1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include <elf.h> 24 #include <endian.h> 25 #include <grp.h> 26 #include <sys/ipc.h> 27 #include <sys/msg.h> 28 #include <sys/wait.h> 29 #include <sys/mount.h> 30 #include <sys/file.h> 31 #include <sys/fsuid.h> 32 #include <sys/personality.h> 33 #include <sys/prctl.h> 34 #include <sys/resource.h> 35 #include <sys/swap.h> 36 #include <linux/capability.h> 37 #include <sched.h> 38 #include <sys/timex.h> 39 #ifdef __ia64__ 40 int __clone2(int (*fn)(void *), void *child_stack_base, 41 size_t stack_size, int flags, void *arg, ...); 42 #endif 43 #include <sys/socket.h> 44 #include <sys/un.h> 45 #include <sys/uio.h> 46 #include <poll.h> 47 #include <sys/times.h> 48 #include <sys/shm.h> 49 #include <sys/sem.h> 50 #include <sys/statfs.h> 51 #include <time.h> 52 #include <utime.h> 53 #include <sys/sysinfo.h> 54 #include <sys/signalfd.h> 55 //#include <sys/user.h> 56 #include <netinet/ip.h> 57 #include <netinet/tcp.h> 58 #include <linux/wireless.h> 59 #include <linux/icmp.h> 60 #include <linux/icmpv6.h> 61 #include <linux/errqueue.h> 62 #include "qemu-common.h" 63 #ifdef CONFIG_TIMERFD 64 #include <sys/timerfd.h> 65 #endif 66 #ifdef TARGET_GPROF 67 #include <sys/gmon.h> 68 #endif 69 #ifdef CONFIG_EVENTFD 70 #include <sys/eventfd.h> 71 #endif 72 #ifdef CONFIG_EPOLL 73 #include <sys/epoll.h> 74 #endif 75 #ifdef CONFIG_ATTR 76 #include "qemu/xattr.h" 77 #endif 78 #ifdef CONFIG_SENDFILE 79 #include <sys/sendfile.h> 80 #endif 81 82 #define termios host_termios 83 #define winsize host_winsize 84 #define termio host_termio 85 #define sgttyb host_sgttyb /* same as target */ 86 #define tchars host_tchars /* same as target */ 87 #define ltchars host_ltchars /* same as target */ 88 89 #include <linux/termios.h> 90 #include <linux/unistd.h> 91 #include <linux/cdrom.h> 92 #include <linux/hdreg.h> 93 #include <linux/soundcard.h> 94 #include <linux/kd.h> 95 #include <linux/mtio.h> 96 #include <linux/fs.h> 97 #if defined(CONFIG_FIEMAP) 98 #include <linux/fiemap.h> 99 #endif 100 #include <linux/fb.h> 101 #include <linux/vt.h> 102 #include <linux/dm-ioctl.h> 103 #include <linux/reboot.h> 104 #include <linux/route.h> 105 #include <linux/filter.h> 106 #include <linux/blkpg.h> 107 #include <netpacket/packet.h> 108 #include <linux/netlink.h> 109 #ifdef CONFIG_RTNETLINK 110 #include <linux/rtnetlink.h> 111 #include <linux/if_bridge.h> 112 #endif 113 #include <linux/audit.h> 114 #include "linux_loop.h" 115 #include "uname.h" 116 117 #include "qemu.h" 118 119 #ifndef CLONE_IO 120 #define CLONE_IO 0x80000000 /* Clone io context */ 121 #endif 122 123 /* We can't directly call the host clone syscall, because this will 124 * badly confuse libc (breaking mutexes, for example). So we must 125 * divide clone flags into: 126 * * flag combinations that look like pthread_create() 127 * * flag combinations that look like fork() 128 * * flags we can implement within QEMU itself 129 * * flags we can't support and will return an error for 130 */ 131 /* For thread creation, all these flags must be present; for 132 * fork, none must be present. 133 */ 134 #define CLONE_THREAD_FLAGS \ 135 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 136 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 137 138 /* These flags are ignored: 139 * CLONE_DETACHED is now ignored by the kernel; 140 * CLONE_IO is just an optimisation hint to the I/O scheduler 141 */ 142 #define CLONE_IGNORED_FLAGS \ 143 (CLONE_DETACHED | CLONE_IO) 144 145 /* Flags for fork which we can implement within QEMU itself */ 146 #define CLONE_OPTIONAL_FORK_FLAGS \ 147 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 148 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 149 150 /* Flags for thread creation which we can implement within QEMU itself */ 151 #define CLONE_OPTIONAL_THREAD_FLAGS \ 152 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 153 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 154 155 #define CLONE_INVALID_FORK_FLAGS \ 156 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 157 158 #define CLONE_INVALID_THREAD_FLAGS \ 159 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 160 CLONE_IGNORED_FLAGS)) 161 162 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 163 * have almost all been allocated. We cannot support any of 164 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 165 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 166 * The checks against the invalid thread masks above will catch these. 167 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 168 */ 169 170 //#define DEBUG 171 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 172 * once. This exercises the codepaths for restart. 173 */ 174 //#define DEBUG_ERESTARTSYS 175 176 //#include <linux/msdos_fs.h> 177 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 178 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 179 180 #undef _syscall0 181 #undef _syscall1 182 #undef _syscall2 183 #undef _syscall3 184 #undef _syscall4 185 #undef _syscall5 186 #undef _syscall6 187 188 #define _syscall0(type,name) \ 189 static type name (void) \ 190 { \ 191 return syscall(__NR_##name); \ 192 } 193 194 #define _syscall1(type,name,type1,arg1) \ 195 static type name (type1 arg1) \ 196 { \ 197 return syscall(__NR_##name, arg1); \ 198 } 199 200 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 201 static type name (type1 arg1,type2 arg2) \ 202 { \ 203 return syscall(__NR_##name, arg1, arg2); \ 204 } 205 206 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 207 static type name (type1 arg1,type2 arg2,type3 arg3) \ 208 { \ 209 return syscall(__NR_##name, arg1, arg2, arg3); \ 210 } 211 212 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 213 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 214 { \ 215 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 216 } 217 218 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 219 type5,arg5) \ 220 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 221 { \ 222 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 223 } 224 225 226 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 227 type5,arg5,type6,arg6) \ 228 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 229 type6 arg6) \ 230 { \ 231 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 232 } 233 234 235 #define __NR_sys_uname __NR_uname 236 #define __NR_sys_getcwd1 __NR_getcwd 237 #define __NR_sys_getdents __NR_getdents 238 #define __NR_sys_getdents64 __NR_getdents64 239 #define __NR_sys_getpriority __NR_getpriority 240 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 241 #define __NR_sys_syslog __NR_syslog 242 #define __NR_sys_futex __NR_futex 243 #define __NR_sys_inotify_init __NR_inotify_init 244 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 245 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 246 247 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \ 248 defined(__s390x__) 249 #define __NR__llseek __NR_lseek 250 #endif 251 252 /* Newer kernel ports have llseek() instead of _llseek() */ 253 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 254 #define TARGET_NR__llseek TARGET_NR_llseek 255 #endif 256 257 #ifdef __NR_gettid 258 _syscall0(int, gettid) 259 #else 260 /* This is a replacement for the host gettid() and must return a host 261 errno. */ 262 static int gettid(void) { 263 return -ENOSYS; 264 } 265 #endif 266 #if defined(TARGET_NR_getdents) && defined(__NR_getdents) 267 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 268 #endif 269 #if !defined(__NR_getdents) || \ 270 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 271 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 272 #endif 273 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 274 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 275 loff_t *, res, uint, wh); 276 #endif 277 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo) 278 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 279 #ifdef __NR_exit_group 280 _syscall1(int,exit_group,int,error_code) 281 #endif 282 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 283 _syscall1(int,set_tid_address,int *,tidptr) 284 #endif 285 #if defined(TARGET_NR_futex) && defined(__NR_futex) 286 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 287 const struct timespec *,timeout,int *,uaddr2,int,val3) 288 #endif 289 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 290 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 291 unsigned long *, user_mask_ptr); 292 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 293 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 294 unsigned long *, user_mask_ptr); 295 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 296 void *, arg); 297 _syscall2(int, capget, struct __user_cap_header_struct *, header, 298 struct __user_cap_data_struct *, data); 299 _syscall2(int, capset, struct __user_cap_header_struct *, header, 300 struct __user_cap_data_struct *, data); 301 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 302 _syscall2(int, ioprio_get, int, which, int, who) 303 #endif 304 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 305 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 306 #endif 307 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 308 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 309 #endif 310 311 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 312 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 313 unsigned long, idx1, unsigned long, idx2) 314 #endif 315 316 static bitmask_transtbl fcntl_flags_tbl[] = { 317 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 318 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 319 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 320 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 321 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 322 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 323 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 324 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 325 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 326 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 327 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 328 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 329 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 330 #if defined(O_DIRECT) 331 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 332 #endif 333 #if defined(O_NOATIME) 334 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 335 #endif 336 #if defined(O_CLOEXEC) 337 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 338 #endif 339 #if defined(O_PATH) 340 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 341 #endif 342 /* Don't terminate the list prematurely on 64-bit host+guest. */ 343 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 344 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 345 #endif 346 { 0, 0, 0, 0 } 347 }; 348 349 enum { 350 QEMU_IFLA_BR_UNSPEC, 351 QEMU_IFLA_BR_FORWARD_DELAY, 352 QEMU_IFLA_BR_HELLO_TIME, 353 QEMU_IFLA_BR_MAX_AGE, 354 QEMU_IFLA_BR_AGEING_TIME, 355 QEMU_IFLA_BR_STP_STATE, 356 QEMU_IFLA_BR_PRIORITY, 357 QEMU_IFLA_BR_VLAN_FILTERING, 358 QEMU_IFLA_BR_VLAN_PROTOCOL, 359 QEMU_IFLA_BR_GROUP_FWD_MASK, 360 QEMU_IFLA_BR_ROOT_ID, 361 QEMU_IFLA_BR_BRIDGE_ID, 362 QEMU_IFLA_BR_ROOT_PORT, 363 QEMU_IFLA_BR_ROOT_PATH_COST, 364 QEMU_IFLA_BR_TOPOLOGY_CHANGE, 365 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED, 366 QEMU_IFLA_BR_HELLO_TIMER, 367 QEMU_IFLA_BR_TCN_TIMER, 368 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER, 369 QEMU_IFLA_BR_GC_TIMER, 370 QEMU_IFLA_BR_GROUP_ADDR, 371 QEMU_IFLA_BR_FDB_FLUSH, 372 QEMU_IFLA_BR_MCAST_ROUTER, 373 QEMU_IFLA_BR_MCAST_SNOOPING, 374 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR, 375 QEMU_IFLA_BR_MCAST_QUERIER, 376 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY, 377 QEMU_IFLA_BR_MCAST_HASH_MAX, 378 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT, 379 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT, 380 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL, 381 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL, 382 QEMU_IFLA_BR_MCAST_QUERIER_INTVL, 383 QEMU_IFLA_BR_MCAST_QUERY_INTVL, 384 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL, 385 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL, 386 QEMU_IFLA_BR_NF_CALL_IPTABLES, 387 QEMU_IFLA_BR_NF_CALL_IP6TABLES, 388 QEMU_IFLA_BR_NF_CALL_ARPTABLES, 389 QEMU_IFLA_BR_VLAN_DEFAULT_PVID, 390 QEMU_IFLA_BR_PAD, 391 QEMU_IFLA_BR_VLAN_STATS_ENABLED, 392 QEMU_IFLA_BR_MCAST_STATS_ENABLED, 393 QEMU___IFLA_BR_MAX, 394 }; 395 396 enum { 397 QEMU_IFLA_UNSPEC, 398 QEMU_IFLA_ADDRESS, 399 QEMU_IFLA_BROADCAST, 400 QEMU_IFLA_IFNAME, 401 QEMU_IFLA_MTU, 402 QEMU_IFLA_LINK, 403 QEMU_IFLA_QDISC, 404 QEMU_IFLA_STATS, 405 QEMU_IFLA_COST, 406 QEMU_IFLA_PRIORITY, 407 QEMU_IFLA_MASTER, 408 QEMU_IFLA_WIRELESS, 409 QEMU_IFLA_PROTINFO, 410 QEMU_IFLA_TXQLEN, 411 QEMU_IFLA_MAP, 412 QEMU_IFLA_WEIGHT, 413 QEMU_IFLA_OPERSTATE, 414 QEMU_IFLA_LINKMODE, 415 QEMU_IFLA_LINKINFO, 416 QEMU_IFLA_NET_NS_PID, 417 QEMU_IFLA_IFALIAS, 418 QEMU_IFLA_NUM_VF, 419 QEMU_IFLA_VFINFO_LIST, 420 QEMU_IFLA_STATS64, 421 QEMU_IFLA_VF_PORTS, 422 QEMU_IFLA_PORT_SELF, 423 QEMU_IFLA_AF_SPEC, 424 QEMU_IFLA_GROUP, 425 QEMU_IFLA_NET_NS_FD, 426 QEMU_IFLA_EXT_MASK, 427 QEMU_IFLA_PROMISCUITY, 428 QEMU_IFLA_NUM_TX_QUEUES, 429 QEMU_IFLA_NUM_RX_QUEUES, 430 QEMU_IFLA_CARRIER, 431 QEMU_IFLA_PHYS_PORT_ID, 432 QEMU_IFLA_CARRIER_CHANGES, 433 QEMU_IFLA_PHYS_SWITCH_ID, 434 QEMU_IFLA_LINK_NETNSID, 435 QEMU_IFLA_PHYS_PORT_NAME, 436 QEMU_IFLA_PROTO_DOWN, 437 QEMU_IFLA_GSO_MAX_SEGS, 438 QEMU_IFLA_GSO_MAX_SIZE, 439 QEMU_IFLA_PAD, 440 QEMU_IFLA_XDP, 441 QEMU___IFLA_MAX 442 }; 443 444 enum { 445 QEMU_IFLA_BRPORT_UNSPEC, 446 QEMU_IFLA_BRPORT_STATE, 447 QEMU_IFLA_BRPORT_PRIORITY, 448 QEMU_IFLA_BRPORT_COST, 449 QEMU_IFLA_BRPORT_MODE, 450 QEMU_IFLA_BRPORT_GUARD, 451 QEMU_IFLA_BRPORT_PROTECT, 452 QEMU_IFLA_BRPORT_FAST_LEAVE, 453 QEMU_IFLA_BRPORT_LEARNING, 454 QEMU_IFLA_BRPORT_UNICAST_FLOOD, 455 QEMU_IFLA_BRPORT_PROXYARP, 456 QEMU_IFLA_BRPORT_LEARNING_SYNC, 457 QEMU_IFLA_BRPORT_PROXYARP_WIFI, 458 QEMU_IFLA_BRPORT_ROOT_ID, 459 QEMU_IFLA_BRPORT_BRIDGE_ID, 460 QEMU_IFLA_BRPORT_DESIGNATED_PORT, 461 QEMU_IFLA_BRPORT_DESIGNATED_COST, 462 QEMU_IFLA_BRPORT_ID, 463 QEMU_IFLA_BRPORT_NO, 464 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK, 465 QEMU_IFLA_BRPORT_CONFIG_PENDING, 466 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER, 467 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER, 468 QEMU_IFLA_BRPORT_HOLD_TIMER, 469 QEMU_IFLA_BRPORT_FLUSH, 470 QEMU_IFLA_BRPORT_MULTICAST_ROUTER, 471 QEMU_IFLA_BRPORT_PAD, 472 QEMU___IFLA_BRPORT_MAX 473 }; 474 475 enum { 476 QEMU_IFLA_INFO_UNSPEC, 477 QEMU_IFLA_INFO_KIND, 478 QEMU_IFLA_INFO_DATA, 479 QEMU_IFLA_INFO_XSTATS, 480 QEMU_IFLA_INFO_SLAVE_KIND, 481 QEMU_IFLA_INFO_SLAVE_DATA, 482 QEMU___IFLA_INFO_MAX, 483 }; 484 485 enum { 486 QEMU_IFLA_INET_UNSPEC, 487 QEMU_IFLA_INET_CONF, 488 QEMU___IFLA_INET_MAX, 489 }; 490 491 enum { 492 QEMU_IFLA_INET6_UNSPEC, 493 QEMU_IFLA_INET6_FLAGS, 494 QEMU_IFLA_INET6_CONF, 495 QEMU_IFLA_INET6_STATS, 496 QEMU_IFLA_INET6_MCAST, 497 QEMU_IFLA_INET6_CACHEINFO, 498 QEMU_IFLA_INET6_ICMP6STATS, 499 QEMU_IFLA_INET6_TOKEN, 500 QEMU_IFLA_INET6_ADDR_GEN_MODE, 501 QEMU___IFLA_INET6_MAX 502 }; 503 504 typedef abi_long (*TargetFdDataFunc)(void *, size_t); 505 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t); 506 typedef struct TargetFdTrans { 507 TargetFdDataFunc host_to_target_data; 508 TargetFdDataFunc target_to_host_data; 509 TargetFdAddrFunc target_to_host_addr; 510 } TargetFdTrans; 511 512 static TargetFdTrans **target_fd_trans; 513 514 static unsigned int target_fd_max; 515 516 static TargetFdDataFunc fd_trans_target_to_host_data(int fd) 517 { 518 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 519 return target_fd_trans[fd]->target_to_host_data; 520 } 521 return NULL; 522 } 523 524 static TargetFdDataFunc fd_trans_host_to_target_data(int fd) 525 { 526 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 527 return target_fd_trans[fd]->host_to_target_data; 528 } 529 return NULL; 530 } 531 532 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd) 533 { 534 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 535 return target_fd_trans[fd]->target_to_host_addr; 536 } 537 return NULL; 538 } 539 540 static void fd_trans_register(int fd, TargetFdTrans *trans) 541 { 542 unsigned int oldmax; 543 544 if (fd >= target_fd_max) { 545 oldmax = target_fd_max; 546 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */ 547 target_fd_trans = g_renew(TargetFdTrans *, 548 target_fd_trans, target_fd_max); 549 memset((void *)(target_fd_trans + oldmax), 0, 550 (target_fd_max - oldmax) * sizeof(TargetFdTrans *)); 551 } 552 target_fd_trans[fd] = trans; 553 } 554 555 static void fd_trans_unregister(int fd) 556 { 557 if (fd >= 0 && fd < target_fd_max) { 558 target_fd_trans[fd] = NULL; 559 } 560 } 561 562 static void fd_trans_dup(int oldfd, int newfd) 563 { 564 fd_trans_unregister(newfd); 565 if (oldfd < target_fd_max && target_fd_trans[oldfd]) { 566 fd_trans_register(newfd, target_fd_trans[oldfd]); 567 } 568 } 569 570 static int sys_getcwd1(char *buf, size_t size) 571 { 572 if (getcwd(buf, size) == NULL) { 573 /* getcwd() sets errno */ 574 return (-1); 575 } 576 return strlen(buf)+1; 577 } 578 579 #ifdef TARGET_NR_utimensat 580 #if defined(__NR_utimensat) 581 #define __NR_sys_utimensat __NR_utimensat 582 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 583 const struct timespec *,tsp,int,flags) 584 #else 585 static int sys_utimensat(int dirfd, const char *pathname, 586 const struct timespec times[2], int flags) 587 { 588 errno = ENOSYS; 589 return -1; 590 } 591 #endif 592 #endif /* TARGET_NR_utimensat */ 593 594 #ifdef CONFIG_INOTIFY 595 #include <sys/inotify.h> 596 597 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 598 static int sys_inotify_init(void) 599 { 600 return (inotify_init()); 601 } 602 #endif 603 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 604 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 605 { 606 return (inotify_add_watch(fd, pathname, mask)); 607 } 608 #endif 609 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 610 static int sys_inotify_rm_watch(int fd, int32_t wd) 611 { 612 return (inotify_rm_watch(fd, wd)); 613 } 614 #endif 615 #ifdef CONFIG_INOTIFY1 616 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 617 static int sys_inotify_init1(int flags) 618 { 619 return (inotify_init1(flags)); 620 } 621 #endif 622 #endif 623 #else 624 /* Userspace can usually survive runtime without inotify */ 625 #undef TARGET_NR_inotify_init 626 #undef TARGET_NR_inotify_init1 627 #undef TARGET_NR_inotify_add_watch 628 #undef TARGET_NR_inotify_rm_watch 629 #endif /* CONFIG_INOTIFY */ 630 631 #if defined(TARGET_NR_prlimit64) 632 #ifndef __NR_prlimit64 633 # define __NR_prlimit64 -1 634 #endif 635 #define __NR_sys_prlimit64 __NR_prlimit64 636 /* The glibc rlimit structure may not be that used by the underlying syscall */ 637 struct host_rlimit64 { 638 uint64_t rlim_cur; 639 uint64_t rlim_max; 640 }; 641 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 642 const struct host_rlimit64 *, new_limit, 643 struct host_rlimit64 *, old_limit) 644 #endif 645 646 647 #if defined(TARGET_NR_timer_create) 648 /* Maxiumum of 32 active POSIX timers allowed at any one time. */ 649 static timer_t g_posix_timers[32] = { 0, } ; 650 651 static inline int next_free_host_timer(void) 652 { 653 int k ; 654 /* FIXME: Does finding the next free slot require a lock? */ 655 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 656 if (g_posix_timers[k] == 0) { 657 g_posix_timers[k] = (timer_t) 1; 658 return k; 659 } 660 } 661 return -1; 662 } 663 #endif 664 665 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 666 #ifdef TARGET_ARM 667 static inline int regpairs_aligned(void *cpu_env) { 668 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 669 } 670 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32) 671 static inline int regpairs_aligned(void *cpu_env) { return 1; } 672 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 673 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 674 * of registers which translates to the same as ARM/MIPS, because we start with 675 * r3 as arg1 */ 676 static inline int regpairs_aligned(void *cpu_env) { return 1; } 677 #else 678 static inline int regpairs_aligned(void *cpu_env) { return 0; } 679 #endif 680 681 #define ERRNO_TABLE_SIZE 1200 682 683 /* target_to_host_errno_table[] is initialized from 684 * host_to_target_errno_table[] in syscall_init(). */ 685 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 686 }; 687 688 /* 689 * This list is the union of errno values overridden in asm-<arch>/errno.h 690 * minus the errnos that are not actually generic to all archs. 691 */ 692 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 693 [EAGAIN] = TARGET_EAGAIN, 694 [EIDRM] = TARGET_EIDRM, 695 [ECHRNG] = TARGET_ECHRNG, 696 [EL2NSYNC] = TARGET_EL2NSYNC, 697 [EL3HLT] = TARGET_EL3HLT, 698 [EL3RST] = TARGET_EL3RST, 699 [ELNRNG] = TARGET_ELNRNG, 700 [EUNATCH] = TARGET_EUNATCH, 701 [ENOCSI] = TARGET_ENOCSI, 702 [EL2HLT] = TARGET_EL2HLT, 703 [EDEADLK] = TARGET_EDEADLK, 704 [ENOLCK] = TARGET_ENOLCK, 705 [EBADE] = TARGET_EBADE, 706 [EBADR] = TARGET_EBADR, 707 [EXFULL] = TARGET_EXFULL, 708 [ENOANO] = TARGET_ENOANO, 709 [EBADRQC] = TARGET_EBADRQC, 710 [EBADSLT] = TARGET_EBADSLT, 711 [EBFONT] = TARGET_EBFONT, 712 [ENOSTR] = TARGET_ENOSTR, 713 [ENODATA] = TARGET_ENODATA, 714 [ETIME] = TARGET_ETIME, 715 [ENOSR] = TARGET_ENOSR, 716 [ENONET] = TARGET_ENONET, 717 [ENOPKG] = TARGET_ENOPKG, 718 [EREMOTE] = TARGET_EREMOTE, 719 [ENOLINK] = TARGET_ENOLINK, 720 [EADV] = TARGET_EADV, 721 [ESRMNT] = TARGET_ESRMNT, 722 [ECOMM] = TARGET_ECOMM, 723 [EPROTO] = TARGET_EPROTO, 724 [EDOTDOT] = TARGET_EDOTDOT, 725 [EMULTIHOP] = TARGET_EMULTIHOP, 726 [EBADMSG] = TARGET_EBADMSG, 727 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 728 [EOVERFLOW] = TARGET_EOVERFLOW, 729 [ENOTUNIQ] = TARGET_ENOTUNIQ, 730 [EBADFD] = TARGET_EBADFD, 731 [EREMCHG] = TARGET_EREMCHG, 732 [ELIBACC] = TARGET_ELIBACC, 733 [ELIBBAD] = TARGET_ELIBBAD, 734 [ELIBSCN] = TARGET_ELIBSCN, 735 [ELIBMAX] = TARGET_ELIBMAX, 736 [ELIBEXEC] = TARGET_ELIBEXEC, 737 [EILSEQ] = TARGET_EILSEQ, 738 [ENOSYS] = TARGET_ENOSYS, 739 [ELOOP] = TARGET_ELOOP, 740 [ERESTART] = TARGET_ERESTART, 741 [ESTRPIPE] = TARGET_ESTRPIPE, 742 [ENOTEMPTY] = TARGET_ENOTEMPTY, 743 [EUSERS] = TARGET_EUSERS, 744 [ENOTSOCK] = TARGET_ENOTSOCK, 745 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 746 [EMSGSIZE] = TARGET_EMSGSIZE, 747 [EPROTOTYPE] = TARGET_EPROTOTYPE, 748 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 749 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 750 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 751 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 752 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 753 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 754 [EADDRINUSE] = TARGET_EADDRINUSE, 755 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 756 [ENETDOWN] = TARGET_ENETDOWN, 757 [ENETUNREACH] = TARGET_ENETUNREACH, 758 [ENETRESET] = TARGET_ENETRESET, 759 [ECONNABORTED] = TARGET_ECONNABORTED, 760 [ECONNRESET] = TARGET_ECONNRESET, 761 [ENOBUFS] = TARGET_ENOBUFS, 762 [EISCONN] = TARGET_EISCONN, 763 [ENOTCONN] = TARGET_ENOTCONN, 764 [EUCLEAN] = TARGET_EUCLEAN, 765 [ENOTNAM] = TARGET_ENOTNAM, 766 [ENAVAIL] = TARGET_ENAVAIL, 767 [EISNAM] = TARGET_EISNAM, 768 [EREMOTEIO] = TARGET_EREMOTEIO, 769 [EDQUOT] = TARGET_EDQUOT, 770 [ESHUTDOWN] = TARGET_ESHUTDOWN, 771 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 772 [ETIMEDOUT] = TARGET_ETIMEDOUT, 773 [ECONNREFUSED] = TARGET_ECONNREFUSED, 774 [EHOSTDOWN] = TARGET_EHOSTDOWN, 775 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 776 [EALREADY] = TARGET_EALREADY, 777 [EINPROGRESS] = TARGET_EINPROGRESS, 778 [ESTALE] = TARGET_ESTALE, 779 [ECANCELED] = TARGET_ECANCELED, 780 [ENOMEDIUM] = TARGET_ENOMEDIUM, 781 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 782 #ifdef ENOKEY 783 [ENOKEY] = TARGET_ENOKEY, 784 #endif 785 #ifdef EKEYEXPIRED 786 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 787 #endif 788 #ifdef EKEYREVOKED 789 [EKEYREVOKED] = TARGET_EKEYREVOKED, 790 #endif 791 #ifdef EKEYREJECTED 792 [EKEYREJECTED] = TARGET_EKEYREJECTED, 793 #endif 794 #ifdef EOWNERDEAD 795 [EOWNERDEAD] = TARGET_EOWNERDEAD, 796 #endif 797 #ifdef ENOTRECOVERABLE 798 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 799 #endif 800 #ifdef ENOMSG 801 [ENOMSG] = TARGET_ENOMSG, 802 #endif 803 #ifdef ERKFILL 804 [ERFKILL] = TARGET_ERFKILL, 805 #endif 806 #ifdef EHWPOISON 807 [EHWPOISON] = TARGET_EHWPOISON, 808 #endif 809 }; 810 811 static inline int host_to_target_errno(int err) 812 { 813 if (err >= 0 && err < ERRNO_TABLE_SIZE && 814 host_to_target_errno_table[err]) { 815 return host_to_target_errno_table[err]; 816 } 817 return err; 818 } 819 820 static inline int target_to_host_errno(int err) 821 { 822 if (err >= 0 && err < ERRNO_TABLE_SIZE && 823 target_to_host_errno_table[err]) { 824 return target_to_host_errno_table[err]; 825 } 826 return err; 827 } 828 829 static inline abi_long get_errno(abi_long ret) 830 { 831 if (ret == -1) 832 return -host_to_target_errno(errno); 833 else 834 return ret; 835 } 836 837 static inline int is_error(abi_long ret) 838 { 839 return (abi_ulong)ret >= (abi_ulong)(-4096); 840 } 841 842 const char *target_strerror(int err) 843 { 844 if (err == TARGET_ERESTARTSYS) { 845 return "To be restarted"; 846 } 847 if (err == TARGET_QEMU_ESIGRETURN) { 848 return "Successful exit from sigreturn"; 849 } 850 851 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 852 return NULL; 853 } 854 return strerror(target_to_host_errno(err)); 855 } 856 857 #define safe_syscall0(type, name) \ 858 static type safe_##name(void) \ 859 { \ 860 return safe_syscall(__NR_##name); \ 861 } 862 863 #define safe_syscall1(type, name, type1, arg1) \ 864 static type safe_##name(type1 arg1) \ 865 { \ 866 return safe_syscall(__NR_##name, arg1); \ 867 } 868 869 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 870 static type safe_##name(type1 arg1, type2 arg2) \ 871 { \ 872 return safe_syscall(__NR_##name, arg1, arg2); \ 873 } 874 875 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 876 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 877 { \ 878 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 879 } 880 881 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 882 type4, arg4) \ 883 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 884 { \ 885 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 886 } 887 888 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 889 type4, arg4, type5, arg5) \ 890 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 891 type5 arg5) \ 892 { \ 893 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 894 } 895 896 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 897 type4, arg4, type5, arg5, type6, arg6) \ 898 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 899 type5 arg5, type6 arg6) \ 900 { \ 901 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 902 } 903 904 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 905 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 906 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 907 int, flags, mode_t, mode) 908 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 909 struct rusage *, rusage) 910 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 911 int, options, struct rusage *, rusage) 912 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 913 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 914 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 915 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 916 struct timespec *, tsp, const sigset_t *, sigmask, 917 size_t, sigsetsize) 918 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 919 int, maxevents, int, timeout, const sigset_t *, sigmask, 920 size_t, sigsetsize) 921 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 922 const struct timespec *,timeout,int *,uaddr2,int,val3) 923 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 924 safe_syscall2(int, kill, pid_t, pid, int, sig) 925 safe_syscall2(int, tkill, int, tid, int, sig) 926 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 927 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 928 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 929 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 930 unsigned long, pos_l, unsigned long, pos_h) 931 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 932 unsigned long, pos_l, unsigned long, pos_h) 933 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 934 socklen_t, addrlen) 935 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 936 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 937 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 938 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 939 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 940 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 941 safe_syscall2(int, flock, int, fd, int, operation) 942 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 943 const struct timespec *, uts, size_t, sigsetsize) 944 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 945 int, flags) 946 safe_syscall2(int, nanosleep, const struct timespec *, req, 947 struct timespec *, rem) 948 #ifdef TARGET_NR_clock_nanosleep 949 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 950 const struct timespec *, req, struct timespec *, rem) 951 #endif 952 #ifdef __NR_msgsnd 953 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 954 int, flags) 955 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 956 long, msgtype, int, flags) 957 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 958 unsigned, nsops, const struct timespec *, timeout) 959 #else 960 /* This host kernel architecture uses a single ipc syscall; fake up 961 * wrappers for the sub-operations to hide this implementation detail. 962 * Annoyingly we can't include linux/ipc.h to get the constant definitions 963 * for the call parameter because some structs in there conflict with the 964 * sys/ipc.h ones. So we just define them here, and rely on them being 965 * the same for all host architectures. 966 */ 967 #define Q_SEMTIMEDOP 4 968 #define Q_MSGSND 11 969 #define Q_MSGRCV 12 970 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP)) 971 972 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 973 void *, ptr, long, fifth) 974 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags) 975 { 976 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0); 977 } 978 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags) 979 { 980 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type); 981 } 982 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops, 983 const struct timespec *timeout) 984 { 985 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops, 986 (long)timeout); 987 } 988 #endif 989 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 990 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 991 size_t, len, unsigned, prio, const struct timespec *, timeout) 992 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 993 size_t, len, unsigned *, prio, const struct timespec *, timeout) 994 #endif 995 /* We do ioctl like this rather than via safe_syscall3 to preserve the 996 * "third argument might be integer or pointer or not present" behaviour of 997 * the libc function. 998 */ 999 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 1000 /* Similarly for fcntl. Note that callers must always: 1001 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 1002 * use the flock64 struct rather than unsuffixed flock 1003 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 1004 */ 1005 #ifdef __NR_fcntl64 1006 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 1007 #else 1008 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 1009 #endif 1010 1011 static inline int host_to_target_sock_type(int host_type) 1012 { 1013 int target_type; 1014 1015 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 1016 case SOCK_DGRAM: 1017 target_type = TARGET_SOCK_DGRAM; 1018 break; 1019 case SOCK_STREAM: 1020 target_type = TARGET_SOCK_STREAM; 1021 break; 1022 default: 1023 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 1024 break; 1025 } 1026 1027 #if defined(SOCK_CLOEXEC) 1028 if (host_type & SOCK_CLOEXEC) { 1029 target_type |= TARGET_SOCK_CLOEXEC; 1030 } 1031 #endif 1032 1033 #if defined(SOCK_NONBLOCK) 1034 if (host_type & SOCK_NONBLOCK) { 1035 target_type |= TARGET_SOCK_NONBLOCK; 1036 } 1037 #endif 1038 1039 return target_type; 1040 } 1041 1042 static abi_ulong target_brk; 1043 static abi_ulong target_original_brk; 1044 static abi_ulong brk_page; 1045 1046 void target_set_brk(abi_ulong new_brk) 1047 { 1048 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 1049 brk_page = HOST_PAGE_ALIGN(target_brk); 1050 } 1051 1052 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 1053 #define DEBUGF_BRK(message, args...) 1054 1055 /* do_brk() must return target values and target errnos. */ 1056 abi_long do_brk(abi_ulong new_brk) 1057 { 1058 abi_long mapped_addr; 1059 abi_ulong new_alloc_size; 1060 1061 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 1062 1063 if (!new_brk) { 1064 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 1065 return target_brk; 1066 } 1067 if (new_brk < target_original_brk) { 1068 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 1069 target_brk); 1070 return target_brk; 1071 } 1072 1073 /* If the new brk is less than the highest page reserved to the 1074 * target heap allocation, set it and we're almost done... */ 1075 if (new_brk <= brk_page) { 1076 /* Heap contents are initialized to zero, as for anonymous 1077 * mapped pages. */ 1078 if (new_brk > target_brk) { 1079 memset(g2h(target_brk), 0, new_brk - target_brk); 1080 } 1081 target_brk = new_brk; 1082 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 1083 return target_brk; 1084 } 1085 1086 /* We need to allocate more memory after the brk... Note that 1087 * we don't use MAP_FIXED because that will map over the top of 1088 * any existing mapping (like the one with the host libc or qemu 1089 * itself); instead we treat "mapped but at wrong address" as 1090 * a failure and unmap again. 1091 */ 1092 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 1093 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 1094 PROT_READ|PROT_WRITE, 1095 MAP_ANON|MAP_PRIVATE, 0, 0)); 1096 1097 if (mapped_addr == brk_page) { 1098 /* Heap contents are initialized to zero, as for anonymous 1099 * mapped pages. Technically the new pages are already 1100 * initialized to zero since they *are* anonymous mapped 1101 * pages, however we have to take care with the contents that 1102 * come from the remaining part of the previous page: it may 1103 * contains garbage data due to a previous heap usage (grown 1104 * then shrunken). */ 1105 memset(g2h(target_brk), 0, brk_page - target_brk); 1106 1107 target_brk = new_brk; 1108 brk_page = HOST_PAGE_ALIGN(target_brk); 1109 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 1110 target_brk); 1111 return target_brk; 1112 } else if (mapped_addr != -1) { 1113 /* Mapped but at wrong address, meaning there wasn't actually 1114 * enough space for this brk. 1115 */ 1116 target_munmap(mapped_addr, new_alloc_size); 1117 mapped_addr = -1; 1118 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 1119 } 1120 else { 1121 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 1122 } 1123 1124 #if defined(TARGET_ALPHA) 1125 /* We (partially) emulate OSF/1 on Alpha, which requires we 1126 return a proper errno, not an unchanged brk value. */ 1127 return -TARGET_ENOMEM; 1128 #endif 1129 /* For everything else, return the previous break. */ 1130 return target_brk; 1131 } 1132 1133 static inline abi_long copy_from_user_fdset(fd_set *fds, 1134 abi_ulong target_fds_addr, 1135 int n) 1136 { 1137 int i, nw, j, k; 1138 abi_ulong b, *target_fds; 1139 1140 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1141 if (!(target_fds = lock_user(VERIFY_READ, 1142 target_fds_addr, 1143 sizeof(abi_ulong) * nw, 1144 1))) 1145 return -TARGET_EFAULT; 1146 1147 FD_ZERO(fds); 1148 k = 0; 1149 for (i = 0; i < nw; i++) { 1150 /* grab the abi_ulong */ 1151 __get_user(b, &target_fds[i]); 1152 for (j = 0; j < TARGET_ABI_BITS; j++) { 1153 /* check the bit inside the abi_ulong */ 1154 if ((b >> j) & 1) 1155 FD_SET(k, fds); 1156 k++; 1157 } 1158 } 1159 1160 unlock_user(target_fds, target_fds_addr, 0); 1161 1162 return 0; 1163 } 1164 1165 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 1166 abi_ulong target_fds_addr, 1167 int n) 1168 { 1169 if (target_fds_addr) { 1170 if (copy_from_user_fdset(fds, target_fds_addr, n)) 1171 return -TARGET_EFAULT; 1172 *fds_ptr = fds; 1173 } else { 1174 *fds_ptr = NULL; 1175 } 1176 return 0; 1177 } 1178 1179 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 1180 const fd_set *fds, 1181 int n) 1182 { 1183 int i, nw, j, k; 1184 abi_long v; 1185 abi_ulong *target_fds; 1186 1187 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1188 if (!(target_fds = lock_user(VERIFY_WRITE, 1189 target_fds_addr, 1190 sizeof(abi_ulong) * nw, 1191 0))) 1192 return -TARGET_EFAULT; 1193 1194 k = 0; 1195 for (i = 0; i < nw; i++) { 1196 v = 0; 1197 for (j = 0; j < TARGET_ABI_BITS; j++) { 1198 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 1199 k++; 1200 } 1201 __put_user(v, &target_fds[i]); 1202 } 1203 1204 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 1205 1206 return 0; 1207 } 1208 1209 #if defined(__alpha__) 1210 #define HOST_HZ 1024 1211 #else 1212 #define HOST_HZ 100 1213 #endif 1214 1215 static inline abi_long host_to_target_clock_t(long ticks) 1216 { 1217 #if HOST_HZ == TARGET_HZ 1218 return ticks; 1219 #else 1220 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 1221 #endif 1222 } 1223 1224 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 1225 const struct rusage *rusage) 1226 { 1227 struct target_rusage *target_rusage; 1228 1229 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 1230 return -TARGET_EFAULT; 1231 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 1232 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 1233 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 1234 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 1235 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 1236 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 1237 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 1238 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 1239 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 1240 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 1241 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 1242 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 1243 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 1244 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 1245 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 1246 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 1247 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 1248 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 1249 unlock_user_struct(target_rusage, target_addr, 1); 1250 1251 return 0; 1252 } 1253 1254 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 1255 { 1256 abi_ulong target_rlim_swap; 1257 rlim_t result; 1258 1259 target_rlim_swap = tswapal(target_rlim); 1260 if (target_rlim_swap == TARGET_RLIM_INFINITY) 1261 return RLIM_INFINITY; 1262 1263 result = target_rlim_swap; 1264 if (target_rlim_swap != (rlim_t)result) 1265 return RLIM_INFINITY; 1266 1267 return result; 1268 } 1269 1270 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1271 { 1272 abi_ulong target_rlim_swap; 1273 abi_ulong result; 1274 1275 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1276 target_rlim_swap = TARGET_RLIM_INFINITY; 1277 else 1278 target_rlim_swap = rlim; 1279 result = tswapal(target_rlim_swap); 1280 1281 return result; 1282 } 1283 1284 static inline int target_to_host_resource(int code) 1285 { 1286 switch (code) { 1287 case TARGET_RLIMIT_AS: 1288 return RLIMIT_AS; 1289 case TARGET_RLIMIT_CORE: 1290 return RLIMIT_CORE; 1291 case TARGET_RLIMIT_CPU: 1292 return RLIMIT_CPU; 1293 case TARGET_RLIMIT_DATA: 1294 return RLIMIT_DATA; 1295 case TARGET_RLIMIT_FSIZE: 1296 return RLIMIT_FSIZE; 1297 case TARGET_RLIMIT_LOCKS: 1298 return RLIMIT_LOCKS; 1299 case TARGET_RLIMIT_MEMLOCK: 1300 return RLIMIT_MEMLOCK; 1301 case TARGET_RLIMIT_MSGQUEUE: 1302 return RLIMIT_MSGQUEUE; 1303 case TARGET_RLIMIT_NICE: 1304 return RLIMIT_NICE; 1305 case TARGET_RLIMIT_NOFILE: 1306 return RLIMIT_NOFILE; 1307 case TARGET_RLIMIT_NPROC: 1308 return RLIMIT_NPROC; 1309 case TARGET_RLIMIT_RSS: 1310 return RLIMIT_RSS; 1311 case TARGET_RLIMIT_RTPRIO: 1312 return RLIMIT_RTPRIO; 1313 case TARGET_RLIMIT_SIGPENDING: 1314 return RLIMIT_SIGPENDING; 1315 case TARGET_RLIMIT_STACK: 1316 return RLIMIT_STACK; 1317 default: 1318 return code; 1319 } 1320 } 1321 1322 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1323 abi_ulong target_tv_addr) 1324 { 1325 struct target_timeval *target_tv; 1326 1327 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) 1328 return -TARGET_EFAULT; 1329 1330 __get_user(tv->tv_sec, &target_tv->tv_sec); 1331 __get_user(tv->tv_usec, &target_tv->tv_usec); 1332 1333 unlock_user_struct(target_tv, target_tv_addr, 0); 1334 1335 return 0; 1336 } 1337 1338 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1339 const struct timeval *tv) 1340 { 1341 struct target_timeval *target_tv; 1342 1343 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) 1344 return -TARGET_EFAULT; 1345 1346 __put_user(tv->tv_sec, &target_tv->tv_sec); 1347 __put_user(tv->tv_usec, &target_tv->tv_usec); 1348 1349 unlock_user_struct(target_tv, target_tv_addr, 1); 1350 1351 return 0; 1352 } 1353 1354 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1355 abi_ulong target_tz_addr) 1356 { 1357 struct target_timezone *target_tz; 1358 1359 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1360 return -TARGET_EFAULT; 1361 } 1362 1363 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1364 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1365 1366 unlock_user_struct(target_tz, target_tz_addr, 0); 1367 1368 return 0; 1369 } 1370 1371 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1372 #include <mqueue.h> 1373 1374 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1375 abi_ulong target_mq_attr_addr) 1376 { 1377 struct target_mq_attr *target_mq_attr; 1378 1379 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1380 target_mq_attr_addr, 1)) 1381 return -TARGET_EFAULT; 1382 1383 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1384 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1385 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1386 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1387 1388 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1389 1390 return 0; 1391 } 1392 1393 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1394 const struct mq_attr *attr) 1395 { 1396 struct target_mq_attr *target_mq_attr; 1397 1398 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1399 target_mq_attr_addr, 0)) 1400 return -TARGET_EFAULT; 1401 1402 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1403 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1404 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1405 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1406 1407 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1408 1409 return 0; 1410 } 1411 #endif 1412 1413 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1414 /* do_select() must return target values and target errnos. */ 1415 static abi_long do_select(int n, 1416 abi_ulong rfd_addr, abi_ulong wfd_addr, 1417 abi_ulong efd_addr, abi_ulong target_tv_addr) 1418 { 1419 fd_set rfds, wfds, efds; 1420 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1421 struct timeval tv; 1422 struct timespec ts, *ts_ptr; 1423 abi_long ret; 1424 1425 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1426 if (ret) { 1427 return ret; 1428 } 1429 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1430 if (ret) { 1431 return ret; 1432 } 1433 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1434 if (ret) { 1435 return ret; 1436 } 1437 1438 if (target_tv_addr) { 1439 if (copy_from_user_timeval(&tv, target_tv_addr)) 1440 return -TARGET_EFAULT; 1441 ts.tv_sec = tv.tv_sec; 1442 ts.tv_nsec = tv.tv_usec * 1000; 1443 ts_ptr = &ts; 1444 } else { 1445 ts_ptr = NULL; 1446 } 1447 1448 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1449 ts_ptr, NULL)); 1450 1451 if (!is_error(ret)) { 1452 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1453 return -TARGET_EFAULT; 1454 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1455 return -TARGET_EFAULT; 1456 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1457 return -TARGET_EFAULT; 1458 1459 if (target_tv_addr) { 1460 tv.tv_sec = ts.tv_sec; 1461 tv.tv_usec = ts.tv_nsec / 1000; 1462 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1463 return -TARGET_EFAULT; 1464 } 1465 } 1466 } 1467 1468 return ret; 1469 } 1470 1471 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1472 static abi_long do_old_select(abi_ulong arg1) 1473 { 1474 struct target_sel_arg_struct *sel; 1475 abi_ulong inp, outp, exp, tvp; 1476 long nsel; 1477 1478 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1479 return -TARGET_EFAULT; 1480 } 1481 1482 nsel = tswapal(sel->n); 1483 inp = tswapal(sel->inp); 1484 outp = tswapal(sel->outp); 1485 exp = tswapal(sel->exp); 1486 tvp = tswapal(sel->tvp); 1487 1488 unlock_user_struct(sel, arg1, 0); 1489 1490 return do_select(nsel, inp, outp, exp, tvp); 1491 } 1492 #endif 1493 #endif 1494 1495 static abi_long do_pipe2(int host_pipe[], int flags) 1496 { 1497 #ifdef CONFIG_PIPE2 1498 return pipe2(host_pipe, flags); 1499 #else 1500 return -ENOSYS; 1501 #endif 1502 } 1503 1504 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1505 int flags, int is_pipe2) 1506 { 1507 int host_pipe[2]; 1508 abi_long ret; 1509 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1510 1511 if (is_error(ret)) 1512 return get_errno(ret); 1513 1514 /* Several targets have special calling conventions for the original 1515 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1516 if (!is_pipe2) { 1517 #if defined(TARGET_ALPHA) 1518 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1519 return host_pipe[0]; 1520 #elif defined(TARGET_MIPS) 1521 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1522 return host_pipe[0]; 1523 #elif defined(TARGET_SH4) 1524 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1525 return host_pipe[0]; 1526 #elif defined(TARGET_SPARC) 1527 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1528 return host_pipe[0]; 1529 #endif 1530 } 1531 1532 if (put_user_s32(host_pipe[0], pipedes) 1533 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1534 return -TARGET_EFAULT; 1535 return get_errno(ret); 1536 } 1537 1538 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1539 abi_ulong target_addr, 1540 socklen_t len) 1541 { 1542 struct target_ip_mreqn *target_smreqn; 1543 1544 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1545 if (!target_smreqn) 1546 return -TARGET_EFAULT; 1547 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1548 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1549 if (len == sizeof(struct target_ip_mreqn)) 1550 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1551 unlock_user(target_smreqn, target_addr, 0); 1552 1553 return 0; 1554 } 1555 1556 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1557 abi_ulong target_addr, 1558 socklen_t len) 1559 { 1560 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1561 sa_family_t sa_family; 1562 struct target_sockaddr *target_saddr; 1563 1564 if (fd_trans_target_to_host_addr(fd)) { 1565 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1566 } 1567 1568 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1569 if (!target_saddr) 1570 return -TARGET_EFAULT; 1571 1572 sa_family = tswap16(target_saddr->sa_family); 1573 1574 /* Oops. The caller might send a incomplete sun_path; sun_path 1575 * must be terminated by \0 (see the manual page), but 1576 * unfortunately it is quite common to specify sockaddr_un 1577 * length as "strlen(x->sun_path)" while it should be 1578 * "strlen(...) + 1". We'll fix that here if needed. 1579 * Linux kernel has a similar feature. 1580 */ 1581 1582 if (sa_family == AF_UNIX) { 1583 if (len < unix_maxlen && len > 0) { 1584 char *cp = (char*)target_saddr; 1585 1586 if ( cp[len-1] && !cp[len] ) 1587 len++; 1588 } 1589 if (len > unix_maxlen) 1590 len = unix_maxlen; 1591 } 1592 1593 memcpy(addr, target_saddr, len); 1594 addr->sa_family = sa_family; 1595 if (sa_family == AF_NETLINK) { 1596 struct sockaddr_nl *nladdr; 1597 1598 nladdr = (struct sockaddr_nl *)addr; 1599 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1600 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1601 } else if (sa_family == AF_PACKET) { 1602 struct target_sockaddr_ll *lladdr; 1603 1604 lladdr = (struct target_sockaddr_ll *)addr; 1605 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1606 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1607 } 1608 unlock_user(target_saddr, target_addr, 0); 1609 1610 return 0; 1611 } 1612 1613 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1614 struct sockaddr *addr, 1615 socklen_t len) 1616 { 1617 struct target_sockaddr *target_saddr; 1618 1619 if (len == 0) { 1620 return 0; 1621 } 1622 1623 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1624 if (!target_saddr) 1625 return -TARGET_EFAULT; 1626 memcpy(target_saddr, addr, len); 1627 if (len >= offsetof(struct target_sockaddr, sa_family) + 1628 sizeof(target_saddr->sa_family)) { 1629 target_saddr->sa_family = tswap16(addr->sa_family); 1630 } 1631 if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) { 1632 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr; 1633 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1634 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1635 } else if (addr->sa_family == AF_PACKET) { 1636 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1637 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1638 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1639 } else if (addr->sa_family == AF_INET6 && 1640 len >= sizeof(struct target_sockaddr_in6)) { 1641 struct target_sockaddr_in6 *target_in6 = 1642 (struct target_sockaddr_in6 *)target_saddr; 1643 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1644 } 1645 unlock_user(target_saddr, target_addr, len); 1646 1647 return 0; 1648 } 1649 1650 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1651 struct target_msghdr *target_msgh) 1652 { 1653 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1654 abi_long msg_controllen; 1655 abi_ulong target_cmsg_addr; 1656 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1657 socklen_t space = 0; 1658 1659 msg_controllen = tswapal(target_msgh->msg_controllen); 1660 if (msg_controllen < sizeof (struct target_cmsghdr)) 1661 goto the_end; 1662 target_cmsg_addr = tswapal(target_msgh->msg_control); 1663 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1664 target_cmsg_start = target_cmsg; 1665 if (!target_cmsg) 1666 return -TARGET_EFAULT; 1667 1668 while (cmsg && target_cmsg) { 1669 void *data = CMSG_DATA(cmsg); 1670 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1671 1672 int len = tswapal(target_cmsg->cmsg_len) 1673 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr)); 1674 1675 space += CMSG_SPACE(len); 1676 if (space > msgh->msg_controllen) { 1677 space -= CMSG_SPACE(len); 1678 /* This is a QEMU bug, since we allocated the payload 1679 * area ourselves (unlike overflow in host-to-target 1680 * conversion, which is just the guest giving us a buffer 1681 * that's too small). It can't happen for the payload types 1682 * we currently support; if it becomes an issue in future 1683 * we would need to improve our allocation strategy to 1684 * something more intelligent than "twice the size of the 1685 * target buffer we're reading from". 1686 */ 1687 gemu_log("Host cmsg overflow\n"); 1688 break; 1689 } 1690 1691 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1692 cmsg->cmsg_level = SOL_SOCKET; 1693 } else { 1694 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1695 } 1696 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1697 cmsg->cmsg_len = CMSG_LEN(len); 1698 1699 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1700 int *fd = (int *)data; 1701 int *target_fd = (int *)target_data; 1702 int i, numfds = len / sizeof(int); 1703 1704 for (i = 0; i < numfds; i++) { 1705 __get_user(fd[i], target_fd + i); 1706 } 1707 } else if (cmsg->cmsg_level == SOL_SOCKET 1708 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1709 struct ucred *cred = (struct ucred *)data; 1710 struct target_ucred *target_cred = 1711 (struct target_ucred *)target_data; 1712 1713 __get_user(cred->pid, &target_cred->pid); 1714 __get_user(cred->uid, &target_cred->uid); 1715 __get_user(cred->gid, &target_cred->gid); 1716 } else { 1717 gemu_log("Unsupported ancillary data: %d/%d\n", 1718 cmsg->cmsg_level, cmsg->cmsg_type); 1719 memcpy(data, target_data, len); 1720 } 1721 1722 cmsg = CMSG_NXTHDR(msgh, cmsg); 1723 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1724 target_cmsg_start); 1725 } 1726 unlock_user(target_cmsg, target_cmsg_addr, 0); 1727 the_end: 1728 msgh->msg_controllen = space; 1729 return 0; 1730 } 1731 1732 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1733 struct msghdr *msgh) 1734 { 1735 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1736 abi_long msg_controllen; 1737 abi_ulong target_cmsg_addr; 1738 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1739 socklen_t space = 0; 1740 1741 msg_controllen = tswapal(target_msgh->msg_controllen); 1742 if (msg_controllen < sizeof (struct target_cmsghdr)) 1743 goto the_end; 1744 target_cmsg_addr = tswapal(target_msgh->msg_control); 1745 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1746 target_cmsg_start = target_cmsg; 1747 if (!target_cmsg) 1748 return -TARGET_EFAULT; 1749 1750 while (cmsg && target_cmsg) { 1751 void *data = CMSG_DATA(cmsg); 1752 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1753 1754 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr)); 1755 int tgt_len, tgt_space; 1756 1757 /* We never copy a half-header but may copy half-data; 1758 * this is Linux's behaviour in put_cmsg(). Note that 1759 * truncation here is a guest problem (which we report 1760 * to the guest via the CTRUNC bit), unlike truncation 1761 * in target_to_host_cmsg, which is a QEMU bug. 1762 */ 1763 if (msg_controllen < sizeof(struct cmsghdr)) { 1764 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1765 break; 1766 } 1767 1768 if (cmsg->cmsg_level == SOL_SOCKET) { 1769 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1770 } else { 1771 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1772 } 1773 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1774 1775 tgt_len = TARGET_CMSG_LEN(len); 1776 1777 /* Payload types which need a different size of payload on 1778 * the target must adjust tgt_len here. 1779 */ 1780 switch (cmsg->cmsg_level) { 1781 case SOL_SOCKET: 1782 switch (cmsg->cmsg_type) { 1783 case SO_TIMESTAMP: 1784 tgt_len = sizeof(struct target_timeval); 1785 break; 1786 default: 1787 break; 1788 } 1789 default: 1790 break; 1791 } 1792 1793 if (msg_controllen < tgt_len) { 1794 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1795 tgt_len = msg_controllen; 1796 } 1797 1798 /* We must now copy-and-convert len bytes of payload 1799 * into tgt_len bytes of destination space. Bear in mind 1800 * that in both source and destination we may be dealing 1801 * with a truncated value! 1802 */ 1803 switch (cmsg->cmsg_level) { 1804 case SOL_SOCKET: 1805 switch (cmsg->cmsg_type) { 1806 case SCM_RIGHTS: 1807 { 1808 int *fd = (int *)data; 1809 int *target_fd = (int *)target_data; 1810 int i, numfds = tgt_len / sizeof(int); 1811 1812 for (i = 0; i < numfds; i++) { 1813 __put_user(fd[i], target_fd + i); 1814 } 1815 break; 1816 } 1817 case SO_TIMESTAMP: 1818 { 1819 struct timeval *tv = (struct timeval *)data; 1820 struct target_timeval *target_tv = 1821 (struct target_timeval *)target_data; 1822 1823 if (len != sizeof(struct timeval) || 1824 tgt_len != sizeof(struct target_timeval)) { 1825 goto unimplemented; 1826 } 1827 1828 /* copy struct timeval to target */ 1829 __put_user(tv->tv_sec, &target_tv->tv_sec); 1830 __put_user(tv->tv_usec, &target_tv->tv_usec); 1831 break; 1832 } 1833 case SCM_CREDENTIALS: 1834 { 1835 struct ucred *cred = (struct ucred *)data; 1836 struct target_ucred *target_cred = 1837 (struct target_ucred *)target_data; 1838 1839 __put_user(cred->pid, &target_cred->pid); 1840 __put_user(cred->uid, &target_cred->uid); 1841 __put_user(cred->gid, &target_cred->gid); 1842 break; 1843 } 1844 default: 1845 goto unimplemented; 1846 } 1847 break; 1848 1849 case SOL_IP: 1850 switch (cmsg->cmsg_type) { 1851 case IP_TTL: 1852 { 1853 uint32_t *v = (uint32_t *)data; 1854 uint32_t *t_int = (uint32_t *)target_data; 1855 1856 __put_user(*v, t_int); 1857 break; 1858 } 1859 case IP_RECVERR: 1860 { 1861 struct errhdr_t { 1862 struct sock_extended_err ee; 1863 struct sockaddr_in offender; 1864 }; 1865 struct errhdr_t *errh = (struct errhdr_t *)data; 1866 struct errhdr_t *target_errh = 1867 (struct errhdr_t *)target_data; 1868 1869 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1870 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1871 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1872 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1873 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1874 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1875 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1876 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1877 (void *) &errh->offender, sizeof(errh->offender)); 1878 break; 1879 } 1880 default: 1881 goto unimplemented; 1882 } 1883 break; 1884 1885 case SOL_IPV6: 1886 switch (cmsg->cmsg_type) { 1887 case IPV6_HOPLIMIT: 1888 { 1889 uint32_t *v = (uint32_t *)data; 1890 uint32_t *t_int = (uint32_t *)target_data; 1891 1892 __put_user(*v, t_int); 1893 break; 1894 } 1895 case IPV6_RECVERR: 1896 { 1897 struct errhdr6_t { 1898 struct sock_extended_err ee; 1899 struct sockaddr_in6 offender; 1900 }; 1901 struct errhdr6_t *errh = (struct errhdr6_t *)data; 1902 struct errhdr6_t *target_errh = 1903 (struct errhdr6_t *)target_data; 1904 1905 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1906 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1907 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1908 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1909 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1910 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1911 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1912 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1913 (void *) &errh->offender, sizeof(errh->offender)); 1914 break; 1915 } 1916 default: 1917 goto unimplemented; 1918 } 1919 break; 1920 1921 default: 1922 unimplemented: 1923 gemu_log("Unsupported ancillary data: %d/%d\n", 1924 cmsg->cmsg_level, cmsg->cmsg_type); 1925 memcpy(target_data, data, MIN(len, tgt_len)); 1926 if (tgt_len > len) { 1927 memset(target_data + len, 0, tgt_len - len); 1928 } 1929 } 1930 1931 target_cmsg->cmsg_len = tswapal(tgt_len); 1932 tgt_space = TARGET_CMSG_SPACE(len); 1933 if (msg_controllen < tgt_space) { 1934 tgt_space = msg_controllen; 1935 } 1936 msg_controllen -= tgt_space; 1937 space += tgt_space; 1938 cmsg = CMSG_NXTHDR(msgh, cmsg); 1939 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1940 target_cmsg_start); 1941 } 1942 unlock_user(target_cmsg, target_cmsg_addr, space); 1943 the_end: 1944 target_msgh->msg_controllen = tswapal(space); 1945 return 0; 1946 } 1947 1948 static void tswap_nlmsghdr(struct nlmsghdr *nlh) 1949 { 1950 nlh->nlmsg_len = tswap32(nlh->nlmsg_len); 1951 nlh->nlmsg_type = tswap16(nlh->nlmsg_type); 1952 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags); 1953 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq); 1954 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid); 1955 } 1956 1957 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh, 1958 size_t len, 1959 abi_long (*host_to_target_nlmsg) 1960 (struct nlmsghdr *)) 1961 { 1962 uint32_t nlmsg_len; 1963 abi_long ret; 1964 1965 while (len > sizeof(struct nlmsghdr)) { 1966 1967 nlmsg_len = nlh->nlmsg_len; 1968 if (nlmsg_len < sizeof(struct nlmsghdr) || 1969 nlmsg_len > len) { 1970 break; 1971 } 1972 1973 switch (nlh->nlmsg_type) { 1974 case NLMSG_DONE: 1975 tswap_nlmsghdr(nlh); 1976 return 0; 1977 case NLMSG_NOOP: 1978 break; 1979 case NLMSG_ERROR: 1980 { 1981 struct nlmsgerr *e = NLMSG_DATA(nlh); 1982 e->error = tswap32(e->error); 1983 tswap_nlmsghdr(&e->msg); 1984 tswap_nlmsghdr(nlh); 1985 return 0; 1986 } 1987 default: 1988 ret = host_to_target_nlmsg(nlh); 1989 if (ret < 0) { 1990 tswap_nlmsghdr(nlh); 1991 return ret; 1992 } 1993 break; 1994 } 1995 tswap_nlmsghdr(nlh); 1996 len -= NLMSG_ALIGN(nlmsg_len); 1997 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len)); 1998 } 1999 return 0; 2000 } 2001 2002 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh, 2003 size_t len, 2004 abi_long (*target_to_host_nlmsg) 2005 (struct nlmsghdr *)) 2006 { 2007 int ret; 2008 2009 while (len > sizeof(struct nlmsghdr)) { 2010 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) || 2011 tswap32(nlh->nlmsg_len) > len) { 2012 break; 2013 } 2014 tswap_nlmsghdr(nlh); 2015 switch (nlh->nlmsg_type) { 2016 case NLMSG_DONE: 2017 return 0; 2018 case NLMSG_NOOP: 2019 break; 2020 case NLMSG_ERROR: 2021 { 2022 struct nlmsgerr *e = NLMSG_DATA(nlh); 2023 e->error = tswap32(e->error); 2024 tswap_nlmsghdr(&e->msg); 2025 return 0; 2026 } 2027 default: 2028 ret = target_to_host_nlmsg(nlh); 2029 if (ret < 0) { 2030 return ret; 2031 } 2032 } 2033 len -= NLMSG_ALIGN(nlh->nlmsg_len); 2034 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len)); 2035 } 2036 return 0; 2037 } 2038 2039 #ifdef CONFIG_RTNETLINK 2040 static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr, 2041 size_t len, void *context, 2042 abi_long (*host_to_target_nlattr) 2043 (struct nlattr *, 2044 void *context)) 2045 { 2046 unsigned short nla_len; 2047 abi_long ret; 2048 2049 while (len > sizeof(struct nlattr)) { 2050 nla_len = nlattr->nla_len; 2051 if (nla_len < sizeof(struct nlattr) || 2052 nla_len > len) { 2053 break; 2054 } 2055 ret = host_to_target_nlattr(nlattr, context); 2056 nlattr->nla_len = tswap16(nlattr->nla_len); 2057 nlattr->nla_type = tswap16(nlattr->nla_type); 2058 if (ret < 0) { 2059 return ret; 2060 } 2061 len -= NLA_ALIGN(nla_len); 2062 nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len)); 2063 } 2064 return 0; 2065 } 2066 2067 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr, 2068 size_t len, 2069 abi_long (*host_to_target_rtattr) 2070 (struct rtattr *)) 2071 { 2072 unsigned short rta_len; 2073 abi_long ret; 2074 2075 while (len > sizeof(struct rtattr)) { 2076 rta_len = rtattr->rta_len; 2077 if (rta_len < sizeof(struct rtattr) || 2078 rta_len > len) { 2079 break; 2080 } 2081 ret = host_to_target_rtattr(rtattr); 2082 rtattr->rta_len = tswap16(rtattr->rta_len); 2083 rtattr->rta_type = tswap16(rtattr->rta_type); 2084 if (ret < 0) { 2085 return ret; 2086 } 2087 len -= RTA_ALIGN(rta_len); 2088 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len)); 2089 } 2090 return 0; 2091 } 2092 2093 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN) 2094 2095 static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr, 2096 void *context) 2097 { 2098 uint16_t *u16; 2099 uint32_t *u32; 2100 uint64_t *u64; 2101 2102 switch (nlattr->nla_type) { 2103 /* no data */ 2104 case QEMU_IFLA_BR_FDB_FLUSH: 2105 break; 2106 /* binary */ 2107 case QEMU_IFLA_BR_GROUP_ADDR: 2108 break; 2109 /* uint8_t */ 2110 case QEMU_IFLA_BR_VLAN_FILTERING: 2111 case QEMU_IFLA_BR_TOPOLOGY_CHANGE: 2112 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED: 2113 case QEMU_IFLA_BR_MCAST_ROUTER: 2114 case QEMU_IFLA_BR_MCAST_SNOOPING: 2115 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR: 2116 case QEMU_IFLA_BR_MCAST_QUERIER: 2117 case QEMU_IFLA_BR_NF_CALL_IPTABLES: 2118 case QEMU_IFLA_BR_NF_CALL_IP6TABLES: 2119 case QEMU_IFLA_BR_NF_CALL_ARPTABLES: 2120 break; 2121 /* uint16_t */ 2122 case QEMU_IFLA_BR_PRIORITY: 2123 case QEMU_IFLA_BR_VLAN_PROTOCOL: 2124 case QEMU_IFLA_BR_GROUP_FWD_MASK: 2125 case QEMU_IFLA_BR_ROOT_PORT: 2126 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID: 2127 u16 = NLA_DATA(nlattr); 2128 *u16 = tswap16(*u16); 2129 break; 2130 /* uint32_t */ 2131 case QEMU_IFLA_BR_FORWARD_DELAY: 2132 case QEMU_IFLA_BR_HELLO_TIME: 2133 case QEMU_IFLA_BR_MAX_AGE: 2134 case QEMU_IFLA_BR_AGEING_TIME: 2135 case QEMU_IFLA_BR_STP_STATE: 2136 case QEMU_IFLA_BR_ROOT_PATH_COST: 2137 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY: 2138 case QEMU_IFLA_BR_MCAST_HASH_MAX: 2139 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT: 2140 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT: 2141 u32 = NLA_DATA(nlattr); 2142 *u32 = tswap32(*u32); 2143 break; 2144 /* uint64_t */ 2145 case QEMU_IFLA_BR_HELLO_TIMER: 2146 case QEMU_IFLA_BR_TCN_TIMER: 2147 case QEMU_IFLA_BR_GC_TIMER: 2148 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER: 2149 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL: 2150 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL: 2151 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL: 2152 case QEMU_IFLA_BR_MCAST_QUERY_INTVL: 2153 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL: 2154 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL: 2155 u64 = NLA_DATA(nlattr); 2156 *u64 = tswap64(*u64); 2157 break; 2158 /* ifla_bridge_id: uin8_t[] */ 2159 case QEMU_IFLA_BR_ROOT_ID: 2160 case QEMU_IFLA_BR_BRIDGE_ID: 2161 break; 2162 default: 2163 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type); 2164 break; 2165 } 2166 return 0; 2167 } 2168 2169 static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr, 2170 void *context) 2171 { 2172 uint16_t *u16; 2173 uint32_t *u32; 2174 uint64_t *u64; 2175 2176 switch (nlattr->nla_type) { 2177 /* uint8_t */ 2178 case QEMU_IFLA_BRPORT_STATE: 2179 case QEMU_IFLA_BRPORT_MODE: 2180 case QEMU_IFLA_BRPORT_GUARD: 2181 case QEMU_IFLA_BRPORT_PROTECT: 2182 case QEMU_IFLA_BRPORT_FAST_LEAVE: 2183 case QEMU_IFLA_BRPORT_LEARNING: 2184 case QEMU_IFLA_BRPORT_UNICAST_FLOOD: 2185 case QEMU_IFLA_BRPORT_PROXYARP: 2186 case QEMU_IFLA_BRPORT_LEARNING_SYNC: 2187 case QEMU_IFLA_BRPORT_PROXYARP_WIFI: 2188 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK: 2189 case QEMU_IFLA_BRPORT_CONFIG_PENDING: 2190 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER: 2191 break; 2192 /* uint16_t */ 2193 case QEMU_IFLA_BRPORT_PRIORITY: 2194 case QEMU_IFLA_BRPORT_DESIGNATED_PORT: 2195 case QEMU_IFLA_BRPORT_DESIGNATED_COST: 2196 case QEMU_IFLA_BRPORT_ID: 2197 case QEMU_IFLA_BRPORT_NO: 2198 u16 = NLA_DATA(nlattr); 2199 *u16 = tswap16(*u16); 2200 break; 2201 /* uin32_t */ 2202 case QEMU_IFLA_BRPORT_COST: 2203 u32 = NLA_DATA(nlattr); 2204 *u32 = tswap32(*u32); 2205 break; 2206 /* uint64_t */ 2207 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER: 2208 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER: 2209 case QEMU_IFLA_BRPORT_HOLD_TIMER: 2210 u64 = NLA_DATA(nlattr); 2211 *u64 = tswap64(*u64); 2212 break; 2213 /* ifla_bridge_id: uint8_t[] */ 2214 case QEMU_IFLA_BRPORT_ROOT_ID: 2215 case QEMU_IFLA_BRPORT_BRIDGE_ID: 2216 break; 2217 default: 2218 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type); 2219 break; 2220 } 2221 return 0; 2222 } 2223 2224 struct linkinfo_context { 2225 int len; 2226 char *name; 2227 int slave_len; 2228 char *slave_name; 2229 }; 2230 2231 static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr, 2232 void *context) 2233 { 2234 struct linkinfo_context *li_context = context; 2235 2236 switch (nlattr->nla_type) { 2237 /* string */ 2238 case QEMU_IFLA_INFO_KIND: 2239 li_context->name = NLA_DATA(nlattr); 2240 li_context->len = nlattr->nla_len - NLA_HDRLEN; 2241 break; 2242 case QEMU_IFLA_INFO_SLAVE_KIND: 2243 li_context->slave_name = NLA_DATA(nlattr); 2244 li_context->slave_len = nlattr->nla_len - NLA_HDRLEN; 2245 break; 2246 /* stats */ 2247 case QEMU_IFLA_INFO_XSTATS: 2248 /* FIXME: only used by CAN */ 2249 break; 2250 /* nested */ 2251 case QEMU_IFLA_INFO_DATA: 2252 if (strncmp(li_context->name, "bridge", 2253 li_context->len) == 0) { 2254 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2255 nlattr->nla_len, 2256 NULL, 2257 host_to_target_data_bridge_nlattr); 2258 } else { 2259 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name); 2260 } 2261 break; 2262 case QEMU_IFLA_INFO_SLAVE_DATA: 2263 if (strncmp(li_context->slave_name, "bridge", 2264 li_context->slave_len) == 0) { 2265 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2266 nlattr->nla_len, 2267 NULL, 2268 host_to_target_slave_data_bridge_nlattr); 2269 } else { 2270 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n", 2271 li_context->slave_name); 2272 } 2273 break; 2274 default: 2275 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type); 2276 break; 2277 } 2278 2279 return 0; 2280 } 2281 2282 static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr, 2283 void *context) 2284 { 2285 uint32_t *u32; 2286 int i; 2287 2288 switch (nlattr->nla_type) { 2289 case QEMU_IFLA_INET_CONF: 2290 u32 = NLA_DATA(nlattr); 2291 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2292 i++) { 2293 u32[i] = tswap32(u32[i]); 2294 } 2295 break; 2296 default: 2297 gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type); 2298 } 2299 return 0; 2300 } 2301 2302 static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr, 2303 void *context) 2304 { 2305 uint32_t *u32; 2306 uint64_t *u64; 2307 struct ifla_cacheinfo *ci; 2308 int i; 2309 2310 switch (nlattr->nla_type) { 2311 /* binaries */ 2312 case QEMU_IFLA_INET6_TOKEN: 2313 break; 2314 /* uint8_t */ 2315 case QEMU_IFLA_INET6_ADDR_GEN_MODE: 2316 break; 2317 /* uint32_t */ 2318 case QEMU_IFLA_INET6_FLAGS: 2319 u32 = NLA_DATA(nlattr); 2320 *u32 = tswap32(*u32); 2321 break; 2322 /* uint32_t[] */ 2323 case QEMU_IFLA_INET6_CONF: 2324 u32 = NLA_DATA(nlattr); 2325 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2326 i++) { 2327 u32[i] = tswap32(u32[i]); 2328 } 2329 break; 2330 /* ifla_cacheinfo */ 2331 case QEMU_IFLA_INET6_CACHEINFO: 2332 ci = NLA_DATA(nlattr); 2333 ci->max_reasm_len = tswap32(ci->max_reasm_len); 2334 ci->tstamp = tswap32(ci->tstamp); 2335 ci->reachable_time = tswap32(ci->reachable_time); 2336 ci->retrans_time = tswap32(ci->retrans_time); 2337 break; 2338 /* uint64_t[] */ 2339 case QEMU_IFLA_INET6_STATS: 2340 case QEMU_IFLA_INET6_ICMP6STATS: 2341 u64 = NLA_DATA(nlattr); 2342 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64); 2343 i++) { 2344 u64[i] = tswap64(u64[i]); 2345 } 2346 break; 2347 default: 2348 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type); 2349 } 2350 return 0; 2351 } 2352 2353 static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr, 2354 void *context) 2355 { 2356 switch (nlattr->nla_type) { 2357 case AF_INET: 2358 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2359 NULL, 2360 host_to_target_data_inet_nlattr); 2361 case AF_INET6: 2362 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2363 NULL, 2364 host_to_target_data_inet6_nlattr); 2365 default: 2366 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type); 2367 break; 2368 } 2369 return 0; 2370 } 2371 2372 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr) 2373 { 2374 uint32_t *u32; 2375 struct rtnl_link_stats *st; 2376 struct rtnl_link_stats64 *st64; 2377 struct rtnl_link_ifmap *map; 2378 struct linkinfo_context li_context; 2379 2380 switch (rtattr->rta_type) { 2381 /* binary stream */ 2382 case QEMU_IFLA_ADDRESS: 2383 case QEMU_IFLA_BROADCAST: 2384 /* string */ 2385 case QEMU_IFLA_IFNAME: 2386 case QEMU_IFLA_QDISC: 2387 break; 2388 /* uin8_t */ 2389 case QEMU_IFLA_OPERSTATE: 2390 case QEMU_IFLA_LINKMODE: 2391 case QEMU_IFLA_CARRIER: 2392 case QEMU_IFLA_PROTO_DOWN: 2393 break; 2394 /* uint32_t */ 2395 case QEMU_IFLA_MTU: 2396 case QEMU_IFLA_LINK: 2397 case QEMU_IFLA_WEIGHT: 2398 case QEMU_IFLA_TXQLEN: 2399 case QEMU_IFLA_CARRIER_CHANGES: 2400 case QEMU_IFLA_NUM_RX_QUEUES: 2401 case QEMU_IFLA_NUM_TX_QUEUES: 2402 case QEMU_IFLA_PROMISCUITY: 2403 case QEMU_IFLA_EXT_MASK: 2404 case QEMU_IFLA_LINK_NETNSID: 2405 case QEMU_IFLA_GROUP: 2406 case QEMU_IFLA_MASTER: 2407 case QEMU_IFLA_NUM_VF: 2408 case QEMU_IFLA_GSO_MAX_SEGS: 2409 case QEMU_IFLA_GSO_MAX_SIZE: 2410 u32 = RTA_DATA(rtattr); 2411 *u32 = tswap32(*u32); 2412 break; 2413 /* struct rtnl_link_stats */ 2414 case QEMU_IFLA_STATS: 2415 st = RTA_DATA(rtattr); 2416 st->rx_packets = tswap32(st->rx_packets); 2417 st->tx_packets = tswap32(st->tx_packets); 2418 st->rx_bytes = tswap32(st->rx_bytes); 2419 st->tx_bytes = tswap32(st->tx_bytes); 2420 st->rx_errors = tswap32(st->rx_errors); 2421 st->tx_errors = tswap32(st->tx_errors); 2422 st->rx_dropped = tswap32(st->rx_dropped); 2423 st->tx_dropped = tswap32(st->tx_dropped); 2424 st->multicast = tswap32(st->multicast); 2425 st->collisions = tswap32(st->collisions); 2426 2427 /* detailed rx_errors: */ 2428 st->rx_length_errors = tswap32(st->rx_length_errors); 2429 st->rx_over_errors = tswap32(st->rx_over_errors); 2430 st->rx_crc_errors = tswap32(st->rx_crc_errors); 2431 st->rx_frame_errors = tswap32(st->rx_frame_errors); 2432 st->rx_fifo_errors = tswap32(st->rx_fifo_errors); 2433 st->rx_missed_errors = tswap32(st->rx_missed_errors); 2434 2435 /* detailed tx_errors */ 2436 st->tx_aborted_errors = tswap32(st->tx_aborted_errors); 2437 st->tx_carrier_errors = tswap32(st->tx_carrier_errors); 2438 st->tx_fifo_errors = tswap32(st->tx_fifo_errors); 2439 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors); 2440 st->tx_window_errors = tswap32(st->tx_window_errors); 2441 2442 /* for cslip etc */ 2443 st->rx_compressed = tswap32(st->rx_compressed); 2444 st->tx_compressed = tswap32(st->tx_compressed); 2445 break; 2446 /* struct rtnl_link_stats64 */ 2447 case QEMU_IFLA_STATS64: 2448 st64 = RTA_DATA(rtattr); 2449 st64->rx_packets = tswap64(st64->rx_packets); 2450 st64->tx_packets = tswap64(st64->tx_packets); 2451 st64->rx_bytes = tswap64(st64->rx_bytes); 2452 st64->tx_bytes = tswap64(st64->tx_bytes); 2453 st64->rx_errors = tswap64(st64->rx_errors); 2454 st64->tx_errors = tswap64(st64->tx_errors); 2455 st64->rx_dropped = tswap64(st64->rx_dropped); 2456 st64->tx_dropped = tswap64(st64->tx_dropped); 2457 st64->multicast = tswap64(st64->multicast); 2458 st64->collisions = tswap64(st64->collisions); 2459 2460 /* detailed rx_errors: */ 2461 st64->rx_length_errors = tswap64(st64->rx_length_errors); 2462 st64->rx_over_errors = tswap64(st64->rx_over_errors); 2463 st64->rx_crc_errors = tswap64(st64->rx_crc_errors); 2464 st64->rx_frame_errors = tswap64(st64->rx_frame_errors); 2465 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors); 2466 st64->rx_missed_errors = tswap64(st64->rx_missed_errors); 2467 2468 /* detailed tx_errors */ 2469 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors); 2470 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors); 2471 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors); 2472 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors); 2473 st64->tx_window_errors = tswap64(st64->tx_window_errors); 2474 2475 /* for cslip etc */ 2476 st64->rx_compressed = tswap64(st64->rx_compressed); 2477 st64->tx_compressed = tswap64(st64->tx_compressed); 2478 break; 2479 /* struct rtnl_link_ifmap */ 2480 case QEMU_IFLA_MAP: 2481 map = RTA_DATA(rtattr); 2482 map->mem_start = tswap64(map->mem_start); 2483 map->mem_end = tswap64(map->mem_end); 2484 map->base_addr = tswap64(map->base_addr); 2485 map->irq = tswap16(map->irq); 2486 break; 2487 /* nested */ 2488 case QEMU_IFLA_LINKINFO: 2489 memset(&li_context, 0, sizeof(li_context)); 2490 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2491 &li_context, 2492 host_to_target_data_linkinfo_nlattr); 2493 case QEMU_IFLA_AF_SPEC: 2494 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2495 NULL, 2496 host_to_target_data_spec_nlattr); 2497 default: 2498 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type); 2499 break; 2500 } 2501 return 0; 2502 } 2503 2504 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr) 2505 { 2506 uint32_t *u32; 2507 struct ifa_cacheinfo *ci; 2508 2509 switch (rtattr->rta_type) { 2510 /* binary: depends on family type */ 2511 case IFA_ADDRESS: 2512 case IFA_LOCAL: 2513 break; 2514 /* string */ 2515 case IFA_LABEL: 2516 break; 2517 /* u32 */ 2518 case IFA_FLAGS: 2519 case IFA_BROADCAST: 2520 u32 = RTA_DATA(rtattr); 2521 *u32 = tswap32(*u32); 2522 break; 2523 /* struct ifa_cacheinfo */ 2524 case IFA_CACHEINFO: 2525 ci = RTA_DATA(rtattr); 2526 ci->ifa_prefered = tswap32(ci->ifa_prefered); 2527 ci->ifa_valid = tswap32(ci->ifa_valid); 2528 ci->cstamp = tswap32(ci->cstamp); 2529 ci->tstamp = tswap32(ci->tstamp); 2530 break; 2531 default: 2532 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type); 2533 break; 2534 } 2535 return 0; 2536 } 2537 2538 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr) 2539 { 2540 uint32_t *u32; 2541 switch (rtattr->rta_type) { 2542 /* binary: depends on family type */ 2543 case RTA_GATEWAY: 2544 case RTA_DST: 2545 case RTA_PREFSRC: 2546 break; 2547 /* u32 */ 2548 case RTA_PRIORITY: 2549 case RTA_TABLE: 2550 case RTA_OIF: 2551 u32 = RTA_DATA(rtattr); 2552 *u32 = tswap32(*u32); 2553 break; 2554 default: 2555 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type); 2556 break; 2557 } 2558 return 0; 2559 } 2560 2561 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr, 2562 uint32_t rtattr_len) 2563 { 2564 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2565 host_to_target_data_link_rtattr); 2566 } 2567 2568 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr, 2569 uint32_t rtattr_len) 2570 { 2571 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2572 host_to_target_data_addr_rtattr); 2573 } 2574 2575 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr, 2576 uint32_t rtattr_len) 2577 { 2578 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2579 host_to_target_data_route_rtattr); 2580 } 2581 2582 static abi_long host_to_target_data_route(struct nlmsghdr *nlh) 2583 { 2584 uint32_t nlmsg_len; 2585 struct ifinfomsg *ifi; 2586 struct ifaddrmsg *ifa; 2587 struct rtmsg *rtm; 2588 2589 nlmsg_len = nlh->nlmsg_len; 2590 switch (nlh->nlmsg_type) { 2591 case RTM_NEWLINK: 2592 case RTM_DELLINK: 2593 case RTM_GETLINK: 2594 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2595 ifi = NLMSG_DATA(nlh); 2596 ifi->ifi_type = tswap16(ifi->ifi_type); 2597 ifi->ifi_index = tswap32(ifi->ifi_index); 2598 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2599 ifi->ifi_change = tswap32(ifi->ifi_change); 2600 host_to_target_link_rtattr(IFLA_RTA(ifi), 2601 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi))); 2602 } 2603 break; 2604 case RTM_NEWADDR: 2605 case RTM_DELADDR: 2606 case RTM_GETADDR: 2607 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2608 ifa = NLMSG_DATA(nlh); 2609 ifa->ifa_index = tswap32(ifa->ifa_index); 2610 host_to_target_addr_rtattr(IFA_RTA(ifa), 2611 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa))); 2612 } 2613 break; 2614 case RTM_NEWROUTE: 2615 case RTM_DELROUTE: 2616 case RTM_GETROUTE: 2617 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2618 rtm = NLMSG_DATA(nlh); 2619 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2620 host_to_target_route_rtattr(RTM_RTA(rtm), 2621 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm))); 2622 } 2623 break; 2624 default: 2625 return -TARGET_EINVAL; 2626 } 2627 return 0; 2628 } 2629 2630 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh, 2631 size_t len) 2632 { 2633 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route); 2634 } 2635 2636 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr, 2637 size_t len, 2638 abi_long (*target_to_host_rtattr) 2639 (struct rtattr *)) 2640 { 2641 abi_long ret; 2642 2643 while (len >= sizeof(struct rtattr)) { 2644 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) || 2645 tswap16(rtattr->rta_len) > len) { 2646 break; 2647 } 2648 rtattr->rta_len = tswap16(rtattr->rta_len); 2649 rtattr->rta_type = tswap16(rtattr->rta_type); 2650 ret = target_to_host_rtattr(rtattr); 2651 if (ret < 0) { 2652 return ret; 2653 } 2654 len -= RTA_ALIGN(rtattr->rta_len); 2655 rtattr = (struct rtattr *)(((char *)rtattr) + 2656 RTA_ALIGN(rtattr->rta_len)); 2657 } 2658 return 0; 2659 } 2660 2661 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr) 2662 { 2663 switch (rtattr->rta_type) { 2664 default: 2665 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type); 2666 break; 2667 } 2668 return 0; 2669 } 2670 2671 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr) 2672 { 2673 switch (rtattr->rta_type) { 2674 /* binary: depends on family type */ 2675 case IFA_LOCAL: 2676 case IFA_ADDRESS: 2677 break; 2678 default: 2679 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type); 2680 break; 2681 } 2682 return 0; 2683 } 2684 2685 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr) 2686 { 2687 uint32_t *u32; 2688 switch (rtattr->rta_type) { 2689 /* binary: depends on family type */ 2690 case RTA_DST: 2691 case RTA_SRC: 2692 case RTA_GATEWAY: 2693 break; 2694 /* u32 */ 2695 case RTA_PRIORITY: 2696 case RTA_OIF: 2697 u32 = RTA_DATA(rtattr); 2698 *u32 = tswap32(*u32); 2699 break; 2700 default: 2701 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type); 2702 break; 2703 } 2704 return 0; 2705 } 2706 2707 static void target_to_host_link_rtattr(struct rtattr *rtattr, 2708 uint32_t rtattr_len) 2709 { 2710 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2711 target_to_host_data_link_rtattr); 2712 } 2713 2714 static void target_to_host_addr_rtattr(struct rtattr *rtattr, 2715 uint32_t rtattr_len) 2716 { 2717 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2718 target_to_host_data_addr_rtattr); 2719 } 2720 2721 static void target_to_host_route_rtattr(struct rtattr *rtattr, 2722 uint32_t rtattr_len) 2723 { 2724 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2725 target_to_host_data_route_rtattr); 2726 } 2727 2728 static abi_long target_to_host_data_route(struct nlmsghdr *nlh) 2729 { 2730 struct ifinfomsg *ifi; 2731 struct ifaddrmsg *ifa; 2732 struct rtmsg *rtm; 2733 2734 switch (nlh->nlmsg_type) { 2735 case RTM_GETLINK: 2736 break; 2737 case RTM_NEWLINK: 2738 case RTM_DELLINK: 2739 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2740 ifi = NLMSG_DATA(nlh); 2741 ifi->ifi_type = tswap16(ifi->ifi_type); 2742 ifi->ifi_index = tswap32(ifi->ifi_index); 2743 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2744 ifi->ifi_change = tswap32(ifi->ifi_change); 2745 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len - 2746 NLMSG_LENGTH(sizeof(*ifi))); 2747 } 2748 break; 2749 case RTM_GETADDR: 2750 case RTM_NEWADDR: 2751 case RTM_DELADDR: 2752 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2753 ifa = NLMSG_DATA(nlh); 2754 ifa->ifa_index = tswap32(ifa->ifa_index); 2755 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len - 2756 NLMSG_LENGTH(sizeof(*ifa))); 2757 } 2758 break; 2759 case RTM_GETROUTE: 2760 break; 2761 case RTM_NEWROUTE: 2762 case RTM_DELROUTE: 2763 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2764 rtm = NLMSG_DATA(nlh); 2765 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2766 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len - 2767 NLMSG_LENGTH(sizeof(*rtm))); 2768 } 2769 break; 2770 default: 2771 return -TARGET_EOPNOTSUPP; 2772 } 2773 return 0; 2774 } 2775 2776 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len) 2777 { 2778 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route); 2779 } 2780 #endif /* CONFIG_RTNETLINK */ 2781 2782 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh) 2783 { 2784 switch (nlh->nlmsg_type) { 2785 default: 2786 gemu_log("Unknown host audit message type %d\n", 2787 nlh->nlmsg_type); 2788 return -TARGET_EINVAL; 2789 } 2790 return 0; 2791 } 2792 2793 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh, 2794 size_t len) 2795 { 2796 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit); 2797 } 2798 2799 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh) 2800 { 2801 switch (nlh->nlmsg_type) { 2802 case AUDIT_USER: 2803 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 2804 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 2805 break; 2806 default: 2807 gemu_log("Unknown target audit message type %d\n", 2808 nlh->nlmsg_type); 2809 return -TARGET_EINVAL; 2810 } 2811 2812 return 0; 2813 } 2814 2815 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len) 2816 { 2817 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit); 2818 } 2819 2820 /* do_setsockopt() Must return target values and target errnos. */ 2821 static abi_long do_setsockopt(int sockfd, int level, int optname, 2822 abi_ulong optval_addr, socklen_t optlen) 2823 { 2824 abi_long ret; 2825 int val; 2826 struct ip_mreqn *ip_mreq; 2827 struct ip_mreq_source *ip_mreq_source; 2828 2829 switch(level) { 2830 case SOL_TCP: 2831 /* TCP options all take an 'int' value. */ 2832 if (optlen < sizeof(uint32_t)) 2833 return -TARGET_EINVAL; 2834 2835 if (get_user_u32(val, optval_addr)) 2836 return -TARGET_EFAULT; 2837 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2838 break; 2839 case SOL_IP: 2840 switch(optname) { 2841 case IP_TOS: 2842 case IP_TTL: 2843 case IP_HDRINCL: 2844 case IP_ROUTER_ALERT: 2845 case IP_RECVOPTS: 2846 case IP_RETOPTS: 2847 case IP_PKTINFO: 2848 case IP_MTU_DISCOVER: 2849 case IP_RECVERR: 2850 case IP_RECVTTL: 2851 case IP_RECVTOS: 2852 #ifdef IP_FREEBIND 2853 case IP_FREEBIND: 2854 #endif 2855 case IP_MULTICAST_TTL: 2856 case IP_MULTICAST_LOOP: 2857 val = 0; 2858 if (optlen >= sizeof(uint32_t)) { 2859 if (get_user_u32(val, optval_addr)) 2860 return -TARGET_EFAULT; 2861 } else if (optlen >= 1) { 2862 if (get_user_u8(val, optval_addr)) 2863 return -TARGET_EFAULT; 2864 } 2865 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2866 break; 2867 case IP_ADD_MEMBERSHIP: 2868 case IP_DROP_MEMBERSHIP: 2869 if (optlen < sizeof (struct target_ip_mreq) || 2870 optlen > sizeof (struct target_ip_mreqn)) 2871 return -TARGET_EINVAL; 2872 2873 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2874 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2875 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2876 break; 2877 2878 case IP_BLOCK_SOURCE: 2879 case IP_UNBLOCK_SOURCE: 2880 case IP_ADD_SOURCE_MEMBERSHIP: 2881 case IP_DROP_SOURCE_MEMBERSHIP: 2882 if (optlen != sizeof (struct target_ip_mreq_source)) 2883 return -TARGET_EINVAL; 2884 2885 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2886 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2887 unlock_user (ip_mreq_source, optval_addr, 0); 2888 break; 2889 2890 default: 2891 goto unimplemented; 2892 } 2893 break; 2894 case SOL_IPV6: 2895 switch (optname) { 2896 case IPV6_MTU_DISCOVER: 2897 case IPV6_MTU: 2898 case IPV6_V6ONLY: 2899 case IPV6_RECVPKTINFO: 2900 case IPV6_UNICAST_HOPS: 2901 case IPV6_RECVERR: 2902 case IPV6_RECVHOPLIMIT: 2903 case IPV6_2292HOPLIMIT: 2904 case IPV6_CHECKSUM: 2905 val = 0; 2906 if (optlen < sizeof(uint32_t)) { 2907 return -TARGET_EINVAL; 2908 } 2909 if (get_user_u32(val, optval_addr)) { 2910 return -TARGET_EFAULT; 2911 } 2912 ret = get_errno(setsockopt(sockfd, level, optname, 2913 &val, sizeof(val))); 2914 break; 2915 case IPV6_PKTINFO: 2916 { 2917 struct in6_pktinfo pki; 2918 2919 if (optlen < sizeof(pki)) { 2920 return -TARGET_EINVAL; 2921 } 2922 2923 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2924 return -TARGET_EFAULT; 2925 } 2926 2927 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2928 2929 ret = get_errno(setsockopt(sockfd, level, optname, 2930 &pki, sizeof(pki))); 2931 break; 2932 } 2933 default: 2934 goto unimplemented; 2935 } 2936 break; 2937 case SOL_ICMPV6: 2938 switch (optname) { 2939 case ICMPV6_FILTER: 2940 { 2941 struct icmp6_filter icmp6f; 2942 2943 if (optlen > sizeof(icmp6f)) { 2944 optlen = sizeof(icmp6f); 2945 } 2946 2947 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 2948 return -TARGET_EFAULT; 2949 } 2950 2951 for (val = 0; val < 8; val++) { 2952 icmp6f.data[val] = tswap32(icmp6f.data[val]); 2953 } 2954 2955 ret = get_errno(setsockopt(sockfd, level, optname, 2956 &icmp6f, optlen)); 2957 break; 2958 } 2959 default: 2960 goto unimplemented; 2961 } 2962 break; 2963 case SOL_RAW: 2964 switch (optname) { 2965 case ICMP_FILTER: 2966 case IPV6_CHECKSUM: 2967 /* those take an u32 value */ 2968 if (optlen < sizeof(uint32_t)) { 2969 return -TARGET_EINVAL; 2970 } 2971 2972 if (get_user_u32(val, optval_addr)) { 2973 return -TARGET_EFAULT; 2974 } 2975 ret = get_errno(setsockopt(sockfd, level, optname, 2976 &val, sizeof(val))); 2977 break; 2978 2979 default: 2980 goto unimplemented; 2981 } 2982 break; 2983 case TARGET_SOL_SOCKET: 2984 switch (optname) { 2985 case TARGET_SO_RCVTIMEO: 2986 { 2987 struct timeval tv; 2988 2989 optname = SO_RCVTIMEO; 2990 2991 set_timeout: 2992 if (optlen != sizeof(struct target_timeval)) { 2993 return -TARGET_EINVAL; 2994 } 2995 2996 if (copy_from_user_timeval(&tv, optval_addr)) { 2997 return -TARGET_EFAULT; 2998 } 2999 3000 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 3001 &tv, sizeof(tv))); 3002 return ret; 3003 } 3004 case TARGET_SO_SNDTIMEO: 3005 optname = SO_SNDTIMEO; 3006 goto set_timeout; 3007 case TARGET_SO_ATTACH_FILTER: 3008 { 3009 struct target_sock_fprog *tfprog; 3010 struct target_sock_filter *tfilter; 3011 struct sock_fprog fprog; 3012 struct sock_filter *filter; 3013 int i; 3014 3015 if (optlen != sizeof(*tfprog)) { 3016 return -TARGET_EINVAL; 3017 } 3018 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 3019 return -TARGET_EFAULT; 3020 } 3021 if (!lock_user_struct(VERIFY_READ, tfilter, 3022 tswapal(tfprog->filter), 0)) { 3023 unlock_user_struct(tfprog, optval_addr, 1); 3024 return -TARGET_EFAULT; 3025 } 3026 3027 fprog.len = tswap16(tfprog->len); 3028 filter = g_try_new(struct sock_filter, fprog.len); 3029 if (filter == NULL) { 3030 unlock_user_struct(tfilter, tfprog->filter, 1); 3031 unlock_user_struct(tfprog, optval_addr, 1); 3032 return -TARGET_ENOMEM; 3033 } 3034 for (i = 0; i < fprog.len; i++) { 3035 filter[i].code = tswap16(tfilter[i].code); 3036 filter[i].jt = tfilter[i].jt; 3037 filter[i].jf = tfilter[i].jf; 3038 filter[i].k = tswap32(tfilter[i].k); 3039 } 3040 fprog.filter = filter; 3041 3042 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 3043 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 3044 g_free(filter); 3045 3046 unlock_user_struct(tfilter, tfprog->filter, 1); 3047 unlock_user_struct(tfprog, optval_addr, 1); 3048 return ret; 3049 } 3050 case TARGET_SO_BINDTODEVICE: 3051 { 3052 char *dev_ifname, *addr_ifname; 3053 3054 if (optlen > IFNAMSIZ - 1) { 3055 optlen = IFNAMSIZ - 1; 3056 } 3057 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 3058 if (!dev_ifname) { 3059 return -TARGET_EFAULT; 3060 } 3061 optname = SO_BINDTODEVICE; 3062 addr_ifname = alloca(IFNAMSIZ); 3063 memcpy(addr_ifname, dev_ifname, optlen); 3064 addr_ifname[optlen] = 0; 3065 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 3066 addr_ifname, optlen)); 3067 unlock_user (dev_ifname, optval_addr, 0); 3068 return ret; 3069 } 3070 /* Options with 'int' argument. */ 3071 case TARGET_SO_DEBUG: 3072 optname = SO_DEBUG; 3073 break; 3074 case TARGET_SO_REUSEADDR: 3075 optname = SO_REUSEADDR; 3076 break; 3077 case TARGET_SO_TYPE: 3078 optname = SO_TYPE; 3079 break; 3080 case TARGET_SO_ERROR: 3081 optname = SO_ERROR; 3082 break; 3083 case TARGET_SO_DONTROUTE: 3084 optname = SO_DONTROUTE; 3085 break; 3086 case TARGET_SO_BROADCAST: 3087 optname = SO_BROADCAST; 3088 break; 3089 case TARGET_SO_SNDBUF: 3090 optname = SO_SNDBUF; 3091 break; 3092 case TARGET_SO_SNDBUFFORCE: 3093 optname = SO_SNDBUFFORCE; 3094 break; 3095 case TARGET_SO_RCVBUF: 3096 optname = SO_RCVBUF; 3097 break; 3098 case TARGET_SO_RCVBUFFORCE: 3099 optname = SO_RCVBUFFORCE; 3100 break; 3101 case TARGET_SO_KEEPALIVE: 3102 optname = SO_KEEPALIVE; 3103 break; 3104 case TARGET_SO_OOBINLINE: 3105 optname = SO_OOBINLINE; 3106 break; 3107 case TARGET_SO_NO_CHECK: 3108 optname = SO_NO_CHECK; 3109 break; 3110 case TARGET_SO_PRIORITY: 3111 optname = SO_PRIORITY; 3112 break; 3113 #ifdef SO_BSDCOMPAT 3114 case TARGET_SO_BSDCOMPAT: 3115 optname = SO_BSDCOMPAT; 3116 break; 3117 #endif 3118 case TARGET_SO_PASSCRED: 3119 optname = SO_PASSCRED; 3120 break; 3121 case TARGET_SO_PASSSEC: 3122 optname = SO_PASSSEC; 3123 break; 3124 case TARGET_SO_TIMESTAMP: 3125 optname = SO_TIMESTAMP; 3126 break; 3127 case TARGET_SO_RCVLOWAT: 3128 optname = SO_RCVLOWAT; 3129 break; 3130 break; 3131 default: 3132 goto unimplemented; 3133 } 3134 if (optlen < sizeof(uint32_t)) 3135 return -TARGET_EINVAL; 3136 3137 if (get_user_u32(val, optval_addr)) 3138 return -TARGET_EFAULT; 3139 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 3140 break; 3141 default: 3142 unimplemented: 3143 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname); 3144 ret = -TARGET_ENOPROTOOPT; 3145 } 3146 return ret; 3147 } 3148 3149 /* do_getsockopt() Must return target values and target errnos. */ 3150 static abi_long do_getsockopt(int sockfd, int level, int optname, 3151 abi_ulong optval_addr, abi_ulong optlen) 3152 { 3153 abi_long ret; 3154 int len, val; 3155 socklen_t lv; 3156 3157 switch(level) { 3158 case TARGET_SOL_SOCKET: 3159 level = SOL_SOCKET; 3160 switch (optname) { 3161 /* These don't just return a single integer */ 3162 case TARGET_SO_LINGER: 3163 case TARGET_SO_RCVTIMEO: 3164 case TARGET_SO_SNDTIMEO: 3165 case TARGET_SO_PEERNAME: 3166 goto unimplemented; 3167 case TARGET_SO_PEERCRED: { 3168 struct ucred cr; 3169 socklen_t crlen; 3170 struct target_ucred *tcr; 3171 3172 if (get_user_u32(len, optlen)) { 3173 return -TARGET_EFAULT; 3174 } 3175 if (len < 0) { 3176 return -TARGET_EINVAL; 3177 } 3178 3179 crlen = sizeof(cr); 3180 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 3181 &cr, &crlen)); 3182 if (ret < 0) { 3183 return ret; 3184 } 3185 if (len > crlen) { 3186 len = crlen; 3187 } 3188 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 3189 return -TARGET_EFAULT; 3190 } 3191 __put_user(cr.pid, &tcr->pid); 3192 __put_user(cr.uid, &tcr->uid); 3193 __put_user(cr.gid, &tcr->gid); 3194 unlock_user_struct(tcr, optval_addr, 1); 3195 if (put_user_u32(len, optlen)) { 3196 return -TARGET_EFAULT; 3197 } 3198 break; 3199 } 3200 /* Options with 'int' argument. */ 3201 case TARGET_SO_DEBUG: 3202 optname = SO_DEBUG; 3203 goto int_case; 3204 case TARGET_SO_REUSEADDR: 3205 optname = SO_REUSEADDR; 3206 goto int_case; 3207 case TARGET_SO_TYPE: 3208 optname = SO_TYPE; 3209 goto int_case; 3210 case TARGET_SO_ERROR: 3211 optname = SO_ERROR; 3212 goto int_case; 3213 case TARGET_SO_DONTROUTE: 3214 optname = SO_DONTROUTE; 3215 goto int_case; 3216 case TARGET_SO_BROADCAST: 3217 optname = SO_BROADCAST; 3218 goto int_case; 3219 case TARGET_SO_SNDBUF: 3220 optname = SO_SNDBUF; 3221 goto int_case; 3222 case TARGET_SO_RCVBUF: 3223 optname = SO_RCVBUF; 3224 goto int_case; 3225 case TARGET_SO_KEEPALIVE: 3226 optname = SO_KEEPALIVE; 3227 goto int_case; 3228 case TARGET_SO_OOBINLINE: 3229 optname = SO_OOBINLINE; 3230 goto int_case; 3231 case TARGET_SO_NO_CHECK: 3232 optname = SO_NO_CHECK; 3233 goto int_case; 3234 case TARGET_SO_PRIORITY: 3235 optname = SO_PRIORITY; 3236 goto int_case; 3237 #ifdef SO_BSDCOMPAT 3238 case TARGET_SO_BSDCOMPAT: 3239 optname = SO_BSDCOMPAT; 3240 goto int_case; 3241 #endif 3242 case TARGET_SO_PASSCRED: 3243 optname = SO_PASSCRED; 3244 goto int_case; 3245 case TARGET_SO_TIMESTAMP: 3246 optname = SO_TIMESTAMP; 3247 goto int_case; 3248 case TARGET_SO_RCVLOWAT: 3249 optname = SO_RCVLOWAT; 3250 goto int_case; 3251 case TARGET_SO_ACCEPTCONN: 3252 optname = SO_ACCEPTCONN; 3253 goto int_case; 3254 default: 3255 goto int_case; 3256 } 3257 break; 3258 case SOL_TCP: 3259 /* TCP options all take an 'int' value. */ 3260 int_case: 3261 if (get_user_u32(len, optlen)) 3262 return -TARGET_EFAULT; 3263 if (len < 0) 3264 return -TARGET_EINVAL; 3265 lv = sizeof(lv); 3266 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3267 if (ret < 0) 3268 return ret; 3269 if (optname == SO_TYPE) { 3270 val = host_to_target_sock_type(val); 3271 } 3272 if (len > lv) 3273 len = lv; 3274 if (len == 4) { 3275 if (put_user_u32(val, optval_addr)) 3276 return -TARGET_EFAULT; 3277 } else { 3278 if (put_user_u8(val, optval_addr)) 3279 return -TARGET_EFAULT; 3280 } 3281 if (put_user_u32(len, optlen)) 3282 return -TARGET_EFAULT; 3283 break; 3284 case SOL_IP: 3285 switch(optname) { 3286 case IP_TOS: 3287 case IP_TTL: 3288 case IP_HDRINCL: 3289 case IP_ROUTER_ALERT: 3290 case IP_RECVOPTS: 3291 case IP_RETOPTS: 3292 case IP_PKTINFO: 3293 case IP_MTU_DISCOVER: 3294 case IP_RECVERR: 3295 case IP_RECVTOS: 3296 #ifdef IP_FREEBIND 3297 case IP_FREEBIND: 3298 #endif 3299 case IP_MULTICAST_TTL: 3300 case IP_MULTICAST_LOOP: 3301 if (get_user_u32(len, optlen)) 3302 return -TARGET_EFAULT; 3303 if (len < 0) 3304 return -TARGET_EINVAL; 3305 lv = sizeof(lv); 3306 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3307 if (ret < 0) 3308 return ret; 3309 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 3310 len = 1; 3311 if (put_user_u32(len, optlen) 3312 || put_user_u8(val, optval_addr)) 3313 return -TARGET_EFAULT; 3314 } else { 3315 if (len > sizeof(int)) 3316 len = sizeof(int); 3317 if (put_user_u32(len, optlen) 3318 || put_user_u32(val, optval_addr)) 3319 return -TARGET_EFAULT; 3320 } 3321 break; 3322 default: 3323 ret = -TARGET_ENOPROTOOPT; 3324 break; 3325 } 3326 break; 3327 default: 3328 unimplemented: 3329 gemu_log("getsockopt level=%d optname=%d not yet supported\n", 3330 level, optname); 3331 ret = -TARGET_EOPNOTSUPP; 3332 break; 3333 } 3334 return ret; 3335 } 3336 3337 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 3338 abi_ulong count, int copy) 3339 { 3340 struct target_iovec *target_vec; 3341 struct iovec *vec; 3342 abi_ulong total_len, max_len; 3343 int i; 3344 int err = 0; 3345 bool bad_address = false; 3346 3347 if (count == 0) { 3348 errno = 0; 3349 return NULL; 3350 } 3351 if (count > IOV_MAX) { 3352 errno = EINVAL; 3353 return NULL; 3354 } 3355 3356 vec = g_try_new0(struct iovec, count); 3357 if (vec == NULL) { 3358 errno = ENOMEM; 3359 return NULL; 3360 } 3361 3362 target_vec = lock_user(VERIFY_READ, target_addr, 3363 count * sizeof(struct target_iovec), 1); 3364 if (target_vec == NULL) { 3365 err = EFAULT; 3366 goto fail2; 3367 } 3368 3369 /* ??? If host page size > target page size, this will result in a 3370 value larger than what we can actually support. */ 3371 max_len = 0x7fffffff & TARGET_PAGE_MASK; 3372 total_len = 0; 3373 3374 for (i = 0; i < count; i++) { 3375 abi_ulong base = tswapal(target_vec[i].iov_base); 3376 abi_long len = tswapal(target_vec[i].iov_len); 3377 3378 if (len < 0) { 3379 err = EINVAL; 3380 goto fail; 3381 } else if (len == 0) { 3382 /* Zero length pointer is ignored. */ 3383 vec[i].iov_base = 0; 3384 } else { 3385 vec[i].iov_base = lock_user(type, base, len, copy); 3386 /* If the first buffer pointer is bad, this is a fault. But 3387 * subsequent bad buffers will result in a partial write; this 3388 * is realized by filling the vector with null pointers and 3389 * zero lengths. */ 3390 if (!vec[i].iov_base) { 3391 if (i == 0) { 3392 err = EFAULT; 3393 goto fail; 3394 } else { 3395 bad_address = true; 3396 } 3397 } 3398 if (bad_address) { 3399 len = 0; 3400 } 3401 if (len > max_len - total_len) { 3402 len = max_len - total_len; 3403 } 3404 } 3405 vec[i].iov_len = len; 3406 total_len += len; 3407 } 3408 3409 unlock_user(target_vec, target_addr, 0); 3410 return vec; 3411 3412 fail: 3413 while (--i >= 0) { 3414 if (tswapal(target_vec[i].iov_len) > 0) { 3415 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3416 } 3417 } 3418 unlock_user(target_vec, target_addr, 0); 3419 fail2: 3420 g_free(vec); 3421 errno = err; 3422 return NULL; 3423 } 3424 3425 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3426 abi_ulong count, int copy) 3427 { 3428 struct target_iovec *target_vec; 3429 int i; 3430 3431 target_vec = lock_user(VERIFY_READ, target_addr, 3432 count * sizeof(struct target_iovec), 1); 3433 if (target_vec) { 3434 for (i = 0; i < count; i++) { 3435 abi_ulong base = tswapal(target_vec[i].iov_base); 3436 abi_long len = tswapal(target_vec[i].iov_len); 3437 if (len < 0) { 3438 break; 3439 } 3440 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3441 } 3442 unlock_user(target_vec, target_addr, 0); 3443 } 3444 3445 g_free(vec); 3446 } 3447 3448 static inline int target_to_host_sock_type(int *type) 3449 { 3450 int host_type = 0; 3451 int target_type = *type; 3452 3453 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3454 case TARGET_SOCK_DGRAM: 3455 host_type = SOCK_DGRAM; 3456 break; 3457 case TARGET_SOCK_STREAM: 3458 host_type = SOCK_STREAM; 3459 break; 3460 default: 3461 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3462 break; 3463 } 3464 if (target_type & TARGET_SOCK_CLOEXEC) { 3465 #if defined(SOCK_CLOEXEC) 3466 host_type |= SOCK_CLOEXEC; 3467 #else 3468 return -TARGET_EINVAL; 3469 #endif 3470 } 3471 if (target_type & TARGET_SOCK_NONBLOCK) { 3472 #if defined(SOCK_NONBLOCK) 3473 host_type |= SOCK_NONBLOCK; 3474 #elif !defined(O_NONBLOCK) 3475 return -TARGET_EINVAL; 3476 #endif 3477 } 3478 *type = host_type; 3479 return 0; 3480 } 3481 3482 /* Try to emulate socket type flags after socket creation. */ 3483 static int sock_flags_fixup(int fd, int target_type) 3484 { 3485 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3486 if (target_type & TARGET_SOCK_NONBLOCK) { 3487 int flags = fcntl(fd, F_GETFL); 3488 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3489 close(fd); 3490 return -TARGET_EINVAL; 3491 } 3492 } 3493 #endif 3494 return fd; 3495 } 3496 3497 static abi_long packet_target_to_host_sockaddr(void *host_addr, 3498 abi_ulong target_addr, 3499 socklen_t len) 3500 { 3501 struct sockaddr *addr = host_addr; 3502 struct target_sockaddr *target_saddr; 3503 3504 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 3505 if (!target_saddr) { 3506 return -TARGET_EFAULT; 3507 } 3508 3509 memcpy(addr, target_saddr, len); 3510 addr->sa_family = tswap16(target_saddr->sa_family); 3511 /* spkt_protocol is big-endian */ 3512 3513 unlock_user(target_saddr, target_addr, 0); 3514 return 0; 3515 } 3516 3517 static TargetFdTrans target_packet_trans = { 3518 .target_to_host_addr = packet_target_to_host_sockaddr, 3519 }; 3520 3521 #ifdef CONFIG_RTNETLINK 3522 static abi_long netlink_route_target_to_host(void *buf, size_t len) 3523 { 3524 abi_long ret; 3525 3526 ret = target_to_host_nlmsg_route(buf, len); 3527 if (ret < 0) { 3528 return ret; 3529 } 3530 3531 return len; 3532 } 3533 3534 static abi_long netlink_route_host_to_target(void *buf, size_t len) 3535 { 3536 abi_long ret; 3537 3538 ret = host_to_target_nlmsg_route(buf, len); 3539 if (ret < 0) { 3540 return ret; 3541 } 3542 3543 return len; 3544 } 3545 3546 static TargetFdTrans target_netlink_route_trans = { 3547 .target_to_host_data = netlink_route_target_to_host, 3548 .host_to_target_data = netlink_route_host_to_target, 3549 }; 3550 #endif /* CONFIG_RTNETLINK */ 3551 3552 static abi_long netlink_audit_target_to_host(void *buf, size_t len) 3553 { 3554 abi_long ret; 3555 3556 ret = target_to_host_nlmsg_audit(buf, len); 3557 if (ret < 0) { 3558 return ret; 3559 } 3560 3561 return len; 3562 } 3563 3564 static abi_long netlink_audit_host_to_target(void *buf, size_t len) 3565 { 3566 abi_long ret; 3567 3568 ret = host_to_target_nlmsg_audit(buf, len); 3569 if (ret < 0) { 3570 return ret; 3571 } 3572 3573 return len; 3574 } 3575 3576 static TargetFdTrans target_netlink_audit_trans = { 3577 .target_to_host_data = netlink_audit_target_to_host, 3578 .host_to_target_data = netlink_audit_host_to_target, 3579 }; 3580 3581 /* do_socket() Must return target values and target errnos. */ 3582 static abi_long do_socket(int domain, int type, int protocol) 3583 { 3584 int target_type = type; 3585 int ret; 3586 3587 ret = target_to_host_sock_type(&type); 3588 if (ret) { 3589 return ret; 3590 } 3591 3592 if (domain == PF_NETLINK && !( 3593 #ifdef CONFIG_RTNETLINK 3594 protocol == NETLINK_ROUTE || 3595 #endif 3596 protocol == NETLINK_KOBJECT_UEVENT || 3597 protocol == NETLINK_AUDIT)) { 3598 return -EPFNOSUPPORT; 3599 } 3600 3601 if (domain == AF_PACKET || 3602 (domain == AF_INET && type == SOCK_PACKET)) { 3603 protocol = tswap16(protocol); 3604 } 3605 3606 ret = get_errno(socket(domain, type, protocol)); 3607 if (ret >= 0) { 3608 ret = sock_flags_fixup(ret, target_type); 3609 if (type == SOCK_PACKET) { 3610 /* Manage an obsolete case : 3611 * if socket type is SOCK_PACKET, bind by name 3612 */ 3613 fd_trans_register(ret, &target_packet_trans); 3614 } else if (domain == PF_NETLINK) { 3615 switch (protocol) { 3616 #ifdef CONFIG_RTNETLINK 3617 case NETLINK_ROUTE: 3618 fd_trans_register(ret, &target_netlink_route_trans); 3619 break; 3620 #endif 3621 case NETLINK_KOBJECT_UEVENT: 3622 /* nothing to do: messages are strings */ 3623 break; 3624 case NETLINK_AUDIT: 3625 fd_trans_register(ret, &target_netlink_audit_trans); 3626 break; 3627 default: 3628 g_assert_not_reached(); 3629 } 3630 } 3631 } 3632 return ret; 3633 } 3634 3635 /* do_bind() Must return target values and target errnos. */ 3636 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3637 socklen_t addrlen) 3638 { 3639 void *addr; 3640 abi_long ret; 3641 3642 if ((int)addrlen < 0) { 3643 return -TARGET_EINVAL; 3644 } 3645 3646 addr = alloca(addrlen+1); 3647 3648 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3649 if (ret) 3650 return ret; 3651 3652 return get_errno(bind(sockfd, addr, addrlen)); 3653 } 3654 3655 /* do_connect() Must return target values and target errnos. */ 3656 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3657 socklen_t addrlen) 3658 { 3659 void *addr; 3660 abi_long ret; 3661 3662 if ((int)addrlen < 0) { 3663 return -TARGET_EINVAL; 3664 } 3665 3666 addr = alloca(addrlen+1); 3667 3668 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3669 if (ret) 3670 return ret; 3671 3672 return get_errno(safe_connect(sockfd, addr, addrlen)); 3673 } 3674 3675 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3676 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3677 int flags, int send) 3678 { 3679 abi_long ret, len; 3680 struct msghdr msg; 3681 abi_ulong count; 3682 struct iovec *vec; 3683 abi_ulong target_vec; 3684 3685 if (msgp->msg_name) { 3686 msg.msg_namelen = tswap32(msgp->msg_namelen); 3687 msg.msg_name = alloca(msg.msg_namelen+1); 3688 ret = target_to_host_sockaddr(fd, msg.msg_name, 3689 tswapal(msgp->msg_name), 3690 msg.msg_namelen); 3691 if (ret == -TARGET_EFAULT) { 3692 /* For connected sockets msg_name and msg_namelen must 3693 * be ignored, so returning EFAULT immediately is wrong. 3694 * Instead, pass a bad msg_name to the host kernel, and 3695 * let it decide whether to return EFAULT or not. 3696 */ 3697 msg.msg_name = (void *)-1; 3698 } else if (ret) { 3699 goto out2; 3700 } 3701 } else { 3702 msg.msg_name = NULL; 3703 msg.msg_namelen = 0; 3704 } 3705 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3706 msg.msg_control = alloca(msg.msg_controllen); 3707 msg.msg_flags = tswap32(msgp->msg_flags); 3708 3709 count = tswapal(msgp->msg_iovlen); 3710 target_vec = tswapal(msgp->msg_iov); 3711 3712 if (count > IOV_MAX) { 3713 /* sendrcvmsg returns a different errno for this condition than 3714 * readv/writev, so we must catch it here before lock_iovec() does. 3715 */ 3716 ret = -TARGET_EMSGSIZE; 3717 goto out2; 3718 } 3719 3720 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3721 target_vec, count, send); 3722 if (vec == NULL) { 3723 ret = -host_to_target_errno(errno); 3724 goto out2; 3725 } 3726 msg.msg_iovlen = count; 3727 msg.msg_iov = vec; 3728 3729 if (send) { 3730 if (fd_trans_target_to_host_data(fd)) { 3731 void *host_msg; 3732 3733 host_msg = g_malloc(msg.msg_iov->iov_len); 3734 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3735 ret = fd_trans_target_to_host_data(fd)(host_msg, 3736 msg.msg_iov->iov_len); 3737 if (ret >= 0) { 3738 msg.msg_iov->iov_base = host_msg; 3739 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3740 } 3741 g_free(host_msg); 3742 } else { 3743 ret = target_to_host_cmsg(&msg, msgp); 3744 if (ret == 0) { 3745 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3746 } 3747 } 3748 } else { 3749 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3750 if (!is_error(ret)) { 3751 len = ret; 3752 if (fd_trans_host_to_target_data(fd)) { 3753 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3754 len); 3755 } else { 3756 ret = host_to_target_cmsg(msgp, &msg); 3757 } 3758 if (!is_error(ret)) { 3759 msgp->msg_namelen = tswap32(msg.msg_namelen); 3760 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3761 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3762 msg.msg_name, msg.msg_namelen); 3763 if (ret) { 3764 goto out; 3765 } 3766 } 3767 3768 ret = len; 3769 } 3770 } 3771 } 3772 3773 out: 3774 unlock_iovec(vec, target_vec, count, !send); 3775 out2: 3776 return ret; 3777 } 3778 3779 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3780 int flags, int send) 3781 { 3782 abi_long ret; 3783 struct target_msghdr *msgp; 3784 3785 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3786 msgp, 3787 target_msg, 3788 send ? 1 : 0)) { 3789 return -TARGET_EFAULT; 3790 } 3791 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3792 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3793 return ret; 3794 } 3795 3796 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3797 * so it might not have this *mmsg-specific flag either. 3798 */ 3799 #ifndef MSG_WAITFORONE 3800 #define MSG_WAITFORONE 0x10000 3801 #endif 3802 3803 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3804 unsigned int vlen, unsigned int flags, 3805 int send) 3806 { 3807 struct target_mmsghdr *mmsgp; 3808 abi_long ret = 0; 3809 int i; 3810 3811 if (vlen > UIO_MAXIOV) { 3812 vlen = UIO_MAXIOV; 3813 } 3814 3815 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3816 if (!mmsgp) { 3817 return -TARGET_EFAULT; 3818 } 3819 3820 for (i = 0; i < vlen; i++) { 3821 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3822 if (is_error(ret)) { 3823 break; 3824 } 3825 mmsgp[i].msg_len = tswap32(ret); 3826 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3827 if (flags & MSG_WAITFORONE) { 3828 flags |= MSG_DONTWAIT; 3829 } 3830 } 3831 3832 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3833 3834 /* Return number of datagrams sent if we sent any at all; 3835 * otherwise return the error. 3836 */ 3837 if (i) { 3838 return i; 3839 } 3840 return ret; 3841 } 3842 3843 /* do_accept4() Must return target values and target errnos. */ 3844 static abi_long do_accept4(int fd, abi_ulong target_addr, 3845 abi_ulong target_addrlen_addr, int flags) 3846 { 3847 socklen_t addrlen; 3848 void *addr; 3849 abi_long ret; 3850 int host_flags; 3851 3852 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 3853 3854 if (target_addr == 0) { 3855 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3856 } 3857 3858 /* linux returns EINVAL if addrlen pointer is invalid */ 3859 if (get_user_u32(addrlen, target_addrlen_addr)) 3860 return -TARGET_EINVAL; 3861 3862 if ((int)addrlen < 0) { 3863 return -TARGET_EINVAL; 3864 } 3865 3866 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3867 return -TARGET_EINVAL; 3868 3869 addr = alloca(addrlen); 3870 3871 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags)); 3872 if (!is_error(ret)) { 3873 host_to_target_sockaddr(target_addr, addr, addrlen); 3874 if (put_user_u32(addrlen, target_addrlen_addr)) 3875 ret = -TARGET_EFAULT; 3876 } 3877 return ret; 3878 } 3879 3880 /* do_getpeername() Must return target values and target errnos. */ 3881 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3882 abi_ulong target_addrlen_addr) 3883 { 3884 socklen_t addrlen; 3885 void *addr; 3886 abi_long ret; 3887 3888 if (get_user_u32(addrlen, target_addrlen_addr)) 3889 return -TARGET_EFAULT; 3890 3891 if ((int)addrlen < 0) { 3892 return -TARGET_EINVAL; 3893 } 3894 3895 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3896 return -TARGET_EFAULT; 3897 3898 addr = alloca(addrlen); 3899 3900 ret = get_errno(getpeername(fd, addr, &addrlen)); 3901 if (!is_error(ret)) { 3902 host_to_target_sockaddr(target_addr, addr, addrlen); 3903 if (put_user_u32(addrlen, target_addrlen_addr)) 3904 ret = -TARGET_EFAULT; 3905 } 3906 return ret; 3907 } 3908 3909 /* do_getsockname() Must return target values and target errnos. */ 3910 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3911 abi_ulong target_addrlen_addr) 3912 { 3913 socklen_t addrlen; 3914 void *addr; 3915 abi_long ret; 3916 3917 if (get_user_u32(addrlen, target_addrlen_addr)) 3918 return -TARGET_EFAULT; 3919 3920 if ((int)addrlen < 0) { 3921 return -TARGET_EINVAL; 3922 } 3923 3924 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3925 return -TARGET_EFAULT; 3926 3927 addr = alloca(addrlen); 3928 3929 ret = get_errno(getsockname(fd, addr, &addrlen)); 3930 if (!is_error(ret)) { 3931 host_to_target_sockaddr(target_addr, addr, addrlen); 3932 if (put_user_u32(addrlen, target_addrlen_addr)) 3933 ret = -TARGET_EFAULT; 3934 } 3935 return ret; 3936 } 3937 3938 /* do_socketpair() Must return target values and target errnos. */ 3939 static abi_long do_socketpair(int domain, int type, int protocol, 3940 abi_ulong target_tab_addr) 3941 { 3942 int tab[2]; 3943 abi_long ret; 3944 3945 target_to_host_sock_type(&type); 3946 3947 ret = get_errno(socketpair(domain, type, protocol, tab)); 3948 if (!is_error(ret)) { 3949 if (put_user_s32(tab[0], target_tab_addr) 3950 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3951 ret = -TARGET_EFAULT; 3952 } 3953 return ret; 3954 } 3955 3956 /* do_sendto() Must return target values and target errnos. */ 3957 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3958 abi_ulong target_addr, socklen_t addrlen) 3959 { 3960 void *addr; 3961 void *host_msg; 3962 void *copy_msg = NULL; 3963 abi_long ret; 3964 3965 if ((int)addrlen < 0) { 3966 return -TARGET_EINVAL; 3967 } 3968 3969 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3970 if (!host_msg) 3971 return -TARGET_EFAULT; 3972 if (fd_trans_target_to_host_data(fd)) { 3973 copy_msg = host_msg; 3974 host_msg = g_malloc(len); 3975 memcpy(host_msg, copy_msg, len); 3976 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3977 if (ret < 0) { 3978 goto fail; 3979 } 3980 } 3981 if (target_addr) { 3982 addr = alloca(addrlen+1); 3983 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3984 if (ret) { 3985 goto fail; 3986 } 3987 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3988 } else { 3989 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3990 } 3991 fail: 3992 if (copy_msg) { 3993 g_free(host_msg); 3994 host_msg = copy_msg; 3995 } 3996 unlock_user(host_msg, msg, 0); 3997 return ret; 3998 } 3999 4000 /* do_recvfrom() Must return target values and target errnos. */ 4001 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 4002 abi_ulong target_addr, 4003 abi_ulong target_addrlen) 4004 { 4005 socklen_t addrlen; 4006 void *addr; 4007 void *host_msg; 4008 abi_long ret; 4009 4010 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 4011 if (!host_msg) 4012 return -TARGET_EFAULT; 4013 if (target_addr) { 4014 if (get_user_u32(addrlen, target_addrlen)) { 4015 ret = -TARGET_EFAULT; 4016 goto fail; 4017 } 4018 if ((int)addrlen < 0) { 4019 ret = -TARGET_EINVAL; 4020 goto fail; 4021 } 4022 addr = alloca(addrlen); 4023 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 4024 addr, &addrlen)); 4025 } else { 4026 addr = NULL; /* To keep compiler quiet. */ 4027 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 4028 } 4029 if (!is_error(ret)) { 4030 if (fd_trans_host_to_target_data(fd)) { 4031 ret = fd_trans_host_to_target_data(fd)(host_msg, ret); 4032 } 4033 if (target_addr) { 4034 host_to_target_sockaddr(target_addr, addr, addrlen); 4035 if (put_user_u32(addrlen, target_addrlen)) { 4036 ret = -TARGET_EFAULT; 4037 goto fail; 4038 } 4039 } 4040 unlock_user(host_msg, msg, len); 4041 } else { 4042 fail: 4043 unlock_user(host_msg, msg, 0); 4044 } 4045 return ret; 4046 } 4047 4048 #ifdef TARGET_NR_socketcall 4049 /* do_socketcall() must return target values and target errnos. */ 4050 static abi_long do_socketcall(int num, abi_ulong vptr) 4051 { 4052 static const unsigned nargs[] = { /* number of arguments per operation */ 4053 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 4054 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 4055 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 4056 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 4057 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 4058 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 4059 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 4060 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 4061 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 4062 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 4063 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 4064 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 4065 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 4066 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 4067 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 4068 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 4069 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 4070 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 4071 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 4072 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 4073 }; 4074 abi_long a[6]; /* max 6 args */ 4075 unsigned i; 4076 4077 /* check the range of the first argument num */ 4078 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 4079 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 4080 return -TARGET_EINVAL; 4081 } 4082 /* ensure we have space for args */ 4083 if (nargs[num] > ARRAY_SIZE(a)) { 4084 return -TARGET_EINVAL; 4085 } 4086 /* collect the arguments in a[] according to nargs[] */ 4087 for (i = 0; i < nargs[num]; ++i) { 4088 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 4089 return -TARGET_EFAULT; 4090 } 4091 } 4092 /* now when we have the args, invoke the appropriate underlying function */ 4093 switch (num) { 4094 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 4095 return do_socket(a[0], a[1], a[2]); 4096 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 4097 return do_bind(a[0], a[1], a[2]); 4098 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 4099 return do_connect(a[0], a[1], a[2]); 4100 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 4101 return get_errno(listen(a[0], a[1])); 4102 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 4103 return do_accept4(a[0], a[1], a[2], 0); 4104 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 4105 return do_getsockname(a[0], a[1], a[2]); 4106 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 4107 return do_getpeername(a[0], a[1], a[2]); 4108 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 4109 return do_socketpair(a[0], a[1], a[2], a[3]); 4110 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 4111 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 4112 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 4113 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 4114 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 4115 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 4116 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 4117 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 4118 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 4119 return get_errno(shutdown(a[0], a[1])); 4120 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 4121 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 4122 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 4123 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 4124 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 4125 return do_sendrecvmsg(a[0], a[1], a[2], 1); 4126 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 4127 return do_sendrecvmsg(a[0], a[1], a[2], 0); 4128 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 4129 return do_accept4(a[0], a[1], a[2], a[3]); 4130 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 4131 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 4132 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 4133 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 4134 default: 4135 gemu_log("Unsupported socketcall: %d\n", num); 4136 return -TARGET_EINVAL; 4137 } 4138 } 4139 #endif 4140 4141 #define N_SHM_REGIONS 32 4142 4143 static struct shm_region { 4144 abi_ulong start; 4145 abi_ulong size; 4146 bool in_use; 4147 } shm_regions[N_SHM_REGIONS]; 4148 4149 #ifndef TARGET_SEMID64_DS 4150 /* asm-generic version of this struct */ 4151 struct target_semid64_ds 4152 { 4153 struct target_ipc_perm sem_perm; 4154 abi_ulong sem_otime; 4155 #if TARGET_ABI_BITS == 32 4156 abi_ulong __unused1; 4157 #endif 4158 abi_ulong sem_ctime; 4159 #if TARGET_ABI_BITS == 32 4160 abi_ulong __unused2; 4161 #endif 4162 abi_ulong sem_nsems; 4163 abi_ulong __unused3; 4164 abi_ulong __unused4; 4165 }; 4166 #endif 4167 4168 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 4169 abi_ulong target_addr) 4170 { 4171 struct target_ipc_perm *target_ip; 4172 struct target_semid64_ds *target_sd; 4173 4174 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4175 return -TARGET_EFAULT; 4176 target_ip = &(target_sd->sem_perm); 4177 host_ip->__key = tswap32(target_ip->__key); 4178 host_ip->uid = tswap32(target_ip->uid); 4179 host_ip->gid = tswap32(target_ip->gid); 4180 host_ip->cuid = tswap32(target_ip->cuid); 4181 host_ip->cgid = tswap32(target_ip->cgid); 4182 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4183 host_ip->mode = tswap32(target_ip->mode); 4184 #else 4185 host_ip->mode = tswap16(target_ip->mode); 4186 #endif 4187 #if defined(TARGET_PPC) 4188 host_ip->__seq = tswap32(target_ip->__seq); 4189 #else 4190 host_ip->__seq = tswap16(target_ip->__seq); 4191 #endif 4192 unlock_user_struct(target_sd, target_addr, 0); 4193 return 0; 4194 } 4195 4196 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 4197 struct ipc_perm *host_ip) 4198 { 4199 struct target_ipc_perm *target_ip; 4200 struct target_semid64_ds *target_sd; 4201 4202 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4203 return -TARGET_EFAULT; 4204 target_ip = &(target_sd->sem_perm); 4205 target_ip->__key = tswap32(host_ip->__key); 4206 target_ip->uid = tswap32(host_ip->uid); 4207 target_ip->gid = tswap32(host_ip->gid); 4208 target_ip->cuid = tswap32(host_ip->cuid); 4209 target_ip->cgid = tswap32(host_ip->cgid); 4210 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4211 target_ip->mode = tswap32(host_ip->mode); 4212 #else 4213 target_ip->mode = tswap16(host_ip->mode); 4214 #endif 4215 #if defined(TARGET_PPC) 4216 target_ip->__seq = tswap32(host_ip->__seq); 4217 #else 4218 target_ip->__seq = tswap16(host_ip->__seq); 4219 #endif 4220 unlock_user_struct(target_sd, target_addr, 1); 4221 return 0; 4222 } 4223 4224 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 4225 abi_ulong target_addr) 4226 { 4227 struct target_semid64_ds *target_sd; 4228 4229 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4230 return -TARGET_EFAULT; 4231 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 4232 return -TARGET_EFAULT; 4233 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 4234 host_sd->sem_otime = tswapal(target_sd->sem_otime); 4235 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 4236 unlock_user_struct(target_sd, target_addr, 0); 4237 return 0; 4238 } 4239 4240 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 4241 struct semid_ds *host_sd) 4242 { 4243 struct target_semid64_ds *target_sd; 4244 4245 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4246 return -TARGET_EFAULT; 4247 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 4248 return -TARGET_EFAULT; 4249 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 4250 target_sd->sem_otime = tswapal(host_sd->sem_otime); 4251 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 4252 unlock_user_struct(target_sd, target_addr, 1); 4253 return 0; 4254 } 4255 4256 struct target_seminfo { 4257 int semmap; 4258 int semmni; 4259 int semmns; 4260 int semmnu; 4261 int semmsl; 4262 int semopm; 4263 int semume; 4264 int semusz; 4265 int semvmx; 4266 int semaem; 4267 }; 4268 4269 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 4270 struct seminfo *host_seminfo) 4271 { 4272 struct target_seminfo *target_seminfo; 4273 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 4274 return -TARGET_EFAULT; 4275 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 4276 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 4277 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 4278 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 4279 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 4280 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 4281 __put_user(host_seminfo->semume, &target_seminfo->semume); 4282 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 4283 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 4284 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 4285 unlock_user_struct(target_seminfo, target_addr, 1); 4286 return 0; 4287 } 4288 4289 union semun { 4290 int val; 4291 struct semid_ds *buf; 4292 unsigned short *array; 4293 struct seminfo *__buf; 4294 }; 4295 4296 union target_semun { 4297 int val; 4298 abi_ulong buf; 4299 abi_ulong array; 4300 abi_ulong __buf; 4301 }; 4302 4303 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 4304 abi_ulong target_addr) 4305 { 4306 int nsems; 4307 unsigned short *array; 4308 union semun semun; 4309 struct semid_ds semid_ds; 4310 int i, ret; 4311 4312 semun.buf = &semid_ds; 4313 4314 ret = semctl(semid, 0, IPC_STAT, semun); 4315 if (ret == -1) 4316 return get_errno(ret); 4317 4318 nsems = semid_ds.sem_nsems; 4319 4320 *host_array = g_try_new(unsigned short, nsems); 4321 if (!*host_array) { 4322 return -TARGET_ENOMEM; 4323 } 4324 array = lock_user(VERIFY_READ, target_addr, 4325 nsems*sizeof(unsigned short), 1); 4326 if (!array) { 4327 g_free(*host_array); 4328 return -TARGET_EFAULT; 4329 } 4330 4331 for(i=0; i<nsems; i++) { 4332 __get_user((*host_array)[i], &array[i]); 4333 } 4334 unlock_user(array, target_addr, 0); 4335 4336 return 0; 4337 } 4338 4339 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 4340 unsigned short **host_array) 4341 { 4342 int nsems; 4343 unsigned short *array; 4344 union semun semun; 4345 struct semid_ds semid_ds; 4346 int i, ret; 4347 4348 semun.buf = &semid_ds; 4349 4350 ret = semctl(semid, 0, IPC_STAT, semun); 4351 if (ret == -1) 4352 return get_errno(ret); 4353 4354 nsems = semid_ds.sem_nsems; 4355 4356 array = lock_user(VERIFY_WRITE, target_addr, 4357 nsems*sizeof(unsigned short), 0); 4358 if (!array) 4359 return -TARGET_EFAULT; 4360 4361 for(i=0; i<nsems; i++) { 4362 __put_user((*host_array)[i], &array[i]); 4363 } 4364 g_free(*host_array); 4365 unlock_user(array, target_addr, 1); 4366 4367 return 0; 4368 } 4369 4370 static inline abi_long do_semctl(int semid, int semnum, int cmd, 4371 abi_ulong target_arg) 4372 { 4373 union target_semun target_su = { .buf = target_arg }; 4374 union semun arg; 4375 struct semid_ds dsarg; 4376 unsigned short *array = NULL; 4377 struct seminfo seminfo; 4378 abi_long ret = -TARGET_EINVAL; 4379 abi_long err; 4380 cmd &= 0xff; 4381 4382 switch( cmd ) { 4383 case GETVAL: 4384 case SETVAL: 4385 /* In 64 bit cross-endian situations, we will erroneously pick up 4386 * the wrong half of the union for the "val" element. To rectify 4387 * this, the entire 8-byte structure is byteswapped, followed by 4388 * a swap of the 4 byte val field. In other cases, the data is 4389 * already in proper host byte order. */ 4390 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 4391 target_su.buf = tswapal(target_su.buf); 4392 arg.val = tswap32(target_su.val); 4393 } else { 4394 arg.val = target_su.val; 4395 } 4396 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4397 break; 4398 case GETALL: 4399 case SETALL: 4400 err = target_to_host_semarray(semid, &array, target_su.array); 4401 if (err) 4402 return err; 4403 arg.array = array; 4404 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4405 err = host_to_target_semarray(semid, target_su.array, &array); 4406 if (err) 4407 return err; 4408 break; 4409 case IPC_STAT: 4410 case IPC_SET: 4411 case SEM_STAT: 4412 err = target_to_host_semid_ds(&dsarg, target_su.buf); 4413 if (err) 4414 return err; 4415 arg.buf = &dsarg; 4416 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4417 err = host_to_target_semid_ds(target_su.buf, &dsarg); 4418 if (err) 4419 return err; 4420 break; 4421 case IPC_INFO: 4422 case SEM_INFO: 4423 arg.__buf = &seminfo; 4424 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4425 err = host_to_target_seminfo(target_su.__buf, &seminfo); 4426 if (err) 4427 return err; 4428 break; 4429 case IPC_RMID: 4430 case GETPID: 4431 case GETNCNT: 4432 case GETZCNT: 4433 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4434 break; 4435 } 4436 4437 return ret; 4438 } 4439 4440 struct target_sembuf { 4441 unsigned short sem_num; 4442 short sem_op; 4443 short sem_flg; 4444 }; 4445 4446 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4447 abi_ulong target_addr, 4448 unsigned nsops) 4449 { 4450 struct target_sembuf *target_sembuf; 4451 int i; 4452 4453 target_sembuf = lock_user(VERIFY_READ, target_addr, 4454 nsops*sizeof(struct target_sembuf), 1); 4455 if (!target_sembuf) 4456 return -TARGET_EFAULT; 4457 4458 for(i=0; i<nsops; i++) { 4459 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4460 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4461 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4462 } 4463 4464 unlock_user(target_sembuf, target_addr, 0); 4465 4466 return 0; 4467 } 4468 4469 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops) 4470 { 4471 struct sembuf sops[nsops]; 4472 4473 if (target_to_host_sembuf(sops, ptr, nsops)) 4474 return -TARGET_EFAULT; 4475 4476 return get_errno(safe_semtimedop(semid, sops, nsops, NULL)); 4477 } 4478 4479 struct target_msqid_ds 4480 { 4481 struct target_ipc_perm msg_perm; 4482 abi_ulong msg_stime; 4483 #if TARGET_ABI_BITS == 32 4484 abi_ulong __unused1; 4485 #endif 4486 abi_ulong msg_rtime; 4487 #if TARGET_ABI_BITS == 32 4488 abi_ulong __unused2; 4489 #endif 4490 abi_ulong msg_ctime; 4491 #if TARGET_ABI_BITS == 32 4492 abi_ulong __unused3; 4493 #endif 4494 abi_ulong __msg_cbytes; 4495 abi_ulong msg_qnum; 4496 abi_ulong msg_qbytes; 4497 abi_ulong msg_lspid; 4498 abi_ulong msg_lrpid; 4499 abi_ulong __unused4; 4500 abi_ulong __unused5; 4501 }; 4502 4503 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4504 abi_ulong target_addr) 4505 { 4506 struct target_msqid_ds *target_md; 4507 4508 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4509 return -TARGET_EFAULT; 4510 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4511 return -TARGET_EFAULT; 4512 host_md->msg_stime = tswapal(target_md->msg_stime); 4513 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4514 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4515 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4516 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4517 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4518 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4519 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4520 unlock_user_struct(target_md, target_addr, 0); 4521 return 0; 4522 } 4523 4524 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4525 struct msqid_ds *host_md) 4526 { 4527 struct target_msqid_ds *target_md; 4528 4529 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4530 return -TARGET_EFAULT; 4531 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4532 return -TARGET_EFAULT; 4533 target_md->msg_stime = tswapal(host_md->msg_stime); 4534 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4535 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4536 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4537 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4538 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4539 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4540 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4541 unlock_user_struct(target_md, target_addr, 1); 4542 return 0; 4543 } 4544 4545 struct target_msginfo { 4546 int msgpool; 4547 int msgmap; 4548 int msgmax; 4549 int msgmnb; 4550 int msgmni; 4551 int msgssz; 4552 int msgtql; 4553 unsigned short int msgseg; 4554 }; 4555 4556 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4557 struct msginfo *host_msginfo) 4558 { 4559 struct target_msginfo *target_msginfo; 4560 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4561 return -TARGET_EFAULT; 4562 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4563 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4564 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4565 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4566 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4567 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4568 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4569 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4570 unlock_user_struct(target_msginfo, target_addr, 1); 4571 return 0; 4572 } 4573 4574 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4575 { 4576 struct msqid_ds dsarg; 4577 struct msginfo msginfo; 4578 abi_long ret = -TARGET_EINVAL; 4579 4580 cmd &= 0xff; 4581 4582 switch (cmd) { 4583 case IPC_STAT: 4584 case IPC_SET: 4585 case MSG_STAT: 4586 if (target_to_host_msqid_ds(&dsarg,ptr)) 4587 return -TARGET_EFAULT; 4588 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4589 if (host_to_target_msqid_ds(ptr,&dsarg)) 4590 return -TARGET_EFAULT; 4591 break; 4592 case IPC_RMID: 4593 ret = get_errno(msgctl(msgid, cmd, NULL)); 4594 break; 4595 case IPC_INFO: 4596 case MSG_INFO: 4597 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4598 if (host_to_target_msginfo(ptr, &msginfo)) 4599 return -TARGET_EFAULT; 4600 break; 4601 } 4602 4603 return ret; 4604 } 4605 4606 struct target_msgbuf { 4607 abi_long mtype; 4608 char mtext[1]; 4609 }; 4610 4611 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4612 ssize_t msgsz, int msgflg) 4613 { 4614 struct target_msgbuf *target_mb; 4615 struct msgbuf *host_mb; 4616 abi_long ret = 0; 4617 4618 if (msgsz < 0) { 4619 return -TARGET_EINVAL; 4620 } 4621 4622 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4623 return -TARGET_EFAULT; 4624 host_mb = g_try_malloc(msgsz + sizeof(long)); 4625 if (!host_mb) { 4626 unlock_user_struct(target_mb, msgp, 0); 4627 return -TARGET_ENOMEM; 4628 } 4629 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4630 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4631 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4632 g_free(host_mb); 4633 unlock_user_struct(target_mb, msgp, 0); 4634 4635 return ret; 4636 } 4637 4638 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4639 ssize_t msgsz, abi_long msgtyp, 4640 int msgflg) 4641 { 4642 struct target_msgbuf *target_mb; 4643 char *target_mtext; 4644 struct msgbuf *host_mb; 4645 abi_long ret = 0; 4646 4647 if (msgsz < 0) { 4648 return -TARGET_EINVAL; 4649 } 4650 4651 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4652 return -TARGET_EFAULT; 4653 4654 host_mb = g_try_malloc(msgsz + sizeof(long)); 4655 if (!host_mb) { 4656 ret = -TARGET_ENOMEM; 4657 goto end; 4658 } 4659 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4660 4661 if (ret > 0) { 4662 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4663 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4664 if (!target_mtext) { 4665 ret = -TARGET_EFAULT; 4666 goto end; 4667 } 4668 memcpy(target_mb->mtext, host_mb->mtext, ret); 4669 unlock_user(target_mtext, target_mtext_addr, ret); 4670 } 4671 4672 target_mb->mtype = tswapal(host_mb->mtype); 4673 4674 end: 4675 if (target_mb) 4676 unlock_user_struct(target_mb, msgp, 1); 4677 g_free(host_mb); 4678 return ret; 4679 } 4680 4681 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4682 abi_ulong target_addr) 4683 { 4684 struct target_shmid_ds *target_sd; 4685 4686 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4687 return -TARGET_EFAULT; 4688 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4689 return -TARGET_EFAULT; 4690 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4691 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4692 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4693 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4694 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4695 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4696 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4697 unlock_user_struct(target_sd, target_addr, 0); 4698 return 0; 4699 } 4700 4701 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4702 struct shmid_ds *host_sd) 4703 { 4704 struct target_shmid_ds *target_sd; 4705 4706 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4707 return -TARGET_EFAULT; 4708 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4709 return -TARGET_EFAULT; 4710 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4711 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4712 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4713 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4714 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4715 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4716 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4717 unlock_user_struct(target_sd, target_addr, 1); 4718 return 0; 4719 } 4720 4721 struct target_shminfo { 4722 abi_ulong shmmax; 4723 abi_ulong shmmin; 4724 abi_ulong shmmni; 4725 abi_ulong shmseg; 4726 abi_ulong shmall; 4727 }; 4728 4729 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4730 struct shminfo *host_shminfo) 4731 { 4732 struct target_shminfo *target_shminfo; 4733 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4734 return -TARGET_EFAULT; 4735 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4736 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4737 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4738 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4739 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4740 unlock_user_struct(target_shminfo, target_addr, 1); 4741 return 0; 4742 } 4743 4744 struct target_shm_info { 4745 int used_ids; 4746 abi_ulong shm_tot; 4747 abi_ulong shm_rss; 4748 abi_ulong shm_swp; 4749 abi_ulong swap_attempts; 4750 abi_ulong swap_successes; 4751 }; 4752 4753 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4754 struct shm_info *host_shm_info) 4755 { 4756 struct target_shm_info *target_shm_info; 4757 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4758 return -TARGET_EFAULT; 4759 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4760 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4761 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4762 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4763 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4764 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4765 unlock_user_struct(target_shm_info, target_addr, 1); 4766 return 0; 4767 } 4768 4769 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4770 { 4771 struct shmid_ds dsarg; 4772 struct shminfo shminfo; 4773 struct shm_info shm_info; 4774 abi_long ret = -TARGET_EINVAL; 4775 4776 cmd &= 0xff; 4777 4778 switch(cmd) { 4779 case IPC_STAT: 4780 case IPC_SET: 4781 case SHM_STAT: 4782 if (target_to_host_shmid_ds(&dsarg, buf)) 4783 return -TARGET_EFAULT; 4784 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4785 if (host_to_target_shmid_ds(buf, &dsarg)) 4786 return -TARGET_EFAULT; 4787 break; 4788 case IPC_INFO: 4789 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4790 if (host_to_target_shminfo(buf, &shminfo)) 4791 return -TARGET_EFAULT; 4792 break; 4793 case SHM_INFO: 4794 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4795 if (host_to_target_shm_info(buf, &shm_info)) 4796 return -TARGET_EFAULT; 4797 break; 4798 case IPC_RMID: 4799 case SHM_LOCK: 4800 case SHM_UNLOCK: 4801 ret = get_errno(shmctl(shmid, cmd, NULL)); 4802 break; 4803 } 4804 4805 return ret; 4806 } 4807 4808 #ifndef TARGET_FORCE_SHMLBA 4809 /* For most architectures, SHMLBA is the same as the page size; 4810 * some architectures have larger values, in which case they should 4811 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function. 4812 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA 4813 * and defining its own value for SHMLBA. 4814 * 4815 * The kernel also permits SHMLBA to be set by the architecture to a 4816 * value larger than the page size without setting __ARCH_FORCE_SHMLBA; 4817 * this means that addresses are rounded to the large size if 4818 * SHM_RND is set but addresses not aligned to that size are not rejected 4819 * as long as they are at least page-aligned. Since the only architecture 4820 * which uses this is ia64 this code doesn't provide for that oddity. 4821 */ 4822 static inline abi_ulong target_shmlba(CPUArchState *cpu_env) 4823 { 4824 return TARGET_PAGE_SIZE; 4825 } 4826 #endif 4827 4828 static inline abi_ulong do_shmat(CPUArchState *cpu_env, 4829 int shmid, abi_ulong shmaddr, int shmflg) 4830 { 4831 abi_long raddr; 4832 void *host_raddr; 4833 struct shmid_ds shm_info; 4834 int i,ret; 4835 abi_ulong shmlba; 4836 4837 /* find out the length of the shared memory segment */ 4838 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 4839 if (is_error(ret)) { 4840 /* can't get length, bail out */ 4841 return ret; 4842 } 4843 4844 shmlba = target_shmlba(cpu_env); 4845 4846 if (shmaddr & (shmlba - 1)) { 4847 if (shmflg & SHM_RND) { 4848 shmaddr &= ~(shmlba - 1); 4849 } else { 4850 return -TARGET_EINVAL; 4851 } 4852 } 4853 4854 mmap_lock(); 4855 4856 if (shmaddr) 4857 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg); 4858 else { 4859 abi_ulong mmap_start; 4860 4861 mmap_start = mmap_find_vma(0, shm_info.shm_segsz); 4862 4863 if (mmap_start == -1) { 4864 errno = ENOMEM; 4865 host_raddr = (void *)-1; 4866 } else 4867 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP); 4868 } 4869 4870 if (host_raddr == (void *)-1) { 4871 mmap_unlock(); 4872 return get_errno((long)host_raddr); 4873 } 4874 raddr=h2g((unsigned long)host_raddr); 4875 4876 page_set_flags(raddr, raddr + shm_info.shm_segsz, 4877 PAGE_VALID | PAGE_READ | 4878 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE)); 4879 4880 for (i = 0; i < N_SHM_REGIONS; i++) { 4881 if (!shm_regions[i].in_use) { 4882 shm_regions[i].in_use = true; 4883 shm_regions[i].start = raddr; 4884 shm_regions[i].size = shm_info.shm_segsz; 4885 break; 4886 } 4887 } 4888 4889 mmap_unlock(); 4890 return raddr; 4891 4892 } 4893 4894 static inline abi_long do_shmdt(abi_ulong shmaddr) 4895 { 4896 int i; 4897 4898 for (i = 0; i < N_SHM_REGIONS; ++i) { 4899 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) { 4900 shm_regions[i].in_use = false; 4901 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 4902 break; 4903 } 4904 } 4905 4906 return get_errno(shmdt(g2h(shmaddr))); 4907 } 4908 4909 #ifdef TARGET_NR_ipc 4910 /* ??? This only works with linear mappings. */ 4911 /* do_ipc() must return target values and target errnos. */ 4912 static abi_long do_ipc(CPUArchState *cpu_env, 4913 unsigned int call, abi_long first, 4914 abi_long second, abi_long third, 4915 abi_long ptr, abi_long fifth) 4916 { 4917 int version; 4918 abi_long ret = 0; 4919 4920 version = call >> 16; 4921 call &= 0xffff; 4922 4923 switch (call) { 4924 case IPCOP_semop: 4925 ret = do_semop(first, ptr, second); 4926 break; 4927 4928 case IPCOP_semget: 4929 ret = get_errno(semget(first, second, third)); 4930 break; 4931 4932 case IPCOP_semctl: { 4933 /* The semun argument to semctl is passed by value, so dereference the 4934 * ptr argument. */ 4935 abi_ulong atptr; 4936 get_user_ual(atptr, ptr); 4937 ret = do_semctl(first, second, third, atptr); 4938 break; 4939 } 4940 4941 case IPCOP_msgget: 4942 ret = get_errno(msgget(first, second)); 4943 break; 4944 4945 case IPCOP_msgsnd: 4946 ret = do_msgsnd(first, ptr, second, third); 4947 break; 4948 4949 case IPCOP_msgctl: 4950 ret = do_msgctl(first, second, ptr); 4951 break; 4952 4953 case IPCOP_msgrcv: 4954 switch (version) { 4955 case 0: 4956 { 4957 struct target_ipc_kludge { 4958 abi_long msgp; 4959 abi_long msgtyp; 4960 } *tmp; 4961 4962 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4963 ret = -TARGET_EFAULT; 4964 break; 4965 } 4966 4967 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4968 4969 unlock_user_struct(tmp, ptr, 0); 4970 break; 4971 } 4972 default: 4973 ret = do_msgrcv(first, ptr, second, fifth, third); 4974 } 4975 break; 4976 4977 case IPCOP_shmat: 4978 switch (version) { 4979 default: 4980 { 4981 abi_ulong raddr; 4982 raddr = do_shmat(cpu_env, first, ptr, second); 4983 if (is_error(raddr)) 4984 return get_errno(raddr); 4985 if (put_user_ual(raddr, third)) 4986 return -TARGET_EFAULT; 4987 break; 4988 } 4989 case 1: 4990 ret = -TARGET_EINVAL; 4991 break; 4992 } 4993 break; 4994 case IPCOP_shmdt: 4995 ret = do_shmdt(ptr); 4996 break; 4997 4998 case IPCOP_shmget: 4999 /* IPC_* flag values are the same on all linux platforms */ 5000 ret = get_errno(shmget(first, second, third)); 5001 break; 5002 5003 /* IPC_* and SHM_* command values are the same on all linux platforms */ 5004 case IPCOP_shmctl: 5005 ret = do_shmctl(first, second, ptr); 5006 break; 5007 default: 5008 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version); 5009 ret = -TARGET_ENOSYS; 5010 break; 5011 } 5012 return ret; 5013 } 5014 #endif 5015 5016 /* kernel structure types definitions */ 5017 5018 #define STRUCT(name, ...) STRUCT_ ## name, 5019 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 5020 enum { 5021 #include "syscall_types.h" 5022 STRUCT_MAX 5023 }; 5024 #undef STRUCT 5025 #undef STRUCT_SPECIAL 5026 5027 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 5028 #define STRUCT_SPECIAL(name) 5029 #include "syscall_types.h" 5030 #undef STRUCT 5031 #undef STRUCT_SPECIAL 5032 5033 typedef struct IOCTLEntry IOCTLEntry; 5034 5035 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 5036 int fd, int cmd, abi_long arg); 5037 5038 struct IOCTLEntry { 5039 int target_cmd; 5040 unsigned int host_cmd; 5041 const char *name; 5042 int access; 5043 do_ioctl_fn *do_ioctl; 5044 const argtype arg_type[5]; 5045 }; 5046 5047 #define IOC_R 0x0001 5048 #define IOC_W 0x0002 5049 #define IOC_RW (IOC_R | IOC_W) 5050 5051 #define MAX_STRUCT_SIZE 4096 5052 5053 #ifdef CONFIG_FIEMAP 5054 /* So fiemap access checks don't overflow on 32 bit systems. 5055 * This is very slightly smaller than the limit imposed by 5056 * the underlying kernel. 5057 */ 5058 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 5059 / sizeof(struct fiemap_extent)) 5060 5061 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 5062 int fd, int cmd, abi_long arg) 5063 { 5064 /* The parameter for this ioctl is a struct fiemap followed 5065 * by an array of struct fiemap_extent whose size is set 5066 * in fiemap->fm_extent_count. The array is filled in by the 5067 * ioctl. 5068 */ 5069 int target_size_in, target_size_out; 5070 struct fiemap *fm; 5071 const argtype *arg_type = ie->arg_type; 5072 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 5073 void *argptr, *p; 5074 abi_long ret; 5075 int i, extent_size = thunk_type_size(extent_arg_type, 0); 5076 uint32_t outbufsz; 5077 int free_fm = 0; 5078 5079 assert(arg_type[0] == TYPE_PTR); 5080 assert(ie->access == IOC_RW); 5081 arg_type++; 5082 target_size_in = thunk_type_size(arg_type, 0); 5083 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 5084 if (!argptr) { 5085 return -TARGET_EFAULT; 5086 } 5087 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5088 unlock_user(argptr, arg, 0); 5089 fm = (struct fiemap *)buf_temp; 5090 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 5091 return -TARGET_EINVAL; 5092 } 5093 5094 outbufsz = sizeof (*fm) + 5095 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 5096 5097 if (outbufsz > MAX_STRUCT_SIZE) { 5098 /* We can't fit all the extents into the fixed size buffer. 5099 * Allocate one that is large enough and use it instead. 5100 */ 5101 fm = g_try_malloc(outbufsz); 5102 if (!fm) { 5103 return -TARGET_ENOMEM; 5104 } 5105 memcpy(fm, buf_temp, sizeof(struct fiemap)); 5106 free_fm = 1; 5107 } 5108 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 5109 if (!is_error(ret)) { 5110 target_size_out = target_size_in; 5111 /* An extent_count of 0 means we were only counting the extents 5112 * so there are no structs to copy 5113 */ 5114 if (fm->fm_extent_count != 0) { 5115 target_size_out += fm->fm_mapped_extents * extent_size; 5116 } 5117 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 5118 if (!argptr) { 5119 ret = -TARGET_EFAULT; 5120 } else { 5121 /* Convert the struct fiemap */ 5122 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 5123 if (fm->fm_extent_count != 0) { 5124 p = argptr + target_size_in; 5125 /* ...and then all the struct fiemap_extents */ 5126 for (i = 0; i < fm->fm_mapped_extents; i++) { 5127 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 5128 THUNK_TARGET); 5129 p += extent_size; 5130 } 5131 } 5132 unlock_user(argptr, arg, target_size_out); 5133 } 5134 } 5135 if (free_fm) { 5136 g_free(fm); 5137 } 5138 return ret; 5139 } 5140 #endif 5141 5142 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 5143 int fd, int cmd, abi_long arg) 5144 { 5145 const argtype *arg_type = ie->arg_type; 5146 int target_size; 5147 void *argptr; 5148 int ret; 5149 struct ifconf *host_ifconf; 5150 uint32_t outbufsz; 5151 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 5152 int target_ifreq_size; 5153 int nb_ifreq; 5154 int free_buf = 0; 5155 int i; 5156 int target_ifc_len; 5157 abi_long target_ifc_buf; 5158 int host_ifc_len; 5159 char *host_ifc_buf; 5160 5161 assert(arg_type[0] == TYPE_PTR); 5162 assert(ie->access == IOC_RW); 5163 5164 arg_type++; 5165 target_size = thunk_type_size(arg_type, 0); 5166 5167 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5168 if (!argptr) 5169 return -TARGET_EFAULT; 5170 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5171 unlock_user(argptr, arg, 0); 5172 5173 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 5174 target_ifc_len = host_ifconf->ifc_len; 5175 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 5176 5177 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0); 5178 nb_ifreq = target_ifc_len / target_ifreq_size; 5179 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 5180 5181 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 5182 if (outbufsz > MAX_STRUCT_SIZE) { 5183 /* We can't fit all the extents into the fixed size buffer. 5184 * Allocate one that is large enough and use it instead. 5185 */ 5186 host_ifconf = malloc(outbufsz); 5187 if (!host_ifconf) { 5188 return -TARGET_ENOMEM; 5189 } 5190 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 5191 free_buf = 1; 5192 } 5193 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf); 5194 5195 host_ifconf->ifc_len = host_ifc_len; 5196 host_ifconf->ifc_buf = host_ifc_buf; 5197 5198 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 5199 if (!is_error(ret)) { 5200 /* convert host ifc_len to target ifc_len */ 5201 5202 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 5203 target_ifc_len = nb_ifreq * target_ifreq_size; 5204 host_ifconf->ifc_len = target_ifc_len; 5205 5206 /* restore target ifc_buf */ 5207 5208 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 5209 5210 /* copy struct ifconf to target user */ 5211 5212 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5213 if (!argptr) 5214 return -TARGET_EFAULT; 5215 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 5216 unlock_user(argptr, arg, target_size); 5217 5218 /* copy ifreq[] to target user */ 5219 5220 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 5221 for (i = 0; i < nb_ifreq ; i++) { 5222 thunk_convert(argptr + i * target_ifreq_size, 5223 host_ifc_buf + i * sizeof(struct ifreq), 5224 ifreq_arg_type, THUNK_TARGET); 5225 } 5226 unlock_user(argptr, target_ifc_buf, target_ifc_len); 5227 } 5228 5229 if (free_buf) { 5230 free(host_ifconf); 5231 } 5232 5233 return ret; 5234 } 5235 5236 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5237 int cmd, abi_long arg) 5238 { 5239 void *argptr; 5240 struct dm_ioctl *host_dm; 5241 abi_long guest_data; 5242 uint32_t guest_data_size; 5243 int target_size; 5244 const argtype *arg_type = ie->arg_type; 5245 abi_long ret; 5246 void *big_buf = NULL; 5247 char *host_data; 5248 5249 arg_type++; 5250 target_size = thunk_type_size(arg_type, 0); 5251 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5252 if (!argptr) { 5253 ret = -TARGET_EFAULT; 5254 goto out; 5255 } 5256 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5257 unlock_user(argptr, arg, 0); 5258 5259 /* buf_temp is too small, so fetch things into a bigger buffer */ 5260 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5261 memcpy(big_buf, buf_temp, target_size); 5262 buf_temp = big_buf; 5263 host_dm = big_buf; 5264 5265 guest_data = arg + host_dm->data_start; 5266 if ((guest_data - arg) < 0) { 5267 ret = -TARGET_EINVAL; 5268 goto out; 5269 } 5270 guest_data_size = host_dm->data_size - host_dm->data_start; 5271 host_data = (char*)host_dm + host_dm->data_start; 5272 5273 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5274 if (!argptr) { 5275 ret = -TARGET_EFAULT; 5276 goto out; 5277 } 5278 5279 switch (ie->host_cmd) { 5280 case DM_REMOVE_ALL: 5281 case DM_LIST_DEVICES: 5282 case DM_DEV_CREATE: 5283 case DM_DEV_REMOVE: 5284 case DM_DEV_SUSPEND: 5285 case DM_DEV_STATUS: 5286 case DM_DEV_WAIT: 5287 case DM_TABLE_STATUS: 5288 case DM_TABLE_CLEAR: 5289 case DM_TABLE_DEPS: 5290 case DM_LIST_VERSIONS: 5291 /* no input data */ 5292 break; 5293 case DM_DEV_RENAME: 5294 case DM_DEV_SET_GEOMETRY: 5295 /* data contains only strings */ 5296 memcpy(host_data, argptr, guest_data_size); 5297 break; 5298 case DM_TARGET_MSG: 5299 memcpy(host_data, argptr, guest_data_size); 5300 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5301 break; 5302 case DM_TABLE_LOAD: 5303 { 5304 void *gspec = argptr; 5305 void *cur_data = host_data; 5306 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5307 int spec_size = thunk_type_size(arg_type, 0); 5308 int i; 5309 5310 for (i = 0; i < host_dm->target_count; i++) { 5311 struct dm_target_spec *spec = cur_data; 5312 uint32_t next; 5313 int slen; 5314 5315 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 5316 slen = strlen((char*)gspec + spec_size) + 1; 5317 next = spec->next; 5318 spec->next = sizeof(*spec) + slen; 5319 strcpy((char*)&spec[1], gspec + spec_size); 5320 gspec += next; 5321 cur_data += spec->next; 5322 } 5323 break; 5324 } 5325 default: 5326 ret = -TARGET_EINVAL; 5327 unlock_user(argptr, guest_data, 0); 5328 goto out; 5329 } 5330 unlock_user(argptr, guest_data, 0); 5331 5332 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5333 if (!is_error(ret)) { 5334 guest_data = arg + host_dm->data_start; 5335 guest_data_size = host_dm->data_size - host_dm->data_start; 5336 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5337 switch (ie->host_cmd) { 5338 case DM_REMOVE_ALL: 5339 case DM_DEV_CREATE: 5340 case DM_DEV_REMOVE: 5341 case DM_DEV_RENAME: 5342 case DM_DEV_SUSPEND: 5343 case DM_DEV_STATUS: 5344 case DM_TABLE_LOAD: 5345 case DM_TABLE_CLEAR: 5346 case DM_TARGET_MSG: 5347 case DM_DEV_SET_GEOMETRY: 5348 /* no return data */ 5349 break; 5350 case DM_LIST_DEVICES: 5351 { 5352 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5353 uint32_t remaining_data = guest_data_size; 5354 void *cur_data = argptr; 5355 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5356 int nl_size = 12; /* can't use thunk_size due to alignment */ 5357 5358 while (1) { 5359 uint32_t next = nl->next; 5360 if (next) { 5361 nl->next = nl_size + (strlen(nl->name) + 1); 5362 } 5363 if (remaining_data < nl->next) { 5364 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5365 break; 5366 } 5367 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 5368 strcpy(cur_data + nl_size, nl->name); 5369 cur_data += nl->next; 5370 remaining_data -= nl->next; 5371 if (!next) { 5372 break; 5373 } 5374 nl = (void*)nl + next; 5375 } 5376 break; 5377 } 5378 case DM_DEV_WAIT: 5379 case DM_TABLE_STATUS: 5380 { 5381 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5382 void *cur_data = argptr; 5383 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5384 int spec_size = thunk_type_size(arg_type, 0); 5385 int i; 5386 5387 for (i = 0; i < host_dm->target_count; i++) { 5388 uint32_t next = spec->next; 5389 int slen = strlen((char*)&spec[1]) + 1; 5390 spec->next = (cur_data - argptr) + spec_size + slen; 5391 if (guest_data_size < spec->next) { 5392 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5393 break; 5394 } 5395 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 5396 strcpy(cur_data + spec_size, (char*)&spec[1]); 5397 cur_data = argptr + spec->next; 5398 spec = (void*)host_dm + host_dm->data_start + next; 5399 } 5400 break; 5401 } 5402 case DM_TABLE_DEPS: 5403 { 5404 void *hdata = (void*)host_dm + host_dm->data_start; 5405 int count = *(uint32_t*)hdata; 5406 uint64_t *hdev = hdata + 8; 5407 uint64_t *gdev = argptr + 8; 5408 int i; 5409 5410 *(uint32_t*)argptr = tswap32(count); 5411 for (i = 0; i < count; i++) { 5412 *gdev = tswap64(*hdev); 5413 gdev++; 5414 hdev++; 5415 } 5416 break; 5417 } 5418 case DM_LIST_VERSIONS: 5419 { 5420 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5421 uint32_t remaining_data = guest_data_size; 5422 void *cur_data = argptr; 5423 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5424 int vers_size = thunk_type_size(arg_type, 0); 5425 5426 while (1) { 5427 uint32_t next = vers->next; 5428 if (next) { 5429 vers->next = vers_size + (strlen(vers->name) + 1); 5430 } 5431 if (remaining_data < vers->next) { 5432 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5433 break; 5434 } 5435 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 5436 strcpy(cur_data + vers_size, vers->name); 5437 cur_data += vers->next; 5438 remaining_data -= vers->next; 5439 if (!next) { 5440 break; 5441 } 5442 vers = (void*)vers + next; 5443 } 5444 break; 5445 } 5446 default: 5447 unlock_user(argptr, guest_data, 0); 5448 ret = -TARGET_EINVAL; 5449 goto out; 5450 } 5451 unlock_user(argptr, guest_data, guest_data_size); 5452 5453 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5454 if (!argptr) { 5455 ret = -TARGET_EFAULT; 5456 goto out; 5457 } 5458 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5459 unlock_user(argptr, arg, target_size); 5460 } 5461 out: 5462 g_free(big_buf); 5463 return ret; 5464 } 5465 5466 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5467 int cmd, abi_long arg) 5468 { 5469 void *argptr; 5470 int target_size; 5471 const argtype *arg_type = ie->arg_type; 5472 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5473 abi_long ret; 5474 5475 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5476 struct blkpg_partition host_part; 5477 5478 /* Read and convert blkpg */ 5479 arg_type++; 5480 target_size = thunk_type_size(arg_type, 0); 5481 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5482 if (!argptr) { 5483 ret = -TARGET_EFAULT; 5484 goto out; 5485 } 5486 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5487 unlock_user(argptr, arg, 0); 5488 5489 switch (host_blkpg->op) { 5490 case BLKPG_ADD_PARTITION: 5491 case BLKPG_DEL_PARTITION: 5492 /* payload is struct blkpg_partition */ 5493 break; 5494 default: 5495 /* Unknown opcode */ 5496 ret = -TARGET_EINVAL; 5497 goto out; 5498 } 5499 5500 /* Read and convert blkpg->data */ 5501 arg = (abi_long)(uintptr_t)host_blkpg->data; 5502 target_size = thunk_type_size(part_arg_type, 0); 5503 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5504 if (!argptr) { 5505 ret = -TARGET_EFAULT; 5506 goto out; 5507 } 5508 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5509 unlock_user(argptr, arg, 0); 5510 5511 /* Swizzle the data pointer to our local copy and call! */ 5512 host_blkpg->data = &host_part; 5513 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5514 5515 out: 5516 return ret; 5517 } 5518 5519 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5520 int fd, int cmd, abi_long arg) 5521 { 5522 const argtype *arg_type = ie->arg_type; 5523 const StructEntry *se; 5524 const argtype *field_types; 5525 const int *dst_offsets, *src_offsets; 5526 int target_size; 5527 void *argptr; 5528 abi_ulong *target_rt_dev_ptr; 5529 unsigned long *host_rt_dev_ptr; 5530 abi_long ret; 5531 int i; 5532 5533 assert(ie->access == IOC_W); 5534 assert(*arg_type == TYPE_PTR); 5535 arg_type++; 5536 assert(*arg_type == TYPE_STRUCT); 5537 target_size = thunk_type_size(arg_type, 0); 5538 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5539 if (!argptr) { 5540 return -TARGET_EFAULT; 5541 } 5542 arg_type++; 5543 assert(*arg_type == (int)STRUCT_rtentry); 5544 se = struct_entries + *arg_type++; 5545 assert(se->convert[0] == NULL); 5546 /* convert struct here to be able to catch rt_dev string */ 5547 field_types = se->field_types; 5548 dst_offsets = se->field_offsets[THUNK_HOST]; 5549 src_offsets = se->field_offsets[THUNK_TARGET]; 5550 for (i = 0; i < se->nb_fields; i++) { 5551 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5552 assert(*field_types == TYPE_PTRVOID); 5553 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 5554 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5555 if (*target_rt_dev_ptr != 0) { 5556 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5557 tswapal(*target_rt_dev_ptr)); 5558 if (!*host_rt_dev_ptr) { 5559 unlock_user(argptr, arg, 0); 5560 return -TARGET_EFAULT; 5561 } 5562 } else { 5563 *host_rt_dev_ptr = 0; 5564 } 5565 field_types++; 5566 continue; 5567 } 5568 field_types = thunk_convert(buf_temp + dst_offsets[i], 5569 argptr + src_offsets[i], 5570 field_types, THUNK_HOST); 5571 } 5572 unlock_user(argptr, arg, 0); 5573 5574 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5575 if (*host_rt_dev_ptr != 0) { 5576 unlock_user((void *)*host_rt_dev_ptr, 5577 *target_rt_dev_ptr, 0); 5578 } 5579 return ret; 5580 } 5581 5582 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5583 int fd, int cmd, abi_long arg) 5584 { 5585 int sig = target_to_host_signal(arg); 5586 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5587 } 5588 5589 static IOCTLEntry ioctl_entries[] = { 5590 #define IOCTL(cmd, access, ...) \ 5591 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5592 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5593 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5594 #define IOCTL_IGNORE(cmd) \ 5595 { TARGET_ ## cmd, 0, #cmd }, 5596 #include "ioctls.h" 5597 { 0, 0, }, 5598 }; 5599 5600 /* ??? Implement proper locking for ioctls. */ 5601 /* do_ioctl() Must return target values and target errnos. */ 5602 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5603 { 5604 const IOCTLEntry *ie; 5605 const argtype *arg_type; 5606 abi_long ret; 5607 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5608 int target_size; 5609 void *argptr; 5610 5611 ie = ioctl_entries; 5612 for(;;) { 5613 if (ie->target_cmd == 0) { 5614 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5615 return -TARGET_ENOSYS; 5616 } 5617 if (ie->target_cmd == cmd) 5618 break; 5619 ie++; 5620 } 5621 arg_type = ie->arg_type; 5622 #if defined(DEBUG) 5623 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name); 5624 #endif 5625 if (ie->do_ioctl) { 5626 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5627 } else if (!ie->host_cmd) { 5628 /* Some architectures define BSD ioctls in their headers 5629 that are not implemented in Linux. */ 5630 return -TARGET_ENOSYS; 5631 } 5632 5633 switch(arg_type[0]) { 5634 case TYPE_NULL: 5635 /* no argument */ 5636 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5637 break; 5638 case TYPE_PTRVOID: 5639 case TYPE_INT: 5640 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5641 break; 5642 case TYPE_PTR: 5643 arg_type++; 5644 target_size = thunk_type_size(arg_type, 0); 5645 switch(ie->access) { 5646 case IOC_R: 5647 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5648 if (!is_error(ret)) { 5649 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5650 if (!argptr) 5651 return -TARGET_EFAULT; 5652 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5653 unlock_user(argptr, arg, target_size); 5654 } 5655 break; 5656 case IOC_W: 5657 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5658 if (!argptr) 5659 return -TARGET_EFAULT; 5660 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5661 unlock_user(argptr, arg, 0); 5662 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5663 break; 5664 default: 5665 case IOC_RW: 5666 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5667 if (!argptr) 5668 return -TARGET_EFAULT; 5669 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5670 unlock_user(argptr, arg, 0); 5671 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5672 if (!is_error(ret)) { 5673 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5674 if (!argptr) 5675 return -TARGET_EFAULT; 5676 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5677 unlock_user(argptr, arg, target_size); 5678 } 5679 break; 5680 } 5681 break; 5682 default: 5683 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5684 (long)cmd, arg_type[0]); 5685 ret = -TARGET_ENOSYS; 5686 break; 5687 } 5688 return ret; 5689 } 5690 5691 static const bitmask_transtbl iflag_tbl[] = { 5692 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5693 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5694 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5695 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5696 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5697 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5698 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5699 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5700 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5701 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5702 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5703 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5704 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5705 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5706 { 0, 0, 0, 0 } 5707 }; 5708 5709 static const bitmask_transtbl oflag_tbl[] = { 5710 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5711 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5712 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5713 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5714 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5715 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5716 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5717 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5718 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5719 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5720 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5721 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5722 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5723 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5724 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5725 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5726 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5727 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5728 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5729 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5730 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5731 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5732 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5733 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5734 { 0, 0, 0, 0 } 5735 }; 5736 5737 static const bitmask_transtbl cflag_tbl[] = { 5738 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5739 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5740 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5741 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5742 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5743 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5744 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5745 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5746 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5747 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5748 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5749 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5750 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5751 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5752 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5753 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5754 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5755 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5756 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5757 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5758 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5759 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5760 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5761 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5762 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5763 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5764 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5765 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5766 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5767 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5768 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5769 { 0, 0, 0, 0 } 5770 }; 5771 5772 static const bitmask_transtbl lflag_tbl[] = { 5773 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5774 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5775 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5776 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5777 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5778 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5779 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5780 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5781 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5782 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5783 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5784 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5785 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5786 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5787 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5788 { 0, 0, 0, 0 } 5789 }; 5790 5791 static void target_to_host_termios (void *dst, const void *src) 5792 { 5793 struct host_termios *host = dst; 5794 const struct target_termios *target = src; 5795 5796 host->c_iflag = 5797 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5798 host->c_oflag = 5799 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5800 host->c_cflag = 5801 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5802 host->c_lflag = 5803 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5804 host->c_line = target->c_line; 5805 5806 memset(host->c_cc, 0, sizeof(host->c_cc)); 5807 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5808 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5809 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5810 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5811 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5812 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5813 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5814 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5815 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5816 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5817 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5818 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5819 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5820 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5821 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5822 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5823 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5824 } 5825 5826 static void host_to_target_termios (void *dst, const void *src) 5827 { 5828 struct target_termios *target = dst; 5829 const struct host_termios *host = src; 5830 5831 target->c_iflag = 5832 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5833 target->c_oflag = 5834 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5835 target->c_cflag = 5836 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5837 target->c_lflag = 5838 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5839 target->c_line = host->c_line; 5840 5841 memset(target->c_cc, 0, sizeof(target->c_cc)); 5842 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5843 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5844 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5845 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5846 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5847 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5848 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5849 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5850 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5851 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5852 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5853 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5854 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5855 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5856 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5857 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5858 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5859 } 5860 5861 static const StructEntry struct_termios_def = { 5862 .convert = { host_to_target_termios, target_to_host_termios }, 5863 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5864 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5865 }; 5866 5867 static bitmask_transtbl mmap_flags_tbl[] = { 5868 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 5869 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 5870 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5871 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS }, 5872 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN }, 5873 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE }, 5874 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE }, 5875 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5876 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE, 5877 MAP_NORESERVE }, 5878 { 0, 0, 0, 0 } 5879 }; 5880 5881 #if defined(TARGET_I386) 5882 5883 /* NOTE: there is really one LDT for all the threads */ 5884 static uint8_t *ldt_table; 5885 5886 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5887 { 5888 int size; 5889 void *p; 5890 5891 if (!ldt_table) 5892 return 0; 5893 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5894 if (size > bytecount) 5895 size = bytecount; 5896 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5897 if (!p) 5898 return -TARGET_EFAULT; 5899 /* ??? Should this by byteswapped? */ 5900 memcpy(p, ldt_table, size); 5901 unlock_user(p, ptr, size); 5902 return size; 5903 } 5904 5905 /* XXX: add locking support */ 5906 static abi_long write_ldt(CPUX86State *env, 5907 abi_ulong ptr, unsigned long bytecount, int oldmode) 5908 { 5909 struct target_modify_ldt_ldt_s ldt_info; 5910 struct target_modify_ldt_ldt_s *target_ldt_info; 5911 int seg_32bit, contents, read_exec_only, limit_in_pages; 5912 int seg_not_present, useable, lm; 5913 uint32_t *lp, entry_1, entry_2; 5914 5915 if (bytecount != sizeof(ldt_info)) 5916 return -TARGET_EINVAL; 5917 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5918 return -TARGET_EFAULT; 5919 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5920 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5921 ldt_info.limit = tswap32(target_ldt_info->limit); 5922 ldt_info.flags = tswap32(target_ldt_info->flags); 5923 unlock_user_struct(target_ldt_info, ptr, 0); 5924 5925 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 5926 return -TARGET_EINVAL; 5927 seg_32bit = ldt_info.flags & 1; 5928 contents = (ldt_info.flags >> 1) & 3; 5929 read_exec_only = (ldt_info.flags >> 3) & 1; 5930 limit_in_pages = (ldt_info.flags >> 4) & 1; 5931 seg_not_present = (ldt_info.flags >> 5) & 1; 5932 useable = (ldt_info.flags >> 6) & 1; 5933 #ifdef TARGET_ABI32 5934 lm = 0; 5935 #else 5936 lm = (ldt_info.flags >> 7) & 1; 5937 #endif 5938 if (contents == 3) { 5939 if (oldmode) 5940 return -TARGET_EINVAL; 5941 if (seg_not_present == 0) 5942 return -TARGET_EINVAL; 5943 } 5944 /* allocate the LDT */ 5945 if (!ldt_table) { 5946 env->ldt.base = target_mmap(0, 5947 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 5948 PROT_READ|PROT_WRITE, 5949 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 5950 if (env->ldt.base == -1) 5951 return -TARGET_ENOMEM; 5952 memset(g2h(env->ldt.base), 0, 5953 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 5954 env->ldt.limit = 0xffff; 5955 ldt_table = g2h(env->ldt.base); 5956 } 5957 5958 /* NOTE: same code as Linux kernel */ 5959 /* Allow LDTs to be cleared by the user. */ 5960 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 5961 if (oldmode || 5962 (contents == 0 && 5963 read_exec_only == 1 && 5964 seg_32bit == 0 && 5965 limit_in_pages == 0 && 5966 seg_not_present == 1 && 5967 useable == 0 )) { 5968 entry_1 = 0; 5969 entry_2 = 0; 5970 goto install; 5971 } 5972 } 5973 5974 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 5975 (ldt_info.limit & 0x0ffff); 5976 entry_2 = (ldt_info.base_addr & 0xff000000) | 5977 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 5978 (ldt_info.limit & 0xf0000) | 5979 ((read_exec_only ^ 1) << 9) | 5980 (contents << 10) | 5981 ((seg_not_present ^ 1) << 15) | 5982 (seg_32bit << 22) | 5983 (limit_in_pages << 23) | 5984 (lm << 21) | 5985 0x7000; 5986 if (!oldmode) 5987 entry_2 |= (useable << 20); 5988 5989 /* Install the new entry ... */ 5990 install: 5991 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 5992 lp[0] = tswap32(entry_1); 5993 lp[1] = tswap32(entry_2); 5994 return 0; 5995 } 5996 5997 /* specific and weird i386 syscalls */ 5998 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 5999 unsigned long bytecount) 6000 { 6001 abi_long ret; 6002 6003 switch (func) { 6004 case 0: 6005 ret = read_ldt(ptr, bytecount); 6006 break; 6007 case 1: 6008 ret = write_ldt(env, ptr, bytecount, 1); 6009 break; 6010 case 0x11: 6011 ret = write_ldt(env, ptr, bytecount, 0); 6012 break; 6013 default: 6014 ret = -TARGET_ENOSYS; 6015 break; 6016 } 6017 return ret; 6018 } 6019 6020 #if defined(TARGET_I386) && defined(TARGET_ABI32) 6021 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6022 { 6023 uint64_t *gdt_table = g2h(env->gdt.base); 6024 struct target_modify_ldt_ldt_s ldt_info; 6025 struct target_modify_ldt_ldt_s *target_ldt_info; 6026 int seg_32bit, contents, read_exec_only, limit_in_pages; 6027 int seg_not_present, useable, lm; 6028 uint32_t *lp, entry_1, entry_2; 6029 int i; 6030 6031 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6032 if (!target_ldt_info) 6033 return -TARGET_EFAULT; 6034 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6035 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6036 ldt_info.limit = tswap32(target_ldt_info->limit); 6037 ldt_info.flags = tswap32(target_ldt_info->flags); 6038 if (ldt_info.entry_number == -1) { 6039 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6040 if (gdt_table[i] == 0) { 6041 ldt_info.entry_number = i; 6042 target_ldt_info->entry_number = tswap32(i); 6043 break; 6044 } 6045 } 6046 } 6047 unlock_user_struct(target_ldt_info, ptr, 1); 6048 6049 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6050 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6051 return -TARGET_EINVAL; 6052 seg_32bit = ldt_info.flags & 1; 6053 contents = (ldt_info.flags >> 1) & 3; 6054 read_exec_only = (ldt_info.flags >> 3) & 1; 6055 limit_in_pages = (ldt_info.flags >> 4) & 1; 6056 seg_not_present = (ldt_info.flags >> 5) & 1; 6057 useable = (ldt_info.flags >> 6) & 1; 6058 #ifdef TARGET_ABI32 6059 lm = 0; 6060 #else 6061 lm = (ldt_info.flags >> 7) & 1; 6062 #endif 6063 6064 if (contents == 3) { 6065 if (seg_not_present == 0) 6066 return -TARGET_EINVAL; 6067 } 6068 6069 /* NOTE: same code as Linux kernel */ 6070 /* Allow LDTs to be cleared by the user. */ 6071 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6072 if ((contents == 0 && 6073 read_exec_only == 1 && 6074 seg_32bit == 0 && 6075 limit_in_pages == 0 && 6076 seg_not_present == 1 && 6077 useable == 0 )) { 6078 entry_1 = 0; 6079 entry_2 = 0; 6080 goto install; 6081 } 6082 } 6083 6084 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6085 (ldt_info.limit & 0x0ffff); 6086 entry_2 = (ldt_info.base_addr & 0xff000000) | 6087 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6088 (ldt_info.limit & 0xf0000) | 6089 ((read_exec_only ^ 1) << 9) | 6090 (contents << 10) | 6091 ((seg_not_present ^ 1) << 15) | 6092 (seg_32bit << 22) | 6093 (limit_in_pages << 23) | 6094 (useable << 20) | 6095 (lm << 21) | 6096 0x7000; 6097 6098 /* Install the new entry ... */ 6099 install: 6100 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6101 lp[0] = tswap32(entry_1); 6102 lp[1] = tswap32(entry_2); 6103 return 0; 6104 } 6105 6106 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6107 { 6108 struct target_modify_ldt_ldt_s *target_ldt_info; 6109 uint64_t *gdt_table = g2h(env->gdt.base); 6110 uint32_t base_addr, limit, flags; 6111 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6112 int seg_not_present, useable, lm; 6113 uint32_t *lp, entry_1, entry_2; 6114 6115 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6116 if (!target_ldt_info) 6117 return -TARGET_EFAULT; 6118 idx = tswap32(target_ldt_info->entry_number); 6119 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6120 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6121 unlock_user_struct(target_ldt_info, ptr, 1); 6122 return -TARGET_EINVAL; 6123 } 6124 lp = (uint32_t *)(gdt_table + idx); 6125 entry_1 = tswap32(lp[0]); 6126 entry_2 = tswap32(lp[1]); 6127 6128 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6129 contents = (entry_2 >> 10) & 3; 6130 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6131 seg_32bit = (entry_2 >> 22) & 1; 6132 limit_in_pages = (entry_2 >> 23) & 1; 6133 useable = (entry_2 >> 20) & 1; 6134 #ifdef TARGET_ABI32 6135 lm = 0; 6136 #else 6137 lm = (entry_2 >> 21) & 1; 6138 #endif 6139 flags = (seg_32bit << 0) | (contents << 1) | 6140 (read_exec_only << 3) | (limit_in_pages << 4) | 6141 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6142 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6143 base_addr = (entry_1 >> 16) | 6144 (entry_2 & 0xff000000) | 6145 ((entry_2 & 0xff) << 16); 6146 target_ldt_info->base_addr = tswapal(base_addr); 6147 target_ldt_info->limit = tswap32(limit); 6148 target_ldt_info->flags = tswap32(flags); 6149 unlock_user_struct(target_ldt_info, ptr, 1); 6150 return 0; 6151 } 6152 #endif /* TARGET_I386 && TARGET_ABI32 */ 6153 6154 #ifndef TARGET_ABI32 6155 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6156 { 6157 abi_long ret = 0; 6158 abi_ulong val; 6159 int idx; 6160 6161 switch(code) { 6162 case TARGET_ARCH_SET_GS: 6163 case TARGET_ARCH_SET_FS: 6164 if (code == TARGET_ARCH_SET_GS) 6165 idx = R_GS; 6166 else 6167 idx = R_FS; 6168 cpu_x86_load_seg(env, idx, 0); 6169 env->segs[idx].base = addr; 6170 break; 6171 case TARGET_ARCH_GET_GS: 6172 case TARGET_ARCH_GET_FS: 6173 if (code == TARGET_ARCH_GET_GS) 6174 idx = R_GS; 6175 else 6176 idx = R_FS; 6177 val = env->segs[idx].base; 6178 if (put_user(val, addr, abi_ulong)) 6179 ret = -TARGET_EFAULT; 6180 break; 6181 default: 6182 ret = -TARGET_EINVAL; 6183 break; 6184 } 6185 return ret; 6186 } 6187 #endif 6188 6189 #endif /* defined(TARGET_I386) */ 6190 6191 #define NEW_STACK_SIZE 0x40000 6192 6193 6194 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6195 typedef struct { 6196 CPUArchState *env; 6197 pthread_mutex_t mutex; 6198 pthread_cond_t cond; 6199 pthread_t thread; 6200 uint32_t tid; 6201 abi_ulong child_tidptr; 6202 abi_ulong parent_tidptr; 6203 sigset_t sigmask; 6204 } new_thread_info; 6205 6206 static void *clone_func(void *arg) 6207 { 6208 new_thread_info *info = arg; 6209 CPUArchState *env; 6210 CPUState *cpu; 6211 TaskState *ts; 6212 6213 rcu_register_thread(); 6214 env = info->env; 6215 cpu = ENV_GET_CPU(env); 6216 thread_cpu = cpu; 6217 ts = (TaskState *)cpu->opaque; 6218 info->tid = gettid(); 6219 cpu->host_tid = info->tid; 6220 task_settid(ts); 6221 if (info->child_tidptr) 6222 put_user_u32(info->tid, info->child_tidptr); 6223 if (info->parent_tidptr) 6224 put_user_u32(info->tid, info->parent_tidptr); 6225 /* Enable signals. */ 6226 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6227 /* Signal to the parent that we're ready. */ 6228 pthread_mutex_lock(&info->mutex); 6229 pthread_cond_broadcast(&info->cond); 6230 pthread_mutex_unlock(&info->mutex); 6231 /* Wait until the parent has finshed initializing the tls state. */ 6232 pthread_mutex_lock(&clone_lock); 6233 pthread_mutex_unlock(&clone_lock); 6234 cpu_loop(env); 6235 /* never exits */ 6236 return NULL; 6237 } 6238 6239 /* do_fork() Must return host values and target errnos (unlike most 6240 do_*() functions). */ 6241 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6242 abi_ulong parent_tidptr, target_ulong newtls, 6243 abi_ulong child_tidptr) 6244 { 6245 CPUState *cpu = ENV_GET_CPU(env); 6246 int ret; 6247 TaskState *ts; 6248 CPUState *new_cpu; 6249 CPUArchState *new_env; 6250 sigset_t sigmask; 6251 6252 flags &= ~CLONE_IGNORED_FLAGS; 6253 6254 /* Emulate vfork() with fork() */ 6255 if (flags & CLONE_VFORK) 6256 flags &= ~(CLONE_VFORK | CLONE_VM); 6257 6258 if (flags & CLONE_VM) { 6259 TaskState *parent_ts = (TaskState *)cpu->opaque; 6260 new_thread_info info; 6261 pthread_attr_t attr; 6262 6263 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6264 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6265 return -TARGET_EINVAL; 6266 } 6267 6268 ts = g_new0(TaskState, 1); 6269 init_task_state(ts); 6270 /* we create a new CPU instance. */ 6271 new_env = cpu_copy(env); 6272 /* Init regs that differ from the parent. */ 6273 cpu_clone_regs(new_env, newsp); 6274 new_cpu = ENV_GET_CPU(new_env); 6275 new_cpu->opaque = ts; 6276 ts->bprm = parent_ts->bprm; 6277 ts->info = parent_ts->info; 6278 ts->signal_mask = parent_ts->signal_mask; 6279 6280 if (flags & CLONE_CHILD_CLEARTID) { 6281 ts->child_tidptr = child_tidptr; 6282 } 6283 6284 if (flags & CLONE_SETTLS) { 6285 cpu_set_tls (new_env, newtls); 6286 } 6287 6288 /* Grab a mutex so that thread setup appears atomic. */ 6289 pthread_mutex_lock(&clone_lock); 6290 6291 memset(&info, 0, sizeof(info)); 6292 pthread_mutex_init(&info.mutex, NULL); 6293 pthread_mutex_lock(&info.mutex); 6294 pthread_cond_init(&info.cond, NULL); 6295 info.env = new_env; 6296 if (flags & CLONE_CHILD_SETTID) { 6297 info.child_tidptr = child_tidptr; 6298 } 6299 if (flags & CLONE_PARENT_SETTID) { 6300 info.parent_tidptr = parent_tidptr; 6301 } 6302 6303 ret = pthread_attr_init(&attr); 6304 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6305 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6306 /* It is not safe to deliver signals until the child has finished 6307 initializing, so temporarily block all signals. */ 6308 sigfillset(&sigmask); 6309 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6310 6311 /* If this is our first additional thread, we need to ensure we 6312 * generate code for parallel execution and flush old translations. 6313 */ 6314 if (!parallel_cpus) { 6315 parallel_cpus = true; 6316 tb_flush(cpu); 6317 } 6318 6319 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6320 /* TODO: Free new CPU state if thread creation failed. */ 6321 6322 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6323 pthread_attr_destroy(&attr); 6324 if (ret == 0) { 6325 /* Wait for the child to initialize. */ 6326 pthread_cond_wait(&info.cond, &info.mutex); 6327 ret = info.tid; 6328 } else { 6329 ret = -1; 6330 } 6331 pthread_mutex_unlock(&info.mutex); 6332 pthread_cond_destroy(&info.cond); 6333 pthread_mutex_destroy(&info.mutex); 6334 pthread_mutex_unlock(&clone_lock); 6335 } else { 6336 /* if no CLONE_VM, we consider it is a fork */ 6337 if (flags & CLONE_INVALID_FORK_FLAGS) { 6338 return -TARGET_EINVAL; 6339 } 6340 6341 /* We can't support custom termination signals */ 6342 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6343 return -TARGET_EINVAL; 6344 } 6345 6346 if (block_signals()) { 6347 return -TARGET_ERESTARTSYS; 6348 } 6349 6350 fork_start(); 6351 ret = fork(); 6352 if (ret == 0) { 6353 /* Child Process. */ 6354 rcu_after_fork(); 6355 cpu_clone_regs(env, newsp); 6356 fork_end(1); 6357 /* There is a race condition here. The parent process could 6358 theoretically read the TID in the child process before the child 6359 tid is set. This would require using either ptrace 6360 (not implemented) or having *_tidptr to point at a shared memory 6361 mapping. We can't repeat the spinlock hack used above because 6362 the child process gets its own copy of the lock. */ 6363 if (flags & CLONE_CHILD_SETTID) 6364 put_user_u32(gettid(), child_tidptr); 6365 if (flags & CLONE_PARENT_SETTID) 6366 put_user_u32(gettid(), parent_tidptr); 6367 ts = (TaskState *)cpu->opaque; 6368 if (flags & CLONE_SETTLS) 6369 cpu_set_tls (env, newtls); 6370 if (flags & CLONE_CHILD_CLEARTID) 6371 ts->child_tidptr = child_tidptr; 6372 } else { 6373 fork_end(0); 6374 } 6375 } 6376 return ret; 6377 } 6378 6379 /* warning : doesn't handle linux specific flags... */ 6380 static int target_to_host_fcntl_cmd(int cmd) 6381 { 6382 switch(cmd) { 6383 case TARGET_F_DUPFD: 6384 case TARGET_F_GETFD: 6385 case TARGET_F_SETFD: 6386 case TARGET_F_GETFL: 6387 case TARGET_F_SETFL: 6388 return cmd; 6389 case TARGET_F_GETLK: 6390 return F_GETLK64; 6391 case TARGET_F_SETLK: 6392 return F_SETLK64; 6393 case TARGET_F_SETLKW: 6394 return F_SETLKW64; 6395 case TARGET_F_GETOWN: 6396 return F_GETOWN; 6397 case TARGET_F_SETOWN: 6398 return F_SETOWN; 6399 case TARGET_F_GETSIG: 6400 return F_GETSIG; 6401 case TARGET_F_SETSIG: 6402 return F_SETSIG; 6403 #if TARGET_ABI_BITS == 32 6404 case TARGET_F_GETLK64: 6405 return F_GETLK64; 6406 case TARGET_F_SETLK64: 6407 return F_SETLK64; 6408 case TARGET_F_SETLKW64: 6409 return F_SETLKW64; 6410 #endif 6411 case TARGET_F_SETLEASE: 6412 return F_SETLEASE; 6413 case TARGET_F_GETLEASE: 6414 return F_GETLEASE; 6415 #ifdef F_DUPFD_CLOEXEC 6416 case TARGET_F_DUPFD_CLOEXEC: 6417 return F_DUPFD_CLOEXEC; 6418 #endif 6419 case TARGET_F_NOTIFY: 6420 return F_NOTIFY; 6421 #ifdef F_GETOWN_EX 6422 case TARGET_F_GETOWN_EX: 6423 return F_GETOWN_EX; 6424 #endif 6425 #ifdef F_SETOWN_EX 6426 case TARGET_F_SETOWN_EX: 6427 return F_SETOWN_EX; 6428 #endif 6429 #ifdef F_SETPIPE_SZ 6430 case TARGET_F_SETPIPE_SZ: 6431 return F_SETPIPE_SZ; 6432 case TARGET_F_GETPIPE_SZ: 6433 return F_GETPIPE_SZ; 6434 #endif 6435 default: 6436 return -TARGET_EINVAL; 6437 } 6438 return -TARGET_EINVAL; 6439 } 6440 6441 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a } 6442 static const bitmask_transtbl flock_tbl[] = { 6443 TRANSTBL_CONVERT(F_RDLCK), 6444 TRANSTBL_CONVERT(F_WRLCK), 6445 TRANSTBL_CONVERT(F_UNLCK), 6446 TRANSTBL_CONVERT(F_EXLCK), 6447 TRANSTBL_CONVERT(F_SHLCK), 6448 { 0, 0, 0, 0 } 6449 }; 6450 6451 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6452 abi_ulong target_flock_addr) 6453 { 6454 struct target_flock *target_fl; 6455 short l_type; 6456 6457 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6458 return -TARGET_EFAULT; 6459 } 6460 6461 __get_user(l_type, &target_fl->l_type); 6462 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6463 __get_user(fl->l_whence, &target_fl->l_whence); 6464 __get_user(fl->l_start, &target_fl->l_start); 6465 __get_user(fl->l_len, &target_fl->l_len); 6466 __get_user(fl->l_pid, &target_fl->l_pid); 6467 unlock_user_struct(target_fl, target_flock_addr, 0); 6468 return 0; 6469 } 6470 6471 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6472 const struct flock64 *fl) 6473 { 6474 struct target_flock *target_fl; 6475 short l_type; 6476 6477 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6478 return -TARGET_EFAULT; 6479 } 6480 6481 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6482 __put_user(l_type, &target_fl->l_type); 6483 __put_user(fl->l_whence, &target_fl->l_whence); 6484 __put_user(fl->l_start, &target_fl->l_start); 6485 __put_user(fl->l_len, &target_fl->l_len); 6486 __put_user(fl->l_pid, &target_fl->l_pid); 6487 unlock_user_struct(target_fl, target_flock_addr, 1); 6488 return 0; 6489 } 6490 6491 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6492 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6493 6494 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6495 static inline abi_long copy_from_user_eabi_flock64(struct flock64 *fl, 6496 abi_ulong target_flock_addr) 6497 { 6498 struct target_eabi_flock64 *target_fl; 6499 short l_type; 6500 6501 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6502 return -TARGET_EFAULT; 6503 } 6504 6505 __get_user(l_type, &target_fl->l_type); 6506 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6507 __get_user(fl->l_whence, &target_fl->l_whence); 6508 __get_user(fl->l_start, &target_fl->l_start); 6509 __get_user(fl->l_len, &target_fl->l_len); 6510 __get_user(fl->l_pid, &target_fl->l_pid); 6511 unlock_user_struct(target_fl, target_flock_addr, 0); 6512 return 0; 6513 } 6514 6515 static inline abi_long copy_to_user_eabi_flock64(abi_ulong target_flock_addr, 6516 const struct flock64 *fl) 6517 { 6518 struct target_eabi_flock64 *target_fl; 6519 short l_type; 6520 6521 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6522 return -TARGET_EFAULT; 6523 } 6524 6525 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6526 __put_user(l_type, &target_fl->l_type); 6527 __put_user(fl->l_whence, &target_fl->l_whence); 6528 __put_user(fl->l_start, &target_fl->l_start); 6529 __put_user(fl->l_len, &target_fl->l_len); 6530 __put_user(fl->l_pid, &target_fl->l_pid); 6531 unlock_user_struct(target_fl, target_flock_addr, 1); 6532 return 0; 6533 } 6534 #endif 6535 6536 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6537 abi_ulong target_flock_addr) 6538 { 6539 struct target_flock64 *target_fl; 6540 short l_type; 6541 6542 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6543 return -TARGET_EFAULT; 6544 } 6545 6546 __get_user(l_type, &target_fl->l_type); 6547 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6548 __get_user(fl->l_whence, &target_fl->l_whence); 6549 __get_user(fl->l_start, &target_fl->l_start); 6550 __get_user(fl->l_len, &target_fl->l_len); 6551 __get_user(fl->l_pid, &target_fl->l_pid); 6552 unlock_user_struct(target_fl, target_flock_addr, 0); 6553 return 0; 6554 } 6555 6556 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6557 const struct flock64 *fl) 6558 { 6559 struct target_flock64 *target_fl; 6560 short l_type; 6561 6562 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6563 return -TARGET_EFAULT; 6564 } 6565 6566 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6567 __put_user(l_type, &target_fl->l_type); 6568 __put_user(fl->l_whence, &target_fl->l_whence); 6569 __put_user(fl->l_start, &target_fl->l_start); 6570 __put_user(fl->l_len, &target_fl->l_len); 6571 __put_user(fl->l_pid, &target_fl->l_pid); 6572 unlock_user_struct(target_fl, target_flock_addr, 1); 6573 return 0; 6574 } 6575 6576 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6577 { 6578 struct flock64 fl64; 6579 #ifdef F_GETOWN_EX 6580 struct f_owner_ex fox; 6581 struct target_f_owner_ex *target_fox; 6582 #endif 6583 abi_long ret; 6584 int host_cmd = target_to_host_fcntl_cmd(cmd); 6585 6586 if (host_cmd == -TARGET_EINVAL) 6587 return host_cmd; 6588 6589 switch(cmd) { 6590 case TARGET_F_GETLK: 6591 ret = copy_from_user_flock(&fl64, arg); 6592 if (ret) { 6593 return ret; 6594 } 6595 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6596 if (ret == 0) { 6597 ret = copy_to_user_flock(arg, &fl64); 6598 } 6599 break; 6600 6601 case TARGET_F_SETLK: 6602 case TARGET_F_SETLKW: 6603 ret = copy_from_user_flock(&fl64, arg); 6604 if (ret) { 6605 return ret; 6606 } 6607 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6608 break; 6609 6610 case TARGET_F_GETLK64: 6611 ret = copy_from_user_flock64(&fl64, arg); 6612 if (ret) { 6613 return ret; 6614 } 6615 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6616 if (ret == 0) { 6617 ret = copy_to_user_flock64(arg, &fl64); 6618 } 6619 break; 6620 case TARGET_F_SETLK64: 6621 case TARGET_F_SETLKW64: 6622 ret = copy_from_user_flock64(&fl64, arg); 6623 if (ret) { 6624 return ret; 6625 } 6626 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6627 break; 6628 6629 case TARGET_F_GETFL: 6630 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6631 if (ret >= 0) { 6632 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 6633 } 6634 break; 6635 6636 case TARGET_F_SETFL: 6637 ret = get_errno(safe_fcntl(fd, host_cmd, 6638 target_to_host_bitmask(arg, 6639 fcntl_flags_tbl))); 6640 break; 6641 6642 #ifdef F_GETOWN_EX 6643 case TARGET_F_GETOWN_EX: 6644 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6645 if (ret >= 0) { 6646 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 6647 return -TARGET_EFAULT; 6648 target_fox->type = tswap32(fox.type); 6649 target_fox->pid = tswap32(fox.pid); 6650 unlock_user_struct(target_fox, arg, 1); 6651 } 6652 break; 6653 #endif 6654 6655 #ifdef F_SETOWN_EX 6656 case TARGET_F_SETOWN_EX: 6657 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 6658 return -TARGET_EFAULT; 6659 fox.type = tswap32(target_fox->type); 6660 fox.pid = tswap32(target_fox->pid); 6661 unlock_user_struct(target_fox, arg, 0); 6662 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6663 break; 6664 #endif 6665 6666 case TARGET_F_SETOWN: 6667 case TARGET_F_GETOWN: 6668 case TARGET_F_SETSIG: 6669 case TARGET_F_GETSIG: 6670 case TARGET_F_SETLEASE: 6671 case TARGET_F_GETLEASE: 6672 case TARGET_F_SETPIPE_SZ: 6673 case TARGET_F_GETPIPE_SZ: 6674 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6675 break; 6676 6677 default: 6678 ret = get_errno(safe_fcntl(fd, cmd, arg)); 6679 break; 6680 } 6681 return ret; 6682 } 6683 6684 #ifdef USE_UID16 6685 6686 static inline int high2lowuid(int uid) 6687 { 6688 if (uid > 65535) 6689 return 65534; 6690 else 6691 return uid; 6692 } 6693 6694 static inline int high2lowgid(int gid) 6695 { 6696 if (gid > 65535) 6697 return 65534; 6698 else 6699 return gid; 6700 } 6701 6702 static inline int low2highuid(int uid) 6703 { 6704 if ((int16_t)uid == -1) 6705 return -1; 6706 else 6707 return uid; 6708 } 6709 6710 static inline int low2highgid(int gid) 6711 { 6712 if ((int16_t)gid == -1) 6713 return -1; 6714 else 6715 return gid; 6716 } 6717 static inline int tswapid(int id) 6718 { 6719 return tswap16(id); 6720 } 6721 6722 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 6723 6724 #else /* !USE_UID16 */ 6725 static inline int high2lowuid(int uid) 6726 { 6727 return uid; 6728 } 6729 static inline int high2lowgid(int gid) 6730 { 6731 return gid; 6732 } 6733 static inline int low2highuid(int uid) 6734 { 6735 return uid; 6736 } 6737 static inline int low2highgid(int gid) 6738 { 6739 return gid; 6740 } 6741 static inline int tswapid(int id) 6742 { 6743 return tswap32(id); 6744 } 6745 6746 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 6747 6748 #endif /* USE_UID16 */ 6749 6750 /* We must do direct syscalls for setting UID/GID, because we want to 6751 * implement the Linux system call semantics of "change only for this thread", 6752 * not the libc/POSIX semantics of "change for all threads in process". 6753 * (See http://ewontfix.com/17/ for more details.) 6754 * We use the 32-bit version of the syscalls if present; if it is not 6755 * then either the host architecture supports 32-bit UIDs natively with 6756 * the standard syscall, or the 16-bit UID is the best we can do. 6757 */ 6758 #ifdef __NR_setuid32 6759 #define __NR_sys_setuid __NR_setuid32 6760 #else 6761 #define __NR_sys_setuid __NR_setuid 6762 #endif 6763 #ifdef __NR_setgid32 6764 #define __NR_sys_setgid __NR_setgid32 6765 #else 6766 #define __NR_sys_setgid __NR_setgid 6767 #endif 6768 #ifdef __NR_setresuid32 6769 #define __NR_sys_setresuid __NR_setresuid32 6770 #else 6771 #define __NR_sys_setresuid __NR_setresuid 6772 #endif 6773 #ifdef __NR_setresgid32 6774 #define __NR_sys_setresgid __NR_setresgid32 6775 #else 6776 #define __NR_sys_setresgid __NR_setresgid 6777 #endif 6778 6779 _syscall1(int, sys_setuid, uid_t, uid) 6780 _syscall1(int, sys_setgid, gid_t, gid) 6781 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 6782 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 6783 6784 void syscall_init(void) 6785 { 6786 IOCTLEntry *ie; 6787 const argtype *arg_type; 6788 int size; 6789 int i; 6790 6791 thunk_init(STRUCT_MAX); 6792 6793 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 6794 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 6795 #include "syscall_types.h" 6796 #undef STRUCT 6797 #undef STRUCT_SPECIAL 6798 6799 /* Build target_to_host_errno_table[] table from 6800 * host_to_target_errno_table[]. */ 6801 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 6802 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 6803 } 6804 6805 /* we patch the ioctl size if necessary. We rely on the fact that 6806 no ioctl has all the bits at '1' in the size field */ 6807 ie = ioctl_entries; 6808 while (ie->target_cmd != 0) { 6809 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 6810 TARGET_IOC_SIZEMASK) { 6811 arg_type = ie->arg_type; 6812 if (arg_type[0] != TYPE_PTR) { 6813 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 6814 ie->target_cmd); 6815 exit(1); 6816 } 6817 arg_type++; 6818 size = thunk_type_size(arg_type, 0); 6819 ie->target_cmd = (ie->target_cmd & 6820 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 6821 (size << TARGET_IOC_SIZESHIFT); 6822 } 6823 6824 /* automatic consistency check if same arch */ 6825 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 6826 (defined(__x86_64__) && defined(TARGET_X86_64)) 6827 if (unlikely(ie->target_cmd != ie->host_cmd)) { 6828 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 6829 ie->name, ie->target_cmd, ie->host_cmd); 6830 } 6831 #endif 6832 ie++; 6833 } 6834 } 6835 6836 #if TARGET_ABI_BITS == 32 6837 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 6838 { 6839 #ifdef TARGET_WORDS_BIGENDIAN 6840 return ((uint64_t)word0 << 32) | word1; 6841 #else 6842 return ((uint64_t)word1 << 32) | word0; 6843 #endif 6844 } 6845 #else /* TARGET_ABI_BITS == 32 */ 6846 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 6847 { 6848 return word0; 6849 } 6850 #endif /* TARGET_ABI_BITS != 32 */ 6851 6852 #ifdef TARGET_NR_truncate64 6853 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 6854 abi_long arg2, 6855 abi_long arg3, 6856 abi_long arg4) 6857 { 6858 if (regpairs_aligned(cpu_env)) { 6859 arg2 = arg3; 6860 arg3 = arg4; 6861 } 6862 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 6863 } 6864 #endif 6865 6866 #ifdef TARGET_NR_ftruncate64 6867 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 6868 abi_long arg2, 6869 abi_long arg3, 6870 abi_long arg4) 6871 { 6872 if (regpairs_aligned(cpu_env)) { 6873 arg2 = arg3; 6874 arg3 = arg4; 6875 } 6876 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 6877 } 6878 #endif 6879 6880 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 6881 abi_ulong target_addr) 6882 { 6883 struct target_timespec *target_ts; 6884 6885 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) 6886 return -TARGET_EFAULT; 6887 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 6888 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 6889 unlock_user_struct(target_ts, target_addr, 0); 6890 return 0; 6891 } 6892 6893 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 6894 struct timespec *host_ts) 6895 { 6896 struct target_timespec *target_ts; 6897 6898 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) 6899 return -TARGET_EFAULT; 6900 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 6901 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 6902 unlock_user_struct(target_ts, target_addr, 1); 6903 return 0; 6904 } 6905 6906 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec, 6907 abi_ulong target_addr) 6908 { 6909 struct target_itimerspec *target_itspec; 6910 6911 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) { 6912 return -TARGET_EFAULT; 6913 } 6914 6915 host_itspec->it_interval.tv_sec = 6916 tswapal(target_itspec->it_interval.tv_sec); 6917 host_itspec->it_interval.tv_nsec = 6918 tswapal(target_itspec->it_interval.tv_nsec); 6919 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec); 6920 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec); 6921 6922 unlock_user_struct(target_itspec, target_addr, 1); 6923 return 0; 6924 } 6925 6926 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 6927 struct itimerspec *host_its) 6928 { 6929 struct target_itimerspec *target_itspec; 6930 6931 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) { 6932 return -TARGET_EFAULT; 6933 } 6934 6935 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec); 6936 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec); 6937 6938 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec); 6939 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec); 6940 6941 unlock_user_struct(target_itspec, target_addr, 0); 6942 return 0; 6943 } 6944 6945 static inline abi_long target_to_host_timex(struct timex *host_tx, 6946 abi_long target_addr) 6947 { 6948 struct target_timex *target_tx; 6949 6950 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 6951 return -TARGET_EFAULT; 6952 } 6953 6954 __get_user(host_tx->modes, &target_tx->modes); 6955 __get_user(host_tx->offset, &target_tx->offset); 6956 __get_user(host_tx->freq, &target_tx->freq); 6957 __get_user(host_tx->maxerror, &target_tx->maxerror); 6958 __get_user(host_tx->esterror, &target_tx->esterror); 6959 __get_user(host_tx->status, &target_tx->status); 6960 __get_user(host_tx->constant, &target_tx->constant); 6961 __get_user(host_tx->precision, &target_tx->precision); 6962 __get_user(host_tx->tolerance, &target_tx->tolerance); 6963 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 6964 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 6965 __get_user(host_tx->tick, &target_tx->tick); 6966 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 6967 __get_user(host_tx->jitter, &target_tx->jitter); 6968 __get_user(host_tx->shift, &target_tx->shift); 6969 __get_user(host_tx->stabil, &target_tx->stabil); 6970 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 6971 __get_user(host_tx->calcnt, &target_tx->calcnt); 6972 __get_user(host_tx->errcnt, &target_tx->errcnt); 6973 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 6974 __get_user(host_tx->tai, &target_tx->tai); 6975 6976 unlock_user_struct(target_tx, target_addr, 0); 6977 return 0; 6978 } 6979 6980 static inline abi_long host_to_target_timex(abi_long target_addr, 6981 struct timex *host_tx) 6982 { 6983 struct target_timex *target_tx; 6984 6985 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 6986 return -TARGET_EFAULT; 6987 } 6988 6989 __put_user(host_tx->modes, &target_tx->modes); 6990 __put_user(host_tx->offset, &target_tx->offset); 6991 __put_user(host_tx->freq, &target_tx->freq); 6992 __put_user(host_tx->maxerror, &target_tx->maxerror); 6993 __put_user(host_tx->esterror, &target_tx->esterror); 6994 __put_user(host_tx->status, &target_tx->status); 6995 __put_user(host_tx->constant, &target_tx->constant); 6996 __put_user(host_tx->precision, &target_tx->precision); 6997 __put_user(host_tx->tolerance, &target_tx->tolerance); 6998 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 6999 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7000 __put_user(host_tx->tick, &target_tx->tick); 7001 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7002 __put_user(host_tx->jitter, &target_tx->jitter); 7003 __put_user(host_tx->shift, &target_tx->shift); 7004 __put_user(host_tx->stabil, &target_tx->stabil); 7005 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7006 __put_user(host_tx->calcnt, &target_tx->calcnt); 7007 __put_user(host_tx->errcnt, &target_tx->errcnt); 7008 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7009 __put_user(host_tx->tai, &target_tx->tai); 7010 7011 unlock_user_struct(target_tx, target_addr, 1); 7012 return 0; 7013 } 7014 7015 7016 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7017 abi_ulong target_addr) 7018 { 7019 struct target_sigevent *target_sevp; 7020 7021 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7022 return -TARGET_EFAULT; 7023 } 7024 7025 /* This union is awkward on 64 bit systems because it has a 32 bit 7026 * integer and a pointer in it; we follow the conversion approach 7027 * used for handling sigval types in signal.c so the guest should get 7028 * the correct value back even if we did a 64 bit byteswap and it's 7029 * using the 32 bit integer. 7030 */ 7031 host_sevp->sigev_value.sival_ptr = 7032 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7033 host_sevp->sigev_signo = 7034 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7035 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7036 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid); 7037 7038 unlock_user_struct(target_sevp, target_addr, 1); 7039 return 0; 7040 } 7041 7042 #if defined(TARGET_NR_mlockall) 7043 static inline int target_to_host_mlockall_arg(int arg) 7044 { 7045 int result = 0; 7046 7047 if (arg & TARGET_MLOCKALL_MCL_CURRENT) { 7048 result |= MCL_CURRENT; 7049 } 7050 if (arg & TARGET_MLOCKALL_MCL_FUTURE) { 7051 result |= MCL_FUTURE; 7052 } 7053 return result; 7054 } 7055 #endif 7056 7057 static inline abi_long host_to_target_stat64(void *cpu_env, 7058 abi_ulong target_addr, 7059 struct stat *host_st) 7060 { 7061 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7062 if (((CPUARMState *)cpu_env)->eabi) { 7063 struct target_eabi_stat64 *target_st; 7064 7065 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7066 return -TARGET_EFAULT; 7067 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7068 __put_user(host_st->st_dev, &target_st->st_dev); 7069 __put_user(host_st->st_ino, &target_st->st_ino); 7070 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7071 __put_user(host_st->st_ino, &target_st->__st_ino); 7072 #endif 7073 __put_user(host_st->st_mode, &target_st->st_mode); 7074 __put_user(host_st->st_nlink, &target_st->st_nlink); 7075 __put_user(host_st->st_uid, &target_st->st_uid); 7076 __put_user(host_st->st_gid, &target_st->st_gid); 7077 __put_user(host_st->st_rdev, &target_st->st_rdev); 7078 __put_user(host_st->st_size, &target_st->st_size); 7079 __put_user(host_st->st_blksize, &target_st->st_blksize); 7080 __put_user(host_st->st_blocks, &target_st->st_blocks); 7081 __put_user(host_st->st_atime, &target_st->target_st_atime); 7082 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7083 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7084 unlock_user_struct(target_st, target_addr, 1); 7085 } else 7086 #endif 7087 { 7088 #if defined(TARGET_HAS_STRUCT_STAT64) 7089 struct target_stat64 *target_st; 7090 #else 7091 struct target_stat *target_st; 7092 #endif 7093 7094 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7095 return -TARGET_EFAULT; 7096 memset(target_st, 0, sizeof(*target_st)); 7097 __put_user(host_st->st_dev, &target_st->st_dev); 7098 __put_user(host_st->st_ino, &target_st->st_ino); 7099 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7100 __put_user(host_st->st_ino, &target_st->__st_ino); 7101 #endif 7102 __put_user(host_st->st_mode, &target_st->st_mode); 7103 __put_user(host_st->st_nlink, &target_st->st_nlink); 7104 __put_user(host_st->st_uid, &target_st->st_uid); 7105 __put_user(host_st->st_gid, &target_st->st_gid); 7106 __put_user(host_st->st_rdev, &target_st->st_rdev); 7107 /* XXX: better use of kernel struct */ 7108 __put_user(host_st->st_size, &target_st->st_size); 7109 __put_user(host_st->st_blksize, &target_st->st_blksize); 7110 __put_user(host_st->st_blocks, &target_st->st_blocks); 7111 __put_user(host_st->st_atime, &target_st->target_st_atime); 7112 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7113 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7114 unlock_user_struct(target_st, target_addr, 1); 7115 } 7116 7117 return 0; 7118 } 7119 7120 /* ??? Using host futex calls even when target atomic operations 7121 are not really atomic probably breaks things. However implementing 7122 futexes locally would make futexes shared between multiple processes 7123 tricky. However they're probably useless because guest atomic 7124 operations won't work either. */ 7125 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout, 7126 target_ulong uaddr2, int val3) 7127 { 7128 struct timespec ts, *pts; 7129 int base_op; 7130 7131 /* ??? We assume FUTEX_* constants are the same on both host 7132 and target. */ 7133 #ifdef FUTEX_CMD_MASK 7134 base_op = op & FUTEX_CMD_MASK; 7135 #else 7136 base_op = op; 7137 #endif 7138 switch (base_op) { 7139 case FUTEX_WAIT: 7140 case FUTEX_WAIT_BITSET: 7141 if (timeout) { 7142 pts = &ts; 7143 target_to_host_timespec(pts, timeout); 7144 } else { 7145 pts = NULL; 7146 } 7147 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val), 7148 pts, NULL, val3)); 7149 case FUTEX_WAKE: 7150 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7151 case FUTEX_FD: 7152 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7153 case FUTEX_REQUEUE: 7154 case FUTEX_CMP_REQUEUE: 7155 case FUTEX_WAKE_OP: 7156 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 7157 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 7158 But the prototype takes a `struct timespec *'; insert casts 7159 to satisfy the compiler. We do not need to tswap TIMEOUT 7160 since it's not compared to guest memory. */ 7161 pts = (struct timespec *)(uintptr_t) timeout; 7162 return get_errno(safe_futex(g2h(uaddr), op, val, pts, 7163 g2h(uaddr2), 7164 (base_op == FUTEX_CMP_REQUEUE 7165 ? tswap32(val3) 7166 : val3))); 7167 default: 7168 return -TARGET_ENOSYS; 7169 } 7170 } 7171 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7172 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7173 abi_long handle, abi_long mount_id, 7174 abi_long flags) 7175 { 7176 struct file_handle *target_fh; 7177 struct file_handle *fh; 7178 int mid = 0; 7179 abi_long ret; 7180 char *name; 7181 unsigned int size, total_size; 7182 7183 if (get_user_s32(size, handle)) { 7184 return -TARGET_EFAULT; 7185 } 7186 7187 name = lock_user_string(pathname); 7188 if (!name) { 7189 return -TARGET_EFAULT; 7190 } 7191 7192 total_size = sizeof(struct file_handle) + size; 7193 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7194 if (!target_fh) { 7195 unlock_user(name, pathname, 0); 7196 return -TARGET_EFAULT; 7197 } 7198 7199 fh = g_malloc0(total_size); 7200 fh->handle_bytes = size; 7201 7202 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7203 unlock_user(name, pathname, 0); 7204 7205 /* man name_to_handle_at(2): 7206 * Other than the use of the handle_bytes field, the caller should treat 7207 * the file_handle structure as an opaque data type 7208 */ 7209 7210 memcpy(target_fh, fh, total_size); 7211 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7212 target_fh->handle_type = tswap32(fh->handle_type); 7213 g_free(fh); 7214 unlock_user(target_fh, handle, total_size); 7215 7216 if (put_user_s32(mid, mount_id)) { 7217 return -TARGET_EFAULT; 7218 } 7219 7220 return ret; 7221 7222 } 7223 #endif 7224 7225 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7226 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7227 abi_long flags) 7228 { 7229 struct file_handle *target_fh; 7230 struct file_handle *fh; 7231 unsigned int size, total_size; 7232 abi_long ret; 7233 7234 if (get_user_s32(size, handle)) { 7235 return -TARGET_EFAULT; 7236 } 7237 7238 total_size = sizeof(struct file_handle) + size; 7239 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7240 if (!target_fh) { 7241 return -TARGET_EFAULT; 7242 } 7243 7244 fh = g_memdup(target_fh, total_size); 7245 fh->handle_bytes = size; 7246 fh->handle_type = tswap32(target_fh->handle_type); 7247 7248 ret = get_errno(open_by_handle_at(mount_fd, fh, 7249 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7250 7251 g_free(fh); 7252 7253 unlock_user(target_fh, handle, total_size); 7254 7255 return ret; 7256 } 7257 #endif 7258 7259 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7260 7261 /* signalfd siginfo conversion */ 7262 7263 static void 7264 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo, 7265 const struct signalfd_siginfo *info) 7266 { 7267 int sig = host_to_target_signal(info->ssi_signo); 7268 7269 /* linux/signalfd.h defines a ssi_addr_lsb 7270 * not defined in sys/signalfd.h but used by some kernels 7271 */ 7272 7273 #ifdef BUS_MCEERR_AO 7274 if (tinfo->ssi_signo == SIGBUS && 7275 (tinfo->ssi_code == BUS_MCEERR_AR || 7276 tinfo->ssi_code == BUS_MCEERR_AO)) { 7277 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1); 7278 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1); 7279 *tssi_addr_lsb = tswap16(*ssi_addr_lsb); 7280 } 7281 #endif 7282 7283 tinfo->ssi_signo = tswap32(sig); 7284 tinfo->ssi_errno = tswap32(tinfo->ssi_errno); 7285 tinfo->ssi_code = tswap32(info->ssi_code); 7286 tinfo->ssi_pid = tswap32(info->ssi_pid); 7287 tinfo->ssi_uid = tswap32(info->ssi_uid); 7288 tinfo->ssi_fd = tswap32(info->ssi_fd); 7289 tinfo->ssi_tid = tswap32(info->ssi_tid); 7290 tinfo->ssi_band = tswap32(info->ssi_band); 7291 tinfo->ssi_overrun = tswap32(info->ssi_overrun); 7292 tinfo->ssi_trapno = tswap32(info->ssi_trapno); 7293 tinfo->ssi_status = tswap32(info->ssi_status); 7294 tinfo->ssi_int = tswap32(info->ssi_int); 7295 tinfo->ssi_ptr = tswap64(info->ssi_ptr); 7296 tinfo->ssi_utime = tswap64(info->ssi_utime); 7297 tinfo->ssi_stime = tswap64(info->ssi_stime); 7298 tinfo->ssi_addr = tswap64(info->ssi_addr); 7299 } 7300 7301 static abi_long host_to_target_data_signalfd(void *buf, size_t len) 7302 { 7303 int i; 7304 7305 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) { 7306 host_to_target_signalfd_siginfo(buf + i, buf + i); 7307 } 7308 7309 return len; 7310 } 7311 7312 static TargetFdTrans target_signalfd_trans = { 7313 .host_to_target_data = host_to_target_data_signalfd, 7314 }; 7315 7316 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7317 { 7318 int host_flags; 7319 target_sigset_t *target_mask; 7320 sigset_t host_mask; 7321 abi_long ret; 7322 7323 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) { 7324 return -TARGET_EINVAL; 7325 } 7326 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7327 return -TARGET_EFAULT; 7328 } 7329 7330 target_to_host_sigset(&host_mask, target_mask); 7331 7332 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7333 7334 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7335 if (ret >= 0) { 7336 fd_trans_register(ret, &target_signalfd_trans); 7337 } 7338 7339 unlock_user_struct(target_mask, mask, 0); 7340 7341 return ret; 7342 } 7343 #endif 7344 7345 /* Map host to target signal numbers for the wait family of syscalls. 7346 Assume all other status bits are the same. */ 7347 int host_to_target_waitstatus(int status) 7348 { 7349 if (WIFSIGNALED(status)) { 7350 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7351 } 7352 if (WIFSTOPPED(status)) { 7353 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7354 | (status & 0xff); 7355 } 7356 return status; 7357 } 7358 7359 static int open_self_cmdline(void *cpu_env, int fd) 7360 { 7361 int fd_orig = -1; 7362 bool word_skipped = false; 7363 7364 fd_orig = open("/proc/self/cmdline", O_RDONLY); 7365 if (fd_orig < 0) { 7366 return fd_orig; 7367 } 7368 7369 while (true) { 7370 ssize_t nb_read; 7371 char buf[128]; 7372 char *cp_buf = buf; 7373 7374 nb_read = read(fd_orig, buf, sizeof(buf)); 7375 if (nb_read < 0) { 7376 int e = errno; 7377 fd_orig = close(fd_orig); 7378 errno = e; 7379 return -1; 7380 } else if (nb_read == 0) { 7381 break; 7382 } 7383 7384 if (!word_skipped) { 7385 /* Skip the first string, which is the path to qemu-*-static 7386 instead of the actual command. */ 7387 cp_buf = memchr(buf, 0, nb_read); 7388 if (cp_buf) { 7389 /* Null byte found, skip one string */ 7390 cp_buf++; 7391 nb_read -= cp_buf - buf; 7392 word_skipped = true; 7393 } 7394 } 7395 7396 if (word_skipped) { 7397 if (write(fd, cp_buf, nb_read) != nb_read) { 7398 int e = errno; 7399 close(fd_orig); 7400 errno = e; 7401 return -1; 7402 } 7403 } 7404 } 7405 7406 return close(fd_orig); 7407 } 7408 7409 static int open_self_maps(void *cpu_env, int fd) 7410 { 7411 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7412 TaskState *ts = cpu->opaque; 7413 FILE *fp; 7414 char *line = NULL; 7415 size_t len = 0; 7416 ssize_t read; 7417 7418 fp = fopen("/proc/self/maps", "r"); 7419 if (fp == NULL) { 7420 return -1; 7421 } 7422 7423 while ((read = getline(&line, &len, fp)) != -1) { 7424 int fields, dev_maj, dev_min, inode; 7425 uint64_t min, max, offset; 7426 char flag_r, flag_w, flag_x, flag_p; 7427 char path[512] = ""; 7428 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d" 7429 " %512s", &min, &max, &flag_r, &flag_w, &flag_x, 7430 &flag_p, &offset, &dev_maj, &dev_min, &inode, path); 7431 7432 if ((fields < 10) || (fields > 11)) { 7433 continue; 7434 } 7435 if (h2g_valid(min)) { 7436 int flags = page_get_flags(h2g(min)); 7437 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX); 7438 if (page_check_range(h2g(min), max - min, flags) == -1) { 7439 continue; 7440 } 7441 if (h2g(min) == ts->info->stack_limit) { 7442 pstrcpy(path, sizeof(path), " [stack]"); 7443 } 7444 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx 7445 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n", 7446 h2g(min), h2g(max - 1) + 1, flag_r, flag_w, 7447 flag_x, flag_p, offset, dev_maj, dev_min, inode, 7448 path[0] ? " " : "", path); 7449 } 7450 } 7451 7452 free(line); 7453 fclose(fp); 7454 7455 return 0; 7456 } 7457 7458 static int open_self_stat(void *cpu_env, int fd) 7459 { 7460 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7461 TaskState *ts = cpu->opaque; 7462 abi_ulong start_stack = ts->info->start_stack; 7463 int i; 7464 7465 for (i = 0; i < 44; i++) { 7466 char buf[128]; 7467 int len; 7468 uint64_t val = 0; 7469 7470 if (i == 0) { 7471 /* pid */ 7472 val = getpid(); 7473 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7474 } else if (i == 1) { 7475 /* app name */ 7476 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]); 7477 } else if (i == 27) { 7478 /* stack bottom */ 7479 val = start_stack; 7480 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7481 } else { 7482 /* for the rest, there is MasterCard */ 7483 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' '); 7484 } 7485 7486 len = strlen(buf); 7487 if (write(fd, buf, len) != len) { 7488 return -1; 7489 } 7490 } 7491 7492 return 0; 7493 } 7494 7495 static int open_self_auxv(void *cpu_env, int fd) 7496 { 7497 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7498 TaskState *ts = cpu->opaque; 7499 abi_ulong auxv = ts->info->saved_auxv; 7500 abi_ulong len = ts->info->auxv_len; 7501 char *ptr; 7502 7503 /* 7504 * Auxiliary vector is stored in target process stack. 7505 * read in whole auxv vector and copy it to file 7506 */ 7507 ptr = lock_user(VERIFY_READ, auxv, len, 0); 7508 if (ptr != NULL) { 7509 while (len > 0) { 7510 ssize_t r; 7511 r = write(fd, ptr, len); 7512 if (r <= 0) { 7513 break; 7514 } 7515 len -= r; 7516 ptr += r; 7517 } 7518 lseek(fd, 0, SEEK_SET); 7519 unlock_user(ptr, auxv, len); 7520 } 7521 7522 return 0; 7523 } 7524 7525 static int is_proc_myself(const char *filename, const char *entry) 7526 { 7527 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 7528 filename += strlen("/proc/"); 7529 if (!strncmp(filename, "self/", strlen("self/"))) { 7530 filename += strlen("self/"); 7531 } else if (*filename >= '1' && *filename <= '9') { 7532 char myself[80]; 7533 snprintf(myself, sizeof(myself), "%d/", getpid()); 7534 if (!strncmp(filename, myself, strlen(myself))) { 7535 filename += strlen(myself); 7536 } else { 7537 return 0; 7538 } 7539 } else { 7540 return 0; 7541 } 7542 if (!strcmp(filename, entry)) { 7543 return 1; 7544 } 7545 } 7546 return 0; 7547 } 7548 7549 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7550 static int is_proc(const char *filename, const char *entry) 7551 { 7552 return strcmp(filename, entry) == 0; 7553 } 7554 7555 static int open_net_route(void *cpu_env, int fd) 7556 { 7557 FILE *fp; 7558 char *line = NULL; 7559 size_t len = 0; 7560 ssize_t read; 7561 7562 fp = fopen("/proc/net/route", "r"); 7563 if (fp == NULL) { 7564 return -1; 7565 } 7566 7567 /* read header */ 7568 7569 read = getline(&line, &len, fp); 7570 dprintf(fd, "%s", line); 7571 7572 /* read routes */ 7573 7574 while ((read = getline(&line, &len, fp)) != -1) { 7575 char iface[16]; 7576 uint32_t dest, gw, mask; 7577 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 7578 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7579 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 7580 &mask, &mtu, &window, &irtt); 7581 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7582 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 7583 metric, tswap32(mask), mtu, window, irtt); 7584 } 7585 7586 free(line); 7587 fclose(fp); 7588 7589 return 0; 7590 } 7591 #endif 7592 7593 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 7594 { 7595 struct fake_open { 7596 const char *filename; 7597 int (*fill)(void *cpu_env, int fd); 7598 int (*cmp)(const char *s1, const char *s2); 7599 }; 7600 const struct fake_open *fake_open; 7601 static const struct fake_open fakes[] = { 7602 { "maps", open_self_maps, is_proc_myself }, 7603 { "stat", open_self_stat, is_proc_myself }, 7604 { "auxv", open_self_auxv, is_proc_myself }, 7605 { "cmdline", open_self_cmdline, is_proc_myself }, 7606 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7607 { "/proc/net/route", open_net_route, is_proc }, 7608 #endif 7609 { NULL, NULL, NULL } 7610 }; 7611 7612 if (is_proc_myself(pathname, "exe")) { 7613 int execfd = qemu_getauxval(AT_EXECFD); 7614 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode); 7615 } 7616 7617 for (fake_open = fakes; fake_open->filename; fake_open++) { 7618 if (fake_open->cmp(pathname, fake_open->filename)) { 7619 break; 7620 } 7621 } 7622 7623 if (fake_open->filename) { 7624 const char *tmpdir; 7625 char filename[PATH_MAX]; 7626 int fd, r; 7627 7628 /* create temporary file to map stat to */ 7629 tmpdir = getenv("TMPDIR"); 7630 if (!tmpdir) 7631 tmpdir = "/tmp"; 7632 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 7633 fd = mkstemp(filename); 7634 if (fd < 0) { 7635 return fd; 7636 } 7637 unlink(filename); 7638 7639 if ((r = fake_open->fill(cpu_env, fd))) { 7640 int e = errno; 7641 close(fd); 7642 errno = e; 7643 return r; 7644 } 7645 lseek(fd, 0, SEEK_SET); 7646 7647 return fd; 7648 } 7649 7650 return safe_openat(dirfd, path(pathname), flags, mode); 7651 } 7652 7653 #define TIMER_MAGIC 0x0caf0000 7654 #define TIMER_MAGIC_MASK 0xffff0000 7655 7656 /* Convert QEMU provided timer ID back to internal 16bit index format */ 7657 static target_timer_t get_timer_id(abi_long arg) 7658 { 7659 target_timer_t timerid = arg; 7660 7661 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 7662 return -TARGET_EINVAL; 7663 } 7664 7665 timerid &= 0xffff; 7666 7667 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 7668 return -TARGET_EINVAL; 7669 } 7670 7671 return timerid; 7672 } 7673 7674 /* do_syscall() should always have a single exit point at the end so 7675 that actions, such as logging of syscall results, can be performed. 7676 All errnos that do_syscall() returns must be -TARGET_<errcode>. */ 7677 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 7678 abi_long arg2, abi_long arg3, abi_long arg4, 7679 abi_long arg5, abi_long arg6, abi_long arg7, 7680 abi_long arg8) 7681 { 7682 CPUState *cpu = ENV_GET_CPU(cpu_env); 7683 abi_long ret; 7684 struct stat st; 7685 struct statfs stfs; 7686 void *p; 7687 7688 #if defined(DEBUG_ERESTARTSYS) 7689 /* Debug-only code for exercising the syscall-restart code paths 7690 * in the per-architecture cpu main loops: restart every syscall 7691 * the guest makes once before letting it through. 7692 */ 7693 { 7694 static int flag; 7695 7696 flag = !flag; 7697 if (flag) { 7698 return -TARGET_ERESTARTSYS; 7699 } 7700 } 7701 #endif 7702 7703 #ifdef DEBUG 7704 gemu_log("syscall %d", num); 7705 #endif 7706 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); 7707 if(do_strace) 7708 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); 7709 7710 switch(num) { 7711 case TARGET_NR_exit: 7712 /* In old applications this may be used to implement _exit(2). 7713 However in threaded applictions it is used for thread termination, 7714 and _exit_group is used for application termination. 7715 Do thread termination if we have more then one thread. */ 7716 7717 if (block_signals()) { 7718 ret = -TARGET_ERESTARTSYS; 7719 break; 7720 } 7721 7722 cpu_list_lock(); 7723 7724 if (CPU_NEXT(first_cpu)) { 7725 TaskState *ts; 7726 7727 /* Remove the CPU from the list. */ 7728 QTAILQ_REMOVE(&cpus, cpu, node); 7729 7730 cpu_list_unlock(); 7731 7732 ts = cpu->opaque; 7733 if (ts->child_tidptr) { 7734 put_user_u32(0, ts->child_tidptr); 7735 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX, 7736 NULL, NULL, 0); 7737 } 7738 thread_cpu = NULL; 7739 object_unref(OBJECT(cpu)); 7740 g_free(ts); 7741 rcu_unregister_thread(); 7742 pthread_exit(NULL); 7743 } 7744 7745 cpu_list_unlock(); 7746 #ifdef TARGET_GPROF 7747 _mcleanup(); 7748 #endif 7749 gdb_exit(cpu_env, arg1); 7750 _exit(arg1); 7751 ret = 0; /* avoid warning */ 7752 break; 7753 case TARGET_NR_read: 7754 if (arg3 == 0) 7755 ret = 0; 7756 else { 7757 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 7758 goto efault; 7759 ret = get_errno(safe_read(arg1, p, arg3)); 7760 if (ret >= 0 && 7761 fd_trans_host_to_target_data(arg1)) { 7762 ret = fd_trans_host_to_target_data(arg1)(p, ret); 7763 } 7764 unlock_user(p, arg2, ret); 7765 } 7766 break; 7767 case TARGET_NR_write: 7768 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 7769 goto efault; 7770 ret = get_errno(safe_write(arg1, p, arg3)); 7771 unlock_user(p, arg2, 0); 7772 break; 7773 #ifdef TARGET_NR_open 7774 case TARGET_NR_open: 7775 if (!(p = lock_user_string(arg1))) 7776 goto efault; 7777 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 7778 target_to_host_bitmask(arg2, fcntl_flags_tbl), 7779 arg3)); 7780 fd_trans_unregister(ret); 7781 unlock_user(p, arg1, 0); 7782 break; 7783 #endif 7784 case TARGET_NR_openat: 7785 if (!(p = lock_user_string(arg2))) 7786 goto efault; 7787 ret = get_errno(do_openat(cpu_env, arg1, p, 7788 target_to_host_bitmask(arg3, fcntl_flags_tbl), 7789 arg4)); 7790 fd_trans_unregister(ret); 7791 unlock_user(p, arg2, 0); 7792 break; 7793 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7794 case TARGET_NR_name_to_handle_at: 7795 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 7796 break; 7797 #endif 7798 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7799 case TARGET_NR_open_by_handle_at: 7800 ret = do_open_by_handle_at(arg1, arg2, arg3); 7801 fd_trans_unregister(ret); 7802 break; 7803 #endif 7804 case TARGET_NR_close: 7805 fd_trans_unregister(arg1); 7806 ret = get_errno(close(arg1)); 7807 break; 7808 case TARGET_NR_brk: 7809 ret = do_brk(arg1); 7810 break; 7811 #ifdef TARGET_NR_fork 7812 case TARGET_NR_fork: 7813 ret = get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 7814 break; 7815 #endif 7816 #ifdef TARGET_NR_waitpid 7817 case TARGET_NR_waitpid: 7818 { 7819 int status; 7820 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 7821 if (!is_error(ret) && arg2 && ret 7822 && put_user_s32(host_to_target_waitstatus(status), arg2)) 7823 goto efault; 7824 } 7825 break; 7826 #endif 7827 #ifdef TARGET_NR_waitid 7828 case TARGET_NR_waitid: 7829 { 7830 siginfo_t info; 7831 info.si_pid = 0; 7832 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 7833 if (!is_error(ret) && arg3 && info.si_pid != 0) { 7834 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 7835 goto efault; 7836 host_to_target_siginfo(p, &info); 7837 unlock_user(p, arg3, sizeof(target_siginfo_t)); 7838 } 7839 } 7840 break; 7841 #endif 7842 #ifdef TARGET_NR_creat /* not on alpha */ 7843 case TARGET_NR_creat: 7844 if (!(p = lock_user_string(arg1))) 7845 goto efault; 7846 ret = get_errno(creat(p, arg2)); 7847 fd_trans_unregister(ret); 7848 unlock_user(p, arg1, 0); 7849 break; 7850 #endif 7851 #ifdef TARGET_NR_link 7852 case TARGET_NR_link: 7853 { 7854 void * p2; 7855 p = lock_user_string(arg1); 7856 p2 = lock_user_string(arg2); 7857 if (!p || !p2) 7858 ret = -TARGET_EFAULT; 7859 else 7860 ret = get_errno(link(p, p2)); 7861 unlock_user(p2, arg2, 0); 7862 unlock_user(p, arg1, 0); 7863 } 7864 break; 7865 #endif 7866 #if defined(TARGET_NR_linkat) 7867 case TARGET_NR_linkat: 7868 { 7869 void * p2 = NULL; 7870 if (!arg2 || !arg4) 7871 goto efault; 7872 p = lock_user_string(arg2); 7873 p2 = lock_user_string(arg4); 7874 if (!p || !p2) 7875 ret = -TARGET_EFAULT; 7876 else 7877 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 7878 unlock_user(p, arg2, 0); 7879 unlock_user(p2, arg4, 0); 7880 } 7881 break; 7882 #endif 7883 #ifdef TARGET_NR_unlink 7884 case TARGET_NR_unlink: 7885 if (!(p = lock_user_string(arg1))) 7886 goto efault; 7887 ret = get_errno(unlink(p)); 7888 unlock_user(p, arg1, 0); 7889 break; 7890 #endif 7891 #if defined(TARGET_NR_unlinkat) 7892 case TARGET_NR_unlinkat: 7893 if (!(p = lock_user_string(arg2))) 7894 goto efault; 7895 ret = get_errno(unlinkat(arg1, p, arg3)); 7896 unlock_user(p, arg2, 0); 7897 break; 7898 #endif 7899 case TARGET_NR_execve: 7900 { 7901 char **argp, **envp; 7902 int argc, envc; 7903 abi_ulong gp; 7904 abi_ulong guest_argp; 7905 abi_ulong guest_envp; 7906 abi_ulong addr; 7907 char **q; 7908 int total_size = 0; 7909 7910 argc = 0; 7911 guest_argp = arg2; 7912 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 7913 if (get_user_ual(addr, gp)) 7914 goto efault; 7915 if (!addr) 7916 break; 7917 argc++; 7918 } 7919 envc = 0; 7920 guest_envp = arg3; 7921 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 7922 if (get_user_ual(addr, gp)) 7923 goto efault; 7924 if (!addr) 7925 break; 7926 envc++; 7927 } 7928 7929 argp = alloca((argc + 1) * sizeof(void *)); 7930 envp = alloca((envc + 1) * sizeof(void *)); 7931 7932 for (gp = guest_argp, q = argp; gp; 7933 gp += sizeof(abi_ulong), q++) { 7934 if (get_user_ual(addr, gp)) 7935 goto execve_efault; 7936 if (!addr) 7937 break; 7938 if (!(*q = lock_user_string(addr))) 7939 goto execve_efault; 7940 total_size += strlen(*q) + 1; 7941 } 7942 *q = NULL; 7943 7944 for (gp = guest_envp, q = envp; gp; 7945 gp += sizeof(abi_ulong), q++) { 7946 if (get_user_ual(addr, gp)) 7947 goto execve_efault; 7948 if (!addr) 7949 break; 7950 if (!(*q = lock_user_string(addr))) 7951 goto execve_efault; 7952 total_size += strlen(*q) + 1; 7953 } 7954 *q = NULL; 7955 7956 if (!(p = lock_user_string(arg1))) 7957 goto execve_efault; 7958 /* Although execve() is not an interruptible syscall it is 7959 * a special case where we must use the safe_syscall wrapper: 7960 * if we allow a signal to happen before we make the host 7961 * syscall then we will 'lose' it, because at the point of 7962 * execve the process leaves QEMU's control. So we use the 7963 * safe syscall wrapper to ensure that we either take the 7964 * signal as a guest signal, or else it does not happen 7965 * before the execve completes and makes it the other 7966 * program's problem. 7967 */ 7968 ret = get_errno(safe_execve(p, argp, envp)); 7969 unlock_user(p, arg1, 0); 7970 7971 goto execve_end; 7972 7973 execve_efault: 7974 ret = -TARGET_EFAULT; 7975 7976 execve_end: 7977 for (gp = guest_argp, q = argp; *q; 7978 gp += sizeof(abi_ulong), q++) { 7979 if (get_user_ual(addr, gp) 7980 || !addr) 7981 break; 7982 unlock_user(*q, addr, 0); 7983 } 7984 for (gp = guest_envp, q = envp; *q; 7985 gp += sizeof(abi_ulong), q++) { 7986 if (get_user_ual(addr, gp) 7987 || !addr) 7988 break; 7989 unlock_user(*q, addr, 0); 7990 } 7991 } 7992 break; 7993 case TARGET_NR_chdir: 7994 if (!(p = lock_user_string(arg1))) 7995 goto efault; 7996 ret = get_errno(chdir(p)); 7997 unlock_user(p, arg1, 0); 7998 break; 7999 #ifdef TARGET_NR_time 8000 case TARGET_NR_time: 8001 { 8002 time_t host_time; 8003 ret = get_errno(time(&host_time)); 8004 if (!is_error(ret) 8005 && arg1 8006 && put_user_sal(host_time, arg1)) 8007 goto efault; 8008 } 8009 break; 8010 #endif 8011 #ifdef TARGET_NR_mknod 8012 case TARGET_NR_mknod: 8013 if (!(p = lock_user_string(arg1))) 8014 goto efault; 8015 ret = get_errno(mknod(p, arg2, arg3)); 8016 unlock_user(p, arg1, 0); 8017 break; 8018 #endif 8019 #if defined(TARGET_NR_mknodat) 8020 case TARGET_NR_mknodat: 8021 if (!(p = lock_user_string(arg2))) 8022 goto efault; 8023 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 8024 unlock_user(p, arg2, 0); 8025 break; 8026 #endif 8027 #ifdef TARGET_NR_chmod 8028 case TARGET_NR_chmod: 8029 if (!(p = lock_user_string(arg1))) 8030 goto efault; 8031 ret = get_errno(chmod(p, arg2)); 8032 unlock_user(p, arg1, 0); 8033 break; 8034 #endif 8035 #ifdef TARGET_NR_break 8036 case TARGET_NR_break: 8037 goto unimplemented; 8038 #endif 8039 #ifdef TARGET_NR_oldstat 8040 case TARGET_NR_oldstat: 8041 goto unimplemented; 8042 #endif 8043 case TARGET_NR_lseek: 8044 ret = get_errno(lseek(arg1, arg2, arg3)); 8045 break; 8046 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 8047 /* Alpha specific */ 8048 case TARGET_NR_getxpid: 8049 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 8050 ret = get_errno(getpid()); 8051 break; 8052 #endif 8053 #ifdef TARGET_NR_getpid 8054 case TARGET_NR_getpid: 8055 ret = get_errno(getpid()); 8056 break; 8057 #endif 8058 case TARGET_NR_mount: 8059 { 8060 /* need to look at the data field */ 8061 void *p2, *p3; 8062 8063 if (arg1) { 8064 p = lock_user_string(arg1); 8065 if (!p) { 8066 goto efault; 8067 } 8068 } else { 8069 p = NULL; 8070 } 8071 8072 p2 = lock_user_string(arg2); 8073 if (!p2) { 8074 if (arg1) { 8075 unlock_user(p, arg1, 0); 8076 } 8077 goto efault; 8078 } 8079 8080 if (arg3) { 8081 p3 = lock_user_string(arg3); 8082 if (!p3) { 8083 if (arg1) { 8084 unlock_user(p, arg1, 0); 8085 } 8086 unlock_user(p2, arg2, 0); 8087 goto efault; 8088 } 8089 } else { 8090 p3 = NULL; 8091 } 8092 8093 /* FIXME - arg5 should be locked, but it isn't clear how to 8094 * do that since it's not guaranteed to be a NULL-terminated 8095 * string. 8096 */ 8097 if (!arg5) { 8098 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 8099 } else { 8100 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)); 8101 } 8102 ret = get_errno(ret); 8103 8104 if (arg1) { 8105 unlock_user(p, arg1, 0); 8106 } 8107 unlock_user(p2, arg2, 0); 8108 if (arg3) { 8109 unlock_user(p3, arg3, 0); 8110 } 8111 } 8112 break; 8113 #ifdef TARGET_NR_umount 8114 case TARGET_NR_umount: 8115 if (!(p = lock_user_string(arg1))) 8116 goto efault; 8117 ret = get_errno(umount(p)); 8118 unlock_user(p, arg1, 0); 8119 break; 8120 #endif 8121 #ifdef TARGET_NR_stime /* not on alpha */ 8122 case TARGET_NR_stime: 8123 { 8124 time_t host_time; 8125 if (get_user_sal(host_time, arg1)) 8126 goto efault; 8127 ret = get_errno(stime(&host_time)); 8128 } 8129 break; 8130 #endif 8131 case TARGET_NR_ptrace: 8132 goto unimplemented; 8133 #ifdef TARGET_NR_alarm /* not on alpha */ 8134 case TARGET_NR_alarm: 8135 ret = alarm(arg1); 8136 break; 8137 #endif 8138 #ifdef TARGET_NR_oldfstat 8139 case TARGET_NR_oldfstat: 8140 goto unimplemented; 8141 #endif 8142 #ifdef TARGET_NR_pause /* not on alpha */ 8143 case TARGET_NR_pause: 8144 if (!block_signals()) { 8145 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask); 8146 } 8147 ret = -TARGET_EINTR; 8148 break; 8149 #endif 8150 #ifdef TARGET_NR_utime 8151 case TARGET_NR_utime: 8152 { 8153 struct utimbuf tbuf, *host_tbuf; 8154 struct target_utimbuf *target_tbuf; 8155 if (arg2) { 8156 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 8157 goto efault; 8158 tbuf.actime = tswapal(target_tbuf->actime); 8159 tbuf.modtime = tswapal(target_tbuf->modtime); 8160 unlock_user_struct(target_tbuf, arg2, 0); 8161 host_tbuf = &tbuf; 8162 } else { 8163 host_tbuf = NULL; 8164 } 8165 if (!(p = lock_user_string(arg1))) 8166 goto efault; 8167 ret = get_errno(utime(p, host_tbuf)); 8168 unlock_user(p, arg1, 0); 8169 } 8170 break; 8171 #endif 8172 #ifdef TARGET_NR_utimes 8173 case TARGET_NR_utimes: 8174 { 8175 struct timeval *tvp, tv[2]; 8176 if (arg2) { 8177 if (copy_from_user_timeval(&tv[0], arg2) 8178 || copy_from_user_timeval(&tv[1], 8179 arg2 + sizeof(struct target_timeval))) 8180 goto efault; 8181 tvp = tv; 8182 } else { 8183 tvp = NULL; 8184 } 8185 if (!(p = lock_user_string(arg1))) 8186 goto efault; 8187 ret = get_errno(utimes(p, tvp)); 8188 unlock_user(p, arg1, 0); 8189 } 8190 break; 8191 #endif 8192 #if defined(TARGET_NR_futimesat) 8193 case TARGET_NR_futimesat: 8194 { 8195 struct timeval *tvp, tv[2]; 8196 if (arg3) { 8197 if (copy_from_user_timeval(&tv[0], arg3) 8198 || copy_from_user_timeval(&tv[1], 8199 arg3 + sizeof(struct target_timeval))) 8200 goto efault; 8201 tvp = tv; 8202 } else { 8203 tvp = NULL; 8204 } 8205 if (!(p = lock_user_string(arg2))) 8206 goto efault; 8207 ret = get_errno(futimesat(arg1, path(p), tvp)); 8208 unlock_user(p, arg2, 0); 8209 } 8210 break; 8211 #endif 8212 #ifdef TARGET_NR_stty 8213 case TARGET_NR_stty: 8214 goto unimplemented; 8215 #endif 8216 #ifdef TARGET_NR_gtty 8217 case TARGET_NR_gtty: 8218 goto unimplemented; 8219 #endif 8220 #ifdef TARGET_NR_access 8221 case TARGET_NR_access: 8222 if (!(p = lock_user_string(arg1))) 8223 goto efault; 8224 ret = get_errno(access(path(p), arg2)); 8225 unlock_user(p, arg1, 0); 8226 break; 8227 #endif 8228 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 8229 case TARGET_NR_faccessat: 8230 if (!(p = lock_user_string(arg2))) 8231 goto efault; 8232 ret = get_errno(faccessat(arg1, p, arg3, 0)); 8233 unlock_user(p, arg2, 0); 8234 break; 8235 #endif 8236 #ifdef TARGET_NR_nice /* not on alpha */ 8237 case TARGET_NR_nice: 8238 ret = get_errno(nice(arg1)); 8239 break; 8240 #endif 8241 #ifdef TARGET_NR_ftime 8242 case TARGET_NR_ftime: 8243 goto unimplemented; 8244 #endif 8245 case TARGET_NR_sync: 8246 sync(); 8247 ret = 0; 8248 break; 8249 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 8250 case TARGET_NR_syncfs: 8251 ret = get_errno(syncfs(arg1)); 8252 break; 8253 #endif 8254 case TARGET_NR_kill: 8255 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 8256 break; 8257 #ifdef TARGET_NR_rename 8258 case TARGET_NR_rename: 8259 { 8260 void *p2; 8261 p = lock_user_string(arg1); 8262 p2 = lock_user_string(arg2); 8263 if (!p || !p2) 8264 ret = -TARGET_EFAULT; 8265 else 8266 ret = get_errno(rename(p, p2)); 8267 unlock_user(p2, arg2, 0); 8268 unlock_user(p, arg1, 0); 8269 } 8270 break; 8271 #endif 8272 #if defined(TARGET_NR_renameat) 8273 case TARGET_NR_renameat: 8274 { 8275 void *p2; 8276 p = lock_user_string(arg2); 8277 p2 = lock_user_string(arg4); 8278 if (!p || !p2) 8279 ret = -TARGET_EFAULT; 8280 else 8281 ret = get_errno(renameat(arg1, p, arg3, p2)); 8282 unlock_user(p2, arg4, 0); 8283 unlock_user(p, arg2, 0); 8284 } 8285 break; 8286 #endif 8287 #ifdef TARGET_NR_mkdir 8288 case TARGET_NR_mkdir: 8289 if (!(p = lock_user_string(arg1))) 8290 goto efault; 8291 ret = get_errno(mkdir(p, arg2)); 8292 unlock_user(p, arg1, 0); 8293 break; 8294 #endif 8295 #if defined(TARGET_NR_mkdirat) 8296 case TARGET_NR_mkdirat: 8297 if (!(p = lock_user_string(arg2))) 8298 goto efault; 8299 ret = get_errno(mkdirat(arg1, p, arg3)); 8300 unlock_user(p, arg2, 0); 8301 break; 8302 #endif 8303 #ifdef TARGET_NR_rmdir 8304 case TARGET_NR_rmdir: 8305 if (!(p = lock_user_string(arg1))) 8306 goto efault; 8307 ret = get_errno(rmdir(p)); 8308 unlock_user(p, arg1, 0); 8309 break; 8310 #endif 8311 case TARGET_NR_dup: 8312 ret = get_errno(dup(arg1)); 8313 if (ret >= 0) { 8314 fd_trans_dup(arg1, ret); 8315 } 8316 break; 8317 #ifdef TARGET_NR_pipe 8318 case TARGET_NR_pipe: 8319 ret = do_pipe(cpu_env, arg1, 0, 0); 8320 break; 8321 #endif 8322 #ifdef TARGET_NR_pipe2 8323 case TARGET_NR_pipe2: 8324 ret = do_pipe(cpu_env, arg1, 8325 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 8326 break; 8327 #endif 8328 case TARGET_NR_times: 8329 { 8330 struct target_tms *tmsp; 8331 struct tms tms; 8332 ret = get_errno(times(&tms)); 8333 if (arg1) { 8334 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 8335 if (!tmsp) 8336 goto efault; 8337 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 8338 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 8339 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 8340 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 8341 } 8342 if (!is_error(ret)) 8343 ret = host_to_target_clock_t(ret); 8344 } 8345 break; 8346 #ifdef TARGET_NR_prof 8347 case TARGET_NR_prof: 8348 goto unimplemented; 8349 #endif 8350 #ifdef TARGET_NR_signal 8351 case TARGET_NR_signal: 8352 goto unimplemented; 8353 #endif 8354 case TARGET_NR_acct: 8355 if (arg1 == 0) { 8356 ret = get_errno(acct(NULL)); 8357 } else { 8358 if (!(p = lock_user_string(arg1))) 8359 goto efault; 8360 ret = get_errno(acct(path(p))); 8361 unlock_user(p, arg1, 0); 8362 } 8363 break; 8364 #ifdef TARGET_NR_umount2 8365 case TARGET_NR_umount2: 8366 if (!(p = lock_user_string(arg1))) 8367 goto efault; 8368 ret = get_errno(umount2(p, arg2)); 8369 unlock_user(p, arg1, 0); 8370 break; 8371 #endif 8372 #ifdef TARGET_NR_lock 8373 case TARGET_NR_lock: 8374 goto unimplemented; 8375 #endif 8376 case TARGET_NR_ioctl: 8377 ret = do_ioctl(arg1, arg2, arg3); 8378 break; 8379 case TARGET_NR_fcntl: 8380 ret = do_fcntl(arg1, arg2, arg3); 8381 break; 8382 #ifdef TARGET_NR_mpx 8383 case TARGET_NR_mpx: 8384 goto unimplemented; 8385 #endif 8386 case TARGET_NR_setpgid: 8387 ret = get_errno(setpgid(arg1, arg2)); 8388 break; 8389 #ifdef TARGET_NR_ulimit 8390 case TARGET_NR_ulimit: 8391 goto unimplemented; 8392 #endif 8393 #ifdef TARGET_NR_oldolduname 8394 case TARGET_NR_oldolduname: 8395 goto unimplemented; 8396 #endif 8397 case TARGET_NR_umask: 8398 ret = get_errno(umask(arg1)); 8399 break; 8400 case TARGET_NR_chroot: 8401 if (!(p = lock_user_string(arg1))) 8402 goto efault; 8403 ret = get_errno(chroot(p)); 8404 unlock_user(p, arg1, 0); 8405 break; 8406 #ifdef TARGET_NR_ustat 8407 case TARGET_NR_ustat: 8408 goto unimplemented; 8409 #endif 8410 #ifdef TARGET_NR_dup2 8411 case TARGET_NR_dup2: 8412 ret = get_errno(dup2(arg1, arg2)); 8413 if (ret >= 0) { 8414 fd_trans_dup(arg1, arg2); 8415 } 8416 break; 8417 #endif 8418 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 8419 case TARGET_NR_dup3: 8420 ret = get_errno(dup3(arg1, arg2, arg3)); 8421 if (ret >= 0) { 8422 fd_trans_dup(arg1, arg2); 8423 } 8424 break; 8425 #endif 8426 #ifdef TARGET_NR_getppid /* not on alpha */ 8427 case TARGET_NR_getppid: 8428 ret = get_errno(getppid()); 8429 break; 8430 #endif 8431 #ifdef TARGET_NR_getpgrp 8432 case TARGET_NR_getpgrp: 8433 ret = get_errno(getpgrp()); 8434 break; 8435 #endif 8436 case TARGET_NR_setsid: 8437 ret = get_errno(setsid()); 8438 break; 8439 #ifdef TARGET_NR_sigaction 8440 case TARGET_NR_sigaction: 8441 { 8442 #if defined(TARGET_ALPHA) 8443 struct target_sigaction act, oact, *pact = 0; 8444 struct target_old_sigaction *old_act; 8445 if (arg2) { 8446 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8447 goto efault; 8448 act._sa_handler = old_act->_sa_handler; 8449 target_siginitset(&act.sa_mask, old_act->sa_mask); 8450 act.sa_flags = old_act->sa_flags; 8451 act.sa_restorer = 0; 8452 unlock_user_struct(old_act, arg2, 0); 8453 pact = &act; 8454 } 8455 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8456 if (!is_error(ret) && arg3) { 8457 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8458 goto efault; 8459 old_act->_sa_handler = oact._sa_handler; 8460 old_act->sa_mask = oact.sa_mask.sig[0]; 8461 old_act->sa_flags = oact.sa_flags; 8462 unlock_user_struct(old_act, arg3, 1); 8463 } 8464 #elif defined(TARGET_MIPS) 8465 struct target_sigaction act, oact, *pact, *old_act; 8466 8467 if (arg2) { 8468 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8469 goto efault; 8470 act._sa_handler = old_act->_sa_handler; 8471 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 8472 act.sa_flags = old_act->sa_flags; 8473 unlock_user_struct(old_act, arg2, 0); 8474 pact = &act; 8475 } else { 8476 pact = NULL; 8477 } 8478 8479 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8480 8481 if (!is_error(ret) && arg3) { 8482 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8483 goto efault; 8484 old_act->_sa_handler = oact._sa_handler; 8485 old_act->sa_flags = oact.sa_flags; 8486 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 8487 old_act->sa_mask.sig[1] = 0; 8488 old_act->sa_mask.sig[2] = 0; 8489 old_act->sa_mask.sig[3] = 0; 8490 unlock_user_struct(old_act, arg3, 1); 8491 } 8492 #else 8493 struct target_old_sigaction *old_act; 8494 struct target_sigaction act, oact, *pact; 8495 if (arg2) { 8496 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8497 goto efault; 8498 act._sa_handler = old_act->_sa_handler; 8499 target_siginitset(&act.sa_mask, old_act->sa_mask); 8500 act.sa_flags = old_act->sa_flags; 8501 act.sa_restorer = old_act->sa_restorer; 8502 unlock_user_struct(old_act, arg2, 0); 8503 pact = &act; 8504 } else { 8505 pact = NULL; 8506 } 8507 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8508 if (!is_error(ret) && arg3) { 8509 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8510 goto efault; 8511 old_act->_sa_handler = oact._sa_handler; 8512 old_act->sa_mask = oact.sa_mask.sig[0]; 8513 old_act->sa_flags = oact.sa_flags; 8514 old_act->sa_restorer = oact.sa_restorer; 8515 unlock_user_struct(old_act, arg3, 1); 8516 } 8517 #endif 8518 } 8519 break; 8520 #endif 8521 case TARGET_NR_rt_sigaction: 8522 { 8523 #if defined(TARGET_ALPHA) 8524 struct target_sigaction act, oact, *pact = 0; 8525 struct target_rt_sigaction *rt_act; 8526 8527 if (arg4 != sizeof(target_sigset_t)) { 8528 ret = -TARGET_EINVAL; 8529 break; 8530 } 8531 if (arg2) { 8532 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1)) 8533 goto efault; 8534 act._sa_handler = rt_act->_sa_handler; 8535 act.sa_mask = rt_act->sa_mask; 8536 act.sa_flags = rt_act->sa_flags; 8537 act.sa_restorer = arg5; 8538 unlock_user_struct(rt_act, arg2, 0); 8539 pact = &act; 8540 } 8541 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8542 if (!is_error(ret) && arg3) { 8543 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0)) 8544 goto efault; 8545 rt_act->_sa_handler = oact._sa_handler; 8546 rt_act->sa_mask = oact.sa_mask; 8547 rt_act->sa_flags = oact.sa_flags; 8548 unlock_user_struct(rt_act, arg3, 1); 8549 } 8550 #else 8551 struct target_sigaction *act; 8552 struct target_sigaction *oact; 8553 8554 if (arg4 != sizeof(target_sigset_t)) { 8555 ret = -TARGET_EINVAL; 8556 break; 8557 } 8558 if (arg2) { 8559 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) 8560 goto efault; 8561 } else 8562 act = NULL; 8563 if (arg3) { 8564 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 8565 ret = -TARGET_EFAULT; 8566 goto rt_sigaction_fail; 8567 } 8568 } else 8569 oact = NULL; 8570 ret = get_errno(do_sigaction(arg1, act, oact)); 8571 rt_sigaction_fail: 8572 if (act) 8573 unlock_user_struct(act, arg2, 0); 8574 if (oact) 8575 unlock_user_struct(oact, arg3, 1); 8576 #endif 8577 } 8578 break; 8579 #ifdef TARGET_NR_sgetmask /* not on alpha */ 8580 case TARGET_NR_sgetmask: 8581 { 8582 sigset_t cur_set; 8583 abi_ulong target_set; 8584 ret = do_sigprocmask(0, NULL, &cur_set); 8585 if (!ret) { 8586 host_to_target_old_sigset(&target_set, &cur_set); 8587 ret = target_set; 8588 } 8589 } 8590 break; 8591 #endif 8592 #ifdef TARGET_NR_ssetmask /* not on alpha */ 8593 case TARGET_NR_ssetmask: 8594 { 8595 sigset_t set, oset, cur_set; 8596 abi_ulong target_set = arg1; 8597 /* We only have one word of the new mask so we must read 8598 * the rest of it with do_sigprocmask() and OR in this word. 8599 * We are guaranteed that a do_sigprocmask() that only queries 8600 * the signal mask will not fail. 8601 */ 8602 ret = do_sigprocmask(0, NULL, &cur_set); 8603 assert(!ret); 8604 target_to_host_old_sigset(&set, &target_set); 8605 sigorset(&set, &set, &cur_set); 8606 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 8607 if (!ret) { 8608 host_to_target_old_sigset(&target_set, &oset); 8609 ret = target_set; 8610 } 8611 } 8612 break; 8613 #endif 8614 #ifdef TARGET_NR_sigprocmask 8615 case TARGET_NR_sigprocmask: 8616 { 8617 #if defined(TARGET_ALPHA) 8618 sigset_t set, oldset; 8619 abi_ulong mask; 8620 int how; 8621 8622 switch (arg1) { 8623 case TARGET_SIG_BLOCK: 8624 how = SIG_BLOCK; 8625 break; 8626 case TARGET_SIG_UNBLOCK: 8627 how = SIG_UNBLOCK; 8628 break; 8629 case TARGET_SIG_SETMASK: 8630 how = SIG_SETMASK; 8631 break; 8632 default: 8633 ret = -TARGET_EINVAL; 8634 goto fail; 8635 } 8636 mask = arg2; 8637 target_to_host_old_sigset(&set, &mask); 8638 8639 ret = do_sigprocmask(how, &set, &oldset); 8640 if (!is_error(ret)) { 8641 host_to_target_old_sigset(&mask, &oldset); 8642 ret = mask; 8643 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 8644 } 8645 #else 8646 sigset_t set, oldset, *set_ptr; 8647 int how; 8648 8649 if (arg2) { 8650 switch (arg1) { 8651 case TARGET_SIG_BLOCK: 8652 how = SIG_BLOCK; 8653 break; 8654 case TARGET_SIG_UNBLOCK: 8655 how = SIG_UNBLOCK; 8656 break; 8657 case TARGET_SIG_SETMASK: 8658 how = SIG_SETMASK; 8659 break; 8660 default: 8661 ret = -TARGET_EINVAL; 8662 goto fail; 8663 } 8664 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 8665 goto efault; 8666 target_to_host_old_sigset(&set, p); 8667 unlock_user(p, arg2, 0); 8668 set_ptr = &set; 8669 } else { 8670 how = 0; 8671 set_ptr = NULL; 8672 } 8673 ret = do_sigprocmask(how, set_ptr, &oldset); 8674 if (!is_error(ret) && arg3) { 8675 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 8676 goto efault; 8677 host_to_target_old_sigset(p, &oldset); 8678 unlock_user(p, arg3, sizeof(target_sigset_t)); 8679 } 8680 #endif 8681 } 8682 break; 8683 #endif 8684 case TARGET_NR_rt_sigprocmask: 8685 { 8686 int how = arg1; 8687 sigset_t set, oldset, *set_ptr; 8688 8689 if (arg4 != sizeof(target_sigset_t)) { 8690 ret = -TARGET_EINVAL; 8691 break; 8692 } 8693 8694 if (arg2) { 8695 switch(how) { 8696 case TARGET_SIG_BLOCK: 8697 how = SIG_BLOCK; 8698 break; 8699 case TARGET_SIG_UNBLOCK: 8700 how = SIG_UNBLOCK; 8701 break; 8702 case TARGET_SIG_SETMASK: 8703 how = SIG_SETMASK; 8704 break; 8705 default: 8706 ret = -TARGET_EINVAL; 8707 goto fail; 8708 } 8709 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 8710 goto efault; 8711 target_to_host_sigset(&set, p); 8712 unlock_user(p, arg2, 0); 8713 set_ptr = &set; 8714 } else { 8715 how = 0; 8716 set_ptr = NULL; 8717 } 8718 ret = do_sigprocmask(how, set_ptr, &oldset); 8719 if (!is_error(ret) && arg3) { 8720 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 8721 goto efault; 8722 host_to_target_sigset(p, &oldset); 8723 unlock_user(p, arg3, sizeof(target_sigset_t)); 8724 } 8725 } 8726 break; 8727 #ifdef TARGET_NR_sigpending 8728 case TARGET_NR_sigpending: 8729 { 8730 sigset_t set; 8731 ret = get_errno(sigpending(&set)); 8732 if (!is_error(ret)) { 8733 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 8734 goto efault; 8735 host_to_target_old_sigset(p, &set); 8736 unlock_user(p, arg1, sizeof(target_sigset_t)); 8737 } 8738 } 8739 break; 8740 #endif 8741 case TARGET_NR_rt_sigpending: 8742 { 8743 sigset_t set; 8744 8745 /* Yes, this check is >, not != like most. We follow the kernel's 8746 * logic and it does it like this because it implements 8747 * NR_sigpending through the same code path, and in that case 8748 * the old_sigset_t is smaller in size. 8749 */ 8750 if (arg2 > sizeof(target_sigset_t)) { 8751 ret = -TARGET_EINVAL; 8752 break; 8753 } 8754 8755 ret = get_errno(sigpending(&set)); 8756 if (!is_error(ret)) { 8757 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 8758 goto efault; 8759 host_to_target_sigset(p, &set); 8760 unlock_user(p, arg1, sizeof(target_sigset_t)); 8761 } 8762 } 8763 break; 8764 #ifdef TARGET_NR_sigsuspend 8765 case TARGET_NR_sigsuspend: 8766 { 8767 TaskState *ts = cpu->opaque; 8768 #if defined(TARGET_ALPHA) 8769 abi_ulong mask = arg1; 8770 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask); 8771 #else 8772 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 8773 goto efault; 8774 target_to_host_old_sigset(&ts->sigsuspend_mask, p); 8775 unlock_user(p, arg1, 0); 8776 #endif 8777 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 8778 SIGSET_T_SIZE)); 8779 if (ret != -TARGET_ERESTARTSYS) { 8780 ts->in_sigsuspend = 1; 8781 } 8782 } 8783 break; 8784 #endif 8785 case TARGET_NR_rt_sigsuspend: 8786 { 8787 TaskState *ts = cpu->opaque; 8788 8789 if (arg2 != sizeof(target_sigset_t)) { 8790 ret = -TARGET_EINVAL; 8791 break; 8792 } 8793 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 8794 goto efault; 8795 target_to_host_sigset(&ts->sigsuspend_mask, p); 8796 unlock_user(p, arg1, 0); 8797 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 8798 SIGSET_T_SIZE)); 8799 if (ret != -TARGET_ERESTARTSYS) { 8800 ts->in_sigsuspend = 1; 8801 } 8802 } 8803 break; 8804 case TARGET_NR_rt_sigtimedwait: 8805 { 8806 sigset_t set; 8807 struct timespec uts, *puts; 8808 siginfo_t uinfo; 8809 8810 if (arg4 != sizeof(target_sigset_t)) { 8811 ret = -TARGET_EINVAL; 8812 break; 8813 } 8814 8815 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 8816 goto efault; 8817 target_to_host_sigset(&set, p); 8818 unlock_user(p, arg1, 0); 8819 if (arg3) { 8820 puts = &uts; 8821 target_to_host_timespec(puts, arg3); 8822 } else { 8823 puts = NULL; 8824 } 8825 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 8826 SIGSET_T_SIZE)); 8827 if (!is_error(ret)) { 8828 if (arg2) { 8829 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 8830 0); 8831 if (!p) { 8832 goto efault; 8833 } 8834 host_to_target_siginfo(p, &uinfo); 8835 unlock_user(p, arg2, sizeof(target_siginfo_t)); 8836 } 8837 ret = host_to_target_signal(ret); 8838 } 8839 } 8840 break; 8841 case TARGET_NR_rt_sigqueueinfo: 8842 { 8843 siginfo_t uinfo; 8844 8845 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 8846 if (!p) { 8847 goto efault; 8848 } 8849 target_to_host_siginfo(&uinfo, p); 8850 unlock_user(p, arg1, 0); 8851 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 8852 } 8853 break; 8854 #ifdef TARGET_NR_sigreturn 8855 case TARGET_NR_sigreturn: 8856 if (block_signals()) { 8857 ret = -TARGET_ERESTARTSYS; 8858 } else { 8859 ret = do_sigreturn(cpu_env); 8860 } 8861 break; 8862 #endif 8863 case TARGET_NR_rt_sigreturn: 8864 if (block_signals()) { 8865 ret = -TARGET_ERESTARTSYS; 8866 } else { 8867 ret = do_rt_sigreturn(cpu_env); 8868 } 8869 break; 8870 case TARGET_NR_sethostname: 8871 if (!(p = lock_user_string(arg1))) 8872 goto efault; 8873 ret = get_errno(sethostname(p, arg2)); 8874 unlock_user(p, arg1, 0); 8875 break; 8876 case TARGET_NR_setrlimit: 8877 { 8878 int resource = target_to_host_resource(arg1); 8879 struct target_rlimit *target_rlim; 8880 struct rlimit rlim; 8881 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 8882 goto efault; 8883 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 8884 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 8885 unlock_user_struct(target_rlim, arg2, 0); 8886 ret = get_errno(setrlimit(resource, &rlim)); 8887 } 8888 break; 8889 case TARGET_NR_getrlimit: 8890 { 8891 int resource = target_to_host_resource(arg1); 8892 struct target_rlimit *target_rlim; 8893 struct rlimit rlim; 8894 8895 ret = get_errno(getrlimit(resource, &rlim)); 8896 if (!is_error(ret)) { 8897 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 8898 goto efault; 8899 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 8900 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 8901 unlock_user_struct(target_rlim, arg2, 1); 8902 } 8903 } 8904 break; 8905 case TARGET_NR_getrusage: 8906 { 8907 struct rusage rusage; 8908 ret = get_errno(getrusage(arg1, &rusage)); 8909 if (!is_error(ret)) { 8910 ret = host_to_target_rusage(arg2, &rusage); 8911 } 8912 } 8913 break; 8914 case TARGET_NR_gettimeofday: 8915 { 8916 struct timeval tv; 8917 ret = get_errno(gettimeofday(&tv, NULL)); 8918 if (!is_error(ret)) { 8919 if (copy_to_user_timeval(arg1, &tv)) 8920 goto efault; 8921 } 8922 } 8923 break; 8924 case TARGET_NR_settimeofday: 8925 { 8926 struct timeval tv, *ptv = NULL; 8927 struct timezone tz, *ptz = NULL; 8928 8929 if (arg1) { 8930 if (copy_from_user_timeval(&tv, arg1)) { 8931 goto efault; 8932 } 8933 ptv = &tv; 8934 } 8935 8936 if (arg2) { 8937 if (copy_from_user_timezone(&tz, arg2)) { 8938 goto efault; 8939 } 8940 ptz = &tz; 8941 } 8942 8943 ret = get_errno(settimeofday(ptv, ptz)); 8944 } 8945 break; 8946 #if defined(TARGET_NR_select) 8947 case TARGET_NR_select: 8948 #if defined(TARGET_WANT_NI_OLD_SELECT) 8949 /* some architectures used to have old_select here 8950 * but now ENOSYS it. 8951 */ 8952 ret = -TARGET_ENOSYS; 8953 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 8954 ret = do_old_select(arg1); 8955 #else 8956 ret = do_select(arg1, arg2, arg3, arg4, arg5); 8957 #endif 8958 break; 8959 #endif 8960 #ifdef TARGET_NR_pselect6 8961 case TARGET_NR_pselect6: 8962 { 8963 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 8964 fd_set rfds, wfds, efds; 8965 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 8966 struct timespec ts, *ts_ptr; 8967 8968 /* 8969 * The 6th arg is actually two args smashed together, 8970 * so we cannot use the C library. 8971 */ 8972 sigset_t set; 8973 struct { 8974 sigset_t *set; 8975 size_t size; 8976 } sig, *sig_ptr; 8977 8978 abi_ulong arg_sigset, arg_sigsize, *arg7; 8979 target_sigset_t *target_sigset; 8980 8981 n = arg1; 8982 rfd_addr = arg2; 8983 wfd_addr = arg3; 8984 efd_addr = arg4; 8985 ts_addr = arg5; 8986 8987 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 8988 if (ret) { 8989 goto fail; 8990 } 8991 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 8992 if (ret) { 8993 goto fail; 8994 } 8995 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 8996 if (ret) { 8997 goto fail; 8998 } 8999 9000 /* 9001 * This takes a timespec, and not a timeval, so we cannot 9002 * use the do_select() helper ... 9003 */ 9004 if (ts_addr) { 9005 if (target_to_host_timespec(&ts, ts_addr)) { 9006 goto efault; 9007 } 9008 ts_ptr = &ts; 9009 } else { 9010 ts_ptr = NULL; 9011 } 9012 9013 /* Extract the two packed args for the sigset */ 9014 if (arg6) { 9015 sig_ptr = &sig; 9016 sig.size = SIGSET_T_SIZE; 9017 9018 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 9019 if (!arg7) { 9020 goto efault; 9021 } 9022 arg_sigset = tswapal(arg7[0]); 9023 arg_sigsize = tswapal(arg7[1]); 9024 unlock_user(arg7, arg6, 0); 9025 9026 if (arg_sigset) { 9027 sig.set = &set; 9028 if (arg_sigsize != sizeof(*target_sigset)) { 9029 /* Like the kernel, we enforce correct size sigsets */ 9030 ret = -TARGET_EINVAL; 9031 goto fail; 9032 } 9033 target_sigset = lock_user(VERIFY_READ, arg_sigset, 9034 sizeof(*target_sigset), 1); 9035 if (!target_sigset) { 9036 goto efault; 9037 } 9038 target_to_host_sigset(&set, target_sigset); 9039 unlock_user(target_sigset, arg_sigset, 0); 9040 } else { 9041 sig.set = NULL; 9042 } 9043 } else { 9044 sig_ptr = NULL; 9045 } 9046 9047 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 9048 ts_ptr, sig_ptr)); 9049 9050 if (!is_error(ret)) { 9051 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 9052 goto efault; 9053 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 9054 goto efault; 9055 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 9056 goto efault; 9057 9058 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) 9059 goto efault; 9060 } 9061 } 9062 break; 9063 #endif 9064 #ifdef TARGET_NR_symlink 9065 case TARGET_NR_symlink: 9066 { 9067 void *p2; 9068 p = lock_user_string(arg1); 9069 p2 = lock_user_string(arg2); 9070 if (!p || !p2) 9071 ret = -TARGET_EFAULT; 9072 else 9073 ret = get_errno(symlink(p, p2)); 9074 unlock_user(p2, arg2, 0); 9075 unlock_user(p, arg1, 0); 9076 } 9077 break; 9078 #endif 9079 #if defined(TARGET_NR_symlinkat) 9080 case TARGET_NR_symlinkat: 9081 { 9082 void *p2; 9083 p = lock_user_string(arg1); 9084 p2 = lock_user_string(arg3); 9085 if (!p || !p2) 9086 ret = -TARGET_EFAULT; 9087 else 9088 ret = get_errno(symlinkat(p, arg2, p2)); 9089 unlock_user(p2, arg3, 0); 9090 unlock_user(p, arg1, 0); 9091 } 9092 break; 9093 #endif 9094 #ifdef TARGET_NR_oldlstat 9095 case TARGET_NR_oldlstat: 9096 goto unimplemented; 9097 #endif 9098 #ifdef TARGET_NR_readlink 9099 case TARGET_NR_readlink: 9100 { 9101 void *p2; 9102 p = lock_user_string(arg1); 9103 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9104 if (!p || !p2) { 9105 ret = -TARGET_EFAULT; 9106 } else if (!arg3) { 9107 /* Short circuit this for the magic exe check. */ 9108 ret = -TARGET_EINVAL; 9109 } else if (is_proc_myself((const char *)p, "exe")) { 9110 char real[PATH_MAX], *temp; 9111 temp = realpath(exec_path, real); 9112 /* Return value is # of bytes that we wrote to the buffer. */ 9113 if (temp == NULL) { 9114 ret = get_errno(-1); 9115 } else { 9116 /* Don't worry about sign mismatch as earlier mapping 9117 * logic would have thrown a bad address error. */ 9118 ret = MIN(strlen(real), arg3); 9119 /* We cannot NUL terminate the string. */ 9120 memcpy(p2, real, ret); 9121 } 9122 } else { 9123 ret = get_errno(readlink(path(p), p2, arg3)); 9124 } 9125 unlock_user(p2, arg2, ret); 9126 unlock_user(p, arg1, 0); 9127 } 9128 break; 9129 #endif 9130 #if defined(TARGET_NR_readlinkat) 9131 case TARGET_NR_readlinkat: 9132 { 9133 void *p2; 9134 p = lock_user_string(arg2); 9135 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9136 if (!p || !p2) { 9137 ret = -TARGET_EFAULT; 9138 } else if (is_proc_myself((const char *)p, "exe")) { 9139 char real[PATH_MAX], *temp; 9140 temp = realpath(exec_path, real); 9141 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 9142 snprintf((char *)p2, arg4, "%s", real); 9143 } else { 9144 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 9145 } 9146 unlock_user(p2, arg3, ret); 9147 unlock_user(p, arg2, 0); 9148 } 9149 break; 9150 #endif 9151 #ifdef TARGET_NR_uselib 9152 case TARGET_NR_uselib: 9153 goto unimplemented; 9154 #endif 9155 #ifdef TARGET_NR_swapon 9156 case TARGET_NR_swapon: 9157 if (!(p = lock_user_string(arg1))) 9158 goto efault; 9159 ret = get_errno(swapon(p, arg2)); 9160 unlock_user(p, arg1, 0); 9161 break; 9162 #endif 9163 case TARGET_NR_reboot: 9164 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 9165 /* arg4 must be ignored in all other cases */ 9166 p = lock_user_string(arg4); 9167 if (!p) { 9168 goto efault; 9169 } 9170 ret = get_errno(reboot(arg1, arg2, arg3, p)); 9171 unlock_user(p, arg4, 0); 9172 } else { 9173 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 9174 } 9175 break; 9176 #ifdef TARGET_NR_readdir 9177 case TARGET_NR_readdir: 9178 goto unimplemented; 9179 #endif 9180 #ifdef TARGET_NR_mmap 9181 case TARGET_NR_mmap: 9182 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 9183 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 9184 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 9185 || defined(TARGET_S390X) 9186 { 9187 abi_ulong *v; 9188 abi_ulong v1, v2, v3, v4, v5, v6; 9189 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 9190 goto efault; 9191 v1 = tswapal(v[0]); 9192 v2 = tswapal(v[1]); 9193 v3 = tswapal(v[2]); 9194 v4 = tswapal(v[3]); 9195 v5 = tswapal(v[4]); 9196 v6 = tswapal(v[5]); 9197 unlock_user(v, arg1, 0); 9198 ret = get_errno(target_mmap(v1, v2, v3, 9199 target_to_host_bitmask(v4, mmap_flags_tbl), 9200 v5, v6)); 9201 } 9202 #else 9203 ret = get_errno(target_mmap(arg1, arg2, arg3, 9204 target_to_host_bitmask(arg4, mmap_flags_tbl), 9205 arg5, 9206 arg6)); 9207 #endif 9208 break; 9209 #endif 9210 #ifdef TARGET_NR_mmap2 9211 case TARGET_NR_mmap2: 9212 #ifndef MMAP_SHIFT 9213 #define MMAP_SHIFT 12 9214 #endif 9215 ret = get_errno(target_mmap(arg1, arg2, arg3, 9216 target_to_host_bitmask(arg4, mmap_flags_tbl), 9217 arg5, 9218 arg6 << MMAP_SHIFT)); 9219 break; 9220 #endif 9221 case TARGET_NR_munmap: 9222 ret = get_errno(target_munmap(arg1, arg2)); 9223 break; 9224 case TARGET_NR_mprotect: 9225 { 9226 TaskState *ts = cpu->opaque; 9227 /* Special hack to detect libc making the stack executable. */ 9228 if ((arg3 & PROT_GROWSDOWN) 9229 && arg1 >= ts->info->stack_limit 9230 && arg1 <= ts->info->start_stack) { 9231 arg3 &= ~PROT_GROWSDOWN; 9232 arg2 = arg2 + arg1 - ts->info->stack_limit; 9233 arg1 = ts->info->stack_limit; 9234 } 9235 } 9236 ret = get_errno(target_mprotect(arg1, arg2, arg3)); 9237 break; 9238 #ifdef TARGET_NR_mremap 9239 case TARGET_NR_mremap: 9240 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 9241 break; 9242 #endif 9243 /* ??? msync/mlock/munlock are broken for softmmu. */ 9244 #ifdef TARGET_NR_msync 9245 case TARGET_NR_msync: 9246 ret = get_errno(msync(g2h(arg1), arg2, arg3)); 9247 break; 9248 #endif 9249 #ifdef TARGET_NR_mlock 9250 case TARGET_NR_mlock: 9251 ret = get_errno(mlock(g2h(arg1), arg2)); 9252 break; 9253 #endif 9254 #ifdef TARGET_NR_munlock 9255 case TARGET_NR_munlock: 9256 ret = get_errno(munlock(g2h(arg1), arg2)); 9257 break; 9258 #endif 9259 #ifdef TARGET_NR_mlockall 9260 case TARGET_NR_mlockall: 9261 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 9262 break; 9263 #endif 9264 #ifdef TARGET_NR_munlockall 9265 case TARGET_NR_munlockall: 9266 ret = get_errno(munlockall()); 9267 break; 9268 #endif 9269 case TARGET_NR_truncate: 9270 if (!(p = lock_user_string(arg1))) 9271 goto efault; 9272 ret = get_errno(truncate(p, arg2)); 9273 unlock_user(p, arg1, 0); 9274 break; 9275 case TARGET_NR_ftruncate: 9276 ret = get_errno(ftruncate(arg1, arg2)); 9277 break; 9278 case TARGET_NR_fchmod: 9279 ret = get_errno(fchmod(arg1, arg2)); 9280 break; 9281 #if defined(TARGET_NR_fchmodat) 9282 case TARGET_NR_fchmodat: 9283 if (!(p = lock_user_string(arg2))) 9284 goto efault; 9285 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 9286 unlock_user(p, arg2, 0); 9287 break; 9288 #endif 9289 case TARGET_NR_getpriority: 9290 /* Note that negative values are valid for getpriority, so we must 9291 differentiate based on errno settings. */ 9292 errno = 0; 9293 ret = getpriority(arg1, arg2); 9294 if (ret == -1 && errno != 0) { 9295 ret = -host_to_target_errno(errno); 9296 break; 9297 } 9298 #ifdef TARGET_ALPHA 9299 /* Return value is the unbiased priority. Signal no error. */ 9300 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 9301 #else 9302 /* Return value is a biased priority to avoid negative numbers. */ 9303 ret = 20 - ret; 9304 #endif 9305 break; 9306 case TARGET_NR_setpriority: 9307 ret = get_errno(setpriority(arg1, arg2, arg3)); 9308 break; 9309 #ifdef TARGET_NR_profil 9310 case TARGET_NR_profil: 9311 goto unimplemented; 9312 #endif 9313 case TARGET_NR_statfs: 9314 if (!(p = lock_user_string(arg1))) 9315 goto efault; 9316 ret = get_errno(statfs(path(p), &stfs)); 9317 unlock_user(p, arg1, 0); 9318 convert_statfs: 9319 if (!is_error(ret)) { 9320 struct target_statfs *target_stfs; 9321 9322 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 9323 goto efault; 9324 __put_user(stfs.f_type, &target_stfs->f_type); 9325 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9326 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9327 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9328 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9329 __put_user(stfs.f_files, &target_stfs->f_files); 9330 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9331 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9332 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9333 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9334 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9335 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9336 unlock_user_struct(target_stfs, arg2, 1); 9337 } 9338 break; 9339 case TARGET_NR_fstatfs: 9340 ret = get_errno(fstatfs(arg1, &stfs)); 9341 goto convert_statfs; 9342 #ifdef TARGET_NR_statfs64 9343 case TARGET_NR_statfs64: 9344 if (!(p = lock_user_string(arg1))) 9345 goto efault; 9346 ret = get_errno(statfs(path(p), &stfs)); 9347 unlock_user(p, arg1, 0); 9348 convert_statfs64: 9349 if (!is_error(ret)) { 9350 struct target_statfs64 *target_stfs; 9351 9352 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 9353 goto efault; 9354 __put_user(stfs.f_type, &target_stfs->f_type); 9355 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9356 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9357 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9358 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9359 __put_user(stfs.f_files, &target_stfs->f_files); 9360 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9361 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9362 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9363 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9364 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9365 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9366 unlock_user_struct(target_stfs, arg3, 1); 9367 } 9368 break; 9369 case TARGET_NR_fstatfs64: 9370 ret = get_errno(fstatfs(arg1, &stfs)); 9371 goto convert_statfs64; 9372 #endif 9373 #ifdef TARGET_NR_ioperm 9374 case TARGET_NR_ioperm: 9375 goto unimplemented; 9376 #endif 9377 #ifdef TARGET_NR_socketcall 9378 case TARGET_NR_socketcall: 9379 ret = do_socketcall(arg1, arg2); 9380 break; 9381 #endif 9382 #ifdef TARGET_NR_accept 9383 case TARGET_NR_accept: 9384 ret = do_accept4(arg1, arg2, arg3, 0); 9385 break; 9386 #endif 9387 #ifdef TARGET_NR_accept4 9388 case TARGET_NR_accept4: 9389 ret = do_accept4(arg1, arg2, arg3, arg4); 9390 break; 9391 #endif 9392 #ifdef TARGET_NR_bind 9393 case TARGET_NR_bind: 9394 ret = do_bind(arg1, arg2, arg3); 9395 break; 9396 #endif 9397 #ifdef TARGET_NR_connect 9398 case TARGET_NR_connect: 9399 ret = do_connect(arg1, arg2, arg3); 9400 break; 9401 #endif 9402 #ifdef TARGET_NR_getpeername 9403 case TARGET_NR_getpeername: 9404 ret = do_getpeername(arg1, arg2, arg3); 9405 break; 9406 #endif 9407 #ifdef TARGET_NR_getsockname 9408 case TARGET_NR_getsockname: 9409 ret = do_getsockname(arg1, arg2, arg3); 9410 break; 9411 #endif 9412 #ifdef TARGET_NR_getsockopt 9413 case TARGET_NR_getsockopt: 9414 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); 9415 break; 9416 #endif 9417 #ifdef TARGET_NR_listen 9418 case TARGET_NR_listen: 9419 ret = get_errno(listen(arg1, arg2)); 9420 break; 9421 #endif 9422 #ifdef TARGET_NR_recv 9423 case TARGET_NR_recv: 9424 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 9425 break; 9426 #endif 9427 #ifdef TARGET_NR_recvfrom 9428 case TARGET_NR_recvfrom: 9429 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 9430 break; 9431 #endif 9432 #ifdef TARGET_NR_recvmsg 9433 case TARGET_NR_recvmsg: 9434 ret = do_sendrecvmsg(arg1, arg2, arg3, 0); 9435 break; 9436 #endif 9437 #ifdef TARGET_NR_send 9438 case TARGET_NR_send: 9439 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0); 9440 break; 9441 #endif 9442 #ifdef TARGET_NR_sendmsg 9443 case TARGET_NR_sendmsg: 9444 ret = do_sendrecvmsg(arg1, arg2, arg3, 1); 9445 break; 9446 #endif 9447 #ifdef TARGET_NR_sendmmsg 9448 case TARGET_NR_sendmmsg: 9449 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 9450 break; 9451 case TARGET_NR_recvmmsg: 9452 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 9453 break; 9454 #endif 9455 #ifdef TARGET_NR_sendto 9456 case TARGET_NR_sendto: 9457 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 9458 break; 9459 #endif 9460 #ifdef TARGET_NR_shutdown 9461 case TARGET_NR_shutdown: 9462 ret = get_errno(shutdown(arg1, arg2)); 9463 break; 9464 #endif 9465 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 9466 case TARGET_NR_getrandom: 9467 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 9468 if (!p) { 9469 goto efault; 9470 } 9471 ret = get_errno(getrandom(p, arg2, arg3)); 9472 unlock_user(p, arg1, ret); 9473 break; 9474 #endif 9475 #ifdef TARGET_NR_socket 9476 case TARGET_NR_socket: 9477 ret = do_socket(arg1, arg2, arg3); 9478 break; 9479 #endif 9480 #ifdef TARGET_NR_socketpair 9481 case TARGET_NR_socketpair: 9482 ret = do_socketpair(arg1, arg2, arg3, arg4); 9483 break; 9484 #endif 9485 #ifdef TARGET_NR_setsockopt 9486 case TARGET_NR_setsockopt: 9487 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 9488 break; 9489 #endif 9490 #if defined(TARGET_NR_syslog) 9491 case TARGET_NR_syslog: 9492 { 9493 int len = arg2; 9494 9495 switch (arg1) { 9496 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 9497 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 9498 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 9499 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 9500 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 9501 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 9502 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 9503 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 9504 { 9505 ret = get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 9506 } 9507 break; 9508 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 9509 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 9510 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 9511 { 9512 ret = -TARGET_EINVAL; 9513 if (len < 0) { 9514 goto fail; 9515 } 9516 ret = 0; 9517 if (len == 0) { 9518 break; 9519 } 9520 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9521 if (!p) { 9522 ret = -TARGET_EFAULT; 9523 goto fail; 9524 } 9525 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 9526 unlock_user(p, arg2, arg3); 9527 } 9528 break; 9529 default: 9530 ret = -EINVAL; 9531 break; 9532 } 9533 } 9534 break; 9535 #endif 9536 case TARGET_NR_setitimer: 9537 { 9538 struct itimerval value, ovalue, *pvalue; 9539 9540 if (arg2) { 9541 pvalue = &value; 9542 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 9543 || copy_from_user_timeval(&pvalue->it_value, 9544 arg2 + sizeof(struct target_timeval))) 9545 goto efault; 9546 } else { 9547 pvalue = NULL; 9548 } 9549 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 9550 if (!is_error(ret) && arg3) { 9551 if (copy_to_user_timeval(arg3, 9552 &ovalue.it_interval) 9553 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 9554 &ovalue.it_value)) 9555 goto efault; 9556 } 9557 } 9558 break; 9559 case TARGET_NR_getitimer: 9560 { 9561 struct itimerval value; 9562 9563 ret = get_errno(getitimer(arg1, &value)); 9564 if (!is_error(ret) && arg2) { 9565 if (copy_to_user_timeval(arg2, 9566 &value.it_interval) 9567 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 9568 &value.it_value)) 9569 goto efault; 9570 } 9571 } 9572 break; 9573 #ifdef TARGET_NR_stat 9574 case TARGET_NR_stat: 9575 if (!(p = lock_user_string(arg1))) 9576 goto efault; 9577 ret = get_errno(stat(path(p), &st)); 9578 unlock_user(p, arg1, 0); 9579 goto do_stat; 9580 #endif 9581 #ifdef TARGET_NR_lstat 9582 case TARGET_NR_lstat: 9583 if (!(p = lock_user_string(arg1))) 9584 goto efault; 9585 ret = get_errno(lstat(path(p), &st)); 9586 unlock_user(p, arg1, 0); 9587 goto do_stat; 9588 #endif 9589 case TARGET_NR_fstat: 9590 { 9591 ret = get_errno(fstat(arg1, &st)); 9592 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 9593 do_stat: 9594 #endif 9595 if (!is_error(ret)) { 9596 struct target_stat *target_st; 9597 9598 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 9599 goto efault; 9600 memset(target_st, 0, sizeof(*target_st)); 9601 __put_user(st.st_dev, &target_st->st_dev); 9602 __put_user(st.st_ino, &target_st->st_ino); 9603 __put_user(st.st_mode, &target_st->st_mode); 9604 __put_user(st.st_uid, &target_st->st_uid); 9605 __put_user(st.st_gid, &target_st->st_gid); 9606 __put_user(st.st_nlink, &target_st->st_nlink); 9607 __put_user(st.st_rdev, &target_st->st_rdev); 9608 __put_user(st.st_size, &target_st->st_size); 9609 __put_user(st.st_blksize, &target_st->st_blksize); 9610 __put_user(st.st_blocks, &target_st->st_blocks); 9611 __put_user(st.st_atime, &target_st->target_st_atime); 9612 __put_user(st.st_mtime, &target_st->target_st_mtime); 9613 __put_user(st.st_ctime, &target_st->target_st_ctime); 9614 unlock_user_struct(target_st, arg2, 1); 9615 } 9616 } 9617 break; 9618 #ifdef TARGET_NR_olduname 9619 case TARGET_NR_olduname: 9620 goto unimplemented; 9621 #endif 9622 #ifdef TARGET_NR_iopl 9623 case TARGET_NR_iopl: 9624 goto unimplemented; 9625 #endif 9626 case TARGET_NR_vhangup: 9627 ret = get_errno(vhangup()); 9628 break; 9629 #ifdef TARGET_NR_idle 9630 case TARGET_NR_idle: 9631 goto unimplemented; 9632 #endif 9633 #ifdef TARGET_NR_syscall 9634 case TARGET_NR_syscall: 9635 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 9636 arg6, arg7, arg8, 0); 9637 break; 9638 #endif 9639 case TARGET_NR_wait4: 9640 { 9641 int status; 9642 abi_long status_ptr = arg2; 9643 struct rusage rusage, *rusage_ptr; 9644 abi_ulong target_rusage = arg4; 9645 abi_long rusage_err; 9646 if (target_rusage) 9647 rusage_ptr = &rusage; 9648 else 9649 rusage_ptr = NULL; 9650 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 9651 if (!is_error(ret)) { 9652 if (status_ptr && ret) { 9653 status = host_to_target_waitstatus(status); 9654 if (put_user_s32(status, status_ptr)) 9655 goto efault; 9656 } 9657 if (target_rusage) { 9658 rusage_err = host_to_target_rusage(target_rusage, &rusage); 9659 if (rusage_err) { 9660 ret = rusage_err; 9661 } 9662 } 9663 } 9664 } 9665 break; 9666 #ifdef TARGET_NR_swapoff 9667 case TARGET_NR_swapoff: 9668 if (!(p = lock_user_string(arg1))) 9669 goto efault; 9670 ret = get_errno(swapoff(p)); 9671 unlock_user(p, arg1, 0); 9672 break; 9673 #endif 9674 case TARGET_NR_sysinfo: 9675 { 9676 struct target_sysinfo *target_value; 9677 struct sysinfo value; 9678 ret = get_errno(sysinfo(&value)); 9679 if (!is_error(ret) && arg1) 9680 { 9681 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 9682 goto efault; 9683 __put_user(value.uptime, &target_value->uptime); 9684 __put_user(value.loads[0], &target_value->loads[0]); 9685 __put_user(value.loads[1], &target_value->loads[1]); 9686 __put_user(value.loads[2], &target_value->loads[2]); 9687 __put_user(value.totalram, &target_value->totalram); 9688 __put_user(value.freeram, &target_value->freeram); 9689 __put_user(value.sharedram, &target_value->sharedram); 9690 __put_user(value.bufferram, &target_value->bufferram); 9691 __put_user(value.totalswap, &target_value->totalswap); 9692 __put_user(value.freeswap, &target_value->freeswap); 9693 __put_user(value.procs, &target_value->procs); 9694 __put_user(value.totalhigh, &target_value->totalhigh); 9695 __put_user(value.freehigh, &target_value->freehigh); 9696 __put_user(value.mem_unit, &target_value->mem_unit); 9697 unlock_user_struct(target_value, arg1, 1); 9698 } 9699 } 9700 break; 9701 #ifdef TARGET_NR_ipc 9702 case TARGET_NR_ipc: 9703 ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 9704 break; 9705 #endif 9706 #ifdef TARGET_NR_semget 9707 case TARGET_NR_semget: 9708 ret = get_errno(semget(arg1, arg2, arg3)); 9709 break; 9710 #endif 9711 #ifdef TARGET_NR_semop 9712 case TARGET_NR_semop: 9713 ret = do_semop(arg1, arg2, arg3); 9714 break; 9715 #endif 9716 #ifdef TARGET_NR_semctl 9717 case TARGET_NR_semctl: 9718 ret = do_semctl(arg1, arg2, arg3, arg4); 9719 break; 9720 #endif 9721 #ifdef TARGET_NR_msgctl 9722 case TARGET_NR_msgctl: 9723 ret = do_msgctl(arg1, arg2, arg3); 9724 break; 9725 #endif 9726 #ifdef TARGET_NR_msgget 9727 case TARGET_NR_msgget: 9728 ret = get_errno(msgget(arg1, arg2)); 9729 break; 9730 #endif 9731 #ifdef TARGET_NR_msgrcv 9732 case TARGET_NR_msgrcv: 9733 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5); 9734 break; 9735 #endif 9736 #ifdef TARGET_NR_msgsnd 9737 case TARGET_NR_msgsnd: 9738 ret = do_msgsnd(arg1, arg2, arg3, arg4); 9739 break; 9740 #endif 9741 #ifdef TARGET_NR_shmget 9742 case TARGET_NR_shmget: 9743 ret = get_errno(shmget(arg1, arg2, arg3)); 9744 break; 9745 #endif 9746 #ifdef TARGET_NR_shmctl 9747 case TARGET_NR_shmctl: 9748 ret = do_shmctl(arg1, arg2, arg3); 9749 break; 9750 #endif 9751 #ifdef TARGET_NR_shmat 9752 case TARGET_NR_shmat: 9753 ret = do_shmat(cpu_env, arg1, arg2, arg3); 9754 break; 9755 #endif 9756 #ifdef TARGET_NR_shmdt 9757 case TARGET_NR_shmdt: 9758 ret = do_shmdt(arg1); 9759 break; 9760 #endif 9761 case TARGET_NR_fsync: 9762 ret = get_errno(fsync(arg1)); 9763 break; 9764 case TARGET_NR_clone: 9765 /* Linux manages to have three different orderings for its 9766 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 9767 * match the kernel's CONFIG_CLONE_* settings. 9768 * Microblaze is further special in that it uses a sixth 9769 * implicit argument to clone for the TLS pointer. 9770 */ 9771 #if defined(TARGET_MICROBLAZE) 9772 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 9773 #elif defined(TARGET_CLONE_BACKWARDS) 9774 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 9775 #elif defined(TARGET_CLONE_BACKWARDS2) 9776 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 9777 #else 9778 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 9779 #endif 9780 break; 9781 #ifdef __NR_exit_group 9782 /* new thread calls */ 9783 case TARGET_NR_exit_group: 9784 #ifdef TARGET_GPROF 9785 _mcleanup(); 9786 #endif 9787 gdb_exit(cpu_env, arg1); 9788 ret = get_errno(exit_group(arg1)); 9789 break; 9790 #endif 9791 case TARGET_NR_setdomainname: 9792 if (!(p = lock_user_string(arg1))) 9793 goto efault; 9794 ret = get_errno(setdomainname(p, arg2)); 9795 unlock_user(p, arg1, 0); 9796 break; 9797 case TARGET_NR_uname: 9798 /* no need to transcode because we use the linux syscall */ 9799 { 9800 struct new_utsname * buf; 9801 9802 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 9803 goto efault; 9804 ret = get_errno(sys_uname(buf)); 9805 if (!is_error(ret)) { 9806 /* Overwrite the native machine name with whatever is being 9807 emulated. */ 9808 strcpy (buf->machine, cpu_to_uname_machine(cpu_env)); 9809 /* Allow the user to override the reported release. */ 9810 if (qemu_uname_release && *qemu_uname_release) { 9811 g_strlcpy(buf->release, qemu_uname_release, 9812 sizeof(buf->release)); 9813 } 9814 } 9815 unlock_user_struct(buf, arg1, 1); 9816 } 9817 break; 9818 #ifdef TARGET_I386 9819 case TARGET_NR_modify_ldt: 9820 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3); 9821 break; 9822 #if !defined(TARGET_X86_64) 9823 case TARGET_NR_vm86old: 9824 goto unimplemented; 9825 case TARGET_NR_vm86: 9826 ret = do_vm86(cpu_env, arg1, arg2); 9827 break; 9828 #endif 9829 #endif 9830 case TARGET_NR_adjtimex: 9831 { 9832 struct timex host_buf; 9833 9834 if (target_to_host_timex(&host_buf, arg1) != 0) { 9835 goto efault; 9836 } 9837 ret = get_errno(adjtimex(&host_buf)); 9838 if (!is_error(ret)) { 9839 if (host_to_target_timex(arg1, &host_buf) != 0) { 9840 goto efault; 9841 } 9842 } 9843 } 9844 break; 9845 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 9846 case TARGET_NR_clock_adjtime: 9847 { 9848 struct timex htx, *phtx = &htx; 9849 9850 if (target_to_host_timex(phtx, arg2) != 0) { 9851 goto efault; 9852 } 9853 ret = get_errno(clock_adjtime(arg1, phtx)); 9854 if (!is_error(ret) && phtx) { 9855 if (host_to_target_timex(arg2, phtx) != 0) { 9856 goto efault; 9857 } 9858 } 9859 } 9860 break; 9861 #endif 9862 #ifdef TARGET_NR_create_module 9863 case TARGET_NR_create_module: 9864 #endif 9865 case TARGET_NR_init_module: 9866 case TARGET_NR_delete_module: 9867 #ifdef TARGET_NR_get_kernel_syms 9868 case TARGET_NR_get_kernel_syms: 9869 #endif 9870 goto unimplemented; 9871 case TARGET_NR_quotactl: 9872 goto unimplemented; 9873 case TARGET_NR_getpgid: 9874 ret = get_errno(getpgid(arg1)); 9875 break; 9876 case TARGET_NR_fchdir: 9877 ret = get_errno(fchdir(arg1)); 9878 break; 9879 #ifdef TARGET_NR_bdflush /* not on x86_64 */ 9880 case TARGET_NR_bdflush: 9881 goto unimplemented; 9882 #endif 9883 #ifdef TARGET_NR_sysfs 9884 case TARGET_NR_sysfs: 9885 goto unimplemented; 9886 #endif 9887 case TARGET_NR_personality: 9888 ret = get_errno(personality(arg1)); 9889 break; 9890 #ifdef TARGET_NR_afs_syscall 9891 case TARGET_NR_afs_syscall: 9892 goto unimplemented; 9893 #endif 9894 #ifdef TARGET_NR__llseek /* Not on alpha */ 9895 case TARGET_NR__llseek: 9896 { 9897 int64_t res; 9898 #if !defined(__NR_llseek) 9899 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 9900 if (res == -1) { 9901 ret = get_errno(res); 9902 } else { 9903 ret = 0; 9904 } 9905 #else 9906 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 9907 #endif 9908 if ((ret == 0) && put_user_s64(res, arg4)) { 9909 goto efault; 9910 } 9911 } 9912 break; 9913 #endif 9914 #ifdef TARGET_NR_getdents 9915 case TARGET_NR_getdents: 9916 #ifdef __NR_getdents 9917 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 9918 { 9919 struct target_dirent *target_dirp; 9920 struct linux_dirent *dirp; 9921 abi_long count = arg3; 9922 9923 dirp = g_try_malloc(count); 9924 if (!dirp) { 9925 ret = -TARGET_ENOMEM; 9926 goto fail; 9927 } 9928 9929 ret = get_errno(sys_getdents(arg1, dirp, count)); 9930 if (!is_error(ret)) { 9931 struct linux_dirent *de; 9932 struct target_dirent *tde; 9933 int len = ret; 9934 int reclen, treclen; 9935 int count1, tnamelen; 9936 9937 count1 = 0; 9938 de = dirp; 9939 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 9940 goto efault; 9941 tde = target_dirp; 9942 while (len > 0) { 9943 reclen = de->d_reclen; 9944 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 9945 assert(tnamelen >= 0); 9946 treclen = tnamelen + offsetof(struct target_dirent, d_name); 9947 assert(count1 + treclen <= count); 9948 tde->d_reclen = tswap16(treclen); 9949 tde->d_ino = tswapal(de->d_ino); 9950 tde->d_off = tswapal(de->d_off); 9951 memcpy(tde->d_name, de->d_name, tnamelen); 9952 de = (struct linux_dirent *)((char *)de + reclen); 9953 len -= reclen; 9954 tde = (struct target_dirent *)((char *)tde + treclen); 9955 count1 += treclen; 9956 } 9957 ret = count1; 9958 unlock_user(target_dirp, arg2, ret); 9959 } 9960 g_free(dirp); 9961 } 9962 #else 9963 { 9964 struct linux_dirent *dirp; 9965 abi_long count = arg3; 9966 9967 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 9968 goto efault; 9969 ret = get_errno(sys_getdents(arg1, dirp, count)); 9970 if (!is_error(ret)) { 9971 struct linux_dirent *de; 9972 int len = ret; 9973 int reclen; 9974 de = dirp; 9975 while (len > 0) { 9976 reclen = de->d_reclen; 9977 if (reclen > len) 9978 break; 9979 de->d_reclen = tswap16(reclen); 9980 tswapls(&de->d_ino); 9981 tswapls(&de->d_off); 9982 de = (struct linux_dirent *)((char *)de + reclen); 9983 len -= reclen; 9984 } 9985 } 9986 unlock_user(dirp, arg2, ret); 9987 } 9988 #endif 9989 #else 9990 /* Implement getdents in terms of getdents64 */ 9991 { 9992 struct linux_dirent64 *dirp; 9993 abi_long count = arg3; 9994 9995 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 9996 if (!dirp) { 9997 goto efault; 9998 } 9999 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10000 if (!is_error(ret)) { 10001 /* Convert the dirent64 structs to target dirent. We do this 10002 * in-place, since we can guarantee that a target_dirent is no 10003 * larger than a dirent64; however this means we have to be 10004 * careful to read everything before writing in the new format. 10005 */ 10006 struct linux_dirent64 *de; 10007 struct target_dirent *tde; 10008 int len = ret; 10009 int tlen = 0; 10010 10011 de = dirp; 10012 tde = (struct target_dirent *)dirp; 10013 while (len > 0) { 10014 int namelen, treclen; 10015 int reclen = de->d_reclen; 10016 uint64_t ino = de->d_ino; 10017 int64_t off = de->d_off; 10018 uint8_t type = de->d_type; 10019 10020 namelen = strlen(de->d_name); 10021 treclen = offsetof(struct target_dirent, d_name) 10022 + namelen + 2; 10023 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 10024 10025 memmove(tde->d_name, de->d_name, namelen + 1); 10026 tde->d_ino = tswapal(ino); 10027 tde->d_off = tswapal(off); 10028 tde->d_reclen = tswap16(treclen); 10029 /* The target_dirent type is in what was formerly a padding 10030 * byte at the end of the structure: 10031 */ 10032 *(((char *)tde) + treclen - 1) = type; 10033 10034 de = (struct linux_dirent64 *)((char *)de + reclen); 10035 tde = (struct target_dirent *)((char *)tde + treclen); 10036 len -= reclen; 10037 tlen += treclen; 10038 } 10039 ret = tlen; 10040 } 10041 unlock_user(dirp, arg2, ret); 10042 } 10043 #endif 10044 break; 10045 #endif /* TARGET_NR_getdents */ 10046 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 10047 case TARGET_NR_getdents64: 10048 { 10049 struct linux_dirent64 *dirp; 10050 abi_long count = arg3; 10051 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10052 goto efault; 10053 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10054 if (!is_error(ret)) { 10055 struct linux_dirent64 *de; 10056 int len = ret; 10057 int reclen; 10058 de = dirp; 10059 while (len > 0) { 10060 reclen = de->d_reclen; 10061 if (reclen > len) 10062 break; 10063 de->d_reclen = tswap16(reclen); 10064 tswap64s((uint64_t *)&de->d_ino); 10065 tswap64s((uint64_t *)&de->d_off); 10066 de = (struct linux_dirent64 *)((char *)de + reclen); 10067 len -= reclen; 10068 } 10069 } 10070 unlock_user(dirp, arg2, ret); 10071 } 10072 break; 10073 #endif /* TARGET_NR_getdents64 */ 10074 #if defined(TARGET_NR__newselect) 10075 case TARGET_NR__newselect: 10076 ret = do_select(arg1, arg2, arg3, arg4, arg5); 10077 break; 10078 #endif 10079 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) 10080 # ifdef TARGET_NR_poll 10081 case TARGET_NR_poll: 10082 # endif 10083 # ifdef TARGET_NR_ppoll 10084 case TARGET_NR_ppoll: 10085 # endif 10086 { 10087 struct target_pollfd *target_pfd; 10088 unsigned int nfds = arg2; 10089 struct pollfd *pfd; 10090 unsigned int i; 10091 10092 pfd = NULL; 10093 target_pfd = NULL; 10094 if (nfds) { 10095 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 10096 ret = -TARGET_EINVAL; 10097 break; 10098 } 10099 10100 target_pfd = lock_user(VERIFY_WRITE, arg1, 10101 sizeof(struct target_pollfd) * nfds, 1); 10102 if (!target_pfd) { 10103 goto efault; 10104 } 10105 10106 pfd = alloca(sizeof(struct pollfd) * nfds); 10107 for (i = 0; i < nfds; i++) { 10108 pfd[i].fd = tswap32(target_pfd[i].fd); 10109 pfd[i].events = tswap16(target_pfd[i].events); 10110 } 10111 } 10112 10113 switch (num) { 10114 # ifdef TARGET_NR_ppoll 10115 case TARGET_NR_ppoll: 10116 { 10117 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 10118 target_sigset_t *target_set; 10119 sigset_t _set, *set = &_set; 10120 10121 if (arg3) { 10122 if (target_to_host_timespec(timeout_ts, arg3)) { 10123 unlock_user(target_pfd, arg1, 0); 10124 goto efault; 10125 } 10126 } else { 10127 timeout_ts = NULL; 10128 } 10129 10130 if (arg4) { 10131 if (arg5 != sizeof(target_sigset_t)) { 10132 unlock_user(target_pfd, arg1, 0); 10133 ret = -TARGET_EINVAL; 10134 break; 10135 } 10136 10137 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1); 10138 if (!target_set) { 10139 unlock_user(target_pfd, arg1, 0); 10140 goto efault; 10141 } 10142 target_to_host_sigset(set, target_set); 10143 } else { 10144 set = NULL; 10145 } 10146 10147 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 10148 set, SIGSET_T_SIZE)); 10149 10150 if (!is_error(ret) && arg3) { 10151 host_to_target_timespec(arg3, timeout_ts); 10152 } 10153 if (arg4) { 10154 unlock_user(target_set, arg4, 0); 10155 } 10156 break; 10157 } 10158 # endif 10159 # ifdef TARGET_NR_poll 10160 case TARGET_NR_poll: 10161 { 10162 struct timespec ts, *pts; 10163 10164 if (arg3 >= 0) { 10165 /* Convert ms to secs, ns */ 10166 ts.tv_sec = arg3 / 1000; 10167 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 10168 pts = &ts; 10169 } else { 10170 /* -ve poll() timeout means "infinite" */ 10171 pts = NULL; 10172 } 10173 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 10174 break; 10175 } 10176 # endif 10177 default: 10178 g_assert_not_reached(); 10179 } 10180 10181 if (!is_error(ret)) { 10182 for(i = 0; i < nfds; i++) { 10183 target_pfd[i].revents = tswap16(pfd[i].revents); 10184 } 10185 } 10186 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 10187 } 10188 break; 10189 #endif 10190 case TARGET_NR_flock: 10191 /* NOTE: the flock constant seems to be the same for every 10192 Linux platform */ 10193 ret = get_errno(safe_flock(arg1, arg2)); 10194 break; 10195 case TARGET_NR_readv: 10196 { 10197 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10198 if (vec != NULL) { 10199 ret = get_errno(safe_readv(arg1, vec, arg3)); 10200 unlock_iovec(vec, arg2, arg3, 1); 10201 } else { 10202 ret = -host_to_target_errno(errno); 10203 } 10204 } 10205 break; 10206 case TARGET_NR_writev: 10207 { 10208 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10209 if (vec != NULL) { 10210 ret = get_errno(safe_writev(arg1, vec, arg3)); 10211 unlock_iovec(vec, arg2, arg3, 0); 10212 } else { 10213 ret = -host_to_target_errno(errno); 10214 } 10215 } 10216 break; 10217 #if defined(TARGET_NR_preadv) 10218 case TARGET_NR_preadv: 10219 { 10220 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10221 if (vec != NULL) { 10222 ret = get_errno(safe_preadv(arg1, vec, arg3, arg4, arg5)); 10223 unlock_iovec(vec, arg2, arg3, 1); 10224 } else { 10225 ret = -host_to_target_errno(errno); 10226 } 10227 } 10228 break; 10229 #endif 10230 #if defined(TARGET_NR_pwritev) 10231 case TARGET_NR_pwritev: 10232 { 10233 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10234 if (vec != NULL) { 10235 ret = get_errno(safe_pwritev(arg1, vec, arg3, arg4, arg5)); 10236 unlock_iovec(vec, arg2, arg3, 0); 10237 } else { 10238 ret = -host_to_target_errno(errno); 10239 } 10240 } 10241 break; 10242 #endif 10243 case TARGET_NR_getsid: 10244 ret = get_errno(getsid(arg1)); 10245 break; 10246 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 10247 case TARGET_NR_fdatasync: 10248 ret = get_errno(fdatasync(arg1)); 10249 break; 10250 #endif 10251 #ifdef TARGET_NR__sysctl 10252 case TARGET_NR__sysctl: 10253 /* We don't implement this, but ENOTDIR is always a safe 10254 return value. */ 10255 ret = -TARGET_ENOTDIR; 10256 break; 10257 #endif 10258 case TARGET_NR_sched_getaffinity: 10259 { 10260 unsigned int mask_size; 10261 unsigned long *mask; 10262 10263 /* 10264 * sched_getaffinity needs multiples of ulong, so need to take 10265 * care of mismatches between target ulong and host ulong sizes. 10266 */ 10267 if (arg2 & (sizeof(abi_ulong) - 1)) { 10268 ret = -TARGET_EINVAL; 10269 break; 10270 } 10271 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10272 10273 mask = alloca(mask_size); 10274 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 10275 10276 if (!is_error(ret)) { 10277 if (ret > arg2) { 10278 /* More data returned than the caller's buffer will fit. 10279 * This only happens if sizeof(abi_long) < sizeof(long) 10280 * and the caller passed us a buffer holding an odd number 10281 * of abi_longs. If the host kernel is actually using the 10282 * extra 4 bytes then fail EINVAL; otherwise we can just 10283 * ignore them and only copy the interesting part. 10284 */ 10285 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 10286 if (numcpus > arg2 * 8) { 10287 ret = -TARGET_EINVAL; 10288 break; 10289 } 10290 ret = arg2; 10291 } 10292 10293 if (copy_to_user(arg3, mask, ret)) { 10294 goto efault; 10295 } 10296 } 10297 } 10298 break; 10299 case TARGET_NR_sched_setaffinity: 10300 { 10301 unsigned int mask_size; 10302 unsigned long *mask; 10303 10304 /* 10305 * sched_setaffinity needs multiples of ulong, so need to take 10306 * care of mismatches between target ulong and host ulong sizes. 10307 */ 10308 if (arg2 & (sizeof(abi_ulong) - 1)) { 10309 ret = -TARGET_EINVAL; 10310 break; 10311 } 10312 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10313 10314 mask = alloca(mask_size); 10315 if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) { 10316 goto efault; 10317 } 10318 memcpy(mask, p, arg2); 10319 unlock_user_struct(p, arg2, 0); 10320 10321 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 10322 } 10323 break; 10324 case TARGET_NR_sched_setparam: 10325 { 10326 struct sched_param *target_schp; 10327 struct sched_param schp; 10328 10329 if (arg2 == 0) { 10330 return -TARGET_EINVAL; 10331 } 10332 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 10333 goto efault; 10334 schp.sched_priority = tswap32(target_schp->sched_priority); 10335 unlock_user_struct(target_schp, arg2, 0); 10336 ret = get_errno(sched_setparam(arg1, &schp)); 10337 } 10338 break; 10339 case TARGET_NR_sched_getparam: 10340 { 10341 struct sched_param *target_schp; 10342 struct sched_param schp; 10343 10344 if (arg2 == 0) { 10345 return -TARGET_EINVAL; 10346 } 10347 ret = get_errno(sched_getparam(arg1, &schp)); 10348 if (!is_error(ret)) { 10349 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 10350 goto efault; 10351 target_schp->sched_priority = tswap32(schp.sched_priority); 10352 unlock_user_struct(target_schp, arg2, 1); 10353 } 10354 } 10355 break; 10356 case TARGET_NR_sched_setscheduler: 10357 { 10358 struct sched_param *target_schp; 10359 struct sched_param schp; 10360 if (arg3 == 0) { 10361 return -TARGET_EINVAL; 10362 } 10363 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 10364 goto efault; 10365 schp.sched_priority = tswap32(target_schp->sched_priority); 10366 unlock_user_struct(target_schp, arg3, 0); 10367 ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); 10368 } 10369 break; 10370 case TARGET_NR_sched_getscheduler: 10371 ret = get_errno(sched_getscheduler(arg1)); 10372 break; 10373 case TARGET_NR_sched_yield: 10374 ret = get_errno(sched_yield()); 10375 break; 10376 case TARGET_NR_sched_get_priority_max: 10377 ret = get_errno(sched_get_priority_max(arg1)); 10378 break; 10379 case TARGET_NR_sched_get_priority_min: 10380 ret = get_errno(sched_get_priority_min(arg1)); 10381 break; 10382 case TARGET_NR_sched_rr_get_interval: 10383 { 10384 struct timespec ts; 10385 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 10386 if (!is_error(ret)) { 10387 ret = host_to_target_timespec(arg2, &ts); 10388 } 10389 } 10390 break; 10391 case TARGET_NR_nanosleep: 10392 { 10393 struct timespec req, rem; 10394 target_to_host_timespec(&req, arg1); 10395 ret = get_errno(safe_nanosleep(&req, &rem)); 10396 if (is_error(ret) && arg2) { 10397 host_to_target_timespec(arg2, &rem); 10398 } 10399 } 10400 break; 10401 #ifdef TARGET_NR_query_module 10402 case TARGET_NR_query_module: 10403 goto unimplemented; 10404 #endif 10405 #ifdef TARGET_NR_nfsservctl 10406 case TARGET_NR_nfsservctl: 10407 goto unimplemented; 10408 #endif 10409 case TARGET_NR_prctl: 10410 switch (arg1) { 10411 case PR_GET_PDEATHSIG: 10412 { 10413 int deathsig; 10414 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 10415 if (!is_error(ret) && arg2 10416 && put_user_ual(deathsig, arg2)) { 10417 goto efault; 10418 } 10419 break; 10420 } 10421 #ifdef PR_GET_NAME 10422 case PR_GET_NAME: 10423 { 10424 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 10425 if (!name) { 10426 goto efault; 10427 } 10428 ret = get_errno(prctl(arg1, (unsigned long)name, 10429 arg3, arg4, arg5)); 10430 unlock_user(name, arg2, 16); 10431 break; 10432 } 10433 case PR_SET_NAME: 10434 { 10435 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 10436 if (!name) { 10437 goto efault; 10438 } 10439 ret = get_errno(prctl(arg1, (unsigned long)name, 10440 arg3, arg4, arg5)); 10441 unlock_user(name, arg2, 0); 10442 break; 10443 } 10444 #endif 10445 default: 10446 /* Most prctl options have no pointer arguments */ 10447 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 10448 break; 10449 } 10450 break; 10451 #ifdef TARGET_NR_arch_prctl 10452 case TARGET_NR_arch_prctl: 10453 #if defined(TARGET_I386) && !defined(TARGET_ABI32) 10454 ret = do_arch_prctl(cpu_env, arg1, arg2); 10455 break; 10456 #else 10457 goto unimplemented; 10458 #endif 10459 #endif 10460 #ifdef TARGET_NR_pread64 10461 case TARGET_NR_pread64: 10462 if (regpairs_aligned(cpu_env)) { 10463 arg4 = arg5; 10464 arg5 = arg6; 10465 } 10466 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 10467 goto efault; 10468 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 10469 unlock_user(p, arg2, ret); 10470 break; 10471 case TARGET_NR_pwrite64: 10472 if (regpairs_aligned(cpu_env)) { 10473 arg4 = arg5; 10474 arg5 = arg6; 10475 } 10476 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 10477 goto efault; 10478 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 10479 unlock_user(p, arg2, 0); 10480 break; 10481 #endif 10482 case TARGET_NR_getcwd: 10483 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 10484 goto efault; 10485 ret = get_errno(sys_getcwd1(p, arg2)); 10486 unlock_user(p, arg1, ret); 10487 break; 10488 case TARGET_NR_capget: 10489 case TARGET_NR_capset: 10490 { 10491 struct target_user_cap_header *target_header; 10492 struct target_user_cap_data *target_data = NULL; 10493 struct __user_cap_header_struct header; 10494 struct __user_cap_data_struct data[2]; 10495 struct __user_cap_data_struct *dataptr = NULL; 10496 int i, target_datalen; 10497 int data_items = 1; 10498 10499 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 10500 goto efault; 10501 } 10502 header.version = tswap32(target_header->version); 10503 header.pid = tswap32(target_header->pid); 10504 10505 if (header.version != _LINUX_CAPABILITY_VERSION) { 10506 /* Version 2 and up takes pointer to two user_data structs */ 10507 data_items = 2; 10508 } 10509 10510 target_datalen = sizeof(*target_data) * data_items; 10511 10512 if (arg2) { 10513 if (num == TARGET_NR_capget) { 10514 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 10515 } else { 10516 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 10517 } 10518 if (!target_data) { 10519 unlock_user_struct(target_header, arg1, 0); 10520 goto efault; 10521 } 10522 10523 if (num == TARGET_NR_capset) { 10524 for (i = 0; i < data_items; i++) { 10525 data[i].effective = tswap32(target_data[i].effective); 10526 data[i].permitted = tswap32(target_data[i].permitted); 10527 data[i].inheritable = tswap32(target_data[i].inheritable); 10528 } 10529 } 10530 10531 dataptr = data; 10532 } 10533 10534 if (num == TARGET_NR_capget) { 10535 ret = get_errno(capget(&header, dataptr)); 10536 } else { 10537 ret = get_errno(capset(&header, dataptr)); 10538 } 10539 10540 /* The kernel always updates version for both capget and capset */ 10541 target_header->version = tswap32(header.version); 10542 unlock_user_struct(target_header, arg1, 1); 10543 10544 if (arg2) { 10545 if (num == TARGET_NR_capget) { 10546 for (i = 0; i < data_items; i++) { 10547 target_data[i].effective = tswap32(data[i].effective); 10548 target_data[i].permitted = tswap32(data[i].permitted); 10549 target_data[i].inheritable = tswap32(data[i].inheritable); 10550 } 10551 unlock_user(target_data, arg2, target_datalen); 10552 } else { 10553 unlock_user(target_data, arg2, 0); 10554 } 10555 } 10556 break; 10557 } 10558 case TARGET_NR_sigaltstack: 10559 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env)); 10560 break; 10561 10562 #ifdef CONFIG_SENDFILE 10563 case TARGET_NR_sendfile: 10564 { 10565 off_t *offp = NULL; 10566 off_t off; 10567 if (arg3) { 10568 ret = get_user_sal(off, arg3); 10569 if (is_error(ret)) { 10570 break; 10571 } 10572 offp = &off; 10573 } 10574 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10575 if (!is_error(ret) && arg3) { 10576 abi_long ret2 = put_user_sal(off, arg3); 10577 if (is_error(ret2)) { 10578 ret = ret2; 10579 } 10580 } 10581 break; 10582 } 10583 #ifdef TARGET_NR_sendfile64 10584 case TARGET_NR_sendfile64: 10585 { 10586 off_t *offp = NULL; 10587 off_t off; 10588 if (arg3) { 10589 ret = get_user_s64(off, arg3); 10590 if (is_error(ret)) { 10591 break; 10592 } 10593 offp = &off; 10594 } 10595 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10596 if (!is_error(ret) && arg3) { 10597 abi_long ret2 = put_user_s64(off, arg3); 10598 if (is_error(ret2)) { 10599 ret = ret2; 10600 } 10601 } 10602 break; 10603 } 10604 #endif 10605 #else 10606 case TARGET_NR_sendfile: 10607 #ifdef TARGET_NR_sendfile64 10608 case TARGET_NR_sendfile64: 10609 #endif 10610 goto unimplemented; 10611 #endif 10612 10613 #ifdef TARGET_NR_getpmsg 10614 case TARGET_NR_getpmsg: 10615 goto unimplemented; 10616 #endif 10617 #ifdef TARGET_NR_putpmsg 10618 case TARGET_NR_putpmsg: 10619 goto unimplemented; 10620 #endif 10621 #ifdef TARGET_NR_vfork 10622 case TARGET_NR_vfork: 10623 ret = get_errno(do_fork(cpu_env, 10624 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 10625 0, 0, 0, 0)); 10626 break; 10627 #endif 10628 #ifdef TARGET_NR_ugetrlimit 10629 case TARGET_NR_ugetrlimit: 10630 { 10631 struct rlimit rlim; 10632 int resource = target_to_host_resource(arg1); 10633 ret = get_errno(getrlimit(resource, &rlim)); 10634 if (!is_error(ret)) { 10635 struct target_rlimit *target_rlim; 10636 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 10637 goto efault; 10638 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 10639 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 10640 unlock_user_struct(target_rlim, arg2, 1); 10641 } 10642 break; 10643 } 10644 #endif 10645 #ifdef TARGET_NR_truncate64 10646 case TARGET_NR_truncate64: 10647 if (!(p = lock_user_string(arg1))) 10648 goto efault; 10649 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 10650 unlock_user(p, arg1, 0); 10651 break; 10652 #endif 10653 #ifdef TARGET_NR_ftruncate64 10654 case TARGET_NR_ftruncate64: 10655 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 10656 break; 10657 #endif 10658 #ifdef TARGET_NR_stat64 10659 case TARGET_NR_stat64: 10660 if (!(p = lock_user_string(arg1))) 10661 goto efault; 10662 ret = get_errno(stat(path(p), &st)); 10663 unlock_user(p, arg1, 0); 10664 if (!is_error(ret)) 10665 ret = host_to_target_stat64(cpu_env, arg2, &st); 10666 break; 10667 #endif 10668 #ifdef TARGET_NR_lstat64 10669 case TARGET_NR_lstat64: 10670 if (!(p = lock_user_string(arg1))) 10671 goto efault; 10672 ret = get_errno(lstat(path(p), &st)); 10673 unlock_user(p, arg1, 0); 10674 if (!is_error(ret)) 10675 ret = host_to_target_stat64(cpu_env, arg2, &st); 10676 break; 10677 #endif 10678 #ifdef TARGET_NR_fstat64 10679 case TARGET_NR_fstat64: 10680 ret = get_errno(fstat(arg1, &st)); 10681 if (!is_error(ret)) 10682 ret = host_to_target_stat64(cpu_env, arg2, &st); 10683 break; 10684 #endif 10685 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 10686 #ifdef TARGET_NR_fstatat64 10687 case TARGET_NR_fstatat64: 10688 #endif 10689 #ifdef TARGET_NR_newfstatat 10690 case TARGET_NR_newfstatat: 10691 #endif 10692 if (!(p = lock_user_string(arg2))) 10693 goto efault; 10694 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 10695 if (!is_error(ret)) 10696 ret = host_to_target_stat64(cpu_env, arg3, &st); 10697 break; 10698 #endif 10699 #ifdef TARGET_NR_lchown 10700 case TARGET_NR_lchown: 10701 if (!(p = lock_user_string(arg1))) 10702 goto efault; 10703 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 10704 unlock_user(p, arg1, 0); 10705 break; 10706 #endif 10707 #ifdef TARGET_NR_getuid 10708 case TARGET_NR_getuid: 10709 ret = get_errno(high2lowuid(getuid())); 10710 break; 10711 #endif 10712 #ifdef TARGET_NR_getgid 10713 case TARGET_NR_getgid: 10714 ret = get_errno(high2lowgid(getgid())); 10715 break; 10716 #endif 10717 #ifdef TARGET_NR_geteuid 10718 case TARGET_NR_geteuid: 10719 ret = get_errno(high2lowuid(geteuid())); 10720 break; 10721 #endif 10722 #ifdef TARGET_NR_getegid 10723 case TARGET_NR_getegid: 10724 ret = get_errno(high2lowgid(getegid())); 10725 break; 10726 #endif 10727 case TARGET_NR_setreuid: 10728 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 10729 break; 10730 case TARGET_NR_setregid: 10731 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 10732 break; 10733 case TARGET_NR_getgroups: 10734 { 10735 int gidsetsize = arg1; 10736 target_id *target_grouplist; 10737 gid_t *grouplist; 10738 int i; 10739 10740 grouplist = alloca(gidsetsize * sizeof(gid_t)); 10741 ret = get_errno(getgroups(gidsetsize, grouplist)); 10742 if (gidsetsize == 0) 10743 break; 10744 if (!is_error(ret)) { 10745 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 10746 if (!target_grouplist) 10747 goto efault; 10748 for(i = 0;i < ret; i++) 10749 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 10750 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 10751 } 10752 } 10753 break; 10754 case TARGET_NR_setgroups: 10755 { 10756 int gidsetsize = arg1; 10757 target_id *target_grouplist; 10758 gid_t *grouplist = NULL; 10759 int i; 10760 if (gidsetsize) { 10761 grouplist = alloca(gidsetsize * sizeof(gid_t)); 10762 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 10763 if (!target_grouplist) { 10764 ret = -TARGET_EFAULT; 10765 goto fail; 10766 } 10767 for (i = 0; i < gidsetsize; i++) { 10768 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 10769 } 10770 unlock_user(target_grouplist, arg2, 0); 10771 } 10772 ret = get_errno(setgroups(gidsetsize, grouplist)); 10773 } 10774 break; 10775 case TARGET_NR_fchown: 10776 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 10777 break; 10778 #if defined(TARGET_NR_fchownat) 10779 case TARGET_NR_fchownat: 10780 if (!(p = lock_user_string(arg2))) 10781 goto efault; 10782 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 10783 low2highgid(arg4), arg5)); 10784 unlock_user(p, arg2, 0); 10785 break; 10786 #endif 10787 #ifdef TARGET_NR_setresuid 10788 case TARGET_NR_setresuid: 10789 ret = get_errno(sys_setresuid(low2highuid(arg1), 10790 low2highuid(arg2), 10791 low2highuid(arg3))); 10792 break; 10793 #endif 10794 #ifdef TARGET_NR_getresuid 10795 case TARGET_NR_getresuid: 10796 { 10797 uid_t ruid, euid, suid; 10798 ret = get_errno(getresuid(&ruid, &euid, &suid)); 10799 if (!is_error(ret)) { 10800 if (put_user_id(high2lowuid(ruid), arg1) 10801 || put_user_id(high2lowuid(euid), arg2) 10802 || put_user_id(high2lowuid(suid), arg3)) 10803 goto efault; 10804 } 10805 } 10806 break; 10807 #endif 10808 #ifdef TARGET_NR_getresgid 10809 case TARGET_NR_setresgid: 10810 ret = get_errno(sys_setresgid(low2highgid(arg1), 10811 low2highgid(arg2), 10812 low2highgid(arg3))); 10813 break; 10814 #endif 10815 #ifdef TARGET_NR_getresgid 10816 case TARGET_NR_getresgid: 10817 { 10818 gid_t rgid, egid, sgid; 10819 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 10820 if (!is_error(ret)) { 10821 if (put_user_id(high2lowgid(rgid), arg1) 10822 || put_user_id(high2lowgid(egid), arg2) 10823 || put_user_id(high2lowgid(sgid), arg3)) 10824 goto efault; 10825 } 10826 } 10827 break; 10828 #endif 10829 #ifdef TARGET_NR_chown 10830 case TARGET_NR_chown: 10831 if (!(p = lock_user_string(arg1))) 10832 goto efault; 10833 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 10834 unlock_user(p, arg1, 0); 10835 break; 10836 #endif 10837 case TARGET_NR_setuid: 10838 ret = get_errno(sys_setuid(low2highuid(arg1))); 10839 break; 10840 case TARGET_NR_setgid: 10841 ret = get_errno(sys_setgid(low2highgid(arg1))); 10842 break; 10843 case TARGET_NR_setfsuid: 10844 ret = get_errno(setfsuid(arg1)); 10845 break; 10846 case TARGET_NR_setfsgid: 10847 ret = get_errno(setfsgid(arg1)); 10848 break; 10849 10850 #ifdef TARGET_NR_lchown32 10851 case TARGET_NR_lchown32: 10852 if (!(p = lock_user_string(arg1))) 10853 goto efault; 10854 ret = get_errno(lchown(p, arg2, arg3)); 10855 unlock_user(p, arg1, 0); 10856 break; 10857 #endif 10858 #ifdef TARGET_NR_getuid32 10859 case TARGET_NR_getuid32: 10860 ret = get_errno(getuid()); 10861 break; 10862 #endif 10863 10864 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 10865 /* Alpha specific */ 10866 case TARGET_NR_getxuid: 10867 { 10868 uid_t euid; 10869 euid=geteuid(); 10870 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 10871 } 10872 ret = get_errno(getuid()); 10873 break; 10874 #endif 10875 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 10876 /* Alpha specific */ 10877 case TARGET_NR_getxgid: 10878 { 10879 uid_t egid; 10880 egid=getegid(); 10881 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 10882 } 10883 ret = get_errno(getgid()); 10884 break; 10885 #endif 10886 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 10887 /* Alpha specific */ 10888 case TARGET_NR_osf_getsysinfo: 10889 ret = -TARGET_EOPNOTSUPP; 10890 switch (arg1) { 10891 case TARGET_GSI_IEEE_FP_CONTROL: 10892 { 10893 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env); 10894 10895 /* Copied from linux ieee_fpcr_to_swcr. */ 10896 swcr = (fpcr >> 35) & SWCR_STATUS_MASK; 10897 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ; 10898 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV 10899 | SWCR_TRAP_ENABLE_DZE 10900 | SWCR_TRAP_ENABLE_OVF); 10901 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF 10902 | SWCR_TRAP_ENABLE_INE); 10903 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ; 10904 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO; 10905 10906 if (put_user_u64 (swcr, arg2)) 10907 goto efault; 10908 ret = 0; 10909 } 10910 break; 10911 10912 /* case GSI_IEEE_STATE_AT_SIGNAL: 10913 -- Not implemented in linux kernel. 10914 case GSI_UACPROC: 10915 -- Retrieves current unaligned access state; not much used. 10916 case GSI_PROC_TYPE: 10917 -- Retrieves implver information; surely not used. 10918 case GSI_GET_HWRPB: 10919 -- Grabs a copy of the HWRPB; surely not used. 10920 */ 10921 } 10922 break; 10923 #endif 10924 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 10925 /* Alpha specific */ 10926 case TARGET_NR_osf_setsysinfo: 10927 ret = -TARGET_EOPNOTSUPP; 10928 switch (arg1) { 10929 case TARGET_SSI_IEEE_FP_CONTROL: 10930 { 10931 uint64_t swcr, fpcr, orig_fpcr; 10932 10933 if (get_user_u64 (swcr, arg2)) { 10934 goto efault; 10935 } 10936 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 10937 fpcr = orig_fpcr & FPCR_DYN_MASK; 10938 10939 /* Copied from linux ieee_swcr_to_fpcr. */ 10940 fpcr |= (swcr & SWCR_STATUS_MASK) << 35; 10941 fpcr |= (swcr & SWCR_MAP_DMZ) << 36; 10942 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV 10943 | SWCR_TRAP_ENABLE_DZE 10944 | SWCR_TRAP_ENABLE_OVF)) << 48; 10945 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF 10946 | SWCR_TRAP_ENABLE_INE)) << 57; 10947 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0); 10948 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41; 10949 10950 cpu_alpha_store_fpcr(cpu_env, fpcr); 10951 ret = 0; 10952 } 10953 break; 10954 10955 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 10956 { 10957 uint64_t exc, fpcr, orig_fpcr; 10958 int si_code; 10959 10960 if (get_user_u64(exc, arg2)) { 10961 goto efault; 10962 } 10963 10964 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 10965 10966 /* We only add to the exception status here. */ 10967 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35); 10968 10969 cpu_alpha_store_fpcr(cpu_env, fpcr); 10970 ret = 0; 10971 10972 /* Old exceptions are not signaled. */ 10973 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK); 10974 10975 /* If any exceptions set by this call, 10976 and are unmasked, send a signal. */ 10977 si_code = 0; 10978 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) { 10979 si_code = TARGET_FPE_FLTRES; 10980 } 10981 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) { 10982 si_code = TARGET_FPE_FLTUND; 10983 } 10984 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) { 10985 si_code = TARGET_FPE_FLTOVF; 10986 } 10987 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) { 10988 si_code = TARGET_FPE_FLTDIV; 10989 } 10990 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) { 10991 si_code = TARGET_FPE_FLTINV; 10992 } 10993 if (si_code != 0) { 10994 target_siginfo_t info; 10995 info.si_signo = SIGFPE; 10996 info.si_errno = 0; 10997 info.si_code = si_code; 10998 info._sifields._sigfault._addr 10999 = ((CPUArchState *)cpu_env)->pc; 11000 queue_signal((CPUArchState *)cpu_env, info.si_signo, 11001 QEMU_SI_FAULT, &info); 11002 } 11003 } 11004 break; 11005 11006 /* case SSI_NVPAIRS: 11007 -- Used with SSIN_UACPROC to enable unaligned accesses. 11008 case SSI_IEEE_STATE_AT_SIGNAL: 11009 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 11010 -- Not implemented in linux kernel 11011 */ 11012 } 11013 break; 11014 #endif 11015 #ifdef TARGET_NR_osf_sigprocmask 11016 /* Alpha specific. */ 11017 case TARGET_NR_osf_sigprocmask: 11018 { 11019 abi_ulong mask; 11020 int how; 11021 sigset_t set, oldset; 11022 11023 switch(arg1) { 11024 case TARGET_SIG_BLOCK: 11025 how = SIG_BLOCK; 11026 break; 11027 case TARGET_SIG_UNBLOCK: 11028 how = SIG_UNBLOCK; 11029 break; 11030 case TARGET_SIG_SETMASK: 11031 how = SIG_SETMASK; 11032 break; 11033 default: 11034 ret = -TARGET_EINVAL; 11035 goto fail; 11036 } 11037 mask = arg2; 11038 target_to_host_old_sigset(&set, &mask); 11039 ret = do_sigprocmask(how, &set, &oldset); 11040 if (!ret) { 11041 host_to_target_old_sigset(&mask, &oldset); 11042 ret = mask; 11043 } 11044 } 11045 break; 11046 #endif 11047 11048 #ifdef TARGET_NR_getgid32 11049 case TARGET_NR_getgid32: 11050 ret = get_errno(getgid()); 11051 break; 11052 #endif 11053 #ifdef TARGET_NR_geteuid32 11054 case TARGET_NR_geteuid32: 11055 ret = get_errno(geteuid()); 11056 break; 11057 #endif 11058 #ifdef TARGET_NR_getegid32 11059 case TARGET_NR_getegid32: 11060 ret = get_errno(getegid()); 11061 break; 11062 #endif 11063 #ifdef TARGET_NR_setreuid32 11064 case TARGET_NR_setreuid32: 11065 ret = get_errno(setreuid(arg1, arg2)); 11066 break; 11067 #endif 11068 #ifdef TARGET_NR_setregid32 11069 case TARGET_NR_setregid32: 11070 ret = get_errno(setregid(arg1, arg2)); 11071 break; 11072 #endif 11073 #ifdef TARGET_NR_getgroups32 11074 case TARGET_NR_getgroups32: 11075 { 11076 int gidsetsize = arg1; 11077 uint32_t *target_grouplist; 11078 gid_t *grouplist; 11079 int i; 11080 11081 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11082 ret = get_errno(getgroups(gidsetsize, grouplist)); 11083 if (gidsetsize == 0) 11084 break; 11085 if (!is_error(ret)) { 11086 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 11087 if (!target_grouplist) { 11088 ret = -TARGET_EFAULT; 11089 goto fail; 11090 } 11091 for(i = 0;i < ret; i++) 11092 target_grouplist[i] = tswap32(grouplist[i]); 11093 unlock_user(target_grouplist, arg2, gidsetsize * 4); 11094 } 11095 } 11096 break; 11097 #endif 11098 #ifdef TARGET_NR_setgroups32 11099 case TARGET_NR_setgroups32: 11100 { 11101 int gidsetsize = arg1; 11102 uint32_t *target_grouplist; 11103 gid_t *grouplist; 11104 int i; 11105 11106 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11107 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 11108 if (!target_grouplist) { 11109 ret = -TARGET_EFAULT; 11110 goto fail; 11111 } 11112 for(i = 0;i < gidsetsize; i++) 11113 grouplist[i] = tswap32(target_grouplist[i]); 11114 unlock_user(target_grouplist, arg2, 0); 11115 ret = get_errno(setgroups(gidsetsize, grouplist)); 11116 } 11117 break; 11118 #endif 11119 #ifdef TARGET_NR_fchown32 11120 case TARGET_NR_fchown32: 11121 ret = get_errno(fchown(arg1, arg2, arg3)); 11122 break; 11123 #endif 11124 #ifdef TARGET_NR_setresuid32 11125 case TARGET_NR_setresuid32: 11126 ret = get_errno(sys_setresuid(arg1, arg2, arg3)); 11127 break; 11128 #endif 11129 #ifdef TARGET_NR_getresuid32 11130 case TARGET_NR_getresuid32: 11131 { 11132 uid_t ruid, euid, suid; 11133 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11134 if (!is_error(ret)) { 11135 if (put_user_u32(ruid, arg1) 11136 || put_user_u32(euid, arg2) 11137 || put_user_u32(suid, arg3)) 11138 goto efault; 11139 } 11140 } 11141 break; 11142 #endif 11143 #ifdef TARGET_NR_setresgid32 11144 case TARGET_NR_setresgid32: 11145 ret = get_errno(sys_setresgid(arg1, arg2, arg3)); 11146 break; 11147 #endif 11148 #ifdef TARGET_NR_getresgid32 11149 case TARGET_NR_getresgid32: 11150 { 11151 gid_t rgid, egid, sgid; 11152 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11153 if (!is_error(ret)) { 11154 if (put_user_u32(rgid, arg1) 11155 || put_user_u32(egid, arg2) 11156 || put_user_u32(sgid, arg3)) 11157 goto efault; 11158 } 11159 } 11160 break; 11161 #endif 11162 #ifdef TARGET_NR_chown32 11163 case TARGET_NR_chown32: 11164 if (!(p = lock_user_string(arg1))) 11165 goto efault; 11166 ret = get_errno(chown(p, arg2, arg3)); 11167 unlock_user(p, arg1, 0); 11168 break; 11169 #endif 11170 #ifdef TARGET_NR_setuid32 11171 case TARGET_NR_setuid32: 11172 ret = get_errno(sys_setuid(arg1)); 11173 break; 11174 #endif 11175 #ifdef TARGET_NR_setgid32 11176 case TARGET_NR_setgid32: 11177 ret = get_errno(sys_setgid(arg1)); 11178 break; 11179 #endif 11180 #ifdef TARGET_NR_setfsuid32 11181 case TARGET_NR_setfsuid32: 11182 ret = get_errno(setfsuid(arg1)); 11183 break; 11184 #endif 11185 #ifdef TARGET_NR_setfsgid32 11186 case TARGET_NR_setfsgid32: 11187 ret = get_errno(setfsgid(arg1)); 11188 break; 11189 #endif 11190 11191 case TARGET_NR_pivot_root: 11192 goto unimplemented; 11193 #ifdef TARGET_NR_mincore 11194 case TARGET_NR_mincore: 11195 { 11196 void *a; 11197 ret = -TARGET_ENOMEM; 11198 a = lock_user(VERIFY_READ, arg1, arg2, 0); 11199 if (!a) { 11200 goto fail; 11201 } 11202 ret = -TARGET_EFAULT; 11203 p = lock_user_string(arg3); 11204 if (!p) { 11205 goto mincore_fail; 11206 } 11207 ret = get_errno(mincore(a, arg2, p)); 11208 unlock_user(p, arg3, ret); 11209 mincore_fail: 11210 unlock_user(a, arg1, 0); 11211 } 11212 break; 11213 #endif 11214 #ifdef TARGET_NR_arm_fadvise64_64 11215 case TARGET_NR_arm_fadvise64_64: 11216 /* arm_fadvise64_64 looks like fadvise64_64 but 11217 * with different argument order: fd, advice, offset, len 11218 * rather than the usual fd, offset, len, advice. 11219 * Note that offset and len are both 64-bit so appear as 11220 * pairs of 32-bit registers. 11221 */ 11222 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 11223 target_offset64(arg5, arg6), arg2); 11224 ret = -host_to_target_errno(ret); 11225 break; 11226 #endif 11227 11228 #if TARGET_ABI_BITS == 32 11229 11230 #ifdef TARGET_NR_fadvise64_64 11231 case TARGET_NR_fadvise64_64: 11232 /* 6 args: fd, offset (high, low), len (high, low), advice */ 11233 if (regpairs_aligned(cpu_env)) { 11234 /* offset is in (3,4), len in (5,6) and advice in 7 */ 11235 arg2 = arg3; 11236 arg3 = arg4; 11237 arg4 = arg5; 11238 arg5 = arg6; 11239 arg6 = arg7; 11240 } 11241 ret = -host_to_target_errno(posix_fadvise(arg1, 11242 target_offset64(arg2, arg3), 11243 target_offset64(arg4, arg5), 11244 arg6)); 11245 break; 11246 #endif 11247 11248 #ifdef TARGET_NR_fadvise64 11249 case TARGET_NR_fadvise64: 11250 /* 5 args: fd, offset (high, low), len, advice */ 11251 if (regpairs_aligned(cpu_env)) { 11252 /* offset is in (3,4), len in 5 and advice in 6 */ 11253 arg2 = arg3; 11254 arg3 = arg4; 11255 arg4 = arg5; 11256 arg5 = arg6; 11257 } 11258 ret = -host_to_target_errno(posix_fadvise(arg1, 11259 target_offset64(arg2, arg3), 11260 arg4, arg5)); 11261 break; 11262 #endif 11263 11264 #else /* not a 32-bit ABI */ 11265 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 11266 #ifdef TARGET_NR_fadvise64_64 11267 case TARGET_NR_fadvise64_64: 11268 #endif 11269 #ifdef TARGET_NR_fadvise64 11270 case TARGET_NR_fadvise64: 11271 #endif 11272 #ifdef TARGET_S390X 11273 switch (arg4) { 11274 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 11275 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 11276 case 6: arg4 = POSIX_FADV_DONTNEED; break; 11277 case 7: arg4 = POSIX_FADV_NOREUSE; break; 11278 default: break; 11279 } 11280 #endif 11281 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 11282 break; 11283 #endif 11284 #endif /* end of 64-bit ABI fadvise handling */ 11285 11286 #ifdef TARGET_NR_madvise 11287 case TARGET_NR_madvise: 11288 /* A straight passthrough may not be safe because qemu sometimes 11289 turns private file-backed mappings into anonymous mappings. 11290 This will break MADV_DONTNEED. 11291 This is a hint, so ignoring and returning success is ok. */ 11292 ret = get_errno(0); 11293 break; 11294 #endif 11295 #if TARGET_ABI_BITS == 32 11296 case TARGET_NR_fcntl64: 11297 { 11298 int cmd; 11299 struct flock64 fl; 11300 from_flock64_fn *copyfrom = copy_from_user_flock64; 11301 to_flock64_fn *copyto = copy_to_user_flock64; 11302 11303 #ifdef TARGET_ARM 11304 if (((CPUARMState *)cpu_env)->eabi) { 11305 copyfrom = copy_from_user_eabi_flock64; 11306 copyto = copy_to_user_eabi_flock64; 11307 } 11308 #endif 11309 11310 cmd = target_to_host_fcntl_cmd(arg2); 11311 if (cmd == -TARGET_EINVAL) { 11312 ret = cmd; 11313 break; 11314 } 11315 11316 switch(arg2) { 11317 case TARGET_F_GETLK64: 11318 ret = copyfrom(&fl, arg3); 11319 if (ret) { 11320 break; 11321 } 11322 ret = get_errno(fcntl(arg1, cmd, &fl)); 11323 if (ret == 0) { 11324 ret = copyto(arg3, &fl); 11325 } 11326 break; 11327 11328 case TARGET_F_SETLK64: 11329 case TARGET_F_SETLKW64: 11330 ret = copyfrom(&fl, arg3); 11331 if (ret) { 11332 break; 11333 } 11334 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11335 break; 11336 default: 11337 ret = do_fcntl(arg1, arg2, arg3); 11338 break; 11339 } 11340 break; 11341 } 11342 #endif 11343 #ifdef TARGET_NR_cacheflush 11344 case TARGET_NR_cacheflush: 11345 /* self-modifying code is handled automatically, so nothing needed */ 11346 ret = 0; 11347 break; 11348 #endif 11349 #ifdef TARGET_NR_security 11350 case TARGET_NR_security: 11351 goto unimplemented; 11352 #endif 11353 #ifdef TARGET_NR_getpagesize 11354 case TARGET_NR_getpagesize: 11355 ret = TARGET_PAGE_SIZE; 11356 break; 11357 #endif 11358 case TARGET_NR_gettid: 11359 ret = get_errno(gettid()); 11360 break; 11361 #ifdef TARGET_NR_readahead 11362 case TARGET_NR_readahead: 11363 #if TARGET_ABI_BITS == 32 11364 if (regpairs_aligned(cpu_env)) { 11365 arg2 = arg3; 11366 arg3 = arg4; 11367 arg4 = arg5; 11368 } 11369 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 11370 #else 11371 ret = get_errno(readahead(arg1, arg2, arg3)); 11372 #endif 11373 break; 11374 #endif 11375 #ifdef CONFIG_ATTR 11376 #ifdef TARGET_NR_setxattr 11377 case TARGET_NR_listxattr: 11378 case TARGET_NR_llistxattr: 11379 { 11380 void *p, *b = 0; 11381 if (arg2) { 11382 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11383 if (!b) { 11384 ret = -TARGET_EFAULT; 11385 break; 11386 } 11387 } 11388 p = lock_user_string(arg1); 11389 if (p) { 11390 if (num == TARGET_NR_listxattr) { 11391 ret = get_errno(listxattr(p, b, arg3)); 11392 } else { 11393 ret = get_errno(llistxattr(p, b, arg3)); 11394 } 11395 } else { 11396 ret = -TARGET_EFAULT; 11397 } 11398 unlock_user(p, arg1, 0); 11399 unlock_user(b, arg2, arg3); 11400 break; 11401 } 11402 case TARGET_NR_flistxattr: 11403 { 11404 void *b = 0; 11405 if (arg2) { 11406 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11407 if (!b) { 11408 ret = -TARGET_EFAULT; 11409 break; 11410 } 11411 } 11412 ret = get_errno(flistxattr(arg1, b, arg3)); 11413 unlock_user(b, arg2, arg3); 11414 break; 11415 } 11416 case TARGET_NR_setxattr: 11417 case TARGET_NR_lsetxattr: 11418 { 11419 void *p, *n, *v = 0; 11420 if (arg3) { 11421 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11422 if (!v) { 11423 ret = -TARGET_EFAULT; 11424 break; 11425 } 11426 } 11427 p = lock_user_string(arg1); 11428 n = lock_user_string(arg2); 11429 if (p && n) { 11430 if (num == TARGET_NR_setxattr) { 11431 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 11432 } else { 11433 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 11434 } 11435 } else { 11436 ret = -TARGET_EFAULT; 11437 } 11438 unlock_user(p, arg1, 0); 11439 unlock_user(n, arg2, 0); 11440 unlock_user(v, arg3, 0); 11441 } 11442 break; 11443 case TARGET_NR_fsetxattr: 11444 { 11445 void *n, *v = 0; 11446 if (arg3) { 11447 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11448 if (!v) { 11449 ret = -TARGET_EFAULT; 11450 break; 11451 } 11452 } 11453 n = lock_user_string(arg2); 11454 if (n) { 11455 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 11456 } else { 11457 ret = -TARGET_EFAULT; 11458 } 11459 unlock_user(n, arg2, 0); 11460 unlock_user(v, arg3, 0); 11461 } 11462 break; 11463 case TARGET_NR_getxattr: 11464 case TARGET_NR_lgetxattr: 11465 { 11466 void *p, *n, *v = 0; 11467 if (arg3) { 11468 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11469 if (!v) { 11470 ret = -TARGET_EFAULT; 11471 break; 11472 } 11473 } 11474 p = lock_user_string(arg1); 11475 n = lock_user_string(arg2); 11476 if (p && n) { 11477 if (num == TARGET_NR_getxattr) { 11478 ret = get_errno(getxattr(p, n, v, arg4)); 11479 } else { 11480 ret = get_errno(lgetxattr(p, n, v, arg4)); 11481 } 11482 } else { 11483 ret = -TARGET_EFAULT; 11484 } 11485 unlock_user(p, arg1, 0); 11486 unlock_user(n, arg2, 0); 11487 unlock_user(v, arg3, arg4); 11488 } 11489 break; 11490 case TARGET_NR_fgetxattr: 11491 { 11492 void *n, *v = 0; 11493 if (arg3) { 11494 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11495 if (!v) { 11496 ret = -TARGET_EFAULT; 11497 break; 11498 } 11499 } 11500 n = lock_user_string(arg2); 11501 if (n) { 11502 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 11503 } else { 11504 ret = -TARGET_EFAULT; 11505 } 11506 unlock_user(n, arg2, 0); 11507 unlock_user(v, arg3, arg4); 11508 } 11509 break; 11510 case TARGET_NR_removexattr: 11511 case TARGET_NR_lremovexattr: 11512 { 11513 void *p, *n; 11514 p = lock_user_string(arg1); 11515 n = lock_user_string(arg2); 11516 if (p && n) { 11517 if (num == TARGET_NR_removexattr) { 11518 ret = get_errno(removexattr(p, n)); 11519 } else { 11520 ret = get_errno(lremovexattr(p, n)); 11521 } 11522 } else { 11523 ret = -TARGET_EFAULT; 11524 } 11525 unlock_user(p, arg1, 0); 11526 unlock_user(n, arg2, 0); 11527 } 11528 break; 11529 case TARGET_NR_fremovexattr: 11530 { 11531 void *n; 11532 n = lock_user_string(arg2); 11533 if (n) { 11534 ret = get_errno(fremovexattr(arg1, n)); 11535 } else { 11536 ret = -TARGET_EFAULT; 11537 } 11538 unlock_user(n, arg2, 0); 11539 } 11540 break; 11541 #endif 11542 #endif /* CONFIG_ATTR */ 11543 #ifdef TARGET_NR_set_thread_area 11544 case TARGET_NR_set_thread_area: 11545 #if defined(TARGET_MIPS) 11546 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 11547 ret = 0; 11548 break; 11549 #elif defined(TARGET_CRIS) 11550 if (arg1 & 0xff) 11551 ret = -TARGET_EINVAL; 11552 else { 11553 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 11554 ret = 0; 11555 } 11556 break; 11557 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 11558 ret = do_set_thread_area(cpu_env, arg1); 11559 break; 11560 #elif defined(TARGET_M68K) 11561 { 11562 TaskState *ts = cpu->opaque; 11563 ts->tp_value = arg1; 11564 ret = 0; 11565 break; 11566 } 11567 #else 11568 goto unimplemented_nowarn; 11569 #endif 11570 #endif 11571 #ifdef TARGET_NR_get_thread_area 11572 case TARGET_NR_get_thread_area: 11573 #if defined(TARGET_I386) && defined(TARGET_ABI32) 11574 ret = do_get_thread_area(cpu_env, arg1); 11575 break; 11576 #elif defined(TARGET_M68K) 11577 { 11578 TaskState *ts = cpu->opaque; 11579 ret = ts->tp_value; 11580 break; 11581 } 11582 #else 11583 goto unimplemented_nowarn; 11584 #endif 11585 #endif 11586 #ifdef TARGET_NR_getdomainname 11587 case TARGET_NR_getdomainname: 11588 goto unimplemented_nowarn; 11589 #endif 11590 11591 #ifdef TARGET_NR_clock_gettime 11592 case TARGET_NR_clock_gettime: 11593 { 11594 struct timespec ts; 11595 ret = get_errno(clock_gettime(arg1, &ts)); 11596 if (!is_error(ret)) { 11597 host_to_target_timespec(arg2, &ts); 11598 } 11599 break; 11600 } 11601 #endif 11602 #ifdef TARGET_NR_clock_getres 11603 case TARGET_NR_clock_getres: 11604 { 11605 struct timespec ts; 11606 ret = get_errno(clock_getres(arg1, &ts)); 11607 if (!is_error(ret)) { 11608 host_to_target_timespec(arg2, &ts); 11609 } 11610 break; 11611 } 11612 #endif 11613 #ifdef TARGET_NR_clock_nanosleep 11614 case TARGET_NR_clock_nanosleep: 11615 { 11616 struct timespec ts; 11617 target_to_host_timespec(&ts, arg3); 11618 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 11619 &ts, arg4 ? &ts : NULL)); 11620 if (arg4) 11621 host_to_target_timespec(arg4, &ts); 11622 11623 #if defined(TARGET_PPC) 11624 /* clock_nanosleep is odd in that it returns positive errno values. 11625 * On PPC, CR0 bit 3 should be set in such a situation. */ 11626 if (ret && ret != -TARGET_ERESTARTSYS) { 11627 ((CPUPPCState *)cpu_env)->crf[0] |= 1; 11628 } 11629 #endif 11630 break; 11631 } 11632 #endif 11633 11634 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 11635 case TARGET_NR_set_tid_address: 11636 ret = get_errno(set_tid_address((int *)g2h(arg1))); 11637 break; 11638 #endif 11639 11640 case TARGET_NR_tkill: 11641 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 11642 break; 11643 11644 case TARGET_NR_tgkill: 11645 ret = get_errno(safe_tgkill((int)arg1, (int)arg2, 11646 target_to_host_signal(arg3))); 11647 break; 11648 11649 #ifdef TARGET_NR_set_robust_list 11650 case TARGET_NR_set_robust_list: 11651 case TARGET_NR_get_robust_list: 11652 /* The ABI for supporting robust futexes has userspace pass 11653 * the kernel a pointer to a linked list which is updated by 11654 * userspace after the syscall; the list is walked by the kernel 11655 * when the thread exits. Since the linked list in QEMU guest 11656 * memory isn't a valid linked list for the host and we have 11657 * no way to reliably intercept the thread-death event, we can't 11658 * support these. Silently return ENOSYS so that guest userspace 11659 * falls back to a non-robust futex implementation (which should 11660 * be OK except in the corner case of the guest crashing while 11661 * holding a mutex that is shared with another process via 11662 * shared memory). 11663 */ 11664 goto unimplemented_nowarn; 11665 #endif 11666 11667 #if defined(TARGET_NR_utimensat) 11668 case TARGET_NR_utimensat: 11669 { 11670 struct timespec *tsp, ts[2]; 11671 if (!arg3) { 11672 tsp = NULL; 11673 } else { 11674 target_to_host_timespec(ts, arg3); 11675 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec)); 11676 tsp = ts; 11677 } 11678 if (!arg2) 11679 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 11680 else { 11681 if (!(p = lock_user_string(arg2))) { 11682 ret = -TARGET_EFAULT; 11683 goto fail; 11684 } 11685 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 11686 unlock_user(p, arg2, 0); 11687 } 11688 } 11689 break; 11690 #endif 11691 case TARGET_NR_futex: 11692 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6); 11693 break; 11694 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 11695 case TARGET_NR_inotify_init: 11696 ret = get_errno(sys_inotify_init()); 11697 break; 11698 #endif 11699 #ifdef CONFIG_INOTIFY1 11700 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 11701 case TARGET_NR_inotify_init1: 11702 ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1, 11703 fcntl_flags_tbl))); 11704 break; 11705 #endif 11706 #endif 11707 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 11708 case TARGET_NR_inotify_add_watch: 11709 p = lock_user_string(arg2); 11710 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 11711 unlock_user(p, arg2, 0); 11712 break; 11713 #endif 11714 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 11715 case TARGET_NR_inotify_rm_watch: 11716 ret = get_errno(sys_inotify_rm_watch(arg1, arg2)); 11717 break; 11718 #endif 11719 11720 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 11721 case TARGET_NR_mq_open: 11722 { 11723 struct mq_attr posix_mq_attr; 11724 struct mq_attr *pposix_mq_attr; 11725 int host_flags; 11726 11727 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 11728 pposix_mq_attr = NULL; 11729 if (arg4) { 11730 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 11731 goto efault; 11732 } 11733 pposix_mq_attr = &posix_mq_attr; 11734 } 11735 p = lock_user_string(arg1 - 1); 11736 if (!p) { 11737 goto efault; 11738 } 11739 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 11740 unlock_user (p, arg1, 0); 11741 } 11742 break; 11743 11744 case TARGET_NR_mq_unlink: 11745 p = lock_user_string(arg1 - 1); 11746 if (!p) { 11747 ret = -TARGET_EFAULT; 11748 break; 11749 } 11750 ret = get_errno(mq_unlink(p)); 11751 unlock_user (p, arg1, 0); 11752 break; 11753 11754 case TARGET_NR_mq_timedsend: 11755 { 11756 struct timespec ts; 11757 11758 p = lock_user (VERIFY_READ, arg2, arg3, 1); 11759 if (arg5 != 0) { 11760 target_to_host_timespec(&ts, arg5); 11761 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 11762 host_to_target_timespec(arg5, &ts); 11763 } else { 11764 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 11765 } 11766 unlock_user (p, arg2, arg3); 11767 } 11768 break; 11769 11770 case TARGET_NR_mq_timedreceive: 11771 { 11772 struct timespec ts; 11773 unsigned int prio; 11774 11775 p = lock_user (VERIFY_READ, arg2, arg3, 1); 11776 if (arg5 != 0) { 11777 target_to_host_timespec(&ts, arg5); 11778 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 11779 &prio, &ts)); 11780 host_to_target_timespec(arg5, &ts); 11781 } else { 11782 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 11783 &prio, NULL)); 11784 } 11785 unlock_user (p, arg2, arg3); 11786 if (arg4 != 0) 11787 put_user_u32(prio, arg4); 11788 } 11789 break; 11790 11791 /* Not implemented for now... */ 11792 /* case TARGET_NR_mq_notify: */ 11793 /* break; */ 11794 11795 case TARGET_NR_mq_getsetattr: 11796 { 11797 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 11798 ret = 0; 11799 if (arg3 != 0) { 11800 ret = mq_getattr(arg1, &posix_mq_attr_out); 11801 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 11802 } 11803 if (arg2 != 0) { 11804 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 11805 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out); 11806 } 11807 11808 } 11809 break; 11810 #endif 11811 11812 #ifdef CONFIG_SPLICE 11813 #ifdef TARGET_NR_tee 11814 case TARGET_NR_tee: 11815 { 11816 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 11817 } 11818 break; 11819 #endif 11820 #ifdef TARGET_NR_splice 11821 case TARGET_NR_splice: 11822 { 11823 loff_t loff_in, loff_out; 11824 loff_t *ploff_in = NULL, *ploff_out = NULL; 11825 if (arg2) { 11826 if (get_user_u64(loff_in, arg2)) { 11827 goto efault; 11828 } 11829 ploff_in = &loff_in; 11830 } 11831 if (arg4) { 11832 if (get_user_u64(loff_out, arg4)) { 11833 goto efault; 11834 } 11835 ploff_out = &loff_out; 11836 } 11837 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 11838 if (arg2) { 11839 if (put_user_u64(loff_in, arg2)) { 11840 goto efault; 11841 } 11842 } 11843 if (arg4) { 11844 if (put_user_u64(loff_out, arg4)) { 11845 goto efault; 11846 } 11847 } 11848 } 11849 break; 11850 #endif 11851 #ifdef TARGET_NR_vmsplice 11852 case TARGET_NR_vmsplice: 11853 { 11854 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11855 if (vec != NULL) { 11856 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 11857 unlock_iovec(vec, arg2, arg3, 0); 11858 } else { 11859 ret = -host_to_target_errno(errno); 11860 } 11861 } 11862 break; 11863 #endif 11864 #endif /* CONFIG_SPLICE */ 11865 #ifdef CONFIG_EVENTFD 11866 #if defined(TARGET_NR_eventfd) 11867 case TARGET_NR_eventfd: 11868 ret = get_errno(eventfd(arg1, 0)); 11869 fd_trans_unregister(ret); 11870 break; 11871 #endif 11872 #if defined(TARGET_NR_eventfd2) 11873 case TARGET_NR_eventfd2: 11874 { 11875 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)); 11876 if (arg2 & TARGET_O_NONBLOCK) { 11877 host_flags |= O_NONBLOCK; 11878 } 11879 if (arg2 & TARGET_O_CLOEXEC) { 11880 host_flags |= O_CLOEXEC; 11881 } 11882 ret = get_errno(eventfd(arg1, host_flags)); 11883 fd_trans_unregister(ret); 11884 break; 11885 } 11886 #endif 11887 #endif /* CONFIG_EVENTFD */ 11888 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 11889 case TARGET_NR_fallocate: 11890 #if TARGET_ABI_BITS == 32 11891 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 11892 target_offset64(arg5, arg6))); 11893 #else 11894 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 11895 #endif 11896 break; 11897 #endif 11898 #if defined(CONFIG_SYNC_FILE_RANGE) 11899 #if defined(TARGET_NR_sync_file_range) 11900 case TARGET_NR_sync_file_range: 11901 #if TARGET_ABI_BITS == 32 11902 #if defined(TARGET_MIPS) 11903 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 11904 target_offset64(arg5, arg6), arg7)); 11905 #else 11906 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 11907 target_offset64(arg4, arg5), arg6)); 11908 #endif /* !TARGET_MIPS */ 11909 #else 11910 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 11911 #endif 11912 break; 11913 #endif 11914 #if defined(TARGET_NR_sync_file_range2) 11915 case TARGET_NR_sync_file_range2: 11916 /* This is like sync_file_range but the arguments are reordered */ 11917 #if TARGET_ABI_BITS == 32 11918 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 11919 target_offset64(arg5, arg6), arg2)); 11920 #else 11921 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 11922 #endif 11923 break; 11924 #endif 11925 #endif 11926 #if defined(TARGET_NR_signalfd4) 11927 case TARGET_NR_signalfd4: 11928 ret = do_signalfd4(arg1, arg2, arg4); 11929 break; 11930 #endif 11931 #if defined(TARGET_NR_signalfd) 11932 case TARGET_NR_signalfd: 11933 ret = do_signalfd4(arg1, arg2, 0); 11934 break; 11935 #endif 11936 #if defined(CONFIG_EPOLL) 11937 #if defined(TARGET_NR_epoll_create) 11938 case TARGET_NR_epoll_create: 11939 ret = get_errno(epoll_create(arg1)); 11940 break; 11941 #endif 11942 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 11943 case TARGET_NR_epoll_create1: 11944 ret = get_errno(epoll_create1(arg1)); 11945 break; 11946 #endif 11947 #if defined(TARGET_NR_epoll_ctl) 11948 case TARGET_NR_epoll_ctl: 11949 { 11950 struct epoll_event ep; 11951 struct epoll_event *epp = 0; 11952 if (arg4) { 11953 struct target_epoll_event *target_ep; 11954 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 11955 goto efault; 11956 } 11957 ep.events = tswap32(target_ep->events); 11958 /* The epoll_data_t union is just opaque data to the kernel, 11959 * so we transfer all 64 bits across and need not worry what 11960 * actual data type it is. 11961 */ 11962 ep.data.u64 = tswap64(target_ep->data.u64); 11963 unlock_user_struct(target_ep, arg4, 0); 11964 epp = &ep; 11965 } 11966 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 11967 break; 11968 } 11969 #endif 11970 11971 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 11972 #if defined(TARGET_NR_epoll_wait) 11973 case TARGET_NR_epoll_wait: 11974 #endif 11975 #if defined(TARGET_NR_epoll_pwait) 11976 case TARGET_NR_epoll_pwait: 11977 #endif 11978 { 11979 struct target_epoll_event *target_ep; 11980 struct epoll_event *ep; 11981 int epfd = arg1; 11982 int maxevents = arg3; 11983 int timeout = arg4; 11984 11985 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 11986 ret = -TARGET_EINVAL; 11987 break; 11988 } 11989 11990 target_ep = lock_user(VERIFY_WRITE, arg2, 11991 maxevents * sizeof(struct target_epoll_event), 1); 11992 if (!target_ep) { 11993 goto efault; 11994 } 11995 11996 ep = g_try_new(struct epoll_event, maxevents); 11997 if (!ep) { 11998 unlock_user(target_ep, arg2, 0); 11999 ret = -TARGET_ENOMEM; 12000 break; 12001 } 12002 12003 switch (num) { 12004 #if defined(TARGET_NR_epoll_pwait) 12005 case TARGET_NR_epoll_pwait: 12006 { 12007 target_sigset_t *target_set; 12008 sigset_t _set, *set = &_set; 12009 12010 if (arg5) { 12011 if (arg6 != sizeof(target_sigset_t)) { 12012 ret = -TARGET_EINVAL; 12013 break; 12014 } 12015 12016 target_set = lock_user(VERIFY_READ, arg5, 12017 sizeof(target_sigset_t), 1); 12018 if (!target_set) { 12019 ret = -TARGET_EFAULT; 12020 break; 12021 } 12022 target_to_host_sigset(set, target_set); 12023 unlock_user(target_set, arg5, 0); 12024 } else { 12025 set = NULL; 12026 } 12027 12028 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12029 set, SIGSET_T_SIZE)); 12030 break; 12031 } 12032 #endif 12033 #if defined(TARGET_NR_epoll_wait) 12034 case TARGET_NR_epoll_wait: 12035 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12036 NULL, 0)); 12037 break; 12038 #endif 12039 default: 12040 ret = -TARGET_ENOSYS; 12041 } 12042 if (!is_error(ret)) { 12043 int i; 12044 for (i = 0; i < ret; i++) { 12045 target_ep[i].events = tswap32(ep[i].events); 12046 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 12047 } 12048 unlock_user(target_ep, arg2, 12049 ret * sizeof(struct target_epoll_event)); 12050 } else { 12051 unlock_user(target_ep, arg2, 0); 12052 } 12053 g_free(ep); 12054 break; 12055 } 12056 #endif 12057 #endif 12058 #ifdef TARGET_NR_prlimit64 12059 case TARGET_NR_prlimit64: 12060 { 12061 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 12062 struct target_rlimit64 *target_rnew, *target_rold; 12063 struct host_rlimit64 rnew, rold, *rnewp = 0; 12064 int resource = target_to_host_resource(arg2); 12065 if (arg3) { 12066 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 12067 goto efault; 12068 } 12069 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 12070 rnew.rlim_max = tswap64(target_rnew->rlim_max); 12071 unlock_user_struct(target_rnew, arg3, 0); 12072 rnewp = &rnew; 12073 } 12074 12075 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 12076 if (!is_error(ret) && arg4) { 12077 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 12078 goto efault; 12079 } 12080 target_rold->rlim_cur = tswap64(rold.rlim_cur); 12081 target_rold->rlim_max = tswap64(rold.rlim_max); 12082 unlock_user_struct(target_rold, arg4, 1); 12083 } 12084 break; 12085 } 12086 #endif 12087 #ifdef TARGET_NR_gethostname 12088 case TARGET_NR_gethostname: 12089 { 12090 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 12091 if (name) { 12092 ret = get_errno(gethostname(name, arg2)); 12093 unlock_user(name, arg1, arg2); 12094 } else { 12095 ret = -TARGET_EFAULT; 12096 } 12097 break; 12098 } 12099 #endif 12100 #ifdef TARGET_NR_atomic_cmpxchg_32 12101 case TARGET_NR_atomic_cmpxchg_32: 12102 { 12103 /* should use start_exclusive from main.c */ 12104 abi_ulong mem_value; 12105 if (get_user_u32(mem_value, arg6)) { 12106 target_siginfo_t info; 12107 info.si_signo = SIGSEGV; 12108 info.si_errno = 0; 12109 info.si_code = TARGET_SEGV_MAPERR; 12110 info._sifields._sigfault._addr = arg6; 12111 queue_signal((CPUArchState *)cpu_env, info.si_signo, 12112 QEMU_SI_FAULT, &info); 12113 ret = 0xdeadbeef; 12114 12115 } 12116 if (mem_value == arg2) 12117 put_user_u32(arg1, arg6); 12118 ret = mem_value; 12119 break; 12120 } 12121 #endif 12122 #ifdef TARGET_NR_atomic_barrier 12123 case TARGET_NR_atomic_barrier: 12124 { 12125 /* Like the kernel implementation and the qemu arm barrier, no-op this? */ 12126 ret = 0; 12127 break; 12128 } 12129 #endif 12130 12131 #ifdef TARGET_NR_timer_create 12132 case TARGET_NR_timer_create: 12133 { 12134 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 12135 12136 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 12137 12138 int clkid = arg1; 12139 int timer_index = next_free_host_timer(); 12140 12141 if (timer_index < 0) { 12142 ret = -TARGET_EAGAIN; 12143 } else { 12144 timer_t *phtimer = g_posix_timers + timer_index; 12145 12146 if (arg2) { 12147 phost_sevp = &host_sevp; 12148 ret = target_to_host_sigevent(phost_sevp, arg2); 12149 if (ret != 0) { 12150 break; 12151 } 12152 } 12153 12154 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 12155 if (ret) { 12156 phtimer = NULL; 12157 } else { 12158 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 12159 goto efault; 12160 } 12161 } 12162 } 12163 break; 12164 } 12165 #endif 12166 12167 #ifdef TARGET_NR_timer_settime 12168 case TARGET_NR_timer_settime: 12169 { 12170 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 12171 * struct itimerspec * old_value */ 12172 target_timer_t timerid = get_timer_id(arg1); 12173 12174 if (timerid < 0) { 12175 ret = timerid; 12176 } else if (arg3 == 0) { 12177 ret = -TARGET_EINVAL; 12178 } else { 12179 timer_t htimer = g_posix_timers[timerid]; 12180 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12181 12182 if (target_to_host_itimerspec(&hspec_new, arg3)) { 12183 goto efault; 12184 } 12185 ret = get_errno( 12186 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 12187 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 12188 goto efault; 12189 } 12190 } 12191 break; 12192 } 12193 #endif 12194 12195 #ifdef TARGET_NR_timer_gettime 12196 case TARGET_NR_timer_gettime: 12197 { 12198 /* args: timer_t timerid, struct itimerspec *curr_value */ 12199 target_timer_t timerid = get_timer_id(arg1); 12200 12201 if (timerid < 0) { 12202 ret = timerid; 12203 } else if (!arg2) { 12204 ret = -TARGET_EFAULT; 12205 } else { 12206 timer_t htimer = g_posix_timers[timerid]; 12207 struct itimerspec hspec; 12208 ret = get_errno(timer_gettime(htimer, &hspec)); 12209 12210 if (host_to_target_itimerspec(arg2, &hspec)) { 12211 ret = -TARGET_EFAULT; 12212 } 12213 } 12214 break; 12215 } 12216 #endif 12217 12218 #ifdef TARGET_NR_timer_getoverrun 12219 case TARGET_NR_timer_getoverrun: 12220 { 12221 /* args: timer_t timerid */ 12222 target_timer_t timerid = get_timer_id(arg1); 12223 12224 if (timerid < 0) { 12225 ret = timerid; 12226 } else { 12227 timer_t htimer = g_posix_timers[timerid]; 12228 ret = get_errno(timer_getoverrun(htimer)); 12229 } 12230 fd_trans_unregister(ret); 12231 break; 12232 } 12233 #endif 12234 12235 #ifdef TARGET_NR_timer_delete 12236 case TARGET_NR_timer_delete: 12237 { 12238 /* args: timer_t timerid */ 12239 target_timer_t timerid = get_timer_id(arg1); 12240 12241 if (timerid < 0) { 12242 ret = timerid; 12243 } else { 12244 timer_t htimer = g_posix_timers[timerid]; 12245 ret = get_errno(timer_delete(htimer)); 12246 g_posix_timers[timerid] = 0; 12247 } 12248 break; 12249 } 12250 #endif 12251 12252 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 12253 case TARGET_NR_timerfd_create: 12254 ret = get_errno(timerfd_create(arg1, 12255 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 12256 break; 12257 #endif 12258 12259 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 12260 case TARGET_NR_timerfd_gettime: 12261 { 12262 struct itimerspec its_curr; 12263 12264 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 12265 12266 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 12267 goto efault; 12268 } 12269 } 12270 break; 12271 #endif 12272 12273 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 12274 case TARGET_NR_timerfd_settime: 12275 { 12276 struct itimerspec its_new, its_old, *p_new; 12277 12278 if (arg3) { 12279 if (target_to_host_itimerspec(&its_new, arg3)) { 12280 goto efault; 12281 } 12282 p_new = &its_new; 12283 } else { 12284 p_new = NULL; 12285 } 12286 12287 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 12288 12289 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 12290 goto efault; 12291 } 12292 } 12293 break; 12294 #endif 12295 12296 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 12297 case TARGET_NR_ioprio_get: 12298 ret = get_errno(ioprio_get(arg1, arg2)); 12299 break; 12300 #endif 12301 12302 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 12303 case TARGET_NR_ioprio_set: 12304 ret = get_errno(ioprio_set(arg1, arg2, arg3)); 12305 break; 12306 #endif 12307 12308 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 12309 case TARGET_NR_setns: 12310 ret = get_errno(setns(arg1, arg2)); 12311 break; 12312 #endif 12313 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 12314 case TARGET_NR_unshare: 12315 ret = get_errno(unshare(arg1)); 12316 break; 12317 #endif 12318 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 12319 case TARGET_NR_kcmp: 12320 ret = get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 12321 break; 12322 #endif 12323 12324 default: 12325 unimplemented: 12326 gemu_log("qemu: Unsupported syscall: %d\n", num); 12327 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list) 12328 unimplemented_nowarn: 12329 #endif 12330 ret = -TARGET_ENOSYS; 12331 break; 12332 } 12333 fail: 12334 #ifdef DEBUG 12335 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret); 12336 #endif 12337 if(do_strace) 12338 print_syscall_ret(num, ret); 12339 trace_guest_user_syscall_ret(cpu, num, ret); 12340 return ret; 12341 efault: 12342 ret = -TARGET_EFAULT; 12343 goto fail; 12344 } 12345