdr_t *target_errh = 1971 (struct errhdr_t *)target_data; 1972 1973 if (len != sizeof(struct errhdr_t) || 1974 tgt_len != sizeof(struct errhdr_t)) { 1975 goto unimplemented; 1976 } 1977 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1978 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1979 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1980 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1981 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1982 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1983 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1984 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1985 (void *) &errh->offender, sizeof(errh->offender)); 1986 break; 1987 } 1988 default: 1989 goto unimplemented; 1990 } 1991 break; 1992 1993 case SOL_IPV6: 1994 switch (cmsg->cmsg_type) { 1995 case IPV6_HOPLIMIT: 1996 { 1997 uint32_t *v = (uint32_t *)data; 1998 uint32_t *t_int = (uint32_t *)target_data; 1999 2000 if (len != sizeof(uint32_t) || 2001 tgt_len != sizeof(uint32_t)) { 2002 goto unimplemented; 2003 } 2004 __put_user(*v, t_int); 2005 break; 2006 } 2007 case IPV6_RECVERR: 2008 { 2009 struct errhdr6_t { 2010 struct sock_extended_err ee; 2011 struct sockaddr_in6 offender; 2012 }; 2013 struct errhdr6_t *errh = (struct errhdr6_t *)data; 2014 struct errhdr6_t *target_errh = 2015 (struct errhdr6_t *)target_data; 2016 2017 if (len != sizeof(struct errhdr6_t) || 2018 tgt_len != sizeof(struct errhdr6_t)) { 2019 goto unimplemented; 2020 } 2021 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2022 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2023 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2024 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2025 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2026 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2027 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2028 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2029 (void *) &errh->offender, sizeof(errh->offender)); 2030 break; 2031 } 2032 default: 2033 goto unimplemented; 2034 } 2035 break; 2036 2037 default: 2038 unimplemented: 2039 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 2040 cmsg->cmsg_level, cmsg->cmsg_type); 2041 memcpy(target_data, data, MIN(len, tgt_len)); 2042 if (tgt_len > len) { 2043 memset(target_data + len, 0, tgt_len - len); 2044 } 2045 } 2046 2047 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 2048 tgt_space = TARGET_CMSG_SPACE(tgt_len); 2049 if (msg_controllen < tgt_space) { 2050 tgt_space = msg_controllen; 2051 } 2052 msg_controllen -= tgt_space; 2053 space += tgt_space; 2054 cmsg = CMSG_NXTHDR(msgh, cmsg); 2055 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 2056 target_cmsg_start); 2057 } 2058 unlock_user(target_cmsg, target_cmsg_addr, space); 2059 the_end: 2060 target_msgh->msg_controllen = tswapal(space); 2061 return 0; 2062 } 2063 2064 /* do_setsockopt() Must return target values and target errnos. */ 2065 static abi_long do_setsockopt(int sockfd, int level, int optname, 2066 abi_ulong optval_addr, socklen_t optlen) 2067 { 2068 abi_long ret; 2069 int val; 2070 struct ip_mreqn *ip_mreq; 2071 struct ip_mreq_source *ip_mreq_source; 2072 2073 switch(level) { 2074 case SOL_TCP: 2075 case SOL_UDP: 2076 /* TCP and UDP options all take an 'int' value. */ 2077 if (optlen < sizeof(uint32_t)) 2078 return -TARGET_EINVAL; 2079 2080 if (get_user_u32(val, optval_addr)) 2081 return -TARGET_EFAULT; 2082 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2083 break; 2084 case SOL_IP: 2085 switch(optname) { 2086 case IP_TOS: 2087 case IP_TTL: 2088 case IP_HDRINCL: 2089 case IP_ROUTER_ALERT: 2090 case IP_RECVOPTS: 2091 case IP_RETOPTS: 2092 case IP_PKTINFO: 2093 case IP_MTU_DISCOVER: 2094 case IP_RECVERR: 2095 case IP_RECVTTL: 2096 case IP_RECVTOS: 2097 #ifdef IP_FREEBIND 2098 case IP_FREEBIND: 2099 #endif 2100 case IP_MULTICAST_TTL: 2101 case IP_MULTICAST_LOOP: 2102 val = 0; 2103 if (optlen >= sizeof(uint32_t)) { 2104 if (get_user_u32(val, optval_addr)) 2105 return -TARGET_EFAULT; 2106 } else if (optlen >= 1) { 2107 if (get_user_u8(val, optval_addr)) 2108 return -TARGET_EFAULT; 2109 } 2110 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2111 break; 2112 case IP_ADD_MEMBERSHIP: 2113 case IP_DROP_MEMBERSHIP: 2114 if (optlen < sizeof (struct target_ip_mreq) || 2115 optlen > sizeof (struct target_ip_mreqn)) 2116 return -TARGET_EINVAL; 2117 2118 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2119 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2120 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2121 break; 2122 2123 case IP_BLOCK_SOURCE: 2124 case IP_UNBLOCK_SOURCE: 2125 case IP_ADD_SOURCE_MEMBERSHIP: 2126 case IP_DROP_SOURCE_MEMBERSHIP: 2127 if (optlen != sizeof (struct target_ip_mreq_source)) 2128 return -TARGET_EINVAL; 2129 2130 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2131 if (!ip_mreq_source) { 2132 return -TARGET_EFAULT; 2133 } 2134 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2135 unlock_user (ip_mreq_source, optval_addr, 0); 2136 break; 2137 2138 default: 2139 goto unimplemented; 2140 } 2141 break; 2142 case SOL_IPV6: 2143 switch (optname) { 2144 case IPV6_MTU_DISCOVER: 2145 case IPV6_MTU: 2146 case IPV6_V6ONLY: 2147 case IPV6_RECVPKTINFO: 2148 case IPV6_UNICAST_HOPS: 2149 case IPV6_MULTICAST_HOPS: 2150 case IPV6_MULTICAST_LOOP: 2151 case IPV6_RECVERR: 2152 case IPV6_RECVHOPLIMIT: 2153 case IPV6_2292HOPLIMIT: 2154 case IPV6_CHECKSUM: 2155 case IPV6_ADDRFORM: 2156 case IPV6_2292PKTINFO: 2157 case IPV6_RECVTCLASS: 2158 case IPV6_RECVRTHDR: 2159 case IPV6_2292RTHDR: 2160 case IPV6_RECVHOPOPTS: 2161 case IPV6_2292HOPOPTS: 2162 case IPV6_RECVDSTOPTS: 2163 case IPV6_2292DSTOPTS: 2164 case IPV6_TCLASS: 2165 case IPV6_ADDR_PREFERENCES: 2166 #ifdef IPV6_RECVPATHMTU 2167 case IPV6_RECVPATHMTU: 2168 #endif 2169 #ifdef IPV6_TRANSPARENT 2170 case IPV6_TRANSPARENT: 2171 #endif 2172 #ifdef IPV6_FREEBIND 2173 case IPV6_FREEBIND: 2174 #endif 2175 #ifdef IPV6_RECVORIGDSTADDR 2176 case IPV6_RECVORIGDSTADDR: 2177 #endif 2178 val = 0; 2179 if (optlen < sizeof(uint32_t)) { 2180 return -TARGET_EINVAL; 2181 } 2182 if (get_user_u32(val, optval_addr)) { 2183 return -TARGET_EFAULT; 2184 } 2185 ret = get_errno(setsockopt(sockfd, level, optname, 2186 &val, sizeof(val))); 2187 break; 2188 case IPV6_PKTINFO: 2189 { 2190 struct in6_pktinfo pki; 2191 2192 if (optlen < sizeof(pki)) { 2193 return -TARGET_EINVAL; 2194 } 2195 2196 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2197 return -TARGET_EFAULT; 2198 } 2199 2200 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2201 2202 ret = get_errno(setsockopt(sockfd, level, optname, 2203 &pki, sizeof(pki))); 2204 break; 2205 } 2206 case IPV6_ADD_MEMBERSHIP: 2207 case IPV6_DROP_MEMBERSHIP: 2208 { 2209 struct ipv6_mreq ipv6mreq; 2210 2211 if (optlen < sizeof(ipv6mreq)) { 2212 return -TARGET_EINVAL; 2213 } 2214 2215 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) { 2216 return -TARGET_EFAULT; 2217 } 2218 2219 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface); 2220 2221 ret = get_errno(setsockopt(sockfd, level, optname, 2222 &ipv6mreq, sizeof(ipv6mreq))); 2223 break; 2224 } 2225 default: 2226 goto unimplemented; 2227 } 2228 break; 2229 case SOL_ICMPV6: 2230 switch (optname) { 2231 case ICMPV6_FILTER: 2232 { 2233 struct icmp6_filter icmp6f; 2234 2235 if (optlen > sizeof(icmp6f)) { 2236 optlen = sizeof(icmp6f); 2237 } 2238 2239 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 2240 return -TARGET_EFAULT; 2241 } 2242 2243 for (val = 0; val < 8; val++) { 2244 icmp6f.data[val] = tswap32(icmp6f.data[val]); 2245 } 2246 2247 ret = get_errno(setsockopt(sockfd, level, optname, 2248 &icmp6f, optlen)); 2249 break; 2250 } 2251 default: 2252 goto unimplemented; 2253 } 2254 break; 2255 case SOL_RAW: 2256 switch (optname) { 2257 case ICMP_FILTER: 2258 case IPV6_CHECKSUM: 2259 /* those take an u32 value */ 2260 if (optlen < sizeof(uint32_t)) { 2261 return -TARGET_EINVAL; 2262 } 2263 2264 if (get_user_u32(val, optval_addr)) { 2265 return -TARGET_EFAULT; 2266 } 2267 ret = get_errno(setsockopt(sockfd, level, optname, 2268 &val, sizeof(val))); 2269 break; 2270 2271 default: 2272 goto unimplemented; 2273 } 2274 break; 2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE) 2276 case SOL_ALG: 2277 switch (optname) { 2278 case ALG_SET_KEY: 2279 { 2280 char *alg_key = g_malloc(optlen); 2281 2282 if (!alg_key) { 2283 return -TARGET_ENOMEM; 2284 } 2285 if (copy_from_user(alg_key, optval_addr, optlen)) { 2286 g_free(alg_key); 2287 return -TARGET_EFAULT; 2288 } 2289 ret = get_errno(setsockopt(sockfd, level, optname, 2290 alg_key, optlen)); 2291 g_free(alg_key); 2292 break; 2293 } 2294 case ALG_SET_AEAD_AUTHSIZE: 2295 { 2296 ret = get_errno(setsockopt(sockfd, level, optname, 2297 NULL, optlen)); 2298 break; 2299 } 2300 default: 2301 goto unimplemented; 2302 } 2303 break; 2304 #endif 2305 case TARGET_SOL_SOCKET: 2306 switch (optname) { 2307 case TARGET_SO_RCVTIMEO: 2308 { 2309 struct timeval tv; 2310 2311 optname = SO_RCVTIMEO; 2312 2313 set_timeout: 2314 if (optlen != sizeof(struct target_timeval)) { 2315 return -TARGET_EINVAL; 2316 } 2317 2318 if (copy_from_user_timeval(&tv, optval_addr)) { 2319 return -TARGET_EFAULT; 2320 } 2321 2322 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2323 &tv, sizeof(tv))); 2324 return ret; 2325 } 2326 case TARGET_SO_SNDTIMEO: 2327 optname = SO_SNDTIMEO; 2328 goto set_timeout; 2329 case TARGET_SO_ATTACH_FILTER: 2330 { 2331 struct target_sock_fprog *tfprog; 2332 struct target_sock_filter *tfilter; 2333 struct sock_fprog fprog; 2334 struct sock_filter *filter; 2335 int i; 2336 2337 if (optlen != sizeof(*tfprog)) { 2338 return -TARGET_EINVAL; 2339 } 2340 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2341 return -TARGET_EFAULT; 2342 } 2343 if (!lock_user_struct(VERIFY_READ, tfilter, 2344 tswapal(tfprog->filter), 0)) { 2345 unlock_user_struct(tfprog, optval_addr, 1); 2346 return -TARGET_EFAULT; 2347 } 2348 2349 fprog.len = tswap16(tfprog->len); 2350 filter = g_try_new(struct sock_filter, fprog.len); 2351 if (filter == NULL) { 2352 unlock_user_struct(tfilter, tfprog->filter, 1); 2353 unlock_user_struct(tfprog, optval_addr, 1); 2354 return -TARGET_ENOMEM; 2355 } 2356 for (i = 0; i < fprog.len; i++) { 2357 filter[i].code = tswap16(tfilter[i].code); 2358 filter[i].jt = tfilter[i].jt; 2359 filter[i].jf = tfilter[i].jf; 2360 filter[i].k = tswap32(tfilter[i].k); 2361 } 2362 fprog.filter = filter; 2363 2364 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2365 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2366 g_free(filter); 2367 2368 unlock_user_struct(tfilter, tfprog->filter, 1); 2369 unlock_user_struct(tfprog, optval_addr, 1); 2370 return ret; 2371 } 2372 case TARGET_SO_BINDTODEVICE: 2373 { 2374 char *dev_ifname, *addr_ifname; 2375 2376 if (optlen > IFNAMSIZ - 1) { 2377 optlen = IFNAMSIZ - 1; 2378 } 2379 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2380 if (!dev_ifname) { 2381 return -TARGET_EFAULT; 2382 } 2383 optname = SO_BINDTODEVICE; 2384 addr_ifname = alloca(IFNAMSIZ); 2385 memcpy(addr_ifname, dev_ifname, optlen); 2386 addr_ifname[optlen] = 0; 2387 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2388 addr_ifname, optlen)); 2389 unlock_user (dev_ifname, optval_addr, 0); 2390 return ret; 2391 } 2392 case TARGET_SO_LINGER: 2393 { 2394 struct linger lg; 2395 struct target_linger *tlg; 2396 2397 if (optlen != sizeof(struct target_linger)) { 2398 return -TARGET_EINVAL; 2399 } 2400 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) { 2401 return -TARGET_EFAULT; 2402 } 2403 __get_user(lg.l_onoff, &tlg->l_onoff); 2404 __get_user(lg.l_linger, &tlg->l_linger); 2405 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER, 2406 &lg, sizeof(lg))); 2407 unlock_user_struct(tlg, optval_addr, 0); 2408 return ret; 2409 } 2410 /* Options with 'int' argument. */ 2411 case TARGET_SO_DEBUG: 2412 optname = SO_DEBUG; 2413 break; 2414 case TARGET_SO_REUSEADDR: 2415 optname = SO_REUSEADDR; 2416 break; 2417 #ifdef SO_REUSEPORT 2418 case TARGET_SO_REUSEPORT: 2419 optname = SO_REUSEPORT; 2420 break; 2421 #endif 2422 case TARGET_SO_TYPE: 2423 optname = SO_TYPE; 2424 break; 2425 case TARGET_SO_ERROR: 2426 optname = SO_ERROR; 2427 break; 2428 case TARGET_SO_DONTROUTE: 2429 optname = SO_DONTROUTE; 2430 break; 2431 case TARGET_SO_BROADCAST: 2432 optname = SO_BROADCAST; 2433 break; 2434 case TARGET_SO_SNDBUF: 2435 optname = SO_SNDBUF; 2436 break; 2437 case TARGET_SO_SNDBUFFORCE: 2438 optname = SO_SNDBUFFORCE; 2439 break; 2440 case TARGET_SO_RCVBUF: 2441 optname = SO_RCVBUF; 2442 break; 2443 case TARGET_SO_RCVBUFFORCE: 2444 optname = SO_RCVBUFFORCE; 2445 break; 2446 case TARGET_SO_KEEPALIVE: 2447 optname = SO_KEEPALIVE; 2448 break; 2449 case TARGET_SO_OOBINLINE: 2450 optname = SO_OOBINLINE; 2451 break; 2452 case TARGET_SO_NO_CHECK: 2453 optname = SO_NO_CHECK; 2454 break; 2455 case TARGET_SO_PRIORITY: 2456 optname = SO_PRIORITY; 2457 break; 2458 #ifdef SO_BSDCOMPAT 2459 case TARGET_SO_BSDCOMPAT: 2460 optname = SO_BSDCOMPAT; 2461 break; 2462 #endif 2463 case TARGET_SO_PASSCRED: 2464 optname = SO_PASSCRED; 2465 break; 2466 case TARGET_SO_PASSSEC: 2467 optname = SO_PASSSEC; 2468 break; 2469 case TARGET_SO_TIMESTAMP: 2470 optname = SO_TIMESTAMP; 2471 break; 2472 case TARGET_SO_RCVLOWAT: 2473 optname = SO_RCVLOWAT; 2474 break; 2475 default: 2476 goto unimplemented; 2477 } 2478 if (optlen < sizeof(uint32_t)) 2479 return -TARGET_EINVAL; 2480 2481 if (get_user_u32(val, optval_addr)) 2482 return -TARGET_EFAULT; 2483 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 2484 break; 2485 #ifdef SOL_NETLINK 2486 case SOL_NETLINK: 2487 switch (optname) { 2488 case NETLINK_PKTINFO: 2489 case NETLINK_ADD_MEMBERSHIP: 2490 case NETLINK_DROP_MEMBERSHIP: 2491 case NETLINK_BROADCAST_ERROR: 2492 case NETLINK_NO_ENOBUFS: 2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2494 case NETLINK_LISTEN_ALL_NSID: 2495 case NETLINK_CAP_ACK: 2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2498 case NETLINK_EXT_ACK: 2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2501 case NETLINK_GET_STRICT_CHK: 2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2503 break; 2504 default: 2505 goto unimplemented; 2506 } 2507 val = 0; 2508 if (optlen < sizeof(uint32_t)) { 2509 return -TARGET_EINVAL; 2510 } 2511 if (get_user_u32(val, optval_addr)) { 2512 return -TARGET_EFAULT; 2513 } 2514 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val, 2515 sizeof(val))); 2516 break; 2517 #endif /* SOL_NETLINK */ 2518 default: 2519 unimplemented: 2520 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n", 2521 level, optname); 2522 ret = -TARGET_ENOPROTOOPT; 2523 } 2524 return ret; 2525 } 2526 2527 /* do_getsockopt() Must return target values and target errnos. */ 2528 static abi_long do_getsockopt(int sockfd, int level, int optname, 2529 abi_ulong optval_addr, abi_ulong optlen) 2530 { 2531 abi_long ret; 2532 int len, val; 2533 socklen_t lv; 2534 2535 switch(level) { 2536 case TARGET_SOL_SOCKET: 2537 level = SOL_SOCKET; 2538 switch (optname) { 2539 /* These don't just return a single integer */ 2540 case TARGET_SO_PEERNAME: 2541 goto unimplemented; 2542 case TARGET_SO_RCVTIMEO: { 2543 struct timeval tv; 2544 socklen_t tvlen; 2545 2546 optname = SO_RCVTIMEO; 2547 2548 get_timeout: 2549 if (get_user_u32(len, optlen)) { 2550 return -TARGET_EFAULT; 2551 } 2552 if (len < 0) { 2553 return -TARGET_EINVAL; 2554 } 2555 2556 tvlen = sizeof(tv); 2557 ret = get_errno(getsockopt(sockfd, level, optname, 2558 &tv, &tvlen)); 2559 if (ret < 0) { 2560 return ret; 2561 } 2562 if (len > sizeof(struct target_timeval)) { 2563 len = sizeof(struct target_timeval); 2564 } 2565 if (copy_to_user_timeval(optval_addr, &tv)) { 2566 return -TARGET_EFAULT; 2567 } 2568 if (put_user_u32(len, optlen)) { 2569 return -TARGET_EFAULT; 2570 } 2571 break; 2572 } 2573 case TARGET_SO_SNDTIMEO: 2574 optname = SO_SNDTIMEO; 2575 goto get_timeout; 2576 case TARGET_SO_PEERCRED: { 2577 struct ucred cr; 2578 socklen_t crlen; 2579 struct target_ucred *tcr; 2580 2581 if (get_user_u32(len, optlen)) { 2582 return -TARGET_EFAULT; 2583 } 2584 if (len < 0) { 2585 return -TARGET_EINVAL; 2586 } 2587 2588 crlen = sizeof(cr); 2589 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 2590 &cr, &crlen)); 2591 if (ret < 0) { 2592 return ret; 2593 } 2594 if (len > crlen) { 2595 len = crlen; 2596 } 2597 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 2598 return -TARGET_EFAULT; 2599 } 2600 __put_user(cr.pid, &tcr->pid); 2601 __put_user(cr.uid, &tcr->uid); 2602 __put_user(cr.gid, &tcr->gid); 2603 unlock_user_struct(tcr, optval_addr, 1); 2604 if (put_user_u32(len, optlen)) { 2605 return -TARGET_EFAULT; 2606 } 2607 break; 2608 } 2609 case TARGET_SO_PEERSEC: { 2610 char *name; 2611 2612 if (get_user_u32(len, optlen)) { 2613 return -TARGET_EFAULT; 2614 } 2615 if (len < 0) { 2616 return -TARGET_EINVAL; 2617 } 2618 name = lock_user(VERIFY_WRITE, optval_addr, len, 0); 2619 if (!name) { 2620 return -TARGET_EFAULT; 2621 } 2622 lv = len; 2623 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC, 2624 name, &lv)); 2625 if (put_user_u32(lv, optlen)) { 2626 ret = -TARGET_EFAULT; 2627 } 2628 unlock_user(name, optval_addr, lv); 2629 break; 2630 } 2631 case TARGET_SO_LINGER: 2632 { 2633 struct linger lg; 2634 socklen_t lglen; 2635 struct target_linger *tlg; 2636 2637 if (get_user_u32(len, optlen)) { 2638 return -TARGET_EFAULT; 2639 } 2640 if (len < 0) { 2641 return -TARGET_EINVAL; 2642 } 2643 2644 lglen = sizeof(lg); 2645 ret = get_errno(getsockopt(sockfd, level, SO_LINGER, 2646 &lg, &lglen)); 2647 if (ret < 0) { 2648 return ret; 2649 } 2650 if (len > lglen) { 2651 len = lglen; 2652 } 2653 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) { 2654 return -TARGET_EFAULT; 2655 } 2656 __put_user(lg.l_onoff, &tlg->l_onoff); 2657 __put_user(lg.l_linger, &tlg->l_linger); 2658 unlock_user_struct(tlg, optval_addr, 1); 2659 if (put_user_u32(len, optlen)) { 2660 return -TARGET_EFAULT; 2661 } 2662 break; 2663 } 2664 /* Options with 'int' argument. */ 2665 case TARGET_SO_DEBUG: 2666 optname = SO_DEBUG; 2667 goto int_case; 2668 case TARGET_SO_REUSEADDR: 2669 optname = SO_REUSEADDR; 2670 goto int_case; 2671 #ifdef SO_REUSEPORT 2672 case TARGET_SO_REUSEPORT: 2673 optname = SO_REUSEPORT; 2674 goto int_case; 2675 #endif 2676 case TARGET_SO_TYPE: 2677 optname = SO_TYPE; 2678 goto int_case; 2679 case TARGET_SO_ERROR: 2680 optname = SO_ERROR; 2681 goto int_case; 2682 case TARGET_SO_DONTROUTE: 2683 optname = SO_DONTROUTE; 2684 goto int_case; 2685 case TARGET_SO_BROADCAST: 2686 optname = SO_BROADCAST; 2687 goto int_case; 2688 case TARGET_SO_SNDBUF: 2689 optname = SO_SNDBUF; 2690 goto int_case; 2691 case TARGET_SO_RCVBUF: 2692 optname = SO_RCVBUF; 2693 goto int_case; 2694 case TARGET_SO_KEEPALIVE: 2695 optname = SO_KEEPALIVE; 2696 goto int_case; 2697 case TARGET_SO_OOBINLINE: 2698 optname = SO_OOBINLINE; 2699 goto int_case; 2700 case TARGET_SO_NO_CHECK: 2701 optname = SO_NO_CHECK; 2702 goto int_case; 2703 case TARGET_SO_PRIORITY: 2704 optname = SO_PRIORITY; 2705 goto int_case; 2706 #ifdef SO_BSDCOMPAT 2707 case TARGET_SO_BSDCOMPAT: 2708 optname = SO_BSDCOMPAT; 2709 goto int_case; 2710 #endif 2711 case TARGET_SO_PASSCRED: 2712 optname = SO_PASSCRED; 2713 goto int_case; 2714 case TARGET_SO_TIMESTAMP: 2715 optname = SO_TIMESTAMP; 2716 goto int_case; 2717 case TARGET_SO_RCVLOWAT: 2718 optname = SO_RCVLOWAT; 2719 goto int_case; 2720 case TARGET_SO_ACCEPTCONN: 2721 optname = SO_ACCEPTCONN; 2722 goto int_case; 2723 case TARGET_SO_PROTOCOL: 2724 optname = SO_PROTOCOL; 2725 goto int_case; 2726 case TARGET_SO_DOMAIN: 2727 optname = SO_DOMAIN; 2728 goto int_case; 2729 default: 2730 goto int_case; 2731 } 2732 break; 2733 case SOL_TCP: 2734 case SOL_UDP: 2735 /* TCP and UDP options all take an 'int' value. */ 2736 int_case: 2737 if (get_user_u32(len, optlen)) 2738 return -TARGET_EFAULT; 2739 if (len < 0) 2740 return -TARGET_EINVAL; 2741 lv = sizeof(lv); 2742 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2743 if (ret < 0) 2744 return ret; 2745 switch (optname) { 2746 case SO_TYPE: 2747 val = host_to_target_sock_type(val); 2748 break; 2749 case SO_ERROR: 2750 val = host_to_target_errno(val); 2751 break; 2752 } 2753 if (len > lv) 2754 len = lv; 2755 if (len == 4) { 2756 if (put_user_u32(val, optval_addr)) 2757 return -TARGET_EFAULT; 2758 } else { 2759 if (put_user_u8(val, optval_addr)) 2760 return -TARGET_EFAULT; 2761 } 2762 if (put_user_u32(len, optlen)) 2763 return -TARGET_EFAULT; 2764 break; 2765 case SOL_IP: 2766 switch(optname) { 2767 case IP_TOS: 2768 case IP_TTL: 2769 case IP_HDRINCL: 2770 case IP_ROUTER_ALERT: 2771 case IP_RECVOPTS: 2772 case IP_RETOPTS: 2773 case IP_PKTINFO: 2774 case IP_MTU_DISCOVER: 2775 case IP_RECVERR: 2776 case IP_RECVTOS: 2777 #ifdef IP_FREEBIND 2778 case IP_FREEBIND: 2779 #endif 2780 case IP_MULTICAST_TTL: 2781 case IP_MULTICAST_LOOP: 2782 if (get_user_u32(len, optlen)) 2783 return -TARGET_EFAULT; 2784 if (len < 0) 2785 return -TARGET_EINVAL; 2786 lv = sizeof(lv); 2787 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2788 if (ret < 0) 2789 return ret; 2790 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2791 len = 1; 2792 if (put_user_u32(len, optlen) 2793 || put_user_u8(val, optval_addr)) 2794 return -TARGET_EFAULT; 2795 } else { 2796 if (len > sizeof(int)) 2797 len = sizeof(int); 2798 if (put_user_u32(len, optlen) 2799 || put_user_u32(val, optval_addr)) 2800 return -TARGET_EFAULT; 2801 } 2802 break; 2803 default: 2804 ret = -TARGET_ENOPROTOOPT; 2805 break; 2806 } 2807 break; 2808 case SOL_IPV6: 2809 switch (optname) { 2810 case IPV6_MTU_DISCOVER: 2811 case IPV6_MTU: 2812 case IPV6_V6ONLY: 2813 case IPV6_RECVPKTINFO: 2814 case IPV6_UNICAST_HOPS: 2815 case IPV6_MULTICAST_HOPS: 2816 case IPV6_MULTICAST_LOOP: 2817 case IPV6_RECVERR: 2818 case IPV6_RECVHOPLIMIT: 2819 case IPV6_2292HOPLIMIT: 2820 case IPV6_CHECKSUM: 2821 case IPV6_ADDRFORM: 2822 case IPV6_2292PKTINFO: 2823 case IPV6_RECVTCLASS: 2824 case IPV6_RECVRTHDR: 2825 case IPV6_2292RTHDR: 2826 case IPV6_RECVHOPOPTS: 2827 case IPV6_2292HOPOPTS: 2828 case IPV6_RECVDSTOPTS: 2829 case IPV6_2292DSTOPTS: 2830 case IPV6_TCLASS: 2831 case IPV6_ADDR_PREFERENCES: 2832 #ifdef IPV6_RECVPATHMTU 2833 case IPV6_RECVPATHMTU: 2834 #endif 2835 #ifdef IPV6_TRANSPARENT 2836 case IPV6_TRANSPARENT: 2837 #endif 2838 #ifdef IPV6_FREEBIND 2839 case IPV6_FREEBIND: 2840 #endif 2841 #ifdef IPV6_RECVORIGDSTADDR 2842 case IPV6_RECVORIGDSTADDR: 2843 #endif 2844 if (get_user_u32(len, optlen)) 2845 return -TARGET_EFAULT; 2846 if (len < 0) 2847 return -TARGET_EINVAL; 2848 lv = sizeof(lv); 2849 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2850 if (ret < 0) 2851 return ret; 2852 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2853 len = 1; 2854 if (put_user_u32(len, optlen) 2855 || put_user_u8(val, optval_addr)) 2856 return -TARGET_EFAULT; 2857 } else { 2858 if (len > sizeof(int)) 2859 len = sizeof(int); 2860 if (put_user_u32(len, optlen) 2861 || put_user_u32(val, optval_addr)) 2862 return -TARGET_EFAULT; 2863 } 2864 break; 2865 default: 2866 ret = -TARGET_ENOPROTOOPT; 2867 break; 2868 } 2869 break; 2870 #ifdef SOL_NETLINK 2871 case SOL_NETLINK: 2872 switch (optname) { 2873 case NETLINK_PKTINFO: 2874 case NETLINK_BROADCAST_ERROR: 2875 case NETLINK_NO_ENOBUFS: 2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2877 case NETLINK_LISTEN_ALL_NSID: 2878 case NETLINK_CAP_ACK: 2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2881 case NETLINK_EXT_ACK: 2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2884 case NETLINK_GET_STRICT_CHK: 2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2886 if (get_user_u32(len, optlen)) { 2887 return -TARGET_EFAULT; 2888 } 2889 if (len != sizeof(val)) { 2890 return -TARGET_EINVAL; 2891 } 2892 lv = len; 2893 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2894 if (ret < 0) { 2895 return ret; 2896 } 2897 if (put_user_u32(lv, optlen) 2898 || put_user_u32(val, optval_addr)) { 2899 return -TARGET_EFAULT; 2900 } 2901 break; 2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2903 case NETLINK_LIST_MEMBERSHIPS: 2904 { 2905 uint32_t *results; 2906 int i; 2907 if (get_user_u32(len, optlen)) { 2908 return -TARGET_EFAULT; 2909 } 2910 if (len < 0) { 2911 return -TARGET_EINVAL; 2912 } 2913 results = lock_user(VERIFY_WRITE, optval_addr, len, 1); 2914 if (!results && len > 0) { 2915 return -TARGET_EFAULT; 2916 } 2917 lv = len; 2918 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv)); 2919 if (ret < 0) { 2920 unlock_user(results, optval_addr, 0); 2921 return ret; 2922 } 2923 /* swap host endianness to target endianness. */ 2924 for (i = 0; i < (len / sizeof(uint32_t)); i++) { 2925 results[i] = tswap32(results[i]); 2926 } 2927 if (put_user_u32(lv, optlen)) { 2928 return -TARGET_EFAULT; 2929 } 2930 unlock_user(results, optval_addr, 0); 2931 break; 2932 } 2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2934 default: 2935 goto unimplemented; 2936 } 2937 break; 2938 #endif /* SOL_NETLINK */ 2939 default: 2940 unimplemented: 2941 qemu_log_mask(LOG_UNIMP, 2942 "getsockopt level=%d optname=%d not yet supported\n", 2943 level, optname); 2944 ret = -TARGET_EOPNOTSUPP; 2945 break; 2946 } 2947 return ret; 2948 } 2949 2950 /* Convert target low/high pair representing file offset into the host 2951 * low/high pair. This function doesn't handle offsets bigger than 64 bits 2952 * as the kernel doesn't handle them either. 2953 */ 2954 static void target_to_host_low_high(abi_ulong tlow, 2955 abi_ulong thigh, 2956 unsigned long *hlow, 2957 unsigned long *hhigh) 2958 { 2959 uint64_t off = tlow | 2960 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) << 2961 TARGET_LONG_BITS / 2; 2962 2963 *hlow = off; 2964 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2; 2965 } 2966 2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 2968 abi_ulong count, int copy) 2969 { 2970 struct target_iovec *target_vec; 2971 struct iovec *vec; 2972 abi_ulong total_len, max_len; 2973 int i; 2974 int err = 0; 2975 bool bad_address = false; 2976 2977 if (count == 0) { 2978 errno = 0; 2979 return NULL; 2980 } 2981 if (count > IOV_MAX) { 2982 errno = EINVAL; 2983 return NULL; 2984 } 2985 2986 vec = g_try_new0(struct iovec, count); 2987 if (vec == NULL) { 2988 errno = ENOMEM; 2989 return NULL; 2990 } 2991 2992 target_vec = lock_user(VERIFY_READ, target_addr, 2993 count * sizeof(struct target_iovec), 1); 2994 if (target_vec == NULL) { 2995 err = EFAULT; 2996 goto fail2; 2997 } 2998 2999 /* ??? If host page size > target page size, this will result in a 3000 value larger than what we can actually support. */ 3001 max_len = 0x7fffffff & TARGET_PAGE_MASK; 3002 total_len = 0; 3003 3004 for (i = 0; i < count; i++) { 3005 abi_ulong base = tswapal(target_vec[i].iov_base); 3006 abi_long len = tswapal(target_vec[i].iov_len); 3007 3008 if (len < 0) { 3009 err = EINVAL; 3010 goto fail; 3011 } else if (len == 0) { 3012 /* Zero length pointer is ignored. */ 3013 vec[i].iov_base = 0; 3014 } else { 3015 vec[i].iov_base = lock_user(type, base, len, copy); 3016 /* If the first buffer pointer is bad, this is a fault. But 3017 * subsequent bad buffers will result in a partial write; this 3018 * is realized by filling the vector with null pointers and 3019 * zero lengths. */ 3020 if (!vec[i].iov_base) { 3021 if (i == 0) { 3022 err = EFAULT; 3023 goto fail; 3024 } else { 3025 bad_address = true; 3026 } 3027 } 3028 if (bad_address) { 3029 len = 0; 3030 } 3031 if (len > max_len - total_len) { 3032 len = max_len - total_len; 3033 } 3034 } 3035 vec[i].iov_len = len; 3036 total_len += len; 3037 } 3038 3039 unlock_user(target_vec, target_addr, 0); 3040 return vec; 3041 3042 fail: 3043 while (--i >= 0) { 3044 if (tswapal(target_vec[i].iov_len) > 0) { 3045 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3046 } 3047 } 3048 unlock_user(target_vec, target_addr, 0); 3049 fail2: 3050 g_free(vec); 3051 errno = err; 3052 return NULL; 3053 } 3054 3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3056 abi_ulong count, int copy) 3057 { 3058 struct target_iovec *target_vec; 3059 int i; 3060 3061 target_vec = lock_user(VERIFY_READ, target_addr, 3062 count * sizeof(struct target_iovec), 1); 3063 if (target_vec) { 3064 for (i = 0; i < count; i++) { 3065 abi_ulong base = tswapal(target_vec[i].iov_base); 3066 abi_long len = tswapal(target_vec[i].iov_len); 3067 if (len < 0) { 3068 break; 3069 } 3070 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3071 } 3072 unlock_user(target_vec, target_addr, 0); 3073 } 3074 3075 g_free(vec); 3076 } 3077 3078 static inline int target_to_host_sock_type(int *type) 3079 { 3080 int host_type = 0; 3081 int target_type = *type; 3082 3083 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3084 case TARGET_SOCK_DGRAM: 3085 host_type = SOCK_DGRAM; 3086 break; 3087 case TARGET_SOCK_STREAM: 3088 host_type = SOCK_STREAM; 3089 break; 3090 default: 3091 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3092 break; 3093 } 3094 if (target_type & TARGET_SOCK_CLOEXEC) { 3095 #if defined(SOCK_CLOEXEC) 3096 host_type |= SOCK_CLOEXEC; 3097 #else 3098 return -TARGET_EINVAL; 3099 #endif 3100 } 3101 if (target_type & TARGET_SOCK_NONBLOCK) { 3102 #if defined(SOCK_NONBLOCK) 3103 host_type |= SOCK_NONBLOCK; 3104 #elif !defined(O_NONBLOCK) 3105 return -TARGET_EINVAL; 3106 #endif 3107 } 3108 *type = host_type; 3109 return 0; 3110 } 3111 3112 /* Try to emulate socket type flags after socket creation. */ 3113 static int sock_flags_fixup(int fd, int target_type) 3114 { 3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3116 if (target_type & TARGET_SOCK_NONBLOCK) { 3117 int flags = fcntl(fd, F_GETFL); 3118 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3119 close(fd); 3120 return -TARGET_EINVAL; 3121 } 3122 } 3123 #endif 3124 return fd; 3125 } 3126 3127 /* do_socket() Must return target values and target errnos. */ 3128 static abi_long do_socket(int domain, int type, int protocol) 3129 { 3130 int target_type = type; 3131 int ret; 3132 3133 ret = target_to_host_sock_type(&type); 3134 if (ret) { 3135 return ret; 3136 } 3137 3138 if (domain == PF_NETLINK && !( 3139 #ifdef CONFIG_RTNETLINK 3140 protocol == NETLINK_ROUTE || 3141 #endif 3142 protocol == NETLINK_KOBJECT_UEVENT || 3143 protocol == NETLINK_AUDIT)) { 3144 return -TARGET_EPROTONOSUPPORT; 3145 } 3146 3147 if (domain == AF_PACKET || 3148 (domain == AF_INET && type == SOCK_PACKET)) { 3149 protocol = tswap16(protocol); 3150 } 3151 3152 ret = get_errno(socket(domain, type, protocol)); 3153 if (ret >= 0) { 3154 ret = sock_flags_fixup(ret, target_type); 3155 if (type == SOCK_PACKET) { 3156 /* Manage an obsolete case : 3157 * if socket type is SOCK_PACKET, bind by name 3158 */ 3159 fd_trans_register(ret, &target_packet_trans); 3160 } else if (domain == PF_NETLINK) { 3161 switch (protocol) { 3162 #ifdef CONFIG_RTNETLINK 3163 case NETLINK_ROUTE: 3164 fd_trans_register(ret, &target_netlink_route_trans); 3165 break; 3166 #endif 3167 case NETLINK_KOBJECT_UEVENT: 3168 /* nothing to do: messages are strings */ 3169 break; 3170 case NETLINK_AUDIT: 3171 fd_trans_register(ret, &target_netlink_audit_trans); 3172 break; 3173 default: 3174 g_assert_not_reached(); 3175 } 3176 } 3177 } 3178 return ret; 3179 } 3180 3181 /* do_bind() Must return target values and target errnos. */ 3182 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3183 socklen_t addrlen) 3184 { 3185 void *addr; 3186 abi_long ret; 3187 3188 if ((int)addrlen < 0) { 3189 return -TARGET_EINVAL; 3190 } 3191 3192 addr = alloca(addrlen+1); 3193 3194 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3195 if (ret) 3196 return ret; 3197 3198 return get_errno(bind(sockfd, addr, addrlen)); 3199 } 3200 3201 /* do_connect() Must return target values and target errnos. */ 3202 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3203 socklen_t addrlen) 3204 { 3205 void *addr; 3206 abi_long ret; 3207 3208 if ((int)addrlen < 0) { 3209 return -TARGET_EINVAL; 3210 } 3211 3212 addr = alloca(addrlen+1); 3213 3214 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3215 if (ret) 3216 return ret; 3217 3218 return get_errno(safe_connect(sockfd, addr, addrlen)); 3219 } 3220 3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3223 int flags, int send) 3224 { 3225 abi_long ret, len; 3226 struct msghdr msg; 3227 abi_ulong count; 3228 struct iovec *vec; 3229 abi_ulong target_vec; 3230 3231 if (msgp->msg_name) { 3232 msg.msg_namelen = tswap32(msgp->msg_namelen); 3233 msg.msg_name = alloca(msg.msg_namelen+1); 3234 ret = target_to_host_sockaddr(fd, msg.msg_name, 3235 tswapal(msgp->msg_name), 3236 msg.msg_namelen); 3237 if (ret == -TARGET_EFAULT) { 3238 /* For connected sockets msg_name and msg_namelen must 3239 * be ignored, so returning EFAULT immediately is wrong. 3240 * Instead, pass a bad msg_name to the host kernel, and 3241 * let it decide whether to return EFAULT or not. 3242 */ 3243 msg.msg_name = (void *)-1; 3244 } else if (ret) { 3245 goto out2; 3246 } 3247 } else { 3248 msg.msg_name = NULL; 3249 msg.msg_namelen = 0; 3250 } 3251 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3252 msg.msg_control = alloca(msg.msg_controllen); 3253 memset(msg.msg_control, 0, msg.msg_controllen); 3254 3255 msg.msg_flags = tswap32(msgp->msg_flags); 3256 3257 count = tswapal(msgp->msg_iovlen); 3258 target_vec = tswapal(msgp->msg_iov); 3259 3260 if (count > IOV_MAX) { 3261 /* sendrcvmsg returns a different errno for this condition than 3262 * readv/writev, so we must catch it here before lock_iovec() does. 3263 */ 3264 ret = -TARGET_EMSGSIZE; 3265 goto out2; 3266 } 3267 3268 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3269 target_vec, count, send); 3270 if (vec == NULL) { 3271 ret = -host_to_target_errno(errno); 3272 /* allow sending packet without any iov, e.g. with MSG_MORE flag */ 3273 if (!send || ret) { 3274 goto out2; 3275 } 3276 } 3277 msg.msg_iovlen = count; 3278 msg.msg_iov = vec; 3279 3280 if (send) { 3281 if (fd_trans_target_to_host_data(fd)) { 3282 void *host_msg; 3283 3284 host_msg = g_malloc(msg.msg_iov->iov_len); 3285 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3286 ret = fd_trans_target_to_host_data(fd)(host_msg, 3287 msg.msg_iov->iov_len); 3288 if (ret >= 0) { 3289 msg.msg_iov->iov_base = host_msg; 3290 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3291 } 3292 g_free(host_msg); 3293 } else { 3294 ret = target_to_host_cmsg(&msg, msgp); 3295 if (ret == 0) { 3296 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3297 } 3298 } 3299 } else { 3300 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3301 if (!is_error(ret)) { 3302 len = ret; 3303 if (fd_trans_host_to_target_data(fd)) { 3304 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3305 MIN(msg.msg_iov->iov_len, len)); 3306 } 3307 if (!is_error(ret)) { 3308 ret = host_to_target_cmsg(msgp, &msg); 3309 } 3310 if (!is_error(ret)) { 3311 msgp->msg_namelen = tswap32(msg.msg_namelen); 3312 msgp->msg_flags = tswap32(msg.msg_flags); 3313 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3314 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3315 msg.msg_name, msg.msg_namelen); 3316 if (ret) { 3317 goto out; 3318 } 3319 } 3320 3321 ret = len; 3322 } 3323 } 3324 } 3325 3326 out: 3327 if (vec) { 3328 unlock_iovec(vec, target_vec, count, !send); 3329 } 3330 out2: 3331 return ret; 3332 } 3333 3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3335 int flags, int send) 3336 { 3337 abi_long ret; 3338 struct target_msghdr *msgp; 3339 3340 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3341 msgp, 3342 target_msg, 3343 send ? 1 : 0)) { 3344 return -TARGET_EFAULT; 3345 } 3346 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3347 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3348 return ret; 3349 } 3350 3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3352 * so it might not have this *mmsg-specific flag either. 3353 */ 3354 #ifndef MSG_WAITFORONE 3355 #define MSG_WAITFORONE 0x10000 3356 #endif 3357 3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3359 unsigned int vlen, unsigned int flags, 3360 int send) 3361 { 3362 struct target_mmsghdr *mmsgp; 3363 abi_long ret = 0; 3364 int i; 3365 3366 if (vlen > UIO_MAXIOV) { 3367 vlen = UIO_MAXIOV; 3368 } 3369 3370 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3371 if (!mmsgp) { 3372 return -TARGET_EFAULT; 3373 } 3374 3375 for (i = 0; i < vlen; i++) { 3376 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3377 if (is_error(ret)) { 3378 break; 3379 } 3380 mmsgp[i].msg_len = tswap32(ret); 3381 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3382 if (flags & MSG_WAITFORONE) { 3383 flags |= MSG_DONTWAIT; 3384 } 3385 } 3386 3387 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3388 3389 /* Return number of datagrams sent if we sent any at all; 3390 * otherwise return the error. 3391 */ 3392 if (i) { 3393 return i; 3394 } 3395 return ret; 3396 } 3397 3398 /* do_accept4() Must return target values and target errnos. */ 3399 static abi_long do_accept4(int fd, abi_ulong target_addr, 3400 abi_ulong target_addrlen_addr, int flags) 3401 { 3402 socklen_t addrlen, ret_addrlen; 3403 void *addr; 3404 abi_long ret; 3405 int host_flags; 3406 3407 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) { 3408 return -TARGET_EINVAL; 3409 } 3410 3411 host_flags = 0; 3412 if (flags & TARGET_SOCK_NONBLOCK) { 3413 host_flags |= SOCK_NONBLOCK; 3414 } 3415 if (flags & TARGET_SOCK_CLOEXEC) { 3416 host_flags |= SOCK_CLOEXEC; 3417 } 3418 3419 if (target_addr == 0) { 3420 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3421 } 3422 3423 /* linux returns EFAULT if addrlen pointer is invalid */ 3424 if (get_user_u32(addrlen, target_addrlen_addr)) 3425 return -TARGET_EFAULT; 3426 3427 if ((int)addrlen < 0) { 3428 return -TARGET_EINVAL; 3429 } 3430 3431 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3432 return -TARGET_EFAULT; 3433 } 3434 3435 addr = alloca(addrlen); 3436 3437 ret_addrlen = addrlen; 3438 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags)); 3439 if (!is_error(ret)) { 3440 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3441 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3442 ret = -TARGET_EFAULT; 3443 } 3444 } 3445 return ret; 3446 } 3447 3448 /* do_getpeername() Must return target values and target errnos. */ 3449 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3450 abi_ulong target_addrlen_addr) 3451 { 3452 socklen_t addrlen, ret_addrlen; 3453 void *addr; 3454 abi_long ret; 3455 3456 if (get_user_u32(addrlen, target_addrlen_addr)) 3457 return -TARGET_EFAULT; 3458 3459 if ((int)addrlen < 0) { 3460 return -TARGET_EINVAL; 3461 } 3462 3463 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3464 return -TARGET_EFAULT; 3465 } 3466 3467 addr = alloca(addrlen); 3468 3469 ret_addrlen = addrlen; 3470 ret = get_errno(getpeername(fd, addr, &ret_addrlen)); 3471 if (!is_error(ret)) { 3472 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3473 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3474 ret = -TARGET_EFAULT; 3475 } 3476 } 3477 return ret; 3478 } 3479 3480 /* do_getsockname() Must return target values and target errnos. */ 3481 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3482 abi_ulong target_addrlen_addr) 3483 { 3484 socklen_t addrlen, ret_addrlen; 3485 void *addr; 3486 abi_long ret; 3487 3488 if (get_user_u32(addrlen, target_addrlen_addr)) 3489 return -TARGET_EFAULT; 3490 3491 if ((int)addrlen < 0) { 3492 return -TARGET_EINVAL; 3493 } 3494 3495 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3496 return -TARGET_EFAULT; 3497 } 3498 3499 addr = alloca(addrlen); 3500 3501 ret_addrlen = addrlen; 3502 ret = get_errno(getsockname(fd, addr, &ret_addrlen)); 3503 if (!is_error(ret)) { 3504 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3505 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3506 ret = -TARGET_EFAULT; 3507 } 3508 } 3509 return ret; 3510 } 3511 3512 /* do_socketpair() Must return target values and target errnos. */ 3513 static abi_long do_socketpair(int domain, int type, int protocol, 3514 abi_ulong target_tab_addr) 3515 { 3516 int tab[2]; 3517 abi_long ret; 3518 3519 target_to_host_sock_type(&type); 3520 3521 ret = get_errno(socketpair(domain, type, protocol, tab)); 3522 if (!is_error(ret)) { 3523 if (put_user_s32(tab[0], target_tab_addr) 3524 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3525 ret = -TARGET_EFAULT; 3526 } 3527 return ret; 3528 } 3529 3530 /* do_sendto() Must return target values and target errnos. */ 3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3532 abi_ulong target_addr, socklen_t addrlen) 3533 { 3534 void *addr; 3535 void *host_msg; 3536 void *copy_msg = NULL; 3537 abi_long ret; 3538 3539 if ((int)addrlen < 0) { 3540 return -TARGET_EINVAL; 3541 } 3542 3543 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3544 if (!host_msg) 3545 return -TARGET_EFAULT; 3546 if (fd_trans_target_to_host_data(fd)) { 3547 copy_msg = host_msg; 3548 host_msg = g_malloc(len); 3549 memcpy(host_msg, copy_msg, len); 3550 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3551 if (ret < 0) { 3552 goto fail; 3553 } 3554 } 3555 if (target_addr) { 3556 addr = alloca(addrlen+1); 3557 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3558 if (ret) { 3559 goto fail; 3560 } 3561 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3562 } else { 3563 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3564 } 3565 fail: 3566 if (copy_msg) { 3567 g_free(host_msg); 3568 host_msg = copy_msg; 3569 } 3570 unlock_user(host_msg, msg, 0); 3571 return ret; 3572 } 3573 3574 /* do_recvfrom() Must return target values and target errnos. */ 3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3576 abi_ulong target_addr, 3577 abi_ulong target_addrlen) 3578 { 3579 socklen_t addrlen, ret_addrlen; 3580 void *addr; 3581 void *host_msg; 3582 abi_long ret; 3583 3584 if (!msg) { 3585 host_msg = NULL; 3586 } else { 3587 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3588 if (!host_msg) { 3589 return -TARGET_EFAULT; 3590 } 3591 } 3592 if (target_addr) { 3593 if (get_user_u32(addrlen, target_addrlen)) { 3594 ret = -TARGET_EFAULT; 3595 goto fail; 3596 } 3597 if ((int)addrlen < 0) { 3598 ret = -TARGET_EINVAL; 3599 goto fail; 3600 } 3601 addr = alloca(addrlen); 3602 ret_addrlen = addrlen; 3603 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3604 addr, &ret_addrlen)); 3605 } else { 3606 addr = NULL; /* To keep compiler quiet. */ 3607 addrlen = 0; /* To keep compiler quiet. */ 3608 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3609 } 3610 if (!is_error(ret)) { 3611 if (fd_trans_host_to_target_data(fd)) { 3612 abi_long trans; 3613 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len)); 3614 if (is_error(trans)) { 3615 ret = trans; 3616 goto fail; 3617 } 3618 } 3619 if (target_addr) { 3620 host_to_target_sockaddr(target_addr, addr, 3621 MIN(addrlen, ret_addrlen)); 3622 if (put_user_u32(ret_addrlen, target_addrlen)) { 3623 ret = -TARGET_EFAULT; 3624 goto fail; 3625 } 3626 } 3627 unlock_user(host_msg, msg, len); 3628 } else { 3629 fail: 3630 unlock_user(host_msg, msg, 0); 3631 } 3632 return ret; 3633 } 3634 3635 #ifdef TARGET_NR_socketcall 3636 /* do_socketcall() must return target values and target errnos. */ 3637 static abi_long do_socketcall(int num, abi_ulong vptr) 3638 { 3639 static const unsigned nargs[] = { /* number of arguments per operation */ 3640 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 3641 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 3642 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 3643 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 3644 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 3645 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 3646 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 3647 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 3648 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 3649 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 3650 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 3651 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 3652 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 3653 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3654 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3655 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 3656 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 3657 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 3658 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 3659 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 3660 }; 3661 abi_long a[6]; /* max 6 args */ 3662 unsigned i; 3663 3664 /* check the range of the first argument num */ 3665 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 3666 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 3667 return -TARGET_EINVAL; 3668 } 3669 /* ensure we have space for args */ 3670 if (nargs[num] > ARRAY_SIZE(a)) { 3671 return -TARGET_EINVAL; 3672 } 3673 /* collect the arguments in a[] according to nargs[] */ 3674 for (i = 0; i < nargs[num]; ++i) { 3675 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3676 return -TARGET_EFAULT; 3677 } 3678 } 3679 /* now when we have the args, invoke the appropriate underlying function */ 3680 switch (num) { 3681 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 3682 return do_socket(a[0], a[1], a[2]); 3683 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 3684 return do_bind(a[0], a[1], a[2]); 3685 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 3686 return do_connect(a[0], a[1], a[2]); 3687 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 3688 return get_errno(listen(a[0], a[1])); 3689 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 3690 return do_accept4(a[0], a[1], a[2], 0); 3691 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 3692 return do_getsockname(a[0], a[1], a[2]); 3693 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 3694 return do_getpeername(a[0], a[1], a[2]); 3695 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 3696 return do_socketpair(a[0], a[1], a[2], a[3]); 3697 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 3698 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3699 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 3700 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3701 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 3702 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3703 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 3704 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3705 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 3706 return get_errno(shutdown(a[0], a[1])); 3707 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3708 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3709 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3710 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3711 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 3712 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3713 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 3714 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3715 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 3716 return do_accept4(a[0], a[1], a[2], a[3]); 3717 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 3718 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 3719 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 3720 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 3721 default: 3722 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num); 3723 return -TARGET_EINVAL; 3724 } 3725 } 3726 #endif 3727 3728 #ifndef TARGET_SEMID64_DS 3729 /* asm-generic version of this struct */ 3730 struct target_semid64_ds 3731 { 3732 struct target_ipc_perm sem_perm; 3733 abi_ulong sem_otime; 3734 #if TARGET_ABI_BITS == 32 3735 abi_ulong __unused1; 3736 #endif 3737 abi_ulong sem_ctime; 3738 #if TARGET_ABI_BITS == 32 3739 abi_ulong __unused2; 3740 #endif 3741 abi_ulong sem_nsems; 3742 abi_ulong __unused3; 3743 abi_ulong __unused4; 3744 }; 3745 #endif 3746 3747 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 3748 abi_ulong target_addr) 3749 { 3750 struct target_ipc_perm *target_ip; 3751 struct target_semid64_ds *target_sd; 3752 3753 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3754 return -TARGET_EFAULT; 3755 target_ip = &(target_sd->sem_perm); 3756 host_ip->__key = tswap32(target_ip->__key); 3757 host_ip->uid = tswap32(target_ip->uid); 3758 host_ip->gid = tswap32(target_ip->gid); 3759 host_ip->cuid = tswap32(target_ip->cuid); 3760 host_ip->cgid = tswap32(target_ip->cgid); 3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3762 host_ip->mode = tswap32(target_ip->mode); 3763 #else 3764 host_ip->mode = tswap16(target_ip->mode); 3765 #endif 3766 #if defined(TARGET_PPC) 3767 host_ip->__seq = tswap32(target_ip->__seq); 3768 #else 3769 host_ip->__seq = tswap16(target_ip->__seq); 3770 #endif 3771 unlock_user_struct(target_sd, target_addr, 0); 3772 return 0; 3773 } 3774 3775 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 3776 struct ipc_perm *host_ip) 3777 { 3778 struct target_ipc_perm *target_ip; 3779 struct target_semid64_ds *target_sd; 3780 3781 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3782 return -TARGET_EFAULT; 3783 target_ip = &(target_sd->sem_perm); 3784 target_ip->__key = tswap32(host_ip->__key); 3785 target_ip->uid = tswap32(host_ip->uid); 3786 target_ip->gid = tswap32(host_ip->gid); 3787 target_ip->cuid = tswap32(host_ip->cuid); 3788 target_ip->cgid = tswap32(host_ip->cgid); 3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3790 target_ip->mode = tswap32(host_ip->mode); 3791 #else 3792 target_ip->mode = tswap16(host_ip->mode); 3793 #endif 3794 #if defined(TARGET_PPC) 3795 target_ip->__seq = tswap32(host_ip->__seq); 3796 #else 3797 target_ip->__seq = tswap16(host_ip->__seq); 3798 #endif 3799 unlock_user_struct(target_sd, target_addr, 1); 3800 return 0; 3801 } 3802 3803 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 3804 abi_ulong target_addr) 3805 { 3806 struct target_semid64_ds *target_sd; 3807 3808 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3809 return -TARGET_EFAULT; 3810 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 3811 return -TARGET_EFAULT; 3812 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 3813 host_sd->sem_otime = tswapal(target_sd->sem_otime); 3814 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 3815 unlock_user_struct(target_sd, target_addr, 0); 3816 return 0; 3817 } 3818 3819 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 3820 struct semid_ds *host_sd) 3821 { 3822 struct target_semid64_ds *target_sd; 3823 3824 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3825 return -TARGET_EFAULT; 3826 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 3827 return -TARGET_EFAULT; 3828 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 3829 target_sd->sem_otime = tswapal(host_sd->sem_otime); 3830 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 3831 unlock_user_struct(target_sd, target_addr, 1); 3832 return 0; 3833 } 3834 3835 struct target_seminfo { 3836 int semmap; 3837 int semmni; 3838 int semmns; 3839 int semmnu; 3840 int semmsl; 3841 int semopm; 3842 int semume; 3843 int semusz; 3844 int semvmx; 3845 int semaem; 3846 }; 3847 3848 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 3849 struct seminfo *host_seminfo) 3850 { 3851 struct target_seminfo *target_seminfo; 3852 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 3853 return -TARGET_EFAULT; 3854 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 3855 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 3856 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 3857 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 3858 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 3859 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 3860 __put_user(host_seminfo->semume, &target_seminfo->semume); 3861 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 3862 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 3863 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 3864 unlock_user_struct(target_seminfo, target_addr, 1); 3865 return 0; 3866 } 3867 3868 union semun { 3869 int val; 3870 struct semid_ds *buf; 3871 unsigned short *array; 3872 struct seminfo *__buf; 3873 }; 3874 3875 union target_semun { 3876 int val; 3877 abi_ulong buf; 3878 abi_ulong array; 3879 abi_ulong __buf; 3880 }; 3881 3882 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 3883 abi_ulong target_addr) 3884 { 3885 int nsems; 3886 unsigned short *array; 3887 union semun semun; 3888 struct semid_ds semid_ds; 3889 int i, ret; 3890 3891 semun.buf = &semid_ds; 3892 3893 ret = semctl(semid, 0, IPC_STAT, semun); 3894 if (ret == -1) 3895 return get_errno(ret); 3896 3897 nsems = semid_ds.sem_nsems; 3898 3899 *host_array = g_try_new(unsigned short, nsems); 3900 if (!*host_array) { 3901 return -TARGET_ENOMEM; 3902 } 3903 array = lock_user(VERIFY_READ, target_addr, 3904 nsems*sizeof(unsigned short), 1); 3905 if (!array) { 3906 g_free(*host_array); 3907 return -TARGET_EFAULT; 3908 } 3909 3910 for(i=0; i<nsems; i++) { 3911 __get_user((*host_array)[i], &array[i]); 3912 } 3913 unlock_user(array, target_addr, 0); 3914 3915 return 0; 3916 } 3917 3918 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 3919 unsigned short **host_array) 3920 { 3921 int nsems; 3922 unsigned short *array; 3923 union semun semun; 3924 struct semid_ds semid_ds; 3925 int i, ret; 3926 3927 semun.buf = &semid_ds; 3928 3929 ret = semctl(semid, 0, IPC_STAT, semun); 3930 if (ret == -1) 3931 return get_errno(ret); 3932 3933 nsems = semid_ds.sem_nsems; 3934 3935 array = lock_user(VERIFY_WRITE, target_addr, 3936 nsems*sizeof(unsigned short), 0); 3937 if (!array) 3938 return -TARGET_EFAULT; 3939 3940 for(i=0; i<nsems; i++) { 3941 __put_user((*host_array)[i], &array[i]); 3942 } 3943 g_free(*host_array); 3944 unlock_user(array, target_addr, 1); 3945 3946 return 0; 3947 } 3948 3949 static inline abi_long do_semctl(int semid, int semnum, int cmd, 3950 abi_ulong target_arg) 3951 { 3952 union target_semun target_su = { .buf = target_arg }; 3953 union semun arg; 3954 struct semid_ds dsarg; 3955 unsigned short *array = NULL; 3956 struct seminfo seminfo; 3957 abi_long ret = -TARGET_EINVAL; 3958 abi_long err; 3959 cmd &= 0xff; 3960 3961 switch( cmd ) { 3962 case GETVAL: 3963 case SETVAL: 3964 /* In 64 bit cross-endian situations, we will erroneously pick up 3965 * the wrong half of the union for the "val" element. To rectify 3966 * this, the entire 8-byte structure is byteswapped, followed by 3967 * a swap of the 4 byte val field. In other cases, the data is 3968 * already in proper host byte order. */ 3969 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 3970 target_su.buf = tswapal(target_su.buf); 3971 arg.val = tswap32(target_su.val); 3972 } else { 3973 arg.val = target_su.val; 3974 } 3975 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3976 break; 3977 case GETALL: 3978 case SETALL: 3979 err = target_to_host_semarray(semid, &array, target_su.array); 3980 if (err) 3981 return err; 3982 arg.array = array; 3983 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3984 err = host_to_target_semarray(semid, target_su.array, &array); 3985 if (err) 3986 return err; 3987 break; 3988 case IPC_STAT: 3989 case IPC_SET: 3990 case SEM_STAT: 3991 err = target_to_host_semid_ds(&dsarg, target_su.buf); 3992 if (err) 3993 return err; 3994 arg.buf = &dsarg; 3995 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3996 err = host_to_target_semid_ds(target_su.buf, &dsarg); 3997 if (err) 3998 return err; 3999 break; 4000 case IPC_INFO: 4001 case SEM_INFO: 4002 arg.__buf = &seminfo; 4003 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4004 err = host_to_target_seminfo(target_su.__buf, &seminfo); 4005 if (err) 4006 return err; 4007 break; 4008 case IPC_RMID: 4009 case GETPID: 4010 case GETNCNT: 4011 case GETZCNT: 4012 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4013 break; 4014 } 4015 4016 return ret; 4017 } 4018 4019 struct target_sembuf { 4020 unsigned short sem_num; 4021 short sem_op; 4022 short sem_flg; 4023 }; 4024 4025 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4026 abi_ulong target_addr, 4027 unsigned nsops) 4028 { 4029 struct target_sembuf *target_sembuf; 4030 int i; 4031 4032 target_sembuf = lock_user(VERIFY_READ, target_addr, 4033 nsops*sizeof(struct target_sembuf), 1); 4034 if (!target_sembuf) 4035 return -TARGET_EFAULT; 4036 4037 for(i=0; i<nsops; i++) { 4038 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4039 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4040 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4041 } 4042 4043 unlock_user(target_sembuf, target_addr, 0); 4044 4045 return 0; 4046 } 4047 4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \ 4049 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64) 4050 4051 /* 4052 * This macro is required to handle the s390 variants, which passes the 4053 * arguments in a different order than default. 4054 */ 4055 #ifdef __s390x__ 4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4057 (__nsops), (__timeout), (__sops) 4058 #else 4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4060 (__nsops), 0, (__sops), (__timeout) 4061 #endif 4062 4063 static inline abi_long do_semtimedop(int semid, 4064 abi_long ptr, 4065 unsigned nsops, 4066 abi_long timeout, bool time64) 4067 { 4068 struct sembuf *sops; 4069 struct timespec ts, *pts = NULL; 4070 abi_long ret; 4071 4072 if (timeout) { 4073 pts = &ts; 4074 if (time64) { 4075 if (target_to_host_timespec64(pts, timeout)) { 4076 return -TARGET_EFAULT; 4077 } 4078 } else { 4079 if (target_to_host_timespec(pts, timeout)) { 4080 return -TARGET_EFAULT; 4081 } 4082 } 4083 } 4084 4085 if (nsops > TARGET_SEMOPM) { 4086 return -TARGET_E2BIG; 4087 } 4088 4089 sops = g_new(struct sembuf, nsops); 4090 4091 if (target_to_host_sembuf(sops, ptr, nsops)) { 4092 g_free(sops); 4093 return -TARGET_EFAULT; 4094 } 4095 4096 ret = -TARGET_ENOSYS; 4097 #ifdef __NR_semtimedop 4098 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts)); 4099 #endif 4100 #ifdef __NR_ipc 4101 if (ret == -TARGET_ENOSYS) { 4102 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, 4103 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts))); 4104 } 4105 #endif 4106 g_free(sops); 4107 return ret; 4108 } 4109 #endif 4110 4111 struct target_msqid_ds 4112 { 4113 struct target_ipc_perm msg_perm; 4114 abi_ulong msg_stime; 4115 #if TARGET_ABI_BITS == 32 4116 abi_ulong __unused1; 4117 #endif 4118 abi_ulong msg_rtime; 4119 #if TARGET_ABI_BITS == 32 4120 abi_ulong __unused2; 4121 #endif 4122 abi_ulong msg_ctime; 4123 #if TARGET_ABI_BITS == 32 4124 abi_ulong __unused3; 4125 #endif 4126 abi_ulong __msg_cbytes; 4127 abi_ulong msg_qnum; 4128 abi_ulong msg_qbytes; 4129 abi_ulong msg_lspid; 4130 abi_ulong msg_lrpid; 4131 abi_ulong __unused4; 4132 abi_ulong __unused5; 4133 }; 4134 4135 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4136 abi_ulong target_addr) 4137 { 4138 struct target_msqid_ds *target_md; 4139 4140 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4141 return -TARGET_EFAULT; 4142 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4143 return -TARGET_EFAULT; 4144 host_md->msg_stime = tswapal(target_md->msg_stime); 4145 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4146 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4147 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4148 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4149 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4150 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4151 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4152 unlock_user_struct(target_md, target_addr, 0); 4153 return 0; 4154 } 4155 4156 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4157 struct msqid_ds *host_md) 4158 { 4159 struct target_msqid_ds *target_md; 4160 4161 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4162 return -TARGET_EFAULT; 4163 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4164 return -TARGET_EFAULT; 4165 target_md->msg_stime = tswapal(host_md->msg_stime); 4166 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4167 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4168 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4169 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4170 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4171 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4172 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4173 unlock_user_struct(target_md, target_addr, 1); 4174 return 0; 4175 } 4176 4177 struct target_msginfo { 4178 int msgpool; 4179 int msgmap; 4180 int msgmax; 4181 int msgmnb; 4182 int msgmni; 4183 int msgssz; 4184 int msgtql; 4185 unsigned short int msgseg; 4186 }; 4187 4188 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4189 struct msginfo *host_msginfo) 4190 { 4191 struct target_msginfo *target_msginfo; 4192 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4193 return -TARGET_EFAULT; 4194 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4195 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4196 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4197 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4198 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4199 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4200 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4201 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4202 unlock_user_struct(target_msginfo, target_addr, 1); 4203 return 0; 4204 } 4205 4206 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4207 { 4208 struct msqid_ds dsarg; 4209 struct msginfo msginfo; 4210 abi_long ret = -TARGET_EINVAL; 4211 4212 cmd &= 0xff; 4213 4214 switch (cmd) { 4215 case IPC_STAT: 4216 case IPC_SET: 4217 case MSG_STAT: 4218 if (target_to_host_msqid_ds(&dsarg,ptr)) 4219 return -TARGET_EFAULT; 4220 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4221 if (host_to_target_msqid_ds(ptr,&dsarg)) 4222 return -TARGET_EFAULT; 4223 break; 4224 case IPC_RMID: 4225 ret = get_errno(msgctl(msgid, cmd, NULL)); 4226 break; 4227 case IPC_INFO: 4228 case MSG_INFO: 4229 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4230 if (host_to_target_msginfo(ptr, &msginfo)) 4231 return -TARGET_EFAULT; 4232 break; 4233 } 4234 4235 return ret; 4236 } 4237 4238 struct target_msgbuf { 4239 abi_long mtype; 4240 char mtext[1]; 4241 }; 4242 4243 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4244 ssize_t msgsz, int msgflg) 4245 { 4246 struct target_msgbuf *target_mb; 4247 struct msgbuf *host_mb; 4248 abi_long ret = 0; 4249 4250 if (msgsz < 0) { 4251 return -TARGET_EINVAL; 4252 } 4253 4254 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4255 return -TARGET_EFAULT; 4256 host_mb = g_try_malloc(msgsz + sizeof(long)); 4257 if (!host_mb) { 4258 unlock_user_struct(target_mb, msgp, 0); 4259 return -TARGET_ENOMEM; 4260 } 4261 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4262 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4263 ret = -TARGET_ENOSYS; 4264 #ifdef __NR_msgsnd 4265 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4266 #endif 4267 #ifdef __NR_ipc 4268 if (ret == -TARGET_ENOSYS) { 4269 #ifdef __s390x__ 4270 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4271 host_mb)); 4272 #else 4273 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4274 host_mb, 0)); 4275 #endif 4276 } 4277 #endif 4278 g_free(host_mb); 4279 unlock_user_struct(target_mb, msgp, 0); 4280 4281 return ret; 4282 } 4283 4284 #ifdef __NR_ipc 4285 #if defined(__sparc__) 4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */ 4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp 4288 #elif defined(__s390x__) 4289 /* The s390 sys_ipc variant has only five parameters. */ 4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4291 ((long int[]){(long int)__msgp, __msgtyp}) 4292 #else 4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4294 ((long int[]){(long int)__msgp, __msgtyp}), 0 4295 #endif 4296 #endif 4297 4298 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4299 ssize_t msgsz, abi_long msgtyp, 4300 int msgflg) 4301 { 4302 struct target_msgbuf *target_mb; 4303 char *target_mtext; 4304 struct msgbuf *host_mb; 4305 abi_long ret = 0; 4306 4307 if (msgsz < 0) { 4308 return -TARGET_EINVAL; 4309 } 4310 4311 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4312 return -TARGET_EFAULT; 4313 4314 host_mb = g_try_malloc(msgsz + sizeof(long)); 4315 if (!host_mb) { 4316 ret = -TARGET_ENOMEM; 4317 goto end; 4318 } 4319 ret = -TARGET_ENOSYS; 4320 #ifdef __NR_msgrcv 4321 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4322 #endif 4323 #ifdef __NR_ipc 4324 if (ret == -TARGET_ENOSYS) { 4325 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz, 4326 msgflg, MSGRCV_ARGS(host_mb, msgtyp))); 4327 } 4328 #endif 4329 4330 if (ret > 0) { 4331 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4332 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4333 if (!target_mtext) { 4334 ret = -TARGET_EFAULT; 4335 goto end; 4336 } 4337 memcpy(target_mb->mtext, host_mb->mtext, ret); 4338 unlock_user(target_mtext, target_mtext_addr, ret); 4339 } 4340 4341 target_mb->mtype = tswapal(host_mb->mtype); 4342 4343 end: 4344 if (target_mb) 4345 unlock_user_struct(target_mb, msgp, 1); 4346 g_free(host_mb); 4347 return ret; 4348 } 4349 4350 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4351 abi_ulong target_addr) 4352 { 4353 struct target_shmid_ds *target_sd; 4354 4355 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4356 return -TARGET_EFAULT; 4357 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4358 return -TARGET_EFAULT; 4359 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4360 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4361 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4362 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4363 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4364 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4365 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4366 unlock_user_struct(target_sd, target_addr, 0); 4367 return 0; 4368 } 4369 4370 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4371 struct shmid_ds *host_sd) 4372 { 4373 struct target_shmid_ds *target_sd; 4374 4375 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4376 return -TARGET_EFAULT; 4377 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4378 return -TARGET_EFAULT; 4379 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4380 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4381 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4382 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4383 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4384 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4385 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4386 unlock_user_struct(target_sd, target_addr, 1); 4387 return 0; 4388 } 4389 4390 struct target_shminfo { 4391 abi_ulong shmmax; 4392 abi_ulong shmmin; 4393 abi_ulong shmmni; 4394 abi_ulong shmseg; 4395 abi_ulong shmall; 4396 }; 4397 4398 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4399 struct shminfo *host_shminfo) 4400 { 4401 struct target_shminfo *target_shminfo; 4402 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4403 return -TARGET_EFAULT; 4404 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4405 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4406 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4407 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4408 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4409 unlock_user_struct(target_shminfo, target_addr, 1); 4410 return 0; 4411 } 4412 4413 struct target_shm_info { 4414 int used_ids; 4415 abi_ulong shm_tot; 4416 abi_ulong shm_rss; 4417 abi_ulong shm_swp; 4418 abi_ulong swap_attempts; 4419 abi_ulong swap_successes; 4420 }; 4421 4422 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4423 struct shm_info *host_shm_info) 4424 { 4425 struct target_shm_info *target_shm_info; 4426 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4427 return -TARGET_EFAULT; 4428 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4429 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4430 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4431 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4432 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4433 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4434 unlock_user_struct(target_shm_info, target_addr, 1); 4435 return 0; 4436 } 4437 4438 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4439 { 4440 struct shmid_ds dsarg; 4441 struct shminfo shminfo; 4442 struct shm_info shm_info; 4443 abi_long ret = -TARGET_EINVAL; 4444 4445 cmd &= 0xff; 4446 4447 switch(cmd) { 4448 case IPC_STAT: 4449 case IPC_SET: 4450 case SHM_STAT: 4451 if (target_to_host_shmid_ds(&dsarg, buf)) 4452 return -TARGET_EFAULT; 4453 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4454 if (host_to_target_shmid_ds(buf, &dsarg)) 4455 return -TARGET_EFAULT; 4456 break; 4457 case IPC_INFO: 4458 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4459 if (host_to_target_shminfo(buf, &shminfo)) 4460 return -TARGET_EFAULT; 4461 break; 4462 case SHM_INFO: 4463 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4464 if (host_to_target_shm_info(buf, &shm_info)) 4465 return -TARGET_EFAULT; 4466 break; 4467 case IPC_RMID: 4468 case SHM_LOCK: 4469 case SHM_UNLOCK: 4470 ret = get_errno(shmctl(shmid, cmd, NULL)); 4471 break; 4472 } 4473 4474 return ret; 4475 } 4476 4477 #ifdef TARGET_NR_ipc 4478 /* ??? This only works with linear mappings. */ 4479 /* do_ipc() must return target values and target errnos. */ 4480 static abi_long do_ipc(CPUArchState *cpu_env, 4481 unsigned int call, abi_long first, 4482 abi_long second, abi_long third, 4483 abi_long ptr, abi_long fifth) 4484 { 4485 int version; 4486 abi_long ret = 0; 4487 4488 version = call >> 16; 4489 call &= 0xffff; 4490 4491 switch (call) { 4492 case IPCOP_semop: 4493 ret = do_semtimedop(first, ptr, second, 0, false); 4494 break; 4495 case IPCOP_semtimedop: 4496 /* 4497 * The s390 sys_ipc variant has only five parameters instead of six 4498 * (as for default variant) and the only difference is the handling of 4499 * SEMTIMEDOP where on s390 the third parameter is used as a pointer 4500 * to a struct timespec where the generic variant uses fifth parameter. 4501 */ 4502 #if defined(TARGET_S390X) 4503 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64); 4504 #else 4505 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64); 4506 #endif 4507 break; 4508 4509 case IPCOP_semget: 4510 ret = get_errno(semget(first, second, third)); 4511 break; 4512 4513 case IPCOP_semctl: { 4514 /* The semun argument to semctl is passed by value, so dereference the 4515 * ptr argument. */ 4516 abi_ulong atptr; 4517 get_user_ual(atptr, ptr); 4518 ret = do_semctl(first, second, third, atptr); 4519 break; 4520 } 4521 4522 case IPCOP_msgget: 4523 ret = get_errno(msgget(first, second)); 4524 break; 4525 4526 case IPCOP_msgsnd: 4527 ret = do_msgsnd(first, ptr, second, third); 4528 break; 4529 4530 case IPCOP_msgctl: 4531 ret = do_msgctl(first, second, ptr); 4532 break; 4533 4534 case IPCOP_msgrcv: 4535 switch (version) { 4536 case 0: 4537 { 4538 struct target_ipc_kludge { 4539 abi_long msgp; 4540 abi_long msgtyp; 4541 } *tmp; 4542 4543 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4544 ret = -TARGET_EFAULT; 4545 break; 4546 } 4547 4548 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4549 4550 unlock_user_struct(tmp, ptr, 0); 4551 break; 4552 } 4553 default: 4554 ret = do_msgrcv(first, ptr, second, fifth, third); 4555 } 4556 break; 4557 4558 case IPCOP_shmat: 4559 switch (version) { 4560 default: 4561 { 4562 abi_ulong raddr; 4563 raddr = target_shmat(cpu_env, first, ptr, second); 4564 if (is_error(raddr)) 4565 return get_errno(raddr); 4566 if (put_user_ual(raddr, third)) 4567 return -TARGET_EFAULT; 4568 break; 4569 } 4570 case 1: 4571 ret = -TARGET_EINVAL; 4572 break; 4573 } 4574 break; 4575 case IPCOP_shmdt: 4576 ret = target_shmdt(ptr); 4577 break; 4578 4579 case IPCOP_shmget: 4580 /* IPC_* flag values are the same on all linux platforms */ 4581 ret = get_errno(shmget(first, second, third)); 4582 break; 4583 4584 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4585 case IPCOP_shmctl: 4586 ret = do_shmctl(first, second, ptr); 4587 break; 4588 default: 4589 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n", 4590 call, version); 4591 ret = -TARGET_ENOSYS; 4592 break; 4593 } 4594 return ret; 4595 } 4596 #endif 4597 4598 /* kernel structure types definitions */ 4599 4600 #define STRUCT(name, ...) STRUCT_ ## name, 4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4602 enum { 4603 #include "syscall_types.h" 4604 STRUCT_MAX 4605 }; 4606 #undef STRUCT 4607 #undef STRUCT_SPECIAL 4608 4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4610 #define STRUCT_SPECIAL(name) 4611 #include "syscall_types.h" 4612 #undef STRUCT 4613 #undef STRUCT_SPECIAL 4614 4615 #define MAX_STRUCT_SIZE 4096 4616 4617 #ifdef CONFIG_FIEMAP 4618 /* So fiemap access checks don't overflow on 32 bit systems. 4619 * This is very slightly smaller than the limit imposed by 4620 * the underlying kernel. 4621 */ 4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4623 / sizeof(struct fiemap_extent)) 4624 4625 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4626 int fd, int cmd, abi_long arg) 4627 { 4628 /* The parameter for this ioctl is a struct fiemap followed 4629 * by an array of struct fiemap_extent whose size is set 4630 * in fiemap->fm_extent_count. The array is filled in by the 4631 * ioctl. 4632 */ 4633 int target_size_in, target_size_out; 4634 struct fiemap *fm; 4635 const argtype *arg_type = ie->arg_type; 4636 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4637 void *argptr, *p; 4638 abi_long ret; 4639 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4640 uint32_t outbufsz; 4641 int free_fm = 0; 4642 4643 assert(arg_type[0] == TYPE_PTR); 4644 assert(ie->access == IOC_RW); 4645 arg_type++; 4646 target_size_in = thunk_type_size(arg_type, 0); 4647 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4648 if (!argptr) { 4649 return -TARGET_EFAULT; 4650 } 4651 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4652 unlock_user(argptr, arg, 0); 4653 fm = (struct fiemap *)buf_temp; 4654 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4655 return -TARGET_EINVAL; 4656 } 4657 4658 outbufsz = sizeof (*fm) + 4659 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4660 4661 if (outbufsz > MAX_STRUCT_SIZE) { 4662 /* We can't fit all the extents into the fixed size buffer. 4663 * Allocate one that is large enough and use it instead. 4664 */ 4665 fm = g_try_malloc(outbufsz); 4666 if (!fm) { 4667 return -TARGET_ENOMEM; 4668 } 4669 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4670 free_fm = 1; 4671 } 4672 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4673 if (!is_error(ret)) { 4674 target_size_out = target_size_in; 4675 /* An extent_count of 0 means we were only counting the extents 4676 * so there are no structs to copy 4677 */ 4678 if (fm->fm_extent_count != 0) { 4679 target_size_out += fm->fm_mapped_extents * extent_size; 4680 } 4681 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4682 if (!argptr) { 4683 ret = -TARGET_EFAULT; 4684 } else { 4685 /* Convert the struct fiemap */ 4686 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4687 if (fm->fm_extent_count != 0) { 4688 p = argptr + target_size_in; 4689 /* ...and then all the struct fiemap_extents */ 4690 for (i = 0; i < fm->fm_mapped_extents; i++) { 4691 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4692 THUNK_TARGET); 4693 p += extent_size; 4694 } 4695 } 4696 unlock_user(argptr, arg, target_size_out); 4697 } 4698 } 4699 if (free_fm) { 4700 g_free(fm); 4701 } 4702 return ret; 4703 } 4704 #endif 4705 4706 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 4707 int fd, int cmd, abi_long arg) 4708 { 4709 const argtype *arg_type = ie->arg_type; 4710 int target_size; 4711 void *argptr; 4712 int ret; 4713 struct ifconf *host_ifconf; 4714 uint32_t outbufsz; 4715 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 4716 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) }; 4717 int target_ifreq_size; 4718 int nb_ifreq; 4719 int free_buf = 0; 4720 int i; 4721 int target_ifc_len; 4722 abi_long target_ifc_buf; 4723 int host_ifc_len; 4724 char *host_ifc_buf; 4725 4726 assert(arg_type[0] == TYPE_PTR); 4727 assert(ie->access == IOC_RW); 4728 4729 arg_type++; 4730 target_size = thunk_type_size(arg_type, 0); 4731 4732 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4733 if (!argptr) 4734 return -TARGET_EFAULT; 4735 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4736 unlock_user(argptr, arg, 0); 4737 4738 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 4739 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 4740 target_ifreq_size = thunk_type_size(ifreq_max_type, 0); 4741 4742 if (target_ifc_buf != 0) { 4743 target_ifc_len = host_ifconf->ifc_len; 4744 nb_ifreq = target_ifc_len / target_ifreq_size; 4745 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 4746 4747 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 4748 if (outbufsz > MAX_STRUCT_SIZE) { 4749 /* 4750 * We can't fit all the extents into the fixed size buffer. 4751 * Allocate one that is large enough and use it instead. 4752 */ 4753 host_ifconf = g_try_malloc(outbufsz); 4754 if (!host_ifconf) { 4755 return -TARGET_ENOMEM; 4756 } 4757 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 4758 free_buf = 1; 4759 } 4760 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf); 4761 4762 host_ifconf->ifc_len = host_ifc_len; 4763 } else { 4764 host_ifc_buf = NULL; 4765 } 4766 host_ifconf->ifc_buf = host_ifc_buf; 4767 4768 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 4769 if (!is_error(ret)) { 4770 /* convert host ifc_len to target ifc_len */ 4771 4772 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 4773 target_ifc_len = nb_ifreq * target_ifreq_size; 4774 host_ifconf->ifc_len = target_ifc_len; 4775 4776 /* restore target ifc_buf */ 4777 4778 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 4779 4780 /* copy struct ifconf to target user */ 4781 4782 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4783 if (!argptr) 4784 return -TARGET_EFAULT; 4785 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 4786 unlock_user(argptr, arg, target_size); 4787 4788 if (target_ifc_buf != 0) { 4789 /* copy ifreq[] to target user */ 4790 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 4791 for (i = 0; i < nb_ifreq ; i++) { 4792 thunk_convert(argptr + i * target_ifreq_size, 4793 host_ifc_buf + i * sizeof(struct ifreq), 4794 ifreq_arg_type, THUNK_TARGET); 4795 } 4796 unlock_user(argptr, target_ifc_buf, target_ifc_len); 4797 } 4798 } 4799 4800 if (free_buf) { 4801 g_free(host_ifconf); 4802 } 4803 4804 return ret; 4805 } 4806 4807 #if defined(CONFIG_USBFS) 4808 #if HOST_LONG_BITS > 64 4809 #error USBDEVFS thunks do not support >64 bit hosts yet. 4810 #endif 4811 struct live_urb { 4812 uint64_t target_urb_adr; 4813 uint64_t target_buf_adr; 4814 char *target_buf_ptr; 4815 struct usbdevfs_urb host_urb; 4816 }; 4817 4818 static GHashTable *usbdevfs_urb_hashtable(void) 4819 { 4820 static GHashTable *urb_hashtable; 4821 4822 if (!urb_hashtable) { 4823 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal); 4824 } 4825 return urb_hashtable; 4826 } 4827 4828 static void urb_hashtable_insert(struct live_urb *urb) 4829 { 4830 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4831 g_hash_table_insert(urb_hashtable, urb, urb); 4832 } 4833 4834 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr) 4835 { 4836 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4837 return g_hash_table_lookup(urb_hashtable, &target_urb_adr); 4838 } 4839 4840 static void urb_hashtable_remove(struct live_urb *urb) 4841 { 4842 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4843 g_hash_table_remove(urb_hashtable, urb); 4844 } 4845 4846 static abi_long 4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp, 4848 int fd, int cmd, abi_long arg) 4849 { 4850 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) }; 4851 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 }; 4852 struct live_urb *lurb; 4853 void *argptr; 4854 uint64_t hurb; 4855 int target_size; 4856 uintptr_t target_urb_adr; 4857 abi_long ret; 4858 4859 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET); 4860 4861 memset(buf_temp, 0, sizeof(uint64_t)); 4862 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4863 if (is_error(ret)) { 4864 return ret; 4865 } 4866 4867 memcpy(&hurb, buf_temp, sizeof(uint64_t)); 4868 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb)); 4869 if (!lurb->target_urb_adr) { 4870 return -TARGET_EFAULT; 4871 } 4872 urb_hashtable_remove(lurb); 4873 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 4874 lurb->host_urb.buffer_length); 4875 lurb->target_buf_ptr = NULL; 4876 4877 /* restore the guest buffer pointer */ 4878 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr; 4879 4880 /* update the guest urb struct */ 4881 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0); 4882 if (!argptr) { 4883 g_free(lurb); 4884 return -TARGET_EFAULT; 4885 } 4886 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET); 4887 unlock_user(argptr, lurb->target_urb_adr, target_size); 4888 4889 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET); 4890 /* write back the urb handle */ 4891 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4892 if (!argptr) { 4893 g_free(lurb); 4894 return -TARGET_EFAULT; 4895 } 4896 4897 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */ 4898 target_urb_adr = lurb->target_urb_adr; 4899 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET); 4900 unlock_user(argptr, arg, target_size); 4901 4902 g_free(lurb); 4903 return ret; 4904 } 4905 4906 static abi_long 4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie, 4908 uint8_t *buf_temp __attribute__((unused)), 4909 int fd, int cmd, abi_long arg) 4910 { 4911 struct live_urb *lurb; 4912 4913 /* map target address back to host URB with metadata. */ 4914 lurb = urb_hashtable_lookup(arg); 4915 if (!lurb) { 4916 return -TARGET_EFAULT; 4917 } 4918 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4919 } 4920 4921 static abi_long 4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp, 4923 int fd, int cmd, abi_long arg) 4924 { 4925 const argtype *arg_type = ie->arg_type; 4926 int target_size; 4927 abi_long ret; 4928 void *argptr; 4929 int rw_dir; 4930 struct live_urb *lurb; 4931 4932 /* 4933 * each submitted URB needs to map to a unique ID for the 4934 * kernel, and that unique ID needs to be a pointer to 4935 * host memory. hence, we need to malloc for each URB. 4936 * isochronous transfers have a variable length struct. 4937 */ 4938 arg_type++; 4939 target_size = thunk_type_size(arg_type, THUNK_TARGET); 4940 4941 /* construct host copy of urb and metadata */ 4942 lurb = g_try_new0(struct live_urb, 1); 4943 if (!lurb) { 4944 return -TARGET_ENOMEM; 4945 } 4946 4947 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4948 if (!argptr) { 4949 g_free(lurb); 4950 return -TARGET_EFAULT; 4951 } 4952 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST); 4953 unlock_user(argptr, arg, 0); 4954 4955 lurb->target_urb_adr = arg; 4956 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer; 4957 4958 /* buffer space used depends on endpoint type so lock the entire buffer */ 4959 /* control type urbs should check the buffer contents for true direction */ 4960 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ; 4961 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr, 4962 lurb->host_urb.buffer_length, 1); 4963 if (lurb->target_buf_ptr == NULL) { 4964 g_free(lurb); 4965 return -TARGET_EFAULT; 4966 } 4967 4968 /* update buffer pointer in host copy */ 4969 lurb->host_urb.buffer = lurb->target_buf_ptr; 4970 4971 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4972 if (is_error(ret)) { 4973 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0); 4974 g_free(lurb); 4975 } else { 4976 urb_hashtable_insert(lurb); 4977 } 4978 4979 return ret; 4980 } 4981 #endif /* CONFIG_USBFS */ 4982 4983 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 4984 int cmd, abi_long arg) 4985 { 4986 void *argptr; 4987 struct dm_ioctl *host_dm; 4988 abi_long guest_data; 4989 uint32_t guest_data_size; 4990 int target_size; 4991 const argtype *arg_type = ie->arg_type; 4992 abi_long ret; 4993 void *big_buf = NULL; 4994 char *host_data; 4995 4996 arg_type++; 4997 target_size = thunk_type_size(arg_type, 0); 4998 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4999 if (!argptr) { 5000 ret = -TARGET_EFAULT; 5001 goto out; 5002 } 5003 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5004 unlock_user(argptr, arg, 0); 5005 5006 /* buf_temp is too small, so fetch things into a bigger buffer */ 5007 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5008 memcpy(big_buf, buf_temp, target_size); 5009 buf_temp = big_buf; 5010 host_dm = big_buf; 5011 5012 guest_data = arg + host_dm->data_start; 5013 if ((guest_data - arg) < 0) { 5014 ret = -TARGET_EINVAL; 5015 goto out; 5016 } 5017 guest_data_size = host_dm->data_size - host_dm->data_start; 5018 host_data = (char*)host_dm + host_dm->data_start; 5019 5020 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5021 if (!argptr) { 5022 ret = -TARGET_EFAULT; 5023 goto out; 5024 } 5025 5026 switch (ie->host_cmd) { 5027 case DM_REMOVE_ALL: 5028 case DM_LIST_DEVICES: 5029 case DM_DEV_CREATE: 5030 case DM_DEV_REMOVE: 5031 case DM_DEV_SUSPEND: 5032 case DM_DEV_STATUS: 5033 case DM_DEV_WAIT: 5034 case DM_TABLE_STATUS: 5035 case DM_TABLE_CLEAR: 5036 case DM_TABLE_DEPS: 5037 case DM_LIST_VERSIONS: 5038 /* no input data */ 5039 break; 5040 case DM_DEV_RENAME: 5041 case DM_DEV_SET_GEOMETRY: 5042 /* data contains only strings */ 5043 memcpy(host_data, argptr, guest_data_size); 5044 break; 5045 case DM_TARGET_MSG: 5046 memcpy(host_data, argptr, guest_data_size); 5047 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5048 break; 5049 case DM_TABLE_LOAD: 5050 { 5051 void *gspec = argptr; 5052 void *cur_data = host_data; 5053 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5054 int spec_size = thunk_type_size(dm_arg_type, 0); 5055 int i; 5056 5057 for (i = 0; i < host_dm->target_count; i++) { 5058 struct dm_target_spec *spec = cur_data; 5059 uint32_t next; 5060 int slen; 5061 5062 thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST); 5063 slen = strlen((char*)gspec + spec_size) + 1; 5064 next = spec->next; 5065 spec->next = sizeof(*spec) + slen; 5066 strcpy((char*)&spec[1], gspec + spec_size); 5067 gspec += next; 5068 cur_data += spec->next; 5069 } 5070 break; 5071 } 5072 default: 5073 ret = -TARGET_EINVAL; 5074 unlock_user(argptr, guest_data, 0); 5075 goto out; 5076 } 5077 unlock_user(argptr, guest_data, 0); 5078 5079 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5080 if (!is_error(ret)) { 5081 guest_data = arg + host_dm->data_start; 5082 guest_data_size = host_dm->data_size - host_dm->data_start; 5083 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5084 switch (ie->host_cmd) { 5085 case DM_REMOVE_ALL: 5086 case DM_DEV_CREATE: 5087 case DM_DEV_REMOVE: 5088 case DM_DEV_RENAME: 5089 case DM_DEV_SUSPEND: 5090 case DM_DEV_STATUS: 5091 case DM_TABLE_LOAD: 5092 case DM_TABLE_CLEAR: 5093 case DM_TARGET_MSG: 5094 case DM_DEV_SET_GEOMETRY: 5095 /* no return data */ 5096 break; 5097 case DM_LIST_DEVICES: 5098 { 5099 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5100 uint32_t remaining_data = guest_data_size; 5101 void *cur_data = argptr; 5102 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5103 int nl_size = 12; /* can't use thunk_size due to alignment */ 5104 5105 while (1) { 5106 uint32_t next = nl->next; 5107 if (next) { 5108 nl->next = nl_size + (strlen(nl->name) + 1); 5109 } 5110 if (remaining_data < nl->next) { 5111 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5112 break; 5113 } 5114 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET); 5115 strcpy(cur_data + nl_size, nl->name); 5116 cur_data += nl->next; 5117 remaining_data -= nl->next; 5118 if (!next) { 5119 break; 5120 } 5121 nl = (void*)nl + next; 5122 } 5123 break; 5124 } 5125 case DM_DEV_WAIT: 5126 case DM_TABLE_STATUS: 5127 { 5128 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5129 void *cur_data = argptr; 5130 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5131 int spec_size = thunk_type_size(dm_arg_type, 0); 5132 int i; 5133 5134 for (i = 0; i < host_dm->target_count; i++) { 5135 uint32_t next = spec->next; 5136 int slen = strlen((char*)&spec[1]) + 1; 5137 spec->next = (cur_data - argptr) + spec_size + slen; 5138 if (guest_data_size < spec->next) { 5139 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5140 break; 5141 } 5142 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET); 5143 strcpy(cur_data + spec_size, (char*)&spec[1]); 5144 cur_data = argptr + spec->next; 5145 spec = (void*)host_dm + host_dm->data_start + next; 5146 } 5147 break; 5148 } 5149 case DM_TABLE_DEPS: 5150 { 5151 void *hdata = (void*)host_dm + host_dm->data_start; 5152 int count = *(uint32_t*)hdata; 5153 uint64_t *hdev = hdata + 8; 5154 uint64_t *gdev = argptr + 8; 5155 int i; 5156 5157 *(uint32_t*)argptr = tswap32(count); 5158 for (i = 0; i < count; i++) { 5159 *gdev = tswap64(*hdev); 5160 gdev++; 5161 hdev++; 5162 } 5163 break; 5164 } 5165 case DM_LIST_VERSIONS: 5166 { 5167 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5168 uint32_t remaining_data = guest_data_size; 5169 void *cur_data = argptr; 5170 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5171 int vers_size = thunk_type_size(dm_arg_type, 0); 5172 5173 while (1) { 5174 uint32_t next = vers->next; 5175 if (next) { 5176 vers->next = vers_size + (strlen(vers->name) + 1); 5177 } 5178 if (remaining_data < vers->next) { 5179 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5180 break; 5181 } 5182 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET); 5183 strcpy(cur_data + vers_size, vers->name); 5184 cur_data += vers->next; 5185 remaining_data -= vers->next; 5186 if (!next) { 5187 break; 5188 } 5189 vers = (void*)vers + next; 5190 } 5191 break; 5192 } 5193 default: 5194 unlock_user(argptr, guest_data, 0); 5195 ret = -TARGET_EINVAL; 5196 goto out; 5197 } 5198 unlock_user(argptr, guest_data, guest_data_size); 5199 5200 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5201 if (!argptr) { 5202 ret = -TARGET_EFAULT; 5203 goto out; 5204 } 5205 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5206 unlock_user(argptr, arg, target_size); 5207 } 5208 out: 5209 g_free(big_buf); 5210 return ret; 5211 } 5212 5213 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5214 int cmd, abi_long arg) 5215 { 5216 void *argptr; 5217 int target_size; 5218 const argtype *arg_type = ie->arg_type; 5219 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5220 abi_long ret; 5221 5222 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5223 struct blkpg_partition host_part; 5224 5225 /* Read and convert blkpg */ 5226 arg_type++; 5227 target_size = thunk_type_size(arg_type, 0); 5228 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5229 if (!argptr) { 5230 ret = -TARGET_EFAULT; 5231 goto out; 5232 } 5233 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5234 unlock_user(argptr, arg, 0); 5235 5236 switch (host_blkpg->op) { 5237 case BLKPG_ADD_PARTITION: 5238 case BLKPG_DEL_PARTITION: 5239 /* payload is struct blkpg_partition */ 5240 break; 5241 default: 5242 /* Unknown opcode */ 5243 ret = -TARGET_EINVAL; 5244 goto out; 5245 } 5246 5247 /* Read and convert blkpg->data */ 5248 arg = (abi_long)(uintptr_t)host_blkpg->data; 5249 target_size = thunk_type_size(part_arg_type, 0); 5250 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5251 if (!argptr) { 5252 ret = -TARGET_EFAULT; 5253 goto out; 5254 } 5255 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5256 unlock_user(argptr, arg, 0); 5257 5258 /* Swizzle the data pointer to our local copy and call! */ 5259 host_blkpg->data = &host_part; 5260 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5261 5262 out: 5263 return ret; 5264 } 5265 5266 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5267 int fd, int cmd, abi_long arg) 5268 { 5269 const argtype *arg_type = ie->arg_type; 5270 const StructEntry *se; 5271 const argtype *field_types; 5272 const int *dst_offsets, *src_offsets; 5273 int target_size; 5274 void *argptr; 5275 abi_ulong *target_rt_dev_ptr = NULL; 5276 unsigned long *host_rt_dev_ptr = NULL; 5277 abi_long ret; 5278 int i; 5279 5280 assert(ie->access == IOC_W); 5281 assert(*arg_type == TYPE_PTR); 5282 arg_type++; 5283 assert(*arg_type == TYPE_STRUCT); 5284 target_size = thunk_type_size(arg_type, 0); 5285 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5286 if (!argptr) { 5287 return -TARGET_EFAULT; 5288 } 5289 arg_type++; 5290 assert(*arg_type == (int)STRUCT_rtentry); 5291 se = struct_entries + *arg_type++; 5292 assert(se->convert[0] == NULL); 5293 /* convert struct here to be able to catch rt_dev string */ 5294 field_types = se->field_types; 5295 dst_offsets = se->field_offsets[THUNK_HOST]; 5296 src_offsets = se->field_offsets[THUNK_TARGET]; 5297 for (i = 0; i < se->nb_fields; i++) { 5298 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5299 assert(*field_types == TYPE_PTRVOID); 5300 target_rt_dev_ptr = argptr + src_offsets[i]; 5301 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5302 if (*target_rt_dev_ptr != 0) { 5303 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5304 tswapal(*target_rt_dev_ptr)); 5305 if (!*host_rt_dev_ptr) { 5306 unlock_user(argptr, arg, 0); 5307 return -TARGET_EFAULT; 5308 } 5309 } else { 5310 *host_rt_dev_ptr = 0; 5311 } 5312 field_types++; 5313 continue; 5314 } 5315 field_types = thunk_convert(buf_temp + dst_offsets[i], 5316 argptr + src_offsets[i], 5317 field_types, THUNK_HOST); 5318 } 5319 unlock_user(argptr, arg, 0); 5320 5321 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5322 5323 assert(host_rt_dev_ptr != NULL); 5324 assert(target_rt_dev_ptr != NULL); 5325 if (*host_rt_dev_ptr != 0) { 5326 unlock_user((void *)*host_rt_dev_ptr, 5327 *target_rt_dev_ptr, 0); 5328 } 5329 return ret; 5330 } 5331 5332 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5333 int fd, int cmd, abi_long arg) 5334 { 5335 int sig = target_to_host_signal(arg); 5336 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5337 } 5338 5339 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp, 5340 int fd, int cmd, abi_long arg) 5341 { 5342 struct timeval tv; 5343 abi_long ret; 5344 5345 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv)); 5346 if (is_error(ret)) { 5347 return ret; 5348 } 5349 5350 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) { 5351 if (copy_to_user_timeval(arg, &tv)) { 5352 return -TARGET_EFAULT; 5353 } 5354 } else { 5355 if (copy_to_user_timeval64(arg, &tv)) { 5356 return -TARGET_EFAULT; 5357 } 5358 } 5359 5360 return ret; 5361 } 5362 5363 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp, 5364 int fd, int cmd, abi_long arg) 5365 { 5366 struct timespec ts; 5367 abi_long ret; 5368 5369 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts)); 5370 if (is_error(ret)) { 5371 return ret; 5372 } 5373 5374 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) { 5375 if (host_to_target_timespec(arg, &ts)) { 5376 return -TARGET_EFAULT; 5377 } 5378 } else{ 5379 if (host_to_target_timespec64(arg, &ts)) { 5380 return -TARGET_EFAULT; 5381 } 5382 } 5383 5384 return ret; 5385 } 5386 5387 #ifdef TIOCGPTPEER 5388 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5389 int fd, int cmd, abi_long arg) 5390 { 5391 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5392 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5393 } 5394 #endif 5395 5396 #ifdef HAVE_DRM_H 5397 5398 static void unlock_drm_version(struct drm_version *host_ver, 5399 struct target_drm_version *target_ver, 5400 bool copy) 5401 { 5402 unlock_user(host_ver->name, target_ver->name, 5403 copy ? host_ver->name_len : 0); 5404 unlock_user(host_ver->date, target_ver->date, 5405 copy ? host_ver->date_len : 0); 5406 unlock_user(host_ver->desc, target_ver->desc, 5407 copy ? host_ver->desc_len : 0); 5408 } 5409 5410 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver, 5411 struct target_drm_version *target_ver) 5412 { 5413 memset(host_ver, 0, sizeof(*host_ver)); 5414 5415 __get_user(host_ver->name_len, &target_ver->name_len); 5416 if (host_ver->name_len) { 5417 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name, 5418 target_ver->name_len, 0); 5419 if (!host_ver->name) { 5420 return -EFAULT; 5421 } 5422 } 5423 5424 __get_user(host_ver->date_len, &target_ver->date_len); 5425 if (host_ver->date_len) { 5426 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date, 5427 target_ver->date_len, 0); 5428 if (!host_ver->date) { 5429 goto err; 5430 } 5431 } 5432 5433 __get_user(host_ver->desc_len, &target_ver->desc_len); 5434 if (host_ver->desc_len) { 5435 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc, 5436 target_ver->desc_len, 0); 5437 if (!host_ver->desc) { 5438 goto err; 5439 } 5440 } 5441 5442 return 0; 5443 err: 5444 unlock_drm_version(host_ver, target_ver, false); 5445 return -EFAULT; 5446 } 5447 5448 static inline void host_to_target_drmversion( 5449 struct target_drm_version *target_ver, 5450 struct drm_version *host_ver) 5451 { 5452 __put_user(host_ver->version_major, &target_ver->version_major); 5453 __put_user(host_ver->version_minor, &target_ver->version_minor); 5454 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel); 5455 __put_user(host_ver->name_len, &target_ver->name_len); 5456 __put_user(host_ver->date_len, &target_ver->date_len); 5457 __put_user(host_ver->desc_len, &target_ver->desc_len); 5458 unlock_drm_version(host_ver, target_ver, true); 5459 } 5460 5461 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp, 5462 int fd, int cmd, abi_long arg) 5463 { 5464 struct drm_version *ver; 5465 struct target_drm_version *target_ver; 5466 abi_long ret; 5467 5468 switch (ie->host_cmd) { 5469 case DRM_IOCTL_VERSION: 5470 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) { 5471 return -TARGET_EFAULT; 5472 } 5473 ver = (struct drm_version *)buf_temp; 5474 ret = target_to_host_drmversion(ver, target_ver); 5475 if (!is_error(ret)) { 5476 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver)); 5477 if (is_error(ret)) { 5478 unlock_drm_version(ver, target_ver, false); 5479 } else { 5480 host_to_target_drmversion(target_ver, ver); 5481 } 5482 } 5483 unlock_user_struct(target_ver, arg, 0); 5484 return ret; 5485 } 5486 return -TARGET_ENOSYS; 5487 } 5488 5489 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie, 5490 struct drm_i915_getparam *gparam, 5491 int fd, abi_long arg) 5492 { 5493 abi_long ret; 5494 int value; 5495 struct target_drm_i915_getparam *target_gparam; 5496 5497 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) { 5498 return -TARGET_EFAULT; 5499 } 5500 5501 __get_user(gparam->param, &target_gparam->param); 5502 gparam->value = &value; 5503 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam)); 5504 put_user_s32(value, target_gparam->value); 5505 5506 unlock_user_struct(target_gparam, arg, 0); 5507 return ret; 5508 } 5509 5510 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp, 5511 int fd, int cmd, abi_long arg) 5512 { 5513 switch (ie->host_cmd) { 5514 case DRM_IOCTL_I915_GETPARAM: 5515 return do_ioctl_drm_i915_getparam(ie, 5516 (struct drm_i915_getparam *)buf_temp, 5517 fd, arg); 5518 default: 5519 return -TARGET_ENOSYS; 5520 } 5521 } 5522 5523 #endif 5524 5525 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp, 5526 int fd, int cmd, abi_long arg) 5527 { 5528 struct tun_filter *filter = (struct tun_filter *)buf_temp; 5529 struct tun_filter *target_filter; 5530 char *target_addr; 5531 5532 assert(ie->access == IOC_W); 5533 5534 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1); 5535 if (!target_filter) { 5536 return -TARGET_EFAULT; 5537 } 5538 filter->flags = tswap16(target_filter->flags); 5539 filter->count = tswap16(target_filter->count); 5540 unlock_user(target_filter, arg, 0); 5541 5542 if (filter->count) { 5543 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN > 5544 MAX_STRUCT_SIZE) { 5545 return -TARGET_EFAULT; 5546 } 5547 5548 target_addr = lock_user(VERIFY_READ, 5549 arg + offsetof(struct tun_filter, addr), 5550 filter->count * ETH_ALEN, 1); 5551 if (!target_addr) { 5552 return -TARGET_EFAULT; 5553 } 5554 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN); 5555 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0); 5556 } 5557 5558 return get_errno(safe_ioctl(fd, ie->host_cmd, filter)); 5559 } 5560 5561 IOCTLEntry ioctl_entries[] = { 5562 #define IOCTL(cmd, access, ...) \ 5563 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5565 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5566 #define IOCTL_IGNORE(cmd) \ 5567 { TARGET_ ## cmd, 0, #cmd }, 5568 #include "ioctls.h" 5569 { 0, 0, }, 5570 }; 5571 5572 /* ??? Implement proper locking for ioctls. */ 5573 /* do_ioctl() Must return target values and target errnos. */ 5574 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5575 { 5576 const IOCTLEntry *ie; 5577 const argtype *arg_type; 5578 abi_long ret; 5579 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5580 int target_size; 5581 void *argptr; 5582 5583 ie = ioctl_entries; 5584 for(;;) { 5585 if (ie->target_cmd == 0) { 5586 qemu_log_mask( 5587 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5588 return -TARGET_ENOTTY; 5589 } 5590 if (ie->target_cmd == cmd) 5591 break; 5592 ie++; 5593 } 5594 arg_type = ie->arg_type; 5595 if (ie->do_ioctl) { 5596 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5597 } else if (!ie->host_cmd) { 5598 /* Some architectures define BSD ioctls in their headers 5599 that are not implemented in Linux. */ 5600 return -TARGET_ENOTTY; 5601 } 5602 5603 switch(arg_type[0]) { 5604 case TYPE_NULL: 5605 /* no argument */ 5606 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5607 break; 5608 case TYPE_PTRVOID: 5609 case TYPE_INT: 5610 case TYPE_LONG: 5611 case TYPE_ULONG: 5612 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5613 break; 5614 case TYPE_PTR: 5615 arg_type++; 5616 target_size = thunk_type_size(arg_type, 0); 5617 switch(ie->access) { 5618 case IOC_R: 5619 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5620 if (!is_error(ret)) { 5621 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5622 if (!argptr) 5623 return -TARGET_EFAULT; 5624 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5625 unlock_user(argptr, arg, target_size); 5626 } 5627 break; 5628 case IOC_W: 5629 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5630 if (!argptr) 5631 return -TARGET_EFAULT; 5632 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5633 unlock_user(argptr, arg, 0); 5634 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5635 break; 5636 default: 5637 case IOC_RW: 5638 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5639 if (!argptr) 5640 return -TARGET_EFAULT; 5641 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5642 unlock_user(argptr, arg, 0); 5643 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5644 if (!is_error(ret)) { 5645 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5646 if (!argptr) 5647 return -TARGET_EFAULT; 5648 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5649 unlock_user(argptr, arg, target_size); 5650 } 5651 break; 5652 } 5653 break; 5654 default: 5655 qemu_log_mask(LOG_UNIMP, 5656 "Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5657 (long)cmd, arg_type[0]); 5658 ret = -TARGET_ENOTTY; 5659 break; 5660 } 5661 return ret; 5662 } 5663 5664 static const bitmask_transtbl iflag_tbl[] = { 5665 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5666 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5667 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5668 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5669 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5670 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5671 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5672 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5673 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5674 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5675 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5676 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5677 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5678 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5679 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8}, 5680 }; 5681 5682 static const bitmask_transtbl oflag_tbl[] = { 5683 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5684 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5685 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5686 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5687 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5688 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5689 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5690 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5691 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5692 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5693 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5694 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5695 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5696 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5697 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5698 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5699 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5700 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5701 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5702 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5703 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5704 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5705 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5706 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5707 }; 5708 5709 static const bitmask_transtbl cflag_tbl[] = { 5710 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5711 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5712 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5713 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5714 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5715 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5716 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5717 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5718 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5719 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5720 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5721 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5722 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5723 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5724 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5725 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5726 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5727 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5728 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5729 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5730 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5731 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5732 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5733 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5734 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5735 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5736 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5737 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5738 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5739 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5740 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5741 }; 5742 5743 static const bitmask_transtbl lflag_tbl[] = { 5744 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5745 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5746 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5747 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5748 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5749 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5750 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5751 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5752 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5753 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5754 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5755 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5756 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5757 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5758 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5759 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC}, 5760 }; 5761 5762 static void target_to_host_termios (void *dst, const void *src) 5763 { 5764 struct host_termios *host = dst; 5765 const struct target_termios *target = src; 5766 5767 host->c_iflag = 5768 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5769 host->c_oflag = 5770 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5771 host->c_cflag = 5772 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5773 host->c_lflag = 5774 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5775 host->c_line = target->c_line; 5776 5777 memset(host->c_cc, 0, sizeof(host->c_cc)); 5778 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5779 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5780 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5781 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5782 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5783 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5784 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5785 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5786 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5787 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5788 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5789 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5790 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5791 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5792 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5793 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5794 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5795 } 5796 5797 static void host_to_target_termios (void *dst, const void *src) 5798 { 5799 struct target_termios *target = dst; 5800 const struct host_termios *host = src; 5801 5802 target->c_iflag = 5803 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5804 target->c_oflag = 5805 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5806 target->c_cflag = 5807 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5808 target->c_lflag = 5809 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5810 target->c_line = host->c_line; 5811 5812 memset(target->c_cc, 0, sizeof(target->c_cc)); 5813 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5814 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5815 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5816 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5817 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5818 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5819 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5820 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5821 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5822 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5823 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5824 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5825 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5826 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5827 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5828 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5829 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5830 } 5831 5832 static const StructEntry struct_termios_def = { 5833 .convert = { host_to_target_termios, target_to_host_termios }, 5834 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5835 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5836 .print = print_termios, 5837 }; 5838 5839 /* If the host does not provide these bits, they may be safely discarded. */ 5840 #ifndef MAP_SYNC 5841 #define MAP_SYNC 0 5842 #endif 5843 #ifndef MAP_UNINITIALIZED 5844 #define MAP_UNINITIALIZED 0 5845 #endif 5846 5847 static const bitmask_transtbl mmap_flags_tbl[] = { 5848 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5849 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 5850 MAP_ANONYMOUS, MAP_ANONYMOUS }, 5851 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 5852 MAP_GROWSDOWN, MAP_GROWSDOWN }, 5853 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 5854 MAP_DENYWRITE, MAP_DENYWRITE }, 5855 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 5856 MAP_EXECUTABLE, MAP_EXECUTABLE }, 5857 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5858 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 5859 MAP_NORESERVE, MAP_NORESERVE }, 5860 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 5861 /* MAP_STACK had been ignored by the kernel for quite some time. 5862 Recognize it for the target insofar as we do not want to pass 5863 it through to the host. */ 5864 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 5865 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK }, 5866 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE }, 5867 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE, 5868 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE }, 5869 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED, 5870 MAP_UNINITIALIZED, MAP_UNINITIALIZED }, 5871 }; 5872 5873 /* 5874 * Arrange for legacy / undefined architecture specific flags to be 5875 * ignored by mmap handling code. 5876 */ 5877 #ifndef TARGET_MAP_32BIT 5878 #define TARGET_MAP_32BIT 0 5879 #endif 5880 #ifndef TARGET_MAP_HUGE_2MB 5881 #define TARGET_MAP_HUGE_2MB 0 5882 #endif 5883 #ifndef TARGET_MAP_HUGE_1GB 5884 #define TARGET_MAP_HUGE_1GB 0 5885 #endif 5886 5887 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot, 5888 int target_flags, int fd, off_t offset) 5889 { 5890 /* 5891 * The historical set of flags that all mmap types implicitly support. 5892 */ 5893 enum { 5894 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED 5895 | TARGET_MAP_PRIVATE 5896 | TARGET_MAP_FIXED 5897 | TARGET_MAP_ANONYMOUS 5898 | TARGET_MAP_DENYWRITE 5899 | TARGET_MAP_EXECUTABLE 5900 | TARGET_MAP_UNINITIALIZED 5901 | TARGET_MAP_GROWSDOWN 5902 | TARGET_MAP_LOCKED 5903 | TARGET_MAP_NORESERVE 5904 | TARGET_MAP_POPULATE 5905 | TARGET_MAP_NONBLOCK 5906 | TARGET_MAP_STACK 5907 | TARGET_MAP_HUGETLB 5908 | TARGET_MAP_32BIT 5909 | TARGET_MAP_HUGE_2MB 5910 | TARGET_MAP_HUGE_1GB 5911 }; 5912 int host_flags; 5913 5914 switch (target_flags & TARGET_MAP_TYPE) { 5915 case TARGET_MAP_PRIVATE: 5916 host_flags = MAP_PRIVATE; 5917 break; 5918 case TARGET_MAP_SHARED: 5919 host_flags = MAP_SHARED; 5920 break; 5921 case TARGET_MAP_SHARED_VALIDATE: 5922 /* 5923 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is 5924 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK. 5925 */ 5926 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) { 5927 return -TARGET_EOPNOTSUPP; 5928 } 5929 host_flags = MAP_SHARED_VALIDATE; 5930 if (target_flags & TARGET_MAP_SYNC) { 5931 host_flags |= MAP_SYNC; 5932 } 5933 break; 5934 default: 5935 return -TARGET_EINVAL; 5936 } 5937 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl); 5938 5939 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset)); 5940 } 5941 5942 /* 5943 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64) 5944 * TARGET_I386 is defined if TARGET_X86_64 is defined 5945 */ 5946 #if defined(TARGET_I386) 5947 5948 /* NOTE: there is really one LDT for all the threads */ 5949 static uint8_t *ldt_table; 5950 5951 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5952 { 5953 int size; 5954 void *p; 5955 5956 if (!ldt_table) 5957 return 0; 5958 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5959 if (size > bytecount) 5960 size = bytecount; 5961 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5962 if (!p) 5963 return -TARGET_EFAULT; 5964 /* ??? Should this by byteswapped? */ 5965 memcpy(p, ldt_table, size); 5966 unlock_user(p, ptr, size); 5967 return size; 5968 } 5969 5970 /* XXX: add locking support */ 5971 static abi_long write_ldt(CPUX86State *env, 5972 abi_ulong ptr, unsigned long bytecount, int oldmode) 5973 { 5974 struct target_modify_ldt_ldt_s ldt_info; 5975 struct target_modify_ldt_ldt_s *target_ldt_info; 5976 int seg_32bit, contents, read_exec_only, limit_in_pages; 5977 int seg_not_present, useable, lm; 5978 uint32_t *lp, entry_1, entry_2; 5979 5980 if (bytecount != sizeof(ldt_info)) 5981 return -TARGET_EINVAL; 5982 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5983 return -TARGET_EFAULT; 5984 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5985 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5986 ldt_info.limit = tswap32(target_ldt_info->limit); 5987 ldt_info.flags = tswap32(target_ldt_info->flags); 5988 unlock_user_struct(target_ldt_info, ptr, 0); 5989 5990 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 5991 return -TARGET_EINVAL; 5992 seg_32bit = ldt_info.flags & 1; 5993 contents = (ldt_info.flags >> 1) & 3; 5994 read_exec_only = (ldt_info.flags >> 3) & 1; 5995 limit_in_pages = (ldt_info.flags >> 4) & 1; 5996 seg_not_present = (ldt_info.flags >> 5) & 1; 5997 useable = (ldt_info.flags >> 6) & 1; 5998 #ifdef TARGET_ABI32 5999 lm = 0; 6000 #else 6001 lm = (ldt_info.flags >> 7) & 1; 6002 #endif 6003 if (contents == 3) { 6004 if (oldmode) 6005 return -TARGET_EINVAL; 6006 if (seg_not_present == 0) 6007 return -TARGET_EINVAL; 6008 } 6009 /* allocate the LDT */ 6010 if (!ldt_table) { 6011 env->ldt.base = target_mmap(0, 6012 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6013 PROT_READ|PROT_WRITE, 6014 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6015 if (env->ldt.base == -1) 6016 return -TARGET_ENOMEM; 6017 memset(g2h_untagged(env->ldt.base), 0, 6018 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6019 env->ldt.limit = 0xffff; 6020 ldt_table = g2h_untagged(env->ldt.base); 6021 } 6022 6023 /* NOTE: same code as Linux kernel */ 6024 /* Allow LDTs to be cleared by the user. */ 6025 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6026 if (oldmode || 6027 (contents == 0 && 6028 read_exec_only == 1 && 6029 seg_32bit == 0 && 6030 limit_in_pages == 0 && 6031 seg_not_present == 1 && 6032 useable == 0 )) { 6033 entry_1 = 0; 6034 entry_2 = 0; 6035 goto install; 6036 } 6037 } 6038 6039 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6040 (ldt_info.limit & 0x0ffff); 6041 entry_2 = (ldt_info.base_addr & 0xff000000) | 6042 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6043 (ldt_info.limit & 0xf0000) | 6044 ((read_exec_only ^ 1) << 9) | 6045 (contents << 10) | 6046 ((seg_not_present ^ 1) << 15) | 6047 (seg_32bit << 22) | 6048 (limit_in_pages << 23) | 6049 (lm << 21) | 6050 0x7000; 6051 if (!oldmode) 6052 entry_2 |= (useable << 20); 6053 6054 /* Install the new entry ... */ 6055 install: 6056 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6057 lp[0] = tswap32(entry_1); 6058 lp[1] = tswap32(entry_2); 6059 return 0; 6060 } 6061 6062 /* specific and weird i386 syscalls */ 6063 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6064 unsigned long bytecount) 6065 { 6066 abi_long ret; 6067 6068 switch (func) { 6069 case 0: 6070 ret = read_ldt(ptr, bytecount); 6071 break; 6072 case 1: 6073 ret = write_ldt(env, ptr, bytecount, 1); 6074 break; 6075 case 0x11: 6076 ret = write_ldt(env, ptr, bytecount, 0); 6077 break; 6078 default: 6079 ret = -TARGET_ENOSYS; 6080 break; 6081 } 6082 return ret; 6083 } 6084 6085 #if defined(TARGET_ABI32) 6086 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6087 { 6088 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6089 struct target_modify_ldt_ldt_s ldt_info; 6090 struct target_modify_ldt_ldt_s *target_ldt_info; 6091 int seg_32bit, contents, read_exec_only, limit_in_pages; 6092 int seg_not_present, useable, lm; 6093 uint32_t *lp, entry_1, entry_2; 6094 int i; 6095 6096 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6097 if (!target_ldt_info) 6098 return -TARGET_EFAULT; 6099 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6100 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6101 ldt_info.limit = tswap32(target_ldt_info->limit); 6102 ldt_info.flags = tswap32(target_ldt_info->flags); 6103 if (ldt_info.entry_number == -1) { 6104 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6105 if (gdt_table[i] == 0) { 6106 ldt_info.entry_number = i; 6107 target_ldt_info->entry_number = tswap32(i); 6108 break; 6109 } 6110 } 6111 } 6112 unlock_user_struct(target_ldt_info, ptr, 1); 6113 6114 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6115 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6116 return -TARGET_EINVAL; 6117 seg_32bit = ldt_info.flags & 1; 6118 contents = (ldt_info.flags >> 1) & 3; 6119 read_exec_only = (ldt_info.flags >> 3) & 1; 6120 limit_in_pages = (ldt_info.flags >> 4) & 1; 6121 seg_not_present = (ldt_info.flags >> 5) & 1; 6122 useable = (ldt_info.flags >> 6) & 1; 6123 #ifdef TARGET_ABI32 6124 lm = 0; 6125 #else 6126 lm = (ldt_info.flags >> 7) & 1; 6127 #endif 6128 6129 if (contents == 3) { 6130 if (seg_not_present == 0) 6131 return -TARGET_EINVAL; 6132 } 6133 6134 /* NOTE: same code as Linux kernel */ 6135 /* Allow LDTs to be cleared by the user. */ 6136 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6137 if ((contents == 0 && 6138 read_exec_only == 1 && 6139 seg_32bit == 0 && 6140 limit_in_pages == 0 && 6141 seg_not_present == 1 && 6142 useable == 0 )) { 6143 entry_1 = 0; 6144 entry_2 = 0; 6145 goto install; 6146 } 6147 } 6148 6149 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6150 (ldt_info.limit & 0x0ffff); 6151 entry_2 = (ldt_info.base_addr & 0xff000000) | 6152 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6153 (ldt_info.limit & 0xf0000) | 6154 ((read_exec_only ^ 1) << 9) | 6155 (contents << 10) | 6156 ((seg_not_present ^ 1) << 15) | 6157 (seg_32bit << 22) | 6158 (limit_in_pages << 23) | 6159 (useable << 20) | 6160 (lm << 21) | 6161 0x7000; 6162 6163 /* Install the new entry ... */ 6164 install: 6165 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6166 lp[0] = tswap32(entry_1); 6167 lp[1] = tswap32(entry_2); 6168 return 0; 6169 } 6170 6171 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6172 { 6173 struct target_modify_ldt_ldt_s *target_ldt_info; 6174 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6175 uint32_t base_addr, limit, flags; 6176 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6177 int seg_not_present, useable, lm; 6178 uint32_t *lp, entry_1, entry_2; 6179 6180 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6181 if (!target_ldt_info) 6182 return -TARGET_EFAULT; 6183 idx = tswap32(target_ldt_info->entry_number); 6184 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6185 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6186 unlock_user_struct(target_ldt_info, ptr, 1); 6187 return -TARGET_EINVAL; 6188 } 6189 lp = (uint32_t *)(gdt_table + idx); 6190 entry_1 = tswap32(lp[0]); 6191 entry_2 = tswap32(lp[1]); 6192 6193 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6194 contents = (entry_2 >> 10) & 3; 6195 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6196 seg_32bit = (entry_2 >> 22) & 1; 6197 limit_in_pages = (entry_2 >> 23) & 1; 6198 useable = (entry_2 >> 20) & 1; 6199 #ifdef TARGET_ABI32 6200 lm = 0; 6201 #else 6202 lm = (entry_2 >> 21) & 1; 6203 #endif 6204 flags = (seg_32bit << 0) | (contents << 1) | 6205 (read_exec_only << 3) | (limit_in_pages << 4) | 6206 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6207 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6208 base_addr = (entry_1 >> 16) | 6209 (entry_2 & 0xff000000) | 6210 ((entry_2 & 0xff) << 16); 6211 target_ldt_info->base_addr = tswapal(base_addr); 6212 target_ldt_info->limit = tswap32(limit); 6213 target_ldt_info->flags = tswap32(flags); 6214 unlock_user_struct(target_ldt_info, ptr, 1); 6215 return 0; 6216 } 6217 6218 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6219 { 6220 return -TARGET_ENOSYS; 6221 } 6222 #else 6223 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6224 { 6225 abi_long ret = 0; 6226 abi_ulong val; 6227 int idx; 6228 6229 switch(code) { 6230 case TARGET_ARCH_SET_GS: 6231 case TARGET_ARCH_SET_FS: 6232 if (code == TARGET_ARCH_SET_GS) 6233 idx = R_GS; 6234 else 6235 idx = R_FS; 6236 cpu_x86_load_seg(env, idx, 0); 6237 env->segs[idx].base = addr; 6238 break; 6239 case TARGET_ARCH_GET_GS: 6240 case TARGET_ARCH_GET_FS: 6241 if (code == TARGET_ARCH_GET_GS) 6242 idx = R_GS; 6243 else 6244 idx = R_FS; 6245 val = env->segs[idx].base; 6246 if (put_user(val, addr, abi_ulong)) 6247 ret = -TARGET_EFAULT; 6248 break; 6249 default: 6250 ret = -TARGET_EINVAL; 6251 break; 6252 } 6253 return ret; 6254 } 6255 #endif /* defined(TARGET_ABI32 */ 6256 #endif /* defined(TARGET_I386) */ 6257 6258 /* 6259 * These constants are generic. Supply any that are missing from the host. 6260 */ 6261 #ifndef PR_SET_NAME 6262 # define PR_SET_NAME 15 6263 # define PR_GET_NAME 16 6264 #endif 6265 #ifndef PR_SET_FP_MODE 6266 # define PR_SET_FP_MODE 45 6267 # define PR_GET_FP_MODE 46 6268 # define PR_FP_MODE_FR (1 << 0) 6269 # define PR_FP_MODE_FRE (1 << 1) 6270 #endif 6271 #ifndef PR_SVE_SET_VL 6272 # define PR_SVE_SET_VL 50 6273 # define PR_SVE_GET_VL 51 6274 # define PR_SVE_VL_LEN_MASK 0xffff 6275 # define PR_SVE_VL_INHERIT (1 << 17) 6276 #endif 6277 #ifndef PR_PAC_RESET_KEYS 6278 # define PR_PAC_RESET_KEYS 54 6279 # define PR_PAC_APIAKEY (1 << 0) 6280 # define PR_PAC_APIBKEY (1 << 1) 6281 # define PR_PAC_APDAKEY (1 << 2) 6282 # define PR_PAC_APDBKEY (1 << 3) 6283 # define PR_PAC_APGAKEY (1 << 4) 6284 #endif 6285 #ifndef PR_SET_TAGGED_ADDR_CTRL 6286 # define PR_SET_TAGGED_ADDR_CTRL 55 6287 # define PR_GET_TAGGED_ADDR_CTRL 56 6288 # define PR_TAGGED_ADDR_ENABLE (1UL << 0) 6289 #endif 6290 #ifndef PR_MTE_TCF_SHIFT 6291 # define PR_MTE_TCF_SHIFT 1 6292 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT) 6293 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT) 6294 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT) 6295 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT) 6296 # define PR_MTE_TAG_SHIFT 3 6297 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT) 6298 #endif 6299 #ifndef PR_SET_IO_FLUSHER 6300 # define PR_SET_IO_FLUSHER 57 6301 # define PR_GET_IO_FLUSHER 58 6302 #endif 6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH 6304 # define PR_SET_SYSCALL_USER_DISPATCH 59 6305 #endif 6306 #ifndef PR_SME_SET_VL 6307 # define PR_SME_SET_VL 63 6308 # define PR_SME_GET_VL 64 6309 # define PR_SME_VL_LEN_MASK 0xffff 6310 # define PR_SME_VL_INHERIT (1 << 17) 6311 #endif 6312 6313 #include "target_prctl.h" 6314 6315 static abi_long do_prctl_inval0(CPUArchState *env) 6316 { 6317 return -TARGET_EINVAL; 6318 } 6319 6320 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2) 6321 { 6322 return -TARGET_EINVAL; 6323 } 6324 6325 #ifndef do_prctl_get_fp_mode 6326 #define do_prctl_get_fp_mode do_prctl_inval0 6327 #endif 6328 #ifndef do_prctl_set_fp_mode 6329 #define do_prctl_set_fp_mode do_prctl_inval1 6330 #endif 6331 #ifndef do_prctl_sve_get_vl 6332 #define do_prctl_sve_get_vl do_prctl_inval0 6333 #endif 6334 #ifndef do_prctl_sve_set_vl 6335 #define do_prctl_sve_set_vl do_prctl_inval1 6336 #endif 6337 #ifndef do_prctl_reset_keys 6338 #define do_prctl_reset_keys do_prctl_inval1 6339 #endif 6340 #ifndef do_prctl_set_tagged_addr_ctrl 6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1 6342 #endif 6343 #ifndef do_prctl_get_tagged_addr_ctrl 6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0 6345 #endif 6346 #ifndef do_prctl_get_unalign 6347 #define do_prctl_get_unalign do_prctl_inval1 6348 #endif 6349 #ifndef do_prctl_set_unalign 6350 #define do_prctl_set_unalign do_prctl_inval1 6351 #endif 6352 #ifndef do_prctl_sme_get_vl 6353 #define do_prctl_sme_get_vl do_prctl_inval0 6354 #endif 6355 #ifndef do_prctl_sme_set_vl 6356 #define do_prctl_sme_set_vl do_prctl_inval1 6357 #endif 6358 6359 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2, 6360 abi_long arg3, abi_long arg4, abi_long arg5) 6361 { 6362 abi_long ret; 6363 6364 switch (option) { 6365 case PR_GET_PDEATHSIG: 6366 { 6367 int deathsig; 6368 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig, 6369 arg3, arg4, arg5)); 6370 if (!is_error(ret) && 6371 put_user_s32(host_to_target_signal(deathsig), arg2)) { 6372 return -TARGET_EFAULT; 6373 } 6374 return ret; 6375 } 6376 case PR_SET_PDEATHSIG: 6377 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2), 6378 arg3, arg4, arg5)); 6379 case PR_GET_NAME: 6380 { 6381 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 6382 if (!name) { 6383 return -TARGET_EFAULT; 6384 } 6385 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name, 6386 arg3, arg4, arg5)); 6387 unlock_user(name, arg2, 16); 6388 return ret; 6389 } 6390 case PR_SET_NAME: 6391 { 6392 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 6393 if (!name) { 6394 return -TARGET_EFAULT; 6395 } 6396 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name, 6397 arg3, arg4, arg5)); 6398 unlock_user(name, arg2, 0); 6399 return ret; 6400 } 6401 case PR_GET_FP_MODE: 6402 return do_prctl_get_fp_mode(env); 6403 case PR_SET_FP_MODE: 6404 return do_prctl_set_fp_mode(env, arg2); 6405 case PR_SVE_GET_VL: 6406 return do_prctl_sve_get_vl(env); 6407 case PR_SVE_SET_VL: 6408 return do_prctl_sve_set_vl(env, arg2); 6409 case PR_SME_GET_VL: 6410 return do_prctl_sme_get_vl(env); 6411 case PR_SME_SET_VL: 6412 return do_prctl_sme_set_vl(env, arg2); 6413 case PR_PAC_RESET_KEYS: 6414 if (arg3 || arg4 || arg5) { 6415 return -TARGET_EINVAL; 6416 } 6417 return do_prctl_reset_keys(env, arg2); 6418 case PR_SET_TAGGED_ADDR_CTRL: 6419 if (arg3 || arg4 || arg5) { 6420 return -TARGET_EINVAL; 6421 } 6422 return do_prctl_set_tagged_addr_ctrl(env, arg2); 6423 case PR_GET_TAGGED_ADDR_CTRL: 6424 if (arg2 || arg3 || arg4 || arg5) { 6425 return -TARGET_EINVAL; 6426 } 6427 return do_prctl_get_tagged_addr_ctrl(env); 6428 6429 case PR_GET_UNALIGN: 6430 return do_prctl_get_unalign(env, arg2); 6431 case PR_SET_UNALIGN: 6432 return do_prctl_set_unalign(env, arg2); 6433 6434 case PR_CAP_AMBIENT: 6435 case PR_CAPBSET_READ: 6436 case PR_CAPBSET_DROP: 6437 case PR_GET_DUMPABLE: 6438 case PR_SET_DUMPABLE: 6439 case PR_GET_KEEPCAPS: 6440 case PR_SET_KEEPCAPS: 6441 case PR_GET_SECUREBITS: 6442 case PR_SET_SECUREBITS: 6443 case PR_GET_TIMING: 6444 case PR_SET_TIMING: 6445 case PR_GET_TIMERSLACK: 6446 case PR_SET_TIMERSLACK: 6447 case PR_MCE_KILL: 6448 case PR_MCE_KILL_GET: 6449 case PR_GET_NO_NEW_PRIVS: 6450 case PR_SET_NO_NEW_PRIVS: 6451 case PR_GET_IO_FLUSHER: 6452 case PR_SET_IO_FLUSHER: 6453 /* Some prctl options have no pointer arguments and we can pass on. */ 6454 return get_errno(prctl(option, arg2, arg3, arg4, arg5)); 6455 6456 case PR_GET_CHILD_SUBREAPER: 6457 case PR_SET_CHILD_SUBREAPER: 6458 case PR_GET_SPECULATION_CTRL: 6459 case PR_SET_SPECULATION_CTRL: 6460 case PR_GET_TID_ADDRESS: 6461 /* TODO */ 6462 return -TARGET_EINVAL; 6463 6464 case PR_GET_FPEXC: 6465 case PR_SET_FPEXC: 6466 /* Was used for SPE on PowerPC. */ 6467 return -TARGET_EINVAL; 6468 6469 case PR_GET_ENDIAN: 6470 case PR_SET_ENDIAN: 6471 case PR_GET_FPEMU: 6472 case PR_SET_FPEMU: 6473 case PR_SET_MM: 6474 case PR_GET_SECCOMP: 6475 case PR_SET_SECCOMP: 6476 case PR_SET_SYSCALL_USER_DISPATCH: 6477 case PR_GET_THP_DISABLE: 6478 case PR_SET_THP_DISABLE: 6479 case PR_GET_TSC: 6480 case PR_SET_TSC: 6481 /* Disable to prevent the target disabling stuff we need. */ 6482 return -TARGET_EINVAL; 6483 6484 default: 6485 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n", 6486 option); 6487 return -TARGET_EINVAL; 6488 } 6489 } 6490 6491 #define NEW_STACK_SIZE 0x40000 6492 6493 6494 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6495 typedef struct { 6496 CPUArchState *env; 6497 pthread_mutex_t mutex; 6498 pthread_cond_t cond; 6499 pthread_t thread; 6500 uint32_t tid; 6501 abi_ulong child_tidptr; 6502 abi_ulong parent_tidptr; 6503 sigset_t sigmask; 6504 } new_thread_info; 6505 6506 static void *clone_func(void *arg) 6507 { 6508 new_thread_info *info = arg; 6509 CPUArchState *env; 6510 CPUState *cpu; 6511 TaskState *ts; 6512 6513 rcu_register_thread(); 6514 tcg_register_thread(); 6515 env = info->env; 6516 cpu = env_cpu(env); 6517 thread_cpu = cpu; 6518 ts = get_task_state(cpu); 6519 info->tid = sys_gettid(); 6520 task_settid(ts); 6521 if (info->child_tidptr) 6522 put_user_u32(info->tid, info->child_tidptr); 6523 if (info->parent_tidptr) 6524 put_user_u32(info->tid, info->parent_tidptr); 6525 qemu_guest_random_seed_thread_part2(cpu->random_seed); 6526 /* Enable signals. */ 6527 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6528 /* Signal to the parent that we're ready. */ 6529 pthread_mutex_lock(&info->mutex); 6530 pthread_cond_broadcast(&info->cond); 6531 pthread_mutex_unlock(&info->mutex); 6532 /* Wait until the parent has finished initializing the tls state. */ 6533 pthread_mutex_lock(&clone_lock); 6534 pthread_mutex_unlock(&clone_lock); 6535 cpu_loop(env); 6536 /* never exits */ 6537 return NULL; 6538 } 6539 6540 /* do_fork() Must return host values and target errnos (unlike most 6541 do_*() functions). */ 6542 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6543 abi_ulong parent_tidptr, target_ulong newtls, 6544 abi_ulong child_tidptr) 6545 { 6546 CPUState *cpu = env_cpu(env); 6547 int ret; 6548 TaskState *ts; 6549 CPUState *new_cpu; 6550 CPUArchState *new_env; 6551 sigset_t sigmask; 6552 6553 flags &= ~CLONE_IGNORED_FLAGS; 6554 6555 /* Emulate vfork() with fork() */ 6556 if (flags & CLONE_VFORK) 6557 flags &= ~(CLONE_VFORK | CLONE_VM); 6558 6559 if (flags & CLONE_VM) { 6560 TaskState *parent_ts = get_task_state(cpu); 6561 new_thread_info info; 6562 pthread_attr_t attr; 6563 6564 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6565 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6566 return -TARGET_EINVAL; 6567 } 6568 6569 ts = g_new0(TaskState, 1); 6570 init_task_state(ts); 6571 6572 /* Grab a mutex so that thread setup appears atomic. */ 6573 pthread_mutex_lock(&clone_lock); 6574 6575 /* 6576 * If this is our first additional thread, we need to ensure we 6577 * generate code for parallel execution and flush old translations. 6578 * Do this now so that the copy gets CF_PARALLEL too. 6579 */ 6580 if (!(cpu->tcg_cflags & CF_PARALLEL)) { 6581 cpu->tcg_cflags |= CF_PARALLEL; 6582 tb_flush(cpu); 6583 } 6584 6585 /* we create a new CPU instance. */ 6586 new_env = cpu_copy(env); 6587 /* Init regs that differ from the parent. */ 6588 cpu_clone_regs_child(new_env, newsp, flags); 6589 cpu_clone_regs_parent(env, flags); 6590 new_cpu = env_cpu(new_env); 6591 new_cpu->opaque = ts; 6592 ts->bprm = parent_ts->bprm; 6593 ts->info = parent_ts->info; 6594 ts->signal_mask = parent_ts->signal_mask; 6595 6596 if (flags & CLONE_CHILD_CLEARTID) { 6597 ts->child_tidptr = child_tidptr; 6598 } 6599 6600 if (flags & CLONE_SETTLS) { 6601 cpu_set_tls (new_env, newtls); 6602 } 6603 6604 memset(&info, 0, sizeof(info)); 6605 pthread_mutex_init(&info.mutex, NULL); 6606 pthread_mutex_lock(&info.mutex); 6607 pthread_cond_init(&info.cond, NULL); 6608 info.env = new_env; 6609 if (flags & CLONE_CHILD_SETTID) { 6610 info.child_tidptr = child_tidptr; 6611 } 6612 if (flags & CLONE_PARENT_SETTID) { 6613 info.parent_tidptr = parent_tidptr; 6614 } 6615 6616 ret = pthread_attr_init(&attr); 6617 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6618 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6619 /* It is not safe to deliver signals until the child has finished 6620 initializing, so temporarily block all signals. */ 6621 sigfillset(&sigmask); 6622 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6623 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 6624 6625 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6626 /* TODO: Free new CPU state if thread creation failed. */ 6627 6628 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6629 pthread_attr_destroy(&attr); 6630 if (ret == 0) { 6631 /* Wait for the child to initialize. */ 6632 pthread_cond_wait(&info.cond, &info.mutex); 6633 ret = info.tid; 6634 } else { 6635 ret = -1; 6636 } 6637 pthread_mutex_unlock(&info.mutex); 6638 pthread_cond_destroy(&info.cond); 6639 pthread_mutex_destroy(&info.mutex); 6640 pthread_mutex_unlock(&clone_lock); 6641 } else { 6642 /* if no CLONE_VM, we consider it is a fork */ 6643 if (flags & CLONE_INVALID_FORK_FLAGS) { 6644 return -TARGET_EINVAL; 6645 } 6646 6647 /* We can't support custom termination signals */ 6648 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6649 return -TARGET_EINVAL; 6650 } 6651 6652 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open) 6653 if (flags & CLONE_PIDFD) { 6654 return -TARGET_EINVAL; 6655 } 6656 #endif 6657 6658 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */ 6659 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) { 6660 return -TARGET_EINVAL; 6661 } 6662 6663 if (block_signals()) { 6664 return -QEMU_ERESTARTSYS; 6665 } 6666 6667 fork_start(); 6668 ret = fork(); 6669 if (ret == 0) { 6670 /* Child Process. */ 6671 cpu_clone_regs_child(env, newsp, flags); 6672 fork_end(ret); 6673 /* There is a race condition here. The parent process could 6674 theoretically read the TID in the child process before the child 6675 tid is set. This would require using either ptrace 6676 (not implemented) or having *_tidptr to point at a shared memory 6677 mapping. We can't repeat the spinlock hack used above because 6678 the child process gets its own copy of the lock. */ 6679 if (flags & CLONE_CHILD_SETTID) 6680 put_user_u32(sys_gettid(), child_tidptr); 6681 if (flags & CLONE_PARENT_SETTID) 6682 put_user_u32(sys_gettid(), parent_tidptr); 6683 ts = get_task_state(cpu); 6684 if (flags & CLONE_SETTLS) 6685 cpu_set_tls (env, newtls); 6686 if (flags & CLONE_CHILD_CLEARTID) 6687 ts->child_tidptr = child_tidptr; 6688 } else { 6689 cpu_clone_regs_parent(env, flags); 6690 if (flags & CLONE_PIDFD) { 6691 int pid_fd = 0; 6692 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 6693 int pid_child = ret; 6694 pid_fd = pidfd_open(pid_child, 0); 6695 if (pid_fd >= 0) { 6696 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL) 6697 | FD_CLOEXEC); 6698 } else { 6699 pid_fd = 0; 6700 } 6701 #endif 6702 put_user_u32(pid_fd, parent_tidptr); 6703 } 6704 fork_end(ret); 6705 } 6706 g_assert(!cpu_in_exclusive_context(cpu)); 6707 } 6708 return ret; 6709 } 6710 6711 /* warning : doesn't handle linux specific flags... */ 6712 static int target_to_host_fcntl_cmd(int cmd) 6713 { 6714 int ret; 6715 6716 switch(cmd) { 6717 case TARGET_F_DUPFD: 6718 case TARGET_F_GETFD: 6719 case TARGET_F_SETFD: 6720 case TARGET_F_GETFL: 6721 case TARGET_F_SETFL: 6722 case TARGET_F_OFD_GETLK: 6723 case TARGET_F_OFD_SETLK: 6724 case TARGET_F_OFD_SETLKW: 6725 ret = cmd; 6726 break; 6727 case TARGET_F_GETLK: 6728 ret = F_GETLK64; 6729 break; 6730 case TARGET_F_SETLK: 6731 ret = F_SETLK64; 6732 break; 6733 case TARGET_F_SETLKW: 6734 ret = F_SETLKW64; 6735 break; 6736 case TARGET_F_GETOWN: 6737 ret = F_GETOWN; 6738 break; 6739 case TARGET_F_SETOWN: 6740 ret = F_SETOWN; 6741 break; 6742 case TARGET_F_GETSIG: 6743 ret = F_GETSIG; 6744 break; 6745 case TARGET_F_SETSIG: 6746 ret = F_SETSIG; 6747 break; 6748 #if TARGET_ABI_BITS == 32 6749 case TARGET_F_GETLK64: 6750 ret = F_GETLK64; 6751 break; 6752 case TARGET_F_SETLK64: 6753 ret = F_SETLK64; 6754 break; 6755 case TARGET_F_SETLKW64: 6756 ret = F_SETLKW64; 6757 break; 6758 #endif 6759 case TARGET_F_SETLEASE: 6760 ret = F_SETLEASE; 6761 break; 6762 case TARGET_F_GETLEASE: 6763 ret = F_GETLEASE; 6764 break; 6765 #ifdef F_DUPFD_CLOEXEC 6766 case TARGET_F_DUPFD_CLOEXEC: 6767 ret = F_DUPFD_CLOEXEC; 6768 break; 6769 #endif 6770 case TARGET_F_NOTIFY: 6771 ret = F_NOTIFY; 6772 break; 6773 #ifdef F_GETOWN_EX 6774 case TARGET_F_GETOWN_EX: 6775 ret = F_GETOWN_EX; 6776 break; 6777 #endif 6778 #ifdef F_SETOWN_EX 6779 case TARGET_F_SETOWN_EX: 6780 ret = F_SETOWN_EX; 6781 break; 6782 #endif 6783 #ifdef F_SETPIPE_SZ 6784 case TARGET_F_SETPIPE_SZ: 6785 ret = F_SETPIPE_SZ; 6786 break; 6787 case TARGET_F_GETPIPE_SZ: 6788 ret = F_GETPIPE_SZ; 6789 break; 6790 #endif 6791 #ifdef F_ADD_SEALS 6792 case TARGET_F_ADD_SEALS: 6793 ret = F_ADD_SEALS; 6794 break; 6795 case TARGET_F_GET_SEALS: 6796 ret = F_GET_SEALS; 6797 break; 6798 #endif 6799 default: 6800 ret = -TARGET_EINVAL; 6801 break; 6802 } 6803 6804 #if defined(__powerpc64__) 6805 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and 6806 * is not supported by kernel. The glibc fcntl call actually adjusts 6807 * them to 5, 6 and 7 before making the syscall(). Since we make the 6808 * syscall directly, adjust to what is supported by the kernel. 6809 */ 6810 if (ret >= F_GETLK64 && ret <= F_SETLKW64) { 6811 ret -= F_GETLK64 - 5; 6812 } 6813 #endif 6814 6815 return ret; 6816 } 6817 6818 #define FLOCK_TRANSTBL \ 6819 switch (type) { \ 6820 TRANSTBL_CONVERT(F_RDLCK); \ 6821 TRANSTBL_CONVERT(F_WRLCK); \ 6822 TRANSTBL_CONVERT(F_UNLCK); \ 6823 } 6824 6825 static int target_to_host_flock(int type) 6826 { 6827 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a 6828 FLOCK_TRANSTBL 6829 #undef TRANSTBL_CONVERT 6830 return -TARGET_EINVAL; 6831 } 6832 6833 static int host_to_target_flock(int type) 6834 { 6835 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a 6836 FLOCK_TRANSTBL 6837 #undef TRANSTBL_CONVERT 6838 /* if we don't know how to convert the value coming 6839 * from the host we copy to the target field as-is 6840 */ 6841 return type; 6842 } 6843 6844 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6845 abi_ulong target_flock_addr) 6846 { 6847 struct target_flock *target_fl; 6848 int l_type; 6849 6850 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6851 return -TARGET_EFAULT; 6852 } 6853 6854 __get_user(l_type, &target_fl->l_type); 6855 l_type = target_to_host_flock(l_type); 6856 if (l_type < 0) { 6857 return l_type; 6858 } 6859 fl->l_type = l_type; 6860 __get_user(fl->l_whence, &target_fl->l_whence); 6861 __get_user(fl->l_start, &target_fl->l_start); 6862 __get_user(fl->l_len, &target_fl->l_len); 6863 __get_user(fl->l_pid, &target_fl->l_pid); 6864 unlock_user_struct(target_fl, target_flock_addr, 0); 6865 return 0; 6866 } 6867 6868 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6869 const struct flock64 *fl) 6870 { 6871 struct target_flock *target_fl; 6872 short l_type; 6873 6874 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6875 return -TARGET_EFAULT; 6876 } 6877 6878 l_type = host_to_target_flock(fl->l_type); 6879 __put_user(l_type, &target_fl->l_type); 6880 __put_user(fl->l_whence, &target_fl->l_whence); 6881 __put_user(fl->l_start, &target_fl->l_start); 6882 __put_user(fl->l_len, &target_fl->l_len); 6883 __put_user(fl->l_pid, &target_fl->l_pid); 6884 unlock_user_struct(target_fl, target_flock_addr, 1); 6885 return 0; 6886 } 6887 6888 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6889 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6890 6891 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6892 struct target_oabi_flock64 { 6893 abi_short l_type; 6894 abi_short l_whence; 6895 abi_llong l_start; 6896 abi_llong l_len; 6897 abi_int l_pid; 6898 } QEMU_PACKED; 6899 6900 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl, 6901 abi_ulong target_flock_addr) 6902 { 6903 struct target_oabi_flock64 *target_fl; 6904 int l_type; 6905 6906 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6907 return -TARGET_EFAULT; 6908 } 6909 6910 __get_user(l_type, &target_fl->l_type); 6911 l_type = target_to_host_flock(l_type); 6912 if (l_type < 0) { 6913 return l_type; 6914 } 6915 fl->l_type = l_type; 6916 __get_user(fl->l_whence, &target_fl->l_whence); 6917 __get_user(fl->l_start, &target_fl->l_start); 6918 __get_user(fl->l_len, &target_fl->l_len); 6919 __get_user(fl->l_pid, &target_fl->l_pid); 6920 unlock_user_struct(target_fl, target_flock_addr, 0); 6921 return 0; 6922 } 6923 6924 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr, 6925 const struct flock64 *fl) 6926 { 6927 struct target_oabi_flock64 *target_fl; 6928 short l_type; 6929 6930 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6931 return -TARGET_EFAULT; 6932 } 6933 6934 l_type = host_to_target_flock(fl->l_type); 6935 __put_user(l_type, &target_fl->l_type); 6936 __put_user(fl->l_whence, &target_fl->l_whence); 6937 __put_user(fl->l_start, &target_fl->l_start); 6938 __put_user(fl->l_len, &target_fl->l_len); 6939 __put_user(fl->l_pid, &target_fl->l_pid); 6940 unlock_user_struct(target_fl, target_flock_addr, 1); 6941 return 0; 6942 } 6943 #endif 6944 6945 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6946 abi_ulong target_flock_addr) 6947 { 6948 struct target_flock64 *target_fl; 6949 int l_type; 6950 6951 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6952 return -TARGET_EFAULT; 6953 } 6954 6955 __get_user(l_type, &target_fl->l_type); 6956 l_type = target_to_host_flock(l_type); 6957 if (l_type < 0) { 6958 return l_type; 6959 } 6960 fl->l_type = l_type; 6961 __get_user(fl->l_whence, &target_fl->l_whence); 6962 __get_user(fl->l_start, &target_fl->l_start); 6963 __get_user(fl->l_len, &target_fl->l_len); 6964 __get_user(fl->l_pid, &target_fl->l_pid); 6965 unlock_user_struct(target_fl, target_flock_addr, 0); 6966 return 0; 6967 } 6968 6969 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6970 const struct flock64 *fl) 6971 { 6972 struct target_flock64 *target_fl; 6973 short l_type; 6974 6975 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6976 return -TARGET_EFAULT; 6977 } 6978 6979 l_type = host_to_target_flock(fl->l_type); 6980 __put_user(l_type, &target_fl->l_type); 6981 __put_user(fl->l_whence, &target_fl->l_whence); 6982 __put_user(fl->l_start, &target_fl->l_start); 6983 __put_user(fl->l_len, &target_fl->l_len); 6984 __put_user(fl->l_pid, &target_fl->l_pid); 6985 unlock_user_struct(target_fl, target_flock_addr, 1); 6986 return 0; 6987 } 6988 6989 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6990 { 6991 struct flock64 fl64; 6992 #ifdef F_GETOWN_EX 6993 struct f_owner_ex fox; 6994 struct target_f_owner_ex *target_fox; 6995 #endif 6996 abi_long ret; 6997 int host_cmd = target_to_host_fcntl_cmd(cmd); 6998 6999 if (host_cmd == -TARGET_EINVAL) 7000 return host_cmd; 7001 7002 switch(cmd) { 7003 case TARGET_F_GETLK: 7004 ret = copy_from_user_flock(&fl64, arg); 7005 if (ret) { 7006 return ret; 7007 } 7008 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7009 if (ret == 0) { 7010 ret = copy_to_user_flock(arg, &fl64); 7011 } 7012 break; 7013 7014 case TARGET_F_SETLK: 7015 case TARGET_F_SETLKW: 7016 ret = copy_from_user_flock(&fl64, arg); 7017 if (ret) { 7018 return ret; 7019 } 7020 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7021 break; 7022 7023 case TARGET_F_GETLK64: 7024 case TARGET_F_OFD_GETLK: 7025 ret = copy_from_user_flock64(&fl64, arg); 7026 if (ret) { 7027 return ret; 7028 } 7029 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7030 if (ret == 0) { 7031 ret = copy_to_user_flock64(arg, &fl64); 7032 } 7033 break; 7034 case TARGET_F_SETLK64: 7035 case TARGET_F_SETLKW64: 7036 case TARGET_F_OFD_SETLK: 7037 case TARGET_F_OFD_SETLKW: 7038 ret = copy_from_user_flock64(&fl64, arg); 7039 if (ret) { 7040 return ret; 7041 } 7042 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7043 break; 7044 7045 case TARGET_F_GETFL: 7046 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7047 if (ret >= 0) { 7048 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 7049 /* tell 32-bit guests it uses largefile on 64-bit hosts: */ 7050 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) { 7051 ret |= TARGET_O_LARGEFILE; 7052 } 7053 } 7054 break; 7055 7056 case TARGET_F_SETFL: 7057 ret = get_errno(safe_fcntl(fd, host_cmd, 7058 target_to_host_bitmask(arg, 7059 fcntl_flags_tbl))); 7060 break; 7061 7062 #ifdef F_GETOWN_EX 7063 case TARGET_F_GETOWN_EX: 7064 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7065 if (ret >= 0) { 7066 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 7067 return -TARGET_EFAULT; 7068 target_fox->type = tswap32(fox.type); 7069 target_fox->pid = tswap32(fox.pid); 7070 unlock_user_struct(target_fox, arg, 1); 7071 } 7072 break; 7073 #endif 7074 7075 #ifdef F_SETOWN_EX 7076 case TARGET_F_SETOWN_EX: 7077 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 7078 return -TARGET_EFAULT; 7079 fox.type = tswap32(target_fox->type); 7080 fox.pid = tswap32(target_fox->pid); 7081 unlock_user_struct(target_fox, arg, 0); 7082 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7083 break; 7084 #endif 7085 7086 case TARGET_F_SETSIG: 7087 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg))); 7088 break; 7089 7090 case TARGET_F_GETSIG: 7091 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg))); 7092 break; 7093 7094 case TARGET_F_SETOWN: 7095 case TARGET_F_GETOWN: 7096 case TARGET_F_SETLEASE: 7097 case TARGET_F_GETLEASE: 7098 case TARGET_F_SETPIPE_SZ: 7099 case TARGET_F_GETPIPE_SZ: 7100 case TARGET_F_ADD_SEALS: 7101 case TARGET_F_GET_SEALS: 7102 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7103 break; 7104 7105 default: 7106 ret = get_errno(safe_fcntl(fd, cmd, arg)); 7107 break; 7108 } 7109 return ret; 7110 } 7111 7112 #ifdef USE_UID16 7113 7114 static inline int high2lowuid(int uid) 7115 { 7116 if (uid > 65535) 7117 return 65534; 7118 else 7119 return uid; 7120 } 7121 7122 static inline int high2lowgid(int gid) 7123 { 7124 if (gid > 65535) 7125 return 65534; 7126 else 7127 return gid; 7128 } 7129 7130 static inline int low2highuid(int uid) 7131 { 7132 if ((int16_t)uid == -1) 7133 return -1; 7134 else 7135 return uid; 7136 } 7137 7138 static inline int low2highgid(int gid) 7139 { 7140 if ((int16_t)gid == -1) 7141 return -1; 7142 else 7143 return gid; 7144 } 7145 static inline int tswapid(int id) 7146 { 7147 return tswap16(id); 7148 } 7149 7150 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 7151 7152 #else /* !USE_UID16 */ 7153 static inline int high2lowuid(int uid) 7154 { 7155 return uid; 7156 } 7157 static inline int high2lowgid(int gid) 7158 { 7159 return gid; 7160 } 7161 static inline int low2highuid(int uid) 7162 { 7163 return uid; 7164 } 7165 static inline int low2highgid(int gid) 7166 { 7167 return gid; 7168 } 7169 static inline int tswapid(int id) 7170 { 7171 return tswap32(id); 7172 } 7173 7174 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 7175 7176 #endif /* USE_UID16 */ 7177 7178 /* We must do direct syscalls for setting UID/GID, because we want to 7179 * implement the Linux system call semantics of "change only for this thread", 7180 * not the libc/POSIX semantics of "change for all threads in process". 7181 * (See http://ewontfix.com/17/ for more details.) 7182 * We use the 32-bit version of the syscalls if present; if it is not 7183 * then either the host architecture supports 32-bit UIDs natively with 7184 * the standard syscall, or the 16-bit UID is the best we can do. 7185 */ 7186 #ifdef __NR_setuid32 7187 #define __NR_sys_setuid __NR_setuid32 7188 #else 7189 #define __NR_sys_setuid __NR_setuid 7190 #endif 7191 #ifdef __NR_setgid32 7192 #define __NR_sys_setgid __NR_setgid32 7193 #else 7194 #define __NR_sys_setgid __NR_setgid 7195 #endif 7196 #ifdef __NR_setresuid32 7197 #define __NR_sys_setresuid __NR_setresuid32 7198 #else 7199 #define __NR_sys_setresuid __NR_setresuid 7200 #endif 7201 #ifdef __NR_setresgid32 7202 #define __NR_sys_setresgid __NR_setresgid32 7203 #else 7204 #define __NR_sys_setresgid __NR_setresgid 7205 #endif 7206 7207 _syscall1(int, sys_setuid, uid_t, uid) 7208 _syscall1(int, sys_setgid, gid_t, gid) 7209 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 7210 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 7211 7212 void syscall_init(void) 7213 { 7214 IOCTLEntry *ie; 7215 const argtype *arg_type; 7216 int size; 7217 7218 thunk_init(STRUCT_MAX); 7219 7220 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 7221 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 7222 #include "syscall_types.h" 7223 #undef STRUCT 7224 #undef STRUCT_SPECIAL 7225 7226 /* we patch the ioctl size if necessary. We rely on the fact that 7227 no ioctl has all the bits at '1' in the size field */ 7228 ie = ioctl_entries; 7229 while (ie->target_cmd != 0) { 7230 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 7231 TARGET_IOC_SIZEMASK) { 7232 arg_type = ie->arg_type; 7233 if (arg_type[0] != TYPE_PTR) { 7234 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 7235 ie->target_cmd); 7236 exit(1); 7237 } 7238 arg_type++; 7239 size = thunk_type_size(arg_type, 0); 7240 ie->target_cmd = (ie->target_cmd & 7241 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 7242 (size << TARGET_IOC_SIZESHIFT); 7243 } 7244 7245 /* automatic consistency check if same arch */ 7246 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 7247 (defined(__x86_64__) && defined(TARGET_X86_64)) 7248 if (unlikely(ie->target_cmd != ie->host_cmd)) { 7249 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 7250 ie->name, ie->target_cmd, ie->host_cmd); 7251 } 7252 #endif 7253 ie++; 7254 } 7255 } 7256 7257 #ifdef TARGET_NR_truncate64 7258 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1, 7259 abi_long arg2, 7260 abi_long arg3, 7261 abi_long arg4) 7262 { 7263 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 7264 arg2 = arg3; 7265 arg3 = arg4; 7266 } 7267 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 7268 } 7269 #endif 7270 7271 #ifdef TARGET_NR_ftruncate64 7272 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1, 7273 abi_long arg2, 7274 abi_long arg3, 7275 abi_long arg4) 7276 { 7277 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 7278 arg2 = arg3; 7279 arg3 = arg4; 7280 } 7281 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 7282 } 7283 #endif 7284 7285 #if defined(TARGET_NR_timer_settime) || \ 7286 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 7287 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its, 7288 abi_ulong target_addr) 7289 { 7290 if (target_to_host_timespec(&host_its->it_interval, target_addr + 7291 offsetof(struct target_itimerspec, 7292 it_interval)) || 7293 target_to_host_timespec(&host_its->it_value, target_addr + 7294 offsetof(struct target_itimerspec, 7295 it_value))) { 7296 return -TARGET_EFAULT; 7297 } 7298 7299 return 0; 7300 } 7301 #endif 7302 7303 #if defined(TARGET_NR_timer_settime64) || \ 7304 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) 7305 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its, 7306 abi_ulong target_addr) 7307 { 7308 if (target_to_host_timespec64(&host_its->it_interval, target_addr + 7309 offsetof(struct target__kernel_itimerspec, 7310 it_interval)) || 7311 target_to_host_timespec64(&host_its->it_value, target_addr + 7312 offsetof(struct target__kernel_itimerspec, 7313 it_value))) { 7314 return -TARGET_EFAULT; 7315 } 7316 7317 return 0; 7318 } 7319 #endif 7320 7321 #if ((defined(TARGET_NR_timerfd_gettime) || \ 7322 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \ 7323 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime) 7324 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7325 struct itimerspec *host_its) 7326 { 7327 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7328 it_interval), 7329 &host_its->it_interval) || 7330 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7331 it_value), 7332 &host_its->it_value)) { 7333 return -TARGET_EFAULT; 7334 } 7335 return 0; 7336 } 7337 #endif 7338 7339 #if ((defined(TARGET_NR_timerfd_gettime64) || \ 7340 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \ 7341 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64) 7342 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr, 7343 struct itimerspec *host_its) 7344 { 7345 if (host_to_target_timespec64(target_addr + 7346 offsetof(struct target__kernel_itimerspec, 7347 it_interval), 7348 &host_its->it_interval) || 7349 host_to_target_timespec64(target_addr + 7350 offsetof(struct target__kernel_itimerspec, 7351 it_value), 7352 &host_its->it_value)) { 7353 return -TARGET_EFAULT; 7354 } 7355 return 0; 7356 } 7357 #endif 7358 7359 #if defined(TARGET_NR_adjtimex) || \ 7360 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)) 7361 static inline abi_long target_to_host_timex(struct timex *host_tx, 7362 abi_long target_addr) 7363 { 7364 struct target_timex *target_tx; 7365 7366 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7367 return -TARGET_EFAULT; 7368 } 7369 7370 __get_user(host_tx->modes, &target_tx->modes); 7371 __get_user(host_tx->offset, &target_tx->offset); 7372 __get_user(host_tx->freq, &target_tx->freq); 7373 __get_user(host_tx->maxerror, &target_tx->maxerror); 7374 __get_user(host_tx->esterror, &target_tx->esterror); 7375 __get_user(host_tx->status, &target_tx->status); 7376 __get_user(host_tx->constant, &target_tx->constant); 7377 __get_user(host_tx->precision, &target_tx->precision); 7378 __get_user(host_tx->tolerance, &target_tx->tolerance); 7379 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7380 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7381 __get_user(host_tx->tick, &target_tx->tick); 7382 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7383 __get_user(host_tx->jitter, &target_tx->jitter); 7384 __get_user(host_tx->shift, &target_tx->shift); 7385 __get_user(host_tx->stabil, &target_tx->stabil); 7386 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7387 __get_user(host_tx->calcnt, &target_tx->calcnt); 7388 __get_user(host_tx->errcnt, &target_tx->errcnt); 7389 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7390 __get_user(host_tx->tai, &target_tx->tai); 7391 7392 unlock_user_struct(target_tx, target_addr, 0); 7393 return 0; 7394 } 7395 7396 static inline abi_long host_to_target_timex(abi_long target_addr, 7397 struct timex *host_tx) 7398 { 7399 struct target_timex *target_tx; 7400 7401 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7402 return -TARGET_EFAULT; 7403 } 7404 7405 __put_user(host_tx->modes, &target_tx->modes); 7406 __put_user(host_tx->offset, &target_tx->offset); 7407 __put_user(host_tx->freq, &target_tx->freq); 7408 __put_user(host_tx->maxerror, &target_tx->maxerror); 7409 __put_user(host_tx->esterror, &target_tx->esterror); 7410 __put_user(host_tx->status, &target_tx->status); 7411 __put_user(host_tx->constant, &target_tx->constant); 7412 __put_user(host_tx->precision, &target_tx->precision); 7413 __put_user(host_tx->tolerance, &target_tx->tolerance); 7414 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7415 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7416 __put_user(host_tx->tick, &target_tx->tick); 7417 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7418 __put_user(host_tx->jitter, &target_tx->jitter); 7419 __put_user(host_tx->shift, &target_tx->shift); 7420 __put_user(host_tx->stabil, &target_tx->stabil); 7421 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7422 __put_user(host_tx->calcnt, &target_tx->calcnt); 7423 __put_user(host_tx->errcnt, &target_tx->errcnt); 7424 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7425 __put_user(host_tx->tai, &target_tx->tai); 7426 7427 unlock_user_struct(target_tx, target_addr, 1); 7428 return 0; 7429 } 7430 #endif 7431 7432 7433 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 7434 static inline abi_long target_to_host_timex64(struct timex *host_tx, 7435 abi_long target_addr) 7436 { 7437 struct target__kernel_timex *target_tx; 7438 7439 if (copy_from_user_timeval64(&host_tx->time, target_addr + 7440 offsetof(struct target__kernel_timex, 7441 time))) { 7442 return -TARGET_EFAULT; 7443 } 7444 7445 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7446 return -TARGET_EFAULT; 7447 } 7448 7449 __get_user(host_tx->modes, &target_tx->modes); 7450 __get_user(host_tx->offset, &target_tx->offset); 7451 __get_user(host_tx->freq, &target_tx->freq); 7452 __get_user(host_tx->maxerror, &target_tx->maxerror); 7453 __get_user(host_tx->esterror, &target_tx->esterror); 7454 __get_user(host_tx->status, &target_tx->status); 7455 __get_user(host_tx->constant, &target_tx->constant); 7456 __get_user(host_tx->precision, &target_tx->precision); 7457 __get_user(host_tx->tolerance, &target_tx->tolerance); 7458 __get_user(host_tx->tick, &target_tx->tick); 7459 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7460 __get_user(host_tx->jitter, &target_tx->jitter); 7461 __get_user(host_tx->shift, &target_tx->shift); 7462 __get_user(host_tx->stabil, &target_tx->stabil); 7463 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7464 __get_user(host_tx->calcnt, &target_tx->calcnt); 7465 __get_user(host_tx->errcnt, &target_tx->errcnt); 7466 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7467 __get_user(host_tx->tai, &target_tx->tai); 7468 7469 unlock_user_struct(target_tx, target_addr, 0); 7470 return 0; 7471 } 7472 7473 static inline abi_long host_to_target_timex64(abi_long target_addr, 7474 struct timex *host_tx) 7475 { 7476 struct target__kernel_timex *target_tx; 7477 7478 if (copy_to_user_timeval64(target_addr + 7479 offsetof(struct target__kernel_timex, time), 7480 &host_tx->time)) { 7481 return -TARGET_EFAULT; 7482 } 7483 7484 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7485 return -TARGET_EFAULT; 7486 } 7487 7488 __put_user(host_tx->modes, &target_tx->modes); 7489 __put_user(host_tx->offset, &target_tx->offset); 7490 __put_user(host_tx->freq, &target_tx->freq); 7491 __put_user(host_tx->maxerror, &target_tx->maxerror); 7492 __put_user(host_tx->esterror, &target_tx->esterror); 7493 __put_user(host_tx->status, &target_tx->status); 7494 __put_user(host_tx->constant, &target_tx->constant); 7495 __put_user(host_tx->precision, &target_tx->precision); 7496 __put_user(host_tx->tolerance, &target_tx->tolerance); 7497 __put_user(host_tx->tick, &target_tx->tick); 7498 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7499 __put_user(host_tx->jitter, &target_tx->jitter); 7500 __put_user(host_tx->shift, &target_tx->shift); 7501 __put_user(host_tx->stabil, &target_tx->stabil); 7502 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7503 __put_user(host_tx->calcnt, &target_tx->calcnt); 7504 __put_user(host_tx->errcnt, &target_tx->errcnt); 7505 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7506 __put_user(host_tx->tai, &target_tx->tai); 7507 7508 unlock_user_struct(target_tx, target_addr, 1); 7509 return 0; 7510 } 7511 #endif 7512 7513 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID 7514 #define sigev_notify_thread_id _sigev_un._tid 7515 #endif 7516 7517 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7518 abi_ulong target_addr) 7519 { 7520 struct target_sigevent *target_sevp; 7521 7522 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7523 return -TARGET_EFAULT; 7524 } 7525 7526 /* This union is awkward on 64 bit systems because it has a 32 bit 7527 * integer and a pointer in it; we follow the conversion approach 7528 * used for handling sigval types in signal.c so the guest should get 7529 * the correct value back even if we did a 64 bit byteswap and it's 7530 * using the 32 bit integer. 7531 */ 7532 host_sevp->sigev_value.sival_ptr = 7533 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7534 host_sevp->sigev_signo = 7535 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7536 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7537 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid); 7538 7539 unlock_user_struct(target_sevp, target_addr, 1); 7540 return 0; 7541 } 7542 7543 #if defined(TARGET_NR_mlockall) 7544 static inline int target_to_host_mlockall_arg(int arg) 7545 { 7546 int result = 0; 7547 7548 if (arg & TARGET_MCL_CURRENT) { 7549 result |= MCL_CURRENT; 7550 } 7551 if (arg & TARGET_MCL_FUTURE) { 7552 result |= MCL_FUTURE; 7553 } 7554 #ifdef MCL_ONFAULT 7555 if (arg & TARGET_MCL_ONFAULT) { 7556 result |= MCL_ONFAULT; 7557 } 7558 #endif 7559 7560 return result; 7561 } 7562 #endif 7563 7564 static inline int target_to_host_msync_arg(abi_long arg) 7565 { 7566 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) | 7567 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) | 7568 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) | 7569 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC)); 7570 } 7571 7572 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \ 7573 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \ 7574 defined(TARGET_NR_newfstatat)) 7575 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env, 7576 abi_ulong target_addr, 7577 struct stat *host_st) 7578 { 7579 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7580 if (cpu_env->eabi) { 7581 struct target_eabi_stat64 *target_st; 7582 7583 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7584 return -TARGET_EFAULT; 7585 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7586 __put_user(host_st->st_dev, &target_st->st_dev); 7587 __put_user(host_st->st_ino, &target_st->st_ino); 7588 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7589 __put_user(host_st->st_ino, &target_st->__st_ino); 7590 #endif 7591 __put_user(host_st->st_mode, &target_st->st_mode); 7592 __put_user(host_st->st_nlink, &target_st->st_nlink); 7593 __put_user(host_st->st_uid, &target_st->st_uid); 7594 __put_user(host_st->st_gid, &target_st->st_gid); 7595 __put_user(host_st->st_rdev, &target_st->st_rdev); 7596 __put_user(host_st->st_size, &target_st->st_size); 7597 __put_user(host_st->st_blksize, &target_st->st_blksize); 7598 __put_user(host_st->st_blocks, &target_st->st_blocks); 7599 __put_user(host_st->st_atime, &target_st->target_st_atime); 7600 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7601 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7602 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7603 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7604 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7605 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7606 #endif 7607 unlock_user_struct(target_st, target_addr, 1); 7608 } else 7609 #endif 7610 { 7611 #if defined(TARGET_HAS_STRUCT_STAT64) 7612 struct target_stat64 *target_st; 7613 #else 7614 struct target_stat *target_st; 7615 #endif 7616 7617 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7618 return -TARGET_EFAULT; 7619 memset(target_st, 0, sizeof(*target_st)); 7620 __put_user(host_st->st_dev, &target_st->st_dev); 7621 __put_user(host_st->st_ino, &target_st->st_ino); 7622 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7623 __put_user(host_st->st_ino, &target_st->__st_ino); 7624 #endif 7625 __put_user(host_st->st_mode, &target_st->st_mode); 7626 __put_user(host_st->st_nlink, &target_st->st_nlink); 7627 __put_user(host_st->st_uid, &target_st->st_uid); 7628 __put_user(host_st->st_gid, &target_st->st_gid); 7629 __put_user(host_st->st_rdev, &target_st->st_rdev); 7630 /* XXX: better use of kernel struct */ 7631 __put_user(host_st->st_size, &target_st->st_size); 7632 __put_user(host_st->st_blksize, &target_st->st_blksize); 7633 __put_user(host_st->st_blocks, &target_st->st_blocks); 7634 __put_user(host_st->st_atime, &target_st->target_st_atime); 7635 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7636 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7637 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7638 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7639 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7640 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7641 #endif 7642 unlock_user_struct(target_st, target_addr, 1); 7643 } 7644 7645 return 0; 7646 } 7647 #endif 7648 7649 #if defined(TARGET_NR_statx) && defined(__NR_statx) 7650 static inline abi_long host_to_target_statx(struct target_statx *host_stx, 7651 abi_ulong target_addr) 7652 { 7653 struct target_statx *target_stx; 7654 7655 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) { 7656 return -TARGET_EFAULT; 7657 } 7658 memset(target_stx, 0, sizeof(*target_stx)); 7659 7660 __put_user(host_stx->stx_mask, &target_stx->stx_mask); 7661 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize); 7662 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes); 7663 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink); 7664 __put_user(host_stx->stx_uid, &target_stx->stx_uid); 7665 __put_user(host_stx->stx_gid, &target_stx->stx_gid); 7666 __put_user(host_stx->stx_mode, &target_stx->stx_mode); 7667 __put_user(host_stx->stx_ino, &target_stx->stx_ino); 7668 __put_user(host_stx->stx_size, &target_stx->stx_size); 7669 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks); 7670 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask); 7671 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec); 7672 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec); 7673 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec); 7674 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec); 7675 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec); 7676 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec); 7677 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec); 7678 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec); 7679 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major); 7680 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor); 7681 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major); 7682 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor); 7683 7684 unlock_user_struct(target_stx, target_addr, 1); 7685 7686 return 0; 7687 } 7688 #endif 7689 7690 static int do_sys_futex(int *uaddr, int op, int val, 7691 const struct timespec *timeout, int *uaddr2, 7692 int val3) 7693 { 7694 #if HOST_LONG_BITS == 64 7695 #if defined(__NR_futex) 7696 /* always a 64-bit time_t, it doesn't define _time64 version */ 7697 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7698 7699 #endif 7700 #else /* HOST_LONG_BITS == 64 */ 7701 #if defined(__NR_futex_time64) 7702 if (sizeof(timeout->tv_sec) == 8) { 7703 /* _time64 function on 32bit arch */ 7704 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3); 7705 } 7706 #endif 7707 #if defined(__NR_futex) 7708 /* old function on 32bit arch */ 7709 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7710 #endif 7711 #endif /* HOST_LONG_BITS == 64 */ 7712 g_assert_not_reached(); 7713 } 7714 7715 static int do_safe_futex(int *uaddr, int op, int val, 7716 const struct timespec *timeout, int *uaddr2, 7717 int val3) 7718 { 7719 #if HOST_LONG_BITS == 64 7720 #if defined(__NR_futex) 7721 /* always a 64-bit time_t, it doesn't define _time64 version */ 7722 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7723 #endif 7724 #else /* HOST_LONG_BITS == 64 */ 7725 #if defined(__NR_futex_time64) 7726 if (sizeof(timeout->tv_sec) == 8) { 7727 /* _time64 function on 32bit arch */ 7728 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2, 7729 val3)); 7730 } 7731 #endif 7732 #if defined(__NR_futex) 7733 /* old function on 32bit arch */ 7734 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7735 #endif 7736 #endif /* HOST_LONG_BITS == 64 */ 7737 return -TARGET_ENOSYS; 7738 } 7739 7740 /* ??? Using host futex calls even when target atomic operations 7741 are not really atomic probably breaks things. However implementing 7742 futexes locally would make futexes shared between multiple processes 7743 tricky. However they're probably useless because guest atomic 7744 operations won't work either. */ 7745 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64) 7746 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr, 7747 int op, int val, target_ulong timeout, 7748 target_ulong uaddr2, int val3) 7749 { 7750 struct timespec ts, *pts = NULL; 7751 void *haddr2 = NULL; 7752 int base_op; 7753 7754 /* We assume FUTEX_* constants are the same on both host and target. */ 7755 #ifdef FUTEX_CMD_MASK 7756 base_op = op & FUTEX_CMD_MASK; 7757 #else 7758 base_op = op; 7759 #endif 7760 switch (base_op) { 7761 case FUTEX_WAIT: 7762 case FUTEX_WAIT_BITSET: 7763 val = tswap32(val); 7764 break; 7765 case FUTEX_WAIT_REQUEUE_PI: 7766 val = tswap32(val); 7767 haddr2 = g2h(cpu, uaddr2); 7768 break; 7769 case FUTEX_LOCK_PI: 7770 case FUTEX_LOCK_PI2: 7771 break; 7772 case FUTEX_WAKE: 7773 case FUTEX_WAKE_BITSET: 7774 case FUTEX_TRYLOCK_PI: 7775 case FUTEX_UNLOCK_PI: 7776 timeout = 0; 7777 break; 7778 case FUTEX_FD: 7779 val = target_to_host_signal(val); 7780 timeout = 0; 7781 break; 7782 case FUTEX_CMP_REQUEUE: 7783 case FUTEX_CMP_REQUEUE_PI: 7784 val3 = tswap32(val3); 7785 /* fall through */ 7786 case FUTEX_REQUEUE: 7787 case FUTEX_WAKE_OP: 7788 /* 7789 * For these, the 4th argument is not TIMEOUT, but VAL2. 7790 * But the prototype of do_safe_futex takes a pointer, so 7791 * insert casts to satisfy the compiler. We do not need 7792 * to tswap VAL2 since it's not compared to guest memory. 7793 */ 7794 pts = (struct timespec *)(uintptr_t)timeout; 7795 timeout = 0; 7796 haddr2 = g2h(cpu, uaddr2); 7797 break; 7798 default: 7799 return -TARGET_ENOSYS; 7800 } 7801 if (timeout) { 7802 pts = &ts; 7803 if (time64 7804 ? target_to_host_timespec64(pts, timeout) 7805 : target_to_host_timespec(pts, timeout)) { 7806 return -TARGET_EFAULT; 7807 } 7808 } 7809 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3); 7810 } 7811 #endif 7812 7813 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7814 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7815 abi_long handle, abi_long mount_id, 7816 abi_long flags) 7817 { 7818 struct file_handle *target_fh; 7819 struct file_handle *fh; 7820 int mid = 0; 7821 abi_long ret; 7822 char *name; 7823 unsigned int size, total_size; 7824 7825 if (get_user_s32(size, handle)) { 7826 return -TARGET_EFAULT; 7827 } 7828 7829 name = lock_user_string(pathname); 7830 if (!name) { 7831 return -TARGET_EFAULT; 7832 } 7833 7834 total_size = sizeof(struct file_handle) + size; 7835 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7836 if (!target_fh) { 7837 unlock_user(name, pathname, 0); 7838 return -TARGET_EFAULT; 7839 } 7840 7841 fh = g_malloc0(total_size); 7842 fh->handle_bytes = size; 7843 7844 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7845 unlock_user(name, pathname, 0); 7846 7847 /* man name_to_handle_at(2): 7848 * Other than the use of the handle_bytes field, the caller should treat 7849 * the file_handle structure as an opaque data type 7850 */ 7851 7852 memcpy(target_fh, fh, total_size); 7853 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7854 target_fh->handle_type = tswap32(fh->handle_type); 7855 g_free(fh); 7856 unlock_user(target_fh, handle, total_size); 7857 7858 if (put_user_s32(mid, mount_id)) { 7859 return -TARGET_EFAULT; 7860 } 7861 7862 return ret; 7863 7864 } 7865 #endif 7866 7867 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7868 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7869 abi_long flags) 7870 { 7871 struct file_handle *target_fh; 7872 struct file_handle *fh; 7873 unsigned int size, total_size; 7874 abi_long ret; 7875 7876 if (get_user_s32(size, handle)) { 7877 return -TARGET_EFAULT; 7878 } 7879 7880 total_size = sizeof(struct file_handle) + size; 7881 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7882 if (!target_fh) { 7883 return -TARGET_EFAULT; 7884 } 7885 7886 fh = g_memdup(target_fh, total_size); 7887 fh->handle_bytes = size; 7888 fh->handle_type = tswap32(target_fh->handle_type); 7889 7890 ret = get_errno(open_by_handle_at(mount_fd, fh, 7891 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7892 7893 g_free(fh); 7894 7895 unlock_user(target_fh, handle, total_size); 7896 7897 return ret; 7898 } 7899 #endif 7900 7901 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7902 7903 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7904 { 7905 int host_flags; 7906 target_sigset_t *target_mask; 7907 sigset_t host_mask; 7908 abi_long ret; 7909 7910 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) { 7911 return -TARGET_EINVAL; 7912 } 7913 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7914 return -TARGET_EFAULT; 7915 } 7916 7917 target_to_host_sigset(&host_mask, target_mask); 7918 7919 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7920 7921 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7922 if (ret >= 0) { 7923 fd_trans_register(ret, &target_signalfd_trans); 7924 } 7925 7926 unlock_user_struct(target_mask, mask, 0); 7927 7928 return ret; 7929 } 7930 #endif 7931 7932 /* Map host to target signal numbers for the wait family of syscalls. 7933 Assume all other status bits are the same. */ 7934 int host_to_target_waitstatus(int status) 7935 { 7936 if (WIFSIGNALED(status)) { 7937 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7938 } 7939 if (WIFSTOPPED(status)) { 7940 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7941 | (status & 0xff); 7942 } 7943 return status; 7944 } 7945 7946 static int open_self_cmdline(CPUArchState *cpu_env, int fd) 7947 { 7948 CPUState *cpu = env_cpu(cpu_env); 7949 struct linux_binprm *bprm = get_task_state(cpu)->bprm; 7950 int i; 7951 7952 for (i = 0; i < bprm->argc; i++) { 7953 size_t len = strlen(bprm->argv[i]) + 1; 7954 7955 if (write(fd, bprm->argv[i], len) != len) { 7956 return -1; 7957 } 7958 } 7959 7960 return 0; 7961 } 7962 7963 struct open_self_maps_data { 7964 TaskState *ts; 7965 IntervalTreeRoot *host_maps; 7966 int fd; 7967 bool smaps; 7968 }; 7969 7970 /* 7971 * Subroutine to output one line of /proc/self/maps, 7972 * or one region of /proc/self/smaps. 7973 */ 7974 7975 #ifdef TARGET_HPPA 7976 # define test_stack(S, E, L) (E == L) 7977 #else 7978 # define test_stack(S, E, L) (S == L) 7979 #endif 7980 7981 static void open_self_maps_4(const struct open_self_maps_data *d, 7982 const MapInfo *mi, abi_ptr start, 7983 abi_ptr end, unsigned flags) 7984 { 7985 const struct image_info *info = d->ts->info; 7986 const char *path = mi->path; 7987 uint64_t offset; 7988 int fd = d->fd; 7989 int count; 7990 7991 if (test_stack(start, end, info->stack_limit)) { 7992 path = "[stack]"; 7993 } else if (start == info->brk) { 7994 path = "[heap]"; 7995 } else if (start == info->vdso) { 7996 path = "[vdso]"; 7997 #ifdef TARGET_X86_64 7998 } else if (start == TARGET_VSYSCALL_PAGE) { 7999 path = "[vsyscall]"; 8000 #endif 8001 } 8002 8003 /* Except null device (MAP_ANON), adjust offset for this fragment. */ 8004 offset = mi->offset; 8005 if (mi->dev) { 8006 uintptr_t hstart = (uintptr_t)g2h_untagged(start); 8007 offset += hstart - mi->itree.start; 8008 } 8009 8010 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr 8011 " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64, 8012 start, end, 8013 (flags & PAGE_READ) ? 'r' : '-', 8014 (flags & PAGE_WRITE_ORG) ? 'w' : '-', 8015 (flags & PAGE_EXEC) ? 'x' : '-', 8016 mi->is_priv ? 'p' : 's', 8017 offset, major(mi->dev), minor(mi->dev), 8018 (uint64_t)mi->inode); 8019 if (path) { 8020 dprintf(fd, "%*s%s\n", 73 - count, "", path); 8021 } else { 8022 dprintf(fd, "\n"); 8023 } 8024 8025 if (d->smaps) { 8026 unsigned long size = end - start; 8027 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10; 8028 unsigned long size_kb = size >> 10; 8029 8030 dprintf(fd, "Size: %lu kB\n" 8031 "KernelPageSize: %lu kB\n" 8032 "MMUPageSize: %lu kB\n" 8033 "Rss: 0 kB\n" 8034 "Pss: 0 kB\n" 8035 "Pss_Dirty: 0 kB\n" 8036 "Shared_Clean: 0 kB\n" 8037 "Shared_Dirty: 0 kB\n" 8038 "Private_Clean: 0 kB\n" 8039 "Private_Dirty: 0 kB\n" 8040 "Referenced: 0 kB\n" 8041 "Anonymous: %lu kB\n" 8042 "LazyFree: 0 kB\n" 8043 "AnonHugePages: 0 kB\n" 8044 "ShmemPmdMapped: 0 kB\n" 8045 "FilePmdMapped: 0 kB\n" 8046 "Shared_Hugetlb: 0 kB\n" 8047 "Private_Hugetlb: 0 kB\n" 8048 "Swap: 0 kB\n" 8049 "SwapPss: 0 kB\n" 8050 "Locked: 0 kB\n" 8051 "THPeligible: 0\n" 8052 "VmFlags:%s%s%s%s%s%s%s%s\n", 8053 size_kb, page_size_kb, page_size_kb, 8054 (flags & PAGE_ANON ? size_kb : 0), 8055 (flags & PAGE_READ) ? " rd" : "", 8056 (flags & PAGE_WRITE_ORG) ? " wr" : "", 8057 (flags & PAGE_EXEC) ? " ex" : "", 8058 mi->is_priv ? "" : " sh", 8059 (flags & PAGE_READ) ? " mr" : "", 8060 (flags & PAGE_WRITE_ORG) ? " mw" : "", 8061 (flags & PAGE_EXEC) ? " me" : "", 8062 mi->is_priv ? "" : " ms"); 8063 } 8064 } 8065 8066 /* 8067 * Callback for walk_memory_regions, when read_self_maps() fails. 8068 * Proceed without the benefit of host /proc/self/maps cross-check. 8069 */ 8070 static int open_self_maps_3(void *opaque, target_ulong guest_start, 8071 target_ulong guest_end, unsigned long flags) 8072 { 8073 static const MapInfo mi = { .is_priv = true }; 8074 8075 open_self_maps_4(opaque, &mi, guest_start, guest_end, flags); 8076 return 0; 8077 } 8078 8079 /* 8080 * Callback for walk_memory_regions, when read_self_maps() succeeds. 8081 */ 8082 static int open_self_maps_2(void *opaque, target_ulong guest_start, 8083 target_ulong guest_end, unsigned long flags) 8084 { 8085 const struct open_self_maps_data *d = opaque; 8086 uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start); 8087 uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1); 8088 8089 #ifdef TARGET_X86_64 8090 /* 8091 * Because of the extremely high position of the page within the guest 8092 * virtual address space, this is not backed by host memory at all. 8093 * Therefore the loop below would fail. This is the only instance 8094 * of not having host backing memory. 8095 */ 8096 if (guest_start == TARGET_VSYSCALL_PAGE) { 8097 return open_self_maps_3(opaque, guest_start, guest_end, flags); 8098 } 8099 #endif 8100 8101 while (1) { 8102 IntervalTreeNode *n = 8103 interval_tree_iter_first(d->host_maps, host_start, host_start); 8104 MapInfo *mi = container_of(n, MapInfo, itree); 8105 uintptr_t this_hlast = MIN(host_last, n->last); 8106 target_ulong this_gend = h2g(this_hlast) + 1; 8107 8108 open_self_maps_4(d, mi, guest_start, this_gend, flags); 8109 8110 if (this_hlast == host_last) { 8111 return 0; 8112 } 8113 host_start = this_hlast + 1; 8114 guest_start = h2g(host_start); 8115 } 8116 } 8117 8118 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps) 8119 { 8120 struct open_self_maps_data d = { 8121 .ts = env_cpu(env)->opaque, 8122 .host_maps = read_self_maps(), 8123 .fd = fd, 8124 .smaps = smaps 8125 }; 8126 8127 if (d.host_maps) { 8128 walk_memory_regions(&d, open_self_maps_2); 8129 free_self_maps(d.host_maps); 8130 } else { 8131 walk_memory_regions(&d, open_self_maps_3); 8132 } 8133 return 0; 8134 } 8135 8136 static int open_self_maps(CPUArchState *cpu_env, int fd) 8137 { 8138 return open_self_maps_1(cpu_env, fd, false); 8139 } 8140 8141 static int open_self_smaps(CPUArchState *cpu_env, int fd) 8142 { 8143 return open_self_maps_1(cpu_env, fd, true); 8144 } 8145 8146 static int open_self_stat(CPUArchState *cpu_env, int fd) 8147 { 8148 CPUState *cpu = env_cpu(cpu_env); 8149 TaskState *ts = get_task_state(cpu); 8150 g_autoptr(GString) buf = g_string_new(NULL); 8151 int i; 8152 8153 for (i = 0; i < 44; i++) { 8154 if (i == 0) { 8155 /* pid */ 8156 g_string_printf(buf, FMT_pid " ", getpid()); 8157 } else if (i == 1) { 8158 /* app name */ 8159 gchar *bin = g_strrstr(ts->bprm->argv[0], "/"); 8160 bin = bin ? bin + 1 : ts->bprm->argv[0]; 8161 g_string_printf(buf, "(%.15s) ", bin); 8162 } else if (i == 2) { 8163 /* task state */ 8164 g_string_assign(buf, "R "); /* we are running right now */ 8165 } else if (i == 3) { 8166 /* ppid */ 8167 g_string_printf(buf, FMT_pid " ", getppid()); 8168 } else if (i == 21) { 8169 /* starttime */ 8170 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime); 8171 } else if (i == 27) { 8172 /* stack bottom */ 8173 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack); 8174 } else { 8175 /* for the rest, there is MasterCard */ 8176 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' '); 8177 } 8178 8179 if (write(fd, buf->str, buf->len) != buf->len) { 8180 return -1; 8181 } 8182 } 8183 8184 return 0; 8185 } 8186 8187 static int open_self_auxv(CPUArchState *cpu_env, int fd) 8188 { 8189 CPUState *cpu = env_cpu(cpu_env); 8190 TaskState *ts = get_task_state(cpu); 8191 abi_ulong auxv = ts->info->saved_auxv; 8192 abi_ulong len = ts->info->auxv_len; 8193 char *ptr; 8194 8195 /* 8196 * Auxiliary vector is stored in target process stack. 8197 * read in whole auxv vector and copy it to file 8198 */ 8199 ptr = lock_user(VERIFY_READ, auxv, len, 0); 8200 if (ptr != NULL) { 8201 while (len > 0) { 8202 ssize_t r; 8203 r = write(fd, ptr, len); 8204 if (r <= 0) { 8205 break; 8206 } 8207 len -= r; 8208 ptr += r; 8209 } 8210 lseek(fd, 0, SEEK_SET); 8211 unlock_user(ptr, auxv, len); 8212 } 8213 8214 return 0; 8215 } 8216 8217 static int is_proc_myself(const char *filename, const char *entry) 8218 { 8219 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 8220 filename += strlen("/proc/"); 8221 if (!strncmp(filename, "self/", strlen("self/"))) { 8222 filename += strlen("self/"); 8223 } else if (*filename >= '1' && *filename <= '9') { 8224 char myself[80]; 8225 snprintf(myself, sizeof(myself), "%d/", getpid()); 8226 if (!strncmp(filename, myself, strlen(myself))) { 8227 filename += strlen(myself); 8228 } else { 8229 return 0; 8230 } 8231 } else { 8232 return 0; 8233 } 8234 if (!strcmp(filename, entry)) { 8235 return 1; 8236 } 8237 } 8238 return 0; 8239 } 8240 8241 static void excp_dump_file(FILE *logfile, CPUArchState *env, 8242 const char *fmt, int code) 8243 { 8244 if (logfile) { 8245 CPUState *cs = env_cpu(env); 8246 8247 fprintf(logfile, fmt, code); 8248 fprintf(logfile, "Failing executable: %s\n", exec_path); 8249 cpu_dump_state(cs, logfile, 0); 8250 open_self_maps(env, fileno(logfile)); 8251 } 8252 } 8253 8254 void target_exception_dump(CPUArchState *env, const char *fmt, int code) 8255 { 8256 /* dump to console */ 8257 excp_dump_file(stderr, env, fmt, code); 8258 8259 /* dump to log file */ 8260 if (qemu_log_separate()) { 8261 FILE *logfile = qemu_log_trylock(); 8262 8263 excp_dump_file(logfile, env, fmt, code); 8264 qemu_log_unlock(logfile); 8265 } 8266 } 8267 8268 #include "target_proc.h" 8269 8270 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \ 8271 defined(HAVE_ARCH_PROC_CPUINFO) || \ 8272 defined(HAVE_ARCH_PROC_HARDWARE) 8273 static int is_proc(const char *filename, const char *entry) 8274 { 8275 return strcmp(filename, entry) == 0; 8276 } 8277 #endif 8278 8279 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8280 static int open_net_route(CPUArchState *cpu_env, int fd) 8281 { 8282 FILE *fp; 8283 char *line = NULL; 8284 size_t len = 0; 8285 ssize_t read; 8286 8287 fp = fopen("/proc/net/route", "r"); 8288 if (fp == NULL) { 8289 return -1; 8290 } 8291 8292 /* read header */ 8293 8294 read = getline(&line, &len, fp); 8295 dprintf(fd, "%s", line); 8296 8297 /* read routes */ 8298 8299 while ((read = getline(&line, &len, fp)) != -1) { 8300 char iface[16]; 8301 uint32_t dest, gw, mask; 8302 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 8303 int fields; 8304 8305 fields = sscanf(line, 8306 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8307 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 8308 &mask, &mtu, &window, &irtt); 8309 if (fields != 11) { 8310 continue; 8311 } 8312 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8313 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 8314 metric, tswap32(mask), mtu, window, irtt); 8315 } 8316 8317 free(line); 8318 fclose(fp); 8319 8320 return 0; 8321 } 8322 #endif 8323 8324 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname, 8325 int flags, mode_t mode, bool safe) 8326 { 8327 g_autofree char *proc_name = NULL; 8328 const char *pathname; 8329 struct fake_open { 8330 const char *filename; 8331 int (*fill)(CPUArchState *cpu_env, int fd); 8332 int (*cmp)(const char *s1, const char *s2); 8333 }; 8334 const struct fake_open *fake_open; 8335 static const struct fake_open fakes[] = { 8336 { "maps", open_self_maps, is_proc_myself }, 8337 { "smaps", open_self_smaps, is_proc_myself }, 8338 { "stat", open_self_stat, is_proc_myself }, 8339 { "auxv", open_self_auxv, is_proc_myself }, 8340 { "cmdline", open_self_cmdline, is_proc_myself }, 8341 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8342 { "/proc/net/route", open_net_route, is_proc }, 8343 #endif 8344 #if defined(HAVE_ARCH_PROC_CPUINFO) 8345 { "/proc/cpuinfo", open_cpuinfo, is_proc }, 8346 #endif 8347 #if defined(HAVE_ARCH_PROC_HARDWARE) 8348 { "/proc/hardware", open_hardware, is_proc }, 8349 #endif 8350 { NULL, NULL, NULL } 8351 }; 8352 8353 /* if this is a file from /proc/ filesystem, expand full name */ 8354 proc_name = realpath(fname, NULL); 8355 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) { 8356 pathname = proc_name; 8357 } else { 8358 pathname = fname; 8359 } 8360 8361 if (is_proc_myself(pathname, "exe")) { 8362 if (safe) { 8363 return safe_openat(dirfd, exec_path, flags, mode); 8364 } else { 8365 return openat(dirfd, exec_path, flags, mode); 8366 } 8367 } 8368 8369 for (fake_open = fakes; fake_open->filename; fake_open++) { 8370 if (fake_open->cmp(pathname, fake_open->filename)) { 8371 break; 8372 } 8373 } 8374 8375 if (fake_open->filename) { 8376 const char *tmpdir; 8377 char filename[PATH_MAX]; 8378 int fd, r; 8379 8380 fd = memfd_create("qemu-open", 0); 8381 if (fd < 0) { 8382 if (errno != ENOSYS) { 8383 return fd; 8384 } 8385 /* create temporary file to map stat to */ 8386 tmpdir = getenv("TMPDIR"); 8387 if (!tmpdir) 8388 tmpdir = "/tmp"; 8389 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 8390 fd = mkstemp(filename); 8391 if (fd < 0) { 8392 return fd; 8393 } 8394 unlink(filename); 8395 } 8396 8397 if ((r = fake_open->fill(cpu_env, fd))) { 8398 int e = errno; 8399 close(fd); 8400 errno = e; 8401 return r; 8402 } 8403 lseek(fd, 0, SEEK_SET); 8404 8405 return fd; 8406 } 8407 8408 if (safe) { 8409 return safe_openat(dirfd, path(pathname), flags, mode); 8410 } else { 8411 return openat(dirfd, path(pathname), flags, mode); 8412 } 8413 } 8414 8415 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz) 8416 { 8417 ssize_t ret; 8418 8419 if (!pathname || !buf) { 8420 errno = EFAULT; 8421 return -1; 8422 } 8423 8424 if (!bufsiz) { 8425 /* Short circuit this for the magic exe check. */ 8426 errno = EINVAL; 8427 return -1; 8428 } 8429 8430 if (is_proc_myself((const char *)pathname, "exe")) { 8431 /* 8432 * Don't worry about sign mismatch as earlier mapping 8433 * logic would have thrown a bad address error. 8434 */ 8435 ret = MIN(strlen(exec_path), bufsiz); 8436 /* We cannot NUL terminate the string. */ 8437 memcpy(buf, exec_path, ret); 8438 } else { 8439 ret = readlink(path(pathname), buf, bufsiz); 8440 } 8441 8442 return ret; 8443 } 8444 8445 static int do_execv(CPUArchState *cpu_env, int dirfd, 8446 abi_long pathname, abi_long guest_argp, 8447 abi_long guest_envp, int flags, bool is_execveat) 8448 { 8449 int ret; 8450 char **argp, **envp; 8451 int argc, envc; 8452 abi_ulong gp; 8453 abi_ulong addr; 8454 char **q; 8455 void *p; 8456 8457 argc = 0; 8458 8459 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8460 if (get_user_ual(addr, gp)) { 8461 return -TARGET_EFAULT; 8462 } 8463 if (!addr) { 8464 break; 8465 } 8466 argc++; 8467 } 8468 envc = 0; 8469 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8470 if (get_user_ual(addr, gp)) { 8471 return -TARGET_EFAULT; 8472 } 8473 if (!addr) { 8474 break; 8475 } 8476 envc++; 8477 } 8478 8479 argp = g_new0(char *, argc + 1); 8480 envp = g_new0(char *, envc + 1); 8481 8482 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) { 8483 if (get_user_ual(addr, gp)) { 8484 goto execve_efault; 8485 } 8486 if (!addr) { 8487 break; 8488 } 8489 *q = lock_user_string(addr); 8490 if (!*q) { 8491 goto execve_efault; 8492 } 8493 } 8494 *q = NULL; 8495 8496 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) { 8497 if (get_user_ual(addr, gp)) { 8498 goto execve_efault; 8499 } 8500 if (!addr) { 8501 break; 8502 } 8503 *q = lock_user_string(addr); 8504 if (!*q) { 8505 goto execve_efault; 8506 } 8507 } 8508 *q = NULL; 8509 8510 /* 8511 * Although execve() is not an interruptible syscall it is 8512 * a special case where we must use the safe_syscall wrapper: 8513 * if we allow a signal to happen before we make the host 8514 * syscall then we will 'lose' it, because at the point of 8515 * execve the process leaves QEMU's control. So we use the 8516 * safe syscall wrapper to ensure that we either take the 8517 * signal as a guest signal, or else it does not happen 8518 * before the execve completes and makes it the other 8519 * program's problem. 8520 */ 8521 p = lock_user_string(pathname); 8522 if (!p) { 8523 goto execve_efault; 8524 } 8525 8526 const char *exe = p; 8527 if (is_proc_myself(p, "exe")) { 8528 exe = exec_path; 8529 } 8530 ret = is_execveat 8531 ? safe_execveat(dirfd, exe, argp, envp, flags) 8532 : safe_execve(exe, argp, envp); 8533 ret = get_errno(ret); 8534 8535 unlock_user(p, pathname, 0); 8536 8537 goto execve_end; 8538 8539 execve_efault: 8540 ret = -TARGET_EFAULT; 8541 8542 execve_end: 8543 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) { 8544 if (get_user_ual(addr, gp) || !addr) { 8545 break; 8546 } 8547 unlock_user(*q, addr, 0); 8548 } 8549 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) { 8550 if (get_user_ual(addr, gp) || !addr) { 8551 break; 8552 } 8553 unlock_user(*q, addr, 0); 8554 } 8555 8556 g_free(argp); 8557 g_free(envp); 8558 return ret; 8559 } 8560 8561 #define TIMER_MAGIC 0x0caf0000 8562 #define TIMER_MAGIC_MASK 0xffff0000 8563 8564 /* Convert QEMU provided timer ID back to internal 16bit index format */ 8565 static target_timer_t get_timer_id(abi_long arg) 8566 { 8567 target_timer_t timerid = arg; 8568 8569 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 8570 return -TARGET_EINVAL; 8571 } 8572 8573 timerid &= 0xffff; 8574 8575 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 8576 return -TARGET_EINVAL; 8577 } 8578 8579 return timerid; 8580 } 8581 8582 static int target_to_host_cpu_mask(unsigned long *host_mask, 8583 size_t host_size, 8584 abi_ulong target_addr, 8585 size_t target_size) 8586 { 8587 unsigned target_bits = sizeof(abi_ulong) * 8; 8588 unsigned host_bits = sizeof(*host_mask) * 8; 8589 abi_ulong *target_mask; 8590 unsigned i, j; 8591 8592 assert(host_size >= target_size); 8593 8594 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 8595 if (!target_mask) { 8596 return -TARGET_EFAULT; 8597 } 8598 memset(host_mask, 0, host_size); 8599 8600 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8601 unsigned bit = i * target_bits; 8602 abi_ulong val; 8603 8604 __get_user(val, &target_mask[i]); 8605 for (j = 0; j < target_bits; j++, bit++) { 8606 if (val & (1UL << j)) { 8607 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 8608 } 8609 } 8610 } 8611 8612 unlock_user(target_mask, target_addr, 0); 8613 return 0; 8614 } 8615 8616 static int host_to_target_cpu_mask(const unsigned long *host_mask, 8617 size_t host_size, 8618 abi_ulong target_addr, 8619 size_t target_size) 8620 { 8621 unsigned target_bits = sizeof(abi_ulong) * 8; 8622 unsigned host_bits = sizeof(*host_mask) * 8; 8623 abi_ulong *target_mask; 8624 unsigned i, j; 8625 8626 assert(host_size >= target_size); 8627 8628 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 8629 if (!target_mask) { 8630 return -TARGET_EFAULT; 8631 } 8632 8633 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8634 unsigned bit = i * target_bits; 8635 abi_ulong val = 0; 8636 8637 for (j = 0; j < target_bits; j++, bit++) { 8638 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 8639 val |= 1UL << j; 8640 } 8641 } 8642 __put_user(val, &target_mask[i]); 8643 } 8644 8645 unlock_user(target_mask, target_addr, target_size); 8646 return 0; 8647 } 8648 8649 #ifdef TARGET_NR_getdents 8650 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count) 8651 { 8652 g_autofree void *hdirp = NULL; 8653 void *tdirp; 8654 int hlen, hoff, toff; 8655 int hreclen, treclen; 8656 off64_t prev_diroff = 0; 8657 8658 hdirp = g_try_malloc(count); 8659 if (!hdirp) { 8660 return -TARGET_ENOMEM; 8661 } 8662 8663 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8664 hlen = sys_getdents(dirfd, hdirp, count); 8665 #else 8666 hlen = sys_getdents64(dirfd, hdirp, count); 8667 #endif 8668 8669 hlen = get_errno(hlen); 8670 if (is_error(hlen)) { 8671 return hlen; 8672 } 8673 8674 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8675 if (!tdirp) { 8676 return -TARGET_EFAULT; 8677 } 8678 8679 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8680 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8681 struct linux_dirent *hde = hdirp + hoff; 8682 #else 8683 struct linux_dirent64 *hde = hdirp + hoff; 8684 #endif 8685 struct target_dirent *tde = tdirp + toff; 8686 int namelen; 8687 uint8_t type; 8688 8689 namelen = strlen(hde->d_name); 8690 hreclen = hde->d_reclen; 8691 treclen = offsetof(struct target_dirent, d_name) + namelen + 2; 8692 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent)); 8693 8694 if (toff + treclen > count) { 8695 /* 8696 * If the host struct is smaller than the target struct, or 8697 * requires less alignment and thus packs into less space, 8698 * then the host can return more entries than we can pass 8699 * on to the guest. 8700 */ 8701 if (toff == 0) { 8702 toff = -TARGET_EINVAL; /* result buffer is too small */ 8703 break; 8704 } 8705 /* 8706 * Return what we have, resetting the file pointer to the 8707 * location of the first record not returned. 8708 */ 8709 lseek64(dirfd, prev_diroff, SEEK_SET); 8710 break; 8711 } 8712 8713 prev_diroff = hde->d_off; 8714 tde->d_ino = tswapal(hde->d_ino); 8715 tde->d_off = tswapal(hde->d_off); 8716 tde->d_reclen = tswap16(treclen); 8717 memcpy(tde->d_name, hde->d_name, namelen + 1); 8718 8719 /* 8720 * The getdents type is in what was formerly a padding byte at the 8721 * end of the structure. 8722 */ 8723 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8724 type = *((uint8_t *)hde + hreclen - 1); 8725 #else 8726 type = hde->d_type; 8727 #endif 8728 *((uint8_t *)tde + treclen - 1) = type; 8729 } 8730 8731 unlock_user(tdirp, arg2, toff); 8732 return toff; 8733 } 8734 #endif /* TARGET_NR_getdents */ 8735 8736 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 8737 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count) 8738 { 8739 g_autofree void *hdirp = NULL; 8740 void *tdirp; 8741 int hlen, hoff, toff; 8742 int hreclen, treclen; 8743 off64_t prev_diroff = 0; 8744 8745 hdirp = g_try_malloc(count); 8746 if (!hdirp) { 8747 return -TARGET_ENOMEM; 8748 } 8749 8750 hlen = get_errno(sys_getdents64(dirfd, hdirp, count)); 8751 if (is_error(hlen)) { 8752 return hlen; 8753 } 8754 8755 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8756 if (!tdirp) { 8757 return -TARGET_EFAULT; 8758 } 8759 8760 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8761 struct linux_dirent64 *hde = hdirp + hoff; 8762 struct target_dirent64 *tde = tdirp + toff; 8763 int namelen; 8764 8765 namelen = strlen(hde->d_name) + 1; 8766 hreclen = hde->d_reclen; 8767 treclen = offsetof(struct target_dirent64, d_name) + namelen; 8768 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64)); 8769 8770 if (toff + treclen > count) { 8771 /* 8772 * If the host struct is smaller than the target struct, or 8773 * requires less alignment and thus packs into less space, 8774 * then the host can return more entries than we can pass 8775 * on to the guest. 8776 */ 8777 if (toff == 0) { 8778 toff = -TARGET_EINVAL; /* result buffer is too small */ 8779 break; 8780 } 8781 /* 8782 * Return what we have, resetting the file pointer to the 8783 * location of the first record not returned. 8784 */ 8785 lseek64(dirfd, prev_diroff, SEEK_SET); 8786 break; 8787 } 8788 8789 prev_diroff = hde->d_off; 8790 tde->d_ino = tswap64(hde->d_ino); 8791 tde->d_off = tswap64(hde->d_off); 8792 tde->d_reclen = tswap16(treclen); 8793 tde->d_type = hde->d_type; 8794 memcpy(tde->d_name, hde->d_name, namelen); 8795 } 8796 8797 unlock_user(tdirp, arg2, toff); 8798 return toff; 8799 } 8800 #endif /* TARGET_NR_getdents64 */ 8801 8802 #if defined(TARGET_NR_riscv_hwprobe) 8803 8804 #define RISCV_HWPROBE_KEY_MVENDORID 0 8805 #define RISCV_HWPROBE_KEY_MARCHID 1 8806 #define RISCV_HWPROBE_KEY_MIMPID 2 8807 8808 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3 8809 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0) 8810 8811 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4 8812 #define RISCV_HWPROBE_IMA_FD (1 << 0) 8813 #define RISCV_HWPROBE_IMA_C (1 << 1) 8814 #define RISCV_HWPROBE_IMA_V (1 << 2) 8815 #define RISCV_HWPROBE_EXT_ZBA (1 << 3) 8816 #define RISCV_HWPROBE_EXT_ZBB (1 << 4) 8817 #define RISCV_HWPROBE_EXT_ZBS (1 << 5) 8818 #define RISCV_HWPROBE_EXT_ZICBOZ (1 << 6) 8819 #define RISCV_HWPROBE_EXT_ZBC (1 << 7) 8820 #define RISCV_HWPROBE_EXT_ZBKB (1 << 8) 8821 #define RISCV_HWPROBE_EXT_ZBKC (1 << 9) 8822 #define RISCV_HWPROBE_EXT_ZBKX (1 << 10) 8823 #define RISCV_HWPROBE_EXT_ZKND (1 << 11) 8824 #define RISCV_HWPROBE_EXT_ZKNE (1 << 12) 8825 #define RISCV_HWPROBE_EXT_ZKNH (1 << 13) 8826 #define RISCV_HWPROBE_EXT_ZKSED (1 << 14) 8827 #define RISCV_HWPROBE_EXT_ZKSH (1 << 15) 8828 #define RISCV_HWPROBE_EXT_ZKT (1 << 16) 8829 #define RISCV_HWPROBE_EXT_ZVBB (1 << 17) 8830 #define RISCV_HWPROBE_EXT_ZVBC (1 << 18) 8831 #define RISCV_HWPROBE_EXT_ZVKB (1 << 19) 8832 #define RISCV_HWPROBE_EXT_ZVKG (1 << 20) 8833 #define RISCV_HWPROBE_EXT_ZVKNED (1 << 21) 8834 #define RISCV_HWPROBE_EXT_ZVKNHA (1 << 22) 8835 #define RISCV_HWPROBE_EXT_ZVKNHB (1 << 23) 8836 #define RISCV_HWPROBE_EXT_ZVKSED (1 << 24) 8837 #define RISCV_HWPROBE_EXT_ZVKSH (1 << 25) 8838 #define RISCV_HWPROBE_EXT_ZVKT (1 << 26) 8839 #define RISCV_HWPROBE_EXT_ZFH (1 << 27) 8840 #define RISCV_HWPROBE_EXT_ZFHMIN (1 << 28) 8841 #define RISCV_HWPROBE_EXT_ZIHINTNTL (1 << 29) 8842 #define RISCV_HWPROBE_EXT_ZVFH (1 << 30) 8843 #define RISCV_HWPROBE_EXT_ZVFHMIN (1 << 31) 8844 #define RISCV_HWPROBE_EXT_ZFA (1ULL << 32) 8845 #define RISCV_HWPROBE_EXT_ZACAS (1ULL << 34) 8846 #define RISCV_HWPROBE_EXT_ZICOND (1ULL << 35) 8847 8848 #define RISCV_HWPROBE_KEY_CPUPERF_0 5 8849 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0) 8850 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0) 8851 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0) 8852 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0) 8853 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0) 8854 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0) 8855 8856 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6 8857 8858 struct riscv_hwprobe { 8859 abi_llong key; 8860 abi_ullong value; 8861 }; 8862 8863 static void risc_hwprobe_fill_pairs(CPURISCVState *env, 8864 struct riscv_hwprobe *pair, 8865 size_t pair_count) 8866 { 8867 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 8868 8869 for (; pair_count > 0; pair_count--, pair++) { 8870 abi_llong key; 8871 abi_ullong value; 8872 __put_user(0, &pair->value); 8873 __get_user(key, &pair->key); 8874 switch (key) { 8875 case RISCV_HWPROBE_KEY_MVENDORID: 8876 __put_user(cfg->mvendorid, &pair->value); 8877 break; 8878 case RISCV_HWPROBE_KEY_MARCHID: 8879 __put_user(cfg->marchid, &pair->value); 8880 break; 8881 case RISCV_HWPROBE_KEY_MIMPID: 8882 __put_user(cfg->mimpid, &pair->value); 8883 break; 8884 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR: 8885 value = riscv_has_ext(env, RVI) && 8886 riscv_has_ext(env, RVM) && 8887 riscv_has_ext(env, RVA) ? 8888 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0; 8889 __put_user(value, &pair->value); 8890 break; 8891 case RISCV_HWPROBE_KEY_IMA_EXT_0: 8892 value = riscv_has_ext(env, RVF) && 8893 riscv_has_ext(env, RVD) ? 8894 RISCV_HWPROBE_IMA_FD : 0; 8895 value |= riscv_has_ext(env, RVC) ? 8896 RISCV_HWPROBE_IMA_C : 0; 8897 value |= riscv_has_ext(env, RVV) ? 8898 RISCV_HWPROBE_IMA_V : 0; 8899 value |= cfg->ext_zba ? 8900 RISCV_HWPROBE_EXT_ZBA : 0; 8901 value |= cfg->ext_zbb ? 8902 RISCV_HWPROBE_EXT_ZBB : 0; 8903 value |= cfg->ext_zbs ? 8904 RISCV_HWPROBE_EXT_ZBS : 0; 8905 value |= cfg->ext_zicboz ? 8906 RISCV_HWPROBE_EXT_ZICBOZ : 0; 8907 value |= cfg->ext_zbc ? 8908 RISCV_HWPROBE_EXT_ZBC : 0; 8909 value |= cfg->ext_zbkb ? 8910 RISCV_HWPROBE_EXT_ZBKB : 0; 8911 value |= cfg->ext_zbkc ? 8912 RISCV_HWPROBE_EXT_ZBKC : 0; 8913 value |= cfg->ext_zbkx ? 8914 RISCV_HWPROBE_EXT_ZBKX : 0; 8915 value |= cfg->ext_zknd ? 8916 RISCV_HWPROBE_EXT_ZKND : 0; 8917 value |= cfg->ext_zkne ? 8918 RISCV_HWPROBE_EXT_ZKNE : 0; 8919 value |= cfg->ext_zknh ? 8920 RISCV_HWPROBE_EXT_ZKNH : 0; 8921 value |= cfg->ext_zksed ? 8922 RISCV_HWPROBE_EXT_ZKSED : 0; 8923 value |= cfg->ext_zksh ? 8924 RISCV_HWPROBE_EXT_ZKSH : 0; 8925 value |= cfg->ext_zkt ? 8926 RISCV_HWPROBE_EXT_ZKT : 0; 8927 value |= cfg->ext_zvbb ? 8928 RISCV_HWPROBE_EXT_ZVBB : 0; 8929 value |= cfg->ext_zvbc ? 8930 RISCV_HWPROBE_EXT_ZVBC : 0; 8931 value |= cfg->ext_zvkb ? 8932 RISCV_HWPROBE_EXT_ZVKB : 0; 8933 value |= cfg->ext_zvkg ? 8934 RISCV_HWPROBE_EXT_ZVKG : 0; 8935 value |= cfg->ext_zvkned ? 8936 RISCV_HWPROBE_EXT_ZVKNED : 0; 8937 value |= cfg->ext_zvknha ? 8938 RISCV_HWPROBE_EXT_ZVKNHA : 0; 8939 value |= cfg->ext_zvknhb ? 8940 RISCV_HWPROBE_EXT_ZVKNHB : 0; 8941 value |= cfg->ext_zvksed ? 8942 RISCV_HWPROBE_EXT_ZVKSED : 0; 8943 value |= cfg->ext_zvksh ? 8944 RISCV_HWPROBE_EXT_ZVKSH : 0; 8945 value |= cfg->ext_zvkt ? 8946 RISCV_HWPROBE_EXT_ZVKT : 0; 8947 value |= cfg->ext_zfh ? 8948 RISCV_HWPROBE_EXT_ZFH : 0; 8949 value |= cfg->ext_zfhmin ? 8950 RISCV_HWPROBE_EXT_ZFHMIN : 0; 8951 value |= cfg->ext_zihintntl ? 8952 RISCV_HWPROBE_EXT_ZIHINTNTL : 0; 8953 value |= cfg->ext_zvfh ? 8954 RISCV_HWPROBE_EXT_ZVFH : 0; 8955 value |= cfg->ext_zvfhmin ? 8956 RISCV_HWPROBE_EXT_ZVFHMIN : 0; 8957 value |= cfg->ext_zfa ? 8958 RISCV_HWPROBE_EXT_ZFA : 0; 8959 value |= cfg->ext_zacas ? 8960 RISCV_HWPROBE_EXT_ZACAS : 0; 8961 value |= cfg->ext_zicond ? 8962 RISCV_HWPROBE_EXT_ZICOND : 0; 8963 __put_user(value, &pair->value); 8964 break; 8965 case RISCV_HWPROBE_KEY_CPUPERF_0: 8966 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value); 8967 break; 8968 case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE: 8969 value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0; 8970 __put_user(value, &pair->value); 8971 break; 8972 default: 8973 __put_user(-1, &pair->key); 8974 break; 8975 } 8976 } 8977 } 8978 8979 static int cpu_set_valid(abi_long arg3, abi_long arg4) 8980 { 8981 int ret, i, tmp; 8982 size_t host_mask_size, target_mask_size; 8983 unsigned long *host_mask; 8984 8985 /* 8986 * cpu_set_t represent CPU masks as bit masks of type unsigned long *. 8987 * arg3 contains the cpu count. 8988 */ 8989 tmp = (8 * sizeof(abi_ulong)); 8990 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong); 8991 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) & 8992 ~(sizeof(*host_mask) - 1); 8993 8994 host_mask = alloca(host_mask_size); 8995 8996 ret = target_to_host_cpu_mask(host_mask, host_mask_size, 8997 arg4, target_mask_size); 8998 if (ret != 0) { 8999 return ret; 9000 } 9001 9002 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) { 9003 if (host_mask[i] != 0) { 9004 return 0; 9005 } 9006 } 9007 return -TARGET_EINVAL; 9008 } 9009 9010 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1, 9011 abi_long arg2, abi_long arg3, 9012 abi_long arg4, abi_long arg5) 9013 { 9014 int ret; 9015 struct riscv_hwprobe *host_pairs; 9016 9017 /* flags must be 0 */ 9018 if (arg5 != 0) { 9019 return -TARGET_EINVAL; 9020 } 9021 9022 /* check cpu_set */ 9023 if (arg3 != 0) { 9024 ret = cpu_set_valid(arg3, arg4); 9025 if (ret != 0) { 9026 return ret; 9027 } 9028 } else if (arg4 != 0) { 9029 return -TARGET_EINVAL; 9030 } 9031 9032 /* no pairs */ 9033 if (arg2 == 0) { 9034 return 0; 9035 } 9036 9037 host_pairs = lock_user(VERIFY_WRITE, arg1, 9038 sizeof(*host_pairs) * (size_t)arg2, 0); 9039 if (host_pairs == NULL) { 9040 return -TARGET_EFAULT; 9041 } 9042 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2); 9043 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2); 9044 return 0; 9045 } 9046 #endif /* TARGET_NR_riscv_hwprobe */ 9047 9048 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root) 9049 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old) 9050 #endif 9051 9052 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9053 #define __NR_sys_open_tree __NR_open_tree 9054 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename, 9055 unsigned int, __flags) 9056 #endif 9057 9058 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9059 #define __NR_sys_move_mount __NR_move_mount 9060 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname, 9061 int, __to_dfd, const char *, __to_pathname, unsigned int, flag) 9062 #endif 9063 9064 /* This is an internal helper for do_syscall so that it is easier 9065 * to have a single return point, so that actions, such as logging 9066 * of syscall results, can be performed. 9067 * All errnos that do_syscall() returns must be -TARGET_<errcode>. 9068 */ 9069 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1, 9070 abi_long arg2, abi_long arg3, abi_long arg4, 9071 abi_long arg5, abi_long arg6, abi_long arg7, 9072 abi_long arg8) 9073 { 9074 CPUState *cpu = env_cpu(cpu_env); 9075 abi_long ret; 9076 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \ 9077 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \ 9078 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \ 9079 || defined(TARGET_NR_statx) 9080 struct stat st; 9081 #endif 9082 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \ 9083 || defined(TARGET_NR_fstatfs) 9084 struct statfs stfs; 9085 #endif 9086 void *p; 9087 9088 switch(num) { 9089 case TARGET_NR_exit: 9090 /* In old applications this may be used to implement _exit(2). 9091 However in threaded applications it is used for thread termination, 9092 and _exit_group is used for application termination. 9093 Do thread termination if we have more then one thread. */ 9094 9095 if (block_signals()) { 9096 return -QEMU_ERESTARTSYS; 9097 } 9098 9099 pthread_mutex_lock(&clone_lock); 9100 9101 if (CPU_NEXT(first_cpu)) { 9102 TaskState *ts = get_task_state(cpu); 9103 9104 if (ts->child_tidptr) { 9105 put_user_u32(0, ts->child_tidptr); 9106 do_sys_futex(g2h(cpu, ts->child_tidptr), 9107 FUTEX_WAKE, INT_MAX, NULL, NULL, 0); 9108 } 9109 9110 object_unparent(OBJECT(cpu)); 9111 object_unref(OBJECT(cpu)); 9112 /* 9113 * At this point the CPU should be unrealized and removed 9114 * from cpu lists. We can clean-up the rest of the thread 9115 * data without the lock held. 9116 */ 9117 9118 pthread_mutex_unlock(&clone_lock); 9119 9120 thread_cpu = NULL; 9121 g_free(ts); 9122 rcu_unregister_thread(); 9123 pthread_exit(NULL); 9124 } 9125 9126 pthread_mutex_unlock(&clone_lock); 9127 preexit_cleanup(cpu_env, arg1); 9128 _exit(arg1); 9129 return 0; /* avoid warning */ 9130 case TARGET_NR_read: 9131 if (arg2 == 0 && arg3 == 0) { 9132 return get_errno(safe_read(arg1, 0, 0)); 9133 } else { 9134 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 9135 return -TARGET_EFAULT; 9136 ret = get_errno(safe_read(arg1, p, arg3)); 9137 if (ret >= 0 && 9138 fd_trans_host_to_target_data(arg1)) { 9139 ret = fd_trans_host_to_target_data(arg1)(p, ret); 9140 } 9141 unlock_user(p, arg2, ret); 9142 } 9143 return ret; 9144 case TARGET_NR_write: 9145 if (arg2 == 0 && arg3 == 0) { 9146 return get_errno(safe_write(arg1, 0, 0)); 9147 } 9148 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 9149 return -TARGET_EFAULT; 9150 if (fd_trans_target_to_host_data(arg1)) { 9151 void *copy = g_malloc(arg3); 9152 memcpy(copy, p, arg3); 9153 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 9154 if (ret >= 0) { 9155 ret = get_errno(safe_write(arg1, copy, ret)); 9156 } 9157 g_free(copy); 9158 } else { 9159 ret = get_errno(safe_write(arg1, p, arg3)); 9160 } 9161 unlock_user(p, arg2, 0); 9162 return ret; 9163 9164 #ifdef TARGET_NR_open 9165 case TARGET_NR_open: 9166 if (!(p = lock_user_string(arg1))) 9167 return -TARGET_EFAULT; 9168 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p, 9169 target_to_host_bitmask(arg2, fcntl_flags_tbl), 9170 arg3, true)); 9171 fd_trans_unregister(ret); 9172 unlock_user(p, arg1, 0); 9173 return ret; 9174 #endif 9175 case TARGET_NR_openat: 9176 if (!(p = lock_user_string(arg2))) 9177 return -TARGET_EFAULT; 9178 ret = get_errno(do_guest_openat(cpu_env, arg1, p, 9179 target_to_host_bitmask(arg3, fcntl_flags_tbl), 9180 arg4, true)); 9181 fd_trans_unregister(ret); 9182 unlock_user(p, arg2, 0); 9183 return ret; 9184 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9185 case TARGET_NR_name_to_handle_at: 9186 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 9187 return ret; 9188 #endif 9189 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9190 case TARGET_NR_open_by_handle_at: 9191 ret = do_open_by_handle_at(arg1, arg2, arg3); 9192 fd_trans_unregister(ret); 9193 return ret; 9194 #endif 9195 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 9196 case TARGET_NR_pidfd_open: 9197 return get_errno(pidfd_open(arg1, arg2)); 9198 #endif 9199 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 9200 case TARGET_NR_pidfd_send_signal: 9201 { 9202 siginfo_t uinfo, *puinfo; 9203 9204 if (arg3) { 9205 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9206 if (!p) { 9207 return -TARGET_EFAULT; 9208 } 9209 target_to_host_siginfo(&uinfo, p); 9210 unlock_user(p, arg3, 0); 9211 puinfo = &uinfo; 9212 } else { 9213 puinfo = NULL; 9214 } 9215 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2), 9216 puinfo, arg4)); 9217 } 9218 return ret; 9219 #endif 9220 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 9221 case TARGET_NR_pidfd_getfd: 9222 return get_errno(pidfd_getfd(arg1, arg2, arg3)); 9223 #endif 9224 case TARGET_NR_close: 9225 fd_trans_unregister(arg1); 9226 return get_errno(close(arg1)); 9227 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 9228 case TARGET_NR_close_range: 9229 ret = get_errno(sys_close_range(arg1, arg2, arg3)); 9230 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) { 9231 abi_long fd, maxfd; 9232 maxfd = MIN(arg2, target_fd_max); 9233 for (fd = arg1; fd < maxfd; fd++) { 9234 fd_trans_unregister(fd); 9235 } 9236 } 9237 return ret; 9238 #endif 9239 9240 case TARGET_NR_brk: 9241 return do_brk(arg1); 9242 #ifdef TARGET_NR_fork 9243 case TARGET_NR_fork: 9244 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 9245 #endif 9246 #ifdef TARGET_NR_waitpid 9247 case TARGET_NR_waitpid: 9248 { 9249 int status; 9250 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 9251 if (!is_error(ret) && arg2 && ret 9252 && put_user_s32(host_to_target_waitstatus(status), arg2)) 9253 return -TARGET_EFAULT; 9254 } 9255 return ret; 9256 #endif 9257 #ifdef TARGET_NR_waitid 9258 case TARGET_NR_waitid: 9259 { 9260 siginfo_t info; 9261 info.si_pid = 0; 9262 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 9263 if (!is_error(ret) && arg3 && info.si_pid != 0) { 9264 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 9265 return -TARGET_EFAULT; 9266 host_to_target_siginfo(p, &info); 9267 unlock_user(p, arg3, sizeof(target_siginfo_t)); 9268 } 9269 } 9270 return ret; 9271 #endif 9272 #ifdef TARGET_NR_creat /* not on alpha */ 9273 case TARGET_NR_creat: 9274 if (!(p = lock_user_string(arg1))) 9275 return -TARGET_EFAULT; 9276 ret = get_errno(creat(p, arg2)); 9277 fd_trans_unregister(ret); 9278 unlock_user(p, arg1, 0); 9279 return ret; 9280 #endif 9281 #ifdef TARGET_NR_link 9282 case TARGET_NR_link: 9283 { 9284 void * p2; 9285 p = lock_user_string(arg1); 9286 p2 = lock_user_string(arg2); 9287 if (!p || !p2) 9288 ret = -TARGET_EFAULT; 9289 else 9290 ret = get_errno(link(p, p2)); 9291 unlock_user(p2, arg2, 0); 9292 unlock_user(p, arg1, 0); 9293 } 9294 return ret; 9295 #endif 9296 #if defined(TARGET_NR_linkat) 9297 case TARGET_NR_linkat: 9298 { 9299 void * p2 = NULL; 9300 if (!arg2 || !arg4) 9301 return -TARGET_EFAULT; 9302 p = lock_user_string(arg2); 9303 p2 = lock_user_string(arg4); 9304 if (!p || !p2) 9305 ret = -TARGET_EFAULT; 9306 else 9307 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 9308 unlock_user(p, arg2, 0); 9309 unlock_user(p2, arg4, 0); 9310 } 9311 return ret; 9312 #endif 9313 #ifdef TARGET_NR_unlink 9314 case TARGET_NR_unlink: 9315 if (!(p = lock_user_string(arg1))) 9316 return -TARGET_EFAULT; 9317 ret = get_errno(unlink(p)); 9318 unlock_user(p, arg1, 0); 9319 return ret; 9320 #endif 9321 #if defined(TARGET_NR_unlinkat) 9322 case TARGET_NR_unlinkat: 9323 if (!(p = lock_user_string(arg2))) 9324 return -TARGET_EFAULT; 9325 ret = get_errno(unlinkat(arg1, p, arg3)); 9326 unlock_user(p, arg2, 0); 9327 return ret; 9328 #endif 9329 case TARGET_NR_execveat: 9330 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true); 9331 case TARGET_NR_execve: 9332 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false); 9333 case TARGET_NR_chdir: 9334 if (!(p = lock_user_string(arg1))) 9335 return -TARGET_EFAULT; 9336 ret = get_errno(chdir(p)); 9337 unlock_user(p, arg1, 0); 9338 return ret; 9339 #ifdef TARGET_NR_time 9340 case TARGET_NR_time: 9341 { 9342 time_t host_time; 9343 ret = get_errno(time(&host_time)); 9344 if (!is_error(ret) 9345 && arg1 9346 && put_user_sal(host_time, arg1)) 9347 return -TARGET_EFAULT; 9348 } 9349 return ret; 9350 #endif 9351 #ifdef TARGET_NR_mknod 9352 case TARGET_NR_mknod: 9353 if (!(p = lock_user_string(arg1))) 9354 return -TARGET_EFAULT; 9355 ret = get_errno(mknod(p, arg2, arg3)); 9356 unlock_user(p, arg1, 0); 9357 return ret; 9358 #endif 9359 #if defined(TARGET_NR_mknodat) 9360 case TARGET_NR_mknodat: 9361 if (!(p = lock_user_string(arg2))) 9362 return -TARGET_EFAULT; 9363 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 9364 unlock_user(p, arg2, 0); 9365 return ret; 9366 #endif 9367 #ifdef TARGET_NR_chmod 9368 case TARGET_NR_chmod: 9369 if (!(p = lock_user_string(arg1))) 9370 return -TARGET_EFAULT; 9371 ret = get_errno(chmod(p, arg2)); 9372 unlock_user(p, arg1, 0); 9373 return ret; 9374 #endif 9375 #ifdef TARGET_NR_lseek 9376 case TARGET_NR_lseek: 9377 return get_errno(lseek(arg1, arg2, arg3)); 9378 #endif 9379 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 9380 /* Alpha specific */ 9381 case TARGET_NR_getxpid: 9382 cpu_env->ir[IR_A4] = getppid(); 9383 return get_errno(getpid()); 9384 #endif 9385 #ifdef TARGET_NR_getpid 9386 case TARGET_NR_getpid: 9387 return get_errno(getpid()); 9388 #endif 9389 case TARGET_NR_mount: 9390 { 9391 /* need to look at the data field */ 9392 void *p2, *p3; 9393 9394 if (arg1) { 9395 p = lock_user_string(arg1); 9396 if (!p) { 9397 return -TARGET_EFAULT; 9398 } 9399 } else { 9400 p = NULL; 9401 } 9402 9403 p2 = lock_user_string(arg2); 9404 if (!p2) { 9405 if (arg1) { 9406 unlock_user(p, arg1, 0); 9407 } 9408 return -TARGET_EFAULT; 9409 } 9410 9411 if (arg3) { 9412 p3 = lock_user_string(arg3); 9413 if (!p3) { 9414 if (arg1) { 9415 unlock_user(p, arg1, 0); 9416 } 9417 unlock_user(p2, arg2, 0); 9418 return -TARGET_EFAULT; 9419 } 9420 } else { 9421 p3 = NULL; 9422 } 9423 9424 /* FIXME - arg5 should be locked, but it isn't clear how to 9425 * do that since it's not guaranteed to be a NULL-terminated 9426 * string. 9427 */ 9428 if (!arg5) { 9429 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 9430 } else { 9431 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5)); 9432 } 9433 ret = get_errno(ret); 9434 9435 if (arg1) { 9436 unlock_user(p, arg1, 0); 9437 } 9438 unlock_user(p2, arg2, 0); 9439 if (arg3) { 9440 unlock_user(p3, arg3, 0); 9441 } 9442 } 9443 return ret; 9444 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount) 9445 #if defined(TARGET_NR_umount) 9446 case TARGET_NR_umount: 9447 #endif 9448 #if defined(TARGET_NR_oldumount) 9449 case TARGET_NR_oldumount: 9450 #endif 9451 if (!(p = lock_user_string(arg1))) 9452 return -TARGET_EFAULT; 9453 ret = get_errno(umount(p)); 9454 unlock_user(p, arg1, 0); 9455 return ret; 9456 #endif 9457 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9458 case TARGET_NR_move_mount: 9459 { 9460 void *p2, *p4; 9461 9462 if (!arg2 || !arg4) { 9463 return -TARGET_EFAULT; 9464 } 9465 9466 p2 = lock_user_string(arg2); 9467 if (!p2) { 9468 return -TARGET_EFAULT; 9469 } 9470 9471 p4 = lock_user_string(arg4); 9472 if (!p4) { 9473 unlock_user(p2, arg2, 0); 9474 return -TARGET_EFAULT; 9475 } 9476 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5)); 9477 9478 unlock_user(p2, arg2, 0); 9479 unlock_user(p4, arg4, 0); 9480 9481 return ret; 9482 } 9483 #endif 9484 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9485 case TARGET_NR_open_tree: 9486 { 9487 void *p2; 9488 int host_flags; 9489 9490 if (!arg2) { 9491 return -TARGET_EFAULT; 9492 } 9493 9494 p2 = lock_user_string(arg2); 9495 if (!p2) { 9496 return -TARGET_EFAULT; 9497 } 9498 9499 host_flags = arg3 & ~TARGET_O_CLOEXEC; 9500 if (arg3 & TARGET_O_CLOEXEC) { 9501 host_flags |= O_CLOEXEC; 9502 } 9503 9504 ret = get_errno(sys_open_tree(arg1, p2, host_flags)); 9505 9506 unlock_user(p2, arg2, 0); 9507 9508 return ret; 9509 } 9510 #endif 9511 #ifdef TARGET_NR_stime /* not on alpha */ 9512 case TARGET_NR_stime: 9513 { 9514 struct timespec ts; 9515 ts.tv_nsec = 0; 9516 if (get_user_sal(ts.tv_sec, arg1)) { 9517 return -TARGET_EFAULT; 9518 } 9519 return get_errno(clock_settime(CLOCK_REALTIME, &ts)); 9520 } 9521 #endif 9522 #ifdef TARGET_NR_alarm /* not on alpha */ 9523 case TARGET_NR_alarm: 9524 return alarm(arg1); 9525 #endif 9526 #ifdef TARGET_NR_pause /* not on alpha */ 9527 case TARGET_NR_pause: 9528 if (!block_signals()) { 9529 sigsuspend(&get_task_state(cpu)->signal_mask); 9530 } 9531 return -TARGET_EINTR; 9532 #endif 9533 #ifdef TARGET_NR_utime 9534 case TARGET_NR_utime: 9535 { 9536 struct utimbuf tbuf, *host_tbuf; 9537 struct target_utimbuf *target_tbuf; 9538 if (arg2) { 9539 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 9540 return -TARGET_EFAULT; 9541 tbuf.actime = tswapal(target_tbuf->actime); 9542 tbuf.modtime = tswapal(target_tbuf->modtime); 9543 unlock_user_struct(target_tbuf, arg2, 0); 9544 host_tbuf = &tbuf; 9545 } else { 9546 host_tbuf = NULL; 9547 } 9548 if (!(p = lock_user_string(arg1))) 9549 return -TARGET_EFAULT; 9550 ret = get_errno(utime(p, host_tbuf)); 9551 unlock_user(p, arg1, 0); 9552 } 9553 return ret; 9554 #endif 9555 #ifdef TARGET_NR_utimes 9556 case TARGET_NR_utimes: 9557 { 9558 struct timeval *tvp, tv[2]; 9559 if (arg2) { 9560 if (copy_from_user_timeval(&tv[0], arg2) 9561 || copy_from_user_timeval(&tv[1], 9562 arg2 + sizeof(struct target_timeval))) 9563 return -TARGET_EFAULT; 9564 tvp = tv; 9565 } else { 9566 tvp = NULL; 9567 } 9568 if (!(p = lock_user_string(arg1))) 9569 return -TARGET_EFAULT; 9570 ret = get_errno(utimes(p, tvp)); 9571 unlock_user(p, arg1, 0); 9572 } 9573 return ret; 9574 #endif 9575 #if defined(TARGET_NR_futimesat) 9576 case TARGET_NR_futimesat: 9577 { 9578 struct timeval *tvp, tv[2]; 9579 if (arg3) { 9580 if (copy_from_user_timeval(&tv[0], arg3) 9581 || copy_from_user_timeval(&tv[1], 9582 arg3 + sizeof(struct target_timeval))) 9583 return -TARGET_EFAULT; 9584 tvp = tv; 9585 } else { 9586 tvp = NULL; 9587 } 9588 if (!(p = lock_user_string(arg2))) { 9589 return -TARGET_EFAULT; 9590 } 9591 ret = get_errno(futimesat(arg1, path(p), tvp)); 9592 unlock_user(p, arg2, 0); 9593 } 9594 return ret; 9595 #endif 9596 #ifdef TARGET_NR_access 9597 case TARGET_NR_access: 9598 if (!(p = lock_user_string(arg1))) { 9599 return -TARGET_EFAULT; 9600 } 9601 ret = get_errno(access(path(p), arg2)); 9602 unlock_user(p, arg1, 0); 9603 return ret; 9604 #endif 9605 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 9606 case TARGET_NR_faccessat: 9607 if (!(p = lock_user_string(arg2))) { 9608 return -TARGET_EFAULT; 9609 } 9610 ret = get_errno(faccessat(arg1, p, arg3, 0)); 9611 unlock_user(p, arg2, 0); 9612 return ret; 9613 #endif 9614 #if defined(TARGET_NR_faccessat2) 9615 case TARGET_NR_faccessat2: 9616 if (!(p = lock_user_string(arg2))) { 9617 return -TARGET_EFAULT; 9618 } 9619 ret = get_errno(faccessat(arg1, p, arg3, arg4)); 9620 unlock_user(p, arg2, 0); 9621 return ret; 9622 #endif 9623 #ifdef TARGET_NR_nice /* not on alpha */ 9624 case TARGET_NR_nice: 9625 return get_errno(nice(arg1)); 9626 #endif 9627 case TARGET_NR_sync: 9628 sync(); 9629 return 0; 9630 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 9631 case TARGET_NR_syncfs: 9632 return get_errno(syncfs(arg1)); 9633 #endif 9634 case TARGET_NR_kill: 9635 return get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 9636 #ifdef TARGET_NR_rename 9637 case TARGET_NR_rename: 9638 { 9639 void *p2; 9640 p = lock_user_string(arg1); 9641 p2 = lock_user_string(arg2); 9642 if (!p || !p2) 9643 ret = -TARGET_EFAULT; 9644 else 9645 ret = get_errno(rename(p, p2)); 9646 unlock_user(p2, arg2, 0); 9647 unlock_user(p, arg1, 0); 9648 } 9649 return ret; 9650 #endif 9651 #if defined(TARGET_NR_renameat) 9652 case TARGET_NR_renameat: 9653 { 9654 void *p2; 9655 p = lock_user_string(arg2); 9656 p2 = lock_user_string(arg4); 9657 if (!p || !p2) 9658 ret = -TARGET_EFAULT; 9659 else 9660 ret = get_errno(renameat(arg1, p, arg3, p2)); 9661 unlock_user(p2, arg4, 0); 9662 unlock_user(p, arg2, 0); 9663 } 9664 return ret; 9665 #endif 9666 #if defined(TARGET_NR_renameat2) 9667 case TARGET_NR_renameat2: 9668 { 9669 void *p2; 9670 p = lock_user_string(arg2); 9671 p2 = lock_user_string(arg4); 9672 if (!p || !p2) { 9673 ret = -TARGET_EFAULT; 9674 } else { 9675 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 9676 } 9677 unlock_user(p2, arg4, 0); 9678 unlock_user(p, arg2, 0); 9679 } 9680 return ret; 9681 #endif 9682 #ifdef TARGET_NR_mkdir 9683 case TARGET_NR_mkdir: 9684 if (!(p = lock_user_string(arg1))) 9685 return -TARGET_EFAULT; 9686 ret = get_errno(mkdir(p, arg2)); 9687 unlock_user(p, arg1, 0); 9688 return ret; 9689 #endif 9690 #if defined(TARGET_NR_mkdirat) 9691 case TARGET_NR_mkdirat: 9692 if (!(p = lock_user_string(arg2))) 9693 return -TARGET_EFAULT; 9694 ret = get_errno(mkdirat(arg1, p, arg3)); 9695 unlock_user(p, arg2, 0); 9696 return ret; 9697 #endif 9698 #ifdef TARGET_NR_rmdir 9699 case TARGET_NR_rmdir: 9700 if (!(p = lock_user_string(arg1))) 9701 return -TARGET_EFAULT; 9702 ret = get_errno(rmdir(p)); 9703 unlock_user(p, arg1, 0); 9704 return ret; 9705 #endif 9706 case TARGET_NR_dup: 9707 ret = get_errno(dup(arg1)); 9708 if (ret >= 0) { 9709 fd_trans_dup(arg1, ret); 9710 } 9711 return ret; 9712 #ifdef TARGET_NR_pipe 9713 case TARGET_NR_pipe: 9714 return do_pipe(cpu_env, arg1, 0, 0); 9715 #endif 9716 #ifdef TARGET_NR_pipe2 9717 case TARGET_NR_pipe2: 9718 return do_pipe(cpu_env, arg1, 9719 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 9720 #endif 9721 case TARGET_NR_times: 9722 { 9723 struct target_tms *tmsp; 9724 struct tms tms; 9725 ret = get_errno(times(&tms)); 9726 if (arg1) { 9727 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 9728 if (!tmsp) 9729 return -TARGET_EFAULT; 9730 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 9731 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 9732 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 9733 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 9734 } 9735 if (!is_error(ret)) 9736 ret = host_to_target_clock_t(ret); 9737 } 9738 return ret; 9739 case TARGET_NR_acct: 9740 if (arg1 == 0) { 9741 ret = get_errno(acct(NULL)); 9742 } else { 9743 if (!(p = lock_user_string(arg1))) { 9744 return -TARGET_EFAULT; 9745 } 9746 ret = get_errno(acct(path(p))); 9747 unlock_user(p, arg1, 0); 9748 } 9749 return ret; 9750 #ifdef TARGET_NR_umount2 9751 case TARGET_NR_umount2: 9752 if (!(p = lock_user_string(arg1))) 9753 return -TARGET_EFAULT; 9754 ret = get_errno(umount2(p, arg2)); 9755 unlock_user(p, arg1, 0); 9756 return ret; 9757 #endif 9758 case TARGET_NR_ioctl: 9759 return do_ioctl(arg1, arg2, arg3); 9760 #ifdef TARGET_NR_fcntl 9761 case TARGET_NR_fcntl: 9762 return do_fcntl(arg1, arg2, arg3); 9763 #endif 9764 case TARGET_NR_setpgid: 9765 return get_errno(setpgid(arg1, arg2)); 9766 case TARGET_NR_umask: 9767 return get_errno(umask(arg1)); 9768 case TARGET_NR_chroot: 9769 if (!(p = lock_user_string(arg1))) 9770 return -TARGET_EFAULT; 9771 ret = get_errno(chroot(p)); 9772 unlock_user(p, arg1, 0); 9773 return ret; 9774 #ifdef TARGET_NR_dup2 9775 case TARGET_NR_dup2: 9776 ret = get_errno(dup2(arg1, arg2)); 9777 if (ret >= 0) { 9778 fd_trans_dup(arg1, arg2); 9779 } 9780 return ret; 9781 #endif 9782 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 9783 case TARGET_NR_dup3: 9784 { 9785 int host_flags; 9786 9787 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 9788 return -EINVAL; 9789 } 9790 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 9791 ret = get_errno(dup3(arg1, arg2, host_flags)); 9792 if (ret >= 0) { 9793 fd_trans_dup(arg1, arg2); 9794 } 9795 return ret; 9796 } 9797 #endif 9798 #ifdef TARGET_NR_getppid /* not on alpha */ 9799 case TARGET_NR_getppid: 9800 return get_errno(getppid()); 9801 #endif 9802 #ifdef TARGET_NR_getpgrp 9803 case TARGET_NR_getpgrp: 9804 return get_errno(getpgrp()); 9805 #endif 9806 case TARGET_NR_setsid: 9807 return get_errno(setsid()); 9808 #ifdef TARGET_NR_sigaction 9809 case TARGET_NR_sigaction: 9810 { 9811 #if defined(TARGET_MIPS) 9812 struct target_sigaction act, oact, *pact, *old_act; 9813 9814 if (arg2) { 9815 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9816 return -TARGET_EFAULT; 9817 act._sa_handler = old_act->_sa_handler; 9818 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 9819 act.sa_flags = old_act->sa_flags; 9820 unlock_user_struct(old_act, arg2, 0); 9821 pact = &act; 9822 } else { 9823 pact = NULL; 9824 } 9825 9826 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9827 9828 if (!is_error(ret) && arg3) { 9829 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9830 return -TARGET_EFAULT; 9831 old_act->_sa_handler = oact._sa_handler; 9832 old_act->sa_flags = oact.sa_flags; 9833 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 9834 old_act->sa_mask.sig[1] = 0; 9835 old_act->sa_mask.sig[2] = 0; 9836 old_act->sa_mask.sig[3] = 0; 9837 unlock_user_struct(old_act, arg3, 1); 9838 } 9839 #else 9840 struct target_old_sigaction *old_act; 9841 struct target_sigaction act, oact, *pact; 9842 if (arg2) { 9843 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9844 return -TARGET_EFAULT; 9845 act._sa_handler = old_act->_sa_handler; 9846 target_siginitset(&act.sa_mask, old_act->sa_mask); 9847 act.sa_flags = old_act->sa_flags; 9848 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9849 act.sa_restorer = old_act->sa_restorer; 9850 #endif 9851 unlock_user_struct(old_act, arg2, 0); 9852 pact = &act; 9853 } else { 9854 pact = NULL; 9855 } 9856 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9857 if (!is_error(ret) && arg3) { 9858 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9859 return -TARGET_EFAULT; 9860 old_act->_sa_handler = oact._sa_handler; 9861 old_act->sa_mask = oact.sa_mask.sig[0]; 9862 old_act->sa_flags = oact.sa_flags; 9863 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9864 old_act->sa_restorer = oact.sa_restorer; 9865 #endif 9866 unlock_user_struct(old_act, arg3, 1); 9867 } 9868 #endif 9869 } 9870 return ret; 9871 #endif 9872 case TARGET_NR_rt_sigaction: 9873 { 9874 /* 9875 * For Alpha and SPARC this is a 5 argument syscall, with 9876 * a 'restorer' parameter which must be copied into the 9877 * sa_restorer field of the sigaction struct. 9878 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 9879 * and arg5 is the sigsetsize. 9880 */ 9881 #if defined(TARGET_ALPHA) 9882 target_ulong sigsetsize = arg4; 9883 target_ulong restorer = arg5; 9884 #elif defined(TARGET_SPARC) 9885 target_ulong restorer = arg4; 9886 target_ulong sigsetsize = arg5; 9887 #else 9888 target_ulong sigsetsize = arg4; 9889 target_ulong restorer = 0; 9890 #endif 9891 struct target_sigaction *act = NULL; 9892 struct target_sigaction *oact = NULL; 9893 9894 if (sigsetsize != sizeof(target_sigset_t)) { 9895 return -TARGET_EINVAL; 9896 } 9897 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) { 9898 return -TARGET_EFAULT; 9899 } 9900 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 9901 ret = -TARGET_EFAULT; 9902 } else { 9903 ret = get_errno(do_sigaction(arg1, act, oact, restorer)); 9904 if (oact) { 9905 unlock_user_struct(oact, arg3, 1); 9906 } 9907 } 9908 if (act) { 9909 unlock_user_struct(act, arg2, 0); 9910 } 9911 } 9912 return ret; 9913 #ifdef TARGET_NR_sgetmask /* not on alpha */ 9914 case TARGET_NR_sgetmask: 9915 { 9916 sigset_t cur_set; 9917 abi_ulong target_set; 9918 ret = do_sigprocmask(0, NULL, &cur_set); 9919 if (!ret) { 9920 host_to_target_old_sigset(&target_set, &cur_set); 9921 ret = target_set; 9922 } 9923 } 9924 return ret; 9925 #endif 9926 #ifdef TARGET_NR_ssetmask /* not on alpha */ 9927 case TARGET_NR_ssetmask: 9928 { 9929 sigset_t set, oset; 9930 abi_ulong target_set = arg1; 9931 target_to_host_old_sigset(&set, &target_set); 9932 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 9933 if (!ret) { 9934 host_to_target_old_sigset(&target_set, &oset); 9935 ret = target_set; 9936 } 9937 } 9938 return ret; 9939 #endif 9940 #ifdef TARGET_NR_sigprocmask 9941 case TARGET_NR_sigprocmask: 9942 { 9943 #if defined(TARGET_ALPHA) 9944 sigset_t set, oldset; 9945 abi_ulong mask; 9946 int how; 9947 9948 switch (arg1) { 9949 case TARGET_SIG_BLOCK: 9950 how = SIG_BLOCK; 9951 break; 9952 case TARGET_SIG_UNBLOCK: 9953 how = SIG_UNBLOCK; 9954 break; 9955 case TARGET_SIG_SETMASK: 9956 how = SIG_SETMASK; 9957 break; 9958 default: 9959 return -TARGET_EINVAL; 9960 } 9961 mask = arg2; 9962 target_to_host_old_sigset(&set, &mask); 9963 9964 ret = do_sigprocmask(how, &set, &oldset); 9965 if (!is_error(ret)) { 9966 host_to_target_old_sigset(&mask, &oldset); 9967 ret = mask; 9968 cpu_env->ir[IR_V0] = 0; /* force no error */ 9969 } 9970 #else 9971 sigset_t set, oldset, *set_ptr; 9972 int how; 9973 9974 if (arg2) { 9975 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 9976 if (!p) { 9977 return -TARGET_EFAULT; 9978 } 9979 target_to_host_old_sigset(&set, p); 9980 unlock_user(p, arg2, 0); 9981 set_ptr = &set; 9982 switch (arg1) { 9983 case TARGET_SIG_BLOCK: 9984 how = SIG_BLOCK; 9985 break; 9986 case TARGET_SIG_UNBLOCK: 9987 how = SIG_UNBLOCK; 9988 break; 9989 case TARGET_SIG_SETMASK: 9990 how = SIG_SETMASK; 9991 break; 9992 default: 9993 return -TARGET_EINVAL; 9994 } 9995 } else { 9996 how = 0; 9997 set_ptr = NULL; 9998 } 9999 ret = do_sigprocmask(how, set_ptr, &oldset); 10000 if (!is_error(ret) && arg3) { 10001 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10002 return -TARGET_EFAULT; 10003 host_to_target_old_sigset(p, &oldset); 10004 unlock_user(p, arg3, sizeof(target_sigset_t)); 10005 } 10006 #endif 10007 } 10008 return ret; 10009 #endif 10010 case TARGET_NR_rt_sigprocmask: 10011 { 10012 int how = arg1; 10013 sigset_t set, oldset, *set_ptr; 10014 10015 if (arg4 != sizeof(target_sigset_t)) { 10016 return -TARGET_EINVAL; 10017 } 10018 10019 if (arg2) { 10020 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 10021 if (!p) { 10022 return -TARGET_EFAULT; 10023 } 10024 target_to_host_sigset(&set, p); 10025 unlock_user(p, arg2, 0); 10026 set_ptr = &set; 10027 switch(how) { 10028 case TARGET_SIG_BLOCK: 10029 how = SIG_BLOCK; 10030 break; 10031 case TARGET_SIG_UNBLOCK: 10032 how = SIG_UNBLOCK; 10033 break; 10034 case TARGET_SIG_SETMASK: 10035 how = SIG_SETMASK; 10036 break; 10037 default: 10038 return -TARGET_EINVAL; 10039 } 10040 } else { 10041 how = 0; 10042 set_ptr = NULL; 10043 } 10044 ret = do_sigprocmask(how, set_ptr, &oldset); 10045 if (!is_error(ret) && arg3) { 10046 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10047 return -TARGET_EFAULT; 10048 host_to_target_sigset(p, &oldset); 10049 unlock_user(p, arg3, sizeof(target_sigset_t)); 10050 } 10051 } 10052 return ret; 10053 #ifdef TARGET_NR_sigpending 10054 case TARGET_NR_sigpending: 10055 { 10056 sigset_t set; 10057 ret = get_errno(sigpending(&set)); 10058 if (!is_error(ret)) { 10059 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10060 return -TARGET_EFAULT; 10061 host_to_target_old_sigset(p, &set); 10062 unlock_user(p, arg1, sizeof(target_sigset_t)); 10063 } 10064 } 10065 return ret; 10066 #endif 10067 case TARGET_NR_rt_sigpending: 10068 { 10069 sigset_t set; 10070 10071 /* Yes, this check is >, not != like most. We follow the kernel's 10072 * logic and it does it like this because it implements 10073 * NR_sigpending through the same code path, and in that case 10074 * the old_sigset_t is smaller in size. 10075 */ 10076 if (arg2 > sizeof(target_sigset_t)) { 10077 return -TARGET_EINVAL; 10078 } 10079 10080 ret = get_errno(sigpending(&set)); 10081 if (!is_error(ret)) { 10082 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10083 return -TARGET_EFAULT; 10084 host_to_target_sigset(p, &set); 10085 unlock_user(p, arg1, sizeof(target_sigset_t)); 10086 } 10087 } 10088 return ret; 10089 #ifdef TARGET_NR_sigsuspend 10090 case TARGET_NR_sigsuspend: 10091 { 10092 sigset_t *set; 10093 10094 #if defined(TARGET_ALPHA) 10095 TaskState *ts = get_task_state(cpu); 10096 /* target_to_host_old_sigset will bswap back */ 10097 abi_ulong mask = tswapal(arg1); 10098 set = &ts->sigsuspend_mask; 10099 target_to_host_old_sigset(set, &mask); 10100 #else 10101 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t)); 10102 if (ret != 0) { 10103 return ret; 10104 } 10105 #endif 10106 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10107 finish_sigsuspend_mask(ret); 10108 } 10109 return ret; 10110 #endif 10111 case TARGET_NR_rt_sigsuspend: 10112 { 10113 sigset_t *set; 10114 10115 ret = process_sigsuspend_mask(&set, arg1, arg2); 10116 if (ret != 0) { 10117 return ret; 10118 } 10119 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10120 finish_sigsuspend_mask(ret); 10121 } 10122 return ret; 10123 #ifdef TARGET_NR_rt_sigtimedwait 10124 case TARGET_NR_rt_sigtimedwait: 10125 { 10126 sigset_t set; 10127 struct timespec uts, *puts; 10128 siginfo_t uinfo; 10129 10130 if (arg4 != sizeof(target_sigset_t)) { 10131 return -TARGET_EINVAL; 10132 } 10133 10134 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 10135 return -TARGET_EFAULT; 10136 target_to_host_sigset(&set, p); 10137 unlock_user(p, arg1, 0); 10138 if (arg3) { 10139 puts = &uts; 10140 if (target_to_host_timespec(puts, arg3)) { 10141 return -TARGET_EFAULT; 10142 } 10143 } else { 10144 puts = NULL; 10145 } 10146 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10147 SIGSET_T_SIZE)); 10148 if (!is_error(ret)) { 10149 if (arg2) { 10150 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 10151 0); 10152 if (!p) { 10153 return -TARGET_EFAULT; 10154 } 10155 host_to_target_siginfo(p, &uinfo); 10156 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10157 } 10158 ret = host_to_target_signal(ret); 10159 } 10160 } 10161 return ret; 10162 #endif 10163 #ifdef TARGET_NR_rt_sigtimedwait_time64 10164 case TARGET_NR_rt_sigtimedwait_time64: 10165 { 10166 sigset_t set; 10167 struct timespec uts, *puts; 10168 siginfo_t uinfo; 10169 10170 if (arg4 != sizeof(target_sigset_t)) { 10171 return -TARGET_EINVAL; 10172 } 10173 10174 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1); 10175 if (!p) { 10176 return -TARGET_EFAULT; 10177 } 10178 target_to_host_sigset(&set, p); 10179 unlock_user(p, arg1, 0); 10180 if (arg3) { 10181 puts = &uts; 10182 if (target_to_host_timespec64(puts, arg3)) { 10183 return -TARGET_EFAULT; 10184 } 10185 } else { 10186 puts = NULL; 10187 } 10188 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10189 SIGSET_T_SIZE)); 10190 if (!is_error(ret)) { 10191 if (arg2) { 10192 p = lock_user(VERIFY_WRITE, arg2, 10193 sizeof(target_siginfo_t), 0); 10194 if (!p) { 10195 return -TARGET_EFAULT; 10196 } 10197 host_to_target_siginfo(p, &uinfo); 10198 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10199 } 10200 ret = host_to_target_signal(ret); 10201 } 10202 } 10203 return ret; 10204 #endif 10205 case TARGET_NR_rt_sigqueueinfo: 10206 { 10207 siginfo_t uinfo; 10208 10209 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 10210 if (!p) { 10211 return -TARGET_EFAULT; 10212 } 10213 target_to_host_siginfo(&uinfo, p); 10214 unlock_user(p, arg3, 0); 10215 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo)); 10216 } 10217 return ret; 10218 case TARGET_NR_rt_tgsigqueueinfo: 10219 { 10220 siginfo_t uinfo; 10221 10222 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 10223 if (!p) { 10224 return -TARGET_EFAULT; 10225 } 10226 target_to_host_siginfo(&uinfo, p); 10227 unlock_user(p, arg4, 0); 10228 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo)); 10229 } 10230 return ret; 10231 #ifdef TARGET_NR_sigreturn 10232 case TARGET_NR_sigreturn: 10233 if (block_signals()) { 10234 return -QEMU_ERESTARTSYS; 10235 } 10236 return do_sigreturn(cpu_env); 10237 #endif 10238 case TARGET_NR_rt_sigreturn: 10239 if (block_signals()) { 10240 return -QEMU_ERESTARTSYS; 10241 } 10242 return do_rt_sigreturn(cpu_env); 10243 case TARGET_NR_sethostname: 10244 if (!(p = lock_user_string(arg1))) 10245 return -TARGET_EFAULT; 10246 ret = get_errno(sethostname(p, arg2)); 10247 unlock_user(p, arg1, 0); 10248 return ret; 10249 #ifdef TARGET_NR_setrlimit 10250 case TARGET_NR_setrlimit: 10251 { 10252 int resource = target_to_host_resource(arg1); 10253 struct target_rlimit *target_rlim; 10254 struct rlimit rlim; 10255 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 10256 return -TARGET_EFAULT; 10257 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 10258 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 10259 unlock_user_struct(target_rlim, arg2, 0); 10260 /* 10261 * If we just passed through resource limit settings for memory then 10262 * they would also apply to QEMU's own allocations, and QEMU will 10263 * crash or hang or die if its allocations fail. Ideally we would 10264 * track the guest allocations in QEMU and apply the limits ourselves. 10265 * For now, just tell the guest the call succeeded but don't actually 10266 * limit anything. 10267 */ 10268 if (resource != RLIMIT_AS && 10269 resource != RLIMIT_DATA && 10270 resource != RLIMIT_STACK) { 10271 return get_errno(setrlimit(resource, &rlim)); 10272 } else { 10273 return 0; 10274 } 10275 } 10276 #endif 10277 #ifdef TARGET_NR_getrlimit 10278 case TARGET_NR_getrlimit: 10279 { 10280 int resource = target_to_host_resource(arg1); 10281 struct target_rlimit *target_rlim; 10282 struct rlimit rlim; 10283 10284 ret = get_errno(getrlimit(resource, &rlim)); 10285 if (!is_error(ret)) { 10286 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 10287 return -TARGET_EFAULT; 10288 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 10289 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 10290 unlock_user_struct(target_rlim, arg2, 1); 10291 } 10292 } 10293 return ret; 10294 #endif 10295 case TARGET_NR_getrusage: 10296 { 10297 struct rusage rusage; 10298 ret = get_errno(getrusage(arg1, &rusage)); 10299 if (!is_error(ret)) { 10300 ret = host_to_target_rusage(arg2, &rusage); 10301 } 10302 } 10303 return ret; 10304 #if defined(TARGET_NR_gettimeofday) 10305 case TARGET_NR_gettimeofday: 10306 { 10307 struct timeval tv; 10308 struct timezone tz; 10309 10310 ret = get_errno(gettimeofday(&tv, &tz)); 10311 if (!is_error(ret)) { 10312 if (arg1 && copy_to_user_timeval(arg1, &tv)) { 10313 return -TARGET_EFAULT; 10314 } 10315 if (arg2 && copy_to_user_timezone(arg2, &tz)) { 10316 return -TARGET_EFAULT; 10317 } 10318 } 10319 } 10320 return ret; 10321 #endif 10322 #if defined(TARGET_NR_settimeofday) 10323 case TARGET_NR_settimeofday: 10324 { 10325 struct timeval tv, *ptv = NULL; 10326 struct timezone tz, *ptz = NULL; 10327 10328 if (arg1) { 10329 if (copy_from_user_timeval(&tv, arg1)) { 10330 return -TARGET_EFAULT; 10331 } 10332 ptv = &tv; 10333 } 10334 10335 if (arg2) { 10336 if (copy_from_user_timezone(&tz, arg2)) { 10337 return -TARGET_EFAULT; 10338 } 10339 ptz = &tz; 10340 } 10341 10342 return get_errno(settimeofday(ptv, ptz)); 10343 } 10344 #endif 10345 #if defined(TARGET_NR_select) 10346 case TARGET_NR_select: 10347 #if defined(TARGET_WANT_NI_OLD_SELECT) 10348 /* some architectures used to have old_select here 10349 * but now ENOSYS it. 10350 */ 10351 ret = -TARGET_ENOSYS; 10352 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 10353 ret = do_old_select(arg1); 10354 #else 10355 ret = do_select(arg1, arg2, arg3, arg4, arg5); 10356 #endif 10357 return ret; 10358 #endif 10359 #ifdef TARGET_NR_pselect6 10360 case TARGET_NR_pselect6: 10361 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false); 10362 #endif 10363 #ifdef TARGET_NR_pselect6_time64 10364 case TARGET_NR_pselect6_time64: 10365 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true); 10366 #endif 10367 #ifdef TARGET_NR_symlink 10368 case TARGET_NR_symlink: 10369 { 10370 void *p2; 10371 p = lock_user_string(arg1); 10372 p2 = lock_user_string(arg2); 10373 if (!p || !p2) 10374 ret = -TARGET_EFAULT; 10375 else 10376 ret = get_errno(symlink(p, p2)); 10377 unlock_user(p2, arg2, 0); 10378 unlock_user(p, arg1, 0); 10379 } 10380 return ret; 10381 #endif 10382 #if defined(TARGET_NR_symlinkat) 10383 case TARGET_NR_symlinkat: 10384 { 10385 void *p2; 10386 p = lock_user_string(arg1); 10387 p2 = lock_user_string(arg3); 10388 if (!p || !p2) 10389 ret = -TARGET_EFAULT; 10390 else 10391 ret = get_errno(symlinkat(p, arg2, p2)); 10392 unlock_user(p2, arg3, 0); 10393 unlock_user(p, arg1, 0); 10394 } 10395 return ret; 10396 #endif 10397 #ifdef TARGET_NR_readlink 10398 case TARGET_NR_readlink: 10399 { 10400 void *p2; 10401 p = lock_user_string(arg1); 10402 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10403 ret = get_errno(do_guest_readlink(p, p2, arg3)); 10404 unlock_user(p2, arg2, ret); 10405 unlock_user(p, arg1, 0); 10406 } 10407 return ret; 10408 #endif 10409 #if defined(TARGET_NR_readlinkat) 10410 case TARGET_NR_readlinkat: 10411 { 10412 void *p2; 10413 p = lock_user_string(arg2); 10414 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 10415 if (!p || !p2) { 10416 ret = -TARGET_EFAULT; 10417 } else if (!arg4) { 10418 /* Short circuit this for the magic exe check. */ 10419 ret = -TARGET_EINVAL; 10420 } else if (is_proc_myself((const char *)p, "exe")) { 10421 /* 10422 * Don't worry about sign mismatch as earlier mapping 10423 * logic would have thrown a bad address error. 10424 */ 10425 ret = MIN(strlen(exec_path), arg4); 10426 /* We cannot NUL terminate the string. */ 10427 memcpy(p2, exec_path, ret); 10428 } else { 10429 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 10430 } 10431 unlock_user(p2, arg3, ret); 10432 unlock_user(p, arg2, 0); 10433 } 10434 return ret; 10435 #endif 10436 #ifdef TARGET_NR_swapon 10437 case TARGET_NR_swapon: 10438 if (!(p = lock_user_string(arg1))) 10439 return -TARGET_EFAULT; 10440 ret = get_errno(swapon(p, arg2)); 10441 unlock_user(p, arg1, 0); 10442 return ret; 10443 #endif 10444 case TARGET_NR_reboot: 10445 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 10446 /* arg4 must be ignored in all other cases */ 10447 p = lock_user_string(arg4); 10448 if (!p) { 10449 return -TARGET_EFAULT; 10450 } 10451 ret = get_errno(reboot(arg1, arg2, arg3, p)); 10452 unlock_user(p, arg4, 0); 10453 } else { 10454 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 10455 } 10456 return ret; 10457 #ifdef TARGET_NR_mmap 10458 case TARGET_NR_mmap: 10459 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 10460 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 10461 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 10462 || defined(TARGET_S390X) 10463 { 10464 abi_ulong *v; 10465 abi_ulong v1, v2, v3, v4, v5, v6; 10466 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 10467 return -TARGET_EFAULT; 10468 v1 = tswapal(v[0]); 10469 v2 = tswapal(v[1]); 10470 v3 = tswapal(v[2]); 10471 v4 = tswapal(v[3]); 10472 v5 = tswapal(v[4]); 10473 v6 = tswapal(v[5]); 10474 unlock_user(v, arg1, 0); 10475 return do_mmap(v1, v2, v3, v4, v5, v6); 10476 } 10477 #else 10478 /* mmap pointers are always untagged */ 10479 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6); 10480 #endif 10481 #endif 10482 #ifdef TARGET_NR_mmap2 10483 case TARGET_NR_mmap2: 10484 #ifndef MMAP_SHIFT 10485 #define MMAP_SHIFT 12 10486 #endif 10487 return do_mmap(arg1, arg2, arg3, arg4, arg5, 10488 (off_t)(abi_ulong)arg6 << MMAP_SHIFT); 10489 #endif 10490 case TARGET_NR_munmap: 10491 arg1 = cpu_untagged_addr(cpu, arg1); 10492 return get_errno(target_munmap(arg1, arg2)); 10493 case TARGET_NR_mprotect: 10494 arg1 = cpu_untagged_addr(cpu, arg1); 10495 { 10496 TaskState *ts = get_task_state(cpu); 10497 /* Special hack to detect libc making the stack executable. */ 10498 if ((arg3 & PROT_GROWSDOWN) 10499 && arg1 >= ts->info->stack_limit 10500 && arg1 <= ts->info->start_stack) { 10501 arg3 &= ~PROT_GROWSDOWN; 10502 arg2 = arg2 + arg1 - ts->info->stack_limit; 10503 arg1 = ts->info->stack_limit; 10504 } 10505 } 10506 return get_errno(target_mprotect(arg1, arg2, arg3)); 10507 #ifdef TARGET_NR_mremap 10508 case TARGET_NR_mremap: 10509 arg1 = cpu_untagged_addr(cpu, arg1); 10510 /* mremap new_addr (arg5) is always untagged */ 10511 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 10512 #endif 10513 /* ??? msync/mlock/munlock are broken for softmmu. */ 10514 #ifdef TARGET_NR_msync 10515 case TARGET_NR_msync: 10516 return get_errno(msync(g2h(cpu, arg1), arg2, 10517 target_to_host_msync_arg(arg3))); 10518 #endif 10519 #ifdef TARGET_NR_mlock 10520 case TARGET_NR_mlock: 10521 return get_errno(mlock(g2h(cpu, arg1), arg2)); 10522 #endif 10523 #ifdef TARGET_NR_munlock 10524 case TARGET_NR_munlock: 10525 return get_errno(munlock(g2h(cpu, arg1), arg2)); 10526 #endif 10527 #ifdef TARGET_NR_mlockall 10528 case TARGET_NR_mlockall: 10529 return get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 10530 #endif 10531 #ifdef TARGET_NR_munlockall 10532 case TARGET_NR_munlockall: 10533 return get_errno(munlockall()); 10534 #endif 10535 #ifdef TARGET_NR_truncate 10536 case TARGET_NR_truncate: 10537 if (!(p = lock_user_string(arg1))) 10538 return -TARGET_EFAULT; 10539 ret = get_errno(truncate(p, arg2)); 10540 unlock_user(p, arg1, 0); 10541 return ret; 10542 #endif 10543 #ifdef TARGET_NR_ftruncate 10544 case TARGET_NR_ftruncate: 10545 return get_errno(ftruncate(arg1, arg2)); 10546 #endif 10547 case TARGET_NR_fchmod: 10548 return get_errno(fchmod(arg1, arg2)); 10549 #if defined(TARGET_NR_fchmodat) 10550 case TARGET_NR_fchmodat: 10551 if (!(p = lock_user_string(arg2))) 10552 return -TARGET_EFAULT; 10553 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 10554 unlock_user(p, arg2, 0); 10555 return ret; 10556 #endif 10557 case TARGET_NR_getpriority: 10558 /* Note that negative values are valid for getpriority, so we must 10559 differentiate based on errno settings. */ 10560 errno = 0; 10561 ret = getpriority(arg1, arg2); 10562 if (ret == -1 && errno != 0) { 10563 return -host_to_target_errno(errno); 10564 } 10565 #ifdef TARGET_ALPHA 10566 /* Return value is the unbiased priority. Signal no error. */ 10567 cpu_env->ir[IR_V0] = 0; 10568 #else 10569 /* Return value is a biased priority to avoid negative numbers. */ 10570 ret = 20 - ret; 10571 #endif 10572 return ret; 10573 case TARGET_NR_setpriority: 10574 return get_errno(setpriority(arg1, arg2, arg3)); 10575 #ifdef TARGET_NR_statfs 10576 case TARGET_NR_statfs: 10577 if (!(p = lock_user_string(arg1))) { 10578 return -TARGET_EFAULT; 10579 } 10580 ret = get_errno(statfs(path(p), &stfs)); 10581 unlock_user(p, arg1, 0); 10582 convert_statfs: 10583 if (!is_error(ret)) { 10584 struct target_statfs *target_stfs; 10585 10586 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 10587 return -TARGET_EFAULT; 10588 __put_user(stfs.f_type, &target_stfs->f_type); 10589 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10590 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10591 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10592 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10593 __put_user(stfs.f_files, &target_stfs->f_files); 10594 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10595 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10596 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10597 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10598 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10599 #ifdef _STATFS_F_FLAGS 10600 __put_user(stfs.f_flags, &target_stfs->f_flags); 10601 #else 10602 __put_user(0, &target_stfs->f_flags); 10603 #endif 10604 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10605 unlock_user_struct(target_stfs, arg2, 1); 10606 } 10607 return ret; 10608 #endif 10609 #ifdef TARGET_NR_fstatfs 10610 case TARGET_NR_fstatfs: 10611 ret = get_errno(fstatfs(arg1, &stfs)); 10612 goto convert_statfs; 10613 #endif 10614 #ifdef TARGET_NR_statfs64 10615 case TARGET_NR_statfs64: 10616 if (!(p = lock_user_string(arg1))) { 10617 return -TARGET_EFAULT; 10618 } 10619 ret = get_errno(statfs(path(p), &stfs)); 10620 unlock_user(p, arg1, 0); 10621 convert_statfs64: 10622 if (!is_error(ret)) { 10623 struct target_statfs64 *target_stfs; 10624 10625 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 10626 return -TARGET_EFAULT; 10627 __put_user(stfs.f_type, &target_stfs->f_type); 10628 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10629 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10630 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10631 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10632 __put_user(stfs.f_files, &target_stfs->f_files); 10633 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10634 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10635 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10636 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10637 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10638 #ifdef _STATFS_F_FLAGS 10639 __put_user(stfs.f_flags, &target_stfs->f_flags); 10640 #else 10641 __put_user(0, &target_stfs->f_flags); 10642 #endif 10643 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10644 unlock_user_struct(target_stfs, arg3, 1); 10645 } 10646 return ret; 10647 case TARGET_NR_fstatfs64: 10648 ret = get_errno(fstatfs(arg1, &stfs)); 10649 goto convert_statfs64; 10650 #endif 10651 #ifdef TARGET_NR_socketcall 10652 case TARGET_NR_socketcall: 10653 return do_socketcall(arg1, arg2); 10654 #endif 10655 #ifdef TARGET_NR_accept 10656 case TARGET_NR_accept: 10657 return do_accept4(arg1, arg2, arg3, 0); 10658 #endif 10659 #ifdef TARGET_NR_accept4 10660 case TARGET_NR_accept4: 10661 return do_accept4(arg1, arg2, arg3, arg4); 10662 #endif 10663 #ifdef TARGET_NR_bind 10664 case TARGET_NR_bind: 10665 return do_bind(arg1, arg2, arg3); 10666 #endif 10667 #ifdef TARGET_NR_connect 10668 case TARGET_NR_connect: 10669 return do_connect(arg1, arg2, arg3); 10670 #endif 10671 #ifdef TARGET_NR_getpeername 10672 case TARGET_NR_getpeername: 10673 return do_getpeername(arg1, arg2, arg3); 10674 #endif 10675 #ifdef TARGET_NR_getsockname 10676 case TARGET_NR_getsockname: 10677 return do_getsockname(arg1, arg2, arg3); 10678 #endif 10679 #ifdef TARGET_NR_getsockopt 10680 case TARGET_NR_getsockopt: 10681 return do_getsockopt(arg1, arg2, arg3, arg4, arg5); 10682 #endif 10683 #ifdef TARGET_NR_listen 10684 case TARGET_NR_listen: 10685 return get_errno(listen(arg1, arg2)); 10686 #endif 10687 #ifdef TARGET_NR_recv 10688 case TARGET_NR_recv: 10689 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 10690 #endif 10691 #ifdef TARGET_NR_recvfrom 10692 case TARGET_NR_recvfrom: 10693 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 10694 #endif 10695 #ifdef TARGET_NR_recvmsg 10696 case TARGET_NR_recvmsg: 10697 return do_sendrecvmsg(arg1, arg2, arg3, 0); 10698 #endif 10699 #ifdef TARGET_NR_send 10700 case TARGET_NR_send: 10701 return do_sendto(arg1, arg2, arg3, arg4, 0, 0); 10702 #endif 10703 #ifdef TARGET_NR_sendmsg 10704 case TARGET_NR_sendmsg: 10705 return do_sendrecvmsg(arg1, arg2, arg3, 1); 10706 #endif 10707 #ifdef TARGET_NR_sendmmsg 10708 case TARGET_NR_sendmmsg: 10709 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 10710 #endif 10711 #ifdef TARGET_NR_recvmmsg 10712 case TARGET_NR_recvmmsg: 10713 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 10714 #endif 10715 #ifdef TARGET_NR_sendto 10716 case TARGET_NR_sendto: 10717 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 10718 #endif 10719 #ifdef TARGET_NR_shutdown 10720 case TARGET_NR_shutdown: 10721 return get_errno(shutdown(arg1, arg2)); 10722 #endif 10723 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 10724 case TARGET_NR_getrandom: 10725 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 10726 if (!p) { 10727 return -TARGET_EFAULT; 10728 } 10729 ret = get_errno(getrandom(p, arg2, arg3)); 10730 unlock_user(p, arg1, ret); 10731 return ret; 10732 #endif 10733 #ifdef TARGET_NR_socket 10734 case TARGET_NR_socket: 10735 return do_socket(arg1, arg2, arg3); 10736 #endif 10737 #ifdef TARGET_NR_socketpair 10738 case TARGET_NR_socketpair: 10739 return do_socketpair(arg1, arg2, arg3, arg4); 10740 #endif 10741 #ifdef TARGET_NR_setsockopt 10742 case TARGET_NR_setsockopt: 10743 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 10744 #endif 10745 #if defined(TARGET_NR_syslog) 10746 case TARGET_NR_syslog: 10747 { 10748 int len = arg2; 10749 10750 switch (arg1) { 10751 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 10752 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 10753 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 10754 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 10755 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 10756 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 10757 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 10758 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 10759 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 10760 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 10761 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 10762 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 10763 { 10764 if (len < 0) { 10765 return -TARGET_EINVAL; 10766 } 10767 if (len == 0) { 10768 return 0; 10769 } 10770 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10771 if (!p) { 10772 return -TARGET_EFAULT; 10773 } 10774 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 10775 unlock_user(p, arg2, arg3); 10776 } 10777 return ret; 10778 default: 10779 return -TARGET_EINVAL; 10780 } 10781 } 10782 break; 10783 #endif 10784 case TARGET_NR_setitimer: 10785 { 10786 struct itimerval value, ovalue, *pvalue; 10787 10788 if (arg2) { 10789 pvalue = &value; 10790 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 10791 || copy_from_user_timeval(&pvalue->it_value, 10792 arg2 + sizeof(struct target_timeval))) 10793 return -TARGET_EFAULT; 10794 } else { 10795 pvalue = NULL; 10796 } 10797 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 10798 if (!is_error(ret) && arg3) { 10799 if (copy_to_user_timeval(arg3, 10800 &ovalue.it_interval) 10801 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 10802 &ovalue.it_value)) 10803 return -TARGET_EFAULT; 10804 } 10805 } 10806 return ret; 10807 case TARGET_NR_getitimer: 10808 { 10809 struct itimerval value; 10810 10811 ret = get_errno(getitimer(arg1, &value)); 10812 if (!is_error(ret) && arg2) { 10813 if (copy_to_user_timeval(arg2, 10814 &value.it_interval) 10815 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 10816 &value.it_value)) 10817 return -TARGET_EFAULT; 10818 } 10819 } 10820 return ret; 10821 #ifdef TARGET_NR_stat 10822 case TARGET_NR_stat: 10823 if (!(p = lock_user_string(arg1))) { 10824 return -TARGET_EFAULT; 10825 } 10826 ret = get_errno(stat(path(p), &st)); 10827 unlock_user(p, arg1, 0); 10828 goto do_stat; 10829 #endif 10830 #ifdef TARGET_NR_lstat 10831 case TARGET_NR_lstat: 10832 if (!(p = lock_user_string(arg1))) { 10833 return -TARGET_EFAULT; 10834 } 10835 ret = get_errno(lstat(path(p), &st)); 10836 unlock_user(p, arg1, 0); 10837 goto do_stat; 10838 #endif 10839 #ifdef TARGET_NR_fstat 10840 case TARGET_NR_fstat: 10841 { 10842 ret = get_errno(fstat(arg1, &st)); 10843 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 10844 do_stat: 10845 #endif 10846 if (!is_error(ret)) { 10847 struct target_stat *target_st; 10848 10849 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 10850 return -TARGET_EFAULT; 10851 memset(target_st, 0, sizeof(*target_st)); 10852 __put_user(st.st_dev, &target_st->st_dev); 10853 __put_user(st.st_ino, &target_st->st_ino); 10854 __put_user(st.st_mode, &target_st->st_mode); 10855 __put_user(st.st_uid, &target_st->st_uid); 10856 __put_user(st.st_gid, &target_st->st_gid); 10857 __put_user(st.st_nlink, &target_st->st_nlink); 10858 __put_user(st.st_rdev, &target_st->st_rdev); 10859 __put_user(st.st_size, &target_st->st_size); 10860 __put_user(st.st_blksize, &target_st->st_blksize); 10861 __put_user(st.st_blocks, &target_st->st_blocks); 10862 __put_user(st.st_atime, &target_st->target_st_atime); 10863 __put_user(st.st_mtime, &target_st->target_st_mtime); 10864 __put_user(st.st_ctime, &target_st->target_st_ctime); 10865 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC) 10866 __put_user(st.st_atim.tv_nsec, 10867 &target_st->target_st_atime_nsec); 10868 __put_user(st.st_mtim.tv_nsec, 10869 &target_st->target_st_mtime_nsec); 10870 __put_user(st.st_ctim.tv_nsec, 10871 &target_st->target_st_ctime_nsec); 10872 #endif 10873 unlock_user_struct(target_st, arg2, 1); 10874 } 10875 } 10876 return ret; 10877 #endif 10878 case TARGET_NR_vhangup: 10879 return get_errno(vhangup()); 10880 #ifdef TARGET_NR_syscall 10881 case TARGET_NR_syscall: 10882 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 10883 arg6, arg7, arg8, 0); 10884 #endif 10885 #if defined(TARGET_NR_wait4) 10886 case TARGET_NR_wait4: 10887 { 10888 int status; 10889 abi_long status_ptr = arg2; 10890 struct rusage rusage, *rusage_ptr; 10891 abi_ulong target_rusage = arg4; 10892 abi_long rusage_err; 10893 if (target_rusage) 10894 rusage_ptr = &rusage; 10895 else 10896 rusage_ptr = NULL; 10897 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 10898 if (!is_error(ret)) { 10899 if (status_ptr && ret) { 10900 status = host_to_target_waitstatus(status); 10901 if (put_user_s32(status, status_ptr)) 10902 return -TARGET_EFAULT; 10903 } 10904 if (target_rusage) { 10905 rusage_err = host_to_target_rusage(target_rusage, &rusage); 10906 if (rusage_err) { 10907 ret = rusage_err; 10908 } 10909 } 10910 } 10911 } 10912 return ret; 10913 #endif 10914 #ifdef TARGET_NR_swapoff 10915 case TARGET_NR_swapoff: 10916 if (!(p = lock_user_string(arg1))) 10917 return -TARGET_EFAULT; 10918 ret = get_errno(swapoff(p)); 10919 unlock_user(p, arg1, 0); 10920 return ret; 10921 #endif 10922 case TARGET_NR_sysinfo: 10923 { 10924 struct target_sysinfo *target_value; 10925 struct sysinfo value; 10926 ret = get_errno(sysinfo(&value)); 10927 if (!is_error(ret) && arg1) 10928 { 10929 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 10930 return -TARGET_EFAULT; 10931 __put_user(value.uptime, &target_value->uptime); 10932 __put_user(value.loads[0], &target_value->loads[0]); 10933 __put_user(value.loads[1], &target_value->loads[1]); 10934 __put_user(value.loads[2], &target_value->loads[2]); 10935 __put_user(value.totalram, &target_value->totalram); 10936 __put_user(value.freeram, &target_value->freeram); 10937 __put_user(value.sharedram, &target_value->sharedram); 10938 __put_user(value.bufferram, &target_value->bufferram); 10939 __put_user(value.totalswap, &target_value->totalswap); 10940 __put_user(value.freeswap, &target_value->freeswap); 10941 __put_user(value.procs, &target_value->procs); 10942 __put_user(value.totalhigh, &target_value->totalhigh); 10943 __put_user(value.freehigh, &target_value->freehigh); 10944 __put_user(value.mem_unit, &target_value->mem_unit); 10945 unlock_user_struct(target_value, arg1, 1); 10946 } 10947 } 10948 return ret; 10949 #ifdef TARGET_NR_ipc 10950 case TARGET_NR_ipc: 10951 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 10952 #endif 10953 #ifdef TARGET_NR_semget 10954 case TARGET_NR_semget: 10955 return get_errno(semget(arg1, arg2, arg3)); 10956 #endif 10957 #ifdef TARGET_NR_semop 10958 case TARGET_NR_semop: 10959 return do_semtimedop(arg1, arg2, arg3, 0, false); 10960 #endif 10961 #ifdef TARGET_NR_semtimedop 10962 case TARGET_NR_semtimedop: 10963 return do_semtimedop(arg1, arg2, arg3, arg4, false); 10964 #endif 10965 #ifdef TARGET_NR_semtimedop_time64 10966 case TARGET_NR_semtimedop_time64: 10967 return do_semtimedop(arg1, arg2, arg3, arg4, true); 10968 #endif 10969 #ifdef TARGET_NR_semctl 10970 case TARGET_NR_semctl: 10971 return do_semctl(arg1, arg2, arg3, arg4); 10972 #endif 10973 #ifdef TARGET_NR_msgctl 10974 case TARGET_NR_msgctl: 10975 return do_msgctl(arg1, arg2, arg3); 10976 #endif 10977 #ifdef TARGET_NR_msgget 10978 case TARGET_NR_msgget: 10979 return get_errno(msgget(arg1, arg2)); 10980 #endif 10981 #ifdef TARGET_NR_msgrcv 10982 case TARGET_NR_msgrcv: 10983 return do_msgrcv(arg1, arg2, arg3, arg4, arg5); 10984 #endif 10985 #ifdef TARGET_NR_msgsnd 10986 case TARGET_NR_msgsnd: 10987 return do_msgsnd(arg1, arg2, arg3, arg4); 10988 #endif 10989 #ifdef TARGET_NR_shmget 10990 case TARGET_NR_shmget: 10991 return get_errno(shmget(arg1, arg2, arg3)); 10992 #endif 10993 #ifdef TARGET_NR_shmctl 10994 case TARGET_NR_shmctl: 10995 return do_shmctl(arg1, arg2, arg3); 10996 #endif 10997 #ifdef TARGET_NR_shmat 10998 case TARGET_NR_shmat: 10999 return target_shmat(cpu_env, arg1, arg2, arg3); 11000 #endif 11001 #ifdef TARGET_NR_shmdt 11002 case TARGET_NR_shmdt: 11003 return target_shmdt(arg1); 11004 #endif 11005 case TARGET_NR_fsync: 11006 return get_errno(fsync(arg1)); 11007 case TARGET_NR_clone: 11008 /* Linux manages to have three different orderings for its 11009 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 11010 * match the kernel's CONFIG_CLONE_* settings. 11011 * Microblaze is further special in that it uses a sixth 11012 * implicit argument to clone for the TLS pointer. 11013 */ 11014 #if defined(TARGET_MICROBLAZE) 11015 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 11016 #elif defined(TARGET_CLONE_BACKWARDS) 11017 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 11018 #elif defined(TARGET_CLONE_BACKWARDS2) 11019 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 11020 #else 11021 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 11022 #endif 11023 return ret; 11024 #ifdef __NR_exit_group 11025 /* new thread calls */ 11026 case TARGET_NR_exit_group: 11027 preexit_cleanup(cpu_env, arg1); 11028 return get_errno(exit_group(arg1)); 11029 #endif 11030 case TARGET_NR_setdomainname: 11031 if (!(p = lock_user_string(arg1))) 11032 return -TARGET_EFAULT; 11033 ret = get_errno(setdomainname(p, arg2)); 11034 unlock_user(p, arg1, 0); 11035 return ret; 11036 case TARGET_NR_uname: 11037 /* no need to transcode because we use the linux syscall */ 11038 { 11039 struct new_utsname * buf; 11040 11041 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 11042 return -TARGET_EFAULT; 11043 ret = get_errno(sys_uname(buf)); 11044 if (!is_error(ret)) { 11045 /* Overwrite the native machine name with whatever is being 11046 emulated. */ 11047 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env), 11048 sizeof(buf->machine)); 11049 /* Allow the user to override the reported release. */ 11050 if (qemu_uname_release && *qemu_uname_release) { 11051 g_strlcpy(buf->release, qemu_uname_release, 11052 sizeof(buf->release)); 11053 } 11054 } 11055 unlock_user_struct(buf, arg1, 1); 11056 } 11057 return ret; 11058 #ifdef TARGET_I386 11059 case TARGET_NR_modify_ldt: 11060 return do_modify_ldt(cpu_env, arg1, arg2, arg3); 11061 #if !defined(TARGET_X86_64) 11062 case TARGET_NR_vm86: 11063 return do_vm86(cpu_env, arg1, arg2); 11064 #endif 11065 #endif 11066 #if defined(TARGET_NR_adjtimex) 11067 case TARGET_NR_adjtimex: 11068 { 11069 struct timex host_buf; 11070 11071 if (target_to_host_timex(&host_buf, arg1) != 0) { 11072 return -TARGET_EFAULT; 11073 } 11074 ret = get_errno(adjtimex(&host_buf)); 11075 if (!is_error(ret)) { 11076 if (host_to_target_timex(arg1, &host_buf) != 0) { 11077 return -TARGET_EFAULT; 11078 } 11079 } 11080 } 11081 return ret; 11082 #endif 11083 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 11084 case TARGET_NR_clock_adjtime: 11085 { 11086 struct timex htx; 11087 11088 if (target_to_host_timex(&htx, arg2) != 0) { 11089 return -TARGET_EFAULT; 11090 } 11091 ret = get_errno(clock_adjtime(arg1, &htx)); 11092 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) { 11093 return -TARGET_EFAULT; 11094 } 11095 } 11096 return ret; 11097 #endif 11098 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 11099 case TARGET_NR_clock_adjtime64: 11100 { 11101 struct timex htx; 11102 11103 if (target_to_host_timex64(&htx, arg2) != 0) { 11104 return -TARGET_EFAULT; 11105 } 11106 ret = get_errno(clock_adjtime(arg1, &htx)); 11107 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) { 11108 return -TARGET_EFAULT; 11109 } 11110 } 11111 return ret; 11112 #endif 11113 case TARGET_NR_getpgid: 11114 return get_errno(getpgid(arg1)); 11115 case TARGET_NR_fchdir: 11116 return get_errno(fchdir(arg1)); 11117 case TARGET_NR_personality: 11118 return get_errno(personality(arg1)); 11119 #ifdef TARGET_NR__llseek /* Not on alpha */ 11120 case TARGET_NR__llseek: 11121 { 11122 int64_t res; 11123 #if !defined(__NR_llseek) 11124 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 11125 if (res == -1) { 11126 ret = get_errno(res); 11127 } else { 11128 ret = 0; 11129 } 11130 #else 11131 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 11132 #endif 11133 if ((ret == 0) && put_user_s64(res, arg4)) { 11134 return -TARGET_EFAULT; 11135 } 11136 } 11137 return ret; 11138 #endif 11139 #ifdef TARGET_NR_getdents 11140 case TARGET_NR_getdents: 11141 return do_getdents(arg1, arg2, arg3); 11142 #endif /* TARGET_NR_getdents */ 11143 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 11144 case TARGET_NR_getdents64: 11145 return do_getdents64(arg1, arg2, arg3); 11146 #endif /* TARGET_NR_getdents64 */ 11147 #if defined(TARGET_NR__newselect) 11148 case TARGET_NR__newselect: 11149 return do_select(arg1, arg2, arg3, arg4, arg5); 11150 #endif 11151 #ifdef TARGET_NR_poll 11152 case TARGET_NR_poll: 11153 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false); 11154 #endif 11155 #ifdef TARGET_NR_ppoll 11156 case TARGET_NR_ppoll: 11157 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false); 11158 #endif 11159 #ifdef TARGET_NR_ppoll_time64 11160 case TARGET_NR_ppoll_time64: 11161 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true); 11162 #endif 11163 case TARGET_NR_flock: 11164 /* NOTE: the flock constant seems to be the same for every 11165 Linux platform */ 11166 return get_errno(safe_flock(arg1, arg2)); 11167 case TARGET_NR_readv: 11168 { 11169 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11170 if (vec != NULL) { 11171 ret = get_errno(safe_readv(arg1, vec, arg3)); 11172 unlock_iovec(vec, arg2, arg3, 1); 11173 } else { 11174 ret = -host_to_target_errno(errno); 11175 } 11176 } 11177 return ret; 11178 case TARGET_NR_writev: 11179 { 11180 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11181 if (vec != NULL) { 11182 ret = get_errno(safe_writev(arg1, vec, arg3)); 11183 unlock_iovec(vec, arg2, arg3, 0); 11184 } else { 11185 ret = -host_to_target_errno(errno); 11186 } 11187 } 11188 return ret; 11189 #if defined(TARGET_NR_preadv) 11190 case TARGET_NR_preadv: 11191 { 11192 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11193 if (vec != NULL) { 11194 unsigned long low, high; 11195 11196 target_to_host_low_high(arg4, arg5, &low, &high); 11197 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high)); 11198 unlock_iovec(vec, arg2, arg3, 1); 11199 } else { 11200 ret = -host_to_target_errno(errno); 11201 } 11202 } 11203 return ret; 11204 #endif 11205 #if defined(TARGET_NR_pwritev) 11206 case TARGET_NR_pwritev: 11207 { 11208 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11209 if (vec != NULL) { 11210 unsigned long low, high; 11211 11212 target_to_host_low_high(arg4, arg5, &low, &high); 11213 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high)); 11214 unlock_iovec(vec, arg2, arg3, 0); 11215 } else { 11216 ret = -host_to_target_errno(errno); 11217 } 11218 } 11219 return ret; 11220 #endif 11221 case TARGET_NR_getsid: 11222 return get_errno(getsid(arg1)); 11223 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 11224 case TARGET_NR_fdatasync: 11225 return get_errno(fdatasync(arg1)); 11226 #endif 11227 case TARGET_NR_sched_getaffinity: 11228 { 11229 unsigned int mask_size; 11230 unsigned long *mask; 11231 11232 /* 11233 * sched_getaffinity needs multiples of ulong, so need to take 11234 * care of mismatches between target ulong and host ulong sizes. 11235 */ 11236 if (arg2 & (sizeof(abi_ulong) - 1)) { 11237 return -TARGET_EINVAL; 11238 } 11239 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11240 11241 mask = alloca(mask_size); 11242 memset(mask, 0, mask_size); 11243 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 11244 11245 if (!is_error(ret)) { 11246 if (ret > arg2) { 11247 /* More data returned than the caller's buffer will fit. 11248 * This only happens if sizeof(abi_long) < sizeof(long) 11249 * and the caller passed us a buffer holding an odd number 11250 * of abi_longs. If the host kernel is actually using the 11251 * extra 4 bytes then fail EINVAL; otherwise we can just 11252 * ignore them and only copy the interesting part. 11253 */ 11254 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 11255 if (numcpus > arg2 * 8) { 11256 return -TARGET_EINVAL; 11257 } 11258 ret = arg2; 11259 } 11260 11261 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 11262 return -TARGET_EFAULT; 11263 } 11264 } 11265 } 11266 return ret; 11267 case TARGET_NR_sched_setaffinity: 11268 { 11269 unsigned int mask_size; 11270 unsigned long *mask; 11271 11272 /* 11273 * sched_setaffinity needs multiples of ulong, so need to take 11274 * care of mismatches between target ulong and host ulong sizes. 11275 */ 11276 if (arg2 & (sizeof(abi_ulong) - 1)) { 11277 return -TARGET_EINVAL; 11278 } 11279 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11280 mask = alloca(mask_size); 11281 11282 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 11283 if (ret) { 11284 return ret; 11285 } 11286 11287 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 11288 } 11289 case TARGET_NR_getcpu: 11290 { 11291 unsigned cpuid, node; 11292 ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL, 11293 arg2 ? &node : NULL, 11294 NULL)); 11295 if (is_error(ret)) { 11296 return ret; 11297 } 11298 if (arg1 && put_user_u32(cpuid, arg1)) { 11299 return -TARGET_EFAULT; 11300 } 11301 if (arg2 && put_user_u32(node, arg2)) { 11302 return -TARGET_EFAULT; 11303 } 11304 } 11305 return ret; 11306 case TARGET_NR_sched_setparam: 11307 { 11308 struct target_sched_param *target_schp; 11309 struct sched_param schp; 11310 11311 if (arg2 == 0) { 11312 return -TARGET_EINVAL; 11313 } 11314 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) { 11315 return -TARGET_EFAULT; 11316 } 11317 schp.sched_priority = tswap32(target_schp->sched_priority); 11318 unlock_user_struct(target_schp, arg2, 0); 11319 return get_errno(sys_sched_setparam(arg1, &schp)); 11320 } 11321 case TARGET_NR_sched_getparam: 11322 { 11323 struct target_sched_param *target_schp; 11324 struct sched_param schp; 11325 11326 if (arg2 == 0) { 11327 return -TARGET_EINVAL; 11328 } 11329 ret = get_errno(sys_sched_getparam(arg1, &schp)); 11330 if (!is_error(ret)) { 11331 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) { 11332 return -TARGET_EFAULT; 11333 } 11334 target_schp->sched_priority = tswap32(schp.sched_priority); 11335 unlock_user_struct(target_schp, arg2, 1); 11336 } 11337 } 11338 return ret; 11339 case TARGET_NR_sched_setscheduler: 11340 { 11341 struct target_sched_param *target_schp; 11342 struct sched_param schp; 11343 if (arg3 == 0) { 11344 return -TARGET_EINVAL; 11345 } 11346 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) { 11347 return -TARGET_EFAULT; 11348 } 11349 schp.sched_priority = tswap32(target_schp->sched_priority); 11350 unlock_user_struct(target_schp, arg3, 0); 11351 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp)); 11352 } 11353 case TARGET_NR_sched_getscheduler: 11354 return get_errno(sys_sched_getscheduler(arg1)); 11355 case TARGET_NR_sched_getattr: 11356 { 11357 struct target_sched_attr *target_scha; 11358 struct sched_attr scha; 11359 if (arg2 == 0) { 11360 return -TARGET_EINVAL; 11361 } 11362 if (arg3 > sizeof(scha)) { 11363 arg3 = sizeof(scha); 11364 } 11365 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4)); 11366 if (!is_error(ret)) { 11367 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11368 if (!target_scha) { 11369 return -TARGET_EFAULT; 11370 } 11371 target_scha->size = tswap32(scha.size); 11372 target_scha->sched_policy = tswap32(scha.sched_policy); 11373 target_scha->sched_flags = tswap64(scha.sched_flags); 11374 target_scha->sched_nice = tswap32(scha.sched_nice); 11375 target_scha->sched_priority = tswap32(scha.sched_priority); 11376 target_scha->sched_runtime = tswap64(scha.sched_runtime); 11377 target_scha->sched_deadline = tswap64(scha.sched_deadline); 11378 target_scha->sched_period = tswap64(scha.sched_period); 11379 if (scha.size > offsetof(struct sched_attr, sched_util_min)) { 11380 target_scha->sched_util_min = tswap32(scha.sched_util_min); 11381 target_scha->sched_util_max = tswap32(scha.sched_util_max); 11382 } 11383 unlock_user(target_scha, arg2, arg3); 11384 } 11385 return ret; 11386 } 11387 case TARGET_NR_sched_setattr: 11388 { 11389 struct target_sched_attr *target_scha; 11390 struct sched_attr scha; 11391 uint32_t size; 11392 int zeroed; 11393 if (arg2 == 0) { 11394 return -TARGET_EINVAL; 11395 } 11396 if (get_user_u32(size, arg2)) { 11397 return -TARGET_EFAULT; 11398 } 11399 if (!size) { 11400 size = offsetof(struct target_sched_attr, sched_util_min); 11401 } 11402 if (size < offsetof(struct target_sched_attr, sched_util_min)) { 11403 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11404 return -TARGET_EFAULT; 11405 } 11406 return -TARGET_E2BIG; 11407 } 11408 11409 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size); 11410 if (zeroed < 0) { 11411 return zeroed; 11412 } else if (zeroed == 0) { 11413 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11414 return -TARGET_EFAULT; 11415 } 11416 return -TARGET_E2BIG; 11417 } 11418 if (size > sizeof(struct target_sched_attr)) { 11419 size = sizeof(struct target_sched_attr); 11420 } 11421 11422 target_scha = lock_user(VERIFY_READ, arg2, size, 1); 11423 if (!target_scha) { 11424 return -TARGET_EFAULT; 11425 } 11426 scha.size = size; 11427 scha.sched_policy = tswap32(target_scha->sched_policy); 11428 scha.sched_flags = tswap64(target_scha->sched_flags); 11429 scha.sched_nice = tswap32(target_scha->sched_nice); 11430 scha.sched_priority = tswap32(target_scha->sched_priority); 11431 scha.sched_runtime = tswap64(target_scha->sched_runtime); 11432 scha.sched_deadline = tswap64(target_scha->sched_deadline); 11433 scha.sched_period = tswap64(target_scha->sched_period); 11434 if (size > offsetof(struct target_sched_attr, sched_util_min)) { 11435 scha.sched_util_min = tswap32(target_scha->sched_util_min); 11436 scha.sched_util_max = tswap32(target_scha->sched_util_max); 11437 } 11438 unlock_user(target_scha, arg2, 0); 11439 return get_errno(sys_sched_setattr(arg1, &scha, arg3)); 11440 } 11441 case TARGET_NR_sched_yield: 11442 return get_errno(sched_yield()); 11443 case TARGET_NR_sched_get_priority_max: 11444 return get_errno(sched_get_priority_max(arg1)); 11445 case TARGET_NR_sched_get_priority_min: 11446 return get_errno(sched_get_priority_min(arg1)); 11447 #ifdef TARGET_NR_sched_rr_get_interval 11448 case TARGET_NR_sched_rr_get_interval: 11449 { 11450 struct timespec ts; 11451 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11452 if (!is_error(ret)) { 11453 ret = host_to_target_timespec(arg2, &ts); 11454 } 11455 } 11456 return ret; 11457 #endif 11458 #ifdef TARGET_NR_sched_rr_get_interval_time64 11459 case TARGET_NR_sched_rr_get_interval_time64: 11460 { 11461 struct timespec ts; 11462 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11463 if (!is_error(ret)) { 11464 ret = host_to_target_timespec64(arg2, &ts); 11465 } 11466 } 11467 return ret; 11468 #endif 11469 #if defined(TARGET_NR_nanosleep) 11470 case TARGET_NR_nanosleep: 11471 { 11472 struct timespec req, rem; 11473 target_to_host_timespec(&req, arg1); 11474 ret = get_errno(safe_nanosleep(&req, &rem)); 11475 if (is_error(ret) && arg2) { 11476 host_to_target_timespec(arg2, &rem); 11477 } 11478 } 11479 return ret; 11480 #endif 11481 case TARGET_NR_prctl: 11482 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5); 11483 break; 11484 #ifdef TARGET_NR_arch_prctl 11485 case TARGET_NR_arch_prctl: 11486 return do_arch_prctl(cpu_env, arg1, arg2); 11487 #endif 11488 #ifdef TARGET_NR_pread64 11489 case TARGET_NR_pread64: 11490 if (regpairs_aligned(cpu_env, num)) { 11491 arg4 = arg5; 11492 arg5 = arg6; 11493 } 11494 if (arg2 == 0 && arg3 == 0) { 11495 /* Special-case NULL buffer and zero length, which should succeed */ 11496 p = 0; 11497 } else { 11498 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11499 if (!p) { 11500 return -TARGET_EFAULT; 11501 } 11502 } 11503 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 11504 unlock_user(p, arg2, ret); 11505 return ret; 11506 case TARGET_NR_pwrite64: 11507 if (regpairs_aligned(cpu_env, num)) { 11508 arg4 = arg5; 11509 arg5 = arg6; 11510 } 11511 if (arg2 == 0 && arg3 == 0) { 11512 /* Special-case NULL buffer and zero length, which should succeed */ 11513 p = 0; 11514 } else { 11515 p = lock_user(VERIFY_READ, arg2, arg3, 1); 11516 if (!p) { 11517 return -TARGET_EFAULT; 11518 } 11519 } 11520 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 11521 unlock_user(p, arg2, 0); 11522 return ret; 11523 #endif 11524 case TARGET_NR_getcwd: 11525 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 11526 return -TARGET_EFAULT; 11527 ret = get_errno(sys_getcwd1(p, arg2)); 11528 unlock_user(p, arg1, ret); 11529 return ret; 11530 case TARGET_NR_capget: 11531 case TARGET_NR_capset: 11532 { 11533 struct target_user_cap_header *target_header; 11534 struct target_user_cap_data *target_data = NULL; 11535 struct __user_cap_header_struct header; 11536 struct __user_cap_data_struct data[2]; 11537 struct __user_cap_data_struct *dataptr = NULL; 11538 int i, target_datalen; 11539 int data_items = 1; 11540 11541 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 11542 return -TARGET_EFAULT; 11543 } 11544 header.version = tswap32(target_header->version); 11545 header.pid = tswap32(target_header->pid); 11546 11547 if (header.version != _LINUX_CAPABILITY_VERSION) { 11548 /* Version 2 and up takes pointer to two user_data structs */ 11549 data_items = 2; 11550 } 11551 11552 target_datalen = sizeof(*target_data) * data_items; 11553 11554 if (arg2) { 11555 if (num == TARGET_NR_capget) { 11556 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 11557 } else { 11558 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 11559 } 11560 if (!target_data) { 11561 unlock_user_struct(target_header, arg1, 0); 11562 return -TARGET_EFAULT; 11563 } 11564 11565 if (num == TARGET_NR_capset) { 11566 for (i = 0; i < data_items; i++) { 11567 data[i].effective = tswap32(target_data[i].effective); 11568 data[i].permitted = tswap32(target_data[i].permitted); 11569 data[i].inheritable = tswap32(target_data[i].inheritable); 11570 } 11571 } 11572 11573 dataptr = data; 11574 } 11575 11576 if (num == TARGET_NR_capget) { 11577 ret = get_errno(capget(&header, dataptr)); 11578 } else { 11579 ret = get_errno(capset(&header, dataptr)); 11580 } 11581 11582 /* The kernel always updates version for both capget and capset */ 11583 target_header->version = tswap32(header.version); 11584 unlock_user_struct(target_header, arg1, 1); 11585 11586 if (arg2) { 11587 if (num == TARGET_NR_capget) { 11588 for (i = 0; i < data_items; i++) { 11589 target_data[i].effective = tswap32(data[i].effective); 11590 target_data[i].permitted = tswap32(data[i].permitted); 11591 target_data[i].inheritable = tswap32(data[i].inheritable); 11592 } 11593 unlock_user(target_data, arg2, target_datalen); 11594 } else { 11595 unlock_user(target_data, arg2, 0); 11596 } 11597 } 11598 return ret; 11599 } 11600 case TARGET_NR_sigaltstack: 11601 return do_sigaltstack(arg1, arg2, cpu_env); 11602 11603 #ifdef CONFIG_SENDFILE 11604 #ifdef TARGET_NR_sendfile 11605 case TARGET_NR_sendfile: 11606 { 11607 off_t *offp = NULL; 11608 off_t off; 11609 if (arg3) { 11610 ret = get_user_sal(off, arg3); 11611 if (is_error(ret)) { 11612 return ret; 11613 } 11614 offp = &off; 11615 } 11616 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11617 if (!is_error(ret) && arg3) { 11618 abi_long ret2 = put_user_sal(off, arg3); 11619 if (is_error(ret2)) { 11620 ret = ret2; 11621 } 11622 } 11623 return ret; 11624 } 11625 #endif 11626 #ifdef TARGET_NR_sendfile64 11627 case TARGET_NR_sendfile64: 11628 { 11629 off_t *offp = NULL; 11630 off_t off; 11631 if (arg3) { 11632 ret = get_user_s64(off, arg3); 11633 if (is_error(ret)) { 11634 return ret; 11635 } 11636 offp = &off; 11637 } 11638 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11639 if (!is_error(ret) && arg3) { 11640 abi_long ret2 = put_user_s64(off, arg3); 11641 if (is_error(ret2)) { 11642 ret = ret2; 11643 } 11644 } 11645 return ret; 11646 } 11647 #endif 11648 #endif 11649 #ifdef TARGET_NR_vfork 11650 case TARGET_NR_vfork: 11651 return get_errno(do_fork(cpu_env, 11652 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 11653 0, 0, 0, 0)); 11654 #endif 11655 #ifdef TARGET_NR_ugetrlimit 11656 case TARGET_NR_ugetrlimit: 11657 { 11658 struct rlimit rlim; 11659 int resource = target_to_host_resource(arg1); 11660 ret = get_errno(getrlimit(resource, &rlim)); 11661 if (!is_error(ret)) { 11662 struct target_rlimit *target_rlim; 11663 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 11664 return -TARGET_EFAULT; 11665 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 11666 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 11667 unlock_user_struct(target_rlim, arg2, 1); 11668 } 11669 return ret; 11670 } 11671 #endif 11672 #ifdef TARGET_NR_truncate64 11673 case TARGET_NR_truncate64: 11674 if (!(p = lock_user_string(arg1))) 11675 return -TARGET_EFAULT; 11676 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 11677 unlock_user(p, arg1, 0); 11678 return ret; 11679 #endif 11680 #ifdef TARGET_NR_ftruncate64 11681 case TARGET_NR_ftruncate64: 11682 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 11683 #endif 11684 #ifdef TARGET_NR_stat64 11685 case TARGET_NR_stat64: 11686 if (!(p = lock_user_string(arg1))) { 11687 return -TARGET_EFAULT; 11688 } 11689 ret = get_errno(stat(path(p), &st)); 11690 unlock_user(p, arg1, 0); 11691 if (!is_error(ret)) 11692 ret = host_to_target_stat64(cpu_env, arg2, &st); 11693 return ret; 11694 #endif 11695 #ifdef TARGET_NR_lstat64 11696 case TARGET_NR_lstat64: 11697 if (!(p = lock_user_string(arg1))) { 11698 return -TARGET_EFAULT; 11699 } 11700 ret = get_errno(lstat(path(p), &st)); 11701 unlock_user(p, arg1, 0); 11702 if (!is_error(ret)) 11703 ret = host_to_target_stat64(cpu_env, arg2, &st); 11704 return ret; 11705 #endif 11706 #ifdef TARGET_NR_fstat64 11707 case TARGET_NR_fstat64: 11708 ret = get_errno(fstat(arg1, &st)); 11709 if (!is_error(ret)) 11710 ret = host_to_target_stat64(cpu_env, arg2, &st); 11711 return ret; 11712 #endif 11713 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 11714 #ifdef TARGET_NR_fstatat64 11715 case TARGET_NR_fstatat64: 11716 #endif 11717 #ifdef TARGET_NR_newfstatat 11718 case TARGET_NR_newfstatat: 11719 #endif 11720 if (!(p = lock_user_string(arg2))) { 11721 return -TARGET_EFAULT; 11722 } 11723 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 11724 unlock_user(p, arg2, 0); 11725 if (!is_error(ret)) 11726 ret = host_to_target_stat64(cpu_env, arg3, &st); 11727 return ret; 11728 #endif 11729 #if defined(TARGET_NR_statx) 11730 case TARGET_NR_statx: 11731 { 11732 struct target_statx *target_stx; 11733 int dirfd = arg1; 11734 int flags = arg3; 11735 11736 p = lock_user_string(arg2); 11737 if (p == NULL) { 11738 return -TARGET_EFAULT; 11739 } 11740 #if defined(__NR_statx) 11741 { 11742 /* 11743 * It is assumed that struct statx is architecture independent. 11744 */ 11745 struct target_statx host_stx; 11746 int mask = arg4; 11747 11748 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx)); 11749 if (!is_error(ret)) { 11750 if (host_to_target_statx(&host_stx, arg5) != 0) { 11751 unlock_user(p, arg2, 0); 11752 return -TARGET_EFAULT; 11753 } 11754 } 11755 11756 if (ret != -TARGET_ENOSYS) { 11757 unlock_user(p, arg2, 0); 11758 return ret; 11759 } 11760 } 11761 #endif 11762 ret = get_errno(fstatat(dirfd, path(p), &st, flags)); 11763 unlock_user(p, arg2, 0); 11764 11765 if (!is_error(ret)) { 11766 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) { 11767 return -TARGET_EFAULT; 11768 } 11769 memset(target_stx, 0, sizeof(*target_stx)); 11770 __put_user(major(st.st_dev), &target_stx->stx_dev_major); 11771 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor); 11772 __put_user(st.st_ino, &target_stx->stx_ino); 11773 __put_user(st.st_mode, &target_stx->stx_mode); 11774 __put_user(st.st_uid, &target_stx->stx_uid); 11775 __put_user(st.st_gid, &target_stx->stx_gid); 11776 __put_user(st.st_nlink, &target_stx->stx_nlink); 11777 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major); 11778 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor); 11779 __put_user(st.st_size, &target_stx->stx_size); 11780 __put_user(st.st_blksize, &target_stx->stx_blksize); 11781 __put_user(st.st_blocks, &target_stx->stx_blocks); 11782 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec); 11783 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec); 11784 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec); 11785 unlock_user_struct(target_stx, arg5, 1); 11786 } 11787 } 11788 return ret; 11789 #endif 11790 #ifdef TARGET_NR_lchown 11791 case TARGET_NR_lchown: 11792 if (!(p = lock_user_string(arg1))) 11793 return -TARGET_EFAULT; 11794 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 11795 unlock_user(p, arg1, 0); 11796 return ret; 11797 #endif 11798 #ifdef TARGET_NR_getuid 11799 case TARGET_NR_getuid: 11800 return get_errno(high2lowuid(getuid())); 11801 #endif 11802 #ifdef TARGET_NR_getgid 11803 case TARGET_NR_getgid: 11804 return get_errno(high2lowgid(getgid())); 11805 #endif 11806 #ifdef TARGET_NR_geteuid 11807 case TARGET_NR_geteuid: 11808 return get_errno(high2lowuid(geteuid())); 11809 #endif 11810 #ifdef TARGET_NR_getegid 11811 case TARGET_NR_getegid: 11812 return get_errno(high2lowgid(getegid())); 11813 #endif 11814 case TARGET_NR_setreuid: 11815 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11816 case TARGET_NR_setregid: 11817 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11818 case TARGET_NR_getgroups: 11819 { /* the same code as for TARGET_NR_getgroups32 */ 11820 int gidsetsize = arg1; 11821 target_id *target_grouplist; 11822 g_autofree gid_t *grouplist = NULL; 11823 int i; 11824 11825 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11826 return -TARGET_EINVAL; 11827 } 11828 if (gidsetsize > 0) { 11829 grouplist = g_try_new(gid_t, gidsetsize); 11830 if (!grouplist) { 11831 return -TARGET_ENOMEM; 11832 } 11833 } 11834 ret = get_errno(getgroups(gidsetsize, grouplist)); 11835 if (!is_error(ret) && gidsetsize > 0) { 11836 target_grouplist = lock_user(VERIFY_WRITE, arg2, 11837 gidsetsize * sizeof(target_id), 0); 11838 if (!target_grouplist) { 11839 return -TARGET_EFAULT; 11840 } 11841 for (i = 0; i < ret; i++) { 11842 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11843 } 11844 unlock_user(target_grouplist, arg2, 11845 gidsetsize * sizeof(target_id)); 11846 } 11847 return ret; 11848 } 11849 case TARGET_NR_setgroups: 11850 { /* the same code as for TARGET_NR_setgroups32 */ 11851 int gidsetsize = arg1; 11852 target_id *target_grouplist; 11853 g_autofree gid_t *grouplist = NULL; 11854 int i; 11855 11856 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11857 return -TARGET_EINVAL; 11858 } 11859 if (gidsetsize > 0) { 11860 grouplist = g_try_new(gid_t, gidsetsize); 11861 if (!grouplist) { 11862 return -TARGET_ENOMEM; 11863 } 11864 target_grouplist = lock_user(VERIFY_READ, arg2, 11865 gidsetsize * sizeof(target_id), 1); 11866 if (!target_grouplist) { 11867 return -TARGET_EFAULT; 11868 } 11869 for (i = 0; i < gidsetsize; i++) { 11870 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11871 } 11872 unlock_user(target_grouplist, arg2, 11873 gidsetsize * sizeof(target_id)); 11874 } 11875 return get_errno(setgroups(gidsetsize, grouplist)); 11876 } 11877 case TARGET_NR_fchown: 11878 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11879 #if defined(TARGET_NR_fchownat) 11880 case TARGET_NR_fchownat: 11881 if (!(p = lock_user_string(arg2))) 11882 return -TARGET_EFAULT; 11883 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11884 low2highgid(arg4), arg5)); 11885 unlock_user(p, arg2, 0); 11886 return ret; 11887 #endif 11888 #ifdef TARGET_NR_setresuid 11889 case TARGET_NR_setresuid: 11890 return get_errno(sys_setresuid(low2highuid(arg1), 11891 low2highuid(arg2), 11892 low2highuid(arg3))); 11893 #endif 11894 #ifdef TARGET_NR_getresuid 11895 case TARGET_NR_getresuid: 11896 { 11897 uid_t ruid, euid, suid; 11898 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11899 if (!is_error(ret)) { 11900 if (put_user_id(high2lowuid(ruid), arg1) 11901 || put_user_id(high2lowuid(euid), arg2) 11902 || put_user_id(high2lowuid(suid), arg3)) 11903 return -TARGET_EFAULT; 11904 } 11905 } 11906 return ret; 11907 #endif 11908 #ifdef TARGET_NR_getresgid 11909 case TARGET_NR_setresgid: 11910 return get_errno(sys_setresgid(low2highgid(arg1), 11911 low2highgid(arg2), 11912 low2highgid(arg3))); 11913 #endif 11914 #ifdef TARGET_NR_getresgid 11915 case TARGET_NR_getresgid: 11916 { 11917 gid_t rgid, egid, sgid; 11918 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11919 if (!is_error(ret)) { 11920 if (put_user_id(high2lowgid(rgid), arg1) 11921 || put_user_id(high2lowgid(egid), arg2) 11922 || put_user_id(high2lowgid(sgid), arg3)) 11923 return -TARGET_EFAULT; 11924 } 11925 } 11926 return ret; 11927 #endif 11928 #ifdef TARGET_NR_chown 11929 case TARGET_NR_chown: 11930 if (!(p = lock_user_string(arg1))) 11931 return -TARGET_EFAULT; 11932 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11933 unlock_user(p, arg1, 0); 11934 return ret; 11935 #endif 11936 case TARGET_NR_setuid: 11937 return get_errno(sys_setuid(low2highuid(arg1))); 11938 case TARGET_NR_setgid: 11939 return get_errno(sys_setgid(low2highgid(arg1))); 11940 case TARGET_NR_setfsuid: 11941 return get_errno(setfsuid(arg1)); 11942 case TARGET_NR_setfsgid: 11943 return get_errno(setfsgid(arg1)); 11944 11945 #ifdef TARGET_NR_lchown32 11946 case TARGET_NR_lchown32: 11947 if (!(p = lock_user_string(arg1))) 11948 return -TARGET_EFAULT; 11949 ret = get_errno(lchown(p, arg2, arg3)); 11950 unlock_user(p, arg1, 0); 11951 return ret; 11952 #endif 11953 #ifdef TARGET_NR_getuid32 11954 case TARGET_NR_getuid32: 11955 return get_errno(getuid()); 11956 #endif 11957 11958 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11959 /* Alpha specific */ 11960 case TARGET_NR_getxuid: 11961 { 11962 uid_t euid; 11963 euid=geteuid(); 11964 cpu_env->ir[IR_A4]=euid; 11965 } 11966 return get_errno(getuid()); 11967 #endif 11968 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11969 /* Alpha specific */ 11970 case TARGET_NR_getxgid: 11971 { 11972 uid_t egid; 11973 egid=getegid(); 11974 cpu_env->ir[IR_A4]=egid; 11975 } 11976 return get_errno(getgid()); 11977 #endif 11978 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 11979 /* Alpha specific */ 11980 case TARGET_NR_osf_getsysinfo: 11981 ret = -TARGET_EOPNOTSUPP; 11982 switch (arg1) { 11983 case TARGET_GSI_IEEE_FP_CONTROL: 11984 { 11985 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env); 11986 uint64_t swcr = cpu_env->swcr; 11987 11988 swcr &= ~SWCR_STATUS_MASK; 11989 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK; 11990 11991 if (put_user_u64 (swcr, arg2)) 11992 return -TARGET_EFAULT; 11993 ret = 0; 11994 } 11995 break; 11996 11997 /* case GSI_IEEE_STATE_AT_SIGNAL: 11998 -- Not implemented in linux kernel. 11999 case GSI_UACPROC: 12000 -- Retrieves current unaligned access state; not much used. 12001 case GSI_PROC_TYPE: 12002 -- Retrieves implver information; surely not used. 12003 case GSI_GET_HWRPB: 12004 -- Grabs a copy of the HWRPB; surely not used. 12005 */ 12006 } 12007 return ret; 12008 #endif 12009 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 12010 /* Alpha specific */ 12011 case TARGET_NR_osf_setsysinfo: 12012 ret = -TARGET_EOPNOTSUPP; 12013 switch (arg1) { 12014 case TARGET_SSI_IEEE_FP_CONTROL: 12015 { 12016 uint64_t swcr, fpcr; 12017 12018 if (get_user_u64 (swcr, arg2)) { 12019 return -TARGET_EFAULT; 12020 } 12021 12022 /* 12023 * The kernel calls swcr_update_status to update the 12024 * status bits from the fpcr at every point that it 12025 * could be queried. Therefore, we store the status 12026 * bits only in FPCR. 12027 */ 12028 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK); 12029 12030 fpcr = cpu_alpha_load_fpcr(cpu_env); 12031 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32); 12032 fpcr |= alpha_ieee_swcr_to_fpcr(swcr); 12033 cpu_alpha_store_fpcr(cpu_env, fpcr); 12034 ret = 0; 12035 } 12036 break; 12037 12038 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 12039 { 12040 uint64_t exc, fpcr, fex; 12041 12042 if (get_user_u64(exc, arg2)) { 12043 return -TARGET_EFAULT; 12044 } 12045 exc &= SWCR_STATUS_MASK; 12046 fpcr = cpu_alpha_load_fpcr(cpu_env); 12047 12048 /* Old exceptions are not signaled. */ 12049 fex = alpha_ieee_fpcr_to_swcr(fpcr); 12050 fex = exc & ~fex; 12051 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT; 12052 fex &= (cpu_env)->swcr; 12053 12054 /* Update the hardware fpcr. */ 12055 fpcr |= alpha_ieee_swcr_to_fpcr(exc); 12056 cpu_alpha_store_fpcr(cpu_env, fpcr); 12057 12058 if (fex) { 12059 int si_code = TARGET_FPE_FLTUNK; 12060 target_siginfo_t info; 12061 12062 if (fex & SWCR_TRAP_ENABLE_DNO) { 12063 si_code = TARGET_FPE_FLTUND; 12064 } 12065 if (fex & SWCR_TRAP_ENABLE_INE) { 12066 si_code = TARGET_FPE_FLTRES; 12067 } 12068 if (fex & SWCR_TRAP_ENABLE_UNF) { 12069 si_code = TARGET_FPE_FLTUND; 12070 } 12071 if (fex & SWCR_TRAP_ENABLE_OVF) { 12072 si_code = TARGET_FPE_FLTOVF; 12073 } 12074 if (fex & SWCR_TRAP_ENABLE_DZE) { 12075 si_code = TARGET_FPE_FLTDIV; 12076 } 12077 if (fex & SWCR_TRAP_ENABLE_INV) { 12078 si_code = TARGET_FPE_FLTINV; 12079 } 12080 12081 info.si_signo = SIGFPE; 12082 info.si_errno = 0; 12083 info.si_code = si_code; 12084 info._sifields._sigfault._addr = (cpu_env)->pc; 12085 queue_signal(cpu_env, info.si_signo, 12086 QEMU_SI_FAULT, &info); 12087 } 12088 ret = 0; 12089 } 12090 break; 12091 12092 /* case SSI_NVPAIRS: 12093 -- Used with SSIN_UACPROC to enable unaligned accesses. 12094 case SSI_IEEE_STATE_AT_SIGNAL: 12095 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 12096 -- Not implemented in linux kernel 12097 */ 12098 } 12099 return ret; 12100 #endif 12101 #ifdef TARGET_NR_osf_sigprocmask 12102 /* Alpha specific. */ 12103 case TARGET_NR_osf_sigprocmask: 12104 { 12105 abi_ulong mask; 12106 int how; 12107 sigset_t set, oldset; 12108 12109 switch(arg1) { 12110 case TARGET_SIG_BLOCK: 12111 how = SIG_BLOCK; 12112 break; 12113 case TARGET_SIG_UNBLOCK: 12114 how = SIG_UNBLOCK; 12115 break; 12116 case TARGET_SIG_SETMASK: 12117 how = SIG_SETMASK; 12118 break; 12119 default: 12120 return -TARGET_EINVAL; 12121 } 12122 mask = arg2; 12123 target_to_host_old_sigset(&set, &mask); 12124 ret = do_sigprocmask(how, &set, &oldset); 12125 if (!ret) { 12126 host_to_target_old_sigset(&mask, &oldset); 12127 ret = mask; 12128 } 12129 } 12130 return ret; 12131 #endif 12132 12133 #ifdef TARGET_NR_getgid32 12134 case TARGET_NR_getgid32: 12135 return get_errno(getgid()); 12136 #endif 12137 #ifdef TARGET_NR_geteuid32 12138 case TARGET_NR_geteuid32: 12139 return get_errno(geteuid()); 12140 #endif 12141 #ifdef TARGET_NR_getegid32 12142 case TARGET_NR_getegid32: 12143 return get_errno(getegid()); 12144 #endif 12145 #ifdef TARGET_NR_setreuid32 12146 case TARGET_NR_setreuid32: 12147 return get_errno(setreuid(arg1, arg2)); 12148 #endif 12149 #ifdef TARGET_NR_setregid32 12150 case TARGET_NR_setregid32: 12151 return get_errno(setregid(arg1, arg2)); 12152 #endif 12153 #ifdef TARGET_NR_getgroups32 12154 case TARGET_NR_getgroups32: 12155 { /* the same code as for TARGET_NR_getgroups */ 12156 int gidsetsize = arg1; 12157 uint32_t *target_grouplist; 12158 g_autofree gid_t *grouplist = NULL; 12159 int i; 12160 12161 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12162 return -TARGET_EINVAL; 12163 } 12164 if (gidsetsize > 0) { 12165 grouplist = g_try_new(gid_t, gidsetsize); 12166 if (!grouplist) { 12167 return -TARGET_ENOMEM; 12168 } 12169 } 12170 ret = get_errno(getgroups(gidsetsize, grouplist)); 12171 if (!is_error(ret) && gidsetsize > 0) { 12172 target_grouplist = lock_user(VERIFY_WRITE, arg2, 12173 gidsetsize * 4, 0); 12174 if (!target_grouplist) { 12175 return -TARGET_EFAULT; 12176 } 12177 for (i = 0; i < ret; i++) { 12178 target_grouplist[i] = tswap32(grouplist[i]); 12179 } 12180 unlock_user(target_grouplist, arg2, gidsetsize * 4); 12181 } 12182 return ret; 12183 } 12184 #endif 12185 #ifdef TARGET_NR_setgroups32 12186 case TARGET_NR_setgroups32: 12187 { /* the same code as for TARGET_NR_setgroups */ 12188 int gidsetsize = arg1; 12189 uint32_t *target_grouplist; 12190 g_autofree gid_t *grouplist = NULL; 12191 int i; 12192 12193 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12194 return -TARGET_EINVAL; 12195 } 12196 if (gidsetsize > 0) { 12197 grouplist = g_try_new(gid_t, gidsetsize); 12198 if (!grouplist) { 12199 return -TARGET_ENOMEM; 12200 } 12201 target_grouplist = lock_user(VERIFY_READ, arg2, 12202 gidsetsize * 4, 1); 12203 if (!target_grouplist) { 12204 return -TARGET_EFAULT; 12205 } 12206 for (i = 0; i < gidsetsize; i++) { 12207 grouplist[i] = tswap32(target_grouplist[i]); 12208 } 12209 unlock_user(target_grouplist, arg2, 0); 12210 } 12211 return get_errno(setgroups(gidsetsize, grouplist)); 12212 } 12213 #endif 12214 #ifdef TARGET_NR_fchown32 12215 case TARGET_NR_fchown32: 12216 return get_errno(fchown(arg1, arg2, arg3)); 12217 #endif 12218 #ifdef TARGET_NR_setresuid32 12219 case TARGET_NR_setresuid32: 12220 return get_errno(sys_setresuid(arg1, arg2, arg3)); 12221 #endif 12222 #ifdef TARGET_NR_getresuid32 12223 case TARGET_NR_getresuid32: 12224 { 12225 uid_t ruid, euid, suid; 12226 ret = get_errno(getresuid(&ruid, &euid, &suid)); 12227 if (!is_error(ret)) { 12228 if (put_user_u32(ruid, arg1) 12229 || put_user_u32(euid, arg2) 12230 || put_user_u32(suid, arg3)) 12231 return -TARGET_EFAULT; 12232 } 12233 } 12234 return ret; 12235 #endif 12236 #ifdef TARGET_NR_setresgid32 12237 case TARGET_NR_setresgid32: 12238 return get_errno(sys_setresgid(arg1, arg2, arg3)); 12239 #endif 12240 #ifdef TARGET_NR_getresgid32 12241 case TARGET_NR_getresgid32: 12242 { 12243 gid_t rgid, egid, sgid; 12244 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 12245 if (!is_error(ret)) { 12246 if (put_user_u32(rgid, arg1) 12247 || put_user_u32(egid, arg2) 12248 || put_user_u32(sgid, arg3)) 12249 return -TARGET_EFAULT; 12250 } 12251 } 12252 return ret; 12253 #endif 12254 #ifdef TARGET_NR_chown32 12255 case TARGET_NR_chown32: 12256 if (!(p = lock_user_string(arg1))) 12257 return -TARGET_EFAULT; 12258 ret = get_errno(chown(p, arg2, arg3)); 12259 unlock_user(p, arg1, 0); 12260 return ret; 12261 #endif 12262 #ifdef TARGET_NR_setuid32 12263 case TARGET_NR_setuid32: 12264 return get_errno(sys_setuid(arg1)); 12265 #endif 12266 #ifdef TARGET_NR_setgid32 12267 case TARGET_NR_setgid32: 12268 return get_errno(sys_setgid(arg1)); 12269 #endif 12270 #ifdef TARGET_NR_setfsuid32 12271 case TARGET_NR_setfsuid32: 12272 return get_errno(setfsuid(arg1)); 12273 #endif 12274 #ifdef TARGET_NR_setfsgid32 12275 case TARGET_NR_setfsgid32: 12276 return get_errno(setfsgid(arg1)); 12277 #endif 12278 #ifdef TARGET_NR_mincore 12279 case TARGET_NR_mincore: 12280 { 12281 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0); 12282 if (!a) { 12283 return -TARGET_ENOMEM; 12284 } 12285 p = lock_user_string(arg3); 12286 if (!p) { 12287 ret = -TARGET_EFAULT; 12288 } else { 12289 ret = get_errno(mincore(a, arg2, p)); 12290 unlock_user(p, arg3, ret); 12291 } 12292 unlock_user(a, arg1, 0); 12293 } 12294 return ret; 12295 #endif 12296 #ifdef TARGET_NR_arm_fadvise64_64 12297 case TARGET_NR_arm_fadvise64_64: 12298 /* arm_fadvise64_64 looks like fadvise64_64 but 12299 * with different argument order: fd, advice, offset, len 12300 * rather than the usual fd, offset, len, advice. 12301 * Note that offset and len are both 64-bit so appear as 12302 * pairs of 32-bit registers. 12303 */ 12304 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 12305 target_offset64(arg5, arg6), arg2); 12306 return -host_to_target_errno(ret); 12307 #endif 12308 12309 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12310 12311 #ifdef TARGET_NR_fadvise64_64 12312 case TARGET_NR_fadvise64_64: 12313 #if defined(TARGET_PPC) || defined(TARGET_XTENSA) 12314 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 12315 ret = arg2; 12316 arg2 = arg3; 12317 arg3 = arg4; 12318 arg4 = arg5; 12319 arg5 = arg6; 12320 arg6 = ret; 12321 #else 12322 /* 6 args: fd, offset (high, low), len (high, low), advice */ 12323 if (regpairs_aligned(cpu_env, num)) { 12324 /* offset is in (3,4), len in (5,6) and advice in 7 */ 12325 arg2 = arg3; 12326 arg3 = arg4; 12327 arg4 = arg5; 12328 arg5 = arg6; 12329 arg6 = arg7; 12330 } 12331 #endif 12332 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), 12333 target_offset64(arg4, arg5), arg6); 12334 return -host_to_target_errno(ret); 12335 #endif 12336 12337 #ifdef TARGET_NR_fadvise64 12338 case TARGET_NR_fadvise64: 12339 /* 5 args: fd, offset (high, low), len, advice */ 12340 if (regpairs_aligned(cpu_env, num)) { 12341 /* offset is in (3,4), len in 5 and advice in 6 */ 12342 arg2 = arg3; 12343 arg3 = arg4; 12344 arg4 = arg5; 12345 arg5 = arg6; 12346 } 12347 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5); 12348 return -host_to_target_errno(ret); 12349 #endif 12350 12351 #else /* not a 32-bit ABI */ 12352 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 12353 #ifdef TARGET_NR_fadvise64_64 12354 case TARGET_NR_fadvise64_64: 12355 #endif 12356 #ifdef TARGET_NR_fadvise64 12357 case TARGET_NR_fadvise64: 12358 #endif 12359 #ifdef TARGET_S390X 12360 switch (arg4) { 12361 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 12362 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 12363 case 6: arg4 = POSIX_FADV_DONTNEED; break; 12364 case 7: arg4 = POSIX_FADV_NOREUSE; break; 12365 default: break; 12366 } 12367 #endif 12368 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 12369 #endif 12370 #endif /* end of 64-bit ABI fadvise handling */ 12371 12372 #ifdef TARGET_NR_madvise 12373 case TARGET_NR_madvise: 12374 return target_madvise(arg1, arg2, arg3); 12375 #endif 12376 #ifdef TARGET_NR_fcntl64 12377 case TARGET_NR_fcntl64: 12378 { 12379 int cmd; 12380 struct flock64 fl; 12381 from_flock64_fn *copyfrom = copy_from_user_flock64; 12382 to_flock64_fn *copyto = copy_to_user_flock64; 12383 12384 #ifdef TARGET_ARM 12385 if (!cpu_env->eabi) { 12386 copyfrom = copy_from_user_oabi_flock64; 12387 copyto = copy_to_user_oabi_flock64; 12388 } 12389 #endif 12390 12391 cmd = target_to_host_fcntl_cmd(arg2); 12392 if (cmd == -TARGET_EINVAL) { 12393 return cmd; 12394 } 12395 12396 switch(arg2) { 12397 case TARGET_F_GETLK64: 12398 ret = copyfrom(&fl, arg3); 12399 if (ret) { 12400 break; 12401 } 12402 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12403 if (ret == 0) { 12404 ret = copyto(arg3, &fl); 12405 } 12406 break; 12407 12408 case TARGET_F_SETLK64: 12409 case TARGET_F_SETLKW64: 12410 ret = copyfrom(&fl, arg3); 12411 if (ret) { 12412 break; 12413 } 12414 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12415 break; 12416 default: 12417 ret = do_fcntl(arg1, arg2, arg3); 12418 break; 12419 } 12420 return ret; 12421 } 12422 #endif 12423 #ifdef TARGET_NR_cacheflush 12424 case TARGET_NR_cacheflush: 12425 /* self-modifying code is handled automatically, so nothing needed */ 12426 return 0; 12427 #endif 12428 #ifdef TARGET_NR_getpagesize 12429 case TARGET_NR_getpagesize: 12430 return TARGET_PAGE_SIZE; 12431 #endif 12432 case TARGET_NR_gettid: 12433 return get_errno(sys_gettid()); 12434 #ifdef TARGET_NR_readahead 12435 case TARGET_NR_readahead: 12436 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12437 if (regpairs_aligned(cpu_env, num)) { 12438 arg2 = arg3; 12439 arg3 = arg4; 12440 arg4 = arg5; 12441 } 12442 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 12443 #else 12444 ret = get_errno(readahead(arg1, arg2, arg3)); 12445 #endif 12446 return ret; 12447 #endif 12448 #ifdef CONFIG_ATTR 12449 #ifdef TARGET_NR_setxattr 12450 case TARGET_NR_listxattr: 12451 case TARGET_NR_llistxattr: 12452 { 12453 void *b = 0; 12454 if (arg2) { 12455 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12456 if (!b) { 12457 return -TARGET_EFAULT; 12458 } 12459 } 12460 p = lock_user_string(arg1); 12461 if (p) { 12462 if (num == TARGET_NR_listxattr) { 12463 ret = get_errno(listxattr(p, b, arg3)); 12464 } else { 12465 ret = get_errno(llistxattr(p, b, arg3)); 12466 } 12467 } else { 12468 ret = -TARGET_EFAULT; 12469 } 12470 unlock_user(p, arg1, 0); 12471 unlock_user(b, arg2, arg3); 12472 return ret; 12473 } 12474 case TARGET_NR_flistxattr: 12475 { 12476 void *b = 0; 12477 if (arg2) { 12478 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12479 if (!b) { 12480 return -TARGET_EFAULT; 12481 } 12482 } 12483 ret = get_errno(flistxattr(arg1, b, arg3)); 12484 unlock_user(b, arg2, arg3); 12485 return ret; 12486 } 12487 case TARGET_NR_setxattr: 12488 case TARGET_NR_lsetxattr: 12489 { 12490 void *n, *v = 0; 12491 if (arg3) { 12492 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12493 if (!v) { 12494 return -TARGET_EFAULT; 12495 } 12496 } 12497 p = lock_user_string(arg1); 12498 n = lock_user_string(arg2); 12499 if (p && n) { 12500 if (num == TARGET_NR_setxattr) { 12501 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 12502 } else { 12503 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 12504 } 12505 } else { 12506 ret = -TARGET_EFAULT; 12507 } 12508 unlock_user(p, arg1, 0); 12509 unlock_user(n, arg2, 0); 12510 unlock_user(v, arg3, 0); 12511 } 12512 return ret; 12513 case TARGET_NR_fsetxattr: 12514 { 12515 void *n, *v = 0; 12516 if (arg3) { 12517 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12518 if (!v) { 12519 return -TARGET_EFAULT; 12520 } 12521 } 12522 n = lock_user_string(arg2); 12523 if (n) { 12524 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 12525 } else { 12526 ret = -TARGET_EFAULT; 12527 } 12528 unlock_user(n, arg2, 0); 12529 unlock_user(v, arg3, 0); 12530 } 12531 return ret; 12532 case TARGET_NR_getxattr: 12533 case TARGET_NR_lgetxattr: 12534 { 12535 void *n, *v = 0; 12536 if (arg3) { 12537 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12538 if (!v) { 12539 return -TARGET_EFAULT; 12540 } 12541 } 12542 p = lock_user_string(arg1); 12543 n = lock_user_string(arg2); 12544 if (p && n) { 12545 if (num == TARGET_NR_getxattr) { 12546 ret = get_errno(getxattr(p, n, v, arg4)); 12547 } else { 12548 ret = get_errno(lgetxattr(p, n, v, arg4)); 12549 } 12550 } else { 12551 ret = -TARGET_EFAULT; 12552 } 12553 unlock_user(p, arg1, 0); 12554 unlock_user(n, arg2, 0); 12555 unlock_user(v, arg3, arg4); 12556 } 12557 return ret; 12558 case TARGET_NR_fgetxattr: 12559 { 12560 void *n, *v = 0; 12561 if (arg3) { 12562 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12563 if (!v) { 12564 return -TARGET_EFAULT; 12565 } 12566 } 12567 n = lock_user_string(arg2); 12568 if (n) { 12569 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 12570 } else { 12571 ret = -TARGET_EFAULT; 12572 } 12573 unlock_user(n, arg2, 0); 12574 unlock_user(v, arg3, arg4); 12575 } 12576 return ret; 12577 case TARGET_NR_removexattr: 12578 case TARGET_NR_lremovexattr: 12579 { 12580 void *n; 12581 p = lock_user_string(arg1); 12582 n = lock_user_string(arg2); 12583 if (p && n) { 12584 if (num == TARGET_NR_removexattr) { 12585 ret = get_errno(removexattr(p, n)); 12586 } else { 12587 ret = get_errno(lremovexattr(p, n)); 12588 } 12589 } else { 12590 ret = -TARGET_EFAULT; 12591 } 12592 unlock_user(p, arg1, 0); 12593 unlock_user(n, arg2, 0); 12594 } 12595 return ret; 12596 case TARGET_NR_fremovexattr: 12597 { 12598 void *n; 12599 n = lock_user_string(arg2); 12600 if (n) { 12601 ret = get_errno(fremovexattr(arg1, n)); 12602 } else { 12603 ret = -TARGET_EFAULT; 12604 } 12605 unlock_user(n, arg2, 0); 12606 } 12607 return ret; 12608 #endif 12609 #endif /* CONFIG_ATTR */ 12610 #ifdef TARGET_NR_set_thread_area 12611 case TARGET_NR_set_thread_area: 12612 #if defined(TARGET_MIPS) 12613 cpu_env->active_tc.CP0_UserLocal = arg1; 12614 return 0; 12615 #elif defined(TARGET_CRIS) 12616 if (arg1 & 0xff) 12617 ret = -TARGET_EINVAL; 12618 else { 12619 cpu_env->pregs[PR_PID] = arg1; 12620 ret = 0; 12621 } 12622 return ret; 12623 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 12624 return do_set_thread_area(cpu_env, arg1); 12625 #elif defined(TARGET_M68K) 12626 { 12627 TaskState *ts = get_task_state(cpu); 12628 ts->tp_value = arg1; 12629 return 0; 12630 } 12631 #else 12632 return -TARGET_ENOSYS; 12633 #endif 12634 #endif 12635 #ifdef TARGET_NR_get_thread_area 12636 case TARGET_NR_get_thread_area: 12637 #if defined(TARGET_I386) && defined(TARGET_ABI32) 12638 return do_get_thread_area(cpu_env, arg1); 12639 #elif defined(TARGET_M68K) 12640 { 12641 TaskState *ts = get_task_state(cpu); 12642 return ts->tp_value; 12643 } 12644 #else 12645 return -TARGET_ENOSYS; 12646 #endif 12647 #endif 12648 #ifdef TARGET_NR_getdomainname 12649 case TARGET_NR_getdomainname: 12650 return -TARGET_ENOSYS; 12651 #endif 12652 12653 #ifdef TARGET_NR_clock_settime 12654 case TARGET_NR_clock_settime: 12655 { 12656 struct timespec ts; 12657 12658 ret = target_to_host_timespec(&ts, arg2); 12659 if (!is_error(ret)) { 12660 ret = get_errno(clock_settime(arg1, &ts)); 12661 } 12662 return ret; 12663 } 12664 #endif 12665 #ifdef TARGET_NR_clock_settime64 12666 case TARGET_NR_clock_settime64: 12667 { 12668 struct timespec ts; 12669 12670 ret = target_to_host_timespec64(&ts, arg2); 12671 if (!is_error(ret)) { 12672 ret = get_errno(clock_settime(arg1, &ts)); 12673 } 12674 return ret; 12675 } 12676 #endif 12677 #ifdef TARGET_NR_clock_gettime 12678 case TARGET_NR_clock_gettime: 12679 { 12680 struct timespec ts; 12681 ret = get_errno(clock_gettime(arg1, &ts)); 12682 if (!is_error(ret)) { 12683 ret = host_to_target_timespec(arg2, &ts); 12684 } 12685 return ret; 12686 } 12687 #endif 12688 #ifdef TARGET_NR_clock_gettime64 12689 case TARGET_NR_clock_gettime64: 12690 { 12691 struct timespec ts; 12692 ret = get_errno(clock_gettime(arg1, &ts)); 12693 if (!is_error(ret)) { 12694 ret = host_to_target_timespec64(arg2, &ts); 12695 } 12696 return ret; 12697 } 12698 #endif 12699 #ifdef TARGET_NR_clock_getres 12700 case TARGET_NR_clock_getres: 12701 { 12702 struct timespec ts; 12703 ret = get_errno(clock_getres(arg1, &ts)); 12704 if (!is_error(ret)) { 12705 host_to_target_timespec(arg2, &ts); 12706 } 12707 return ret; 12708 } 12709 #endif 12710 #ifdef TARGET_NR_clock_getres_time64 12711 case TARGET_NR_clock_getres_time64: 12712 { 12713 struct timespec ts; 12714 ret = get_errno(clock_getres(arg1, &ts)); 12715 if (!is_error(ret)) { 12716 host_to_target_timespec64(arg2, &ts); 12717 } 12718 return ret; 12719 } 12720 #endif 12721 #ifdef TARGET_NR_clock_nanosleep 12722 case TARGET_NR_clock_nanosleep: 12723 { 12724 struct timespec ts; 12725 if (target_to_host_timespec(&ts, arg3)) { 12726 return -TARGET_EFAULT; 12727 } 12728 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12729 &ts, arg4 ? &ts : NULL)); 12730 /* 12731 * if the call is interrupted by a signal handler, it fails 12732 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not 12733 * TIMER_ABSTIME, it returns the remaining unslept time in arg4. 12734 */ 12735 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12736 host_to_target_timespec(arg4, &ts)) { 12737 return -TARGET_EFAULT; 12738 } 12739 12740 return ret; 12741 } 12742 #endif 12743 #ifdef TARGET_NR_clock_nanosleep_time64 12744 case TARGET_NR_clock_nanosleep_time64: 12745 { 12746 struct timespec ts; 12747 12748 if (target_to_host_timespec64(&ts, arg3)) { 12749 return -TARGET_EFAULT; 12750 } 12751 12752 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12753 &ts, arg4 ? &ts : NULL)); 12754 12755 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12756 host_to_target_timespec64(arg4, &ts)) { 12757 return -TARGET_EFAULT; 12758 } 12759 return ret; 12760 } 12761 #endif 12762 12763 #if defined(TARGET_NR_set_tid_address) 12764 case TARGET_NR_set_tid_address: 12765 { 12766 TaskState *ts = get_task_state(cpu); 12767 ts->child_tidptr = arg1; 12768 /* do not call host set_tid_address() syscall, instead return tid() */ 12769 return get_errno(sys_gettid()); 12770 } 12771 #endif 12772 12773 case TARGET_NR_tkill: 12774 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 12775 12776 case TARGET_NR_tgkill: 12777 return get_errno(safe_tgkill((int)arg1, (int)arg2, 12778 target_to_host_signal(arg3))); 12779 12780 #ifdef TARGET_NR_set_robust_list 12781 case TARGET_NR_set_robust_list: 12782 case TARGET_NR_get_robust_list: 12783 /* The ABI for supporting robust futexes has userspace pass 12784 * the kernel a pointer to a linked list which is updated by 12785 * userspace after the syscall; the list is walked by the kernel 12786 * when the thread exits. Since the linked list in QEMU guest 12787 * memory isn't a valid linked list for the host and we have 12788 * no way to reliably intercept the thread-death event, we can't 12789 * support these. Silently return ENOSYS so that guest userspace 12790 * falls back to a non-robust futex implementation (which should 12791 * be OK except in the corner case of the guest crashing while 12792 * holding a mutex that is shared with another process via 12793 * shared memory). 12794 */ 12795 return -TARGET_ENOSYS; 12796 #endif 12797 12798 #if defined(TARGET_NR_utimensat) 12799 case TARGET_NR_utimensat: 12800 { 12801 struct timespec *tsp, ts[2]; 12802 if (!arg3) { 12803 tsp = NULL; 12804 } else { 12805 if (target_to_host_timespec(ts, arg3)) { 12806 return -TARGET_EFAULT; 12807 } 12808 if (target_to_host_timespec(ts + 1, arg3 + 12809 sizeof(struct target_timespec))) { 12810 return -TARGET_EFAULT; 12811 } 12812 tsp = ts; 12813 } 12814 if (!arg2) 12815 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12816 else { 12817 if (!(p = lock_user_string(arg2))) { 12818 return -TARGET_EFAULT; 12819 } 12820 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12821 unlock_user(p, arg2, 0); 12822 } 12823 } 12824 return ret; 12825 #endif 12826 #ifdef TARGET_NR_utimensat_time64 12827 case TARGET_NR_utimensat_time64: 12828 { 12829 struct timespec *tsp, ts[2]; 12830 if (!arg3) { 12831 tsp = NULL; 12832 } else { 12833 if (target_to_host_timespec64(ts, arg3)) { 12834 return -TARGET_EFAULT; 12835 } 12836 if (target_to_host_timespec64(ts + 1, arg3 + 12837 sizeof(struct target__kernel_timespec))) { 12838 return -TARGET_EFAULT; 12839 } 12840 tsp = ts; 12841 } 12842 if (!arg2) 12843 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12844 else { 12845 p = lock_user_string(arg2); 12846 if (!p) { 12847 return -TARGET_EFAULT; 12848 } 12849 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12850 unlock_user(p, arg2, 0); 12851 } 12852 } 12853 return ret; 12854 #endif 12855 #ifdef TARGET_NR_futex 12856 case TARGET_NR_futex: 12857 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6); 12858 #endif 12859 #ifdef TARGET_NR_futex_time64 12860 case TARGET_NR_futex_time64: 12861 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6); 12862 #endif 12863 #ifdef CONFIG_INOTIFY 12864 #if defined(TARGET_NR_inotify_init) 12865 case TARGET_NR_inotify_init: 12866 ret = get_errno(inotify_init()); 12867 if (ret >= 0) { 12868 fd_trans_register(ret, &target_inotify_trans); 12869 } 12870 return ret; 12871 #endif 12872 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1) 12873 case TARGET_NR_inotify_init1: 12874 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1, 12875 fcntl_flags_tbl))); 12876 if (ret >= 0) { 12877 fd_trans_register(ret, &target_inotify_trans); 12878 } 12879 return ret; 12880 #endif 12881 #if defined(TARGET_NR_inotify_add_watch) 12882 case TARGET_NR_inotify_add_watch: 12883 p = lock_user_string(arg2); 12884 ret = get_errno(inotify_add_watch(arg1, path(p), arg3)); 12885 unlock_user(p, arg2, 0); 12886 return ret; 12887 #endif 12888 #if defined(TARGET_NR_inotify_rm_watch) 12889 case TARGET_NR_inotify_rm_watch: 12890 return get_errno(inotify_rm_watch(arg1, arg2)); 12891 #endif 12892 #endif 12893 12894 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12895 case TARGET_NR_mq_open: 12896 { 12897 struct mq_attr posix_mq_attr; 12898 struct mq_attr *pposix_mq_attr; 12899 int host_flags; 12900 12901 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12902 pposix_mq_attr = NULL; 12903 if (arg4) { 12904 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12905 return -TARGET_EFAULT; 12906 } 12907 pposix_mq_attr = &posix_mq_attr; 12908 } 12909 p = lock_user_string(arg1 - 1); 12910 if (!p) { 12911 return -TARGET_EFAULT; 12912 } 12913 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12914 unlock_user (p, arg1, 0); 12915 } 12916 return ret; 12917 12918 case TARGET_NR_mq_unlink: 12919 p = lock_user_string(arg1 - 1); 12920 if (!p) { 12921 return -TARGET_EFAULT; 12922 } 12923 ret = get_errno(mq_unlink(p)); 12924 unlock_user (p, arg1, 0); 12925 return ret; 12926 12927 #ifdef TARGET_NR_mq_timedsend 12928 case TARGET_NR_mq_timedsend: 12929 { 12930 struct timespec ts; 12931 12932 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12933 if (arg5 != 0) { 12934 if (target_to_host_timespec(&ts, arg5)) { 12935 return -TARGET_EFAULT; 12936 } 12937 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12938 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12939 return -TARGET_EFAULT; 12940 } 12941 } else { 12942 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12943 } 12944 unlock_user (p, arg2, arg3); 12945 } 12946 return ret; 12947 #endif 12948 #ifdef TARGET_NR_mq_timedsend_time64 12949 case TARGET_NR_mq_timedsend_time64: 12950 { 12951 struct timespec ts; 12952 12953 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12954 if (arg5 != 0) { 12955 if (target_to_host_timespec64(&ts, arg5)) { 12956 return -TARGET_EFAULT; 12957 } 12958 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12959 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12960 return -TARGET_EFAULT; 12961 } 12962 } else { 12963 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12964 } 12965 unlock_user(p, arg2, arg3); 12966 } 12967 return ret; 12968 #endif 12969 12970 #ifdef TARGET_NR_mq_timedreceive 12971 case TARGET_NR_mq_timedreceive: 12972 { 12973 struct timespec ts; 12974 unsigned int prio; 12975 12976 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12977 if (arg5 != 0) { 12978 if (target_to_host_timespec(&ts, arg5)) { 12979 return -TARGET_EFAULT; 12980 } 12981 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12982 &prio, &ts)); 12983 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12984 return -TARGET_EFAULT; 12985 } 12986 } else { 12987 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12988 &prio, NULL)); 12989 } 12990 unlock_user (p, arg2, arg3); 12991 if (arg4 != 0) 12992 put_user_u32(prio, arg4); 12993 } 12994 return ret; 12995 #endif 12996 #ifdef TARGET_NR_mq_timedreceive_time64 12997 case TARGET_NR_mq_timedreceive_time64: 12998 { 12999 struct timespec ts; 13000 unsigned int prio; 13001 13002 p = lock_user(VERIFY_READ, arg2, arg3, 1); 13003 if (arg5 != 0) { 13004 if (target_to_host_timespec64(&ts, arg5)) { 13005 return -TARGET_EFAULT; 13006 } 13007 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13008 &prio, &ts)); 13009 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 13010 return -TARGET_EFAULT; 13011 } 13012 } else { 13013 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13014 &prio, NULL)); 13015 } 13016 unlock_user(p, arg2, arg3); 13017 if (arg4 != 0) { 13018 put_user_u32(prio, arg4); 13019 } 13020 } 13021 return ret; 13022 #endif 13023 13024 /* Not implemented for now... */ 13025 /* case TARGET_NR_mq_notify: */ 13026 /* break; */ 13027 13028 case TARGET_NR_mq_getsetattr: 13029 { 13030 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 13031 ret = 0; 13032 if (arg2 != 0) { 13033 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 13034 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in, 13035 &posix_mq_attr_out)); 13036 } else if (arg3 != 0) { 13037 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out)); 13038 } 13039 if (ret == 0 && arg3 != 0) { 13040 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 13041 } 13042 } 13043 return ret; 13044 #endif 13045 13046 #ifdef CONFIG_SPLICE 13047 #ifdef TARGET_NR_tee 13048 case TARGET_NR_tee: 13049 { 13050 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 13051 } 13052 return ret; 13053 #endif 13054 #ifdef TARGET_NR_splice 13055 case TARGET_NR_splice: 13056 { 13057 loff_t loff_in, loff_out; 13058 loff_t *ploff_in = NULL, *ploff_out = NULL; 13059 if (arg2) { 13060 if (get_user_u64(loff_in, arg2)) { 13061 return -TARGET_EFAULT; 13062 } 13063 ploff_in = &loff_in; 13064 } 13065 if (arg4) { 13066 if (get_user_u64(loff_out, arg4)) { 13067 return -TARGET_EFAULT; 13068 } 13069 ploff_out = &loff_out; 13070 } 13071 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 13072 if (arg2) { 13073 if (put_user_u64(loff_in, arg2)) { 13074 return -TARGET_EFAULT; 13075 } 13076 } 13077 if (arg4) { 13078 if (put_user_u64(loff_out, arg4)) { 13079 return -TARGET_EFAULT; 13080 } 13081 } 13082 } 13083 return ret; 13084 #endif 13085 #ifdef TARGET_NR_vmsplice 13086 case TARGET_NR_vmsplice: 13087 { 13088 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 13089 if (vec != NULL) { 13090 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 13091 unlock_iovec(vec, arg2, arg3, 0); 13092 } else { 13093 ret = -host_to_target_errno(errno); 13094 } 13095 } 13096 return ret; 13097 #endif 13098 #endif /* CONFIG_SPLICE */ 13099 #ifdef CONFIG_EVENTFD 13100 #if defined(TARGET_NR_eventfd) 13101 case TARGET_NR_eventfd: 13102 ret = get_errno(eventfd(arg1, 0)); 13103 if (ret >= 0) { 13104 fd_trans_register(ret, &target_eventfd_trans); 13105 } 13106 return ret; 13107 #endif 13108 #if defined(TARGET_NR_eventfd2) 13109 case TARGET_NR_eventfd2: 13110 { 13111 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)); 13112 if (arg2 & TARGET_O_NONBLOCK) { 13113 host_flags |= O_NONBLOCK; 13114 } 13115 if (arg2 & TARGET_O_CLOEXEC) { 13116 host_flags |= O_CLOEXEC; 13117 } 13118 ret = get_errno(eventfd(arg1, host_flags)); 13119 if (ret >= 0) { 13120 fd_trans_register(ret, &target_eventfd_trans); 13121 } 13122 return ret; 13123 } 13124 #endif 13125 #endif /* CONFIG_EVENTFD */ 13126 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 13127 case TARGET_NR_fallocate: 13128 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13129 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 13130 target_offset64(arg5, arg6))); 13131 #else 13132 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 13133 #endif 13134 return ret; 13135 #endif 13136 #if defined(CONFIG_SYNC_FILE_RANGE) 13137 #if defined(TARGET_NR_sync_file_range) 13138 case TARGET_NR_sync_file_range: 13139 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13140 #if defined(TARGET_MIPS) 13141 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13142 target_offset64(arg5, arg6), arg7)); 13143 #else 13144 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 13145 target_offset64(arg4, arg5), arg6)); 13146 #endif /* !TARGET_MIPS */ 13147 #else 13148 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 13149 #endif 13150 return ret; 13151 #endif 13152 #if defined(TARGET_NR_sync_file_range2) || \ 13153 defined(TARGET_NR_arm_sync_file_range) 13154 #if defined(TARGET_NR_sync_file_range2) 13155 case TARGET_NR_sync_file_range2: 13156 #endif 13157 #if defined(TARGET_NR_arm_sync_file_range) 13158 case TARGET_NR_arm_sync_file_range: 13159 #endif 13160 /* This is like sync_file_range but the arguments are reordered */ 13161 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13162 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13163 target_offset64(arg5, arg6), arg2)); 13164 #else 13165 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 13166 #endif 13167 return ret; 13168 #endif 13169 #endif 13170 #if defined(TARGET_NR_signalfd4) 13171 case TARGET_NR_signalfd4: 13172 return do_signalfd4(arg1, arg2, arg4); 13173 #endif 13174 #if defined(TARGET_NR_signalfd) 13175 case TARGET_NR_signalfd: 13176 return do_signalfd4(arg1, arg2, 0); 13177 #endif 13178 #if defined(CONFIG_EPOLL) 13179 #if defined(TARGET_NR_epoll_create) 13180 case TARGET_NR_epoll_create: 13181 return get_errno(epoll_create(arg1)); 13182 #endif 13183 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 13184 case TARGET_NR_epoll_create1: 13185 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl))); 13186 #endif 13187 #if defined(TARGET_NR_epoll_ctl) 13188 case TARGET_NR_epoll_ctl: 13189 { 13190 struct epoll_event ep; 13191 struct epoll_event *epp = 0; 13192 if (arg4) { 13193 if (arg2 != EPOLL_CTL_DEL) { 13194 struct target_epoll_event *target_ep; 13195 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 13196 return -TARGET_EFAULT; 13197 } 13198 ep.events = tswap32(target_ep->events); 13199 /* 13200 * The epoll_data_t union is just opaque data to the kernel, 13201 * so we transfer all 64 bits across and need not worry what 13202 * actual data type it is. 13203 */ 13204 ep.data.u64 = tswap64(target_ep->data.u64); 13205 unlock_user_struct(target_ep, arg4, 0); 13206 } 13207 /* 13208 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a 13209 * non-null pointer, even though this argument is ignored. 13210 * 13211 */ 13212 epp = &ep; 13213 } 13214 return get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 13215 } 13216 #endif 13217 13218 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 13219 #if defined(TARGET_NR_epoll_wait) 13220 case TARGET_NR_epoll_wait: 13221 #endif 13222 #if defined(TARGET_NR_epoll_pwait) 13223 case TARGET_NR_epoll_pwait: 13224 #endif 13225 { 13226 struct target_epoll_event *target_ep; 13227 struct epoll_event *ep; 13228 int epfd = arg1; 13229 int maxevents = arg3; 13230 int timeout = arg4; 13231 13232 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 13233 return -TARGET_EINVAL; 13234 } 13235 13236 target_ep = lock_user(VERIFY_WRITE, arg2, 13237 maxevents * sizeof(struct target_epoll_event), 1); 13238 if (!target_ep) { 13239 return -TARGET_EFAULT; 13240 } 13241 13242 ep = g_try_new(struct epoll_event, maxevents); 13243 if (!ep) { 13244 unlock_user(target_ep, arg2, 0); 13245 return -TARGET_ENOMEM; 13246 } 13247 13248 switch (num) { 13249 #if defined(TARGET_NR_epoll_pwait) 13250 case TARGET_NR_epoll_pwait: 13251 { 13252 sigset_t *set = NULL; 13253 13254 if (arg5) { 13255 ret = process_sigsuspend_mask(&set, arg5, arg6); 13256 if (ret != 0) { 13257 break; 13258 } 13259 } 13260 13261 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13262 set, SIGSET_T_SIZE)); 13263 13264 if (set) { 13265 finish_sigsuspend_mask(ret); 13266 } 13267 break; 13268 } 13269 #endif 13270 #if defined(TARGET_NR_epoll_wait) 13271 case TARGET_NR_epoll_wait: 13272 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13273 NULL, 0)); 13274 break; 13275 #endif 13276 default: 13277 ret = -TARGET_ENOSYS; 13278 } 13279 if (!is_error(ret)) { 13280 int i; 13281 for (i = 0; i < ret; i++) { 13282 target_ep[i].events = tswap32(ep[i].events); 13283 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 13284 } 13285 unlock_user(target_ep, arg2, 13286 ret * sizeof(struct target_epoll_event)); 13287 } else { 13288 unlock_user(target_ep, arg2, 0); 13289 } 13290 g_free(ep); 13291 return ret; 13292 } 13293 #endif 13294 #endif 13295 #ifdef TARGET_NR_prlimit64 13296 case TARGET_NR_prlimit64: 13297 { 13298 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 13299 struct target_rlimit64 *target_rnew, *target_rold; 13300 struct host_rlimit64 rnew, rold, *rnewp = 0; 13301 int resource = target_to_host_resource(arg2); 13302 13303 if (arg3 && (resource != RLIMIT_AS && 13304 resource != RLIMIT_DATA && 13305 resource != RLIMIT_STACK)) { 13306 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 13307 return -TARGET_EFAULT; 13308 } 13309 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur); 13310 __get_user(rnew.rlim_max, &target_rnew->rlim_max); 13311 unlock_user_struct(target_rnew, arg3, 0); 13312 rnewp = &rnew; 13313 } 13314 13315 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 13316 if (!is_error(ret) && arg4) { 13317 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 13318 return -TARGET_EFAULT; 13319 } 13320 __put_user(rold.rlim_cur, &target_rold->rlim_cur); 13321 __put_user(rold.rlim_max, &target_rold->rlim_max); 13322 unlock_user_struct(target_rold, arg4, 1); 13323 } 13324 return ret; 13325 } 13326 #endif 13327 #ifdef TARGET_NR_gethostname 13328 case TARGET_NR_gethostname: 13329 { 13330 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 13331 if (name) { 13332 ret = get_errno(gethostname(name, arg2)); 13333 unlock_user(name, arg1, arg2); 13334 } else { 13335 ret = -TARGET_EFAULT; 13336 } 13337 return ret; 13338 } 13339 #endif 13340 #ifdef TARGET_NR_atomic_cmpxchg_32 13341 case TARGET_NR_atomic_cmpxchg_32: 13342 { 13343 /* should use start_exclusive from main.c */ 13344 abi_ulong mem_value; 13345 if (get_user_u32(mem_value, arg6)) { 13346 target_siginfo_t info; 13347 info.si_signo = SIGSEGV; 13348 info.si_errno = 0; 13349 info.si_code = TARGET_SEGV_MAPERR; 13350 info._sifields._sigfault._addr = arg6; 13351 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info); 13352 ret = 0xdeadbeef; 13353 13354 } 13355 if (mem_value == arg2) 13356 put_user_u32(arg1, arg6); 13357 return mem_value; 13358 } 13359 #endif 13360 #ifdef TARGET_NR_atomic_barrier 13361 case TARGET_NR_atomic_barrier: 13362 /* Like the kernel implementation and the 13363 qemu arm barrier, no-op this? */ 13364 return 0; 13365 #endif 13366 13367 #ifdef TARGET_NR_timer_create 13368 case TARGET_NR_timer_create: 13369 { 13370 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 13371 13372 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 13373 13374 int clkid = arg1; 13375 int timer_index = next_free_host_timer(); 13376 13377 if (timer_index < 0) { 13378 ret = -TARGET_EAGAIN; 13379 } else { 13380 timer_t *phtimer = g_posix_timers + timer_index; 13381 13382 if (arg2) { 13383 phost_sevp = &host_sevp; 13384 ret = target_to_host_sigevent(phost_sevp, arg2); 13385 if (ret != 0) { 13386 free_host_timer_slot(timer_index); 13387 return ret; 13388 } 13389 } 13390 13391 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 13392 if (ret) { 13393 free_host_timer_slot(timer_index); 13394 } else { 13395 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 13396 timer_delete(*phtimer); 13397 free_host_timer_slot(timer_index); 13398 return -TARGET_EFAULT; 13399 } 13400 } 13401 } 13402 return ret; 13403 } 13404 #endif 13405 13406 #ifdef TARGET_NR_timer_settime 13407 case TARGET_NR_timer_settime: 13408 { 13409 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 13410 * struct itimerspec * old_value */ 13411 target_timer_t timerid = get_timer_id(arg1); 13412 13413 if (timerid < 0) { 13414 ret = timerid; 13415 } else if (arg3 == 0) { 13416 ret = -TARGET_EINVAL; 13417 } else { 13418 timer_t htimer = g_posix_timers[timerid]; 13419 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13420 13421 if (target_to_host_itimerspec(&hspec_new, arg3)) { 13422 return -TARGET_EFAULT; 13423 } 13424 ret = get_errno( 13425 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13426 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 13427 return -TARGET_EFAULT; 13428 } 13429 } 13430 return ret; 13431 } 13432 #endif 13433 13434 #ifdef TARGET_NR_timer_settime64 13435 case TARGET_NR_timer_settime64: 13436 { 13437 target_timer_t timerid = get_timer_id(arg1); 13438 13439 if (timerid < 0) { 13440 ret = timerid; 13441 } else if (arg3 == 0) { 13442 ret = -TARGET_EINVAL; 13443 } else { 13444 timer_t htimer = g_posix_timers[timerid]; 13445 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13446 13447 if (target_to_host_itimerspec64(&hspec_new, arg3)) { 13448 return -TARGET_EFAULT; 13449 } 13450 ret = get_errno( 13451 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13452 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) { 13453 return -TARGET_EFAULT; 13454 } 13455 } 13456 return ret; 13457 } 13458 #endif 13459 13460 #ifdef TARGET_NR_timer_gettime 13461 case TARGET_NR_timer_gettime: 13462 { 13463 /* args: timer_t timerid, struct itimerspec *curr_value */ 13464 target_timer_t timerid = get_timer_id(arg1); 13465 13466 if (timerid < 0) { 13467 ret = timerid; 13468 } else if (!arg2) { 13469 ret = -TARGET_EFAULT; 13470 } else { 13471 timer_t htimer = g_posix_timers[timerid]; 13472 struct itimerspec hspec; 13473 ret = get_errno(timer_gettime(htimer, &hspec)); 13474 13475 if (host_to_target_itimerspec(arg2, &hspec)) { 13476 ret = -TARGET_EFAULT; 13477 } 13478 } 13479 return ret; 13480 } 13481 #endif 13482 13483 #ifdef TARGET_NR_timer_gettime64 13484 case TARGET_NR_timer_gettime64: 13485 { 13486 /* args: timer_t timerid, struct itimerspec64 *curr_value */ 13487 target_timer_t timerid = get_timer_id(arg1); 13488 13489 if (timerid < 0) { 13490 ret = timerid; 13491 } else if (!arg2) { 13492 ret = -TARGET_EFAULT; 13493 } else { 13494 timer_t htimer = g_posix_timers[timerid]; 13495 struct itimerspec hspec; 13496 ret = get_errno(timer_gettime(htimer, &hspec)); 13497 13498 if (host_to_target_itimerspec64(arg2, &hspec)) { 13499 ret = -TARGET_EFAULT; 13500 } 13501 } 13502 return ret; 13503 } 13504 #endif 13505 13506 #ifdef TARGET_NR_timer_getoverrun 13507 case TARGET_NR_timer_getoverrun: 13508 { 13509 /* args: timer_t timerid */ 13510 target_timer_t timerid = get_timer_id(arg1); 13511 13512 if (timerid < 0) { 13513 ret = timerid; 13514 } else { 13515 timer_t htimer = g_posix_timers[timerid]; 13516 ret = get_errno(timer_getoverrun(htimer)); 13517 } 13518 return ret; 13519 } 13520 #endif 13521 13522 #ifdef TARGET_NR_timer_delete 13523 case TARGET_NR_timer_delete: 13524 { 13525 /* args: timer_t timerid */ 13526 target_timer_t timerid = get_timer_id(arg1); 13527 13528 if (timerid < 0) { 13529 ret = timerid; 13530 } else { 13531 timer_t htimer = g_posix_timers[timerid]; 13532 ret = get_errno(timer_delete(htimer)); 13533 free_host_timer_slot(timerid); 13534 } 13535 return ret; 13536 } 13537 #endif 13538 13539 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 13540 case TARGET_NR_timerfd_create: 13541 ret = get_errno(timerfd_create(arg1, 13542 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 13543 if (ret >= 0) { 13544 fd_trans_register(ret, &target_timerfd_trans); 13545 } 13546 return ret; 13547 #endif 13548 13549 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 13550 case TARGET_NR_timerfd_gettime: 13551 { 13552 struct itimerspec its_curr; 13553 13554 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13555 13556 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 13557 return -TARGET_EFAULT; 13558 } 13559 } 13560 return ret; 13561 #endif 13562 13563 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD) 13564 case TARGET_NR_timerfd_gettime64: 13565 { 13566 struct itimerspec its_curr; 13567 13568 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13569 13570 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) { 13571 return -TARGET_EFAULT; 13572 } 13573 } 13574 return ret; 13575 #endif 13576 13577 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 13578 case TARGET_NR_timerfd_settime: 13579 { 13580 struct itimerspec its_new, its_old, *p_new; 13581 13582 if (arg3) { 13583 if (target_to_host_itimerspec(&its_new, arg3)) { 13584 return -TARGET_EFAULT; 13585 } 13586 p_new = &its_new; 13587 } else { 13588 p_new = NULL; 13589 } 13590 13591 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13592 13593 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 13594 return -TARGET_EFAULT; 13595 } 13596 } 13597 return ret; 13598 #endif 13599 13600 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD) 13601 case TARGET_NR_timerfd_settime64: 13602 { 13603 struct itimerspec its_new, its_old, *p_new; 13604 13605 if (arg3) { 13606 if (target_to_host_itimerspec64(&its_new, arg3)) { 13607 return -TARGET_EFAULT; 13608 } 13609 p_new = &its_new; 13610 } else { 13611 p_new = NULL; 13612 } 13613 13614 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13615 13616 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) { 13617 return -TARGET_EFAULT; 13618 } 13619 } 13620 return ret; 13621 #endif 13622 13623 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 13624 case TARGET_NR_ioprio_get: 13625 return get_errno(ioprio_get(arg1, arg2)); 13626 #endif 13627 13628 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 13629 case TARGET_NR_ioprio_set: 13630 return get_errno(ioprio_set(arg1, arg2, arg3)); 13631 #endif 13632 13633 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 13634 case TARGET_NR_setns: 13635 return get_errno(setns(arg1, arg2)); 13636 #endif 13637 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 13638 case TARGET_NR_unshare: 13639 return get_errno(unshare(arg1)); 13640 #endif 13641 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 13642 case TARGET_NR_kcmp: 13643 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 13644 #endif 13645 #ifdef TARGET_NR_swapcontext 13646 case TARGET_NR_swapcontext: 13647 /* PowerPC specific. */ 13648 return do_swapcontext(cpu_env, arg1, arg2, arg3); 13649 #endif 13650 #ifdef TARGET_NR_memfd_create 13651 case TARGET_NR_memfd_create: 13652 p = lock_user_string(arg1); 13653 if (!p) { 13654 return -TARGET_EFAULT; 13655 } 13656 ret = get_errno(memfd_create(p, arg2)); 13657 fd_trans_unregister(ret); 13658 unlock_user(p, arg1, 0); 13659 return ret; 13660 #endif 13661 #if defined TARGET_NR_membarrier && defined __NR_membarrier 13662 case TARGET_NR_membarrier: 13663 return get_errno(membarrier(arg1, arg2)); 13664 #endif 13665 13666 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 13667 case TARGET_NR_copy_file_range: 13668 { 13669 loff_t inoff, outoff; 13670 loff_t *pinoff = NULL, *poutoff = NULL; 13671 13672 if (arg2) { 13673 if (get_user_u64(inoff, arg2)) { 13674 return -TARGET_EFAULT; 13675 } 13676 pinoff = &inoff; 13677 } 13678 if (arg4) { 13679 if (get_user_u64(outoff, arg4)) { 13680 return -TARGET_EFAULT; 13681 } 13682 poutoff = &outoff; 13683 } 13684 /* Do not sign-extend the count parameter. */ 13685 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff, 13686 (abi_ulong)arg5, arg6)); 13687 if (!is_error(ret) && ret > 0) { 13688 if (arg2) { 13689 if (put_user_u64(inoff, arg2)) { 13690 return -TARGET_EFAULT; 13691 } 13692 } 13693 if (arg4) { 13694 if (put_user_u64(outoff, arg4)) { 13695 return -TARGET_EFAULT; 13696 } 13697 } 13698 } 13699 } 13700 return ret; 13701 #endif 13702 13703 #if defined(TARGET_NR_pivot_root) 13704 case TARGET_NR_pivot_root: 13705 { 13706 void *p2; 13707 p = lock_user_string(arg1); /* new_root */ 13708 p2 = lock_user_string(arg2); /* put_old */ 13709 if (!p || !p2) { 13710 ret = -TARGET_EFAULT; 13711 } else { 13712 ret = get_errno(pivot_root(p, p2)); 13713 } 13714 unlock_user(p2, arg2, 0); 13715 unlock_user(p, arg1, 0); 13716 } 13717 return ret; 13718 #endif 13719 13720 #if defined(TARGET_NR_riscv_hwprobe) 13721 case TARGET_NR_riscv_hwprobe: 13722 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5); 13723 #endif 13724 13725 default: 13726 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); 13727 return -TARGET_ENOSYS; 13728 } 13729 return ret; 13730 } 13731 13732 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1, 13733 abi_long arg2, abi_long arg3, abi_long arg4, 13734 abi_long arg5, abi_long arg6, abi_long arg7, 13735 abi_long arg8) 13736 { 13737 CPUState *cpu = env_cpu(cpu_env); 13738 abi_long ret; 13739 13740 #ifdef DEBUG_ERESTARTSYS 13741 /* Debug-only code for exercising the syscall-restart code paths 13742 * in the per-architecture cpu main loops: restart every syscall 13743 * the guest makes once before letting it through. 13744 */ 13745 { 13746 static bool flag; 13747 flag = !flag; 13748 if (flag) { 13749 return -QEMU_ERESTARTSYS; 13750 } 13751 } 13752 #endif 13753 13754 record_syscall_start(cpu, num, arg1, 13755 arg2, arg3, arg4, arg5, arg6, arg7, arg8); 13756 13757 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13758 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6); 13759 } 13760 13761 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4, 13762 arg5, arg6, arg7, arg8); 13763 13764 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13765 print_syscall_ret(cpu_env, num, ret, arg1, arg2, 13766 arg3, arg4, arg5, arg6); 13767 } 13768 13769 record_syscall_return(cpu, num, ret); 13770 return ret; 13771 } 13772