xref: /openbmc/qemu/linux-user/syscall.c (revision 407a119b)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <linux/wireless.h>
59 #include <linux/icmp.h>
60 #include <linux/icmpv6.h>
61 #include <linux/if_tun.h>
62 #include <linux/in6.h>
63 #include <linux/errqueue.h>
64 #include <linux/random.h>
65 #ifdef CONFIG_TIMERFD
66 #include <sys/timerfd.h>
67 #endif
68 #ifdef CONFIG_EVENTFD
69 #include <sys/eventfd.h>
70 #endif
71 #ifdef CONFIG_EPOLL
72 #include <sys/epoll.h>
73 #endif
74 #ifdef CONFIG_ATTR
75 #include "qemu/xattr.h"
76 #endif
77 #ifdef CONFIG_SENDFILE
78 #include <sys/sendfile.h>
79 #endif
80 #ifdef HAVE_SYS_KCOV_H
81 #include <sys/kcov.h>
82 #endif
83 
84 #define termios host_termios
85 #define winsize host_winsize
86 #define termio host_termio
87 #define sgttyb host_sgttyb /* same as target */
88 #define tchars host_tchars /* same as target */
89 #define ltchars host_ltchars /* same as target */
90 
91 #include <linux/termios.h>
92 #include <linux/unistd.h>
93 #include <linux/cdrom.h>
94 #include <linux/hdreg.h>
95 #include <linux/soundcard.h>
96 #include <linux/kd.h>
97 #include <linux/mtio.h>
98 #include <linux/fs.h>
99 #include <linux/fd.h>
100 #if defined(CONFIG_FIEMAP)
101 #include <linux/fiemap.h>
102 #endif
103 #include <linux/fb.h>
104 #if defined(CONFIG_USBFS)
105 #include <linux/usbdevice_fs.h>
106 #include <linux/usb/ch9.h>
107 #endif
108 #include <linux/vt.h>
109 #include <linux/dm-ioctl.h>
110 #include <linux/reboot.h>
111 #include <linux/route.h>
112 #include <linux/filter.h>
113 #include <linux/blkpg.h>
114 #include <netpacket/packet.h>
115 #include <linux/netlink.h>
116 #include <linux/if_alg.h>
117 #include <linux/rtc.h>
118 #include <sound/asound.h>
119 #ifdef HAVE_BTRFS_H
120 #include <linux/btrfs.h>
121 #endif
122 #ifdef HAVE_DRM_H
123 #include <libdrm/drm.h>
124 #include <libdrm/i915_drm.h>
125 #endif
126 #include "linux_loop.h"
127 #include "uname.h"
128 
129 #include "qemu.h"
130 #include "user-internals.h"
131 #include "strace.h"
132 #include "signal-common.h"
133 #include "loader.h"
134 #include "user-mmap.h"
135 #include "user/safe-syscall.h"
136 #include "qemu/guest-random.h"
137 #include "qemu/selfmap.h"
138 #include "user/syscall-trace.h"
139 #include "special-errno.h"
140 #include "qapi/error.h"
141 #include "fd-trans.h"
142 #include "tcg/tcg.h"
143 
144 #ifndef CLONE_IO
145 #define CLONE_IO                0x80000000      /* Clone io context */
146 #endif
147 
148 /* We can't directly call the host clone syscall, because this will
149  * badly confuse libc (breaking mutexes, for example). So we must
150  * divide clone flags into:
151  *  * flag combinations that look like pthread_create()
152  *  * flag combinations that look like fork()
153  *  * flags we can implement within QEMU itself
154  *  * flags we can't support and will return an error for
155  */
156 /* For thread creation, all these flags must be present; for
157  * fork, none must be present.
158  */
159 #define CLONE_THREAD_FLAGS                              \
160     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
161      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
162 
163 /* These flags are ignored:
164  * CLONE_DETACHED is now ignored by the kernel;
165  * CLONE_IO is just an optimisation hint to the I/O scheduler
166  */
167 #define CLONE_IGNORED_FLAGS                     \
168     (CLONE_DETACHED | CLONE_IO)
169 
170 /* Flags for fork which we can implement within QEMU itself */
171 #define CLONE_OPTIONAL_FORK_FLAGS               \
172     (CLONE_SETTLS | CLONE_PARENT_SETTID |       \
173      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
174 
175 /* Flags for thread creation which we can implement within QEMU itself */
176 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
177     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
178      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
179 
180 #define CLONE_INVALID_FORK_FLAGS                                        \
181     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
182 
183 #define CLONE_INVALID_THREAD_FLAGS                                      \
184     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
185        CLONE_IGNORED_FLAGS))
186 
187 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
188  * have almost all been allocated. We cannot support any of
189  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
190  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
191  * The checks against the invalid thread masks above will catch these.
192  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
193  */
194 
195 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
196  * once. This exercises the codepaths for restart.
197  */
198 //#define DEBUG_ERESTARTSYS
199 
200 //#include <linux/msdos_fs.h>
201 #define VFAT_IOCTL_READDIR_BOTH \
202     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
203 #define VFAT_IOCTL_READDIR_SHORT \
204     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
205 
206 #undef _syscall0
207 #undef _syscall1
208 #undef _syscall2
209 #undef _syscall3
210 #undef _syscall4
211 #undef _syscall5
212 #undef _syscall6
213 
214 #define _syscall0(type,name)		\
215 static type name (void)			\
216 {					\
217 	return syscall(__NR_##name);	\
218 }
219 
220 #define _syscall1(type,name,type1,arg1)		\
221 static type name (type1 arg1)			\
222 {						\
223 	return syscall(__NR_##name, arg1);	\
224 }
225 
226 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
227 static type name (type1 arg1,type2 arg2)		\
228 {							\
229 	return syscall(__NR_##name, arg1, arg2);	\
230 }
231 
232 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
233 static type name (type1 arg1,type2 arg2,type3 arg3)		\
234 {								\
235 	return syscall(__NR_##name, arg1, arg2, arg3);		\
236 }
237 
238 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
239 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
240 {										\
241 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
242 }
243 
244 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
245 		  type5,arg5)							\
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
249 }
250 
251 
252 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
253 		  type5,arg5,type6,arg6)					\
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
255                   type6 arg6)							\
256 {										\
257 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
258 }
259 
260 
261 #define __NR_sys_uname __NR_uname
262 #define __NR_sys_getcwd1 __NR_getcwd
263 #define __NR_sys_getdents __NR_getdents
264 #define __NR_sys_getdents64 __NR_getdents64
265 #define __NR_sys_getpriority __NR_getpriority
266 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
267 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
268 #define __NR_sys_syslog __NR_syslog
269 #if defined(__NR_futex)
270 # define __NR_sys_futex __NR_futex
271 #endif
272 #if defined(__NR_futex_time64)
273 # define __NR_sys_futex_time64 __NR_futex_time64
274 #endif
275 #define __NR_sys_inotify_init __NR_inotify_init
276 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
277 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
278 #define __NR_sys_statx __NR_statx
279 
280 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
281 #define __NR__llseek __NR_lseek
282 #endif
283 
284 /* Newer kernel ports have llseek() instead of _llseek() */
285 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
286 #define TARGET_NR__llseek TARGET_NR_llseek
287 #endif
288 
289 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
290 #ifndef TARGET_O_NONBLOCK_MASK
291 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
292 #endif
293 
294 #define __NR_sys_gettid __NR_gettid
295 _syscall0(int, sys_gettid)
296 
297 /* For the 64-bit guest on 32-bit host case we must emulate
298  * getdents using getdents64, because otherwise the host
299  * might hand us back more dirent records than we can fit
300  * into the guest buffer after structure format conversion.
301  * Otherwise we emulate getdents with getdents if the host has it.
302  */
303 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
304 #define EMULATE_GETDENTS_WITH_GETDENTS
305 #endif
306 
307 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
308 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
309 #endif
310 #if (defined(TARGET_NR_getdents) && \
311       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
312     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
313 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
314 #endif
315 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
316 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
317           loff_t *, res, uint, wh);
318 #endif
319 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
320 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
321           siginfo_t *, uinfo)
322 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
323 #ifdef __NR_exit_group
324 _syscall1(int,exit_group,int,error_code)
325 #endif
326 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
327 _syscall1(int,set_tid_address,int *,tidptr)
328 #endif
329 #if defined(__NR_futex)
330 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
331           const struct timespec *,timeout,int *,uaddr2,int,val3)
332 #endif
333 #if defined(__NR_futex_time64)
334 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
335           const struct timespec *,timeout,int *,uaddr2,int,val3)
336 #endif
337 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
338 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
339           unsigned long *, user_mask_ptr);
340 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
341 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
342           unsigned long *, user_mask_ptr);
343 /* sched_attr is not defined in glibc */
344 struct sched_attr {
345     uint32_t size;
346     uint32_t sched_policy;
347     uint64_t sched_flags;
348     int32_t sched_nice;
349     uint32_t sched_priority;
350     uint64_t sched_runtime;
351     uint64_t sched_deadline;
352     uint64_t sched_period;
353     uint32_t sched_util_min;
354     uint32_t sched_util_max;
355 };
356 #define __NR_sys_sched_getattr __NR_sched_getattr
357 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
358           unsigned int, size, unsigned int, flags);
359 #define __NR_sys_sched_setattr __NR_sched_setattr
360 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
361           unsigned int, flags);
362 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
363 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
364 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
365 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
366           const struct sched_param *, param);
367 #define __NR_sys_sched_getparam __NR_sched_getparam
368 _syscall2(int, sys_sched_getparam, pid_t, pid,
369           struct sched_param *, param);
370 #define __NR_sys_sched_setparam __NR_sched_setparam
371 _syscall2(int, sys_sched_setparam, pid_t, pid,
372           const struct sched_param *, param);
373 #define __NR_sys_getcpu __NR_getcpu
374 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
375 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
376           void *, arg);
377 _syscall2(int, capget, struct __user_cap_header_struct *, header,
378           struct __user_cap_data_struct *, data);
379 _syscall2(int, capset, struct __user_cap_header_struct *, header,
380           struct __user_cap_data_struct *, data);
381 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
382 _syscall2(int, ioprio_get, int, which, int, who)
383 #endif
384 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
385 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
386 #endif
387 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
388 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
389 #endif
390 
391 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
392 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
393           unsigned long, idx1, unsigned long, idx2)
394 #endif
395 
396 /*
397  * It is assumed that struct statx is architecture independent.
398  */
399 #if defined(TARGET_NR_statx) && defined(__NR_statx)
400 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
401           unsigned int, mask, struct target_statx *, statxbuf)
402 #endif
403 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
404 _syscall2(int, membarrier, int, cmd, int, flags)
405 #endif
406 
407 static const bitmask_transtbl fcntl_flags_tbl[] = {
408   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
409   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
410   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
411   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
412   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
413   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
414   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
415   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
416   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
417   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
418   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
419   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
420   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
421 #if defined(O_DIRECT)
422   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
423 #endif
424 #if defined(O_NOATIME)
425   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
426 #endif
427 #if defined(O_CLOEXEC)
428   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
429 #endif
430 #if defined(O_PATH)
431   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
432 #endif
433 #if defined(O_TMPFILE)
434   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
435 #endif
436   /* Don't terminate the list prematurely on 64-bit host+guest.  */
437 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
438   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
439 #endif
440   { 0, 0, 0, 0 }
441 };
442 
443 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
444 
445 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
446 #if defined(__NR_utimensat)
447 #define __NR_sys_utimensat __NR_utimensat
448 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
449           const struct timespec *,tsp,int,flags)
450 #else
451 static int sys_utimensat(int dirfd, const char *pathname,
452                          const struct timespec times[2], int flags)
453 {
454     errno = ENOSYS;
455     return -1;
456 }
457 #endif
458 #endif /* TARGET_NR_utimensat */
459 
460 #ifdef TARGET_NR_renameat2
461 #if defined(__NR_renameat2)
462 #define __NR_sys_renameat2 __NR_renameat2
463 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
464           const char *, new, unsigned int, flags)
465 #else
466 static int sys_renameat2(int oldfd, const char *old,
467                          int newfd, const char *new, int flags)
468 {
469     if (flags == 0) {
470         return renameat(oldfd, old, newfd, new);
471     }
472     errno = ENOSYS;
473     return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_renameat2 */
477 
478 #ifdef CONFIG_INOTIFY
479 #include <sys/inotify.h>
480 
481 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
482 static int sys_inotify_init(void)
483 {
484   return (inotify_init());
485 }
486 #endif
487 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
488 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
489 {
490   return (inotify_add_watch(fd, pathname, mask));
491 }
492 #endif
493 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
494 static int sys_inotify_rm_watch(int fd, int32_t wd)
495 {
496   return (inotify_rm_watch(fd, wd));
497 }
498 #endif
499 #ifdef CONFIG_INOTIFY1
500 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
501 static int sys_inotify_init1(int flags)
502 {
503   return (inotify_init1(flags));
504 }
505 #endif
506 #endif
507 #else
508 /* Userspace can usually survive runtime without inotify */
509 #undef TARGET_NR_inotify_init
510 #undef TARGET_NR_inotify_init1
511 #undef TARGET_NR_inotify_add_watch
512 #undef TARGET_NR_inotify_rm_watch
513 #endif /* CONFIG_INOTIFY  */
514 
515 #if defined(TARGET_NR_prlimit64)
516 #ifndef __NR_prlimit64
517 # define __NR_prlimit64 -1
518 #endif
519 #define __NR_sys_prlimit64 __NR_prlimit64
520 /* The glibc rlimit structure may not be that used by the underlying syscall */
521 struct host_rlimit64 {
522     uint64_t rlim_cur;
523     uint64_t rlim_max;
524 };
525 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
526           const struct host_rlimit64 *, new_limit,
527           struct host_rlimit64 *, old_limit)
528 #endif
529 
530 
531 #if defined(TARGET_NR_timer_create)
532 /* Maximum of 32 active POSIX timers allowed at any one time. */
533 static timer_t g_posix_timers[32] = { 0, } ;
534 
535 static inline int next_free_host_timer(void)
536 {
537     int k ;
538     /* FIXME: Does finding the next free slot require a lock? */
539     for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
540         if (g_posix_timers[k] == 0) {
541             g_posix_timers[k] = (timer_t) 1;
542             return k;
543         }
544     }
545     return -1;
546 }
547 #endif
548 
549 static inline int host_to_target_errno(int host_errno)
550 {
551     switch (host_errno) {
552 #define E(X)  case X: return TARGET_##X;
553 #include "errnos.c.inc"
554 #undef E
555     default:
556         return host_errno;
557     }
558 }
559 
560 static inline int target_to_host_errno(int target_errno)
561 {
562     switch (target_errno) {
563 #define E(X)  case TARGET_##X: return X;
564 #include "errnos.c.inc"
565 #undef E
566     default:
567         return target_errno;
568     }
569 }
570 
571 static inline abi_long get_errno(abi_long ret)
572 {
573     if (ret == -1)
574         return -host_to_target_errno(errno);
575     else
576         return ret;
577 }
578 
579 const char *target_strerror(int err)
580 {
581     if (err == QEMU_ERESTARTSYS) {
582         return "To be restarted";
583     }
584     if (err == QEMU_ESIGRETURN) {
585         return "Successful exit from sigreturn";
586     }
587 
588     return strerror(target_to_host_errno(err));
589 }
590 
591 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
592 {
593     int i;
594     uint8_t b;
595     if (usize <= ksize) {
596         return 1;
597     }
598     for (i = ksize; i < usize; i++) {
599         if (get_user_u8(b, addr + i)) {
600             return -TARGET_EFAULT;
601         }
602         if (b != 0) {
603             return 0;
604         }
605     }
606     return 1;
607 }
608 
609 #define safe_syscall0(type, name) \
610 static type safe_##name(void) \
611 { \
612     return safe_syscall(__NR_##name); \
613 }
614 
615 #define safe_syscall1(type, name, type1, arg1) \
616 static type safe_##name(type1 arg1) \
617 { \
618     return safe_syscall(__NR_##name, arg1); \
619 }
620 
621 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
622 static type safe_##name(type1 arg1, type2 arg2) \
623 { \
624     return safe_syscall(__NR_##name, arg1, arg2); \
625 }
626 
627 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
628 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
629 { \
630     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
631 }
632 
633 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
634     type4, arg4) \
635 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
636 { \
637     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
638 }
639 
640 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
641     type4, arg4, type5, arg5) \
642 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
643     type5 arg5) \
644 { \
645     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
646 }
647 
648 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
649     type4, arg4, type5, arg5, type6, arg6) \
650 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
651     type5 arg5, type6 arg6) \
652 { \
653     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
654 }
655 
656 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
657 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
658 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
659               int, flags, mode_t, mode)
660 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
661 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
662               struct rusage *, rusage)
663 #endif
664 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
665               int, options, struct rusage *, rusage)
666 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
667 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
668     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
669 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
670               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
671 #endif
672 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
673 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
674               struct timespec *, tsp, const sigset_t *, sigmask,
675               size_t, sigsetsize)
676 #endif
677 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
678               int, maxevents, int, timeout, const sigset_t *, sigmask,
679               size_t, sigsetsize)
680 #if defined(__NR_futex)
681 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
682               const struct timespec *,timeout,int *,uaddr2,int,val3)
683 #endif
684 #if defined(__NR_futex_time64)
685 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
686               const struct timespec *,timeout,int *,uaddr2,int,val3)
687 #endif
688 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
689 safe_syscall2(int, kill, pid_t, pid, int, sig)
690 safe_syscall2(int, tkill, int, tid, int, sig)
691 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
692 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
693 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
694 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
695               unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
697               unsigned long, pos_l, unsigned long, pos_h)
698 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
699               socklen_t, addrlen)
700 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
701               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
702 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
703               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
704 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
705 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
706 safe_syscall2(int, flock, int, fd, int, operation)
707 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
708 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
709               const struct timespec *, uts, size_t, sigsetsize)
710 #endif
711 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
712               int, flags)
713 #if defined(TARGET_NR_nanosleep)
714 safe_syscall2(int, nanosleep, const struct timespec *, req,
715               struct timespec *, rem)
716 #endif
717 #if defined(TARGET_NR_clock_nanosleep) || \
718     defined(TARGET_NR_clock_nanosleep_time64)
719 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
720               const struct timespec *, req, struct timespec *, rem)
721 #endif
722 #ifdef __NR_ipc
723 #ifdef __s390x__
724 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr)
726 #else
727 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
728               void *, ptr, long, fifth)
729 #endif
730 #endif
731 #ifdef __NR_msgsnd
732 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
733               int, flags)
734 #endif
735 #ifdef __NR_msgrcv
736 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
737               long, msgtype, int, flags)
738 #endif
739 #ifdef __NR_semtimedop
740 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
741               unsigned, nsops, const struct timespec *, timeout)
742 #endif
743 #if defined(TARGET_NR_mq_timedsend) || \
744     defined(TARGET_NR_mq_timedsend_time64)
745 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
746               size_t, len, unsigned, prio, const struct timespec *, timeout)
747 #endif
748 #if defined(TARGET_NR_mq_timedreceive) || \
749     defined(TARGET_NR_mq_timedreceive_time64)
750 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
751               size_t, len, unsigned *, prio, const struct timespec *, timeout)
752 #endif
753 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
754 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
755               int, outfd, loff_t *, poutoff, size_t, length,
756               unsigned int, flags)
757 #endif
758 
759 /* We do ioctl like this rather than via safe_syscall3 to preserve the
760  * "third argument might be integer or pointer or not present" behaviour of
761  * the libc function.
762  */
763 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
764 /* Similarly for fcntl. Note that callers must always:
765  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
766  *  use the flock64 struct rather than unsuffixed flock
767  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
768  */
769 #ifdef __NR_fcntl64
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
771 #else
772 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
773 #endif
774 
775 static inline int host_to_target_sock_type(int host_type)
776 {
777     int target_type;
778 
779     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
780     case SOCK_DGRAM:
781         target_type = TARGET_SOCK_DGRAM;
782         break;
783     case SOCK_STREAM:
784         target_type = TARGET_SOCK_STREAM;
785         break;
786     default:
787         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
788         break;
789     }
790 
791 #if defined(SOCK_CLOEXEC)
792     if (host_type & SOCK_CLOEXEC) {
793         target_type |= TARGET_SOCK_CLOEXEC;
794     }
795 #endif
796 
797 #if defined(SOCK_NONBLOCK)
798     if (host_type & SOCK_NONBLOCK) {
799         target_type |= TARGET_SOCK_NONBLOCK;
800     }
801 #endif
802 
803     return target_type;
804 }
805 
806 static abi_ulong target_brk;
807 static abi_ulong target_original_brk;
808 static abi_ulong brk_page;
809 
810 void target_set_brk(abi_ulong new_brk)
811 {
812     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
813     brk_page = HOST_PAGE_ALIGN(target_brk);
814 }
815 
816 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
817 #define DEBUGF_BRK(message, args...)
818 
819 /* do_brk() must return target values and target errnos. */
820 abi_long do_brk(abi_ulong new_brk)
821 {
822     abi_long mapped_addr;
823     abi_ulong new_alloc_size;
824 
825     /* brk pointers are always untagged */
826 
827     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
828 
829     if (!new_brk) {
830         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
831         return target_brk;
832     }
833     if (new_brk < target_original_brk) {
834         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
835                    target_brk);
836         return target_brk;
837     }
838 
839     /* If the new brk is less than the highest page reserved to the
840      * target heap allocation, set it and we're almost done...  */
841     if (new_brk <= brk_page) {
842         /* Heap contents are initialized to zero, as for anonymous
843          * mapped pages.  */
844         if (new_brk > target_brk) {
845             memset(g2h_untagged(target_brk), 0, new_brk - target_brk);
846         }
847 	target_brk = new_brk;
848         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
849 	return target_brk;
850     }
851 
852     /* We need to allocate more memory after the brk... Note that
853      * we don't use MAP_FIXED because that will map over the top of
854      * any existing mapping (like the one with the host libc or qemu
855      * itself); instead we treat "mapped but at wrong address" as
856      * a failure and unmap again.
857      */
858     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
859     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
860                                         PROT_READ|PROT_WRITE,
861                                         MAP_ANON|MAP_PRIVATE, 0, 0));
862 
863     if (mapped_addr == brk_page) {
864         /* Heap contents are initialized to zero, as for anonymous
865          * mapped pages.  Technically the new pages are already
866          * initialized to zero since they *are* anonymous mapped
867          * pages, however we have to take care with the contents that
868          * come from the remaining part of the previous page: it may
869          * contains garbage data due to a previous heap usage (grown
870          * then shrunken).  */
871         memset(g2h_untagged(target_brk), 0, brk_page - target_brk);
872 
873         target_brk = new_brk;
874         brk_page = HOST_PAGE_ALIGN(target_brk);
875         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
876             target_brk);
877         return target_brk;
878     } else if (mapped_addr != -1) {
879         /* Mapped but at wrong address, meaning there wasn't actually
880          * enough space for this brk.
881          */
882         target_munmap(mapped_addr, new_alloc_size);
883         mapped_addr = -1;
884         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
885     }
886     else {
887         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
888     }
889 
890 #if defined(TARGET_ALPHA)
891     /* We (partially) emulate OSF/1 on Alpha, which requires we
892        return a proper errno, not an unchanged brk value.  */
893     return -TARGET_ENOMEM;
894 #endif
895     /* For everything else, return the previous break. */
896     return target_brk;
897 }
898 
899 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
900     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
901 static inline abi_long copy_from_user_fdset(fd_set *fds,
902                                             abi_ulong target_fds_addr,
903                                             int n)
904 {
905     int i, nw, j, k;
906     abi_ulong b, *target_fds;
907 
908     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
909     if (!(target_fds = lock_user(VERIFY_READ,
910                                  target_fds_addr,
911                                  sizeof(abi_ulong) * nw,
912                                  1)))
913         return -TARGET_EFAULT;
914 
915     FD_ZERO(fds);
916     k = 0;
917     for (i = 0; i < nw; i++) {
918         /* grab the abi_ulong */
919         __get_user(b, &target_fds[i]);
920         for (j = 0; j < TARGET_ABI_BITS; j++) {
921             /* check the bit inside the abi_ulong */
922             if ((b >> j) & 1)
923                 FD_SET(k, fds);
924             k++;
925         }
926     }
927 
928     unlock_user(target_fds, target_fds_addr, 0);
929 
930     return 0;
931 }
932 
933 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
934                                                  abi_ulong target_fds_addr,
935                                                  int n)
936 {
937     if (target_fds_addr) {
938         if (copy_from_user_fdset(fds, target_fds_addr, n))
939             return -TARGET_EFAULT;
940         *fds_ptr = fds;
941     } else {
942         *fds_ptr = NULL;
943     }
944     return 0;
945 }
946 
947 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
948                                           const fd_set *fds,
949                                           int n)
950 {
951     int i, nw, j, k;
952     abi_long v;
953     abi_ulong *target_fds;
954 
955     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
956     if (!(target_fds = lock_user(VERIFY_WRITE,
957                                  target_fds_addr,
958                                  sizeof(abi_ulong) * nw,
959                                  0)))
960         return -TARGET_EFAULT;
961 
962     k = 0;
963     for (i = 0; i < nw; i++) {
964         v = 0;
965         for (j = 0; j < TARGET_ABI_BITS; j++) {
966             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
967             k++;
968         }
969         __put_user(v, &target_fds[i]);
970     }
971 
972     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
973 
974     return 0;
975 }
976 #endif
977 
978 #if defined(__alpha__)
979 #define HOST_HZ 1024
980 #else
981 #define HOST_HZ 100
982 #endif
983 
984 static inline abi_long host_to_target_clock_t(long ticks)
985 {
986 #if HOST_HZ == TARGET_HZ
987     return ticks;
988 #else
989     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
990 #endif
991 }
992 
993 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
994                                              const struct rusage *rusage)
995 {
996     struct target_rusage *target_rusage;
997 
998     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
999         return -TARGET_EFAULT;
1000     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1001     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1002     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1003     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1004     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1005     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1006     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1007     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1008     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1009     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1010     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1011     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1012     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1013     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1014     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1015     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1016     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1017     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1018     unlock_user_struct(target_rusage, target_addr, 1);
1019 
1020     return 0;
1021 }
1022 
1023 #ifdef TARGET_NR_setrlimit
1024 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1025 {
1026     abi_ulong target_rlim_swap;
1027     rlim_t result;
1028 
1029     target_rlim_swap = tswapal(target_rlim);
1030     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1031         return RLIM_INFINITY;
1032 
1033     result = target_rlim_swap;
1034     if (target_rlim_swap != (rlim_t)result)
1035         return RLIM_INFINITY;
1036 
1037     return result;
1038 }
1039 #endif
1040 
1041 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1042 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1043 {
1044     abi_ulong target_rlim_swap;
1045     abi_ulong result;
1046 
1047     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1048         target_rlim_swap = TARGET_RLIM_INFINITY;
1049     else
1050         target_rlim_swap = rlim;
1051     result = tswapal(target_rlim_swap);
1052 
1053     return result;
1054 }
1055 #endif
1056 
1057 static inline int target_to_host_resource(int code)
1058 {
1059     switch (code) {
1060     case TARGET_RLIMIT_AS:
1061         return RLIMIT_AS;
1062     case TARGET_RLIMIT_CORE:
1063         return RLIMIT_CORE;
1064     case TARGET_RLIMIT_CPU:
1065         return RLIMIT_CPU;
1066     case TARGET_RLIMIT_DATA:
1067         return RLIMIT_DATA;
1068     case TARGET_RLIMIT_FSIZE:
1069         return RLIMIT_FSIZE;
1070     case TARGET_RLIMIT_LOCKS:
1071         return RLIMIT_LOCKS;
1072     case TARGET_RLIMIT_MEMLOCK:
1073         return RLIMIT_MEMLOCK;
1074     case TARGET_RLIMIT_MSGQUEUE:
1075         return RLIMIT_MSGQUEUE;
1076     case TARGET_RLIMIT_NICE:
1077         return RLIMIT_NICE;
1078     case TARGET_RLIMIT_NOFILE:
1079         return RLIMIT_NOFILE;
1080     case TARGET_RLIMIT_NPROC:
1081         return RLIMIT_NPROC;
1082     case TARGET_RLIMIT_RSS:
1083         return RLIMIT_RSS;
1084     case TARGET_RLIMIT_RTPRIO:
1085         return RLIMIT_RTPRIO;
1086     case TARGET_RLIMIT_SIGPENDING:
1087         return RLIMIT_SIGPENDING;
1088     case TARGET_RLIMIT_STACK:
1089         return RLIMIT_STACK;
1090     default:
1091         return code;
1092     }
1093 }
1094 
1095 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1096                                               abi_ulong target_tv_addr)
1097 {
1098     struct target_timeval *target_tv;
1099 
1100     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1101         return -TARGET_EFAULT;
1102     }
1103 
1104     __get_user(tv->tv_sec, &target_tv->tv_sec);
1105     __get_user(tv->tv_usec, &target_tv->tv_usec);
1106 
1107     unlock_user_struct(target_tv, target_tv_addr, 0);
1108 
1109     return 0;
1110 }
1111 
1112 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1113                                             const struct timeval *tv)
1114 {
1115     struct target_timeval *target_tv;
1116 
1117     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1118         return -TARGET_EFAULT;
1119     }
1120 
1121     __put_user(tv->tv_sec, &target_tv->tv_sec);
1122     __put_user(tv->tv_usec, &target_tv->tv_usec);
1123 
1124     unlock_user_struct(target_tv, target_tv_addr, 1);
1125 
1126     return 0;
1127 }
1128 
1129 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1130 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1131                                                 abi_ulong target_tv_addr)
1132 {
1133     struct target__kernel_sock_timeval *target_tv;
1134 
1135     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1136         return -TARGET_EFAULT;
1137     }
1138 
1139     __get_user(tv->tv_sec, &target_tv->tv_sec);
1140     __get_user(tv->tv_usec, &target_tv->tv_usec);
1141 
1142     unlock_user_struct(target_tv, target_tv_addr, 0);
1143 
1144     return 0;
1145 }
1146 #endif
1147 
1148 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1149                                               const struct timeval *tv)
1150 {
1151     struct target__kernel_sock_timeval *target_tv;
1152 
1153     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1154         return -TARGET_EFAULT;
1155     }
1156 
1157     __put_user(tv->tv_sec, &target_tv->tv_sec);
1158     __put_user(tv->tv_usec, &target_tv->tv_usec);
1159 
1160     unlock_user_struct(target_tv, target_tv_addr, 1);
1161 
1162     return 0;
1163 }
1164 
1165 #if defined(TARGET_NR_futex) || \
1166     defined(TARGET_NR_rt_sigtimedwait) || \
1167     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1168     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1169     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1170     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1171     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1172     defined(TARGET_NR_timer_settime) || \
1173     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1174 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1175                                                abi_ulong target_addr)
1176 {
1177     struct target_timespec *target_ts;
1178 
1179     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1180         return -TARGET_EFAULT;
1181     }
1182     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1183     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1184     unlock_user_struct(target_ts, target_addr, 0);
1185     return 0;
1186 }
1187 #endif
1188 
1189 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1190     defined(TARGET_NR_timer_settime64) || \
1191     defined(TARGET_NR_mq_timedsend_time64) || \
1192     defined(TARGET_NR_mq_timedreceive_time64) || \
1193     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1194     defined(TARGET_NR_clock_nanosleep_time64) || \
1195     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1196     defined(TARGET_NR_utimensat) || \
1197     defined(TARGET_NR_utimensat_time64) || \
1198     defined(TARGET_NR_semtimedop_time64) || \
1199     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1200 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1201                                                  abi_ulong target_addr)
1202 {
1203     struct target__kernel_timespec *target_ts;
1204 
1205     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1206         return -TARGET_EFAULT;
1207     }
1208     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1209     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1210     /* in 32bit mode, this drops the padding */
1211     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1212     unlock_user_struct(target_ts, target_addr, 0);
1213     return 0;
1214 }
1215 #endif
1216 
1217 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1218                                                struct timespec *host_ts)
1219 {
1220     struct target_timespec *target_ts;
1221 
1222     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1223         return -TARGET_EFAULT;
1224     }
1225     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1226     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1227     unlock_user_struct(target_ts, target_addr, 1);
1228     return 0;
1229 }
1230 
1231 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1232                                                  struct timespec *host_ts)
1233 {
1234     struct target__kernel_timespec *target_ts;
1235 
1236     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1237         return -TARGET_EFAULT;
1238     }
1239     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1240     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1241     unlock_user_struct(target_ts, target_addr, 1);
1242     return 0;
1243 }
1244 
1245 #if defined(TARGET_NR_gettimeofday)
1246 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1247                                              struct timezone *tz)
1248 {
1249     struct target_timezone *target_tz;
1250 
1251     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1252         return -TARGET_EFAULT;
1253     }
1254 
1255     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1256     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1257 
1258     unlock_user_struct(target_tz, target_tz_addr, 1);
1259 
1260     return 0;
1261 }
1262 #endif
1263 
1264 #if defined(TARGET_NR_settimeofday)
1265 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1266                                                abi_ulong target_tz_addr)
1267 {
1268     struct target_timezone *target_tz;
1269 
1270     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1271         return -TARGET_EFAULT;
1272     }
1273 
1274     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1275     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1276 
1277     unlock_user_struct(target_tz, target_tz_addr, 0);
1278 
1279     return 0;
1280 }
1281 #endif
1282 
1283 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1284 #include <mqueue.h>
1285 
1286 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1287                                               abi_ulong target_mq_attr_addr)
1288 {
1289     struct target_mq_attr *target_mq_attr;
1290 
1291     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1292                           target_mq_attr_addr, 1))
1293         return -TARGET_EFAULT;
1294 
1295     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1296     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1297     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1298     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1299 
1300     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1301 
1302     return 0;
1303 }
1304 
1305 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1306                                             const struct mq_attr *attr)
1307 {
1308     struct target_mq_attr *target_mq_attr;
1309 
1310     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1311                           target_mq_attr_addr, 0))
1312         return -TARGET_EFAULT;
1313 
1314     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1315     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1316     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1317     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1318 
1319     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1320 
1321     return 0;
1322 }
1323 #endif
1324 
1325 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1326 /* do_select() must return target values and target errnos. */
1327 static abi_long do_select(int n,
1328                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1329                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1330 {
1331     fd_set rfds, wfds, efds;
1332     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1333     struct timeval tv;
1334     struct timespec ts, *ts_ptr;
1335     abi_long ret;
1336 
1337     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1338     if (ret) {
1339         return ret;
1340     }
1341     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1342     if (ret) {
1343         return ret;
1344     }
1345     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1346     if (ret) {
1347         return ret;
1348     }
1349 
1350     if (target_tv_addr) {
1351         if (copy_from_user_timeval(&tv, target_tv_addr))
1352             return -TARGET_EFAULT;
1353         ts.tv_sec = tv.tv_sec;
1354         ts.tv_nsec = tv.tv_usec * 1000;
1355         ts_ptr = &ts;
1356     } else {
1357         ts_ptr = NULL;
1358     }
1359 
1360     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1361                                   ts_ptr, NULL));
1362 
1363     if (!is_error(ret)) {
1364         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1365             return -TARGET_EFAULT;
1366         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1367             return -TARGET_EFAULT;
1368         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1369             return -TARGET_EFAULT;
1370 
1371         if (target_tv_addr) {
1372             tv.tv_sec = ts.tv_sec;
1373             tv.tv_usec = ts.tv_nsec / 1000;
1374             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1375                 return -TARGET_EFAULT;
1376             }
1377         }
1378     }
1379 
1380     return ret;
1381 }
1382 
1383 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1384 static abi_long do_old_select(abi_ulong arg1)
1385 {
1386     struct target_sel_arg_struct *sel;
1387     abi_ulong inp, outp, exp, tvp;
1388     long nsel;
1389 
1390     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1391         return -TARGET_EFAULT;
1392     }
1393 
1394     nsel = tswapal(sel->n);
1395     inp = tswapal(sel->inp);
1396     outp = tswapal(sel->outp);
1397     exp = tswapal(sel->exp);
1398     tvp = tswapal(sel->tvp);
1399 
1400     unlock_user_struct(sel, arg1, 0);
1401 
1402     return do_select(nsel, inp, outp, exp, tvp);
1403 }
1404 #endif
1405 #endif
1406 
1407 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1408 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1409                             abi_long arg4, abi_long arg5, abi_long arg6,
1410                             bool time64)
1411 {
1412     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1413     fd_set rfds, wfds, efds;
1414     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1415     struct timespec ts, *ts_ptr;
1416     abi_long ret;
1417 
1418     /*
1419      * The 6th arg is actually two args smashed together,
1420      * so we cannot use the C library.
1421      */
1422     sigset_t set;
1423     struct {
1424         sigset_t *set;
1425         size_t size;
1426     } sig, *sig_ptr;
1427 
1428     abi_ulong arg_sigset, arg_sigsize, *arg7;
1429     target_sigset_t *target_sigset;
1430 
1431     n = arg1;
1432     rfd_addr = arg2;
1433     wfd_addr = arg3;
1434     efd_addr = arg4;
1435     ts_addr = arg5;
1436 
1437     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1438     if (ret) {
1439         return ret;
1440     }
1441     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1442     if (ret) {
1443         return ret;
1444     }
1445     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1446     if (ret) {
1447         return ret;
1448     }
1449 
1450     /*
1451      * This takes a timespec, and not a timeval, so we cannot
1452      * use the do_select() helper ...
1453      */
1454     if (ts_addr) {
1455         if (time64) {
1456             if (target_to_host_timespec64(&ts, ts_addr)) {
1457                 return -TARGET_EFAULT;
1458             }
1459         } else {
1460             if (target_to_host_timespec(&ts, ts_addr)) {
1461                 return -TARGET_EFAULT;
1462             }
1463         }
1464             ts_ptr = &ts;
1465     } else {
1466         ts_ptr = NULL;
1467     }
1468 
1469     /* Extract the two packed args for the sigset */
1470     if (arg6) {
1471         sig_ptr = &sig;
1472         sig.size = SIGSET_T_SIZE;
1473 
1474         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1475         if (!arg7) {
1476             return -TARGET_EFAULT;
1477         }
1478         arg_sigset = tswapal(arg7[0]);
1479         arg_sigsize = tswapal(arg7[1]);
1480         unlock_user(arg7, arg6, 0);
1481 
1482         if (arg_sigset) {
1483             sig.set = &set;
1484             if (arg_sigsize != sizeof(*target_sigset)) {
1485                 /* Like the kernel, we enforce correct size sigsets */
1486                 return -TARGET_EINVAL;
1487             }
1488             target_sigset = lock_user(VERIFY_READ, arg_sigset,
1489                                       sizeof(*target_sigset), 1);
1490             if (!target_sigset) {
1491                 return -TARGET_EFAULT;
1492             }
1493             target_to_host_sigset(&set, target_sigset);
1494             unlock_user(target_sigset, arg_sigset, 0);
1495         } else {
1496             sig.set = NULL;
1497         }
1498     } else {
1499         sig_ptr = NULL;
1500     }
1501 
1502     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1503                                   ts_ptr, sig_ptr));
1504 
1505     if (!is_error(ret)) {
1506         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1507             return -TARGET_EFAULT;
1508         }
1509         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1510             return -TARGET_EFAULT;
1511         }
1512         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1513             return -TARGET_EFAULT;
1514         }
1515         if (time64) {
1516             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1517                 return -TARGET_EFAULT;
1518             }
1519         } else {
1520             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1521                 return -TARGET_EFAULT;
1522             }
1523         }
1524     }
1525     return ret;
1526 }
1527 #endif
1528 
1529 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1530     defined(TARGET_NR_ppoll_time64)
1531 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1532                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1533 {
1534     struct target_pollfd *target_pfd;
1535     unsigned int nfds = arg2;
1536     struct pollfd *pfd;
1537     unsigned int i;
1538     abi_long ret;
1539 
1540     pfd = NULL;
1541     target_pfd = NULL;
1542     if (nfds) {
1543         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1544             return -TARGET_EINVAL;
1545         }
1546         target_pfd = lock_user(VERIFY_WRITE, arg1,
1547                                sizeof(struct target_pollfd) * nfds, 1);
1548         if (!target_pfd) {
1549             return -TARGET_EFAULT;
1550         }
1551 
1552         pfd = alloca(sizeof(struct pollfd) * nfds);
1553         for (i = 0; i < nfds; i++) {
1554             pfd[i].fd = tswap32(target_pfd[i].fd);
1555             pfd[i].events = tswap16(target_pfd[i].events);
1556         }
1557     }
1558     if (ppoll) {
1559         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1560         target_sigset_t *target_set;
1561         sigset_t _set, *set = &_set;
1562 
1563         if (arg3) {
1564             if (time64) {
1565                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1566                     unlock_user(target_pfd, arg1, 0);
1567                     return -TARGET_EFAULT;
1568                 }
1569             } else {
1570                 if (target_to_host_timespec(timeout_ts, arg3)) {
1571                     unlock_user(target_pfd, arg1, 0);
1572                     return -TARGET_EFAULT;
1573                 }
1574             }
1575         } else {
1576             timeout_ts = NULL;
1577         }
1578 
1579         if (arg4) {
1580             if (arg5 != sizeof(target_sigset_t)) {
1581                 unlock_user(target_pfd, arg1, 0);
1582                 return -TARGET_EINVAL;
1583             }
1584 
1585             target_set = lock_user(VERIFY_READ, arg4,
1586                                    sizeof(target_sigset_t), 1);
1587             if (!target_set) {
1588                 unlock_user(target_pfd, arg1, 0);
1589                 return -TARGET_EFAULT;
1590             }
1591             target_to_host_sigset(set, target_set);
1592         } else {
1593             set = NULL;
1594         }
1595 
1596         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1597                                    set, SIGSET_T_SIZE));
1598 
1599         if (!is_error(ret) && arg3) {
1600             if (time64) {
1601                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1602                     return -TARGET_EFAULT;
1603                 }
1604             } else {
1605                 if (host_to_target_timespec(arg3, timeout_ts)) {
1606                     return -TARGET_EFAULT;
1607                 }
1608             }
1609         }
1610         if (arg4) {
1611             unlock_user(target_set, arg4, 0);
1612         }
1613     } else {
1614           struct timespec ts, *pts;
1615 
1616           if (arg3 >= 0) {
1617               /* Convert ms to secs, ns */
1618               ts.tv_sec = arg3 / 1000;
1619               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1620               pts = &ts;
1621           } else {
1622               /* -ve poll() timeout means "infinite" */
1623               pts = NULL;
1624           }
1625           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1626     }
1627 
1628     if (!is_error(ret)) {
1629         for (i = 0; i < nfds; i++) {
1630             target_pfd[i].revents = tswap16(pfd[i].revents);
1631         }
1632     }
1633     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1634     return ret;
1635 }
1636 #endif
1637 
1638 static abi_long do_pipe2(int host_pipe[], int flags)
1639 {
1640 #ifdef CONFIG_PIPE2
1641     return pipe2(host_pipe, flags);
1642 #else
1643     return -ENOSYS;
1644 #endif
1645 }
1646 
1647 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1648                         int flags, int is_pipe2)
1649 {
1650     int host_pipe[2];
1651     abi_long ret;
1652     ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1653 
1654     if (is_error(ret))
1655         return get_errno(ret);
1656 
1657     /* Several targets have special calling conventions for the original
1658        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1659     if (!is_pipe2) {
1660 #if defined(TARGET_ALPHA)
1661         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1662         return host_pipe[0];
1663 #elif defined(TARGET_MIPS)
1664         ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1665         return host_pipe[0];
1666 #elif defined(TARGET_SH4)
1667         ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1668         return host_pipe[0];
1669 #elif defined(TARGET_SPARC)
1670         ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1671         return host_pipe[0];
1672 #endif
1673     }
1674 
1675     if (put_user_s32(host_pipe[0], pipedes)
1676         || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1677         return -TARGET_EFAULT;
1678     return get_errno(ret);
1679 }
1680 
1681 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1682                                               abi_ulong target_addr,
1683                                               socklen_t len)
1684 {
1685     struct target_ip_mreqn *target_smreqn;
1686 
1687     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1688     if (!target_smreqn)
1689         return -TARGET_EFAULT;
1690     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1691     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1692     if (len == sizeof(struct target_ip_mreqn))
1693         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1694     unlock_user(target_smreqn, target_addr, 0);
1695 
1696     return 0;
1697 }
1698 
1699 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1700                                                abi_ulong target_addr,
1701                                                socklen_t len)
1702 {
1703     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1704     sa_family_t sa_family;
1705     struct target_sockaddr *target_saddr;
1706 
1707     if (fd_trans_target_to_host_addr(fd)) {
1708         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1709     }
1710 
1711     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1712     if (!target_saddr)
1713         return -TARGET_EFAULT;
1714 
1715     sa_family = tswap16(target_saddr->sa_family);
1716 
1717     /* Oops. The caller might send a incomplete sun_path; sun_path
1718      * must be terminated by \0 (see the manual page), but
1719      * unfortunately it is quite common to specify sockaddr_un
1720      * length as "strlen(x->sun_path)" while it should be
1721      * "strlen(...) + 1". We'll fix that here if needed.
1722      * Linux kernel has a similar feature.
1723      */
1724 
1725     if (sa_family == AF_UNIX) {
1726         if (len < unix_maxlen && len > 0) {
1727             char *cp = (char*)target_saddr;
1728 
1729             if ( cp[len-1] && !cp[len] )
1730                 len++;
1731         }
1732         if (len > unix_maxlen)
1733             len = unix_maxlen;
1734     }
1735 
1736     memcpy(addr, target_saddr, len);
1737     addr->sa_family = sa_family;
1738     if (sa_family == AF_NETLINK) {
1739         struct sockaddr_nl *nladdr;
1740 
1741         nladdr = (struct sockaddr_nl *)addr;
1742         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1743         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1744     } else if (sa_family == AF_PACKET) {
1745 	struct target_sockaddr_ll *lladdr;
1746 
1747 	lladdr = (struct target_sockaddr_ll *)addr;
1748 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1749 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1750     }
1751     unlock_user(target_saddr, target_addr, 0);
1752 
1753     return 0;
1754 }
1755 
1756 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1757                                                struct sockaddr *addr,
1758                                                socklen_t len)
1759 {
1760     struct target_sockaddr *target_saddr;
1761 
1762     if (len == 0) {
1763         return 0;
1764     }
1765     assert(addr);
1766 
1767     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1768     if (!target_saddr)
1769         return -TARGET_EFAULT;
1770     memcpy(target_saddr, addr, len);
1771     if (len >= offsetof(struct target_sockaddr, sa_family) +
1772         sizeof(target_saddr->sa_family)) {
1773         target_saddr->sa_family = tswap16(addr->sa_family);
1774     }
1775     if (addr->sa_family == AF_NETLINK &&
1776         len >= sizeof(struct target_sockaddr_nl)) {
1777         struct target_sockaddr_nl *target_nl =
1778                (struct target_sockaddr_nl *)target_saddr;
1779         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1780         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1781     } else if (addr->sa_family == AF_PACKET) {
1782         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1783         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1784         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1785     } else if (addr->sa_family == AF_INET6 &&
1786                len >= sizeof(struct target_sockaddr_in6)) {
1787         struct target_sockaddr_in6 *target_in6 =
1788                (struct target_sockaddr_in6 *)target_saddr;
1789         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1790     }
1791     unlock_user(target_saddr, target_addr, len);
1792 
1793     return 0;
1794 }
1795 
1796 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1797                                            struct target_msghdr *target_msgh)
1798 {
1799     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1800     abi_long msg_controllen;
1801     abi_ulong target_cmsg_addr;
1802     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1803     socklen_t space = 0;
1804 
1805     msg_controllen = tswapal(target_msgh->msg_controllen);
1806     if (msg_controllen < sizeof (struct target_cmsghdr))
1807         goto the_end;
1808     target_cmsg_addr = tswapal(target_msgh->msg_control);
1809     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1810     target_cmsg_start = target_cmsg;
1811     if (!target_cmsg)
1812         return -TARGET_EFAULT;
1813 
1814     while (cmsg && target_cmsg) {
1815         void *data = CMSG_DATA(cmsg);
1816         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1817 
1818         int len = tswapal(target_cmsg->cmsg_len)
1819             - sizeof(struct target_cmsghdr);
1820 
1821         space += CMSG_SPACE(len);
1822         if (space > msgh->msg_controllen) {
1823             space -= CMSG_SPACE(len);
1824             /* This is a QEMU bug, since we allocated the payload
1825              * area ourselves (unlike overflow in host-to-target
1826              * conversion, which is just the guest giving us a buffer
1827              * that's too small). It can't happen for the payload types
1828              * we currently support; if it becomes an issue in future
1829              * we would need to improve our allocation strategy to
1830              * something more intelligent than "twice the size of the
1831              * target buffer we're reading from".
1832              */
1833             qemu_log_mask(LOG_UNIMP,
1834                           ("Unsupported ancillary data %d/%d: "
1835                            "unhandled msg size\n"),
1836                           tswap32(target_cmsg->cmsg_level),
1837                           tswap32(target_cmsg->cmsg_type));
1838             break;
1839         }
1840 
1841         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1842             cmsg->cmsg_level = SOL_SOCKET;
1843         } else {
1844             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1845         }
1846         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1847         cmsg->cmsg_len = CMSG_LEN(len);
1848 
1849         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1850             int *fd = (int *)data;
1851             int *target_fd = (int *)target_data;
1852             int i, numfds = len / sizeof(int);
1853 
1854             for (i = 0; i < numfds; i++) {
1855                 __get_user(fd[i], target_fd + i);
1856             }
1857         } else if (cmsg->cmsg_level == SOL_SOCKET
1858                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1859             struct ucred *cred = (struct ucred *)data;
1860             struct target_ucred *target_cred =
1861                 (struct target_ucred *)target_data;
1862 
1863             __get_user(cred->pid, &target_cred->pid);
1864             __get_user(cred->uid, &target_cred->uid);
1865             __get_user(cred->gid, &target_cred->gid);
1866         } else {
1867             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1868                           cmsg->cmsg_level, cmsg->cmsg_type);
1869             memcpy(data, target_data, len);
1870         }
1871 
1872         cmsg = CMSG_NXTHDR(msgh, cmsg);
1873         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1874                                          target_cmsg_start);
1875     }
1876     unlock_user(target_cmsg, target_cmsg_addr, 0);
1877  the_end:
1878     msgh->msg_controllen = space;
1879     return 0;
1880 }
1881 
1882 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1883                                            struct msghdr *msgh)
1884 {
1885     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1886     abi_long msg_controllen;
1887     abi_ulong target_cmsg_addr;
1888     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1889     socklen_t space = 0;
1890 
1891     msg_controllen = tswapal(target_msgh->msg_controllen);
1892     if (msg_controllen < sizeof (struct target_cmsghdr))
1893         goto the_end;
1894     target_cmsg_addr = tswapal(target_msgh->msg_control);
1895     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1896     target_cmsg_start = target_cmsg;
1897     if (!target_cmsg)
1898         return -TARGET_EFAULT;
1899 
1900     while (cmsg && target_cmsg) {
1901         void *data = CMSG_DATA(cmsg);
1902         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1903 
1904         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1905         int tgt_len, tgt_space;
1906 
1907         /* We never copy a half-header but may copy half-data;
1908          * this is Linux's behaviour in put_cmsg(). Note that
1909          * truncation here is a guest problem (which we report
1910          * to the guest via the CTRUNC bit), unlike truncation
1911          * in target_to_host_cmsg, which is a QEMU bug.
1912          */
1913         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1914             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1915             break;
1916         }
1917 
1918         if (cmsg->cmsg_level == SOL_SOCKET) {
1919             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1920         } else {
1921             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1922         }
1923         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1924 
1925         /* Payload types which need a different size of payload on
1926          * the target must adjust tgt_len here.
1927          */
1928         tgt_len = len;
1929         switch (cmsg->cmsg_level) {
1930         case SOL_SOCKET:
1931             switch (cmsg->cmsg_type) {
1932             case SO_TIMESTAMP:
1933                 tgt_len = sizeof(struct target_timeval);
1934                 break;
1935             default:
1936                 break;
1937             }
1938             break;
1939         default:
1940             break;
1941         }
1942 
1943         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1944             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1945             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1946         }
1947 
1948         /* We must now copy-and-convert len bytes of payload
1949          * into tgt_len bytes of destination space. Bear in mind
1950          * that in both source and destination we may be dealing
1951          * with a truncated value!
1952          */
1953         switch (cmsg->cmsg_level) {
1954         case SOL_SOCKET:
1955             switch (cmsg->cmsg_type) {
1956             case SCM_RIGHTS:
1957             {
1958                 int *fd = (int *)data;
1959                 int *target_fd = (int *)target_data;
1960                 int i, numfds = tgt_len / sizeof(int);
1961 
1962                 for (i = 0; i < numfds; i++) {
1963                     __put_user(fd[i], target_fd + i);
1964                 }
1965                 break;
1966             }
1967             case SO_TIMESTAMP:
1968             {
1969                 struct timeval *tv = (struct timeval *)data;
1970                 struct target_timeval *target_tv =
1971                     (struct target_timeval *)target_data;
1972 
1973                 if (len != sizeof(struct timeval) ||
1974                     tgt_len != sizeof(struct target_timeval)) {
1975                     goto unimplemented;
1976                 }
1977 
1978                 /* copy struct timeval to target */
1979                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1980                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1981                 break;
1982             }
1983             case SCM_CREDENTIALS:
1984             {
1985                 struct ucred *cred = (struct ucred *)data;
1986                 struct target_ucred *target_cred =
1987                     (struct target_ucred *)target_data;
1988 
1989                 __put_user(cred->pid, &target_cred->pid);
1990                 __put_user(cred->uid, &target_cred->uid);
1991                 __put_user(cred->gid, &target_cred->gid);
1992                 break;
1993             }
1994             default:
1995                 goto unimplemented;
1996             }
1997             break;
1998 
1999         case SOL_IP:
2000             switch (cmsg->cmsg_type) {
2001             case IP_TTL:
2002             {
2003                 uint32_t *v = (uint32_t *)data;
2004                 uint32_t *t_int = (uint32_t *)target_data;
2005 
2006                 if (len != sizeof(uint32_t) ||
2007                     tgt_len != sizeof(uint32_t)) {
2008                     goto unimplemented;
2009                 }
2010                 __put_user(*v, t_int);
2011                 break;
2012             }
2013             case IP_RECVERR:
2014             {
2015                 struct errhdr_t {
2016                    struct sock_extended_err ee;
2017                    struct sockaddr_in offender;
2018                 };
2019                 struct errhdr_t *errh = (struct errhdr_t *)data;
2020                 struct errhdr_t *target_errh =
2021                     (struct errhdr_t *)target_data;
2022 
2023                 if (len != sizeof(struct errhdr_t) ||
2024                     tgt_len != sizeof(struct errhdr_t)) {
2025                     goto unimplemented;
2026                 }
2027                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2028                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2029                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2030                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2031                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2032                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2033                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2034                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2035                     (void *) &errh->offender, sizeof(errh->offender));
2036                 break;
2037             }
2038             default:
2039                 goto unimplemented;
2040             }
2041             break;
2042 
2043         case SOL_IPV6:
2044             switch (cmsg->cmsg_type) {
2045             case IPV6_HOPLIMIT:
2046             {
2047                 uint32_t *v = (uint32_t *)data;
2048                 uint32_t *t_int = (uint32_t *)target_data;
2049 
2050                 if (len != sizeof(uint32_t) ||
2051                     tgt_len != sizeof(uint32_t)) {
2052                     goto unimplemented;
2053                 }
2054                 __put_user(*v, t_int);
2055                 break;
2056             }
2057             case IPV6_RECVERR:
2058             {
2059                 struct errhdr6_t {
2060                    struct sock_extended_err ee;
2061                    struct sockaddr_in6 offender;
2062                 };
2063                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2064                 struct errhdr6_t *target_errh =
2065                     (struct errhdr6_t *)target_data;
2066 
2067                 if (len != sizeof(struct errhdr6_t) ||
2068                     tgt_len != sizeof(struct errhdr6_t)) {
2069                     goto unimplemented;
2070                 }
2071                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2072                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2073                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2074                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2075                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2076                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2077                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2078                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2079                     (void *) &errh->offender, sizeof(errh->offender));
2080                 break;
2081             }
2082             default:
2083                 goto unimplemented;
2084             }
2085             break;
2086 
2087         default:
2088         unimplemented:
2089             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2090                           cmsg->cmsg_level, cmsg->cmsg_type);
2091             memcpy(target_data, data, MIN(len, tgt_len));
2092             if (tgt_len > len) {
2093                 memset(target_data + len, 0, tgt_len - len);
2094             }
2095         }
2096 
2097         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2098         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2099         if (msg_controllen < tgt_space) {
2100             tgt_space = msg_controllen;
2101         }
2102         msg_controllen -= tgt_space;
2103         space += tgt_space;
2104         cmsg = CMSG_NXTHDR(msgh, cmsg);
2105         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2106                                          target_cmsg_start);
2107     }
2108     unlock_user(target_cmsg, target_cmsg_addr, space);
2109  the_end:
2110     target_msgh->msg_controllen = tswapal(space);
2111     return 0;
2112 }
2113 
2114 /* do_setsockopt() Must return target values and target errnos. */
2115 static abi_long do_setsockopt(int sockfd, int level, int optname,
2116                               abi_ulong optval_addr, socklen_t optlen)
2117 {
2118     abi_long ret;
2119     int val;
2120     struct ip_mreqn *ip_mreq;
2121     struct ip_mreq_source *ip_mreq_source;
2122 
2123     switch(level) {
2124     case SOL_TCP:
2125     case SOL_UDP:
2126         /* TCP and UDP options all take an 'int' value.  */
2127         if (optlen < sizeof(uint32_t))
2128             return -TARGET_EINVAL;
2129 
2130         if (get_user_u32(val, optval_addr))
2131             return -TARGET_EFAULT;
2132         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2133         break;
2134     case SOL_IP:
2135         switch(optname) {
2136         case IP_TOS:
2137         case IP_TTL:
2138         case IP_HDRINCL:
2139         case IP_ROUTER_ALERT:
2140         case IP_RECVOPTS:
2141         case IP_RETOPTS:
2142         case IP_PKTINFO:
2143         case IP_MTU_DISCOVER:
2144         case IP_RECVERR:
2145         case IP_RECVTTL:
2146         case IP_RECVTOS:
2147 #ifdef IP_FREEBIND
2148         case IP_FREEBIND:
2149 #endif
2150         case IP_MULTICAST_TTL:
2151         case IP_MULTICAST_LOOP:
2152             val = 0;
2153             if (optlen >= sizeof(uint32_t)) {
2154                 if (get_user_u32(val, optval_addr))
2155                     return -TARGET_EFAULT;
2156             } else if (optlen >= 1) {
2157                 if (get_user_u8(val, optval_addr))
2158                     return -TARGET_EFAULT;
2159             }
2160             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2161             break;
2162         case IP_ADD_MEMBERSHIP:
2163         case IP_DROP_MEMBERSHIP:
2164             if (optlen < sizeof (struct target_ip_mreq) ||
2165                 optlen > sizeof (struct target_ip_mreqn))
2166                 return -TARGET_EINVAL;
2167 
2168             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2169             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2170             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2171             break;
2172 
2173         case IP_BLOCK_SOURCE:
2174         case IP_UNBLOCK_SOURCE:
2175         case IP_ADD_SOURCE_MEMBERSHIP:
2176         case IP_DROP_SOURCE_MEMBERSHIP:
2177             if (optlen != sizeof (struct target_ip_mreq_source))
2178                 return -TARGET_EINVAL;
2179 
2180             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2181             if (!ip_mreq_source) {
2182                 return -TARGET_EFAULT;
2183             }
2184             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2185             unlock_user (ip_mreq_source, optval_addr, 0);
2186             break;
2187 
2188         default:
2189             goto unimplemented;
2190         }
2191         break;
2192     case SOL_IPV6:
2193         switch (optname) {
2194         case IPV6_MTU_DISCOVER:
2195         case IPV6_MTU:
2196         case IPV6_V6ONLY:
2197         case IPV6_RECVPKTINFO:
2198         case IPV6_UNICAST_HOPS:
2199         case IPV6_MULTICAST_HOPS:
2200         case IPV6_MULTICAST_LOOP:
2201         case IPV6_RECVERR:
2202         case IPV6_RECVHOPLIMIT:
2203         case IPV6_2292HOPLIMIT:
2204         case IPV6_CHECKSUM:
2205         case IPV6_ADDRFORM:
2206         case IPV6_2292PKTINFO:
2207         case IPV6_RECVTCLASS:
2208         case IPV6_RECVRTHDR:
2209         case IPV6_2292RTHDR:
2210         case IPV6_RECVHOPOPTS:
2211         case IPV6_2292HOPOPTS:
2212         case IPV6_RECVDSTOPTS:
2213         case IPV6_2292DSTOPTS:
2214         case IPV6_TCLASS:
2215         case IPV6_ADDR_PREFERENCES:
2216 #ifdef IPV6_RECVPATHMTU
2217         case IPV6_RECVPATHMTU:
2218 #endif
2219 #ifdef IPV6_TRANSPARENT
2220         case IPV6_TRANSPARENT:
2221 #endif
2222 #ifdef IPV6_FREEBIND
2223         case IPV6_FREEBIND:
2224 #endif
2225 #ifdef IPV6_RECVORIGDSTADDR
2226         case IPV6_RECVORIGDSTADDR:
2227 #endif
2228             val = 0;
2229             if (optlen < sizeof(uint32_t)) {
2230                 return -TARGET_EINVAL;
2231             }
2232             if (get_user_u32(val, optval_addr)) {
2233                 return -TARGET_EFAULT;
2234             }
2235             ret = get_errno(setsockopt(sockfd, level, optname,
2236                                        &val, sizeof(val)));
2237             break;
2238         case IPV6_PKTINFO:
2239         {
2240             struct in6_pktinfo pki;
2241 
2242             if (optlen < sizeof(pki)) {
2243                 return -TARGET_EINVAL;
2244             }
2245 
2246             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2247                 return -TARGET_EFAULT;
2248             }
2249 
2250             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2251 
2252             ret = get_errno(setsockopt(sockfd, level, optname,
2253                                        &pki, sizeof(pki)));
2254             break;
2255         }
2256         case IPV6_ADD_MEMBERSHIP:
2257         case IPV6_DROP_MEMBERSHIP:
2258         {
2259             struct ipv6_mreq ipv6mreq;
2260 
2261             if (optlen < sizeof(ipv6mreq)) {
2262                 return -TARGET_EINVAL;
2263             }
2264 
2265             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2266                 return -TARGET_EFAULT;
2267             }
2268 
2269             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2270 
2271             ret = get_errno(setsockopt(sockfd, level, optname,
2272                                        &ipv6mreq, sizeof(ipv6mreq)));
2273             break;
2274         }
2275         default:
2276             goto unimplemented;
2277         }
2278         break;
2279     case SOL_ICMPV6:
2280         switch (optname) {
2281         case ICMPV6_FILTER:
2282         {
2283             struct icmp6_filter icmp6f;
2284 
2285             if (optlen > sizeof(icmp6f)) {
2286                 optlen = sizeof(icmp6f);
2287             }
2288 
2289             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2290                 return -TARGET_EFAULT;
2291             }
2292 
2293             for (val = 0; val < 8; val++) {
2294                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2295             }
2296 
2297             ret = get_errno(setsockopt(sockfd, level, optname,
2298                                        &icmp6f, optlen));
2299             break;
2300         }
2301         default:
2302             goto unimplemented;
2303         }
2304         break;
2305     case SOL_RAW:
2306         switch (optname) {
2307         case ICMP_FILTER:
2308         case IPV6_CHECKSUM:
2309             /* those take an u32 value */
2310             if (optlen < sizeof(uint32_t)) {
2311                 return -TARGET_EINVAL;
2312             }
2313 
2314             if (get_user_u32(val, optval_addr)) {
2315                 return -TARGET_EFAULT;
2316             }
2317             ret = get_errno(setsockopt(sockfd, level, optname,
2318                                        &val, sizeof(val)));
2319             break;
2320 
2321         default:
2322             goto unimplemented;
2323         }
2324         break;
2325 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2326     case SOL_ALG:
2327         switch (optname) {
2328         case ALG_SET_KEY:
2329         {
2330             char *alg_key = g_malloc(optlen);
2331 
2332             if (!alg_key) {
2333                 return -TARGET_ENOMEM;
2334             }
2335             if (copy_from_user(alg_key, optval_addr, optlen)) {
2336                 g_free(alg_key);
2337                 return -TARGET_EFAULT;
2338             }
2339             ret = get_errno(setsockopt(sockfd, level, optname,
2340                                        alg_key, optlen));
2341             g_free(alg_key);
2342             break;
2343         }
2344         case ALG_SET_AEAD_AUTHSIZE:
2345         {
2346             ret = get_errno(setsockopt(sockfd, level, optname,
2347                                        NULL, optlen));
2348             break;
2349         }
2350         default:
2351             goto unimplemented;
2352         }
2353         break;
2354 #endif
2355     case TARGET_SOL_SOCKET:
2356         switch (optname) {
2357         case TARGET_SO_RCVTIMEO:
2358         {
2359                 struct timeval tv;
2360 
2361                 optname = SO_RCVTIMEO;
2362 
2363 set_timeout:
2364                 if (optlen != sizeof(struct target_timeval)) {
2365                     return -TARGET_EINVAL;
2366                 }
2367 
2368                 if (copy_from_user_timeval(&tv, optval_addr)) {
2369                     return -TARGET_EFAULT;
2370                 }
2371 
2372                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2373                                 &tv, sizeof(tv)));
2374                 return ret;
2375         }
2376         case TARGET_SO_SNDTIMEO:
2377                 optname = SO_SNDTIMEO;
2378                 goto set_timeout;
2379         case TARGET_SO_ATTACH_FILTER:
2380         {
2381                 struct target_sock_fprog *tfprog;
2382                 struct target_sock_filter *tfilter;
2383                 struct sock_fprog fprog;
2384                 struct sock_filter *filter;
2385                 int i;
2386 
2387                 if (optlen != sizeof(*tfprog)) {
2388                     return -TARGET_EINVAL;
2389                 }
2390                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2391                     return -TARGET_EFAULT;
2392                 }
2393                 if (!lock_user_struct(VERIFY_READ, tfilter,
2394                                       tswapal(tfprog->filter), 0)) {
2395                     unlock_user_struct(tfprog, optval_addr, 1);
2396                     return -TARGET_EFAULT;
2397                 }
2398 
2399                 fprog.len = tswap16(tfprog->len);
2400                 filter = g_try_new(struct sock_filter, fprog.len);
2401                 if (filter == NULL) {
2402                     unlock_user_struct(tfilter, tfprog->filter, 1);
2403                     unlock_user_struct(tfprog, optval_addr, 1);
2404                     return -TARGET_ENOMEM;
2405                 }
2406                 for (i = 0; i < fprog.len; i++) {
2407                     filter[i].code = tswap16(tfilter[i].code);
2408                     filter[i].jt = tfilter[i].jt;
2409                     filter[i].jf = tfilter[i].jf;
2410                     filter[i].k = tswap32(tfilter[i].k);
2411                 }
2412                 fprog.filter = filter;
2413 
2414                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2415                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2416                 g_free(filter);
2417 
2418                 unlock_user_struct(tfilter, tfprog->filter, 1);
2419                 unlock_user_struct(tfprog, optval_addr, 1);
2420                 return ret;
2421         }
2422 	case TARGET_SO_BINDTODEVICE:
2423 	{
2424 		char *dev_ifname, *addr_ifname;
2425 
2426 		if (optlen > IFNAMSIZ - 1) {
2427 		    optlen = IFNAMSIZ - 1;
2428 		}
2429 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2430 		if (!dev_ifname) {
2431 		    return -TARGET_EFAULT;
2432 		}
2433 		optname = SO_BINDTODEVICE;
2434 		addr_ifname = alloca(IFNAMSIZ);
2435 		memcpy(addr_ifname, dev_ifname, optlen);
2436 		addr_ifname[optlen] = 0;
2437 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2438                                            addr_ifname, optlen));
2439 		unlock_user (dev_ifname, optval_addr, 0);
2440 		return ret;
2441 	}
2442         case TARGET_SO_LINGER:
2443         {
2444                 struct linger lg;
2445                 struct target_linger *tlg;
2446 
2447                 if (optlen != sizeof(struct target_linger)) {
2448                     return -TARGET_EINVAL;
2449                 }
2450                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2451                     return -TARGET_EFAULT;
2452                 }
2453                 __get_user(lg.l_onoff, &tlg->l_onoff);
2454                 __get_user(lg.l_linger, &tlg->l_linger);
2455                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2456                                 &lg, sizeof(lg)));
2457                 unlock_user_struct(tlg, optval_addr, 0);
2458                 return ret;
2459         }
2460             /* Options with 'int' argument.  */
2461         case TARGET_SO_DEBUG:
2462 		optname = SO_DEBUG;
2463 		break;
2464         case TARGET_SO_REUSEADDR:
2465 		optname = SO_REUSEADDR;
2466 		break;
2467 #ifdef SO_REUSEPORT
2468         case TARGET_SO_REUSEPORT:
2469                 optname = SO_REUSEPORT;
2470                 break;
2471 #endif
2472         case TARGET_SO_TYPE:
2473 		optname = SO_TYPE;
2474 		break;
2475         case TARGET_SO_ERROR:
2476 		optname = SO_ERROR;
2477 		break;
2478         case TARGET_SO_DONTROUTE:
2479 		optname = SO_DONTROUTE;
2480 		break;
2481         case TARGET_SO_BROADCAST:
2482 		optname = SO_BROADCAST;
2483 		break;
2484         case TARGET_SO_SNDBUF:
2485 		optname = SO_SNDBUF;
2486 		break;
2487         case TARGET_SO_SNDBUFFORCE:
2488                 optname = SO_SNDBUFFORCE;
2489                 break;
2490         case TARGET_SO_RCVBUF:
2491 		optname = SO_RCVBUF;
2492 		break;
2493         case TARGET_SO_RCVBUFFORCE:
2494                 optname = SO_RCVBUFFORCE;
2495                 break;
2496         case TARGET_SO_KEEPALIVE:
2497 		optname = SO_KEEPALIVE;
2498 		break;
2499         case TARGET_SO_OOBINLINE:
2500 		optname = SO_OOBINLINE;
2501 		break;
2502         case TARGET_SO_NO_CHECK:
2503 		optname = SO_NO_CHECK;
2504 		break;
2505         case TARGET_SO_PRIORITY:
2506 		optname = SO_PRIORITY;
2507 		break;
2508 #ifdef SO_BSDCOMPAT
2509         case TARGET_SO_BSDCOMPAT:
2510 		optname = SO_BSDCOMPAT;
2511 		break;
2512 #endif
2513         case TARGET_SO_PASSCRED:
2514 		optname = SO_PASSCRED;
2515 		break;
2516         case TARGET_SO_PASSSEC:
2517                 optname = SO_PASSSEC;
2518                 break;
2519         case TARGET_SO_TIMESTAMP:
2520 		optname = SO_TIMESTAMP;
2521 		break;
2522         case TARGET_SO_RCVLOWAT:
2523 		optname = SO_RCVLOWAT;
2524 		break;
2525         default:
2526             goto unimplemented;
2527         }
2528 	if (optlen < sizeof(uint32_t))
2529             return -TARGET_EINVAL;
2530 
2531 	if (get_user_u32(val, optval_addr))
2532             return -TARGET_EFAULT;
2533 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2534         break;
2535 #ifdef SOL_NETLINK
2536     case SOL_NETLINK:
2537         switch (optname) {
2538         case NETLINK_PKTINFO:
2539         case NETLINK_ADD_MEMBERSHIP:
2540         case NETLINK_DROP_MEMBERSHIP:
2541         case NETLINK_BROADCAST_ERROR:
2542         case NETLINK_NO_ENOBUFS:
2543 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2544         case NETLINK_LISTEN_ALL_NSID:
2545         case NETLINK_CAP_ACK:
2546 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2547 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2548         case NETLINK_EXT_ACK:
2549 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2550 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2551         case NETLINK_GET_STRICT_CHK:
2552 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2553             break;
2554         default:
2555             goto unimplemented;
2556         }
2557         val = 0;
2558         if (optlen < sizeof(uint32_t)) {
2559             return -TARGET_EINVAL;
2560         }
2561         if (get_user_u32(val, optval_addr)) {
2562             return -TARGET_EFAULT;
2563         }
2564         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2565                                    sizeof(val)));
2566         break;
2567 #endif /* SOL_NETLINK */
2568     default:
2569     unimplemented:
2570         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2571                       level, optname);
2572         ret = -TARGET_ENOPROTOOPT;
2573     }
2574     return ret;
2575 }
2576 
2577 /* do_getsockopt() Must return target values and target errnos. */
2578 static abi_long do_getsockopt(int sockfd, int level, int optname,
2579                               abi_ulong optval_addr, abi_ulong optlen)
2580 {
2581     abi_long ret;
2582     int len, val;
2583     socklen_t lv;
2584 
2585     switch(level) {
2586     case TARGET_SOL_SOCKET:
2587         level = SOL_SOCKET;
2588         switch (optname) {
2589         /* These don't just return a single integer */
2590         case TARGET_SO_PEERNAME:
2591             goto unimplemented;
2592         case TARGET_SO_RCVTIMEO: {
2593             struct timeval tv;
2594             socklen_t tvlen;
2595 
2596             optname = SO_RCVTIMEO;
2597 
2598 get_timeout:
2599             if (get_user_u32(len, optlen)) {
2600                 return -TARGET_EFAULT;
2601             }
2602             if (len < 0) {
2603                 return -TARGET_EINVAL;
2604             }
2605 
2606             tvlen = sizeof(tv);
2607             ret = get_errno(getsockopt(sockfd, level, optname,
2608                                        &tv, &tvlen));
2609             if (ret < 0) {
2610                 return ret;
2611             }
2612             if (len > sizeof(struct target_timeval)) {
2613                 len = sizeof(struct target_timeval);
2614             }
2615             if (copy_to_user_timeval(optval_addr, &tv)) {
2616                 return -TARGET_EFAULT;
2617             }
2618             if (put_user_u32(len, optlen)) {
2619                 return -TARGET_EFAULT;
2620             }
2621             break;
2622         }
2623         case TARGET_SO_SNDTIMEO:
2624             optname = SO_SNDTIMEO;
2625             goto get_timeout;
2626         case TARGET_SO_PEERCRED: {
2627             struct ucred cr;
2628             socklen_t crlen;
2629             struct target_ucred *tcr;
2630 
2631             if (get_user_u32(len, optlen)) {
2632                 return -TARGET_EFAULT;
2633             }
2634             if (len < 0) {
2635                 return -TARGET_EINVAL;
2636             }
2637 
2638             crlen = sizeof(cr);
2639             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2640                                        &cr, &crlen));
2641             if (ret < 0) {
2642                 return ret;
2643             }
2644             if (len > crlen) {
2645                 len = crlen;
2646             }
2647             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2648                 return -TARGET_EFAULT;
2649             }
2650             __put_user(cr.pid, &tcr->pid);
2651             __put_user(cr.uid, &tcr->uid);
2652             __put_user(cr.gid, &tcr->gid);
2653             unlock_user_struct(tcr, optval_addr, 1);
2654             if (put_user_u32(len, optlen)) {
2655                 return -TARGET_EFAULT;
2656             }
2657             break;
2658         }
2659         case TARGET_SO_PEERSEC: {
2660             char *name;
2661 
2662             if (get_user_u32(len, optlen)) {
2663                 return -TARGET_EFAULT;
2664             }
2665             if (len < 0) {
2666                 return -TARGET_EINVAL;
2667             }
2668             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2669             if (!name) {
2670                 return -TARGET_EFAULT;
2671             }
2672             lv = len;
2673             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2674                                        name, &lv));
2675             if (put_user_u32(lv, optlen)) {
2676                 ret = -TARGET_EFAULT;
2677             }
2678             unlock_user(name, optval_addr, lv);
2679             break;
2680         }
2681         case TARGET_SO_LINGER:
2682         {
2683             struct linger lg;
2684             socklen_t lglen;
2685             struct target_linger *tlg;
2686 
2687             if (get_user_u32(len, optlen)) {
2688                 return -TARGET_EFAULT;
2689             }
2690             if (len < 0) {
2691                 return -TARGET_EINVAL;
2692             }
2693 
2694             lglen = sizeof(lg);
2695             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2696                                        &lg, &lglen));
2697             if (ret < 0) {
2698                 return ret;
2699             }
2700             if (len > lglen) {
2701                 len = lglen;
2702             }
2703             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2704                 return -TARGET_EFAULT;
2705             }
2706             __put_user(lg.l_onoff, &tlg->l_onoff);
2707             __put_user(lg.l_linger, &tlg->l_linger);
2708             unlock_user_struct(tlg, optval_addr, 1);
2709             if (put_user_u32(len, optlen)) {
2710                 return -TARGET_EFAULT;
2711             }
2712             break;
2713         }
2714         /* Options with 'int' argument.  */
2715         case TARGET_SO_DEBUG:
2716             optname = SO_DEBUG;
2717             goto int_case;
2718         case TARGET_SO_REUSEADDR:
2719             optname = SO_REUSEADDR;
2720             goto int_case;
2721 #ifdef SO_REUSEPORT
2722         case TARGET_SO_REUSEPORT:
2723             optname = SO_REUSEPORT;
2724             goto int_case;
2725 #endif
2726         case TARGET_SO_TYPE:
2727             optname = SO_TYPE;
2728             goto int_case;
2729         case TARGET_SO_ERROR:
2730             optname = SO_ERROR;
2731             goto int_case;
2732         case TARGET_SO_DONTROUTE:
2733             optname = SO_DONTROUTE;
2734             goto int_case;
2735         case TARGET_SO_BROADCAST:
2736             optname = SO_BROADCAST;
2737             goto int_case;
2738         case TARGET_SO_SNDBUF:
2739             optname = SO_SNDBUF;
2740             goto int_case;
2741         case TARGET_SO_RCVBUF:
2742             optname = SO_RCVBUF;
2743             goto int_case;
2744         case TARGET_SO_KEEPALIVE:
2745             optname = SO_KEEPALIVE;
2746             goto int_case;
2747         case TARGET_SO_OOBINLINE:
2748             optname = SO_OOBINLINE;
2749             goto int_case;
2750         case TARGET_SO_NO_CHECK:
2751             optname = SO_NO_CHECK;
2752             goto int_case;
2753         case TARGET_SO_PRIORITY:
2754             optname = SO_PRIORITY;
2755             goto int_case;
2756 #ifdef SO_BSDCOMPAT
2757         case TARGET_SO_BSDCOMPAT:
2758             optname = SO_BSDCOMPAT;
2759             goto int_case;
2760 #endif
2761         case TARGET_SO_PASSCRED:
2762             optname = SO_PASSCRED;
2763             goto int_case;
2764         case TARGET_SO_TIMESTAMP:
2765             optname = SO_TIMESTAMP;
2766             goto int_case;
2767         case TARGET_SO_RCVLOWAT:
2768             optname = SO_RCVLOWAT;
2769             goto int_case;
2770         case TARGET_SO_ACCEPTCONN:
2771             optname = SO_ACCEPTCONN;
2772             goto int_case;
2773         case TARGET_SO_PROTOCOL:
2774             optname = SO_PROTOCOL;
2775             goto int_case;
2776         case TARGET_SO_DOMAIN:
2777             optname = SO_DOMAIN;
2778             goto int_case;
2779         default:
2780             goto int_case;
2781         }
2782         break;
2783     case SOL_TCP:
2784     case SOL_UDP:
2785         /* TCP and UDP options all take an 'int' value.  */
2786     int_case:
2787         if (get_user_u32(len, optlen))
2788             return -TARGET_EFAULT;
2789         if (len < 0)
2790             return -TARGET_EINVAL;
2791         lv = sizeof(lv);
2792         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2793         if (ret < 0)
2794             return ret;
2795         if (optname == SO_TYPE) {
2796             val = host_to_target_sock_type(val);
2797         }
2798         if (len > lv)
2799             len = lv;
2800         if (len == 4) {
2801             if (put_user_u32(val, optval_addr))
2802                 return -TARGET_EFAULT;
2803         } else {
2804             if (put_user_u8(val, optval_addr))
2805                 return -TARGET_EFAULT;
2806         }
2807         if (put_user_u32(len, optlen))
2808             return -TARGET_EFAULT;
2809         break;
2810     case SOL_IP:
2811         switch(optname) {
2812         case IP_TOS:
2813         case IP_TTL:
2814         case IP_HDRINCL:
2815         case IP_ROUTER_ALERT:
2816         case IP_RECVOPTS:
2817         case IP_RETOPTS:
2818         case IP_PKTINFO:
2819         case IP_MTU_DISCOVER:
2820         case IP_RECVERR:
2821         case IP_RECVTOS:
2822 #ifdef IP_FREEBIND
2823         case IP_FREEBIND:
2824 #endif
2825         case IP_MULTICAST_TTL:
2826         case IP_MULTICAST_LOOP:
2827             if (get_user_u32(len, optlen))
2828                 return -TARGET_EFAULT;
2829             if (len < 0)
2830                 return -TARGET_EINVAL;
2831             lv = sizeof(lv);
2832             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2833             if (ret < 0)
2834                 return ret;
2835             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2836                 len = 1;
2837                 if (put_user_u32(len, optlen)
2838                     || put_user_u8(val, optval_addr))
2839                     return -TARGET_EFAULT;
2840             } else {
2841                 if (len > sizeof(int))
2842                     len = sizeof(int);
2843                 if (put_user_u32(len, optlen)
2844                     || put_user_u32(val, optval_addr))
2845                     return -TARGET_EFAULT;
2846             }
2847             break;
2848         default:
2849             ret = -TARGET_ENOPROTOOPT;
2850             break;
2851         }
2852         break;
2853     case SOL_IPV6:
2854         switch (optname) {
2855         case IPV6_MTU_DISCOVER:
2856         case IPV6_MTU:
2857         case IPV6_V6ONLY:
2858         case IPV6_RECVPKTINFO:
2859         case IPV6_UNICAST_HOPS:
2860         case IPV6_MULTICAST_HOPS:
2861         case IPV6_MULTICAST_LOOP:
2862         case IPV6_RECVERR:
2863         case IPV6_RECVHOPLIMIT:
2864         case IPV6_2292HOPLIMIT:
2865         case IPV6_CHECKSUM:
2866         case IPV6_ADDRFORM:
2867         case IPV6_2292PKTINFO:
2868         case IPV6_RECVTCLASS:
2869         case IPV6_RECVRTHDR:
2870         case IPV6_2292RTHDR:
2871         case IPV6_RECVHOPOPTS:
2872         case IPV6_2292HOPOPTS:
2873         case IPV6_RECVDSTOPTS:
2874         case IPV6_2292DSTOPTS:
2875         case IPV6_TCLASS:
2876         case IPV6_ADDR_PREFERENCES:
2877 #ifdef IPV6_RECVPATHMTU
2878         case IPV6_RECVPATHMTU:
2879 #endif
2880 #ifdef IPV6_TRANSPARENT
2881         case IPV6_TRANSPARENT:
2882 #endif
2883 #ifdef IPV6_FREEBIND
2884         case IPV6_FREEBIND:
2885 #endif
2886 #ifdef IPV6_RECVORIGDSTADDR
2887         case IPV6_RECVORIGDSTADDR:
2888 #endif
2889             if (get_user_u32(len, optlen))
2890                 return -TARGET_EFAULT;
2891             if (len < 0)
2892                 return -TARGET_EINVAL;
2893             lv = sizeof(lv);
2894             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2895             if (ret < 0)
2896                 return ret;
2897             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2898                 len = 1;
2899                 if (put_user_u32(len, optlen)
2900                     || put_user_u8(val, optval_addr))
2901                     return -TARGET_EFAULT;
2902             } else {
2903                 if (len > sizeof(int))
2904                     len = sizeof(int);
2905                 if (put_user_u32(len, optlen)
2906                     || put_user_u32(val, optval_addr))
2907                     return -TARGET_EFAULT;
2908             }
2909             break;
2910         default:
2911             ret = -TARGET_ENOPROTOOPT;
2912             break;
2913         }
2914         break;
2915 #ifdef SOL_NETLINK
2916     case SOL_NETLINK:
2917         switch (optname) {
2918         case NETLINK_PKTINFO:
2919         case NETLINK_BROADCAST_ERROR:
2920         case NETLINK_NO_ENOBUFS:
2921 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2922         case NETLINK_LISTEN_ALL_NSID:
2923         case NETLINK_CAP_ACK:
2924 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2925 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2926         case NETLINK_EXT_ACK:
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2928 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2929         case NETLINK_GET_STRICT_CHK:
2930 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2931             if (get_user_u32(len, optlen)) {
2932                 return -TARGET_EFAULT;
2933             }
2934             if (len != sizeof(val)) {
2935                 return -TARGET_EINVAL;
2936             }
2937             lv = len;
2938             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2939             if (ret < 0) {
2940                 return ret;
2941             }
2942             if (put_user_u32(lv, optlen)
2943                 || put_user_u32(val, optval_addr)) {
2944                 return -TARGET_EFAULT;
2945             }
2946             break;
2947 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2948         case NETLINK_LIST_MEMBERSHIPS:
2949         {
2950             uint32_t *results;
2951             int i;
2952             if (get_user_u32(len, optlen)) {
2953                 return -TARGET_EFAULT;
2954             }
2955             if (len < 0) {
2956                 return -TARGET_EINVAL;
2957             }
2958             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2959             if (!results && len > 0) {
2960                 return -TARGET_EFAULT;
2961             }
2962             lv = len;
2963             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2964             if (ret < 0) {
2965                 unlock_user(results, optval_addr, 0);
2966                 return ret;
2967             }
2968             /* swap host endianess to target endianess. */
2969             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2970                 results[i] = tswap32(results[i]);
2971             }
2972             if (put_user_u32(lv, optlen)) {
2973                 return -TARGET_EFAULT;
2974             }
2975             unlock_user(results, optval_addr, 0);
2976             break;
2977         }
2978 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2979         default:
2980             goto unimplemented;
2981         }
2982         break;
2983 #endif /* SOL_NETLINK */
2984     default:
2985     unimplemented:
2986         qemu_log_mask(LOG_UNIMP,
2987                       "getsockopt level=%d optname=%d not yet supported\n",
2988                       level, optname);
2989         ret = -TARGET_EOPNOTSUPP;
2990         break;
2991     }
2992     return ret;
2993 }
2994 
2995 /* Convert target low/high pair representing file offset into the host
2996  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2997  * as the kernel doesn't handle them either.
2998  */
2999 static void target_to_host_low_high(abi_ulong tlow,
3000                                     abi_ulong thigh,
3001                                     unsigned long *hlow,
3002                                     unsigned long *hhigh)
3003 {
3004     uint64_t off = tlow |
3005         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
3006         TARGET_LONG_BITS / 2;
3007 
3008     *hlow = off;
3009     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
3010 }
3011 
3012 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3013                                 abi_ulong count, int copy)
3014 {
3015     struct target_iovec *target_vec;
3016     struct iovec *vec;
3017     abi_ulong total_len, max_len;
3018     int i;
3019     int err = 0;
3020     bool bad_address = false;
3021 
3022     if (count == 0) {
3023         errno = 0;
3024         return NULL;
3025     }
3026     if (count > IOV_MAX) {
3027         errno = EINVAL;
3028         return NULL;
3029     }
3030 
3031     vec = g_try_new0(struct iovec, count);
3032     if (vec == NULL) {
3033         errno = ENOMEM;
3034         return NULL;
3035     }
3036 
3037     target_vec = lock_user(VERIFY_READ, target_addr,
3038                            count * sizeof(struct target_iovec), 1);
3039     if (target_vec == NULL) {
3040         err = EFAULT;
3041         goto fail2;
3042     }
3043 
3044     /* ??? If host page size > target page size, this will result in a
3045        value larger than what we can actually support.  */
3046     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3047     total_len = 0;
3048 
3049     for (i = 0; i < count; i++) {
3050         abi_ulong base = tswapal(target_vec[i].iov_base);
3051         abi_long len = tswapal(target_vec[i].iov_len);
3052 
3053         if (len < 0) {
3054             err = EINVAL;
3055             goto fail;
3056         } else if (len == 0) {
3057             /* Zero length pointer is ignored.  */
3058             vec[i].iov_base = 0;
3059         } else {
3060             vec[i].iov_base = lock_user(type, base, len, copy);
3061             /* If the first buffer pointer is bad, this is a fault.  But
3062              * subsequent bad buffers will result in a partial write; this
3063              * is realized by filling the vector with null pointers and
3064              * zero lengths. */
3065             if (!vec[i].iov_base) {
3066                 if (i == 0) {
3067                     err = EFAULT;
3068                     goto fail;
3069                 } else {
3070                     bad_address = true;
3071                 }
3072             }
3073             if (bad_address) {
3074                 len = 0;
3075             }
3076             if (len > max_len - total_len) {
3077                 len = max_len - total_len;
3078             }
3079         }
3080         vec[i].iov_len = len;
3081         total_len += len;
3082     }
3083 
3084     unlock_user(target_vec, target_addr, 0);
3085     return vec;
3086 
3087  fail:
3088     while (--i >= 0) {
3089         if (tswapal(target_vec[i].iov_len) > 0) {
3090             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3091         }
3092     }
3093     unlock_user(target_vec, target_addr, 0);
3094  fail2:
3095     g_free(vec);
3096     errno = err;
3097     return NULL;
3098 }
3099 
3100 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3101                          abi_ulong count, int copy)
3102 {
3103     struct target_iovec *target_vec;
3104     int i;
3105 
3106     target_vec = lock_user(VERIFY_READ, target_addr,
3107                            count * sizeof(struct target_iovec), 1);
3108     if (target_vec) {
3109         for (i = 0; i < count; i++) {
3110             abi_ulong base = tswapal(target_vec[i].iov_base);
3111             abi_long len = tswapal(target_vec[i].iov_len);
3112             if (len < 0) {
3113                 break;
3114             }
3115             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3116         }
3117         unlock_user(target_vec, target_addr, 0);
3118     }
3119 
3120     g_free(vec);
3121 }
3122 
3123 static inline int target_to_host_sock_type(int *type)
3124 {
3125     int host_type = 0;
3126     int target_type = *type;
3127 
3128     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3129     case TARGET_SOCK_DGRAM:
3130         host_type = SOCK_DGRAM;
3131         break;
3132     case TARGET_SOCK_STREAM:
3133         host_type = SOCK_STREAM;
3134         break;
3135     default:
3136         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3137         break;
3138     }
3139     if (target_type & TARGET_SOCK_CLOEXEC) {
3140 #if defined(SOCK_CLOEXEC)
3141         host_type |= SOCK_CLOEXEC;
3142 #else
3143         return -TARGET_EINVAL;
3144 #endif
3145     }
3146     if (target_type & TARGET_SOCK_NONBLOCK) {
3147 #if defined(SOCK_NONBLOCK)
3148         host_type |= SOCK_NONBLOCK;
3149 #elif !defined(O_NONBLOCK)
3150         return -TARGET_EINVAL;
3151 #endif
3152     }
3153     *type = host_type;
3154     return 0;
3155 }
3156 
3157 /* Try to emulate socket type flags after socket creation.  */
3158 static int sock_flags_fixup(int fd, int target_type)
3159 {
3160 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3161     if (target_type & TARGET_SOCK_NONBLOCK) {
3162         int flags = fcntl(fd, F_GETFL);
3163         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3164             close(fd);
3165             return -TARGET_EINVAL;
3166         }
3167     }
3168 #endif
3169     return fd;
3170 }
3171 
3172 /* do_socket() Must return target values and target errnos. */
3173 static abi_long do_socket(int domain, int type, int protocol)
3174 {
3175     int target_type = type;
3176     int ret;
3177 
3178     ret = target_to_host_sock_type(&type);
3179     if (ret) {
3180         return ret;
3181     }
3182 
3183     if (domain == PF_NETLINK && !(
3184 #ifdef CONFIG_RTNETLINK
3185          protocol == NETLINK_ROUTE ||
3186 #endif
3187          protocol == NETLINK_KOBJECT_UEVENT ||
3188          protocol == NETLINK_AUDIT)) {
3189         return -TARGET_EPROTONOSUPPORT;
3190     }
3191 
3192     if (domain == AF_PACKET ||
3193         (domain == AF_INET && type == SOCK_PACKET)) {
3194         protocol = tswap16(protocol);
3195     }
3196 
3197     ret = get_errno(socket(domain, type, protocol));
3198     if (ret >= 0) {
3199         ret = sock_flags_fixup(ret, target_type);
3200         if (type == SOCK_PACKET) {
3201             /* Manage an obsolete case :
3202              * if socket type is SOCK_PACKET, bind by name
3203              */
3204             fd_trans_register(ret, &target_packet_trans);
3205         } else if (domain == PF_NETLINK) {
3206             switch (protocol) {
3207 #ifdef CONFIG_RTNETLINK
3208             case NETLINK_ROUTE:
3209                 fd_trans_register(ret, &target_netlink_route_trans);
3210                 break;
3211 #endif
3212             case NETLINK_KOBJECT_UEVENT:
3213                 /* nothing to do: messages are strings */
3214                 break;
3215             case NETLINK_AUDIT:
3216                 fd_trans_register(ret, &target_netlink_audit_trans);
3217                 break;
3218             default:
3219                 g_assert_not_reached();
3220             }
3221         }
3222     }
3223     return ret;
3224 }
3225 
3226 /* do_bind() Must return target values and target errnos. */
3227 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3228                         socklen_t addrlen)
3229 {
3230     void *addr;
3231     abi_long ret;
3232 
3233     if ((int)addrlen < 0) {
3234         return -TARGET_EINVAL;
3235     }
3236 
3237     addr = alloca(addrlen+1);
3238 
3239     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3240     if (ret)
3241         return ret;
3242 
3243     return get_errno(bind(sockfd, addr, addrlen));
3244 }
3245 
3246 /* do_connect() Must return target values and target errnos. */
3247 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3248                            socklen_t addrlen)
3249 {
3250     void *addr;
3251     abi_long ret;
3252 
3253     if ((int)addrlen < 0) {
3254         return -TARGET_EINVAL;
3255     }
3256 
3257     addr = alloca(addrlen+1);
3258 
3259     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3260     if (ret)
3261         return ret;
3262 
3263     return get_errno(safe_connect(sockfd, addr, addrlen));
3264 }
3265 
3266 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3267 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3268                                       int flags, int send)
3269 {
3270     abi_long ret, len;
3271     struct msghdr msg;
3272     abi_ulong count;
3273     struct iovec *vec;
3274     abi_ulong target_vec;
3275 
3276     if (msgp->msg_name) {
3277         msg.msg_namelen = tswap32(msgp->msg_namelen);
3278         msg.msg_name = alloca(msg.msg_namelen+1);
3279         ret = target_to_host_sockaddr(fd, msg.msg_name,
3280                                       tswapal(msgp->msg_name),
3281                                       msg.msg_namelen);
3282         if (ret == -TARGET_EFAULT) {
3283             /* For connected sockets msg_name and msg_namelen must
3284              * be ignored, so returning EFAULT immediately is wrong.
3285              * Instead, pass a bad msg_name to the host kernel, and
3286              * let it decide whether to return EFAULT or not.
3287              */
3288             msg.msg_name = (void *)-1;
3289         } else if (ret) {
3290             goto out2;
3291         }
3292     } else {
3293         msg.msg_name = NULL;
3294         msg.msg_namelen = 0;
3295     }
3296     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3297     msg.msg_control = alloca(msg.msg_controllen);
3298     memset(msg.msg_control, 0, msg.msg_controllen);
3299 
3300     msg.msg_flags = tswap32(msgp->msg_flags);
3301 
3302     count = tswapal(msgp->msg_iovlen);
3303     target_vec = tswapal(msgp->msg_iov);
3304 
3305     if (count > IOV_MAX) {
3306         /* sendrcvmsg returns a different errno for this condition than
3307          * readv/writev, so we must catch it here before lock_iovec() does.
3308          */
3309         ret = -TARGET_EMSGSIZE;
3310         goto out2;
3311     }
3312 
3313     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3314                      target_vec, count, send);
3315     if (vec == NULL) {
3316         ret = -host_to_target_errno(errno);
3317         goto out2;
3318     }
3319     msg.msg_iovlen = count;
3320     msg.msg_iov = vec;
3321 
3322     if (send) {
3323         if (fd_trans_target_to_host_data(fd)) {
3324             void *host_msg;
3325 
3326             host_msg = g_malloc(msg.msg_iov->iov_len);
3327             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3328             ret = fd_trans_target_to_host_data(fd)(host_msg,
3329                                                    msg.msg_iov->iov_len);
3330             if (ret >= 0) {
3331                 msg.msg_iov->iov_base = host_msg;
3332                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3333             }
3334             g_free(host_msg);
3335         } else {
3336             ret = target_to_host_cmsg(&msg, msgp);
3337             if (ret == 0) {
3338                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3339             }
3340         }
3341     } else {
3342         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3343         if (!is_error(ret)) {
3344             len = ret;
3345             if (fd_trans_host_to_target_data(fd)) {
3346                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3347                                                MIN(msg.msg_iov->iov_len, len));
3348             } else {
3349                 ret = host_to_target_cmsg(msgp, &msg);
3350             }
3351             if (!is_error(ret)) {
3352                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3353                 msgp->msg_flags = tswap32(msg.msg_flags);
3354                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3355                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3356                                     msg.msg_name, msg.msg_namelen);
3357                     if (ret) {
3358                         goto out;
3359                     }
3360                 }
3361 
3362                 ret = len;
3363             }
3364         }
3365     }
3366 
3367 out:
3368     unlock_iovec(vec, target_vec, count, !send);
3369 out2:
3370     return ret;
3371 }
3372 
3373 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3374                                int flags, int send)
3375 {
3376     abi_long ret;
3377     struct target_msghdr *msgp;
3378 
3379     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3380                           msgp,
3381                           target_msg,
3382                           send ? 1 : 0)) {
3383         return -TARGET_EFAULT;
3384     }
3385     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3386     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3387     return ret;
3388 }
3389 
3390 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3391  * so it might not have this *mmsg-specific flag either.
3392  */
3393 #ifndef MSG_WAITFORONE
3394 #define MSG_WAITFORONE 0x10000
3395 #endif
3396 
3397 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3398                                 unsigned int vlen, unsigned int flags,
3399                                 int send)
3400 {
3401     struct target_mmsghdr *mmsgp;
3402     abi_long ret = 0;
3403     int i;
3404 
3405     if (vlen > UIO_MAXIOV) {
3406         vlen = UIO_MAXIOV;
3407     }
3408 
3409     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3410     if (!mmsgp) {
3411         return -TARGET_EFAULT;
3412     }
3413 
3414     for (i = 0; i < vlen; i++) {
3415         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3416         if (is_error(ret)) {
3417             break;
3418         }
3419         mmsgp[i].msg_len = tswap32(ret);
3420         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3421         if (flags & MSG_WAITFORONE) {
3422             flags |= MSG_DONTWAIT;
3423         }
3424     }
3425 
3426     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3427 
3428     /* Return number of datagrams sent if we sent any at all;
3429      * otherwise return the error.
3430      */
3431     if (i) {
3432         return i;
3433     }
3434     return ret;
3435 }
3436 
3437 /* do_accept4() Must return target values and target errnos. */
3438 static abi_long do_accept4(int fd, abi_ulong target_addr,
3439                            abi_ulong target_addrlen_addr, int flags)
3440 {
3441     socklen_t addrlen, ret_addrlen;
3442     void *addr;
3443     abi_long ret;
3444     int host_flags;
3445 
3446     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3447 
3448     if (target_addr == 0) {
3449         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3450     }
3451 
3452     /* linux returns EFAULT if addrlen pointer is invalid */
3453     if (get_user_u32(addrlen, target_addrlen_addr))
3454         return -TARGET_EFAULT;
3455 
3456     if ((int)addrlen < 0) {
3457         return -TARGET_EINVAL;
3458     }
3459 
3460     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3461         return -TARGET_EFAULT;
3462     }
3463 
3464     addr = alloca(addrlen);
3465 
3466     ret_addrlen = addrlen;
3467     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3468     if (!is_error(ret)) {
3469         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3470         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3471             ret = -TARGET_EFAULT;
3472         }
3473     }
3474     return ret;
3475 }
3476 
3477 /* do_getpeername() Must return target values and target errnos. */
3478 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3479                                abi_ulong target_addrlen_addr)
3480 {
3481     socklen_t addrlen, ret_addrlen;
3482     void *addr;
3483     abi_long ret;
3484 
3485     if (get_user_u32(addrlen, target_addrlen_addr))
3486         return -TARGET_EFAULT;
3487 
3488     if ((int)addrlen < 0) {
3489         return -TARGET_EINVAL;
3490     }
3491 
3492     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3493         return -TARGET_EFAULT;
3494     }
3495 
3496     addr = alloca(addrlen);
3497 
3498     ret_addrlen = addrlen;
3499     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3500     if (!is_error(ret)) {
3501         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3502         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3503             ret = -TARGET_EFAULT;
3504         }
3505     }
3506     return ret;
3507 }
3508 
3509 /* do_getsockname() Must return target values and target errnos. */
3510 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3511                                abi_ulong target_addrlen_addr)
3512 {
3513     socklen_t addrlen, ret_addrlen;
3514     void *addr;
3515     abi_long ret;
3516 
3517     if (get_user_u32(addrlen, target_addrlen_addr))
3518         return -TARGET_EFAULT;
3519 
3520     if ((int)addrlen < 0) {
3521         return -TARGET_EINVAL;
3522     }
3523 
3524     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3525         return -TARGET_EFAULT;
3526     }
3527 
3528     addr = alloca(addrlen);
3529 
3530     ret_addrlen = addrlen;
3531     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3532     if (!is_error(ret)) {
3533         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3534         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3535             ret = -TARGET_EFAULT;
3536         }
3537     }
3538     return ret;
3539 }
3540 
3541 /* do_socketpair() Must return target values and target errnos. */
3542 static abi_long do_socketpair(int domain, int type, int protocol,
3543                               abi_ulong target_tab_addr)
3544 {
3545     int tab[2];
3546     abi_long ret;
3547 
3548     target_to_host_sock_type(&type);
3549 
3550     ret = get_errno(socketpair(domain, type, protocol, tab));
3551     if (!is_error(ret)) {
3552         if (put_user_s32(tab[0], target_tab_addr)
3553             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3554             ret = -TARGET_EFAULT;
3555     }
3556     return ret;
3557 }
3558 
3559 /* do_sendto() Must return target values and target errnos. */
3560 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3561                           abi_ulong target_addr, socklen_t addrlen)
3562 {
3563     void *addr;
3564     void *host_msg;
3565     void *copy_msg = NULL;
3566     abi_long ret;
3567 
3568     if ((int)addrlen < 0) {
3569         return -TARGET_EINVAL;
3570     }
3571 
3572     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3573     if (!host_msg)
3574         return -TARGET_EFAULT;
3575     if (fd_trans_target_to_host_data(fd)) {
3576         copy_msg = host_msg;
3577         host_msg = g_malloc(len);
3578         memcpy(host_msg, copy_msg, len);
3579         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3580         if (ret < 0) {
3581             goto fail;
3582         }
3583     }
3584     if (target_addr) {
3585         addr = alloca(addrlen+1);
3586         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3587         if (ret) {
3588             goto fail;
3589         }
3590         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3591     } else {
3592         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3593     }
3594 fail:
3595     if (copy_msg) {
3596         g_free(host_msg);
3597         host_msg = copy_msg;
3598     }
3599     unlock_user(host_msg, msg, 0);
3600     return ret;
3601 }
3602 
3603 /* do_recvfrom() Must return target values and target errnos. */
3604 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3605                             abi_ulong target_addr,
3606                             abi_ulong target_addrlen)
3607 {
3608     socklen_t addrlen, ret_addrlen;
3609     void *addr;
3610     void *host_msg;
3611     abi_long ret;
3612 
3613     if (!msg) {
3614         host_msg = NULL;
3615     } else {
3616         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3617         if (!host_msg) {
3618             return -TARGET_EFAULT;
3619         }
3620     }
3621     if (target_addr) {
3622         if (get_user_u32(addrlen, target_addrlen)) {
3623             ret = -TARGET_EFAULT;
3624             goto fail;
3625         }
3626         if ((int)addrlen < 0) {
3627             ret = -TARGET_EINVAL;
3628             goto fail;
3629         }
3630         addr = alloca(addrlen);
3631         ret_addrlen = addrlen;
3632         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3633                                       addr, &ret_addrlen));
3634     } else {
3635         addr = NULL; /* To keep compiler quiet.  */
3636         addrlen = 0; /* To keep compiler quiet.  */
3637         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3638     }
3639     if (!is_error(ret)) {
3640         if (fd_trans_host_to_target_data(fd)) {
3641             abi_long trans;
3642             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3643             if (is_error(trans)) {
3644                 ret = trans;
3645                 goto fail;
3646             }
3647         }
3648         if (target_addr) {
3649             host_to_target_sockaddr(target_addr, addr,
3650                                     MIN(addrlen, ret_addrlen));
3651             if (put_user_u32(ret_addrlen, target_addrlen)) {
3652                 ret = -TARGET_EFAULT;
3653                 goto fail;
3654             }
3655         }
3656         unlock_user(host_msg, msg, len);
3657     } else {
3658 fail:
3659         unlock_user(host_msg, msg, 0);
3660     }
3661     return ret;
3662 }
3663 
3664 #ifdef TARGET_NR_socketcall
3665 /* do_socketcall() must return target values and target errnos. */
3666 static abi_long do_socketcall(int num, abi_ulong vptr)
3667 {
3668     static const unsigned nargs[] = { /* number of arguments per operation */
3669         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3670         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3671         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3672         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3673         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3674         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3675         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3676         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3677         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3678         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3679         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3680         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3681         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3682         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3683         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3684         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3685         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3686         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3687         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3688         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3689     };
3690     abi_long a[6]; /* max 6 args */
3691     unsigned i;
3692 
3693     /* check the range of the first argument num */
3694     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3695     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3696         return -TARGET_EINVAL;
3697     }
3698     /* ensure we have space for args */
3699     if (nargs[num] > ARRAY_SIZE(a)) {
3700         return -TARGET_EINVAL;
3701     }
3702     /* collect the arguments in a[] according to nargs[] */
3703     for (i = 0; i < nargs[num]; ++i) {
3704         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3705             return -TARGET_EFAULT;
3706         }
3707     }
3708     /* now when we have the args, invoke the appropriate underlying function */
3709     switch (num) {
3710     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3711         return do_socket(a[0], a[1], a[2]);
3712     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3713         return do_bind(a[0], a[1], a[2]);
3714     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3715         return do_connect(a[0], a[1], a[2]);
3716     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3717         return get_errno(listen(a[0], a[1]));
3718     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3719         return do_accept4(a[0], a[1], a[2], 0);
3720     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3721         return do_getsockname(a[0], a[1], a[2]);
3722     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3723         return do_getpeername(a[0], a[1], a[2]);
3724     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3725         return do_socketpair(a[0], a[1], a[2], a[3]);
3726     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3727         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3728     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3729         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3730     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3731         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3732     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3733         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3734     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3735         return get_errno(shutdown(a[0], a[1]));
3736     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3737         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3738     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3739         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3740     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3741         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3742     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3743         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3744     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3745         return do_accept4(a[0], a[1], a[2], a[3]);
3746     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3747         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3748     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3749         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3750     default:
3751         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3752         return -TARGET_EINVAL;
3753     }
3754 }
3755 #endif
3756 
3757 #define N_SHM_REGIONS	32
3758 
3759 static struct shm_region {
3760     abi_ulong start;
3761     abi_ulong size;
3762     bool in_use;
3763 } shm_regions[N_SHM_REGIONS];
3764 
3765 #ifndef TARGET_SEMID64_DS
3766 /* asm-generic version of this struct */
3767 struct target_semid64_ds
3768 {
3769   struct target_ipc_perm sem_perm;
3770   abi_ulong sem_otime;
3771 #if TARGET_ABI_BITS == 32
3772   abi_ulong __unused1;
3773 #endif
3774   abi_ulong sem_ctime;
3775 #if TARGET_ABI_BITS == 32
3776   abi_ulong __unused2;
3777 #endif
3778   abi_ulong sem_nsems;
3779   abi_ulong __unused3;
3780   abi_ulong __unused4;
3781 };
3782 #endif
3783 
3784 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3785                                                abi_ulong target_addr)
3786 {
3787     struct target_ipc_perm *target_ip;
3788     struct target_semid64_ds *target_sd;
3789 
3790     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3791         return -TARGET_EFAULT;
3792     target_ip = &(target_sd->sem_perm);
3793     host_ip->__key = tswap32(target_ip->__key);
3794     host_ip->uid = tswap32(target_ip->uid);
3795     host_ip->gid = tswap32(target_ip->gid);
3796     host_ip->cuid = tswap32(target_ip->cuid);
3797     host_ip->cgid = tswap32(target_ip->cgid);
3798 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3799     host_ip->mode = tswap32(target_ip->mode);
3800 #else
3801     host_ip->mode = tswap16(target_ip->mode);
3802 #endif
3803 #if defined(TARGET_PPC)
3804     host_ip->__seq = tswap32(target_ip->__seq);
3805 #else
3806     host_ip->__seq = tswap16(target_ip->__seq);
3807 #endif
3808     unlock_user_struct(target_sd, target_addr, 0);
3809     return 0;
3810 }
3811 
3812 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3813                                                struct ipc_perm *host_ip)
3814 {
3815     struct target_ipc_perm *target_ip;
3816     struct target_semid64_ds *target_sd;
3817 
3818     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3819         return -TARGET_EFAULT;
3820     target_ip = &(target_sd->sem_perm);
3821     target_ip->__key = tswap32(host_ip->__key);
3822     target_ip->uid = tswap32(host_ip->uid);
3823     target_ip->gid = tswap32(host_ip->gid);
3824     target_ip->cuid = tswap32(host_ip->cuid);
3825     target_ip->cgid = tswap32(host_ip->cgid);
3826 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3827     target_ip->mode = tswap32(host_ip->mode);
3828 #else
3829     target_ip->mode = tswap16(host_ip->mode);
3830 #endif
3831 #if defined(TARGET_PPC)
3832     target_ip->__seq = tswap32(host_ip->__seq);
3833 #else
3834     target_ip->__seq = tswap16(host_ip->__seq);
3835 #endif
3836     unlock_user_struct(target_sd, target_addr, 1);
3837     return 0;
3838 }
3839 
3840 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3841                                                abi_ulong target_addr)
3842 {
3843     struct target_semid64_ds *target_sd;
3844 
3845     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3846         return -TARGET_EFAULT;
3847     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3848         return -TARGET_EFAULT;
3849     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3850     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3851     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3852     unlock_user_struct(target_sd, target_addr, 0);
3853     return 0;
3854 }
3855 
3856 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3857                                                struct semid_ds *host_sd)
3858 {
3859     struct target_semid64_ds *target_sd;
3860 
3861     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3862         return -TARGET_EFAULT;
3863     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3864         return -TARGET_EFAULT;
3865     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3866     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3867     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3868     unlock_user_struct(target_sd, target_addr, 1);
3869     return 0;
3870 }
3871 
3872 struct target_seminfo {
3873     int semmap;
3874     int semmni;
3875     int semmns;
3876     int semmnu;
3877     int semmsl;
3878     int semopm;
3879     int semume;
3880     int semusz;
3881     int semvmx;
3882     int semaem;
3883 };
3884 
3885 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3886                                               struct seminfo *host_seminfo)
3887 {
3888     struct target_seminfo *target_seminfo;
3889     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3890         return -TARGET_EFAULT;
3891     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3892     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3893     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3894     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3895     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3896     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3897     __put_user(host_seminfo->semume, &target_seminfo->semume);
3898     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3899     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3900     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3901     unlock_user_struct(target_seminfo, target_addr, 1);
3902     return 0;
3903 }
3904 
3905 union semun {
3906 	int val;
3907 	struct semid_ds *buf;
3908 	unsigned short *array;
3909 	struct seminfo *__buf;
3910 };
3911 
3912 union target_semun {
3913 	int val;
3914 	abi_ulong buf;
3915 	abi_ulong array;
3916 	abi_ulong __buf;
3917 };
3918 
3919 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3920                                                abi_ulong target_addr)
3921 {
3922     int nsems;
3923     unsigned short *array;
3924     union semun semun;
3925     struct semid_ds semid_ds;
3926     int i, ret;
3927 
3928     semun.buf = &semid_ds;
3929 
3930     ret = semctl(semid, 0, IPC_STAT, semun);
3931     if (ret == -1)
3932         return get_errno(ret);
3933 
3934     nsems = semid_ds.sem_nsems;
3935 
3936     *host_array = g_try_new(unsigned short, nsems);
3937     if (!*host_array) {
3938         return -TARGET_ENOMEM;
3939     }
3940     array = lock_user(VERIFY_READ, target_addr,
3941                       nsems*sizeof(unsigned short), 1);
3942     if (!array) {
3943         g_free(*host_array);
3944         return -TARGET_EFAULT;
3945     }
3946 
3947     for(i=0; i<nsems; i++) {
3948         __get_user((*host_array)[i], &array[i]);
3949     }
3950     unlock_user(array, target_addr, 0);
3951 
3952     return 0;
3953 }
3954 
3955 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3956                                                unsigned short **host_array)
3957 {
3958     int nsems;
3959     unsigned short *array;
3960     union semun semun;
3961     struct semid_ds semid_ds;
3962     int i, ret;
3963 
3964     semun.buf = &semid_ds;
3965 
3966     ret = semctl(semid, 0, IPC_STAT, semun);
3967     if (ret == -1)
3968         return get_errno(ret);
3969 
3970     nsems = semid_ds.sem_nsems;
3971 
3972     array = lock_user(VERIFY_WRITE, target_addr,
3973                       nsems*sizeof(unsigned short), 0);
3974     if (!array)
3975         return -TARGET_EFAULT;
3976 
3977     for(i=0; i<nsems; i++) {
3978         __put_user((*host_array)[i], &array[i]);
3979     }
3980     g_free(*host_array);
3981     unlock_user(array, target_addr, 1);
3982 
3983     return 0;
3984 }
3985 
3986 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3987                                  abi_ulong target_arg)
3988 {
3989     union target_semun target_su = { .buf = target_arg };
3990     union semun arg;
3991     struct semid_ds dsarg;
3992     unsigned short *array = NULL;
3993     struct seminfo seminfo;
3994     abi_long ret = -TARGET_EINVAL;
3995     abi_long err;
3996     cmd &= 0xff;
3997 
3998     switch( cmd ) {
3999 	case GETVAL:
4000 	case SETVAL:
4001             /* In 64 bit cross-endian situations, we will erroneously pick up
4002              * the wrong half of the union for the "val" element.  To rectify
4003              * this, the entire 8-byte structure is byteswapped, followed by
4004 	     * a swap of the 4 byte val field. In other cases, the data is
4005 	     * already in proper host byte order. */
4006 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
4007 		target_su.buf = tswapal(target_su.buf);
4008 		arg.val = tswap32(target_su.val);
4009 	    } else {
4010 		arg.val = target_su.val;
4011 	    }
4012             ret = get_errno(semctl(semid, semnum, cmd, arg));
4013             break;
4014 	case GETALL:
4015 	case SETALL:
4016             err = target_to_host_semarray(semid, &array, target_su.array);
4017             if (err)
4018                 return err;
4019             arg.array = array;
4020             ret = get_errno(semctl(semid, semnum, cmd, arg));
4021             err = host_to_target_semarray(semid, target_su.array, &array);
4022             if (err)
4023                 return err;
4024             break;
4025 	case IPC_STAT:
4026 	case IPC_SET:
4027 	case SEM_STAT:
4028             err = target_to_host_semid_ds(&dsarg, target_su.buf);
4029             if (err)
4030                 return err;
4031             arg.buf = &dsarg;
4032             ret = get_errno(semctl(semid, semnum, cmd, arg));
4033             err = host_to_target_semid_ds(target_su.buf, &dsarg);
4034             if (err)
4035                 return err;
4036             break;
4037 	case IPC_INFO:
4038 	case SEM_INFO:
4039             arg.__buf = &seminfo;
4040             ret = get_errno(semctl(semid, semnum, cmd, arg));
4041             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4042             if (err)
4043                 return err;
4044             break;
4045 	case IPC_RMID:
4046 	case GETPID:
4047 	case GETNCNT:
4048 	case GETZCNT:
4049             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4050             break;
4051     }
4052 
4053     return ret;
4054 }
4055 
4056 struct target_sembuf {
4057     unsigned short sem_num;
4058     short sem_op;
4059     short sem_flg;
4060 };
4061 
4062 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4063                                              abi_ulong target_addr,
4064                                              unsigned nsops)
4065 {
4066     struct target_sembuf *target_sembuf;
4067     int i;
4068 
4069     target_sembuf = lock_user(VERIFY_READ, target_addr,
4070                               nsops*sizeof(struct target_sembuf), 1);
4071     if (!target_sembuf)
4072         return -TARGET_EFAULT;
4073 
4074     for(i=0; i<nsops; i++) {
4075         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4076         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4077         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4078     }
4079 
4080     unlock_user(target_sembuf, target_addr, 0);
4081 
4082     return 0;
4083 }
4084 
4085 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4086     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4087 
4088 /*
4089  * This macro is required to handle the s390 variants, which passes the
4090  * arguments in a different order than default.
4091  */
4092 #ifdef __s390x__
4093 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4094   (__nsops), (__timeout), (__sops)
4095 #else
4096 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4097   (__nsops), 0, (__sops), (__timeout)
4098 #endif
4099 
4100 static inline abi_long do_semtimedop(int semid,
4101                                      abi_long ptr,
4102                                      unsigned nsops,
4103                                      abi_long timeout, bool time64)
4104 {
4105     struct sembuf *sops;
4106     struct timespec ts, *pts = NULL;
4107     abi_long ret;
4108 
4109     if (timeout) {
4110         pts = &ts;
4111         if (time64) {
4112             if (target_to_host_timespec64(pts, timeout)) {
4113                 return -TARGET_EFAULT;
4114             }
4115         } else {
4116             if (target_to_host_timespec(pts, timeout)) {
4117                 return -TARGET_EFAULT;
4118             }
4119         }
4120     }
4121 
4122     if (nsops > TARGET_SEMOPM) {
4123         return -TARGET_E2BIG;
4124     }
4125 
4126     sops = g_new(struct sembuf, nsops);
4127 
4128     if (target_to_host_sembuf(sops, ptr, nsops)) {
4129         g_free(sops);
4130         return -TARGET_EFAULT;
4131     }
4132 
4133     ret = -TARGET_ENOSYS;
4134 #ifdef __NR_semtimedop
4135     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4136 #endif
4137 #ifdef __NR_ipc
4138     if (ret == -TARGET_ENOSYS) {
4139         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4140                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4141     }
4142 #endif
4143     g_free(sops);
4144     return ret;
4145 }
4146 #endif
4147 
4148 struct target_msqid_ds
4149 {
4150     struct target_ipc_perm msg_perm;
4151     abi_ulong msg_stime;
4152 #if TARGET_ABI_BITS == 32
4153     abi_ulong __unused1;
4154 #endif
4155     abi_ulong msg_rtime;
4156 #if TARGET_ABI_BITS == 32
4157     abi_ulong __unused2;
4158 #endif
4159     abi_ulong msg_ctime;
4160 #if TARGET_ABI_BITS == 32
4161     abi_ulong __unused3;
4162 #endif
4163     abi_ulong __msg_cbytes;
4164     abi_ulong msg_qnum;
4165     abi_ulong msg_qbytes;
4166     abi_ulong msg_lspid;
4167     abi_ulong msg_lrpid;
4168     abi_ulong __unused4;
4169     abi_ulong __unused5;
4170 };
4171 
4172 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4173                                                abi_ulong target_addr)
4174 {
4175     struct target_msqid_ds *target_md;
4176 
4177     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4178         return -TARGET_EFAULT;
4179     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4180         return -TARGET_EFAULT;
4181     host_md->msg_stime = tswapal(target_md->msg_stime);
4182     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4183     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4184     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4185     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4186     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4187     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4188     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4189     unlock_user_struct(target_md, target_addr, 0);
4190     return 0;
4191 }
4192 
4193 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4194                                                struct msqid_ds *host_md)
4195 {
4196     struct target_msqid_ds *target_md;
4197 
4198     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4199         return -TARGET_EFAULT;
4200     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4201         return -TARGET_EFAULT;
4202     target_md->msg_stime = tswapal(host_md->msg_stime);
4203     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4204     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4205     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4206     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4207     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4208     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4209     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4210     unlock_user_struct(target_md, target_addr, 1);
4211     return 0;
4212 }
4213 
4214 struct target_msginfo {
4215     int msgpool;
4216     int msgmap;
4217     int msgmax;
4218     int msgmnb;
4219     int msgmni;
4220     int msgssz;
4221     int msgtql;
4222     unsigned short int msgseg;
4223 };
4224 
4225 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4226                                               struct msginfo *host_msginfo)
4227 {
4228     struct target_msginfo *target_msginfo;
4229     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4230         return -TARGET_EFAULT;
4231     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4232     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4233     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4234     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4235     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4236     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4237     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4238     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4239     unlock_user_struct(target_msginfo, target_addr, 1);
4240     return 0;
4241 }
4242 
4243 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4244 {
4245     struct msqid_ds dsarg;
4246     struct msginfo msginfo;
4247     abi_long ret = -TARGET_EINVAL;
4248 
4249     cmd &= 0xff;
4250 
4251     switch (cmd) {
4252     case IPC_STAT:
4253     case IPC_SET:
4254     case MSG_STAT:
4255         if (target_to_host_msqid_ds(&dsarg,ptr))
4256             return -TARGET_EFAULT;
4257         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4258         if (host_to_target_msqid_ds(ptr,&dsarg))
4259             return -TARGET_EFAULT;
4260         break;
4261     case IPC_RMID:
4262         ret = get_errno(msgctl(msgid, cmd, NULL));
4263         break;
4264     case IPC_INFO:
4265     case MSG_INFO:
4266         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4267         if (host_to_target_msginfo(ptr, &msginfo))
4268             return -TARGET_EFAULT;
4269         break;
4270     }
4271 
4272     return ret;
4273 }
4274 
4275 struct target_msgbuf {
4276     abi_long mtype;
4277     char	mtext[1];
4278 };
4279 
4280 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4281                                  ssize_t msgsz, int msgflg)
4282 {
4283     struct target_msgbuf *target_mb;
4284     struct msgbuf *host_mb;
4285     abi_long ret = 0;
4286 
4287     if (msgsz < 0) {
4288         return -TARGET_EINVAL;
4289     }
4290 
4291     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4292         return -TARGET_EFAULT;
4293     host_mb = g_try_malloc(msgsz + sizeof(long));
4294     if (!host_mb) {
4295         unlock_user_struct(target_mb, msgp, 0);
4296         return -TARGET_ENOMEM;
4297     }
4298     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4299     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4300     ret = -TARGET_ENOSYS;
4301 #ifdef __NR_msgsnd
4302     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4303 #endif
4304 #ifdef __NR_ipc
4305     if (ret == -TARGET_ENOSYS) {
4306 #ifdef __s390x__
4307         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4308                                  host_mb));
4309 #else
4310         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4311                                  host_mb, 0));
4312 #endif
4313     }
4314 #endif
4315     g_free(host_mb);
4316     unlock_user_struct(target_mb, msgp, 0);
4317 
4318     return ret;
4319 }
4320 
4321 #ifdef __NR_ipc
4322 #if defined(__sparc__)
4323 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4324 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4325 #elif defined(__s390x__)
4326 /* The s390 sys_ipc variant has only five parameters.  */
4327 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4328     ((long int[]){(long int)__msgp, __msgtyp})
4329 #else
4330 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4331     ((long int[]){(long int)__msgp, __msgtyp}), 0
4332 #endif
4333 #endif
4334 
4335 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4336                                  ssize_t msgsz, abi_long msgtyp,
4337                                  int msgflg)
4338 {
4339     struct target_msgbuf *target_mb;
4340     char *target_mtext;
4341     struct msgbuf *host_mb;
4342     abi_long ret = 0;
4343 
4344     if (msgsz < 0) {
4345         return -TARGET_EINVAL;
4346     }
4347 
4348     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4349         return -TARGET_EFAULT;
4350 
4351     host_mb = g_try_malloc(msgsz + sizeof(long));
4352     if (!host_mb) {
4353         ret = -TARGET_ENOMEM;
4354         goto end;
4355     }
4356     ret = -TARGET_ENOSYS;
4357 #ifdef __NR_msgrcv
4358     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4359 #endif
4360 #ifdef __NR_ipc
4361     if (ret == -TARGET_ENOSYS) {
4362         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4363                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4364     }
4365 #endif
4366 
4367     if (ret > 0) {
4368         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4369         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4370         if (!target_mtext) {
4371             ret = -TARGET_EFAULT;
4372             goto end;
4373         }
4374         memcpy(target_mb->mtext, host_mb->mtext, ret);
4375         unlock_user(target_mtext, target_mtext_addr, ret);
4376     }
4377 
4378     target_mb->mtype = tswapal(host_mb->mtype);
4379 
4380 end:
4381     if (target_mb)
4382         unlock_user_struct(target_mb, msgp, 1);
4383     g_free(host_mb);
4384     return ret;
4385 }
4386 
4387 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4388                                                abi_ulong target_addr)
4389 {
4390     struct target_shmid_ds *target_sd;
4391 
4392     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4393         return -TARGET_EFAULT;
4394     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4395         return -TARGET_EFAULT;
4396     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4397     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4398     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4399     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4400     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4401     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4402     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4403     unlock_user_struct(target_sd, target_addr, 0);
4404     return 0;
4405 }
4406 
4407 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4408                                                struct shmid_ds *host_sd)
4409 {
4410     struct target_shmid_ds *target_sd;
4411 
4412     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4413         return -TARGET_EFAULT;
4414     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4415         return -TARGET_EFAULT;
4416     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4417     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4418     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4419     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4420     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4421     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4422     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4423     unlock_user_struct(target_sd, target_addr, 1);
4424     return 0;
4425 }
4426 
4427 struct  target_shminfo {
4428     abi_ulong shmmax;
4429     abi_ulong shmmin;
4430     abi_ulong shmmni;
4431     abi_ulong shmseg;
4432     abi_ulong shmall;
4433 };
4434 
4435 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4436                                               struct shminfo *host_shminfo)
4437 {
4438     struct target_shminfo *target_shminfo;
4439     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4440         return -TARGET_EFAULT;
4441     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4442     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4443     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4444     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4445     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4446     unlock_user_struct(target_shminfo, target_addr, 1);
4447     return 0;
4448 }
4449 
4450 struct target_shm_info {
4451     int used_ids;
4452     abi_ulong shm_tot;
4453     abi_ulong shm_rss;
4454     abi_ulong shm_swp;
4455     abi_ulong swap_attempts;
4456     abi_ulong swap_successes;
4457 };
4458 
4459 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4460                                                struct shm_info *host_shm_info)
4461 {
4462     struct target_shm_info *target_shm_info;
4463     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4464         return -TARGET_EFAULT;
4465     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4466     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4467     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4468     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4469     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4470     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4471     unlock_user_struct(target_shm_info, target_addr, 1);
4472     return 0;
4473 }
4474 
4475 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4476 {
4477     struct shmid_ds dsarg;
4478     struct shminfo shminfo;
4479     struct shm_info shm_info;
4480     abi_long ret = -TARGET_EINVAL;
4481 
4482     cmd &= 0xff;
4483 
4484     switch(cmd) {
4485     case IPC_STAT:
4486     case IPC_SET:
4487     case SHM_STAT:
4488         if (target_to_host_shmid_ds(&dsarg, buf))
4489             return -TARGET_EFAULT;
4490         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4491         if (host_to_target_shmid_ds(buf, &dsarg))
4492             return -TARGET_EFAULT;
4493         break;
4494     case IPC_INFO:
4495         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4496         if (host_to_target_shminfo(buf, &shminfo))
4497             return -TARGET_EFAULT;
4498         break;
4499     case SHM_INFO:
4500         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4501         if (host_to_target_shm_info(buf, &shm_info))
4502             return -TARGET_EFAULT;
4503         break;
4504     case IPC_RMID:
4505     case SHM_LOCK:
4506     case SHM_UNLOCK:
4507         ret = get_errno(shmctl(shmid, cmd, NULL));
4508         break;
4509     }
4510 
4511     return ret;
4512 }
4513 
4514 #ifndef TARGET_FORCE_SHMLBA
4515 /* For most architectures, SHMLBA is the same as the page size;
4516  * some architectures have larger values, in which case they should
4517  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4518  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4519  * and defining its own value for SHMLBA.
4520  *
4521  * The kernel also permits SHMLBA to be set by the architecture to a
4522  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4523  * this means that addresses are rounded to the large size if
4524  * SHM_RND is set but addresses not aligned to that size are not rejected
4525  * as long as they are at least page-aligned. Since the only architecture
4526  * which uses this is ia64 this code doesn't provide for that oddity.
4527  */
4528 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4529 {
4530     return TARGET_PAGE_SIZE;
4531 }
4532 #endif
4533 
4534 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4535                                  int shmid, abi_ulong shmaddr, int shmflg)
4536 {
4537     CPUState *cpu = env_cpu(cpu_env);
4538     abi_long raddr;
4539     void *host_raddr;
4540     struct shmid_ds shm_info;
4541     int i,ret;
4542     abi_ulong shmlba;
4543 
4544     /* shmat pointers are always untagged */
4545 
4546     /* find out the length of the shared memory segment */
4547     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4548     if (is_error(ret)) {
4549         /* can't get length, bail out */
4550         return ret;
4551     }
4552 
4553     shmlba = target_shmlba(cpu_env);
4554 
4555     if (shmaddr & (shmlba - 1)) {
4556         if (shmflg & SHM_RND) {
4557             shmaddr &= ~(shmlba - 1);
4558         } else {
4559             return -TARGET_EINVAL;
4560         }
4561     }
4562     if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4563         return -TARGET_EINVAL;
4564     }
4565 
4566     mmap_lock();
4567 
4568     /*
4569      * We're mapping shared memory, so ensure we generate code for parallel
4570      * execution and flush old translations.  This will work up to the level
4571      * supported by the host -- anything that requires EXCP_ATOMIC will not
4572      * be atomic with respect to an external process.
4573      */
4574     if (!(cpu->tcg_cflags & CF_PARALLEL)) {
4575         cpu->tcg_cflags |= CF_PARALLEL;
4576         tb_flush(cpu);
4577     }
4578 
4579     if (shmaddr)
4580         host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4581     else {
4582         abi_ulong mmap_start;
4583 
4584         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4585         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4586 
4587         if (mmap_start == -1) {
4588             errno = ENOMEM;
4589             host_raddr = (void *)-1;
4590         } else
4591             host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4592                                shmflg | SHM_REMAP);
4593     }
4594 
4595     if (host_raddr == (void *)-1) {
4596         mmap_unlock();
4597         return get_errno((long)host_raddr);
4598     }
4599     raddr=h2g((unsigned long)host_raddr);
4600 
4601     page_set_flags(raddr, raddr + shm_info.shm_segsz,
4602                    PAGE_VALID | PAGE_RESET | PAGE_READ |
4603                    (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4604 
4605     for (i = 0; i < N_SHM_REGIONS; i++) {
4606         if (!shm_regions[i].in_use) {
4607             shm_regions[i].in_use = true;
4608             shm_regions[i].start = raddr;
4609             shm_regions[i].size = shm_info.shm_segsz;
4610             break;
4611         }
4612     }
4613 
4614     mmap_unlock();
4615     return raddr;
4616 
4617 }
4618 
4619 static inline abi_long do_shmdt(abi_ulong shmaddr)
4620 {
4621     int i;
4622     abi_long rv;
4623 
4624     /* shmdt pointers are always untagged */
4625 
4626     mmap_lock();
4627 
4628     for (i = 0; i < N_SHM_REGIONS; ++i) {
4629         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4630             shm_regions[i].in_use = false;
4631             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4632             break;
4633         }
4634     }
4635     rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4636 
4637     mmap_unlock();
4638 
4639     return rv;
4640 }
4641 
4642 #ifdef TARGET_NR_ipc
4643 /* ??? This only works with linear mappings.  */
4644 /* do_ipc() must return target values and target errnos. */
4645 static abi_long do_ipc(CPUArchState *cpu_env,
4646                        unsigned int call, abi_long first,
4647                        abi_long second, abi_long third,
4648                        abi_long ptr, abi_long fifth)
4649 {
4650     int version;
4651     abi_long ret = 0;
4652 
4653     version = call >> 16;
4654     call &= 0xffff;
4655 
4656     switch (call) {
4657     case IPCOP_semop:
4658         ret = do_semtimedop(first, ptr, second, 0, false);
4659         break;
4660     case IPCOP_semtimedop:
4661     /*
4662      * The s390 sys_ipc variant has only five parameters instead of six
4663      * (as for default variant) and the only difference is the handling of
4664      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4665      * to a struct timespec where the generic variant uses fifth parameter.
4666      */
4667 #if defined(TARGET_S390X)
4668         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4669 #else
4670         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4671 #endif
4672         break;
4673 
4674     case IPCOP_semget:
4675         ret = get_errno(semget(first, second, third));
4676         break;
4677 
4678     case IPCOP_semctl: {
4679         /* The semun argument to semctl is passed by value, so dereference the
4680          * ptr argument. */
4681         abi_ulong atptr;
4682         get_user_ual(atptr, ptr);
4683         ret = do_semctl(first, second, third, atptr);
4684         break;
4685     }
4686 
4687     case IPCOP_msgget:
4688         ret = get_errno(msgget(first, second));
4689         break;
4690 
4691     case IPCOP_msgsnd:
4692         ret = do_msgsnd(first, ptr, second, third);
4693         break;
4694 
4695     case IPCOP_msgctl:
4696         ret = do_msgctl(first, second, ptr);
4697         break;
4698 
4699     case IPCOP_msgrcv:
4700         switch (version) {
4701         case 0:
4702             {
4703                 struct target_ipc_kludge {
4704                     abi_long msgp;
4705                     abi_long msgtyp;
4706                 } *tmp;
4707 
4708                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4709                     ret = -TARGET_EFAULT;
4710                     break;
4711                 }
4712 
4713                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4714 
4715                 unlock_user_struct(tmp, ptr, 0);
4716                 break;
4717             }
4718         default:
4719             ret = do_msgrcv(first, ptr, second, fifth, third);
4720         }
4721         break;
4722 
4723     case IPCOP_shmat:
4724         switch (version) {
4725         default:
4726         {
4727             abi_ulong raddr;
4728             raddr = do_shmat(cpu_env, first, ptr, second);
4729             if (is_error(raddr))
4730                 return get_errno(raddr);
4731             if (put_user_ual(raddr, third))
4732                 return -TARGET_EFAULT;
4733             break;
4734         }
4735         case 1:
4736             ret = -TARGET_EINVAL;
4737             break;
4738         }
4739 	break;
4740     case IPCOP_shmdt:
4741         ret = do_shmdt(ptr);
4742 	break;
4743 
4744     case IPCOP_shmget:
4745 	/* IPC_* flag values are the same on all linux platforms */
4746 	ret = get_errno(shmget(first, second, third));
4747 	break;
4748 
4749 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4750     case IPCOP_shmctl:
4751         ret = do_shmctl(first, second, ptr);
4752         break;
4753     default:
4754         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4755                       call, version);
4756 	ret = -TARGET_ENOSYS;
4757 	break;
4758     }
4759     return ret;
4760 }
4761 #endif
4762 
4763 /* kernel structure types definitions */
4764 
4765 #define STRUCT(name, ...) STRUCT_ ## name,
4766 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4767 enum {
4768 #include "syscall_types.h"
4769 STRUCT_MAX
4770 };
4771 #undef STRUCT
4772 #undef STRUCT_SPECIAL
4773 
4774 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4775 #define STRUCT_SPECIAL(name)
4776 #include "syscall_types.h"
4777 #undef STRUCT
4778 #undef STRUCT_SPECIAL
4779 
4780 #define MAX_STRUCT_SIZE 4096
4781 
4782 #ifdef CONFIG_FIEMAP
4783 /* So fiemap access checks don't overflow on 32 bit systems.
4784  * This is very slightly smaller than the limit imposed by
4785  * the underlying kernel.
4786  */
4787 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4788                             / sizeof(struct fiemap_extent))
4789 
4790 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4791                                        int fd, int cmd, abi_long arg)
4792 {
4793     /* The parameter for this ioctl is a struct fiemap followed
4794      * by an array of struct fiemap_extent whose size is set
4795      * in fiemap->fm_extent_count. The array is filled in by the
4796      * ioctl.
4797      */
4798     int target_size_in, target_size_out;
4799     struct fiemap *fm;
4800     const argtype *arg_type = ie->arg_type;
4801     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4802     void *argptr, *p;
4803     abi_long ret;
4804     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4805     uint32_t outbufsz;
4806     int free_fm = 0;
4807 
4808     assert(arg_type[0] == TYPE_PTR);
4809     assert(ie->access == IOC_RW);
4810     arg_type++;
4811     target_size_in = thunk_type_size(arg_type, 0);
4812     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4813     if (!argptr) {
4814         return -TARGET_EFAULT;
4815     }
4816     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4817     unlock_user(argptr, arg, 0);
4818     fm = (struct fiemap *)buf_temp;
4819     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4820         return -TARGET_EINVAL;
4821     }
4822 
4823     outbufsz = sizeof (*fm) +
4824         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4825 
4826     if (outbufsz > MAX_STRUCT_SIZE) {
4827         /* We can't fit all the extents into the fixed size buffer.
4828          * Allocate one that is large enough and use it instead.
4829          */
4830         fm = g_try_malloc(outbufsz);
4831         if (!fm) {
4832             return -TARGET_ENOMEM;
4833         }
4834         memcpy(fm, buf_temp, sizeof(struct fiemap));
4835         free_fm = 1;
4836     }
4837     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4838     if (!is_error(ret)) {
4839         target_size_out = target_size_in;
4840         /* An extent_count of 0 means we were only counting the extents
4841          * so there are no structs to copy
4842          */
4843         if (fm->fm_extent_count != 0) {
4844             target_size_out += fm->fm_mapped_extents * extent_size;
4845         }
4846         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4847         if (!argptr) {
4848             ret = -TARGET_EFAULT;
4849         } else {
4850             /* Convert the struct fiemap */
4851             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4852             if (fm->fm_extent_count != 0) {
4853                 p = argptr + target_size_in;
4854                 /* ...and then all the struct fiemap_extents */
4855                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4856                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4857                                   THUNK_TARGET);
4858                     p += extent_size;
4859                 }
4860             }
4861             unlock_user(argptr, arg, target_size_out);
4862         }
4863     }
4864     if (free_fm) {
4865         g_free(fm);
4866     }
4867     return ret;
4868 }
4869 #endif
4870 
4871 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4872                                 int fd, int cmd, abi_long arg)
4873 {
4874     const argtype *arg_type = ie->arg_type;
4875     int target_size;
4876     void *argptr;
4877     int ret;
4878     struct ifconf *host_ifconf;
4879     uint32_t outbufsz;
4880     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4881     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4882     int target_ifreq_size;
4883     int nb_ifreq;
4884     int free_buf = 0;
4885     int i;
4886     int target_ifc_len;
4887     abi_long target_ifc_buf;
4888     int host_ifc_len;
4889     char *host_ifc_buf;
4890 
4891     assert(arg_type[0] == TYPE_PTR);
4892     assert(ie->access == IOC_RW);
4893 
4894     arg_type++;
4895     target_size = thunk_type_size(arg_type, 0);
4896 
4897     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4898     if (!argptr)
4899         return -TARGET_EFAULT;
4900     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4901     unlock_user(argptr, arg, 0);
4902 
4903     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4904     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4905     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4906 
4907     if (target_ifc_buf != 0) {
4908         target_ifc_len = host_ifconf->ifc_len;
4909         nb_ifreq = target_ifc_len / target_ifreq_size;
4910         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4911 
4912         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4913         if (outbufsz > MAX_STRUCT_SIZE) {
4914             /*
4915              * We can't fit all the extents into the fixed size buffer.
4916              * Allocate one that is large enough and use it instead.
4917              */
4918             host_ifconf = malloc(outbufsz);
4919             if (!host_ifconf) {
4920                 return -TARGET_ENOMEM;
4921             }
4922             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4923             free_buf = 1;
4924         }
4925         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4926 
4927         host_ifconf->ifc_len = host_ifc_len;
4928     } else {
4929       host_ifc_buf = NULL;
4930     }
4931     host_ifconf->ifc_buf = host_ifc_buf;
4932 
4933     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4934     if (!is_error(ret)) {
4935 	/* convert host ifc_len to target ifc_len */
4936 
4937         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4938         target_ifc_len = nb_ifreq * target_ifreq_size;
4939         host_ifconf->ifc_len = target_ifc_len;
4940 
4941 	/* restore target ifc_buf */
4942 
4943         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4944 
4945 	/* copy struct ifconf to target user */
4946 
4947         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4948         if (!argptr)
4949             return -TARGET_EFAULT;
4950         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4951         unlock_user(argptr, arg, target_size);
4952 
4953         if (target_ifc_buf != 0) {
4954             /* copy ifreq[] to target user */
4955             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4956             for (i = 0; i < nb_ifreq ; i++) {
4957                 thunk_convert(argptr + i * target_ifreq_size,
4958                               host_ifc_buf + i * sizeof(struct ifreq),
4959                               ifreq_arg_type, THUNK_TARGET);
4960             }
4961             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4962         }
4963     }
4964 
4965     if (free_buf) {
4966         free(host_ifconf);
4967     }
4968 
4969     return ret;
4970 }
4971 
4972 #if defined(CONFIG_USBFS)
4973 #if HOST_LONG_BITS > 64
4974 #error USBDEVFS thunks do not support >64 bit hosts yet.
4975 #endif
4976 struct live_urb {
4977     uint64_t target_urb_adr;
4978     uint64_t target_buf_adr;
4979     char *target_buf_ptr;
4980     struct usbdevfs_urb host_urb;
4981 };
4982 
4983 static GHashTable *usbdevfs_urb_hashtable(void)
4984 {
4985     static GHashTable *urb_hashtable;
4986 
4987     if (!urb_hashtable) {
4988         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4989     }
4990     return urb_hashtable;
4991 }
4992 
4993 static void urb_hashtable_insert(struct live_urb *urb)
4994 {
4995     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4996     g_hash_table_insert(urb_hashtable, urb, urb);
4997 }
4998 
4999 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
5000 {
5001     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5002     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
5003 }
5004 
5005 static void urb_hashtable_remove(struct live_urb *urb)
5006 {
5007     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5008     g_hash_table_remove(urb_hashtable, urb);
5009 }
5010 
5011 static abi_long
5012 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
5013                           int fd, int cmd, abi_long arg)
5014 {
5015     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
5016     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
5017     struct live_urb *lurb;
5018     void *argptr;
5019     uint64_t hurb;
5020     int target_size;
5021     uintptr_t target_urb_adr;
5022     abi_long ret;
5023 
5024     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
5025 
5026     memset(buf_temp, 0, sizeof(uint64_t));
5027     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5028     if (is_error(ret)) {
5029         return ret;
5030     }
5031 
5032     memcpy(&hurb, buf_temp, sizeof(uint64_t));
5033     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
5034     if (!lurb->target_urb_adr) {
5035         return -TARGET_EFAULT;
5036     }
5037     urb_hashtable_remove(lurb);
5038     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
5039         lurb->host_urb.buffer_length);
5040     lurb->target_buf_ptr = NULL;
5041 
5042     /* restore the guest buffer pointer */
5043     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
5044 
5045     /* update the guest urb struct */
5046     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
5047     if (!argptr) {
5048         g_free(lurb);
5049         return -TARGET_EFAULT;
5050     }
5051     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5052     unlock_user(argptr, lurb->target_urb_adr, target_size);
5053 
5054     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5055     /* write back the urb handle */
5056     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5057     if (!argptr) {
5058         g_free(lurb);
5059         return -TARGET_EFAULT;
5060     }
5061 
5062     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5063     target_urb_adr = lurb->target_urb_adr;
5064     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5065     unlock_user(argptr, arg, target_size);
5066 
5067     g_free(lurb);
5068     return ret;
5069 }
5070 
5071 static abi_long
5072 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5073                              uint8_t *buf_temp __attribute__((unused)),
5074                              int fd, int cmd, abi_long arg)
5075 {
5076     struct live_urb *lurb;
5077 
5078     /* map target address back to host URB with metadata. */
5079     lurb = urb_hashtable_lookup(arg);
5080     if (!lurb) {
5081         return -TARGET_EFAULT;
5082     }
5083     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5084 }
5085 
5086 static abi_long
5087 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5088                             int fd, int cmd, abi_long arg)
5089 {
5090     const argtype *arg_type = ie->arg_type;
5091     int target_size;
5092     abi_long ret;
5093     void *argptr;
5094     int rw_dir;
5095     struct live_urb *lurb;
5096 
5097     /*
5098      * each submitted URB needs to map to a unique ID for the
5099      * kernel, and that unique ID needs to be a pointer to
5100      * host memory.  hence, we need to malloc for each URB.
5101      * isochronous transfers have a variable length struct.
5102      */
5103     arg_type++;
5104     target_size = thunk_type_size(arg_type, THUNK_TARGET);
5105 
5106     /* construct host copy of urb and metadata */
5107     lurb = g_try_malloc0(sizeof(struct live_urb));
5108     if (!lurb) {
5109         return -TARGET_ENOMEM;
5110     }
5111 
5112     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5113     if (!argptr) {
5114         g_free(lurb);
5115         return -TARGET_EFAULT;
5116     }
5117     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5118     unlock_user(argptr, arg, 0);
5119 
5120     lurb->target_urb_adr = arg;
5121     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5122 
5123     /* buffer space used depends on endpoint type so lock the entire buffer */
5124     /* control type urbs should check the buffer contents for true direction */
5125     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5126     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5127         lurb->host_urb.buffer_length, 1);
5128     if (lurb->target_buf_ptr == NULL) {
5129         g_free(lurb);
5130         return -TARGET_EFAULT;
5131     }
5132 
5133     /* update buffer pointer in host copy */
5134     lurb->host_urb.buffer = lurb->target_buf_ptr;
5135 
5136     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5137     if (is_error(ret)) {
5138         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5139         g_free(lurb);
5140     } else {
5141         urb_hashtable_insert(lurb);
5142     }
5143 
5144     return ret;
5145 }
5146 #endif /* CONFIG_USBFS */
5147 
5148 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5149                             int cmd, abi_long arg)
5150 {
5151     void *argptr;
5152     struct dm_ioctl *host_dm;
5153     abi_long guest_data;
5154     uint32_t guest_data_size;
5155     int target_size;
5156     const argtype *arg_type = ie->arg_type;
5157     abi_long ret;
5158     void *big_buf = NULL;
5159     char *host_data;
5160 
5161     arg_type++;
5162     target_size = thunk_type_size(arg_type, 0);
5163     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5164     if (!argptr) {
5165         ret = -TARGET_EFAULT;
5166         goto out;
5167     }
5168     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5169     unlock_user(argptr, arg, 0);
5170 
5171     /* buf_temp is too small, so fetch things into a bigger buffer */
5172     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5173     memcpy(big_buf, buf_temp, target_size);
5174     buf_temp = big_buf;
5175     host_dm = big_buf;
5176 
5177     guest_data = arg + host_dm->data_start;
5178     if ((guest_data - arg) < 0) {
5179         ret = -TARGET_EINVAL;
5180         goto out;
5181     }
5182     guest_data_size = host_dm->data_size - host_dm->data_start;
5183     host_data = (char*)host_dm + host_dm->data_start;
5184 
5185     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5186     if (!argptr) {
5187         ret = -TARGET_EFAULT;
5188         goto out;
5189     }
5190 
5191     switch (ie->host_cmd) {
5192     case DM_REMOVE_ALL:
5193     case DM_LIST_DEVICES:
5194     case DM_DEV_CREATE:
5195     case DM_DEV_REMOVE:
5196     case DM_DEV_SUSPEND:
5197     case DM_DEV_STATUS:
5198     case DM_DEV_WAIT:
5199     case DM_TABLE_STATUS:
5200     case DM_TABLE_CLEAR:
5201     case DM_TABLE_DEPS:
5202     case DM_LIST_VERSIONS:
5203         /* no input data */
5204         break;
5205     case DM_DEV_RENAME:
5206     case DM_DEV_SET_GEOMETRY:
5207         /* data contains only strings */
5208         memcpy(host_data, argptr, guest_data_size);
5209         break;
5210     case DM_TARGET_MSG:
5211         memcpy(host_data, argptr, guest_data_size);
5212         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5213         break;
5214     case DM_TABLE_LOAD:
5215     {
5216         void *gspec = argptr;
5217         void *cur_data = host_data;
5218         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5219         int spec_size = thunk_type_size(arg_type, 0);
5220         int i;
5221 
5222         for (i = 0; i < host_dm->target_count; i++) {
5223             struct dm_target_spec *spec = cur_data;
5224             uint32_t next;
5225             int slen;
5226 
5227             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5228             slen = strlen((char*)gspec + spec_size) + 1;
5229             next = spec->next;
5230             spec->next = sizeof(*spec) + slen;
5231             strcpy((char*)&spec[1], gspec + spec_size);
5232             gspec += next;
5233             cur_data += spec->next;
5234         }
5235         break;
5236     }
5237     default:
5238         ret = -TARGET_EINVAL;
5239         unlock_user(argptr, guest_data, 0);
5240         goto out;
5241     }
5242     unlock_user(argptr, guest_data, 0);
5243 
5244     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5245     if (!is_error(ret)) {
5246         guest_data = arg + host_dm->data_start;
5247         guest_data_size = host_dm->data_size - host_dm->data_start;
5248         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5249         switch (ie->host_cmd) {
5250         case DM_REMOVE_ALL:
5251         case DM_DEV_CREATE:
5252         case DM_DEV_REMOVE:
5253         case DM_DEV_RENAME:
5254         case DM_DEV_SUSPEND:
5255         case DM_DEV_STATUS:
5256         case DM_TABLE_LOAD:
5257         case DM_TABLE_CLEAR:
5258         case DM_TARGET_MSG:
5259         case DM_DEV_SET_GEOMETRY:
5260             /* no return data */
5261             break;
5262         case DM_LIST_DEVICES:
5263         {
5264             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5265             uint32_t remaining_data = guest_data_size;
5266             void *cur_data = argptr;
5267             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5268             int nl_size = 12; /* can't use thunk_size due to alignment */
5269 
5270             while (1) {
5271                 uint32_t next = nl->next;
5272                 if (next) {
5273                     nl->next = nl_size + (strlen(nl->name) + 1);
5274                 }
5275                 if (remaining_data < nl->next) {
5276                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5277                     break;
5278                 }
5279                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5280                 strcpy(cur_data + nl_size, nl->name);
5281                 cur_data += nl->next;
5282                 remaining_data -= nl->next;
5283                 if (!next) {
5284                     break;
5285                 }
5286                 nl = (void*)nl + next;
5287             }
5288             break;
5289         }
5290         case DM_DEV_WAIT:
5291         case DM_TABLE_STATUS:
5292         {
5293             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5294             void *cur_data = argptr;
5295             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5296             int spec_size = thunk_type_size(arg_type, 0);
5297             int i;
5298 
5299             for (i = 0; i < host_dm->target_count; i++) {
5300                 uint32_t next = spec->next;
5301                 int slen = strlen((char*)&spec[1]) + 1;
5302                 spec->next = (cur_data - argptr) + spec_size + slen;
5303                 if (guest_data_size < spec->next) {
5304                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5305                     break;
5306                 }
5307                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5308                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5309                 cur_data = argptr + spec->next;
5310                 spec = (void*)host_dm + host_dm->data_start + next;
5311             }
5312             break;
5313         }
5314         case DM_TABLE_DEPS:
5315         {
5316             void *hdata = (void*)host_dm + host_dm->data_start;
5317             int count = *(uint32_t*)hdata;
5318             uint64_t *hdev = hdata + 8;
5319             uint64_t *gdev = argptr + 8;
5320             int i;
5321 
5322             *(uint32_t*)argptr = tswap32(count);
5323             for (i = 0; i < count; i++) {
5324                 *gdev = tswap64(*hdev);
5325                 gdev++;
5326                 hdev++;
5327             }
5328             break;
5329         }
5330         case DM_LIST_VERSIONS:
5331         {
5332             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5333             uint32_t remaining_data = guest_data_size;
5334             void *cur_data = argptr;
5335             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5336             int vers_size = thunk_type_size(arg_type, 0);
5337 
5338             while (1) {
5339                 uint32_t next = vers->next;
5340                 if (next) {
5341                     vers->next = vers_size + (strlen(vers->name) + 1);
5342                 }
5343                 if (remaining_data < vers->next) {
5344                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5345                     break;
5346                 }
5347                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5348                 strcpy(cur_data + vers_size, vers->name);
5349                 cur_data += vers->next;
5350                 remaining_data -= vers->next;
5351                 if (!next) {
5352                     break;
5353                 }
5354                 vers = (void*)vers + next;
5355             }
5356             break;
5357         }
5358         default:
5359             unlock_user(argptr, guest_data, 0);
5360             ret = -TARGET_EINVAL;
5361             goto out;
5362         }
5363         unlock_user(argptr, guest_data, guest_data_size);
5364 
5365         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5366         if (!argptr) {
5367             ret = -TARGET_EFAULT;
5368             goto out;
5369         }
5370         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5371         unlock_user(argptr, arg, target_size);
5372     }
5373 out:
5374     g_free(big_buf);
5375     return ret;
5376 }
5377 
5378 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5379                                int cmd, abi_long arg)
5380 {
5381     void *argptr;
5382     int target_size;
5383     const argtype *arg_type = ie->arg_type;
5384     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5385     abi_long ret;
5386 
5387     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5388     struct blkpg_partition host_part;
5389 
5390     /* Read and convert blkpg */
5391     arg_type++;
5392     target_size = thunk_type_size(arg_type, 0);
5393     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5394     if (!argptr) {
5395         ret = -TARGET_EFAULT;
5396         goto out;
5397     }
5398     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5399     unlock_user(argptr, arg, 0);
5400 
5401     switch (host_blkpg->op) {
5402     case BLKPG_ADD_PARTITION:
5403     case BLKPG_DEL_PARTITION:
5404         /* payload is struct blkpg_partition */
5405         break;
5406     default:
5407         /* Unknown opcode */
5408         ret = -TARGET_EINVAL;
5409         goto out;
5410     }
5411 
5412     /* Read and convert blkpg->data */
5413     arg = (abi_long)(uintptr_t)host_blkpg->data;
5414     target_size = thunk_type_size(part_arg_type, 0);
5415     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5416     if (!argptr) {
5417         ret = -TARGET_EFAULT;
5418         goto out;
5419     }
5420     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5421     unlock_user(argptr, arg, 0);
5422 
5423     /* Swizzle the data pointer to our local copy and call! */
5424     host_blkpg->data = &host_part;
5425     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5426 
5427 out:
5428     return ret;
5429 }
5430 
5431 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5432                                 int fd, int cmd, abi_long arg)
5433 {
5434     const argtype *arg_type = ie->arg_type;
5435     const StructEntry *se;
5436     const argtype *field_types;
5437     const int *dst_offsets, *src_offsets;
5438     int target_size;
5439     void *argptr;
5440     abi_ulong *target_rt_dev_ptr = NULL;
5441     unsigned long *host_rt_dev_ptr = NULL;
5442     abi_long ret;
5443     int i;
5444 
5445     assert(ie->access == IOC_W);
5446     assert(*arg_type == TYPE_PTR);
5447     arg_type++;
5448     assert(*arg_type == TYPE_STRUCT);
5449     target_size = thunk_type_size(arg_type, 0);
5450     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5451     if (!argptr) {
5452         return -TARGET_EFAULT;
5453     }
5454     arg_type++;
5455     assert(*arg_type == (int)STRUCT_rtentry);
5456     se = struct_entries + *arg_type++;
5457     assert(se->convert[0] == NULL);
5458     /* convert struct here to be able to catch rt_dev string */
5459     field_types = se->field_types;
5460     dst_offsets = se->field_offsets[THUNK_HOST];
5461     src_offsets = se->field_offsets[THUNK_TARGET];
5462     for (i = 0; i < se->nb_fields; i++) {
5463         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5464             assert(*field_types == TYPE_PTRVOID);
5465             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5466             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5467             if (*target_rt_dev_ptr != 0) {
5468                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5469                                                   tswapal(*target_rt_dev_ptr));
5470                 if (!*host_rt_dev_ptr) {
5471                     unlock_user(argptr, arg, 0);
5472                     return -TARGET_EFAULT;
5473                 }
5474             } else {
5475                 *host_rt_dev_ptr = 0;
5476             }
5477             field_types++;
5478             continue;
5479         }
5480         field_types = thunk_convert(buf_temp + dst_offsets[i],
5481                                     argptr + src_offsets[i],
5482                                     field_types, THUNK_HOST);
5483     }
5484     unlock_user(argptr, arg, 0);
5485 
5486     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5487 
5488     assert(host_rt_dev_ptr != NULL);
5489     assert(target_rt_dev_ptr != NULL);
5490     if (*host_rt_dev_ptr != 0) {
5491         unlock_user((void *)*host_rt_dev_ptr,
5492                     *target_rt_dev_ptr, 0);
5493     }
5494     return ret;
5495 }
5496 
5497 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5498                                      int fd, int cmd, abi_long arg)
5499 {
5500     int sig = target_to_host_signal(arg);
5501     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5502 }
5503 
5504 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5505                                     int fd, int cmd, abi_long arg)
5506 {
5507     struct timeval tv;
5508     abi_long ret;
5509 
5510     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5511     if (is_error(ret)) {
5512         return ret;
5513     }
5514 
5515     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5516         if (copy_to_user_timeval(arg, &tv)) {
5517             return -TARGET_EFAULT;
5518         }
5519     } else {
5520         if (copy_to_user_timeval64(arg, &tv)) {
5521             return -TARGET_EFAULT;
5522         }
5523     }
5524 
5525     return ret;
5526 }
5527 
5528 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5529                                       int fd, int cmd, abi_long arg)
5530 {
5531     struct timespec ts;
5532     abi_long ret;
5533 
5534     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5535     if (is_error(ret)) {
5536         return ret;
5537     }
5538 
5539     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5540         if (host_to_target_timespec(arg, &ts)) {
5541             return -TARGET_EFAULT;
5542         }
5543     } else{
5544         if (host_to_target_timespec64(arg, &ts)) {
5545             return -TARGET_EFAULT;
5546         }
5547     }
5548 
5549     return ret;
5550 }
5551 
5552 #ifdef TIOCGPTPEER
5553 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5554                                      int fd, int cmd, abi_long arg)
5555 {
5556     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5557     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5558 }
5559 #endif
5560 
5561 #ifdef HAVE_DRM_H
5562 
5563 static void unlock_drm_version(struct drm_version *host_ver,
5564                                struct target_drm_version *target_ver,
5565                                bool copy)
5566 {
5567     unlock_user(host_ver->name, target_ver->name,
5568                                 copy ? host_ver->name_len : 0);
5569     unlock_user(host_ver->date, target_ver->date,
5570                                 copy ? host_ver->date_len : 0);
5571     unlock_user(host_ver->desc, target_ver->desc,
5572                                 copy ? host_ver->desc_len : 0);
5573 }
5574 
5575 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5576                                           struct target_drm_version *target_ver)
5577 {
5578     memset(host_ver, 0, sizeof(*host_ver));
5579 
5580     __get_user(host_ver->name_len, &target_ver->name_len);
5581     if (host_ver->name_len) {
5582         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5583                                    target_ver->name_len, 0);
5584         if (!host_ver->name) {
5585             return -EFAULT;
5586         }
5587     }
5588 
5589     __get_user(host_ver->date_len, &target_ver->date_len);
5590     if (host_ver->date_len) {
5591         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5592                                    target_ver->date_len, 0);
5593         if (!host_ver->date) {
5594             goto err;
5595         }
5596     }
5597 
5598     __get_user(host_ver->desc_len, &target_ver->desc_len);
5599     if (host_ver->desc_len) {
5600         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5601                                    target_ver->desc_len, 0);
5602         if (!host_ver->desc) {
5603             goto err;
5604         }
5605     }
5606 
5607     return 0;
5608 err:
5609     unlock_drm_version(host_ver, target_ver, false);
5610     return -EFAULT;
5611 }
5612 
5613 static inline void host_to_target_drmversion(
5614                                           struct target_drm_version *target_ver,
5615                                           struct drm_version *host_ver)
5616 {
5617     __put_user(host_ver->version_major, &target_ver->version_major);
5618     __put_user(host_ver->version_minor, &target_ver->version_minor);
5619     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5620     __put_user(host_ver->name_len, &target_ver->name_len);
5621     __put_user(host_ver->date_len, &target_ver->date_len);
5622     __put_user(host_ver->desc_len, &target_ver->desc_len);
5623     unlock_drm_version(host_ver, target_ver, true);
5624 }
5625 
5626 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5627                              int fd, int cmd, abi_long arg)
5628 {
5629     struct drm_version *ver;
5630     struct target_drm_version *target_ver;
5631     abi_long ret;
5632 
5633     switch (ie->host_cmd) {
5634     case DRM_IOCTL_VERSION:
5635         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5636             return -TARGET_EFAULT;
5637         }
5638         ver = (struct drm_version *)buf_temp;
5639         ret = target_to_host_drmversion(ver, target_ver);
5640         if (!is_error(ret)) {
5641             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5642             if (is_error(ret)) {
5643                 unlock_drm_version(ver, target_ver, false);
5644             } else {
5645                 host_to_target_drmversion(target_ver, ver);
5646             }
5647         }
5648         unlock_user_struct(target_ver, arg, 0);
5649         return ret;
5650     }
5651     return -TARGET_ENOSYS;
5652 }
5653 
5654 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5655                                            struct drm_i915_getparam *gparam,
5656                                            int fd, abi_long arg)
5657 {
5658     abi_long ret;
5659     int value;
5660     struct target_drm_i915_getparam *target_gparam;
5661 
5662     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5663         return -TARGET_EFAULT;
5664     }
5665 
5666     __get_user(gparam->param, &target_gparam->param);
5667     gparam->value = &value;
5668     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5669     put_user_s32(value, target_gparam->value);
5670 
5671     unlock_user_struct(target_gparam, arg, 0);
5672     return ret;
5673 }
5674 
5675 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5676                                   int fd, int cmd, abi_long arg)
5677 {
5678     switch (ie->host_cmd) {
5679     case DRM_IOCTL_I915_GETPARAM:
5680         return do_ioctl_drm_i915_getparam(ie,
5681                                           (struct drm_i915_getparam *)buf_temp,
5682                                           fd, arg);
5683     default:
5684         return -TARGET_ENOSYS;
5685     }
5686 }
5687 
5688 #endif
5689 
5690 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5691                                         int fd, int cmd, abi_long arg)
5692 {
5693     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5694     struct tun_filter *target_filter;
5695     char *target_addr;
5696 
5697     assert(ie->access == IOC_W);
5698 
5699     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5700     if (!target_filter) {
5701         return -TARGET_EFAULT;
5702     }
5703     filter->flags = tswap16(target_filter->flags);
5704     filter->count = tswap16(target_filter->count);
5705     unlock_user(target_filter, arg, 0);
5706 
5707     if (filter->count) {
5708         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5709             MAX_STRUCT_SIZE) {
5710             return -TARGET_EFAULT;
5711         }
5712 
5713         target_addr = lock_user(VERIFY_READ,
5714                                 arg + offsetof(struct tun_filter, addr),
5715                                 filter->count * ETH_ALEN, 1);
5716         if (!target_addr) {
5717             return -TARGET_EFAULT;
5718         }
5719         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5720         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5721     }
5722 
5723     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5724 }
5725 
5726 IOCTLEntry ioctl_entries[] = {
5727 #define IOCTL(cmd, access, ...) \
5728     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5729 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5730     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5731 #define IOCTL_IGNORE(cmd) \
5732     { TARGET_ ## cmd, 0, #cmd },
5733 #include "ioctls.h"
5734     { 0, 0, },
5735 };
5736 
5737 /* ??? Implement proper locking for ioctls.  */
5738 /* do_ioctl() Must return target values and target errnos. */
5739 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5740 {
5741     const IOCTLEntry *ie;
5742     const argtype *arg_type;
5743     abi_long ret;
5744     uint8_t buf_temp[MAX_STRUCT_SIZE];
5745     int target_size;
5746     void *argptr;
5747 
5748     ie = ioctl_entries;
5749     for(;;) {
5750         if (ie->target_cmd == 0) {
5751             qemu_log_mask(
5752                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5753             return -TARGET_ENOSYS;
5754         }
5755         if (ie->target_cmd == cmd)
5756             break;
5757         ie++;
5758     }
5759     arg_type = ie->arg_type;
5760     if (ie->do_ioctl) {
5761         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5762     } else if (!ie->host_cmd) {
5763         /* Some architectures define BSD ioctls in their headers
5764            that are not implemented in Linux.  */
5765         return -TARGET_ENOSYS;
5766     }
5767 
5768     switch(arg_type[0]) {
5769     case TYPE_NULL:
5770         /* no argument */
5771         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5772         break;
5773     case TYPE_PTRVOID:
5774     case TYPE_INT:
5775     case TYPE_LONG:
5776     case TYPE_ULONG:
5777         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5778         break;
5779     case TYPE_PTR:
5780         arg_type++;
5781         target_size = thunk_type_size(arg_type, 0);
5782         switch(ie->access) {
5783         case IOC_R:
5784             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5785             if (!is_error(ret)) {
5786                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5787                 if (!argptr)
5788                     return -TARGET_EFAULT;
5789                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5790                 unlock_user(argptr, arg, target_size);
5791             }
5792             break;
5793         case IOC_W:
5794             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5795             if (!argptr)
5796                 return -TARGET_EFAULT;
5797             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5798             unlock_user(argptr, arg, 0);
5799             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5800             break;
5801         default:
5802         case IOC_RW:
5803             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5804             if (!argptr)
5805                 return -TARGET_EFAULT;
5806             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5807             unlock_user(argptr, arg, 0);
5808             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5809             if (!is_error(ret)) {
5810                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5811                 if (!argptr)
5812                     return -TARGET_EFAULT;
5813                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5814                 unlock_user(argptr, arg, target_size);
5815             }
5816             break;
5817         }
5818         break;
5819     default:
5820         qemu_log_mask(LOG_UNIMP,
5821                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5822                       (long)cmd, arg_type[0]);
5823         ret = -TARGET_ENOSYS;
5824         break;
5825     }
5826     return ret;
5827 }
5828 
5829 static const bitmask_transtbl iflag_tbl[] = {
5830         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5831         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5832         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5833         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5834         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5835         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5836         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5837         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5838         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5839         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5840         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5841         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5842         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5843         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5844         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5845         { 0, 0, 0, 0 }
5846 };
5847 
5848 static const bitmask_transtbl oflag_tbl[] = {
5849 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5850 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5851 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5852 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5853 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5854 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5855 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5856 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5857 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5858 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5859 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5860 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5861 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5862 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5863 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5864 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5865 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5866 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5867 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5868 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5869 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5870 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5871 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5872 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5873 	{ 0, 0, 0, 0 }
5874 };
5875 
5876 static const bitmask_transtbl cflag_tbl[] = {
5877 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5878 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5879 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5880 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5881 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5882 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5883 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5884 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5885 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5886 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5887 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5888 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5889 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5890 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5891 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5892 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5893 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5894 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5895 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5896 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5897 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5898 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5899 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5900 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5901 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5902 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5903 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5904 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5905 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5906 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5907 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5908 	{ 0, 0, 0, 0 }
5909 };
5910 
5911 static const bitmask_transtbl lflag_tbl[] = {
5912   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5913   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5914   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5915   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5916   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5917   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5918   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5919   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5920   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5921   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5922   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5923   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5924   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5925   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5926   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5927   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5928   { 0, 0, 0, 0 }
5929 };
5930 
5931 static void target_to_host_termios (void *dst, const void *src)
5932 {
5933     struct host_termios *host = dst;
5934     const struct target_termios *target = src;
5935 
5936     host->c_iflag =
5937         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5938     host->c_oflag =
5939         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5940     host->c_cflag =
5941         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5942     host->c_lflag =
5943         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5944     host->c_line = target->c_line;
5945 
5946     memset(host->c_cc, 0, sizeof(host->c_cc));
5947     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5948     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5949     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5950     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5951     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5952     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5953     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5954     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5955     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5956     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5957     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5958     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5959     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5960     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5961     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5962     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5963     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5964 }
5965 
5966 static void host_to_target_termios (void *dst, const void *src)
5967 {
5968     struct target_termios *target = dst;
5969     const struct host_termios *host = src;
5970 
5971     target->c_iflag =
5972         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5973     target->c_oflag =
5974         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5975     target->c_cflag =
5976         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5977     target->c_lflag =
5978         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5979     target->c_line = host->c_line;
5980 
5981     memset(target->c_cc, 0, sizeof(target->c_cc));
5982     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5983     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5984     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5985     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5986     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5987     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5988     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5989     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5990     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5991     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5992     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5993     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5994     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5995     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5996     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5997     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5998     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5999 }
6000 
6001 static const StructEntry struct_termios_def = {
6002     .convert = { host_to_target_termios, target_to_host_termios },
6003     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
6004     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
6005     .print = print_termios,
6006 };
6007 
6008 static const bitmask_transtbl mmap_flags_tbl[] = {
6009     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
6010     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
6011     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
6012     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
6013       MAP_ANONYMOUS, MAP_ANONYMOUS },
6014     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
6015       MAP_GROWSDOWN, MAP_GROWSDOWN },
6016     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
6017       MAP_DENYWRITE, MAP_DENYWRITE },
6018     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
6019       MAP_EXECUTABLE, MAP_EXECUTABLE },
6020     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
6021     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
6022       MAP_NORESERVE, MAP_NORESERVE },
6023     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
6024     /* MAP_STACK had been ignored by the kernel for quite some time.
6025        Recognize it for the target insofar as we do not want to pass
6026        it through to the host.  */
6027     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6028     { 0, 0, 0, 0 }
6029 };
6030 
6031 /*
6032  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
6033  *       TARGET_I386 is defined if TARGET_X86_64 is defined
6034  */
6035 #if defined(TARGET_I386)
6036 
6037 /* NOTE: there is really one LDT for all the threads */
6038 static uint8_t *ldt_table;
6039 
6040 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6041 {
6042     int size;
6043     void *p;
6044 
6045     if (!ldt_table)
6046         return 0;
6047     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6048     if (size > bytecount)
6049         size = bytecount;
6050     p = lock_user(VERIFY_WRITE, ptr, size, 0);
6051     if (!p)
6052         return -TARGET_EFAULT;
6053     /* ??? Should this by byteswapped?  */
6054     memcpy(p, ldt_table, size);
6055     unlock_user(p, ptr, size);
6056     return size;
6057 }
6058 
6059 /* XXX: add locking support */
6060 static abi_long write_ldt(CPUX86State *env,
6061                           abi_ulong ptr, unsigned long bytecount, int oldmode)
6062 {
6063     struct target_modify_ldt_ldt_s ldt_info;
6064     struct target_modify_ldt_ldt_s *target_ldt_info;
6065     int seg_32bit, contents, read_exec_only, limit_in_pages;
6066     int seg_not_present, useable, lm;
6067     uint32_t *lp, entry_1, entry_2;
6068 
6069     if (bytecount != sizeof(ldt_info))
6070         return -TARGET_EINVAL;
6071     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6072         return -TARGET_EFAULT;
6073     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6074     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6075     ldt_info.limit = tswap32(target_ldt_info->limit);
6076     ldt_info.flags = tswap32(target_ldt_info->flags);
6077     unlock_user_struct(target_ldt_info, ptr, 0);
6078 
6079     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6080         return -TARGET_EINVAL;
6081     seg_32bit = ldt_info.flags & 1;
6082     contents = (ldt_info.flags >> 1) & 3;
6083     read_exec_only = (ldt_info.flags >> 3) & 1;
6084     limit_in_pages = (ldt_info.flags >> 4) & 1;
6085     seg_not_present = (ldt_info.flags >> 5) & 1;
6086     useable = (ldt_info.flags >> 6) & 1;
6087 #ifdef TARGET_ABI32
6088     lm = 0;
6089 #else
6090     lm = (ldt_info.flags >> 7) & 1;
6091 #endif
6092     if (contents == 3) {
6093         if (oldmode)
6094             return -TARGET_EINVAL;
6095         if (seg_not_present == 0)
6096             return -TARGET_EINVAL;
6097     }
6098     /* allocate the LDT */
6099     if (!ldt_table) {
6100         env->ldt.base = target_mmap(0,
6101                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6102                                     PROT_READ|PROT_WRITE,
6103                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6104         if (env->ldt.base == -1)
6105             return -TARGET_ENOMEM;
6106         memset(g2h_untagged(env->ldt.base), 0,
6107                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6108         env->ldt.limit = 0xffff;
6109         ldt_table = g2h_untagged(env->ldt.base);
6110     }
6111 
6112     /* NOTE: same code as Linux kernel */
6113     /* Allow LDTs to be cleared by the user. */
6114     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6115         if (oldmode ||
6116             (contents == 0		&&
6117              read_exec_only == 1	&&
6118              seg_32bit == 0		&&
6119              limit_in_pages == 0	&&
6120              seg_not_present == 1	&&
6121              useable == 0 )) {
6122             entry_1 = 0;
6123             entry_2 = 0;
6124             goto install;
6125         }
6126     }
6127 
6128     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6129         (ldt_info.limit & 0x0ffff);
6130     entry_2 = (ldt_info.base_addr & 0xff000000) |
6131         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6132         (ldt_info.limit & 0xf0000) |
6133         ((read_exec_only ^ 1) << 9) |
6134         (contents << 10) |
6135         ((seg_not_present ^ 1) << 15) |
6136         (seg_32bit << 22) |
6137         (limit_in_pages << 23) |
6138         (lm << 21) |
6139         0x7000;
6140     if (!oldmode)
6141         entry_2 |= (useable << 20);
6142 
6143     /* Install the new entry ...  */
6144 install:
6145     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6146     lp[0] = tswap32(entry_1);
6147     lp[1] = tswap32(entry_2);
6148     return 0;
6149 }
6150 
6151 /* specific and weird i386 syscalls */
6152 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6153                               unsigned long bytecount)
6154 {
6155     abi_long ret;
6156 
6157     switch (func) {
6158     case 0:
6159         ret = read_ldt(ptr, bytecount);
6160         break;
6161     case 1:
6162         ret = write_ldt(env, ptr, bytecount, 1);
6163         break;
6164     case 0x11:
6165         ret = write_ldt(env, ptr, bytecount, 0);
6166         break;
6167     default:
6168         ret = -TARGET_ENOSYS;
6169         break;
6170     }
6171     return ret;
6172 }
6173 
6174 #if defined(TARGET_ABI32)
6175 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6176 {
6177     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6178     struct target_modify_ldt_ldt_s ldt_info;
6179     struct target_modify_ldt_ldt_s *target_ldt_info;
6180     int seg_32bit, contents, read_exec_only, limit_in_pages;
6181     int seg_not_present, useable, lm;
6182     uint32_t *lp, entry_1, entry_2;
6183     int i;
6184 
6185     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6186     if (!target_ldt_info)
6187         return -TARGET_EFAULT;
6188     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6189     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6190     ldt_info.limit = tswap32(target_ldt_info->limit);
6191     ldt_info.flags = tswap32(target_ldt_info->flags);
6192     if (ldt_info.entry_number == -1) {
6193         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6194             if (gdt_table[i] == 0) {
6195                 ldt_info.entry_number = i;
6196                 target_ldt_info->entry_number = tswap32(i);
6197                 break;
6198             }
6199         }
6200     }
6201     unlock_user_struct(target_ldt_info, ptr, 1);
6202 
6203     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6204         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6205            return -TARGET_EINVAL;
6206     seg_32bit = ldt_info.flags & 1;
6207     contents = (ldt_info.flags >> 1) & 3;
6208     read_exec_only = (ldt_info.flags >> 3) & 1;
6209     limit_in_pages = (ldt_info.flags >> 4) & 1;
6210     seg_not_present = (ldt_info.flags >> 5) & 1;
6211     useable = (ldt_info.flags >> 6) & 1;
6212 #ifdef TARGET_ABI32
6213     lm = 0;
6214 #else
6215     lm = (ldt_info.flags >> 7) & 1;
6216 #endif
6217 
6218     if (contents == 3) {
6219         if (seg_not_present == 0)
6220             return -TARGET_EINVAL;
6221     }
6222 
6223     /* NOTE: same code as Linux kernel */
6224     /* Allow LDTs to be cleared by the user. */
6225     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6226         if ((contents == 0             &&
6227              read_exec_only == 1       &&
6228              seg_32bit == 0            &&
6229              limit_in_pages == 0       &&
6230              seg_not_present == 1      &&
6231              useable == 0 )) {
6232             entry_1 = 0;
6233             entry_2 = 0;
6234             goto install;
6235         }
6236     }
6237 
6238     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6239         (ldt_info.limit & 0x0ffff);
6240     entry_2 = (ldt_info.base_addr & 0xff000000) |
6241         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6242         (ldt_info.limit & 0xf0000) |
6243         ((read_exec_only ^ 1) << 9) |
6244         (contents << 10) |
6245         ((seg_not_present ^ 1) << 15) |
6246         (seg_32bit << 22) |
6247         (limit_in_pages << 23) |
6248         (useable << 20) |
6249         (lm << 21) |
6250         0x7000;
6251 
6252     /* Install the new entry ...  */
6253 install:
6254     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6255     lp[0] = tswap32(entry_1);
6256     lp[1] = tswap32(entry_2);
6257     return 0;
6258 }
6259 
6260 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6261 {
6262     struct target_modify_ldt_ldt_s *target_ldt_info;
6263     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6264     uint32_t base_addr, limit, flags;
6265     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6266     int seg_not_present, useable, lm;
6267     uint32_t *lp, entry_1, entry_2;
6268 
6269     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6270     if (!target_ldt_info)
6271         return -TARGET_EFAULT;
6272     idx = tswap32(target_ldt_info->entry_number);
6273     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6274         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6275         unlock_user_struct(target_ldt_info, ptr, 1);
6276         return -TARGET_EINVAL;
6277     }
6278     lp = (uint32_t *)(gdt_table + idx);
6279     entry_1 = tswap32(lp[0]);
6280     entry_2 = tswap32(lp[1]);
6281 
6282     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6283     contents = (entry_2 >> 10) & 3;
6284     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6285     seg_32bit = (entry_2 >> 22) & 1;
6286     limit_in_pages = (entry_2 >> 23) & 1;
6287     useable = (entry_2 >> 20) & 1;
6288 #ifdef TARGET_ABI32
6289     lm = 0;
6290 #else
6291     lm = (entry_2 >> 21) & 1;
6292 #endif
6293     flags = (seg_32bit << 0) | (contents << 1) |
6294         (read_exec_only << 3) | (limit_in_pages << 4) |
6295         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6296     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6297     base_addr = (entry_1 >> 16) |
6298         (entry_2 & 0xff000000) |
6299         ((entry_2 & 0xff) << 16);
6300     target_ldt_info->base_addr = tswapal(base_addr);
6301     target_ldt_info->limit = tswap32(limit);
6302     target_ldt_info->flags = tswap32(flags);
6303     unlock_user_struct(target_ldt_info, ptr, 1);
6304     return 0;
6305 }
6306 
6307 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6308 {
6309     return -TARGET_ENOSYS;
6310 }
6311 #else
6312 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6313 {
6314     abi_long ret = 0;
6315     abi_ulong val;
6316     int idx;
6317 
6318     switch(code) {
6319     case TARGET_ARCH_SET_GS:
6320     case TARGET_ARCH_SET_FS:
6321         if (code == TARGET_ARCH_SET_GS)
6322             idx = R_GS;
6323         else
6324             idx = R_FS;
6325         cpu_x86_load_seg(env, idx, 0);
6326         env->segs[idx].base = addr;
6327         break;
6328     case TARGET_ARCH_GET_GS:
6329     case TARGET_ARCH_GET_FS:
6330         if (code == TARGET_ARCH_GET_GS)
6331             idx = R_GS;
6332         else
6333             idx = R_FS;
6334         val = env->segs[idx].base;
6335         if (put_user(val, addr, abi_ulong))
6336             ret = -TARGET_EFAULT;
6337         break;
6338     default:
6339         ret = -TARGET_EINVAL;
6340         break;
6341     }
6342     return ret;
6343 }
6344 #endif /* defined(TARGET_ABI32 */
6345 #endif /* defined(TARGET_I386) */
6346 
6347 /*
6348  * These constants are generic.  Supply any that are missing from the host.
6349  */
6350 #ifndef PR_SET_NAME
6351 # define PR_SET_NAME    15
6352 # define PR_GET_NAME    16
6353 #endif
6354 #ifndef PR_SET_FP_MODE
6355 # define PR_SET_FP_MODE 45
6356 # define PR_GET_FP_MODE 46
6357 # define PR_FP_MODE_FR   (1 << 0)
6358 # define PR_FP_MODE_FRE  (1 << 1)
6359 #endif
6360 #ifndef PR_SVE_SET_VL
6361 # define PR_SVE_SET_VL  50
6362 # define PR_SVE_GET_VL  51
6363 # define PR_SVE_VL_LEN_MASK  0xffff
6364 # define PR_SVE_VL_INHERIT   (1 << 17)
6365 #endif
6366 #ifndef PR_PAC_RESET_KEYS
6367 # define PR_PAC_RESET_KEYS  54
6368 # define PR_PAC_APIAKEY   (1 << 0)
6369 # define PR_PAC_APIBKEY   (1 << 1)
6370 # define PR_PAC_APDAKEY   (1 << 2)
6371 # define PR_PAC_APDBKEY   (1 << 3)
6372 # define PR_PAC_APGAKEY   (1 << 4)
6373 #endif
6374 #ifndef PR_SET_TAGGED_ADDR_CTRL
6375 # define PR_SET_TAGGED_ADDR_CTRL 55
6376 # define PR_GET_TAGGED_ADDR_CTRL 56
6377 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6378 #endif
6379 #ifndef PR_MTE_TCF_SHIFT
6380 # define PR_MTE_TCF_SHIFT       1
6381 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6382 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6383 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6384 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6385 # define PR_MTE_TAG_SHIFT       3
6386 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6387 #endif
6388 #ifndef PR_SET_IO_FLUSHER
6389 # define PR_SET_IO_FLUSHER 57
6390 # define PR_GET_IO_FLUSHER 58
6391 #endif
6392 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6393 # define PR_SET_SYSCALL_USER_DISPATCH 59
6394 #endif
6395 
6396 #include "target_prctl.h"
6397 
6398 static abi_long do_prctl_inval0(CPUArchState *env)
6399 {
6400     return -TARGET_EINVAL;
6401 }
6402 
6403 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6404 {
6405     return -TARGET_EINVAL;
6406 }
6407 
6408 #ifndef do_prctl_get_fp_mode
6409 #define do_prctl_get_fp_mode do_prctl_inval0
6410 #endif
6411 #ifndef do_prctl_set_fp_mode
6412 #define do_prctl_set_fp_mode do_prctl_inval1
6413 #endif
6414 #ifndef do_prctl_get_vl
6415 #define do_prctl_get_vl do_prctl_inval0
6416 #endif
6417 #ifndef do_prctl_set_vl
6418 #define do_prctl_set_vl do_prctl_inval1
6419 #endif
6420 #ifndef do_prctl_reset_keys
6421 #define do_prctl_reset_keys do_prctl_inval1
6422 #endif
6423 #ifndef do_prctl_set_tagged_addr_ctrl
6424 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6425 #endif
6426 #ifndef do_prctl_get_tagged_addr_ctrl
6427 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6428 #endif
6429 #ifndef do_prctl_get_unalign
6430 #define do_prctl_get_unalign do_prctl_inval1
6431 #endif
6432 #ifndef do_prctl_set_unalign
6433 #define do_prctl_set_unalign do_prctl_inval1
6434 #endif
6435 
6436 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6437                          abi_long arg3, abi_long arg4, abi_long arg5)
6438 {
6439     abi_long ret;
6440 
6441     switch (option) {
6442     case PR_GET_PDEATHSIG:
6443         {
6444             int deathsig;
6445             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6446                                   arg3, arg4, arg5));
6447             if (!is_error(ret) && arg2 && put_user_s32(deathsig, arg2)) {
6448                 return -TARGET_EFAULT;
6449             }
6450             return ret;
6451         }
6452     case PR_GET_NAME:
6453         {
6454             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6455             if (!name) {
6456                 return -TARGET_EFAULT;
6457             }
6458             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6459                                   arg3, arg4, arg5));
6460             unlock_user(name, arg2, 16);
6461             return ret;
6462         }
6463     case PR_SET_NAME:
6464         {
6465             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6466             if (!name) {
6467                 return -TARGET_EFAULT;
6468             }
6469             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6470                                   arg3, arg4, arg5));
6471             unlock_user(name, arg2, 0);
6472             return ret;
6473         }
6474     case PR_GET_FP_MODE:
6475         return do_prctl_get_fp_mode(env);
6476     case PR_SET_FP_MODE:
6477         return do_prctl_set_fp_mode(env, arg2);
6478     case PR_SVE_GET_VL:
6479         return do_prctl_get_vl(env);
6480     case PR_SVE_SET_VL:
6481         return do_prctl_set_vl(env, arg2);
6482     case PR_PAC_RESET_KEYS:
6483         if (arg3 || arg4 || arg5) {
6484             return -TARGET_EINVAL;
6485         }
6486         return do_prctl_reset_keys(env, arg2);
6487     case PR_SET_TAGGED_ADDR_CTRL:
6488         if (arg3 || arg4 || arg5) {
6489             return -TARGET_EINVAL;
6490         }
6491         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6492     case PR_GET_TAGGED_ADDR_CTRL:
6493         if (arg2 || arg3 || arg4 || arg5) {
6494             return -TARGET_EINVAL;
6495         }
6496         return do_prctl_get_tagged_addr_ctrl(env);
6497 
6498     case PR_GET_UNALIGN:
6499         return do_prctl_get_unalign(env, arg2);
6500     case PR_SET_UNALIGN:
6501         return do_prctl_set_unalign(env, arg2);
6502 
6503     case PR_GET_DUMPABLE:
6504     case PR_SET_DUMPABLE:
6505     case PR_GET_KEEPCAPS:
6506     case PR_SET_KEEPCAPS:
6507     case PR_GET_TIMING:
6508     case PR_SET_TIMING:
6509     case PR_GET_TIMERSLACK:
6510     case PR_SET_TIMERSLACK:
6511     case PR_MCE_KILL:
6512     case PR_MCE_KILL_GET:
6513     case PR_GET_NO_NEW_PRIVS:
6514     case PR_SET_NO_NEW_PRIVS:
6515     case PR_GET_IO_FLUSHER:
6516     case PR_SET_IO_FLUSHER:
6517         /* Some prctl options have no pointer arguments and we can pass on. */
6518         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6519 
6520     case PR_GET_CHILD_SUBREAPER:
6521     case PR_SET_CHILD_SUBREAPER:
6522     case PR_GET_SPECULATION_CTRL:
6523     case PR_SET_SPECULATION_CTRL:
6524     case PR_GET_TID_ADDRESS:
6525         /* TODO */
6526         return -TARGET_EINVAL;
6527 
6528     case PR_GET_FPEXC:
6529     case PR_SET_FPEXC:
6530         /* Was used for SPE on PowerPC. */
6531         return -TARGET_EINVAL;
6532 
6533     case PR_GET_ENDIAN:
6534     case PR_SET_ENDIAN:
6535     case PR_GET_FPEMU:
6536     case PR_SET_FPEMU:
6537     case PR_SET_MM:
6538     case PR_GET_SECCOMP:
6539     case PR_SET_SECCOMP:
6540     case PR_SET_SYSCALL_USER_DISPATCH:
6541     case PR_GET_THP_DISABLE:
6542     case PR_SET_THP_DISABLE:
6543     case PR_GET_TSC:
6544     case PR_SET_TSC:
6545         /* Disable to prevent the target disabling stuff we need. */
6546         return -TARGET_EINVAL;
6547 
6548     default:
6549         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6550                       option);
6551         return -TARGET_EINVAL;
6552     }
6553 }
6554 
6555 #define NEW_STACK_SIZE 0x40000
6556 
6557 
6558 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6559 typedef struct {
6560     CPUArchState *env;
6561     pthread_mutex_t mutex;
6562     pthread_cond_t cond;
6563     pthread_t thread;
6564     uint32_t tid;
6565     abi_ulong child_tidptr;
6566     abi_ulong parent_tidptr;
6567     sigset_t sigmask;
6568 } new_thread_info;
6569 
6570 static void *clone_func(void *arg)
6571 {
6572     new_thread_info *info = arg;
6573     CPUArchState *env;
6574     CPUState *cpu;
6575     TaskState *ts;
6576 
6577     rcu_register_thread();
6578     tcg_register_thread();
6579     env = info->env;
6580     cpu = env_cpu(env);
6581     thread_cpu = cpu;
6582     ts = (TaskState *)cpu->opaque;
6583     info->tid = sys_gettid();
6584     task_settid(ts);
6585     if (info->child_tidptr)
6586         put_user_u32(info->tid, info->child_tidptr);
6587     if (info->parent_tidptr)
6588         put_user_u32(info->tid, info->parent_tidptr);
6589     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6590     /* Enable signals.  */
6591     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6592     /* Signal to the parent that we're ready.  */
6593     pthread_mutex_lock(&info->mutex);
6594     pthread_cond_broadcast(&info->cond);
6595     pthread_mutex_unlock(&info->mutex);
6596     /* Wait until the parent has finished initializing the tls state.  */
6597     pthread_mutex_lock(&clone_lock);
6598     pthread_mutex_unlock(&clone_lock);
6599     cpu_loop(env);
6600     /* never exits */
6601     return NULL;
6602 }
6603 
6604 /* do_fork() Must return host values and target errnos (unlike most
6605    do_*() functions). */
6606 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6607                    abi_ulong parent_tidptr, target_ulong newtls,
6608                    abi_ulong child_tidptr)
6609 {
6610     CPUState *cpu = env_cpu(env);
6611     int ret;
6612     TaskState *ts;
6613     CPUState *new_cpu;
6614     CPUArchState *new_env;
6615     sigset_t sigmask;
6616 
6617     flags &= ~CLONE_IGNORED_FLAGS;
6618 
6619     /* Emulate vfork() with fork() */
6620     if (flags & CLONE_VFORK)
6621         flags &= ~(CLONE_VFORK | CLONE_VM);
6622 
6623     if (flags & CLONE_VM) {
6624         TaskState *parent_ts = (TaskState *)cpu->opaque;
6625         new_thread_info info;
6626         pthread_attr_t attr;
6627 
6628         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6629             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6630             return -TARGET_EINVAL;
6631         }
6632 
6633         ts = g_new0(TaskState, 1);
6634         init_task_state(ts);
6635 
6636         /* Grab a mutex so that thread setup appears atomic.  */
6637         pthread_mutex_lock(&clone_lock);
6638 
6639         /*
6640          * If this is our first additional thread, we need to ensure we
6641          * generate code for parallel execution and flush old translations.
6642          * Do this now so that the copy gets CF_PARALLEL too.
6643          */
6644         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6645             cpu->tcg_cflags |= CF_PARALLEL;
6646             tb_flush(cpu);
6647         }
6648 
6649         /* we create a new CPU instance. */
6650         new_env = cpu_copy(env);
6651         /* Init regs that differ from the parent.  */
6652         cpu_clone_regs_child(new_env, newsp, flags);
6653         cpu_clone_regs_parent(env, flags);
6654         new_cpu = env_cpu(new_env);
6655         new_cpu->opaque = ts;
6656         ts->bprm = parent_ts->bprm;
6657         ts->info = parent_ts->info;
6658         ts->signal_mask = parent_ts->signal_mask;
6659 
6660         if (flags & CLONE_CHILD_CLEARTID) {
6661             ts->child_tidptr = child_tidptr;
6662         }
6663 
6664         if (flags & CLONE_SETTLS) {
6665             cpu_set_tls (new_env, newtls);
6666         }
6667 
6668         memset(&info, 0, sizeof(info));
6669         pthread_mutex_init(&info.mutex, NULL);
6670         pthread_mutex_lock(&info.mutex);
6671         pthread_cond_init(&info.cond, NULL);
6672         info.env = new_env;
6673         if (flags & CLONE_CHILD_SETTID) {
6674             info.child_tidptr = child_tidptr;
6675         }
6676         if (flags & CLONE_PARENT_SETTID) {
6677             info.parent_tidptr = parent_tidptr;
6678         }
6679 
6680         ret = pthread_attr_init(&attr);
6681         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6682         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6683         /* It is not safe to deliver signals until the child has finished
6684            initializing, so temporarily block all signals.  */
6685         sigfillset(&sigmask);
6686         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6687         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6688 
6689         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6690         /* TODO: Free new CPU state if thread creation failed.  */
6691 
6692         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6693         pthread_attr_destroy(&attr);
6694         if (ret == 0) {
6695             /* Wait for the child to initialize.  */
6696             pthread_cond_wait(&info.cond, &info.mutex);
6697             ret = info.tid;
6698         } else {
6699             ret = -1;
6700         }
6701         pthread_mutex_unlock(&info.mutex);
6702         pthread_cond_destroy(&info.cond);
6703         pthread_mutex_destroy(&info.mutex);
6704         pthread_mutex_unlock(&clone_lock);
6705     } else {
6706         /* if no CLONE_VM, we consider it is a fork */
6707         if (flags & CLONE_INVALID_FORK_FLAGS) {
6708             return -TARGET_EINVAL;
6709         }
6710 
6711         /* We can't support custom termination signals */
6712         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6713             return -TARGET_EINVAL;
6714         }
6715 
6716         if (block_signals()) {
6717             return -QEMU_ERESTARTSYS;
6718         }
6719 
6720         fork_start();
6721         ret = fork();
6722         if (ret == 0) {
6723             /* Child Process.  */
6724             cpu_clone_regs_child(env, newsp, flags);
6725             fork_end(1);
6726             /* There is a race condition here.  The parent process could
6727                theoretically read the TID in the child process before the child
6728                tid is set.  This would require using either ptrace
6729                (not implemented) or having *_tidptr to point at a shared memory
6730                mapping.  We can't repeat the spinlock hack used above because
6731                the child process gets its own copy of the lock.  */
6732             if (flags & CLONE_CHILD_SETTID)
6733                 put_user_u32(sys_gettid(), child_tidptr);
6734             if (flags & CLONE_PARENT_SETTID)
6735                 put_user_u32(sys_gettid(), parent_tidptr);
6736             ts = (TaskState *)cpu->opaque;
6737             if (flags & CLONE_SETTLS)
6738                 cpu_set_tls (env, newtls);
6739             if (flags & CLONE_CHILD_CLEARTID)
6740                 ts->child_tidptr = child_tidptr;
6741         } else {
6742             cpu_clone_regs_parent(env, flags);
6743             fork_end(0);
6744         }
6745     }
6746     return ret;
6747 }
6748 
6749 /* warning : doesn't handle linux specific flags... */
6750 static int target_to_host_fcntl_cmd(int cmd)
6751 {
6752     int ret;
6753 
6754     switch(cmd) {
6755     case TARGET_F_DUPFD:
6756     case TARGET_F_GETFD:
6757     case TARGET_F_SETFD:
6758     case TARGET_F_GETFL:
6759     case TARGET_F_SETFL:
6760     case TARGET_F_OFD_GETLK:
6761     case TARGET_F_OFD_SETLK:
6762     case TARGET_F_OFD_SETLKW:
6763         ret = cmd;
6764         break;
6765     case TARGET_F_GETLK:
6766         ret = F_GETLK64;
6767         break;
6768     case TARGET_F_SETLK:
6769         ret = F_SETLK64;
6770         break;
6771     case TARGET_F_SETLKW:
6772         ret = F_SETLKW64;
6773         break;
6774     case TARGET_F_GETOWN:
6775         ret = F_GETOWN;
6776         break;
6777     case TARGET_F_SETOWN:
6778         ret = F_SETOWN;
6779         break;
6780     case TARGET_F_GETSIG:
6781         ret = F_GETSIG;
6782         break;
6783     case TARGET_F_SETSIG:
6784         ret = F_SETSIG;
6785         break;
6786 #if TARGET_ABI_BITS == 32
6787     case TARGET_F_GETLK64:
6788         ret = F_GETLK64;
6789         break;
6790     case TARGET_F_SETLK64:
6791         ret = F_SETLK64;
6792         break;
6793     case TARGET_F_SETLKW64:
6794         ret = F_SETLKW64;
6795         break;
6796 #endif
6797     case TARGET_F_SETLEASE:
6798         ret = F_SETLEASE;
6799         break;
6800     case TARGET_F_GETLEASE:
6801         ret = F_GETLEASE;
6802         break;
6803 #ifdef F_DUPFD_CLOEXEC
6804     case TARGET_F_DUPFD_CLOEXEC:
6805         ret = F_DUPFD_CLOEXEC;
6806         break;
6807 #endif
6808     case TARGET_F_NOTIFY:
6809         ret = F_NOTIFY;
6810         break;
6811 #ifdef F_GETOWN_EX
6812     case TARGET_F_GETOWN_EX:
6813         ret = F_GETOWN_EX;
6814         break;
6815 #endif
6816 #ifdef F_SETOWN_EX
6817     case TARGET_F_SETOWN_EX:
6818         ret = F_SETOWN_EX;
6819         break;
6820 #endif
6821 #ifdef F_SETPIPE_SZ
6822     case TARGET_F_SETPIPE_SZ:
6823         ret = F_SETPIPE_SZ;
6824         break;
6825     case TARGET_F_GETPIPE_SZ:
6826         ret = F_GETPIPE_SZ;
6827         break;
6828 #endif
6829 #ifdef F_ADD_SEALS
6830     case TARGET_F_ADD_SEALS:
6831         ret = F_ADD_SEALS;
6832         break;
6833     case TARGET_F_GET_SEALS:
6834         ret = F_GET_SEALS;
6835         break;
6836 #endif
6837     default:
6838         ret = -TARGET_EINVAL;
6839         break;
6840     }
6841 
6842 #if defined(__powerpc64__)
6843     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6844      * is not supported by kernel. The glibc fcntl call actually adjusts
6845      * them to 5, 6 and 7 before making the syscall(). Since we make the
6846      * syscall directly, adjust to what is supported by the kernel.
6847      */
6848     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6849         ret -= F_GETLK64 - 5;
6850     }
6851 #endif
6852 
6853     return ret;
6854 }
6855 
6856 #define FLOCK_TRANSTBL \
6857     switch (type) { \
6858     TRANSTBL_CONVERT(F_RDLCK); \
6859     TRANSTBL_CONVERT(F_WRLCK); \
6860     TRANSTBL_CONVERT(F_UNLCK); \
6861     }
6862 
6863 static int target_to_host_flock(int type)
6864 {
6865 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6866     FLOCK_TRANSTBL
6867 #undef  TRANSTBL_CONVERT
6868     return -TARGET_EINVAL;
6869 }
6870 
6871 static int host_to_target_flock(int type)
6872 {
6873 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6874     FLOCK_TRANSTBL
6875 #undef  TRANSTBL_CONVERT
6876     /* if we don't know how to convert the value coming
6877      * from the host we copy to the target field as-is
6878      */
6879     return type;
6880 }
6881 
6882 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6883                                             abi_ulong target_flock_addr)
6884 {
6885     struct target_flock *target_fl;
6886     int l_type;
6887 
6888     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6889         return -TARGET_EFAULT;
6890     }
6891 
6892     __get_user(l_type, &target_fl->l_type);
6893     l_type = target_to_host_flock(l_type);
6894     if (l_type < 0) {
6895         return l_type;
6896     }
6897     fl->l_type = l_type;
6898     __get_user(fl->l_whence, &target_fl->l_whence);
6899     __get_user(fl->l_start, &target_fl->l_start);
6900     __get_user(fl->l_len, &target_fl->l_len);
6901     __get_user(fl->l_pid, &target_fl->l_pid);
6902     unlock_user_struct(target_fl, target_flock_addr, 0);
6903     return 0;
6904 }
6905 
6906 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6907                                           const struct flock64 *fl)
6908 {
6909     struct target_flock *target_fl;
6910     short l_type;
6911 
6912     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6913         return -TARGET_EFAULT;
6914     }
6915 
6916     l_type = host_to_target_flock(fl->l_type);
6917     __put_user(l_type, &target_fl->l_type);
6918     __put_user(fl->l_whence, &target_fl->l_whence);
6919     __put_user(fl->l_start, &target_fl->l_start);
6920     __put_user(fl->l_len, &target_fl->l_len);
6921     __put_user(fl->l_pid, &target_fl->l_pid);
6922     unlock_user_struct(target_fl, target_flock_addr, 1);
6923     return 0;
6924 }
6925 
6926 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6927 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6928 
6929 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6930 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6931                                                    abi_ulong target_flock_addr)
6932 {
6933     struct target_oabi_flock64 *target_fl;
6934     int l_type;
6935 
6936     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6937         return -TARGET_EFAULT;
6938     }
6939 
6940     __get_user(l_type, &target_fl->l_type);
6941     l_type = target_to_host_flock(l_type);
6942     if (l_type < 0) {
6943         return l_type;
6944     }
6945     fl->l_type = l_type;
6946     __get_user(fl->l_whence, &target_fl->l_whence);
6947     __get_user(fl->l_start, &target_fl->l_start);
6948     __get_user(fl->l_len, &target_fl->l_len);
6949     __get_user(fl->l_pid, &target_fl->l_pid);
6950     unlock_user_struct(target_fl, target_flock_addr, 0);
6951     return 0;
6952 }
6953 
6954 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6955                                                  const struct flock64 *fl)
6956 {
6957     struct target_oabi_flock64 *target_fl;
6958     short l_type;
6959 
6960     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6961         return -TARGET_EFAULT;
6962     }
6963 
6964     l_type = host_to_target_flock(fl->l_type);
6965     __put_user(l_type, &target_fl->l_type);
6966     __put_user(fl->l_whence, &target_fl->l_whence);
6967     __put_user(fl->l_start, &target_fl->l_start);
6968     __put_user(fl->l_len, &target_fl->l_len);
6969     __put_user(fl->l_pid, &target_fl->l_pid);
6970     unlock_user_struct(target_fl, target_flock_addr, 1);
6971     return 0;
6972 }
6973 #endif
6974 
6975 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6976                                               abi_ulong target_flock_addr)
6977 {
6978     struct target_flock64 *target_fl;
6979     int l_type;
6980 
6981     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6982         return -TARGET_EFAULT;
6983     }
6984 
6985     __get_user(l_type, &target_fl->l_type);
6986     l_type = target_to_host_flock(l_type);
6987     if (l_type < 0) {
6988         return l_type;
6989     }
6990     fl->l_type = l_type;
6991     __get_user(fl->l_whence, &target_fl->l_whence);
6992     __get_user(fl->l_start, &target_fl->l_start);
6993     __get_user(fl->l_len, &target_fl->l_len);
6994     __get_user(fl->l_pid, &target_fl->l_pid);
6995     unlock_user_struct(target_fl, target_flock_addr, 0);
6996     return 0;
6997 }
6998 
6999 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
7000                                             const struct flock64 *fl)
7001 {
7002     struct target_flock64 *target_fl;
7003     short l_type;
7004 
7005     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7006         return -TARGET_EFAULT;
7007     }
7008 
7009     l_type = host_to_target_flock(fl->l_type);
7010     __put_user(l_type, &target_fl->l_type);
7011     __put_user(fl->l_whence, &target_fl->l_whence);
7012     __put_user(fl->l_start, &target_fl->l_start);
7013     __put_user(fl->l_len, &target_fl->l_len);
7014     __put_user(fl->l_pid, &target_fl->l_pid);
7015     unlock_user_struct(target_fl, target_flock_addr, 1);
7016     return 0;
7017 }
7018 
7019 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
7020 {
7021     struct flock64 fl64;
7022 #ifdef F_GETOWN_EX
7023     struct f_owner_ex fox;
7024     struct target_f_owner_ex *target_fox;
7025 #endif
7026     abi_long ret;
7027     int host_cmd = target_to_host_fcntl_cmd(cmd);
7028 
7029     if (host_cmd == -TARGET_EINVAL)
7030 	    return host_cmd;
7031 
7032     switch(cmd) {
7033     case TARGET_F_GETLK:
7034         ret = copy_from_user_flock(&fl64, arg);
7035         if (ret) {
7036             return ret;
7037         }
7038         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7039         if (ret == 0) {
7040             ret = copy_to_user_flock(arg, &fl64);
7041         }
7042         break;
7043 
7044     case TARGET_F_SETLK:
7045     case TARGET_F_SETLKW:
7046         ret = copy_from_user_flock(&fl64, arg);
7047         if (ret) {
7048             return ret;
7049         }
7050         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7051         break;
7052 
7053     case TARGET_F_GETLK64:
7054     case TARGET_F_OFD_GETLK:
7055         ret = copy_from_user_flock64(&fl64, arg);
7056         if (ret) {
7057             return ret;
7058         }
7059         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7060         if (ret == 0) {
7061             ret = copy_to_user_flock64(arg, &fl64);
7062         }
7063         break;
7064     case TARGET_F_SETLK64:
7065     case TARGET_F_SETLKW64:
7066     case TARGET_F_OFD_SETLK:
7067     case TARGET_F_OFD_SETLKW:
7068         ret = copy_from_user_flock64(&fl64, arg);
7069         if (ret) {
7070             return ret;
7071         }
7072         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7073         break;
7074 
7075     case TARGET_F_GETFL:
7076         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7077         if (ret >= 0) {
7078             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7079         }
7080         break;
7081 
7082     case TARGET_F_SETFL:
7083         ret = get_errno(safe_fcntl(fd, host_cmd,
7084                                    target_to_host_bitmask(arg,
7085                                                           fcntl_flags_tbl)));
7086         break;
7087 
7088 #ifdef F_GETOWN_EX
7089     case TARGET_F_GETOWN_EX:
7090         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7091         if (ret >= 0) {
7092             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7093                 return -TARGET_EFAULT;
7094             target_fox->type = tswap32(fox.type);
7095             target_fox->pid = tswap32(fox.pid);
7096             unlock_user_struct(target_fox, arg, 1);
7097         }
7098         break;
7099 #endif
7100 
7101 #ifdef F_SETOWN_EX
7102     case TARGET_F_SETOWN_EX:
7103         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7104             return -TARGET_EFAULT;
7105         fox.type = tswap32(target_fox->type);
7106         fox.pid = tswap32(target_fox->pid);
7107         unlock_user_struct(target_fox, arg, 0);
7108         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7109         break;
7110 #endif
7111 
7112     case TARGET_F_SETSIG:
7113         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7114         break;
7115 
7116     case TARGET_F_GETSIG:
7117         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7118         break;
7119 
7120     case TARGET_F_SETOWN:
7121     case TARGET_F_GETOWN:
7122     case TARGET_F_SETLEASE:
7123     case TARGET_F_GETLEASE:
7124     case TARGET_F_SETPIPE_SZ:
7125     case TARGET_F_GETPIPE_SZ:
7126     case TARGET_F_ADD_SEALS:
7127     case TARGET_F_GET_SEALS:
7128         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7129         break;
7130 
7131     default:
7132         ret = get_errno(safe_fcntl(fd, cmd, arg));
7133         break;
7134     }
7135     return ret;
7136 }
7137 
7138 #ifdef USE_UID16
7139 
7140 static inline int high2lowuid(int uid)
7141 {
7142     if (uid > 65535)
7143         return 65534;
7144     else
7145         return uid;
7146 }
7147 
7148 static inline int high2lowgid(int gid)
7149 {
7150     if (gid > 65535)
7151         return 65534;
7152     else
7153         return gid;
7154 }
7155 
7156 static inline int low2highuid(int uid)
7157 {
7158     if ((int16_t)uid == -1)
7159         return -1;
7160     else
7161         return uid;
7162 }
7163 
7164 static inline int low2highgid(int gid)
7165 {
7166     if ((int16_t)gid == -1)
7167         return -1;
7168     else
7169         return gid;
7170 }
7171 static inline int tswapid(int id)
7172 {
7173     return tswap16(id);
7174 }
7175 
7176 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7177 
7178 #else /* !USE_UID16 */
7179 static inline int high2lowuid(int uid)
7180 {
7181     return uid;
7182 }
7183 static inline int high2lowgid(int gid)
7184 {
7185     return gid;
7186 }
7187 static inline int low2highuid(int uid)
7188 {
7189     return uid;
7190 }
7191 static inline int low2highgid(int gid)
7192 {
7193     return gid;
7194 }
7195 static inline int tswapid(int id)
7196 {
7197     return tswap32(id);
7198 }
7199 
7200 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7201 
7202 #endif /* USE_UID16 */
7203 
7204 /* We must do direct syscalls for setting UID/GID, because we want to
7205  * implement the Linux system call semantics of "change only for this thread",
7206  * not the libc/POSIX semantics of "change for all threads in process".
7207  * (See http://ewontfix.com/17/ for more details.)
7208  * We use the 32-bit version of the syscalls if present; if it is not
7209  * then either the host architecture supports 32-bit UIDs natively with
7210  * the standard syscall, or the 16-bit UID is the best we can do.
7211  */
7212 #ifdef __NR_setuid32
7213 #define __NR_sys_setuid __NR_setuid32
7214 #else
7215 #define __NR_sys_setuid __NR_setuid
7216 #endif
7217 #ifdef __NR_setgid32
7218 #define __NR_sys_setgid __NR_setgid32
7219 #else
7220 #define __NR_sys_setgid __NR_setgid
7221 #endif
7222 #ifdef __NR_setresuid32
7223 #define __NR_sys_setresuid __NR_setresuid32
7224 #else
7225 #define __NR_sys_setresuid __NR_setresuid
7226 #endif
7227 #ifdef __NR_setresgid32
7228 #define __NR_sys_setresgid __NR_setresgid32
7229 #else
7230 #define __NR_sys_setresgid __NR_setresgid
7231 #endif
7232 
7233 _syscall1(int, sys_setuid, uid_t, uid)
7234 _syscall1(int, sys_setgid, gid_t, gid)
7235 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7236 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7237 
7238 void syscall_init(void)
7239 {
7240     IOCTLEntry *ie;
7241     const argtype *arg_type;
7242     int size;
7243 
7244     thunk_init(STRUCT_MAX);
7245 
7246 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7247 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7248 #include "syscall_types.h"
7249 #undef STRUCT
7250 #undef STRUCT_SPECIAL
7251 
7252     /* we patch the ioctl size if necessary. We rely on the fact that
7253        no ioctl has all the bits at '1' in the size field */
7254     ie = ioctl_entries;
7255     while (ie->target_cmd != 0) {
7256         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7257             TARGET_IOC_SIZEMASK) {
7258             arg_type = ie->arg_type;
7259             if (arg_type[0] != TYPE_PTR) {
7260                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7261                         ie->target_cmd);
7262                 exit(1);
7263             }
7264             arg_type++;
7265             size = thunk_type_size(arg_type, 0);
7266             ie->target_cmd = (ie->target_cmd &
7267                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7268                 (size << TARGET_IOC_SIZESHIFT);
7269         }
7270 
7271         /* automatic consistency check if same arch */
7272 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7273     (defined(__x86_64__) && defined(TARGET_X86_64))
7274         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7275             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7276                     ie->name, ie->target_cmd, ie->host_cmd);
7277         }
7278 #endif
7279         ie++;
7280     }
7281 }
7282 
7283 #ifdef TARGET_NR_truncate64
7284 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
7285                                          abi_long arg2,
7286                                          abi_long arg3,
7287                                          abi_long arg4)
7288 {
7289     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7290         arg2 = arg3;
7291         arg3 = arg4;
7292     }
7293     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7294 }
7295 #endif
7296 
7297 #ifdef TARGET_NR_ftruncate64
7298 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
7299                                           abi_long arg2,
7300                                           abi_long arg3,
7301                                           abi_long arg4)
7302 {
7303     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7304         arg2 = arg3;
7305         arg3 = arg4;
7306     }
7307     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7308 }
7309 #endif
7310 
7311 #if defined(TARGET_NR_timer_settime) || \
7312     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7313 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7314                                                  abi_ulong target_addr)
7315 {
7316     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7317                                 offsetof(struct target_itimerspec,
7318                                          it_interval)) ||
7319         target_to_host_timespec(&host_its->it_value, target_addr +
7320                                 offsetof(struct target_itimerspec,
7321                                          it_value))) {
7322         return -TARGET_EFAULT;
7323     }
7324 
7325     return 0;
7326 }
7327 #endif
7328 
7329 #if defined(TARGET_NR_timer_settime64) || \
7330     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7331 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7332                                                    abi_ulong target_addr)
7333 {
7334     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7335                                   offsetof(struct target__kernel_itimerspec,
7336                                            it_interval)) ||
7337         target_to_host_timespec64(&host_its->it_value, target_addr +
7338                                   offsetof(struct target__kernel_itimerspec,
7339                                            it_value))) {
7340         return -TARGET_EFAULT;
7341     }
7342 
7343     return 0;
7344 }
7345 #endif
7346 
7347 #if ((defined(TARGET_NR_timerfd_gettime) || \
7348       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7349       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7350 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7351                                                  struct itimerspec *host_its)
7352 {
7353     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7354                                                        it_interval),
7355                                 &host_its->it_interval) ||
7356         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7357                                                        it_value),
7358                                 &host_its->it_value)) {
7359         return -TARGET_EFAULT;
7360     }
7361     return 0;
7362 }
7363 #endif
7364 
7365 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7366       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7367       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7368 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7369                                                    struct itimerspec *host_its)
7370 {
7371     if (host_to_target_timespec64(target_addr +
7372                                   offsetof(struct target__kernel_itimerspec,
7373                                            it_interval),
7374                                   &host_its->it_interval) ||
7375         host_to_target_timespec64(target_addr +
7376                                   offsetof(struct target__kernel_itimerspec,
7377                                            it_value),
7378                                   &host_its->it_value)) {
7379         return -TARGET_EFAULT;
7380     }
7381     return 0;
7382 }
7383 #endif
7384 
7385 #if defined(TARGET_NR_adjtimex) || \
7386     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7387 static inline abi_long target_to_host_timex(struct timex *host_tx,
7388                                             abi_long target_addr)
7389 {
7390     struct target_timex *target_tx;
7391 
7392     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7393         return -TARGET_EFAULT;
7394     }
7395 
7396     __get_user(host_tx->modes, &target_tx->modes);
7397     __get_user(host_tx->offset, &target_tx->offset);
7398     __get_user(host_tx->freq, &target_tx->freq);
7399     __get_user(host_tx->maxerror, &target_tx->maxerror);
7400     __get_user(host_tx->esterror, &target_tx->esterror);
7401     __get_user(host_tx->status, &target_tx->status);
7402     __get_user(host_tx->constant, &target_tx->constant);
7403     __get_user(host_tx->precision, &target_tx->precision);
7404     __get_user(host_tx->tolerance, &target_tx->tolerance);
7405     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7406     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7407     __get_user(host_tx->tick, &target_tx->tick);
7408     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7409     __get_user(host_tx->jitter, &target_tx->jitter);
7410     __get_user(host_tx->shift, &target_tx->shift);
7411     __get_user(host_tx->stabil, &target_tx->stabil);
7412     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7413     __get_user(host_tx->calcnt, &target_tx->calcnt);
7414     __get_user(host_tx->errcnt, &target_tx->errcnt);
7415     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7416     __get_user(host_tx->tai, &target_tx->tai);
7417 
7418     unlock_user_struct(target_tx, target_addr, 0);
7419     return 0;
7420 }
7421 
7422 static inline abi_long host_to_target_timex(abi_long target_addr,
7423                                             struct timex *host_tx)
7424 {
7425     struct target_timex *target_tx;
7426 
7427     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7428         return -TARGET_EFAULT;
7429     }
7430 
7431     __put_user(host_tx->modes, &target_tx->modes);
7432     __put_user(host_tx->offset, &target_tx->offset);
7433     __put_user(host_tx->freq, &target_tx->freq);
7434     __put_user(host_tx->maxerror, &target_tx->maxerror);
7435     __put_user(host_tx->esterror, &target_tx->esterror);
7436     __put_user(host_tx->status, &target_tx->status);
7437     __put_user(host_tx->constant, &target_tx->constant);
7438     __put_user(host_tx->precision, &target_tx->precision);
7439     __put_user(host_tx->tolerance, &target_tx->tolerance);
7440     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7441     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7442     __put_user(host_tx->tick, &target_tx->tick);
7443     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7444     __put_user(host_tx->jitter, &target_tx->jitter);
7445     __put_user(host_tx->shift, &target_tx->shift);
7446     __put_user(host_tx->stabil, &target_tx->stabil);
7447     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7448     __put_user(host_tx->calcnt, &target_tx->calcnt);
7449     __put_user(host_tx->errcnt, &target_tx->errcnt);
7450     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7451     __put_user(host_tx->tai, &target_tx->tai);
7452 
7453     unlock_user_struct(target_tx, target_addr, 1);
7454     return 0;
7455 }
7456 #endif
7457 
7458 
7459 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7460 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7461                                               abi_long target_addr)
7462 {
7463     struct target__kernel_timex *target_tx;
7464 
7465     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7466                                  offsetof(struct target__kernel_timex,
7467                                           time))) {
7468         return -TARGET_EFAULT;
7469     }
7470 
7471     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7472         return -TARGET_EFAULT;
7473     }
7474 
7475     __get_user(host_tx->modes, &target_tx->modes);
7476     __get_user(host_tx->offset, &target_tx->offset);
7477     __get_user(host_tx->freq, &target_tx->freq);
7478     __get_user(host_tx->maxerror, &target_tx->maxerror);
7479     __get_user(host_tx->esterror, &target_tx->esterror);
7480     __get_user(host_tx->status, &target_tx->status);
7481     __get_user(host_tx->constant, &target_tx->constant);
7482     __get_user(host_tx->precision, &target_tx->precision);
7483     __get_user(host_tx->tolerance, &target_tx->tolerance);
7484     __get_user(host_tx->tick, &target_tx->tick);
7485     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7486     __get_user(host_tx->jitter, &target_tx->jitter);
7487     __get_user(host_tx->shift, &target_tx->shift);
7488     __get_user(host_tx->stabil, &target_tx->stabil);
7489     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7490     __get_user(host_tx->calcnt, &target_tx->calcnt);
7491     __get_user(host_tx->errcnt, &target_tx->errcnt);
7492     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7493     __get_user(host_tx->tai, &target_tx->tai);
7494 
7495     unlock_user_struct(target_tx, target_addr, 0);
7496     return 0;
7497 }
7498 
7499 static inline abi_long host_to_target_timex64(abi_long target_addr,
7500                                               struct timex *host_tx)
7501 {
7502     struct target__kernel_timex *target_tx;
7503 
7504    if (copy_to_user_timeval64(target_addr +
7505                               offsetof(struct target__kernel_timex, time),
7506                               &host_tx->time)) {
7507         return -TARGET_EFAULT;
7508     }
7509 
7510     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7511         return -TARGET_EFAULT;
7512     }
7513 
7514     __put_user(host_tx->modes, &target_tx->modes);
7515     __put_user(host_tx->offset, &target_tx->offset);
7516     __put_user(host_tx->freq, &target_tx->freq);
7517     __put_user(host_tx->maxerror, &target_tx->maxerror);
7518     __put_user(host_tx->esterror, &target_tx->esterror);
7519     __put_user(host_tx->status, &target_tx->status);
7520     __put_user(host_tx->constant, &target_tx->constant);
7521     __put_user(host_tx->precision, &target_tx->precision);
7522     __put_user(host_tx->tolerance, &target_tx->tolerance);
7523     __put_user(host_tx->tick, &target_tx->tick);
7524     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7525     __put_user(host_tx->jitter, &target_tx->jitter);
7526     __put_user(host_tx->shift, &target_tx->shift);
7527     __put_user(host_tx->stabil, &target_tx->stabil);
7528     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7529     __put_user(host_tx->calcnt, &target_tx->calcnt);
7530     __put_user(host_tx->errcnt, &target_tx->errcnt);
7531     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7532     __put_user(host_tx->tai, &target_tx->tai);
7533 
7534     unlock_user_struct(target_tx, target_addr, 1);
7535     return 0;
7536 }
7537 #endif
7538 
7539 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7540 #define sigev_notify_thread_id _sigev_un._tid
7541 #endif
7542 
7543 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7544                                                abi_ulong target_addr)
7545 {
7546     struct target_sigevent *target_sevp;
7547 
7548     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7549         return -TARGET_EFAULT;
7550     }
7551 
7552     /* This union is awkward on 64 bit systems because it has a 32 bit
7553      * integer and a pointer in it; we follow the conversion approach
7554      * used for handling sigval types in signal.c so the guest should get
7555      * the correct value back even if we did a 64 bit byteswap and it's
7556      * using the 32 bit integer.
7557      */
7558     host_sevp->sigev_value.sival_ptr =
7559         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7560     host_sevp->sigev_signo =
7561         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7562     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7563     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7564 
7565     unlock_user_struct(target_sevp, target_addr, 1);
7566     return 0;
7567 }
7568 
7569 #if defined(TARGET_NR_mlockall)
7570 static inline int target_to_host_mlockall_arg(int arg)
7571 {
7572     int result = 0;
7573 
7574     if (arg & TARGET_MCL_CURRENT) {
7575         result |= MCL_CURRENT;
7576     }
7577     if (arg & TARGET_MCL_FUTURE) {
7578         result |= MCL_FUTURE;
7579     }
7580 #ifdef MCL_ONFAULT
7581     if (arg & TARGET_MCL_ONFAULT) {
7582         result |= MCL_ONFAULT;
7583     }
7584 #endif
7585 
7586     return result;
7587 }
7588 #endif
7589 
7590 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7591      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7592      defined(TARGET_NR_newfstatat))
7593 static inline abi_long host_to_target_stat64(void *cpu_env,
7594                                              abi_ulong target_addr,
7595                                              struct stat *host_st)
7596 {
7597 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7598     if (((CPUARMState *)cpu_env)->eabi) {
7599         struct target_eabi_stat64 *target_st;
7600 
7601         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7602             return -TARGET_EFAULT;
7603         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7604         __put_user(host_st->st_dev, &target_st->st_dev);
7605         __put_user(host_st->st_ino, &target_st->st_ino);
7606 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7607         __put_user(host_st->st_ino, &target_st->__st_ino);
7608 #endif
7609         __put_user(host_st->st_mode, &target_st->st_mode);
7610         __put_user(host_st->st_nlink, &target_st->st_nlink);
7611         __put_user(host_st->st_uid, &target_st->st_uid);
7612         __put_user(host_st->st_gid, &target_st->st_gid);
7613         __put_user(host_st->st_rdev, &target_st->st_rdev);
7614         __put_user(host_st->st_size, &target_st->st_size);
7615         __put_user(host_st->st_blksize, &target_st->st_blksize);
7616         __put_user(host_st->st_blocks, &target_st->st_blocks);
7617         __put_user(host_st->st_atime, &target_st->target_st_atime);
7618         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7619         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7620 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7621         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7622         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7623         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7624 #endif
7625         unlock_user_struct(target_st, target_addr, 1);
7626     } else
7627 #endif
7628     {
7629 #if defined(TARGET_HAS_STRUCT_STAT64)
7630         struct target_stat64 *target_st;
7631 #else
7632         struct target_stat *target_st;
7633 #endif
7634 
7635         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7636             return -TARGET_EFAULT;
7637         memset(target_st, 0, sizeof(*target_st));
7638         __put_user(host_st->st_dev, &target_st->st_dev);
7639         __put_user(host_st->st_ino, &target_st->st_ino);
7640 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7641         __put_user(host_st->st_ino, &target_st->__st_ino);
7642 #endif
7643         __put_user(host_st->st_mode, &target_st->st_mode);
7644         __put_user(host_st->st_nlink, &target_st->st_nlink);
7645         __put_user(host_st->st_uid, &target_st->st_uid);
7646         __put_user(host_st->st_gid, &target_st->st_gid);
7647         __put_user(host_st->st_rdev, &target_st->st_rdev);
7648         /* XXX: better use of kernel struct */
7649         __put_user(host_st->st_size, &target_st->st_size);
7650         __put_user(host_st->st_blksize, &target_st->st_blksize);
7651         __put_user(host_st->st_blocks, &target_st->st_blocks);
7652         __put_user(host_st->st_atime, &target_st->target_st_atime);
7653         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7654         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7655 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7656         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7657         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7658         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7659 #endif
7660         unlock_user_struct(target_st, target_addr, 1);
7661     }
7662 
7663     return 0;
7664 }
7665 #endif
7666 
7667 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7668 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7669                                             abi_ulong target_addr)
7670 {
7671     struct target_statx *target_stx;
7672 
7673     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7674         return -TARGET_EFAULT;
7675     }
7676     memset(target_stx, 0, sizeof(*target_stx));
7677 
7678     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7679     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7680     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7681     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7682     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7683     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7684     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7685     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7686     __put_user(host_stx->stx_size, &target_stx->stx_size);
7687     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7688     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7689     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7690     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7691     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7692     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7693     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7694     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7695     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7696     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7697     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7698     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7699     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7700     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7701 
7702     unlock_user_struct(target_stx, target_addr, 1);
7703 
7704     return 0;
7705 }
7706 #endif
7707 
7708 static int do_sys_futex(int *uaddr, int op, int val,
7709                          const struct timespec *timeout, int *uaddr2,
7710                          int val3)
7711 {
7712 #if HOST_LONG_BITS == 64
7713 #if defined(__NR_futex)
7714     /* always a 64-bit time_t, it doesn't define _time64 version  */
7715     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7716 
7717 #endif
7718 #else /* HOST_LONG_BITS == 64 */
7719 #if defined(__NR_futex_time64)
7720     if (sizeof(timeout->tv_sec) == 8) {
7721         /* _time64 function on 32bit arch */
7722         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7723     }
7724 #endif
7725 #if defined(__NR_futex)
7726     /* old function on 32bit arch */
7727     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7728 #endif
7729 #endif /* HOST_LONG_BITS == 64 */
7730     g_assert_not_reached();
7731 }
7732 
7733 static int do_safe_futex(int *uaddr, int op, int val,
7734                          const struct timespec *timeout, int *uaddr2,
7735                          int val3)
7736 {
7737 #if HOST_LONG_BITS == 64
7738 #if defined(__NR_futex)
7739     /* always a 64-bit time_t, it doesn't define _time64 version  */
7740     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7741 #endif
7742 #else /* HOST_LONG_BITS == 64 */
7743 #if defined(__NR_futex_time64)
7744     if (sizeof(timeout->tv_sec) == 8) {
7745         /* _time64 function on 32bit arch */
7746         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7747                                            val3));
7748     }
7749 #endif
7750 #if defined(__NR_futex)
7751     /* old function on 32bit arch */
7752     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7753 #endif
7754 #endif /* HOST_LONG_BITS == 64 */
7755     return -TARGET_ENOSYS;
7756 }
7757 
7758 /* ??? Using host futex calls even when target atomic operations
7759    are not really atomic probably breaks things.  However implementing
7760    futexes locally would make futexes shared between multiple processes
7761    tricky.  However they're probably useless because guest atomic
7762    operations won't work either.  */
7763 #if defined(TARGET_NR_futex)
7764 static int do_futex(CPUState *cpu, target_ulong uaddr, int op, int val,
7765                     target_ulong timeout, target_ulong uaddr2, int val3)
7766 {
7767     struct timespec ts, *pts;
7768     int base_op;
7769 
7770     /* ??? We assume FUTEX_* constants are the same on both host
7771        and target.  */
7772 #ifdef FUTEX_CMD_MASK
7773     base_op = op & FUTEX_CMD_MASK;
7774 #else
7775     base_op = op;
7776 #endif
7777     switch (base_op) {
7778     case FUTEX_WAIT:
7779     case FUTEX_WAIT_BITSET:
7780         if (timeout) {
7781             pts = &ts;
7782             target_to_host_timespec(pts, timeout);
7783         } else {
7784             pts = NULL;
7785         }
7786         return do_safe_futex(g2h(cpu, uaddr),
7787                              op, tswap32(val), pts, NULL, val3);
7788     case FUTEX_WAKE:
7789         return do_safe_futex(g2h(cpu, uaddr),
7790                              op, val, NULL, NULL, 0);
7791     case FUTEX_FD:
7792         return do_safe_futex(g2h(cpu, uaddr),
7793                              op, val, NULL, NULL, 0);
7794     case FUTEX_REQUEUE:
7795     case FUTEX_CMP_REQUEUE:
7796     case FUTEX_WAKE_OP:
7797         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7798            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7799            But the prototype takes a `struct timespec *'; insert casts
7800            to satisfy the compiler.  We do not need to tswap TIMEOUT
7801            since it's not compared to guest memory.  */
7802         pts = (struct timespec *)(uintptr_t) timeout;
7803         return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7804                              (base_op == FUTEX_CMP_REQUEUE
7805                               ? tswap32(val3) : val3));
7806     default:
7807         return -TARGET_ENOSYS;
7808     }
7809 }
7810 #endif
7811 
7812 #if defined(TARGET_NR_futex_time64)
7813 static int do_futex_time64(CPUState *cpu, target_ulong uaddr, int op,
7814                            int val, target_ulong timeout,
7815                            target_ulong uaddr2, int val3)
7816 {
7817     struct timespec ts, *pts;
7818     int base_op;
7819 
7820     /* ??? We assume FUTEX_* constants are the same on both host
7821        and target.  */
7822 #ifdef FUTEX_CMD_MASK
7823     base_op = op & FUTEX_CMD_MASK;
7824 #else
7825     base_op = op;
7826 #endif
7827     switch (base_op) {
7828     case FUTEX_WAIT:
7829     case FUTEX_WAIT_BITSET:
7830         if (timeout) {
7831             pts = &ts;
7832             if (target_to_host_timespec64(pts, timeout)) {
7833                 return -TARGET_EFAULT;
7834             }
7835         } else {
7836             pts = NULL;
7837         }
7838         return do_safe_futex(g2h(cpu, uaddr), op,
7839                              tswap32(val), pts, NULL, val3);
7840     case FUTEX_WAKE:
7841         return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7842     case FUTEX_FD:
7843         return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7844     case FUTEX_REQUEUE:
7845     case FUTEX_CMP_REQUEUE:
7846     case FUTEX_WAKE_OP:
7847         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7848            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7849            But the prototype takes a `struct timespec *'; insert casts
7850            to satisfy the compiler.  We do not need to tswap TIMEOUT
7851            since it's not compared to guest memory.  */
7852         pts = (struct timespec *)(uintptr_t) timeout;
7853         return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7854                              (base_op == FUTEX_CMP_REQUEUE
7855                               ? tswap32(val3) : val3));
7856     default:
7857         return -TARGET_ENOSYS;
7858     }
7859 }
7860 #endif
7861 
7862 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7863 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7864                                      abi_long handle, abi_long mount_id,
7865                                      abi_long flags)
7866 {
7867     struct file_handle *target_fh;
7868     struct file_handle *fh;
7869     int mid = 0;
7870     abi_long ret;
7871     char *name;
7872     unsigned int size, total_size;
7873 
7874     if (get_user_s32(size, handle)) {
7875         return -TARGET_EFAULT;
7876     }
7877 
7878     name = lock_user_string(pathname);
7879     if (!name) {
7880         return -TARGET_EFAULT;
7881     }
7882 
7883     total_size = sizeof(struct file_handle) + size;
7884     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7885     if (!target_fh) {
7886         unlock_user(name, pathname, 0);
7887         return -TARGET_EFAULT;
7888     }
7889 
7890     fh = g_malloc0(total_size);
7891     fh->handle_bytes = size;
7892 
7893     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7894     unlock_user(name, pathname, 0);
7895 
7896     /* man name_to_handle_at(2):
7897      * Other than the use of the handle_bytes field, the caller should treat
7898      * the file_handle structure as an opaque data type
7899      */
7900 
7901     memcpy(target_fh, fh, total_size);
7902     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7903     target_fh->handle_type = tswap32(fh->handle_type);
7904     g_free(fh);
7905     unlock_user(target_fh, handle, total_size);
7906 
7907     if (put_user_s32(mid, mount_id)) {
7908         return -TARGET_EFAULT;
7909     }
7910 
7911     return ret;
7912 
7913 }
7914 #endif
7915 
7916 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7917 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7918                                      abi_long flags)
7919 {
7920     struct file_handle *target_fh;
7921     struct file_handle *fh;
7922     unsigned int size, total_size;
7923     abi_long ret;
7924 
7925     if (get_user_s32(size, handle)) {
7926         return -TARGET_EFAULT;
7927     }
7928 
7929     total_size = sizeof(struct file_handle) + size;
7930     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7931     if (!target_fh) {
7932         return -TARGET_EFAULT;
7933     }
7934 
7935     fh = g_memdup(target_fh, total_size);
7936     fh->handle_bytes = size;
7937     fh->handle_type = tswap32(target_fh->handle_type);
7938 
7939     ret = get_errno(open_by_handle_at(mount_fd, fh,
7940                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7941 
7942     g_free(fh);
7943 
7944     unlock_user(target_fh, handle, total_size);
7945 
7946     return ret;
7947 }
7948 #endif
7949 
7950 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7951 
7952 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7953 {
7954     int host_flags;
7955     target_sigset_t *target_mask;
7956     sigset_t host_mask;
7957     abi_long ret;
7958 
7959     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7960         return -TARGET_EINVAL;
7961     }
7962     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7963         return -TARGET_EFAULT;
7964     }
7965 
7966     target_to_host_sigset(&host_mask, target_mask);
7967 
7968     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7969 
7970     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7971     if (ret >= 0) {
7972         fd_trans_register(ret, &target_signalfd_trans);
7973     }
7974 
7975     unlock_user_struct(target_mask, mask, 0);
7976 
7977     return ret;
7978 }
7979 #endif
7980 
7981 /* Map host to target signal numbers for the wait family of syscalls.
7982    Assume all other status bits are the same.  */
7983 int host_to_target_waitstatus(int status)
7984 {
7985     if (WIFSIGNALED(status)) {
7986         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7987     }
7988     if (WIFSTOPPED(status)) {
7989         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7990                | (status & 0xff);
7991     }
7992     return status;
7993 }
7994 
7995 static int open_self_cmdline(void *cpu_env, int fd)
7996 {
7997     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7998     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7999     int i;
8000 
8001     for (i = 0; i < bprm->argc; i++) {
8002         size_t len = strlen(bprm->argv[i]) + 1;
8003 
8004         if (write(fd, bprm->argv[i], len) != len) {
8005             return -1;
8006         }
8007     }
8008 
8009     return 0;
8010 }
8011 
8012 static int open_self_maps(void *cpu_env, int fd)
8013 {
8014     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8015     TaskState *ts = cpu->opaque;
8016     GSList *map_info = read_self_maps();
8017     GSList *s;
8018     int count;
8019 
8020     for (s = map_info; s; s = g_slist_next(s)) {
8021         MapInfo *e = (MapInfo *) s->data;
8022 
8023         if (h2g_valid(e->start)) {
8024             unsigned long min = e->start;
8025             unsigned long max = e->end;
8026             int flags = page_get_flags(h2g(min));
8027             const char *path;
8028 
8029             max = h2g_valid(max - 1) ?
8030                 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1;
8031 
8032             if (page_check_range(h2g(min), max - min, flags) == -1) {
8033                 continue;
8034             }
8035 
8036             if (h2g(min) == ts->info->stack_limit) {
8037                 path = "[stack]";
8038             } else {
8039                 path = e->path;
8040             }
8041 
8042             count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8043                             " %c%c%c%c %08" PRIx64 " %s %"PRId64,
8044                             h2g(min), h2g(max - 1) + 1,
8045                             (flags & PAGE_READ) ? 'r' : '-',
8046                             (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8047                             (flags & PAGE_EXEC) ? 'x' : '-',
8048                             e->is_priv ? 'p' : '-',
8049                             (uint64_t) e->offset, e->dev, e->inode);
8050             if (path) {
8051                 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8052             } else {
8053                 dprintf(fd, "\n");
8054             }
8055         }
8056     }
8057 
8058     free_self_maps(map_info);
8059 
8060 #ifdef TARGET_VSYSCALL_PAGE
8061     /*
8062      * We only support execution from the vsyscall page.
8063      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
8064      */
8065     count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
8066                     " --xp 00000000 00:00 0",
8067                     TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
8068     dprintf(fd, "%*s%s\n", 73 - count, "",  "[vsyscall]");
8069 #endif
8070 
8071     return 0;
8072 }
8073 
8074 static int open_self_stat(void *cpu_env, int fd)
8075 {
8076     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8077     TaskState *ts = cpu->opaque;
8078     g_autoptr(GString) buf = g_string_new(NULL);
8079     int i;
8080 
8081     for (i = 0; i < 44; i++) {
8082         if (i == 0) {
8083             /* pid */
8084             g_string_printf(buf, FMT_pid " ", getpid());
8085         } else if (i == 1) {
8086             /* app name */
8087             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8088             bin = bin ? bin + 1 : ts->bprm->argv[0];
8089             g_string_printf(buf, "(%.15s) ", bin);
8090         } else if (i == 3) {
8091             /* ppid */
8092             g_string_printf(buf, FMT_pid " ", getppid());
8093         } else if (i == 27) {
8094             /* stack bottom */
8095             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8096         } else {
8097             /* for the rest, there is MasterCard */
8098             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8099         }
8100 
8101         if (write(fd, buf->str, buf->len) != buf->len) {
8102             return -1;
8103         }
8104     }
8105 
8106     return 0;
8107 }
8108 
8109 static int open_self_auxv(void *cpu_env, int fd)
8110 {
8111     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8112     TaskState *ts = cpu->opaque;
8113     abi_ulong auxv = ts->info->saved_auxv;
8114     abi_ulong len = ts->info->auxv_len;
8115     char *ptr;
8116 
8117     /*
8118      * Auxiliary vector is stored in target process stack.
8119      * read in whole auxv vector and copy it to file
8120      */
8121     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8122     if (ptr != NULL) {
8123         while (len > 0) {
8124             ssize_t r;
8125             r = write(fd, ptr, len);
8126             if (r <= 0) {
8127                 break;
8128             }
8129             len -= r;
8130             ptr += r;
8131         }
8132         lseek(fd, 0, SEEK_SET);
8133         unlock_user(ptr, auxv, len);
8134     }
8135 
8136     return 0;
8137 }
8138 
8139 static int is_proc_myself(const char *filename, const char *entry)
8140 {
8141     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8142         filename += strlen("/proc/");
8143         if (!strncmp(filename, "self/", strlen("self/"))) {
8144             filename += strlen("self/");
8145         } else if (*filename >= '1' && *filename <= '9') {
8146             char myself[80];
8147             snprintf(myself, sizeof(myself), "%d/", getpid());
8148             if (!strncmp(filename, myself, strlen(myself))) {
8149                 filename += strlen(myself);
8150             } else {
8151                 return 0;
8152             }
8153         } else {
8154             return 0;
8155         }
8156         if (!strcmp(filename, entry)) {
8157             return 1;
8158         }
8159     }
8160     return 0;
8161 }
8162 
8163 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
8164     defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
8165 static int is_proc(const char *filename, const char *entry)
8166 {
8167     return strcmp(filename, entry) == 0;
8168 }
8169 #endif
8170 
8171 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8172 static int open_net_route(void *cpu_env, int fd)
8173 {
8174     FILE *fp;
8175     char *line = NULL;
8176     size_t len = 0;
8177     ssize_t read;
8178 
8179     fp = fopen("/proc/net/route", "r");
8180     if (fp == NULL) {
8181         return -1;
8182     }
8183 
8184     /* read header */
8185 
8186     read = getline(&line, &len, fp);
8187     dprintf(fd, "%s", line);
8188 
8189     /* read routes */
8190 
8191     while ((read = getline(&line, &len, fp)) != -1) {
8192         char iface[16];
8193         uint32_t dest, gw, mask;
8194         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8195         int fields;
8196 
8197         fields = sscanf(line,
8198                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8199                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8200                         &mask, &mtu, &window, &irtt);
8201         if (fields != 11) {
8202             continue;
8203         }
8204         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8205                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8206                 metric, tswap32(mask), mtu, window, irtt);
8207     }
8208 
8209     free(line);
8210     fclose(fp);
8211 
8212     return 0;
8213 }
8214 #endif
8215 
8216 #if defined(TARGET_SPARC)
8217 static int open_cpuinfo(void *cpu_env, int fd)
8218 {
8219     dprintf(fd, "type\t\t: sun4u\n");
8220     return 0;
8221 }
8222 #endif
8223 
8224 #if defined(TARGET_HPPA)
8225 static int open_cpuinfo(void *cpu_env, int fd)
8226 {
8227     dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
8228     dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
8229     dprintf(fd, "capabilities\t: os32\n");
8230     dprintf(fd, "model\t\t: 9000/778/B160L\n");
8231     dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n");
8232     return 0;
8233 }
8234 #endif
8235 
8236 #if defined(TARGET_M68K)
8237 static int open_hardware(void *cpu_env, int fd)
8238 {
8239     dprintf(fd, "Model:\t\tqemu-m68k\n");
8240     return 0;
8241 }
8242 #endif
8243 
8244 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
8245 {
8246     struct fake_open {
8247         const char *filename;
8248         int (*fill)(void *cpu_env, int fd);
8249         int (*cmp)(const char *s1, const char *s2);
8250     };
8251     const struct fake_open *fake_open;
8252     static const struct fake_open fakes[] = {
8253         { "maps", open_self_maps, is_proc_myself },
8254         { "stat", open_self_stat, is_proc_myself },
8255         { "auxv", open_self_auxv, is_proc_myself },
8256         { "cmdline", open_self_cmdline, is_proc_myself },
8257 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8258         { "/proc/net/route", open_net_route, is_proc },
8259 #endif
8260 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
8261         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8262 #endif
8263 #if defined(TARGET_M68K)
8264         { "/proc/hardware", open_hardware, is_proc },
8265 #endif
8266         { NULL, NULL, NULL }
8267     };
8268 
8269     if (is_proc_myself(pathname, "exe")) {
8270         int execfd = qemu_getauxval(AT_EXECFD);
8271         return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
8272     }
8273 
8274     for (fake_open = fakes; fake_open->filename; fake_open++) {
8275         if (fake_open->cmp(pathname, fake_open->filename)) {
8276             break;
8277         }
8278     }
8279 
8280     if (fake_open->filename) {
8281         const char *tmpdir;
8282         char filename[PATH_MAX];
8283         int fd, r;
8284 
8285         /* create temporary file to map stat to */
8286         tmpdir = getenv("TMPDIR");
8287         if (!tmpdir)
8288             tmpdir = "/tmp";
8289         snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8290         fd = mkstemp(filename);
8291         if (fd < 0) {
8292             return fd;
8293         }
8294         unlink(filename);
8295 
8296         if ((r = fake_open->fill(cpu_env, fd))) {
8297             int e = errno;
8298             close(fd);
8299             errno = e;
8300             return r;
8301         }
8302         lseek(fd, 0, SEEK_SET);
8303 
8304         return fd;
8305     }
8306 
8307     return safe_openat(dirfd, path(pathname), flags, mode);
8308 }
8309 
8310 #define TIMER_MAGIC 0x0caf0000
8311 #define TIMER_MAGIC_MASK 0xffff0000
8312 
8313 /* Convert QEMU provided timer ID back to internal 16bit index format */
8314 static target_timer_t get_timer_id(abi_long arg)
8315 {
8316     target_timer_t timerid = arg;
8317 
8318     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8319         return -TARGET_EINVAL;
8320     }
8321 
8322     timerid &= 0xffff;
8323 
8324     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8325         return -TARGET_EINVAL;
8326     }
8327 
8328     return timerid;
8329 }
8330 
8331 static int target_to_host_cpu_mask(unsigned long *host_mask,
8332                                    size_t host_size,
8333                                    abi_ulong target_addr,
8334                                    size_t target_size)
8335 {
8336     unsigned target_bits = sizeof(abi_ulong) * 8;
8337     unsigned host_bits = sizeof(*host_mask) * 8;
8338     abi_ulong *target_mask;
8339     unsigned i, j;
8340 
8341     assert(host_size >= target_size);
8342 
8343     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8344     if (!target_mask) {
8345         return -TARGET_EFAULT;
8346     }
8347     memset(host_mask, 0, host_size);
8348 
8349     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8350         unsigned bit = i * target_bits;
8351         abi_ulong val;
8352 
8353         __get_user(val, &target_mask[i]);
8354         for (j = 0; j < target_bits; j++, bit++) {
8355             if (val & (1UL << j)) {
8356                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8357             }
8358         }
8359     }
8360 
8361     unlock_user(target_mask, target_addr, 0);
8362     return 0;
8363 }
8364 
8365 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8366                                    size_t host_size,
8367                                    abi_ulong target_addr,
8368                                    size_t target_size)
8369 {
8370     unsigned target_bits = sizeof(abi_ulong) * 8;
8371     unsigned host_bits = sizeof(*host_mask) * 8;
8372     abi_ulong *target_mask;
8373     unsigned i, j;
8374 
8375     assert(host_size >= target_size);
8376 
8377     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8378     if (!target_mask) {
8379         return -TARGET_EFAULT;
8380     }
8381 
8382     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8383         unsigned bit = i * target_bits;
8384         abi_ulong val = 0;
8385 
8386         for (j = 0; j < target_bits; j++, bit++) {
8387             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8388                 val |= 1UL << j;
8389             }
8390         }
8391         __put_user(val, &target_mask[i]);
8392     }
8393 
8394     unlock_user(target_mask, target_addr, target_size);
8395     return 0;
8396 }
8397 
8398 #ifdef TARGET_NR_getdents
8399 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8400 {
8401     g_autofree void *hdirp = NULL;
8402     void *tdirp;
8403     int hlen, hoff, toff;
8404     int hreclen, treclen;
8405     off64_t prev_diroff = 0;
8406 
8407     hdirp = g_try_malloc(count);
8408     if (!hdirp) {
8409         return -TARGET_ENOMEM;
8410     }
8411 
8412 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8413     hlen = sys_getdents(dirfd, hdirp, count);
8414 #else
8415     hlen = sys_getdents64(dirfd, hdirp, count);
8416 #endif
8417 
8418     hlen = get_errno(hlen);
8419     if (is_error(hlen)) {
8420         return hlen;
8421     }
8422 
8423     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8424     if (!tdirp) {
8425         return -TARGET_EFAULT;
8426     }
8427 
8428     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8429 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8430         struct linux_dirent *hde = hdirp + hoff;
8431 #else
8432         struct linux_dirent64 *hde = hdirp + hoff;
8433 #endif
8434         struct target_dirent *tde = tdirp + toff;
8435         int namelen;
8436         uint8_t type;
8437 
8438         namelen = strlen(hde->d_name);
8439         hreclen = hde->d_reclen;
8440         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8441         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8442 
8443         if (toff + treclen > count) {
8444             /*
8445              * If the host struct is smaller than the target struct, or
8446              * requires less alignment and thus packs into less space,
8447              * then the host can return more entries than we can pass
8448              * on to the guest.
8449              */
8450             if (toff == 0) {
8451                 toff = -TARGET_EINVAL; /* result buffer is too small */
8452                 break;
8453             }
8454             /*
8455              * Return what we have, resetting the file pointer to the
8456              * location of the first record not returned.
8457              */
8458             lseek64(dirfd, prev_diroff, SEEK_SET);
8459             break;
8460         }
8461 
8462         prev_diroff = hde->d_off;
8463         tde->d_ino = tswapal(hde->d_ino);
8464         tde->d_off = tswapal(hde->d_off);
8465         tde->d_reclen = tswap16(treclen);
8466         memcpy(tde->d_name, hde->d_name, namelen + 1);
8467 
8468         /*
8469          * The getdents type is in what was formerly a padding byte at the
8470          * end of the structure.
8471          */
8472 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8473         type = *((uint8_t *)hde + hreclen - 1);
8474 #else
8475         type = hde->d_type;
8476 #endif
8477         *((uint8_t *)tde + treclen - 1) = type;
8478     }
8479 
8480     unlock_user(tdirp, arg2, toff);
8481     return toff;
8482 }
8483 #endif /* TARGET_NR_getdents */
8484 
8485 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8486 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8487 {
8488     g_autofree void *hdirp = NULL;
8489     void *tdirp;
8490     int hlen, hoff, toff;
8491     int hreclen, treclen;
8492     off64_t prev_diroff = 0;
8493 
8494     hdirp = g_try_malloc(count);
8495     if (!hdirp) {
8496         return -TARGET_ENOMEM;
8497     }
8498 
8499     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8500     if (is_error(hlen)) {
8501         return hlen;
8502     }
8503 
8504     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8505     if (!tdirp) {
8506         return -TARGET_EFAULT;
8507     }
8508 
8509     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8510         struct linux_dirent64 *hde = hdirp + hoff;
8511         struct target_dirent64 *tde = tdirp + toff;
8512         int namelen;
8513 
8514         namelen = strlen(hde->d_name) + 1;
8515         hreclen = hde->d_reclen;
8516         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8517         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8518 
8519         if (toff + treclen > count) {
8520             /*
8521              * If the host struct is smaller than the target struct, or
8522              * requires less alignment and thus packs into less space,
8523              * then the host can return more entries than we can pass
8524              * on to the guest.
8525              */
8526             if (toff == 0) {
8527                 toff = -TARGET_EINVAL; /* result buffer is too small */
8528                 break;
8529             }
8530             /*
8531              * Return what we have, resetting the file pointer to the
8532              * location of the first record not returned.
8533              */
8534             lseek64(dirfd, prev_diroff, SEEK_SET);
8535             break;
8536         }
8537 
8538         prev_diroff = hde->d_off;
8539         tde->d_ino = tswap64(hde->d_ino);
8540         tde->d_off = tswap64(hde->d_off);
8541         tde->d_reclen = tswap16(treclen);
8542         tde->d_type = hde->d_type;
8543         memcpy(tde->d_name, hde->d_name, namelen);
8544     }
8545 
8546     unlock_user(tdirp, arg2, toff);
8547     return toff;
8548 }
8549 #endif /* TARGET_NR_getdents64 */
8550 
8551 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8552 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8553 #endif
8554 
8555 /* This is an internal helper for do_syscall so that it is easier
8556  * to have a single return point, so that actions, such as logging
8557  * of syscall results, can be performed.
8558  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8559  */
8560 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
8561                             abi_long arg2, abi_long arg3, abi_long arg4,
8562                             abi_long arg5, abi_long arg6, abi_long arg7,
8563                             abi_long arg8)
8564 {
8565     CPUState *cpu = env_cpu(cpu_env);
8566     abi_long ret;
8567 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8568     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8569     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8570     || defined(TARGET_NR_statx)
8571     struct stat st;
8572 #endif
8573 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8574     || defined(TARGET_NR_fstatfs)
8575     struct statfs stfs;
8576 #endif
8577     void *p;
8578 
8579     switch(num) {
8580     case TARGET_NR_exit:
8581         /* In old applications this may be used to implement _exit(2).
8582            However in threaded applications it is used for thread termination,
8583            and _exit_group is used for application termination.
8584            Do thread termination if we have more then one thread.  */
8585 
8586         if (block_signals()) {
8587             return -QEMU_ERESTARTSYS;
8588         }
8589 
8590         pthread_mutex_lock(&clone_lock);
8591 
8592         if (CPU_NEXT(first_cpu)) {
8593             TaskState *ts = cpu->opaque;
8594 
8595             object_property_set_bool(OBJECT(cpu), "realized", false, NULL);
8596             object_unref(OBJECT(cpu));
8597             /*
8598              * At this point the CPU should be unrealized and removed
8599              * from cpu lists. We can clean-up the rest of the thread
8600              * data without the lock held.
8601              */
8602 
8603             pthread_mutex_unlock(&clone_lock);
8604 
8605             if (ts->child_tidptr) {
8606                 put_user_u32(0, ts->child_tidptr);
8607                 do_sys_futex(g2h(cpu, ts->child_tidptr),
8608                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
8609             }
8610             thread_cpu = NULL;
8611             g_free(ts);
8612             rcu_unregister_thread();
8613             pthread_exit(NULL);
8614         }
8615 
8616         pthread_mutex_unlock(&clone_lock);
8617         preexit_cleanup(cpu_env, arg1);
8618         _exit(arg1);
8619         return 0; /* avoid warning */
8620     case TARGET_NR_read:
8621         if (arg2 == 0 && arg3 == 0) {
8622             return get_errno(safe_read(arg1, 0, 0));
8623         } else {
8624             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8625                 return -TARGET_EFAULT;
8626             ret = get_errno(safe_read(arg1, p, arg3));
8627             if (ret >= 0 &&
8628                 fd_trans_host_to_target_data(arg1)) {
8629                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
8630             }
8631             unlock_user(p, arg2, ret);
8632         }
8633         return ret;
8634     case TARGET_NR_write:
8635         if (arg2 == 0 && arg3 == 0) {
8636             return get_errno(safe_write(arg1, 0, 0));
8637         }
8638         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8639             return -TARGET_EFAULT;
8640         if (fd_trans_target_to_host_data(arg1)) {
8641             void *copy = g_malloc(arg3);
8642             memcpy(copy, p, arg3);
8643             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
8644             if (ret >= 0) {
8645                 ret = get_errno(safe_write(arg1, copy, ret));
8646             }
8647             g_free(copy);
8648         } else {
8649             ret = get_errno(safe_write(arg1, p, arg3));
8650         }
8651         unlock_user(p, arg2, 0);
8652         return ret;
8653 
8654 #ifdef TARGET_NR_open
8655     case TARGET_NR_open:
8656         if (!(p = lock_user_string(arg1)))
8657             return -TARGET_EFAULT;
8658         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
8659                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
8660                                   arg3));
8661         fd_trans_unregister(ret);
8662         unlock_user(p, arg1, 0);
8663         return ret;
8664 #endif
8665     case TARGET_NR_openat:
8666         if (!(p = lock_user_string(arg2)))
8667             return -TARGET_EFAULT;
8668         ret = get_errno(do_openat(cpu_env, arg1, p,
8669                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
8670                                   arg4));
8671         fd_trans_unregister(ret);
8672         unlock_user(p, arg2, 0);
8673         return ret;
8674 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8675     case TARGET_NR_name_to_handle_at:
8676         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
8677         return ret;
8678 #endif
8679 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8680     case TARGET_NR_open_by_handle_at:
8681         ret = do_open_by_handle_at(arg1, arg2, arg3);
8682         fd_trans_unregister(ret);
8683         return ret;
8684 #endif
8685     case TARGET_NR_close:
8686         fd_trans_unregister(arg1);
8687         return get_errno(close(arg1));
8688 
8689     case TARGET_NR_brk:
8690         return do_brk(arg1);
8691 #ifdef TARGET_NR_fork
8692     case TARGET_NR_fork:
8693         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
8694 #endif
8695 #ifdef TARGET_NR_waitpid
8696     case TARGET_NR_waitpid:
8697         {
8698             int status;
8699             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
8700             if (!is_error(ret) && arg2 && ret
8701                 && put_user_s32(host_to_target_waitstatus(status), arg2))
8702                 return -TARGET_EFAULT;
8703         }
8704         return ret;
8705 #endif
8706 #ifdef TARGET_NR_waitid
8707     case TARGET_NR_waitid:
8708         {
8709             siginfo_t info;
8710             info.si_pid = 0;
8711             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
8712             if (!is_error(ret) && arg3 && info.si_pid != 0) {
8713                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
8714                     return -TARGET_EFAULT;
8715                 host_to_target_siginfo(p, &info);
8716                 unlock_user(p, arg3, sizeof(target_siginfo_t));
8717             }
8718         }
8719         return ret;
8720 #endif
8721 #ifdef TARGET_NR_creat /* not on alpha */
8722     case TARGET_NR_creat:
8723         if (!(p = lock_user_string(arg1)))
8724             return -TARGET_EFAULT;
8725         ret = get_errno(creat(p, arg2));
8726         fd_trans_unregister(ret);
8727         unlock_user(p, arg1, 0);
8728         return ret;
8729 #endif
8730 #ifdef TARGET_NR_link
8731     case TARGET_NR_link:
8732         {
8733             void * p2;
8734             p = lock_user_string(arg1);
8735             p2 = lock_user_string(arg2);
8736             if (!p || !p2)
8737                 ret = -TARGET_EFAULT;
8738             else
8739                 ret = get_errno(link(p, p2));
8740             unlock_user(p2, arg2, 0);
8741             unlock_user(p, arg1, 0);
8742         }
8743         return ret;
8744 #endif
8745 #if defined(TARGET_NR_linkat)
8746     case TARGET_NR_linkat:
8747         {
8748             void * p2 = NULL;
8749             if (!arg2 || !arg4)
8750                 return -TARGET_EFAULT;
8751             p  = lock_user_string(arg2);
8752             p2 = lock_user_string(arg4);
8753             if (!p || !p2)
8754                 ret = -TARGET_EFAULT;
8755             else
8756                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8757             unlock_user(p, arg2, 0);
8758             unlock_user(p2, arg4, 0);
8759         }
8760         return ret;
8761 #endif
8762 #ifdef TARGET_NR_unlink
8763     case TARGET_NR_unlink:
8764         if (!(p = lock_user_string(arg1)))
8765             return -TARGET_EFAULT;
8766         ret = get_errno(unlink(p));
8767         unlock_user(p, arg1, 0);
8768         return ret;
8769 #endif
8770 #if defined(TARGET_NR_unlinkat)
8771     case TARGET_NR_unlinkat:
8772         if (!(p = lock_user_string(arg2)))
8773             return -TARGET_EFAULT;
8774         ret = get_errno(unlinkat(arg1, p, arg3));
8775         unlock_user(p, arg2, 0);
8776         return ret;
8777 #endif
8778     case TARGET_NR_execve:
8779         {
8780             char **argp, **envp;
8781             int argc, envc;
8782             abi_ulong gp;
8783             abi_ulong guest_argp;
8784             abi_ulong guest_envp;
8785             abi_ulong addr;
8786             char **q;
8787 
8788             argc = 0;
8789             guest_argp = arg2;
8790             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8791                 if (get_user_ual(addr, gp))
8792                     return -TARGET_EFAULT;
8793                 if (!addr)
8794                     break;
8795                 argc++;
8796             }
8797             envc = 0;
8798             guest_envp = arg3;
8799             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8800                 if (get_user_ual(addr, gp))
8801                     return -TARGET_EFAULT;
8802                 if (!addr)
8803                     break;
8804                 envc++;
8805             }
8806 
8807             argp = g_new0(char *, argc + 1);
8808             envp = g_new0(char *, envc + 1);
8809 
8810             for (gp = guest_argp, q = argp; gp;
8811                   gp += sizeof(abi_ulong), q++) {
8812                 if (get_user_ual(addr, gp))
8813                     goto execve_efault;
8814                 if (!addr)
8815                     break;
8816                 if (!(*q = lock_user_string(addr)))
8817                     goto execve_efault;
8818             }
8819             *q = NULL;
8820 
8821             for (gp = guest_envp, q = envp; gp;
8822                   gp += sizeof(abi_ulong), q++) {
8823                 if (get_user_ual(addr, gp))
8824                     goto execve_efault;
8825                 if (!addr)
8826                     break;
8827                 if (!(*q = lock_user_string(addr)))
8828                     goto execve_efault;
8829             }
8830             *q = NULL;
8831 
8832             if (!(p = lock_user_string(arg1)))
8833                 goto execve_efault;
8834             /* Although execve() is not an interruptible syscall it is
8835              * a special case where we must use the safe_syscall wrapper:
8836              * if we allow a signal to happen before we make the host
8837              * syscall then we will 'lose' it, because at the point of
8838              * execve the process leaves QEMU's control. So we use the
8839              * safe syscall wrapper to ensure that we either take the
8840              * signal as a guest signal, or else it does not happen
8841              * before the execve completes and makes it the other
8842              * program's problem.
8843              */
8844             ret = get_errno(safe_execve(p, argp, envp));
8845             unlock_user(p, arg1, 0);
8846 
8847             goto execve_end;
8848 
8849         execve_efault:
8850             ret = -TARGET_EFAULT;
8851 
8852         execve_end:
8853             for (gp = guest_argp, q = argp; *q;
8854                   gp += sizeof(abi_ulong), q++) {
8855                 if (get_user_ual(addr, gp)
8856                     || !addr)
8857                     break;
8858                 unlock_user(*q, addr, 0);
8859             }
8860             for (gp = guest_envp, q = envp; *q;
8861                   gp += sizeof(abi_ulong), q++) {
8862                 if (get_user_ual(addr, gp)
8863                     || !addr)
8864                     break;
8865                 unlock_user(*q, addr, 0);
8866             }
8867 
8868             g_free(argp);
8869             g_free(envp);
8870         }
8871         return ret;
8872     case TARGET_NR_chdir:
8873         if (!(p = lock_user_string(arg1)))
8874             return -TARGET_EFAULT;
8875         ret = get_errno(chdir(p));
8876         unlock_user(p, arg1, 0);
8877         return ret;
8878 #ifdef TARGET_NR_time
8879     case TARGET_NR_time:
8880         {
8881             time_t host_time;
8882             ret = get_errno(time(&host_time));
8883             if (!is_error(ret)
8884                 && arg1
8885                 && put_user_sal(host_time, arg1))
8886                 return -TARGET_EFAULT;
8887         }
8888         return ret;
8889 #endif
8890 #ifdef TARGET_NR_mknod
8891     case TARGET_NR_mknod:
8892         if (!(p = lock_user_string(arg1)))
8893             return -TARGET_EFAULT;
8894         ret = get_errno(mknod(p, arg2, arg3));
8895         unlock_user(p, arg1, 0);
8896         return ret;
8897 #endif
8898 #if defined(TARGET_NR_mknodat)
8899     case TARGET_NR_mknodat:
8900         if (!(p = lock_user_string(arg2)))
8901             return -TARGET_EFAULT;
8902         ret = get_errno(mknodat(arg1, p, arg3, arg4));
8903         unlock_user(p, arg2, 0);
8904         return ret;
8905 #endif
8906 #ifdef TARGET_NR_chmod
8907     case TARGET_NR_chmod:
8908         if (!(p = lock_user_string(arg1)))
8909             return -TARGET_EFAULT;
8910         ret = get_errno(chmod(p, arg2));
8911         unlock_user(p, arg1, 0);
8912         return ret;
8913 #endif
8914 #ifdef TARGET_NR_lseek
8915     case TARGET_NR_lseek:
8916         return get_errno(lseek(arg1, arg2, arg3));
8917 #endif
8918 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8919     /* Alpha specific */
8920     case TARGET_NR_getxpid:
8921         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
8922         return get_errno(getpid());
8923 #endif
8924 #ifdef TARGET_NR_getpid
8925     case TARGET_NR_getpid:
8926         return get_errno(getpid());
8927 #endif
8928     case TARGET_NR_mount:
8929         {
8930             /* need to look at the data field */
8931             void *p2, *p3;
8932 
8933             if (arg1) {
8934                 p = lock_user_string(arg1);
8935                 if (!p) {
8936                     return -TARGET_EFAULT;
8937                 }
8938             } else {
8939                 p = NULL;
8940             }
8941 
8942             p2 = lock_user_string(arg2);
8943             if (!p2) {
8944                 if (arg1) {
8945                     unlock_user(p, arg1, 0);
8946                 }
8947                 return -TARGET_EFAULT;
8948             }
8949 
8950             if (arg3) {
8951                 p3 = lock_user_string(arg3);
8952                 if (!p3) {
8953                     if (arg1) {
8954                         unlock_user(p, arg1, 0);
8955                     }
8956                     unlock_user(p2, arg2, 0);
8957                     return -TARGET_EFAULT;
8958                 }
8959             } else {
8960                 p3 = NULL;
8961             }
8962 
8963             /* FIXME - arg5 should be locked, but it isn't clear how to
8964              * do that since it's not guaranteed to be a NULL-terminated
8965              * string.
8966              */
8967             if (!arg5) {
8968                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8969             } else {
8970                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
8971             }
8972             ret = get_errno(ret);
8973 
8974             if (arg1) {
8975                 unlock_user(p, arg1, 0);
8976             }
8977             unlock_user(p2, arg2, 0);
8978             if (arg3) {
8979                 unlock_user(p3, arg3, 0);
8980             }
8981         }
8982         return ret;
8983 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
8984 #if defined(TARGET_NR_umount)
8985     case TARGET_NR_umount:
8986 #endif
8987 #if defined(TARGET_NR_oldumount)
8988     case TARGET_NR_oldumount:
8989 #endif
8990         if (!(p = lock_user_string(arg1)))
8991             return -TARGET_EFAULT;
8992         ret = get_errno(umount(p));
8993         unlock_user(p, arg1, 0);
8994         return ret;
8995 #endif
8996 #ifdef TARGET_NR_stime /* not on alpha */
8997     case TARGET_NR_stime:
8998         {
8999             struct timespec ts;
9000             ts.tv_nsec = 0;
9001             if (get_user_sal(ts.tv_sec, arg1)) {
9002                 return -TARGET_EFAULT;
9003             }
9004             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9005         }
9006 #endif
9007 #ifdef TARGET_NR_alarm /* not on alpha */
9008     case TARGET_NR_alarm:
9009         return alarm(arg1);
9010 #endif
9011 #ifdef TARGET_NR_pause /* not on alpha */
9012     case TARGET_NR_pause:
9013         if (!block_signals()) {
9014             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9015         }
9016         return -TARGET_EINTR;
9017 #endif
9018 #ifdef TARGET_NR_utime
9019     case TARGET_NR_utime:
9020         {
9021             struct utimbuf tbuf, *host_tbuf;
9022             struct target_utimbuf *target_tbuf;
9023             if (arg2) {
9024                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9025                     return -TARGET_EFAULT;
9026                 tbuf.actime = tswapal(target_tbuf->actime);
9027                 tbuf.modtime = tswapal(target_tbuf->modtime);
9028                 unlock_user_struct(target_tbuf, arg2, 0);
9029                 host_tbuf = &tbuf;
9030             } else {
9031                 host_tbuf = NULL;
9032             }
9033             if (!(p = lock_user_string(arg1)))
9034                 return -TARGET_EFAULT;
9035             ret = get_errno(utime(p, host_tbuf));
9036             unlock_user(p, arg1, 0);
9037         }
9038         return ret;
9039 #endif
9040 #ifdef TARGET_NR_utimes
9041     case TARGET_NR_utimes:
9042         {
9043             struct timeval *tvp, tv[2];
9044             if (arg2) {
9045                 if (copy_from_user_timeval(&tv[0], arg2)
9046                     || copy_from_user_timeval(&tv[1],
9047                                               arg2 + sizeof(struct target_timeval)))
9048                     return -TARGET_EFAULT;
9049                 tvp = tv;
9050             } else {
9051                 tvp = NULL;
9052             }
9053             if (!(p = lock_user_string(arg1)))
9054                 return -TARGET_EFAULT;
9055             ret = get_errno(utimes(p, tvp));
9056             unlock_user(p, arg1, 0);
9057         }
9058         return ret;
9059 #endif
9060 #if defined(TARGET_NR_futimesat)
9061     case TARGET_NR_futimesat:
9062         {
9063             struct timeval *tvp, tv[2];
9064             if (arg3) {
9065                 if (copy_from_user_timeval(&tv[0], arg3)
9066                     || copy_from_user_timeval(&tv[1],
9067                                               arg3 + sizeof(struct target_timeval)))
9068                     return -TARGET_EFAULT;
9069                 tvp = tv;
9070             } else {
9071                 tvp = NULL;
9072             }
9073             if (!(p = lock_user_string(arg2))) {
9074                 return -TARGET_EFAULT;
9075             }
9076             ret = get_errno(futimesat(arg1, path(p), tvp));
9077             unlock_user(p, arg2, 0);
9078         }
9079         return ret;
9080 #endif
9081 #ifdef TARGET_NR_access
9082     case TARGET_NR_access:
9083         if (!(p = lock_user_string(arg1))) {
9084             return -TARGET_EFAULT;
9085         }
9086         ret = get_errno(access(path(p), arg2));
9087         unlock_user(p, arg1, 0);
9088         return ret;
9089 #endif
9090 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9091     case TARGET_NR_faccessat:
9092         if (!(p = lock_user_string(arg2))) {
9093             return -TARGET_EFAULT;
9094         }
9095         ret = get_errno(faccessat(arg1, p, arg3, 0));
9096         unlock_user(p, arg2, 0);
9097         return ret;
9098 #endif
9099 #ifdef TARGET_NR_nice /* not on alpha */
9100     case TARGET_NR_nice:
9101         return get_errno(nice(arg1));
9102 #endif
9103     case TARGET_NR_sync:
9104         sync();
9105         return 0;
9106 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9107     case TARGET_NR_syncfs:
9108         return get_errno(syncfs(arg1));
9109 #endif
9110     case TARGET_NR_kill:
9111         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9112 #ifdef TARGET_NR_rename
9113     case TARGET_NR_rename:
9114         {
9115             void *p2;
9116             p = lock_user_string(arg1);
9117             p2 = lock_user_string(arg2);
9118             if (!p || !p2)
9119                 ret = -TARGET_EFAULT;
9120             else
9121                 ret = get_errno(rename(p, p2));
9122             unlock_user(p2, arg2, 0);
9123             unlock_user(p, arg1, 0);
9124         }
9125         return ret;
9126 #endif
9127 #if defined(TARGET_NR_renameat)
9128     case TARGET_NR_renameat:
9129         {
9130             void *p2;
9131             p  = lock_user_string(arg2);
9132             p2 = lock_user_string(arg4);
9133             if (!p || !p2)
9134                 ret = -TARGET_EFAULT;
9135             else
9136                 ret = get_errno(renameat(arg1, p, arg3, p2));
9137             unlock_user(p2, arg4, 0);
9138             unlock_user(p, arg2, 0);
9139         }
9140         return ret;
9141 #endif
9142 #if defined(TARGET_NR_renameat2)
9143     case TARGET_NR_renameat2:
9144         {
9145             void *p2;
9146             p  = lock_user_string(arg2);
9147             p2 = lock_user_string(arg4);
9148             if (!p || !p2) {
9149                 ret = -TARGET_EFAULT;
9150             } else {
9151                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9152             }
9153             unlock_user(p2, arg4, 0);
9154             unlock_user(p, arg2, 0);
9155         }
9156         return ret;
9157 #endif
9158 #ifdef TARGET_NR_mkdir
9159     case TARGET_NR_mkdir:
9160         if (!(p = lock_user_string(arg1)))
9161             return -TARGET_EFAULT;
9162         ret = get_errno(mkdir(p, arg2));
9163         unlock_user(p, arg1, 0);
9164         return ret;
9165 #endif
9166 #if defined(TARGET_NR_mkdirat)
9167     case TARGET_NR_mkdirat:
9168         if (!(p = lock_user_string(arg2)))
9169             return -TARGET_EFAULT;
9170         ret = get_errno(mkdirat(arg1, p, arg3));
9171         unlock_user(p, arg2, 0);
9172         return ret;
9173 #endif
9174 #ifdef TARGET_NR_rmdir
9175     case TARGET_NR_rmdir:
9176         if (!(p = lock_user_string(arg1)))
9177             return -TARGET_EFAULT;
9178         ret = get_errno(rmdir(p));
9179         unlock_user(p, arg1, 0);
9180         return ret;
9181 #endif
9182     case TARGET_NR_dup:
9183         ret = get_errno(dup(arg1));
9184         if (ret >= 0) {
9185             fd_trans_dup(arg1, ret);
9186         }
9187         return ret;
9188 #ifdef TARGET_NR_pipe
9189     case TARGET_NR_pipe:
9190         return do_pipe(cpu_env, arg1, 0, 0);
9191 #endif
9192 #ifdef TARGET_NR_pipe2
9193     case TARGET_NR_pipe2:
9194         return do_pipe(cpu_env, arg1,
9195                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9196 #endif
9197     case TARGET_NR_times:
9198         {
9199             struct target_tms *tmsp;
9200             struct tms tms;
9201             ret = get_errno(times(&tms));
9202             if (arg1) {
9203                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9204                 if (!tmsp)
9205                     return -TARGET_EFAULT;
9206                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9207                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9208                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9209                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9210             }
9211             if (!is_error(ret))
9212                 ret = host_to_target_clock_t(ret);
9213         }
9214         return ret;
9215     case TARGET_NR_acct:
9216         if (arg1 == 0) {
9217             ret = get_errno(acct(NULL));
9218         } else {
9219             if (!(p = lock_user_string(arg1))) {
9220                 return -TARGET_EFAULT;
9221             }
9222             ret = get_errno(acct(path(p)));
9223             unlock_user(p, arg1, 0);
9224         }
9225         return ret;
9226 #ifdef TARGET_NR_umount2
9227     case TARGET_NR_umount2:
9228         if (!(p = lock_user_string(arg1)))
9229             return -TARGET_EFAULT;
9230         ret = get_errno(umount2(p, arg2));
9231         unlock_user(p, arg1, 0);
9232         return ret;
9233 #endif
9234     case TARGET_NR_ioctl:
9235         return do_ioctl(arg1, arg2, arg3);
9236 #ifdef TARGET_NR_fcntl
9237     case TARGET_NR_fcntl:
9238         return do_fcntl(arg1, arg2, arg3);
9239 #endif
9240     case TARGET_NR_setpgid:
9241         return get_errno(setpgid(arg1, arg2));
9242     case TARGET_NR_umask:
9243         return get_errno(umask(arg1));
9244     case TARGET_NR_chroot:
9245         if (!(p = lock_user_string(arg1)))
9246             return -TARGET_EFAULT;
9247         ret = get_errno(chroot(p));
9248         unlock_user(p, arg1, 0);
9249         return ret;
9250 #ifdef TARGET_NR_dup2
9251     case TARGET_NR_dup2:
9252         ret = get_errno(dup2(arg1, arg2));
9253         if (ret >= 0) {
9254             fd_trans_dup(arg1, arg2);
9255         }
9256         return ret;
9257 #endif
9258 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9259     case TARGET_NR_dup3:
9260     {
9261         int host_flags;
9262 
9263         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9264             return -EINVAL;
9265         }
9266         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9267         ret = get_errno(dup3(arg1, arg2, host_flags));
9268         if (ret >= 0) {
9269             fd_trans_dup(arg1, arg2);
9270         }
9271         return ret;
9272     }
9273 #endif
9274 #ifdef TARGET_NR_getppid /* not on alpha */
9275     case TARGET_NR_getppid:
9276         return get_errno(getppid());
9277 #endif
9278 #ifdef TARGET_NR_getpgrp
9279     case TARGET_NR_getpgrp:
9280         return get_errno(getpgrp());
9281 #endif
9282     case TARGET_NR_setsid:
9283         return get_errno(setsid());
9284 #ifdef TARGET_NR_sigaction
9285     case TARGET_NR_sigaction:
9286         {
9287 #if defined(TARGET_MIPS)
9288 	    struct target_sigaction act, oact, *pact, *old_act;
9289 
9290 	    if (arg2) {
9291                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9292                     return -TARGET_EFAULT;
9293 		act._sa_handler = old_act->_sa_handler;
9294 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9295 		act.sa_flags = old_act->sa_flags;
9296 		unlock_user_struct(old_act, arg2, 0);
9297 		pact = &act;
9298 	    } else {
9299 		pact = NULL;
9300 	    }
9301 
9302         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9303 
9304 	    if (!is_error(ret) && arg3) {
9305                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9306                     return -TARGET_EFAULT;
9307 		old_act->_sa_handler = oact._sa_handler;
9308 		old_act->sa_flags = oact.sa_flags;
9309 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9310 		old_act->sa_mask.sig[1] = 0;
9311 		old_act->sa_mask.sig[2] = 0;
9312 		old_act->sa_mask.sig[3] = 0;
9313 		unlock_user_struct(old_act, arg3, 1);
9314 	    }
9315 #else
9316             struct target_old_sigaction *old_act;
9317             struct target_sigaction act, oact, *pact;
9318             if (arg2) {
9319                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9320                     return -TARGET_EFAULT;
9321                 act._sa_handler = old_act->_sa_handler;
9322                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9323                 act.sa_flags = old_act->sa_flags;
9324 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9325                 act.sa_restorer = old_act->sa_restorer;
9326 #endif
9327                 unlock_user_struct(old_act, arg2, 0);
9328                 pact = &act;
9329             } else {
9330                 pact = NULL;
9331             }
9332             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9333             if (!is_error(ret) && arg3) {
9334                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9335                     return -TARGET_EFAULT;
9336                 old_act->_sa_handler = oact._sa_handler;
9337                 old_act->sa_mask = oact.sa_mask.sig[0];
9338                 old_act->sa_flags = oact.sa_flags;
9339 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9340                 old_act->sa_restorer = oact.sa_restorer;
9341 #endif
9342                 unlock_user_struct(old_act, arg3, 1);
9343             }
9344 #endif
9345         }
9346         return ret;
9347 #endif
9348     case TARGET_NR_rt_sigaction:
9349         {
9350             /*
9351              * For Alpha and SPARC this is a 5 argument syscall, with
9352              * a 'restorer' parameter which must be copied into the
9353              * sa_restorer field of the sigaction struct.
9354              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9355              * and arg5 is the sigsetsize.
9356              */
9357 #if defined(TARGET_ALPHA)
9358             target_ulong sigsetsize = arg4;
9359             target_ulong restorer = arg5;
9360 #elif defined(TARGET_SPARC)
9361             target_ulong restorer = arg4;
9362             target_ulong sigsetsize = arg5;
9363 #else
9364             target_ulong sigsetsize = arg4;
9365             target_ulong restorer = 0;
9366 #endif
9367             struct target_sigaction *act = NULL;
9368             struct target_sigaction *oact = NULL;
9369 
9370             if (sigsetsize != sizeof(target_sigset_t)) {
9371                 return -TARGET_EINVAL;
9372             }
9373             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9374                 return -TARGET_EFAULT;
9375             }
9376             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9377                 ret = -TARGET_EFAULT;
9378             } else {
9379                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9380                 if (oact) {
9381                     unlock_user_struct(oact, arg3, 1);
9382                 }
9383             }
9384             if (act) {
9385                 unlock_user_struct(act, arg2, 0);
9386             }
9387         }
9388         return ret;
9389 #ifdef TARGET_NR_sgetmask /* not on alpha */
9390     case TARGET_NR_sgetmask:
9391         {
9392             sigset_t cur_set;
9393             abi_ulong target_set;
9394             ret = do_sigprocmask(0, NULL, &cur_set);
9395             if (!ret) {
9396                 host_to_target_old_sigset(&target_set, &cur_set);
9397                 ret = target_set;
9398             }
9399         }
9400         return ret;
9401 #endif
9402 #ifdef TARGET_NR_ssetmask /* not on alpha */
9403     case TARGET_NR_ssetmask:
9404         {
9405             sigset_t set, oset;
9406             abi_ulong target_set = arg1;
9407             target_to_host_old_sigset(&set, &target_set);
9408             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9409             if (!ret) {
9410                 host_to_target_old_sigset(&target_set, &oset);
9411                 ret = target_set;
9412             }
9413         }
9414         return ret;
9415 #endif
9416 #ifdef TARGET_NR_sigprocmask
9417     case TARGET_NR_sigprocmask:
9418         {
9419 #if defined(TARGET_ALPHA)
9420             sigset_t set, oldset;
9421             abi_ulong mask;
9422             int how;
9423 
9424             switch (arg1) {
9425             case TARGET_SIG_BLOCK:
9426                 how = SIG_BLOCK;
9427                 break;
9428             case TARGET_SIG_UNBLOCK:
9429                 how = SIG_UNBLOCK;
9430                 break;
9431             case TARGET_SIG_SETMASK:
9432                 how = SIG_SETMASK;
9433                 break;
9434             default:
9435                 return -TARGET_EINVAL;
9436             }
9437             mask = arg2;
9438             target_to_host_old_sigset(&set, &mask);
9439 
9440             ret = do_sigprocmask(how, &set, &oldset);
9441             if (!is_error(ret)) {
9442                 host_to_target_old_sigset(&mask, &oldset);
9443                 ret = mask;
9444                 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
9445             }
9446 #else
9447             sigset_t set, oldset, *set_ptr;
9448             int how;
9449 
9450             if (arg2) {
9451                 switch (arg1) {
9452                 case TARGET_SIG_BLOCK:
9453                     how = SIG_BLOCK;
9454                     break;
9455                 case TARGET_SIG_UNBLOCK:
9456                     how = SIG_UNBLOCK;
9457                     break;
9458                 case TARGET_SIG_SETMASK:
9459                     how = SIG_SETMASK;
9460                     break;
9461                 default:
9462                     return -TARGET_EINVAL;
9463                 }
9464                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9465                     return -TARGET_EFAULT;
9466                 target_to_host_old_sigset(&set, p);
9467                 unlock_user(p, arg2, 0);
9468                 set_ptr = &set;
9469             } else {
9470                 how = 0;
9471                 set_ptr = NULL;
9472             }
9473             ret = do_sigprocmask(how, set_ptr, &oldset);
9474             if (!is_error(ret) && arg3) {
9475                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9476                     return -TARGET_EFAULT;
9477                 host_to_target_old_sigset(p, &oldset);
9478                 unlock_user(p, arg3, sizeof(target_sigset_t));
9479             }
9480 #endif
9481         }
9482         return ret;
9483 #endif
9484     case TARGET_NR_rt_sigprocmask:
9485         {
9486             int how = arg1;
9487             sigset_t set, oldset, *set_ptr;
9488 
9489             if (arg4 != sizeof(target_sigset_t)) {
9490                 return -TARGET_EINVAL;
9491             }
9492 
9493             if (arg2) {
9494                 switch(how) {
9495                 case TARGET_SIG_BLOCK:
9496                     how = SIG_BLOCK;
9497                     break;
9498                 case TARGET_SIG_UNBLOCK:
9499                     how = SIG_UNBLOCK;
9500                     break;
9501                 case TARGET_SIG_SETMASK:
9502                     how = SIG_SETMASK;
9503                     break;
9504                 default:
9505                     return -TARGET_EINVAL;
9506                 }
9507                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9508                     return -TARGET_EFAULT;
9509                 target_to_host_sigset(&set, p);
9510                 unlock_user(p, arg2, 0);
9511                 set_ptr = &set;
9512             } else {
9513                 how = 0;
9514                 set_ptr = NULL;
9515             }
9516             ret = do_sigprocmask(how, set_ptr, &oldset);
9517             if (!is_error(ret) && arg3) {
9518                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9519                     return -TARGET_EFAULT;
9520                 host_to_target_sigset(p, &oldset);
9521                 unlock_user(p, arg3, sizeof(target_sigset_t));
9522             }
9523         }
9524         return ret;
9525 #ifdef TARGET_NR_sigpending
9526     case TARGET_NR_sigpending:
9527         {
9528             sigset_t set;
9529             ret = get_errno(sigpending(&set));
9530             if (!is_error(ret)) {
9531                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9532                     return -TARGET_EFAULT;
9533                 host_to_target_old_sigset(p, &set);
9534                 unlock_user(p, arg1, sizeof(target_sigset_t));
9535             }
9536         }
9537         return ret;
9538 #endif
9539     case TARGET_NR_rt_sigpending:
9540         {
9541             sigset_t set;
9542 
9543             /* Yes, this check is >, not != like most. We follow the kernel's
9544              * logic and it does it like this because it implements
9545              * NR_sigpending through the same code path, and in that case
9546              * the old_sigset_t is smaller in size.
9547              */
9548             if (arg2 > sizeof(target_sigset_t)) {
9549                 return -TARGET_EINVAL;
9550             }
9551 
9552             ret = get_errno(sigpending(&set));
9553             if (!is_error(ret)) {
9554                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9555                     return -TARGET_EFAULT;
9556                 host_to_target_sigset(p, &set);
9557                 unlock_user(p, arg1, sizeof(target_sigset_t));
9558             }
9559         }
9560         return ret;
9561 #ifdef TARGET_NR_sigsuspend
9562     case TARGET_NR_sigsuspend:
9563         {
9564             TaskState *ts = cpu->opaque;
9565 #if defined(TARGET_ALPHA)
9566             abi_ulong mask = arg1;
9567             target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
9568 #else
9569             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9570                 return -TARGET_EFAULT;
9571             target_to_host_old_sigset(&ts->sigsuspend_mask, p);
9572             unlock_user(p, arg1, 0);
9573 #endif
9574             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9575                                                SIGSET_T_SIZE));
9576             if (ret != -QEMU_ERESTARTSYS) {
9577                 ts->in_sigsuspend = 1;
9578             }
9579         }
9580         return ret;
9581 #endif
9582     case TARGET_NR_rt_sigsuspend:
9583         {
9584             TaskState *ts = cpu->opaque;
9585 
9586             if (arg2 != sizeof(target_sigset_t)) {
9587                 return -TARGET_EINVAL;
9588             }
9589             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9590                 return -TARGET_EFAULT;
9591             target_to_host_sigset(&ts->sigsuspend_mask, p);
9592             unlock_user(p, arg1, 0);
9593             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9594                                                SIGSET_T_SIZE));
9595             if (ret != -QEMU_ERESTARTSYS) {
9596                 ts->in_sigsuspend = 1;
9597             }
9598         }
9599         return ret;
9600 #ifdef TARGET_NR_rt_sigtimedwait
9601     case TARGET_NR_rt_sigtimedwait:
9602         {
9603             sigset_t set;
9604             struct timespec uts, *puts;
9605             siginfo_t uinfo;
9606 
9607             if (arg4 != sizeof(target_sigset_t)) {
9608                 return -TARGET_EINVAL;
9609             }
9610 
9611             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9612                 return -TARGET_EFAULT;
9613             target_to_host_sigset(&set, p);
9614             unlock_user(p, arg1, 0);
9615             if (arg3) {
9616                 puts = &uts;
9617                 if (target_to_host_timespec(puts, arg3)) {
9618                     return -TARGET_EFAULT;
9619                 }
9620             } else {
9621                 puts = NULL;
9622             }
9623             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9624                                                  SIGSET_T_SIZE));
9625             if (!is_error(ret)) {
9626                 if (arg2) {
9627                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9628                                   0);
9629                     if (!p) {
9630                         return -TARGET_EFAULT;
9631                     }
9632                     host_to_target_siginfo(p, &uinfo);
9633                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9634                 }
9635                 ret = host_to_target_signal(ret);
9636             }
9637         }
9638         return ret;
9639 #endif
9640 #ifdef TARGET_NR_rt_sigtimedwait_time64
9641     case TARGET_NR_rt_sigtimedwait_time64:
9642         {
9643             sigset_t set;
9644             struct timespec uts, *puts;
9645             siginfo_t uinfo;
9646 
9647             if (arg4 != sizeof(target_sigset_t)) {
9648                 return -TARGET_EINVAL;
9649             }
9650 
9651             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
9652             if (!p) {
9653                 return -TARGET_EFAULT;
9654             }
9655             target_to_host_sigset(&set, p);
9656             unlock_user(p, arg1, 0);
9657             if (arg3) {
9658                 puts = &uts;
9659                 if (target_to_host_timespec64(puts, arg3)) {
9660                     return -TARGET_EFAULT;
9661                 }
9662             } else {
9663                 puts = NULL;
9664             }
9665             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9666                                                  SIGSET_T_SIZE));
9667             if (!is_error(ret)) {
9668                 if (arg2) {
9669                     p = lock_user(VERIFY_WRITE, arg2,
9670                                   sizeof(target_siginfo_t), 0);
9671                     if (!p) {
9672                         return -TARGET_EFAULT;
9673                     }
9674                     host_to_target_siginfo(p, &uinfo);
9675                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9676                 }
9677                 ret = host_to_target_signal(ret);
9678             }
9679         }
9680         return ret;
9681 #endif
9682     case TARGET_NR_rt_sigqueueinfo:
9683         {
9684             siginfo_t uinfo;
9685 
9686             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9687             if (!p) {
9688                 return -TARGET_EFAULT;
9689             }
9690             target_to_host_siginfo(&uinfo, p);
9691             unlock_user(p, arg3, 0);
9692             ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
9693         }
9694         return ret;
9695     case TARGET_NR_rt_tgsigqueueinfo:
9696         {
9697             siginfo_t uinfo;
9698 
9699             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9700             if (!p) {
9701                 return -TARGET_EFAULT;
9702             }
9703             target_to_host_siginfo(&uinfo, p);
9704             unlock_user(p, arg4, 0);
9705             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
9706         }
9707         return ret;
9708 #ifdef TARGET_NR_sigreturn
9709     case TARGET_NR_sigreturn:
9710         if (block_signals()) {
9711             return -QEMU_ERESTARTSYS;
9712         }
9713         return do_sigreturn(cpu_env);
9714 #endif
9715     case TARGET_NR_rt_sigreturn:
9716         if (block_signals()) {
9717             return -QEMU_ERESTARTSYS;
9718         }
9719         return do_rt_sigreturn(cpu_env);
9720     case TARGET_NR_sethostname:
9721         if (!(p = lock_user_string(arg1)))
9722             return -TARGET_EFAULT;
9723         ret = get_errno(sethostname(p, arg2));
9724         unlock_user(p, arg1, 0);
9725         return ret;
9726 #ifdef TARGET_NR_setrlimit
9727     case TARGET_NR_setrlimit:
9728         {
9729             int resource = target_to_host_resource(arg1);
9730             struct target_rlimit *target_rlim;
9731             struct rlimit rlim;
9732             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9733                 return -TARGET_EFAULT;
9734             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9735             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9736             unlock_user_struct(target_rlim, arg2, 0);
9737             /*
9738              * If we just passed through resource limit settings for memory then
9739              * they would also apply to QEMU's own allocations, and QEMU will
9740              * crash or hang or die if its allocations fail. Ideally we would
9741              * track the guest allocations in QEMU and apply the limits ourselves.
9742              * For now, just tell the guest the call succeeded but don't actually
9743              * limit anything.
9744              */
9745             if (resource != RLIMIT_AS &&
9746                 resource != RLIMIT_DATA &&
9747                 resource != RLIMIT_STACK) {
9748                 return get_errno(setrlimit(resource, &rlim));
9749             } else {
9750                 return 0;
9751             }
9752         }
9753 #endif
9754 #ifdef TARGET_NR_getrlimit
9755     case TARGET_NR_getrlimit:
9756         {
9757             int resource = target_to_host_resource(arg1);
9758             struct target_rlimit *target_rlim;
9759             struct rlimit rlim;
9760 
9761             ret = get_errno(getrlimit(resource, &rlim));
9762             if (!is_error(ret)) {
9763                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9764                     return -TARGET_EFAULT;
9765                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9766                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9767                 unlock_user_struct(target_rlim, arg2, 1);
9768             }
9769         }
9770         return ret;
9771 #endif
9772     case TARGET_NR_getrusage:
9773         {
9774             struct rusage rusage;
9775             ret = get_errno(getrusage(arg1, &rusage));
9776             if (!is_error(ret)) {
9777                 ret = host_to_target_rusage(arg2, &rusage);
9778             }
9779         }
9780         return ret;
9781 #if defined(TARGET_NR_gettimeofday)
9782     case TARGET_NR_gettimeofday:
9783         {
9784             struct timeval tv;
9785             struct timezone tz;
9786 
9787             ret = get_errno(gettimeofday(&tv, &tz));
9788             if (!is_error(ret)) {
9789                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
9790                     return -TARGET_EFAULT;
9791                 }
9792                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
9793                     return -TARGET_EFAULT;
9794                 }
9795             }
9796         }
9797         return ret;
9798 #endif
9799 #if defined(TARGET_NR_settimeofday)
9800     case TARGET_NR_settimeofday:
9801         {
9802             struct timeval tv, *ptv = NULL;
9803             struct timezone tz, *ptz = NULL;
9804 
9805             if (arg1) {
9806                 if (copy_from_user_timeval(&tv, arg1)) {
9807                     return -TARGET_EFAULT;
9808                 }
9809                 ptv = &tv;
9810             }
9811 
9812             if (arg2) {
9813                 if (copy_from_user_timezone(&tz, arg2)) {
9814                     return -TARGET_EFAULT;
9815                 }
9816                 ptz = &tz;
9817             }
9818 
9819             return get_errno(settimeofday(ptv, ptz));
9820         }
9821 #endif
9822 #if defined(TARGET_NR_select)
9823     case TARGET_NR_select:
9824 #if defined(TARGET_WANT_NI_OLD_SELECT)
9825         /* some architectures used to have old_select here
9826          * but now ENOSYS it.
9827          */
9828         ret = -TARGET_ENOSYS;
9829 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9830         ret = do_old_select(arg1);
9831 #else
9832         ret = do_select(arg1, arg2, arg3, arg4, arg5);
9833 #endif
9834         return ret;
9835 #endif
9836 #ifdef TARGET_NR_pselect6
9837     case TARGET_NR_pselect6:
9838         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
9839 #endif
9840 #ifdef TARGET_NR_pselect6_time64
9841     case TARGET_NR_pselect6_time64:
9842         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
9843 #endif
9844 #ifdef TARGET_NR_symlink
9845     case TARGET_NR_symlink:
9846         {
9847             void *p2;
9848             p = lock_user_string(arg1);
9849             p2 = lock_user_string(arg2);
9850             if (!p || !p2)
9851                 ret = -TARGET_EFAULT;
9852             else
9853                 ret = get_errno(symlink(p, p2));
9854             unlock_user(p2, arg2, 0);
9855             unlock_user(p, arg1, 0);
9856         }
9857         return ret;
9858 #endif
9859 #if defined(TARGET_NR_symlinkat)
9860     case TARGET_NR_symlinkat:
9861         {
9862             void *p2;
9863             p  = lock_user_string(arg1);
9864             p2 = lock_user_string(arg3);
9865             if (!p || !p2)
9866                 ret = -TARGET_EFAULT;
9867             else
9868                 ret = get_errno(symlinkat(p, arg2, p2));
9869             unlock_user(p2, arg3, 0);
9870             unlock_user(p, arg1, 0);
9871         }
9872         return ret;
9873 #endif
9874 #ifdef TARGET_NR_readlink
9875     case TARGET_NR_readlink:
9876         {
9877             void *p2;
9878             p = lock_user_string(arg1);
9879             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9880             if (!p || !p2) {
9881                 ret = -TARGET_EFAULT;
9882             } else if (!arg3) {
9883                 /* Short circuit this for the magic exe check. */
9884                 ret = -TARGET_EINVAL;
9885             } else if (is_proc_myself((const char *)p, "exe")) {
9886                 char real[PATH_MAX], *temp;
9887                 temp = realpath(exec_path, real);
9888                 /* Return value is # of bytes that we wrote to the buffer. */
9889                 if (temp == NULL) {
9890                     ret = get_errno(-1);
9891                 } else {
9892                     /* Don't worry about sign mismatch as earlier mapping
9893                      * logic would have thrown a bad address error. */
9894                     ret = MIN(strlen(real), arg3);
9895                     /* We cannot NUL terminate the string. */
9896                     memcpy(p2, real, ret);
9897                 }
9898             } else {
9899                 ret = get_errno(readlink(path(p), p2, arg3));
9900             }
9901             unlock_user(p2, arg2, ret);
9902             unlock_user(p, arg1, 0);
9903         }
9904         return ret;
9905 #endif
9906 #if defined(TARGET_NR_readlinkat)
9907     case TARGET_NR_readlinkat:
9908         {
9909             void *p2;
9910             p  = lock_user_string(arg2);
9911             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9912             if (!p || !p2) {
9913                 ret = -TARGET_EFAULT;
9914             } else if (is_proc_myself((const char *)p, "exe")) {
9915                 char real[PATH_MAX], *temp;
9916                 temp = realpath(exec_path, real);
9917                 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9918                 snprintf((char *)p2, arg4, "%s", real);
9919             } else {
9920                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9921             }
9922             unlock_user(p2, arg3, ret);
9923             unlock_user(p, arg2, 0);
9924         }
9925         return ret;
9926 #endif
9927 #ifdef TARGET_NR_swapon
9928     case TARGET_NR_swapon:
9929         if (!(p = lock_user_string(arg1)))
9930             return -TARGET_EFAULT;
9931         ret = get_errno(swapon(p, arg2));
9932         unlock_user(p, arg1, 0);
9933         return ret;
9934 #endif
9935     case TARGET_NR_reboot:
9936         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9937            /* arg4 must be ignored in all other cases */
9938            p = lock_user_string(arg4);
9939            if (!p) {
9940                return -TARGET_EFAULT;
9941            }
9942            ret = get_errno(reboot(arg1, arg2, arg3, p));
9943            unlock_user(p, arg4, 0);
9944         } else {
9945            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9946         }
9947         return ret;
9948 #ifdef TARGET_NR_mmap
9949     case TARGET_NR_mmap:
9950 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9951     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9952     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9953     || defined(TARGET_S390X)
9954         {
9955             abi_ulong *v;
9956             abi_ulong v1, v2, v3, v4, v5, v6;
9957             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9958                 return -TARGET_EFAULT;
9959             v1 = tswapal(v[0]);
9960             v2 = tswapal(v[1]);
9961             v3 = tswapal(v[2]);
9962             v4 = tswapal(v[3]);
9963             v5 = tswapal(v[4]);
9964             v6 = tswapal(v[5]);
9965             unlock_user(v, arg1, 0);
9966             ret = get_errno(target_mmap(v1, v2, v3,
9967                                         target_to_host_bitmask(v4, mmap_flags_tbl),
9968                                         v5, v6));
9969         }
9970 #else
9971         /* mmap pointers are always untagged */
9972         ret = get_errno(target_mmap(arg1, arg2, arg3,
9973                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
9974                                     arg5,
9975                                     arg6));
9976 #endif
9977         return ret;
9978 #endif
9979 #ifdef TARGET_NR_mmap2
9980     case TARGET_NR_mmap2:
9981 #ifndef MMAP_SHIFT
9982 #define MMAP_SHIFT 12
9983 #endif
9984         ret = target_mmap(arg1, arg2, arg3,
9985                           target_to_host_bitmask(arg4, mmap_flags_tbl),
9986                           arg5, arg6 << MMAP_SHIFT);
9987         return get_errno(ret);
9988 #endif
9989     case TARGET_NR_munmap:
9990         arg1 = cpu_untagged_addr(cpu, arg1);
9991         return get_errno(target_munmap(arg1, arg2));
9992     case TARGET_NR_mprotect:
9993         arg1 = cpu_untagged_addr(cpu, arg1);
9994         {
9995             TaskState *ts = cpu->opaque;
9996             /* Special hack to detect libc making the stack executable.  */
9997             if ((arg3 & PROT_GROWSDOWN)
9998                 && arg1 >= ts->info->stack_limit
9999                 && arg1 <= ts->info->start_stack) {
10000                 arg3 &= ~PROT_GROWSDOWN;
10001                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10002                 arg1 = ts->info->stack_limit;
10003             }
10004         }
10005         return get_errno(target_mprotect(arg1, arg2, arg3));
10006 #ifdef TARGET_NR_mremap
10007     case TARGET_NR_mremap:
10008         arg1 = cpu_untagged_addr(cpu, arg1);
10009         /* mremap new_addr (arg5) is always untagged */
10010         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10011 #endif
10012         /* ??? msync/mlock/munlock are broken for softmmu.  */
10013 #ifdef TARGET_NR_msync
10014     case TARGET_NR_msync:
10015         return get_errno(msync(g2h(cpu, arg1), arg2, arg3));
10016 #endif
10017 #ifdef TARGET_NR_mlock
10018     case TARGET_NR_mlock:
10019         return get_errno(mlock(g2h(cpu, arg1), arg2));
10020 #endif
10021 #ifdef TARGET_NR_munlock
10022     case TARGET_NR_munlock:
10023         return get_errno(munlock(g2h(cpu, arg1), arg2));
10024 #endif
10025 #ifdef TARGET_NR_mlockall
10026     case TARGET_NR_mlockall:
10027         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10028 #endif
10029 #ifdef TARGET_NR_munlockall
10030     case TARGET_NR_munlockall:
10031         return get_errno(munlockall());
10032 #endif
10033 #ifdef TARGET_NR_truncate
10034     case TARGET_NR_truncate:
10035         if (!(p = lock_user_string(arg1)))
10036             return -TARGET_EFAULT;
10037         ret = get_errno(truncate(p, arg2));
10038         unlock_user(p, arg1, 0);
10039         return ret;
10040 #endif
10041 #ifdef TARGET_NR_ftruncate
10042     case TARGET_NR_ftruncate:
10043         return get_errno(ftruncate(arg1, arg2));
10044 #endif
10045     case TARGET_NR_fchmod:
10046         return get_errno(fchmod(arg1, arg2));
10047 #if defined(TARGET_NR_fchmodat)
10048     case TARGET_NR_fchmodat:
10049         if (!(p = lock_user_string(arg2)))
10050             return -TARGET_EFAULT;
10051         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10052         unlock_user(p, arg2, 0);
10053         return ret;
10054 #endif
10055     case TARGET_NR_getpriority:
10056         /* Note that negative values are valid for getpriority, so we must
10057            differentiate based on errno settings.  */
10058         errno = 0;
10059         ret = getpriority(arg1, arg2);
10060         if (ret == -1 && errno != 0) {
10061             return -host_to_target_errno(errno);
10062         }
10063 #ifdef TARGET_ALPHA
10064         /* Return value is the unbiased priority.  Signal no error.  */
10065         ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
10066 #else
10067         /* Return value is a biased priority to avoid negative numbers.  */
10068         ret = 20 - ret;
10069 #endif
10070         return ret;
10071     case TARGET_NR_setpriority:
10072         return get_errno(setpriority(arg1, arg2, arg3));
10073 #ifdef TARGET_NR_statfs
10074     case TARGET_NR_statfs:
10075         if (!(p = lock_user_string(arg1))) {
10076             return -TARGET_EFAULT;
10077         }
10078         ret = get_errno(statfs(path(p), &stfs));
10079         unlock_user(p, arg1, 0);
10080     convert_statfs:
10081         if (!is_error(ret)) {
10082             struct target_statfs *target_stfs;
10083 
10084             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10085                 return -TARGET_EFAULT;
10086             __put_user(stfs.f_type, &target_stfs->f_type);
10087             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10088             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10089             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10090             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10091             __put_user(stfs.f_files, &target_stfs->f_files);
10092             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10093             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10094             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10095             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10096             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10097 #ifdef _STATFS_F_FLAGS
10098             __put_user(stfs.f_flags, &target_stfs->f_flags);
10099 #else
10100             __put_user(0, &target_stfs->f_flags);
10101 #endif
10102             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10103             unlock_user_struct(target_stfs, arg2, 1);
10104         }
10105         return ret;
10106 #endif
10107 #ifdef TARGET_NR_fstatfs
10108     case TARGET_NR_fstatfs:
10109         ret = get_errno(fstatfs(arg1, &stfs));
10110         goto convert_statfs;
10111 #endif
10112 #ifdef TARGET_NR_statfs64
10113     case TARGET_NR_statfs64:
10114         if (!(p = lock_user_string(arg1))) {
10115             return -TARGET_EFAULT;
10116         }
10117         ret = get_errno(statfs(path(p), &stfs));
10118         unlock_user(p, arg1, 0);
10119     convert_statfs64:
10120         if (!is_error(ret)) {
10121             struct target_statfs64 *target_stfs;
10122 
10123             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10124                 return -TARGET_EFAULT;
10125             __put_user(stfs.f_type, &target_stfs->f_type);
10126             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10127             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10128             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10129             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10130             __put_user(stfs.f_files, &target_stfs->f_files);
10131             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10132             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10133             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10134             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10135             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10136 #ifdef _STATFS_F_FLAGS
10137             __put_user(stfs.f_flags, &target_stfs->f_flags);
10138 #else
10139             __put_user(0, &target_stfs->f_flags);
10140 #endif
10141             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10142             unlock_user_struct(target_stfs, arg3, 1);
10143         }
10144         return ret;
10145     case TARGET_NR_fstatfs64:
10146         ret = get_errno(fstatfs(arg1, &stfs));
10147         goto convert_statfs64;
10148 #endif
10149 #ifdef TARGET_NR_socketcall
10150     case TARGET_NR_socketcall:
10151         return do_socketcall(arg1, arg2);
10152 #endif
10153 #ifdef TARGET_NR_accept
10154     case TARGET_NR_accept:
10155         return do_accept4(arg1, arg2, arg3, 0);
10156 #endif
10157 #ifdef TARGET_NR_accept4
10158     case TARGET_NR_accept4:
10159         return do_accept4(arg1, arg2, arg3, arg4);
10160 #endif
10161 #ifdef TARGET_NR_bind
10162     case TARGET_NR_bind:
10163         return do_bind(arg1, arg2, arg3);
10164 #endif
10165 #ifdef TARGET_NR_connect
10166     case TARGET_NR_connect:
10167         return do_connect(arg1, arg2, arg3);
10168 #endif
10169 #ifdef TARGET_NR_getpeername
10170     case TARGET_NR_getpeername:
10171         return do_getpeername(arg1, arg2, arg3);
10172 #endif
10173 #ifdef TARGET_NR_getsockname
10174     case TARGET_NR_getsockname:
10175         return do_getsockname(arg1, arg2, arg3);
10176 #endif
10177 #ifdef TARGET_NR_getsockopt
10178     case TARGET_NR_getsockopt:
10179         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10180 #endif
10181 #ifdef TARGET_NR_listen
10182     case TARGET_NR_listen:
10183         return get_errno(listen(arg1, arg2));
10184 #endif
10185 #ifdef TARGET_NR_recv
10186     case TARGET_NR_recv:
10187         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10188 #endif
10189 #ifdef TARGET_NR_recvfrom
10190     case TARGET_NR_recvfrom:
10191         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10192 #endif
10193 #ifdef TARGET_NR_recvmsg
10194     case TARGET_NR_recvmsg:
10195         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10196 #endif
10197 #ifdef TARGET_NR_send
10198     case TARGET_NR_send:
10199         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10200 #endif
10201 #ifdef TARGET_NR_sendmsg
10202     case TARGET_NR_sendmsg:
10203         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10204 #endif
10205 #ifdef TARGET_NR_sendmmsg
10206     case TARGET_NR_sendmmsg:
10207         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10208 #endif
10209 #ifdef TARGET_NR_recvmmsg
10210     case TARGET_NR_recvmmsg:
10211         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10212 #endif
10213 #ifdef TARGET_NR_sendto
10214     case TARGET_NR_sendto:
10215         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10216 #endif
10217 #ifdef TARGET_NR_shutdown
10218     case TARGET_NR_shutdown:
10219         return get_errno(shutdown(arg1, arg2));
10220 #endif
10221 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10222     case TARGET_NR_getrandom:
10223         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10224         if (!p) {
10225             return -TARGET_EFAULT;
10226         }
10227         ret = get_errno(getrandom(p, arg2, arg3));
10228         unlock_user(p, arg1, ret);
10229         return ret;
10230 #endif
10231 #ifdef TARGET_NR_socket
10232     case TARGET_NR_socket:
10233         return do_socket(arg1, arg2, arg3);
10234 #endif
10235 #ifdef TARGET_NR_socketpair
10236     case TARGET_NR_socketpair:
10237         return do_socketpair(arg1, arg2, arg3, arg4);
10238 #endif
10239 #ifdef TARGET_NR_setsockopt
10240     case TARGET_NR_setsockopt:
10241         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10242 #endif
10243 #if defined(TARGET_NR_syslog)
10244     case TARGET_NR_syslog:
10245         {
10246             int len = arg2;
10247 
10248             switch (arg1) {
10249             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10250             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10251             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10252             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10253             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10254             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10255             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10256             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10257                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10258             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10259             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10260             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10261                 {
10262                     if (len < 0) {
10263                         return -TARGET_EINVAL;
10264                     }
10265                     if (len == 0) {
10266                         return 0;
10267                     }
10268                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10269                     if (!p) {
10270                         return -TARGET_EFAULT;
10271                     }
10272                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10273                     unlock_user(p, arg2, arg3);
10274                 }
10275                 return ret;
10276             default:
10277                 return -TARGET_EINVAL;
10278             }
10279         }
10280         break;
10281 #endif
10282     case TARGET_NR_setitimer:
10283         {
10284             struct itimerval value, ovalue, *pvalue;
10285 
10286             if (arg2) {
10287                 pvalue = &value;
10288                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10289                     || copy_from_user_timeval(&pvalue->it_value,
10290                                               arg2 + sizeof(struct target_timeval)))
10291                     return -TARGET_EFAULT;
10292             } else {
10293                 pvalue = NULL;
10294             }
10295             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10296             if (!is_error(ret) && arg3) {
10297                 if (copy_to_user_timeval(arg3,
10298                                          &ovalue.it_interval)
10299                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10300                                             &ovalue.it_value))
10301                     return -TARGET_EFAULT;
10302             }
10303         }
10304         return ret;
10305     case TARGET_NR_getitimer:
10306         {
10307             struct itimerval value;
10308 
10309             ret = get_errno(getitimer(arg1, &value));
10310             if (!is_error(ret) && arg2) {
10311                 if (copy_to_user_timeval(arg2,
10312                                          &value.it_interval)
10313                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10314                                             &value.it_value))
10315                     return -TARGET_EFAULT;
10316             }
10317         }
10318         return ret;
10319 #ifdef TARGET_NR_stat
10320     case TARGET_NR_stat:
10321         if (!(p = lock_user_string(arg1))) {
10322             return -TARGET_EFAULT;
10323         }
10324         ret = get_errno(stat(path(p), &st));
10325         unlock_user(p, arg1, 0);
10326         goto do_stat;
10327 #endif
10328 #ifdef TARGET_NR_lstat
10329     case TARGET_NR_lstat:
10330         if (!(p = lock_user_string(arg1))) {
10331             return -TARGET_EFAULT;
10332         }
10333         ret = get_errno(lstat(path(p), &st));
10334         unlock_user(p, arg1, 0);
10335         goto do_stat;
10336 #endif
10337 #ifdef TARGET_NR_fstat
10338     case TARGET_NR_fstat:
10339         {
10340             ret = get_errno(fstat(arg1, &st));
10341 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10342         do_stat:
10343 #endif
10344             if (!is_error(ret)) {
10345                 struct target_stat *target_st;
10346 
10347                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10348                     return -TARGET_EFAULT;
10349                 memset(target_st, 0, sizeof(*target_st));
10350                 __put_user(st.st_dev, &target_st->st_dev);
10351                 __put_user(st.st_ino, &target_st->st_ino);
10352                 __put_user(st.st_mode, &target_st->st_mode);
10353                 __put_user(st.st_uid, &target_st->st_uid);
10354                 __put_user(st.st_gid, &target_st->st_gid);
10355                 __put_user(st.st_nlink, &target_st->st_nlink);
10356                 __put_user(st.st_rdev, &target_st->st_rdev);
10357                 __put_user(st.st_size, &target_st->st_size);
10358                 __put_user(st.st_blksize, &target_st->st_blksize);
10359                 __put_user(st.st_blocks, &target_st->st_blocks);
10360                 __put_user(st.st_atime, &target_st->target_st_atime);
10361                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10362                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10363 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10364                 __put_user(st.st_atim.tv_nsec,
10365                            &target_st->target_st_atime_nsec);
10366                 __put_user(st.st_mtim.tv_nsec,
10367                            &target_st->target_st_mtime_nsec);
10368                 __put_user(st.st_ctim.tv_nsec,
10369                            &target_st->target_st_ctime_nsec);
10370 #endif
10371                 unlock_user_struct(target_st, arg2, 1);
10372             }
10373         }
10374         return ret;
10375 #endif
10376     case TARGET_NR_vhangup:
10377         return get_errno(vhangup());
10378 #ifdef TARGET_NR_syscall
10379     case TARGET_NR_syscall:
10380         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10381                           arg6, arg7, arg8, 0);
10382 #endif
10383 #if defined(TARGET_NR_wait4)
10384     case TARGET_NR_wait4:
10385         {
10386             int status;
10387             abi_long status_ptr = arg2;
10388             struct rusage rusage, *rusage_ptr;
10389             abi_ulong target_rusage = arg4;
10390             abi_long rusage_err;
10391             if (target_rusage)
10392                 rusage_ptr = &rusage;
10393             else
10394                 rusage_ptr = NULL;
10395             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10396             if (!is_error(ret)) {
10397                 if (status_ptr && ret) {
10398                     status = host_to_target_waitstatus(status);
10399                     if (put_user_s32(status, status_ptr))
10400                         return -TARGET_EFAULT;
10401                 }
10402                 if (target_rusage) {
10403                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10404                     if (rusage_err) {
10405                         ret = rusage_err;
10406                     }
10407                 }
10408             }
10409         }
10410         return ret;
10411 #endif
10412 #ifdef TARGET_NR_swapoff
10413     case TARGET_NR_swapoff:
10414         if (!(p = lock_user_string(arg1)))
10415             return -TARGET_EFAULT;
10416         ret = get_errno(swapoff(p));
10417         unlock_user(p, arg1, 0);
10418         return ret;
10419 #endif
10420     case TARGET_NR_sysinfo:
10421         {
10422             struct target_sysinfo *target_value;
10423             struct sysinfo value;
10424             ret = get_errno(sysinfo(&value));
10425             if (!is_error(ret) && arg1)
10426             {
10427                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10428                     return -TARGET_EFAULT;
10429                 __put_user(value.uptime, &target_value->uptime);
10430                 __put_user(value.loads[0], &target_value->loads[0]);
10431                 __put_user(value.loads[1], &target_value->loads[1]);
10432                 __put_user(value.loads[2], &target_value->loads[2]);
10433                 __put_user(value.totalram, &target_value->totalram);
10434                 __put_user(value.freeram, &target_value->freeram);
10435                 __put_user(value.sharedram, &target_value->sharedram);
10436                 __put_user(value.bufferram, &target_value->bufferram);
10437                 __put_user(value.totalswap, &target_value->totalswap);
10438                 __put_user(value.freeswap, &target_value->freeswap);
10439                 __put_user(value.procs, &target_value->procs);
10440                 __put_user(value.totalhigh, &target_value->totalhigh);
10441                 __put_user(value.freehigh, &target_value->freehigh);
10442                 __put_user(value.mem_unit, &target_value->mem_unit);
10443                 unlock_user_struct(target_value, arg1, 1);
10444             }
10445         }
10446         return ret;
10447 #ifdef TARGET_NR_ipc
10448     case TARGET_NR_ipc:
10449         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10450 #endif
10451 #ifdef TARGET_NR_semget
10452     case TARGET_NR_semget:
10453         return get_errno(semget(arg1, arg2, arg3));
10454 #endif
10455 #ifdef TARGET_NR_semop
10456     case TARGET_NR_semop:
10457         return do_semtimedop(arg1, arg2, arg3, 0, false);
10458 #endif
10459 #ifdef TARGET_NR_semtimedop
10460     case TARGET_NR_semtimedop:
10461         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10462 #endif
10463 #ifdef TARGET_NR_semtimedop_time64
10464     case TARGET_NR_semtimedop_time64:
10465         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10466 #endif
10467 #ifdef TARGET_NR_semctl
10468     case TARGET_NR_semctl:
10469         return do_semctl(arg1, arg2, arg3, arg4);
10470 #endif
10471 #ifdef TARGET_NR_msgctl
10472     case TARGET_NR_msgctl:
10473         return do_msgctl(arg1, arg2, arg3);
10474 #endif
10475 #ifdef TARGET_NR_msgget
10476     case TARGET_NR_msgget:
10477         return get_errno(msgget(arg1, arg2));
10478 #endif
10479 #ifdef TARGET_NR_msgrcv
10480     case TARGET_NR_msgrcv:
10481         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10482 #endif
10483 #ifdef TARGET_NR_msgsnd
10484     case TARGET_NR_msgsnd:
10485         return do_msgsnd(arg1, arg2, arg3, arg4);
10486 #endif
10487 #ifdef TARGET_NR_shmget
10488     case TARGET_NR_shmget:
10489         return get_errno(shmget(arg1, arg2, arg3));
10490 #endif
10491 #ifdef TARGET_NR_shmctl
10492     case TARGET_NR_shmctl:
10493         return do_shmctl(arg1, arg2, arg3);
10494 #endif
10495 #ifdef TARGET_NR_shmat
10496     case TARGET_NR_shmat:
10497         return do_shmat(cpu_env, arg1, arg2, arg3);
10498 #endif
10499 #ifdef TARGET_NR_shmdt
10500     case TARGET_NR_shmdt:
10501         return do_shmdt(arg1);
10502 #endif
10503     case TARGET_NR_fsync:
10504         return get_errno(fsync(arg1));
10505     case TARGET_NR_clone:
10506         /* Linux manages to have three different orderings for its
10507          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10508          * match the kernel's CONFIG_CLONE_* settings.
10509          * Microblaze is further special in that it uses a sixth
10510          * implicit argument to clone for the TLS pointer.
10511          */
10512 #if defined(TARGET_MICROBLAZE)
10513         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10514 #elif defined(TARGET_CLONE_BACKWARDS)
10515         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10516 #elif defined(TARGET_CLONE_BACKWARDS2)
10517         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10518 #else
10519         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10520 #endif
10521         return ret;
10522 #ifdef __NR_exit_group
10523         /* new thread calls */
10524     case TARGET_NR_exit_group:
10525         preexit_cleanup(cpu_env, arg1);
10526         return get_errno(exit_group(arg1));
10527 #endif
10528     case TARGET_NR_setdomainname:
10529         if (!(p = lock_user_string(arg1)))
10530             return -TARGET_EFAULT;
10531         ret = get_errno(setdomainname(p, arg2));
10532         unlock_user(p, arg1, 0);
10533         return ret;
10534     case TARGET_NR_uname:
10535         /* no need to transcode because we use the linux syscall */
10536         {
10537             struct new_utsname * buf;
10538 
10539             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10540                 return -TARGET_EFAULT;
10541             ret = get_errno(sys_uname(buf));
10542             if (!is_error(ret)) {
10543                 /* Overwrite the native machine name with whatever is being
10544                    emulated. */
10545                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10546                           sizeof(buf->machine));
10547                 /* Allow the user to override the reported release.  */
10548                 if (qemu_uname_release && *qemu_uname_release) {
10549                     g_strlcpy(buf->release, qemu_uname_release,
10550                               sizeof(buf->release));
10551                 }
10552             }
10553             unlock_user_struct(buf, arg1, 1);
10554         }
10555         return ret;
10556 #ifdef TARGET_I386
10557     case TARGET_NR_modify_ldt:
10558         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10559 #if !defined(TARGET_X86_64)
10560     case TARGET_NR_vm86:
10561         return do_vm86(cpu_env, arg1, arg2);
10562 #endif
10563 #endif
10564 #if defined(TARGET_NR_adjtimex)
10565     case TARGET_NR_adjtimex:
10566         {
10567             struct timex host_buf;
10568 
10569             if (target_to_host_timex(&host_buf, arg1) != 0) {
10570                 return -TARGET_EFAULT;
10571             }
10572             ret = get_errno(adjtimex(&host_buf));
10573             if (!is_error(ret)) {
10574                 if (host_to_target_timex(arg1, &host_buf) != 0) {
10575                     return -TARGET_EFAULT;
10576                 }
10577             }
10578         }
10579         return ret;
10580 #endif
10581 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10582     case TARGET_NR_clock_adjtime:
10583         {
10584             struct timex htx, *phtx = &htx;
10585 
10586             if (target_to_host_timex(phtx, arg2) != 0) {
10587                 return -TARGET_EFAULT;
10588             }
10589             ret = get_errno(clock_adjtime(arg1, phtx));
10590             if (!is_error(ret) && phtx) {
10591                 if (host_to_target_timex(arg2, phtx) != 0) {
10592                     return -TARGET_EFAULT;
10593                 }
10594             }
10595         }
10596         return ret;
10597 #endif
10598 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10599     case TARGET_NR_clock_adjtime64:
10600         {
10601             struct timex htx;
10602 
10603             if (target_to_host_timex64(&htx, arg2) != 0) {
10604                 return -TARGET_EFAULT;
10605             }
10606             ret = get_errno(clock_adjtime(arg1, &htx));
10607             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
10608                     return -TARGET_EFAULT;
10609             }
10610         }
10611         return ret;
10612 #endif
10613     case TARGET_NR_getpgid:
10614         return get_errno(getpgid(arg1));
10615     case TARGET_NR_fchdir:
10616         return get_errno(fchdir(arg1));
10617     case TARGET_NR_personality:
10618         return get_errno(personality(arg1));
10619 #ifdef TARGET_NR__llseek /* Not on alpha */
10620     case TARGET_NR__llseek:
10621         {
10622             int64_t res;
10623 #if !defined(__NR_llseek)
10624             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10625             if (res == -1) {
10626                 ret = get_errno(res);
10627             } else {
10628                 ret = 0;
10629             }
10630 #else
10631             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10632 #endif
10633             if ((ret == 0) && put_user_s64(res, arg4)) {
10634                 return -TARGET_EFAULT;
10635             }
10636         }
10637         return ret;
10638 #endif
10639 #ifdef TARGET_NR_getdents
10640     case TARGET_NR_getdents:
10641         return do_getdents(arg1, arg2, arg3);
10642 #endif /* TARGET_NR_getdents */
10643 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10644     case TARGET_NR_getdents64:
10645         return do_getdents64(arg1, arg2, arg3);
10646 #endif /* TARGET_NR_getdents64 */
10647 #if defined(TARGET_NR__newselect)
10648     case TARGET_NR__newselect:
10649         return do_select(arg1, arg2, arg3, arg4, arg5);
10650 #endif
10651 #ifdef TARGET_NR_poll
10652     case TARGET_NR_poll:
10653         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
10654 #endif
10655 #ifdef TARGET_NR_ppoll
10656     case TARGET_NR_ppoll:
10657         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
10658 #endif
10659 #ifdef TARGET_NR_ppoll_time64
10660     case TARGET_NR_ppoll_time64:
10661         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
10662 #endif
10663     case TARGET_NR_flock:
10664         /* NOTE: the flock constant seems to be the same for every
10665            Linux platform */
10666         return get_errno(safe_flock(arg1, arg2));
10667     case TARGET_NR_readv:
10668         {
10669             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10670             if (vec != NULL) {
10671                 ret = get_errno(safe_readv(arg1, vec, arg3));
10672                 unlock_iovec(vec, arg2, arg3, 1);
10673             } else {
10674                 ret = -host_to_target_errno(errno);
10675             }
10676         }
10677         return ret;
10678     case TARGET_NR_writev:
10679         {
10680             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10681             if (vec != NULL) {
10682                 ret = get_errno(safe_writev(arg1, vec, arg3));
10683                 unlock_iovec(vec, arg2, arg3, 0);
10684             } else {
10685                 ret = -host_to_target_errno(errno);
10686             }
10687         }
10688         return ret;
10689 #if defined(TARGET_NR_preadv)
10690     case TARGET_NR_preadv:
10691         {
10692             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10693             if (vec != NULL) {
10694                 unsigned long low, high;
10695 
10696                 target_to_host_low_high(arg4, arg5, &low, &high);
10697                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10698                 unlock_iovec(vec, arg2, arg3, 1);
10699             } else {
10700                 ret = -host_to_target_errno(errno);
10701            }
10702         }
10703         return ret;
10704 #endif
10705 #if defined(TARGET_NR_pwritev)
10706     case TARGET_NR_pwritev:
10707         {
10708             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10709             if (vec != NULL) {
10710                 unsigned long low, high;
10711 
10712                 target_to_host_low_high(arg4, arg5, &low, &high);
10713                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10714                 unlock_iovec(vec, arg2, arg3, 0);
10715             } else {
10716                 ret = -host_to_target_errno(errno);
10717            }
10718         }
10719         return ret;
10720 #endif
10721     case TARGET_NR_getsid:
10722         return get_errno(getsid(arg1));
10723 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10724     case TARGET_NR_fdatasync:
10725         return get_errno(fdatasync(arg1));
10726 #endif
10727     case TARGET_NR_sched_getaffinity:
10728         {
10729             unsigned int mask_size;
10730             unsigned long *mask;
10731 
10732             /*
10733              * sched_getaffinity needs multiples of ulong, so need to take
10734              * care of mismatches between target ulong and host ulong sizes.
10735              */
10736             if (arg2 & (sizeof(abi_ulong) - 1)) {
10737                 return -TARGET_EINVAL;
10738             }
10739             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10740 
10741             mask = alloca(mask_size);
10742             memset(mask, 0, mask_size);
10743             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10744 
10745             if (!is_error(ret)) {
10746                 if (ret > arg2) {
10747                     /* More data returned than the caller's buffer will fit.
10748                      * This only happens if sizeof(abi_long) < sizeof(long)
10749                      * and the caller passed us a buffer holding an odd number
10750                      * of abi_longs. If the host kernel is actually using the
10751                      * extra 4 bytes then fail EINVAL; otherwise we can just
10752                      * ignore them and only copy the interesting part.
10753                      */
10754                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10755                     if (numcpus > arg2 * 8) {
10756                         return -TARGET_EINVAL;
10757                     }
10758                     ret = arg2;
10759                 }
10760 
10761                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10762                     return -TARGET_EFAULT;
10763                 }
10764             }
10765         }
10766         return ret;
10767     case TARGET_NR_sched_setaffinity:
10768         {
10769             unsigned int mask_size;
10770             unsigned long *mask;
10771 
10772             /*
10773              * sched_setaffinity needs multiples of ulong, so need to take
10774              * care of mismatches between target ulong and host ulong sizes.
10775              */
10776             if (arg2 & (sizeof(abi_ulong) - 1)) {
10777                 return -TARGET_EINVAL;
10778             }
10779             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10780             mask = alloca(mask_size);
10781 
10782             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10783             if (ret) {
10784                 return ret;
10785             }
10786 
10787             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10788         }
10789     case TARGET_NR_getcpu:
10790         {
10791             unsigned cpu, node;
10792             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10793                                        arg2 ? &node : NULL,
10794                                        NULL));
10795             if (is_error(ret)) {
10796                 return ret;
10797             }
10798             if (arg1 && put_user_u32(cpu, arg1)) {
10799                 return -TARGET_EFAULT;
10800             }
10801             if (arg2 && put_user_u32(node, arg2)) {
10802                 return -TARGET_EFAULT;
10803             }
10804         }
10805         return ret;
10806     case TARGET_NR_sched_setparam:
10807         {
10808             struct target_sched_param *target_schp;
10809             struct sched_param schp;
10810 
10811             if (arg2 == 0) {
10812                 return -TARGET_EINVAL;
10813             }
10814             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
10815                 return -TARGET_EFAULT;
10816             }
10817             schp.sched_priority = tswap32(target_schp->sched_priority);
10818             unlock_user_struct(target_schp, arg2, 0);
10819             return get_errno(sys_sched_setparam(arg1, &schp));
10820         }
10821     case TARGET_NR_sched_getparam:
10822         {
10823             struct target_sched_param *target_schp;
10824             struct sched_param schp;
10825 
10826             if (arg2 == 0) {
10827                 return -TARGET_EINVAL;
10828             }
10829             ret = get_errno(sys_sched_getparam(arg1, &schp));
10830             if (!is_error(ret)) {
10831                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
10832                     return -TARGET_EFAULT;
10833                 }
10834                 target_schp->sched_priority = tswap32(schp.sched_priority);
10835                 unlock_user_struct(target_schp, arg2, 1);
10836             }
10837         }
10838         return ret;
10839     case TARGET_NR_sched_setscheduler:
10840         {
10841             struct target_sched_param *target_schp;
10842             struct sched_param schp;
10843             if (arg3 == 0) {
10844                 return -TARGET_EINVAL;
10845             }
10846             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
10847                 return -TARGET_EFAULT;
10848             }
10849             schp.sched_priority = tswap32(target_schp->sched_priority);
10850             unlock_user_struct(target_schp, arg3, 0);
10851             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
10852         }
10853     case TARGET_NR_sched_getscheduler:
10854         return get_errno(sys_sched_getscheduler(arg1));
10855     case TARGET_NR_sched_getattr:
10856         {
10857             struct target_sched_attr *target_scha;
10858             struct sched_attr scha;
10859             if (arg2 == 0) {
10860                 return -TARGET_EINVAL;
10861             }
10862             if (arg3 > sizeof(scha)) {
10863                 arg3 = sizeof(scha);
10864             }
10865             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
10866             if (!is_error(ret)) {
10867                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10868                 if (!target_scha) {
10869                     return -TARGET_EFAULT;
10870                 }
10871                 target_scha->size = tswap32(scha.size);
10872                 target_scha->sched_policy = tswap32(scha.sched_policy);
10873                 target_scha->sched_flags = tswap64(scha.sched_flags);
10874                 target_scha->sched_nice = tswap32(scha.sched_nice);
10875                 target_scha->sched_priority = tswap32(scha.sched_priority);
10876                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
10877                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
10878                 target_scha->sched_period = tswap64(scha.sched_period);
10879                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
10880                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
10881                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
10882                 }
10883                 unlock_user(target_scha, arg2, arg3);
10884             }
10885             return ret;
10886         }
10887     case TARGET_NR_sched_setattr:
10888         {
10889             struct target_sched_attr *target_scha;
10890             struct sched_attr scha;
10891             uint32_t size;
10892             int zeroed;
10893             if (arg2 == 0) {
10894                 return -TARGET_EINVAL;
10895             }
10896             if (get_user_u32(size, arg2)) {
10897                 return -TARGET_EFAULT;
10898             }
10899             if (!size) {
10900                 size = offsetof(struct target_sched_attr, sched_util_min);
10901             }
10902             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
10903                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
10904                     return -TARGET_EFAULT;
10905                 }
10906                 return -TARGET_E2BIG;
10907             }
10908 
10909             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
10910             if (zeroed < 0) {
10911                 return zeroed;
10912             } else if (zeroed == 0) {
10913                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
10914                     return -TARGET_EFAULT;
10915                 }
10916                 return -TARGET_E2BIG;
10917             }
10918             if (size > sizeof(struct target_sched_attr)) {
10919                 size = sizeof(struct target_sched_attr);
10920             }
10921 
10922             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
10923             if (!target_scha) {
10924                 return -TARGET_EFAULT;
10925             }
10926             scha.size = size;
10927             scha.sched_policy = tswap32(target_scha->sched_policy);
10928             scha.sched_flags = tswap64(target_scha->sched_flags);
10929             scha.sched_nice = tswap32(target_scha->sched_nice);
10930             scha.sched_priority = tswap32(target_scha->sched_priority);
10931             scha.sched_runtime = tswap64(target_scha->sched_runtime);
10932             scha.sched_deadline = tswap64(target_scha->sched_deadline);
10933             scha.sched_period = tswap64(target_scha->sched_period);
10934             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
10935                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
10936                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
10937             }
10938             unlock_user(target_scha, arg2, 0);
10939             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
10940         }
10941     case TARGET_NR_sched_yield:
10942         return get_errno(sched_yield());
10943     case TARGET_NR_sched_get_priority_max:
10944         return get_errno(sched_get_priority_max(arg1));
10945     case TARGET_NR_sched_get_priority_min:
10946         return get_errno(sched_get_priority_min(arg1));
10947 #ifdef TARGET_NR_sched_rr_get_interval
10948     case TARGET_NR_sched_rr_get_interval:
10949         {
10950             struct timespec ts;
10951             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10952             if (!is_error(ret)) {
10953                 ret = host_to_target_timespec(arg2, &ts);
10954             }
10955         }
10956         return ret;
10957 #endif
10958 #ifdef TARGET_NR_sched_rr_get_interval_time64
10959     case TARGET_NR_sched_rr_get_interval_time64:
10960         {
10961             struct timespec ts;
10962             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10963             if (!is_error(ret)) {
10964                 ret = host_to_target_timespec64(arg2, &ts);
10965             }
10966         }
10967         return ret;
10968 #endif
10969 #if defined(TARGET_NR_nanosleep)
10970     case TARGET_NR_nanosleep:
10971         {
10972             struct timespec req, rem;
10973             target_to_host_timespec(&req, arg1);
10974             ret = get_errno(safe_nanosleep(&req, &rem));
10975             if (is_error(ret) && arg2) {
10976                 host_to_target_timespec(arg2, &rem);
10977             }
10978         }
10979         return ret;
10980 #endif
10981     case TARGET_NR_prctl:
10982         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
10983         break;
10984 #ifdef TARGET_NR_arch_prctl
10985     case TARGET_NR_arch_prctl:
10986         return do_arch_prctl(cpu_env, arg1, arg2);
10987 #endif
10988 #ifdef TARGET_NR_pread64
10989     case TARGET_NR_pread64:
10990         if (regpairs_aligned(cpu_env, num)) {
10991             arg4 = arg5;
10992             arg5 = arg6;
10993         }
10994         if (arg2 == 0 && arg3 == 0) {
10995             /* Special-case NULL buffer and zero length, which should succeed */
10996             p = 0;
10997         } else {
10998             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10999             if (!p) {
11000                 return -TARGET_EFAULT;
11001             }
11002         }
11003         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11004         unlock_user(p, arg2, ret);
11005         return ret;
11006     case TARGET_NR_pwrite64:
11007         if (regpairs_aligned(cpu_env, num)) {
11008             arg4 = arg5;
11009             arg5 = arg6;
11010         }
11011         if (arg2 == 0 && arg3 == 0) {
11012             /* Special-case NULL buffer and zero length, which should succeed */
11013             p = 0;
11014         } else {
11015             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11016             if (!p) {
11017                 return -TARGET_EFAULT;
11018             }
11019         }
11020         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11021         unlock_user(p, arg2, 0);
11022         return ret;
11023 #endif
11024     case TARGET_NR_getcwd:
11025         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11026             return -TARGET_EFAULT;
11027         ret = get_errno(sys_getcwd1(p, arg2));
11028         unlock_user(p, arg1, ret);
11029         return ret;
11030     case TARGET_NR_capget:
11031     case TARGET_NR_capset:
11032     {
11033         struct target_user_cap_header *target_header;
11034         struct target_user_cap_data *target_data = NULL;
11035         struct __user_cap_header_struct header;
11036         struct __user_cap_data_struct data[2];
11037         struct __user_cap_data_struct *dataptr = NULL;
11038         int i, target_datalen;
11039         int data_items = 1;
11040 
11041         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11042             return -TARGET_EFAULT;
11043         }
11044         header.version = tswap32(target_header->version);
11045         header.pid = tswap32(target_header->pid);
11046 
11047         if (header.version != _LINUX_CAPABILITY_VERSION) {
11048             /* Version 2 and up takes pointer to two user_data structs */
11049             data_items = 2;
11050         }
11051 
11052         target_datalen = sizeof(*target_data) * data_items;
11053 
11054         if (arg2) {
11055             if (num == TARGET_NR_capget) {
11056                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11057             } else {
11058                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11059             }
11060             if (!target_data) {
11061                 unlock_user_struct(target_header, arg1, 0);
11062                 return -TARGET_EFAULT;
11063             }
11064 
11065             if (num == TARGET_NR_capset) {
11066                 for (i = 0; i < data_items; i++) {
11067                     data[i].effective = tswap32(target_data[i].effective);
11068                     data[i].permitted = tswap32(target_data[i].permitted);
11069                     data[i].inheritable = tswap32(target_data[i].inheritable);
11070                 }
11071             }
11072 
11073             dataptr = data;
11074         }
11075 
11076         if (num == TARGET_NR_capget) {
11077             ret = get_errno(capget(&header, dataptr));
11078         } else {
11079             ret = get_errno(capset(&header, dataptr));
11080         }
11081 
11082         /* The kernel always updates version for both capget and capset */
11083         target_header->version = tswap32(header.version);
11084         unlock_user_struct(target_header, arg1, 1);
11085 
11086         if (arg2) {
11087             if (num == TARGET_NR_capget) {
11088                 for (i = 0; i < data_items; i++) {
11089                     target_data[i].effective = tswap32(data[i].effective);
11090                     target_data[i].permitted = tswap32(data[i].permitted);
11091                     target_data[i].inheritable = tswap32(data[i].inheritable);
11092                 }
11093                 unlock_user(target_data, arg2, target_datalen);
11094             } else {
11095                 unlock_user(target_data, arg2, 0);
11096             }
11097         }
11098         return ret;
11099     }
11100     case TARGET_NR_sigaltstack:
11101         return do_sigaltstack(arg1, arg2, cpu_env);
11102 
11103 #ifdef CONFIG_SENDFILE
11104 #ifdef TARGET_NR_sendfile
11105     case TARGET_NR_sendfile:
11106     {
11107         off_t *offp = NULL;
11108         off_t off;
11109         if (arg3) {
11110             ret = get_user_sal(off, arg3);
11111             if (is_error(ret)) {
11112                 return ret;
11113             }
11114             offp = &off;
11115         }
11116         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11117         if (!is_error(ret) && arg3) {
11118             abi_long ret2 = put_user_sal(off, arg3);
11119             if (is_error(ret2)) {
11120                 ret = ret2;
11121             }
11122         }
11123         return ret;
11124     }
11125 #endif
11126 #ifdef TARGET_NR_sendfile64
11127     case TARGET_NR_sendfile64:
11128     {
11129         off_t *offp = NULL;
11130         off_t off;
11131         if (arg3) {
11132             ret = get_user_s64(off, arg3);
11133             if (is_error(ret)) {
11134                 return ret;
11135             }
11136             offp = &off;
11137         }
11138         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11139         if (!is_error(ret) && arg3) {
11140             abi_long ret2 = put_user_s64(off, arg3);
11141             if (is_error(ret2)) {
11142                 ret = ret2;
11143             }
11144         }
11145         return ret;
11146     }
11147 #endif
11148 #endif
11149 #ifdef TARGET_NR_vfork
11150     case TARGET_NR_vfork:
11151         return get_errno(do_fork(cpu_env,
11152                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11153                          0, 0, 0, 0));
11154 #endif
11155 #ifdef TARGET_NR_ugetrlimit
11156     case TARGET_NR_ugetrlimit:
11157     {
11158 	struct rlimit rlim;
11159 	int resource = target_to_host_resource(arg1);
11160 	ret = get_errno(getrlimit(resource, &rlim));
11161 	if (!is_error(ret)) {
11162 	    struct target_rlimit *target_rlim;
11163             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11164                 return -TARGET_EFAULT;
11165 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11166 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11167             unlock_user_struct(target_rlim, arg2, 1);
11168 	}
11169         return ret;
11170     }
11171 #endif
11172 #ifdef TARGET_NR_truncate64
11173     case TARGET_NR_truncate64:
11174         if (!(p = lock_user_string(arg1)))
11175             return -TARGET_EFAULT;
11176 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11177         unlock_user(p, arg1, 0);
11178         return ret;
11179 #endif
11180 #ifdef TARGET_NR_ftruncate64
11181     case TARGET_NR_ftruncate64:
11182         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11183 #endif
11184 #ifdef TARGET_NR_stat64
11185     case TARGET_NR_stat64:
11186         if (!(p = lock_user_string(arg1))) {
11187             return -TARGET_EFAULT;
11188         }
11189         ret = get_errno(stat(path(p), &st));
11190         unlock_user(p, arg1, 0);
11191         if (!is_error(ret))
11192             ret = host_to_target_stat64(cpu_env, arg2, &st);
11193         return ret;
11194 #endif
11195 #ifdef TARGET_NR_lstat64
11196     case TARGET_NR_lstat64:
11197         if (!(p = lock_user_string(arg1))) {
11198             return -TARGET_EFAULT;
11199         }
11200         ret = get_errno(lstat(path(p), &st));
11201         unlock_user(p, arg1, 0);
11202         if (!is_error(ret))
11203             ret = host_to_target_stat64(cpu_env, arg2, &st);
11204         return ret;
11205 #endif
11206 #ifdef TARGET_NR_fstat64
11207     case TARGET_NR_fstat64:
11208         ret = get_errno(fstat(arg1, &st));
11209         if (!is_error(ret))
11210             ret = host_to_target_stat64(cpu_env, arg2, &st);
11211         return ret;
11212 #endif
11213 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11214 #ifdef TARGET_NR_fstatat64
11215     case TARGET_NR_fstatat64:
11216 #endif
11217 #ifdef TARGET_NR_newfstatat
11218     case TARGET_NR_newfstatat:
11219 #endif
11220         if (!(p = lock_user_string(arg2))) {
11221             return -TARGET_EFAULT;
11222         }
11223         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11224         unlock_user(p, arg2, 0);
11225         if (!is_error(ret))
11226             ret = host_to_target_stat64(cpu_env, arg3, &st);
11227         return ret;
11228 #endif
11229 #if defined(TARGET_NR_statx)
11230     case TARGET_NR_statx:
11231         {
11232             struct target_statx *target_stx;
11233             int dirfd = arg1;
11234             int flags = arg3;
11235 
11236             p = lock_user_string(arg2);
11237             if (p == NULL) {
11238                 return -TARGET_EFAULT;
11239             }
11240 #if defined(__NR_statx)
11241             {
11242                 /*
11243                  * It is assumed that struct statx is architecture independent.
11244                  */
11245                 struct target_statx host_stx;
11246                 int mask = arg4;
11247 
11248                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11249                 if (!is_error(ret)) {
11250                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11251                         unlock_user(p, arg2, 0);
11252                         return -TARGET_EFAULT;
11253                     }
11254                 }
11255 
11256                 if (ret != -TARGET_ENOSYS) {
11257                     unlock_user(p, arg2, 0);
11258                     return ret;
11259                 }
11260             }
11261 #endif
11262             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11263             unlock_user(p, arg2, 0);
11264 
11265             if (!is_error(ret)) {
11266                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11267                     return -TARGET_EFAULT;
11268                 }
11269                 memset(target_stx, 0, sizeof(*target_stx));
11270                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11271                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11272                 __put_user(st.st_ino, &target_stx->stx_ino);
11273                 __put_user(st.st_mode, &target_stx->stx_mode);
11274                 __put_user(st.st_uid, &target_stx->stx_uid);
11275                 __put_user(st.st_gid, &target_stx->stx_gid);
11276                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11277                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11278                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11279                 __put_user(st.st_size, &target_stx->stx_size);
11280                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11281                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11282                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11283                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11284                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11285                 unlock_user_struct(target_stx, arg5, 1);
11286             }
11287         }
11288         return ret;
11289 #endif
11290 #ifdef TARGET_NR_lchown
11291     case TARGET_NR_lchown:
11292         if (!(p = lock_user_string(arg1)))
11293             return -TARGET_EFAULT;
11294         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11295         unlock_user(p, arg1, 0);
11296         return ret;
11297 #endif
11298 #ifdef TARGET_NR_getuid
11299     case TARGET_NR_getuid:
11300         return get_errno(high2lowuid(getuid()));
11301 #endif
11302 #ifdef TARGET_NR_getgid
11303     case TARGET_NR_getgid:
11304         return get_errno(high2lowgid(getgid()));
11305 #endif
11306 #ifdef TARGET_NR_geteuid
11307     case TARGET_NR_geteuid:
11308         return get_errno(high2lowuid(geteuid()));
11309 #endif
11310 #ifdef TARGET_NR_getegid
11311     case TARGET_NR_getegid:
11312         return get_errno(high2lowgid(getegid()));
11313 #endif
11314     case TARGET_NR_setreuid:
11315         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11316     case TARGET_NR_setregid:
11317         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11318     case TARGET_NR_getgroups:
11319         {
11320             int gidsetsize = arg1;
11321             target_id *target_grouplist;
11322             gid_t *grouplist;
11323             int i;
11324 
11325             grouplist = alloca(gidsetsize * sizeof(gid_t));
11326             ret = get_errno(getgroups(gidsetsize, grouplist));
11327             if (gidsetsize == 0)
11328                 return ret;
11329             if (!is_error(ret)) {
11330                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11331                 if (!target_grouplist)
11332                     return -TARGET_EFAULT;
11333                 for(i = 0;i < ret; i++)
11334                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11335                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11336             }
11337         }
11338         return ret;
11339     case TARGET_NR_setgroups:
11340         {
11341             int gidsetsize = arg1;
11342             target_id *target_grouplist;
11343             gid_t *grouplist = NULL;
11344             int i;
11345             if (gidsetsize) {
11346                 grouplist = alloca(gidsetsize * sizeof(gid_t));
11347                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11348                 if (!target_grouplist) {
11349                     return -TARGET_EFAULT;
11350                 }
11351                 for (i = 0; i < gidsetsize; i++) {
11352                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11353                 }
11354                 unlock_user(target_grouplist, arg2, 0);
11355             }
11356             return get_errno(setgroups(gidsetsize, grouplist));
11357         }
11358     case TARGET_NR_fchown:
11359         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11360 #if defined(TARGET_NR_fchownat)
11361     case TARGET_NR_fchownat:
11362         if (!(p = lock_user_string(arg2)))
11363             return -TARGET_EFAULT;
11364         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11365                                  low2highgid(arg4), arg5));
11366         unlock_user(p, arg2, 0);
11367         return ret;
11368 #endif
11369 #ifdef TARGET_NR_setresuid
11370     case TARGET_NR_setresuid:
11371         return get_errno(sys_setresuid(low2highuid(arg1),
11372                                        low2highuid(arg2),
11373                                        low2highuid(arg3)));
11374 #endif
11375 #ifdef TARGET_NR_getresuid
11376     case TARGET_NR_getresuid:
11377         {
11378             uid_t ruid, euid, suid;
11379             ret = get_errno(getresuid(&ruid, &euid, &suid));
11380             if (!is_error(ret)) {
11381                 if (put_user_id(high2lowuid(ruid), arg1)
11382                     || put_user_id(high2lowuid(euid), arg2)
11383                     || put_user_id(high2lowuid(suid), arg3))
11384                     return -TARGET_EFAULT;
11385             }
11386         }
11387         return ret;
11388 #endif
11389 #ifdef TARGET_NR_getresgid
11390     case TARGET_NR_setresgid:
11391         return get_errno(sys_setresgid(low2highgid(arg1),
11392                                        low2highgid(arg2),
11393                                        low2highgid(arg3)));
11394 #endif
11395 #ifdef TARGET_NR_getresgid
11396     case TARGET_NR_getresgid:
11397         {
11398             gid_t rgid, egid, sgid;
11399             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11400             if (!is_error(ret)) {
11401                 if (put_user_id(high2lowgid(rgid), arg1)
11402                     || put_user_id(high2lowgid(egid), arg2)
11403                     || put_user_id(high2lowgid(sgid), arg3))
11404                     return -TARGET_EFAULT;
11405             }
11406         }
11407         return ret;
11408 #endif
11409 #ifdef TARGET_NR_chown
11410     case TARGET_NR_chown:
11411         if (!(p = lock_user_string(arg1)))
11412             return -TARGET_EFAULT;
11413         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11414         unlock_user(p, arg1, 0);
11415         return ret;
11416 #endif
11417     case TARGET_NR_setuid:
11418         return get_errno(sys_setuid(low2highuid(arg1)));
11419     case TARGET_NR_setgid:
11420         return get_errno(sys_setgid(low2highgid(arg1)));
11421     case TARGET_NR_setfsuid:
11422         return get_errno(setfsuid(arg1));
11423     case TARGET_NR_setfsgid:
11424         return get_errno(setfsgid(arg1));
11425 
11426 #ifdef TARGET_NR_lchown32
11427     case TARGET_NR_lchown32:
11428         if (!(p = lock_user_string(arg1)))
11429             return -TARGET_EFAULT;
11430         ret = get_errno(lchown(p, arg2, arg3));
11431         unlock_user(p, arg1, 0);
11432         return ret;
11433 #endif
11434 #ifdef TARGET_NR_getuid32
11435     case TARGET_NR_getuid32:
11436         return get_errno(getuid());
11437 #endif
11438 
11439 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11440    /* Alpha specific */
11441     case TARGET_NR_getxuid:
11442          {
11443             uid_t euid;
11444             euid=geteuid();
11445             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
11446          }
11447         return get_errno(getuid());
11448 #endif
11449 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11450    /* Alpha specific */
11451     case TARGET_NR_getxgid:
11452          {
11453             uid_t egid;
11454             egid=getegid();
11455             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
11456          }
11457         return get_errno(getgid());
11458 #endif
11459 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11460     /* Alpha specific */
11461     case TARGET_NR_osf_getsysinfo:
11462         ret = -TARGET_EOPNOTSUPP;
11463         switch (arg1) {
11464           case TARGET_GSI_IEEE_FP_CONTROL:
11465             {
11466                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11467                 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr;
11468 
11469                 swcr &= ~SWCR_STATUS_MASK;
11470                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11471 
11472                 if (put_user_u64 (swcr, arg2))
11473                         return -TARGET_EFAULT;
11474                 ret = 0;
11475             }
11476             break;
11477 
11478           /* case GSI_IEEE_STATE_AT_SIGNAL:
11479              -- Not implemented in linux kernel.
11480              case GSI_UACPROC:
11481              -- Retrieves current unaligned access state; not much used.
11482              case GSI_PROC_TYPE:
11483              -- Retrieves implver information; surely not used.
11484              case GSI_GET_HWRPB:
11485              -- Grabs a copy of the HWRPB; surely not used.
11486           */
11487         }
11488         return ret;
11489 #endif
11490 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11491     /* Alpha specific */
11492     case TARGET_NR_osf_setsysinfo:
11493         ret = -TARGET_EOPNOTSUPP;
11494         switch (arg1) {
11495           case TARGET_SSI_IEEE_FP_CONTROL:
11496             {
11497                 uint64_t swcr, fpcr;
11498 
11499                 if (get_user_u64 (swcr, arg2)) {
11500                     return -TARGET_EFAULT;
11501                 }
11502 
11503                 /*
11504                  * The kernel calls swcr_update_status to update the
11505                  * status bits from the fpcr at every point that it
11506                  * could be queried.  Therefore, we store the status
11507                  * bits only in FPCR.
11508                  */
11509                 ((CPUAlphaState *)cpu_env)->swcr
11510                     = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11511 
11512                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11513                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11514                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11515                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11516                 ret = 0;
11517             }
11518             break;
11519 
11520           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11521             {
11522                 uint64_t exc, fpcr, fex;
11523 
11524                 if (get_user_u64(exc, arg2)) {
11525                     return -TARGET_EFAULT;
11526                 }
11527                 exc &= SWCR_STATUS_MASK;
11528                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11529 
11530                 /* Old exceptions are not signaled.  */
11531                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11532                 fex = exc & ~fex;
11533                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11534                 fex &= ((CPUArchState *)cpu_env)->swcr;
11535 
11536                 /* Update the hardware fpcr.  */
11537                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11538                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11539 
11540                 if (fex) {
11541                     int si_code = TARGET_FPE_FLTUNK;
11542                     target_siginfo_t info;
11543 
11544                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11545                         si_code = TARGET_FPE_FLTUND;
11546                     }
11547                     if (fex & SWCR_TRAP_ENABLE_INE) {
11548                         si_code = TARGET_FPE_FLTRES;
11549                     }
11550                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11551                         si_code = TARGET_FPE_FLTUND;
11552                     }
11553                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11554                         si_code = TARGET_FPE_FLTOVF;
11555                     }
11556                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11557                         si_code = TARGET_FPE_FLTDIV;
11558                     }
11559                     if (fex & SWCR_TRAP_ENABLE_INV) {
11560                         si_code = TARGET_FPE_FLTINV;
11561                     }
11562 
11563                     info.si_signo = SIGFPE;
11564                     info.si_errno = 0;
11565                     info.si_code = si_code;
11566                     info._sifields._sigfault._addr
11567                         = ((CPUArchState *)cpu_env)->pc;
11568                     queue_signal((CPUArchState *)cpu_env, info.si_signo,
11569                                  QEMU_SI_FAULT, &info);
11570                 }
11571                 ret = 0;
11572             }
11573             break;
11574 
11575           /* case SSI_NVPAIRS:
11576              -- Used with SSIN_UACPROC to enable unaligned accesses.
11577              case SSI_IEEE_STATE_AT_SIGNAL:
11578              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11579              -- Not implemented in linux kernel
11580           */
11581         }
11582         return ret;
11583 #endif
11584 #ifdef TARGET_NR_osf_sigprocmask
11585     /* Alpha specific.  */
11586     case TARGET_NR_osf_sigprocmask:
11587         {
11588             abi_ulong mask;
11589             int how;
11590             sigset_t set, oldset;
11591 
11592             switch(arg1) {
11593             case TARGET_SIG_BLOCK:
11594                 how = SIG_BLOCK;
11595                 break;
11596             case TARGET_SIG_UNBLOCK:
11597                 how = SIG_UNBLOCK;
11598                 break;
11599             case TARGET_SIG_SETMASK:
11600                 how = SIG_SETMASK;
11601                 break;
11602             default:
11603                 return -TARGET_EINVAL;
11604             }
11605             mask = arg2;
11606             target_to_host_old_sigset(&set, &mask);
11607             ret = do_sigprocmask(how, &set, &oldset);
11608             if (!ret) {
11609                 host_to_target_old_sigset(&mask, &oldset);
11610                 ret = mask;
11611             }
11612         }
11613         return ret;
11614 #endif
11615 
11616 #ifdef TARGET_NR_getgid32
11617     case TARGET_NR_getgid32:
11618         return get_errno(getgid());
11619 #endif
11620 #ifdef TARGET_NR_geteuid32
11621     case TARGET_NR_geteuid32:
11622         return get_errno(geteuid());
11623 #endif
11624 #ifdef TARGET_NR_getegid32
11625     case TARGET_NR_getegid32:
11626         return get_errno(getegid());
11627 #endif
11628 #ifdef TARGET_NR_setreuid32
11629     case TARGET_NR_setreuid32:
11630         return get_errno(setreuid(arg1, arg2));
11631 #endif
11632 #ifdef TARGET_NR_setregid32
11633     case TARGET_NR_setregid32:
11634         return get_errno(setregid(arg1, arg2));
11635 #endif
11636 #ifdef TARGET_NR_getgroups32
11637     case TARGET_NR_getgroups32:
11638         {
11639             int gidsetsize = arg1;
11640             uint32_t *target_grouplist;
11641             gid_t *grouplist;
11642             int i;
11643 
11644             grouplist = alloca(gidsetsize * sizeof(gid_t));
11645             ret = get_errno(getgroups(gidsetsize, grouplist));
11646             if (gidsetsize == 0)
11647                 return ret;
11648             if (!is_error(ret)) {
11649                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11650                 if (!target_grouplist) {
11651                     return -TARGET_EFAULT;
11652                 }
11653                 for(i = 0;i < ret; i++)
11654                     target_grouplist[i] = tswap32(grouplist[i]);
11655                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11656             }
11657         }
11658         return ret;
11659 #endif
11660 #ifdef TARGET_NR_setgroups32
11661     case TARGET_NR_setgroups32:
11662         {
11663             int gidsetsize = arg1;
11664             uint32_t *target_grouplist;
11665             gid_t *grouplist;
11666             int i;
11667 
11668             grouplist = alloca(gidsetsize * sizeof(gid_t));
11669             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11670             if (!target_grouplist) {
11671                 return -TARGET_EFAULT;
11672             }
11673             for(i = 0;i < gidsetsize; i++)
11674                 grouplist[i] = tswap32(target_grouplist[i]);
11675             unlock_user(target_grouplist, arg2, 0);
11676             return get_errno(setgroups(gidsetsize, grouplist));
11677         }
11678 #endif
11679 #ifdef TARGET_NR_fchown32
11680     case TARGET_NR_fchown32:
11681         return get_errno(fchown(arg1, arg2, arg3));
11682 #endif
11683 #ifdef TARGET_NR_setresuid32
11684     case TARGET_NR_setresuid32:
11685         return get_errno(sys_setresuid(arg1, arg2, arg3));
11686 #endif
11687 #ifdef TARGET_NR_getresuid32
11688     case TARGET_NR_getresuid32:
11689         {
11690             uid_t ruid, euid, suid;
11691             ret = get_errno(getresuid(&ruid, &euid, &suid));
11692             if (!is_error(ret)) {
11693                 if (put_user_u32(ruid, arg1)
11694                     || put_user_u32(euid, arg2)
11695                     || put_user_u32(suid, arg3))
11696                     return -TARGET_EFAULT;
11697             }
11698         }
11699         return ret;
11700 #endif
11701 #ifdef TARGET_NR_setresgid32
11702     case TARGET_NR_setresgid32:
11703         return get_errno(sys_setresgid(arg1, arg2, arg3));
11704 #endif
11705 #ifdef TARGET_NR_getresgid32
11706     case TARGET_NR_getresgid32:
11707         {
11708             gid_t rgid, egid, sgid;
11709             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11710             if (!is_error(ret)) {
11711                 if (put_user_u32(rgid, arg1)
11712                     || put_user_u32(egid, arg2)
11713                     || put_user_u32(sgid, arg3))
11714                     return -TARGET_EFAULT;
11715             }
11716         }
11717         return ret;
11718 #endif
11719 #ifdef TARGET_NR_chown32
11720     case TARGET_NR_chown32:
11721         if (!(p = lock_user_string(arg1)))
11722             return -TARGET_EFAULT;
11723         ret = get_errno(chown(p, arg2, arg3));
11724         unlock_user(p, arg1, 0);
11725         return ret;
11726 #endif
11727 #ifdef TARGET_NR_setuid32
11728     case TARGET_NR_setuid32:
11729         return get_errno(sys_setuid(arg1));
11730 #endif
11731 #ifdef TARGET_NR_setgid32
11732     case TARGET_NR_setgid32:
11733         return get_errno(sys_setgid(arg1));
11734 #endif
11735 #ifdef TARGET_NR_setfsuid32
11736     case TARGET_NR_setfsuid32:
11737         return get_errno(setfsuid(arg1));
11738 #endif
11739 #ifdef TARGET_NR_setfsgid32
11740     case TARGET_NR_setfsgid32:
11741         return get_errno(setfsgid(arg1));
11742 #endif
11743 #ifdef TARGET_NR_mincore
11744     case TARGET_NR_mincore:
11745         {
11746             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11747             if (!a) {
11748                 return -TARGET_ENOMEM;
11749             }
11750             p = lock_user_string(arg3);
11751             if (!p) {
11752                 ret = -TARGET_EFAULT;
11753             } else {
11754                 ret = get_errno(mincore(a, arg2, p));
11755                 unlock_user(p, arg3, ret);
11756             }
11757             unlock_user(a, arg1, 0);
11758         }
11759         return ret;
11760 #endif
11761 #ifdef TARGET_NR_arm_fadvise64_64
11762     case TARGET_NR_arm_fadvise64_64:
11763         /* arm_fadvise64_64 looks like fadvise64_64 but
11764          * with different argument order: fd, advice, offset, len
11765          * rather than the usual fd, offset, len, advice.
11766          * Note that offset and len are both 64-bit so appear as
11767          * pairs of 32-bit registers.
11768          */
11769         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11770                             target_offset64(arg5, arg6), arg2);
11771         return -host_to_target_errno(ret);
11772 #endif
11773 
11774 #if TARGET_ABI_BITS == 32
11775 
11776 #ifdef TARGET_NR_fadvise64_64
11777     case TARGET_NR_fadvise64_64:
11778 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11779         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11780         ret = arg2;
11781         arg2 = arg3;
11782         arg3 = arg4;
11783         arg4 = arg5;
11784         arg5 = arg6;
11785         arg6 = ret;
11786 #else
11787         /* 6 args: fd, offset (high, low), len (high, low), advice */
11788         if (regpairs_aligned(cpu_env, num)) {
11789             /* offset is in (3,4), len in (5,6) and advice in 7 */
11790             arg2 = arg3;
11791             arg3 = arg4;
11792             arg4 = arg5;
11793             arg5 = arg6;
11794             arg6 = arg7;
11795         }
11796 #endif
11797         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11798                             target_offset64(arg4, arg5), arg6);
11799         return -host_to_target_errno(ret);
11800 #endif
11801 
11802 #ifdef TARGET_NR_fadvise64
11803     case TARGET_NR_fadvise64:
11804         /* 5 args: fd, offset (high, low), len, advice */
11805         if (regpairs_aligned(cpu_env, num)) {
11806             /* offset is in (3,4), len in 5 and advice in 6 */
11807             arg2 = arg3;
11808             arg3 = arg4;
11809             arg4 = arg5;
11810             arg5 = arg6;
11811         }
11812         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11813         return -host_to_target_errno(ret);
11814 #endif
11815 
11816 #else /* not a 32-bit ABI */
11817 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11818 #ifdef TARGET_NR_fadvise64_64
11819     case TARGET_NR_fadvise64_64:
11820 #endif
11821 #ifdef TARGET_NR_fadvise64
11822     case TARGET_NR_fadvise64:
11823 #endif
11824 #ifdef TARGET_S390X
11825         switch (arg4) {
11826         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11827         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11828         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11829         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11830         default: break;
11831         }
11832 #endif
11833         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11834 #endif
11835 #endif /* end of 64-bit ABI fadvise handling */
11836 
11837 #ifdef TARGET_NR_madvise
11838     case TARGET_NR_madvise:
11839         /* A straight passthrough may not be safe because qemu sometimes
11840            turns private file-backed mappings into anonymous mappings.
11841            This will break MADV_DONTNEED.
11842            This is a hint, so ignoring and returning success is ok.  */
11843         return 0;
11844 #endif
11845 #ifdef TARGET_NR_fcntl64
11846     case TARGET_NR_fcntl64:
11847     {
11848         int cmd;
11849         struct flock64 fl;
11850         from_flock64_fn *copyfrom = copy_from_user_flock64;
11851         to_flock64_fn *copyto = copy_to_user_flock64;
11852 
11853 #ifdef TARGET_ARM
11854         if (!((CPUARMState *)cpu_env)->eabi) {
11855             copyfrom = copy_from_user_oabi_flock64;
11856             copyto = copy_to_user_oabi_flock64;
11857         }
11858 #endif
11859 
11860         cmd = target_to_host_fcntl_cmd(arg2);
11861         if (cmd == -TARGET_EINVAL) {
11862             return cmd;
11863         }
11864 
11865         switch(arg2) {
11866         case TARGET_F_GETLK64:
11867             ret = copyfrom(&fl, arg3);
11868             if (ret) {
11869                 break;
11870             }
11871             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11872             if (ret == 0) {
11873                 ret = copyto(arg3, &fl);
11874             }
11875 	    break;
11876 
11877         case TARGET_F_SETLK64:
11878         case TARGET_F_SETLKW64:
11879             ret = copyfrom(&fl, arg3);
11880             if (ret) {
11881                 break;
11882             }
11883             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11884 	    break;
11885         default:
11886             ret = do_fcntl(arg1, arg2, arg3);
11887             break;
11888         }
11889         return ret;
11890     }
11891 #endif
11892 #ifdef TARGET_NR_cacheflush
11893     case TARGET_NR_cacheflush:
11894         /* self-modifying code is handled automatically, so nothing needed */
11895         return 0;
11896 #endif
11897 #ifdef TARGET_NR_getpagesize
11898     case TARGET_NR_getpagesize:
11899         return TARGET_PAGE_SIZE;
11900 #endif
11901     case TARGET_NR_gettid:
11902         return get_errno(sys_gettid());
11903 #ifdef TARGET_NR_readahead
11904     case TARGET_NR_readahead:
11905 #if TARGET_ABI_BITS == 32
11906         if (regpairs_aligned(cpu_env, num)) {
11907             arg2 = arg3;
11908             arg3 = arg4;
11909             arg4 = arg5;
11910         }
11911         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11912 #else
11913         ret = get_errno(readahead(arg1, arg2, arg3));
11914 #endif
11915         return ret;
11916 #endif
11917 #ifdef CONFIG_ATTR
11918 #ifdef TARGET_NR_setxattr
11919     case TARGET_NR_listxattr:
11920     case TARGET_NR_llistxattr:
11921     {
11922         void *p, *b = 0;
11923         if (arg2) {
11924             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11925             if (!b) {
11926                 return -TARGET_EFAULT;
11927             }
11928         }
11929         p = lock_user_string(arg1);
11930         if (p) {
11931             if (num == TARGET_NR_listxattr) {
11932                 ret = get_errno(listxattr(p, b, arg3));
11933             } else {
11934                 ret = get_errno(llistxattr(p, b, arg3));
11935             }
11936         } else {
11937             ret = -TARGET_EFAULT;
11938         }
11939         unlock_user(p, arg1, 0);
11940         unlock_user(b, arg2, arg3);
11941         return ret;
11942     }
11943     case TARGET_NR_flistxattr:
11944     {
11945         void *b = 0;
11946         if (arg2) {
11947             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11948             if (!b) {
11949                 return -TARGET_EFAULT;
11950             }
11951         }
11952         ret = get_errno(flistxattr(arg1, b, arg3));
11953         unlock_user(b, arg2, arg3);
11954         return ret;
11955     }
11956     case TARGET_NR_setxattr:
11957     case TARGET_NR_lsetxattr:
11958         {
11959             void *p, *n, *v = 0;
11960             if (arg3) {
11961                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11962                 if (!v) {
11963                     return -TARGET_EFAULT;
11964                 }
11965             }
11966             p = lock_user_string(arg1);
11967             n = lock_user_string(arg2);
11968             if (p && n) {
11969                 if (num == TARGET_NR_setxattr) {
11970                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
11971                 } else {
11972                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11973                 }
11974             } else {
11975                 ret = -TARGET_EFAULT;
11976             }
11977             unlock_user(p, arg1, 0);
11978             unlock_user(n, arg2, 0);
11979             unlock_user(v, arg3, 0);
11980         }
11981         return ret;
11982     case TARGET_NR_fsetxattr:
11983         {
11984             void *n, *v = 0;
11985             if (arg3) {
11986                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11987                 if (!v) {
11988                     return -TARGET_EFAULT;
11989                 }
11990             }
11991             n = lock_user_string(arg2);
11992             if (n) {
11993                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11994             } else {
11995                 ret = -TARGET_EFAULT;
11996             }
11997             unlock_user(n, arg2, 0);
11998             unlock_user(v, arg3, 0);
11999         }
12000         return ret;
12001     case TARGET_NR_getxattr:
12002     case TARGET_NR_lgetxattr:
12003         {
12004             void *p, *n, *v = 0;
12005             if (arg3) {
12006                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12007                 if (!v) {
12008                     return -TARGET_EFAULT;
12009                 }
12010             }
12011             p = lock_user_string(arg1);
12012             n = lock_user_string(arg2);
12013             if (p && n) {
12014                 if (num == TARGET_NR_getxattr) {
12015                     ret = get_errno(getxattr(p, n, v, arg4));
12016                 } else {
12017                     ret = get_errno(lgetxattr(p, n, v, arg4));
12018                 }
12019             } else {
12020                 ret = -TARGET_EFAULT;
12021             }
12022             unlock_user(p, arg1, 0);
12023             unlock_user(n, arg2, 0);
12024             unlock_user(v, arg3, arg4);
12025         }
12026         return ret;
12027     case TARGET_NR_fgetxattr:
12028         {
12029             void *n, *v = 0;
12030             if (arg3) {
12031                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12032                 if (!v) {
12033                     return -TARGET_EFAULT;
12034                 }
12035             }
12036             n = lock_user_string(arg2);
12037             if (n) {
12038                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12039             } else {
12040                 ret = -TARGET_EFAULT;
12041             }
12042             unlock_user(n, arg2, 0);
12043             unlock_user(v, arg3, arg4);
12044         }
12045         return ret;
12046     case TARGET_NR_removexattr:
12047     case TARGET_NR_lremovexattr:
12048         {
12049             void *p, *n;
12050             p = lock_user_string(arg1);
12051             n = lock_user_string(arg2);
12052             if (p && n) {
12053                 if (num == TARGET_NR_removexattr) {
12054                     ret = get_errno(removexattr(p, n));
12055                 } else {
12056                     ret = get_errno(lremovexattr(p, n));
12057                 }
12058             } else {
12059                 ret = -TARGET_EFAULT;
12060             }
12061             unlock_user(p, arg1, 0);
12062             unlock_user(n, arg2, 0);
12063         }
12064         return ret;
12065     case TARGET_NR_fremovexattr:
12066         {
12067             void *n;
12068             n = lock_user_string(arg2);
12069             if (n) {
12070                 ret = get_errno(fremovexattr(arg1, n));
12071             } else {
12072                 ret = -TARGET_EFAULT;
12073             }
12074             unlock_user(n, arg2, 0);
12075         }
12076         return ret;
12077 #endif
12078 #endif /* CONFIG_ATTR */
12079 #ifdef TARGET_NR_set_thread_area
12080     case TARGET_NR_set_thread_area:
12081 #if defined(TARGET_MIPS)
12082       ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
12083       return 0;
12084 #elif defined(TARGET_CRIS)
12085       if (arg1 & 0xff)
12086           ret = -TARGET_EINVAL;
12087       else {
12088           ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
12089           ret = 0;
12090       }
12091       return ret;
12092 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12093       return do_set_thread_area(cpu_env, arg1);
12094 #elif defined(TARGET_M68K)
12095       {
12096           TaskState *ts = cpu->opaque;
12097           ts->tp_value = arg1;
12098           return 0;
12099       }
12100 #else
12101       return -TARGET_ENOSYS;
12102 #endif
12103 #endif
12104 #ifdef TARGET_NR_get_thread_area
12105     case TARGET_NR_get_thread_area:
12106 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12107         return do_get_thread_area(cpu_env, arg1);
12108 #elif defined(TARGET_M68K)
12109         {
12110             TaskState *ts = cpu->opaque;
12111             return ts->tp_value;
12112         }
12113 #else
12114         return -TARGET_ENOSYS;
12115 #endif
12116 #endif
12117 #ifdef TARGET_NR_getdomainname
12118     case TARGET_NR_getdomainname:
12119         return -TARGET_ENOSYS;
12120 #endif
12121 
12122 #ifdef TARGET_NR_clock_settime
12123     case TARGET_NR_clock_settime:
12124     {
12125         struct timespec ts;
12126 
12127         ret = target_to_host_timespec(&ts, arg2);
12128         if (!is_error(ret)) {
12129             ret = get_errno(clock_settime(arg1, &ts));
12130         }
12131         return ret;
12132     }
12133 #endif
12134 #ifdef TARGET_NR_clock_settime64
12135     case TARGET_NR_clock_settime64:
12136     {
12137         struct timespec ts;
12138 
12139         ret = target_to_host_timespec64(&ts, arg2);
12140         if (!is_error(ret)) {
12141             ret = get_errno(clock_settime(arg1, &ts));
12142         }
12143         return ret;
12144     }
12145 #endif
12146 #ifdef TARGET_NR_clock_gettime
12147     case TARGET_NR_clock_gettime:
12148     {
12149         struct timespec ts;
12150         ret = get_errno(clock_gettime(arg1, &ts));
12151         if (!is_error(ret)) {
12152             ret = host_to_target_timespec(arg2, &ts);
12153         }
12154         return ret;
12155     }
12156 #endif
12157 #ifdef TARGET_NR_clock_gettime64
12158     case TARGET_NR_clock_gettime64:
12159     {
12160         struct timespec ts;
12161         ret = get_errno(clock_gettime(arg1, &ts));
12162         if (!is_error(ret)) {
12163             ret = host_to_target_timespec64(arg2, &ts);
12164         }
12165         return ret;
12166     }
12167 #endif
12168 #ifdef TARGET_NR_clock_getres
12169     case TARGET_NR_clock_getres:
12170     {
12171         struct timespec ts;
12172         ret = get_errno(clock_getres(arg1, &ts));
12173         if (!is_error(ret)) {
12174             host_to_target_timespec(arg2, &ts);
12175         }
12176         return ret;
12177     }
12178 #endif
12179 #ifdef TARGET_NR_clock_getres_time64
12180     case TARGET_NR_clock_getres_time64:
12181     {
12182         struct timespec ts;
12183         ret = get_errno(clock_getres(arg1, &ts));
12184         if (!is_error(ret)) {
12185             host_to_target_timespec64(arg2, &ts);
12186         }
12187         return ret;
12188     }
12189 #endif
12190 #ifdef TARGET_NR_clock_nanosleep
12191     case TARGET_NR_clock_nanosleep:
12192     {
12193         struct timespec ts;
12194         if (target_to_host_timespec(&ts, arg3)) {
12195             return -TARGET_EFAULT;
12196         }
12197         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12198                                              &ts, arg4 ? &ts : NULL));
12199         /*
12200          * if the call is interrupted by a signal handler, it fails
12201          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12202          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12203          */
12204         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12205             host_to_target_timespec(arg4, &ts)) {
12206               return -TARGET_EFAULT;
12207         }
12208 
12209         return ret;
12210     }
12211 #endif
12212 #ifdef TARGET_NR_clock_nanosleep_time64
12213     case TARGET_NR_clock_nanosleep_time64:
12214     {
12215         struct timespec ts;
12216 
12217         if (target_to_host_timespec64(&ts, arg3)) {
12218             return -TARGET_EFAULT;
12219         }
12220 
12221         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12222                                              &ts, arg4 ? &ts : NULL));
12223 
12224         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12225             host_to_target_timespec64(arg4, &ts)) {
12226             return -TARGET_EFAULT;
12227         }
12228         return ret;
12229     }
12230 #endif
12231 
12232 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
12233     case TARGET_NR_set_tid_address:
12234         return get_errno(set_tid_address((int *)g2h(cpu, arg1)));
12235 #endif
12236 
12237     case TARGET_NR_tkill:
12238         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12239 
12240     case TARGET_NR_tgkill:
12241         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12242                          target_to_host_signal(arg3)));
12243 
12244 #ifdef TARGET_NR_set_robust_list
12245     case TARGET_NR_set_robust_list:
12246     case TARGET_NR_get_robust_list:
12247         /* The ABI for supporting robust futexes has userspace pass
12248          * the kernel a pointer to a linked list which is updated by
12249          * userspace after the syscall; the list is walked by the kernel
12250          * when the thread exits. Since the linked list in QEMU guest
12251          * memory isn't a valid linked list for the host and we have
12252          * no way to reliably intercept the thread-death event, we can't
12253          * support these. Silently return ENOSYS so that guest userspace
12254          * falls back to a non-robust futex implementation (which should
12255          * be OK except in the corner case of the guest crashing while
12256          * holding a mutex that is shared with another process via
12257          * shared memory).
12258          */
12259         return -TARGET_ENOSYS;
12260 #endif
12261 
12262 #if defined(TARGET_NR_utimensat)
12263     case TARGET_NR_utimensat:
12264         {
12265             struct timespec *tsp, ts[2];
12266             if (!arg3) {
12267                 tsp = NULL;
12268             } else {
12269                 if (target_to_host_timespec(ts, arg3)) {
12270                     return -TARGET_EFAULT;
12271                 }
12272                 if (target_to_host_timespec(ts + 1, arg3 +
12273                                             sizeof(struct target_timespec))) {
12274                     return -TARGET_EFAULT;
12275                 }
12276                 tsp = ts;
12277             }
12278             if (!arg2)
12279                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12280             else {
12281                 if (!(p = lock_user_string(arg2))) {
12282                     return -TARGET_EFAULT;
12283                 }
12284                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12285                 unlock_user(p, arg2, 0);
12286             }
12287         }
12288         return ret;
12289 #endif
12290 #ifdef TARGET_NR_utimensat_time64
12291     case TARGET_NR_utimensat_time64:
12292         {
12293             struct timespec *tsp, ts[2];
12294             if (!arg3) {
12295                 tsp = NULL;
12296             } else {
12297                 if (target_to_host_timespec64(ts, arg3)) {
12298                     return -TARGET_EFAULT;
12299                 }
12300                 if (target_to_host_timespec64(ts + 1, arg3 +
12301                                      sizeof(struct target__kernel_timespec))) {
12302                     return -TARGET_EFAULT;
12303                 }
12304                 tsp = ts;
12305             }
12306             if (!arg2)
12307                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12308             else {
12309                 p = lock_user_string(arg2);
12310                 if (!p) {
12311                     return -TARGET_EFAULT;
12312                 }
12313                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12314                 unlock_user(p, arg2, 0);
12315             }
12316         }
12317         return ret;
12318 #endif
12319 #ifdef TARGET_NR_futex
12320     case TARGET_NR_futex:
12321         return do_futex(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12322 #endif
12323 #ifdef TARGET_NR_futex_time64
12324     case TARGET_NR_futex_time64:
12325         return do_futex_time64(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12326 #endif
12327 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
12328     case TARGET_NR_inotify_init:
12329         ret = get_errno(sys_inotify_init());
12330         if (ret >= 0) {
12331             fd_trans_register(ret, &target_inotify_trans);
12332         }
12333         return ret;
12334 #endif
12335 #ifdef CONFIG_INOTIFY1
12336 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
12337     case TARGET_NR_inotify_init1:
12338         ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
12339                                           fcntl_flags_tbl)));
12340         if (ret >= 0) {
12341             fd_trans_register(ret, &target_inotify_trans);
12342         }
12343         return ret;
12344 #endif
12345 #endif
12346 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
12347     case TARGET_NR_inotify_add_watch:
12348         p = lock_user_string(arg2);
12349         ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
12350         unlock_user(p, arg2, 0);
12351         return ret;
12352 #endif
12353 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
12354     case TARGET_NR_inotify_rm_watch:
12355         return get_errno(sys_inotify_rm_watch(arg1, arg2));
12356 #endif
12357 
12358 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12359     case TARGET_NR_mq_open:
12360         {
12361             struct mq_attr posix_mq_attr;
12362             struct mq_attr *pposix_mq_attr;
12363             int host_flags;
12364 
12365             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12366             pposix_mq_attr = NULL;
12367             if (arg4) {
12368                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12369                     return -TARGET_EFAULT;
12370                 }
12371                 pposix_mq_attr = &posix_mq_attr;
12372             }
12373             p = lock_user_string(arg1 - 1);
12374             if (!p) {
12375                 return -TARGET_EFAULT;
12376             }
12377             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12378             unlock_user (p, arg1, 0);
12379         }
12380         return ret;
12381 
12382     case TARGET_NR_mq_unlink:
12383         p = lock_user_string(arg1 - 1);
12384         if (!p) {
12385             return -TARGET_EFAULT;
12386         }
12387         ret = get_errno(mq_unlink(p));
12388         unlock_user (p, arg1, 0);
12389         return ret;
12390 
12391 #ifdef TARGET_NR_mq_timedsend
12392     case TARGET_NR_mq_timedsend:
12393         {
12394             struct timespec ts;
12395 
12396             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12397             if (arg5 != 0) {
12398                 if (target_to_host_timespec(&ts, arg5)) {
12399                     return -TARGET_EFAULT;
12400                 }
12401                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12402                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12403                     return -TARGET_EFAULT;
12404                 }
12405             } else {
12406                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12407             }
12408             unlock_user (p, arg2, arg3);
12409         }
12410         return ret;
12411 #endif
12412 #ifdef TARGET_NR_mq_timedsend_time64
12413     case TARGET_NR_mq_timedsend_time64:
12414         {
12415             struct timespec ts;
12416 
12417             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12418             if (arg5 != 0) {
12419                 if (target_to_host_timespec64(&ts, arg5)) {
12420                     return -TARGET_EFAULT;
12421                 }
12422                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12423                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12424                     return -TARGET_EFAULT;
12425                 }
12426             } else {
12427                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12428             }
12429             unlock_user(p, arg2, arg3);
12430         }
12431         return ret;
12432 #endif
12433 
12434 #ifdef TARGET_NR_mq_timedreceive
12435     case TARGET_NR_mq_timedreceive:
12436         {
12437             struct timespec ts;
12438             unsigned int prio;
12439 
12440             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12441             if (arg5 != 0) {
12442                 if (target_to_host_timespec(&ts, arg5)) {
12443                     return -TARGET_EFAULT;
12444                 }
12445                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12446                                                      &prio, &ts));
12447                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12448                     return -TARGET_EFAULT;
12449                 }
12450             } else {
12451                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12452                                                      &prio, NULL));
12453             }
12454             unlock_user (p, arg2, arg3);
12455             if (arg4 != 0)
12456                 put_user_u32(prio, arg4);
12457         }
12458         return ret;
12459 #endif
12460 #ifdef TARGET_NR_mq_timedreceive_time64
12461     case TARGET_NR_mq_timedreceive_time64:
12462         {
12463             struct timespec ts;
12464             unsigned int prio;
12465 
12466             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12467             if (arg5 != 0) {
12468                 if (target_to_host_timespec64(&ts, arg5)) {
12469                     return -TARGET_EFAULT;
12470                 }
12471                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12472                                                      &prio, &ts));
12473                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12474                     return -TARGET_EFAULT;
12475                 }
12476             } else {
12477                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12478                                                      &prio, NULL));
12479             }
12480             unlock_user(p, arg2, arg3);
12481             if (arg4 != 0) {
12482                 put_user_u32(prio, arg4);
12483             }
12484         }
12485         return ret;
12486 #endif
12487 
12488     /* Not implemented for now... */
12489 /*     case TARGET_NR_mq_notify: */
12490 /*         break; */
12491 
12492     case TARGET_NR_mq_getsetattr:
12493         {
12494             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12495             ret = 0;
12496             if (arg2 != 0) {
12497                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12498                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12499                                            &posix_mq_attr_out));
12500             } else if (arg3 != 0) {
12501                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12502             }
12503             if (ret == 0 && arg3 != 0) {
12504                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12505             }
12506         }
12507         return ret;
12508 #endif
12509 
12510 #ifdef CONFIG_SPLICE
12511 #ifdef TARGET_NR_tee
12512     case TARGET_NR_tee:
12513         {
12514             ret = get_errno(tee(arg1,arg2,arg3,arg4));
12515         }
12516         return ret;
12517 #endif
12518 #ifdef TARGET_NR_splice
12519     case TARGET_NR_splice:
12520         {
12521             loff_t loff_in, loff_out;
12522             loff_t *ploff_in = NULL, *ploff_out = NULL;
12523             if (arg2) {
12524                 if (get_user_u64(loff_in, arg2)) {
12525                     return -TARGET_EFAULT;
12526                 }
12527                 ploff_in = &loff_in;
12528             }
12529             if (arg4) {
12530                 if (get_user_u64(loff_out, arg4)) {
12531                     return -TARGET_EFAULT;
12532                 }
12533                 ploff_out = &loff_out;
12534             }
12535             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12536             if (arg2) {
12537                 if (put_user_u64(loff_in, arg2)) {
12538                     return -TARGET_EFAULT;
12539                 }
12540             }
12541             if (arg4) {
12542                 if (put_user_u64(loff_out, arg4)) {
12543                     return -TARGET_EFAULT;
12544                 }
12545             }
12546         }
12547         return ret;
12548 #endif
12549 #ifdef TARGET_NR_vmsplice
12550 	case TARGET_NR_vmsplice:
12551         {
12552             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12553             if (vec != NULL) {
12554                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12555                 unlock_iovec(vec, arg2, arg3, 0);
12556             } else {
12557                 ret = -host_to_target_errno(errno);
12558             }
12559         }
12560         return ret;
12561 #endif
12562 #endif /* CONFIG_SPLICE */
12563 #ifdef CONFIG_EVENTFD
12564 #if defined(TARGET_NR_eventfd)
12565     case TARGET_NR_eventfd:
12566         ret = get_errno(eventfd(arg1, 0));
12567         if (ret >= 0) {
12568             fd_trans_register(ret, &target_eventfd_trans);
12569         }
12570         return ret;
12571 #endif
12572 #if defined(TARGET_NR_eventfd2)
12573     case TARGET_NR_eventfd2:
12574     {
12575         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
12576         if (arg2 & TARGET_O_NONBLOCK) {
12577             host_flags |= O_NONBLOCK;
12578         }
12579         if (arg2 & TARGET_O_CLOEXEC) {
12580             host_flags |= O_CLOEXEC;
12581         }
12582         ret = get_errno(eventfd(arg1, host_flags));
12583         if (ret >= 0) {
12584             fd_trans_register(ret, &target_eventfd_trans);
12585         }
12586         return ret;
12587     }
12588 #endif
12589 #endif /* CONFIG_EVENTFD  */
12590 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12591     case TARGET_NR_fallocate:
12592 #if TARGET_ABI_BITS == 32
12593         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12594                                   target_offset64(arg5, arg6)));
12595 #else
12596         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12597 #endif
12598         return ret;
12599 #endif
12600 #if defined(CONFIG_SYNC_FILE_RANGE)
12601 #if defined(TARGET_NR_sync_file_range)
12602     case TARGET_NR_sync_file_range:
12603 #if TARGET_ABI_BITS == 32
12604 #if defined(TARGET_MIPS)
12605         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12606                                         target_offset64(arg5, arg6), arg7));
12607 #else
12608         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12609                                         target_offset64(arg4, arg5), arg6));
12610 #endif /* !TARGET_MIPS */
12611 #else
12612         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12613 #endif
12614         return ret;
12615 #endif
12616 #if defined(TARGET_NR_sync_file_range2) || \
12617     defined(TARGET_NR_arm_sync_file_range)
12618 #if defined(TARGET_NR_sync_file_range2)
12619     case TARGET_NR_sync_file_range2:
12620 #endif
12621 #if defined(TARGET_NR_arm_sync_file_range)
12622     case TARGET_NR_arm_sync_file_range:
12623 #endif
12624         /* This is like sync_file_range but the arguments are reordered */
12625 #if TARGET_ABI_BITS == 32
12626         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12627                                         target_offset64(arg5, arg6), arg2));
12628 #else
12629         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12630 #endif
12631         return ret;
12632 #endif
12633 #endif
12634 #if defined(TARGET_NR_signalfd4)
12635     case TARGET_NR_signalfd4:
12636         return do_signalfd4(arg1, arg2, arg4);
12637 #endif
12638 #if defined(TARGET_NR_signalfd)
12639     case TARGET_NR_signalfd:
12640         return do_signalfd4(arg1, arg2, 0);
12641 #endif
12642 #if defined(CONFIG_EPOLL)
12643 #if defined(TARGET_NR_epoll_create)
12644     case TARGET_NR_epoll_create:
12645         return get_errno(epoll_create(arg1));
12646 #endif
12647 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12648     case TARGET_NR_epoll_create1:
12649         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12650 #endif
12651 #if defined(TARGET_NR_epoll_ctl)
12652     case TARGET_NR_epoll_ctl:
12653     {
12654         struct epoll_event ep;
12655         struct epoll_event *epp = 0;
12656         if (arg4) {
12657             if (arg2 != EPOLL_CTL_DEL) {
12658                 struct target_epoll_event *target_ep;
12659                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12660                     return -TARGET_EFAULT;
12661                 }
12662                 ep.events = tswap32(target_ep->events);
12663                 /*
12664                  * The epoll_data_t union is just opaque data to the kernel,
12665                  * so we transfer all 64 bits across and need not worry what
12666                  * actual data type it is.
12667                  */
12668                 ep.data.u64 = tswap64(target_ep->data.u64);
12669                 unlock_user_struct(target_ep, arg4, 0);
12670             }
12671             /*
12672              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
12673              * non-null pointer, even though this argument is ignored.
12674              *
12675              */
12676             epp = &ep;
12677         }
12678         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12679     }
12680 #endif
12681 
12682 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12683 #if defined(TARGET_NR_epoll_wait)
12684     case TARGET_NR_epoll_wait:
12685 #endif
12686 #if defined(TARGET_NR_epoll_pwait)
12687     case TARGET_NR_epoll_pwait:
12688 #endif
12689     {
12690         struct target_epoll_event *target_ep;
12691         struct epoll_event *ep;
12692         int epfd = arg1;
12693         int maxevents = arg3;
12694         int timeout = arg4;
12695 
12696         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12697             return -TARGET_EINVAL;
12698         }
12699 
12700         target_ep = lock_user(VERIFY_WRITE, arg2,
12701                               maxevents * sizeof(struct target_epoll_event), 1);
12702         if (!target_ep) {
12703             return -TARGET_EFAULT;
12704         }
12705 
12706         ep = g_try_new(struct epoll_event, maxevents);
12707         if (!ep) {
12708             unlock_user(target_ep, arg2, 0);
12709             return -TARGET_ENOMEM;
12710         }
12711 
12712         switch (num) {
12713 #if defined(TARGET_NR_epoll_pwait)
12714         case TARGET_NR_epoll_pwait:
12715         {
12716             target_sigset_t *target_set;
12717             sigset_t _set, *set = &_set;
12718 
12719             if (arg5) {
12720                 if (arg6 != sizeof(target_sigset_t)) {
12721                     ret = -TARGET_EINVAL;
12722                     break;
12723                 }
12724 
12725                 target_set = lock_user(VERIFY_READ, arg5,
12726                                        sizeof(target_sigset_t), 1);
12727                 if (!target_set) {
12728                     ret = -TARGET_EFAULT;
12729                     break;
12730                 }
12731                 target_to_host_sigset(set, target_set);
12732                 unlock_user(target_set, arg5, 0);
12733             } else {
12734                 set = NULL;
12735             }
12736 
12737             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12738                                              set, SIGSET_T_SIZE));
12739             break;
12740         }
12741 #endif
12742 #if defined(TARGET_NR_epoll_wait)
12743         case TARGET_NR_epoll_wait:
12744             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12745                                              NULL, 0));
12746             break;
12747 #endif
12748         default:
12749             ret = -TARGET_ENOSYS;
12750         }
12751         if (!is_error(ret)) {
12752             int i;
12753             for (i = 0; i < ret; i++) {
12754                 target_ep[i].events = tswap32(ep[i].events);
12755                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12756             }
12757             unlock_user(target_ep, arg2,
12758                         ret * sizeof(struct target_epoll_event));
12759         } else {
12760             unlock_user(target_ep, arg2, 0);
12761         }
12762         g_free(ep);
12763         return ret;
12764     }
12765 #endif
12766 #endif
12767 #ifdef TARGET_NR_prlimit64
12768     case TARGET_NR_prlimit64:
12769     {
12770         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12771         struct target_rlimit64 *target_rnew, *target_rold;
12772         struct host_rlimit64 rnew, rold, *rnewp = 0;
12773         int resource = target_to_host_resource(arg2);
12774 
12775         if (arg3 && (resource != RLIMIT_AS &&
12776                      resource != RLIMIT_DATA &&
12777                      resource != RLIMIT_STACK)) {
12778             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12779                 return -TARGET_EFAULT;
12780             }
12781             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12782             rnew.rlim_max = tswap64(target_rnew->rlim_max);
12783             unlock_user_struct(target_rnew, arg3, 0);
12784             rnewp = &rnew;
12785         }
12786 
12787         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12788         if (!is_error(ret) && arg4) {
12789             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12790                 return -TARGET_EFAULT;
12791             }
12792             target_rold->rlim_cur = tswap64(rold.rlim_cur);
12793             target_rold->rlim_max = tswap64(rold.rlim_max);
12794             unlock_user_struct(target_rold, arg4, 1);
12795         }
12796         return ret;
12797     }
12798 #endif
12799 #ifdef TARGET_NR_gethostname
12800     case TARGET_NR_gethostname:
12801     {
12802         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12803         if (name) {
12804             ret = get_errno(gethostname(name, arg2));
12805             unlock_user(name, arg1, arg2);
12806         } else {
12807             ret = -TARGET_EFAULT;
12808         }
12809         return ret;
12810     }
12811 #endif
12812 #ifdef TARGET_NR_atomic_cmpxchg_32
12813     case TARGET_NR_atomic_cmpxchg_32:
12814     {
12815         /* should use start_exclusive from main.c */
12816         abi_ulong mem_value;
12817         if (get_user_u32(mem_value, arg6)) {
12818             target_siginfo_t info;
12819             info.si_signo = SIGSEGV;
12820             info.si_errno = 0;
12821             info.si_code = TARGET_SEGV_MAPERR;
12822             info._sifields._sigfault._addr = arg6;
12823             queue_signal((CPUArchState *)cpu_env, info.si_signo,
12824                          QEMU_SI_FAULT, &info);
12825             ret = 0xdeadbeef;
12826 
12827         }
12828         if (mem_value == arg2)
12829             put_user_u32(arg1, arg6);
12830         return mem_value;
12831     }
12832 #endif
12833 #ifdef TARGET_NR_atomic_barrier
12834     case TARGET_NR_atomic_barrier:
12835         /* Like the kernel implementation and the
12836            qemu arm barrier, no-op this? */
12837         return 0;
12838 #endif
12839 
12840 #ifdef TARGET_NR_timer_create
12841     case TARGET_NR_timer_create:
12842     {
12843         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12844 
12845         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12846 
12847         int clkid = arg1;
12848         int timer_index = next_free_host_timer();
12849 
12850         if (timer_index < 0) {
12851             ret = -TARGET_EAGAIN;
12852         } else {
12853             timer_t *phtimer = g_posix_timers  + timer_index;
12854 
12855             if (arg2) {
12856                 phost_sevp = &host_sevp;
12857                 ret = target_to_host_sigevent(phost_sevp, arg2);
12858                 if (ret != 0) {
12859                     return ret;
12860                 }
12861             }
12862 
12863             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12864             if (ret) {
12865                 phtimer = NULL;
12866             } else {
12867                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12868                     return -TARGET_EFAULT;
12869                 }
12870             }
12871         }
12872         return ret;
12873     }
12874 #endif
12875 
12876 #ifdef TARGET_NR_timer_settime
12877     case TARGET_NR_timer_settime:
12878     {
12879         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12880          * struct itimerspec * old_value */
12881         target_timer_t timerid = get_timer_id(arg1);
12882 
12883         if (timerid < 0) {
12884             ret = timerid;
12885         } else if (arg3 == 0) {
12886             ret = -TARGET_EINVAL;
12887         } else {
12888             timer_t htimer = g_posix_timers[timerid];
12889             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12890 
12891             if (target_to_host_itimerspec(&hspec_new, arg3)) {
12892                 return -TARGET_EFAULT;
12893             }
12894             ret = get_errno(
12895                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12896             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12897                 return -TARGET_EFAULT;
12898             }
12899         }
12900         return ret;
12901     }
12902 #endif
12903 
12904 #ifdef TARGET_NR_timer_settime64
12905     case TARGET_NR_timer_settime64:
12906     {
12907         target_timer_t timerid = get_timer_id(arg1);
12908 
12909         if (timerid < 0) {
12910             ret = timerid;
12911         } else if (arg3 == 0) {
12912             ret = -TARGET_EINVAL;
12913         } else {
12914             timer_t htimer = g_posix_timers[timerid];
12915             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12916 
12917             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
12918                 return -TARGET_EFAULT;
12919             }
12920             ret = get_errno(
12921                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12922             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
12923                 return -TARGET_EFAULT;
12924             }
12925         }
12926         return ret;
12927     }
12928 #endif
12929 
12930 #ifdef TARGET_NR_timer_gettime
12931     case TARGET_NR_timer_gettime:
12932     {
12933         /* args: timer_t timerid, struct itimerspec *curr_value */
12934         target_timer_t timerid = get_timer_id(arg1);
12935 
12936         if (timerid < 0) {
12937             ret = timerid;
12938         } else if (!arg2) {
12939             ret = -TARGET_EFAULT;
12940         } else {
12941             timer_t htimer = g_posix_timers[timerid];
12942             struct itimerspec hspec;
12943             ret = get_errno(timer_gettime(htimer, &hspec));
12944 
12945             if (host_to_target_itimerspec(arg2, &hspec)) {
12946                 ret = -TARGET_EFAULT;
12947             }
12948         }
12949         return ret;
12950     }
12951 #endif
12952 
12953 #ifdef TARGET_NR_timer_gettime64
12954     case TARGET_NR_timer_gettime64:
12955     {
12956         /* args: timer_t timerid, struct itimerspec64 *curr_value */
12957         target_timer_t timerid = get_timer_id(arg1);
12958 
12959         if (timerid < 0) {
12960             ret = timerid;
12961         } else if (!arg2) {
12962             ret = -TARGET_EFAULT;
12963         } else {
12964             timer_t htimer = g_posix_timers[timerid];
12965             struct itimerspec hspec;
12966             ret = get_errno(timer_gettime(htimer, &hspec));
12967 
12968             if (host_to_target_itimerspec64(arg2, &hspec)) {
12969                 ret = -TARGET_EFAULT;
12970             }
12971         }
12972         return ret;
12973     }
12974 #endif
12975 
12976 #ifdef TARGET_NR_timer_getoverrun
12977     case TARGET_NR_timer_getoverrun:
12978     {
12979         /* args: timer_t timerid */
12980         target_timer_t timerid = get_timer_id(arg1);
12981 
12982         if (timerid < 0) {
12983             ret = timerid;
12984         } else {
12985             timer_t htimer = g_posix_timers[timerid];
12986             ret = get_errno(timer_getoverrun(htimer));
12987         }
12988         return ret;
12989     }
12990 #endif
12991 
12992 #ifdef TARGET_NR_timer_delete
12993     case TARGET_NR_timer_delete:
12994     {
12995         /* args: timer_t timerid */
12996         target_timer_t timerid = get_timer_id(arg1);
12997 
12998         if (timerid < 0) {
12999             ret = timerid;
13000         } else {
13001             timer_t htimer = g_posix_timers[timerid];
13002             ret = get_errno(timer_delete(htimer));
13003             g_posix_timers[timerid] = 0;
13004         }
13005         return ret;
13006     }
13007 #endif
13008 
13009 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13010     case TARGET_NR_timerfd_create:
13011         return get_errno(timerfd_create(arg1,
13012                           target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13013 #endif
13014 
13015 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13016     case TARGET_NR_timerfd_gettime:
13017         {
13018             struct itimerspec its_curr;
13019 
13020             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13021 
13022             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13023                 return -TARGET_EFAULT;
13024             }
13025         }
13026         return ret;
13027 #endif
13028 
13029 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13030     case TARGET_NR_timerfd_gettime64:
13031         {
13032             struct itimerspec its_curr;
13033 
13034             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13035 
13036             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13037                 return -TARGET_EFAULT;
13038             }
13039         }
13040         return ret;
13041 #endif
13042 
13043 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13044     case TARGET_NR_timerfd_settime:
13045         {
13046             struct itimerspec its_new, its_old, *p_new;
13047 
13048             if (arg3) {
13049                 if (target_to_host_itimerspec(&its_new, arg3)) {
13050                     return -TARGET_EFAULT;
13051                 }
13052                 p_new = &its_new;
13053             } else {
13054                 p_new = NULL;
13055             }
13056 
13057             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13058 
13059             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13060                 return -TARGET_EFAULT;
13061             }
13062         }
13063         return ret;
13064 #endif
13065 
13066 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13067     case TARGET_NR_timerfd_settime64:
13068         {
13069             struct itimerspec its_new, its_old, *p_new;
13070 
13071             if (arg3) {
13072                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13073                     return -TARGET_EFAULT;
13074                 }
13075                 p_new = &its_new;
13076             } else {
13077                 p_new = NULL;
13078             }
13079 
13080             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13081 
13082             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13083                 return -TARGET_EFAULT;
13084             }
13085         }
13086         return ret;
13087 #endif
13088 
13089 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13090     case TARGET_NR_ioprio_get:
13091         return get_errno(ioprio_get(arg1, arg2));
13092 #endif
13093 
13094 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13095     case TARGET_NR_ioprio_set:
13096         return get_errno(ioprio_set(arg1, arg2, arg3));
13097 #endif
13098 
13099 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13100     case TARGET_NR_setns:
13101         return get_errno(setns(arg1, arg2));
13102 #endif
13103 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13104     case TARGET_NR_unshare:
13105         return get_errno(unshare(arg1));
13106 #endif
13107 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13108     case TARGET_NR_kcmp:
13109         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13110 #endif
13111 #ifdef TARGET_NR_swapcontext
13112     case TARGET_NR_swapcontext:
13113         /* PowerPC specific.  */
13114         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13115 #endif
13116 #ifdef TARGET_NR_memfd_create
13117     case TARGET_NR_memfd_create:
13118         p = lock_user_string(arg1);
13119         if (!p) {
13120             return -TARGET_EFAULT;
13121         }
13122         ret = get_errno(memfd_create(p, arg2));
13123         fd_trans_unregister(ret);
13124         unlock_user(p, arg1, 0);
13125         return ret;
13126 #endif
13127 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13128     case TARGET_NR_membarrier:
13129         return get_errno(membarrier(arg1, arg2));
13130 #endif
13131 
13132 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13133     case TARGET_NR_copy_file_range:
13134         {
13135             loff_t inoff, outoff;
13136             loff_t *pinoff = NULL, *poutoff = NULL;
13137 
13138             if (arg2) {
13139                 if (get_user_u64(inoff, arg2)) {
13140                     return -TARGET_EFAULT;
13141                 }
13142                 pinoff = &inoff;
13143             }
13144             if (arg4) {
13145                 if (get_user_u64(outoff, arg4)) {
13146                     return -TARGET_EFAULT;
13147                 }
13148                 poutoff = &outoff;
13149             }
13150             /* Do not sign-extend the count parameter. */
13151             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13152                                                  (abi_ulong)arg5, arg6));
13153             if (!is_error(ret) && ret > 0) {
13154                 if (arg2) {
13155                     if (put_user_u64(inoff, arg2)) {
13156                         return -TARGET_EFAULT;
13157                     }
13158                 }
13159                 if (arg4) {
13160                     if (put_user_u64(outoff, arg4)) {
13161                         return -TARGET_EFAULT;
13162                     }
13163                 }
13164             }
13165         }
13166         return ret;
13167 #endif
13168 
13169 #if defined(TARGET_NR_pivot_root)
13170     case TARGET_NR_pivot_root:
13171         {
13172             void *p2;
13173             p = lock_user_string(arg1); /* new_root */
13174             p2 = lock_user_string(arg2); /* put_old */
13175             if (!p || !p2) {
13176                 ret = -TARGET_EFAULT;
13177             } else {
13178                 ret = get_errno(pivot_root(p, p2));
13179             }
13180             unlock_user(p2, arg2, 0);
13181             unlock_user(p, arg1, 0);
13182         }
13183         return ret;
13184 #endif
13185 
13186     default:
13187         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13188         return -TARGET_ENOSYS;
13189     }
13190     return ret;
13191 }
13192 
13193 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
13194                     abi_long arg2, abi_long arg3, abi_long arg4,
13195                     abi_long arg5, abi_long arg6, abi_long arg7,
13196                     abi_long arg8)
13197 {
13198     CPUState *cpu = env_cpu(cpu_env);
13199     abi_long ret;
13200 
13201 #ifdef DEBUG_ERESTARTSYS
13202     /* Debug-only code for exercising the syscall-restart code paths
13203      * in the per-architecture cpu main loops: restart every syscall
13204      * the guest makes once before letting it through.
13205      */
13206     {
13207         static bool flag;
13208         flag = !flag;
13209         if (flag) {
13210             return -QEMU_ERESTARTSYS;
13211         }
13212     }
13213 #endif
13214 
13215     record_syscall_start(cpu, num, arg1,
13216                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13217 
13218     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13219         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13220     }
13221 
13222     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13223                       arg5, arg6, arg7, arg8);
13224 
13225     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13226         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13227                           arg3, arg4, arg5, arg6);
13228     }
13229 
13230     record_syscall_return(cpu, num, ret);
13231     return ret;
13232 }
13233