1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include <elf.h> 24 #include <endian.h> 25 #include <grp.h> 26 #include <sys/ipc.h> 27 #include <sys/msg.h> 28 #include <sys/wait.h> 29 #include <sys/mount.h> 30 #include <sys/file.h> 31 #include <sys/fsuid.h> 32 #include <sys/personality.h> 33 #include <sys/prctl.h> 34 #include <sys/resource.h> 35 #include <sys/swap.h> 36 #include <linux/capability.h> 37 #include <sched.h> 38 #ifdef __ia64__ 39 int __clone2(int (*fn)(void *), void *child_stack_base, 40 size_t stack_size, int flags, void *arg, ...); 41 #endif 42 #include <sys/socket.h> 43 #include <sys/un.h> 44 #include <sys/uio.h> 45 #include <sys/poll.h> 46 #include <sys/times.h> 47 #include <sys/shm.h> 48 #include <sys/sem.h> 49 #include <sys/statfs.h> 50 #include <utime.h> 51 #include <sys/sysinfo.h> 52 #include <sys/signalfd.h> 53 //#include <sys/user.h> 54 #include <netinet/ip.h> 55 #include <netinet/tcp.h> 56 #include <linux/wireless.h> 57 #include <linux/icmp.h> 58 #include "qemu-common.h" 59 #ifdef CONFIG_TIMERFD 60 #include <sys/timerfd.h> 61 #endif 62 #ifdef TARGET_GPROF 63 #include <sys/gmon.h> 64 #endif 65 #ifdef CONFIG_EVENTFD 66 #include <sys/eventfd.h> 67 #endif 68 #ifdef CONFIG_EPOLL 69 #include <sys/epoll.h> 70 #endif 71 #ifdef CONFIG_ATTR 72 #include "qemu/xattr.h" 73 #endif 74 #ifdef CONFIG_SENDFILE 75 #include <sys/sendfile.h> 76 #endif 77 78 #define termios host_termios 79 #define winsize host_winsize 80 #define termio host_termio 81 #define sgttyb host_sgttyb /* same as target */ 82 #define tchars host_tchars /* same as target */ 83 #define ltchars host_ltchars /* same as target */ 84 85 #include <linux/termios.h> 86 #include <linux/unistd.h> 87 #include <linux/cdrom.h> 88 #include <linux/hdreg.h> 89 #include <linux/soundcard.h> 90 #include <linux/kd.h> 91 #include <linux/mtio.h> 92 #include <linux/fs.h> 93 #if defined(CONFIG_FIEMAP) 94 #include <linux/fiemap.h> 95 #endif 96 #include <linux/fb.h> 97 #include <linux/vt.h> 98 #include <linux/dm-ioctl.h> 99 #include <linux/reboot.h> 100 #include <linux/route.h> 101 #include <linux/filter.h> 102 #include <linux/blkpg.h> 103 #include <linux/netlink.h> 104 #ifdef CONFIG_RTNETLINK 105 #include <linux/rtnetlink.h> 106 #endif 107 #include <linux/audit.h> 108 #include "linux_loop.h" 109 #include "uname.h" 110 111 #include "qemu.h" 112 113 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \ 114 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID) 115 116 //#define DEBUG 117 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 118 * once. This exercises the codepaths for restart. 119 */ 120 //#define DEBUG_ERESTARTSYS 121 122 //#include <linux/msdos_fs.h> 123 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 124 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 125 126 /* This is the size of the host kernel's sigset_t, needed where we make 127 * direct system calls that take a sigset_t pointer and a size. 128 */ 129 #define SIGSET_T_SIZE (_NSIG / 8) 130 131 #undef _syscall0 132 #undef _syscall1 133 #undef _syscall2 134 #undef _syscall3 135 #undef _syscall4 136 #undef _syscall5 137 #undef _syscall6 138 139 #define _syscall0(type,name) \ 140 static type name (void) \ 141 { \ 142 return syscall(__NR_##name); \ 143 } 144 145 #define _syscall1(type,name,type1,arg1) \ 146 static type name (type1 arg1) \ 147 { \ 148 return syscall(__NR_##name, arg1); \ 149 } 150 151 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 152 static type name (type1 arg1,type2 arg2) \ 153 { \ 154 return syscall(__NR_##name, arg1, arg2); \ 155 } 156 157 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 158 static type name (type1 arg1,type2 arg2,type3 arg3) \ 159 { \ 160 return syscall(__NR_##name, arg1, arg2, arg3); \ 161 } 162 163 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 164 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 165 { \ 166 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 167 } 168 169 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 170 type5,arg5) \ 171 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 172 { \ 173 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 174 } 175 176 177 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 178 type5,arg5,type6,arg6) \ 179 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 180 type6 arg6) \ 181 { \ 182 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 183 } 184 185 186 #define __NR_sys_uname __NR_uname 187 #define __NR_sys_getcwd1 __NR_getcwd 188 #define __NR_sys_getdents __NR_getdents 189 #define __NR_sys_getdents64 __NR_getdents64 190 #define __NR_sys_getpriority __NR_getpriority 191 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 192 #define __NR_sys_syslog __NR_syslog 193 #define __NR_sys_futex __NR_futex 194 #define __NR_sys_inotify_init __NR_inotify_init 195 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 196 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 197 198 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \ 199 defined(__s390x__) 200 #define __NR__llseek __NR_lseek 201 #endif 202 203 /* Newer kernel ports have llseek() instead of _llseek() */ 204 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 205 #define TARGET_NR__llseek TARGET_NR_llseek 206 #endif 207 208 #ifdef __NR_gettid 209 _syscall0(int, gettid) 210 #else 211 /* This is a replacement for the host gettid() and must return a host 212 errno. */ 213 static int gettid(void) { 214 return -ENOSYS; 215 } 216 #endif 217 #if defined(TARGET_NR_getdents) && defined(__NR_getdents) 218 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 219 #endif 220 #if !defined(__NR_getdents) || \ 221 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 222 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 223 #endif 224 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 225 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 226 loff_t *, res, uint, wh); 227 #endif 228 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo) 229 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 230 #ifdef __NR_exit_group 231 _syscall1(int,exit_group,int,error_code) 232 #endif 233 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 234 _syscall1(int,set_tid_address,int *,tidptr) 235 #endif 236 #if defined(TARGET_NR_futex) && defined(__NR_futex) 237 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 238 const struct timespec *,timeout,int *,uaddr2,int,val3) 239 #endif 240 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 241 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 242 unsigned long *, user_mask_ptr); 243 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 244 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 245 unsigned long *, user_mask_ptr); 246 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 247 void *, arg); 248 _syscall2(int, capget, struct __user_cap_header_struct *, header, 249 struct __user_cap_data_struct *, data); 250 _syscall2(int, capset, struct __user_cap_header_struct *, header, 251 struct __user_cap_data_struct *, data); 252 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 253 _syscall2(int, ioprio_get, int, which, int, who) 254 #endif 255 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 256 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 257 #endif 258 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 259 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 260 #endif 261 262 static bitmask_transtbl fcntl_flags_tbl[] = { 263 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 264 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 265 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 266 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 267 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 268 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 269 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 270 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 271 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 272 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 273 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 274 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 275 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 276 #if defined(O_DIRECT) 277 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 278 #endif 279 #if defined(O_NOATIME) 280 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 281 #endif 282 #if defined(O_CLOEXEC) 283 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 284 #endif 285 #if defined(O_PATH) 286 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 287 #endif 288 /* Don't terminate the list prematurely on 64-bit host+guest. */ 289 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 290 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 291 #endif 292 { 0, 0, 0, 0 } 293 }; 294 295 typedef abi_long (*TargetFdDataFunc)(void *, size_t); 296 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t); 297 typedef struct TargetFdTrans { 298 TargetFdDataFunc host_to_target_data; 299 TargetFdDataFunc target_to_host_data; 300 TargetFdAddrFunc target_to_host_addr; 301 } TargetFdTrans; 302 303 static TargetFdTrans **target_fd_trans; 304 305 static unsigned int target_fd_max; 306 307 static TargetFdDataFunc fd_trans_target_to_host_data(int fd) 308 { 309 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 310 return target_fd_trans[fd]->target_to_host_data; 311 } 312 return NULL; 313 } 314 315 static TargetFdDataFunc fd_trans_host_to_target_data(int fd) 316 { 317 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 318 return target_fd_trans[fd]->host_to_target_data; 319 } 320 return NULL; 321 } 322 323 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd) 324 { 325 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 326 return target_fd_trans[fd]->target_to_host_addr; 327 } 328 return NULL; 329 } 330 331 static void fd_trans_register(int fd, TargetFdTrans *trans) 332 { 333 unsigned int oldmax; 334 335 if (fd >= target_fd_max) { 336 oldmax = target_fd_max; 337 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */ 338 target_fd_trans = g_renew(TargetFdTrans *, 339 target_fd_trans, target_fd_max); 340 memset((void *)(target_fd_trans + oldmax), 0, 341 (target_fd_max - oldmax) * sizeof(TargetFdTrans *)); 342 } 343 target_fd_trans[fd] = trans; 344 } 345 346 static void fd_trans_unregister(int fd) 347 { 348 if (fd >= 0 && fd < target_fd_max) { 349 target_fd_trans[fd] = NULL; 350 } 351 } 352 353 static void fd_trans_dup(int oldfd, int newfd) 354 { 355 fd_trans_unregister(newfd); 356 if (oldfd < target_fd_max && target_fd_trans[oldfd]) { 357 fd_trans_register(newfd, target_fd_trans[oldfd]); 358 } 359 } 360 361 static int sys_getcwd1(char *buf, size_t size) 362 { 363 if (getcwd(buf, size) == NULL) { 364 /* getcwd() sets errno */ 365 return (-1); 366 } 367 return strlen(buf)+1; 368 } 369 370 #ifdef TARGET_NR_utimensat 371 #ifdef CONFIG_UTIMENSAT 372 static int sys_utimensat(int dirfd, const char *pathname, 373 const struct timespec times[2], int flags) 374 { 375 if (pathname == NULL) 376 return futimens(dirfd, times); 377 else 378 return utimensat(dirfd, pathname, times, flags); 379 } 380 #elif defined(__NR_utimensat) 381 #define __NR_sys_utimensat __NR_utimensat 382 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 383 const struct timespec *,tsp,int,flags) 384 #else 385 static int sys_utimensat(int dirfd, const char *pathname, 386 const struct timespec times[2], int flags) 387 { 388 errno = ENOSYS; 389 return -1; 390 } 391 #endif 392 #endif /* TARGET_NR_utimensat */ 393 394 #ifdef CONFIG_INOTIFY 395 #include <sys/inotify.h> 396 397 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 398 static int sys_inotify_init(void) 399 { 400 return (inotify_init()); 401 } 402 #endif 403 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 404 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 405 { 406 return (inotify_add_watch(fd, pathname, mask)); 407 } 408 #endif 409 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 410 static int sys_inotify_rm_watch(int fd, int32_t wd) 411 { 412 return (inotify_rm_watch(fd, wd)); 413 } 414 #endif 415 #ifdef CONFIG_INOTIFY1 416 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 417 static int sys_inotify_init1(int flags) 418 { 419 return (inotify_init1(flags)); 420 } 421 #endif 422 #endif 423 #else 424 /* Userspace can usually survive runtime without inotify */ 425 #undef TARGET_NR_inotify_init 426 #undef TARGET_NR_inotify_init1 427 #undef TARGET_NR_inotify_add_watch 428 #undef TARGET_NR_inotify_rm_watch 429 #endif /* CONFIG_INOTIFY */ 430 431 #if defined(TARGET_NR_prlimit64) 432 #ifndef __NR_prlimit64 433 # define __NR_prlimit64 -1 434 #endif 435 #define __NR_sys_prlimit64 __NR_prlimit64 436 /* The glibc rlimit structure may not be that used by the underlying syscall */ 437 struct host_rlimit64 { 438 uint64_t rlim_cur; 439 uint64_t rlim_max; 440 }; 441 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 442 const struct host_rlimit64 *, new_limit, 443 struct host_rlimit64 *, old_limit) 444 #endif 445 446 447 #if defined(TARGET_NR_timer_create) 448 /* Maxiumum of 32 active POSIX timers allowed at any one time. */ 449 static timer_t g_posix_timers[32] = { 0, } ; 450 451 static inline int next_free_host_timer(void) 452 { 453 int k ; 454 /* FIXME: Does finding the next free slot require a lock? */ 455 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 456 if (g_posix_timers[k] == 0) { 457 g_posix_timers[k] = (timer_t) 1; 458 return k; 459 } 460 } 461 return -1; 462 } 463 #endif 464 465 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 466 #ifdef TARGET_ARM 467 static inline int regpairs_aligned(void *cpu_env) { 468 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 469 } 470 #elif defined(TARGET_MIPS) 471 static inline int regpairs_aligned(void *cpu_env) { return 1; } 472 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 473 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 474 * of registers which translates to the same as ARM/MIPS, because we start with 475 * r3 as arg1 */ 476 static inline int regpairs_aligned(void *cpu_env) { return 1; } 477 #else 478 static inline int regpairs_aligned(void *cpu_env) { return 0; } 479 #endif 480 481 #define ERRNO_TABLE_SIZE 1200 482 483 /* target_to_host_errno_table[] is initialized from 484 * host_to_target_errno_table[] in syscall_init(). */ 485 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 486 }; 487 488 /* 489 * This list is the union of errno values overridden in asm-<arch>/errno.h 490 * minus the errnos that are not actually generic to all archs. 491 */ 492 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 493 [EAGAIN] = TARGET_EAGAIN, 494 [EIDRM] = TARGET_EIDRM, 495 [ECHRNG] = TARGET_ECHRNG, 496 [EL2NSYNC] = TARGET_EL2NSYNC, 497 [EL3HLT] = TARGET_EL3HLT, 498 [EL3RST] = TARGET_EL3RST, 499 [ELNRNG] = TARGET_ELNRNG, 500 [EUNATCH] = TARGET_EUNATCH, 501 [ENOCSI] = TARGET_ENOCSI, 502 [EL2HLT] = TARGET_EL2HLT, 503 [EDEADLK] = TARGET_EDEADLK, 504 [ENOLCK] = TARGET_ENOLCK, 505 [EBADE] = TARGET_EBADE, 506 [EBADR] = TARGET_EBADR, 507 [EXFULL] = TARGET_EXFULL, 508 [ENOANO] = TARGET_ENOANO, 509 [EBADRQC] = TARGET_EBADRQC, 510 [EBADSLT] = TARGET_EBADSLT, 511 [EBFONT] = TARGET_EBFONT, 512 [ENOSTR] = TARGET_ENOSTR, 513 [ENODATA] = TARGET_ENODATA, 514 [ETIME] = TARGET_ETIME, 515 [ENOSR] = TARGET_ENOSR, 516 [ENONET] = TARGET_ENONET, 517 [ENOPKG] = TARGET_ENOPKG, 518 [EREMOTE] = TARGET_EREMOTE, 519 [ENOLINK] = TARGET_ENOLINK, 520 [EADV] = TARGET_EADV, 521 [ESRMNT] = TARGET_ESRMNT, 522 [ECOMM] = TARGET_ECOMM, 523 [EPROTO] = TARGET_EPROTO, 524 [EDOTDOT] = TARGET_EDOTDOT, 525 [EMULTIHOP] = TARGET_EMULTIHOP, 526 [EBADMSG] = TARGET_EBADMSG, 527 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 528 [EOVERFLOW] = TARGET_EOVERFLOW, 529 [ENOTUNIQ] = TARGET_ENOTUNIQ, 530 [EBADFD] = TARGET_EBADFD, 531 [EREMCHG] = TARGET_EREMCHG, 532 [ELIBACC] = TARGET_ELIBACC, 533 [ELIBBAD] = TARGET_ELIBBAD, 534 [ELIBSCN] = TARGET_ELIBSCN, 535 [ELIBMAX] = TARGET_ELIBMAX, 536 [ELIBEXEC] = TARGET_ELIBEXEC, 537 [EILSEQ] = TARGET_EILSEQ, 538 [ENOSYS] = TARGET_ENOSYS, 539 [ELOOP] = TARGET_ELOOP, 540 [ERESTART] = TARGET_ERESTART, 541 [ESTRPIPE] = TARGET_ESTRPIPE, 542 [ENOTEMPTY] = TARGET_ENOTEMPTY, 543 [EUSERS] = TARGET_EUSERS, 544 [ENOTSOCK] = TARGET_ENOTSOCK, 545 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 546 [EMSGSIZE] = TARGET_EMSGSIZE, 547 [EPROTOTYPE] = TARGET_EPROTOTYPE, 548 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 549 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 550 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 551 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 552 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 553 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 554 [EADDRINUSE] = TARGET_EADDRINUSE, 555 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 556 [ENETDOWN] = TARGET_ENETDOWN, 557 [ENETUNREACH] = TARGET_ENETUNREACH, 558 [ENETRESET] = TARGET_ENETRESET, 559 [ECONNABORTED] = TARGET_ECONNABORTED, 560 [ECONNRESET] = TARGET_ECONNRESET, 561 [ENOBUFS] = TARGET_ENOBUFS, 562 [EISCONN] = TARGET_EISCONN, 563 [ENOTCONN] = TARGET_ENOTCONN, 564 [EUCLEAN] = TARGET_EUCLEAN, 565 [ENOTNAM] = TARGET_ENOTNAM, 566 [ENAVAIL] = TARGET_ENAVAIL, 567 [EISNAM] = TARGET_EISNAM, 568 [EREMOTEIO] = TARGET_EREMOTEIO, 569 [ESHUTDOWN] = TARGET_ESHUTDOWN, 570 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 571 [ETIMEDOUT] = TARGET_ETIMEDOUT, 572 [ECONNREFUSED] = TARGET_ECONNREFUSED, 573 [EHOSTDOWN] = TARGET_EHOSTDOWN, 574 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 575 [EALREADY] = TARGET_EALREADY, 576 [EINPROGRESS] = TARGET_EINPROGRESS, 577 [ESTALE] = TARGET_ESTALE, 578 [ECANCELED] = TARGET_ECANCELED, 579 [ENOMEDIUM] = TARGET_ENOMEDIUM, 580 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 581 #ifdef ENOKEY 582 [ENOKEY] = TARGET_ENOKEY, 583 #endif 584 #ifdef EKEYEXPIRED 585 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 586 #endif 587 #ifdef EKEYREVOKED 588 [EKEYREVOKED] = TARGET_EKEYREVOKED, 589 #endif 590 #ifdef EKEYREJECTED 591 [EKEYREJECTED] = TARGET_EKEYREJECTED, 592 #endif 593 #ifdef EOWNERDEAD 594 [EOWNERDEAD] = TARGET_EOWNERDEAD, 595 #endif 596 #ifdef ENOTRECOVERABLE 597 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 598 #endif 599 }; 600 601 static inline int host_to_target_errno(int err) 602 { 603 if (err >= 0 && err < ERRNO_TABLE_SIZE && 604 host_to_target_errno_table[err]) { 605 return host_to_target_errno_table[err]; 606 } 607 return err; 608 } 609 610 static inline int target_to_host_errno(int err) 611 { 612 if (err >= 0 && err < ERRNO_TABLE_SIZE && 613 target_to_host_errno_table[err]) { 614 return target_to_host_errno_table[err]; 615 } 616 return err; 617 } 618 619 static inline abi_long get_errno(abi_long ret) 620 { 621 if (ret == -1) 622 return -host_to_target_errno(errno); 623 else 624 return ret; 625 } 626 627 static inline int is_error(abi_long ret) 628 { 629 return (abi_ulong)ret >= (abi_ulong)(-4096); 630 } 631 632 const char *target_strerror(int err) 633 { 634 if (err == TARGET_ERESTARTSYS) { 635 return "To be restarted"; 636 } 637 if (err == TARGET_QEMU_ESIGRETURN) { 638 return "Successful exit from sigreturn"; 639 } 640 641 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 642 return NULL; 643 } 644 return strerror(target_to_host_errno(err)); 645 } 646 647 #define safe_syscall0(type, name) \ 648 static type safe_##name(void) \ 649 { \ 650 return safe_syscall(__NR_##name); \ 651 } 652 653 #define safe_syscall1(type, name, type1, arg1) \ 654 static type safe_##name(type1 arg1) \ 655 { \ 656 return safe_syscall(__NR_##name, arg1); \ 657 } 658 659 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 660 static type safe_##name(type1 arg1, type2 arg2) \ 661 { \ 662 return safe_syscall(__NR_##name, arg1, arg2); \ 663 } 664 665 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 666 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 667 { \ 668 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 669 } 670 671 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 672 type4, arg4) \ 673 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 674 { \ 675 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 676 } 677 678 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 679 type4, arg4, type5, arg5) \ 680 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 681 type5 arg5) \ 682 { \ 683 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 684 } 685 686 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 687 type4, arg4, type5, arg5, type6, arg6) \ 688 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 689 type5 arg5, type6 arg6) \ 690 { \ 691 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 692 } 693 694 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 695 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 696 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 697 int, flags, mode_t, mode) 698 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 699 struct rusage *, rusage) 700 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 701 int, options, struct rusage *, rusage) 702 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 703 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 704 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 705 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 706 struct timespec *, tsp, const sigset_t *, sigmask, 707 size_t, sigsetsize) 708 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 709 int, maxevents, int, timeout, const sigset_t *, sigmask, 710 size_t, sigsetsize) 711 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 712 const struct timespec *,timeout,int *,uaddr2,int,val3) 713 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 714 safe_syscall2(int, kill, pid_t, pid, int, sig) 715 safe_syscall2(int, tkill, int, tid, int, sig) 716 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 717 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 718 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 719 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 720 socklen_t, addrlen) 721 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 722 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 723 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 724 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 725 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 726 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 727 safe_syscall2(int, flock, int, fd, int, operation) 728 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 729 const struct timespec *, uts, size_t, sigsetsize) 730 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 731 int, flags) 732 safe_syscall2(int, nanosleep, const struct timespec *, req, 733 struct timespec *, rem) 734 #ifdef TARGET_NR_clock_nanosleep 735 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 736 const struct timespec *, req, struct timespec *, rem) 737 #endif 738 #ifdef __NR_msgsnd 739 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 740 int, flags) 741 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 742 long, msgtype, int, flags) 743 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 744 unsigned, nsops, const struct timespec *, timeout) 745 #else 746 /* This host kernel architecture uses a single ipc syscall; fake up 747 * wrappers for the sub-operations to hide this implementation detail. 748 * Annoyingly we can't include linux/ipc.h to get the constant definitions 749 * for the call parameter because some structs in there conflict with the 750 * sys/ipc.h ones. So we just define them here, and rely on them being 751 * the same for all host architectures. 752 */ 753 #define Q_SEMTIMEDOP 4 754 #define Q_MSGSND 11 755 #define Q_MSGRCV 12 756 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP)) 757 758 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 759 void *, ptr, long, fifth) 760 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags) 761 { 762 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0); 763 } 764 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags) 765 { 766 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type); 767 } 768 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops, 769 const struct timespec *timeout) 770 { 771 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops, 772 (long)timeout); 773 } 774 #endif 775 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 776 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 777 size_t, len, unsigned, prio, const struct timespec *, timeout) 778 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 779 size_t, len, unsigned *, prio, const struct timespec *, timeout) 780 #endif 781 /* We do ioctl like this rather than via safe_syscall3 to preserve the 782 * "third argument might be integer or pointer or not present" behaviour of 783 * the libc function. 784 */ 785 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 786 787 static inline int host_to_target_sock_type(int host_type) 788 { 789 int target_type; 790 791 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 792 case SOCK_DGRAM: 793 target_type = TARGET_SOCK_DGRAM; 794 break; 795 case SOCK_STREAM: 796 target_type = TARGET_SOCK_STREAM; 797 break; 798 default: 799 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 800 break; 801 } 802 803 #if defined(SOCK_CLOEXEC) 804 if (host_type & SOCK_CLOEXEC) { 805 target_type |= TARGET_SOCK_CLOEXEC; 806 } 807 #endif 808 809 #if defined(SOCK_NONBLOCK) 810 if (host_type & SOCK_NONBLOCK) { 811 target_type |= TARGET_SOCK_NONBLOCK; 812 } 813 #endif 814 815 return target_type; 816 } 817 818 static abi_ulong target_brk; 819 static abi_ulong target_original_brk; 820 static abi_ulong brk_page; 821 822 void target_set_brk(abi_ulong new_brk) 823 { 824 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 825 brk_page = HOST_PAGE_ALIGN(target_brk); 826 } 827 828 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 829 #define DEBUGF_BRK(message, args...) 830 831 /* do_brk() must return target values and target errnos. */ 832 abi_long do_brk(abi_ulong new_brk) 833 { 834 abi_long mapped_addr; 835 int new_alloc_size; 836 837 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 838 839 if (!new_brk) { 840 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 841 return target_brk; 842 } 843 if (new_brk < target_original_brk) { 844 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 845 target_brk); 846 return target_brk; 847 } 848 849 /* If the new brk is less than the highest page reserved to the 850 * target heap allocation, set it and we're almost done... */ 851 if (new_brk <= brk_page) { 852 /* Heap contents are initialized to zero, as for anonymous 853 * mapped pages. */ 854 if (new_brk > target_brk) { 855 memset(g2h(target_brk), 0, new_brk - target_brk); 856 } 857 target_brk = new_brk; 858 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 859 return target_brk; 860 } 861 862 /* We need to allocate more memory after the brk... Note that 863 * we don't use MAP_FIXED because that will map over the top of 864 * any existing mapping (like the one with the host libc or qemu 865 * itself); instead we treat "mapped but at wrong address" as 866 * a failure and unmap again. 867 */ 868 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 869 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 870 PROT_READ|PROT_WRITE, 871 MAP_ANON|MAP_PRIVATE, 0, 0)); 872 873 if (mapped_addr == brk_page) { 874 /* Heap contents are initialized to zero, as for anonymous 875 * mapped pages. Technically the new pages are already 876 * initialized to zero since they *are* anonymous mapped 877 * pages, however we have to take care with the contents that 878 * come from the remaining part of the previous page: it may 879 * contains garbage data due to a previous heap usage (grown 880 * then shrunken). */ 881 memset(g2h(target_brk), 0, brk_page - target_brk); 882 883 target_brk = new_brk; 884 brk_page = HOST_PAGE_ALIGN(target_brk); 885 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 886 target_brk); 887 return target_brk; 888 } else if (mapped_addr != -1) { 889 /* Mapped but at wrong address, meaning there wasn't actually 890 * enough space for this brk. 891 */ 892 target_munmap(mapped_addr, new_alloc_size); 893 mapped_addr = -1; 894 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 895 } 896 else { 897 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 898 } 899 900 #if defined(TARGET_ALPHA) 901 /* We (partially) emulate OSF/1 on Alpha, which requires we 902 return a proper errno, not an unchanged brk value. */ 903 return -TARGET_ENOMEM; 904 #endif 905 /* For everything else, return the previous break. */ 906 return target_brk; 907 } 908 909 static inline abi_long copy_from_user_fdset(fd_set *fds, 910 abi_ulong target_fds_addr, 911 int n) 912 { 913 int i, nw, j, k; 914 abi_ulong b, *target_fds; 915 916 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 917 if (!(target_fds = lock_user(VERIFY_READ, 918 target_fds_addr, 919 sizeof(abi_ulong) * nw, 920 1))) 921 return -TARGET_EFAULT; 922 923 FD_ZERO(fds); 924 k = 0; 925 for (i = 0; i < nw; i++) { 926 /* grab the abi_ulong */ 927 __get_user(b, &target_fds[i]); 928 for (j = 0; j < TARGET_ABI_BITS; j++) { 929 /* check the bit inside the abi_ulong */ 930 if ((b >> j) & 1) 931 FD_SET(k, fds); 932 k++; 933 } 934 } 935 936 unlock_user(target_fds, target_fds_addr, 0); 937 938 return 0; 939 } 940 941 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 942 abi_ulong target_fds_addr, 943 int n) 944 { 945 if (target_fds_addr) { 946 if (copy_from_user_fdset(fds, target_fds_addr, n)) 947 return -TARGET_EFAULT; 948 *fds_ptr = fds; 949 } else { 950 *fds_ptr = NULL; 951 } 952 return 0; 953 } 954 955 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 956 const fd_set *fds, 957 int n) 958 { 959 int i, nw, j, k; 960 abi_long v; 961 abi_ulong *target_fds; 962 963 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 964 if (!(target_fds = lock_user(VERIFY_WRITE, 965 target_fds_addr, 966 sizeof(abi_ulong) * nw, 967 0))) 968 return -TARGET_EFAULT; 969 970 k = 0; 971 for (i = 0; i < nw; i++) { 972 v = 0; 973 for (j = 0; j < TARGET_ABI_BITS; j++) { 974 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 975 k++; 976 } 977 __put_user(v, &target_fds[i]); 978 } 979 980 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 981 982 return 0; 983 } 984 985 #if defined(__alpha__) 986 #define HOST_HZ 1024 987 #else 988 #define HOST_HZ 100 989 #endif 990 991 static inline abi_long host_to_target_clock_t(long ticks) 992 { 993 #if HOST_HZ == TARGET_HZ 994 return ticks; 995 #else 996 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 997 #endif 998 } 999 1000 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 1001 const struct rusage *rusage) 1002 { 1003 struct target_rusage *target_rusage; 1004 1005 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 1006 return -TARGET_EFAULT; 1007 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 1008 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 1009 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 1010 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 1011 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 1012 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 1013 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 1014 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 1015 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 1016 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 1017 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 1018 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 1019 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 1020 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 1021 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 1022 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 1023 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 1024 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 1025 unlock_user_struct(target_rusage, target_addr, 1); 1026 1027 return 0; 1028 } 1029 1030 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 1031 { 1032 abi_ulong target_rlim_swap; 1033 rlim_t result; 1034 1035 target_rlim_swap = tswapal(target_rlim); 1036 if (target_rlim_swap == TARGET_RLIM_INFINITY) 1037 return RLIM_INFINITY; 1038 1039 result = target_rlim_swap; 1040 if (target_rlim_swap != (rlim_t)result) 1041 return RLIM_INFINITY; 1042 1043 return result; 1044 } 1045 1046 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1047 { 1048 abi_ulong target_rlim_swap; 1049 abi_ulong result; 1050 1051 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1052 target_rlim_swap = TARGET_RLIM_INFINITY; 1053 else 1054 target_rlim_swap = rlim; 1055 result = tswapal(target_rlim_swap); 1056 1057 return result; 1058 } 1059 1060 static inline int target_to_host_resource(int code) 1061 { 1062 switch (code) { 1063 case TARGET_RLIMIT_AS: 1064 return RLIMIT_AS; 1065 case TARGET_RLIMIT_CORE: 1066 return RLIMIT_CORE; 1067 case TARGET_RLIMIT_CPU: 1068 return RLIMIT_CPU; 1069 case TARGET_RLIMIT_DATA: 1070 return RLIMIT_DATA; 1071 case TARGET_RLIMIT_FSIZE: 1072 return RLIMIT_FSIZE; 1073 case TARGET_RLIMIT_LOCKS: 1074 return RLIMIT_LOCKS; 1075 case TARGET_RLIMIT_MEMLOCK: 1076 return RLIMIT_MEMLOCK; 1077 case TARGET_RLIMIT_MSGQUEUE: 1078 return RLIMIT_MSGQUEUE; 1079 case TARGET_RLIMIT_NICE: 1080 return RLIMIT_NICE; 1081 case TARGET_RLIMIT_NOFILE: 1082 return RLIMIT_NOFILE; 1083 case TARGET_RLIMIT_NPROC: 1084 return RLIMIT_NPROC; 1085 case TARGET_RLIMIT_RSS: 1086 return RLIMIT_RSS; 1087 case TARGET_RLIMIT_RTPRIO: 1088 return RLIMIT_RTPRIO; 1089 case TARGET_RLIMIT_SIGPENDING: 1090 return RLIMIT_SIGPENDING; 1091 case TARGET_RLIMIT_STACK: 1092 return RLIMIT_STACK; 1093 default: 1094 return code; 1095 } 1096 } 1097 1098 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1099 abi_ulong target_tv_addr) 1100 { 1101 struct target_timeval *target_tv; 1102 1103 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) 1104 return -TARGET_EFAULT; 1105 1106 __get_user(tv->tv_sec, &target_tv->tv_sec); 1107 __get_user(tv->tv_usec, &target_tv->tv_usec); 1108 1109 unlock_user_struct(target_tv, target_tv_addr, 0); 1110 1111 return 0; 1112 } 1113 1114 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1115 const struct timeval *tv) 1116 { 1117 struct target_timeval *target_tv; 1118 1119 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) 1120 return -TARGET_EFAULT; 1121 1122 __put_user(tv->tv_sec, &target_tv->tv_sec); 1123 __put_user(tv->tv_usec, &target_tv->tv_usec); 1124 1125 unlock_user_struct(target_tv, target_tv_addr, 1); 1126 1127 return 0; 1128 } 1129 1130 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1131 abi_ulong target_tz_addr) 1132 { 1133 struct target_timezone *target_tz; 1134 1135 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1136 return -TARGET_EFAULT; 1137 } 1138 1139 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1140 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1141 1142 unlock_user_struct(target_tz, target_tz_addr, 0); 1143 1144 return 0; 1145 } 1146 1147 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1148 #include <mqueue.h> 1149 1150 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1151 abi_ulong target_mq_attr_addr) 1152 { 1153 struct target_mq_attr *target_mq_attr; 1154 1155 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1156 target_mq_attr_addr, 1)) 1157 return -TARGET_EFAULT; 1158 1159 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1160 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1161 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1162 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1163 1164 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1165 1166 return 0; 1167 } 1168 1169 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1170 const struct mq_attr *attr) 1171 { 1172 struct target_mq_attr *target_mq_attr; 1173 1174 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1175 target_mq_attr_addr, 0)) 1176 return -TARGET_EFAULT; 1177 1178 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1179 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1180 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1181 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1182 1183 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1184 1185 return 0; 1186 } 1187 #endif 1188 1189 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1190 /* do_select() must return target values and target errnos. */ 1191 static abi_long do_select(int n, 1192 abi_ulong rfd_addr, abi_ulong wfd_addr, 1193 abi_ulong efd_addr, abi_ulong target_tv_addr) 1194 { 1195 fd_set rfds, wfds, efds; 1196 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1197 struct timeval tv; 1198 struct timespec ts, *ts_ptr; 1199 abi_long ret; 1200 1201 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1202 if (ret) { 1203 return ret; 1204 } 1205 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1206 if (ret) { 1207 return ret; 1208 } 1209 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1210 if (ret) { 1211 return ret; 1212 } 1213 1214 if (target_tv_addr) { 1215 if (copy_from_user_timeval(&tv, target_tv_addr)) 1216 return -TARGET_EFAULT; 1217 ts.tv_sec = tv.tv_sec; 1218 ts.tv_nsec = tv.tv_usec * 1000; 1219 ts_ptr = &ts; 1220 } else { 1221 ts_ptr = NULL; 1222 } 1223 1224 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1225 ts_ptr, NULL)); 1226 1227 if (!is_error(ret)) { 1228 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1229 return -TARGET_EFAULT; 1230 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1231 return -TARGET_EFAULT; 1232 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1233 return -TARGET_EFAULT; 1234 1235 if (target_tv_addr) { 1236 tv.tv_sec = ts.tv_sec; 1237 tv.tv_usec = ts.tv_nsec / 1000; 1238 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1239 return -TARGET_EFAULT; 1240 } 1241 } 1242 } 1243 1244 return ret; 1245 } 1246 #endif 1247 1248 static abi_long do_pipe2(int host_pipe[], int flags) 1249 { 1250 #ifdef CONFIG_PIPE2 1251 return pipe2(host_pipe, flags); 1252 #else 1253 return -ENOSYS; 1254 #endif 1255 } 1256 1257 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1258 int flags, int is_pipe2) 1259 { 1260 int host_pipe[2]; 1261 abi_long ret; 1262 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1263 1264 if (is_error(ret)) 1265 return get_errno(ret); 1266 1267 /* Several targets have special calling conventions for the original 1268 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1269 if (!is_pipe2) { 1270 #if defined(TARGET_ALPHA) 1271 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1272 return host_pipe[0]; 1273 #elif defined(TARGET_MIPS) 1274 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1275 return host_pipe[0]; 1276 #elif defined(TARGET_SH4) 1277 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1278 return host_pipe[0]; 1279 #elif defined(TARGET_SPARC) 1280 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1281 return host_pipe[0]; 1282 #endif 1283 } 1284 1285 if (put_user_s32(host_pipe[0], pipedes) 1286 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1287 return -TARGET_EFAULT; 1288 return get_errno(ret); 1289 } 1290 1291 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1292 abi_ulong target_addr, 1293 socklen_t len) 1294 { 1295 struct target_ip_mreqn *target_smreqn; 1296 1297 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1298 if (!target_smreqn) 1299 return -TARGET_EFAULT; 1300 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1301 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1302 if (len == sizeof(struct target_ip_mreqn)) 1303 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1304 unlock_user(target_smreqn, target_addr, 0); 1305 1306 return 0; 1307 } 1308 1309 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1310 abi_ulong target_addr, 1311 socklen_t len) 1312 { 1313 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1314 sa_family_t sa_family; 1315 struct target_sockaddr *target_saddr; 1316 1317 if (fd_trans_target_to_host_addr(fd)) { 1318 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1319 } 1320 1321 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1322 if (!target_saddr) 1323 return -TARGET_EFAULT; 1324 1325 sa_family = tswap16(target_saddr->sa_family); 1326 1327 /* Oops. The caller might send a incomplete sun_path; sun_path 1328 * must be terminated by \0 (see the manual page), but 1329 * unfortunately it is quite common to specify sockaddr_un 1330 * length as "strlen(x->sun_path)" while it should be 1331 * "strlen(...) + 1". We'll fix that here if needed. 1332 * Linux kernel has a similar feature. 1333 */ 1334 1335 if (sa_family == AF_UNIX) { 1336 if (len < unix_maxlen && len > 0) { 1337 char *cp = (char*)target_saddr; 1338 1339 if ( cp[len-1] && !cp[len] ) 1340 len++; 1341 } 1342 if (len > unix_maxlen) 1343 len = unix_maxlen; 1344 } 1345 1346 memcpy(addr, target_saddr, len); 1347 addr->sa_family = sa_family; 1348 if (sa_family == AF_NETLINK) { 1349 struct sockaddr_nl *nladdr; 1350 1351 nladdr = (struct sockaddr_nl *)addr; 1352 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1353 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1354 } else if (sa_family == AF_PACKET) { 1355 struct target_sockaddr_ll *lladdr; 1356 1357 lladdr = (struct target_sockaddr_ll *)addr; 1358 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1359 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1360 } 1361 unlock_user(target_saddr, target_addr, 0); 1362 1363 return 0; 1364 } 1365 1366 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1367 struct sockaddr *addr, 1368 socklen_t len) 1369 { 1370 struct target_sockaddr *target_saddr; 1371 1372 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1373 if (!target_saddr) 1374 return -TARGET_EFAULT; 1375 memcpy(target_saddr, addr, len); 1376 target_saddr->sa_family = tswap16(addr->sa_family); 1377 if (addr->sa_family == AF_NETLINK) { 1378 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr; 1379 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1380 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1381 } 1382 unlock_user(target_saddr, target_addr, len); 1383 1384 return 0; 1385 } 1386 1387 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1388 struct target_msghdr *target_msgh) 1389 { 1390 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1391 abi_long msg_controllen; 1392 abi_ulong target_cmsg_addr; 1393 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1394 socklen_t space = 0; 1395 1396 msg_controllen = tswapal(target_msgh->msg_controllen); 1397 if (msg_controllen < sizeof (struct target_cmsghdr)) 1398 goto the_end; 1399 target_cmsg_addr = tswapal(target_msgh->msg_control); 1400 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1401 target_cmsg_start = target_cmsg; 1402 if (!target_cmsg) 1403 return -TARGET_EFAULT; 1404 1405 while (cmsg && target_cmsg) { 1406 void *data = CMSG_DATA(cmsg); 1407 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1408 1409 int len = tswapal(target_cmsg->cmsg_len) 1410 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr)); 1411 1412 space += CMSG_SPACE(len); 1413 if (space > msgh->msg_controllen) { 1414 space -= CMSG_SPACE(len); 1415 /* This is a QEMU bug, since we allocated the payload 1416 * area ourselves (unlike overflow in host-to-target 1417 * conversion, which is just the guest giving us a buffer 1418 * that's too small). It can't happen for the payload types 1419 * we currently support; if it becomes an issue in future 1420 * we would need to improve our allocation strategy to 1421 * something more intelligent than "twice the size of the 1422 * target buffer we're reading from". 1423 */ 1424 gemu_log("Host cmsg overflow\n"); 1425 break; 1426 } 1427 1428 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1429 cmsg->cmsg_level = SOL_SOCKET; 1430 } else { 1431 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1432 } 1433 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1434 cmsg->cmsg_len = CMSG_LEN(len); 1435 1436 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1437 int *fd = (int *)data; 1438 int *target_fd = (int *)target_data; 1439 int i, numfds = len / sizeof(int); 1440 1441 for (i = 0; i < numfds; i++) { 1442 __get_user(fd[i], target_fd + i); 1443 } 1444 } else if (cmsg->cmsg_level == SOL_SOCKET 1445 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1446 struct ucred *cred = (struct ucred *)data; 1447 struct target_ucred *target_cred = 1448 (struct target_ucred *)target_data; 1449 1450 __get_user(cred->pid, &target_cred->pid); 1451 __get_user(cred->uid, &target_cred->uid); 1452 __get_user(cred->gid, &target_cred->gid); 1453 } else { 1454 gemu_log("Unsupported ancillary data: %d/%d\n", 1455 cmsg->cmsg_level, cmsg->cmsg_type); 1456 memcpy(data, target_data, len); 1457 } 1458 1459 cmsg = CMSG_NXTHDR(msgh, cmsg); 1460 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1461 target_cmsg_start); 1462 } 1463 unlock_user(target_cmsg, target_cmsg_addr, 0); 1464 the_end: 1465 msgh->msg_controllen = space; 1466 return 0; 1467 } 1468 1469 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1470 struct msghdr *msgh) 1471 { 1472 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1473 abi_long msg_controllen; 1474 abi_ulong target_cmsg_addr; 1475 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1476 socklen_t space = 0; 1477 1478 msg_controllen = tswapal(target_msgh->msg_controllen); 1479 if (msg_controllen < sizeof (struct target_cmsghdr)) 1480 goto the_end; 1481 target_cmsg_addr = tswapal(target_msgh->msg_control); 1482 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1483 target_cmsg_start = target_cmsg; 1484 if (!target_cmsg) 1485 return -TARGET_EFAULT; 1486 1487 while (cmsg && target_cmsg) { 1488 void *data = CMSG_DATA(cmsg); 1489 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1490 1491 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr)); 1492 int tgt_len, tgt_space; 1493 1494 /* We never copy a half-header but may copy half-data; 1495 * this is Linux's behaviour in put_cmsg(). Note that 1496 * truncation here is a guest problem (which we report 1497 * to the guest via the CTRUNC bit), unlike truncation 1498 * in target_to_host_cmsg, which is a QEMU bug. 1499 */ 1500 if (msg_controllen < sizeof(struct cmsghdr)) { 1501 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1502 break; 1503 } 1504 1505 if (cmsg->cmsg_level == SOL_SOCKET) { 1506 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1507 } else { 1508 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1509 } 1510 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1511 1512 tgt_len = TARGET_CMSG_LEN(len); 1513 1514 /* Payload types which need a different size of payload on 1515 * the target must adjust tgt_len here. 1516 */ 1517 switch (cmsg->cmsg_level) { 1518 case SOL_SOCKET: 1519 switch (cmsg->cmsg_type) { 1520 case SO_TIMESTAMP: 1521 tgt_len = sizeof(struct target_timeval); 1522 break; 1523 default: 1524 break; 1525 } 1526 default: 1527 break; 1528 } 1529 1530 if (msg_controllen < tgt_len) { 1531 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1532 tgt_len = msg_controllen; 1533 } 1534 1535 /* We must now copy-and-convert len bytes of payload 1536 * into tgt_len bytes of destination space. Bear in mind 1537 * that in both source and destination we may be dealing 1538 * with a truncated value! 1539 */ 1540 switch (cmsg->cmsg_level) { 1541 case SOL_SOCKET: 1542 switch (cmsg->cmsg_type) { 1543 case SCM_RIGHTS: 1544 { 1545 int *fd = (int *)data; 1546 int *target_fd = (int *)target_data; 1547 int i, numfds = tgt_len / sizeof(int); 1548 1549 for (i = 0; i < numfds; i++) { 1550 __put_user(fd[i], target_fd + i); 1551 } 1552 break; 1553 } 1554 case SO_TIMESTAMP: 1555 { 1556 struct timeval *tv = (struct timeval *)data; 1557 struct target_timeval *target_tv = 1558 (struct target_timeval *)target_data; 1559 1560 if (len != sizeof(struct timeval) || 1561 tgt_len != sizeof(struct target_timeval)) { 1562 goto unimplemented; 1563 } 1564 1565 /* copy struct timeval to target */ 1566 __put_user(tv->tv_sec, &target_tv->tv_sec); 1567 __put_user(tv->tv_usec, &target_tv->tv_usec); 1568 break; 1569 } 1570 case SCM_CREDENTIALS: 1571 { 1572 struct ucred *cred = (struct ucred *)data; 1573 struct target_ucred *target_cred = 1574 (struct target_ucred *)target_data; 1575 1576 __put_user(cred->pid, &target_cred->pid); 1577 __put_user(cred->uid, &target_cred->uid); 1578 __put_user(cred->gid, &target_cred->gid); 1579 break; 1580 } 1581 default: 1582 goto unimplemented; 1583 } 1584 break; 1585 1586 default: 1587 unimplemented: 1588 gemu_log("Unsupported ancillary data: %d/%d\n", 1589 cmsg->cmsg_level, cmsg->cmsg_type); 1590 memcpy(target_data, data, MIN(len, tgt_len)); 1591 if (tgt_len > len) { 1592 memset(target_data + len, 0, tgt_len - len); 1593 } 1594 } 1595 1596 target_cmsg->cmsg_len = tswapal(tgt_len); 1597 tgt_space = TARGET_CMSG_SPACE(len); 1598 if (msg_controllen < tgt_space) { 1599 tgt_space = msg_controllen; 1600 } 1601 msg_controllen -= tgt_space; 1602 space += tgt_space; 1603 cmsg = CMSG_NXTHDR(msgh, cmsg); 1604 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1605 target_cmsg_start); 1606 } 1607 unlock_user(target_cmsg, target_cmsg_addr, space); 1608 the_end: 1609 target_msgh->msg_controllen = tswapal(space); 1610 return 0; 1611 } 1612 1613 static void tswap_nlmsghdr(struct nlmsghdr *nlh) 1614 { 1615 nlh->nlmsg_len = tswap32(nlh->nlmsg_len); 1616 nlh->nlmsg_type = tswap16(nlh->nlmsg_type); 1617 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags); 1618 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq); 1619 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid); 1620 } 1621 1622 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh, 1623 size_t len, 1624 abi_long (*host_to_target_nlmsg) 1625 (struct nlmsghdr *)) 1626 { 1627 uint32_t nlmsg_len; 1628 abi_long ret; 1629 1630 while (len > sizeof(struct nlmsghdr)) { 1631 1632 nlmsg_len = nlh->nlmsg_len; 1633 if (nlmsg_len < sizeof(struct nlmsghdr) || 1634 nlmsg_len > len) { 1635 break; 1636 } 1637 1638 switch (nlh->nlmsg_type) { 1639 case NLMSG_DONE: 1640 tswap_nlmsghdr(nlh); 1641 return 0; 1642 case NLMSG_NOOP: 1643 break; 1644 case NLMSG_ERROR: 1645 { 1646 struct nlmsgerr *e = NLMSG_DATA(nlh); 1647 e->error = tswap32(e->error); 1648 tswap_nlmsghdr(&e->msg); 1649 tswap_nlmsghdr(nlh); 1650 return 0; 1651 } 1652 default: 1653 ret = host_to_target_nlmsg(nlh); 1654 if (ret < 0) { 1655 tswap_nlmsghdr(nlh); 1656 return ret; 1657 } 1658 break; 1659 } 1660 tswap_nlmsghdr(nlh); 1661 len -= NLMSG_ALIGN(nlmsg_len); 1662 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len)); 1663 } 1664 return 0; 1665 } 1666 1667 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh, 1668 size_t len, 1669 abi_long (*target_to_host_nlmsg) 1670 (struct nlmsghdr *)) 1671 { 1672 int ret; 1673 1674 while (len > sizeof(struct nlmsghdr)) { 1675 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) || 1676 tswap32(nlh->nlmsg_len) > len) { 1677 break; 1678 } 1679 tswap_nlmsghdr(nlh); 1680 switch (nlh->nlmsg_type) { 1681 case NLMSG_DONE: 1682 return 0; 1683 case NLMSG_NOOP: 1684 break; 1685 case NLMSG_ERROR: 1686 { 1687 struct nlmsgerr *e = NLMSG_DATA(nlh); 1688 e->error = tswap32(e->error); 1689 tswap_nlmsghdr(&e->msg); 1690 } 1691 default: 1692 ret = target_to_host_nlmsg(nlh); 1693 if (ret < 0) { 1694 return ret; 1695 } 1696 } 1697 len -= NLMSG_ALIGN(nlh->nlmsg_len); 1698 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len)); 1699 } 1700 return 0; 1701 } 1702 1703 #ifdef CONFIG_RTNETLINK 1704 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr, 1705 size_t len, 1706 abi_long (*host_to_target_rtattr) 1707 (struct rtattr *)) 1708 { 1709 unsigned short rta_len; 1710 abi_long ret; 1711 1712 while (len > sizeof(struct rtattr)) { 1713 rta_len = rtattr->rta_len; 1714 if (rta_len < sizeof(struct rtattr) || 1715 rta_len > len) { 1716 break; 1717 } 1718 ret = host_to_target_rtattr(rtattr); 1719 rtattr->rta_len = tswap16(rtattr->rta_len); 1720 rtattr->rta_type = tswap16(rtattr->rta_type); 1721 if (ret < 0) { 1722 return ret; 1723 } 1724 len -= RTA_ALIGN(rta_len); 1725 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len)); 1726 } 1727 return 0; 1728 } 1729 1730 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr) 1731 { 1732 uint32_t *u32; 1733 struct rtnl_link_stats *st; 1734 struct rtnl_link_stats64 *st64; 1735 struct rtnl_link_ifmap *map; 1736 1737 switch (rtattr->rta_type) { 1738 /* binary stream */ 1739 case IFLA_ADDRESS: 1740 case IFLA_BROADCAST: 1741 /* string */ 1742 case IFLA_IFNAME: 1743 case IFLA_QDISC: 1744 break; 1745 /* uin8_t */ 1746 case IFLA_OPERSTATE: 1747 case IFLA_LINKMODE: 1748 case IFLA_CARRIER: 1749 case IFLA_PROTO_DOWN: 1750 break; 1751 /* uint32_t */ 1752 case IFLA_MTU: 1753 case IFLA_LINK: 1754 case IFLA_WEIGHT: 1755 case IFLA_TXQLEN: 1756 case IFLA_CARRIER_CHANGES: 1757 case IFLA_NUM_RX_QUEUES: 1758 case IFLA_NUM_TX_QUEUES: 1759 case IFLA_PROMISCUITY: 1760 case IFLA_EXT_MASK: 1761 case IFLA_LINK_NETNSID: 1762 case IFLA_GROUP: 1763 case IFLA_MASTER: 1764 case IFLA_NUM_VF: 1765 u32 = RTA_DATA(rtattr); 1766 *u32 = tswap32(*u32); 1767 break; 1768 /* struct rtnl_link_stats */ 1769 case IFLA_STATS: 1770 st = RTA_DATA(rtattr); 1771 st->rx_packets = tswap32(st->rx_packets); 1772 st->tx_packets = tswap32(st->tx_packets); 1773 st->rx_bytes = tswap32(st->rx_bytes); 1774 st->tx_bytes = tswap32(st->tx_bytes); 1775 st->rx_errors = tswap32(st->rx_errors); 1776 st->tx_errors = tswap32(st->tx_errors); 1777 st->rx_dropped = tswap32(st->rx_dropped); 1778 st->tx_dropped = tswap32(st->tx_dropped); 1779 st->multicast = tswap32(st->multicast); 1780 st->collisions = tswap32(st->collisions); 1781 1782 /* detailed rx_errors: */ 1783 st->rx_length_errors = tswap32(st->rx_length_errors); 1784 st->rx_over_errors = tswap32(st->rx_over_errors); 1785 st->rx_crc_errors = tswap32(st->rx_crc_errors); 1786 st->rx_frame_errors = tswap32(st->rx_frame_errors); 1787 st->rx_fifo_errors = tswap32(st->rx_fifo_errors); 1788 st->rx_missed_errors = tswap32(st->rx_missed_errors); 1789 1790 /* detailed tx_errors */ 1791 st->tx_aborted_errors = tswap32(st->tx_aborted_errors); 1792 st->tx_carrier_errors = tswap32(st->tx_carrier_errors); 1793 st->tx_fifo_errors = tswap32(st->tx_fifo_errors); 1794 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors); 1795 st->tx_window_errors = tswap32(st->tx_window_errors); 1796 1797 /* for cslip etc */ 1798 st->rx_compressed = tswap32(st->rx_compressed); 1799 st->tx_compressed = tswap32(st->tx_compressed); 1800 break; 1801 /* struct rtnl_link_stats64 */ 1802 case IFLA_STATS64: 1803 st64 = RTA_DATA(rtattr); 1804 st64->rx_packets = tswap64(st64->rx_packets); 1805 st64->tx_packets = tswap64(st64->tx_packets); 1806 st64->rx_bytes = tswap64(st64->rx_bytes); 1807 st64->tx_bytes = tswap64(st64->tx_bytes); 1808 st64->rx_errors = tswap64(st64->rx_errors); 1809 st64->tx_errors = tswap64(st64->tx_errors); 1810 st64->rx_dropped = tswap64(st64->rx_dropped); 1811 st64->tx_dropped = tswap64(st64->tx_dropped); 1812 st64->multicast = tswap64(st64->multicast); 1813 st64->collisions = tswap64(st64->collisions); 1814 1815 /* detailed rx_errors: */ 1816 st64->rx_length_errors = tswap64(st64->rx_length_errors); 1817 st64->rx_over_errors = tswap64(st64->rx_over_errors); 1818 st64->rx_crc_errors = tswap64(st64->rx_crc_errors); 1819 st64->rx_frame_errors = tswap64(st64->rx_frame_errors); 1820 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors); 1821 st64->rx_missed_errors = tswap64(st64->rx_missed_errors); 1822 1823 /* detailed tx_errors */ 1824 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors); 1825 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors); 1826 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors); 1827 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors); 1828 st64->tx_window_errors = tswap64(st64->tx_window_errors); 1829 1830 /* for cslip etc */ 1831 st64->rx_compressed = tswap64(st64->rx_compressed); 1832 st64->tx_compressed = tswap64(st64->tx_compressed); 1833 break; 1834 /* struct rtnl_link_ifmap */ 1835 case IFLA_MAP: 1836 map = RTA_DATA(rtattr); 1837 map->mem_start = tswap64(map->mem_start); 1838 map->mem_end = tswap64(map->mem_end); 1839 map->base_addr = tswap64(map->base_addr); 1840 map->irq = tswap16(map->irq); 1841 break; 1842 /* nested */ 1843 case IFLA_AF_SPEC: 1844 case IFLA_LINKINFO: 1845 /* FIXME: implement nested type */ 1846 gemu_log("Unimplemented nested type %d\n", rtattr->rta_type); 1847 break; 1848 default: 1849 gemu_log("Unknown host IFLA type: %d\n", rtattr->rta_type); 1850 break; 1851 } 1852 return 0; 1853 } 1854 1855 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr) 1856 { 1857 uint32_t *u32; 1858 struct ifa_cacheinfo *ci; 1859 1860 switch (rtattr->rta_type) { 1861 /* binary: depends on family type */ 1862 case IFA_ADDRESS: 1863 case IFA_LOCAL: 1864 break; 1865 /* string */ 1866 case IFA_LABEL: 1867 break; 1868 /* u32 */ 1869 case IFA_FLAGS: 1870 case IFA_BROADCAST: 1871 u32 = RTA_DATA(rtattr); 1872 *u32 = tswap32(*u32); 1873 break; 1874 /* struct ifa_cacheinfo */ 1875 case IFA_CACHEINFO: 1876 ci = RTA_DATA(rtattr); 1877 ci->ifa_prefered = tswap32(ci->ifa_prefered); 1878 ci->ifa_valid = tswap32(ci->ifa_valid); 1879 ci->cstamp = tswap32(ci->cstamp); 1880 ci->tstamp = tswap32(ci->tstamp); 1881 break; 1882 default: 1883 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type); 1884 break; 1885 } 1886 return 0; 1887 } 1888 1889 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr) 1890 { 1891 uint32_t *u32; 1892 switch (rtattr->rta_type) { 1893 /* binary: depends on family type */ 1894 case RTA_GATEWAY: 1895 case RTA_DST: 1896 case RTA_PREFSRC: 1897 break; 1898 /* u32 */ 1899 case RTA_PRIORITY: 1900 case RTA_TABLE: 1901 case RTA_OIF: 1902 u32 = RTA_DATA(rtattr); 1903 *u32 = tswap32(*u32); 1904 break; 1905 default: 1906 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type); 1907 break; 1908 } 1909 return 0; 1910 } 1911 1912 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr, 1913 uint32_t rtattr_len) 1914 { 1915 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 1916 host_to_target_data_link_rtattr); 1917 } 1918 1919 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr, 1920 uint32_t rtattr_len) 1921 { 1922 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 1923 host_to_target_data_addr_rtattr); 1924 } 1925 1926 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr, 1927 uint32_t rtattr_len) 1928 { 1929 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 1930 host_to_target_data_route_rtattr); 1931 } 1932 1933 static abi_long host_to_target_data_route(struct nlmsghdr *nlh) 1934 { 1935 uint32_t nlmsg_len; 1936 struct ifinfomsg *ifi; 1937 struct ifaddrmsg *ifa; 1938 struct rtmsg *rtm; 1939 1940 nlmsg_len = nlh->nlmsg_len; 1941 switch (nlh->nlmsg_type) { 1942 case RTM_NEWLINK: 1943 case RTM_DELLINK: 1944 case RTM_GETLINK: 1945 ifi = NLMSG_DATA(nlh); 1946 ifi->ifi_type = tswap16(ifi->ifi_type); 1947 ifi->ifi_index = tswap32(ifi->ifi_index); 1948 ifi->ifi_flags = tswap32(ifi->ifi_flags); 1949 ifi->ifi_change = tswap32(ifi->ifi_change); 1950 host_to_target_link_rtattr(IFLA_RTA(ifi), 1951 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi))); 1952 break; 1953 case RTM_NEWADDR: 1954 case RTM_DELADDR: 1955 case RTM_GETADDR: 1956 ifa = NLMSG_DATA(nlh); 1957 ifa->ifa_index = tswap32(ifa->ifa_index); 1958 host_to_target_addr_rtattr(IFA_RTA(ifa), 1959 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa))); 1960 break; 1961 case RTM_NEWROUTE: 1962 case RTM_DELROUTE: 1963 case RTM_GETROUTE: 1964 rtm = NLMSG_DATA(nlh); 1965 rtm->rtm_flags = tswap32(rtm->rtm_flags); 1966 host_to_target_route_rtattr(RTM_RTA(rtm), 1967 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm))); 1968 break; 1969 default: 1970 return -TARGET_EINVAL; 1971 } 1972 return 0; 1973 } 1974 1975 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh, 1976 size_t len) 1977 { 1978 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route); 1979 } 1980 1981 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr, 1982 size_t len, 1983 abi_long (*target_to_host_rtattr) 1984 (struct rtattr *)) 1985 { 1986 abi_long ret; 1987 1988 while (len >= sizeof(struct rtattr)) { 1989 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) || 1990 tswap16(rtattr->rta_len) > len) { 1991 break; 1992 } 1993 rtattr->rta_len = tswap16(rtattr->rta_len); 1994 rtattr->rta_type = tswap16(rtattr->rta_type); 1995 ret = target_to_host_rtattr(rtattr); 1996 if (ret < 0) { 1997 return ret; 1998 } 1999 len -= RTA_ALIGN(rtattr->rta_len); 2000 rtattr = (struct rtattr *)(((char *)rtattr) + 2001 RTA_ALIGN(rtattr->rta_len)); 2002 } 2003 return 0; 2004 } 2005 2006 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr) 2007 { 2008 switch (rtattr->rta_type) { 2009 default: 2010 gemu_log("Unknown target IFLA type: %d\n", rtattr->rta_type); 2011 break; 2012 } 2013 return 0; 2014 } 2015 2016 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr) 2017 { 2018 switch (rtattr->rta_type) { 2019 /* binary: depends on family type */ 2020 case IFA_LOCAL: 2021 case IFA_ADDRESS: 2022 break; 2023 default: 2024 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type); 2025 break; 2026 } 2027 return 0; 2028 } 2029 2030 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr) 2031 { 2032 uint32_t *u32; 2033 switch (rtattr->rta_type) { 2034 /* binary: depends on family type */ 2035 case RTA_DST: 2036 case RTA_SRC: 2037 case RTA_GATEWAY: 2038 break; 2039 /* u32 */ 2040 case RTA_OIF: 2041 u32 = RTA_DATA(rtattr); 2042 *u32 = tswap32(*u32); 2043 break; 2044 default: 2045 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type); 2046 break; 2047 } 2048 return 0; 2049 } 2050 2051 static void target_to_host_link_rtattr(struct rtattr *rtattr, 2052 uint32_t rtattr_len) 2053 { 2054 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2055 target_to_host_data_link_rtattr); 2056 } 2057 2058 static void target_to_host_addr_rtattr(struct rtattr *rtattr, 2059 uint32_t rtattr_len) 2060 { 2061 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2062 target_to_host_data_addr_rtattr); 2063 } 2064 2065 static void target_to_host_route_rtattr(struct rtattr *rtattr, 2066 uint32_t rtattr_len) 2067 { 2068 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2069 target_to_host_data_route_rtattr); 2070 } 2071 2072 static abi_long target_to_host_data_route(struct nlmsghdr *nlh) 2073 { 2074 struct ifinfomsg *ifi; 2075 struct ifaddrmsg *ifa; 2076 struct rtmsg *rtm; 2077 2078 switch (nlh->nlmsg_type) { 2079 case RTM_GETLINK: 2080 break; 2081 case RTM_NEWLINK: 2082 case RTM_DELLINK: 2083 ifi = NLMSG_DATA(nlh); 2084 ifi->ifi_type = tswap16(ifi->ifi_type); 2085 ifi->ifi_index = tswap32(ifi->ifi_index); 2086 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2087 ifi->ifi_change = tswap32(ifi->ifi_change); 2088 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len - 2089 NLMSG_LENGTH(sizeof(*ifi))); 2090 break; 2091 case RTM_GETADDR: 2092 case RTM_NEWADDR: 2093 case RTM_DELADDR: 2094 ifa = NLMSG_DATA(nlh); 2095 ifa->ifa_index = tswap32(ifa->ifa_index); 2096 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len - 2097 NLMSG_LENGTH(sizeof(*ifa))); 2098 break; 2099 case RTM_GETROUTE: 2100 break; 2101 case RTM_NEWROUTE: 2102 case RTM_DELROUTE: 2103 rtm = NLMSG_DATA(nlh); 2104 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2105 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len - 2106 NLMSG_LENGTH(sizeof(*rtm))); 2107 break; 2108 default: 2109 return -TARGET_EOPNOTSUPP; 2110 } 2111 return 0; 2112 } 2113 2114 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len) 2115 { 2116 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route); 2117 } 2118 #endif /* CONFIG_RTNETLINK */ 2119 2120 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh) 2121 { 2122 switch (nlh->nlmsg_type) { 2123 default: 2124 gemu_log("Unknown host audit message type %d\n", 2125 nlh->nlmsg_type); 2126 return -TARGET_EINVAL; 2127 } 2128 return 0; 2129 } 2130 2131 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh, 2132 size_t len) 2133 { 2134 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit); 2135 } 2136 2137 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh) 2138 { 2139 switch (nlh->nlmsg_type) { 2140 case AUDIT_USER: 2141 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 2142 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 2143 break; 2144 default: 2145 gemu_log("Unknown target audit message type %d\n", 2146 nlh->nlmsg_type); 2147 return -TARGET_EINVAL; 2148 } 2149 2150 return 0; 2151 } 2152 2153 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len) 2154 { 2155 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit); 2156 } 2157 2158 /* do_setsockopt() Must return target values and target errnos. */ 2159 static abi_long do_setsockopt(int sockfd, int level, int optname, 2160 abi_ulong optval_addr, socklen_t optlen) 2161 { 2162 abi_long ret; 2163 int val; 2164 struct ip_mreqn *ip_mreq; 2165 struct ip_mreq_source *ip_mreq_source; 2166 2167 switch(level) { 2168 case SOL_TCP: 2169 /* TCP options all take an 'int' value. */ 2170 if (optlen < sizeof(uint32_t)) 2171 return -TARGET_EINVAL; 2172 2173 if (get_user_u32(val, optval_addr)) 2174 return -TARGET_EFAULT; 2175 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2176 break; 2177 case SOL_IP: 2178 switch(optname) { 2179 case IP_TOS: 2180 case IP_TTL: 2181 case IP_HDRINCL: 2182 case IP_ROUTER_ALERT: 2183 case IP_RECVOPTS: 2184 case IP_RETOPTS: 2185 case IP_PKTINFO: 2186 case IP_MTU_DISCOVER: 2187 case IP_RECVERR: 2188 case IP_RECVTOS: 2189 #ifdef IP_FREEBIND 2190 case IP_FREEBIND: 2191 #endif 2192 case IP_MULTICAST_TTL: 2193 case IP_MULTICAST_LOOP: 2194 val = 0; 2195 if (optlen >= sizeof(uint32_t)) { 2196 if (get_user_u32(val, optval_addr)) 2197 return -TARGET_EFAULT; 2198 } else if (optlen >= 1) { 2199 if (get_user_u8(val, optval_addr)) 2200 return -TARGET_EFAULT; 2201 } 2202 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2203 break; 2204 case IP_ADD_MEMBERSHIP: 2205 case IP_DROP_MEMBERSHIP: 2206 if (optlen < sizeof (struct target_ip_mreq) || 2207 optlen > sizeof (struct target_ip_mreqn)) 2208 return -TARGET_EINVAL; 2209 2210 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2211 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2212 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2213 break; 2214 2215 case IP_BLOCK_SOURCE: 2216 case IP_UNBLOCK_SOURCE: 2217 case IP_ADD_SOURCE_MEMBERSHIP: 2218 case IP_DROP_SOURCE_MEMBERSHIP: 2219 if (optlen != sizeof (struct target_ip_mreq_source)) 2220 return -TARGET_EINVAL; 2221 2222 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2223 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2224 unlock_user (ip_mreq_source, optval_addr, 0); 2225 break; 2226 2227 default: 2228 goto unimplemented; 2229 } 2230 break; 2231 case SOL_IPV6: 2232 switch (optname) { 2233 case IPV6_MTU_DISCOVER: 2234 case IPV6_MTU: 2235 case IPV6_V6ONLY: 2236 case IPV6_RECVPKTINFO: 2237 val = 0; 2238 if (optlen < sizeof(uint32_t)) { 2239 return -TARGET_EINVAL; 2240 } 2241 if (get_user_u32(val, optval_addr)) { 2242 return -TARGET_EFAULT; 2243 } 2244 ret = get_errno(setsockopt(sockfd, level, optname, 2245 &val, sizeof(val))); 2246 break; 2247 default: 2248 goto unimplemented; 2249 } 2250 break; 2251 case SOL_RAW: 2252 switch (optname) { 2253 case ICMP_FILTER: 2254 /* struct icmp_filter takes an u32 value */ 2255 if (optlen < sizeof(uint32_t)) { 2256 return -TARGET_EINVAL; 2257 } 2258 2259 if (get_user_u32(val, optval_addr)) { 2260 return -TARGET_EFAULT; 2261 } 2262 ret = get_errno(setsockopt(sockfd, level, optname, 2263 &val, sizeof(val))); 2264 break; 2265 2266 default: 2267 goto unimplemented; 2268 } 2269 break; 2270 case TARGET_SOL_SOCKET: 2271 switch (optname) { 2272 case TARGET_SO_RCVTIMEO: 2273 { 2274 struct timeval tv; 2275 2276 optname = SO_RCVTIMEO; 2277 2278 set_timeout: 2279 if (optlen != sizeof(struct target_timeval)) { 2280 return -TARGET_EINVAL; 2281 } 2282 2283 if (copy_from_user_timeval(&tv, optval_addr)) { 2284 return -TARGET_EFAULT; 2285 } 2286 2287 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2288 &tv, sizeof(tv))); 2289 return ret; 2290 } 2291 case TARGET_SO_SNDTIMEO: 2292 optname = SO_SNDTIMEO; 2293 goto set_timeout; 2294 case TARGET_SO_ATTACH_FILTER: 2295 { 2296 struct target_sock_fprog *tfprog; 2297 struct target_sock_filter *tfilter; 2298 struct sock_fprog fprog; 2299 struct sock_filter *filter; 2300 int i; 2301 2302 if (optlen != sizeof(*tfprog)) { 2303 return -TARGET_EINVAL; 2304 } 2305 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2306 return -TARGET_EFAULT; 2307 } 2308 if (!lock_user_struct(VERIFY_READ, tfilter, 2309 tswapal(tfprog->filter), 0)) { 2310 unlock_user_struct(tfprog, optval_addr, 1); 2311 return -TARGET_EFAULT; 2312 } 2313 2314 fprog.len = tswap16(tfprog->len); 2315 filter = g_try_new(struct sock_filter, fprog.len); 2316 if (filter == NULL) { 2317 unlock_user_struct(tfilter, tfprog->filter, 1); 2318 unlock_user_struct(tfprog, optval_addr, 1); 2319 return -TARGET_ENOMEM; 2320 } 2321 for (i = 0; i < fprog.len; i++) { 2322 filter[i].code = tswap16(tfilter[i].code); 2323 filter[i].jt = tfilter[i].jt; 2324 filter[i].jf = tfilter[i].jf; 2325 filter[i].k = tswap32(tfilter[i].k); 2326 } 2327 fprog.filter = filter; 2328 2329 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2330 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2331 g_free(filter); 2332 2333 unlock_user_struct(tfilter, tfprog->filter, 1); 2334 unlock_user_struct(tfprog, optval_addr, 1); 2335 return ret; 2336 } 2337 case TARGET_SO_BINDTODEVICE: 2338 { 2339 char *dev_ifname, *addr_ifname; 2340 2341 if (optlen > IFNAMSIZ - 1) { 2342 optlen = IFNAMSIZ - 1; 2343 } 2344 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2345 if (!dev_ifname) { 2346 return -TARGET_EFAULT; 2347 } 2348 optname = SO_BINDTODEVICE; 2349 addr_ifname = alloca(IFNAMSIZ); 2350 memcpy(addr_ifname, dev_ifname, optlen); 2351 addr_ifname[optlen] = 0; 2352 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2353 addr_ifname, optlen)); 2354 unlock_user (dev_ifname, optval_addr, 0); 2355 return ret; 2356 } 2357 /* Options with 'int' argument. */ 2358 case TARGET_SO_DEBUG: 2359 optname = SO_DEBUG; 2360 break; 2361 case TARGET_SO_REUSEADDR: 2362 optname = SO_REUSEADDR; 2363 break; 2364 case TARGET_SO_TYPE: 2365 optname = SO_TYPE; 2366 break; 2367 case TARGET_SO_ERROR: 2368 optname = SO_ERROR; 2369 break; 2370 case TARGET_SO_DONTROUTE: 2371 optname = SO_DONTROUTE; 2372 break; 2373 case TARGET_SO_BROADCAST: 2374 optname = SO_BROADCAST; 2375 break; 2376 case TARGET_SO_SNDBUF: 2377 optname = SO_SNDBUF; 2378 break; 2379 case TARGET_SO_SNDBUFFORCE: 2380 optname = SO_SNDBUFFORCE; 2381 break; 2382 case TARGET_SO_RCVBUF: 2383 optname = SO_RCVBUF; 2384 break; 2385 case TARGET_SO_RCVBUFFORCE: 2386 optname = SO_RCVBUFFORCE; 2387 break; 2388 case TARGET_SO_KEEPALIVE: 2389 optname = SO_KEEPALIVE; 2390 break; 2391 case TARGET_SO_OOBINLINE: 2392 optname = SO_OOBINLINE; 2393 break; 2394 case TARGET_SO_NO_CHECK: 2395 optname = SO_NO_CHECK; 2396 break; 2397 case TARGET_SO_PRIORITY: 2398 optname = SO_PRIORITY; 2399 break; 2400 #ifdef SO_BSDCOMPAT 2401 case TARGET_SO_BSDCOMPAT: 2402 optname = SO_BSDCOMPAT; 2403 break; 2404 #endif 2405 case TARGET_SO_PASSCRED: 2406 optname = SO_PASSCRED; 2407 break; 2408 case TARGET_SO_PASSSEC: 2409 optname = SO_PASSSEC; 2410 break; 2411 case TARGET_SO_TIMESTAMP: 2412 optname = SO_TIMESTAMP; 2413 break; 2414 case TARGET_SO_RCVLOWAT: 2415 optname = SO_RCVLOWAT; 2416 break; 2417 break; 2418 default: 2419 goto unimplemented; 2420 } 2421 if (optlen < sizeof(uint32_t)) 2422 return -TARGET_EINVAL; 2423 2424 if (get_user_u32(val, optval_addr)) 2425 return -TARGET_EFAULT; 2426 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 2427 break; 2428 default: 2429 unimplemented: 2430 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname); 2431 ret = -TARGET_ENOPROTOOPT; 2432 } 2433 return ret; 2434 } 2435 2436 /* do_getsockopt() Must return target values and target errnos. */ 2437 static abi_long do_getsockopt(int sockfd, int level, int optname, 2438 abi_ulong optval_addr, abi_ulong optlen) 2439 { 2440 abi_long ret; 2441 int len, val; 2442 socklen_t lv; 2443 2444 switch(level) { 2445 case TARGET_SOL_SOCKET: 2446 level = SOL_SOCKET; 2447 switch (optname) { 2448 /* These don't just return a single integer */ 2449 case TARGET_SO_LINGER: 2450 case TARGET_SO_RCVTIMEO: 2451 case TARGET_SO_SNDTIMEO: 2452 case TARGET_SO_PEERNAME: 2453 goto unimplemented; 2454 case TARGET_SO_PEERCRED: { 2455 struct ucred cr; 2456 socklen_t crlen; 2457 struct target_ucred *tcr; 2458 2459 if (get_user_u32(len, optlen)) { 2460 return -TARGET_EFAULT; 2461 } 2462 if (len < 0) { 2463 return -TARGET_EINVAL; 2464 } 2465 2466 crlen = sizeof(cr); 2467 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 2468 &cr, &crlen)); 2469 if (ret < 0) { 2470 return ret; 2471 } 2472 if (len > crlen) { 2473 len = crlen; 2474 } 2475 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 2476 return -TARGET_EFAULT; 2477 } 2478 __put_user(cr.pid, &tcr->pid); 2479 __put_user(cr.uid, &tcr->uid); 2480 __put_user(cr.gid, &tcr->gid); 2481 unlock_user_struct(tcr, optval_addr, 1); 2482 if (put_user_u32(len, optlen)) { 2483 return -TARGET_EFAULT; 2484 } 2485 break; 2486 } 2487 /* Options with 'int' argument. */ 2488 case TARGET_SO_DEBUG: 2489 optname = SO_DEBUG; 2490 goto int_case; 2491 case TARGET_SO_REUSEADDR: 2492 optname = SO_REUSEADDR; 2493 goto int_case; 2494 case TARGET_SO_TYPE: 2495 optname = SO_TYPE; 2496 goto int_case; 2497 case TARGET_SO_ERROR: 2498 optname = SO_ERROR; 2499 goto int_case; 2500 case TARGET_SO_DONTROUTE: 2501 optname = SO_DONTROUTE; 2502 goto int_case; 2503 case TARGET_SO_BROADCAST: 2504 optname = SO_BROADCAST; 2505 goto int_case; 2506 case TARGET_SO_SNDBUF: 2507 optname = SO_SNDBUF; 2508 goto int_case; 2509 case TARGET_SO_RCVBUF: 2510 optname = SO_RCVBUF; 2511 goto int_case; 2512 case TARGET_SO_KEEPALIVE: 2513 optname = SO_KEEPALIVE; 2514 goto int_case; 2515 case TARGET_SO_OOBINLINE: 2516 optname = SO_OOBINLINE; 2517 goto int_case; 2518 case TARGET_SO_NO_CHECK: 2519 optname = SO_NO_CHECK; 2520 goto int_case; 2521 case TARGET_SO_PRIORITY: 2522 optname = SO_PRIORITY; 2523 goto int_case; 2524 #ifdef SO_BSDCOMPAT 2525 case TARGET_SO_BSDCOMPAT: 2526 optname = SO_BSDCOMPAT; 2527 goto int_case; 2528 #endif 2529 case TARGET_SO_PASSCRED: 2530 optname = SO_PASSCRED; 2531 goto int_case; 2532 case TARGET_SO_TIMESTAMP: 2533 optname = SO_TIMESTAMP; 2534 goto int_case; 2535 case TARGET_SO_RCVLOWAT: 2536 optname = SO_RCVLOWAT; 2537 goto int_case; 2538 case TARGET_SO_ACCEPTCONN: 2539 optname = SO_ACCEPTCONN; 2540 goto int_case; 2541 default: 2542 goto int_case; 2543 } 2544 break; 2545 case SOL_TCP: 2546 /* TCP options all take an 'int' value. */ 2547 int_case: 2548 if (get_user_u32(len, optlen)) 2549 return -TARGET_EFAULT; 2550 if (len < 0) 2551 return -TARGET_EINVAL; 2552 lv = sizeof(lv); 2553 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2554 if (ret < 0) 2555 return ret; 2556 if (optname == SO_TYPE) { 2557 val = host_to_target_sock_type(val); 2558 } 2559 if (len > lv) 2560 len = lv; 2561 if (len == 4) { 2562 if (put_user_u32(val, optval_addr)) 2563 return -TARGET_EFAULT; 2564 } else { 2565 if (put_user_u8(val, optval_addr)) 2566 return -TARGET_EFAULT; 2567 } 2568 if (put_user_u32(len, optlen)) 2569 return -TARGET_EFAULT; 2570 break; 2571 case SOL_IP: 2572 switch(optname) { 2573 case IP_TOS: 2574 case IP_TTL: 2575 case IP_HDRINCL: 2576 case IP_ROUTER_ALERT: 2577 case IP_RECVOPTS: 2578 case IP_RETOPTS: 2579 case IP_PKTINFO: 2580 case IP_MTU_DISCOVER: 2581 case IP_RECVERR: 2582 case IP_RECVTOS: 2583 #ifdef IP_FREEBIND 2584 case IP_FREEBIND: 2585 #endif 2586 case IP_MULTICAST_TTL: 2587 case IP_MULTICAST_LOOP: 2588 if (get_user_u32(len, optlen)) 2589 return -TARGET_EFAULT; 2590 if (len < 0) 2591 return -TARGET_EINVAL; 2592 lv = sizeof(lv); 2593 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2594 if (ret < 0) 2595 return ret; 2596 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2597 len = 1; 2598 if (put_user_u32(len, optlen) 2599 || put_user_u8(val, optval_addr)) 2600 return -TARGET_EFAULT; 2601 } else { 2602 if (len > sizeof(int)) 2603 len = sizeof(int); 2604 if (put_user_u32(len, optlen) 2605 || put_user_u32(val, optval_addr)) 2606 return -TARGET_EFAULT; 2607 } 2608 break; 2609 default: 2610 ret = -TARGET_ENOPROTOOPT; 2611 break; 2612 } 2613 break; 2614 default: 2615 unimplemented: 2616 gemu_log("getsockopt level=%d optname=%d not yet supported\n", 2617 level, optname); 2618 ret = -TARGET_EOPNOTSUPP; 2619 break; 2620 } 2621 return ret; 2622 } 2623 2624 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 2625 int count, int copy) 2626 { 2627 struct target_iovec *target_vec; 2628 struct iovec *vec; 2629 abi_ulong total_len, max_len; 2630 int i; 2631 int err = 0; 2632 bool bad_address = false; 2633 2634 if (count == 0) { 2635 errno = 0; 2636 return NULL; 2637 } 2638 if (count < 0 || count > IOV_MAX) { 2639 errno = EINVAL; 2640 return NULL; 2641 } 2642 2643 vec = g_try_new0(struct iovec, count); 2644 if (vec == NULL) { 2645 errno = ENOMEM; 2646 return NULL; 2647 } 2648 2649 target_vec = lock_user(VERIFY_READ, target_addr, 2650 count * sizeof(struct target_iovec), 1); 2651 if (target_vec == NULL) { 2652 err = EFAULT; 2653 goto fail2; 2654 } 2655 2656 /* ??? If host page size > target page size, this will result in a 2657 value larger than what we can actually support. */ 2658 max_len = 0x7fffffff & TARGET_PAGE_MASK; 2659 total_len = 0; 2660 2661 for (i = 0; i < count; i++) { 2662 abi_ulong base = tswapal(target_vec[i].iov_base); 2663 abi_long len = tswapal(target_vec[i].iov_len); 2664 2665 if (len < 0) { 2666 err = EINVAL; 2667 goto fail; 2668 } else if (len == 0) { 2669 /* Zero length pointer is ignored. */ 2670 vec[i].iov_base = 0; 2671 } else { 2672 vec[i].iov_base = lock_user(type, base, len, copy); 2673 /* If the first buffer pointer is bad, this is a fault. But 2674 * subsequent bad buffers will result in a partial write; this 2675 * is realized by filling the vector with null pointers and 2676 * zero lengths. */ 2677 if (!vec[i].iov_base) { 2678 if (i == 0) { 2679 err = EFAULT; 2680 goto fail; 2681 } else { 2682 bad_address = true; 2683 } 2684 } 2685 if (bad_address) { 2686 len = 0; 2687 } 2688 if (len > max_len - total_len) { 2689 len = max_len - total_len; 2690 } 2691 } 2692 vec[i].iov_len = len; 2693 total_len += len; 2694 } 2695 2696 unlock_user(target_vec, target_addr, 0); 2697 return vec; 2698 2699 fail: 2700 while (--i >= 0) { 2701 if (tswapal(target_vec[i].iov_len) > 0) { 2702 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 2703 } 2704 } 2705 unlock_user(target_vec, target_addr, 0); 2706 fail2: 2707 g_free(vec); 2708 errno = err; 2709 return NULL; 2710 } 2711 2712 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 2713 int count, int copy) 2714 { 2715 struct target_iovec *target_vec; 2716 int i; 2717 2718 target_vec = lock_user(VERIFY_READ, target_addr, 2719 count * sizeof(struct target_iovec), 1); 2720 if (target_vec) { 2721 for (i = 0; i < count; i++) { 2722 abi_ulong base = tswapal(target_vec[i].iov_base); 2723 abi_long len = tswapal(target_vec[i].iov_len); 2724 if (len < 0) { 2725 break; 2726 } 2727 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 2728 } 2729 unlock_user(target_vec, target_addr, 0); 2730 } 2731 2732 g_free(vec); 2733 } 2734 2735 static inline int target_to_host_sock_type(int *type) 2736 { 2737 int host_type = 0; 2738 int target_type = *type; 2739 2740 switch (target_type & TARGET_SOCK_TYPE_MASK) { 2741 case TARGET_SOCK_DGRAM: 2742 host_type = SOCK_DGRAM; 2743 break; 2744 case TARGET_SOCK_STREAM: 2745 host_type = SOCK_STREAM; 2746 break; 2747 default: 2748 host_type = target_type & TARGET_SOCK_TYPE_MASK; 2749 break; 2750 } 2751 if (target_type & TARGET_SOCK_CLOEXEC) { 2752 #if defined(SOCK_CLOEXEC) 2753 host_type |= SOCK_CLOEXEC; 2754 #else 2755 return -TARGET_EINVAL; 2756 #endif 2757 } 2758 if (target_type & TARGET_SOCK_NONBLOCK) { 2759 #if defined(SOCK_NONBLOCK) 2760 host_type |= SOCK_NONBLOCK; 2761 #elif !defined(O_NONBLOCK) 2762 return -TARGET_EINVAL; 2763 #endif 2764 } 2765 *type = host_type; 2766 return 0; 2767 } 2768 2769 /* Try to emulate socket type flags after socket creation. */ 2770 static int sock_flags_fixup(int fd, int target_type) 2771 { 2772 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 2773 if (target_type & TARGET_SOCK_NONBLOCK) { 2774 int flags = fcntl(fd, F_GETFL); 2775 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 2776 close(fd); 2777 return -TARGET_EINVAL; 2778 } 2779 } 2780 #endif 2781 return fd; 2782 } 2783 2784 static abi_long packet_target_to_host_sockaddr(void *host_addr, 2785 abi_ulong target_addr, 2786 socklen_t len) 2787 { 2788 struct sockaddr *addr = host_addr; 2789 struct target_sockaddr *target_saddr; 2790 2791 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 2792 if (!target_saddr) { 2793 return -TARGET_EFAULT; 2794 } 2795 2796 memcpy(addr, target_saddr, len); 2797 addr->sa_family = tswap16(target_saddr->sa_family); 2798 /* spkt_protocol is big-endian */ 2799 2800 unlock_user(target_saddr, target_addr, 0); 2801 return 0; 2802 } 2803 2804 static TargetFdTrans target_packet_trans = { 2805 .target_to_host_addr = packet_target_to_host_sockaddr, 2806 }; 2807 2808 #ifdef CONFIG_RTNETLINK 2809 static abi_long netlink_route_target_to_host(void *buf, size_t len) 2810 { 2811 return target_to_host_nlmsg_route(buf, len); 2812 } 2813 2814 static abi_long netlink_route_host_to_target(void *buf, size_t len) 2815 { 2816 return host_to_target_nlmsg_route(buf, len); 2817 } 2818 2819 static TargetFdTrans target_netlink_route_trans = { 2820 .target_to_host_data = netlink_route_target_to_host, 2821 .host_to_target_data = netlink_route_host_to_target, 2822 }; 2823 #endif /* CONFIG_RTNETLINK */ 2824 2825 static abi_long netlink_audit_target_to_host(void *buf, size_t len) 2826 { 2827 return target_to_host_nlmsg_audit(buf, len); 2828 } 2829 2830 static abi_long netlink_audit_host_to_target(void *buf, size_t len) 2831 { 2832 return host_to_target_nlmsg_audit(buf, len); 2833 } 2834 2835 static TargetFdTrans target_netlink_audit_trans = { 2836 .target_to_host_data = netlink_audit_target_to_host, 2837 .host_to_target_data = netlink_audit_host_to_target, 2838 }; 2839 2840 /* do_socket() Must return target values and target errnos. */ 2841 static abi_long do_socket(int domain, int type, int protocol) 2842 { 2843 int target_type = type; 2844 int ret; 2845 2846 ret = target_to_host_sock_type(&type); 2847 if (ret) { 2848 return ret; 2849 } 2850 2851 if (domain == PF_NETLINK && !( 2852 #ifdef CONFIG_RTNETLINK 2853 protocol == NETLINK_ROUTE || 2854 #endif 2855 protocol == NETLINK_KOBJECT_UEVENT || 2856 protocol == NETLINK_AUDIT)) { 2857 return -EPFNOSUPPORT; 2858 } 2859 2860 if (domain == AF_PACKET || 2861 (domain == AF_INET && type == SOCK_PACKET)) { 2862 protocol = tswap16(protocol); 2863 } 2864 2865 ret = get_errno(socket(domain, type, protocol)); 2866 if (ret >= 0) { 2867 ret = sock_flags_fixup(ret, target_type); 2868 if (type == SOCK_PACKET) { 2869 /* Manage an obsolete case : 2870 * if socket type is SOCK_PACKET, bind by name 2871 */ 2872 fd_trans_register(ret, &target_packet_trans); 2873 } else if (domain == PF_NETLINK) { 2874 switch (protocol) { 2875 #ifdef CONFIG_RTNETLINK 2876 case NETLINK_ROUTE: 2877 fd_trans_register(ret, &target_netlink_route_trans); 2878 break; 2879 #endif 2880 case NETLINK_KOBJECT_UEVENT: 2881 /* nothing to do: messages are strings */ 2882 break; 2883 case NETLINK_AUDIT: 2884 fd_trans_register(ret, &target_netlink_audit_trans); 2885 break; 2886 default: 2887 g_assert_not_reached(); 2888 } 2889 } 2890 } 2891 return ret; 2892 } 2893 2894 /* do_bind() Must return target values and target errnos. */ 2895 static abi_long do_bind(int sockfd, abi_ulong target_addr, 2896 socklen_t addrlen) 2897 { 2898 void *addr; 2899 abi_long ret; 2900 2901 if ((int)addrlen < 0) { 2902 return -TARGET_EINVAL; 2903 } 2904 2905 addr = alloca(addrlen+1); 2906 2907 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 2908 if (ret) 2909 return ret; 2910 2911 return get_errno(bind(sockfd, addr, addrlen)); 2912 } 2913 2914 /* do_connect() Must return target values and target errnos. */ 2915 static abi_long do_connect(int sockfd, abi_ulong target_addr, 2916 socklen_t addrlen) 2917 { 2918 void *addr; 2919 abi_long ret; 2920 2921 if ((int)addrlen < 0) { 2922 return -TARGET_EINVAL; 2923 } 2924 2925 addr = alloca(addrlen+1); 2926 2927 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 2928 if (ret) 2929 return ret; 2930 2931 return get_errno(safe_connect(sockfd, addr, addrlen)); 2932 } 2933 2934 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 2935 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 2936 int flags, int send) 2937 { 2938 abi_long ret, len; 2939 struct msghdr msg; 2940 int count; 2941 struct iovec *vec; 2942 abi_ulong target_vec; 2943 2944 if (msgp->msg_name) { 2945 msg.msg_namelen = tswap32(msgp->msg_namelen); 2946 msg.msg_name = alloca(msg.msg_namelen+1); 2947 ret = target_to_host_sockaddr(fd, msg.msg_name, 2948 tswapal(msgp->msg_name), 2949 msg.msg_namelen); 2950 if (ret) { 2951 goto out2; 2952 } 2953 } else { 2954 msg.msg_name = NULL; 2955 msg.msg_namelen = 0; 2956 } 2957 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 2958 msg.msg_control = alloca(msg.msg_controllen); 2959 msg.msg_flags = tswap32(msgp->msg_flags); 2960 2961 count = tswapal(msgp->msg_iovlen); 2962 target_vec = tswapal(msgp->msg_iov); 2963 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 2964 target_vec, count, send); 2965 if (vec == NULL) { 2966 ret = -host_to_target_errno(errno); 2967 goto out2; 2968 } 2969 msg.msg_iovlen = count; 2970 msg.msg_iov = vec; 2971 2972 if (send) { 2973 if (fd_trans_target_to_host_data(fd)) { 2974 ret = fd_trans_target_to_host_data(fd)(msg.msg_iov->iov_base, 2975 msg.msg_iov->iov_len); 2976 } else { 2977 ret = target_to_host_cmsg(&msg, msgp); 2978 } 2979 if (ret == 0) { 2980 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 2981 } 2982 } else { 2983 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 2984 if (!is_error(ret)) { 2985 len = ret; 2986 if (fd_trans_host_to_target_data(fd)) { 2987 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 2988 msg.msg_iov->iov_len); 2989 } else { 2990 ret = host_to_target_cmsg(msgp, &msg); 2991 } 2992 if (!is_error(ret)) { 2993 msgp->msg_namelen = tswap32(msg.msg_namelen); 2994 if (msg.msg_name != NULL) { 2995 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 2996 msg.msg_name, msg.msg_namelen); 2997 if (ret) { 2998 goto out; 2999 } 3000 } 3001 3002 ret = len; 3003 } 3004 } 3005 } 3006 3007 out: 3008 unlock_iovec(vec, target_vec, count, !send); 3009 out2: 3010 return ret; 3011 } 3012 3013 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3014 int flags, int send) 3015 { 3016 abi_long ret; 3017 struct target_msghdr *msgp; 3018 3019 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3020 msgp, 3021 target_msg, 3022 send ? 1 : 0)) { 3023 return -TARGET_EFAULT; 3024 } 3025 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3026 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3027 return ret; 3028 } 3029 3030 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3031 * so it might not have this *mmsg-specific flag either. 3032 */ 3033 #ifndef MSG_WAITFORONE 3034 #define MSG_WAITFORONE 0x10000 3035 #endif 3036 3037 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3038 unsigned int vlen, unsigned int flags, 3039 int send) 3040 { 3041 struct target_mmsghdr *mmsgp; 3042 abi_long ret = 0; 3043 int i; 3044 3045 if (vlen > UIO_MAXIOV) { 3046 vlen = UIO_MAXIOV; 3047 } 3048 3049 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3050 if (!mmsgp) { 3051 return -TARGET_EFAULT; 3052 } 3053 3054 for (i = 0; i < vlen; i++) { 3055 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3056 if (is_error(ret)) { 3057 break; 3058 } 3059 mmsgp[i].msg_len = tswap32(ret); 3060 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3061 if (flags & MSG_WAITFORONE) { 3062 flags |= MSG_DONTWAIT; 3063 } 3064 } 3065 3066 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3067 3068 /* Return number of datagrams sent if we sent any at all; 3069 * otherwise return the error. 3070 */ 3071 if (i) { 3072 return i; 3073 } 3074 return ret; 3075 } 3076 3077 /* do_accept4() Must return target values and target errnos. */ 3078 static abi_long do_accept4(int fd, abi_ulong target_addr, 3079 abi_ulong target_addrlen_addr, int flags) 3080 { 3081 socklen_t addrlen; 3082 void *addr; 3083 abi_long ret; 3084 int host_flags; 3085 3086 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 3087 3088 if (target_addr == 0) { 3089 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3090 } 3091 3092 /* linux returns EINVAL if addrlen pointer is invalid */ 3093 if (get_user_u32(addrlen, target_addrlen_addr)) 3094 return -TARGET_EINVAL; 3095 3096 if ((int)addrlen < 0) { 3097 return -TARGET_EINVAL; 3098 } 3099 3100 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3101 return -TARGET_EINVAL; 3102 3103 addr = alloca(addrlen); 3104 3105 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags)); 3106 if (!is_error(ret)) { 3107 host_to_target_sockaddr(target_addr, addr, addrlen); 3108 if (put_user_u32(addrlen, target_addrlen_addr)) 3109 ret = -TARGET_EFAULT; 3110 } 3111 return ret; 3112 } 3113 3114 /* do_getpeername() Must return target values and target errnos. */ 3115 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3116 abi_ulong target_addrlen_addr) 3117 { 3118 socklen_t addrlen; 3119 void *addr; 3120 abi_long ret; 3121 3122 if (get_user_u32(addrlen, target_addrlen_addr)) 3123 return -TARGET_EFAULT; 3124 3125 if ((int)addrlen < 0) { 3126 return -TARGET_EINVAL; 3127 } 3128 3129 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3130 return -TARGET_EFAULT; 3131 3132 addr = alloca(addrlen); 3133 3134 ret = get_errno(getpeername(fd, addr, &addrlen)); 3135 if (!is_error(ret)) { 3136 host_to_target_sockaddr(target_addr, addr, addrlen); 3137 if (put_user_u32(addrlen, target_addrlen_addr)) 3138 ret = -TARGET_EFAULT; 3139 } 3140 return ret; 3141 } 3142 3143 /* do_getsockname() Must return target values and target errnos. */ 3144 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3145 abi_ulong target_addrlen_addr) 3146 { 3147 socklen_t addrlen; 3148 void *addr; 3149 abi_long ret; 3150 3151 if (get_user_u32(addrlen, target_addrlen_addr)) 3152 return -TARGET_EFAULT; 3153 3154 if ((int)addrlen < 0) { 3155 return -TARGET_EINVAL; 3156 } 3157 3158 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3159 return -TARGET_EFAULT; 3160 3161 addr = alloca(addrlen); 3162 3163 ret = get_errno(getsockname(fd, addr, &addrlen)); 3164 if (!is_error(ret)) { 3165 host_to_target_sockaddr(target_addr, addr, addrlen); 3166 if (put_user_u32(addrlen, target_addrlen_addr)) 3167 ret = -TARGET_EFAULT; 3168 } 3169 return ret; 3170 } 3171 3172 /* do_socketpair() Must return target values and target errnos. */ 3173 static abi_long do_socketpair(int domain, int type, int protocol, 3174 abi_ulong target_tab_addr) 3175 { 3176 int tab[2]; 3177 abi_long ret; 3178 3179 target_to_host_sock_type(&type); 3180 3181 ret = get_errno(socketpair(domain, type, protocol, tab)); 3182 if (!is_error(ret)) { 3183 if (put_user_s32(tab[0], target_tab_addr) 3184 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3185 ret = -TARGET_EFAULT; 3186 } 3187 return ret; 3188 } 3189 3190 /* do_sendto() Must return target values and target errnos. */ 3191 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3192 abi_ulong target_addr, socklen_t addrlen) 3193 { 3194 void *addr; 3195 void *host_msg; 3196 abi_long ret; 3197 3198 if ((int)addrlen < 0) { 3199 return -TARGET_EINVAL; 3200 } 3201 3202 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3203 if (!host_msg) 3204 return -TARGET_EFAULT; 3205 if (fd_trans_target_to_host_data(fd)) { 3206 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3207 if (ret < 0) { 3208 unlock_user(host_msg, msg, 0); 3209 return ret; 3210 } 3211 } 3212 if (target_addr) { 3213 addr = alloca(addrlen+1); 3214 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3215 if (ret) { 3216 unlock_user(host_msg, msg, 0); 3217 return ret; 3218 } 3219 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3220 } else { 3221 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3222 } 3223 unlock_user(host_msg, msg, 0); 3224 return ret; 3225 } 3226 3227 /* do_recvfrom() Must return target values and target errnos. */ 3228 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3229 abi_ulong target_addr, 3230 abi_ulong target_addrlen) 3231 { 3232 socklen_t addrlen; 3233 void *addr; 3234 void *host_msg; 3235 abi_long ret; 3236 3237 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3238 if (!host_msg) 3239 return -TARGET_EFAULT; 3240 if (target_addr) { 3241 if (get_user_u32(addrlen, target_addrlen)) { 3242 ret = -TARGET_EFAULT; 3243 goto fail; 3244 } 3245 if ((int)addrlen < 0) { 3246 ret = -TARGET_EINVAL; 3247 goto fail; 3248 } 3249 addr = alloca(addrlen); 3250 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3251 addr, &addrlen)); 3252 } else { 3253 addr = NULL; /* To keep compiler quiet. */ 3254 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3255 } 3256 if (!is_error(ret)) { 3257 if (target_addr) { 3258 host_to_target_sockaddr(target_addr, addr, addrlen); 3259 if (put_user_u32(addrlen, target_addrlen)) { 3260 ret = -TARGET_EFAULT; 3261 goto fail; 3262 } 3263 } 3264 unlock_user(host_msg, msg, len); 3265 } else { 3266 fail: 3267 unlock_user(host_msg, msg, 0); 3268 } 3269 return ret; 3270 } 3271 3272 #ifdef TARGET_NR_socketcall 3273 /* do_socketcall() Must return target values and target errnos. */ 3274 static abi_long do_socketcall(int num, abi_ulong vptr) 3275 { 3276 static const unsigned ac[] = { /* number of arguments per call */ 3277 [SOCKOP_socket] = 3, /* domain, type, protocol */ 3278 [SOCKOP_bind] = 3, /* sockfd, addr, addrlen */ 3279 [SOCKOP_connect] = 3, /* sockfd, addr, addrlen */ 3280 [SOCKOP_listen] = 2, /* sockfd, backlog */ 3281 [SOCKOP_accept] = 3, /* sockfd, addr, addrlen */ 3282 [SOCKOP_accept4] = 4, /* sockfd, addr, addrlen, flags */ 3283 [SOCKOP_getsockname] = 3, /* sockfd, addr, addrlen */ 3284 [SOCKOP_getpeername] = 3, /* sockfd, addr, addrlen */ 3285 [SOCKOP_socketpair] = 4, /* domain, type, protocol, tab */ 3286 [SOCKOP_send] = 4, /* sockfd, msg, len, flags */ 3287 [SOCKOP_recv] = 4, /* sockfd, msg, len, flags */ 3288 [SOCKOP_sendto] = 6, /* sockfd, msg, len, flags, addr, addrlen */ 3289 [SOCKOP_recvfrom] = 6, /* sockfd, msg, len, flags, addr, addrlen */ 3290 [SOCKOP_shutdown] = 2, /* sockfd, how */ 3291 [SOCKOP_sendmsg] = 3, /* sockfd, msg, flags */ 3292 [SOCKOP_recvmsg] = 3, /* sockfd, msg, flags */ 3293 [SOCKOP_sendmmsg] = 4, /* sockfd, msgvec, vlen, flags */ 3294 [SOCKOP_recvmmsg] = 4, /* sockfd, msgvec, vlen, flags */ 3295 [SOCKOP_setsockopt] = 5, /* sockfd, level, optname, optval, optlen */ 3296 [SOCKOP_getsockopt] = 5, /* sockfd, level, optname, optval, optlen */ 3297 }; 3298 abi_long a[6]; /* max 6 args */ 3299 3300 /* first, collect the arguments in a[] according to ac[] */ 3301 if (num >= 0 && num < ARRAY_SIZE(ac)) { 3302 unsigned i; 3303 assert(ARRAY_SIZE(a) >= ac[num]); /* ensure we have space for args */ 3304 for (i = 0; i < ac[num]; ++i) { 3305 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3306 return -TARGET_EFAULT; 3307 } 3308 } 3309 } 3310 3311 /* now when we have the args, actually handle the call */ 3312 switch (num) { 3313 case SOCKOP_socket: /* domain, type, protocol */ 3314 return do_socket(a[0], a[1], a[2]); 3315 case SOCKOP_bind: /* sockfd, addr, addrlen */ 3316 return do_bind(a[0], a[1], a[2]); 3317 case SOCKOP_connect: /* sockfd, addr, addrlen */ 3318 return do_connect(a[0], a[1], a[2]); 3319 case SOCKOP_listen: /* sockfd, backlog */ 3320 return get_errno(listen(a[0], a[1])); 3321 case SOCKOP_accept: /* sockfd, addr, addrlen */ 3322 return do_accept4(a[0], a[1], a[2], 0); 3323 case SOCKOP_accept4: /* sockfd, addr, addrlen, flags */ 3324 return do_accept4(a[0], a[1], a[2], a[3]); 3325 case SOCKOP_getsockname: /* sockfd, addr, addrlen */ 3326 return do_getsockname(a[0], a[1], a[2]); 3327 case SOCKOP_getpeername: /* sockfd, addr, addrlen */ 3328 return do_getpeername(a[0], a[1], a[2]); 3329 case SOCKOP_socketpair: /* domain, type, protocol, tab */ 3330 return do_socketpair(a[0], a[1], a[2], a[3]); 3331 case SOCKOP_send: /* sockfd, msg, len, flags */ 3332 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3333 case SOCKOP_recv: /* sockfd, msg, len, flags */ 3334 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3335 case SOCKOP_sendto: /* sockfd, msg, len, flags, addr, addrlen */ 3336 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3337 case SOCKOP_recvfrom: /* sockfd, msg, len, flags, addr, addrlen */ 3338 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3339 case SOCKOP_shutdown: /* sockfd, how */ 3340 return get_errno(shutdown(a[0], a[1])); 3341 case SOCKOP_sendmsg: /* sockfd, msg, flags */ 3342 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3343 case SOCKOP_recvmsg: /* sockfd, msg, flags */ 3344 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3345 case SOCKOP_sendmmsg: /* sockfd, msgvec, vlen, flags */ 3346 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 3347 case SOCKOP_recvmmsg: /* sockfd, msgvec, vlen, flags */ 3348 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 3349 case SOCKOP_setsockopt: /* sockfd, level, optname, optval, optlen */ 3350 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3351 case SOCKOP_getsockopt: /* sockfd, level, optname, optval, optlen */ 3352 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3353 default: 3354 gemu_log("Unsupported socketcall: %d\n", num); 3355 return -TARGET_ENOSYS; 3356 } 3357 } 3358 #endif 3359 3360 #define N_SHM_REGIONS 32 3361 3362 static struct shm_region { 3363 abi_ulong start; 3364 abi_ulong size; 3365 bool in_use; 3366 } shm_regions[N_SHM_REGIONS]; 3367 3368 struct target_semid_ds 3369 { 3370 struct target_ipc_perm sem_perm; 3371 abi_ulong sem_otime; 3372 #if !defined(TARGET_PPC64) 3373 abi_ulong __unused1; 3374 #endif 3375 abi_ulong sem_ctime; 3376 #if !defined(TARGET_PPC64) 3377 abi_ulong __unused2; 3378 #endif 3379 abi_ulong sem_nsems; 3380 abi_ulong __unused3; 3381 abi_ulong __unused4; 3382 }; 3383 3384 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 3385 abi_ulong target_addr) 3386 { 3387 struct target_ipc_perm *target_ip; 3388 struct target_semid_ds *target_sd; 3389 3390 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3391 return -TARGET_EFAULT; 3392 target_ip = &(target_sd->sem_perm); 3393 host_ip->__key = tswap32(target_ip->__key); 3394 host_ip->uid = tswap32(target_ip->uid); 3395 host_ip->gid = tswap32(target_ip->gid); 3396 host_ip->cuid = tswap32(target_ip->cuid); 3397 host_ip->cgid = tswap32(target_ip->cgid); 3398 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3399 host_ip->mode = tswap32(target_ip->mode); 3400 #else 3401 host_ip->mode = tswap16(target_ip->mode); 3402 #endif 3403 #if defined(TARGET_PPC) 3404 host_ip->__seq = tswap32(target_ip->__seq); 3405 #else 3406 host_ip->__seq = tswap16(target_ip->__seq); 3407 #endif 3408 unlock_user_struct(target_sd, target_addr, 0); 3409 return 0; 3410 } 3411 3412 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 3413 struct ipc_perm *host_ip) 3414 { 3415 struct target_ipc_perm *target_ip; 3416 struct target_semid_ds *target_sd; 3417 3418 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3419 return -TARGET_EFAULT; 3420 target_ip = &(target_sd->sem_perm); 3421 target_ip->__key = tswap32(host_ip->__key); 3422 target_ip->uid = tswap32(host_ip->uid); 3423 target_ip->gid = tswap32(host_ip->gid); 3424 target_ip->cuid = tswap32(host_ip->cuid); 3425 target_ip->cgid = tswap32(host_ip->cgid); 3426 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3427 target_ip->mode = tswap32(host_ip->mode); 3428 #else 3429 target_ip->mode = tswap16(host_ip->mode); 3430 #endif 3431 #if defined(TARGET_PPC) 3432 target_ip->__seq = tswap32(host_ip->__seq); 3433 #else 3434 target_ip->__seq = tswap16(host_ip->__seq); 3435 #endif 3436 unlock_user_struct(target_sd, target_addr, 1); 3437 return 0; 3438 } 3439 3440 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 3441 abi_ulong target_addr) 3442 { 3443 struct target_semid_ds *target_sd; 3444 3445 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3446 return -TARGET_EFAULT; 3447 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 3448 return -TARGET_EFAULT; 3449 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 3450 host_sd->sem_otime = tswapal(target_sd->sem_otime); 3451 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 3452 unlock_user_struct(target_sd, target_addr, 0); 3453 return 0; 3454 } 3455 3456 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 3457 struct semid_ds *host_sd) 3458 { 3459 struct target_semid_ds *target_sd; 3460 3461 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3462 return -TARGET_EFAULT; 3463 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 3464 return -TARGET_EFAULT; 3465 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 3466 target_sd->sem_otime = tswapal(host_sd->sem_otime); 3467 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 3468 unlock_user_struct(target_sd, target_addr, 1); 3469 return 0; 3470 } 3471 3472 struct target_seminfo { 3473 int semmap; 3474 int semmni; 3475 int semmns; 3476 int semmnu; 3477 int semmsl; 3478 int semopm; 3479 int semume; 3480 int semusz; 3481 int semvmx; 3482 int semaem; 3483 }; 3484 3485 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 3486 struct seminfo *host_seminfo) 3487 { 3488 struct target_seminfo *target_seminfo; 3489 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 3490 return -TARGET_EFAULT; 3491 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 3492 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 3493 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 3494 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 3495 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 3496 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 3497 __put_user(host_seminfo->semume, &target_seminfo->semume); 3498 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 3499 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 3500 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 3501 unlock_user_struct(target_seminfo, target_addr, 1); 3502 return 0; 3503 } 3504 3505 union semun { 3506 int val; 3507 struct semid_ds *buf; 3508 unsigned short *array; 3509 struct seminfo *__buf; 3510 }; 3511 3512 union target_semun { 3513 int val; 3514 abi_ulong buf; 3515 abi_ulong array; 3516 abi_ulong __buf; 3517 }; 3518 3519 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 3520 abi_ulong target_addr) 3521 { 3522 int nsems; 3523 unsigned short *array; 3524 union semun semun; 3525 struct semid_ds semid_ds; 3526 int i, ret; 3527 3528 semun.buf = &semid_ds; 3529 3530 ret = semctl(semid, 0, IPC_STAT, semun); 3531 if (ret == -1) 3532 return get_errno(ret); 3533 3534 nsems = semid_ds.sem_nsems; 3535 3536 *host_array = g_try_new(unsigned short, nsems); 3537 if (!*host_array) { 3538 return -TARGET_ENOMEM; 3539 } 3540 array = lock_user(VERIFY_READ, target_addr, 3541 nsems*sizeof(unsigned short), 1); 3542 if (!array) { 3543 g_free(*host_array); 3544 return -TARGET_EFAULT; 3545 } 3546 3547 for(i=0; i<nsems; i++) { 3548 __get_user((*host_array)[i], &array[i]); 3549 } 3550 unlock_user(array, target_addr, 0); 3551 3552 return 0; 3553 } 3554 3555 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 3556 unsigned short **host_array) 3557 { 3558 int nsems; 3559 unsigned short *array; 3560 union semun semun; 3561 struct semid_ds semid_ds; 3562 int i, ret; 3563 3564 semun.buf = &semid_ds; 3565 3566 ret = semctl(semid, 0, IPC_STAT, semun); 3567 if (ret == -1) 3568 return get_errno(ret); 3569 3570 nsems = semid_ds.sem_nsems; 3571 3572 array = lock_user(VERIFY_WRITE, target_addr, 3573 nsems*sizeof(unsigned short), 0); 3574 if (!array) 3575 return -TARGET_EFAULT; 3576 3577 for(i=0; i<nsems; i++) { 3578 __put_user((*host_array)[i], &array[i]); 3579 } 3580 g_free(*host_array); 3581 unlock_user(array, target_addr, 1); 3582 3583 return 0; 3584 } 3585 3586 static inline abi_long do_semctl(int semid, int semnum, int cmd, 3587 abi_ulong target_arg) 3588 { 3589 union target_semun target_su = { .buf = target_arg }; 3590 union semun arg; 3591 struct semid_ds dsarg; 3592 unsigned short *array = NULL; 3593 struct seminfo seminfo; 3594 abi_long ret = -TARGET_EINVAL; 3595 abi_long err; 3596 cmd &= 0xff; 3597 3598 switch( cmd ) { 3599 case GETVAL: 3600 case SETVAL: 3601 /* In 64 bit cross-endian situations, we will erroneously pick up 3602 * the wrong half of the union for the "val" element. To rectify 3603 * this, the entire 8-byte structure is byteswapped, followed by 3604 * a swap of the 4 byte val field. In other cases, the data is 3605 * already in proper host byte order. */ 3606 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 3607 target_su.buf = tswapal(target_su.buf); 3608 arg.val = tswap32(target_su.val); 3609 } else { 3610 arg.val = target_su.val; 3611 } 3612 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3613 break; 3614 case GETALL: 3615 case SETALL: 3616 err = target_to_host_semarray(semid, &array, target_su.array); 3617 if (err) 3618 return err; 3619 arg.array = array; 3620 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3621 err = host_to_target_semarray(semid, target_su.array, &array); 3622 if (err) 3623 return err; 3624 break; 3625 case IPC_STAT: 3626 case IPC_SET: 3627 case SEM_STAT: 3628 err = target_to_host_semid_ds(&dsarg, target_su.buf); 3629 if (err) 3630 return err; 3631 arg.buf = &dsarg; 3632 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3633 err = host_to_target_semid_ds(target_su.buf, &dsarg); 3634 if (err) 3635 return err; 3636 break; 3637 case IPC_INFO: 3638 case SEM_INFO: 3639 arg.__buf = &seminfo; 3640 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3641 err = host_to_target_seminfo(target_su.__buf, &seminfo); 3642 if (err) 3643 return err; 3644 break; 3645 case IPC_RMID: 3646 case GETPID: 3647 case GETNCNT: 3648 case GETZCNT: 3649 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 3650 break; 3651 } 3652 3653 return ret; 3654 } 3655 3656 struct target_sembuf { 3657 unsigned short sem_num; 3658 short sem_op; 3659 short sem_flg; 3660 }; 3661 3662 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 3663 abi_ulong target_addr, 3664 unsigned nsops) 3665 { 3666 struct target_sembuf *target_sembuf; 3667 int i; 3668 3669 target_sembuf = lock_user(VERIFY_READ, target_addr, 3670 nsops*sizeof(struct target_sembuf), 1); 3671 if (!target_sembuf) 3672 return -TARGET_EFAULT; 3673 3674 for(i=0; i<nsops; i++) { 3675 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 3676 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 3677 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 3678 } 3679 3680 unlock_user(target_sembuf, target_addr, 0); 3681 3682 return 0; 3683 } 3684 3685 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops) 3686 { 3687 struct sembuf sops[nsops]; 3688 3689 if (target_to_host_sembuf(sops, ptr, nsops)) 3690 return -TARGET_EFAULT; 3691 3692 return get_errno(safe_semtimedop(semid, sops, nsops, NULL)); 3693 } 3694 3695 struct target_msqid_ds 3696 { 3697 struct target_ipc_perm msg_perm; 3698 abi_ulong msg_stime; 3699 #if TARGET_ABI_BITS == 32 3700 abi_ulong __unused1; 3701 #endif 3702 abi_ulong msg_rtime; 3703 #if TARGET_ABI_BITS == 32 3704 abi_ulong __unused2; 3705 #endif 3706 abi_ulong msg_ctime; 3707 #if TARGET_ABI_BITS == 32 3708 abi_ulong __unused3; 3709 #endif 3710 abi_ulong __msg_cbytes; 3711 abi_ulong msg_qnum; 3712 abi_ulong msg_qbytes; 3713 abi_ulong msg_lspid; 3714 abi_ulong msg_lrpid; 3715 abi_ulong __unused4; 3716 abi_ulong __unused5; 3717 }; 3718 3719 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 3720 abi_ulong target_addr) 3721 { 3722 struct target_msqid_ds *target_md; 3723 3724 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 3725 return -TARGET_EFAULT; 3726 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 3727 return -TARGET_EFAULT; 3728 host_md->msg_stime = tswapal(target_md->msg_stime); 3729 host_md->msg_rtime = tswapal(target_md->msg_rtime); 3730 host_md->msg_ctime = tswapal(target_md->msg_ctime); 3731 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 3732 host_md->msg_qnum = tswapal(target_md->msg_qnum); 3733 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 3734 host_md->msg_lspid = tswapal(target_md->msg_lspid); 3735 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 3736 unlock_user_struct(target_md, target_addr, 0); 3737 return 0; 3738 } 3739 3740 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 3741 struct msqid_ds *host_md) 3742 { 3743 struct target_msqid_ds *target_md; 3744 3745 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 3746 return -TARGET_EFAULT; 3747 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 3748 return -TARGET_EFAULT; 3749 target_md->msg_stime = tswapal(host_md->msg_stime); 3750 target_md->msg_rtime = tswapal(host_md->msg_rtime); 3751 target_md->msg_ctime = tswapal(host_md->msg_ctime); 3752 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 3753 target_md->msg_qnum = tswapal(host_md->msg_qnum); 3754 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 3755 target_md->msg_lspid = tswapal(host_md->msg_lspid); 3756 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 3757 unlock_user_struct(target_md, target_addr, 1); 3758 return 0; 3759 } 3760 3761 struct target_msginfo { 3762 int msgpool; 3763 int msgmap; 3764 int msgmax; 3765 int msgmnb; 3766 int msgmni; 3767 int msgssz; 3768 int msgtql; 3769 unsigned short int msgseg; 3770 }; 3771 3772 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 3773 struct msginfo *host_msginfo) 3774 { 3775 struct target_msginfo *target_msginfo; 3776 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 3777 return -TARGET_EFAULT; 3778 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 3779 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 3780 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 3781 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 3782 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 3783 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 3784 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 3785 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 3786 unlock_user_struct(target_msginfo, target_addr, 1); 3787 return 0; 3788 } 3789 3790 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 3791 { 3792 struct msqid_ds dsarg; 3793 struct msginfo msginfo; 3794 abi_long ret = -TARGET_EINVAL; 3795 3796 cmd &= 0xff; 3797 3798 switch (cmd) { 3799 case IPC_STAT: 3800 case IPC_SET: 3801 case MSG_STAT: 3802 if (target_to_host_msqid_ds(&dsarg,ptr)) 3803 return -TARGET_EFAULT; 3804 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 3805 if (host_to_target_msqid_ds(ptr,&dsarg)) 3806 return -TARGET_EFAULT; 3807 break; 3808 case IPC_RMID: 3809 ret = get_errno(msgctl(msgid, cmd, NULL)); 3810 break; 3811 case IPC_INFO: 3812 case MSG_INFO: 3813 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 3814 if (host_to_target_msginfo(ptr, &msginfo)) 3815 return -TARGET_EFAULT; 3816 break; 3817 } 3818 3819 return ret; 3820 } 3821 3822 struct target_msgbuf { 3823 abi_long mtype; 3824 char mtext[1]; 3825 }; 3826 3827 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 3828 ssize_t msgsz, int msgflg) 3829 { 3830 struct target_msgbuf *target_mb; 3831 struct msgbuf *host_mb; 3832 abi_long ret = 0; 3833 3834 if (msgsz < 0) { 3835 return -TARGET_EINVAL; 3836 } 3837 3838 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 3839 return -TARGET_EFAULT; 3840 host_mb = g_try_malloc(msgsz + sizeof(long)); 3841 if (!host_mb) { 3842 unlock_user_struct(target_mb, msgp, 0); 3843 return -TARGET_ENOMEM; 3844 } 3845 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 3846 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 3847 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 3848 g_free(host_mb); 3849 unlock_user_struct(target_mb, msgp, 0); 3850 3851 return ret; 3852 } 3853 3854 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 3855 ssize_t msgsz, abi_long msgtyp, 3856 int msgflg) 3857 { 3858 struct target_msgbuf *target_mb; 3859 char *target_mtext; 3860 struct msgbuf *host_mb; 3861 abi_long ret = 0; 3862 3863 if (msgsz < 0) { 3864 return -TARGET_EINVAL; 3865 } 3866 3867 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 3868 return -TARGET_EFAULT; 3869 3870 host_mb = g_try_malloc(msgsz + sizeof(long)); 3871 if (!host_mb) { 3872 ret = -TARGET_ENOMEM; 3873 goto end; 3874 } 3875 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 3876 3877 if (ret > 0) { 3878 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 3879 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 3880 if (!target_mtext) { 3881 ret = -TARGET_EFAULT; 3882 goto end; 3883 } 3884 memcpy(target_mb->mtext, host_mb->mtext, ret); 3885 unlock_user(target_mtext, target_mtext_addr, ret); 3886 } 3887 3888 target_mb->mtype = tswapal(host_mb->mtype); 3889 3890 end: 3891 if (target_mb) 3892 unlock_user_struct(target_mb, msgp, 1); 3893 g_free(host_mb); 3894 return ret; 3895 } 3896 3897 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 3898 abi_ulong target_addr) 3899 { 3900 struct target_shmid_ds *target_sd; 3901 3902 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3903 return -TARGET_EFAULT; 3904 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 3905 return -TARGET_EFAULT; 3906 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 3907 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 3908 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 3909 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 3910 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 3911 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 3912 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 3913 unlock_user_struct(target_sd, target_addr, 0); 3914 return 0; 3915 } 3916 3917 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 3918 struct shmid_ds *host_sd) 3919 { 3920 struct target_shmid_ds *target_sd; 3921 3922 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3923 return -TARGET_EFAULT; 3924 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 3925 return -TARGET_EFAULT; 3926 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 3927 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 3928 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 3929 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 3930 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 3931 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 3932 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 3933 unlock_user_struct(target_sd, target_addr, 1); 3934 return 0; 3935 } 3936 3937 struct target_shminfo { 3938 abi_ulong shmmax; 3939 abi_ulong shmmin; 3940 abi_ulong shmmni; 3941 abi_ulong shmseg; 3942 abi_ulong shmall; 3943 }; 3944 3945 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 3946 struct shminfo *host_shminfo) 3947 { 3948 struct target_shminfo *target_shminfo; 3949 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 3950 return -TARGET_EFAULT; 3951 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 3952 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 3953 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 3954 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 3955 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 3956 unlock_user_struct(target_shminfo, target_addr, 1); 3957 return 0; 3958 } 3959 3960 struct target_shm_info { 3961 int used_ids; 3962 abi_ulong shm_tot; 3963 abi_ulong shm_rss; 3964 abi_ulong shm_swp; 3965 abi_ulong swap_attempts; 3966 abi_ulong swap_successes; 3967 }; 3968 3969 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 3970 struct shm_info *host_shm_info) 3971 { 3972 struct target_shm_info *target_shm_info; 3973 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 3974 return -TARGET_EFAULT; 3975 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 3976 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 3977 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 3978 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 3979 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 3980 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 3981 unlock_user_struct(target_shm_info, target_addr, 1); 3982 return 0; 3983 } 3984 3985 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 3986 { 3987 struct shmid_ds dsarg; 3988 struct shminfo shminfo; 3989 struct shm_info shm_info; 3990 abi_long ret = -TARGET_EINVAL; 3991 3992 cmd &= 0xff; 3993 3994 switch(cmd) { 3995 case IPC_STAT: 3996 case IPC_SET: 3997 case SHM_STAT: 3998 if (target_to_host_shmid_ds(&dsarg, buf)) 3999 return -TARGET_EFAULT; 4000 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4001 if (host_to_target_shmid_ds(buf, &dsarg)) 4002 return -TARGET_EFAULT; 4003 break; 4004 case IPC_INFO: 4005 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4006 if (host_to_target_shminfo(buf, &shminfo)) 4007 return -TARGET_EFAULT; 4008 break; 4009 case SHM_INFO: 4010 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4011 if (host_to_target_shm_info(buf, &shm_info)) 4012 return -TARGET_EFAULT; 4013 break; 4014 case IPC_RMID: 4015 case SHM_LOCK: 4016 case SHM_UNLOCK: 4017 ret = get_errno(shmctl(shmid, cmd, NULL)); 4018 break; 4019 } 4020 4021 return ret; 4022 } 4023 4024 static inline abi_ulong do_shmat(int shmid, abi_ulong shmaddr, int shmflg) 4025 { 4026 abi_long raddr; 4027 void *host_raddr; 4028 struct shmid_ds shm_info; 4029 int i,ret; 4030 4031 /* find out the length of the shared memory segment */ 4032 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 4033 if (is_error(ret)) { 4034 /* can't get length, bail out */ 4035 return ret; 4036 } 4037 4038 mmap_lock(); 4039 4040 if (shmaddr) 4041 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg); 4042 else { 4043 abi_ulong mmap_start; 4044 4045 mmap_start = mmap_find_vma(0, shm_info.shm_segsz); 4046 4047 if (mmap_start == -1) { 4048 errno = ENOMEM; 4049 host_raddr = (void *)-1; 4050 } else 4051 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP); 4052 } 4053 4054 if (host_raddr == (void *)-1) { 4055 mmap_unlock(); 4056 return get_errno((long)host_raddr); 4057 } 4058 raddr=h2g((unsigned long)host_raddr); 4059 4060 page_set_flags(raddr, raddr + shm_info.shm_segsz, 4061 PAGE_VALID | PAGE_READ | 4062 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE)); 4063 4064 for (i = 0; i < N_SHM_REGIONS; i++) { 4065 if (!shm_regions[i].in_use) { 4066 shm_regions[i].in_use = true; 4067 shm_regions[i].start = raddr; 4068 shm_regions[i].size = shm_info.shm_segsz; 4069 break; 4070 } 4071 } 4072 4073 mmap_unlock(); 4074 return raddr; 4075 4076 } 4077 4078 static inline abi_long do_shmdt(abi_ulong shmaddr) 4079 { 4080 int i; 4081 4082 for (i = 0; i < N_SHM_REGIONS; ++i) { 4083 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) { 4084 shm_regions[i].in_use = false; 4085 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 4086 break; 4087 } 4088 } 4089 4090 return get_errno(shmdt(g2h(shmaddr))); 4091 } 4092 4093 #ifdef TARGET_NR_ipc 4094 /* ??? This only works with linear mappings. */ 4095 /* do_ipc() must return target values and target errnos. */ 4096 static abi_long do_ipc(unsigned int call, abi_long first, 4097 abi_long second, abi_long third, 4098 abi_long ptr, abi_long fifth) 4099 { 4100 int version; 4101 abi_long ret = 0; 4102 4103 version = call >> 16; 4104 call &= 0xffff; 4105 4106 switch (call) { 4107 case IPCOP_semop: 4108 ret = do_semop(first, ptr, second); 4109 break; 4110 4111 case IPCOP_semget: 4112 ret = get_errno(semget(first, second, third)); 4113 break; 4114 4115 case IPCOP_semctl: { 4116 /* The semun argument to semctl is passed by value, so dereference the 4117 * ptr argument. */ 4118 abi_ulong atptr; 4119 get_user_ual(atptr, ptr); 4120 ret = do_semctl(first, second, third, atptr); 4121 break; 4122 } 4123 4124 case IPCOP_msgget: 4125 ret = get_errno(msgget(first, second)); 4126 break; 4127 4128 case IPCOP_msgsnd: 4129 ret = do_msgsnd(first, ptr, second, third); 4130 break; 4131 4132 case IPCOP_msgctl: 4133 ret = do_msgctl(first, second, ptr); 4134 break; 4135 4136 case IPCOP_msgrcv: 4137 switch (version) { 4138 case 0: 4139 { 4140 struct target_ipc_kludge { 4141 abi_long msgp; 4142 abi_long msgtyp; 4143 } *tmp; 4144 4145 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4146 ret = -TARGET_EFAULT; 4147 break; 4148 } 4149 4150 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4151 4152 unlock_user_struct(tmp, ptr, 0); 4153 break; 4154 } 4155 default: 4156 ret = do_msgrcv(first, ptr, second, fifth, third); 4157 } 4158 break; 4159 4160 case IPCOP_shmat: 4161 switch (version) { 4162 default: 4163 { 4164 abi_ulong raddr; 4165 raddr = do_shmat(first, ptr, second); 4166 if (is_error(raddr)) 4167 return get_errno(raddr); 4168 if (put_user_ual(raddr, third)) 4169 return -TARGET_EFAULT; 4170 break; 4171 } 4172 case 1: 4173 ret = -TARGET_EINVAL; 4174 break; 4175 } 4176 break; 4177 case IPCOP_shmdt: 4178 ret = do_shmdt(ptr); 4179 break; 4180 4181 case IPCOP_shmget: 4182 /* IPC_* flag values are the same on all linux platforms */ 4183 ret = get_errno(shmget(first, second, third)); 4184 break; 4185 4186 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4187 case IPCOP_shmctl: 4188 ret = do_shmctl(first, second, ptr); 4189 break; 4190 default: 4191 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version); 4192 ret = -TARGET_ENOSYS; 4193 break; 4194 } 4195 return ret; 4196 } 4197 #endif 4198 4199 /* kernel structure types definitions */ 4200 4201 #define STRUCT(name, ...) STRUCT_ ## name, 4202 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4203 enum { 4204 #include "syscall_types.h" 4205 STRUCT_MAX 4206 }; 4207 #undef STRUCT 4208 #undef STRUCT_SPECIAL 4209 4210 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4211 #define STRUCT_SPECIAL(name) 4212 #include "syscall_types.h" 4213 #undef STRUCT 4214 #undef STRUCT_SPECIAL 4215 4216 typedef struct IOCTLEntry IOCTLEntry; 4217 4218 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 4219 int fd, int cmd, abi_long arg); 4220 4221 struct IOCTLEntry { 4222 int target_cmd; 4223 unsigned int host_cmd; 4224 const char *name; 4225 int access; 4226 do_ioctl_fn *do_ioctl; 4227 const argtype arg_type[5]; 4228 }; 4229 4230 #define IOC_R 0x0001 4231 #define IOC_W 0x0002 4232 #define IOC_RW (IOC_R | IOC_W) 4233 4234 #define MAX_STRUCT_SIZE 4096 4235 4236 #ifdef CONFIG_FIEMAP 4237 /* So fiemap access checks don't overflow on 32 bit systems. 4238 * This is very slightly smaller than the limit imposed by 4239 * the underlying kernel. 4240 */ 4241 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4242 / sizeof(struct fiemap_extent)) 4243 4244 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4245 int fd, int cmd, abi_long arg) 4246 { 4247 /* The parameter for this ioctl is a struct fiemap followed 4248 * by an array of struct fiemap_extent whose size is set 4249 * in fiemap->fm_extent_count. The array is filled in by the 4250 * ioctl. 4251 */ 4252 int target_size_in, target_size_out; 4253 struct fiemap *fm; 4254 const argtype *arg_type = ie->arg_type; 4255 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4256 void *argptr, *p; 4257 abi_long ret; 4258 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4259 uint32_t outbufsz; 4260 int free_fm = 0; 4261 4262 assert(arg_type[0] == TYPE_PTR); 4263 assert(ie->access == IOC_RW); 4264 arg_type++; 4265 target_size_in = thunk_type_size(arg_type, 0); 4266 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4267 if (!argptr) { 4268 return -TARGET_EFAULT; 4269 } 4270 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4271 unlock_user(argptr, arg, 0); 4272 fm = (struct fiemap *)buf_temp; 4273 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4274 return -TARGET_EINVAL; 4275 } 4276 4277 outbufsz = sizeof (*fm) + 4278 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4279 4280 if (outbufsz > MAX_STRUCT_SIZE) { 4281 /* We can't fit all the extents into the fixed size buffer. 4282 * Allocate one that is large enough and use it instead. 4283 */ 4284 fm = g_try_malloc(outbufsz); 4285 if (!fm) { 4286 return -TARGET_ENOMEM; 4287 } 4288 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4289 free_fm = 1; 4290 } 4291 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4292 if (!is_error(ret)) { 4293 target_size_out = target_size_in; 4294 /* An extent_count of 0 means we were only counting the extents 4295 * so there are no structs to copy 4296 */ 4297 if (fm->fm_extent_count != 0) { 4298 target_size_out += fm->fm_mapped_extents * extent_size; 4299 } 4300 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4301 if (!argptr) { 4302 ret = -TARGET_EFAULT; 4303 } else { 4304 /* Convert the struct fiemap */ 4305 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4306 if (fm->fm_extent_count != 0) { 4307 p = argptr + target_size_in; 4308 /* ...and then all the struct fiemap_extents */ 4309 for (i = 0; i < fm->fm_mapped_extents; i++) { 4310 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4311 THUNK_TARGET); 4312 p += extent_size; 4313 } 4314 } 4315 unlock_user(argptr, arg, target_size_out); 4316 } 4317 } 4318 if (free_fm) { 4319 g_free(fm); 4320 } 4321 return ret; 4322 } 4323 #endif 4324 4325 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 4326 int fd, int cmd, abi_long arg) 4327 { 4328 const argtype *arg_type = ie->arg_type; 4329 int target_size; 4330 void *argptr; 4331 int ret; 4332 struct ifconf *host_ifconf; 4333 uint32_t outbufsz; 4334 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 4335 int target_ifreq_size; 4336 int nb_ifreq; 4337 int free_buf = 0; 4338 int i; 4339 int target_ifc_len; 4340 abi_long target_ifc_buf; 4341 int host_ifc_len; 4342 char *host_ifc_buf; 4343 4344 assert(arg_type[0] == TYPE_PTR); 4345 assert(ie->access == IOC_RW); 4346 4347 arg_type++; 4348 target_size = thunk_type_size(arg_type, 0); 4349 4350 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4351 if (!argptr) 4352 return -TARGET_EFAULT; 4353 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4354 unlock_user(argptr, arg, 0); 4355 4356 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 4357 target_ifc_len = host_ifconf->ifc_len; 4358 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 4359 4360 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0); 4361 nb_ifreq = target_ifc_len / target_ifreq_size; 4362 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 4363 4364 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 4365 if (outbufsz > MAX_STRUCT_SIZE) { 4366 /* We can't fit all the extents into the fixed size buffer. 4367 * Allocate one that is large enough and use it instead. 4368 */ 4369 host_ifconf = malloc(outbufsz); 4370 if (!host_ifconf) { 4371 return -TARGET_ENOMEM; 4372 } 4373 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 4374 free_buf = 1; 4375 } 4376 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf); 4377 4378 host_ifconf->ifc_len = host_ifc_len; 4379 host_ifconf->ifc_buf = host_ifc_buf; 4380 4381 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 4382 if (!is_error(ret)) { 4383 /* convert host ifc_len to target ifc_len */ 4384 4385 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 4386 target_ifc_len = nb_ifreq * target_ifreq_size; 4387 host_ifconf->ifc_len = target_ifc_len; 4388 4389 /* restore target ifc_buf */ 4390 4391 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 4392 4393 /* copy struct ifconf to target user */ 4394 4395 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4396 if (!argptr) 4397 return -TARGET_EFAULT; 4398 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 4399 unlock_user(argptr, arg, target_size); 4400 4401 /* copy ifreq[] to target user */ 4402 4403 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 4404 for (i = 0; i < nb_ifreq ; i++) { 4405 thunk_convert(argptr + i * target_ifreq_size, 4406 host_ifc_buf + i * sizeof(struct ifreq), 4407 ifreq_arg_type, THUNK_TARGET); 4408 } 4409 unlock_user(argptr, target_ifc_buf, target_ifc_len); 4410 } 4411 4412 if (free_buf) { 4413 free(host_ifconf); 4414 } 4415 4416 return ret; 4417 } 4418 4419 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 4420 int cmd, abi_long arg) 4421 { 4422 void *argptr; 4423 struct dm_ioctl *host_dm; 4424 abi_long guest_data; 4425 uint32_t guest_data_size; 4426 int target_size; 4427 const argtype *arg_type = ie->arg_type; 4428 abi_long ret; 4429 void *big_buf = NULL; 4430 char *host_data; 4431 4432 arg_type++; 4433 target_size = thunk_type_size(arg_type, 0); 4434 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4435 if (!argptr) { 4436 ret = -TARGET_EFAULT; 4437 goto out; 4438 } 4439 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4440 unlock_user(argptr, arg, 0); 4441 4442 /* buf_temp is too small, so fetch things into a bigger buffer */ 4443 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 4444 memcpy(big_buf, buf_temp, target_size); 4445 buf_temp = big_buf; 4446 host_dm = big_buf; 4447 4448 guest_data = arg + host_dm->data_start; 4449 if ((guest_data - arg) < 0) { 4450 ret = -EINVAL; 4451 goto out; 4452 } 4453 guest_data_size = host_dm->data_size - host_dm->data_start; 4454 host_data = (char*)host_dm + host_dm->data_start; 4455 4456 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 4457 switch (ie->host_cmd) { 4458 case DM_REMOVE_ALL: 4459 case DM_LIST_DEVICES: 4460 case DM_DEV_CREATE: 4461 case DM_DEV_REMOVE: 4462 case DM_DEV_SUSPEND: 4463 case DM_DEV_STATUS: 4464 case DM_DEV_WAIT: 4465 case DM_TABLE_STATUS: 4466 case DM_TABLE_CLEAR: 4467 case DM_TABLE_DEPS: 4468 case DM_LIST_VERSIONS: 4469 /* no input data */ 4470 break; 4471 case DM_DEV_RENAME: 4472 case DM_DEV_SET_GEOMETRY: 4473 /* data contains only strings */ 4474 memcpy(host_data, argptr, guest_data_size); 4475 break; 4476 case DM_TARGET_MSG: 4477 memcpy(host_data, argptr, guest_data_size); 4478 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 4479 break; 4480 case DM_TABLE_LOAD: 4481 { 4482 void *gspec = argptr; 4483 void *cur_data = host_data; 4484 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 4485 int spec_size = thunk_type_size(arg_type, 0); 4486 int i; 4487 4488 for (i = 0; i < host_dm->target_count; i++) { 4489 struct dm_target_spec *spec = cur_data; 4490 uint32_t next; 4491 int slen; 4492 4493 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 4494 slen = strlen((char*)gspec + spec_size) + 1; 4495 next = spec->next; 4496 spec->next = sizeof(*spec) + slen; 4497 strcpy((char*)&spec[1], gspec + spec_size); 4498 gspec += next; 4499 cur_data += spec->next; 4500 } 4501 break; 4502 } 4503 default: 4504 ret = -TARGET_EINVAL; 4505 unlock_user(argptr, guest_data, 0); 4506 goto out; 4507 } 4508 unlock_user(argptr, guest_data, 0); 4509 4510 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4511 if (!is_error(ret)) { 4512 guest_data = arg + host_dm->data_start; 4513 guest_data_size = host_dm->data_size - host_dm->data_start; 4514 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 4515 switch (ie->host_cmd) { 4516 case DM_REMOVE_ALL: 4517 case DM_DEV_CREATE: 4518 case DM_DEV_REMOVE: 4519 case DM_DEV_RENAME: 4520 case DM_DEV_SUSPEND: 4521 case DM_DEV_STATUS: 4522 case DM_TABLE_LOAD: 4523 case DM_TABLE_CLEAR: 4524 case DM_TARGET_MSG: 4525 case DM_DEV_SET_GEOMETRY: 4526 /* no return data */ 4527 break; 4528 case DM_LIST_DEVICES: 4529 { 4530 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 4531 uint32_t remaining_data = guest_data_size; 4532 void *cur_data = argptr; 4533 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 4534 int nl_size = 12; /* can't use thunk_size due to alignment */ 4535 4536 while (1) { 4537 uint32_t next = nl->next; 4538 if (next) { 4539 nl->next = nl_size + (strlen(nl->name) + 1); 4540 } 4541 if (remaining_data < nl->next) { 4542 host_dm->flags |= DM_BUFFER_FULL_FLAG; 4543 break; 4544 } 4545 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 4546 strcpy(cur_data + nl_size, nl->name); 4547 cur_data += nl->next; 4548 remaining_data -= nl->next; 4549 if (!next) { 4550 break; 4551 } 4552 nl = (void*)nl + next; 4553 } 4554 break; 4555 } 4556 case DM_DEV_WAIT: 4557 case DM_TABLE_STATUS: 4558 { 4559 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 4560 void *cur_data = argptr; 4561 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 4562 int spec_size = thunk_type_size(arg_type, 0); 4563 int i; 4564 4565 for (i = 0; i < host_dm->target_count; i++) { 4566 uint32_t next = spec->next; 4567 int slen = strlen((char*)&spec[1]) + 1; 4568 spec->next = (cur_data - argptr) + spec_size + slen; 4569 if (guest_data_size < spec->next) { 4570 host_dm->flags |= DM_BUFFER_FULL_FLAG; 4571 break; 4572 } 4573 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 4574 strcpy(cur_data + spec_size, (char*)&spec[1]); 4575 cur_data = argptr + spec->next; 4576 spec = (void*)host_dm + host_dm->data_start + next; 4577 } 4578 break; 4579 } 4580 case DM_TABLE_DEPS: 4581 { 4582 void *hdata = (void*)host_dm + host_dm->data_start; 4583 int count = *(uint32_t*)hdata; 4584 uint64_t *hdev = hdata + 8; 4585 uint64_t *gdev = argptr + 8; 4586 int i; 4587 4588 *(uint32_t*)argptr = tswap32(count); 4589 for (i = 0; i < count; i++) { 4590 *gdev = tswap64(*hdev); 4591 gdev++; 4592 hdev++; 4593 } 4594 break; 4595 } 4596 case DM_LIST_VERSIONS: 4597 { 4598 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 4599 uint32_t remaining_data = guest_data_size; 4600 void *cur_data = argptr; 4601 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 4602 int vers_size = thunk_type_size(arg_type, 0); 4603 4604 while (1) { 4605 uint32_t next = vers->next; 4606 if (next) { 4607 vers->next = vers_size + (strlen(vers->name) + 1); 4608 } 4609 if (remaining_data < vers->next) { 4610 host_dm->flags |= DM_BUFFER_FULL_FLAG; 4611 break; 4612 } 4613 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 4614 strcpy(cur_data + vers_size, vers->name); 4615 cur_data += vers->next; 4616 remaining_data -= vers->next; 4617 if (!next) { 4618 break; 4619 } 4620 vers = (void*)vers + next; 4621 } 4622 break; 4623 } 4624 default: 4625 unlock_user(argptr, guest_data, 0); 4626 ret = -TARGET_EINVAL; 4627 goto out; 4628 } 4629 unlock_user(argptr, guest_data, guest_data_size); 4630 4631 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4632 if (!argptr) { 4633 ret = -TARGET_EFAULT; 4634 goto out; 4635 } 4636 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 4637 unlock_user(argptr, arg, target_size); 4638 } 4639 out: 4640 g_free(big_buf); 4641 return ret; 4642 } 4643 4644 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 4645 int cmd, abi_long arg) 4646 { 4647 void *argptr; 4648 int target_size; 4649 const argtype *arg_type = ie->arg_type; 4650 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 4651 abi_long ret; 4652 4653 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 4654 struct blkpg_partition host_part; 4655 4656 /* Read and convert blkpg */ 4657 arg_type++; 4658 target_size = thunk_type_size(arg_type, 0); 4659 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4660 if (!argptr) { 4661 ret = -TARGET_EFAULT; 4662 goto out; 4663 } 4664 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4665 unlock_user(argptr, arg, 0); 4666 4667 switch (host_blkpg->op) { 4668 case BLKPG_ADD_PARTITION: 4669 case BLKPG_DEL_PARTITION: 4670 /* payload is struct blkpg_partition */ 4671 break; 4672 default: 4673 /* Unknown opcode */ 4674 ret = -TARGET_EINVAL; 4675 goto out; 4676 } 4677 4678 /* Read and convert blkpg->data */ 4679 arg = (abi_long)(uintptr_t)host_blkpg->data; 4680 target_size = thunk_type_size(part_arg_type, 0); 4681 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4682 if (!argptr) { 4683 ret = -TARGET_EFAULT; 4684 goto out; 4685 } 4686 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 4687 unlock_user(argptr, arg, 0); 4688 4689 /* Swizzle the data pointer to our local copy and call! */ 4690 host_blkpg->data = &host_part; 4691 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 4692 4693 out: 4694 return ret; 4695 } 4696 4697 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 4698 int fd, int cmd, abi_long arg) 4699 { 4700 const argtype *arg_type = ie->arg_type; 4701 const StructEntry *se; 4702 const argtype *field_types; 4703 const int *dst_offsets, *src_offsets; 4704 int target_size; 4705 void *argptr; 4706 abi_ulong *target_rt_dev_ptr; 4707 unsigned long *host_rt_dev_ptr; 4708 abi_long ret; 4709 int i; 4710 4711 assert(ie->access == IOC_W); 4712 assert(*arg_type == TYPE_PTR); 4713 arg_type++; 4714 assert(*arg_type == TYPE_STRUCT); 4715 target_size = thunk_type_size(arg_type, 0); 4716 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4717 if (!argptr) { 4718 return -TARGET_EFAULT; 4719 } 4720 arg_type++; 4721 assert(*arg_type == (int)STRUCT_rtentry); 4722 se = struct_entries + *arg_type++; 4723 assert(se->convert[0] == NULL); 4724 /* convert struct here to be able to catch rt_dev string */ 4725 field_types = se->field_types; 4726 dst_offsets = se->field_offsets[THUNK_HOST]; 4727 src_offsets = se->field_offsets[THUNK_TARGET]; 4728 for (i = 0; i < se->nb_fields; i++) { 4729 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 4730 assert(*field_types == TYPE_PTRVOID); 4731 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 4732 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 4733 if (*target_rt_dev_ptr != 0) { 4734 *host_rt_dev_ptr = (unsigned long)lock_user_string( 4735 tswapal(*target_rt_dev_ptr)); 4736 if (!*host_rt_dev_ptr) { 4737 unlock_user(argptr, arg, 0); 4738 return -TARGET_EFAULT; 4739 } 4740 } else { 4741 *host_rt_dev_ptr = 0; 4742 } 4743 field_types++; 4744 continue; 4745 } 4746 field_types = thunk_convert(buf_temp + dst_offsets[i], 4747 argptr + src_offsets[i], 4748 field_types, THUNK_HOST); 4749 } 4750 unlock_user(argptr, arg, 0); 4751 4752 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4753 if (*host_rt_dev_ptr != 0) { 4754 unlock_user((void *)*host_rt_dev_ptr, 4755 *target_rt_dev_ptr, 0); 4756 } 4757 return ret; 4758 } 4759 4760 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 4761 int fd, int cmd, abi_long arg) 4762 { 4763 int sig = target_to_host_signal(arg); 4764 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 4765 } 4766 4767 static IOCTLEntry ioctl_entries[] = { 4768 #define IOCTL(cmd, access, ...) \ 4769 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 4770 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 4771 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 4772 #include "ioctls.h" 4773 { 0, 0, }, 4774 }; 4775 4776 /* ??? Implement proper locking for ioctls. */ 4777 /* do_ioctl() Must return target values and target errnos. */ 4778 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 4779 { 4780 const IOCTLEntry *ie; 4781 const argtype *arg_type; 4782 abi_long ret; 4783 uint8_t buf_temp[MAX_STRUCT_SIZE]; 4784 int target_size; 4785 void *argptr; 4786 4787 ie = ioctl_entries; 4788 for(;;) { 4789 if (ie->target_cmd == 0) { 4790 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 4791 return -TARGET_ENOSYS; 4792 } 4793 if (ie->target_cmd == cmd) 4794 break; 4795 ie++; 4796 } 4797 arg_type = ie->arg_type; 4798 #if defined(DEBUG) 4799 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name); 4800 #endif 4801 if (ie->do_ioctl) { 4802 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 4803 } 4804 4805 switch(arg_type[0]) { 4806 case TYPE_NULL: 4807 /* no argument */ 4808 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 4809 break; 4810 case TYPE_PTRVOID: 4811 case TYPE_INT: 4812 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 4813 break; 4814 case TYPE_PTR: 4815 arg_type++; 4816 target_size = thunk_type_size(arg_type, 0); 4817 switch(ie->access) { 4818 case IOC_R: 4819 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4820 if (!is_error(ret)) { 4821 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4822 if (!argptr) 4823 return -TARGET_EFAULT; 4824 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 4825 unlock_user(argptr, arg, target_size); 4826 } 4827 break; 4828 case IOC_W: 4829 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4830 if (!argptr) 4831 return -TARGET_EFAULT; 4832 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4833 unlock_user(argptr, arg, 0); 4834 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4835 break; 4836 default: 4837 case IOC_RW: 4838 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4839 if (!argptr) 4840 return -TARGET_EFAULT; 4841 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4842 unlock_user(argptr, arg, 0); 4843 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4844 if (!is_error(ret)) { 4845 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4846 if (!argptr) 4847 return -TARGET_EFAULT; 4848 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 4849 unlock_user(argptr, arg, target_size); 4850 } 4851 break; 4852 } 4853 break; 4854 default: 4855 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", 4856 (long)cmd, arg_type[0]); 4857 ret = -TARGET_ENOSYS; 4858 break; 4859 } 4860 return ret; 4861 } 4862 4863 static const bitmask_transtbl iflag_tbl[] = { 4864 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 4865 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 4866 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 4867 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 4868 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 4869 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 4870 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 4871 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 4872 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 4873 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 4874 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 4875 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 4876 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 4877 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 4878 { 0, 0, 0, 0 } 4879 }; 4880 4881 static const bitmask_transtbl oflag_tbl[] = { 4882 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 4883 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 4884 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 4885 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 4886 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 4887 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 4888 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 4889 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 4890 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 4891 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 4892 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 4893 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 4894 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 4895 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 4896 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 4897 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 4898 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 4899 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 4900 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 4901 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 4902 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 4903 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 4904 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 4905 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 4906 { 0, 0, 0, 0 } 4907 }; 4908 4909 static const bitmask_transtbl cflag_tbl[] = { 4910 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 4911 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 4912 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 4913 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 4914 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 4915 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 4916 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 4917 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 4918 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 4919 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 4920 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 4921 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 4922 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 4923 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 4924 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 4925 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 4926 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 4927 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 4928 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 4929 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 4930 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 4931 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 4932 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 4933 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 4934 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 4935 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 4936 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 4937 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 4938 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 4939 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 4940 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 4941 { 0, 0, 0, 0 } 4942 }; 4943 4944 static const bitmask_transtbl lflag_tbl[] = { 4945 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 4946 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 4947 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 4948 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 4949 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 4950 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 4951 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 4952 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 4953 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 4954 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 4955 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 4956 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 4957 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 4958 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 4959 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 4960 { 0, 0, 0, 0 } 4961 }; 4962 4963 static void target_to_host_termios (void *dst, const void *src) 4964 { 4965 struct host_termios *host = dst; 4966 const struct target_termios *target = src; 4967 4968 host->c_iflag = 4969 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 4970 host->c_oflag = 4971 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 4972 host->c_cflag = 4973 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 4974 host->c_lflag = 4975 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 4976 host->c_line = target->c_line; 4977 4978 memset(host->c_cc, 0, sizeof(host->c_cc)); 4979 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 4980 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 4981 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 4982 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 4983 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 4984 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 4985 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 4986 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 4987 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 4988 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 4989 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 4990 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 4991 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 4992 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 4993 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 4994 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 4995 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 4996 } 4997 4998 static void host_to_target_termios (void *dst, const void *src) 4999 { 5000 struct target_termios *target = dst; 5001 const struct host_termios *host = src; 5002 5003 target->c_iflag = 5004 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5005 target->c_oflag = 5006 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5007 target->c_cflag = 5008 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5009 target->c_lflag = 5010 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5011 target->c_line = host->c_line; 5012 5013 memset(target->c_cc, 0, sizeof(target->c_cc)); 5014 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5015 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5016 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5017 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5018 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5019 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5020 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5021 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5022 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5023 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5024 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5025 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5026 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5027 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5028 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5029 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5030 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5031 } 5032 5033 static const StructEntry struct_termios_def = { 5034 .convert = { host_to_target_termios, target_to_host_termios }, 5035 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5036 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5037 }; 5038 5039 static bitmask_transtbl mmap_flags_tbl[] = { 5040 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 5041 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 5042 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5043 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS }, 5044 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN }, 5045 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE }, 5046 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE }, 5047 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5048 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE, 5049 MAP_NORESERVE }, 5050 { 0, 0, 0, 0 } 5051 }; 5052 5053 #if defined(TARGET_I386) 5054 5055 /* NOTE: there is really one LDT for all the threads */ 5056 static uint8_t *ldt_table; 5057 5058 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5059 { 5060 int size; 5061 void *p; 5062 5063 if (!ldt_table) 5064 return 0; 5065 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5066 if (size > bytecount) 5067 size = bytecount; 5068 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5069 if (!p) 5070 return -TARGET_EFAULT; 5071 /* ??? Should this by byteswapped? */ 5072 memcpy(p, ldt_table, size); 5073 unlock_user(p, ptr, size); 5074 return size; 5075 } 5076 5077 /* XXX: add locking support */ 5078 static abi_long write_ldt(CPUX86State *env, 5079 abi_ulong ptr, unsigned long bytecount, int oldmode) 5080 { 5081 struct target_modify_ldt_ldt_s ldt_info; 5082 struct target_modify_ldt_ldt_s *target_ldt_info; 5083 int seg_32bit, contents, read_exec_only, limit_in_pages; 5084 int seg_not_present, useable, lm; 5085 uint32_t *lp, entry_1, entry_2; 5086 5087 if (bytecount != sizeof(ldt_info)) 5088 return -TARGET_EINVAL; 5089 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5090 return -TARGET_EFAULT; 5091 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5092 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5093 ldt_info.limit = tswap32(target_ldt_info->limit); 5094 ldt_info.flags = tswap32(target_ldt_info->flags); 5095 unlock_user_struct(target_ldt_info, ptr, 0); 5096 5097 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 5098 return -TARGET_EINVAL; 5099 seg_32bit = ldt_info.flags & 1; 5100 contents = (ldt_info.flags >> 1) & 3; 5101 read_exec_only = (ldt_info.flags >> 3) & 1; 5102 limit_in_pages = (ldt_info.flags >> 4) & 1; 5103 seg_not_present = (ldt_info.flags >> 5) & 1; 5104 useable = (ldt_info.flags >> 6) & 1; 5105 #ifdef TARGET_ABI32 5106 lm = 0; 5107 #else 5108 lm = (ldt_info.flags >> 7) & 1; 5109 #endif 5110 if (contents == 3) { 5111 if (oldmode) 5112 return -TARGET_EINVAL; 5113 if (seg_not_present == 0) 5114 return -TARGET_EINVAL; 5115 } 5116 /* allocate the LDT */ 5117 if (!ldt_table) { 5118 env->ldt.base = target_mmap(0, 5119 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 5120 PROT_READ|PROT_WRITE, 5121 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 5122 if (env->ldt.base == -1) 5123 return -TARGET_ENOMEM; 5124 memset(g2h(env->ldt.base), 0, 5125 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 5126 env->ldt.limit = 0xffff; 5127 ldt_table = g2h(env->ldt.base); 5128 } 5129 5130 /* NOTE: same code as Linux kernel */ 5131 /* Allow LDTs to be cleared by the user. */ 5132 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 5133 if (oldmode || 5134 (contents == 0 && 5135 read_exec_only == 1 && 5136 seg_32bit == 0 && 5137 limit_in_pages == 0 && 5138 seg_not_present == 1 && 5139 useable == 0 )) { 5140 entry_1 = 0; 5141 entry_2 = 0; 5142 goto install; 5143 } 5144 } 5145 5146 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 5147 (ldt_info.limit & 0x0ffff); 5148 entry_2 = (ldt_info.base_addr & 0xff000000) | 5149 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 5150 (ldt_info.limit & 0xf0000) | 5151 ((read_exec_only ^ 1) << 9) | 5152 (contents << 10) | 5153 ((seg_not_present ^ 1) << 15) | 5154 (seg_32bit << 22) | 5155 (limit_in_pages << 23) | 5156 (lm << 21) | 5157 0x7000; 5158 if (!oldmode) 5159 entry_2 |= (useable << 20); 5160 5161 /* Install the new entry ... */ 5162 install: 5163 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 5164 lp[0] = tswap32(entry_1); 5165 lp[1] = tswap32(entry_2); 5166 return 0; 5167 } 5168 5169 /* specific and weird i386 syscalls */ 5170 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 5171 unsigned long bytecount) 5172 { 5173 abi_long ret; 5174 5175 switch (func) { 5176 case 0: 5177 ret = read_ldt(ptr, bytecount); 5178 break; 5179 case 1: 5180 ret = write_ldt(env, ptr, bytecount, 1); 5181 break; 5182 case 0x11: 5183 ret = write_ldt(env, ptr, bytecount, 0); 5184 break; 5185 default: 5186 ret = -TARGET_ENOSYS; 5187 break; 5188 } 5189 return ret; 5190 } 5191 5192 #if defined(TARGET_I386) && defined(TARGET_ABI32) 5193 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 5194 { 5195 uint64_t *gdt_table = g2h(env->gdt.base); 5196 struct target_modify_ldt_ldt_s ldt_info; 5197 struct target_modify_ldt_ldt_s *target_ldt_info; 5198 int seg_32bit, contents, read_exec_only, limit_in_pages; 5199 int seg_not_present, useable, lm; 5200 uint32_t *lp, entry_1, entry_2; 5201 int i; 5202 5203 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 5204 if (!target_ldt_info) 5205 return -TARGET_EFAULT; 5206 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5207 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5208 ldt_info.limit = tswap32(target_ldt_info->limit); 5209 ldt_info.flags = tswap32(target_ldt_info->flags); 5210 if (ldt_info.entry_number == -1) { 5211 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 5212 if (gdt_table[i] == 0) { 5213 ldt_info.entry_number = i; 5214 target_ldt_info->entry_number = tswap32(i); 5215 break; 5216 } 5217 } 5218 } 5219 unlock_user_struct(target_ldt_info, ptr, 1); 5220 5221 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 5222 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 5223 return -TARGET_EINVAL; 5224 seg_32bit = ldt_info.flags & 1; 5225 contents = (ldt_info.flags >> 1) & 3; 5226 read_exec_only = (ldt_info.flags >> 3) & 1; 5227 limit_in_pages = (ldt_info.flags >> 4) & 1; 5228 seg_not_present = (ldt_info.flags >> 5) & 1; 5229 useable = (ldt_info.flags >> 6) & 1; 5230 #ifdef TARGET_ABI32 5231 lm = 0; 5232 #else 5233 lm = (ldt_info.flags >> 7) & 1; 5234 #endif 5235 5236 if (contents == 3) { 5237 if (seg_not_present == 0) 5238 return -TARGET_EINVAL; 5239 } 5240 5241 /* NOTE: same code as Linux kernel */ 5242 /* Allow LDTs to be cleared by the user. */ 5243 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 5244 if ((contents == 0 && 5245 read_exec_only == 1 && 5246 seg_32bit == 0 && 5247 limit_in_pages == 0 && 5248 seg_not_present == 1 && 5249 useable == 0 )) { 5250 entry_1 = 0; 5251 entry_2 = 0; 5252 goto install; 5253 } 5254 } 5255 5256 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 5257 (ldt_info.limit & 0x0ffff); 5258 entry_2 = (ldt_info.base_addr & 0xff000000) | 5259 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 5260 (ldt_info.limit & 0xf0000) | 5261 ((read_exec_only ^ 1) << 9) | 5262 (contents << 10) | 5263 ((seg_not_present ^ 1) << 15) | 5264 (seg_32bit << 22) | 5265 (limit_in_pages << 23) | 5266 (useable << 20) | 5267 (lm << 21) | 5268 0x7000; 5269 5270 /* Install the new entry ... */ 5271 install: 5272 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 5273 lp[0] = tswap32(entry_1); 5274 lp[1] = tswap32(entry_2); 5275 return 0; 5276 } 5277 5278 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 5279 { 5280 struct target_modify_ldt_ldt_s *target_ldt_info; 5281 uint64_t *gdt_table = g2h(env->gdt.base); 5282 uint32_t base_addr, limit, flags; 5283 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 5284 int seg_not_present, useable, lm; 5285 uint32_t *lp, entry_1, entry_2; 5286 5287 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 5288 if (!target_ldt_info) 5289 return -TARGET_EFAULT; 5290 idx = tswap32(target_ldt_info->entry_number); 5291 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 5292 idx > TARGET_GDT_ENTRY_TLS_MAX) { 5293 unlock_user_struct(target_ldt_info, ptr, 1); 5294 return -TARGET_EINVAL; 5295 } 5296 lp = (uint32_t *)(gdt_table + idx); 5297 entry_1 = tswap32(lp[0]); 5298 entry_2 = tswap32(lp[1]); 5299 5300 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 5301 contents = (entry_2 >> 10) & 3; 5302 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 5303 seg_32bit = (entry_2 >> 22) & 1; 5304 limit_in_pages = (entry_2 >> 23) & 1; 5305 useable = (entry_2 >> 20) & 1; 5306 #ifdef TARGET_ABI32 5307 lm = 0; 5308 #else 5309 lm = (entry_2 >> 21) & 1; 5310 #endif 5311 flags = (seg_32bit << 0) | (contents << 1) | 5312 (read_exec_only << 3) | (limit_in_pages << 4) | 5313 (seg_not_present << 5) | (useable << 6) | (lm << 7); 5314 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 5315 base_addr = (entry_1 >> 16) | 5316 (entry_2 & 0xff000000) | 5317 ((entry_2 & 0xff) << 16); 5318 target_ldt_info->base_addr = tswapal(base_addr); 5319 target_ldt_info->limit = tswap32(limit); 5320 target_ldt_info->flags = tswap32(flags); 5321 unlock_user_struct(target_ldt_info, ptr, 1); 5322 return 0; 5323 } 5324 #endif /* TARGET_I386 && TARGET_ABI32 */ 5325 5326 #ifndef TARGET_ABI32 5327 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 5328 { 5329 abi_long ret = 0; 5330 abi_ulong val; 5331 int idx; 5332 5333 switch(code) { 5334 case TARGET_ARCH_SET_GS: 5335 case TARGET_ARCH_SET_FS: 5336 if (code == TARGET_ARCH_SET_GS) 5337 idx = R_GS; 5338 else 5339 idx = R_FS; 5340 cpu_x86_load_seg(env, idx, 0); 5341 env->segs[idx].base = addr; 5342 break; 5343 case TARGET_ARCH_GET_GS: 5344 case TARGET_ARCH_GET_FS: 5345 if (code == TARGET_ARCH_GET_GS) 5346 idx = R_GS; 5347 else 5348 idx = R_FS; 5349 val = env->segs[idx].base; 5350 if (put_user(val, addr, abi_ulong)) 5351 ret = -TARGET_EFAULT; 5352 break; 5353 default: 5354 ret = -TARGET_EINVAL; 5355 break; 5356 } 5357 return ret; 5358 } 5359 #endif 5360 5361 #endif /* defined(TARGET_I386) */ 5362 5363 #define NEW_STACK_SIZE 0x40000 5364 5365 5366 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 5367 typedef struct { 5368 CPUArchState *env; 5369 pthread_mutex_t mutex; 5370 pthread_cond_t cond; 5371 pthread_t thread; 5372 uint32_t tid; 5373 abi_ulong child_tidptr; 5374 abi_ulong parent_tidptr; 5375 sigset_t sigmask; 5376 } new_thread_info; 5377 5378 static void *clone_func(void *arg) 5379 { 5380 new_thread_info *info = arg; 5381 CPUArchState *env; 5382 CPUState *cpu; 5383 TaskState *ts; 5384 5385 rcu_register_thread(); 5386 env = info->env; 5387 cpu = ENV_GET_CPU(env); 5388 thread_cpu = cpu; 5389 ts = (TaskState *)cpu->opaque; 5390 info->tid = gettid(); 5391 cpu->host_tid = info->tid; 5392 task_settid(ts); 5393 if (info->child_tidptr) 5394 put_user_u32(info->tid, info->child_tidptr); 5395 if (info->parent_tidptr) 5396 put_user_u32(info->tid, info->parent_tidptr); 5397 /* Enable signals. */ 5398 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 5399 /* Signal to the parent that we're ready. */ 5400 pthread_mutex_lock(&info->mutex); 5401 pthread_cond_broadcast(&info->cond); 5402 pthread_mutex_unlock(&info->mutex); 5403 /* Wait until the parent has finshed initializing the tls state. */ 5404 pthread_mutex_lock(&clone_lock); 5405 pthread_mutex_unlock(&clone_lock); 5406 cpu_loop(env); 5407 /* never exits */ 5408 return NULL; 5409 } 5410 5411 /* do_fork() Must return host values and target errnos (unlike most 5412 do_*() functions). */ 5413 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 5414 abi_ulong parent_tidptr, target_ulong newtls, 5415 abi_ulong child_tidptr) 5416 { 5417 CPUState *cpu = ENV_GET_CPU(env); 5418 int ret; 5419 TaskState *ts; 5420 CPUState *new_cpu; 5421 CPUArchState *new_env; 5422 unsigned int nptl_flags; 5423 sigset_t sigmask; 5424 5425 /* Emulate vfork() with fork() */ 5426 if (flags & CLONE_VFORK) 5427 flags &= ~(CLONE_VFORK | CLONE_VM); 5428 5429 if (flags & CLONE_VM) { 5430 TaskState *parent_ts = (TaskState *)cpu->opaque; 5431 new_thread_info info; 5432 pthread_attr_t attr; 5433 5434 ts = g_new0(TaskState, 1); 5435 init_task_state(ts); 5436 /* we create a new CPU instance. */ 5437 new_env = cpu_copy(env); 5438 /* Init regs that differ from the parent. */ 5439 cpu_clone_regs(new_env, newsp); 5440 new_cpu = ENV_GET_CPU(new_env); 5441 new_cpu->opaque = ts; 5442 ts->bprm = parent_ts->bprm; 5443 ts->info = parent_ts->info; 5444 ts->signal_mask = parent_ts->signal_mask; 5445 nptl_flags = flags; 5446 flags &= ~CLONE_NPTL_FLAGS2; 5447 5448 if (nptl_flags & CLONE_CHILD_CLEARTID) { 5449 ts->child_tidptr = child_tidptr; 5450 } 5451 5452 if (nptl_flags & CLONE_SETTLS) 5453 cpu_set_tls (new_env, newtls); 5454 5455 /* Grab a mutex so that thread setup appears atomic. */ 5456 pthread_mutex_lock(&clone_lock); 5457 5458 memset(&info, 0, sizeof(info)); 5459 pthread_mutex_init(&info.mutex, NULL); 5460 pthread_mutex_lock(&info.mutex); 5461 pthread_cond_init(&info.cond, NULL); 5462 info.env = new_env; 5463 if (nptl_flags & CLONE_CHILD_SETTID) 5464 info.child_tidptr = child_tidptr; 5465 if (nptl_flags & CLONE_PARENT_SETTID) 5466 info.parent_tidptr = parent_tidptr; 5467 5468 ret = pthread_attr_init(&attr); 5469 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 5470 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 5471 /* It is not safe to deliver signals until the child has finished 5472 initializing, so temporarily block all signals. */ 5473 sigfillset(&sigmask); 5474 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 5475 5476 ret = pthread_create(&info.thread, &attr, clone_func, &info); 5477 /* TODO: Free new CPU state if thread creation failed. */ 5478 5479 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 5480 pthread_attr_destroy(&attr); 5481 if (ret == 0) { 5482 /* Wait for the child to initialize. */ 5483 pthread_cond_wait(&info.cond, &info.mutex); 5484 ret = info.tid; 5485 if (flags & CLONE_PARENT_SETTID) 5486 put_user_u32(ret, parent_tidptr); 5487 } else { 5488 ret = -1; 5489 } 5490 pthread_mutex_unlock(&info.mutex); 5491 pthread_cond_destroy(&info.cond); 5492 pthread_mutex_destroy(&info.mutex); 5493 pthread_mutex_unlock(&clone_lock); 5494 } else { 5495 /* if no CLONE_VM, we consider it is a fork */ 5496 if ((flags & ~(CSIGNAL | CLONE_NPTL_FLAGS2)) != 0) { 5497 return -TARGET_EINVAL; 5498 } 5499 5500 if (block_signals()) { 5501 return -TARGET_ERESTARTSYS; 5502 } 5503 5504 fork_start(); 5505 ret = fork(); 5506 if (ret == 0) { 5507 /* Child Process. */ 5508 rcu_after_fork(); 5509 cpu_clone_regs(env, newsp); 5510 fork_end(1); 5511 /* There is a race condition here. The parent process could 5512 theoretically read the TID in the child process before the child 5513 tid is set. This would require using either ptrace 5514 (not implemented) or having *_tidptr to point at a shared memory 5515 mapping. We can't repeat the spinlock hack used above because 5516 the child process gets its own copy of the lock. */ 5517 if (flags & CLONE_CHILD_SETTID) 5518 put_user_u32(gettid(), child_tidptr); 5519 if (flags & CLONE_PARENT_SETTID) 5520 put_user_u32(gettid(), parent_tidptr); 5521 ts = (TaskState *)cpu->opaque; 5522 if (flags & CLONE_SETTLS) 5523 cpu_set_tls (env, newtls); 5524 if (flags & CLONE_CHILD_CLEARTID) 5525 ts->child_tidptr = child_tidptr; 5526 } else { 5527 fork_end(0); 5528 } 5529 } 5530 return ret; 5531 } 5532 5533 /* warning : doesn't handle linux specific flags... */ 5534 static int target_to_host_fcntl_cmd(int cmd) 5535 { 5536 switch(cmd) { 5537 case TARGET_F_DUPFD: 5538 case TARGET_F_GETFD: 5539 case TARGET_F_SETFD: 5540 case TARGET_F_GETFL: 5541 case TARGET_F_SETFL: 5542 return cmd; 5543 case TARGET_F_GETLK: 5544 return F_GETLK; 5545 case TARGET_F_SETLK: 5546 return F_SETLK; 5547 case TARGET_F_SETLKW: 5548 return F_SETLKW; 5549 case TARGET_F_GETOWN: 5550 return F_GETOWN; 5551 case TARGET_F_SETOWN: 5552 return F_SETOWN; 5553 case TARGET_F_GETSIG: 5554 return F_GETSIG; 5555 case TARGET_F_SETSIG: 5556 return F_SETSIG; 5557 #if TARGET_ABI_BITS == 32 5558 case TARGET_F_GETLK64: 5559 return F_GETLK64; 5560 case TARGET_F_SETLK64: 5561 return F_SETLK64; 5562 case TARGET_F_SETLKW64: 5563 return F_SETLKW64; 5564 #endif 5565 case TARGET_F_SETLEASE: 5566 return F_SETLEASE; 5567 case TARGET_F_GETLEASE: 5568 return F_GETLEASE; 5569 #ifdef F_DUPFD_CLOEXEC 5570 case TARGET_F_DUPFD_CLOEXEC: 5571 return F_DUPFD_CLOEXEC; 5572 #endif 5573 case TARGET_F_NOTIFY: 5574 return F_NOTIFY; 5575 #ifdef F_GETOWN_EX 5576 case TARGET_F_GETOWN_EX: 5577 return F_GETOWN_EX; 5578 #endif 5579 #ifdef F_SETOWN_EX 5580 case TARGET_F_SETOWN_EX: 5581 return F_SETOWN_EX; 5582 #endif 5583 default: 5584 return -TARGET_EINVAL; 5585 } 5586 return -TARGET_EINVAL; 5587 } 5588 5589 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a } 5590 static const bitmask_transtbl flock_tbl[] = { 5591 TRANSTBL_CONVERT(F_RDLCK), 5592 TRANSTBL_CONVERT(F_WRLCK), 5593 TRANSTBL_CONVERT(F_UNLCK), 5594 TRANSTBL_CONVERT(F_EXLCK), 5595 TRANSTBL_CONVERT(F_SHLCK), 5596 { 0, 0, 0, 0 } 5597 }; 5598 5599 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 5600 { 5601 struct flock fl; 5602 struct target_flock *target_fl; 5603 struct flock64 fl64; 5604 struct target_flock64 *target_fl64; 5605 #ifdef F_GETOWN_EX 5606 struct f_owner_ex fox; 5607 struct target_f_owner_ex *target_fox; 5608 #endif 5609 abi_long ret; 5610 int host_cmd = target_to_host_fcntl_cmd(cmd); 5611 5612 if (host_cmd == -TARGET_EINVAL) 5613 return host_cmd; 5614 5615 switch(cmd) { 5616 case TARGET_F_GETLK: 5617 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1)) 5618 return -TARGET_EFAULT; 5619 fl.l_type = 5620 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl); 5621 fl.l_whence = tswap16(target_fl->l_whence); 5622 fl.l_start = tswapal(target_fl->l_start); 5623 fl.l_len = tswapal(target_fl->l_len); 5624 fl.l_pid = tswap32(target_fl->l_pid); 5625 unlock_user_struct(target_fl, arg, 0); 5626 ret = get_errno(fcntl(fd, host_cmd, &fl)); 5627 if (ret == 0) { 5628 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg, 0)) 5629 return -TARGET_EFAULT; 5630 target_fl->l_type = 5631 host_to_target_bitmask(tswap16(fl.l_type), flock_tbl); 5632 target_fl->l_whence = tswap16(fl.l_whence); 5633 target_fl->l_start = tswapal(fl.l_start); 5634 target_fl->l_len = tswapal(fl.l_len); 5635 target_fl->l_pid = tswap32(fl.l_pid); 5636 unlock_user_struct(target_fl, arg, 1); 5637 } 5638 break; 5639 5640 case TARGET_F_SETLK: 5641 case TARGET_F_SETLKW: 5642 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1)) 5643 return -TARGET_EFAULT; 5644 fl.l_type = 5645 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl); 5646 fl.l_whence = tswap16(target_fl->l_whence); 5647 fl.l_start = tswapal(target_fl->l_start); 5648 fl.l_len = tswapal(target_fl->l_len); 5649 fl.l_pid = tswap32(target_fl->l_pid); 5650 unlock_user_struct(target_fl, arg, 0); 5651 ret = get_errno(fcntl(fd, host_cmd, &fl)); 5652 break; 5653 5654 case TARGET_F_GETLK64: 5655 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1)) 5656 return -TARGET_EFAULT; 5657 fl64.l_type = 5658 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1; 5659 fl64.l_whence = tswap16(target_fl64->l_whence); 5660 fl64.l_start = tswap64(target_fl64->l_start); 5661 fl64.l_len = tswap64(target_fl64->l_len); 5662 fl64.l_pid = tswap32(target_fl64->l_pid); 5663 unlock_user_struct(target_fl64, arg, 0); 5664 ret = get_errno(fcntl(fd, host_cmd, &fl64)); 5665 if (ret == 0) { 5666 if (!lock_user_struct(VERIFY_WRITE, target_fl64, arg, 0)) 5667 return -TARGET_EFAULT; 5668 target_fl64->l_type = 5669 host_to_target_bitmask(tswap16(fl64.l_type), flock_tbl) >> 1; 5670 target_fl64->l_whence = tswap16(fl64.l_whence); 5671 target_fl64->l_start = tswap64(fl64.l_start); 5672 target_fl64->l_len = tswap64(fl64.l_len); 5673 target_fl64->l_pid = tswap32(fl64.l_pid); 5674 unlock_user_struct(target_fl64, arg, 1); 5675 } 5676 break; 5677 case TARGET_F_SETLK64: 5678 case TARGET_F_SETLKW64: 5679 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1)) 5680 return -TARGET_EFAULT; 5681 fl64.l_type = 5682 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1; 5683 fl64.l_whence = tswap16(target_fl64->l_whence); 5684 fl64.l_start = tswap64(target_fl64->l_start); 5685 fl64.l_len = tswap64(target_fl64->l_len); 5686 fl64.l_pid = tswap32(target_fl64->l_pid); 5687 unlock_user_struct(target_fl64, arg, 0); 5688 ret = get_errno(fcntl(fd, host_cmd, &fl64)); 5689 break; 5690 5691 case TARGET_F_GETFL: 5692 ret = get_errno(fcntl(fd, host_cmd, arg)); 5693 if (ret >= 0) { 5694 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 5695 } 5696 break; 5697 5698 case TARGET_F_SETFL: 5699 ret = get_errno(fcntl(fd, host_cmd, target_to_host_bitmask(arg, fcntl_flags_tbl))); 5700 break; 5701 5702 #ifdef F_GETOWN_EX 5703 case TARGET_F_GETOWN_EX: 5704 ret = get_errno(fcntl(fd, host_cmd, &fox)); 5705 if (ret >= 0) { 5706 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 5707 return -TARGET_EFAULT; 5708 target_fox->type = tswap32(fox.type); 5709 target_fox->pid = tswap32(fox.pid); 5710 unlock_user_struct(target_fox, arg, 1); 5711 } 5712 break; 5713 #endif 5714 5715 #ifdef F_SETOWN_EX 5716 case TARGET_F_SETOWN_EX: 5717 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 5718 return -TARGET_EFAULT; 5719 fox.type = tswap32(target_fox->type); 5720 fox.pid = tswap32(target_fox->pid); 5721 unlock_user_struct(target_fox, arg, 0); 5722 ret = get_errno(fcntl(fd, host_cmd, &fox)); 5723 break; 5724 #endif 5725 5726 case TARGET_F_SETOWN: 5727 case TARGET_F_GETOWN: 5728 case TARGET_F_SETSIG: 5729 case TARGET_F_GETSIG: 5730 case TARGET_F_SETLEASE: 5731 case TARGET_F_GETLEASE: 5732 ret = get_errno(fcntl(fd, host_cmd, arg)); 5733 break; 5734 5735 default: 5736 ret = get_errno(fcntl(fd, cmd, arg)); 5737 break; 5738 } 5739 return ret; 5740 } 5741 5742 #ifdef USE_UID16 5743 5744 static inline int high2lowuid(int uid) 5745 { 5746 if (uid > 65535) 5747 return 65534; 5748 else 5749 return uid; 5750 } 5751 5752 static inline int high2lowgid(int gid) 5753 { 5754 if (gid > 65535) 5755 return 65534; 5756 else 5757 return gid; 5758 } 5759 5760 static inline int low2highuid(int uid) 5761 { 5762 if ((int16_t)uid == -1) 5763 return -1; 5764 else 5765 return uid; 5766 } 5767 5768 static inline int low2highgid(int gid) 5769 { 5770 if ((int16_t)gid == -1) 5771 return -1; 5772 else 5773 return gid; 5774 } 5775 static inline int tswapid(int id) 5776 { 5777 return tswap16(id); 5778 } 5779 5780 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 5781 5782 #else /* !USE_UID16 */ 5783 static inline int high2lowuid(int uid) 5784 { 5785 return uid; 5786 } 5787 static inline int high2lowgid(int gid) 5788 { 5789 return gid; 5790 } 5791 static inline int low2highuid(int uid) 5792 { 5793 return uid; 5794 } 5795 static inline int low2highgid(int gid) 5796 { 5797 return gid; 5798 } 5799 static inline int tswapid(int id) 5800 { 5801 return tswap32(id); 5802 } 5803 5804 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 5805 5806 #endif /* USE_UID16 */ 5807 5808 /* We must do direct syscalls for setting UID/GID, because we want to 5809 * implement the Linux system call semantics of "change only for this thread", 5810 * not the libc/POSIX semantics of "change for all threads in process". 5811 * (See http://ewontfix.com/17/ for more details.) 5812 * We use the 32-bit version of the syscalls if present; if it is not 5813 * then either the host architecture supports 32-bit UIDs natively with 5814 * the standard syscall, or the 16-bit UID is the best we can do. 5815 */ 5816 #ifdef __NR_setuid32 5817 #define __NR_sys_setuid __NR_setuid32 5818 #else 5819 #define __NR_sys_setuid __NR_setuid 5820 #endif 5821 #ifdef __NR_setgid32 5822 #define __NR_sys_setgid __NR_setgid32 5823 #else 5824 #define __NR_sys_setgid __NR_setgid 5825 #endif 5826 #ifdef __NR_setresuid32 5827 #define __NR_sys_setresuid __NR_setresuid32 5828 #else 5829 #define __NR_sys_setresuid __NR_setresuid 5830 #endif 5831 #ifdef __NR_setresgid32 5832 #define __NR_sys_setresgid __NR_setresgid32 5833 #else 5834 #define __NR_sys_setresgid __NR_setresgid 5835 #endif 5836 5837 _syscall1(int, sys_setuid, uid_t, uid) 5838 _syscall1(int, sys_setgid, gid_t, gid) 5839 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 5840 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 5841 5842 void syscall_init(void) 5843 { 5844 IOCTLEntry *ie; 5845 const argtype *arg_type; 5846 int size; 5847 int i; 5848 5849 thunk_init(STRUCT_MAX); 5850 5851 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 5852 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 5853 #include "syscall_types.h" 5854 #undef STRUCT 5855 #undef STRUCT_SPECIAL 5856 5857 /* Build target_to_host_errno_table[] table from 5858 * host_to_target_errno_table[]. */ 5859 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 5860 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 5861 } 5862 5863 /* we patch the ioctl size if necessary. We rely on the fact that 5864 no ioctl has all the bits at '1' in the size field */ 5865 ie = ioctl_entries; 5866 while (ie->target_cmd != 0) { 5867 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 5868 TARGET_IOC_SIZEMASK) { 5869 arg_type = ie->arg_type; 5870 if (arg_type[0] != TYPE_PTR) { 5871 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 5872 ie->target_cmd); 5873 exit(1); 5874 } 5875 arg_type++; 5876 size = thunk_type_size(arg_type, 0); 5877 ie->target_cmd = (ie->target_cmd & 5878 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 5879 (size << TARGET_IOC_SIZESHIFT); 5880 } 5881 5882 /* automatic consistency check if same arch */ 5883 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 5884 (defined(__x86_64__) && defined(TARGET_X86_64)) 5885 if (unlikely(ie->target_cmd != ie->host_cmd)) { 5886 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 5887 ie->name, ie->target_cmd, ie->host_cmd); 5888 } 5889 #endif 5890 ie++; 5891 } 5892 } 5893 5894 #if TARGET_ABI_BITS == 32 5895 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 5896 { 5897 #ifdef TARGET_WORDS_BIGENDIAN 5898 return ((uint64_t)word0 << 32) | word1; 5899 #else 5900 return ((uint64_t)word1 << 32) | word0; 5901 #endif 5902 } 5903 #else /* TARGET_ABI_BITS == 32 */ 5904 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 5905 { 5906 return word0; 5907 } 5908 #endif /* TARGET_ABI_BITS != 32 */ 5909 5910 #ifdef TARGET_NR_truncate64 5911 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 5912 abi_long arg2, 5913 abi_long arg3, 5914 abi_long arg4) 5915 { 5916 if (regpairs_aligned(cpu_env)) { 5917 arg2 = arg3; 5918 arg3 = arg4; 5919 } 5920 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 5921 } 5922 #endif 5923 5924 #ifdef TARGET_NR_ftruncate64 5925 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 5926 abi_long arg2, 5927 abi_long arg3, 5928 abi_long arg4) 5929 { 5930 if (regpairs_aligned(cpu_env)) { 5931 arg2 = arg3; 5932 arg3 = arg4; 5933 } 5934 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 5935 } 5936 #endif 5937 5938 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 5939 abi_ulong target_addr) 5940 { 5941 struct target_timespec *target_ts; 5942 5943 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) 5944 return -TARGET_EFAULT; 5945 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 5946 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 5947 unlock_user_struct(target_ts, target_addr, 0); 5948 return 0; 5949 } 5950 5951 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 5952 struct timespec *host_ts) 5953 { 5954 struct target_timespec *target_ts; 5955 5956 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) 5957 return -TARGET_EFAULT; 5958 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 5959 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 5960 unlock_user_struct(target_ts, target_addr, 1); 5961 return 0; 5962 } 5963 5964 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec, 5965 abi_ulong target_addr) 5966 { 5967 struct target_itimerspec *target_itspec; 5968 5969 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) { 5970 return -TARGET_EFAULT; 5971 } 5972 5973 host_itspec->it_interval.tv_sec = 5974 tswapal(target_itspec->it_interval.tv_sec); 5975 host_itspec->it_interval.tv_nsec = 5976 tswapal(target_itspec->it_interval.tv_nsec); 5977 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec); 5978 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec); 5979 5980 unlock_user_struct(target_itspec, target_addr, 1); 5981 return 0; 5982 } 5983 5984 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 5985 struct itimerspec *host_its) 5986 { 5987 struct target_itimerspec *target_itspec; 5988 5989 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) { 5990 return -TARGET_EFAULT; 5991 } 5992 5993 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec); 5994 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec); 5995 5996 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec); 5997 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec); 5998 5999 unlock_user_struct(target_itspec, target_addr, 0); 6000 return 0; 6001 } 6002 6003 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 6004 abi_ulong target_addr) 6005 { 6006 struct target_sigevent *target_sevp; 6007 6008 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 6009 return -TARGET_EFAULT; 6010 } 6011 6012 /* This union is awkward on 64 bit systems because it has a 32 bit 6013 * integer and a pointer in it; we follow the conversion approach 6014 * used for handling sigval types in signal.c so the guest should get 6015 * the correct value back even if we did a 64 bit byteswap and it's 6016 * using the 32 bit integer. 6017 */ 6018 host_sevp->sigev_value.sival_ptr = 6019 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 6020 host_sevp->sigev_signo = 6021 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 6022 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 6023 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid); 6024 6025 unlock_user_struct(target_sevp, target_addr, 1); 6026 return 0; 6027 } 6028 6029 #if defined(TARGET_NR_mlockall) 6030 static inline int target_to_host_mlockall_arg(int arg) 6031 { 6032 int result = 0; 6033 6034 if (arg & TARGET_MLOCKALL_MCL_CURRENT) { 6035 result |= MCL_CURRENT; 6036 } 6037 if (arg & TARGET_MLOCKALL_MCL_FUTURE) { 6038 result |= MCL_FUTURE; 6039 } 6040 return result; 6041 } 6042 #endif 6043 6044 static inline abi_long host_to_target_stat64(void *cpu_env, 6045 abi_ulong target_addr, 6046 struct stat *host_st) 6047 { 6048 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 6049 if (((CPUARMState *)cpu_env)->eabi) { 6050 struct target_eabi_stat64 *target_st; 6051 6052 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 6053 return -TARGET_EFAULT; 6054 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 6055 __put_user(host_st->st_dev, &target_st->st_dev); 6056 __put_user(host_st->st_ino, &target_st->st_ino); 6057 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 6058 __put_user(host_st->st_ino, &target_st->__st_ino); 6059 #endif 6060 __put_user(host_st->st_mode, &target_st->st_mode); 6061 __put_user(host_st->st_nlink, &target_st->st_nlink); 6062 __put_user(host_st->st_uid, &target_st->st_uid); 6063 __put_user(host_st->st_gid, &target_st->st_gid); 6064 __put_user(host_st->st_rdev, &target_st->st_rdev); 6065 __put_user(host_st->st_size, &target_st->st_size); 6066 __put_user(host_st->st_blksize, &target_st->st_blksize); 6067 __put_user(host_st->st_blocks, &target_st->st_blocks); 6068 __put_user(host_st->st_atime, &target_st->target_st_atime); 6069 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 6070 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 6071 unlock_user_struct(target_st, target_addr, 1); 6072 } else 6073 #endif 6074 { 6075 #if defined(TARGET_HAS_STRUCT_STAT64) 6076 struct target_stat64 *target_st; 6077 #else 6078 struct target_stat *target_st; 6079 #endif 6080 6081 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 6082 return -TARGET_EFAULT; 6083 memset(target_st, 0, sizeof(*target_st)); 6084 __put_user(host_st->st_dev, &target_st->st_dev); 6085 __put_user(host_st->st_ino, &target_st->st_ino); 6086 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 6087 __put_user(host_st->st_ino, &target_st->__st_ino); 6088 #endif 6089 __put_user(host_st->st_mode, &target_st->st_mode); 6090 __put_user(host_st->st_nlink, &target_st->st_nlink); 6091 __put_user(host_st->st_uid, &target_st->st_uid); 6092 __put_user(host_st->st_gid, &target_st->st_gid); 6093 __put_user(host_st->st_rdev, &target_st->st_rdev); 6094 /* XXX: better use of kernel struct */ 6095 __put_user(host_st->st_size, &target_st->st_size); 6096 __put_user(host_st->st_blksize, &target_st->st_blksize); 6097 __put_user(host_st->st_blocks, &target_st->st_blocks); 6098 __put_user(host_st->st_atime, &target_st->target_st_atime); 6099 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 6100 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 6101 unlock_user_struct(target_st, target_addr, 1); 6102 } 6103 6104 return 0; 6105 } 6106 6107 /* ??? Using host futex calls even when target atomic operations 6108 are not really atomic probably breaks things. However implementing 6109 futexes locally would make futexes shared between multiple processes 6110 tricky. However they're probably useless because guest atomic 6111 operations won't work either. */ 6112 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout, 6113 target_ulong uaddr2, int val3) 6114 { 6115 struct timespec ts, *pts; 6116 int base_op; 6117 6118 /* ??? We assume FUTEX_* constants are the same on both host 6119 and target. */ 6120 #ifdef FUTEX_CMD_MASK 6121 base_op = op & FUTEX_CMD_MASK; 6122 #else 6123 base_op = op; 6124 #endif 6125 switch (base_op) { 6126 case FUTEX_WAIT: 6127 case FUTEX_WAIT_BITSET: 6128 if (timeout) { 6129 pts = &ts; 6130 target_to_host_timespec(pts, timeout); 6131 } else { 6132 pts = NULL; 6133 } 6134 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val), 6135 pts, NULL, val3)); 6136 case FUTEX_WAKE: 6137 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 6138 case FUTEX_FD: 6139 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 6140 case FUTEX_REQUEUE: 6141 case FUTEX_CMP_REQUEUE: 6142 case FUTEX_WAKE_OP: 6143 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 6144 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 6145 But the prototype takes a `struct timespec *'; insert casts 6146 to satisfy the compiler. We do not need to tswap TIMEOUT 6147 since it's not compared to guest memory. */ 6148 pts = (struct timespec *)(uintptr_t) timeout; 6149 return get_errno(safe_futex(g2h(uaddr), op, val, pts, 6150 g2h(uaddr2), 6151 (base_op == FUTEX_CMP_REQUEUE 6152 ? tswap32(val3) 6153 : val3))); 6154 default: 6155 return -TARGET_ENOSYS; 6156 } 6157 } 6158 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 6159 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 6160 abi_long handle, abi_long mount_id, 6161 abi_long flags) 6162 { 6163 struct file_handle *target_fh; 6164 struct file_handle *fh; 6165 int mid = 0; 6166 abi_long ret; 6167 char *name; 6168 unsigned int size, total_size; 6169 6170 if (get_user_s32(size, handle)) { 6171 return -TARGET_EFAULT; 6172 } 6173 6174 name = lock_user_string(pathname); 6175 if (!name) { 6176 return -TARGET_EFAULT; 6177 } 6178 6179 total_size = sizeof(struct file_handle) + size; 6180 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 6181 if (!target_fh) { 6182 unlock_user(name, pathname, 0); 6183 return -TARGET_EFAULT; 6184 } 6185 6186 fh = g_malloc0(total_size); 6187 fh->handle_bytes = size; 6188 6189 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 6190 unlock_user(name, pathname, 0); 6191 6192 /* man name_to_handle_at(2): 6193 * Other than the use of the handle_bytes field, the caller should treat 6194 * the file_handle structure as an opaque data type 6195 */ 6196 6197 memcpy(target_fh, fh, total_size); 6198 target_fh->handle_bytes = tswap32(fh->handle_bytes); 6199 target_fh->handle_type = tswap32(fh->handle_type); 6200 g_free(fh); 6201 unlock_user(target_fh, handle, total_size); 6202 6203 if (put_user_s32(mid, mount_id)) { 6204 return -TARGET_EFAULT; 6205 } 6206 6207 return ret; 6208 6209 } 6210 #endif 6211 6212 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 6213 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 6214 abi_long flags) 6215 { 6216 struct file_handle *target_fh; 6217 struct file_handle *fh; 6218 unsigned int size, total_size; 6219 abi_long ret; 6220 6221 if (get_user_s32(size, handle)) { 6222 return -TARGET_EFAULT; 6223 } 6224 6225 total_size = sizeof(struct file_handle) + size; 6226 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 6227 if (!target_fh) { 6228 return -TARGET_EFAULT; 6229 } 6230 6231 fh = g_memdup(target_fh, total_size); 6232 fh->handle_bytes = size; 6233 fh->handle_type = tswap32(target_fh->handle_type); 6234 6235 ret = get_errno(open_by_handle_at(mount_fd, fh, 6236 target_to_host_bitmask(flags, fcntl_flags_tbl))); 6237 6238 g_free(fh); 6239 6240 unlock_user(target_fh, handle, total_size); 6241 6242 return ret; 6243 } 6244 #endif 6245 6246 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 6247 6248 /* signalfd siginfo conversion */ 6249 6250 static void 6251 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo, 6252 const struct signalfd_siginfo *info) 6253 { 6254 int sig = host_to_target_signal(info->ssi_signo); 6255 6256 /* linux/signalfd.h defines a ssi_addr_lsb 6257 * not defined in sys/signalfd.h but used by some kernels 6258 */ 6259 6260 #ifdef BUS_MCEERR_AO 6261 if (tinfo->ssi_signo == SIGBUS && 6262 (tinfo->ssi_code == BUS_MCEERR_AR || 6263 tinfo->ssi_code == BUS_MCEERR_AO)) { 6264 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1); 6265 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1); 6266 *tssi_addr_lsb = tswap16(*ssi_addr_lsb); 6267 } 6268 #endif 6269 6270 tinfo->ssi_signo = tswap32(sig); 6271 tinfo->ssi_errno = tswap32(tinfo->ssi_errno); 6272 tinfo->ssi_code = tswap32(info->ssi_code); 6273 tinfo->ssi_pid = tswap32(info->ssi_pid); 6274 tinfo->ssi_uid = tswap32(info->ssi_uid); 6275 tinfo->ssi_fd = tswap32(info->ssi_fd); 6276 tinfo->ssi_tid = tswap32(info->ssi_tid); 6277 tinfo->ssi_band = tswap32(info->ssi_band); 6278 tinfo->ssi_overrun = tswap32(info->ssi_overrun); 6279 tinfo->ssi_trapno = tswap32(info->ssi_trapno); 6280 tinfo->ssi_status = tswap32(info->ssi_status); 6281 tinfo->ssi_int = tswap32(info->ssi_int); 6282 tinfo->ssi_ptr = tswap64(info->ssi_ptr); 6283 tinfo->ssi_utime = tswap64(info->ssi_utime); 6284 tinfo->ssi_stime = tswap64(info->ssi_stime); 6285 tinfo->ssi_addr = tswap64(info->ssi_addr); 6286 } 6287 6288 static abi_long host_to_target_data_signalfd(void *buf, size_t len) 6289 { 6290 int i; 6291 6292 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) { 6293 host_to_target_signalfd_siginfo(buf + i, buf + i); 6294 } 6295 6296 return len; 6297 } 6298 6299 static TargetFdTrans target_signalfd_trans = { 6300 .host_to_target_data = host_to_target_data_signalfd, 6301 }; 6302 6303 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 6304 { 6305 int host_flags; 6306 target_sigset_t *target_mask; 6307 sigset_t host_mask; 6308 abi_long ret; 6309 6310 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) { 6311 return -TARGET_EINVAL; 6312 } 6313 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 6314 return -TARGET_EFAULT; 6315 } 6316 6317 target_to_host_sigset(&host_mask, target_mask); 6318 6319 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 6320 6321 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 6322 if (ret >= 0) { 6323 fd_trans_register(ret, &target_signalfd_trans); 6324 } 6325 6326 unlock_user_struct(target_mask, mask, 0); 6327 6328 return ret; 6329 } 6330 #endif 6331 6332 /* Map host to target signal numbers for the wait family of syscalls. 6333 Assume all other status bits are the same. */ 6334 int host_to_target_waitstatus(int status) 6335 { 6336 if (WIFSIGNALED(status)) { 6337 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 6338 } 6339 if (WIFSTOPPED(status)) { 6340 return (host_to_target_signal(WSTOPSIG(status)) << 8) 6341 | (status & 0xff); 6342 } 6343 return status; 6344 } 6345 6346 static int open_self_cmdline(void *cpu_env, int fd) 6347 { 6348 int fd_orig = -1; 6349 bool word_skipped = false; 6350 6351 fd_orig = open("/proc/self/cmdline", O_RDONLY); 6352 if (fd_orig < 0) { 6353 return fd_orig; 6354 } 6355 6356 while (true) { 6357 ssize_t nb_read; 6358 char buf[128]; 6359 char *cp_buf = buf; 6360 6361 nb_read = read(fd_orig, buf, sizeof(buf)); 6362 if (nb_read < 0) { 6363 int e = errno; 6364 fd_orig = close(fd_orig); 6365 errno = e; 6366 return -1; 6367 } else if (nb_read == 0) { 6368 break; 6369 } 6370 6371 if (!word_skipped) { 6372 /* Skip the first string, which is the path to qemu-*-static 6373 instead of the actual command. */ 6374 cp_buf = memchr(buf, 0, sizeof(buf)); 6375 if (cp_buf) { 6376 /* Null byte found, skip one string */ 6377 cp_buf++; 6378 nb_read -= cp_buf - buf; 6379 word_skipped = true; 6380 } 6381 } 6382 6383 if (word_skipped) { 6384 if (write(fd, cp_buf, nb_read) != nb_read) { 6385 int e = errno; 6386 close(fd_orig); 6387 errno = e; 6388 return -1; 6389 } 6390 } 6391 } 6392 6393 return close(fd_orig); 6394 } 6395 6396 static int open_self_maps(void *cpu_env, int fd) 6397 { 6398 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 6399 TaskState *ts = cpu->opaque; 6400 FILE *fp; 6401 char *line = NULL; 6402 size_t len = 0; 6403 ssize_t read; 6404 6405 fp = fopen("/proc/self/maps", "r"); 6406 if (fp == NULL) { 6407 return -1; 6408 } 6409 6410 while ((read = getline(&line, &len, fp)) != -1) { 6411 int fields, dev_maj, dev_min, inode; 6412 uint64_t min, max, offset; 6413 char flag_r, flag_w, flag_x, flag_p; 6414 char path[512] = ""; 6415 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d" 6416 " %512s", &min, &max, &flag_r, &flag_w, &flag_x, 6417 &flag_p, &offset, &dev_maj, &dev_min, &inode, path); 6418 6419 if ((fields < 10) || (fields > 11)) { 6420 continue; 6421 } 6422 if (h2g_valid(min)) { 6423 int flags = page_get_flags(h2g(min)); 6424 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX); 6425 if (page_check_range(h2g(min), max - min, flags) == -1) { 6426 continue; 6427 } 6428 if (h2g(min) == ts->info->stack_limit) { 6429 pstrcpy(path, sizeof(path), " [stack]"); 6430 } 6431 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx 6432 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n", 6433 h2g(min), h2g(max - 1) + 1, flag_r, flag_w, 6434 flag_x, flag_p, offset, dev_maj, dev_min, inode, 6435 path[0] ? " " : "", path); 6436 } 6437 } 6438 6439 free(line); 6440 fclose(fp); 6441 6442 return 0; 6443 } 6444 6445 static int open_self_stat(void *cpu_env, int fd) 6446 { 6447 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 6448 TaskState *ts = cpu->opaque; 6449 abi_ulong start_stack = ts->info->start_stack; 6450 int i; 6451 6452 for (i = 0; i < 44; i++) { 6453 char buf[128]; 6454 int len; 6455 uint64_t val = 0; 6456 6457 if (i == 0) { 6458 /* pid */ 6459 val = getpid(); 6460 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 6461 } else if (i == 1) { 6462 /* app name */ 6463 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]); 6464 } else if (i == 27) { 6465 /* stack bottom */ 6466 val = start_stack; 6467 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 6468 } else { 6469 /* for the rest, there is MasterCard */ 6470 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' '); 6471 } 6472 6473 len = strlen(buf); 6474 if (write(fd, buf, len) != len) { 6475 return -1; 6476 } 6477 } 6478 6479 return 0; 6480 } 6481 6482 static int open_self_auxv(void *cpu_env, int fd) 6483 { 6484 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 6485 TaskState *ts = cpu->opaque; 6486 abi_ulong auxv = ts->info->saved_auxv; 6487 abi_ulong len = ts->info->auxv_len; 6488 char *ptr; 6489 6490 /* 6491 * Auxiliary vector is stored in target process stack. 6492 * read in whole auxv vector and copy it to file 6493 */ 6494 ptr = lock_user(VERIFY_READ, auxv, len, 0); 6495 if (ptr != NULL) { 6496 while (len > 0) { 6497 ssize_t r; 6498 r = write(fd, ptr, len); 6499 if (r <= 0) { 6500 break; 6501 } 6502 len -= r; 6503 ptr += r; 6504 } 6505 lseek(fd, 0, SEEK_SET); 6506 unlock_user(ptr, auxv, len); 6507 } 6508 6509 return 0; 6510 } 6511 6512 static int is_proc_myself(const char *filename, const char *entry) 6513 { 6514 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 6515 filename += strlen("/proc/"); 6516 if (!strncmp(filename, "self/", strlen("self/"))) { 6517 filename += strlen("self/"); 6518 } else if (*filename >= '1' && *filename <= '9') { 6519 char myself[80]; 6520 snprintf(myself, sizeof(myself), "%d/", getpid()); 6521 if (!strncmp(filename, myself, strlen(myself))) { 6522 filename += strlen(myself); 6523 } else { 6524 return 0; 6525 } 6526 } else { 6527 return 0; 6528 } 6529 if (!strcmp(filename, entry)) { 6530 return 1; 6531 } 6532 } 6533 return 0; 6534 } 6535 6536 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 6537 static int is_proc(const char *filename, const char *entry) 6538 { 6539 return strcmp(filename, entry) == 0; 6540 } 6541 6542 static int open_net_route(void *cpu_env, int fd) 6543 { 6544 FILE *fp; 6545 char *line = NULL; 6546 size_t len = 0; 6547 ssize_t read; 6548 6549 fp = fopen("/proc/net/route", "r"); 6550 if (fp == NULL) { 6551 return -1; 6552 } 6553 6554 /* read header */ 6555 6556 read = getline(&line, &len, fp); 6557 dprintf(fd, "%s", line); 6558 6559 /* read routes */ 6560 6561 while ((read = getline(&line, &len, fp)) != -1) { 6562 char iface[16]; 6563 uint32_t dest, gw, mask; 6564 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 6565 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 6566 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 6567 &mask, &mtu, &window, &irtt); 6568 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 6569 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 6570 metric, tswap32(mask), mtu, window, irtt); 6571 } 6572 6573 free(line); 6574 fclose(fp); 6575 6576 return 0; 6577 } 6578 #endif 6579 6580 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 6581 { 6582 struct fake_open { 6583 const char *filename; 6584 int (*fill)(void *cpu_env, int fd); 6585 int (*cmp)(const char *s1, const char *s2); 6586 }; 6587 const struct fake_open *fake_open; 6588 static const struct fake_open fakes[] = { 6589 { "maps", open_self_maps, is_proc_myself }, 6590 { "stat", open_self_stat, is_proc_myself }, 6591 { "auxv", open_self_auxv, is_proc_myself }, 6592 { "cmdline", open_self_cmdline, is_proc_myself }, 6593 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 6594 { "/proc/net/route", open_net_route, is_proc }, 6595 #endif 6596 { NULL, NULL, NULL } 6597 }; 6598 6599 if (is_proc_myself(pathname, "exe")) { 6600 int execfd = qemu_getauxval(AT_EXECFD); 6601 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode); 6602 } 6603 6604 for (fake_open = fakes; fake_open->filename; fake_open++) { 6605 if (fake_open->cmp(pathname, fake_open->filename)) { 6606 break; 6607 } 6608 } 6609 6610 if (fake_open->filename) { 6611 const char *tmpdir; 6612 char filename[PATH_MAX]; 6613 int fd, r; 6614 6615 /* create temporary file to map stat to */ 6616 tmpdir = getenv("TMPDIR"); 6617 if (!tmpdir) 6618 tmpdir = "/tmp"; 6619 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 6620 fd = mkstemp(filename); 6621 if (fd < 0) { 6622 return fd; 6623 } 6624 unlink(filename); 6625 6626 if ((r = fake_open->fill(cpu_env, fd))) { 6627 int e = errno; 6628 close(fd); 6629 errno = e; 6630 return r; 6631 } 6632 lseek(fd, 0, SEEK_SET); 6633 6634 return fd; 6635 } 6636 6637 return safe_openat(dirfd, path(pathname), flags, mode); 6638 } 6639 6640 #define TIMER_MAGIC 0x0caf0000 6641 #define TIMER_MAGIC_MASK 0xffff0000 6642 6643 /* Convert QEMU provided timer ID back to internal 16bit index format */ 6644 static target_timer_t get_timer_id(abi_long arg) 6645 { 6646 target_timer_t timerid = arg; 6647 6648 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 6649 return -TARGET_EINVAL; 6650 } 6651 6652 timerid &= 0xffff; 6653 6654 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 6655 return -TARGET_EINVAL; 6656 } 6657 6658 return timerid; 6659 } 6660 6661 /* do_syscall() should always have a single exit point at the end so 6662 that actions, such as logging of syscall results, can be performed. 6663 All errnos that do_syscall() returns must be -TARGET_<errcode>. */ 6664 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 6665 abi_long arg2, abi_long arg3, abi_long arg4, 6666 abi_long arg5, abi_long arg6, abi_long arg7, 6667 abi_long arg8) 6668 { 6669 CPUState *cpu = ENV_GET_CPU(cpu_env); 6670 abi_long ret; 6671 struct stat st; 6672 struct statfs stfs; 6673 void *p; 6674 6675 #if defined(DEBUG_ERESTARTSYS) 6676 /* Debug-only code for exercising the syscall-restart code paths 6677 * in the per-architecture cpu main loops: restart every syscall 6678 * the guest makes once before letting it through. 6679 */ 6680 { 6681 static int flag; 6682 6683 flag = !flag; 6684 if (flag) { 6685 return -TARGET_ERESTARTSYS; 6686 } 6687 } 6688 #endif 6689 6690 #ifdef DEBUG 6691 gemu_log("syscall %d", num); 6692 #endif 6693 if(do_strace) 6694 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); 6695 6696 switch(num) { 6697 case TARGET_NR_exit: 6698 /* In old applications this may be used to implement _exit(2). 6699 However in threaded applictions it is used for thread termination, 6700 and _exit_group is used for application termination. 6701 Do thread termination if we have more then one thread. */ 6702 6703 if (block_signals()) { 6704 ret = -TARGET_ERESTARTSYS; 6705 break; 6706 } 6707 6708 if (CPU_NEXT(first_cpu)) { 6709 TaskState *ts; 6710 6711 cpu_list_lock(); 6712 /* Remove the CPU from the list. */ 6713 QTAILQ_REMOVE(&cpus, cpu, node); 6714 cpu_list_unlock(); 6715 ts = cpu->opaque; 6716 if (ts->child_tidptr) { 6717 put_user_u32(0, ts->child_tidptr); 6718 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX, 6719 NULL, NULL, 0); 6720 } 6721 thread_cpu = NULL; 6722 object_unref(OBJECT(cpu)); 6723 g_free(ts); 6724 rcu_unregister_thread(); 6725 pthread_exit(NULL); 6726 } 6727 #ifdef TARGET_GPROF 6728 _mcleanup(); 6729 #endif 6730 gdb_exit(cpu_env, arg1); 6731 _exit(arg1); 6732 ret = 0; /* avoid warning */ 6733 break; 6734 case TARGET_NR_read: 6735 if (arg3 == 0) 6736 ret = 0; 6737 else { 6738 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 6739 goto efault; 6740 ret = get_errno(safe_read(arg1, p, arg3)); 6741 if (ret >= 0 && 6742 fd_trans_host_to_target_data(arg1)) { 6743 ret = fd_trans_host_to_target_data(arg1)(p, ret); 6744 } 6745 unlock_user(p, arg2, ret); 6746 } 6747 break; 6748 case TARGET_NR_write: 6749 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 6750 goto efault; 6751 ret = get_errno(safe_write(arg1, p, arg3)); 6752 unlock_user(p, arg2, 0); 6753 break; 6754 #ifdef TARGET_NR_open 6755 case TARGET_NR_open: 6756 if (!(p = lock_user_string(arg1))) 6757 goto efault; 6758 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 6759 target_to_host_bitmask(arg2, fcntl_flags_tbl), 6760 arg3)); 6761 fd_trans_unregister(ret); 6762 unlock_user(p, arg1, 0); 6763 break; 6764 #endif 6765 case TARGET_NR_openat: 6766 if (!(p = lock_user_string(arg2))) 6767 goto efault; 6768 ret = get_errno(do_openat(cpu_env, arg1, p, 6769 target_to_host_bitmask(arg3, fcntl_flags_tbl), 6770 arg4)); 6771 fd_trans_unregister(ret); 6772 unlock_user(p, arg2, 0); 6773 break; 6774 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 6775 case TARGET_NR_name_to_handle_at: 6776 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 6777 break; 6778 #endif 6779 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 6780 case TARGET_NR_open_by_handle_at: 6781 ret = do_open_by_handle_at(arg1, arg2, arg3); 6782 fd_trans_unregister(ret); 6783 break; 6784 #endif 6785 case TARGET_NR_close: 6786 fd_trans_unregister(arg1); 6787 ret = get_errno(close(arg1)); 6788 break; 6789 case TARGET_NR_brk: 6790 ret = do_brk(arg1); 6791 break; 6792 #ifdef TARGET_NR_fork 6793 case TARGET_NR_fork: 6794 ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0)); 6795 break; 6796 #endif 6797 #ifdef TARGET_NR_waitpid 6798 case TARGET_NR_waitpid: 6799 { 6800 int status; 6801 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 6802 if (!is_error(ret) && arg2 && ret 6803 && put_user_s32(host_to_target_waitstatus(status), arg2)) 6804 goto efault; 6805 } 6806 break; 6807 #endif 6808 #ifdef TARGET_NR_waitid 6809 case TARGET_NR_waitid: 6810 { 6811 siginfo_t info; 6812 info.si_pid = 0; 6813 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 6814 if (!is_error(ret) && arg3 && info.si_pid != 0) { 6815 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 6816 goto efault; 6817 host_to_target_siginfo(p, &info); 6818 unlock_user(p, arg3, sizeof(target_siginfo_t)); 6819 } 6820 } 6821 break; 6822 #endif 6823 #ifdef TARGET_NR_creat /* not on alpha */ 6824 case TARGET_NR_creat: 6825 if (!(p = lock_user_string(arg1))) 6826 goto efault; 6827 ret = get_errno(creat(p, arg2)); 6828 fd_trans_unregister(ret); 6829 unlock_user(p, arg1, 0); 6830 break; 6831 #endif 6832 #ifdef TARGET_NR_link 6833 case TARGET_NR_link: 6834 { 6835 void * p2; 6836 p = lock_user_string(arg1); 6837 p2 = lock_user_string(arg2); 6838 if (!p || !p2) 6839 ret = -TARGET_EFAULT; 6840 else 6841 ret = get_errno(link(p, p2)); 6842 unlock_user(p2, arg2, 0); 6843 unlock_user(p, arg1, 0); 6844 } 6845 break; 6846 #endif 6847 #if defined(TARGET_NR_linkat) 6848 case TARGET_NR_linkat: 6849 { 6850 void * p2 = NULL; 6851 if (!arg2 || !arg4) 6852 goto efault; 6853 p = lock_user_string(arg2); 6854 p2 = lock_user_string(arg4); 6855 if (!p || !p2) 6856 ret = -TARGET_EFAULT; 6857 else 6858 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 6859 unlock_user(p, arg2, 0); 6860 unlock_user(p2, arg4, 0); 6861 } 6862 break; 6863 #endif 6864 #ifdef TARGET_NR_unlink 6865 case TARGET_NR_unlink: 6866 if (!(p = lock_user_string(arg1))) 6867 goto efault; 6868 ret = get_errno(unlink(p)); 6869 unlock_user(p, arg1, 0); 6870 break; 6871 #endif 6872 #if defined(TARGET_NR_unlinkat) 6873 case TARGET_NR_unlinkat: 6874 if (!(p = lock_user_string(arg2))) 6875 goto efault; 6876 ret = get_errno(unlinkat(arg1, p, arg3)); 6877 unlock_user(p, arg2, 0); 6878 break; 6879 #endif 6880 case TARGET_NR_execve: 6881 { 6882 char **argp, **envp; 6883 int argc, envc; 6884 abi_ulong gp; 6885 abi_ulong guest_argp; 6886 abi_ulong guest_envp; 6887 abi_ulong addr; 6888 char **q; 6889 int total_size = 0; 6890 6891 argc = 0; 6892 guest_argp = arg2; 6893 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 6894 if (get_user_ual(addr, gp)) 6895 goto efault; 6896 if (!addr) 6897 break; 6898 argc++; 6899 } 6900 envc = 0; 6901 guest_envp = arg3; 6902 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 6903 if (get_user_ual(addr, gp)) 6904 goto efault; 6905 if (!addr) 6906 break; 6907 envc++; 6908 } 6909 6910 argp = alloca((argc + 1) * sizeof(void *)); 6911 envp = alloca((envc + 1) * sizeof(void *)); 6912 6913 for (gp = guest_argp, q = argp; gp; 6914 gp += sizeof(abi_ulong), q++) { 6915 if (get_user_ual(addr, gp)) 6916 goto execve_efault; 6917 if (!addr) 6918 break; 6919 if (!(*q = lock_user_string(addr))) 6920 goto execve_efault; 6921 total_size += strlen(*q) + 1; 6922 } 6923 *q = NULL; 6924 6925 for (gp = guest_envp, q = envp; gp; 6926 gp += sizeof(abi_ulong), q++) { 6927 if (get_user_ual(addr, gp)) 6928 goto execve_efault; 6929 if (!addr) 6930 break; 6931 if (!(*q = lock_user_string(addr))) 6932 goto execve_efault; 6933 total_size += strlen(*q) + 1; 6934 } 6935 *q = NULL; 6936 6937 if (!(p = lock_user_string(arg1))) 6938 goto execve_efault; 6939 /* Although execve() is not an interruptible syscall it is 6940 * a special case where we must use the safe_syscall wrapper: 6941 * if we allow a signal to happen before we make the host 6942 * syscall then we will 'lose' it, because at the point of 6943 * execve the process leaves QEMU's control. So we use the 6944 * safe syscall wrapper to ensure that we either take the 6945 * signal as a guest signal, or else it does not happen 6946 * before the execve completes and makes it the other 6947 * program's problem. 6948 */ 6949 ret = get_errno(safe_execve(p, argp, envp)); 6950 unlock_user(p, arg1, 0); 6951 6952 goto execve_end; 6953 6954 execve_efault: 6955 ret = -TARGET_EFAULT; 6956 6957 execve_end: 6958 for (gp = guest_argp, q = argp; *q; 6959 gp += sizeof(abi_ulong), q++) { 6960 if (get_user_ual(addr, gp) 6961 || !addr) 6962 break; 6963 unlock_user(*q, addr, 0); 6964 } 6965 for (gp = guest_envp, q = envp; *q; 6966 gp += sizeof(abi_ulong), q++) { 6967 if (get_user_ual(addr, gp) 6968 || !addr) 6969 break; 6970 unlock_user(*q, addr, 0); 6971 } 6972 } 6973 break; 6974 case TARGET_NR_chdir: 6975 if (!(p = lock_user_string(arg1))) 6976 goto efault; 6977 ret = get_errno(chdir(p)); 6978 unlock_user(p, arg1, 0); 6979 break; 6980 #ifdef TARGET_NR_time 6981 case TARGET_NR_time: 6982 { 6983 time_t host_time; 6984 ret = get_errno(time(&host_time)); 6985 if (!is_error(ret) 6986 && arg1 6987 && put_user_sal(host_time, arg1)) 6988 goto efault; 6989 } 6990 break; 6991 #endif 6992 #ifdef TARGET_NR_mknod 6993 case TARGET_NR_mknod: 6994 if (!(p = lock_user_string(arg1))) 6995 goto efault; 6996 ret = get_errno(mknod(p, arg2, arg3)); 6997 unlock_user(p, arg1, 0); 6998 break; 6999 #endif 7000 #if defined(TARGET_NR_mknodat) 7001 case TARGET_NR_mknodat: 7002 if (!(p = lock_user_string(arg2))) 7003 goto efault; 7004 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 7005 unlock_user(p, arg2, 0); 7006 break; 7007 #endif 7008 #ifdef TARGET_NR_chmod 7009 case TARGET_NR_chmod: 7010 if (!(p = lock_user_string(arg1))) 7011 goto efault; 7012 ret = get_errno(chmod(p, arg2)); 7013 unlock_user(p, arg1, 0); 7014 break; 7015 #endif 7016 #ifdef TARGET_NR_break 7017 case TARGET_NR_break: 7018 goto unimplemented; 7019 #endif 7020 #ifdef TARGET_NR_oldstat 7021 case TARGET_NR_oldstat: 7022 goto unimplemented; 7023 #endif 7024 case TARGET_NR_lseek: 7025 ret = get_errno(lseek(arg1, arg2, arg3)); 7026 break; 7027 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 7028 /* Alpha specific */ 7029 case TARGET_NR_getxpid: 7030 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 7031 ret = get_errno(getpid()); 7032 break; 7033 #endif 7034 #ifdef TARGET_NR_getpid 7035 case TARGET_NR_getpid: 7036 ret = get_errno(getpid()); 7037 break; 7038 #endif 7039 case TARGET_NR_mount: 7040 { 7041 /* need to look at the data field */ 7042 void *p2, *p3; 7043 7044 if (arg1) { 7045 p = lock_user_string(arg1); 7046 if (!p) { 7047 goto efault; 7048 } 7049 } else { 7050 p = NULL; 7051 } 7052 7053 p2 = lock_user_string(arg2); 7054 if (!p2) { 7055 if (arg1) { 7056 unlock_user(p, arg1, 0); 7057 } 7058 goto efault; 7059 } 7060 7061 if (arg3) { 7062 p3 = lock_user_string(arg3); 7063 if (!p3) { 7064 if (arg1) { 7065 unlock_user(p, arg1, 0); 7066 } 7067 unlock_user(p2, arg2, 0); 7068 goto efault; 7069 } 7070 } else { 7071 p3 = NULL; 7072 } 7073 7074 /* FIXME - arg5 should be locked, but it isn't clear how to 7075 * do that since it's not guaranteed to be a NULL-terminated 7076 * string. 7077 */ 7078 if (!arg5) { 7079 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 7080 } else { 7081 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)); 7082 } 7083 ret = get_errno(ret); 7084 7085 if (arg1) { 7086 unlock_user(p, arg1, 0); 7087 } 7088 unlock_user(p2, arg2, 0); 7089 if (arg3) { 7090 unlock_user(p3, arg3, 0); 7091 } 7092 } 7093 break; 7094 #ifdef TARGET_NR_umount 7095 case TARGET_NR_umount: 7096 if (!(p = lock_user_string(arg1))) 7097 goto efault; 7098 ret = get_errno(umount(p)); 7099 unlock_user(p, arg1, 0); 7100 break; 7101 #endif 7102 #ifdef TARGET_NR_stime /* not on alpha */ 7103 case TARGET_NR_stime: 7104 { 7105 time_t host_time; 7106 if (get_user_sal(host_time, arg1)) 7107 goto efault; 7108 ret = get_errno(stime(&host_time)); 7109 } 7110 break; 7111 #endif 7112 case TARGET_NR_ptrace: 7113 goto unimplemented; 7114 #ifdef TARGET_NR_alarm /* not on alpha */ 7115 case TARGET_NR_alarm: 7116 ret = alarm(arg1); 7117 break; 7118 #endif 7119 #ifdef TARGET_NR_oldfstat 7120 case TARGET_NR_oldfstat: 7121 goto unimplemented; 7122 #endif 7123 #ifdef TARGET_NR_pause /* not on alpha */ 7124 case TARGET_NR_pause: 7125 if (!block_signals()) { 7126 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask); 7127 } 7128 ret = -TARGET_EINTR; 7129 break; 7130 #endif 7131 #ifdef TARGET_NR_utime 7132 case TARGET_NR_utime: 7133 { 7134 struct utimbuf tbuf, *host_tbuf; 7135 struct target_utimbuf *target_tbuf; 7136 if (arg2) { 7137 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 7138 goto efault; 7139 tbuf.actime = tswapal(target_tbuf->actime); 7140 tbuf.modtime = tswapal(target_tbuf->modtime); 7141 unlock_user_struct(target_tbuf, arg2, 0); 7142 host_tbuf = &tbuf; 7143 } else { 7144 host_tbuf = NULL; 7145 } 7146 if (!(p = lock_user_string(arg1))) 7147 goto efault; 7148 ret = get_errno(utime(p, host_tbuf)); 7149 unlock_user(p, arg1, 0); 7150 } 7151 break; 7152 #endif 7153 #ifdef TARGET_NR_utimes 7154 case TARGET_NR_utimes: 7155 { 7156 struct timeval *tvp, tv[2]; 7157 if (arg2) { 7158 if (copy_from_user_timeval(&tv[0], arg2) 7159 || copy_from_user_timeval(&tv[1], 7160 arg2 + sizeof(struct target_timeval))) 7161 goto efault; 7162 tvp = tv; 7163 } else { 7164 tvp = NULL; 7165 } 7166 if (!(p = lock_user_string(arg1))) 7167 goto efault; 7168 ret = get_errno(utimes(p, tvp)); 7169 unlock_user(p, arg1, 0); 7170 } 7171 break; 7172 #endif 7173 #if defined(TARGET_NR_futimesat) 7174 case TARGET_NR_futimesat: 7175 { 7176 struct timeval *tvp, tv[2]; 7177 if (arg3) { 7178 if (copy_from_user_timeval(&tv[0], arg3) 7179 || copy_from_user_timeval(&tv[1], 7180 arg3 + sizeof(struct target_timeval))) 7181 goto efault; 7182 tvp = tv; 7183 } else { 7184 tvp = NULL; 7185 } 7186 if (!(p = lock_user_string(arg2))) 7187 goto efault; 7188 ret = get_errno(futimesat(arg1, path(p), tvp)); 7189 unlock_user(p, arg2, 0); 7190 } 7191 break; 7192 #endif 7193 #ifdef TARGET_NR_stty 7194 case TARGET_NR_stty: 7195 goto unimplemented; 7196 #endif 7197 #ifdef TARGET_NR_gtty 7198 case TARGET_NR_gtty: 7199 goto unimplemented; 7200 #endif 7201 #ifdef TARGET_NR_access 7202 case TARGET_NR_access: 7203 if (!(p = lock_user_string(arg1))) 7204 goto efault; 7205 ret = get_errno(access(path(p), arg2)); 7206 unlock_user(p, arg1, 0); 7207 break; 7208 #endif 7209 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 7210 case TARGET_NR_faccessat: 7211 if (!(p = lock_user_string(arg2))) 7212 goto efault; 7213 ret = get_errno(faccessat(arg1, p, arg3, 0)); 7214 unlock_user(p, arg2, 0); 7215 break; 7216 #endif 7217 #ifdef TARGET_NR_nice /* not on alpha */ 7218 case TARGET_NR_nice: 7219 ret = get_errno(nice(arg1)); 7220 break; 7221 #endif 7222 #ifdef TARGET_NR_ftime 7223 case TARGET_NR_ftime: 7224 goto unimplemented; 7225 #endif 7226 case TARGET_NR_sync: 7227 sync(); 7228 ret = 0; 7229 break; 7230 case TARGET_NR_kill: 7231 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 7232 break; 7233 #ifdef TARGET_NR_rename 7234 case TARGET_NR_rename: 7235 { 7236 void *p2; 7237 p = lock_user_string(arg1); 7238 p2 = lock_user_string(arg2); 7239 if (!p || !p2) 7240 ret = -TARGET_EFAULT; 7241 else 7242 ret = get_errno(rename(p, p2)); 7243 unlock_user(p2, arg2, 0); 7244 unlock_user(p, arg1, 0); 7245 } 7246 break; 7247 #endif 7248 #if defined(TARGET_NR_renameat) 7249 case TARGET_NR_renameat: 7250 { 7251 void *p2; 7252 p = lock_user_string(arg2); 7253 p2 = lock_user_string(arg4); 7254 if (!p || !p2) 7255 ret = -TARGET_EFAULT; 7256 else 7257 ret = get_errno(renameat(arg1, p, arg3, p2)); 7258 unlock_user(p2, arg4, 0); 7259 unlock_user(p, arg2, 0); 7260 } 7261 break; 7262 #endif 7263 #ifdef TARGET_NR_mkdir 7264 case TARGET_NR_mkdir: 7265 if (!(p = lock_user_string(arg1))) 7266 goto efault; 7267 ret = get_errno(mkdir(p, arg2)); 7268 unlock_user(p, arg1, 0); 7269 break; 7270 #endif 7271 #if defined(TARGET_NR_mkdirat) 7272 case TARGET_NR_mkdirat: 7273 if (!(p = lock_user_string(arg2))) 7274 goto efault; 7275 ret = get_errno(mkdirat(arg1, p, arg3)); 7276 unlock_user(p, arg2, 0); 7277 break; 7278 #endif 7279 #ifdef TARGET_NR_rmdir 7280 case TARGET_NR_rmdir: 7281 if (!(p = lock_user_string(arg1))) 7282 goto efault; 7283 ret = get_errno(rmdir(p)); 7284 unlock_user(p, arg1, 0); 7285 break; 7286 #endif 7287 case TARGET_NR_dup: 7288 ret = get_errno(dup(arg1)); 7289 if (ret >= 0) { 7290 fd_trans_dup(arg1, ret); 7291 } 7292 break; 7293 #ifdef TARGET_NR_pipe 7294 case TARGET_NR_pipe: 7295 ret = do_pipe(cpu_env, arg1, 0, 0); 7296 break; 7297 #endif 7298 #ifdef TARGET_NR_pipe2 7299 case TARGET_NR_pipe2: 7300 ret = do_pipe(cpu_env, arg1, 7301 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 7302 break; 7303 #endif 7304 case TARGET_NR_times: 7305 { 7306 struct target_tms *tmsp; 7307 struct tms tms; 7308 ret = get_errno(times(&tms)); 7309 if (arg1) { 7310 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 7311 if (!tmsp) 7312 goto efault; 7313 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 7314 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 7315 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 7316 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 7317 } 7318 if (!is_error(ret)) 7319 ret = host_to_target_clock_t(ret); 7320 } 7321 break; 7322 #ifdef TARGET_NR_prof 7323 case TARGET_NR_prof: 7324 goto unimplemented; 7325 #endif 7326 #ifdef TARGET_NR_signal 7327 case TARGET_NR_signal: 7328 goto unimplemented; 7329 #endif 7330 case TARGET_NR_acct: 7331 if (arg1 == 0) { 7332 ret = get_errno(acct(NULL)); 7333 } else { 7334 if (!(p = lock_user_string(arg1))) 7335 goto efault; 7336 ret = get_errno(acct(path(p))); 7337 unlock_user(p, arg1, 0); 7338 } 7339 break; 7340 #ifdef TARGET_NR_umount2 7341 case TARGET_NR_umount2: 7342 if (!(p = lock_user_string(arg1))) 7343 goto efault; 7344 ret = get_errno(umount2(p, arg2)); 7345 unlock_user(p, arg1, 0); 7346 break; 7347 #endif 7348 #ifdef TARGET_NR_lock 7349 case TARGET_NR_lock: 7350 goto unimplemented; 7351 #endif 7352 case TARGET_NR_ioctl: 7353 ret = do_ioctl(arg1, arg2, arg3); 7354 break; 7355 case TARGET_NR_fcntl: 7356 ret = do_fcntl(arg1, arg2, arg3); 7357 break; 7358 #ifdef TARGET_NR_mpx 7359 case TARGET_NR_mpx: 7360 goto unimplemented; 7361 #endif 7362 case TARGET_NR_setpgid: 7363 ret = get_errno(setpgid(arg1, arg2)); 7364 break; 7365 #ifdef TARGET_NR_ulimit 7366 case TARGET_NR_ulimit: 7367 goto unimplemented; 7368 #endif 7369 #ifdef TARGET_NR_oldolduname 7370 case TARGET_NR_oldolduname: 7371 goto unimplemented; 7372 #endif 7373 case TARGET_NR_umask: 7374 ret = get_errno(umask(arg1)); 7375 break; 7376 case TARGET_NR_chroot: 7377 if (!(p = lock_user_string(arg1))) 7378 goto efault; 7379 ret = get_errno(chroot(p)); 7380 unlock_user(p, arg1, 0); 7381 break; 7382 #ifdef TARGET_NR_ustat 7383 case TARGET_NR_ustat: 7384 goto unimplemented; 7385 #endif 7386 #ifdef TARGET_NR_dup2 7387 case TARGET_NR_dup2: 7388 ret = get_errno(dup2(arg1, arg2)); 7389 if (ret >= 0) { 7390 fd_trans_dup(arg1, arg2); 7391 } 7392 break; 7393 #endif 7394 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 7395 case TARGET_NR_dup3: 7396 ret = get_errno(dup3(arg1, arg2, arg3)); 7397 if (ret >= 0) { 7398 fd_trans_dup(arg1, arg2); 7399 } 7400 break; 7401 #endif 7402 #ifdef TARGET_NR_getppid /* not on alpha */ 7403 case TARGET_NR_getppid: 7404 ret = get_errno(getppid()); 7405 break; 7406 #endif 7407 #ifdef TARGET_NR_getpgrp 7408 case TARGET_NR_getpgrp: 7409 ret = get_errno(getpgrp()); 7410 break; 7411 #endif 7412 case TARGET_NR_setsid: 7413 ret = get_errno(setsid()); 7414 break; 7415 #ifdef TARGET_NR_sigaction 7416 case TARGET_NR_sigaction: 7417 { 7418 #if defined(TARGET_ALPHA) 7419 struct target_sigaction act, oact, *pact = 0; 7420 struct target_old_sigaction *old_act; 7421 if (arg2) { 7422 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 7423 goto efault; 7424 act._sa_handler = old_act->_sa_handler; 7425 target_siginitset(&act.sa_mask, old_act->sa_mask); 7426 act.sa_flags = old_act->sa_flags; 7427 act.sa_restorer = 0; 7428 unlock_user_struct(old_act, arg2, 0); 7429 pact = &act; 7430 } 7431 ret = get_errno(do_sigaction(arg1, pact, &oact)); 7432 if (!is_error(ret) && arg3) { 7433 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 7434 goto efault; 7435 old_act->_sa_handler = oact._sa_handler; 7436 old_act->sa_mask = oact.sa_mask.sig[0]; 7437 old_act->sa_flags = oact.sa_flags; 7438 unlock_user_struct(old_act, arg3, 1); 7439 } 7440 #elif defined(TARGET_MIPS) 7441 struct target_sigaction act, oact, *pact, *old_act; 7442 7443 if (arg2) { 7444 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 7445 goto efault; 7446 act._sa_handler = old_act->_sa_handler; 7447 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 7448 act.sa_flags = old_act->sa_flags; 7449 unlock_user_struct(old_act, arg2, 0); 7450 pact = &act; 7451 } else { 7452 pact = NULL; 7453 } 7454 7455 ret = get_errno(do_sigaction(arg1, pact, &oact)); 7456 7457 if (!is_error(ret) && arg3) { 7458 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 7459 goto efault; 7460 old_act->_sa_handler = oact._sa_handler; 7461 old_act->sa_flags = oact.sa_flags; 7462 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 7463 old_act->sa_mask.sig[1] = 0; 7464 old_act->sa_mask.sig[2] = 0; 7465 old_act->sa_mask.sig[3] = 0; 7466 unlock_user_struct(old_act, arg3, 1); 7467 } 7468 #else 7469 struct target_old_sigaction *old_act; 7470 struct target_sigaction act, oact, *pact; 7471 if (arg2) { 7472 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 7473 goto efault; 7474 act._sa_handler = old_act->_sa_handler; 7475 target_siginitset(&act.sa_mask, old_act->sa_mask); 7476 act.sa_flags = old_act->sa_flags; 7477 act.sa_restorer = old_act->sa_restorer; 7478 unlock_user_struct(old_act, arg2, 0); 7479 pact = &act; 7480 } else { 7481 pact = NULL; 7482 } 7483 ret = get_errno(do_sigaction(arg1, pact, &oact)); 7484 if (!is_error(ret) && arg3) { 7485 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 7486 goto efault; 7487 old_act->_sa_handler = oact._sa_handler; 7488 old_act->sa_mask = oact.sa_mask.sig[0]; 7489 old_act->sa_flags = oact.sa_flags; 7490 old_act->sa_restorer = oact.sa_restorer; 7491 unlock_user_struct(old_act, arg3, 1); 7492 } 7493 #endif 7494 } 7495 break; 7496 #endif 7497 case TARGET_NR_rt_sigaction: 7498 { 7499 #if defined(TARGET_ALPHA) 7500 struct target_sigaction act, oact, *pact = 0; 7501 struct target_rt_sigaction *rt_act; 7502 /* ??? arg4 == sizeof(sigset_t). */ 7503 if (arg2) { 7504 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1)) 7505 goto efault; 7506 act._sa_handler = rt_act->_sa_handler; 7507 act.sa_mask = rt_act->sa_mask; 7508 act.sa_flags = rt_act->sa_flags; 7509 act.sa_restorer = arg5; 7510 unlock_user_struct(rt_act, arg2, 0); 7511 pact = &act; 7512 } 7513 ret = get_errno(do_sigaction(arg1, pact, &oact)); 7514 if (!is_error(ret) && arg3) { 7515 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0)) 7516 goto efault; 7517 rt_act->_sa_handler = oact._sa_handler; 7518 rt_act->sa_mask = oact.sa_mask; 7519 rt_act->sa_flags = oact.sa_flags; 7520 unlock_user_struct(rt_act, arg3, 1); 7521 } 7522 #else 7523 struct target_sigaction *act; 7524 struct target_sigaction *oact; 7525 7526 if (arg2) { 7527 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) 7528 goto efault; 7529 } else 7530 act = NULL; 7531 if (arg3) { 7532 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 7533 ret = -TARGET_EFAULT; 7534 goto rt_sigaction_fail; 7535 } 7536 } else 7537 oact = NULL; 7538 ret = get_errno(do_sigaction(arg1, act, oact)); 7539 rt_sigaction_fail: 7540 if (act) 7541 unlock_user_struct(act, arg2, 0); 7542 if (oact) 7543 unlock_user_struct(oact, arg3, 1); 7544 #endif 7545 } 7546 break; 7547 #ifdef TARGET_NR_sgetmask /* not on alpha */ 7548 case TARGET_NR_sgetmask: 7549 { 7550 sigset_t cur_set; 7551 abi_ulong target_set; 7552 ret = do_sigprocmask(0, NULL, &cur_set); 7553 if (!ret) { 7554 host_to_target_old_sigset(&target_set, &cur_set); 7555 ret = target_set; 7556 } 7557 } 7558 break; 7559 #endif 7560 #ifdef TARGET_NR_ssetmask /* not on alpha */ 7561 case TARGET_NR_ssetmask: 7562 { 7563 sigset_t set, oset, cur_set; 7564 abi_ulong target_set = arg1; 7565 /* We only have one word of the new mask so we must read 7566 * the rest of it with do_sigprocmask() and OR in this word. 7567 * We are guaranteed that a do_sigprocmask() that only queries 7568 * the signal mask will not fail. 7569 */ 7570 ret = do_sigprocmask(0, NULL, &cur_set); 7571 assert(!ret); 7572 target_to_host_old_sigset(&set, &target_set); 7573 sigorset(&set, &set, &cur_set); 7574 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 7575 if (!ret) { 7576 host_to_target_old_sigset(&target_set, &oset); 7577 ret = target_set; 7578 } 7579 } 7580 break; 7581 #endif 7582 #ifdef TARGET_NR_sigprocmask 7583 case TARGET_NR_sigprocmask: 7584 { 7585 #if defined(TARGET_ALPHA) 7586 sigset_t set, oldset; 7587 abi_ulong mask; 7588 int how; 7589 7590 switch (arg1) { 7591 case TARGET_SIG_BLOCK: 7592 how = SIG_BLOCK; 7593 break; 7594 case TARGET_SIG_UNBLOCK: 7595 how = SIG_UNBLOCK; 7596 break; 7597 case TARGET_SIG_SETMASK: 7598 how = SIG_SETMASK; 7599 break; 7600 default: 7601 ret = -TARGET_EINVAL; 7602 goto fail; 7603 } 7604 mask = arg2; 7605 target_to_host_old_sigset(&set, &mask); 7606 7607 ret = do_sigprocmask(how, &set, &oldset); 7608 if (!is_error(ret)) { 7609 host_to_target_old_sigset(&mask, &oldset); 7610 ret = mask; 7611 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 7612 } 7613 #else 7614 sigset_t set, oldset, *set_ptr; 7615 int how; 7616 7617 if (arg2) { 7618 switch (arg1) { 7619 case TARGET_SIG_BLOCK: 7620 how = SIG_BLOCK; 7621 break; 7622 case TARGET_SIG_UNBLOCK: 7623 how = SIG_UNBLOCK; 7624 break; 7625 case TARGET_SIG_SETMASK: 7626 how = SIG_SETMASK; 7627 break; 7628 default: 7629 ret = -TARGET_EINVAL; 7630 goto fail; 7631 } 7632 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 7633 goto efault; 7634 target_to_host_old_sigset(&set, p); 7635 unlock_user(p, arg2, 0); 7636 set_ptr = &set; 7637 } else { 7638 how = 0; 7639 set_ptr = NULL; 7640 } 7641 ret = do_sigprocmask(how, set_ptr, &oldset); 7642 if (!is_error(ret) && arg3) { 7643 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 7644 goto efault; 7645 host_to_target_old_sigset(p, &oldset); 7646 unlock_user(p, arg3, sizeof(target_sigset_t)); 7647 } 7648 #endif 7649 } 7650 break; 7651 #endif 7652 case TARGET_NR_rt_sigprocmask: 7653 { 7654 int how = arg1; 7655 sigset_t set, oldset, *set_ptr; 7656 7657 if (arg2) { 7658 switch(how) { 7659 case TARGET_SIG_BLOCK: 7660 how = SIG_BLOCK; 7661 break; 7662 case TARGET_SIG_UNBLOCK: 7663 how = SIG_UNBLOCK; 7664 break; 7665 case TARGET_SIG_SETMASK: 7666 how = SIG_SETMASK; 7667 break; 7668 default: 7669 ret = -TARGET_EINVAL; 7670 goto fail; 7671 } 7672 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 7673 goto efault; 7674 target_to_host_sigset(&set, p); 7675 unlock_user(p, arg2, 0); 7676 set_ptr = &set; 7677 } else { 7678 how = 0; 7679 set_ptr = NULL; 7680 } 7681 ret = do_sigprocmask(how, set_ptr, &oldset); 7682 if (!is_error(ret) && arg3) { 7683 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 7684 goto efault; 7685 host_to_target_sigset(p, &oldset); 7686 unlock_user(p, arg3, sizeof(target_sigset_t)); 7687 } 7688 } 7689 break; 7690 #ifdef TARGET_NR_sigpending 7691 case TARGET_NR_sigpending: 7692 { 7693 sigset_t set; 7694 ret = get_errno(sigpending(&set)); 7695 if (!is_error(ret)) { 7696 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 7697 goto efault; 7698 host_to_target_old_sigset(p, &set); 7699 unlock_user(p, arg1, sizeof(target_sigset_t)); 7700 } 7701 } 7702 break; 7703 #endif 7704 case TARGET_NR_rt_sigpending: 7705 { 7706 sigset_t set; 7707 ret = get_errno(sigpending(&set)); 7708 if (!is_error(ret)) { 7709 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 7710 goto efault; 7711 host_to_target_sigset(p, &set); 7712 unlock_user(p, arg1, sizeof(target_sigset_t)); 7713 } 7714 } 7715 break; 7716 #ifdef TARGET_NR_sigsuspend 7717 case TARGET_NR_sigsuspend: 7718 { 7719 TaskState *ts = cpu->opaque; 7720 #if defined(TARGET_ALPHA) 7721 abi_ulong mask = arg1; 7722 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask); 7723 #else 7724 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 7725 goto efault; 7726 target_to_host_old_sigset(&ts->sigsuspend_mask, p); 7727 unlock_user(p, arg1, 0); 7728 #endif 7729 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 7730 SIGSET_T_SIZE)); 7731 if (ret != -TARGET_ERESTARTSYS) { 7732 ts->in_sigsuspend = 1; 7733 } 7734 } 7735 break; 7736 #endif 7737 case TARGET_NR_rt_sigsuspend: 7738 { 7739 TaskState *ts = cpu->opaque; 7740 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 7741 goto efault; 7742 target_to_host_sigset(&ts->sigsuspend_mask, p); 7743 unlock_user(p, arg1, 0); 7744 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 7745 SIGSET_T_SIZE)); 7746 if (ret != -TARGET_ERESTARTSYS) { 7747 ts->in_sigsuspend = 1; 7748 } 7749 } 7750 break; 7751 case TARGET_NR_rt_sigtimedwait: 7752 { 7753 sigset_t set; 7754 struct timespec uts, *puts; 7755 siginfo_t uinfo; 7756 7757 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 7758 goto efault; 7759 target_to_host_sigset(&set, p); 7760 unlock_user(p, arg1, 0); 7761 if (arg3) { 7762 puts = &uts; 7763 target_to_host_timespec(puts, arg3); 7764 } else { 7765 puts = NULL; 7766 } 7767 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 7768 SIGSET_T_SIZE)); 7769 if (!is_error(ret)) { 7770 if (arg2) { 7771 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 7772 0); 7773 if (!p) { 7774 goto efault; 7775 } 7776 host_to_target_siginfo(p, &uinfo); 7777 unlock_user(p, arg2, sizeof(target_siginfo_t)); 7778 } 7779 ret = host_to_target_signal(ret); 7780 } 7781 } 7782 break; 7783 case TARGET_NR_rt_sigqueueinfo: 7784 { 7785 siginfo_t uinfo; 7786 if (!(p = lock_user(VERIFY_READ, arg3, sizeof(target_sigset_t), 1))) 7787 goto efault; 7788 target_to_host_siginfo(&uinfo, p); 7789 unlock_user(p, arg1, 0); 7790 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 7791 } 7792 break; 7793 #ifdef TARGET_NR_sigreturn 7794 case TARGET_NR_sigreturn: 7795 if (block_signals()) { 7796 ret = -TARGET_ERESTARTSYS; 7797 } else { 7798 ret = do_sigreturn(cpu_env); 7799 } 7800 break; 7801 #endif 7802 case TARGET_NR_rt_sigreturn: 7803 if (block_signals()) { 7804 ret = -TARGET_ERESTARTSYS; 7805 } else { 7806 ret = do_rt_sigreturn(cpu_env); 7807 } 7808 break; 7809 case TARGET_NR_sethostname: 7810 if (!(p = lock_user_string(arg1))) 7811 goto efault; 7812 ret = get_errno(sethostname(p, arg2)); 7813 unlock_user(p, arg1, 0); 7814 break; 7815 case TARGET_NR_setrlimit: 7816 { 7817 int resource = target_to_host_resource(arg1); 7818 struct target_rlimit *target_rlim; 7819 struct rlimit rlim; 7820 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 7821 goto efault; 7822 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 7823 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 7824 unlock_user_struct(target_rlim, arg2, 0); 7825 ret = get_errno(setrlimit(resource, &rlim)); 7826 } 7827 break; 7828 case TARGET_NR_getrlimit: 7829 { 7830 int resource = target_to_host_resource(arg1); 7831 struct target_rlimit *target_rlim; 7832 struct rlimit rlim; 7833 7834 ret = get_errno(getrlimit(resource, &rlim)); 7835 if (!is_error(ret)) { 7836 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 7837 goto efault; 7838 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 7839 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 7840 unlock_user_struct(target_rlim, arg2, 1); 7841 } 7842 } 7843 break; 7844 case TARGET_NR_getrusage: 7845 { 7846 struct rusage rusage; 7847 ret = get_errno(getrusage(arg1, &rusage)); 7848 if (!is_error(ret)) { 7849 ret = host_to_target_rusage(arg2, &rusage); 7850 } 7851 } 7852 break; 7853 case TARGET_NR_gettimeofday: 7854 { 7855 struct timeval tv; 7856 ret = get_errno(gettimeofday(&tv, NULL)); 7857 if (!is_error(ret)) { 7858 if (copy_to_user_timeval(arg1, &tv)) 7859 goto efault; 7860 } 7861 } 7862 break; 7863 case TARGET_NR_settimeofday: 7864 { 7865 struct timeval tv, *ptv = NULL; 7866 struct timezone tz, *ptz = NULL; 7867 7868 if (arg1) { 7869 if (copy_from_user_timeval(&tv, arg1)) { 7870 goto efault; 7871 } 7872 ptv = &tv; 7873 } 7874 7875 if (arg2) { 7876 if (copy_from_user_timezone(&tz, arg2)) { 7877 goto efault; 7878 } 7879 ptz = &tz; 7880 } 7881 7882 ret = get_errno(settimeofday(ptv, ptz)); 7883 } 7884 break; 7885 #if defined(TARGET_NR_select) 7886 case TARGET_NR_select: 7887 #if defined(TARGET_S390X) || defined(TARGET_ALPHA) 7888 ret = do_select(arg1, arg2, arg3, arg4, arg5); 7889 #else 7890 { 7891 struct target_sel_arg_struct *sel; 7892 abi_ulong inp, outp, exp, tvp; 7893 long nsel; 7894 7895 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) 7896 goto efault; 7897 nsel = tswapal(sel->n); 7898 inp = tswapal(sel->inp); 7899 outp = tswapal(sel->outp); 7900 exp = tswapal(sel->exp); 7901 tvp = tswapal(sel->tvp); 7902 unlock_user_struct(sel, arg1, 0); 7903 ret = do_select(nsel, inp, outp, exp, tvp); 7904 } 7905 #endif 7906 break; 7907 #endif 7908 #ifdef TARGET_NR_pselect6 7909 case TARGET_NR_pselect6: 7910 { 7911 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 7912 fd_set rfds, wfds, efds; 7913 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 7914 struct timespec ts, *ts_ptr; 7915 7916 /* 7917 * The 6th arg is actually two args smashed together, 7918 * so we cannot use the C library. 7919 */ 7920 sigset_t set; 7921 struct { 7922 sigset_t *set; 7923 size_t size; 7924 } sig, *sig_ptr; 7925 7926 abi_ulong arg_sigset, arg_sigsize, *arg7; 7927 target_sigset_t *target_sigset; 7928 7929 n = arg1; 7930 rfd_addr = arg2; 7931 wfd_addr = arg3; 7932 efd_addr = arg4; 7933 ts_addr = arg5; 7934 7935 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 7936 if (ret) { 7937 goto fail; 7938 } 7939 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 7940 if (ret) { 7941 goto fail; 7942 } 7943 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 7944 if (ret) { 7945 goto fail; 7946 } 7947 7948 /* 7949 * This takes a timespec, and not a timeval, so we cannot 7950 * use the do_select() helper ... 7951 */ 7952 if (ts_addr) { 7953 if (target_to_host_timespec(&ts, ts_addr)) { 7954 goto efault; 7955 } 7956 ts_ptr = &ts; 7957 } else { 7958 ts_ptr = NULL; 7959 } 7960 7961 /* Extract the two packed args for the sigset */ 7962 if (arg6) { 7963 sig_ptr = &sig; 7964 sig.size = SIGSET_T_SIZE; 7965 7966 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 7967 if (!arg7) { 7968 goto efault; 7969 } 7970 arg_sigset = tswapal(arg7[0]); 7971 arg_sigsize = tswapal(arg7[1]); 7972 unlock_user(arg7, arg6, 0); 7973 7974 if (arg_sigset) { 7975 sig.set = &set; 7976 if (arg_sigsize != sizeof(*target_sigset)) { 7977 /* Like the kernel, we enforce correct size sigsets */ 7978 ret = -TARGET_EINVAL; 7979 goto fail; 7980 } 7981 target_sigset = lock_user(VERIFY_READ, arg_sigset, 7982 sizeof(*target_sigset), 1); 7983 if (!target_sigset) { 7984 goto efault; 7985 } 7986 target_to_host_sigset(&set, target_sigset); 7987 unlock_user(target_sigset, arg_sigset, 0); 7988 } else { 7989 sig.set = NULL; 7990 } 7991 } else { 7992 sig_ptr = NULL; 7993 } 7994 7995 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 7996 ts_ptr, sig_ptr)); 7997 7998 if (!is_error(ret)) { 7999 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 8000 goto efault; 8001 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 8002 goto efault; 8003 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 8004 goto efault; 8005 8006 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) 8007 goto efault; 8008 } 8009 } 8010 break; 8011 #endif 8012 #ifdef TARGET_NR_symlink 8013 case TARGET_NR_symlink: 8014 { 8015 void *p2; 8016 p = lock_user_string(arg1); 8017 p2 = lock_user_string(arg2); 8018 if (!p || !p2) 8019 ret = -TARGET_EFAULT; 8020 else 8021 ret = get_errno(symlink(p, p2)); 8022 unlock_user(p2, arg2, 0); 8023 unlock_user(p, arg1, 0); 8024 } 8025 break; 8026 #endif 8027 #if defined(TARGET_NR_symlinkat) 8028 case TARGET_NR_symlinkat: 8029 { 8030 void *p2; 8031 p = lock_user_string(arg1); 8032 p2 = lock_user_string(arg3); 8033 if (!p || !p2) 8034 ret = -TARGET_EFAULT; 8035 else 8036 ret = get_errno(symlinkat(p, arg2, p2)); 8037 unlock_user(p2, arg3, 0); 8038 unlock_user(p, arg1, 0); 8039 } 8040 break; 8041 #endif 8042 #ifdef TARGET_NR_oldlstat 8043 case TARGET_NR_oldlstat: 8044 goto unimplemented; 8045 #endif 8046 #ifdef TARGET_NR_readlink 8047 case TARGET_NR_readlink: 8048 { 8049 void *p2; 8050 p = lock_user_string(arg1); 8051 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 8052 if (!p || !p2) { 8053 ret = -TARGET_EFAULT; 8054 } else if (!arg3) { 8055 /* Short circuit this for the magic exe check. */ 8056 ret = -TARGET_EINVAL; 8057 } else if (is_proc_myself((const char *)p, "exe")) { 8058 char real[PATH_MAX], *temp; 8059 temp = realpath(exec_path, real); 8060 /* Return value is # of bytes that we wrote to the buffer. */ 8061 if (temp == NULL) { 8062 ret = get_errno(-1); 8063 } else { 8064 /* Don't worry about sign mismatch as earlier mapping 8065 * logic would have thrown a bad address error. */ 8066 ret = MIN(strlen(real), arg3); 8067 /* We cannot NUL terminate the string. */ 8068 memcpy(p2, real, ret); 8069 } 8070 } else { 8071 ret = get_errno(readlink(path(p), p2, arg3)); 8072 } 8073 unlock_user(p2, arg2, ret); 8074 unlock_user(p, arg1, 0); 8075 } 8076 break; 8077 #endif 8078 #if defined(TARGET_NR_readlinkat) 8079 case TARGET_NR_readlinkat: 8080 { 8081 void *p2; 8082 p = lock_user_string(arg2); 8083 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 8084 if (!p || !p2) { 8085 ret = -TARGET_EFAULT; 8086 } else if (is_proc_myself((const char *)p, "exe")) { 8087 char real[PATH_MAX], *temp; 8088 temp = realpath(exec_path, real); 8089 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 8090 snprintf((char *)p2, arg4, "%s", real); 8091 } else { 8092 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 8093 } 8094 unlock_user(p2, arg3, ret); 8095 unlock_user(p, arg2, 0); 8096 } 8097 break; 8098 #endif 8099 #ifdef TARGET_NR_uselib 8100 case TARGET_NR_uselib: 8101 goto unimplemented; 8102 #endif 8103 #ifdef TARGET_NR_swapon 8104 case TARGET_NR_swapon: 8105 if (!(p = lock_user_string(arg1))) 8106 goto efault; 8107 ret = get_errno(swapon(p, arg2)); 8108 unlock_user(p, arg1, 0); 8109 break; 8110 #endif 8111 case TARGET_NR_reboot: 8112 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 8113 /* arg4 must be ignored in all other cases */ 8114 p = lock_user_string(arg4); 8115 if (!p) { 8116 goto efault; 8117 } 8118 ret = get_errno(reboot(arg1, arg2, arg3, p)); 8119 unlock_user(p, arg4, 0); 8120 } else { 8121 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 8122 } 8123 break; 8124 #ifdef TARGET_NR_readdir 8125 case TARGET_NR_readdir: 8126 goto unimplemented; 8127 #endif 8128 #ifdef TARGET_NR_mmap 8129 case TARGET_NR_mmap: 8130 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 8131 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 8132 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 8133 || defined(TARGET_S390X) 8134 { 8135 abi_ulong *v; 8136 abi_ulong v1, v2, v3, v4, v5, v6; 8137 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 8138 goto efault; 8139 v1 = tswapal(v[0]); 8140 v2 = tswapal(v[1]); 8141 v3 = tswapal(v[2]); 8142 v4 = tswapal(v[3]); 8143 v5 = tswapal(v[4]); 8144 v6 = tswapal(v[5]); 8145 unlock_user(v, arg1, 0); 8146 ret = get_errno(target_mmap(v1, v2, v3, 8147 target_to_host_bitmask(v4, mmap_flags_tbl), 8148 v5, v6)); 8149 } 8150 #else 8151 ret = get_errno(target_mmap(arg1, arg2, arg3, 8152 target_to_host_bitmask(arg4, mmap_flags_tbl), 8153 arg5, 8154 arg6)); 8155 #endif 8156 break; 8157 #endif 8158 #ifdef TARGET_NR_mmap2 8159 case TARGET_NR_mmap2: 8160 #ifndef MMAP_SHIFT 8161 #define MMAP_SHIFT 12 8162 #endif 8163 ret = get_errno(target_mmap(arg1, arg2, arg3, 8164 target_to_host_bitmask(arg4, mmap_flags_tbl), 8165 arg5, 8166 arg6 << MMAP_SHIFT)); 8167 break; 8168 #endif 8169 case TARGET_NR_munmap: 8170 ret = get_errno(target_munmap(arg1, arg2)); 8171 break; 8172 case TARGET_NR_mprotect: 8173 { 8174 TaskState *ts = cpu->opaque; 8175 /* Special hack to detect libc making the stack executable. */ 8176 if ((arg3 & PROT_GROWSDOWN) 8177 && arg1 >= ts->info->stack_limit 8178 && arg1 <= ts->info->start_stack) { 8179 arg3 &= ~PROT_GROWSDOWN; 8180 arg2 = arg2 + arg1 - ts->info->stack_limit; 8181 arg1 = ts->info->stack_limit; 8182 } 8183 } 8184 ret = get_errno(target_mprotect(arg1, arg2, arg3)); 8185 break; 8186 #ifdef TARGET_NR_mremap 8187 case TARGET_NR_mremap: 8188 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 8189 break; 8190 #endif 8191 /* ??? msync/mlock/munlock are broken for softmmu. */ 8192 #ifdef TARGET_NR_msync 8193 case TARGET_NR_msync: 8194 ret = get_errno(msync(g2h(arg1), arg2, arg3)); 8195 break; 8196 #endif 8197 #ifdef TARGET_NR_mlock 8198 case TARGET_NR_mlock: 8199 ret = get_errno(mlock(g2h(arg1), arg2)); 8200 break; 8201 #endif 8202 #ifdef TARGET_NR_munlock 8203 case TARGET_NR_munlock: 8204 ret = get_errno(munlock(g2h(arg1), arg2)); 8205 break; 8206 #endif 8207 #ifdef TARGET_NR_mlockall 8208 case TARGET_NR_mlockall: 8209 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 8210 break; 8211 #endif 8212 #ifdef TARGET_NR_munlockall 8213 case TARGET_NR_munlockall: 8214 ret = get_errno(munlockall()); 8215 break; 8216 #endif 8217 case TARGET_NR_truncate: 8218 if (!(p = lock_user_string(arg1))) 8219 goto efault; 8220 ret = get_errno(truncate(p, arg2)); 8221 unlock_user(p, arg1, 0); 8222 break; 8223 case TARGET_NR_ftruncate: 8224 ret = get_errno(ftruncate(arg1, arg2)); 8225 break; 8226 case TARGET_NR_fchmod: 8227 ret = get_errno(fchmod(arg1, arg2)); 8228 break; 8229 #if defined(TARGET_NR_fchmodat) 8230 case TARGET_NR_fchmodat: 8231 if (!(p = lock_user_string(arg2))) 8232 goto efault; 8233 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 8234 unlock_user(p, arg2, 0); 8235 break; 8236 #endif 8237 case TARGET_NR_getpriority: 8238 /* Note that negative values are valid for getpriority, so we must 8239 differentiate based on errno settings. */ 8240 errno = 0; 8241 ret = getpriority(arg1, arg2); 8242 if (ret == -1 && errno != 0) { 8243 ret = -host_to_target_errno(errno); 8244 break; 8245 } 8246 #ifdef TARGET_ALPHA 8247 /* Return value is the unbiased priority. Signal no error. */ 8248 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 8249 #else 8250 /* Return value is a biased priority to avoid negative numbers. */ 8251 ret = 20 - ret; 8252 #endif 8253 break; 8254 case TARGET_NR_setpriority: 8255 ret = get_errno(setpriority(arg1, arg2, arg3)); 8256 break; 8257 #ifdef TARGET_NR_profil 8258 case TARGET_NR_profil: 8259 goto unimplemented; 8260 #endif 8261 case TARGET_NR_statfs: 8262 if (!(p = lock_user_string(arg1))) 8263 goto efault; 8264 ret = get_errno(statfs(path(p), &stfs)); 8265 unlock_user(p, arg1, 0); 8266 convert_statfs: 8267 if (!is_error(ret)) { 8268 struct target_statfs *target_stfs; 8269 8270 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 8271 goto efault; 8272 __put_user(stfs.f_type, &target_stfs->f_type); 8273 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 8274 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 8275 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 8276 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 8277 __put_user(stfs.f_files, &target_stfs->f_files); 8278 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 8279 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 8280 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 8281 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 8282 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 8283 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 8284 unlock_user_struct(target_stfs, arg2, 1); 8285 } 8286 break; 8287 case TARGET_NR_fstatfs: 8288 ret = get_errno(fstatfs(arg1, &stfs)); 8289 goto convert_statfs; 8290 #ifdef TARGET_NR_statfs64 8291 case TARGET_NR_statfs64: 8292 if (!(p = lock_user_string(arg1))) 8293 goto efault; 8294 ret = get_errno(statfs(path(p), &stfs)); 8295 unlock_user(p, arg1, 0); 8296 convert_statfs64: 8297 if (!is_error(ret)) { 8298 struct target_statfs64 *target_stfs; 8299 8300 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 8301 goto efault; 8302 __put_user(stfs.f_type, &target_stfs->f_type); 8303 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 8304 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 8305 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 8306 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 8307 __put_user(stfs.f_files, &target_stfs->f_files); 8308 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 8309 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 8310 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 8311 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 8312 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 8313 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 8314 unlock_user_struct(target_stfs, arg3, 1); 8315 } 8316 break; 8317 case TARGET_NR_fstatfs64: 8318 ret = get_errno(fstatfs(arg1, &stfs)); 8319 goto convert_statfs64; 8320 #endif 8321 #ifdef TARGET_NR_ioperm 8322 case TARGET_NR_ioperm: 8323 goto unimplemented; 8324 #endif 8325 #ifdef TARGET_NR_socketcall 8326 case TARGET_NR_socketcall: 8327 ret = do_socketcall(arg1, arg2); 8328 break; 8329 #endif 8330 #ifdef TARGET_NR_accept 8331 case TARGET_NR_accept: 8332 ret = do_accept4(arg1, arg2, arg3, 0); 8333 break; 8334 #endif 8335 #ifdef TARGET_NR_accept4 8336 case TARGET_NR_accept4: 8337 ret = do_accept4(arg1, arg2, arg3, arg4); 8338 break; 8339 #endif 8340 #ifdef TARGET_NR_bind 8341 case TARGET_NR_bind: 8342 ret = do_bind(arg1, arg2, arg3); 8343 break; 8344 #endif 8345 #ifdef TARGET_NR_connect 8346 case TARGET_NR_connect: 8347 ret = do_connect(arg1, arg2, arg3); 8348 break; 8349 #endif 8350 #ifdef TARGET_NR_getpeername 8351 case TARGET_NR_getpeername: 8352 ret = do_getpeername(arg1, arg2, arg3); 8353 break; 8354 #endif 8355 #ifdef TARGET_NR_getsockname 8356 case TARGET_NR_getsockname: 8357 ret = do_getsockname(arg1, arg2, arg3); 8358 break; 8359 #endif 8360 #ifdef TARGET_NR_getsockopt 8361 case TARGET_NR_getsockopt: 8362 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); 8363 break; 8364 #endif 8365 #ifdef TARGET_NR_listen 8366 case TARGET_NR_listen: 8367 ret = get_errno(listen(arg1, arg2)); 8368 break; 8369 #endif 8370 #ifdef TARGET_NR_recv 8371 case TARGET_NR_recv: 8372 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 8373 break; 8374 #endif 8375 #ifdef TARGET_NR_recvfrom 8376 case TARGET_NR_recvfrom: 8377 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 8378 break; 8379 #endif 8380 #ifdef TARGET_NR_recvmsg 8381 case TARGET_NR_recvmsg: 8382 ret = do_sendrecvmsg(arg1, arg2, arg3, 0); 8383 break; 8384 #endif 8385 #ifdef TARGET_NR_send 8386 case TARGET_NR_send: 8387 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0); 8388 break; 8389 #endif 8390 #ifdef TARGET_NR_sendmsg 8391 case TARGET_NR_sendmsg: 8392 ret = do_sendrecvmsg(arg1, arg2, arg3, 1); 8393 break; 8394 #endif 8395 #ifdef TARGET_NR_sendmmsg 8396 case TARGET_NR_sendmmsg: 8397 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 8398 break; 8399 case TARGET_NR_recvmmsg: 8400 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 8401 break; 8402 #endif 8403 #ifdef TARGET_NR_sendto 8404 case TARGET_NR_sendto: 8405 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 8406 break; 8407 #endif 8408 #ifdef TARGET_NR_shutdown 8409 case TARGET_NR_shutdown: 8410 ret = get_errno(shutdown(arg1, arg2)); 8411 break; 8412 #endif 8413 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 8414 case TARGET_NR_getrandom: 8415 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 8416 if (!p) { 8417 goto efault; 8418 } 8419 ret = get_errno(getrandom(p, arg2, arg3)); 8420 unlock_user(p, arg1, ret); 8421 break; 8422 #endif 8423 #ifdef TARGET_NR_socket 8424 case TARGET_NR_socket: 8425 ret = do_socket(arg1, arg2, arg3); 8426 fd_trans_unregister(ret); 8427 break; 8428 #endif 8429 #ifdef TARGET_NR_socketpair 8430 case TARGET_NR_socketpair: 8431 ret = do_socketpair(arg1, arg2, arg3, arg4); 8432 break; 8433 #endif 8434 #ifdef TARGET_NR_setsockopt 8435 case TARGET_NR_setsockopt: 8436 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 8437 break; 8438 #endif 8439 8440 case TARGET_NR_syslog: 8441 if (!(p = lock_user_string(arg2))) 8442 goto efault; 8443 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 8444 unlock_user(p, arg2, 0); 8445 break; 8446 8447 case TARGET_NR_setitimer: 8448 { 8449 struct itimerval value, ovalue, *pvalue; 8450 8451 if (arg2) { 8452 pvalue = &value; 8453 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 8454 || copy_from_user_timeval(&pvalue->it_value, 8455 arg2 + sizeof(struct target_timeval))) 8456 goto efault; 8457 } else { 8458 pvalue = NULL; 8459 } 8460 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 8461 if (!is_error(ret) && arg3) { 8462 if (copy_to_user_timeval(arg3, 8463 &ovalue.it_interval) 8464 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 8465 &ovalue.it_value)) 8466 goto efault; 8467 } 8468 } 8469 break; 8470 case TARGET_NR_getitimer: 8471 { 8472 struct itimerval value; 8473 8474 ret = get_errno(getitimer(arg1, &value)); 8475 if (!is_error(ret) && arg2) { 8476 if (copy_to_user_timeval(arg2, 8477 &value.it_interval) 8478 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 8479 &value.it_value)) 8480 goto efault; 8481 } 8482 } 8483 break; 8484 #ifdef TARGET_NR_stat 8485 case TARGET_NR_stat: 8486 if (!(p = lock_user_string(arg1))) 8487 goto efault; 8488 ret = get_errno(stat(path(p), &st)); 8489 unlock_user(p, arg1, 0); 8490 goto do_stat; 8491 #endif 8492 #ifdef TARGET_NR_lstat 8493 case TARGET_NR_lstat: 8494 if (!(p = lock_user_string(arg1))) 8495 goto efault; 8496 ret = get_errno(lstat(path(p), &st)); 8497 unlock_user(p, arg1, 0); 8498 goto do_stat; 8499 #endif 8500 case TARGET_NR_fstat: 8501 { 8502 ret = get_errno(fstat(arg1, &st)); 8503 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 8504 do_stat: 8505 #endif 8506 if (!is_error(ret)) { 8507 struct target_stat *target_st; 8508 8509 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 8510 goto efault; 8511 memset(target_st, 0, sizeof(*target_st)); 8512 __put_user(st.st_dev, &target_st->st_dev); 8513 __put_user(st.st_ino, &target_st->st_ino); 8514 __put_user(st.st_mode, &target_st->st_mode); 8515 __put_user(st.st_uid, &target_st->st_uid); 8516 __put_user(st.st_gid, &target_st->st_gid); 8517 __put_user(st.st_nlink, &target_st->st_nlink); 8518 __put_user(st.st_rdev, &target_st->st_rdev); 8519 __put_user(st.st_size, &target_st->st_size); 8520 __put_user(st.st_blksize, &target_st->st_blksize); 8521 __put_user(st.st_blocks, &target_st->st_blocks); 8522 __put_user(st.st_atime, &target_st->target_st_atime); 8523 __put_user(st.st_mtime, &target_st->target_st_mtime); 8524 __put_user(st.st_ctime, &target_st->target_st_ctime); 8525 unlock_user_struct(target_st, arg2, 1); 8526 } 8527 } 8528 break; 8529 #ifdef TARGET_NR_olduname 8530 case TARGET_NR_olduname: 8531 goto unimplemented; 8532 #endif 8533 #ifdef TARGET_NR_iopl 8534 case TARGET_NR_iopl: 8535 goto unimplemented; 8536 #endif 8537 case TARGET_NR_vhangup: 8538 ret = get_errno(vhangup()); 8539 break; 8540 #ifdef TARGET_NR_idle 8541 case TARGET_NR_idle: 8542 goto unimplemented; 8543 #endif 8544 #ifdef TARGET_NR_syscall 8545 case TARGET_NR_syscall: 8546 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 8547 arg6, arg7, arg8, 0); 8548 break; 8549 #endif 8550 case TARGET_NR_wait4: 8551 { 8552 int status; 8553 abi_long status_ptr = arg2; 8554 struct rusage rusage, *rusage_ptr; 8555 abi_ulong target_rusage = arg4; 8556 abi_long rusage_err; 8557 if (target_rusage) 8558 rusage_ptr = &rusage; 8559 else 8560 rusage_ptr = NULL; 8561 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 8562 if (!is_error(ret)) { 8563 if (status_ptr && ret) { 8564 status = host_to_target_waitstatus(status); 8565 if (put_user_s32(status, status_ptr)) 8566 goto efault; 8567 } 8568 if (target_rusage) { 8569 rusage_err = host_to_target_rusage(target_rusage, &rusage); 8570 if (rusage_err) { 8571 ret = rusage_err; 8572 } 8573 } 8574 } 8575 } 8576 break; 8577 #ifdef TARGET_NR_swapoff 8578 case TARGET_NR_swapoff: 8579 if (!(p = lock_user_string(arg1))) 8580 goto efault; 8581 ret = get_errno(swapoff(p)); 8582 unlock_user(p, arg1, 0); 8583 break; 8584 #endif 8585 case TARGET_NR_sysinfo: 8586 { 8587 struct target_sysinfo *target_value; 8588 struct sysinfo value; 8589 ret = get_errno(sysinfo(&value)); 8590 if (!is_error(ret) && arg1) 8591 { 8592 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 8593 goto efault; 8594 __put_user(value.uptime, &target_value->uptime); 8595 __put_user(value.loads[0], &target_value->loads[0]); 8596 __put_user(value.loads[1], &target_value->loads[1]); 8597 __put_user(value.loads[2], &target_value->loads[2]); 8598 __put_user(value.totalram, &target_value->totalram); 8599 __put_user(value.freeram, &target_value->freeram); 8600 __put_user(value.sharedram, &target_value->sharedram); 8601 __put_user(value.bufferram, &target_value->bufferram); 8602 __put_user(value.totalswap, &target_value->totalswap); 8603 __put_user(value.freeswap, &target_value->freeswap); 8604 __put_user(value.procs, &target_value->procs); 8605 __put_user(value.totalhigh, &target_value->totalhigh); 8606 __put_user(value.freehigh, &target_value->freehigh); 8607 __put_user(value.mem_unit, &target_value->mem_unit); 8608 unlock_user_struct(target_value, arg1, 1); 8609 } 8610 } 8611 break; 8612 #ifdef TARGET_NR_ipc 8613 case TARGET_NR_ipc: 8614 ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6); 8615 break; 8616 #endif 8617 #ifdef TARGET_NR_semget 8618 case TARGET_NR_semget: 8619 ret = get_errno(semget(arg1, arg2, arg3)); 8620 break; 8621 #endif 8622 #ifdef TARGET_NR_semop 8623 case TARGET_NR_semop: 8624 ret = do_semop(arg1, arg2, arg3); 8625 break; 8626 #endif 8627 #ifdef TARGET_NR_semctl 8628 case TARGET_NR_semctl: 8629 ret = do_semctl(arg1, arg2, arg3, arg4); 8630 break; 8631 #endif 8632 #ifdef TARGET_NR_msgctl 8633 case TARGET_NR_msgctl: 8634 ret = do_msgctl(arg1, arg2, arg3); 8635 break; 8636 #endif 8637 #ifdef TARGET_NR_msgget 8638 case TARGET_NR_msgget: 8639 ret = get_errno(msgget(arg1, arg2)); 8640 break; 8641 #endif 8642 #ifdef TARGET_NR_msgrcv 8643 case TARGET_NR_msgrcv: 8644 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5); 8645 break; 8646 #endif 8647 #ifdef TARGET_NR_msgsnd 8648 case TARGET_NR_msgsnd: 8649 ret = do_msgsnd(arg1, arg2, arg3, arg4); 8650 break; 8651 #endif 8652 #ifdef TARGET_NR_shmget 8653 case TARGET_NR_shmget: 8654 ret = get_errno(shmget(arg1, arg2, arg3)); 8655 break; 8656 #endif 8657 #ifdef TARGET_NR_shmctl 8658 case TARGET_NR_shmctl: 8659 ret = do_shmctl(arg1, arg2, arg3); 8660 break; 8661 #endif 8662 #ifdef TARGET_NR_shmat 8663 case TARGET_NR_shmat: 8664 ret = do_shmat(arg1, arg2, arg3); 8665 break; 8666 #endif 8667 #ifdef TARGET_NR_shmdt 8668 case TARGET_NR_shmdt: 8669 ret = do_shmdt(arg1); 8670 break; 8671 #endif 8672 case TARGET_NR_fsync: 8673 ret = get_errno(fsync(arg1)); 8674 break; 8675 case TARGET_NR_clone: 8676 /* Linux manages to have three different orderings for its 8677 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 8678 * match the kernel's CONFIG_CLONE_* settings. 8679 * Microblaze is further special in that it uses a sixth 8680 * implicit argument to clone for the TLS pointer. 8681 */ 8682 #if defined(TARGET_MICROBLAZE) 8683 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 8684 #elif defined(TARGET_CLONE_BACKWARDS) 8685 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 8686 #elif defined(TARGET_CLONE_BACKWARDS2) 8687 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 8688 #else 8689 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 8690 #endif 8691 break; 8692 #ifdef __NR_exit_group 8693 /* new thread calls */ 8694 case TARGET_NR_exit_group: 8695 #ifdef TARGET_GPROF 8696 _mcleanup(); 8697 #endif 8698 gdb_exit(cpu_env, arg1); 8699 ret = get_errno(exit_group(arg1)); 8700 break; 8701 #endif 8702 case TARGET_NR_setdomainname: 8703 if (!(p = lock_user_string(arg1))) 8704 goto efault; 8705 ret = get_errno(setdomainname(p, arg2)); 8706 unlock_user(p, arg1, 0); 8707 break; 8708 case TARGET_NR_uname: 8709 /* no need to transcode because we use the linux syscall */ 8710 { 8711 struct new_utsname * buf; 8712 8713 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 8714 goto efault; 8715 ret = get_errno(sys_uname(buf)); 8716 if (!is_error(ret)) { 8717 /* Overrite the native machine name with whatever is being 8718 emulated. */ 8719 strcpy (buf->machine, cpu_to_uname_machine(cpu_env)); 8720 /* Allow the user to override the reported release. */ 8721 if (qemu_uname_release && *qemu_uname_release) 8722 strcpy (buf->release, qemu_uname_release); 8723 } 8724 unlock_user_struct(buf, arg1, 1); 8725 } 8726 break; 8727 #ifdef TARGET_I386 8728 case TARGET_NR_modify_ldt: 8729 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3); 8730 break; 8731 #if !defined(TARGET_X86_64) 8732 case TARGET_NR_vm86old: 8733 goto unimplemented; 8734 case TARGET_NR_vm86: 8735 ret = do_vm86(cpu_env, arg1, arg2); 8736 break; 8737 #endif 8738 #endif 8739 case TARGET_NR_adjtimex: 8740 goto unimplemented; 8741 #ifdef TARGET_NR_create_module 8742 case TARGET_NR_create_module: 8743 #endif 8744 case TARGET_NR_init_module: 8745 case TARGET_NR_delete_module: 8746 #ifdef TARGET_NR_get_kernel_syms 8747 case TARGET_NR_get_kernel_syms: 8748 #endif 8749 goto unimplemented; 8750 case TARGET_NR_quotactl: 8751 goto unimplemented; 8752 case TARGET_NR_getpgid: 8753 ret = get_errno(getpgid(arg1)); 8754 break; 8755 case TARGET_NR_fchdir: 8756 ret = get_errno(fchdir(arg1)); 8757 break; 8758 #ifdef TARGET_NR_bdflush /* not on x86_64 */ 8759 case TARGET_NR_bdflush: 8760 goto unimplemented; 8761 #endif 8762 #ifdef TARGET_NR_sysfs 8763 case TARGET_NR_sysfs: 8764 goto unimplemented; 8765 #endif 8766 case TARGET_NR_personality: 8767 ret = get_errno(personality(arg1)); 8768 break; 8769 #ifdef TARGET_NR_afs_syscall 8770 case TARGET_NR_afs_syscall: 8771 goto unimplemented; 8772 #endif 8773 #ifdef TARGET_NR__llseek /* Not on alpha */ 8774 case TARGET_NR__llseek: 8775 { 8776 int64_t res; 8777 #if !defined(__NR_llseek) 8778 res = lseek(arg1, ((uint64_t)arg2 << 32) | arg3, arg5); 8779 if (res == -1) { 8780 ret = get_errno(res); 8781 } else { 8782 ret = 0; 8783 } 8784 #else 8785 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 8786 #endif 8787 if ((ret == 0) && put_user_s64(res, arg4)) { 8788 goto efault; 8789 } 8790 } 8791 break; 8792 #endif 8793 #ifdef TARGET_NR_getdents 8794 case TARGET_NR_getdents: 8795 #ifdef __NR_getdents 8796 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 8797 { 8798 struct target_dirent *target_dirp; 8799 struct linux_dirent *dirp; 8800 abi_long count = arg3; 8801 8802 dirp = g_try_malloc(count); 8803 if (!dirp) { 8804 ret = -TARGET_ENOMEM; 8805 goto fail; 8806 } 8807 8808 ret = get_errno(sys_getdents(arg1, dirp, count)); 8809 if (!is_error(ret)) { 8810 struct linux_dirent *de; 8811 struct target_dirent *tde; 8812 int len = ret; 8813 int reclen, treclen; 8814 int count1, tnamelen; 8815 8816 count1 = 0; 8817 de = dirp; 8818 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 8819 goto efault; 8820 tde = target_dirp; 8821 while (len > 0) { 8822 reclen = de->d_reclen; 8823 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 8824 assert(tnamelen >= 0); 8825 treclen = tnamelen + offsetof(struct target_dirent, d_name); 8826 assert(count1 + treclen <= count); 8827 tde->d_reclen = tswap16(treclen); 8828 tde->d_ino = tswapal(de->d_ino); 8829 tde->d_off = tswapal(de->d_off); 8830 memcpy(tde->d_name, de->d_name, tnamelen); 8831 de = (struct linux_dirent *)((char *)de + reclen); 8832 len -= reclen; 8833 tde = (struct target_dirent *)((char *)tde + treclen); 8834 count1 += treclen; 8835 } 8836 ret = count1; 8837 unlock_user(target_dirp, arg2, ret); 8838 } 8839 g_free(dirp); 8840 } 8841 #else 8842 { 8843 struct linux_dirent *dirp; 8844 abi_long count = arg3; 8845 8846 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 8847 goto efault; 8848 ret = get_errno(sys_getdents(arg1, dirp, count)); 8849 if (!is_error(ret)) { 8850 struct linux_dirent *de; 8851 int len = ret; 8852 int reclen; 8853 de = dirp; 8854 while (len > 0) { 8855 reclen = de->d_reclen; 8856 if (reclen > len) 8857 break; 8858 de->d_reclen = tswap16(reclen); 8859 tswapls(&de->d_ino); 8860 tswapls(&de->d_off); 8861 de = (struct linux_dirent *)((char *)de + reclen); 8862 len -= reclen; 8863 } 8864 } 8865 unlock_user(dirp, arg2, ret); 8866 } 8867 #endif 8868 #else 8869 /* Implement getdents in terms of getdents64 */ 8870 { 8871 struct linux_dirent64 *dirp; 8872 abi_long count = arg3; 8873 8874 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8875 if (!dirp) { 8876 goto efault; 8877 } 8878 ret = get_errno(sys_getdents64(arg1, dirp, count)); 8879 if (!is_error(ret)) { 8880 /* Convert the dirent64 structs to target dirent. We do this 8881 * in-place, since we can guarantee that a target_dirent is no 8882 * larger than a dirent64; however this means we have to be 8883 * careful to read everything before writing in the new format. 8884 */ 8885 struct linux_dirent64 *de; 8886 struct target_dirent *tde; 8887 int len = ret; 8888 int tlen = 0; 8889 8890 de = dirp; 8891 tde = (struct target_dirent *)dirp; 8892 while (len > 0) { 8893 int namelen, treclen; 8894 int reclen = de->d_reclen; 8895 uint64_t ino = de->d_ino; 8896 int64_t off = de->d_off; 8897 uint8_t type = de->d_type; 8898 8899 namelen = strlen(de->d_name); 8900 treclen = offsetof(struct target_dirent, d_name) 8901 + namelen + 2; 8902 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 8903 8904 memmove(tde->d_name, de->d_name, namelen + 1); 8905 tde->d_ino = tswapal(ino); 8906 tde->d_off = tswapal(off); 8907 tde->d_reclen = tswap16(treclen); 8908 /* The target_dirent type is in what was formerly a padding 8909 * byte at the end of the structure: 8910 */ 8911 *(((char *)tde) + treclen - 1) = type; 8912 8913 de = (struct linux_dirent64 *)((char *)de + reclen); 8914 tde = (struct target_dirent *)((char *)tde + treclen); 8915 len -= reclen; 8916 tlen += treclen; 8917 } 8918 ret = tlen; 8919 } 8920 unlock_user(dirp, arg2, ret); 8921 } 8922 #endif 8923 break; 8924 #endif /* TARGET_NR_getdents */ 8925 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 8926 case TARGET_NR_getdents64: 8927 { 8928 struct linux_dirent64 *dirp; 8929 abi_long count = arg3; 8930 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 8931 goto efault; 8932 ret = get_errno(sys_getdents64(arg1, dirp, count)); 8933 if (!is_error(ret)) { 8934 struct linux_dirent64 *de; 8935 int len = ret; 8936 int reclen; 8937 de = dirp; 8938 while (len > 0) { 8939 reclen = de->d_reclen; 8940 if (reclen > len) 8941 break; 8942 de->d_reclen = tswap16(reclen); 8943 tswap64s((uint64_t *)&de->d_ino); 8944 tswap64s((uint64_t *)&de->d_off); 8945 de = (struct linux_dirent64 *)((char *)de + reclen); 8946 len -= reclen; 8947 } 8948 } 8949 unlock_user(dirp, arg2, ret); 8950 } 8951 break; 8952 #endif /* TARGET_NR_getdents64 */ 8953 #if defined(TARGET_NR__newselect) 8954 case TARGET_NR__newselect: 8955 ret = do_select(arg1, arg2, arg3, arg4, arg5); 8956 break; 8957 #endif 8958 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) 8959 # ifdef TARGET_NR_poll 8960 case TARGET_NR_poll: 8961 # endif 8962 # ifdef TARGET_NR_ppoll 8963 case TARGET_NR_ppoll: 8964 # endif 8965 { 8966 struct target_pollfd *target_pfd; 8967 unsigned int nfds = arg2; 8968 struct pollfd *pfd; 8969 unsigned int i; 8970 8971 pfd = NULL; 8972 target_pfd = NULL; 8973 if (nfds) { 8974 target_pfd = lock_user(VERIFY_WRITE, arg1, 8975 sizeof(struct target_pollfd) * nfds, 1); 8976 if (!target_pfd) { 8977 goto efault; 8978 } 8979 8980 pfd = alloca(sizeof(struct pollfd) * nfds); 8981 for (i = 0; i < nfds; i++) { 8982 pfd[i].fd = tswap32(target_pfd[i].fd); 8983 pfd[i].events = tswap16(target_pfd[i].events); 8984 } 8985 } 8986 8987 switch (num) { 8988 # ifdef TARGET_NR_ppoll 8989 case TARGET_NR_ppoll: 8990 { 8991 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 8992 target_sigset_t *target_set; 8993 sigset_t _set, *set = &_set; 8994 8995 if (arg3) { 8996 if (target_to_host_timespec(timeout_ts, arg3)) { 8997 unlock_user(target_pfd, arg1, 0); 8998 goto efault; 8999 } 9000 } else { 9001 timeout_ts = NULL; 9002 } 9003 9004 if (arg4) { 9005 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1); 9006 if (!target_set) { 9007 unlock_user(target_pfd, arg1, 0); 9008 goto efault; 9009 } 9010 target_to_host_sigset(set, target_set); 9011 } else { 9012 set = NULL; 9013 } 9014 9015 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 9016 set, SIGSET_T_SIZE)); 9017 9018 if (!is_error(ret) && arg3) { 9019 host_to_target_timespec(arg3, timeout_ts); 9020 } 9021 if (arg4) { 9022 unlock_user(target_set, arg4, 0); 9023 } 9024 break; 9025 } 9026 # endif 9027 # ifdef TARGET_NR_poll 9028 case TARGET_NR_poll: 9029 { 9030 struct timespec ts, *pts; 9031 9032 if (arg3 >= 0) { 9033 /* Convert ms to secs, ns */ 9034 ts.tv_sec = arg3 / 1000; 9035 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 9036 pts = &ts; 9037 } else { 9038 /* -ve poll() timeout means "infinite" */ 9039 pts = NULL; 9040 } 9041 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 9042 break; 9043 } 9044 # endif 9045 default: 9046 g_assert_not_reached(); 9047 } 9048 9049 if (!is_error(ret)) { 9050 for(i = 0; i < nfds; i++) { 9051 target_pfd[i].revents = tswap16(pfd[i].revents); 9052 } 9053 } 9054 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 9055 } 9056 break; 9057 #endif 9058 case TARGET_NR_flock: 9059 /* NOTE: the flock constant seems to be the same for every 9060 Linux platform */ 9061 ret = get_errno(safe_flock(arg1, arg2)); 9062 break; 9063 case TARGET_NR_readv: 9064 { 9065 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 9066 if (vec != NULL) { 9067 ret = get_errno(safe_readv(arg1, vec, arg3)); 9068 unlock_iovec(vec, arg2, arg3, 1); 9069 } else { 9070 ret = -host_to_target_errno(errno); 9071 } 9072 } 9073 break; 9074 case TARGET_NR_writev: 9075 { 9076 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 9077 if (vec != NULL) { 9078 ret = get_errno(safe_writev(arg1, vec, arg3)); 9079 unlock_iovec(vec, arg2, arg3, 0); 9080 } else { 9081 ret = -host_to_target_errno(errno); 9082 } 9083 } 9084 break; 9085 case TARGET_NR_getsid: 9086 ret = get_errno(getsid(arg1)); 9087 break; 9088 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 9089 case TARGET_NR_fdatasync: 9090 ret = get_errno(fdatasync(arg1)); 9091 break; 9092 #endif 9093 #ifdef TARGET_NR__sysctl 9094 case TARGET_NR__sysctl: 9095 /* We don't implement this, but ENOTDIR is always a safe 9096 return value. */ 9097 ret = -TARGET_ENOTDIR; 9098 break; 9099 #endif 9100 case TARGET_NR_sched_getaffinity: 9101 { 9102 unsigned int mask_size; 9103 unsigned long *mask; 9104 9105 /* 9106 * sched_getaffinity needs multiples of ulong, so need to take 9107 * care of mismatches between target ulong and host ulong sizes. 9108 */ 9109 if (arg2 & (sizeof(abi_ulong) - 1)) { 9110 ret = -TARGET_EINVAL; 9111 break; 9112 } 9113 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 9114 9115 mask = alloca(mask_size); 9116 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 9117 9118 if (!is_error(ret)) { 9119 if (ret > arg2) { 9120 /* More data returned than the caller's buffer will fit. 9121 * This only happens if sizeof(abi_long) < sizeof(long) 9122 * and the caller passed us a buffer holding an odd number 9123 * of abi_longs. If the host kernel is actually using the 9124 * extra 4 bytes then fail EINVAL; otherwise we can just 9125 * ignore them and only copy the interesting part. 9126 */ 9127 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 9128 if (numcpus > arg2 * 8) { 9129 ret = -TARGET_EINVAL; 9130 break; 9131 } 9132 ret = arg2; 9133 } 9134 9135 if (copy_to_user(arg3, mask, ret)) { 9136 goto efault; 9137 } 9138 } 9139 } 9140 break; 9141 case TARGET_NR_sched_setaffinity: 9142 { 9143 unsigned int mask_size; 9144 unsigned long *mask; 9145 9146 /* 9147 * sched_setaffinity needs multiples of ulong, so need to take 9148 * care of mismatches between target ulong and host ulong sizes. 9149 */ 9150 if (arg2 & (sizeof(abi_ulong) - 1)) { 9151 ret = -TARGET_EINVAL; 9152 break; 9153 } 9154 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 9155 9156 mask = alloca(mask_size); 9157 if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) { 9158 goto efault; 9159 } 9160 memcpy(mask, p, arg2); 9161 unlock_user_struct(p, arg2, 0); 9162 9163 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 9164 } 9165 break; 9166 case TARGET_NR_sched_setparam: 9167 { 9168 struct sched_param *target_schp; 9169 struct sched_param schp; 9170 9171 if (arg2 == 0) { 9172 return -TARGET_EINVAL; 9173 } 9174 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 9175 goto efault; 9176 schp.sched_priority = tswap32(target_schp->sched_priority); 9177 unlock_user_struct(target_schp, arg2, 0); 9178 ret = get_errno(sched_setparam(arg1, &schp)); 9179 } 9180 break; 9181 case TARGET_NR_sched_getparam: 9182 { 9183 struct sched_param *target_schp; 9184 struct sched_param schp; 9185 9186 if (arg2 == 0) { 9187 return -TARGET_EINVAL; 9188 } 9189 ret = get_errno(sched_getparam(arg1, &schp)); 9190 if (!is_error(ret)) { 9191 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 9192 goto efault; 9193 target_schp->sched_priority = tswap32(schp.sched_priority); 9194 unlock_user_struct(target_schp, arg2, 1); 9195 } 9196 } 9197 break; 9198 case TARGET_NR_sched_setscheduler: 9199 { 9200 struct sched_param *target_schp; 9201 struct sched_param schp; 9202 if (arg3 == 0) { 9203 return -TARGET_EINVAL; 9204 } 9205 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 9206 goto efault; 9207 schp.sched_priority = tswap32(target_schp->sched_priority); 9208 unlock_user_struct(target_schp, arg3, 0); 9209 ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); 9210 } 9211 break; 9212 case TARGET_NR_sched_getscheduler: 9213 ret = get_errno(sched_getscheduler(arg1)); 9214 break; 9215 case TARGET_NR_sched_yield: 9216 ret = get_errno(sched_yield()); 9217 break; 9218 case TARGET_NR_sched_get_priority_max: 9219 ret = get_errno(sched_get_priority_max(arg1)); 9220 break; 9221 case TARGET_NR_sched_get_priority_min: 9222 ret = get_errno(sched_get_priority_min(arg1)); 9223 break; 9224 case TARGET_NR_sched_rr_get_interval: 9225 { 9226 struct timespec ts; 9227 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 9228 if (!is_error(ret)) { 9229 ret = host_to_target_timespec(arg2, &ts); 9230 } 9231 } 9232 break; 9233 case TARGET_NR_nanosleep: 9234 { 9235 struct timespec req, rem; 9236 target_to_host_timespec(&req, arg1); 9237 ret = get_errno(safe_nanosleep(&req, &rem)); 9238 if (is_error(ret) && arg2) { 9239 host_to_target_timespec(arg2, &rem); 9240 } 9241 } 9242 break; 9243 #ifdef TARGET_NR_query_module 9244 case TARGET_NR_query_module: 9245 goto unimplemented; 9246 #endif 9247 #ifdef TARGET_NR_nfsservctl 9248 case TARGET_NR_nfsservctl: 9249 goto unimplemented; 9250 #endif 9251 case TARGET_NR_prctl: 9252 switch (arg1) { 9253 case PR_GET_PDEATHSIG: 9254 { 9255 int deathsig; 9256 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 9257 if (!is_error(ret) && arg2 9258 && put_user_ual(deathsig, arg2)) { 9259 goto efault; 9260 } 9261 break; 9262 } 9263 #ifdef PR_GET_NAME 9264 case PR_GET_NAME: 9265 { 9266 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 9267 if (!name) { 9268 goto efault; 9269 } 9270 ret = get_errno(prctl(arg1, (unsigned long)name, 9271 arg3, arg4, arg5)); 9272 unlock_user(name, arg2, 16); 9273 break; 9274 } 9275 case PR_SET_NAME: 9276 { 9277 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 9278 if (!name) { 9279 goto efault; 9280 } 9281 ret = get_errno(prctl(arg1, (unsigned long)name, 9282 arg3, arg4, arg5)); 9283 unlock_user(name, arg2, 0); 9284 break; 9285 } 9286 #endif 9287 default: 9288 /* Most prctl options have no pointer arguments */ 9289 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 9290 break; 9291 } 9292 break; 9293 #ifdef TARGET_NR_arch_prctl 9294 case TARGET_NR_arch_prctl: 9295 #if defined(TARGET_I386) && !defined(TARGET_ABI32) 9296 ret = do_arch_prctl(cpu_env, arg1, arg2); 9297 break; 9298 #else 9299 goto unimplemented; 9300 #endif 9301 #endif 9302 #ifdef TARGET_NR_pread64 9303 case TARGET_NR_pread64: 9304 if (regpairs_aligned(cpu_env)) { 9305 arg4 = arg5; 9306 arg5 = arg6; 9307 } 9308 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 9309 goto efault; 9310 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 9311 unlock_user(p, arg2, ret); 9312 break; 9313 case TARGET_NR_pwrite64: 9314 if (regpairs_aligned(cpu_env)) { 9315 arg4 = arg5; 9316 arg5 = arg6; 9317 } 9318 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 9319 goto efault; 9320 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 9321 unlock_user(p, arg2, 0); 9322 break; 9323 #endif 9324 case TARGET_NR_getcwd: 9325 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 9326 goto efault; 9327 ret = get_errno(sys_getcwd1(p, arg2)); 9328 unlock_user(p, arg1, ret); 9329 break; 9330 case TARGET_NR_capget: 9331 case TARGET_NR_capset: 9332 { 9333 struct target_user_cap_header *target_header; 9334 struct target_user_cap_data *target_data = NULL; 9335 struct __user_cap_header_struct header; 9336 struct __user_cap_data_struct data[2]; 9337 struct __user_cap_data_struct *dataptr = NULL; 9338 int i, target_datalen; 9339 int data_items = 1; 9340 9341 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 9342 goto efault; 9343 } 9344 header.version = tswap32(target_header->version); 9345 header.pid = tswap32(target_header->pid); 9346 9347 if (header.version != _LINUX_CAPABILITY_VERSION) { 9348 /* Version 2 and up takes pointer to two user_data structs */ 9349 data_items = 2; 9350 } 9351 9352 target_datalen = sizeof(*target_data) * data_items; 9353 9354 if (arg2) { 9355 if (num == TARGET_NR_capget) { 9356 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 9357 } else { 9358 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 9359 } 9360 if (!target_data) { 9361 unlock_user_struct(target_header, arg1, 0); 9362 goto efault; 9363 } 9364 9365 if (num == TARGET_NR_capset) { 9366 for (i = 0; i < data_items; i++) { 9367 data[i].effective = tswap32(target_data[i].effective); 9368 data[i].permitted = tswap32(target_data[i].permitted); 9369 data[i].inheritable = tswap32(target_data[i].inheritable); 9370 } 9371 } 9372 9373 dataptr = data; 9374 } 9375 9376 if (num == TARGET_NR_capget) { 9377 ret = get_errno(capget(&header, dataptr)); 9378 } else { 9379 ret = get_errno(capset(&header, dataptr)); 9380 } 9381 9382 /* The kernel always updates version for both capget and capset */ 9383 target_header->version = tswap32(header.version); 9384 unlock_user_struct(target_header, arg1, 1); 9385 9386 if (arg2) { 9387 if (num == TARGET_NR_capget) { 9388 for (i = 0; i < data_items; i++) { 9389 target_data[i].effective = tswap32(data[i].effective); 9390 target_data[i].permitted = tswap32(data[i].permitted); 9391 target_data[i].inheritable = tswap32(data[i].inheritable); 9392 } 9393 unlock_user(target_data, arg2, target_datalen); 9394 } else { 9395 unlock_user(target_data, arg2, 0); 9396 } 9397 } 9398 break; 9399 } 9400 case TARGET_NR_sigaltstack: 9401 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env)); 9402 break; 9403 9404 #ifdef CONFIG_SENDFILE 9405 case TARGET_NR_sendfile: 9406 { 9407 off_t *offp = NULL; 9408 off_t off; 9409 if (arg3) { 9410 ret = get_user_sal(off, arg3); 9411 if (is_error(ret)) { 9412 break; 9413 } 9414 offp = &off; 9415 } 9416 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 9417 if (!is_error(ret) && arg3) { 9418 abi_long ret2 = put_user_sal(off, arg3); 9419 if (is_error(ret2)) { 9420 ret = ret2; 9421 } 9422 } 9423 break; 9424 } 9425 #ifdef TARGET_NR_sendfile64 9426 case TARGET_NR_sendfile64: 9427 { 9428 off_t *offp = NULL; 9429 off_t off; 9430 if (arg3) { 9431 ret = get_user_s64(off, arg3); 9432 if (is_error(ret)) { 9433 break; 9434 } 9435 offp = &off; 9436 } 9437 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 9438 if (!is_error(ret) && arg3) { 9439 abi_long ret2 = put_user_s64(off, arg3); 9440 if (is_error(ret2)) { 9441 ret = ret2; 9442 } 9443 } 9444 break; 9445 } 9446 #endif 9447 #else 9448 case TARGET_NR_sendfile: 9449 #ifdef TARGET_NR_sendfile64 9450 case TARGET_NR_sendfile64: 9451 #endif 9452 goto unimplemented; 9453 #endif 9454 9455 #ifdef TARGET_NR_getpmsg 9456 case TARGET_NR_getpmsg: 9457 goto unimplemented; 9458 #endif 9459 #ifdef TARGET_NR_putpmsg 9460 case TARGET_NR_putpmsg: 9461 goto unimplemented; 9462 #endif 9463 #ifdef TARGET_NR_vfork 9464 case TARGET_NR_vfork: 9465 ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD, 9466 0, 0, 0, 0)); 9467 break; 9468 #endif 9469 #ifdef TARGET_NR_ugetrlimit 9470 case TARGET_NR_ugetrlimit: 9471 { 9472 struct rlimit rlim; 9473 int resource = target_to_host_resource(arg1); 9474 ret = get_errno(getrlimit(resource, &rlim)); 9475 if (!is_error(ret)) { 9476 struct target_rlimit *target_rlim; 9477 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 9478 goto efault; 9479 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 9480 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 9481 unlock_user_struct(target_rlim, arg2, 1); 9482 } 9483 break; 9484 } 9485 #endif 9486 #ifdef TARGET_NR_truncate64 9487 case TARGET_NR_truncate64: 9488 if (!(p = lock_user_string(arg1))) 9489 goto efault; 9490 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 9491 unlock_user(p, arg1, 0); 9492 break; 9493 #endif 9494 #ifdef TARGET_NR_ftruncate64 9495 case TARGET_NR_ftruncate64: 9496 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 9497 break; 9498 #endif 9499 #ifdef TARGET_NR_stat64 9500 case TARGET_NR_stat64: 9501 if (!(p = lock_user_string(arg1))) 9502 goto efault; 9503 ret = get_errno(stat(path(p), &st)); 9504 unlock_user(p, arg1, 0); 9505 if (!is_error(ret)) 9506 ret = host_to_target_stat64(cpu_env, arg2, &st); 9507 break; 9508 #endif 9509 #ifdef TARGET_NR_lstat64 9510 case TARGET_NR_lstat64: 9511 if (!(p = lock_user_string(arg1))) 9512 goto efault; 9513 ret = get_errno(lstat(path(p), &st)); 9514 unlock_user(p, arg1, 0); 9515 if (!is_error(ret)) 9516 ret = host_to_target_stat64(cpu_env, arg2, &st); 9517 break; 9518 #endif 9519 #ifdef TARGET_NR_fstat64 9520 case TARGET_NR_fstat64: 9521 ret = get_errno(fstat(arg1, &st)); 9522 if (!is_error(ret)) 9523 ret = host_to_target_stat64(cpu_env, arg2, &st); 9524 break; 9525 #endif 9526 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 9527 #ifdef TARGET_NR_fstatat64 9528 case TARGET_NR_fstatat64: 9529 #endif 9530 #ifdef TARGET_NR_newfstatat 9531 case TARGET_NR_newfstatat: 9532 #endif 9533 if (!(p = lock_user_string(arg2))) 9534 goto efault; 9535 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 9536 if (!is_error(ret)) 9537 ret = host_to_target_stat64(cpu_env, arg3, &st); 9538 break; 9539 #endif 9540 #ifdef TARGET_NR_lchown 9541 case TARGET_NR_lchown: 9542 if (!(p = lock_user_string(arg1))) 9543 goto efault; 9544 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 9545 unlock_user(p, arg1, 0); 9546 break; 9547 #endif 9548 #ifdef TARGET_NR_getuid 9549 case TARGET_NR_getuid: 9550 ret = get_errno(high2lowuid(getuid())); 9551 break; 9552 #endif 9553 #ifdef TARGET_NR_getgid 9554 case TARGET_NR_getgid: 9555 ret = get_errno(high2lowgid(getgid())); 9556 break; 9557 #endif 9558 #ifdef TARGET_NR_geteuid 9559 case TARGET_NR_geteuid: 9560 ret = get_errno(high2lowuid(geteuid())); 9561 break; 9562 #endif 9563 #ifdef TARGET_NR_getegid 9564 case TARGET_NR_getegid: 9565 ret = get_errno(high2lowgid(getegid())); 9566 break; 9567 #endif 9568 case TARGET_NR_setreuid: 9569 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 9570 break; 9571 case TARGET_NR_setregid: 9572 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 9573 break; 9574 case TARGET_NR_getgroups: 9575 { 9576 int gidsetsize = arg1; 9577 target_id *target_grouplist; 9578 gid_t *grouplist; 9579 int i; 9580 9581 grouplist = alloca(gidsetsize * sizeof(gid_t)); 9582 ret = get_errno(getgroups(gidsetsize, grouplist)); 9583 if (gidsetsize == 0) 9584 break; 9585 if (!is_error(ret)) { 9586 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 9587 if (!target_grouplist) 9588 goto efault; 9589 for(i = 0;i < ret; i++) 9590 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 9591 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 9592 } 9593 } 9594 break; 9595 case TARGET_NR_setgroups: 9596 { 9597 int gidsetsize = arg1; 9598 target_id *target_grouplist; 9599 gid_t *grouplist = NULL; 9600 int i; 9601 if (gidsetsize) { 9602 grouplist = alloca(gidsetsize * sizeof(gid_t)); 9603 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 9604 if (!target_grouplist) { 9605 ret = -TARGET_EFAULT; 9606 goto fail; 9607 } 9608 for (i = 0; i < gidsetsize; i++) { 9609 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 9610 } 9611 unlock_user(target_grouplist, arg2, 0); 9612 } 9613 ret = get_errno(setgroups(gidsetsize, grouplist)); 9614 } 9615 break; 9616 case TARGET_NR_fchown: 9617 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 9618 break; 9619 #if defined(TARGET_NR_fchownat) 9620 case TARGET_NR_fchownat: 9621 if (!(p = lock_user_string(arg2))) 9622 goto efault; 9623 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 9624 low2highgid(arg4), arg5)); 9625 unlock_user(p, arg2, 0); 9626 break; 9627 #endif 9628 #ifdef TARGET_NR_setresuid 9629 case TARGET_NR_setresuid: 9630 ret = get_errno(sys_setresuid(low2highuid(arg1), 9631 low2highuid(arg2), 9632 low2highuid(arg3))); 9633 break; 9634 #endif 9635 #ifdef TARGET_NR_getresuid 9636 case TARGET_NR_getresuid: 9637 { 9638 uid_t ruid, euid, suid; 9639 ret = get_errno(getresuid(&ruid, &euid, &suid)); 9640 if (!is_error(ret)) { 9641 if (put_user_id(high2lowuid(ruid), arg1) 9642 || put_user_id(high2lowuid(euid), arg2) 9643 || put_user_id(high2lowuid(suid), arg3)) 9644 goto efault; 9645 } 9646 } 9647 break; 9648 #endif 9649 #ifdef TARGET_NR_getresgid 9650 case TARGET_NR_setresgid: 9651 ret = get_errno(sys_setresgid(low2highgid(arg1), 9652 low2highgid(arg2), 9653 low2highgid(arg3))); 9654 break; 9655 #endif 9656 #ifdef TARGET_NR_getresgid 9657 case TARGET_NR_getresgid: 9658 { 9659 gid_t rgid, egid, sgid; 9660 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 9661 if (!is_error(ret)) { 9662 if (put_user_id(high2lowgid(rgid), arg1) 9663 || put_user_id(high2lowgid(egid), arg2) 9664 || put_user_id(high2lowgid(sgid), arg3)) 9665 goto efault; 9666 } 9667 } 9668 break; 9669 #endif 9670 #ifdef TARGET_NR_chown 9671 case TARGET_NR_chown: 9672 if (!(p = lock_user_string(arg1))) 9673 goto efault; 9674 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 9675 unlock_user(p, arg1, 0); 9676 break; 9677 #endif 9678 case TARGET_NR_setuid: 9679 ret = get_errno(sys_setuid(low2highuid(arg1))); 9680 break; 9681 case TARGET_NR_setgid: 9682 ret = get_errno(sys_setgid(low2highgid(arg1))); 9683 break; 9684 case TARGET_NR_setfsuid: 9685 ret = get_errno(setfsuid(arg1)); 9686 break; 9687 case TARGET_NR_setfsgid: 9688 ret = get_errno(setfsgid(arg1)); 9689 break; 9690 9691 #ifdef TARGET_NR_lchown32 9692 case TARGET_NR_lchown32: 9693 if (!(p = lock_user_string(arg1))) 9694 goto efault; 9695 ret = get_errno(lchown(p, arg2, arg3)); 9696 unlock_user(p, arg1, 0); 9697 break; 9698 #endif 9699 #ifdef TARGET_NR_getuid32 9700 case TARGET_NR_getuid32: 9701 ret = get_errno(getuid()); 9702 break; 9703 #endif 9704 9705 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 9706 /* Alpha specific */ 9707 case TARGET_NR_getxuid: 9708 { 9709 uid_t euid; 9710 euid=geteuid(); 9711 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 9712 } 9713 ret = get_errno(getuid()); 9714 break; 9715 #endif 9716 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 9717 /* Alpha specific */ 9718 case TARGET_NR_getxgid: 9719 { 9720 uid_t egid; 9721 egid=getegid(); 9722 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 9723 } 9724 ret = get_errno(getgid()); 9725 break; 9726 #endif 9727 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 9728 /* Alpha specific */ 9729 case TARGET_NR_osf_getsysinfo: 9730 ret = -TARGET_EOPNOTSUPP; 9731 switch (arg1) { 9732 case TARGET_GSI_IEEE_FP_CONTROL: 9733 { 9734 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env); 9735 9736 /* Copied from linux ieee_fpcr_to_swcr. */ 9737 swcr = (fpcr >> 35) & SWCR_STATUS_MASK; 9738 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ; 9739 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV 9740 | SWCR_TRAP_ENABLE_DZE 9741 | SWCR_TRAP_ENABLE_OVF); 9742 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF 9743 | SWCR_TRAP_ENABLE_INE); 9744 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ; 9745 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO; 9746 9747 if (put_user_u64 (swcr, arg2)) 9748 goto efault; 9749 ret = 0; 9750 } 9751 break; 9752 9753 /* case GSI_IEEE_STATE_AT_SIGNAL: 9754 -- Not implemented in linux kernel. 9755 case GSI_UACPROC: 9756 -- Retrieves current unaligned access state; not much used. 9757 case GSI_PROC_TYPE: 9758 -- Retrieves implver information; surely not used. 9759 case GSI_GET_HWRPB: 9760 -- Grabs a copy of the HWRPB; surely not used. 9761 */ 9762 } 9763 break; 9764 #endif 9765 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 9766 /* Alpha specific */ 9767 case TARGET_NR_osf_setsysinfo: 9768 ret = -TARGET_EOPNOTSUPP; 9769 switch (arg1) { 9770 case TARGET_SSI_IEEE_FP_CONTROL: 9771 { 9772 uint64_t swcr, fpcr, orig_fpcr; 9773 9774 if (get_user_u64 (swcr, arg2)) { 9775 goto efault; 9776 } 9777 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 9778 fpcr = orig_fpcr & FPCR_DYN_MASK; 9779 9780 /* Copied from linux ieee_swcr_to_fpcr. */ 9781 fpcr |= (swcr & SWCR_STATUS_MASK) << 35; 9782 fpcr |= (swcr & SWCR_MAP_DMZ) << 36; 9783 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV 9784 | SWCR_TRAP_ENABLE_DZE 9785 | SWCR_TRAP_ENABLE_OVF)) << 48; 9786 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF 9787 | SWCR_TRAP_ENABLE_INE)) << 57; 9788 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0); 9789 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41; 9790 9791 cpu_alpha_store_fpcr(cpu_env, fpcr); 9792 ret = 0; 9793 } 9794 break; 9795 9796 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 9797 { 9798 uint64_t exc, fpcr, orig_fpcr; 9799 int si_code; 9800 9801 if (get_user_u64(exc, arg2)) { 9802 goto efault; 9803 } 9804 9805 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 9806 9807 /* We only add to the exception status here. */ 9808 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35); 9809 9810 cpu_alpha_store_fpcr(cpu_env, fpcr); 9811 ret = 0; 9812 9813 /* Old exceptions are not signaled. */ 9814 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK); 9815 9816 /* If any exceptions set by this call, 9817 and are unmasked, send a signal. */ 9818 si_code = 0; 9819 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) { 9820 si_code = TARGET_FPE_FLTRES; 9821 } 9822 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) { 9823 si_code = TARGET_FPE_FLTUND; 9824 } 9825 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) { 9826 si_code = TARGET_FPE_FLTOVF; 9827 } 9828 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) { 9829 si_code = TARGET_FPE_FLTDIV; 9830 } 9831 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) { 9832 si_code = TARGET_FPE_FLTINV; 9833 } 9834 if (si_code != 0) { 9835 target_siginfo_t info; 9836 info.si_signo = SIGFPE; 9837 info.si_errno = 0; 9838 info.si_code = si_code; 9839 info._sifields._sigfault._addr 9840 = ((CPUArchState *)cpu_env)->pc; 9841 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info); 9842 } 9843 } 9844 break; 9845 9846 /* case SSI_NVPAIRS: 9847 -- Used with SSIN_UACPROC to enable unaligned accesses. 9848 case SSI_IEEE_STATE_AT_SIGNAL: 9849 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 9850 -- Not implemented in linux kernel 9851 */ 9852 } 9853 break; 9854 #endif 9855 #ifdef TARGET_NR_osf_sigprocmask 9856 /* Alpha specific. */ 9857 case TARGET_NR_osf_sigprocmask: 9858 { 9859 abi_ulong mask; 9860 int how; 9861 sigset_t set, oldset; 9862 9863 switch(arg1) { 9864 case TARGET_SIG_BLOCK: 9865 how = SIG_BLOCK; 9866 break; 9867 case TARGET_SIG_UNBLOCK: 9868 how = SIG_UNBLOCK; 9869 break; 9870 case TARGET_SIG_SETMASK: 9871 how = SIG_SETMASK; 9872 break; 9873 default: 9874 ret = -TARGET_EINVAL; 9875 goto fail; 9876 } 9877 mask = arg2; 9878 target_to_host_old_sigset(&set, &mask); 9879 ret = do_sigprocmask(how, &set, &oldset); 9880 if (!ret) { 9881 host_to_target_old_sigset(&mask, &oldset); 9882 ret = mask; 9883 } 9884 } 9885 break; 9886 #endif 9887 9888 #ifdef TARGET_NR_getgid32 9889 case TARGET_NR_getgid32: 9890 ret = get_errno(getgid()); 9891 break; 9892 #endif 9893 #ifdef TARGET_NR_geteuid32 9894 case TARGET_NR_geteuid32: 9895 ret = get_errno(geteuid()); 9896 break; 9897 #endif 9898 #ifdef TARGET_NR_getegid32 9899 case TARGET_NR_getegid32: 9900 ret = get_errno(getegid()); 9901 break; 9902 #endif 9903 #ifdef TARGET_NR_setreuid32 9904 case TARGET_NR_setreuid32: 9905 ret = get_errno(setreuid(arg1, arg2)); 9906 break; 9907 #endif 9908 #ifdef TARGET_NR_setregid32 9909 case TARGET_NR_setregid32: 9910 ret = get_errno(setregid(arg1, arg2)); 9911 break; 9912 #endif 9913 #ifdef TARGET_NR_getgroups32 9914 case TARGET_NR_getgroups32: 9915 { 9916 int gidsetsize = arg1; 9917 uint32_t *target_grouplist; 9918 gid_t *grouplist; 9919 int i; 9920 9921 grouplist = alloca(gidsetsize * sizeof(gid_t)); 9922 ret = get_errno(getgroups(gidsetsize, grouplist)); 9923 if (gidsetsize == 0) 9924 break; 9925 if (!is_error(ret)) { 9926 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 9927 if (!target_grouplist) { 9928 ret = -TARGET_EFAULT; 9929 goto fail; 9930 } 9931 for(i = 0;i < ret; i++) 9932 target_grouplist[i] = tswap32(grouplist[i]); 9933 unlock_user(target_grouplist, arg2, gidsetsize * 4); 9934 } 9935 } 9936 break; 9937 #endif 9938 #ifdef TARGET_NR_setgroups32 9939 case TARGET_NR_setgroups32: 9940 { 9941 int gidsetsize = arg1; 9942 uint32_t *target_grouplist; 9943 gid_t *grouplist; 9944 int i; 9945 9946 grouplist = alloca(gidsetsize * sizeof(gid_t)); 9947 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 9948 if (!target_grouplist) { 9949 ret = -TARGET_EFAULT; 9950 goto fail; 9951 } 9952 for(i = 0;i < gidsetsize; i++) 9953 grouplist[i] = tswap32(target_grouplist[i]); 9954 unlock_user(target_grouplist, arg2, 0); 9955 ret = get_errno(setgroups(gidsetsize, grouplist)); 9956 } 9957 break; 9958 #endif 9959 #ifdef TARGET_NR_fchown32 9960 case TARGET_NR_fchown32: 9961 ret = get_errno(fchown(arg1, arg2, arg3)); 9962 break; 9963 #endif 9964 #ifdef TARGET_NR_setresuid32 9965 case TARGET_NR_setresuid32: 9966 ret = get_errno(sys_setresuid(arg1, arg2, arg3)); 9967 break; 9968 #endif 9969 #ifdef TARGET_NR_getresuid32 9970 case TARGET_NR_getresuid32: 9971 { 9972 uid_t ruid, euid, suid; 9973 ret = get_errno(getresuid(&ruid, &euid, &suid)); 9974 if (!is_error(ret)) { 9975 if (put_user_u32(ruid, arg1) 9976 || put_user_u32(euid, arg2) 9977 || put_user_u32(suid, arg3)) 9978 goto efault; 9979 } 9980 } 9981 break; 9982 #endif 9983 #ifdef TARGET_NR_setresgid32 9984 case TARGET_NR_setresgid32: 9985 ret = get_errno(sys_setresgid(arg1, arg2, arg3)); 9986 break; 9987 #endif 9988 #ifdef TARGET_NR_getresgid32 9989 case TARGET_NR_getresgid32: 9990 { 9991 gid_t rgid, egid, sgid; 9992 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 9993 if (!is_error(ret)) { 9994 if (put_user_u32(rgid, arg1) 9995 || put_user_u32(egid, arg2) 9996 || put_user_u32(sgid, arg3)) 9997 goto efault; 9998 } 9999 } 10000 break; 10001 #endif 10002 #ifdef TARGET_NR_chown32 10003 case TARGET_NR_chown32: 10004 if (!(p = lock_user_string(arg1))) 10005 goto efault; 10006 ret = get_errno(chown(p, arg2, arg3)); 10007 unlock_user(p, arg1, 0); 10008 break; 10009 #endif 10010 #ifdef TARGET_NR_setuid32 10011 case TARGET_NR_setuid32: 10012 ret = get_errno(sys_setuid(arg1)); 10013 break; 10014 #endif 10015 #ifdef TARGET_NR_setgid32 10016 case TARGET_NR_setgid32: 10017 ret = get_errno(sys_setgid(arg1)); 10018 break; 10019 #endif 10020 #ifdef TARGET_NR_setfsuid32 10021 case TARGET_NR_setfsuid32: 10022 ret = get_errno(setfsuid(arg1)); 10023 break; 10024 #endif 10025 #ifdef TARGET_NR_setfsgid32 10026 case TARGET_NR_setfsgid32: 10027 ret = get_errno(setfsgid(arg1)); 10028 break; 10029 #endif 10030 10031 case TARGET_NR_pivot_root: 10032 goto unimplemented; 10033 #ifdef TARGET_NR_mincore 10034 case TARGET_NR_mincore: 10035 { 10036 void *a; 10037 ret = -TARGET_EFAULT; 10038 if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0))) 10039 goto efault; 10040 if (!(p = lock_user_string(arg3))) 10041 goto mincore_fail; 10042 ret = get_errno(mincore(a, arg2, p)); 10043 unlock_user(p, arg3, ret); 10044 mincore_fail: 10045 unlock_user(a, arg1, 0); 10046 } 10047 break; 10048 #endif 10049 #ifdef TARGET_NR_arm_fadvise64_64 10050 case TARGET_NR_arm_fadvise64_64: 10051 /* arm_fadvise64_64 looks like fadvise64_64 but 10052 * with different argument order: fd, advice, offset, len 10053 * rather than the usual fd, offset, len, advice. 10054 * Note that offset and len are both 64-bit so appear as 10055 * pairs of 32-bit registers. 10056 */ 10057 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 10058 target_offset64(arg5, arg6), arg2); 10059 ret = -host_to_target_errno(ret); 10060 break; 10061 #endif 10062 10063 #if TARGET_ABI_BITS == 32 10064 10065 #ifdef TARGET_NR_fadvise64_64 10066 case TARGET_NR_fadvise64_64: 10067 /* 6 args: fd, offset (high, low), len (high, low), advice */ 10068 if (regpairs_aligned(cpu_env)) { 10069 /* offset is in (3,4), len in (5,6) and advice in 7 */ 10070 arg2 = arg3; 10071 arg3 = arg4; 10072 arg4 = arg5; 10073 arg5 = arg6; 10074 arg6 = arg7; 10075 } 10076 ret = -host_to_target_errno(posix_fadvise(arg1, 10077 target_offset64(arg2, arg3), 10078 target_offset64(arg4, arg5), 10079 arg6)); 10080 break; 10081 #endif 10082 10083 #ifdef TARGET_NR_fadvise64 10084 case TARGET_NR_fadvise64: 10085 /* 5 args: fd, offset (high, low), len, advice */ 10086 if (regpairs_aligned(cpu_env)) { 10087 /* offset is in (3,4), len in 5 and advice in 6 */ 10088 arg2 = arg3; 10089 arg3 = arg4; 10090 arg4 = arg5; 10091 arg5 = arg6; 10092 } 10093 ret = -host_to_target_errno(posix_fadvise(arg1, 10094 target_offset64(arg2, arg3), 10095 arg4, arg5)); 10096 break; 10097 #endif 10098 10099 #else /* not a 32-bit ABI */ 10100 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 10101 #ifdef TARGET_NR_fadvise64_64 10102 case TARGET_NR_fadvise64_64: 10103 #endif 10104 #ifdef TARGET_NR_fadvise64 10105 case TARGET_NR_fadvise64: 10106 #endif 10107 #ifdef TARGET_S390X 10108 switch (arg4) { 10109 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 10110 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 10111 case 6: arg4 = POSIX_FADV_DONTNEED; break; 10112 case 7: arg4 = POSIX_FADV_NOREUSE; break; 10113 default: break; 10114 } 10115 #endif 10116 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 10117 break; 10118 #endif 10119 #endif /* end of 64-bit ABI fadvise handling */ 10120 10121 #ifdef TARGET_NR_madvise 10122 case TARGET_NR_madvise: 10123 /* A straight passthrough may not be safe because qemu sometimes 10124 turns private file-backed mappings into anonymous mappings. 10125 This will break MADV_DONTNEED. 10126 This is a hint, so ignoring and returning success is ok. */ 10127 ret = get_errno(0); 10128 break; 10129 #endif 10130 #if TARGET_ABI_BITS == 32 10131 case TARGET_NR_fcntl64: 10132 { 10133 int cmd; 10134 struct flock64 fl; 10135 struct target_flock64 *target_fl; 10136 #ifdef TARGET_ARM 10137 struct target_eabi_flock64 *target_efl; 10138 #endif 10139 10140 cmd = target_to_host_fcntl_cmd(arg2); 10141 if (cmd == -TARGET_EINVAL) { 10142 ret = cmd; 10143 break; 10144 } 10145 10146 switch(arg2) { 10147 case TARGET_F_GETLK64: 10148 #ifdef TARGET_ARM 10149 if (((CPUARMState *)cpu_env)->eabi) { 10150 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1)) 10151 goto efault; 10152 fl.l_type = tswap16(target_efl->l_type); 10153 fl.l_whence = tswap16(target_efl->l_whence); 10154 fl.l_start = tswap64(target_efl->l_start); 10155 fl.l_len = tswap64(target_efl->l_len); 10156 fl.l_pid = tswap32(target_efl->l_pid); 10157 unlock_user_struct(target_efl, arg3, 0); 10158 } else 10159 #endif 10160 { 10161 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1)) 10162 goto efault; 10163 fl.l_type = tswap16(target_fl->l_type); 10164 fl.l_whence = tswap16(target_fl->l_whence); 10165 fl.l_start = tswap64(target_fl->l_start); 10166 fl.l_len = tswap64(target_fl->l_len); 10167 fl.l_pid = tswap32(target_fl->l_pid); 10168 unlock_user_struct(target_fl, arg3, 0); 10169 } 10170 ret = get_errno(fcntl(arg1, cmd, &fl)); 10171 if (ret == 0) { 10172 #ifdef TARGET_ARM 10173 if (((CPUARMState *)cpu_env)->eabi) { 10174 if (!lock_user_struct(VERIFY_WRITE, target_efl, arg3, 0)) 10175 goto efault; 10176 target_efl->l_type = tswap16(fl.l_type); 10177 target_efl->l_whence = tswap16(fl.l_whence); 10178 target_efl->l_start = tswap64(fl.l_start); 10179 target_efl->l_len = tswap64(fl.l_len); 10180 target_efl->l_pid = tswap32(fl.l_pid); 10181 unlock_user_struct(target_efl, arg3, 1); 10182 } else 10183 #endif 10184 { 10185 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg3, 0)) 10186 goto efault; 10187 target_fl->l_type = tswap16(fl.l_type); 10188 target_fl->l_whence = tswap16(fl.l_whence); 10189 target_fl->l_start = tswap64(fl.l_start); 10190 target_fl->l_len = tswap64(fl.l_len); 10191 target_fl->l_pid = tswap32(fl.l_pid); 10192 unlock_user_struct(target_fl, arg3, 1); 10193 } 10194 } 10195 break; 10196 10197 case TARGET_F_SETLK64: 10198 case TARGET_F_SETLKW64: 10199 #ifdef TARGET_ARM 10200 if (((CPUARMState *)cpu_env)->eabi) { 10201 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1)) 10202 goto efault; 10203 fl.l_type = tswap16(target_efl->l_type); 10204 fl.l_whence = tswap16(target_efl->l_whence); 10205 fl.l_start = tswap64(target_efl->l_start); 10206 fl.l_len = tswap64(target_efl->l_len); 10207 fl.l_pid = tswap32(target_efl->l_pid); 10208 unlock_user_struct(target_efl, arg3, 0); 10209 } else 10210 #endif 10211 { 10212 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1)) 10213 goto efault; 10214 fl.l_type = tswap16(target_fl->l_type); 10215 fl.l_whence = tswap16(target_fl->l_whence); 10216 fl.l_start = tswap64(target_fl->l_start); 10217 fl.l_len = tswap64(target_fl->l_len); 10218 fl.l_pid = tswap32(target_fl->l_pid); 10219 unlock_user_struct(target_fl, arg3, 0); 10220 } 10221 ret = get_errno(fcntl(arg1, cmd, &fl)); 10222 break; 10223 default: 10224 ret = do_fcntl(arg1, arg2, arg3); 10225 break; 10226 } 10227 break; 10228 } 10229 #endif 10230 #ifdef TARGET_NR_cacheflush 10231 case TARGET_NR_cacheflush: 10232 /* self-modifying code is handled automatically, so nothing needed */ 10233 ret = 0; 10234 break; 10235 #endif 10236 #ifdef TARGET_NR_security 10237 case TARGET_NR_security: 10238 goto unimplemented; 10239 #endif 10240 #ifdef TARGET_NR_getpagesize 10241 case TARGET_NR_getpagesize: 10242 ret = TARGET_PAGE_SIZE; 10243 break; 10244 #endif 10245 case TARGET_NR_gettid: 10246 ret = get_errno(gettid()); 10247 break; 10248 #ifdef TARGET_NR_readahead 10249 case TARGET_NR_readahead: 10250 #if TARGET_ABI_BITS == 32 10251 if (regpairs_aligned(cpu_env)) { 10252 arg2 = arg3; 10253 arg3 = arg4; 10254 arg4 = arg5; 10255 } 10256 ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4)); 10257 #else 10258 ret = get_errno(readahead(arg1, arg2, arg3)); 10259 #endif 10260 break; 10261 #endif 10262 #ifdef CONFIG_ATTR 10263 #ifdef TARGET_NR_setxattr 10264 case TARGET_NR_listxattr: 10265 case TARGET_NR_llistxattr: 10266 { 10267 void *p, *b = 0; 10268 if (arg2) { 10269 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10270 if (!b) { 10271 ret = -TARGET_EFAULT; 10272 break; 10273 } 10274 } 10275 p = lock_user_string(arg1); 10276 if (p) { 10277 if (num == TARGET_NR_listxattr) { 10278 ret = get_errno(listxattr(p, b, arg3)); 10279 } else { 10280 ret = get_errno(llistxattr(p, b, arg3)); 10281 } 10282 } else { 10283 ret = -TARGET_EFAULT; 10284 } 10285 unlock_user(p, arg1, 0); 10286 unlock_user(b, arg2, arg3); 10287 break; 10288 } 10289 case TARGET_NR_flistxattr: 10290 { 10291 void *b = 0; 10292 if (arg2) { 10293 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10294 if (!b) { 10295 ret = -TARGET_EFAULT; 10296 break; 10297 } 10298 } 10299 ret = get_errno(flistxattr(arg1, b, arg3)); 10300 unlock_user(b, arg2, arg3); 10301 break; 10302 } 10303 case TARGET_NR_setxattr: 10304 case TARGET_NR_lsetxattr: 10305 { 10306 void *p, *n, *v = 0; 10307 if (arg3) { 10308 v = lock_user(VERIFY_READ, arg3, arg4, 1); 10309 if (!v) { 10310 ret = -TARGET_EFAULT; 10311 break; 10312 } 10313 } 10314 p = lock_user_string(arg1); 10315 n = lock_user_string(arg2); 10316 if (p && n) { 10317 if (num == TARGET_NR_setxattr) { 10318 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 10319 } else { 10320 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 10321 } 10322 } else { 10323 ret = -TARGET_EFAULT; 10324 } 10325 unlock_user(p, arg1, 0); 10326 unlock_user(n, arg2, 0); 10327 unlock_user(v, arg3, 0); 10328 } 10329 break; 10330 case TARGET_NR_fsetxattr: 10331 { 10332 void *n, *v = 0; 10333 if (arg3) { 10334 v = lock_user(VERIFY_READ, arg3, arg4, 1); 10335 if (!v) { 10336 ret = -TARGET_EFAULT; 10337 break; 10338 } 10339 } 10340 n = lock_user_string(arg2); 10341 if (n) { 10342 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 10343 } else { 10344 ret = -TARGET_EFAULT; 10345 } 10346 unlock_user(n, arg2, 0); 10347 unlock_user(v, arg3, 0); 10348 } 10349 break; 10350 case TARGET_NR_getxattr: 10351 case TARGET_NR_lgetxattr: 10352 { 10353 void *p, *n, *v = 0; 10354 if (arg3) { 10355 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 10356 if (!v) { 10357 ret = -TARGET_EFAULT; 10358 break; 10359 } 10360 } 10361 p = lock_user_string(arg1); 10362 n = lock_user_string(arg2); 10363 if (p && n) { 10364 if (num == TARGET_NR_getxattr) { 10365 ret = get_errno(getxattr(p, n, v, arg4)); 10366 } else { 10367 ret = get_errno(lgetxattr(p, n, v, arg4)); 10368 } 10369 } else { 10370 ret = -TARGET_EFAULT; 10371 } 10372 unlock_user(p, arg1, 0); 10373 unlock_user(n, arg2, 0); 10374 unlock_user(v, arg3, arg4); 10375 } 10376 break; 10377 case TARGET_NR_fgetxattr: 10378 { 10379 void *n, *v = 0; 10380 if (arg3) { 10381 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 10382 if (!v) { 10383 ret = -TARGET_EFAULT; 10384 break; 10385 } 10386 } 10387 n = lock_user_string(arg2); 10388 if (n) { 10389 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 10390 } else { 10391 ret = -TARGET_EFAULT; 10392 } 10393 unlock_user(n, arg2, 0); 10394 unlock_user(v, arg3, arg4); 10395 } 10396 break; 10397 case TARGET_NR_removexattr: 10398 case TARGET_NR_lremovexattr: 10399 { 10400 void *p, *n; 10401 p = lock_user_string(arg1); 10402 n = lock_user_string(arg2); 10403 if (p && n) { 10404 if (num == TARGET_NR_removexattr) { 10405 ret = get_errno(removexattr(p, n)); 10406 } else { 10407 ret = get_errno(lremovexattr(p, n)); 10408 } 10409 } else { 10410 ret = -TARGET_EFAULT; 10411 } 10412 unlock_user(p, arg1, 0); 10413 unlock_user(n, arg2, 0); 10414 } 10415 break; 10416 case TARGET_NR_fremovexattr: 10417 { 10418 void *n; 10419 n = lock_user_string(arg2); 10420 if (n) { 10421 ret = get_errno(fremovexattr(arg1, n)); 10422 } else { 10423 ret = -TARGET_EFAULT; 10424 } 10425 unlock_user(n, arg2, 0); 10426 } 10427 break; 10428 #endif 10429 #endif /* CONFIG_ATTR */ 10430 #ifdef TARGET_NR_set_thread_area 10431 case TARGET_NR_set_thread_area: 10432 #if defined(TARGET_MIPS) 10433 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 10434 ret = 0; 10435 break; 10436 #elif defined(TARGET_CRIS) 10437 if (arg1 & 0xff) 10438 ret = -TARGET_EINVAL; 10439 else { 10440 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 10441 ret = 0; 10442 } 10443 break; 10444 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 10445 ret = do_set_thread_area(cpu_env, arg1); 10446 break; 10447 #elif defined(TARGET_M68K) 10448 { 10449 TaskState *ts = cpu->opaque; 10450 ts->tp_value = arg1; 10451 ret = 0; 10452 break; 10453 } 10454 #else 10455 goto unimplemented_nowarn; 10456 #endif 10457 #endif 10458 #ifdef TARGET_NR_get_thread_area 10459 case TARGET_NR_get_thread_area: 10460 #if defined(TARGET_I386) && defined(TARGET_ABI32) 10461 ret = do_get_thread_area(cpu_env, arg1); 10462 break; 10463 #elif defined(TARGET_M68K) 10464 { 10465 TaskState *ts = cpu->opaque; 10466 ret = ts->tp_value; 10467 break; 10468 } 10469 #else 10470 goto unimplemented_nowarn; 10471 #endif 10472 #endif 10473 #ifdef TARGET_NR_getdomainname 10474 case TARGET_NR_getdomainname: 10475 goto unimplemented_nowarn; 10476 #endif 10477 10478 #ifdef TARGET_NR_clock_gettime 10479 case TARGET_NR_clock_gettime: 10480 { 10481 struct timespec ts; 10482 ret = get_errno(clock_gettime(arg1, &ts)); 10483 if (!is_error(ret)) { 10484 host_to_target_timespec(arg2, &ts); 10485 } 10486 break; 10487 } 10488 #endif 10489 #ifdef TARGET_NR_clock_getres 10490 case TARGET_NR_clock_getres: 10491 { 10492 struct timespec ts; 10493 ret = get_errno(clock_getres(arg1, &ts)); 10494 if (!is_error(ret)) { 10495 host_to_target_timespec(arg2, &ts); 10496 } 10497 break; 10498 } 10499 #endif 10500 #ifdef TARGET_NR_clock_nanosleep 10501 case TARGET_NR_clock_nanosleep: 10502 { 10503 struct timespec ts; 10504 target_to_host_timespec(&ts, arg3); 10505 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 10506 &ts, arg4 ? &ts : NULL)); 10507 if (arg4) 10508 host_to_target_timespec(arg4, &ts); 10509 10510 #if defined(TARGET_PPC) 10511 /* clock_nanosleep is odd in that it returns positive errno values. 10512 * On PPC, CR0 bit 3 should be set in such a situation. */ 10513 if (ret && ret != -TARGET_ERESTARTSYS) { 10514 ((CPUPPCState *)cpu_env)->crf[0] |= 1; 10515 } 10516 #endif 10517 break; 10518 } 10519 #endif 10520 10521 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 10522 case TARGET_NR_set_tid_address: 10523 ret = get_errno(set_tid_address((int *)g2h(arg1))); 10524 break; 10525 #endif 10526 10527 case TARGET_NR_tkill: 10528 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 10529 break; 10530 10531 case TARGET_NR_tgkill: 10532 ret = get_errno(safe_tgkill((int)arg1, (int)arg2, 10533 target_to_host_signal(arg3))); 10534 break; 10535 10536 #ifdef TARGET_NR_set_robust_list 10537 case TARGET_NR_set_robust_list: 10538 case TARGET_NR_get_robust_list: 10539 /* The ABI for supporting robust futexes has userspace pass 10540 * the kernel a pointer to a linked list which is updated by 10541 * userspace after the syscall; the list is walked by the kernel 10542 * when the thread exits. Since the linked list in QEMU guest 10543 * memory isn't a valid linked list for the host and we have 10544 * no way to reliably intercept the thread-death event, we can't 10545 * support these. Silently return ENOSYS so that guest userspace 10546 * falls back to a non-robust futex implementation (which should 10547 * be OK except in the corner case of the guest crashing while 10548 * holding a mutex that is shared with another process via 10549 * shared memory). 10550 */ 10551 goto unimplemented_nowarn; 10552 #endif 10553 10554 #if defined(TARGET_NR_utimensat) 10555 case TARGET_NR_utimensat: 10556 { 10557 struct timespec *tsp, ts[2]; 10558 if (!arg3) { 10559 tsp = NULL; 10560 } else { 10561 target_to_host_timespec(ts, arg3); 10562 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec)); 10563 tsp = ts; 10564 } 10565 if (!arg2) 10566 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 10567 else { 10568 if (!(p = lock_user_string(arg2))) { 10569 ret = -TARGET_EFAULT; 10570 goto fail; 10571 } 10572 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 10573 unlock_user(p, arg2, 0); 10574 } 10575 } 10576 break; 10577 #endif 10578 case TARGET_NR_futex: 10579 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6); 10580 break; 10581 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 10582 case TARGET_NR_inotify_init: 10583 ret = get_errno(sys_inotify_init()); 10584 break; 10585 #endif 10586 #ifdef CONFIG_INOTIFY1 10587 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 10588 case TARGET_NR_inotify_init1: 10589 ret = get_errno(sys_inotify_init1(arg1)); 10590 break; 10591 #endif 10592 #endif 10593 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 10594 case TARGET_NR_inotify_add_watch: 10595 p = lock_user_string(arg2); 10596 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 10597 unlock_user(p, arg2, 0); 10598 break; 10599 #endif 10600 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 10601 case TARGET_NR_inotify_rm_watch: 10602 ret = get_errno(sys_inotify_rm_watch(arg1, arg2)); 10603 break; 10604 #endif 10605 10606 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 10607 case TARGET_NR_mq_open: 10608 { 10609 struct mq_attr posix_mq_attr, *attrp; 10610 10611 p = lock_user_string(arg1 - 1); 10612 if (arg4 != 0) { 10613 copy_from_user_mq_attr (&posix_mq_attr, arg4); 10614 attrp = &posix_mq_attr; 10615 } else { 10616 attrp = 0; 10617 } 10618 ret = get_errno(mq_open(p, arg2, arg3, attrp)); 10619 unlock_user (p, arg1, 0); 10620 } 10621 break; 10622 10623 case TARGET_NR_mq_unlink: 10624 p = lock_user_string(arg1 - 1); 10625 ret = get_errno(mq_unlink(p)); 10626 unlock_user (p, arg1, 0); 10627 break; 10628 10629 case TARGET_NR_mq_timedsend: 10630 { 10631 struct timespec ts; 10632 10633 p = lock_user (VERIFY_READ, arg2, arg3, 1); 10634 if (arg5 != 0) { 10635 target_to_host_timespec(&ts, arg5); 10636 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 10637 host_to_target_timespec(arg5, &ts); 10638 } else { 10639 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 10640 } 10641 unlock_user (p, arg2, arg3); 10642 } 10643 break; 10644 10645 case TARGET_NR_mq_timedreceive: 10646 { 10647 struct timespec ts; 10648 unsigned int prio; 10649 10650 p = lock_user (VERIFY_READ, arg2, arg3, 1); 10651 if (arg5 != 0) { 10652 target_to_host_timespec(&ts, arg5); 10653 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 10654 &prio, &ts)); 10655 host_to_target_timespec(arg5, &ts); 10656 } else { 10657 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 10658 &prio, NULL)); 10659 } 10660 unlock_user (p, arg2, arg3); 10661 if (arg4 != 0) 10662 put_user_u32(prio, arg4); 10663 } 10664 break; 10665 10666 /* Not implemented for now... */ 10667 /* case TARGET_NR_mq_notify: */ 10668 /* break; */ 10669 10670 case TARGET_NR_mq_getsetattr: 10671 { 10672 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 10673 ret = 0; 10674 if (arg3 != 0) { 10675 ret = mq_getattr(arg1, &posix_mq_attr_out); 10676 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 10677 } 10678 if (arg2 != 0) { 10679 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 10680 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out); 10681 } 10682 10683 } 10684 break; 10685 #endif 10686 10687 #ifdef CONFIG_SPLICE 10688 #ifdef TARGET_NR_tee 10689 case TARGET_NR_tee: 10690 { 10691 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 10692 } 10693 break; 10694 #endif 10695 #ifdef TARGET_NR_splice 10696 case TARGET_NR_splice: 10697 { 10698 loff_t loff_in, loff_out; 10699 loff_t *ploff_in = NULL, *ploff_out = NULL; 10700 if (arg2) { 10701 if (get_user_u64(loff_in, arg2)) { 10702 goto efault; 10703 } 10704 ploff_in = &loff_in; 10705 } 10706 if (arg4) { 10707 if (get_user_u64(loff_out, arg4)) { 10708 goto efault; 10709 } 10710 ploff_out = &loff_out; 10711 } 10712 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 10713 if (arg2) { 10714 if (put_user_u64(loff_in, arg2)) { 10715 goto efault; 10716 } 10717 } 10718 if (arg4) { 10719 if (put_user_u64(loff_out, arg4)) { 10720 goto efault; 10721 } 10722 } 10723 } 10724 break; 10725 #endif 10726 #ifdef TARGET_NR_vmsplice 10727 case TARGET_NR_vmsplice: 10728 { 10729 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10730 if (vec != NULL) { 10731 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 10732 unlock_iovec(vec, arg2, arg3, 0); 10733 } else { 10734 ret = -host_to_target_errno(errno); 10735 } 10736 } 10737 break; 10738 #endif 10739 #endif /* CONFIG_SPLICE */ 10740 #ifdef CONFIG_EVENTFD 10741 #if defined(TARGET_NR_eventfd) 10742 case TARGET_NR_eventfd: 10743 ret = get_errno(eventfd(arg1, 0)); 10744 fd_trans_unregister(ret); 10745 break; 10746 #endif 10747 #if defined(TARGET_NR_eventfd2) 10748 case TARGET_NR_eventfd2: 10749 { 10750 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)); 10751 if (arg2 & TARGET_O_NONBLOCK) { 10752 host_flags |= O_NONBLOCK; 10753 } 10754 if (arg2 & TARGET_O_CLOEXEC) { 10755 host_flags |= O_CLOEXEC; 10756 } 10757 ret = get_errno(eventfd(arg1, host_flags)); 10758 fd_trans_unregister(ret); 10759 break; 10760 } 10761 #endif 10762 #endif /* CONFIG_EVENTFD */ 10763 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 10764 case TARGET_NR_fallocate: 10765 #if TARGET_ABI_BITS == 32 10766 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 10767 target_offset64(arg5, arg6))); 10768 #else 10769 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 10770 #endif 10771 break; 10772 #endif 10773 #if defined(CONFIG_SYNC_FILE_RANGE) 10774 #if defined(TARGET_NR_sync_file_range) 10775 case TARGET_NR_sync_file_range: 10776 #if TARGET_ABI_BITS == 32 10777 #if defined(TARGET_MIPS) 10778 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 10779 target_offset64(arg5, arg6), arg7)); 10780 #else 10781 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 10782 target_offset64(arg4, arg5), arg6)); 10783 #endif /* !TARGET_MIPS */ 10784 #else 10785 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 10786 #endif 10787 break; 10788 #endif 10789 #if defined(TARGET_NR_sync_file_range2) 10790 case TARGET_NR_sync_file_range2: 10791 /* This is like sync_file_range but the arguments are reordered */ 10792 #if TARGET_ABI_BITS == 32 10793 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 10794 target_offset64(arg5, arg6), arg2)); 10795 #else 10796 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 10797 #endif 10798 break; 10799 #endif 10800 #endif 10801 #if defined(TARGET_NR_signalfd4) 10802 case TARGET_NR_signalfd4: 10803 ret = do_signalfd4(arg1, arg2, arg4); 10804 break; 10805 #endif 10806 #if defined(TARGET_NR_signalfd) 10807 case TARGET_NR_signalfd: 10808 ret = do_signalfd4(arg1, arg2, 0); 10809 break; 10810 #endif 10811 #if defined(CONFIG_EPOLL) 10812 #if defined(TARGET_NR_epoll_create) 10813 case TARGET_NR_epoll_create: 10814 ret = get_errno(epoll_create(arg1)); 10815 break; 10816 #endif 10817 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 10818 case TARGET_NR_epoll_create1: 10819 ret = get_errno(epoll_create1(arg1)); 10820 break; 10821 #endif 10822 #if defined(TARGET_NR_epoll_ctl) 10823 case TARGET_NR_epoll_ctl: 10824 { 10825 struct epoll_event ep; 10826 struct epoll_event *epp = 0; 10827 if (arg4) { 10828 struct target_epoll_event *target_ep; 10829 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 10830 goto efault; 10831 } 10832 ep.events = tswap32(target_ep->events); 10833 /* The epoll_data_t union is just opaque data to the kernel, 10834 * so we transfer all 64 bits across and need not worry what 10835 * actual data type it is. 10836 */ 10837 ep.data.u64 = tswap64(target_ep->data.u64); 10838 unlock_user_struct(target_ep, arg4, 0); 10839 epp = &ep; 10840 } 10841 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 10842 break; 10843 } 10844 #endif 10845 10846 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 10847 #if defined(TARGET_NR_epoll_wait) 10848 case TARGET_NR_epoll_wait: 10849 #endif 10850 #if defined(TARGET_NR_epoll_pwait) 10851 case TARGET_NR_epoll_pwait: 10852 #endif 10853 { 10854 struct target_epoll_event *target_ep; 10855 struct epoll_event *ep; 10856 int epfd = arg1; 10857 int maxevents = arg3; 10858 int timeout = arg4; 10859 10860 target_ep = lock_user(VERIFY_WRITE, arg2, 10861 maxevents * sizeof(struct target_epoll_event), 1); 10862 if (!target_ep) { 10863 goto efault; 10864 } 10865 10866 ep = alloca(maxevents * sizeof(struct epoll_event)); 10867 10868 switch (num) { 10869 #if defined(TARGET_NR_epoll_pwait) 10870 case TARGET_NR_epoll_pwait: 10871 { 10872 target_sigset_t *target_set; 10873 sigset_t _set, *set = &_set; 10874 10875 if (arg5) { 10876 target_set = lock_user(VERIFY_READ, arg5, 10877 sizeof(target_sigset_t), 1); 10878 if (!target_set) { 10879 unlock_user(target_ep, arg2, 0); 10880 goto efault; 10881 } 10882 target_to_host_sigset(set, target_set); 10883 unlock_user(target_set, arg5, 0); 10884 } else { 10885 set = NULL; 10886 } 10887 10888 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 10889 set, SIGSET_T_SIZE)); 10890 break; 10891 } 10892 #endif 10893 #if defined(TARGET_NR_epoll_wait) 10894 case TARGET_NR_epoll_wait: 10895 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 10896 NULL, 0)); 10897 break; 10898 #endif 10899 default: 10900 ret = -TARGET_ENOSYS; 10901 } 10902 if (!is_error(ret)) { 10903 int i; 10904 for (i = 0; i < ret; i++) { 10905 target_ep[i].events = tswap32(ep[i].events); 10906 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 10907 } 10908 } 10909 unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event)); 10910 break; 10911 } 10912 #endif 10913 #endif 10914 #ifdef TARGET_NR_prlimit64 10915 case TARGET_NR_prlimit64: 10916 { 10917 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 10918 struct target_rlimit64 *target_rnew, *target_rold; 10919 struct host_rlimit64 rnew, rold, *rnewp = 0; 10920 int resource = target_to_host_resource(arg2); 10921 if (arg3) { 10922 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 10923 goto efault; 10924 } 10925 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 10926 rnew.rlim_max = tswap64(target_rnew->rlim_max); 10927 unlock_user_struct(target_rnew, arg3, 0); 10928 rnewp = &rnew; 10929 } 10930 10931 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 10932 if (!is_error(ret) && arg4) { 10933 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 10934 goto efault; 10935 } 10936 target_rold->rlim_cur = tswap64(rold.rlim_cur); 10937 target_rold->rlim_max = tswap64(rold.rlim_max); 10938 unlock_user_struct(target_rold, arg4, 1); 10939 } 10940 break; 10941 } 10942 #endif 10943 #ifdef TARGET_NR_gethostname 10944 case TARGET_NR_gethostname: 10945 { 10946 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 10947 if (name) { 10948 ret = get_errno(gethostname(name, arg2)); 10949 unlock_user(name, arg1, arg2); 10950 } else { 10951 ret = -TARGET_EFAULT; 10952 } 10953 break; 10954 } 10955 #endif 10956 #ifdef TARGET_NR_atomic_cmpxchg_32 10957 case TARGET_NR_atomic_cmpxchg_32: 10958 { 10959 /* should use start_exclusive from main.c */ 10960 abi_ulong mem_value; 10961 if (get_user_u32(mem_value, arg6)) { 10962 target_siginfo_t info; 10963 info.si_signo = SIGSEGV; 10964 info.si_errno = 0; 10965 info.si_code = TARGET_SEGV_MAPERR; 10966 info._sifields._sigfault._addr = arg6; 10967 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info); 10968 ret = 0xdeadbeef; 10969 10970 } 10971 if (mem_value == arg2) 10972 put_user_u32(arg1, arg6); 10973 ret = mem_value; 10974 break; 10975 } 10976 #endif 10977 #ifdef TARGET_NR_atomic_barrier 10978 case TARGET_NR_atomic_barrier: 10979 { 10980 /* Like the kernel implementation and the qemu arm barrier, no-op this? */ 10981 ret = 0; 10982 break; 10983 } 10984 #endif 10985 10986 #ifdef TARGET_NR_timer_create 10987 case TARGET_NR_timer_create: 10988 { 10989 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 10990 10991 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 10992 10993 int clkid = arg1; 10994 int timer_index = next_free_host_timer(); 10995 10996 if (timer_index < 0) { 10997 ret = -TARGET_EAGAIN; 10998 } else { 10999 timer_t *phtimer = g_posix_timers + timer_index; 11000 11001 if (arg2) { 11002 phost_sevp = &host_sevp; 11003 ret = target_to_host_sigevent(phost_sevp, arg2); 11004 if (ret != 0) { 11005 break; 11006 } 11007 } 11008 11009 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 11010 if (ret) { 11011 phtimer = NULL; 11012 } else { 11013 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 11014 goto efault; 11015 } 11016 } 11017 } 11018 break; 11019 } 11020 #endif 11021 11022 #ifdef TARGET_NR_timer_settime 11023 case TARGET_NR_timer_settime: 11024 { 11025 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 11026 * struct itimerspec * old_value */ 11027 target_timer_t timerid = get_timer_id(arg1); 11028 11029 if (timerid < 0) { 11030 ret = timerid; 11031 } else if (arg3 == 0) { 11032 ret = -TARGET_EINVAL; 11033 } else { 11034 timer_t htimer = g_posix_timers[timerid]; 11035 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 11036 11037 target_to_host_itimerspec(&hspec_new, arg3); 11038 ret = get_errno( 11039 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 11040 host_to_target_itimerspec(arg2, &hspec_old); 11041 } 11042 break; 11043 } 11044 #endif 11045 11046 #ifdef TARGET_NR_timer_gettime 11047 case TARGET_NR_timer_gettime: 11048 { 11049 /* args: timer_t timerid, struct itimerspec *curr_value */ 11050 target_timer_t timerid = get_timer_id(arg1); 11051 11052 if (timerid < 0) { 11053 ret = timerid; 11054 } else if (!arg2) { 11055 ret = -TARGET_EFAULT; 11056 } else { 11057 timer_t htimer = g_posix_timers[timerid]; 11058 struct itimerspec hspec; 11059 ret = get_errno(timer_gettime(htimer, &hspec)); 11060 11061 if (host_to_target_itimerspec(arg2, &hspec)) { 11062 ret = -TARGET_EFAULT; 11063 } 11064 } 11065 break; 11066 } 11067 #endif 11068 11069 #ifdef TARGET_NR_timer_getoverrun 11070 case TARGET_NR_timer_getoverrun: 11071 { 11072 /* args: timer_t timerid */ 11073 target_timer_t timerid = get_timer_id(arg1); 11074 11075 if (timerid < 0) { 11076 ret = timerid; 11077 } else { 11078 timer_t htimer = g_posix_timers[timerid]; 11079 ret = get_errno(timer_getoverrun(htimer)); 11080 } 11081 fd_trans_unregister(ret); 11082 break; 11083 } 11084 #endif 11085 11086 #ifdef TARGET_NR_timer_delete 11087 case TARGET_NR_timer_delete: 11088 { 11089 /* args: timer_t timerid */ 11090 target_timer_t timerid = get_timer_id(arg1); 11091 11092 if (timerid < 0) { 11093 ret = timerid; 11094 } else { 11095 timer_t htimer = g_posix_timers[timerid]; 11096 ret = get_errno(timer_delete(htimer)); 11097 g_posix_timers[timerid] = 0; 11098 } 11099 break; 11100 } 11101 #endif 11102 11103 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 11104 case TARGET_NR_timerfd_create: 11105 ret = get_errno(timerfd_create(arg1, 11106 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 11107 break; 11108 #endif 11109 11110 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 11111 case TARGET_NR_timerfd_gettime: 11112 { 11113 struct itimerspec its_curr; 11114 11115 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 11116 11117 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 11118 goto efault; 11119 } 11120 } 11121 break; 11122 #endif 11123 11124 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 11125 case TARGET_NR_timerfd_settime: 11126 { 11127 struct itimerspec its_new, its_old, *p_new; 11128 11129 if (arg3) { 11130 if (target_to_host_itimerspec(&its_new, arg3)) { 11131 goto efault; 11132 } 11133 p_new = &its_new; 11134 } else { 11135 p_new = NULL; 11136 } 11137 11138 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 11139 11140 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 11141 goto efault; 11142 } 11143 } 11144 break; 11145 #endif 11146 11147 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 11148 case TARGET_NR_ioprio_get: 11149 ret = get_errno(ioprio_get(arg1, arg2)); 11150 break; 11151 #endif 11152 11153 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 11154 case TARGET_NR_ioprio_set: 11155 ret = get_errno(ioprio_set(arg1, arg2, arg3)); 11156 break; 11157 #endif 11158 11159 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 11160 case TARGET_NR_setns: 11161 ret = get_errno(setns(arg1, arg2)); 11162 break; 11163 #endif 11164 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 11165 case TARGET_NR_unshare: 11166 ret = get_errno(unshare(arg1)); 11167 break; 11168 #endif 11169 11170 default: 11171 unimplemented: 11172 gemu_log("qemu: Unsupported syscall: %d\n", num); 11173 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list) 11174 unimplemented_nowarn: 11175 #endif 11176 ret = -TARGET_ENOSYS; 11177 break; 11178 } 11179 fail: 11180 #ifdef DEBUG 11181 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret); 11182 #endif 11183 if(do_strace) 11184 print_syscall_ret(num, ret); 11185 return ret; 11186 efault: 11187 ret = -TARGET_EFAULT; 11188 goto fail; 11189 } 11190