1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include "qemu/memfd.h" 24 #include "qemu/queue.h" 25 #include "qemu/plugin.h" 26 #include "tcg/startup.h" 27 #include "target_mman.h" 28 #include "exec/page-protection.h" 29 #include <elf.h> 30 #include <endian.h> 31 #include <grp.h> 32 #include <sys/ipc.h> 33 #include <sys/msg.h> 34 #include <sys/wait.h> 35 #include <sys/mount.h> 36 #include <sys/file.h> 37 #include <sys/fsuid.h> 38 #include <sys/personality.h> 39 #include <sys/prctl.h> 40 #include <sys/resource.h> 41 #include <sys/swap.h> 42 #include <linux/capability.h> 43 #include <sched.h> 44 #include <sys/timex.h> 45 #include <sys/socket.h> 46 #include <linux/sockios.h> 47 #include <sys/un.h> 48 #include <sys/uio.h> 49 #include <poll.h> 50 #include <sys/times.h> 51 #include <sys/shm.h> 52 #include <sys/sem.h> 53 #include <sys/statfs.h> 54 #include <utime.h> 55 #include <sys/sysinfo.h> 56 #include <sys/signalfd.h> 57 //#include <sys/user.h> 58 #include <netinet/in.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp.h> 61 #include <netinet/udp.h> 62 #include <linux/wireless.h> 63 #include <linux/icmp.h> 64 #include <linux/icmpv6.h> 65 #include <linux/if_tun.h> 66 #include <linux/in6.h> 67 #include <linux/errqueue.h> 68 #include <linux/random.h> 69 #ifdef CONFIG_TIMERFD 70 #include <sys/timerfd.h> 71 #endif 72 #ifdef CONFIG_EVENTFD 73 #include <sys/eventfd.h> 74 #endif 75 #ifdef CONFIG_EPOLL 76 #include <sys/epoll.h> 77 #endif 78 #ifdef CONFIG_ATTR 79 #include "qemu/xattr.h" 80 #endif 81 #ifdef CONFIG_SENDFILE 82 #include <sys/sendfile.h> 83 #endif 84 #ifdef HAVE_SYS_KCOV_H 85 #include <sys/kcov.h> 86 #endif 87 88 #define termios host_termios 89 #define winsize host_winsize 90 #define termio host_termio 91 #define sgttyb host_sgttyb /* same as target */ 92 #define tchars host_tchars /* same as target */ 93 #define ltchars host_ltchars /* same as target */ 94 95 #include <linux/termios.h> 96 #include <linux/unistd.h> 97 #include <linux/cdrom.h> 98 #include <linux/hdreg.h> 99 #include <linux/soundcard.h> 100 #include <linux/kd.h> 101 #include <linux/mtio.h> 102 #include <linux/fs.h> 103 #include <linux/fd.h> 104 #if defined(CONFIG_FIEMAP) 105 #include <linux/fiemap.h> 106 #endif 107 #include <linux/fb.h> 108 #if defined(CONFIG_USBFS) 109 #include <linux/usbdevice_fs.h> 110 #include <linux/usb/ch9.h> 111 #endif 112 #include <linux/vt.h> 113 #include <linux/dm-ioctl.h> 114 #include <linux/reboot.h> 115 #include <linux/route.h> 116 #include <linux/filter.h> 117 #include <linux/blkpg.h> 118 #include <netpacket/packet.h> 119 #include <linux/netlink.h> 120 #include <linux/if_alg.h> 121 #include <linux/rtc.h> 122 #include <sound/asound.h> 123 #ifdef HAVE_BTRFS_H 124 #include <linux/btrfs.h> 125 #endif 126 #ifdef HAVE_DRM_H 127 #include <libdrm/drm.h> 128 #include <libdrm/i915_drm.h> 129 #endif 130 #include "linux_loop.h" 131 #include "uname.h" 132 133 #include "qemu.h" 134 #include "user-internals.h" 135 #include "strace.h" 136 #include "signal-common.h" 137 #include "loader.h" 138 #include "user-mmap.h" 139 #include "user/safe-syscall.h" 140 #include "qemu/guest-random.h" 141 #include "qemu/selfmap.h" 142 #include "user/syscall-trace.h" 143 #include "special-errno.h" 144 #include "qapi/error.h" 145 #include "fd-trans.h" 146 #include "cpu_loop-common.h" 147 148 #ifndef CLONE_IO 149 #define CLONE_IO 0x80000000 /* Clone io context */ 150 #endif 151 152 /* We can't directly call the host clone syscall, because this will 153 * badly confuse libc (breaking mutexes, for example). So we must 154 * divide clone flags into: 155 * * flag combinations that look like pthread_create() 156 * * flag combinations that look like fork() 157 * * flags we can implement within QEMU itself 158 * * flags we can't support and will return an error for 159 */ 160 /* For thread creation, all these flags must be present; for 161 * fork, none must be present. 162 */ 163 #define CLONE_THREAD_FLAGS \ 164 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 165 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 166 167 /* These flags are ignored: 168 * CLONE_DETACHED is now ignored by the kernel; 169 * CLONE_IO is just an optimisation hint to the I/O scheduler 170 */ 171 #define CLONE_IGNORED_FLAGS \ 172 (CLONE_DETACHED | CLONE_IO) 173 174 #ifndef CLONE_PIDFD 175 # define CLONE_PIDFD 0x00001000 176 #endif 177 178 /* Flags for fork which we can implement within QEMU itself */ 179 #define CLONE_OPTIONAL_FORK_FLAGS \ 180 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \ 181 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 182 183 /* Flags for thread creation which we can implement within QEMU itself */ 184 #define CLONE_OPTIONAL_THREAD_FLAGS \ 185 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 186 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 187 188 #define CLONE_INVALID_FORK_FLAGS \ 189 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 190 191 #define CLONE_INVALID_THREAD_FLAGS \ 192 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 193 CLONE_IGNORED_FLAGS)) 194 195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 196 * have almost all been allocated. We cannot support any of 197 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 198 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 199 * The checks against the invalid thread masks above will catch these. 200 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 201 */ 202 203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 204 * once. This exercises the codepaths for restart. 205 */ 206 //#define DEBUG_ERESTARTSYS 207 208 //#include <linux/msdos_fs.h> 209 #define VFAT_IOCTL_READDIR_BOTH \ 210 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2) 211 #define VFAT_IOCTL_READDIR_SHORT \ 212 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2) 213 214 #undef _syscall0 215 #undef _syscall1 216 #undef _syscall2 217 #undef _syscall3 218 #undef _syscall4 219 #undef _syscall5 220 #undef _syscall6 221 222 #define _syscall0(type,name) \ 223 static type name (void) \ 224 { \ 225 return syscall(__NR_##name); \ 226 } 227 228 #define _syscall1(type,name,type1,arg1) \ 229 static type name (type1 arg1) \ 230 { \ 231 return syscall(__NR_##name, arg1); \ 232 } 233 234 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 235 static type name (type1 arg1,type2 arg2) \ 236 { \ 237 return syscall(__NR_##name, arg1, arg2); \ 238 } 239 240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 241 static type name (type1 arg1,type2 arg2,type3 arg3) \ 242 { \ 243 return syscall(__NR_##name, arg1, arg2, arg3); \ 244 } 245 246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 248 { \ 249 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 250 } 251 252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 253 type5,arg5) \ 254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 255 { \ 256 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 257 } 258 259 260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 261 type5,arg5,type6,arg6) \ 262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 263 type6 arg6) \ 264 { \ 265 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 266 } 267 268 269 #define __NR_sys_uname __NR_uname 270 #define __NR_sys_getcwd1 __NR_getcwd 271 #define __NR_sys_getdents __NR_getdents 272 #define __NR_sys_getdents64 __NR_getdents64 273 #define __NR_sys_getpriority __NR_getpriority 274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 276 #define __NR_sys_syslog __NR_syslog 277 #if defined(__NR_futex) 278 # define __NR_sys_futex __NR_futex 279 #endif 280 #if defined(__NR_futex_time64) 281 # define __NR_sys_futex_time64 __NR_futex_time64 282 #endif 283 #define __NR_sys_statx __NR_statx 284 285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 286 #define __NR__llseek __NR_lseek 287 #endif 288 289 /* Newer kernel ports have llseek() instead of _llseek() */ 290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 291 #define TARGET_NR__llseek TARGET_NR_llseek 292 #endif 293 294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */ 295 #ifndef TARGET_O_NONBLOCK_MASK 296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK 297 #endif 298 299 #define __NR_sys_gettid __NR_gettid 300 _syscall0(int, sys_gettid) 301 302 /* For the 64-bit guest on 32-bit host case we must emulate 303 * getdents using getdents64, because otherwise the host 304 * might hand us back more dirent records than we can fit 305 * into the guest buffer after structure format conversion. 306 * Otherwise we emulate getdents with getdents if the host has it. 307 */ 308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS 309 #define EMULATE_GETDENTS_WITH_GETDENTS 310 #endif 311 312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS) 313 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count); 314 #endif 315 #if (defined(TARGET_NR_getdents) && \ 316 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \ 317 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 318 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count); 319 #endif 320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 321 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo, 322 loff_t *, res, unsigned int, wh); 323 #endif 324 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 325 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 326 siginfo_t *, uinfo) 327 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 328 #ifdef __NR_exit_group 329 _syscall1(int,exit_group,int,error_code) 330 #endif 331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 332 #define __NR_sys_close_range __NR_close_range 333 _syscall3(int,sys_close_range,int,first,int,last,int,flags) 334 #ifndef CLOSE_RANGE_CLOEXEC 335 #define CLOSE_RANGE_CLOEXEC (1U << 2) 336 #endif 337 #endif 338 #if defined(__NR_futex) 339 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 340 const struct timespec *,timeout,int *,uaddr2,int,val3) 341 #endif 342 #if defined(__NR_futex_time64) 343 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val, 344 const struct timespec *,timeout,int *,uaddr2,int,val3) 345 #endif 346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 347 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags); 348 #endif 349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 350 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info, 351 unsigned int, flags); 352 #endif 353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 354 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags); 355 #endif 356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 357 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 358 unsigned long *, user_mask_ptr); 359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 360 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 361 unsigned long *, user_mask_ptr); 362 /* sched_attr is not defined in glibc */ 363 struct sched_attr { 364 uint32_t size; 365 uint32_t sched_policy; 366 uint64_t sched_flags; 367 int32_t sched_nice; 368 uint32_t sched_priority; 369 uint64_t sched_runtime; 370 uint64_t sched_deadline; 371 uint64_t sched_period; 372 uint32_t sched_util_min; 373 uint32_t sched_util_max; 374 }; 375 #define __NR_sys_sched_getattr __NR_sched_getattr 376 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr, 377 unsigned int, size, unsigned int, flags); 378 #define __NR_sys_sched_setattr __NR_sched_setattr 379 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr, 380 unsigned int, flags); 381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler 382 _syscall1(int, sys_sched_getscheduler, pid_t, pid); 383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler 384 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy, 385 const struct sched_param *, param); 386 #define __NR_sys_sched_getparam __NR_sched_getparam 387 _syscall2(int, sys_sched_getparam, pid_t, pid, 388 struct sched_param *, param); 389 #define __NR_sys_sched_setparam __NR_sched_setparam 390 _syscall2(int, sys_sched_setparam, pid_t, pid, 391 const struct sched_param *, param); 392 #define __NR_sys_getcpu __NR_getcpu 393 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 394 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 395 void *, arg); 396 _syscall2(int, capget, struct __user_cap_header_struct *, header, 397 struct __user_cap_data_struct *, data); 398 _syscall2(int, capset, struct __user_cap_header_struct *, header, 399 struct __user_cap_data_struct *, data); 400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 401 _syscall2(int, ioprio_get, int, which, int, who) 402 #endif 403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 404 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 405 #endif 406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 407 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 408 #endif 409 410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 411 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 412 unsigned long, idx1, unsigned long, idx2) 413 #endif 414 415 /* 416 * It is assumed that struct statx is architecture independent. 417 */ 418 #if defined(TARGET_NR_statx) && defined(__NR_statx) 419 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags, 420 unsigned int, mask, struct target_statx *, statxbuf) 421 #endif 422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier) 423 _syscall2(int, membarrier, int, cmd, int, flags) 424 #endif 425 426 static const bitmask_transtbl fcntl_flags_tbl[] = { 427 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 428 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 429 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 430 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 431 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 432 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 433 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 434 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 435 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 436 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 437 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 438 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 439 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 440 #if defined(O_DIRECT) 441 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 442 #endif 443 #if defined(O_NOATIME) 444 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 445 #endif 446 #if defined(O_CLOEXEC) 447 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 448 #endif 449 #if defined(O_PATH) 450 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 451 #endif 452 #if defined(O_TMPFILE) 453 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 454 #endif 455 /* Don't terminate the list prematurely on 64-bit host+guest. */ 456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 457 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 458 #endif 459 }; 460 461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size) 462 463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64) 464 #if defined(__NR_utimensat) 465 #define __NR_sys_utimensat __NR_utimensat 466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 467 const struct timespec *,tsp,int,flags) 468 #else 469 static int sys_utimensat(int dirfd, const char *pathname, 470 const struct timespec times[2], int flags) 471 { 472 errno = ENOSYS; 473 return -1; 474 } 475 #endif 476 #endif /* TARGET_NR_utimensat */ 477 478 #ifdef TARGET_NR_renameat2 479 #if defined(__NR_renameat2) 480 #define __NR_sys_renameat2 __NR_renameat2 481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 482 const char *, new, unsigned int, flags) 483 #else 484 static int sys_renameat2(int oldfd, const char *old, 485 int newfd, const char *new, int flags) 486 { 487 if (flags == 0) { 488 return renameat(oldfd, old, newfd, new); 489 } 490 errno = ENOSYS; 491 return -1; 492 } 493 #endif 494 #endif /* TARGET_NR_renameat2 */ 495 496 #ifdef CONFIG_INOTIFY 497 #include <sys/inotify.h> 498 #else 499 /* Userspace can usually survive runtime without inotify */ 500 #undef TARGET_NR_inotify_init 501 #undef TARGET_NR_inotify_init1 502 #undef TARGET_NR_inotify_add_watch 503 #undef TARGET_NR_inotify_rm_watch 504 #endif /* CONFIG_INOTIFY */ 505 506 #if defined(TARGET_NR_prlimit64) 507 #ifndef __NR_prlimit64 508 # define __NR_prlimit64 -1 509 #endif 510 #define __NR_sys_prlimit64 __NR_prlimit64 511 /* The glibc rlimit structure may not be that used by the underlying syscall */ 512 struct host_rlimit64 { 513 uint64_t rlim_cur; 514 uint64_t rlim_max; 515 }; 516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 517 const struct host_rlimit64 *, new_limit, 518 struct host_rlimit64 *, old_limit) 519 #endif 520 521 522 #if defined(TARGET_NR_timer_create) 523 /* Maximum of 32 active POSIX timers allowed at any one time. */ 524 #define GUEST_TIMER_MAX 32 525 static timer_t g_posix_timers[GUEST_TIMER_MAX]; 526 static int g_posix_timer_allocated[GUEST_TIMER_MAX]; 527 528 static inline int next_free_host_timer(void) 529 { 530 int k; 531 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) { 532 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) { 533 return k; 534 } 535 } 536 return -1; 537 } 538 539 static inline void free_host_timer_slot(int id) 540 { 541 qatomic_store_release(g_posix_timer_allocated + id, 0); 542 } 543 #endif 544 545 static inline int host_to_target_errno(int host_errno) 546 { 547 switch (host_errno) { 548 #define E(X) case X: return TARGET_##X; 549 #include "errnos.c.inc" 550 #undef E 551 default: 552 return host_errno; 553 } 554 } 555 556 static inline int target_to_host_errno(int target_errno) 557 { 558 switch (target_errno) { 559 #define E(X) case TARGET_##X: return X; 560 #include "errnos.c.inc" 561 #undef E 562 default: 563 return target_errno; 564 } 565 } 566 567 abi_long get_errno(abi_long ret) 568 { 569 if (ret == -1) 570 return -host_to_target_errno(errno); 571 else 572 return ret; 573 } 574 575 const char *target_strerror(int err) 576 { 577 if (err == QEMU_ERESTARTSYS) { 578 return "To be restarted"; 579 } 580 if (err == QEMU_ESIGRETURN) { 581 return "Successful exit from sigreturn"; 582 } 583 584 return strerror(target_to_host_errno(err)); 585 } 586 587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize) 588 { 589 int i; 590 uint8_t b; 591 if (usize <= ksize) { 592 return 1; 593 } 594 for (i = ksize; i < usize; i++) { 595 if (get_user_u8(b, addr + i)) { 596 return -TARGET_EFAULT; 597 } 598 if (b != 0) { 599 return 0; 600 } 601 } 602 return 1; 603 } 604 605 #define safe_syscall0(type, name) \ 606 static type safe_##name(void) \ 607 { \ 608 return safe_syscall(__NR_##name); \ 609 } 610 611 #define safe_syscall1(type, name, type1, arg1) \ 612 static type safe_##name(type1 arg1) \ 613 { \ 614 return safe_syscall(__NR_##name, arg1); \ 615 } 616 617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 618 static type safe_##name(type1 arg1, type2 arg2) \ 619 { \ 620 return safe_syscall(__NR_##name, arg1, arg2); \ 621 } 622 623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 625 { \ 626 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 627 } 628 629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 630 type4, arg4) \ 631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 632 { \ 633 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 634 } 635 636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 637 type4, arg4, type5, arg5) \ 638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 639 type5 arg5) \ 640 { \ 641 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 642 } 643 644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 645 type4, arg4, type5, arg5, type6, arg6) \ 646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 647 type5 arg5, type6 arg6) \ 648 { \ 649 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 650 } 651 652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 655 int, flags, mode_t, mode) 656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid) 657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 658 struct rusage *, rusage) 659 #endif 660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 661 int, options, struct rusage *, rusage) 662 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 663 safe_syscall5(int, execveat, int, dirfd, const char *, filename, 664 char **, argv, char **, envp, int, flags) 665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 666 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 667 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 668 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 669 #endif 670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64) 671 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 672 struct timespec *, tsp, const sigset_t *, sigmask, 673 size_t, sigsetsize) 674 #endif 675 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 676 int, maxevents, int, timeout, const sigset_t *, sigmask, 677 size_t, sigsetsize) 678 #if defined(__NR_futex) 679 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 680 const struct timespec *,timeout,int *,uaddr2,int,val3) 681 #endif 682 #if defined(__NR_futex_time64) 683 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \ 684 const struct timespec *,timeout,int *,uaddr2,int,val3) 685 #endif 686 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 687 safe_syscall2(int, kill, pid_t, pid, int, sig) 688 safe_syscall2(int, tkill, int, tid, int, sig) 689 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 690 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 691 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 692 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 693 unsigned long, pos_l, unsigned long, pos_h) 694 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 695 unsigned long, pos_l, unsigned long, pos_h) 696 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 697 socklen_t, addrlen) 698 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 699 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 700 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 701 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 702 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 703 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 704 safe_syscall2(int, flock, int, fd, int, operation) 705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64) 706 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 707 const struct timespec *, uts, size_t, sigsetsize) 708 #endif 709 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 710 int, flags) 711 #if defined(TARGET_NR_nanosleep) 712 safe_syscall2(int, nanosleep, const struct timespec *, req, 713 struct timespec *, rem) 714 #endif 715 #if defined(TARGET_NR_clock_nanosleep) || \ 716 defined(TARGET_NR_clock_nanosleep_time64) 717 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 718 const struct timespec *, req, struct timespec *, rem) 719 #endif 720 #ifdef __NR_ipc 721 #ifdef __s390x__ 722 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third, 723 void *, ptr) 724 #else 725 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 726 void *, ptr, long, fifth) 727 #endif 728 #endif 729 #ifdef __NR_msgsnd 730 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 731 int, flags) 732 #endif 733 #ifdef __NR_msgrcv 734 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 735 long, msgtype, int, flags) 736 #endif 737 #ifdef __NR_semtimedop 738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 739 unsigned, nsops, const struct timespec *, timeout) 740 #endif 741 #if defined(TARGET_NR_mq_timedsend) || \ 742 defined(TARGET_NR_mq_timedsend_time64) 743 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 744 size_t, len, unsigned, prio, const struct timespec *, timeout) 745 #endif 746 #if defined(TARGET_NR_mq_timedreceive) || \ 747 defined(TARGET_NR_mq_timedreceive_time64) 748 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 749 size_t, len, unsigned *, prio, const struct timespec *, timeout) 750 #endif 751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 752 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff, 753 int, outfd, loff_t *, poutoff, size_t, length, 754 unsigned int, flags) 755 #endif 756 757 /* We do ioctl like this rather than via safe_syscall3 to preserve the 758 * "third argument might be integer or pointer or not present" behaviour of 759 * the libc function. 760 */ 761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 762 /* Similarly for fcntl. Note that callers must always: 763 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 764 * use the flock64 struct rather than unsuffixed flock 765 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 766 */ 767 #ifdef __NR_fcntl64 768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 769 #else 770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 771 #endif 772 773 static inline int host_to_target_sock_type(int host_type) 774 { 775 int target_type; 776 777 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 778 case SOCK_DGRAM: 779 target_type = TARGET_SOCK_DGRAM; 780 break; 781 case SOCK_STREAM: 782 target_type = TARGET_SOCK_STREAM; 783 break; 784 default: 785 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 786 break; 787 } 788 789 #if defined(SOCK_CLOEXEC) 790 if (host_type & SOCK_CLOEXEC) { 791 target_type |= TARGET_SOCK_CLOEXEC; 792 } 793 #endif 794 795 #if defined(SOCK_NONBLOCK) 796 if (host_type & SOCK_NONBLOCK) { 797 target_type |= TARGET_SOCK_NONBLOCK; 798 } 799 #endif 800 801 return target_type; 802 } 803 804 static abi_ulong target_brk, initial_target_brk; 805 806 void target_set_brk(abi_ulong new_brk) 807 { 808 target_brk = TARGET_PAGE_ALIGN(new_brk); 809 initial_target_brk = target_brk; 810 } 811 812 /* do_brk() must return target values and target errnos. */ 813 abi_long do_brk(abi_ulong brk_val) 814 { 815 abi_long mapped_addr; 816 abi_ulong new_brk; 817 abi_ulong old_brk; 818 819 /* brk pointers are always untagged */ 820 821 /* do not allow to shrink below initial brk value */ 822 if (brk_val < initial_target_brk) { 823 return target_brk; 824 } 825 826 new_brk = TARGET_PAGE_ALIGN(brk_val); 827 old_brk = TARGET_PAGE_ALIGN(target_brk); 828 829 /* new and old target_brk might be on the same page */ 830 if (new_brk == old_brk) { 831 target_brk = brk_val; 832 return target_brk; 833 } 834 835 /* Release heap if necessary */ 836 if (new_brk < old_brk) { 837 target_munmap(new_brk, old_brk - new_brk); 838 839 target_brk = brk_val; 840 return target_brk; 841 } 842 843 mapped_addr = target_mmap(old_brk, new_brk - old_brk, 844 PROT_READ | PROT_WRITE, 845 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE, 846 -1, 0); 847 848 if (mapped_addr == old_brk) { 849 target_brk = brk_val; 850 return target_brk; 851 } 852 853 #if defined(TARGET_ALPHA) 854 /* We (partially) emulate OSF/1 on Alpha, which requires we 855 return a proper errno, not an unchanged brk value. */ 856 return -TARGET_ENOMEM; 857 #endif 858 /* For everything else, return the previous break. */ 859 return target_brk; 860 } 861 862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 863 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 864 static inline abi_long copy_from_user_fdset(fd_set *fds, 865 abi_ulong target_fds_addr, 866 int n) 867 { 868 int i, nw, j, k; 869 abi_ulong b, *target_fds; 870 871 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 872 if (!(target_fds = lock_user(VERIFY_READ, 873 target_fds_addr, 874 sizeof(abi_ulong) * nw, 875 1))) 876 return -TARGET_EFAULT; 877 878 FD_ZERO(fds); 879 k = 0; 880 for (i = 0; i < nw; i++) { 881 /* grab the abi_ulong */ 882 __get_user(b, &target_fds[i]); 883 for (j = 0; j < TARGET_ABI_BITS; j++) { 884 /* check the bit inside the abi_ulong */ 885 if ((b >> j) & 1) 886 FD_SET(k, fds); 887 k++; 888 } 889 } 890 891 unlock_user(target_fds, target_fds_addr, 0); 892 893 return 0; 894 } 895 896 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 897 abi_ulong target_fds_addr, 898 int n) 899 { 900 if (target_fds_addr) { 901 if (copy_from_user_fdset(fds, target_fds_addr, n)) 902 return -TARGET_EFAULT; 903 *fds_ptr = fds; 904 } else { 905 *fds_ptr = NULL; 906 } 907 return 0; 908 } 909 910 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 911 const fd_set *fds, 912 int n) 913 { 914 int i, nw, j, k; 915 abi_long v; 916 abi_ulong *target_fds; 917 918 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 919 if (!(target_fds = lock_user(VERIFY_WRITE, 920 target_fds_addr, 921 sizeof(abi_ulong) * nw, 922 0))) 923 return -TARGET_EFAULT; 924 925 k = 0; 926 for (i = 0; i < nw; i++) { 927 v = 0; 928 for (j = 0; j < TARGET_ABI_BITS; j++) { 929 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 930 k++; 931 } 932 __put_user(v, &target_fds[i]); 933 } 934 935 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 936 937 return 0; 938 } 939 #endif 940 941 #if defined(__alpha__) 942 #define HOST_HZ 1024 943 #else 944 #define HOST_HZ 100 945 #endif 946 947 static inline abi_long host_to_target_clock_t(long ticks) 948 { 949 #if HOST_HZ == TARGET_HZ 950 return ticks; 951 #else 952 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 953 #endif 954 } 955 956 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 957 const struct rusage *rusage) 958 { 959 struct target_rusage *target_rusage; 960 961 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 962 return -TARGET_EFAULT; 963 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 964 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 965 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 966 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 967 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 968 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 969 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 970 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 971 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 972 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 973 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 974 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 975 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 976 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 977 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 978 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 979 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 980 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 981 unlock_user_struct(target_rusage, target_addr, 1); 982 983 return 0; 984 } 985 986 #ifdef TARGET_NR_setrlimit 987 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 988 { 989 abi_ulong target_rlim_swap; 990 rlim_t result; 991 992 target_rlim_swap = tswapal(target_rlim); 993 if (target_rlim_swap == TARGET_RLIM_INFINITY) 994 return RLIM_INFINITY; 995 996 result = target_rlim_swap; 997 if (target_rlim_swap != (rlim_t)result) 998 return RLIM_INFINITY; 999 1000 return result; 1001 } 1002 #endif 1003 1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit) 1005 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1006 { 1007 abi_ulong target_rlim_swap; 1008 abi_ulong result; 1009 1010 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1011 target_rlim_swap = TARGET_RLIM_INFINITY; 1012 else 1013 target_rlim_swap = rlim; 1014 result = tswapal(target_rlim_swap); 1015 1016 return result; 1017 } 1018 #endif 1019 1020 static inline int target_to_host_resource(int code) 1021 { 1022 switch (code) { 1023 case TARGET_RLIMIT_AS: 1024 return RLIMIT_AS; 1025 case TARGET_RLIMIT_CORE: 1026 return RLIMIT_CORE; 1027 case TARGET_RLIMIT_CPU: 1028 return RLIMIT_CPU; 1029 case TARGET_RLIMIT_DATA: 1030 return RLIMIT_DATA; 1031 case TARGET_RLIMIT_FSIZE: 1032 return RLIMIT_FSIZE; 1033 case TARGET_RLIMIT_LOCKS: 1034 return RLIMIT_LOCKS; 1035 case TARGET_RLIMIT_MEMLOCK: 1036 return RLIMIT_MEMLOCK; 1037 case TARGET_RLIMIT_MSGQUEUE: 1038 return RLIMIT_MSGQUEUE; 1039 case TARGET_RLIMIT_NICE: 1040 return RLIMIT_NICE; 1041 case TARGET_RLIMIT_NOFILE: 1042 return RLIMIT_NOFILE; 1043 case TARGET_RLIMIT_NPROC: 1044 return RLIMIT_NPROC; 1045 case TARGET_RLIMIT_RSS: 1046 return RLIMIT_RSS; 1047 case TARGET_RLIMIT_RTPRIO: 1048 return RLIMIT_RTPRIO; 1049 #ifdef RLIMIT_RTTIME 1050 case TARGET_RLIMIT_RTTIME: 1051 return RLIMIT_RTTIME; 1052 #endif 1053 case TARGET_RLIMIT_SIGPENDING: 1054 return RLIMIT_SIGPENDING; 1055 case TARGET_RLIMIT_STACK: 1056 return RLIMIT_STACK; 1057 default: 1058 return code; 1059 } 1060 } 1061 1062 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1063 abi_ulong target_tv_addr) 1064 { 1065 struct target_timeval *target_tv; 1066 1067 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1068 return -TARGET_EFAULT; 1069 } 1070 1071 __get_user(tv->tv_sec, &target_tv->tv_sec); 1072 __get_user(tv->tv_usec, &target_tv->tv_usec); 1073 1074 unlock_user_struct(target_tv, target_tv_addr, 0); 1075 1076 return 0; 1077 } 1078 1079 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1080 const struct timeval *tv) 1081 { 1082 struct target_timeval *target_tv; 1083 1084 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1085 return -TARGET_EFAULT; 1086 } 1087 1088 __put_user(tv->tv_sec, &target_tv->tv_sec); 1089 __put_user(tv->tv_usec, &target_tv->tv_usec); 1090 1091 unlock_user_struct(target_tv, target_tv_addr, 1); 1092 1093 return 0; 1094 } 1095 1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 1097 static inline abi_long copy_from_user_timeval64(struct timeval *tv, 1098 abi_ulong target_tv_addr) 1099 { 1100 struct target__kernel_sock_timeval *target_tv; 1101 1102 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1103 return -TARGET_EFAULT; 1104 } 1105 1106 __get_user(tv->tv_sec, &target_tv->tv_sec); 1107 __get_user(tv->tv_usec, &target_tv->tv_usec); 1108 1109 unlock_user_struct(target_tv, target_tv_addr, 0); 1110 1111 return 0; 1112 } 1113 #endif 1114 1115 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr, 1116 const struct timeval *tv) 1117 { 1118 struct target__kernel_sock_timeval *target_tv; 1119 1120 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1121 return -TARGET_EFAULT; 1122 } 1123 1124 __put_user(tv->tv_sec, &target_tv->tv_sec); 1125 __put_user(tv->tv_usec, &target_tv->tv_usec); 1126 1127 unlock_user_struct(target_tv, target_tv_addr, 1); 1128 1129 return 0; 1130 } 1131 1132 #if defined(TARGET_NR_futex) || \ 1133 defined(TARGET_NR_rt_sigtimedwait) || \ 1134 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \ 1135 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \ 1136 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \ 1137 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \ 1138 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \ 1139 defined(TARGET_NR_timer_settime) || \ 1140 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 1141 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 1142 abi_ulong target_addr) 1143 { 1144 struct target_timespec *target_ts; 1145 1146 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1147 return -TARGET_EFAULT; 1148 } 1149 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1150 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1151 unlock_user_struct(target_ts, target_addr, 0); 1152 return 0; 1153 } 1154 #endif 1155 1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \ 1157 defined(TARGET_NR_timer_settime64) || \ 1158 defined(TARGET_NR_mq_timedsend_time64) || \ 1159 defined(TARGET_NR_mq_timedreceive_time64) || \ 1160 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \ 1161 defined(TARGET_NR_clock_nanosleep_time64) || \ 1162 defined(TARGET_NR_rt_sigtimedwait_time64) || \ 1163 defined(TARGET_NR_utimensat) || \ 1164 defined(TARGET_NR_utimensat_time64) || \ 1165 defined(TARGET_NR_semtimedop_time64) || \ 1166 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64) 1167 static inline abi_long target_to_host_timespec64(struct timespec *host_ts, 1168 abi_ulong target_addr) 1169 { 1170 struct target__kernel_timespec *target_ts; 1171 1172 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1173 return -TARGET_EFAULT; 1174 } 1175 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1176 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1177 /* in 32bit mode, this drops the padding */ 1178 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec; 1179 unlock_user_struct(target_ts, target_addr, 0); 1180 return 0; 1181 } 1182 #endif 1183 1184 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 1185 struct timespec *host_ts) 1186 { 1187 struct target_timespec *target_ts; 1188 1189 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1190 return -TARGET_EFAULT; 1191 } 1192 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1193 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1194 unlock_user_struct(target_ts, target_addr, 1); 1195 return 0; 1196 } 1197 1198 static inline abi_long host_to_target_timespec64(abi_ulong target_addr, 1199 struct timespec *host_ts) 1200 { 1201 struct target__kernel_timespec *target_ts; 1202 1203 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1204 return -TARGET_EFAULT; 1205 } 1206 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1207 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1208 unlock_user_struct(target_ts, target_addr, 1); 1209 return 0; 1210 } 1211 1212 #if defined(TARGET_NR_gettimeofday) 1213 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr, 1214 struct timezone *tz) 1215 { 1216 struct target_timezone *target_tz; 1217 1218 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) { 1219 return -TARGET_EFAULT; 1220 } 1221 1222 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1223 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1224 1225 unlock_user_struct(target_tz, target_tz_addr, 1); 1226 1227 return 0; 1228 } 1229 #endif 1230 1231 #if defined(TARGET_NR_settimeofday) 1232 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1233 abi_ulong target_tz_addr) 1234 { 1235 struct target_timezone *target_tz; 1236 1237 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1238 return -TARGET_EFAULT; 1239 } 1240 1241 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1242 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1243 1244 unlock_user_struct(target_tz, target_tz_addr, 0); 1245 1246 return 0; 1247 } 1248 #endif 1249 1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1251 #include <mqueue.h> 1252 1253 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1254 abi_ulong target_mq_attr_addr) 1255 { 1256 struct target_mq_attr *target_mq_attr; 1257 1258 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1259 target_mq_attr_addr, 1)) 1260 return -TARGET_EFAULT; 1261 1262 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1263 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1264 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1265 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1266 1267 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1268 1269 return 0; 1270 } 1271 1272 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1273 const struct mq_attr *attr) 1274 { 1275 struct target_mq_attr *target_mq_attr; 1276 1277 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1278 target_mq_attr_addr, 0)) 1279 return -TARGET_EFAULT; 1280 1281 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1282 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1283 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1284 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1285 1286 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1287 1288 return 0; 1289 } 1290 #endif 1291 1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1293 /* do_select() must return target values and target errnos. */ 1294 static abi_long do_select(int n, 1295 abi_ulong rfd_addr, abi_ulong wfd_addr, 1296 abi_ulong efd_addr, abi_ulong target_tv_addr) 1297 { 1298 fd_set rfds, wfds, efds; 1299 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1300 struct timeval tv; 1301 struct timespec ts, *ts_ptr; 1302 abi_long ret; 1303 1304 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1305 if (ret) { 1306 return ret; 1307 } 1308 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1309 if (ret) { 1310 return ret; 1311 } 1312 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1313 if (ret) { 1314 return ret; 1315 } 1316 1317 if (target_tv_addr) { 1318 if (copy_from_user_timeval(&tv, target_tv_addr)) 1319 return -TARGET_EFAULT; 1320 ts.tv_sec = tv.tv_sec; 1321 ts.tv_nsec = tv.tv_usec * 1000; 1322 ts_ptr = &ts; 1323 } else { 1324 ts_ptr = NULL; 1325 } 1326 1327 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1328 ts_ptr, NULL)); 1329 1330 if (!is_error(ret)) { 1331 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1332 return -TARGET_EFAULT; 1333 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1334 return -TARGET_EFAULT; 1335 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1336 return -TARGET_EFAULT; 1337 1338 if (target_tv_addr) { 1339 tv.tv_sec = ts.tv_sec; 1340 tv.tv_usec = ts.tv_nsec / 1000; 1341 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1342 return -TARGET_EFAULT; 1343 } 1344 } 1345 } 1346 1347 return ret; 1348 } 1349 1350 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1351 static abi_long do_old_select(abi_ulong arg1) 1352 { 1353 struct target_sel_arg_struct *sel; 1354 abi_ulong inp, outp, exp, tvp; 1355 long nsel; 1356 1357 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1358 return -TARGET_EFAULT; 1359 } 1360 1361 nsel = tswapal(sel->n); 1362 inp = tswapal(sel->inp); 1363 outp = tswapal(sel->outp); 1364 exp = tswapal(sel->exp); 1365 tvp = tswapal(sel->tvp); 1366 1367 unlock_user_struct(sel, arg1, 0); 1368 1369 return do_select(nsel, inp, outp, exp, tvp); 1370 } 1371 #endif 1372 #endif 1373 1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 1375 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3, 1376 abi_long arg4, abi_long arg5, abi_long arg6, 1377 bool time64) 1378 { 1379 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 1380 fd_set rfds, wfds, efds; 1381 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1382 struct timespec ts, *ts_ptr; 1383 abi_long ret; 1384 1385 /* 1386 * The 6th arg is actually two args smashed together, 1387 * so we cannot use the C library. 1388 */ 1389 struct { 1390 sigset_t *set; 1391 size_t size; 1392 } sig, *sig_ptr; 1393 1394 abi_ulong arg_sigset, arg_sigsize, *arg7; 1395 1396 n = arg1; 1397 rfd_addr = arg2; 1398 wfd_addr = arg3; 1399 efd_addr = arg4; 1400 ts_addr = arg5; 1401 1402 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1403 if (ret) { 1404 return ret; 1405 } 1406 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1407 if (ret) { 1408 return ret; 1409 } 1410 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1411 if (ret) { 1412 return ret; 1413 } 1414 1415 /* 1416 * This takes a timespec, and not a timeval, so we cannot 1417 * use the do_select() helper ... 1418 */ 1419 if (ts_addr) { 1420 if (time64) { 1421 if (target_to_host_timespec64(&ts, ts_addr)) { 1422 return -TARGET_EFAULT; 1423 } 1424 } else { 1425 if (target_to_host_timespec(&ts, ts_addr)) { 1426 return -TARGET_EFAULT; 1427 } 1428 } 1429 ts_ptr = &ts; 1430 } else { 1431 ts_ptr = NULL; 1432 } 1433 1434 /* Extract the two packed args for the sigset */ 1435 sig_ptr = NULL; 1436 if (arg6) { 1437 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 1438 if (!arg7) { 1439 return -TARGET_EFAULT; 1440 } 1441 arg_sigset = tswapal(arg7[0]); 1442 arg_sigsize = tswapal(arg7[1]); 1443 unlock_user(arg7, arg6, 0); 1444 1445 if (arg_sigset) { 1446 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize); 1447 if (ret != 0) { 1448 return ret; 1449 } 1450 sig_ptr = &sig; 1451 sig.size = SIGSET_T_SIZE; 1452 } 1453 } 1454 1455 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1456 ts_ptr, sig_ptr)); 1457 1458 if (sig_ptr) { 1459 finish_sigsuspend_mask(ret); 1460 } 1461 1462 if (!is_error(ret)) { 1463 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) { 1464 return -TARGET_EFAULT; 1465 } 1466 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) { 1467 return -TARGET_EFAULT; 1468 } 1469 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) { 1470 return -TARGET_EFAULT; 1471 } 1472 if (time64) { 1473 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) { 1474 return -TARGET_EFAULT; 1475 } 1476 } else { 1477 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) { 1478 return -TARGET_EFAULT; 1479 } 1480 } 1481 } 1482 return ret; 1483 } 1484 #endif 1485 1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \ 1487 defined(TARGET_NR_ppoll_time64) 1488 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3, 1489 abi_long arg4, abi_long arg5, bool ppoll, bool time64) 1490 { 1491 struct target_pollfd *target_pfd; 1492 unsigned int nfds = arg2; 1493 struct pollfd *pfd; 1494 unsigned int i; 1495 abi_long ret; 1496 1497 pfd = NULL; 1498 target_pfd = NULL; 1499 if (nfds) { 1500 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 1501 return -TARGET_EINVAL; 1502 } 1503 target_pfd = lock_user(VERIFY_WRITE, arg1, 1504 sizeof(struct target_pollfd) * nfds, 1); 1505 if (!target_pfd) { 1506 return -TARGET_EFAULT; 1507 } 1508 1509 pfd = alloca(sizeof(struct pollfd) * nfds); 1510 for (i = 0; i < nfds; i++) { 1511 pfd[i].fd = tswap32(target_pfd[i].fd); 1512 pfd[i].events = tswap16(target_pfd[i].events); 1513 } 1514 } 1515 if (ppoll) { 1516 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 1517 sigset_t *set = NULL; 1518 1519 if (arg3) { 1520 if (time64) { 1521 if (target_to_host_timespec64(timeout_ts, arg3)) { 1522 unlock_user(target_pfd, arg1, 0); 1523 return -TARGET_EFAULT; 1524 } 1525 } else { 1526 if (target_to_host_timespec(timeout_ts, arg3)) { 1527 unlock_user(target_pfd, arg1, 0); 1528 return -TARGET_EFAULT; 1529 } 1530 } 1531 } else { 1532 timeout_ts = NULL; 1533 } 1534 1535 if (arg4) { 1536 ret = process_sigsuspend_mask(&set, arg4, arg5); 1537 if (ret != 0) { 1538 unlock_user(target_pfd, arg1, 0); 1539 return ret; 1540 } 1541 } 1542 1543 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 1544 set, SIGSET_T_SIZE)); 1545 1546 if (set) { 1547 finish_sigsuspend_mask(ret); 1548 } 1549 if (!is_error(ret) && arg3) { 1550 if (time64) { 1551 if (host_to_target_timespec64(arg3, timeout_ts)) { 1552 return -TARGET_EFAULT; 1553 } 1554 } else { 1555 if (host_to_target_timespec(arg3, timeout_ts)) { 1556 return -TARGET_EFAULT; 1557 } 1558 } 1559 } 1560 } else { 1561 struct timespec ts, *pts; 1562 1563 if (arg3 >= 0) { 1564 /* Convert ms to secs, ns */ 1565 ts.tv_sec = arg3 / 1000; 1566 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 1567 pts = &ts; 1568 } else { 1569 /* -ve poll() timeout means "infinite" */ 1570 pts = NULL; 1571 } 1572 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 1573 } 1574 1575 if (!is_error(ret)) { 1576 for (i = 0; i < nfds; i++) { 1577 target_pfd[i].revents = tswap16(pfd[i].revents); 1578 } 1579 } 1580 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 1581 return ret; 1582 } 1583 #endif 1584 1585 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes, 1586 int flags, int is_pipe2) 1587 { 1588 int host_pipe[2]; 1589 abi_long ret; 1590 ret = pipe2(host_pipe, flags); 1591 1592 if (is_error(ret)) 1593 return get_errno(ret); 1594 1595 /* Several targets have special calling conventions for the original 1596 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1597 if (!is_pipe2) { 1598 #if defined(TARGET_ALPHA) 1599 cpu_env->ir[IR_A4] = host_pipe[1]; 1600 return host_pipe[0]; 1601 #elif defined(TARGET_MIPS) 1602 cpu_env->active_tc.gpr[3] = host_pipe[1]; 1603 return host_pipe[0]; 1604 #elif defined(TARGET_SH4) 1605 cpu_env->gregs[1] = host_pipe[1]; 1606 return host_pipe[0]; 1607 #elif defined(TARGET_SPARC) 1608 cpu_env->regwptr[1] = host_pipe[1]; 1609 return host_pipe[0]; 1610 #endif 1611 } 1612 1613 if (put_user_s32(host_pipe[0], pipedes) 1614 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int))) 1615 return -TARGET_EFAULT; 1616 return get_errno(ret); 1617 } 1618 1619 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1620 abi_ulong target_addr, 1621 socklen_t len) 1622 { 1623 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1624 sa_family_t sa_family; 1625 struct target_sockaddr *target_saddr; 1626 1627 if (fd_trans_target_to_host_addr(fd)) { 1628 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1629 } 1630 1631 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1632 if (!target_saddr) 1633 return -TARGET_EFAULT; 1634 1635 sa_family = tswap16(target_saddr->sa_family); 1636 1637 /* Oops. The caller might send a incomplete sun_path; sun_path 1638 * must be terminated by \0 (see the manual page), but 1639 * unfortunately it is quite common to specify sockaddr_un 1640 * length as "strlen(x->sun_path)" while it should be 1641 * "strlen(...) + 1". We'll fix that here if needed. 1642 * Linux kernel has a similar feature. 1643 */ 1644 1645 if (sa_family == AF_UNIX) { 1646 if (len < unix_maxlen && len > 0) { 1647 char *cp = (char*)target_saddr; 1648 1649 if ( cp[len-1] && !cp[len] ) 1650 len++; 1651 } 1652 if (len > unix_maxlen) 1653 len = unix_maxlen; 1654 } 1655 1656 memcpy(addr, target_saddr, len); 1657 addr->sa_family = sa_family; 1658 if (sa_family == AF_NETLINK) { 1659 struct sockaddr_nl *nladdr; 1660 1661 nladdr = (struct sockaddr_nl *)addr; 1662 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1663 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1664 } else if (sa_family == AF_PACKET) { 1665 struct target_sockaddr_ll *lladdr; 1666 1667 lladdr = (struct target_sockaddr_ll *)addr; 1668 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1669 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1670 } else if (sa_family == AF_INET6) { 1671 struct sockaddr_in6 *in6addr; 1672 1673 in6addr = (struct sockaddr_in6 *)addr; 1674 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id); 1675 } 1676 unlock_user(target_saddr, target_addr, 0); 1677 1678 return 0; 1679 } 1680 1681 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1682 struct sockaddr *addr, 1683 socklen_t len) 1684 { 1685 struct target_sockaddr *target_saddr; 1686 1687 if (len == 0) { 1688 return 0; 1689 } 1690 assert(addr); 1691 1692 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1693 if (!target_saddr) 1694 return -TARGET_EFAULT; 1695 memcpy(target_saddr, addr, len); 1696 if (len >= offsetof(struct target_sockaddr, sa_family) + 1697 sizeof(target_saddr->sa_family)) { 1698 target_saddr->sa_family = tswap16(addr->sa_family); 1699 } 1700 if (addr->sa_family == AF_NETLINK && 1701 len >= sizeof(struct target_sockaddr_nl)) { 1702 struct target_sockaddr_nl *target_nl = 1703 (struct target_sockaddr_nl *)target_saddr; 1704 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1705 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1706 } else if (addr->sa_family == AF_PACKET) { 1707 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1708 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1709 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1710 } else if (addr->sa_family == AF_INET6 && 1711 len >= sizeof(struct target_sockaddr_in6)) { 1712 struct target_sockaddr_in6 *target_in6 = 1713 (struct target_sockaddr_in6 *)target_saddr; 1714 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1715 } 1716 unlock_user(target_saddr, target_addr, len); 1717 1718 return 0; 1719 } 1720 1721 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1722 struct target_msghdr *target_msgh) 1723 { 1724 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1725 abi_long msg_controllen; 1726 abi_ulong target_cmsg_addr; 1727 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1728 socklen_t space = 0; 1729 1730 msg_controllen = tswapal(target_msgh->msg_controllen); 1731 if (msg_controllen < sizeof (struct target_cmsghdr)) 1732 goto the_end; 1733 target_cmsg_addr = tswapal(target_msgh->msg_control); 1734 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1735 target_cmsg_start = target_cmsg; 1736 if (!target_cmsg) 1737 return -TARGET_EFAULT; 1738 1739 while (cmsg && target_cmsg) { 1740 void *data = CMSG_DATA(cmsg); 1741 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1742 1743 int len = tswapal(target_cmsg->cmsg_len) 1744 - sizeof(struct target_cmsghdr); 1745 1746 space += CMSG_SPACE(len); 1747 if (space > msgh->msg_controllen) { 1748 space -= CMSG_SPACE(len); 1749 /* This is a QEMU bug, since we allocated the payload 1750 * area ourselves (unlike overflow in host-to-target 1751 * conversion, which is just the guest giving us a buffer 1752 * that's too small). It can't happen for the payload types 1753 * we currently support; if it becomes an issue in future 1754 * we would need to improve our allocation strategy to 1755 * something more intelligent than "twice the size of the 1756 * target buffer we're reading from". 1757 */ 1758 qemu_log_mask(LOG_UNIMP, 1759 ("Unsupported ancillary data %d/%d: " 1760 "unhandled msg size\n"), 1761 tswap32(target_cmsg->cmsg_level), 1762 tswap32(target_cmsg->cmsg_type)); 1763 break; 1764 } 1765 1766 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1767 cmsg->cmsg_level = SOL_SOCKET; 1768 } else { 1769 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1770 } 1771 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1772 cmsg->cmsg_len = CMSG_LEN(len); 1773 1774 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1775 int *fd = (int *)data; 1776 int *target_fd = (int *)target_data; 1777 int i, numfds = len / sizeof(int); 1778 1779 for (i = 0; i < numfds; i++) { 1780 __get_user(fd[i], target_fd + i); 1781 } 1782 } else if (cmsg->cmsg_level == SOL_SOCKET 1783 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1784 struct ucred *cred = (struct ucred *)data; 1785 struct target_ucred *target_cred = 1786 (struct target_ucred *)target_data; 1787 1788 __get_user(cred->pid, &target_cred->pid); 1789 __get_user(cred->uid, &target_cred->uid); 1790 __get_user(cred->gid, &target_cred->gid); 1791 } else if (cmsg->cmsg_level == SOL_ALG) { 1792 uint32_t *dst = (uint32_t *)data; 1793 1794 memcpy(dst, target_data, len); 1795 /* fix endianness of first 32-bit word */ 1796 if (len >= sizeof(uint32_t)) { 1797 *dst = tswap32(*dst); 1798 } 1799 } else { 1800 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 1801 cmsg->cmsg_level, cmsg->cmsg_type); 1802 memcpy(data, target_data, len); 1803 } 1804 1805 cmsg = CMSG_NXTHDR(msgh, cmsg); 1806 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1807 target_cmsg_start); 1808 } 1809 unlock_user(target_cmsg, target_cmsg_addr, 0); 1810 the_end: 1811 msgh->msg_controllen = space; 1812 return 0; 1813 } 1814 1815 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1816 struct msghdr *msgh) 1817 { 1818 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1819 abi_long msg_controllen; 1820 abi_ulong target_cmsg_addr; 1821 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1822 socklen_t space = 0; 1823 1824 msg_controllen = tswapal(target_msgh->msg_controllen); 1825 if (msg_controllen < sizeof (struct target_cmsghdr)) 1826 goto the_end; 1827 target_cmsg_addr = tswapal(target_msgh->msg_control); 1828 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1829 target_cmsg_start = target_cmsg; 1830 if (!target_cmsg) 1831 return -TARGET_EFAULT; 1832 1833 while (cmsg && target_cmsg) { 1834 void *data = CMSG_DATA(cmsg); 1835 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1836 1837 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1838 int tgt_len, tgt_space; 1839 1840 /* We never copy a half-header but may copy half-data; 1841 * this is Linux's behaviour in put_cmsg(). Note that 1842 * truncation here is a guest problem (which we report 1843 * to the guest via the CTRUNC bit), unlike truncation 1844 * in target_to_host_cmsg, which is a QEMU bug. 1845 */ 1846 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1847 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1848 break; 1849 } 1850 1851 if (cmsg->cmsg_level == SOL_SOCKET) { 1852 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1853 } else { 1854 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1855 } 1856 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1857 1858 /* Payload types which need a different size of payload on 1859 * the target must adjust tgt_len here. 1860 */ 1861 tgt_len = len; 1862 switch (cmsg->cmsg_level) { 1863 case SOL_SOCKET: 1864 switch (cmsg->cmsg_type) { 1865 case SO_TIMESTAMP: 1866 tgt_len = sizeof(struct target_timeval); 1867 break; 1868 default: 1869 break; 1870 } 1871 break; 1872 default: 1873 break; 1874 } 1875 1876 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1877 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1878 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1879 } 1880 1881 /* We must now copy-and-convert len bytes of payload 1882 * into tgt_len bytes of destination space. Bear in mind 1883 * that in both source and destination we may be dealing 1884 * with a truncated value! 1885 */ 1886 switch (cmsg->cmsg_level) { 1887 case SOL_SOCKET: 1888 switch (cmsg->cmsg_type) { 1889 case SCM_RIGHTS: 1890 { 1891 int *fd = (int *)data; 1892 int *target_fd = (int *)target_data; 1893 int i, numfds = tgt_len / sizeof(int); 1894 1895 for (i = 0; i < numfds; i++) { 1896 __put_user(fd[i], target_fd + i); 1897 } 1898 break; 1899 } 1900 case SO_TIMESTAMP: 1901 { 1902 struct timeval *tv = (struct timeval *)data; 1903 struct target_timeval *target_tv = 1904 (struct target_timeval *)target_data; 1905 1906 if (len != sizeof(struct timeval) || 1907 tgt_len != sizeof(struct target_timeval)) { 1908 goto unimplemented; 1909 } 1910 1911 /* copy struct timeval to target */ 1912 __put_user(tv->tv_sec, &target_tv->tv_sec); 1913 __put_user(tv->tv_usec, &target_tv->tv_usec); 1914 break; 1915 } 1916 case SCM_CREDENTIALS: 1917 { 1918 struct ucred *cred = (struct ucred *)data; 1919 struct target_ucred *target_cred = 1920 (struct target_ucred *)target_data; 1921 1922 __put_user(cred->pid, &target_cred->pid); 1923 __put_user(cred->uid, &target_cred->uid); 1924 __put_user(cred->gid, &target_cred->gid); 1925 break; 1926 } 1927 default: 1928 goto unimplemented; 1929 } 1930 break; 1931 1932 case SOL_IP: 1933 switch (cmsg->cmsg_type) { 1934 case IP_TTL: 1935 { 1936 uint32_t *v = (uint32_t *)data; 1937 uint32_t *t_int = (uint32_t *)target_data; 1938 1939 if (len != sizeof(uint32_t) || 1940 tgt_len != sizeof(uint32_t)) { 1941 goto unimplemented; 1942 } 1943 __put_user(*v, t_int); 1944 break; 1945 } 1946 case IP_RECVERR: 1947 { 1948 struct errhdr_t { 1949 struct sock_extended_err ee; 1950 struct sockaddr_in offender; 1951 }; 1952 struct errhdr_t *errh = (struct errhdr_t *)data; 1953 struct errhdr_t *target_errh = 1954 (struct errhdr_t *)target_data; 1955 1956 if (len != sizeof(struct errhdr_t) || 1957 tgt_len != sizeof(struct errhdr_t)) { 1958 goto unimplemented; 1959 } 1960 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1961 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1962 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1963 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1964 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1965 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1966 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1967 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1968 (void *) &errh->offender, sizeof(errh->offender)); 1969 break; 1970 } 1971 default: 1972 goto unimplemented; 1973 } 1974 break; 1975 1976 case SOL_IPV6: 1977 switch (cmsg->cmsg_type) { 1978 case IPV6_HOPLIMIT: 1979 { 1980 uint32_t *v = (uint32_t *)data; 1981 uint32_t *t_int = (uint32_t *)target_data; 1982 1983 if (len != sizeof(uint32_t) || 1984 tgt_len != sizeof(uint32_t)) { 1985 goto unimplemented; 1986 } 1987 __put_user(*v, t_int); 1988 break; 1989 } 1990 case IPV6_RECVERR: 1991 { 1992 struct errhdr6_t { 1993 struct sock_extended_err ee; 1994 struct sockaddr_in6 offender; 1995 }; 1996 struct errhdr6_t *errh = (struct errhdr6_t *)data; 1997 struct errhdr6_t *target_errh = 1998 (struct errhdr6_t *)target_data; 1999 2000 if (len != sizeof(struct errhdr6_t) || 2001 tgt_len != sizeof(struct errhdr6_t)) { 2002 goto unimplemented; 2003 } 2004 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2005 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2006 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2007 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2008 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2009 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2010 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2011 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2012 (void *) &errh->offender, sizeof(errh->offender)); 2013 break; 2014 } 2015 default: 2016 goto unimplemented; 2017 } 2018 break; 2019 2020 default: 2021 unimplemented: 2022 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 2023 cmsg->cmsg_level, cmsg->cmsg_type); 2024 memcpy(target_data, data, MIN(len, tgt_len)); 2025 if (tgt_len > len) { 2026 memset(target_data + len, 0, tgt_len - len); 2027 } 2028 } 2029 2030 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 2031 tgt_space = TARGET_CMSG_SPACE(tgt_len); 2032 if (msg_controllen < tgt_space) { 2033 tgt_space = msg_controllen; 2034 } 2035 msg_controllen -= tgt_space; 2036 space += tgt_space; 2037 cmsg = CMSG_NXTHDR(msgh, cmsg); 2038 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 2039 target_cmsg_start); 2040 } 2041 unlock_user(target_cmsg, target_cmsg_addr, space); 2042 the_end: 2043 target_msgh->msg_controllen = tswapal(space); 2044 return 0; 2045 } 2046 2047 /* do_setsockopt() Must return target values and target errnos. */ 2048 static abi_long do_setsockopt(int sockfd, int level, int optname, 2049 abi_ulong optval_addr, socklen_t optlen) 2050 { 2051 abi_long ret; 2052 int val; 2053 2054 switch(level) { 2055 case SOL_TCP: 2056 case SOL_UDP: 2057 /* TCP and UDP options all take an 'int' value. */ 2058 if (optlen < sizeof(uint32_t)) 2059 return -TARGET_EINVAL; 2060 2061 if (get_user_u32(val, optval_addr)) 2062 return -TARGET_EFAULT; 2063 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2064 break; 2065 case SOL_IP: 2066 switch(optname) { 2067 case IP_TOS: 2068 case IP_TTL: 2069 case IP_HDRINCL: 2070 case IP_ROUTER_ALERT: 2071 case IP_RECVOPTS: 2072 case IP_RETOPTS: 2073 case IP_PKTINFO: 2074 case IP_MTU_DISCOVER: 2075 case IP_RECVERR: 2076 case IP_RECVTTL: 2077 case IP_RECVTOS: 2078 #ifdef IP_FREEBIND 2079 case IP_FREEBIND: 2080 #endif 2081 case IP_MULTICAST_TTL: 2082 case IP_MULTICAST_LOOP: 2083 val = 0; 2084 if (optlen >= sizeof(uint32_t)) { 2085 if (get_user_u32(val, optval_addr)) 2086 return -TARGET_EFAULT; 2087 } else if (optlen >= 1) { 2088 if (get_user_u8(val, optval_addr)) 2089 return -TARGET_EFAULT; 2090 } 2091 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2092 break; 2093 case IP_ADD_MEMBERSHIP: 2094 case IP_DROP_MEMBERSHIP: 2095 { 2096 struct ip_mreqn ip_mreq; 2097 struct target_ip_mreqn *target_smreqn; 2098 2099 QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq) != 2100 sizeof(struct target_ip_mreq)); 2101 2102 if (optlen < sizeof (struct target_ip_mreq) || 2103 optlen > sizeof (struct target_ip_mreqn)) { 2104 return -TARGET_EINVAL; 2105 } 2106 2107 target_smreqn = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2108 if (!target_smreqn) { 2109 return -TARGET_EFAULT; 2110 } 2111 ip_mreq.imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 2112 ip_mreq.imr_address.s_addr = target_smreqn->imr_address.s_addr; 2113 if (optlen == sizeof(struct target_ip_mreqn)) { 2114 ip_mreq.imr_ifindex = tswapal(target_smreqn->imr_ifindex); 2115 optlen = sizeof(struct ip_mreqn); 2116 } 2117 unlock_user(target_smreqn, optval_addr, 0); 2118 2119 ret = get_errno(setsockopt(sockfd, level, optname, &ip_mreq, optlen)); 2120 break; 2121 } 2122 case IP_BLOCK_SOURCE: 2123 case IP_UNBLOCK_SOURCE: 2124 case IP_ADD_SOURCE_MEMBERSHIP: 2125 case IP_DROP_SOURCE_MEMBERSHIP: 2126 { 2127 struct ip_mreq_source *ip_mreq_source; 2128 2129 if (optlen != sizeof (struct target_ip_mreq_source)) 2130 return -TARGET_EINVAL; 2131 2132 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2133 if (!ip_mreq_source) { 2134 return -TARGET_EFAULT; 2135 } 2136 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2137 unlock_user (ip_mreq_source, optval_addr, 0); 2138 break; 2139 } 2140 default: 2141 goto unimplemented; 2142 } 2143 break; 2144 case SOL_IPV6: 2145 switch (optname) { 2146 case IPV6_MTU_DISCOVER: 2147 case IPV6_MTU: 2148 case IPV6_V6ONLY: 2149 case IPV6_RECVPKTINFO: 2150 case IPV6_UNICAST_HOPS: 2151 case IPV6_MULTICAST_HOPS: 2152 case IPV6_MULTICAST_LOOP: 2153 case IPV6_RECVERR: 2154 case IPV6_RECVHOPLIMIT: 2155 case IPV6_2292HOPLIMIT: 2156 case IPV6_CHECKSUM: 2157 case IPV6_ADDRFORM: 2158 case IPV6_2292PKTINFO: 2159 case IPV6_RECVTCLASS: 2160 case IPV6_RECVRTHDR: 2161 case IPV6_2292RTHDR: 2162 case IPV6_RECVHOPOPTS: 2163 case IPV6_2292HOPOPTS: 2164 case IPV6_RECVDSTOPTS: 2165 case IPV6_2292DSTOPTS: 2166 case IPV6_TCLASS: 2167 case IPV6_ADDR_PREFERENCES: 2168 #ifdef IPV6_RECVPATHMTU 2169 case IPV6_RECVPATHMTU: 2170 #endif 2171 #ifdef IPV6_TRANSPARENT 2172 case IPV6_TRANSPARENT: 2173 #endif 2174 #ifdef IPV6_FREEBIND 2175 case IPV6_FREEBIND: 2176 #endif 2177 #ifdef IPV6_RECVORIGDSTADDR 2178 case IPV6_RECVORIGDSTADDR: 2179 #endif 2180 val = 0; 2181 if (optlen < sizeof(uint32_t)) { 2182 return -TARGET_EINVAL; 2183 } 2184 if (get_user_u32(val, optval_addr)) { 2185 return -TARGET_EFAULT; 2186 } 2187 ret = get_errno(setsockopt(sockfd, level, optname, 2188 &val, sizeof(val))); 2189 break; 2190 case IPV6_PKTINFO: 2191 { 2192 struct in6_pktinfo pki; 2193 2194 if (optlen < sizeof(pki)) { 2195 return -TARGET_EINVAL; 2196 } 2197 2198 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2199 return -TARGET_EFAULT; 2200 } 2201 2202 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2203 2204 ret = get_errno(setsockopt(sockfd, level, optname, 2205 &pki, sizeof(pki))); 2206 break; 2207 } 2208 case IPV6_ADD_MEMBERSHIP: 2209 case IPV6_DROP_MEMBERSHIP: 2210 { 2211 struct ipv6_mreq ipv6mreq; 2212 2213 if (optlen < sizeof(ipv6mreq)) { 2214 return -TARGET_EINVAL; 2215 } 2216 2217 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) { 2218 return -TARGET_EFAULT; 2219 } 2220 2221 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface); 2222 2223 ret = get_errno(setsockopt(sockfd, level, optname, 2224 &ipv6mreq, sizeof(ipv6mreq))); 2225 break; 2226 } 2227 default: 2228 goto unimplemented; 2229 } 2230 break; 2231 case SOL_ICMPV6: 2232 switch (optname) { 2233 case ICMPV6_FILTER: 2234 { 2235 struct icmp6_filter icmp6f; 2236 2237 if (optlen > sizeof(icmp6f)) { 2238 optlen = sizeof(icmp6f); 2239 } 2240 2241 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 2242 return -TARGET_EFAULT; 2243 } 2244 2245 for (val = 0; val < 8; val++) { 2246 icmp6f.data[val] = tswap32(icmp6f.data[val]); 2247 } 2248 2249 ret = get_errno(setsockopt(sockfd, level, optname, 2250 &icmp6f, optlen)); 2251 break; 2252 } 2253 default: 2254 goto unimplemented; 2255 } 2256 break; 2257 case SOL_RAW: 2258 switch (optname) { 2259 case ICMP_FILTER: 2260 case IPV6_CHECKSUM: 2261 /* those take an u32 value */ 2262 if (optlen < sizeof(uint32_t)) { 2263 return -TARGET_EINVAL; 2264 } 2265 2266 if (get_user_u32(val, optval_addr)) { 2267 return -TARGET_EFAULT; 2268 } 2269 ret = get_errno(setsockopt(sockfd, level, optname, 2270 &val, sizeof(val))); 2271 break; 2272 2273 default: 2274 goto unimplemented; 2275 } 2276 break; 2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE) 2278 case SOL_ALG: 2279 switch (optname) { 2280 case ALG_SET_KEY: 2281 { 2282 char *alg_key = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2283 if (!alg_key) { 2284 return -TARGET_EFAULT; 2285 } 2286 ret = get_errno(setsockopt(sockfd, level, optname, 2287 alg_key, optlen)); 2288 unlock_user(alg_key, optval_addr, optlen); 2289 break; 2290 } 2291 case ALG_SET_AEAD_AUTHSIZE: 2292 { 2293 ret = get_errno(setsockopt(sockfd, level, optname, 2294 NULL, optlen)); 2295 break; 2296 } 2297 default: 2298 goto unimplemented; 2299 } 2300 break; 2301 #endif 2302 case TARGET_SOL_SOCKET: 2303 switch (optname) { 2304 case TARGET_SO_RCVTIMEO: 2305 case TARGET_SO_SNDTIMEO: 2306 { 2307 struct timeval tv; 2308 2309 if (optlen != sizeof(struct target_timeval)) { 2310 return -TARGET_EINVAL; 2311 } 2312 2313 if (copy_from_user_timeval(&tv, optval_addr)) { 2314 return -TARGET_EFAULT; 2315 } 2316 2317 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2318 optname == TARGET_SO_RCVTIMEO ? 2319 SO_RCVTIMEO : SO_SNDTIMEO, 2320 &tv, sizeof(tv))); 2321 return ret; 2322 } 2323 case TARGET_SO_ATTACH_FILTER: 2324 { 2325 struct target_sock_fprog *tfprog; 2326 struct target_sock_filter *tfilter; 2327 struct sock_fprog fprog; 2328 struct sock_filter *filter; 2329 int i; 2330 2331 if (optlen != sizeof(*tfprog)) { 2332 return -TARGET_EINVAL; 2333 } 2334 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2335 return -TARGET_EFAULT; 2336 } 2337 if (!lock_user_struct(VERIFY_READ, tfilter, 2338 tswapal(tfprog->filter), 0)) { 2339 unlock_user_struct(tfprog, optval_addr, 1); 2340 return -TARGET_EFAULT; 2341 } 2342 2343 fprog.len = tswap16(tfprog->len); 2344 filter = g_try_new(struct sock_filter, fprog.len); 2345 if (filter == NULL) { 2346 unlock_user_struct(tfilter, tfprog->filter, 1); 2347 unlock_user_struct(tfprog, optval_addr, 1); 2348 return -TARGET_ENOMEM; 2349 } 2350 for (i = 0; i < fprog.len; i++) { 2351 filter[i].code = tswap16(tfilter[i].code); 2352 filter[i].jt = tfilter[i].jt; 2353 filter[i].jf = tfilter[i].jf; 2354 filter[i].k = tswap32(tfilter[i].k); 2355 } 2356 fprog.filter = filter; 2357 2358 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2359 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2360 g_free(filter); 2361 2362 unlock_user_struct(tfilter, tfprog->filter, 1); 2363 unlock_user_struct(tfprog, optval_addr, 1); 2364 return ret; 2365 } 2366 case TARGET_SO_BINDTODEVICE: 2367 { 2368 char *dev_ifname, *addr_ifname; 2369 2370 if (optlen > IFNAMSIZ - 1) { 2371 optlen = IFNAMSIZ - 1; 2372 } 2373 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2374 if (!dev_ifname) { 2375 return -TARGET_EFAULT; 2376 } 2377 optname = SO_BINDTODEVICE; 2378 addr_ifname = alloca(IFNAMSIZ); 2379 memcpy(addr_ifname, dev_ifname, optlen); 2380 addr_ifname[optlen] = 0; 2381 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2382 addr_ifname, optlen)); 2383 unlock_user (dev_ifname, optval_addr, 0); 2384 return ret; 2385 } 2386 case TARGET_SO_LINGER: 2387 { 2388 struct linger lg; 2389 struct target_linger *tlg; 2390 2391 if (optlen != sizeof(struct target_linger)) { 2392 return -TARGET_EINVAL; 2393 } 2394 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) { 2395 return -TARGET_EFAULT; 2396 } 2397 __get_user(lg.l_onoff, &tlg->l_onoff); 2398 __get_user(lg.l_linger, &tlg->l_linger); 2399 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER, 2400 &lg, sizeof(lg))); 2401 unlock_user_struct(tlg, optval_addr, 0); 2402 return ret; 2403 } 2404 /* Options with 'int' argument. */ 2405 case TARGET_SO_DEBUG: 2406 optname = SO_DEBUG; 2407 break; 2408 case TARGET_SO_REUSEADDR: 2409 optname = SO_REUSEADDR; 2410 break; 2411 #ifdef SO_REUSEPORT 2412 case TARGET_SO_REUSEPORT: 2413 optname = SO_REUSEPORT; 2414 break; 2415 #endif 2416 case TARGET_SO_TYPE: 2417 optname = SO_TYPE; 2418 break; 2419 case TARGET_SO_ERROR: 2420 optname = SO_ERROR; 2421 break; 2422 case TARGET_SO_DONTROUTE: 2423 optname = SO_DONTROUTE; 2424 break; 2425 case TARGET_SO_BROADCAST: 2426 optname = SO_BROADCAST; 2427 break; 2428 case TARGET_SO_SNDBUF: 2429 optname = SO_SNDBUF; 2430 break; 2431 case TARGET_SO_SNDBUFFORCE: 2432 optname = SO_SNDBUFFORCE; 2433 break; 2434 case TARGET_SO_RCVBUF: 2435 optname = SO_RCVBUF; 2436 break; 2437 case TARGET_SO_RCVBUFFORCE: 2438 optname = SO_RCVBUFFORCE; 2439 break; 2440 case TARGET_SO_KEEPALIVE: 2441 optname = SO_KEEPALIVE; 2442 break; 2443 case TARGET_SO_OOBINLINE: 2444 optname = SO_OOBINLINE; 2445 break; 2446 case TARGET_SO_NO_CHECK: 2447 optname = SO_NO_CHECK; 2448 break; 2449 case TARGET_SO_PRIORITY: 2450 optname = SO_PRIORITY; 2451 break; 2452 #ifdef SO_BSDCOMPAT 2453 case TARGET_SO_BSDCOMPAT: 2454 optname = SO_BSDCOMPAT; 2455 break; 2456 #endif 2457 case TARGET_SO_PASSCRED: 2458 optname = SO_PASSCRED; 2459 break; 2460 case TARGET_SO_PASSSEC: 2461 optname = SO_PASSSEC; 2462 break; 2463 case TARGET_SO_TIMESTAMP: 2464 optname = SO_TIMESTAMP; 2465 break; 2466 case TARGET_SO_RCVLOWAT: 2467 optname = SO_RCVLOWAT; 2468 break; 2469 default: 2470 goto unimplemented; 2471 } 2472 if (optlen < sizeof(uint32_t)) 2473 return -TARGET_EINVAL; 2474 2475 if (get_user_u32(val, optval_addr)) 2476 return -TARGET_EFAULT; 2477 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 2478 break; 2479 #ifdef SOL_NETLINK 2480 case SOL_NETLINK: 2481 switch (optname) { 2482 case NETLINK_PKTINFO: 2483 case NETLINK_ADD_MEMBERSHIP: 2484 case NETLINK_DROP_MEMBERSHIP: 2485 case NETLINK_BROADCAST_ERROR: 2486 case NETLINK_NO_ENOBUFS: 2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2488 case NETLINK_LISTEN_ALL_NSID: 2489 case NETLINK_CAP_ACK: 2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2492 case NETLINK_EXT_ACK: 2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2495 case NETLINK_GET_STRICT_CHK: 2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2497 break; 2498 default: 2499 goto unimplemented; 2500 } 2501 val = 0; 2502 if (optlen < sizeof(uint32_t)) { 2503 return -TARGET_EINVAL; 2504 } 2505 if (get_user_u32(val, optval_addr)) { 2506 return -TARGET_EFAULT; 2507 } 2508 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val, 2509 sizeof(val))); 2510 break; 2511 #endif /* SOL_NETLINK */ 2512 default: 2513 unimplemented: 2514 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n", 2515 level, optname); 2516 ret = -TARGET_ENOPROTOOPT; 2517 } 2518 return ret; 2519 } 2520 2521 /* do_getsockopt() Must return target values and target errnos. */ 2522 static abi_long do_getsockopt(int sockfd, int level, int optname, 2523 abi_ulong optval_addr, abi_ulong optlen) 2524 { 2525 abi_long ret; 2526 int len, val; 2527 socklen_t lv; 2528 2529 switch(level) { 2530 case TARGET_SOL_SOCKET: 2531 level = SOL_SOCKET; 2532 switch (optname) { 2533 /* These don't just return a single integer */ 2534 case TARGET_SO_PEERNAME: 2535 goto unimplemented; 2536 case TARGET_SO_RCVTIMEO: { 2537 struct timeval tv; 2538 socklen_t tvlen; 2539 2540 optname = SO_RCVTIMEO; 2541 2542 get_timeout: 2543 if (get_user_u32(len, optlen)) { 2544 return -TARGET_EFAULT; 2545 } 2546 if (len < 0) { 2547 return -TARGET_EINVAL; 2548 } 2549 2550 tvlen = sizeof(tv); 2551 ret = get_errno(getsockopt(sockfd, level, optname, 2552 &tv, &tvlen)); 2553 if (ret < 0) { 2554 return ret; 2555 } 2556 if (len > sizeof(struct target_timeval)) { 2557 len = sizeof(struct target_timeval); 2558 } 2559 if (copy_to_user_timeval(optval_addr, &tv)) { 2560 return -TARGET_EFAULT; 2561 } 2562 if (put_user_u32(len, optlen)) { 2563 return -TARGET_EFAULT; 2564 } 2565 break; 2566 } 2567 case TARGET_SO_SNDTIMEO: 2568 optname = SO_SNDTIMEO; 2569 goto get_timeout; 2570 case TARGET_SO_PEERCRED: { 2571 struct ucred cr; 2572 socklen_t crlen; 2573 struct target_ucred *tcr; 2574 2575 if (get_user_u32(len, optlen)) { 2576 return -TARGET_EFAULT; 2577 } 2578 if (len < 0) { 2579 return -TARGET_EINVAL; 2580 } 2581 2582 crlen = sizeof(cr); 2583 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 2584 &cr, &crlen)); 2585 if (ret < 0) { 2586 return ret; 2587 } 2588 if (len > crlen) { 2589 len = crlen; 2590 } 2591 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 2592 return -TARGET_EFAULT; 2593 } 2594 __put_user(cr.pid, &tcr->pid); 2595 __put_user(cr.uid, &tcr->uid); 2596 __put_user(cr.gid, &tcr->gid); 2597 unlock_user_struct(tcr, optval_addr, 1); 2598 if (put_user_u32(len, optlen)) { 2599 return -TARGET_EFAULT; 2600 } 2601 break; 2602 } 2603 case TARGET_SO_PEERSEC: { 2604 char *name; 2605 2606 if (get_user_u32(len, optlen)) { 2607 return -TARGET_EFAULT; 2608 } 2609 if (len < 0) { 2610 return -TARGET_EINVAL; 2611 } 2612 name = lock_user(VERIFY_WRITE, optval_addr, len, 0); 2613 if (!name) { 2614 return -TARGET_EFAULT; 2615 } 2616 lv = len; 2617 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC, 2618 name, &lv)); 2619 if (put_user_u32(lv, optlen)) { 2620 ret = -TARGET_EFAULT; 2621 } 2622 unlock_user(name, optval_addr, lv); 2623 break; 2624 } 2625 case TARGET_SO_LINGER: 2626 { 2627 struct linger lg; 2628 socklen_t lglen; 2629 struct target_linger *tlg; 2630 2631 if (get_user_u32(len, optlen)) { 2632 return -TARGET_EFAULT; 2633 } 2634 if (len < 0) { 2635 return -TARGET_EINVAL; 2636 } 2637 2638 lglen = sizeof(lg); 2639 ret = get_errno(getsockopt(sockfd, level, SO_LINGER, 2640 &lg, &lglen)); 2641 if (ret < 0) { 2642 return ret; 2643 } 2644 if (len > lglen) { 2645 len = lglen; 2646 } 2647 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) { 2648 return -TARGET_EFAULT; 2649 } 2650 __put_user(lg.l_onoff, &tlg->l_onoff); 2651 __put_user(lg.l_linger, &tlg->l_linger); 2652 unlock_user_struct(tlg, optval_addr, 1); 2653 if (put_user_u32(len, optlen)) { 2654 return -TARGET_EFAULT; 2655 } 2656 break; 2657 } 2658 /* Options with 'int' argument. */ 2659 case TARGET_SO_DEBUG: 2660 optname = SO_DEBUG; 2661 goto int_case; 2662 case TARGET_SO_REUSEADDR: 2663 optname = SO_REUSEADDR; 2664 goto int_case; 2665 #ifdef SO_REUSEPORT 2666 case TARGET_SO_REUSEPORT: 2667 optname = SO_REUSEPORT; 2668 goto int_case; 2669 #endif 2670 case TARGET_SO_TYPE: 2671 optname = SO_TYPE; 2672 goto int_case; 2673 case TARGET_SO_ERROR: 2674 optname = SO_ERROR; 2675 goto int_case; 2676 case TARGET_SO_DONTROUTE: 2677 optname = SO_DONTROUTE; 2678 goto int_case; 2679 case TARGET_SO_BROADCAST: 2680 optname = SO_BROADCAST; 2681 goto int_case; 2682 case TARGET_SO_SNDBUF: 2683 optname = SO_SNDBUF; 2684 goto int_case; 2685 case TARGET_SO_RCVBUF: 2686 optname = SO_RCVBUF; 2687 goto int_case; 2688 case TARGET_SO_KEEPALIVE: 2689 optname = SO_KEEPALIVE; 2690 goto int_case; 2691 case TARGET_SO_OOBINLINE: 2692 optname = SO_OOBINLINE; 2693 goto int_case; 2694 case TARGET_SO_NO_CHECK: 2695 optname = SO_NO_CHECK; 2696 goto int_case; 2697 case TARGET_SO_PRIORITY: 2698 optname = SO_PRIORITY; 2699 goto int_case; 2700 #ifdef SO_BSDCOMPAT 2701 case TARGET_SO_BSDCOMPAT: 2702 optname = SO_BSDCOMPAT; 2703 goto int_case; 2704 #endif 2705 case TARGET_SO_PASSCRED: 2706 optname = SO_PASSCRED; 2707 goto int_case; 2708 case TARGET_SO_TIMESTAMP: 2709 optname = SO_TIMESTAMP; 2710 goto int_case; 2711 case TARGET_SO_RCVLOWAT: 2712 optname = SO_RCVLOWAT; 2713 goto int_case; 2714 case TARGET_SO_ACCEPTCONN: 2715 optname = SO_ACCEPTCONN; 2716 goto int_case; 2717 case TARGET_SO_PROTOCOL: 2718 optname = SO_PROTOCOL; 2719 goto int_case; 2720 case TARGET_SO_DOMAIN: 2721 optname = SO_DOMAIN; 2722 goto int_case; 2723 default: 2724 goto int_case; 2725 } 2726 break; 2727 case SOL_TCP: 2728 case SOL_UDP: 2729 /* TCP and UDP options all take an 'int' value. */ 2730 int_case: 2731 if (get_user_u32(len, optlen)) 2732 return -TARGET_EFAULT; 2733 if (len < 0) 2734 return -TARGET_EINVAL; 2735 lv = sizeof(lv); 2736 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2737 if (ret < 0) 2738 return ret; 2739 switch (optname) { 2740 case SO_TYPE: 2741 val = host_to_target_sock_type(val); 2742 break; 2743 case SO_ERROR: 2744 val = host_to_target_errno(val); 2745 break; 2746 } 2747 if (len > lv) 2748 len = lv; 2749 if (len == 4) { 2750 if (put_user_u32(val, optval_addr)) 2751 return -TARGET_EFAULT; 2752 } else { 2753 if (put_user_u8(val, optval_addr)) 2754 return -TARGET_EFAULT; 2755 } 2756 if (put_user_u32(len, optlen)) 2757 return -TARGET_EFAULT; 2758 break; 2759 case SOL_IP: 2760 switch(optname) { 2761 case IP_TOS: 2762 case IP_TTL: 2763 case IP_HDRINCL: 2764 case IP_ROUTER_ALERT: 2765 case IP_RECVOPTS: 2766 case IP_RETOPTS: 2767 case IP_PKTINFO: 2768 case IP_MTU_DISCOVER: 2769 case IP_RECVERR: 2770 case IP_RECVTOS: 2771 #ifdef IP_FREEBIND 2772 case IP_FREEBIND: 2773 #endif 2774 case IP_MULTICAST_TTL: 2775 case IP_MULTICAST_LOOP: 2776 if (get_user_u32(len, optlen)) 2777 return -TARGET_EFAULT; 2778 if (len < 0) 2779 return -TARGET_EINVAL; 2780 lv = sizeof(lv); 2781 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2782 if (ret < 0) 2783 return ret; 2784 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2785 len = 1; 2786 if (put_user_u32(len, optlen) 2787 || put_user_u8(val, optval_addr)) 2788 return -TARGET_EFAULT; 2789 } else { 2790 if (len > sizeof(int)) 2791 len = sizeof(int); 2792 if (put_user_u32(len, optlen) 2793 || put_user_u32(val, optval_addr)) 2794 return -TARGET_EFAULT; 2795 } 2796 break; 2797 default: 2798 ret = -TARGET_ENOPROTOOPT; 2799 break; 2800 } 2801 break; 2802 case SOL_IPV6: 2803 switch (optname) { 2804 case IPV6_MTU_DISCOVER: 2805 case IPV6_MTU: 2806 case IPV6_V6ONLY: 2807 case IPV6_RECVPKTINFO: 2808 case IPV6_UNICAST_HOPS: 2809 case IPV6_MULTICAST_HOPS: 2810 case IPV6_MULTICAST_LOOP: 2811 case IPV6_RECVERR: 2812 case IPV6_RECVHOPLIMIT: 2813 case IPV6_2292HOPLIMIT: 2814 case IPV6_CHECKSUM: 2815 case IPV6_ADDRFORM: 2816 case IPV6_2292PKTINFO: 2817 case IPV6_RECVTCLASS: 2818 case IPV6_RECVRTHDR: 2819 case IPV6_2292RTHDR: 2820 case IPV6_RECVHOPOPTS: 2821 case IPV6_2292HOPOPTS: 2822 case IPV6_RECVDSTOPTS: 2823 case IPV6_2292DSTOPTS: 2824 case IPV6_TCLASS: 2825 case IPV6_ADDR_PREFERENCES: 2826 #ifdef IPV6_RECVPATHMTU 2827 case IPV6_RECVPATHMTU: 2828 #endif 2829 #ifdef IPV6_TRANSPARENT 2830 case IPV6_TRANSPARENT: 2831 #endif 2832 #ifdef IPV6_FREEBIND 2833 case IPV6_FREEBIND: 2834 #endif 2835 #ifdef IPV6_RECVORIGDSTADDR 2836 case IPV6_RECVORIGDSTADDR: 2837 #endif 2838 if (get_user_u32(len, optlen)) 2839 return -TARGET_EFAULT; 2840 if (len < 0) 2841 return -TARGET_EINVAL; 2842 lv = sizeof(lv); 2843 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2844 if (ret < 0) 2845 return ret; 2846 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2847 len = 1; 2848 if (put_user_u32(len, optlen) 2849 || put_user_u8(val, optval_addr)) 2850 return -TARGET_EFAULT; 2851 } else { 2852 if (len > sizeof(int)) 2853 len = sizeof(int); 2854 if (put_user_u32(len, optlen) 2855 || put_user_u32(val, optval_addr)) 2856 return -TARGET_EFAULT; 2857 } 2858 break; 2859 default: 2860 ret = -TARGET_ENOPROTOOPT; 2861 break; 2862 } 2863 break; 2864 #ifdef SOL_NETLINK 2865 case SOL_NETLINK: 2866 switch (optname) { 2867 case NETLINK_PKTINFO: 2868 case NETLINK_BROADCAST_ERROR: 2869 case NETLINK_NO_ENOBUFS: 2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2871 case NETLINK_LISTEN_ALL_NSID: 2872 case NETLINK_CAP_ACK: 2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2875 case NETLINK_EXT_ACK: 2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2878 case NETLINK_GET_STRICT_CHK: 2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2880 if (get_user_u32(len, optlen)) { 2881 return -TARGET_EFAULT; 2882 } 2883 if (len != sizeof(val)) { 2884 return -TARGET_EINVAL; 2885 } 2886 lv = len; 2887 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2888 if (ret < 0) { 2889 return ret; 2890 } 2891 if (put_user_u32(lv, optlen) 2892 || put_user_u32(val, optval_addr)) { 2893 return -TARGET_EFAULT; 2894 } 2895 break; 2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2897 case NETLINK_LIST_MEMBERSHIPS: 2898 { 2899 uint32_t *results; 2900 int i; 2901 if (get_user_u32(len, optlen)) { 2902 return -TARGET_EFAULT; 2903 } 2904 if (len < 0) { 2905 return -TARGET_EINVAL; 2906 } 2907 results = lock_user(VERIFY_WRITE, optval_addr, len, 1); 2908 if (!results && len > 0) { 2909 return -TARGET_EFAULT; 2910 } 2911 lv = len; 2912 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv)); 2913 if (ret < 0) { 2914 unlock_user(results, optval_addr, 0); 2915 return ret; 2916 } 2917 /* swap host endianness to target endianness. */ 2918 for (i = 0; i < (len / sizeof(uint32_t)); i++) { 2919 results[i] = tswap32(results[i]); 2920 } 2921 if (put_user_u32(lv, optlen)) { 2922 return -TARGET_EFAULT; 2923 } 2924 unlock_user(results, optval_addr, 0); 2925 break; 2926 } 2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2928 default: 2929 goto unimplemented; 2930 } 2931 break; 2932 #endif /* SOL_NETLINK */ 2933 default: 2934 unimplemented: 2935 qemu_log_mask(LOG_UNIMP, 2936 "getsockopt level=%d optname=%d not yet supported\n", 2937 level, optname); 2938 ret = -TARGET_EOPNOTSUPP; 2939 break; 2940 } 2941 return ret; 2942 } 2943 2944 /* Convert target low/high pair representing file offset into the host 2945 * low/high pair. This function doesn't handle offsets bigger than 64 bits 2946 * as the kernel doesn't handle them either. 2947 */ 2948 static void target_to_host_low_high(abi_ulong tlow, 2949 abi_ulong thigh, 2950 unsigned long *hlow, 2951 unsigned long *hhigh) 2952 { 2953 uint64_t off = tlow | 2954 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) << 2955 TARGET_LONG_BITS / 2; 2956 2957 *hlow = off; 2958 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2; 2959 } 2960 2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 2962 abi_ulong count, int copy) 2963 { 2964 struct target_iovec *target_vec; 2965 struct iovec *vec; 2966 abi_ulong total_len, max_len; 2967 int i; 2968 int err = 0; 2969 bool bad_address = false; 2970 2971 if (count == 0) { 2972 errno = 0; 2973 return NULL; 2974 } 2975 if (count > IOV_MAX) { 2976 errno = EINVAL; 2977 return NULL; 2978 } 2979 2980 vec = g_try_new0(struct iovec, count); 2981 if (vec == NULL) { 2982 errno = ENOMEM; 2983 return NULL; 2984 } 2985 2986 target_vec = lock_user(VERIFY_READ, target_addr, 2987 count * sizeof(struct target_iovec), 1); 2988 if (target_vec == NULL) { 2989 err = EFAULT; 2990 goto fail2; 2991 } 2992 2993 /* ??? If host page size > target page size, this will result in a 2994 value larger than what we can actually support. */ 2995 max_len = 0x7fffffff & TARGET_PAGE_MASK; 2996 total_len = 0; 2997 2998 for (i = 0; i < count; i++) { 2999 abi_ulong base = tswapal(target_vec[i].iov_base); 3000 abi_long len = tswapal(target_vec[i].iov_len); 3001 3002 if (len < 0) { 3003 err = EINVAL; 3004 goto fail; 3005 } else if (len == 0) { 3006 /* Zero length pointer is ignored. */ 3007 vec[i].iov_base = 0; 3008 } else { 3009 vec[i].iov_base = lock_user(type, base, len, copy); 3010 /* If the first buffer pointer is bad, this is a fault. But 3011 * subsequent bad buffers will result in a partial write; this 3012 * is realized by filling the vector with null pointers and 3013 * zero lengths. */ 3014 if (!vec[i].iov_base) { 3015 if (i == 0) { 3016 err = EFAULT; 3017 goto fail; 3018 } else { 3019 bad_address = true; 3020 } 3021 } 3022 if (bad_address) { 3023 len = 0; 3024 } 3025 if (len > max_len - total_len) { 3026 len = max_len - total_len; 3027 } 3028 } 3029 vec[i].iov_len = len; 3030 total_len += len; 3031 } 3032 3033 unlock_user(target_vec, target_addr, 0); 3034 return vec; 3035 3036 fail: 3037 while (--i >= 0) { 3038 if (tswapal(target_vec[i].iov_len) > 0) { 3039 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3040 } 3041 } 3042 unlock_user(target_vec, target_addr, 0); 3043 fail2: 3044 g_free(vec); 3045 errno = err; 3046 return NULL; 3047 } 3048 3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3050 abi_ulong count, int copy) 3051 { 3052 struct target_iovec *target_vec; 3053 int i; 3054 3055 target_vec = lock_user(VERIFY_READ, target_addr, 3056 count * sizeof(struct target_iovec), 1); 3057 if (target_vec) { 3058 for (i = 0; i < count; i++) { 3059 abi_ulong base = tswapal(target_vec[i].iov_base); 3060 abi_long len = tswapal(target_vec[i].iov_len); 3061 if (len < 0) { 3062 break; 3063 } 3064 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3065 } 3066 unlock_user(target_vec, target_addr, 0); 3067 } 3068 3069 g_free(vec); 3070 } 3071 3072 static inline int target_to_host_sock_type(int *type) 3073 { 3074 int host_type = 0; 3075 int target_type = *type; 3076 3077 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3078 case TARGET_SOCK_DGRAM: 3079 host_type = SOCK_DGRAM; 3080 break; 3081 case TARGET_SOCK_STREAM: 3082 host_type = SOCK_STREAM; 3083 break; 3084 default: 3085 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3086 break; 3087 } 3088 if (target_type & TARGET_SOCK_CLOEXEC) { 3089 #if defined(SOCK_CLOEXEC) 3090 host_type |= SOCK_CLOEXEC; 3091 #else 3092 return -TARGET_EINVAL; 3093 #endif 3094 } 3095 if (target_type & TARGET_SOCK_NONBLOCK) { 3096 #if defined(SOCK_NONBLOCK) 3097 host_type |= SOCK_NONBLOCK; 3098 #elif !defined(O_NONBLOCK) 3099 return -TARGET_EINVAL; 3100 #endif 3101 } 3102 *type = host_type; 3103 return 0; 3104 } 3105 3106 /* Try to emulate socket type flags after socket creation. */ 3107 static int sock_flags_fixup(int fd, int target_type) 3108 { 3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3110 if (target_type & TARGET_SOCK_NONBLOCK) { 3111 int flags = fcntl(fd, F_GETFL); 3112 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3113 close(fd); 3114 return -TARGET_EINVAL; 3115 } 3116 } 3117 #endif 3118 return fd; 3119 } 3120 3121 /* do_socket() Must return target values and target errnos. */ 3122 static abi_long do_socket(int domain, int type, int protocol) 3123 { 3124 int target_type = type; 3125 int ret; 3126 3127 ret = target_to_host_sock_type(&type); 3128 if (ret) { 3129 return ret; 3130 } 3131 3132 if (domain == PF_NETLINK && !( 3133 #ifdef CONFIG_RTNETLINK 3134 protocol == NETLINK_ROUTE || 3135 #endif 3136 protocol == NETLINK_KOBJECT_UEVENT || 3137 protocol == NETLINK_AUDIT)) { 3138 return -TARGET_EPROTONOSUPPORT; 3139 } 3140 3141 if (domain == AF_PACKET || 3142 (domain == AF_INET && type == SOCK_PACKET)) { 3143 protocol = tswap16(protocol); 3144 } 3145 3146 ret = get_errno(socket(domain, type, protocol)); 3147 if (ret >= 0) { 3148 ret = sock_flags_fixup(ret, target_type); 3149 if (type == SOCK_PACKET) { 3150 /* Manage an obsolete case : 3151 * if socket type is SOCK_PACKET, bind by name 3152 */ 3153 fd_trans_register(ret, &target_packet_trans); 3154 } else if (domain == PF_NETLINK) { 3155 switch (protocol) { 3156 #ifdef CONFIG_RTNETLINK 3157 case NETLINK_ROUTE: 3158 fd_trans_register(ret, &target_netlink_route_trans); 3159 break; 3160 #endif 3161 case NETLINK_KOBJECT_UEVENT: 3162 /* nothing to do: messages are strings */ 3163 break; 3164 case NETLINK_AUDIT: 3165 fd_trans_register(ret, &target_netlink_audit_trans); 3166 break; 3167 default: 3168 g_assert_not_reached(); 3169 } 3170 } 3171 } 3172 return ret; 3173 } 3174 3175 /* do_bind() Must return target values and target errnos. */ 3176 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3177 socklen_t addrlen) 3178 { 3179 void *addr; 3180 abi_long ret; 3181 3182 if ((int)addrlen < 0) { 3183 return -TARGET_EINVAL; 3184 } 3185 3186 addr = alloca(addrlen+1); 3187 3188 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3189 if (ret) 3190 return ret; 3191 3192 return get_errno(bind(sockfd, addr, addrlen)); 3193 } 3194 3195 /* do_connect() Must return target values and target errnos. */ 3196 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3197 socklen_t addrlen) 3198 { 3199 void *addr; 3200 abi_long ret; 3201 3202 if ((int)addrlen < 0) { 3203 return -TARGET_EINVAL; 3204 } 3205 3206 addr = alloca(addrlen+1); 3207 3208 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3209 if (ret) 3210 return ret; 3211 3212 return get_errno(safe_connect(sockfd, addr, addrlen)); 3213 } 3214 3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3217 int flags, int send) 3218 { 3219 abi_long ret, len; 3220 struct msghdr msg; 3221 abi_ulong count; 3222 struct iovec *vec; 3223 abi_ulong target_vec; 3224 3225 if (msgp->msg_name) { 3226 msg.msg_namelen = tswap32(msgp->msg_namelen); 3227 msg.msg_name = alloca(msg.msg_namelen+1); 3228 ret = target_to_host_sockaddr(fd, msg.msg_name, 3229 tswapal(msgp->msg_name), 3230 msg.msg_namelen); 3231 if (ret == -TARGET_EFAULT) { 3232 /* For connected sockets msg_name and msg_namelen must 3233 * be ignored, so returning EFAULT immediately is wrong. 3234 * Instead, pass a bad msg_name to the host kernel, and 3235 * let it decide whether to return EFAULT or not. 3236 */ 3237 msg.msg_name = (void *)-1; 3238 } else if (ret) { 3239 goto out2; 3240 } 3241 } else { 3242 msg.msg_name = NULL; 3243 msg.msg_namelen = 0; 3244 } 3245 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3246 msg.msg_control = alloca(msg.msg_controllen); 3247 memset(msg.msg_control, 0, msg.msg_controllen); 3248 3249 msg.msg_flags = tswap32(msgp->msg_flags); 3250 3251 count = tswapal(msgp->msg_iovlen); 3252 target_vec = tswapal(msgp->msg_iov); 3253 3254 if (count > IOV_MAX) { 3255 /* sendrcvmsg returns a different errno for this condition than 3256 * readv/writev, so we must catch it here before lock_iovec() does. 3257 */ 3258 ret = -TARGET_EMSGSIZE; 3259 goto out2; 3260 } 3261 3262 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3263 target_vec, count, send); 3264 if (vec == NULL) { 3265 ret = -host_to_target_errno(errno); 3266 /* allow sending packet without any iov, e.g. with MSG_MORE flag */ 3267 if (!send || ret) { 3268 goto out2; 3269 } 3270 } 3271 msg.msg_iovlen = count; 3272 msg.msg_iov = vec; 3273 3274 if (send) { 3275 if (fd_trans_target_to_host_data(fd)) { 3276 void *host_msg; 3277 3278 host_msg = g_malloc(msg.msg_iov->iov_len); 3279 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3280 ret = fd_trans_target_to_host_data(fd)(host_msg, 3281 msg.msg_iov->iov_len); 3282 if (ret >= 0) { 3283 msg.msg_iov->iov_base = host_msg; 3284 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3285 } 3286 g_free(host_msg); 3287 } else { 3288 ret = target_to_host_cmsg(&msg, msgp); 3289 if (ret == 0) { 3290 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3291 } 3292 } 3293 } else { 3294 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3295 if (!is_error(ret)) { 3296 len = ret; 3297 if (fd_trans_host_to_target_data(fd)) { 3298 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3299 MIN(msg.msg_iov->iov_len, len)); 3300 } 3301 if (!is_error(ret)) { 3302 ret = host_to_target_cmsg(msgp, &msg); 3303 } 3304 if (!is_error(ret)) { 3305 msgp->msg_namelen = tswap32(msg.msg_namelen); 3306 msgp->msg_flags = tswap32(msg.msg_flags); 3307 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3308 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3309 msg.msg_name, msg.msg_namelen); 3310 if (ret) { 3311 goto out; 3312 } 3313 } 3314 3315 ret = len; 3316 } 3317 } 3318 } 3319 3320 out: 3321 if (vec) { 3322 unlock_iovec(vec, target_vec, count, !send); 3323 } 3324 out2: 3325 return ret; 3326 } 3327 3328 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3329 int flags, int send) 3330 { 3331 abi_long ret; 3332 struct target_msghdr *msgp; 3333 3334 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3335 msgp, 3336 target_msg, 3337 send ? 1 : 0)) { 3338 return -TARGET_EFAULT; 3339 } 3340 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3341 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3342 return ret; 3343 } 3344 3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3346 * so it might not have this *mmsg-specific flag either. 3347 */ 3348 #ifndef MSG_WAITFORONE 3349 #define MSG_WAITFORONE 0x10000 3350 #endif 3351 3352 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3353 unsigned int vlen, unsigned int flags, 3354 int send) 3355 { 3356 struct target_mmsghdr *mmsgp; 3357 abi_long ret = 0; 3358 int i; 3359 3360 if (vlen > UIO_MAXIOV) { 3361 vlen = UIO_MAXIOV; 3362 } 3363 3364 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3365 if (!mmsgp) { 3366 return -TARGET_EFAULT; 3367 } 3368 3369 for (i = 0; i < vlen; i++) { 3370 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3371 if (is_error(ret)) { 3372 break; 3373 } 3374 mmsgp[i].msg_len = tswap32(ret); 3375 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3376 if (flags & MSG_WAITFORONE) { 3377 flags |= MSG_DONTWAIT; 3378 } 3379 } 3380 3381 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3382 3383 /* Return number of datagrams sent if we sent any at all; 3384 * otherwise return the error. 3385 */ 3386 if (i) { 3387 return i; 3388 } 3389 return ret; 3390 } 3391 3392 /* do_accept4() Must return target values and target errnos. */ 3393 static abi_long do_accept4(int fd, abi_ulong target_addr, 3394 abi_ulong target_addrlen_addr, int flags) 3395 { 3396 socklen_t addrlen, ret_addrlen; 3397 void *addr; 3398 abi_long ret; 3399 int host_flags; 3400 3401 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) { 3402 return -TARGET_EINVAL; 3403 } 3404 3405 host_flags = 0; 3406 if (flags & TARGET_SOCK_NONBLOCK) { 3407 host_flags |= SOCK_NONBLOCK; 3408 } 3409 if (flags & TARGET_SOCK_CLOEXEC) { 3410 host_flags |= SOCK_CLOEXEC; 3411 } 3412 3413 if (target_addr == 0) { 3414 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3415 } 3416 3417 /* linux returns EFAULT if addrlen pointer is invalid */ 3418 if (get_user_u32(addrlen, target_addrlen_addr)) 3419 return -TARGET_EFAULT; 3420 3421 if ((int)addrlen < 0) { 3422 return -TARGET_EINVAL; 3423 } 3424 3425 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3426 return -TARGET_EFAULT; 3427 } 3428 3429 addr = alloca(addrlen); 3430 3431 ret_addrlen = addrlen; 3432 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags)); 3433 if (!is_error(ret)) { 3434 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3435 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3436 ret = -TARGET_EFAULT; 3437 } 3438 } 3439 return ret; 3440 } 3441 3442 /* do_getpeername() Must return target values and target errnos. */ 3443 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3444 abi_ulong target_addrlen_addr) 3445 { 3446 socklen_t addrlen, ret_addrlen; 3447 void *addr; 3448 abi_long ret; 3449 3450 if (get_user_u32(addrlen, target_addrlen_addr)) 3451 return -TARGET_EFAULT; 3452 3453 if ((int)addrlen < 0) { 3454 return -TARGET_EINVAL; 3455 } 3456 3457 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3458 return -TARGET_EFAULT; 3459 } 3460 3461 addr = alloca(addrlen); 3462 3463 ret_addrlen = addrlen; 3464 ret = get_errno(getpeername(fd, addr, &ret_addrlen)); 3465 if (!is_error(ret)) { 3466 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3467 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3468 ret = -TARGET_EFAULT; 3469 } 3470 } 3471 return ret; 3472 } 3473 3474 /* do_getsockname() Must return target values and target errnos. */ 3475 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3476 abi_ulong target_addrlen_addr) 3477 { 3478 socklen_t addrlen, ret_addrlen; 3479 void *addr; 3480 abi_long ret; 3481 3482 if (get_user_u32(addrlen, target_addrlen_addr)) 3483 return -TARGET_EFAULT; 3484 3485 if ((int)addrlen < 0) { 3486 return -TARGET_EINVAL; 3487 } 3488 3489 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3490 return -TARGET_EFAULT; 3491 } 3492 3493 addr = alloca(addrlen); 3494 3495 ret_addrlen = addrlen; 3496 ret = get_errno(getsockname(fd, addr, &ret_addrlen)); 3497 if (!is_error(ret)) { 3498 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3499 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3500 ret = -TARGET_EFAULT; 3501 } 3502 } 3503 return ret; 3504 } 3505 3506 /* do_socketpair() Must return target values and target errnos. */ 3507 static abi_long do_socketpair(int domain, int type, int protocol, 3508 abi_ulong target_tab_addr) 3509 { 3510 int tab[2]; 3511 abi_long ret; 3512 3513 target_to_host_sock_type(&type); 3514 3515 ret = get_errno(socketpair(domain, type, protocol, tab)); 3516 if (!is_error(ret)) { 3517 if (put_user_s32(tab[0], target_tab_addr) 3518 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3519 ret = -TARGET_EFAULT; 3520 } 3521 return ret; 3522 } 3523 3524 /* do_sendto() Must return target values and target errnos. */ 3525 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3526 abi_ulong target_addr, socklen_t addrlen) 3527 { 3528 void *addr; 3529 void *host_msg; 3530 void *copy_msg = NULL; 3531 abi_long ret; 3532 3533 if ((int)addrlen < 0) { 3534 return -TARGET_EINVAL; 3535 } 3536 3537 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3538 if (!host_msg) 3539 return -TARGET_EFAULT; 3540 if (fd_trans_target_to_host_data(fd)) { 3541 copy_msg = host_msg; 3542 host_msg = g_malloc(len); 3543 memcpy(host_msg, copy_msg, len); 3544 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3545 if (ret < 0) { 3546 goto fail; 3547 } 3548 } 3549 if (target_addr) { 3550 addr = alloca(addrlen+1); 3551 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3552 if (ret) { 3553 goto fail; 3554 } 3555 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3556 } else { 3557 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3558 } 3559 fail: 3560 if (copy_msg) { 3561 g_free(host_msg); 3562 host_msg = copy_msg; 3563 } 3564 unlock_user(host_msg, msg, 0); 3565 return ret; 3566 } 3567 3568 /* do_recvfrom() Must return target values and target errnos. */ 3569 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3570 abi_ulong target_addr, 3571 abi_ulong target_addrlen) 3572 { 3573 socklen_t addrlen, ret_addrlen; 3574 void *addr; 3575 void *host_msg; 3576 abi_long ret; 3577 3578 if (!msg) { 3579 host_msg = NULL; 3580 } else { 3581 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3582 if (!host_msg) { 3583 return -TARGET_EFAULT; 3584 } 3585 } 3586 if (target_addr) { 3587 if (get_user_u32(addrlen, target_addrlen)) { 3588 ret = -TARGET_EFAULT; 3589 goto fail; 3590 } 3591 if ((int)addrlen < 0) { 3592 ret = -TARGET_EINVAL; 3593 goto fail; 3594 } 3595 addr = alloca(addrlen); 3596 ret_addrlen = addrlen; 3597 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3598 addr, &ret_addrlen)); 3599 } else { 3600 addr = NULL; /* To keep compiler quiet. */ 3601 addrlen = 0; /* To keep compiler quiet. */ 3602 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3603 } 3604 if (!is_error(ret)) { 3605 if (fd_trans_host_to_target_data(fd)) { 3606 abi_long trans; 3607 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len)); 3608 if (is_error(trans)) { 3609 ret = trans; 3610 goto fail; 3611 } 3612 } 3613 if (target_addr) { 3614 host_to_target_sockaddr(target_addr, addr, 3615 MIN(addrlen, ret_addrlen)); 3616 if (put_user_u32(ret_addrlen, target_addrlen)) { 3617 ret = -TARGET_EFAULT; 3618 goto fail; 3619 } 3620 } 3621 unlock_user(host_msg, msg, len); 3622 } else { 3623 fail: 3624 unlock_user(host_msg, msg, 0); 3625 } 3626 return ret; 3627 } 3628 3629 #ifdef TARGET_NR_socketcall 3630 /* do_socketcall() must return target values and target errnos. */ 3631 static abi_long do_socketcall(int num, abi_ulong vptr) 3632 { 3633 static const unsigned nargs[] = { /* number of arguments per operation */ 3634 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 3635 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 3636 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 3637 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 3638 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 3639 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 3640 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 3641 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 3642 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 3643 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 3644 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 3645 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 3646 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 3647 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3648 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3649 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 3650 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 3651 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 3652 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 3653 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 3654 }; 3655 abi_long a[6]; /* max 6 args */ 3656 unsigned i; 3657 3658 /* check the range of the first argument num */ 3659 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 3660 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 3661 return -TARGET_EINVAL; 3662 } 3663 /* ensure we have space for args */ 3664 if (nargs[num] > ARRAY_SIZE(a)) { 3665 return -TARGET_EINVAL; 3666 } 3667 /* collect the arguments in a[] according to nargs[] */ 3668 for (i = 0; i < nargs[num]; ++i) { 3669 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3670 return -TARGET_EFAULT; 3671 } 3672 } 3673 /* now when we have the args, invoke the appropriate underlying function */ 3674 switch (num) { 3675 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 3676 return do_socket(a[0], a[1], a[2]); 3677 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 3678 return do_bind(a[0], a[1], a[2]); 3679 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 3680 return do_connect(a[0], a[1], a[2]); 3681 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 3682 return get_errno(listen(a[0], a[1])); 3683 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 3684 return do_accept4(a[0], a[1], a[2], 0); 3685 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 3686 return do_getsockname(a[0], a[1], a[2]); 3687 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 3688 return do_getpeername(a[0], a[1], a[2]); 3689 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 3690 return do_socketpair(a[0], a[1], a[2], a[3]); 3691 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 3692 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3693 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 3694 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3695 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 3696 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3697 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 3698 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3699 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 3700 return get_errno(shutdown(a[0], a[1])); 3701 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3702 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3703 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3704 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3705 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 3706 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3707 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 3708 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3709 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 3710 return do_accept4(a[0], a[1], a[2], a[3]); 3711 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 3712 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 3713 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 3714 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 3715 default: 3716 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num); 3717 return -TARGET_EINVAL; 3718 } 3719 } 3720 #endif 3721 3722 #ifndef TARGET_SEMID64_DS 3723 /* asm-generic version of this struct */ 3724 struct target_semid64_ds 3725 { 3726 struct target_ipc_perm sem_perm; 3727 abi_ulong sem_otime; 3728 #if TARGET_ABI_BITS == 32 3729 abi_ulong __unused1; 3730 #endif 3731 abi_ulong sem_ctime; 3732 #if TARGET_ABI_BITS == 32 3733 abi_ulong __unused2; 3734 #endif 3735 abi_ulong sem_nsems; 3736 abi_ulong __unused3; 3737 abi_ulong __unused4; 3738 }; 3739 #endif 3740 3741 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 3742 abi_ulong target_addr) 3743 { 3744 struct target_ipc_perm *target_ip; 3745 struct target_semid64_ds *target_sd; 3746 3747 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3748 return -TARGET_EFAULT; 3749 target_ip = &(target_sd->sem_perm); 3750 host_ip->__key = tswap32(target_ip->__key); 3751 host_ip->uid = tswap32(target_ip->uid); 3752 host_ip->gid = tswap32(target_ip->gid); 3753 host_ip->cuid = tswap32(target_ip->cuid); 3754 host_ip->cgid = tswap32(target_ip->cgid); 3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3756 host_ip->mode = tswap32(target_ip->mode); 3757 #else 3758 host_ip->mode = tswap16(target_ip->mode); 3759 #endif 3760 #if defined(TARGET_PPC) 3761 host_ip->__seq = tswap32(target_ip->__seq); 3762 #else 3763 host_ip->__seq = tswap16(target_ip->__seq); 3764 #endif 3765 unlock_user_struct(target_sd, target_addr, 0); 3766 return 0; 3767 } 3768 3769 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 3770 struct ipc_perm *host_ip) 3771 { 3772 struct target_ipc_perm *target_ip; 3773 struct target_semid64_ds *target_sd; 3774 3775 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3776 return -TARGET_EFAULT; 3777 target_ip = &(target_sd->sem_perm); 3778 target_ip->__key = tswap32(host_ip->__key); 3779 target_ip->uid = tswap32(host_ip->uid); 3780 target_ip->gid = tswap32(host_ip->gid); 3781 target_ip->cuid = tswap32(host_ip->cuid); 3782 target_ip->cgid = tswap32(host_ip->cgid); 3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3784 target_ip->mode = tswap32(host_ip->mode); 3785 #else 3786 target_ip->mode = tswap16(host_ip->mode); 3787 #endif 3788 #if defined(TARGET_PPC) 3789 target_ip->__seq = tswap32(host_ip->__seq); 3790 #else 3791 target_ip->__seq = tswap16(host_ip->__seq); 3792 #endif 3793 unlock_user_struct(target_sd, target_addr, 1); 3794 return 0; 3795 } 3796 3797 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 3798 abi_ulong target_addr) 3799 { 3800 struct target_semid64_ds *target_sd; 3801 3802 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3803 return -TARGET_EFAULT; 3804 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 3805 return -TARGET_EFAULT; 3806 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 3807 host_sd->sem_otime = tswapal(target_sd->sem_otime); 3808 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 3809 unlock_user_struct(target_sd, target_addr, 0); 3810 return 0; 3811 } 3812 3813 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 3814 struct semid_ds *host_sd) 3815 { 3816 struct target_semid64_ds *target_sd; 3817 3818 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3819 return -TARGET_EFAULT; 3820 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 3821 return -TARGET_EFAULT; 3822 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 3823 target_sd->sem_otime = tswapal(host_sd->sem_otime); 3824 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 3825 unlock_user_struct(target_sd, target_addr, 1); 3826 return 0; 3827 } 3828 3829 struct target_seminfo { 3830 int semmap; 3831 int semmni; 3832 int semmns; 3833 int semmnu; 3834 int semmsl; 3835 int semopm; 3836 int semume; 3837 int semusz; 3838 int semvmx; 3839 int semaem; 3840 }; 3841 3842 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 3843 struct seminfo *host_seminfo) 3844 { 3845 struct target_seminfo *target_seminfo; 3846 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 3847 return -TARGET_EFAULT; 3848 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 3849 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 3850 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 3851 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 3852 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 3853 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 3854 __put_user(host_seminfo->semume, &target_seminfo->semume); 3855 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 3856 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 3857 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 3858 unlock_user_struct(target_seminfo, target_addr, 1); 3859 return 0; 3860 } 3861 3862 union semun { 3863 int val; 3864 struct semid_ds *buf; 3865 unsigned short *array; 3866 struct seminfo *__buf; 3867 }; 3868 3869 union target_semun { 3870 int val; 3871 abi_ulong buf; 3872 abi_ulong array; 3873 abi_ulong __buf; 3874 }; 3875 3876 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 3877 abi_ulong target_addr) 3878 { 3879 int nsems; 3880 unsigned short *array; 3881 union semun semun; 3882 struct semid_ds semid_ds; 3883 int i, ret; 3884 3885 semun.buf = &semid_ds; 3886 3887 ret = semctl(semid, 0, IPC_STAT, semun); 3888 if (ret == -1) 3889 return get_errno(ret); 3890 3891 nsems = semid_ds.sem_nsems; 3892 3893 *host_array = g_try_new(unsigned short, nsems); 3894 if (!*host_array) { 3895 return -TARGET_ENOMEM; 3896 } 3897 array = lock_user(VERIFY_READ, target_addr, 3898 nsems*sizeof(unsigned short), 1); 3899 if (!array) { 3900 g_free(*host_array); 3901 return -TARGET_EFAULT; 3902 } 3903 3904 for(i=0; i<nsems; i++) { 3905 __get_user((*host_array)[i], &array[i]); 3906 } 3907 unlock_user(array, target_addr, 0); 3908 3909 return 0; 3910 } 3911 3912 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 3913 unsigned short **host_array) 3914 { 3915 int nsems; 3916 unsigned short *array; 3917 union semun semun; 3918 struct semid_ds semid_ds; 3919 int i, ret; 3920 3921 semun.buf = &semid_ds; 3922 3923 ret = semctl(semid, 0, IPC_STAT, semun); 3924 if (ret == -1) 3925 return get_errno(ret); 3926 3927 nsems = semid_ds.sem_nsems; 3928 3929 array = lock_user(VERIFY_WRITE, target_addr, 3930 nsems*sizeof(unsigned short), 0); 3931 if (!array) 3932 return -TARGET_EFAULT; 3933 3934 for(i=0; i<nsems; i++) { 3935 __put_user((*host_array)[i], &array[i]); 3936 } 3937 g_free(*host_array); 3938 unlock_user(array, target_addr, 1); 3939 3940 return 0; 3941 } 3942 3943 static inline abi_long do_semctl(int semid, int semnum, int cmd, 3944 abi_ulong target_arg) 3945 { 3946 union target_semun target_su = { .buf = target_arg }; 3947 union semun arg; 3948 struct semid_ds dsarg; 3949 unsigned short *array = NULL; 3950 struct seminfo seminfo; 3951 abi_long ret = -TARGET_EINVAL; 3952 abi_long err; 3953 cmd &= 0xff; 3954 3955 switch( cmd ) { 3956 case GETVAL: 3957 case SETVAL: 3958 /* In 64 bit cross-endian situations, we will erroneously pick up 3959 * the wrong half of the union for the "val" element. To rectify 3960 * this, the entire 8-byte structure is byteswapped, followed by 3961 * a swap of the 4 byte val field. In other cases, the data is 3962 * already in proper host byte order. */ 3963 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 3964 target_su.buf = tswapal(target_su.buf); 3965 arg.val = tswap32(target_su.val); 3966 } else { 3967 arg.val = target_su.val; 3968 } 3969 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3970 break; 3971 case GETALL: 3972 case SETALL: 3973 err = target_to_host_semarray(semid, &array, target_su.array); 3974 if (err) 3975 return err; 3976 arg.array = array; 3977 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3978 err = host_to_target_semarray(semid, target_su.array, &array); 3979 if (err) 3980 return err; 3981 break; 3982 case IPC_STAT: 3983 case IPC_SET: 3984 case SEM_STAT: 3985 err = target_to_host_semid_ds(&dsarg, target_su.buf); 3986 if (err) 3987 return err; 3988 arg.buf = &dsarg; 3989 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3990 err = host_to_target_semid_ds(target_su.buf, &dsarg); 3991 if (err) 3992 return err; 3993 break; 3994 case IPC_INFO: 3995 case SEM_INFO: 3996 arg.__buf = &seminfo; 3997 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3998 err = host_to_target_seminfo(target_su.__buf, &seminfo); 3999 if (err) 4000 return err; 4001 break; 4002 case IPC_RMID: 4003 case GETPID: 4004 case GETNCNT: 4005 case GETZCNT: 4006 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4007 break; 4008 } 4009 4010 return ret; 4011 } 4012 4013 struct target_sembuf { 4014 unsigned short sem_num; 4015 short sem_op; 4016 short sem_flg; 4017 }; 4018 4019 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4020 abi_ulong target_addr, 4021 unsigned nsops) 4022 { 4023 struct target_sembuf *target_sembuf; 4024 int i; 4025 4026 target_sembuf = lock_user(VERIFY_READ, target_addr, 4027 nsops*sizeof(struct target_sembuf), 1); 4028 if (!target_sembuf) 4029 return -TARGET_EFAULT; 4030 4031 for(i=0; i<nsops; i++) { 4032 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4033 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4034 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4035 } 4036 4037 unlock_user(target_sembuf, target_addr, 0); 4038 4039 return 0; 4040 } 4041 4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \ 4043 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64) 4044 4045 /* 4046 * This macro is required to handle the s390 variants, which passes the 4047 * arguments in a different order than default. 4048 */ 4049 #ifdef __s390x__ 4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4051 (__nsops), (__timeout), (__sops) 4052 #else 4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4054 (__nsops), 0, (__sops), (__timeout) 4055 #endif 4056 4057 static inline abi_long do_semtimedop(int semid, 4058 abi_long ptr, 4059 unsigned nsops, 4060 abi_long timeout, bool time64) 4061 { 4062 struct sembuf *sops; 4063 struct timespec ts, *pts = NULL; 4064 abi_long ret; 4065 4066 if (timeout) { 4067 pts = &ts; 4068 if (time64) { 4069 if (target_to_host_timespec64(pts, timeout)) { 4070 return -TARGET_EFAULT; 4071 } 4072 } else { 4073 if (target_to_host_timespec(pts, timeout)) { 4074 return -TARGET_EFAULT; 4075 } 4076 } 4077 } 4078 4079 if (nsops > TARGET_SEMOPM) { 4080 return -TARGET_E2BIG; 4081 } 4082 4083 sops = g_new(struct sembuf, nsops); 4084 4085 if (target_to_host_sembuf(sops, ptr, nsops)) { 4086 g_free(sops); 4087 return -TARGET_EFAULT; 4088 } 4089 4090 ret = -TARGET_ENOSYS; 4091 #ifdef __NR_semtimedop 4092 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts)); 4093 #endif 4094 #ifdef __NR_ipc 4095 if (ret == -TARGET_ENOSYS) { 4096 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, 4097 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts))); 4098 } 4099 #endif 4100 g_free(sops); 4101 return ret; 4102 } 4103 #endif 4104 4105 struct target_msqid_ds 4106 { 4107 struct target_ipc_perm msg_perm; 4108 abi_ulong msg_stime; 4109 #if TARGET_ABI_BITS == 32 4110 abi_ulong __unused1; 4111 #endif 4112 abi_ulong msg_rtime; 4113 #if TARGET_ABI_BITS == 32 4114 abi_ulong __unused2; 4115 #endif 4116 abi_ulong msg_ctime; 4117 #if TARGET_ABI_BITS == 32 4118 abi_ulong __unused3; 4119 #endif 4120 abi_ulong __msg_cbytes; 4121 abi_ulong msg_qnum; 4122 abi_ulong msg_qbytes; 4123 abi_ulong msg_lspid; 4124 abi_ulong msg_lrpid; 4125 abi_ulong __unused4; 4126 abi_ulong __unused5; 4127 }; 4128 4129 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4130 abi_ulong target_addr) 4131 { 4132 struct target_msqid_ds *target_md; 4133 4134 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4135 return -TARGET_EFAULT; 4136 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4137 return -TARGET_EFAULT; 4138 host_md->msg_stime = tswapal(target_md->msg_stime); 4139 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4140 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4141 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4142 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4143 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4144 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4145 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4146 unlock_user_struct(target_md, target_addr, 0); 4147 return 0; 4148 } 4149 4150 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4151 struct msqid_ds *host_md) 4152 { 4153 struct target_msqid_ds *target_md; 4154 4155 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4156 return -TARGET_EFAULT; 4157 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4158 return -TARGET_EFAULT; 4159 target_md->msg_stime = tswapal(host_md->msg_stime); 4160 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4161 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4162 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4163 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4164 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4165 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4166 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4167 unlock_user_struct(target_md, target_addr, 1); 4168 return 0; 4169 } 4170 4171 struct target_msginfo { 4172 int msgpool; 4173 int msgmap; 4174 int msgmax; 4175 int msgmnb; 4176 int msgmni; 4177 int msgssz; 4178 int msgtql; 4179 unsigned short int msgseg; 4180 }; 4181 4182 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4183 struct msginfo *host_msginfo) 4184 { 4185 struct target_msginfo *target_msginfo; 4186 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4187 return -TARGET_EFAULT; 4188 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4189 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4190 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4191 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4192 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4193 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4194 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4195 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4196 unlock_user_struct(target_msginfo, target_addr, 1); 4197 return 0; 4198 } 4199 4200 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4201 { 4202 struct msqid_ds dsarg; 4203 struct msginfo msginfo; 4204 abi_long ret = -TARGET_EINVAL; 4205 4206 cmd &= 0xff; 4207 4208 switch (cmd) { 4209 case IPC_STAT: 4210 case IPC_SET: 4211 case MSG_STAT: 4212 if (target_to_host_msqid_ds(&dsarg,ptr)) 4213 return -TARGET_EFAULT; 4214 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4215 if (host_to_target_msqid_ds(ptr,&dsarg)) 4216 return -TARGET_EFAULT; 4217 break; 4218 case IPC_RMID: 4219 ret = get_errno(msgctl(msgid, cmd, NULL)); 4220 break; 4221 case IPC_INFO: 4222 case MSG_INFO: 4223 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4224 if (host_to_target_msginfo(ptr, &msginfo)) 4225 return -TARGET_EFAULT; 4226 break; 4227 } 4228 4229 return ret; 4230 } 4231 4232 struct target_msgbuf { 4233 abi_long mtype; 4234 char mtext[1]; 4235 }; 4236 4237 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4238 ssize_t msgsz, int msgflg) 4239 { 4240 struct target_msgbuf *target_mb; 4241 struct msgbuf *host_mb; 4242 abi_long ret = 0; 4243 4244 if (msgsz < 0) { 4245 return -TARGET_EINVAL; 4246 } 4247 4248 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4249 return -TARGET_EFAULT; 4250 host_mb = g_try_malloc(msgsz + sizeof(long)); 4251 if (!host_mb) { 4252 unlock_user_struct(target_mb, msgp, 0); 4253 return -TARGET_ENOMEM; 4254 } 4255 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4256 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4257 ret = -TARGET_ENOSYS; 4258 #ifdef __NR_msgsnd 4259 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4260 #endif 4261 #ifdef __NR_ipc 4262 if (ret == -TARGET_ENOSYS) { 4263 #ifdef __s390x__ 4264 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4265 host_mb)); 4266 #else 4267 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4268 host_mb, 0)); 4269 #endif 4270 } 4271 #endif 4272 g_free(host_mb); 4273 unlock_user_struct(target_mb, msgp, 0); 4274 4275 return ret; 4276 } 4277 4278 #ifdef __NR_ipc 4279 #if defined(__sparc__) 4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */ 4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp 4282 #elif defined(__s390x__) 4283 /* The s390 sys_ipc variant has only five parameters. */ 4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4285 ((long int[]){(long int)__msgp, __msgtyp}) 4286 #else 4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4288 ((long int[]){(long int)__msgp, __msgtyp}), 0 4289 #endif 4290 #endif 4291 4292 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4293 ssize_t msgsz, abi_long msgtyp, 4294 int msgflg) 4295 { 4296 struct target_msgbuf *target_mb; 4297 char *target_mtext; 4298 struct msgbuf *host_mb; 4299 abi_long ret = 0; 4300 4301 if (msgsz < 0) { 4302 return -TARGET_EINVAL; 4303 } 4304 4305 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4306 return -TARGET_EFAULT; 4307 4308 host_mb = g_try_malloc(msgsz + sizeof(long)); 4309 if (!host_mb) { 4310 ret = -TARGET_ENOMEM; 4311 goto end; 4312 } 4313 ret = -TARGET_ENOSYS; 4314 #ifdef __NR_msgrcv 4315 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4316 #endif 4317 #ifdef __NR_ipc 4318 if (ret == -TARGET_ENOSYS) { 4319 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz, 4320 msgflg, MSGRCV_ARGS(host_mb, msgtyp))); 4321 } 4322 #endif 4323 4324 if (ret > 0) { 4325 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4326 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4327 if (!target_mtext) { 4328 ret = -TARGET_EFAULT; 4329 goto end; 4330 } 4331 memcpy(target_mb->mtext, host_mb->mtext, ret); 4332 unlock_user(target_mtext, target_mtext_addr, ret); 4333 } 4334 4335 target_mb->mtype = tswapal(host_mb->mtype); 4336 4337 end: 4338 if (target_mb) 4339 unlock_user_struct(target_mb, msgp, 1); 4340 g_free(host_mb); 4341 return ret; 4342 } 4343 4344 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4345 abi_ulong target_addr) 4346 { 4347 struct target_shmid_ds *target_sd; 4348 4349 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4350 return -TARGET_EFAULT; 4351 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4352 return -TARGET_EFAULT; 4353 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4354 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4355 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4356 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4357 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4358 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4359 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4360 unlock_user_struct(target_sd, target_addr, 0); 4361 return 0; 4362 } 4363 4364 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4365 struct shmid_ds *host_sd) 4366 { 4367 struct target_shmid_ds *target_sd; 4368 4369 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4370 return -TARGET_EFAULT; 4371 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4372 return -TARGET_EFAULT; 4373 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4374 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4375 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4376 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4377 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4378 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4379 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4380 unlock_user_struct(target_sd, target_addr, 1); 4381 return 0; 4382 } 4383 4384 struct target_shminfo { 4385 abi_ulong shmmax; 4386 abi_ulong shmmin; 4387 abi_ulong shmmni; 4388 abi_ulong shmseg; 4389 abi_ulong shmall; 4390 }; 4391 4392 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4393 struct shminfo *host_shminfo) 4394 { 4395 struct target_shminfo *target_shminfo; 4396 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4397 return -TARGET_EFAULT; 4398 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4399 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4400 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4401 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4402 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4403 unlock_user_struct(target_shminfo, target_addr, 1); 4404 return 0; 4405 } 4406 4407 struct target_shm_info { 4408 int used_ids; 4409 abi_ulong shm_tot; 4410 abi_ulong shm_rss; 4411 abi_ulong shm_swp; 4412 abi_ulong swap_attempts; 4413 abi_ulong swap_successes; 4414 }; 4415 4416 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4417 struct shm_info *host_shm_info) 4418 { 4419 struct target_shm_info *target_shm_info; 4420 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4421 return -TARGET_EFAULT; 4422 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4423 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4424 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4425 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4426 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4427 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4428 unlock_user_struct(target_shm_info, target_addr, 1); 4429 return 0; 4430 } 4431 4432 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4433 { 4434 struct shmid_ds dsarg; 4435 struct shminfo shminfo; 4436 struct shm_info shm_info; 4437 abi_long ret = -TARGET_EINVAL; 4438 4439 cmd &= 0xff; 4440 4441 switch(cmd) { 4442 case IPC_STAT: 4443 case IPC_SET: 4444 case SHM_STAT: 4445 if (target_to_host_shmid_ds(&dsarg, buf)) 4446 return -TARGET_EFAULT; 4447 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4448 if (host_to_target_shmid_ds(buf, &dsarg)) 4449 return -TARGET_EFAULT; 4450 break; 4451 case IPC_INFO: 4452 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4453 if (host_to_target_shminfo(buf, &shminfo)) 4454 return -TARGET_EFAULT; 4455 break; 4456 case SHM_INFO: 4457 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4458 if (host_to_target_shm_info(buf, &shm_info)) 4459 return -TARGET_EFAULT; 4460 break; 4461 case IPC_RMID: 4462 case SHM_LOCK: 4463 case SHM_UNLOCK: 4464 ret = get_errno(shmctl(shmid, cmd, NULL)); 4465 break; 4466 } 4467 4468 return ret; 4469 } 4470 4471 #ifdef TARGET_NR_ipc 4472 /* ??? This only works with linear mappings. */ 4473 /* do_ipc() must return target values and target errnos. */ 4474 static abi_long do_ipc(CPUArchState *cpu_env, 4475 unsigned int call, abi_long first, 4476 abi_long second, abi_long third, 4477 abi_long ptr, abi_long fifth) 4478 { 4479 int version; 4480 abi_long ret = 0; 4481 4482 version = call >> 16; 4483 call &= 0xffff; 4484 4485 switch (call) { 4486 case IPCOP_semop: 4487 ret = do_semtimedop(first, ptr, second, 0, false); 4488 break; 4489 case IPCOP_semtimedop: 4490 /* 4491 * The s390 sys_ipc variant has only five parameters instead of six 4492 * (as for default variant) and the only difference is the handling of 4493 * SEMTIMEDOP where on s390 the third parameter is used as a pointer 4494 * to a struct timespec where the generic variant uses fifth parameter. 4495 */ 4496 #if defined(TARGET_S390X) 4497 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64); 4498 #else 4499 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64); 4500 #endif 4501 break; 4502 4503 case IPCOP_semget: 4504 ret = get_errno(semget(first, second, third)); 4505 break; 4506 4507 case IPCOP_semctl: { 4508 /* The semun argument to semctl is passed by value, so dereference the 4509 * ptr argument. */ 4510 abi_ulong atptr; 4511 get_user_ual(atptr, ptr); 4512 ret = do_semctl(first, second, third, atptr); 4513 break; 4514 } 4515 4516 case IPCOP_msgget: 4517 ret = get_errno(msgget(first, second)); 4518 break; 4519 4520 case IPCOP_msgsnd: 4521 ret = do_msgsnd(first, ptr, second, third); 4522 break; 4523 4524 case IPCOP_msgctl: 4525 ret = do_msgctl(first, second, ptr); 4526 break; 4527 4528 case IPCOP_msgrcv: 4529 switch (version) { 4530 case 0: 4531 { 4532 struct target_ipc_kludge { 4533 abi_long msgp; 4534 abi_long msgtyp; 4535 } *tmp; 4536 4537 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4538 ret = -TARGET_EFAULT; 4539 break; 4540 } 4541 4542 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4543 4544 unlock_user_struct(tmp, ptr, 0); 4545 break; 4546 } 4547 default: 4548 ret = do_msgrcv(first, ptr, second, fifth, third); 4549 } 4550 break; 4551 4552 case IPCOP_shmat: 4553 switch (version) { 4554 default: 4555 { 4556 abi_ulong raddr; 4557 raddr = target_shmat(cpu_env, first, ptr, second); 4558 if (is_error(raddr)) 4559 return get_errno(raddr); 4560 if (put_user_ual(raddr, third)) 4561 return -TARGET_EFAULT; 4562 break; 4563 } 4564 case 1: 4565 ret = -TARGET_EINVAL; 4566 break; 4567 } 4568 break; 4569 case IPCOP_shmdt: 4570 ret = target_shmdt(ptr); 4571 break; 4572 4573 case IPCOP_shmget: 4574 /* IPC_* flag values are the same on all linux platforms */ 4575 ret = get_errno(shmget(first, second, third)); 4576 break; 4577 4578 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4579 case IPCOP_shmctl: 4580 ret = do_shmctl(first, second, ptr); 4581 break; 4582 default: 4583 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n", 4584 call, version); 4585 ret = -TARGET_ENOSYS; 4586 break; 4587 } 4588 return ret; 4589 } 4590 #endif 4591 4592 /* kernel structure types definitions */ 4593 4594 #define STRUCT(name, ...) STRUCT_ ## name, 4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4596 enum { 4597 #include "syscall_types.h" 4598 STRUCT_MAX 4599 }; 4600 #undef STRUCT 4601 #undef STRUCT_SPECIAL 4602 4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4604 #define STRUCT_SPECIAL(name) 4605 #include "syscall_types.h" 4606 #undef STRUCT 4607 #undef STRUCT_SPECIAL 4608 4609 #define MAX_STRUCT_SIZE 4096 4610 4611 #ifdef CONFIG_FIEMAP 4612 /* So fiemap access checks don't overflow on 32 bit systems. 4613 * This is very slightly smaller than the limit imposed by 4614 * the underlying kernel. 4615 */ 4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4617 / sizeof(struct fiemap_extent)) 4618 4619 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4620 int fd, int cmd, abi_long arg) 4621 { 4622 /* The parameter for this ioctl is a struct fiemap followed 4623 * by an array of struct fiemap_extent whose size is set 4624 * in fiemap->fm_extent_count. The array is filled in by the 4625 * ioctl. 4626 */ 4627 int target_size_in, target_size_out; 4628 struct fiemap *fm; 4629 const argtype *arg_type = ie->arg_type; 4630 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4631 void *argptr, *p; 4632 abi_long ret; 4633 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4634 uint32_t outbufsz; 4635 int free_fm = 0; 4636 4637 assert(arg_type[0] == TYPE_PTR); 4638 assert(ie->access == IOC_RW); 4639 arg_type++; 4640 target_size_in = thunk_type_size(arg_type, 0); 4641 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4642 if (!argptr) { 4643 return -TARGET_EFAULT; 4644 } 4645 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4646 unlock_user(argptr, arg, 0); 4647 fm = (struct fiemap *)buf_temp; 4648 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4649 return -TARGET_EINVAL; 4650 } 4651 4652 outbufsz = sizeof (*fm) + 4653 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4654 4655 if (outbufsz > MAX_STRUCT_SIZE) { 4656 /* We can't fit all the extents into the fixed size buffer. 4657 * Allocate one that is large enough and use it instead. 4658 */ 4659 fm = g_try_malloc(outbufsz); 4660 if (!fm) { 4661 return -TARGET_ENOMEM; 4662 } 4663 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4664 free_fm = 1; 4665 } 4666 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4667 if (!is_error(ret)) { 4668 target_size_out = target_size_in; 4669 /* An extent_count of 0 means we were only counting the extents 4670 * so there are no structs to copy 4671 */ 4672 if (fm->fm_extent_count != 0) { 4673 target_size_out += fm->fm_mapped_extents * extent_size; 4674 } 4675 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4676 if (!argptr) { 4677 ret = -TARGET_EFAULT; 4678 } else { 4679 /* Convert the struct fiemap */ 4680 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4681 if (fm->fm_extent_count != 0) { 4682 p = argptr + target_size_in; 4683 /* ...and then all the struct fiemap_extents */ 4684 for (i = 0; i < fm->fm_mapped_extents; i++) { 4685 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4686 THUNK_TARGET); 4687 p += extent_size; 4688 } 4689 } 4690 unlock_user(argptr, arg, target_size_out); 4691 } 4692 } 4693 if (free_fm) { 4694 g_free(fm); 4695 } 4696 return ret; 4697 } 4698 #endif 4699 4700 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 4701 int fd, int cmd, abi_long arg) 4702 { 4703 const argtype *arg_type = ie->arg_type; 4704 int target_size; 4705 void *argptr; 4706 int ret; 4707 struct ifconf *host_ifconf; 4708 uint32_t outbufsz; 4709 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 4710 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) }; 4711 int target_ifreq_size; 4712 int nb_ifreq; 4713 int free_buf = 0; 4714 int i; 4715 int target_ifc_len; 4716 abi_long target_ifc_buf; 4717 int host_ifc_len; 4718 char *host_ifc_buf; 4719 4720 assert(arg_type[0] == TYPE_PTR); 4721 assert(ie->access == IOC_RW); 4722 4723 arg_type++; 4724 target_size = thunk_type_size(arg_type, 0); 4725 4726 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4727 if (!argptr) 4728 return -TARGET_EFAULT; 4729 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4730 unlock_user(argptr, arg, 0); 4731 4732 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 4733 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 4734 target_ifreq_size = thunk_type_size(ifreq_max_type, 0); 4735 4736 if (target_ifc_buf != 0) { 4737 target_ifc_len = host_ifconf->ifc_len; 4738 nb_ifreq = target_ifc_len / target_ifreq_size; 4739 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 4740 4741 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 4742 if (outbufsz > MAX_STRUCT_SIZE) { 4743 /* 4744 * We can't fit all the extents into the fixed size buffer. 4745 * Allocate one that is large enough and use it instead. 4746 */ 4747 host_ifconf = g_try_malloc(outbufsz); 4748 if (!host_ifconf) { 4749 return -TARGET_ENOMEM; 4750 } 4751 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 4752 free_buf = 1; 4753 } 4754 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf); 4755 4756 host_ifconf->ifc_len = host_ifc_len; 4757 } else { 4758 host_ifc_buf = NULL; 4759 } 4760 host_ifconf->ifc_buf = host_ifc_buf; 4761 4762 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 4763 if (!is_error(ret)) { 4764 /* convert host ifc_len to target ifc_len */ 4765 4766 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 4767 target_ifc_len = nb_ifreq * target_ifreq_size; 4768 host_ifconf->ifc_len = target_ifc_len; 4769 4770 /* restore target ifc_buf */ 4771 4772 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 4773 4774 /* copy struct ifconf to target user */ 4775 4776 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4777 if (!argptr) 4778 return -TARGET_EFAULT; 4779 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 4780 unlock_user(argptr, arg, target_size); 4781 4782 if (target_ifc_buf != 0) { 4783 /* copy ifreq[] to target user */ 4784 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 4785 for (i = 0; i < nb_ifreq ; i++) { 4786 thunk_convert(argptr + i * target_ifreq_size, 4787 host_ifc_buf + i * sizeof(struct ifreq), 4788 ifreq_arg_type, THUNK_TARGET); 4789 } 4790 unlock_user(argptr, target_ifc_buf, target_ifc_len); 4791 } 4792 } 4793 4794 if (free_buf) { 4795 g_free(host_ifconf); 4796 } 4797 4798 return ret; 4799 } 4800 4801 #if defined(CONFIG_USBFS) 4802 #if HOST_LONG_BITS > 64 4803 #error USBDEVFS thunks do not support >64 bit hosts yet. 4804 #endif 4805 struct live_urb { 4806 uint64_t target_urb_adr; 4807 uint64_t target_buf_adr; 4808 char *target_buf_ptr; 4809 struct usbdevfs_urb host_urb; 4810 }; 4811 4812 static GHashTable *usbdevfs_urb_hashtable(void) 4813 { 4814 static GHashTable *urb_hashtable; 4815 4816 if (!urb_hashtable) { 4817 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal); 4818 } 4819 return urb_hashtable; 4820 } 4821 4822 static void urb_hashtable_insert(struct live_urb *urb) 4823 { 4824 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4825 g_hash_table_insert(urb_hashtable, urb, urb); 4826 } 4827 4828 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr) 4829 { 4830 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4831 return g_hash_table_lookup(urb_hashtable, &target_urb_adr); 4832 } 4833 4834 static void urb_hashtable_remove(struct live_urb *urb) 4835 { 4836 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4837 g_hash_table_remove(urb_hashtable, urb); 4838 } 4839 4840 static abi_long 4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp, 4842 int fd, int cmd, abi_long arg) 4843 { 4844 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) }; 4845 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 }; 4846 struct live_urb *lurb; 4847 void *argptr; 4848 uint64_t hurb; 4849 int target_size; 4850 uintptr_t target_urb_adr; 4851 abi_long ret; 4852 4853 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET); 4854 4855 memset(buf_temp, 0, sizeof(uint64_t)); 4856 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4857 if (is_error(ret)) { 4858 return ret; 4859 } 4860 4861 memcpy(&hurb, buf_temp, sizeof(uint64_t)); 4862 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb)); 4863 if (!lurb->target_urb_adr) { 4864 return -TARGET_EFAULT; 4865 } 4866 urb_hashtable_remove(lurb); 4867 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 4868 lurb->host_urb.buffer_length); 4869 lurb->target_buf_ptr = NULL; 4870 4871 /* restore the guest buffer pointer */ 4872 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr; 4873 4874 /* update the guest urb struct */ 4875 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0); 4876 if (!argptr) { 4877 g_free(lurb); 4878 return -TARGET_EFAULT; 4879 } 4880 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET); 4881 unlock_user(argptr, lurb->target_urb_adr, target_size); 4882 4883 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET); 4884 /* write back the urb handle */ 4885 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4886 if (!argptr) { 4887 g_free(lurb); 4888 return -TARGET_EFAULT; 4889 } 4890 4891 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */ 4892 target_urb_adr = lurb->target_urb_adr; 4893 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET); 4894 unlock_user(argptr, arg, target_size); 4895 4896 g_free(lurb); 4897 return ret; 4898 } 4899 4900 static abi_long 4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie, 4902 uint8_t *buf_temp __attribute__((unused)), 4903 int fd, int cmd, abi_long arg) 4904 { 4905 struct live_urb *lurb; 4906 4907 /* map target address back to host URB with metadata. */ 4908 lurb = urb_hashtable_lookup(arg); 4909 if (!lurb) { 4910 return -TARGET_EFAULT; 4911 } 4912 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4913 } 4914 4915 static abi_long 4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp, 4917 int fd, int cmd, abi_long arg) 4918 { 4919 const argtype *arg_type = ie->arg_type; 4920 int target_size; 4921 abi_long ret; 4922 void *argptr; 4923 int rw_dir; 4924 struct live_urb *lurb; 4925 4926 /* 4927 * each submitted URB needs to map to a unique ID for the 4928 * kernel, and that unique ID needs to be a pointer to 4929 * host memory. hence, we need to malloc for each URB. 4930 * isochronous transfers have a variable length struct. 4931 */ 4932 arg_type++; 4933 target_size = thunk_type_size(arg_type, THUNK_TARGET); 4934 4935 /* construct host copy of urb and metadata */ 4936 lurb = g_try_new0(struct live_urb, 1); 4937 if (!lurb) { 4938 return -TARGET_ENOMEM; 4939 } 4940 4941 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4942 if (!argptr) { 4943 g_free(lurb); 4944 return -TARGET_EFAULT; 4945 } 4946 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST); 4947 unlock_user(argptr, arg, 0); 4948 4949 lurb->target_urb_adr = arg; 4950 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer; 4951 4952 /* buffer space used depends on endpoint type so lock the entire buffer */ 4953 /* control type urbs should check the buffer contents for true direction */ 4954 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ; 4955 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr, 4956 lurb->host_urb.buffer_length, 1); 4957 if (lurb->target_buf_ptr == NULL) { 4958 g_free(lurb); 4959 return -TARGET_EFAULT; 4960 } 4961 4962 /* update buffer pointer in host copy */ 4963 lurb->host_urb.buffer = lurb->target_buf_ptr; 4964 4965 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4966 if (is_error(ret)) { 4967 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0); 4968 g_free(lurb); 4969 } else { 4970 urb_hashtable_insert(lurb); 4971 } 4972 4973 return ret; 4974 } 4975 #endif /* CONFIG_USBFS */ 4976 4977 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 4978 int cmd, abi_long arg) 4979 { 4980 void *argptr; 4981 struct dm_ioctl *host_dm; 4982 abi_long guest_data; 4983 uint32_t guest_data_size; 4984 int target_size; 4985 const argtype *arg_type = ie->arg_type; 4986 abi_long ret; 4987 void *big_buf = NULL; 4988 char *host_data; 4989 4990 arg_type++; 4991 target_size = thunk_type_size(arg_type, 0); 4992 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4993 if (!argptr) { 4994 ret = -TARGET_EFAULT; 4995 goto out; 4996 } 4997 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4998 unlock_user(argptr, arg, 0); 4999 5000 /* buf_temp is too small, so fetch things into a bigger buffer */ 5001 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5002 memcpy(big_buf, buf_temp, target_size); 5003 buf_temp = big_buf; 5004 host_dm = big_buf; 5005 5006 guest_data = arg + host_dm->data_start; 5007 if ((guest_data - arg) < 0) { 5008 ret = -TARGET_EINVAL; 5009 goto out; 5010 } 5011 guest_data_size = host_dm->data_size - host_dm->data_start; 5012 host_data = (char*)host_dm + host_dm->data_start; 5013 5014 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5015 if (!argptr) { 5016 ret = -TARGET_EFAULT; 5017 goto out; 5018 } 5019 5020 switch (ie->host_cmd) { 5021 case DM_REMOVE_ALL: 5022 case DM_LIST_DEVICES: 5023 case DM_DEV_CREATE: 5024 case DM_DEV_REMOVE: 5025 case DM_DEV_SUSPEND: 5026 case DM_DEV_STATUS: 5027 case DM_DEV_WAIT: 5028 case DM_TABLE_STATUS: 5029 case DM_TABLE_CLEAR: 5030 case DM_TABLE_DEPS: 5031 case DM_LIST_VERSIONS: 5032 /* no input data */ 5033 break; 5034 case DM_DEV_RENAME: 5035 case DM_DEV_SET_GEOMETRY: 5036 /* data contains only strings */ 5037 memcpy(host_data, argptr, guest_data_size); 5038 break; 5039 case DM_TARGET_MSG: 5040 memcpy(host_data, argptr, guest_data_size); 5041 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5042 break; 5043 case DM_TABLE_LOAD: 5044 { 5045 void *gspec = argptr; 5046 void *cur_data = host_data; 5047 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5048 int spec_size = thunk_type_size(dm_arg_type, 0); 5049 int i; 5050 5051 for (i = 0; i < host_dm->target_count; i++) { 5052 struct dm_target_spec *spec = cur_data; 5053 uint32_t next; 5054 int slen; 5055 5056 thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST); 5057 slen = strlen((char*)gspec + spec_size) + 1; 5058 next = spec->next; 5059 spec->next = sizeof(*spec) + slen; 5060 strcpy((char*)&spec[1], gspec + spec_size); 5061 gspec += next; 5062 cur_data += spec->next; 5063 } 5064 break; 5065 } 5066 default: 5067 ret = -TARGET_EINVAL; 5068 unlock_user(argptr, guest_data, 0); 5069 goto out; 5070 } 5071 unlock_user(argptr, guest_data, 0); 5072 5073 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5074 if (!is_error(ret)) { 5075 guest_data = arg + host_dm->data_start; 5076 guest_data_size = host_dm->data_size - host_dm->data_start; 5077 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5078 switch (ie->host_cmd) { 5079 case DM_REMOVE_ALL: 5080 case DM_DEV_CREATE: 5081 case DM_DEV_REMOVE: 5082 case DM_DEV_RENAME: 5083 case DM_DEV_SUSPEND: 5084 case DM_DEV_STATUS: 5085 case DM_TABLE_LOAD: 5086 case DM_TABLE_CLEAR: 5087 case DM_TARGET_MSG: 5088 case DM_DEV_SET_GEOMETRY: 5089 /* no return data */ 5090 break; 5091 case DM_LIST_DEVICES: 5092 { 5093 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5094 uint32_t remaining_data = guest_data_size; 5095 void *cur_data = argptr; 5096 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5097 int nl_size = 12; /* can't use thunk_size due to alignment */ 5098 5099 while (1) { 5100 uint32_t next = nl->next; 5101 if (next) { 5102 nl->next = nl_size + (strlen(nl->name) + 1); 5103 } 5104 if (remaining_data < nl->next) { 5105 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5106 break; 5107 } 5108 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET); 5109 strcpy(cur_data + nl_size, nl->name); 5110 cur_data += nl->next; 5111 remaining_data -= nl->next; 5112 if (!next) { 5113 break; 5114 } 5115 nl = (void*)nl + next; 5116 } 5117 break; 5118 } 5119 case DM_DEV_WAIT: 5120 case DM_TABLE_STATUS: 5121 { 5122 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5123 void *cur_data = argptr; 5124 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5125 int spec_size = thunk_type_size(dm_arg_type, 0); 5126 int i; 5127 5128 for (i = 0; i < host_dm->target_count; i++) { 5129 uint32_t next = spec->next; 5130 int slen = strlen((char*)&spec[1]) + 1; 5131 spec->next = (cur_data - argptr) + spec_size + slen; 5132 if (guest_data_size < spec->next) { 5133 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5134 break; 5135 } 5136 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET); 5137 strcpy(cur_data + spec_size, (char*)&spec[1]); 5138 cur_data = argptr + spec->next; 5139 spec = (void*)host_dm + host_dm->data_start + next; 5140 } 5141 break; 5142 } 5143 case DM_TABLE_DEPS: 5144 { 5145 void *hdata = (void*)host_dm + host_dm->data_start; 5146 int count = *(uint32_t*)hdata; 5147 uint64_t *hdev = hdata + 8; 5148 uint64_t *gdev = argptr + 8; 5149 int i; 5150 5151 *(uint32_t*)argptr = tswap32(count); 5152 for (i = 0; i < count; i++) { 5153 *gdev = tswap64(*hdev); 5154 gdev++; 5155 hdev++; 5156 } 5157 break; 5158 } 5159 case DM_LIST_VERSIONS: 5160 { 5161 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5162 uint32_t remaining_data = guest_data_size; 5163 void *cur_data = argptr; 5164 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5165 int vers_size = thunk_type_size(dm_arg_type, 0); 5166 5167 while (1) { 5168 uint32_t next = vers->next; 5169 if (next) { 5170 vers->next = vers_size + (strlen(vers->name) + 1); 5171 } 5172 if (remaining_data < vers->next) { 5173 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5174 break; 5175 } 5176 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET); 5177 strcpy(cur_data + vers_size, vers->name); 5178 cur_data += vers->next; 5179 remaining_data -= vers->next; 5180 if (!next) { 5181 break; 5182 } 5183 vers = (void*)vers + next; 5184 } 5185 break; 5186 } 5187 default: 5188 unlock_user(argptr, guest_data, 0); 5189 ret = -TARGET_EINVAL; 5190 goto out; 5191 } 5192 unlock_user(argptr, guest_data, guest_data_size); 5193 5194 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5195 if (!argptr) { 5196 ret = -TARGET_EFAULT; 5197 goto out; 5198 } 5199 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5200 unlock_user(argptr, arg, target_size); 5201 } 5202 out: 5203 g_free(big_buf); 5204 return ret; 5205 } 5206 5207 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5208 int cmd, abi_long arg) 5209 { 5210 void *argptr; 5211 int target_size; 5212 const argtype *arg_type = ie->arg_type; 5213 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5214 abi_long ret; 5215 5216 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5217 struct blkpg_partition host_part; 5218 5219 /* Read and convert blkpg */ 5220 arg_type++; 5221 target_size = thunk_type_size(arg_type, 0); 5222 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5223 if (!argptr) { 5224 ret = -TARGET_EFAULT; 5225 goto out; 5226 } 5227 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5228 unlock_user(argptr, arg, 0); 5229 5230 switch (host_blkpg->op) { 5231 case BLKPG_ADD_PARTITION: 5232 case BLKPG_DEL_PARTITION: 5233 /* payload is struct blkpg_partition */ 5234 break; 5235 default: 5236 /* Unknown opcode */ 5237 ret = -TARGET_EINVAL; 5238 goto out; 5239 } 5240 5241 /* Read and convert blkpg->data */ 5242 arg = (abi_long)(uintptr_t)host_blkpg->data; 5243 target_size = thunk_type_size(part_arg_type, 0); 5244 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5245 if (!argptr) { 5246 ret = -TARGET_EFAULT; 5247 goto out; 5248 } 5249 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5250 unlock_user(argptr, arg, 0); 5251 5252 /* Swizzle the data pointer to our local copy and call! */ 5253 host_blkpg->data = &host_part; 5254 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5255 5256 out: 5257 return ret; 5258 } 5259 5260 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5261 int fd, int cmd, abi_long arg) 5262 { 5263 const argtype *arg_type = ie->arg_type; 5264 const StructEntry *se; 5265 const argtype *field_types; 5266 const int *dst_offsets, *src_offsets; 5267 int target_size; 5268 void *argptr; 5269 abi_ulong *target_rt_dev_ptr = NULL; 5270 unsigned long *host_rt_dev_ptr = NULL; 5271 abi_long ret; 5272 int i; 5273 5274 assert(ie->access == IOC_W); 5275 assert(*arg_type == TYPE_PTR); 5276 arg_type++; 5277 assert(*arg_type == TYPE_STRUCT); 5278 target_size = thunk_type_size(arg_type, 0); 5279 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5280 if (!argptr) { 5281 return -TARGET_EFAULT; 5282 } 5283 arg_type++; 5284 assert(*arg_type == (int)STRUCT_rtentry); 5285 se = struct_entries + *arg_type++; 5286 assert(se->convert[0] == NULL); 5287 /* convert struct here to be able to catch rt_dev string */ 5288 field_types = se->field_types; 5289 dst_offsets = se->field_offsets[THUNK_HOST]; 5290 src_offsets = se->field_offsets[THUNK_TARGET]; 5291 for (i = 0; i < se->nb_fields; i++) { 5292 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5293 assert(*field_types == TYPE_PTRVOID); 5294 target_rt_dev_ptr = argptr + src_offsets[i]; 5295 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5296 if (*target_rt_dev_ptr != 0) { 5297 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5298 tswapal(*target_rt_dev_ptr)); 5299 if (!*host_rt_dev_ptr) { 5300 unlock_user(argptr, arg, 0); 5301 return -TARGET_EFAULT; 5302 } 5303 } else { 5304 *host_rt_dev_ptr = 0; 5305 } 5306 field_types++; 5307 continue; 5308 } 5309 field_types = thunk_convert(buf_temp + dst_offsets[i], 5310 argptr + src_offsets[i], 5311 field_types, THUNK_HOST); 5312 } 5313 unlock_user(argptr, arg, 0); 5314 5315 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5316 5317 assert(host_rt_dev_ptr != NULL); 5318 assert(target_rt_dev_ptr != NULL); 5319 if (*host_rt_dev_ptr != 0) { 5320 unlock_user((void *)*host_rt_dev_ptr, 5321 *target_rt_dev_ptr, 0); 5322 } 5323 return ret; 5324 } 5325 5326 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5327 int fd, int cmd, abi_long arg) 5328 { 5329 int sig = target_to_host_signal(arg); 5330 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5331 } 5332 5333 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp, 5334 int fd, int cmd, abi_long arg) 5335 { 5336 struct timeval tv; 5337 abi_long ret; 5338 5339 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv)); 5340 if (is_error(ret)) { 5341 return ret; 5342 } 5343 5344 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) { 5345 if (copy_to_user_timeval(arg, &tv)) { 5346 return -TARGET_EFAULT; 5347 } 5348 } else { 5349 if (copy_to_user_timeval64(arg, &tv)) { 5350 return -TARGET_EFAULT; 5351 } 5352 } 5353 5354 return ret; 5355 } 5356 5357 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp, 5358 int fd, int cmd, abi_long arg) 5359 { 5360 struct timespec ts; 5361 abi_long ret; 5362 5363 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts)); 5364 if (is_error(ret)) { 5365 return ret; 5366 } 5367 5368 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) { 5369 if (host_to_target_timespec(arg, &ts)) { 5370 return -TARGET_EFAULT; 5371 } 5372 } else{ 5373 if (host_to_target_timespec64(arg, &ts)) { 5374 return -TARGET_EFAULT; 5375 } 5376 } 5377 5378 return ret; 5379 } 5380 5381 #ifdef TIOCGPTPEER 5382 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5383 int fd, int cmd, abi_long arg) 5384 { 5385 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5386 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5387 } 5388 #endif 5389 5390 #ifdef HAVE_DRM_H 5391 5392 static void unlock_drm_version(struct drm_version *host_ver, 5393 struct target_drm_version *target_ver, 5394 bool copy) 5395 { 5396 unlock_user(host_ver->name, target_ver->name, 5397 copy ? host_ver->name_len : 0); 5398 unlock_user(host_ver->date, target_ver->date, 5399 copy ? host_ver->date_len : 0); 5400 unlock_user(host_ver->desc, target_ver->desc, 5401 copy ? host_ver->desc_len : 0); 5402 } 5403 5404 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver, 5405 struct target_drm_version *target_ver) 5406 { 5407 memset(host_ver, 0, sizeof(*host_ver)); 5408 5409 __get_user(host_ver->name_len, &target_ver->name_len); 5410 if (host_ver->name_len) { 5411 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name, 5412 target_ver->name_len, 0); 5413 if (!host_ver->name) { 5414 return -EFAULT; 5415 } 5416 } 5417 5418 __get_user(host_ver->date_len, &target_ver->date_len); 5419 if (host_ver->date_len) { 5420 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date, 5421 target_ver->date_len, 0); 5422 if (!host_ver->date) { 5423 goto err; 5424 } 5425 } 5426 5427 __get_user(host_ver->desc_len, &target_ver->desc_len); 5428 if (host_ver->desc_len) { 5429 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc, 5430 target_ver->desc_len, 0); 5431 if (!host_ver->desc) { 5432 goto err; 5433 } 5434 } 5435 5436 return 0; 5437 err: 5438 unlock_drm_version(host_ver, target_ver, false); 5439 return -EFAULT; 5440 } 5441 5442 static inline void host_to_target_drmversion( 5443 struct target_drm_version *target_ver, 5444 struct drm_version *host_ver) 5445 { 5446 __put_user(host_ver->version_major, &target_ver->version_major); 5447 __put_user(host_ver->version_minor, &target_ver->version_minor); 5448 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel); 5449 __put_user(host_ver->name_len, &target_ver->name_len); 5450 __put_user(host_ver->date_len, &target_ver->date_len); 5451 __put_user(host_ver->desc_len, &target_ver->desc_len); 5452 unlock_drm_version(host_ver, target_ver, true); 5453 } 5454 5455 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp, 5456 int fd, int cmd, abi_long arg) 5457 { 5458 struct drm_version *ver; 5459 struct target_drm_version *target_ver; 5460 abi_long ret; 5461 5462 switch (ie->host_cmd) { 5463 case DRM_IOCTL_VERSION: 5464 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) { 5465 return -TARGET_EFAULT; 5466 } 5467 ver = (struct drm_version *)buf_temp; 5468 ret = target_to_host_drmversion(ver, target_ver); 5469 if (!is_error(ret)) { 5470 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver)); 5471 if (is_error(ret)) { 5472 unlock_drm_version(ver, target_ver, false); 5473 } else { 5474 host_to_target_drmversion(target_ver, ver); 5475 } 5476 } 5477 unlock_user_struct(target_ver, arg, 0); 5478 return ret; 5479 } 5480 return -TARGET_ENOSYS; 5481 } 5482 5483 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie, 5484 struct drm_i915_getparam *gparam, 5485 int fd, abi_long arg) 5486 { 5487 abi_long ret; 5488 int value; 5489 struct target_drm_i915_getparam *target_gparam; 5490 5491 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) { 5492 return -TARGET_EFAULT; 5493 } 5494 5495 __get_user(gparam->param, &target_gparam->param); 5496 gparam->value = &value; 5497 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam)); 5498 put_user_s32(value, target_gparam->value); 5499 5500 unlock_user_struct(target_gparam, arg, 0); 5501 return ret; 5502 } 5503 5504 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp, 5505 int fd, int cmd, abi_long arg) 5506 { 5507 switch (ie->host_cmd) { 5508 case DRM_IOCTL_I915_GETPARAM: 5509 return do_ioctl_drm_i915_getparam(ie, 5510 (struct drm_i915_getparam *)buf_temp, 5511 fd, arg); 5512 default: 5513 return -TARGET_ENOSYS; 5514 } 5515 } 5516 5517 #endif 5518 5519 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp, 5520 int fd, int cmd, abi_long arg) 5521 { 5522 struct tun_filter *filter = (struct tun_filter *)buf_temp; 5523 struct tun_filter *target_filter; 5524 char *target_addr; 5525 5526 assert(ie->access == IOC_W); 5527 5528 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1); 5529 if (!target_filter) { 5530 return -TARGET_EFAULT; 5531 } 5532 filter->flags = tswap16(target_filter->flags); 5533 filter->count = tswap16(target_filter->count); 5534 unlock_user(target_filter, arg, 0); 5535 5536 if (filter->count) { 5537 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN > 5538 MAX_STRUCT_SIZE) { 5539 return -TARGET_EFAULT; 5540 } 5541 5542 target_addr = lock_user(VERIFY_READ, 5543 arg + offsetof(struct tun_filter, addr), 5544 filter->count * ETH_ALEN, 1); 5545 if (!target_addr) { 5546 return -TARGET_EFAULT; 5547 } 5548 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN); 5549 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0); 5550 } 5551 5552 return get_errno(safe_ioctl(fd, ie->host_cmd, filter)); 5553 } 5554 5555 IOCTLEntry ioctl_entries[] = { 5556 #define IOCTL(cmd, access, ...) \ 5557 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5559 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5560 #define IOCTL_IGNORE(cmd) \ 5561 { TARGET_ ## cmd, 0, #cmd }, 5562 #include "ioctls.h" 5563 { 0, 0, }, 5564 }; 5565 5566 /* ??? Implement proper locking for ioctls. */ 5567 /* do_ioctl() Must return target values and target errnos. */ 5568 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5569 { 5570 const IOCTLEntry *ie; 5571 const argtype *arg_type; 5572 abi_long ret; 5573 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5574 int target_size; 5575 void *argptr; 5576 5577 ie = ioctl_entries; 5578 for(;;) { 5579 if (ie->target_cmd == 0) { 5580 qemu_log_mask( 5581 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5582 return -TARGET_ENOTTY; 5583 } 5584 if (ie->target_cmd == cmd) 5585 break; 5586 ie++; 5587 } 5588 arg_type = ie->arg_type; 5589 if (ie->do_ioctl) { 5590 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5591 } else if (!ie->host_cmd) { 5592 /* Some architectures define BSD ioctls in their headers 5593 that are not implemented in Linux. */ 5594 return -TARGET_ENOTTY; 5595 } 5596 5597 switch(arg_type[0]) { 5598 case TYPE_NULL: 5599 /* no argument */ 5600 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5601 break; 5602 case TYPE_PTRVOID: 5603 case TYPE_INT: 5604 case TYPE_LONG: 5605 case TYPE_ULONG: 5606 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5607 break; 5608 case TYPE_PTR: 5609 arg_type++; 5610 target_size = thunk_type_size(arg_type, 0); 5611 switch(ie->access) { 5612 case IOC_R: 5613 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5614 if (!is_error(ret)) { 5615 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5616 if (!argptr) 5617 return -TARGET_EFAULT; 5618 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5619 unlock_user(argptr, arg, target_size); 5620 } 5621 break; 5622 case IOC_W: 5623 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5624 if (!argptr) 5625 return -TARGET_EFAULT; 5626 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5627 unlock_user(argptr, arg, 0); 5628 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5629 break; 5630 default: 5631 case IOC_RW: 5632 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5633 if (!argptr) 5634 return -TARGET_EFAULT; 5635 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5636 unlock_user(argptr, arg, 0); 5637 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5638 if (!is_error(ret)) { 5639 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5640 if (!argptr) 5641 return -TARGET_EFAULT; 5642 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5643 unlock_user(argptr, arg, target_size); 5644 } 5645 break; 5646 } 5647 break; 5648 default: 5649 qemu_log_mask(LOG_UNIMP, 5650 "Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5651 (long)cmd, arg_type[0]); 5652 ret = -TARGET_ENOTTY; 5653 break; 5654 } 5655 return ret; 5656 } 5657 5658 static const bitmask_transtbl iflag_tbl[] = { 5659 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5660 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5661 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5662 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5663 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5664 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5665 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5666 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5667 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5668 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5669 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5670 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5671 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5672 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5673 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8}, 5674 }; 5675 5676 static const bitmask_transtbl oflag_tbl[] = { 5677 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5678 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5679 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5680 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5681 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5682 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5683 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5684 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5685 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5686 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5687 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5688 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5689 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5690 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5691 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5692 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5693 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5694 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5695 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5696 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5697 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5698 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5699 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5700 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5701 }; 5702 5703 static const bitmask_transtbl cflag_tbl[] = { 5704 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5705 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5706 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5707 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5708 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5709 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5710 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5711 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5712 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5713 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5714 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5715 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5716 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5717 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5718 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5719 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5720 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5721 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5722 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5723 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5724 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5725 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5726 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5727 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5728 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5729 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5730 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5731 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5732 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5733 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5734 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5735 }; 5736 5737 static const bitmask_transtbl lflag_tbl[] = { 5738 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5739 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5740 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5741 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5742 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5743 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5744 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5745 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5746 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5747 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5748 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5749 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5750 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5751 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5752 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5753 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC}, 5754 }; 5755 5756 static void target_to_host_termios (void *dst, const void *src) 5757 { 5758 struct host_termios *host = dst; 5759 const struct target_termios *target = src; 5760 5761 host->c_iflag = 5762 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5763 host->c_oflag = 5764 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5765 host->c_cflag = 5766 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5767 host->c_lflag = 5768 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5769 host->c_line = target->c_line; 5770 5771 memset(host->c_cc, 0, sizeof(host->c_cc)); 5772 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5773 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5774 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5775 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5776 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5777 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5778 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5779 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5780 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5781 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5782 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5783 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5784 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5785 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5786 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5787 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5788 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5789 } 5790 5791 static void host_to_target_termios (void *dst, const void *src) 5792 { 5793 struct target_termios *target = dst; 5794 const struct host_termios *host = src; 5795 5796 target->c_iflag = 5797 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5798 target->c_oflag = 5799 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5800 target->c_cflag = 5801 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5802 target->c_lflag = 5803 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5804 target->c_line = host->c_line; 5805 5806 memset(target->c_cc, 0, sizeof(target->c_cc)); 5807 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5808 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5809 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5810 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5811 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5812 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5813 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5814 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5815 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5816 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5817 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5818 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5819 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5820 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5821 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5822 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5823 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5824 } 5825 5826 static const StructEntry struct_termios_def = { 5827 .convert = { host_to_target_termios, target_to_host_termios }, 5828 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5829 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5830 .print = print_termios, 5831 }; 5832 5833 /* If the host does not provide these bits, they may be safely discarded. */ 5834 #ifndef MAP_SYNC 5835 #define MAP_SYNC 0 5836 #endif 5837 #ifndef MAP_UNINITIALIZED 5838 #define MAP_UNINITIALIZED 0 5839 #endif 5840 5841 static const bitmask_transtbl mmap_flags_tbl[] = { 5842 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5843 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 5844 MAP_ANONYMOUS, MAP_ANONYMOUS }, 5845 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 5846 MAP_GROWSDOWN, MAP_GROWSDOWN }, 5847 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 5848 MAP_DENYWRITE, MAP_DENYWRITE }, 5849 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 5850 MAP_EXECUTABLE, MAP_EXECUTABLE }, 5851 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5852 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 5853 MAP_NORESERVE, MAP_NORESERVE }, 5854 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 5855 /* MAP_STACK had been ignored by the kernel for quite some time. 5856 Recognize it for the target insofar as we do not want to pass 5857 it through to the host. */ 5858 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 5859 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK }, 5860 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE }, 5861 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE, 5862 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE }, 5863 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED, 5864 MAP_UNINITIALIZED, MAP_UNINITIALIZED }, 5865 }; 5866 5867 /* 5868 * Arrange for legacy / undefined architecture specific flags to be 5869 * ignored by mmap handling code. 5870 */ 5871 #ifndef TARGET_MAP_32BIT 5872 #define TARGET_MAP_32BIT 0 5873 #endif 5874 #ifndef TARGET_MAP_HUGE_2MB 5875 #define TARGET_MAP_HUGE_2MB 0 5876 #endif 5877 #ifndef TARGET_MAP_HUGE_1GB 5878 #define TARGET_MAP_HUGE_1GB 0 5879 #endif 5880 5881 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot, 5882 int target_flags, int fd, off_t offset) 5883 { 5884 /* 5885 * The historical set of flags that all mmap types implicitly support. 5886 */ 5887 enum { 5888 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED 5889 | TARGET_MAP_PRIVATE 5890 | TARGET_MAP_FIXED 5891 | TARGET_MAP_ANONYMOUS 5892 | TARGET_MAP_DENYWRITE 5893 | TARGET_MAP_EXECUTABLE 5894 | TARGET_MAP_UNINITIALIZED 5895 | TARGET_MAP_GROWSDOWN 5896 | TARGET_MAP_LOCKED 5897 | TARGET_MAP_NORESERVE 5898 | TARGET_MAP_POPULATE 5899 | TARGET_MAP_NONBLOCK 5900 | TARGET_MAP_STACK 5901 | TARGET_MAP_HUGETLB 5902 | TARGET_MAP_32BIT 5903 | TARGET_MAP_HUGE_2MB 5904 | TARGET_MAP_HUGE_1GB 5905 }; 5906 int host_flags; 5907 5908 switch (target_flags & TARGET_MAP_TYPE) { 5909 case TARGET_MAP_PRIVATE: 5910 host_flags = MAP_PRIVATE; 5911 break; 5912 case TARGET_MAP_SHARED: 5913 host_flags = MAP_SHARED; 5914 break; 5915 case TARGET_MAP_SHARED_VALIDATE: 5916 /* 5917 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is 5918 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK. 5919 */ 5920 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) { 5921 return -TARGET_EOPNOTSUPP; 5922 } 5923 host_flags = MAP_SHARED_VALIDATE; 5924 if (target_flags & TARGET_MAP_SYNC) { 5925 host_flags |= MAP_SYNC; 5926 } 5927 break; 5928 default: 5929 return -TARGET_EINVAL; 5930 } 5931 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl); 5932 5933 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset)); 5934 } 5935 5936 /* 5937 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64) 5938 * TARGET_I386 is defined if TARGET_X86_64 is defined 5939 */ 5940 #if defined(TARGET_I386) 5941 5942 /* NOTE: there is really one LDT for all the threads */ 5943 static uint8_t *ldt_table; 5944 5945 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5946 { 5947 int size; 5948 void *p; 5949 5950 if (!ldt_table) 5951 return 0; 5952 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5953 if (size > bytecount) 5954 size = bytecount; 5955 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5956 if (!p) 5957 return -TARGET_EFAULT; 5958 /* ??? Should this by byteswapped? */ 5959 memcpy(p, ldt_table, size); 5960 unlock_user(p, ptr, size); 5961 return size; 5962 } 5963 5964 /* XXX: add locking support */ 5965 static abi_long write_ldt(CPUX86State *env, 5966 abi_ulong ptr, unsigned long bytecount, int oldmode) 5967 { 5968 struct target_modify_ldt_ldt_s ldt_info; 5969 struct target_modify_ldt_ldt_s *target_ldt_info; 5970 int seg_32bit, contents, read_exec_only, limit_in_pages; 5971 int seg_not_present, useable, lm; 5972 uint32_t *lp, entry_1, entry_2; 5973 5974 if (bytecount != sizeof(ldt_info)) 5975 return -TARGET_EINVAL; 5976 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5977 return -TARGET_EFAULT; 5978 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5979 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5980 ldt_info.limit = tswap32(target_ldt_info->limit); 5981 ldt_info.flags = tswap32(target_ldt_info->flags); 5982 unlock_user_struct(target_ldt_info, ptr, 0); 5983 5984 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 5985 return -TARGET_EINVAL; 5986 seg_32bit = ldt_info.flags & 1; 5987 contents = (ldt_info.flags >> 1) & 3; 5988 read_exec_only = (ldt_info.flags >> 3) & 1; 5989 limit_in_pages = (ldt_info.flags >> 4) & 1; 5990 seg_not_present = (ldt_info.flags >> 5) & 1; 5991 useable = (ldt_info.flags >> 6) & 1; 5992 #ifdef TARGET_ABI32 5993 lm = 0; 5994 #else 5995 lm = (ldt_info.flags >> 7) & 1; 5996 #endif 5997 if (contents == 3) { 5998 if (oldmode) 5999 return -TARGET_EINVAL; 6000 if (seg_not_present == 0) 6001 return -TARGET_EINVAL; 6002 } 6003 /* allocate the LDT */ 6004 if (!ldt_table) { 6005 env->ldt.base = target_mmap(0, 6006 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6007 PROT_READ|PROT_WRITE, 6008 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6009 if (env->ldt.base == -1) 6010 return -TARGET_ENOMEM; 6011 memset(g2h_untagged(env->ldt.base), 0, 6012 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6013 env->ldt.limit = 0xffff; 6014 ldt_table = g2h_untagged(env->ldt.base); 6015 } 6016 6017 /* NOTE: same code as Linux kernel */ 6018 /* Allow LDTs to be cleared by the user. */ 6019 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6020 if (oldmode || 6021 (contents == 0 && 6022 read_exec_only == 1 && 6023 seg_32bit == 0 && 6024 limit_in_pages == 0 && 6025 seg_not_present == 1 && 6026 useable == 0 )) { 6027 entry_1 = 0; 6028 entry_2 = 0; 6029 goto install; 6030 } 6031 } 6032 6033 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6034 (ldt_info.limit & 0x0ffff); 6035 entry_2 = (ldt_info.base_addr & 0xff000000) | 6036 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6037 (ldt_info.limit & 0xf0000) | 6038 ((read_exec_only ^ 1) << 9) | 6039 (contents << 10) | 6040 ((seg_not_present ^ 1) << 15) | 6041 (seg_32bit << 22) | 6042 (limit_in_pages << 23) | 6043 (lm << 21) | 6044 0x7000; 6045 if (!oldmode) 6046 entry_2 |= (useable << 20); 6047 6048 /* Install the new entry ... */ 6049 install: 6050 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6051 lp[0] = tswap32(entry_1); 6052 lp[1] = tswap32(entry_2); 6053 return 0; 6054 } 6055 6056 /* specific and weird i386 syscalls */ 6057 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6058 unsigned long bytecount) 6059 { 6060 abi_long ret; 6061 6062 switch (func) { 6063 case 0: 6064 ret = read_ldt(ptr, bytecount); 6065 break; 6066 case 1: 6067 ret = write_ldt(env, ptr, bytecount, 1); 6068 break; 6069 case 0x11: 6070 ret = write_ldt(env, ptr, bytecount, 0); 6071 break; 6072 default: 6073 ret = -TARGET_ENOSYS; 6074 break; 6075 } 6076 return ret; 6077 } 6078 6079 #if defined(TARGET_ABI32) 6080 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6081 { 6082 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6083 struct target_modify_ldt_ldt_s ldt_info; 6084 struct target_modify_ldt_ldt_s *target_ldt_info; 6085 int seg_32bit, contents, read_exec_only, limit_in_pages; 6086 int seg_not_present, useable, lm; 6087 uint32_t *lp, entry_1, entry_2; 6088 int i; 6089 6090 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6091 if (!target_ldt_info) 6092 return -TARGET_EFAULT; 6093 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6094 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6095 ldt_info.limit = tswap32(target_ldt_info->limit); 6096 ldt_info.flags = tswap32(target_ldt_info->flags); 6097 if (ldt_info.entry_number == -1) { 6098 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6099 if (gdt_table[i] == 0) { 6100 ldt_info.entry_number = i; 6101 target_ldt_info->entry_number = tswap32(i); 6102 break; 6103 } 6104 } 6105 } 6106 unlock_user_struct(target_ldt_info, ptr, 1); 6107 6108 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6109 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6110 return -TARGET_EINVAL; 6111 seg_32bit = ldt_info.flags & 1; 6112 contents = (ldt_info.flags >> 1) & 3; 6113 read_exec_only = (ldt_info.flags >> 3) & 1; 6114 limit_in_pages = (ldt_info.flags >> 4) & 1; 6115 seg_not_present = (ldt_info.flags >> 5) & 1; 6116 useable = (ldt_info.flags >> 6) & 1; 6117 #ifdef TARGET_ABI32 6118 lm = 0; 6119 #else 6120 lm = (ldt_info.flags >> 7) & 1; 6121 #endif 6122 6123 if (contents == 3) { 6124 if (seg_not_present == 0) 6125 return -TARGET_EINVAL; 6126 } 6127 6128 /* NOTE: same code as Linux kernel */ 6129 /* Allow LDTs to be cleared by the user. */ 6130 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6131 if ((contents == 0 && 6132 read_exec_only == 1 && 6133 seg_32bit == 0 && 6134 limit_in_pages == 0 && 6135 seg_not_present == 1 && 6136 useable == 0 )) { 6137 entry_1 = 0; 6138 entry_2 = 0; 6139 goto install; 6140 } 6141 } 6142 6143 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6144 (ldt_info.limit & 0x0ffff); 6145 entry_2 = (ldt_info.base_addr & 0xff000000) | 6146 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6147 (ldt_info.limit & 0xf0000) | 6148 ((read_exec_only ^ 1) << 9) | 6149 (contents << 10) | 6150 ((seg_not_present ^ 1) << 15) | 6151 (seg_32bit << 22) | 6152 (limit_in_pages << 23) | 6153 (useable << 20) | 6154 (lm << 21) | 6155 0x7000; 6156 6157 /* Install the new entry ... */ 6158 install: 6159 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6160 lp[0] = tswap32(entry_1); 6161 lp[1] = tswap32(entry_2); 6162 return 0; 6163 } 6164 6165 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6166 { 6167 struct target_modify_ldt_ldt_s *target_ldt_info; 6168 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6169 uint32_t base_addr, limit, flags; 6170 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6171 int seg_not_present, useable, lm; 6172 uint32_t *lp, entry_1, entry_2; 6173 6174 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6175 if (!target_ldt_info) 6176 return -TARGET_EFAULT; 6177 idx = tswap32(target_ldt_info->entry_number); 6178 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6179 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6180 unlock_user_struct(target_ldt_info, ptr, 1); 6181 return -TARGET_EINVAL; 6182 } 6183 lp = (uint32_t *)(gdt_table + idx); 6184 entry_1 = tswap32(lp[0]); 6185 entry_2 = tswap32(lp[1]); 6186 6187 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6188 contents = (entry_2 >> 10) & 3; 6189 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6190 seg_32bit = (entry_2 >> 22) & 1; 6191 limit_in_pages = (entry_2 >> 23) & 1; 6192 useable = (entry_2 >> 20) & 1; 6193 #ifdef TARGET_ABI32 6194 lm = 0; 6195 #else 6196 lm = (entry_2 >> 21) & 1; 6197 #endif 6198 flags = (seg_32bit << 0) | (contents << 1) | 6199 (read_exec_only << 3) | (limit_in_pages << 4) | 6200 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6201 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6202 base_addr = (entry_1 >> 16) | 6203 (entry_2 & 0xff000000) | 6204 ((entry_2 & 0xff) << 16); 6205 target_ldt_info->base_addr = tswapal(base_addr); 6206 target_ldt_info->limit = tswap32(limit); 6207 target_ldt_info->flags = tswap32(flags); 6208 unlock_user_struct(target_ldt_info, ptr, 1); 6209 return 0; 6210 } 6211 6212 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6213 { 6214 return -TARGET_ENOSYS; 6215 } 6216 #else 6217 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6218 { 6219 abi_long ret = 0; 6220 abi_ulong val; 6221 int idx; 6222 6223 switch(code) { 6224 case TARGET_ARCH_SET_GS: 6225 case TARGET_ARCH_SET_FS: 6226 if (code == TARGET_ARCH_SET_GS) 6227 idx = R_GS; 6228 else 6229 idx = R_FS; 6230 cpu_x86_load_seg(env, idx, 0); 6231 env->segs[idx].base = addr; 6232 break; 6233 case TARGET_ARCH_GET_GS: 6234 case TARGET_ARCH_GET_FS: 6235 if (code == TARGET_ARCH_GET_GS) 6236 idx = R_GS; 6237 else 6238 idx = R_FS; 6239 val = env->segs[idx].base; 6240 if (put_user(val, addr, abi_ulong)) 6241 ret = -TARGET_EFAULT; 6242 break; 6243 default: 6244 ret = -TARGET_EINVAL; 6245 break; 6246 } 6247 return ret; 6248 } 6249 #endif /* defined(TARGET_ABI32 */ 6250 #endif /* defined(TARGET_I386) */ 6251 6252 /* 6253 * These constants are generic. Supply any that are missing from the host. 6254 */ 6255 #ifndef PR_SET_NAME 6256 # define PR_SET_NAME 15 6257 # define PR_GET_NAME 16 6258 #endif 6259 #ifndef PR_SET_FP_MODE 6260 # define PR_SET_FP_MODE 45 6261 # define PR_GET_FP_MODE 46 6262 # define PR_FP_MODE_FR (1 << 0) 6263 # define PR_FP_MODE_FRE (1 << 1) 6264 #endif 6265 #ifndef PR_SVE_SET_VL 6266 # define PR_SVE_SET_VL 50 6267 # define PR_SVE_GET_VL 51 6268 # define PR_SVE_VL_LEN_MASK 0xffff 6269 # define PR_SVE_VL_INHERIT (1 << 17) 6270 #endif 6271 #ifndef PR_PAC_RESET_KEYS 6272 # define PR_PAC_RESET_KEYS 54 6273 # define PR_PAC_APIAKEY (1 << 0) 6274 # define PR_PAC_APIBKEY (1 << 1) 6275 # define PR_PAC_APDAKEY (1 << 2) 6276 # define PR_PAC_APDBKEY (1 << 3) 6277 # define PR_PAC_APGAKEY (1 << 4) 6278 #endif 6279 #ifndef PR_SET_TAGGED_ADDR_CTRL 6280 # define PR_SET_TAGGED_ADDR_CTRL 55 6281 # define PR_GET_TAGGED_ADDR_CTRL 56 6282 # define PR_TAGGED_ADDR_ENABLE (1UL << 0) 6283 #endif 6284 #ifndef PR_MTE_TCF_SHIFT 6285 # define PR_MTE_TCF_SHIFT 1 6286 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT) 6287 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT) 6288 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT) 6289 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT) 6290 # define PR_MTE_TAG_SHIFT 3 6291 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT) 6292 #endif 6293 #ifndef PR_SET_IO_FLUSHER 6294 # define PR_SET_IO_FLUSHER 57 6295 # define PR_GET_IO_FLUSHER 58 6296 #endif 6297 #ifndef PR_SET_SYSCALL_USER_DISPATCH 6298 # define PR_SET_SYSCALL_USER_DISPATCH 59 6299 #endif 6300 #ifndef PR_SME_SET_VL 6301 # define PR_SME_SET_VL 63 6302 # define PR_SME_GET_VL 64 6303 # define PR_SME_VL_LEN_MASK 0xffff 6304 # define PR_SME_VL_INHERIT (1 << 17) 6305 #endif 6306 6307 #include "target_prctl.h" 6308 6309 static abi_long do_prctl_inval0(CPUArchState *env) 6310 { 6311 return -TARGET_EINVAL; 6312 } 6313 6314 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2) 6315 { 6316 return -TARGET_EINVAL; 6317 } 6318 6319 #ifndef do_prctl_get_fp_mode 6320 #define do_prctl_get_fp_mode do_prctl_inval0 6321 #endif 6322 #ifndef do_prctl_set_fp_mode 6323 #define do_prctl_set_fp_mode do_prctl_inval1 6324 #endif 6325 #ifndef do_prctl_sve_get_vl 6326 #define do_prctl_sve_get_vl do_prctl_inval0 6327 #endif 6328 #ifndef do_prctl_sve_set_vl 6329 #define do_prctl_sve_set_vl do_prctl_inval1 6330 #endif 6331 #ifndef do_prctl_reset_keys 6332 #define do_prctl_reset_keys do_prctl_inval1 6333 #endif 6334 #ifndef do_prctl_set_tagged_addr_ctrl 6335 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1 6336 #endif 6337 #ifndef do_prctl_get_tagged_addr_ctrl 6338 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0 6339 #endif 6340 #ifndef do_prctl_get_unalign 6341 #define do_prctl_get_unalign do_prctl_inval1 6342 #endif 6343 #ifndef do_prctl_set_unalign 6344 #define do_prctl_set_unalign do_prctl_inval1 6345 #endif 6346 #ifndef do_prctl_sme_get_vl 6347 #define do_prctl_sme_get_vl do_prctl_inval0 6348 #endif 6349 #ifndef do_prctl_sme_set_vl 6350 #define do_prctl_sme_set_vl do_prctl_inval1 6351 #endif 6352 6353 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2, 6354 abi_long arg3, abi_long arg4, abi_long arg5) 6355 { 6356 abi_long ret; 6357 6358 switch (option) { 6359 case PR_GET_PDEATHSIG: 6360 { 6361 int deathsig; 6362 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig, 6363 arg3, arg4, arg5)); 6364 if (!is_error(ret) && 6365 put_user_s32(host_to_target_signal(deathsig), arg2)) { 6366 return -TARGET_EFAULT; 6367 } 6368 return ret; 6369 } 6370 case PR_SET_PDEATHSIG: 6371 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2), 6372 arg3, arg4, arg5)); 6373 case PR_GET_NAME: 6374 { 6375 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 6376 if (!name) { 6377 return -TARGET_EFAULT; 6378 } 6379 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name, 6380 arg3, arg4, arg5)); 6381 unlock_user(name, arg2, 16); 6382 return ret; 6383 } 6384 case PR_SET_NAME: 6385 { 6386 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 6387 if (!name) { 6388 return -TARGET_EFAULT; 6389 } 6390 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name, 6391 arg3, arg4, arg5)); 6392 unlock_user(name, arg2, 0); 6393 return ret; 6394 } 6395 case PR_GET_FP_MODE: 6396 return do_prctl_get_fp_mode(env); 6397 case PR_SET_FP_MODE: 6398 return do_prctl_set_fp_mode(env, arg2); 6399 case PR_SVE_GET_VL: 6400 return do_prctl_sve_get_vl(env); 6401 case PR_SVE_SET_VL: 6402 return do_prctl_sve_set_vl(env, arg2); 6403 case PR_SME_GET_VL: 6404 return do_prctl_sme_get_vl(env); 6405 case PR_SME_SET_VL: 6406 return do_prctl_sme_set_vl(env, arg2); 6407 case PR_PAC_RESET_KEYS: 6408 if (arg3 || arg4 || arg5) { 6409 return -TARGET_EINVAL; 6410 } 6411 return do_prctl_reset_keys(env, arg2); 6412 case PR_SET_TAGGED_ADDR_CTRL: 6413 if (arg3 || arg4 || arg5) { 6414 return -TARGET_EINVAL; 6415 } 6416 return do_prctl_set_tagged_addr_ctrl(env, arg2); 6417 case PR_GET_TAGGED_ADDR_CTRL: 6418 if (arg2 || arg3 || arg4 || arg5) { 6419 return -TARGET_EINVAL; 6420 } 6421 return do_prctl_get_tagged_addr_ctrl(env); 6422 6423 case PR_GET_UNALIGN: 6424 return do_prctl_get_unalign(env, arg2); 6425 case PR_SET_UNALIGN: 6426 return do_prctl_set_unalign(env, arg2); 6427 6428 case PR_CAP_AMBIENT: 6429 case PR_CAPBSET_READ: 6430 case PR_CAPBSET_DROP: 6431 case PR_GET_DUMPABLE: 6432 case PR_SET_DUMPABLE: 6433 case PR_GET_KEEPCAPS: 6434 case PR_SET_KEEPCAPS: 6435 case PR_GET_SECUREBITS: 6436 case PR_SET_SECUREBITS: 6437 case PR_GET_TIMING: 6438 case PR_SET_TIMING: 6439 case PR_GET_TIMERSLACK: 6440 case PR_SET_TIMERSLACK: 6441 case PR_MCE_KILL: 6442 case PR_MCE_KILL_GET: 6443 case PR_GET_NO_NEW_PRIVS: 6444 case PR_SET_NO_NEW_PRIVS: 6445 case PR_GET_IO_FLUSHER: 6446 case PR_SET_IO_FLUSHER: 6447 case PR_SET_CHILD_SUBREAPER: 6448 case PR_GET_SPECULATION_CTRL: 6449 case PR_SET_SPECULATION_CTRL: 6450 /* Some prctl options have no pointer arguments and we can pass on. */ 6451 return get_errno(prctl(option, arg2, arg3, arg4, arg5)); 6452 6453 case PR_GET_CHILD_SUBREAPER: 6454 { 6455 int val; 6456 ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val, 6457 arg3, arg4, arg5)); 6458 if (!is_error(ret) && put_user_s32(val, arg2)) { 6459 return -TARGET_EFAULT; 6460 } 6461 return ret; 6462 } 6463 6464 case PR_GET_TID_ADDRESS: 6465 { 6466 TaskState *ts = get_task_state(env_cpu(env)); 6467 return put_user_ual(ts->child_tidptr, arg2); 6468 } 6469 6470 case PR_GET_FPEXC: 6471 case PR_SET_FPEXC: 6472 /* Was used for SPE on PowerPC. */ 6473 return -TARGET_EINVAL; 6474 6475 case PR_GET_ENDIAN: 6476 case PR_SET_ENDIAN: 6477 case PR_GET_FPEMU: 6478 case PR_SET_FPEMU: 6479 case PR_SET_MM: 6480 case PR_GET_SECCOMP: 6481 case PR_SET_SECCOMP: 6482 case PR_SET_SYSCALL_USER_DISPATCH: 6483 case PR_GET_THP_DISABLE: 6484 case PR_SET_THP_DISABLE: 6485 case PR_GET_TSC: 6486 case PR_SET_TSC: 6487 /* Disable to prevent the target disabling stuff we need. */ 6488 return -TARGET_EINVAL; 6489 6490 default: 6491 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n", 6492 option); 6493 return -TARGET_EINVAL; 6494 } 6495 } 6496 6497 #define NEW_STACK_SIZE 0x40000 6498 6499 6500 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6501 typedef struct { 6502 CPUArchState *env; 6503 pthread_mutex_t mutex; 6504 pthread_cond_t cond; 6505 pthread_t thread; 6506 uint32_t tid; 6507 abi_ulong child_tidptr; 6508 abi_ulong parent_tidptr; 6509 sigset_t sigmask; 6510 } new_thread_info; 6511 6512 static void *clone_func(void *arg) 6513 { 6514 new_thread_info *info = arg; 6515 CPUArchState *env; 6516 CPUState *cpu; 6517 TaskState *ts; 6518 6519 rcu_register_thread(); 6520 tcg_register_thread(); 6521 env = info->env; 6522 cpu = env_cpu(env); 6523 thread_cpu = cpu; 6524 ts = get_task_state(cpu); 6525 info->tid = sys_gettid(); 6526 task_settid(ts); 6527 if (info->child_tidptr) 6528 put_user_u32(info->tid, info->child_tidptr); 6529 if (info->parent_tidptr) 6530 put_user_u32(info->tid, info->parent_tidptr); 6531 qemu_guest_random_seed_thread_part2(cpu->random_seed); 6532 /* Enable signals. */ 6533 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6534 /* Signal to the parent that we're ready. */ 6535 pthread_mutex_lock(&info->mutex); 6536 pthread_cond_broadcast(&info->cond); 6537 pthread_mutex_unlock(&info->mutex); 6538 /* Wait until the parent has finished initializing the tls state. */ 6539 pthread_mutex_lock(&clone_lock); 6540 pthread_mutex_unlock(&clone_lock); 6541 cpu_loop(env); 6542 /* never exits */ 6543 return NULL; 6544 } 6545 6546 /* do_fork() Must return host values and target errnos (unlike most 6547 do_*() functions). */ 6548 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6549 abi_ulong parent_tidptr, target_ulong newtls, 6550 abi_ulong child_tidptr) 6551 { 6552 CPUState *cpu = env_cpu(env); 6553 int ret; 6554 TaskState *ts; 6555 CPUState *new_cpu; 6556 CPUArchState *new_env; 6557 sigset_t sigmask; 6558 6559 flags &= ~CLONE_IGNORED_FLAGS; 6560 6561 /* Emulate vfork() with fork() */ 6562 if (flags & CLONE_VFORK) 6563 flags &= ~(CLONE_VFORK | CLONE_VM); 6564 6565 if (flags & CLONE_VM) { 6566 TaskState *parent_ts = get_task_state(cpu); 6567 new_thread_info info; 6568 pthread_attr_t attr; 6569 6570 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6571 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6572 return -TARGET_EINVAL; 6573 } 6574 6575 ts = g_new0(TaskState, 1); 6576 init_task_state(ts); 6577 6578 /* Grab a mutex so that thread setup appears atomic. */ 6579 pthread_mutex_lock(&clone_lock); 6580 6581 /* 6582 * If this is our first additional thread, we need to ensure we 6583 * generate code for parallel execution and flush old translations. 6584 * Do this now so that the copy gets CF_PARALLEL too. 6585 */ 6586 if (!tcg_cflags_has(cpu, CF_PARALLEL)) { 6587 tcg_cflags_set(cpu, CF_PARALLEL); 6588 tb_flush(cpu); 6589 } 6590 6591 /* we create a new CPU instance. */ 6592 new_env = cpu_copy(env); 6593 /* Init regs that differ from the parent. */ 6594 cpu_clone_regs_child(new_env, newsp, flags); 6595 cpu_clone_regs_parent(env, flags); 6596 new_cpu = env_cpu(new_env); 6597 new_cpu->opaque = ts; 6598 ts->bprm = parent_ts->bprm; 6599 ts->info = parent_ts->info; 6600 ts->signal_mask = parent_ts->signal_mask; 6601 6602 if (flags & CLONE_CHILD_CLEARTID) { 6603 ts->child_tidptr = child_tidptr; 6604 } 6605 6606 if (flags & CLONE_SETTLS) { 6607 cpu_set_tls (new_env, newtls); 6608 } 6609 6610 memset(&info, 0, sizeof(info)); 6611 pthread_mutex_init(&info.mutex, NULL); 6612 pthread_mutex_lock(&info.mutex); 6613 pthread_cond_init(&info.cond, NULL); 6614 info.env = new_env; 6615 if (flags & CLONE_CHILD_SETTID) { 6616 info.child_tidptr = child_tidptr; 6617 } 6618 if (flags & CLONE_PARENT_SETTID) { 6619 info.parent_tidptr = parent_tidptr; 6620 } 6621 6622 ret = pthread_attr_init(&attr); 6623 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6624 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6625 /* It is not safe to deliver signals until the child has finished 6626 initializing, so temporarily block all signals. */ 6627 sigfillset(&sigmask); 6628 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6629 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 6630 6631 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6632 /* TODO: Free new CPU state if thread creation failed. */ 6633 6634 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6635 pthread_attr_destroy(&attr); 6636 if (ret == 0) { 6637 /* Wait for the child to initialize. */ 6638 pthread_cond_wait(&info.cond, &info.mutex); 6639 ret = info.tid; 6640 } else { 6641 ret = -1; 6642 } 6643 pthread_mutex_unlock(&info.mutex); 6644 pthread_cond_destroy(&info.cond); 6645 pthread_mutex_destroy(&info.mutex); 6646 pthread_mutex_unlock(&clone_lock); 6647 } else { 6648 /* if no CLONE_VM, we consider it is a fork */ 6649 if (flags & CLONE_INVALID_FORK_FLAGS) { 6650 return -TARGET_EINVAL; 6651 } 6652 6653 /* We can't support custom termination signals */ 6654 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6655 return -TARGET_EINVAL; 6656 } 6657 6658 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open) 6659 if (flags & CLONE_PIDFD) { 6660 return -TARGET_EINVAL; 6661 } 6662 #endif 6663 6664 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */ 6665 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) { 6666 return -TARGET_EINVAL; 6667 } 6668 6669 if (block_signals()) { 6670 return -QEMU_ERESTARTSYS; 6671 } 6672 6673 fork_start(); 6674 ret = fork(); 6675 if (ret == 0) { 6676 /* Child Process. */ 6677 cpu_clone_regs_child(env, newsp, flags); 6678 fork_end(ret); 6679 /* There is a race condition here. The parent process could 6680 theoretically read the TID in the child process before the child 6681 tid is set. This would require using either ptrace 6682 (not implemented) or having *_tidptr to point at a shared memory 6683 mapping. We can't repeat the spinlock hack used above because 6684 the child process gets its own copy of the lock. */ 6685 if (flags & CLONE_CHILD_SETTID) 6686 put_user_u32(sys_gettid(), child_tidptr); 6687 if (flags & CLONE_PARENT_SETTID) 6688 put_user_u32(sys_gettid(), parent_tidptr); 6689 ts = get_task_state(cpu); 6690 if (flags & CLONE_SETTLS) 6691 cpu_set_tls (env, newtls); 6692 if (flags & CLONE_CHILD_CLEARTID) 6693 ts->child_tidptr = child_tidptr; 6694 } else { 6695 cpu_clone_regs_parent(env, flags); 6696 if (flags & CLONE_PIDFD) { 6697 int pid_fd = 0; 6698 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 6699 int pid_child = ret; 6700 pid_fd = pidfd_open(pid_child, 0); 6701 if (pid_fd >= 0) { 6702 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL) 6703 | FD_CLOEXEC); 6704 } else { 6705 pid_fd = 0; 6706 } 6707 #endif 6708 put_user_u32(pid_fd, parent_tidptr); 6709 } 6710 fork_end(ret); 6711 } 6712 g_assert(!cpu_in_exclusive_context(cpu)); 6713 } 6714 return ret; 6715 } 6716 6717 /* warning : doesn't handle linux specific flags... */ 6718 static int target_to_host_fcntl_cmd(int cmd) 6719 { 6720 int ret; 6721 6722 switch(cmd) { 6723 case TARGET_F_DUPFD: 6724 case TARGET_F_GETFD: 6725 case TARGET_F_SETFD: 6726 case TARGET_F_GETFL: 6727 case TARGET_F_SETFL: 6728 case TARGET_F_OFD_GETLK: 6729 case TARGET_F_OFD_SETLK: 6730 case TARGET_F_OFD_SETLKW: 6731 ret = cmd; 6732 break; 6733 case TARGET_F_GETLK: 6734 ret = F_GETLK64; 6735 break; 6736 case TARGET_F_SETLK: 6737 ret = F_SETLK64; 6738 break; 6739 case TARGET_F_SETLKW: 6740 ret = F_SETLKW64; 6741 break; 6742 case TARGET_F_GETOWN: 6743 ret = F_GETOWN; 6744 break; 6745 case TARGET_F_SETOWN: 6746 ret = F_SETOWN; 6747 break; 6748 case TARGET_F_GETSIG: 6749 ret = F_GETSIG; 6750 break; 6751 case TARGET_F_SETSIG: 6752 ret = F_SETSIG; 6753 break; 6754 #if TARGET_ABI_BITS == 32 6755 case TARGET_F_GETLK64: 6756 ret = F_GETLK64; 6757 break; 6758 case TARGET_F_SETLK64: 6759 ret = F_SETLK64; 6760 break; 6761 case TARGET_F_SETLKW64: 6762 ret = F_SETLKW64; 6763 break; 6764 #endif 6765 case TARGET_F_SETLEASE: 6766 ret = F_SETLEASE; 6767 break; 6768 case TARGET_F_GETLEASE: 6769 ret = F_GETLEASE; 6770 break; 6771 #ifdef F_DUPFD_CLOEXEC 6772 case TARGET_F_DUPFD_CLOEXEC: 6773 ret = F_DUPFD_CLOEXEC; 6774 break; 6775 #endif 6776 case TARGET_F_NOTIFY: 6777 ret = F_NOTIFY; 6778 break; 6779 #ifdef F_GETOWN_EX 6780 case TARGET_F_GETOWN_EX: 6781 ret = F_GETOWN_EX; 6782 break; 6783 #endif 6784 #ifdef F_SETOWN_EX 6785 case TARGET_F_SETOWN_EX: 6786 ret = F_SETOWN_EX; 6787 break; 6788 #endif 6789 #ifdef F_SETPIPE_SZ 6790 case TARGET_F_SETPIPE_SZ: 6791 ret = F_SETPIPE_SZ; 6792 break; 6793 case TARGET_F_GETPIPE_SZ: 6794 ret = F_GETPIPE_SZ; 6795 break; 6796 #endif 6797 #ifdef F_ADD_SEALS 6798 case TARGET_F_ADD_SEALS: 6799 ret = F_ADD_SEALS; 6800 break; 6801 case TARGET_F_GET_SEALS: 6802 ret = F_GET_SEALS; 6803 break; 6804 #endif 6805 default: 6806 ret = -TARGET_EINVAL; 6807 break; 6808 } 6809 6810 #if defined(__powerpc64__) 6811 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and 6812 * is not supported by kernel. The glibc fcntl call actually adjusts 6813 * them to 5, 6 and 7 before making the syscall(). Since we make the 6814 * syscall directly, adjust to what is supported by the kernel. 6815 */ 6816 if (ret >= F_GETLK64 && ret <= F_SETLKW64) { 6817 ret -= F_GETLK64 - 5; 6818 } 6819 #endif 6820 6821 return ret; 6822 } 6823 6824 #define FLOCK_TRANSTBL \ 6825 switch (type) { \ 6826 TRANSTBL_CONVERT(F_RDLCK); \ 6827 TRANSTBL_CONVERT(F_WRLCK); \ 6828 TRANSTBL_CONVERT(F_UNLCK); \ 6829 } 6830 6831 static int target_to_host_flock(int type) 6832 { 6833 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a 6834 FLOCK_TRANSTBL 6835 #undef TRANSTBL_CONVERT 6836 return -TARGET_EINVAL; 6837 } 6838 6839 static int host_to_target_flock(int type) 6840 { 6841 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a 6842 FLOCK_TRANSTBL 6843 #undef TRANSTBL_CONVERT 6844 /* if we don't know how to convert the value coming 6845 * from the host we copy to the target field as-is 6846 */ 6847 return type; 6848 } 6849 6850 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6851 abi_ulong target_flock_addr) 6852 { 6853 struct target_flock *target_fl; 6854 int l_type; 6855 6856 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6857 return -TARGET_EFAULT; 6858 } 6859 6860 __get_user(l_type, &target_fl->l_type); 6861 l_type = target_to_host_flock(l_type); 6862 if (l_type < 0) { 6863 return l_type; 6864 } 6865 fl->l_type = l_type; 6866 __get_user(fl->l_whence, &target_fl->l_whence); 6867 __get_user(fl->l_start, &target_fl->l_start); 6868 __get_user(fl->l_len, &target_fl->l_len); 6869 __get_user(fl->l_pid, &target_fl->l_pid); 6870 unlock_user_struct(target_fl, target_flock_addr, 0); 6871 return 0; 6872 } 6873 6874 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6875 const struct flock64 *fl) 6876 { 6877 struct target_flock *target_fl; 6878 short l_type; 6879 6880 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6881 return -TARGET_EFAULT; 6882 } 6883 6884 l_type = host_to_target_flock(fl->l_type); 6885 __put_user(l_type, &target_fl->l_type); 6886 __put_user(fl->l_whence, &target_fl->l_whence); 6887 __put_user(fl->l_start, &target_fl->l_start); 6888 __put_user(fl->l_len, &target_fl->l_len); 6889 __put_user(fl->l_pid, &target_fl->l_pid); 6890 unlock_user_struct(target_fl, target_flock_addr, 1); 6891 return 0; 6892 } 6893 6894 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6895 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6896 6897 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6898 struct target_oabi_flock64 { 6899 abi_short l_type; 6900 abi_short l_whence; 6901 abi_llong l_start; 6902 abi_llong l_len; 6903 abi_int l_pid; 6904 } QEMU_PACKED; 6905 6906 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl, 6907 abi_ulong target_flock_addr) 6908 { 6909 struct target_oabi_flock64 *target_fl; 6910 int l_type; 6911 6912 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6913 return -TARGET_EFAULT; 6914 } 6915 6916 __get_user(l_type, &target_fl->l_type); 6917 l_type = target_to_host_flock(l_type); 6918 if (l_type < 0) { 6919 return l_type; 6920 } 6921 fl->l_type = l_type; 6922 __get_user(fl->l_whence, &target_fl->l_whence); 6923 __get_user(fl->l_start, &target_fl->l_start); 6924 __get_user(fl->l_len, &target_fl->l_len); 6925 __get_user(fl->l_pid, &target_fl->l_pid); 6926 unlock_user_struct(target_fl, target_flock_addr, 0); 6927 return 0; 6928 } 6929 6930 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr, 6931 const struct flock64 *fl) 6932 { 6933 struct target_oabi_flock64 *target_fl; 6934 short l_type; 6935 6936 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6937 return -TARGET_EFAULT; 6938 } 6939 6940 l_type = host_to_target_flock(fl->l_type); 6941 __put_user(l_type, &target_fl->l_type); 6942 __put_user(fl->l_whence, &target_fl->l_whence); 6943 __put_user(fl->l_start, &target_fl->l_start); 6944 __put_user(fl->l_len, &target_fl->l_len); 6945 __put_user(fl->l_pid, &target_fl->l_pid); 6946 unlock_user_struct(target_fl, target_flock_addr, 1); 6947 return 0; 6948 } 6949 #endif 6950 6951 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6952 abi_ulong target_flock_addr) 6953 { 6954 struct target_flock64 *target_fl; 6955 int l_type; 6956 6957 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6958 return -TARGET_EFAULT; 6959 } 6960 6961 __get_user(l_type, &target_fl->l_type); 6962 l_type = target_to_host_flock(l_type); 6963 if (l_type < 0) { 6964 return l_type; 6965 } 6966 fl->l_type = l_type; 6967 __get_user(fl->l_whence, &target_fl->l_whence); 6968 __get_user(fl->l_start, &target_fl->l_start); 6969 __get_user(fl->l_len, &target_fl->l_len); 6970 __get_user(fl->l_pid, &target_fl->l_pid); 6971 unlock_user_struct(target_fl, target_flock_addr, 0); 6972 return 0; 6973 } 6974 6975 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6976 const struct flock64 *fl) 6977 { 6978 struct target_flock64 *target_fl; 6979 short l_type; 6980 6981 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6982 return -TARGET_EFAULT; 6983 } 6984 6985 l_type = host_to_target_flock(fl->l_type); 6986 __put_user(l_type, &target_fl->l_type); 6987 __put_user(fl->l_whence, &target_fl->l_whence); 6988 __put_user(fl->l_start, &target_fl->l_start); 6989 __put_user(fl->l_len, &target_fl->l_len); 6990 __put_user(fl->l_pid, &target_fl->l_pid); 6991 unlock_user_struct(target_fl, target_flock_addr, 1); 6992 return 0; 6993 } 6994 6995 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6996 { 6997 struct flock64 fl64; 6998 #ifdef F_GETOWN_EX 6999 struct f_owner_ex fox; 7000 struct target_f_owner_ex *target_fox; 7001 #endif 7002 abi_long ret; 7003 int host_cmd = target_to_host_fcntl_cmd(cmd); 7004 7005 if (host_cmd == -TARGET_EINVAL) 7006 return host_cmd; 7007 7008 switch(cmd) { 7009 case TARGET_F_GETLK: 7010 ret = copy_from_user_flock(&fl64, arg); 7011 if (ret) { 7012 return ret; 7013 } 7014 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7015 if (ret == 0) { 7016 ret = copy_to_user_flock(arg, &fl64); 7017 } 7018 break; 7019 7020 case TARGET_F_SETLK: 7021 case TARGET_F_SETLKW: 7022 ret = copy_from_user_flock(&fl64, arg); 7023 if (ret) { 7024 return ret; 7025 } 7026 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7027 break; 7028 7029 case TARGET_F_GETLK64: 7030 case TARGET_F_OFD_GETLK: 7031 ret = copy_from_user_flock64(&fl64, arg); 7032 if (ret) { 7033 return ret; 7034 } 7035 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7036 if (ret == 0) { 7037 ret = copy_to_user_flock64(arg, &fl64); 7038 } 7039 break; 7040 case TARGET_F_SETLK64: 7041 case TARGET_F_SETLKW64: 7042 case TARGET_F_OFD_SETLK: 7043 case TARGET_F_OFD_SETLKW: 7044 ret = copy_from_user_flock64(&fl64, arg); 7045 if (ret) { 7046 return ret; 7047 } 7048 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7049 break; 7050 7051 case TARGET_F_GETFL: 7052 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7053 if (ret >= 0) { 7054 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 7055 /* tell 32-bit guests it uses largefile on 64-bit hosts: */ 7056 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) { 7057 ret |= TARGET_O_LARGEFILE; 7058 } 7059 } 7060 break; 7061 7062 case TARGET_F_SETFL: 7063 ret = get_errno(safe_fcntl(fd, host_cmd, 7064 target_to_host_bitmask(arg, 7065 fcntl_flags_tbl))); 7066 break; 7067 7068 #ifdef F_GETOWN_EX 7069 case TARGET_F_GETOWN_EX: 7070 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7071 if (ret >= 0) { 7072 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 7073 return -TARGET_EFAULT; 7074 target_fox->type = tswap32(fox.type); 7075 target_fox->pid = tswap32(fox.pid); 7076 unlock_user_struct(target_fox, arg, 1); 7077 } 7078 break; 7079 #endif 7080 7081 #ifdef F_SETOWN_EX 7082 case TARGET_F_SETOWN_EX: 7083 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 7084 return -TARGET_EFAULT; 7085 fox.type = tswap32(target_fox->type); 7086 fox.pid = tswap32(target_fox->pid); 7087 unlock_user_struct(target_fox, arg, 0); 7088 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7089 break; 7090 #endif 7091 7092 case TARGET_F_SETSIG: 7093 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg))); 7094 break; 7095 7096 case TARGET_F_GETSIG: 7097 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg))); 7098 break; 7099 7100 case TARGET_F_SETOWN: 7101 case TARGET_F_GETOWN: 7102 case TARGET_F_SETLEASE: 7103 case TARGET_F_GETLEASE: 7104 case TARGET_F_SETPIPE_SZ: 7105 case TARGET_F_GETPIPE_SZ: 7106 case TARGET_F_ADD_SEALS: 7107 case TARGET_F_GET_SEALS: 7108 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7109 break; 7110 7111 default: 7112 ret = get_errno(safe_fcntl(fd, cmd, arg)); 7113 break; 7114 } 7115 return ret; 7116 } 7117 7118 #ifdef USE_UID16 7119 7120 static inline int high2lowuid(int uid) 7121 { 7122 if (uid > 65535) 7123 return 65534; 7124 else 7125 return uid; 7126 } 7127 7128 static inline int high2lowgid(int gid) 7129 { 7130 if (gid > 65535) 7131 return 65534; 7132 else 7133 return gid; 7134 } 7135 7136 static inline int low2highuid(int uid) 7137 { 7138 if ((int16_t)uid == -1) 7139 return -1; 7140 else 7141 return uid; 7142 } 7143 7144 static inline int low2highgid(int gid) 7145 { 7146 if ((int16_t)gid == -1) 7147 return -1; 7148 else 7149 return gid; 7150 } 7151 static inline int tswapid(int id) 7152 { 7153 return tswap16(id); 7154 } 7155 7156 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 7157 7158 #else /* !USE_UID16 */ 7159 static inline int high2lowuid(int uid) 7160 { 7161 return uid; 7162 } 7163 static inline int high2lowgid(int gid) 7164 { 7165 return gid; 7166 } 7167 static inline int low2highuid(int uid) 7168 { 7169 return uid; 7170 } 7171 static inline int low2highgid(int gid) 7172 { 7173 return gid; 7174 } 7175 static inline int tswapid(int id) 7176 { 7177 return tswap32(id); 7178 } 7179 7180 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 7181 7182 #endif /* USE_UID16 */ 7183 7184 /* We must do direct syscalls for setting UID/GID, because we want to 7185 * implement the Linux system call semantics of "change only for this thread", 7186 * not the libc/POSIX semantics of "change for all threads in process". 7187 * (See http://ewontfix.com/17/ for more details.) 7188 * We use the 32-bit version of the syscalls if present; if it is not 7189 * then either the host architecture supports 32-bit UIDs natively with 7190 * the standard syscall, or the 16-bit UID is the best we can do. 7191 */ 7192 #ifdef __NR_setuid32 7193 #define __NR_sys_setuid __NR_setuid32 7194 #else 7195 #define __NR_sys_setuid __NR_setuid 7196 #endif 7197 #ifdef __NR_setgid32 7198 #define __NR_sys_setgid __NR_setgid32 7199 #else 7200 #define __NR_sys_setgid __NR_setgid 7201 #endif 7202 #ifdef __NR_setresuid32 7203 #define __NR_sys_setresuid __NR_setresuid32 7204 #else 7205 #define __NR_sys_setresuid __NR_setresuid 7206 #endif 7207 #ifdef __NR_setresgid32 7208 #define __NR_sys_setresgid __NR_setresgid32 7209 #else 7210 #define __NR_sys_setresgid __NR_setresgid 7211 #endif 7212 #ifdef __NR_setgroups32 7213 #define __NR_sys_setgroups __NR_setgroups32 7214 #else 7215 #define __NR_sys_setgroups __NR_setgroups 7216 #endif 7217 7218 _syscall1(int, sys_setuid, uid_t, uid) 7219 _syscall1(int, sys_setgid, gid_t, gid) 7220 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 7221 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 7222 _syscall2(int, sys_setgroups, int, size, gid_t *, grouplist) 7223 7224 void syscall_init(void) 7225 { 7226 IOCTLEntry *ie; 7227 const argtype *arg_type; 7228 int size; 7229 7230 thunk_init(STRUCT_MAX); 7231 7232 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 7233 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 7234 #include "syscall_types.h" 7235 #undef STRUCT 7236 #undef STRUCT_SPECIAL 7237 7238 /* we patch the ioctl size if necessary. We rely on the fact that 7239 no ioctl has all the bits at '1' in the size field */ 7240 ie = ioctl_entries; 7241 while (ie->target_cmd != 0) { 7242 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 7243 TARGET_IOC_SIZEMASK) { 7244 arg_type = ie->arg_type; 7245 if (arg_type[0] != TYPE_PTR) { 7246 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 7247 ie->target_cmd); 7248 exit(1); 7249 } 7250 arg_type++; 7251 size = thunk_type_size(arg_type, 0); 7252 ie->target_cmd = (ie->target_cmd & 7253 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 7254 (size << TARGET_IOC_SIZESHIFT); 7255 } 7256 7257 /* automatic consistency check if same arch */ 7258 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 7259 (defined(__x86_64__) && defined(TARGET_X86_64)) 7260 if (unlikely(ie->target_cmd != ie->host_cmd)) { 7261 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 7262 ie->name, ie->target_cmd, ie->host_cmd); 7263 } 7264 #endif 7265 ie++; 7266 } 7267 } 7268 7269 #ifdef TARGET_NR_truncate64 7270 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1, 7271 abi_long arg2, 7272 abi_long arg3, 7273 abi_long arg4) 7274 { 7275 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 7276 arg2 = arg3; 7277 arg3 = arg4; 7278 } 7279 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 7280 } 7281 #endif 7282 7283 #ifdef TARGET_NR_ftruncate64 7284 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1, 7285 abi_long arg2, 7286 abi_long arg3, 7287 abi_long arg4) 7288 { 7289 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 7290 arg2 = arg3; 7291 arg3 = arg4; 7292 } 7293 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 7294 } 7295 #endif 7296 7297 #if defined(TARGET_NR_timer_settime) || \ 7298 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 7299 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its, 7300 abi_ulong target_addr) 7301 { 7302 if (target_to_host_timespec(&host_its->it_interval, target_addr + 7303 offsetof(struct target_itimerspec, 7304 it_interval)) || 7305 target_to_host_timespec(&host_its->it_value, target_addr + 7306 offsetof(struct target_itimerspec, 7307 it_value))) { 7308 return -TARGET_EFAULT; 7309 } 7310 7311 return 0; 7312 } 7313 #endif 7314 7315 #if defined(TARGET_NR_timer_settime64) || \ 7316 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) 7317 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its, 7318 abi_ulong target_addr) 7319 { 7320 if (target_to_host_timespec64(&host_its->it_interval, target_addr + 7321 offsetof(struct target__kernel_itimerspec, 7322 it_interval)) || 7323 target_to_host_timespec64(&host_its->it_value, target_addr + 7324 offsetof(struct target__kernel_itimerspec, 7325 it_value))) { 7326 return -TARGET_EFAULT; 7327 } 7328 7329 return 0; 7330 } 7331 #endif 7332 7333 #if ((defined(TARGET_NR_timerfd_gettime) || \ 7334 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \ 7335 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime) 7336 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7337 struct itimerspec *host_its) 7338 { 7339 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7340 it_interval), 7341 &host_its->it_interval) || 7342 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7343 it_value), 7344 &host_its->it_value)) { 7345 return -TARGET_EFAULT; 7346 } 7347 return 0; 7348 } 7349 #endif 7350 7351 #if ((defined(TARGET_NR_timerfd_gettime64) || \ 7352 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \ 7353 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64) 7354 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr, 7355 struct itimerspec *host_its) 7356 { 7357 if (host_to_target_timespec64(target_addr + 7358 offsetof(struct target__kernel_itimerspec, 7359 it_interval), 7360 &host_its->it_interval) || 7361 host_to_target_timespec64(target_addr + 7362 offsetof(struct target__kernel_itimerspec, 7363 it_value), 7364 &host_its->it_value)) { 7365 return -TARGET_EFAULT; 7366 } 7367 return 0; 7368 } 7369 #endif 7370 7371 #if defined(TARGET_NR_adjtimex) || \ 7372 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)) 7373 static inline abi_long target_to_host_timex(struct timex *host_tx, 7374 abi_long target_addr) 7375 { 7376 struct target_timex *target_tx; 7377 7378 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7379 return -TARGET_EFAULT; 7380 } 7381 7382 __get_user(host_tx->modes, &target_tx->modes); 7383 __get_user(host_tx->offset, &target_tx->offset); 7384 __get_user(host_tx->freq, &target_tx->freq); 7385 __get_user(host_tx->maxerror, &target_tx->maxerror); 7386 __get_user(host_tx->esterror, &target_tx->esterror); 7387 __get_user(host_tx->status, &target_tx->status); 7388 __get_user(host_tx->constant, &target_tx->constant); 7389 __get_user(host_tx->precision, &target_tx->precision); 7390 __get_user(host_tx->tolerance, &target_tx->tolerance); 7391 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7392 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7393 __get_user(host_tx->tick, &target_tx->tick); 7394 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7395 __get_user(host_tx->jitter, &target_tx->jitter); 7396 __get_user(host_tx->shift, &target_tx->shift); 7397 __get_user(host_tx->stabil, &target_tx->stabil); 7398 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7399 __get_user(host_tx->calcnt, &target_tx->calcnt); 7400 __get_user(host_tx->errcnt, &target_tx->errcnt); 7401 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7402 __get_user(host_tx->tai, &target_tx->tai); 7403 7404 unlock_user_struct(target_tx, target_addr, 0); 7405 return 0; 7406 } 7407 7408 static inline abi_long host_to_target_timex(abi_long target_addr, 7409 struct timex *host_tx) 7410 { 7411 struct target_timex *target_tx; 7412 7413 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7414 return -TARGET_EFAULT; 7415 } 7416 7417 __put_user(host_tx->modes, &target_tx->modes); 7418 __put_user(host_tx->offset, &target_tx->offset); 7419 __put_user(host_tx->freq, &target_tx->freq); 7420 __put_user(host_tx->maxerror, &target_tx->maxerror); 7421 __put_user(host_tx->esterror, &target_tx->esterror); 7422 __put_user(host_tx->status, &target_tx->status); 7423 __put_user(host_tx->constant, &target_tx->constant); 7424 __put_user(host_tx->precision, &target_tx->precision); 7425 __put_user(host_tx->tolerance, &target_tx->tolerance); 7426 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7427 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7428 __put_user(host_tx->tick, &target_tx->tick); 7429 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7430 __put_user(host_tx->jitter, &target_tx->jitter); 7431 __put_user(host_tx->shift, &target_tx->shift); 7432 __put_user(host_tx->stabil, &target_tx->stabil); 7433 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7434 __put_user(host_tx->calcnt, &target_tx->calcnt); 7435 __put_user(host_tx->errcnt, &target_tx->errcnt); 7436 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7437 __put_user(host_tx->tai, &target_tx->tai); 7438 7439 unlock_user_struct(target_tx, target_addr, 1); 7440 return 0; 7441 } 7442 #endif 7443 7444 7445 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 7446 static inline abi_long target_to_host_timex64(struct timex *host_tx, 7447 abi_long target_addr) 7448 { 7449 struct target__kernel_timex *target_tx; 7450 7451 if (copy_from_user_timeval64(&host_tx->time, target_addr + 7452 offsetof(struct target__kernel_timex, 7453 time))) { 7454 return -TARGET_EFAULT; 7455 } 7456 7457 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7458 return -TARGET_EFAULT; 7459 } 7460 7461 __get_user(host_tx->modes, &target_tx->modes); 7462 __get_user(host_tx->offset, &target_tx->offset); 7463 __get_user(host_tx->freq, &target_tx->freq); 7464 __get_user(host_tx->maxerror, &target_tx->maxerror); 7465 __get_user(host_tx->esterror, &target_tx->esterror); 7466 __get_user(host_tx->status, &target_tx->status); 7467 __get_user(host_tx->constant, &target_tx->constant); 7468 __get_user(host_tx->precision, &target_tx->precision); 7469 __get_user(host_tx->tolerance, &target_tx->tolerance); 7470 __get_user(host_tx->tick, &target_tx->tick); 7471 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7472 __get_user(host_tx->jitter, &target_tx->jitter); 7473 __get_user(host_tx->shift, &target_tx->shift); 7474 __get_user(host_tx->stabil, &target_tx->stabil); 7475 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7476 __get_user(host_tx->calcnt, &target_tx->calcnt); 7477 __get_user(host_tx->errcnt, &target_tx->errcnt); 7478 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7479 __get_user(host_tx->tai, &target_tx->tai); 7480 7481 unlock_user_struct(target_tx, target_addr, 0); 7482 return 0; 7483 } 7484 7485 static inline abi_long host_to_target_timex64(abi_long target_addr, 7486 struct timex *host_tx) 7487 { 7488 struct target__kernel_timex *target_tx; 7489 7490 if (copy_to_user_timeval64(target_addr + 7491 offsetof(struct target__kernel_timex, time), 7492 &host_tx->time)) { 7493 return -TARGET_EFAULT; 7494 } 7495 7496 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7497 return -TARGET_EFAULT; 7498 } 7499 7500 __put_user(host_tx->modes, &target_tx->modes); 7501 __put_user(host_tx->offset, &target_tx->offset); 7502 __put_user(host_tx->freq, &target_tx->freq); 7503 __put_user(host_tx->maxerror, &target_tx->maxerror); 7504 __put_user(host_tx->esterror, &target_tx->esterror); 7505 __put_user(host_tx->status, &target_tx->status); 7506 __put_user(host_tx->constant, &target_tx->constant); 7507 __put_user(host_tx->precision, &target_tx->precision); 7508 __put_user(host_tx->tolerance, &target_tx->tolerance); 7509 __put_user(host_tx->tick, &target_tx->tick); 7510 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7511 __put_user(host_tx->jitter, &target_tx->jitter); 7512 __put_user(host_tx->shift, &target_tx->shift); 7513 __put_user(host_tx->stabil, &target_tx->stabil); 7514 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7515 __put_user(host_tx->calcnt, &target_tx->calcnt); 7516 __put_user(host_tx->errcnt, &target_tx->errcnt); 7517 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7518 __put_user(host_tx->tai, &target_tx->tai); 7519 7520 unlock_user_struct(target_tx, target_addr, 1); 7521 return 0; 7522 } 7523 #endif 7524 7525 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID 7526 #define sigev_notify_thread_id _sigev_un._tid 7527 #endif 7528 7529 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7530 abi_ulong target_addr) 7531 { 7532 struct target_sigevent *target_sevp; 7533 7534 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7535 return -TARGET_EFAULT; 7536 } 7537 7538 /* This union is awkward on 64 bit systems because it has a 32 bit 7539 * integer and a pointer in it; we follow the conversion approach 7540 * used for handling sigval types in signal.c so the guest should get 7541 * the correct value back even if we did a 64 bit byteswap and it's 7542 * using the 32 bit integer. 7543 */ 7544 host_sevp->sigev_value.sival_ptr = 7545 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7546 host_sevp->sigev_signo = 7547 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7548 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7549 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid); 7550 7551 unlock_user_struct(target_sevp, target_addr, 1); 7552 return 0; 7553 } 7554 7555 #if defined(TARGET_NR_mlockall) 7556 static inline int target_to_host_mlockall_arg(int arg) 7557 { 7558 int result = 0; 7559 7560 if (arg & TARGET_MCL_CURRENT) { 7561 result |= MCL_CURRENT; 7562 } 7563 if (arg & TARGET_MCL_FUTURE) { 7564 result |= MCL_FUTURE; 7565 } 7566 #ifdef MCL_ONFAULT 7567 if (arg & TARGET_MCL_ONFAULT) { 7568 result |= MCL_ONFAULT; 7569 } 7570 #endif 7571 7572 return result; 7573 } 7574 #endif 7575 7576 static inline int target_to_host_msync_arg(abi_long arg) 7577 { 7578 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) | 7579 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) | 7580 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) | 7581 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC)); 7582 } 7583 7584 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \ 7585 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \ 7586 defined(TARGET_NR_newfstatat)) 7587 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env, 7588 abi_ulong target_addr, 7589 struct stat *host_st) 7590 { 7591 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7592 if (cpu_env->eabi) { 7593 struct target_eabi_stat64 *target_st; 7594 7595 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7596 return -TARGET_EFAULT; 7597 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7598 __put_user(host_st->st_dev, &target_st->st_dev); 7599 __put_user(host_st->st_ino, &target_st->st_ino); 7600 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7601 __put_user(host_st->st_ino, &target_st->__st_ino); 7602 #endif 7603 __put_user(host_st->st_mode, &target_st->st_mode); 7604 __put_user(host_st->st_nlink, &target_st->st_nlink); 7605 __put_user(host_st->st_uid, &target_st->st_uid); 7606 __put_user(host_st->st_gid, &target_st->st_gid); 7607 __put_user(host_st->st_rdev, &target_st->st_rdev); 7608 __put_user(host_st->st_size, &target_st->st_size); 7609 __put_user(host_st->st_blksize, &target_st->st_blksize); 7610 __put_user(host_st->st_blocks, &target_st->st_blocks); 7611 __put_user(host_st->st_atime, &target_st->target_st_atime); 7612 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7613 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7614 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7615 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7616 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7617 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7618 #endif 7619 unlock_user_struct(target_st, target_addr, 1); 7620 } else 7621 #endif 7622 { 7623 #if defined(TARGET_HAS_STRUCT_STAT64) 7624 struct target_stat64 *target_st; 7625 #else 7626 struct target_stat *target_st; 7627 #endif 7628 7629 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7630 return -TARGET_EFAULT; 7631 memset(target_st, 0, sizeof(*target_st)); 7632 __put_user(host_st->st_dev, &target_st->st_dev); 7633 __put_user(host_st->st_ino, &target_st->st_ino); 7634 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7635 __put_user(host_st->st_ino, &target_st->__st_ino); 7636 #endif 7637 __put_user(host_st->st_mode, &target_st->st_mode); 7638 __put_user(host_st->st_nlink, &target_st->st_nlink); 7639 __put_user(host_st->st_uid, &target_st->st_uid); 7640 __put_user(host_st->st_gid, &target_st->st_gid); 7641 __put_user(host_st->st_rdev, &target_st->st_rdev); 7642 /* XXX: better use of kernel struct */ 7643 __put_user(host_st->st_size, &target_st->st_size); 7644 __put_user(host_st->st_blksize, &target_st->st_blksize); 7645 __put_user(host_st->st_blocks, &target_st->st_blocks); 7646 __put_user(host_st->st_atime, &target_st->target_st_atime); 7647 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7648 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7649 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7650 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7651 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7652 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7653 #endif 7654 unlock_user_struct(target_st, target_addr, 1); 7655 } 7656 7657 return 0; 7658 } 7659 #endif 7660 7661 #if defined(TARGET_NR_statx) && defined(__NR_statx) 7662 static inline abi_long host_to_target_statx(struct target_statx *host_stx, 7663 abi_ulong target_addr) 7664 { 7665 struct target_statx *target_stx; 7666 7667 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) { 7668 return -TARGET_EFAULT; 7669 } 7670 memset(target_stx, 0, sizeof(*target_stx)); 7671 7672 __put_user(host_stx->stx_mask, &target_stx->stx_mask); 7673 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize); 7674 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes); 7675 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink); 7676 __put_user(host_stx->stx_uid, &target_stx->stx_uid); 7677 __put_user(host_stx->stx_gid, &target_stx->stx_gid); 7678 __put_user(host_stx->stx_mode, &target_stx->stx_mode); 7679 __put_user(host_stx->stx_ino, &target_stx->stx_ino); 7680 __put_user(host_stx->stx_size, &target_stx->stx_size); 7681 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks); 7682 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask); 7683 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec); 7684 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec); 7685 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec); 7686 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec); 7687 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec); 7688 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec); 7689 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec); 7690 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec); 7691 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major); 7692 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor); 7693 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major); 7694 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor); 7695 7696 unlock_user_struct(target_stx, target_addr, 1); 7697 7698 return 0; 7699 } 7700 #endif 7701 7702 static int do_sys_futex(int *uaddr, int op, int val, 7703 const struct timespec *timeout, int *uaddr2, 7704 int val3) 7705 { 7706 #if HOST_LONG_BITS == 64 7707 #if defined(__NR_futex) 7708 /* always a 64-bit time_t, it doesn't define _time64 version */ 7709 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7710 7711 #endif 7712 #else /* HOST_LONG_BITS == 64 */ 7713 #if defined(__NR_futex_time64) 7714 if (sizeof(timeout->tv_sec) == 8) { 7715 /* _time64 function on 32bit arch */ 7716 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3); 7717 } 7718 #endif 7719 #if defined(__NR_futex) 7720 /* old function on 32bit arch */ 7721 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7722 #endif 7723 #endif /* HOST_LONG_BITS == 64 */ 7724 g_assert_not_reached(); 7725 } 7726 7727 static int do_safe_futex(int *uaddr, int op, int val, 7728 const struct timespec *timeout, int *uaddr2, 7729 int val3) 7730 { 7731 #if HOST_LONG_BITS == 64 7732 #if defined(__NR_futex) 7733 /* always a 64-bit time_t, it doesn't define _time64 version */ 7734 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7735 #endif 7736 #else /* HOST_LONG_BITS == 64 */ 7737 #if defined(__NR_futex_time64) 7738 if (sizeof(timeout->tv_sec) == 8) { 7739 /* _time64 function on 32bit arch */ 7740 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2, 7741 val3)); 7742 } 7743 #endif 7744 #if defined(__NR_futex) 7745 /* old function on 32bit arch */ 7746 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7747 #endif 7748 #endif /* HOST_LONG_BITS == 64 */ 7749 return -TARGET_ENOSYS; 7750 } 7751 7752 /* ??? Using host futex calls even when target atomic operations 7753 are not really atomic probably breaks things. However implementing 7754 futexes locally would make futexes shared between multiple processes 7755 tricky. However they're probably useless because guest atomic 7756 operations won't work either. */ 7757 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64) 7758 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr, 7759 int op, int val, target_ulong timeout, 7760 target_ulong uaddr2, int val3) 7761 { 7762 struct timespec ts, *pts = NULL; 7763 void *haddr2 = NULL; 7764 int base_op; 7765 7766 /* We assume FUTEX_* constants are the same on both host and target. */ 7767 #ifdef FUTEX_CMD_MASK 7768 base_op = op & FUTEX_CMD_MASK; 7769 #else 7770 base_op = op; 7771 #endif 7772 switch (base_op) { 7773 case FUTEX_WAIT: 7774 case FUTEX_WAIT_BITSET: 7775 val = tswap32(val); 7776 break; 7777 case FUTEX_WAIT_REQUEUE_PI: 7778 val = tswap32(val); 7779 haddr2 = g2h(cpu, uaddr2); 7780 break; 7781 case FUTEX_LOCK_PI: 7782 case FUTEX_LOCK_PI2: 7783 break; 7784 case FUTEX_WAKE: 7785 case FUTEX_WAKE_BITSET: 7786 case FUTEX_TRYLOCK_PI: 7787 case FUTEX_UNLOCK_PI: 7788 timeout = 0; 7789 break; 7790 case FUTEX_FD: 7791 val = target_to_host_signal(val); 7792 timeout = 0; 7793 break; 7794 case FUTEX_CMP_REQUEUE: 7795 case FUTEX_CMP_REQUEUE_PI: 7796 val3 = tswap32(val3); 7797 /* fall through */ 7798 case FUTEX_REQUEUE: 7799 case FUTEX_WAKE_OP: 7800 /* 7801 * For these, the 4th argument is not TIMEOUT, but VAL2. 7802 * But the prototype of do_safe_futex takes a pointer, so 7803 * insert casts to satisfy the compiler. We do not need 7804 * to tswap VAL2 since it's not compared to guest memory. 7805 */ 7806 pts = (struct timespec *)(uintptr_t)timeout; 7807 timeout = 0; 7808 haddr2 = g2h(cpu, uaddr2); 7809 break; 7810 default: 7811 return -TARGET_ENOSYS; 7812 } 7813 if (timeout) { 7814 pts = &ts; 7815 if (time64 7816 ? target_to_host_timespec64(pts, timeout) 7817 : target_to_host_timespec(pts, timeout)) { 7818 return -TARGET_EFAULT; 7819 } 7820 } 7821 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3); 7822 } 7823 #endif 7824 7825 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7826 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7827 abi_long handle, abi_long mount_id, 7828 abi_long flags) 7829 { 7830 struct file_handle *target_fh; 7831 struct file_handle *fh; 7832 int mid = 0; 7833 abi_long ret; 7834 char *name; 7835 unsigned int size, total_size; 7836 7837 if (get_user_s32(size, handle)) { 7838 return -TARGET_EFAULT; 7839 } 7840 7841 name = lock_user_string(pathname); 7842 if (!name) { 7843 return -TARGET_EFAULT; 7844 } 7845 7846 total_size = sizeof(struct file_handle) + size; 7847 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7848 if (!target_fh) { 7849 unlock_user(name, pathname, 0); 7850 return -TARGET_EFAULT; 7851 } 7852 7853 fh = g_malloc0(total_size); 7854 fh->handle_bytes = size; 7855 7856 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7857 unlock_user(name, pathname, 0); 7858 7859 /* man name_to_handle_at(2): 7860 * Other than the use of the handle_bytes field, the caller should treat 7861 * the file_handle structure as an opaque data type 7862 */ 7863 7864 memcpy(target_fh, fh, total_size); 7865 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7866 target_fh->handle_type = tswap32(fh->handle_type); 7867 g_free(fh); 7868 unlock_user(target_fh, handle, total_size); 7869 7870 if (put_user_s32(mid, mount_id)) { 7871 return -TARGET_EFAULT; 7872 } 7873 7874 return ret; 7875 7876 } 7877 #endif 7878 7879 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7880 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7881 abi_long flags) 7882 { 7883 struct file_handle *target_fh; 7884 struct file_handle *fh; 7885 unsigned int size, total_size; 7886 abi_long ret; 7887 7888 if (get_user_s32(size, handle)) { 7889 return -TARGET_EFAULT; 7890 } 7891 7892 total_size = sizeof(struct file_handle) + size; 7893 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7894 if (!target_fh) { 7895 return -TARGET_EFAULT; 7896 } 7897 7898 fh = g_memdup(target_fh, total_size); 7899 fh->handle_bytes = size; 7900 fh->handle_type = tswap32(target_fh->handle_type); 7901 7902 ret = get_errno(open_by_handle_at(mount_fd, fh, 7903 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7904 7905 g_free(fh); 7906 7907 unlock_user(target_fh, handle, total_size); 7908 7909 return ret; 7910 } 7911 #endif 7912 7913 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7914 7915 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7916 { 7917 int host_flags; 7918 target_sigset_t *target_mask; 7919 sigset_t host_mask; 7920 abi_long ret; 7921 7922 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) { 7923 return -TARGET_EINVAL; 7924 } 7925 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7926 return -TARGET_EFAULT; 7927 } 7928 7929 target_to_host_sigset(&host_mask, target_mask); 7930 7931 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7932 7933 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7934 if (ret >= 0) { 7935 fd_trans_register(ret, &target_signalfd_trans); 7936 } 7937 7938 unlock_user_struct(target_mask, mask, 0); 7939 7940 return ret; 7941 } 7942 #endif 7943 7944 /* Map host to target signal numbers for the wait family of syscalls. 7945 Assume all other status bits are the same. */ 7946 int host_to_target_waitstatus(int status) 7947 { 7948 if (WIFSIGNALED(status)) { 7949 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7950 } 7951 if (WIFSTOPPED(status)) { 7952 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7953 | (status & 0xff); 7954 } 7955 return status; 7956 } 7957 7958 static int open_self_cmdline(CPUArchState *cpu_env, int fd) 7959 { 7960 CPUState *cpu = env_cpu(cpu_env); 7961 struct linux_binprm *bprm = get_task_state(cpu)->bprm; 7962 int i; 7963 7964 for (i = 0; i < bprm->argc; i++) { 7965 size_t len = strlen(bprm->argv[i]) + 1; 7966 7967 if (write(fd, bprm->argv[i], len) != len) { 7968 return -1; 7969 } 7970 } 7971 7972 return 0; 7973 } 7974 7975 struct open_self_maps_data { 7976 TaskState *ts; 7977 IntervalTreeRoot *host_maps; 7978 int fd; 7979 bool smaps; 7980 }; 7981 7982 /* 7983 * Subroutine to output one line of /proc/self/maps, 7984 * or one region of /proc/self/smaps. 7985 */ 7986 7987 #ifdef TARGET_HPPA 7988 # define test_stack(S, E, L) (E == L) 7989 #else 7990 # define test_stack(S, E, L) (S == L) 7991 #endif 7992 7993 static void open_self_maps_4(const struct open_self_maps_data *d, 7994 const MapInfo *mi, abi_ptr start, 7995 abi_ptr end, unsigned flags) 7996 { 7997 const struct image_info *info = d->ts->info; 7998 const char *path = mi->path; 7999 uint64_t offset; 8000 int fd = d->fd; 8001 int count; 8002 8003 if (test_stack(start, end, info->stack_limit)) { 8004 path = "[stack]"; 8005 } else if (start == info->brk) { 8006 path = "[heap]"; 8007 } else if (start == info->vdso) { 8008 path = "[vdso]"; 8009 #ifdef TARGET_X86_64 8010 } else if (start == TARGET_VSYSCALL_PAGE) { 8011 path = "[vsyscall]"; 8012 #endif 8013 } 8014 8015 /* Except null device (MAP_ANON), adjust offset for this fragment. */ 8016 offset = mi->offset; 8017 if (mi->dev) { 8018 uintptr_t hstart = (uintptr_t)g2h_untagged(start); 8019 offset += hstart - mi->itree.start; 8020 } 8021 8022 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr 8023 " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64, 8024 start, end, 8025 (flags & PAGE_READ) ? 'r' : '-', 8026 (flags & PAGE_WRITE_ORG) ? 'w' : '-', 8027 (flags & PAGE_EXEC) ? 'x' : '-', 8028 mi->is_priv ? 'p' : 's', 8029 offset, major(mi->dev), minor(mi->dev), 8030 (uint64_t)mi->inode); 8031 if (path) { 8032 dprintf(fd, "%*s%s\n", 73 - count, "", path); 8033 } else { 8034 dprintf(fd, "\n"); 8035 } 8036 8037 if (d->smaps) { 8038 unsigned long size = end - start; 8039 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10; 8040 unsigned long size_kb = size >> 10; 8041 8042 dprintf(fd, "Size: %lu kB\n" 8043 "KernelPageSize: %lu kB\n" 8044 "MMUPageSize: %lu kB\n" 8045 "Rss: 0 kB\n" 8046 "Pss: 0 kB\n" 8047 "Pss_Dirty: 0 kB\n" 8048 "Shared_Clean: 0 kB\n" 8049 "Shared_Dirty: 0 kB\n" 8050 "Private_Clean: 0 kB\n" 8051 "Private_Dirty: 0 kB\n" 8052 "Referenced: 0 kB\n" 8053 "Anonymous: %lu kB\n" 8054 "LazyFree: 0 kB\n" 8055 "AnonHugePages: 0 kB\n" 8056 "ShmemPmdMapped: 0 kB\n" 8057 "FilePmdMapped: 0 kB\n" 8058 "Shared_Hugetlb: 0 kB\n" 8059 "Private_Hugetlb: 0 kB\n" 8060 "Swap: 0 kB\n" 8061 "SwapPss: 0 kB\n" 8062 "Locked: 0 kB\n" 8063 "THPeligible: 0\n" 8064 "VmFlags:%s%s%s%s%s%s%s%s\n", 8065 size_kb, page_size_kb, page_size_kb, 8066 (flags & PAGE_ANON ? size_kb : 0), 8067 (flags & PAGE_READ) ? " rd" : "", 8068 (flags & PAGE_WRITE_ORG) ? " wr" : "", 8069 (flags & PAGE_EXEC) ? " ex" : "", 8070 mi->is_priv ? "" : " sh", 8071 (flags & PAGE_READ) ? " mr" : "", 8072 (flags & PAGE_WRITE_ORG) ? " mw" : "", 8073 (flags & PAGE_EXEC) ? " me" : "", 8074 mi->is_priv ? "" : " ms"); 8075 } 8076 } 8077 8078 /* 8079 * Callback for walk_memory_regions, when read_self_maps() fails. 8080 * Proceed without the benefit of host /proc/self/maps cross-check. 8081 */ 8082 static int open_self_maps_3(void *opaque, target_ulong guest_start, 8083 target_ulong guest_end, unsigned long flags) 8084 { 8085 static const MapInfo mi = { .is_priv = true }; 8086 8087 open_self_maps_4(opaque, &mi, guest_start, guest_end, flags); 8088 return 0; 8089 } 8090 8091 /* 8092 * Callback for walk_memory_regions, when read_self_maps() succeeds. 8093 */ 8094 static int open_self_maps_2(void *opaque, target_ulong guest_start, 8095 target_ulong guest_end, unsigned long flags) 8096 { 8097 const struct open_self_maps_data *d = opaque; 8098 uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start); 8099 uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1); 8100 8101 #ifdef TARGET_X86_64 8102 /* 8103 * Because of the extremely high position of the page within the guest 8104 * virtual address space, this is not backed by host memory at all. 8105 * Therefore the loop below would fail. This is the only instance 8106 * of not having host backing memory. 8107 */ 8108 if (guest_start == TARGET_VSYSCALL_PAGE) { 8109 return open_self_maps_3(opaque, guest_start, guest_end, flags); 8110 } 8111 #endif 8112 8113 while (1) { 8114 IntervalTreeNode *n = 8115 interval_tree_iter_first(d->host_maps, host_start, host_start); 8116 MapInfo *mi = container_of(n, MapInfo, itree); 8117 uintptr_t this_hlast = MIN(host_last, n->last); 8118 target_ulong this_gend = h2g(this_hlast) + 1; 8119 8120 open_self_maps_4(d, mi, guest_start, this_gend, flags); 8121 8122 if (this_hlast == host_last) { 8123 return 0; 8124 } 8125 host_start = this_hlast + 1; 8126 guest_start = h2g(host_start); 8127 } 8128 } 8129 8130 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps) 8131 { 8132 struct open_self_maps_data d = { 8133 .ts = get_task_state(env_cpu(env)), 8134 .host_maps = read_self_maps(), 8135 .fd = fd, 8136 .smaps = smaps 8137 }; 8138 8139 if (d.host_maps) { 8140 walk_memory_regions(&d, open_self_maps_2); 8141 free_self_maps(d.host_maps); 8142 } else { 8143 walk_memory_regions(&d, open_self_maps_3); 8144 } 8145 return 0; 8146 } 8147 8148 static int open_self_maps(CPUArchState *cpu_env, int fd) 8149 { 8150 return open_self_maps_1(cpu_env, fd, false); 8151 } 8152 8153 static int open_self_smaps(CPUArchState *cpu_env, int fd) 8154 { 8155 return open_self_maps_1(cpu_env, fd, true); 8156 } 8157 8158 static int open_self_stat(CPUArchState *cpu_env, int fd) 8159 { 8160 CPUState *cpu = env_cpu(cpu_env); 8161 TaskState *ts = get_task_state(cpu); 8162 g_autoptr(GString) buf = g_string_new(NULL); 8163 int i; 8164 8165 for (i = 0; i < 44; i++) { 8166 if (i == 0) { 8167 /* pid */ 8168 g_string_printf(buf, FMT_pid " ", getpid()); 8169 } else if (i == 1) { 8170 /* app name */ 8171 gchar *bin = g_strrstr(ts->bprm->argv[0], "/"); 8172 bin = bin ? bin + 1 : ts->bprm->argv[0]; 8173 g_string_printf(buf, "(%.15s) ", bin); 8174 } else if (i == 2) { 8175 /* task state */ 8176 g_string_assign(buf, "R "); /* we are running right now */ 8177 } else if (i == 3) { 8178 /* ppid */ 8179 g_string_printf(buf, FMT_pid " ", getppid()); 8180 } else if (i == 21) { 8181 /* starttime */ 8182 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime); 8183 } else if (i == 27) { 8184 /* stack bottom */ 8185 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack); 8186 } else { 8187 /* for the rest, there is MasterCard */ 8188 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' '); 8189 } 8190 8191 if (write(fd, buf->str, buf->len) != buf->len) { 8192 return -1; 8193 } 8194 } 8195 8196 return 0; 8197 } 8198 8199 static int open_self_auxv(CPUArchState *cpu_env, int fd) 8200 { 8201 CPUState *cpu = env_cpu(cpu_env); 8202 TaskState *ts = get_task_state(cpu); 8203 abi_ulong auxv = ts->info->saved_auxv; 8204 abi_ulong len = ts->info->auxv_len; 8205 char *ptr; 8206 8207 /* 8208 * Auxiliary vector is stored in target process stack. 8209 * read in whole auxv vector and copy it to file 8210 */ 8211 ptr = lock_user(VERIFY_READ, auxv, len, 0); 8212 if (ptr != NULL) { 8213 while (len > 0) { 8214 ssize_t r; 8215 r = write(fd, ptr, len); 8216 if (r <= 0) { 8217 break; 8218 } 8219 len -= r; 8220 ptr += r; 8221 } 8222 lseek(fd, 0, SEEK_SET); 8223 unlock_user(ptr, auxv, len); 8224 } 8225 8226 return 0; 8227 } 8228 8229 static int is_proc_myself(const char *filename, const char *entry) 8230 { 8231 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 8232 filename += strlen("/proc/"); 8233 if (!strncmp(filename, "self/", strlen("self/"))) { 8234 filename += strlen("self/"); 8235 } else if (*filename >= '1' && *filename <= '9') { 8236 char myself[80]; 8237 snprintf(myself, sizeof(myself), "%d/", getpid()); 8238 if (!strncmp(filename, myself, strlen(myself))) { 8239 filename += strlen(myself); 8240 } else { 8241 return 0; 8242 } 8243 } else { 8244 return 0; 8245 } 8246 if (!strcmp(filename, entry)) { 8247 return 1; 8248 } 8249 } 8250 return 0; 8251 } 8252 8253 static void excp_dump_file(FILE *logfile, CPUArchState *env, 8254 const char *fmt, int code) 8255 { 8256 if (logfile) { 8257 CPUState *cs = env_cpu(env); 8258 8259 fprintf(logfile, fmt, code); 8260 fprintf(logfile, "Failing executable: %s\n", exec_path); 8261 cpu_dump_state(cs, logfile, 0); 8262 open_self_maps(env, fileno(logfile)); 8263 } 8264 } 8265 8266 void target_exception_dump(CPUArchState *env, const char *fmt, int code) 8267 { 8268 /* dump to console */ 8269 excp_dump_file(stderr, env, fmt, code); 8270 8271 /* dump to log file */ 8272 if (qemu_log_separate()) { 8273 FILE *logfile = qemu_log_trylock(); 8274 8275 excp_dump_file(logfile, env, fmt, code); 8276 qemu_log_unlock(logfile); 8277 } 8278 } 8279 8280 #include "target_proc.h" 8281 8282 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \ 8283 defined(HAVE_ARCH_PROC_CPUINFO) || \ 8284 defined(HAVE_ARCH_PROC_HARDWARE) 8285 static int is_proc(const char *filename, const char *entry) 8286 { 8287 return strcmp(filename, entry) == 0; 8288 } 8289 #endif 8290 8291 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8292 static int open_net_route(CPUArchState *cpu_env, int fd) 8293 { 8294 FILE *fp; 8295 char *line = NULL; 8296 size_t len = 0; 8297 ssize_t read; 8298 8299 fp = fopen("/proc/net/route", "r"); 8300 if (fp == NULL) { 8301 return -1; 8302 } 8303 8304 /* read header */ 8305 8306 read = getline(&line, &len, fp); 8307 dprintf(fd, "%s", line); 8308 8309 /* read routes */ 8310 8311 while ((read = getline(&line, &len, fp)) != -1) { 8312 char iface[16]; 8313 uint32_t dest, gw, mask; 8314 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 8315 int fields; 8316 8317 fields = sscanf(line, 8318 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8319 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 8320 &mask, &mtu, &window, &irtt); 8321 if (fields != 11) { 8322 continue; 8323 } 8324 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8325 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 8326 metric, tswap32(mask), mtu, window, irtt); 8327 } 8328 8329 free(line); 8330 fclose(fp); 8331 8332 return 0; 8333 } 8334 #endif 8335 8336 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname, 8337 int flags, mode_t mode, bool safe) 8338 { 8339 g_autofree char *proc_name = NULL; 8340 const char *pathname; 8341 struct fake_open { 8342 const char *filename; 8343 int (*fill)(CPUArchState *cpu_env, int fd); 8344 int (*cmp)(const char *s1, const char *s2); 8345 }; 8346 const struct fake_open *fake_open; 8347 static const struct fake_open fakes[] = { 8348 { "maps", open_self_maps, is_proc_myself }, 8349 { "smaps", open_self_smaps, is_proc_myself }, 8350 { "stat", open_self_stat, is_proc_myself }, 8351 { "auxv", open_self_auxv, is_proc_myself }, 8352 { "cmdline", open_self_cmdline, is_proc_myself }, 8353 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8354 { "/proc/net/route", open_net_route, is_proc }, 8355 #endif 8356 #if defined(HAVE_ARCH_PROC_CPUINFO) 8357 { "/proc/cpuinfo", open_cpuinfo, is_proc }, 8358 #endif 8359 #if defined(HAVE_ARCH_PROC_HARDWARE) 8360 { "/proc/hardware", open_hardware, is_proc }, 8361 #endif 8362 { NULL, NULL, NULL } 8363 }; 8364 8365 /* if this is a file from /proc/ filesystem, expand full name */ 8366 proc_name = realpath(fname, NULL); 8367 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) { 8368 pathname = proc_name; 8369 } else { 8370 pathname = fname; 8371 } 8372 8373 if (is_proc_myself(pathname, "exe")) { 8374 if (safe) { 8375 return safe_openat(dirfd, exec_path, flags, mode); 8376 } else { 8377 return openat(dirfd, exec_path, flags, mode); 8378 } 8379 } 8380 8381 for (fake_open = fakes; fake_open->filename; fake_open++) { 8382 if (fake_open->cmp(pathname, fake_open->filename)) { 8383 break; 8384 } 8385 } 8386 8387 if (fake_open->filename) { 8388 const char *tmpdir; 8389 char filename[PATH_MAX]; 8390 int fd, r; 8391 8392 fd = memfd_create("qemu-open", 0); 8393 if (fd < 0) { 8394 if (errno != ENOSYS) { 8395 return fd; 8396 } 8397 /* create temporary file to map stat to */ 8398 tmpdir = getenv("TMPDIR"); 8399 if (!tmpdir) 8400 tmpdir = "/tmp"; 8401 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 8402 fd = mkstemp(filename); 8403 if (fd < 0) { 8404 return fd; 8405 } 8406 unlink(filename); 8407 } 8408 8409 if ((r = fake_open->fill(cpu_env, fd))) { 8410 int e = errno; 8411 close(fd); 8412 errno = e; 8413 return r; 8414 } 8415 lseek(fd, 0, SEEK_SET); 8416 8417 return fd; 8418 } 8419 8420 if (safe) { 8421 return safe_openat(dirfd, path(pathname), flags, mode); 8422 } else { 8423 return openat(dirfd, path(pathname), flags, mode); 8424 } 8425 } 8426 8427 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz) 8428 { 8429 ssize_t ret; 8430 8431 if (!pathname || !buf) { 8432 errno = EFAULT; 8433 return -1; 8434 } 8435 8436 if (!bufsiz) { 8437 /* Short circuit this for the magic exe check. */ 8438 errno = EINVAL; 8439 return -1; 8440 } 8441 8442 if (is_proc_myself((const char *)pathname, "exe")) { 8443 /* 8444 * Don't worry about sign mismatch as earlier mapping 8445 * logic would have thrown a bad address error. 8446 */ 8447 ret = MIN(strlen(exec_path), bufsiz); 8448 /* We cannot NUL terminate the string. */ 8449 memcpy(buf, exec_path, ret); 8450 } else { 8451 ret = readlink(path(pathname), buf, bufsiz); 8452 } 8453 8454 return ret; 8455 } 8456 8457 static int do_execv(CPUArchState *cpu_env, int dirfd, 8458 abi_long pathname, abi_long guest_argp, 8459 abi_long guest_envp, int flags, bool is_execveat) 8460 { 8461 int ret; 8462 char **argp, **envp; 8463 int argc, envc; 8464 abi_ulong gp; 8465 abi_ulong addr; 8466 char **q; 8467 void *p; 8468 8469 argc = 0; 8470 8471 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8472 if (get_user_ual(addr, gp)) { 8473 return -TARGET_EFAULT; 8474 } 8475 if (!addr) { 8476 break; 8477 } 8478 argc++; 8479 } 8480 envc = 0; 8481 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8482 if (get_user_ual(addr, gp)) { 8483 return -TARGET_EFAULT; 8484 } 8485 if (!addr) { 8486 break; 8487 } 8488 envc++; 8489 } 8490 8491 argp = g_new0(char *, argc + 1); 8492 envp = g_new0(char *, envc + 1); 8493 8494 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) { 8495 if (get_user_ual(addr, gp)) { 8496 goto execve_efault; 8497 } 8498 if (!addr) { 8499 break; 8500 } 8501 *q = lock_user_string(addr); 8502 if (!*q) { 8503 goto execve_efault; 8504 } 8505 } 8506 *q = NULL; 8507 8508 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) { 8509 if (get_user_ual(addr, gp)) { 8510 goto execve_efault; 8511 } 8512 if (!addr) { 8513 break; 8514 } 8515 *q = lock_user_string(addr); 8516 if (!*q) { 8517 goto execve_efault; 8518 } 8519 } 8520 *q = NULL; 8521 8522 /* 8523 * Although execve() is not an interruptible syscall it is 8524 * a special case where we must use the safe_syscall wrapper: 8525 * if we allow a signal to happen before we make the host 8526 * syscall then we will 'lose' it, because at the point of 8527 * execve the process leaves QEMU's control. So we use the 8528 * safe syscall wrapper to ensure that we either take the 8529 * signal as a guest signal, or else it does not happen 8530 * before the execve completes and makes it the other 8531 * program's problem. 8532 */ 8533 p = lock_user_string(pathname); 8534 if (!p) { 8535 goto execve_efault; 8536 } 8537 8538 const char *exe = p; 8539 if (is_proc_myself(p, "exe")) { 8540 exe = exec_path; 8541 } 8542 ret = is_execveat 8543 ? safe_execveat(dirfd, exe, argp, envp, flags) 8544 : safe_execve(exe, argp, envp); 8545 ret = get_errno(ret); 8546 8547 unlock_user(p, pathname, 0); 8548 8549 goto execve_end; 8550 8551 execve_efault: 8552 ret = -TARGET_EFAULT; 8553 8554 execve_end: 8555 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) { 8556 if (get_user_ual(addr, gp) || !addr) { 8557 break; 8558 } 8559 unlock_user(*q, addr, 0); 8560 } 8561 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) { 8562 if (get_user_ual(addr, gp) || !addr) { 8563 break; 8564 } 8565 unlock_user(*q, addr, 0); 8566 } 8567 8568 g_free(argp); 8569 g_free(envp); 8570 return ret; 8571 } 8572 8573 #define TIMER_MAGIC 0x0caf0000 8574 #define TIMER_MAGIC_MASK 0xffff0000 8575 8576 /* Convert QEMU provided timer ID back to internal 16bit index format */ 8577 static target_timer_t get_timer_id(abi_long arg) 8578 { 8579 target_timer_t timerid = arg; 8580 8581 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 8582 return -TARGET_EINVAL; 8583 } 8584 8585 timerid &= 0xffff; 8586 8587 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 8588 return -TARGET_EINVAL; 8589 } 8590 8591 return timerid; 8592 } 8593 8594 static int target_to_host_cpu_mask(unsigned long *host_mask, 8595 size_t host_size, 8596 abi_ulong target_addr, 8597 size_t target_size) 8598 { 8599 unsigned target_bits = sizeof(abi_ulong) * 8; 8600 unsigned host_bits = sizeof(*host_mask) * 8; 8601 abi_ulong *target_mask; 8602 unsigned i, j; 8603 8604 assert(host_size >= target_size); 8605 8606 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 8607 if (!target_mask) { 8608 return -TARGET_EFAULT; 8609 } 8610 memset(host_mask, 0, host_size); 8611 8612 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8613 unsigned bit = i * target_bits; 8614 abi_ulong val; 8615 8616 __get_user(val, &target_mask[i]); 8617 for (j = 0; j < target_bits; j++, bit++) { 8618 if (val & (1UL << j)) { 8619 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 8620 } 8621 } 8622 } 8623 8624 unlock_user(target_mask, target_addr, 0); 8625 return 0; 8626 } 8627 8628 static int host_to_target_cpu_mask(const unsigned long *host_mask, 8629 size_t host_size, 8630 abi_ulong target_addr, 8631 size_t target_size) 8632 { 8633 unsigned target_bits = sizeof(abi_ulong) * 8; 8634 unsigned host_bits = sizeof(*host_mask) * 8; 8635 abi_ulong *target_mask; 8636 unsigned i, j; 8637 8638 assert(host_size >= target_size); 8639 8640 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 8641 if (!target_mask) { 8642 return -TARGET_EFAULT; 8643 } 8644 8645 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8646 unsigned bit = i * target_bits; 8647 abi_ulong val = 0; 8648 8649 for (j = 0; j < target_bits; j++, bit++) { 8650 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 8651 val |= 1UL << j; 8652 } 8653 } 8654 __put_user(val, &target_mask[i]); 8655 } 8656 8657 unlock_user(target_mask, target_addr, target_size); 8658 return 0; 8659 } 8660 8661 #ifdef TARGET_NR_getdents 8662 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count) 8663 { 8664 g_autofree void *hdirp = NULL; 8665 void *tdirp; 8666 int hlen, hoff, toff; 8667 int hreclen, treclen; 8668 off64_t prev_diroff = 0; 8669 8670 hdirp = g_try_malloc(count); 8671 if (!hdirp) { 8672 return -TARGET_ENOMEM; 8673 } 8674 8675 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8676 hlen = sys_getdents(dirfd, hdirp, count); 8677 #else 8678 hlen = sys_getdents64(dirfd, hdirp, count); 8679 #endif 8680 8681 hlen = get_errno(hlen); 8682 if (is_error(hlen)) { 8683 return hlen; 8684 } 8685 8686 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8687 if (!tdirp) { 8688 return -TARGET_EFAULT; 8689 } 8690 8691 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8692 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8693 struct linux_dirent *hde = hdirp + hoff; 8694 #else 8695 struct linux_dirent64 *hde = hdirp + hoff; 8696 #endif 8697 struct target_dirent *tde = tdirp + toff; 8698 int namelen; 8699 uint8_t type; 8700 8701 namelen = strlen(hde->d_name); 8702 hreclen = hde->d_reclen; 8703 treclen = offsetof(struct target_dirent, d_name) + namelen + 2; 8704 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent)); 8705 8706 if (toff + treclen > count) { 8707 /* 8708 * If the host struct is smaller than the target struct, or 8709 * requires less alignment and thus packs into less space, 8710 * then the host can return more entries than we can pass 8711 * on to the guest. 8712 */ 8713 if (toff == 0) { 8714 toff = -TARGET_EINVAL; /* result buffer is too small */ 8715 break; 8716 } 8717 /* 8718 * Return what we have, resetting the file pointer to the 8719 * location of the first record not returned. 8720 */ 8721 lseek64(dirfd, prev_diroff, SEEK_SET); 8722 break; 8723 } 8724 8725 prev_diroff = hde->d_off; 8726 tde->d_ino = tswapal(hde->d_ino); 8727 tde->d_off = tswapal(hde->d_off); 8728 tde->d_reclen = tswap16(treclen); 8729 memcpy(tde->d_name, hde->d_name, namelen + 1); 8730 8731 /* 8732 * The getdents type is in what was formerly a padding byte at the 8733 * end of the structure. 8734 */ 8735 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8736 type = *((uint8_t *)hde + hreclen - 1); 8737 #else 8738 type = hde->d_type; 8739 #endif 8740 *((uint8_t *)tde + treclen - 1) = type; 8741 } 8742 8743 unlock_user(tdirp, arg2, toff); 8744 return toff; 8745 } 8746 #endif /* TARGET_NR_getdents */ 8747 8748 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 8749 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count) 8750 { 8751 g_autofree void *hdirp = NULL; 8752 void *tdirp; 8753 int hlen, hoff, toff; 8754 int hreclen, treclen; 8755 off64_t prev_diroff = 0; 8756 8757 hdirp = g_try_malloc(count); 8758 if (!hdirp) { 8759 return -TARGET_ENOMEM; 8760 } 8761 8762 hlen = get_errno(sys_getdents64(dirfd, hdirp, count)); 8763 if (is_error(hlen)) { 8764 return hlen; 8765 } 8766 8767 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8768 if (!tdirp) { 8769 return -TARGET_EFAULT; 8770 } 8771 8772 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8773 struct linux_dirent64 *hde = hdirp + hoff; 8774 struct target_dirent64 *tde = tdirp + toff; 8775 int namelen; 8776 8777 namelen = strlen(hde->d_name) + 1; 8778 hreclen = hde->d_reclen; 8779 treclen = offsetof(struct target_dirent64, d_name) + namelen; 8780 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64)); 8781 8782 if (toff + treclen > count) { 8783 /* 8784 * If the host struct is smaller than the target struct, or 8785 * requires less alignment and thus packs into less space, 8786 * then the host can return more entries than we can pass 8787 * on to the guest. 8788 */ 8789 if (toff == 0) { 8790 toff = -TARGET_EINVAL; /* result buffer is too small */ 8791 break; 8792 } 8793 /* 8794 * Return what we have, resetting the file pointer to the 8795 * location of the first record not returned. 8796 */ 8797 lseek64(dirfd, prev_diroff, SEEK_SET); 8798 break; 8799 } 8800 8801 prev_diroff = hde->d_off; 8802 tde->d_ino = tswap64(hde->d_ino); 8803 tde->d_off = tswap64(hde->d_off); 8804 tde->d_reclen = tswap16(treclen); 8805 tde->d_type = hde->d_type; 8806 memcpy(tde->d_name, hde->d_name, namelen); 8807 } 8808 8809 unlock_user(tdirp, arg2, toff); 8810 return toff; 8811 } 8812 #endif /* TARGET_NR_getdents64 */ 8813 8814 #if defined(TARGET_NR_riscv_hwprobe) 8815 8816 #define RISCV_HWPROBE_KEY_MVENDORID 0 8817 #define RISCV_HWPROBE_KEY_MARCHID 1 8818 #define RISCV_HWPROBE_KEY_MIMPID 2 8819 8820 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3 8821 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0) 8822 8823 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4 8824 #define RISCV_HWPROBE_IMA_FD (1 << 0) 8825 #define RISCV_HWPROBE_IMA_C (1 << 1) 8826 #define RISCV_HWPROBE_IMA_V (1 << 2) 8827 #define RISCV_HWPROBE_EXT_ZBA (1 << 3) 8828 #define RISCV_HWPROBE_EXT_ZBB (1 << 4) 8829 #define RISCV_HWPROBE_EXT_ZBS (1 << 5) 8830 #define RISCV_HWPROBE_EXT_ZICBOZ (1 << 6) 8831 #define RISCV_HWPROBE_EXT_ZBC (1 << 7) 8832 #define RISCV_HWPROBE_EXT_ZBKB (1 << 8) 8833 #define RISCV_HWPROBE_EXT_ZBKC (1 << 9) 8834 #define RISCV_HWPROBE_EXT_ZBKX (1 << 10) 8835 #define RISCV_HWPROBE_EXT_ZKND (1 << 11) 8836 #define RISCV_HWPROBE_EXT_ZKNE (1 << 12) 8837 #define RISCV_HWPROBE_EXT_ZKNH (1 << 13) 8838 #define RISCV_HWPROBE_EXT_ZKSED (1 << 14) 8839 #define RISCV_HWPROBE_EXT_ZKSH (1 << 15) 8840 #define RISCV_HWPROBE_EXT_ZKT (1 << 16) 8841 #define RISCV_HWPROBE_EXT_ZVBB (1 << 17) 8842 #define RISCV_HWPROBE_EXT_ZVBC (1 << 18) 8843 #define RISCV_HWPROBE_EXT_ZVKB (1 << 19) 8844 #define RISCV_HWPROBE_EXT_ZVKG (1 << 20) 8845 #define RISCV_HWPROBE_EXT_ZVKNED (1 << 21) 8846 #define RISCV_HWPROBE_EXT_ZVKNHA (1 << 22) 8847 #define RISCV_HWPROBE_EXT_ZVKNHB (1 << 23) 8848 #define RISCV_HWPROBE_EXT_ZVKSED (1 << 24) 8849 #define RISCV_HWPROBE_EXT_ZVKSH (1 << 25) 8850 #define RISCV_HWPROBE_EXT_ZVKT (1 << 26) 8851 #define RISCV_HWPROBE_EXT_ZFH (1 << 27) 8852 #define RISCV_HWPROBE_EXT_ZFHMIN (1 << 28) 8853 #define RISCV_HWPROBE_EXT_ZIHINTNTL (1 << 29) 8854 #define RISCV_HWPROBE_EXT_ZVFH (1 << 30) 8855 #define RISCV_HWPROBE_EXT_ZVFHMIN (1 << 31) 8856 #define RISCV_HWPROBE_EXT_ZFA (1ULL << 32) 8857 #define RISCV_HWPROBE_EXT_ZTSO (1ULL << 33) 8858 #define RISCV_HWPROBE_EXT_ZACAS (1ULL << 34) 8859 #define RISCV_HWPROBE_EXT_ZICOND (1ULL << 35) 8860 8861 #define RISCV_HWPROBE_KEY_CPUPERF_0 5 8862 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0) 8863 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0) 8864 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0) 8865 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0) 8866 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0) 8867 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0) 8868 8869 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6 8870 8871 struct riscv_hwprobe { 8872 abi_llong key; 8873 abi_ullong value; 8874 }; 8875 8876 static void risc_hwprobe_fill_pairs(CPURISCVState *env, 8877 struct riscv_hwprobe *pair, 8878 size_t pair_count) 8879 { 8880 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 8881 8882 for (; pair_count > 0; pair_count--, pair++) { 8883 abi_llong key; 8884 abi_ullong value; 8885 __put_user(0, &pair->value); 8886 __get_user(key, &pair->key); 8887 switch (key) { 8888 case RISCV_HWPROBE_KEY_MVENDORID: 8889 __put_user(cfg->mvendorid, &pair->value); 8890 break; 8891 case RISCV_HWPROBE_KEY_MARCHID: 8892 __put_user(cfg->marchid, &pair->value); 8893 break; 8894 case RISCV_HWPROBE_KEY_MIMPID: 8895 __put_user(cfg->mimpid, &pair->value); 8896 break; 8897 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR: 8898 value = riscv_has_ext(env, RVI) && 8899 riscv_has_ext(env, RVM) && 8900 riscv_has_ext(env, RVA) ? 8901 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0; 8902 __put_user(value, &pair->value); 8903 break; 8904 case RISCV_HWPROBE_KEY_IMA_EXT_0: 8905 value = riscv_has_ext(env, RVF) && 8906 riscv_has_ext(env, RVD) ? 8907 RISCV_HWPROBE_IMA_FD : 0; 8908 value |= riscv_has_ext(env, RVC) ? 8909 RISCV_HWPROBE_IMA_C : 0; 8910 value |= riscv_has_ext(env, RVV) ? 8911 RISCV_HWPROBE_IMA_V : 0; 8912 value |= cfg->ext_zba ? 8913 RISCV_HWPROBE_EXT_ZBA : 0; 8914 value |= cfg->ext_zbb ? 8915 RISCV_HWPROBE_EXT_ZBB : 0; 8916 value |= cfg->ext_zbs ? 8917 RISCV_HWPROBE_EXT_ZBS : 0; 8918 value |= cfg->ext_zicboz ? 8919 RISCV_HWPROBE_EXT_ZICBOZ : 0; 8920 value |= cfg->ext_zbc ? 8921 RISCV_HWPROBE_EXT_ZBC : 0; 8922 value |= cfg->ext_zbkb ? 8923 RISCV_HWPROBE_EXT_ZBKB : 0; 8924 value |= cfg->ext_zbkc ? 8925 RISCV_HWPROBE_EXT_ZBKC : 0; 8926 value |= cfg->ext_zbkx ? 8927 RISCV_HWPROBE_EXT_ZBKX : 0; 8928 value |= cfg->ext_zknd ? 8929 RISCV_HWPROBE_EXT_ZKND : 0; 8930 value |= cfg->ext_zkne ? 8931 RISCV_HWPROBE_EXT_ZKNE : 0; 8932 value |= cfg->ext_zknh ? 8933 RISCV_HWPROBE_EXT_ZKNH : 0; 8934 value |= cfg->ext_zksed ? 8935 RISCV_HWPROBE_EXT_ZKSED : 0; 8936 value |= cfg->ext_zksh ? 8937 RISCV_HWPROBE_EXT_ZKSH : 0; 8938 value |= cfg->ext_zkt ? 8939 RISCV_HWPROBE_EXT_ZKT : 0; 8940 value |= cfg->ext_zvbb ? 8941 RISCV_HWPROBE_EXT_ZVBB : 0; 8942 value |= cfg->ext_zvbc ? 8943 RISCV_HWPROBE_EXT_ZVBC : 0; 8944 value |= cfg->ext_zvkb ? 8945 RISCV_HWPROBE_EXT_ZVKB : 0; 8946 value |= cfg->ext_zvkg ? 8947 RISCV_HWPROBE_EXT_ZVKG : 0; 8948 value |= cfg->ext_zvkned ? 8949 RISCV_HWPROBE_EXT_ZVKNED : 0; 8950 value |= cfg->ext_zvknha ? 8951 RISCV_HWPROBE_EXT_ZVKNHA : 0; 8952 value |= cfg->ext_zvknhb ? 8953 RISCV_HWPROBE_EXT_ZVKNHB : 0; 8954 value |= cfg->ext_zvksed ? 8955 RISCV_HWPROBE_EXT_ZVKSED : 0; 8956 value |= cfg->ext_zvksh ? 8957 RISCV_HWPROBE_EXT_ZVKSH : 0; 8958 value |= cfg->ext_zvkt ? 8959 RISCV_HWPROBE_EXT_ZVKT : 0; 8960 value |= cfg->ext_zfh ? 8961 RISCV_HWPROBE_EXT_ZFH : 0; 8962 value |= cfg->ext_zfhmin ? 8963 RISCV_HWPROBE_EXT_ZFHMIN : 0; 8964 value |= cfg->ext_zihintntl ? 8965 RISCV_HWPROBE_EXT_ZIHINTNTL : 0; 8966 value |= cfg->ext_zvfh ? 8967 RISCV_HWPROBE_EXT_ZVFH : 0; 8968 value |= cfg->ext_zvfhmin ? 8969 RISCV_HWPROBE_EXT_ZVFHMIN : 0; 8970 value |= cfg->ext_zfa ? 8971 RISCV_HWPROBE_EXT_ZFA : 0; 8972 value |= cfg->ext_ztso ? 8973 RISCV_HWPROBE_EXT_ZTSO : 0; 8974 value |= cfg->ext_zacas ? 8975 RISCV_HWPROBE_EXT_ZACAS : 0; 8976 value |= cfg->ext_zicond ? 8977 RISCV_HWPROBE_EXT_ZICOND : 0; 8978 __put_user(value, &pair->value); 8979 break; 8980 case RISCV_HWPROBE_KEY_CPUPERF_0: 8981 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value); 8982 break; 8983 case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE: 8984 value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0; 8985 __put_user(value, &pair->value); 8986 break; 8987 default: 8988 __put_user(-1, &pair->key); 8989 break; 8990 } 8991 } 8992 } 8993 8994 static int cpu_set_valid(abi_long arg3, abi_long arg4) 8995 { 8996 int ret, i, tmp; 8997 size_t host_mask_size, target_mask_size; 8998 unsigned long *host_mask; 8999 9000 /* 9001 * cpu_set_t represent CPU masks as bit masks of type unsigned long *. 9002 * arg3 contains the cpu count. 9003 */ 9004 tmp = (8 * sizeof(abi_ulong)); 9005 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong); 9006 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) & 9007 ~(sizeof(*host_mask) - 1); 9008 9009 host_mask = alloca(host_mask_size); 9010 9011 ret = target_to_host_cpu_mask(host_mask, host_mask_size, 9012 arg4, target_mask_size); 9013 if (ret != 0) { 9014 return ret; 9015 } 9016 9017 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) { 9018 if (host_mask[i] != 0) { 9019 return 0; 9020 } 9021 } 9022 return -TARGET_EINVAL; 9023 } 9024 9025 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1, 9026 abi_long arg2, abi_long arg3, 9027 abi_long arg4, abi_long arg5) 9028 { 9029 int ret; 9030 struct riscv_hwprobe *host_pairs; 9031 9032 /* flags must be 0 */ 9033 if (arg5 != 0) { 9034 return -TARGET_EINVAL; 9035 } 9036 9037 /* check cpu_set */ 9038 if (arg3 != 0) { 9039 ret = cpu_set_valid(arg3, arg4); 9040 if (ret != 0) { 9041 return ret; 9042 } 9043 } else if (arg4 != 0) { 9044 return -TARGET_EINVAL; 9045 } 9046 9047 /* no pairs */ 9048 if (arg2 == 0) { 9049 return 0; 9050 } 9051 9052 host_pairs = lock_user(VERIFY_WRITE, arg1, 9053 sizeof(*host_pairs) * (size_t)arg2, 0); 9054 if (host_pairs == NULL) { 9055 return -TARGET_EFAULT; 9056 } 9057 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2); 9058 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2); 9059 return 0; 9060 } 9061 #endif /* TARGET_NR_riscv_hwprobe */ 9062 9063 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root) 9064 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old) 9065 #endif 9066 9067 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9068 #define __NR_sys_open_tree __NR_open_tree 9069 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename, 9070 unsigned int, __flags) 9071 #endif 9072 9073 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9074 #define __NR_sys_move_mount __NR_move_mount 9075 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname, 9076 int, __to_dfd, const char *, __to_pathname, unsigned int, flag) 9077 #endif 9078 9079 /* This is an internal helper for do_syscall so that it is easier 9080 * to have a single return point, so that actions, such as logging 9081 * of syscall results, can be performed. 9082 * All errnos that do_syscall() returns must be -TARGET_<errcode>. 9083 */ 9084 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1, 9085 abi_long arg2, abi_long arg3, abi_long arg4, 9086 abi_long arg5, abi_long arg6, abi_long arg7, 9087 abi_long arg8) 9088 { 9089 CPUState *cpu = env_cpu(cpu_env); 9090 abi_long ret; 9091 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \ 9092 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \ 9093 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \ 9094 || defined(TARGET_NR_statx) 9095 struct stat st; 9096 #endif 9097 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \ 9098 || defined(TARGET_NR_fstatfs) 9099 struct statfs stfs; 9100 #endif 9101 void *p; 9102 9103 switch(num) { 9104 case TARGET_NR_exit: 9105 /* In old applications this may be used to implement _exit(2). 9106 However in threaded applications it is used for thread termination, 9107 and _exit_group is used for application termination. 9108 Do thread termination if we have more then one thread. */ 9109 9110 if (block_signals()) { 9111 return -QEMU_ERESTARTSYS; 9112 } 9113 9114 pthread_mutex_lock(&clone_lock); 9115 9116 if (CPU_NEXT(first_cpu)) { 9117 TaskState *ts = get_task_state(cpu); 9118 9119 if (ts->child_tidptr) { 9120 put_user_u32(0, ts->child_tidptr); 9121 do_sys_futex(g2h(cpu, ts->child_tidptr), 9122 FUTEX_WAKE, INT_MAX, NULL, NULL, 0); 9123 } 9124 9125 object_unparent(OBJECT(cpu)); 9126 object_unref(OBJECT(cpu)); 9127 /* 9128 * At this point the CPU should be unrealized and removed 9129 * from cpu lists. We can clean-up the rest of the thread 9130 * data without the lock held. 9131 */ 9132 9133 pthread_mutex_unlock(&clone_lock); 9134 9135 thread_cpu = NULL; 9136 g_free(ts); 9137 rcu_unregister_thread(); 9138 pthread_exit(NULL); 9139 } 9140 9141 pthread_mutex_unlock(&clone_lock); 9142 preexit_cleanup(cpu_env, arg1); 9143 _exit(arg1); 9144 return 0; /* avoid warning */ 9145 case TARGET_NR_read: 9146 if (arg2 == 0 && arg3 == 0) { 9147 return get_errno(safe_read(arg1, 0, 0)); 9148 } else { 9149 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 9150 return -TARGET_EFAULT; 9151 ret = get_errno(safe_read(arg1, p, arg3)); 9152 if (ret >= 0 && 9153 fd_trans_host_to_target_data(arg1)) { 9154 ret = fd_trans_host_to_target_data(arg1)(p, ret); 9155 } 9156 unlock_user(p, arg2, ret); 9157 } 9158 return ret; 9159 case TARGET_NR_write: 9160 if (arg2 == 0 && arg3 == 0) { 9161 return get_errno(safe_write(arg1, 0, 0)); 9162 } 9163 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 9164 return -TARGET_EFAULT; 9165 if (fd_trans_target_to_host_data(arg1)) { 9166 void *copy = g_malloc(arg3); 9167 memcpy(copy, p, arg3); 9168 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 9169 if (ret >= 0) { 9170 ret = get_errno(safe_write(arg1, copy, ret)); 9171 } 9172 g_free(copy); 9173 } else { 9174 ret = get_errno(safe_write(arg1, p, arg3)); 9175 } 9176 unlock_user(p, arg2, 0); 9177 return ret; 9178 9179 #ifdef TARGET_NR_open 9180 case TARGET_NR_open: 9181 if (!(p = lock_user_string(arg1))) 9182 return -TARGET_EFAULT; 9183 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p, 9184 target_to_host_bitmask(arg2, fcntl_flags_tbl), 9185 arg3, true)); 9186 fd_trans_unregister(ret); 9187 unlock_user(p, arg1, 0); 9188 return ret; 9189 #endif 9190 case TARGET_NR_openat: 9191 if (!(p = lock_user_string(arg2))) 9192 return -TARGET_EFAULT; 9193 ret = get_errno(do_guest_openat(cpu_env, arg1, p, 9194 target_to_host_bitmask(arg3, fcntl_flags_tbl), 9195 arg4, true)); 9196 fd_trans_unregister(ret); 9197 unlock_user(p, arg2, 0); 9198 return ret; 9199 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9200 case TARGET_NR_name_to_handle_at: 9201 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 9202 return ret; 9203 #endif 9204 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9205 case TARGET_NR_open_by_handle_at: 9206 ret = do_open_by_handle_at(arg1, arg2, arg3); 9207 fd_trans_unregister(ret); 9208 return ret; 9209 #endif 9210 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 9211 case TARGET_NR_pidfd_open: 9212 return get_errno(pidfd_open(arg1, arg2)); 9213 #endif 9214 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 9215 case TARGET_NR_pidfd_send_signal: 9216 { 9217 siginfo_t uinfo, *puinfo; 9218 9219 if (arg3) { 9220 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9221 if (!p) { 9222 return -TARGET_EFAULT; 9223 } 9224 target_to_host_siginfo(&uinfo, p); 9225 unlock_user(p, arg3, 0); 9226 puinfo = &uinfo; 9227 } else { 9228 puinfo = NULL; 9229 } 9230 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2), 9231 puinfo, arg4)); 9232 } 9233 return ret; 9234 #endif 9235 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 9236 case TARGET_NR_pidfd_getfd: 9237 return get_errno(pidfd_getfd(arg1, arg2, arg3)); 9238 #endif 9239 case TARGET_NR_close: 9240 fd_trans_unregister(arg1); 9241 return get_errno(close(arg1)); 9242 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 9243 case TARGET_NR_close_range: 9244 ret = get_errno(sys_close_range(arg1, arg2, arg3)); 9245 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) { 9246 abi_long fd, maxfd; 9247 maxfd = MIN(arg2, target_fd_max); 9248 for (fd = arg1; fd < maxfd; fd++) { 9249 fd_trans_unregister(fd); 9250 } 9251 } 9252 return ret; 9253 #endif 9254 9255 case TARGET_NR_brk: 9256 return do_brk(arg1); 9257 #ifdef TARGET_NR_fork 9258 case TARGET_NR_fork: 9259 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 9260 #endif 9261 #ifdef TARGET_NR_waitpid 9262 case TARGET_NR_waitpid: 9263 { 9264 int status; 9265 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 9266 if (!is_error(ret) && arg2 && ret 9267 && put_user_s32(host_to_target_waitstatus(status), arg2)) 9268 return -TARGET_EFAULT; 9269 } 9270 return ret; 9271 #endif 9272 #ifdef TARGET_NR_waitid 9273 case TARGET_NR_waitid: 9274 { 9275 struct rusage ru; 9276 siginfo_t info; 9277 9278 ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL), 9279 arg4, (arg5 ? &ru : NULL))); 9280 if (!is_error(ret)) { 9281 if (arg3) { 9282 p = lock_user(VERIFY_WRITE, arg3, 9283 sizeof(target_siginfo_t), 0); 9284 if (!p) { 9285 return -TARGET_EFAULT; 9286 } 9287 host_to_target_siginfo(p, &info); 9288 unlock_user(p, arg3, sizeof(target_siginfo_t)); 9289 } 9290 if (arg5 && host_to_target_rusage(arg5, &ru)) { 9291 return -TARGET_EFAULT; 9292 } 9293 } 9294 } 9295 return ret; 9296 #endif 9297 #ifdef TARGET_NR_creat /* not on alpha */ 9298 case TARGET_NR_creat: 9299 if (!(p = lock_user_string(arg1))) 9300 return -TARGET_EFAULT; 9301 ret = get_errno(creat(p, arg2)); 9302 fd_trans_unregister(ret); 9303 unlock_user(p, arg1, 0); 9304 return ret; 9305 #endif 9306 #ifdef TARGET_NR_link 9307 case TARGET_NR_link: 9308 { 9309 void * p2; 9310 p = lock_user_string(arg1); 9311 p2 = lock_user_string(arg2); 9312 if (!p || !p2) 9313 ret = -TARGET_EFAULT; 9314 else 9315 ret = get_errno(link(p, p2)); 9316 unlock_user(p2, arg2, 0); 9317 unlock_user(p, arg1, 0); 9318 } 9319 return ret; 9320 #endif 9321 #if defined(TARGET_NR_linkat) 9322 case TARGET_NR_linkat: 9323 { 9324 void * p2 = NULL; 9325 if (!arg2 || !arg4) 9326 return -TARGET_EFAULT; 9327 p = lock_user_string(arg2); 9328 p2 = lock_user_string(arg4); 9329 if (!p || !p2) 9330 ret = -TARGET_EFAULT; 9331 else 9332 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 9333 unlock_user(p, arg2, 0); 9334 unlock_user(p2, arg4, 0); 9335 } 9336 return ret; 9337 #endif 9338 #ifdef TARGET_NR_unlink 9339 case TARGET_NR_unlink: 9340 if (!(p = lock_user_string(arg1))) 9341 return -TARGET_EFAULT; 9342 ret = get_errno(unlink(p)); 9343 unlock_user(p, arg1, 0); 9344 return ret; 9345 #endif 9346 #if defined(TARGET_NR_unlinkat) 9347 case TARGET_NR_unlinkat: 9348 if (!(p = lock_user_string(arg2))) 9349 return -TARGET_EFAULT; 9350 ret = get_errno(unlinkat(arg1, p, arg3)); 9351 unlock_user(p, arg2, 0); 9352 return ret; 9353 #endif 9354 case TARGET_NR_execveat: 9355 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true); 9356 case TARGET_NR_execve: 9357 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false); 9358 case TARGET_NR_chdir: 9359 if (!(p = lock_user_string(arg1))) 9360 return -TARGET_EFAULT; 9361 ret = get_errno(chdir(p)); 9362 unlock_user(p, arg1, 0); 9363 return ret; 9364 #ifdef TARGET_NR_time 9365 case TARGET_NR_time: 9366 { 9367 time_t host_time; 9368 ret = get_errno(time(&host_time)); 9369 if (!is_error(ret) 9370 && arg1 9371 && put_user_sal(host_time, arg1)) 9372 return -TARGET_EFAULT; 9373 } 9374 return ret; 9375 #endif 9376 #ifdef TARGET_NR_mknod 9377 case TARGET_NR_mknod: 9378 if (!(p = lock_user_string(arg1))) 9379 return -TARGET_EFAULT; 9380 ret = get_errno(mknod(p, arg2, arg3)); 9381 unlock_user(p, arg1, 0); 9382 return ret; 9383 #endif 9384 #if defined(TARGET_NR_mknodat) 9385 case TARGET_NR_mknodat: 9386 if (!(p = lock_user_string(arg2))) 9387 return -TARGET_EFAULT; 9388 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 9389 unlock_user(p, arg2, 0); 9390 return ret; 9391 #endif 9392 #ifdef TARGET_NR_chmod 9393 case TARGET_NR_chmod: 9394 if (!(p = lock_user_string(arg1))) 9395 return -TARGET_EFAULT; 9396 ret = get_errno(chmod(p, arg2)); 9397 unlock_user(p, arg1, 0); 9398 return ret; 9399 #endif 9400 #ifdef TARGET_NR_lseek 9401 case TARGET_NR_lseek: 9402 return get_errno(lseek(arg1, arg2, arg3)); 9403 #endif 9404 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 9405 /* Alpha specific */ 9406 case TARGET_NR_getxpid: 9407 cpu_env->ir[IR_A4] = getppid(); 9408 return get_errno(getpid()); 9409 #endif 9410 #ifdef TARGET_NR_getpid 9411 case TARGET_NR_getpid: 9412 return get_errno(getpid()); 9413 #endif 9414 case TARGET_NR_mount: 9415 { 9416 /* need to look at the data field */ 9417 void *p2, *p3; 9418 9419 if (arg1) { 9420 p = lock_user_string(arg1); 9421 if (!p) { 9422 return -TARGET_EFAULT; 9423 } 9424 } else { 9425 p = NULL; 9426 } 9427 9428 p2 = lock_user_string(arg2); 9429 if (!p2) { 9430 if (arg1) { 9431 unlock_user(p, arg1, 0); 9432 } 9433 return -TARGET_EFAULT; 9434 } 9435 9436 if (arg3) { 9437 p3 = lock_user_string(arg3); 9438 if (!p3) { 9439 if (arg1) { 9440 unlock_user(p, arg1, 0); 9441 } 9442 unlock_user(p2, arg2, 0); 9443 return -TARGET_EFAULT; 9444 } 9445 } else { 9446 p3 = NULL; 9447 } 9448 9449 /* FIXME - arg5 should be locked, but it isn't clear how to 9450 * do that since it's not guaranteed to be a NULL-terminated 9451 * string. 9452 */ 9453 if (!arg5) { 9454 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 9455 } else { 9456 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5)); 9457 } 9458 ret = get_errno(ret); 9459 9460 if (arg1) { 9461 unlock_user(p, arg1, 0); 9462 } 9463 unlock_user(p2, arg2, 0); 9464 if (arg3) { 9465 unlock_user(p3, arg3, 0); 9466 } 9467 } 9468 return ret; 9469 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount) 9470 #if defined(TARGET_NR_umount) 9471 case TARGET_NR_umount: 9472 #endif 9473 #if defined(TARGET_NR_oldumount) 9474 case TARGET_NR_oldumount: 9475 #endif 9476 if (!(p = lock_user_string(arg1))) 9477 return -TARGET_EFAULT; 9478 ret = get_errno(umount(p)); 9479 unlock_user(p, arg1, 0); 9480 return ret; 9481 #endif 9482 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9483 case TARGET_NR_move_mount: 9484 { 9485 void *p2, *p4; 9486 9487 if (!arg2 || !arg4) { 9488 return -TARGET_EFAULT; 9489 } 9490 9491 p2 = lock_user_string(arg2); 9492 if (!p2) { 9493 return -TARGET_EFAULT; 9494 } 9495 9496 p4 = lock_user_string(arg4); 9497 if (!p4) { 9498 unlock_user(p2, arg2, 0); 9499 return -TARGET_EFAULT; 9500 } 9501 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5)); 9502 9503 unlock_user(p2, arg2, 0); 9504 unlock_user(p4, arg4, 0); 9505 9506 return ret; 9507 } 9508 #endif 9509 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9510 case TARGET_NR_open_tree: 9511 { 9512 void *p2; 9513 int host_flags; 9514 9515 if (!arg2) { 9516 return -TARGET_EFAULT; 9517 } 9518 9519 p2 = lock_user_string(arg2); 9520 if (!p2) { 9521 return -TARGET_EFAULT; 9522 } 9523 9524 host_flags = arg3 & ~TARGET_O_CLOEXEC; 9525 if (arg3 & TARGET_O_CLOEXEC) { 9526 host_flags |= O_CLOEXEC; 9527 } 9528 9529 ret = get_errno(sys_open_tree(arg1, p2, host_flags)); 9530 9531 unlock_user(p2, arg2, 0); 9532 9533 return ret; 9534 } 9535 #endif 9536 #ifdef TARGET_NR_stime /* not on alpha */ 9537 case TARGET_NR_stime: 9538 { 9539 struct timespec ts; 9540 ts.tv_nsec = 0; 9541 if (get_user_sal(ts.tv_sec, arg1)) { 9542 return -TARGET_EFAULT; 9543 } 9544 return get_errno(clock_settime(CLOCK_REALTIME, &ts)); 9545 } 9546 #endif 9547 #ifdef TARGET_NR_alarm /* not on alpha */ 9548 case TARGET_NR_alarm: 9549 return alarm(arg1); 9550 #endif 9551 #ifdef TARGET_NR_pause /* not on alpha */ 9552 case TARGET_NR_pause: 9553 if (!block_signals()) { 9554 sigsuspend(&get_task_state(cpu)->signal_mask); 9555 } 9556 return -TARGET_EINTR; 9557 #endif 9558 #ifdef TARGET_NR_utime 9559 case TARGET_NR_utime: 9560 { 9561 struct utimbuf tbuf, *host_tbuf; 9562 struct target_utimbuf *target_tbuf; 9563 if (arg2) { 9564 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 9565 return -TARGET_EFAULT; 9566 tbuf.actime = tswapal(target_tbuf->actime); 9567 tbuf.modtime = tswapal(target_tbuf->modtime); 9568 unlock_user_struct(target_tbuf, arg2, 0); 9569 host_tbuf = &tbuf; 9570 } else { 9571 host_tbuf = NULL; 9572 } 9573 if (!(p = lock_user_string(arg1))) 9574 return -TARGET_EFAULT; 9575 ret = get_errno(utime(p, host_tbuf)); 9576 unlock_user(p, arg1, 0); 9577 } 9578 return ret; 9579 #endif 9580 #ifdef TARGET_NR_utimes 9581 case TARGET_NR_utimes: 9582 { 9583 struct timeval *tvp, tv[2]; 9584 if (arg2) { 9585 if (copy_from_user_timeval(&tv[0], arg2) 9586 || copy_from_user_timeval(&tv[1], 9587 arg2 + sizeof(struct target_timeval))) 9588 return -TARGET_EFAULT; 9589 tvp = tv; 9590 } else { 9591 tvp = NULL; 9592 } 9593 if (!(p = lock_user_string(arg1))) 9594 return -TARGET_EFAULT; 9595 ret = get_errno(utimes(p, tvp)); 9596 unlock_user(p, arg1, 0); 9597 } 9598 return ret; 9599 #endif 9600 #if defined(TARGET_NR_futimesat) 9601 case TARGET_NR_futimesat: 9602 { 9603 struct timeval *tvp, tv[2]; 9604 if (arg3) { 9605 if (copy_from_user_timeval(&tv[0], arg3) 9606 || copy_from_user_timeval(&tv[1], 9607 arg3 + sizeof(struct target_timeval))) 9608 return -TARGET_EFAULT; 9609 tvp = tv; 9610 } else { 9611 tvp = NULL; 9612 } 9613 if (!(p = lock_user_string(arg2))) { 9614 return -TARGET_EFAULT; 9615 } 9616 ret = get_errno(futimesat(arg1, path(p), tvp)); 9617 unlock_user(p, arg2, 0); 9618 } 9619 return ret; 9620 #endif 9621 #ifdef TARGET_NR_access 9622 case TARGET_NR_access: 9623 if (!(p = lock_user_string(arg1))) { 9624 return -TARGET_EFAULT; 9625 } 9626 ret = get_errno(access(path(p), arg2)); 9627 unlock_user(p, arg1, 0); 9628 return ret; 9629 #endif 9630 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 9631 case TARGET_NR_faccessat: 9632 if (!(p = lock_user_string(arg2))) { 9633 return -TARGET_EFAULT; 9634 } 9635 ret = get_errno(faccessat(arg1, p, arg3, 0)); 9636 unlock_user(p, arg2, 0); 9637 return ret; 9638 #endif 9639 #if defined(TARGET_NR_faccessat2) 9640 case TARGET_NR_faccessat2: 9641 if (!(p = lock_user_string(arg2))) { 9642 return -TARGET_EFAULT; 9643 } 9644 ret = get_errno(faccessat(arg1, p, arg3, arg4)); 9645 unlock_user(p, arg2, 0); 9646 return ret; 9647 #endif 9648 #ifdef TARGET_NR_nice /* not on alpha */ 9649 case TARGET_NR_nice: 9650 return get_errno(nice(arg1)); 9651 #endif 9652 case TARGET_NR_sync: 9653 sync(); 9654 return 0; 9655 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 9656 case TARGET_NR_syncfs: 9657 return get_errno(syncfs(arg1)); 9658 #endif 9659 case TARGET_NR_kill: 9660 return get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 9661 #ifdef TARGET_NR_rename 9662 case TARGET_NR_rename: 9663 { 9664 void *p2; 9665 p = lock_user_string(arg1); 9666 p2 = lock_user_string(arg2); 9667 if (!p || !p2) 9668 ret = -TARGET_EFAULT; 9669 else 9670 ret = get_errno(rename(p, p2)); 9671 unlock_user(p2, arg2, 0); 9672 unlock_user(p, arg1, 0); 9673 } 9674 return ret; 9675 #endif 9676 #if defined(TARGET_NR_renameat) 9677 case TARGET_NR_renameat: 9678 { 9679 void *p2; 9680 p = lock_user_string(arg2); 9681 p2 = lock_user_string(arg4); 9682 if (!p || !p2) 9683 ret = -TARGET_EFAULT; 9684 else 9685 ret = get_errno(renameat(arg1, p, arg3, p2)); 9686 unlock_user(p2, arg4, 0); 9687 unlock_user(p, arg2, 0); 9688 } 9689 return ret; 9690 #endif 9691 #if defined(TARGET_NR_renameat2) 9692 case TARGET_NR_renameat2: 9693 { 9694 void *p2; 9695 p = lock_user_string(arg2); 9696 p2 = lock_user_string(arg4); 9697 if (!p || !p2) { 9698 ret = -TARGET_EFAULT; 9699 } else { 9700 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 9701 } 9702 unlock_user(p2, arg4, 0); 9703 unlock_user(p, arg2, 0); 9704 } 9705 return ret; 9706 #endif 9707 #ifdef TARGET_NR_mkdir 9708 case TARGET_NR_mkdir: 9709 if (!(p = lock_user_string(arg1))) 9710 return -TARGET_EFAULT; 9711 ret = get_errno(mkdir(p, arg2)); 9712 unlock_user(p, arg1, 0); 9713 return ret; 9714 #endif 9715 #if defined(TARGET_NR_mkdirat) 9716 case TARGET_NR_mkdirat: 9717 if (!(p = lock_user_string(arg2))) 9718 return -TARGET_EFAULT; 9719 ret = get_errno(mkdirat(arg1, p, arg3)); 9720 unlock_user(p, arg2, 0); 9721 return ret; 9722 #endif 9723 #ifdef TARGET_NR_rmdir 9724 case TARGET_NR_rmdir: 9725 if (!(p = lock_user_string(arg1))) 9726 return -TARGET_EFAULT; 9727 ret = get_errno(rmdir(p)); 9728 unlock_user(p, arg1, 0); 9729 return ret; 9730 #endif 9731 case TARGET_NR_dup: 9732 ret = get_errno(dup(arg1)); 9733 if (ret >= 0) { 9734 fd_trans_dup(arg1, ret); 9735 } 9736 return ret; 9737 #ifdef TARGET_NR_pipe 9738 case TARGET_NR_pipe: 9739 return do_pipe(cpu_env, arg1, 0, 0); 9740 #endif 9741 #ifdef TARGET_NR_pipe2 9742 case TARGET_NR_pipe2: 9743 return do_pipe(cpu_env, arg1, 9744 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 9745 #endif 9746 case TARGET_NR_times: 9747 { 9748 struct target_tms *tmsp; 9749 struct tms tms; 9750 ret = get_errno(times(&tms)); 9751 if (arg1) { 9752 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 9753 if (!tmsp) 9754 return -TARGET_EFAULT; 9755 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 9756 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 9757 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 9758 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 9759 } 9760 if (!is_error(ret)) 9761 ret = host_to_target_clock_t(ret); 9762 } 9763 return ret; 9764 case TARGET_NR_acct: 9765 if (arg1 == 0) { 9766 ret = get_errno(acct(NULL)); 9767 } else { 9768 if (!(p = lock_user_string(arg1))) { 9769 return -TARGET_EFAULT; 9770 } 9771 ret = get_errno(acct(path(p))); 9772 unlock_user(p, arg1, 0); 9773 } 9774 return ret; 9775 #ifdef TARGET_NR_umount2 9776 case TARGET_NR_umount2: 9777 if (!(p = lock_user_string(arg1))) 9778 return -TARGET_EFAULT; 9779 ret = get_errno(umount2(p, arg2)); 9780 unlock_user(p, arg1, 0); 9781 return ret; 9782 #endif 9783 case TARGET_NR_ioctl: 9784 return do_ioctl(arg1, arg2, arg3); 9785 #ifdef TARGET_NR_fcntl 9786 case TARGET_NR_fcntl: 9787 return do_fcntl(arg1, arg2, arg3); 9788 #endif 9789 case TARGET_NR_setpgid: 9790 return get_errno(setpgid(arg1, arg2)); 9791 case TARGET_NR_umask: 9792 return get_errno(umask(arg1)); 9793 case TARGET_NR_chroot: 9794 if (!(p = lock_user_string(arg1))) 9795 return -TARGET_EFAULT; 9796 ret = get_errno(chroot(p)); 9797 unlock_user(p, arg1, 0); 9798 return ret; 9799 #ifdef TARGET_NR_dup2 9800 case TARGET_NR_dup2: 9801 ret = get_errno(dup2(arg1, arg2)); 9802 if (ret >= 0) { 9803 fd_trans_dup(arg1, arg2); 9804 } 9805 return ret; 9806 #endif 9807 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 9808 case TARGET_NR_dup3: 9809 { 9810 int host_flags; 9811 9812 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 9813 return -EINVAL; 9814 } 9815 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 9816 ret = get_errno(dup3(arg1, arg2, host_flags)); 9817 if (ret >= 0) { 9818 fd_trans_dup(arg1, arg2); 9819 } 9820 return ret; 9821 } 9822 #endif 9823 #ifdef TARGET_NR_getppid /* not on alpha */ 9824 case TARGET_NR_getppid: 9825 return get_errno(getppid()); 9826 #endif 9827 #ifdef TARGET_NR_getpgrp 9828 case TARGET_NR_getpgrp: 9829 return get_errno(getpgrp()); 9830 #endif 9831 case TARGET_NR_setsid: 9832 return get_errno(setsid()); 9833 #ifdef TARGET_NR_sigaction 9834 case TARGET_NR_sigaction: 9835 { 9836 #if defined(TARGET_MIPS) 9837 struct target_sigaction act, oact, *pact, *old_act; 9838 9839 if (arg2) { 9840 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9841 return -TARGET_EFAULT; 9842 act._sa_handler = old_act->_sa_handler; 9843 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 9844 act.sa_flags = old_act->sa_flags; 9845 unlock_user_struct(old_act, arg2, 0); 9846 pact = &act; 9847 } else { 9848 pact = NULL; 9849 } 9850 9851 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9852 9853 if (!is_error(ret) && arg3) { 9854 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9855 return -TARGET_EFAULT; 9856 old_act->_sa_handler = oact._sa_handler; 9857 old_act->sa_flags = oact.sa_flags; 9858 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 9859 old_act->sa_mask.sig[1] = 0; 9860 old_act->sa_mask.sig[2] = 0; 9861 old_act->sa_mask.sig[3] = 0; 9862 unlock_user_struct(old_act, arg3, 1); 9863 } 9864 #else 9865 struct target_old_sigaction *old_act; 9866 struct target_sigaction act, oact, *pact; 9867 if (arg2) { 9868 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9869 return -TARGET_EFAULT; 9870 act._sa_handler = old_act->_sa_handler; 9871 target_siginitset(&act.sa_mask, old_act->sa_mask); 9872 act.sa_flags = old_act->sa_flags; 9873 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9874 act.sa_restorer = old_act->sa_restorer; 9875 #endif 9876 unlock_user_struct(old_act, arg2, 0); 9877 pact = &act; 9878 } else { 9879 pact = NULL; 9880 } 9881 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9882 if (!is_error(ret) && arg3) { 9883 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9884 return -TARGET_EFAULT; 9885 old_act->_sa_handler = oact._sa_handler; 9886 old_act->sa_mask = oact.sa_mask.sig[0]; 9887 old_act->sa_flags = oact.sa_flags; 9888 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9889 old_act->sa_restorer = oact.sa_restorer; 9890 #endif 9891 unlock_user_struct(old_act, arg3, 1); 9892 } 9893 #endif 9894 } 9895 return ret; 9896 #endif 9897 case TARGET_NR_rt_sigaction: 9898 { 9899 /* 9900 * For Alpha and SPARC this is a 5 argument syscall, with 9901 * a 'restorer' parameter which must be copied into the 9902 * sa_restorer field of the sigaction struct. 9903 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 9904 * and arg5 is the sigsetsize. 9905 */ 9906 #if defined(TARGET_ALPHA) 9907 target_ulong sigsetsize = arg4; 9908 target_ulong restorer = arg5; 9909 #elif defined(TARGET_SPARC) 9910 target_ulong restorer = arg4; 9911 target_ulong sigsetsize = arg5; 9912 #else 9913 target_ulong sigsetsize = arg4; 9914 target_ulong restorer = 0; 9915 #endif 9916 struct target_sigaction *act = NULL; 9917 struct target_sigaction *oact = NULL; 9918 9919 if (sigsetsize != sizeof(target_sigset_t)) { 9920 return -TARGET_EINVAL; 9921 } 9922 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) { 9923 return -TARGET_EFAULT; 9924 } 9925 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 9926 ret = -TARGET_EFAULT; 9927 } else { 9928 ret = get_errno(do_sigaction(arg1, act, oact, restorer)); 9929 if (oact) { 9930 unlock_user_struct(oact, arg3, 1); 9931 } 9932 } 9933 if (act) { 9934 unlock_user_struct(act, arg2, 0); 9935 } 9936 } 9937 return ret; 9938 #ifdef TARGET_NR_sgetmask /* not on alpha */ 9939 case TARGET_NR_sgetmask: 9940 { 9941 sigset_t cur_set; 9942 abi_ulong target_set; 9943 ret = do_sigprocmask(0, NULL, &cur_set); 9944 if (!ret) { 9945 host_to_target_old_sigset(&target_set, &cur_set); 9946 ret = target_set; 9947 } 9948 } 9949 return ret; 9950 #endif 9951 #ifdef TARGET_NR_ssetmask /* not on alpha */ 9952 case TARGET_NR_ssetmask: 9953 { 9954 sigset_t set, oset; 9955 abi_ulong target_set = arg1; 9956 target_to_host_old_sigset(&set, &target_set); 9957 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 9958 if (!ret) { 9959 host_to_target_old_sigset(&target_set, &oset); 9960 ret = target_set; 9961 } 9962 } 9963 return ret; 9964 #endif 9965 #ifdef TARGET_NR_sigprocmask 9966 case TARGET_NR_sigprocmask: 9967 { 9968 #if defined(TARGET_ALPHA) 9969 sigset_t set, oldset; 9970 abi_ulong mask; 9971 int how; 9972 9973 switch (arg1) { 9974 case TARGET_SIG_BLOCK: 9975 how = SIG_BLOCK; 9976 break; 9977 case TARGET_SIG_UNBLOCK: 9978 how = SIG_UNBLOCK; 9979 break; 9980 case TARGET_SIG_SETMASK: 9981 how = SIG_SETMASK; 9982 break; 9983 default: 9984 return -TARGET_EINVAL; 9985 } 9986 mask = arg2; 9987 target_to_host_old_sigset(&set, &mask); 9988 9989 ret = do_sigprocmask(how, &set, &oldset); 9990 if (!is_error(ret)) { 9991 host_to_target_old_sigset(&mask, &oldset); 9992 ret = mask; 9993 cpu_env->ir[IR_V0] = 0; /* force no error */ 9994 } 9995 #else 9996 sigset_t set, oldset, *set_ptr; 9997 int how; 9998 9999 if (arg2) { 10000 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 10001 if (!p) { 10002 return -TARGET_EFAULT; 10003 } 10004 target_to_host_old_sigset(&set, p); 10005 unlock_user(p, arg2, 0); 10006 set_ptr = &set; 10007 switch (arg1) { 10008 case TARGET_SIG_BLOCK: 10009 how = SIG_BLOCK; 10010 break; 10011 case TARGET_SIG_UNBLOCK: 10012 how = SIG_UNBLOCK; 10013 break; 10014 case TARGET_SIG_SETMASK: 10015 how = SIG_SETMASK; 10016 break; 10017 default: 10018 return -TARGET_EINVAL; 10019 } 10020 } else { 10021 how = 0; 10022 set_ptr = NULL; 10023 } 10024 ret = do_sigprocmask(how, set_ptr, &oldset); 10025 if (!is_error(ret) && arg3) { 10026 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10027 return -TARGET_EFAULT; 10028 host_to_target_old_sigset(p, &oldset); 10029 unlock_user(p, arg3, sizeof(target_sigset_t)); 10030 } 10031 #endif 10032 } 10033 return ret; 10034 #endif 10035 case TARGET_NR_rt_sigprocmask: 10036 { 10037 int how = arg1; 10038 sigset_t set, oldset, *set_ptr; 10039 10040 if (arg4 != sizeof(target_sigset_t)) { 10041 return -TARGET_EINVAL; 10042 } 10043 10044 if (arg2) { 10045 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 10046 if (!p) { 10047 return -TARGET_EFAULT; 10048 } 10049 target_to_host_sigset(&set, p); 10050 unlock_user(p, arg2, 0); 10051 set_ptr = &set; 10052 switch(how) { 10053 case TARGET_SIG_BLOCK: 10054 how = SIG_BLOCK; 10055 break; 10056 case TARGET_SIG_UNBLOCK: 10057 how = SIG_UNBLOCK; 10058 break; 10059 case TARGET_SIG_SETMASK: 10060 how = SIG_SETMASK; 10061 break; 10062 default: 10063 return -TARGET_EINVAL; 10064 } 10065 } else { 10066 how = 0; 10067 set_ptr = NULL; 10068 } 10069 ret = do_sigprocmask(how, set_ptr, &oldset); 10070 if (!is_error(ret) && arg3) { 10071 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10072 return -TARGET_EFAULT; 10073 host_to_target_sigset(p, &oldset); 10074 unlock_user(p, arg3, sizeof(target_sigset_t)); 10075 } 10076 } 10077 return ret; 10078 #ifdef TARGET_NR_sigpending 10079 case TARGET_NR_sigpending: 10080 { 10081 sigset_t set; 10082 ret = get_errno(sigpending(&set)); 10083 if (!is_error(ret)) { 10084 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10085 return -TARGET_EFAULT; 10086 host_to_target_old_sigset(p, &set); 10087 unlock_user(p, arg1, sizeof(target_sigset_t)); 10088 } 10089 } 10090 return ret; 10091 #endif 10092 case TARGET_NR_rt_sigpending: 10093 { 10094 sigset_t set; 10095 10096 /* Yes, this check is >, not != like most. We follow the kernel's 10097 * logic and it does it like this because it implements 10098 * NR_sigpending through the same code path, and in that case 10099 * the old_sigset_t is smaller in size. 10100 */ 10101 if (arg2 > sizeof(target_sigset_t)) { 10102 return -TARGET_EINVAL; 10103 } 10104 10105 ret = get_errno(sigpending(&set)); 10106 if (!is_error(ret)) { 10107 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10108 return -TARGET_EFAULT; 10109 host_to_target_sigset(p, &set); 10110 unlock_user(p, arg1, sizeof(target_sigset_t)); 10111 } 10112 } 10113 return ret; 10114 #ifdef TARGET_NR_sigsuspend 10115 case TARGET_NR_sigsuspend: 10116 { 10117 sigset_t *set; 10118 10119 #if defined(TARGET_ALPHA) 10120 TaskState *ts = get_task_state(cpu); 10121 /* target_to_host_old_sigset will bswap back */ 10122 abi_ulong mask = tswapal(arg1); 10123 set = &ts->sigsuspend_mask; 10124 target_to_host_old_sigset(set, &mask); 10125 #else 10126 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t)); 10127 if (ret != 0) { 10128 return ret; 10129 } 10130 #endif 10131 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10132 finish_sigsuspend_mask(ret); 10133 } 10134 return ret; 10135 #endif 10136 case TARGET_NR_rt_sigsuspend: 10137 { 10138 sigset_t *set; 10139 10140 ret = process_sigsuspend_mask(&set, arg1, arg2); 10141 if (ret != 0) { 10142 return ret; 10143 } 10144 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10145 finish_sigsuspend_mask(ret); 10146 } 10147 return ret; 10148 #ifdef TARGET_NR_rt_sigtimedwait 10149 case TARGET_NR_rt_sigtimedwait: 10150 { 10151 sigset_t set; 10152 struct timespec uts, *puts; 10153 siginfo_t uinfo; 10154 10155 if (arg4 != sizeof(target_sigset_t)) { 10156 return -TARGET_EINVAL; 10157 } 10158 10159 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 10160 return -TARGET_EFAULT; 10161 target_to_host_sigset(&set, p); 10162 unlock_user(p, arg1, 0); 10163 if (arg3) { 10164 puts = &uts; 10165 if (target_to_host_timespec(puts, arg3)) { 10166 return -TARGET_EFAULT; 10167 } 10168 } else { 10169 puts = NULL; 10170 } 10171 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10172 SIGSET_T_SIZE)); 10173 if (!is_error(ret)) { 10174 if (arg2) { 10175 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 10176 0); 10177 if (!p) { 10178 return -TARGET_EFAULT; 10179 } 10180 host_to_target_siginfo(p, &uinfo); 10181 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10182 } 10183 ret = host_to_target_signal(ret); 10184 } 10185 } 10186 return ret; 10187 #endif 10188 #ifdef TARGET_NR_rt_sigtimedwait_time64 10189 case TARGET_NR_rt_sigtimedwait_time64: 10190 { 10191 sigset_t set; 10192 struct timespec uts, *puts; 10193 siginfo_t uinfo; 10194 10195 if (arg4 != sizeof(target_sigset_t)) { 10196 return -TARGET_EINVAL; 10197 } 10198 10199 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1); 10200 if (!p) { 10201 return -TARGET_EFAULT; 10202 } 10203 target_to_host_sigset(&set, p); 10204 unlock_user(p, arg1, 0); 10205 if (arg3) { 10206 puts = &uts; 10207 if (target_to_host_timespec64(puts, arg3)) { 10208 return -TARGET_EFAULT; 10209 } 10210 } else { 10211 puts = NULL; 10212 } 10213 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10214 SIGSET_T_SIZE)); 10215 if (!is_error(ret)) { 10216 if (arg2) { 10217 p = lock_user(VERIFY_WRITE, arg2, 10218 sizeof(target_siginfo_t), 0); 10219 if (!p) { 10220 return -TARGET_EFAULT; 10221 } 10222 host_to_target_siginfo(p, &uinfo); 10223 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10224 } 10225 ret = host_to_target_signal(ret); 10226 } 10227 } 10228 return ret; 10229 #endif 10230 case TARGET_NR_rt_sigqueueinfo: 10231 { 10232 siginfo_t uinfo; 10233 10234 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 10235 if (!p) { 10236 return -TARGET_EFAULT; 10237 } 10238 target_to_host_siginfo(&uinfo, p); 10239 unlock_user(p, arg3, 0); 10240 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo)); 10241 } 10242 return ret; 10243 case TARGET_NR_rt_tgsigqueueinfo: 10244 { 10245 siginfo_t uinfo; 10246 10247 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 10248 if (!p) { 10249 return -TARGET_EFAULT; 10250 } 10251 target_to_host_siginfo(&uinfo, p); 10252 unlock_user(p, arg4, 0); 10253 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo)); 10254 } 10255 return ret; 10256 #ifdef TARGET_NR_sigreturn 10257 case TARGET_NR_sigreturn: 10258 if (block_signals()) { 10259 return -QEMU_ERESTARTSYS; 10260 } 10261 return do_sigreturn(cpu_env); 10262 #endif 10263 case TARGET_NR_rt_sigreturn: 10264 if (block_signals()) { 10265 return -QEMU_ERESTARTSYS; 10266 } 10267 return do_rt_sigreturn(cpu_env); 10268 case TARGET_NR_sethostname: 10269 if (!(p = lock_user_string(arg1))) 10270 return -TARGET_EFAULT; 10271 ret = get_errno(sethostname(p, arg2)); 10272 unlock_user(p, arg1, 0); 10273 return ret; 10274 #ifdef TARGET_NR_setrlimit 10275 case TARGET_NR_setrlimit: 10276 { 10277 int resource = target_to_host_resource(arg1); 10278 struct target_rlimit *target_rlim; 10279 struct rlimit rlim; 10280 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 10281 return -TARGET_EFAULT; 10282 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 10283 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 10284 unlock_user_struct(target_rlim, arg2, 0); 10285 /* 10286 * If we just passed through resource limit settings for memory then 10287 * they would also apply to QEMU's own allocations, and QEMU will 10288 * crash or hang or die if its allocations fail. Ideally we would 10289 * track the guest allocations in QEMU and apply the limits ourselves. 10290 * For now, just tell the guest the call succeeded but don't actually 10291 * limit anything. 10292 */ 10293 if (resource != RLIMIT_AS && 10294 resource != RLIMIT_DATA && 10295 resource != RLIMIT_STACK) { 10296 return get_errno(setrlimit(resource, &rlim)); 10297 } else { 10298 return 0; 10299 } 10300 } 10301 #endif 10302 #ifdef TARGET_NR_getrlimit 10303 case TARGET_NR_getrlimit: 10304 { 10305 int resource = target_to_host_resource(arg1); 10306 struct target_rlimit *target_rlim; 10307 struct rlimit rlim; 10308 10309 ret = get_errno(getrlimit(resource, &rlim)); 10310 if (!is_error(ret)) { 10311 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 10312 return -TARGET_EFAULT; 10313 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 10314 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 10315 unlock_user_struct(target_rlim, arg2, 1); 10316 } 10317 } 10318 return ret; 10319 #endif 10320 case TARGET_NR_getrusage: 10321 { 10322 struct rusage rusage; 10323 ret = get_errno(getrusage(arg1, &rusage)); 10324 if (!is_error(ret)) { 10325 ret = host_to_target_rusage(arg2, &rusage); 10326 } 10327 } 10328 return ret; 10329 #if defined(TARGET_NR_gettimeofday) 10330 case TARGET_NR_gettimeofday: 10331 { 10332 struct timeval tv; 10333 struct timezone tz; 10334 10335 ret = get_errno(gettimeofday(&tv, &tz)); 10336 if (!is_error(ret)) { 10337 if (arg1 && copy_to_user_timeval(arg1, &tv)) { 10338 return -TARGET_EFAULT; 10339 } 10340 if (arg2 && copy_to_user_timezone(arg2, &tz)) { 10341 return -TARGET_EFAULT; 10342 } 10343 } 10344 } 10345 return ret; 10346 #endif 10347 #if defined(TARGET_NR_settimeofday) 10348 case TARGET_NR_settimeofday: 10349 { 10350 struct timeval tv, *ptv = NULL; 10351 struct timezone tz, *ptz = NULL; 10352 10353 if (arg1) { 10354 if (copy_from_user_timeval(&tv, arg1)) { 10355 return -TARGET_EFAULT; 10356 } 10357 ptv = &tv; 10358 } 10359 10360 if (arg2) { 10361 if (copy_from_user_timezone(&tz, arg2)) { 10362 return -TARGET_EFAULT; 10363 } 10364 ptz = &tz; 10365 } 10366 10367 return get_errno(settimeofday(ptv, ptz)); 10368 } 10369 #endif 10370 #if defined(TARGET_NR_select) 10371 case TARGET_NR_select: 10372 #if defined(TARGET_WANT_NI_OLD_SELECT) 10373 /* some architectures used to have old_select here 10374 * but now ENOSYS it. 10375 */ 10376 ret = -TARGET_ENOSYS; 10377 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 10378 ret = do_old_select(arg1); 10379 #else 10380 ret = do_select(arg1, arg2, arg3, arg4, arg5); 10381 #endif 10382 return ret; 10383 #endif 10384 #ifdef TARGET_NR_pselect6 10385 case TARGET_NR_pselect6: 10386 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false); 10387 #endif 10388 #ifdef TARGET_NR_pselect6_time64 10389 case TARGET_NR_pselect6_time64: 10390 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true); 10391 #endif 10392 #ifdef TARGET_NR_symlink 10393 case TARGET_NR_symlink: 10394 { 10395 void *p2; 10396 p = lock_user_string(arg1); 10397 p2 = lock_user_string(arg2); 10398 if (!p || !p2) 10399 ret = -TARGET_EFAULT; 10400 else 10401 ret = get_errno(symlink(p, p2)); 10402 unlock_user(p2, arg2, 0); 10403 unlock_user(p, arg1, 0); 10404 } 10405 return ret; 10406 #endif 10407 #if defined(TARGET_NR_symlinkat) 10408 case TARGET_NR_symlinkat: 10409 { 10410 void *p2; 10411 p = lock_user_string(arg1); 10412 p2 = lock_user_string(arg3); 10413 if (!p || !p2) 10414 ret = -TARGET_EFAULT; 10415 else 10416 ret = get_errno(symlinkat(p, arg2, p2)); 10417 unlock_user(p2, arg3, 0); 10418 unlock_user(p, arg1, 0); 10419 } 10420 return ret; 10421 #endif 10422 #ifdef TARGET_NR_readlink 10423 case TARGET_NR_readlink: 10424 { 10425 void *p2; 10426 p = lock_user_string(arg1); 10427 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10428 ret = get_errno(do_guest_readlink(p, p2, arg3)); 10429 unlock_user(p2, arg2, ret); 10430 unlock_user(p, arg1, 0); 10431 } 10432 return ret; 10433 #endif 10434 #if defined(TARGET_NR_readlinkat) 10435 case TARGET_NR_readlinkat: 10436 { 10437 void *p2; 10438 p = lock_user_string(arg2); 10439 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 10440 if (!p || !p2) { 10441 ret = -TARGET_EFAULT; 10442 } else if (!arg4) { 10443 /* Short circuit this for the magic exe check. */ 10444 ret = -TARGET_EINVAL; 10445 } else if (is_proc_myself((const char *)p, "exe")) { 10446 /* 10447 * Don't worry about sign mismatch as earlier mapping 10448 * logic would have thrown a bad address error. 10449 */ 10450 ret = MIN(strlen(exec_path), arg4); 10451 /* We cannot NUL terminate the string. */ 10452 memcpy(p2, exec_path, ret); 10453 } else { 10454 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 10455 } 10456 unlock_user(p2, arg3, ret); 10457 unlock_user(p, arg2, 0); 10458 } 10459 return ret; 10460 #endif 10461 #ifdef TARGET_NR_swapon 10462 case TARGET_NR_swapon: 10463 if (!(p = lock_user_string(arg1))) 10464 return -TARGET_EFAULT; 10465 ret = get_errno(swapon(p, arg2)); 10466 unlock_user(p, arg1, 0); 10467 return ret; 10468 #endif 10469 case TARGET_NR_reboot: 10470 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 10471 /* arg4 must be ignored in all other cases */ 10472 p = lock_user_string(arg4); 10473 if (!p) { 10474 return -TARGET_EFAULT; 10475 } 10476 ret = get_errno(reboot(arg1, arg2, arg3, p)); 10477 unlock_user(p, arg4, 0); 10478 } else { 10479 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 10480 } 10481 return ret; 10482 #ifdef TARGET_NR_mmap 10483 case TARGET_NR_mmap: 10484 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 10485 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 10486 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 10487 || defined(TARGET_S390X) 10488 { 10489 abi_ulong *v; 10490 abi_ulong v1, v2, v3, v4, v5, v6; 10491 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 10492 return -TARGET_EFAULT; 10493 v1 = tswapal(v[0]); 10494 v2 = tswapal(v[1]); 10495 v3 = tswapal(v[2]); 10496 v4 = tswapal(v[3]); 10497 v5 = tswapal(v[4]); 10498 v6 = tswapal(v[5]); 10499 unlock_user(v, arg1, 0); 10500 return do_mmap(v1, v2, v3, v4, v5, v6); 10501 } 10502 #else 10503 /* mmap pointers are always untagged */ 10504 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6); 10505 #endif 10506 #endif 10507 #ifdef TARGET_NR_mmap2 10508 case TARGET_NR_mmap2: 10509 #ifndef MMAP_SHIFT 10510 #define MMAP_SHIFT 12 10511 #endif 10512 return do_mmap(arg1, arg2, arg3, arg4, arg5, 10513 (off_t)(abi_ulong)arg6 << MMAP_SHIFT); 10514 #endif 10515 case TARGET_NR_munmap: 10516 arg1 = cpu_untagged_addr(cpu, arg1); 10517 return get_errno(target_munmap(arg1, arg2)); 10518 case TARGET_NR_mprotect: 10519 arg1 = cpu_untagged_addr(cpu, arg1); 10520 { 10521 TaskState *ts = get_task_state(cpu); 10522 /* Special hack to detect libc making the stack executable. */ 10523 if ((arg3 & PROT_GROWSDOWN) 10524 && arg1 >= ts->info->stack_limit 10525 && arg1 <= ts->info->start_stack) { 10526 arg3 &= ~PROT_GROWSDOWN; 10527 arg2 = arg2 + arg1 - ts->info->stack_limit; 10528 arg1 = ts->info->stack_limit; 10529 } 10530 } 10531 return get_errno(target_mprotect(arg1, arg2, arg3)); 10532 #ifdef TARGET_NR_mremap 10533 case TARGET_NR_mremap: 10534 arg1 = cpu_untagged_addr(cpu, arg1); 10535 /* mremap new_addr (arg5) is always untagged */ 10536 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 10537 #endif 10538 /* ??? msync/mlock/munlock are broken for softmmu. */ 10539 #ifdef TARGET_NR_msync 10540 case TARGET_NR_msync: 10541 return get_errno(msync(g2h(cpu, arg1), arg2, 10542 target_to_host_msync_arg(arg3))); 10543 #endif 10544 #ifdef TARGET_NR_mlock 10545 case TARGET_NR_mlock: 10546 return get_errno(mlock(g2h(cpu, arg1), arg2)); 10547 #endif 10548 #ifdef TARGET_NR_munlock 10549 case TARGET_NR_munlock: 10550 return get_errno(munlock(g2h(cpu, arg1), arg2)); 10551 #endif 10552 #ifdef TARGET_NR_mlockall 10553 case TARGET_NR_mlockall: 10554 return get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 10555 #endif 10556 #ifdef TARGET_NR_munlockall 10557 case TARGET_NR_munlockall: 10558 return get_errno(munlockall()); 10559 #endif 10560 #ifdef TARGET_NR_truncate 10561 case TARGET_NR_truncate: 10562 if (!(p = lock_user_string(arg1))) 10563 return -TARGET_EFAULT; 10564 ret = get_errno(truncate(p, arg2)); 10565 unlock_user(p, arg1, 0); 10566 return ret; 10567 #endif 10568 #ifdef TARGET_NR_ftruncate 10569 case TARGET_NR_ftruncate: 10570 return get_errno(ftruncate(arg1, arg2)); 10571 #endif 10572 case TARGET_NR_fchmod: 10573 return get_errno(fchmod(arg1, arg2)); 10574 #if defined(TARGET_NR_fchmodat) 10575 case TARGET_NR_fchmodat: 10576 if (!(p = lock_user_string(arg2))) 10577 return -TARGET_EFAULT; 10578 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 10579 unlock_user(p, arg2, 0); 10580 return ret; 10581 #endif 10582 case TARGET_NR_getpriority: 10583 /* Note that negative values are valid for getpriority, so we must 10584 differentiate based on errno settings. */ 10585 errno = 0; 10586 ret = getpriority(arg1, arg2); 10587 if (ret == -1 && errno != 0) { 10588 return -host_to_target_errno(errno); 10589 } 10590 #ifdef TARGET_ALPHA 10591 /* Return value is the unbiased priority. Signal no error. */ 10592 cpu_env->ir[IR_V0] = 0; 10593 #else 10594 /* Return value is a biased priority to avoid negative numbers. */ 10595 ret = 20 - ret; 10596 #endif 10597 return ret; 10598 case TARGET_NR_setpriority: 10599 return get_errno(setpriority(arg1, arg2, arg3)); 10600 #ifdef TARGET_NR_statfs 10601 case TARGET_NR_statfs: 10602 if (!(p = lock_user_string(arg1))) { 10603 return -TARGET_EFAULT; 10604 } 10605 ret = get_errno(statfs(path(p), &stfs)); 10606 unlock_user(p, arg1, 0); 10607 convert_statfs: 10608 if (!is_error(ret)) { 10609 struct target_statfs *target_stfs; 10610 10611 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 10612 return -TARGET_EFAULT; 10613 __put_user(stfs.f_type, &target_stfs->f_type); 10614 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10615 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10616 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10617 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10618 __put_user(stfs.f_files, &target_stfs->f_files); 10619 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10620 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10621 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10622 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10623 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10624 #ifdef _STATFS_F_FLAGS 10625 __put_user(stfs.f_flags, &target_stfs->f_flags); 10626 #else 10627 __put_user(0, &target_stfs->f_flags); 10628 #endif 10629 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10630 unlock_user_struct(target_stfs, arg2, 1); 10631 } 10632 return ret; 10633 #endif 10634 #ifdef TARGET_NR_fstatfs 10635 case TARGET_NR_fstatfs: 10636 ret = get_errno(fstatfs(arg1, &stfs)); 10637 goto convert_statfs; 10638 #endif 10639 #ifdef TARGET_NR_statfs64 10640 case TARGET_NR_statfs64: 10641 if (!(p = lock_user_string(arg1))) { 10642 return -TARGET_EFAULT; 10643 } 10644 ret = get_errno(statfs(path(p), &stfs)); 10645 unlock_user(p, arg1, 0); 10646 convert_statfs64: 10647 if (!is_error(ret)) { 10648 struct target_statfs64 *target_stfs; 10649 10650 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 10651 return -TARGET_EFAULT; 10652 __put_user(stfs.f_type, &target_stfs->f_type); 10653 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10654 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10655 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10656 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10657 __put_user(stfs.f_files, &target_stfs->f_files); 10658 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10659 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10660 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10661 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10662 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10663 #ifdef _STATFS_F_FLAGS 10664 __put_user(stfs.f_flags, &target_stfs->f_flags); 10665 #else 10666 __put_user(0, &target_stfs->f_flags); 10667 #endif 10668 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10669 unlock_user_struct(target_stfs, arg3, 1); 10670 } 10671 return ret; 10672 case TARGET_NR_fstatfs64: 10673 ret = get_errno(fstatfs(arg1, &stfs)); 10674 goto convert_statfs64; 10675 #endif 10676 #ifdef TARGET_NR_socketcall 10677 case TARGET_NR_socketcall: 10678 return do_socketcall(arg1, arg2); 10679 #endif 10680 #ifdef TARGET_NR_accept 10681 case TARGET_NR_accept: 10682 return do_accept4(arg1, arg2, arg3, 0); 10683 #endif 10684 #ifdef TARGET_NR_accept4 10685 case TARGET_NR_accept4: 10686 return do_accept4(arg1, arg2, arg3, arg4); 10687 #endif 10688 #ifdef TARGET_NR_bind 10689 case TARGET_NR_bind: 10690 return do_bind(arg1, arg2, arg3); 10691 #endif 10692 #ifdef TARGET_NR_connect 10693 case TARGET_NR_connect: 10694 return do_connect(arg1, arg2, arg3); 10695 #endif 10696 #ifdef TARGET_NR_getpeername 10697 case TARGET_NR_getpeername: 10698 return do_getpeername(arg1, arg2, arg3); 10699 #endif 10700 #ifdef TARGET_NR_getsockname 10701 case TARGET_NR_getsockname: 10702 return do_getsockname(arg1, arg2, arg3); 10703 #endif 10704 #ifdef TARGET_NR_getsockopt 10705 case TARGET_NR_getsockopt: 10706 return do_getsockopt(arg1, arg2, arg3, arg4, arg5); 10707 #endif 10708 #ifdef TARGET_NR_listen 10709 case TARGET_NR_listen: 10710 return get_errno(listen(arg1, arg2)); 10711 #endif 10712 #ifdef TARGET_NR_recv 10713 case TARGET_NR_recv: 10714 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 10715 #endif 10716 #ifdef TARGET_NR_recvfrom 10717 case TARGET_NR_recvfrom: 10718 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 10719 #endif 10720 #ifdef TARGET_NR_recvmsg 10721 case TARGET_NR_recvmsg: 10722 return do_sendrecvmsg(arg1, arg2, arg3, 0); 10723 #endif 10724 #ifdef TARGET_NR_send 10725 case TARGET_NR_send: 10726 return do_sendto(arg1, arg2, arg3, arg4, 0, 0); 10727 #endif 10728 #ifdef TARGET_NR_sendmsg 10729 case TARGET_NR_sendmsg: 10730 return do_sendrecvmsg(arg1, arg2, arg3, 1); 10731 #endif 10732 #ifdef TARGET_NR_sendmmsg 10733 case TARGET_NR_sendmmsg: 10734 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 10735 #endif 10736 #ifdef TARGET_NR_recvmmsg 10737 case TARGET_NR_recvmmsg: 10738 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 10739 #endif 10740 #ifdef TARGET_NR_sendto 10741 case TARGET_NR_sendto: 10742 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 10743 #endif 10744 #ifdef TARGET_NR_shutdown 10745 case TARGET_NR_shutdown: 10746 return get_errno(shutdown(arg1, arg2)); 10747 #endif 10748 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 10749 case TARGET_NR_getrandom: 10750 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 10751 if (!p) { 10752 return -TARGET_EFAULT; 10753 } 10754 ret = get_errno(getrandom(p, arg2, arg3)); 10755 unlock_user(p, arg1, ret); 10756 return ret; 10757 #endif 10758 #ifdef TARGET_NR_socket 10759 case TARGET_NR_socket: 10760 return do_socket(arg1, arg2, arg3); 10761 #endif 10762 #ifdef TARGET_NR_socketpair 10763 case TARGET_NR_socketpair: 10764 return do_socketpair(arg1, arg2, arg3, arg4); 10765 #endif 10766 #ifdef TARGET_NR_setsockopt 10767 case TARGET_NR_setsockopt: 10768 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 10769 #endif 10770 #if defined(TARGET_NR_syslog) 10771 case TARGET_NR_syslog: 10772 { 10773 int len = arg2; 10774 10775 switch (arg1) { 10776 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 10777 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 10778 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 10779 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 10780 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 10781 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 10782 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 10783 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 10784 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 10785 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 10786 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 10787 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 10788 { 10789 if (len < 0) { 10790 return -TARGET_EINVAL; 10791 } 10792 if (len == 0) { 10793 return 0; 10794 } 10795 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10796 if (!p) { 10797 return -TARGET_EFAULT; 10798 } 10799 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 10800 unlock_user(p, arg2, arg3); 10801 } 10802 return ret; 10803 default: 10804 return -TARGET_EINVAL; 10805 } 10806 } 10807 break; 10808 #endif 10809 case TARGET_NR_setitimer: 10810 { 10811 struct itimerval value, ovalue, *pvalue; 10812 10813 if (arg2) { 10814 pvalue = &value; 10815 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 10816 || copy_from_user_timeval(&pvalue->it_value, 10817 arg2 + sizeof(struct target_timeval))) 10818 return -TARGET_EFAULT; 10819 } else { 10820 pvalue = NULL; 10821 } 10822 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 10823 if (!is_error(ret) && arg3) { 10824 if (copy_to_user_timeval(arg3, 10825 &ovalue.it_interval) 10826 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 10827 &ovalue.it_value)) 10828 return -TARGET_EFAULT; 10829 } 10830 } 10831 return ret; 10832 case TARGET_NR_getitimer: 10833 { 10834 struct itimerval value; 10835 10836 ret = get_errno(getitimer(arg1, &value)); 10837 if (!is_error(ret) && arg2) { 10838 if (copy_to_user_timeval(arg2, 10839 &value.it_interval) 10840 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 10841 &value.it_value)) 10842 return -TARGET_EFAULT; 10843 } 10844 } 10845 return ret; 10846 #ifdef TARGET_NR_stat 10847 case TARGET_NR_stat: 10848 if (!(p = lock_user_string(arg1))) { 10849 return -TARGET_EFAULT; 10850 } 10851 ret = get_errno(stat(path(p), &st)); 10852 unlock_user(p, arg1, 0); 10853 goto do_stat; 10854 #endif 10855 #ifdef TARGET_NR_lstat 10856 case TARGET_NR_lstat: 10857 if (!(p = lock_user_string(arg1))) { 10858 return -TARGET_EFAULT; 10859 } 10860 ret = get_errno(lstat(path(p), &st)); 10861 unlock_user(p, arg1, 0); 10862 goto do_stat; 10863 #endif 10864 #ifdef TARGET_NR_fstat 10865 case TARGET_NR_fstat: 10866 { 10867 ret = get_errno(fstat(arg1, &st)); 10868 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 10869 do_stat: 10870 #endif 10871 if (!is_error(ret)) { 10872 struct target_stat *target_st; 10873 10874 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 10875 return -TARGET_EFAULT; 10876 memset(target_st, 0, sizeof(*target_st)); 10877 __put_user(st.st_dev, &target_st->st_dev); 10878 __put_user(st.st_ino, &target_st->st_ino); 10879 __put_user(st.st_mode, &target_st->st_mode); 10880 __put_user(st.st_uid, &target_st->st_uid); 10881 __put_user(st.st_gid, &target_st->st_gid); 10882 __put_user(st.st_nlink, &target_st->st_nlink); 10883 __put_user(st.st_rdev, &target_st->st_rdev); 10884 __put_user(st.st_size, &target_st->st_size); 10885 __put_user(st.st_blksize, &target_st->st_blksize); 10886 __put_user(st.st_blocks, &target_st->st_blocks); 10887 __put_user(st.st_atime, &target_st->target_st_atime); 10888 __put_user(st.st_mtime, &target_st->target_st_mtime); 10889 __put_user(st.st_ctime, &target_st->target_st_ctime); 10890 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC) 10891 __put_user(st.st_atim.tv_nsec, 10892 &target_st->target_st_atime_nsec); 10893 __put_user(st.st_mtim.tv_nsec, 10894 &target_st->target_st_mtime_nsec); 10895 __put_user(st.st_ctim.tv_nsec, 10896 &target_st->target_st_ctime_nsec); 10897 #endif 10898 unlock_user_struct(target_st, arg2, 1); 10899 } 10900 } 10901 return ret; 10902 #endif 10903 case TARGET_NR_vhangup: 10904 return get_errno(vhangup()); 10905 #ifdef TARGET_NR_syscall 10906 case TARGET_NR_syscall: 10907 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 10908 arg6, arg7, arg8, 0); 10909 #endif 10910 #if defined(TARGET_NR_wait4) 10911 case TARGET_NR_wait4: 10912 { 10913 int status; 10914 abi_long status_ptr = arg2; 10915 struct rusage rusage, *rusage_ptr; 10916 abi_ulong target_rusage = arg4; 10917 abi_long rusage_err; 10918 if (target_rusage) 10919 rusage_ptr = &rusage; 10920 else 10921 rusage_ptr = NULL; 10922 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 10923 if (!is_error(ret)) { 10924 if (status_ptr && ret) { 10925 status = host_to_target_waitstatus(status); 10926 if (put_user_s32(status, status_ptr)) 10927 return -TARGET_EFAULT; 10928 } 10929 if (target_rusage) { 10930 rusage_err = host_to_target_rusage(target_rusage, &rusage); 10931 if (rusage_err) { 10932 ret = rusage_err; 10933 } 10934 } 10935 } 10936 } 10937 return ret; 10938 #endif 10939 #ifdef TARGET_NR_swapoff 10940 case TARGET_NR_swapoff: 10941 if (!(p = lock_user_string(arg1))) 10942 return -TARGET_EFAULT; 10943 ret = get_errno(swapoff(p)); 10944 unlock_user(p, arg1, 0); 10945 return ret; 10946 #endif 10947 case TARGET_NR_sysinfo: 10948 { 10949 struct target_sysinfo *target_value; 10950 struct sysinfo value; 10951 ret = get_errno(sysinfo(&value)); 10952 if (!is_error(ret) && arg1) 10953 { 10954 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 10955 return -TARGET_EFAULT; 10956 __put_user(value.uptime, &target_value->uptime); 10957 __put_user(value.loads[0], &target_value->loads[0]); 10958 __put_user(value.loads[1], &target_value->loads[1]); 10959 __put_user(value.loads[2], &target_value->loads[2]); 10960 __put_user(value.totalram, &target_value->totalram); 10961 __put_user(value.freeram, &target_value->freeram); 10962 __put_user(value.sharedram, &target_value->sharedram); 10963 __put_user(value.bufferram, &target_value->bufferram); 10964 __put_user(value.totalswap, &target_value->totalswap); 10965 __put_user(value.freeswap, &target_value->freeswap); 10966 __put_user(value.procs, &target_value->procs); 10967 __put_user(value.totalhigh, &target_value->totalhigh); 10968 __put_user(value.freehigh, &target_value->freehigh); 10969 __put_user(value.mem_unit, &target_value->mem_unit); 10970 unlock_user_struct(target_value, arg1, 1); 10971 } 10972 } 10973 return ret; 10974 #ifdef TARGET_NR_ipc 10975 case TARGET_NR_ipc: 10976 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 10977 #endif 10978 #ifdef TARGET_NR_semget 10979 case TARGET_NR_semget: 10980 return get_errno(semget(arg1, arg2, arg3)); 10981 #endif 10982 #ifdef TARGET_NR_semop 10983 case TARGET_NR_semop: 10984 return do_semtimedop(arg1, arg2, arg3, 0, false); 10985 #endif 10986 #ifdef TARGET_NR_semtimedop 10987 case TARGET_NR_semtimedop: 10988 return do_semtimedop(arg1, arg2, arg3, arg4, false); 10989 #endif 10990 #ifdef TARGET_NR_semtimedop_time64 10991 case TARGET_NR_semtimedop_time64: 10992 return do_semtimedop(arg1, arg2, arg3, arg4, true); 10993 #endif 10994 #ifdef TARGET_NR_semctl 10995 case TARGET_NR_semctl: 10996 return do_semctl(arg1, arg2, arg3, arg4); 10997 #endif 10998 #ifdef TARGET_NR_msgctl 10999 case TARGET_NR_msgctl: 11000 return do_msgctl(arg1, arg2, arg3); 11001 #endif 11002 #ifdef TARGET_NR_msgget 11003 case TARGET_NR_msgget: 11004 return get_errno(msgget(arg1, arg2)); 11005 #endif 11006 #ifdef TARGET_NR_msgrcv 11007 case TARGET_NR_msgrcv: 11008 return do_msgrcv(arg1, arg2, arg3, arg4, arg5); 11009 #endif 11010 #ifdef TARGET_NR_msgsnd 11011 case TARGET_NR_msgsnd: 11012 return do_msgsnd(arg1, arg2, arg3, arg4); 11013 #endif 11014 #ifdef TARGET_NR_shmget 11015 case TARGET_NR_shmget: 11016 return get_errno(shmget(arg1, arg2, arg3)); 11017 #endif 11018 #ifdef TARGET_NR_shmctl 11019 case TARGET_NR_shmctl: 11020 return do_shmctl(arg1, arg2, arg3); 11021 #endif 11022 #ifdef TARGET_NR_shmat 11023 case TARGET_NR_shmat: 11024 return target_shmat(cpu_env, arg1, arg2, arg3); 11025 #endif 11026 #ifdef TARGET_NR_shmdt 11027 case TARGET_NR_shmdt: 11028 return target_shmdt(arg1); 11029 #endif 11030 case TARGET_NR_fsync: 11031 return get_errno(fsync(arg1)); 11032 case TARGET_NR_clone: 11033 /* Linux manages to have three different orderings for its 11034 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 11035 * match the kernel's CONFIG_CLONE_* settings. 11036 * Microblaze is further special in that it uses a sixth 11037 * implicit argument to clone for the TLS pointer. 11038 */ 11039 #if defined(TARGET_MICROBLAZE) 11040 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 11041 #elif defined(TARGET_CLONE_BACKWARDS) 11042 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 11043 #elif defined(TARGET_CLONE_BACKWARDS2) 11044 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 11045 #else 11046 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 11047 #endif 11048 return ret; 11049 #ifdef __NR_exit_group 11050 /* new thread calls */ 11051 case TARGET_NR_exit_group: 11052 preexit_cleanup(cpu_env, arg1); 11053 return get_errno(exit_group(arg1)); 11054 #endif 11055 case TARGET_NR_setdomainname: 11056 if (!(p = lock_user_string(arg1))) 11057 return -TARGET_EFAULT; 11058 ret = get_errno(setdomainname(p, arg2)); 11059 unlock_user(p, arg1, 0); 11060 return ret; 11061 case TARGET_NR_uname: 11062 /* no need to transcode because we use the linux syscall */ 11063 { 11064 struct new_utsname * buf; 11065 11066 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 11067 return -TARGET_EFAULT; 11068 ret = get_errno(sys_uname(buf)); 11069 if (!is_error(ret)) { 11070 /* Overwrite the native machine name with whatever is being 11071 emulated. */ 11072 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env), 11073 sizeof(buf->machine)); 11074 /* Allow the user to override the reported release. */ 11075 if (qemu_uname_release && *qemu_uname_release) { 11076 g_strlcpy(buf->release, qemu_uname_release, 11077 sizeof(buf->release)); 11078 } 11079 } 11080 unlock_user_struct(buf, arg1, 1); 11081 } 11082 return ret; 11083 #ifdef TARGET_I386 11084 case TARGET_NR_modify_ldt: 11085 return do_modify_ldt(cpu_env, arg1, arg2, arg3); 11086 #if !defined(TARGET_X86_64) 11087 case TARGET_NR_vm86: 11088 return do_vm86(cpu_env, arg1, arg2); 11089 #endif 11090 #endif 11091 #if defined(TARGET_NR_adjtimex) 11092 case TARGET_NR_adjtimex: 11093 { 11094 struct timex host_buf; 11095 11096 if (target_to_host_timex(&host_buf, arg1) != 0) { 11097 return -TARGET_EFAULT; 11098 } 11099 ret = get_errno(adjtimex(&host_buf)); 11100 if (!is_error(ret)) { 11101 if (host_to_target_timex(arg1, &host_buf) != 0) { 11102 return -TARGET_EFAULT; 11103 } 11104 } 11105 } 11106 return ret; 11107 #endif 11108 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 11109 case TARGET_NR_clock_adjtime: 11110 { 11111 struct timex htx; 11112 11113 if (target_to_host_timex(&htx, arg2) != 0) { 11114 return -TARGET_EFAULT; 11115 } 11116 ret = get_errno(clock_adjtime(arg1, &htx)); 11117 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) { 11118 return -TARGET_EFAULT; 11119 } 11120 } 11121 return ret; 11122 #endif 11123 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 11124 case TARGET_NR_clock_adjtime64: 11125 { 11126 struct timex htx; 11127 11128 if (target_to_host_timex64(&htx, arg2) != 0) { 11129 return -TARGET_EFAULT; 11130 } 11131 ret = get_errno(clock_adjtime(arg1, &htx)); 11132 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) { 11133 return -TARGET_EFAULT; 11134 } 11135 } 11136 return ret; 11137 #endif 11138 case TARGET_NR_getpgid: 11139 return get_errno(getpgid(arg1)); 11140 case TARGET_NR_fchdir: 11141 return get_errno(fchdir(arg1)); 11142 case TARGET_NR_personality: 11143 return get_errno(personality(arg1)); 11144 #ifdef TARGET_NR__llseek /* Not on alpha */ 11145 case TARGET_NR__llseek: 11146 { 11147 int64_t res; 11148 #if !defined(__NR_llseek) 11149 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 11150 if (res == -1) { 11151 ret = get_errno(res); 11152 } else { 11153 ret = 0; 11154 } 11155 #else 11156 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 11157 #endif 11158 if ((ret == 0) && put_user_s64(res, arg4)) { 11159 return -TARGET_EFAULT; 11160 } 11161 } 11162 return ret; 11163 #endif 11164 #ifdef TARGET_NR_getdents 11165 case TARGET_NR_getdents: 11166 return do_getdents(arg1, arg2, arg3); 11167 #endif /* TARGET_NR_getdents */ 11168 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 11169 case TARGET_NR_getdents64: 11170 return do_getdents64(arg1, arg2, arg3); 11171 #endif /* TARGET_NR_getdents64 */ 11172 #if defined(TARGET_NR__newselect) 11173 case TARGET_NR__newselect: 11174 return do_select(arg1, arg2, arg3, arg4, arg5); 11175 #endif 11176 #ifdef TARGET_NR_poll 11177 case TARGET_NR_poll: 11178 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false); 11179 #endif 11180 #ifdef TARGET_NR_ppoll 11181 case TARGET_NR_ppoll: 11182 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false); 11183 #endif 11184 #ifdef TARGET_NR_ppoll_time64 11185 case TARGET_NR_ppoll_time64: 11186 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true); 11187 #endif 11188 case TARGET_NR_flock: 11189 /* NOTE: the flock constant seems to be the same for every 11190 Linux platform */ 11191 return get_errno(safe_flock(arg1, arg2)); 11192 case TARGET_NR_readv: 11193 { 11194 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11195 if (vec != NULL) { 11196 ret = get_errno(safe_readv(arg1, vec, arg3)); 11197 unlock_iovec(vec, arg2, arg3, 1); 11198 } else { 11199 ret = -host_to_target_errno(errno); 11200 } 11201 } 11202 return ret; 11203 case TARGET_NR_writev: 11204 { 11205 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11206 if (vec != NULL) { 11207 ret = get_errno(safe_writev(arg1, vec, arg3)); 11208 unlock_iovec(vec, arg2, arg3, 0); 11209 } else { 11210 ret = -host_to_target_errno(errno); 11211 } 11212 } 11213 return ret; 11214 #if defined(TARGET_NR_preadv) 11215 case TARGET_NR_preadv: 11216 { 11217 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11218 if (vec != NULL) { 11219 unsigned long low, high; 11220 11221 target_to_host_low_high(arg4, arg5, &low, &high); 11222 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high)); 11223 unlock_iovec(vec, arg2, arg3, 1); 11224 } else { 11225 ret = -host_to_target_errno(errno); 11226 } 11227 } 11228 return ret; 11229 #endif 11230 #if defined(TARGET_NR_pwritev) 11231 case TARGET_NR_pwritev: 11232 { 11233 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11234 if (vec != NULL) { 11235 unsigned long low, high; 11236 11237 target_to_host_low_high(arg4, arg5, &low, &high); 11238 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high)); 11239 unlock_iovec(vec, arg2, arg3, 0); 11240 } else { 11241 ret = -host_to_target_errno(errno); 11242 } 11243 } 11244 return ret; 11245 #endif 11246 case TARGET_NR_getsid: 11247 return get_errno(getsid(arg1)); 11248 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 11249 case TARGET_NR_fdatasync: 11250 return get_errno(fdatasync(arg1)); 11251 #endif 11252 case TARGET_NR_sched_getaffinity: 11253 { 11254 unsigned int mask_size; 11255 unsigned long *mask; 11256 11257 /* 11258 * sched_getaffinity needs multiples of ulong, so need to take 11259 * care of mismatches between target ulong and host ulong sizes. 11260 */ 11261 if (arg2 & (sizeof(abi_ulong) - 1)) { 11262 return -TARGET_EINVAL; 11263 } 11264 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11265 11266 mask = alloca(mask_size); 11267 memset(mask, 0, mask_size); 11268 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 11269 11270 if (!is_error(ret)) { 11271 if (ret > arg2) { 11272 /* More data returned than the caller's buffer will fit. 11273 * This only happens if sizeof(abi_long) < sizeof(long) 11274 * and the caller passed us a buffer holding an odd number 11275 * of abi_longs. If the host kernel is actually using the 11276 * extra 4 bytes then fail EINVAL; otherwise we can just 11277 * ignore them and only copy the interesting part. 11278 */ 11279 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 11280 if (numcpus > arg2 * 8) { 11281 return -TARGET_EINVAL; 11282 } 11283 ret = arg2; 11284 } 11285 11286 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 11287 return -TARGET_EFAULT; 11288 } 11289 } 11290 } 11291 return ret; 11292 case TARGET_NR_sched_setaffinity: 11293 { 11294 unsigned int mask_size; 11295 unsigned long *mask; 11296 11297 /* 11298 * sched_setaffinity needs multiples of ulong, so need to take 11299 * care of mismatches between target ulong and host ulong sizes. 11300 */ 11301 if (arg2 & (sizeof(abi_ulong) - 1)) { 11302 return -TARGET_EINVAL; 11303 } 11304 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11305 mask = alloca(mask_size); 11306 11307 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 11308 if (ret) { 11309 return ret; 11310 } 11311 11312 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 11313 } 11314 case TARGET_NR_getcpu: 11315 { 11316 unsigned cpuid, node; 11317 ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL, 11318 arg2 ? &node : NULL, 11319 NULL)); 11320 if (is_error(ret)) { 11321 return ret; 11322 } 11323 if (arg1 && put_user_u32(cpuid, arg1)) { 11324 return -TARGET_EFAULT; 11325 } 11326 if (arg2 && put_user_u32(node, arg2)) { 11327 return -TARGET_EFAULT; 11328 } 11329 } 11330 return ret; 11331 case TARGET_NR_sched_setparam: 11332 { 11333 struct target_sched_param *target_schp; 11334 struct sched_param schp; 11335 11336 if (arg2 == 0) { 11337 return -TARGET_EINVAL; 11338 } 11339 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) { 11340 return -TARGET_EFAULT; 11341 } 11342 schp.sched_priority = tswap32(target_schp->sched_priority); 11343 unlock_user_struct(target_schp, arg2, 0); 11344 return get_errno(sys_sched_setparam(arg1, &schp)); 11345 } 11346 case TARGET_NR_sched_getparam: 11347 { 11348 struct target_sched_param *target_schp; 11349 struct sched_param schp; 11350 11351 if (arg2 == 0) { 11352 return -TARGET_EINVAL; 11353 } 11354 ret = get_errno(sys_sched_getparam(arg1, &schp)); 11355 if (!is_error(ret)) { 11356 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) { 11357 return -TARGET_EFAULT; 11358 } 11359 target_schp->sched_priority = tswap32(schp.sched_priority); 11360 unlock_user_struct(target_schp, arg2, 1); 11361 } 11362 } 11363 return ret; 11364 case TARGET_NR_sched_setscheduler: 11365 { 11366 struct target_sched_param *target_schp; 11367 struct sched_param schp; 11368 if (arg3 == 0) { 11369 return -TARGET_EINVAL; 11370 } 11371 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) { 11372 return -TARGET_EFAULT; 11373 } 11374 schp.sched_priority = tswap32(target_schp->sched_priority); 11375 unlock_user_struct(target_schp, arg3, 0); 11376 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp)); 11377 } 11378 case TARGET_NR_sched_getscheduler: 11379 return get_errno(sys_sched_getscheduler(arg1)); 11380 case TARGET_NR_sched_getattr: 11381 { 11382 struct target_sched_attr *target_scha; 11383 struct sched_attr scha; 11384 if (arg2 == 0) { 11385 return -TARGET_EINVAL; 11386 } 11387 if (arg3 > sizeof(scha)) { 11388 arg3 = sizeof(scha); 11389 } 11390 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4)); 11391 if (!is_error(ret)) { 11392 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11393 if (!target_scha) { 11394 return -TARGET_EFAULT; 11395 } 11396 target_scha->size = tswap32(scha.size); 11397 target_scha->sched_policy = tswap32(scha.sched_policy); 11398 target_scha->sched_flags = tswap64(scha.sched_flags); 11399 target_scha->sched_nice = tswap32(scha.sched_nice); 11400 target_scha->sched_priority = tswap32(scha.sched_priority); 11401 target_scha->sched_runtime = tswap64(scha.sched_runtime); 11402 target_scha->sched_deadline = tswap64(scha.sched_deadline); 11403 target_scha->sched_period = tswap64(scha.sched_period); 11404 if (scha.size > offsetof(struct sched_attr, sched_util_min)) { 11405 target_scha->sched_util_min = tswap32(scha.sched_util_min); 11406 target_scha->sched_util_max = tswap32(scha.sched_util_max); 11407 } 11408 unlock_user(target_scha, arg2, arg3); 11409 } 11410 return ret; 11411 } 11412 case TARGET_NR_sched_setattr: 11413 { 11414 struct target_sched_attr *target_scha; 11415 struct sched_attr scha; 11416 uint32_t size; 11417 int zeroed; 11418 if (arg2 == 0) { 11419 return -TARGET_EINVAL; 11420 } 11421 if (get_user_u32(size, arg2)) { 11422 return -TARGET_EFAULT; 11423 } 11424 if (!size) { 11425 size = offsetof(struct target_sched_attr, sched_util_min); 11426 } 11427 if (size < offsetof(struct target_sched_attr, sched_util_min)) { 11428 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11429 return -TARGET_EFAULT; 11430 } 11431 return -TARGET_E2BIG; 11432 } 11433 11434 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size); 11435 if (zeroed < 0) { 11436 return zeroed; 11437 } else if (zeroed == 0) { 11438 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11439 return -TARGET_EFAULT; 11440 } 11441 return -TARGET_E2BIG; 11442 } 11443 if (size > sizeof(struct target_sched_attr)) { 11444 size = sizeof(struct target_sched_attr); 11445 } 11446 11447 target_scha = lock_user(VERIFY_READ, arg2, size, 1); 11448 if (!target_scha) { 11449 return -TARGET_EFAULT; 11450 } 11451 scha.size = size; 11452 scha.sched_policy = tswap32(target_scha->sched_policy); 11453 scha.sched_flags = tswap64(target_scha->sched_flags); 11454 scha.sched_nice = tswap32(target_scha->sched_nice); 11455 scha.sched_priority = tswap32(target_scha->sched_priority); 11456 scha.sched_runtime = tswap64(target_scha->sched_runtime); 11457 scha.sched_deadline = tswap64(target_scha->sched_deadline); 11458 scha.sched_period = tswap64(target_scha->sched_period); 11459 if (size > offsetof(struct target_sched_attr, sched_util_min)) { 11460 scha.sched_util_min = tswap32(target_scha->sched_util_min); 11461 scha.sched_util_max = tswap32(target_scha->sched_util_max); 11462 } 11463 unlock_user(target_scha, arg2, 0); 11464 return get_errno(sys_sched_setattr(arg1, &scha, arg3)); 11465 } 11466 case TARGET_NR_sched_yield: 11467 return get_errno(sched_yield()); 11468 case TARGET_NR_sched_get_priority_max: 11469 return get_errno(sched_get_priority_max(arg1)); 11470 case TARGET_NR_sched_get_priority_min: 11471 return get_errno(sched_get_priority_min(arg1)); 11472 #ifdef TARGET_NR_sched_rr_get_interval 11473 case TARGET_NR_sched_rr_get_interval: 11474 { 11475 struct timespec ts; 11476 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11477 if (!is_error(ret)) { 11478 ret = host_to_target_timespec(arg2, &ts); 11479 } 11480 } 11481 return ret; 11482 #endif 11483 #ifdef TARGET_NR_sched_rr_get_interval_time64 11484 case TARGET_NR_sched_rr_get_interval_time64: 11485 { 11486 struct timespec ts; 11487 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11488 if (!is_error(ret)) { 11489 ret = host_to_target_timespec64(arg2, &ts); 11490 } 11491 } 11492 return ret; 11493 #endif 11494 #if defined(TARGET_NR_nanosleep) 11495 case TARGET_NR_nanosleep: 11496 { 11497 struct timespec req, rem; 11498 target_to_host_timespec(&req, arg1); 11499 ret = get_errno(safe_nanosleep(&req, &rem)); 11500 if (is_error(ret) && arg2) { 11501 host_to_target_timespec(arg2, &rem); 11502 } 11503 } 11504 return ret; 11505 #endif 11506 case TARGET_NR_prctl: 11507 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5); 11508 break; 11509 #ifdef TARGET_NR_arch_prctl 11510 case TARGET_NR_arch_prctl: 11511 return do_arch_prctl(cpu_env, arg1, arg2); 11512 #endif 11513 #ifdef TARGET_NR_pread64 11514 case TARGET_NR_pread64: 11515 if (regpairs_aligned(cpu_env, num)) { 11516 arg4 = arg5; 11517 arg5 = arg6; 11518 } 11519 if (arg2 == 0 && arg3 == 0) { 11520 /* Special-case NULL buffer and zero length, which should succeed */ 11521 p = 0; 11522 } else { 11523 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11524 if (!p) { 11525 return -TARGET_EFAULT; 11526 } 11527 } 11528 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 11529 unlock_user(p, arg2, ret); 11530 return ret; 11531 case TARGET_NR_pwrite64: 11532 if (regpairs_aligned(cpu_env, num)) { 11533 arg4 = arg5; 11534 arg5 = arg6; 11535 } 11536 if (arg2 == 0 && arg3 == 0) { 11537 /* Special-case NULL buffer and zero length, which should succeed */ 11538 p = 0; 11539 } else { 11540 p = lock_user(VERIFY_READ, arg2, arg3, 1); 11541 if (!p) { 11542 return -TARGET_EFAULT; 11543 } 11544 } 11545 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 11546 unlock_user(p, arg2, 0); 11547 return ret; 11548 #endif 11549 case TARGET_NR_getcwd: 11550 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 11551 return -TARGET_EFAULT; 11552 ret = get_errno(sys_getcwd1(p, arg2)); 11553 unlock_user(p, arg1, ret); 11554 return ret; 11555 case TARGET_NR_capget: 11556 case TARGET_NR_capset: 11557 { 11558 struct target_user_cap_header *target_header; 11559 struct target_user_cap_data *target_data = NULL; 11560 struct __user_cap_header_struct header; 11561 struct __user_cap_data_struct data[2]; 11562 struct __user_cap_data_struct *dataptr = NULL; 11563 int i, target_datalen; 11564 int data_items = 1; 11565 11566 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 11567 return -TARGET_EFAULT; 11568 } 11569 header.version = tswap32(target_header->version); 11570 header.pid = tswap32(target_header->pid); 11571 11572 if (header.version != _LINUX_CAPABILITY_VERSION) { 11573 /* Version 2 and up takes pointer to two user_data structs */ 11574 data_items = 2; 11575 } 11576 11577 target_datalen = sizeof(*target_data) * data_items; 11578 11579 if (arg2) { 11580 if (num == TARGET_NR_capget) { 11581 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 11582 } else { 11583 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 11584 } 11585 if (!target_data) { 11586 unlock_user_struct(target_header, arg1, 0); 11587 return -TARGET_EFAULT; 11588 } 11589 11590 if (num == TARGET_NR_capset) { 11591 for (i = 0; i < data_items; i++) { 11592 data[i].effective = tswap32(target_data[i].effective); 11593 data[i].permitted = tswap32(target_data[i].permitted); 11594 data[i].inheritable = tswap32(target_data[i].inheritable); 11595 } 11596 } 11597 11598 dataptr = data; 11599 } 11600 11601 if (num == TARGET_NR_capget) { 11602 ret = get_errno(capget(&header, dataptr)); 11603 } else { 11604 ret = get_errno(capset(&header, dataptr)); 11605 } 11606 11607 /* The kernel always updates version for both capget and capset */ 11608 target_header->version = tswap32(header.version); 11609 unlock_user_struct(target_header, arg1, 1); 11610 11611 if (arg2) { 11612 if (num == TARGET_NR_capget) { 11613 for (i = 0; i < data_items; i++) { 11614 target_data[i].effective = tswap32(data[i].effective); 11615 target_data[i].permitted = tswap32(data[i].permitted); 11616 target_data[i].inheritable = tswap32(data[i].inheritable); 11617 } 11618 unlock_user(target_data, arg2, target_datalen); 11619 } else { 11620 unlock_user(target_data, arg2, 0); 11621 } 11622 } 11623 return ret; 11624 } 11625 case TARGET_NR_sigaltstack: 11626 return do_sigaltstack(arg1, arg2, cpu_env); 11627 11628 #ifdef CONFIG_SENDFILE 11629 #ifdef TARGET_NR_sendfile 11630 case TARGET_NR_sendfile: 11631 { 11632 off_t *offp = NULL; 11633 off_t off; 11634 if (arg3) { 11635 ret = get_user_sal(off, arg3); 11636 if (is_error(ret)) { 11637 return ret; 11638 } 11639 offp = &off; 11640 } 11641 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11642 if (!is_error(ret) && arg3) { 11643 abi_long ret2 = put_user_sal(off, arg3); 11644 if (is_error(ret2)) { 11645 ret = ret2; 11646 } 11647 } 11648 return ret; 11649 } 11650 #endif 11651 #ifdef TARGET_NR_sendfile64 11652 case TARGET_NR_sendfile64: 11653 { 11654 off_t *offp = NULL; 11655 off_t off; 11656 if (arg3) { 11657 ret = get_user_s64(off, arg3); 11658 if (is_error(ret)) { 11659 return ret; 11660 } 11661 offp = &off; 11662 } 11663 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11664 if (!is_error(ret) && arg3) { 11665 abi_long ret2 = put_user_s64(off, arg3); 11666 if (is_error(ret2)) { 11667 ret = ret2; 11668 } 11669 } 11670 return ret; 11671 } 11672 #endif 11673 #endif 11674 #ifdef TARGET_NR_vfork 11675 case TARGET_NR_vfork: 11676 return get_errno(do_fork(cpu_env, 11677 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 11678 0, 0, 0, 0)); 11679 #endif 11680 #ifdef TARGET_NR_ugetrlimit 11681 case TARGET_NR_ugetrlimit: 11682 { 11683 struct rlimit rlim; 11684 int resource = target_to_host_resource(arg1); 11685 ret = get_errno(getrlimit(resource, &rlim)); 11686 if (!is_error(ret)) { 11687 struct target_rlimit *target_rlim; 11688 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 11689 return -TARGET_EFAULT; 11690 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 11691 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 11692 unlock_user_struct(target_rlim, arg2, 1); 11693 } 11694 return ret; 11695 } 11696 #endif 11697 #ifdef TARGET_NR_truncate64 11698 case TARGET_NR_truncate64: 11699 if (!(p = lock_user_string(arg1))) 11700 return -TARGET_EFAULT; 11701 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 11702 unlock_user(p, arg1, 0); 11703 return ret; 11704 #endif 11705 #ifdef TARGET_NR_ftruncate64 11706 case TARGET_NR_ftruncate64: 11707 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 11708 #endif 11709 #ifdef TARGET_NR_stat64 11710 case TARGET_NR_stat64: 11711 if (!(p = lock_user_string(arg1))) { 11712 return -TARGET_EFAULT; 11713 } 11714 ret = get_errno(stat(path(p), &st)); 11715 unlock_user(p, arg1, 0); 11716 if (!is_error(ret)) 11717 ret = host_to_target_stat64(cpu_env, arg2, &st); 11718 return ret; 11719 #endif 11720 #ifdef TARGET_NR_lstat64 11721 case TARGET_NR_lstat64: 11722 if (!(p = lock_user_string(arg1))) { 11723 return -TARGET_EFAULT; 11724 } 11725 ret = get_errno(lstat(path(p), &st)); 11726 unlock_user(p, arg1, 0); 11727 if (!is_error(ret)) 11728 ret = host_to_target_stat64(cpu_env, arg2, &st); 11729 return ret; 11730 #endif 11731 #ifdef TARGET_NR_fstat64 11732 case TARGET_NR_fstat64: 11733 ret = get_errno(fstat(arg1, &st)); 11734 if (!is_error(ret)) 11735 ret = host_to_target_stat64(cpu_env, arg2, &st); 11736 return ret; 11737 #endif 11738 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 11739 #ifdef TARGET_NR_fstatat64 11740 case TARGET_NR_fstatat64: 11741 #endif 11742 #ifdef TARGET_NR_newfstatat 11743 case TARGET_NR_newfstatat: 11744 #endif 11745 if (!(p = lock_user_string(arg2))) { 11746 return -TARGET_EFAULT; 11747 } 11748 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 11749 unlock_user(p, arg2, 0); 11750 if (!is_error(ret)) 11751 ret = host_to_target_stat64(cpu_env, arg3, &st); 11752 return ret; 11753 #endif 11754 #if defined(TARGET_NR_statx) 11755 case TARGET_NR_statx: 11756 { 11757 struct target_statx *target_stx; 11758 int dirfd = arg1; 11759 int flags = arg3; 11760 11761 p = lock_user_string(arg2); 11762 if (p == NULL) { 11763 return -TARGET_EFAULT; 11764 } 11765 #if defined(__NR_statx) 11766 { 11767 /* 11768 * It is assumed that struct statx is architecture independent. 11769 */ 11770 struct target_statx host_stx; 11771 int mask = arg4; 11772 11773 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx)); 11774 if (!is_error(ret)) { 11775 if (host_to_target_statx(&host_stx, arg5) != 0) { 11776 unlock_user(p, arg2, 0); 11777 return -TARGET_EFAULT; 11778 } 11779 } 11780 11781 if (ret != -TARGET_ENOSYS) { 11782 unlock_user(p, arg2, 0); 11783 return ret; 11784 } 11785 } 11786 #endif 11787 ret = get_errno(fstatat(dirfd, path(p), &st, flags)); 11788 unlock_user(p, arg2, 0); 11789 11790 if (!is_error(ret)) { 11791 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) { 11792 return -TARGET_EFAULT; 11793 } 11794 memset(target_stx, 0, sizeof(*target_stx)); 11795 __put_user(major(st.st_dev), &target_stx->stx_dev_major); 11796 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor); 11797 __put_user(st.st_ino, &target_stx->stx_ino); 11798 __put_user(st.st_mode, &target_stx->stx_mode); 11799 __put_user(st.st_uid, &target_stx->stx_uid); 11800 __put_user(st.st_gid, &target_stx->stx_gid); 11801 __put_user(st.st_nlink, &target_stx->stx_nlink); 11802 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major); 11803 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor); 11804 __put_user(st.st_size, &target_stx->stx_size); 11805 __put_user(st.st_blksize, &target_stx->stx_blksize); 11806 __put_user(st.st_blocks, &target_stx->stx_blocks); 11807 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec); 11808 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec); 11809 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec); 11810 unlock_user_struct(target_stx, arg5, 1); 11811 } 11812 } 11813 return ret; 11814 #endif 11815 #ifdef TARGET_NR_lchown 11816 case TARGET_NR_lchown: 11817 if (!(p = lock_user_string(arg1))) 11818 return -TARGET_EFAULT; 11819 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 11820 unlock_user(p, arg1, 0); 11821 return ret; 11822 #endif 11823 #ifdef TARGET_NR_getuid 11824 case TARGET_NR_getuid: 11825 return get_errno(high2lowuid(getuid())); 11826 #endif 11827 #ifdef TARGET_NR_getgid 11828 case TARGET_NR_getgid: 11829 return get_errno(high2lowgid(getgid())); 11830 #endif 11831 #ifdef TARGET_NR_geteuid 11832 case TARGET_NR_geteuid: 11833 return get_errno(high2lowuid(geteuid())); 11834 #endif 11835 #ifdef TARGET_NR_getegid 11836 case TARGET_NR_getegid: 11837 return get_errno(high2lowgid(getegid())); 11838 #endif 11839 case TARGET_NR_setreuid: 11840 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11841 case TARGET_NR_setregid: 11842 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11843 case TARGET_NR_getgroups: 11844 { /* the same code as for TARGET_NR_getgroups32 */ 11845 int gidsetsize = arg1; 11846 target_id *target_grouplist; 11847 g_autofree gid_t *grouplist = NULL; 11848 int i; 11849 11850 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11851 return -TARGET_EINVAL; 11852 } 11853 if (gidsetsize > 0) { 11854 grouplist = g_try_new(gid_t, gidsetsize); 11855 if (!grouplist) { 11856 return -TARGET_ENOMEM; 11857 } 11858 } 11859 ret = get_errno(getgroups(gidsetsize, grouplist)); 11860 if (!is_error(ret) && gidsetsize > 0) { 11861 target_grouplist = lock_user(VERIFY_WRITE, arg2, 11862 gidsetsize * sizeof(target_id), 0); 11863 if (!target_grouplist) { 11864 return -TARGET_EFAULT; 11865 } 11866 for (i = 0; i < ret; i++) { 11867 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11868 } 11869 unlock_user(target_grouplist, arg2, 11870 gidsetsize * sizeof(target_id)); 11871 } 11872 return ret; 11873 } 11874 case TARGET_NR_setgroups: 11875 { /* the same code as for TARGET_NR_setgroups32 */ 11876 int gidsetsize = arg1; 11877 target_id *target_grouplist; 11878 g_autofree gid_t *grouplist = NULL; 11879 int i; 11880 11881 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11882 return -TARGET_EINVAL; 11883 } 11884 if (gidsetsize > 0) { 11885 grouplist = g_try_new(gid_t, gidsetsize); 11886 if (!grouplist) { 11887 return -TARGET_ENOMEM; 11888 } 11889 target_grouplist = lock_user(VERIFY_READ, arg2, 11890 gidsetsize * sizeof(target_id), 1); 11891 if (!target_grouplist) { 11892 return -TARGET_EFAULT; 11893 } 11894 for (i = 0; i < gidsetsize; i++) { 11895 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11896 } 11897 unlock_user(target_grouplist, arg2, 11898 gidsetsize * sizeof(target_id)); 11899 } 11900 return get_errno(sys_setgroups(gidsetsize, grouplist)); 11901 } 11902 case TARGET_NR_fchown: 11903 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11904 #if defined(TARGET_NR_fchownat) 11905 case TARGET_NR_fchownat: 11906 if (!(p = lock_user_string(arg2))) 11907 return -TARGET_EFAULT; 11908 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11909 low2highgid(arg4), arg5)); 11910 unlock_user(p, arg2, 0); 11911 return ret; 11912 #endif 11913 #ifdef TARGET_NR_setresuid 11914 case TARGET_NR_setresuid: 11915 return get_errno(sys_setresuid(low2highuid(arg1), 11916 low2highuid(arg2), 11917 low2highuid(arg3))); 11918 #endif 11919 #ifdef TARGET_NR_getresuid 11920 case TARGET_NR_getresuid: 11921 { 11922 uid_t ruid, euid, suid; 11923 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11924 if (!is_error(ret)) { 11925 if (put_user_id(high2lowuid(ruid), arg1) 11926 || put_user_id(high2lowuid(euid), arg2) 11927 || put_user_id(high2lowuid(suid), arg3)) 11928 return -TARGET_EFAULT; 11929 } 11930 } 11931 return ret; 11932 #endif 11933 #ifdef TARGET_NR_getresgid 11934 case TARGET_NR_setresgid: 11935 return get_errno(sys_setresgid(low2highgid(arg1), 11936 low2highgid(arg2), 11937 low2highgid(arg3))); 11938 #endif 11939 #ifdef TARGET_NR_getresgid 11940 case TARGET_NR_getresgid: 11941 { 11942 gid_t rgid, egid, sgid; 11943 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11944 if (!is_error(ret)) { 11945 if (put_user_id(high2lowgid(rgid), arg1) 11946 || put_user_id(high2lowgid(egid), arg2) 11947 || put_user_id(high2lowgid(sgid), arg3)) 11948 return -TARGET_EFAULT; 11949 } 11950 } 11951 return ret; 11952 #endif 11953 #ifdef TARGET_NR_chown 11954 case TARGET_NR_chown: 11955 if (!(p = lock_user_string(arg1))) 11956 return -TARGET_EFAULT; 11957 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11958 unlock_user(p, arg1, 0); 11959 return ret; 11960 #endif 11961 case TARGET_NR_setuid: 11962 return get_errno(sys_setuid(low2highuid(arg1))); 11963 case TARGET_NR_setgid: 11964 return get_errno(sys_setgid(low2highgid(arg1))); 11965 case TARGET_NR_setfsuid: 11966 return get_errno(setfsuid(arg1)); 11967 case TARGET_NR_setfsgid: 11968 return get_errno(setfsgid(arg1)); 11969 11970 #ifdef TARGET_NR_lchown32 11971 case TARGET_NR_lchown32: 11972 if (!(p = lock_user_string(arg1))) 11973 return -TARGET_EFAULT; 11974 ret = get_errno(lchown(p, arg2, arg3)); 11975 unlock_user(p, arg1, 0); 11976 return ret; 11977 #endif 11978 #ifdef TARGET_NR_getuid32 11979 case TARGET_NR_getuid32: 11980 return get_errno(getuid()); 11981 #endif 11982 11983 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11984 /* Alpha specific */ 11985 case TARGET_NR_getxuid: 11986 { 11987 uid_t euid; 11988 euid=geteuid(); 11989 cpu_env->ir[IR_A4]=euid; 11990 } 11991 return get_errno(getuid()); 11992 #endif 11993 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11994 /* Alpha specific */ 11995 case TARGET_NR_getxgid: 11996 { 11997 uid_t egid; 11998 egid=getegid(); 11999 cpu_env->ir[IR_A4]=egid; 12000 } 12001 return get_errno(getgid()); 12002 #endif 12003 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 12004 /* Alpha specific */ 12005 case TARGET_NR_osf_getsysinfo: 12006 ret = -TARGET_EOPNOTSUPP; 12007 switch (arg1) { 12008 case TARGET_GSI_IEEE_FP_CONTROL: 12009 { 12010 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env); 12011 uint64_t swcr = cpu_env->swcr; 12012 12013 swcr &= ~SWCR_STATUS_MASK; 12014 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK; 12015 12016 if (put_user_u64 (swcr, arg2)) 12017 return -TARGET_EFAULT; 12018 ret = 0; 12019 } 12020 break; 12021 12022 /* case GSI_IEEE_STATE_AT_SIGNAL: 12023 -- Not implemented in linux kernel. 12024 case GSI_UACPROC: 12025 -- Retrieves current unaligned access state; not much used. 12026 case GSI_PROC_TYPE: 12027 -- Retrieves implver information; surely not used. 12028 case GSI_GET_HWRPB: 12029 -- Grabs a copy of the HWRPB; surely not used. 12030 */ 12031 } 12032 return ret; 12033 #endif 12034 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 12035 /* Alpha specific */ 12036 case TARGET_NR_osf_setsysinfo: 12037 ret = -TARGET_EOPNOTSUPP; 12038 switch (arg1) { 12039 case TARGET_SSI_IEEE_FP_CONTROL: 12040 { 12041 uint64_t swcr, fpcr; 12042 12043 if (get_user_u64 (swcr, arg2)) { 12044 return -TARGET_EFAULT; 12045 } 12046 12047 /* 12048 * The kernel calls swcr_update_status to update the 12049 * status bits from the fpcr at every point that it 12050 * could be queried. Therefore, we store the status 12051 * bits only in FPCR. 12052 */ 12053 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK); 12054 12055 fpcr = cpu_alpha_load_fpcr(cpu_env); 12056 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32); 12057 fpcr |= alpha_ieee_swcr_to_fpcr(swcr); 12058 cpu_alpha_store_fpcr(cpu_env, fpcr); 12059 ret = 0; 12060 } 12061 break; 12062 12063 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 12064 { 12065 uint64_t exc, fpcr, fex; 12066 12067 if (get_user_u64(exc, arg2)) { 12068 return -TARGET_EFAULT; 12069 } 12070 exc &= SWCR_STATUS_MASK; 12071 fpcr = cpu_alpha_load_fpcr(cpu_env); 12072 12073 /* Old exceptions are not signaled. */ 12074 fex = alpha_ieee_fpcr_to_swcr(fpcr); 12075 fex = exc & ~fex; 12076 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT; 12077 fex &= (cpu_env)->swcr; 12078 12079 /* Update the hardware fpcr. */ 12080 fpcr |= alpha_ieee_swcr_to_fpcr(exc); 12081 cpu_alpha_store_fpcr(cpu_env, fpcr); 12082 12083 if (fex) { 12084 int si_code = TARGET_FPE_FLTUNK; 12085 target_siginfo_t info; 12086 12087 if (fex & SWCR_TRAP_ENABLE_DNO) { 12088 si_code = TARGET_FPE_FLTUND; 12089 } 12090 if (fex & SWCR_TRAP_ENABLE_INE) { 12091 si_code = TARGET_FPE_FLTRES; 12092 } 12093 if (fex & SWCR_TRAP_ENABLE_UNF) { 12094 si_code = TARGET_FPE_FLTUND; 12095 } 12096 if (fex & SWCR_TRAP_ENABLE_OVF) { 12097 si_code = TARGET_FPE_FLTOVF; 12098 } 12099 if (fex & SWCR_TRAP_ENABLE_DZE) { 12100 si_code = TARGET_FPE_FLTDIV; 12101 } 12102 if (fex & SWCR_TRAP_ENABLE_INV) { 12103 si_code = TARGET_FPE_FLTINV; 12104 } 12105 12106 info.si_signo = SIGFPE; 12107 info.si_errno = 0; 12108 info.si_code = si_code; 12109 info._sifields._sigfault._addr = (cpu_env)->pc; 12110 queue_signal(cpu_env, info.si_signo, 12111 QEMU_SI_FAULT, &info); 12112 } 12113 ret = 0; 12114 } 12115 break; 12116 12117 /* case SSI_NVPAIRS: 12118 -- Used with SSIN_UACPROC to enable unaligned accesses. 12119 case SSI_IEEE_STATE_AT_SIGNAL: 12120 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 12121 -- Not implemented in linux kernel 12122 */ 12123 } 12124 return ret; 12125 #endif 12126 #ifdef TARGET_NR_osf_sigprocmask 12127 /* Alpha specific. */ 12128 case TARGET_NR_osf_sigprocmask: 12129 { 12130 abi_ulong mask; 12131 int how; 12132 sigset_t set, oldset; 12133 12134 switch(arg1) { 12135 case TARGET_SIG_BLOCK: 12136 how = SIG_BLOCK; 12137 break; 12138 case TARGET_SIG_UNBLOCK: 12139 how = SIG_UNBLOCK; 12140 break; 12141 case TARGET_SIG_SETMASK: 12142 how = SIG_SETMASK; 12143 break; 12144 default: 12145 return -TARGET_EINVAL; 12146 } 12147 mask = arg2; 12148 target_to_host_old_sigset(&set, &mask); 12149 ret = do_sigprocmask(how, &set, &oldset); 12150 if (!ret) { 12151 host_to_target_old_sigset(&mask, &oldset); 12152 ret = mask; 12153 } 12154 } 12155 return ret; 12156 #endif 12157 12158 #ifdef TARGET_NR_getgid32 12159 case TARGET_NR_getgid32: 12160 return get_errno(getgid()); 12161 #endif 12162 #ifdef TARGET_NR_geteuid32 12163 case TARGET_NR_geteuid32: 12164 return get_errno(geteuid()); 12165 #endif 12166 #ifdef TARGET_NR_getegid32 12167 case TARGET_NR_getegid32: 12168 return get_errno(getegid()); 12169 #endif 12170 #ifdef TARGET_NR_setreuid32 12171 case TARGET_NR_setreuid32: 12172 return get_errno(setreuid(arg1, arg2)); 12173 #endif 12174 #ifdef TARGET_NR_setregid32 12175 case TARGET_NR_setregid32: 12176 return get_errno(setregid(arg1, arg2)); 12177 #endif 12178 #ifdef TARGET_NR_getgroups32 12179 case TARGET_NR_getgroups32: 12180 { /* the same code as for TARGET_NR_getgroups */ 12181 int gidsetsize = arg1; 12182 uint32_t *target_grouplist; 12183 g_autofree gid_t *grouplist = NULL; 12184 int i; 12185 12186 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12187 return -TARGET_EINVAL; 12188 } 12189 if (gidsetsize > 0) { 12190 grouplist = g_try_new(gid_t, gidsetsize); 12191 if (!grouplist) { 12192 return -TARGET_ENOMEM; 12193 } 12194 } 12195 ret = get_errno(getgroups(gidsetsize, grouplist)); 12196 if (!is_error(ret) && gidsetsize > 0) { 12197 target_grouplist = lock_user(VERIFY_WRITE, arg2, 12198 gidsetsize * 4, 0); 12199 if (!target_grouplist) { 12200 return -TARGET_EFAULT; 12201 } 12202 for (i = 0; i < ret; i++) { 12203 target_grouplist[i] = tswap32(grouplist[i]); 12204 } 12205 unlock_user(target_grouplist, arg2, gidsetsize * 4); 12206 } 12207 return ret; 12208 } 12209 #endif 12210 #ifdef TARGET_NR_setgroups32 12211 case TARGET_NR_setgroups32: 12212 { /* the same code as for TARGET_NR_setgroups */ 12213 int gidsetsize = arg1; 12214 uint32_t *target_grouplist; 12215 g_autofree gid_t *grouplist = NULL; 12216 int i; 12217 12218 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12219 return -TARGET_EINVAL; 12220 } 12221 if (gidsetsize > 0) { 12222 grouplist = g_try_new(gid_t, gidsetsize); 12223 if (!grouplist) { 12224 return -TARGET_ENOMEM; 12225 } 12226 target_grouplist = lock_user(VERIFY_READ, arg2, 12227 gidsetsize * 4, 1); 12228 if (!target_grouplist) { 12229 return -TARGET_EFAULT; 12230 } 12231 for (i = 0; i < gidsetsize; i++) { 12232 grouplist[i] = tswap32(target_grouplist[i]); 12233 } 12234 unlock_user(target_grouplist, arg2, 0); 12235 } 12236 return get_errno(sys_setgroups(gidsetsize, grouplist)); 12237 } 12238 #endif 12239 #ifdef TARGET_NR_fchown32 12240 case TARGET_NR_fchown32: 12241 return get_errno(fchown(arg1, arg2, arg3)); 12242 #endif 12243 #ifdef TARGET_NR_setresuid32 12244 case TARGET_NR_setresuid32: 12245 return get_errno(sys_setresuid(arg1, arg2, arg3)); 12246 #endif 12247 #ifdef TARGET_NR_getresuid32 12248 case TARGET_NR_getresuid32: 12249 { 12250 uid_t ruid, euid, suid; 12251 ret = get_errno(getresuid(&ruid, &euid, &suid)); 12252 if (!is_error(ret)) { 12253 if (put_user_u32(ruid, arg1) 12254 || put_user_u32(euid, arg2) 12255 || put_user_u32(suid, arg3)) 12256 return -TARGET_EFAULT; 12257 } 12258 } 12259 return ret; 12260 #endif 12261 #ifdef TARGET_NR_setresgid32 12262 case TARGET_NR_setresgid32: 12263 return get_errno(sys_setresgid(arg1, arg2, arg3)); 12264 #endif 12265 #ifdef TARGET_NR_getresgid32 12266 case TARGET_NR_getresgid32: 12267 { 12268 gid_t rgid, egid, sgid; 12269 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 12270 if (!is_error(ret)) { 12271 if (put_user_u32(rgid, arg1) 12272 || put_user_u32(egid, arg2) 12273 || put_user_u32(sgid, arg3)) 12274 return -TARGET_EFAULT; 12275 } 12276 } 12277 return ret; 12278 #endif 12279 #ifdef TARGET_NR_chown32 12280 case TARGET_NR_chown32: 12281 if (!(p = lock_user_string(arg1))) 12282 return -TARGET_EFAULT; 12283 ret = get_errno(chown(p, arg2, arg3)); 12284 unlock_user(p, arg1, 0); 12285 return ret; 12286 #endif 12287 #ifdef TARGET_NR_setuid32 12288 case TARGET_NR_setuid32: 12289 return get_errno(sys_setuid(arg1)); 12290 #endif 12291 #ifdef TARGET_NR_setgid32 12292 case TARGET_NR_setgid32: 12293 return get_errno(sys_setgid(arg1)); 12294 #endif 12295 #ifdef TARGET_NR_setfsuid32 12296 case TARGET_NR_setfsuid32: 12297 return get_errno(setfsuid(arg1)); 12298 #endif 12299 #ifdef TARGET_NR_setfsgid32 12300 case TARGET_NR_setfsgid32: 12301 return get_errno(setfsgid(arg1)); 12302 #endif 12303 #ifdef TARGET_NR_mincore 12304 case TARGET_NR_mincore: 12305 { 12306 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0); 12307 if (!a) { 12308 return -TARGET_ENOMEM; 12309 } 12310 p = lock_user_string(arg3); 12311 if (!p) { 12312 ret = -TARGET_EFAULT; 12313 } else { 12314 ret = get_errno(mincore(a, arg2, p)); 12315 unlock_user(p, arg3, ret); 12316 } 12317 unlock_user(a, arg1, 0); 12318 } 12319 return ret; 12320 #endif 12321 #ifdef TARGET_NR_arm_fadvise64_64 12322 case TARGET_NR_arm_fadvise64_64: 12323 /* arm_fadvise64_64 looks like fadvise64_64 but 12324 * with different argument order: fd, advice, offset, len 12325 * rather than the usual fd, offset, len, advice. 12326 * Note that offset and len are both 64-bit so appear as 12327 * pairs of 32-bit registers. 12328 */ 12329 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 12330 target_offset64(arg5, arg6), arg2); 12331 return -host_to_target_errno(ret); 12332 #endif 12333 12334 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12335 12336 #ifdef TARGET_NR_fadvise64_64 12337 case TARGET_NR_fadvise64_64: 12338 #if defined(TARGET_PPC) || defined(TARGET_XTENSA) 12339 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 12340 ret = arg2; 12341 arg2 = arg3; 12342 arg3 = arg4; 12343 arg4 = arg5; 12344 arg5 = arg6; 12345 arg6 = ret; 12346 #else 12347 /* 6 args: fd, offset (high, low), len (high, low), advice */ 12348 if (regpairs_aligned(cpu_env, num)) { 12349 /* offset is in (3,4), len in (5,6) and advice in 7 */ 12350 arg2 = arg3; 12351 arg3 = arg4; 12352 arg4 = arg5; 12353 arg5 = arg6; 12354 arg6 = arg7; 12355 } 12356 #endif 12357 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), 12358 target_offset64(arg4, arg5), arg6); 12359 return -host_to_target_errno(ret); 12360 #endif 12361 12362 #ifdef TARGET_NR_fadvise64 12363 case TARGET_NR_fadvise64: 12364 /* 5 args: fd, offset (high, low), len, advice */ 12365 if (regpairs_aligned(cpu_env, num)) { 12366 /* offset is in (3,4), len in 5 and advice in 6 */ 12367 arg2 = arg3; 12368 arg3 = arg4; 12369 arg4 = arg5; 12370 arg5 = arg6; 12371 } 12372 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5); 12373 return -host_to_target_errno(ret); 12374 #endif 12375 12376 #else /* not a 32-bit ABI */ 12377 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 12378 #ifdef TARGET_NR_fadvise64_64 12379 case TARGET_NR_fadvise64_64: 12380 #endif 12381 #ifdef TARGET_NR_fadvise64 12382 case TARGET_NR_fadvise64: 12383 #endif 12384 #ifdef TARGET_S390X 12385 switch (arg4) { 12386 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 12387 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 12388 case 6: arg4 = POSIX_FADV_DONTNEED; break; 12389 case 7: arg4 = POSIX_FADV_NOREUSE; break; 12390 default: break; 12391 } 12392 #endif 12393 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 12394 #endif 12395 #endif /* end of 64-bit ABI fadvise handling */ 12396 12397 #ifdef TARGET_NR_madvise 12398 case TARGET_NR_madvise: 12399 return target_madvise(arg1, arg2, arg3); 12400 #endif 12401 #ifdef TARGET_NR_fcntl64 12402 case TARGET_NR_fcntl64: 12403 { 12404 int cmd; 12405 struct flock64 fl; 12406 from_flock64_fn *copyfrom = copy_from_user_flock64; 12407 to_flock64_fn *copyto = copy_to_user_flock64; 12408 12409 #ifdef TARGET_ARM 12410 if (!cpu_env->eabi) { 12411 copyfrom = copy_from_user_oabi_flock64; 12412 copyto = copy_to_user_oabi_flock64; 12413 } 12414 #endif 12415 12416 cmd = target_to_host_fcntl_cmd(arg2); 12417 if (cmd == -TARGET_EINVAL) { 12418 return cmd; 12419 } 12420 12421 switch(arg2) { 12422 case TARGET_F_GETLK64: 12423 ret = copyfrom(&fl, arg3); 12424 if (ret) { 12425 break; 12426 } 12427 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12428 if (ret == 0) { 12429 ret = copyto(arg3, &fl); 12430 } 12431 break; 12432 12433 case TARGET_F_SETLK64: 12434 case TARGET_F_SETLKW64: 12435 ret = copyfrom(&fl, arg3); 12436 if (ret) { 12437 break; 12438 } 12439 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12440 break; 12441 default: 12442 ret = do_fcntl(arg1, arg2, arg3); 12443 break; 12444 } 12445 return ret; 12446 } 12447 #endif 12448 #ifdef TARGET_NR_cacheflush 12449 case TARGET_NR_cacheflush: 12450 /* self-modifying code is handled automatically, so nothing needed */ 12451 return 0; 12452 #endif 12453 #ifdef TARGET_NR_getpagesize 12454 case TARGET_NR_getpagesize: 12455 return TARGET_PAGE_SIZE; 12456 #endif 12457 case TARGET_NR_gettid: 12458 return get_errno(sys_gettid()); 12459 #ifdef TARGET_NR_readahead 12460 case TARGET_NR_readahead: 12461 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12462 if (regpairs_aligned(cpu_env, num)) { 12463 arg2 = arg3; 12464 arg3 = arg4; 12465 arg4 = arg5; 12466 } 12467 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 12468 #else 12469 ret = get_errno(readahead(arg1, arg2, arg3)); 12470 #endif 12471 return ret; 12472 #endif 12473 #ifdef CONFIG_ATTR 12474 #ifdef TARGET_NR_setxattr 12475 case TARGET_NR_listxattr: 12476 case TARGET_NR_llistxattr: 12477 { 12478 void *b = 0; 12479 if (arg2) { 12480 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12481 if (!b) { 12482 return -TARGET_EFAULT; 12483 } 12484 } 12485 p = lock_user_string(arg1); 12486 if (p) { 12487 if (num == TARGET_NR_listxattr) { 12488 ret = get_errno(listxattr(p, b, arg3)); 12489 } else { 12490 ret = get_errno(llistxattr(p, b, arg3)); 12491 } 12492 } else { 12493 ret = -TARGET_EFAULT; 12494 } 12495 unlock_user(p, arg1, 0); 12496 unlock_user(b, arg2, arg3); 12497 return ret; 12498 } 12499 case TARGET_NR_flistxattr: 12500 { 12501 void *b = 0; 12502 if (arg2) { 12503 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12504 if (!b) { 12505 return -TARGET_EFAULT; 12506 } 12507 } 12508 ret = get_errno(flistxattr(arg1, b, arg3)); 12509 unlock_user(b, arg2, arg3); 12510 return ret; 12511 } 12512 case TARGET_NR_setxattr: 12513 case TARGET_NR_lsetxattr: 12514 { 12515 void *n, *v = 0; 12516 if (arg3) { 12517 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12518 if (!v) { 12519 return -TARGET_EFAULT; 12520 } 12521 } 12522 p = lock_user_string(arg1); 12523 n = lock_user_string(arg2); 12524 if (p && n) { 12525 if (num == TARGET_NR_setxattr) { 12526 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 12527 } else { 12528 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 12529 } 12530 } else { 12531 ret = -TARGET_EFAULT; 12532 } 12533 unlock_user(p, arg1, 0); 12534 unlock_user(n, arg2, 0); 12535 unlock_user(v, arg3, 0); 12536 } 12537 return ret; 12538 case TARGET_NR_fsetxattr: 12539 { 12540 void *n, *v = 0; 12541 if (arg3) { 12542 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12543 if (!v) { 12544 return -TARGET_EFAULT; 12545 } 12546 } 12547 n = lock_user_string(arg2); 12548 if (n) { 12549 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 12550 } else { 12551 ret = -TARGET_EFAULT; 12552 } 12553 unlock_user(n, arg2, 0); 12554 unlock_user(v, arg3, 0); 12555 } 12556 return ret; 12557 case TARGET_NR_getxattr: 12558 case TARGET_NR_lgetxattr: 12559 { 12560 void *n, *v = 0; 12561 if (arg3) { 12562 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12563 if (!v) { 12564 return -TARGET_EFAULT; 12565 } 12566 } 12567 p = lock_user_string(arg1); 12568 n = lock_user_string(arg2); 12569 if (p && n) { 12570 if (num == TARGET_NR_getxattr) { 12571 ret = get_errno(getxattr(p, n, v, arg4)); 12572 } else { 12573 ret = get_errno(lgetxattr(p, n, v, arg4)); 12574 } 12575 } else { 12576 ret = -TARGET_EFAULT; 12577 } 12578 unlock_user(p, arg1, 0); 12579 unlock_user(n, arg2, 0); 12580 unlock_user(v, arg3, arg4); 12581 } 12582 return ret; 12583 case TARGET_NR_fgetxattr: 12584 { 12585 void *n, *v = 0; 12586 if (arg3) { 12587 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12588 if (!v) { 12589 return -TARGET_EFAULT; 12590 } 12591 } 12592 n = lock_user_string(arg2); 12593 if (n) { 12594 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 12595 } else { 12596 ret = -TARGET_EFAULT; 12597 } 12598 unlock_user(n, arg2, 0); 12599 unlock_user(v, arg3, arg4); 12600 } 12601 return ret; 12602 case TARGET_NR_removexattr: 12603 case TARGET_NR_lremovexattr: 12604 { 12605 void *n; 12606 p = lock_user_string(arg1); 12607 n = lock_user_string(arg2); 12608 if (p && n) { 12609 if (num == TARGET_NR_removexattr) { 12610 ret = get_errno(removexattr(p, n)); 12611 } else { 12612 ret = get_errno(lremovexattr(p, n)); 12613 } 12614 } else { 12615 ret = -TARGET_EFAULT; 12616 } 12617 unlock_user(p, arg1, 0); 12618 unlock_user(n, arg2, 0); 12619 } 12620 return ret; 12621 case TARGET_NR_fremovexattr: 12622 { 12623 void *n; 12624 n = lock_user_string(arg2); 12625 if (n) { 12626 ret = get_errno(fremovexattr(arg1, n)); 12627 } else { 12628 ret = -TARGET_EFAULT; 12629 } 12630 unlock_user(n, arg2, 0); 12631 } 12632 return ret; 12633 #endif 12634 #endif /* CONFIG_ATTR */ 12635 #ifdef TARGET_NR_set_thread_area 12636 case TARGET_NR_set_thread_area: 12637 #if defined(TARGET_MIPS) 12638 cpu_env->active_tc.CP0_UserLocal = arg1; 12639 return 0; 12640 #elif defined(TARGET_CRIS) 12641 if (arg1 & 0xff) 12642 ret = -TARGET_EINVAL; 12643 else { 12644 cpu_env->pregs[PR_PID] = arg1; 12645 ret = 0; 12646 } 12647 return ret; 12648 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 12649 return do_set_thread_area(cpu_env, arg1); 12650 #elif defined(TARGET_M68K) 12651 { 12652 TaskState *ts = get_task_state(cpu); 12653 ts->tp_value = arg1; 12654 return 0; 12655 } 12656 #else 12657 return -TARGET_ENOSYS; 12658 #endif 12659 #endif 12660 #ifdef TARGET_NR_get_thread_area 12661 case TARGET_NR_get_thread_area: 12662 #if defined(TARGET_I386) && defined(TARGET_ABI32) 12663 return do_get_thread_area(cpu_env, arg1); 12664 #elif defined(TARGET_M68K) 12665 { 12666 TaskState *ts = get_task_state(cpu); 12667 return ts->tp_value; 12668 } 12669 #else 12670 return -TARGET_ENOSYS; 12671 #endif 12672 #endif 12673 #ifdef TARGET_NR_getdomainname 12674 case TARGET_NR_getdomainname: 12675 return -TARGET_ENOSYS; 12676 #endif 12677 12678 #ifdef TARGET_NR_clock_settime 12679 case TARGET_NR_clock_settime: 12680 { 12681 struct timespec ts; 12682 12683 ret = target_to_host_timespec(&ts, arg2); 12684 if (!is_error(ret)) { 12685 ret = get_errno(clock_settime(arg1, &ts)); 12686 } 12687 return ret; 12688 } 12689 #endif 12690 #ifdef TARGET_NR_clock_settime64 12691 case TARGET_NR_clock_settime64: 12692 { 12693 struct timespec ts; 12694 12695 ret = target_to_host_timespec64(&ts, arg2); 12696 if (!is_error(ret)) { 12697 ret = get_errno(clock_settime(arg1, &ts)); 12698 } 12699 return ret; 12700 } 12701 #endif 12702 #ifdef TARGET_NR_clock_gettime 12703 case TARGET_NR_clock_gettime: 12704 { 12705 struct timespec ts; 12706 ret = get_errno(clock_gettime(arg1, &ts)); 12707 if (!is_error(ret)) { 12708 ret = host_to_target_timespec(arg2, &ts); 12709 } 12710 return ret; 12711 } 12712 #endif 12713 #ifdef TARGET_NR_clock_gettime64 12714 case TARGET_NR_clock_gettime64: 12715 { 12716 struct timespec ts; 12717 ret = get_errno(clock_gettime(arg1, &ts)); 12718 if (!is_error(ret)) { 12719 ret = host_to_target_timespec64(arg2, &ts); 12720 } 12721 return ret; 12722 } 12723 #endif 12724 #ifdef TARGET_NR_clock_getres 12725 case TARGET_NR_clock_getres: 12726 { 12727 struct timespec ts; 12728 ret = get_errno(clock_getres(arg1, &ts)); 12729 if (!is_error(ret)) { 12730 host_to_target_timespec(arg2, &ts); 12731 } 12732 return ret; 12733 } 12734 #endif 12735 #ifdef TARGET_NR_clock_getres_time64 12736 case TARGET_NR_clock_getres_time64: 12737 { 12738 struct timespec ts; 12739 ret = get_errno(clock_getres(arg1, &ts)); 12740 if (!is_error(ret)) { 12741 host_to_target_timespec64(arg2, &ts); 12742 } 12743 return ret; 12744 } 12745 #endif 12746 #ifdef TARGET_NR_clock_nanosleep 12747 case TARGET_NR_clock_nanosleep: 12748 { 12749 struct timespec ts; 12750 if (target_to_host_timespec(&ts, arg3)) { 12751 return -TARGET_EFAULT; 12752 } 12753 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12754 &ts, arg4 ? &ts : NULL)); 12755 /* 12756 * if the call is interrupted by a signal handler, it fails 12757 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not 12758 * TIMER_ABSTIME, it returns the remaining unslept time in arg4. 12759 */ 12760 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12761 host_to_target_timespec(arg4, &ts)) { 12762 return -TARGET_EFAULT; 12763 } 12764 12765 return ret; 12766 } 12767 #endif 12768 #ifdef TARGET_NR_clock_nanosleep_time64 12769 case TARGET_NR_clock_nanosleep_time64: 12770 { 12771 struct timespec ts; 12772 12773 if (target_to_host_timespec64(&ts, arg3)) { 12774 return -TARGET_EFAULT; 12775 } 12776 12777 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12778 &ts, arg4 ? &ts : NULL)); 12779 12780 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12781 host_to_target_timespec64(arg4, &ts)) { 12782 return -TARGET_EFAULT; 12783 } 12784 return ret; 12785 } 12786 #endif 12787 12788 #if defined(TARGET_NR_set_tid_address) 12789 case TARGET_NR_set_tid_address: 12790 { 12791 TaskState *ts = get_task_state(cpu); 12792 ts->child_tidptr = arg1; 12793 /* do not call host set_tid_address() syscall, instead return tid() */ 12794 return get_errno(sys_gettid()); 12795 } 12796 #endif 12797 12798 case TARGET_NR_tkill: 12799 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 12800 12801 case TARGET_NR_tgkill: 12802 return get_errno(safe_tgkill((int)arg1, (int)arg2, 12803 target_to_host_signal(arg3))); 12804 12805 #ifdef TARGET_NR_set_robust_list 12806 case TARGET_NR_set_robust_list: 12807 case TARGET_NR_get_robust_list: 12808 /* The ABI for supporting robust futexes has userspace pass 12809 * the kernel a pointer to a linked list which is updated by 12810 * userspace after the syscall; the list is walked by the kernel 12811 * when the thread exits. Since the linked list in QEMU guest 12812 * memory isn't a valid linked list for the host and we have 12813 * no way to reliably intercept the thread-death event, we can't 12814 * support these. Silently return ENOSYS so that guest userspace 12815 * falls back to a non-robust futex implementation (which should 12816 * be OK except in the corner case of the guest crashing while 12817 * holding a mutex that is shared with another process via 12818 * shared memory). 12819 */ 12820 return -TARGET_ENOSYS; 12821 #endif 12822 12823 #if defined(TARGET_NR_utimensat) 12824 case TARGET_NR_utimensat: 12825 { 12826 struct timespec *tsp, ts[2]; 12827 if (!arg3) { 12828 tsp = NULL; 12829 } else { 12830 if (target_to_host_timespec(ts, arg3)) { 12831 return -TARGET_EFAULT; 12832 } 12833 if (target_to_host_timespec(ts + 1, arg3 + 12834 sizeof(struct target_timespec))) { 12835 return -TARGET_EFAULT; 12836 } 12837 tsp = ts; 12838 } 12839 if (!arg2) 12840 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12841 else { 12842 if (!(p = lock_user_string(arg2))) { 12843 return -TARGET_EFAULT; 12844 } 12845 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12846 unlock_user(p, arg2, 0); 12847 } 12848 } 12849 return ret; 12850 #endif 12851 #ifdef TARGET_NR_utimensat_time64 12852 case TARGET_NR_utimensat_time64: 12853 { 12854 struct timespec *tsp, ts[2]; 12855 if (!arg3) { 12856 tsp = NULL; 12857 } else { 12858 if (target_to_host_timespec64(ts, arg3)) { 12859 return -TARGET_EFAULT; 12860 } 12861 if (target_to_host_timespec64(ts + 1, arg3 + 12862 sizeof(struct target__kernel_timespec))) { 12863 return -TARGET_EFAULT; 12864 } 12865 tsp = ts; 12866 } 12867 if (!arg2) 12868 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12869 else { 12870 p = lock_user_string(arg2); 12871 if (!p) { 12872 return -TARGET_EFAULT; 12873 } 12874 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12875 unlock_user(p, arg2, 0); 12876 } 12877 } 12878 return ret; 12879 #endif 12880 #ifdef TARGET_NR_futex 12881 case TARGET_NR_futex: 12882 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6); 12883 #endif 12884 #ifdef TARGET_NR_futex_time64 12885 case TARGET_NR_futex_time64: 12886 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6); 12887 #endif 12888 #ifdef CONFIG_INOTIFY 12889 #if defined(TARGET_NR_inotify_init) 12890 case TARGET_NR_inotify_init: 12891 ret = get_errno(inotify_init()); 12892 if (ret >= 0) { 12893 fd_trans_register(ret, &target_inotify_trans); 12894 } 12895 return ret; 12896 #endif 12897 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1) 12898 case TARGET_NR_inotify_init1: 12899 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1, 12900 fcntl_flags_tbl))); 12901 if (ret >= 0) { 12902 fd_trans_register(ret, &target_inotify_trans); 12903 } 12904 return ret; 12905 #endif 12906 #if defined(TARGET_NR_inotify_add_watch) 12907 case TARGET_NR_inotify_add_watch: 12908 p = lock_user_string(arg2); 12909 ret = get_errno(inotify_add_watch(arg1, path(p), arg3)); 12910 unlock_user(p, arg2, 0); 12911 return ret; 12912 #endif 12913 #if defined(TARGET_NR_inotify_rm_watch) 12914 case TARGET_NR_inotify_rm_watch: 12915 return get_errno(inotify_rm_watch(arg1, arg2)); 12916 #endif 12917 #endif 12918 12919 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12920 case TARGET_NR_mq_open: 12921 { 12922 struct mq_attr posix_mq_attr; 12923 struct mq_attr *pposix_mq_attr; 12924 int host_flags; 12925 12926 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12927 pposix_mq_attr = NULL; 12928 if (arg4) { 12929 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12930 return -TARGET_EFAULT; 12931 } 12932 pposix_mq_attr = &posix_mq_attr; 12933 } 12934 p = lock_user_string(arg1 - 1); 12935 if (!p) { 12936 return -TARGET_EFAULT; 12937 } 12938 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12939 unlock_user (p, arg1, 0); 12940 } 12941 return ret; 12942 12943 case TARGET_NR_mq_unlink: 12944 p = lock_user_string(arg1 - 1); 12945 if (!p) { 12946 return -TARGET_EFAULT; 12947 } 12948 ret = get_errno(mq_unlink(p)); 12949 unlock_user (p, arg1, 0); 12950 return ret; 12951 12952 #ifdef TARGET_NR_mq_timedsend 12953 case TARGET_NR_mq_timedsend: 12954 { 12955 struct timespec ts; 12956 12957 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12958 if (arg5 != 0) { 12959 if (target_to_host_timespec(&ts, arg5)) { 12960 return -TARGET_EFAULT; 12961 } 12962 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12963 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12964 return -TARGET_EFAULT; 12965 } 12966 } else { 12967 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12968 } 12969 unlock_user (p, arg2, arg3); 12970 } 12971 return ret; 12972 #endif 12973 #ifdef TARGET_NR_mq_timedsend_time64 12974 case TARGET_NR_mq_timedsend_time64: 12975 { 12976 struct timespec ts; 12977 12978 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12979 if (arg5 != 0) { 12980 if (target_to_host_timespec64(&ts, arg5)) { 12981 return -TARGET_EFAULT; 12982 } 12983 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12984 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12985 return -TARGET_EFAULT; 12986 } 12987 } else { 12988 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12989 } 12990 unlock_user(p, arg2, arg3); 12991 } 12992 return ret; 12993 #endif 12994 12995 #ifdef TARGET_NR_mq_timedreceive 12996 case TARGET_NR_mq_timedreceive: 12997 { 12998 struct timespec ts; 12999 unsigned int prio; 13000 13001 p = lock_user (VERIFY_READ, arg2, arg3, 1); 13002 if (arg5 != 0) { 13003 if (target_to_host_timespec(&ts, arg5)) { 13004 return -TARGET_EFAULT; 13005 } 13006 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13007 &prio, &ts)); 13008 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 13009 return -TARGET_EFAULT; 13010 } 13011 } else { 13012 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13013 &prio, NULL)); 13014 } 13015 unlock_user (p, arg2, arg3); 13016 if (arg4 != 0) 13017 put_user_u32(prio, arg4); 13018 } 13019 return ret; 13020 #endif 13021 #ifdef TARGET_NR_mq_timedreceive_time64 13022 case TARGET_NR_mq_timedreceive_time64: 13023 { 13024 struct timespec ts; 13025 unsigned int prio; 13026 13027 p = lock_user(VERIFY_READ, arg2, arg3, 1); 13028 if (arg5 != 0) { 13029 if (target_to_host_timespec64(&ts, arg5)) { 13030 return -TARGET_EFAULT; 13031 } 13032 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13033 &prio, &ts)); 13034 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 13035 return -TARGET_EFAULT; 13036 } 13037 } else { 13038 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13039 &prio, NULL)); 13040 } 13041 unlock_user(p, arg2, arg3); 13042 if (arg4 != 0) { 13043 put_user_u32(prio, arg4); 13044 } 13045 } 13046 return ret; 13047 #endif 13048 13049 /* Not implemented for now... */ 13050 /* case TARGET_NR_mq_notify: */ 13051 /* break; */ 13052 13053 case TARGET_NR_mq_getsetattr: 13054 { 13055 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 13056 ret = 0; 13057 if (arg2 != 0) { 13058 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 13059 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in, 13060 &posix_mq_attr_out)); 13061 } else if (arg3 != 0) { 13062 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out)); 13063 } 13064 if (ret == 0 && arg3 != 0) { 13065 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 13066 } 13067 } 13068 return ret; 13069 #endif 13070 13071 #ifdef CONFIG_SPLICE 13072 #ifdef TARGET_NR_tee 13073 case TARGET_NR_tee: 13074 { 13075 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 13076 } 13077 return ret; 13078 #endif 13079 #ifdef TARGET_NR_splice 13080 case TARGET_NR_splice: 13081 { 13082 loff_t loff_in, loff_out; 13083 loff_t *ploff_in = NULL, *ploff_out = NULL; 13084 if (arg2) { 13085 if (get_user_u64(loff_in, arg2)) { 13086 return -TARGET_EFAULT; 13087 } 13088 ploff_in = &loff_in; 13089 } 13090 if (arg4) { 13091 if (get_user_u64(loff_out, arg4)) { 13092 return -TARGET_EFAULT; 13093 } 13094 ploff_out = &loff_out; 13095 } 13096 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 13097 if (arg2) { 13098 if (put_user_u64(loff_in, arg2)) { 13099 return -TARGET_EFAULT; 13100 } 13101 } 13102 if (arg4) { 13103 if (put_user_u64(loff_out, arg4)) { 13104 return -TARGET_EFAULT; 13105 } 13106 } 13107 } 13108 return ret; 13109 #endif 13110 #ifdef TARGET_NR_vmsplice 13111 case TARGET_NR_vmsplice: 13112 { 13113 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 13114 if (vec != NULL) { 13115 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 13116 unlock_iovec(vec, arg2, arg3, 0); 13117 } else { 13118 ret = -host_to_target_errno(errno); 13119 } 13120 } 13121 return ret; 13122 #endif 13123 #endif /* CONFIG_SPLICE */ 13124 #ifdef CONFIG_EVENTFD 13125 #if defined(TARGET_NR_eventfd) 13126 case TARGET_NR_eventfd: 13127 ret = get_errno(eventfd(arg1, 0)); 13128 if (ret >= 0) { 13129 fd_trans_register(ret, &target_eventfd_trans); 13130 } 13131 return ret; 13132 #endif 13133 #if defined(TARGET_NR_eventfd2) 13134 case TARGET_NR_eventfd2: 13135 { 13136 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)); 13137 if (arg2 & TARGET_O_NONBLOCK) { 13138 host_flags |= O_NONBLOCK; 13139 } 13140 if (arg2 & TARGET_O_CLOEXEC) { 13141 host_flags |= O_CLOEXEC; 13142 } 13143 ret = get_errno(eventfd(arg1, host_flags)); 13144 if (ret >= 0) { 13145 fd_trans_register(ret, &target_eventfd_trans); 13146 } 13147 return ret; 13148 } 13149 #endif 13150 #endif /* CONFIG_EVENTFD */ 13151 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 13152 case TARGET_NR_fallocate: 13153 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13154 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 13155 target_offset64(arg5, arg6))); 13156 #else 13157 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 13158 #endif 13159 return ret; 13160 #endif 13161 #if defined(CONFIG_SYNC_FILE_RANGE) 13162 #if defined(TARGET_NR_sync_file_range) 13163 case TARGET_NR_sync_file_range: 13164 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13165 #if defined(TARGET_MIPS) 13166 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13167 target_offset64(arg5, arg6), arg7)); 13168 #else 13169 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 13170 target_offset64(arg4, arg5), arg6)); 13171 #endif /* !TARGET_MIPS */ 13172 #else 13173 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 13174 #endif 13175 return ret; 13176 #endif 13177 #if defined(TARGET_NR_sync_file_range2) || \ 13178 defined(TARGET_NR_arm_sync_file_range) 13179 #if defined(TARGET_NR_sync_file_range2) 13180 case TARGET_NR_sync_file_range2: 13181 #endif 13182 #if defined(TARGET_NR_arm_sync_file_range) 13183 case TARGET_NR_arm_sync_file_range: 13184 #endif 13185 /* This is like sync_file_range but the arguments are reordered */ 13186 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13187 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13188 target_offset64(arg5, arg6), arg2)); 13189 #else 13190 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 13191 #endif 13192 return ret; 13193 #endif 13194 #endif 13195 #if defined(TARGET_NR_signalfd4) 13196 case TARGET_NR_signalfd4: 13197 return do_signalfd4(arg1, arg2, arg4); 13198 #endif 13199 #if defined(TARGET_NR_signalfd) 13200 case TARGET_NR_signalfd: 13201 return do_signalfd4(arg1, arg2, 0); 13202 #endif 13203 #if defined(CONFIG_EPOLL) 13204 #if defined(TARGET_NR_epoll_create) 13205 case TARGET_NR_epoll_create: 13206 return get_errno(epoll_create(arg1)); 13207 #endif 13208 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 13209 case TARGET_NR_epoll_create1: 13210 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl))); 13211 #endif 13212 #if defined(TARGET_NR_epoll_ctl) 13213 case TARGET_NR_epoll_ctl: 13214 { 13215 struct epoll_event ep; 13216 struct epoll_event *epp = 0; 13217 if (arg4) { 13218 if (arg2 != EPOLL_CTL_DEL) { 13219 struct target_epoll_event *target_ep; 13220 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 13221 return -TARGET_EFAULT; 13222 } 13223 ep.events = tswap32(target_ep->events); 13224 /* 13225 * The epoll_data_t union is just opaque data to the kernel, 13226 * so we transfer all 64 bits across and need not worry what 13227 * actual data type it is. 13228 */ 13229 ep.data.u64 = tswap64(target_ep->data.u64); 13230 unlock_user_struct(target_ep, arg4, 0); 13231 } 13232 /* 13233 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a 13234 * non-null pointer, even though this argument is ignored. 13235 * 13236 */ 13237 epp = &ep; 13238 } 13239 return get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 13240 } 13241 #endif 13242 13243 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 13244 #if defined(TARGET_NR_epoll_wait) 13245 case TARGET_NR_epoll_wait: 13246 #endif 13247 #if defined(TARGET_NR_epoll_pwait) 13248 case TARGET_NR_epoll_pwait: 13249 #endif 13250 { 13251 struct target_epoll_event *target_ep; 13252 struct epoll_event *ep; 13253 int epfd = arg1; 13254 int maxevents = arg3; 13255 int timeout = arg4; 13256 13257 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 13258 return -TARGET_EINVAL; 13259 } 13260 13261 target_ep = lock_user(VERIFY_WRITE, arg2, 13262 maxevents * sizeof(struct target_epoll_event), 1); 13263 if (!target_ep) { 13264 return -TARGET_EFAULT; 13265 } 13266 13267 ep = g_try_new(struct epoll_event, maxevents); 13268 if (!ep) { 13269 unlock_user(target_ep, arg2, 0); 13270 return -TARGET_ENOMEM; 13271 } 13272 13273 switch (num) { 13274 #if defined(TARGET_NR_epoll_pwait) 13275 case TARGET_NR_epoll_pwait: 13276 { 13277 sigset_t *set = NULL; 13278 13279 if (arg5) { 13280 ret = process_sigsuspend_mask(&set, arg5, arg6); 13281 if (ret != 0) { 13282 break; 13283 } 13284 } 13285 13286 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13287 set, SIGSET_T_SIZE)); 13288 13289 if (set) { 13290 finish_sigsuspend_mask(ret); 13291 } 13292 break; 13293 } 13294 #endif 13295 #if defined(TARGET_NR_epoll_wait) 13296 case TARGET_NR_epoll_wait: 13297 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13298 NULL, 0)); 13299 break; 13300 #endif 13301 default: 13302 ret = -TARGET_ENOSYS; 13303 } 13304 if (!is_error(ret)) { 13305 int i; 13306 for (i = 0; i < ret; i++) { 13307 target_ep[i].events = tswap32(ep[i].events); 13308 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 13309 } 13310 unlock_user(target_ep, arg2, 13311 ret * sizeof(struct target_epoll_event)); 13312 } else { 13313 unlock_user(target_ep, arg2, 0); 13314 } 13315 g_free(ep); 13316 return ret; 13317 } 13318 #endif 13319 #endif 13320 #ifdef TARGET_NR_prlimit64 13321 case TARGET_NR_prlimit64: 13322 { 13323 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 13324 struct target_rlimit64 *target_rnew, *target_rold; 13325 struct host_rlimit64 rnew, rold, *rnewp = 0; 13326 int resource = target_to_host_resource(arg2); 13327 13328 if (arg3 && (resource != RLIMIT_AS && 13329 resource != RLIMIT_DATA && 13330 resource != RLIMIT_STACK)) { 13331 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 13332 return -TARGET_EFAULT; 13333 } 13334 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur); 13335 __get_user(rnew.rlim_max, &target_rnew->rlim_max); 13336 unlock_user_struct(target_rnew, arg3, 0); 13337 rnewp = &rnew; 13338 } 13339 13340 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 13341 if (!is_error(ret) && arg4) { 13342 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 13343 return -TARGET_EFAULT; 13344 } 13345 __put_user(rold.rlim_cur, &target_rold->rlim_cur); 13346 __put_user(rold.rlim_max, &target_rold->rlim_max); 13347 unlock_user_struct(target_rold, arg4, 1); 13348 } 13349 return ret; 13350 } 13351 #endif 13352 #ifdef TARGET_NR_gethostname 13353 case TARGET_NR_gethostname: 13354 { 13355 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 13356 if (name) { 13357 ret = get_errno(gethostname(name, arg2)); 13358 unlock_user(name, arg1, arg2); 13359 } else { 13360 ret = -TARGET_EFAULT; 13361 } 13362 return ret; 13363 } 13364 #endif 13365 #ifdef TARGET_NR_atomic_cmpxchg_32 13366 case TARGET_NR_atomic_cmpxchg_32: 13367 { 13368 /* should use start_exclusive from main.c */ 13369 abi_ulong mem_value; 13370 if (get_user_u32(mem_value, arg6)) { 13371 target_siginfo_t info; 13372 info.si_signo = SIGSEGV; 13373 info.si_errno = 0; 13374 info.si_code = TARGET_SEGV_MAPERR; 13375 info._sifields._sigfault._addr = arg6; 13376 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info); 13377 ret = 0xdeadbeef; 13378 13379 } 13380 if (mem_value == arg2) 13381 put_user_u32(arg1, arg6); 13382 return mem_value; 13383 } 13384 #endif 13385 #ifdef TARGET_NR_atomic_barrier 13386 case TARGET_NR_atomic_barrier: 13387 /* Like the kernel implementation and the 13388 qemu arm barrier, no-op this? */ 13389 return 0; 13390 #endif 13391 13392 #ifdef TARGET_NR_timer_create 13393 case TARGET_NR_timer_create: 13394 { 13395 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 13396 13397 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 13398 13399 int clkid = arg1; 13400 int timer_index = next_free_host_timer(); 13401 13402 if (timer_index < 0) { 13403 ret = -TARGET_EAGAIN; 13404 } else { 13405 timer_t *phtimer = g_posix_timers + timer_index; 13406 13407 if (arg2) { 13408 phost_sevp = &host_sevp; 13409 ret = target_to_host_sigevent(phost_sevp, arg2); 13410 if (ret != 0) { 13411 free_host_timer_slot(timer_index); 13412 return ret; 13413 } 13414 } 13415 13416 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 13417 if (ret) { 13418 free_host_timer_slot(timer_index); 13419 } else { 13420 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 13421 timer_delete(*phtimer); 13422 free_host_timer_slot(timer_index); 13423 return -TARGET_EFAULT; 13424 } 13425 } 13426 } 13427 return ret; 13428 } 13429 #endif 13430 13431 #ifdef TARGET_NR_timer_settime 13432 case TARGET_NR_timer_settime: 13433 { 13434 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 13435 * struct itimerspec * old_value */ 13436 target_timer_t timerid = get_timer_id(arg1); 13437 13438 if (timerid < 0) { 13439 ret = timerid; 13440 } else if (arg3 == 0) { 13441 ret = -TARGET_EINVAL; 13442 } else { 13443 timer_t htimer = g_posix_timers[timerid]; 13444 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13445 13446 if (target_to_host_itimerspec(&hspec_new, arg3)) { 13447 return -TARGET_EFAULT; 13448 } 13449 ret = get_errno( 13450 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13451 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 13452 return -TARGET_EFAULT; 13453 } 13454 } 13455 return ret; 13456 } 13457 #endif 13458 13459 #ifdef TARGET_NR_timer_settime64 13460 case TARGET_NR_timer_settime64: 13461 { 13462 target_timer_t timerid = get_timer_id(arg1); 13463 13464 if (timerid < 0) { 13465 ret = timerid; 13466 } else if (arg3 == 0) { 13467 ret = -TARGET_EINVAL; 13468 } else { 13469 timer_t htimer = g_posix_timers[timerid]; 13470 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13471 13472 if (target_to_host_itimerspec64(&hspec_new, arg3)) { 13473 return -TARGET_EFAULT; 13474 } 13475 ret = get_errno( 13476 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13477 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) { 13478 return -TARGET_EFAULT; 13479 } 13480 } 13481 return ret; 13482 } 13483 #endif 13484 13485 #ifdef TARGET_NR_timer_gettime 13486 case TARGET_NR_timer_gettime: 13487 { 13488 /* args: timer_t timerid, struct itimerspec *curr_value */ 13489 target_timer_t timerid = get_timer_id(arg1); 13490 13491 if (timerid < 0) { 13492 ret = timerid; 13493 } else if (!arg2) { 13494 ret = -TARGET_EFAULT; 13495 } else { 13496 timer_t htimer = g_posix_timers[timerid]; 13497 struct itimerspec hspec; 13498 ret = get_errno(timer_gettime(htimer, &hspec)); 13499 13500 if (host_to_target_itimerspec(arg2, &hspec)) { 13501 ret = -TARGET_EFAULT; 13502 } 13503 } 13504 return ret; 13505 } 13506 #endif 13507 13508 #ifdef TARGET_NR_timer_gettime64 13509 case TARGET_NR_timer_gettime64: 13510 { 13511 /* args: timer_t timerid, struct itimerspec64 *curr_value */ 13512 target_timer_t timerid = get_timer_id(arg1); 13513 13514 if (timerid < 0) { 13515 ret = timerid; 13516 } else if (!arg2) { 13517 ret = -TARGET_EFAULT; 13518 } else { 13519 timer_t htimer = g_posix_timers[timerid]; 13520 struct itimerspec hspec; 13521 ret = get_errno(timer_gettime(htimer, &hspec)); 13522 13523 if (host_to_target_itimerspec64(arg2, &hspec)) { 13524 ret = -TARGET_EFAULT; 13525 } 13526 } 13527 return ret; 13528 } 13529 #endif 13530 13531 #ifdef TARGET_NR_timer_getoverrun 13532 case TARGET_NR_timer_getoverrun: 13533 { 13534 /* args: timer_t timerid */ 13535 target_timer_t timerid = get_timer_id(arg1); 13536 13537 if (timerid < 0) { 13538 ret = timerid; 13539 } else { 13540 timer_t htimer = g_posix_timers[timerid]; 13541 ret = get_errno(timer_getoverrun(htimer)); 13542 } 13543 return ret; 13544 } 13545 #endif 13546 13547 #ifdef TARGET_NR_timer_delete 13548 case TARGET_NR_timer_delete: 13549 { 13550 /* args: timer_t timerid */ 13551 target_timer_t timerid = get_timer_id(arg1); 13552 13553 if (timerid < 0) { 13554 ret = timerid; 13555 } else { 13556 timer_t htimer = g_posix_timers[timerid]; 13557 ret = get_errno(timer_delete(htimer)); 13558 free_host_timer_slot(timerid); 13559 } 13560 return ret; 13561 } 13562 #endif 13563 13564 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 13565 case TARGET_NR_timerfd_create: 13566 ret = get_errno(timerfd_create(arg1, 13567 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 13568 if (ret >= 0) { 13569 fd_trans_register(ret, &target_timerfd_trans); 13570 } 13571 return ret; 13572 #endif 13573 13574 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 13575 case TARGET_NR_timerfd_gettime: 13576 { 13577 struct itimerspec its_curr; 13578 13579 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13580 13581 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 13582 return -TARGET_EFAULT; 13583 } 13584 } 13585 return ret; 13586 #endif 13587 13588 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD) 13589 case TARGET_NR_timerfd_gettime64: 13590 { 13591 struct itimerspec its_curr; 13592 13593 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13594 13595 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) { 13596 return -TARGET_EFAULT; 13597 } 13598 } 13599 return ret; 13600 #endif 13601 13602 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 13603 case TARGET_NR_timerfd_settime: 13604 { 13605 struct itimerspec its_new, its_old, *p_new; 13606 13607 if (arg3) { 13608 if (target_to_host_itimerspec(&its_new, arg3)) { 13609 return -TARGET_EFAULT; 13610 } 13611 p_new = &its_new; 13612 } else { 13613 p_new = NULL; 13614 } 13615 13616 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13617 13618 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 13619 return -TARGET_EFAULT; 13620 } 13621 } 13622 return ret; 13623 #endif 13624 13625 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD) 13626 case TARGET_NR_timerfd_settime64: 13627 { 13628 struct itimerspec its_new, its_old, *p_new; 13629 13630 if (arg3) { 13631 if (target_to_host_itimerspec64(&its_new, arg3)) { 13632 return -TARGET_EFAULT; 13633 } 13634 p_new = &its_new; 13635 } else { 13636 p_new = NULL; 13637 } 13638 13639 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13640 13641 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) { 13642 return -TARGET_EFAULT; 13643 } 13644 } 13645 return ret; 13646 #endif 13647 13648 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 13649 case TARGET_NR_ioprio_get: 13650 return get_errno(ioprio_get(arg1, arg2)); 13651 #endif 13652 13653 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 13654 case TARGET_NR_ioprio_set: 13655 return get_errno(ioprio_set(arg1, arg2, arg3)); 13656 #endif 13657 13658 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 13659 case TARGET_NR_setns: 13660 return get_errno(setns(arg1, arg2)); 13661 #endif 13662 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 13663 case TARGET_NR_unshare: 13664 return get_errno(unshare(arg1)); 13665 #endif 13666 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 13667 case TARGET_NR_kcmp: 13668 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 13669 #endif 13670 #ifdef TARGET_NR_swapcontext 13671 case TARGET_NR_swapcontext: 13672 /* PowerPC specific. */ 13673 return do_swapcontext(cpu_env, arg1, arg2, arg3); 13674 #endif 13675 #ifdef TARGET_NR_memfd_create 13676 case TARGET_NR_memfd_create: 13677 p = lock_user_string(arg1); 13678 if (!p) { 13679 return -TARGET_EFAULT; 13680 } 13681 ret = get_errno(memfd_create(p, arg2)); 13682 fd_trans_unregister(ret); 13683 unlock_user(p, arg1, 0); 13684 return ret; 13685 #endif 13686 #if defined TARGET_NR_membarrier && defined __NR_membarrier 13687 case TARGET_NR_membarrier: 13688 return get_errno(membarrier(arg1, arg2)); 13689 #endif 13690 13691 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 13692 case TARGET_NR_copy_file_range: 13693 { 13694 loff_t inoff, outoff; 13695 loff_t *pinoff = NULL, *poutoff = NULL; 13696 13697 if (arg2) { 13698 if (get_user_u64(inoff, arg2)) { 13699 return -TARGET_EFAULT; 13700 } 13701 pinoff = &inoff; 13702 } 13703 if (arg4) { 13704 if (get_user_u64(outoff, arg4)) { 13705 return -TARGET_EFAULT; 13706 } 13707 poutoff = &outoff; 13708 } 13709 /* Do not sign-extend the count parameter. */ 13710 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff, 13711 (abi_ulong)arg5, arg6)); 13712 if (!is_error(ret) && ret > 0) { 13713 if (arg2) { 13714 if (put_user_u64(inoff, arg2)) { 13715 return -TARGET_EFAULT; 13716 } 13717 } 13718 if (arg4) { 13719 if (put_user_u64(outoff, arg4)) { 13720 return -TARGET_EFAULT; 13721 } 13722 } 13723 } 13724 } 13725 return ret; 13726 #endif 13727 13728 #if defined(TARGET_NR_pivot_root) 13729 case TARGET_NR_pivot_root: 13730 { 13731 void *p2; 13732 p = lock_user_string(arg1); /* new_root */ 13733 p2 = lock_user_string(arg2); /* put_old */ 13734 if (!p || !p2) { 13735 ret = -TARGET_EFAULT; 13736 } else { 13737 ret = get_errno(pivot_root(p, p2)); 13738 } 13739 unlock_user(p2, arg2, 0); 13740 unlock_user(p, arg1, 0); 13741 } 13742 return ret; 13743 #endif 13744 13745 #if defined(TARGET_NR_riscv_hwprobe) 13746 case TARGET_NR_riscv_hwprobe: 13747 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5); 13748 #endif 13749 13750 default: 13751 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); 13752 return -TARGET_ENOSYS; 13753 } 13754 return ret; 13755 } 13756 13757 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1, 13758 abi_long arg2, abi_long arg3, abi_long arg4, 13759 abi_long arg5, abi_long arg6, abi_long arg7, 13760 abi_long arg8) 13761 { 13762 CPUState *cpu = env_cpu(cpu_env); 13763 abi_long ret; 13764 13765 #ifdef DEBUG_ERESTARTSYS 13766 /* Debug-only code for exercising the syscall-restart code paths 13767 * in the per-architecture cpu main loops: restart every syscall 13768 * the guest makes once before letting it through. 13769 */ 13770 { 13771 static bool flag; 13772 flag = !flag; 13773 if (flag) { 13774 return -QEMU_ERESTARTSYS; 13775 } 13776 } 13777 #endif 13778 13779 record_syscall_start(cpu, num, arg1, 13780 arg2, arg3, arg4, arg5, arg6, arg7, arg8); 13781 13782 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13783 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6); 13784 } 13785 13786 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4, 13787 arg5, arg6, arg7, arg8); 13788 13789 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13790 print_syscall_ret(cpu_env, num, ret, arg1, arg2, 13791 arg3, arg4, arg5, arg6); 13792 } 13793 13794 record_syscall_return(cpu, num, ret); 13795 return ret; 13796 } 13797