1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include <elf.h> 24 #include <endian.h> 25 #include <grp.h> 26 #include <sys/ipc.h> 27 #include <sys/msg.h> 28 #include <sys/wait.h> 29 #include <sys/mount.h> 30 #include <sys/file.h> 31 #include <sys/fsuid.h> 32 #include <sys/personality.h> 33 #include <sys/prctl.h> 34 #include <sys/resource.h> 35 #include <sys/swap.h> 36 #include <linux/capability.h> 37 #include <sched.h> 38 #include <sys/timex.h> 39 #ifdef __ia64__ 40 int __clone2(int (*fn)(void *), void *child_stack_base, 41 size_t stack_size, int flags, void *arg, ...); 42 #endif 43 #include <sys/socket.h> 44 #include <sys/un.h> 45 #include <sys/uio.h> 46 #include <poll.h> 47 #include <sys/times.h> 48 #include <sys/shm.h> 49 #include <sys/sem.h> 50 #include <sys/statfs.h> 51 #include <time.h> 52 #include <utime.h> 53 #include <sys/sysinfo.h> 54 #include <sys/signalfd.h> 55 //#include <sys/user.h> 56 #include <netinet/ip.h> 57 #include <netinet/tcp.h> 58 #include <linux/wireless.h> 59 #include <linux/icmp.h> 60 #include "qemu-common.h" 61 #ifdef CONFIG_TIMERFD 62 #include <sys/timerfd.h> 63 #endif 64 #ifdef TARGET_GPROF 65 #include <sys/gmon.h> 66 #endif 67 #ifdef CONFIG_EVENTFD 68 #include <sys/eventfd.h> 69 #endif 70 #ifdef CONFIG_EPOLL 71 #include <sys/epoll.h> 72 #endif 73 #ifdef CONFIG_ATTR 74 #include "qemu/xattr.h" 75 #endif 76 #ifdef CONFIG_SENDFILE 77 #include <sys/sendfile.h> 78 #endif 79 80 #define termios host_termios 81 #define winsize host_winsize 82 #define termio host_termio 83 #define sgttyb host_sgttyb /* same as target */ 84 #define tchars host_tchars /* same as target */ 85 #define ltchars host_ltchars /* same as target */ 86 87 #include <linux/termios.h> 88 #include <linux/unistd.h> 89 #include <linux/cdrom.h> 90 #include <linux/hdreg.h> 91 #include <linux/soundcard.h> 92 #include <linux/kd.h> 93 #include <linux/mtio.h> 94 #include <linux/fs.h> 95 #if defined(CONFIG_FIEMAP) 96 #include <linux/fiemap.h> 97 #endif 98 #include <linux/fb.h> 99 #include <linux/vt.h> 100 #include <linux/dm-ioctl.h> 101 #include <linux/reboot.h> 102 #include <linux/route.h> 103 #include <linux/filter.h> 104 #include <linux/blkpg.h> 105 #include <netpacket/packet.h> 106 #include <linux/netlink.h> 107 #ifdef CONFIG_RTNETLINK 108 #include <linux/rtnetlink.h> 109 #include <linux/if_bridge.h> 110 #endif 111 #include <linux/audit.h> 112 #include "linux_loop.h" 113 #include "uname.h" 114 115 #include "qemu.h" 116 117 #ifndef CLONE_IO 118 #define CLONE_IO 0x80000000 /* Clone io context */ 119 #endif 120 121 /* We can't directly call the host clone syscall, because this will 122 * badly confuse libc (breaking mutexes, for example). So we must 123 * divide clone flags into: 124 * * flag combinations that look like pthread_create() 125 * * flag combinations that look like fork() 126 * * flags we can implement within QEMU itself 127 * * flags we can't support and will return an error for 128 */ 129 /* For thread creation, all these flags must be present; for 130 * fork, none must be present. 131 */ 132 #define CLONE_THREAD_FLAGS \ 133 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 134 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 135 136 /* These flags are ignored: 137 * CLONE_DETACHED is now ignored by the kernel; 138 * CLONE_IO is just an optimisation hint to the I/O scheduler 139 */ 140 #define CLONE_IGNORED_FLAGS \ 141 (CLONE_DETACHED | CLONE_IO) 142 143 /* Flags for fork which we can implement within QEMU itself */ 144 #define CLONE_OPTIONAL_FORK_FLAGS \ 145 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 146 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 147 148 /* Flags for thread creation which we can implement within QEMU itself */ 149 #define CLONE_OPTIONAL_THREAD_FLAGS \ 150 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 151 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 152 153 #define CLONE_INVALID_FORK_FLAGS \ 154 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 155 156 #define CLONE_INVALID_THREAD_FLAGS \ 157 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 158 CLONE_IGNORED_FLAGS)) 159 160 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 161 * have almost all been allocated. We cannot support any of 162 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 163 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 164 * The checks against the invalid thread masks above will catch these. 165 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 166 */ 167 168 //#define DEBUG 169 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 170 * once. This exercises the codepaths for restart. 171 */ 172 //#define DEBUG_ERESTARTSYS 173 174 //#include <linux/msdos_fs.h> 175 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 176 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 177 178 #undef _syscall0 179 #undef _syscall1 180 #undef _syscall2 181 #undef _syscall3 182 #undef _syscall4 183 #undef _syscall5 184 #undef _syscall6 185 186 #define _syscall0(type,name) \ 187 static type name (void) \ 188 { \ 189 return syscall(__NR_##name); \ 190 } 191 192 #define _syscall1(type,name,type1,arg1) \ 193 static type name (type1 arg1) \ 194 { \ 195 return syscall(__NR_##name, arg1); \ 196 } 197 198 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 199 static type name (type1 arg1,type2 arg2) \ 200 { \ 201 return syscall(__NR_##name, arg1, arg2); \ 202 } 203 204 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 205 static type name (type1 arg1,type2 arg2,type3 arg3) \ 206 { \ 207 return syscall(__NR_##name, arg1, arg2, arg3); \ 208 } 209 210 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 211 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 212 { \ 213 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 214 } 215 216 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 217 type5,arg5) \ 218 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 219 { \ 220 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 221 } 222 223 224 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 225 type5,arg5,type6,arg6) \ 226 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 227 type6 arg6) \ 228 { \ 229 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 230 } 231 232 233 #define __NR_sys_uname __NR_uname 234 #define __NR_sys_getcwd1 __NR_getcwd 235 #define __NR_sys_getdents __NR_getdents 236 #define __NR_sys_getdents64 __NR_getdents64 237 #define __NR_sys_getpriority __NR_getpriority 238 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 239 #define __NR_sys_syslog __NR_syslog 240 #define __NR_sys_futex __NR_futex 241 #define __NR_sys_inotify_init __NR_inotify_init 242 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 243 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 244 245 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \ 246 defined(__s390x__) 247 #define __NR__llseek __NR_lseek 248 #endif 249 250 /* Newer kernel ports have llseek() instead of _llseek() */ 251 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 252 #define TARGET_NR__llseek TARGET_NR_llseek 253 #endif 254 255 #ifdef __NR_gettid 256 _syscall0(int, gettid) 257 #else 258 /* This is a replacement for the host gettid() and must return a host 259 errno. */ 260 static int gettid(void) { 261 return -ENOSYS; 262 } 263 #endif 264 #if defined(TARGET_NR_getdents) && defined(__NR_getdents) 265 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 266 #endif 267 #if !defined(__NR_getdents) || \ 268 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 269 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 270 #endif 271 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 272 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 273 loff_t *, res, uint, wh); 274 #endif 275 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo) 276 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 277 #ifdef __NR_exit_group 278 _syscall1(int,exit_group,int,error_code) 279 #endif 280 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 281 _syscall1(int,set_tid_address,int *,tidptr) 282 #endif 283 #if defined(TARGET_NR_futex) && defined(__NR_futex) 284 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 285 const struct timespec *,timeout,int *,uaddr2,int,val3) 286 #endif 287 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 288 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 289 unsigned long *, user_mask_ptr); 290 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 291 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 292 unsigned long *, user_mask_ptr); 293 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 294 void *, arg); 295 _syscall2(int, capget, struct __user_cap_header_struct *, header, 296 struct __user_cap_data_struct *, data); 297 _syscall2(int, capset, struct __user_cap_header_struct *, header, 298 struct __user_cap_data_struct *, data); 299 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 300 _syscall2(int, ioprio_get, int, which, int, who) 301 #endif 302 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 303 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 304 #endif 305 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 306 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 307 #endif 308 309 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 310 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 311 unsigned long, idx1, unsigned long, idx2) 312 #endif 313 314 static bitmask_transtbl fcntl_flags_tbl[] = { 315 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 316 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 317 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 318 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 319 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 320 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 321 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 322 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 323 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 324 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 325 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 326 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 327 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 328 #if defined(O_DIRECT) 329 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 330 #endif 331 #if defined(O_NOATIME) 332 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 333 #endif 334 #if defined(O_CLOEXEC) 335 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 336 #endif 337 #if defined(O_PATH) 338 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 339 #endif 340 /* Don't terminate the list prematurely on 64-bit host+guest. */ 341 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 342 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 343 #endif 344 { 0, 0, 0, 0 } 345 }; 346 347 enum { 348 QEMU_IFLA_BR_UNSPEC, 349 QEMU_IFLA_BR_FORWARD_DELAY, 350 QEMU_IFLA_BR_HELLO_TIME, 351 QEMU_IFLA_BR_MAX_AGE, 352 QEMU_IFLA_BR_AGEING_TIME, 353 QEMU_IFLA_BR_STP_STATE, 354 QEMU_IFLA_BR_PRIORITY, 355 QEMU_IFLA_BR_VLAN_FILTERING, 356 QEMU_IFLA_BR_VLAN_PROTOCOL, 357 QEMU_IFLA_BR_GROUP_FWD_MASK, 358 QEMU_IFLA_BR_ROOT_ID, 359 QEMU_IFLA_BR_BRIDGE_ID, 360 QEMU_IFLA_BR_ROOT_PORT, 361 QEMU_IFLA_BR_ROOT_PATH_COST, 362 QEMU_IFLA_BR_TOPOLOGY_CHANGE, 363 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED, 364 QEMU_IFLA_BR_HELLO_TIMER, 365 QEMU_IFLA_BR_TCN_TIMER, 366 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER, 367 QEMU_IFLA_BR_GC_TIMER, 368 QEMU_IFLA_BR_GROUP_ADDR, 369 QEMU_IFLA_BR_FDB_FLUSH, 370 QEMU_IFLA_BR_MCAST_ROUTER, 371 QEMU_IFLA_BR_MCAST_SNOOPING, 372 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR, 373 QEMU_IFLA_BR_MCAST_QUERIER, 374 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY, 375 QEMU_IFLA_BR_MCAST_HASH_MAX, 376 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT, 377 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT, 378 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL, 379 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL, 380 QEMU_IFLA_BR_MCAST_QUERIER_INTVL, 381 QEMU_IFLA_BR_MCAST_QUERY_INTVL, 382 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL, 383 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL, 384 QEMU_IFLA_BR_NF_CALL_IPTABLES, 385 QEMU_IFLA_BR_NF_CALL_IP6TABLES, 386 QEMU_IFLA_BR_NF_CALL_ARPTABLES, 387 QEMU_IFLA_BR_VLAN_DEFAULT_PVID, 388 QEMU_IFLA_BR_PAD, 389 QEMU_IFLA_BR_VLAN_STATS_ENABLED, 390 QEMU_IFLA_BR_MCAST_STATS_ENABLED, 391 QEMU___IFLA_BR_MAX, 392 }; 393 394 enum { 395 QEMU_IFLA_UNSPEC, 396 QEMU_IFLA_ADDRESS, 397 QEMU_IFLA_BROADCAST, 398 QEMU_IFLA_IFNAME, 399 QEMU_IFLA_MTU, 400 QEMU_IFLA_LINK, 401 QEMU_IFLA_QDISC, 402 QEMU_IFLA_STATS, 403 QEMU_IFLA_COST, 404 QEMU_IFLA_PRIORITY, 405 QEMU_IFLA_MASTER, 406 QEMU_IFLA_WIRELESS, 407 QEMU_IFLA_PROTINFO, 408 QEMU_IFLA_TXQLEN, 409 QEMU_IFLA_MAP, 410 QEMU_IFLA_WEIGHT, 411 QEMU_IFLA_OPERSTATE, 412 QEMU_IFLA_LINKMODE, 413 QEMU_IFLA_LINKINFO, 414 QEMU_IFLA_NET_NS_PID, 415 QEMU_IFLA_IFALIAS, 416 QEMU_IFLA_NUM_VF, 417 QEMU_IFLA_VFINFO_LIST, 418 QEMU_IFLA_STATS64, 419 QEMU_IFLA_VF_PORTS, 420 QEMU_IFLA_PORT_SELF, 421 QEMU_IFLA_AF_SPEC, 422 QEMU_IFLA_GROUP, 423 QEMU_IFLA_NET_NS_FD, 424 QEMU_IFLA_EXT_MASK, 425 QEMU_IFLA_PROMISCUITY, 426 QEMU_IFLA_NUM_TX_QUEUES, 427 QEMU_IFLA_NUM_RX_QUEUES, 428 QEMU_IFLA_CARRIER, 429 QEMU_IFLA_PHYS_PORT_ID, 430 QEMU_IFLA_CARRIER_CHANGES, 431 QEMU_IFLA_PHYS_SWITCH_ID, 432 QEMU_IFLA_LINK_NETNSID, 433 QEMU_IFLA_PHYS_PORT_NAME, 434 QEMU_IFLA_PROTO_DOWN, 435 QEMU_IFLA_GSO_MAX_SEGS, 436 QEMU_IFLA_GSO_MAX_SIZE, 437 QEMU_IFLA_PAD, 438 QEMU_IFLA_XDP, 439 QEMU___IFLA_MAX 440 }; 441 442 enum { 443 QEMU_IFLA_BRPORT_UNSPEC, 444 QEMU_IFLA_BRPORT_STATE, 445 QEMU_IFLA_BRPORT_PRIORITY, 446 QEMU_IFLA_BRPORT_COST, 447 QEMU_IFLA_BRPORT_MODE, 448 QEMU_IFLA_BRPORT_GUARD, 449 QEMU_IFLA_BRPORT_PROTECT, 450 QEMU_IFLA_BRPORT_FAST_LEAVE, 451 QEMU_IFLA_BRPORT_LEARNING, 452 QEMU_IFLA_BRPORT_UNICAST_FLOOD, 453 QEMU_IFLA_BRPORT_PROXYARP, 454 QEMU_IFLA_BRPORT_LEARNING_SYNC, 455 QEMU_IFLA_BRPORT_PROXYARP_WIFI, 456 QEMU_IFLA_BRPORT_ROOT_ID, 457 QEMU_IFLA_BRPORT_BRIDGE_ID, 458 QEMU_IFLA_BRPORT_DESIGNATED_PORT, 459 QEMU_IFLA_BRPORT_DESIGNATED_COST, 460 QEMU_IFLA_BRPORT_ID, 461 QEMU_IFLA_BRPORT_NO, 462 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK, 463 QEMU_IFLA_BRPORT_CONFIG_PENDING, 464 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER, 465 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER, 466 QEMU_IFLA_BRPORT_HOLD_TIMER, 467 QEMU_IFLA_BRPORT_FLUSH, 468 QEMU_IFLA_BRPORT_MULTICAST_ROUTER, 469 QEMU_IFLA_BRPORT_PAD, 470 QEMU___IFLA_BRPORT_MAX 471 }; 472 473 enum { 474 QEMU_IFLA_INFO_UNSPEC, 475 QEMU_IFLA_INFO_KIND, 476 QEMU_IFLA_INFO_DATA, 477 QEMU_IFLA_INFO_XSTATS, 478 QEMU_IFLA_INFO_SLAVE_KIND, 479 QEMU_IFLA_INFO_SLAVE_DATA, 480 QEMU___IFLA_INFO_MAX, 481 }; 482 483 enum { 484 QEMU_IFLA_INET_UNSPEC, 485 QEMU_IFLA_INET_CONF, 486 QEMU___IFLA_INET_MAX, 487 }; 488 489 enum { 490 QEMU_IFLA_INET6_UNSPEC, 491 QEMU_IFLA_INET6_FLAGS, 492 QEMU_IFLA_INET6_CONF, 493 QEMU_IFLA_INET6_STATS, 494 QEMU_IFLA_INET6_MCAST, 495 QEMU_IFLA_INET6_CACHEINFO, 496 QEMU_IFLA_INET6_ICMP6STATS, 497 QEMU_IFLA_INET6_TOKEN, 498 QEMU_IFLA_INET6_ADDR_GEN_MODE, 499 QEMU___IFLA_INET6_MAX 500 }; 501 502 typedef abi_long (*TargetFdDataFunc)(void *, size_t); 503 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t); 504 typedef struct TargetFdTrans { 505 TargetFdDataFunc host_to_target_data; 506 TargetFdDataFunc target_to_host_data; 507 TargetFdAddrFunc target_to_host_addr; 508 } TargetFdTrans; 509 510 static TargetFdTrans **target_fd_trans; 511 512 static unsigned int target_fd_max; 513 514 static TargetFdDataFunc fd_trans_target_to_host_data(int fd) 515 { 516 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 517 return target_fd_trans[fd]->target_to_host_data; 518 } 519 return NULL; 520 } 521 522 static TargetFdDataFunc fd_trans_host_to_target_data(int fd) 523 { 524 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 525 return target_fd_trans[fd]->host_to_target_data; 526 } 527 return NULL; 528 } 529 530 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd) 531 { 532 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 533 return target_fd_trans[fd]->target_to_host_addr; 534 } 535 return NULL; 536 } 537 538 static void fd_trans_register(int fd, TargetFdTrans *trans) 539 { 540 unsigned int oldmax; 541 542 if (fd >= target_fd_max) { 543 oldmax = target_fd_max; 544 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */ 545 target_fd_trans = g_renew(TargetFdTrans *, 546 target_fd_trans, target_fd_max); 547 memset((void *)(target_fd_trans + oldmax), 0, 548 (target_fd_max - oldmax) * sizeof(TargetFdTrans *)); 549 } 550 target_fd_trans[fd] = trans; 551 } 552 553 static void fd_trans_unregister(int fd) 554 { 555 if (fd >= 0 && fd < target_fd_max) { 556 target_fd_trans[fd] = NULL; 557 } 558 } 559 560 static void fd_trans_dup(int oldfd, int newfd) 561 { 562 fd_trans_unregister(newfd); 563 if (oldfd < target_fd_max && target_fd_trans[oldfd]) { 564 fd_trans_register(newfd, target_fd_trans[oldfd]); 565 } 566 } 567 568 static int sys_getcwd1(char *buf, size_t size) 569 { 570 if (getcwd(buf, size) == NULL) { 571 /* getcwd() sets errno */ 572 return (-1); 573 } 574 return strlen(buf)+1; 575 } 576 577 #ifdef TARGET_NR_utimensat 578 #if defined(__NR_utimensat) 579 #define __NR_sys_utimensat __NR_utimensat 580 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 581 const struct timespec *,tsp,int,flags) 582 #else 583 static int sys_utimensat(int dirfd, const char *pathname, 584 const struct timespec times[2], int flags) 585 { 586 errno = ENOSYS; 587 return -1; 588 } 589 #endif 590 #endif /* TARGET_NR_utimensat */ 591 592 #ifdef CONFIG_INOTIFY 593 #include <sys/inotify.h> 594 595 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 596 static int sys_inotify_init(void) 597 { 598 return (inotify_init()); 599 } 600 #endif 601 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 602 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 603 { 604 return (inotify_add_watch(fd, pathname, mask)); 605 } 606 #endif 607 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 608 static int sys_inotify_rm_watch(int fd, int32_t wd) 609 { 610 return (inotify_rm_watch(fd, wd)); 611 } 612 #endif 613 #ifdef CONFIG_INOTIFY1 614 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 615 static int sys_inotify_init1(int flags) 616 { 617 return (inotify_init1(flags)); 618 } 619 #endif 620 #endif 621 #else 622 /* Userspace can usually survive runtime without inotify */ 623 #undef TARGET_NR_inotify_init 624 #undef TARGET_NR_inotify_init1 625 #undef TARGET_NR_inotify_add_watch 626 #undef TARGET_NR_inotify_rm_watch 627 #endif /* CONFIG_INOTIFY */ 628 629 #if defined(TARGET_NR_prlimit64) 630 #ifndef __NR_prlimit64 631 # define __NR_prlimit64 -1 632 #endif 633 #define __NR_sys_prlimit64 __NR_prlimit64 634 /* The glibc rlimit structure may not be that used by the underlying syscall */ 635 struct host_rlimit64 { 636 uint64_t rlim_cur; 637 uint64_t rlim_max; 638 }; 639 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 640 const struct host_rlimit64 *, new_limit, 641 struct host_rlimit64 *, old_limit) 642 #endif 643 644 645 #if defined(TARGET_NR_timer_create) 646 /* Maxiumum of 32 active POSIX timers allowed at any one time. */ 647 static timer_t g_posix_timers[32] = { 0, } ; 648 649 static inline int next_free_host_timer(void) 650 { 651 int k ; 652 /* FIXME: Does finding the next free slot require a lock? */ 653 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 654 if (g_posix_timers[k] == 0) { 655 g_posix_timers[k] = (timer_t) 1; 656 return k; 657 } 658 } 659 return -1; 660 } 661 #endif 662 663 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 664 #ifdef TARGET_ARM 665 static inline int regpairs_aligned(void *cpu_env) { 666 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 667 } 668 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32) 669 static inline int regpairs_aligned(void *cpu_env) { return 1; } 670 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 671 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 672 * of registers which translates to the same as ARM/MIPS, because we start with 673 * r3 as arg1 */ 674 static inline int regpairs_aligned(void *cpu_env) { return 1; } 675 #else 676 static inline int regpairs_aligned(void *cpu_env) { return 0; } 677 #endif 678 679 #define ERRNO_TABLE_SIZE 1200 680 681 /* target_to_host_errno_table[] is initialized from 682 * host_to_target_errno_table[] in syscall_init(). */ 683 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 684 }; 685 686 /* 687 * This list is the union of errno values overridden in asm-<arch>/errno.h 688 * minus the errnos that are not actually generic to all archs. 689 */ 690 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 691 [EAGAIN] = TARGET_EAGAIN, 692 [EIDRM] = TARGET_EIDRM, 693 [ECHRNG] = TARGET_ECHRNG, 694 [EL2NSYNC] = TARGET_EL2NSYNC, 695 [EL3HLT] = TARGET_EL3HLT, 696 [EL3RST] = TARGET_EL3RST, 697 [ELNRNG] = TARGET_ELNRNG, 698 [EUNATCH] = TARGET_EUNATCH, 699 [ENOCSI] = TARGET_ENOCSI, 700 [EL2HLT] = TARGET_EL2HLT, 701 [EDEADLK] = TARGET_EDEADLK, 702 [ENOLCK] = TARGET_ENOLCK, 703 [EBADE] = TARGET_EBADE, 704 [EBADR] = TARGET_EBADR, 705 [EXFULL] = TARGET_EXFULL, 706 [ENOANO] = TARGET_ENOANO, 707 [EBADRQC] = TARGET_EBADRQC, 708 [EBADSLT] = TARGET_EBADSLT, 709 [EBFONT] = TARGET_EBFONT, 710 [ENOSTR] = TARGET_ENOSTR, 711 [ENODATA] = TARGET_ENODATA, 712 [ETIME] = TARGET_ETIME, 713 [ENOSR] = TARGET_ENOSR, 714 [ENONET] = TARGET_ENONET, 715 [ENOPKG] = TARGET_ENOPKG, 716 [EREMOTE] = TARGET_EREMOTE, 717 [ENOLINK] = TARGET_ENOLINK, 718 [EADV] = TARGET_EADV, 719 [ESRMNT] = TARGET_ESRMNT, 720 [ECOMM] = TARGET_ECOMM, 721 [EPROTO] = TARGET_EPROTO, 722 [EDOTDOT] = TARGET_EDOTDOT, 723 [EMULTIHOP] = TARGET_EMULTIHOP, 724 [EBADMSG] = TARGET_EBADMSG, 725 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 726 [EOVERFLOW] = TARGET_EOVERFLOW, 727 [ENOTUNIQ] = TARGET_ENOTUNIQ, 728 [EBADFD] = TARGET_EBADFD, 729 [EREMCHG] = TARGET_EREMCHG, 730 [ELIBACC] = TARGET_ELIBACC, 731 [ELIBBAD] = TARGET_ELIBBAD, 732 [ELIBSCN] = TARGET_ELIBSCN, 733 [ELIBMAX] = TARGET_ELIBMAX, 734 [ELIBEXEC] = TARGET_ELIBEXEC, 735 [EILSEQ] = TARGET_EILSEQ, 736 [ENOSYS] = TARGET_ENOSYS, 737 [ELOOP] = TARGET_ELOOP, 738 [ERESTART] = TARGET_ERESTART, 739 [ESTRPIPE] = TARGET_ESTRPIPE, 740 [ENOTEMPTY] = TARGET_ENOTEMPTY, 741 [EUSERS] = TARGET_EUSERS, 742 [ENOTSOCK] = TARGET_ENOTSOCK, 743 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 744 [EMSGSIZE] = TARGET_EMSGSIZE, 745 [EPROTOTYPE] = TARGET_EPROTOTYPE, 746 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 747 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 748 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 749 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 750 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 751 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 752 [EADDRINUSE] = TARGET_EADDRINUSE, 753 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 754 [ENETDOWN] = TARGET_ENETDOWN, 755 [ENETUNREACH] = TARGET_ENETUNREACH, 756 [ENETRESET] = TARGET_ENETRESET, 757 [ECONNABORTED] = TARGET_ECONNABORTED, 758 [ECONNRESET] = TARGET_ECONNRESET, 759 [ENOBUFS] = TARGET_ENOBUFS, 760 [EISCONN] = TARGET_EISCONN, 761 [ENOTCONN] = TARGET_ENOTCONN, 762 [EUCLEAN] = TARGET_EUCLEAN, 763 [ENOTNAM] = TARGET_ENOTNAM, 764 [ENAVAIL] = TARGET_ENAVAIL, 765 [EISNAM] = TARGET_EISNAM, 766 [EREMOTEIO] = TARGET_EREMOTEIO, 767 [EDQUOT] = TARGET_EDQUOT, 768 [ESHUTDOWN] = TARGET_ESHUTDOWN, 769 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 770 [ETIMEDOUT] = TARGET_ETIMEDOUT, 771 [ECONNREFUSED] = TARGET_ECONNREFUSED, 772 [EHOSTDOWN] = TARGET_EHOSTDOWN, 773 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 774 [EALREADY] = TARGET_EALREADY, 775 [EINPROGRESS] = TARGET_EINPROGRESS, 776 [ESTALE] = TARGET_ESTALE, 777 [ECANCELED] = TARGET_ECANCELED, 778 [ENOMEDIUM] = TARGET_ENOMEDIUM, 779 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 780 #ifdef ENOKEY 781 [ENOKEY] = TARGET_ENOKEY, 782 #endif 783 #ifdef EKEYEXPIRED 784 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 785 #endif 786 #ifdef EKEYREVOKED 787 [EKEYREVOKED] = TARGET_EKEYREVOKED, 788 #endif 789 #ifdef EKEYREJECTED 790 [EKEYREJECTED] = TARGET_EKEYREJECTED, 791 #endif 792 #ifdef EOWNERDEAD 793 [EOWNERDEAD] = TARGET_EOWNERDEAD, 794 #endif 795 #ifdef ENOTRECOVERABLE 796 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 797 #endif 798 #ifdef ENOMSG 799 [ENOMSG] = TARGET_ENOMSG, 800 #endif 801 #ifdef ERKFILL 802 [ERFKILL] = TARGET_ERFKILL, 803 #endif 804 #ifdef EHWPOISON 805 [EHWPOISON] = TARGET_EHWPOISON, 806 #endif 807 }; 808 809 static inline int host_to_target_errno(int err) 810 { 811 if (err >= 0 && err < ERRNO_TABLE_SIZE && 812 host_to_target_errno_table[err]) { 813 return host_to_target_errno_table[err]; 814 } 815 return err; 816 } 817 818 static inline int target_to_host_errno(int err) 819 { 820 if (err >= 0 && err < ERRNO_TABLE_SIZE && 821 target_to_host_errno_table[err]) { 822 return target_to_host_errno_table[err]; 823 } 824 return err; 825 } 826 827 static inline abi_long get_errno(abi_long ret) 828 { 829 if (ret == -1) 830 return -host_to_target_errno(errno); 831 else 832 return ret; 833 } 834 835 static inline int is_error(abi_long ret) 836 { 837 return (abi_ulong)ret >= (abi_ulong)(-4096); 838 } 839 840 const char *target_strerror(int err) 841 { 842 if (err == TARGET_ERESTARTSYS) { 843 return "To be restarted"; 844 } 845 if (err == TARGET_QEMU_ESIGRETURN) { 846 return "Successful exit from sigreturn"; 847 } 848 849 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 850 return NULL; 851 } 852 return strerror(target_to_host_errno(err)); 853 } 854 855 #define safe_syscall0(type, name) \ 856 static type safe_##name(void) \ 857 { \ 858 return safe_syscall(__NR_##name); \ 859 } 860 861 #define safe_syscall1(type, name, type1, arg1) \ 862 static type safe_##name(type1 arg1) \ 863 { \ 864 return safe_syscall(__NR_##name, arg1); \ 865 } 866 867 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 868 static type safe_##name(type1 arg1, type2 arg2) \ 869 { \ 870 return safe_syscall(__NR_##name, arg1, arg2); \ 871 } 872 873 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 874 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 875 { \ 876 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 877 } 878 879 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 880 type4, arg4) \ 881 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 882 { \ 883 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 884 } 885 886 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 887 type4, arg4, type5, arg5) \ 888 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 889 type5 arg5) \ 890 { \ 891 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 892 } 893 894 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 895 type4, arg4, type5, arg5, type6, arg6) \ 896 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 897 type5 arg5, type6 arg6) \ 898 { \ 899 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 900 } 901 902 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 903 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 904 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 905 int, flags, mode_t, mode) 906 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 907 struct rusage *, rusage) 908 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 909 int, options, struct rusage *, rusage) 910 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 911 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 912 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 913 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 914 struct timespec *, tsp, const sigset_t *, sigmask, 915 size_t, sigsetsize) 916 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 917 int, maxevents, int, timeout, const sigset_t *, sigmask, 918 size_t, sigsetsize) 919 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 920 const struct timespec *,timeout,int *,uaddr2,int,val3) 921 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 922 safe_syscall2(int, kill, pid_t, pid, int, sig) 923 safe_syscall2(int, tkill, int, tid, int, sig) 924 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 925 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 926 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 927 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 928 unsigned long, pos_l, unsigned long, pos_h) 929 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 930 unsigned long, pos_l, unsigned long, pos_h) 931 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 932 socklen_t, addrlen) 933 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 934 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 935 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 936 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 937 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 938 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 939 safe_syscall2(int, flock, int, fd, int, operation) 940 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 941 const struct timespec *, uts, size_t, sigsetsize) 942 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 943 int, flags) 944 safe_syscall2(int, nanosleep, const struct timespec *, req, 945 struct timespec *, rem) 946 #ifdef TARGET_NR_clock_nanosleep 947 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 948 const struct timespec *, req, struct timespec *, rem) 949 #endif 950 #ifdef __NR_msgsnd 951 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 952 int, flags) 953 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 954 long, msgtype, int, flags) 955 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 956 unsigned, nsops, const struct timespec *, timeout) 957 #else 958 /* This host kernel architecture uses a single ipc syscall; fake up 959 * wrappers for the sub-operations to hide this implementation detail. 960 * Annoyingly we can't include linux/ipc.h to get the constant definitions 961 * for the call parameter because some structs in there conflict with the 962 * sys/ipc.h ones. So we just define them here, and rely on them being 963 * the same for all host architectures. 964 */ 965 #define Q_SEMTIMEDOP 4 966 #define Q_MSGSND 11 967 #define Q_MSGRCV 12 968 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP)) 969 970 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 971 void *, ptr, long, fifth) 972 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags) 973 { 974 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0); 975 } 976 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags) 977 { 978 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type); 979 } 980 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops, 981 const struct timespec *timeout) 982 { 983 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops, 984 (long)timeout); 985 } 986 #endif 987 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 988 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 989 size_t, len, unsigned, prio, const struct timespec *, timeout) 990 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 991 size_t, len, unsigned *, prio, const struct timespec *, timeout) 992 #endif 993 /* We do ioctl like this rather than via safe_syscall3 to preserve the 994 * "third argument might be integer or pointer or not present" behaviour of 995 * the libc function. 996 */ 997 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 998 /* Similarly for fcntl. Note that callers must always: 999 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 1000 * use the flock64 struct rather than unsuffixed flock 1001 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 1002 */ 1003 #ifdef __NR_fcntl64 1004 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 1005 #else 1006 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 1007 #endif 1008 1009 static inline int host_to_target_sock_type(int host_type) 1010 { 1011 int target_type; 1012 1013 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 1014 case SOCK_DGRAM: 1015 target_type = TARGET_SOCK_DGRAM; 1016 break; 1017 case SOCK_STREAM: 1018 target_type = TARGET_SOCK_STREAM; 1019 break; 1020 default: 1021 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 1022 break; 1023 } 1024 1025 #if defined(SOCK_CLOEXEC) 1026 if (host_type & SOCK_CLOEXEC) { 1027 target_type |= TARGET_SOCK_CLOEXEC; 1028 } 1029 #endif 1030 1031 #if defined(SOCK_NONBLOCK) 1032 if (host_type & SOCK_NONBLOCK) { 1033 target_type |= TARGET_SOCK_NONBLOCK; 1034 } 1035 #endif 1036 1037 return target_type; 1038 } 1039 1040 static abi_ulong target_brk; 1041 static abi_ulong target_original_brk; 1042 static abi_ulong brk_page; 1043 1044 void target_set_brk(abi_ulong new_brk) 1045 { 1046 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 1047 brk_page = HOST_PAGE_ALIGN(target_brk); 1048 } 1049 1050 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 1051 #define DEBUGF_BRK(message, args...) 1052 1053 /* do_brk() must return target values and target errnos. */ 1054 abi_long do_brk(abi_ulong new_brk) 1055 { 1056 abi_long mapped_addr; 1057 abi_ulong new_alloc_size; 1058 1059 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 1060 1061 if (!new_brk) { 1062 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 1063 return target_brk; 1064 } 1065 if (new_brk < target_original_brk) { 1066 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 1067 target_brk); 1068 return target_brk; 1069 } 1070 1071 /* If the new brk is less than the highest page reserved to the 1072 * target heap allocation, set it and we're almost done... */ 1073 if (new_brk <= brk_page) { 1074 /* Heap contents are initialized to zero, as for anonymous 1075 * mapped pages. */ 1076 if (new_brk > target_brk) { 1077 memset(g2h(target_brk), 0, new_brk - target_brk); 1078 } 1079 target_brk = new_brk; 1080 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 1081 return target_brk; 1082 } 1083 1084 /* We need to allocate more memory after the brk... Note that 1085 * we don't use MAP_FIXED because that will map over the top of 1086 * any existing mapping (like the one with the host libc or qemu 1087 * itself); instead we treat "mapped but at wrong address" as 1088 * a failure and unmap again. 1089 */ 1090 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 1091 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 1092 PROT_READ|PROT_WRITE, 1093 MAP_ANON|MAP_PRIVATE, 0, 0)); 1094 1095 if (mapped_addr == brk_page) { 1096 /* Heap contents are initialized to zero, as for anonymous 1097 * mapped pages. Technically the new pages are already 1098 * initialized to zero since they *are* anonymous mapped 1099 * pages, however we have to take care with the contents that 1100 * come from the remaining part of the previous page: it may 1101 * contains garbage data due to a previous heap usage (grown 1102 * then shrunken). */ 1103 memset(g2h(target_brk), 0, brk_page - target_brk); 1104 1105 target_brk = new_brk; 1106 brk_page = HOST_PAGE_ALIGN(target_brk); 1107 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 1108 target_brk); 1109 return target_brk; 1110 } else if (mapped_addr != -1) { 1111 /* Mapped but at wrong address, meaning there wasn't actually 1112 * enough space for this brk. 1113 */ 1114 target_munmap(mapped_addr, new_alloc_size); 1115 mapped_addr = -1; 1116 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 1117 } 1118 else { 1119 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 1120 } 1121 1122 #if defined(TARGET_ALPHA) 1123 /* We (partially) emulate OSF/1 on Alpha, which requires we 1124 return a proper errno, not an unchanged brk value. */ 1125 return -TARGET_ENOMEM; 1126 #endif 1127 /* For everything else, return the previous break. */ 1128 return target_brk; 1129 } 1130 1131 static inline abi_long copy_from_user_fdset(fd_set *fds, 1132 abi_ulong target_fds_addr, 1133 int n) 1134 { 1135 int i, nw, j, k; 1136 abi_ulong b, *target_fds; 1137 1138 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1139 if (!(target_fds = lock_user(VERIFY_READ, 1140 target_fds_addr, 1141 sizeof(abi_ulong) * nw, 1142 1))) 1143 return -TARGET_EFAULT; 1144 1145 FD_ZERO(fds); 1146 k = 0; 1147 for (i = 0; i < nw; i++) { 1148 /* grab the abi_ulong */ 1149 __get_user(b, &target_fds[i]); 1150 for (j = 0; j < TARGET_ABI_BITS; j++) { 1151 /* check the bit inside the abi_ulong */ 1152 if ((b >> j) & 1) 1153 FD_SET(k, fds); 1154 k++; 1155 } 1156 } 1157 1158 unlock_user(target_fds, target_fds_addr, 0); 1159 1160 return 0; 1161 } 1162 1163 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 1164 abi_ulong target_fds_addr, 1165 int n) 1166 { 1167 if (target_fds_addr) { 1168 if (copy_from_user_fdset(fds, target_fds_addr, n)) 1169 return -TARGET_EFAULT; 1170 *fds_ptr = fds; 1171 } else { 1172 *fds_ptr = NULL; 1173 } 1174 return 0; 1175 } 1176 1177 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 1178 const fd_set *fds, 1179 int n) 1180 { 1181 int i, nw, j, k; 1182 abi_long v; 1183 abi_ulong *target_fds; 1184 1185 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1186 if (!(target_fds = lock_user(VERIFY_WRITE, 1187 target_fds_addr, 1188 sizeof(abi_ulong) * nw, 1189 0))) 1190 return -TARGET_EFAULT; 1191 1192 k = 0; 1193 for (i = 0; i < nw; i++) { 1194 v = 0; 1195 for (j = 0; j < TARGET_ABI_BITS; j++) { 1196 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 1197 k++; 1198 } 1199 __put_user(v, &target_fds[i]); 1200 } 1201 1202 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 1203 1204 return 0; 1205 } 1206 1207 #if defined(__alpha__) 1208 #define HOST_HZ 1024 1209 #else 1210 #define HOST_HZ 100 1211 #endif 1212 1213 static inline abi_long host_to_target_clock_t(long ticks) 1214 { 1215 #if HOST_HZ == TARGET_HZ 1216 return ticks; 1217 #else 1218 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 1219 #endif 1220 } 1221 1222 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 1223 const struct rusage *rusage) 1224 { 1225 struct target_rusage *target_rusage; 1226 1227 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 1228 return -TARGET_EFAULT; 1229 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 1230 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 1231 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 1232 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 1233 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 1234 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 1235 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 1236 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 1237 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 1238 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 1239 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 1240 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 1241 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 1242 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 1243 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 1244 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 1245 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 1246 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 1247 unlock_user_struct(target_rusage, target_addr, 1); 1248 1249 return 0; 1250 } 1251 1252 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 1253 { 1254 abi_ulong target_rlim_swap; 1255 rlim_t result; 1256 1257 target_rlim_swap = tswapal(target_rlim); 1258 if (target_rlim_swap == TARGET_RLIM_INFINITY) 1259 return RLIM_INFINITY; 1260 1261 result = target_rlim_swap; 1262 if (target_rlim_swap != (rlim_t)result) 1263 return RLIM_INFINITY; 1264 1265 return result; 1266 } 1267 1268 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1269 { 1270 abi_ulong target_rlim_swap; 1271 abi_ulong result; 1272 1273 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1274 target_rlim_swap = TARGET_RLIM_INFINITY; 1275 else 1276 target_rlim_swap = rlim; 1277 result = tswapal(target_rlim_swap); 1278 1279 return result; 1280 } 1281 1282 static inline int target_to_host_resource(int code) 1283 { 1284 switch (code) { 1285 case TARGET_RLIMIT_AS: 1286 return RLIMIT_AS; 1287 case TARGET_RLIMIT_CORE: 1288 return RLIMIT_CORE; 1289 case TARGET_RLIMIT_CPU: 1290 return RLIMIT_CPU; 1291 case TARGET_RLIMIT_DATA: 1292 return RLIMIT_DATA; 1293 case TARGET_RLIMIT_FSIZE: 1294 return RLIMIT_FSIZE; 1295 case TARGET_RLIMIT_LOCKS: 1296 return RLIMIT_LOCKS; 1297 case TARGET_RLIMIT_MEMLOCK: 1298 return RLIMIT_MEMLOCK; 1299 case TARGET_RLIMIT_MSGQUEUE: 1300 return RLIMIT_MSGQUEUE; 1301 case TARGET_RLIMIT_NICE: 1302 return RLIMIT_NICE; 1303 case TARGET_RLIMIT_NOFILE: 1304 return RLIMIT_NOFILE; 1305 case TARGET_RLIMIT_NPROC: 1306 return RLIMIT_NPROC; 1307 case TARGET_RLIMIT_RSS: 1308 return RLIMIT_RSS; 1309 case TARGET_RLIMIT_RTPRIO: 1310 return RLIMIT_RTPRIO; 1311 case TARGET_RLIMIT_SIGPENDING: 1312 return RLIMIT_SIGPENDING; 1313 case TARGET_RLIMIT_STACK: 1314 return RLIMIT_STACK; 1315 default: 1316 return code; 1317 } 1318 } 1319 1320 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1321 abi_ulong target_tv_addr) 1322 { 1323 struct target_timeval *target_tv; 1324 1325 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) 1326 return -TARGET_EFAULT; 1327 1328 __get_user(tv->tv_sec, &target_tv->tv_sec); 1329 __get_user(tv->tv_usec, &target_tv->tv_usec); 1330 1331 unlock_user_struct(target_tv, target_tv_addr, 0); 1332 1333 return 0; 1334 } 1335 1336 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1337 const struct timeval *tv) 1338 { 1339 struct target_timeval *target_tv; 1340 1341 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) 1342 return -TARGET_EFAULT; 1343 1344 __put_user(tv->tv_sec, &target_tv->tv_sec); 1345 __put_user(tv->tv_usec, &target_tv->tv_usec); 1346 1347 unlock_user_struct(target_tv, target_tv_addr, 1); 1348 1349 return 0; 1350 } 1351 1352 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1353 abi_ulong target_tz_addr) 1354 { 1355 struct target_timezone *target_tz; 1356 1357 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1358 return -TARGET_EFAULT; 1359 } 1360 1361 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1362 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1363 1364 unlock_user_struct(target_tz, target_tz_addr, 0); 1365 1366 return 0; 1367 } 1368 1369 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1370 #include <mqueue.h> 1371 1372 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1373 abi_ulong target_mq_attr_addr) 1374 { 1375 struct target_mq_attr *target_mq_attr; 1376 1377 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1378 target_mq_attr_addr, 1)) 1379 return -TARGET_EFAULT; 1380 1381 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1382 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1383 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1384 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1385 1386 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1387 1388 return 0; 1389 } 1390 1391 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1392 const struct mq_attr *attr) 1393 { 1394 struct target_mq_attr *target_mq_attr; 1395 1396 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1397 target_mq_attr_addr, 0)) 1398 return -TARGET_EFAULT; 1399 1400 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1401 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1402 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1403 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1404 1405 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1406 1407 return 0; 1408 } 1409 #endif 1410 1411 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1412 /* do_select() must return target values and target errnos. */ 1413 static abi_long do_select(int n, 1414 abi_ulong rfd_addr, abi_ulong wfd_addr, 1415 abi_ulong efd_addr, abi_ulong target_tv_addr) 1416 { 1417 fd_set rfds, wfds, efds; 1418 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1419 struct timeval tv; 1420 struct timespec ts, *ts_ptr; 1421 abi_long ret; 1422 1423 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1424 if (ret) { 1425 return ret; 1426 } 1427 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1428 if (ret) { 1429 return ret; 1430 } 1431 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1432 if (ret) { 1433 return ret; 1434 } 1435 1436 if (target_tv_addr) { 1437 if (copy_from_user_timeval(&tv, target_tv_addr)) 1438 return -TARGET_EFAULT; 1439 ts.tv_sec = tv.tv_sec; 1440 ts.tv_nsec = tv.tv_usec * 1000; 1441 ts_ptr = &ts; 1442 } else { 1443 ts_ptr = NULL; 1444 } 1445 1446 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1447 ts_ptr, NULL)); 1448 1449 if (!is_error(ret)) { 1450 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1451 return -TARGET_EFAULT; 1452 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1453 return -TARGET_EFAULT; 1454 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1455 return -TARGET_EFAULT; 1456 1457 if (target_tv_addr) { 1458 tv.tv_sec = ts.tv_sec; 1459 tv.tv_usec = ts.tv_nsec / 1000; 1460 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1461 return -TARGET_EFAULT; 1462 } 1463 } 1464 } 1465 1466 return ret; 1467 } 1468 1469 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1470 static abi_long do_old_select(abi_ulong arg1) 1471 { 1472 struct target_sel_arg_struct *sel; 1473 abi_ulong inp, outp, exp, tvp; 1474 long nsel; 1475 1476 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1477 return -TARGET_EFAULT; 1478 } 1479 1480 nsel = tswapal(sel->n); 1481 inp = tswapal(sel->inp); 1482 outp = tswapal(sel->outp); 1483 exp = tswapal(sel->exp); 1484 tvp = tswapal(sel->tvp); 1485 1486 unlock_user_struct(sel, arg1, 0); 1487 1488 return do_select(nsel, inp, outp, exp, tvp); 1489 } 1490 #endif 1491 #endif 1492 1493 static abi_long do_pipe2(int host_pipe[], int flags) 1494 { 1495 #ifdef CONFIG_PIPE2 1496 return pipe2(host_pipe, flags); 1497 #else 1498 return -ENOSYS; 1499 #endif 1500 } 1501 1502 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1503 int flags, int is_pipe2) 1504 { 1505 int host_pipe[2]; 1506 abi_long ret; 1507 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1508 1509 if (is_error(ret)) 1510 return get_errno(ret); 1511 1512 /* Several targets have special calling conventions for the original 1513 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1514 if (!is_pipe2) { 1515 #if defined(TARGET_ALPHA) 1516 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1517 return host_pipe[0]; 1518 #elif defined(TARGET_MIPS) 1519 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1520 return host_pipe[0]; 1521 #elif defined(TARGET_SH4) 1522 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1523 return host_pipe[0]; 1524 #elif defined(TARGET_SPARC) 1525 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1526 return host_pipe[0]; 1527 #endif 1528 } 1529 1530 if (put_user_s32(host_pipe[0], pipedes) 1531 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1532 return -TARGET_EFAULT; 1533 return get_errno(ret); 1534 } 1535 1536 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1537 abi_ulong target_addr, 1538 socklen_t len) 1539 { 1540 struct target_ip_mreqn *target_smreqn; 1541 1542 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1543 if (!target_smreqn) 1544 return -TARGET_EFAULT; 1545 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1546 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1547 if (len == sizeof(struct target_ip_mreqn)) 1548 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1549 unlock_user(target_smreqn, target_addr, 0); 1550 1551 return 0; 1552 } 1553 1554 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1555 abi_ulong target_addr, 1556 socklen_t len) 1557 { 1558 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1559 sa_family_t sa_family; 1560 struct target_sockaddr *target_saddr; 1561 1562 if (fd_trans_target_to_host_addr(fd)) { 1563 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1564 } 1565 1566 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1567 if (!target_saddr) 1568 return -TARGET_EFAULT; 1569 1570 sa_family = tswap16(target_saddr->sa_family); 1571 1572 /* Oops. The caller might send a incomplete sun_path; sun_path 1573 * must be terminated by \0 (see the manual page), but 1574 * unfortunately it is quite common to specify sockaddr_un 1575 * length as "strlen(x->sun_path)" while it should be 1576 * "strlen(...) + 1". We'll fix that here if needed. 1577 * Linux kernel has a similar feature. 1578 */ 1579 1580 if (sa_family == AF_UNIX) { 1581 if (len < unix_maxlen && len > 0) { 1582 char *cp = (char*)target_saddr; 1583 1584 if ( cp[len-1] && !cp[len] ) 1585 len++; 1586 } 1587 if (len > unix_maxlen) 1588 len = unix_maxlen; 1589 } 1590 1591 memcpy(addr, target_saddr, len); 1592 addr->sa_family = sa_family; 1593 if (sa_family == AF_NETLINK) { 1594 struct sockaddr_nl *nladdr; 1595 1596 nladdr = (struct sockaddr_nl *)addr; 1597 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1598 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1599 } else if (sa_family == AF_PACKET) { 1600 struct target_sockaddr_ll *lladdr; 1601 1602 lladdr = (struct target_sockaddr_ll *)addr; 1603 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1604 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1605 } 1606 unlock_user(target_saddr, target_addr, 0); 1607 1608 return 0; 1609 } 1610 1611 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1612 struct sockaddr *addr, 1613 socklen_t len) 1614 { 1615 struct target_sockaddr *target_saddr; 1616 1617 if (len == 0) { 1618 return 0; 1619 } 1620 1621 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1622 if (!target_saddr) 1623 return -TARGET_EFAULT; 1624 memcpy(target_saddr, addr, len); 1625 if (len >= offsetof(struct target_sockaddr, sa_family) + 1626 sizeof(target_saddr->sa_family)) { 1627 target_saddr->sa_family = tswap16(addr->sa_family); 1628 } 1629 if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) { 1630 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr; 1631 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1632 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1633 } else if (addr->sa_family == AF_PACKET) { 1634 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1635 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1636 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1637 } 1638 unlock_user(target_saddr, target_addr, len); 1639 1640 return 0; 1641 } 1642 1643 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1644 struct target_msghdr *target_msgh) 1645 { 1646 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1647 abi_long msg_controllen; 1648 abi_ulong target_cmsg_addr; 1649 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1650 socklen_t space = 0; 1651 1652 msg_controllen = tswapal(target_msgh->msg_controllen); 1653 if (msg_controllen < sizeof (struct target_cmsghdr)) 1654 goto the_end; 1655 target_cmsg_addr = tswapal(target_msgh->msg_control); 1656 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1657 target_cmsg_start = target_cmsg; 1658 if (!target_cmsg) 1659 return -TARGET_EFAULT; 1660 1661 while (cmsg && target_cmsg) { 1662 void *data = CMSG_DATA(cmsg); 1663 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1664 1665 int len = tswapal(target_cmsg->cmsg_len) 1666 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr)); 1667 1668 space += CMSG_SPACE(len); 1669 if (space > msgh->msg_controllen) { 1670 space -= CMSG_SPACE(len); 1671 /* This is a QEMU bug, since we allocated the payload 1672 * area ourselves (unlike overflow in host-to-target 1673 * conversion, which is just the guest giving us a buffer 1674 * that's too small). It can't happen for the payload types 1675 * we currently support; if it becomes an issue in future 1676 * we would need to improve our allocation strategy to 1677 * something more intelligent than "twice the size of the 1678 * target buffer we're reading from". 1679 */ 1680 gemu_log("Host cmsg overflow\n"); 1681 break; 1682 } 1683 1684 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1685 cmsg->cmsg_level = SOL_SOCKET; 1686 } else { 1687 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1688 } 1689 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1690 cmsg->cmsg_len = CMSG_LEN(len); 1691 1692 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1693 int *fd = (int *)data; 1694 int *target_fd = (int *)target_data; 1695 int i, numfds = len / sizeof(int); 1696 1697 for (i = 0; i < numfds; i++) { 1698 __get_user(fd[i], target_fd + i); 1699 } 1700 } else if (cmsg->cmsg_level == SOL_SOCKET 1701 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1702 struct ucred *cred = (struct ucred *)data; 1703 struct target_ucred *target_cred = 1704 (struct target_ucred *)target_data; 1705 1706 __get_user(cred->pid, &target_cred->pid); 1707 __get_user(cred->uid, &target_cred->uid); 1708 __get_user(cred->gid, &target_cred->gid); 1709 } else { 1710 gemu_log("Unsupported ancillary data: %d/%d\n", 1711 cmsg->cmsg_level, cmsg->cmsg_type); 1712 memcpy(data, target_data, len); 1713 } 1714 1715 cmsg = CMSG_NXTHDR(msgh, cmsg); 1716 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1717 target_cmsg_start); 1718 } 1719 unlock_user(target_cmsg, target_cmsg_addr, 0); 1720 the_end: 1721 msgh->msg_controllen = space; 1722 return 0; 1723 } 1724 1725 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1726 struct msghdr *msgh) 1727 { 1728 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1729 abi_long msg_controllen; 1730 abi_ulong target_cmsg_addr; 1731 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1732 socklen_t space = 0; 1733 1734 msg_controllen = tswapal(target_msgh->msg_controllen); 1735 if (msg_controllen < sizeof (struct target_cmsghdr)) 1736 goto the_end; 1737 target_cmsg_addr = tswapal(target_msgh->msg_control); 1738 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1739 target_cmsg_start = target_cmsg; 1740 if (!target_cmsg) 1741 return -TARGET_EFAULT; 1742 1743 while (cmsg && target_cmsg) { 1744 void *data = CMSG_DATA(cmsg); 1745 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1746 1747 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr)); 1748 int tgt_len, tgt_space; 1749 1750 /* We never copy a half-header but may copy half-data; 1751 * this is Linux's behaviour in put_cmsg(). Note that 1752 * truncation here is a guest problem (which we report 1753 * to the guest via the CTRUNC bit), unlike truncation 1754 * in target_to_host_cmsg, which is a QEMU bug. 1755 */ 1756 if (msg_controllen < sizeof(struct cmsghdr)) { 1757 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1758 break; 1759 } 1760 1761 if (cmsg->cmsg_level == SOL_SOCKET) { 1762 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1763 } else { 1764 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1765 } 1766 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1767 1768 tgt_len = TARGET_CMSG_LEN(len); 1769 1770 /* Payload types which need a different size of payload on 1771 * the target must adjust tgt_len here. 1772 */ 1773 switch (cmsg->cmsg_level) { 1774 case SOL_SOCKET: 1775 switch (cmsg->cmsg_type) { 1776 case SO_TIMESTAMP: 1777 tgt_len = sizeof(struct target_timeval); 1778 break; 1779 default: 1780 break; 1781 } 1782 default: 1783 break; 1784 } 1785 1786 if (msg_controllen < tgt_len) { 1787 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1788 tgt_len = msg_controllen; 1789 } 1790 1791 /* We must now copy-and-convert len bytes of payload 1792 * into tgt_len bytes of destination space. Bear in mind 1793 * that in both source and destination we may be dealing 1794 * with a truncated value! 1795 */ 1796 switch (cmsg->cmsg_level) { 1797 case SOL_SOCKET: 1798 switch (cmsg->cmsg_type) { 1799 case SCM_RIGHTS: 1800 { 1801 int *fd = (int *)data; 1802 int *target_fd = (int *)target_data; 1803 int i, numfds = tgt_len / sizeof(int); 1804 1805 for (i = 0; i < numfds; i++) { 1806 __put_user(fd[i], target_fd + i); 1807 } 1808 break; 1809 } 1810 case SO_TIMESTAMP: 1811 { 1812 struct timeval *tv = (struct timeval *)data; 1813 struct target_timeval *target_tv = 1814 (struct target_timeval *)target_data; 1815 1816 if (len != sizeof(struct timeval) || 1817 tgt_len != sizeof(struct target_timeval)) { 1818 goto unimplemented; 1819 } 1820 1821 /* copy struct timeval to target */ 1822 __put_user(tv->tv_sec, &target_tv->tv_sec); 1823 __put_user(tv->tv_usec, &target_tv->tv_usec); 1824 break; 1825 } 1826 case SCM_CREDENTIALS: 1827 { 1828 struct ucred *cred = (struct ucred *)data; 1829 struct target_ucred *target_cred = 1830 (struct target_ucred *)target_data; 1831 1832 __put_user(cred->pid, &target_cred->pid); 1833 __put_user(cred->uid, &target_cred->uid); 1834 __put_user(cred->gid, &target_cred->gid); 1835 break; 1836 } 1837 default: 1838 goto unimplemented; 1839 } 1840 break; 1841 1842 default: 1843 unimplemented: 1844 gemu_log("Unsupported ancillary data: %d/%d\n", 1845 cmsg->cmsg_level, cmsg->cmsg_type); 1846 memcpy(target_data, data, MIN(len, tgt_len)); 1847 if (tgt_len > len) { 1848 memset(target_data + len, 0, tgt_len - len); 1849 } 1850 } 1851 1852 target_cmsg->cmsg_len = tswapal(tgt_len); 1853 tgt_space = TARGET_CMSG_SPACE(len); 1854 if (msg_controllen < tgt_space) { 1855 tgt_space = msg_controllen; 1856 } 1857 msg_controllen -= tgt_space; 1858 space += tgt_space; 1859 cmsg = CMSG_NXTHDR(msgh, cmsg); 1860 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1861 target_cmsg_start); 1862 } 1863 unlock_user(target_cmsg, target_cmsg_addr, space); 1864 the_end: 1865 target_msgh->msg_controllen = tswapal(space); 1866 return 0; 1867 } 1868 1869 static void tswap_nlmsghdr(struct nlmsghdr *nlh) 1870 { 1871 nlh->nlmsg_len = tswap32(nlh->nlmsg_len); 1872 nlh->nlmsg_type = tswap16(nlh->nlmsg_type); 1873 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags); 1874 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq); 1875 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid); 1876 } 1877 1878 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh, 1879 size_t len, 1880 abi_long (*host_to_target_nlmsg) 1881 (struct nlmsghdr *)) 1882 { 1883 uint32_t nlmsg_len; 1884 abi_long ret; 1885 1886 while (len > sizeof(struct nlmsghdr)) { 1887 1888 nlmsg_len = nlh->nlmsg_len; 1889 if (nlmsg_len < sizeof(struct nlmsghdr) || 1890 nlmsg_len > len) { 1891 break; 1892 } 1893 1894 switch (nlh->nlmsg_type) { 1895 case NLMSG_DONE: 1896 tswap_nlmsghdr(nlh); 1897 return 0; 1898 case NLMSG_NOOP: 1899 break; 1900 case NLMSG_ERROR: 1901 { 1902 struct nlmsgerr *e = NLMSG_DATA(nlh); 1903 e->error = tswap32(e->error); 1904 tswap_nlmsghdr(&e->msg); 1905 tswap_nlmsghdr(nlh); 1906 return 0; 1907 } 1908 default: 1909 ret = host_to_target_nlmsg(nlh); 1910 if (ret < 0) { 1911 tswap_nlmsghdr(nlh); 1912 return ret; 1913 } 1914 break; 1915 } 1916 tswap_nlmsghdr(nlh); 1917 len -= NLMSG_ALIGN(nlmsg_len); 1918 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len)); 1919 } 1920 return 0; 1921 } 1922 1923 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh, 1924 size_t len, 1925 abi_long (*target_to_host_nlmsg) 1926 (struct nlmsghdr *)) 1927 { 1928 int ret; 1929 1930 while (len > sizeof(struct nlmsghdr)) { 1931 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) || 1932 tswap32(nlh->nlmsg_len) > len) { 1933 break; 1934 } 1935 tswap_nlmsghdr(nlh); 1936 switch (nlh->nlmsg_type) { 1937 case NLMSG_DONE: 1938 return 0; 1939 case NLMSG_NOOP: 1940 break; 1941 case NLMSG_ERROR: 1942 { 1943 struct nlmsgerr *e = NLMSG_DATA(nlh); 1944 e->error = tswap32(e->error); 1945 tswap_nlmsghdr(&e->msg); 1946 return 0; 1947 } 1948 default: 1949 ret = target_to_host_nlmsg(nlh); 1950 if (ret < 0) { 1951 return ret; 1952 } 1953 } 1954 len -= NLMSG_ALIGN(nlh->nlmsg_len); 1955 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len)); 1956 } 1957 return 0; 1958 } 1959 1960 #ifdef CONFIG_RTNETLINK 1961 static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr, 1962 size_t len, void *context, 1963 abi_long (*host_to_target_nlattr) 1964 (struct nlattr *, 1965 void *context)) 1966 { 1967 unsigned short nla_len; 1968 abi_long ret; 1969 1970 while (len > sizeof(struct nlattr)) { 1971 nla_len = nlattr->nla_len; 1972 if (nla_len < sizeof(struct nlattr) || 1973 nla_len > len) { 1974 break; 1975 } 1976 ret = host_to_target_nlattr(nlattr, context); 1977 nlattr->nla_len = tswap16(nlattr->nla_len); 1978 nlattr->nla_type = tswap16(nlattr->nla_type); 1979 if (ret < 0) { 1980 return ret; 1981 } 1982 len -= NLA_ALIGN(nla_len); 1983 nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len)); 1984 } 1985 return 0; 1986 } 1987 1988 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr, 1989 size_t len, 1990 abi_long (*host_to_target_rtattr) 1991 (struct rtattr *)) 1992 { 1993 unsigned short rta_len; 1994 abi_long ret; 1995 1996 while (len > sizeof(struct rtattr)) { 1997 rta_len = rtattr->rta_len; 1998 if (rta_len < sizeof(struct rtattr) || 1999 rta_len > len) { 2000 break; 2001 } 2002 ret = host_to_target_rtattr(rtattr); 2003 rtattr->rta_len = tswap16(rtattr->rta_len); 2004 rtattr->rta_type = tswap16(rtattr->rta_type); 2005 if (ret < 0) { 2006 return ret; 2007 } 2008 len -= RTA_ALIGN(rta_len); 2009 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len)); 2010 } 2011 return 0; 2012 } 2013 2014 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN) 2015 2016 static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr, 2017 void *context) 2018 { 2019 uint16_t *u16; 2020 uint32_t *u32; 2021 uint64_t *u64; 2022 2023 switch (nlattr->nla_type) { 2024 /* no data */ 2025 case QEMU_IFLA_BR_FDB_FLUSH: 2026 break; 2027 /* binary */ 2028 case QEMU_IFLA_BR_GROUP_ADDR: 2029 break; 2030 /* uint8_t */ 2031 case QEMU_IFLA_BR_VLAN_FILTERING: 2032 case QEMU_IFLA_BR_TOPOLOGY_CHANGE: 2033 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED: 2034 case QEMU_IFLA_BR_MCAST_ROUTER: 2035 case QEMU_IFLA_BR_MCAST_SNOOPING: 2036 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR: 2037 case QEMU_IFLA_BR_MCAST_QUERIER: 2038 case QEMU_IFLA_BR_NF_CALL_IPTABLES: 2039 case QEMU_IFLA_BR_NF_CALL_IP6TABLES: 2040 case QEMU_IFLA_BR_NF_CALL_ARPTABLES: 2041 break; 2042 /* uint16_t */ 2043 case QEMU_IFLA_BR_PRIORITY: 2044 case QEMU_IFLA_BR_VLAN_PROTOCOL: 2045 case QEMU_IFLA_BR_GROUP_FWD_MASK: 2046 case QEMU_IFLA_BR_ROOT_PORT: 2047 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID: 2048 u16 = NLA_DATA(nlattr); 2049 *u16 = tswap16(*u16); 2050 break; 2051 /* uint32_t */ 2052 case QEMU_IFLA_BR_FORWARD_DELAY: 2053 case QEMU_IFLA_BR_HELLO_TIME: 2054 case QEMU_IFLA_BR_MAX_AGE: 2055 case QEMU_IFLA_BR_AGEING_TIME: 2056 case QEMU_IFLA_BR_STP_STATE: 2057 case QEMU_IFLA_BR_ROOT_PATH_COST: 2058 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY: 2059 case QEMU_IFLA_BR_MCAST_HASH_MAX: 2060 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT: 2061 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT: 2062 u32 = NLA_DATA(nlattr); 2063 *u32 = tswap32(*u32); 2064 break; 2065 /* uint64_t */ 2066 case QEMU_IFLA_BR_HELLO_TIMER: 2067 case QEMU_IFLA_BR_TCN_TIMER: 2068 case QEMU_IFLA_BR_GC_TIMER: 2069 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER: 2070 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL: 2071 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL: 2072 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL: 2073 case QEMU_IFLA_BR_MCAST_QUERY_INTVL: 2074 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL: 2075 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL: 2076 u64 = NLA_DATA(nlattr); 2077 *u64 = tswap64(*u64); 2078 break; 2079 /* ifla_bridge_id: uin8_t[] */ 2080 case QEMU_IFLA_BR_ROOT_ID: 2081 case QEMU_IFLA_BR_BRIDGE_ID: 2082 break; 2083 default: 2084 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type); 2085 break; 2086 } 2087 return 0; 2088 } 2089 2090 static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr, 2091 void *context) 2092 { 2093 uint16_t *u16; 2094 uint32_t *u32; 2095 uint64_t *u64; 2096 2097 switch (nlattr->nla_type) { 2098 /* uint8_t */ 2099 case QEMU_IFLA_BRPORT_STATE: 2100 case QEMU_IFLA_BRPORT_MODE: 2101 case QEMU_IFLA_BRPORT_GUARD: 2102 case QEMU_IFLA_BRPORT_PROTECT: 2103 case QEMU_IFLA_BRPORT_FAST_LEAVE: 2104 case QEMU_IFLA_BRPORT_LEARNING: 2105 case QEMU_IFLA_BRPORT_UNICAST_FLOOD: 2106 case QEMU_IFLA_BRPORT_PROXYARP: 2107 case QEMU_IFLA_BRPORT_LEARNING_SYNC: 2108 case QEMU_IFLA_BRPORT_PROXYARP_WIFI: 2109 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK: 2110 case QEMU_IFLA_BRPORT_CONFIG_PENDING: 2111 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER: 2112 break; 2113 /* uint16_t */ 2114 case QEMU_IFLA_BRPORT_PRIORITY: 2115 case QEMU_IFLA_BRPORT_DESIGNATED_PORT: 2116 case QEMU_IFLA_BRPORT_DESIGNATED_COST: 2117 case QEMU_IFLA_BRPORT_ID: 2118 case QEMU_IFLA_BRPORT_NO: 2119 u16 = NLA_DATA(nlattr); 2120 *u16 = tswap16(*u16); 2121 break; 2122 /* uin32_t */ 2123 case QEMU_IFLA_BRPORT_COST: 2124 u32 = NLA_DATA(nlattr); 2125 *u32 = tswap32(*u32); 2126 break; 2127 /* uint64_t */ 2128 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER: 2129 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER: 2130 case QEMU_IFLA_BRPORT_HOLD_TIMER: 2131 u64 = NLA_DATA(nlattr); 2132 *u64 = tswap64(*u64); 2133 break; 2134 /* ifla_bridge_id: uint8_t[] */ 2135 case QEMU_IFLA_BRPORT_ROOT_ID: 2136 case QEMU_IFLA_BRPORT_BRIDGE_ID: 2137 break; 2138 default: 2139 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type); 2140 break; 2141 } 2142 return 0; 2143 } 2144 2145 struct linkinfo_context { 2146 int len; 2147 char *name; 2148 int slave_len; 2149 char *slave_name; 2150 }; 2151 2152 static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr, 2153 void *context) 2154 { 2155 struct linkinfo_context *li_context = context; 2156 2157 switch (nlattr->nla_type) { 2158 /* string */ 2159 case QEMU_IFLA_INFO_KIND: 2160 li_context->name = NLA_DATA(nlattr); 2161 li_context->len = nlattr->nla_len - NLA_HDRLEN; 2162 break; 2163 case QEMU_IFLA_INFO_SLAVE_KIND: 2164 li_context->slave_name = NLA_DATA(nlattr); 2165 li_context->slave_len = nlattr->nla_len - NLA_HDRLEN; 2166 break; 2167 /* stats */ 2168 case QEMU_IFLA_INFO_XSTATS: 2169 /* FIXME: only used by CAN */ 2170 break; 2171 /* nested */ 2172 case QEMU_IFLA_INFO_DATA: 2173 if (strncmp(li_context->name, "bridge", 2174 li_context->len) == 0) { 2175 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2176 nlattr->nla_len, 2177 NULL, 2178 host_to_target_data_bridge_nlattr); 2179 } else { 2180 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name); 2181 } 2182 break; 2183 case QEMU_IFLA_INFO_SLAVE_DATA: 2184 if (strncmp(li_context->slave_name, "bridge", 2185 li_context->slave_len) == 0) { 2186 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2187 nlattr->nla_len, 2188 NULL, 2189 host_to_target_slave_data_bridge_nlattr); 2190 } else { 2191 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n", 2192 li_context->slave_name); 2193 } 2194 break; 2195 default: 2196 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type); 2197 break; 2198 } 2199 2200 return 0; 2201 } 2202 2203 static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr, 2204 void *context) 2205 { 2206 uint32_t *u32; 2207 int i; 2208 2209 switch (nlattr->nla_type) { 2210 case QEMU_IFLA_INET_CONF: 2211 u32 = NLA_DATA(nlattr); 2212 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2213 i++) { 2214 u32[i] = tswap32(u32[i]); 2215 } 2216 break; 2217 default: 2218 gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type); 2219 } 2220 return 0; 2221 } 2222 2223 static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr, 2224 void *context) 2225 { 2226 uint32_t *u32; 2227 uint64_t *u64; 2228 struct ifla_cacheinfo *ci; 2229 int i; 2230 2231 switch (nlattr->nla_type) { 2232 /* binaries */ 2233 case QEMU_IFLA_INET6_TOKEN: 2234 break; 2235 /* uint8_t */ 2236 case QEMU_IFLA_INET6_ADDR_GEN_MODE: 2237 break; 2238 /* uint32_t */ 2239 case QEMU_IFLA_INET6_FLAGS: 2240 u32 = NLA_DATA(nlattr); 2241 *u32 = tswap32(*u32); 2242 break; 2243 /* uint32_t[] */ 2244 case QEMU_IFLA_INET6_CONF: 2245 u32 = NLA_DATA(nlattr); 2246 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2247 i++) { 2248 u32[i] = tswap32(u32[i]); 2249 } 2250 break; 2251 /* ifla_cacheinfo */ 2252 case QEMU_IFLA_INET6_CACHEINFO: 2253 ci = NLA_DATA(nlattr); 2254 ci->max_reasm_len = tswap32(ci->max_reasm_len); 2255 ci->tstamp = tswap32(ci->tstamp); 2256 ci->reachable_time = tswap32(ci->reachable_time); 2257 ci->retrans_time = tswap32(ci->retrans_time); 2258 break; 2259 /* uint64_t[] */ 2260 case QEMU_IFLA_INET6_STATS: 2261 case QEMU_IFLA_INET6_ICMP6STATS: 2262 u64 = NLA_DATA(nlattr); 2263 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64); 2264 i++) { 2265 u64[i] = tswap64(u64[i]); 2266 } 2267 break; 2268 default: 2269 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type); 2270 } 2271 return 0; 2272 } 2273 2274 static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr, 2275 void *context) 2276 { 2277 switch (nlattr->nla_type) { 2278 case AF_INET: 2279 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2280 NULL, 2281 host_to_target_data_inet_nlattr); 2282 case AF_INET6: 2283 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2284 NULL, 2285 host_to_target_data_inet6_nlattr); 2286 default: 2287 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type); 2288 break; 2289 } 2290 return 0; 2291 } 2292 2293 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr) 2294 { 2295 uint32_t *u32; 2296 struct rtnl_link_stats *st; 2297 struct rtnl_link_stats64 *st64; 2298 struct rtnl_link_ifmap *map; 2299 struct linkinfo_context li_context; 2300 2301 switch (rtattr->rta_type) { 2302 /* binary stream */ 2303 case QEMU_IFLA_ADDRESS: 2304 case QEMU_IFLA_BROADCAST: 2305 /* string */ 2306 case QEMU_IFLA_IFNAME: 2307 case QEMU_IFLA_QDISC: 2308 break; 2309 /* uin8_t */ 2310 case QEMU_IFLA_OPERSTATE: 2311 case QEMU_IFLA_LINKMODE: 2312 case QEMU_IFLA_CARRIER: 2313 case QEMU_IFLA_PROTO_DOWN: 2314 break; 2315 /* uint32_t */ 2316 case QEMU_IFLA_MTU: 2317 case QEMU_IFLA_LINK: 2318 case QEMU_IFLA_WEIGHT: 2319 case QEMU_IFLA_TXQLEN: 2320 case QEMU_IFLA_CARRIER_CHANGES: 2321 case QEMU_IFLA_NUM_RX_QUEUES: 2322 case QEMU_IFLA_NUM_TX_QUEUES: 2323 case QEMU_IFLA_PROMISCUITY: 2324 case QEMU_IFLA_EXT_MASK: 2325 case QEMU_IFLA_LINK_NETNSID: 2326 case QEMU_IFLA_GROUP: 2327 case QEMU_IFLA_MASTER: 2328 case QEMU_IFLA_NUM_VF: 2329 u32 = RTA_DATA(rtattr); 2330 *u32 = tswap32(*u32); 2331 break; 2332 /* struct rtnl_link_stats */ 2333 case QEMU_IFLA_STATS: 2334 st = RTA_DATA(rtattr); 2335 st->rx_packets = tswap32(st->rx_packets); 2336 st->tx_packets = tswap32(st->tx_packets); 2337 st->rx_bytes = tswap32(st->rx_bytes); 2338 st->tx_bytes = tswap32(st->tx_bytes); 2339 st->rx_errors = tswap32(st->rx_errors); 2340 st->tx_errors = tswap32(st->tx_errors); 2341 st->rx_dropped = tswap32(st->rx_dropped); 2342 st->tx_dropped = tswap32(st->tx_dropped); 2343 st->multicast = tswap32(st->multicast); 2344 st->collisions = tswap32(st->collisions); 2345 2346 /* detailed rx_errors: */ 2347 st->rx_length_errors = tswap32(st->rx_length_errors); 2348 st->rx_over_errors = tswap32(st->rx_over_errors); 2349 st->rx_crc_errors = tswap32(st->rx_crc_errors); 2350 st->rx_frame_errors = tswap32(st->rx_frame_errors); 2351 st->rx_fifo_errors = tswap32(st->rx_fifo_errors); 2352 st->rx_missed_errors = tswap32(st->rx_missed_errors); 2353 2354 /* detailed tx_errors */ 2355 st->tx_aborted_errors = tswap32(st->tx_aborted_errors); 2356 st->tx_carrier_errors = tswap32(st->tx_carrier_errors); 2357 st->tx_fifo_errors = tswap32(st->tx_fifo_errors); 2358 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors); 2359 st->tx_window_errors = tswap32(st->tx_window_errors); 2360 2361 /* for cslip etc */ 2362 st->rx_compressed = tswap32(st->rx_compressed); 2363 st->tx_compressed = tswap32(st->tx_compressed); 2364 break; 2365 /* struct rtnl_link_stats64 */ 2366 case QEMU_IFLA_STATS64: 2367 st64 = RTA_DATA(rtattr); 2368 st64->rx_packets = tswap64(st64->rx_packets); 2369 st64->tx_packets = tswap64(st64->tx_packets); 2370 st64->rx_bytes = tswap64(st64->rx_bytes); 2371 st64->tx_bytes = tswap64(st64->tx_bytes); 2372 st64->rx_errors = tswap64(st64->rx_errors); 2373 st64->tx_errors = tswap64(st64->tx_errors); 2374 st64->rx_dropped = tswap64(st64->rx_dropped); 2375 st64->tx_dropped = tswap64(st64->tx_dropped); 2376 st64->multicast = tswap64(st64->multicast); 2377 st64->collisions = tswap64(st64->collisions); 2378 2379 /* detailed rx_errors: */ 2380 st64->rx_length_errors = tswap64(st64->rx_length_errors); 2381 st64->rx_over_errors = tswap64(st64->rx_over_errors); 2382 st64->rx_crc_errors = tswap64(st64->rx_crc_errors); 2383 st64->rx_frame_errors = tswap64(st64->rx_frame_errors); 2384 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors); 2385 st64->rx_missed_errors = tswap64(st64->rx_missed_errors); 2386 2387 /* detailed tx_errors */ 2388 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors); 2389 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors); 2390 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors); 2391 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors); 2392 st64->tx_window_errors = tswap64(st64->tx_window_errors); 2393 2394 /* for cslip etc */ 2395 st64->rx_compressed = tswap64(st64->rx_compressed); 2396 st64->tx_compressed = tswap64(st64->tx_compressed); 2397 break; 2398 /* struct rtnl_link_ifmap */ 2399 case QEMU_IFLA_MAP: 2400 map = RTA_DATA(rtattr); 2401 map->mem_start = tswap64(map->mem_start); 2402 map->mem_end = tswap64(map->mem_end); 2403 map->base_addr = tswap64(map->base_addr); 2404 map->irq = tswap16(map->irq); 2405 break; 2406 /* nested */ 2407 case QEMU_IFLA_LINKINFO: 2408 memset(&li_context, 0, sizeof(li_context)); 2409 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2410 &li_context, 2411 host_to_target_data_linkinfo_nlattr); 2412 case QEMU_IFLA_AF_SPEC: 2413 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2414 NULL, 2415 host_to_target_data_spec_nlattr); 2416 default: 2417 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type); 2418 break; 2419 } 2420 return 0; 2421 } 2422 2423 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr) 2424 { 2425 uint32_t *u32; 2426 struct ifa_cacheinfo *ci; 2427 2428 switch (rtattr->rta_type) { 2429 /* binary: depends on family type */ 2430 case IFA_ADDRESS: 2431 case IFA_LOCAL: 2432 break; 2433 /* string */ 2434 case IFA_LABEL: 2435 break; 2436 /* u32 */ 2437 case IFA_FLAGS: 2438 case IFA_BROADCAST: 2439 u32 = RTA_DATA(rtattr); 2440 *u32 = tswap32(*u32); 2441 break; 2442 /* struct ifa_cacheinfo */ 2443 case IFA_CACHEINFO: 2444 ci = RTA_DATA(rtattr); 2445 ci->ifa_prefered = tswap32(ci->ifa_prefered); 2446 ci->ifa_valid = tswap32(ci->ifa_valid); 2447 ci->cstamp = tswap32(ci->cstamp); 2448 ci->tstamp = tswap32(ci->tstamp); 2449 break; 2450 default: 2451 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type); 2452 break; 2453 } 2454 return 0; 2455 } 2456 2457 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr) 2458 { 2459 uint32_t *u32; 2460 switch (rtattr->rta_type) { 2461 /* binary: depends on family type */ 2462 case RTA_GATEWAY: 2463 case RTA_DST: 2464 case RTA_PREFSRC: 2465 break; 2466 /* u32 */ 2467 case RTA_PRIORITY: 2468 case RTA_TABLE: 2469 case RTA_OIF: 2470 u32 = RTA_DATA(rtattr); 2471 *u32 = tswap32(*u32); 2472 break; 2473 default: 2474 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type); 2475 break; 2476 } 2477 return 0; 2478 } 2479 2480 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr, 2481 uint32_t rtattr_len) 2482 { 2483 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2484 host_to_target_data_link_rtattr); 2485 } 2486 2487 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr, 2488 uint32_t rtattr_len) 2489 { 2490 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2491 host_to_target_data_addr_rtattr); 2492 } 2493 2494 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr, 2495 uint32_t rtattr_len) 2496 { 2497 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2498 host_to_target_data_route_rtattr); 2499 } 2500 2501 static abi_long host_to_target_data_route(struct nlmsghdr *nlh) 2502 { 2503 uint32_t nlmsg_len; 2504 struct ifinfomsg *ifi; 2505 struct ifaddrmsg *ifa; 2506 struct rtmsg *rtm; 2507 2508 nlmsg_len = nlh->nlmsg_len; 2509 switch (nlh->nlmsg_type) { 2510 case RTM_NEWLINK: 2511 case RTM_DELLINK: 2512 case RTM_GETLINK: 2513 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2514 ifi = NLMSG_DATA(nlh); 2515 ifi->ifi_type = tswap16(ifi->ifi_type); 2516 ifi->ifi_index = tswap32(ifi->ifi_index); 2517 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2518 ifi->ifi_change = tswap32(ifi->ifi_change); 2519 host_to_target_link_rtattr(IFLA_RTA(ifi), 2520 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi))); 2521 } 2522 break; 2523 case RTM_NEWADDR: 2524 case RTM_DELADDR: 2525 case RTM_GETADDR: 2526 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2527 ifa = NLMSG_DATA(nlh); 2528 ifa->ifa_index = tswap32(ifa->ifa_index); 2529 host_to_target_addr_rtattr(IFA_RTA(ifa), 2530 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa))); 2531 } 2532 break; 2533 case RTM_NEWROUTE: 2534 case RTM_DELROUTE: 2535 case RTM_GETROUTE: 2536 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2537 rtm = NLMSG_DATA(nlh); 2538 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2539 host_to_target_route_rtattr(RTM_RTA(rtm), 2540 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm))); 2541 } 2542 break; 2543 default: 2544 return -TARGET_EINVAL; 2545 } 2546 return 0; 2547 } 2548 2549 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh, 2550 size_t len) 2551 { 2552 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route); 2553 } 2554 2555 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr, 2556 size_t len, 2557 abi_long (*target_to_host_rtattr) 2558 (struct rtattr *)) 2559 { 2560 abi_long ret; 2561 2562 while (len >= sizeof(struct rtattr)) { 2563 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) || 2564 tswap16(rtattr->rta_len) > len) { 2565 break; 2566 } 2567 rtattr->rta_len = tswap16(rtattr->rta_len); 2568 rtattr->rta_type = tswap16(rtattr->rta_type); 2569 ret = target_to_host_rtattr(rtattr); 2570 if (ret < 0) { 2571 return ret; 2572 } 2573 len -= RTA_ALIGN(rtattr->rta_len); 2574 rtattr = (struct rtattr *)(((char *)rtattr) + 2575 RTA_ALIGN(rtattr->rta_len)); 2576 } 2577 return 0; 2578 } 2579 2580 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr) 2581 { 2582 switch (rtattr->rta_type) { 2583 default: 2584 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type); 2585 break; 2586 } 2587 return 0; 2588 } 2589 2590 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr) 2591 { 2592 switch (rtattr->rta_type) { 2593 /* binary: depends on family type */ 2594 case IFA_LOCAL: 2595 case IFA_ADDRESS: 2596 break; 2597 default: 2598 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type); 2599 break; 2600 } 2601 return 0; 2602 } 2603 2604 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr) 2605 { 2606 uint32_t *u32; 2607 switch (rtattr->rta_type) { 2608 /* binary: depends on family type */ 2609 case RTA_DST: 2610 case RTA_SRC: 2611 case RTA_GATEWAY: 2612 break; 2613 /* u32 */ 2614 case RTA_PRIORITY: 2615 case RTA_OIF: 2616 u32 = RTA_DATA(rtattr); 2617 *u32 = tswap32(*u32); 2618 break; 2619 default: 2620 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type); 2621 break; 2622 } 2623 return 0; 2624 } 2625 2626 static void target_to_host_link_rtattr(struct rtattr *rtattr, 2627 uint32_t rtattr_len) 2628 { 2629 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2630 target_to_host_data_link_rtattr); 2631 } 2632 2633 static void target_to_host_addr_rtattr(struct rtattr *rtattr, 2634 uint32_t rtattr_len) 2635 { 2636 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2637 target_to_host_data_addr_rtattr); 2638 } 2639 2640 static void target_to_host_route_rtattr(struct rtattr *rtattr, 2641 uint32_t rtattr_len) 2642 { 2643 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2644 target_to_host_data_route_rtattr); 2645 } 2646 2647 static abi_long target_to_host_data_route(struct nlmsghdr *nlh) 2648 { 2649 struct ifinfomsg *ifi; 2650 struct ifaddrmsg *ifa; 2651 struct rtmsg *rtm; 2652 2653 switch (nlh->nlmsg_type) { 2654 case RTM_GETLINK: 2655 break; 2656 case RTM_NEWLINK: 2657 case RTM_DELLINK: 2658 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2659 ifi = NLMSG_DATA(nlh); 2660 ifi->ifi_type = tswap16(ifi->ifi_type); 2661 ifi->ifi_index = tswap32(ifi->ifi_index); 2662 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2663 ifi->ifi_change = tswap32(ifi->ifi_change); 2664 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len - 2665 NLMSG_LENGTH(sizeof(*ifi))); 2666 } 2667 break; 2668 case RTM_GETADDR: 2669 case RTM_NEWADDR: 2670 case RTM_DELADDR: 2671 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2672 ifa = NLMSG_DATA(nlh); 2673 ifa->ifa_index = tswap32(ifa->ifa_index); 2674 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len - 2675 NLMSG_LENGTH(sizeof(*ifa))); 2676 } 2677 break; 2678 case RTM_GETROUTE: 2679 break; 2680 case RTM_NEWROUTE: 2681 case RTM_DELROUTE: 2682 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2683 rtm = NLMSG_DATA(nlh); 2684 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2685 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len - 2686 NLMSG_LENGTH(sizeof(*rtm))); 2687 } 2688 break; 2689 default: 2690 return -TARGET_EOPNOTSUPP; 2691 } 2692 return 0; 2693 } 2694 2695 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len) 2696 { 2697 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route); 2698 } 2699 #endif /* CONFIG_RTNETLINK */ 2700 2701 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh) 2702 { 2703 switch (nlh->nlmsg_type) { 2704 default: 2705 gemu_log("Unknown host audit message type %d\n", 2706 nlh->nlmsg_type); 2707 return -TARGET_EINVAL; 2708 } 2709 return 0; 2710 } 2711 2712 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh, 2713 size_t len) 2714 { 2715 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit); 2716 } 2717 2718 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh) 2719 { 2720 switch (nlh->nlmsg_type) { 2721 case AUDIT_USER: 2722 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 2723 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 2724 break; 2725 default: 2726 gemu_log("Unknown target audit message type %d\n", 2727 nlh->nlmsg_type); 2728 return -TARGET_EINVAL; 2729 } 2730 2731 return 0; 2732 } 2733 2734 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len) 2735 { 2736 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit); 2737 } 2738 2739 /* do_setsockopt() Must return target values and target errnos. */ 2740 static abi_long do_setsockopt(int sockfd, int level, int optname, 2741 abi_ulong optval_addr, socklen_t optlen) 2742 { 2743 abi_long ret; 2744 int val; 2745 struct ip_mreqn *ip_mreq; 2746 struct ip_mreq_source *ip_mreq_source; 2747 2748 switch(level) { 2749 case SOL_TCP: 2750 /* TCP options all take an 'int' value. */ 2751 if (optlen < sizeof(uint32_t)) 2752 return -TARGET_EINVAL; 2753 2754 if (get_user_u32(val, optval_addr)) 2755 return -TARGET_EFAULT; 2756 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2757 break; 2758 case SOL_IP: 2759 switch(optname) { 2760 case IP_TOS: 2761 case IP_TTL: 2762 case IP_HDRINCL: 2763 case IP_ROUTER_ALERT: 2764 case IP_RECVOPTS: 2765 case IP_RETOPTS: 2766 case IP_PKTINFO: 2767 case IP_MTU_DISCOVER: 2768 case IP_RECVERR: 2769 case IP_RECVTOS: 2770 #ifdef IP_FREEBIND 2771 case IP_FREEBIND: 2772 #endif 2773 case IP_MULTICAST_TTL: 2774 case IP_MULTICAST_LOOP: 2775 val = 0; 2776 if (optlen >= sizeof(uint32_t)) { 2777 if (get_user_u32(val, optval_addr)) 2778 return -TARGET_EFAULT; 2779 } else if (optlen >= 1) { 2780 if (get_user_u8(val, optval_addr)) 2781 return -TARGET_EFAULT; 2782 } 2783 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2784 break; 2785 case IP_ADD_MEMBERSHIP: 2786 case IP_DROP_MEMBERSHIP: 2787 if (optlen < sizeof (struct target_ip_mreq) || 2788 optlen > sizeof (struct target_ip_mreqn)) 2789 return -TARGET_EINVAL; 2790 2791 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2792 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2793 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2794 break; 2795 2796 case IP_BLOCK_SOURCE: 2797 case IP_UNBLOCK_SOURCE: 2798 case IP_ADD_SOURCE_MEMBERSHIP: 2799 case IP_DROP_SOURCE_MEMBERSHIP: 2800 if (optlen != sizeof (struct target_ip_mreq_source)) 2801 return -TARGET_EINVAL; 2802 2803 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2804 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2805 unlock_user (ip_mreq_source, optval_addr, 0); 2806 break; 2807 2808 default: 2809 goto unimplemented; 2810 } 2811 break; 2812 case SOL_IPV6: 2813 switch (optname) { 2814 case IPV6_MTU_DISCOVER: 2815 case IPV6_MTU: 2816 case IPV6_V6ONLY: 2817 case IPV6_RECVPKTINFO: 2818 val = 0; 2819 if (optlen < sizeof(uint32_t)) { 2820 return -TARGET_EINVAL; 2821 } 2822 if (get_user_u32(val, optval_addr)) { 2823 return -TARGET_EFAULT; 2824 } 2825 ret = get_errno(setsockopt(sockfd, level, optname, 2826 &val, sizeof(val))); 2827 break; 2828 default: 2829 goto unimplemented; 2830 } 2831 break; 2832 case SOL_RAW: 2833 switch (optname) { 2834 case ICMP_FILTER: 2835 /* struct icmp_filter takes an u32 value */ 2836 if (optlen < sizeof(uint32_t)) { 2837 return -TARGET_EINVAL; 2838 } 2839 2840 if (get_user_u32(val, optval_addr)) { 2841 return -TARGET_EFAULT; 2842 } 2843 ret = get_errno(setsockopt(sockfd, level, optname, 2844 &val, sizeof(val))); 2845 break; 2846 2847 default: 2848 goto unimplemented; 2849 } 2850 break; 2851 case TARGET_SOL_SOCKET: 2852 switch (optname) { 2853 case TARGET_SO_RCVTIMEO: 2854 { 2855 struct timeval tv; 2856 2857 optname = SO_RCVTIMEO; 2858 2859 set_timeout: 2860 if (optlen != sizeof(struct target_timeval)) { 2861 return -TARGET_EINVAL; 2862 } 2863 2864 if (copy_from_user_timeval(&tv, optval_addr)) { 2865 return -TARGET_EFAULT; 2866 } 2867 2868 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2869 &tv, sizeof(tv))); 2870 return ret; 2871 } 2872 case TARGET_SO_SNDTIMEO: 2873 optname = SO_SNDTIMEO; 2874 goto set_timeout; 2875 case TARGET_SO_ATTACH_FILTER: 2876 { 2877 struct target_sock_fprog *tfprog; 2878 struct target_sock_filter *tfilter; 2879 struct sock_fprog fprog; 2880 struct sock_filter *filter; 2881 int i; 2882 2883 if (optlen != sizeof(*tfprog)) { 2884 return -TARGET_EINVAL; 2885 } 2886 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2887 return -TARGET_EFAULT; 2888 } 2889 if (!lock_user_struct(VERIFY_READ, tfilter, 2890 tswapal(tfprog->filter), 0)) { 2891 unlock_user_struct(tfprog, optval_addr, 1); 2892 return -TARGET_EFAULT; 2893 } 2894 2895 fprog.len = tswap16(tfprog->len); 2896 filter = g_try_new(struct sock_filter, fprog.len); 2897 if (filter == NULL) { 2898 unlock_user_struct(tfilter, tfprog->filter, 1); 2899 unlock_user_struct(tfprog, optval_addr, 1); 2900 return -TARGET_ENOMEM; 2901 } 2902 for (i = 0; i < fprog.len; i++) { 2903 filter[i].code = tswap16(tfilter[i].code); 2904 filter[i].jt = tfilter[i].jt; 2905 filter[i].jf = tfilter[i].jf; 2906 filter[i].k = tswap32(tfilter[i].k); 2907 } 2908 fprog.filter = filter; 2909 2910 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2911 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2912 g_free(filter); 2913 2914 unlock_user_struct(tfilter, tfprog->filter, 1); 2915 unlock_user_struct(tfprog, optval_addr, 1); 2916 return ret; 2917 } 2918 case TARGET_SO_BINDTODEVICE: 2919 { 2920 char *dev_ifname, *addr_ifname; 2921 2922 if (optlen > IFNAMSIZ - 1) { 2923 optlen = IFNAMSIZ - 1; 2924 } 2925 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2926 if (!dev_ifname) { 2927 return -TARGET_EFAULT; 2928 } 2929 optname = SO_BINDTODEVICE; 2930 addr_ifname = alloca(IFNAMSIZ); 2931 memcpy(addr_ifname, dev_ifname, optlen); 2932 addr_ifname[optlen] = 0; 2933 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2934 addr_ifname, optlen)); 2935 unlock_user (dev_ifname, optval_addr, 0); 2936 return ret; 2937 } 2938 /* Options with 'int' argument. */ 2939 case TARGET_SO_DEBUG: 2940 optname = SO_DEBUG; 2941 break; 2942 case TARGET_SO_REUSEADDR: 2943 optname = SO_REUSEADDR; 2944 break; 2945 case TARGET_SO_TYPE: 2946 optname = SO_TYPE; 2947 break; 2948 case TARGET_SO_ERROR: 2949 optname = SO_ERROR; 2950 break; 2951 case TARGET_SO_DONTROUTE: 2952 optname = SO_DONTROUTE; 2953 break; 2954 case TARGET_SO_BROADCAST: 2955 optname = SO_BROADCAST; 2956 break; 2957 case TARGET_SO_SNDBUF: 2958 optname = SO_SNDBUF; 2959 break; 2960 case TARGET_SO_SNDBUFFORCE: 2961 optname = SO_SNDBUFFORCE; 2962 break; 2963 case TARGET_SO_RCVBUF: 2964 optname = SO_RCVBUF; 2965 break; 2966 case TARGET_SO_RCVBUFFORCE: 2967 optname = SO_RCVBUFFORCE; 2968 break; 2969 case TARGET_SO_KEEPALIVE: 2970 optname = SO_KEEPALIVE; 2971 break; 2972 case TARGET_SO_OOBINLINE: 2973 optname = SO_OOBINLINE; 2974 break; 2975 case TARGET_SO_NO_CHECK: 2976 optname = SO_NO_CHECK; 2977 break; 2978 case TARGET_SO_PRIORITY: 2979 optname = SO_PRIORITY; 2980 break; 2981 #ifdef SO_BSDCOMPAT 2982 case TARGET_SO_BSDCOMPAT: 2983 optname = SO_BSDCOMPAT; 2984 break; 2985 #endif 2986 case TARGET_SO_PASSCRED: 2987 optname = SO_PASSCRED; 2988 break; 2989 case TARGET_SO_PASSSEC: 2990 optname = SO_PASSSEC; 2991 break; 2992 case TARGET_SO_TIMESTAMP: 2993 optname = SO_TIMESTAMP; 2994 break; 2995 case TARGET_SO_RCVLOWAT: 2996 optname = SO_RCVLOWAT; 2997 break; 2998 break; 2999 default: 3000 goto unimplemented; 3001 } 3002 if (optlen < sizeof(uint32_t)) 3003 return -TARGET_EINVAL; 3004 3005 if (get_user_u32(val, optval_addr)) 3006 return -TARGET_EFAULT; 3007 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 3008 break; 3009 default: 3010 unimplemented: 3011 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname); 3012 ret = -TARGET_ENOPROTOOPT; 3013 } 3014 return ret; 3015 } 3016 3017 /* do_getsockopt() Must return target values and target errnos. */ 3018 static abi_long do_getsockopt(int sockfd, int level, int optname, 3019 abi_ulong optval_addr, abi_ulong optlen) 3020 { 3021 abi_long ret; 3022 int len, val; 3023 socklen_t lv; 3024 3025 switch(level) { 3026 case TARGET_SOL_SOCKET: 3027 level = SOL_SOCKET; 3028 switch (optname) { 3029 /* These don't just return a single integer */ 3030 case TARGET_SO_LINGER: 3031 case TARGET_SO_RCVTIMEO: 3032 case TARGET_SO_SNDTIMEO: 3033 case TARGET_SO_PEERNAME: 3034 goto unimplemented; 3035 case TARGET_SO_PEERCRED: { 3036 struct ucred cr; 3037 socklen_t crlen; 3038 struct target_ucred *tcr; 3039 3040 if (get_user_u32(len, optlen)) { 3041 return -TARGET_EFAULT; 3042 } 3043 if (len < 0) { 3044 return -TARGET_EINVAL; 3045 } 3046 3047 crlen = sizeof(cr); 3048 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 3049 &cr, &crlen)); 3050 if (ret < 0) { 3051 return ret; 3052 } 3053 if (len > crlen) { 3054 len = crlen; 3055 } 3056 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 3057 return -TARGET_EFAULT; 3058 } 3059 __put_user(cr.pid, &tcr->pid); 3060 __put_user(cr.uid, &tcr->uid); 3061 __put_user(cr.gid, &tcr->gid); 3062 unlock_user_struct(tcr, optval_addr, 1); 3063 if (put_user_u32(len, optlen)) { 3064 return -TARGET_EFAULT; 3065 } 3066 break; 3067 } 3068 /* Options with 'int' argument. */ 3069 case TARGET_SO_DEBUG: 3070 optname = SO_DEBUG; 3071 goto int_case; 3072 case TARGET_SO_REUSEADDR: 3073 optname = SO_REUSEADDR; 3074 goto int_case; 3075 case TARGET_SO_TYPE: 3076 optname = SO_TYPE; 3077 goto int_case; 3078 case TARGET_SO_ERROR: 3079 optname = SO_ERROR; 3080 goto int_case; 3081 case TARGET_SO_DONTROUTE: 3082 optname = SO_DONTROUTE; 3083 goto int_case; 3084 case TARGET_SO_BROADCAST: 3085 optname = SO_BROADCAST; 3086 goto int_case; 3087 case TARGET_SO_SNDBUF: 3088 optname = SO_SNDBUF; 3089 goto int_case; 3090 case TARGET_SO_RCVBUF: 3091 optname = SO_RCVBUF; 3092 goto int_case; 3093 case TARGET_SO_KEEPALIVE: 3094 optname = SO_KEEPALIVE; 3095 goto int_case; 3096 case TARGET_SO_OOBINLINE: 3097 optname = SO_OOBINLINE; 3098 goto int_case; 3099 case TARGET_SO_NO_CHECK: 3100 optname = SO_NO_CHECK; 3101 goto int_case; 3102 case TARGET_SO_PRIORITY: 3103 optname = SO_PRIORITY; 3104 goto int_case; 3105 #ifdef SO_BSDCOMPAT 3106 case TARGET_SO_BSDCOMPAT: 3107 optname = SO_BSDCOMPAT; 3108 goto int_case; 3109 #endif 3110 case TARGET_SO_PASSCRED: 3111 optname = SO_PASSCRED; 3112 goto int_case; 3113 case TARGET_SO_TIMESTAMP: 3114 optname = SO_TIMESTAMP; 3115 goto int_case; 3116 case TARGET_SO_RCVLOWAT: 3117 optname = SO_RCVLOWAT; 3118 goto int_case; 3119 case TARGET_SO_ACCEPTCONN: 3120 optname = SO_ACCEPTCONN; 3121 goto int_case; 3122 default: 3123 goto int_case; 3124 } 3125 break; 3126 case SOL_TCP: 3127 /* TCP options all take an 'int' value. */ 3128 int_case: 3129 if (get_user_u32(len, optlen)) 3130 return -TARGET_EFAULT; 3131 if (len < 0) 3132 return -TARGET_EINVAL; 3133 lv = sizeof(lv); 3134 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3135 if (ret < 0) 3136 return ret; 3137 if (optname == SO_TYPE) { 3138 val = host_to_target_sock_type(val); 3139 } 3140 if (len > lv) 3141 len = lv; 3142 if (len == 4) { 3143 if (put_user_u32(val, optval_addr)) 3144 return -TARGET_EFAULT; 3145 } else { 3146 if (put_user_u8(val, optval_addr)) 3147 return -TARGET_EFAULT; 3148 } 3149 if (put_user_u32(len, optlen)) 3150 return -TARGET_EFAULT; 3151 break; 3152 case SOL_IP: 3153 switch(optname) { 3154 case IP_TOS: 3155 case IP_TTL: 3156 case IP_HDRINCL: 3157 case IP_ROUTER_ALERT: 3158 case IP_RECVOPTS: 3159 case IP_RETOPTS: 3160 case IP_PKTINFO: 3161 case IP_MTU_DISCOVER: 3162 case IP_RECVERR: 3163 case IP_RECVTOS: 3164 #ifdef IP_FREEBIND 3165 case IP_FREEBIND: 3166 #endif 3167 case IP_MULTICAST_TTL: 3168 case IP_MULTICAST_LOOP: 3169 if (get_user_u32(len, optlen)) 3170 return -TARGET_EFAULT; 3171 if (len < 0) 3172 return -TARGET_EINVAL; 3173 lv = sizeof(lv); 3174 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3175 if (ret < 0) 3176 return ret; 3177 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 3178 len = 1; 3179 if (put_user_u32(len, optlen) 3180 || put_user_u8(val, optval_addr)) 3181 return -TARGET_EFAULT; 3182 } else { 3183 if (len > sizeof(int)) 3184 len = sizeof(int); 3185 if (put_user_u32(len, optlen) 3186 || put_user_u32(val, optval_addr)) 3187 return -TARGET_EFAULT; 3188 } 3189 break; 3190 default: 3191 ret = -TARGET_ENOPROTOOPT; 3192 break; 3193 } 3194 break; 3195 default: 3196 unimplemented: 3197 gemu_log("getsockopt level=%d optname=%d not yet supported\n", 3198 level, optname); 3199 ret = -TARGET_EOPNOTSUPP; 3200 break; 3201 } 3202 return ret; 3203 } 3204 3205 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 3206 abi_ulong count, int copy) 3207 { 3208 struct target_iovec *target_vec; 3209 struct iovec *vec; 3210 abi_ulong total_len, max_len; 3211 int i; 3212 int err = 0; 3213 bool bad_address = false; 3214 3215 if (count == 0) { 3216 errno = 0; 3217 return NULL; 3218 } 3219 if (count > IOV_MAX) { 3220 errno = EINVAL; 3221 return NULL; 3222 } 3223 3224 vec = g_try_new0(struct iovec, count); 3225 if (vec == NULL) { 3226 errno = ENOMEM; 3227 return NULL; 3228 } 3229 3230 target_vec = lock_user(VERIFY_READ, target_addr, 3231 count * sizeof(struct target_iovec), 1); 3232 if (target_vec == NULL) { 3233 err = EFAULT; 3234 goto fail2; 3235 } 3236 3237 /* ??? If host page size > target page size, this will result in a 3238 value larger than what we can actually support. */ 3239 max_len = 0x7fffffff & TARGET_PAGE_MASK; 3240 total_len = 0; 3241 3242 for (i = 0; i < count; i++) { 3243 abi_ulong base = tswapal(target_vec[i].iov_base); 3244 abi_long len = tswapal(target_vec[i].iov_len); 3245 3246 if (len < 0) { 3247 err = EINVAL; 3248 goto fail; 3249 } else if (len == 0) { 3250 /* Zero length pointer is ignored. */ 3251 vec[i].iov_base = 0; 3252 } else { 3253 vec[i].iov_base = lock_user(type, base, len, copy); 3254 /* If the first buffer pointer is bad, this is a fault. But 3255 * subsequent bad buffers will result in a partial write; this 3256 * is realized by filling the vector with null pointers and 3257 * zero lengths. */ 3258 if (!vec[i].iov_base) { 3259 if (i == 0) { 3260 err = EFAULT; 3261 goto fail; 3262 } else { 3263 bad_address = true; 3264 } 3265 } 3266 if (bad_address) { 3267 len = 0; 3268 } 3269 if (len > max_len - total_len) { 3270 len = max_len - total_len; 3271 } 3272 } 3273 vec[i].iov_len = len; 3274 total_len += len; 3275 } 3276 3277 unlock_user(target_vec, target_addr, 0); 3278 return vec; 3279 3280 fail: 3281 while (--i >= 0) { 3282 if (tswapal(target_vec[i].iov_len) > 0) { 3283 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3284 } 3285 } 3286 unlock_user(target_vec, target_addr, 0); 3287 fail2: 3288 g_free(vec); 3289 errno = err; 3290 return NULL; 3291 } 3292 3293 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3294 abi_ulong count, int copy) 3295 { 3296 struct target_iovec *target_vec; 3297 int i; 3298 3299 target_vec = lock_user(VERIFY_READ, target_addr, 3300 count * sizeof(struct target_iovec), 1); 3301 if (target_vec) { 3302 for (i = 0; i < count; i++) { 3303 abi_ulong base = tswapal(target_vec[i].iov_base); 3304 abi_long len = tswapal(target_vec[i].iov_len); 3305 if (len < 0) { 3306 break; 3307 } 3308 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3309 } 3310 unlock_user(target_vec, target_addr, 0); 3311 } 3312 3313 g_free(vec); 3314 } 3315 3316 static inline int target_to_host_sock_type(int *type) 3317 { 3318 int host_type = 0; 3319 int target_type = *type; 3320 3321 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3322 case TARGET_SOCK_DGRAM: 3323 host_type = SOCK_DGRAM; 3324 break; 3325 case TARGET_SOCK_STREAM: 3326 host_type = SOCK_STREAM; 3327 break; 3328 default: 3329 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3330 break; 3331 } 3332 if (target_type & TARGET_SOCK_CLOEXEC) { 3333 #if defined(SOCK_CLOEXEC) 3334 host_type |= SOCK_CLOEXEC; 3335 #else 3336 return -TARGET_EINVAL; 3337 #endif 3338 } 3339 if (target_type & TARGET_SOCK_NONBLOCK) { 3340 #if defined(SOCK_NONBLOCK) 3341 host_type |= SOCK_NONBLOCK; 3342 #elif !defined(O_NONBLOCK) 3343 return -TARGET_EINVAL; 3344 #endif 3345 } 3346 *type = host_type; 3347 return 0; 3348 } 3349 3350 /* Try to emulate socket type flags after socket creation. */ 3351 static int sock_flags_fixup(int fd, int target_type) 3352 { 3353 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3354 if (target_type & TARGET_SOCK_NONBLOCK) { 3355 int flags = fcntl(fd, F_GETFL); 3356 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3357 close(fd); 3358 return -TARGET_EINVAL; 3359 } 3360 } 3361 #endif 3362 return fd; 3363 } 3364 3365 static abi_long packet_target_to_host_sockaddr(void *host_addr, 3366 abi_ulong target_addr, 3367 socklen_t len) 3368 { 3369 struct sockaddr *addr = host_addr; 3370 struct target_sockaddr *target_saddr; 3371 3372 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 3373 if (!target_saddr) { 3374 return -TARGET_EFAULT; 3375 } 3376 3377 memcpy(addr, target_saddr, len); 3378 addr->sa_family = tswap16(target_saddr->sa_family); 3379 /* spkt_protocol is big-endian */ 3380 3381 unlock_user(target_saddr, target_addr, 0); 3382 return 0; 3383 } 3384 3385 static TargetFdTrans target_packet_trans = { 3386 .target_to_host_addr = packet_target_to_host_sockaddr, 3387 }; 3388 3389 #ifdef CONFIG_RTNETLINK 3390 static abi_long netlink_route_target_to_host(void *buf, size_t len) 3391 { 3392 abi_long ret; 3393 3394 ret = target_to_host_nlmsg_route(buf, len); 3395 if (ret < 0) { 3396 return ret; 3397 } 3398 3399 return len; 3400 } 3401 3402 static abi_long netlink_route_host_to_target(void *buf, size_t len) 3403 { 3404 abi_long ret; 3405 3406 ret = host_to_target_nlmsg_route(buf, len); 3407 if (ret < 0) { 3408 return ret; 3409 } 3410 3411 return len; 3412 } 3413 3414 static TargetFdTrans target_netlink_route_trans = { 3415 .target_to_host_data = netlink_route_target_to_host, 3416 .host_to_target_data = netlink_route_host_to_target, 3417 }; 3418 #endif /* CONFIG_RTNETLINK */ 3419 3420 static abi_long netlink_audit_target_to_host(void *buf, size_t len) 3421 { 3422 abi_long ret; 3423 3424 ret = target_to_host_nlmsg_audit(buf, len); 3425 if (ret < 0) { 3426 return ret; 3427 } 3428 3429 return len; 3430 } 3431 3432 static abi_long netlink_audit_host_to_target(void *buf, size_t len) 3433 { 3434 abi_long ret; 3435 3436 ret = host_to_target_nlmsg_audit(buf, len); 3437 if (ret < 0) { 3438 return ret; 3439 } 3440 3441 return len; 3442 } 3443 3444 static TargetFdTrans target_netlink_audit_trans = { 3445 .target_to_host_data = netlink_audit_target_to_host, 3446 .host_to_target_data = netlink_audit_host_to_target, 3447 }; 3448 3449 /* do_socket() Must return target values and target errnos. */ 3450 static abi_long do_socket(int domain, int type, int protocol) 3451 { 3452 int target_type = type; 3453 int ret; 3454 3455 ret = target_to_host_sock_type(&type); 3456 if (ret) { 3457 return ret; 3458 } 3459 3460 if (domain == PF_NETLINK && !( 3461 #ifdef CONFIG_RTNETLINK 3462 protocol == NETLINK_ROUTE || 3463 #endif 3464 protocol == NETLINK_KOBJECT_UEVENT || 3465 protocol == NETLINK_AUDIT)) { 3466 return -EPFNOSUPPORT; 3467 } 3468 3469 if (domain == AF_PACKET || 3470 (domain == AF_INET && type == SOCK_PACKET)) { 3471 protocol = tswap16(protocol); 3472 } 3473 3474 ret = get_errno(socket(domain, type, protocol)); 3475 if (ret >= 0) { 3476 ret = sock_flags_fixup(ret, target_type); 3477 if (type == SOCK_PACKET) { 3478 /* Manage an obsolete case : 3479 * if socket type is SOCK_PACKET, bind by name 3480 */ 3481 fd_trans_register(ret, &target_packet_trans); 3482 } else if (domain == PF_NETLINK) { 3483 switch (protocol) { 3484 #ifdef CONFIG_RTNETLINK 3485 case NETLINK_ROUTE: 3486 fd_trans_register(ret, &target_netlink_route_trans); 3487 break; 3488 #endif 3489 case NETLINK_KOBJECT_UEVENT: 3490 /* nothing to do: messages are strings */ 3491 break; 3492 case NETLINK_AUDIT: 3493 fd_trans_register(ret, &target_netlink_audit_trans); 3494 break; 3495 default: 3496 g_assert_not_reached(); 3497 } 3498 } 3499 } 3500 return ret; 3501 } 3502 3503 /* do_bind() Must return target values and target errnos. */ 3504 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3505 socklen_t addrlen) 3506 { 3507 void *addr; 3508 abi_long ret; 3509 3510 if ((int)addrlen < 0) { 3511 return -TARGET_EINVAL; 3512 } 3513 3514 addr = alloca(addrlen+1); 3515 3516 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3517 if (ret) 3518 return ret; 3519 3520 return get_errno(bind(sockfd, addr, addrlen)); 3521 } 3522 3523 /* do_connect() Must return target values and target errnos. */ 3524 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3525 socklen_t addrlen) 3526 { 3527 void *addr; 3528 abi_long ret; 3529 3530 if ((int)addrlen < 0) { 3531 return -TARGET_EINVAL; 3532 } 3533 3534 addr = alloca(addrlen+1); 3535 3536 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3537 if (ret) 3538 return ret; 3539 3540 return get_errno(safe_connect(sockfd, addr, addrlen)); 3541 } 3542 3543 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3544 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3545 int flags, int send) 3546 { 3547 abi_long ret, len; 3548 struct msghdr msg; 3549 abi_ulong count; 3550 struct iovec *vec; 3551 abi_ulong target_vec; 3552 3553 if (msgp->msg_name) { 3554 msg.msg_namelen = tswap32(msgp->msg_namelen); 3555 msg.msg_name = alloca(msg.msg_namelen+1); 3556 ret = target_to_host_sockaddr(fd, msg.msg_name, 3557 tswapal(msgp->msg_name), 3558 msg.msg_namelen); 3559 if (ret == -TARGET_EFAULT) { 3560 /* For connected sockets msg_name and msg_namelen must 3561 * be ignored, so returning EFAULT immediately is wrong. 3562 * Instead, pass a bad msg_name to the host kernel, and 3563 * let it decide whether to return EFAULT or not. 3564 */ 3565 msg.msg_name = (void *)-1; 3566 } else if (ret) { 3567 goto out2; 3568 } 3569 } else { 3570 msg.msg_name = NULL; 3571 msg.msg_namelen = 0; 3572 } 3573 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3574 msg.msg_control = alloca(msg.msg_controllen); 3575 msg.msg_flags = tswap32(msgp->msg_flags); 3576 3577 count = tswapal(msgp->msg_iovlen); 3578 target_vec = tswapal(msgp->msg_iov); 3579 3580 if (count > IOV_MAX) { 3581 /* sendrcvmsg returns a different errno for this condition than 3582 * readv/writev, so we must catch it here before lock_iovec() does. 3583 */ 3584 ret = -TARGET_EMSGSIZE; 3585 goto out2; 3586 } 3587 3588 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3589 target_vec, count, send); 3590 if (vec == NULL) { 3591 ret = -host_to_target_errno(errno); 3592 goto out2; 3593 } 3594 msg.msg_iovlen = count; 3595 msg.msg_iov = vec; 3596 3597 if (send) { 3598 if (fd_trans_target_to_host_data(fd)) { 3599 void *host_msg; 3600 3601 host_msg = g_malloc(msg.msg_iov->iov_len); 3602 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3603 ret = fd_trans_target_to_host_data(fd)(host_msg, 3604 msg.msg_iov->iov_len); 3605 if (ret >= 0) { 3606 msg.msg_iov->iov_base = host_msg; 3607 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3608 } 3609 g_free(host_msg); 3610 } else { 3611 ret = target_to_host_cmsg(&msg, msgp); 3612 if (ret == 0) { 3613 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3614 } 3615 } 3616 } else { 3617 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3618 if (!is_error(ret)) { 3619 len = ret; 3620 if (fd_trans_host_to_target_data(fd)) { 3621 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3622 len); 3623 } else { 3624 ret = host_to_target_cmsg(msgp, &msg); 3625 } 3626 if (!is_error(ret)) { 3627 msgp->msg_namelen = tswap32(msg.msg_namelen); 3628 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3629 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3630 msg.msg_name, msg.msg_namelen); 3631 if (ret) { 3632 goto out; 3633 } 3634 } 3635 3636 ret = len; 3637 } 3638 } 3639 } 3640 3641 out: 3642 unlock_iovec(vec, target_vec, count, !send); 3643 out2: 3644 return ret; 3645 } 3646 3647 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3648 int flags, int send) 3649 { 3650 abi_long ret; 3651 struct target_msghdr *msgp; 3652 3653 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3654 msgp, 3655 target_msg, 3656 send ? 1 : 0)) { 3657 return -TARGET_EFAULT; 3658 } 3659 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3660 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3661 return ret; 3662 } 3663 3664 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3665 * so it might not have this *mmsg-specific flag either. 3666 */ 3667 #ifndef MSG_WAITFORONE 3668 #define MSG_WAITFORONE 0x10000 3669 #endif 3670 3671 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3672 unsigned int vlen, unsigned int flags, 3673 int send) 3674 { 3675 struct target_mmsghdr *mmsgp; 3676 abi_long ret = 0; 3677 int i; 3678 3679 if (vlen > UIO_MAXIOV) { 3680 vlen = UIO_MAXIOV; 3681 } 3682 3683 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3684 if (!mmsgp) { 3685 return -TARGET_EFAULT; 3686 } 3687 3688 for (i = 0; i < vlen; i++) { 3689 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3690 if (is_error(ret)) { 3691 break; 3692 } 3693 mmsgp[i].msg_len = tswap32(ret); 3694 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3695 if (flags & MSG_WAITFORONE) { 3696 flags |= MSG_DONTWAIT; 3697 } 3698 } 3699 3700 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3701 3702 /* Return number of datagrams sent if we sent any at all; 3703 * otherwise return the error. 3704 */ 3705 if (i) { 3706 return i; 3707 } 3708 return ret; 3709 } 3710 3711 /* do_accept4() Must return target values and target errnos. */ 3712 static abi_long do_accept4(int fd, abi_ulong target_addr, 3713 abi_ulong target_addrlen_addr, int flags) 3714 { 3715 socklen_t addrlen; 3716 void *addr; 3717 abi_long ret; 3718 int host_flags; 3719 3720 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 3721 3722 if (target_addr == 0) { 3723 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3724 } 3725 3726 /* linux returns EINVAL if addrlen pointer is invalid */ 3727 if (get_user_u32(addrlen, target_addrlen_addr)) 3728 return -TARGET_EINVAL; 3729 3730 if ((int)addrlen < 0) { 3731 return -TARGET_EINVAL; 3732 } 3733 3734 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3735 return -TARGET_EINVAL; 3736 3737 addr = alloca(addrlen); 3738 3739 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags)); 3740 if (!is_error(ret)) { 3741 host_to_target_sockaddr(target_addr, addr, addrlen); 3742 if (put_user_u32(addrlen, target_addrlen_addr)) 3743 ret = -TARGET_EFAULT; 3744 } 3745 return ret; 3746 } 3747 3748 /* do_getpeername() Must return target values and target errnos. */ 3749 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3750 abi_ulong target_addrlen_addr) 3751 { 3752 socklen_t addrlen; 3753 void *addr; 3754 abi_long ret; 3755 3756 if (get_user_u32(addrlen, target_addrlen_addr)) 3757 return -TARGET_EFAULT; 3758 3759 if ((int)addrlen < 0) { 3760 return -TARGET_EINVAL; 3761 } 3762 3763 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3764 return -TARGET_EFAULT; 3765 3766 addr = alloca(addrlen); 3767 3768 ret = get_errno(getpeername(fd, addr, &addrlen)); 3769 if (!is_error(ret)) { 3770 host_to_target_sockaddr(target_addr, addr, addrlen); 3771 if (put_user_u32(addrlen, target_addrlen_addr)) 3772 ret = -TARGET_EFAULT; 3773 } 3774 return ret; 3775 } 3776 3777 /* do_getsockname() Must return target values and target errnos. */ 3778 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3779 abi_ulong target_addrlen_addr) 3780 { 3781 socklen_t addrlen; 3782 void *addr; 3783 abi_long ret; 3784 3785 if (get_user_u32(addrlen, target_addrlen_addr)) 3786 return -TARGET_EFAULT; 3787 3788 if ((int)addrlen < 0) { 3789 return -TARGET_EINVAL; 3790 } 3791 3792 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3793 return -TARGET_EFAULT; 3794 3795 addr = alloca(addrlen); 3796 3797 ret = get_errno(getsockname(fd, addr, &addrlen)); 3798 if (!is_error(ret)) { 3799 host_to_target_sockaddr(target_addr, addr, addrlen); 3800 if (put_user_u32(addrlen, target_addrlen_addr)) 3801 ret = -TARGET_EFAULT; 3802 } 3803 return ret; 3804 } 3805 3806 /* do_socketpair() Must return target values and target errnos. */ 3807 static abi_long do_socketpair(int domain, int type, int protocol, 3808 abi_ulong target_tab_addr) 3809 { 3810 int tab[2]; 3811 abi_long ret; 3812 3813 target_to_host_sock_type(&type); 3814 3815 ret = get_errno(socketpair(domain, type, protocol, tab)); 3816 if (!is_error(ret)) { 3817 if (put_user_s32(tab[0], target_tab_addr) 3818 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3819 ret = -TARGET_EFAULT; 3820 } 3821 return ret; 3822 } 3823 3824 /* do_sendto() Must return target values and target errnos. */ 3825 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3826 abi_ulong target_addr, socklen_t addrlen) 3827 { 3828 void *addr; 3829 void *host_msg; 3830 void *copy_msg = NULL; 3831 abi_long ret; 3832 3833 if ((int)addrlen < 0) { 3834 return -TARGET_EINVAL; 3835 } 3836 3837 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3838 if (!host_msg) 3839 return -TARGET_EFAULT; 3840 if (fd_trans_target_to_host_data(fd)) { 3841 copy_msg = host_msg; 3842 host_msg = g_malloc(len); 3843 memcpy(host_msg, copy_msg, len); 3844 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3845 if (ret < 0) { 3846 goto fail; 3847 } 3848 } 3849 if (target_addr) { 3850 addr = alloca(addrlen+1); 3851 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3852 if (ret) { 3853 goto fail; 3854 } 3855 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3856 } else { 3857 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3858 } 3859 fail: 3860 if (copy_msg) { 3861 g_free(host_msg); 3862 host_msg = copy_msg; 3863 } 3864 unlock_user(host_msg, msg, 0); 3865 return ret; 3866 } 3867 3868 /* do_recvfrom() Must return target values and target errnos. */ 3869 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3870 abi_ulong target_addr, 3871 abi_ulong target_addrlen) 3872 { 3873 socklen_t addrlen; 3874 void *addr; 3875 void *host_msg; 3876 abi_long ret; 3877 3878 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3879 if (!host_msg) 3880 return -TARGET_EFAULT; 3881 if (target_addr) { 3882 if (get_user_u32(addrlen, target_addrlen)) { 3883 ret = -TARGET_EFAULT; 3884 goto fail; 3885 } 3886 if ((int)addrlen < 0) { 3887 ret = -TARGET_EINVAL; 3888 goto fail; 3889 } 3890 addr = alloca(addrlen); 3891 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3892 addr, &addrlen)); 3893 } else { 3894 addr = NULL; /* To keep compiler quiet. */ 3895 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3896 } 3897 if (!is_error(ret)) { 3898 if (fd_trans_host_to_target_data(fd)) { 3899 ret = fd_trans_host_to_target_data(fd)(host_msg, ret); 3900 } 3901 if (target_addr) { 3902 host_to_target_sockaddr(target_addr, addr, addrlen); 3903 if (put_user_u32(addrlen, target_addrlen)) { 3904 ret = -TARGET_EFAULT; 3905 goto fail; 3906 } 3907 } 3908 unlock_user(host_msg, msg, len); 3909 } else { 3910 fail: 3911 unlock_user(host_msg, msg, 0); 3912 } 3913 return ret; 3914 } 3915 3916 #ifdef TARGET_NR_socketcall 3917 /* do_socketcall() must return target values and target errnos. */ 3918 static abi_long do_socketcall(int num, abi_ulong vptr) 3919 { 3920 static const unsigned nargs[] = { /* number of arguments per operation */ 3921 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 3922 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 3923 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 3924 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 3925 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 3926 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 3927 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 3928 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 3929 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 3930 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 3931 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 3932 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 3933 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 3934 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3935 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3936 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 3937 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 3938 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 3939 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 3940 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 3941 }; 3942 abi_long a[6]; /* max 6 args */ 3943 unsigned i; 3944 3945 /* check the range of the first argument num */ 3946 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 3947 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 3948 return -TARGET_EINVAL; 3949 } 3950 /* ensure we have space for args */ 3951 if (nargs[num] > ARRAY_SIZE(a)) { 3952 return -TARGET_EINVAL; 3953 } 3954 /* collect the arguments in a[] according to nargs[] */ 3955 for (i = 0; i < nargs[num]; ++i) { 3956 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3957 return -TARGET_EFAULT; 3958 } 3959 } 3960 /* now when we have the args, invoke the appropriate underlying function */ 3961 switch (num) { 3962 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 3963 return do_socket(a[0], a[1], a[2]); 3964 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 3965 return do_bind(a[0], a[1], a[2]); 3966 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 3967 return do_connect(a[0], a[1], a[2]); 3968 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 3969 return get_errno(listen(a[0], a[1])); 3970 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 3971 return do_accept4(a[0], a[1], a[2], 0); 3972 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 3973 return do_getsockname(a[0], a[1], a[2]); 3974 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 3975 return do_getpeername(a[0], a[1], a[2]); 3976 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 3977 return do_socketpair(a[0], a[1], a[2], a[3]); 3978 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 3979 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3980 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 3981 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3982 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 3983 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3984 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 3985 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3986 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 3987 return get_errno(shutdown(a[0], a[1])); 3988 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3989 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3990 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3991 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3992 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 3993 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3994 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 3995 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3996 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 3997 return do_accept4(a[0], a[1], a[2], a[3]); 3998 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 3999 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 4000 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 4001 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 4002 default: 4003 gemu_log("Unsupported socketcall: %d\n", num); 4004 return -TARGET_EINVAL; 4005 } 4006 } 4007 #endif 4008 4009 #define N_SHM_REGIONS 32 4010 4011 static struct shm_region { 4012 abi_ulong start; 4013 abi_ulong size; 4014 bool in_use; 4015 } shm_regions[N_SHM_REGIONS]; 4016 4017 #ifndef TARGET_SEMID64_DS 4018 /* asm-generic version of this struct */ 4019 struct target_semid64_ds 4020 { 4021 struct target_ipc_perm sem_perm; 4022 abi_ulong sem_otime; 4023 #if TARGET_ABI_BITS == 32 4024 abi_ulong __unused1; 4025 #endif 4026 abi_ulong sem_ctime; 4027 #if TARGET_ABI_BITS == 32 4028 abi_ulong __unused2; 4029 #endif 4030 abi_ulong sem_nsems; 4031 abi_ulong __unused3; 4032 abi_ulong __unused4; 4033 }; 4034 #endif 4035 4036 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 4037 abi_ulong target_addr) 4038 { 4039 struct target_ipc_perm *target_ip; 4040 struct target_semid64_ds *target_sd; 4041 4042 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4043 return -TARGET_EFAULT; 4044 target_ip = &(target_sd->sem_perm); 4045 host_ip->__key = tswap32(target_ip->__key); 4046 host_ip->uid = tswap32(target_ip->uid); 4047 host_ip->gid = tswap32(target_ip->gid); 4048 host_ip->cuid = tswap32(target_ip->cuid); 4049 host_ip->cgid = tswap32(target_ip->cgid); 4050 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4051 host_ip->mode = tswap32(target_ip->mode); 4052 #else 4053 host_ip->mode = tswap16(target_ip->mode); 4054 #endif 4055 #if defined(TARGET_PPC) 4056 host_ip->__seq = tswap32(target_ip->__seq); 4057 #else 4058 host_ip->__seq = tswap16(target_ip->__seq); 4059 #endif 4060 unlock_user_struct(target_sd, target_addr, 0); 4061 return 0; 4062 } 4063 4064 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 4065 struct ipc_perm *host_ip) 4066 { 4067 struct target_ipc_perm *target_ip; 4068 struct target_semid64_ds *target_sd; 4069 4070 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4071 return -TARGET_EFAULT; 4072 target_ip = &(target_sd->sem_perm); 4073 target_ip->__key = tswap32(host_ip->__key); 4074 target_ip->uid = tswap32(host_ip->uid); 4075 target_ip->gid = tswap32(host_ip->gid); 4076 target_ip->cuid = tswap32(host_ip->cuid); 4077 target_ip->cgid = tswap32(host_ip->cgid); 4078 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4079 target_ip->mode = tswap32(host_ip->mode); 4080 #else 4081 target_ip->mode = tswap16(host_ip->mode); 4082 #endif 4083 #if defined(TARGET_PPC) 4084 target_ip->__seq = tswap32(host_ip->__seq); 4085 #else 4086 target_ip->__seq = tswap16(host_ip->__seq); 4087 #endif 4088 unlock_user_struct(target_sd, target_addr, 1); 4089 return 0; 4090 } 4091 4092 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 4093 abi_ulong target_addr) 4094 { 4095 struct target_semid64_ds *target_sd; 4096 4097 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4098 return -TARGET_EFAULT; 4099 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 4100 return -TARGET_EFAULT; 4101 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 4102 host_sd->sem_otime = tswapal(target_sd->sem_otime); 4103 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 4104 unlock_user_struct(target_sd, target_addr, 0); 4105 return 0; 4106 } 4107 4108 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 4109 struct semid_ds *host_sd) 4110 { 4111 struct target_semid64_ds *target_sd; 4112 4113 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4114 return -TARGET_EFAULT; 4115 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 4116 return -TARGET_EFAULT; 4117 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 4118 target_sd->sem_otime = tswapal(host_sd->sem_otime); 4119 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 4120 unlock_user_struct(target_sd, target_addr, 1); 4121 return 0; 4122 } 4123 4124 struct target_seminfo { 4125 int semmap; 4126 int semmni; 4127 int semmns; 4128 int semmnu; 4129 int semmsl; 4130 int semopm; 4131 int semume; 4132 int semusz; 4133 int semvmx; 4134 int semaem; 4135 }; 4136 4137 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 4138 struct seminfo *host_seminfo) 4139 { 4140 struct target_seminfo *target_seminfo; 4141 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 4142 return -TARGET_EFAULT; 4143 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 4144 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 4145 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 4146 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 4147 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 4148 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 4149 __put_user(host_seminfo->semume, &target_seminfo->semume); 4150 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 4151 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 4152 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 4153 unlock_user_struct(target_seminfo, target_addr, 1); 4154 return 0; 4155 } 4156 4157 union semun { 4158 int val; 4159 struct semid_ds *buf; 4160 unsigned short *array; 4161 struct seminfo *__buf; 4162 }; 4163 4164 union target_semun { 4165 int val; 4166 abi_ulong buf; 4167 abi_ulong array; 4168 abi_ulong __buf; 4169 }; 4170 4171 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 4172 abi_ulong target_addr) 4173 { 4174 int nsems; 4175 unsigned short *array; 4176 union semun semun; 4177 struct semid_ds semid_ds; 4178 int i, ret; 4179 4180 semun.buf = &semid_ds; 4181 4182 ret = semctl(semid, 0, IPC_STAT, semun); 4183 if (ret == -1) 4184 return get_errno(ret); 4185 4186 nsems = semid_ds.sem_nsems; 4187 4188 *host_array = g_try_new(unsigned short, nsems); 4189 if (!*host_array) { 4190 return -TARGET_ENOMEM; 4191 } 4192 array = lock_user(VERIFY_READ, target_addr, 4193 nsems*sizeof(unsigned short), 1); 4194 if (!array) { 4195 g_free(*host_array); 4196 return -TARGET_EFAULT; 4197 } 4198 4199 for(i=0; i<nsems; i++) { 4200 __get_user((*host_array)[i], &array[i]); 4201 } 4202 unlock_user(array, target_addr, 0); 4203 4204 return 0; 4205 } 4206 4207 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 4208 unsigned short **host_array) 4209 { 4210 int nsems; 4211 unsigned short *array; 4212 union semun semun; 4213 struct semid_ds semid_ds; 4214 int i, ret; 4215 4216 semun.buf = &semid_ds; 4217 4218 ret = semctl(semid, 0, IPC_STAT, semun); 4219 if (ret == -1) 4220 return get_errno(ret); 4221 4222 nsems = semid_ds.sem_nsems; 4223 4224 array = lock_user(VERIFY_WRITE, target_addr, 4225 nsems*sizeof(unsigned short), 0); 4226 if (!array) 4227 return -TARGET_EFAULT; 4228 4229 for(i=0; i<nsems; i++) { 4230 __put_user((*host_array)[i], &array[i]); 4231 } 4232 g_free(*host_array); 4233 unlock_user(array, target_addr, 1); 4234 4235 return 0; 4236 } 4237 4238 static inline abi_long do_semctl(int semid, int semnum, int cmd, 4239 abi_ulong target_arg) 4240 { 4241 union target_semun target_su = { .buf = target_arg }; 4242 union semun arg; 4243 struct semid_ds dsarg; 4244 unsigned short *array = NULL; 4245 struct seminfo seminfo; 4246 abi_long ret = -TARGET_EINVAL; 4247 abi_long err; 4248 cmd &= 0xff; 4249 4250 switch( cmd ) { 4251 case GETVAL: 4252 case SETVAL: 4253 /* In 64 bit cross-endian situations, we will erroneously pick up 4254 * the wrong half of the union for the "val" element. To rectify 4255 * this, the entire 8-byte structure is byteswapped, followed by 4256 * a swap of the 4 byte val field. In other cases, the data is 4257 * already in proper host byte order. */ 4258 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 4259 target_su.buf = tswapal(target_su.buf); 4260 arg.val = tswap32(target_su.val); 4261 } else { 4262 arg.val = target_su.val; 4263 } 4264 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4265 break; 4266 case GETALL: 4267 case SETALL: 4268 err = target_to_host_semarray(semid, &array, target_su.array); 4269 if (err) 4270 return err; 4271 arg.array = array; 4272 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4273 err = host_to_target_semarray(semid, target_su.array, &array); 4274 if (err) 4275 return err; 4276 break; 4277 case IPC_STAT: 4278 case IPC_SET: 4279 case SEM_STAT: 4280 err = target_to_host_semid_ds(&dsarg, target_su.buf); 4281 if (err) 4282 return err; 4283 arg.buf = &dsarg; 4284 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4285 err = host_to_target_semid_ds(target_su.buf, &dsarg); 4286 if (err) 4287 return err; 4288 break; 4289 case IPC_INFO: 4290 case SEM_INFO: 4291 arg.__buf = &seminfo; 4292 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4293 err = host_to_target_seminfo(target_su.__buf, &seminfo); 4294 if (err) 4295 return err; 4296 break; 4297 case IPC_RMID: 4298 case GETPID: 4299 case GETNCNT: 4300 case GETZCNT: 4301 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4302 break; 4303 } 4304 4305 return ret; 4306 } 4307 4308 struct target_sembuf { 4309 unsigned short sem_num; 4310 short sem_op; 4311 short sem_flg; 4312 }; 4313 4314 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4315 abi_ulong target_addr, 4316 unsigned nsops) 4317 { 4318 struct target_sembuf *target_sembuf; 4319 int i; 4320 4321 target_sembuf = lock_user(VERIFY_READ, target_addr, 4322 nsops*sizeof(struct target_sembuf), 1); 4323 if (!target_sembuf) 4324 return -TARGET_EFAULT; 4325 4326 for(i=0; i<nsops; i++) { 4327 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4328 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4329 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4330 } 4331 4332 unlock_user(target_sembuf, target_addr, 0); 4333 4334 return 0; 4335 } 4336 4337 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops) 4338 { 4339 struct sembuf sops[nsops]; 4340 4341 if (target_to_host_sembuf(sops, ptr, nsops)) 4342 return -TARGET_EFAULT; 4343 4344 return get_errno(safe_semtimedop(semid, sops, nsops, NULL)); 4345 } 4346 4347 struct target_msqid_ds 4348 { 4349 struct target_ipc_perm msg_perm; 4350 abi_ulong msg_stime; 4351 #if TARGET_ABI_BITS == 32 4352 abi_ulong __unused1; 4353 #endif 4354 abi_ulong msg_rtime; 4355 #if TARGET_ABI_BITS == 32 4356 abi_ulong __unused2; 4357 #endif 4358 abi_ulong msg_ctime; 4359 #if TARGET_ABI_BITS == 32 4360 abi_ulong __unused3; 4361 #endif 4362 abi_ulong __msg_cbytes; 4363 abi_ulong msg_qnum; 4364 abi_ulong msg_qbytes; 4365 abi_ulong msg_lspid; 4366 abi_ulong msg_lrpid; 4367 abi_ulong __unused4; 4368 abi_ulong __unused5; 4369 }; 4370 4371 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4372 abi_ulong target_addr) 4373 { 4374 struct target_msqid_ds *target_md; 4375 4376 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4377 return -TARGET_EFAULT; 4378 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4379 return -TARGET_EFAULT; 4380 host_md->msg_stime = tswapal(target_md->msg_stime); 4381 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4382 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4383 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4384 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4385 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4386 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4387 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4388 unlock_user_struct(target_md, target_addr, 0); 4389 return 0; 4390 } 4391 4392 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4393 struct msqid_ds *host_md) 4394 { 4395 struct target_msqid_ds *target_md; 4396 4397 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4398 return -TARGET_EFAULT; 4399 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4400 return -TARGET_EFAULT; 4401 target_md->msg_stime = tswapal(host_md->msg_stime); 4402 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4403 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4404 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4405 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4406 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4407 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4408 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4409 unlock_user_struct(target_md, target_addr, 1); 4410 return 0; 4411 } 4412 4413 struct target_msginfo { 4414 int msgpool; 4415 int msgmap; 4416 int msgmax; 4417 int msgmnb; 4418 int msgmni; 4419 int msgssz; 4420 int msgtql; 4421 unsigned short int msgseg; 4422 }; 4423 4424 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4425 struct msginfo *host_msginfo) 4426 { 4427 struct target_msginfo *target_msginfo; 4428 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4429 return -TARGET_EFAULT; 4430 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4431 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4432 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4433 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4434 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4435 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4436 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4437 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4438 unlock_user_struct(target_msginfo, target_addr, 1); 4439 return 0; 4440 } 4441 4442 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4443 { 4444 struct msqid_ds dsarg; 4445 struct msginfo msginfo; 4446 abi_long ret = -TARGET_EINVAL; 4447 4448 cmd &= 0xff; 4449 4450 switch (cmd) { 4451 case IPC_STAT: 4452 case IPC_SET: 4453 case MSG_STAT: 4454 if (target_to_host_msqid_ds(&dsarg,ptr)) 4455 return -TARGET_EFAULT; 4456 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4457 if (host_to_target_msqid_ds(ptr,&dsarg)) 4458 return -TARGET_EFAULT; 4459 break; 4460 case IPC_RMID: 4461 ret = get_errno(msgctl(msgid, cmd, NULL)); 4462 break; 4463 case IPC_INFO: 4464 case MSG_INFO: 4465 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4466 if (host_to_target_msginfo(ptr, &msginfo)) 4467 return -TARGET_EFAULT; 4468 break; 4469 } 4470 4471 return ret; 4472 } 4473 4474 struct target_msgbuf { 4475 abi_long mtype; 4476 char mtext[1]; 4477 }; 4478 4479 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4480 ssize_t msgsz, int msgflg) 4481 { 4482 struct target_msgbuf *target_mb; 4483 struct msgbuf *host_mb; 4484 abi_long ret = 0; 4485 4486 if (msgsz < 0) { 4487 return -TARGET_EINVAL; 4488 } 4489 4490 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4491 return -TARGET_EFAULT; 4492 host_mb = g_try_malloc(msgsz + sizeof(long)); 4493 if (!host_mb) { 4494 unlock_user_struct(target_mb, msgp, 0); 4495 return -TARGET_ENOMEM; 4496 } 4497 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4498 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4499 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4500 g_free(host_mb); 4501 unlock_user_struct(target_mb, msgp, 0); 4502 4503 return ret; 4504 } 4505 4506 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4507 ssize_t msgsz, abi_long msgtyp, 4508 int msgflg) 4509 { 4510 struct target_msgbuf *target_mb; 4511 char *target_mtext; 4512 struct msgbuf *host_mb; 4513 abi_long ret = 0; 4514 4515 if (msgsz < 0) { 4516 return -TARGET_EINVAL; 4517 } 4518 4519 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4520 return -TARGET_EFAULT; 4521 4522 host_mb = g_try_malloc(msgsz + sizeof(long)); 4523 if (!host_mb) { 4524 ret = -TARGET_ENOMEM; 4525 goto end; 4526 } 4527 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4528 4529 if (ret > 0) { 4530 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4531 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4532 if (!target_mtext) { 4533 ret = -TARGET_EFAULT; 4534 goto end; 4535 } 4536 memcpy(target_mb->mtext, host_mb->mtext, ret); 4537 unlock_user(target_mtext, target_mtext_addr, ret); 4538 } 4539 4540 target_mb->mtype = tswapal(host_mb->mtype); 4541 4542 end: 4543 if (target_mb) 4544 unlock_user_struct(target_mb, msgp, 1); 4545 g_free(host_mb); 4546 return ret; 4547 } 4548 4549 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4550 abi_ulong target_addr) 4551 { 4552 struct target_shmid_ds *target_sd; 4553 4554 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4555 return -TARGET_EFAULT; 4556 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4557 return -TARGET_EFAULT; 4558 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4559 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4560 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4561 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4562 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4563 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4564 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4565 unlock_user_struct(target_sd, target_addr, 0); 4566 return 0; 4567 } 4568 4569 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4570 struct shmid_ds *host_sd) 4571 { 4572 struct target_shmid_ds *target_sd; 4573 4574 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4575 return -TARGET_EFAULT; 4576 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4577 return -TARGET_EFAULT; 4578 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4579 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4580 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4581 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4582 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4583 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4584 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4585 unlock_user_struct(target_sd, target_addr, 1); 4586 return 0; 4587 } 4588 4589 struct target_shminfo { 4590 abi_ulong shmmax; 4591 abi_ulong shmmin; 4592 abi_ulong shmmni; 4593 abi_ulong shmseg; 4594 abi_ulong shmall; 4595 }; 4596 4597 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4598 struct shminfo *host_shminfo) 4599 { 4600 struct target_shminfo *target_shminfo; 4601 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4602 return -TARGET_EFAULT; 4603 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4604 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4605 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4606 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4607 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4608 unlock_user_struct(target_shminfo, target_addr, 1); 4609 return 0; 4610 } 4611 4612 struct target_shm_info { 4613 int used_ids; 4614 abi_ulong shm_tot; 4615 abi_ulong shm_rss; 4616 abi_ulong shm_swp; 4617 abi_ulong swap_attempts; 4618 abi_ulong swap_successes; 4619 }; 4620 4621 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4622 struct shm_info *host_shm_info) 4623 { 4624 struct target_shm_info *target_shm_info; 4625 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4626 return -TARGET_EFAULT; 4627 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4628 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4629 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4630 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4631 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4632 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4633 unlock_user_struct(target_shm_info, target_addr, 1); 4634 return 0; 4635 } 4636 4637 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4638 { 4639 struct shmid_ds dsarg; 4640 struct shminfo shminfo; 4641 struct shm_info shm_info; 4642 abi_long ret = -TARGET_EINVAL; 4643 4644 cmd &= 0xff; 4645 4646 switch(cmd) { 4647 case IPC_STAT: 4648 case IPC_SET: 4649 case SHM_STAT: 4650 if (target_to_host_shmid_ds(&dsarg, buf)) 4651 return -TARGET_EFAULT; 4652 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4653 if (host_to_target_shmid_ds(buf, &dsarg)) 4654 return -TARGET_EFAULT; 4655 break; 4656 case IPC_INFO: 4657 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4658 if (host_to_target_shminfo(buf, &shminfo)) 4659 return -TARGET_EFAULT; 4660 break; 4661 case SHM_INFO: 4662 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4663 if (host_to_target_shm_info(buf, &shm_info)) 4664 return -TARGET_EFAULT; 4665 break; 4666 case IPC_RMID: 4667 case SHM_LOCK: 4668 case SHM_UNLOCK: 4669 ret = get_errno(shmctl(shmid, cmd, NULL)); 4670 break; 4671 } 4672 4673 return ret; 4674 } 4675 4676 #ifndef TARGET_FORCE_SHMLBA 4677 /* For most architectures, SHMLBA is the same as the page size; 4678 * some architectures have larger values, in which case they should 4679 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function. 4680 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA 4681 * and defining its own value for SHMLBA. 4682 * 4683 * The kernel also permits SHMLBA to be set by the architecture to a 4684 * value larger than the page size without setting __ARCH_FORCE_SHMLBA; 4685 * this means that addresses are rounded to the large size if 4686 * SHM_RND is set but addresses not aligned to that size are not rejected 4687 * as long as they are at least page-aligned. Since the only architecture 4688 * which uses this is ia64 this code doesn't provide for that oddity. 4689 */ 4690 static inline abi_ulong target_shmlba(CPUArchState *cpu_env) 4691 { 4692 return TARGET_PAGE_SIZE; 4693 } 4694 #endif 4695 4696 static inline abi_ulong do_shmat(CPUArchState *cpu_env, 4697 int shmid, abi_ulong shmaddr, int shmflg) 4698 { 4699 abi_long raddr; 4700 void *host_raddr; 4701 struct shmid_ds shm_info; 4702 int i,ret; 4703 abi_ulong shmlba; 4704 4705 /* find out the length of the shared memory segment */ 4706 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 4707 if (is_error(ret)) { 4708 /* can't get length, bail out */ 4709 return ret; 4710 } 4711 4712 shmlba = target_shmlba(cpu_env); 4713 4714 if (shmaddr & (shmlba - 1)) { 4715 if (shmflg & SHM_RND) { 4716 shmaddr &= ~(shmlba - 1); 4717 } else { 4718 return -TARGET_EINVAL; 4719 } 4720 } 4721 4722 mmap_lock(); 4723 4724 if (shmaddr) 4725 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg); 4726 else { 4727 abi_ulong mmap_start; 4728 4729 mmap_start = mmap_find_vma(0, shm_info.shm_segsz); 4730 4731 if (mmap_start == -1) { 4732 errno = ENOMEM; 4733 host_raddr = (void *)-1; 4734 } else 4735 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP); 4736 } 4737 4738 if (host_raddr == (void *)-1) { 4739 mmap_unlock(); 4740 return get_errno((long)host_raddr); 4741 } 4742 raddr=h2g((unsigned long)host_raddr); 4743 4744 page_set_flags(raddr, raddr + shm_info.shm_segsz, 4745 PAGE_VALID | PAGE_READ | 4746 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE)); 4747 4748 for (i = 0; i < N_SHM_REGIONS; i++) { 4749 if (!shm_regions[i].in_use) { 4750 shm_regions[i].in_use = true; 4751 shm_regions[i].start = raddr; 4752 shm_regions[i].size = shm_info.shm_segsz; 4753 break; 4754 } 4755 } 4756 4757 mmap_unlock(); 4758 return raddr; 4759 4760 } 4761 4762 static inline abi_long do_shmdt(abi_ulong shmaddr) 4763 { 4764 int i; 4765 4766 for (i = 0; i < N_SHM_REGIONS; ++i) { 4767 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) { 4768 shm_regions[i].in_use = false; 4769 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 4770 break; 4771 } 4772 } 4773 4774 return get_errno(shmdt(g2h(shmaddr))); 4775 } 4776 4777 #ifdef TARGET_NR_ipc 4778 /* ??? This only works with linear mappings. */ 4779 /* do_ipc() must return target values and target errnos. */ 4780 static abi_long do_ipc(CPUArchState *cpu_env, 4781 unsigned int call, abi_long first, 4782 abi_long second, abi_long third, 4783 abi_long ptr, abi_long fifth) 4784 { 4785 int version; 4786 abi_long ret = 0; 4787 4788 version = call >> 16; 4789 call &= 0xffff; 4790 4791 switch (call) { 4792 case IPCOP_semop: 4793 ret = do_semop(first, ptr, second); 4794 break; 4795 4796 case IPCOP_semget: 4797 ret = get_errno(semget(first, second, third)); 4798 break; 4799 4800 case IPCOP_semctl: { 4801 /* The semun argument to semctl is passed by value, so dereference the 4802 * ptr argument. */ 4803 abi_ulong atptr; 4804 get_user_ual(atptr, ptr); 4805 ret = do_semctl(first, second, third, atptr); 4806 break; 4807 } 4808 4809 case IPCOP_msgget: 4810 ret = get_errno(msgget(first, second)); 4811 break; 4812 4813 case IPCOP_msgsnd: 4814 ret = do_msgsnd(first, ptr, second, third); 4815 break; 4816 4817 case IPCOP_msgctl: 4818 ret = do_msgctl(first, second, ptr); 4819 break; 4820 4821 case IPCOP_msgrcv: 4822 switch (version) { 4823 case 0: 4824 { 4825 struct target_ipc_kludge { 4826 abi_long msgp; 4827 abi_long msgtyp; 4828 } *tmp; 4829 4830 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4831 ret = -TARGET_EFAULT; 4832 break; 4833 } 4834 4835 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4836 4837 unlock_user_struct(tmp, ptr, 0); 4838 break; 4839 } 4840 default: 4841 ret = do_msgrcv(first, ptr, second, fifth, third); 4842 } 4843 break; 4844 4845 case IPCOP_shmat: 4846 switch (version) { 4847 default: 4848 { 4849 abi_ulong raddr; 4850 raddr = do_shmat(cpu_env, first, ptr, second); 4851 if (is_error(raddr)) 4852 return get_errno(raddr); 4853 if (put_user_ual(raddr, third)) 4854 return -TARGET_EFAULT; 4855 break; 4856 } 4857 case 1: 4858 ret = -TARGET_EINVAL; 4859 break; 4860 } 4861 break; 4862 case IPCOP_shmdt: 4863 ret = do_shmdt(ptr); 4864 break; 4865 4866 case IPCOP_shmget: 4867 /* IPC_* flag values are the same on all linux platforms */ 4868 ret = get_errno(shmget(first, second, third)); 4869 break; 4870 4871 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4872 case IPCOP_shmctl: 4873 ret = do_shmctl(first, second, ptr); 4874 break; 4875 default: 4876 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version); 4877 ret = -TARGET_ENOSYS; 4878 break; 4879 } 4880 return ret; 4881 } 4882 #endif 4883 4884 /* kernel structure types definitions */ 4885 4886 #define STRUCT(name, ...) STRUCT_ ## name, 4887 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4888 enum { 4889 #include "syscall_types.h" 4890 STRUCT_MAX 4891 }; 4892 #undef STRUCT 4893 #undef STRUCT_SPECIAL 4894 4895 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4896 #define STRUCT_SPECIAL(name) 4897 #include "syscall_types.h" 4898 #undef STRUCT 4899 #undef STRUCT_SPECIAL 4900 4901 typedef struct IOCTLEntry IOCTLEntry; 4902 4903 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 4904 int fd, int cmd, abi_long arg); 4905 4906 struct IOCTLEntry { 4907 int target_cmd; 4908 unsigned int host_cmd; 4909 const char *name; 4910 int access; 4911 do_ioctl_fn *do_ioctl; 4912 const argtype arg_type[5]; 4913 }; 4914 4915 #define IOC_R 0x0001 4916 #define IOC_W 0x0002 4917 #define IOC_RW (IOC_R | IOC_W) 4918 4919 #define MAX_STRUCT_SIZE 4096 4920 4921 #ifdef CONFIG_FIEMAP 4922 /* So fiemap access checks don't overflow on 32 bit systems. 4923 * This is very slightly smaller than the limit imposed by 4924 * the underlying kernel. 4925 */ 4926 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4927 / sizeof(struct fiemap_extent)) 4928 4929 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4930 int fd, int cmd, abi_long arg) 4931 { 4932 /* The parameter for this ioctl is a struct fiemap followed 4933 * by an array of struct fiemap_extent whose size is set 4934 * in fiemap->fm_extent_count. The array is filled in by the 4935 * ioctl. 4936 */ 4937 int target_size_in, target_size_out; 4938 struct fiemap *fm; 4939 const argtype *arg_type = ie->arg_type; 4940 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4941 void *argptr, *p; 4942 abi_long ret; 4943 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4944 uint32_t outbufsz; 4945 int free_fm = 0; 4946 4947 assert(arg_type[0] == TYPE_PTR); 4948 assert(ie->access == IOC_RW); 4949 arg_type++; 4950 target_size_in = thunk_type_size(arg_type, 0); 4951 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4952 if (!argptr) { 4953 return -TARGET_EFAULT; 4954 } 4955 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4956 unlock_user(argptr, arg, 0); 4957 fm = (struct fiemap *)buf_temp; 4958 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4959 return -TARGET_EINVAL; 4960 } 4961 4962 outbufsz = sizeof (*fm) + 4963 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4964 4965 if (outbufsz > MAX_STRUCT_SIZE) { 4966 /* We can't fit all the extents into the fixed size buffer. 4967 * Allocate one that is large enough and use it instead. 4968 */ 4969 fm = g_try_malloc(outbufsz); 4970 if (!fm) { 4971 return -TARGET_ENOMEM; 4972 } 4973 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4974 free_fm = 1; 4975 } 4976 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4977 if (!is_error(ret)) { 4978 target_size_out = target_size_in; 4979 /* An extent_count of 0 means we were only counting the extents 4980 * so there are no structs to copy 4981 */ 4982 if (fm->fm_extent_count != 0) { 4983 target_size_out += fm->fm_mapped_extents * extent_size; 4984 } 4985 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4986 if (!argptr) { 4987 ret = -TARGET_EFAULT; 4988 } else { 4989 /* Convert the struct fiemap */ 4990 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4991 if (fm->fm_extent_count != 0) { 4992 p = argptr + target_size_in; 4993 /* ...and then all the struct fiemap_extents */ 4994 for (i = 0; i < fm->fm_mapped_extents; i++) { 4995 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4996 THUNK_TARGET); 4997 p += extent_size; 4998 } 4999 } 5000 unlock_user(argptr, arg, target_size_out); 5001 } 5002 } 5003 if (free_fm) { 5004 g_free(fm); 5005 } 5006 return ret; 5007 } 5008 #endif 5009 5010 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 5011 int fd, int cmd, abi_long arg) 5012 { 5013 const argtype *arg_type = ie->arg_type; 5014 int target_size; 5015 void *argptr; 5016 int ret; 5017 struct ifconf *host_ifconf; 5018 uint32_t outbufsz; 5019 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 5020 int target_ifreq_size; 5021 int nb_ifreq; 5022 int free_buf = 0; 5023 int i; 5024 int target_ifc_len; 5025 abi_long target_ifc_buf; 5026 int host_ifc_len; 5027 char *host_ifc_buf; 5028 5029 assert(arg_type[0] == TYPE_PTR); 5030 assert(ie->access == IOC_RW); 5031 5032 arg_type++; 5033 target_size = thunk_type_size(arg_type, 0); 5034 5035 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5036 if (!argptr) 5037 return -TARGET_EFAULT; 5038 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5039 unlock_user(argptr, arg, 0); 5040 5041 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 5042 target_ifc_len = host_ifconf->ifc_len; 5043 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 5044 5045 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0); 5046 nb_ifreq = target_ifc_len / target_ifreq_size; 5047 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 5048 5049 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 5050 if (outbufsz > MAX_STRUCT_SIZE) { 5051 /* We can't fit all the extents into the fixed size buffer. 5052 * Allocate one that is large enough and use it instead. 5053 */ 5054 host_ifconf = malloc(outbufsz); 5055 if (!host_ifconf) { 5056 return -TARGET_ENOMEM; 5057 } 5058 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 5059 free_buf = 1; 5060 } 5061 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf); 5062 5063 host_ifconf->ifc_len = host_ifc_len; 5064 host_ifconf->ifc_buf = host_ifc_buf; 5065 5066 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 5067 if (!is_error(ret)) { 5068 /* convert host ifc_len to target ifc_len */ 5069 5070 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 5071 target_ifc_len = nb_ifreq * target_ifreq_size; 5072 host_ifconf->ifc_len = target_ifc_len; 5073 5074 /* restore target ifc_buf */ 5075 5076 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 5077 5078 /* copy struct ifconf to target user */ 5079 5080 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5081 if (!argptr) 5082 return -TARGET_EFAULT; 5083 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 5084 unlock_user(argptr, arg, target_size); 5085 5086 /* copy ifreq[] to target user */ 5087 5088 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 5089 for (i = 0; i < nb_ifreq ; i++) { 5090 thunk_convert(argptr + i * target_ifreq_size, 5091 host_ifc_buf + i * sizeof(struct ifreq), 5092 ifreq_arg_type, THUNK_TARGET); 5093 } 5094 unlock_user(argptr, target_ifc_buf, target_ifc_len); 5095 } 5096 5097 if (free_buf) { 5098 free(host_ifconf); 5099 } 5100 5101 return ret; 5102 } 5103 5104 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5105 int cmd, abi_long arg) 5106 { 5107 void *argptr; 5108 struct dm_ioctl *host_dm; 5109 abi_long guest_data; 5110 uint32_t guest_data_size; 5111 int target_size; 5112 const argtype *arg_type = ie->arg_type; 5113 abi_long ret; 5114 void *big_buf = NULL; 5115 char *host_data; 5116 5117 arg_type++; 5118 target_size = thunk_type_size(arg_type, 0); 5119 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5120 if (!argptr) { 5121 ret = -TARGET_EFAULT; 5122 goto out; 5123 } 5124 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5125 unlock_user(argptr, arg, 0); 5126 5127 /* buf_temp is too small, so fetch things into a bigger buffer */ 5128 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5129 memcpy(big_buf, buf_temp, target_size); 5130 buf_temp = big_buf; 5131 host_dm = big_buf; 5132 5133 guest_data = arg + host_dm->data_start; 5134 if ((guest_data - arg) < 0) { 5135 ret = -TARGET_EINVAL; 5136 goto out; 5137 } 5138 guest_data_size = host_dm->data_size - host_dm->data_start; 5139 host_data = (char*)host_dm + host_dm->data_start; 5140 5141 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5142 if (!argptr) { 5143 ret = -TARGET_EFAULT; 5144 goto out; 5145 } 5146 5147 switch (ie->host_cmd) { 5148 case DM_REMOVE_ALL: 5149 case DM_LIST_DEVICES: 5150 case DM_DEV_CREATE: 5151 case DM_DEV_REMOVE: 5152 case DM_DEV_SUSPEND: 5153 case DM_DEV_STATUS: 5154 case DM_DEV_WAIT: 5155 case DM_TABLE_STATUS: 5156 case DM_TABLE_CLEAR: 5157 case DM_TABLE_DEPS: 5158 case DM_LIST_VERSIONS: 5159 /* no input data */ 5160 break; 5161 case DM_DEV_RENAME: 5162 case DM_DEV_SET_GEOMETRY: 5163 /* data contains only strings */ 5164 memcpy(host_data, argptr, guest_data_size); 5165 break; 5166 case DM_TARGET_MSG: 5167 memcpy(host_data, argptr, guest_data_size); 5168 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5169 break; 5170 case DM_TABLE_LOAD: 5171 { 5172 void *gspec = argptr; 5173 void *cur_data = host_data; 5174 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5175 int spec_size = thunk_type_size(arg_type, 0); 5176 int i; 5177 5178 for (i = 0; i < host_dm->target_count; i++) { 5179 struct dm_target_spec *spec = cur_data; 5180 uint32_t next; 5181 int slen; 5182 5183 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 5184 slen = strlen((char*)gspec + spec_size) + 1; 5185 next = spec->next; 5186 spec->next = sizeof(*spec) + slen; 5187 strcpy((char*)&spec[1], gspec + spec_size); 5188 gspec += next; 5189 cur_data += spec->next; 5190 } 5191 break; 5192 } 5193 default: 5194 ret = -TARGET_EINVAL; 5195 unlock_user(argptr, guest_data, 0); 5196 goto out; 5197 } 5198 unlock_user(argptr, guest_data, 0); 5199 5200 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5201 if (!is_error(ret)) { 5202 guest_data = arg + host_dm->data_start; 5203 guest_data_size = host_dm->data_size - host_dm->data_start; 5204 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5205 switch (ie->host_cmd) { 5206 case DM_REMOVE_ALL: 5207 case DM_DEV_CREATE: 5208 case DM_DEV_REMOVE: 5209 case DM_DEV_RENAME: 5210 case DM_DEV_SUSPEND: 5211 case DM_DEV_STATUS: 5212 case DM_TABLE_LOAD: 5213 case DM_TABLE_CLEAR: 5214 case DM_TARGET_MSG: 5215 case DM_DEV_SET_GEOMETRY: 5216 /* no return data */ 5217 break; 5218 case DM_LIST_DEVICES: 5219 { 5220 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5221 uint32_t remaining_data = guest_data_size; 5222 void *cur_data = argptr; 5223 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5224 int nl_size = 12; /* can't use thunk_size due to alignment */ 5225 5226 while (1) { 5227 uint32_t next = nl->next; 5228 if (next) { 5229 nl->next = nl_size + (strlen(nl->name) + 1); 5230 } 5231 if (remaining_data < nl->next) { 5232 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5233 break; 5234 } 5235 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 5236 strcpy(cur_data + nl_size, nl->name); 5237 cur_data += nl->next; 5238 remaining_data -= nl->next; 5239 if (!next) { 5240 break; 5241 } 5242 nl = (void*)nl + next; 5243 } 5244 break; 5245 } 5246 case DM_DEV_WAIT: 5247 case DM_TABLE_STATUS: 5248 { 5249 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5250 void *cur_data = argptr; 5251 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5252 int spec_size = thunk_type_size(arg_type, 0); 5253 int i; 5254 5255 for (i = 0; i < host_dm->target_count; i++) { 5256 uint32_t next = spec->next; 5257 int slen = strlen((char*)&spec[1]) + 1; 5258 spec->next = (cur_data - argptr) + spec_size + slen; 5259 if (guest_data_size < spec->next) { 5260 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5261 break; 5262 } 5263 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 5264 strcpy(cur_data + spec_size, (char*)&spec[1]); 5265 cur_data = argptr + spec->next; 5266 spec = (void*)host_dm + host_dm->data_start + next; 5267 } 5268 break; 5269 } 5270 case DM_TABLE_DEPS: 5271 { 5272 void *hdata = (void*)host_dm + host_dm->data_start; 5273 int count = *(uint32_t*)hdata; 5274 uint64_t *hdev = hdata + 8; 5275 uint64_t *gdev = argptr + 8; 5276 int i; 5277 5278 *(uint32_t*)argptr = tswap32(count); 5279 for (i = 0; i < count; i++) { 5280 *gdev = tswap64(*hdev); 5281 gdev++; 5282 hdev++; 5283 } 5284 break; 5285 } 5286 case DM_LIST_VERSIONS: 5287 { 5288 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5289 uint32_t remaining_data = guest_data_size; 5290 void *cur_data = argptr; 5291 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5292 int vers_size = thunk_type_size(arg_type, 0); 5293 5294 while (1) { 5295 uint32_t next = vers->next; 5296 if (next) { 5297 vers->next = vers_size + (strlen(vers->name) + 1); 5298 } 5299 if (remaining_data < vers->next) { 5300 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5301 break; 5302 } 5303 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 5304 strcpy(cur_data + vers_size, vers->name); 5305 cur_data += vers->next; 5306 remaining_data -= vers->next; 5307 if (!next) { 5308 break; 5309 } 5310 vers = (void*)vers + next; 5311 } 5312 break; 5313 } 5314 default: 5315 unlock_user(argptr, guest_data, 0); 5316 ret = -TARGET_EINVAL; 5317 goto out; 5318 } 5319 unlock_user(argptr, guest_data, guest_data_size); 5320 5321 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5322 if (!argptr) { 5323 ret = -TARGET_EFAULT; 5324 goto out; 5325 } 5326 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5327 unlock_user(argptr, arg, target_size); 5328 } 5329 out: 5330 g_free(big_buf); 5331 return ret; 5332 } 5333 5334 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5335 int cmd, abi_long arg) 5336 { 5337 void *argptr; 5338 int target_size; 5339 const argtype *arg_type = ie->arg_type; 5340 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5341 abi_long ret; 5342 5343 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5344 struct blkpg_partition host_part; 5345 5346 /* Read and convert blkpg */ 5347 arg_type++; 5348 target_size = thunk_type_size(arg_type, 0); 5349 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5350 if (!argptr) { 5351 ret = -TARGET_EFAULT; 5352 goto out; 5353 } 5354 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5355 unlock_user(argptr, arg, 0); 5356 5357 switch (host_blkpg->op) { 5358 case BLKPG_ADD_PARTITION: 5359 case BLKPG_DEL_PARTITION: 5360 /* payload is struct blkpg_partition */ 5361 break; 5362 default: 5363 /* Unknown opcode */ 5364 ret = -TARGET_EINVAL; 5365 goto out; 5366 } 5367 5368 /* Read and convert blkpg->data */ 5369 arg = (abi_long)(uintptr_t)host_blkpg->data; 5370 target_size = thunk_type_size(part_arg_type, 0); 5371 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5372 if (!argptr) { 5373 ret = -TARGET_EFAULT; 5374 goto out; 5375 } 5376 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5377 unlock_user(argptr, arg, 0); 5378 5379 /* Swizzle the data pointer to our local copy and call! */ 5380 host_blkpg->data = &host_part; 5381 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5382 5383 out: 5384 return ret; 5385 } 5386 5387 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5388 int fd, int cmd, abi_long arg) 5389 { 5390 const argtype *arg_type = ie->arg_type; 5391 const StructEntry *se; 5392 const argtype *field_types; 5393 const int *dst_offsets, *src_offsets; 5394 int target_size; 5395 void *argptr; 5396 abi_ulong *target_rt_dev_ptr; 5397 unsigned long *host_rt_dev_ptr; 5398 abi_long ret; 5399 int i; 5400 5401 assert(ie->access == IOC_W); 5402 assert(*arg_type == TYPE_PTR); 5403 arg_type++; 5404 assert(*arg_type == TYPE_STRUCT); 5405 target_size = thunk_type_size(arg_type, 0); 5406 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5407 if (!argptr) { 5408 return -TARGET_EFAULT; 5409 } 5410 arg_type++; 5411 assert(*arg_type == (int)STRUCT_rtentry); 5412 se = struct_entries + *arg_type++; 5413 assert(se->convert[0] == NULL); 5414 /* convert struct here to be able to catch rt_dev string */ 5415 field_types = se->field_types; 5416 dst_offsets = se->field_offsets[THUNK_HOST]; 5417 src_offsets = se->field_offsets[THUNK_TARGET]; 5418 for (i = 0; i < se->nb_fields; i++) { 5419 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5420 assert(*field_types == TYPE_PTRVOID); 5421 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 5422 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5423 if (*target_rt_dev_ptr != 0) { 5424 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5425 tswapal(*target_rt_dev_ptr)); 5426 if (!*host_rt_dev_ptr) { 5427 unlock_user(argptr, arg, 0); 5428 return -TARGET_EFAULT; 5429 } 5430 } else { 5431 *host_rt_dev_ptr = 0; 5432 } 5433 field_types++; 5434 continue; 5435 } 5436 field_types = thunk_convert(buf_temp + dst_offsets[i], 5437 argptr + src_offsets[i], 5438 field_types, THUNK_HOST); 5439 } 5440 unlock_user(argptr, arg, 0); 5441 5442 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5443 if (*host_rt_dev_ptr != 0) { 5444 unlock_user((void *)*host_rt_dev_ptr, 5445 *target_rt_dev_ptr, 0); 5446 } 5447 return ret; 5448 } 5449 5450 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5451 int fd, int cmd, abi_long arg) 5452 { 5453 int sig = target_to_host_signal(arg); 5454 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5455 } 5456 5457 static IOCTLEntry ioctl_entries[] = { 5458 #define IOCTL(cmd, access, ...) \ 5459 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5460 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5461 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5462 #define IOCTL_IGNORE(cmd) \ 5463 { TARGET_ ## cmd, 0, #cmd }, 5464 #include "ioctls.h" 5465 { 0, 0, }, 5466 }; 5467 5468 /* ??? Implement proper locking for ioctls. */ 5469 /* do_ioctl() Must return target values and target errnos. */ 5470 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5471 { 5472 const IOCTLEntry *ie; 5473 const argtype *arg_type; 5474 abi_long ret; 5475 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5476 int target_size; 5477 void *argptr; 5478 5479 ie = ioctl_entries; 5480 for(;;) { 5481 if (ie->target_cmd == 0) { 5482 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5483 return -TARGET_ENOSYS; 5484 } 5485 if (ie->target_cmd == cmd) 5486 break; 5487 ie++; 5488 } 5489 arg_type = ie->arg_type; 5490 #if defined(DEBUG) 5491 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name); 5492 #endif 5493 if (ie->do_ioctl) { 5494 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5495 } else if (!ie->host_cmd) { 5496 /* Some architectures define BSD ioctls in their headers 5497 that are not implemented in Linux. */ 5498 return -TARGET_ENOSYS; 5499 } 5500 5501 switch(arg_type[0]) { 5502 case TYPE_NULL: 5503 /* no argument */ 5504 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5505 break; 5506 case TYPE_PTRVOID: 5507 case TYPE_INT: 5508 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5509 break; 5510 case TYPE_PTR: 5511 arg_type++; 5512 target_size = thunk_type_size(arg_type, 0); 5513 switch(ie->access) { 5514 case IOC_R: 5515 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5516 if (!is_error(ret)) { 5517 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5518 if (!argptr) 5519 return -TARGET_EFAULT; 5520 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5521 unlock_user(argptr, arg, target_size); 5522 } 5523 break; 5524 case IOC_W: 5525 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5526 if (!argptr) 5527 return -TARGET_EFAULT; 5528 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5529 unlock_user(argptr, arg, 0); 5530 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5531 break; 5532 default: 5533 case IOC_RW: 5534 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5535 if (!argptr) 5536 return -TARGET_EFAULT; 5537 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5538 unlock_user(argptr, arg, 0); 5539 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5540 if (!is_error(ret)) { 5541 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5542 if (!argptr) 5543 return -TARGET_EFAULT; 5544 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5545 unlock_user(argptr, arg, target_size); 5546 } 5547 break; 5548 } 5549 break; 5550 default: 5551 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5552 (long)cmd, arg_type[0]); 5553 ret = -TARGET_ENOSYS; 5554 break; 5555 } 5556 return ret; 5557 } 5558 5559 static const bitmask_transtbl iflag_tbl[] = { 5560 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5561 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5562 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5563 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5564 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5565 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5566 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5567 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5568 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5569 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5570 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5571 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5572 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5573 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5574 { 0, 0, 0, 0 } 5575 }; 5576 5577 static const bitmask_transtbl oflag_tbl[] = { 5578 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5579 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5580 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5581 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5582 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5583 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5584 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5585 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5586 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5587 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5588 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5589 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5590 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5591 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5592 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5593 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5594 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5595 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5596 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5597 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5598 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5599 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5600 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5601 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5602 { 0, 0, 0, 0 } 5603 }; 5604 5605 static const bitmask_transtbl cflag_tbl[] = { 5606 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5607 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5608 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5609 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5610 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5611 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5612 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5613 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5614 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5615 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5616 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5617 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5618 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5619 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5620 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5621 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5622 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5623 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5624 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5625 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5626 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5627 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5628 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5629 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5630 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5631 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5632 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5633 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5634 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5635 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5636 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5637 { 0, 0, 0, 0 } 5638 }; 5639 5640 static const bitmask_transtbl lflag_tbl[] = { 5641 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5642 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5643 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5644 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5645 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5646 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5647 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5648 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5649 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5650 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5651 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5652 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5653 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5654 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5655 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5656 { 0, 0, 0, 0 } 5657 }; 5658 5659 static void target_to_host_termios (void *dst, const void *src) 5660 { 5661 struct host_termios *host = dst; 5662 const struct target_termios *target = src; 5663 5664 host->c_iflag = 5665 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5666 host->c_oflag = 5667 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5668 host->c_cflag = 5669 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5670 host->c_lflag = 5671 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5672 host->c_line = target->c_line; 5673 5674 memset(host->c_cc, 0, sizeof(host->c_cc)); 5675 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5676 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5677 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5678 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5679 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5680 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5681 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5682 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5683 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5684 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5685 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5686 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5687 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5688 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5689 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5690 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5691 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5692 } 5693 5694 static void host_to_target_termios (void *dst, const void *src) 5695 { 5696 struct target_termios *target = dst; 5697 const struct host_termios *host = src; 5698 5699 target->c_iflag = 5700 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5701 target->c_oflag = 5702 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5703 target->c_cflag = 5704 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5705 target->c_lflag = 5706 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5707 target->c_line = host->c_line; 5708 5709 memset(target->c_cc, 0, sizeof(target->c_cc)); 5710 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5711 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5712 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5713 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5714 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5715 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5716 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5717 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5718 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5719 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5720 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5721 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5722 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5723 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5724 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5725 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5726 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5727 } 5728 5729 static const StructEntry struct_termios_def = { 5730 .convert = { host_to_target_termios, target_to_host_termios }, 5731 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5732 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5733 }; 5734 5735 static bitmask_transtbl mmap_flags_tbl[] = { 5736 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 5737 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 5738 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5739 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS }, 5740 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN }, 5741 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE }, 5742 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE }, 5743 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5744 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE, 5745 MAP_NORESERVE }, 5746 { 0, 0, 0, 0 } 5747 }; 5748 5749 #if defined(TARGET_I386) 5750 5751 /* NOTE: there is really one LDT for all the threads */ 5752 static uint8_t *ldt_table; 5753 5754 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5755 { 5756 int size; 5757 void *p; 5758 5759 if (!ldt_table) 5760 return 0; 5761 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5762 if (size > bytecount) 5763 size = bytecount; 5764 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5765 if (!p) 5766 return -TARGET_EFAULT; 5767 /* ??? Should this by byteswapped? */ 5768 memcpy(p, ldt_table, size); 5769 unlock_user(p, ptr, size); 5770 return size; 5771 } 5772 5773 /* XXX: add locking support */ 5774 static abi_long write_ldt(CPUX86State *env, 5775 abi_ulong ptr, unsigned long bytecount, int oldmode) 5776 { 5777 struct target_modify_ldt_ldt_s ldt_info; 5778 struct target_modify_ldt_ldt_s *target_ldt_info; 5779 int seg_32bit, contents, read_exec_only, limit_in_pages; 5780 int seg_not_present, useable, lm; 5781 uint32_t *lp, entry_1, entry_2; 5782 5783 if (bytecount != sizeof(ldt_info)) 5784 return -TARGET_EINVAL; 5785 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5786 return -TARGET_EFAULT; 5787 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5788 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5789 ldt_info.limit = tswap32(target_ldt_info->limit); 5790 ldt_info.flags = tswap32(target_ldt_info->flags); 5791 unlock_user_struct(target_ldt_info, ptr, 0); 5792 5793 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 5794 return -TARGET_EINVAL; 5795 seg_32bit = ldt_info.flags & 1; 5796 contents = (ldt_info.flags >> 1) & 3; 5797 read_exec_only = (ldt_info.flags >> 3) & 1; 5798 limit_in_pages = (ldt_info.flags >> 4) & 1; 5799 seg_not_present = (ldt_info.flags >> 5) & 1; 5800 useable = (ldt_info.flags >> 6) & 1; 5801 #ifdef TARGET_ABI32 5802 lm = 0; 5803 #else 5804 lm = (ldt_info.flags >> 7) & 1; 5805 #endif 5806 if (contents == 3) { 5807 if (oldmode) 5808 return -TARGET_EINVAL; 5809 if (seg_not_present == 0) 5810 return -TARGET_EINVAL; 5811 } 5812 /* allocate the LDT */ 5813 if (!ldt_table) { 5814 env->ldt.base = target_mmap(0, 5815 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 5816 PROT_READ|PROT_WRITE, 5817 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 5818 if (env->ldt.base == -1) 5819 return -TARGET_ENOMEM; 5820 memset(g2h(env->ldt.base), 0, 5821 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 5822 env->ldt.limit = 0xffff; 5823 ldt_table = g2h(env->ldt.base); 5824 } 5825 5826 /* NOTE: same code as Linux kernel */ 5827 /* Allow LDTs to be cleared by the user. */ 5828 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 5829 if (oldmode || 5830 (contents == 0 && 5831 read_exec_only == 1 && 5832 seg_32bit == 0 && 5833 limit_in_pages == 0 && 5834 seg_not_present == 1 && 5835 useable == 0 )) { 5836 entry_1 = 0; 5837 entry_2 = 0; 5838 goto install; 5839 } 5840 } 5841 5842 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 5843 (ldt_info.limit & 0x0ffff); 5844 entry_2 = (ldt_info.base_addr & 0xff000000) | 5845 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 5846 (ldt_info.limit & 0xf0000) | 5847 ((read_exec_only ^ 1) << 9) | 5848 (contents << 10) | 5849 ((seg_not_present ^ 1) << 15) | 5850 (seg_32bit << 22) | 5851 (limit_in_pages << 23) | 5852 (lm << 21) | 5853 0x7000; 5854 if (!oldmode) 5855 entry_2 |= (useable << 20); 5856 5857 /* Install the new entry ... */ 5858 install: 5859 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 5860 lp[0] = tswap32(entry_1); 5861 lp[1] = tswap32(entry_2); 5862 return 0; 5863 } 5864 5865 /* specific and weird i386 syscalls */ 5866 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 5867 unsigned long bytecount) 5868 { 5869 abi_long ret; 5870 5871 switch (func) { 5872 case 0: 5873 ret = read_ldt(ptr, bytecount); 5874 break; 5875 case 1: 5876 ret = write_ldt(env, ptr, bytecount, 1); 5877 break; 5878 case 0x11: 5879 ret = write_ldt(env, ptr, bytecount, 0); 5880 break; 5881 default: 5882 ret = -TARGET_ENOSYS; 5883 break; 5884 } 5885 return ret; 5886 } 5887 5888 #if defined(TARGET_I386) && defined(TARGET_ABI32) 5889 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 5890 { 5891 uint64_t *gdt_table = g2h(env->gdt.base); 5892 struct target_modify_ldt_ldt_s ldt_info; 5893 struct target_modify_ldt_ldt_s *target_ldt_info; 5894 int seg_32bit, contents, read_exec_only, limit_in_pages; 5895 int seg_not_present, useable, lm; 5896 uint32_t *lp, entry_1, entry_2; 5897 int i; 5898 5899 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 5900 if (!target_ldt_info) 5901 return -TARGET_EFAULT; 5902 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5903 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5904 ldt_info.limit = tswap32(target_ldt_info->limit); 5905 ldt_info.flags = tswap32(target_ldt_info->flags); 5906 if (ldt_info.entry_number == -1) { 5907 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 5908 if (gdt_table[i] == 0) { 5909 ldt_info.entry_number = i; 5910 target_ldt_info->entry_number = tswap32(i); 5911 break; 5912 } 5913 } 5914 } 5915 unlock_user_struct(target_ldt_info, ptr, 1); 5916 5917 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 5918 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 5919 return -TARGET_EINVAL; 5920 seg_32bit = ldt_info.flags & 1; 5921 contents = (ldt_info.flags >> 1) & 3; 5922 read_exec_only = (ldt_info.flags >> 3) & 1; 5923 limit_in_pages = (ldt_info.flags >> 4) & 1; 5924 seg_not_present = (ldt_info.flags >> 5) & 1; 5925 useable = (ldt_info.flags >> 6) & 1; 5926 #ifdef TARGET_ABI32 5927 lm = 0; 5928 #else 5929 lm = (ldt_info.flags >> 7) & 1; 5930 #endif 5931 5932 if (contents == 3) { 5933 if (seg_not_present == 0) 5934 return -TARGET_EINVAL; 5935 } 5936 5937 /* NOTE: same code as Linux kernel */ 5938 /* Allow LDTs to be cleared by the user. */ 5939 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 5940 if ((contents == 0 && 5941 read_exec_only == 1 && 5942 seg_32bit == 0 && 5943 limit_in_pages == 0 && 5944 seg_not_present == 1 && 5945 useable == 0 )) { 5946 entry_1 = 0; 5947 entry_2 = 0; 5948 goto install; 5949 } 5950 } 5951 5952 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 5953 (ldt_info.limit & 0x0ffff); 5954 entry_2 = (ldt_info.base_addr & 0xff000000) | 5955 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 5956 (ldt_info.limit & 0xf0000) | 5957 ((read_exec_only ^ 1) << 9) | 5958 (contents << 10) | 5959 ((seg_not_present ^ 1) << 15) | 5960 (seg_32bit << 22) | 5961 (limit_in_pages << 23) | 5962 (useable << 20) | 5963 (lm << 21) | 5964 0x7000; 5965 5966 /* Install the new entry ... */ 5967 install: 5968 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 5969 lp[0] = tswap32(entry_1); 5970 lp[1] = tswap32(entry_2); 5971 return 0; 5972 } 5973 5974 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 5975 { 5976 struct target_modify_ldt_ldt_s *target_ldt_info; 5977 uint64_t *gdt_table = g2h(env->gdt.base); 5978 uint32_t base_addr, limit, flags; 5979 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 5980 int seg_not_present, useable, lm; 5981 uint32_t *lp, entry_1, entry_2; 5982 5983 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 5984 if (!target_ldt_info) 5985 return -TARGET_EFAULT; 5986 idx = tswap32(target_ldt_info->entry_number); 5987 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 5988 idx > TARGET_GDT_ENTRY_TLS_MAX) { 5989 unlock_user_struct(target_ldt_info, ptr, 1); 5990 return -TARGET_EINVAL; 5991 } 5992 lp = (uint32_t *)(gdt_table + idx); 5993 entry_1 = tswap32(lp[0]); 5994 entry_2 = tswap32(lp[1]); 5995 5996 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 5997 contents = (entry_2 >> 10) & 3; 5998 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 5999 seg_32bit = (entry_2 >> 22) & 1; 6000 limit_in_pages = (entry_2 >> 23) & 1; 6001 useable = (entry_2 >> 20) & 1; 6002 #ifdef TARGET_ABI32 6003 lm = 0; 6004 #else 6005 lm = (entry_2 >> 21) & 1; 6006 #endif 6007 flags = (seg_32bit << 0) | (contents << 1) | 6008 (read_exec_only << 3) | (limit_in_pages << 4) | 6009 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6010 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6011 base_addr = (entry_1 >> 16) | 6012 (entry_2 & 0xff000000) | 6013 ((entry_2 & 0xff) << 16); 6014 target_ldt_info->base_addr = tswapal(base_addr); 6015 target_ldt_info->limit = tswap32(limit); 6016 target_ldt_info->flags = tswap32(flags); 6017 unlock_user_struct(target_ldt_info, ptr, 1); 6018 return 0; 6019 } 6020 #endif /* TARGET_I386 && TARGET_ABI32 */ 6021 6022 #ifndef TARGET_ABI32 6023 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6024 { 6025 abi_long ret = 0; 6026 abi_ulong val; 6027 int idx; 6028 6029 switch(code) { 6030 case TARGET_ARCH_SET_GS: 6031 case TARGET_ARCH_SET_FS: 6032 if (code == TARGET_ARCH_SET_GS) 6033 idx = R_GS; 6034 else 6035 idx = R_FS; 6036 cpu_x86_load_seg(env, idx, 0); 6037 env->segs[idx].base = addr; 6038 break; 6039 case TARGET_ARCH_GET_GS: 6040 case TARGET_ARCH_GET_FS: 6041 if (code == TARGET_ARCH_GET_GS) 6042 idx = R_GS; 6043 else 6044 idx = R_FS; 6045 val = env->segs[idx].base; 6046 if (put_user(val, addr, abi_ulong)) 6047 ret = -TARGET_EFAULT; 6048 break; 6049 default: 6050 ret = -TARGET_EINVAL; 6051 break; 6052 } 6053 return ret; 6054 } 6055 #endif 6056 6057 #endif /* defined(TARGET_I386) */ 6058 6059 #define NEW_STACK_SIZE 0x40000 6060 6061 6062 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6063 typedef struct { 6064 CPUArchState *env; 6065 pthread_mutex_t mutex; 6066 pthread_cond_t cond; 6067 pthread_t thread; 6068 uint32_t tid; 6069 abi_ulong child_tidptr; 6070 abi_ulong parent_tidptr; 6071 sigset_t sigmask; 6072 } new_thread_info; 6073 6074 static void *clone_func(void *arg) 6075 { 6076 new_thread_info *info = arg; 6077 CPUArchState *env; 6078 CPUState *cpu; 6079 TaskState *ts; 6080 6081 rcu_register_thread(); 6082 env = info->env; 6083 cpu = ENV_GET_CPU(env); 6084 thread_cpu = cpu; 6085 ts = (TaskState *)cpu->opaque; 6086 info->tid = gettid(); 6087 cpu->host_tid = info->tid; 6088 task_settid(ts); 6089 if (info->child_tidptr) 6090 put_user_u32(info->tid, info->child_tidptr); 6091 if (info->parent_tidptr) 6092 put_user_u32(info->tid, info->parent_tidptr); 6093 /* Enable signals. */ 6094 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6095 /* Signal to the parent that we're ready. */ 6096 pthread_mutex_lock(&info->mutex); 6097 pthread_cond_broadcast(&info->cond); 6098 pthread_mutex_unlock(&info->mutex); 6099 /* Wait until the parent has finshed initializing the tls state. */ 6100 pthread_mutex_lock(&clone_lock); 6101 pthread_mutex_unlock(&clone_lock); 6102 cpu_loop(env); 6103 /* never exits */ 6104 return NULL; 6105 } 6106 6107 /* do_fork() Must return host values and target errnos (unlike most 6108 do_*() functions). */ 6109 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6110 abi_ulong parent_tidptr, target_ulong newtls, 6111 abi_ulong child_tidptr) 6112 { 6113 CPUState *cpu = ENV_GET_CPU(env); 6114 int ret; 6115 TaskState *ts; 6116 CPUState *new_cpu; 6117 CPUArchState *new_env; 6118 sigset_t sigmask; 6119 6120 flags &= ~CLONE_IGNORED_FLAGS; 6121 6122 /* Emulate vfork() with fork() */ 6123 if (flags & CLONE_VFORK) 6124 flags &= ~(CLONE_VFORK | CLONE_VM); 6125 6126 if (flags & CLONE_VM) { 6127 TaskState *parent_ts = (TaskState *)cpu->opaque; 6128 new_thread_info info; 6129 pthread_attr_t attr; 6130 6131 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6132 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6133 return -TARGET_EINVAL; 6134 } 6135 6136 ts = g_new0(TaskState, 1); 6137 init_task_state(ts); 6138 /* we create a new CPU instance. */ 6139 new_env = cpu_copy(env); 6140 /* Init regs that differ from the parent. */ 6141 cpu_clone_regs(new_env, newsp); 6142 new_cpu = ENV_GET_CPU(new_env); 6143 new_cpu->opaque = ts; 6144 ts->bprm = parent_ts->bprm; 6145 ts->info = parent_ts->info; 6146 ts->signal_mask = parent_ts->signal_mask; 6147 6148 if (flags & CLONE_CHILD_CLEARTID) { 6149 ts->child_tidptr = child_tidptr; 6150 } 6151 6152 if (flags & CLONE_SETTLS) { 6153 cpu_set_tls (new_env, newtls); 6154 } 6155 6156 /* Grab a mutex so that thread setup appears atomic. */ 6157 pthread_mutex_lock(&clone_lock); 6158 6159 memset(&info, 0, sizeof(info)); 6160 pthread_mutex_init(&info.mutex, NULL); 6161 pthread_mutex_lock(&info.mutex); 6162 pthread_cond_init(&info.cond, NULL); 6163 info.env = new_env; 6164 if (flags & CLONE_CHILD_SETTID) { 6165 info.child_tidptr = child_tidptr; 6166 } 6167 if (flags & CLONE_PARENT_SETTID) { 6168 info.parent_tidptr = parent_tidptr; 6169 } 6170 6171 ret = pthread_attr_init(&attr); 6172 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6173 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6174 /* It is not safe to deliver signals until the child has finished 6175 initializing, so temporarily block all signals. */ 6176 sigfillset(&sigmask); 6177 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6178 6179 /* If this is our first additional thread, we need to ensure we 6180 * generate code for parallel execution and flush old translations. 6181 */ 6182 if (!parallel_cpus) { 6183 parallel_cpus = true; 6184 tb_flush(cpu); 6185 } 6186 6187 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6188 /* TODO: Free new CPU state if thread creation failed. */ 6189 6190 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6191 pthread_attr_destroy(&attr); 6192 if (ret == 0) { 6193 /* Wait for the child to initialize. */ 6194 pthread_cond_wait(&info.cond, &info.mutex); 6195 ret = info.tid; 6196 } else { 6197 ret = -1; 6198 } 6199 pthread_mutex_unlock(&info.mutex); 6200 pthread_cond_destroy(&info.cond); 6201 pthread_mutex_destroy(&info.mutex); 6202 pthread_mutex_unlock(&clone_lock); 6203 } else { 6204 /* if no CLONE_VM, we consider it is a fork */ 6205 if (flags & CLONE_INVALID_FORK_FLAGS) { 6206 return -TARGET_EINVAL; 6207 } 6208 6209 /* We can't support custom termination signals */ 6210 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6211 return -TARGET_EINVAL; 6212 } 6213 6214 if (block_signals()) { 6215 return -TARGET_ERESTARTSYS; 6216 } 6217 6218 fork_start(); 6219 ret = fork(); 6220 if (ret == 0) { 6221 /* Child Process. */ 6222 rcu_after_fork(); 6223 cpu_clone_regs(env, newsp); 6224 fork_end(1); 6225 /* There is a race condition here. The parent process could 6226 theoretically read the TID in the child process before the child 6227 tid is set. This would require using either ptrace 6228 (not implemented) or having *_tidptr to point at a shared memory 6229 mapping. We can't repeat the spinlock hack used above because 6230 the child process gets its own copy of the lock. */ 6231 if (flags & CLONE_CHILD_SETTID) 6232 put_user_u32(gettid(), child_tidptr); 6233 if (flags & CLONE_PARENT_SETTID) 6234 put_user_u32(gettid(), parent_tidptr); 6235 ts = (TaskState *)cpu->opaque; 6236 if (flags & CLONE_SETTLS) 6237 cpu_set_tls (env, newtls); 6238 if (flags & CLONE_CHILD_CLEARTID) 6239 ts->child_tidptr = child_tidptr; 6240 } else { 6241 fork_end(0); 6242 } 6243 } 6244 return ret; 6245 } 6246 6247 /* warning : doesn't handle linux specific flags... */ 6248 static int target_to_host_fcntl_cmd(int cmd) 6249 { 6250 switch(cmd) { 6251 case TARGET_F_DUPFD: 6252 case TARGET_F_GETFD: 6253 case TARGET_F_SETFD: 6254 case TARGET_F_GETFL: 6255 case TARGET_F_SETFL: 6256 return cmd; 6257 case TARGET_F_GETLK: 6258 return F_GETLK64; 6259 case TARGET_F_SETLK: 6260 return F_SETLK64; 6261 case TARGET_F_SETLKW: 6262 return F_SETLKW64; 6263 case TARGET_F_GETOWN: 6264 return F_GETOWN; 6265 case TARGET_F_SETOWN: 6266 return F_SETOWN; 6267 case TARGET_F_GETSIG: 6268 return F_GETSIG; 6269 case TARGET_F_SETSIG: 6270 return F_SETSIG; 6271 #if TARGET_ABI_BITS == 32 6272 case TARGET_F_GETLK64: 6273 return F_GETLK64; 6274 case TARGET_F_SETLK64: 6275 return F_SETLK64; 6276 case TARGET_F_SETLKW64: 6277 return F_SETLKW64; 6278 #endif 6279 case TARGET_F_SETLEASE: 6280 return F_SETLEASE; 6281 case TARGET_F_GETLEASE: 6282 return F_GETLEASE; 6283 #ifdef F_DUPFD_CLOEXEC 6284 case TARGET_F_DUPFD_CLOEXEC: 6285 return F_DUPFD_CLOEXEC; 6286 #endif 6287 case TARGET_F_NOTIFY: 6288 return F_NOTIFY; 6289 #ifdef F_GETOWN_EX 6290 case TARGET_F_GETOWN_EX: 6291 return F_GETOWN_EX; 6292 #endif 6293 #ifdef F_SETOWN_EX 6294 case TARGET_F_SETOWN_EX: 6295 return F_SETOWN_EX; 6296 #endif 6297 #ifdef F_SETPIPE_SZ 6298 case TARGET_F_SETPIPE_SZ: 6299 return F_SETPIPE_SZ; 6300 case TARGET_F_GETPIPE_SZ: 6301 return F_GETPIPE_SZ; 6302 #endif 6303 default: 6304 return -TARGET_EINVAL; 6305 } 6306 return -TARGET_EINVAL; 6307 } 6308 6309 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a } 6310 static const bitmask_transtbl flock_tbl[] = { 6311 TRANSTBL_CONVERT(F_RDLCK), 6312 TRANSTBL_CONVERT(F_WRLCK), 6313 TRANSTBL_CONVERT(F_UNLCK), 6314 TRANSTBL_CONVERT(F_EXLCK), 6315 TRANSTBL_CONVERT(F_SHLCK), 6316 { 0, 0, 0, 0 } 6317 }; 6318 6319 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6320 abi_ulong target_flock_addr) 6321 { 6322 struct target_flock *target_fl; 6323 short l_type; 6324 6325 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6326 return -TARGET_EFAULT; 6327 } 6328 6329 __get_user(l_type, &target_fl->l_type); 6330 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6331 __get_user(fl->l_whence, &target_fl->l_whence); 6332 __get_user(fl->l_start, &target_fl->l_start); 6333 __get_user(fl->l_len, &target_fl->l_len); 6334 __get_user(fl->l_pid, &target_fl->l_pid); 6335 unlock_user_struct(target_fl, target_flock_addr, 0); 6336 return 0; 6337 } 6338 6339 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6340 const struct flock64 *fl) 6341 { 6342 struct target_flock *target_fl; 6343 short l_type; 6344 6345 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6346 return -TARGET_EFAULT; 6347 } 6348 6349 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6350 __put_user(l_type, &target_fl->l_type); 6351 __put_user(fl->l_whence, &target_fl->l_whence); 6352 __put_user(fl->l_start, &target_fl->l_start); 6353 __put_user(fl->l_len, &target_fl->l_len); 6354 __put_user(fl->l_pid, &target_fl->l_pid); 6355 unlock_user_struct(target_fl, target_flock_addr, 1); 6356 return 0; 6357 } 6358 6359 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6360 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6361 6362 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6363 static inline abi_long copy_from_user_eabi_flock64(struct flock64 *fl, 6364 abi_ulong target_flock_addr) 6365 { 6366 struct target_eabi_flock64 *target_fl; 6367 short l_type; 6368 6369 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6370 return -TARGET_EFAULT; 6371 } 6372 6373 __get_user(l_type, &target_fl->l_type); 6374 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6375 __get_user(fl->l_whence, &target_fl->l_whence); 6376 __get_user(fl->l_start, &target_fl->l_start); 6377 __get_user(fl->l_len, &target_fl->l_len); 6378 __get_user(fl->l_pid, &target_fl->l_pid); 6379 unlock_user_struct(target_fl, target_flock_addr, 0); 6380 return 0; 6381 } 6382 6383 static inline abi_long copy_to_user_eabi_flock64(abi_ulong target_flock_addr, 6384 const struct flock64 *fl) 6385 { 6386 struct target_eabi_flock64 *target_fl; 6387 short l_type; 6388 6389 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6390 return -TARGET_EFAULT; 6391 } 6392 6393 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6394 __put_user(l_type, &target_fl->l_type); 6395 __put_user(fl->l_whence, &target_fl->l_whence); 6396 __put_user(fl->l_start, &target_fl->l_start); 6397 __put_user(fl->l_len, &target_fl->l_len); 6398 __put_user(fl->l_pid, &target_fl->l_pid); 6399 unlock_user_struct(target_fl, target_flock_addr, 1); 6400 return 0; 6401 } 6402 #endif 6403 6404 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6405 abi_ulong target_flock_addr) 6406 { 6407 struct target_flock64 *target_fl; 6408 short l_type; 6409 6410 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6411 return -TARGET_EFAULT; 6412 } 6413 6414 __get_user(l_type, &target_fl->l_type); 6415 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6416 __get_user(fl->l_whence, &target_fl->l_whence); 6417 __get_user(fl->l_start, &target_fl->l_start); 6418 __get_user(fl->l_len, &target_fl->l_len); 6419 __get_user(fl->l_pid, &target_fl->l_pid); 6420 unlock_user_struct(target_fl, target_flock_addr, 0); 6421 return 0; 6422 } 6423 6424 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6425 const struct flock64 *fl) 6426 { 6427 struct target_flock64 *target_fl; 6428 short l_type; 6429 6430 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6431 return -TARGET_EFAULT; 6432 } 6433 6434 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6435 __put_user(l_type, &target_fl->l_type); 6436 __put_user(fl->l_whence, &target_fl->l_whence); 6437 __put_user(fl->l_start, &target_fl->l_start); 6438 __put_user(fl->l_len, &target_fl->l_len); 6439 __put_user(fl->l_pid, &target_fl->l_pid); 6440 unlock_user_struct(target_fl, target_flock_addr, 1); 6441 return 0; 6442 } 6443 6444 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6445 { 6446 struct flock64 fl64; 6447 #ifdef F_GETOWN_EX 6448 struct f_owner_ex fox; 6449 struct target_f_owner_ex *target_fox; 6450 #endif 6451 abi_long ret; 6452 int host_cmd = target_to_host_fcntl_cmd(cmd); 6453 6454 if (host_cmd == -TARGET_EINVAL) 6455 return host_cmd; 6456 6457 switch(cmd) { 6458 case TARGET_F_GETLK: 6459 ret = copy_from_user_flock(&fl64, arg); 6460 if (ret) { 6461 return ret; 6462 } 6463 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6464 if (ret == 0) { 6465 ret = copy_to_user_flock(arg, &fl64); 6466 } 6467 break; 6468 6469 case TARGET_F_SETLK: 6470 case TARGET_F_SETLKW: 6471 ret = copy_from_user_flock(&fl64, arg); 6472 if (ret) { 6473 return ret; 6474 } 6475 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6476 break; 6477 6478 case TARGET_F_GETLK64: 6479 ret = copy_from_user_flock64(&fl64, arg); 6480 if (ret) { 6481 return ret; 6482 } 6483 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6484 if (ret == 0) { 6485 ret = copy_to_user_flock64(arg, &fl64); 6486 } 6487 break; 6488 case TARGET_F_SETLK64: 6489 case TARGET_F_SETLKW64: 6490 ret = copy_from_user_flock64(&fl64, arg); 6491 if (ret) { 6492 return ret; 6493 } 6494 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6495 break; 6496 6497 case TARGET_F_GETFL: 6498 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6499 if (ret >= 0) { 6500 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 6501 } 6502 break; 6503 6504 case TARGET_F_SETFL: 6505 ret = get_errno(safe_fcntl(fd, host_cmd, 6506 target_to_host_bitmask(arg, 6507 fcntl_flags_tbl))); 6508 break; 6509 6510 #ifdef F_GETOWN_EX 6511 case TARGET_F_GETOWN_EX: 6512 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6513 if (ret >= 0) { 6514 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 6515 return -TARGET_EFAULT; 6516 target_fox->type = tswap32(fox.type); 6517 target_fox->pid = tswap32(fox.pid); 6518 unlock_user_struct(target_fox, arg, 1); 6519 } 6520 break; 6521 #endif 6522 6523 #ifdef F_SETOWN_EX 6524 case TARGET_F_SETOWN_EX: 6525 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 6526 return -TARGET_EFAULT; 6527 fox.type = tswap32(target_fox->type); 6528 fox.pid = tswap32(target_fox->pid); 6529 unlock_user_struct(target_fox, arg, 0); 6530 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6531 break; 6532 #endif 6533 6534 case TARGET_F_SETOWN: 6535 case TARGET_F_GETOWN: 6536 case TARGET_F_SETSIG: 6537 case TARGET_F_GETSIG: 6538 case TARGET_F_SETLEASE: 6539 case TARGET_F_GETLEASE: 6540 case TARGET_F_SETPIPE_SZ: 6541 case TARGET_F_GETPIPE_SZ: 6542 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6543 break; 6544 6545 default: 6546 ret = get_errno(safe_fcntl(fd, cmd, arg)); 6547 break; 6548 } 6549 return ret; 6550 } 6551 6552 #ifdef USE_UID16 6553 6554 static inline int high2lowuid(int uid) 6555 { 6556 if (uid > 65535) 6557 return 65534; 6558 else 6559 return uid; 6560 } 6561 6562 static inline int high2lowgid(int gid) 6563 { 6564 if (gid > 65535) 6565 return 65534; 6566 else 6567 return gid; 6568 } 6569 6570 static inline int low2highuid(int uid) 6571 { 6572 if ((int16_t)uid == -1) 6573 return -1; 6574 else 6575 return uid; 6576 } 6577 6578 static inline int low2highgid(int gid) 6579 { 6580 if ((int16_t)gid == -1) 6581 return -1; 6582 else 6583 return gid; 6584 } 6585 static inline int tswapid(int id) 6586 { 6587 return tswap16(id); 6588 } 6589 6590 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 6591 6592 #else /* !USE_UID16 */ 6593 static inline int high2lowuid(int uid) 6594 { 6595 return uid; 6596 } 6597 static inline int high2lowgid(int gid) 6598 { 6599 return gid; 6600 } 6601 static inline int low2highuid(int uid) 6602 { 6603 return uid; 6604 } 6605 static inline int low2highgid(int gid) 6606 { 6607 return gid; 6608 } 6609 static inline int tswapid(int id) 6610 { 6611 return tswap32(id); 6612 } 6613 6614 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 6615 6616 #endif /* USE_UID16 */ 6617 6618 /* We must do direct syscalls for setting UID/GID, because we want to 6619 * implement the Linux system call semantics of "change only for this thread", 6620 * not the libc/POSIX semantics of "change for all threads in process". 6621 * (See http://ewontfix.com/17/ for more details.) 6622 * We use the 32-bit version of the syscalls if present; if it is not 6623 * then either the host architecture supports 32-bit UIDs natively with 6624 * the standard syscall, or the 16-bit UID is the best we can do. 6625 */ 6626 #ifdef __NR_setuid32 6627 #define __NR_sys_setuid __NR_setuid32 6628 #else 6629 #define __NR_sys_setuid __NR_setuid 6630 #endif 6631 #ifdef __NR_setgid32 6632 #define __NR_sys_setgid __NR_setgid32 6633 #else 6634 #define __NR_sys_setgid __NR_setgid 6635 #endif 6636 #ifdef __NR_setresuid32 6637 #define __NR_sys_setresuid __NR_setresuid32 6638 #else 6639 #define __NR_sys_setresuid __NR_setresuid 6640 #endif 6641 #ifdef __NR_setresgid32 6642 #define __NR_sys_setresgid __NR_setresgid32 6643 #else 6644 #define __NR_sys_setresgid __NR_setresgid 6645 #endif 6646 6647 _syscall1(int, sys_setuid, uid_t, uid) 6648 _syscall1(int, sys_setgid, gid_t, gid) 6649 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 6650 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 6651 6652 void syscall_init(void) 6653 { 6654 IOCTLEntry *ie; 6655 const argtype *arg_type; 6656 int size; 6657 int i; 6658 6659 thunk_init(STRUCT_MAX); 6660 6661 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 6662 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 6663 #include "syscall_types.h" 6664 #undef STRUCT 6665 #undef STRUCT_SPECIAL 6666 6667 /* Build target_to_host_errno_table[] table from 6668 * host_to_target_errno_table[]. */ 6669 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 6670 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 6671 } 6672 6673 /* we patch the ioctl size if necessary. We rely on the fact that 6674 no ioctl has all the bits at '1' in the size field */ 6675 ie = ioctl_entries; 6676 while (ie->target_cmd != 0) { 6677 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 6678 TARGET_IOC_SIZEMASK) { 6679 arg_type = ie->arg_type; 6680 if (arg_type[0] != TYPE_PTR) { 6681 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 6682 ie->target_cmd); 6683 exit(1); 6684 } 6685 arg_type++; 6686 size = thunk_type_size(arg_type, 0); 6687 ie->target_cmd = (ie->target_cmd & 6688 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 6689 (size << TARGET_IOC_SIZESHIFT); 6690 } 6691 6692 /* automatic consistency check if same arch */ 6693 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 6694 (defined(__x86_64__) && defined(TARGET_X86_64)) 6695 if (unlikely(ie->target_cmd != ie->host_cmd)) { 6696 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 6697 ie->name, ie->target_cmd, ie->host_cmd); 6698 } 6699 #endif 6700 ie++; 6701 } 6702 } 6703 6704 #if TARGET_ABI_BITS == 32 6705 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 6706 { 6707 #ifdef TARGET_WORDS_BIGENDIAN 6708 return ((uint64_t)word0 << 32) | word1; 6709 #else 6710 return ((uint64_t)word1 << 32) | word0; 6711 #endif 6712 } 6713 #else /* TARGET_ABI_BITS == 32 */ 6714 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 6715 { 6716 return word0; 6717 } 6718 #endif /* TARGET_ABI_BITS != 32 */ 6719 6720 #ifdef TARGET_NR_truncate64 6721 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 6722 abi_long arg2, 6723 abi_long arg3, 6724 abi_long arg4) 6725 { 6726 if (regpairs_aligned(cpu_env)) { 6727 arg2 = arg3; 6728 arg3 = arg4; 6729 } 6730 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 6731 } 6732 #endif 6733 6734 #ifdef TARGET_NR_ftruncate64 6735 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 6736 abi_long arg2, 6737 abi_long arg3, 6738 abi_long arg4) 6739 { 6740 if (regpairs_aligned(cpu_env)) { 6741 arg2 = arg3; 6742 arg3 = arg4; 6743 } 6744 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 6745 } 6746 #endif 6747 6748 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 6749 abi_ulong target_addr) 6750 { 6751 struct target_timespec *target_ts; 6752 6753 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) 6754 return -TARGET_EFAULT; 6755 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 6756 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 6757 unlock_user_struct(target_ts, target_addr, 0); 6758 return 0; 6759 } 6760 6761 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 6762 struct timespec *host_ts) 6763 { 6764 struct target_timespec *target_ts; 6765 6766 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) 6767 return -TARGET_EFAULT; 6768 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 6769 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 6770 unlock_user_struct(target_ts, target_addr, 1); 6771 return 0; 6772 } 6773 6774 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec, 6775 abi_ulong target_addr) 6776 { 6777 struct target_itimerspec *target_itspec; 6778 6779 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) { 6780 return -TARGET_EFAULT; 6781 } 6782 6783 host_itspec->it_interval.tv_sec = 6784 tswapal(target_itspec->it_interval.tv_sec); 6785 host_itspec->it_interval.tv_nsec = 6786 tswapal(target_itspec->it_interval.tv_nsec); 6787 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec); 6788 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec); 6789 6790 unlock_user_struct(target_itspec, target_addr, 1); 6791 return 0; 6792 } 6793 6794 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 6795 struct itimerspec *host_its) 6796 { 6797 struct target_itimerspec *target_itspec; 6798 6799 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) { 6800 return -TARGET_EFAULT; 6801 } 6802 6803 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec); 6804 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec); 6805 6806 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec); 6807 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec); 6808 6809 unlock_user_struct(target_itspec, target_addr, 0); 6810 return 0; 6811 } 6812 6813 static inline abi_long target_to_host_timex(struct timex *host_tx, 6814 abi_long target_addr) 6815 { 6816 struct target_timex *target_tx; 6817 6818 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 6819 return -TARGET_EFAULT; 6820 } 6821 6822 __get_user(host_tx->modes, &target_tx->modes); 6823 __get_user(host_tx->offset, &target_tx->offset); 6824 __get_user(host_tx->freq, &target_tx->freq); 6825 __get_user(host_tx->maxerror, &target_tx->maxerror); 6826 __get_user(host_tx->esterror, &target_tx->esterror); 6827 __get_user(host_tx->status, &target_tx->status); 6828 __get_user(host_tx->constant, &target_tx->constant); 6829 __get_user(host_tx->precision, &target_tx->precision); 6830 __get_user(host_tx->tolerance, &target_tx->tolerance); 6831 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 6832 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 6833 __get_user(host_tx->tick, &target_tx->tick); 6834 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 6835 __get_user(host_tx->jitter, &target_tx->jitter); 6836 __get_user(host_tx->shift, &target_tx->shift); 6837 __get_user(host_tx->stabil, &target_tx->stabil); 6838 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 6839 __get_user(host_tx->calcnt, &target_tx->calcnt); 6840 __get_user(host_tx->errcnt, &target_tx->errcnt); 6841 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 6842 __get_user(host_tx->tai, &target_tx->tai); 6843 6844 unlock_user_struct(target_tx, target_addr, 0); 6845 return 0; 6846 } 6847 6848 static inline abi_long host_to_target_timex(abi_long target_addr, 6849 struct timex *host_tx) 6850 { 6851 struct target_timex *target_tx; 6852 6853 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 6854 return -TARGET_EFAULT; 6855 } 6856 6857 __put_user(host_tx->modes, &target_tx->modes); 6858 __put_user(host_tx->offset, &target_tx->offset); 6859 __put_user(host_tx->freq, &target_tx->freq); 6860 __put_user(host_tx->maxerror, &target_tx->maxerror); 6861 __put_user(host_tx->esterror, &target_tx->esterror); 6862 __put_user(host_tx->status, &target_tx->status); 6863 __put_user(host_tx->constant, &target_tx->constant); 6864 __put_user(host_tx->precision, &target_tx->precision); 6865 __put_user(host_tx->tolerance, &target_tx->tolerance); 6866 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 6867 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 6868 __put_user(host_tx->tick, &target_tx->tick); 6869 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 6870 __put_user(host_tx->jitter, &target_tx->jitter); 6871 __put_user(host_tx->shift, &target_tx->shift); 6872 __put_user(host_tx->stabil, &target_tx->stabil); 6873 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 6874 __put_user(host_tx->calcnt, &target_tx->calcnt); 6875 __put_user(host_tx->errcnt, &target_tx->errcnt); 6876 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 6877 __put_user(host_tx->tai, &target_tx->tai); 6878 6879 unlock_user_struct(target_tx, target_addr, 1); 6880 return 0; 6881 } 6882 6883 6884 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 6885 abi_ulong target_addr) 6886 { 6887 struct target_sigevent *target_sevp; 6888 6889 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 6890 return -TARGET_EFAULT; 6891 } 6892 6893 /* This union is awkward on 64 bit systems because it has a 32 bit 6894 * integer and a pointer in it; we follow the conversion approach 6895 * used for handling sigval types in signal.c so the guest should get 6896 * the correct value back even if we did a 64 bit byteswap and it's 6897 * using the 32 bit integer. 6898 */ 6899 host_sevp->sigev_value.sival_ptr = 6900 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 6901 host_sevp->sigev_signo = 6902 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 6903 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 6904 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid); 6905 6906 unlock_user_struct(target_sevp, target_addr, 1); 6907 return 0; 6908 } 6909 6910 #if defined(TARGET_NR_mlockall) 6911 static inline int target_to_host_mlockall_arg(int arg) 6912 { 6913 int result = 0; 6914 6915 if (arg & TARGET_MLOCKALL_MCL_CURRENT) { 6916 result |= MCL_CURRENT; 6917 } 6918 if (arg & TARGET_MLOCKALL_MCL_FUTURE) { 6919 result |= MCL_FUTURE; 6920 } 6921 return result; 6922 } 6923 #endif 6924 6925 static inline abi_long host_to_target_stat64(void *cpu_env, 6926 abi_ulong target_addr, 6927 struct stat *host_st) 6928 { 6929 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 6930 if (((CPUARMState *)cpu_env)->eabi) { 6931 struct target_eabi_stat64 *target_st; 6932 6933 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 6934 return -TARGET_EFAULT; 6935 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 6936 __put_user(host_st->st_dev, &target_st->st_dev); 6937 __put_user(host_st->st_ino, &target_st->st_ino); 6938 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 6939 __put_user(host_st->st_ino, &target_st->__st_ino); 6940 #endif 6941 __put_user(host_st->st_mode, &target_st->st_mode); 6942 __put_user(host_st->st_nlink, &target_st->st_nlink); 6943 __put_user(host_st->st_uid, &target_st->st_uid); 6944 __put_user(host_st->st_gid, &target_st->st_gid); 6945 __put_user(host_st->st_rdev, &target_st->st_rdev); 6946 __put_user(host_st->st_size, &target_st->st_size); 6947 __put_user(host_st->st_blksize, &target_st->st_blksize); 6948 __put_user(host_st->st_blocks, &target_st->st_blocks); 6949 __put_user(host_st->st_atime, &target_st->target_st_atime); 6950 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 6951 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 6952 unlock_user_struct(target_st, target_addr, 1); 6953 } else 6954 #endif 6955 { 6956 #if defined(TARGET_HAS_STRUCT_STAT64) 6957 struct target_stat64 *target_st; 6958 #else 6959 struct target_stat *target_st; 6960 #endif 6961 6962 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 6963 return -TARGET_EFAULT; 6964 memset(target_st, 0, sizeof(*target_st)); 6965 __put_user(host_st->st_dev, &target_st->st_dev); 6966 __put_user(host_st->st_ino, &target_st->st_ino); 6967 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 6968 __put_user(host_st->st_ino, &target_st->__st_ino); 6969 #endif 6970 __put_user(host_st->st_mode, &target_st->st_mode); 6971 __put_user(host_st->st_nlink, &target_st->st_nlink); 6972 __put_user(host_st->st_uid, &target_st->st_uid); 6973 __put_user(host_st->st_gid, &target_st->st_gid); 6974 __put_user(host_st->st_rdev, &target_st->st_rdev); 6975 /* XXX: better use of kernel struct */ 6976 __put_user(host_st->st_size, &target_st->st_size); 6977 __put_user(host_st->st_blksize, &target_st->st_blksize); 6978 __put_user(host_st->st_blocks, &target_st->st_blocks); 6979 __put_user(host_st->st_atime, &target_st->target_st_atime); 6980 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 6981 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 6982 unlock_user_struct(target_st, target_addr, 1); 6983 } 6984 6985 return 0; 6986 } 6987 6988 /* ??? Using host futex calls even when target atomic operations 6989 are not really atomic probably breaks things. However implementing 6990 futexes locally would make futexes shared between multiple processes 6991 tricky. However they're probably useless because guest atomic 6992 operations won't work either. */ 6993 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout, 6994 target_ulong uaddr2, int val3) 6995 { 6996 struct timespec ts, *pts; 6997 int base_op; 6998 6999 /* ??? We assume FUTEX_* constants are the same on both host 7000 and target. */ 7001 #ifdef FUTEX_CMD_MASK 7002 base_op = op & FUTEX_CMD_MASK; 7003 #else 7004 base_op = op; 7005 #endif 7006 switch (base_op) { 7007 case FUTEX_WAIT: 7008 case FUTEX_WAIT_BITSET: 7009 if (timeout) { 7010 pts = &ts; 7011 target_to_host_timespec(pts, timeout); 7012 } else { 7013 pts = NULL; 7014 } 7015 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val), 7016 pts, NULL, val3)); 7017 case FUTEX_WAKE: 7018 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7019 case FUTEX_FD: 7020 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7021 case FUTEX_REQUEUE: 7022 case FUTEX_CMP_REQUEUE: 7023 case FUTEX_WAKE_OP: 7024 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 7025 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 7026 But the prototype takes a `struct timespec *'; insert casts 7027 to satisfy the compiler. We do not need to tswap TIMEOUT 7028 since it's not compared to guest memory. */ 7029 pts = (struct timespec *)(uintptr_t) timeout; 7030 return get_errno(safe_futex(g2h(uaddr), op, val, pts, 7031 g2h(uaddr2), 7032 (base_op == FUTEX_CMP_REQUEUE 7033 ? tswap32(val3) 7034 : val3))); 7035 default: 7036 return -TARGET_ENOSYS; 7037 } 7038 } 7039 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7040 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7041 abi_long handle, abi_long mount_id, 7042 abi_long flags) 7043 { 7044 struct file_handle *target_fh; 7045 struct file_handle *fh; 7046 int mid = 0; 7047 abi_long ret; 7048 char *name; 7049 unsigned int size, total_size; 7050 7051 if (get_user_s32(size, handle)) { 7052 return -TARGET_EFAULT; 7053 } 7054 7055 name = lock_user_string(pathname); 7056 if (!name) { 7057 return -TARGET_EFAULT; 7058 } 7059 7060 total_size = sizeof(struct file_handle) + size; 7061 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7062 if (!target_fh) { 7063 unlock_user(name, pathname, 0); 7064 return -TARGET_EFAULT; 7065 } 7066 7067 fh = g_malloc0(total_size); 7068 fh->handle_bytes = size; 7069 7070 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7071 unlock_user(name, pathname, 0); 7072 7073 /* man name_to_handle_at(2): 7074 * Other than the use of the handle_bytes field, the caller should treat 7075 * the file_handle structure as an opaque data type 7076 */ 7077 7078 memcpy(target_fh, fh, total_size); 7079 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7080 target_fh->handle_type = tswap32(fh->handle_type); 7081 g_free(fh); 7082 unlock_user(target_fh, handle, total_size); 7083 7084 if (put_user_s32(mid, mount_id)) { 7085 return -TARGET_EFAULT; 7086 } 7087 7088 return ret; 7089 7090 } 7091 #endif 7092 7093 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7094 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7095 abi_long flags) 7096 { 7097 struct file_handle *target_fh; 7098 struct file_handle *fh; 7099 unsigned int size, total_size; 7100 abi_long ret; 7101 7102 if (get_user_s32(size, handle)) { 7103 return -TARGET_EFAULT; 7104 } 7105 7106 total_size = sizeof(struct file_handle) + size; 7107 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7108 if (!target_fh) { 7109 return -TARGET_EFAULT; 7110 } 7111 7112 fh = g_memdup(target_fh, total_size); 7113 fh->handle_bytes = size; 7114 fh->handle_type = tswap32(target_fh->handle_type); 7115 7116 ret = get_errno(open_by_handle_at(mount_fd, fh, 7117 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7118 7119 g_free(fh); 7120 7121 unlock_user(target_fh, handle, total_size); 7122 7123 return ret; 7124 } 7125 #endif 7126 7127 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7128 7129 /* signalfd siginfo conversion */ 7130 7131 static void 7132 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo, 7133 const struct signalfd_siginfo *info) 7134 { 7135 int sig = host_to_target_signal(info->ssi_signo); 7136 7137 /* linux/signalfd.h defines a ssi_addr_lsb 7138 * not defined in sys/signalfd.h but used by some kernels 7139 */ 7140 7141 #ifdef BUS_MCEERR_AO 7142 if (tinfo->ssi_signo == SIGBUS && 7143 (tinfo->ssi_code == BUS_MCEERR_AR || 7144 tinfo->ssi_code == BUS_MCEERR_AO)) { 7145 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1); 7146 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1); 7147 *tssi_addr_lsb = tswap16(*ssi_addr_lsb); 7148 } 7149 #endif 7150 7151 tinfo->ssi_signo = tswap32(sig); 7152 tinfo->ssi_errno = tswap32(tinfo->ssi_errno); 7153 tinfo->ssi_code = tswap32(info->ssi_code); 7154 tinfo->ssi_pid = tswap32(info->ssi_pid); 7155 tinfo->ssi_uid = tswap32(info->ssi_uid); 7156 tinfo->ssi_fd = tswap32(info->ssi_fd); 7157 tinfo->ssi_tid = tswap32(info->ssi_tid); 7158 tinfo->ssi_band = tswap32(info->ssi_band); 7159 tinfo->ssi_overrun = tswap32(info->ssi_overrun); 7160 tinfo->ssi_trapno = tswap32(info->ssi_trapno); 7161 tinfo->ssi_status = tswap32(info->ssi_status); 7162 tinfo->ssi_int = tswap32(info->ssi_int); 7163 tinfo->ssi_ptr = tswap64(info->ssi_ptr); 7164 tinfo->ssi_utime = tswap64(info->ssi_utime); 7165 tinfo->ssi_stime = tswap64(info->ssi_stime); 7166 tinfo->ssi_addr = tswap64(info->ssi_addr); 7167 } 7168 7169 static abi_long host_to_target_data_signalfd(void *buf, size_t len) 7170 { 7171 int i; 7172 7173 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) { 7174 host_to_target_signalfd_siginfo(buf + i, buf + i); 7175 } 7176 7177 return len; 7178 } 7179 7180 static TargetFdTrans target_signalfd_trans = { 7181 .host_to_target_data = host_to_target_data_signalfd, 7182 }; 7183 7184 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7185 { 7186 int host_flags; 7187 target_sigset_t *target_mask; 7188 sigset_t host_mask; 7189 abi_long ret; 7190 7191 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) { 7192 return -TARGET_EINVAL; 7193 } 7194 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7195 return -TARGET_EFAULT; 7196 } 7197 7198 target_to_host_sigset(&host_mask, target_mask); 7199 7200 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7201 7202 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7203 if (ret >= 0) { 7204 fd_trans_register(ret, &target_signalfd_trans); 7205 } 7206 7207 unlock_user_struct(target_mask, mask, 0); 7208 7209 return ret; 7210 } 7211 #endif 7212 7213 /* Map host to target signal numbers for the wait family of syscalls. 7214 Assume all other status bits are the same. */ 7215 int host_to_target_waitstatus(int status) 7216 { 7217 if (WIFSIGNALED(status)) { 7218 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7219 } 7220 if (WIFSTOPPED(status)) { 7221 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7222 | (status & 0xff); 7223 } 7224 return status; 7225 } 7226 7227 static int open_self_cmdline(void *cpu_env, int fd) 7228 { 7229 int fd_orig = -1; 7230 bool word_skipped = false; 7231 7232 fd_orig = open("/proc/self/cmdline", O_RDONLY); 7233 if (fd_orig < 0) { 7234 return fd_orig; 7235 } 7236 7237 while (true) { 7238 ssize_t nb_read; 7239 char buf[128]; 7240 char *cp_buf = buf; 7241 7242 nb_read = read(fd_orig, buf, sizeof(buf)); 7243 if (nb_read < 0) { 7244 int e = errno; 7245 fd_orig = close(fd_orig); 7246 errno = e; 7247 return -1; 7248 } else if (nb_read == 0) { 7249 break; 7250 } 7251 7252 if (!word_skipped) { 7253 /* Skip the first string, which is the path to qemu-*-static 7254 instead of the actual command. */ 7255 cp_buf = memchr(buf, 0, nb_read); 7256 if (cp_buf) { 7257 /* Null byte found, skip one string */ 7258 cp_buf++; 7259 nb_read -= cp_buf - buf; 7260 word_skipped = true; 7261 } 7262 } 7263 7264 if (word_skipped) { 7265 if (write(fd, cp_buf, nb_read) != nb_read) { 7266 int e = errno; 7267 close(fd_orig); 7268 errno = e; 7269 return -1; 7270 } 7271 } 7272 } 7273 7274 return close(fd_orig); 7275 } 7276 7277 static int open_self_maps(void *cpu_env, int fd) 7278 { 7279 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7280 TaskState *ts = cpu->opaque; 7281 FILE *fp; 7282 char *line = NULL; 7283 size_t len = 0; 7284 ssize_t read; 7285 7286 fp = fopen("/proc/self/maps", "r"); 7287 if (fp == NULL) { 7288 return -1; 7289 } 7290 7291 while ((read = getline(&line, &len, fp)) != -1) { 7292 int fields, dev_maj, dev_min, inode; 7293 uint64_t min, max, offset; 7294 char flag_r, flag_w, flag_x, flag_p; 7295 char path[512] = ""; 7296 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d" 7297 " %512s", &min, &max, &flag_r, &flag_w, &flag_x, 7298 &flag_p, &offset, &dev_maj, &dev_min, &inode, path); 7299 7300 if ((fields < 10) || (fields > 11)) { 7301 continue; 7302 } 7303 if (h2g_valid(min)) { 7304 int flags = page_get_flags(h2g(min)); 7305 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX); 7306 if (page_check_range(h2g(min), max - min, flags) == -1) { 7307 continue; 7308 } 7309 if (h2g(min) == ts->info->stack_limit) { 7310 pstrcpy(path, sizeof(path), " [stack]"); 7311 } 7312 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx 7313 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n", 7314 h2g(min), h2g(max - 1) + 1, flag_r, flag_w, 7315 flag_x, flag_p, offset, dev_maj, dev_min, inode, 7316 path[0] ? " " : "", path); 7317 } 7318 } 7319 7320 free(line); 7321 fclose(fp); 7322 7323 return 0; 7324 } 7325 7326 static int open_self_stat(void *cpu_env, int fd) 7327 { 7328 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7329 TaskState *ts = cpu->opaque; 7330 abi_ulong start_stack = ts->info->start_stack; 7331 int i; 7332 7333 for (i = 0; i < 44; i++) { 7334 char buf[128]; 7335 int len; 7336 uint64_t val = 0; 7337 7338 if (i == 0) { 7339 /* pid */ 7340 val = getpid(); 7341 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7342 } else if (i == 1) { 7343 /* app name */ 7344 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]); 7345 } else if (i == 27) { 7346 /* stack bottom */ 7347 val = start_stack; 7348 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7349 } else { 7350 /* for the rest, there is MasterCard */ 7351 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' '); 7352 } 7353 7354 len = strlen(buf); 7355 if (write(fd, buf, len) != len) { 7356 return -1; 7357 } 7358 } 7359 7360 return 0; 7361 } 7362 7363 static int open_self_auxv(void *cpu_env, int fd) 7364 { 7365 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7366 TaskState *ts = cpu->opaque; 7367 abi_ulong auxv = ts->info->saved_auxv; 7368 abi_ulong len = ts->info->auxv_len; 7369 char *ptr; 7370 7371 /* 7372 * Auxiliary vector is stored in target process stack. 7373 * read in whole auxv vector and copy it to file 7374 */ 7375 ptr = lock_user(VERIFY_READ, auxv, len, 0); 7376 if (ptr != NULL) { 7377 while (len > 0) { 7378 ssize_t r; 7379 r = write(fd, ptr, len); 7380 if (r <= 0) { 7381 break; 7382 } 7383 len -= r; 7384 ptr += r; 7385 } 7386 lseek(fd, 0, SEEK_SET); 7387 unlock_user(ptr, auxv, len); 7388 } 7389 7390 return 0; 7391 } 7392 7393 static int is_proc_myself(const char *filename, const char *entry) 7394 { 7395 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 7396 filename += strlen("/proc/"); 7397 if (!strncmp(filename, "self/", strlen("self/"))) { 7398 filename += strlen("self/"); 7399 } else if (*filename >= '1' && *filename <= '9') { 7400 char myself[80]; 7401 snprintf(myself, sizeof(myself), "%d/", getpid()); 7402 if (!strncmp(filename, myself, strlen(myself))) { 7403 filename += strlen(myself); 7404 } else { 7405 return 0; 7406 } 7407 } else { 7408 return 0; 7409 } 7410 if (!strcmp(filename, entry)) { 7411 return 1; 7412 } 7413 } 7414 return 0; 7415 } 7416 7417 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7418 static int is_proc(const char *filename, const char *entry) 7419 { 7420 return strcmp(filename, entry) == 0; 7421 } 7422 7423 static int open_net_route(void *cpu_env, int fd) 7424 { 7425 FILE *fp; 7426 char *line = NULL; 7427 size_t len = 0; 7428 ssize_t read; 7429 7430 fp = fopen("/proc/net/route", "r"); 7431 if (fp == NULL) { 7432 return -1; 7433 } 7434 7435 /* read header */ 7436 7437 read = getline(&line, &len, fp); 7438 dprintf(fd, "%s", line); 7439 7440 /* read routes */ 7441 7442 while ((read = getline(&line, &len, fp)) != -1) { 7443 char iface[16]; 7444 uint32_t dest, gw, mask; 7445 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 7446 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7447 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 7448 &mask, &mtu, &window, &irtt); 7449 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7450 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 7451 metric, tswap32(mask), mtu, window, irtt); 7452 } 7453 7454 free(line); 7455 fclose(fp); 7456 7457 return 0; 7458 } 7459 #endif 7460 7461 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 7462 { 7463 struct fake_open { 7464 const char *filename; 7465 int (*fill)(void *cpu_env, int fd); 7466 int (*cmp)(const char *s1, const char *s2); 7467 }; 7468 const struct fake_open *fake_open; 7469 static const struct fake_open fakes[] = { 7470 { "maps", open_self_maps, is_proc_myself }, 7471 { "stat", open_self_stat, is_proc_myself }, 7472 { "auxv", open_self_auxv, is_proc_myself }, 7473 { "cmdline", open_self_cmdline, is_proc_myself }, 7474 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7475 { "/proc/net/route", open_net_route, is_proc }, 7476 #endif 7477 { NULL, NULL, NULL } 7478 }; 7479 7480 if (is_proc_myself(pathname, "exe")) { 7481 int execfd = qemu_getauxval(AT_EXECFD); 7482 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode); 7483 } 7484 7485 for (fake_open = fakes; fake_open->filename; fake_open++) { 7486 if (fake_open->cmp(pathname, fake_open->filename)) { 7487 break; 7488 } 7489 } 7490 7491 if (fake_open->filename) { 7492 const char *tmpdir; 7493 char filename[PATH_MAX]; 7494 int fd, r; 7495 7496 /* create temporary file to map stat to */ 7497 tmpdir = getenv("TMPDIR"); 7498 if (!tmpdir) 7499 tmpdir = "/tmp"; 7500 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 7501 fd = mkstemp(filename); 7502 if (fd < 0) { 7503 return fd; 7504 } 7505 unlink(filename); 7506 7507 if ((r = fake_open->fill(cpu_env, fd))) { 7508 int e = errno; 7509 close(fd); 7510 errno = e; 7511 return r; 7512 } 7513 lseek(fd, 0, SEEK_SET); 7514 7515 return fd; 7516 } 7517 7518 return safe_openat(dirfd, path(pathname), flags, mode); 7519 } 7520 7521 #define TIMER_MAGIC 0x0caf0000 7522 #define TIMER_MAGIC_MASK 0xffff0000 7523 7524 /* Convert QEMU provided timer ID back to internal 16bit index format */ 7525 static target_timer_t get_timer_id(abi_long arg) 7526 { 7527 target_timer_t timerid = arg; 7528 7529 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 7530 return -TARGET_EINVAL; 7531 } 7532 7533 timerid &= 0xffff; 7534 7535 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 7536 return -TARGET_EINVAL; 7537 } 7538 7539 return timerid; 7540 } 7541 7542 /* do_syscall() should always have a single exit point at the end so 7543 that actions, such as logging of syscall results, can be performed. 7544 All errnos that do_syscall() returns must be -TARGET_<errcode>. */ 7545 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 7546 abi_long arg2, abi_long arg3, abi_long arg4, 7547 abi_long arg5, abi_long arg6, abi_long arg7, 7548 abi_long arg8) 7549 { 7550 CPUState *cpu = ENV_GET_CPU(cpu_env); 7551 abi_long ret; 7552 struct stat st; 7553 struct statfs stfs; 7554 void *p; 7555 7556 #if defined(DEBUG_ERESTARTSYS) 7557 /* Debug-only code for exercising the syscall-restart code paths 7558 * in the per-architecture cpu main loops: restart every syscall 7559 * the guest makes once before letting it through. 7560 */ 7561 { 7562 static int flag; 7563 7564 flag = !flag; 7565 if (flag) { 7566 return -TARGET_ERESTARTSYS; 7567 } 7568 } 7569 #endif 7570 7571 #ifdef DEBUG 7572 gemu_log("syscall %d", num); 7573 #endif 7574 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); 7575 if(do_strace) 7576 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); 7577 7578 switch(num) { 7579 case TARGET_NR_exit: 7580 /* In old applications this may be used to implement _exit(2). 7581 However in threaded applictions it is used for thread termination, 7582 and _exit_group is used for application termination. 7583 Do thread termination if we have more then one thread. */ 7584 7585 if (block_signals()) { 7586 ret = -TARGET_ERESTARTSYS; 7587 break; 7588 } 7589 7590 cpu_list_lock(); 7591 7592 if (CPU_NEXT(first_cpu)) { 7593 TaskState *ts; 7594 7595 /* Remove the CPU from the list. */ 7596 QTAILQ_REMOVE(&cpus, cpu, node); 7597 7598 cpu_list_unlock(); 7599 7600 ts = cpu->opaque; 7601 if (ts->child_tidptr) { 7602 put_user_u32(0, ts->child_tidptr); 7603 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX, 7604 NULL, NULL, 0); 7605 } 7606 thread_cpu = NULL; 7607 object_unref(OBJECT(cpu)); 7608 g_free(ts); 7609 rcu_unregister_thread(); 7610 pthread_exit(NULL); 7611 } 7612 7613 cpu_list_unlock(); 7614 #ifdef TARGET_GPROF 7615 _mcleanup(); 7616 #endif 7617 gdb_exit(cpu_env, arg1); 7618 _exit(arg1); 7619 ret = 0; /* avoid warning */ 7620 break; 7621 case TARGET_NR_read: 7622 if (arg3 == 0) 7623 ret = 0; 7624 else { 7625 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 7626 goto efault; 7627 ret = get_errno(safe_read(arg1, p, arg3)); 7628 if (ret >= 0 && 7629 fd_trans_host_to_target_data(arg1)) { 7630 ret = fd_trans_host_to_target_data(arg1)(p, ret); 7631 } 7632 unlock_user(p, arg2, ret); 7633 } 7634 break; 7635 case TARGET_NR_write: 7636 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 7637 goto efault; 7638 ret = get_errno(safe_write(arg1, p, arg3)); 7639 unlock_user(p, arg2, 0); 7640 break; 7641 #ifdef TARGET_NR_open 7642 case TARGET_NR_open: 7643 if (!(p = lock_user_string(arg1))) 7644 goto efault; 7645 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 7646 target_to_host_bitmask(arg2, fcntl_flags_tbl), 7647 arg3)); 7648 fd_trans_unregister(ret); 7649 unlock_user(p, arg1, 0); 7650 break; 7651 #endif 7652 case TARGET_NR_openat: 7653 if (!(p = lock_user_string(arg2))) 7654 goto efault; 7655 ret = get_errno(do_openat(cpu_env, arg1, p, 7656 target_to_host_bitmask(arg3, fcntl_flags_tbl), 7657 arg4)); 7658 fd_trans_unregister(ret); 7659 unlock_user(p, arg2, 0); 7660 break; 7661 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7662 case TARGET_NR_name_to_handle_at: 7663 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 7664 break; 7665 #endif 7666 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7667 case TARGET_NR_open_by_handle_at: 7668 ret = do_open_by_handle_at(arg1, arg2, arg3); 7669 fd_trans_unregister(ret); 7670 break; 7671 #endif 7672 case TARGET_NR_close: 7673 fd_trans_unregister(arg1); 7674 ret = get_errno(close(arg1)); 7675 break; 7676 case TARGET_NR_brk: 7677 ret = do_brk(arg1); 7678 break; 7679 #ifdef TARGET_NR_fork 7680 case TARGET_NR_fork: 7681 ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0)); 7682 break; 7683 #endif 7684 #ifdef TARGET_NR_waitpid 7685 case TARGET_NR_waitpid: 7686 { 7687 int status; 7688 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 7689 if (!is_error(ret) && arg2 && ret 7690 && put_user_s32(host_to_target_waitstatus(status), arg2)) 7691 goto efault; 7692 } 7693 break; 7694 #endif 7695 #ifdef TARGET_NR_waitid 7696 case TARGET_NR_waitid: 7697 { 7698 siginfo_t info; 7699 info.si_pid = 0; 7700 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 7701 if (!is_error(ret) && arg3 && info.si_pid != 0) { 7702 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 7703 goto efault; 7704 host_to_target_siginfo(p, &info); 7705 unlock_user(p, arg3, sizeof(target_siginfo_t)); 7706 } 7707 } 7708 break; 7709 #endif 7710 #ifdef TARGET_NR_creat /* not on alpha */ 7711 case TARGET_NR_creat: 7712 if (!(p = lock_user_string(arg1))) 7713 goto efault; 7714 ret = get_errno(creat(p, arg2)); 7715 fd_trans_unregister(ret); 7716 unlock_user(p, arg1, 0); 7717 break; 7718 #endif 7719 #ifdef TARGET_NR_link 7720 case TARGET_NR_link: 7721 { 7722 void * p2; 7723 p = lock_user_string(arg1); 7724 p2 = lock_user_string(arg2); 7725 if (!p || !p2) 7726 ret = -TARGET_EFAULT; 7727 else 7728 ret = get_errno(link(p, p2)); 7729 unlock_user(p2, arg2, 0); 7730 unlock_user(p, arg1, 0); 7731 } 7732 break; 7733 #endif 7734 #if defined(TARGET_NR_linkat) 7735 case TARGET_NR_linkat: 7736 { 7737 void * p2 = NULL; 7738 if (!arg2 || !arg4) 7739 goto efault; 7740 p = lock_user_string(arg2); 7741 p2 = lock_user_string(arg4); 7742 if (!p || !p2) 7743 ret = -TARGET_EFAULT; 7744 else 7745 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 7746 unlock_user(p, arg2, 0); 7747 unlock_user(p2, arg4, 0); 7748 } 7749 break; 7750 #endif 7751 #ifdef TARGET_NR_unlink 7752 case TARGET_NR_unlink: 7753 if (!(p = lock_user_string(arg1))) 7754 goto efault; 7755 ret = get_errno(unlink(p)); 7756 unlock_user(p, arg1, 0); 7757 break; 7758 #endif 7759 #if defined(TARGET_NR_unlinkat) 7760 case TARGET_NR_unlinkat: 7761 if (!(p = lock_user_string(arg2))) 7762 goto efault; 7763 ret = get_errno(unlinkat(arg1, p, arg3)); 7764 unlock_user(p, arg2, 0); 7765 break; 7766 #endif 7767 case TARGET_NR_execve: 7768 { 7769 char **argp, **envp; 7770 int argc, envc; 7771 abi_ulong gp; 7772 abi_ulong guest_argp; 7773 abi_ulong guest_envp; 7774 abi_ulong addr; 7775 char **q; 7776 int total_size = 0; 7777 7778 argc = 0; 7779 guest_argp = arg2; 7780 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 7781 if (get_user_ual(addr, gp)) 7782 goto efault; 7783 if (!addr) 7784 break; 7785 argc++; 7786 } 7787 envc = 0; 7788 guest_envp = arg3; 7789 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 7790 if (get_user_ual(addr, gp)) 7791 goto efault; 7792 if (!addr) 7793 break; 7794 envc++; 7795 } 7796 7797 argp = alloca((argc + 1) * sizeof(void *)); 7798 envp = alloca((envc + 1) * sizeof(void *)); 7799 7800 for (gp = guest_argp, q = argp; gp; 7801 gp += sizeof(abi_ulong), q++) { 7802 if (get_user_ual(addr, gp)) 7803 goto execve_efault; 7804 if (!addr) 7805 break; 7806 if (!(*q = lock_user_string(addr))) 7807 goto execve_efault; 7808 total_size += strlen(*q) + 1; 7809 } 7810 *q = NULL; 7811 7812 for (gp = guest_envp, q = envp; gp; 7813 gp += sizeof(abi_ulong), q++) { 7814 if (get_user_ual(addr, gp)) 7815 goto execve_efault; 7816 if (!addr) 7817 break; 7818 if (!(*q = lock_user_string(addr))) 7819 goto execve_efault; 7820 total_size += strlen(*q) + 1; 7821 } 7822 *q = NULL; 7823 7824 if (!(p = lock_user_string(arg1))) 7825 goto execve_efault; 7826 /* Although execve() is not an interruptible syscall it is 7827 * a special case where we must use the safe_syscall wrapper: 7828 * if we allow a signal to happen before we make the host 7829 * syscall then we will 'lose' it, because at the point of 7830 * execve the process leaves QEMU's control. So we use the 7831 * safe syscall wrapper to ensure that we either take the 7832 * signal as a guest signal, or else it does not happen 7833 * before the execve completes and makes it the other 7834 * program's problem. 7835 */ 7836 ret = get_errno(safe_execve(p, argp, envp)); 7837 unlock_user(p, arg1, 0); 7838 7839 goto execve_end; 7840 7841 execve_efault: 7842 ret = -TARGET_EFAULT; 7843 7844 execve_end: 7845 for (gp = guest_argp, q = argp; *q; 7846 gp += sizeof(abi_ulong), q++) { 7847 if (get_user_ual(addr, gp) 7848 || !addr) 7849 break; 7850 unlock_user(*q, addr, 0); 7851 } 7852 for (gp = guest_envp, q = envp; *q; 7853 gp += sizeof(abi_ulong), q++) { 7854 if (get_user_ual(addr, gp) 7855 || !addr) 7856 break; 7857 unlock_user(*q, addr, 0); 7858 } 7859 } 7860 break; 7861 case TARGET_NR_chdir: 7862 if (!(p = lock_user_string(arg1))) 7863 goto efault; 7864 ret = get_errno(chdir(p)); 7865 unlock_user(p, arg1, 0); 7866 break; 7867 #ifdef TARGET_NR_time 7868 case TARGET_NR_time: 7869 { 7870 time_t host_time; 7871 ret = get_errno(time(&host_time)); 7872 if (!is_error(ret) 7873 && arg1 7874 && put_user_sal(host_time, arg1)) 7875 goto efault; 7876 } 7877 break; 7878 #endif 7879 #ifdef TARGET_NR_mknod 7880 case TARGET_NR_mknod: 7881 if (!(p = lock_user_string(arg1))) 7882 goto efault; 7883 ret = get_errno(mknod(p, arg2, arg3)); 7884 unlock_user(p, arg1, 0); 7885 break; 7886 #endif 7887 #if defined(TARGET_NR_mknodat) 7888 case TARGET_NR_mknodat: 7889 if (!(p = lock_user_string(arg2))) 7890 goto efault; 7891 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 7892 unlock_user(p, arg2, 0); 7893 break; 7894 #endif 7895 #ifdef TARGET_NR_chmod 7896 case TARGET_NR_chmod: 7897 if (!(p = lock_user_string(arg1))) 7898 goto efault; 7899 ret = get_errno(chmod(p, arg2)); 7900 unlock_user(p, arg1, 0); 7901 break; 7902 #endif 7903 #ifdef TARGET_NR_break 7904 case TARGET_NR_break: 7905 goto unimplemented; 7906 #endif 7907 #ifdef TARGET_NR_oldstat 7908 case TARGET_NR_oldstat: 7909 goto unimplemented; 7910 #endif 7911 case TARGET_NR_lseek: 7912 ret = get_errno(lseek(arg1, arg2, arg3)); 7913 break; 7914 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 7915 /* Alpha specific */ 7916 case TARGET_NR_getxpid: 7917 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 7918 ret = get_errno(getpid()); 7919 break; 7920 #endif 7921 #ifdef TARGET_NR_getpid 7922 case TARGET_NR_getpid: 7923 ret = get_errno(getpid()); 7924 break; 7925 #endif 7926 case TARGET_NR_mount: 7927 { 7928 /* need to look at the data field */ 7929 void *p2, *p3; 7930 7931 if (arg1) { 7932 p = lock_user_string(arg1); 7933 if (!p) { 7934 goto efault; 7935 } 7936 } else { 7937 p = NULL; 7938 } 7939 7940 p2 = lock_user_string(arg2); 7941 if (!p2) { 7942 if (arg1) { 7943 unlock_user(p, arg1, 0); 7944 } 7945 goto efault; 7946 } 7947 7948 if (arg3) { 7949 p3 = lock_user_string(arg3); 7950 if (!p3) { 7951 if (arg1) { 7952 unlock_user(p, arg1, 0); 7953 } 7954 unlock_user(p2, arg2, 0); 7955 goto efault; 7956 } 7957 } else { 7958 p3 = NULL; 7959 } 7960 7961 /* FIXME - arg5 should be locked, but it isn't clear how to 7962 * do that since it's not guaranteed to be a NULL-terminated 7963 * string. 7964 */ 7965 if (!arg5) { 7966 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 7967 } else { 7968 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)); 7969 } 7970 ret = get_errno(ret); 7971 7972 if (arg1) { 7973 unlock_user(p, arg1, 0); 7974 } 7975 unlock_user(p2, arg2, 0); 7976 if (arg3) { 7977 unlock_user(p3, arg3, 0); 7978 } 7979 } 7980 break; 7981 #ifdef TARGET_NR_umount 7982 case TARGET_NR_umount: 7983 if (!(p = lock_user_string(arg1))) 7984 goto efault; 7985 ret = get_errno(umount(p)); 7986 unlock_user(p, arg1, 0); 7987 break; 7988 #endif 7989 #ifdef TARGET_NR_stime /* not on alpha */ 7990 case TARGET_NR_stime: 7991 { 7992 time_t host_time; 7993 if (get_user_sal(host_time, arg1)) 7994 goto efault; 7995 ret = get_errno(stime(&host_time)); 7996 } 7997 break; 7998 #endif 7999 case TARGET_NR_ptrace: 8000 goto unimplemented; 8001 #ifdef TARGET_NR_alarm /* not on alpha */ 8002 case TARGET_NR_alarm: 8003 ret = alarm(arg1); 8004 break; 8005 #endif 8006 #ifdef TARGET_NR_oldfstat 8007 case TARGET_NR_oldfstat: 8008 goto unimplemented; 8009 #endif 8010 #ifdef TARGET_NR_pause /* not on alpha */ 8011 case TARGET_NR_pause: 8012 if (!block_signals()) { 8013 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask); 8014 } 8015 ret = -TARGET_EINTR; 8016 break; 8017 #endif 8018 #ifdef TARGET_NR_utime 8019 case TARGET_NR_utime: 8020 { 8021 struct utimbuf tbuf, *host_tbuf; 8022 struct target_utimbuf *target_tbuf; 8023 if (arg2) { 8024 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 8025 goto efault; 8026 tbuf.actime = tswapal(target_tbuf->actime); 8027 tbuf.modtime = tswapal(target_tbuf->modtime); 8028 unlock_user_struct(target_tbuf, arg2, 0); 8029 host_tbuf = &tbuf; 8030 } else { 8031 host_tbuf = NULL; 8032 } 8033 if (!(p = lock_user_string(arg1))) 8034 goto efault; 8035 ret = get_errno(utime(p, host_tbuf)); 8036 unlock_user(p, arg1, 0); 8037 } 8038 break; 8039 #endif 8040 #ifdef TARGET_NR_utimes 8041 case TARGET_NR_utimes: 8042 { 8043 struct timeval *tvp, tv[2]; 8044 if (arg2) { 8045 if (copy_from_user_timeval(&tv[0], arg2) 8046 || copy_from_user_timeval(&tv[1], 8047 arg2 + sizeof(struct target_timeval))) 8048 goto efault; 8049 tvp = tv; 8050 } else { 8051 tvp = NULL; 8052 } 8053 if (!(p = lock_user_string(arg1))) 8054 goto efault; 8055 ret = get_errno(utimes(p, tvp)); 8056 unlock_user(p, arg1, 0); 8057 } 8058 break; 8059 #endif 8060 #if defined(TARGET_NR_futimesat) 8061 case TARGET_NR_futimesat: 8062 { 8063 struct timeval *tvp, tv[2]; 8064 if (arg3) { 8065 if (copy_from_user_timeval(&tv[0], arg3) 8066 || copy_from_user_timeval(&tv[1], 8067 arg3 + sizeof(struct target_timeval))) 8068 goto efault; 8069 tvp = tv; 8070 } else { 8071 tvp = NULL; 8072 } 8073 if (!(p = lock_user_string(arg2))) 8074 goto efault; 8075 ret = get_errno(futimesat(arg1, path(p), tvp)); 8076 unlock_user(p, arg2, 0); 8077 } 8078 break; 8079 #endif 8080 #ifdef TARGET_NR_stty 8081 case TARGET_NR_stty: 8082 goto unimplemented; 8083 #endif 8084 #ifdef TARGET_NR_gtty 8085 case TARGET_NR_gtty: 8086 goto unimplemented; 8087 #endif 8088 #ifdef TARGET_NR_access 8089 case TARGET_NR_access: 8090 if (!(p = lock_user_string(arg1))) 8091 goto efault; 8092 ret = get_errno(access(path(p), arg2)); 8093 unlock_user(p, arg1, 0); 8094 break; 8095 #endif 8096 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 8097 case TARGET_NR_faccessat: 8098 if (!(p = lock_user_string(arg2))) 8099 goto efault; 8100 ret = get_errno(faccessat(arg1, p, arg3, 0)); 8101 unlock_user(p, arg2, 0); 8102 break; 8103 #endif 8104 #ifdef TARGET_NR_nice /* not on alpha */ 8105 case TARGET_NR_nice: 8106 ret = get_errno(nice(arg1)); 8107 break; 8108 #endif 8109 #ifdef TARGET_NR_ftime 8110 case TARGET_NR_ftime: 8111 goto unimplemented; 8112 #endif 8113 case TARGET_NR_sync: 8114 sync(); 8115 ret = 0; 8116 break; 8117 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 8118 case TARGET_NR_syncfs: 8119 ret = get_errno(syncfs(arg1)); 8120 break; 8121 #endif 8122 case TARGET_NR_kill: 8123 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 8124 break; 8125 #ifdef TARGET_NR_rename 8126 case TARGET_NR_rename: 8127 { 8128 void *p2; 8129 p = lock_user_string(arg1); 8130 p2 = lock_user_string(arg2); 8131 if (!p || !p2) 8132 ret = -TARGET_EFAULT; 8133 else 8134 ret = get_errno(rename(p, p2)); 8135 unlock_user(p2, arg2, 0); 8136 unlock_user(p, arg1, 0); 8137 } 8138 break; 8139 #endif 8140 #if defined(TARGET_NR_renameat) 8141 case TARGET_NR_renameat: 8142 { 8143 void *p2; 8144 p = lock_user_string(arg2); 8145 p2 = lock_user_string(arg4); 8146 if (!p || !p2) 8147 ret = -TARGET_EFAULT; 8148 else 8149 ret = get_errno(renameat(arg1, p, arg3, p2)); 8150 unlock_user(p2, arg4, 0); 8151 unlock_user(p, arg2, 0); 8152 } 8153 break; 8154 #endif 8155 #ifdef TARGET_NR_mkdir 8156 case TARGET_NR_mkdir: 8157 if (!(p = lock_user_string(arg1))) 8158 goto efault; 8159 ret = get_errno(mkdir(p, arg2)); 8160 unlock_user(p, arg1, 0); 8161 break; 8162 #endif 8163 #if defined(TARGET_NR_mkdirat) 8164 case TARGET_NR_mkdirat: 8165 if (!(p = lock_user_string(arg2))) 8166 goto efault; 8167 ret = get_errno(mkdirat(arg1, p, arg3)); 8168 unlock_user(p, arg2, 0); 8169 break; 8170 #endif 8171 #ifdef TARGET_NR_rmdir 8172 case TARGET_NR_rmdir: 8173 if (!(p = lock_user_string(arg1))) 8174 goto efault; 8175 ret = get_errno(rmdir(p)); 8176 unlock_user(p, arg1, 0); 8177 break; 8178 #endif 8179 case TARGET_NR_dup: 8180 ret = get_errno(dup(arg1)); 8181 if (ret >= 0) { 8182 fd_trans_dup(arg1, ret); 8183 } 8184 break; 8185 #ifdef TARGET_NR_pipe 8186 case TARGET_NR_pipe: 8187 ret = do_pipe(cpu_env, arg1, 0, 0); 8188 break; 8189 #endif 8190 #ifdef TARGET_NR_pipe2 8191 case TARGET_NR_pipe2: 8192 ret = do_pipe(cpu_env, arg1, 8193 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 8194 break; 8195 #endif 8196 case TARGET_NR_times: 8197 { 8198 struct target_tms *tmsp; 8199 struct tms tms; 8200 ret = get_errno(times(&tms)); 8201 if (arg1) { 8202 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 8203 if (!tmsp) 8204 goto efault; 8205 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 8206 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 8207 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 8208 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 8209 } 8210 if (!is_error(ret)) 8211 ret = host_to_target_clock_t(ret); 8212 } 8213 break; 8214 #ifdef TARGET_NR_prof 8215 case TARGET_NR_prof: 8216 goto unimplemented; 8217 #endif 8218 #ifdef TARGET_NR_signal 8219 case TARGET_NR_signal: 8220 goto unimplemented; 8221 #endif 8222 case TARGET_NR_acct: 8223 if (arg1 == 0) { 8224 ret = get_errno(acct(NULL)); 8225 } else { 8226 if (!(p = lock_user_string(arg1))) 8227 goto efault; 8228 ret = get_errno(acct(path(p))); 8229 unlock_user(p, arg1, 0); 8230 } 8231 break; 8232 #ifdef TARGET_NR_umount2 8233 case TARGET_NR_umount2: 8234 if (!(p = lock_user_string(arg1))) 8235 goto efault; 8236 ret = get_errno(umount2(p, arg2)); 8237 unlock_user(p, arg1, 0); 8238 break; 8239 #endif 8240 #ifdef TARGET_NR_lock 8241 case TARGET_NR_lock: 8242 goto unimplemented; 8243 #endif 8244 case TARGET_NR_ioctl: 8245 ret = do_ioctl(arg1, arg2, arg3); 8246 break; 8247 case TARGET_NR_fcntl: 8248 ret = do_fcntl(arg1, arg2, arg3); 8249 break; 8250 #ifdef TARGET_NR_mpx 8251 case TARGET_NR_mpx: 8252 goto unimplemented; 8253 #endif 8254 case TARGET_NR_setpgid: 8255 ret = get_errno(setpgid(arg1, arg2)); 8256 break; 8257 #ifdef TARGET_NR_ulimit 8258 case TARGET_NR_ulimit: 8259 goto unimplemented; 8260 #endif 8261 #ifdef TARGET_NR_oldolduname 8262 case TARGET_NR_oldolduname: 8263 goto unimplemented; 8264 #endif 8265 case TARGET_NR_umask: 8266 ret = get_errno(umask(arg1)); 8267 break; 8268 case TARGET_NR_chroot: 8269 if (!(p = lock_user_string(arg1))) 8270 goto efault; 8271 ret = get_errno(chroot(p)); 8272 unlock_user(p, arg1, 0); 8273 break; 8274 #ifdef TARGET_NR_ustat 8275 case TARGET_NR_ustat: 8276 goto unimplemented; 8277 #endif 8278 #ifdef TARGET_NR_dup2 8279 case TARGET_NR_dup2: 8280 ret = get_errno(dup2(arg1, arg2)); 8281 if (ret >= 0) { 8282 fd_trans_dup(arg1, arg2); 8283 } 8284 break; 8285 #endif 8286 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 8287 case TARGET_NR_dup3: 8288 ret = get_errno(dup3(arg1, arg2, arg3)); 8289 if (ret >= 0) { 8290 fd_trans_dup(arg1, arg2); 8291 } 8292 break; 8293 #endif 8294 #ifdef TARGET_NR_getppid /* not on alpha */ 8295 case TARGET_NR_getppid: 8296 ret = get_errno(getppid()); 8297 break; 8298 #endif 8299 #ifdef TARGET_NR_getpgrp 8300 case TARGET_NR_getpgrp: 8301 ret = get_errno(getpgrp()); 8302 break; 8303 #endif 8304 case TARGET_NR_setsid: 8305 ret = get_errno(setsid()); 8306 break; 8307 #ifdef TARGET_NR_sigaction 8308 case TARGET_NR_sigaction: 8309 { 8310 #if defined(TARGET_ALPHA) 8311 struct target_sigaction act, oact, *pact = 0; 8312 struct target_old_sigaction *old_act; 8313 if (arg2) { 8314 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8315 goto efault; 8316 act._sa_handler = old_act->_sa_handler; 8317 target_siginitset(&act.sa_mask, old_act->sa_mask); 8318 act.sa_flags = old_act->sa_flags; 8319 act.sa_restorer = 0; 8320 unlock_user_struct(old_act, arg2, 0); 8321 pact = &act; 8322 } 8323 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8324 if (!is_error(ret) && arg3) { 8325 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8326 goto efault; 8327 old_act->_sa_handler = oact._sa_handler; 8328 old_act->sa_mask = oact.sa_mask.sig[0]; 8329 old_act->sa_flags = oact.sa_flags; 8330 unlock_user_struct(old_act, arg3, 1); 8331 } 8332 #elif defined(TARGET_MIPS) 8333 struct target_sigaction act, oact, *pact, *old_act; 8334 8335 if (arg2) { 8336 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8337 goto efault; 8338 act._sa_handler = old_act->_sa_handler; 8339 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 8340 act.sa_flags = old_act->sa_flags; 8341 unlock_user_struct(old_act, arg2, 0); 8342 pact = &act; 8343 } else { 8344 pact = NULL; 8345 } 8346 8347 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8348 8349 if (!is_error(ret) && arg3) { 8350 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8351 goto efault; 8352 old_act->_sa_handler = oact._sa_handler; 8353 old_act->sa_flags = oact.sa_flags; 8354 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 8355 old_act->sa_mask.sig[1] = 0; 8356 old_act->sa_mask.sig[2] = 0; 8357 old_act->sa_mask.sig[3] = 0; 8358 unlock_user_struct(old_act, arg3, 1); 8359 } 8360 #else 8361 struct target_old_sigaction *old_act; 8362 struct target_sigaction act, oact, *pact; 8363 if (arg2) { 8364 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8365 goto efault; 8366 act._sa_handler = old_act->_sa_handler; 8367 target_siginitset(&act.sa_mask, old_act->sa_mask); 8368 act.sa_flags = old_act->sa_flags; 8369 act.sa_restorer = old_act->sa_restorer; 8370 unlock_user_struct(old_act, arg2, 0); 8371 pact = &act; 8372 } else { 8373 pact = NULL; 8374 } 8375 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8376 if (!is_error(ret) && arg3) { 8377 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8378 goto efault; 8379 old_act->_sa_handler = oact._sa_handler; 8380 old_act->sa_mask = oact.sa_mask.sig[0]; 8381 old_act->sa_flags = oact.sa_flags; 8382 old_act->sa_restorer = oact.sa_restorer; 8383 unlock_user_struct(old_act, arg3, 1); 8384 } 8385 #endif 8386 } 8387 break; 8388 #endif 8389 case TARGET_NR_rt_sigaction: 8390 { 8391 #if defined(TARGET_ALPHA) 8392 struct target_sigaction act, oact, *pact = 0; 8393 struct target_rt_sigaction *rt_act; 8394 8395 if (arg4 != sizeof(target_sigset_t)) { 8396 ret = -TARGET_EINVAL; 8397 break; 8398 } 8399 if (arg2) { 8400 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1)) 8401 goto efault; 8402 act._sa_handler = rt_act->_sa_handler; 8403 act.sa_mask = rt_act->sa_mask; 8404 act.sa_flags = rt_act->sa_flags; 8405 act.sa_restorer = arg5; 8406 unlock_user_struct(rt_act, arg2, 0); 8407 pact = &act; 8408 } 8409 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8410 if (!is_error(ret) && arg3) { 8411 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0)) 8412 goto efault; 8413 rt_act->_sa_handler = oact._sa_handler; 8414 rt_act->sa_mask = oact.sa_mask; 8415 rt_act->sa_flags = oact.sa_flags; 8416 unlock_user_struct(rt_act, arg3, 1); 8417 } 8418 #else 8419 struct target_sigaction *act; 8420 struct target_sigaction *oact; 8421 8422 if (arg4 != sizeof(target_sigset_t)) { 8423 ret = -TARGET_EINVAL; 8424 break; 8425 } 8426 if (arg2) { 8427 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) 8428 goto efault; 8429 } else 8430 act = NULL; 8431 if (arg3) { 8432 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 8433 ret = -TARGET_EFAULT; 8434 goto rt_sigaction_fail; 8435 } 8436 } else 8437 oact = NULL; 8438 ret = get_errno(do_sigaction(arg1, act, oact)); 8439 rt_sigaction_fail: 8440 if (act) 8441 unlock_user_struct(act, arg2, 0); 8442 if (oact) 8443 unlock_user_struct(oact, arg3, 1); 8444 #endif 8445 } 8446 break; 8447 #ifdef TARGET_NR_sgetmask /* not on alpha */ 8448 case TARGET_NR_sgetmask: 8449 { 8450 sigset_t cur_set; 8451 abi_ulong target_set; 8452 ret = do_sigprocmask(0, NULL, &cur_set); 8453 if (!ret) { 8454 host_to_target_old_sigset(&target_set, &cur_set); 8455 ret = target_set; 8456 } 8457 } 8458 break; 8459 #endif 8460 #ifdef TARGET_NR_ssetmask /* not on alpha */ 8461 case TARGET_NR_ssetmask: 8462 { 8463 sigset_t set, oset, cur_set; 8464 abi_ulong target_set = arg1; 8465 /* We only have one word of the new mask so we must read 8466 * the rest of it with do_sigprocmask() and OR in this word. 8467 * We are guaranteed that a do_sigprocmask() that only queries 8468 * the signal mask will not fail. 8469 */ 8470 ret = do_sigprocmask(0, NULL, &cur_set); 8471 assert(!ret); 8472 target_to_host_old_sigset(&set, &target_set); 8473 sigorset(&set, &set, &cur_set); 8474 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 8475 if (!ret) { 8476 host_to_target_old_sigset(&target_set, &oset); 8477 ret = target_set; 8478 } 8479 } 8480 break; 8481 #endif 8482 #ifdef TARGET_NR_sigprocmask 8483 case TARGET_NR_sigprocmask: 8484 { 8485 #if defined(TARGET_ALPHA) 8486 sigset_t set, oldset; 8487 abi_ulong mask; 8488 int how; 8489 8490 switch (arg1) { 8491 case TARGET_SIG_BLOCK: 8492 how = SIG_BLOCK; 8493 break; 8494 case TARGET_SIG_UNBLOCK: 8495 how = SIG_UNBLOCK; 8496 break; 8497 case TARGET_SIG_SETMASK: 8498 how = SIG_SETMASK; 8499 break; 8500 default: 8501 ret = -TARGET_EINVAL; 8502 goto fail; 8503 } 8504 mask = arg2; 8505 target_to_host_old_sigset(&set, &mask); 8506 8507 ret = do_sigprocmask(how, &set, &oldset); 8508 if (!is_error(ret)) { 8509 host_to_target_old_sigset(&mask, &oldset); 8510 ret = mask; 8511 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 8512 } 8513 #else 8514 sigset_t set, oldset, *set_ptr; 8515 int how; 8516 8517 if (arg2) { 8518 switch (arg1) { 8519 case TARGET_SIG_BLOCK: 8520 how = SIG_BLOCK; 8521 break; 8522 case TARGET_SIG_UNBLOCK: 8523 how = SIG_UNBLOCK; 8524 break; 8525 case TARGET_SIG_SETMASK: 8526 how = SIG_SETMASK; 8527 break; 8528 default: 8529 ret = -TARGET_EINVAL; 8530 goto fail; 8531 } 8532 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 8533 goto efault; 8534 target_to_host_old_sigset(&set, p); 8535 unlock_user(p, arg2, 0); 8536 set_ptr = &set; 8537 } else { 8538 how = 0; 8539 set_ptr = NULL; 8540 } 8541 ret = do_sigprocmask(how, set_ptr, &oldset); 8542 if (!is_error(ret) && arg3) { 8543 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 8544 goto efault; 8545 host_to_target_old_sigset(p, &oldset); 8546 unlock_user(p, arg3, sizeof(target_sigset_t)); 8547 } 8548 #endif 8549 } 8550 break; 8551 #endif 8552 case TARGET_NR_rt_sigprocmask: 8553 { 8554 int how = arg1; 8555 sigset_t set, oldset, *set_ptr; 8556 8557 if (arg4 != sizeof(target_sigset_t)) { 8558 ret = -TARGET_EINVAL; 8559 break; 8560 } 8561 8562 if (arg2) { 8563 switch(how) { 8564 case TARGET_SIG_BLOCK: 8565 how = SIG_BLOCK; 8566 break; 8567 case TARGET_SIG_UNBLOCK: 8568 how = SIG_UNBLOCK; 8569 break; 8570 case TARGET_SIG_SETMASK: 8571 how = SIG_SETMASK; 8572 break; 8573 default: 8574 ret = -TARGET_EINVAL; 8575 goto fail; 8576 } 8577 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 8578 goto efault; 8579 target_to_host_sigset(&set, p); 8580 unlock_user(p, arg2, 0); 8581 set_ptr = &set; 8582 } else { 8583 how = 0; 8584 set_ptr = NULL; 8585 } 8586 ret = do_sigprocmask(how, set_ptr, &oldset); 8587 if (!is_error(ret) && arg3) { 8588 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 8589 goto efault; 8590 host_to_target_sigset(p, &oldset); 8591 unlock_user(p, arg3, sizeof(target_sigset_t)); 8592 } 8593 } 8594 break; 8595 #ifdef TARGET_NR_sigpending 8596 case TARGET_NR_sigpending: 8597 { 8598 sigset_t set; 8599 ret = get_errno(sigpending(&set)); 8600 if (!is_error(ret)) { 8601 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 8602 goto efault; 8603 host_to_target_old_sigset(p, &set); 8604 unlock_user(p, arg1, sizeof(target_sigset_t)); 8605 } 8606 } 8607 break; 8608 #endif 8609 case TARGET_NR_rt_sigpending: 8610 { 8611 sigset_t set; 8612 8613 /* Yes, this check is >, not != like most. We follow the kernel's 8614 * logic and it does it like this because it implements 8615 * NR_sigpending through the same code path, and in that case 8616 * the old_sigset_t is smaller in size. 8617 */ 8618 if (arg2 > sizeof(target_sigset_t)) { 8619 ret = -TARGET_EINVAL; 8620 break; 8621 } 8622 8623 ret = get_errno(sigpending(&set)); 8624 if (!is_error(ret)) { 8625 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 8626 goto efault; 8627 host_to_target_sigset(p, &set); 8628 unlock_user(p, arg1, sizeof(target_sigset_t)); 8629 } 8630 } 8631 break; 8632 #ifdef TARGET_NR_sigsuspend 8633 case TARGET_NR_sigsuspend: 8634 { 8635 TaskState *ts = cpu->opaque; 8636 #if defined(TARGET_ALPHA) 8637 abi_ulong mask = arg1; 8638 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask); 8639 #else 8640 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 8641 goto efault; 8642 target_to_host_old_sigset(&ts->sigsuspend_mask, p); 8643 unlock_user(p, arg1, 0); 8644 #endif 8645 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 8646 SIGSET_T_SIZE)); 8647 if (ret != -TARGET_ERESTARTSYS) { 8648 ts->in_sigsuspend = 1; 8649 } 8650 } 8651 break; 8652 #endif 8653 case TARGET_NR_rt_sigsuspend: 8654 { 8655 TaskState *ts = cpu->opaque; 8656 8657 if (arg2 != sizeof(target_sigset_t)) { 8658 ret = -TARGET_EINVAL; 8659 break; 8660 } 8661 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 8662 goto efault; 8663 target_to_host_sigset(&ts->sigsuspend_mask, p); 8664 unlock_user(p, arg1, 0); 8665 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 8666 SIGSET_T_SIZE)); 8667 if (ret != -TARGET_ERESTARTSYS) { 8668 ts->in_sigsuspend = 1; 8669 } 8670 } 8671 break; 8672 case TARGET_NR_rt_sigtimedwait: 8673 { 8674 sigset_t set; 8675 struct timespec uts, *puts; 8676 siginfo_t uinfo; 8677 8678 if (arg4 != sizeof(target_sigset_t)) { 8679 ret = -TARGET_EINVAL; 8680 break; 8681 } 8682 8683 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 8684 goto efault; 8685 target_to_host_sigset(&set, p); 8686 unlock_user(p, arg1, 0); 8687 if (arg3) { 8688 puts = &uts; 8689 target_to_host_timespec(puts, arg3); 8690 } else { 8691 puts = NULL; 8692 } 8693 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 8694 SIGSET_T_SIZE)); 8695 if (!is_error(ret)) { 8696 if (arg2) { 8697 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 8698 0); 8699 if (!p) { 8700 goto efault; 8701 } 8702 host_to_target_siginfo(p, &uinfo); 8703 unlock_user(p, arg2, sizeof(target_siginfo_t)); 8704 } 8705 ret = host_to_target_signal(ret); 8706 } 8707 } 8708 break; 8709 case TARGET_NR_rt_sigqueueinfo: 8710 { 8711 siginfo_t uinfo; 8712 8713 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 8714 if (!p) { 8715 goto efault; 8716 } 8717 target_to_host_siginfo(&uinfo, p); 8718 unlock_user(p, arg1, 0); 8719 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 8720 } 8721 break; 8722 #ifdef TARGET_NR_sigreturn 8723 case TARGET_NR_sigreturn: 8724 if (block_signals()) { 8725 ret = -TARGET_ERESTARTSYS; 8726 } else { 8727 ret = do_sigreturn(cpu_env); 8728 } 8729 break; 8730 #endif 8731 case TARGET_NR_rt_sigreturn: 8732 if (block_signals()) { 8733 ret = -TARGET_ERESTARTSYS; 8734 } else { 8735 ret = do_rt_sigreturn(cpu_env); 8736 } 8737 break; 8738 case TARGET_NR_sethostname: 8739 if (!(p = lock_user_string(arg1))) 8740 goto efault; 8741 ret = get_errno(sethostname(p, arg2)); 8742 unlock_user(p, arg1, 0); 8743 break; 8744 case TARGET_NR_setrlimit: 8745 { 8746 int resource = target_to_host_resource(arg1); 8747 struct target_rlimit *target_rlim; 8748 struct rlimit rlim; 8749 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 8750 goto efault; 8751 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 8752 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 8753 unlock_user_struct(target_rlim, arg2, 0); 8754 ret = get_errno(setrlimit(resource, &rlim)); 8755 } 8756 break; 8757 case TARGET_NR_getrlimit: 8758 { 8759 int resource = target_to_host_resource(arg1); 8760 struct target_rlimit *target_rlim; 8761 struct rlimit rlim; 8762 8763 ret = get_errno(getrlimit(resource, &rlim)); 8764 if (!is_error(ret)) { 8765 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 8766 goto efault; 8767 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 8768 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 8769 unlock_user_struct(target_rlim, arg2, 1); 8770 } 8771 } 8772 break; 8773 case TARGET_NR_getrusage: 8774 { 8775 struct rusage rusage; 8776 ret = get_errno(getrusage(arg1, &rusage)); 8777 if (!is_error(ret)) { 8778 ret = host_to_target_rusage(arg2, &rusage); 8779 } 8780 } 8781 break; 8782 case TARGET_NR_gettimeofday: 8783 { 8784 struct timeval tv; 8785 ret = get_errno(gettimeofday(&tv, NULL)); 8786 if (!is_error(ret)) { 8787 if (copy_to_user_timeval(arg1, &tv)) 8788 goto efault; 8789 } 8790 } 8791 break; 8792 case TARGET_NR_settimeofday: 8793 { 8794 struct timeval tv, *ptv = NULL; 8795 struct timezone tz, *ptz = NULL; 8796 8797 if (arg1) { 8798 if (copy_from_user_timeval(&tv, arg1)) { 8799 goto efault; 8800 } 8801 ptv = &tv; 8802 } 8803 8804 if (arg2) { 8805 if (copy_from_user_timezone(&tz, arg2)) { 8806 goto efault; 8807 } 8808 ptz = &tz; 8809 } 8810 8811 ret = get_errno(settimeofday(ptv, ptz)); 8812 } 8813 break; 8814 #if defined(TARGET_NR_select) 8815 case TARGET_NR_select: 8816 #if defined(TARGET_WANT_NI_OLD_SELECT) 8817 /* some architectures used to have old_select here 8818 * but now ENOSYS it. 8819 */ 8820 ret = -TARGET_ENOSYS; 8821 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 8822 ret = do_old_select(arg1); 8823 #else 8824 ret = do_select(arg1, arg2, arg3, arg4, arg5); 8825 #endif 8826 break; 8827 #endif 8828 #ifdef TARGET_NR_pselect6 8829 case TARGET_NR_pselect6: 8830 { 8831 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 8832 fd_set rfds, wfds, efds; 8833 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 8834 struct timespec ts, *ts_ptr; 8835 8836 /* 8837 * The 6th arg is actually two args smashed together, 8838 * so we cannot use the C library. 8839 */ 8840 sigset_t set; 8841 struct { 8842 sigset_t *set; 8843 size_t size; 8844 } sig, *sig_ptr; 8845 8846 abi_ulong arg_sigset, arg_sigsize, *arg7; 8847 target_sigset_t *target_sigset; 8848 8849 n = arg1; 8850 rfd_addr = arg2; 8851 wfd_addr = arg3; 8852 efd_addr = arg4; 8853 ts_addr = arg5; 8854 8855 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 8856 if (ret) { 8857 goto fail; 8858 } 8859 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 8860 if (ret) { 8861 goto fail; 8862 } 8863 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 8864 if (ret) { 8865 goto fail; 8866 } 8867 8868 /* 8869 * This takes a timespec, and not a timeval, so we cannot 8870 * use the do_select() helper ... 8871 */ 8872 if (ts_addr) { 8873 if (target_to_host_timespec(&ts, ts_addr)) { 8874 goto efault; 8875 } 8876 ts_ptr = &ts; 8877 } else { 8878 ts_ptr = NULL; 8879 } 8880 8881 /* Extract the two packed args for the sigset */ 8882 if (arg6) { 8883 sig_ptr = &sig; 8884 sig.size = SIGSET_T_SIZE; 8885 8886 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 8887 if (!arg7) { 8888 goto efault; 8889 } 8890 arg_sigset = tswapal(arg7[0]); 8891 arg_sigsize = tswapal(arg7[1]); 8892 unlock_user(arg7, arg6, 0); 8893 8894 if (arg_sigset) { 8895 sig.set = &set; 8896 if (arg_sigsize != sizeof(*target_sigset)) { 8897 /* Like the kernel, we enforce correct size sigsets */ 8898 ret = -TARGET_EINVAL; 8899 goto fail; 8900 } 8901 target_sigset = lock_user(VERIFY_READ, arg_sigset, 8902 sizeof(*target_sigset), 1); 8903 if (!target_sigset) { 8904 goto efault; 8905 } 8906 target_to_host_sigset(&set, target_sigset); 8907 unlock_user(target_sigset, arg_sigset, 0); 8908 } else { 8909 sig.set = NULL; 8910 } 8911 } else { 8912 sig_ptr = NULL; 8913 } 8914 8915 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 8916 ts_ptr, sig_ptr)); 8917 8918 if (!is_error(ret)) { 8919 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 8920 goto efault; 8921 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 8922 goto efault; 8923 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 8924 goto efault; 8925 8926 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) 8927 goto efault; 8928 } 8929 } 8930 break; 8931 #endif 8932 #ifdef TARGET_NR_symlink 8933 case TARGET_NR_symlink: 8934 { 8935 void *p2; 8936 p = lock_user_string(arg1); 8937 p2 = lock_user_string(arg2); 8938 if (!p || !p2) 8939 ret = -TARGET_EFAULT; 8940 else 8941 ret = get_errno(symlink(p, p2)); 8942 unlock_user(p2, arg2, 0); 8943 unlock_user(p, arg1, 0); 8944 } 8945 break; 8946 #endif 8947 #if defined(TARGET_NR_symlinkat) 8948 case TARGET_NR_symlinkat: 8949 { 8950 void *p2; 8951 p = lock_user_string(arg1); 8952 p2 = lock_user_string(arg3); 8953 if (!p || !p2) 8954 ret = -TARGET_EFAULT; 8955 else 8956 ret = get_errno(symlinkat(p, arg2, p2)); 8957 unlock_user(p2, arg3, 0); 8958 unlock_user(p, arg1, 0); 8959 } 8960 break; 8961 #endif 8962 #ifdef TARGET_NR_oldlstat 8963 case TARGET_NR_oldlstat: 8964 goto unimplemented; 8965 #endif 8966 #ifdef TARGET_NR_readlink 8967 case TARGET_NR_readlink: 8968 { 8969 void *p2; 8970 p = lock_user_string(arg1); 8971 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 8972 if (!p || !p2) { 8973 ret = -TARGET_EFAULT; 8974 } else if (!arg3) { 8975 /* Short circuit this for the magic exe check. */ 8976 ret = -TARGET_EINVAL; 8977 } else if (is_proc_myself((const char *)p, "exe")) { 8978 char real[PATH_MAX], *temp; 8979 temp = realpath(exec_path, real); 8980 /* Return value is # of bytes that we wrote to the buffer. */ 8981 if (temp == NULL) { 8982 ret = get_errno(-1); 8983 } else { 8984 /* Don't worry about sign mismatch as earlier mapping 8985 * logic would have thrown a bad address error. */ 8986 ret = MIN(strlen(real), arg3); 8987 /* We cannot NUL terminate the string. */ 8988 memcpy(p2, real, ret); 8989 } 8990 } else { 8991 ret = get_errno(readlink(path(p), p2, arg3)); 8992 } 8993 unlock_user(p2, arg2, ret); 8994 unlock_user(p, arg1, 0); 8995 } 8996 break; 8997 #endif 8998 #if defined(TARGET_NR_readlinkat) 8999 case TARGET_NR_readlinkat: 9000 { 9001 void *p2; 9002 p = lock_user_string(arg2); 9003 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9004 if (!p || !p2) { 9005 ret = -TARGET_EFAULT; 9006 } else if (is_proc_myself((const char *)p, "exe")) { 9007 char real[PATH_MAX], *temp; 9008 temp = realpath(exec_path, real); 9009 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 9010 snprintf((char *)p2, arg4, "%s", real); 9011 } else { 9012 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 9013 } 9014 unlock_user(p2, arg3, ret); 9015 unlock_user(p, arg2, 0); 9016 } 9017 break; 9018 #endif 9019 #ifdef TARGET_NR_uselib 9020 case TARGET_NR_uselib: 9021 goto unimplemented; 9022 #endif 9023 #ifdef TARGET_NR_swapon 9024 case TARGET_NR_swapon: 9025 if (!(p = lock_user_string(arg1))) 9026 goto efault; 9027 ret = get_errno(swapon(p, arg2)); 9028 unlock_user(p, arg1, 0); 9029 break; 9030 #endif 9031 case TARGET_NR_reboot: 9032 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 9033 /* arg4 must be ignored in all other cases */ 9034 p = lock_user_string(arg4); 9035 if (!p) { 9036 goto efault; 9037 } 9038 ret = get_errno(reboot(arg1, arg2, arg3, p)); 9039 unlock_user(p, arg4, 0); 9040 } else { 9041 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 9042 } 9043 break; 9044 #ifdef TARGET_NR_readdir 9045 case TARGET_NR_readdir: 9046 goto unimplemented; 9047 #endif 9048 #ifdef TARGET_NR_mmap 9049 case TARGET_NR_mmap: 9050 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 9051 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 9052 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 9053 || defined(TARGET_S390X) 9054 { 9055 abi_ulong *v; 9056 abi_ulong v1, v2, v3, v4, v5, v6; 9057 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 9058 goto efault; 9059 v1 = tswapal(v[0]); 9060 v2 = tswapal(v[1]); 9061 v3 = tswapal(v[2]); 9062 v4 = tswapal(v[3]); 9063 v5 = tswapal(v[4]); 9064 v6 = tswapal(v[5]); 9065 unlock_user(v, arg1, 0); 9066 ret = get_errno(target_mmap(v1, v2, v3, 9067 target_to_host_bitmask(v4, mmap_flags_tbl), 9068 v5, v6)); 9069 } 9070 #else 9071 ret = get_errno(target_mmap(arg1, arg2, arg3, 9072 target_to_host_bitmask(arg4, mmap_flags_tbl), 9073 arg5, 9074 arg6)); 9075 #endif 9076 break; 9077 #endif 9078 #ifdef TARGET_NR_mmap2 9079 case TARGET_NR_mmap2: 9080 #ifndef MMAP_SHIFT 9081 #define MMAP_SHIFT 12 9082 #endif 9083 ret = get_errno(target_mmap(arg1, arg2, arg3, 9084 target_to_host_bitmask(arg4, mmap_flags_tbl), 9085 arg5, 9086 arg6 << MMAP_SHIFT)); 9087 break; 9088 #endif 9089 case TARGET_NR_munmap: 9090 ret = get_errno(target_munmap(arg1, arg2)); 9091 break; 9092 case TARGET_NR_mprotect: 9093 { 9094 TaskState *ts = cpu->opaque; 9095 /* Special hack to detect libc making the stack executable. */ 9096 if ((arg3 & PROT_GROWSDOWN) 9097 && arg1 >= ts->info->stack_limit 9098 && arg1 <= ts->info->start_stack) { 9099 arg3 &= ~PROT_GROWSDOWN; 9100 arg2 = arg2 + arg1 - ts->info->stack_limit; 9101 arg1 = ts->info->stack_limit; 9102 } 9103 } 9104 ret = get_errno(target_mprotect(arg1, arg2, arg3)); 9105 break; 9106 #ifdef TARGET_NR_mremap 9107 case TARGET_NR_mremap: 9108 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 9109 break; 9110 #endif 9111 /* ??? msync/mlock/munlock are broken for softmmu. */ 9112 #ifdef TARGET_NR_msync 9113 case TARGET_NR_msync: 9114 ret = get_errno(msync(g2h(arg1), arg2, arg3)); 9115 break; 9116 #endif 9117 #ifdef TARGET_NR_mlock 9118 case TARGET_NR_mlock: 9119 ret = get_errno(mlock(g2h(arg1), arg2)); 9120 break; 9121 #endif 9122 #ifdef TARGET_NR_munlock 9123 case TARGET_NR_munlock: 9124 ret = get_errno(munlock(g2h(arg1), arg2)); 9125 break; 9126 #endif 9127 #ifdef TARGET_NR_mlockall 9128 case TARGET_NR_mlockall: 9129 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 9130 break; 9131 #endif 9132 #ifdef TARGET_NR_munlockall 9133 case TARGET_NR_munlockall: 9134 ret = get_errno(munlockall()); 9135 break; 9136 #endif 9137 case TARGET_NR_truncate: 9138 if (!(p = lock_user_string(arg1))) 9139 goto efault; 9140 ret = get_errno(truncate(p, arg2)); 9141 unlock_user(p, arg1, 0); 9142 break; 9143 case TARGET_NR_ftruncate: 9144 ret = get_errno(ftruncate(arg1, arg2)); 9145 break; 9146 case TARGET_NR_fchmod: 9147 ret = get_errno(fchmod(arg1, arg2)); 9148 break; 9149 #if defined(TARGET_NR_fchmodat) 9150 case TARGET_NR_fchmodat: 9151 if (!(p = lock_user_string(arg2))) 9152 goto efault; 9153 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 9154 unlock_user(p, arg2, 0); 9155 break; 9156 #endif 9157 case TARGET_NR_getpriority: 9158 /* Note that negative values are valid for getpriority, so we must 9159 differentiate based on errno settings. */ 9160 errno = 0; 9161 ret = getpriority(arg1, arg2); 9162 if (ret == -1 && errno != 0) { 9163 ret = -host_to_target_errno(errno); 9164 break; 9165 } 9166 #ifdef TARGET_ALPHA 9167 /* Return value is the unbiased priority. Signal no error. */ 9168 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 9169 #else 9170 /* Return value is a biased priority to avoid negative numbers. */ 9171 ret = 20 - ret; 9172 #endif 9173 break; 9174 case TARGET_NR_setpriority: 9175 ret = get_errno(setpriority(arg1, arg2, arg3)); 9176 break; 9177 #ifdef TARGET_NR_profil 9178 case TARGET_NR_profil: 9179 goto unimplemented; 9180 #endif 9181 case TARGET_NR_statfs: 9182 if (!(p = lock_user_string(arg1))) 9183 goto efault; 9184 ret = get_errno(statfs(path(p), &stfs)); 9185 unlock_user(p, arg1, 0); 9186 convert_statfs: 9187 if (!is_error(ret)) { 9188 struct target_statfs *target_stfs; 9189 9190 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 9191 goto efault; 9192 __put_user(stfs.f_type, &target_stfs->f_type); 9193 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9194 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9195 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9196 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9197 __put_user(stfs.f_files, &target_stfs->f_files); 9198 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9199 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9200 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9201 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9202 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9203 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9204 unlock_user_struct(target_stfs, arg2, 1); 9205 } 9206 break; 9207 case TARGET_NR_fstatfs: 9208 ret = get_errno(fstatfs(arg1, &stfs)); 9209 goto convert_statfs; 9210 #ifdef TARGET_NR_statfs64 9211 case TARGET_NR_statfs64: 9212 if (!(p = lock_user_string(arg1))) 9213 goto efault; 9214 ret = get_errno(statfs(path(p), &stfs)); 9215 unlock_user(p, arg1, 0); 9216 convert_statfs64: 9217 if (!is_error(ret)) { 9218 struct target_statfs64 *target_stfs; 9219 9220 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 9221 goto efault; 9222 __put_user(stfs.f_type, &target_stfs->f_type); 9223 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9224 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9225 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9226 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9227 __put_user(stfs.f_files, &target_stfs->f_files); 9228 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9229 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9230 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9231 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9232 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9233 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9234 unlock_user_struct(target_stfs, arg3, 1); 9235 } 9236 break; 9237 case TARGET_NR_fstatfs64: 9238 ret = get_errno(fstatfs(arg1, &stfs)); 9239 goto convert_statfs64; 9240 #endif 9241 #ifdef TARGET_NR_ioperm 9242 case TARGET_NR_ioperm: 9243 goto unimplemented; 9244 #endif 9245 #ifdef TARGET_NR_socketcall 9246 case TARGET_NR_socketcall: 9247 ret = do_socketcall(arg1, arg2); 9248 break; 9249 #endif 9250 #ifdef TARGET_NR_accept 9251 case TARGET_NR_accept: 9252 ret = do_accept4(arg1, arg2, arg3, 0); 9253 break; 9254 #endif 9255 #ifdef TARGET_NR_accept4 9256 case TARGET_NR_accept4: 9257 ret = do_accept4(arg1, arg2, arg3, arg4); 9258 break; 9259 #endif 9260 #ifdef TARGET_NR_bind 9261 case TARGET_NR_bind: 9262 ret = do_bind(arg1, arg2, arg3); 9263 break; 9264 #endif 9265 #ifdef TARGET_NR_connect 9266 case TARGET_NR_connect: 9267 ret = do_connect(arg1, arg2, arg3); 9268 break; 9269 #endif 9270 #ifdef TARGET_NR_getpeername 9271 case TARGET_NR_getpeername: 9272 ret = do_getpeername(arg1, arg2, arg3); 9273 break; 9274 #endif 9275 #ifdef TARGET_NR_getsockname 9276 case TARGET_NR_getsockname: 9277 ret = do_getsockname(arg1, arg2, arg3); 9278 break; 9279 #endif 9280 #ifdef TARGET_NR_getsockopt 9281 case TARGET_NR_getsockopt: 9282 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); 9283 break; 9284 #endif 9285 #ifdef TARGET_NR_listen 9286 case TARGET_NR_listen: 9287 ret = get_errno(listen(arg1, arg2)); 9288 break; 9289 #endif 9290 #ifdef TARGET_NR_recv 9291 case TARGET_NR_recv: 9292 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 9293 break; 9294 #endif 9295 #ifdef TARGET_NR_recvfrom 9296 case TARGET_NR_recvfrom: 9297 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 9298 break; 9299 #endif 9300 #ifdef TARGET_NR_recvmsg 9301 case TARGET_NR_recvmsg: 9302 ret = do_sendrecvmsg(arg1, arg2, arg3, 0); 9303 break; 9304 #endif 9305 #ifdef TARGET_NR_send 9306 case TARGET_NR_send: 9307 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0); 9308 break; 9309 #endif 9310 #ifdef TARGET_NR_sendmsg 9311 case TARGET_NR_sendmsg: 9312 ret = do_sendrecvmsg(arg1, arg2, arg3, 1); 9313 break; 9314 #endif 9315 #ifdef TARGET_NR_sendmmsg 9316 case TARGET_NR_sendmmsg: 9317 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 9318 break; 9319 case TARGET_NR_recvmmsg: 9320 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 9321 break; 9322 #endif 9323 #ifdef TARGET_NR_sendto 9324 case TARGET_NR_sendto: 9325 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 9326 break; 9327 #endif 9328 #ifdef TARGET_NR_shutdown 9329 case TARGET_NR_shutdown: 9330 ret = get_errno(shutdown(arg1, arg2)); 9331 break; 9332 #endif 9333 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 9334 case TARGET_NR_getrandom: 9335 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 9336 if (!p) { 9337 goto efault; 9338 } 9339 ret = get_errno(getrandom(p, arg2, arg3)); 9340 unlock_user(p, arg1, ret); 9341 break; 9342 #endif 9343 #ifdef TARGET_NR_socket 9344 case TARGET_NR_socket: 9345 ret = do_socket(arg1, arg2, arg3); 9346 break; 9347 #endif 9348 #ifdef TARGET_NR_socketpair 9349 case TARGET_NR_socketpair: 9350 ret = do_socketpair(arg1, arg2, arg3, arg4); 9351 break; 9352 #endif 9353 #ifdef TARGET_NR_setsockopt 9354 case TARGET_NR_setsockopt: 9355 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 9356 break; 9357 #endif 9358 #if defined(TARGET_NR_syslog) 9359 case TARGET_NR_syslog: 9360 { 9361 int len = arg2; 9362 9363 switch (arg1) { 9364 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 9365 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 9366 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 9367 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 9368 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 9369 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 9370 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 9371 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 9372 { 9373 ret = get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 9374 } 9375 break; 9376 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 9377 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 9378 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 9379 { 9380 ret = -TARGET_EINVAL; 9381 if (len < 0) { 9382 goto fail; 9383 } 9384 ret = 0; 9385 if (len == 0) { 9386 break; 9387 } 9388 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9389 if (!p) { 9390 ret = -TARGET_EFAULT; 9391 goto fail; 9392 } 9393 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 9394 unlock_user(p, arg2, arg3); 9395 } 9396 break; 9397 default: 9398 ret = -EINVAL; 9399 break; 9400 } 9401 } 9402 break; 9403 #endif 9404 case TARGET_NR_setitimer: 9405 { 9406 struct itimerval value, ovalue, *pvalue; 9407 9408 if (arg2) { 9409 pvalue = &value; 9410 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 9411 || copy_from_user_timeval(&pvalue->it_value, 9412 arg2 + sizeof(struct target_timeval))) 9413 goto efault; 9414 } else { 9415 pvalue = NULL; 9416 } 9417 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 9418 if (!is_error(ret) && arg3) { 9419 if (copy_to_user_timeval(arg3, 9420 &ovalue.it_interval) 9421 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 9422 &ovalue.it_value)) 9423 goto efault; 9424 } 9425 } 9426 break; 9427 case TARGET_NR_getitimer: 9428 { 9429 struct itimerval value; 9430 9431 ret = get_errno(getitimer(arg1, &value)); 9432 if (!is_error(ret) && arg2) { 9433 if (copy_to_user_timeval(arg2, 9434 &value.it_interval) 9435 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 9436 &value.it_value)) 9437 goto efault; 9438 } 9439 } 9440 break; 9441 #ifdef TARGET_NR_stat 9442 case TARGET_NR_stat: 9443 if (!(p = lock_user_string(arg1))) 9444 goto efault; 9445 ret = get_errno(stat(path(p), &st)); 9446 unlock_user(p, arg1, 0); 9447 goto do_stat; 9448 #endif 9449 #ifdef TARGET_NR_lstat 9450 case TARGET_NR_lstat: 9451 if (!(p = lock_user_string(arg1))) 9452 goto efault; 9453 ret = get_errno(lstat(path(p), &st)); 9454 unlock_user(p, arg1, 0); 9455 goto do_stat; 9456 #endif 9457 case TARGET_NR_fstat: 9458 { 9459 ret = get_errno(fstat(arg1, &st)); 9460 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 9461 do_stat: 9462 #endif 9463 if (!is_error(ret)) { 9464 struct target_stat *target_st; 9465 9466 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 9467 goto efault; 9468 memset(target_st, 0, sizeof(*target_st)); 9469 __put_user(st.st_dev, &target_st->st_dev); 9470 __put_user(st.st_ino, &target_st->st_ino); 9471 __put_user(st.st_mode, &target_st->st_mode); 9472 __put_user(st.st_uid, &target_st->st_uid); 9473 __put_user(st.st_gid, &target_st->st_gid); 9474 __put_user(st.st_nlink, &target_st->st_nlink); 9475 __put_user(st.st_rdev, &target_st->st_rdev); 9476 __put_user(st.st_size, &target_st->st_size); 9477 __put_user(st.st_blksize, &target_st->st_blksize); 9478 __put_user(st.st_blocks, &target_st->st_blocks); 9479 __put_user(st.st_atime, &target_st->target_st_atime); 9480 __put_user(st.st_mtime, &target_st->target_st_mtime); 9481 __put_user(st.st_ctime, &target_st->target_st_ctime); 9482 unlock_user_struct(target_st, arg2, 1); 9483 } 9484 } 9485 break; 9486 #ifdef TARGET_NR_olduname 9487 case TARGET_NR_olduname: 9488 goto unimplemented; 9489 #endif 9490 #ifdef TARGET_NR_iopl 9491 case TARGET_NR_iopl: 9492 goto unimplemented; 9493 #endif 9494 case TARGET_NR_vhangup: 9495 ret = get_errno(vhangup()); 9496 break; 9497 #ifdef TARGET_NR_idle 9498 case TARGET_NR_idle: 9499 goto unimplemented; 9500 #endif 9501 #ifdef TARGET_NR_syscall 9502 case TARGET_NR_syscall: 9503 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 9504 arg6, arg7, arg8, 0); 9505 break; 9506 #endif 9507 case TARGET_NR_wait4: 9508 { 9509 int status; 9510 abi_long status_ptr = arg2; 9511 struct rusage rusage, *rusage_ptr; 9512 abi_ulong target_rusage = arg4; 9513 abi_long rusage_err; 9514 if (target_rusage) 9515 rusage_ptr = &rusage; 9516 else 9517 rusage_ptr = NULL; 9518 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 9519 if (!is_error(ret)) { 9520 if (status_ptr && ret) { 9521 status = host_to_target_waitstatus(status); 9522 if (put_user_s32(status, status_ptr)) 9523 goto efault; 9524 } 9525 if (target_rusage) { 9526 rusage_err = host_to_target_rusage(target_rusage, &rusage); 9527 if (rusage_err) { 9528 ret = rusage_err; 9529 } 9530 } 9531 } 9532 } 9533 break; 9534 #ifdef TARGET_NR_swapoff 9535 case TARGET_NR_swapoff: 9536 if (!(p = lock_user_string(arg1))) 9537 goto efault; 9538 ret = get_errno(swapoff(p)); 9539 unlock_user(p, arg1, 0); 9540 break; 9541 #endif 9542 case TARGET_NR_sysinfo: 9543 { 9544 struct target_sysinfo *target_value; 9545 struct sysinfo value; 9546 ret = get_errno(sysinfo(&value)); 9547 if (!is_error(ret) && arg1) 9548 { 9549 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 9550 goto efault; 9551 __put_user(value.uptime, &target_value->uptime); 9552 __put_user(value.loads[0], &target_value->loads[0]); 9553 __put_user(value.loads[1], &target_value->loads[1]); 9554 __put_user(value.loads[2], &target_value->loads[2]); 9555 __put_user(value.totalram, &target_value->totalram); 9556 __put_user(value.freeram, &target_value->freeram); 9557 __put_user(value.sharedram, &target_value->sharedram); 9558 __put_user(value.bufferram, &target_value->bufferram); 9559 __put_user(value.totalswap, &target_value->totalswap); 9560 __put_user(value.freeswap, &target_value->freeswap); 9561 __put_user(value.procs, &target_value->procs); 9562 __put_user(value.totalhigh, &target_value->totalhigh); 9563 __put_user(value.freehigh, &target_value->freehigh); 9564 __put_user(value.mem_unit, &target_value->mem_unit); 9565 unlock_user_struct(target_value, arg1, 1); 9566 } 9567 } 9568 break; 9569 #ifdef TARGET_NR_ipc 9570 case TARGET_NR_ipc: 9571 ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 9572 break; 9573 #endif 9574 #ifdef TARGET_NR_semget 9575 case TARGET_NR_semget: 9576 ret = get_errno(semget(arg1, arg2, arg3)); 9577 break; 9578 #endif 9579 #ifdef TARGET_NR_semop 9580 case TARGET_NR_semop: 9581 ret = do_semop(arg1, arg2, arg3); 9582 break; 9583 #endif 9584 #ifdef TARGET_NR_semctl 9585 case TARGET_NR_semctl: 9586 ret = do_semctl(arg1, arg2, arg3, arg4); 9587 break; 9588 #endif 9589 #ifdef TARGET_NR_msgctl 9590 case TARGET_NR_msgctl: 9591 ret = do_msgctl(arg1, arg2, arg3); 9592 break; 9593 #endif 9594 #ifdef TARGET_NR_msgget 9595 case TARGET_NR_msgget: 9596 ret = get_errno(msgget(arg1, arg2)); 9597 break; 9598 #endif 9599 #ifdef TARGET_NR_msgrcv 9600 case TARGET_NR_msgrcv: 9601 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5); 9602 break; 9603 #endif 9604 #ifdef TARGET_NR_msgsnd 9605 case TARGET_NR_msgsnd: 9606 ret = do_msgsnd(arg1, arg2, arg3, arg4); 9607 break; 9608 #endif 9609 #ifdef TARGET_NR_shmget 9610 case TARGET_NR_shmget: 9611 ret = get_errno(shmget(arg1, arg2, arg3)); 9612 break; 9613 #endif 9614 #ifdef TARGET_NR_shmctl 9615 case TARGET_NR_shmctl: 9616 ret = do_shmctl(arg1, arg2, arg3); 9617 break; 9618 #endif 9619 #ifdef TARGET_NR_shmat 9620 case TARGET_NR_shmat: 9621 ret = do_shmat(cpu_env, arg1, arg2, arg3); 9622 break; 9623 #endif 9624 #ifdef TARGET_NR_shmdt 9625 case TARGET_NR_shmdt: 9626 ret = do_shmdt(arg1); 9627 break; 9628 #endif 9629 case TARGET_NR_fsync: 9630 ret = get_errno(fsync(arg1)); 9631 break; 9632 case TARGET_NR_clone: 9633 /* Linux manages to have three different orderings for its 9634 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 9635 * match the kernel's CONFIG_CLONE_* settings. 9636 * Microblaze is further special in that it uses a sixth 9637 * implicit argument to clone for the TLS pointer. 9638 */ 9639 #if defined(TARGET_MICROBLAZE) 9640 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 9641 #elif defined(TARGET_CLONE_BACKWARDS) 9642 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 9643 #elif defined(TARGET_CLONE_BACKWARDS2) 9644 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 9645 #else 9646 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 9647 #endif 9648 break; 9649 #ifdef __NR_exit_group 9650 /* new thread calls */ 9651 case TARGET_NR_exit_group: 9652 #ifdef TARGET_GPROF 9653 _mcleanup(); 9654 #endif 9655 gdb_exit(cpu_env, arg1); 9656 ret = get_errno(exit_group(arg1)); 9657 break; 9658 #endif 9659 case TARGET_NR_setdomainname: 9660 if (!(p = lock_user_string(arg1))) 9661 goto efault; 9662 ret = get_errno(setdomainname(p, arg2)); 9663 unlock_user(p, arg1, 0); 9664 break; 9665 case TARGET_NR_uname: 9666 /* no need to transcode because we use the linux syscall */ 9667 { 9668 struct new_utsname * buf; 9669 9670 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 9671 goto efault; 9672 ret = get_errno(sys_uname(buf)); 9673 if (!is_error(ret)) { 9674 /* Overwrite the native machine name with whatever is being 9675 emulated. */ 9676 strcpy (buf->machine, cpu_to_uname_machine(cpu_env)); 9677 /* Allow the user to override the reported release. */ 9678 if (qemu_uname_release && *qemu_uname_release) { 9679 g_strlcpy(buf->release, qemu_uname_release, 9680 sizeof(buf->release)); 9681 } 9682 } 9683 unlock_user_struct(buf, arg1, 1); 9684 } 9685 break; 9686 #ifdef TARGET_I386 9687 case TARGET_NR_modify_ldt: 9688 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3); 9689 break; 9690 #if !defined(TARGET_X86_64) 9691 case TARGET_NR_vm86old: 9692 goto unimplemented; 9693 case TARGET_NR_vm86: 9694 ret = do_vm86(cpu_env, arg1, arg2); 9695 break; 9696 #endif 9697 #endif 9698 case TARGET_NR_adjtimex: 9699 { 9700 struct timex host_buf; 9701 9702 if (target_to_host_timex(&host_buf, arg1) != 0) { 9703 goto efault; 9704 } 9705 ret = get_errno(adjtimex(&host_buf)); 9706 if (!is_error(ret)) { 9707 if (host_to_target_timex(arg1, &host_buf) != 0) { 9708 goto efault; 9709 } 9710 } 9711 } 9712 break; 9713 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 9714 case TARGET_NR_clock_adjtime: 9715 { 9716 struct timex htx, *phtx = &htx; 9717 9718 if (target_to_host_timex(phtx, arg2) != 0) { 9719 goto efault; 9720 } 9721 ret = get_errno(clock_adjtime(arg1, phtx)); 9722 if (!is_error(ret) && phtx) { 9723 if (host_to_target_timex(arg2, phtx) != 0) { 9724 goto efault; 9725 } 9726 } 9727 } 9728 break; 9729 #endif 9730 #ifdef TARGET_NR_create_module 9731 case TARGET_NR_create_module: 9732 #endif 9733 case TARGET_NR_init_module: 9734 case TARGET_NR_delete_module: 9735 #ifdef TARGET_NR_get_kernel_syms 9736 case TARGET_NR_get_kernel_syms: 9737 #endif 9738 goto unimplemented; 9739 case TARGET_NR_quotactl: 9740 goto unimplemented; 9741 case TARGET_NR_getpgid: 9742 ret = get_errno(getpgid(arg1)); 9743 break; 9744 case TARGET_NR_fchdir: 9745 ret = get_errno(fchdir(arg1)); 9746 break; 9747 #ifdef TARGET_NR_bdflush /* not on x86_64 */ 9748 case TARGET_NR_bdflush: 9749 goto unimplemented; 9750 #endif 9751 #ifdef TARGET_NR_sysfs 9752 case TARGET_NR_sysfs: 9753 goto unimplemented; 9754 #endif 9755 case TARGET_NR_personality: 9756 ret = get_errno(personality(arg1)); 9757 break; 9758 #ifdef TARGET_NR_afs_syscall 9759 case TARGET_NR_afs_syscall: 9760 goto unimplemented; 9761 #endif 9762 #ifdef TARGET_NR__llseek /* Not on alpha */ 9763 case TARGET_NR__llseek: 9764 { 9765 int64_t res; 9766 #if !defined(__NR_llseek) 9767 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 9768 if (res == -1) { 9769 ret = get_errno(res); 9770 } else { 9771 ret = 0; 9772 } 9773 #else 9774 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 9775 #endif 9776 if ((ret == 0) && put_user_s64(res, arg4)) { 9777 goto efault; 9778 } 9779 } 9780 break; 9781 #endif 9782 #ifdef TARGET_NR_getdents 9783 case TARGET_NR_getdents: 9784 #ifdef __NR_getdents 9785 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 9786 { 9787 struct target_dirent *target_dirp; 9788 struct linux_dirent *dirp; 9789 abi_long count = arg3; 9790 9791 dirp = g_try_malloc(count); 9792 if (!dirp) { 9793 ret = -TARGET_ENOMEM; 9794 goto fail; 9795 } 9796 9797 ret = get_errno(sys_getdents(arg1, dirp, count)); 9798 if (!is_error(ret)) { 9799 struct linux_dirent *de; 9800 struct target_dirent *tde; 9801 int len = ret; 9802 int reclen, treclen; 9803 int count1, tnamelen; 9804 9805 count1 = 0; 9806 de = dirp; 9807 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 9808 goto efault; 9809 tde = target_dirp; 9810 while (len > 0) { 9811 reclen = de->d_reclen; 9812 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 9813 assert(tnamelen >= 0); 9814 treclen = tnamelen + offsetof(struct target_dirent, d_name); 9815 assert(count1 + treclen <= count); 9816 tde->d_reclen = tswap16(treclen); 9817 tde->d_ino = tswapal(de->d_ino); 9818 tde->d_off = tswapal(de->d_off); 9819 memcpy(tde->d_name, de->d_name, tnamelen); 9820 de = (struct linux_dirent *)((char *)de + reclen); 9821 len -= reclen; 9822 tde = (struct target_dirent *)((char *)tde + treclen); 9823 count1 += treclen; 9824 } 9825 ret = count1; 9826 unlock_user(target_dirp, arg2, ret); 9827 } 9828 g_free(dirp); 9829 } 9830 #else 9831 { 9832 struct linux_dirent *dirp; 9833 abi_long count = arg3; 9834 9835 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 9836 goto efault; 9837 ret = get_errno(sys_getdents(arg1, dirp, count)); 9838 if (!is_error(ret)) { 9839 struct linux_dirent *de; 9840 int len = ret; 9841 int reclen; 9842 de = dirp; 9843 while (len > 0) { 9844 reclen = de->d_reclen; 9845 if (reclen > len) 9846 break; 9847 de->d_reclen = tswap16(reclen); 9848 tswapls(&de->d_ino); 9849 tswapls(&de->d_off); 9850 de = (struct linux_dirent *)((char *)de + reclen); 9851 len -= reclen; 9852 } 9853 } 9854 unlock_user(dirp, arg2, ret); 9855 } 9856 #endif 9857 #else 9858 /* Implement getdents in terms of getdents64 */ 9859 { 9860 struct linux_dirent64 *dirp; 9861 abi_long count = arg3; 9862 9863 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 9864 if (!dirp) { 9865 goto efault; 9866 } 9867 ret = get_errno(sys_getdents64(arg1, dirp, count)); 9868 if (!is_error(ret)) { 9869 /* Convert the dirent64 structs to target dirent. We do this 9870 * in-place, since we can guarantee that a target_dirent is no 9871 * larger than a dirent64; however this means we have to be 9872 * careful to read everything before writing in the new format. 9873 */ 9874 struct linux_dirent64 *de; 9875 struct target_dirent *tde; 9876 int len = ret; 9877 int tlen = 0; 9878 9879 de = dirp; 9880 tde = (struct target_dirent *)dirp; 9881 while (len > 0) { 9882 int namelen, treclen; 9883 int reclen = de->d_reclen; 9884 uint64_t ino = de->d_ino; 9885 int64_t off = de->d_off; 9886 uint8_t type = de->d_type; 9887 9888 namelen = strlen(de->d_name); 9889 treclen = offsetof(struct target_dirent, d_name) 9890 + namelen + 2; 9891 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 9892 9893 memmove(tde->d_name, de->d_name, namelen + 1); 9894 tde->d_ino = tswapal(ino); 9895 tde->d_off = tswapal(off); 9896 tde->d_reclen = tswap16(treclen); 9897 /* The target_dirent type is in what was formerly a padding 9898 * byte at the end of the structure: 9899 */ 9900 *(((char *)tde) + treclen - 1) = type; 9901 9902 de = (struct linux_dirent64 *)((char *)de + reclen); 9903 tde = (struct target_dirent *)((char *)tde + treclen); 9904 len -= reclen; 9905 tlen += treclen; 9906 } 9907 ret = tlen; 9908 } 9909 unlock_user(dirp, arg2, ret); 9910 } 9911 #endif 9912 break; 9913 #endif /* TARGET_NR_getdents */ 9914 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 9915 case TARGET_NR_getdents64: 9916 { 9917 struct linux_dirent64 *dirp; 9918 abi_long count = arg3; 9919 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 9920 goto efault; 9921 ret = get_errno(sys_getdents64(arg1, dirp, count)); 9922 if (!is_error(ret)) { 9923 struct linux_dirent64 *de; 9924 int len = ret; 9925 int reclen; 9926 de = dirp; 9927 while (len > 0) { 9928 reclen = de->d_reclen; 9929 if (reclen > len) 9930 break; 9931 de->d_reclen = tswap16(reclen); 9932 tswap64s((uint64_t *)&de->d_ino); 9933 tswap64s((uint64_t *)&de->d_off); 9934 de = (struct linux_dirent64 *)((char *)de + reclen); 9935 len -= reclen; 9936 } 9937 } 9938 unlock_user(dirp, arg2, ret); 9939 } 9940 break; 9941 #endif /* TARGET_NR_getdents64 */ 9942 #if defined(TARGET_NR__newselect) 9943 case TARGET_NR__newselect: 9944 ret = do_select(arg1, arg2, arg3, arg4, arg5); 9945 break; 9946 #endif 9947 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) 9948 # ifdef TARGET_NR_poll 9949 case TARGET_NR_poll: 9950 # endif 9951 # ifdef TARGET_NR_ppoll 9952 case TARGET_NR_ppoll: 9953 # endif 9954 { 9955 struct target_pollfd *target_pfd; 9956 unsigned int nfds = arg2; 9957 struct pollfd *pfd; 9958 unsigned int i; 9959 9960 pfd = NULL; 9961 target_pfd = NULL; 9962 if (nfds) { 9963 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 9964 ret = -TARGET_EINVAL; 9965 break; 9966 } 9967 9968 target_pfd = lock_user(VERIFY_WRITE, arg1, 9969 sizeof(struct target_pollfd) * nfds, 1); 9970 if (!target_pfd) { 9971 goto efault; 9972 } 9973 9974 pfd = alloca(sizeof(struct pollfd) * nfds); 9975 for (i = 0; i < nfds; i++) { 9976 pfd[i].fd = tswap32(target_pfd[i].fd); 9977 pfd[i].events = tswap16(target_pfd[i].events); 9978 } 9979 } 9980 9981 switch (num) { 9982 # ifdef TARGET_NR_ppoll 9983 case TARGET_NR_ppoll: 9984 { 9985 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 9986 target_sigset_t *target_set; 9987 sigset_t _set, *set = &_set; 9988 9989 if (arg3) { 9990 if (target_to_host_timespec(timeout_ts, arg3)) { 9991 unlock_user(target_pfd, arg1, 0); 9992 goto efault; 9993 } 9994 } else { 9995 timeout_ts = NULL; 9996 } 9997 9998 if (arg4) { 9999 if (arg5 != sizeof(target_sigset_t)) { 10000 unlock_user(target_pfd, arg1, 0); 10001 ret = -TARGET_EINVAL; 10002 break; 10003 } 10004 10005 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1); 10006 if (!target_set) { 10007 unlock_user(target_pfd, arg1, 0); 10008 goto efault; 10009 } 10010 target_to_host_sigset(set, target_set); 10011 } else { 10012 set = NULL; 10013 } 10014 10015 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 10016 set, SIGSET_T_SIZE)); 10017 10018 if (!is_error(ret) && arg3) { 10019 host_to_target_timespec(arg3, timeout_ts); 10020 } 10021 if (arg4) { 10022 unlock_user(target_set, arg4, 0); 10023 } 10024 break; 10025 } 10026 # endif 10027 # ifdef TARGET_NR_poll 10028 case TARGET_NR_poll: 10029 { 10030 struct timespec ts, *pts; 10031 10032 if (arg3 >= 0) { 10033 /* Convert ms to secs, ns */ 10034 ts.tv_sec = arg3 / 1000; 10035 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 10036 pts = &ts; 10037 } else { 10038 /* -ve poll() timeout means "infinite" */ 10039 pts = NULL; 10040 } 10041 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 10042 break; 10043 } 10044 # endif 10045 default: 10046 g_assert_not_reached(); 10047 } 10048 10049 if (!is_error(ret)) { 10050 for(i = 0; i < nfds; i++) { 10051 target_pfd[i].revents = tswap16(pfd[i].revents); 10052 } 10053 } 10054 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 10055 } 10056 break; 10057 #endif 10058 case TARGET_NR_flock: 10059 /* NOTE: the flock constant seems to be the same for every 10060 Linux platform */ 10061 ret = get_errno(safe_flock(arg1, arg2)); 10062 break; 10063 case TARGET_NR_readv: 10064 { 10065 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10066 if (vec != NULL) { 10067 ret = get_errno(safe_readv(arg1, vec, arg3)); 10068 unlock_iovec(vec, arg2, arg3, 1); 10069 } else { 10070 ret = -host_to_target_errno(errno); 10071 } 10072 } 10073 break; 10074 case TARGET_NR_writev: 10075 { 10076 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10077 if (vec != NULL) { 10078 ret = get_errno(safe_writev(arg1, vec, arg3)); 10079 unlock_iovec(vec, arg2, arg3, 0); 10080 } else { 10081 ret = -host_to_target_errno(errno); 10082 } 10083 } 10084 break; 10085 #if defined(TARGET_NR_preadv) 10086 case TARGET_NR_preadv: 10087 { 10088 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10089 if (vec != NULL) { 10090 ret = get_errno(safe_preadv(arg1, vec, arg3, arg4, arg5)); 10091 unlock_iovec(vec, arg2, arg3, 1); 10092 } else { 10093 ret = -host_to_target_errno(errno); 10094 } 10095 } 10096 break; 10097 #endif 10098 #if defined(TARGET_NR_pwritev) 10099 case TARGET_NR_pwritev: 10100 { 10101 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10102 if (vec != NULL) { 10103 ret = get_errno(safe_pwritev(arg1, vec, arg3, arg4, arg5)); 10104 unlock_iovec(vec, arg2, arg3, 0); 10105 } else { 10106 ret = -host_to_target_errno(errno); 10107 } 10108 } 10109 break; 10110 #endif 10111 case TARGET_NR_getsid: 10112 ret = get_errno(getsid(arg1)); 10113 break; 10114 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 10115 case TARGET_NR_fdatasync: 10116 ret = get_errno(fdatasync(arg1)); 10117 break; 10118 #endif 10119 #ifdef TARGET_NR__sysctl 10120 case TARGET_NR__sysctl: 10121 /* We don't implement this, but ENOTDIR is always a safe 10122 return value. */ 10123 ret = -TARGET_ENOTDIR; 10124 break; 10125 #endif 10126 case TARGET_NR_sched_getaffinity: 10127 { 10128 unsigned int mask_size; 10129 unsigned long *mask; 10130 10131 /* 10132 * sched_getaffinity needs multiples of ulong, so need to take 10133 * care of mismatches between target ulong and host ulong sizes. 10134 */ 10135 if (arg2 & (sizeof(abi_ulong) - 1)) { 10136 ret = -TARGET_EINVAL; 10137 break; 10138 } 10139 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10140 10141 mask = alloca(mask_size); 10142 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 10143 10144 if (!is_error(ret)) { 10145 if (ret > arg2) { 10146 /* More data returned than the caller's buffer will fit. 10147 * This only happens if sizeof(abi_long) < sizeof(long) 10148 * and the caller passed us a buffer holding an odd number 10149 * of abi_longs. If the host kernel is actually using the 10150 * extra 4 bytes then fail EINVAL; otherwise we can just 10151 * ignore them and only copy the interesting part. 10152 */ 10153 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 10154 if (numcpus > arg2 * 8) { 10155 ret = -TARGET_EINVAL; 10156 break; 10157 } 10158 ret = arg2; 10159 } 10160 10161 if (copy_to_user(arg3, mask, ret)) { 10162 goto efault; 10163 } 10164 } 10165 } 10166 break; 10167 case TARGET_NR_sched_setaffinity: 10168 { 10169 unsigned int mask_size; 10170 unsigned long *mask; 10171 10172 /* 10173 * sched_setaffinity needs multiples of ulong, so need to take 10174 * care of mismatches between target ulong and host ulong sizes. 10175 */ 10176 if (arg2 & (sizeof(abi_ulong) - 1)) { 10177 ret = -TARGET_EINVAL; 10178 break; 10179 } 10180 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10181 10182 mask = alloca(mask_size); 10183 if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) { 10184 goto efault; 10185 } 10186 memcpy(mask, p, arg2); 10187 unlock_user_struct(p, arg2, 0); 10188 10189 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 10190 } 10191 break; 10192 case TARGET_NR_sched_setparam: 10193 { 10194 struct sched_param *target_schp; 10195 struct sched_param schp; 10196 10197 if (arg2 == 0) { 10198 return -TARGET_EINVAL; 10199 } 10200 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 10201 goto efault; 10202 schp.sched_priority = tswap32(target_schp->sched_priority); 10203 unlock_user_struct(target_schp, arg2, 0); 10204 ret = get_errno(sched_setparam(arg1, &schp)); 10205 } 10206 break; 10207 case TARGET_NR_sched_getparam: 10208 { 10209 struct sched_param *target_schp; 10210 struct sched_param schp; 10211 10212 if (arg2 == 0) { 10213 return -TARGET_EINVAL; 10214 } 10215 ret = get_errno(sched_getparam(arg1, &schp)); 10216 if (!is_error(ret)) { 10217 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 10218 goto efault; 10219 target_schp->sched_priority = tswap32(schp.sched_priority); 10220 unlock_user_struct(target_schp, arg2, 1); 10221 } 10222 } 10223 break; 10224 case TARGET_NR_sched_setscheduler: 10225 { 10226 struct sched_param *target_schp; 10227 struct sched_param schp; 10228 if (arg3 == 0) { 10229 return -TARGET_EINVAL; 10230 } 10231 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 10232 goto efault; 10233 schp.sched_priority = tswap32(target_schp->sched_priority); 10234 unlock_user_struct(target_schp, arg3, 0); 10235 ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); 10236 } 10237 break; 10238 case TARGET_NR_sched_getscheduler: 10239 ret = get_errno(sched_getscheduler(arg1)); 10240 break; 10241 case TARGET_NR_sched_yield: 10242 ret = get_errno(sched_yield()); 10243 break; 10244 case TARGET_NR_sched_get_priority_max: 10245 ret = get_errno(sched_get_priority_max(arg1)); 10246 break; 10247 case TARGET_NR_sched_get_priority_min: 10248 ret = get_errno(sched_get_priority_min(arg1)); 10249 break; 10250 case TARGET_NR_sched_rr_get_interval: 10251 { 10252 struct timespec ts; 10253 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 10254 if (!is_error(ret)) { 10255 ret = host_to_target_timespec(arg2, &ts); 10256 } 10257 } 10258 break; 10259 case TARGET_NR_nanosleep: 10260 { 10261 struct timespec req, rem; 10262 target_to_host_timespec(&req, arg1); 10263 ret = get_errno(safe_nanosleep(&req, &rem)); 10264 if (is_error(ret) && arg2) { 10265 host_to_target_timespec(arg2, &rem); 10266 } 10267 } 10268 break; 10269 #ifdef TARGET_NR_query_module 10270 case TARGET_NR_query_module: 10271 goto unimplemented; 10272 #endif 10273 #ifdef TARGET_NR_nfsservctl 10274 case TARGET_NR_nfsservctl: 10275 goto unimplemented; 10276 #endif 10277 case TARGET_NR_prctl: 10278 switch (arg1) { 10279 case PR_GET_PDEATHSIG: 10280 { 10281 int deathsig; 10282 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 10283 if (!is_error(ret) && arg2 10284 && put_user_ual(deathsig, arg2)) { 10285 goto efault; 10286 } 10287 break; 10288 } 10289 #ifdef PR_GET_NAME 10290 case PR_GET_NAME: 10291 { 10292 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 10293 if (!name) { 10294 goto efault; 10295 } 10296 ret = get_errno(prctl(arg1, (unsigned long)name, 10297 arg3, arg4, arg5)); 10298 unlock_user(name, arg2, 16); 10299 break; 10300 } 10301 case PR_SET_NAME: 10302 { 10303 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 10304 if (!name) { 10305 goto efault; 10306 } 10307 ret = get_errno(prctl(arg1, (unsigned long)name, 10308 arg3, arg4, arg5)); 10309 unlock_user(name, arg2, 0); 10310 break; 10311 } 10312 #endif 10313 default: 10314 /* Most prctl options have no pointer arguments */ 10315 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 10316 break; 10317 } 10318 break; 10319 #ifdef TARGET_NR_arch_prctl 10320 case TARGET_NR_arch_prctl: 10321 #if defined(TARGET_I386) && !defined(TARGET_ABI32) 10322 ret = do_arch_prctl(cpu_env, arg1, arg2); 10323 break; 10324 #else 10325 goto unimplemented; 10326 #endif 10327 #endif 10328 #ifdef TARGET_NR_pread64 10329 case TARGET_NR_pread64: 10330 if (regpairs_aligned(cpu_env)) { 10331 arg4 = arg5; 10332 arg5 = arg6; 10333 } 10334 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 10335 goto efault; 10336 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 10337 unlock_user(p, arg2, ret); 10338 break; 10339 case TARGET_NR_pwrite64: 10340 if (regpairs_aligned(cpu_env)) { 10341 arg4 = arg5; 10342 arg5 = arg6; 10343 } 10344 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 10345 goto efault; 10346 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 10347 unlock_user(p, arg2, 0); 10348 break; 10349 #endif 10350 case TARGET_NR_getcwd: 10351 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 10352 goto efault; 10353 ret = get_errno(sys_getcwd1(p, arg2)); 10354 unlock_user(p, arg1, ret); 10355 break; 10356 case TARGET_NR_capget: 10357 case TARGET_NR_capset: 10358 { 10359 struct target_user_cap_header *target_header; 10360 struct target_user_cap_data *target_data = NULL; 10361 struct __user_cap_header_struct header; 10362 struct __user_cap_data_struct data[2]; 10363 struct __user_cap_data_struct *dataptr = NULL; 10364 int i, target_datalen; 10365 int data_items = 1; 10366 10367 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 10368 goto efault; 10369 } 10370 header.version = tswap32(target_header->version); 10371 header.pid = tswap32(target_header->pid); 10372 10373 if (header.version != _LINUX_CAPABILITY_VERSION) { 10374 /* Version 2 and up takes pointer to two user_data structs */ 10375 data_items = 2; 10376 } 10377 10378 target_datalen = sizeof(*target_data) * data_items; 10379 10380 if (arg2) { 10381 if (num == TARGET_NR_capget) { 10382 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 10383 } else { 10384 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 10385 } 10386 if (!target_data) { 10387 unlock_user_struct(target_header, arg1, 0); 10388 goto efault; 10389 } 10390 10391 if (num == TARGET_NR_capset) { 10392 for (i = 0; i < data_items; i++) { 10393 data[i].effective = tswap32(target_data[i].effective); 10394 data[i].permitted = tswap32(target_data[i].permitted); 10395 data[i].inheritable = tswap32(target_data[i].inheritable); 10396 } 10397 } 10398 10399 dataptr = data; 10400 } 10401 10402 if (num == TARGET_NR_capget) { 10403 ret = get_errno(capget(&header, dataptr)); 10404 } else { 10405 ret = get_errno(capset(&header, dataptr)); 10406 } 10407 10408 /* The kernel always updates version for both capget and capset */ 10409 target_header->version = tswap32(header.version); 10410 unlock_user_struct(target_header, arg1, 1); 10411 10412 if (arg2) { 10413 if (num == TARGET_NR_capget) { 10414 for (i = 0; i < data_items; i++) { 10415 target_data[i].effective = tswap32(data[i].effective); 10416 target_data[i].permitted = tswap32(data[i].permitted); 10417 target_data[i].inheritable = tswap32(data[i].inheritable); 10418 } 10419 unlock_user(target_data, arg2, target_datalen); 10420 } else { 10421 unlock_user(target_data, arg2, 0); 10422 } 10423 } 10424 break; 10425 } 10426 case TARGET_NR_sigaltstack: 10427 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env)); 10428 break; 10429 10430 #ifdef CONFIG_SENDFILE 10431 case TARGET_NR_sendfile: 10432 { 10433 off_t *offp = NULL; 10434 off_t off; 10435 if (arg3) { 10436 ret = get_user_sal(off, arg3); 10437 if (is_error(ret)) { 10438 break; 10439 } 10440 offp = &off; 10441 } 10442 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10443 if (!is_error(ret) && arg3) { 10444 abi_long ret2 = put_user_sal(off, arg3); 10445 if (is_error(ret2)) { 10446 ret = ret2; 10447 } 10448 } 10449 break; 10450 } 10451 #ifdef TARGET_NR_sendfile64 10452 case TARGET_NR_sendfile64: 10453 { 10454 off_t *offp = NULL; 10455 off_t off; 10456 if (arg3) { 10457 ret = get_user_s64(off, arg3); 10458 if (is_error(ret)) { 10459 break; 10460 } 10461 offp = &off; 10462 } 10463 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10464 if (!is_error(ret) && arg3) { 10465 abi_long ret2 = put_user_s64(off, arg3); 10466 if (is_error(ret2)) { 10467 ret = ret2; 10468 } 10469 } 10470 break; 10471 } 10472 #endif 10473 #else 10474 case TARGET_NR_sendfile: 10475 #ifdef TARGET_NR_sendfile64 10476 case TARGET_NR_sendfile64: 10477 #endif 10478 goto unimplemented; 10479 #endif 10480 10481 #ifdef TARGET_NR_getpmsg 10482 case TARGET_NR_getpmsg: 10483 goto unimplemented; 10484 #endif 10485 #ifdef TARGET_NR_putpmsg 10486 case TARGET_NR_putpmsg: 10487 goto unimplemented; 10488 #endif 10489 #ifdef TARGET_NR_vfork 10490 case TARGET_NR_vfork: 10491 ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD, 10492 0, 0, 0, 0)); 10493 break; 10494 #endif 10495 #ifdef TARGET_NR_ugetrlimit 10496 case TARGET_NR_ugetrlimit: 10497 { 10498 struct rlimit rlim; 10499 int resource = target_to_host_resource(arg1); 10500 ret = get_errno(getrlimit(resource, &rlim)); 10501 if (!is_error(ret)) { 10502 struct target_rlimit *target_rlim; 10503 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 10504 goto efault; 10505 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 10506 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 10507 unlock_user_struct(target_rlim, arg2, 1); 10508 } 10509 break; 10510 } 10511 #endif 10512 #ifdef TARGET_NR_truncate64 10513 case TARGET_NR_truncate64: 10514 if (!(p = lock_user_string(arg1))) 10515 goto efault; 10516 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 10517 unlock_user(p, arg1, 0); 10518 break; 10519 #endif 10520 #ifdef TARGET_NR_ftruncate64 10521 case TARGET_NR_ftruncate64: 10522 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 10523 break; 10524 #endif 10525 #ifdef TARGET_NR_stat64 10526 case TARGET_NR_stat64: 10527 if (!(p = lock_user_string(arg1))) 10528 goto efault; 10529 ret = get_errno(stat(path(p), &st)); 10530 unlock_user(p, arg1, 0); 10531 if (!is_error(ret)) 10532 ret = host_to_target_stat64(cpu_env, arg2, &st); 10533 break; 10534 #endif 10535 #ifdef TARGET_NR_lstat64 10536 case TARGET_NR_lstat64: 10537 if (!(p = lock_user_string(arg1))) 10538 goto efault; 10539 ret = get_errno(lstat(path(p), &st)); 10540 unlock_user(p, arg1, 0); 10541 if (!is_error(ret)) 10542 ret = host_to_target_stat64(cpu_env, arg2, &st); 10543 break; 10544 #endif 10545 #ifdef TARGET_NR_fstat64 10546 case TARGET_NR_fstat64: 10547 ret = get_errno(fstat(arg1, &st)); 10548 if (!is_error(ret)) 10549 ret = host_to_target_stat64(cpu_env, arg2, &st); 10550 break; 10551 #endif 10552 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 10553 #ifdef TARGET_NR_fstatat64 10554 case TARGET_NR_fstatat64: 10555 #endif 10556 #ifdef TARGET_NR_newfstatat 10557 case TARGET_NR_newfstatat: 10558 #endif 10559 if (!(p = lock_user_string(arg2))) 10560 goto efault; 10561 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 10562 if (!is_error(ret)) 10563 ret = host_to_target_stat64(cpu_env, arg3, &st); 10564 break; 10565 #endif 10566 #ifdef TARGET_NR_lchown 10567 case TARGET_NR_lchown: 10568 if (!(p = lock_user_string(arg1))) 10569 goto efault; 10570 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 10571 unlock_user(p, arg1, 0); 10572 break; 10573 #endif 10574 #ifdef TARGET_NR_getuid 10575 case TARGET_NR_getuid: 10576 ret = get_errno(high2lowuid(getuid())); 10577 break; 10578 #endif 10579 #ifdef TARGET_NR_getgid 10580 case TARGET_NR_getgid: 10581 ret = get_errno(high2lowgid(getgid())); 10582 break; 10583 #endif 10584 #ifdef TARGET_NR_geteuid 10585 case TARGET_NR_geteuid: 10586 ret = get_errno(high2lowuid(geteuid())); 10587 break; 10588 #endif 10589 #ifdef TARGET_NR_getegid 10590 case TARGET_NR_getegid: 10591 ret = get_errno(high2lowgid(getegid())); 10592 break; 10593 #endif 10594 case TARGET_NR_setreuid: 10595 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 10596 break; 10597 case TARGET_NR_setregid: 10598 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 10599 break; 10600 case TARGET_NR_getgroups: 10601 { 10602 int gidsetsize = arg1; 10603 target_id *target_grouplist; 10604 gid_t *grouplist; 10605 int i; 10606 10607 grouplist = alloca(gidsetsize * sizeof(gid_t)); 10608 ret = get_errno(getgroups(gidsetsize, grouplist)); 10609 if (gidsetsize == 0) 10610 break; 10611 if (!is_error(ret)) { 10612 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 10613 if (!target_grouplist) 10614 goto efault; 10615 for(i = 0;i < ret; i++) 10616 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 10617 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 10618 } 10619 } 10620 break; 10621 case TARGET_NR_setgroups: 10622 { 10623 int gidsetsize = arg1; 10624 target_id *target_grouplist; 10625 gid_t *grouplist = NULL; 10626 int i; 10627 if (gidsetsize) { 10628 grouplist = alloca(gidsetsize * sizeof(gid_t)); 10629 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 10630 if (!target_grouplist) { 10631 ret = -TARGET_EFAULT; 10632 goto fail; 10633 } 10634 for (i = 0; i < gidsetsize; i++) { 10635 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 10636 } 10637 unlock_user(target_grouplist, arg2, 0); 10638 } 10639 ret = get_errno(setgroups(gidsetsize, grouplist)); 10640 } 10641 break; 10642 case TARGET_NR_fchown: 10643 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 10644 break; 10645 #if defined(TARGET_NR_fchownat) 10646 case TARGET_NR_fchownat: 10647 if (!(p = lock_user_string(arg2))) 10648 goto efault; 10649 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 10650 low2highgid(arg4), arg5)); 10651 unlock_user(p, arg2, 0); 10652 break; 10653 #endif 10654 #ifdef TARGET_NR_setresuid 10655 case TARGET_NR_setresuid: 10656 ret = get_errno(sys_setresuid(low2highuid(arg1), 10657 low2highuid(arg2), 10658 low2highuid(arg3))); 10659 break; 10660 #endif 10661 #ifdef TARGET_NR_getresuid 10662 case TARGET_NR_getresuid: 10663 { 10664 uid_t ruid, euid, suid; 10665 ret = get_errno(getresuid(&ruid, &euid, &suid)); 10666 if (!is_error(ret)) { 10667 if (put_user_id(high2lowuid(ruid), arg1) 10668 || put_user_id(high2lowuid(euid), arg2) 10669 || put_user_id(high2lowuid(suid), arg3)) 10670 goto efault; 10671 } 10672 } 10673 break; 10674 #endif 10675 #ifdef TARGET_NR_getresgid 10676 case TARGET_NR_setresgid: 10677 ret = get_errno(sys_setresgid(low2highgid(arg1), 10678 low2highgid(arg2), 10679 low2highgid(arg3))); 10680 break; 10681 #endif 10682 #ifdef TARGET_NR_getresgid 10683 case TARGET_NR_getresgid: 10684 { 10685 gid_t rgid, egid, sgid; 10686 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 10687 if (!is_error(ret)) { 10688 if (put_user_id(high2lowgid(rgid), arg1) 10689 || put_user_id(high2lowgid(egid), arg2) 10690 || put_user_id(high2lowgid(sgid), arg3)) 10691 goto efault; 10692 } 10693 } 10694 break; 10695 #endif 10696 #ifdef TARGET_NR_chown 10697 case TARGET_NR_chown: 10698 if (!(p = lock_user_string(arg1))) 10699 goto efault; 10700 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 10701 unlock_user(p, arg1, 0); 10702 break; 10703 #endif 10704 case TARGET_NR_setuid: 10705 ret = get_errno(sys_setuid(low2highuid(arg1))); 10706 break; 10707 case TARGET_NR_setgid: 10708 ret = get_errno(sys_setgid(low2highgid(arg1))); 10709 break; 10710 case TARGET_NR_setfsuid: 10711 ret = get_errno(setfsuid(arg1)); 10712 break; 10713 case TARGET_NR_setfsgid: 10714 ret = get_errno(setfsgid(arg1)); 10715 break; 10716 10717 #ifdef TARGET_NR_lchown32 10718 case TARGET_NR_lchown32: 10719 if (!(p = lock_user_string(arg1))) 10720 goto efault; 10721 ret = get_errno(lchown(p, arg2, arg3)); 10722 unlock_user(p, arg1, 0); 10723 break; 10724 #endif 10725 #ifdef TARGET_NR_getuid32 10726 case TARGET_NR_getuid32: 10727 ret = get_errno(getuid()); 10728 break; 10729 #endif 10730 10731 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 10732 /* Alpha specific */ 10733 case TARGET_NR_getxuid: 10734 { 10735 uid_t euid; 10736 euid=geteuid(); 10737 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 10738 } 10739 ret = get_errno(getuid()); 10740 break; 10741 #endif 10742 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 10743 /* Alpha specific */ 10744 case TARGET_NR_getxgid: 10745 { 10746 uid_t egid; 10747 egid=getegid(); 10748 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 10749 } 10750 ret = get_errno(getgid()); 10751 break; 10752 #endif 10753 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 10754 /* Alpha specific */ 10755 case TARGET_NR_osf_getsysinfo: 10756 ret = -TARGET_EOPNOTSUPP; 10757 switch (arg1) { 10758 case TARGET_GSI_IEEE_FP_CONTROL: 10759 { 10760 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env); 10761 10762 /* Copied from linux ieee_fpcr_to_swcr. */ 10763 swcr = (fpcr >> 35) & SWCR_STATUS_MASK; 10764 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ; 10765 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV 10766 | SWCR_TRAP_ENABLE_DZE 10767 | SWCR_TRAP_ENABLE_OVF); 10768 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF 10769 | SWCR_TRAP_ENABLE_INE); 10770 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ; 10771 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO; 10772 10773 if (put_user_u64 (swcr, arg2)) 10774 goto efault; 10775 ret = 0; 10776 } 10777 break; 10778 10779 /* case GSI_IEEE_STATE_AT_SIGNAL: 10780 -- Not implemented in linux kernel. 10781 case GSI_UACPROC: 10782 -- Retrieves current unaligned access state; not much used. 10783 case GSI_PROC_TYPE: 10784 -- Retrieves implver information; surely not used. 10785 case GSI_GET_HWRPB: 10786 -- Grabs a copy of the HWRPB; surely not used. 10787 */ 10788 } 10789 break; 10790 #endif 10791 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 10792 /* Alpha specific */ 10793 case TARGET_NR_osf_setsysinfo: 10794 ret = -TARGET_EOPNOTSUPP; 10795 switch (arg1) { 10796 case TARGET_SSI_IEEE_FP_CONTROL: 10797 { 10798 uint64_t swcr, fpcr, orig_fpcr; 10799 10800 if (get_user_u64 (swcr, arg2)) { 10801 goto efault; 10802 } 10803 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 10804 fpcr = orig_fpcr & FPCR_DYN_MASK; 10805 10806 /* Copied from linux ieee_swcr_to_fpcr. */ 10807 fpcr |= (swcr & SWCR_STATUS_MASK) << 35; 10808 fpcr |= (swcr & SWCR_MAP_DMZ) << 36; 10809 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV 10810 | SWCR_TRAP_ENABLE_DZE 10811 | SWCR_TRAP_ENABLE_OVF)) << 48; 10812 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF 10813 | SWCR_TRAP_ENABLE_INE)) << 57; 10814 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0); 10815 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41; 10816 10817 cpu_alpha_store_fpcr(cpu_env, fpcr); 10818 ret = 0; 10819 } 10820 break; 10821 10822 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 10823 { 10824 uint64_t exc, fpcr, orig_fpcr; 10825 int si_code; 10826 10827 if (get_user_u64(exc, arg2)) { 10828 goto efault; 10829 } 10830 10831 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 10832 10833 /* We only add to the exception status here. */ 10834 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35); 10835 10836 cpu_alpha_store_fpcr(cpu_env, fpcr); 10837 ret = 0; 10838 10839 /* Old exceptions are not signaled. */ 10840 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK); 10841 10842 /* If any exceptions set by this call, 10843 and are unmasked, send a signal. */ 10844 si_code = 0; 10845 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) { 10846 si_code = TARGET_FPE_FLTRES; 10847 } 10848 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) { 10849 si_code = TARGET_FPE_FLTUND; 10850 } 10851 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) { 10852 si_code = TARGET_FPE_FLTOVF; 10853 } 10854 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) { 10855 si_code = TARGET_FPE_FLTDIV; 10856 } 10857 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) { 10858 si_code = TARGET_FPE_FLTINV; 10859 } 10860 if (si_code != 0) { 10861 target_siginfo_t info; 10862 info.si_signo = SIGFPE; 10863 info.si_errno = 0; 10864 info.si_code = si_code; 10865 info._sifields._sigfault._addr 10866 = ((CPUArchState *)cpu_env)->pc; 10867 queue_signal((CPUArchState *)cpu_env, info.si_signo, 10868 QEMU_SI_FAULT, &info); 10869 } 10870 } 10871 break; 10872 10873 /* case SSI_NVPAIRS: 10874 -- Used with SSIN_UACPROC to enable unaligned accesses. 10875 case SSI_IEEE_STATE_AT_SIGNAL: 10876 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 10877 -- Not implemented in linux kernel 10878 */ 10879 } 10880 break; 10881 #endif 10882 #ifdef TARGET_NR_osf_sigprocmask 10883 /* Alpha specific. */ 10884 case TARGET_NR_osf_sigprocmask: 10885 { 10886 abi_ulong mask; 10887 int how; 10888 sigset_t set, oldset; 10889 10890 switch(arg1) { 10891 case TARGET_SIG_BLOCK: 10892 how = SIG_BLOCK; 10893 break; 10894 case TARGET_SIG_UNBLOCK: 10895 how = SIG_UNBLOCK; 10896 break; 10897 case TARGET_SIG_SETMASK: 10898 how = SIG_SETMASK; 10899 break; 10900 default: 10901 ret = -TARGET_EINVAL; 10902 goto fail; 10903 } 10904 mask = arg2; 10905 target_to_host_old_sigset(&set, &mask); 10906 ret = do_sigprocmask(how, &set, &oldset); 10907 if (!ret) { 10908 host_to_target_old_sigset(&mask, &oldset); 10909 ret = mask; 10910 } 10911 } 10912 break; 10913 #endif 10914 10915 #ifdef TARGET_NR_getgid32 10916 case TARGET_NR_getgid32: 10917 ret = get_errno(getgid()); 10918 break; 10919 #endif 10920 #ifdef TARGET_NR_geteuid32 10921 case TARGET_NR_geteuid32: 10922 ret = get_errno(geteuid()); 10923 break; 10924 #endif 10925 #ifdef TARGET_NR_getegid32 10926 case TARGET_NR_getegid32: 10927 ret = get_errno(getegid()); 10928 break; 10929 #endif 10930 #ifdef TARGET_NR_setreuid32 10931 case TARGET_NR_setreuid32: 10932 ret = get_errno(setreuid(arg1, arg2)); 10933 break; 10934 #endif 10935 #ifdef TARGET_NR_setregid32 10936 case TARGET_NR_setregid32: 10937 ret = get_errno(setregid(arg1, arg2)); 10938 break; 10939 #endif 10940 #ifdef TARGET_NR_getgroups32 10941 case TARGET_NR_getgroups32: 10942 { 10943 int gidsetsize = arg1; 10944 uint32_t *target_grouplist; 10945 gid_t *grouplist; 10946 int i; 10947 10948 grouplist = alloca(gidsetsize * sizeof(gid_t)); 10949 ret = get_errno(getgroups(gidsetsize, grouplist)); 10950 if (gidsetsize == 0) 10951 break; 10952 if (!is_error(ret)) { 10953 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 10954 if (!target_grouplist) { 10955 ret = -TARGET_EFAULT; 10956 goto fail; 10957 } 10958 for(i = 0;i < ret; i++) 10959 target_grouplist[i] = tswap32(grouplist[i]); 10960 unlock_user(target_grouplist, arg2, gidsetsize * 4); 10961 } 10962 } 10963 break; 10964 #endif 10965 #ifdef TARGET_NR_setgroups32 10966 case TARGET_NR_setgroups32: 10967 { 10968 int gidsetsize = arg1; 10969 uint32_t *target_grouplist; 10970 gid_t *grouplist; 10971 int i; 10972 10973 grouplist = alloca(gidsetsize * sizeof(gid_t)); 10974 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 10975 if (!target_grouplist) { 10976 ret = -TARGET_EFAULT; 10977 goto fail; 10978 } 10979 for(i = 0;i < gidsetsize; i++) 10980 grouplist[i] = tswap32(target_grouplist[i]); 10981 unlock_user(target_grouplist, arg2, 0); 10982 ret = get_errno(setgroups(gidsetsize, grouplist)); 10983 } 10984 break; 10985 #endif 10986 #ifdef TARGET_NR_fchown32 10987 case TARGET_NR_fchown32: 10988 ret = get_errno(fchown(arg1, arg2, arg3)); 10989 break; 10990 #endif 10991 #ifdef TARGET_NR_setresuid32 10992 case TARGET_NR_setresuid32: 10993 ret = get_errno(sys_setresuid(arg1, arg2, arg3)); 10994 break; 10995 #endif 10996 #ifdef TARGET_NR_getresuid32 10997 case TARGET_NR_getresuid32: 10998 { 10999 uid_t ruid, euid, suid; 11000 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11001 if (!is_error(ret)) { 11002 if (put_user_u32(ruid, arg1) 11003 || put_user_u32(euid, arg2) 11004 || put_user_u32(suid, arg3)) 11005 goto efault; 11006 } 11007 } 11008 break; 11009 #endif 11010 #ifdef TARGET_NR_setresgid32 11011 case TARGET_NR_setresgid32: 11012 ret = get_errno(sys_setresgid(arg1, arg2, arg3)); 11013 break; 11014 #endif 11015 #ifdef TARGET_NR_getresgid32 11016 case TARGET_NR_getresgid32: 11017 { 11018 gid_t rgid, egid, sgid; 11019 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11020 if (!is_error(ret)) { 11021 if (put_user_u32(rgid, arg1) 11022 || put_user_u32(egid, arg2) 11023 || put_user_u32(sgid, arg3)) 11024 goto efault; 11025 } 11026 } 11027 break; 11028 #endif 11029 #ifdef TARGET_NR_chown32 11030 case TARGET_NR_chown32: 11031 if (!(p = lock_user_string(arg1))) 11032 goto efault; 11033 ret = get_errno(chown(p, arg2, arg3)); 11034 unlock_user(p, arg1, 0); 11035 break; 11036 #endif 11037 #ifdef TARGET_NR_setuid32 11038 case TARGET_NR_setuid32: 11039 ret = get_errno(sys_setuid(arg1)); 11040 break; 11041 #endif 11042 #ifdef TARGET_NR_setgid32 11043 case TARGET_NR_setgid32: 11044 ret = get_errno(sys_setgid(arg1)); 11045 break; 11046 #endif 11047 #ifdef TARGET_NR_setfsuid32 11048 case TARGET_NR_setfsuid32: 11049 ret = get_errno(setfsuid(arg1)); 11050 break; 11051 #endif 11052 #ifdef TARGET_NR_setfsgid32 11053 case TARGET_NR_setfsgid32: 11054 ret = get_errno(setfsgid(arg1)); 11055 break; 11056 #endif 11057 11058 case TARGET_NR_pivot_root: 11059 goto unimplemented; 11060 #ifdef TARGET_NR_mincore 11061 case TARGET_NR_mincore: 11062 { 11063 void *a; 11064 ret = -TARGET_EFAULT; 11065 if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0))) 11066 goto efault; 11067 if (!(p = lock_user_string(arg3))) 11068 goto mincore_fail; 11069 ret = get_errno(mincore(a, arg2, p)); 11070 unlock_user(p, arg3, ret); 11071 mincore_fail: 11072 unlock_user(a, arg1, 0); 11073 } 11074 break; 11075 #endif 11076 #ifdef TARGET_NR_arm_fadvise64_64 11077 case TARGET_NR_arm_fadvise64_64: 11078 /* arm_fadvise64_64 looks like fadvise64_64 but 11079 * with different argument order: fd, advice, offset, len 11080 * rather than the usual fd, offset, len, advice. 11081 * Note that offset and len are both 64-bit so appear as 11082 * pairs of 32-bit registers. 11083 */ 11084 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 11085 target_offset64(arg5, arg6), arg2); 11086 ret = -host_to_target_errno(ret); 11087 break; 11088 #endif 11089 11090 #if TARGET_ABI_BITS == 32 11091 11092 #ifdef TARGET_NR_fadvise64_64 11093 case TARGET_NR_fadvise64_64: 11094 /* 6 args: fd, offset (high, low), len (high, low), advice */ 11095 if (regpairs_aligned(cpu_env)) { 11096 /* offset is in (3,4), len in (5,6) and advice in 7 */ 11097 arg2 = arg3; 11098 arg3 = arg4; 11099 arg4 = arg5; 11100 arg5 = arg6; 11101 arg6 = arg7; 11102 } 11103 ret = -host_to_target_errno(posix_fadvise(arg1, 11104 target_offset64(arg2, arg3), 11105 target_offset64(arg4, arg5), 11106 arg6)); 11107 break; 11108 #endif 11109 11110 #ifdef TARGET_NR_fadvise64 11111 case TARGET_NR_fadvise64: 11112 /* 5 args: fd, offset (high, low), len, advice */ 11113 if (regpairs_aligned(cpu_env)) { 11114 /* offset is in (3,4), len in 5 and advice in 6 */ 11115 arg2 = arg3; 11116 arg3 = arg4; 11117 arg4 = arg5; 11118 arg5 = arg6; 11119 } 11120 ret = -host_to_target_errno(posix_fadvise(arg1, 11121 target_offset64(arg2, arg3), 11122 arg4, arg5)); 11123 break; 11124 #endif 11125 11126 #else /* not a 32-bit ABI */ 11127 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 11128 #ifdef TARGET_NR_fadvise64_64 11129 case TARGET_NR_fadvise64_64: 11130 #endif 11131 #ifdef TARGET_NR_fadvise64 11132 case TARGET_NR_fadvise64: 11133 #endif 11134 #ifdef TARGET_S390X 11135 switch (arg4) { 11136 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 11137 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 11138 case 6: arg4 = POSIX_FADV_DONTNEED; break; 11139 case 7: arg4 = POSIX_FADV_NOREUSE; break; 11140 default: break; 11141 } 11142 #endif 11143 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 11144 break; 11145 #endif 11146 #endif /* end of 64-bit ABI fadvise handling */ 11147 11148 #ifdef TARGET_NR_madvise 11149 case TARGET_NR_madvise: 11150 /* A straight passthrough may not be safe because qemu sometimes 11151 turns private file-backed mappings into anonymous mappings. 11152 This will break MADV_DONTNEED. 11153 This is a hint, so ignoring and returning success is ok. */ 11154 ret = get_errno(0); 11155 break; 11156 #endif 11157 #if TARGET_ABI_BITS == 32 11158 case TARGET_NR_fcntl64: 11159 { 11160 int cmd; 11161 struct flock64 fl; 11162 from_flock64_fn *copyfrom = copy_from_user_flock64; 11163 to_flock64_fn *copyto = copy_to_user_flock64; 11164 11165 #ifdef TARGET_ARM 11166 if (((CPUARMState *)cpu_env)->eabi) { 11167 copyfrom = copy_from_user_eabi_flock64; 11168 copyto = copy_to_user_eabi_flock64; 11169 } 11170 #endif 11171 11172 cmd = target_to_host_fcntl_cmd(arg2); 11173 if (cmd == -TARGET_EINVAL) { 11174 ret = cmd; 11175 break; 11176 } 11177 11178 switch(arg2) { 11179 case TARGET_F_GETLK64: 11180 ret = copyfrom(&fl, arg3); 11181 if (ret) { 11182 break; 11183 } 11184 ret = get_errno(fcntl(arg1, cmd, &fl)); 11185 if (ret == 0) { 11186 ret = copyto(arg3, &fl); 11187 } 11188 break; 11189 11190 case TARGET_F_SETLK64: 11191 case TARGET_F_SETLKW64: 11192 ret = copyfrom(&fl, arg3); 11193 if (ret) { 11194 break; 11195 } 11196 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11197 break; 11198 default: 11199 ret = do_fcntl(arg1, arg2, arg3); 11200 break; 11201 } 11202 break; 11203 } 11204 #endif 11205 #ifdef TARGET_NR_cacheflush 11206 case TARGET_NR_cacheflush: 11207 /* self-modifying code is handled automatically, so nothing needed */ 11208 ret = 0; 11209 break; 11210 #endif 11211 #ifdef TARGET_NR_security 11212 case TARGET_NR_security: 11213 goto unimplemented; 11214 #endif 11215 #ifdef TARGET_NR_getpagesize 11216 case TARGET_NR_getpagesize: 11217 ret = TARGET_PAGE_SIZE; 11218 break; 11219 #endif 11220 case TARGET_NR_gettid: 11221 ret = get_errno(gettid()); 11222 break; 11223 #ifdef TARGET_NR_readahead 11224 case TARGET_NR_readahead: 11225 #if TARGET_ABI_BITS == 32 11226 if (regpairs_aligned(cpu_env)) { 11227 arg2 = arg3; 11228 arg3 = arg4; 11229 arg4 = arg5; 11230 } 11231 ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4)); 11232 #else 11233 ret = get_errno(readahead(arg1, arg2, arg3)); 11234 #endif 11235 break; 11236 #endif 11237 #ifdef CONFIG_ATTR 11238 #ifdef TARGET_NR_setxattr 11239 case TARGET_NR_listxattr: 11240 case TARGET_NR_llistxattr: 11241 { 11242 void *p, *b = 0; 11243 if (arg2) { 11244 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11245 if (!b) { 11246 ret = -TARGET_EFAULT; 11247 break; 11248 } 11249 } 11250 p = lock_user_string(arg1); 11251 if (p) { 11252 if (num == TARGET_NR_listxattr) { 11253 ret = get_errno(listxattr(p, b, arg3)); 11254 } else { 11255 ret = get_errno(llistxattr(p, b, arg3)); 11256 } 11257 } else { 11258 ret = -TARGET_EFAULT; 11259 } 11260 unlock_user(p, arg1, 0); 11261 unlock_user(b, arg2, arg3); 11262 break; 11263 } 11264 case TARGET_NR_flistxattr: 11265 { 11266 void *b = 0; 11267 if (arg2) { 11268 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11269 if (!b) { 11270 ret = -TARGET_EFAULT; 11271 break; 11272 } 11273 } 11274 ret = get_errno(flistxattr(arg1, b, arg3)); 11275 unlock_user(b, arg2, arg3); 11276 break; 11277 } 11278 case TARGET_NR_setxattr: 11279 case TARGET_NR_lsetxattr: 11280 { 11281 void *p, *n, *v = 0; 11282 if (arg3) { 11283 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11284 if (!v) { 11285 ret = -TARGET_EFAULT; 11286 break; 11287 } 11288 } 11289 p = lock_user_string(arg1); 11290 n = lock_user_string(arg2); 11291 if (p && n) { 11292 if (num == TARGET_NR_setxattr) { 11293 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 11294 } else { 11295 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 11296 } 11297 } else { 11298 ret = -TARGET_EFAULT; 11299 } 11300 unlock_user(p, arg1, 0); 11301 unlock_user(n, arg2, 0); 11302 unlock_user(v, arg3, 0); 11303 } 11304 break; 11305 case TARGET_NR_fsetxattr: 11306 { 11307 void *n, *v = 0; 11308 if (arg3) { 11309 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11310 if (!v) { 11311 ret = -TARGET_EFAULT; 11312 break; 11313 } 11314 } 11315 n = lock_user_string(arg2); 11316 if (n) { 11317 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 11318 } else { 11319 ret = -TARGET_EFAULT; 11320 } 11321 unlock_user(n, arg2, 0); 11322 unlock_user(v, arg3, 0); 11323 } 11324 break; 11325 case TARGET_NR_getxattr: 11326 case TARGET_NR_lgetxattr: 11327 { 11328 void *p, *n, *v = 0; 11329 if (arg3) { 11330 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11331 if (!v) { 11332 ret = -TARGET_EFAULT; 11333 break; 11334 } 11335 } 11336 p = lock_user_string(arg1); 11337 n = lock_user_string(arg2); 11338 if (p && n) { 11339 if (num == TARGET_NR_getxattr) { 11340 ret = get_errno(getxattr(p, n, v, arg4)); 11341 } else { 11342 ret = get_errno(lgetxattr(p, n, v, arg4)); 11343 } 11344 } else { 11345 ret = -TARGET_EFAULT; 11346 } 11347 unlock_user(p, arg1, 0); 11348 unlock_user(n, arg2, 0); 11349 unlock_user(v, arg3, arg4); 11350 } 11351 break; 11352 case TARGET_NR_fgetxattr: 11353 { 11354 void *n, *v = 0; 11355 if (arg3) { 11356 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11357 if (!v) { 11358 ret = -TARGET_EFAULT; 11359 break; 11360 } 11361 } 11362 n = lock_user_string(arg2); 11363 if (n) { 11364 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 11365 } else { 11366 ret = -TARGET_EFAULT; 11367 } 11368 unlock_user(n, arg2, 0); 11369 unlock_user(v, arg3, arg4); 11370 } 11371 break; 11372 case TARGET_NR_removexattr: 11373 case TARGET_NR_lremovexattr: 11374 { 11375 void *p, *n; 11376 p = lock_user_string(arg1); 11377 n = lock_user_string(arg2); 11378 if (p && n) { 11379 if (num == TARGET_NR_removexattr) { 11380 ret = get_errno(removexattr(p, n)); 11381 } else { 11382 ret = get_errno(lremovexattr(p, n)); 11383 } 11384 } else { 11385 ret = -TARGET_EFAULT; 11386 } 11387 unlock_user(p, arg1, 0); 11388 unlock_user(n, arg2, 0); 11389 } 11390 break; 11391 case TARGET_NR_fremovexattr: 11392 { 11393 void *n; 11394 n = lock_user_string(arg2); 11395 if (n) { 11396 ret = get_errno(fremovexattr(arg1, n)); 11397 } else { 11398 ret = -TARGET_EFAULT; 11399 } 11400 unlock_user(n, arg2, 0); 11401 } 11402 break; 11403 #endif 11404 #endif /* CONFIG_ATTR */ 11405 #ifdef TARGET_NR_set_thread_area 11406 case TARGET_NR_set_thread_area: 11407 #if defined(TARGET_MIPS) 11408 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 11409 ret = 0; 11410 break; 11411 #elif defined(TARGET_CRIS) 11412 if (arg1 & 0xff) 11413 ret = -TARGET_EINVAL; 11414 else { 11415 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 11416 ret = 0; 11417 } 11418 break; 11419 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 11420 ret = do_set_thread_area(cpu_env, arg1); 11421 break; 11422 #elif defined(TARGET_M68K) 11423 { 11424 TaskState *ts = cpu->opaque; 11425 ts->tp_value = arg1; 11426 ret = 0; 11427 break; 11428 } 11429 #else 11430 goto unimplemented_nowarn; 11431 #endif 11432 #endif 11433 #ifdef TARGET_NR_get_thread_area 11434 case TARGET_NR_get_thread_area: 11435 #if defined(TARGET_I386) && defined(TARGET_ABI32) 11436 ret = do_get_thread_area(cpu_env, arg1); 11437 break; 11438 #elif defined(TARGET_M68K) 11439 { 11440 TaskState *ts = cpu->opaque; 11441 ret = ts->tp_value; 11442 break; 11443 } 11444 #else 11445 goto unimplemented_nowarn; 11446 #endif 11447 #endif 11448 #ifdef TARGET_NR_getdomainname 11449 case TARGET_NR_getdomainname: 11450 goto unimplemented_nowarn; 11451 #endif 11452 11453 #ifdef TARGET_NR_clock_gettime 11454 case TARGET_NR_clock_gettime: 11455 { 11456 struct timespec ts; 11457 ret = get_errno(clock_gettime(arg1, &ts)); 11458 if (!is_error(ret)) { 11459 host_to_target_timespec(arg2, &ts); 11460 } 11461 break; 11462 } 11463 #endif 11464 #ifdef TARGET_NR_clock_getres 11465 case TARGET_NR_clock_getres: 11466 { 11467 struct timespec ts; 11468 ret = get_errno(clock_getres(arg1, &ts)); 11469 if (!is_error(ret)) { 11470 host_to_target_timespec(arg2, &ts); 11471 } 11472 break; 11473 } 11474 #endif 11475 #ifdef TARGET_NR_clock_nanosleep 11476 case TARGET_NR_clock_nanosleep: 11477 { 11478 struct timespec ts; 11479 target_to_host_timespec(&ts, arg3); 11480 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 11481 &ts, arg4 ? &ts : NULL)); 11482 if (arg4) 11483 host_to_target_timespec(arg4, &ts); 11484 11485 #if defined(TARGET_PPC) 11486 /* clock_nanosleep is odd in that it returns positive errno values. 11487 * On PPC, CR0 bit 3 should be set in such a situation. */ 11488 if (ret && ret != -TARGET_ERESTARTSYS) { 11489 ((CPUPPCState *)cpu_env)->crf[0] |= 1; 11490 } 11491 #endif 11492 break; 11493 } 11494 #endif 11495 11496 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 11497 case TARGET_NR_set_tid_address: 11498 ret = get_errno(set_tid_address((int *)g2h(arg1))); 11499 break; 11500 #endif 11501 11502 case TARGET_NR_tkill: 11503 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 11504 break; 11505 11506 case TARGET_NR_tgkill: 11507 ret = get_errno(safe_tgkill((int)arg1, (int)arg2, 11508 target_to_host_signal(arg3))); 11509 break; 11510 11511 #ifdef TARGET_NR_set_robust_list 11512 case TARGET_NR_set_robust_list: 11513 case TARGET_NR_get_robust_list: 11514 /* The ABI for supporting robust futexes has userspace pass 11515 * the kernel a pointer to a linked list which is updated by 11516 * userspace after the syscall; the list is walked by the kernel 11517 * when the thread exits. Since the linked list in QEMU guest 11518 * memory isn't a valid linked list for the host and we have 11519 * no way to reliably intercept the thread-death event, we can't 11520 * support these. Silently return ENOSYS so that guest userspace 11521 * falls back to a non-robust futex implementation (which should 11522 * be OK except in the corner case of the guest crashing while 11523 * holding a mutex that is shared with another process via 11524 * shared memory). 11525 */ 11526 goto unimplemented_nowarn; 11527 #endif 11528 11529 #if defined(TARGET_NR_utimensat) 11530 case TARGET_NR_utimensat: 11531 { 11532 struct timespec *tsp, ts[2]; 11533 if (!arg3) { 11534 tsp = NULL; 11535 } else { 11536 target_to_host_timespec(ts, arg3); 11537 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec)); 11538 tsp = ts; 11539 } 11540 if (!arg2) 11541 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 11542 else { 11543 if (!(p = lock_user_string(arg2))) { 11544 ret = -TARGET_EFAULT; 11545 goto fail; 11546 } 11547 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 11548 unlock_user(p, arg2, 0); 11549 } 11550 } 11551 break; 11552 #endif 11553 case TARGET_NR_futex: 11554 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6); 11555 break; 11556 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 11557 case TARGET_NR_inotify_init: 11558 ret = get_errno(sys_inotify_init()); 11559 break; 11560 #endif 11561 #ifdef CONFIG_INOTIFY1 11562 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 11563 case TARGET_NR_inotify_init1: 11564 ret = get_errno(sys_inotify_init1(arg1)); 11565 break; 11566 #endif 11567 #endif 11568 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 11569 case TARGET_NR_inotify_add_watch: 11570 p = lock_user_string(arg2); 11571 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 11572 unlock_user(p, arg2, 0); 11573 break; 11574 #endif 11575 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 11576 case TARGET_NR_inotify_rm_watch: 11577 ret = get_errno(sys_inotify_rm_watch(arg1, arg2)); 11578 break; 11579 #endif 11580 11581 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 11582 case TARGET_NR_mq_open: 11583 { 11584 struct mq_attr posix_mq_attr; 11585 int host_flags; 11586 11587 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 11588 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 11589 goto efault; 11590 } 11591 p = lock_user_string(arg1 - 1); 11592 if (!p) { 11593 goto efault; 11594 } 11595 ret = get_errno(mq_open(p, host_flags, arg3, &posix_mq_attr)); 11596 unlock_user (p, arg1, 0); 11597 } 11598 break; 11599 11600 case TARGET_NR_mq_unlink: 11601 p = lock_user_string(arg1 - 1); 11602 if (!p) { 11603 ret = -TARGET_EFAULT; 11604 break; 11605 } 11606 ret = get_errno(mq_unlink(p)); 11607 unlock_user (p, arg1, 0); 11608 break; 11609 11610 case TARGET_NR_mq_timedsend: 11611 { 11612 struct timespec ts; 11613 11614 p = lock_user (VERIFY_READ, arg2, arg3, 1); 11615 if (arg5 != 0) { 11616 target_to_host_timespec(&ts, arg5); 11617 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 11618 host_to_target_timespec(arg5, &ts); 11619 } else { 11620 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 11621 } 11622 unlock_user (p, arg2, arg3); 11623 } 11624 break; 11625 11626 case TARGET_NR_mq_timedreceive: 11627 { 11628 struct timespec ts; 11629 unsigned int prio; 11630 11631 p = lock_user (VERIFY_READ, arg2, arg3, 1); 11632 if (arg5 != 0) { 11633 target_to_host_timespec(&ts, arg5); 11634 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 11635 &prio, &ts)); 11636 host_to_target_timespec(arg5, &ts); 11637 } else { 11638 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 11639 &prio, NULL)); 11640 } 11641 unlock_user (p, arg2, arg3); 11642 if (arg4 != 0) 11643 put_user_u32(prio, arg4); 11644 } 11645 break; 11646 11647 /* Not implemented for now... */ 11648 /* case TARGET_NR_mq_notify: */ 11649 /* break; */ 11650 11651 case TARGET_NR_mq_getsetattr: 11652 { 11653 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 11654 ret = 0; 11655 if (arg3 != 0) { 11656 ret = mq_getattr(arg1, &posix_mq_attr_out); 11657 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 11658 } 11659 if (arg2 != 0) { 11660 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 11661 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out); 11662 } 11663 11664 } 11665 break; 11666 #endif 11667 11668 #ifdef CONFIG_SPLICE 11669 #ifdef TARGET_NR_tee 11670 case TARGET_NR_tee: 11671 { 11672 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 11673 } 11674 break; 11675 #endif 11676 #ifdef TARGET_NR_splice 11677 case TARGET_NR_splice: 11678 { 11679 loff_t loff_in, loff_out; 11680 loff_t *ploff_in = NULL, *ploff_out = NULL; 11681 if (arg2) { 11682 if (get_user_u64(loff_in, arg2)) { 11683 goto efault; 11684 } 11685 ploff_in = &loff_in; 11686 } 11687 if (arg4) { 11688 if (get_user_u64(loff_out, arg4)) { 11689 goto efault; 11690 } 11691 ploff_out = &loff_out; 11692 } 11693 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 11694 if (arg2) { 11695 if (put_user_u64(loff_in, arg2)) { 11696 goto efault; 11697 } 11698 } 11699 if (arg4) { 11700 if (put_user_u64(loff_out, arg4)) { 11701 goto efault; 11702 } 11703 } 11704 } 11705 break; 11706 #endif 11707 #ifdef TARGET_NR_vmsplice 11708 case TARGET_NR_vmsplice: 11709 { 11710 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11711 if (vec != NULL) { 11712 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 11713 unlock_iovec(vec, arg2, arg3, 0); 11714 } else { 11715 ret = -host_to_target_errno(errno); 11716 } 11717 } 11718 break; 11719 #endif 11720 #endif /* CONFIG_SPLICE */ 11721 #ifdef CONFIG_EVENTFD 11722 #if defined(TARGET_NR_eventfd) 11723 case TARGET_NR_eventfd: 11724 ret = get_errno(eventfd(arg1, 0)); 11725 fd_trans_unregister(ret); 11726 break; 11727 #endif 11728 #if defined(TARGET_NR_eventfd2) 11729 case TARGET_NR_eventfd2: 11730 { 11731 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)); 11732 if (arg2 & TARGET_O_NONBLOCK) { 11733 host_flags |= O_NONBLOCK; 11734 } 11735 if (arg2 & TARGET_O_CLOEXEC) { 11736 host_flags |= O_CLOEXEC; 11737 } 11738 ret = get_errno(eventfd(arg1, host_flags)); 11739 fd_trans_unregister(ret); 11740 break; 11741 } 11742 #endif 11743 #endif /* CONFIG_EVENTFD */ 11744 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 11745 case TARGET_NR_fallocate: 11746 #if TARGET_ABI_BITS == 32 11747 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 11748 target_offset64(arg5, arg6))); 11749 #else 11750 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 11751 #endif 11752 break; 11753 #endif 11754 #if defined(CONFIG_SYNC_FILE_RANGE) 11755 #if defined(TARGET_NR_sync_file_range) 11756 case TARGET_NR_sync_file_range: 11757 #if TARGET_ABI_BITS == 32 11758 #if defined(TARGET_MIPS) 11759 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 11760 target_offset64(arg5, arg6), arg7)); 11761 #else 11762 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 11763 target_offset64(arg4, arg5), arg6)); 11764 #endif /* !TARGET_MIPS */ 11765 #else 11766 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 11767 #endif 11768 break; 11769 #endif 11770 #if defined(TARGET_NR_sync_file_range2) 11771 case TARGET_NR_sync_file_range2: 11772 /* This is like sync_file_range but the arguments are reordered */ 11773 #if TARGET_ABI_BITS == 32 11774 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 11775 target_offset64(arg5, arg6), arg2)); 11776 #else 11777 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 11778 #endif 11779 break; 11780 #endif 11781 #endif 11782 #if defined(TARGET_NR_signalfd4) 11783 case TARGET_NR_signalfd4: 11784 ret = do_signalfd4(arg1, arg2, arg4); 11785 break; 11786 #endif 11787 #if defined(TARGET_NR_signalfd) 11788 case TARGET_NR_signalfd: 11789 ret = do_signalfd4(arg1, arg2, 0); 11790 break; 11791 #endif 11792 #if defined(CONFIG_EPOLL) 11793 #if defined(TARGET_NR_epoll_create) 11794 case TARGET_NR_epoll_create: 11795 ret = get_errno(epoll_create(arg1)); 11796 break; 11797 #endif 11798 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 11799 case TARGET_NR_epoll_create1: 11800 ret = get_errno(epoll_create1(arg1)); 11801 break; 11802 #endif 11803 #if defined(TARGET_NR_epoll_ctl) 11804 case TARGET_NR_epoll_ctl: 11805 { 11806 struct epoll_event ep; 11807 struct epoll_event *epp = 0; 11808 if (arg4) { 11809 struct target_epoll_event *target_ep; 11810 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 11811 goto efault; 11812 } 11813 ep.events = tswap32(target_ep->events); 11814 /* The epoll_data_t union is just opaque data to the kernel, 11815 * so we transfer all 64 bits across and need not worry what 11816 * actual data type it is. 11817 */ 11818 ep.data.u64 = tswap64(target_ep->data.u64); 11819 unlock_user_struct(target_ep, arg4, 0); 11820 epp = &ep; 11821 } 11822 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 11823 break; 11824 } 11825 #endif 11826 11827 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 11828 #if defined(TARGET_NR_epoll_wait) 11829 case TARGET_NR_epoll_wait: 11830 #endif 11831 #if defined(TARGET_NR_epoll_pwait) 11832 case TARGET_NR_epoll_pwait: 11833 #endif 11834 { 11835 struct target_epoll_event *target_ep; 11836 struct epoll_event *ep; 11837 int epfd = arg1; 11838 int maxevents = arg3; 11839 int timeout = arg4; 11840 11841 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 11842 ret = -TARGET_EINVAL; 11843 break; 11844 } 11845 11846 target_ep = lock_user(VERIFY_WRITE, arg2, 11847 maxevents * sizeof(struct target_epoll_event), 1); 11848 if (!target_ep) { 11849 goto efault; 11850 } 11851 11852 ep = g_try_new(struct epoll_event, maxevents); 11853 if (!ep) { 11854 unlock_user(target_ep, arg2, 0); 11855 ret = -TARGET_ENOMEM; 11856 break; 11857 } 11858 11859 switch (num) { 11860 #if defined(TARGET_NR_epoll_pwait) 11861 case TARGET_NR_epoll_pwait: 11862 { 11863 target_sigset_t *target_set; 11864 sigset_t _set, *set = &_set; 11865 11866 if (arg5) { 11867 if (arg6 != sizeof(target_sigset_t)) { 11868 ret = -TARGET_EINVAL; 11869 break; 11870 } 11871 11872 target_set = lock_user(VERIFY_READ, arg5, 11873 sizeof(target_sigset_t), 1); 11874 if (!target_set) { 11875 ret = -TARGET_EFAULT; 11876 break; 11877 } 11878 target_to_host_sigset(set, target_set); 11879 unlock_user(target_set, arg5, 0); 11880 } else { 11881 set = NULL; 11882 } 11883 11884 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 11885 set, SIGSET_T_SIZE)); 11886 break; 11887 } 11888 #endif 11889 #if defined(TARGET_NR_epoll_wait) 11890 case TARGET_NR_epoll_wait: 11891 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 11892 NULL, 0)); 11893 break; 11894 #endif 11895 default: 11896 ret = -TARGET_ENOSYS; 11897 } 11898 if (!is_error(ret)) { 11899 int i; 11900 for (i = 0; i < ret; i++) { 11901 target_ep[i].events = tswap32(ep[i].events); 11902 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 11903 } 11904 unlock_user(target_ep, arg2, 11905 ret * sizeof(struct target_epoll_event)); 11906 } else { 11907 unlock_user(target_ep, arg2, 0); 11908 } 11909 g_free(ep); 11910 break; 11911 } 11912 #endif 11913 #endif 11914 #ifdef TARGET_NR_prlimit64 11915 case TARGET_NR_prlimit64: 11916 { 11917 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 11918 struct target_rlimit64 *target_rnew, *target_rold; 11919 struct host_rlimit64 rnew, rold, *rnewp = 0; 11920 int resource = target_to_host_resource(arg2); 11921 if (arg3) { 11922 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 11923 goto efault; 11924 } 11925 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 11926 rnew.rlim_max = tswap64(target_rnew->rlim_max); 11927 unlock_user_struct(target_rnew, arg3, 0); 11928 rnewp = &rnew; 11929 } 11930 11931 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 11932 if (!is_error(ret) && arg4) { 11933 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 11934 goto efault; 11935 } 11936 target_rold->rlim_cur = tswap64(rold.rlim_cur); 11937 target_rold->rlim_max = tswap64(rold.rlim_max); 11938 unlock_user_struct(target_rold, arg4, 1); 11939 } 11940 break; 11941 } 11942 #endif 11943 #ifdef TARGET_NR_gethostname 11944 case TARGET_NR_gethostname: 11945 { 11946 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 11947 if (name) { 11948 ret = get_errno(gethostname(name, arg2)); 11949 unlock_user(name, arg1, arg2); 11950 } else { 11951 ret = -TARGET_EFAULT; 11952 } 11953 break; 11954 } 11955 #endif 11956 #ifdef TARGET_NR_atomic_cmpxchg_32 11957 case TARGET_NR_atomic_cmpxchg_32: 11958 { 11959 /* should use start_exclusive from main.c */ 11960 abi_ulong mem_value; 11961 if (get_user_u32(mem_value, arg6)) { 11962 target_siginfo_t info; 11963 info.si_signo = SIGSEGV; 11964 info.si_errno = 0; 11965 info.si_code = TARGET_SEGV_MAPERR; 11966 info._sifields._sigfault._addr = arg6; 11967 queue_signal((CPUArchState *)cpu_env, info.si_signo, 11968 QEMU_SI_FAULT, &info); 11969 ret = 0xdeadbeef; 11970 11971 } 11972 if (mem_value == arg2) 11973 put_user_u32(arg1, arg6); 11974 ret = mem_value; 11975 break; 11976 } 11977 #endif 11978 #ifdef TARGET_NR_atomic_barrier 11979 case TARGET_NR_atomic_barrier: 11980 { 11981 /* Like the kernel implementation and the qemu arm barrier, no-op this? */ 11982 ret = 0; 11983 break; 11984 } 11985 #endif 11986 11987 #ifdef TARGET_NR_timer_create 11988 case TARGET_NR_timer_create: 11989 { 11990 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 11991 11992 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 11993 11994 int clkid = arg1; 11995 int timer_index = next_free_host_timer(); 11996 11997 if (timer_index < 0) { 11998 ret = -TARGET_EAGAIN; 11999 } else { 12000 timer_t *phtimer = g_posix_timers + timer_index; 12001 12002 if (arg2) { 12003 phost_sevp = &host_sevp; 12004 ret = target_to_host_sigevent(phost_sevp, arg2); 12005 if (ret != 0) { 12006 break; 12007 } 12008 } 12009 12010 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 12011 if (ret) { 12012 phtimer = NULL; 12013 } else { 12014 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 12015 goto efault; 12016 } 12017 } 12018 } 12019 break; 12020 } 12021 #endif 12022 12023 #ifdef TARGET_NR_timer_settime 12024 case TARGET_NR_timer_settime: 12025 { 12026 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 12027 * struct itimerspec * old_value */ 12028 target_timer_t timerid = get_timer_id(arg1); 12029 12030 if (timerid < 0) { 12031 ret = timerid; 12032 } else if (arg3 == 0) { 12033 ret = -TARGET_EINVAL; 12034 } else { 12035 timer_t htimer = g_posix_timers[timerid]; 12036 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12037 12038 target_to_host_itimerspec(&hspec_new, arg3); 12039 ret = get_errno( 12040 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 12041 host_to_target_itimerspec(arg2, &hspec_old); 12042 } 12043 break; 12044 } 12045 #endif 12046 12047 #ifdef TARGET_NR_timer_gettime 12048 case TARGET_NR_timer_gettime: 12049 { 12050 /* args: timer_t timerid, struct itimerspec *curr_value */ 12051 target_timer_t timerid = get_timer_id(arg1); 12052 12053 if (timerid < 0) { 12054 ret = timerid; 12055 } else if (!arg2) { 12056 ret = -TARGET_EFAULT; 12057 } else { 12058 timer_t htimer = g_posix_timers[timerid]; 12059 struct itimerspec hspec; 12060 ret = get_errno(timer_gettime(htimer, &hspec)); 12061 12062 if (host_to_target_itimerspec(arg2, &hspec)) { 12063 ret = -TARGET_EFAULT; 12064 } 12065 } 12066 break; 12067 } 12068 #endif 12069 12070 #ifdef TARGET_NR_timer_getoverrun 12071 case TARGET_NR_timer_getoverrun: 12072 { 12073 /* args: timer_t timerid */ 12074 target_timer_t timerid = get_timer_id(arg1); 12075 12076 if (timerid < 0) { 12077 ret = timerid; 12078 } else { 12079 timer_t htimer = g_posix_timers[timerid]; 12080 ret = get_errno(timer_getoverrun(htimer)); 12081 } 12082 fd_trans_unregister(ret); 12083 break; 12084 } 12085 #endif 12086 12087 #ifdef TARGET_NR_timer_delete 12088 case TARGET_NR_timer_delete: 12089 { 12090 /* args: timer_t timerid */ 12091 target_timer_t timerid = get_timer_id(arg1); 12092 12093 if (timerid < 0) { 12094 ret = timerid; 12095 } else { 12096 timer_t htimer = g_posix_timers[timerid]; 12097 ret = get_errno(timer_delete(htimer)); 12098 g_posix_timers[timerid] = 0; 12099 } 12100 break; 12101 } 12102 #endif 12103 12104 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 12105 case TARGET_NR_timerfd_create: 12106 ret = get_errno(timerfd_create(arg1, 12107 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 12108 break; 12109 #endif 12110 12111 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 12112 case TARGET_NR_timerfd_gettime: 12113 { 12114 struct itimerspec its_curr; 12115 12116 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 12117 12118 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 12119 goto efault; 12120 } 12121 } 12122 break; 12123 #endif 12124 12125 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 12126 case TARGET_NR_timerfd_settime: 12127 { 12128 struct itimerspec its_new, its_old, *p_new; 12129 12130 if (arg3) { 12131 if (target_to_host_itimerspec(&its_new, arg3)) { 12132 goto efault; 12133 } 12134 p_new = &its_new; 12135 } else { 12136 p_new = NULL; 12137 } 12138 12139 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 12140 12141 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 12142 goto efault; 12143 } 12144 } 12145 break; 12146 #endif 12147 12148 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 12149 case TARGET_NR_ioprio_get: 12150 ret = get_errno(ioprio_get(arg1, arg2)); 12151 break; 12152 #endif 12153 12154 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 12155 case TARGET_NR_ioprio_set: 12156 ret = get_errno(ioprio_set(arg1, arg2, arg3)); 12157 break; 12158 #endif 12159 12160 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 12161 case TARGET_NR_setns: 12162 ret = get_errno(setns(arg1, arg2)); 12163 break; 12164 #endif 12165 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 12166 case TARGET_NR_unshare: 12167 ret = get_errno(unshare(arg1)); 12168 break; 12169 #endif 12170 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 12171 case TARGET_NR_kcmp: 12172 ret = get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 12173 break; 12174 #endif 12175 12176 default: 12177 unimplemented: 12178 gemu_log("qemu: Unsupported syscall: %d\n", num); 12179 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list) 12180 unimplemented_nowarn: 12181 #endif 12182 ret = -TARGET_ENOSYS; 12183 break; 12184 } 12185 fail: 12186 #ifdef DEBUG 12187 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret); 12188 #endif 12189 if(do_strace) 12190 print_syscall_ret(num, ret); 12191 trace_guest_user_syscall_ret(cpu, num, ret); 12192 return ret; 12193 efault: 12194 ret = -TARGET_EFAULT; 12195 goto fail; 12196 } 12197