1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include <stdlib.h> 21 #include <stdio.h> 22 #include <stdarg.h> 23 #include <string.h> 24 #include <elf.h> 25 #include <endian.h> 26 #include <errno.h> 27 #include <unistd.h> 28 #include <fcntl.h> 29 #include <time.h> 30 #include <limits.h> 31 #include <grp.h> 32 #include <sys/types.h> 33 #include <sys/ipc.h> 34 #include <sys/msg.h> 35 #include <sys/wait.h> 36 #include <sys/time.h> 37 #include <sys/stat.h> 38 #include <sys/mount.h> 39 #include <sys/file.h> 40 #include <sys/fsuid.h> 41 #include <sys/personality.h> 42 #include <sys/prctl.h> 43 #include <sys/resource.h> 44 #include <sys/mman.h> 45 #include <sys/swap.h> 46 #include <linux/capability.h> 47 #include <signal.h> 48 #include <sched.h> 49 #ifdef __ia64__ 50 int __clone2(int (*fn)(void *), void *child_stack_base, 51 size_t stack_size, int flags, void *arg, ...); 52 #endif 53 #include <sys/socket.h> 54 #include <sys/un.h> 55 #include <sys/uio.h> 56 #include <sys/poll.h> 57 #include <sys/times.h> 58 #include <sys/shm.h> 59 #include <sys/sem.h> 60 #include <sys/statfs.h> 61 #include <utime.h> 62 #include <sys/sysinfo.h> 63 //#include <sys/user.h> 64 #include <netinet/ip.h> 65 #include <netinet/tcp.h> 66 #include <linux/wireless.h> 67 #include <linux/icmp.h> 68 #include "qemu-common.h" 69 #ifdef CONFIG_TIMERFD 70 #include <sys/timerfd.h> 71 #endif 72 #ifdef TARGET_GPROF 73 #include <sys/gmon.h> 74 #endif 75 #ifdef CONFIG_EVENTFD 76 #include <sys/eventfd.h> 77 #endif 78 #ifdef CONFIG_EPOLL 79 #include <sys/epoll.h> 80 #endif 81 #ifdef CONFIG_ATTR 82 #include "qemu/xattr.h" 83 #endif 84 #ifdef CONFIG_SENDFILE 85 #include <sys/sendfile.h> 86 #endif 87 88 #define termios host_termios 89 #define winsize host_winsize 90 #define termio host_termio 91 #define sgttyb host_sgttyb /* same as target */ 92 #define tchars host_tchars /* same as target */ 93 #define ltchars host_ltchars /* same as target */ 94 95 #include <linux/termios.h> 96 #include <linux/unistd.h> 97 #include <linux/cdrom.h> 98 #include <linux/hdreg.h> 99 #include <linux/soundcard.h> 100 #include <linux/kd.h> 101 #include <linux/mtio.h> 102 #include <linux/fs.h> 103 #if defined(CONFIG_FIEMAP) 104 #include <linux/fiemap.h> 105 #endif 106 #include <linux/fb.h> 107 #include <linux/vt.h> 108 #include <linux/dm-ioctl.h> 109 #include <linux/reboot.h> 110 #include <linux/route.h> 111 #include <linux/filter.h> 112 #include <linux/blkpg.h> 113 #include "linux_loop.h" 114 #include "uname.h" 115 116 #include "qemu.h" 117 118 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \ 119 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID) 120 121 //#define DEBUG 122 123 //#include <linux/msdos_fs.h> 124 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 125 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 126 127 128 #undef _syscall0 129 #undef _syscall1 130 #undef _syscall2 131 #undef _syscall3 132 #undef _syscall4 133 #undef _syscall5 134 #undef _syscall6 135 136 #define _syscall0(type,name) \ 137 static type name (void) \ 138 { \ 139 return syscall(__NR_##name); \ 140 } 141 142 #define _syscall1(type,name,type1,arg1) \ 143 static type name (type1 arg1) \ 144 { \ 145 return syscall(__NR_##name, arg1); \ 146 } 147 148 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 149 static type name (type1 arg1,type2 arg2) \ 150 { \ 151 return syscall(__NR_##name, arg1, arg2); \ 152 } 153 154 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 155 static type name (type1 arg1,type2 arg2,type3 arg3) \ 156 { \ 157 return syscall(__NR_##name, arg1, arg2, arg3); \ 158 } 159 160 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 161 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 162 { \ 163 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 164 } 165 166 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 167 type5,arg5) \ 168 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 169 { \ 170 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 171 } 172 173 174 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 175 type5,arg5,type6,arg6) \ 176 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 177 type6 arg6) \ 178 { \ 179 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 180 } 181 182 183 #define __NR_sys_uname __NR_uname 184 #define __NR_sys_getcwd1 __NR_getcwd 185 #define __NR_sys_getdents __NR_getdents 186 #define __NR_sys_getdents64 __NR_getdents64 187 #define __NR_sys_getpriority __NR_getpriority 188 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 189 #define __NR_sys_syslog __NR_syslog 190 #define __NR_sys_tgkill __NR_tgkill 191 #define __NR_sys_tkill __NR_tkill 192 #define __NR_sys_futex __NR_futex 193 #define __NR_sys_inotify_init __NR_inotify_init 194 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 195 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 196 197 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \ 198 defined(__s390x__) 199 #define __NR__llseek __NR_lseek 200 #endif 201 202 /* Newer kernel ports have llseek() instead of _llseek() */ 203 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 204 #define TARGET_NR__llseek TARGET_NR_llseek 205 #endif 206 207 #ifdef __NR_gettid 208 _syscall0(int, gettid) 209 #else 210 /* This is a replacement for the host gettid() and must return a host 211 errno. */ 212 static int gettid(void) { 213 return -ENOSYS; 214 } 215 #endif 216 #ifdef __NR_getdents 217 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 218 #endif 219 #if !defined(__NR_getdents) || \ 220 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 221 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 222 #endif 223 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 224 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 225 loff_t *, res, uint, wh); 226 #endif 227 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo) 228 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 229 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill) 230 _syscall3(int,sys_tgkill,int,tgid,int,pid,int,sig) 231 #endif 232 #if defined(TARGET_NR_tkill) && defined(__NR_tkill) 233 _syscall2(int,sys_tkill,int,tid,int,sig) 234 #endif 235 #ifdef __NR_exit_group 236 _syscall1(int,exit_group,int,error_code) 237 #endif 238 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 239 _syscall1(int,set_tid_address,int *,tidptr) 240 #endif 241 #if defined(TARGET_NR_futex) && defined(__NR_futex) 242 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 243 const struct timespec *,timeout,int *,uaddr2,int,val3) 244 #endif 245 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 246 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 247 unsigned long *, user_mask_ptr); 248 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 249 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 250 unsigned long *, user_mask_ptr); 251 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 252 void *, arg); 253 _syscall2(int, capget, struct __user_cap_header_struct *, header, 254 struct __user_cap_data_struct *, data); 255 _syscall2(int, capset, struct __user_cap_header_struct *, header, 256 struct __user_cap_data_struct *, data); 257 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 258 _syscall2(int, ioprio_get, int, which, int, who) 259 #endif 260 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 261 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 262 #endif 263 264 static bitmask_transtbl fcntl_flags_tbl[] = { 265 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 266 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 267 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 268 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 269 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 270 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 271 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 272 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 273 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 274 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 275 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 276 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 277 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 278 #if defined(O_DIRECT) 279 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 280 #endif 281 #if defined(O_NOATIME) 282 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 283 #endif 284 #if defined(O_CLOEXEC) 285 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 286 #endif 287 #if defined(O_PATH) 288 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 289 #endif 290 /* Don't terminate the list prematurely on 64-bit host+guest. */ 291 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 292 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 293 #endif 294 { 0, 0, 0, 0 } 295 }; 296 297 static int sys_getcwd1(char *buf, size_t size) 298 { 299 if (getcwd(buf, size) == NULL) { 300 /* getcwd() sets errno */ 301 return (-1); 302 } 303 return strlen(buf)+1; 304 } 305 306 static int sys_openat(int dirfd, const char *pathname, int flags, mode_t mode) 307 { 308 /* 309 * open(2) has extra parameter 'mode' when called with 310 * flag O_CREAT. 311 */ 312 if ((flags & O_CREAT) != 0) { 313 return (openat(dirfd, pathname, flags, mode)); 314 } 315 return (openat(dirfd, pathname, flags)); 316 } 317 318 #ifdef TARGET_NR_utimensat 319 #ifdef CONFIG_UTIMENSAT 320 static int sys_utimensat(int dirfd, const char *pathname, 321 const struct timespec times[2], int flags) 322 { 323 if (pathname == NULL) 324 return futimens(dirfd, times); 325 else 326 return utimensat(dirfd, pathname, times, flags); 327 } 328 #elif defined(__NR_utimensat) 329 #define __NR_sys_utimensat __NR_utimensat 330 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 331 const struct timespec *,tsp,int,flags) 332 #else 333 static int sys_utimensat(int dirfd, const char *pathname, 334 const struct timespec times[2], int flags) 335 { 336 errno = ENOSYS; 337 return -1; 338 } 339 #endif 340 #endif /* TARGET_NR_utimensat */ 341 342 #ifdef CONFIG_INOTIFY 343 #include <sys/inotify.h> 344 345 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 346 static int sys_inotify_init(void) 347 { 348 return (inotify_init()); 349 } 350 #endif 351 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 352 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 353 { 354 return (inotify_add_watch(fd, pathname, mask)); 355 } 356 #endif 357 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 358 static int sys_inotify_rm_watch(int fd, int32_t wd) 359 { 360 return (inotify_rm_watch(fd, wd)); 361 } 362 #endif 363 #ifdef CONFIG_INOTIFY1 364 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 365 static int sys_inotify_init1(int flags) 366 { 367 return (inotify_init1(flags)); 368 } 369 #endif 370 #endif 371 #else 372 /* Userspace can usually survive runtime without inotify */ 373 #undef TARGET_NR_inotify_init 374 #undef TARGET_NR_inotify_init1 375 #undef TARGET_NR_inotify_add_watch 376 #undef TARGET_NR_inotify_rm_watch 377 #endif /* CONFIG_INOTIFY */ 378 379 #if defined(TARGET_NR_ppoll) 380 #ifndef __NR_ppoll 381 # define __NR_ppoll -1 382 #endif 383 #define __NR_sys_ppoll __NR_ppoll 384 _syscall5(int, sys_ppoll, struct pollfd *, fds, nfds_t, nfds, 385 struct timespec *, timeout, const sigset_t *, sigmask, 386 size_t, sigsetsize) 387 #endif 388 389 #if defined(TARGET_NR_pselect6) 390 #ifndef __NR_pselect6 391 # define __NR_pselect6 -1 392 #endif 393 #define __NR_sys_pselect6 __NR_pselect6 394 _syscall6(int, sys_pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, 395 fd_set *, exceptfds, struct timespec *, timeout, void *, sig); 396 #endif 397 398 #if defined(TARGET_NR_prlimit64) 399 #ifndef __NR_prlimit64 400 # define __NR_prlimit64 -1 401 #endif 402 #define __NR_sys_prlimit64 __NR_prlimit64 403 /* The glibc rlimit structure may not be that used by the underlying syscall */ 404 struct host_rlimit64 { 405 uint64_t rlim_cur; 406 uint64_t rlim_max; 407 }; 408 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 409 const struct host_rlimit64 *, new_limit, 410 struct host_rlimit64 *, old_limit) 411 #endif 412 413 414 #if defined(TARGET_NR_timer_create) 415 /* Maxiumum of 32 active POSIX timers allowed at any one time. */ 416 static timer_t g_posix_timers[32] = { 0, } ; 417 418 static inline int next_free_host_timer(void) 419 { 420 int k ; 421 /* FIXME: Does finding the next free slot require a lock? */ 422 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 423 if (g_posix_timers[k] == 0) { 424 g_posix_timers[k] = (timer_t) 1; 425 return k; 426 } 427 } 428 return -1; 429 } 430 #endif 431 432 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 433 #ifdef TARGET_ARM 434 static inline int regpairs_aligned(void *cpu_env) { 435 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 436 } 437 #elif defined(TARGET_MIPS) 438 static inline int regpairs_aligned(void *cpu_env) { return 1; } 439 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 440 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 441 * of registers which translates to the same as ARM/MIPS, because we start with 442 * r3 as arg1 */ 443 static inline int regpairs_aligned(void *cpu_env) { return 1; } 444 #else 445 static inline int regpairs_aligned(void *cpu_env) { return 0; } 446 #endif 447 448 #define ERRNO_TABLE_SIZE 1200 449 450 /* target_to_host_errno_table[] is initialized from 451 * host_to_target_errno_table[] in syscall_init(). */ 452 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 453 }; 454 455 /* 456 * This list is the union of errno values overridden in asm-<arch>/errno.h 457 * minus the errnos that are not actually generic to all archs. 458 */ 459 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 460 [EIDRM] = TARGET_EIDRM, 461 [ECHRNG] = TARGET_ECHRNG, 462 [EL2NSYNC] = TARGET_EL2NSYNC, 463 [EL3HLT] = TARGET_EL3HLT, 464 [EL3RST] = TARGET_EL3RST, 465 [ELNRNG] = TARGET_ELNRNG, 466 [EUNATCH] = TARGET_EUNATCH, 467 [ENOCSI] = TARGET_ENOCSI, 468 [EL2HLT] = TARGET_EL2HLT, 469 [EDEADLK] = TARGET_EDEADLK, 470 [ENOLCK] = TARGET_ENOLCK, 471 [EBADE] = TARGET_EBADE, 472 [EBADR] = TARGET_EBADR, 473 [EXFULL] = TARGET_EXFULL, 474 [ENOANO] = TARGET_ENOANO, 475 [EBADRQC] = TARGET_EBADRQC, 476 [EBADSLT] = TARGET_EBADSLT, 477 [EBFONT] = TARGET_EBFONT, 478 [ENOSTR] = TARGET_ENOSTR, 479 [ENODATA] = TARGET_ENODATA, 480 [ETIME] = TARGET_ETIME, 481 [ENOSR] = TARGET_ENOSR, 482 [ENONET] = TARGET_ENONET, 483 [ENOPKG] = TARGET_ENOPKG, 484 [EREMOTE] = TARGET_EREMOTE, 485 [ENOLINK] = TARGET_ENOLINK, 486 [EADV] = TARGET_EADV, 487 [ESRMNT] = TARGET_ESRMNT, 488 [ECOMM] = TARGET_ECOMM, 489 [EPROTO] = TARGET_EPROTO, 490 [EDOTDOT] = TARGET_EDOTDOT, 491 [EMULTIHOP] = TARGET_EMULTIHOP, 492 [EBADMSG] = TARGET_EBADMSG, 493 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 494 [EOVERFLOW] = TARGET_EOVERFLOW, 495 [ENOTUNIQ] = TARGET_ENOTUNIQ, 496 [EBADFD] = TARGET_EBADFD, 497 [EREMCHG] = TARGET_EREMCHG, 498 [ELIBACC] = TARGET_ELIBACC, 499 [ELIBBAD] = TARGET_ELIBBAD, 500 [ELIBSCN] = TARGET_ELIBSCN, 501 [ELIBMAX] = TARGET_ELIBMAX, 502 [ELIBEXEC] = TARGET_ELIBEXEC, 503 [EILSEQ] = TARGET_EILSEQ, 504 [ENOSYS] = TARGET_ENOSYS, 505 [ELOOP] = TARGET_ELOOP, 506 [ERESTART] = TARGET_ERESTART, 507 [ESTRPIPE] = TARGET_ESTRPIPE, 508 [ENOTEMPTY] = TARGET_ENOTEMPTY, 509 [EUSERS] = TARGET_EUSERS, 510 [ENOTSOCK] = TARGET_ENOTSOCK, 511 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 512 [EMSGSIZE] = TARGET_EMSGSIZE, 513 [EPROTOTYPE] = TARGET_EPROTOTYPE, 514 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 515 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 516 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 517 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 518 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 519 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 520 [EADDRINUSE] = TARGET_EADDRINUSE, 521 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 522 [ENETDOWN] = TARGET_ENETDOWN, 523 [ENETUNREACH] = TARGET_ENETUNREACH, 524 [ENETRESET] = TARGET_ENETRESET, 525 [ECONNABORTED] = TARGET_ECONNABORTED, 526 [ECONNRESET] = TARGET_ECONNRESET, 527 [ENOBUFS] = TARGET_ENOBUFS, 528 [EISCONN] = TARGET_EISCONN, 529 [ENOTCONN] = TARGET_ENOTCONN, 530 [EUCLEAN] = TARGET_EUCLEAN, 531 [ENOTNAM] = TARGET_ENOTNAM, 532 [ENAVAIL] = TARGET_ENAVAIL, 533 [EISNAM] = TARGET_EISNAM, 534 [EREMOTEIO] = TARGET_EREMOTEIO, 535 [ESHUTDOWN] = TARGET_ESHUTDOWN, 536 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 537 [ETIMEDOUT] = TARGET_ETIMEDOUT, 538 [ECONNREFUSED] = TARGET_ECONNREFUSED, 539 [EHOSTDOWN] = TARGET_EHOSTDOWN, 540 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 541 [EALREADY] = TARGET_EALREADY, 542 [EINPROGRESS] = TARGET_EINPROGRESS, 543 [ESTALE] = TARGET_ESTALE, 544 [ECANCELED] = TARGET_ECANCELED, 545 [ENOMEDIUM] = TARGET_ENOMEDIUM, 546 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 547 #ifdef ENOKEY 548 [ENOKEY] = TARGET_ENOKEY, 549 #endif 550 #ifdef EKEYEXPIRED 551 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 552 #endif 553 #ifdef EKEYREVOKED 554 [EKEYREVOKED] = TARGET_EKEYREVOKED, 555 #endif 556 #ifdef EKEYREJECTED 557 [EKEYREJECTED] = TARGET_EKEYREJECTED, 558 #endif 559 #ifdef EOWNERDEAD 560 [EOWNERDEAD] = TARGET_EOWNERDEAD, 561 #endif 562 #ifdef ENOTRECOVERABLE 563 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 564 #endif 565 }; 566 567 static inline int host_to_target_errno(int err) 568 { 569 if(host_to_target_errno_table[err]) 570 return host_to_target_errno_table[err]; 571 return err; 572 } 573 574 static inline int target_to_host_errno(int err) 575 { 576 if (target_to_host_errno_table[err]) 577 return target_to_host_errno_table[err]; 578 return err; 579 } 580 581 static inline abi_long get_errno(abi_long ret) 582 { 583 if (ret == -1) 584 return -host_to_target_errno(errno); 585 else 586 return ret; 587 } 588 589 static inline int is_error(abi_long ret) 590 { 591 return (abi_ulong)ret >= (abi_ulong)(-4096); 592 } 593 594 char *target_strerror(int err) 595 { 596 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 597 return NULL; 598 } 599 return strerror(target_to_host_errno(err)); 600 } 601 602 static inline int host_to_target_sock_type(int host_type) 603 { 604 int target_type; 605 606 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 607 case SOCK_DGRAM: 608 target_type = TARGET_SOCK_DGRAM; 609 break; 610 case SOCK_STREAM: 611 target_type = TARGET_SOCK_STREAM; 612 break; 613 default: 614 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 615 break; 616 } 617 618 #if defined(SOCK_CLOEXEC) 619 if (host_type & SOCK_CLOEXEC) { 620 target_type |= TARGET_SOCK_CLOEXEC; 621 } 622 #endif 623 624 #if defined(SOCK_NONBLOCK) 625 if (host_type & SOCK_NONBLOCK) { 626 target_type |= TARGET_SOCK_NONBLOCK; 627 } 628 #endif 629 630 return target_type; 631 } 632 633 static abi_ulong target_brk; 634 static abi_ulong target_original_brk; 635 static abi_ulong brk_page; 636 637 void target_set_brk(abi_ulong new_brk) 638 { 639 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 640 brk_page = HOST_PAGE_ALIGN(target_brk); 641 } 642 643 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 644 #define DEBUGF_BRK(message, args...) 645 646 /* do_brk() must return target values and target errnos. */ 647 abi_long do_brk(abi_ulong new_brk) 648 { 649 abi_long mapped_addr; 650 int new_alloc_size; 651 652 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 653 654 if (!new_brk) { 655 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 656 return target_brk; 657 } 658 if (new_brk < target_original_brk) { 659 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 660 target_brk); 661 return target_brk; 662 } 663 664 /* If the new brk is less than the highest page reserved to the 665 * target heap allocation, set it and we're almost done... */ 666 if (new_brk <= brk_page) { 667 /* Heap contents are initialized to zero, as for anonymous 668 * mapped pages. */ 669 if (new_brk > target_brk) { 670 memset(g2h(target_brk), 0, new_brk - target_brk); 671 } 672 target_brk = new_brk; 673 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 674 return target_brk; 675 } 676 677 /* We need to allocate more memory after the brk... Note that 678 * we don't use MAP_FIXED because that will map over the top of 679 * any existing mapping (like the one with the host libc or qemu 680 * itself); instead we treat "mapped but at wrong address" as 681 * a failure and unmap again. 682 */ 683 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 684 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 685 PROT_READ|PROT_WRITE, 686 MAP_ANON|MAP_PRIVATE, 0, 0)); 687 688 if (mapped_addr == brk_page) { 689 /* Heap contents are initialized to zero, as for anonymous 690 * mapped pages. Technically the new pages are already 691 * initialized to zero since they *are* anonymous mapped 692 * pages, however we have to take care with the contents that 693 * come from the remaining part of the previous page: it may 694 * contains garbage data due to a previous heap usage (grown 695 * then shrunken). */ 696 memset(g2h(target_brk), 0, brk_page - target_brk); 697 698 target_brk = new_brk; 699 brk_page = HOST_PAGE_ALIGN(target_brk); 700 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 701 target_brk); 702 return target_brk; 703 } else if (mapped_addr != -1) { 704 /* Mapped but at wrong address, meaning there wasn't actually 705 * enough space for this brk. 706 */ 707 target_munmap(mapped_addr, new_alloc_size); 708 mapped_addr = -1; 709 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 710 } 711 else { 712 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 713 } 714 715 #if defined(TARGET_ALPHA) 716 /* We (partially) emulate OSF/1 on Alpha, which requires we 717 return a proper errno, not an unchanged brk value. */ 718 return -TARGET_ENOMEM; 719 #endif 720 /* For everything else, return the previous break. */ 721 return target_brk; 722 } 723 724 static inline abi_long copy_from_user_fdset(fd_set *fds, 725 abi_ulong target_fds_addr, 726 int n) 727 { 728 int i, nw, j, k; 729 abi_ulong b, *target_fds; 730 731 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS; 732 if (!(target_fds = lock_user(VERIFY_READ, 733 target_fds_addr, 734 sizeof(abi_ulong) * nw, 735 1))) 736 return -TARGET_EFAULT; 737 738 FD_ZERO(fds); 739 k = 0; 740 for (i = 0; i < nw; i++) { 741 /* grab the abi_ulong */ 742 __get_user(b, &target_fds[i]); 743 for (j = 0; j < TARGET_ABI_BITS; j++) { 744 /* check the bit inside the abi_ulong */ 745 if ((b >> j) & 1) 746 FD_SET(k, fds); 747 k++; 748 } 749 } 750 751 unlock_user(target_fds, target_fds_addr, 0); 752 753 return 0; 754 } 755 756 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 757 abi_ulong target_fds_addr, 758 int n) 759 { 760 if (target_fds_addr) { 761 if (copy_from_user_fdset(fds, target_fds_addr, n)) 762 return -TARGET_EFAULT; 763 *fds_ptr = fds; 764 } else { 765 *fds_ptr = NULL; 766 } 767 return 0; 768 } 769 770 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 771 const fd_set *fds, 772 int n) 773 { 774 int i, nw, j, k; 775 abi_long v; 776 abi_ulong *target_fds; 777 778 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS; 779 if (!(target_fds = lock_user(VERIFY_WRITE, 780 target_fds_addr, 781 sizeof(abi_ulong) * nw, 782 0))) 783 return -TARGET_EFAULT; 784 785 k = 0; 786 for (i = 0; i < nw; i++) { 787 v = 0; 788 for (j = 0; j < TARGET_ABI_BITS; j++) { 789 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 790 k++; 791 } 792 __put_user(v, &target_fds[i]); 793 } 794 795 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 796 797 return 0; 798 } 799 800 #if defined(__alpha__) 801 #define HOST_HZ 1024 802 #else 803 #define HOST_HZ 100 804 #endif 805 806 static inline abi_long host_to_target_clock_t(long ticks) 807 { 808 #if HOST_HZ == TARGET_HZ 809 return ticks; 810 #else 811 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 812 #endif 813 } 814 815 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 816 const struct rusage *rusage) 817 { 818 struct target_rusage *target_rusage; 819 820 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 821 return -TARGET_EFAULT; 822 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 823 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 824 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 825 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 826 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 827 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 828 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 829 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 830 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 831 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 832 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 833 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 834 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 835 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 836 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 837 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 838 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 839 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 840 unlock_user_struct(target_rusage, target_addr, 1); 841 842 return 0; 843 } 844 845 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 846 { 847 abi_ulong target_rlim_swap; 848 rlim_t result; 849 850 target_rlim_swap = tswapal(target_rlim); 851 if (target_rlim_swap == TARGET_RLIM_INFINITY) 852 return RLIM_INFINITY; 853 854 result = target_rlim_swap; 855 if (target_rlim_swap != (rlim_t)result) 856 return RLIM_INFINITY; 857 858 return result; 859 } 860 861 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 862 { 863 abi_ulong target_rlim_swap; 864 abi_ulong result; 865 866 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 867 target_rlim_swap = TARGET_RLIM_INFINITY; 868 else 869 target_rlim_swap = rlim; 870 result = tswapal(target_rlim_swap); 871 872 return result; 873 } 874 875 static inline int target_to_host_resource(int code) 876 { 877 switch (code) { 878 case TARGET_RLIMIT_AS: 879 return RLIMIT_AS; 880 case TARGET_RLIMIT_CORE: 881 return RLIMIT_CORE; 882 case TARGET_RLIMIT_CPU: 883 return RLIMIT_CPU; 884 case TARGET_RLIMIT_DATA: 885 return RLIMIT_DATA; 886 case TARGET_RLIMIT_FSIZE: 887 return RLIMIT_FSIZE; 888 case TARGET_RLIMIT_LOCKS: 889 return RLIMIT_LOCKS; 890 case TARGET_RLIMIT_MEMLOCK: 891 return RLIMIT_MEMLOCK; 892 case TARGET_RLIMIT_MSGQUEUE: 893 return RLIMIT_MSGQUEUE; 894 case TARGET_RLIMIT_NICE: 895 return RLIMIT_NICE; 896 case TARGET_RLIMIT_NOFILE: 897 return RLIMIT_NOFILE; 898 case TARGET_RLIMIT_NPROC: 899 return RLIMIT_NPROC; 900 case TARGET_RLIMIT_RSS: 901 return RLIMIT_RSS; 902 case TARGET_RLIMIT_RTPRIO: 903 return RLIMIT_RTPRIO; 904 case TARGET_RLIMIT_SIGPENDING: 905 return RLIMIT_SIGPENDING; 906 case TARGET_RLIMIT_STACK: 907 return RLIMIT_STACK; 908 default: 909 return code; 910 } 911 } 912 913 static inline abi_long copy_from_user_timeval(struct timeval *tv, 914 abi_ulong target_tv_addr) 915 { 916 struct target_timeval *target_tv; 917 918 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) 919 return -TARGET_EFAULT; 920 921 __get_user(tv->tv_sec, &target_tv->tv_sec); 922 __get_user(tv->tv_usec, &target_tv->tv_usec); 923 924 unlock_user_struct(target_tv, target_tv_addr, 0); 925 926 return 0; 927 } 928 929 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 930 const struct timeval *tv) 931 { 932 struct target_timeval *target_tv; 933 934 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) 935 return -TARGET_EFAULT; 936 937 __put_user(tv->tv_sec, &target_tv->tv_sec); 938 __put_user(tv->tv_usec, &target_tv->tv_usec); 939 940 unlock_user_struct(target_tv, target_tv_addr, 1); 941 942 return 0; 943 } 944 945 static inline abi_long copy_from_user_timezone(struct timezone *tz, 946 abi_ulong target_tz_addr) 947 { 948 struct target_timezone *target_tz; 949 950 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 951 return -TARGET_EFAULT; 952 } 953 954 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 955 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 956 957 unlock_user_struct(target_tz, target_tz_addr, 0); 958 959 return 0; 960 } 961 962 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 963 #include <mqueue.h> 964 965 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 966 abi_ulong target_mq_attr_addr) 967 { 968 struct target_mq_attr *target_mq_attr; 969 970 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 971 target_mq_attr_addr, 1)) 972 return -TARGET_EFAULT; 973 974 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 975 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 976 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 977 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 978 979 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 980 981 return 0; 982 } 983 984 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 985 const struct mq_attr *attr) 986 { 987 struct target_mq_attr *target_mq_attr; 988 989 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 990 target_mq_attr_addr, 0)) 991 return -TARGET_EFAULT; 992 993 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 994 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 995 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 996 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 997 998 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 999 1000 return 0; 1001 } 1002 #endif 1003 1004 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1005 /* do_select() must return target values and target errnos. */ 1006 static abi_long do_select(int n, 1007 abi_ulong rfd_addr, abi_ulong wfd_addr, 1008 abi_ulong efd_addr, abi_ulong target_tv_addr) 1009 { 1010 fd_set rfds, wfds, efds; 1011 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1012 struct timeval tv, *tv_ptr; 1013 abi_long ret; 1014 1015 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1016 if (ret) { 1017 return ret; 1018 } 1019 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1020 if (ret) { 1021 return ret; 1022 } 1023 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1024 if (ret) { 1025 return ret; 1026 } 1027 1028 if (target_tv_addr) { 1029 if (copy_from_user_timeval(&tv, target_tv_addr)) 1030 return -TARGET_EFAULT; 1031 tv_ptr = &tv; 1032 } else { 1033 tv_ptr = NULL; 1034 } 1035 1036 ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr)); 1037 1038 if (!is_error(ret)) { 1039 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1040 return -TARGET_EFAULT; 1041 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1042 return -TARGET_EFAULT; 1043 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1044 return -TARGET_EFAULT; 1045 1046 if (target_tv_addr && copy_to_user_timeval(target_tv_addr, &tv)) 1047 return -TARGET_EFAULT; 1048 } 1049 1050 return ret; 1051 } 1052 #endif 1053 1054 static abi_long do_pipe2(int host_pipe[], int flags) 1055 { 1056 #ifdef CONFIG_PIPE2 1057 return pipe2(host_pipe, flags); 1058 #else 1059 return -ENOSYS; 1060 #endif 1061 } 1062 1063 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1064 int flags, int is_pipe2) 1065 { 1066 int host_pipe[2]; 1067 abi_long ret; 1068 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1069 1070 if (is_error(ret)) 1071 return get_errno(ret); 1072 1073 /* Several targets have special calling conventions for the original 1074 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1075 if (!is_pipe2) { 1076 #if defined(TARGET_ALPHA) 1077 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1078 return host_pipe[0]; 1079 #elif defined(TARGET_MIPS) 1080 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1081 return host_pipe[0]; 1082 #elif defined(TARGET_SH4) 1083 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1084 return host_pipe[0]; 1085 #elif defined(TARGET_SPARC) 1086 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1087 return host_pipe[0]; 1088 #endif 1089 } 1090 1091 if (put_user_s32(host_pipe[0], pipedes) 1092 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1093 return -TARGET_EFAULT; 1094 return get_errno(ret); 1095 } 1096 1097 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1098 abi_ulong target_addr, 1099 socklen_t len) 1100 { 1101 struct target_ip_mreqn *target_smreqn; 1102 1103 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1104 if (!target_smreqn) 1105 return -TARGET_EFAULT; 1106 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1107 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1108 if (len == sizeof(struct target_ip_mreqn)) 1109 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1110 unlock_user(target_smreqn, target_addr, 0); 1111 1112 return 0; 1113 } 1114 1115 static inline abi_long target_to_host_sockaddr(struct sockaddr *addr, 1116 abi_ulong target_addr, 1117 socklen_t len) 1118 { 1119 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1120 sa_family_t sa_family; 1121 struct target_sockaddr *target_saddr; 1122 1123 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1124 if (!target_saddr) 1125 return -TARGET_EFAULT; 1126 1127 sa_family = tswap16(target_saddr->sa_family); 1128 1129 /* Oops. The caller might send a incomplete sun_path; sun_path 1130 * must be terminated by \0 (see the manual page), but 1131 * unfortunately it is quite common to specify sockaddr_un 1132 * length as "strlen(x->sun_path)" while it should be 1133 * "strlen(...) + 1". We'll fix that here if needed. 1134 * Linux kernel has a similar feature. 1135 */ 1136 1137 if (sa_family == AF_UNIX) { 1138 if (len < unix_maxlen && len > 0) { 1139 char *cp = (char*)target_saddr; 1140 1141 if ( cp[len-1] && !cp[len] ) 1142 len++; 1143 } 1144 if (len > unix_maxlen) 1145 len = unix_maxlen; 1146 } 1147 1148 memcpy(addr, target_saddr, len); 1149 addr->sa_family = sa_family; 1150 if (sa_family == AF_PACKET) { 1151 struct target_sockaddr_ll *lladdr; 1152 1153 lladdr = (struct target_sockaddr_ll *)addr; 1154 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1155 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1156 } 1157 unlock_user(target_saddr, target_addr, 0); 1158 1159 return 0; 1160 } 1161 1162 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1163 struct sockaddr *addr, 1164 socklen_t len) 1165 { 1166 struct target_sockaddr *target_saddr; 1167 1168 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1169 if (!target_saddr) 1170 return -TARGET_EFAULT; 1171 memcpy(target_saddr, addr, len); 1172 target_saddr->sa_family = tswap16(addr->sa_family); 1173 unlock_user(target_saddr, target_addr, len); 1174 1175 return 0; 1176 } 1177 1178 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1179 struct target_msghdr *target_msgh) 1180 { 1181 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1182 abi_long msg_controllen; 1183 abi_ulong target_cmsg_addr; 1184 struct target_cmsghdr *target_cmsg; 1185 socklen_t space = 0; 1186 1187 msg_controllen = tswapal(target_msgh->msg_controllen); 1188 if (msg_controllen < sizeof (struct target_cmsghdr)) 1189 goto the_end; 1190 target_cmsg_addr = tswapal(target_msgh->msg_control); 1191 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1192 if (!target_cmsg) 1193 return -TARGET_EFAULT; 1194 1195 while (cmsg && target_cmsg) { 1196 void *data = CMSG_DATA(cmsg); 1197 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1198 1199 int len = tswapal(target_cmsg->cmsg_len) 1200 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr)); 1201 1202 space += CMSG_SPACE(len); 1203 if (space > msgh->msg_controllen) { 1204 space -= CMSG_SPACE(len); 1205 gemu_log("Host cmsg overflow\n"); 1206 break; 1207 } 1208 1209 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1210 cmsg->cmsg_level = SOL_SOCKET; 1211 } else { 1212 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1213 } 1214 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1215 cmsg->cmsg_len = CMSG_LEN(len); 1216 1217 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1218 int *fd = (int *)data; 1219 int *target_fd = (int *)target_data; 1220 int i, numfds = len / sizeof(int); 1221 1222 for (i = 0; i < numfds; i++) 1223 fd[i] = tswap32(target_fd[i]); 1224 } else if (cmsg->cmsg_level == SOL_SOCKET 1225 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1226 struct ucred *cred = (struct ucred *)data; 1227 struct target_ucred *target_cred = 1228 (struct target_ucred *)target_data; 1229 1230 __put_user(target_cred->pid, &cred->pid); 1231 __put_user(target_cred->uid, &cred->uid); 1232 __put_user(target_cred->gid, &cred->gid); 1233 } else { 1234 gemu_log("Unsupported ancillary data: %d/%d\n", 1235 cmsg->cmsg_level, cmsg->cmsg_type); 1236 memcpy(data, target_data, len); 1237 } 1238 1239 cmsg = CMSG_NXTHDR(msgh, cmsg); 1240 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); 1241 } 1242 unlock_user(target_cmsg, target_cmsg_addr, 0); 1243 the_end: 1244 msgh->msg_controllen = space; 1245 return 0; 1246 } 1247 1248 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1249 struct msghdr *msgh) 1250 { 1251 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1252 abi_long msg_controllen; 1253 abi_ulong target_cmsg_addr; 1254 struct target_cmsghdr *target_cmsg; 1255 socklen_t space = 0; 1256 1257 msg_controllen = tswapal(target_msgh->msg_controllen); 1258 if (msg_controllen < sizeof (struct target_cmsghdr)) 1259 goto the_end; 1260 target_cmsg_addr = tswapal(target_msgh->msg_control); 1261 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1262 if (!target_cmsg) 1263 return -TARGET_EFAULT; 1264 1265 while (cmsg && target_cmsg) { 1266 void *data = CMSG_DATA(cmsg); 1267 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1268 1269 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr)); 1270 1271 space += TARGET_CMSG_SPACE(len); 1272 if (space > msg_controllen) { 1273 space -= TARGET_CMSG_SPACE(len); 1274 gemu_log("Target cmsg overflow\n"); 1275 break; 1276 } 1277 1278 if (cmsg->cmsg_level == SOL_SOCKET) { 1279 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1280 } else { 1281 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1282 } 1283 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1284 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(len)); 1285 1286 switch (cmsg->cmsg_level) { 1287 case SOL_SOCKET: 1288 switch (cmsg->cmsg_type) { 1289 case SCM_RIGHTS: 1290 { 1291 int *fd = (int *)data; 1292 int *target_fd = (int *)target_data; 1293 int i, numfds = len / sizeof(int); 1294 1295 for (i = 0; i < numfds; i++) 1296 target_fd[i] = tswap32(fd[i]); 1297 break; 1298 } 1299 case SO_TIMESTAMP: 1300 { 1301 struct timeval *tv = (struct timeval *)data; 1302 struct target_timeval *target_tv = 1303 (struct target_timeval *)target_data; 1304 1305 if (len != sizeof(struct timeval)) 1306 goto unimplemented; 1307 1308 /* copy struct timeval to target */ 1309 target_tv->tv_sec = tswapal(tv->tv_sec); 1310 target_tv->tv_usec = tswapal(tv->tv_usec); 1311 break; 1312 } 1313 case SCM_CREDENTIALS: 1314 { 1315 struct ucred *cred = (struct ucred *)data; 1316 struct target_ucred *target_cred = 1317 (struct target_ucred *)target_data; 1318 1319 __put_user(cred->pid, &target_cred->pid); 1320 __put_user(cred->uid, &target_cred->uid); 1321 __put_user(cred->gid, &target_cred->gid); 1322 break; 1323 } 1324 default: 1325 goto unimplemented; 1326 } 1327 break; 1328 1329 default: 1330 unimplemented: 1331 gemu_log("Unsupported ancillary data: %d/%d\n", 1332 cmsg->cmsg_level, cmsg->cmsg_type); 1333 memcpy(target_data, data, len); 1334 } 1335 1336 cmsg = CMSG_NXTHDR(msgh, cmsg); 1337 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); 1338 } 1339 unlock_user(target_cmsg, target_cmsg_addr, space); 1340 the_end: 1341 target_msgh->msg_controllen = tswapal(space); 1342 return 0; 1343 } 1344 1345 /* do_setsockopt() Must return target values and target errnos. */ 1346 static abi_long do_setsockopt(int sockfd, int level, int optname, 1347 abi_ulong optval_addr, socklen_t optlen) 1348 { 1349 abi_long ret; 1350 int val; 1351 struct ip_mreqn *ip_mreq; 1352 struct ip_mreq_source *ip_mreq_source; 1353 1354 switch(level) { 1355 case SOL_TCP: 1356 /* TCP options all take an 'int' value. */ 1357 if (optlen < sizeof(uint32_t)) 1358 return -TARGET_EINVAL; 1359 1360 if (get_user_u32(val, optval_addr)) 1361 return -TARGET_EFAULT; 1362 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 1363 break; 1364 case SOL_IP: 1365 switch(optname) { 1366 case IP_TOS: 1367 case IP_TTL: 1368 case IP_HDRINCL: 1369 case IP_ROUTER_ALERT: 1370 case IP_RECVOPTS: 1371 case IP_RETOPTS: 1372 case IP_PKTINFO: 1373 case IP_MTU_DISCOVER: 1374 case IP_RECVERR: 1375 case IP_RECVTOS: 1376 #ifdef IP_FREEBIND 1377 case IP_FREEBIND: 1378 #endif 1379 case IP_MULTICAST_TTL: 1380 case IP_MULTICAST_LOOP: 1381 val = 0; 1382 if (optlen >= sizeof(uint32_t)) { 1383 if (get_user_u32(val, optval_addr)) 1384 return -TARGET_EFAULT; 1385 } else if (optlen >= 1) { 1386 if (get_user_u8(val, optval_addr)) 1387 return -TARGET_EFAULT; 1388 } 1389 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 1390 break; 1391 case IP_ADD_MEMBERSHIP: 1392 case IP_DROP_MEMBERSHIP: 1393 if (optlen < sizeof (struct target_ip_mreq) || 1394 optlen > sizeof (struct target_ip_mreqn)) 1395 return -TARGET_EINVAL; 1396 1397 ip_mreq = (struct ip_mreqn *) alloca(optlen); 1398 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 1399 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 1400 break; 1401 1402 case IP_BLOCK_SOURCE: 1403 case IP_UNBLOCK_SOURCE: 1404 case IP_ADD_SOURCE_MEMBERSHIP: 1405 case IP_DROP_SOURCE_MEMBERSHIP: 1406 if (optlen != sizeof (struct target_ip_mreq_source)) 1407 return -TARGET_EINVAL; 1408 1409 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 1410 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 1411 unlock_user (ip_mreq_source, optval_addr, 0); 1412 break; 1413 1414 default: 1415 goto unimplemented; 1416 } 1417 break; 1418 case SOL_IPV6: 1419 switch (optname) { 1420 case IPV6_MTU_DISCOVER: 1421 case IPV6_MTU: 1422 case IPV6_V6ONLY: 1423 case IPV6_RECVPKTINFO: 1424 val = 0; 1425 if (optlen < sizeof(uint32_t)) { 1426 return -TARGET_EINVAL; 1427 } 1428 if (get_user_u32(val, optval_addr)) { 1429 return -TARGET_EFAULT; 1430 } 1431 ret = get_errno(setsockopt(sockfd, level, optname, 1432 &val, sizeof(val))); 1433 break; 1434 default: 1435 goto unimplemented; 1436 } 1437 break; 1438 case SOL_RAW: 1439 switch (optname) { 1440 case ICMP_FILTER: 1441 /* struct icmp_filter takes an u32 value */ 1442 if (optlen < sizeof(uint32_t)) { 1443 return -TARGET_EINVAL; 1444 } 1445 1446 if (get_user_u32(val, optval_addr)) { 1447 return -TARGET_EFAULT; 1448 } 1449 ret = get_errno(setsockopt(sockfd, level, optname, 1450 &val, sizeof(val))); 1451 break; 1452 1453 default: 1454 goto unimplemented; 1455 } 1456 break; 1457 case TARGET_SOL_SOCKET: 1458 switch (optname) { 1459 case TARGET_SO_RCVTIMEO: 1460 { 1461 struct timeval tv; 1462 1463 optname = SO_RCVTIMEO; 1464 1465 set_timeout: 1466 if (optlen != sizeof(struct target_timeval)) { 1467 return -TARGET_EINVAL; 1468 } 1469 1470 if (copy_from_user_timeval(&tv, optval_addr)) { 1471 return -TARGET_EFAULT; 1472 } 1473 1474 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 1475 &tv, sizeof(tv))); 1476 return ret; 1477 } 1478 case TARGET_SO_SNDTIMEO: 1479 optname = SO_SNDTIMEO; 1480 goto set_timeout; 1481 case TARGET_SO_ATTACH_FILTER: 1482 { 1483 struct target_sock_fprog *tfprog; 1484 struct target_sock_filter *tfilter; 1485 struct sock_fprog fprog; 1486 struct sock_filter *filter; 1487 int i; 1488 1489 if (optlen != sizeof(*tfprog)) { 1490 return -TARGET_EINVAL; 1491 } 1492 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 1493 return -TARGET_EFAULT; 1494 } 1495 if (!lock_user_struct(VERIFY_READ, tfilter, 1496 tswapal(tfprog->filter), 0)) { 1497 unlock_user_struct(tfprog, optval_addr, 1); 1498 return -TARGET_EFAULT; 1499 } 1500 1501 fprog.len = tswap16(tfprog->len); 1502 filter = malloc(fprog.len * sizeof(*filter)); 1503 if (filter == NULL) { 1504 unlock_user_struct(tfilter, tfprog->filter, 1); 1505 unlock_user_struct(tfprog, optval_addr, 1); 1506 return -TARGET_ENOMEM; 1507 } 1508 for (i = 0; i < fprog.len; i++) { 1509 filter[i].code = tswap16(tfilter[i].code); 1510 filter[i].jt = tfilter[i].jt; 1511 filter[i].jf = tfilter[i].jf; 1512 filter[i].k = tswap32(tfilter[i].k); 1513 } 1514 fprog.filter = filter; 1515 1516 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 1517 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 1518 free(filter); 1519 1520 unlock_user_struct(tfilter, tfprog->filter, 1); 1521 unlock_user_struct(tfprog, optval_addr, 1); 1522 return ret; 1523 } 1524 case TARGET_SO_BINDTODEVICE: 1525 { 1526 char *dev_ifname, *addr_ifname; 1527 1528 if (optlen > IFNAMSIZ - 1) { 1529 optlen = IFNAMSIZ - 1; 1530 } 1531 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 1532 if (!dev_ifname) { 1533 return -TARGET_EFAULT; 1534 } 1535 optname = SO_BINDTODEVICE; 1536 addr_ifname = alloca(IFNAMSIZ); 1537 memcpy(addr_ifname, dev_ifname, optlen); 1538 addr_ifname[optlen] = 0; 1539 ret = get_errno(setsockopt(sockfd, level, optname, addr_ifname, optlen)); 1540 unlock_user (dev_ifname, optval_addr, 0); 1541 return ret; 1542 } 1543 /* Options with 'int' argument. */ 1544 case TARGET_SO_DEBUG: 1545 optname = SO_DEBUG; 1546 break; 1547 case TARGET_SO_REUSEADDR: 1548 optname = SO_REUSEADDR; 1549 break; 1550 case TARGET_SO_TYPE: 1551 optname = SO_TYPE; 1552 break; 1553 case TARGET_SO_ERROR: 1554 optname = SO_ERROR; 1555 break; 1556 case TARGET_SO_DONTROUTE: 1557 optname = SO_DONTROUTE; 1558 break; 1559 case TARGET_SO_BROADCAST: 1560 optname = SO_BROADCAST; 1561 break; 1562 case TARGET_SO_SNDBUF: 1563 optname = SO_SNDBUF; 1564 break; 1565 case TARGET_SO_SNDBUFFORCE: 1566 optname = SO_SNDBUFFORCE; 1567 break; 1568 case TARGET_SO_RCVBUF: 1569 optname = SO_RCVBUF; 1570 break; 1571 case TARGET_SO_RCVBUFFORCE: 1572 optname = SO_RCVBUFFORCE; 1573 break; 1574 case TARGET_SO_KEEPALIVE: 1575 optname = SO_KEEPALIVE; 1576 break; 1577 case TARGET_SO_OOBINLINE: 1578 optname = SO_OOBINLINE; 1579 break; 1580 case TARGET_SO_NO_CHECK: 1581 optname = SO_NO_CHECK; 1582 break; 1583 case TARGET_SO_PRIORITY: 1584 optname = SO_PRIORITY; 1585 break; 1586 #ifdef SO_BSDCOMPAT 1587 case TARGET_SO_BSDCOMPAT: 1588 optname = SO_BSDCOMPAT; 1589 break; 1590 #endif 1591 case TARGET_SO_PASSCRED: 1592 optname = SO_PASSCRED; 1593 break; 1594 case TARGET_SO_PASSSEC: 1595 optname = SO_PASSSEC; 1596 break; 1597 case TARGET_SO_TIMESTAMP: 1598 optname = SO_TIMESTAMP; 1599 break; 1600 case TARGET_SO_RCVLOWAT: 1601 optname = SO_RCVLOWAT; 1602 break; 1603 break; 1604 default: 1605 goto unimplemented; 1606 } 1607 if (optlen < sizeof(uint32_t)) 1608 return -TARGET_EINVAL; 1609 1610 if (get_user_u32(val, optval_addr)) 1611 return -TARGET_EFAULT; 1612 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 1613 break; 1614 default: 1615 unimplemented: 1616 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname); 1617 ret = -TARGET_ENOPROTOOPT; 1618 } 1619 return ret; 1620 } 1621 1622 /* do_getsockopt() Must return target values and target errnos. */ 1623 static abi_long do_getsockopt(int sockfd, int level, int optname, 1624 abi_ulong optval_addr, abi_ulong optlen) 1625 { 1626 abi_long ret; 1627 int len, val; 1628 socklen_t lv; 1629 1630 switch(level) { 1631 case TARGET_SOL_SOCKET: 1632 level = SOL_SOCKET; 1633 switch (optname) { 1634 /* These don't just return a single integer */ 1635 case TARGET_SO_LINGER: 1636 case TARGET_SO_RCVTIMEO: 1637 case TARGET_SO_SNDTIMEO: 1638 case TARGET_SO_PEERNAME: 1639 goto unimplemented; 1640 case TARGET_SO_PEERCRED: { 1641 struct ucred cr; 1642 socklen_t crlen; 1643 struct target_ucred *tcr; 1644 1645 if (get_user_u32(len, optlen)) { 1646 return -TARGET_EFAULT; 1647 } 1648 if (len < 0) { 1649 return -TARGET_EINVAL; 1650 } 1651 1652 crlen = sizeof(cr); 1653 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 1654 &cr, &crlen)); 1655 if (ret < 0) { 1656 return ret; 1657 } 1658 if (len > crlen) { 1659 len = crlen; 1660 } 1661 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 1662 return -TARGET_EFAULT; 1663 } 1664 __put_user(cr.pid, &tcr->pid); 1665 __put_user(cr.uid, &tcr->uid); 1666 __put_user(cr.gid, &tcr->gid); 1667 unlock_user_struct(tcr, optval_addr, 1); 1668 if (put_user_u32(len, optlen)) { 1669 return -TARGET_EFAULT; 1670 } 1671 break; 1672 } 1673 /* Options with 'int' argument. */ 1674 case TARGET_SO_DEBUG: 1675 optname = SO_DEBUG; 1676 goto int_case; 1677 case TARGET_SO_REUSEADDR: 1678 optname = SO_REUSEADDR; 1679 goto int_case; 1680 case TARGET_SO_TYPE: 1681 optname = SO_TYPE; 1682 goto int_case; 1683 case TARGET_SO_ERROR: 1684 optname = SO_ERROR; 1685 goto int_case; 1686 case TARGET_SO_DONTROUTE: 1687 optname = SO_DONTROUTE; 1688 goto int_case; 1689 case TARGET_SO_BROADCAST: 1690 optname = SO_BROADCAST; 1691 goto int_case; 1692 case TARGET_SO_SNDBUF: 1693 optname = SO_SNDBUF; 1694 goto int_case; 1695 case TARGET_SO_RCVBUF: 1696 optname = SO_RCVBUF; 1697 goto int_case; 1698 case TARGET_SO_KEEPALIVE: 1699 optname = SO_KEEPALIVE; 1700 goto int_case; 1701 case TARGET_SO_OOBINLINE: 1702 optname = SO_OOBINLINE; 1703 goto int_case; 1704 case TARGET_SO_NO_CHECK: 1705 optname = SO_NO_CHECK; 1706 goto int_case; 1707 case TARGET_SO_PRIORITY: 1708 optname = SO_PRIORITY; 1709 goto int_case; 1710 #ifdef SO_BSDCOMPAT 1711 case TARGET_SO_BSDCOMPAT: 1712 optname = SO_BSDCOMPAT; 1713 goto int_case; 1714 #endif 1715 case TARGET_SO_PASSCRED: 1716 optname = SO_PASSCRED; 1717 goto int_case; 1718 case TARGET_SO_TIMESTAMP: 1719 optname = SO_TIMESTAMP; 1720 goto int_case; 1721 case TARGET_SO_RCVLOWAT: 1722 optname = SO_RCVLOWAT; 1723 goto int_case; 1724 case TARGET_SO_ACCEPTCONN: 1725 optname = SO_ACCEPTCONN; 1726 goto int_case; 1727 default: 1728 goto int_case; 1729 } 1730 break; 1731 case SOL_TCP: 1732 /* TCP options all take an 'int' value. */ 1733 int_case: 1734 if (get_user_u32(len, optlen)) 1735 return -TARGET_EFAULT; 1736 if (len < 0) 1737 return -TARGET_EINVAL; 1738 lv = sizeof(lv); 1739 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 1740 if (ret < 0) 1741 return ret; 1742 if (optname == SO_TYPE) { 1743 val = host_to_target_sock_type(val); 1744 } 1745 if (len > lv) 1746 len = lv; 1747 if (len == 4) { 1748 if (put_user_u32(val, optval_addr)) 1749 return -TARGET_EFAULT; 1750 } else { 1751 if (put_user_u8(val, optval_addr)) 1752 return -TARGET_EFAULT; 1753 } 1754 if (put_user_u32(len, optlen)) 1755 return -TARGET_EFAULT; 1756 break; 1757 case SOL_IP: 1758 switch(optname) { 1759 case IP_TOS: 1760 case IP_TTL: 1761 case IP_HDRINCL: 1762 case IP_ROUTER_ALERT: 1763 case IP_RECVOPTS: 1764 case IP_RETOPTS: 1765 case IP_PKTINFO: 1766 case IP_MTU_DISCOVER: 1767 case IP_RECVERR: 1768 case IP_RECVTOS: 1769 #ifdef IP_FREEBIND 1770 case IP_FREEBIND: 1771 #endif 1772 case IP_MULTICAST_TTL: 1773 case IP_MULTICAST_LOOP: 1774 if (get_user_u32(len, optlen)) 1775 return -TARGET_EFAULT; 1776 if (len < 0) 1777 return -TARGET_EINVAL; 1778 lv = sizeof(lv); 1779 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 1780 if (ret < 0) 1781 return ret; 1782 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 1783 len = 1; 1784 if (put_user_u32(len, optlen) 1785 || put_user_u8(val, optval_addr)) 1786 return -TARGET_EFAULT; 1787 } else { 1788 if (len > sizeof(int)) 1789 len = sizeof(int); 1790 if (put_user_u32(len, optlen) 1791 || put_user_u32(val, optval_addr)) 1792 return -TARGET_EFAULT; 1793 } 1794 break; 1795 default: 1796 ret = -TARGET_ENOPROTOOPT; 1797 break; 1798 } 1799 break; 1800 default: 1801 unimplemented: 1802 gemu_log("getsockopt level=%d optname=%d not yet supported\n", 1803 level, optname); 1804 ret = -TARGET_EOPNOTSUPP; 1805 break; 1806 } 1807 return ret; 1808 } 1809 1810 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 1811 int count, int copy) 1812 { 1813 struct target_iovec *target_vec; 1814 struct iovec *vec; 1815 abi_ulong total_len, max_len; 1816 int i; 1817 int err = 0; 1818 bool bad_address = false; 1819 1820 if (count == 0) { 1821 errno = 0; 1822 return NULL; 1823 } 1824 if (count < 0 || count > IOV_MAX) { 1825 errno = EINVAL; 1826 return NULL; 1827 } 1828 1829 vec = calloc(count, sizeof(struct iovec)); 1830 if (vec == NULL) { 1831 errno = ENOMEM; 1832 return NULL; 1833 } 1834 1835 target_vec = lock_user(VERIFY_READ, target_addr, 1836 count * sizeof(struct target_iovec), 1); 1837 if (target_vec == NULL) { 1838 err = EFAULT; 1839 goto fail2; 1840 } 1841 1842 /* ??? If host page size > target page size, this will result in a 1843 value larger than what we can actually support. */ 1844 max_len = 0x7fffffff & TARGET_PAGE_MASK; 1845 total_len = 0; 1846 1847 for (i = 0; i < count; i++) { 1848 abi_ulong base = tswapal(target_vec[i].iov_base); 1849 abi_long len = tswapal(target_vec[i].iov_len); 1850 1851 if (len < 0) { 1852 err = EINVAL; 1853 goto fail; 1854 } else if (len == 0) { 1855 /* Zero length pointer is ignored. */ 1856 vec[i].iov_base = 0; 1857 } else { 1858 vec[i].iov_base = lock_user(type, base, len, copy); 1859 /* If the first buffer pointer is bad, this is a fault. But 1860 * subsequent bad buffers will result in a partial write; this 1861 * is realized by filling the vector with null pointers and 1862 * zero lengths. */ 1863 if (!vec[i].iov_base) { 1864 if (i == 0) { 1865 err = EFAULT; 1866 goto fail; 1867 } else { 1868 bad_address = true; 1869 } 1870 } 1871 if (bad_address) { 1872 len = 0; 1873 } 1874 if (len > max_len - total_len) { 1875 len = max_len - total_len; 1876 } 1877 } 1878 vec[i].iov_len = len; 1879 total_len += len; 1880 } 1881 1882 unlock_user(target_vec, target_addr, 0); 1883 return vec; 1884 1885 fail: 1886 while (--i >= 0) { 1887 if (tswapal(target_vec[i].iov_len) > 0) { 1888 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 1889 } 1890 } 1891 unlock_user(target_vec, target_addr, 0); 1892 fail2: 1893 free(vec); 1894 errno = err; 1895 return NULL; 1896 } 1897 1898 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 1899 int count, int copy) 1900 { 1901 struct target_iovec *target_vec; 1902 int i; 1903 1904 target_vec = lock_user(VERIFY_READ, target_addr, 1905 count * sizeof(struct target_iovec), 1); 1906 if (target_vec) { 1907 for (i = 0; i < count; i++) { 1908 abi_ulong base = tswapal(target_vec[i].iov_base); 1909 abi_long len = tswapal(target_vec[i].iov_len); 1910 if (len < 0) { 1911 break; 1912 } 1913 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 1914 } 1915 unlock_user(target_vec, target_addr, 0); 1916 } 1917 1918 free(vec); 1919 } 1920 1921 static inline int target_to_host_sock_type(int *type) 1922 { 1923 int host_type = 0; 1924 int target_type = *type; 1925 1926 switch (target_type & TARGET_SOCK_TYPE_MASK) { 1927 case TARGET_SOCK_DGRAM: 1928 host_type = SOCK_DGRAM; 1929 break; 1930 case TARGET_SOCK_STREAM: 1931 host_type = SOCK_STREAM; 1932 break; 1933 default: 1934 host_type = target_type & TARGET_SOCK_TYPE_MASK; 1935 break; 1936 } 1937 if (target_type & TARGET_SOCK_CLOEXEC) { 1938 #if defined(SOCK_CLOEXEC) 1939 host_type |= SOCK_CLOEXEC; 1940 #else 1941 return -TARGET_EINVAL; 1942 #endif 1943 } 1944 if (target_type & TARGET_SOCK_NONBLOCK) { 1945 #if defined(SOCK_NONBLOCK) 1946 host_type |= SOCK_NONBLOCK; 1947 #elif !defined(O_NONBLOCK) 1948 return -TARGET_EINVAL; 1949 #endif 1950 } 1951 *type = host_type; 1952 return 0; 1953 } 1954 1955 /* Try to emulate socket type flags after socket creation. */ 1956 static int sock_flags_fixup(int fd, int target_type) 1957 { 1958 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 1959 if (target_type & TARGET_SOCK_NONBLOCK) { 1960 int flags = fcntl(fd, F_GETFL); 1961 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 1962 close(fd); 1963 return -TARGET_EINVAL; 1964 } 1965 } 1966 #endif 1967 return fd; 1968 } 1969 1970 /* do_socket() Must return target values and target errnos. */ 1971 static abi_long do_socket(int domain, int type, int protocol) 1972 { 1973 int target_type = type; 1974 int ret; 1975 1976 ret = target_to_host_sock_type(&type); 1977 if (ret) { 1978 return ret; 1979 } 1980 1981 if (domain == PF_NETLINK) 1982 return -TARGET_EAFNOSUPPORT; 1983 ret = get_errno(socket(domain, type, protocol)); 1984 if (ret >= 0) { 1985 ret = sock_flags_fixup(ret, target_type); 1986 } 1987 return ret; 1988 } 1989 1990 /* do_bind() Must return target values and target errnos. */ 1991 static abi_long do_bind(int sockfd, abi_ulong target_addr, 1992 socklen_t addrlen) 1993 { 1994 void *addr; 1995 abi_long ret; 1996 1997 if ((int)addrlen < 0) { 1998 return -TARGET_EINVAL; 1999 } 2000 2001 addr = alloca(addrlen+1); 2002 2003 ret = target_to_host_sockaddr(addr, target_addr, addrlen); 2004 if (ret) 2005 return ret; 2006 2007 return get_errno(bind(sockfd, addr, addrlen)); 2008 } 2009 2010 /* do_connect() Must return target values and target errnos. */ 2011 static abi_long do_connect(int sockfd, abi_ulong target_addr, 2012 socklen_t addrlen) 2013 { 2014 void *addr; 2015 abi_long ret; 2016 2017 if ((int)addrlen < 0) { 2018 return -TARGET_EINVAL; 2019 } 2020 2021 addr = alloca(addrlen+1); 2022 2023 ret = target_to_host_sockaddr(addr, target_addr, addrlen); 2024 if (ret) 2025 return ret; 2026 2027 return get_errno(connect(sockfd, addr, addrlen)); 2028 } 2029 2030 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 2031 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 2032 int flags, int send) 2033 { 2034 abi_long ret, len; 2035 struct msghdr msg; 2036 int count; 2037 struct iovec *vec; 2038 abi_ulong target_vec; 2039 2040 if (msgp->msg_name) { 2041 msg.msg_namelen = tswap32(msgp->msg_namelen); 2042 msg.msg_name = alloca(msg.msg_namelen+1); 2043 ret = target_to_host_sockaddr(msg.msg_name, tswapal(msgp->msg_name), 2044 msg.msg_namelen); 2045 if (ret) { 2046 goto out2; 2047 } 2048 } else { 2049 msg.msg_name = NULL; 2050 msg.msg_namelen = 0; 2051 } 2052 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 2053 msg.msg_control = alloca(msg.msg_controllen); 2054 msg.msg_flags = tswap32(msgp->msg_flags); 2055 2056 count = tswapal(msgp->msg_iovlen); 2057 target_vec = tswapal(msgp->msg_iov); 2058 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 2059 target_vec, count, send); 2060 if (vec == NULL) { 2061 ret = -host_to_target_errno(errno); 2062 goto out2; 2063 } 2064 msg.msg_iovlen = count; 2065 msg.msg_iov = vec; 2066 2067 if (send) { 2068 ret = target_to_host_cmsg(&msg, msgp); 2069 if (ret == 0) 2070 ret = get_errno(sendmsg(fd, &msg, flags)); 2071 } else { 2072 ret = get_errno(recvmsg(fd, &msg, flags)); 2073 if (!is_error(ret)) { 2074 len = ret; 2075 ret = host_to_target_cmsg(msgp, &msg); 2076 if (!is_error(ret)) { 2077 msgp->msg_namelen = tswap32(msg.msg_namelen); 2078 if (msg.msg_name != NULL) { 2079 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 2080 msg.msg_name, msg.msg_namelen); 2081 if (ret) { 2082 goto out; 2083 } 2084 } 2085 2086 ret = len; 2087 } 2088 } 2089 } 2090 2091 out: 2092 unlock_iovec(vec, target_vec, count, !send); 2093 out2: 2094 return ret; 2095 } 2096 2097 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 2098 int flags, int send) 2099 { 2100 abi_long ret; 2101 struct target_msghdr *msgp; 2102 2103 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 2104 msgp, 2105 target_msg, 2106 send ? 1 : 0)) { 2107 return -TARGET_EFAULT; 2108 } 2109 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 2110 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 2111 return ret; 2112 } 2113 2114 #ifdef TARGET_NR_sendmmsg 2115 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 2116 * so it might not have this *mmsg-specific flag either. 2117 */ 2118 #ifndef MSG_WAITFORONE 2119 #define MSG_WAITFORONE 0x10000 2120 #endif 2121 2122 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 2123 unsigned int vlen, unsigned int flags, 2124 int send) 2125 { 2126 struct target_mmsghdr *mmsgp; 2127 abi_long ret = 0; 2128 int i; 2129 2130 if (vlen > UIO_MAXIOV) { 2131 vlen = UIO_MAXIOV; 2132 } 2133 2134 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 2135 if (!mmsgp) { 2136 return -TARGET_EFAULT; 2137 } 2138 2139 for (i = 0; i < vlen; i++) { 2140 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 2141 if (is_error(ret)) { 2142 break; 2143 } 2144 mmsgp[i].msg_len = tswap32(ret); 2145 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2146 if (flags & MSG_WAITFORONE) { 2147 flags |= MSG_DONTWAIT; 2148 } 2149 } 2150 2151 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 2152 2153 /* Return number of datagrams sent if we sent any at all; 2154 * otherwise return the error. 2155 */ 2156 if (i) { 2157 return i; 2158 } 2159 return ret; 2160 } 2161 #endif 2162 2163 /* If we don't have a system accept4() then just call accept. 2164 * The callsites to do_accept4() will ensure that they don't 2165 * pass a non-zero flags argument in this config. 2166 */ 2167 #ifndef CONFIG_ACCEPT4 2168 static inline int accept4(int sockfd, struct sockaddr *addr, 2169 socklen_t *addrlen, int flags) 2170 { 2171 assert(flags == 0); 2172 return accept(sockfd, addr, addrlen); 2173 } 2174 #endif 2175 2176 /* do_accept4() Must return target values and target errnos. */ 2177 static abi_long do_accept4(int fd, abi_ulong target_addr, 2178 abi_ulong target_addrlen_addr, int flags) 2179 { 2180 socklen_t addrlen; 2181 void *addr; 2182 abi_long ret; 2183 int host_flags; 2184 2185 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 2186 2187 if (target_addr == 0) { 2188 return get_errno(accept4(fd, NULL, NULL, host_flags)); 2189 } 2190 2191 /* linux returns EINVAL if addrlen pointer is invalid */ 2192 if (get_user_u32(addrlen, target_addrlen_addr)) 2193 return -TARGET_EINVAL; 2194 2195 if ((int)addrlen < 0) { 2196 return -TARGET_EINVAL; 2197 } 2198 2199 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 2200 return -TARGET_EINVAL; 2201 2202 addr = alloca(addrlen); 2203 2204 ret = get_errno(accept4(fd, addr, &addrlen, host_flags)); 2205 if (!is_error(ret)) { 2206 host_to_target_sockaddr(target_addr, addr, addrlen); 2207 if (put_user_u32(addrlen, target_addrlen_addr)) 2208 ret = -TARGET_EFAULT; 2209 } 2210 return ret; 2211 } 2212 2213 /* do_getpeername() Must return target values and target errnos. */ 2214 static abi_long do_getpeername(int fd, abi_ulong target_addr, 2215 abi_ulong target_addrlen_addr) 2216 { 2217 socklen_t addrlen; 2218 void *addr; 2219 abi_long ret; 2220 2221 if (get_user_u32(addrlen, target_addrlen_addr)) 2222 return -TARGET_EFAULT; 2223 2224 if ((int)addrlen < 0) { 2225 return -TARGET_EINVAL; 2226 } 2227 2228 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 2229 return -TARGET_EFAULT; 2230 2231 addr = alloca(addrlen); 2232 2233 ret = get_errno(getpeername(fd, addr, &addrlen)); 2234 if (!is_error(ret)) { 2235 host_to_target_sockaddr(target_addr, addr, addrlen); 2236 if (put_user_u32(addrlen, target_addrlen_addr)) 2237 ret = -TARGET_EFAULT; 2238 } 2239 return ret; 2240 } 2241 2242 /* do_getsockname() Must return target values and target errnos. */ 2243 static abi_long do_getsockname(int fd, abi_ulong target_addr, 2244 abi_ulong target_addrlen_addr) 2245 { 2246 socklen_t addrlen; 2247 void *addr; 2248 abi_long ret; 2249 2250 if (get_user_u32(addrlen, target_addrlen_addr)) 2251 return -TARGET_EFAULT; 2252 2253 if ((int)addrlen < 0) { 2254 return -TARGET_EINVAL; 2255 } 2256 2257 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 2258 return -TARGET_EFAULT; 2259 2260 addr = alloca(addrlen); 2261 2262 ret = get_errno(getsockname(fd, addr, &addrlen)); 2263 if (!is_error(ret)) { 2264 host_to_target_sockaddr(target_addr, addr, addrlen); 2265 if (put_user_u32(addrlen, target_addrlen_addr)) 2266 ret = -TARGET_EFAULT; 2267 } 2268 return ret; 2269 } 2270 2271 /* do_socketpair() Must return target values and target errnos. */ 2272 static abi_long do_socketpair(int domain, int type, int protocol, 2273 abi_ulong target_tab_addr) 2274 { 2275 int tab[2]; 2276 abi_long ret; 2277 2278 target_to_host_sock_type(&type); 2279 2280 ret = get_errno(socketpair(domain, type, protocol, tab)); 2281 if (!is_error(ret)) { 2282 if (put_user_s32(tab[0], target_tab_addr) 2283 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 2284 ret = -TARGET_EFAULT; 2285 } 2286 return ret; 2287 } 2288 2289 /* do_sendto() Must return target values and target errnos. */ 2290 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 2291 abi_ulong target_addr, socklen_t addrlen) 2292 { 2293 void *addr; 2294 void *host_msg; 2295 abi_long ret; 2296 2297 if ((int)addrlen < 0) { 2298 return -TARGET_EINVAL; 2299 } 2300 2301 host_msg = lock_user(VERIFY_READ, msg, len, 1); 2302 if (!host_msg) 2303 return -TARGET_EFAULT; 2304 if (target_addr) { 2305 addr = alloca(addrlen+1); 2306 ret = target_to_host_sockaddr(addr, target_addr, addrlen); 2307 if (ret) { 2308 unlock_user(host_msg, msg, 0); 2309 return ret; 2310 } 2311 ret = get_errno(sendto(fd, host_msg, len, flags, addr, addrlen)); 2312 } else { 2313 ret = get_errno(send(fd, host_msg, len, flags)); 2314 } 2315 unlock_user(host_msg, msg, 0); 2316 return ret; 2317 } 2318 2319 /* do_recvfrom() Must return target values and target errnos. */ 2320 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 2321 abi_ulong target_addr, 2322 abi_ulong target_addrlen) 2323 { 2324 socklen_t addrlen; 2325 void *addr; 2326 void *host_msg; 2327 abi_long ret; 2328 2329 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 2330 if (!host_msg) 2331 return -TARGET_EFAULT; 2332 if (target_addr) { 2333 if (get_user_u32(addrlen, target_addrlen)) { 2334 ret = -TARGET_EFAULT; 2335 goto fail; 2336 } 2337 if ((int)addrlen < 0) { 2338 ret = -TARGET_EINVAL; 2339 goto fail; 2340 } 2341 addr = alloca(addrlen); 2342 ret = get_errno(recvfrom(fd, host_msg, len, flags, addr, &addrlen)); 2343 } else { 2344 addr = NULL; /* To keep compiler quiet. */ 2345 ret = get_errno(qemu_recv(fd, host_msg, len, flags)); 2346 } 2347 if (!is_error(ret)) { 2348 if (target_addr) { 2349 host_to_target_sockaddr(target_addr, addr, addrlen); 2350 if (put_user_u32(addrlen, target_addrlen)) { 2351 ret = -TARGET_EFAULT; 2352 goto fail; 2353 } 2354 } 2355 unlock_user(host_msg, msg, len); 2356 } else { 2357 fail: 2358 unlock_user(host_msg, msg, 0); 2359 } 2360 return ret; 2361 } 2362 2363 #ifdef TARGET_NR_socketcall 2364 /* do_socketcall() Must return target values and target errnos. */ 2365 static abi_long do_socketcall(int num, abi_ulong vptr) 2366 { 2367 static const unsigned ac[] = { /* number of arguments per call */ 2368 [SOCKOP_socket] = 3, /* domain, type, protocol */ 2369 [SOCKOP_bind] = 3, /* sockfd, addr, addrlen */ 2370 [SOCKOP_connect] = 3, /* sockfd, addr, addrlen */ 2371 [SOCKOP_listen] = 2, /* sockfd, backlog */ 2372 [SOCKOP_accept] = 3, /* sockfd, addr, addrlen */ 2373 [SOCKOP_accept4] = 4, /* sockfd, addr, addrlen, flags */ 2374 [SOCKOP_getsockname] = 3, /* sockfd, addr, addrlen */ 2375 [SOCKOP_getpeername] = 3, /* sockfd, addr, addrlen */ 2376 [SOCKOP_socketpair] = 4, /* domain, type, protocol, tab */ 2377 [SOCKOP_send] = 4, /* sockfd, msg, len, flags */ 2378 [SOCKOP_recv] = 4, /* sockfd, msg, len, flags */ 2379 [SOCKOP_sendto] = 6, /* sockfd, msg, len, flags, addr, addrlen */ 2380 [SOCKOP_recvfrom] = 6, /* sockfd, msg, len, flags, addr, addrlen */ 2381 [SOCKOP_shutdown] = 2, /* sockfd, how */ 2382 [SOCKOP_sendmsg] = 3, /* sockfd, msg, flags */ 2383 [SOCKOP_recvmsg] = 3, /* sockfd, msg, flags */ 2384 [SOCKOP_setsockopt] = 5, /* sockfd, level, optname, optval, optlen */ 2385 [SOCKOP_getsockopt] = 5, /* sockfd, level, optname, optval, optlen */ 2386 }; 2387 abi_long a[6]; /* max 6 args */ 2388 2389 /* first, collect the arguments in a[] according to ac[] */ 2390 if (num >= 0 && num < ARRAY_SIZE(ac)) { 2391 unsigned i; 2392 assert(ARRAY_SIZE(a) >= ac[num]); /* ensure we have space for args */ 2393 for (i = 0; i < ac[num]; ++i) { 2394 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 2395 return -TARGET_EFAULT; 2396 } 2397 } 2398 } 2399 2400 /* now when we have the args, actually handle the call */ 2401 switch (num) { 2402 case SOCKOP_socket: /* domain, type, protocol */ 2403 return do_socket(a[0], a[1], a[2]); 2404 case SOCKOP_bind: /* sockfd, addr, addrlen */ 2405 return do_bind(a[0], a[1], a[2]); 2406 case SOCKOP_connect: /* sockfd, addr, addrlen */ 2407 return do_connect(a[0], a[1], a[2]); 2408 case SOCKOP_listen: /* sockfd, backlog */ 2409 return get_errno(listen(a[0], a[1])); 2410 case SOCKOP_accept: /* sockfd, addr, addrlen */ 2411 return do_accept4(a[0], a[1], a[2], 0); 2412 case SOCKOP_accept4: /* sockfd, addr, addrlen, flags */ 2413 return do_accept4(a[0], a[1], a[2], a[3]); 2414 case SOCKOP_getsockname: /* sockfd, addr, addrlen */ 2415 return do_getsockname(a[0], a[1], a[2]); 2416 case SOCKOP_getpeername: /* sockfd, addr, addrlen */ 2417 return do_getpeername(a[0], a[1], a[2]); 2418 case SOCKOP_socketpair: /* domain, type, protocol, tab */ 2419 return do_socketpair(a[0], a[1], a[2], a[3]); 2420 case SOCKOP_send: /* sockfd, msg, len, flags */ 2421 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 2422 case SOCKOP_recv: /* sockfd, msg, len, flags */ 2423 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 2424 case SOCKOP_sendto: /* sockfd, msg, len, flags, addr, addrlen */ 2425 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 2426 case SOCKOP_recvfrom: /* sockfd, msg, len, flags, addr, addrlen */ 2427 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 2428 case SOCKOP_shutdown: /* sockfd, how */ 2429 return get_errno(shutdown(a[0], a[1])); 2430 case SOCKOP_sendmsg: /* sockfd, msg, flags */ 2431 return do_sendrecvmsg(a[0], a[1], a[2], 1); 2432 case SOCKOP_recvmsg: /* sockfd, msg, flags */ 2433 return do_sendrecvmsg(a[0], a[1], a[2], 0); 2434 case SOCKOP_setsockopt: /* sockfd, level, optname, optval, optlen */ 2435 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 2436 case SOCKOP_getsockopt: /* sockfd, level, optname, optval, optlen */ 2437 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 2438 default: 2439 gemu_log("Unsupported socketcall: %d\n", num); 2440 return -TARGET_ENOSYS; 2441 } 2442 } 2443 #endif 2444 2445 #define N_SHM_REGIONS 32 2446 2447 static struct shm_region { 2448 abi_ulong start; 2449 abi_ulong size; 2450 } shm_regions[N_SHM_REGIONS]; 2451 2452 struct target_semid_ds 2453 { 2454 struct target_ipc_perm sem_perm; 2455 abi_ulong sem_otime; 2456 #if !defined(TARGET_PPC64) 2457 abi_ulong __unused1; 2458 #endif 2459 abi_ulong sem_ctime; 2460 #if !defined(TARGET_PPC64) 2461 abi_ulong __unused2; 2462 #endif 2463 abi_ulong sem_nsems; 2464 abi_ulong __unused3; 2465 abi_ulong __unused4; 2466 }; 2467 2468 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 2469 abi_ulong target_addr) 2470 { 2471 struct target_ipc_perm *target_ip; 2472 struct target_semid_ds *target_sd; 2473 2474 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 2475 return -TARGET_EFAULT; 2476 target_ip = &(target_sd->sem_perm); 2477 host_ip->__key = tswap32(target_ip->__key); 2478 host_ip->uid = tswap32(target_ip->uid); 2479 host_ip->gid = tswap32(target_ip->gid); 2480 host_ip->cuid = tswap32(target_ip->cuid); 2481 host_ip->cgid = tswap32(target_ip->cgid); 2482 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 2483 host_ip->mode = tswap32(target_ip->mode); 2484 #else 2485 host_ip->mode = tswap16(target_ip->mode); 2486 #endif 2487 #if defined(TARGET_PPC) 2488 host_ip->__seq = tswap32(target_ip->__seq); 2489 #else 2490 host_ip->__seq = tswap16(target_ip->__seq); 2491 #endif 2492 unlock_user_struct(target_sd, target_addr, 0); 2493 return 0; 2494 } 2495 2496 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 2497 struct ipc_perm *host_ip) 2498 { 2499 struct target_ipc_perm *target_ip; 2500 struct target_semid_ds *target_sd; 2501 2502 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 2503 return -TARGET_EFAULT; 2504 target_ip = &(target_sd->sem_perm); 2505 target_ip->__key = tswap32(host_ip->__key); 2506 target_ip->uid = tswap32(host_ip->uid); 2507 target_ip->gid = tswap32(host_ip->gid); 2508 target_ip->cuid = tswap32(host_ip->cuid); 2509 target_ip->cgid = tswap32(host_ip->cgid); 2510 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 2511 target_ip->mode = tswap32(host_ip->mode); 2512 #else 2513 target_ip->mode = tswap16(host_ip->mode); 2514 #endif 2515 #if defined(TARGET_PPC) 2516 target_ip->__seq = tswap32(host_ip->__seq); 2517 #else 2518 target_ip->__seq = tswap16(host_ip->__seq); 2519 #endif 2520 unlock_user_struct(target_sd, target_addr, 1); 2521 return 0; 2522 } 2523 2524 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 2525 abi_ulong target_addr) 2526 { 2527 struct target_semid_ds *target_sd; 2528 2529 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 2530 return -TARGET_EFAULT; 2531 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 2532 return -TARGET_EFAULT; 2533 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 2534 host_sd->sem_otime = tswapal(target_sd->sem_otime); 2535 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 2536 unlock_user_struct(target_sd, target_addr, 0); 2537 return 0; 2538 } 2539 2540 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 2541 struct semid_ds *host_sd) 2542 { 2543 struct target_semid_ds *target_sd; 2544 2545 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 2546 return -TARGET_EFAULT; 2547 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 2548 return -TARGET_EFAULT; 2549 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 2550 target_sd->sem_otime = tswapal(host_sd->sem_otime); 2551 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 2552 unlock_user_struct(target_sd, target_addr, 1); 2553 return 0; 2554 } 2555 2556 struct target_seminfo { 2557 int semmap; 2558 int semmni; 2559 int semmns; 2560 int semmnu; 2561 int semmsl; 2562 int semopm; 2563 int semume; 2564 int semusz; 2565 int semvmx; 2566 int semaem; 2567 }; 2568 2569 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 2570 struct seminfo *host_seminfo) 2571 { 2572 struct target_seminfo *target_seminfo; 2573 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 2574 return -TARGET_EFAULT; 2575 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 2576 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 2577 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 2578 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 2579 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 2580 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 2581 __put_user(host_seminfo->semume, &target_seminfo->semume); 2582 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 2583 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 2584 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 2585 unlock_user_struct(target_seminfo, target_addr, 1); 2586 return 0; 2587 } 2588 2589 union semun { 2590 int val; 2591 struct semid_ds *buf; 2592 unsigned short *array; 2593 struct seminfo *__buf; 2594 }; 2595 2596 union target_semun { 2597 int val; 2598 abi_ulong buf; 2599 abi_ulong array; 2600 abi_ulong __buf; 2601 }; 2602 2603 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 2604 abi_ulong target_addr) 2605 { 2606 int nsems; 2607 unsigned short *array; 2608 union semun semun; 2609 struct semid_ds semid_ds; 2610 int i, ret; 2611 2612 semun.buf = &semid_ds; 2613 2614 ret = semctl(semid, 0, IPC_STAT, semun); 2615 if (ret == -1) 2616 return get_errno(ret); 2617 2618 nsems = semid_ds.sem_nsems; 2619 2620 *host_array = malloc(nsems*sizeof(unsigned short)); 2621 if (!*host_array) { 2622 return -TARGET_ENOMEM; 2623 } 2624 array = lock_user(VERIFY_READ, target_addr, 2625 nsems*sizeof(unsigned short), 1); 2626 if (!array) { 2627 free(*host_array); 2628 return -TARGET_EFAULT; 2629 } 2630 2631 for(i=0; i<nsems; i++) { 2632 __get_user((*host_array)[i], &array[i]); 2633 } 2634 unlock_user(array, target_addr, 0); 2635 2636 return 0; 2637 } 2638 2639 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 2640 unsigned short **host_array) 2641 { 2642 int nsems; 2643 unsigned short *array; 2644 union semun semun; 2645 struct semid_ds semid_ds; 2646 int i, ret; 2647 2648 semun.buf = &semid_ds; 2649 2650 ret = semctl(semid, 0, IPC_STAT, semun); 2651 if (ret == -1) 2652 return get_errno(ret); 2653 2654 nsems = semid_ds.sem_nsems; 2655 2656 array = lock_user(VERIFY_WRITE, target_addr, 2657 nsems*sizeof(unsigned short), 0); 2658 if (!array) 2659 return -TARGET_EFAULT; 2660 2661 for(i=0; i<nsems; i++) { 2662 __put_user((*host_array)[i], &array[i]); 2663 } 2664 free(*host_array); 2665 unlock_user(array, target_addr, 1); 2666 2667 return 0; 2668 } 2669 2670 static inline abi_long do_semctl(int semid, int semnum, int cmd, 2671 union target_semun target_su) 2672 { 2673 union semun arg; 2674 struct semid_ds dsarg; 2675 unsigned short *array = NULL; 2676 struct seminfo seminfo; 2677 abi_long ret = -TARGET_EINVAL; 2678 abi_long err; 2679 cmd &= 0xff; 2680 2681 switch( cmd ) { 2682 case GETVAL: 2683 case SETVAL: 2684 /* In 64 bit cross-endian situations, we will erroneously pick up 2685 * the wrong half of the union for the "val" element. To rectify 2686 * this, the entire 8-byte structure is byteswapped, followed by 2687 * a swap of the 4 byte val field. In other cases, the data is 2688 * already in proper host byte order. */ 2689 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 2690 target_su.buf = tswapal(target_su.buf); 2691 arg.val = tswap32(target_su.val); 2692 } else { 2693 arg.val = target_su.val; 2694 } 2695 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2696 break; 2697 case GETALL: 2698 case SETALL: 2699 err = target_to_host_semarray(semid, &array, target_su.array); 2700 if (err) 2701 return err; 2702 arg.array = array; 2703 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2704 err = host_to_target_semarray(semid, target_su.array, &array); 2705 if (err) 2706 return err; 2707 break; 2708 case IPC_STAT: 2709 case IPC_SET: 2710 case SEM_STAT: 2711 err = target_to_host_semid_ds(&dsarg, target_su.buf); 2712 if (err) 2713 return err; 2714 arg.buf = &dsarg; 2715 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2716 err = host_to_target_semid_ds(target_su.buf, &dsarg); 2717 if (err) 2718 return err; 2719 break; 2720 case IPC_INFO: 2721 case SEM_INFO: 2722 arg.__buf = &seminfo; 2723 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2724 err = host_to_target_seminfo(target_su.__buf, &seminfo); 2725 if (err) 2726 return err; 2727 break; 2728 case IPC_RMID: 2729 case GETPID: 2730 case GETNCNT: 2731 case GETZCNT: 2732 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 2733 break; 2734 } 2735 2736 return ret; 2737 } 2738 2739 struct target_sembuf { 2740 unsigned short sem_num; 2741 short sem_op; 2742 short sem_flg; 2743 }; 2744 2745 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 2746 abi_ulong target_addr, 2747 unsigned nsops) 2748 { 2749 struct target_sembuf *target_sembuf; 2750 int i; 2751 2752 target_sembuf = lock_user(VERIFY_READ, target_addr, 2753 nsops*sizeof(struct target_sembuf), 1); 2754 if (!target_sembuf) 2755 return -TARGET_EFAULT; 2756 2757 for(i=0; i<nsops; i++) { 2758 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 2759 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 2760 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 2761 } 2762 2763 unlock_user(target_sembuf, target_addr, 0); 2764 2765 return 0; 2766 } 2767 2768 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops) 2769 { 2770 struct sembuf sops[nsops]; 2771 2772 if (target_to_host_sembuf(sops, ptr, nsops)) 2773 return -TARGET_EFAULT; 2774 2775 return get_errno(semop(semid, sops, nsops)); 2776 } 2777 2778 struct target_msqid_ds 2779 { 2780 struct target_ipc_perm msg_perm; 2781 abi_ulong msg_stime; 2782 #if TARGET_ABI_BITS == 32 2783 abi_ulong __unused1; 2784 #endif 2785 abi_ulong msg_rtime; 2786 #if TARGET_ABI_BITS == 32 2787 abi_ulong __unused2; 2788 #endif 2789 abi_ulong msg_ctime; 2790 #if TARGET_ABI_BITS == 32 2791 abi_ulong __unused3; 2792 #endif 2793 abi_ulong __msg_cbytes; 2794 abi_ulong msg_qnum; 2795 abi_ulong msg_qbytes; 2796 abi_ulong msg_lspid; 2797 abi_ulong msg_lrpid; 2798 abi_ulong __unused4; 2799 abi_ulong __unused5; 2800 }; 2801 2802 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 2803 abi_ulong target_addr) 2804 { 2805 struct target_msqid_ds *target_md; 2806 2807 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 2808 return -TARGET_EFAULT; 2809 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 2810 return -TARGET_EFAULT; 2811 host_md->msg_stime = tswapal(target_md->msg_stime); 2812 host_md->msg_rtime = tswapal(target_md->msg_rtime); 2813 host_md->msg_ctime = tswapal(target_md->msg_ctime); 2814 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 2815 host_md->msg_qnum = tswapal(target_md->msg_qnum); 2816 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 2817 host_md->msg_lspid = tswapal(target_md->msg_lspid); 2818 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 2819 unlock_user_struct(target_md, target_addr, 0); 2820 return 0; 2821 } 2822 2823 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 2824 struct msqid_ds *host_md) 2825 { 2826 struct target_msqid_ds *target_md; 2827 2828 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 2829 return -TARGET_EFAULT; 2830 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 2831 return -TARGET_EFAULT; 2832 target_md->msg_stime = tswapal(host_md->msg_stime); 2833 target_md->msg_rtime = tswapal(host_md->msg_rtime); 2834 target_md->msg_ctime = tswapal(host_md->msg_ctime); 2835 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 2836 target_md->msg_qnum = tswapal(host_md->msg_qnum); 2837 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 2838 target_md->msg_lspid = tswapal(host_md->msg_lspid); 2839 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 2840 unlock_user_struct(target_md, target_addr, 1); 2841 return 0; 2842 } 2843 2844 struct target_msginfo { 2845 int msgpool; 2846 int msgmap; 2847 int msgmax; 2848 int msgmnb; 2849 int msgmni; 2850 int msgssz; 2851 int msgtql; 2852 unsigned short int msgseg; 2853 }; 2854 2855 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 2856 struct msginfo *host_msginfo) 2857 { 2858 struct target_msginfo *target_msginfo; 2859 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 2860 return -TARGET_EFAULT; 2861 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 2862 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 2863 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 2864 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 2865 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 2866 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 2867 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 2868 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 2869 unlock_user_struct(target_msginfo, target_addr, 1); 2870 return 0; 2871 } 2872 2873 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 2874 { 2875 struct msqid_ds dsarg; 2876 struct msginfo msginfo; 2877 abi_long ret = -TARGET_EINVAL; 2878 2879 cmd &= 0xff; 2880 2881 switch (cmd) { 2882 case IPC_STAT: 2883 case IPC_SET: 2884 case MSG_STAT: 2885 if (target_to_host_msqid_ds(&dsarg,ptr)) 2886 return -TARGET_EFAULT; 2887 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 2888 if (host_to_target_msqid_ds(ptr,&dsarg)) 2889 return -TARGET_EFAULT; 2890 break; 2891 case IPC_RMID: 2892 ret = get_errno(msgctl(msgid, cmd, NULL)); 2893 break; 2894 case IPC_INFO: 2895 case MSG_INFO: 2896 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 2897 if (host_to_target_msginfo(ptr, &msginfo)) 2898 return -TARGET_EFAULT; 2899 break; 2900 } 2901 2902 return ret; 2903 } 2904 2905 struct target_msgbuf { 2906 abi_long mtype; 2907 char mtext[1]; 2908 }; 2909 2910 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 2911 ssize_t msgsz, int msgflg) 2912 { 2913 struct target_msgbuf *target_mb; 2914 struct msgbuf *host_mb; 2915 abi_long ret = 0; 2916 2917 if (msgsz < 0) { 2918 return -TARGET_EINVAL; 2919 } 2920 2921 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 2922 return -TARGET_EFAULT; 2923 host_mb = malloc(msgsz+sizeof(long)); 2924 if (!host_mb) { 2925 unlock_user_struct(target_mb, msgp, 0); 2926 return -TARGET_ENOMEM; 2927 } 2928 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 2929 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 2930 ret = get_errno(msgsnd(msqid, host_mb, msgsz, msgflg)); 2931 free(host_mb); 2932 unlock_user_struct(target_mb, msgp, 0); 2933 2934 return ret; 2935 } 2936 2937 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 2938 unsigned int msgsz, abi_long msgtyp, 2939 int msgflg) 2940 { 2941 struct target_msgbuf *target_mb; 2942 char *target_mtext; 2943 struct msgbuf *host_mb; 2944 abi_long ret = 0; 2945 2946 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 2947 return -TARGET_EFAULT; 2948 2949 host_mb = g_malloc(msgsz+sizeof(long)); 2950 ret = get_errno(msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 2951 2952 if (ret > 0) { 2953 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 2954 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 2955 if (!target_mtext) { 2956 ret = -TARGET_EFAULT; 2957 goto end; 2958 } 2959 memcpy(target_mb->mtext, host_mb->mtext, ret); 2960 unlock_user(target_mtext, target_mtext_addr, ret); 2961 } 2962 2963 target_mb->mtype = tswapal(host_mb->mtype); 2964 2965 end: 2966 if (target_mb) 2967 unlock_user_struct(target_mb, msgp, 1); 2968 g_free(host_mb); 2969 return ret; 2970 } 2971 2972 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 2973 abi_ulong target_addr) 2974 { 2975 struct target_shmid_ds *target_sd; 2976 2977 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 2978 return -TARGET_EFAULT; 2979 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 2980 return -TARGET_EFAULT; 2981 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 2982 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 2983 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 2984 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 2985 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 2986 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 2987 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 2988 unlock_user_struct(target_sd, target_addr, 0); 2989 return 0; 2990 } 2991 2992 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 2993 struct shmid_ds *host_sd) 2994 { 2995 struct target_shmid_ds *target_sd; 2996 2997 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 2998 return -TARGET_EFAULT; 2999 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 3000 return -TARGET_EFAULT; 3001 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 3002 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 3003 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 3004 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 3005 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 3006 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 3007 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 3008 unlock_user_struct(target_sd, target_addr, 1); 3009 return 0; 3010 } 3011 3012 struct target_shminfo { 3013 abi_ulong shmmax; 3014 abi_ulong shmmin; 3015 abi_ulong shmmni; 3016 abi_ulong shmseg; 3017 abi_ulong shmall; 3018 }; 3019 3020 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 3021 struct shminfo *host_shminfo) 3022 { 3023 struct target_shminfo *target_shminfo; 3024 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 3025 return -TARGET_EFAULT; 3026 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 3027 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 3028 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 3029 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 3030 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 3031 unlock_user_struct(target_shminfo, target_addr, 1); 3032 return 0; 3033 } 3034 3035 struct target_shm_info { 3036 int used_ids; 3037 abi_ulong shm_tot; 3038 abi_ulong shm_rss; 3039 abi_ulong shm_swp; 3040 abi_ulong swap_attempts; 3041 abi_ulong swap_successes; 3042 }; 3043 3044 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 3045 struct shm_info *host_shm_info) 3046 { 3047 struct target_shm_info *target_shm_info; 3048 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 3049 return -TARGET_EFAULT; 3050 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 3051 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 3052 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 3053 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 3054 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 3055 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 3056 unlock_user_struct(target_shm_info, target_addr, 1); 3057 return 0; 3058 } 3059 3060 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 3061 { 3062 struct shmid_ds dsarg; 3063 struct shminfo shminfo; 3064 struct shm_info shm_info; 3065 abi_long ret = -TARGET_EINVAL; 3066 3067 cmd &= 0xff; 3068 3069 switch(cmd) { 3070 case IPC_STAT: 3071 case IPC_SET: 3072 case SHM_STAT: 3073 if (target_to_host_shmid_ds(&dsarg, buf)) 3074 return -TARGET_EFAULT; 3075 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 3076 if (host_to_target_shmid_ds(buf, &dsarg)) 3077 return -TARGET_EFAULT; 3078 break; 3079 case IPC_INFO: 3080 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 3081 if (host_to_target_shminfo(buf, &shminfo)) 3082 return -TARGET_EFAULT; 3083 break; 3084 case SHM_INFO: 3085 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 3086 if (host_to_target_shm_info(buf, &shm_info)) 3087 return -TARGET_EFAULT; 3088 break; 3089 case IPC_RMID: 3090 case SHM_LOCK: 3091 case SHM_UNLOCK: 3092 ret = get_errno(shmctl(shmid, cmd, NULL)); 3093 break; 3094 } 3095 3096 return ret; 3097 } 3098 3099 static inline abi_ulong do_shmat(int shmid, abi_ulong shmaddr, int shmflg) 3100 { 3101 abi_long raddr; 3102 void *host_raddr; 3103 struct shmid_ds shm_info; 3104 int i,ret; 3105 3106 /* find out the length of the shared memory segment */ 3107 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 3108 if (is_error(ret)) { 3109 /* can't get length, bail out */ 3110 return ret; 3111 } 3112 3113 mmap_lock(); 3114 3115 if (shmaddr) 3116 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg); 3117 else { 3118 abi_ulong mmap_start; 3119 3120 mmap_start = mmap_find_vma(0, shm_info.shm_segsz); 3121 3122 if (mmap_start == -1) { 3123 errno = ENOMEM; 3124 host_raddr = (void *)-1; 3125 } else 3126 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP); 3127 } 3128 3129 if (host_raddr == (void *)-1) { 3130 mmap_unlock(); 3131 return get_errno((long)host_raddr); 3132 } 3133 raddr=h2g((unsigned long)host_raddr); 3134 3135 page_set_flags(raddr, raddr + shm_info.shm_segsz, 3136 PAGE_VALID | PAGE_READ | 3137 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE)); 3138 3139 for (i = 0; i < N_SHM_REGIONS; i++) { 3140 if (shm_regions[i].start == 0) { 3141 shm_regions[i].start = raddr; 3142 shm_regions[i].size = shm_info.shm_segsz; 3143 break; 3144 } 3145 } 3146 3147 mmap_unlock(); 3148 return raddr; 3149 3150 } 3151 3152 static inline abi_long do_shmdt(abi_ulong shmaddr) 3153 { 3154 int i; 3155 3156 for (i = 0; i < N_SHM_REGIONS; ++i) { 3157 if (shm_regions[i].start == shmaddr) { 3158 shm_regions[i].start = 0; 3159 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 3160 break; 3161 } 3162 } 3163 3164 return get_errno(shmdt(g2h(shmaddr))); 3165 } 3166 3167 #ifdef TARGET_NR_ipc 3168 /* ??? This only works with linear mappings. */ 3169 /* do_ipc() must return target values and target errnos. */ 3170 static abi_long do_ipc(unsigned int call, abi_long first, 3171 abi_long second, abi_long third, 3172 abi_long ptr, abi_long fifth) 3173 { 3174 int version; 3175 abi_long ret = 0; 3176 3177 version = call >> 16; 3178 call &= 0xffff; 3179 3180 switch (call) { 3181 case IPCOP_semop: 3182 ret = do_semop(first, ptr, second); 3183 break; 3184 3185 case IPCOP_semget: 3186 ret = get_errno(semget(first, second, third)); 3187 break; 3188 3189 case IPCOP_semctl: { 3190 /* The semun argument to semctl is passed by value, so dereference the 3191 * ptr argument. */ 3192 abi_ulong atptr; 3193 get_user_ual(atptr, ptr); 3194 ret = do_semctl(first, second, third, 3195 (union target_semun) atptr); 3196 break; 3197 } 3198 3199 case IPCOP_msgget: 3200 ret = get_errno(msgget(first, second)); 3201 break; 3202 3203 case IPCOP_msgsnd: 3204 ret = do_msgsnd(first, ptr, second, third); 3205 break; 3206 3207 case IPCOP_msgctl: 3208 ret = do_msgctl(first, second, ptr); 3209 break; 3210 3211 case IPCOP_msgrcv: 3212 switch (version) { 3213 case 0: 3214 { 3215 struct target_ipc_kludge { 3216 abi_long msgp; 3217 abi_long msgtyp; 3218 } *tmp; 3219 3220 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 3221 ret = -TARGET_EFAULT; 3222 break; 3223 } 3224 3225 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 3226 3227 unlock_user_struct(tmp, ptr, 0); 3228 break; 3229 } 3230 default: 3231 ret = do_msgrcv(first, ptr, second, fifth, third); 3232 } 3233 break; 3234 3235 case IPCOP_shmat: 3236 switch (version) { 3237 default: 3238 { 3239 abi_ulong raddr; 3240 raddr = do_shmat(first, ptr, second); 3241 if (is_error(raddr)) 3242 return get_errno(raddr); 3243 if (put_user_ual(raddr, third)) 3244 return -TARGET_EFAULT; 3245 break; 3246 } 3247 case 1: 3248 ret = -TARGET_EINVAL; 3249 break; 3250 } 3251 break; 3252 case IPCOP_shmdt: 3253 ret = do_shmdt(ptr); 3254 break; 3255 3256 case IPCOP_shmget: 3257 /* IPC_* flag values are the same on all linux platforms */ 3258 ret = get_errno(shmget(first, second, third)); 3259 break; 3260 3261 /* IPC_* and SHM_* command values are the same on all linux platforms */ 3262 case IPCOP_shmctl: 3263 ret = do_shmctl(first, second, ptr); 3264 break; 3265 default: 3266 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version); 3267 ret = -TARGET_ENOSYS; 3268 break; 3269 } 3270 return ret; 3271 } 3272 #endif 3273 3274 /* kernel structure types definitions */ 3275 3276 #define STRUCT(name, ...) STRUCT_ ## name, 3277 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 3278 enum { 3279 #include "syscall_types.h" 3280 }; 3281 #undef STRUCT 3282 #undef STRUCT_SPECIAL 3283 3284 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 3285 #define STRUCT_SPECIAL(name) 3286 #include "syscall_types.h" 3287 #undef STRUCT 3288 #undef STRUCT_SPECIAL 3289 3290 typedef struct IOCTLEntry IOCTLEntry; 3291 3292 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 3293 int fd, abi_long cmd, abi_long arg); 3294 3295 struct IOCTLEntry { 3296 int target_cmd; 3297 unsigned int host_cmd; 3298 const char *name; 3299 int access; 3300 do_ioctl_fn *do_ioctl; 3301 const argtype arg_type[5]; 3302 }; 3303 3304 #define IOC_R 0x0001 3305 #define IOC_W 0x0002 3306 #define IOC_RW (IOC_R | IOC_W) 3307 3308 #define MAX_STRUCT_SIZE 4096 3309 3310 #ifdef CONFIG_FIEMAP 3311 /* So fiemap access checks don't overflow on 32 bit systems. 3312 * This is very slightly smaller than the limit imposed by 3313 * the underlying kernel. 3314 */ 3315 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 3316 / sizeof(struct fiemap_extent)) 3317 3318 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 3319 int fd, abi_long cmd, abi_long arg) 3320 { 3321 /* The parameter for this ioctl is a struct fiemap followed 3322 * by an array of struct fiemap_extent whose size is set 3323 * in fiemap->fm_extent_count. The array is filled in by the 3324 * ioctl. 3325 */ 3326 int target_size_in, target_size_out; 3327 struct fiemap *fm; 3328 const argtype *arg_type = ie->arg_type; 3329 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 3330 void *argptr, *p; 3331 abi_long ret; 3332 int i, extent_size = thunk_type_size(extent_arg_type, 0); 3333 uint32_t outbufsz; 3334 int free_fm = 0; 3335 3336 assert(arg_type[0] == TYPE_PTR); 3337 assert(ie->access == IOC_RW); 3338 arg_type++; 3339 target_size_in = thunk_type_size(arg_type, 0); 3340 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 3341 if (!argptr) { 3342 return -TARGET_EFAULT; 3343 } 3344 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3345 unlock_user(argptr, arg, 0); 3346 fm = (struct fiemap *)buf_temp; 3347 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 3348 return -TARGET_EINVAL; 3349 } 3350 3351 outbufsz = sizeof (*fm) + 3352 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 3353 3354 if (outbufsz > MAX_STRUCT_SIZE) { 3355 /* We can't fit all the extents into the fixed size buffer. 3356 * Allocate one that is large enough and use it instead. 3357 */ 3358 fm = malloc(outbufsz); 3359 if (!fm) { 3360 return -TARGET_ENOMEM; 3361 } 3362 memcpy(fm, buf_temp, sizeof(struct fiemap)); 3363 free_fm = 1; 3364 } 3365 ret = get_errno(ioctl(fd, ie->host_cmd, fm)); 3366 if (!is_error(ret)) { 3367 target_size_out = target_size_in; 3368 /* An extent_count of 0 means we were only counting the extents 3369 * so there are no structs to copy 3370 */ 3371 if (fm->fm_extent_count != 0) { 3372 target_size_out += fm->fm_mapped_extents * extent_size; 3373 } 3374 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 3375 if (!argptr) { 3376 ret = -TARGET_EFAULT; 3377 } else { 3378 /* Convert the struct fiemap */ 3379 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 3380 if (fm->fm_extent_count != 0) { 3381 p = argptr + target_size_in; 3382 /* ...and then all the struct fiemap_extents */ 3383 for (i = 0; i < fm->fm_mapped_extents; i++) { 3384 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 3385 THUNK_TARGET); 3386 p += extent_size; 3387 } 3388 } 3389 unlock_user(argptr, arg, target_size_out); 3390 } 3391 } 3392 if (free_fm) { 3393 free(fm); 3394 } 3395 return ret; 3396 } 3397 #endif 3398 3399 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 3400 int fd, abi_long cmd, abi_long arg) 3401 { 3402 const argtype *arg_type = ie->arg_type; 3403 int target_size; 3404 void *argptr; 3405 int ret; 3406 struct ifconf *host_ifconf; 3407 uint32_t outbufsz; 3408 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 3409 int target_ifreq_size; 3410 int nb_ifreq; 3411 int free_buf = 0; 3412 int i; 3413 int target_ifc_len; 3414 abi_long target_ifc_buf; 3415 int host_ifc_len; 3416 char *host_ifc_buf; 3417 3418 assert(arg_type[0] == TYPE_PTR); 3419 assert(ie->access == IOC_RW); 3420 3421 arg_type++; 3422 target_size = thunk_type_size(arg_type, 0); 3423 3424 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3425 if (!argptr) 3426 return -TARGET_EFAULT; 3427 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3428 unlock_user(argptr, arg, 0); 3429 3430 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 3431 target_ifc_len = host_ifconf->ifc_len; 3432 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 3433 3434 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0); 3435 nb_ifreq = target_ifc_len / target_ifreq_size; 3436 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 3437 3438 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 3439 if (outbufsz > MAX_STRUCT_SIZE) { 3440 /* We can't fit all the extents into the fixed size buffer. 3441 * Allocate one that is large enough and use it instead. 3442 */ 3443 host_ifconf = malloc(outbufsz); 3444 if (!host_ifconf) { 3445 return -TARGET_ENOMEM; 3446 } 3447 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 3448 free_buf = 1; 3449 } 3450 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf); 3451 3452 host_ifconf->ifc_len = host_ifc_len; 3453 host_ifconf->ifc_buf = host_ifc_buf; 3454 3455 ret = get_errno(ioctl(fd, ie->host_cmd, host_ifconf)); 3456 if (!is_error(ret)) { 3457 /* convert host ifc_len to target ifc_len */ 3458 3459 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 3460 target_ifc_len = nb_ifreq * target_ifreq_size; 3461 host_ifconf->ifc_len = target_ifc_len; 3462 3463 /* restore target ifc_buf */ 3464 3465 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 3466 3467 /* copy struct ifconf to target user */ 3468 3469 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3470 if (!argptr) 3471 return -TARGET_EFAULT; 3472 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 3473 unlock_user(argptr, arg, target_size); 3474 3475 /* copy ifreq[] to target user */ 3476 3477 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 3478 for (i = 0; i < nb_ifreq ; i++) { 3479 thunk_convert(argptr + i * target_ifreq_size, 3480 host_ifc_buf + i * sizeof(struct ifreq), 3481 ifreq_arg_type, THUNK_TARGET); 3482 } 3483 unlock_user(argptr, target_ifc_buf, target_ifc_len); 3484 } 3485 3486 if (free_buf) { 3487 free(host_ifconf); 3488 } 3489 3490 return ret; 3491 } 3492 3493 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 3494 abi_long cmd, abi_long arg) 3495 { 3496 void *argptr; 3497 struct dm_ioctl *host_dm; 3498 abi_long guest_data; 3499 uint32_t guest_data_size; 3500 int target_size; 3501 const argtype *arg_type = ie->arg_type; 3502 abi_long ret; 3503 void *big_buf = NULL; 3504 char *host_data; 3505 3506 arg_type++; 3507 target_size = thunk_type_size(arg_type, 0); 3508 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3509 if (!argptr) { 3510 ret = -TARGET_EFAULT; 3511 goto out; 3512 } 3513 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3514 unlock_user(argptr, arg, 0); 3515 3516 /* buf_temp is too small, so fetch things into a bigger buffer */ 3517 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 3518 memcpy(big_buf, buf_temp, target_size); 3519 buf_temp = big_buf; 3520 host_dm = big_buf; 3521 3522 guest_data = arg + host_dm->data_start; 3523 if ((guest_data - arg) < 0) { 3524 ret = -EINVAL; 3525 goto out; 3526 } 3527 guest_data_size = host_dm->data_size - host_dm->data_start; 3528 host_data = (char*)host_dm + host_dm->data_start; 3529 3530 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 3531 switch (ie->host_cmd) { 3532 case DM_REMOVE_ALL: 3533 case DM_LIST_DEVICES: 3534 case DM_DEV_CREATE: 3535 case DM_DEV_REMOVE: 3536 case DM_DEV_SUSPEND: 3537 case DM_DEV_STATUS: 3538 case DM_DEV_WAIT: 3539 case DM_TABLE_STATUS: 3540 case DM_TABLE_CLEAR: 3541 case DM_TABLE_DEPS: 3542 case DM_LIST_VERSIONS: 3543 /* no input data */ 3544 break; 3545 case DM_DEV_RENAME: 3546 case DM_DEV_SET_GEOMETRY: 3547 /* data contains only strings */ 3548 memcpy(host_data, argptr, guest_data_size); 3549 break; 3550 case DM_TARGET_MSG: 3551 memcpy(host_data, argptr, guest_data_size); 3552 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 3553 break; 3554 case DM_TABLE_LOAD: 3555 { 3556 void *gspec = argptr; 3557 void *cur_data = host_data; 3558 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 3559 int spec_size = thunk_type_size(arg_type, 0); 3560 int i; 3561 3562 for (i = 0; i < host_dm->target_count; i++) { 3563 struct dm_target_spec *spec = cur_data; 3564 uint32_t next; 3565 int slen; 3566 3567 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 3568 slen = strlen((char*)gspec + spec_size) + 1; 3569 next = spec->next; 3570 spec->next = sizeof(*spec) + slen; 3571 strcpy((char*)&spec[1], gspec + spec_size); 3572 gspec += next; 3573 cur_data += spec->next; 3574 } 3575 break; 3576 } 3577 default: 3578 ret = -TARGET_EINVAL; 3579 unlock_user(argptr, guest_data, 0); 3580 goto out; 3581 } 3582 unlock_user(argptr, guest_data, 0); 3583 3584 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3585 if (!is_error(ret)) { 3586 guest_data = arg + host_dm->data_start; 3587 guest_data_size = host_dm->data_size - host_dm->data_start; 3588 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 3589 switch (ie->host_cmd) { 3590 case DM_REMOVE_ALL: 3591 case DM_DEV_CREATE: 3592 case DM_DEV_REMOVE: 3593 case DM_DEV_RENAME: 3594 case DM_DEV_SUSPEND: 3595 case DM_DEV_STATUS: 3596 case DM_TABLE_LOAD: 3597 case DM_TABLE_CLEAR: 3598 case DM_TARGET_MSG: 3599 case DM_DEV_SET_GEOMETRY: 3600 /* no return data */ 3601 break; 3602 case DM_LIST_DEVICES: 3603 { 3604 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 3605 uint32_t remaining_data = guest_data_size; 3606 void *cur_data = argptr; 3607 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 3608 int nl_size = 12; /* can't use thunk_size due to alignment */ 3609 3610 while (1) { 3611 uint32_t next = nl->next; 3612 if (next) { 3613 nl->next = nl_size + (strlen(nl->name) + 1); 3614 } 3615 if (remaining_data < nl->next) { 3616 host_dm->flags |= DM_BUFFER_FULL_FLAG; 3617 break; 3618 } 3619 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 3620 strcpy(cur_data + nl_size, nl->name); 3621 cur_data += nl->next; 3622 remaining_data -= nl->next; 3623 if (!next) { 3624 break; 3625 } 3626 nl = (void*)nl + next; 3627 } 3628 break; 3629 } 3630 case DM_DEV_WAIT: 3631 case DM_TABLE_STATUS: 3632 { 3633 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 3634 void *cur_data = argptr; 3635 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 3636 int spec_size = thunk_type_size(arg_type, 0); 3637 int i; 3638 3639 for (i = 0; i < host_dm->target_count; i++) { 3640 uint32_t next = spec->next; 3641 int slen = strlen((char*)&spec[1]) + 1; 3642 spec->next = (cur_data - argptr) + spec_size + slen; 3643 if (guest_data_size < spec->next) { 3644 host_dm->flags |= DM_BUFFER_FULL_FLAG; 3645 break; 3646 } 3647 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 3648 strcpy(cur_data + spec_size, (char*)&spec[1]); 3649 cur_data = argptr + spec->next; 3650 spec = (void*)host_dm + host_dm->data_start + next; 3651 } 3652 break; 3653 } 3654 case DM_TABLE_DEPS: 3655 { 3656 void *hdata = (void*)host_dm + host_dm->data_start; 3657 int count = *(uint32_t*)hdata; 3658 uint64_t *hdev = hdata + 8; 3659 uint64_t *gdev = argptr + 8; 3660 int i; 3661 3662 *(uint32_t*)argptr = tswap32(count); 3663 for (i = 0; i < count; i++) { 3664 *gdev = tswap64(*hdev); 3665 gdev++; 3666 hdev++; 3667 } 3668 break; 3669 } 3670 case DM_LIST_VERSIONS: 3671 { 3672 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 3673 uint32_t remaining_data = guest_data_size; 3674 void *cur_data = argptr; 3675 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 3676 int vers_size = thunk_type_size(arg_type, 0); 3677 3678 while (1) { 3679 uint32_t next = vers->next; 3680 if (next) { 3681 vers->next = vers_size + (strlen(vers->name) + 1); 3682 } 3683 if (remaining_data < vers->next) { 3684 host_dm->flags |= DM_BUFFER_FULL_FLAG; 3685 break; 3686 } 3687 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 3688 strcpy(cur_data + vers_size, vers->name); 3689 cur_data += vers->next; 3690 remaining_data -= vers->next; 3691 if (!next) { 3692 break; 3693 } 3694 vers = (void*)vers + next; 3695 } 3696 break; 3697 } 3698 default: 3699 unlock_user(argptr, guest_data, 0); 3700 ret = -TARGET_EINVAL; 3701 goto out; 3702 } 3703 unlock_user(argptr, guest_data, guest_data_size); 3704 3705 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3706 if (!argptr) { 3707 ret = -TARGET_EFAULT; 3708 goto out; 3709 } 3710 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 3711 unlock_user(argptr, arg, target_size); 3712 } 3713 out: 3714 g_free(big_buf); 3715 return ret; 3716 } 3717 3718 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 3719 abi_long cmd, abi_long arg) 3720 { 3721 void *argptr; 3722 int target_size; 3723 const argtype *arg_type = ie->arg_type; 3724 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 3725 abi_long ret; 3726 3727 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 3728 struct blkpg_partition host_part; 3729 3730 /* Read and convert blkpg */ 3731 arg_type++; 3732 target_size = thunk_type_size(arg_type, 0); 3733 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3734 if (!argptr) { 3735 ret = -TARGET_EFAULT; 3736 goto out; 3737 } 3738 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3739 unlock_user(argptr, arg, 0); 3740 3741 switch (host_blkpg->op) { 3742 case BLKPG_ADD_PARTITION: 3743 case BLKPG_DEL_PARTITION: 3744 /* payload is struct blkpg_partition */ 3745 break; 3746 default: 3747 /* Unknown opcode */ 3748 ret = -TARGET_EINVAL; 3749 goto out; 3750 } 3751 3752 /* Read and convert blkpg->data */ 3753 arg = (abi_long)(uintptr_t)host_blkpg->data; 3754 target_size = thunk_type_size(part_arg_type, 0); 3755 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3756 if (!argptr) { 3757 ret = -TARGET_EFAULT; 3758 goto out; 3759 } 3760 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 3761 unlock_user(argptr, arg, 0); 3762 3763 /* Swizzle the data pointer to our local copy and call! */ 3764 host_blkpg->data = &host_part; 3765 ret = get_errno(ioctl(fd, ie->host_cmd, host_blkpg)); 3766 3767 out: 3768 return ret; 3769 } 3770 3771 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 3772 int fd, abi_long cmd, abi_long arg) 3773 { 3774 const argtype *arg_type = ie->arg_type; 3775 const StructEntry *se; 3776 const argtype *field_types; 3777 const int *dst_offsets, *src_offsets; 3778 int target_size; 3779 void *argptr; 3780 abi_ulong *target_rt_dev_ptr; 3781 unsigned long *host_rt_dev_ptr; 3782 abi_long ret; 3783 int i; 3784 3785 assert(ie->access == IOC_W); 3786 assert(*arg_type == TYPE_PTR); 3787 arg_type++; 3788 assert(*arg_type == TYPE_STRUCT); 3789 target_size = thunk_type_size(arg_type, 0); 3790 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3791 if (!argptr) { 3792 return -TARGET_EFAULT; 3793 } 3794 arg_type++; 3795 assert(*arg_type == (int)STRUCT_rtentry); 3796 se = struct_entries + *arg_type++; 3797 assert(se->convert[0] == NULL); 3798 /* convert struct here to be able to catch rt_dev string */ 3799 field_types = se->field_types; 3800 dst_offsets = se->field_offsets[THUNK_HOST]; 3801 src_offsets = se->field_offsets[THUNK_TARGET]; 3802 for (i = 0; i < se->nb_fields; i++) { 3803 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 3804 assert(*field_types == TYPE_PTRVOID); 3805 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 3806 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 3807 if (*target_rt_dev_ptr != 0) { 3808 *host_rt_dev_ptr = (unsigned long)lock_user_string( 3809 tswapal(*target_rt_dev_ptr)); 3810 if (!*host_rt_dev_ptr) { 3811 unlock_user(argptr, arg, 0); 3812 return -TARGET_EFAULT; 3813 } 3814 } else { 3815 *host_rt_dev_ptr = 0; 3816 } 3817 field_types++; 3818 continue; 3819 } 3820 field_types = thunk_convert(buf_temp + dst_offsets[i], 3821 argptr + src_offsets[i], 3822 field_types, THUNK_HOST); 3823 } 3824 unlock_user(argptr, arg, 0); 3825 3826 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3827 if (*host_rt_dev_ptr != 0) { 3828 unlock_user((void *)*host_rt_dev_ptr, 3829 *target_rt_dev_ptr, 0); 3830 } 3831 return ret; 3832 } 3833 3834 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 3835 int fd, abi_long cmd, abi_long arg) 3836 { 3837 int sig = target_to_host_signal(arg); 3838 return get_errno(ioctl(fd, ie->host_cmd, sig)); 3839 } 3840 3841 static IOCTLEntry ioctl_entries[] = { 3842 #define IOCTL(cmd, access, ...) \ 3843 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 3844 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 3845 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 3846 #include "ioctls.h" 3847 { 0, 0, }, 3848 }; 3849 3850 /* ??? Implement proper locking for ioctls. */ 3851 /* do_ioctl() Must return target values and target errnos. */ 3852 static abi_long do_ioctl(int fd, abi_long cmd, abi_long arg) 3853 { 3854 const IOCTLEntry *ie; 3855 const argtype *arg_type; 3856 abi_long ret; 3857 uint8_t buf_temp[MAX_STRUCT_SIZE]; 3858 int target_size; 3859 void *argptr; 3860 3861 ie = ioctl_entries; 3862 for(;;) { 3863 if (ie->target_cmd == 0) { 3864 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 3865 return -TARGET_ENOSYS; 3866 } 3867 if (ie->target_cmd == cmd) 3868 break; 3869 ie++; 3870 } 3871 arg_type = ie->arg_type; 3872 #if defined(DEBUG) 3873 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name); 3874 #endif 3875 if (ie->do_ioctl) { 3876 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 3877 } 3878 3879 switch(arg_type[0]) { 3880 case TYPE_NULL: 3881 /* no argument */ 3882 ret = get_errno(ioctl(fd, ie->host_cmd)); 3883 break; 3884 case TYPE_PTRVOID: 3885 case TYPE_INT: 3886 /* int argment */ 3887 ret = get_errno(ioctl(fd, ie->host_cmd, arg)); 3888 break; 3889 case TYPE_PTR: 3890 arg_type++; 3891 target_size = thunk_type_size(arg_type, 0); 3892 switch(ie->access) { 3893 case IOC_R: 3894 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3895 if (!is_error(ret)) { 3896 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3897 if (!argptr) 3898 return -TARGET_EFAULT; 3899 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 3900 unlock_user(argptr, arg, target_size); 3901 } 3902 break; 3903 case IOC_W: 3904 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3905 if (!argptr) 3906 return -TARGET_EFAULT; 3907 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3908 unlock_user(argptr, arg, 0); 3909 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3910 break; 3911 default: 3912 case IOC_RW: 3913 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3914 if (!argptr) 3915 return -TARGET_EFAULT; 3916 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3917 unlock_user(argptr, arg, 0); 3918 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3919 if (!is_error(ret)) { 3920 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3921 if (!argptr) 3922 return -TARGET_EFAULT; 3923 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 3924 unlock_user(argptr, arg, target_size); 3925 } 3926 break; 3927 } 3928 break; 3929 default: 3930 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", 3931 (long)cmd, arg_type[0]); 3932 ret = -TARGET_ENOSYS; 3933 break; 3934 } 3935 return ret; 3936 } 3937 3938 static const bitmask_transtbl iflag_tbl[] = { 3939 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 3940 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 3941 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 3942 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 3943 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 3944 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 3945 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 3946 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 3947 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 3948 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 3949 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 3950 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 3951 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 3952 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 3953 { 0, 0, 0, 0 } 3954 }; 3955 3956 static const bitmask_transtbl oflag_tbl[] = { 3957 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 3958 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 3959 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 3960 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 3961 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 3962 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 3963 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 3964 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 3965 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 3966 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 3967 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 3968 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 3969 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 3970 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 3971 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 3972 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 3973 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 3974 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 3975 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 3976 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 3977 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 3978 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 3979 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 3980 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 3981 { 0, 0, 0, 0 } 3982 }; 3983 3984 static const bitmask_transtbl cflag_tbl[] = { 3985 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 3986 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 3987 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 3988 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 3989 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 3990 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 3991 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 3992 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 3993 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 3994 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 3995 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 3996 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 3997 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 3998 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 3999 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 4000 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 4001 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 4002 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 4003 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 4004 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 4005 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 4006 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 4007 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 4008 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 4009 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 4010 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 4011 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 4012 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 4013 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 4014 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 4015 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 4016 { 0, 0, 0, 0 } 4017 }; 4018 4019 static const bitmask_transtbl lflag_tbl[] = { 4020 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 4021 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 4022 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 4023 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 4024 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 4025 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 4026 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 4027 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 4028 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 4029 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 4030 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 4031 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 4032 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 4033 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 4034 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 4035 { 0, 0, 0, 0 } 4036 }; 4037 4038 static void target_to_host_termios (void *dst, const void *src) 4039 { 4040 struct host_termios *host = dst; 4041 const struct target_termios *target = src; 4042 4043 host->c_iflag = 4044 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 4045 host->c_oflag = 4046 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 4047 host->c_cflag = 4048 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 4049 host->c_lflag = 4050 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 4051 host->c_line = target->c_line; 4052 4053 memset(host->c_cc, 0, sizeof(host->c_cc)); 4054 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 4055 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 4056 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 4057 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 4058 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 4059 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 4060 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 4061 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 4062 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 4063 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 4064 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 4065 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 4066 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 4067 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 4068 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 4069 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 4070 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 4071 } 4072 4073 static void host_to_target_termios (void *dst, const void *src) 4074 { 4075 struct target_termios *target = dst; 4076 const struct host_termios *host = src; 4077 4078 target->c_iflag = 4079 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 4080 target->c_oflag = 4081 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 4082 target->c_cflag = 4083 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 4084 target->c_lflag = 4085 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 4086 target->c_line = host->c_line; 4087 4088 memset(target->c_cc, 0, sizeof(target->c_cc)); 4089 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 4090 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 4091 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 4092 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 4093 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 4094 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 4095 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 4096 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 4097 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 4098 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 4099 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 4100 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 4101 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 4102 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 4103 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 4104 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 4105 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 4106 } 4107 4108 static const StructEntry struct_termios_def = { 4109 .convert = { host_to_target_termios, target_to_host_termios }, 4110 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 4111 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 4112 }; 4113 4114 static bitmask_transtbl mmap_flags_tbl[] = { 4115 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 4116 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 4117 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 4118 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS }, 4119 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN }, 4120 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE }, 4121 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE }, 4122 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 4123 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE, 4124 MAP_NORESERVE }, 4125 { 0, 0, 0, 0 } 4126 }; 4127 4128 #if defined(TARGET_I386) 4129 4130 /* NOTE: there is really one LDT for all the threads */ 4131 static uint8_t *ldt_table; 4132 4133 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 4134 { 4135 int size; 4136 void *p; 4137 4138 if (!ldt_table) 4139 return 0; 4140 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 4141 if (size > bytecount) 4142 size = bytecount; 4143 p = lock_user(VERIFY_WRITE, ptr, size, 0); 4144 if (!p) 4145 return -TARGET_EFAULT; 4146 /* ??? Should this by byteswapped? */ 4147 memcpy(p, ldt_table, size); 4148 unlock_user(p, ptr, size); 4149 return size; 4150 } 4151 4152 /* XXX: add locking support */ 4153 static abi_long write_ldt(CPUX86State *env, 4154 abi_ulong ptr, unsigned long bytecount, int oldmode) 4155 { 4156 struct target_modify_ldt_ldt_s ldt_info; 4157 struct target_modify_ldt_ldt_s *target_ldt_info; 4158 int seg_32bit, contents, read_exec_only, limit_in_pages; 4159 int seg_not_present, useable, lm; 4160 uint32_t *lp, entry_1, entry_2; 4161 4162 if (bytecount != sizeof(ldt_info)) 4163 return -TARGET_EINVAL; 4164 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 4165 return -TARGET_EFAULT; 4166 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 4167 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 4168 ldt_info.limit = tswap32(target_ldt_info->limit); 4169 ldt_info.flags = tswap32(target_ldt_info->flags); 4170 unlock_user_struct(target_ldt_info, ptr, 0); 4171 4172 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 4173 return -TARGET_EINVAL; 4174 seg_32bit = ldt_info.flags & 1; 4175 contents = (ldt_info.flags >> 1) & 3; 4176 read_exec_only = (ldt_info.flags >> 3) & 1; 4177 limit_in_pages = (ldt_info.flags >> 4) & 1; 4178 seg_not_present = (ldt_info.flags >> 5) & 1; 4179 useable = (ldt_info.flags >> 6) & 1; 4180 #ifdef TARGET_ABI32 4181 lm = 0; 4182 #else 4183 lm = (ldt_info.flags >> 7) & 1; 4184 #endif 4185 if (contents == 3) { 4186 if (oldmode) 4187 return -TARGET_EINVAL; 4188 if (seg_not_present == 0) 4189 return -TARGET_EINVAL; 4190 } 4191 /* allocate the LDT */ 4192 if (!ldt_table) { 4193 env->ldt.base = target_mmap(0, 4194 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 4195 PROT_READ|PROT_WRITE, 4196 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4197 if (env->ldt.base == -1) 4198 return -TARGET_ENOMEM; 4199 memset(g2h(env->ldt.base), 0, 4200 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 4201 env->ldt.limit = 0xffff; 4202 ldt_table = g2h(env->ldt.base); 4203 } 4204 4205 /* NOTE: same code as Linux kernel */ 4206 /* Allow LDTs to be cleared by the user. */ 4207 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 4208 if (oldmode || 4209 (contents == 0 && 4210 read_exec_only == 1 && 4211 seg_32bit == 0 && 4212 limit_in_pages == 0 && 4213 seg_not_present == 1 && 4214 useable == 0 )) { 4215 entry_1 = 0; 4216 entry_2 = 0; 4217 goto install; 4218 } 4219 } 4220 4221 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 4222 (ldt_info.limit & 0x0ffff); 4223 entry_2 = (ldt_info.base_addr & 0xff000000) | 4224 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 4225 (ldt_info.limit & 0xf0000) | 4226 ((read_exec_only ^ 1) << 9) | 4227 (contents << 10) | 4228 ((seg_not_present ^ 1) << 15) | 4229 (seg_32bit << 22) | 4230 (limit_in_pages << 23) | 4231 (lm << 21) | 4232 0x7000; 4233 if (!oldmode) 4234 entry_2 |= (useable << 20); 4235 4236 /* Install the new entry ... */ 4237 install: 4238 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 4239 lp[0] = tswap32(entry_1); 4240 lp[1] = tswap32(entry_2); 4241 return 0; 4242 } 4243 4244 /* specific and weird i386 syscalls */ 4245 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 4246 unsigned long bytecount) 4247 { 4248 abi_long ret; 4249 4250 switch (func) { 4251 case 0: 4252 ret = read_ldt(ptr, bytecount); 4253 break; 4254 case 1: 4255 ret = write_ldt(env, ptr, bytecount, 1); 4256 break; 4257 case 0x11: 4258 ret = write_ldt(env, ptr, bytecount, 0); 4259 break; 4260 default: 4261 ret = -TARGET_ENOSYS; 4262 break; 4263 } 4264 return ret; 4265 } 4266 4267 #if defined(TARGET_I386) && defined(TARGET_ABI32) 4268 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 4269 { 4270 uint64_t *gdt_table = g2h(env->gdt.base); 4271 struct target_modify_ldt_ldt_s ldt_info; 4272 struct target_modify_ldt_ldt_s *target_ldt_info; 4273 int seg_32bit, contents, read_exec_only, limit_in_pages; 4274 int seg_not_present, useable, lm; 4275 uint32_t *lp, entry_1, entry_2; 4276 int i; 4277 4278 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 4279 if (!target_ldt_info) 4280 return -TARGET_EFAULT; 4281 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 4282 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 4283 ldt_info.limit = tswap32(target_ldt_info->limit); 4284 ldt_info.flags = tswap32(target_ldt_info->flags); 4285 if (ldt_info.entry_number == -1) { 4286 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 4287 if (gdt_table[i] == 0) { 4288 ldt_info.entry_number = i; 4289 target_ldt_info->entry_number = tswap32(i); 4290 break; 4291 } 4292 } 4293 } 4294 unlock_user_struct(target_ldt_info, ptr, 1); 4295 4296 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 4297 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 4298 return -TARGET_EINVAL; 4299 seg_32bit = ldt_info.flags & 1; 4300 contents = (ldt_info.flags >> 1) & 3; 4301 read_exec_only = (ldt_info.flags >> 3) & 1; 4302 limit_in_pages = (ldt_info.flags >> 4) & 1; 4303 seg_not_present = (ldt_info.flags >> 5) & 1; 4304 useable = (ldt_info.flags >> 6) & 1; 4305 #ifdef TARGET_ABI32 4306 lm = 0; 4307 #else 4308 lm = (ldt_info.flags >> 7) & 1; 4309 #endif 4310 4311 if (contents == 3) { 4312 if (seg_not_present == 0) 4313 return -TARGET_EINVAL; 4314 } 4315 4316 /* NOTE: same code as Linux kernel */ 4317 /* Allow LDTs to be cleared by the user. */ 4318 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 4319 if ((contents == 0 && 4320 read_exec_only == 1 && 4321 seg_32bit == 0 && 4322 limit_in_pages == 0 && 4323 seg_not_present == 1 && 4324 useable == 0 )) { 4325 entry_1 = 0; 4326 entry_2 = 0; 4327 goto install; 4328 } 4329 } 4330 4331 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 4332 (ldt_info.limit & 0x0ffff); 4333 entry_2 = (ldt_info.base_addr & 0xff000000) | 4334 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 4335 (ldt_info.limit & 0xf0000) | 4336 ((read_exec_only ^ 1) << 9) | 4337 (contents << 10) | 4338 ((seg_not_present ^ 1) << 15) | 4339 (seg_32bit << 22) | 4340 (limit_in_pages << 23) | 4341 (useable << 20) | 4342 (lm << 21) | 4343 0x7000; 4344 4345 /* Install the new entry ... */ 4346 install: 4347 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 4348 lp[0] = tswap32(entry_1); 4349 lp[1] = tswap32(entry_2); 4350 return 0; 4351 } 4352 4353 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 4354 { 4355 struct target_modify_ldt_ldt_s *target_ldt_info; 4356 uint64_t *gdt_table = g2h(env->gdt.base); 4357 uint32_t base_addr, limit, flags; 4358 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 4359 int seg_not_present, useable, lm; 4360 uint32_t *lp, entry_1, entry_2; 4361 4362 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 4363 if (!target_ldt_info) 4364 return -TARGET_EFAULT; 4365 idx = tswap32(target_ldt_info->entry_number); 4366 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 4367 idx > TARGET_GDT_ENTRY_TLS_MAX) { 4368 unlock_user_struct(target_ldt_info, ptr, 1); 4369 return -TARGET_EINVAL; 4370 } 4371 lp = (uint32_t *)(gdt_table + idx); 4372 entry_1 = tswap32(lp[0]); 4373 entry_2 = tswap32(lp[1]); 4374 4375 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 4376 contents = (entry_2 >> 10) & 3; 4377 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 4378 seg_32bit = (entry_2 >> 22) & 1; 4379 limit_in_pages = (entry_2 >> 23) & 1; 4380 useable = (entry_2 >> 20) & 1; 4381 #ifdef TARGET_ABI32 4382 lm = 0; 4383 #else 4384 lm = (entry_2 >> 21) & 1; 4385 #endif 4386 flags = (seg_32bit << 0) | (contents << 1) | 4387 (read_exec_only << 3) | (limit_in_pages << 4) | 4388 (seg_not_present << 5) | (useable << 6) | (lm << 7); 4389 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 4390 base_addr = (entry_1 >> 16) | 4391 (entry_2 & 0xff000000) | 4392 ((entry_2 & 0xff) << 16); 4393 target_ldt_info->base_addr = tswapal(base_addr); 4394 target_ldt_info->limit = tswap32(limit); 4395 target_ldt_info->flags = tswap32(flags); 4396 unlock_user_struct(target_ldt_info, ptr, 1); 4397 return 0; 4398 } 4399 #endif /* TARGET_I386 && TARGET_ABI32 */ 4400 4401 #ifndef TARGET_ABI32 4402 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 4403 { 4404 abi_long ret = 0; 4405 abi_ulong val; 4406 int idx; 4407 4408 switch(code) { 4409 case TARGET_ARCH_SET_GS: 4410 case TARGET_ARCH_SET_FS: 4411 if (code == TARGET_ARCH_SET_GS) 4412 idx = R_GS; 4413 else 4414 idx = R_FS; 4415 cpu_x86_load_seg(env, idx, 0); 4416 env->segs[idx].base = addr; 4417 break; 4418 case TARGET_ARCH_GET_GS: 4419 case TARGET_ARCH_GET_FS: 4420 if (code == TARGET_ARCH_GET_GS) 4421 idx = R_GS; 4422 else 4423 idx = R_FS; 4424 val = env->segs[idx].base; 4425 if (put_user(val, addr, abi_ulong)) 4426 ret = -TARGET_EFAULT; 4427 break; 4428 default: 4429 ret = -TARGET_EINVAL; 4430 break; 4431 } 4432 return ret; 4433 } 4434 #endif 4435 4436 #endif /* defined(TARGET_I386) */ 4437 4438 #define NEW_STACK_SIZE 0x40000 4439 4440 4441 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 4442 typedef struct { 4443 CPUArchState *env; 4444 pthread_mutex_t mutex; 4445 pthread_cond_t cond; 4446 pthread_t thread; 4447 uint32_t tid; 4448 abi_ulong child_tidptr; 4449 abi_ulong parent_tidptr; 4450 sigset_t sigmask; 4451 } new_thread_info; 4452 4453 static void *clone_func(void *arg) 4454 { 4455 new_thread_info *info = arg; 4456 CPUArchState *env; 4457 CPUState *cpu; 4458 TaskState *ts; 4459 4460 env = info->env; 4461 cpu = ENV_GET_CPU(env); 4462 thread_cpu = cpu; 4463 ts = (TaskState *)cpu->opaque; 4464 info->tid = gettid(); 4465 cpu->host_tid = info->tid; 4466 task_settid(ts); 4467 if (info->child_tidptr) 4468 put_user_u32(info->tid, info->child_tidptr); 4469 if (info->parent_tidptr) 4470 put_user_u32(info->tid, info->parent_tidptr); 4471 /* Enable signals. */ 4472 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 4473 /* Signal to the parent that we're ready. */ 4474 pthread_mutex_lock(&info->mutex); 4475 pthread_cond_broadcast(&info->cond); 4476 pthread_mutex_unlock(&info->mutex); 4477 /* Wait until the parent has finshed initializing the tls state. */ 4478 pthread_mutex_lock(&clone_lock); 4479 pthread_mutex_unlock(&clone_lock); 4480 cpu_loop(env); 4481 /* never exits */ 4482 return NULL; 4483 } 4484 4485 /* do_fork() Must return host values and target errnos (unlike most 4486 do_*() functions). */ 4487 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 4488 abi_ulong parent_tidptr, target_ulong newtls, 4489 abi_ulong child_tidptr) 4490 { 4491 CPUState *cpu = ENV_GET_CPU(env); 4492 int ret; 4493 TaskState *ts; 4494 CPUState *new_cpu; 4495 CPUArchState *new_env; 4496 unsigned int nptl_flags; 4497 sigset_t sigmask; 4498 4499 /* Emulate vfork() with fork() */ 4500 if (flags & CLONE_VFORK) 4501 flags &= ~(CLONE_VFORK | CLONE_VM); 4502 4503 if (flags & CLONE_VM) { 4504 TaskState *parent_ts = (TaskState *)cpu->opaque; 4505 new_thread_info info; 4506 pthread_attr_t attr; 4507 4508 ts = g_malloc0(sizeof(TaskState)); 4509 init_task_state(ts); 4510 /* we create a new CPU instance. */ 4511 new_env = cpu_copy(env); 4512 /* Init regs that differ from the parent. */ 4513 cpu_clone_regs(new_env, newsp); 4514 new_cpu = ENV_GET_CPU(new_env); 4515 new_cpu->opaque = ts; 4516 ts->bprm = parent_ts->bprm; 4517 ts->info = parent_ts->info; 4518 nptl_flags = flags; 4519 flags &= ~CLONE_NPTL_FLAGS2; 4520 4521 if (nptl_flags & CLONE_CHILD_CLEARTID) { 4522 ts->child_tidptr = child_tidptr; 4523 } 4524 4525 if (nptl_flags & CLONE_SETTLS) 4526 cpu_set_tls (new_env, newtls); 4527 4528 /* Grab a mutex so that thread setup appears atomic. */ 4529 pthread_mutex_lock(&clone_lock); 4530 4531 memset(&info, 0, sizeof(info)); 4532 pthread_mutex_init(&info.mutex, NULL); 4533 pthread_mutex_lock(&info.mutex); 4534 pthread_cond_init(&info.cond, NULL); 4535 info.env = new_env; 4536 if (nptl_flags & CLONE_CHILD_SETTID) 4537 info.child_tidptr = child_tidptr; 4538 if (nptl_flags & CLONE_PARENT_SETTID) 4539 info.parent_tidptr = parent_tidptr; 4540 4541 ret = pthread_attr_init(&attr); 4542 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 4543 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 4544 /* It is not safe to deliver signals until the child has finished 4545 initializing, so temporarily block all signals. */ 4546 sigfillset(&sigmask); 4547 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 4548 4549 ret = pthread_create(&info.thread, &attr, clone_func, &info); 4550 /* TODO: Free new CPU state if thread creation failed. */ 4551 4552 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 4553 pthread_attr_destroy(&attr); 4554 if (ret == 0) { 4555 /* Wait for the child to initialize. */ 4556 pthread_cond_wait(&info.cond, &info.mutex); 4557 ret = info.tid; 4558 if (flags & CLONE_PARENT_SETTID) 4559 put_user_u32(ret, parent_tidptr); 4560 } else { 4561 ret = -1; 4562 } 4563 pthread_mutex_unlock(&info.mutex); 4564 pthread_cond_destroy(&info.cond); 4565 pthread_mutex_destroy(&info.mutex); 4566 pthread_mutex_unlock(&clone_lock); 4567 } else { 4568 /* if no CLONE_VM, we consider it is a fork */ 4569 if ((flags & ~(CSIGNAL | CLONE_NPTL_FLAGS2)) != 0) 4570 return -EINVAL; 4571 fork_start(); 4572 ret = fork(); 4573 if (ret == 0) { 4574 /* Child Process. */ 4575 cpu_clone_regs(env, newsp); 4576 fork_end(1); 4577 /* There is a race condition here. The parent process could 4578 theoretically read the TID in the child process before the child 4579 tid is set. This would require using either ptrace 4580 (not implemented) or having *_tidptr to point at a shared memory 4581 mapping. We can't repeat the spinlock hack used above because 4582 the child process gets its own copy of the lock. */ 4583 if (flags & CLONE_CHILD_SETTID) 4584 put_user_u32(gettid(), child_tidptr); 4585 if (flags & CLONE_PARENT_SETTID) 4586 put_user_u32(gettid(), parent_tidptr); 4587 ts = (TaskState *)cpu->opaque; 4588 if (flags & CLONE_SETTLS) 4589 cpu_set_tls (env, newtls); 4590 if (flags & CLONE_CHILD_CLEARTID) 4591 ts->child_tidptr = child_tidptr; 4592 } else { 4593 fork_end(0); 4594 } 4595 } 4596 return ret; 4597 } 4598 4599 /* warning : doesn't handle linux specific flags... */ 4600 static int target_to_host_fcntl_cmd(int cmd) 4601 { 4602 switch(cmd) { 4603 case TARGET_F_DUPFD: 4604 case TARGET_F_GETFD: 4605 case TARGET_F_SETFD: 4606 case TARGET_F_GETFL: 4607 case TARGET_F_SETFL: 4608 return cmd; 4609 case TARGET_F_GETLK: 4610 return F_GETLK; 4611 case TARGET_F_SETLK: 4612 return F_SETLK; 4613 case TARGET_F_SETLKW: 4614 return F_SETLKW; 4615 case TARGET_F_GETOWN: 4616 return F_GETOWN; 4617 case TARGET_F_SETOWN: 4618 return F_SETOWN; 4619 case TARGET_F_GETSIG: 4620 return F_GETSIG; 4621 case TARGET_F_SETSIG: 4622 return F_SETSIG; 4623 #if TARGET_ABI_BITS == 32 4624 case TARGET_F_GETLK64: 4625 return F_GETLK64; 4626 case TARGET_F_SETLK64: 4627 return F_SETLK64; 4628 case TARGET_F_SETLKW64: 4629 return F_SETLKW64; 4630 #endif 4631 case TARGET_F_SETLEASE: 4632 return F_SETLEASE; 4633 case TARGET_F_GETLEASE: 4634 return F_GETLEASE; 4635 #ifdef F_DUPFD_CLOEXEC 4636 case TARGET_F_DUPFD_CLOEXEC: 4637 return F_DUPFD_CLOEXEC; 4638 #endif 4639 case TARGET_F_NOTIFY: 4640 return F_NOTIFY; 4641 #ifdef F_GETOWN_EX 4642 case TARGET_F_GETOWN_EX: 4643 return F_GETOWN_EX; 4644 #endif 4645 #ifdef F_SETOWN_EX 4646 case TARGET_F_SETOWN_EX: 4647 return F_SETOWN_EX; 4648 #endif 4649 default: 4650 return -TARGET_EINVAL; 4651 } 4652 return -TARGET_EINVAL; 4653 } 4654 4655 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a } 4656 static const bitmask_transtbl flock_tbl[] = { 4657 TRANSTBL_CONVERT(F_RDLCK), 4658 TRANSTBL_CONVERT(F_WRLCK), 4659 TRANSTBL_CONVERT(F_UNLCK), 4660 TRANSTBL_CONVERT(F_EXLCK), 4661 TRANSTBL_CONVERT(F_SHLCK), 4662 { 0, 0, 0, 0 } 4663 }; 4664 4665 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 4666 { 4667 struct flock fl; 4668 struct target_flock *target_fl; 4669 struct flock64 fl64; 4670 struct target_flock64 *target_fl64; 4671 #ifdef F_GETOWN_EX 4672 struct f_owner_ex fox; 4673 struct target_f_owner_ex *target_fox; 4674 #endif 4675 abi_long ret; 4676 int host_cmd = target_to_host_fcntl_cmd(cmd); 4677 4678 if (host_cmd == -TARGET_EINVAL) 4679 return host_cmd; 4680 4681 switch(cmd) { 4682 case TARGET_F_GETLK: 4683 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1)) 4684 return -TARGET_EFAULT; 4685 fl.l_type = 4686 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl); 4687 fl.l_whence = tswap16(target_fl->l_whence); 4688 fl.l_start = tswapal(target_fl->l_start); 4689 fl.l_len = tswapal(target_fl->l_len); 4690 fl.l_pid = tswap32(target_fl->l_pid); 4691 unlock_user_struct(target_fl, arg, 0); 4692 ret = get_errno(fcntl(fd, host_cmd, &fl)); 4693 if (ret == 0) { 4694 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg, 0)) 4695 return -TARGET_EFAULT; 4696 target_fl->l_type = 4697 host_to_target_bitmask(tswap16(fl.l_type), flock_tbl); 4698 target_fl->l_whence = tswap16(fl.l_whence); 4699 target_fl->l_start = tswapal(fl.l_start); 4700 target_fl->l_len = tswapal(fl.l_len); 4701 target_fl->l_pid = tswap32(fl.l_pid); 4702 unlock_user_struct(target_fl, arg, 1); 4703 } 4704 break; 4705 4706 case TARGET_F_SETLK: 4707 case TARGET_F_SETLKW: 4708 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1)) 4709 return -TARGET_EFAULT; 4710 fl.l_type = 4711 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl); 4712 fl.l_whence = tswap16(target_fl->l_whence); 4713 fl.l_start = tswapal(target_fl->l_start); 4714 fl.l_len = tswapal(target_fl->l_len); 4715 fl.l_pid = tswap32(target_fl->l_pid); 4716 unlock_user_struct(target_fl, arg, 0); 4717 ret = get_errno(fcntl(fd, host_cmd, &fl)); 4718 break; 4719 4720 case TARGET_F_GETLK64: 4721 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1)) 4722 return -TARGET_EFAULT; 4723 fl64.l_type = 4724 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1; 4725 fl64.l_whence = tswap16(target_fl64->l_whence); 4726 fl64.l_start = tswap64(target_fl64->l_start); 4727 fl64.l_len = tswap64(target_fl64->l_len); 4728 fl64.l_pid = tswap32(target_fl64->l_pid); 4729 unlock_user_struct(target_fl64, arg, 0); 4730 ret = get_errno(fcntl(fd, host_cmd, &fl64)); 4731 if (ret == 0) { 4732 if (!lock_user_struct(VERIFY_WRITE, target_fl64, arg, 0)) 4733 return -TARGET_EFAULT; 4734 target_fl64->l_type = 4735 host_to_target_bitmask(tswap16(fl64.l_type), flock_tbl) >> 1; 4736 target_fl64->l_whence = tswap16(fl64.l_whence); 4737 target_fl64->l_start = tswap64(fl64.l_start); 4738 target_fl64->l_len = tswap64(fl64.l_len); 4739 target_fl64->l_pid = tswap32(fl64.l_pid); 4740 unlock_user_struct(target_fl64, arg, 1); 4741 } 4742 break; 4743 case TARGET_F_SETLK64: 4744 case TARGET_F_SETLKW64: 4745 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1)) 4746 return -TARGET_EFAULT; 4747 fl64.l_type = 4748 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1; 4749 fl64.l_whence = tswap16(target_fl64->l_whence); 4750 fl64.l_start = tswap64(target_fl64->l_start); 4751 fl64.l_len = tswap64(target_fl64->l_len); 4752 fl64.l_pid = tswap32(target_fl64->l_pid); 4753 unlock_user_struct(target_fl64, arg, 0); 4754 ret = get_errno(fcntl(fd, host_cmd, &fl64)); 4755 break; 4756 4757 case TARGET_F_GETFL: 4758 ret = get_errno(fcntl(fd, host_cmd, arg)); 4759 if (ret >= 0) { 4760 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 4761 } 4762 break; 4763 4764 case TARGET_F_SETFL: 4765 ret = get_errno(fcntl(fd, host_cmd, target_to_host_bitmask(arg, fcntl_flags_tbl))); 4766 break; 4767 4768 #ifdef F_GETOWN_EX 4769 case TARGET_F_GETOWN_EX: 4770 ret = get_errno(fcntl(fd, host_cmd, &fox)); 4771 if (ret >= 0) { 4772 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 4773 return -TARGET_EFAULT; 4774 target_fox->type = tswap32(fox.type); 4775 target_fox->pid = tswap32(fox.pid); 4776 unlock_user_struct(target_fox, arg, 1); 4777 } 4778 break; 4779 #endif 4780 4781 #ifdef F_SETOWN_EX 4782 case TARGET_F_SETOWN_EX: 4783 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 4784 return -TARGET_EFAULT; 4785 fox.type = tswap32(target_fox->type); 4786 fox.pid = tswap32(target_fox->pid); 4787 unlock_user_struct(target_fox, arg, 0); 4788 ret = get_errno(fcntl(fd, host_cmd, &fox)); 4789 break; 4790 #endif 4791 4792 case TARGET_F_SETOWN: 4793 case TARGET_F_GETOWN: 4794 case TARGET_F_SETSIG: 4795 case TARGET_F_GETSIG: 4796 case TARGET_F_SETLEASE: 4797 case TARGET_F_GETLEASE: 4798 ret = get_errno(fcntl(fd, host_cmd, arg)); 4799 break; 4800 4801 default: 4802 ret = get_errno(fcntl(fd, cmd, arg)); 4803 break; 4804 } 4805 return ret; 4806 } 4807 4808 #ifdef USE_UID16 4809 4810 static inline int high2lowuid(int uid) 4811 { 4812 if (uid > 65535) 4813 return 65534; 4814 else 4815 return uid; 4816 } 4817 4818 static inline int high2lowgid(int gid) 4819 { 4820 if (gid > 65535) 4821 return 65534; 4822 else 4823 return gid; 4824 } 4825 4826 static inline int low2highuid(int uid) 4827 { 4828 if ((int16_t)uid == -1) 4829 return -1; 4830 else 4831 return uid; 4832 } 4833 4834 static inline int low2highgid(int gid) 4835 { 4836 if ((int16_t)gid == -1) 4837 return -1; 4838 else 4839 return gid; 4840 } 4841 static inline int tswapid(int id) 4842 { 4843 return tswap16(id); 4844 } 4845 4846 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 4847 4848 #else /* !USE_UID16 */ 4849 static inline int high2lowuid(int uid) 4850 { 4851 return uid; 4852 } 4853 static inline int high2lowgid(int gid) 4854 { 4855 return gid; 4856 } 4857 static inline int low2highuid(int uid) 4858 { 4859 return uid; 4860 } 4861 static inline int low2highgid(int gid) 4862 { 4863 return gid; 4864 } 4865 static inline int tswapid(int id) 4866 { 4867 return tswap32(id); 4868 } 4869 4870 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 4871 4872 #endif /* USE_UID16 */ 4873 4874 void syscall_init(void) 4875 { 4876 IOCTLEntry *ie; 4877 const argtype *arg_type; 4878 int size; 4879 int i; 4880 4881 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 4882 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 4883 #include "syscall_types.h" 4884 #undef STRUCT 4885 #undef STRUCT_SPECIAL 4886 4887 /* Build target_to_host_errno_table[] table from 4888 * host_to_target_errno_table[]. */ 4889 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 4890 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 4891 } 4892 4893 /* we patch the ioctl size if necessary. We rely on the fact that 4894 no ioctl has all the bits at '1' in the size field */ 4895 ie = ioctl_entries; 4896 while (ie->target_cmd != 0) { 4897 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 4898 TARGET_IOC_SIZEMASK) { 4899 arg_type = ie->arg_type; 4900 if (arg_type[0] != TYPE_PTR) { 4901 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 4902 ie->target_cmd); 4903 exit(1); 4904 } 4905 arg_type++; 4906 size = thunk_type_size(arg_type, 0); 4907 ie->target_cmd = (ie->target_cmd & 4908 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 4909 (size << TARGET_IOC_SIZESHIFT); 4910 } 4911 4912 /* automatic consistency check if same arch */ 4913 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 4914 (defined(__x86_64__) && defined(TARGET_X86_64)) 4915 if (unlikely(ie->target_cmd != ie->host_cmd)) { 4916 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 4917 ie->name, ie->target_cmd, ie->host_cmd); 4918 } 4919 #endif 4920 ie++; 4921 } 4922 } 4923 4924 #if TARGET_ABI_BITS == 32 4925 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 4926 { 4927 #ifdef TARGET_WORDS_BIGENDIAN 4928 return ((uint64_t)word0 << 32) | word1; 4929 #else 4930 return ((uint64_t)word1 << 32) | word0; 4931 #endif 4932 } 4933 #else /* TARGET_ABI_BITS == 32 */ 4934 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 4935 { 4936 return word0; 4937 } 4938 #endif /* TARGET_ABI_BITS != 32 */ 4939 4940 #ifdef TARGET_NR_truncate64 4941 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 4942 abi_long arg2, 4943 abi_long arg3, 4944 abi_long arg4) 4945 { 4946 if (regpairs_aligned(cpu_env)) { 4947 arg2 = arg3; 4948 arg3 = arg4; 4949 } 4950 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 4951 } 4952 #endif 4953 4954 #ifdef TARGET_NR_ftruncate64 4955 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 4956 abi_long arg2, 4957 abi_long arg3, 4958 abi_long arg4) 4959 { 4960 if (regpairs_aligned(cpu_env)) { 4961 arg2 = arg3; 4962 arg3 = arg4; 4963 } 4964 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 4965 } 4966 #endif 4967 4968 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 4969 abi_ulong target_addr) 4970 { 4971 struct target_timespec *target_ts; 4972 4973 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) 4974 return -TARGET_EFAULT; 4975 host_ts->tv_sec = tswapal(target_ts->tv_sec); 4976 host_ts->tv_nsec = tswapal(target_ts->tv_nsec); 4977 unlock_user_struct(target_ts, target_addr, 0); 4978 return 0; 4979 } 4980 4981 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 4982 struct timespec *host_ts) 4983 { 4984 struct target_timespec *target_ts; 4985 4986 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) 4987 return -TARGET_EFAULT; 4988 target_ts->tv_sec = tswapal(host_ts->tv_sec); 4989 target_ts->tv_nsec = tswapal(host_ts->tv_nsec); 4990 unlock_user_struct(target_ts, target_addr, 1); 4991 return 0; 4992 } 4993 4994 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec, 4995 abi_ulong target_addr) 4996 { 4997 struct target_itimerspec *target_itspec; 4998 4999 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) { 5000 return -TARGET_EFAULT; 5001 } 5002 5003 host_itspec->it_interval.tv_sec = 5004 tswapal(target_itspec->it_interval.tv_sec); 5005 host_itspec->it_interval.tv_nsec = 5006 tswapal(target_itspec->it_interval.tv_nsec); 5007 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec); 5008 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec); 5009 5010 unlock_user_struct(target_itspec, target_addr, 1); 5011 return 0; 5012 } 5013 5014 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 5015 struct itimerspec *host_its) 5016 { 5017 struct target_itimerspec *target_itspec; 5018 5019 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) { 5020 return -TARGET_EFAULT; 5021 } 5022 5023 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec); 5024 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec); 5025 5026 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec); 5027 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec); 5028 5029 unlock_user_struct(target_itspec, target_addr, 0); 5030 return 0; 5031 } 5032 5033 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 5034 abi_ulong target_addr) 5035 { 5036 struct target_sigevent *target_sevp; 5037 5038 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 5039 return -TARGET_EFAULT; 5040 } 5041 5042 /* This union is awkward on 64 bit systems because it has a 32 bit 5043 * integer and a pointer in it; we follow the conversion approach 5044 * used for handling sigval types in signal.c so the guest should get 5045 * the correct value back even if we did a 64 bit byteswap and it's 5046 * using the 32 bit integer. 5047 */ 5048 host_sevp->sigev_value.sival_ptr = 5049 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 5050 host_sevp->sigev_signo = 5051 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 5052 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 5053 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid); 5054 5055 unlock_user_struct(target_sevp, target_addr, 1); 5056 return 0; 5057 } 5058 5059 #if defined(TARGET_NR_mlockall) 5060 static inline int target_to_host_mlockall_arg(int arg) 5061 { 5062 int result = 0; 5063 5064 if (arg & TARGET_MLOCKALL_MCL_CURRENT) { 5065 result |= MCL_CURRENT; 5066 } 5067 if (arg & TARGET_MLOCKALL_MCL_FUTURE) { 5068 result |= MCL_FUTURE; 5069 } 5070 return result; 5071 } 5072 #endif 5073 5074 #if defined(TARGET_NR_stat64) || defined(TARGET_NR_newfstatat) 5075 static inline abi_long host_to_target_stat64(void *cpu_env, 5076 abi_ulong target_addr, 5077 struct stat *host_st) 5078 { 5079 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 5080 if (((CPUARMState *)cpu_env)->eabi) { 5081 struct target_eabi_stat64 *target_st; 5082 5083 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 5084 return -TARGET_EFAULT; 5085 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 5086 __put_user(host_st->st_dev, &target_st->st_dev); 5087 __put_user(host_st->st_ino, &target_st->st_ino); 5088 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 5089 __put_user(host_st->st_ino, &target_st->__st_ino); 5090 #endif 5091 __put_user(host_st->st_mode, &target_st->st_mode); 5092 __put_user(host_st->st_nlink, &target_st->st_nlink); 5093 __put_user(host_st->st_uid, &target_st->st_uid); 5094 __put_user(host_st->st_gid, &target_st->st_gid); 5095 __put_user(host_st->st_rdev, &target_st->st_rdev); 5096 __put_user(host_st->st_size, &target_st->st_size); 5097 __put_user(host_st->st_blksize, &target_st->st_blksize); 5098 __put_user(host_st->st_blocks, &target_st->st_blocks); 5099 __put_user(host_st->st_atime, &target_st->target_st_atime); 5100 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 5101 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 5102 unlock_user_struct(target_st, target_addr, 1); 5103 } else 5104 #endif 5105 { 5106 #if defined(TARGET_HAS_STRUCT_STAT64) 5107 struct target_stat64 *target_st; 5108 #else 5109 struct target_stat *target_st; 5110 #endif 5111 5112 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 5113 return -TARGET_EFAULT; 5114 memset(target_st, 0, sizeof(*target_st)); 5115 __put_user(host_st->st_dev, &target_st->st_dev); 5116 __put_user(host_st->st_ino, &target_st->st_ino); 5117 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 5118 __put_user(host_st->st_ino, &target_st->__st_ino); 5119 #endif 5120 __put_user(host_st->st_mode, &target_st->st_mode); 5121 __put_user(host_st->st_nlink, &target_st->st_nlink); 5122 __put_user(host_st->st_uid, &target_st->st_uid); 5123 __put_user(host_st->st_gid, &target_st->st_gid); 5124 __put_user(host_st->st_rdev, &target_st->st_rdev); 5125 /* XXX: better use of kernel struct */ 5126 __put_user(host_st->st_size, &target_st->st_size); 5127 __put_user(host_st->st_blksize, &target_st->st_blksize); 5128 __put_user(host_st->st_blocks, &target_st->st_blocks); 5129 __put_user(host_st->st_atime, &target_st->target_st_atime); 5130 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 5131 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 5132 unlock_user_struct(target_st, target_addr, 1); 5133 } 5134 5135 return 0; 5136 } 5137 #endif 5138 5139 /* ??? Using host futex calls even when target atomic operations 5140 are not really atomic probably breaks things. However implementing 5141 futexes locally would make futexes shared between multiple processes 5142 tricky. However they're probably useless because guest atomic 5143 operations won't work either. */ 5144 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout, 5145 target_ulong uaddr2, int val3) 5146 { 5147 struct timespec ts, *pts; 5148 int base_op; 5149 5150 /* ??? We assume FUTEX_* constants are the same on both host 5151 and target. */ 5152 #ifdef FUTEX_CMD_MASK 5153 base_op = op & FUTEX_CMD_MASK; 5154 #else 5155 base_op = op; 5156 #endif 5157 switch (base_op) { 5158 case FUTEX_WAIT: 5159 case FUTEX_WAIT_BITSET: 5160 if (timeout) { 5161 pts = &ts; 5162 target_to_host_timespec(pts, timeout); 5163 } else { 5164 pts = NULL; 5165 } 5166 return get_errno(sys_futex(g2h(uaddr), op, tswap32(val), 5167 pts, NULL, val3)); 5168 case FUTEX_WAKE: 5169 return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 5170 case FUTEX_FD: 5171 return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 5172 case FUTEX_REQUEUE: 5173 case FUTEX_CMP_REQUEUE: 5174 case FUTEX_WAKE_OP: 5175 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 5176 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 5177 But the prototype takes a `struct timespec *'; insert casts 5178 to satisfy the compiler. We do not need to tswap TIMEOUT 5179 since it's not compared to guest memory. */ 5180 pts = (struct timespec *)(uintptr_t) timeout; 5181 return get_errno(sys_futex(g2h(uaddr), op, val, pts, 5182 g2h(uaddr2), 5183 (base_op == FUTEX_CMP_REQUEUE 5184 ? tswap32(val3) 5185 : val3))); 5186 default: 5187 return -TARGET_ENOSYS; 5188 } 5189 } 5190 5191 /* Map host to target signal numbers for the wait family of syscalls. 5192 Assume all other status bits are the same. */ 5193 int host_to_target_waitstatus(int status) 5194 { 5195 if (WIFSIGNALED(status)) { 5196 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 5197 } 5198 if (WIFSTOPPED(status)) { 5199 return (host_to_target_signal(WSTOPSIG(status)) << 8) 5200 | (status & 0xff); 5201 } 5202 return status; 5203 } 5204 5205 static int open_self_cmdline(void *cpu_env, int fd) 5206 { 5207 int fd_orig = -1; 5208 bool word_skipped = false; 5209 5210 fd_orig = open("/proc/self/cmdline", O_RDONLY); 5211 if (fd_orig < 0) { 5212 return fd_orig; 5213 } 5214 5215 while (true) { 5216 ssize_t nb_read; 5217 char buf[128]; 5218 char *cp_buf = buf; 5219 5220 nb_read = read(fd_orig, buf, sizeof(buf)); 5221 if (nb_read < 0) { 5222 fd_orig = close(fd_orig); 5223 return -1; 5224 } else if (nb_read == 0) { 5225 break; 5226 } 5227 5228 if (!word_skipped) { 5229 /* Skip the first string, which is the path to qemu-*-static 5230 instead of the actual command. */ 5231 cp_buf = memchr(buf, 0, sizeof(buf)); 5232 if (cp_buf) { 5233 /* Null byte found, skip one string */ 5234 cp_buf++; 5235 nb_read -= cp_buf - buf; 5236 word_skipped = true; 5237 } 5238 } 5239 5240 if (word_skipped) { 5241 if (write(fd, cp_buf, nb_read) != nb_read) { 5242 close(fd_orig); 5243 return -1; 5244 } 5245 } 5246 } 5247 5248 return close(fd_orig); 5249 } 5250 5251 static int open_self_maps(void *cpu_env, int fd) 5252 { 5253 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 5254 TaskState *ts = cpu->opaque; 5255 FILE *fp; 5256 char *line = NULL; 5257 size_t len = 0; 5258 ssize_t read; 5259 5260 fp = fopen("/proc/self/maps", "r"); 5261 if (fp == NULL) { 5262 return -EACCES; 5263 } 5264 5265 while ((read = getline(&line, &len, fp)) != -1) { 5266 int fields, dev_maj, dev_min, inode; 5267 uint64_t min, max, offset; 5268 char flag_r, flag_w, flag_x, flag_p; 5269 char path[512] = ""; 5270 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d" 5271 " %512s", &min, &max, &flag_r, &flag_w, &flag_x, 5272 &flag_p, &offset, &dev_maj, &dev_min, &inode, path); 5273 5274 if ((fields < 10) || (fields > 11)) { 5275 continue; 5276 } 5277 if (h2g_valid(min)) { 5278 int flags = page_get_flags(h2g(min)); 5279 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX); 5280 if (page_check_range(h2g(min), max - min, flags) == -1) { 5281 continue; 5282 } 5283 if (h2g(min) == ts->info->stack_limit) { 5284 pstrcpy(path, sizeof(path), " [stack]"); 5285 } 5286 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx 5287 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n", 5288 h2g(min), h2g(max - 1) + 1, flag_r, flag_w, 5289 flag_x, flag_p, offset, dev_maj, dev_min, inode, 5290 path[0] ? " " : "", path); 5291 } 5292 } 5293 5294 free(line); 5295 fclose(fp); 5296 5297 return 0; 5298 } 5299 5300 static int open_self_stat(void *cpu_env, int fd) 5301 { 5302 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 5303 TaskState *ts = cpu->opaque; 5304 abi_ulong start_stack = ts->info->start_stack; 5305 int i; 5306 5307 for (i = 0; i < 44; i++) { 5308 char buf[128]; 5309 int len; 5310 uint64_t val = 0; 5311 5312 if (i == 0) { 5313 /* pid */ 5314 val = getpid(); 5315 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 5316 } else if (i == 1) { 5317 /* app name */ 5318 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]); 5319 } else if (i == 27) { 5320 /* stack bottom */ 5321 val = start_stack; 5322 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 5323 } else { 5324 /* for the rest, there is MasterCard */ 5325 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' '); 5326 } 5327 5328 len = strlen(buf); 5329 if (write(fd, buf, len) != len) { 5330 return -1; 5331 } 5332 } 5333 5334 return 0; 5335 } 5336 5337 static int open_self_auxv(void *cpu_env, int fd) 5338 { 5339 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 5340 TaskState *ts = cpu->opaque; 5341 abi_ulong auxv = ts->info->saved_auxv; 5342 abi_ulong len = ts->info->auxv_len; 5343 char *ptr; 5344 5345 /* 5346 * Auxiliary vector is stored in target process stack. 5347 * read in whole auxv vector and copy it to file 5348 */ 5349 ptr = lock_user(VERIFY_READ, auxv, len, 0); 5350 if (ptr != NULL) { 5351 while (len > 0) { 5352 ssize_t r; 5353 r = write(fd, ptr, len); 5354 if (r <= 0) { 5355 break; 5356 } 5357 len -= r; 5358 ptr += r; 5359 } 5360 lseek(fd, 0, SEEK_SET); 5361 unlock_user(ptr, auxv, len); 5362 } 5363 5364 return 0; 5365 } 5366 5367 static int is_proc_myself(const char *filename, const char *entry) 5368 { 5369 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 5370 filename += strlen("/proc/"); 5371 if (!strncmp(filename, "self/", strlen("self/"))) { 5372 filename += strlen("self/"); 5373 } else if (*filename >= '1' && *filename <= '9') { 5374 char myself[80]; 5375 snprintf(myself, sizeof(myself), "%d/", getpid()); 5376 if (!strncmp(filename, myself, strlen(myself))) { 5377 filename += strlen(myself); 5378 } else { 5379 return 0; 5380 } 5381 } else { 5382 return 0; 5383 } 5384 if (!strcmp(filename, entry)) { 5385 return 1; 5386 } 5387 } 5388 return 0; 5389 } 5390 5391 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 5392 static int is_proc(const char *filename, const char *entry) 5393 { 5394 return strcmp(filename, entry) == 0; 5395 } 5396 5397 static int open_net_route(void *cpu_env, int fd) 5398 { 5399 FILE *fp; 5400 char *line = NULL; 5401 size_t len = 0; 5402 ssize_t read; 5403 5404 fp = fopen("/proc/net/route", "r"); 5405 if (fp == NULL) { 5406 return -EACCES; 5407 } 5408 5409 /* read header */ 5410 5411 read = getline(&line, &len, fp); 5412 dprintf(fd, "%s", line); 5413 5414 /* read routes */ 5415 5416 while ((read = getline(&line, &len, fp)) != -1) { 5417 char iface[16]; 5418 uint32_t dest, gw, mask; 5419 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 5420 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 5421 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 5422 &mask, &mtu, &window, &irtt); 5423 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 5424 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 5425 metric, tswap32(mask), mtu, window, irtt); 5426 } 5427 5428 free(line); 5429 fclose(fp); 5430 5431 return 0; 5432 } 5433 #endif 5434 5435 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 5436 { 5437 struct fake_open { 5438 const char *filename; 5439 int (*fill)(void *cpu_env, int fd); 5440 int (*cmp)(const char *s1, const char *s2); 5441 }; 5442 const struct fake_open *fake_open; 5443 static const struct fake_open fakes[] = { 5444 { "maps", open_self_maps, is_proc_myself }, 5445 { "stat", open_self_stat, is_proc_myself }, 5446 { "auxv", open_self_auxv, is_proc_myself }, 5447 { "cmdline", open_self_cmdline, is_proc_myself }, 5448 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 5449 { "/proc/net/route", open_net_route, is_proc }, 5450 #endif 5451 { NULL, NULL, NULL } 5452 }; 5453 5454 if (is_proc_myself(pathname, "exe")) { 5455 int execfd = qemu_getauxval(AT_EXECFD); 5456 return execfd ? execfd : get_errno(sys_openat(dirfd, exec_path, flags, mode)); 5457 } 5458 5459 for (fake_open = fakes; fake_open->filename; fake_open++) { 5460 if (fake_open->cmp(pathname, fake_open->filename)) { 5461 break; 5462 } 5463 } 5464 5465 if (fake_open->filename) { 5466 const char *tmpdir; 5467 char filename[PATH_MAX]; 5468 int fd, r; 5469 5470 /* create temporary file to map stat to */ 5471 tmpdir = getenv("TMPDIR"); 5472 if (!tmpdir) 5473 tmpdir = "/tmp"; 5474 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 5475 fd = mkstemp(filename); 5476 if (fd < 0) { 5477 return fd; 5478 } 5479 unlink(filename); 5480 5481 if ((r = fake_open->fill(cpu_env, fd))) { 5482 close(fd); 5483 return r; 5484 } 5485 lseek(fd, 0, SEEK_SET); 5486 5487 return fd; 5488 } 5489 5490 return get_errno(sys_openat(dirfd, path(pathname), flags, mode)); 5491 } 5492 5493 #define TIMER_MAGIC 0x0caf0000 5494 #define TIMER_MAGIC_MASK 0xffff0000 5495 5496 /* Convert QEMU provided timer ID back to internal 16bit index format */ 5497 static target_timer_t get_timer_id(abi_long arg) 5498 { 5499 target_timer_t timerid = arg; 5500 5501 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 5502 return -TARGET_EINVAL; 5503 } 5504 5505 timerid &= 0xffff; 5506 5507 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 5508 return -TARGET_EINVAL; 5509 } 5510 5511 return timerid; 5512 } 5513 5514 /* do_syscall() should always have a single exit point at the end so 5515 that actions, such as logging of syscall results, can be performed. 5516 All errnos that do_syscall() returns must be -TARGET_<errcode>. */ 5517 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 5518 abi_long arg2, abi_long arg3, abi_long arg4, 5519 abi_long arg5, abi_long arg6, abi_long arg7, 5520 abi_long arg8) 5521 { 5522 CPUState *cpu = ENV_GET_CPU(cpu_env); 5523 abi_long ret; 5524 struct stat st; 5525 struct statfs stfs; 5526 void *p; 5527 5528 #ifdef DEBUG 5529 gemu_log("syscall %d", num); 5530 #endif 5531 if(do_strace) 5532 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); 5533 5534 switch(num) { 5535 case TARGET_NR_exit: 5536 /* In old applications this may be used to implement _exit(2). 5537 However in threaded applictions it is used for thread termination, 5538 and _exit_group is used for application termination. 5539 Do thread termination if we have more then one thread. */ 5540 /* FIXME: This probably breaks if a signal arrives. We should probably 5541 be disabling signals. */ 5542 if (CPU_NEXT(first_cpu)) { 5543 TaskState *ts; 5544 5545 cpu_list_lock(); 5546 /* Remove the CPU from the list. */ 5547 QTAILQ_REMOVE(&cpus, cpu, node); 5548 cpu_list_unlock(); 5549 ts = cpu->opaque; 5550 if (ts->child_tidptr) { 5551 put_user_u32(0, ts->child_tidptr); 5552 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX, 5553 NULL, NULL, 0); 5554 } 5555 thread_cpu = NULL; 5556 object_unref(OBJECT(cpu)); 5557 g_free(ts); 5558 pthread_exit(NULL); 5559 } 5560 #ifdef TARGET_GPROF 5561 _mcleanup(); 5562 #endif 5563 gdb_exit(cpu_env, arg1); 5564 _exit(arg1); 5565 ret = 0; /* avoid warning */ 5566 break; 5567 case TARGET_NR_read: 5568 if (arg3 == 0) 5569 ret = 0; 5570 else { 5571 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 5572 goto efault; 5573 ret = get_errno(read(arg1, p, arg3)); 5574 unlock_user(p, arg2, ret); 5575 } 5576 break; 5577 case TARGET_NR_write: 5578 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 5579 goto efault; 5580 ret = get_errno(write(arg1, p, arg3)); 5581 unlock_user(p, arg2, 0); 5582 break; 5583 case TARGET_NR_open: 5584 if (!(p = lock_user_string(arg1))) 5585 goto efault; 5586 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 5587 target_to_host_bitmask(arg2, fcntl_flags_tbl), 5588 arg3)); 5589 unlock_user(p, arg1, 0); 5590 break; 5591 case TARGET_NR_openat: 5592 if (!(p = lock_user_string(arg2))) 5593 goto efault; 5594 ret = get_errno(do_openat(cpu_env, arg1, p, 5595 target_to_host_bitmask(arg3, fcntl_flags_tbl), 5596 arg4)); 5597 unlock_user(p, arg2, 0); 5598 break; 5599 case TARGET_NR_close: 5600 ret = get_errno(close(arg1)); 5601 break; 5602 case TARGET_NR_brk: 5603 ret = do_brk(arg1); 5604 break; 5605 case TARGET_NR_fork: 5606 ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0)); 5607 break; 5608 #ifdef TARGET_NR_waitpid 5609 case TARGET_NR_waitpid: 5610 { 5611 int status; 5612 ret = get_errno(waitpid(arg1, &status, arg3)); 5613 if (!is_error(ret) && arg2 && ret 5614 && put_user_s32(host_to_target_waitstatus(status), arg2)) 5615 goto efault; 5616 } 5617 break; 5618 #endif 5619 #ifdef TARGET_NR_waitid 5620 case TARGET_NR_waitid: 5621 { 5622 siginfo_t info; 5623 info.si_pid = 0; 5624 ret = get_errno(waitid(arg1, arg2, &info, arg4)); 5625 if (!is_error(ret) && arg3 && info.si_pid != 0) { 5626 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 5627 goto efault; 5628 host_to_target_siginfo(p, &info); 5629 unlock_user(p, arg3, sizeof(target_siginfo_t)); 5630 } 5631 } 5632 break; 5633 #endif 5634 #ifdef TARGET_NR_creat /* not on alpha */ 5635 case TARGET_NR_creat: 5636 if (!(p = lock_user_string(arg1))) 5637 goto efault; 5638 ret = get_errno(creat(p, arg2)); 5639 unlock_user(p, arg1, 0); 5640 break; 5641 #endif 5642 case TARGET_NR_link: 5643 { 5644 void * p2; 5645 p = lock_user_string(arg1); 5646 p2 = lock_user_string(arg2); 5647 if (!p || !p2) 5648 ret = -TARGET_EFAULT; 5649 else 5650 ret = get_errno(link(p, p2)); 5651 unlock_user(p2, arg2, 0); 5652 unlock_user(p, arg1, 0); 5653 } 5654 break; 5655 #if defined(TARGET_NR_linkat) 5656 case TARGET_NR_linkat: 5657 { 5658 void * p2 = NULL; 5659 if (!arg2 || !arg4) 5660 goto efault; 5661 p = lock_user_string(arg2); 5662 p2 = lock_user_string(arg4); 5663 if (!p || !p2) 5664 ret = -TARGET_EFAULT; 5665 else 5666 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 5667 unlock_user(p, arg2, 0); 5668 unlock_user(p2, arg4, 0); 5669 } 5670 break; 5671 #endif 5672 case TARGET_NR_unlink: 5673 if (!(p = lock_user_string(arg1))) 5674 goto efault; 5675 ret = get_errno(unlink(p)); 5676 unlock_user(p, arg1, 0); 5677 break; 5678 #if defined(TARGET_NR_unlinkat) 5679 case TARGET_NR_unlinkat: 5680 if (!(p = lock_user_string(arg2))) 5681 goto efault; 5682 ret = get_errno(unlinkat(arg1, p, arg3)); 5683 unlock_user(p, arg2, 0); 5684 break; 5685 #endif 5686 case TARGET_NR_execve: 5687 { 5688 char **argp, **envp; 5689 int argc, envc; 5690 abi_ulong gp; 5691 abi_ulong guest_argp; 5692 abi_ulong guest_envp; 5693 abi_ulong addr; 5694 char **q; 5695 int total_size = 0; 5696 5697 argc = 0; 5698 guest_argp = arg2; 5699 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 5700 if (get_user_ual(addr, gp)) 5701 goto efault; 5702 if (!addr) 5703 break; 5704 argc++; 5705 } 5706 envc = 0; 5707 guest_envp = arg3; 5708 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 5709 if (get_user_ual(addr, gp)) 5710 goto efault; 5711 if (!addr) 5712 break; 5713 envc++; 5714 } 5715 5716 argp = alloca((argc + 1) * sizeof(void *)); 5717 envp = alloca((envc + 1) * sizeof(void *)); 5718 5719 for (gp = guest_argp, q = argp; gp; 5720 gp += sizeof(abi_ulong), q++) { 5721 if (get_user_ual(addr, gp)) 5722 goto execve_efault; 5723 if (!addr) 5724 break; 5725 if (!(*q = lock_user_string(addr))) 5726 goto execve_efault; 5727 total_size += strlen(*q) + 1; 5728 } 5729 *q = NULL; 5730 5731 for (gp = guest_envp, q = envp; gp; 5732 gp += sizeof(abi_ulong), q++) { 5733 if (get_user_ual(addr, gp)) 5734 goto execve_efault; 5735 if (!addr) 5736 break; 5737 if (!(*q = lock_user_string(addr))) 5738 goto execve_efault; 5739 total_size += strlen(*q) + 1; 5740 } 5741 *q = NULL; 5742 5743 /* This case will not be caught by the host's execve() if its 5744 page size is bigger than the target's. */ 5745 if (total_size > MAX_ARG_PAGES * TARGET_PAGE_SIZE) { 5746 ret = -TARGET_E2BIG; 5747 goto execve_end; 5748 } 5749 if (!(p = lock_user_string(arg1))) 5750 goto execve_efault; 5751 ret = get_errno(execve(p, argp, envp)); 5752 unlock_user(p, arg1, 0); 5753 5754 goto execve_end; 5755 5756 execve_efault: 5757 ret = -TARGET_EFAULT; 5758 5759 execve_end: 5760 for (gp = guest_argp, q = argp; *q; 5761 gp += sizeof(abi_ulong), q++) { 5762 if (get_user_ual(addr, gp) 5763 || !addr) 5764 break; 5765 unlock_user(*q, addr, 0); 5766 } 5767 for (gp = guest_envp, q = envp; *q; 5768 gp += sizeof(abi_ulong), q++) { 5769 if (get_user_ual(addr, gp) 5770 || !addr) 5771 break; 5772 unlock_user(*q, addr, 0); 5773 } 5774 } 5775 break; 5776 case TARGET_NR_chdir: 5777 if (!(p = lock_user_string(arg1))) 5778 goto efault; 5779 ret = get_errno(chdir(p)); 5780 unlock_user(p, arg1, 0); 5781 break; 5782 #ifdef TARGET_NR_time 5783 case TARGET_NR_time: 5784 { 5785 time_t host_time; 5786 ret = get_errno(time(&host_time)); 5787 if (!is_error(ret) 5788 && arg1 5789 && put_user_sal(host_time, arg1)) 5790 goto efault; 5791 } 5792 break; 5793 #endif 5794 case TARGET_NR_mknod: 5795 if (!(p = lock_user_string(arg1))) 5796 goto efault; 5797 ret = get_errno(mknod(p, arg2, arg3)); 5798 unlock_user(p, arg1, 0); 5799 break; 5800 #if defined(TARGET_NR_mknodat) 5801 case TARGET_NR_mknodat: 5802 if (!(p = lock_user_string(arg2))) 5803 goto efault; 5804 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 5805 unlock_user(p, arg2, 0); 5806 break; 5807 #endif 5808 case TARGET_NR_chmod: 5809 if (!(p = lock_user_string(arg1))) 5810 goto efault; 5811 ret = get_errno(chmod(p, arg2)); 5812 unlock_user(p, arg1, 0); 5813 break; 5814 #ifdef TARGET_NR_break 5815 case TARGET_NR_break: 5816 goto unimplemented; 5817 #endif 5818 #ifdef TARGET_NR_oldstat 5819 case TARGET_NR_oldstat: 5820 goto unimplemented; 5821 #endif 5822 case TARGET_NR_lseek: 5823 ret = get_errno(lseek(arg1, arg2, arg3)); 5824 break; 5825 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 5826 /* Alpha specific */ 5827 case TARGET_NR_getxpid: 5828 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 5829 ret = get_errno(getpid()); 5830 break; 5831 #endif 5832 #ifdef TARGET_NR_getpid 5833 case TARGET_NR_getpid: 5834 ret = get_errno(getpid()); 5835 break; 5836 #endif 5837 case TARGET_NR_mount: 5838 { 5839 /* need to look at the data field */ 5840 void *p2, *p3; 5841 5842 if (arg1) { 5843 p = lock_user_string(arg1); 5844 if (!p) { 5845 goto efault; 5846 } 5847 } else { 5848 p = NULL; 5849 } 5850 5851 p2 = lock_user_string(arg2); 5852 if (!p2) { 5853 if (arg1) { 5854 unlock_user(p, arg1, 0); 5855 } 5856 goto efault; 5857 } 5858 5859 if (arg3) { 5860 p3 = lock_user_string(arg3); 5861 if (!p3) { 5862 if (arg1) { 5863 unlock_user(p, arg1, 0); 5864 } 5865 unlock_user(p2, arg2, 0); 5866 goto efault; 5867 } 5868 } else { 5869 p3 = NULL; 5870 } 5871 5872 /* FIXME - arg5 should be locked, but it isn't clear how to 5873 * do that since it's not guaranteed to be a NULL-terminated 5874 * string. 5875 */ 5876 if (!arg5) { 5877 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 5878 } else { 5879 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)); 5880 } 5881 ret = get_errno(ret); 5882 5883 if (arg1) { 5884 unlock_user(p, arg1, 0); 5885 } 5886 unlock_user(p2, arg2, 0); 5887 if (arg3) { 5888 unlock_user(p3, arg3, 0); 5889 } 5890 } 5891 break; 5892 #ifdef TARGET_NR_umount 5893 case TARGET_NR_umount: 5894 if (!(p = lock_user_string(arg1))) 5895 goto efault; 5896 ret = get_errno(umount(p)); 5897 unlock_user(p, arg1, 0); 5898 break; 5899 #endif 5900 #ifdef TARGET_NR_stime /* not on alpha */ 5901 case TARGET_NR_stime: 5902 { 5903 time_t host_time; 5904 if (get_user_sal(host_time, arg1)) 5905 goto efault; 5906 ret = get_errno(stime(&host_time)); 5907 } 5908 break; 5909 #endif 5910 case TARGET_NR_ptrace: 5911 goto unimplemented; 5912 #ifdef TARGET_NR_alarm /* not on alpha */ 5913 case TARGET_NR_alarm: 5914 ret = alarm(arg1); 5915 break; 5916 #endif 5917 #ifdef TARGET_NR_oldfstat 5918 case TARGET_NR_oldfstat: 5919 goto unimplemented; 5920 #endif 5921 #ifdef TARGET_NR_pause /* not on alpha */ 5922 case TARGET_NR_pause: 5923 ret = get_errno(pause()); 5924 break; 5925 #endif 5926 #ifdef TARGET_NR_utime 5927 case TARGET_NR_utime: 5928 { 5929 struct utimbuf tbuf, *host_tbuf; 5930 struct target_utimbuf *target_tbuf; 5931 if (arg2) { 5932 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 5933 goto efault; 5934 tbuf.actime = tswapal(target_tbuf->actime); 5935 tbuf.modtime = tswapal(target_tbuf->modtime); 5936 unlock_user_struct(target_tbuf, arg2, 0); 5937 host_tbuf = &tbuf; 5938 } else { 5939 host_tbuf = NULL; 5940 } 5941 if (!(p = lock_user_string(arg1))) 5942 goto efault; 5943 ret = get_errno(utime(p, host_tbuf)); 5944 unlock_user(p, arg1, 0); 5945 } 5946 break; 5947 #endif 5948 case TARGET_NR_utimes: 5949 { 5950 struct timeval *tvp, tv[2]; 5951 if (arg2) { 5952 if (copy_from_user_timeval(&tv[0], arg2) 5953 || copy_from_user_timeval(&tv[1], 5954 arg2 + sizeof(struct target_timeval))) 5955 goto efault; 5956 tvp = tv; 5957 } else { 5958 tvp = NULL; 5959 } 5960 if (!(p = lock_user_string(arg1))) 5961 goto efault; 5962 ret = get_errno(utimes(p, tvp)); 5963 unlock_user(p, arg1, 0); 5964 } 5965 break; 5966 #if defined(TARGET_NR_futimesat) 5967 case TARGET_NR_futimesat: 5968 { 5969 struct timeval *tvp, tv[2]; 5970 if (arg3) { 5971 if (copy_from_user_timeval(&tv[0], arg3) 5972 || copy_from_user_timeval(&tv[1], 5973 arg3 + sizeof(struct target_timeval))) 5974 goto efault; 5975 tvp = tv; 5976 } else { 5977 tvp = NULL; 5978 } 5979 if (!(p = lock_user_string(arg2))) 5980 goto efault; 5981 ret = get_errno(futimesat(arg1, path(p), tvp)); 5982 unlock_user(p, arg2, 0); 5983 } 5984 break; 5985 #endif 5986 #ifdef TARGET_NR_stty 5987 case TARGET_NR_stty: 5988 goto unimplemented; 5989 #endif 5990 #ifdef TARGET_NR_gtty 5991 case TARGET_NR_gtty: 5992 goto unimplemented; 5993 #endif 5994 case TARGET_NR_access: 5995 if (!(p = lock_user_string(arg1))) 5996 goto efault; 5997 ret = get_errno(access(path(p), arg2)); 5998 unlock_user(p, arg1, 0); 5999 break; 6000 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 6001 case TARGET_NR_faccessat: 6002 if (!(p = lock_user_string(arg2))) 6003 goto efault; 6004 ret = get_errno(faccessat(arg1, p, arg3, 0)); 6005 unlock_user(p, arg2, 0); 6006 break; 6007 #endif 6008 #ifdef TARGET_NR_nice /* not on alpha */ 6009 case TARGET_NR_nice: 6010 ret = get_errno(nice(arg1)); 6011 break; 6012 #endif 6013 #ifdef TARGET_NR_ftime 6014 case TARGET_NR_ftime: 6015 goto unimplemented; 6016 #endif 6017 case TARGET_NR_sync: 6018 sync(); 6019 ret = 0; 6020 break; 6021 case TARGET_NR_kill: 6022 ret = get_errno(kill(arg1, target_to_host_signal(arg2))); 6023 break; 6024 case TARGET_NR_rename: 6025 { 6026 void *p2; 6027 p = lock_user_string(arg1); 6028 p2 = lock_user_string(arg2); 6029 if (!p || !p2) 6030 ret = -TARGET_EFAULT; 6031 else 6032 ret = get_errno(rename(p, p2)); 6033 unlock_user(p2, arg2, 0); 6034 unlock_user(p, arg1, 0); 6035 } 6036 break; 6037 #if defined(TARGET_NR_renameat) 6038 case TARGET_NR_renameat: 6039 { 6040 void *p2; 6041 p = lock_user_string(arg2); 6042 p2 = lock_user_string(arg4); 6043 if (!p || !p2) 6044 ret = -TARGET_EFAULT; 6045 else 6046 ret = get_errno(renameat(arg1, p, arg3, p2)); 6047 unlock_user(p2, arg4, 0); 6048 unlock_user(p, arg2, 0); 6049 } 6050 break; 6051 #endif 6052 case TARGET_NR_mkdir: 6053 if (!(p = lock_user_string(arg1))) 6054 goto efault; 6055 ret = get_errno(mkdir(p, arg2)); 6056 unlock_user(p, arg1, 0); 6057 break; 6058 #if defined(TARGET_NR_mkdirat) 6059 case TARGET_NR_mkdirat: 6060 if (!(p = lock_user_string(arg2))) 6061 goto efault; 6062 ret = get_errno(mkdirat(arg1, p, arg3)); 6063 unlock_user(p, arg2, 0); 6064 break; 6065 #endif 6066 case TARGET_NR_rmdir: 6067 if (!(p = lock_user_string(arg1))) 6068 goto efault; 6069 ret = get_errno(rmdir(p)); 6070 unlock_user(p, arg1, 0); 6071 break; 6072 case TARGET_NR_dup: 6073 ret = get_errno(dup(arg1)); 6074 break; 6075 case TARGET_NR_pipe: 6076 ret = do_pipe(cpu_env, arg1, 0, 0); 6077 break; 6078 #ifdef TARGET_NR_pipe2 6079 case TARGET_NR_pipe2: 6080 ret = do_pipe(cpu_env, arg1, 6081 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 6082 break; 6083 #endif 6084 case TARGET_NR_times: 6085 { 6086 struct target_tms *tmsp; 6087 struct tms tms; 6088 ret = get_errno(times(&tms)); 6089 if (arg1) { 6090 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 6091 if (!tmsp) 6092 goto efault; 6093 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 6094 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 6095 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 6096 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 6097 } 6098 if (!is_error(ret)) 6099 ret = host_to_target_clock_t(ret); 6100 } 6101 break; 6102 #ifdef TARGET_NR_prof 6103 case TARGET_NR_prof: 6104 goto unimplemented; 6105 #endif 6106 #ifdef TARGET_NR_signal 6107 case TARGET_NR_signal: 6108 goto unimplemented; 6109 #endif 6110 case TARGET_NR_acct: 6111 if (arg1 == 0) { 6112 ret = get_errno(acct(NULL)); 6113 } else { 6114 if (!(p = lock_user_string(arg1))) 6115 goto efault; 6116 ret = get_errno(acct(path(p))); 6117 unlock_user(p, arg1, 0); 6118 } 6119 break; 6120 #ifdef TARGET_NR_umount2 6121 case TARGET_NR_umount2: 6122 if (!(p = lock_user_string(arg1))) 6123 goto efault; 6124 ret = get_errno(umount2(p, arg2)); 6125 unlock_user(p, arg1, 0); 6126 break; 6127 #endif 6128 #ifdef TARGET_NR_lock 6129 case TARGET_NR_lock: 6130 goto unimplemented; 6131 #endif 6132 case TARGET_NR_ioctl: 6133 ret = do_ioctl(arg1, arg2, arg3); 6134 break; 6135 case TARGET_NR_fcntl: 6136 ret = do_fcntl(arg1, arg2, arg3); 6137 break; 6138 #ifdef TARGET_NR_mpx 6139 case TARGET_NR_mpx: 6140 goto unimplemented; 6141 #endif 6142 case TARGET_NR_setpgid: 6143 ret = get_errno(setpgid(arg1, arg2)); 6144 break; 6145 #ifdef TARGET_NR_ulimit 6146 case TARGET_NR_ulimit: 6147 goto unimplemented; 6148 #endif 6149 #ifdef TARGET_NR_oldolduname 6150 case TARGET_NR_oldolduname: 6151 goto unimplemented; 6152 #endif 6153 case TARGET_NR_umask: 6154 ret = get_errno(umask(arg1)); 6155 break; 6156 case TARGET_NR_chroot: 6157 if (!(p = lock_user_string(arg1))) 6158 goto efault; 6159 ret = get_errno(chroot(p)); 6160 unlock_user(p, arg1, 0); 6161 break; 6162 case TARGET_NR_ustat: 6163 goto unimplemented; 6164 case TARGET_NR_dup2: 6165 ret = get_errno(dup2(arg1, arg2)); 6166 break; 6167 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 6168 case TARGET_NR_dup3: 6169 ret = get_errno(dup3(arg1, arg2, arg3)); 6170 break; 6171 #endif 6172 #ifdef TARGET_NR_getppid /* not on alpha */ 6173 case TARGET_NR_getppid: 6174 ret = get_errno(getppid()); 6175 break; 6176 #endif 6177 case TARGET_NR_getpgrp: 6178 ret = get_errno(getpgrp()); 6179 break; 6180 case TARGET_NR_setsid: 6181 ret = get_errno(setsid()); 6182 break; 6183 #ifdef TARGET_NR_sigaction 6184 case TARGET_NR_sigaction: 6185 { 6186 #if defined(TARGET_ALPHA) 6187 struct target_sigaction act, oact, *pact = 0; 6188 struct target_old_sigaction *old_act; 6189 if (arg2) { 6190 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 6191 goto efault; 6192 act._sa_handler = old_act->_sa_handler; 6193 target_siginitset(&act.sa_mask, old_act->sa_mask); 6194 act.sa_flags = old_act->sa_flags; 6195 act.sa_restorer = 0; 6196 unlock_user_struct(old_act, arg2, 0); 6197 pact = &act; 6198 } 6199 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6200 if (!is_error(ret) && arg3) { 6201 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 6202 goto efault; 6203 old_act->_sa_handler = oact._sa_handler; 6204 old_act->sa_mask = oact.sa_mask.sig[0]; 6205 old_act->sa_flags = oact.sa_flags; 6206 unlock_user_struct(old_act, arg3, 1); 6207 } 6208 #elif defined(TARGET_MIPS) 6209 struct target_sigaction act, oact, *pact, *old_act; 6210 6211 if (arg2) { 6212 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 6213 goto efault; 6214 act._sa_handler = old_act->_sa_handler; 6215 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 6216 act.sa_flags = old_act->sa_flags; 6217 unlock_user_struct(old_act, arg2, 0); 6218 pact = &act; 6219 } else { 6220 pact = NULL; 6221 } 6222 6223 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6224 6225 if (!is_error(ret) && arg3) { 6226 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 6227 goto efault; 6228 old_act->_sa_handler = oact._sa_handler; 6229 old_act->sa_flags = oact.sa_flags; 6230 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 6231 old_act->sa_mask.sig[1] = 0; 6232 old_act->sa_mask.sig[2] = 0; 6233 old_act->sa_mask.sig[3] = 0; 6234 unlock_user_struct(old_act, arg3, 1); 6235 } 6236 #else 6237 struct target_old_sigaction *old_act; 6238 struct target_sigaction act, oact, *pact; 6239 if (arg2) { 6240 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 6241 goto efault; 6242 act._sa_handler = old_act->_sa_handler; 6243 target_siginitset(&act.sa_mask, old_act->sa_mask); 6244 act.sa_flags = old_act->sa_flags; 6245 act.sa_restorer = old_act->sa_restorer; 6246 unlock_user_struct(old_act, arg2, 0); 6247 pact = &act; 6248 } else { 6249 pact = NULL; 6250 } 6251 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6252 if (!is_error(ret) && arg3) { 6253 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 6254 goto efault; 6255 old_act->_sa_handler = oact._sa_handler; 6256 old_act->sa_mask = oact.sa_mask.sig[0]; 6257 old_act->sa_flags = oact.sa_flags; 6258 old_act->sa_restorer = oact.sa_restorer; 6259 unlock_user_struct(old_act, arg3, 1); 6260 } 6261 #endif 6262 } 6263 break; 6264 #endif 6265 case TARGET_NR_rt_sigaction: 6266 { 6267 #if defined(TARGET_ALPHA) 6268 struct target_sigaction act, oact, *pact = 0; 6269 struct target_rt_sigaction *rt_act; 6270 /* ??? arg4 == sizeof(sigset_t). */ 6271 if (arg2) { 6272 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1)) 6273 goto efault; 6274 act._sa_handler = rt_act->_sa_handler; 6275 act.sa_mask = rt_act->sa_mask; 6276 act.sa_flags = rt_act->sa_flags; 6277 act.sa_restorer = arg5; 6278 unlock_user_struct(rt_act, arg2, 0); 6279 pact = &act; 6280 } 6281 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6282 if (!is_error(ret) && arg3) { 6283 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0)) 6284 goto efault; 6285 rt_act->_sa_handler = oact._sa_handler; 6286 rt_act->sa_mask = oact.sa_mask; 6287 rt_act->sa_flags = oact.sa_flags; 6288 unlock_user_struct(rt_act, arg3, 1); 6289 } 6290 #else 6291 struct target_sigaction *act; 6292 struct target_sigaction *oact; 6293 6294 if (arg2) { 6295 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) 6296 goto efault; 6297 } else 6298 act = NULL; 6299 if (arg3) { 6300 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 6301 ret = -TARGET_EFAULT; 6302 goto rt_sigaction_fail; 6303 } 6304 } else 6305 oact = NULL; 6306 ret = get_errno(do_sigaction(arg1, act, oact)); 6307 rt_sigaction_fail: 6308 if (act) 6309 unlock_user_struct(act, arg2, 0); 6310 if (oact) 6311 unlock_user_struct(oact, arg3, 1); 6312 #endif 6313 } 6314 break; 6315 #ifdef TARGET_NR_sgetmask /* not on alpha */ 6316 case TARGET_NR_sgetmask: 6317 { 6318 sigset_t cur_set; 6319 abi_ulong target_set; 6320 do_sigprocmask(0, NULL, &cur_set); 6321 host_to_target_old_sigset(&target_set, &cur_set); 6322 ret = target_set; 6323 } 6324 break; 6325 #endif 6326 #ifdef TARGET_NR_ssetmask /* not on alpha */ 6327 case TARGET_NR_ssetmask: 6328 { 6329 sigset_t set, oset, cur_set; 6330 abi_ulong target_set = arg1; 6331 do_sigprocmask(0, NULL, &cur_set); 6332 target_to_host_old_sigset(&set, &target_set); 6333 sigorset(&set, &set, &cur_set); 6334 do_sigprocmask(SIG_SETMASK, &set, &oset); 6335 host_to_target_old_sigset(&target_set, &oset); 6336 ret = target_set; 6337 } 6338 break; 6339 #endif 6340 #ifdef TARGET_NR_sigprocmask 6341 case TARGET_NR_sigprocmask: 6342 { 6343 #if defined(TARGET_ALPHA) 6344 sigset_t set, oldset; 6345 abi_ulong mask; 6346 int how; 6347 6348 switch (arg1) { 6349 case TARGET_SIG_BLOCK: 6350 how = SIG_BLOCK; 6351 break; 6352 case TARGET_SIG_UNBLOCK: 6353 how = SIG_UNBLOCK; 6354 break; 6355 case TARGET_SIG_SETMASK: 6356 how = SIG_SETMASK; 6357 break; 6358 default: 6359 ret = -TARGET_EINVAL; 6360 goto fail; 6361 } 6362 mask = arg2; 6363 target_to_host_old_sigset(&set, &mask); 6364 6365 ret = get_errno(do_sigprocmask(how, &set, &oldset)); 6366 if (!is_error(ret)) { 6367 host_to_target_old_sigset(&mask, &oldset); 6368 ret = mask; 6369 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 6370 } 6371 #else 6372 sigset_t set, oldset, *set_ptr; 6373 int how; 6374 6375 if (arg2) { 6376 switch (arg1) { 6377 case TARGET_SIG_BLOCK: 6378 how = SIG_BLOCK; 6379 break; 6380 case TARGET_SIG_UNBLOCK: 6381 how = SIG_UNBLOCK; 6382 break; 6383 case TARGET_SIG_SETMASK: 6384 how = SIG_SETMASK; 6385 break; 6386 default: 6387 ret = -TARGET_EINVAL; 6388 goto fail; 6389 } 6390 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 6391 goto efault; 6392 target_to_host_old_sigset(&set, p); 6393 unlock_user(p, arg2, 0); 6394 set_ptr = &set; 6395 } else { 6396 how = 0; 6397 set_ptr = NULL; 6398 } 6399 ret = get_errno(do_sigprocmask(how, set_ptr, &oldset)); 6400 if (!is_error(ret) && arg3) { 6401 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 6402 goto efault; 6403 host_to_target_old_sigset(p, &oldset); 6404 unlock_user(p, arg3, sizeof(target_sigset_t)); 6405 } 6406 #endif 6407 } 6408 break; 6409 #endif 6410 case TARGET_NR_rt_sigprocmask: 6411 { 6412 int how = arg1; 6413 sigset_t set, oldset, *set_ptr; 6414 6415 if (arg2) { 6416 switch(how) { 6417 case TARGET_SIG_BLOCK: 6418 how = SIG_BLOCK; 6419 break; 6420 case TARGET_SIG_UNBLOCK: 6421 how = SIG_UNBLOCK; 6422 break; 6423 case TARGET_SIG_SETMASK: 6424 how = SIG_SETMASK; 6425 break; 6426 default: 6427 ret = -TARGET_EINVAL; 6428 goto fail; 6429 } 6430 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 6431 goto efault; 6432 target_to_host_sigset(&set, p); 6433 unlock_user(p, arg2, 0); 6434 set_ptr = &set; 6435 } else { 6436 how = 0; 6437 set_ptr = NULL; 6438 } 6439 ret = get_errno(do_sigprocmask(how, set_ptr, &oldset)); 6440 if (!is_error(ret) && arg3) { 6441 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 6442 goto efault; 6443 host_to_target_sigset(p, &oldset); 6444 unlock_user(p, arg3, sizeof(target_sigset_t)); 6445 } 6446 } 6447 break; 6448 #ifdef TARGET_NR_sigpending 6449 case TARGET_NR_sigpending: 6450 { 6451 sigset_t set; 6452 ret = get_errno(sigpending(&set)); 6453 if (!is_error(ret)) { 6454 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 6455 goto efault; 6456 host_to_target_old_sigset(p, &set); 6457 unlock_user(p, arg1, sizeof(target_sigset_t)); 6458 } 6459 } 6460 break; 6461 #endif 6462 case TARGET_NR_rt_sigpending: 6463 { 6464 sigset_t set; 6465 ret = get_errno(sigpending(&set)); 6466 if (!is_error(ret)) { 6467 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 6468 goto efault; 6469 host_to_target_sigset(p, &set); 6470 unlock_user(p, arg1, sizeof(target_sigset_t)); 6471 } 6472 } 6473 break; 6474 #ifdef TARGET_NR_sigsuspend 6475 case TARGET_NR_sigsuspend: 6476 { 6477 sigset_t set; 6478 #if defined(TARGET_ALPHA) 6479 abi_ulong mask = arg1; 6480 target_to_host_old_sigset(&set, &mask); 6481 #else 6482 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 6483 goto efault; 6484 target_to_host_old_sigset(&set, p); 6485 unlock_user(p, arg1, 0); 6486 #endif 6487 ret = get_errno(sigsuspend(&set)); 6488 } 6489 break; 6490 #endif 6491 case TARGET_NR_rt_sigsuspend: 6492 { 6493 sigset_t set; 6494 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 6495 goto efault; 6496 target_to_host_sigset(&set, p); 6497 unlock_user(p, arg1, 0); 6498 ret = get_errno(sigsuspend(&set)); 6499 } 6500 break; 6501 case TARGET_NR_rt_sigtimedwait: 6502 { 6503 sigset_t set; 6504 struct timespec uts, *puts; 6505 siginfo_t uinfo; 6506 6507 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 6508 goto efault; 6509 target_to_host_sigset(&set, p); 6510 unlock_user(p, arg1, 0); 6511 if (arg3) { 6512 puts = &uts; 6513 target_to_host_timespec(puts, arg3); 6514 } else { 6515 puts = NULL; 6516 } 6517 ret = get_errno(sigtimedwait(&set, &uinfo, puts)); 6518 if (!is_error(ret)) { 6519 if (arg2) { 6520 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 6521 0); 6522 if (!p) { 6523 goto efault; 6524 } 6525 host_to_target_siginfo(p, &uinfo); 6526 unlock_user(p, arg2, sizeof(target_siginfo_t)); 6527 } 6528 ret = host_to_target_signal(ret); 6529 } 6530 } 6531 break; 6532 case TARGET_NR_rt_sigqueueinfo: 6533 { 6534 siginfo_t uinfo; 6535 if (!(p = lock_user(VERIFY_READ, arg3, sizeof(target_sigset_t), 1))) 6536 goto efault; 6537 target_to_host_siginfo(&uinfo, p); 6538 unlock_user(p, arg1, 0); 6539 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 6540 } 6541 break; 6542 #ifdef TARGET_NR_sigreturn 6543 case TARGET_NR_sigreturn: 6544 /* NOTE: ret is eax, so not transcoding must be done */ 6545 ret = do_sigreturn(cpu_env); 6546 break; 6547 #endif 6548 case TARGET_NR_rt_sigreturn: 6549 /* NOTE: ret is eax, so not transcoding must be done */ 6550 ret = do_rt_sigreturn(cpu_env); 6551 break; 6552 case TARGET_NR_sethostname: 6553 if (!(p = lock_user_string(arg1))) 6554 goto efault; 6555 ret = get_errno(sethostname(p, arg2)); 6556 unlock_user(p, arg1, 0); 6557 break; 6558 case TARGET_NR_setrlimit: 6559 { 6560 int resource = target_to_host_resource(arg1); 6561 struct target_rlimit *target_rlim; 6562 struct rlimit rlim; 6563 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 6564 goto efault; 6565 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 6566 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 6567 unlock_user_struct(target_rlim, arg2, 0); 6568 ret = get_errno(setrlimit(resource, &rlim)); 6569 } 6570 break; 6571 case TARGET_NR_getrlimit: 6572 { 6573 int resource = target_to_host_resource(arg1); 6574 struct target_rlimit *target_rlim; 6575 struct rlimit rlim; 6576 6577 ret = get_errno(getrlimit(resource, &rlim)); 6578 if (!is_error(ret)) { 6579 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 6580 goto efault; 6581 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 6582 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 6583 unlock_user_struct(target_rlim, arg2, 1); 6584 } 6585 } 6586 break; 6587 case TARGET_NR_getrusage: 6588 { 6589 struct rusage rusage; 6590 ret = get_errno(getrusage(arg1, &rusage)); 6591 if (!is_error(ret)) { 6592 ret = host_to_target_rusage(arg2, &rusage); 6593 } 6594 } 6595 break; 6596 case TARGET_NR_gettimeofday: 6597 { 6598 struct timeval tv; 6599 ret = get_errno(gettimeofday(&tv, NULL)); 6600 if (!is_error(ret)) { 6601 if (copy_to_user_timeval(arg1, &tv)) 6602 goto efault; 6603 } 6604 } 6605 break; 6606 case TARGET_NR_settimeofday: 6607 { 6608 struct timeval tv, *ptv = NULL; 6609 struct timezone tz, *ptz = NULL; 6610 6611 if (arg1) { 6612 if (copy_from_user_timeval(&tv, arg1)) { 6613 goto efault; 6614 } 6615 ptv = &tv; 6616 } 6617 6618 if (arg2) { 6619 if (copy_from_user_timezone(&tz, arg2)) { 6620 goto efault; 6621 } 6622 ptz = &tz; 6623 } 6624 6625 ret = get_errno(settimeofday(ptv, ptz)); 6626 } 6627 break; 6628 #if defined(TARGET_NR_select) 6629 case TARGET_NR_select: 6630 #if defined(TARGET_S390X) || defined(TARGET_ALPHA) 6631 ret = do_select(arg1, arg2, arg3, arg4, arg5); 6632 #else 6633 { 6634 struct target_sel_arg_struct *sel; 6635 abi_ulong inp, outp, exp, tvp; 6636 long nsel; 6637 6638 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) 6639 goto efault; 6640 nsel = tswapal(sel->n); 6641 inp = tswapal(sel->inp); 6642 outp = tswapal(sel->outp); 6643 exp = tswapal(sel->exp); 6644 tvp = tswapal(sel->tvp); 6645 unlock_user_struct(sel, arg1, 0); 6646 ret = do_select(nsel, inp, outp, exp, tvp); 6647 } 6648 #endif 6649 break; 6650 #endif 6651 #ifdef TARGET_NR_pselect6 6652 case TARGET_NR_pselect6: 6653 { 6654 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 6655 fd_set rfds, wfds, efds; 6656 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 6657 struct timespec ts, *ts_ptr; 6658 6659 /* 6660 * The 6th arg is actually two args smashed together, 6661 * so we cannot use the C library. 6662 */ 6663 sigset_t set; 6664 struct { 6665 sigset_t *set; 6666 size_t size; 6667 } sig, *sig_ptr; 6668 6669 abi_ulong arg_sigset, arg_sigsize, *arg7; 6670 target_sigset_t *target_sigset; 6671 6672 n = arg1; 6673 rfd_addr = arg2; 6674 wfd_addr = arg3; 6675 efd_addr = arg4; 6676 ts_addr = arg5; 6677 6678 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 6679 if (ret) { 6680 goto fail; 6681 } 6682 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 6683 if (ret) { 6684 goto fail; 6685 } 6686 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 6687 if (ret) { 6688 goto fail; 6689 } 6690 6691 /* 6692 * This takes a timespec, and not a timeval, so we cannot 6693 * use the do_select() helper ... 6694 */ 6695 if (ts_addr) { 6696 if (target_to_host_timespec(&ts, ts_addr)) { 6697 goto efault; 6698 } 6699 ts_ptr = &ts; 6700 } else { 6701 ts_ptr = NULL; 6702 } 6703 6704 /* Extract the two packed args for the sigset */ 6705 if (arg6) { 6706 sig_ptr = &sig; 6707 sig.size = _NSIG / 8; 6708 6709 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 6710 if (!arg7) { 6711 goto efault; 6712 } 6713 arg_sigset = tswapal(arg7[0]); 6714 arg_sigsize = tswapal(arg7[1]); 6715 unlock_user(arg7, arg6, 0); 6716 6717 if (arg_sigset) { 6718 sig.set = &set; 6719 if (arg_sigsize != sizeof(*target_sigset)) { 6720 /* Like the kernel, we enforce correct size sigsets */ 6721 ret = -TARGET_EINVAL; 6722 goto fail; 6723 } 6724 target_sigset = lock_user(VERIFY_READ, arg_sigset, 6725 sizeof(*target_sigset), 1); 6726 if (!target_sigset) { 6727 goto efault; 6728 } 6729 target_to_host_sigset(&set, target_sigset); 6730 unlock_user(target_sigset, arg_sigset, 0); 6731 } else { 6732 sig.set = NULL; 6733 } 6734 } else { 6735 sig_ptr = NULL; 6736 } 6737 6738 ret = get_errno(sys_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 6739 ts_ptr, sig_ptr)); 6740 6741 if (!is_error(ret)) { 6742 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 6743 goto efault; 6744 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 6745 goto efault; 6746 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 6747 goto efault; 6748 6749 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) 6750 goto efault; 6751 } 6752 } 6753 break; 6754 #endif 6755 case TARGET_NR_symlink: 6756 { 6757 void *p2; 6758 p = lock_user_string(arg1); 6759 p2 = lock_user_string(arg2); 6760 if (!p || !p2) 6761 ret = -TARGET_EFAULT; 6762 else 6763 ret = get_errno(symlink(p, p2)); 6764 unlock_user(p2, arg2, 0); 6765 unlock_user(p, arg1, 0); 6766 } 6767 break; 6768 #if defined(TARGET_NR_symlinkat) 6769 case TARGET_NR_symlinkat: 6770 { 6771 void *p2; 6772 p = lock_user_string(arg1); 6773 p2 = lock_user_string(arg3); 6774 if (!p || !p2) 6775 ret = -TARGET_EFAULT; 6776 else 6777 ret = get_errno(symlinkat(p, arg2, p2)); 6778 unlock_user(p2, arg3, 0); 6779 unlock_user(p, arg1, 0); 6780 } 6781 break; 6782 #endif 6783 #ifdef TARGET_NR_oldlstat 6784 case TARGET_NR_oldlstat: 6785 goto unimplemented; 6786 #endif 6787 case TARGET_NR_readlink: 6788 { 6789 void *p2; 6790 p = lock_user_string(arg1); 6791 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 6792 if (!p || !p2) { 6793 ret = -TARGET_EFAULT; 6794 } else if (!arg3) { 6795 /* Short circuit this for the magic exe check. */ 6796 ret = -TARGET_EINVAL; 6797 } else if (is_proc_myself((const char *)p, "exe")) { 6798 char real[PATH_MAX], *temp; 6799 temp = realpath(exec_path, real); 6800 /* Return value is # of bytes that we wrote to the buffer. */ 6801 if (temp == NULL) { 6802 ret = get_errno(-1); 6803 } else { 6804 /* Don't worry about sign mismatch as earlier mapping 6805 * logic would have thrown a bad address error. */ 6806 ret = MIN(strlen(real), arg3); 6807 /* We cannot NUL terminate the string. */ 6808 memcpy(p2, real, ret); 6809 } 6810 } else { 6811 ret = get_errno(readlink(path(p), p2, arg3)); 6812 } 6813 unlock_user(p2, arg2, ret); 6814 unlock_user(p, arg1, 0); 6815 } 6816 break; 6817 #if defined(TARGET_NR_readlinkat) 6818 case TARGET_NR_readlinkat: 6819 { 6820 void *p2; 6821 p = lock_user_string(arg2); 6822 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 6823 if (!p || !p2) { 6824 ret = -TARGET_EFAULT; 6825 } else if (is_proc_myself((const char *)p, "exe")) { 6826 char real[PATH_MAX], *temp; 6827 temp = realpath(exec_path, real); 6828 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 6829 snprintf((char *)p2, arg4, "%s", real); 6830 } else { 6831 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 6832 } 6833 unlock_user(p2, arg3, ret); 6834 unlock_user(p, arg2, 0); 6835 } 6836 break; 6837 #endif 6838 #ifdef TARGET_NR_uselib 6839 case TARGET_NR_uselib: 6840 goto unimplemented; 6841 #endif 6842 #ifdef TARGET_NR_swapon 6843 case TARGET_NR_swapon: 6844 if (!(p = lock_user_string(arg1))) 6845 goto efault; 6846 ret = get_errno(swapon(p, arg2)); 6847 unlock_user(p, arg1, 0); 6848 break; 6849 #endif 6850 case TARGET_NR_reboot: 6851 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 6852 /* arg4 must be ignored in all other cases */ 6853 p = lock_user_string(arg4); 6854 if (!p) { 6855 goto efault; 6856 } 6857 ret = get_errno(reboot(arg1, arg2, arg3, p)); 6858 unlock_user(p, arg4, 0); 6859 } else { 6860 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 6861 } 6862 break; 6863 #ifdef TARGET_NR_readdir 6864 case TARGET_NR_readdir: 6865 goto unimplemented; 6866 #endif 6867 #ifdef TARGET_NR_mmap 6868 case TARGET_NR_mmap: 6869 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 6870 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 6871 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 6872 || defined(TARGET_S390X) 6873 { 6874 abi_ulong *v; 6875 abi_ulong v1, v2, v3, v4, v5, v6; 6876 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 6877 goto efault; 6878 v1 = tswapal(v[0]); 6879 v2 = tswapal(v[1]); 6880 v3 = tswapal(v[2]); 6881 v4 = tswapal(v[3]); 6882 v5 = tswapal(v[4]); 6883 v6 = tswapal(v[5]); 6884 unlock_user(v, arg1, 0); 6885 ret = get_errno(target_mmap(v1, v2, v3, 6886 target_to_host_bitmask(v4, mmap_flags_tbl), 6887 v5, v6)); 6888 } 6889 #else 6890 ret = get_errno(target_mmap(arg1, arg2, arg3, 6891 target_to_host_bitmask(arg4, mmap_flags_tbl), 6892 arg5, 6893 arg6)); 6894 #endif 6895 break; 6896 #endif 6897 #ifdef TARGET_NR_mmap2 6898 case TARGET_NR_mmap2: 6899 #ifndef MMAP_SHIFT 6900 #define MMAP_SHIFT 12 6901 #endif 6902 ret = get_errno(target_mmap(arg1, arg2, arg3, 6903 target_to_host_bitmask(arg4, mmap_flags_tbl), 6904 arg5, 6905 arg6 << MMAP_SHIFT)); 6906 break; 6907 #endif 6908 case TARGET_NR_munmap: 6909 ret = get_errno(target_munmap(arg1, arg2)); 6910 break; 6911 case TARGET_NR_mprotect: 6912 { 6913 TaskState *ts = cpu->opaque; 6914 /* Special hack to detect libc making the stack executable. */ 6915 if ((arg3 & PROT_GROWSDOWN) 6916 && arg1 >= ts->info->stack_limit 6917 && arg1 <= ts->info->start_stack) { 6918 arg3 &= ~PROT_GROWSDOWN; 6919 arg2 = arg2 + arg1 - ts->info->stack_limit; 6920 arg1 = ts->info->stack_limit; 6921 } 6922 } 6923 ret = get_errno(target_mprotect(arg1, arg2, arg3)); 6924 break; 6925 #ifdef TARGET_NR_mremap 6926 case TARGET_NR_mremap: 6927 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 6928 break; 6929 #endif 6930 /* ??? msync/mlock/munlock are broken for softmmu. */ 6931 #ifdef TARGET_NR_msync 6932 case TARGET_NR_msync: 6933 ret = get_errno(msync(g2h(arg1), arg2, arg3)); 6934 break; 6935 #endif 6936 #ifdef TARGET_NR_mlock 6937 case TARGET_NR_mlock: 6938 ret = get_errno(mlock(g2h(arg1), arg2)); 6939 break; 6940 #endif 6941 #ifdef TARGET_NR_munlock 6942 case TARGET_NR_munlock: 6943 ret = get_errno(munlock(g2h(arg1), arg2)); 6944 break; 6945 #endif 6946 #ifdef TARGET_NR_mlockall 6947 case TARGET_NR_mlockall: 6948 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 6949 break; 6950 #endif 6951 #ifdef TARGET_NR_munlockall 6952 case TARGET_NR_munlockall: 6953 ret = get_errno(munlockall()); 6954 break; 6955 #endif 6956 case TARGET_NR_truncate: 6957 if (!(p = lock_user_string(arg1))) 6958 goto efault; 6959 ret = get_errno(truncate(p, arg2)); 6960 unlock_user(p, arg1, 0); 6961 break; 6962 case TARGET_NR_ftruncate: 6963 ret = get_errno(ftruncate(arg1, arg2)); 6964 break; 6965 case TARGET_NR_fchmod: 6966 ret = get_errno(fchmod(arg1, arg2)); 6967 break; 6968 #if defined(TARGET_NR_fchmodat) 6969 case TARGET_NR_fchmodat: 6970 if (!(p = lock_user_string(arg2))) 6971 goto efault; 6972 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 6973 unlock_user(p, arg2, 0); 6974 break; 6975 #endif 6976 case TARGET_NR_getpriority: 6977 /* Note that negative values are valid for getpriority, so we must 6978 differentiate based on errno settings. */ 6979 errno = 0; 6980 ret = getpriority(arg1, arg2); 6981 if (ret == -1 && errno != 0) { 6982 ret = -host_to_target_errno(errno); 6983 break; 6984 } 6985 #ifdef TARGET_ALPHA 6986 /* Return value is the unbiased priority. Signal no error. */ 6987 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 6988 #else 6989 /* Return value is a biased priority to avoid negative numbers. */ 6990 ret = 20 - ret; 6991 #endif 6992 break; 6993 case TARGET_NR_setpriority: 6994 ret = get_errno(setpriority(arg1, arg2, arg3)); 6995 break; 6996 #ifdef TARGET_NR_profil 6997 case TARGET_NR_profil: 6998 goto unimplemented; 6999 #endif 7000 case TARGET_NR_statfs: 7001 if (!(p = lock_user_string(arg1))) 7002 goto efault; 7003 ret = get_errno(statfs(path(p), &stfs)); 7004 unlock_user(p, arg1, 0); 7005 convert_statfs: 7006 if (!is_error(ret)) { 7007 struct target_statfs *target_stfs; 7008 7009 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 7010 goto efault; 7011 __put_user(stfs.f_type, &target_stfs->f_type); 7012 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 7013 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 7014 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 7015 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 7016 __put_user(stfs.f_files, &target_stfs->f_files); 7017 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 7018 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 7019 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 7020 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 7021 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 7022 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 7023 unlock_user_struct(target_stfs, arg2, 1); 7024 } 7025 break; 7026 case TARGET_NR_fstatfs: 7027 ret = get_errno(fstatfs(arg1, &stfs)); 7028 goto convert_statfs; 7029 #ifdef TARGET_NR_statfs64 7030 case TARGET_NR_statfs64: 7031 if (!(p = lock_user_string(arg1))) 7032 goto efault; 7033 ret = get_errno(statfs(path(p), &stfs)); 7034 unlock_user(p, arg1, 0); 7035 convert_statfs64: 7036 if (!is_error(ret)) { 7037 struct target_statfs64 *target_stfs; 7038 7039 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 7040 goto efault; 7041 __put_user(stfs.f_type, &target_stfs->f_type); 7042 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 7043 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 7044 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 7045 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 7046 __put_user(stfs.f_files, &target_stfs->f_files); 7047 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 7048 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 7049 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 7050 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 7051 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 7052 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 7053 unlock_user_struct(target_stfs, arg3, 1); 7054 } 7055 break; 7056 case TARGET_NR_fstatfs64: 7057 ret = get_errno(fstatfs(arg1, &stfs)); 7058 goto convert_statfs64; 7059 #endif 7060 #ifdef TARGET_NR_ioperm 7061 case TARGET_NR_ioperm: 7062 goto unimplemented; 7063 #endif 7064 #ifdef TARGET_NR_socketcall 7065 case TARGET_NR_socketcall: 7066 ret = do_socketcall(arg1, arg2); 7067 break; 7068 #endif 7069 #ifdef TARGET_NR_accept 7070 case TARGET_NR_accept: 7071 ret = do_accept4(arg1, arg2, arg3, 0); 7072 break; 7073 #endif 7074 #ifdef TARGET_NR_accept4 7075 case TARGET_NR_accept4: 7076 #ifdef CONFIG_ACCEPT4 7077 ret = do_accept4(arg1, arg2, arg3, arg4); 7078 #else 7079 goto unimplemented; 7080 #endif 7081 break; 7082 #endif 7083 #ifdef TARGET_NR_bind 7084 case TARGET_NR_bind: 7085 ret = do_bind(arg1, arg2, arg3); 7086 break; 7087 #endif 7088 #ifdef TARGET_NR_connect 7089 case TARGET_NR_connect: 7090 ret = do_connect(arg1, arg2, arg3); 7091 break; 7092 #endif 7093 #ifdef TARGET_NR_getpeername 7094 case TARGET_NR_getpeername: 7095 ret = do_getpeername(arg1, arg2, arg3); 7096 break; 7097 #endif 7098 #ifdef TARGET_NR_getsockname 7099 case TARGET_NR_getsockname: 7100 ret = do_getsockname(arg1, arg2, arg3); 7101 break; 7102 #endif 7103 #ifdef TARGET_NR_getsockopt 7104 case TARGET_NR_getsockopt: 7105 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); 7106 break; 7107 #endif 7108 #ifdef TARGET_NR_listen 7109 case TARGET_NR_listen: 7110 ret = get_errno(listen(arg1, arg2)); 7111 break; 7112 #endif 7113 #ifdef TARGET_NR_recv 7114 case TARGET_NR_recv: 7115 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 7116 break; 7117 #endif 7118 #ifdef TARGET_NR_recvfrom 7119 case TARGET_NR_recvfrom: 7120 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 7121 break; 7122 #endif 7123 #ifdef TARGET_NR_recvmsg 7124 case TARGET_NR_recvmsg: 7125 ret = do_sendrecvmsg(arg1, arg2, arg3, 0); 7126 break; 7127 #endif 7128 #ifdef TARGET_NR_send 7129 case TARGET_NR_send: 7130 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0); 7131 break; 7132 #endif 7133 #ifdef TARGET_NR_sendmsg 7134 case TARGET_NR_sendmsg: 7135 ret = do_sendrecvmsg(arg1, arg2, arg3, 1); 7136 break; 7137 #endif 7138 #ifdef TARGET_NR_sendmmsg 7139 case TARGET_NR_sendmmsg: 7140 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 7141 break; 7142 case TARGET_NR_recvmmsg: 7143 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 7144 break; 7145 #endif 7146 #ifdef TARGET_NR_sendto 7147 case TARGET_NR_sendto: 7148 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 7149 break; 7150 #endif 7151 #ifdef TARGET_NR_shutdown 7152 case TARGET_NR_shutdown: 7153 ret = get_errno(shutdown(arg1, arg2)); 7154 break; 7155 #endif 7156 #ifdef TARGET_NR_socket 7157 case TARGET_NR_socket: 7158 ret = do_socket(arg1, arg2, arg3); 7159 break; 7160 #endif 7161 #ifdef TARGET_NR_socketpair 7162 case TARGET_NR_socketpair: 7163 ret = do_socketpair(arg1, arg2, arg3, arg4); 7164 break; 7165 #endif 7166 #ifdef TARGET_NR_setsockopt 7167 case TARGET_NR_setsockopt: 7168 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 7169 break; 7170 #endif 7171 7172 case TARGET_NR_syslog: 7173 if (!(p = lock_user_string(arg2))) 7174 goto efault; 7175 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 7176 unlock_user(p, arg2, 0); 7177 break; 7178 7179 case TARGET_NR_setitimer: 7180 { 7181 struct itimerval value, ovalue, *pvalue; 7182 7183 if (arg2) { 7184 pvalue = &value; 7185 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 7186 || copy_from_user_timeval(&pvalue->it_value, 7187 arg2 + sizeof(struct target_timeval))) 7188 goto efault; 7189 } else { 7190 pvalue = NULL; 7191 } 7192 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 7193 if (!is_error(ret) && arg3) { 7194 if (copy_to_user_timeval(arg3, 7195 &ovalue.it_interval) 7196 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 7197 &ovalue.it_value)) 7198 goto efault; 7199 } 7200 } 7201 break; 7202 case TARGET_NR_getitimer: 7203 { 7204 struct itimerval value; 7205 7206 ret = get_errno(getitimer(arg1, &value)); 7207 if (!is_error(ret) && arg2) { 7208 if (copy_to_user_timeval(arg2, 7209 &value.it_interval) 7210 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 7211 &value.it_value)) 7212 goto efault; 7213 } 7214 } 7215 break; 7216 case TARGET_NR_stat: 7217 if (!(p = lock_user_string(arg1))) 7218 goto efault; 7219 ret = get_errno(stat(path(p), &st)); 7220 unlock_user(p, arg1, 0); 7221 goto do_stat; 7222 case TARGET_NR_lstat: 7223 if (!(p = lock_user_string(arg1))) 7224 goto efault; 7225 ret = get_errno(lstat(path(p), &st)); 7226 unlock_user(p, arg1, 0); 7227 goto do_stat; 7228 case TARGET_NR_fstat: 7229 { 7230 ret = get_errno(fstat(arg1, &st)); 7231 do_stat: 7232 if (!is_error(ret)) { 7233 struct target_stat *target_st; 7234 7235 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 7236 goto efault; 7237 memset(target_st, 0, sizeof(*target_st)); 7238 __put_user(st.st_dev, &target_st->st_dev); 7239 __put_user(st.st_ino, &target_st->st_ino); 7240 __put_user(st.st_mode, &target_st->st_mode); 7241 __put_user(st.st_uid, &target_st->st_uid); 7242 __put_user(st.st_gid, &target_st->st_gid); 7243 __put_user(st.st_nlink, &target_st->st_nlink); 7244 __put_user(st.st_rdev, &target_st->st_rdev); 7245 __put_user(st.st_size, &target_st->st_size); 7246 __put_user(st.st_blksize, &target_st->st_blksize); 7247 __put_user(st.st_blocks, &target_st->st_blocks); 7248 __put_user(st.st_atime, &target_st->target_st_atime); 7249 __put_user(st.st_mtime, &target_st->target_st_mtime); 7250 __put_user(st.st_ctime, &target_st->target_st_ctime); 7251 unlock_user_struct(target_st, arg2, 1); 7252 } 7253 } 7254 break; 7255 #ifdef TARGET_NR_olduname 7256 case TARGET_NR_olduname: 7257 goto unimplemented; 7258 #endif 7259 #ifdef TARGET_NR_iopl 7260 case TARGET_NR_iopl: 7261 goto unimplemented; 7262 #endif 7263 case TARGET_NR_vhangup: 7264 ret = get_errno(vhangup()); 7265 break; 7266 #ifdef TARGET_NR_idle 7267 case TARGET_NR_idle: 7268 goto unimplemented; 7269 #endif 7270 #ifdef TARGET_NR_syscall 7271 case TARGET_NR_syscall: 7272 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 7273 arg6, arg7, arg8, 0); 7274 break; 7275 #endif 7276 case TARGET_NR_wait4: 7277 { 7278 int status; 7279 abi_long status_ptr = arg2; 7280 struct rusage rusage, *rusage_ptr; 7281 abi_ulong target_rusage = arg4; 7282 abi_long rusage_err; 7283 if (target_rusage) 7284 rusage_ptr = &rusage; 7285 else 7286 rusage_ptr = NULL; 7287 ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr)); 7288 if (!is_error(ret)) { 7289 if (status_ptr && ret) { 7290 status = host_to_target_waitstatus(status); 7291 if (put_user_s32(status, status_ptr)) 7292 goto efault; 7293 } 7294 if (target_rusage) { 7295 rusage_err = host_to_target_rusage(target_rusage, &rusage); 7296 if (rusage_err) { 7297 ret = rusage_err; 7298 } 7299 } 7300 } 7301 } 7302 break; 7303 #ifdef TARGET_NR_swapoff 7304 case TARGET_NR_swapoff: 7305 if (!(p = lock_user_string(arg1))) 7306 goto efault; 7307 ret = get_errno(swapoff(p)); 7308 unlock_user(p, arg1, 0); 7309 break; 7310 #endif 7311 case TARGET_NR_sysinfo: 7312 { 7313 struct target_sysinfo *target_value; 7314 struct sysinfo value; 7315 ret = get_errno(sysinfo(&value)); 7316 if (!is_error(ret) && arg1) 7317 { 7318 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 7319 goto efault; 7320 __put_user(value.uptime, &target_value->uptime); 7321 __put_user(value.loads[0], &target_value->loads[0]); 7322 __put_user(value.loads[1], &target_value->loads[1]); 7323 __put_user(value.loads[2], &target_value->loads[2]); 7324 __put_user(value.totalram, &target_value->totalram); 7325 __put_user(value.freeram, &target_value->freeram); 7326 __put_user(value.sharedram, &target_value->sharedram); 7327 __put_user(value.bufferram, &target_value->bufferram); 7328 __put_user(value.totalswap, &target_value->totalswap); 7329 __put_user(value.freeswap, &target_value->freeswap); 7330 __put_user(value.procs, &target_value->procs); 7331 __put_user(value.totalhigh, &target_value->totalhigh); 7332 __put_user(value.freehigh, &target_value->freehigh); 7333 __put_user(value.mem_unit, &target_value->mem_unit); 7334 unlock_user_struct(target_value, arg1, 1); 7335 } 7336 } 7337 break; 7338 #ifdef TARGET_NR_ipc 7339 case TARGET_NR_ipc: 7340 ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6); 7341 break; 7342 #endif 7343 #ifdef TARGET_NR_semget 7344 case TARGET_NR_semget: 7345 ret = get_errno(semget(arg1, arg2, arg3)); 7346 break; 7347 #endif 7348 #ifdef TARGET_NR_semop 7349 case TARGET_NR_semop: 7350 ret = do_semop(arg1, arg2, arg3); 7351 break; 7352 #endif 7353 #ifdef TARGET_NR_semctl 7354 case TARGET_NR_semctl: 7355 ret = do_semctl(arg1, arg2, arg3, (union target_semun)(abi_ulong)arg4); 7356 break; 7357 #endif 7358 #ifdef TARGET_NR_msgctl 7359 case TARGET_NR_msgctl: 7360 ret = do_msgctl(arg1, arg2, arg3); 7361 break; 7362 #endif 7363 #ifdef TARGET_NR_msgget 7364 case TARGET_NR_msgget: 7365 ret = get_errno(msgget(arg1, arg2)); 7366 break; 7367 #endif 7368 #ifdef TARGET_NR_msgrcv 7369 case TARGET_NR_msgrcv: 7370 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5); 7371 break; 7372 #endif 7373 #ifdef TARGET_NR_msgsnd 7374 case TARGET_NR_msgsnd: 7375 ret = do_msgsnd(arg1, arg2, arg3, arg4); 7376 break; 7377 #endif 7378 #ifdef TARGET_NR_shmget 7379 case TARGET_NR_shmget: 7380 ret = get_errno(shmget(arg1, arg2, arg3)); 7381 break; 7382 #endif 7383 #ifdef TARGET_NR_shmctl 7384 case TARGET_NR_shmctl: 7385 ret = do_shmctl(arg1, arg2, arg3); 7386 break; 7387 #endif 7388 #ifdef TARGET_NR_shmat 7389 case TARGET_NR_shmat: 7390 ret = do_shmat(arg1, arg2, arg3); 7391 break; 7392 #endif 7393 #ifdef TARGET_NR_shmdt 7394 case TARGET_NR_shmdt: 7395 ret = do_shmdt(arg1); 7396 break; 7397 #endif 7398 case TARGET_NR_fsync: 7399 ret = get_errno(fsync(arg1)); 7400 break; 7401 case TARGET_NR_clone: 7402 /* Linux manages to have three different orderings for its 7403 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 7404 * match the kernel's CONFIG_CLONE_* settings. 7405 * Microblaze is further special in that it uses a sixth 7406 * implicit argument to clone for the TLS pointer. 7407 */ 7408 #if defined(TARGET_MICROBLAZE) 7409 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 7410 #elif defined(TARGET_CLONE_BACKWARDS) 7411 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 7412 #elif defined(TARGET_CLONE_BACKWARDS2) 7413 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 7414 #else 7415 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 7416 #endif 7417 break; 7418 #ifdef __NR_exit_group 7419 /* new thread calls */ 7420 case TARGET_NR_exit_group: 7421 #ifdef TARGET_GPROF 7422 _mcleanup(); 7423 #endif 7424 gdb_exit(cpu_env, arg1); 7425 ret = get_errno(exit_group(arg1)); 7426 break; 7427 #endif 7428 case TARGET_NR_setdomainname: 7429 if (!(p = lock_user_string(arg1))) 7430 goto efault; 7431 ret = get_errno(setdomainname(p, arg2)); 7432 unlock_user(p, arg1, 0); 7433 break; 7434 case TARGET_NR_uname: 7435 /* no need to transcode because we use the linux syscall */ 7436 { 7437 struct new_utsname * buf; 7438 7439 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 7440 goto efault; 7441 ret = get_errno(sys_uname(buf)); 7442 if (!is_error(ret)) { 7443 /* Overrite the native machine name with whatever is being 7444 emulated. */ 7445 strcpy (buf->machine, cpu_to_uname_machine(cpu_env)); 7446 /* Allow the user to override the reported release. */ 7447 if (qemu_uname_release && *qemu_uname_release) 7448 strcpy (buf->release, qemu_uname_release); 7449 } 7450 unlock_user_struct(buf, arg1, 1); 7451 } 7452 break; 7453 #ifdef TARGET_I386 7454 case TARGET_NR_modify_ldt: 7455 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3); 7456 break; 7457 #if !defined(TARGET_X86_64) 7458 case TARGET_NR_vm86old: 7459 goto unimplemented; 7460 case TARGET_NR_vm86: 7461 ret = do_vm86(cpu_env, arg1, arg2); 7462 break; 7463 #endif 7464 #endif 7465 case TARGET_NR_adjtimex: 7466 goto unimplemented; 7467 #ifdef TARGET_NR_create_module 7468 case TARGET_NR_create_module: 7469 #endif 7470 case TARGET_NR_init_module: 7471 case TARGET_NR_delete_module: 7472 #ifdef TARGET_NR_get_kernel_syms 7473 case TARGET_NR_get_kernel_syms: 7474 #endif 7475 goto unimplemented; 7476 case TARGET_NR_quotactl: 7477 goto unimplemented; 7478 case TARGET_NR_getpgid: 7479 ret = get_errno(getpgid(arg1)); 7480 break; 7481 case TARGET_NR_fchdir: 7482 ret = get_errno(fchdir(arg1)); 7483 break; 7484 #ifdef TARGET_NR_bdflush /* not on x86_64 */ 7485 case TARGET_NR_bdflush: 7486 goto unimplemented; 7487 #endif 7488 #ifdef TARGET_NR_sysfs 7489 case TARGET_NR_sysfs: 7490 goto unimplemented; 7491 #endif 7492 case TARGET_NR_personality: 7493 ret = get_errno(personality(arg1)); 7494 break; 7495 #ifdef TARGET_NR_afs_syscall 7496 case TARGET_NR_afs_syscall: 7497 goto unimplemented; 7498 #endif 7499 #ifdef TARGET_NR__llseek /* Not on alpha */ 7500 case TARGET_NR__llseek: 7501 { 7502 int64_t res; 7503 #if !defined(__NR_llseek) 7504 res = lseek(arg1, ((uint64_t)arg2 << 32) | arg3, arg5); 7505 if (res == -1) { 7506 ret = get_errno(res); 7507 } else { 7508 ret = 0; 7509 } 7510 #else 7511 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 7512 #endif 7513 if ((ret == 0) && put_user_s64(res, arg4)) { 7514 goto efault; 7515 } 7516 } 7517 break; 7518 #endif 7519 case TARGET_NR_getdents: 7520 #ifdef __NR_getdents 7521 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 7522 { 7523 struct target_dirent *target_dirp; 7524 struct linux_dirent *dirp; 7525 abi_long count = arg3; 7526 7527 dirp = malloc(count); 7528 if (!dirp) { 7529 ret = -TARGET_ENOMEM; 7530 goto fail; 7531 } 7532 7533 ret = get_errno(sys_getdents(arg1, dirp, count)); 7534 if (!is_error(ret)) { 7535 struct linux_dirent *de; 7536 struct target_dirent *tde; 7537 int len = ret; 7538 int reclen, treclen; 7539 int count1, tnamelen; 7540 7541 count1 = 0; 7542 de = dirp; 7543 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 7544 goto efault; 7545 tde = target_dirp; 7546 while (len > 0) { 7547 reclen = de->d_reclen; 7548 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 7549 assert(tnamelen >= 0); 7550 treclen = tnamelen + offsetof(struct target_dirent, d_name); 7551 assert(count1 + treclen <= count); 7552 tde->d_reclen = tswap16(treclen); 7553 tde->d_ino = tswapal(de->d_ino); 7554 tde->d_off = tswapal(de->d_off); 7555 memcpy(tde->d_name, de->d_name, tnamelen); 7556 de = (struct linux_dirent *)((char *)de + reclen); 7557 len -= reclen; 7558 tde = (struct target_dirent *)((char *)tde + treclen); 7559 count1 += treclen; 7560 } 7561 ret = count1; 7562 unlock_user(target_dirp, arg2, ret); 7563 } 7564 free(dirp); 7565 } 7566 #else 7567 { 7568 struct linux_dirent *dirp; 7569 abi_long count = arg3; 7570 7571 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 7572 goto efault; 7573 ret = get_errno(sys_getdents(arg1, dirp, count)); 7574 if (!is_error(ret)) { 7575 struct linux_dirent *de; 7576 int len = ret; 7577 int reclen; 7578 de = dirp; 7579 while (len > 0) { 7580 reclen = de->d_reclen; 7581 if (reclen > len) 7582 break; 7583 de->d_reclen = tswap16(reclen); 7584 tswapls(&de->d_ino); 7585 tswapls(&de->d_off); 7586 de = (struct linux_dirent *)((char *)de + reclen); 7587 len -= reclen; 7588 } 7589 } 7590 unlock_user(dirp, arg2, ret); 7591 } 7592 #endif 7593 #else 7594 /* Implement getdents in terms of getdents64 */ 7595 { 7596 struct linux_dirent64 *dirp; 7597 abi_long count = arg3; 7598 7599 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 7600 if (!dirp) { 7601 goto efault; 7602 } 7603 ret = get_errno(sys_getdents64(arg1, dirp, count)); 7604 if (!is_error(ret)) { 7605 /* Convert the dirent64 structs to target dirent. We do this 7606 * in-place, since we can guarantee that a target_dirent is no 7607 * larger than a dirent64; however this means we have to be 7608 * careful to read everything before writing in the new format. 7609 */ 7610 struct linux_dirent64 *de; 7611 struct target_dirent *tde; 7612 int len = ret; 7613 int tlen = 0; 7614 7615 de = dirp; 7616 tde = (struct target_dirent *)dirp; 7617 while (len > 0) { 7618 int namelen, treclen; 7619 int reclen = de->d_reclen; 7620 uint64_t ino = de->d_ino; 7621 int64_t off = de->d_off; 7622 uint8_t type = de->d_type; 7623 7624 namelen = strlen(de->d_name); 7625 treclen = offsetof(struct target_dirent, d_name) 7626 + namelen + 2; 7627 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 7628 7629 memmove(tde->d_name, de->d_name, namelen + 1); 7630 tde->d_ino = tswapal(ino); 7631 tde->d_off = tswapal(off); 7632 tde->d_reclen = tswap16(treclen); 7633 /* The target_dirent type is in what was formerly a padding 7634 * byte at the end of the structure: 7635 */ 7636 *(((char *)tde) + treclen - 1) = type; 7637 7638 de = (struct linux_dirent64 *)((char *)de + reclen); 7639 tde = (struct target_dirent *)((char *)tde + treclen); 7640 len -= reclen; 7641 tlen += treclen; 7642 } 7643 ret = tlen; 7644 } 7645 unlock_user(dirp, arg2, ret); 7646 } 7647 #endif 7648 break; 7649 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 7650 case TARGET_NR_getdents64: 7651 { 7652 struct linux_dirent64 *dirp; 7653 abi_long count = arg3; 7654 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 7655 goto efault; 7656 ret = get_errno(sys_getdents64(arg1, dirp, count)); 7657 if (!is_error(ret)) { 7658 struct linux_dirent64 *de; 7659 int len = ret; 7660 int reclen; 7661 de = dirp; 7662 while (len > 0) { 7663 reclen = de->d_reclen; 7664 if (reclen > len) 7665 break; 7666 de->d_reclen = tswap16(reclen); 7667 tswap64s((uint64_t *)&de->d_ino); 7668 tswap64s((uint64_t *)&de->d_off); 7669 de = (struct linux_dirent64 *)((char *)de + reclen); 7670 len -= reclen; 7671 } 7672 } 7673 unlock_user(dirp, arg2, ret); 7674 } 7675 break; 7676 #endif /* TARGET_NR_getdents64 */ 7677 #if defined(TARGET_NR__newselect) 7678 case TARGET_NR__newselect: 7679 ret = do_select(arg1, arg2, arg3, arg4, arg5); 7680 break; 7681 #endif 7682 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) 7683 # ifdef TARGET_NR_poll 7684 case TARGET_NR_poll: 7685 # endif 7686 # ifdef TARGET_NR_ppoll 7687 case TARGET_NR_ppoll: 7688 # endif 7689 { 7690 struct target_pollfd *target_pfd; 7691 unsigned int nfds = arg2; 7692 int timeout = arg3; 7693 struct pollfd *pfd; 7694 unsigned int i; 7695 7696 target_pfd = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_pollfd) * nfds, 1); 7697 if (!target_pfd) 7698 goto efault; 7699 7700 pfd = alloca(sizeof(struct pollfd) * nfds); 7701 for(i = 0; i < nfds; i++) { 7702 pfd[i].fd = tswap32(target_pfd[i].fd); 7703 pfd[i].events = tswap16(target_pfd[i].events); 7704 } 7705 7706 # ifdef TARGET_NR_ppoll 7707 if (num == TARGET_NR_ppoll) { 7708 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 7709 target_sigset_t *target_set; 7710 sigset_t _set, *set = &_set; 7711 7712 if (arg3) { 7713 if (target_to_host_timespec(timeout_ts, arg3)) { 7714 unlock_user(target_pfd, arg1, 0); 7715 goto efault; 7716 } 7717 } else { 7718 timeout_ts = NULL; 7719 } 7720 7721 if (arg4) { 7722 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1); 7723 if (!target_set) { 7724 unlock_user(target_pfd, arg1, 0); 7725 goto efault; 7726 } 7727 target_to_host_sigset(set, target_set); 7728 } else { 7729 set = NULL; 7730 } 7731 7732 ret = get_errno(sys_ppoll(pfd, nfds, timeout_ts, set, _NSIG/8)); 7733 7734 if (!is_error(ret) && arg3) { 7735 host_to_target_timespec(arg3, timeout_ts); 7736 } 7737 if (arg4) { 7738 unlock_user(target_set, arg4, 0); 7739 } 7740 } else 7741 # endif 7742 ret = get_errno(poll(pfd, nfds, timeout)); 7743 7744 if (!is_error(ret)) { 7745 for(i = 0; i < nfds; i++) { 7746 target_pfd[i].revents = tswap16(pfd[i].revents); 7747 } 7748 } 7749 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 7750 } 7751 break; 7752 #endif 7753 case TARGET_NR_flock: 7754 /* NOTE: the flock constant seems to be the same for every 7755 Linux platform */ 7756 ret = get_errno(flock(arg1, arg2)); 7757 break; 7758 case TARGET_NR_readv: 7759 { 7760 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 7761 if (vec != NULL) { 7762 ret = get_errno(readv(arg1, vec, arg3)); 7763 unlock_iovec(vec, arg2, arg3, 1); 7764 } else { 7765 ret = -host_to_target_errno(errno); 7766 } 7767 } 7768 break; 7769 case TARGET_NR_writev: 7770 { 7771 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 7772 if (vec != NULL) { 7773 ret = get_errno(writev(arg1, vec, arg3)); 7774 unlock_iovec(vec, arg2, arg3, 0); 7775 } else { 7776 ret = -host_to_target_errno(errno); 7777 } 7778 } 7779 break; 7780 case TARGET_NR_getsid: 7781 ret = get_errno(getsid(arg1)); 7782 break; 7783 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 7784 case TARGET_NR_fdatasync: 7785 ret = get_errno(fdatasync(arg1)); 7786 break; 7787 #endif 7788 case TARGET_NR__sysctl: 7789 /* We don't implement this, but ENOTDIR is always a safe 7790 return value. */ 7791 ret = -TARGET_ENOTDIR; 7792 break; 7793 case TARGET_NR_sched_getaffinity: 7794 { 7795 unsigned int mask_size; 7796 unsigned long *mask; 7797 7798 /* 7799 * sched_getaffinity needs multiples of ulong, so need to take 7800 * care of mismatches between target ulong and host ulong sizes. 7801 */ 7802 if (arg2 & (sizeof(abi_ulong) - 1)) { 7803 ret = -TARGET_EINVAL; 7804 break; 7805 } 7806 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 7807 7808 mask = alloca(mask_size); 7809 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 7810 7811 if (!is_error(ret)) { 7812 if (ret > arg2) { 7813 /* More data returned than the caller's buffer will fit. 7814 * This only happens if sizeof(abi_long) < sizeof(long) 7815 * and the caller passed us a buffer holding an odd number 7816 * of abi_longs. If the host kernel is actually using the 7817 * extra 4 bytes then fail EINVAL; otherwise we can just 7818 * ignore them and only copy the interesting part. 7819 */ 7820 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 7821 if (numcpus > arg2 * 8) { 7822 ret = -TARGET_EINVAL; 7823 break; 7824 } 7825 ret = arg2; 7826 } 7827 7828 if (copy_to_user(arg3, mask, ret)) { 7829 goto efault; 7830 } 7831 } 7832 } 7833 break; 7834 case TARGET_NR_sched_setaffinity: 7835 { 7836 unsigned int mask_size; 7837 unsigned long *mask; 7838 7839 /* 7840 * sched_setaffinity needs multiples of ulong, so need to take 7841 * care of mismatches between target ulong and host ulong sizes. 7842 */ 7843 if (arg2 & (sizeof(abi_ulong) - 1)) { 7844 ret = -TARGET_EINVAL; 7845 break; 7846 } 7847 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 7848 7849 mask = alloca(mask_size); 7850 if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) { 7851 goto efault; 7852 } 7853 memcpy(mask, p, arg2); 7854 unlock_user_struct(p, arg2, 0); 7855 7856 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 7857 } 7858 break; 7859 case TARGET_NR_sched_setparam: 7860 { 7861 struct sched_param *target_schp; 7862 struct sched_param schp; 7863 7864 if (arg2 == 0) { 7865 return -TARGET_EINVAL; 7866 } 7867 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 7868 goto efault; 7869 schp.sched_priority = tswap32(target_schp->sched_priority); 7870 unlock_user_struct(target_schp, arg2, 0); 7871 ret = get_errno(sched_setparam(arg1, &schp)); 7872 } 7873 break; 7874 case TARGET_NR_sched_getparam: 7875 { 7876 struct sched_param *target_schp; 7877 struct sched_param schp; 7878 7879 if (arg2 == 0) { 7880 return -TARGET_EINVAL; 7881 } 7882 ret = get_errno(sched_getparam(arg1, &schp)); 7883 if (!is_error(ret)) { 7884 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 7885 goto efault; 7886 target_schp->sched_priority = tswap32(schp.sched_priority); 7887 unlock_user_struct(target_schp, arg2, 1); 7888 } 7889 } 7890 break; 7891 case TARGET_NR_sched_setscheduler: 7892 { 7893 struct sched_param *target_schp; 7894 struct sched_param schp; 7895 if (arg3 == 0) { 7896 return -TARGET_EINVAL; 7897 } 7898 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 7899 goto efault; 7900 schp.sched_priority = tswap32(target_schp->sched_priority); 7901 unlock_user_struct(target_schp, arg3, 0); 7902 ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); 7903 } 7904 break; 7905 case TARGET_NR_sched_getscheduler: 7906 ret = get_errno(sched_getscheduler(arg1)); 7907 break; 7908 case TARGET_NR_sched_yield: 7909 ret = get_errno(sched_yield()); 7910 break; 7911 case TARGET_NR_sched_get_priority_max: 7912 ret = get_errno(sched_get_priority_max(arg1)); 7913 break; 7914 case TARGET_NR_sched_get_priority_min: 7915 ret = get_errno(sched_get_priority_min(arg1)); 7916 break; 7917 case TARGET_NR_sched_rr_get_interval: 7918 { 7919 struct timespec ts; 7920 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 7921 if (!is_error(ret)) { 7922 ret = host_to_target_timespec(arg2, &ts); 7923 } 7924 } 7925 break; 7926 case TARGET_NR_nanosleep: 7927 { 7928 struct timespec req, rem; 7929 target_to_host_timespec(&req, arg1); 7930 ret = get_errno(nanosleep(&req, &rem)); 7931 if (is_error(ret) && arg2) { 7932 host_to_target_timespec(arg2, &rem); 7933 } 7934 } 7935 break; 7936 #ifdef TARGET_NR_query_module 7937 case TARGET_NR_query_module: 7938 goto unimplemented; 7939 #endif 7940 #ifdef TARGET_NR_nfsservctl 7941 case TARGET_NR_nfsservctl: 7942 goto unimplemented; 7943 #endif 7944 case TARGET_NR_prctl: 7945 switch (arg1) { 7946 case PR_GET_PDEATHSIG: 7947 { 7948 int deathsig; 7949 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 7950 if (!is_error(ret) && arg2 7951 && put_user_ual(deathsig, arg2)) { 7952 goto efault; 7953 } 7954 break; 7955 } 7956 #ifdef PR_GET_NAME 7957 case PR_GET_NAME: 7958 { 7959 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 7960 if (!name) { 7961 goto efault; 7962 } 7963 ret = get_errno(prctl(arg1, (unsigned long)name, 7964 arg3, arg4, arg5)); 7965 unlock_user(name, arg2, 16); 7966 break; 7967 } 7968 case PR_SET_NAME: 7969 { 7970 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 7971 if (!name) { 7972 goto efault; 7973 } 7974 ret = get_errno(prctl(arg1, (unsigned long)name, 7975 arg3, arg4, arg5)); 7976 unlock_user(name, arg2, 0); 7977 break; 7978 } 7979 #endif 7980 default: 7981 /* Most prctl options have no pointer arguments */ 7982 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 7983 break; 7984 } 7985 break; 7986 #ifdef TARGET_NR_arch_prctl 7987 case TARGET_NR_arch_prctl: 7988 #if defined(TARGET_I386) && !defined(TARGET_ABI32) 7989 ret = do_arch_prctl(cpu_env, arg1, arg2); 7990 break; 7991 #else 7992 goto unimplemented; 7993 #endif 7994 #endif 7995 #ifdef TARGET_NR_pread64 7996 case TARGET_NR_pread64: 7997 if (regpairs_aligned(cpu_env)) { 7998 arg4 = arg5; 7999 arg5 = arg6; 8000 } 8001 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 8002 goto efault; 8003 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 8004 unlock_user(p, arg2, ret); 8005 break; 8006 case TARGET_NR_pwrite64: 8007 if (regpairs_aligned(cpu_env)) { 8008 arg4 = arg5; 8009 arg5 = arg6; 8010 } 8011 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 8012 goto efault; 8013 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 8014 unlock_user(p, arg2, 0); 8015 break; 8016 #endif 8017 case TARGET_NR_getcwd: 8018 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 8019 goto efault; 8020 ret = get_errno(sys_getcwd1(p, arg2)); 8021 unlock_user(p, arg1, ret); 8022 break; 8023 case TARGET_NR_capget: 8024 case TARGET_NR_capset: 8025 { 8026 struct target_user_cap_header *target_header; 8027 struct target_user_cap_data *target_data = NULL; 8028 struct __user_cap_header_struct header; 8029 struct __user_cap_data_struct data[2]; 8030 struct __user_cap_data_struct *dataptr = NULL; 8031 int i, target_datalen; 8032 int data_items = 1; 8033 8034 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 8035 goto efault; 8036 } 8037 header.version = tswap32(target_header->version); 8038 header.pid = tswap32(target_header->pid); 8039 8040 if (header.version != _LINUX_CAPABILITY_VERSION) { 8041 /* Version 2 and up takes pointer to two user_data structs */ 8042 data_items = 2; 8043 } 8044 8045 target_datalen = sizeof(*target_data) * data_items; 8046 8047 if (arg2) { 8048 if (num == TARGET_NR_capget) { 8049 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 8050 } else { 8051 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 8052 } 8053 if (!target_data) { 8054 unlock_user_struct(target_header, arg1, 0); 8055 goto efault; 8056 } 8057 8058 if (num == TARGET_NR_capset) { 8059 for (i = 0; i < data_items; i++) { 8060 data[i].effective = tswap32(target_data[i].effective); 8061 data[i].permitted = tswap32(target_data[i].permitted); 8062 data[i].inheritable = tswap32(target_data[i].inheritable); 8063 } 8064 } 8065 8066 dataptr = data; 8067 } 8068 8069 if (num == TARGET_NR_capget) { 8070 ret = get_errno(capget(&header, dataptr)); 8071 } else { 8072 ret = get_errno(capset(&header, dataptr)); 8073 } 8074 8075 /* The kernel always updates version for both capget and capset */ 8076 target_header->version = tswap32(header.version); 8077 unlock_user_struct(target_header, arg1, 1); 8078 8079 if (arg2) { 8080 if (num == TARGET_NR_capget) { 8081 for (i = 0; i < data_items; i++) { 8082 target_data[i].effective = tswap32(data[i].effective); 8083 target_data[i].permitted = tswap32(data[i].permitted); 8084 target_data[i].inheritable = tswap32(data[i].inheritable); 8085 } 8086 unlock_user(target_data, arg2, target_datalen); 8087 } else { 8088 unlock_user(target_data, arg2, 0); 8089 } 8090 } 8091 break; 8092 } 8093 case TARGET_NR_sigaltstack: 8094 #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \ 8095 defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \ 8096 defined(TARGET_M68K) || defined(TARGET_S390X) || defined(TARGET_OPENRISC) 8097 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env)); 8098 break; 8099 #else 8100 goto unimplemented; 8101 #endif 8102 8103 #ifdef CONFIG_SENDFILE 8104 case TARGET_NR_sendfile: 8105 { 8106 off_t *offp = NULL; 8107 off_t off; 8108 if (arg3) { 8109 ret = get_user_sal(off, arg3); 8110 if (is_error(ret)) { 8111 break; 8112 } 8113 offp = &off; 8114 } 8115 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 8116 if (!is_error(ret) && arg3) { 8117 abi_long ret2 = put_user_sal(off, arg3); 8118 if (is_error(ret2)) { 8119 ret = ret2; 8120 } 8121 } 8122 break; 8123 } 8124 #ifdef TARGET_NR_sendfile64 8125 case TARGET_NR_sendfile64: 8126 { 8127 off_t *offp = NULL; 8128 off_t off; 8129 if (arg3) { 8130 ret = get_user_s64(off, arg3); 8131 if (is_error(ret)) { 8132 break; 8133 } 8134 offp = &off; 8135 } 8136 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 8137 if (!is_error(ret) && arg3) { 8138 abi_long ret2 = put_user_s64(off, arg3); 8139 if (is_error(ret2)) { 8140 ret = ret2; 8141 } 8142 } 8143 break; 8144 } 8145 #endif 8146 #else 8147 case TARGET_NR_sendfile: 8148 #ifdef TARGET_NR_sendfile64 8149 case TARGET_NR_sendfile64: 8150 #endif 8151 goto unimplemented; 8152 #endif 8153 8154 #ifdef TARGET_NR_getpmsg 8155 case TARGET_NR_getpmsg: 8156 goto unimplemented; 8157 #endif 8158 #ifdef TARGET_NR_putpmsg 8159 case TARGET_NR_putpmsg: 8160 goto unimplemented; 8161 #endif 8162 #ifdef TARGET_NR_vfork 8163 case TARGET_NR_vfork: 8164 ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD, 8165 0, 0, 0, 0)); 8166 break; 8167 #endif 8168 #ifdef TARGET_NR_ugetrlimit 8169 case TARGET_NR_ugetrlimit: 8170 { 8171 struct rlimit rlim; 8172 int resource = target_to_host_resource(arg1); 8173 ret = get_errno(getrlimit(resource, &rlim)); 8174 if (!is_error(ret)) { 8175 struct target_rlimit *target_rlim; 8176 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 8177 goto efault; 8178 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 8179 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 8180 unlock_user_struct(target_rlim, arg2, 1); 8181 } 8182 break; 8183 } 8184 #endif 8185 #ifdef TARGET_NR_truncate64 8186 case TARGET_NR_truncate64: 8187 if (!(p = lock_user_string(arg1))) 8188 goto efault; 8189 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 8190 unlock_user(p, arg1, 0); 8191 break; 8192 #endif 8193 #ifdef TARGET_NR_ftruncate64 8194 case TARGET_NR_ftruncate64: 8195 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 8196 break; 8197 #endif 8198 #ifdef TARGET_NR_stat64 8199 case TARGET_NR_stat64: 8200 if (!(p = lock_user_string(arg1))) 8201 goto efault; 8202 ret = get_errno(stat(path(p), &st)); 8203 unlock_user(p, arg1, 0); 8204 if (!is_error(ret)) 8205 ret = host_to_target_stat64(cpu_env, arg2, &st); 8206 break; 8207 #endif 8208 #ifdef TARGET_NR_lstat64 8209 case TARGET_NR_lstat64: 8210 if (!(p = lock_user_string(arg1))) 8211 goto efault; 8212 ret = get_errno(lstat(path(p), &st)); 8213 unlock_user(p, arg1, 0); 8214 if (!is_error(ret)) 8215 ret = host_to_target_stat64(cpu_env, arg2, &st); 8216 break; 8217 #endif 8218 #ifdef TARGET_NR_fstat64 8219 case TARGET_NR_fstat64: 8220 ret = get_errno(fstat(arg1, &st)); 8221 if (!is_error(ret)) 8222 ret = host_to_target_stat64(cpu_env, arg2, &st); 8223 break; 8224 #endif 8225 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 8226 #ifdef TARGET_NR_fstatat64 8227 case TARGET_NR_fstatat64: 8228 #endif 8229 #ifdef TARGET_NR_newfstatat 8230 case TARGET_NR_newfstatat: 8231 #endif 8232 if (!(p = lock_user_string(arg2))) 8233 goto efault; 8234 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 8235 if (!is_error(ret)) 8236 ret = host_to_target_stat64(cpu_env, arg3, &st); 8237 break; 8238 #endif 8239 case TARGET_NR_lchown: 8240 if (!(p = lock_user_string(arg1))) 8241 goto efault; 8242 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 8243 unlock_user(p, arg1, 0); 8244 break; 8245 #ifdef TARGET_NR_getuid 8246 case TARGET_NR_getuid: 8247 ret = get_errno(high2lowuid(getuid())); 8248 break; 8249 #endif 8250 #ifdef TARGET_NR_getgid 8251 case TARGET_NR_getgid: 8252 ret = get_errno(high2lowgid(getgid())); 8253 break; 8254 #endif 8255 #ifdef TARGET_NR_geteuid 8256 case TARGET_NR_geteuid: 8257 ret = get_errno(high2lowuid(geteuid())); 8258 break; 8259 #endif 8260 #ifdef TARGET_NR_getegid 8261 case TARGET_NR_getegid: 8262 ret = get_errno(high2lowgid(getegid())); 8263 break; 8264 #endif 8265 case TARGET_NR_setreuid: 8266 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 8267 break; 8268 case TARGET_NR_setregid: 8269 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 8270 break; 8271 case TARGET_NR_getgroups: 8272 { 8273 int gidsetsize = arg1; 8274 target_id *target_grouplist; 8275 gid_t *grouplist; 8276 int i; 8277 8278 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8279 ret = get_errno(getgroups(gidsetsize, grouplist)); 8280 if (gidsetsize == 0) 8281 break; 8282 if (!is_error(ret)) { 8283 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 8284 if (!target_grouplist) 8285 goto efault; 8286 for(i = 0;i < ret; i++) 8287 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 8288 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 8289 } 8290 } 8291 break; 8292 case TARGET_NR_setgroups: 8293 { 8294 int gidsetsize = arg1; 8295 target_id *target_grouplist; 8296 gid_t *grouplist = NULL; 8297 int i; 8298 if (gidsetsize) { 8299 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8300 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 8301 if (!target_grouplist) { 8302 ret = -TARGET_EFAULT; 8303 goto fail; 8304 } 8305 for (i = 0; i < gidsetsize; i++) { 8306 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 8307 } 8308 unlock_user(target_grouplist, arg2, 0); 8309 } 8310 ret = get_errno(setgroups(gidsetsize, grouplist)); 8311 } 8312 break; 8313 case TARGET_NR_fchown: 8314 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 8315 break; 8316 #if defined(TARGET_NR_fchownat) 8317 case TARGET_NR_fchownat: 8318 if (!(p = lock_user_string(arg2))) 8319 goto efault; 8320 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 8321 low2highgid(arg4), arg5)); 8322 unlock_user(p, arg2, 0); 8323 break; 8324 #endif 8325 #ifdef TARGET_NR_setresuid 8326 case TARGET_NR_setresuid: 8327 ret = get_errno(setresuid(low2highuid(arg1), 8328 low2highuid(arg2), 8329 low2highuid(arg3))); 8330 break; 8331 #endif 8332 #ifdef TARGET_NR_getresuid 8333 case TARGET_NR_getresuid: 8334 { 8335 uid_t ruid, euid, suid; 8336 ret = get_errno(getresuid(&ruid, &euid, &suid)); 8337 if (!is_error(ret)) { 8338 if (put_user_id(high2lowuid(ruid), arg1) 8339 || put_user_id(high2lowuid(euid), arg2) 8340 || put_user_id(high2lowuid(suid), arg3)) 8341 goto efault; 8342 } 8343 } 8344 break; 8345 #endif 8346 #ifdef TARGET_NR_getresgid 8347 case TARGET_NR_setresgid: 8348 ret = get_errno(setresgid(low2highgid(arg1), 8349 low2highgid(arg2), 8350 low2highgid(arg3))); 8351 break; 8352 #endif 8353 #ifdef TARGET_NR_getresgid 8354 case TARGET_NR_getresgid: 8355 { 8356 gid_t rgid, egid, sgid; 8357 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 8358 if (!is_error(ret)) { 8359 if (put_user_id(high2lowgid(rgid), arg1) 8360 || put_user_id(high2lowgid(egid), arg2) 8361 || put_user_id(high2lowgid(sgid), arg3)) 8362 goto efault; 8363 } 8364 } 8365 break; 8366 #endif 8367 case TARGET_NR_chown: 8368 if (!(p = lock_user_string(arg1))) 8369 goto efault; 8370 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 8371 unlock_user(p, arg1, 0); 8372 break; 8373 case TARGET_NR_setuid: 8374 ret = get_errno(setuid(low2highuid(arg1))); 8375 break; 8376 case TARGET_NR_setgid: 8377 ret = get_errno(setgid(low2highgid(arg1))); 8378 break; 8379 case TARGET_NR_setfsuid: 8380 ret = get_errno(setfsuid(arg1)); 8381 break; 8382 case TARGET_NR_setfsgid: 8383 ret = get_errno(setfsgid(arg1)); 8384 break; 8385 8386 #ifdef TARGET_NR_lchown32 8387 case TARGET_NR_lchown32: 8388 if (!(p = lock_user_string(arg1))) 8389 goto efault; 8390 ret = get_errno(lchown(p, arg2, arg3)); 8391 unlock_user(p, arg1, 0); 8392 break; 8393 #endif 8394 #ifdef TARGET_NR_getuid32 8395 case TARGET_NR_getuid32: 8396 ret = get_errno(getuid()); 8397 break; 8398 #endif 8399 8400 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 8401 /* Alpha specific */ 8402 case TARGET_NR_getxuid: 8403 { 8404 uid_t euid; 8405 euid=geteuid(); 8406 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 8407 } 8408 ret = get_errno(getuid()); 8409 break; 8410 #endif 8411 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 8412 /* Alpha specific */ 8413 case TARGET_NR_getxgid: 8414 { 8415 uid_t egid; 8416 egid=getegid(); 8417 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 8418 } 8419 ret = get_errno(getgid()); 8420 break; 8421 #endif 8422 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 8423 /* Alpha specific */ 8424 case TARGET_NR_osf_getsysinfo: 8425 ret = -TARGET_EOPNOTSUPP; 8426 switch (arg1) { 8427 case TARGET_GSI_IEEE_FP_CONTROL: 8428 { 8429 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env); 8430 8431 /* Copied from linux ieee_fpcr_to_swcr. */ 8432 swcr = (fpcr >> 35) & SWCR_STATUS_MASK; 8433 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ; 8434 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV 8435 | SWCR_TRAP_ENABLE_DZE 8436 | SWCR_TRAP_ENABLE_OVF); 8437 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF 8438 | SWCR_TRAP_ENABLE_INE); 8439 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ; 8440 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO; 8441 8442 if (put_user_u64 (swcr, arg2)) 8443 goto efault; 8444 ret = 0; 8445 } 8446 break; 8447 8448 /* case GSI_IEEE_STATE_AT_SIGNAL: 8449 -- Not implemented in linux kernel. 8450 case GSI_UACPROC: 8451 -- Retrieves current unaligned access state; not much used. 8452 case GSI_PROC_TYPE: 8453 -- Retrieves implver information; surely not used. 8454 case GSI_GET_HWRPB: 8455 -- Grabs a copy of the HWRPB; surely not used. 8456 */ 8457 } 8458 break; 8459 #endif 8460 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 8461 /* Alpha specific */ 8462 case TARGET_NR_osf_setsysinfo: 8463 ret = -TARGET_EOPNOTSUPP; 8464 switch (arg1) { 8465 case TARGET_SSI_IEEE_FP_CONTROL: 8466 { 8467 uint64_t swcr, fpcr, orig_fpcr; 8468 8469 if (get_user_u64 (swcr, arg2)) { 8470 goto efault; 8471 } 8472 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 8473 fpcr = orig_fpcr & FPCR_DYN_MASK; 8474 8475 /* Copied from linux ieee_swcr_to_fpcr. */ 8476 fpcr |= (swcr & SWCR_STATUS_MASK) << 35; 8477 fpcr |= (swcr & SWCR_MAP_DMZ) << 36; 8478 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV 8479 | SWCR_TRAP_ENABLE_DZE 8480 | SWCR_TRAP_ENABLE_OVF)) << 48; 8481 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF 8482 | SWCR_TRAP_ENABLE_INE)) << 57; 8483 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0); 8484 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41; 8485 8486 cpu_alpha_store_fpcr(cpu_env, fpcr); 8487 ret = 0; 8488 } 8489 break; 8490 8491 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 8492 { 8493 uint64_t exc, fpcr, orig_fpcr; 8494 int si_code; 8495 8496 if (get_user_u64(exc, arg2)) { 8497 goto efault; 8498 } 8499 8500 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 8501 8502 /* We only add to the exception status here. */ 8503 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35); 8504 8505 cpu_alpha_store_fpcr(cpu_env, fpcr); 8506 ret = 0; 8507 8508 /* Old exceptions are not signaled. */ 8509 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK); 8510 8511 /* If any exceptions set by this call, 8512 and are unmasked, send a signal. */ 8513 si_code = 0; 8514 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) { 8515 si_code = TARGET_FPE_FLTRES; 8516 } 8517 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) { 8518 si_code = TARGET_FPE_FLTUND; 8519 } 8520 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) { 8521 si_code = TARGET_FPE_FLTOVF; 8522 } 8523 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) { 8524 si_code = TARGET_FPE_FLTDIV; 8525 } 8526 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) { 8527 si_code = TARGET_FPE_FLTINV; 8528 } 8529 if (si_code != 0) { 8530 target_siginfo_t info; 8531 info.si_signo = SIGFPE; 8532 info.si_errno = 0; 8533 info.si_code = si_code; 8534 info._sifields._sigfault._addr 8535 = ((CPUArchState *)cpu_env)->pc; 8536 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info); 8537 } 8538 } 8539 break; 8540 8541 /* case SSI_NVPAIRS: 8542 -- Used with SSIN_UACPROC to enable unaligned accesses. 8543 case SSI_IEEE_STATE_AT_SIGNAL: 8544 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 8545 -- Not implemented in linux kernel 8546 */ 8547 } 8548 break; 8549 #endif 8550 #ifdef TARGET_NR_osf_sigprocmask 8551 /* Alpha specific. */ 8552 case TARGET_NR_osf_sigprocmask: 8553 { 8554 abi_ulong mask; 8555 int how; 8556 sigset_t set, oldset; 8557 8558 switch(arg1) { 8559 case TARGET_SIG_BLOCK: 8560 how = SIG_BLOCK; 8561 break; 8562 case TARGET_SIG_UNBLOCK: 8563 how = SIG_UNBLOCK; 8564 break; 8565 case TARGET_SIG_SETMASK: 8566 how = SIG_SETMASK; 8567 break; 8568 default: 8569 ret = -TARGET_EINVAL; 8570 goto fail; 8571 } 8572 mask = arg2; 8573 target_to_host_old_sigset(&set, &mask); 8574 do_sigprocmask(how, &set, &oldset); 8575 host_to_target_old_sigset(&mask, &oldset); 8576 ret = mask; 8577 } 8578 break; 8579 #endif 8580 8581 #ifdef TARGET_NR_getgid32 8582 case TARGET_NR_getgid32: 8583 ret = get_errno(getgid()); 8584 break; 8585 #endif 8586 #ifdef TARGET_NR_geteuid32 8587 case TARGET_NR_geteuid32: 8588 ret = get_errno(geteuid()); 8589 break; 8590 #endif 8591 #ifdef TARGET_NR_getegid32 8592 case TARGET_NR_getegid32: 8593 ret = get_errno(getegid()); 8594 break; 8595 #endif 8596 #ifdef TARGET_NR_setreuid32 8597 case TARGET_NR_setreuid32: 8598 ret = get_errno(setreuid(arg1, arg2)); 8599 break; 8600 #endif 8601 #ifdef TARGET_NR_setregid32 8602 case TARGET_NR_setregid32: 8603 ret = get_errno(setregid(arg1, arg2)); 8604 break; 8605 #endif 8606 #ifdef TARGET_NR_getgroups32 8607 case TARGET_NR_getgroups32: 8608 { 8609 int gidsetsize = arg1; 8610 uint32_t *target_grouplist; 8611 gid_t *grouplist; 8612 int i; 8613 8614 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8615 ret = get_errno(getgroups(gidsetsize, grouplist)); 8616 if (gidsetsize == 0) 8617 break; 8618 if (!is_error(ret)) { 8619 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 8620 if (!target_grouplist) { 8621 ret = -TARGET_EFAULT; 8622 goto fail; 8623 } 8624 for(i = 0;i < ret; i++) 8625 target_grouplist[i] = tswap32(grouplist[i]); 8626 unlock_user(target_grouplist, arg2, gidsetsize * 4); 8627 } 8628 } 8629 break; 8630 #endif 8631 #ifdef TARGET_NR_setgroups32 8632 case TARGET_NR_setgroups32: 8633 { 8634 int gidsetsize = arg1; 8635 uint32_t *target_grouplist; 8636 gid_t *grouplist; 8637 int i; 8638 8639 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8640 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 8641 if (!target_grouplist) { 8642 ret = -TARGET_EFAULT; 8643 goto fail; 8644 } 8645 for(i = 0;i < gidsetsize; i++) 8646 grouplist[i] = tswap32(target_grouplist[i]); 8647 unlock_user(target_grouplist, arg2, 0); 8648 ret = get_errno(setgroups(gidsetsize, grouplist)); 8649 } 8650 break; 8651 #endif 8652 #ifdef TARGET_NR_fchown32 8653 case TARGET_NR_fchown32: 8654 ret = get_errno(fchown(arg1, arg2, arg3)); 8655 break; 8656 #endif 8657 #ifdef TARGET_NR_setresuid32 8658 case TARGET_NR_setresuid32: 8659 ret = get_errno(setresuid(arg1, arg2, arg3)); 8660 break; 8661 #endif 8662 #ifdef TARGET_NR_getresuid32 8663 case TARGET_NR_getresuid32: 8664 { 8665 uid_t ruid, euid, suid; 8666 ret = get_errno(getresuid(&ruid, &euid, &suid)); 8667 if (!is_error(ret)) { 8668 if (put_user_u32(ruid, arg1) 8669 || put_user_u32(euid, arg2) 8670 || put_user_u32(suid, arg3)) 8671 goto efault; 8672 } 8673 } 8674 break; 8675 #endif 8676 #ifdef TARGET_NR_setresgid32 8677 case TARGET_NR_setresgid32: 8678 ret = get_errno(setresgid(arg1, arg2, arg3)); 8679 break; 8680 #endif 8681 #ifdef TARGET_NR_getresgid32 8682 case TARGET_NR_getresgid32: 8683 { 8684 gid_t rgid, egid, sgid; 8685 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 8686 if (!is_error(ret)) { 8687 if (put_user_u32(rgid, arg1) 8688 || put_user_u32(egid, arg2) 8689 || put_user_u32(sgid, arg3)) 8690 goto efault; 8691 } 8692 } 8693 break; 8694 #endif 8695 #ifdef TARGET_NR_chown32 8696 case TARGET_NR_chown32: 8697 if (!(p = lock_user_string(arg1))) 8698 goto efault; 8699 ret = get_errno(chown(p, arg2, arg3)); 8700 unlock_user(p, arg1, 0); 8701 break; 8702 #endif 8703 #ifdef TARGET_NR_setuid32 8704 case TARGET_NR_setuid32: 8705 ret = get_errno(setuid(arg1)); 8706 break; 8707 #endif 8708 #ifdef TARGET_NR_setgid32 8709 case TARGET_NR_setgid32: 8710 ret = get_errno(setgid(arg1)); 8711 break; 8712 #endif 8713 #ifdef TARGET_NR_setfsuid32 8714 case TARGET_NR_setfsuid32: 8715 ret = get_errno(setfsuid(arg1)); 8716 break; 8717 #endif 8718 #ifdef TARGET_NR_setfsgid32 8719 case TARGET_NR_setfsgid32: 8720 ret = get_errno(setfsgid(arg1)); 8721 break; 8722 #endif 8723 8724 case TARGET_NR_pivot_root: 8725 goto unimplemented; 8726 #ifdef TARGET_NR_mincore 8727 case TARGET_NR_mincore: 8728 { 8729 void *a; 8730 ret = -TARGET_EFAULT; 8731 if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0))) 8732 goto efault; 8733 if (!(p = lock_user_string(arg3))) 8734 goto mincore_fail; 8735 ret = get_errno(mincore(a, arg2, p)); 8736 unlock_user(p, arg3, ret); 8737 mincore_fail: 8738 unlock_user(a, arg1, 0); 8739 } 8740 break; 8741 #endif 8742 #ifdef TARGET_NR_arm_fadvise64_64 8743 case TARGET_NR_arm_fadvise64_64: 8744 { 8745 /* 8746 * arm_fadvise64_64 looks like fadvise64_64 but 8747 * with different argument order 8748 */ 8749 abi_long temp; 8750 temp = arg3; 8751 arg3 = arg4; 8752 arg4 = temp; 8753 } 8754 #endif 8755 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64) 8756 #ifdef TARGET_NR_fadvise64_64 8757 case TARGET_NR_fadvise64_64: 8758 #endif 8759 #ifdef TARGET_NR_fadvise64 8760 case TARGET_NR_fadvise64: 8761 #endif 8762 #ifdef TARGET_S390X 8763 switch (arg4) { 8764 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 8765 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 8766 case 6: arg4 = POSIX_FADV_DONTNEED; break; 8767 case 7: arg4 = POSIX_FADV_NOREUSE; break; 8768 default: break; 8769 } 8770 #endif 8771 ret = -posix_fadvise(arg1, arg2, arg3, arg4); 8772 break; 8773 #endif 8774 #ifdef TARGET_NR_madvise 8775 case TARGET_NR_madvise: 8776 /* A straight passthrough may not be safe because qemu sometimes 8777 turns private file-backed mappings into anonymous mappings. 8778 This will break MADV_DONTNEED. 8779 This is a hint, so ignoring and returning success is ok. */ 8780 ret = get_errno(0); 8781 break; 8782 #endif 8783 #if TARGET_ABI_BITS == 32 8784 case TARGET_NR_fcntl64: 8785 { 8786 int cmd; 8787 struct flock64 fl; 8788 struct target_flock64 *target_fl; 8789 #ifdef TARGET_ARM 8790 struct target_eabi_flock64 *target_efl; 8791 #endif 8792 8793 cmd = target_to_host_fcntl_cmd(arg2); 8794 if (cmd == -TARGET_EINVAL) { 8795 ret = cmd; 8796 break; 8797 } 8798 8799 switch(arg2) { 8800 case TARGET_F_GETLK64: 8801 #ifdef TARGET_ARM 8802 if (((CPUARMState *)cpu_env)->eabi) { 8803 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1)) 8804 goto efault; 8805 fl.l_type = tswap16(target_efl->l_type); 8806 fl.l_whence = tswap16(target_efl->l_whence); 8807 fl.l_start = tswap64(target_efl->l_start); 8808 fl.l_len = tswap64(target_efl->l_len); 8809 fl.l_pid = tswap32(target_efl->l_pid); 8810 unlock_user_struct(target_efl, arg3, 0); 8811 } else 8812 #endif 8813 { 8814 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1)) 8815 goto efault; 8816 fl.l_type = tswap16(target_fl->l_type); 8817 fl.l_whence = tswap16(target_fl->l_whence); 8818 fl.l_start = tswap64(target_fl->l_start); 8819 fl.l_len = tswap64(target_fl->l_len); 8820 fl.l_pid = tswap32(target_fl->l_pid); 8821 unlock_user_struct(target_fl, arg3, 0); 8822 } 8823 ret = get_errno(fcntl(arg1, cmd, &fl)); 8824 if (ret == 0) { 8825 #ifdef TARGET_ARM 8826 if (((CPUARMState *)cpu_env)->eabi) { 8827 if (!lock_user_struct(VERIFY_WRITE, target_efl, arg3, 0)) 8828 goto efault; 8829 target_efl->l_type = tswap16(fl.l_type); 8830 target_efl->l_whence = tswap16(fl.l_whence); 8831 target_efl->l_start = tswap64(fl.l_start); 8832 target_efl->l_len = tswap64(fl.l_len); 8833 target_efl->l_pid = tswap32(fl.l_pid); 8834 unlock_user_struct(target_efl, arg3, 1); 8835 } else 8836 #endif 8837 { 8838 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg3, 0)) 8839 goto efault; 8840 target_fl->l_type = tswap16(fl.l_type); 8841 target_fl->l_whence = tswap16(fl.l_whence); 8842 target_fl->l_start = tswap64(fl.l_start); 8843 target_fl->l_len = tswap64(fl.l_len); 8844 target_fl->l_pid = tswap32(fl.l_pid); 8845 unlock_user_struct(target_fl, arg3, 1); 8846 } 8847 } 8848 break; 8849 8850 case TARGET_F_SETLK64: 8851 case TARGET_F_SETLKW64: 8852 #ifdef TARGET_ARM 8853 if (((CPUARMState *)cpu_env)->eabi) { 8854 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1)) 8855 goto efault; 8856 fl.l_type = tswap16(target_efl->l_type); 8857 fl.l_whence = tswap16(target_efl->l_whence); 8858 fl.l_start = tswap64(target_efl->l_start); 8859 fl.l_len = tswap64(target_efl->l_len); 8860 fl.l_pid = tswap32(target_efl->l_pid); 8861 unlock_user_struct(target_efl, arg3, 0); 8862 } else 8863 #endif 8864 { 8865 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1)) 8866 goto efault; 8867 fl.l_type = tswap16(target_fl->l_type); 8868 fl.l_whence = tswap16(target_fl->l_whence); 8869 fl.l_start = tswap64(target_fl->l_start); 8870 fl.l_len = tswap64(target_fl->l_len); 8871 fl.l_pid = tswap32(target_fl->l_pid); 8872 unlock_user_struct(target_fl, arg3, 0); 8873 } 8874 ret = get_errno(fcntl(arg1, cmd, &fl)); 8875 break; 8876 default: 8877 ret = do_fcntl(arg1, arg2, arg3); 8878 break; 8879 } 8880 break; 8881 } 8882 #endif 8883 #ifdef TARGET_NR_cacheflush 8884 case TARGET_NR_cacheflush: 8885 /* self-modifying code is handled automatically, so nothing needed */ 8886 ret = 0; 8887 break; 8888 #endif 8889 #ifdef TARGET_NR_security 8890 case TARGET_NR_security: 8891 goto unimplemented; 8892 #endif 8893 #ifdef TARGET_NR_getpagesize 8894 case TARGET_NR_getpagesize: 8895 ret = TARGET_PAGE_SIZE; 8896 break; 8897 #endif 8898 case TARGET_NR_gettid: 8899 ret = get_errno(gettid()); 8900 break; 8901 #ifdef TARGET_NR_readahead 8902 case TARGET_NR_readahead: 8903 #if TARGET_ABI_BITS == 32 8904 if (regpairs_aligned(cpu_env)) { 8905 arg2 = arg3; 8906 arg3 = arg4; 8907 arg4 = arg5; 8908 } 8909 ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4)); 8910 #else 8911 ret = get_errno(readahead(arg1, arg2, arg3)); 8912 #endif 8913 break; 8914 #endif 8915 #ifdef CONFIG_ATTR 8916 #ifdef TARGET_NR_setxattr 8917 case TARGET_NR_listxattr: 8918 case TARGET_NR_llistxattr: 8919 { 8920 void *p, *b = 0; 8921 if (arg2) { 8922 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 8923 if (!b) { 8924 ret = -TARGET_EFAULT; 8925 break; 8926 } 8927 } 8928 p = lock_user_string(arg1); 8929 if (p) { 8930 if (num == TARGET_NR_listxattr) { 8931 ret = get_errno(listxattr(p, b, arg3)); 8932 } else { 8933 ret = get_errno(llistxattr(p, b, arg3)); 8934 } 8935 } else { 8936 ret = -TARGET_EFAULT; 8937 } 8938 unlock_user(p, arg1, 0); 8939 unlock_user(b, arg2, arg3); 8940 break; 8941 } 8942 case TARGET_NR_flistxattr: 8943 { 8944 void *b = 0; 8945 if (arg2) { 8946 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 8947 if (!b) { 8948 ret = -TARGET_EFAULT; 8949 break; 8950 } 8951 } 8952 ret = get_errno(flistxattr(arg1, b, arg3)); 8953 unlock_user(b, arg2, arg3); 8954 break; 8955 } 8956 case TARGET_NR_setxattr: 8957 case TARGET_NR_lsetxattr: 8958 { 8959 void *p, *n, *v = 0; 8960 if (arg3) { 8961 v = lock_user(VERIFY_READ, arg3, arg4, 1); 8962 if (!v) { 8963 ret = -TARGET_EFAULT; 8964 break; 8965 } 8966 } 8967 p = lock_user_string(arg1); 8968 n = lock_user_string(arg2); 8969 if (p && n) { 8970 if (num == TARGET_NR_setxattr) { 8971 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 8972 } else { 8973 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 8974 } 8975 } else { 8976 ret = -TARGET_EFAULT; 8977 } 8978 unlock_user(p, arg1, 0); 8979 unlock_user(n, arg2, 0); 8980 unlock_user(v, arg3, 0); 8981 } 8982 break; 8983 case TARGET_NR_fsetxattr: 8984 { 8985 void *n, *v = 0; 8986 if (arg3) { 8987 v = lock_user(VERIFY_READ, arg3, arg4, 1); 8988 if (!v) { 8989 ret = -TARGET_EFAULT; 8990 break; 8991 } 8992 } 8993 n = lock_user_string(arg2); 8994 if (n) { 8995 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 8996 } else { 8997 ret = -TARGET_EFAULT; 8998 } 8999 unlock_user(n, arg2, 0); 9000 unlock_user(v, arg3, 0); 9001 } 9002 break; 9003 case TARGET_NR_getxattr: 9004 case TARGET_NR_lgetxattr: 9005 { 9006 void *p, *n, *v = 0; 9007 if (arg3) { 9008 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9009 if (!v) { 9010 ret = -TARGET_EFAULT; 9011 break; 9012 } 9013 } 9014 p = lock_user_string(arg1); 9015 n = lock_user_string(arg2); 9016 if (p && n) { 9017 if (num == TARGET_NR_getxattr) { 9018 ret = get_errno(getxattr(p, n, v, arg4)); 9019 } else { 9020 ret = get_errno(lgetxattr(p, n, v, arg4)); 9021 } 9022 } else { 9023 ret = -TARGET_EFAULT; 9024 } 9025 unlock_user(p, arg1, 0); 9026 unlock_user(n, arg2, 0); 9027 unlock_user(v, arg3, arg4); 9028 } 9029 break; 9030 case TARGET_NR_fgetxattr: 9031 { 9032 void *n, *v = 0; 9033 if (arg3) { 9034 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9035 if (!v) { 9036 ret = -TARGET_EFAULT; 9037 break; 9038 } 9039 } 9040 n = lock_user_string(arg2); 9041 if (n) { 9042 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 9043 } else { 9044 ret = -TARGET_EFAULT; 9045 } 9046 unlock_user(n, arg2, 0); 9047 unlock_user(v, arg3, arg4); 9048 } 9049 break; 9050 case TARGET_NR_removexattr: 9051 case TARGET_NR_lremovexattr: 9052 { 9053 void *p, *n; 9054 p = lock_user_string(arg1); 9055 n = lock_user_string(arg2); 9056 if (p && n) { 9057 if (num == TARGET_NR_removexattr) { 9058 ret = get_errno(removexattr(p, n)); 9059 } else { 9060 ret = get_errno(lremovexattr(p, n)); 9061 } 9062 } else { 9063 ret = -TARGET_EFAULT; 9064 } 9065 unlock_user(p, arg1, 0); 9066 unlock_user(n, arg2, 0); 9067 } 9068 break; 9069 case TARGET_NR_fremovexattr: 9070 { 9071 void *n; 9072 n = lock_user_string(arg2); 9073 if (n) { 9074 ret = get_errno(fremovexattr(arg1, n)); 9075 } else { 9076 ret = -TARGET_EFAULT; 9077 } 9078 unlock_user(n, arg2, 0); 9079 } 9080 break; 9081 #endif 9082 #endif /* CONFIG_ATTR */ 9083 #ifdef TARGET_NR_set_thread_area 9084 case TARGET_NR_set_thread_area: 9085 #if defined(TARGET_MIPS) 9086 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 9087 ret = 0; 9088 break; 9089 #elif defined(TARGET_CRIS) 9090 if (arg1 & 0xff) 9091 ret = -TARGET_EINVAL; 9092 else { 9093 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 9094 ret = 0; 9095 } 9096 break; 9097 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 9098 ret = do_set_thread_area(cpu_env, arg1); 9099 break; 9100 #elif defined(TARGET_M68K) 9101 { 9102 TaskState *ts = cpu->opaque; 9103 ts->tp_value = arg1; 9104 ret = 0; 9105 break; 9106 } 9107 #else 9108 goto unimplemented_nowarn; 9109 #endif 9110 #endif 9111 #ifdef TARGET_NR_get_thread_area 9112 case TARGET_NR_get_thread_area: 9113 #if defined(TARGET_I386) && defined(TARGET_ABI32) 9114 ret = do_get_thread_area(cpu_env, arg1); 9115 break; 9116 #elif defined(TARGET_M68K) 9117 { 9118 TaskState *ts = cpu->opaque; 9119 ret = ts->tp_value; 9120 break; 9121 } 9122 #else 9123 goto unimplemented_nowarn; 9124 #endif 9125 #endif 9126 #ifdef TARGET_NR_getdomainname 9127 case TARGET_NR_getdomainname: 9128 goto unimplemented_nowarn; 9129 #endif 9130 9131 #ifdef TARGET_NR_clock_gettime 9132 case TARGET_NR_clock_gettime: 9133 { 9134 struct timespec ts; 9135 ret = get_errno(clock_gettime(arg1, &ts)); 9136 if (!is_error(ret)) { 9137 host_to_target_timespec(arg2, &ts); 9138 } 9139 break; 9140 } 9141 #endif 9142 #ifdef TARGET_NR_clock_getres 9143 case TARGET_NR_clock_getres: 9144 { 9145 struct timespec ts; 9146 ret = get_errno(clock_getres(arg1, &ts)); 9147 if (!is_error(ret)) { 9148 host_to_target_timespec(arg2, &ts); 9149 } 9150 break; 9151 } 9152 #endif 9153 #ifdef TARGET_NR_clock_nanosleep 9154 case TARGET_NR_clock_nanosleep: 9155 { 9156 struct timespec ts; 9157 target_to_host_timespec(&ts, arg3); 9158 ret = get_errno(clock_nanosleep(arg1, arg2, &ts, arg4 ? &ts : NULL)); 9159 if (arg4) 9160 host_to_target_timespec(arg4, &ts); 9161 9162 #if defined(TARGET_PPC) 9163 /* clock_nanosleep is odd in that it returns positive errno values. 9164 * On PPC, CR0 bit 3 should be set in such a situation. */ 9165 if (ret) { 9166 ((CPUPPCState *)cpu_env)->crf[0] |= 1; 9167 } 9168 #endif 9169 break; 9170 } 9171 #endif 9172 9173 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 9174 case TARGET_NR_set_tid_address: 9175 ret = get_errno(set_tid_address((int *)g2h(arg1))); 9176 break; 9177 #endif 9178 9179 #if defined(TARGET_NR_tkill) && defined(__NR_tkill) 9180 case TARGET_NR_tkill: 9181 ret = get_errno(sys_tkill((int)arg1, target_to_host_signal(arg2))); 9182 break; 9183 #endif 9184 9185 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill) 9186 case TARGET_NR_tgkill: 9187 ret = get_errno(sys_tgkill((int)arg1, (int)arg2, 9188 target_to_host_signal(arg3))); 9189 break; 9190 #endif 9191 9192 #ifdef TARGET_NR_set_robust_list 9193 case TARGET_NR_set_robust_list: 9194 case TARGET_NR_get_robust_list: 9195 /* The ABI for supporting robust futexes has userspace pass 9196 * the kernel a pointer to a linked list which is updated by 9197 * userspace after the syscall; the list is walked by the kernel 9198 * when the thread exits. Since the linked list in QEMU guest 9199 * memory isn't a valid linked list for the host and we have 9200 * no way to reliably intercept the thread-death event, we can't 9201 * support these. Silently return ENOSYS so that guest userspace 9202 * falls back to a non-robust futex implementation (which should 9203 * be OK except in the corner case of the guest crashing while 9204 * holding a mutex that is shared with another process via 9205 * shared memory). 9206 */ 9207 goto unimplemented_nowarn; 9208 #endif 9209 9210 #if defined(TARGET_NR_utimensat) 9211 case TARGET_NR_utimensat: 9212 { 9213 struct timespec *tsp, ts[2]; 9214 if (!arg3) { 9215 tsp = NULL; 9216 } else { 9217 target_to_host_timespec(ts, arg3); 9218 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec)); 9219 tsp = ts; 9220 } 9221 if (!arg2) 9222 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 9223 else { 9224 if (!(p = lock_user_string(arg2))) { 9225 ret = -TARGET_EFAULT; 9226 goto fail; 9227 } 9228 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 9229 unlock_user(p, arg2, 0); 9230 } 9231 } 9232 break; 9233 #endif 9234 case TARGET_NR_futex: 9235 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6); 9236 break; 9237 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 9238 case TARGET_NR_inotify_init: 9239 ret = get_errno(sys_inotify_init()); 9240 break; 9241 #endif 9242 #ifdef CONFIG_INOTIFY1 9243 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 9244 case TARGET_NR_inotify_init1: 9245 ret = get_errno(sys_inotify_init1(arg1)); 9246 break; 9247 #endif 9248 #endif 9249 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 9250 case TARGET_NR_inotify_add_watch: 9251 p = lock_user_string(arg2); 9252 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 9253 unlock_user(p, arg2, 0); 9254 break; 9255 #endif 9256 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 9257 case TARGET_NR_inotify_rm_watch: 9258 ret = get_errno(sys_inotify_rm_watch(arg1, arg2)); 9259 break; 9260 #endif 9261 9262 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 9263 case TARGET_NR_mq_open: 9264 { 9265 struct mq_attr posix_mq_attr, *attrp; 9266 9267 p = lock_user_string(arg1 - 1); 9268 if (arg4 != 0) { 9269 copy_from_user_mq_attr (&posix_mq_attr, arg4); 9270 attrp = &posix_mq_attr; 9271 } else { 9272 attrp = 0; 9273 } 9274 ret = get_errno(mq_open(p, arg2, arg3, attrp)); 9275 unlock_user (p, arg1, 0); 9276 } 9277 break; 9278 9279 case TARGET_NR_mq_unlink: 9280 p = lock_user_string(arg1 - 1); 9281 ret = get_errno(mq_unlink(p)); 9282 unlock_user (p, arg1, 0); 9283 break; 9284 9285 case TARGET_NR_mq_timedsend: 9286 { 9287 struct timespec ts; 9288 9289 p = lock_user (VERIFY_READ, arg2, arg3, 1); 9290 if (arg5 != 0) { 9291 target_to_host_timespec(&ts, arg5); 9292 ret = get_errno(mq_timedsend(arg1, p, arg3, arg4, &ts)); 9293 host_to_target_timespec(arg5, &ts); 9294 } 9295 else 9296 ret = get_errno(mq_send(arg1, p, arg3, arg4)); 9297 unlock_user (p, arg2, arg3); 9298 } 9299 break; 9300 9301 case TARGET_NR_mq_timedreceive: 9302 { 9303 struct timespec ts; 9304 unsigned int prio; 9305 9306 p = lock_user (VERIFY_READ, arg2, arg3, 1); 9307 if (arg5 != 0) { 9308 target_to_host_timespec(&ts, arg5); 9309 ret = get_errno(mq_timedreceive(arg1, p, arg3, &prio, &ts)); 9310 host_to_target_timespec(arg5, &ts); 9311 } 9312 else 9313 ret = get_errno(mq_receive(arg1, p, arg3, &prio)); 9314 unlock_user (p, arg2, arg3); 9315 if (arg4 != 0) 9316 put_user_u32(prio, arg4); 9317 } 9318 break; 9319 9320 /* Not implemented for now... */ 9321 /* case TARGET_NR_mq_notify: */ 9322 /* break; */ 9323 9324 case TARGET_NR_mq_getsetattr: 9325 { 9326 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 9327 ret = 0; 9328 if (arg3 != 0) { 9329 ret = mq_getattr(arg1, &posix_mq_attr_out); 9330 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 9331 } 9332 if (arg2 != 0) { 9333 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 9334 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out); 9335 } 9336 9337 } 9338 break; 9339 #endif 9340 9341 #ifdef CONFIG_SPLICE 9342 #ifdef TARGET_NR_tee 9343 case TARGET_NR_tee: 9344 { 9345 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 9346 } 9347 break; 9348 #endif 9349 #ifdef TARGET_NR_splice 9350 case TARGET_NR_splice: 9351 { 9352 loff_t loff_in, loff_out; 9353 loff_t *ploff_in = NULL, *ploff_out = NULL; 9354 if(arg2) { 9355 get_user_u64(loff_in, arg2); 9356 ploff_in = &loff_in; 9357 } 9358 if(arg4) { 9359 get_user_u64(loff_out, arg2); 9360 ploff_out = &loff_out; 9361 } 9362 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 9363 } 9364 break; 9365 #endif 9366 #ifdef TARGET_NR_vmsplice 9367 case TARGET_NR_vmsplice: 9368 { 9369 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 9370 if (vec != NULL) { 9371 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 9372 unlock_iovec(vec, arg2, arg3, 0); 9373 } else { 9374 ret = -host_to_target_errno(errno); 9375 } 9376 } 9377 break; 9378 #endif 9379 #endif /* CONFIG_SPLICE */ 9380 #ifdef CONFIG_EVENTFD 9381 #if defined(TARGET_NR_eventfd) 9382 case TARGET_NR_eventfd: 9383 ret = get_errno(eventfd(arg1, 0)); 9384 break; 9385 #endif 9386 #if defined(TARGET_NR_eventfd2) 9387 case TARGET_NR_eventfd2: 9388 { 9389 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)); 9390 if (arg2 & TARGET_O_NONBLOCK) { 9391 host_flags |= O_NONBLOCK; 9392 } 9393 if (arg2 & TARGET_O_CLOEXEC) { 9394 host_flags |= O_CLOEXEC; 9395 } 9396 ret = get_errno(eventfd(arg1, host_flags)); 9397 break; 9398 } 9399 #endif 9400 #endif /* CONFIG_EVENTFD */ 9401 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 9402 case TARGET_NR_fallocate: 9403 #if TARGET_ABI_BITS == 32 9404 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 9405 target_offset64(arg5, arg6))); 9406 #else 9407 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 9408 #endif 9409 break; 9410 #endif 9411 #if defined(CONFIG_SYNC_FILE_RANGE) 9412 #if defined(TARGET_NR_sync_file_range) 9413 case TARGET_NR_sync_file_range: 9414 #if TARGET_ABI_BITS == 32 9415 #if defined(TARGET_MIPS) 9416 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 9417 target_offset64(arg5, arg6), arg7)); 9418 #else 9419 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 9420 target_offset64(arg4, arg5), arg6)); 9421 #endif /* !TARGET_MIPS */ 9422 #else 9423 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 9424 #endif 9425 break; 9426 #endif 9427 #if defined(TARGET_NR_sync_file_range2) 9428 case TARGET_NR_sync_file_range2: 9429 /* This is like sync_file_range but the arguments are reordered */ 9430 #if TARGET_ABI_BITS == 32 9431 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 9432 target_offset64(arg5, arg6), arg2)); 9433 #else 9434 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 9435 #endif 9436 break; 9437 #endif 9438 #endif 9439 #if defined(CONFIG_EPOLL) 9440 #if defined(TARGET_NR_epoll_create) 9441 case TARGET_NR_epoll_create: 9442 ret = get_errno(epoll_create(arg1)); 9443 break; 9444 #endif 9445 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 9446 case TARGET_NR_epoll_create1: 9447 ret = get_errno(epoll_create1(arg1)); 9448 break; 9449 #endif 9450 #if defined(TARGET_NR_epoll_ctl) 9451 case TARGET_NR_epoll_ctl: 9452 { 9453 struct epoll_event ep; 9454 struct epoll_event *epp = 0; 9455 if (arg4) { 9456 struct target_epoll_event *target_ep; 9457 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 9458 goto efault; 9459 } 9460 ep.events = tswap32(target_ep->events); 9461 /* The epoll_data_t union is just opaque data to the kernel, 9462 * so we transfer all 64 bits across and need not worry what 9463 * actual data type it is. 9464 */ 9465 ep.data.u64 = tswap64(target_ep->data.u64); 9466 unlock_user_struct(target_ep, arg4, 0); 9467 epp = &ep; 9468 } 9469 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 9470 break; 9471 } 9472 #endif 9473 9474 #if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT) 9475 #define IMPLEMENT_EPOLL_PWAIT 9476 #endif 9477 #if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT) 9478 #if defined(TARGET_NR_epoll_wait) 9479 case TARGET_NR_epoll_wait: 9480 #endif 9481 #if defined(IMPLEMENT_EPOLL_PWAIT) 9482 case TARGET_NR_epoll_pwait: 9483 #endif 9484 { 9485 struct target_epoll_event *target_ep; 9486 struct epoll_event *ep; 9487 int epfd = arg1; 9488 int maxevents = arg3; 9489 int timeout = arg4; 9490 9491 target_ep = lock_user(VERIFY_WRITE, arg2, 9492 maxevents * sizeof(struct target_epoll_event), 1); 9493 if (!target_ep) { 9494 goto efault; 9495 } 9496 9497 ep = alloca(maxevents * sizeof(struct epoll_event)); 9498 9499 switch (num) { 9500 #if defined(IMPLEMENT_EPOLL_PWAIT) 9501 case TARGET_NR_epoll_pwait: 9502 { 9503 target_sigset_t *target_set; 9504 sigset_t _set, *set = &_set; 9505 9506 if (arg5) { 9507 target_set = lock_user(VERIFY_READ, arg5, 9508 sizeof(target_sigset_t), 1); 9509 if (!target_set) { 9510 unlock_user(target_ep, arg2, 0); 9511 goto efault; 9512 } 9513 target_to_host_sigset(set, target_set); 9514 unlock_user(target_set, arg5, 0); 9515 } else { 9516 set = NULL; 9517 } 9518 9519 ret = get_errno(epoll_pwait(epfd, ep, maxevents, timeout, set)); 9520 break; 9521 } 9522 #endif 9523 #if defined(TARGET_NR_epoll_wait) 9524 case TARGET_NR_epoll_wait: 9525 ret = get_errno(epoll_wait(epfd, ep, maxevents, timeout)); 9526 break; 9527 #endif 9528 default: 9529 ret = -TARGET_ENOSYS; 9530 } 9531 if (!is_error(ret)) { 9532 int i; 9533 for (i = 0; i < ret; i++) { 9534 target_ep[i].events = tswap32(ep[i].events); 9535 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 9536 } 9537 } 9538 unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event)); 9539 break; 9540 } 9541 #endif 9542 #endif 9543 #ifdef TARGET_NR_prlimit64 9544 case TARGET_NR_prlimit64: 9545 { 9546 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 9547 struct target_rlimit64 *target_rnew, *target_rold; 9548 struct host_rlimit64 rnew, rold, *rnewp = 0; 9549 int resource = target_to_host_resource(arg2); 9550 if (arg3) { 9551 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 9552 goto efault; 9553 } 9554 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 9555 rnew.rlim_max = tswap64(target_rnew->rlim_max); 9556 unlock_user_struct(target_rnew, arg3, 0); 9557 rnewp = &rnew; 9558 } 9559 9560 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 9561 if (!is_error(ret) && arg4) { 9562 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 9563 goto efault; 9564 } 9565 target_rold->rlim_cur = tswap64(rold.rlim_cur); 9566 target_rold->rlim_max = tswap64(rold.rlim_max); 9567 unlock_user_struct(target_rold, arg4, 1); 9568 } 9569 break; 9570 } 9571 #endif 9572 #ifdef TARGET_NR_gethostname 9573 case TARGET_NR_gethostname: 9574 { 9575 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 9576 if (name) { 9577 ret = get_errno(gethostname(name, arg2)); 9578 unlock_user(name, arg1, arg2); 9579 } else { 9580 ret = -TARGET_EFAULT; 9581 } 9582 break; 9583 } 9584 #endif 9585 #ifdef TARGET_NR_atomic_cmpxchg_32 9586 case TARGET_NR_atomic_cmpxchg_32: 9587 { 9588 /* should use start_exclusive from main.c */ 9589 abi_ulong mem_value; 9590 if (get_user_u32(mem_value, arg6)) { 9591 target_siginfo_t info; 9592 info.si_signo = SIGSEGV; 9593 info.si_errno = 0; 9594 info.si_code = TARGET_SEGV_MAPERR; 9595 info._sifields._sigfault._addr = arg6; 9596 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info); 9597 ret = 0xdeadbeef; 9598 9599 } 9600 if (mem_value == arg2) 9601 put_user_u32(arg1, arg6); 9602 ret = mem_value; 9603 break; 9604 } 9605 #endif 9606 #ifdef TARGET_NR_atomic_barrier 9607 case TARGET_NR_atomic_barrier: 9608 { 9609 /* Like the kernel implementation and the qemu arm barrier, no-op this? */ 9610 ret = 0; 9611 break; 9612 } 9613 #endif 9614 9615 #ifdef TARGET_NR_timer_create 9616 case TARGET_NR_timer_create: 9617 { 9618 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 9619 9620 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 9621 9622 int clkid = arg1; 9623 int timer_index = next_free_host_timer(); 9624 9625 if (timer_index < 0) { 9626 ret = -TARGET_EAGAIN; 9627 } else { 9628 timer_t *phtimer = g_posix_timers + timer_index; 9629 9630 if (arg2) { 9631 phost_sevp = &host_sevp; 9632 ret = target_to_host_sigevent(phost_sevp, arg2); 9633 if (ret != 0) { 9634 break; 9635 } 9636 } 9637 9638 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 9639 if (ret) { 9640 phtimer = NULL; 9641 } else { 9642 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 9643 goto efault; 9644 } 9645 } 9646 } 9647 break; 9648 } 9649 #endif 9650 9651 #ifdef TARGET_NR_timer_settime 9652 case TARGET_NR_timer_settime: 9653 { 9654 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 9655 * struct itimerspec * old_value */ 9656 target_timer_t timerid = get_timer_id(arg1); 9657 9658 if (timerid < 0) { 9659 ret = timerid; 9660 } else if (arg3 == 0) { 9661 ret = -TARGET_EINVAL; 9662 } else { 9663 timer_t htimer = g_posix_timers[timerid]; 9664 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 9665 9666 target_to_host_itimerspec(&hspec_new, arg3); 9667 ret = get_errno( 9668 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 9669 host_to_target_itimerspec(arg2, &hspec_old); 9670 } 9671 break; 9672 } 9673 #endif 9674 9675 #ifdef TARGET_NR_timer_gettime 9676 case TARGET_NR_timer_gettime: 9677 { 9678 /* args: timer_t timerid, struct itimerspec *curr_value */ 9679 target_timer_t timerid = get_timer_id(arg1); 9680 9681 if (timerid < 0) { 9682 ret = timerid; 9683 } else if (!arg2) { 9684 ret = -TARGET_EFAULT; 9685 } else { 9686 timer_t htimer = g_posix_timers[timerid]; 9687 struct itimerspec hspec; 9688 ret = get_errno(timer_gettime(htimer, &hspec)); 9689 9690 if (host_to_target_itimerspec(arg2, &hspec)) { 9691 ret = -TARGET_EFAULT; 9692 } 9693 } 9694 break; 9695 } 9696 #endif 9697 9698 #ifdef TARGET_NR_timer_getoverrun 9699 case TARGET_NR_timer_getoverrun: 9700 { 9701 /* args: timer_t timerid */ 9702 target_timer_t timerid = get_timer_id(arg1); 9703 9704 if (timerid < 0) { 9705 ret = timerid; 9706 } else { 9707 timer_t htimer = g_posix_timers[timerid]; 9708 ret = get_errno(timer_getoverrun(htimer)); 9709 } 9710 break; 9711 } 9712 #endif 9713 9714 #ifdef TARGET_NR_timer_delete 9715 case TARGET_NR_timer_delete: 9716 { 9717 /* args: timer_t timerid */ 9718 target_timer_t timerid = get_timer_id(arg1); 9719 9720 if (timerid < 0) { 9721 ret = timerid; 9722 } else { 9723 timer_t htimer = g_posix_timers[timerid]; 9724 ret = get_errno(timer_delete(htimer)); 9725 g_posix_timers[timerid] = 0; 9726 } 9727 break; 9728 } 9729 #endif 9730 9731 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 9732 case TARGET_NR_timerfd_create: 9733 ret = get_errno(timerfd_create(arg1, 9734 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 9735 break; 9736 #endif 9737 9738 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 9739 case TARGET_NR_timerfd_gettime: 9740 { 9741 struct itimerspec its_curr; 9742 9743 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 9744 9745 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 9746 goto efault; 9747 } 9748 } 9749 break; 9750 #endif 9751 9752 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 9753 case TARGET_NR_timerfd_settime: 9754 { 9755 struct itimerspec its_new, its_old, *p_new; 9756 9757 if (arg3) { 9758 if (target_to_host_itimerspec(&its_new, arg3)) { 9759 goto efault; 9760 } 9761 p_new = &its_new; 9762 } else { 9763 p_new = NULL; 9764 } 9765 9766 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 9767 9768 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 9769 goto efault; 9770 } 9771 } 9772 break; 9773 #endif 9774 9775 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 9776 case TARGET_NR_ioprio_get: 9777 ret = get_errno(ioprio_get(arg1, arg2)); 9778 break; 9779 #endif 9780 9781 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 9782 case TARGET_NR_ioprio_set: 9783 ret = get_errno(ioprio_set(arg1, arg2, arg3)); 9784 break; 9785 #endif 9786 9787 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 9788 case TARGET_NR_setns: 9789 ret = get_errno(setns(arg1, arg2)); 9790 break; 9791 #endif 9792 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 9793 case TARGET_NR_unshare: 9794 ret = get_errno(unshare(arg1)); 9795 break; 9796 #endif 9797 9798 default: 9799 unimplemented: 9800 gemu_log("qemu: Unsupported syscall: %d\n", num); 9801 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list) 9802 unimplemented_nowarn: 9803 #endif 9804 ret = -TARGET_ENOSYS; 9805 break; 9806 } 9807 fail: 9808 #ifdef DEBUG 9809 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret); 9810 #endif 9811 if(do_strace) 9812 print_syscall_ret(num, ret); 9813 return ret; 9814 efault: 9815 ret = -TARGET_EFAULT; 9816 goto fail; 9817 } 9818