xref: /openbmc/qemu/linux-user/syscall.c (revision 1edebb36)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <linux/wireless.h>
59 #include <linux/icmp.h>
60 #include <linux/icmpv6.h>
61 #include <linux/if_tun.h>
62 #include <linux/in6.h>
63 #include <linux/errqueue.h>
64 #include <linux/random.h>
65 #ifdef CONFIG_TIMERFD
66 #include <sys/timerfd.h>
67 #endif
68 #ifdef CONFIG_EVENTFD
69 #include <sys/eventfd.h>
70 #endif
71 #ifdef CONFIG_EPOLL
72 #include <sys/epoll.h>
73 #endif
74 #ifdef CONFIG_ATTR
75 #include "qemu/xattr.h"
76 #endif
77 #ifdef CONFIG_SENDFILE
78 #include <sys/sendfile.h>
79 #endif
80 #ifdef HAVE_SYS_KCOV_H
81 #include <sys/kcov.h>
82 #endif
83 
84 #define termios host_termios
85 #define winsize host_winsize
86 #define termio host_termio
87 #define sgttyb host_sgttyb /* same as target */
88 #define tchars host_tchars /* same as target */
89 #define ltchars host_ltchars /* same as target */
90 
91 #include <linux/termios.h>
92 #include <linux/unistd.h>
93 #include <linux/cdrom.h>
94 #include <linux/hdreg.h>
95 #include <linux/soundcard.h>
96 #include <linux/kd.h>
97 #include <linux/mtio.h>
98 #include <linux/fs.h>
99 #include <linux/fd.h>
100 #if defined(CONFIG_FIEMAP)
101 #include <linux/fiemap.h>
102 #endif
103 #include <linux/fb.h>
104 #if defined(CONFIG_USBFS)
105 #include <linux/usbdevice_fs.h>
106 #include <linux/usb/ch9.h>
107 #endif
108 #include <linux/vt.h>
109 #include <linux/dm-ioctl.h>
110 #include <linux/reboot.h>
111 #include <linux/route.h>
112 #include <linux/filter.h>
113 #include <linux/blkpg.h>
114 #include <netpacket/packet.h>
115 #include <linux/netlink.h>
116 #include <linux/if_alg.h>
117 #include <linux/rtc.h>
118 #include <sound/asound.h>
119 #ifdef HAVE_BTRFS_H
120 #include <linux/btrfs.h>
121 #endif
122 #ifdef HAVE_DRM_H
123 #include <libdrm/drm.h>
124 #include <libdrm/i915_drm.h>
125 #endif
126 #include "linux_loop.h"
127 #include "uname.h"
128 
129 #include "qemu.h"
130 #include "user-internals.h"
131 #include "strace.h"
132 #include "signal-common.h"
133 #include "loader.h"
134 #include "user-mmap.h"
135 #include "user/safe-syscall.h"
136 #include "qemu/guest-random.h"
137 #include "qemu/selfmap.h"
138 #include "user/syscall-trace.h"
139 #include "special-errno.h"
140 #include "qapi/error.h"
141 #include "fd-trans.h"
142 #include "tcg/tcg.h"
143 
144 #ifndef CLONE_IO
145 #define CLONE_IO                0x80000000      /* Clone io context */
146 #endif
147 
148 /* We can't directly call the host clone syscall, because this will
149  * badly confuse libc (breaking mutexes, for example). So we must
150  * divide clone flags into:
151  *  * flag combinations that look like pthread_create()
152  *  * flag combinations that look like fork()
153  *  * flags we can implement within QEMU itself
154  *  * flags we can't support and will return an error for
155  */
156 /* For thread creation, all these flags must be present; for
157  * fork, none must be present.
158  */
159 #define CLONE_THREAD_FLAGS                              \
160     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
161      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
162 
163 /* These flags are ignored:
164  * CLONE_DETACHED is now ignored by the kernel;
165  * CLONE_IO is just an optimisation hint to the I/O scheduler
166  */
167 #define CLONE_IGNORED_FLAGS                     \
168     (CLONE_DETACHED | CLONE_IO)
169 
170 /* Flags for fork which we can implement within QEMU itself */
171 #define CLONE_OPTIONAL_FORK_FLAGS               \
172     (CLONE_SETTLS | CLONE_PARENT_SETTID |       \
173      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
174 
175 /* Flags for thread creation which we can implement within QEMU itself */
176 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
177     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
178      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
179 
180 #define CLONE_INVALID_FORK_FLAGS                                        \
181     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
182 
183 #define CLONE_INVALID_THREAD_FLAGS                                      \
184     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
185        CLONE_IGNORED_FLAGS))
186 
187 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
188  * have almost all been allocated. We cannot support any of
189  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
190  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
191  * The checks against the invalid thread masks above will catch these.
192  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
193  */
194 
195 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
196  * once. This exercises the codepaths for restart.
197  */
198 //#define DEBUG_ERESTARTSYS
199 
200 //#include <linux/msdos_fs.h>
201 #define VFAT_IOCTL_READDIR_BOTH \
202     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
203 #define VFAT_IOCTL_READDIR_SHORT \
204     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
205 
206 #undef _syscall0
207 #undef _syscall1
208 #undef _syscall2
209 #undef _syscall3
210 #undef _syscall4
211 #undef _syscall5
212 #undef _syscall6
213 
214 #define _syscall0(type,name)		\
215 static type name (void)			\
216 {					\
217 	return syscall(__NR_##name);	\
218 }
219 
220 #define _syscall1(type,name,type1,arg1)		\
221 static type name (type1 arg1)			\
222 {						\
223 	return syscall(__NR_##name, arg1);	\
224 }
225 
226 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
227 static type name (type1 arg1,type2 arg2)		\
228 {							\
229 	return syscall(__NR_##name, arg1, arg2);	\
230 }
231 
232 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
233 static type name (type1 arg1,type2 arg2,type3 arg3)		\
234 {								\
235 	return syscall(__NR_##name, arg1, arg2, arg3);		\
236 }
237 
238 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
239 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
240 {										\
241 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
242 }
243 
244 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
245 		  type5,arg5)							\
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
249 }
250 
251 
252 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
253 		  type5,arg5,type6,arg6)					\
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
255                   type6 arg6)							\
256 {										\
257 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
258 }
259 
260 
261 #define __NR_sys_uname __NR_uname
262 #define __NR_sys_getcwd1 __NR_getcwd
263 #define __NR_sys_getdents __NR_getdents
264 #define __NR_sys_getdents64 __NR_getdents64
265 #define __NR_sys_getpriority __NR_getpriority
266 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
267 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
268 #define __NR_sys_syslog __NR_syslog
269 #if defined(__NR_futex)
270 # define __NR_sys_futex __NR_futex
271 #endif
272 #if defined(__NR_futex_time64)
273 # define __NR_sys_futex_time64 __NR_futex_time64
274 #endif
275 #define __NR_sys_inotify_init __NR_inotify_init
276 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
277 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
278 #define __NR_sys_statx __NR_statx
279 
280 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
281 #define __NR__llseek __NR_lseek
282 #endif
283 
284 /* Newer kernel ports have llseek() instead of _llseek() */
285 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
286 #define TARGET_NR__llseek TARGET_NR_llseek
287 #endif
288 
289 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
290 #ifndef TARGET_O_NONBLOCK_MASK
291 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
292 #endif
293 
294 #define __NR_sys_gettid __NR_gettid
295 _syscall0(int, sys_gettid)
296 
297 /* For the 64-bit guest on 32-bit host case we must emulate
298  * getdents using getdents64, because otherwise the host
299  * might hand us back more dirent records than we can fit
300  * into the guest buffer after structure format conversion.
301  * Otherwise we emulate getdents with getdents if the host has it.
302  */
303 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
304 #define EMULATE_GETDENTS_WITH_GETDENTS
305 #endif
306 
307 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
308 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
309 #endif
310 #if (defined(TARGET_NR_getdents) && \
311       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
312     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
313 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
314 #endif
315 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
316 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
317           loff_t *, res, uint, wh);
318 #endif
319 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
320 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
321           siginfo_t *, uinfo)
322 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
323 #ifdef __NR_exit_group
324 _syscall1(int,exit_group,int,error_code)
325 #endif
326 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
327 _syscall1(int,set_tid_address,int *,tidptr)
328 #endif
329 #if defined(__NR_futex)
330 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
331           const struct timespec *,timeout,int *,uaddr2,int,val3)
332 #endif
333 #if defined(__NR_futex_time64)
334 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
335           const struct timespec *,timeout,int *,uaddr2,int,val3)
336 #endif
337 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
338 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
339           unsigned long *, user_mask_ptr);
340 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
341 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
342           unsigned long *, user_mask_ptr);
343 /* sched_attr is not defined in glibc */
344 struct sched_attr {
345     uint32_t size;
346     uint32_t sched_policy;
347     uint64_t sched_flags;
348     int32_t sched_nice;
349     uint32_t sched_priority;
350     uint64_t sched_runtime;
351     uint64_t sched_deadline;
352     uint64_t sched_period;
353     uint32_t sched_util_min;
354     uint32_t sched_util_max;
355 };
356 #define __NR_sys_sched_getattr __NR_sched_getattr
357 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
358           unsigned int, size, unsigned int, flags);
359 #define __NR_sys_sched_setattr __NR_sched_setattr
360 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
361           unsigned int, flags);
362 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
363 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
364 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
365 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
366           const struct sched_param *, param);
367 #define __NR_sys_sched_getparam __NR_sched_getparam
368 _syscall2(int, sys_sched_getparam, pid_t, pid,
369           struct sched_param *, param);
370 #define __NR_sys_sched_setparam __NR_sched_setparam
371 _syscall2(int, sys_sched_setparam, pid_t, pid,
372           const struct sched_param *, param);
373 #define __NR_sys_getcpu __NR_getcpu
374 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
375 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
376           void *, arg);
377 _syscall2(int, capget, struct __user_cap_header_struct *, header,
378           struct __user_cap_data_struct *, data);
379 _syscall2(int, capset, struct __user_cap_header_struct *, header,
380           struct __user_cap_data_struct *, data);
381 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
382 _syscall2(int, ioprio_get, int, which, int, who)
383 #endif
384 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
385 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
386 #endif
387 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
388 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
389 #endif
390 
391 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
392 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
393           unsigned long, idx1, unsigned long, idx2)
394 #endif
395 
396 /*
397  * It is assumed that struct statx is architecture independent.
398  */
399 #if defined(TARGET_NR_statx) && defined(__NR_statx)
400 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
401           unsigned int, mask, struct target_statx *, statxbuf)
402 #endif
403 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
404 _syscall2(int, membarrier, int, cmd, int, flags)
405 #endif
406 
407 static const bitmask_transtbl fcntl_flags_tbl[] = {
408   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
409   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
410   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
411   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
412   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
413   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
414   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
415   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
416   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
417   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
418   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
419   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
420   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
421 #if defined(O_DIRECT)
422   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
423 #endif
424 #if defined(O_NOATIME)
425   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
426 #endif
427 #if defined(O_CLOEXEC)
428   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
429 #endif
430 #if defined(O_PATH)
431   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
432 #endif
433 #if defined(O_TMPFILE)
434   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
435 #endif
436   /* Don't terminate the list prematurely on 64-bit host+guest.  */
437 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
438   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
439 #endif
440   { 0, 0, 0, 0 }
441 };
442 
443 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
444 
445 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
446 #if defined(__NR_utimensat)
447 #define __NR_sys_utimensat __NR_utimensat
448 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
449           const struct timespec *,tsp,int,flags)
450 #else
451 static int sys_utimensat(int dirfd, const char *pathname,
452                          const struct timespec times[2], int flags)
453 {
454     errno = ENOSYS;
455     return -1;
456 }
457 #endif
458 #endif /* TARGET_NR_utimensat */
459 
460 #ifdef TARGET_NR_renameat2
461 #if defined(__NR_renameat2)
462 #define __NR_sys_renameat2 __NR_renameat2
463 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
464           const char *, new, unsigned int, flags)
465 #else
466 static int sys_renameat2(int oldfd, const char *old,
467                          int newfd, const char *new, int flags)
468 {
469     if (flags == 0) {
470         return renameat(oldfd, old, newfd, new);
471     }
472     errno = ENOSYS;
473     return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_renameat2 */
477 
478 #ifdef CONFIG_INOTIFY
479 #include <sys/inotify.h>
480 
481 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
482 static int sys_inotify_init(void)
483 {
484   return (inotify_init());
485 }
486 #endif
487 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
488 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
489 {
490   return (inotify_add_watch(fd, pathname, mask));
491 }
492 #endif
493 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
494 static int sys_inotify_rm_watch(int fd, int32_t wd)
495 {
496   return (inotify_rm_watch(fd, wd));
497 }
498 #endif
499 #ifdef CONFIG_INOTIFY1
500 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
501 static int sys_inotify_init1(int flags)
502 {
503   return (inotify_init1(flags));
504 }
505 #endif
506 #endif
507 #else
508 /* Userspace can usually survive runtime without inotify */
509 #undef TARGET_NR_inotify_init
510 #undef TARGET_NR_inotify_init1
511 #undef TARGET_NR_inotify_add_watch
512 #undef TARGET_NR_inotify_rm_watch
513 #endif /* CONFIG_INOTIFY  */
514 
515 #if defined(TARGET_NR_prlimit64)
516 #ifndef __NR_prlimit64
517 # define __NR_prlimit64 -1
518 #endif
519 #define __NR_sys_prlimit64 __NR_prlimit64
520 /* The glibc rlimit structure may not be that used by the underlying syscall */
521 struct host_rlimit64 {
522     uint64_t rlim_cur;
523     uint64_t rlim_max;
524 };
525 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
526           const struct host_rlimit64 *, new_limit,
527           struct host_rlimit64 *, old_limit)
528 #endif
529 
530 
531 #if defined(TARGET_NR_timer_create)
532 /* Maximum of 32 active POSIX timers allowed at any one time. */
533 static timer_t g_posix_timers[32] = { 0, } ;
534 
535 static inline int next_free_host_timer(void)
536 {
537     int k ;
538     /* FIXME: Does finding the next free slot require a lock? */
539     for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
540         if (g_posix_timers[k] == 0) {
541             g_posix_timers[k] = (timer_t) 1;
542             return k;
543         }
544     }
545     return -1;
546 }
547 #endif
548 
549 static inline int host_to_target_errno(int host_errno)
550 {
551     switch (host_errno) {
552 #define E(X)  case X: return TARGET_##X;
553 #include "errnos.c.inc"
554 #undef E
555     default:
556         return host_errno;
557     }
558 }
559 
560 static inline int target_to_host_errno(int target_errno)
561 {
562     switch (target_errno) {
563 #define E(X)  case TARGET_##X: return X;
564 #include "errnos.c.inc"
565 #undef E
566     default:
567         return target_errno;
568     }
569 }
570 
571 static inline abi_long get_errno(abi_long ret)
572 {
573     if (ret == -1)
574         return -host_to_target_errno(errno);
575     else
576         return ret;
577 }
578 
579 const char *target_strerror(int err)
580 {
581     if (err == QEMU_ERESTARTSYS) {
582         return "To be restarted";
583     }
584     if (err == QEMU_ESIGRETURN) {
585         return "Successful exit from sigreturn";
586     }
587 
588     return strerror(target_to_host_errno(err));
589 }
590 
591 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
592 {
593     int i;
594     uint8_t b;
595     if (usize <= ksize) {
596         return 1;
597     }
598     for (i = ksize; i < usize; i++) {
599         if (get_user_u8(b, addr + i)) {
600             return -TARGET_EFAULT;
601         }
602         if (b != 0) {
603             return 0;
604         }
605     }
606     return 1;
607 }
608 
609 #define safe_syscall0(type, name) \
610 static type safe_##name(void) \
611 { \
612     return safe_syscall(__NR_##name); \
613 }
614 
615 #define safe_syscall1(type, name, type1, arg1) \
616 static type safe_##name(type1 arg1) \
617 { \
618     return safe_syscall(__NR_##name, arg1); \
619 }
620 
621 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
622 static type safe_##name(type1 arg1, type2 arg2) \
623 { \
624     return safe_syscall(__NR_##name, arg1, arg2); \
625 }
626 
627 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
628 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
629 { \
630     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
631 }
632 
633 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
634     type4, arg4) \
635 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
636 { \
637     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
638 }
639 
640 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
641     type4, arg4, type5, arg5) \
642 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
643     type5 arg5) \
644 { \
645     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
646 }
647 
648 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
649     type4, arg4, type5, arg5, type6, arg6) \
650 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
651     type5 arg5, type6 arg6) \
652 { \
653     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
654 }
655 
656 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
657 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
658 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
659               int, flags, mode_t, mode)
660 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
661 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
662               struct rusage *, rusage)
663 #endif
664 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
665               int, options, struct rusage *, rusage)
666 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
667 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
668     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
669 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
670               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
671 #endif
672 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
673 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
674               struct timespec *, tsp, const sigset_t *, sigmask,
675               size_t, sigsetsize)
676 #endif
677 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
678               int, maxevents, int, timeout, const sigset_t *, sigmask,
679               size_t, sigsetsize)
680 #if defined(__NR_futex)
681 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
682               const struct timespec *,timeout,int *,uaddr2,int,val3)
683 #endif
684 #if defined(__NR_futex_time64)
685 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
686               const struct timespec *,timeout,int *,uaddr2,int,val3)
687 #endif
688 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
689 safe_syscall2(int, kill, pid_t, pid, int, sig)
690 safe_syscall2(int, tkill, int, tid, int, sig)
691 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
692 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
693 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
694 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
695               unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
697               unsigned long, pos_l, unsigned long, pos_h)
698 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
699               socklen_t, addrlen)
700 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
701               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
702 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
703               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
704 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
705 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
706 safe_syscall2(int, flock, int, fd, int, operation)
707 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
708 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
709               const struct timespec *, uts, size_t, sigsetsize)
710 #endif
711 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
712               int, flags)
713 #if defined(TARGET_NR_nanosleep)
714 safe_syscall2(int, nanosleep, const struct timespec *, req,
715               struct timespec *, rem)
716 #endif
717 #if defined(TARGET_NR_clock_nanosleep) || \
718     defined(TARGET_NR_clock_nanosleep_time64)
719 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
720               const struct timespec *, req, struct timespec *, rem)
721 #endif
722 #ifdef __NR_ipc
723 #ifdef __s390x__
724 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr)
726 #else
727 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
728               void *, ptr, long, fifth)
729 #endif
730 #endif
731 #ifdef __NR_msgsnd
732 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
733               int, flags)
734 #endif
735 #ifdef __NR_msgrcv
736 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
737               long, msgtype, int, flags)
738 #endif
739 #ifdef __NR_semtimedop
740 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
741               unsigned, nsops, const struct timespec *, timeout)
742 #endif
743 #if defined(TARGET_NR_mq_timedsend) || \
744     defined(TARGET_NR_mq_timedsend_time64)
745 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
746               size_t, len, unsigned, prio, const struct timespec *, timeout)
747 #endif
748 #if defined(TARGET_NR_mq_timedreceive) || \
749     defined(TARGET_NR_mq_timedreceive_time64)
750 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
751               size_t, len, unsigned *, prio, const struct timespec *, timeout)
752 #endif
753 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
754 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
755               int, outfd, loff_t *, poutoff, size_t, length,
756               unsigned int, flags)
757 #endif
758 
759 /* We do ioctl like this rather than via safe_syscall3 to preserve the
760  * "third argument might be integer or pointer or not present" behaviour of
761  * the libc function.
762  */
763 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
764 /* Similarly for fcntl. Note that callers must always:
765  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
766  *  use the flock64 struct rather than unsuffixed flock
767  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
768  */
769 #ifdef __NR_fcntl64
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
771 #else
772 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
773 #endif
774 
775 static inline int host_to_target_sock_type(int host_type)
776 {
777     int target_type;
778 
779     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
780     case SOCK_DGRAM:
781         target_type = TARGET_SOCK_DGRAM;
782         break;
783     case SOCK_STREAM:
784         target_type = TARGET_SOCK_STREAM;
785         break;
786     default:
787         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
788         break;
789     }
790 
791 #if defined(SOCK_CLOEXEC)
792     if (host_type & SOCK_CLOEXEC) {
793         target_type |= TARGET_SOCK_CLOEXEC;
794     }
795 #endif
796 
797 #if defined(SOCK_NONBLOCK)
798     if (host_type & SOCK_NONBLOCK) {
799         target_type |= TARGET_SOCK_NONBLOCK;
800     }
801 #endif
802 
803     return target_type;
804 }
805 
806 static abi_ulong target_brk;
807 static abi_ulong target_original_brk;
808 static abi_ulong brk_page;
809 
810 void target_set_brk(abi_ulong new_brk)
811 {
812     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
813     brk_page = HOST_PAGE_ALIGN(target_brk);
814 }
815 
816 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
817 #define DEBUGF_BRK(message, args...)
818 
819 /* do_brk() must return target values and target errnos. */
820 abi_long do_brk(abi_ulong new_brk)
821 {
822     abi_long mapped_addr;
823     abi_ulong new_alloc_size;
824 
825     /* brk pointers are always untagged */
826 
827     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
828 
829     if (!new_brk) {
830         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
831         return target_brk;
832     }
833     if (new_brk < target_original_brk) {
834         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
835                    target_brk);
836         return target_brk;
837     }
838 
839     /* If the new brk is less than the highest page reserved to the
840      * target heap allocation, set it and we're almost done...  */
841     if (new_brk <= brk_page) {
842         /* Heap contents are initialized to zero, as for anonymous
843          * mapped pages.  */
844         if (new_brk > target_brk) {
845             memset(g2h_untagged(target_brk), 0, new_brk - target_brk);
846         }
847 	target_brk = new_brk;
848         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
849 	return target_brk;
850     }
851 
852     /* We need to allocate more memory after the brk... Note that
853      * we don't use MAP_FIXED because that will map over the top of
854      * any existing mapping (like the one with the host libc or qemu
855      * itself); instead we treat "mapped but at wrong address" as
856      * a failure and unmap again.
857      */
858     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
859     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
860                                         PROT_READ|PROT_WRITE,
861                                         MAP_ANON|MAP_PRIVATE, 0, 0));
862 
863     if (mapped_addr == brk_page) {
864         /* Heap contents are initialized to zero, as for anonymous
865          * mapped pages.  Technically the new pages are already
866          * initialized to zero since they *are* anonymous mapped
867          * pages, however we have to take care with the contents that
868          * come from the remaining part of the previous page: it may
869          * contains garbage data due to a previous heap usage (grown
870          * then shrunken).  */
871         memset(g2h_untagged(target_brk), 0, brk_page - target_brk);
872 
873         target_brk = new_brk;
874         brk_page = HOST_PAGE_ALIGN(target_brk);
875         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
876             target_brk);
877         return target_brk;
878     } else if (mapped_addr != -1) {
879         /* Mapped but at wrong address, meaning there wasn't actually
880          * enough space for this brk.
881          */
882         target_munmap(mapped_addr, new_alloc_size);
883         mapped_addr = -1;
884         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
885     }
886     else {
887         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
888     }
889 
890 #if defined(TARGET_ALPHA)
891     /* We (partially) emulate OSF/1 on Alpha, which requires we
892        return a proper errno, not an unchanged brk value.  */
893     return -TARGET_ENOMEM;
894 #endif
895     /* For everything else, return the previous break. */
896     return target_brk;
897 }
898 
899 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
900     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
901 static inline abi_long copy_from_user_fdset(fd_set *fds,
902                                             abi_ulong target_fds_addr,
903                                             int n)
904 {
905     int i, nw, j, k;
906     abi_ulong b, *target_fds;
907 
908     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
909     if (!(target_fds = lock_user(VERIFY_READ,
910                                  target_fds_addr,
911                                  sizeof(abi_ulong) * nw,
912                                  1)))
913         return -TARGET_EFAULT;
914 
915     FD_ZERO(fds);
916     k = 0;
917     for (i = 0; i < nw; i++) {
918         /* grab the abi_ulong */
919         __get_user(b, &target_fds[i]);
920         for (j = 0; j < TARGET_ABI_BITS; j++) {
921             /* check the bit inside the abi_ulong */
922             if ((b >> j) & 1)
923                 FD_SET(k, fds);
924             k++;
925         }
926     }
927 
928     unlock_user(target_fds, target_fds_addr, 0);
929 
930     return 0;
931 }
932 
933 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
934                                                  abi_ulong target_fds_addr,
935                                                  int n)
936 {
937     if (target_fds_addr) {
938         if (copy_from_user_fdset(fds, target_fds_addr, n))
939             return -TARGET_EFAULT;
940         *fds_ptr = fds;
941     } else {
942         *fds_ptr = NULL;
943     }
944     return 0;
945 }
946 
947 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
948                                           const fd_set *fds,
949                                           int n)
950 {
951     int i, nw, j, k;
952     abi_long v;
953     abi_ulong *target_fds;
954 
955     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
956     if (!(target_fds = lock_user(VERIFY_WRITE,
957                                  target_fds_addr,
958                                  sizeof(abi_ulong) * nw,
959                                  0)))
960         return -TARGET_EFAULT;
961 
962     k = 0;
963     for (i = 0; i < nw; i++) {
964         v = 0;
965         for (j = 0; j < TARGET_ABI_BITS; j++) {
966             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
967             k++;
968         }
969         __put_user(v, &target_fds[i]);
970     }
971 
972     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
973 
974     return 0;
975 }
976 #endif
977 
978 #if defined(__alpha__)
979 #define HOST_HZ 1024
980 #else
981 #define HOST_HZ 100
982 #endif
983 
984 static inline abi_long host_to_target_clock_t(long ticks)
985 {
986 #if HOST_HZ == TARGET_HZ
987     return ticks;
988 #else
989     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
990 #endif
991 }
992 
993 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
994                                              const struct rusage *rusage)
995 {
996     struct target_rusage *target_rusage;
997 
998     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
999         return -TARGET_EFAULT;
1000     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1001     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1002     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1003     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1004     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1005     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1006     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1007     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1008     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1009     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1010     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1011     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1012     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1013     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1014     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1015     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1016     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1017     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1018     unlock_user_struct(target_rusage, target_addr, 1);
1019 
1020     return 0;
1021 }
1022 
1023 #ifdef TARGET_NR_setrlimit
1024 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1025 {
1026     abi_ulong target_rlim_swap;
1027     rlim_t result;
1028 
1029     target_rlim_swap = tswapal(target_rlim);
1030     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1031         return RLIM_INFINITY;
1032 
1033     result = target_rlim_swap;
1034     if (target_rlim_swap != (rlim_t)result)
1035         return RLIM_INFINITY;
1036 
1037     return result;
1038 }
1039 #endif
1040 
1041 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1042 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1043 {
1044     abi_ulong target_rlim_swap;
1045     abi_ulong result;
1046 
1047     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1048         target_rlim_swap = TARGET_RLIM_INFINITY;
1049     else
1050         target_rlim_swap = rlim;
1051     result = tswapal(target_rlim_swap);
1052 
1053     return result;
1054 }
1055 #endif
1056 
1057 static inline int target_to_host_resource(int code)
1058 {
1059     switch (code) {
1060     case TARGET_RLIMIT_AS:
1061         return RLIMIT_AS;
1062     case TARGET_RLIMIT_CORE:
1063         return RLIMIT_CORE;
1064     case TARGET_RLIMIT_CPU:
1065         return RLIMIT_CPU;
1066     case TARGET_RLIMIT_DATA:
1067         return RLIMIT_DATA;
1068     case TARGET_RLIMIT_FSIZE:
1069         return RLIMIT_FSIZE;
1070     case TARGET_RLIMIT_LOCKS:
1071         return RLIMIT_LOCKS;
1072     case TARGET_RLIMIT_MEMLOCK:
1073         return RLIMIT_MEMLOCK;
1074     case TARGET_RLIMIT_MSGQUEUE:
1075         return RLIMIT_MSGQUEUE;
1076     case TARGET_RLIMIT_NICE:
1077         return RLIMIT_NICE;
1078     case TARGET_RLIMIT_NOFILE:
1079         return RLIMIT_NOFILE;
1080     case TARGET_RLIMIT_NPROC:
1081         return RLIMIT_NPROC;
1082     case TARGET_RLIMIT_RSS:
1083         return RLIMIT_RSS;
1084     case TARGET_RLIMIT_RTPRIO:
1085         return RLIMIT_RTPRIO;
1086     case TARGET_RLIMIT_SIGPENDING:
1087         return RLIMIT_SIGPENDING;
1088     case TARGET_RLIMIT_STACK:
1089         return RLIMIT_STACK;
1090     default:
1091         return code;
1092     }
1093 }
1094 
1095 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1096                                               abi_ulong target_tv_addr)
1097 {
1098     struct target_timeval *target_tv;
1099 
1100     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1101         return -TARGET_EFAULT;
1102     }
1103 
1104     __get_user(tv->tv_sec, &target_tv->tv_sec);
1105     __get_user(tv->tv_usec, &target_tv->tv_usec);
1106 
1107     unlock_user_struct(target_tv, target_tv_addr, 0);
1108 
1109     return 0;
1110 }
1111 
1112 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1113                                             const struct timeval *tv)
1114 {
1115     struct target_timeval *target_tv;
1116 
1117     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1118         return -TARGET_EFAULT;
1119     }
1120 
1121     __put_user(tv->tv_sec, &target_tv->tv_sec);
1122     __put_user(tv->tv_usec, &target_tv->tv_usec);
1123 
1124     unlock_user_struct(target_tv, target_tv_addr, 1);
1125 
1126     return 0;
1127 }
1128 
1129 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1130 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1131                                                 abi_ulong target_tv_addr)
1132 {
1133     struct target__kernel_sock_timeval *target_tv;
1134 
1135     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1136         return -TARGET_EFAULT;
1137     }
1138 
1139     __get_user(tv->tv_sec, &target_tv->tv_sec);
1140     __get_user(tv->tv_usec, &target_tv->tv_usec);
1141 
1142     unlock_user_struct(target_tv, target_tv_addr, 0);
1143 
1144     return 0;
1145 }
1146 #endif
1147 
1148 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1149                                               const struct timeval *tv)
1150 {
1151     struct target__kernel_sock_timeval *target_tv;
1152 
1153     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1154         return -TARGET_EFAULT;
1155     }
1156 
1157     __put_user(tv->tv_sec, &target_tv->tv_sec);
1158     __put_user(tv->tv_usec, &target_tv->tv_usec);
1159 
1160     unlock_user_struct(target_tv, target_tv_addr, 1);
1161 
1162     return 0;
1163 }
1164 
1165 #if defined(TARGET_NR_futex) || \
1166     defined(TARGET_NR_rt_sigtimedwait) || \
1167     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1168     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1169     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1170     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1171     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1172     defined(TARGET_NR_timer_settime) || \
1173     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1174 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1175                                                abi_ulong target_addr)
1176 {
1177     struct target_timespec *target_ts;
1178 
1179     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1180         return -TARGET_EFAULT;
1181     }
1182     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1183     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1184     unlock_user_struct(target_ts, target_addr, 0);
1185     return 0;
1186 }
1187 #endif
1188 
1189 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1190     defined(TARGET_NR_timer_settime64) || \
1191     defined(TARGET_NR_mq_timedsend_time64) || \
1192     defined(TARGET_NR_mq_timedreceive_time64) || \
1193     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1194     defined(TARGET_NR_clock_nanosleep_time64) || \
1195     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1196     defined(TARGET_NR_utimensat) || \
1197     defined(TARGET_NR_utimensat_time64) || \
1198     defined(TARGET_NR_semtimedop_time64) || \
1199     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1200 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1201                                                  abi_ulong target_addr)
1202 {
1203     struct target__kernel_timespec *target_ts;
1204 
1205     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1206         return -TARGET_EFAULT;
1207     }
1208     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1209     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1210     /* in 32bit mode, this drops the padding */
1211     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1212     unlock_user_struct(target_ts, target_addr, 0);
1213     return 0;
1214 }
1215 #endif
1216 
1217 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1218                                                struct timespec *host_ts)
1219 {
1220     struct target_timespec *target_ts;
1221 
1222     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1223         return -TARGET_EFAULT;
1224     }
1225     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1226     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1227     unlock_user_struct(target_ts, target_addr, 1);
1228     return 0;
1229 }
1230 
1231 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1232                                                  struct timespec *host_ts)
1233 {
1234     struct target__kernel_timespec *target_ts;
1235 
1236     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1237         return -TARGET_EFAULT;
1238     }
1239     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1240     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1241     unlock_user_struct(target_ts, target_addr, 1);
1242     return 0;
1243 }
1244 
1245 #if defined(TARGET_NR_gettimeofday)
1246 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1247                                              struct timezone *tz)
1248 {
1249     struct target_timezone *target_tz;
1250 
1251     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1252         return -TARGET_EFAULT;
1253     }
1254 
1255     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1256     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1257 
1258     unlock_user_struct(target_tz, target_tz_addr, 1);
1259 
1260     return 0;
1261 }
1262 #endif
1263 
1264 #if defined(TARGET_NR_settimeofday)
1265 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1266                                                abi_ulong target_tz_addr)
1267 {
1268     struct target_timezone *target_tz;
1269 
1270     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1271         return -TARGET_EFAULT;
1272     }
1273 
1274     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1275     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1276 
1277     unlock_user_struct(target_tz, target_tz_addr, 0);
1278 
1279     return 0;
1280 }
1281 #endif
1282 
1283 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1284 #include <mqueue.h>
1285 
1286 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1287                                               abi_ulong target_mq_attr_addr)
1288 {
1289     struct target_mq_attr *target_mq_attr;
1290 
1291     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1292                           target_mq_attr_addr, 1))
1293         return -TARGET_EFAULT;
1294 
1295     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1296     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1297     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1298     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1299 
1300     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1301 
1302     return 0;
1303 }
1304 
1305 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1306                                             const struct mq_attr *attr)
1307 {
1308     struct target_mq_attr *target_mq_attr;
1309 
1310     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1311                           target_mq_attr_addr, 0))
1312         return -TARGET_EFAULT;
1313 
1314     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1315     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1316     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1317     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1318 
1319     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1320 
1321     return 0;
1322 }
1323 #endif
1324 
1325 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1326 /* do_select() must return target values and target errnos. */
1327 static abi_long do_select(int n,
1328                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1329                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1330 {
1331     fd_set rfds, wfds, efds;
1332     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1333     struct timeval tv;
1334     struct timespec ts, *ts_ptr;
1335     abi_long ret;
1336 
1337     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1338     if (ret) {
1339         return ret;
1340     }
1341     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1342     if (ret) {
1343         return ret;
1344     }
1345     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1346     if (ret) {
1347         return ret;
1348     }
1349 
1350     if (target_tv_addr) {
1351         if (copy_from_user_timeval(&tv, target_tv_addr))
1352             return -TARGET_EFAULT;
1353         ts.tv_sec = tv.tv_sec;
1354         ts.tv_nsec = tv.tv_usec * 1000;
1355         ts_ptr = &ts;
1356     } else {
1357         ts_ptr = NULL;
1358     }
1359 
1360     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1361                                   ts_ptr, NULL));
1362 
1363     if (!is_error(ret)) {
1364         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1365             return -TARGET_EFAULT;
1366         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1367             return -TARGET_EFAULT;
1368         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1369             return -TARGET_EFAULT;
1370 
1371         if (target_tv_addr) {
1372             tv.tv_sec = ts.tv_sec;
1373             tv.tv_usec = ts.tv_nsec / 1000;
1374             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1375                 return -TARGET_EFAULT;
1376             }
1377         }
1378     }
1379 
1380     return ret;
1381 }
1382 
1383 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1384 static abi_long do_old_select(abi_ulong arg1)
1385 {
1386     struct target_sel_arg_struct *sel;
1387     abi_ulong inp, outp, exp, tvp;
1388     long nsel;
1389 
1390     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1391         return -TARGET_EFAULT;
1392     }
1393 
1394     nsel = tswapal(sel->n);
1395     inp = tswapal(sel->inp);
1396     outp = tswapal(sel->outp);
1397     exp = tswapal(sel->exp);
1398     tvp = tswapal(sel->tvp);
1399 
1400     unlock_user_struct(sel, arg1, 0);
1401 
1402     return do_select(nsel, inp, outp, exp, tvp);
1403 }
1404 #endif
1405 #endif
1406 
1407 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1408 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1409                             abi_long arg4, abi_long arg5, abi_long arg6,
1410                             bool time64)
1411 {
1412     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1413     fd_set rfds, wfds, efds;
1414     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1415     struct timespec ts, *ts_ptr;
1416     abi_long ret;
1417 
1418     /*
1419      * The 6th arg is actually two args smashed together,
1420      * so we cannot use the C library.
1421      */
1422     sigset_t set;
1423     struct {
1424         sigset_t *set;
1425         size_t size;
1426     } sig, *sig_ptr;
1427 
1428     abi_ulong arg_sigset, arg_sigsize, *arg7;
1429     target_sigset_t *target_sigset;
1430 
1431     n = arg1;
1432     rfd_addr = arg2;
1433     wfd_addr = arg3;
1434     efd_addr = arg4;
1435     ts_addr = arg5;
1436 
1437     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1438     if (ret) {
1439         return ret;
1440     }
1441     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1442     if (ret) {
1443         return ret;
1444     }
1445     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1446     if (ret) {
1447         return ret;
1448     }
1449 
1450     /*
1451      * This takes a timespec, and not a timeval, so we cannot
1452      * use the do_select() helper ...
1453      */
1454     if (ts_addr) {
1455         if (time64) {
1456             if (target_to_host_timespec64(&ts, ts_addr)) {
1457                 return -TARGET_EFAULT;
1458             }
1459         } else {
1460             if (target_to_host_timespec(&ts, ts_addr)) {
1461                 return -TARGET_EFAULT;
1462             }
1463         }
1464             ts_ptr = &ts;
1465     } else {
1466         ts_ptr = NULL;
1467     }
1468 
1469     /* Extract the two packed args for the sigset */
1470     if (arg6) {
1471         sig_ptr = &sig;
1472         sig.size = SIGSET_T_SIZE;
1473 
1474         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1475         if (!arg7) {
1476             return -TARGET_EFAULT;
1477         }
1478         arg_sigset = tswapal(arg7[0]);
1479         arg_sigsize = tswapal(arg7[1]);
1480         unlock_user(arg7, arg6, 0);
1481 
1482         if (arg_sigset) {
1483             sig.set = &set;
1484             if (arg_sigsize != sizeof(*target_sigset)) {
1485                 /* Like the kernel, we enforce correct size sigsets */
1486                 return -TARGET_EINVAL;
1487             }
1488             target_sigset = lock_user(VERIFY_READ, arg_sigset,
1489                                       sizeof(*target_sigset), 1);
1490             if (!target_sigset) {
1491                 return -TARGET_EFAULT;
1492             }
1493             target_to_host_sigset(&set, target_sigset);
1494             unlock_user(target_sigset, arg_sigset, 0);
1495         } else {
1496             sig.set = NULL;
1497         }
1498     } else {
1499         sig_ptr = NULL;
1500     }
1501 
1502     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1503                                   ts_ptr, sig_ptr));
1504 
1505     if (!is_error(ret)) {
1506         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1507             return -TARGET_EFAULT;
1508         }
1509         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1510             return -TARGET_EFAULT;
1511         }
1512         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1513             return -TARGET_EFAULT;
1514         }
1515         if (time64) {
1516             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1517                 return -TARGET_EFAULT;
1518             }
1519         } else {
1520             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1521                 return -TARGET_EFAULT;
1522             }
1523         }
1524     }
1525     return ret;
1526 }
1527 #endif
1528 
1529 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1530     defined(TARGET_NR_ppoll_time64)
1531 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1532                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1533 {
1534     struct target_pollfd *target_pfd;
1535     unsigned int nfds = arg2;
1536     struct pollfd *pfd;
1537     unsigned int i;
1538     abi_long ret;
1539 
1540     pfd = NULL;
1541     target_pfd = NULL;
1542     if (nfds) {
1543         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1544             return -TARGET_EINVAL;
1545         }
1546         target_pfd = lock_user(VERIFY_WRITE, arg1,
1547                                sizeof(struct target_pollfd) * nfds, 1);
1548         if (!target_pfd) {
1549             return -TARGET_EFAULT;
1550         }
1551 
1552         pfd = alloca(sizeof(struct pollfd) * nfds);
1553         for (i = 0; i < nfds; i++) {
1554             pfd[i].fd = tswap32(target_pfd[i].fd);
1555             pfd[i].events = tswap16(target_pfd[i].events);
1556         }
1557     }
1558     if (ppoll) {
1559         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1560         target_sigset_t *target_set;
1561         sigset_t _set, *set = &_set;
1562 
1563         if (arg3) {
1564             if (time64) {
1565                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1566                     unlock_user(target_pfd, arg1, 0);
1567                     return -TARGET_EFAULT;
1568                 }
1569             } else {
1570                 if (target_to_host_timespec(timeout_ts, arg3)) {
1571                     unlock_user(target_pfd, arg1, 0);
1572                     return -TARGET_EFAULT;
1573                 }
1574             }
1575         } else {
1576             timeout_ts = NULL;
1577         }
1578 
1579         if (arg4) {
1580             if (arg5 != sizeof(target_sigset_t)) {
1581                 unlock_user(target_pfd, arg1, 0);
1582                 return -TARGET_EINVAL;
1583             }
1584 
1585             target_set = lock_user(VERIFY_READ, arg4,
1586                                    sizeof(target_sigset_t), 1);
1587             if (!target_set) {
1588                 unlock_user(target_pfd, arg1, 0);
1589                 return -TARGET_EFAULT;
1590             }
1591             target_to_host_sigset(set, target_set);
1592         } else {
1593             set = NULL;
1594         }
1595 
1596         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1597                                    set, SIGSET_T_SIZE));
1598 
1599         if (!is_error(ret) && arg3) {
1600             if (time64) {
1601                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1602                     return -TARGET_EFAULT;
1603                 }
1604             } else {
1605                 if (host_to_target_timespec(arg3, timeout_ts)) {
1606                     return -TARGET_EFAULT;
1607                 }
1608             }
1609         }
1610         if (arg4) {
1611             unlock_user(target_set, arg4, 0);
1612         }
1613     } else {
1614           struct timespec ts, *pts;
1615 
1616           if (arg3 >= 0) {
1617               /* Convert ms to secs, ns */
1618               ts.tv_sec = arg3 / 1000;
1619               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1620               pts = &ts;
1621           } else {
1622               /* -ve poll() timeout means "infinite" */
1623               pts = NULL;
1624           }
1625           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1626     }
1627 
1628     if (!is_error(ret)) {
1629         for (i = 0; i < nfds; i++) {
1630             target_pfd[i].revents = tswap16(pfd[i].revents);
1631         }
1632     }
1633     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1634     return ret;
1635 }
1636 #endif
1637 
1638 static abi_long do_pipe2(int host_pipe[], int flags)
1639 {
1640 #ifdef CONFIG_PIPE2
1641     return pipe2(host_pipe, flags);
1642 #else
1643     return -ENOSYS;
1644 #endif
1645 }
1646 
1647 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1648                         int flags, int is_pipe2)
1649 {
1650     int host_pipe[2];
1651     abi_long ret;
1652     ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1653 
1654     if (is_error(ret))
1655         return get_errno(ret);
1656 
1657     /* Several targets have special calling conventions for the original
1658        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1659     if (!is_pipe2) {
1660 #if defined(TARGET_ALPHA)
1661         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1662         return host_pipe[0];
1663 #elif defined(TARGET_MIPS)
1664         ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1665         return host_pipe[0];
1666 #elif defined(TARGET_SH4)
1667         ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1668         return host_pipe[0];
1669 #elif defined(TARGET_SPARC)
1670         ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1671         return host_pipe[0];
1672 #endif
1673     }
1674 
1675     if (put_user_s32(host_pipe[0], pipedes)
1676         || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1677         return -TARGET_EFAULT;
1678     return get_errno(ret);
1679 }
1680 
1681 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1682                                               abi_ulong target_addr,
1683                                               socklen_t len)
1684 {
1685     struct target_ip_mreqn *target_smreqn;
1686 
1687     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1688     if (!target_smreqn)
1689         return -TARGET_EFAULT;
1690     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1691     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1692     if (len == sizeof(struct target_ip_mreqn))
1693         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1694     unlock_user(target_smreqn, target_addr, 0);
1695 
1696     return 0;
1697 }
1698 
1699 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1700                                                abi_ulong target_addr,
1701                                                socklen_t len)
1702 {
1703     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1704     sa_family_t sa_family;
1705     struct target_sockaddr *target_saddr;
1706 
1707     if (fd_trans_target_to_host_addr(fd)) {
1708         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1709     }
1710 
1711     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1712     if (!target_saddr)
1713         return -TARGET_EFAULT;
1714 
1715     sa_family = tswap16(target_saddr->sa_family);
1716 
1717     /* Oops. The caller might send a incomplete sun_path; sun_path
1718      * must be terminated by \0 (see the manual page), but
1719      * unfortunately it is quite common to specify sockaddr_un
1720      * length as "strlen(x->sun_path)" while it should be
1721      * "strlen(...) + 1". We'll fix that here if needed.
1722      * Linux kernel has a similar feature.
1723      */
1724 
1725     if (sa_family == AF_UNIX) {
1726         if (len < unix_maxlen && len > 0) {
1727             char *cp = (char*)target_saddr;
1728 
1729             if ( cp[len-1] && !cp[len] )
1730                 len++;
1731         }
1732         if (len > unix_maxlen)
1733             len = unix_maxlen;
1734     }
1735 
1736     memcpy(addr, target_saddr, len);
1737     addr->sa_family = sa_family;
1738     if (sa_family == AF_NETLINK) {
1739         struct sockaddr_nl *nladdr;
1740 
1741         nladdr = (struct sockaddr_nl *)addr;
1742         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1743         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1744     } else if (sa_family == AF_PACKET) {
1745 	struct target_sockaddr_ll *lladdr;
1746 
1747 	lladdr = (struct target_sockaddr_ll *)addr;
1748 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1749 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1750     }
1751     unlock_user(target_saddr, target_addr, 0);
1752 
1753     return 0;
1754 }
1755 
1756 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1757                                                struct sockaddr *addr,
1758                                                socklen_t len)
1759 {
1760     struct target_sockaddr *target_saddr;
1761 
1762     if (len == 0) {
1763         return 0;
1764     }
1765     assert(addr);
1766 
1767     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1768     if (!target_saddr)
1769         return -TARGET_EFAULT;
1770     memcpy(target_saddr, addr, len);
1771     if (len >= offsetof(struct target_sockaddr, sa_family) +
1772         sizeof(target_saddr->sa_family)) {
1773         target_saddr->sa_family = tswap16(addr->sa_family);
1774     }
1775     if (addr->sa_family == AF_NETLINK &&
1776         len >= sizeof(struct target_sockaddr_nl)) {
1777         struct target_sockaddr_nl *target_nl =
1778                (struct target_sockaddr_nl *)target_saddr;
1779         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1780         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1781     } else if (addr->sa_family == AF_PACKET) {
1782         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1783         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1784         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1785     } else if (addr->sa_family == AF_INET6 &&
1786                len >= sizeof(struct target_sockaddr_in6)) {
1787         struct target_sockaddr_in6 *target_in6 =
1788                (struct target_sockaddr_in6 *)target_saddr;
1789         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1790     }
1791     unlock_user(target_saddr, target_addr, len);
1792 
1793     return 0;
1794 }
1795 
1796 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1797                                            struct target_msghdr *target_msgh)
1798 {
1799     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1800     abi_long msg_controllen;
1801     abi_ulong target_cmsg_addr;
1802     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1803     socklen_t space = 0;
1804 
1805     msg_controllen = tswapal(target_msgh->msg_controllen);
1806     if (msg_controllen < sizeof (struct target_cmsghdr))
1807         goto the_end;
1808     target_cmsg_addr = tswapal(target_msgh->msg_control);
1809     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1810     target_cmsg_start = target_cmsg;
1811     if (!target_cmsg)
1812         return -TARGET_EFAULT;
1813 
1814     while (cmsg && target_cmsg) {
1815         void *data = CMSG_DATA(cmsg);
1816         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1817 
1818         int len = tswapal(target_cmsg->cmsg_len)
1819             - sizeof(struct target_cmsghdr);
1820 
1821         space += CMSG_SPACE(len);
1822         if (space > msgh->msg_controllen) {
1823             space -= CMSG_SPACE(len);
1824             /* This is a QEMU bug, since we allocated the payload
1825              * area ourselves (unlike overflow in host-to-target
1826              * conversion, which is just the guest giving us a buffer
1827              * that's too small). It can't happen for the payload types
1828              * we currently support; if it becomes an issue in future
1829              * we would need to improve our allocation strategy to
1830              * something more intelligent than "twice the size of the
1831              * target buffer we're reading from".
1832              */
1833             qemu_log_mask(LOG_UNIMP,
1834                           ("Unsupported ancillary data %d/%d: "
1835                            "unhandled msg size\n"),
1836                           tswap32(target_cmsg->cmsg_level),
1837                           tswap32(target_cmsg->cmsg_type));
1838             break;
1839         }
1840 
1841         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1842             cmsg->cmsg_level = SOL_SOCKET;
1843         } else {
1844             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1845         }
1846         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1847         cmsg->cmsg_len = CMSG_LEN(len);
1848 
1849         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1850             int *fd = (int *)data;
1851             int *target_fd = (int *)target_data;
1852             int i, numfds = len / sizeof(int);
1853 
1854             for (i = 0; i < numfds; i++) {
1855                 __get_user(fd[i], target_fd + i);
1856             }
1857         } else if (cmsg->cmsg_level == SOL_SOCKET
1858                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1859             struct ucred *cred = (struct ucred *)data;
1860             struct target_ucred *target_cred =
1861                 (struct target_ucred *)target_data;
1862 
1863             __get_user(cred->pid, &target_cred->pid);
1864             __get_user(cred->uid, &target_cred->uid);
1865             __get_user(cred->gid, &target_cred->gid);
1866         } else {
1867             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1868                           cmsg->cmsg_level, cmsg->cmsg_type);
1869             memcpy(data, target_data, len);
1870         }
1871 
1872         cmsg = CMSG_NXTHDR(msgh, cmsg);
1873         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1874                                          target_cmsg_start);
1875     }
1876     unlock_user(target_cmsg, target_cmsg_addr, 0);
1877  the_end:
1878     msgh->msg_controllen = space;
1879     return 0;
1880 }
1881 
1882 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1883                                            struct msghdr *msgh)
1884 {
1885     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1886     abi_long msg_controllen;
1887     abi_ulong target_cmsg_addr;
1888     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1889     socklen_t space = 0;
1890 
1891     msg_controllen = tswapal(target_msgh->msg_controllen);
1892     if (msg_controllen < sizeof (struct target_cmsghdr))
1893         goto the_end;
1894     target_cmsg_addr = tswapal(target_msgh->msg_control);
1895     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1896     target_cmsg_start = target_cmsg;
1897     if (!target_cmsg)
1898         return -TARGET_EFAULT;
1899 
1900     while (cmsg && target_cmsg) {
1901         void *data = CMSG_DATA(cmsg);
1902         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1903 
1904         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1905         int tgt_len, tgt_space;
1906 
1907         /* We never copy a half-header but may copy half-data;
1908          * this is Linux's behaviour in put_cmsg(). Note that
1909          * truncation here is a guest problem (which we report
1910          * to the guest via the CTRUNC bit), unlike truncation
1911          * in target_to_host_cmsg, which is a QEMU bug.
1912          */
1913         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1914             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1915             break;
1916         }
1917 
1918         if (cmsg->cmsg_level == SOL_SOCKET) {
1919             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1920         } else {
1921             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1922         }
1923         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1924 
1925         /* Payload types which need a different size of payload on
1926          * the target must adjust tgt_len here.
1927          */
1928         tgt_len = len;
1929         switch (cmsg->cmsg_level) {
1930         case SOL_SOCKET:
1931             switch (cmsg->cmsg_type) {
1932             case SO_TIMESTAMP:
1933                 tgt_len = sizeof(struct target_timeval);
1934                 break;
1935             default:
1936                 break;
1937             }
1938             break;
1939         default:
1940             break;
1941         }
1942 
1943         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1944             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1945             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1946         }
1947 
1948         /* We must now copy-and-convert len bytes of payload
1949          * into tgt_len bytes of destination space. Bear in mind
1950          * that in both source and destination we may be dealing
1951          * with a truncated value!
1952          */
1953         switch (cmsg->cmsg_level) {
1954         case SOL_SOCKET:
1955             switch (cmsg->cmsg_type) {
1956             case SCM_RIGHTS:
1957             {
1958                 int *fd = (int *)data;
1959                 int *target_fd = (int *)target_data;
1960                 int i, numfds = tgt_len / sizeof(int);
1961 
1962                 for (i = 0; i < numfds; i++) {
1963                     __put_user(fd[i], target_fd + i);
1964                 }
1965                 break;
1966             }
1967             case SO_TIMESTAMP:
1968             {
1969                 struct timeval *tv = (struct timeval *)data;
1970                 struct target_timeval *target_tv =
1971                     (struct target_timeval *)target_data;
1972 
1973                 if (len != sizeof(struct timeval) ||
1974                     tgt_len != sizeof(struct target_timeval)) {
1975                     goto unimplemented;
1976                 }
1977 
1978                 /* copy struct timeval to target */
1979                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1980                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1981                 break;
1982             }
1983             case SCM_CREDENTIALS:
1984             {
1985                 struct ucred *cred = (struct ucred *)data;
1986                 struct target_ucred *target_cred =
1987                     (struct target_ucred *)target_data;
1988 
1989                 __put_user(cred->pid, &target_cred->pid);
1990                 __put_user(cred->uid, &target_cred->uid);
1991                 __put_user(cred->gid, &target_cred->gid);
1992                 break;
1993             }
1994             default:
1995                 goto unimplemented;
1996             }
1997             break;
1998 
1999         case SOL_IP:
2000             switch (cmsg->cmsg_type) {
2001             case IP_TTL:
2002             {
2003                 uint32_t *v = (uint32_t *)data;
2004                 uint32_t *t_int = (uint32_t *)target_data;
2005 
2006                 if (len != sizeof(uint32_t) ||
2007                     tgt_len != sizeof(uint32_t)) {
2008                     goto unimplemented;
2009                 }
2010                 __put_user(*v, t_int);
2011                 break;
2012             }
2013             case IP_RECVERR:
2014             {
2015                 struct errhdr_t {
2016                    struct sock_extended_err ee;
2017                    struct sockaddr_in offender;
2018                 };
2019                 struct errhdr_t *errh = (struct errhdr_t *)data;
2020                 struct errhdr_t *target_errh =
2021                     (struct errhdr_t *)target_data;
2022 
2023                 if (len != sizeof(struct errhdr_t) ||
2024                     tgt_len != sizeof(struct errhdr_t)) {
2025                     goto unimplemented;
2026                 }
2027                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2028                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2029                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2030                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2031                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2032                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2033                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2034                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2035                     (void *) &errh->offender, sizeof(errh->offender));
2036                 break;
2037             }
2038             default:
2039                 goto unimplemented;
2040             }
2041             break;
2042 
2043         case SOL_IPV6:
2044             switch (cmsg->cmsg_type) {
2045             case IPV6_HOPLIMIT:
2046             {
2047                 uint32_t *v = (uint32_t *)data;
2048                 uint32_t *t_int = (uint32_t *)target_data;
2049 
2050                 if (len != sizeof(uint32_t) ||
2051                     tgt_len != sizeof(uint32_t)) {
2052                     goto unimplemented;
2053                 }
2054                 __put_user(*v, t_int);
2055                 break;
2056             }
2057             case IPV6_RECVERR:
2058             {
2059                 struct errhdr6_t {
2060                    struct sock_extended_err ee;
2061                    struct sockaddr_in6 offender;
2062                 };
2063                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2064                 struct errhdr6_t *target_errh =
2065                     (struct errhdr6_t *)target_data;
2066 
2067                 if (len != sizeof(struct errhdr6_t) ||
2068                     tgt_len != sizeof(struct errhdr6_t)) {
2069                     goto unimplemented;
2070                 }
2071                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2072                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2073                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2074                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2075                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2076                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2077                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2078                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2079                     (void *) &errh->offender, sizeof(errh->offender));
2080                 break;
2081             }
2082             default:
2083                 goto unimplemented;
2084             }
2085             break;
2086 
2087         default:
2088         unimplemented:
2089             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2090                           cmsg->cmsg_level, cmsg->cmsg_type);
2091             memcpy(target_data, data, MIN(len, tgt_len));
2092             if (tgt_len > len) {
2093                 memset(target_data + len, 0, tgt_len - len);
2094             }
2095         }
2096 
2097         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2098         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2099         if (msg_controllen < tgt_space) {
2100             tgt_space = msg_controllen;
2101         }
2102         msg_controllen -= tgt_space;
2103         space += tgt_space;
2104         cmsg = CMSG_NXTHDR(msgh, cmsg);
2105         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2106                                          target_cmsg_start);
2107     }
2108     unlock_user(target_cmsg, target_cmsg_addr, space);
2109  the_end:
2110     target_msgh->msg_controllen = tswapal(space);
2111     return 0;
2112 }
2113 
2114 /* do_setsockopt() Must return target values and target errnos. */
2115 static abi_long do_setsockopt(int sockfd, int level, int optname,
2116                               abi_ulong optval_addr, socklen_t optlen)
2117 {
2118     abi_long ret;
2119     int val;
2120     struct ip_mreqn *ip_mreq;
2121     struct ip_mreq_source *ip_mreq_source;
2122 
2123     switch(level) {
2124     case SOL_TCP:
2125     case SOL_UDP:
2126         /* TCP and UDP options all take an 'int' value.  */
2127         if (optlen < sizeof(uint32_t))
2128             return -TARGET_EINVAL;
2129 
2130         if (get_user_u32(val, optval_addr))
2131             return -TARGET_EFAULT;
2132         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2133         break;
2134     case SOL_IP:
2135         switch(optname) {
2136         case IP_TOS:
2137         case IP_TTL:
2138         case IP_HDRINCL:
2139         case IP_ROUTER_ALERT:
2140         case IP_RECVOPTS:
2141         case IP_RETOPTS:
2142         case IP_PKTINFO:
2143         case IP_MTU_DISCOVER:
2144         case IP_RECVERR:
2145         case IP_RECVTTL:
2146         case IP_RECVTOS:
2147 #ifdef IP_FREEBIND
2148         case IP_FREEBIND:
2149 #endif
2150         case IP_MULTICAST_TTL:
2151         case IP_MULTICAST_LOOP:
2152             val = 0;
2153             if (optlen >= sizeof(uint32_t)) {
2154                 if (get_user_u32(val, optval_addr))
2155                     return -TARGET_EFAULT;
2156             } else if (optlen >= 1) {
2157                 if (get_user_u8(val, optval_addr))
2158                     return -TARGET_EFAULT;
2159             }
2160             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2161             break;
2162         case IP_ADD_MEMBERSHIP:
2163         case IP_DROP_MEMBERSHIP:
2164             if (optlen < sizeof (struct target_ip_mreq) ||
2165                 optlen > sizeof (struct target_ip_mreqn))
2166                 return -TARGET_EINVAL;
2167 
2168             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2169             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2170             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2171             break;
2172 
2173         case IP_BLOCK_SOURCE:
2174         case IP_UNBLOCK_SOURCE:
2175         case IP_ADD_SOURCE_MEMBERSHIP:
2176         case IP_DROP_SOURCE_MEMBERSHIP:
2177             if (optlen != sizeof (struct target_ip_mreq_source))
2178                 return -TARGET_EINVAL;
2179 
2180             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2181             if (!ip_mreq_source) {
2182                 return -TARGET_EFAULT;
2183             }
2184             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2185             unlock_user (ip_mreq_source, optval_addr, 0);
2186             break;
2187 
2188         default:
2189             goto unimplemented;
2190         }
2191         break;
2192     case SOL_IPV6:
2193         switch (optname) {
2194         case IPV6_MTU_DISCOVER:
2195         case IPV6_MTU:
2196         case IPV6_V6ONLY:
2197         case IPV6_RECVPKTINFO:
2198         case IPV6_UNICAST_HOPS:
2199         case IPV6_MULTICAST_HOPS:
2200         case IPV6_MULTICAST_LOOP:
2201         case IPV6_RECVERR:
2202         case IPV6_RECVHOPLIMIT:
2203         case IPV6_2292HOPLIMIT:
2204         case IPV6_CHECKSUM:
2205         case IPV6_ADDRFORM:
2206         case IPV6_2292PKTINFO:
2207         case IPV6_RECVTCLASS:
2208         case IPV6_RECVRTHDR:
2209         case IPV6_2292RTHDR:
2210         case IPV6_RECVHOPOPTS:
2211         case IPV6_2292HOPOPTS:
2212         case IPV6_RECVDSTOPTS:
2213         case IPV6_2292DSTOPTS:
2214         case IPV6_TCLASS:
2215         case IPV6_ADDR_PREFERENCES:
2216 #ifdef IPV6_RECVPATHMTU
2217         case IPV6_RECVPATHMTU:
2218 #endif
2219 #ifdef IPV6_TRANSPARENT
2220         case IPV6_TRANSPARENT:
2221 #endif
2222 #ifdef IPV6_FREEBIND
2223         case IPV6_FREEBIND:
2224 #endif
2225 #ifdef IPV6_RECVORIGDSTADDR
2226         case IPV6_RECVORIGDSTADDR:
2227 #endif
2228             val = 0;
2229             if (optlen < sizeof(uint32_t)) {
2230                 return -TARGET_EINVAL;
2231             }
2232             if (get_user_u32(val, optval_addr)) {
2233                 return -TARGET_EFAULT;
2234             }
2235             ret = get_errno(setsockopt(sockfd, level, optname,
2236                                        &val, sizeof(val)));
2237             break;
2238         case IPV6_PKTINFO:
2239         {
2240             struct in6_pktinfo pki;
2241 
2242             if (optlen < sizeof(pki)) {
2243                 return -TARGET_EINVAL;
2244             }
2245 
2246             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2247                 return -TARGET_EFAULT;
2248             }
2249 
2250             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2251 
2252             ret = get_errno(setsockopt(sockfd, level, optname,
2253                                        &pki, sizeof(pki)));
2254             break;
2255         }
2256         case IPV6_ADD_MEMBERSHIP:
2257         case IPV6_DROP_MEMBERSHIP:
2258         {
2259             struct ipv6_mreq ipv6mreq;
2260 
2261             if (optlen < sizeof(ipv6mreq)) {
2262                 return -TARGET_EINVAL;
2263             }
2264 
2265             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2266                 return -TARGET_EFAULT;
2267             }
2268 
2269             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2270 
2271             ret = get_errno(setsockopt(sockfd, level, optname,
2272                                        &ipv6mreq, sizeof(ipv6mreq)));
2273             break;
2274         }
2275         default:
2276             goto unimplemented;
2277         }
2278         break;
2279     case SOL_ICMPV6:
2280         switch (optname) {
2281         case ICMPV6_FILTER:
2282         {
2283             struct icmp6_filter icmp6f;
2284 
2285             if (optlen > sizeof(icmp6f)) {
2286                 optlen = sizeof(icmp6f);
2287             }
2288 
2289             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2290                 return -TARGET_EFAULT;
2291             }
2292 
2293             for (val = 0; val < 8; val++) {
2294                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2295             }
2296 
2297             ret = get_errno(setsockopt(sockfd, level, optname,
2298                                        &icmp6f, optlen));
2299             break;
2300         }
2301         default:
2302             goto unimplemented;
2303         }
2304         break;
2305     case SOL_RAW:
2306         switch (optname) {
2307         case ICMP_FILTER:
2308         case IPV6_CHECKSUM:
2309             /* those take an u32 value */
2310             if (optlen < sizeof(uint32_t)) {
2311                 return -TARGET_EINVAL;
2312             }
2313 
2314             if (get_user_u32(val, optval_addr)) {
2315                 return -TARGET_EFAULT;
2316             }
2317             ret = get_errno(setsockopt(sockfd, level, optname,
2318                                        &val, sizeof(val)));
2319             break;
2320 
2321         default:
2322             goto unimplemented;
2323         }
2324         break;
2325 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2326     case SOL_ALG:
2327         switch (optname) {
2328         case ALG_SET_KEY:
2329         {
2330             char *alg_key = g_malloc(optlen);
2331 
2332             if (!alg_key) {
2333                 return -TARGET_ENOMEM;
2334             }
2335             if (copy_from_user(alg_key, optval_addr, optlen)) {
2336                 g_free(alg_key);
2337                 return -TARGET_EFAULT;
2338             }
2339             ret = get_errno(setsockopt(sockfd, level, optname,
2340                                        alg_key, optlen));
2341             g_free(alg_key);
2342             break;
2343         }
2344         case ALG_SET_AEAD_AUTHSIZE:
2345         {
2346             ret = get_errno(setsockopt(sockfd, level, optname,
2347                                        NULL, optlen));
2348             break;
2349         }
2350         default:
2351             goto unimplemented;
2352         }
2353         break;
2354 #endif
2355     case TARGET_SOL_SOCKET:
2356         switch (optname) {
2357         case TARGET_SO_RCVTIMEO:
2358         {
2359                 struct timeval tv;
2360 
2361                 optname = SO_RCVTIMEO;
2362 
2363 set_timeout:
2364                 if (optlen != sizeof(struct target_timeval)) {
2365                     return -TARGET_EINVAL;
2366                 }
2367 
2368                 if (copy_from_user_timeval(&tv, optval_addr)) {
2369                     return -TARGET_EFAULT;
2370                 }
2371 
2372                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2373                                 &tv, sizeof(tv)));
2374                 return ret;
2375         }
2376         case TARGET_SO_SNDTIMEO:
2377                 optname = SO_SNDTIMEO;
2378                 goto set_timeout;
2379         case TARGET_SO_ATTACH_FILTER:
2380         {
2381                 struct target_sock_fprog *tfprog;
2382                 struct target_sock_filter *tfilter;
2383                 struct sock_fprog fprog;
2384                 struct sock_filter *filter;
2385                 int i;
2386 
2387                 if (optlen != sizeof(*tfprog)) {
2388                     return -TARGET_EINVAL;
2389                 }
2390                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2391                     return -TARGET_EFAULT;
2392                 }
2393                 if (!lock_user_struct(VERIFY_READ, tfilter,
2394                                       tswapal(tfprog->filter), 0)) {
2395                     unlock_user_struct(tfprog, optval_addr, 1);
2396                     return -TARGET_EFAULT;
2397                 }
2398 
2399                 fprog.len = tswap16(tfprog->len);
2400                 filter = g_try_new(struct sock_filter, fprog.len);
2401                 if (filter == NULL) {
2402                     unlock_user_struct(tfilter, tfprog->filter, 1);
2403                     unlock_user_struct(tfprog, optval_addr, 1);
2404                     return -TARGET_ENOMEM;
2405                 }
2406                 for (i = 0; i < fprog.len; i++) {
2407                     filter[i].code = tswap16(tfilter[i].code);
2408                     filter[i].jt = tfilter[i].jt;
2409                     filter[i].jf = tfilter[i].jf;
2410                     filter[i].k = tswap32(tfilter[i].k);
2411                 }
2412                 fprog.filter = filter;
2413 
2414                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2415                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2416                 g_free(filter);
2417 
2418                 unlock_user_struct(tfilter, tfprog->filter, 1);
2419                 unlock_user_struct(tfprog, optval_addr, 1);
2420                 return ret;
2421         }
2422 	case TARGET_SO_BINDTODEVICE:
2423 	{
2424 		char *dev_ifname, *addr_ifname;
2425 
2426 		if (optlen > IFNAMSIZ - 1) {
2427 		    optlen = IFNAMSIZ - 1;
2428 		}
2429 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2430 		if (!dev_ifname) {
2431 		    return -TARGET_EFAULT;
2432 		}
2433 		optname = SO_BINDTODEVICE;
2434 		addr_ifname = alloca(IFNAMSIZ);
2435 		memcpy(addr_ifname, dev_ifname, optlen);
2436 		addr_ifname[optlen] = 0;
2437 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2438                                            addr_ifname, optlen));
2439 		unlock_user (dev_ifname, optval_addr, 0);
2440 		return ret;
2441 	}
2442         case TARGET_SO_LINGER:
2443         {
2444                 struct linger lg;
2445                 struct target_linger *tlg;
2446 
2447                 if (optlen != sizeof(struct target_linger)) {
2448                     return -TARGET_EINVAL;
2449                 }
2450                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2451                     return -TARGET_EFAULT;
2452                 }
2453                 __get_user(lg.l_onoff, &tlg->l_onoff);
2454                 __get_user(lg.l_linger, &tlg->l_linger);
2455                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2456                                 &lg, sizeof(lg)));
2457                 unlock_user_struct(tlg, optval_addr, 0);
2458                 return ret;
2459         }
2460             /* Options with 'int' argument.  */
2461         case TARGET_SO_DEBUG:
2462 		optname = SO_DEBUG;
2463 		break;
2464         case TARGET_SO_REUSEADDR:
2465 		optname = SO_REUSEADDR;
2466 		break;
2467 #ifdef SO_REUSEPORT
2468         case TARGET_SO_REUSEPORT:
2469                 optname = SO_REUSEPORT;
2470                 break;
2471 #endif
2472         case TARGET_SO_TYPE:
2473 		optname = SO_TYPE;
2474 		break;
2475         case TARGET_SO_ERROR:
2476 		optname = SO_ERROR;
2477 		break;
2478         case TARGET_SO_DONTROUTE:
2479 		optname = SO_DONTROUTE;
2480 		break;
2481         case TARGET_SO_BROADCAST:
2482 		optname = SO_BROADCAST;
2483 		break;
2484         case TARGET_SO_SNDBUF:
2485 		optname = SO_SNDBUF;
2486 		break;
2487         case TARGET_SO_SNDBUFFORCE:
2488                 optname = SO_SNDBUFFORCE;
2489                 break;
2490         case TARGET_SO_RCVBUF:
2491 		optname = SO_RCVBUF;
2492 		break;
2493         case TARGET_SO_RCVBUFFORCE:
2494                 optname = SO_RCVBUFFORCE;
2495                 break;
2496         case TARGET_SO_KEEPALIVE:
2497 		optname = SO_KEEPALIVE;
2498 		break;
2499         case TARGET_SO_OOBINLINE:
2500 		optname = SO_OOBINLINE;
2501 		break;
2502         case TARGET_SO_NO_CHECK:
2503 		optname = SO_NO_CHECK;
2504 		break;
2505         case TARGET_SO_PRIORITY:
2506 		optname = SO_PRIORITY;
2507 		break;
2508 #ifdef SO_BSDCOMPAT
2509         case TARGET_SO_BSDCOMPAT:
2510 		optname = SO_BSDCOMPAT;
2511 		break;
2512 #endif
2513         case TARGET_SO_PASSCRED:
2514 		optname = SO_PASSCRED;
2515 		break;
2516         case TARGET_SO_PASSSEC:
2517                 optname = SO_PASSSEC;
2518                 break;
2519         case TARGET_SO_TIMESTAMP:
2520 		optname = SO_TIMESTAMP;
2521 		break;
2522         case TARGET_SO_RCVLOWAT:
2523 		optname = SO_RCVLOWAT;
2524 		break;
2525         default:
2526             goto unimplemented;
2527         }
2528 	if (optlen < sizeof(uint32_t))
2529             return -TARGET_EINVAL;
2530 
2531 	if (get_user_u32(val, optval_addr))
2532             return -TARGET_EFAULT;
2533 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2534         break;
2535 #ifdef SOL_NETLINK
2536     case SOL_NETLINK:
2537         switch (optname) {
2538         case NETLINK_PKTINFO:
2539         case NETLINK_ADD_MEMBERSHIP:
2540         case NETLINK_DROP_MEMBERSHIP:
2541         case NETLINK_BROADCAST_ERROR:
2542         case NETLINK_NO_ENOBUFS:
2543 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2544         case NETLINK_LISTEN_ALL_NSID:
2545         case NETLINK_CAP_ACK:
2546 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2547 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2548         case NETLINK_EXT_ACK:
2549 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2550 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2551         case NETLINK_GET_STRICT_CHK:
2552 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2553             break;
2554         default:
2555             goto unimplemented;
2556         }
2557         val = 0;
2558         if (optlen < sizeof(uint32_t)) {
2559             return -TARGET_EINVAL;
2560         }
2561         if (get_user_u32(val, optval_addr)) {
2562             return -TARGET_EFAULT;
2563         }
2564         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2565                                    sizeof(val)));
2566         break;
2567 #endif /* SOL_NETLINK */
2568     default:
2569     unimplemented:
2570         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2571                       level, optname);
2572         ret = -TARGET_ENOPROTOOPT;
2573     }
2574     return ret;
2575 }
2576 
2577 /* do_getsockopt() Must return target values and target errnos. */
2578 static abi_long do_getsockopt(int sockfd, int level, int optname,
2579                               abi_ulong optval_addr, abi_ulong optlen)
2580 {
2581     abi_long ret;
2582     int len, val;
2583     socklen_t lv;
2584 
2585     switch(level) {
2586     case TARGET_SOL_SOCKET:
2587         level = SOL_SOCKET;
2588         switch (optname) {
2589         /* These don't just return a single integer */
2590         case TARGET_SO_PEERNAME:
2591             goto unimplemented;
2592         case TARGET_SO_RCVTIMEO: {
2593             struct timeval tv;
2594             socklen_t tvlen;
2595 
2596             optname = SO_RCVTIMEO;
2597 
2598 get_timeout:
2599             if (get_user_u32(len, optlen)) {
2600                 return -TARGET_EFAULT;
2601             }
2602             if (len < 0) {
2603                 return -TARGET_EINVAL;
2604             }
2605 
2606             tvlen = sizeof(tv);
2607             ret = get_errno(getsockopt(sockfd, level, optname,
2608                                        &tv, &tvlen));
2609             if (ret < 0) {
2610                 return ret;
2611             }
2612             if (len > sizeof(struct target_timeval)) {
2613                 len = sizeof(struct target_timeval);
2614             }
2615             if (copy_to_user_timeval(optval_addr, &tv)) {
2616                 return -TARGET_EFAULT;
2617             }
2618             if (put_user_u32(len, optlen)) {
2619                 return -TARGET_EFAULT;
2620             }
2621             break;
2622         }
2623         case TARGET_SO_SNDTIMEO:
2624             optname = SO_SNDTIMEO;
2625             goto get_timeout;
2626         case TARGET_SO_PEERCRED: {
2627             struct ucred cr;
2628             socklen_t crlen;
2629             struct target_ucred *tcr;
2630 
2631             if (get_user_u32(len, optlen)) {
2632                 return -TARGET_EFAULT;
2633             }
2634             if (len < 0) {
2635                 return -TARGET_EINVAL;
2636             }
2637 
2638             crlen = sizeof(cr);
2639             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2640                                        &cr, &crlen));
2641             if (ret < 0) {
2642                 return ret;
2643             }
2644             if (len > crlen) {
2645                 len = crlen;
2646             }
2647             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2648                 return -TARGET_EFAULT;
2649             }
2650             __put_user(cr.pid, &tcr->pid);
2651             __put_user(cr.uid, &tcr->uid);
2652             __put_user(cr.gid, &tcr->gid);
2653             unlock_user_struct(tcr, optval_addr, 1);
2654             if (put_user_u32(len, optlen)) {
2655                 return -TARGET_EFAULT;
2656             }
2657             break;
2658         }
2659         case TARGET_SO_PEERSEC: {
2660             char *name;
2661 
2662             if (get_user_u32(len, optlen)) {
2663                 return -TARGET_EFAULT;
2664             }
2665             if (len < 0) {
2666                 return -TARGET_EINVAL;
2667             }
2668             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2669             if (!name) {
2670                 return -TARGET_EFAULT;
2671             }
2672             lv = len;
2673             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2674                                        name, &lv));
2675             if (put_user_u32(lv, optlen)) {
2676                 ret = -TARGET_EFAULT;
2677             }
2678             unlock_user(name, optval_addr, lv);
2679             break;
2680         }
2681         case TARGET_SO_LINGER:
2682         {
2683             struct linger lg;
2684             socklen_t lglen;
2685             struct target_linger *tlg;
2686 
2687             if (get_user_u32(len, optlen)) {
2688                 return -TARGET_EFAULT;
2689             }
2690             if (len < 0) {
2691                 return -TARGET_EINVAL;
2692             }
2693 
2694             lglen = sizeof(lg);
2695             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2696                                        &lg, &lglen));
2697             if (ret < 0) {
2698                 return ret;
2699             }
2700             if (len > lglen) {
2701                 len = lglen;
2702             }
2703             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2704                 return -TARGET_EFAULT;
2705             }
2706             __put_user(lg.l_onoff, &tlg->l_onoff);
2707             __put_user(lg.l_linger, &tlg->l_linger);
2708             unlock_user_struct(tlg, optval_addr, 1);
2709             if (put_user_u32(len, optlen)) {
2710                 return -TARGET_EFAULT;
2711             }
2712             break;
2713         }
2714         /* Options with 'int' argument.  */
2715         case TARGET_SO_DEBUG:
2716             optname = SO_DEBUG;
2717             goto int_case;
2718         case TARGET_SO_REUSEADDR:
2719             optname = SO_REUSEADDR;
2720             goto int_case;
2721 #ifdef SO_REUSEPORT
2722         case TARGET_SO_REUSEPORT:
2723             optname = SO_REUSEPORT;
2724             goto int_case;
2725 #endif
2726         case TARGET_SO_TYPE:
2727             optname = SO_TYPE;
2728             goto int_case;
2729         case TARGET_SO_ERROR:
2730             optname = SO_ERROR;
2731             goto int_case;
2732         case TARGET_SO_DONTROUTE:
2733             optname = SO_DONTROUTE;
2734             goto int_case;
2735         case TARGET_SO_BROADCAST:
2736             optname = SO_BROADCAST;
2737             goto int_case;
2738         case TARGET_SO_SNDBUF:
2739             optname = SO_SNDBUF;
2740             goto int_case;
2741         case TARGET_SO_RCVBUF:
2742             optname = SO_RCVBUF;
2743             goto int_case;
2744         case TARGET_SO_KEEPALIVE:
2745             optname = SO_KEEPALIVE;
2746             goto int_case;
2747         case TARGET_SO_OOBINLINE:
2748             optname = SO_OOBINLINE;
2749             goto int_case;
2750         case TARGET_SO_NO_CHECK:
2751             optname = SO_NO_CHECK;
2752             goto int_case;
2753         case TARGET_SO_PRIORITY:
2754             optname = SO_PRIORITY;
2755             goto int_case;
2756 #ifdef SO_BSDCOMPAT
2757         case TARGET_SO_BSDCOMPAT:
2758             optname = SO_BSDCOMPAT;
2759             goto int_case;
2760 #endif
2761         case TARGET_SO_PASSCRED:
2762             optname = SO_PASSCRED;
2763             goto int_case;
2764         case TARGET_SO_TIMESTAMP:
2765             optname = SO_TIMESTAMP;
2766             goto int_case;
2767         case TARGET_SO_RCVLOWAT:
2768             optname = SO_RCVLOWAT;
2769             goto int_case;
2770         case TARGET_SO_ACCEPTCONN:
2771             optname = SO_ACCEPTCONN;
2772             goto int_case;
2773         case TARGET_SO_PROTOCOL:
2774             optname = SO_PROTOCOL;
2775             goto int_case;
2776         case TARGET_SO_DOMAIN:
2777             optname = SO_DOMAIN;
2778             goto int_case;
2779         default:
2780             goto int_case;
2781         }
2782         break;
2783     case SOL_TCP:
2784     case SOL_UDP:
2785         /* TCP and UDP options all take an 'int' value.  */
2786     int_case:
2787         if (get_user_u32(len, optlen))
2788             return -TARGET_EFAULT;
2789         if (len < 0)
2790             return -TARGET_EINVAL;
2791         lv = sizeof(lv);
2792         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2793         if (ret < 0)
2794             return ret;
2795         if (optname == SO_TYPE) {
2796             val = host_to_target_sock_type(val);
2797         }
2798         if (len > lv)
2799             len = lv;
2800         if (len == 4) {
2801             if (put_user_u32(val, optval_addr))
2802                 return -TARGET_EFAULT;
2803         } else {
2804             if (put_user_u8(val, optval_addr))
2805                 return -TARGET_EFAULT;
2806         }
2807         if (put_user_u32(len, optlen))
2808             return -TARGET_EFAULT;
2809         break;
2810     case SOL_IP:
2811         switch(optname) {
2812         case IP_TOS:
2813         case IP_TTL:
2814         case IP_HDRINCL:
2815         case IP_ROUTER_ALERT:
2816         case IP_RECVOPTS:
2817         case IP_RETOPTS:
2818         case IP_PKTINFO:
2819         case IP_MTU_DISCOVER:
2820         case IP_RECVERR:
2821         case IP_RECVTOS:
2822 #ifdef IP_FREEBIND
2823         case IP_FREEBIND:
2824 #endif
2825         case IP_MULTICAST_TTL:
2826         case IP_MULTICAST_LOOP:
2827             if (get_user_u32(len, optlen))
2828                 return -TARGET_EFAULT;
2829             if (len < 0)
2830                 return -TARGET_EINVAL;
2831             lv = sizeof(lv);
2832             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2833             if (ret < 0)
2834                 return ret;
2835             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2836                 len = 1;
2837                 if (put_user_u32(len, optlen)
2838                     || put_user_u8(val, optval_addr))
2839                     return -TARGET_EFAULT;
2840             } else {
2841                 if (len > sizeof(int))
2842                     len = sizeof(int);
2843                 if (put_user_u32(len, optlen)
2844                     || put_user_u32(val, optval_addr))
2845                     return -TARGET_EFAULT;
2846             }
2847             break;
2848         default:
2849             ret = -TARGET_ENOPROTOOPT;
2850             break;
2851         }
2852         break;
2853     case SOL_IPV6:
2854         switch (optname) {
2855         case IPV6_MTU_DISCOVER:
2856         case IPV6_MTU:
2857         case IPV6_V6ONLY:
2858         case IPV6_RECVPKTINFO:
2859         case IPV6_UNICAST_HOPS:
2860         case IPV6_MULTICAST_HOPS:
2861         case IPV6_MULTICAST_LOOP:
2862         case IPV6_RECVERR:
2863         case IPV6_RECVHOPLIMIT:
2864         case IPV6_2292HOPLIMIT:
2865         case IPV6_CHECKSUM:
2866         case IPV6_ADDRFORM:
2867         case IPV6_2292PKTINFO:
2868         case IPV6_RECVTCLASS:
2869         case IPV6_RECVRTHDR:
2870         case IPV6_2292RTHDR:
2871         case IPV6_RECVHOPOPTS:
2872         case IPV6_2292HOPOPTS:
2873         case IPV6_RECVDSTOPTS:
2874         case IPV6_2292DSTOPTS:
2875         case IPV6_TCLASS:
2876         case IPV6_ADDR_PREFERENCES:
2877 #ifdef IPV6_RECVPATHMTU
2878         case IPV6_RECVPATHMTU:
2879 #endif
2880 #ifdef IPV6_TRANSPARENT
2881         case IPV6_TRANSPARENT:
2882 #endif
2883 #ifdef IPV6_FREEBIND
2884         case IPV6_FREEBIND:
2885 #endif
2886 #ifdef IPV6_RECVORIGDSTADDR
2887         case IPV6_RECVORIGDSTADDR:
2888 #endif
2889             if (get_user_u32(len, optlen))
2890                 return -TARGET_EFAULT;
2891             if (len < 0)
2892                 return -TARGET_EINVAL;
2893             lv = sizeof(lv);
2894             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2895             if (ret < 0)
2896                 return ret;
2897             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2898                 len = 1;
2899                 if (put_user_u32(len, optlen)
2900                     || put_user_u8(val, optval_addr))
2901                     return -TARGET_EFAULT;
2902             } else {
2903                 if (len > sizeof(int))
2904                     len = sizeof(int);
2905                 if (put_user_u32(len, optlen)
2906                     || put_user_u32(val, optval_addr))
2907                     return -TARGET_EFAULT;
2908             }
2909             break;
2910         default:
2911             ret = -TARGET_ENOPROTOOPT;
2912             break;
2913         }
2914         break;
2915 #ifdef SOL_NETLINK
2916     case SOL_NETLINK:
2917         switch (optname) {
2918         case NETLINK_PKTINFO:
2919         case NETLINK_BROADCAST_ERROR:
2920         case NETLINK_NO_ENOBUFS:
2921 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2922         case NETLINK_LISTEN_ALL_NSID:
2923         case NETLINK_CAP_ACK:
2924 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2925 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2926         case NETLINK_EXT_ACK:
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2928 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2929         case NETLINK_GET_STRICT_CHK:
2930 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2931             if (get_user_u32(len, optlen)) {
2932                 return -TARGET_EFAULT;
2933             }
2934             if (len != sizeof(val)) {
2935                 return -TARGET_EINVAL;
2936             }
2937             lv = len;
2938             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2939             if (ret < 0) {
2940                 return ret;
2941             }
2942             if (put_user_u32(lv, optlen)
2943                 || put_user_u32(val, optval_addr)) {
2944                 return -TARGET_EFAULT;
2945             }
2946             break;
2947 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2948         case NETLINK_LIST_MEMBERSHIPS:
2949         {
2950             uint32_t *results;
2951             int i;
2952             if (get_user_u32(len, optlen)) {
2953                 return -TARGET_EFAULT;
2954             }
2955             if (len < 0) {
2956                 return -TARGET_EINVAL;
2957             }
2958             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2959             if (!results && len > 0) {
2960                 return -TARGET_EFAULT;
2961             }
2962             lv = len;
2963             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2964             if (ret < 0) {
2965                 unlock_user(results, optval_addr, 0);
2966                 return ret;
2967             }
2968             /* swap host endianess to target endianess. */
2969             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2970                 results[i] = tswap32(results[i]);
2971             }
2972             if (put_user_u32(lv, optlen)) {
2973                 return -TARGET_EFAULT;
2974             }
2975             unlock_user(results, optval_addr, 0);
2976             break;
2977         }
2978 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2979         default:
2980             goto unimplemented;
2981         }
2982         break;
2983 #endif /* SOL_NETLINK */
2984     default:
2985     unimplemented:
2986         qemu_log_mask(LOG_UNIMP,
2987                       "getsockopt level=%d optname=%d not yet supported\n",
2988                       level, optname);
2989         ret = -TARGET_EOPNOTSUPP;
2990         break;
2991     }
2992     return ret;
2993 }
2994 
2995 /* Convert target low/high pair representing file offset into the host
2996  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2997  * as the kernel doesn't handle them either.
2998  */
2999 static void target_to_host_low_high(abi_ulong tlow,
3000                                     abi_ulong thigh,
3001                                     unsigned long *hlow,
3002                                     unsigned long *hhigh)
3003 {
3004     uint64_t off = tlow |
3005         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
3006         TARGET_LONG_BITS / 2;
3007 
3008     *hlow = off;
3009     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
3010 }
3011 
3012 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3013                                 abi_ulong count, int copy)
3014 {
3015     struct target_iovec *target_vec;
3016     struct iovec *vec;
3017     abi_ulong total_len, max_len;
3018     int i;
3019     int err = 0;
3020     bool bad_address = false;
3021 
3022     if (count == 0) {
3023         errno = 0;
3024         return NULL;
3025     }
3026     if (count > IOV_MAX) {
3027         errno = EINVAL;
3028         return NULL;
3029     }
3030 
3031     vec = g_try_new0(struct iovec, count);
3032     if (vec == NULL) {
3033         errno = ENOMEM;
3034         return NULL;
3035     }
3036 
3037     target_vec = lock_user(VERIFY_READ, target_addr,
3038                            count * sizeof(struct target_iovec), 1);
3039     if (target_vec == NULL) {
3040         err = EFAULT;
3041         goto fail2;
3042     }
3043 
3044     /* ??? If host page size > target page size, this will result in a
3045        value larger than what we can actually support.  */
3046     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3047     total_len = 0;
3048 
3049     for (i = 0; i < count; i++) {
3050         abi_ulong base = tswapal(target_vec[i].iov_base);
3051         abi_long len = tswapal(target_vec[i].iov_len);
3052 
3053         if (len < 0) {
3054             err = EINVAL;
3055             goto fail;
3056         } else if (len == 0) {
3057             /* Zero length pointer is ignored.  */
3058             vec[i].iov_base = 0;
3059         } else {
3060             vec[i].iov_base = lock_user(type, base, len, copy);
3061             /* If the first buffer pointer is bad, this is a fault.  But
3062              * subsequent bad buffers will result in a partial write; this
3063              * is realized by filling the vector with null pointers and
3064              * zero lengths. */
3065             if (!vec[i].iov_base) {
3066                 if (i == 0) {
3067                     err = EFAULT;
3068                     goto fail;
3069                 } else {
3070                     bad_address = true;
3071                 }
3072             }
3073             if (bad_address) {
3074                 len = 0;
3075             }
3076             if (len > max_len - total_len) {
3077                 len = max_len - total_len;
3078             }
3079         }
3080         vec[i].iov_len = len;
3081         total_len += len;
3082     }
3083 
3084     unlock_user(target_vec, target_addr, 0);
3085     return vec;
3086 
3087  fail:
3088     while (--i >= 0) {
3089         if (tswapal(target_vec[i].iov_len) > 0) {
3090             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3091         }
3092     }
3093     unlock_user(target_vec, target_addr, 0);
3094  fail2:
3095     g_free(vec);
3096     errno = err;
3097     return NULL;
3098 }
3099 
3100 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3101                          abi_ulong count, int copy)
3102 {
3103     struct target_iovec *target_vec;
3104     int i;
3105 
3106     target_vec = lock_user(VERIFY_READ, target_addr,
3107                            count * sizeof(struct target_iovec), 1);
3108     if (target_vec) {
3109         for (i = 0; i < count; i++) {
3110             abi_ulong base = tswapal(target_vec[i].iov_base);
3111             abi_long len = tswapal(target_vec[i].iov_len);
3112             if (len < 0) {
3113                 break;
3114             }
3115             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3116         }
3117         unlock_user(target_vec, target_addr, 0);
3118     }
3119 
3120     g_free(vec);
3121 }
3122 
3123 static inline int target_to_host_sock_type(int *type)
3124 {
3125     int host_type = 0;
3126     int target_type = *type;
3127 
3128     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3129     case TARGET_SOCK_DGRAM:
3130         host_type = SOCK_DGRAM;
3131         break;
3132     case TARGET_SOCK_STREAM:
3133         host_type = SOCK_STREAM;
3134         break;
3135     default:
3136         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3137         break;
3138     }
3139     if (target_type & TARGET_SOCK_CLOEXEC) {
3140 #if defined(SOCK_CLOEXEC)
3141         host_type |= SOCK_CLOEXEC;
3142 #else
3143         return -TARGET_EINVAL;
3144 #endif
3145     }
3146     if (target_type & TARGET_SOCK_NONBLOCK) {
3147 #if defined(SOCK_NONBLOCK)
3148         host_type |= SOCK_NONBLOCK;
3149 #elif !defined(O_NONBLOCK)
3150         return -TARGET_EINVAL;
3151 #endif
3152     }
3153     *type = host_type;
3154     return 0;
3155 }
3156 
3157 /* Try to emulate socket type flags after socket creation.  */
3158 static int sock_flags_fixup(int fd, int target_type)
3159 {
3160 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3161     if (target_type & TARGET_SOCK_NONBLOCK) {
3162         int flags = fcntl(fd, F_GETFL);
3163         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3164             close(fd);
3165             return -TARGET_EINVAL;
3166         }
3167     }
3168 #endif
3169     return fd;
3170 }
3171 
3172 /* do_socket() Must return target values and target errnos. */
3173 static abi_long do_socket(int domain, int type, int protocol)
3174 {
3175     int target_type = type;
3176     int ret;
3177 
3178     ret = target_to_host_sock_type(&type);
3179     if (ret) {
3180         return ret;
3181     }
3182 
3183     if (domain == PF_NETLINK && !(
3184 #ifdef CONFIG_RTNETLINK
3185          protocol == NETLINK_ROUTE ||
3186 #endif
3187          protocol == NETLINK_KOBJECT_UEVENT ||
3188          protocol == NETLINK_AUDIT)) {
3189         return -TARGET_EPROTONOSUPPORT;
3190     }
3191 
3192     if (domain == AF_PACKET ||
3193         (domain == AF_INET && type == SOCK_PACKET)) {
3194         protocol = tswap16(protocol);
3195     }
3196 
3197     ret = get_errno(socket(domain, type, protocol));
3198     if (ret >= 0) {
3199         ret = sock_flags_fixup(ret, target_type);
3200         if (type == SOCK_PACKET) {
3201             /* Manage an obsolete case :
3202              * if socket type is SOCK_PACKET, bind by name
3203              */
3204             fd_trans_register(ret, &target_packet_trans);
3205         } else if (domain == PF_NETLINK) {
3206             switch (protocol) {
3207 #ifdef CONFIG_RTNETLINK
3208             case NETLINK_ROUTE:
3209                 fd_trans_register(ret, &target_netlink_route_trans);
3210                 break;
3211 #endif
3212             case NETLINK_KOBJECT_UEVENT:
3213                 /* nothing to do: messages are strings */
3214                 break;
3215             case NETLINK_AUDIT:
3216                 fd_trans_register(ret, &target_netlink_audit_trans);
3217                 break;
3218             default:
3219                 g_assert_not_reached();
3220             }
3221         }
3222     }
3223     return ret;
3224 }
3225 
3226 /* do_bind() Must return target values and target errnos. */
3227 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3228                         socklen_t addrlen)
3229 {
3230     void *addr;
3231     abi_long ret;
3232 
3233     if ((int)addrlen < 0) {
3234         return -TARGET_EINVAL;
3235     }
3236 
3237     addr = alloca(addrlen+1);
3238 
3239     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3240     if (ret)
3241         return ret;
3242 
3243     return get_errno(bind(sockfd, addr, addrlen));
3244 }
3245 
3246 /* do_connect() Must return target values and target errnos. */
3247 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3248                            socklen_t addrlen)
3249 {
3250     void *addr;
3251     abi_long ret;
3252 
3253     if ((int)addrlen < 0) {
3254         return -TARGET_EINVAL;
3255     }
3256 
3257     addr = alloca(addrlen+1);
3258 
3259     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3260     if (ret)
3261         return ret;
3262 
3263     return get_errno(safe_connect(sockfd, addr, addrlen));
3264 }
3265 
3266 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3267 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3268                                       int flags, int send)
3269 {
3270     abi_long ret, len;
3271     struct msghdr msg;
3272     abi_ulong count;
3273     struct iovec *vec;
3274     abi_ulong target_vec;
3275 
3276     if (msgp->msg_name) {
3277         msg.msg_namelen = tswap32(msgp->msg_namelen);
3278         msg.msg_name = alloca(msg.msg_namelen+1);
3279         ret = target_to_host_sockaddr(fd, msg.msg_name,
3280                                       tswapal(msgp->msg_name),
3281                                       msg.msg_namelen);
3282         if (ret == -TARGET_EFAULT) {
3283             /* For connected sockets msg_name and msg_namelen must
3284              * be ignored, so returning EFAULT immediately is wrong.
3285              * Instead, pass a bad msg_name to the host kernel, and
3286              * let it decide whether to return EFAULT or not.
3287              */
3288             msg.msg_name = (void *)-1;
3289         } else if (ret) {
3290             goto out2;
3291         }
3292     } else {
3293         msg.msg_name = NULL;
3294         msg.msg_namelen = 0;
3295     }
3296     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3297     msg.msg_control = alloca(msg.msg_controllen);
3298     memset(msg.msg_control, 0, msg.msg_controllen);
3299 
3300     msg.msg_flags = tswap32(msgp->msg_flags);
3301 
3302     count = tswapal(msgp->msg_iovlen);
3303     target_vec = tswapal(msgp->msg_iov);
3304 
3305     if (count > IOV_MAX) {
3306         /* sendrcvmsg returns a different errno for this condition than
3307          * readv/writev, so we must catch it here before lock_iovec() does.
3308          */
3309         ret = -TARGET_EMSGSIZE;
3310         goto out2;
3311     }
3312 
3313     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3314                      target_vec, count, send);
3315     if (vec == NULL) {
3316         ret = -host_to_target_errno(errno);
3317         goto out2;
3318     }
3319     msg.msg_iovlen = count;
3320     msg.msg_iov = vec;
3321 
3322     if (send) {
3323         if (fd_trans_target_to_host_data(fd)) {
3324             void *host_msg;
3325 
3326             host_msg = g_malloc(msg.msg_iov->iov_len);
3327             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3328             ret = fd_trans_target_to_host_data(fd)(host_msg,
3329                                                    msg.msg_iov->iov_len);
3330             if (ret >= 0) {
3331                 msg.msg_iov->iov_base = host_msg;
3332                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3333             }
3334             g_free(host_msg);
3335         } else {
3336             ret = target_to_host_cmsg(&msg, msgp);
3337             if (ret == 0) {
3338                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3339             }
3340         }
3341     } else {
3342         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3343         if (!is_error(ret)) {
3344             len = ret;
3345             if (fd_trans_host_to_target_data(fd)) {
3346                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3347                                                MIN(msg.msg_iov->iov_len, len));
3348             } else {
3349                 ret = host_to_target_cmsg(msgp, &msg);
3350             }
3351             if (!is_error(ret)) {
3352                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3353                 msgp->msg_flags = tswap32(msg.msg_flags);
3354                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3355                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3356                                     msg.msg_name, msg.msg_namelen);
3357                     if (ret) {
3358                         goto out;
3359                     }
3360                 }
3361 
3362                 ret = len;
3363             }
3364         }
3365     }
3366 
3367 out:
3368     unlock_iovec(vec, target_vec, count, !send);
3369 out2:
3370     return ret;
3371 }
3372 
3373 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3374                                int flags, int send)
3375 {
3376     abi_long ret;
3377     struct target_msghdr *msgp;
3378 
3379     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3380                           msgp,
3381                           target_msg,
3382                           send ? 1 : 0)) {
3383         return -TARGET_EFAULT;
3384     }
3385     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3386     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3387     return ret;
3388 }
3389 
3390 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3391  * so it might not have this *mmsg-specific flag either.
3392  */
3393 #ifndef MSG_WAITFORONE
3394 #define MSG_WAITFORONE 0x10000
3395 #endif
3396 
3397 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3398                                 unsigned int vlen, unsigned int flags,
3399                                 int send)
3400 {
3401     struct target_mmsghdr *mmsgp;
3402     abi_long ret = 0;
3403     int i;
3404 
3405     if (vlen > UIO_MAXIOV) {
3406         vlen = UIO_MAXIOV;
3407     }
3408 
3409     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3410     if (!mmsgp) {
3411         return -TARGET_EFAULT;
3412     }
3413 
3414     for (i = 0; i < vlen; i++) {
3415         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3416         if (is_error(ret)) {
3417             break;
3418         }
3419         mmsgp[i].msg_len = tswap32(ret);
3420         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3421         if (flags & MSG_WAITFORONE) {
3422             flags |= MSG_DONTWAIT;
3423         }
3424     }
3425 
3426     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3427 
3428     /* Return number of datagrams sent if we sent any at all;
3429      * otherwise return the error.
3430      */
3431     if (i) {
3432         return i;
3433     }
3434     return ret;
3435 }
3436 
3437 /* do_accept4() Must return target values and target errnos. */
3438 static abi_long do_accept4(int fd, abi_ulong target_addr,
3439                            abi_ulong target_addrlen_addr, int flags)
3440 {
3441     socklen_t addrlen, ret_addrlen;
3442     void *addr;
3443     abi_long ret;
3444     int host_flags;
3445 
3446     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3447 
3448     if (target_addr == 0) {
3449         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3450     }
3451 
3452     /* linux returns EFAULT if addrlen pointer is invalid */
3453     if (get_user_u32(addrlen, target_addrlen_addr))
3454         return -TARGET_EFAULT;
3455 
3456     if ((int)addrlen < 0) {
3457         return -TARGET_EINVAL;
3458     }
3459 
3460     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3461         return -TARGET_EFAULT;
3462     }
3463 
3464     addr = alloca(addrlen);
3465 
3466     ret_addrlen = addrlen;
3467     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3468     if (!is_error(ret)) {
3469         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3470         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3471             ret = -TARGET_EFAULT;
3472         }
3473     }
3474     return ret;
3475 }
3476 
3477 /* do_getpeername() Must return target values and target errnos. */
3478 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3479                                abi_ulong target_addrlen_addr)
3480 {
3481     socklen_t addrlen, ret_addrlen;
3482     void *addr;
3483     abi_long ret;
3484 
3485     if (get_user_u32(addrlen, target_addrlen_addr))
3486         return -TARGET_EFAULT;
3487 
3488     if ((int)addrlen < 0) {
3489         return -TARGET_EINVAL;
3490     }
3491 
3492     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3493         return -TARGET_EFAULT;
3494     }
3495 
3496     addr = alloca(addrlen);
3497 
3498     ret_addrlen = addrlen;
3499     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3500     if (!is_error(ret)) {
3501         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3502         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3503             ret = -TARGET_EFAULT;
3504         }
3505     }
3506     return ret;
3507 }
3508 
3509 /* do_getsockname() Must return target values and target errnos. */
3510 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3511                                abi_ulong target_addrlen_addr)
3512 {
3513     socklen_t addrlen, ret_addrlen;
3514     void *addr;
3515     abi_long ret;
3516 
3517     if (get_user_u32(addrlen, target_addrlen_addr))
3518         return -TARGET_EFAULT;
3519 
3520     if ((int)addrlen < 0) {
3521         return -TARGET_EINVAL;
3522     }
3523 
3524     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3525         return -TARGET_EFAULT;
3526     }
3527 
3528     addr = alloca(addrlen);
3529 
3530     ret_addrlen = addrlen;
3531     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3532     if (!is_error(ret)) {
3533         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3534         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3535             ret = -TARGET_EFAULT;
3536         }
3537     }
3538     return ret;
3539 }
3540 
3541 /* do_socketpair() Must return target values and target errnos. */
3542 static abi_long do_socketpair(int domain, int type, int protocol,
3543                               abi_ulong target_tab_addr)
3544 {
3545     int tab[2];
3546     abi_long ret;
3547 
3548     target_to_host_sock_type(&type);
3549 
3550     ret = get_errno(socketpair(domain, type, protocol, tab));
3551     if (!is_error(ret)) {
3552         if (put_user_s32(tab[0], target_tab_addr)
3553             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3554             ret = -TARGET_EFAULT;
3555     }
3556     return ret;
3557 }
3558 
3559 /* do_sendto() Must return target values and target errnos. */
3560 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3561                           abi_ulong target_addr, socklen_t addrlen)
3562 {
3563     void *addr;
3564     void *host_msg;
3565     void *copy_msg = NULL;
3566     abi_long ret;
3567 
3568     if ((int)addrlen < 0) {
3569         return -TARGET_EINVAL;
3570     }
3571 
3572     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3573     if (!host_msg)
3574         return -TARGET_EFAULT;
3575     if (fd_trans_target_to_host_data(fd)) {
3576         copy_msg = host_msg;
3577         host_msg = g_malloc(len);
3578         memcpy(host_msg, copy_msg, len);
3579         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3580         if (ret < 0) {
3581             goto fail;
3582         }
3583     }
3584     if (target_addr) {
3585         addr = alloca(addrlen+1);
3586         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3587         if (ret) {
3588             goto fail;
3589         }
3590         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3591     } else {
3592         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3593     }
3594 fail:
3595     if (copy_msg) {
3596         g_free(host_msg);
3597         host_msg = copy_msg;
3598     }
3599     unlock_user(host_msg, msg, 0);
3600     return ret;
3601 }
3602 
3603 /* do_recvfrom() Must return target values and target errnos. */
3604 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3605                             abi_ulong target_addr,
3606                             abi_ulong target_addrlen)
3607 {
3608     socklen_t addrlen, ret_addrlen;
3609     void *addr;
3610     void *host_msg;
3611     abi_long ret;
3612 
3613     if (!msg) {
3614         host_msg = NULL;
3615     } else {
3616         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3617         if (!host_msg) {
3618             return -TARGET_EFAULT;
3619         }
3620     }
3621     if (target_addr) {
3622         if (get_user_u32(addrlen, target_addrlen)) {
3623             ret = -TARGET_EFAULT;
3624             goto fail;
3625         }
3626         if ((int)addrlen < 0) {
3627             ret = -TARGET_EINVAL;
3628             goto fail;
3629         }
3630         addr = alloca(addrlen);
3631         ret_addrlen = addrlen;
3632         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3633                                       addr, &ret_addrlen));
3634     } else {
3635         addr = NULL; /* To keep compiler quiet.  */
3636         addrlen = 0; /* To keep compiler quiet.  */
3637         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3638     }
3639     if (!is_error(ret)) {
3640         if (fd_trans_host_to_target_data(fd)) {
3641             abi_long trans;
3642             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3643             if (is_error(trans)) {
3644                 ret = trans;
3645                 goto fail;
3646             }
3647         }
3648         if (target_addr) {
3649             host_to_target_sockaddr(target_addr, addr,
3650                                     MIN(addrlen, ret_addrlen));
3651             if (put_user_u32(ret_addrlen, target_addrlen)) {
3652                 ret = -TARGET_EFAULT;
3653                 goto fail;
3654             }
3655         }
3656         unlock_user(host_msg, msg, len);
3657     } else {
3658 fail:
3659         unlock_user(host_msg, msg, 0);
3660     }
3661     return ret;
3662 }
3663 
3664 #ifdef TARGET_NR_socketcall
3665 /* do_socketcall() must return target values and target errnos. */
3666 static abi_long do_socketcall(int num, abi_ulong vptr)
3667 {
3668     static const unsigned nargs[] = { /* number of arguments per operation */
3669         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3670         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3671         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3672         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3673         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3674         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3675         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3676         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3677         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3678         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3679         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3680         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3681         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3682         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3683         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3684         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3685         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3686         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3687         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3688         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3689     };
3690     abi_long a[6]; /* max 6 args */
3691     unsigned i;
3692 
3693     /* check the range of the first argument num */
3694     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3695     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3696         return -TARGET_EINVAL;
3697     }
3698     /* ensure we have space for args */
3699     if (nargs[num] > ARRAY_SIZE(a)) {
3700         return -TARGET_EINVAL;
3701     }
3702     /* collect the arguments in a[] according to nargs[] */
3703     for (i = 0; i < nargs[num]; ++i) {
3704         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3705             return -TARGET_EFAULT;
3706         }
3707     }
3708     /* now when we have the args, invoke the appropriate underlying function */
3709     switch (num) {
3710     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3711         return do_socket(a[0], a[1], a[2]);
3712     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3713         return do_bind(a[0], a[1], a[2]);
3714     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3715         return do_connect(a[0], a[1], a[2]);
3716     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3717         return get_errno(listen(a[0], a[1]));
3718     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3719         return do_accept4(a[0], a[1], a[2], 0);
3720     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3721         return do_getsockname(a[0], a[1], a[2]);
3722     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3723         return do_getpeername(a[0], a[1], a[2]);
3724     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3725         return do_socketpair(a[0], a[1], a[2], a[3]);
3726     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3727         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3728     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3729         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3730     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3731         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3732     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3733         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3734     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3735         return get_errno(shutdown(a[0], a[1]));
3736     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3737         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3738     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3739         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3740     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3741         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3742     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3743         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3744     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3745         return do_accept4(a[0], a[1], a[2], a[3]);
3746     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3747         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3748     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3749         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3750     default:
3751         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3752         return -TARGET_EINVAL;
3753     }
3754 }
3755 #endif
3756 
3757 #define N_SHM_REGIONS	32
3758 
3759 static struct shm_region {
3760     abi_ulong start;
3761     abi_ulong size;
3762     bool in_use;
3763 } shm_regions[N_SHM_REGIONS];
3764 
3765 #ifndef TARGET_SEMID64_DS
3766 /* asm-generic version of this struct */
3767 struct target_semid64_ds
3768 {
3769   struct target_ipc_perm sem_perm;
3770   abi_ulong sem_otime;
3771 #if TARGET_ABI_BITS == 32
3772   abi_ulong __unused1;
3773 #endif
3774   abi_ulong sem_ctime;
3775 #if TARGET_ABI_BITS == 32
3776   abi_ulong __unused2;
3777 #endif
3778   abi_ulong sem_nsems;
3779   abi_ulong __unused3;
3780   abi_ulong __unused4;
3781 };
3782 #endif
3783 
3784 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3785                                                abi_ulong target_addr)
3786 {
3787     struct target_ipc_perm *target_ip;
3788     struct target_semid64_ds *target_sd;
3789 
3790     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3791         return -TARGET_EFAULT;
3792     target_ip = &(target_sd->sem_perm);
3793     host_ip->__key = tswap32(target_ip->__key);
3794     host_ip->uid = tswap32(target_ip->uid);
3795     host_ip->gid = tswap32(target_ip->gid);
3796     host_ip->cuid = tswap32(target_ip->cuid);
3797     host_ip->cgid = tswap32(target_ip->cgid);
3798 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3799     host_ip->mode = tswap32(target_ip->mode);
3800 #else
3801     host_ip->mode = tswap16(target_ip->mode);
3802 #endif
3803 #if defined(TARGET_PPC)
3804     host_ip->__seq = tswap32(target_ip->__seq);
3805 #else
3806     host_ip->__seq = tswap16(target_ip->__seq);
3807 #endif
3808     unlock_user_struct(target_sd, target_addr, 0);
3809     return 0;
3810 }
3811 
3812 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3813                                                struct ipc_perm *host_ip)
3814 {
3815     struct target_ipc_perm *target_ip;
3816     struct target_semid64_ds *target_sd;
3817 
3818     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3819         return -TARGET_EFAULT;
3820     target_ip = &(target_sd->sem_perm);
3821     target_ip->__key = tswap32(host_ip->__key);
3822     target_ip->uid = tswap32(host_ip->uid);
3823     target_ip->gid = tswap32(host_ip->gid);
3824     target_ip->cuid = tswap32(host_ip->cuid);
3825     target_ip->cgid = tswap32(host_ip->cgid);
3826 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3827     target_ip->mode = tswap32(host_ip->mode);
3828 #else
3829     target_ip->mode = tswap16(host_ip->mode);
3830 #endif
3831 #if defined(TARGET_PPC)
3832     target_ip->__seq = tswap32(host_ip->__seq);
3833 #else
3834     target_ip->__seq = tswap16(host_ip->__seq);
3835 #endif
3836     unlock_user_struct(target_sd, target_addr, 1);
3837     return 0;
3838 }
3839 
3840 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3841                                                abi_ulong target_addr)
3842 {
3843     struct target_semid64_ds *target_sd;
3844 
3845     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3846         return -TARGET_EFAULT;
3847     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3848         return -TARGET_EFAULT;
3849     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3850     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3851     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3852     unlock_user_struct(target_sd, target_addr, 0);
3853     return 0;
3854 }
3855 
3856 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3857                                                struct semid_ds *host_sd)
3858 {
3859     struct target_semid64_ds *target_sd;
3860 
3861     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3862         return -TARGET_EFAULT;
3863     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3864         return -TARGET_EFAULT;
3865     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3866     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3867     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3868     unlock_user_struct(target_sd, target_addr, 1);
3869     return 0;
3870 }
3871 
3872 struct target_seminfo {
3873     int semmap;
3874     int semmni;
3875     int semmns;
3876     int semmnu;
3877     int semmsl;
3878     int semopm;
3879     int semume;
3880     int semusz;
3881     int semvmx;
3882     int semaem;
3883 };
3884 
3885 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3886                                               struct seminfo *host_seminfo)
3887 {
3888     struct target_seminfo *target_seminfo;
3889     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3890         return -TARGET_EFAULT;
3891     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3892     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3893     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3894     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3895     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3896     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3897     __put_user(host_seminfo->semume, &target_seminfo->semume);
3898     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3899     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3900     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3901     unlock_user_struct(target_seminfo, target_addr, 1);
3902     return 0;
3903 }
3904 
3905 union semun {
3906 	int val;
3907 	struct semid_ds *buf;
3908 	unsigned short *array;
3909 	struct seminfo *__buf;
3910 };
3911 
3912 union target_semun {
3913 	int val;
3914 	abi_ulong buf;
3915 	abi_ulong array;
3916 	abi_ulong __buf;
3917 };
3918 
3919 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3920                                                abi_ulong target_addr)
3921 {
3922     int nsems;
3923     unsigned short *array;
3924     union semun semun;
3925     struct semid_ds semid_ds;
3926     int i, ret;
3927 
3928     semun.buf = &semid_ds;
3929 
3930     ret = semctl(semid, 0, IPC_STAT, semun);
3931     if (ret == -1)
3932         return get_errno(ret);
3933 
3934     nsems = semid_ds.sem_nsems;
3935 
3936     *host_array = g_try_new(unsigned short, nsems);
3937     if (!*host_array) {
3938         return -TARGET_ENOMEM;
3939     }
3940     array = lock_user(VERIFY_READ, target_addr,
3941                       nsems*sizeof(unsigned short), 1);
3942     if (!array) {
3943         g_free(*host_array);
3944         return -TARGET_EFAULT;
3945     }
3946 
3947     for(i=0; i<nsems; i++) {
3948         __get_user((*host_array)[i], &array[i]);
3949     }
3950     unlock_user(array, target_addr, 0);
3951 
3952     return 0;
3953 }
3954 
3955 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3956                                                unsigned short **host_array)
3957 {
3958     int nsems;
3959     unsigned short *array;
3960     union semun semun;
3961     struct semid_ds semid_ds;
3962     int i, ret;
3963 
3964     semun.buf = &semid_ds;
3965 
3966     ret = semctl(semid, 0, IPC_STAT, semun);
3967     if (ret == -1)
3968         return get_errno(ret);
3969 
3970     nsems = semid_ds.sem_nsems;
3971 
3972     array = lock_user(VERIFY_WRITE, target_addr,
3973                       nsems*sizeof(unsigned short), 0);
3974     if (!array)
3975         return -TARGET_EFAULT;
3976 
3977     for(i=0; i<nsems; i++) {
3978         __put_user((*host_array)[i], &array[i]);
3979     }
3980     g_free(*host_array);
3981     unlock_user(array, target_addr, 1);
3982 
3983     return 0;
3984 }
3985 
3986 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3987                                  abi_ulong target_arg)
3988 {
3989     union target_semun target_su = { .buf = target_arg };
3990     union semun arg;
3991     struct semid_ds dsarg;
3992     unsigned short *array = NULL;
3993     struct seminfo seminfo;
3994     abi_long ret = -TARGET_EINVAL;
3995     abi_long err;
3996     cmd &= 0xff;
3997 
3998     switch( cmd ) {
3999 	case GETVAL:
4000 	case SETVAL:
4001             /* In 64 bit cross-endian situations, we will erroneously pick up
4002              * the wrong half of the union for the "val" element.  To rectify
4003              * this, the entire 8-byte structure is byteswapped, followed by
4004 	     * a swap of the 4 byte val field. In other cases, the data is
4005 	     * already in proper host byte order. */
4006 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
4007 		target_su.buf = tswapal(target_su.buf);
4008 		arg.val = tswap32(target_su.val);
4009 	    } else {
4010 		arg.val = target_su.val;
4011 	    }
4012             ret = get_errno(semctl(semid, semnum, cmd, arg));
4013             break;
4014 	case GETALL:
4015 	case SETALL:
4016             err = target_to_host_semarray(semid, &array, target_su.array);
4017             if (err)
4018                 return err;
4019             arg.array = array;
4020             ret = get_errno(semctl(semid, semnum, cmd, arg));
4021             err = host_to_target_semarray(semid, target_su.array, &array);
4022             if (err)
4023                 return err;
4024             break;
4025 	case IPC_STAT:
4026 	case IPC_SET:
4027 	case SEM_STAT:
4028             err = target_to_host_semid_ds(&dsarg, target_su.buf);
4029             if (err)
4030                 return err;
4031             arg.buf = &dsarg;
4032             ret = get_errno(semctl(semid, semnum, cmd, arg));
4033             err = host_to_target_semid_ds(target_su.buf, &dsarg);
4034             if (err)
4035                 return err;
4036             break;
4037 	case IPC_INFO:
4038 	case SEM_INFO:
4039             arg.__buf = &seminfo;
4040             ret = get_errno(semctl(semid, semnum, cmd, arg));
4041             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4042             if (err)
4043                 return err;
4044             break;
4045 	case IPC_RMID:
4046 	case GETPID:
4047 	case GETNCNT:
4048 	case GETZCNT:
4049             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4050             break;
4051     }
4052 
4053     return ret;
4054 }
4055 
4056 struct target_sembuf {
4057     unsigned short sem_num;
4058     short sem_op;
4059     short sem_flg;
4060 };
4061 
4062 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4063                                              abi_ulong target_addr,
4064                                              unsigned nsops)
4065 {
4066     struct target_sembuf *target_sembuf;
4067     int i;
4068 
4069     target_sembuf = lock_user(VERIFY_READ, target_addr,
4070                               nsops*sizeof(struct target_sembuf), 1);
4071     if (!target_sembuf)
4072         return -TARGET_EFAULT;
4073 
4074     for(i=0; i<nsops; i++) {
4075         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4076         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4077         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4078     }
4079 
4080     unlock_user(target_sembuf, target_addr, 0);
4081 
4082     return 0;
4083 }
4084 
4085 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4086     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4087 
4088 /*
4089  * This macro is required to handle the s390 variants, which passes the
4090  * arguments in a different order than default.
4091  */
4092 #ifdef __s390x__
4093 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4094   (__nsops), (__timeout), (__sops)
4095 #else
4096 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4097   (__nsops), 0, (__sops), (__timeout)
4098 #endif
4099 
4100 static inline abi_long do_semtimedop(int semid,
4101                                      abi_long ptr,
4102                                      unsigned nsops,
4103                                      abi_long timeout, bool time64)
4104 {
4105     struct sembuf *sops;
4106     struct timespec ts, *pts = NULL;
4107     abi_long ret;
4108 
4109     if (timeout) {
4110         pts = &ts;
4111         if (time64) {
4112             if (target_to_host_timespec64(pts, timeout)) {
4113                 return -TARGET_EFAULT;
4114             }
4115         } else {
4116             if (target_to_host_timespec(pts, timeout)) {
4117                 return -TARGET_EFAULT;
4118             }
4119         }
4120     }
4121 
4122     if (nsops > TARGET_SEMOPM) {
4123         return -TARGET_E2BIG;
4124     }
4125 
4126     sops = g_new(struct sembuf, nsops);
4127 
4128     if (target_to_host_sembuf(sops, ptr, nsops)) {
4129         g_free(sops);
4130         return -TARGET_EFAULT;
4131     }
4132 
4133     ret = -TARGET_ENOSYS;
4134 #ifdef __NR_semtimedop
4135     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4136 #endif
4137 #ifdef __NR_ipc
4138     if (ret == -TARGET_ENOSYS) {
4139         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4140                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4141     }
4142 #endif
4143     g_free(sops);
4144     return ret;
4145 }
4146 #endif
4147 
4148 struct target_msqid_ds
4149 {
4150     struct target_ipc_perm msg_perm;
4151     abi_ulong msg_stime;
4152 #if TARGET_ABI_BITS == 32
4153     abi_ulong __unused1;
4154 #endif
4155     abi_ulong msg_rtime;
4156 #if TARGET_ABI_BITS == 32
4157     abi_ulong __unused2;
4158 #endif
4159     abi_ulong msg_ctime;
4160 #if TARGET_ABI_BITS == 32
4161     abi_ulong __unused3;
4162 #endif
4163     abi_ulong __msg_cbytes;
4164     abi_ulong msg_qnum;
4165     abi_ulong msg_qbytes;
4166     abi_ulong msg_lspid;
4167     abi_ulong msg_lrpid;
4168     abi_ulong __unused4;
4169     abi_ulong __unused5;
4170 };
4171 
4172 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4173                                                abi_ulong target_addr)
4174 {
4175     struct target_msqid_ds *target_md;
4176 
4177     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4178         return -TARGET_EFAULT;
4179     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4180         return -TARGET_EFAULT;
4181     host_md->msg_stime = tswapal(target_md->msg_stime);
4182     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4183     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4184     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4185     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4186     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4187     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4188     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4189     unlock_user_struct(target_md, target_addr, 0);
4190     return 0;
4191 }
4192 
4193 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4194                                                struct msqid_ds *host_md)
4195 {
4196     struct target_msqid_ds *target_md;
4197 
4198     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4199         return -TARGET_EFAULT;
4200     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4201         return -TARGET_EFAULT;
4202     target_md->msg_stime = tswapal(host_md->msg_stime);
4203     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4204     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4205     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4206     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4207     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4208     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4209     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4210     unlock_user_struct(target_md, target_addr, 1);
4211     return 0;
4212 }
4213 
4214 struct target_msginfo {
4215     int msgpool;
4216     int msgmap;
4217     int msgmax;
4218     int msgmnb;
4219     int msgmni;
4220     int msgssz;
4221     int msgtql;
4222     unsigned short int msgseg;
4223 };
4224 
4225 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4226                                               struct msginfo *host_msginfo)
4227 {
4228     struct target_msginfo *target_msginfo;
4229     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4230         return -TARGET_EFAULT;
4231     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4232     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4233     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4234     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4235     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4236     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4237     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4238     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4239     unlock_user_struct(target_msginfo, target_addr, 1);
4240     return 0;
4241 }
4242 
4243 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4244 {
4245     struct msqid_ds dsarg;
4246     struct msginfo msginfo;
4247     abi_long ret = -TARGET_EINVAL;
4248 
4249     cmd &= 0xff;
4250 
4251     switch (cmd) {
4252     case IPC_STAT:
4253     case IPC_SET:
4254     case MSG_STAT:
4255         if (target_to_host_msqid_ds(&dsarg,ptr))
4256             return -TARGET_EFAULT;
4257         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4258         if (host_to_target_msqid_ds(ptr,&dsarg))
4259             return -TARGET_EFAULT;
4260         break;
4261     case IPC_RMID:
4262         ret = get_errno(msgctl(msgid, cmd, NULL));
4263         break;
4264     case IPC_INFO:
4265     case MSG_INFO:
4266         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4267         if (host_to_target_msginfo(ptr, &msginfo))
4268             return -TARGET_EFAULT;
4269         break;
4270     }
4271 
4272     return ret;
4273 }
4274 
4275 struct target_msgbuf {
4276     abi_long mtype;
4277     char	mtext[1];
4278 };
4279 
4280 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4281                                  ssize_t msgsz, int msgflg)
4282 {
4283     struct target_msgbuf *target_mb;
4284     struct msgbuf *host_mb;
4285     abi_long ret = 0;
4286 
4287     if (msgsz < 0) {
4288         return -TARGET_EINVAL;
4289     }
4290 
4291     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4292         return -TARGET_EFAULT;
4293     host_mb = g_try_malloc(msgsz + sizeof(long));
4294     if (!host_mb) {
4295         unlock_user_struct(target_mb, msgp, 0);
4296         return -TARGET_ENOMEM;
4297     }
4298     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4299     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4300     ret = -TARGET_ENOSYS;
4301 #ifdef __NR_msgsnd
4302     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4303 #endif
4304 #ifdef __NR_ipc
4305     if (ret == -TARGET_ENOSYS) {
4306 #ifdef __s390x__
4307         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4308                                  host_mb));
4309 #else
4310         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4311                                  host_mb, 0));
4312 #endif
4313     }
4314 #endif
4315     g_free(host_mb);
4316     unlock_user_struct(target_mb, msgp, 0);
4317 
4318     return ret;
4319 }
4320 
4321 #ifdef __NR_ipc
4322 #if defined(__sparc__)
4323 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4324 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4325 #elif defined(__s390x__)
4326 /* The s390 sys_ipc variant has only five parameters.  */
4327 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4328     ((long int[]){(long int)__msgp, __msgtyp})
4329 #else
4330 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4331     ((long int[]){(long int)__msgp, __msgtyp}), 0
4332 #endif
4333 #endif
4334 
4335 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4336                                  ssize_t msgsz, abi_long msgtyp,
4337                                  int msgflg)
4338 {
4339     struct target_msgbuf *target_mb;
4340     char *target_mtext;
4341     struct msgbuf *host_mb;
4342     abi_long ret = 0;
4343 
4344     if (msgsz < 0) {
4345         return -TARGET_EINVAL;
4346     }
4347 
4348     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4349         return -TARGET_EFAULT;
4350 
4351     host_mb = g_try_malloc(msgsz + sizeof(long));
4352     if (!host_mb) {
4353         ret = -TARGET_ENOMEM;
4354         goto end;
4355     }
4356     ret = -TARGET_ENOSYS;
4357 #ifdef __NR_msgrcv
4358     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4359 #endif
4360 #ifdef __NR_ipc
4361     if (ret == -TARGET_ENOSYS) {
4362         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4363                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4364     }
4365 #endif
4366 
4367     if (ret > 0) {
4368         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4369         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4370         if (!target_mtext) {
4371             ret = -TARGET_EFAULT;
4372             goto end;
4373         }
4374         memcpy(target_mb->mtext, host_mb->mtext, ret);
4375         unlock_user(target_mtext, target_mtext_addr, ret);
4376     }
4377 
4378     target_mb->mtype = tswapal(host_mb->mtype);
4379 
4380 end:
4381     if (target_mb)
4382         unlock_user_struct(target_mb, msgp, 1);
4383     g_free(host_mb);
4384     return ret;
4385 }
4386 
4387 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4388                                                abi_ulong target_addr)
4389 {
4390     struct target_shmid_ds *target_sd;
4391 
4392     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4393         return -TARGET_EFAULT;
4394     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4395         return -TARGET_EFAULT;
4396     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4397     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4398     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4399     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4400     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4401     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4402     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4403     unlock_user_struct(target_sd, target_addr, 0);
4404     return 0;
4405 }
4406 
4407 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4408                                                struct shmid_ds *host_sd)
4409 {
4410     struct target_shmid_ds *target_sd;
4411 
4412     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4413         return -TARGET_EFAULT;
4414     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4415         return -TARGET_EFAULT;
4416     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4417     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4418     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4419     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4420     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4421     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4422     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4423     unlock_user_struct(target_sd, target_addr, 1);
4424     return 0;
4425 }
4426 
4427 struct  target_shminfo {
4428     abi_ulong shmmax;
4429     abi_ulong shmmin;
4430     abi_ulong shmmni;
4431     abi_ulong shmseg;
4432     abi_ulong shmall;
4433 };
4434 
4435 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4436                                               struct shminfo *host_shminfo)
4437 {
4438     struct target_shminfo *target_shminfo;
4439     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4440         return -TARGET_EFAULT;
4441     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4442     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4443     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4444     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4445     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4446     unlock_user_struct(target_shminfo, target_addr, 1);
4447     return 0;
4448 }
4449 
4450 struct target_shm_info {
4451     int used_ids;
4452     abi_ulong shm_tot;
4453     abi_ulong shm_rss;
4454     abi_ulong shm_swp;
4455     abi_ulong swap_attempts;
4456     abi_ulong swap_successes;
4457 };
4458 
4459 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4460                                                struct shm_info *host_shm_info)
4461 {
4462     struct target_shm_info *target_shm_info;
4463     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4464         return -TARGET_EFAULT;
4465     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4466     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4467     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4468     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4469     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4470     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4471     unlock_user_struct(target_shm_info, target_addr, 1);
4472     return 0;
4473 }
4474 
4475 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4476 {
4477     struct shmid_ds dsarg;
4478     struct shminfo shminfo;
4479     struct shm_info shm_info;
4480     abi_long ret = -TARGET_EINVAL;
4481 
4482     cmd &= 0xff;
4483 
4484     switch(cmd) {
4485     case IPC_STAT:
4486     case IPC_SET:
4487     case SHM_STAT:
4488         if (target_to_host_shmid_ds(&dsarg, buf))
4489             return -TARGET_EFAULT;
4490         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4491         if (host_to_target_shmid_ds(buf, &dsarg))
4492             return -TARGET_EFAULT;
4493         break;
4494     case IPC_INFO:
4495         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4496         if (host_to_target_shminfo(buf, &shminfo))
4497             return -TARGET_EFAULT;
4498         break;
4499     case SHM_INFO:
4500         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4501         if (host_to_target_shm_info(buf, &shm_info))
4502             return -TARGET_EFAULT;
4503         break;
4504     case IPC_RMID:
4505     case SHM_LOCK:
4506     case SHM_UNLOCK:
4507         ret = get_errno(shmctl(shmid, cmd, NULL));
4508         break;
4509     }
4510 
4511     return ret;
4512 }
4513 
4514 #ifndef TARGET_FORCE_SHMLBA
4515 /* For most architectures, SHMLBA is the same as the page size;
4516  * some architectures have larger values, in which case they should
4517  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4518  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4519  * and defining its own value for SHMLBA.
4520  *
4521  * The kernel also permits SHMLBA to be set by the architecture to a
4522  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4523  * this means that addresses are rounded to the large size if
4524  * SHM_RND is set but addresses not aligned to that size are not rejected
4525  * as long as they are at least page-aligned. Since the only architecture
4526  * which uses this is ia64 this code doesn't provide for that oddity.
4527  */
4528 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4529 {
4530     return TARGET_PAGE_SIZE;
4531 }
4532 #endif
4533 
4534 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4535                                  int shmid, abi_ulong shmaddr, int shmflg)
4536 {
4537     CPUState *cpu = env_cpu(cpu_env);
4538     abi_long raddr;
4539     void *host_raddr;
4540     struct shmid_ds shm_info;
4541     int i,ret;
4542     abi_ulong shmlba;
4543 
4544     /* shmat pointers are always untagged */
4545 
4546     /* find out the length of the shared memory segment */
4547     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4548     if (is_error(ret)) {
4549         /* can't get length, bail out */
4550         return ret;
4551     }
4552 
4553     shmlba = target_shmlba(cpu_env);
4554 
4555     if (shmaddr & (shmlba - 1)) {
4556         if (shmflg & SHM_RND) {
4557             shmaddr &= ~(shmlba - 1);
4558         } else {
4559             return -TARGET_EINVAL;
4560         }
4561     }
4562     if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4563         return -TARGET_EINVAL;
4564     }
4565 
4566     mmap_lock();
4567 
4568     /*
4569      * We're mapping shared memory, so ensure we generate code for parallel
4570      * execution and flush old translations.  This will work up to the level
4571      * supported by the host -- anything that requires EXCP_ATOMIC will not
4572      * be atomic with respect to an external process.
4573      */
4574     if (!(cpu->tcg_cflags & CF_PARALLEL)) {
4575         cpu->tcg_cflags |= CF_PARALLEL;
4576         tb_flush(cpu);
4577     }
4578 
4579     if (shmaddr)
4580         host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4581     else {
4582         abi_ulong mmap_start;
4583 
4584         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4585         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4586 
4587         if (mmap_start == -1) {
4588             errno = ENOMEM;
4589             host_raddr = (void *)-1;
4590         } else
4591             host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4592                                shmflg | SHM_REMAP);
4593     }
4594 
4595     if (host_raddr == (void *)-1) {
4596         mmap_unlock();
4597         return get_errno((long)host_raddr);
4598     }
4599     raddr=h2g((unsigned long)host_raddr);
4600 
4601     page_set_flags(raddr, raddr + shm_info.shm_segsz,
4602                    PAGE_VALID | PAGE_RESET | PAGE_READ |
4603                    (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4604 
4605     for (i = 0; i < N_SHM_REGIONS; i++) {
4606         if (!shm_regions[i].in_use) {
4607             shm_regions[i].in_use = true;
4608             shm_regions[i].start = raddr;
4609             shm_regions[i].size = shm_info.shm_segsz;
4610             break;
4611         }
4612     }
4613 
4614     mmap_unlock();
4615     return raddr;
4616 
4617 }
4618 
4619 static inline abi_long do_shmdt(abi_ulong shmaddr)
4620 {
4621     int i;
4622     abi_long rv;
4623 
4624     /* shmdt pointers are always untagged */
4625 
4626     mmap_lock();
4627 
4628     for (i = 0; i < N_SHM_REGIONS; ++i) {
4629         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4630             shm_regions[i].in_use = false;
4631             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4632             break;
4633         }
4634     }
4635     rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4636 
4637     mmap_unlock();
4638 
4639     return rv;
4640 }
4641 
4642 #ifdef TARGET_NR_ipc
4643 /* ??? This only works with linear mappings.  */
4644 /* do_ipc() must return target values and target errnos. */
4645 static abi_long do_ipc(CPUArchState *cpu_env,
4646                        unsigned int call, abi_long first,
4647                        abi_long second, abi_long third,
4648                        abi_long ptr, abi_long fifth)
4649 {
4650     int version;
4651     abi_long ret = 0;
4652 
4653     version = call >> 16;
4654     call &= 0xffff;
4655 
4656     switch (call) {
4657     case IPCOP_semop:
4658         ret = do_semtimedop(first, ptr, second, 0, false);
4659         break;
4660     case IPCOP_semtimedop:
4661     /*
4662      * The s390 sys_ipc variant has only five parameters instead of six
4663      * (as for default variant) and the only difference is the handling of
4664      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4665      * to a struct timespec where the generic variant uses fifth parameter.
4666      */
4667 #if defined(TARGET_S390X)
4668         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4669 #else
4670         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4671 #endif
4672         break;
4673 
4674     case IPCOP_semget:
4675         ret = get_errno(semget(first, second, third));
4676         break;
4677 
4678     case IPCOP_semctl: {
4679         /* The semun argument to semctl is passed by value, so dereference the
4680          * ptr argument. */
4681         abi_ulong atptr;
4682         get_user_ual(atptr, ptr);
4683         ret = do_semctl(first, second, third, atptr);
4684         break;
4685     }
4686 
4687     case IPCOP_msgget:
4688         ret = get_errno(msgget(first, second));
4689         break;
4690 
4691     case IPCOP_msgsnd:
4692         ret = do_msgsnd(first, ptr, second, third);
4693         break;
4694 
4695     case IPCOP_msgctl:
4696         ret = do_msgctl(first, second, ptr);
4697         break;
4698 
4699     case IPCOP_msgrcv:
4700         switch (version) {
4701         case 0:
4702             {
4703                 struct target_ipc_kludge {
4704                     abi_long msgp;
4705                     abi_long msgtyp;
4706                 } *tmp;
4707 
4708                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4709                     ret = -TARGET_EFAULT;
4710                     break;
4711                 }
4712 
4713                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4714 
4715                 unlock_user_struct(tmp, ptr, 0);
4716                 break;
4717             }
4718         default:
4719             ret = do_msgrcv(first, ptr, second, fifth, third);
4720         }
4721         break;
4722 
4723     case IPCOP_shmat:
4724         switch (version) {
4725         default:
4726         {
4727             abi_ulong raddr;
4728             raddr = do_shmat(cpu_env, first, ptr, second);
4729             if (is_error(raddr))
4730                 return get_errno(raddr);
4731             if (put_user_ual(raddr, third))
4732                 return -TARGET_EFAULT;
4733             break;
4734         }
4735         case 1:
4736             ret = -TARGET_EINVAL;
4737             break;
4738         }
4739 	break;
4740     case IPCOP_shmdt:
4741         ret = do_shmdt(ptr);
4742 	break;
4743 
4744     case IPCOP_shmget:
4745 	/* IPC_* flag values are the same on all linux platforms */
4746 	ret = get_errno(shmget(first, second, third));
4747 	break;
4748 
4749 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4750     case IPCOP_shmctl:
4751         ret = do_shmctl(first, second, ptr);
4752         break;
4753     default:
4754         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4755                       call, version);
4756 	ret = -TARGET_ENOSYS;
4757 	break;
4758     }
4759     return ret;
4760 }
4761 #endif
4762 
4763 /* kernel structure types definitions */
4764 
4765 #define STRUCT(name, ...) STRUCT_ ## name,
4766 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4767 enum {
4768 #include "syscall_types.h"
4769 STRUCT_MAX
4770 };
4771 #undef STRUCT
4772 #undef STRUCT_SPECIAL
4773 
4774 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4775 #define STRUCT_SPECIAL(name)
4776 #include "syscall_types.h"
4777 #undef STRUCT
4778 #undef STRUCT_SPECIAL
4779 
4780 #define MAX_STRUCT_SIZE 4096
4781 
4782 #ifdef CONFIG_FIEMAP
4783 /* So fiemap access checks don't overflow on 32 bit systems.
4784  * This is very slightly smaller than the limit imposed by
4785  * the underlying kernel.
4786  */
4787 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4788                             / sizeof(struct fiemap_extent))
4789 
4790 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4791                                        int fd, int cmd, abi_long arg)
4792 {
4793     /* The parameter for this ioctl is a struct fiemap followed
4794      * by an array of struct fiemap_extent whose size is set
4795      * in fiemap->fm_extent_count. The array is filled in by the
4796      * ioctl.
4797      */
4798     int target_size_in, target_size_out;
4799     struct fiemap *fm;
4800     const argtype *arg_type = ie->arg_type;
4801     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4802     void *argptr, *p;
4803     abi_long ret;
4804     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4805     uint32_t outbufsz;
4806     int free_fm = 0;
4807 
4808     assert(arg_type[0] == TYPE_PTR);
4809     assert(ie->access == IOC_RW);
4810     arg_type++;
4811     target_size_in = thunk_type_size(arg_type, 0);
4812     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4813     if (!argptr) {
4814         return -TARGET_EFAULT;
4815     }
4816     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4817     unlock_user(argptr, arg, 0);
4818     fm = (struct fiemap *)buf_temp;
4819     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4820         return -TARGET_EINVAL;
4821     }
4822 
4823     outbufsz = sizeof (*fm) +
4824         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4825 
4826     if (outbufsz > MAX_STRUCT_SIZE) {
4827         /* We can't fit all the extents into the fixed size buffer.
4828          * Allocate one that is large enough and use it instead.
4829          */
4830         fm = g_try_malloc(outbufsz);
4831         if (!fm) {
4832             return -TARGET_ENOMEM;
4833         }
4834         memcpy(fm, buf_temp, sizeof(struct fiemap));
4835         free_fm = 1;
4836     }
4837     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4838     if (!is_error(ret)) {
4839         target_size_out = target_size_in;
4840         /* An extent_count of 0 means we were only counting the extents
4841          * so there are no structs to copy
4842          */
4843         if (fm->fm_extent_count != 0) {
4844             target_size_out += fm->fm_mapped_extents * extent_size;
4845         }
4846         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4847         if (!argptr) {
4848             ret = -TARGET_EFAULT;
4849         } else {
4850             /* Convert the struct fiemap */
4851             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4852             if (fm->fm_extent_count != 0) {
4853                 p = argptr + target_size_in;
4854                 /* ...and then all the struct fiemap_extents */
4855                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4856                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4857                                   THUNK_TARGET);
4858                     p += extent_size;
4859                 }
4860             }
4861             unlock_user(argptr, arg, target_size_out);
4862         }
4863     }
4864     if (free_fm) {
4865         g_free(fm);
4866     }
4867     return ret;
4868 }
4869 #endif
4870 
4871 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4872                                 int fd, int cmd, abi_long arg)
4873 {
4874     const argtype *arg_type = ie->arg_type;
4875     int target_size;
4876     void *argptr;
4877     int ret;
4878     struct ifconf *host_ifconf;
4879     uint32_t outbufsz;
4880     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4881     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4882     int target_ifreq_size;
4883     int nb_ifreq;
4884     int free_buf = 0;
4885     int i;
4886     int target_ifc_len;
4887     abi_long target_ifc_buf;
4888     int host_ifc_len;
4889     char *host_ifc_buf;
4890 
4891     assert(arg_type[0] == TYPE_PTR);
4892     assert(ie->access == IOC_RW);
4893 
4894     arg_type++;
4895     target_size = thunk_type_size(arg_type, 0);
4896 
4897     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4898     if (!argptr)
4899         return -TARGET_EFAULT;
4900     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4901     unlock_user(argptr, arg, 0);
4902 
4903     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4904     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4905     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4906 
4907     if (target_ifc_buf != 0) {
4908         target_ifc_len = host_ifconf->ifc_len;
4909         nb_ifreq = target_ifc_len / target_ifreq_size;
4910         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4911 
4912         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4913         if (outbufsz > MAX_STRUCT_SIZE) {
4914             /*
4915              * We can't fit all the extents into the fixed size buffer.
4916              * Allocate one that is large enough and use it instead.
4917              */
4918             host_ifconf = g_try_malloc(outbufsz);
4919             if (!host_ifconf) {
4920                 return -TARGET_ENOMEM;
4921             }
4922             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4923             free_buf = 1;
4924         }
4925         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4926 
4927         host_ifconf->ifc_len = host_ifc_len;
4928     } else {
4929       host_ifc_buf = NULL;
4930     }
4931     host_ifconf->ifc_buf = host_ifc_buf;
4932 
4933     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4934     if (!is_error(ret)) {
4935 	/* convert host ifc_len to target ifc_len */
4936 
4937         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4938         target_ifc_len = nb_ifreq * target_ifreq_size;
4939         host_ifconf->ifc_len = target_ifc_len;
4940 
4941 	/* restore target ifc_buf */
4942 
4943         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4944 
4945 	/* copy struct ifconf to target user */
4946 
4947         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4948         if (!argptr)
4949             return -TARGET_EFAULT;
4950         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4951         unlock_user(argptr, arg, target_size);
4952 
4953         if (target_ifc_buf != 0) {
4954             /* copy ifreq[] to target user */
4955             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4956             for (i = 0; i < nb_ifreq ; i++) {
4957                 thunk_convert(argptr + i * target_ifreq_size,
4958                               host_ifc_buf + i * sizeof(struct ifreq),
4959                               ifreq_arg_type, THUNK_TARGET);
4960             }
4961             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4962         }
4963     }
4964 
4965     if (free_buf) {
4966         g_free(host_ifconf);
4967     }
4968 
4969     return ret;
4970 }
4971 
4972 #if defined(CONFIG_USBFS)
4973 #if HOST_LONG_BITS > 64
4974 #error USBDEVFS thunks do not support >64 bit hosts yet.
4975 #endif
4976 struct live_urb {
4977     uint64_t target_urb_adr;
4978     uint64_t target_buf_adr;
4979     char *target_buf_ptr;
4980     struct usbdevfs_urb host_urb;
4981 };
4982 
4983 static GHashTable *usbdevfs_urb_hashtable(void)
4984 {
4985     static GHashTable *urb_hashtable;
4986 
4987     if (!urb_hashtable) {
4988         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4989     }
4990     return urb_hashtable;
4991 }
4992 
4993 static void urb_hashtable_insert(struct live_urb *urb)
4994 {
4995     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4996     g_hash_table_insert(urb_hashtable, urb, urb);
4997 }
4998 
4999 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
5000 {
5001     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5002     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
5003 }
5004 
5005 static void urb_hashtable_remove(struct live_urb *urb)
5006 {
5007     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5008     g_hash_table_remove(urb_hashtable, urb);
5009 }
5010 
5011 static abi_long
5012 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
5013                           int fd, int cmd, abi_long arg)
5014 {
5015     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
5016     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
5017     struct live_urb *lurb;
5018     void *argptr;
5019     uint64_t hurb;
5020     int target_size;
5021     uintptr_t target_urb_adr;
5022     abi_long ret;
5023 
5024     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
5025 
5026     memset(buf_temp, 0, sizeof(uint64_t));
5027     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5028     if (is_error(ret)) {
5029         return ret;
5030     }
5031 
5032     memcpy(&hurb, buf_temp, sizeof(uint64_t));
5033     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
5034     if (!lurb->target_urb_adr) {
5035         return -TARGET_EFAULT;
5036     }
5037     urb_hashtable_remove(lurb);
5038     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
5039         lurb->host_urb.buffer_length);
5040     lurb->target_buf_ptr = NULL;
5041 
5042     /* restore the guest buffer pointer */
5043     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
5044 
5045     /* update the guest urb struct */
5046     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
5047     if (!argptr) {
5048         g_free(lurb);
5049         return -TARGET_EFAULT;
5050     }
5051     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5052     unlock_user(argptr, lurb->target_urb_adr, target_size);
5053 
5054     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5055     /* write back the urb handle */
5056     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5057     if (!argptr) {
5058         g_free(lurb);
5059         return -TARGET_EFAULT;
5060     }
5061 
5062     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5063     target_urb_adr = lurb->target_urb_adr;
5064     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5065     unlock_user(argptr, arg, target_size);
5066 
5067     g_free(lurb);
5068     return ret;
5069 }
5070 
5071 static abi_long
5072 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5073                              uint8_t *buf_temp __attribute__((unused)),
5074                              int fd, int cmd, abi_long arg)
5075 {
5076     struct live_urb *lurb;
5077 
5078     /* map target address back to host URB with metadata. */
5079     lurb = urb_hashtable_lookup(arg);
5080     if (!lurb) {
5081         return -TARGET_EFAULT;
5082     }
5083     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5084 }
5085 
5086 static abi_long
5087 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5088                             int fd, int cmd, abi_long arg)
5089 {
5090     const argtype *arg_type = ie->arg_type;
5091     int target_size;
5092     abi_long ret;
5093     void *argptr;
5094     int rw_dir;
5095     struct live_urb *lurb;
5096 
5097     /*
5098      * each submitted URB needs to map to a unique ID for the
5099      * kernel, and that unique ID needs to be a pointer to
5100      * host memory.  hence, we need to malloc for each URB.
5101      * isochronous transfers have a variable length struct.
5102      */
5103     arg_type++;
5104     target_size = thunk_type_size(arg_type, THUNK_TARGET);
5105 
5106     /* construct host copy of urb and metadata */
5107     lurb = g_try_malloc0(sizeof(struct live_urb));
5108     if (!lurb) {
5109         return -TARGET_ENOMEM;
5110     }
5111 
5112     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5113     if (!argptr) {
5114         g_free(lurb);
5115         return -TARGET_EFAULT;
5116     }
5117     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5118     unlock_user(argptr, arg, 0);
5119 
5120     lurb->target_urb_adr = arg;
5121     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5122 
5123     /* buffer space used depends on endpoint type so lock the entire buffer */
5124     /* control type urbs should check the buffer contents for true direction */
5125     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5126     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5127         lurb->host_urb.buffer_length, 1);
5128     if (lurb->target_buf_ptr == NULL) {
5129         g_free(lurb);
5130         return -TARGET_EFAULT;
5131     }
5132 
5133     /* update buffer pointer in host copy */
5134     lurb->host_urb.buffer = lurb->target_buf_ptr;
5135 
5136     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5137     if (is_error(ret)) {
5138         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5139         g_free(lurb);
5140     } else {
5141         urb_hashtable_insert(lurb);
5142     }
5143 
5144     return ret;
5145 }
5146 #endif /* CONFIG_USBFS */
5147 
5148 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5149                             int cmd, abi_long arg)
5150 {
5151     void *argptr;
5152     struct dm_ioctl *host_dm;
5153     abi_long guest_data;
5154     uint32_t guest_data_size;
5155     int target_size;
5156     const argtype *arg_type = ie->arg_type;
5157     abi_long ret;
5158     void *big_buf = NULL;
5159     char *host_data;
5160 
5161     arg_type++;
5162     target_size = thunk_type_size(arg_type, 0);
5163     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5164     if (!argptr) {
5165         ret = -TARGET_EFAULT;
5166         goto out;
5167     }
5168     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5169     unlock_user(argptr, arg, 0);
5170 
5171     /* buf_temp is too small, so fetch things into a bigger buffer */
5172     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5173     memcpy(big_buf, buf_temp, target_size);
5174     buf_temp = big_buf;
5175     host_dm = big_buf;
5176 
5177     guest_data = arg + host_dm->data_start;
5178     if ((guest_data - arg) < 0) {
5179         ret = -TARGET_EINVAL;
5180         goto out;
5181     }
5182     guest_data_size = host_dm->data_size - host_dm->data_start;
5183     host_data = (char*)host_dm + host_dm->data_start;
5184 
5185     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5186     if (!argptr) {
5187         ret = -TARGET_EFAULT;
5188         goto out;
5189     }
5190 
5191     switch (ie->host_cmd) {
5192     case DM_REMOVE_ALL:
5193     case DM_LIST_DEVICES:
5194     case DM_DEV_CREATE:
5195     case DM_DEV_REMOVE:
5196     case DM_DEV_SUSPEND:
5197     case DM_DEV_STATUS:
5198     case DM_DEV_WAIT:
5199     case DM_TABLE_STATUS:
5200     case DM_TABLE_CLEAR:
5201     case DM_TABLE_DEPS:
5202     case DM_LIST_VERSIONS:
5203         /* no input data */
5204         break;
5205     case DM_DEV_RENAME:
5206     case DM_DEV_SET_GEOMETRY:
5207         /* data contains only strings */
5208         memcpy(host_data, argptr, guest_data_size);
5209         break;
5210     case DM_TARGET_MSG:
5211         memcpy(host_data, argptr, guest_data_size);
5212         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5213         break;
5214     case DM_TABLE_LOAD:
5215     {
5216         void *gspec = argptr;
5217         void *cur_data = host_data;
5218         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5219         int spec_size = thunk_type_size(arg_type, 0);
5220         int i;
5221 
5222         for (i = 0; i < host_dm->target_count; i++) {
5223             struct dm_target_spec *spec = cur_data;
5224             uint32_t next;
5225             int slen;
5226 
5227             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5228             slen = strlen((char*)gspec + spec_size) + 1;
5229             next = spec->next;
5230             spec->next = sizeof(*spec) + slen;
5231             strcpy((char*)&spec[1], gspec + spec_size);
5232             gspec += next;
5233             cur_data += spec->next;
5234         }
5235         break;
5236     }
5237     default:
5238         ret = -TARGET_EINVAL;
5239         unlock_user(argptr, guest_data, 0);
5240         goto out;
5241     }
5242     unlock_user(argptr, guest_data, 0);
5243 
5244     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5245     if (!is_error(ret)) {
5246         guest_data = arg + host_dm->data_start;
5247         guest_data_size = host_dm->data_size - host_dm->data_start;
5248         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5249         switch (ie->host_cmd) {
5250         case DM_REMOVE_ALL:
5251         case DM_DEV_CREATE:
5252         case DM_DEV_REMOVE:
5253         case DM_DEV_RENAME:
5254         case DM_DEV_SUSPEND:
5255         case DM_DEV_STATUS:
5256         case DM_TABLE_LOAD:
5257         case DM_TABLE_CLEAR:
5258         case DM_TARGET_MSG:
5259         case DM_DEV_SET_GEOMETRY:
5260             /* no return data */
5261             break;
5262         case DM_LIST_DEVICES:
5263         {
5264             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5265             uint32_t remaining_data = guest_data_size;
5266             void *cur_data = argptr;
5267             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5268             int nl_size = 12; /* can't use thunk_size due to alignment */
5269 
5270             while (1) {
5271                 uint32_t next = nl->next;
5272                 if (next) {
5273                     nl->next = nl_size + (strlen(nl->name) + 1);
5274                 }
5275                 if (remaining_data < nl->next) {
5276                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5277                     break;
5278                 }
5279                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5280                 strcpy(cur_data + nl_size, nl->name);
5281                 cur_data += nl->next;
5282                 remaining_data -= nl->next;
5283                 if (!next) {
5284                     break;
5285                 }
5286                 nl = (void*)nl + next;
5287             }
5288             break;
5289         }
5290         case DM_DEV_WAIT:
5291         case DM_TABLE_STATUS:
5292         {
5293             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5294             void *cur_data = argptr;
5295             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5296             int spec_size = thunk_type_size(arg_type, 0);
5297             int i;
5298 
5299             for (i = 0; i < host_dm->target_count; i++) {
5300                 uint32_t next = spec->next;
5301                 int slen = strlen((char*)&spec[1]) + 1;
5302                 spec->next = (cur_data - argptr) + spec_size + slen;
5303                 if (guest_data_size < spec->next) {
5304                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5305                     break;
5306                 }
5307                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5308                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5309                 cur_data = argptr + spec->next;
5310                 spec = (void*)host_dm + host_dm->data_start + next;
5311             }
5312             break;
5313         }
5314         case DM_TABLE_DEPS:
5315         {
5316             void *hdata = (void*)host_dm + host_dm->data_start;
5317             int count = *(uint32_t*)hdata;
5318             uint64_t *hdev = hdata + 8;
5319             uint64_t *gdev = argptr + 8;
5320             int i;
5321 
5322             *(uint32_t*)argptr = tswap32(count);
5323             for (i = 0; i < count; i++) {
5324                 *gdev = tswap64(*hdev);
5325                 gdev++;
5326                 hdev++;
5327             }
5328             break;
5329         }
5330         case DM_LIST_VERSIONS:
5331         {
5332             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5333             uint32_t remaining_data = guest_data_size;
5334             void *cur_data = argptr;
5335             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5336             int vers_size = thunk_type_size(arg_type, 0);
5337 
5338             while (1) {
5339                 uint32_t next = vers->next;
5340                 if (next) {
5341                     vers->next = vers_size + (strlen(vers->name) + 1);
5342                 }
5343                 if (remaining_data < vers->next) {
5344                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5345                     break;
5346                 }
5347                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5348                 strcpy(cur_data + vers_size, vers->name);
5349                 cur_data += vers->next;
5350                 remaining_data -= vers->next;
5351                 if (!next) {
5352                     break;
5353                 }
5354                 vers = (void*)vers + next;
5355             }
5356             break;
5357         }
5358         default:
5359             unlock_user(argptr, guest_data, 0);
5360             ret = -TARGET_EINVAL;
5361             goto out;
5362         }
5363         unlock_user(argptr, guest_data, guest_data_size);
5364 
5365         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5366         if (!argptr) {
5367             ret = -TARGET_EFAULT;
5368             goto out;
5369         }
5370         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5371         unlock_user(argptr, arg, target_size);
5372     }
5373 out:
5374     g_free(big_buf);
5375     return ret;
5376 }
5377 
5378 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5379                                int cmd, abi_long arg)
5380 {
5381     void *argptr;
5382     int target_size;
5383     const argtype *arg_type = ie->arg_type;
5384     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5385     abi_long ret;
5386 
5387     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5388     struct blkpg_partition host_part;
5389 
5390     /* Read and convert blkpg */
5391     arg_type++;
5392     target_size = thunk_type_size(arg_type, 0);
5393     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5394     if (!argptr) {
5395         ret = -TARGET_EFAULT;
5396         goto out;
5397     }
5398     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5399     unlock_user(argptr, arg, 0);
5400 
5401     switch (host_blkpg->op) {
5402     case BLKPG_ADD_PARTITION:
5403     case BLKPG_DEL_PARTITION:
5404         /* payload is struct blkpg_partition */
5405         break;
5406     default:
5407         /* Unknown opcode */
5408         ret = -TARGET_EINVAL;
5409         goto out;
5410     }
5411 
5412     /* Read and convert blkpg->data */
5413     arg = (abi_long)(uintptr_t)host_blkpg->data;
5414     target_size = thunk_type_size(part_arg_type, 0);
5415     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5416     if (!argptr) {
5417         ret = -TARGET_EFAULT;
5418         goto out;
5419     }
5420     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5421     unlock_user(argptr, arg, 0);
5422 
5423     /* Swizzle the data pointer to our local copy and call! */
5424     host_blkpg->data = &host_part;
5425     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5426 
5427 out:
5428     return ret;
5429 }
5430 
5431 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5432                                 int fd, int cmd, abi_long arg)
5433 {
5434     const argtype *arg_type = ie->arg_type;
5435     const StructEntry *se;
5436     const argtype *field_types;
5437     const int *dst_offsets, *src_offsets;
5438     int target_size;
5439     void *argptr;
5440     abi_ulong *target_rt_dev_ptr = NULL;
5441     unsigned long *host_rt_dev_ptr = NULL;
5442     abi_long ret;
5443     int i;
5444 
5445     assert(ie->access == IOC_W);
5446     assert(*arg_type == TYPE_PTR);
5447     arg_type++;
5448     assert(*arg_type == TYPE_STRUCT);
5449     target_size = thunk_type_size(arg_type, 0);
5450     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5451     if (!argptr) {
5452         return -TARGET_EFAULT;
5453     }
5454     arg_type++;
5455     assert(*arg_type == (int)STRUCT_rtentry);
5456     se = struct_entries + *arg_type++;
5457     assert(se->convert[0] == NULL);
5458     /* convert struct here to be able to catch rt_dev string */
5459     field_types = se->field_types;
5460     dst_offsets = se->field_offsets[THUNK_HOST];
5461     src_offsets = se->field_offsets[THUNK_TARGET];
5462     for (i = 0; i < se->nb_fields; i++) {
5463         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5464             assert(*field_types == TYPE_PTRVOID);
5465             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5466             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5467             if (*target_rt_dev_ptr != 0) {
5468                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5469                                                   tswapal(*target_rt_dev_ptr));
5470                 if (!*host_rt_dev_ptr) {
5471                     unlock_user(argptr, arg, 0);
5472                     return -TARGET_EFAULT;
5473                 }
5474             } else {
5475                 *host_rt_dev_ptr = 0;
5476             }
5477             field_types++;
5478             continue;
5479         }
5480         field_types = thunk_convert(buf_temp + dst_offsets[i],
5481                                     argptr + src_offsets[i],
5482                                     field_types, THUNK_HOST);
5483     }
5484     unlock_user(argptr, arg, 0);
5485 
5486     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5487 
5488     assert(host_rt_dev_ptr != NULL);
5489     assert(target_rt_dev_ptr != NULL);
5490     if (*host_rt_dev_ptr != 0) {
5491         unlock_user((void *)*host_rt_dev_ptr,
5492                     *target_rt_dev_ptr, 0);
5493     }
5494     return ret;
5495 }
5496 
5497 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5498                                      int fd, int cmd, abi_long arg)
5499 {
5500     int sig = target_to_host_signal(arg);
5501     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5502 }
5503 
5504 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5505                                     int fd, int cmd, abi_long arg)
5506 {
5507     struct timeval tv;
5508     abi_long ret;
5509 
5510     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5511     if (is_error(ret)) {
5512         return ret;
5513     }
5514 
5515     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5516         if (copy_to_user_timeval(arg, &tv)) {
5517             return -TARGET_EFAULT;
5518         }
5519     } else {
5520         if (copy_to_user_timeval64(arg, &tv)) {
5521             return -TARGET_EFAULT;
5522         }
5523     }
5524 
5525     return ret;
5526 }
5527 
5528 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5529                                       int fd, int cmd, abi_long arg)
5530 {
5531     struct timespec ts;
5532     abi_long ret;
5533 
5534     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5535     if (is_error(ret)) {
5536         return ret;
5537     }
5538 
5539     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5540         if (host_to_target_timespec(arg, &ts)) {
5541             return -TARGET_EFAULT;
5542         }
5543     } else{
5544         if (host_to_target_timespec64(arg, &ts)) {
5545             return -TARGET_EFAULT;
5546         }
5547     }
5548 
5549     return ret;
5550 }
5551 
5552 #ifdef TIOCGPTPEER
5553 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5554                                      int fd, int cmd, abi_long arg)
5555 {
5556     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5557     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5558 }
5559 #endif
5560 
5561 #ifdef HAVE_DRM_H
5562 
5563 static void unlock_drm_version(struct drm_version *host_ver,
5564                                struct target_drm_version *target_ver,
5565                                bool copy)
5566 {
5567     unlock_user(host_ver->name, target_ver->name,
5568                                 copy ? host_ver->name_len : 0);
5569     unlock_user(host_ver->date, target_ver->date,
5570                                 copy ? host_ver->date_len : 0);
5571     unlock_user(host_ver->desc, target_ver->desc,
5572                                 copy ? host_ver->desc_len : 0);
5573 }
5574 
5575 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5576                                           struct target_drm_version *target_ver)
5577 {
5578     memset(host_ver, 0, sizeof(*host_ver));
5579 
5580     __get_user(host_ver->name_len, &target_ver->name_len);
5581     if (host_ver->name_len) {
5582         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5583                                    target_ver->name_len, 0);
5584         if (!host_ver->name) {
5585             return -EFAULT;
5586         }
5587     }
5588 
5589     __get_user(host_ver->date_len, &target_ver->date_len);
5590     if (host_ver->date_len) {
5591         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5592                                    target_ver->date_len, 0);
5593         if (!host_ver->date) {
5594             goto err;
5595         }
5596     }
5597 
5598     __get_user(host_ver->desc_len, &target_ver->desc_len);
5599     if (host_ver->desc_len) {
5600         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5601                                    target_ver->desc_len, 0);
5602         if (!host_ver->desc) {
5603             goto err;
5604         }
5605     }
5606 
5607     return 0;
5608 err:
5609     unlock_drm_version(host_ver, target_ver, false);
5610     return -EFAULT;
5611 }
5612 
5613 static inline void host_to_target_drmversion(
5614                                           struct target_drm_version *target_ver,
5615                                           struct drm_version *host_ver)
5616 {
5617     __put_user(host_ver->version_major, &target_ver->version_major);
5618     __put_user(host_ver->version_minor, &target_ver->version_minor);
5619     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5620     __put_user(host_ver->name_len, &target_ver->name_len);
5621     __put_user(host_ver->date_len, &target_ver->date_len);
5622     __put_user(host_ver->desc_len, &target_ver->desc_len);
5623     unlock_drm_version(host_ver, target_ver, true);
5624 }
5625 
5626 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5627                              int fd, int cmd, abi_long arg)
5628 {
5629     struct drm_version *ver;
5630     struct target_drm_version *target_ver;
5631     abi_long ret;
5632 
5633     switch (ie->host_cmd) {
5634     case DRM_IOCTL_VERSION:
5635         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5636             return -TARGET_EFAULT;
5637         }
5638         ver = (struct drm_version *)buf_temp;
5639         ret = target_to_host_drmversion(ver, target_ver);
5640         if (!is_error(ret)) {
5641             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5642             if (is_error(ret)) {
5643                 unlock_drm_version(ver, target_ver, false);
5644             } else {
5645                 host_to_target_drmversion(target_ver, ver);
5646             }
5647         }
5648         unlock_user_struct(target_ver, arg, 0);
5649         return ret;
5650     }
5651     return -TARGET_ENOSYS;
5652 }
5653 
5654 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5655                                            struct drm_i915_getparam *gparam,
5656                                            int fd, abi_long arg)
5657 {
5658     abi_long ret;
5659     int value;
5660     struct target_drm_i915_getparam *target_gparam;
5661 
5662     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5663         return -TARGET_EFAULT;
5664     }
5665 
5666     __get_user(gparam->param, &target_gparam->param);
5667     gparam->value = &value;
5668     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5669     put_user_s32(value, target_gparam->value);
5670 
5671     unlock_user_struct(target_gparam, arg, 0);
5672     return ret;
5673 }
5674 
5675 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5676                                   int fd, int cmd, abi_long arg)
5677 {
5678     switch (ie->host_cmd) {
5679     case DRM_IOCTL_I915_GETPARAM:
5680         return do_ioctl_drm_i915_getparam(ie,
5681                                           (struct drm_i915_getparam *)buf_temp,
5682                                           fd, arg);
5683     default:
5684         return -TARGET_ENOSYS;
5685     }
5686 }
5687 
5688 #endif
5689 
5690 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5691                                         int fd, int cmd, abi_long arg)
5692 {
5693     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5694     struct tun_filter *target_filter;
5695     char *target_addr;
5696 
5697     assert(ie->access == IOC_W);
5698 
5699     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5700     if (!target_filter) {
5701         return -TARGET_EFAULT;
5702     }
5703     filter->flags = tswap16(target_filter->flags);
5704     filter->count = tswap16(target_filter->count);
5705     unlock_user(target_filter, arg, 0);
5706 
5707     if (filter->count) {
5708         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5709             MAX_STRUCT_SIZE) {
5710             return -TARGET_EFAULT;
5711         }
5712 
5713         target_addr = lock_user(VERIFY_READ,
5714                                 arg + offsetof(struct tun_filter, addr),
5715                                 filter->count * ETH_ALEN, 1);
5716         if (!target_addr) {
5717             return -TARGET_EFAULT;
5718         }
5719         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5720         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5721     }
5722 
5723     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5724 }
5725 
5726 IOCTLEntry ioctl_entries[] = {
5727 #define IOCTL(cmd, access, ...) \
5728     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5729 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5730     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5731 #define IOCTL_IGNORE(cmd) \
5732     { TARGET_ ## cmd, 0, #cmd },
5733 #include "ioctls.h"
5734     { 0, 0, },
5735 };
5736 
5737 /* ??? Implement proper locking for ioctls.  */
5738 /* do_ioctl() Must return target values and target errnos. */
5739 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5740 {
5741     const IOCTLEntry *ie;
5742     const argtype *arg_type;
5743     abi_long ret;
5744     uint8_t buf_temp[MAX_STRUCT_SIZE];
5745     int target_size;
5746     void *argptr;
5747 
5748     ie = ioctl_entries;
5749     for(;;) {
5750         if (ie->target_cmd == 0) {
5751             qemu_log_mask(
5752                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5753             return -TARGET_ENOSYS;
5754         }
5755         if (ie->target_cmd == cmd)
5756             break;
5757         ie++;
5758     }
5759     arg_type = ie->arg_type;
5760     if (ie->do_ioctl) {
5761         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5762     } else if (!ie->host_cmd) {
5763         /* Some architectures define BSD ioctls in their headers
5764            that are not implemented in Linux.  */
5765         return -TARGET_ENOSYS;
5766     }
5767 
5768     switch(arg_type[0]) {
5769     case TYPE_NULL:
5770         /* no argument */
5771         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5772         break;
5773     case TYPE_PTRVOID:
5774     case TYPE_INT:
5775     case TYPE_LONG:
5776     case TYPE_ULONG:
5777         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5778         break;
5779     case TYPE_PTR:
5780         arg_type++;
5781         target_size = thunk_type_size(arg_type, 0);
5782         switch(ie->access) {
5783         case IOC_R:
5784             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5785             if (!is_error(ret)) {
5786                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5787                 if (!argptr)
5788                     return -TARGET_EFAULT;
5789                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5790                 unlock_user(argptr, arg, target_size);
5791             }
5792             break;
5793         case IOC_W:
5794             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5795             if (!argptr)
5796                 return -TARGET_EFAULT;
5797             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5798             unlock_user(argptr, arg, 0);
5799             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5800             break;
5801         default:
5802         case IOC_RW:
5803             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5804             if (!argptr)
5805                 return -TARGET_EFAULT;
5806             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5807             unlock_user(argptr, arg, 0);
5808             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5809             if (!is_error(ret)) {
5810                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5811                 if (!argptr)
5812                     return -TARGET_EFAULT;
5813                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5814                 unlock_user(argptr, arg, target_size);
5815             }
5816             break;
5817         }
5818         break;
5819     default:
5820         qemu_log_mask(LOG_UNIMP,
5821                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5822                       (long)cmd, arg_type[0]);
5823         ret = -TARGET_ENOSYS;
5824         break;
5825     }
5826     return ret;
5827 }
5828 
5829 static const bitmask_transtbl iflag_tbl[] = {
5830         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5831         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5832         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5833         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5834         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5835         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5836         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5837         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5838         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5839         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5840         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5841         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5842         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5843         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5844         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5845         { 0, 0, 0, 0 }
5846 };
5847 
5848 static const bitmask_transtbl oflag_tbl[] = {
5849 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5850 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5851 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5852 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5853 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5854 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5855 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5856 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5857 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5858 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5859 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5860 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5861 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5862 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5863 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5864 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5865 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5866 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5867 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5868 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5869 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5870 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5871 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5872 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5873 	{ 0, 0, 0, 0 }
5874 };
5875 
5876 static const bitmask_transtbl cflag_tbl[] = {
5877 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5878 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5879 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5880 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5881 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5882 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5883 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5884 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5885 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5886 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5887 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5888 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5889 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5890 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5891 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5892 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5893 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5894 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5895 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5896 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5897 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5898 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5899 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5900 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5901 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5902 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5903 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5904 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5905 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5906 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5907 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5908 	{ 0, 0, 0, 0 }
5909 };
5910 
5911 static const bitmask_transtbl lflag_tbl[] = {
5912   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5913   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5914   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5915   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5916   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5917   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5918   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5919   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5920   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5921   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5922   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5923   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5924   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5925   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5926   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5927   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5928   { 0, 0, 0, 0 }
5929 };
5930 
5931 static void target_to_host_termios (void *dst, const void *src)
5932 {
5933     struct host_termios *host = dst;
5934     const struct target_termios *target = src;
5935 
5936     host->c_iflag =
5937         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5938     host->c_oflag =
5939         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5940     host->c_cflag =
5941         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5942     host->c_lflag =
5943         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5944     host->c_line = target->c_line;
5945 
5946     memset(host->c_cc, 0, sizeof(host->c_cc));
5947     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5948     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5949     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5950     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5951     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5952     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5953     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5954     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5955     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5956     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5957     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5958     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5959     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5960     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5961     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5962     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5963     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5964 }
5965 
5966 static void host_to_target_termios (void *dst, const void *src)
5967 {
5968     struct target_termios *target = dst;
5969     const struct host_termios *host = src;
5970 
5971     target->c_iflag =
5972         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5973     target->c_oflag =
5974         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5975     target->c_cflag =
5976         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5977     target->c_lflag =
5978         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5979     target->c_line = host->c_line;
5980 
5981     memset(target->c_cc, 0, sizeof(target->c_cc));
5982     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5983     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5984     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5985     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5986     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5987     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5988     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5989     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5990     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5991     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5992     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5993     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5994     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5995     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5996     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5997     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5998     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5999 }
6000 
6001 static const StructEntry struct_termios_def = {
6002     .convert = { host_to_target_termios, target_to_host_termios },
6003     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
6004     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
6005     .print = print_termios,
6006 };
6007 
6008 static const bitmask_transtbl mmap_flags_tbl[] = {
6009     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
6010     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
6011     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
6012     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
6013       MAP_ANONYMOUS, MAP_ANONYMOUS },
6014     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
6015       MAP_GROWSDOWN, MAP_GROWSDOWN },
6016     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
6017       MAP_DENYWRITE, MAP_DENYWRITE },
6018     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
6019       MAP_EXECUTABLE, MAP_EXECUTABLE },
6020     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
6021     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
6022       MAP_NORESERVE, MAP_NORESERVE },
6023     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
6024     /* MAP_STACK had been ignored by the kernel for quite some time.
6025        Recognize it for the target insofar as we do not want to pass
6026        it through to the host.  */
6027     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6028     { 0, 0, 0, 0 }
6029 };
6030 
6031 /*
6032  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
6033  *       TARGET_I386 is defined if TARGET_X86_64 is defined
6034  */
6035 #if defined(TARGET_I386)
6036 
6037 /* NOTE: there is really one LDT for all the threads */
6038 static uint8_t *ldt_table;
6039 
6040 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6041 {
6042     int size;
6043     void *p;
6044 
6045     if (!ldt_table)
6046         return 0;
6047     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6048     if (size > bytecount)
6049         size = bytecount;
6050     p = lock_user(VERIFY_WRITE, ptr, size, 0);
6051     if (!p)
6052         return -TARGET_EFAULT;
6053     /* ??? Should this by byteswapped?  */
6054     memcpy(p, ldt_table, size);
6055     unlock_user(p, ptr, size);
6056     return size;
6057 }
6058 
6059 /* XXX: add locking support */
6060 static abi_long write_ldt(CPUX86State *env,
6061                           abi_ulong ptr, unsigned long bytecount, int oldmode)
6062 {
6063     struct target_modify_ldt_ldt_s ldt_info;
6064     struct target_modify_ldt_ldt_s *target_ldt_info;
6065     int seg_32bit, contents, read_exec_only, limit_in_pages;
6066     int seg_not_present, useable, lm;
6067     uint32_t *lp, entry_1, entry_2;
6068 
6069     if (bytecount != sizeof(ldt_info))
6070         return -TARGET_EINVAL;
6071     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6072         return -TARGET_EFAULT;
6073     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6074     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6075     ldt_info.limit = tswap32(target_ldt_info->limit);
6076     ldt_info.flags = tswap32(target_ldt_info->flags);
6077     unlock_user_struct(target_ldt_info, ptr, 0);
6078 
6079     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6080         return -TARGET_EINVAL;
6081     seg_32bit = ldt_info.flags & 1;
6082     contents = (ldt_info.flags >> 1) & 3;
6083     read_exec_only = (ldt_info.flags >> 3) & 1;
6084     limit_in_pages = (ldt_info.flags >> 4) & 1;
6085     seg_not_present = (ldt_info.flags >> 5) & 1;
6086     useable = (ldt_info.flags >> 6) & 1;
6087 #ifdef TARGET_ABI32
6088     lm = 0;
6089 #else
6090     lm = (ldt_info.flags >> 7) & 1;
6091 #endif
6092     if (contents == 3) {
6093         if (oldmode)
6094             return -TARGET_EINVAL;
6095         if (seg_not_present == 0)
6096             return -TARGET_EINVAL;
6097     }
6098     /* allocate the LDT */
6099     if (!ldt_table) {
6100         env->ldt.base = target_mmap(0,
6101                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6102                                     PROT_READ|PROT_WRITE,
6103                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6104         if (env->ldt.base == -1)
6105             return -TARGET_ENOMEM;
6106         memset(g2h_untagged(env->ldt.base), 0,
6107                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6108         env->ldt.limit = 0xffff;
6109         ldt_table = g2h_untagged(env->ldt.base);
6110     }
6111 
6112     /* NOTE: same code as Linux kernel */
6113     /* Allow LDTs to be cleared by the user. */
6114     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6115         if (oldmode ||
6116             (contents == 0		&&
6117              read_exec_only == 1	&&
6118              seg_32bit == 0		&&
6119              limit_in_pages == 0	&&
6120              seg_not_present == 1	&&
6121              useable == 0 )) {
6122             entry_1 = 0;
6123             entry_2 = 0;
6124             goto install;
6125         }
6126     }
6127 
6128     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6129         (ldt_info.limit & 0x0ffff);
6130     entry_2 = (ldt_info.base_addr & 0xff000000) |
6131         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6132         (ldt_info.limit & 0xf0000) |
6133         ((read_exec_only ^ 1) << 9) |
6134         (contents << 10) |
6135         ((seg_not_present ^ 1) << 15) |
6136         (seg_32bit << 22) |
6137         (limit_in_pages << 23) |
6138         (lm << 21) |
6139         0x7000;
6140     if (!oldmode)
6141         entry_2 |= (useable << 20);
6142 
6143     /* Install the new entry ...  */
6144 install:
6145     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6146     lp[0] = tswap32(entry_1);
6147     lp[1] = tswap32(entry_2);
6148     return 0;
6149 }
6150 
6151 /* specific and weird i386 syscalls */
6152 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6153                               unsigned long bytecount)
6154 {
6155     abi_long ret;
6156 
6157     switch (func) {
6158     case 0:
6159         ret = read_ldt(ptr, bytecount);
6160         break;
6161     case 1:
6162         ret = write_ldt(env, ptr, bytecount, 1);
6163         break;
6164     case 0x11:
6165         ret = write_ldt(env, ptr, bytecount, 0);
6166         break;
6167     default:
6168         ret = -TARGET_ENOSYS;
6169         break;
6170     }
6171     return ret;
6172 }
6173 
6174 #if defined(TARGET_ABI32)
6175 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6176 {
6177     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6178     struct target_modify_ldt_ldt_s ldt_info;
6179     struct target_modify_ldt_ldt_s *target_ldt_info;
6180     int seg_32bit, contents, read_exec_only, limit_in_pages;
6181     int seg_not_present, useable, lm;
6182     uint32_t *lp, entry_1, entry_2;
6183     int i;
6184 
6185     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6186     if (!target_ldt_info)
6187         return -TARGET_EFAULT;
6188     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6189     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6190     ldt_info.limit = tswap32(target_ldt_info->limit);
6191     ldt_info.flags = tswap32(target_ldt_info->flags);
6192     if (ldt_info.entry_number == -1) {
6193         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6194             if (gdt_table[i] == 0) {
6195                 ldt_info.entry_number = i;
6196                 target_ldt_info->entry_number = tswap32(i);
6197                 break;
6198             }
6199         }
6200     }
6201     unlock_user_struct(target_ldt_info, ptr, 1);
6202 
6203     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6204         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6205            return -TARGET_EINVAL;
6206     seg_32bit = ldt_info.flags & 1;
6207     contents = (ldt_info.flags >> 1) & 3;
6208     read_exec_only = (ldt_info.flags >> 3) & 1;
6209     limit_in_pages = (ldt_info.flags >> 4) & 1;
6210     seg_not_present = (ldt_info.flags >> 5) & 1;
6211     useable = (ldt_info.flags >> 6) & 1;
6212 #ifdef TARGET_ABI32
6213     lm = 0;
6214 #else
6215     lm = (ldt_info.flags >> 7) & 1;
6216 #endif
6217 
6218     if (contents == 3) {
6219         if (seg_not_present == 0)
6220             return -TARGET_EINVAL;
6221     }
6222 
6223     /* NOTE: same code as Linux kernel */
6224     /* Allow LDTs to be cleared by the user. */
6225     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6226         if ((contents == 0             &&
6227              read_exec_only == 1       &&
6228              seg_32bit == 0            &&
6229              limit_in_pages == 0       &&
6230              seg_not_present == 1      &&
6231              useable == 0 )) {
6232             entry_1 = 0;
6233             entry_2 = 0;
6234             goto install;
6235         }
6236     }
6237 
6238     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6239         (ldt_info.limit & 0x0ffff);
6240     entry_2 = (ldt_info.base_addr & 0xff000000) |
6241         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6242         (ldt_info.limit & 0xf0000) |
6243         ((read_exec_only ^ 1) << 9) |
6244         (contents << 10) |
6245         ((seg_not_present ^ 1) << 15) |
6246         (seg_32bit << 22) |
6247         (limit_in_pages << 23) |
6248         (useable << 20) |
6249         (lm << 21) |
6250         0x7000;
6251 
6252     /* Install the new entry ...  */
6253 install:
6254     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6255     lp[0] = tswap32(entry_1);
6256     lp[1] = tswap32(entry_2);
6257     return 0;
6258 }
6259 
6260 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6261 {
6262     struct target_modify_ldt_ldt_s *target_ldt_info;
6263     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6264     uint32_t base_addr, limit, flags;
6265     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6266     int seg_not_present, useable, lm;
6267     uint32_t *lp, entry_1, entry_2;
6268 
6269     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6270     if (!target_ldt_info)
6271         return -TARGET_EFAULT;
6272     idx = tswap32(target_ldt_info->entry_number);
6273     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6274         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6275         unlock_user_struct(target_ldt_info, ptr, 1);
6276         return -TARGET_EINVAL;
6277     }
6278     lp = (uint32_t *)(gdt_table + idx);
6279     entry_1 = tswap32(lp[0]);
6280     entry_2 = tswap32(lp[1]);
6281 
6282     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6283     contents = (entry_2 >> 10) & 3;
6284     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6285     seg_32bit = (entry_2 >> 22) & 1;
6286     limit_in_pages = (entry_2 >> 23) & 1;
6287     useable = (entry_2 >> 20) & 1;
6288 #ifdef TARGET_ABI32
6289     lm = 0;
6290 #else
6291     lm = (entry_2 >> 21) & 1;
6292 #endif
6293     flags = (seg_32bit << 0) | (contents << 1) |
6294         (read_exec_only << 3) | (limit_in_pages << 4) |
6295         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6296     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6297     base_addr = (entry_1 >> 16) |
6298         (entry_2 & 0xff000000) |
6299         ((entry_2 & 0xff) << 16);
6300     target_ldt_info->base_addr = tswapal(base_addr);
6301     target_ldt_info->limit = tswap32(limit);
6302     target_ldt_info->flags = tswap32(flags);
6303     unlock_user_struct(target_ldt_info, ptr, 1);
6304     return 0;
6305 }
6306 
6307 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6308 {
6309     return -TARGET_ENOSYS;
6310 }
6311 #else
6312 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6313 {
6314     abi_long ret = 0;
6315     abi_ulong val;
6316     int idx;
6317 
6318     switch(code) {
6319     case TARGET_ARCH_SET_GS:
6320     case TARGET_ARCH_SET_FS:
6321         if (code == TARGET_ARCH_SET_GS)
6322             idx = R_GS;
6323         else
6324             idx = R_FS;
6325         cpu_x86_load_seg(env, idx, 0);
6326         env->segs[idx].base = addr;
6327         break;
6328     case TARGET_ARCH_GET_GS:
6329     case TARGET_ARCH_GET_FS:
6330         if (code == TARGET_ARCH_GET_GS)
6331             idx = R_GS;
6332         else
6333             idx = R_FS;
6334         val = env->segs[idx].base;
6335         if (put_user(val, addr, abi_ulong))
6336             ret = -TARGET_EFAULT;
6337         break;
6338     default:
6339         ret = -TARGET_EINVAL;
6340         break;
6341     }
6342     return ret;
6343 }
6344 #endif /* defined(TARGET_ABI32 */
6345 #endif /* defined(TARGET_I386) */
6346 
6347 /*
6348  * These constants are generic.  Supply any that are missing from the host.
6349  */
6350 #ifndef PR_SET_NAME
6351 # define PR_SET_NAME    15
6352 # define PR_GET_NAME    16
6353 #endif
6354 #ifndef PR_SET_FP_MODE
6355 # define PR_SET_FP_MODE 45
6356 # define PR_GET_FP_MODE 46
6357 # define PR_FP_MODE_FR   (1 << 0)
6358 # define PR_FP_MODE_FRE  (1 << 1)
6359 #endif
6360 #ifndef PR_SVE_SET_VL
6361 # define PR_SVE_SET_VL  50
6362 # define PR_SVE_GET_VL  51
6363 # define PR_SVE_VL_LEN_MASK  0xffff
6364 # define PR_SVE_VL_INHERIT   (1 << 17)
6365 #endif
6366 #ifndef PR_PAC_RESET_KEYS
6367 # define PR_PAC_RESET_KEYS  54
6368 # define PR_PAC_APIAKEY   (1 << 0)
6369 # define PR_PAC_APIBKEY   (1 << 1)
6370 # define PR_PAC_APDAKEY   (1 << 2)
6371 # define PR_PAC_APDBKEY   (1 << 3)
6372 # define PR_PAC_APGAKEY   (1 << 4)
6373 #endif
6374 #ifndef PR_SET_TAGGED_ADDR_CTRL
6375 # define PR_SET_TAGGED_ADDR_CTRL 55
6376 # define PR_GET_TAGGED_ADDR_CTRL 56
6377 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6378 #endif
6379 #ifndef PR_MTE_TCF_SHIFT
6380 # define PR_MTE_TCF_SHIFT       1
6381 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6382 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6383 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6384 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6385 # define PR_MTE_TAG_SHIFT       3
6386 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6387 #endif
6388 #ifndef PR_SET_IO_FLUSHER
6389 # define PR_SET_IO_FLUSHER 57
6390 # define PR_GET_IO_FLUSHER 58
6391 #endif
6392 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6393 # define PR_SET_SYSCALL_USER_DISPATCH 59
6394 #endif
6395 
6396 #include "target_prctl.h"
6397 
6398 static abi_long do_prctl_inval0(CPUArchState *env)
6399 {
6400     return -TARGET_EINVAL;
6401 }
6402 
6403 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6404 {
6405     return -TARGET_EINVAL;
6406 }
6407 
6408 #ifndef do_prctl_get_fp_mode
6409 #define do_prctl_get_fp_mode do_prctl_inval0
6410 #endif
6411 #ifndef do_prctl_set_fp_mode
6412 #define do_prctl_set_fp_mode do_prctl_inval1
6413 #endif
6414 #ifndef do_prctl_get_vl
6415 #define do_prctl_get_vl do_prctl_inval0
6416 #endif
6417 #ifndef do_prctl_set_vl
6418 #define do_prctl_set_vl do_prctl_inval1
6419 #endif
6420 #ifndef do_prctl_reset_keys
6421 #define do_prctl_reset_keys do_prctl_inval1
6422 #endif
6423 #ifndef do_prctl_set_tagged_addr_ctrl
6424 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6425 #endif
6426 #ifndef do_prctl_get_tagged_addr_ctrl
6427 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6428 #endif
6429 #ifndef do_prctl_get_unalign
6430 #define do_prctl_get_unalign do_prctl_inval1
6431 #endif
6432 #ifndef do_prctl_set_unalign
6433 #define do_prctl_set_unalign do_prctl_inval1
6434 #endif
6435 
6436 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6437                          abi_long arg3, abi_long arg4, abi_long arg5)
6438 {
6439     abi_long ret;
6440 
6441     switch (option) {
6442     case PR_GET_PDEATHSIG:
6443         {
6444             int deathsig;
6445             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6446                                   arg3, arg4, arg5));
6447             if (!is_error(ret) &&
6448                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6449                 return -TARGET_EFAULT;
6450             }
6451             return ret;
6452         }
6453     case PR_GET_NAME:
6454         {
6455             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6456             if (!name) {
6457                 return -TARGET_EFAULT;
6458             }
6459             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6460                                   arg3, arg4, arg5));
6461             unlock_user(name, arg2, 16);
6462             return ret;
6463         }
6464     case PR_SET_NAME:
6465         {
6466             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6467             if (!name) {
6468                 return -TARGET_EFAULT;
6469             }
6470             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6471                                   arg3, arg4, arg5));
6472             unlock_user(name, arg2, 0);
6473             return ret;
6474         }
6475     case PR_GET_FP_MODE:
6476         return do_prctl_get_fp_mode(env);
6477     case PR_SET_FP_MODE:
6478         return do_prctl_set_fp_mode(env, arg2);
6479     case PR_SVE_GET_VL:
6480         return do_prctl_get_vl(env);
6481     case PR_SVE_SET_VL:
6482         return do_prctl_set_vl(env, arg2);
6483     case PR_PAC_RESET_KEYS:
6484         if (arg3 || arg4 || arg5) {
6485             return -TARGET_EINVAL;
6486         }
6487         return do_prctl_reset_keys(env, arg2);
6488     case PR_SET_TAGGED_ADDR_CTRL:
6489         if (arg3 || arg4 || arg5) {
6490             return -TARGET_EINVAL;
6491         }
6492         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6493     case PR_GET_TAGGED_ADDR_CTRL:
6494         if (arg2 || arg3 || arg4 || arg5) {
6495             return -TARGET_EINVAL;
6496         }
6497         return do_prctl_get_tagged_addr_ctrl(env);
6498 
6499     case PR_GET_UNALIGN:
6500         return do_prctl_get_unalign(env, arg2);
6501     case PR_SET_UNALIGN:
6502         return do_prctl_set_unalign(env, arg2);
6503 
6504     case PR_GET_DUMPABLE:
6505     case PR_SET_DUMPABLE:
6506     case PR_GET_KEEPCAPS:
6507     case PR_SET_KEEPCAPS:
6508     case PR_GET_TIMING:
6509     case PR_SET_TIMING:
6510     case PR_GET_TIMERSLACK:
6511     case PR_SET_TIMERSLACK:
6512     case PR_MCE_KILL:
6513     case PR_MCE_KILL_GET:
6514     case PR_GET_NO_NEW_PRIVS:
6515     case PR_SET_NO_NEW_PRIVS:
6516     case PR_GET_IO_FLUSHER:
6517     case PR_SET_IO_FLUSHER:
6518         /* Some prctl options have no pointer arguments and we can pass on. */
6519         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6520 
6521     case PR_GET_CHILD_SUBREAPER:
6522     case PR_SET_CHILD_SUBREAPER:
6523     case PR_GET_SPECULATION_CTRL:
6524     case PR_SET_SPECULATION_CTRL:
6525     case PR_GET_TID_ADDRESS:
6526         /* TODO */
6527         return -TARGET_EINVAL;
6528 
6529     case PR_GET_FPEXC:
6530     case PR_SET_FPEXC:
6531         /* Was used for SPE on PowerPC. */
6532         return -TARGET_EINVAL;
6533 
6534     case PR_GET_ENDIAN:
6535     case PR_SET_ENDIAN:
6536     case PR_GET_FPEMU:
6537     case PR_SET_FPEMU:
6538     case PR_SET_MM:
6539     case PR_GET_SECCOMP:
6540     case PR_SET_SECCOMP:
6541     case PR_SET_SYSCALL_USER_DISPATCH:
6542     case PR_GET_THP_DISABLE:
6543     case PR_SET_THP_DISABLE:
6544     case PR_GET_TSC:
6545     case PR_SET_TSC:
6546         /* Disable to prevent the target disabling stuff we need. */
6547         return -TARGET_EINVAL;
6548 
6549     default:
6550         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6551                       option);
6552         return -TARGET_EINVAL;
6553     }
6554 }
6555 
6556 #define NEW_STACK_SIZE 0x40000
6557 
6558 
6559 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6560 typedef struct {
6561     CPUArchState *env;
6562     pthread_mutex_t mutex;
6563     pthread_cond_t cond;
6564     pthread_t thread;
6565     uint32_t tid;
6566     abi_ulong child_tidptr;
6567     abi_ulong parent_tidptr;
6568     sigset_t sigmask;
6569 } new_thread_info;
6570 
6571 static void *clone_func(void *arg)
6572 {
6573     new_thread_info *info = arg;
6574     CPUArchState *env;
6575     CPUState *cpu;
6576     TaskState *ts;
6577 
6578     rcu_register_thread();
6579     tcg_register_thread();
6580     env = info->env;
6581     cpu = env_cpu(env);
6582     thread_cpu = cpu;
6583     ts = (TaskState *)cpu->opaque;
6584     info->tid = sys_gettid();
6585     task_settid(ts);
6586     if (info->child_tidptr)
6587         put_user_u32(info->tid, info->child_tidptr);
6588     if (info->parent_tidptr)
6589         put_user_u32(info->tid, info->parent_tidptr);
6590     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6591     /* Enable signals.  */
6592     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6593     /* Signal to the parent that we're ready.  */
6594     pthread_mutex_lock(&info->mutex);
6595     pthread_cond_broadcast(&info->cond);
6596     pthread_mutex_unlock(&info->mutex);
6597     /* Wait until the parent has finished initializing the tls state.  */
6598     pthread_mutex_lock(&clone_lock);
6599     pthread_mutex_unlock(&clone_lock);
6600     cpu_loop(env);
6601     /* never exits */
6602     return NULL;
6603 }
6604 
6605 /* do_fork() Must return host values and target errnos (unlike most
6606    do_*() functions). */
6607 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6608                    abi_ulong parent_tidptr, target_ulong newtls,
6609                    abi_ulong child_tidptr)
6610 {
6611     CPUState *cpu = env_cpu(env);
6612     int ret;
6613     TaskState *ts;
6614     CPUState *new_cpu;
6615     CPUArchState *new_env;
6616     sigset_t sigmask;
6617 
6618     flags &= ~CLONE_IGNORED_FLAGS;
6619 
6620     /* Emulate vfork() with fork() */
6621     if (flags & CLONE_VFORK)
6622         flags &= ~(CLONE_VFORK | CLONE_VM);
6623 
6624     if (flags & CLONE_VM) {
6625         TaskState *parent_ts = (TaskState *)cpu->opaque;
6626         new_thread_info info;
6627         pthread_attr_t attr;
6628 
6629         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6630             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6631             return -TARGET_EINVAL;
6632         }
6633 
6634         ts = g_new0(TaskState, 1);
6635         init_task_state(ts);
6636 
6637         /* Grab a mutex so that thread setup appears atomic.  */
6638         pthread_mutex_lock(&clone_lock);
6639 
6640         /*
6641          * If this is our first additional thread, we need to ensure we
6642          * generate code for parallel execution and flush old translations.
6643          * Do this now so that the copy gets CF_PARALLEL too.
6644          */
6645         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6646             cpu->tcg_cflags |= CF_PARALLEL;
6647             tb_flush(cpu);
6648         }
6649 
6650         /* we create a new CPU instance. */
6651         new_env = cpu_copy(env);
6652         /* Init regs that differ from the parent.  */
6653         cpu_clone_regs_child(new_env, newsp, flags);
6654         cpu_clone_regs_parent(env, flags);
6655         new_cpu = env_cpu(new_env);
6656         new_cpu->opaque = ts;
6657         ts->bprm = parent_ts->bprm;
6658         ts->info = parent_ts->info;
6659         ts->signal_mask = parent_ts->signal_mask;
6660 
6661         if (flags & CLONE_CHILD_CLEARTID) {
6662             ts->child_tidptr = child_tidptr;
6663         }
6664 
6665         if (flags & CLONE_SETTLS) {
6666             cpu_set_tls (new_env, newtls);
6667         }
6668 
6669         memset(&info, 0, sizeof(info));
6670         pthread_mutex_init(&info.mutex, NULL);
6671         pthread_mutex_lock(&info.mutex);
6672         pthread_cond_init(&info.cond, NULL);
6673         info.env = new_env;
6674         if (flags & CLONE_CHILD_SETTID) {
6675             info.child_tidptr = child_tidptr;
6676         }
6677         if (flags & CLONE_PARENT_SETTID) {
6678             info.parent_tidptr = parent_tidptr;
6679         }
6680 
6681         ret = pthread_attr_init(&attr);
6682         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6683         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6684         /* It is not safe to deliver signals until the child has finished
6685            initializing, so temporarily block all signals.  */
6686         sigfillset(&sigmask);
6687         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6688         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6689 
6690         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6691         /* TODO: Free new CPU state if thread creation failed.  */
6692 
6693         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6694         pthread_attr_destroy(&attr);
6695         if (ret == 0) {
6696             /* Wait for the child to initialize.  */
6697             pthread_cond_wait(&info.cond, &info.mutex);
6698             ret = info.tid;
6699         } else {
6700             ret = -1;
6701         }
6702         pthread_mutex_unlock(&info.mutex);
6703         pthread_cond_destroy(&info.cond);
6704         pthread_mutex_destroy(&info.mutex);
6705         pthread_mutex_unlock(&clone_lock);
6706     } else {
6707         /* if no CLONE_VM, we consider it is a fork */
6708         if (flags & CLONE_INVALID_FORK_FLAGS) {
6709             return -TARGET_EINVAL;
6710         }
6711 
6712         /* We can't support custom termination signals */
6713         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6714             return -TARGET_EINVAL;
6715         }
6716 
6717         if (block_signals()) {
6718             return -QEMU_ERESTARTSYS;
6719         }
6720 
6721         fork_start();
6722         ret = fork();
6723         if (ret == 0) {
6724             /* Child Process.  */
6725             cpu_clone_regs_child(env, newsp, flags);
6726             fork_end(1);
6727             /* There is a race condition here.  The parent process could
6728                theoretically read the TID in the child process before the child
6729                tid is set.  This would require using either ptrace
6730                (not implemented) or having *_tidptr to point at a shared memory
6731                mapping.  We can't repeat the spinlock hack used above because
6732                the child process gets its own copy of the lock.  */
6733             if (flags & CLONE_CHILD_SETTID)
6734                 put_user_u32(sys_gettid(), child_tidptr);
6735             if (flags & CLONE_PARENT_SETTID)
6736                 put_user_u32(sys_gettid(), parent_tidptr);
6737             ts = (TaskState *)cpu->opaque;
6738             if (flags & CLONE_SETTLS)
6739                 cpu_set_tls (env, newtls);
6740             if (flags & CLONE_CHILD_CLEARTID)
6741                 ts->child_tidptr = child_tidptr;
6742         } else {
6743             cpu_clone_regs_parent(env, flags);
6744             fork_end(0);
6745         }
6746     }
6747     return ret;
6748 }
6749 
6750 /* warning : doesn't handle linux specific flags... */
6751 static int target_to_host_fcntl_cmd(int cmd)
6752 {
6753     int ret;
6754 
6755     switch(cmd) {
6756     case TARGET_F_DUPFD:
6757     case TARGET_F_GETFD:
6758     case TARGET_F_SETFD:
6759     case TARGET_F_GETFL:
6760     case TARGET_F_SETFL:
6761     case TARGET_F_OFD_GETLK:
6762     case TARGET_F_OFD_SETLK:
6763     case TARGET_F_OFD_SETLKW:
6764         ret = cmd;
6765         break;
6766     case TARGET_F_GETLK:
6767         ret = F_GETLK64;
6768         break;
6769     case TARGET_F_SETLK:
6770         ret = F_SETLK64;
6771         break;
6772     case TARGET_F_SETLKW:
6773         ret = F_SETLKW64;
6774         break;
6775     case TARGET_F_GETOWN:
6776         ret = F_GETOWN;
6777         break;
6778     case TARGET_F_SETOWN:
6779         ret = F_SETOWN;
6780         break;
6781     case TARGET_F_GETSIG:
6782         ret = F_GETSIG;
6783         break;
6784     case TARGET_F_SETSIG:
6785         ret = F_SETSIG;
6786         break;
6787 #if TARGET_ABI_BITS == 32
6788     case TARGET_F_GETLK64:
6789         ret = F_GETLK64;
6790         break;
6791     case TARGET_F_SETLK64:
6792         ret = F_SETLK64;
6793         break;
6794     case TARGET_F_SETLKW64:
6795         ret = F_SETLKW64;
6796         break;
6797 #endif
6798     case TARGET_F_SETLEASE:
6799         ret = F_SETLEASE;
6800         break;
6801     case TARGET_F_GETLEASE:
6802         ret = F_GETLEASE;
6803         break;
6804 #ifdef F_DUPFD_CLOEXEC
6805     case TARGET_F_DUPFD_CLOEXEC:
6806         ret = F_DUPFD_CLOEXEC;
6807         break;
6808 #endif
6809     case TARGET_F_NOTIFY:
6810         ret = F_NOTIFY;
6811         break;
6812 #ifdef F_GETOWN_EX
6813     case TARGET_F_GETOWN_EX:
6814         ret = F_GETOWN_EX;
6815         break;
6816 #endif
6817 #ifdef F_SETOWN_EX
6818     case TARGET_F_SETOWN_EX:
6819         ret = F_SETOWN_EX;
6820         break;
6821 #endif
6822 #ifdef F_SETPIPE_SZ
6823     case TARGET_F_SETPIPE_SZ:
6824         ret = F_SETPIPE_SZ;
6825         break;
6826     case TARGET_F_GETPIPE_SZ:
6827         ret = F_GETPIPE_SZ;
6828         break;
6829 #endif
6830 #ifdef F_ADD_SEALS
6831     case TARGET_F_ADD_SEALS:
6832         ret = F_ADD_SEALS;
6833         break;
6834     case TARGET_F_GET_SEALS:
6835         ret = F_GET_SEALS;
6836         break;
6837 #endif
6838     default:
6839         ret = -TARGET_EINVAL;
6840         break;
6841     }
6842 
6843 #if defined(__powerpc64__)
6844     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6845      * is not supported by kernel. The glibc fcntl call actually adjusts
6846      * them to 5, 6 and 7 before making the syscall(). Since we make the
6847      * syscall directly, adjust to what is supported by the kernel.
6848      */
6849     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6850         ret -= F_GETLK64 - 5;
6851     }
6852 #endif
6853 
6854     return ret;
6855 }
6856 
6857 #define FLOCK_TRANSTBL \
6858     switch (type) { \
6859     TRANSTBL_CONVERT(F_RDLCK); \
6860     TRANSTBL_CONVERT(F_WRLCK); \
6861     TRANSTBL_CONVERT(F_UNLCK); \
6862     }
6863 
6864 static int target_to_host_flock(int type)
6865 {
6866 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6867     FLOCK_TRANSTBL
6868 #undef  TRANSTBL_CONVERT
6869     return -TARGET_EINVAL;
6870 }
6871 
6872 static int host_to_target_flock(int type)
6873 {
6874 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6875     FLOCK_TRANSTBL
6876 #undef  TRANSTBL_CONVERT
6877     /* if we don't know how to convert the value coming
6878      * from the host we copy to the target field as-is
6879      */
6880     return type;
6881 }
6882 
6883 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6884                                             abi_ulong target_flock_addr)
6885 {
6886     struct target_flock *target_fl;
6887     int l_type;
6888 
6889     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6890         return -TARGET_EFAULT;
6891     }
6892 
6893     __get_user(l_type, &target_fl->l_type);
6894     l_type = target_to_host_flock(l_type);
6895     if (l_type < 0) {
6896         return l_type;
6897     }
6898     fl->l_type = l_type;
6899     __get_user(fl->l_whence, &target_fl->l_whence);
6900     __get_user(fl->l_start, &target_fl->l_start);
6901     __get_user(fl->l_len, &target_fl->l_len);
6902     __get_user(fl->l_pid, &target_fl->l_pid);
6903     unlock_user_struct(target_fl, target_flock_addr, 0);
6904     return 0;
6905 }
6906 
6907 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6908                                           const struct flock64 *fl)
6909 {
6910     struct target_flock *target_fl;
6911     short l_type;
6912 
6913     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6914         return -TARGET_EFAULT;
6915     }
6916 
6917     l_type = host_to_target_flock(fl->l_type);
6918     __put_user(l_type, &target_fl->l_type);
6919     __put_user(fl->l_whence, &target_fl->l_whence);
6920     __put_user(fl->l_start, &target_fl->l_start);
6921     __put_user(fl->l_len, &target_fl->l_len);
6922     __put_user(fl->l_pid, &target_fl->l_pid);
6923     unlock_user_struct(target_fl, target_flock_addr, 1);
6924     return 0;
6925 }
6926 
6927 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6928 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6929 
6930 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6931 struct target_oabi_flock64 {
6932     abi_short l_type;
6933     abi_short l_whence;
6934     abi_llong l_start;
6935     abi_llong l_len;
6936     abi_int   l_pid;
6937 } QEMU_PACKED;
6938 
6939 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6940                                                    abi_ulong target_flock_addr)
6941 {
6942     struct target_oabi_flock64 *target_fl;
6943     int l_type;
6944 
6945     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6946         return -TARGET_EFAULT;
6947     }
6948 
6949     __get_user(l_type, &target_fl->l_type);
6950     l_type = target_to_host_flock(l_type);
6951     if (l_type < 0) {
6952         return l_type;
6953     }
6954     fl->l_type = l_type;
6955     __get_user(fl->l_whence, &target_fl->l_whence);
6956     __get_user(fl->l_start, &target_fl->l_start);
6957     __get_user(fl->l_len, &target_fl->l_len);
6958     __get_user(fl->l_pid, &target_fl->l_pid);
6959     unlock_user_struct(target_fl, target_flock_addr, 0);
6960     return 0;
6961 }
6962 
6963 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6964                                                  const struct flock64 *fl)
6965 {
6966     struct target_oabi_flock64 *target_fl;
6967     short l_type;
6968 
6969     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6970         return -TARGET_EFAULT;
6971     }
6972 
6973     l_type = host_to_target_flock(fl->l_type);
6974     __put_user(l_type, &target_fl->l_type);
6975     __put_user(fl->l_whence, &target_fl->l_whence);
6976     __put_user(fl->l_start, &target_fl->l_start);
6977     __put_user(fl->l_len, &target_fl->l_len);
6978     __put_user(fl->l_pid, &target_fl->l_pid);
6979     unlock_user_struct(target_fl, target_flock_addr, 1);
6980     return 0;
6981 }
6982 #endif
6983 
6984 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6985                                               abi_ulong target_flock_addr)
6986 {
6987     struct target_flock64 *target_fl;
6988     int l_type;
6989 
6990     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6991         return -TARGET_EFAULT;
6992     }
6993 
6994     __get_user(l_type, &target_fl->l_type);
6995     l_type = target_to_host_flock(l_type);
6996     if (l_type < 0) {
6997         return l_type;
6998     }
6999     fl->l_type = l_type;
7000     __get_user(fl->l_whence, &target_fl->l_whence);
7001     __get_user(fl->l_start, &target_fl->l_start);
7002     __get_user(fl->l_len, &target_fl->l_len);
7003     __get_user(fl->l_pid, &target_fl->l_pid);
7004     unlock_user_struct(target_fl, target_flock_addr, 0);
7005     return 0;
7006 }
7007 
7008 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
7009                                             const struct flock64 *fl)
7010 {
7011     struct target_flock64 *target_fl;
7012     short l_type;
7013 
7014     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7015         return -TARGET_EFAULT;
7016     }
7017 
7018     l_type = host_to_target_flock(fl->l_type);
7019     __put_user(l_type, &target_fl->l_type);
7020     __put_user(fl->l_whence, &target_fl->l_whence);
7021     __put_user(fl->l_start, &target_fl->l_start);
7022     __put_user(fl->l_len, &target_fl->l_len);
7023     __put_user(fl->l_pid, &target_fl->l_pid);
7024     unlock_user_struct(target_fl, target_flock_addr, 1);
7025     return 0;
7026 }
7027 
7028 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
7029 {
7030     struct flock64 fl64;
7031 #ifdef F_GETOWN_EX
7032     struct f_owner_ex fox;
7033     struct target_f_owner_ex *target_fox;
7034 #endif
7035     abi_long ret;
7036     int host_cmd = target_to_host_fcntl_cmd(cmd);
7037 
7038     if (host_cmd == -TARGET_EINVAL)
7039 	    return host_cmd;
7040 
7041     switch(cmd) {
7042     case TARGET_F_GETLK:
7043         ret = copy_from_user_flock(&fl64, arg);
7044         if (ret) {
7045             return ret;
7046         }
7047         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7048         if (ret == 0) {
7049             ret = copy_to_user_flock(arg, &fl64);
7050         }
7051         break;
7052 
7053     case TARGET_F_SETLK:
7054     case TARGET_F_SETLKW:
7055         ret = copy_from_user_flock(&fl64, arg);
7056         if (ret) {
7057             return ret;
7058         }
7059         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7060         break;
7061 
7062     case TARGET_F_GETLK64:
7063     case TARGET_F_OFD_GETLK:
7064         ret = copy_from_user_flock64(&fl64, arg);
7065         if (ret) {
7066             return ret;
7067         }
7068         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7069         if (ret == 0) {
7070             ret = copy_to_user_flock64(arg, &fl64);
7071         }
7072         break;
7073     case TARGET_F_SETLK64:
7074     case TARGET_F_SETLKW64:
7075     case TARGET_F_OFD_SETLK:
7076     case TARGET_F_OFD_SETLKW:
7077         ret = copy_from_user_flock64(&fl64, arg);
7078         if (ret) {
7079             return ret;
7080         }
7081         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7082         break;
7083 
7084     case TARGET_F_GETFL:
7085         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7086         if (ret >= 0) {
7087             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7088         }
7089         break;
7090 
7091     case TARGET_F_SETFL:
7092         ret = get_errno(safe_fcntl(fd, host_cmd,
7093                                    target_to_host_bitmask(arg,
7094                                                           fcntl_flags_tbl)));
7095         break;
7096 
7097 #ifdef F_GETOWN_EX
7098     case TARGET_F_GETOWN_EX:
7099         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7100         if (ret >= 0) {
7101             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7102                 return -TARGET_EFAULT;
7103             target_fox->type = tswap32(fox.type);
7104             target_fox->pid = tswap32(fox.pid);
7105             unlock_user_struct(target_fox, arg, 1);
7106         }
7107         break;
7108 #endif
7109 
7110 #ifdef F_SETOWN_EX
7111     case TARGET_F_SETOWN_EX:
7112         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7113             return -TARGET_EFAULT;
7114         fox.type = tswap32(target_fox->type);
7115         fox.pid = tswap32(target_fox->pid);
7116         unlock_user_struct(target_fox, arg, 0);
7117         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7118         break;
7119 #endif
7120 
7121     case TARGET_F_SETSIG:
7122         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7123         break;
7124 
7125     case TARGET_F_GETSIG:
7126         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7127         break;
7128 
7129     case TARGET_F_SETOWN:
7130     case TARGET_F_GETOWN:
7131     case TARGET_F_SETLEASE:
7132     case TARGET_F_GETLEASE:
7133     case TARGET_F_SETPIPE_SZ:
7134     case TARGET_F_GETPIPE_SZ:
7135     case TARGET_F_ADD_SEALS:
7136     case TARGET_F_GET_SEALS:
7137         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7138         break;
7139 
7140     default:
7141         ret = get_errno(safe_fcntl(fd, cmd, arg));
7142         break;
7143     }
7144     return ret;
7145 }
7146 
7147 #ifdef USE_UID16
7148 
7149 static inline int high2lowuid(int uid)
7150 {
7151     if (uid > 65535)
7152         return 65534;
7153     else
7154         return uid;
7155 }
7156 
7157 static inline int high2lowgid(int gid)
7158 {
7159     if (gid > 65535)
7160         return 65534;
7161     else
7162         return gid;
7163 }
7164 
7165 static inline int low2highuid(int uid)
7166 {
7167     if ((int16_t)uid == -1)
7168         return -1;
7169     else
7170         return uid;
7171 }
7172 
7173 static inline int low2highgid(int gid)
7174 {
7175     if ((int16_t)gid == -1)
7176         return -1;
7177     else
7178         return gid;
7179 }
7180 static inline int tswapid(int id)
7181 {
7182     return tswap16(id);
7183 }
7184 
7185 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7186 
7187 #else /* !USE_UID16 */
7188 static inline int high2lowuid(int uid)
7189 {
7190     return uid;
7191 }
7192 static inline int high2lowgid(int gid)
7193 {
7194     return gid;
7195 }
7196 static inline int low2highuid(int uid)
7197 {
7198     return uid;
7199 }
7200 static inline int low2highgid(int gid)
7201 {
7202     return gid;
7203 }
7204 static inline int tswapid(int id)
7205 {
7206     return tswap32(id);
7207 }
7208 
7209 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7210 
7211 #endif /* USE_UID16 */
7212 
7213 /* We must do direct syscalls for setting UID/GID, because we want to
7214  * implement the Linux system call semantics of "change only for this thread",
7215  * not the libc/POSIX semantics of "change for all threads in process".
7216  * (See http://ewontfix.com/17/ for more details.)
7217  * We use the 32-bit version of the syscalls if present; if it is not
7218  * then either the host architecture supports 32-bit UIDs natively with
7219  * the standard syscall, or the 16-bit UID is the best we can do.
7220  */
7221 #ifdef __NR_setuid32
7222 #define __NR_sys_setuid __NR_setuid32
7223 #else
7224 #define __NR_sys_setuid __NR_setuid
7225 #endif
7226 #ifdef __NR_setgid32
7227 #define __NR_sys_setgid __NR_setgid32
7228 #else
7229 #define __NR_sys_setgid __NR_setgid
7230 #endif
7231 #ifdef __NR_setresuid32
7232 #define __NR_sys_setresuid __NR_setresuid32
7233 #else
7234 #define __NR_sys_setresuid __NR_setresuid
7235 #endif
7236 #ifdef __NR_setresgid32
7237 #define __NR_sys_setresgid __NR_setresgid32
7238 #else
7239 #define __NR_sys_setresgid __NR_setresgid
7240 #endif
7241 
7242 _syscall1(int, sys_setuid, uid_t, uid)
7243 _syscall1(int, sys_setgid, gid_t, gid)
7244 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7245 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7246 
7247 void syscall_init(void)
7248 {
7249     IOCTLEntry *ie;
7250     const argtype *arg_type;
7251     int size;
7252 
7253     thunk_init(STRUCT_MAX);
7254 
7255 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7256 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7257 #include "syscall_types.h"
7258 #undef STRUCT
7259 #undef STRUCT_SPECIAL
7260 
7261     /* we patch the ioctl size if necessary. We rely on the fact that
7262        no ioctl has all the bits at '1' in the size field */
7263     ie = ioctl_entries;
7264     while (ie->target_cmd != 0) {
7265         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7266             TARGET_IOC_SIZEMASK) {
7267             arg_type = ie->arg_type;
7268             if (arg_type[0] != TYPE_PTR) {
7269                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7270                         ie->target_cmd);
7271                 exit(1);
7272             }
7273             arg_type++;
7274             size = thunk_type_size(arg_type, 0);
7275             ie->target_cmd = (ie->target_cmd &
7276                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7277                 (size << TARGET_IOC_SIZESHIFT);
7278         }
7279 
7280         /* automatic consistency check if same arch */
7281 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7282     (defined(__x86_64__) && defined(TARGET_X86_64))
7283         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7284             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7285                     ie->name, ie->target_cmd, ie->host_cmd);
7286         }
7287 #endif
7288         ie++;
7289     }
7290 }
7291 
7292 #ifdef TARGET_NR_truncate64
7293 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
7294                                          abi_long arg2,
7295                                          abi_long arg3,
7296                                          abi_long arg4)
7297 {
7298     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7299         arg2 = arg3;
7300         arg3 = arg4;
7301     }
7302     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7303 }
7304 #endif
7305 
7306 #ifdef TARGET_NR_ftruncate64
7307 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
7308                                           abi_long arg2,
7309                                           abi_long arg3,
7310                                           abi_long arg4)
7311 {
7312     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7313         arg2 = arg3;
7314         arg3 = arg4;
7315     }
7316     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7317 }
7318 #endif
7319 
7320 #if defined(TARGET_NR_timer_settime) || \
7321     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7322 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7323                                                  abi_ulong target_addr)
7324 {
7325     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7326                                 offsetof(struct target_itimerspec,
7327                                          it_interval)) ||
7328         target_to_host_timespec(&host_its->it_value, target_addr +
7329                                 offsetof(struct target_itimerspec,
7330                                          it_value))) {
7331         return -TARGET_EFAULT;
7332     }
7333 
7334     return 0;
7335 }
7336 #endif
7337 
7338 #if defined(TARGET_NR_timer_settime64) || \
7339     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7340 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7341                                                    abi_ulong target_addr)
7342 {
7343     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7344                                   offsetof(struct target__kernel_itimerspec,
7345                                            it_interval)) ||
7346         target_to_host_timespec64(&host_its->it_value, target_addr +
7347                                   offsetof(struct target__kernel_itimerspec,
7348                                            it_value))) {
7349         return -TARGET_EFAULT;
7350     }
7351 
7352     return 0;
7353 }
7354 #endif
7355 
7356 #if ((defined(TARGET_NR_timerfd_gettime) || \
7357       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7358       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7359 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7360                                                  struct itimerspec *host_its)
7361 {
7362     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7363                                                        it_interval),
7364                                 &host_its->it_interval) ||
7365         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7366                                                        it_value),
7367                                 &host_its->it_value)) {
7368         return -TARGET_EFAULT;
7369     }
7370     return 0;
7371 }
7372 #endif
7373 
7374 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7375       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7376       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7377 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7378                                                    struct itimerspec *host_its)
7379 {
7380     if (host_to_target_timespec64(target_addr +
7381                                   offsetof(struct target__kernel_itimerspec,
7382                                            it_interval),
7383                                   &host_its->it_interval) ||
7384         host_to_target_timespec64(target_addr +
7385                                   offsetof(struct target__kernel_itimerspec,
7386                                            it_value),
7387                                   &host_its->it_value)) {
7388         return -TARGET_EFAULT;
7389     }
7390     return 0;
7391 }
7392 #endif
7393 
7394 #if defined(TARGET_NR_adjtimex) || \
7395     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7396 static inline abi_long target_to_host_timex(struct timex *host_tx,
7397                                             abi_long target_addr)
7398 {
7399     struct target_timex *target_tx;
7400 
7401     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7402         return -TARGET_EFAULT;
7403     }
7404 
7405     __get_user(host_tx->modes, &target_tx->modes);
7406     __get_user(host_tx->offset, &target_tx->offset);
7407     __get_user(host_tx->freq, &target_tx->freq);
7408     __get_user(host_tx->maxerror, &target_tx->maxerror);
7409     __get_user(host_tx->esterror, &target_tx->esterror);
7410     __get_user(host_tx->status, &target_tx->status);
7411     __get_user(host_tx->constant, &target_tx->constant);
7412     __get_user(host_tx->precision, &target_tx->precision);
7413     __get_user(host_tx->tolerance, &target_tx->tolerance);
7414     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7415     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7416     __get_user(host_tx->tick, &target_tx->tick);
7417     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7418     __get_user(host_tx->jitter, &target_tx->jitter);
7419     __get_user(host_tx->shift, &target_tx->shift);
7420     __get_user(host_tx->stabil, &target_tx->stabil);
7421     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7422     __get_user(host_tx->calcnt, &target_tx->calcnt);
7423     __get_user(host_tx->errcnt, &target_tx->errcnt);
7424     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7425     __get_user(host_tx->tai, &target_tx->tai);
7426 
7427     unlock_user_struct(target_tx, target_addr, 0);
7428     return 0;
7429 }
7430 
7431 static inline abi_long host_to_target_timex(abi_long target_addr,
7432                                             struct timex *host_tx)
7433 {
7434     struct target_timex *target_tx;
7435 
7436     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7437         return -TARGET_EFAULT;
7438     }
7439 
7440     __put_user(host_tx->modes, &target_tx->modes);
7441     __put_user(host_tx->offset, &target_tx->offset);
7442     __put_user(host_tx->freq, &target_tx->freq);
7443     __put_user(host_tx->maxerror, &target_tx->maxerror);
7444     __put_user(host_tx->esterror, &target_tx->esterror);
7445     __put_user(host_tx->status, &target_tx->status);
7446     __put_user(host_tx->constant, &target_tx->constant);
7447     __put_user(host_tx->precision, &target_tx->precision);
7448     __put_user(host_tx->tolerance, &target_tx->tolerance);
7449     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7450     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7451     __put_user(host_tx->tick, &target_tx->tick);
7452     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7453     __put_user(host_tx->jitter, &target_tx->jitter);
7454     __put_user(host_tx->shift, &target_tx->shift);
7455     __put_user(host_tx->stabil, &target_tx->stabil);
7456     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7457     __put_user(host_tx->calcnt, &target_tx->calcnt);
7458     __put_user(host_tx->errcnt, &target_tx->errcnt);
7459     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7460     __put_user(host_tx->tai, &target_tx->tai);
7461 
7462     unlock_user_struct(target_tx, target_addr, 1);
7463     return 0;
7464 }
7465 #endif
7466 
7467 
7468 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7469 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7470                                               abi_long target_addr)
7471 {
7472     struct target__kernel_timex *target_tx;
7473 
7474     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7475                                  offsetof(struct target__kernel_timex,
7476                                           time))) {
7477         return -TARGET_EFAULT;
7478     }
7479 
7480     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7481         return -TARGET_EFAULT;
7482     }
7483 
7484     __get_user(host_tx->modes, &target_tx->modes);
7485     __get_user(host_tx->offset, &target_tx->offset);
7486     __get_user(host_tx->freq, &target_tx->freq);
7487     __get_user(host_tx->maxerror, &target_tx->maxerror);
7488     __get_user(host_tx->esterror, &target_tx->esterror);
7489     __get_user(host_tx->status, &target_tx->status);
7490     __get_user(host_tx->constant, &target_tx->constant);
7491     __get_user(host_tx->precision, &target_tx->precision);
7492     __get_user(host_tx->tolerance, &target_tx->tolerance);
7493     __get_user(host_tx->tick, &target_tx->tick);
7494     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7495     __get_user(host_tx->jitter, &target_tx->jitter);
7496     __get_user(host_tx->shift, &target_tx->shift);
7497     __get_user(host_tx->stabil, &target_tx->stabil);
7498     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7499     __get_user(host_tx->calcnt, &target_tx->calcnt);
7500     __get_user(host_tx->errcnt, &target_tx->errcnt);
7501     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7502     __get_user(host_tx->tai, &target_tx->tai);
7503 
7504     unlock_user_struct(target_tx, target_addr, 0);
7505     return 0;
7506 }
7507 
7508 static inline abi_long host_to_target_timex64(abi_long target_addr,
7509                                               struct timex *host_tx)
7510 {
7511     struct target__kernel_timex *target_tx;
7512 
7513    if (copy_to_user_timeval64(target_addr +
7514                               offsetof(struct target__kernel_timex, time),
7515                               &host_tx->time)) {
7516         return -TARGET_EFAULT;
7517     }
7518 
7519     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7520         return -TARGET_EFAULT;
7521     }
7522 
7523     __put_user(host_tx->modes, &target_tx->modes);
7524     __put_user(host_tx->offset, &target_tx->offset);
7525     __put_user(host_tx->freq, &target_tx->freq);
7526     __put_user(host_tx->maxerror, &target_tx->maxerror);
7527     __put_user(host_tx->esterror, &target_tx->esterror);
7528     __put_user(host_tx->status, &target_tx->status);
7529     __put_user(host_tx->constant, &target_tx->constant);
7530     __put_user(host_tx->precision, &target_tx->precision);
7531     __put_user(host_tx->tolerance, &target_tx->tolerance);
7532     __put_user(host_tx->tick, &target_tx->tick);
7533     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7534     __put_user(host_tx->jitter, &target_tx->jitter);
7535     __put_user(host_tx->shift, &target_tx->shift);
7536     __put_user(host_tx->stabil, &target_tx->stabil);
7537     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7538     __put_user(host_tx->calcnt, &target_tx->calcnt);
7539     __put_user(host_tx->errcnt, &target_tx->errcnt);
7540     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7541     __put_user(host_tx->tai, &target_tx->tai);
7542 
7543     unlock_user_struct(target_tx, target_addr, 1);
7544     return 0;
7545 }
7546 #endif
7547 
7548 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7549 #define sigev_notify_thread_id _sigev_un._tid
7550 #endif
7551 
7552 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7553                                                abi_ulong target_addr)
7554 {
7555     struct target_sigevent *target_sevp;
7556 
7557     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7558         return -TARGET_EFAULT;
7559     }
7560 
7561     /* This union is awkward on 64 bit systems because it has a 32 bit
7562      * integer and a pointer in it; we follow the conversion approach
7563      * used for handling sigval types in signal.c so the guest should get
7564      * the correct value back even if we did a 64 bit byteswap and it's
7565      * using the 32 bit integer.
7566      */
7567     host_sevp->sigev_value.sival_ptr =
7568         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7569     host_sevp->sigev_signo =
7570         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7571     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7572     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7573 
7574     unlock_user_struct(target_sevp, target_addr, 1);
7575     return 0;
7576 }
7577 
7578 #if defined(TARGET_NR_mlockall)
7579 static inline int target_to_host_mlockall_arg(int arg)
7580 {
7581     int result = 0;
7582 
7583     if (arg & TARGET_MCL_CURRENT) {
7584         result |= MCL_CURRENT;
7585     }
7586     if (arg & TARGET_MCL_FUTURE) {
7587         result |= MCL_FUTURE;
7588     }
7589 #ifdef MCL_ONFAULT
7590     if (arg & TARGET_MCL_ONFAULT) {
7591         result |= MCL_ONFAULT;
7592     }
7593 #endif
7594 
7595     return result;
7596 }
7597 #endif
7598 
7599 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7600      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7601      defined(TARGET_NR_newfstatat))
7602 static inline abi_long host_to_target_stat64(void *cpu_env,
7603                                              abi_ulong target_addr,
7604                                              struct stat *host_st)
7605 {
7606 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7607     if (((CPUARMState *)cpu_env)->eabi) {
7608         struct target_eabi_stat64 *target_st;
7609 
7610         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7611             return -TARGET_EFAULT;
7612         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7613         __put_user(host_st->st_dev, &target_st->st_dev);
7614         __put_user(host_st->st_ino, &target_st->st_ino);
7615 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7616         __put_user(host_st->st_ino, &target_st->__st_ino);
7617 #endif
7618         __put_user(host_st->st_mode, &target_st->st_mode);
7619         __put_user(host_st->st_nlink, &target_st->st_nlink);
7620         __put_user(host_st->st_uid, &target_st->st_uid);
7621         __put_user(host_st->st_gid, &target_st->st_gid);
7622         __put_user(host_st->st_rdev, &target_st->st_rdev);
7623         __put_user(host_st->st_size, &target_st->st_size);
7624         __put_user(host_st->st_blksize, &target_st->st_blksize);
7625         __put_user(host_st->st_blocks, &target_st->st_blocks);
7626         __put_user(host_st->st_atime, &target_st->target_st_atime);
7627         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7628         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7629 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7630         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7631         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7632         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7633 #endif
7634         unlock_user_struct(target_st, target_addr, 1);
7635     } else
7636 #endif
7637     {
7638 #if defined(TARGET_HAS_STRUCT_STAT64)
7639         struct target_stat64 *target_st;
7640 #else
7641         struct target_stat *target_st;
7642 #endif
7643 
7644         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7645             return -TARGET_EFAULT;
7646         memset(target_st, 0, sizeof(*target_st));
7647         __put_user(host_st->st_dev, &target_st->st_dev);
7648         __put_user(host_st->st_ino, &target_st->st_ino);
7649 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7650         __put_user(host_st->st_ino, &target_st->__st_ino);
7651 #endif
7652         __put_user(host_st->st_mode, &target_st->st_mode);
7653         __put_user(host_st->st_nlink, &target_st->st_nlink);
7654         __put_user(host_st->st_uid, &target_st->st_uid);
7655         __put_user(host_st->st_gid, &target_st->st_gid);
7656         __put_user(host_st->st_rdev, &target_st->st_rdev);
7657         /* XXX: better use of kernel struct */
7658         __put_user(host_st->st_size, &target_st->st_size);
7659         __put_user(host_st->st_blksize, &target_st->st_blksize);
7660         __put_user(host_st->st_blocks, &target_st->st_blocks);
7661         __put_user(host_st->st_atime, &target_st->target_st_atime);
7662         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7663         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7664 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7665         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7666         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7667         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7668 #endif
7669         unlock_user_struct(target_st, target_addr, 1);
7670     }
7671 
7672     return 0;
7673 }
7674 #endif
7675 
7676 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7677 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7678                                             abi_ulong target_addr)
7679 {
7680     struct target_statx *target_stx;
7681 
7682     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7683         return -TARGET_EFAULT;
7684     }
7685     memset(target_stx, 0, sizeof(*target_stx));
7686 
7687     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7688     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7689     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7690     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7691     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7692     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7693     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7694     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7695     __put_user(host_stx->stx_size, &target_stx->stx_size);
7696     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7697     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7698     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7699     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7700     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7701     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7702     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7703     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7704     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7705     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7706     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7707     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7708     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7709     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7710 
7711     unlock_user_struct(target_stx, target_addr, 1);
7712 
7713     return 0;
7714 }
7715 #endif
7716 
7717 static int do_sys_futex(int *uaddr, int op, int val,
7718                          const struct timespec *timeout, int *uaddr2,
7719                          int val3)
7720 {
7721 #if HOST_LONG_BITS == 64
7722 #if defined(__NR_futex)
7723     /* always a 64-bit time_t, it doesn't define _time64 version  */
7724     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7725 
7726 #endif
7727 #else /* HOST_LONG_BITS == 64 */
7728 #if defined(__NR_futex_time64)
7729     if (sizeof(timeout->tv_sec) == 8) {
7730         /* _time64 function on 32bit arch */
7731         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7732     }
7733 #endif
7734 #if defined(__NR_futex)
7735     /* old function on 32bit arch */
7736     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7737 #endif
7738 #endif /* HOST_LONG_BITS == 64 */
7739     g_assert_not_reached();
7740 }
7741 
7742 static int do_safe_futex(int *uaddr, int op, int val,
7743                          const struct timespec *timeout, int *uaddr2,
7744                          int val3)
7745 {
7746 #if HOST_LONG_BITS == 64
7747 #if defined(__NR_futex)
7748     /* always a 64-bit time_t, it doesn't define _time64 version  */
7749     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7750 #endif
7751 #else /* HOST_LONG_BITS == 64 */
7752 #if defined(__NR_futex_time64)
7753     if (sizeof(timeout->tv_sec) == 8) {
7754         /* _time64 function on 32bit arch */
7755         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7756                                            val3));
7757     }
7758 #endif
7759 #if defined(__NR_futex)
7760     /* old function on 32bit arch */
7761     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7762 #endif
7763 #endif /* HOST_LONG_BITS == 64 */
7764     return -TARGET_ENOSYS;
7765 }
7766 
7767 /* ??? Using host futex calls even when target atomic operations
7768    are not really atomic probably breaks things.  However implementing
7769    futexes locally would make futexes shared between multiple processes
7770    tricky.  However they're probably useless because guest atomic
7771    operations won't work either.  */
7772 #if defined(TARGET_NR_futex)
7773 static int do_futex(CPUState *cpu, target_ulong uaddr, int op, int val,
7774                     target_ulong timeout, target_ulong uaddr2, int val3)
7775 {
7776     struct timespec ts, *pts;
7777     int base_op;
7778 
7779     /* ??? We assume FUTEX_* constants are the same on both host
7780        and target.  */
7781 #ifdef FUTEX_CMD_MASK
7782     base_op = op & FUTEX_CMD_MASK;
7783 #else
7784     base_op = op;
7785 #endif
7786     switch (base_op) {
7787     case FUTEX_WAIT:
7788     case FUTEX_WAIT_BITSET:
7789         if (timeout) {
7790             pts = &ts;
7791             target_to_host_timespec(pts, timeout);
7792         } else {
7793             pts = NULL;
7794         }
7795         return do_safe_futex(g2h(cpu, uaddr),
7796                              op, tswap32(val), pts, NULL, val3);
7797     case FUTEX_WAKE:
7798         return do_safe_futex(g2h(cpu, uaddr),
7799                              op, val, NULL, NULL, 0);
7800     case FUTEX_FD:
7801         return do_safe_futex(g2h(cpu, uaddr),
7802                              op, val, NULL, NULL, 0);
7803     case FUTEX_REQUEUE:
7804     case FUTEX_CMP_REQUEUE:
7805     case FUTEX_WAKE_OP:
7806         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7807            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7808            But the prototype takes a `struct timespec *'; insert casts
7809            to satisfy the compiler.  We do not need to tswap TIMEOUT
7810            since it's not compared to guest memory.  */
7811         pts = (struct timespec *)(uintptr_t) timeout;
7812         return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7813                              (base_op == FUTEX_CMP_REQUEUE
7814                               ? tswap32(val3) : val3));
7815     default:
7816         return -TARGET_ENOSYS;
7817     }
7818 }
7819 #endif
7820 
7821 #if defined(TARGET_NR_futex_time64)
7822 static int do_futex_time64(CPUState *cpu, target_ulong uaddr, int op,
7823                            int val, target_ulong timeout,
7824                            target_ulong uaddr2, int val3)
7825 {
7826     struct timespec ts, *pts;
7827     int base_op;
7828 
7829     /* ??? We assume FUTEX_* constants are the same on both host
7830        and target.  */
7831 #ifdef FUTEX_CMD_MASK
7832     base_op = op & FUTEX_CMD_MASK;
7833 #else
7834     base_op = op;
7835 #endif
7836     switch (base_op) {
7837     case FUTEX_WAIT:
7838     case FUTEX_WAIT_BITSET:
7839         if (timeout) {
7840             pts = &ts;
7841             if (target_to_host_timespec64(pts, timeout)) {
7842                 return -TARGET_EFAULT;
7843             }
7844         } else {
7845             pts = NULL;
7846         }
7847         return do_safe_futex(g2h(cpu, uaddr), op,
7848                              tswap32(val), pts, NULL, val3);
7849     case FUTEX_WAKE:
7850         return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7851     case FUTEX_FD:
7852         return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7853     case FUTEX_REQUEUE:
7854     case FUTEX_CMP_REQUEUE:
7855     case FUTEX_WAKE_OP:
7856         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7857            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7858            But the prototype takes a `struct timespec *'; insert casts
7859            to satisfy the compiler.  We do not need to tswap TIMEOUT
7860            since it's not compared to guest memory.  */
7861         pts = (struct timespec *)(uintptr_t) timeout;
7862         return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7863                              (base_op == FUTEX_CMP_REQUEUE
7864                               ? tswap32(val3) : val3));
7865     default:
7866         return -TARGET_ENOSYS;
7867     }
7868 }
7869 #endif
7870 
7871 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7872 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7873                                      abi_long handle, abi_long mount_id,
7874                                      abi_long flags)
7875 {
7876     struct file_handle *target_fh;
7877     struct file_handle *fh;
7878     int mid = 0;
7879     abi_long ret;
7880     char *name;
7881     unsigned int size, total_size;
7882 
7883     if (get_user_s32(size, handle)) {
7884         return -TARGET_EFAULT;
7885     }
7886 
7887     name = lock_user_string(pathname);
7888     if (!name) {
7889         return -TARGET_EFAULT;
7890     }
7891 
7892     total_size = sizeof(struct file_handle) + size;
7893     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7894     if (!target_fh) {
7895         unlock_user(name, pathname, 0);
7896         return -TARGET_EFAULT;
7897     }
7898 
7899     fh = g_malloc0(total_size);
7900     fh->handle_bytes = size;
7901 
7902     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7903     unlock_user(name, pathname, 0);
7904 
7905     /* man name_to_handle_at(2):
7906      * Other than the use of the handle_bytes field, the caller should treat
7907      * the file_handle structure as an opaque data type
7908      */
7909 
7910     memcpy(target_fh, fh, total_size);
7911     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7912     target_fh->handle_type = tswap32(fh->handle_type);
7913     g_free(fh);
7914     unlock_user(target_fh, handle, total_size);
7915 
7916     if (put_user_s32(mid, mount_id)) {
7917         return -TARGET_EFAULT;
7918     }
7919 
7920     return ret;
7921 
7922 }
7923 #endif
7924 
7925 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7926 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7927                                      abi_long flags)
7928 {
7929     struct file_handle *target_fh;
7930     struct file_handle *fh;
7931     unsigned int size, total_size;
7932     abi_long ret;
7933 
7934     if (get_user_s32(size, handle)) {
7935         return -TARGET_EFAULT;
7936     }
7937 
7938     total_size = sizeof(struct file_handle) + size;
7939     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7940     if (!target_fh) {
7941         return -TARGET_EFAULT;
7942     }
7943 
7944     fh = g_memdup(target_fh, total_size);
7945     fh->handle_bytes = size;
7946     fh->handle_type = tswap32(target_fh->handle_type);
7947 
7948     ret = get_errno(open_by_handle_at(mount_fd, fh,
7949                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7950 
7951     g_free(fh);
7952 
7953     unlock_user(target_fh, handle, total_size);
7954 
7955     return ret;
7956 }
7957 #endif
7958 
7959 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7960 
7961 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7962 {
7963     int host_flags;
7964     target_sigset_t *target_mask;
7965     sigset_t host_mask;
7966     abi_long ret;
7967 
7968     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7969         return -TARGET_EINVAL;
7970     }
7971     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7972         return -TARGET_EFAULT;
7973     }
7974 
7975     target_to_host_sigset(&host_mask, target_mask);
7976 
7977     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7978 
7979     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7980     if (ret >= 0) {
7981         fd_trans_register(ret, &target_signalfd_trans);
7982     }
7983 
7984     unlock_user_struct(target_mask, mask, 0);
7985 
7986     return ret;
7987 }
7988 #endif
7989 
7990 /* Map host to target signal numbers for the wait family of syscalls.
7991    Assume all other status bits are the same.  */
7992 int host_to_target_waitstatus(int status)
7993 {
7994     if (WIFSIGNALED(status)) {
7995         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7996     }
7997     if (WIFSTOPPED(status)) {
7998         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7999                | (status & 0xff);
8000     }
8001     return status;
8002 }
8003 
8004 static int open_self_cmdline(void *cpu_env, int fd)
8005 {
8006     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8007     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
8008     int i;
8009 
8010     for (i = 0; i < bprm->argc; i++) {
8011         size_t len = strlen(bprm->argv[i]) + 1;
8012 
8013         if (write(fd, bprm->argv[i], len) != len) {
8014             return -1;
8015         }
8016     }
8017 
8018     return 0;
8019 }
8020 
8021 static int open_self_maps(void *cpu_env, int fd)
8022 {
8023     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8024     TaskState *ts = cpu->opaque;
8025     GSList *map_info = read_self_maps();
8026     GSList *s;
8027     int count;
8028 
8029     for (s = map_info; s; s = g_slist_next(s)) {
8030         MapInfo *e = (MapInfo *) s->data;
8031 
8032         if (h2g_valid(e->start)) {
8033             unsigned long min = e->start;
8034             unsigned long max = e->end;
8035             int flags = page_get_flags(h2g(min));
8036             const char *path;
8037 
8038             max = h2g_valid(max - 1) ?
8039                 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1;
8040 
8041             if (page_check_range(h2g(min), max - min, flags) == -1) {
8042                 continue;
8043             }
8044 
8045             if (h2g(min) == ts->info->stack_limit) {
8046                 path = "[stack]";
8047             } else {
8048                 path = e->path;
8049             }
8050 
8051             count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8052                             " %c%c%c%c %08" PRIx64 " %s %"PRId64,
8053                             h2g(min), h2g(max - 1) + 1,
8054                             (flags & PAGE_READ) ? 'r' : '-',
8055                             (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8056                             (flags & PAGE_EXEC) ? 'x' : '-',
8057                             e->is_priv ? 'p' : 's',
8058                             (uint64_t) e->offset, e->dev, e->inode);
8059             if (path) {
8060                 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8061             } else {
8062                 dprintf(fd, "\n");
8063             }
8064         }
8065     }
8066 
8067     free_self_maps(map_info);
8068 
8069 #ifdef TARGET_VSYSCALL_PAGE
8070     /*
8071      * We only support execution from the vsyscall page.
8072      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
8073      */
8074     count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
8075                     " --xp 00000000 00:00 0",
8076                     TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
8077     dprintf(fd, "%*s%s\n", 73 - count, "",  "[vsyscall]");
8078 #endif
8079 
8080     return 0;
8081 }
8082 
8083 static int open_self_stat(void *cpu_env, int fd)
8084 {
8085     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8086     TaskState *ts = cpu->opaque;
8087     g_autoptr(GString) buf = g_string_new(NULL);
8088     int i;
8089 
8090     for (i = 0; i < 44; i++) {
8091         if (i == 0) {
8092             /* pid */
8093             g_string_printf(buf, FMT_pid " ", getpid());
8094         } else if (i == 1) {
8095             /* app name */
8096             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8097             bin = bin ? bin + 1 : ts->bprm->argv[0];
8098             g_string_printf(buf, "(%.15s) ", bin);
8099         } else if (i == 3) {
8100             /* ppid */
8101             g_string_printf(buf, FMT_pid " ", getppid());
8102         } else if (i == 27) {
8103             /* stack bottom */
8104             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8105         } else {
8106             /* for the rest, there is MasterCard */
8107             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8108         }
8109 
8110         if (write(fd, buf->str, buf->len) != buf->len) {
8111             return -1;
8112         }
8113     }
8114 
8115     return 0;
8116 }
8117 
8118 static int open_self_auxv(void *cpu_env, int fd)
8119 {
8120     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8121     TaskState *ts = cpu->opaque;
8122     abi_ulong auxv = ts->info->saved_auxv;
8123     abi_ulong len = ts->info->auxv_len;
8124     char *ptr;
8125 
8126     /*
8127      * Auxiliary vector is stored in target process stack.
8128      * read in whole auxv vector and copy it to file
8129      */
8130     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8131     if (ptr != NULL) {
8132         while (len > 0) {
8133             ssize_t r;
8134             r = write(fd, ptr, len);
8135             if (r <= 0) {
8136                 break;
8137             }
8138             len -= r;
8139             ptr += r;
8140         }
8141         lseek(fd, 0, SEEK_SET);
8142         unlock_user(ptr, auxv, len);
8143     }
8144 
8145     return 0;
8146 }
8147 
8148 static int is_proc_myself(const char *filename, const char *entry)
8149 {
8150     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8151         filename += strlen("/proc/");
8152         if (!strncmp(filename, "self/", strlen("self/"))) {
8153             filename += strlen("self/");
8154         } else if (*filename >= '1' && *filename <= '9') {
8155             char myself[80];
8156             snprintf(myself, sizeof(myself), "%d/", getpid());
8157             if (!strncmp(filename, myself, strlen(myself))) {
8158                 filename += strlen(myself);
8159             } else {
8160                 return 0;
8161             }
8162         } else {
8163             return 0;
8164         }
8165         if (!strcmp(filename, entry)) {
8166             return 1;
8167         }
8168     }
8169     return 0;
8170 }
8171 
8172 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
8173     defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
8174 static int is_proc(const char *filename, const char *entry)
8175 {
8176     return strcmp(filename, entry) == 0;
8177 }
8178 #endif
8179 
8180 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8181 static int open_net_route(void *cpu_env, int fd)
8182 {
8183     FILE *fp;
8184     char *line = NULL;
8185     size_t len = 0;
8186     ssize_t read;
8187 
8188     fp = fopen("/proc/net/route", "r");
8189     if (fp == NULL) {
8190         return -1;
8191     }
8192 
8193     /* read header */
8194 
8195     read = getline(&line, &len, fp);
8196     dprintf(fd, "%s", line);
8197 
8198     /* read routes */
8199 
8200     while ((read = getline(&line, &len, fp)) != -1) {
8201         char iface[16];
8202         uint32_t dest, gw, mask;
8203         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8204         int fields;
8205 
8206         fields = sscanf(line,
8207                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8208                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8209                         &mask, &mtu, &window, &irtt);
8210         if (fields != 11) {
8211             continue;
8212         }
8213         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8214                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8215                 metric, tswap32(mask), mtu, window, irtt);
8216     }
8217 
8218     free(line);
8219     fclose(fp);
8220 
8221     return 0;
8222 }
8223 #endif
8224 
8225 #if defined(TARGET_SPARC)
8226 static int open_cpuinfo(void *cpu_env, int fd)
8227 {
8228     dprintf(fd, "type\t\t: sun4u\n");
8229     return 0;
8230 }
8231 #endif
8232 
8233 #if defined(TARGET_HPPA)
8234 static int open_cpuinfo(void *cpu_env, int fd)
8235 {
8236     dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
8237     dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
8238     dprintf(fd, "capabilities\t: os32\n");
8239     dprintf(fd, "model\t\t: 9000/778/B160L\n");
8240     dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n");
8241     return 0;
8242 }
8243 #endif
8244 
8245 #if defined(TARGET_M68K)
8246 static int open_hardware(void *cpu_env, int fd)
8247 {
8248     dprintf(fd, "Model:\t\tqemu-m68k\n");
8249     return 0;
8250 }
8251 #endif
8252 
8253 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
8254 {
8255     struct fake_open {
8256         const char *filename;
8257         int (*fill)(void *cpu_env, int fd);
8258         int (*cmp)(const char *s1, const char *s2);
8259     };
8260     const struct fake_open *fake_open;
8261     static const struct fake_open fakes[] = {
8262         { "maps", open_self_maps, is_proc_myself },
8263         { "stat", open_self_stat, is_proc_myself },
8264         { "auxv", open_self_auxv, is_proc_myself },
8265         { "cmdline", open_self_cmdline, is_proc_myself },
8266 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8267         { "/proc/net/route", open_net_route, is_proc },
8268 #endif
8269 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
8270         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8271 #endif
8272 #if defined(TARGET_M68K)
8273         { "/proc/hardware", open_hardware, is_proc },
8274 #endif
8275         { NULL, NULL, NULL }
8276     };
8277 
8278     if (is_proc_myself(pathname, "exe")) {
8279         int execfd = qemu_getauxval(AT_EXECFD);
8280         return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
8281     }
8282 
8283     for (fake_open = fakes; fake_open->filename; fake_open++) {
8284         if (fake_open->cmp(pathname, fake_open->filename)) {
8285             break;
8286         }
8287     }
8288 
8289     if (fake_open->filename) {
8290         const char *tmpdir;
8291         char filename[PATH_MAX];
8292         int fd, r;
8293 
8294         /* create temporary file to map stat to */
8295         tmpdir = getenv("TMPDIR");
8296         if (!tmpdir)
8297             tmpdir = "/tmp";
8298         snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8299         fd = mkstemp(filename);
8300         if (fd < 0) {
8301             return fd;
8302         }
8303         unlink(filename);
8304 
8305         if ((r = fake_open->fill(cpu_env, fd))) {
8306             int e = errno;
8307             close(fd);
8308             errno = e;
8309             return r;
8310         }
8311         lseek(fd, 0, SEEK_SET);
8312 
8313         return fd;
8314     }
8315 
8316     return safe_openat(dirfd, path(pathname), flags, mode);
8317 }
8318 
8319 #define TIMER_MAGIC 0x0caf0000
8320 #define TIMER_MAGIC_MASK 0xffff0000
8321 
8322 /* Convert QEMU provided timer ID back to internal 16bit index format */
8323 static target_timer_t get_timer_id(abi_long arg)
8324 {
8325     target_timer_t timerid = arg;
8326 
8327     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8328         return -TARGET_EINVAL;
8329     }
8330 
8331     timerid &= 0xffff;
8332 
8333     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8334         return -TARGET_EINVAL;
8335     }
8336 
8337     return timerid;
8338 }
8339 
8340 static int target_to_host_cpu_mask(unsigned long *host_mask,
8341                                    size_t host_size,
8342                                    abi_ulong target_addr,
8343                                    size_t target_size)
8344 {
8345     unsigned target_bits = sizeof(abi_ulong) * 8;
8346     unsigned host_bits = sizeof(*host_mask) * 8;
8347     abi_ulong *target_mask;
8348     unsigned i, j;
8349 
8350     assert(host_size >= target_size);
8351 
8352     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8353     if (!target_mask) {
8354         return -TARGET_EFAULT;
8355     }
8356     memset(host_mask, 0, host_size);
8357 
8358     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8359         unsigned bit = i * target_bits;
8360         abi_ulong val;
8361 
8362         __get_user(val, &target_mask[i]);
8363         for (j = 0; j < target_bits; j++, bit++) {
8364             if (val & (1UL << j)) {
8365                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8366             }
8367         }
8368     }
8369 
8370     unlock_user(target_mask, target_addr, 0);
8371     return 0;
8372 }
8373 
8374 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8375                                    size_t host_size,
8376                                    abi_ulong target_addr,
8377                                    size_t target_size)
8378 {
8379     unsigned target_bits = sizeof(abi_ulong) * 8;
8380     unsigned host_bits = sizeof(*host_mask) * 8;
8381     abi_ulong *target_mask;
8382     unsigned i, j;
8383 
8384     assert(host_size >= target_size);
8385 
8386     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8387     if (!target_mask) {
8388         return -TARGET_EFAULT;
8389     }
8390 
8391     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8392         unsigned bit = i * target_bits;
8393         abi_ulong val = 0;
8394 
8395         for (j = 0; j < target_bits; j++, bit++) {
8396             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8397                 val |= 1UL << j;
8398             }
8399         }
8400         __put_user(val, &target_mask[i]);
8401     }
8402 
8403     unlock_user(target_mask, target_addr, target_size);
8404     return 0;
8405 }
8406 
8407 #ifdef TARGET_NR_getdents
8408 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8409 {
8410     g_autofree void *hdirp = NULL;
8411     void *tdirp;
8412     int hlen, hoff, toff;
8413     int hreclen, treclen;
8414     off64_t prev_diroff = 0;
8415 
8416     hdirp = g_try_malloc(count);
8417     if (!hdirp) {
8418         return -TARGET_ENOMEM;
8419     }
8420 
8421 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8422     hlen = sys_getdents(dirfd, hdirp, count);
8423 #else
8424     hlen = sys_getdents64(dirfd, hdirp, count);
8425 #endif
8426 
8427     hlen = get_errno(hlen);
8428     if (is_error(hlen)) {
8429         return hlen;
8430     }
8431 
8432     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8433     if (!tdirp) {
8434         return -TARGET_EFAULT;
8435     }
8436 
8437     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8438 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8439         struct linux_dirent *hde = hdirp + hoff;
8440 #else
8441         struct linux_dirent64 *hde = hdirp + hoff;
8442 #endif
8443         struct target_dirent *tde = tdirp + toff;
8444         int namelen;
8445         uint8_t type;
8446 
8447         namelen = strlen(hde->d_name);
8448         hreclen = hde->d_reclen;
8449         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8450         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8451 
8452         if (toff + treclen > count) {
8453             /*
8454              * If the host struct is smaller than the target struct, or
8455              * requires less alignment and thus packs into less space,
8456              * then the host can return more entries than we can pass
8457              * on to the guest.
8458              */
8459             if (toff == 0) {
8460                 toff = -TARGET_EINVAL; /* result buffer is too small */
8461                 break;
8462             }
8463             /*
8464              * Return what we have, resetting the file pointer to the
8465              * location of the first record not returned.
8466              */
8467             lseek64(dirfd, prev_diroff, SEEK_SET);
8468             break;
8469         }
8470 
8471         prev_diroff = hde->d_off;
8472         tde->d_ino = tswapal(hde->d_ino);
8473         tde->d_off = tswapal(hde->d_off);
8474         tde->d_reclen = tswap16(treclen);
8475         memcpy(tde->d_name, hde->d_name, namelen + 1);
8476 
8477         /*
8478          * The getdents type is in what was formerly a padding byte at the
8479          * end of the structure.
8480          */
8481 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8482         type = *((uint8_t *)hde + hreclen - 1);
8483 #else
8484         type = hde->d_type;
8485 #endif
8486         *((uint8_t *)tde + treclen - 1) = type;
8487     }
8488 
8489     unlock_user(tdirp, arg2, toff);
8490     return toff;
8491 }
8492 #endif /* TARGET_NR_getdents */
8493 
8494 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8495 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8496 {
8497     g_autofree void *hdirp = NULL;
8498     void *tdirp;
8499     int hlen, hoff, toff;
8500     int hreclen, treclen;
8501     off64_t prev_diroff = 0;
8502 
8503     hdirp = g_try_malloc(count);
8504     if (!hdirp) {
8505         return -TARGET_ENOMEM;
8506     }
8507 
8508     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8509     if (is_error(hlen)) {
8510         return hlen;
8511     }
8512 
8513     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8514     if (!tdirp) {
8515         return -TARGET_EFAULT;
8516     }
8517 
8518     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8519         struct linux_dirent64 *hde = hdirp + hoff;
8520         struct target_dirent64 *tde = tdirp + toff;
8521         int namelen;
8522 
8523         namelen = strlen(hde->d_name) + 1;
8524         hreclen = hde->d_reclen;
8525         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8526         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8527 
8528         if (toff + treclen > count) {
8529             /*
8530              * If the host struct is smaller than the target struct, or
8531              * requires less alignment and thus packs into less space,
8532              * then the host can return more entries than we can pass
8533              * on to the guest.
8534              */
8535             if (toff == 0) {
8536                 toff = -TARGET_EINVAL; /* result buffer is too small */
8537                 break;
8538             }
8539             /*
8540              * Return what we have, resetting the file pointer to the
8541              * location of the first record not returned.
8542              */
8543             lseek64(dirfd, prev_diroff, SEEK_SET);
8544             break;
8545         }
8546 
8547         prev_diroff = hde->d_off;
8548         tde->d_ino = tswap64(hde->d_ino);
8549         tde->d_off = tswap64(hde->d_off);
8550         tde->d_reclen = tswap16(treclen);
8551         tde->d_type = hde->d_type;
8552         memcpy(tde->d_name, hde->d_name, namelen);
8553     }
8554 
8555     unlock_user(tdirp, arg2, toff);
8556     return toff;
8557 }
8558 #endif /* TARGET_NR_getdents64 */
8559 
8560 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8561 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8562 #endif
8563 
8564 /* This is an internal helper for do_syscall so that it is easier
8565  * to have a single return point, so that actions, such as logging
8566  * of syscall results, can be performed.
8567  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8568  */
8569 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
8570                             abi_long arg2, abi_long arg3, abi_long arg4,
8571                             abi_long arg5, abi_long arg6, abi_long arg7,
8572                             abi_long arg8)
8573 {
8574     CPUState *cpu = env_cpu(cpu_env);
8575     abi_long ret;
8576 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8577     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8578     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8579     || defined(TARGET_NR_statx)
8580     struct stat st;
8581 #endif
8582 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8583     || defined(TARGET_NR_fstatfs)
8584     struct statfs stfs;
8585 #endif
8586     void *p;
8587 
8588     switch(num) {
8589     case TARGET_NR_exit:
8590         /* In old applications this may be used to implement _exit(2).
8591            However in threaded applications it is used for thread termination,
8592            and _exit_group is used for application termination.
8593            Do thread termination if we have more then one thread.  */
8594 
8595         if (block_signals()) {
8596             return -QEMU_ERESTARTSYS;
8597         }
8598 
8599         pthread_mutex_lock(&clone_lock);
8600 
8601         if (CPU_NEXT(first_cpu)) {
8602             TaskState *ts = cpu->opaque;
8603 
8604             object_property_set_bool(OBJECT(cpu), "realized", false, NULL);
8605             object_unref(OBJECT(cpu));
8606             /*
8607              * At this point the CPU should be unrealized and removed
8608              * from cpu lists. We can clean-up the rest of the thread
8609              * data without the lock held.
8610              */
8611 
8612             pthread_mutex_unlock(&clone_lock);
8613 
8614             if (ts->child_tidptr) {
8615                 put_user_u32(0, ts->child_tidptr);
8616                 do_sys_futex(g2h(cpu, ts->child_tidptr),
8617                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
8618             }
8619             thread_cpu = NULL;
8620             g_free(ts);
8621             rcu_unregister_thread();
8622             pthread_exit(NULL);
8623         }
8624 
8625         pthread_mutex_unlock(&clone_lock);
8626         preexit_cleanup(cpu_env, arg1);
8627         _exit(arg1);
8628         return 0; /* avoid warning */
8629     case TARGET_NR_read:
8630         if (arg2 == 0 && arg3 == 0) {
8631             return get_errno(safe_read(arg1, 0, 0));
8632         } else {
8633             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8634                 return -TARGET_EFAULT;
8635             ret = get_errno(safe_read(arg1, p, arg3));
8636             if (ret >= 0 &&
8637                 fd_trans_host_to_target_data(arg1)) {
8638                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
8639             }
8640             unlock_user(p, arg2, ret);
8641         }
8642         return ret;
8643     case TARGET_NR_write:
8644         if (arg2 == 0 && arg3 == 0) {
8645             return get_errno(safe_write(arg1, 0, 0));
8646         }
8647         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8648             return -TARGET_EFAULT;
8649         if (fd_trans_target_to_host_data(arg1)) {
8650             void *copy = g_malloc(arg3);
8651             memcpy(copy, p, arg3);
8652             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
8653             if (ret >= 0) {
8654                 ret = get_errno(safe_write(arg1, copy, ret));
8655             }
8656             g_free(copy);
8657         } else {
8658             ret = get_errno(safe_write(arg1, p, arg3));
8659         }
8660         unlock_user(p, arg2, 0);
8661         return ret;
8662 
8663 #ifdef TARGET_NR_open
8664     case TARGET_NR_open:
8665         if (!(p = lock_user_string(arg1)))
8666             return -TARGET_EFAULT;
8667         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
8668                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
8669                                   arg3));
8670         fd_trans_unregister(ret);
8671         unlock_user(p, arg1, 0);
8672         return ret;
8673 #endif
8674     case TARGET_NR_openat:
8675         if (!(p = lock_user_string(arg2)))
8676             return -TARGET_EFAULT;
8677         ret = get_errno(do_openat(cpu_env, arg1, p,
8678                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
8679                                   arg4));
8680         fd_trans_unregister(ret);
8681         unlock_user(p, arg2, 0);
8682         return ret;
8683 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8684     case TARGET_NR_name_to_handle_at:
8685         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
8686         return ret;
8687 #endif
8688 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8689     case TARGET_NR_open_by_handle_at:
8690         ret = do_open_by_handle_at(arg1, arg2, arg3);
8691         fd_trans_unregister(ret);
8692         return ret;
8693 #endif
8694     case TARGET_NR_close:
8695         fd_trans_unregister(arg1);
8696         return get_errno(close(arg1));
8697 
8698     case TARGET_NR_brk:
8699         return do_brk(arg1);
8700 #ifdef TARGET_NR_fork
8701     case TARGET_NR_fork:
8702         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
8703 #endif
8704 #ifdef TARGET_NR_waitpid
8705     case TARGET_NR_waitpid:
8706         {
8707             int status;
8708             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
8709             if (!is_error(ret) && arg2 && ret
8710                 && put_user_s32(host_to_target_waitstatus(status), arg2))
8711                 return -TARGET_EFAULT;
8712         }
8713         return ret;
8714 #endif
8715 #ifdef TARGET_NR_waitid
8716     case TARGET_NR_waitid:
8717         {
8718             siginfo_t info;
8719             info.si_pid = 0;
8720             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
8721             if (!is_error(ret) && arg3 && info.si_pid != 0) {
8722                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
8723                     return -TARGET_EFAULT;
8724                 host_to_target_siginfo(p, &info);
8725                 unlock_user(p, arg3, sizeof(target_siginfo_t));
8726             }
8727         }
8728         return ret;
8729 #endif
8730 #ifdef TARGET_NR_creat /* not on alpha */
8731     case TARGET_NR_creat:
8732         if (!(p = lock_user_string(arg1)))
8733             return -TARGET_EFAULT;
8734         ret = get_errno(creat(p, arg2));
8735         fd_trans_unregister(ret);
8736         unlock_user(p, arg1, 0);
8737         return ret;
8738 #endif
8739 #ifdef TARGET_NR_link
8740     case TARGET_NR_link:
8741         {
8742             void * p2;
8743             p = lock_user_string(arg1);
8744             p2 = lock_user_string(arg2);
8745             if (!p || !p2)
8746                 ret = -TARGET_EFAULT;
8747             else
8748                 ret = get_errno(link(p, p2));
8749             unlock_user(p2, arg2, 0);
8750             unlock_user(p, arg1, 0);
8751         }
8752         return ret;
8753 #endif
8754 #if defined(TARGET_NR_linkat)
8755     case TARGET_NR_linkat:
8756         {
8757             void * p2 = NULL;
8758             if (!arg2 || !arg4)
8759                 return -TARGET_EFAULT;
8760             p  = lock_user_string(arg2);
8761             p2 = lock_user_string(arg4);
8762             if (!p || !p2)
8763                 ret = -TARGET_EFAULT;
8764             else
8765                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8766             unlock_user(p, arg2, 0);
8767             unlock_user(p2, arg4, 0);
8768         }
8769         return ret;
8770 #endif
8771 #ifdef TARGET_NR_unlink
8772     case TARGET_NR_unlink:
8773         if (!(p = lock_user_string(arg1)))
8774             return -TARGET_EFAULT;
8775         ret = get_errno(unlink(p));
8776         unlock_user(p, arg1, 0);
8777         return ret;
8778 #endif
8779 #if defined(TARGET_NR_unlinkat)
8780     case TARGET_NR_unlinkat:
8781         if (!(p = lock_user_string(arg2)))
8782             return -TARGET_EFAULT;
8783         ret = get_errno(unlinkat(arg1, p, arg3));
8784         unlock_user(p, arg2, 0);
8785         return ret;
8786 #endif
8787     case TARGET_NR_execve:
8788         {
8789             char **argp, **envp;
8790             int argc, envc;
8791             abi_ulong gp;
8792             abi_ulong guest_argp;
8793             abi_ulong guest_envp;
8794             abi_ulong addr;
8795             char **q;
8796 
8797             argc = 0;
8798             guest_argp = arg2;
8799             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8800                 if (get_user_ual(addr, gp))
8801                     return -TARGET_EFAULT;
8802                 if (!addr)
8803                     break;
8804                 argc++;
8805             }
8806             envc = 0;
8807             guest_envp = arg3;
8808             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8809                 if (get_user_ual(addr, gp))
8810                     return -TARGET_EFAULT;
8811                 if (!addr)
8812                     break;
8813                 envc++;
8814             }
8815 
8816             argp = g_new0(char *, argc + 1);
8817             envp = g_new0(char *, envc + 1);
8818 
8819             for (gp = guest_argp, q = argp; gp;
8820                   gp += sizeof(abi_ulong), q++) {
8821                 if (get_user_ual(addr, gp))
8822                     goto execve_efault;
8823                 if (!addr)
8824                     break;
8825                 if (!(*q = lock_user_string(addr)))
8826                     goto execve_efault;
8827             }
8828             *q = NULL;
8829 
8830             for (gp = guest_envp, q = envp; gp;
8831                   gp += sizeof(abi_ulong), q++) {
8832                 if (get_user_ual(addr, gp))
8833                     goto execve_efault;
8834                 if (!addr)
8835                     break;
8836                 if (!(*q = lock_user_string(addr)))
8837                     goto execve_efault;
8838             }
8839             *q = NULL;
8840 
8841             if (!(p = lock_user_string(arg1)))
8842                 goto execve_efault;
8843             /* Although execve() is not an interruptible syscall it is
8844              * a special case where we must use the safe_syscall wrapper:
8845              * if we allow a signal to happen before we make the host
8846              * syscall then we will 'lose' it, because at the point of
8847              * execve the process leaves QEMU's control. So we use the
8848              * safe syscall wrapper to ensure that we either take the
8849              * signal as a guest signal, or else it does not happen
8850              * before the execve completes and makes it the other
8851              * program's problem.
8852              */
8853             ret = get_errno(safe_execve(p, argp, envp));
8854             unlock_user(p, arg1, 0);
8855 
8856             goto execve_end;
8857 
8858         execve_efault:
8859             ret = -TARGET_EFAULT;
8860 
8861         execve_end:
8862             for (gp = guest_argp, q = argp; *q;
8863                   gp += sizeof(abi_ulong), q++) {
8864                 if (get_user_ual(addr, gp)
8865                     || !addr)
8866                     break;
8867                 unlock_user(*q, addr, 0);
8868             }
8869             for (gp = guest_envp, q = envp; *q;
8870                   gp += sizeof(abi_ulong), q++) {
8871                 if (get_user_ual(addr, gp)
8872                     || !addr)
8873                     break;
8874                 unlock_user(*q, addr, 0);
8875             }
8876 
8877             g_free(argp);
8878             g_free(envp);
8879         }
8880         return ret;
8881     case TARGET_NR_chdir:
8882         if (!(p = lock_user_string(arg1)))
8883             return -TARGET_EFAULT;
8884         ret = get_errno(chdir(p));
8885         unlock_user(p, arg1, 0);
8886         return ret;
8887 #ifdef TARGET_NR_time
8888     case TARGET_NR_time:
8889         {
8890             time_t host_time;
8891             ret = get_errno(time(&host_time));
8892             if (!is_error(ret)
8893                 && arg1
8894                 && put_user_sal(host_time, arg1))
8895                 return -TARGET_EFAULT;
8896         }
8897         return ret;
8898 #endif
8899 #ifdef TARGET_NR_mknod
8900     case TARGET_NR_mknod:
8901         if (!(p = lock_user_string(arg1)))
8902             return -TARGET_EFAULT;
8903         ret = get_errno(mknod(p, arg2, arg3));
8904         unlock_user(p, arg1, 0);
8905         return ret;
8906 #endif
8907 #if defined(TARGET_NR_mknodat)
8908     case TARGET_NR_mknodat:
8909         if (!(p = lock_user_string(arg2)))
8910             return -TARGET_EFAULT;
8911         ret = get_errno(mknodat(arg1, p, arg3, arg4));
8912         unlock_user(p, arg2, 0);
8913         return ret;
8914 #endif
8915 #ifdef TARGET_NR_chmod
8916     case TARGET_NR_chmod:
8917         if (!(p = lock_user_string(arg1)))
8918             return -TARGET_EFAULT;
8919         ret = get_errno(chmod(p, arg2));
8920         unlock_user(p, arg1, 0);
8921         return ret;
8922 #endif
8923 #ifdef TARGET_NR_lseek
8924     case TARGET_NR_lseek:
8925         return get_errno(lseek(arg1, arg2, arg3));
8926 #endif
8927 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8928     /* Alpha specific */
8929     case TARGET_NR_getxpid:
8930         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
8931         return get_errno(getpid());
8932 #endif
8933 #ifdef TARGET_NR_getpid
8934     case TARGET_NR_getpid:
8935         return get_errno(getpid());
8936 #endif
8937     case TARGET_NR_mount:
8938         {
8939             /* need to look at the data field */
8940             void *p2, *p3;
8941 
8942             if (arg1) {
8943                 p = lock_user_string(arg1);
8944                 if (!p) {
8945                     return -TARGET_EFAULT;
8946                 }
8947             } else {
8948                 p = NULL;
8949             }
8950 
8951             p2 = lock_user_string(arg2);
8952             if (!p2) {
8953                 if (arg1) {
8954                     unlock_user(p, arg1, 0);
8955                 }
8956                 return -TARGET_EFAULT;
8957             }
8958 
8959             if (arg3) {
8960                 p3 = lock_user_string(arg3);
8961                 if (!p3) {
8962                     if (arg1) {
8963                         unlock_user(p, arg1, 0);
8964                     }
8965                     unlock_user(p2, arg2, 0);
8966                     return -TARGET_EFAULT;
8967                 }
8968             } else {
8969                 p3 = NULL;
8970             }
8971 
8972             /* FIXME - arg5 should be locked, but it isn't clear how to
8973              * do that since it's not guaranteed to be a NULL-terminated
8974              * string.
8975              */
8976             if (!arg5) {
8977                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8978             } else {
8979                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
8980             }
8981             ret = get_errno(ret);
8982 
8983             if (arg1) {
8984                 unlock_user(p, arg1, 0);
8985             }
8986             unlock_user(p2, arg2, 0);
8987             if (arg3) {
8988                 unlock_user(p3, arg3, 0);
8989             }
8990         }
8991         return ret;
8992 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
8993 #if defined(TARGET_NR_umount)
8994     case TARGET_NR_umount:
8995 #endif
8996 #if defined(TARGET_NR_oldumount)
8997     case TARGET_NR_oldumount:
8998 #endif
8999         if (!(p = lock_user_string(arg1)))
9000             return -TARGET_EFAULT;
9001         ret = get_errno(umount(p));
9002         unlock_user(p, arg1, 0);
9003         return ret;
9004 #endif
9005 #ifdef TARGET_NR_stime /* not on alpha */
9006     case TARGET_NR_stime:
9007         {
9008             struct timespec ts;
9009             ts.tv_nsec = 0;
9010             if (get_user_sal(ts.tv_sec, arg1)) {
9011                 return -TARGET_EFAULT;
9012             }
9013             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9014         }
9015 #endif
9016 #ifdef TARGET_NR_alarm /* not on alpha */
9017     case TARGET_NR_alarm:
9018         return alarm(arg1);
9019 #endif
9020 #ifdef TARGET_NR_pause /* not on alpha */
9021     case TARGET_NR_pause:
9022         if (!block_signals()) {
9023             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9024         }
9025         return -TARGET_EINTR;
9026 #endif
9027 #ifdef TARGET_NR_utime
9028     case TARGET_NR_utime:
9029         {
9030             struct utimbuf tbuf, *host_tbuf;
9031             struct target_utimbuf *target_tbuf;
9032             if (arg2) {
9033                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9034                     return -TARGET_EFAULT;
9035                 tbuf.actime = tswapal(target_tbuf->actime);
9036                 tbuf.modtime = tswapal(target_tbuf->modtime);
9037                 unlock_user_struct(target_tbuf, arg2, 0);
9038                 host_tbuf = &tbuf;
9039             } else {
9040                 host_tbuf = NULL;
9041             }
9042             if (!(p = lock_user_string(arg1)))
9043                 return -TARGET_EFAULT;
9044             ret = get_errno(utime(p, host_tbuf));
9045             unlock_user(p, arg1, 0);
9046         }
9047         return ret;
9048 #endif
9049 #ifdef TARGET_NR_utimes
9050     case TARGET_NR_utimes:
9051         {
9052             struct timeval *tvp, tv[2];
9053             if (arg2) {
9054                 if (copy_from_user_timeval(&tv[0], arg2)
9055                     || copy_from_user_timeval(&tv[1],
9056                                               arg2 + sizeof(struct target_timeval)))
9057                     return -TARGET_EFAULT;
9058                 tvp = tv;
9059             } else {
9060                 tvp = NULL;
9061             }
9062             if (!(p = lock_user_string(arg1)))
9063                 return -TARGET_EFAULT;
9064             ret = get_errno(utimes(p, tvp));
9065             unlock_user(p, arg1, 0);
9066         }
9067         return ret;
9068 #endif
9069 #if defined(TARGET_NR_futimesat)
9070     case TARGET_NR_futimesat:
9071         {
9072             struct timeval *tvp, tv[2];
9073             if (arg3) {
9074                 if (copy_from_user_timeval(&tv[0], arg3)
9075                     || copy_from_user_timeval(&tv[1],
9076                                               arg3 + sizeof(struct target_timeval)))
9077                     return -TARGET_EFAULT;
9078                 tvp = tv;
9079             } else {
9080                 tvp = NULL;
9081             }
9082             if (!(p = lock_user_string(arg2))) {
9083                 return -TARGET_EFAULT;
9084             }
9085             ret = get_errno(futimesat(arg1, path(p), tvp));
9086             unlock_user(p, arg2, 0);
9087         }
9088         return ret;
9089 #endif
9090 #ifdef TARGET_NR_access
9091     case TARGET_NR_access:
9092         if (!(p = lock_user_string(arg1))) {
9093             return -TARGET_EFAULT;
9094         }
9095         ret = get_errno(access(path(p), arg2));
9096         unlock_user(p, arg1, 0);
9097         return ret;
9098 #endif
9099 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9100     case TARGET_NR_faccessat:
9101         if (!(p = lock_user_string(arg2))) {
9102             return -TARGET_EFAULT;
9103         }
9104         ret = get_errno(faccessat(arg1, p, arg3, 0));
9105         unlock_user(p, arg2, 0);
9106         return ret;
9107 #endif
9108 #ifdef TARGET_NR_nice /* not on alpha */
9109     case TARGET_NR_nice:
9110         return get_errno(nice(arg1));
9111 #endif
9112     case TARGET_NR_sync:
9113         sync();
9114         return 0;
9115 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9116     case TARGET_NR_syncfs:
9117         return get_errno(syncfs(arg1));
9118 #endif
9119     case TARGET_NR_kill:
9120         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9121 #ifdef TARGET_NR_rename
9122     case TARGET_NR_rename:
9123         {
9124             void *p2;
9125             p = lock_user_string(arg1);
9126             p2 = lock_user_string(arg2);
9127             if (!p || !p2)
9128                 ret = -TARGET_EFAULT;
9129             else
9130                 ret = get_errno(rename(p, p2));
9131             unlock_user(p2, arg2, 0);
9132             unlock_user(p, arg1, 0);
9133         }
9134         return ret;
9135 #endif
9136 #if defined(TARGET_NR_renameat)
9137     case TARGET_NR_renameat:
9138         {
9139             void *p2;
9140             p  = lock_user_string(arg2);
9141             p2 = lock_user_string(arg4);
9142             if (!p || !p2)
9143                 ret = -TARGET_EFAULT;
9144             else
9145                 ret = get_errno(renameat(arg1, p, arg3, p2));
9146             unlock_user(p2, arg4, 0);
9147             unlock_user(p, arg2, 0);
9148         }
9149         return ret;
9150 #endif
9151 #if defined(TARGET_NR_renameat2)
9152     case TARGET_NR_renameat2:
9153         {
9154             void *p2;
9155             p  = lock_user_string(arg2);
9156             p2 = lock_user_string(arg4);
9157             if (!p || !p2) {
9158                 ret = -TARGET_EFAULT;
9159             } else {
9160                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9161             }
9162             unlock_user(p2, arg4, 0);
9163             unlock_user(p, arg2, 0);
9164         }
9165         return ret;
9166 #endif
9167 #ifdef TARGET_NR_mkdir
9168     case TARGET_NR_mkdir:
9169         if (!(p = lock_user_string(arg1)))
9170             return -TARGET_EFAULT;
9171         ret = get_errno(mkdir(p, arg2));
9172         unlock_user(p, arg1, 0);
9173         return ret;
9174 #endif
9175 #if defined(TARGET_NR_mkdirat)
9176     case TARGET_NR_mkdirat:
9177         if (!(p = lock_user_string(arg2)))
9178             return -TARGET_EFAULT;
9179         ret = get_errno(mkdirat(arg1, p, arg3));
9180         unlock_user(p, arg2, 0);
9181         return ret;
9182 #endif
9183 #ifdef TARGET_NR_rmdir
9184     case TARGET_NR_rmdir:
9185         if (!(p = lock_user_string(arg1)))
9186             return -TARGET_EFAULT;
9187         ret = get_errno(rmdir(p));
9188         unlock_user(p, arg1, 0);
9189         return ret;
9190 #endif
9191     case TARGET_NR_dup:
9192         ret = get_errno(dup(arg1));
9193         if (ret >= 0) {
9194             fd_trans_dup(arg1, ret);
9195         }
9196         return ret;
9197 #ifdef TARGET_NR_pipe
9198     case TARGET_NR_pipe:
9199         return do_pipe(cpu_env, arg1, 0, 0);
9200 #endif
9201 #ifdef TARGET_NR_pipe2
9202     case TARGET_NR_pipe2:
9203         return do_pipe(cpu_env, arg1,
9204                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9205 #endif
9206     case TARGET_NR_times:
9207         {
9208             struct target_tms *tmsp;
9209             struct tms tms;
9210             ret = get_errno(times(&tms));
9211             if (arg1) {
9212                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9213                 if (!tmsp)
9214                     return -TARGET_EFAULT;
9215                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9216                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9217                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9218                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9219             }
9220             if (!is_error(ret))
9221                 ret = host_to_target_clock_t(ret);
9222         }
9223         return ret;
9224     case TARGET_NR_acct:
9225         if (arg1 == 0) {
9226             ret = get_errno(acct(NULL));
9227         } else {
9228             if (!(p = lock_user_string(arg1))) {
9229                 return -TARGET_EFAULT;
9230             }
9231             ret = get_errno(acct(path(p)));
9232             unlock_user(p, arg1, 0);
9233         }
9234         return ret;
9235 #ifdef TARGET_NR_umount2
9236     case TARGET_NR_umount2:
9237         if (!(p = lock_user_string(arg1)))
9238             return -TARGET_EFAULT;
9239         ret = get_errno(umount2(p, arg2));
9240         unlock_user(p, arg1, 0);
9241         return ret;
9242 #endif
9243     case TARGET_NR_ioctl:
9244         return do_ioctl(arg1, arg2, arg3);
9245 #ifdef TARGET_NR_fcntl
9246     case TARGET_NR_fcntl:
9247         return do_fcntl(arg1, arg2, arg3);
9248 #endif
9249     case TARGET_NR_setpgid:
9250         return get_errno(setpgid(arg1, arg2));
9251     case TARGET_NR_umask:
9252         return get_errno(umask(arg1));
9253     case TARGET_NR_chroot:
9254         if (!(p = lock_user_string(arg1)))
9255             return -TARGET_EFAULT;
9256         ret = get_errno(chroot(p));
9257         unlock_user(p, arg1, 0);
9258         return ret;
9259 #ifdef TARGET_NR_dup2
9260     case TARGET_NR_dup2:
9261         ret = get_errno(dup2(arg1, arg2));
9262         if (ret >= 0) {
9263             fd_trans_dup(arg1, arg2);
9264         }
9265         return ret;
9266 #endif
9267 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9268     case TARGET_NR_dup3:
9269     {
9270         int host_flags;
9271 
9272         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9273             return -EINVAL;
9274         }
9275         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9276         ret = get_errno(dup3(arg1, arg2, host_flags));
9277         if (ret >= 0) {
9278             fd_trans_dup(arg1, arg2);
9279         }
9280         return ret;
9281     }
9282 #endif
9283 #ifdef TARGET_NR_getppid /* not on alpha */
9284     case TARGET_NR_getppid:
9285         return get_errno(getppid());
9286 #endif
9287 #ifdef TARGET_NR_getpgrp
9288     case TARGET_NR_getpgrp:
9289         return get_errno(getpgrp());
9290 #endif
9291     case TARGET_NR_setsid:
9292         return get_errno(setsid());
9293 #ifdef TARGET_NR_sigaction
9294     case TARGET_NR_sigaction:
9295         {
9296 #if defined(TARGET_MIPS)
9297 	    struct target_sigaction act, oact, *pact, *old_act;
9298 
9299 	    if (arg2) {
9300                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9301                     return -TARGET_EFAULT;
9302 		act._sa_handler = old_act->_sa_handler;
9303 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9304 		act.sa_flags = old_act->sa_flags;
9305 		unlock_user_struct(old_act, arg2, 0);
9306 		pact = &act;
9307 	    } else {
9308 		pact = NULL;
9309 	    }
9310 
9311         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9312 
9313 	    if (!is_error(ret) && arg3) {
9314                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9315                     return -TARGET_EFAULT;
9316 		old_act->_sa_handler = oact._sa_handler;
9317 		old_act->sa_flags = oact.sa_flags;
9318 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9319 		old_act->sa_mask.sig[1] = 0;
9320 		old_act->sa_mask.sig[2] = 0;
9321 		old_act->sa_mask.sig[3] = 0;
9322 		unlock_user_struct(old_act, arg3, 1);
9323 	    }
9324 #else
9325             struct target_old_sigaction *old_act;
9326             struct target_sigaction act, oact, *pact;
9327             if (arg2) {
9328                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9329                     return -TARGET_EFAULT;
9330                 act._sa_handler = old_act->_sa_handler;
9331                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9332                 act.sa_flags = old_act->sa_flags;
9333 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9334                 act.sa_restorer = old_act->sa_restorer;
9335 #endif
9336                 unlock_user_struct(old_act, arg2, 0);
9337                 pact = &act;
9338             } else {
9339                 pact = NULL;
9340             }
9341             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9342             if (!is_error(ret) && arg3) {
9343                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9344                     return -TARGET_EFAULT;
9345                 old_act->_sa_handler = oact._sa_handler;
9346                 old_act->sa_mask = oact.sa_mask.sig[0];
9347                 old_act->sa_flags = oact.sa_flags;
9348 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9349                 old_act->sa_restorer = oact.sa_restorer;
9350 #endif
9351                 unlock_user_struct(old_act, arg3, 1);
9352             }
9353 #endif
9354         }
9355         return ret;
9356 #endif
9357     case TARGET_NR_rt_sigaction:
9358         {
9359             /*
9360              * For Alpha and SPARC this is a 5 argument syscall, with
9361              * a 'restorer' parameter which must be copied into the
9362              * sa_restorer field of the sigaction struct.
9363              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9364              * and arg5 is the sigsetsize.
9365              */
9366 #if defined(TARGET_ALPHA)
9367             target_ulong sigsetsize = arg4;
9368             target_ulong restorer = arg5;
9369 #elif defined(TARGET_SPARC)
9370             target_ulong restorer = arg4;
9371             target_ulong sigsetsize = arg5;
9372 #else
9373             target_ulong sigsetsize = arg4;
9374             target_ulong restorer = 0;
9375 #endif
9376             struct target_sigaction *act = NULL;
9377             struct target_sigaction *oact = NULL;
9378 
9379             if (sigsetsize != sizeof(target_sigset_t)) {
9380                 return -TARGET_EINVAL;
9381             }
9382             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9383                 return -TARGET_EFAULT;
9384             }
9385             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9386                 ret = -TARGET_EFAULT;
9387             } else {
9388                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9389                 if (oact) {
9390                     unlock_user_struct(oact, arg3, 1);
9391                 }
9392             }
9393             if (act) {
9394                 unlock_user_struct(act, arg2, 0);
9395             }
9396         }
9397         return ret;
9398 #ifdef TARGET_NR_sgetmask /* not on alpha */
9399     case TARGET_NR_sgetmask:
9400         {
9401             sigset_t cur_set;
9402             abi_ulong target_set;
9403             ret = do_sigprocmask(0, NULL, &cur_set);
9404             if (!ret) {
9405                 host_to_target_old_sigset(&target_set, &cur_set);
9406                 ret = target_set;
9407             }
9408         }
9409         return ret;
9410 #endif
9411 #ifdef TARGET_NR_ssetmask /* not on alpha */
9412     case TARGET_NR_ssetmask:
9413         {
9414             sigset_t set, oset;
9415             abi_ulong target_set = arg1;
9416             target_to_host_old_sigset(&set, &target_set);
9417             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9418             if (!ret) {
9419                 host_to_target_old_sigset(&target_set, &oset);
9420                 ret = target_set;
9421             }
9422         }
9423         return ret;
9424 #endif
9425 #ifdef TARGET_NR_sigprocmask
9426     case TARGET_NR_sigprocmask:
9427         {
9428 #if defined(TARGET_ALPHA)
9429             sigset_t set, oldset;
9430             abi_ulong mask;
9431             int how;
9432 
9433             switch (arg1) {
9434             case TARGET_SIG_BLOCK:
9435                 how = SIG_BLOCK;
9436                 break;
9437             case TARGET_SIG_UNBLOCK:
9438                 how = SIG_UNBLOCK;
9439                 break;
9440             case TARGET_SIG_SETMASK:
9441                 how = SIG_SETMASK;
9442                 break;
9443             default:
9444                 return -TARGET_EINVAL;
9445             }
9446             mask = arg2;
9447             target_to_host_old_sigset(&set, &mask);
9448 
9449             ret = do_sigprocmask(how, &set, &oldset);
9450             if (!is_error(ret)) {
9451                 host_to_target_old_sigset(&mask, &oldset);
9452                 ret = mask;
9453                 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
9454             }
9455 #else
9456             sigset_t set, oldset, *set_ptr;
9457             int how;
9458 
9459             if (arg2) {
9460                 switch (arg1) {
9461                 case TARGET_SIG_BLOCK:
9462                     how = SIG_BLOCK;
9463                     break;
9464                 case TARGET_SIG_UNBLOCK:
9465                     how = SIG_UNBLOCK;
9466                     break;
9467                 case TARGET_SIG_SETMASK:
9468                     how = SIG_SETMASK;
9469                     break;
9470                 default:
9471                     return -TARGET_EINVAL;
9472                 }
9473                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9474                     return -TARGET_EFAULT;
9475                 target_to_host_old_sigset(&set, p);
9476                 unlock_user(p, arg2, 0);
9477                 set_ptr = &set;
9478             } else {
9479                 how = 0;
9480                 set_ptr = NULL;
9481             }
9482             ret = do_sigprocmask(how, set_ptr, &oldset);
9483             if (!is_error(ret) && arg3) {
9484                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9485                     return -TARGET_EFAULT;
9486                 host_to_target_old_sigset(p, &oldset);
9487                 unlock_user(p, arg3, sizeof(target_sigset_t));
9488             }
9489 #endif
9490         }
9491         return ret;
9492 #endif
9493     case TARGET_NR_rt_sigprocmask:
9494         {
9495             int how = arg1;
9496             sigset_t set, oldset, *set_ptr;
9497 
9498             if (arg4 != sizeof(target_sigset_t)) {
9499                 return -TARGET_EINVAL;
9500             }
9501 
9502             if (arg2) {
9503                 switch(how) {
9504                 case TARGET_SIG_BLOCK:
9505                     how = SIG_BLOCK;
9506                     break;
9507                 case TARGET_SIG_UNBLOCK:
9508                     how = SIG_UNBLOCK;
9509                     break;
9510                 case TARGET_SIG_SETMASK:
9511                     how = SIG_SETMASK;
9512                     break;
9513                 default:
9514                     return -TARGET_EINVAL;
9515                 }
9516                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9517                     return -TARGET_EFAULT;
9518                 target_to_host_sigset(&set, p);
9519                 unlock_user(p, arg2, 0);
9520                 set_ptr = &set;
9521             } else {
9522                 how = 0;
9523                 set_ptr = NULL;
9524             }
9525             ret = do_sigprocmask(how, set_ptr, &oldset);
9526             if (!is_error(ret) && arg3) {
9527                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9528                     return -TARGET_EFAULT;
9529                 host_to_target_sigset(p, &oldset);
9530                 unlock_user(p, arg3, sizeof(target_sigset_t));
9531             }
9532         }
9533         return ret;
9534 #ifdef TARGET_NR_sigpending
9535     case TARGET_NR_sigpending:
9536         {
9537             sigset_t set;
9538             ret = get_errno(sigpending(&set));
9539             if (!is_error(ret)) {
9540                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9541                     return -TARGET_EFAULT;
9542                 host_to_target_old_sigset(p, &set);
9543                 unlock_user(p, arg1, sizeof(target_sigset_t));
9544             }
9545         }
9546         return ret;
9547 #endif
9548     case TARGET_NR_rt_sigpending:
9549         {
9550             sigset_t set;
9551 
9552             /* Yes, this check is >, not != like most. We follow the kernel's
9553              * logic and it does it like this because it implements
9554              * NR_sigpending through the same code path, and in that case
9555              * the old_sigset_t is smaller in size.
9556              */
9557             if (arg2 > sizeof(target_sigset_t)) {
9558                 return -TARGET_EINVAL;
9559             }
9560 
9561             ret = get_errno(sigpending(&set));
9562             if (!is_error(ret)) {
9563                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9564                     return -TARGET_EFAULT;
9565                 host_to_target_sigset(p, &set);
9566                 unlock_user(p, arg1, sizeof(target_sigset_t));
9567             }
9568         }
9569         return ret;
9570 #ifdef TARGET_NR_sigsuspend
9571     case TARGET_NR_sigsuspend:
9572         {
9573             TaskState *ts = cpu->opaque;
9574 #if defined(TARGET_ALPHA)
9575             abi_ulong mask = arg1;
9576             target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
9577 #else
9578             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9579                 return -TARGET_EFAULT;
9580             target_to_host_old_sigset(&ts->sigsuspend_mask, p);
9581             unlock_user(p, arg1, 0);
9582 #endif
9583             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9584                                                SIGSET_T_SIZE));
9585             if (ret != -QEMU_ERESTARTSYS) {
9586                 ts->in_sigsuspend = 1;
9587             }
9588         }
9589         return ret;
9590 #endif
9591     case TARGET_NR_rt_sigsuspend:
9592         {
9593             TaskState *ts = cpu->opaque;
9594 
9595             if (arg2 != sizeof(target_sigset_t)) {
9596                 return -TARGET_EINVAL;
9597             }
9598             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9599                 return -TARGET_EFAULT;
9600             target_to_host_sigset(&ts->sigsuspend_mask, p);
9601             unlock_user(p, arg1, 0);
9602             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9603                                                SIGSET_T_SIZE));
9604             if (ret != -QEMU_ERESTARTSYS) {
9605                 ts->in_sigsuspend = 1;
9606             }
9607         }
9608         return ret;
9609 #ifdef TARGET_NR_rt_sigtimedwait
9610     case TARGET_NR_rt_sigtimedwait:
9611         {
9612             sigset_t set;
9613             struct timespec uts, *puts;
9614             siginfo_t uinfo;
9615 
9616             if (arg4 != sizeof(target_sigset_t)) {
9617                 return -TARGET_EINVAL;
9618             }
9619 
9620             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9621                 return -TARGET_EFAULT;
9622             target_to_host_sigset(&set, p);
9623             unlock_user(p, arg1, 0);
9624             if (arg3) {
9625                 puts = &uts;
9626                 if (target_to_host_timespec(puts, arg3)) {
9627                     return -TARGET_EFAULT;
9628                 }
9629             } else {
9630                 puts = NULL;
9631             }
9632             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9633                                                  SIGSET_T_SIZE));
9634             if (!is_error(ret)) {
9635                 if (arg2) {
9636                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9637                                   0);
9638                     if (!p) {
9639                         return -TARGET_EFAULT;
9640                     }
9641                     host_to_target_siginfo(p, &uinfo);
9642                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9643                 }
9644                 ret = host_to_target_signal(ret);
9645             }
9646         }
9647         return ret;
9648 #endif
9649 #ifdef TARGET_NR_rt_sigtimedwait_time64
9650     case TARGET_NR_rt_sigtimedwait_time64:
9651         {
9652             sigset_t set;
9653             struct timespec uts, *puts;
9654             siginfo_t uinfo;
9655 
9656             if (arg4 != sizeof(target_sigset_t)) {
9657                 return -TARGET_EINVAL;
9658             }
9659 
9660             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
9661             if (!p) {
9662                 return -TARGET_EFAULT;
9663             }
9664             target_to_host_sigset(&set, p);
9665             unlock_user(p, arg1, 0);
9666             if (arg3) {
9667                 puts = &uts;
9668                 if (target_to_host_timespec64(puts, arg3)) {
9669                     return -TARGET_EFAULT;
9670                 }
9671             } else {
9672                 puts = NULL;
9673             }
9674             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9675                                                  SIGSET_T_SIZE));
9676             if (!is_error(ret)) {
9677                 if (arg2) {
9678                     p = lock_user(VERIFY_WRITE, arg2,
9679                                   sizeof(target_siginfo_t), 0);
9680                     if (!p) {
9681                         return -TARGET_EFAULT;
9682                     }
9683                     host_to_target_siginfo(p, &uinfo);
9684                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9685                 }
9686                 ret = host_to_target_signal(ret);
9687             }
9688         }
9689         return ret;
9690 #endif
9691     case TARGET_NR_rt_sigqueueinfo:
9692         {
9693             siginfo_t uinfo;
9694 
9695             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9696             if (!p) {
9697                 return -TARGET_EFAULT;
9698             }
9699             target_to_host_siginfo(&uinfo, p);
9700             unlock_user(p, arg3, 0);
9701             ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
9702         }
9703         return ret;
9704     case TARGET_NR_rt_tgsigqueueinfo:
9705         {
9706             siginfo_t uinfo;
9707 
9708             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9709             if (!p) {
9710                 return -TARGET_EFAULT;
9711             }
9712             target_to_host_siginfo(&uinfo, p);
9713             unlock_user(p, arg4, 0);
9714             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
9715         }
9716         return ret;
9717 #ifdef TARGET_NR_sigreturn
9718     case TARGET_NR_sigreturn:
9719         if (block_signals()) {
9720             return -QEMU_ERESTARTSYS;
9721         }
9722         return do_sigreturn(cpu_env);
9723 #endif
9724     case TARGET_NR_rt_sigreturn:
9725         if (block_signals()) {
9726             return -QEMU_ERESTARTSYS;
9727         }
9728         return do_rt_sigreturn(cpu_env);
9729     case TARGET_NR_sethostname:
9730         if (!(p = lock_user_string(arg1)))
9731             return -TARGET_EFAULT;
9732         ret = get_errno(sethostname(p, arg2));
9733         unlock_user(p, arg1, 0);
9734         return ret;
9735 #ifdef TARGET_NR_setrlimit
9736     case TARGET_NR_setrlimit:
9737         {
9738             int resource = target_to_host_resource(arg1);
9739             struct target_rlimit *target_rlim;
9740             struct rlimit rlim;
9741             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9742                 return -TARGET_EFAULT;
9743             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9744             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9745             unlock_user_struct(target_rlim, arg2, 0);
9746             /*
9747              * If we just passed through resource limit settings for memory then
9748              * they would also apply to QEMU's own allocations, and QEMU will
9749              * crash or hang or die if its allocations fail. Ideally we would
9750              * track the guest allocations in QEMU and apply the limits ourselves.
9751              * For now, just tell the guest the call succeeded but don't actually
9752              * limit anything.
9753              */
9754             if (resource != RLIMIT_AS &&
9755                 resource != RLIMIT_DATA &&
9756                 resource != RLIMIT_STACK) {
9757                 return get_errno(setrlimit(resource, &rlim));
9758             } else {
9759                 return 0;
9760             }
9761         }
9762 #endif
9763 #ifdef TARGET_NR_getrlimit
9764     case TARGET_NR_getrlimit:
9765         {
9766             int resource = target_to_host_resource(arg1);
9767             struct target_rlimit *target_rlim;
9768             struct rlimit rlim;
9769 
9770             ret = get_errno(getrlimit(resource, &rlim));
9771             if (!is_error(ret)) {
9772                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9773                     return -TARGET_EFAULT;
9774                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9775                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9776                 unlock_user_struct(target_rlim, arg2, 1);
9777             }
9778         }
9779         return ret;
9780 #endif
9781     case TARGET_NR_getrusage:
9782         {
9783             struct rusage rusage;
9784             ret = get_errno(getrusage(arg1, &rusage));
9785             if (!is_error(ret)) {
9786                 ret = host_to_target_rusage(arg2, &rusage);
9787             }
9788         }
9789         return ret;
9790 #if defined(TARGET_NR_gettimeofday)
9791     case TARGET_NR_gettimeofday:
9792         {
9793             struct timeval tv;
9794             struct timezone tz;
9795 
9796             ret = get_errno(gettimeofday(&tv, &tz));
9797             if (!is_error(ret)) {
9798                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
9799                     return -TARGET_EFAULT;
9800                 }
9801                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
9802                     return -TARGET_EFAULT;
9803                 }
9804             }
9805         }
9806         return ret;
9807 #endif
9808 #if defined(TARGET_NR_settimeofday)
9809     case TARGET_NR_settimeofday:
9810         {
9811             struct timeval tv, *ptv = NULL;
9812             struct timezone tz, *ptz = NULL;
9813 
9814             if (arg1) {
9815                 if (copy_from_user_timeval(&tv, arg1)) {
9816                     return -TARGET_EFAULT;
9817                 }
9818                 ptv = &tv;
9819             }
9820 
9821             if (arg2) {
9822                 if (copy_from_user_timezone(&tz, arg2)) {
9823                     return -TARGET_EFAULT;
9824                 }
9825                 ptz = &tz;
9826             }
9827 
9828             return get_errno(settimeofday(ptv, ptz));
9829         }
9830 #endif
9831 #if defined(TARGET_NR_select)
9832     case TARGET_NR_select:
9833 #if defined(TARGET_WANT_NI_OLD_SELECT)
9834         /* some architectures used to have old_select here
9835          * but now ENOSYS it.
9836          */
9837         ret = -TARGET_ENOSYS;
9838 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9839         ret = do_old_select(arg1);
9840 #else
9841         ret = do_select(arg1, arg2, arg3, arg4, arg5);
9842 #endif
9843         return ret;
9844 #endif
9845 #ifdef TARGET_NR_pselect6
9846     case TARGET_NR_pselect6:
9847         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
9848 #endif
9849 #ifdef TARGET_NR_pselect6_time64
9850     case TARGET_NR_pselect6_time64:
9851         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
9852 #endif
9853 #ifdef TARGET_NR_symlink
9854     case TARGET_NR_symlink:
9855         {
9856             void *p2;
9857             p = lock_user_string(arg1);
9858             p2 = lock_user_string(arg2);
9859             if (!p || !p2)
9860                 ret = -TARGET_EFAULT;
9861             else
9862                 ret = get_errno(symlink(p, p2));
9863             unlock_user(p2, arg2, 0);
9864             unlock_user(p, arg1, 0);
9865         }
9866         return ret;
9867 #endif
9868 #if defined(TARGET_NR_symlinkat)
9869     case TARGET_NR_symlinkat:
9870         {
9871             void *p2;
9872             p  = lock_user_string(arg1);
9873             p2 = lock_user_string(arg3);
9874             if (!p || !p2)
9875                 ret = -TARGET_EFAULT;
9876             else
9877                 ret = get_errno(symlinkat(p, arg2, p2));
9878             unlock_user(p2, arg3, 0);
9879             unlock_user(p, arg1, 0);
9880         }
9881         return ret;
9882 #endif
9883 #ifdef TARGET_NR_readlink
9884     case TARGET_NR_readlink:
9885         {
9886             void *p2;
9887             p = lock_user_string(arg1);
9888             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9889             if (!p || !p2) {
9890                 ret = -TARGET_EFAULT;
9891             } else if (!arg3) {
9892                 /* Short circuit this for the magic exe check. */
9893                 ret = -TARGET_EINVAL;
9894             } else if (is_proc_myself((const char *)p, "exe")) {
9895                 char real[PATH_MAX], *temp;
9896                 temp = realpath(exec_path, real);
9897                 /* Return value is # of bytes that we wrote to the buffer. */
9898                 if (temp == NULL) {
9899                     ret = get_errno(-1);
9900                 } else {
9901                     /* Don't worry about sign mismatch as earlier mapping
9902                      * logic would have thrown a bad address error. */
9903                     ret = MIN(strlen(real), arg3);
9904                     /* We cannot NUL terminate the string. */
9905                     memcpy(p2, real, ret);
9906                 }
9907             } else {
9908                 ret = get_errno(readlink(path(p), p2, arg3));
9909             }
9910             unlock_user(p2, arg2, ret);
9911             unlock_user(p, arg1, 0);
9912         }
9913         return ret;
9914 #endif
9915 #if defined(TARGET_NR_readlinkat)
9916     case TARGET_NR_readlinkat:
9917         {
9918             void *p2;
9919             p  = lock_user_string(arg2);
9920             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9921             if (!p || !p2) {
9922                 ret = -TARGET_EFAULT;
9923             } else if (is_proc_myself((const char *)p, "exe")) {
9924                 char real[PATH_MAX], *temp;
9925                 temp = realpath(exec_path, real);
9926                 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9927                 snprintf((char *)p2, arg4, "%s", real);
9928             } else {
9929                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9930             }
9931             unlock_user(p2, arg3, ret);
9932             unlock_user(p, arg2, 0);
9933         }
9934         return ret;
9935 #endif
9936 #ifdef TARGET_NR_swapon
9937     case TARGET_NR_swapon:
9938         if (!(p = lock_user_string(arg1)))
9939             return -TARGET_EFAULT;
9940         ret = get_errno(swapon(p, arg2));
9941         unlock_user(p, arg1, 0);
9942         return ret;
9943 #endif
9944     case TARGET_NR_reboot:
9945         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9946            /* arg4 must be ignored in all other cases */
9947            p = lock_user_string(arg4);
9948            if (!p) {
9949                return -TARGET_EFAULT;
9950            }
9951            ret = get_errno(reboot(arg1, arg2, arg3, p));
9952            unlock_user(p, arg4, 0);
9953         } else {
9954            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9955         }
9956         return ret;
9957 #ifdef TARGET_NR_mmap
9958     case TARGET_NR_mmap:
9959 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9960     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9961     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9962     || defined(TARGET_S390X)
9963         {
9964             abi_ulong *v;
9965             abi_ulong v1, v2, v3, v4, v5, v6;
9966             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9967                 return -TARGET_EFAULT;
9968             v1 = tswapal(v[0]);
9969             v2 = tswapal(v[1]);
9970             v3 = tswapal(v[2]);
9971             v4 = tswapal(v[3]);
9972             v5 = tswapal(v[4]);
9973             v6 = tswapal(v[5]);
9974             unlock_user(v, arg1, 0);
9975             ret = get_errno(target_mmap(v1, v2, v3,
9976                                         target_to_host_bitmask(v4, mmap_flags_tbl),
9977                                         v5, v6));
9978         }
9979 #else
9980         /* mmap pointers are always untagged */
9981         ret = get_errno(target_mmap(arg1, arg2, arg3,
9982                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
9983                                     arg5,
9984                                     arg6));
9985 #endif
9986         return ret;
9987 #endif
9988 #ifdef TARGET_NR_mmap2
9989     case TARGET_NR_mmap2:
9990 #ifndef MMAP_SHIFT
9991 #define MMAP_SHIFT 12
9992 #endif
9993         ret = target_mmap(arg1, arg2, arg3,
9994                           target_to_host_bitmask(arg4, mmap_flags_tbl),
9995                           arg5, arg6 << MMAP_SHIFT);
9996         return get_errno(ret);
9997 #endif
9998     case TARGET_NR_munmap:
9999         arg1 = cpu_untagged_addr(cpu, arg1);
10000         return get_errno(target_munmap(arg1, arg2));
10001     case TARGET_NR_mprotect:
10002         arg1 = cpu_untagged_addr(cpu, arg1);
10003         {
10004             TaskState *ts = cpu->opaque;
10005             /* Special hack to detect libc making the stack executable.  */
10006             if ((arg3 & PROT_GROWSDOWN)
10007                 && arg1 >= ts->info->stack_limit
10008                 && arg1 <= ts->info->start_stack) {
10009                 arg3 &= ~PROT_GROWSDOWN;
10010                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10011                 arg1 = ts->info->stack_limit;
10012             }
10013         }
10014         return get_errno(target_mprotect(arg1, arg2, arg3));
10015 #ifdef TARGET_NR_mremap
10016     case TARGET_NR_mremap:
10017         arg1 = cpu_untagged_addr(cpu, arg1);
10018         /* mremap new_addr (arg5) is always untagged */
10019         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10020 #endif
10021         /* ??? msync/mlock/munlock are broken for softmmu.  */
10022 #ifdef TARGET_NR_msync
10023     case TARGET_NR_msync:
10024         return get_errno(msync(g2h(cpu, arg1), arg2, arg3));
10025 #endif
10026 #ifdef TARGET_NR_mlock
10027     case TARGET_NR_mlock:
10028         return get_errno(mlock(g2h(cpu, arg1), arg2));
10029 #endif
10030 #ifdef TARGET_NR_munlock
10031     case TARGET_NR_munlock:
10032         return get_errno(munlock(g2h(cpu, arg1), arg2));
10033 #endif
10034 #ifdef TARGET_NR_mlockall
10035     case TARGET_NR_mlockall:
10036         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10037 #endif
10038 #ifdef TARGET_NR_munlockall
10039     case TARGET_NR_munlockall:
10040         return get_errno(munlockall());
10041 #endif
10042 #ifdef TARGET_NR_truncate
10043     case TARGET_NR_truncate:
10044         if (!(p = lock_user_string(arg1)))
10045             return -TARGET_EFAULT;
10046         ret = get_errno(truncate(p, arg2));
10047         unlock_user(p, arg1, 0);
10048         return ret;
10049 #endif
10050 #ifdef TARGET_NR_ftruncate
10051     case TARGET_NR_ftruncate:
10052         return get_errno(ftruncate(arg1, arg2));
10053 #endif
10054     case TARGET_NR_fchmod:
10055         return get_errno(fchmod(arg1, arg2));
10056 #if defined(TARGET_NR_fchmodat)
10057     case TARGET_NR_fchmodat:
10058         if (!(p = lock_user_string(arg2)))
10059             return -TARGET_EFAULT;
10060         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10061         unlock_user(p, arg2, 0);
10062         return ret;
10063 #endif
10064     case TARGET_NR_getpriority:
10065         /* Note that negative values are valid for getpriority, so we must
10066            differentiate based on errno settings.  */
10067         errno = 0;
10068         ret = getpriority(arg1, arg2);
10069         if (ret == -1 && errno != 0) {
10070             return -host_to_target_errno(errno);
10071         }
10072 #ifdef TARGET_ALPHA
10073         /* Return value is the unbiased priority.  Signal no error.  */
10074         ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
10075 #else
10076         /* Return value is a biased priority to avoid negative numbers.  */
10077         ret = 20 - ret;
10078 #endif
10079         return ret;
10080     case TARGET_NR_setpriority:
10081         return get_errno(setpriority(arg1, arg2, arg3));
10082 #ifdef TARGET_NR_statfs
10083     case TARGET_NR_statfs:
10084         if (!(p = lock_user_string(arg1))) {
10085             return -TARGET_EFAULT;
10086         }
10087         ret = get_errno(statfs(path(p), &stfs));
10088         unlock_user(p, arg1, 0);
10089     convert_statfs:
10090         if (!is_error(ret)) {
10091             struct target_statfs *target_stfs;
10092 
10093             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10094                 return -TARGET_EFAULT;
10095             __put_user(stfs.f_type, &target_stfs->f_type);
10096             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10097             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10098             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10099             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10100             __put_user(stfs.f_files, &target_stfs->f_files);
10101             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10102             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10103             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10104             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10105             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10106 #ifdef _STATFS_F_FLAGS
10107             __put_user(stfs.f_flags, &target_stfs->f_flags);
10108 #else
10109             __put_user(0, &target_stfs->f_flags);
10110 #endif
10111             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10112             unlock_user_struct(target_stfs, arg2, 1);
10113         }
10114         return ret;
10115 #endif
10116 #ifdef TARGET_NR_fstatfs
10117     case TARGET_NR_fstatfs:
10118         ret = get_errno(fstatfs(arg1, &stfs));
10119         goto convert_statfs;
10120 #endif
10121 #ifdef TARGET_NR_statfs64
10122     case TARGET_NR_statfs64:
10123         if (!(p = lock_user_string(arg1))) {
10124             return -TARGET_EFAULT;
10125         }
10126         ret = get_errno(statfs(path(p), &stfs));
10127         unlock_user(p, arg1, 0);
10128     convert_statfs64:
10129         if (!is_error(ret)) {
10130             struct target_statfs64 *target_stfs;
10131 
10132             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10133                 return -TARGET_EFAULT;
10134             __put_user(stfs.f_type, &target_stfs->f_type);
10135             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10136             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10137             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10138             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10139             __put_user(stfs.f_files, &target_stfs->f_files);
10140             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10141             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10142             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10143             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10144             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10145 #ifdef _STATFS_F_FLAGS
10146             __put_user(stfs.f_flags, &target_stfs->f_flags);
10147 #else
10148             __put_user(0, &target_stfs->f_flags);
10149 #endif
10150             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10151             unlock_user_struct(target_stfs, arg3, 1);
10152         }
10153         return ret;
10154     case TARGET_NR_fstatfs64:
10155         ret = get_errno(fstatfs(arg1, &stfs));
10156         goto convert_statfs64;
10157 #endif
10158 #ifdef TARGET_NR_socketcall
10159     case TARGET_NR_socketcall:
10160         return do_socketcall(arg1, arg2);
10161 #endif
10162 #ifdef TARGET_NR_accept
10163     case TARGET_NR_accept:
10164         return do_accept4(arg1, arg2, arg3, 0);
10165 #endif
10166 #ifdef TARGET_NR_accept4
10167     case TARGET_NR_accept4:
10168         return do_accept4(arg1, arg2, arg3, arg4);
10169 #endif
10170 #ifdef TARGET_NR_bind
10171     case TARGET_NR_bind:
10172         return do_bind(arg1, arg2, arg3);
10173 #endif
10174 #ifdef TARGET_NR_connect
10175     case TARGET_NR_connect:
10176         return do_connect(arg1, arg2, arg3);
10177 #endif
10178 #ifdef TARGET_NR_getpeername
10179     case TARGET_NR_getpeername:
10180         return do_getpeername(arg1, arg2, arg3);
10181 #endif
10182 #ifdef TARGET_NR_getsockname
10183     case TARGET_NR_getsockname:
10184         return do_getsockname(arg1, arg2, arg3);
10185 #endif
10186 #ifdef TARGET_NR_getsockopt
10187     case TARGET_NR_getsockopt:
10188         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10189 #endif
10190 #ifdef TARGET_NR_listen
10191     case TARGET_NR_listen:
10192         return get_errno(listen(arg1, arg2));
10193 #endif
10194 #ifdef TARGET_NR_recv
10195     case TARGET_NR_recv:
10196         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10197 #endif
10198 #ifdef TARGET_NR_recvfrom
10199     case TARGET_NR_recvfrom:
10200         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10201 #endif
10202 #ifdef TARGET_NR_recvmsg
10203     case TARGET_NR_recvmsg:
10204         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10205 #endif
10206 #ifdef TARGET_NR_send
10207     case TARGET_NR_send:
10208         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10209 #endif
10210 #ifdef TARGET_NR_sendmsg
10211     case TARGET_NR_sendmsg:
10212         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10213 #endif
10214 #ifdef TARGET_NR_sendmmsg
10215     case TARGET_NR_sendmmsg:
10216         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10217 #endif
10218 #ifdef TARGET_NR_recvmmsg
10219     case TARGET_NR_recvmmsg:
10220         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10221 #endif
10222 #ifdef TARGET_NR_sendto
10223     case TARGET_NR_sendto:
10224         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10225 #endif
10226 #ifdef TARGET_NR_shutdown
10227     case TARGET_NR_shutdown:
10228         return get_errno(shutdown(arg1, arg2));
10229 #endif
10230 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10231     case TARGET_NR_getrandom:
10232         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10233         if (!p) {
10234             return -TARGET_EFAULT;
10235         }
10236         ret = get_errno(getrandom(p, arg2, arg3));
10237         unlock_user(p, arg1, ret);
10238         return ret;
10239 #endif
10240 #ifdef TARGET_NR_socket
10241     case TARGET_NR_socket:
10242         return do_socket(arg1, arg2, arg3);
10243 #endif
10244 #ifdef TARGET_NR_socketpair
10245     case TARGET_NR_socketpair:
10246         return do_socketpair(arg1, arg2, arg3, arg4);
10247 #endif
10248 #ifdef TARGET_NR_setsockopt
10249     case TARGET_NR_setsockopt:
10250         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10251 #endif
10252 #if defined(TARGET_NR_syslog)
10253     case TARGET_NR_syslog:
10254         {
10255             int len = arg2;
10256 
10257             switch (arg1) {
10258             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10259             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10260             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10261             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10262             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10263             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10264             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10265             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10266                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10267             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10268             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10269             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10270                 {
10271                     if (len < 0) {
10272                         return -TARGET_EINVAL;
10273                     }
10274                     if (len == 0) {
10275                         return 0;
10276                     }
10277                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10278                     if (!p) {
10279                         return -TARGET_EFAULT;
10280                     }
10281                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10282                     unlock_user(p, arg2, arg3);
10283                 }
10284                 return ret;
10285             default:
10286                 return -TARGET_EINVAL;
10287             }
10288         }
10289         break;
10290 #endif
10291     case TARGET_NR_setitimer:
10292         {
10293             struct itimerval value, ovalue, *pvalue;
10294 
10295             if (arg2) {
10296                 pvalue = &value;
10297                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10298                     || copy_from_user_timeval(&pvalue->it_value,
10299                                               arg2 + sizeof(struct target_timeval)))
10300                     return -TARGET_EFAULT;
10301             } else {
10302                 pvalue = NULL;
10303             }
10304             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10305             if (!is_error(ret) && arg3) {
10306                 if (copy_to_user_timeval(arg3,
10307                                          &ovalue.it_interval)
10308                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10309                                             &ovalue.it_value))
10310                     return -TARGET_EFAULT;
10311             }
10312         }
10313         return ret;
10314     case TARGET_NR_getitimer:
10315         {
10316             struct itimerval value;
10317 
10318             ret = get_errno(getitimer(arg1, &value));
10319             if (!is_error(ret) && arg2) {
10320                 if (copy_to_user_timeval(arg2,
10321                                          &value.it_interval)
10322                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10323                                             &value.it_value))
10324                     return -TARGET_EFAULT;
10325             }
10326         }
10327         return ret;
10328 #ifdef TARGET_NR_stat
10329     case TARGET_NR_stat:
10330         if (!(p = lock_user_string(arg1))) {
10331             return -TARGET_EFAULT;
10332         }
10333         ret = get_errno(stat(path(p), &st));
10334         unlock_user(p, arg1, 0);
10335         goto do_stat;
10336 #endif
10337 #ifdef TARGET_NR_lstat
10338     case TARGET_NR_lstat:
10339         if (!(p = lock_user_string(arg1))) {
10340             return -TARGET_EFAULT;
10341         }
10342         ret = get_errno(lstat(path(p), &st));
10343         unlock_user(p, arg1, 0);
10344         goto do_stat;
10345 #endif
10346 #ifdef TARGET_NR_fstat
10347     case TARGET_NR_fstat:
10348         {
10349             ret = get_errno(fstat(arg1, &st));
10350 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10351         do_stat:
10352 #endif
10353             if (!is_error(ret)) {
10354                 struct target_stat *target_st;
10355 
10356                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10357                     return -TARGET_EFAULT;
10358                 memset(target_st, 0, sizeof(*target_st));
10359                 __put_user(st.st_dev, &target_st->st_dev);
10360                 __put_user(st.st_ino, &target_st->st_ino);
10361                 __put_user(st.st_mode, &target_st->st_mode);
10362                 __put_user(st.st_uid, &target_st->st_uid);
10363                 __put_user(st.st_gid, &target_st->st_gid);
10364                 __put_user(st.st_nlink, &target_st->st_nlink);
10365                 __put_user(st.st_rdev, &target_st->st_rdev);
10366                 __put_user(st.st_size, &target_st->st_size);
10367                 __put_user(st.st_blksize, &target_st->st_blksize);
10368                 __put_user(st.st_blocks, &target_st->st_blocks);
10369                 __put_user(st.st_atime, &target_st->target_st_atime);
10370                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10371                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10372 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10373                 __put_user(st.st_atim.tv_nsec,
10374                            &target_st->target_st_atime_nsec);
10375                 __put_user(st.st_mtim.tv_nsec,
10376                            &target_st->target_st_mtime_nsec);
10377                 __put_user(st.st_ctim.tv_nsec,
10378                            &target_st->target_st_ctime_nsec);
10379 #endif
10380                 unlock_user_struct(target_st, arg2, 1);
10381             }
10382         }
10383         return ret;
10384 #endif
10385     case TARGET_NR_vhangup:
10386         return get_errno(vhangup());
10387 #ifdef TARGET_NR_syscall
10388     case TARGET_NR_syscall:
10389         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10390                           arg6, arg7, arg8, 0);
10391 #endif
10392 #if defined(TARGET_NR_wait4)
10393     case TARGET_NR_wait4:
10394         {
10395             int status;
10396             abi_long status_ptr = arg2;
10397             struct rusage rusage, *rusage_ptr;
10398             abi_ulong target_rusage = arg4;
10399             abi_long rusage_err;
10400             if (target_rusage)
10401                 rusage_ptr = &rusage;
10402             else
10403                 rusage_ptr = NULL;
10404             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10405             if (!is_error(ret)) {
10406                 if (status_ptr && ret) {
10407                     status = host_to_target_waitstatus(status);
10408                     if (put_user_s32(status, status_ptr))
10409                         return -TARGET_EFAULT;
10410                 }
10411                 if (target_rusage) {
10412                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10413                     if (rusage_err) {
10414                         ret = rusage_err;
10415                     }
10416                 }
10417             }
10418         }
10419         return ret;
10420 #endif
10421 #ifdef TARGET_NR_swapoff
10422     case TARGET_NR_swapoff:
10423         if (!(p = lock_user_string(arg1)))
10424             return -TARGET_EFAULT;
10425         ret = get_errno(swapoff(p));
10426         unlock_user(p, arg1, 0);
10427         return ret;
10428 #endif
10429     case TARGET_NR_sysinfo:
10430         {
10431             struct target_sysinfo *target_value;
10432             struct sysinfo value;
10433             ret = get_errno(sysinfo(&value));
10434             if (!is_error(ret) && arg1)
10435             {
10436                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10437                     return -TARGET_EFAULT;
10438                 __put_user(value.uptime, &target_value->uptime);
10439                 __put_user(value.loads[0], &target_value->loads[0]);
10440                 __put_user(value.loads[1], &target_value->loads[1]);
10441                 __put_user(value.loads[2], &target_value->loads[2]);
10442                 __put_user(value.totalram, &target_value->totalram);
10443                 __put_user(value.freeram, &target_value->freeram);
10444                 __put_user(value.sharedram, &target_value->sharedram);
10445                 __put_user(value.bufferram, &target_value->bufferram);
10446                 __put_user(value.totalswap, &target_value->totalswap);
10447                 __put_user(value.freeswap, &target_value->freeswap);
10448                 __put_user(value.procs, &target_value->procs);
10449                 __put_user(value.totalhigh, &target_value->totalhigh);
10450                 __put_user(value.freehigh, &target_value->freehigh);
10451                 __put_user(value.mem_unit, &target_value->mem_unit);
10452                 unlock_user_struct(target_value, arg1, 1);
10453             }
10454         }
10455         return ret;
10456 #ifdef TARGET_NR_ipc
10457     case TARGET_NR_ipc:
10458         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10459 #endif
10460 #ifdef TARGET_NR_semget
10461     case TARGET_NR_semget:
10462         return get_errno(semget(arg1, arg2, arg3));
10463 #endif
10464 #ifdef TARGET_NR_semop
10465     case TARGET_NR_semop:
10466         return do_semtimedop(arg1, arg2, arg3, 0, false);
10467 #endif
10468 #ifdef TARGET_NR_semtimedop
10469     case TARGET_NR_semtimedop:
10470         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10471 #endif
10472 #ifdef TARGET_NR_semtimedop_time64
10473     case TARGET_NR_semtimedop_time64:
10474         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10475 #endif
10476 #ifdef TARGET_NR_semctl
10477     case TARGET_NR_semctl:
10478         return do_semctl(arg1, arg2, arg3, arg4);
10479 #endif
10480 #ifdef TARGET_NR_msgctl
10481     case TARGET_NR_msgctl:
10482         return do_msgctl(arg1, arg2, arg3);
10483 #endif
10484 #ifdef TARGET_NR_msgget
10485     case TARGET_NR_msgget:
10486         return get_errno(msgget(arg1, arg2));
10487 #endif
10488 #ifdef TARGET_NR_msgrcv
10489     case TARGET_NR_msgrcv:
10490         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10491 #endif
10492 #ifdef TARGET_NR_msgsnd
10493     case TARGET_NR_msgsnd:
10494         return do_msgsnd(arg1, arg2, arg3, arg4);
10495 #endif
10496 #ifdef TARGET_NR_shmget
10497     case TARGET_NR_shmget:
10498         return get_errno(shmget(arg1, arg2, arg3));
10499 #endif
10500 #ifdef TARGET_NR_shmctl
10501     case TARGET_NR_shmctl:
10502         return do_shmctl(arg1, arg2, arg3);
10503 #endif
10504 #ifdef TARGET_NR_shmat
10505     case TARGET_NR_shmat:
10506         return do_shmat(cpu_env, arg1, arg2, arg3);
10507 #endif
10508 #ifdef TARGET_NR_shmdt
10509     case TARGET_NR_shmdt:
10510         return do_shmdt(arg1);
10511 #endif
10512     case TARGET_NR_fsync:
10513         return get_errno(fsync(arg1));
10514     case TARGET_NR_clone:
10515         /* Linux manages to have three different orderings for its
10516          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10517          * match the kernel's CONFIG_CLONE_* settings.
10518          * Microblaze is further special in that it uses a sixth
10519          * implicit argument to clone for the TLS pointer.
10520          */
10521 #if defined(TARGET_MICROBLAZE)
10522         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10523 #elif defined(TARGET_CLONE_BACKWARDS)
10524         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10525 #elif defined(TARGET_CLONE_BACKWARDS2)
10526         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10527 #else
10528         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10529 #endif
10530         return ret;
10531 #ifdef __NR_exit_group
10532         /* new thread calls */
10533     case TARGET_NR_exit_group:
10534         preexit_cleanup(cpu_env, arg1);
10535         return get_errno(exit_group(arg1));
10536 #endif
10537     case TARGET_NR_setdomainname:
10538         if (!(p = lock_user_string(arg1)))
10539             return -TARGET_EFAULT;
10540         ret = get_errno(setdomainname(p, arg2));
10541         unlock_user(p, arg1, 0);
10542         return ret;
10543     case TARGET_NR_uname:
10544         /* no need to transcode because we use the linux syscall */
10545         {
10546             struct new_utsname * buf;
10547 
10548             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10549                 return -TARGET_EFAULT;
10550             ret = get_errno(sys_uname(buf));
10551             if (!is_error(ret)) {
10552                 /* Overwrite the native machine name with whatever is being
10553                    emulated. */
10554                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10555                           sizeof(buf->machine));
10556                 /* Allow the user to override the reported release.  */
10557                 if (qemu_uname_release && *qemu_uname_release) {
10558                     g_strlcpy(buf->release, qemu_uname_release,
10559                               sizeof(buf->release));
10560                 }
10561             }
10562             unlock_user_struct(buf, arg1, 1);
10563         }
10564         return ret;
10565 #ifdef TARGET_I386
10566     case TARGET_NR_modify_ldt:
10567         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10568 #if !defined(TARGET_X86_64)
10569     case TARGET_NR_vm86:
10570         return do_vm86(cpu_env, arg1, arg2);
10571 #endif
10572 #endif
10573 #if defined(TARGET_NR_adjtimex)
10574     case TARGET_NR_adjtimex:
10575         {
10576             struct timex host_buf;
10577 
10578             if (target_to_host_timex(&host_buf, arg1) != 0) {
10579                 return -TARGET_EFAULT;
10580             }
10581             ret = get_errno(adjtimex(&host_buf));
10582             if (!is_error(ret)) {
10583                 if (host_to_target_timex(arg1, &host_buf) != 0) {
10584                     return -TARGET_EFAULT;
10585                 }
10586             }
10587         }
10588         return ret;
10589 #endif
10590 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10591     case TARGET_NR_clock_adjtime:
10592         {
10593             struct timex htx, *phtx = &htx;
10594 
10595             if (target_to_host_timex(phtx, arg2) != 0) {
10596                 return -TARGET_EFAULT;
10597             }
10598             ret = get_errno(clock_adjtime(arg1, phtx));
10599             if (!is_error(ret) && phtx) {
10600                 if (host_to_target_timex(arg2, phtx) != 0) {
10601                     return -TARGET_EFAULT;
10602                 }
10603             }
10604         }
10605         return ret;
10606 #endif
10607 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10608     case TARGET_NR_clock_adjtime64:
10609         {
10610             struct timex htx;
10611 
10612             if (target_to_host_timex64(&htx, arg2) != 0) {
10613                 return -TARGET_EFAULT;
10614             }
10615             ret = get_errno(clock_adjtime(arg1, &htx));
10616             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
10617                     return -TARGET_EFAULT;
10618             }
10619         }
10620         return ret;
10621 #endif
10622     case TARGET_NR_getpgid:
10623         return get_errno(getpgid(arg1));
10624     case TARGET_NR_fchdir:
10625         return get_errno(fchdir(arg1));
10626     case TARGET_NR_personality:
10627         return get_errno(personality(arg1));
10628 #ifdef TARGET_NR__llseek /* Not on alpha */
10629     case TARGET_NR__llseek:
10630         {
10631             int64_t res;
10632 #if !defined(__NR_llseek)
10633             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10634             if (res == -1) {
10635                 ret = get_errno(res);
10636             } else {
10637                 ret = 0;
10638             }
10639 #else
10640             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10641 #endif
10642             if ((ret == 0) && put_user_s64(res, arg4)) {
10643                 return -TARGET_EFAULT;
10644             }
10645         }
10646         return ret;
10647 #endif
10648 #ifdef TARGET_NR_getdents
10649     case TARGET_NR_getdents:
10650         return do_getdents(arg1, arg2, arg3);
10651 #endif /* TARGET_NR_getdents */
10652 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10653     case TARGET_NR_getdents64:
10654         return do_getdents64(arg1, arg2, arg3);
10655 #endif /* TARGET_NR_getdents64 */
10656 #if defined(TARGET_NR__newselect)
10657     case TARGET_NR__newselect:
10658         return do_select(arg1, arg2, arg3, arg4, arg5);
10659 #endif
10660 #ifdef TARGET_NR_poll
10661     case TARGET_NR_poll:
10662         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
10663 #endif
10664 #ifdef TARGET_NR_ppoll
10665     case TARGET_NR_ppoll:
10666         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
10667 #endif
10668 #ifdef TARGET_NR_ppoll_time64
10669     case TARGET_NR_ppoll_time64:
10670         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
10671 #endif
10672     case TARGET_NR_flock:
10673         /* NOTE: the flock constant seems to be the same for every
10674            Linux platform */
10675         return get_errno(safe_flock(arg1, arg2));
10676     case TARGET_NR_readv:
10677         {
10678             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10679             if (vec != NULL) {
10680                 ret = get_errno(safe_readv(arg1, vec, arg3));
10681                 unlock_iovec(vec, arg2, arg3, 1);
10682             } else {
10683                 ret = -host_to_target_errno(errno);
10684             }
10685         }
10686         return ret;
10687     case TARGET_NR_writev:
10688         {
10689             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10690             if (vec != NULL) {
10691                 ret = get_errno(safe_writev(arg1, vec, arg3));
10692                 unlock_iovec(vec, arg2, arg3, 0);
10693             } else {
10694                 ret = -host_to_target_errno(errno);
10695             }
10696         }
10697         return ret;
10698 #if defined(TARGET_NR_preadv)
10699     case TARGET_NR_preadv:
10700         {
10701             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10702             if (vec != NULL) {
10703                 unsigned long low, high;
10704 
10705                 target_to_host_low_high(arg4, arg5, &low, &high);
10706                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10707                 unlock_iovec(vec, arg2, arg3, 1);
10708             } else {
10709                 ret = -host_to_target_errno(errno);
10710            }
10711         }
10712         return ret;
10713 #endif
10714 #if defined(TARGET_NR_pwritev)
10715     case TARGET_NR_pwritev:
10716         {
10717             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10718             if (vec != NULL) {
10719                 unsigned long low, high;
10720 
10721                 target_to_host_low_high(arg4, arg5, &low, &high);
10722                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10723                 unlock_iovec(vec, arg2, arg3, 0);
10724             } else {
10725                 ret = -host_to_target_errno(errno);
10726            }
10727         }
10728         return ret;
10729 #endif
10730     case TARGET_NR_getsid:
10731         return get_errno(getsid(arg1));
10732 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10733     case TARGET_NR_fdatasync:
10734         return get_errno(fdatasync(arg1));
10735 #endif
10736     case TARGET_NR_sched_getaffinity:
10737         {
10738             unsigned int mask_size;
10739             unsigned long *mask;
10740 
10741             /*
10742              * sched_getaffinity needs multiples of ulong, so need to take
10743              * care of mismatches between target ulong and host ulong sizes.
10744              */
10745             if (arg2 & (sizeof(abi_ulong) - 1)) {
10746                 return -TARGET_EINVAL;
10747             }
10748             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10749 
10750             mask = alloca(mask_size);
10751             memset(mask, 0, mask_size);
10752             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10753 
10754             if (!is_error(ret)) {
10755                 if (ret > arg2) {
10756                     /* More data returned than the caller's buffer will fit.
10757                      * This only happens if sizeof(abi_long) < sizeof(long)
10758                      * and the caller passed us a buffer holding an odd number
10759                      * of abi_longs. If the host kernel is actually using the
10760                      * extra 4 bytes then fail EINVAL; otherwise we can just
10761                      * ignore them and only copy the interesting part.
10762                      */
10763                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10764                     if (numcpus > arg2 * 8) {
10765                         return -TARGET_EINVAL;
10766                     }
10767                     ret = arg2;
10768                 }
10769 
10770                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10771                     return -TARGET_EFAULT;
10772                 }
10773             }
10774         }
10775         return ret;
10776     case TARGET_NR_sched_setaffinity:
10777         {
10778             unsigned int mask_size;
10779             unsigned long *mask;
10780 
10781             /*
10782              * sched_setaffinity needs multiples of ulong, so need to take
10783              * care of mismatches between target ulong and host ulong sizes.
10784              */
10785             if (arg2 & (sizeof(abi_ulong) - 1)) {
10786                 return -TARGET_EINVAL;
10787             }
10788             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10789             mask = alloca(mask_size);
10790 
10791             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10792             if (ret) {
10793                 return ret;
10794             }
10795 
10796             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10797         }
10798     case TARGET_NR_getcpu:
10799         {
10800             unsigned cpu, node;
10801             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10802                                        arg2 ? &node : NULL,
10803                                        NULL));
10804             if (is_error(ret)) {
10805                 return ret;
10806             }
10807             if (arg1 && put_user_u32(cpu, arg1)) {
10808                 return -TARGET_EFAULT;
10809             }
10810             if (arg2 && put_user_u32(node, arg2)) {
10811                 return -TARGET_EFAULT;
10812             }
10813         }
10814         return ret;
10815     case TARGET_NR_sched_setparam:
10816         {
10817             struct target_sched_param *target_schp;
10818             struct sched_param schp;
10819 
10820             if (arg2 == 0) {
10821                 return -TARGET_EINVAL;
10822             }
10823             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
10824                 return -TARGET_EFAULT;
10825             }
10826             schp.sched_priority = tswap32(target_schp->sched_priority);
10827             unlock_user_struct(target_schp, arg2, 0);
10828             return get_errno(sys_sched_setparam(arg1, &schp));
10829         }
10830     case TARGET_NR_sched_getparam:
10831         {
10832             struct target_sched_param *target_schp;
10833             struct sched_param schp;
10834 
10835             if (arg2 == 0) {
10836                 return -TARGET_EINVAL;
10837             }
10838             ret = get_errno(sys_sched_getparam(arg1, &schp));
10839             if (!is_error(ret)) {
10840                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
10841                     return -TARGET_EFAULT;
10842                 }
10843                 target_schp->sched_priority = tswap32(schp.sched_priority);
10844                 unlock_user_struct(target_schp, arg2, 1);
10845             }
10846         }
10847         return ret;
10848     case TARGET_NR_sched_setscheduler:
10849         {
10850             struct target_sched_param *target_schp;
10851             struct sched_param schp;
10852             if (arg3 == 0) {
10853                 return -TARGET_EINVAL;
10854             }
10855             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
10856                 return -TARGET_EFAULT;
10857             }
10858             schp.sched_priority = tswap32(target_schp->sched_priority);
10859             unlock_user_struct(target_schp, arg3, 0);
10860             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
10861         }
10862     case TARGET_NR_sched_getscheduler:
10863         return get_errno(sys_sched_getscheduler(arg1));
10864     case TARGET_NR_sched_getattr:
10865         {
10866             struct target_sched_attr *target_scha;
10867             struct sched_attr scha;
10868             if (arg2 == 0) {
10869                 return -TARGET_EINVAL;
10870             }
10871             if (arg3 > sizeof(scha)) {
10872                 arg3 = sizeof(scha);
10873             }
10874             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
10875             if (!is_error(ret)) {
10876                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10877                 if (!target_scha) {
10878                     return -TARGET_EFAULT;
10879                 }
10880                 target_scha->size = tswap32(scha.size);
10881                 target_scha->sched_policy = tswap32(scha.sched_policy);
10882                 target_scha->sched_flags = tswap64(scha.sched_flags);
10883                 target_scha->sched_nice = tswap32(scha.sched_nice);
10884                 target_scha->sched_priority = tswap32(scha.sched_priority);
10885                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
10886                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
10887                 target_scha->sched_period = tswap64(scha.sched_period);
10888                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
10889                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
10890                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
10891                 }
10892                 unlock_user(target_scha, arg2, arg3);
10893             }
10894             return ret;
10895         }
10896     case TARGET_NR_sched_setattr:
10897         {
10898             struct target_sched_attr *target_scha;
10899             struct sched_attr scha;
10900             uint32_t size;
10901             int zeroed;
10902             if (arg2 == 0) {
10903                 return -TARGET_EINVAL;
10904             }
10905             if (get_user_u32(size, arg2)) {
10906                 return -TARGET_EFAULT;
10907             }
10908             if (!size) {
10909                 size = offsetof(struct target_sched_attr, sched_util_min);
10910             }
10911             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
10912                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
10913                     return -TARGET_EFAULT;
10914                 }
10915                 return -TARGET_E2BIG;
10916             }
10917 
10918             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
10919             if (zeroed < 0) {
10920                 return zeroed;
10921             } else if (zeroed == 0) {
10922                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
10923                     return -TARGET_EFAULT;
10924                 }
10925                 return -TARGET_E2BIG;
10926             }
10927             if (size > sizeof(struct target_sched_attr)) {
10928                 size = sizeof(struct target_sched_attr);
10929             }
10930 
10931             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
10932             if (!target_scha) {
10933                 return -TARGET_EFAULT;
10934             }
10935             scha.size = size;
10936             scha.sched_policy = tswap32(target_scha->sched_policy);
10937             scha.sched_flags = tswap64(target_scha->sched_flags);
10938             scha.sched_nice = tswap32(target_scha->sched_nice);
10939             scha.sched_priority = tswap32(target_scha->sched_priority);
10940             scha.sched_runtime = tswap64(target_scha->sched_runtime);
10941             scha.sched_deadline = tswap64(target_scha->sched_deadline);
10942             scha.sched_period = tswap64(target_scha->sched_period);
10943             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
10944                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
10945                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
10946             }
10947             unlock_user(target_scha, arg2, 0);
10948             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
10949         }
10950     case TARGET_NR_sched_yield:
10951         return get_errno(sched_yield());
10952     case TARGET_NR_sched_get_priority_max:
10953         return get_errno(sched_get_priority_max(arg1));
10954     case TARGET_NR_sched_get_priority_min:
10955         return get_errno(sched_get_priority_min(arg1));
10956 #ifdef TARGET_NR_sched_rr_get_interval
10957     case TARGET_NR_sched_rr_get_interval:
10958         {
10959             struct timespec ts;
10960             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10961             if (!is_error(ret)) {
10962                 ret = host_to_target_timespec(arg2, &ts);
10963             }
10964         }
10965         return ret;
10966 #endif
10967 #ifdef TARGET_NR_sched_rr_get_interval_time64
10968     case TARGET_NR_sched_rr_get_interval_time64:
10969         {
10970             struct timespec ts;
10971             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10972             if (!is_error(ret)) {
10973                 ret = host_to_target_timespec64(arg2, &ts);
10974             }
10975         }
10976         return ret;
10977 #endif
10978 #if defined(TARGET_NR_nanosleep)
10979     case TARGET_NR_nanosleep:
10980         {
10981             struct timespec req, rem;
10982             target_to_host_timespec(&req, arg1);
10983             ret = get_errno(safe_nanosleep(&req, &rem));
10984             if (is_error(ret) && arg2) {
10985                 host_to_target_timespec(arg2, &rem);
10986             }
10987         }
10988         return ret;
10989 #endif
10990     case TARGET_NR_prctl:
10991         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
10992         break;
10993 #ifdef TARGET_NR_arch_prctl
10994     case TARGET_NR_arch_prctl:
10995         return do_arch_prctl(cpu_env, arg1, arg2);
10996 #endif
10997 #ifdef TARGET_NR_pread64
10998     case TARGET_NR_pread64:
10999         if (regpairs_aligned(cpu_env, num)) {
11000             arg4 = arg5;
11001             arg5 = arg6;
11002         }
11003         if (arg2 == 0 && arg3 == 0) {
11004             /* Special-case NULL buffer and zero length, which should succeed */
11005             p = 0;
11006         } else {
11007             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11008             if (!p) {
11009                 return -TARGET_EFAULT;
11010             }
11011         }
11012         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11013         unlock_user(p, arg2, ret);
11014         return ret;
11015     case TARGET_NR_pwrite64:
11016         if (regpairs_aligned(cpu_env, num)) {
11017             arg4 = arg5;
11018             arg5 = arg6;
11019         }
11020         if (arg2 == 0 && arg3 == 0) {
11021             /* Special-case NULL buffer and zero length, which should succeed */
11022             p = 0;
11023         } else {
11024             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11025             if (!p) {
11026                 return -TARGET_EFAULT;
11027             }
11028         }
11029         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11030         unlock_user(p, arg2, 0);
11031         return ret;
11032 #endif
11033     case TARGET_NR_getcwd:
11034         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11035             return -TARGET_EFAULT;
11036         ret = get_errno(sys_getcwd1(p, arg2));
11037         unlock_user(p, arg1, ret);
11038         return ret;
11039     case TARGET_NR_capget:
11040     case TARGET_NR_capset:
11041     {
11042         struct target_user_cap_header *target_header;
11043         struct target_user_cap_data *target_data = NULL;
11044         struct __user_cap_header_struct header;
11045         struct __user_cap_data_struct data[2];
11046         struct __user_cap_data_struct *dataptr = NULL;
11047         int i, target_datalen;
11048         int data_items = 1;
11049 
11050         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11051             return -TARGET_EFAULT;
11052         }
11053         header.version = tswap32(target_header->version);
11054         header.pid = tswap32(target_header->pid);
11055 
11056         if (header.version != _LINUX_CAPABILITY_VERSION) {
11057             /* Version 2 and up takes pointer to two user_data structs */
11058             data_items = 2;
11059         }
11060 
11061         target_datalen = sizeof(*target_data) * data_items;
11062 
11063         if (arg2) {
11064             if (num == TARGET_NR_capget) {
11065                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11066             } else {
11067                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11068             }
11069             if (!target_data) {
11070                 unlock_user_struct(target_header, arg1, 0);
11071                 return -TARGET_EFAULT;
11072             }
11073 
11074             if (num == TARGET_NR_capset) {
11075                 for (i = 0; i < data_items; i++) {
11076                     data[i].effective = tswap32(target_data[i].effective);
11077                     data[i].permitted = tswap32(target_data[i].permitted);
11078                     data[i].inheritable = tswap32(target_data[i].inheritable);
11079                 }
11080             }
11081 
11082             dataptr = data;
11083         }
11084 
11085         if (num == TARGET_NR_capget) {
11086             ret = get_errno(capget(&header, dataptr));
11087         } else {
11088             ret = get_errno(capset(&header, dataptr));
11089         }
11090 
11091         /* The kernel always updates version for both capget and capset */
11092         target_header->version = tswap32(header.version);
11093         unlock_user_struct(target_header, arg1, 1);
11094 
11095         if (arg2) {
11096             if (num == TARGET_NR_capget) {
11097                 for (i = 0; i < data_items; i++) {
11098                     target_data[i].effective = tswap32(data[i].effective);
11099                     target_data[i].permitted = tswap32(data[i].permitted);
11100                     target_data[i].inheritable = tswap32(data[i].inheritable);
11101                 }
11102                 unlock_user(target_data, arg2, target_datalen);
11103             } else {
11104                 unlock_user(target_data, arg2, 0);
11105             }
11106         }
11107         return ret;
11108     }
11109     case TARGET_NR_sigaltstack:
11110         return do_sigaltstack(arg1, arg2, cpu_env);
11111 
11112 #ifdef CONFIG_SENDFILE
11113 #ifdef TARGET_NR_sendfile
11114     case TARGET_NR_sendfile:
11115     {
11116         off_t *offp = NULL;
11117         off_t off;
11118         if (arg3) {
11119             ret = get_user_sal(off, arg3);
11120             if (is_error(ret)) {
11121                 return ret;
11122             }
11123             offp = &off;
11124         }
11125         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11126         if (!is_error(ret) && arg3) {
11127             abi_long ret2 = put_user_sal(off, arg3);
11128             if (is_error(ret2)) {
11129                 ret = ret2;
11130             }
11131         }
11132         return ret;
11133     }
11134 #endif
11135 #ifdef TARGET_NR_sendfile64
11136     case TARGET_NR_sendfile64:
11137     {
11138         off_t *offp = NULL;
11139         off_t off;
11140         if (arg3) {
11141             ret = get_user_s64(off, arg3);
11142             if (is_error(ret)) {
11143                 return ret;
11144             }
11145             offp = &off;
11146         }
11147         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11148         if (!is_error(ret) && arg3) {
11149             abi_long ret2 = put_user_s64(off, arg3);
11150             if (is_error(ret2)) {
11151                 ret = ret2;
11152             }
11153         }
11154         return ret;
11155     }
11156 #endif
11157 #endif
11158 #ifdef TARGET_NR_vfork
11159     case TARGET_NR_vfork:
11160         return get_errno(do_fork(cpu_env,
11161                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11162                          0, 0, 0, 0));
11163 #endif
11164 #ifdef TARGET_NR_ugetrlimit
11165     case TARGET_NR_ugetrlimit:
11166     {
11167 	struct rlimit rlim;
11168 	int resource = target_to_host_resource(arg1);
11169 	ret = get_errno(getrlimit(resource, &rlim));
11170 	if (!is_error(ret)) {
11171 	    struct target_rlimit *target_rlim;
11172             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11173                 return -TARGET_EFAULT;
11174 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11175 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11176             unlock_user_struct(target_rlim, arg2, 1);
11177 	}
11178         return ret;
11179     }
11180 #endif
11181 #ifdef TARGET_NR_truncate64
11182     case TARGET_NR_truncate64:
11183         if (!(p = lock_user_string(arg1)))
11184             return -TARGET_EFAULT;
11185 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11186         unlock_user(p, arg1, 0);
11187         return ret;
11188 #endif
11189 #ifdef TARGET_NR_ftruncate64
11190     case TARGET_NR_ftruncate64:
11191         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11192 #endif
11193 #ifdef TARGET_NR_stat64
11194     case TARGET_NR_stat64:
11195         if (!(p = lock_user_string(arg1))) {
11196             return -TARGET_EFAULT;
11197         }
11198         ret = get_errno(stat(path(p), &st));
11199         unlock_user(p, arg1, 0);
11200         if (!is_error(ret))
11201             ret = host_to_target_stat64(cpu_env, arg2, &st);
11202         return ret;
11203 #endif
11204 #ifdef TARGET_NR_lstat64
11205     case TARGET_NR_lstat64:
11206         if (!(p = lock_user_string(arg1))) {
11207             return -TARGET_EFAULT;
11208         }
11209         ret = get_errno(lstat(path(p), &st));
11210         unlock_user(p, arg1, 0);
11211         if (!is_error(ret))
11212             ret = host_to_target_stat64(cpu_env, arg2, &st);
11213         return ret;
11214 #endif
11215 #ifdef TARGET_NR_fstat64
11216     case TARGET_NR_fstat64:
11217         ret = get_errno(fstat(arg1, &st));
11218         if (!is_error(ret))
11219             ret = host_to_target_stat64(cpu_env, arg2, &st);
11220         return ret;
11221 #endif
11222 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11223 #ifdef TARGET_NR_fstatat64
11224     case TARGET_NR_fstatat64:
11225 #endif
11226 #ifdef TARGET_NR_newfstatat
11227     case TARGET_NR_newfstatat:
11228 #endif
11229         if (!(p = lock_user_string(arg2))) {
11230             return -TARGET_EFAULT;
11231         }
11232         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11233         unlock_user(p, arg2, 0);
11234         if (!is_error(ret))
11235             ret = host_to_target_stat64(cpu_env, arg3, &st);
11236         return ret;
11237 #endif
11238 #if defined(TARGET_NR_statx)
11239     case TARGET_NR_statx:
11240         {
11241             struct target_statx *target_stx;
11242             int dirfd = arg1;
11243             int flags = arg3;
11244 
11245             p = lock_user_string(arg2);
11246             if (p == NULL) {
11247                 return -TARGET_EFAULT;
11248             }
11249 #if defined(__NR_statx)
11250             {
11251                 /*
11252                  * It is assumed that struct statx is architecture independent.
11253                  */
11254                 struct target_statx host_stx;
11255                 int mask = arg4;
11256 
11257                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11258                 if (!is_error(ret)) {
11259                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11260                         unlock_user(p, arg2, 0);
11261                         return -TARGET_EFAULT;
11262                     }
11263                 }
11264 
11265                 if (ret != -TARGET_ENOSYS) {
11266                     unlock_user(p, arg2, 0);
11267                     return ret;
11268                 }
11269             }
11270 #endif
11271             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11272             unlock_user(p, arg2, 0);
11273 
11274             if (!is_error(ret)) {
11275                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11276                     return -TARGET_EFAULT;
11277                 }
11278                 memset(target_stx, 0, sizeof(*target_stx));
11279                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11280                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11281                 __put_user(st.st_ino, &target_stx->stx_ino);
11282                 __put_user(st.st_mode, &target_stx->stx_mode);
11283                 __put_user(st.st_uid, &target_stx->stx_uid);
11284                 __put_user(st.st_gid, &target_stx->stx_gid);
11285                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11286                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11287                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11288                 __put_user(st.st_size, &target_stx->stx_size);
11289                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11290                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11291                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11292                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11293                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11294                 unlock_user_struct(target_stx, arg5, 1);
11295             }
11296         }
11297         return ret;
11298 #endif
11299 #ifdef TARGET_NR_lchown
11300     case TARGET_NR_lchown:
11301         if (!(p = lock_user_string(arg1)))
11302             return -TARGET_EFAULT;
11303         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11304         unlock_user(p, arg1, 0);
11305         return ret;
11306 #endif
11307 #ifdef TARGET_NR_getuid
11308     case TARGET_NR_getuid:
11309         return get_errno(high2lowuid(getuid()));
11310 #endif
11311 #ifdef TARGET_NR_getgid
11312     case TARGET_NR_getgid:
11313         return get_errno(high2lowgid(getgid()));
11314 #endif
11315 #ifdef TARGET_NR_geteuid
11316     case TARGET_NR_geteuid:
11317         return get_errno(high2lowuid(geteuid()));
11318 #endif
11319 #ifdef TARGET_NR_getegid
11320     case TARGET_NR_getegid:
11321         return get_errno(high2lowgid(getegid()));
11322 #endif
11323     case TARGET_NR_setreuid:
11324         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11325     case TARGET_NR_setregid:
11326         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11327     case TARGET_NR_getgroups:
11328         {
11329             int gidsetsize = arg1;
11330             target_id *target_grouplist;
11331             gid_t *grouplist;
11332             int i;
11333 
11334             grouplist = alloca(gidsetsize * sizeof(gid_t));
11335             ret = get_errno(getgroups(gidsetsize, grouplist));
11336             if (gidsetsize == 0)
11337                 return ret;
11338             if (!is_error(ret)) {
11339                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11340                 if (!target_grouplist)
11341                     return -TARGET_EFAULT;
11342                 for(i = 0;i < ret; i++)
11343                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11344                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11345             }
11346         }
11347         return ret;
11348     case TARGET_NR_setgroups:
11349         {
11350             int gidsetsize = arg1;
11351             target_id *target_grouplist;
11352             gid_t *grouplist = NULL;
11353             int i;
11354             if (gidsetsize) {
11355                 grouplist = alloca(gidsetsize * sizeof(gid_t));
11356                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11357                 if (!target_grouplist) {
11358                     return -TARGET_EFAULT;
11359                 }
11360                 for (i = 0; i < gidsetsize; i++) {
11361                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11362                 }
11363                 unlock_user(target_grouplist, arg2, 0);
11364             }
11365             return get_errno(setgroups(gidsetsize, grouplist));
11366         }
11367     case TARGET_NR_fchown:
11368         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11369 #if defined(TARGET_NR_fchownat)
11370     case TARGET_NR_fchownat:
11371         if (!(p = lock_user_string(arg2)))
11372             return -TARGET_EFAULT;
11373         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11374                                  low2highgid(arg4), arg5));
11375         unlock_user(p, arg2, 0);
11376         return ret;
11377 #endif
11378 #ifdef TARGET_NR_setresuid
11379     case TARGET_NR_setresuid:
11380         return get_errno(sys_setresuid(low2highuid(arg1),
11381                                        low2highuid(arg2),
11382                                        low2highuid(arg3)));
11383 #endif
11384 #ifdef TARGET_NR_getresuid
11385     case TARGET_NR_getresuid:
11386         {
11387             uid_t ruid, euid, suid;
11388             ret = get_errno(getresuid(&ruid, &euid, &suid));
11389             if (!is_error(ret)) {
11390                 if (put_user_id(high2lowuid(ruid), arg1)
11391                     || put_user_id(high2lowuid(euid), arg2)
11392                     || put_user_id(high2lowuid(suid), arg3))
11393                     return -TARGET_EFAULT;
11394             }
11395         }
11396         return ret;
11397 #endif
11398 #ifdef TARGET_NR_getresgid
11399     case TARGET_NR_setresgid:
11400         return get_errno(sys_setresgid(low2highgid(arg1),
11401                                        low2highgid(arg2),
11402                                        low2highgid(arg3)));
11403 #endif
11404 #ifdef TARGET_NR_getresgid
11405     case TARGET_NR_getresgid:
11406         {
11407             gid_t rgid, egid, sgid;
11408             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11409             if (!is_error(ret)) {
11410                 if (put_user_id(high2lowgid(rgid), arg1)
11411                     || put_user_id(high2lowgid(egid), arg2)
11412                     || put_user_id(high2lowgid(sgid), arg3))
11413                     return -TARGET_EFAULT;
11414             }
11415         }
11416         return ret;
11417 #endif
11418 #ifdef TARGET_NR_chown
11419     case TARGET_NR_chown:
11420         if (!(p = lock_user_string(arg1)))
11421             return -TARGET_EFAULT;
11422         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11423         unlock_user(p, arg1, 0);
11424         return ret;
11425 #endif
11426     case TARGET_NR_setuid:
11427         return get_errno(sys_setuid(low2highuid(arg1)));
11428     case TARGET_NR_setgid:
11429         return get_errno(sys_setgid(low2highgid(arg1)));
11430     case TARGET_NR_setfsuid:
11431         return get_errno(setfsuid(arg1));
11432     case TARGET_NR_setfsgid:
11433         return get_errno(setfsgid(arg1));
11434 
11435 #ifdef TARGET_NR_lchown32
11436     case TARGET_NR_lchown32:
11437         if (!(p = lock_user_string(arg1)))
11438             return -TARGET_EFAULT;
11439         ret = get_errno(lchown(p, arg2, arg3));
11440         unlock_user(p, arg1, 0);
11441         return ret;
11442 #endif
11443 #ifdef TARGET_NR_getuid32
11444     case TARGET_NR_getuid32:
11445         return get_errno(getuid());
11446 #endif
11447 
11448 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11449    /* Alpha specific */
11450     case TARGET_NR_getxuid:
11451          {
11452             uid_t euid;
11453             euid=geteuid();
11454             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
11455          }
11456         return get_errno(getuid());
11457 #endif
11458 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11459    /* Alpha specific */
11460     case TARGET_NR_getxgid:
11461          {
11462             uid_t egid;
11463             egid=getegid();
11464             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
11465          }
11466         return get_errno(getgid());
11467 #endif
11468 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11469     /* Alpha specific */
11470     case TARGET_NR_osf_getsysinfo:
11471         ret = -TARGET_EOPNOTSUPP;
11472         switch (arg1) {
11473           case TARGET_GSI_IEEE_FP_CONTROL:
11474             {
11475                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11476                 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr;
11477 
11478                 swcr &= ~SWCR_STATUS_MASK;
11479                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11480 
11481                 if (put_user_u64 (swcr, arg2))
11482                         return -TARGET_EFAULT;
11483                 ret = 0;
11484             }
11485             break;
11486 
11487           /* case GSI_IEEE_STATE_AT_SIGNAL:
11488              -- Not implemented in linux kernel.
11489              case GSI_UACPROC:
11490              -- Retrieves current unaligned access state; not much used.
11491              case GSI_PROC_TYPE:
11492              -- Retrieves implver information; surely not used.
11493              case GSI_GET_HWRPB:
11494              -- Grabs a copy of the HWRPB; surely not used.
11495           */
11496         }
11497         return ret;
11498 #endif
11499 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11500     /* Alpha specific */
11501     case TARGET_NR_osf_setsysinfo:
11502         ret = -TARGET_EOPNOTSUPP;
11503         switch (arg1) {
11504           case TARGET_SSI_IEEE_FP_CONTROL:
11505             {
11506                 uint64_t swcr, fpcr;
11507 
11508                 if (get_user_u64 (swcr, arg2)) {
11509                     return -TARGET_EFAULT;
11510                 }
11511 
11512                 /*
11513                  * The kernel calls swcr_update_status to update the
11514                  * status bits from the fpcr at every point that it
11515                  * could be queried.  Therefore, we store the status
11516                  * bits only in FPCR.
11517                  */
11518                 ((CPUAlphaState *)cpu_env)->swcr
11519                     = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11520 
11521                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11522                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11523                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11524                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11525                 ret = 0;
11526             }
11527             break;
11528 
11529           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11530             {
11531                 uint64_t exc, fpcr, fex;
11532 
11533                 if (get_user_u64(exc, arg2)) {
11534                     return -TARGET_EFAULT;
11535                 }
11536                 exc &= SWCR_STATUS_MASK;
11537                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11538 
11539                 /* Old exceptions are not signaled.  */
11540                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11541                 fex = exc & ~fex;
11542                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11543                 fex &= ((CPUArchState *)cpu_env)->swcr;
11544 
11545                 /* Update the hardware fpcr.  */
11546                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11547                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11548 
11549                 if (fex) {
11550                     int si_code = TARGET_FPE_FLTUNK;
11551                     target_siginfo_t info;
11552 
11553                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11554                         si_code = TARGET_FPE_FLTUND;
11555                     }
11556                     if (fex & SWCR_TRAP_ENABLE_INE) {
11557                         si_code = TARGET_FPE_FLTRES;
11558                     }
11559                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11560                         si_code = TARGET_FPE_FLTUND;
11561                     }
11562                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11563                         si_code = TARGET_FPE_FLTOVF;
11564                     }
11565                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11566                         si_code = TARGET_FPE_FLTDIV;
11567                     }
11568                     if (fex & SWCR_TRAP_ENABLE_INV) {
11569                         si_code = TARGET_FPE_FLTINV;
11570                     }
11571 
11572                     info.si_signo = SIGFPE;
11573                     info.si_errno = 0;
11574                     info.si_code = si_code;
11575                     info._sifields._sigfault._addr
11576                         = ((CPUArchState *)cpu_env)->pc;
11577                     queue_signal((CPUArchState *)cpu_env, info.si_signo,
11578                                  QEMU_SI_FAULT, &info);
11579                 }
11580                 ret = 0;
11581             }
11582             break;
11583 
11584           /* case SSI_NVPAIRS:
11585              -- Used with SSIN_UACPROC to enable unaligned accesses.
11586              case SSI_IEEE_STATE_AT_SIGNAL:
11587              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11588              -- Not implemented in linux kernel
11589           */
11590         }
11591         return ret;
11592 #endif
11593 #ifdef TARGET_NR_osf_sigprocmask
11594     /* Alpha specific.  */
11595     case TARGET_NR_osf_sigprocmask:
11596         {
11597             abi_ulong mask;
11598             int how;
11599             sigset_t set, oldset;
11600 
11601             switch(arg1) {
11602             case TARGET_SIG_BLOCK:
11603                 how = SIG_BLOCK;
11604                 break;
11605             case TARGET_SIG_UNBLOCK:
11606                 how = SIG_UNBLOCK;
11607                 break;
11608             case TARGET_SIG_SETMASK:
11609                 how = SIG_SETMASK;
11610                 break;
11611             default:
11612                 return -TARGET_EINVAL;
11613             }
11614             mask = arg2;
11615             target_to_host_old_sigset(&set, &mask);
11616             ret = do_sigprocmask(how, &set, &oldset);
11617             if (!ret) {
11618                 host_to_target_old_sigset(&mask, &oldset);
11619                 ret = mask;
11620             }
11621         }
11622         return ret;
11623 #endif
11624 
11625 #ifdef TARGET_NR_getgid32
11626     case TARGET_NR_getgid32:
11627         return get_errno(getgid());
11628 #endif
11629 #ifdef TARGET_NR_geteuid32
11630     case TARGET_NR_geteuid32:
11631         return get_errno(geteuid());
11632 #endif
11633 #ifdef TARGET_NR_getegid32
11634     case TARGET_NR_getegid32:
11635         return get_errno(getegid());
11636 #endif
11637 #ifdef TARGET_NR_setreuid32
11638     case TARGET_NR_setreuid32:
11639         return get_errno(setreuid(arg1, arg2));
11640 #endif
11641 #ifdef TARGET_NR_setregid32
11642     case TARGET_NR_setregid32:
11643         return get_errno(setregid(arg1, arg2));
11644 #endif
11645 #ifdef TARGET_NR_getgroups32
11646     case TARGET_NR_getgroups32:
11647         {
11648             int gidsetsize = arg1;
11649             uint32_t *target_grouplist;
11650             gid_t *grouplist;
11651             int i;
11652 
11653             grouplist = alloca(gidsetsize * sizeof(gid_t));
11654             ret = get_errno(getgroups(gidsetsize, grouplist));
11655             if (gidsetsize == 0)
11656                 return ret;
11657             if (!is_error(ret)) {
11658                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11659                 if (!target_grouplist) {
11660                     return -TARGET_EFAULT;
11661                 }
11662                 for(i = 0;i < ret; i++)
11663                     target_grouplist[i] = tswap32(grouplist[i]);
11664                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11665             }
11666         }
11667         return ret;
11668 #endif
11669 #ifdef TARGET_NR_setgroups32
11670     case TARGET_NR_setgroups32:
11671         {
11672             int gidsetsize = arg1;
11673             uint32_t *target_grouplist;
11674             gid_t *grouplist;
11675             int i;
11676 
11677             grouplist = alloca(gidsetsize * sizeof(gid_t));
11678             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11679             if (!target_grouplist) {
11680                 return -TARGET_EFAULT;
11681             }
11682             for(i = 0;i < gidsetsize; i++)
11683                 grouplist[i] = tswap32(target_grouplist[i]);
11684             unlock_user(target_grouplist, arg2, 0);
11685             return get_errno(setgroups(gidsetsize, grouplist));
11686         }
11687 #endif
11688 #ifdef TARGET_NR_fchown32
11689     case TARGET_NR_fchown32:
11690         return get_errno(fchown(arg1, arg2, arg3));
11691 #endif
11692 #ifdef TARGET_NR_setresuid32
11693     case TARGET_NR_setresuid32:
11694         return get_errno(sys_setresuid(arg1, arg2, arg3));
11695 #endif
11696 #ifdef TARGET_NR_getresuid32
11697     case TARGET_NR_getresuid32:
11698         {
11699             uid_t ruid, euid, suid;
11700             ret = get_errno(getresuid(&ruid, &euid, &suid));
11701             if (!is_error(ret)) {
11702                 if (put_user_u32(ruid, arg1)
11703                     || put_user_u32(euid, arg2)
11704                     || put_user_u32(suid, arg3))
11705                     return -TARGET_EFAULT;
11706             }
11707         }
11708         return ret;
11709 #endif
11710 #ifdef TARGET_NR_setresgid32
11711     case TARGET_NR_setresgid32:
11712         return get_errno(sys_setresgid(arg1, arg2, arg3));
11713 #endif
11714 #ifdef TARGET_NR_getresgid32
11715     case TARGET_NR_getresgid32:
11716         {
11717             gid_t rgid, egid, sgid;
11718             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11719             if (!is_error(ret)) {
11720                 if (put_user_u32(rgid, arg1)
11721                     || put_user_u32(egid, arg2)
11722                     || put_user_u32(sgid, arg3))
11723                     return -TARGET_EFAULT;
11724             }
11725         }
11726         return ret;
11727 #endif
11728 #ifdef TARGET_NR_chown32
11729     case TARGET_NR_chown32:
11730         if (!(p = lock_user_string(arg1)))
11731             return -TARGET_EFAULT;
11732         ret = get_errno(chown(p, arg2, arg3));
11733         unlock_user(p, arg1, 0);
11734         return ret;
11735 #endif
11736 #ifdef TARGET_NR_setuid32
11737     case TARGET_NR_setuid32:
11738         return get_errno(sys_setuid(arg1));
11739 #endif
11740 #ifdef TARGET_NR_setgid32
11741     case TARGET_NR_setgid32:
11742         return get_errno(sys_setgid(arg1));
11743 #endif
11744 #ifdef TARGET_NR_setfsuid32
11745     case TARGET_NR_setfsuid32:
11746         return get_errno(setfsuid(arg1));
11747 #endif
11748 #ifdef TARGET_NR_setfsgid32
11749     case TARGET_NR_setfsgid32:
11750         return get_errno(setfsgid(arg1));
11751 #endif
11752 #ifdef TARGET_NR_mincore
11753     case TARGET_NR_mincore:
11754         {
11755             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11756             if (!a) {
11757                 return -TARGET_ENOMEM;
11758             }
11759             p = lock_user_string(arg3);
11760             if (!p) {
11761                 ret = -TARGET_EFAULT;
11762             } else {
11763                 ret = get_errno(mincore(a, arg2, p));
11764                 unlock_user(p, arg3, ret);
11765             }
11766             unlock_user(a, arg1, 0);
11767         }
11768         return ret;
11769 #endif
11770 #ifdef TARGET_NR_arm_fadvise64_64
11771     case TARGET_NR_arm_fadvise64_64:
11772         /* arm_fadvise64_64 looks like fadvise64_64 but
11773          * with different argument order: fd, advice, offset, len
11774          * rather than the usual fd, offset, len, advice.
11775          * Note that offset and len are both 64-bit so appear as
11776          * pairs of 32-bit registers.
11777          */
11778         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11779                             target_offset64(arg5, arg6), arg2);
11780         return -host_to_target_errno(ret);
11781 #endif
11782 
11783 #if TARGET_ABI_BITS == 32
11784 
11785 #ifdef TARGET_NR_fadvise64_64
11786     case TARGET_NR_fadvise64_64:
11787 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11788         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11789         ret = arg2;
11790         arg2 = arg3;
11791         arg3 = arg4;
11792         arg4 = arg5;
11793         arg5 = arg6;
11794         arg6 = ret;
11795 #else
11796         /* 6 args: fd, offset (high, low), len (high, low), advice */
11797         if (regpairs_aligned(cpu_env, num)) {
11798             /* offset is in (3,4), len in (5,6) and advice in 7 */
11799             arg2 = arg3;
11800             arg3 = arg4;
11801             arg4 = arg5;
11802             arg5 = arg6;
11803             arg6 = arg7;
11804         }
11805 #endif
11806         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11807                             target_offset64(arg4, arg5), arg6);
11808         return -host_to_target_errno(ret);
11809 #endif
11810 
11811 #ifdef TARGET_NR_fadvise64
11812     case TARGET_NR_fadvise64:
11813         /* 5 args: fd, offset (high, low), len, advice */
11814         if (regpairs_aligned(cpu_env, num)) {
11815             /* offset is in (3,4), len in 5 and advice in 6 */
11816             arg2 = arg3;
11817             arg3 = arg4;
11818             arg4 = arg5;
11819             arg5 = arg6;
11820         }
11821         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11822         return -host_to_target_errno(ret);
11823 #endif
11824 
11825 #else /* not a 32-bit ABI */
11826 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11827 #ifdef TARGET_NR_fadvise64_64
11828     case TARGET_NR_fadvise64_64:
11829 #endif
11830 #ifdef TARGET_NR_fadvise64
11831     case TARGET_NR_fadvise64:
11832 #endif
11833 #ifdef TARGET_S390X
11834         switch (arg4) {
11835         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11836         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11837         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11838         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11839         default: break;
11840         }
11841 #endif
11842         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11843 #endif
11844 #endif /* end of 64-bit ABI fadvise handling */
11845 
11846 #ifdef TARGET_NR_madvise
11847     case TARGET_NR_madvise:
11848         /* A straight passthrough may not be safe because qemu sometimes
11849            turns private file-backed mappings into anonymous mappings.
11850            This will break MADV_DONTNEED.
11851            This is a hint, so ignoring and returning success is ok.  */
11852         return 0;
11853 #endif
11854 #ifdef TARGET_NR_fcntl64
11855     case TARGET_NR_fcntl64:
11856     {
11857         int cmd;
11858         struct flock64 fl;
11859         from_flock64_fn *copyfrom = copy_from_user_flock64;
11860         to_flock64_fn *copyto = copy_to_user_flock64;
11861 
11862 #ifdef TARGET_ARM
11863         if (!((CPUARMState *)cpu_env)->eabi) {
11864             copyfrom = copy_from_user_oabi_flock64;
11865             copyto = copy_to_user_oabi_flock64;
11866         }
11867 #endif
11868 
11869         cmd = target_to_host_fcntl_cmd(arg2);
11870         if (cmd == -TARGET_EINVAL) {
11871             return cmd;
11872         }
11873 
11874         switch(arg2) {
11875         case TARGET_F_GETLK64:
11876             ret = copyfrom(&fl, arg3);
11877             if (ret) {
11878                 break;
11879             }
11880             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11881             if (ret == 0) {
11882                 ret = copyto(arg3, &fl);
11883             }
11884 	    break;
11885 
11886         case TARGET_F_SETLK64:
11887         case TARGET_F_SETLKW64:
11888             ret = copyfrom(&fl, arg3);
11889             if (ret) {
11890                 break;
11891             }
11892             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11893 	    break;
11894         default:
11895             ret = do_fcntl(arg1, arg2, arg3);
11896             break;
11897         }
11898         return ret;
11899     }
11900 #endif
11901 #ifdef TARGET_NR_cacheflush
11902     case TARGET_NR_cacheflush:
11903         /* self-modifying code is handled automatically, so nothing needed */
11904         return 0;
11905 #endif
11906 #ifdef TARGET_NR_getpagesize
11907     case TARGET_NR_getpagesize:
11908         return TARGET_PAGE_SIZE;
11909 #endif
11910     case TARGET_NR_gettid:
11911         return get_errno(sys_gettid());
11912 #ifdef TARGET_NR_readahead
11913     case TARGET_NR_readahead:
11914 #if TARGET_ABI_BITS == 32
11915         if (regpairs_aligned(cpu_env, num)) {
11916             arg2 = arg3;
11917             arg3 = arg4;
11918             arg4 = arg5;
11919         }
11920         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11921 #else
11922         ret = get_errno(readahead(arg1, arg2, arg3));
11923 #endif
11924         return ret;
11925 #endif
11926 #ifdef CONFIG_ATTR
11927 #ifdef TARGET_NR_setxattr
11928     case TARGET_NR_listxattr:
11929     case TARGET_NR_llistxattr:
11930     {
11931         void *p, *b = 0;
11932         if (arg2) {
11933             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11934             if (!b) {
11935                 return -TARGET_EFAULT;
11936             }
11937         }
11938         p = lock_user_string(arg1);
11939         if (p) {
11940             if (num == TARGET_NR_listxattr) {
11941                 ret = get_errno(listxattr(p, b, arg3));
11942             } else {
11943                 ret = get_errno(llistxattr(p, b, arg3));
11944             }
11945         } else {
11946             ret = -TARGET_EFAULT;
11947         }
11948         unlock_user(p, arg1, 0);
11949         unlock_user(b, arg2, arg3);
11950         return ret;
11951     }
11952     case TARGET_NR_flistxattr:
11953     {
11954         void *b = 0;
11955         if (arg2) {
11956             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11957             if (!b) {
11958                 return -TARGET_EFAULT;
11959             }
11960         }
11961         ret = get_errno(flistxattr(arg1, b, arg3));
11962         unlock_user(b, arg2, arg3);
11963         return ret;
11964     }
11965     case TARGET_NR_setxattr:
11966     case TARGET_NR_lsetxattr:
11967         {
11968             void *p, *n, *v = 0;
11969             if (arg3) {
11970                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11971                 if (!v) {
11972                     return -TARGET_EFAULT;
11973                 }
11974             }
11975             p = lock_user_string(arg1);
11976             n = lock_user_string(arg2);
11977             if (p && n) {
11978                 if (num == TARGET_NR_setxattr) {
11979                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
11980                 } else {
11981                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11982                 }
11983             } else {
11984                 ret = -TARGET_EFAULT;
11985             }
11986             unlock_user(p, arg1, 0);
11987             unlock_user(n, arg2, 0);
11988             unlock_user(v, arg3, 0);
11989         }
11990         return ret;
11991     case TARGET_NR_fsetxattr:
11992         {
11993             void *n, *v = 0;
11994             if (arg3) {
11995                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11996                 if (!v) {
11997                     return -TARGET_EFAULT;
11998                 }
11999             }
12000             n = lock_user_string(arg2);
12001             if (n) {
12002                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12003             } else {
12004                 ret = -TARGET_EFAULT;
12005             }
12006             unlock_user(n, arg2, 0);
12007             unlock_user(v, arg3, 0);
12008         }
12009         return ret;
12010     case TARGET_NR_getxattr:
12011     case TARGET_NR_lgetxattr:
12012         {
12013             void *p, *n, *v = 0;
12014             if (arg3) {
12015                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12016                 if (!v) {
12017                     return -TARGET_EFAULT;
12018                 }
12019             }
12020             p = lock_user_string(arg1);
12021             n = lock_user_string(arg2);
12022             if (p && n) {
12023                 if (num == TARGET_NR_getxattr) {
12024                     ret = get_errno(getxattr(p, n, v, arg4));
12025                 } else {
12026                     ret = get_errno(lgetxattr(p, n, v, arg4));
12027                 }
12028             } else {
12029                 ret = -TARGET_EFAULT;
12030             }
12031             unlock_user(p, arg1, 0);
12032             unlock_user(n, arg2, 0);
12033             unlock_user(v, arg3, arg4);
12034         }
12035         return ret;
12036     case TARGET_NR_fgetxattr:
12037         {
12038             void *n, *v = 0;
12039             if (arg3) {
12040                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12041                 if (!v) {
12042                     return -TARGET_EFAULT;
12043                 }
12044             }
12045             n = lock_user_string(arg2);
12046             if (n) {
12047                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12048             } else {
12049                 ret = -TARGET_EFAULT;
12050             }
12051             unlock_user(n, arg2, 0);
12052             unlock_user(v, arg3, arg4);
12053         }
12054         return ret;
12055     case TARGET_NR_removexattr:
12056     case TARGET_NR_lremovexattr:
12057         {
12058             void *p, *n;
12059             p = lock_user_string(arg1);
12060             n = lock_user_string(arg2);
12061             if (p && n) {
12062                 if (num == TARGET_NR_removexattr) {
12063                     ret = get_errno(removexattr(p, n));
12064                 } else {
12065                     ret = get_errno(lremovexattr(p, n));
12066                 }
12067             } else {
12068                 ret = -TARGET_EFAULT;
12069             }
12070             unlock_user(p, arg1, 0);
12071             unlock_user(n, arg2, 0);
12072         }
12073         return ret;
12074     case TARGET_NR_fremovexattr:
12075         {
12076             void *n;
12077             n = lock_user_string(arg2);
12078             if (n) {
12079                 ret = get_errno(fremovexattr(arg1, n));
12080             } else {
12081                 ret = -TARGET_EFAULT;
12082             }
12083             unlock_user(n, arg2, 0);
12084         }
12085         return ret;
12086 #endif
12087 #endif /* CONFIG_ATTR */
12088 #ifdef TARGET_NR_set_thread_area
12089     case TARGET_NR_set_thread_area:
12090 #if defined(TARGET_MIPS)
12091       ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
12092       return 0;
12093 #elif defined(TARGET_CRIS)
12094       if (arg1 & 0xff)
12095           ret = -TARGET_EINVAL;
12096       else {
12097           ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
12098           ret = 0;
12099       }
12100       return ret;
12101 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12102       return do_set_thread_area(cpu_env, arg1);
12103 #elif defined(TARGET_M68K)
12104       {
12105           TaskState *ts = cpu->opaque;
12106           ts->tp_value = arg1;
12107           return 0;
12108       }
12109 #else
12110       return -TARGET_ENOSYS;
12111 #endif
12112 #endif
12113 #ifdef TARGET_NR_get_thread_area
12114     case TARGET_NR_get_thread_area:
12115 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12116         return do_get_thread_area(cpu_env, arg1);
12117 #elif defined(TARGET_M68K)
12118         {
12119             TaskState *ts = cpu->opaque;
12120             return ts->tp_value;
12121         }
12122 #else
12123         return -TARGET_ENOSYS;
12124 #endif
12125 #endif
12126 #ifdef TARGET_NR_getdomainname
12127     case TARGET_NR_getdomainname:
12128         return -TARGET_ENOSYS;
12129 #endif
12130 
12131 #ifdef TARGET_NR_clock_settime
12132     case TARGET_NR_clock_settime:
12133     {
12134         struct timespec ts;
12135 
12136         ret = target_to_host_timespec(&ts, arg2);
12137         if (!is_error(ret)) {
12138             ret = get_errno(clock_settime(arg1, &ts));
12139         }
12140         return ret;
12141     }
12142 #endif
12143 #ifdef TARGET_NR_clock_settime64
12144     case TARGET_NR_clock_settime64:
12145     {
12146         struct timespec ts;
12147 
12148         ret = target_to_host_timespec64(&ts, arg2);
12149         if (!is_error(ret)) {
12150             ret = get_errno(clock_settime(arg1, &ts));
12151         }
12152         return ret;
12153     }
12154 #endif
12155 #ifdef TARGET_NR_clock_gettime
12156     case TARGET_NR_clock_gettime:
12157     {
12158         struct timespec ts;
12159         ret = get_errno(clock_gettime(arg1, &ts));
12160         if (!is_error(ret)) {
12161             ret = host_to_target_timespec(arg2, &ts);
12162         }
12163         return ret;
12164     }
12165 #endif
12166 #ifdef TARGET_NR_clock_gettime64
12167     case TARGET_NR_clock_gettime64:
12168     {
12169         struct timespec ts;
12170         ret = get_errno(clock_gettime(arg1, &ts));
12171         if (!is_error(ret)) {
12172             ret = host_to_target_timespec64(arg2, &ts);
12173         }
12174         return ret;
12175     }
12176 #endif
12177 #ifdef TARGET_NR_clock_getres
12178     case TARGET_NR_clock_getres:
12179     {
12180         struct timespec ts;
12181         ret = get_errno(clock_getres(arg1, &ts));
12182         if (!is_error(ret)) {
12183             host_to_target_timespec(arg2, &ts);
12184         }
12185         return ret;
12186     }
12187 #endif
12188 #ifdef TARGET_NR_clock_getres_time64
12189     case TARGET_NR_clock_getres_time64:
12190     {
12191         struct timespec ts;
12192         ret = get_errno(clock_getres(arg1, &ts));
12193         if (!is_error(ret)) {
12194             host_to_target_timespec64(arg2, &ts);
12195         }
12196         return ret;
12197     }
12198 #endif
12199 #ifdef TARGET_NR_clock_nanosleep
12200     case TARGET_NR_clock_nanosleep:
12201     {
12202         struct timespec ts;
12203         if (target_to_host_timespec(&ts, arg3)) {
12204             return -TARGET_EFAULT;
12205         }
12206         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12207                                              &ts, arg4 ? &ts : NULL));
12208         /*
12209          * if the call is interrupted by a signal handler, it fails
12210          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12211          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12212          */
12213         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12214             host_to_target_timespec(arg4, &ts)) {
12215               return -TARGET_EFAULT;
12216         }
12217 
12218         return ret;
12219     }
12220 #endif
12221 #ifdef TARGET_NR_clock_nanosleep_time64
12222     case TARGET_NR_clock_nanosleep_time64:
12223     {
12224         struct timespec ts;
12225 
12226         if (target_to_host_timespec64(&ts, arg3)) {
12227             return -TARGET_EFAULT;
12228         }
12229 
12230         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12231                                              &ts, arg4 ? &ts : NULL));
12232 
12233         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12234             host_to_target_timespec64(arg4, &ts)) {
12235             return -TARGET_EFAULT;
12236         }
12237         return ret;
12238     }
12239 #endif
12240 
12241 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
12242     case TARGET_NR_set_tid_address:
12243         return get_errno(set_tid_address((int *)g2h(cpu, arg1)));
12244 #endif
12245 
12246     case TARGET_NR_tkill:
12247         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12248 
12249     case TARGET_NR_tgkill:
12250         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12251                          target_to_host_signal(arg3)));
12252 
12253 #ifdef TARGET_NR_set_robust_list
12254     case TARGET_NR_set_robust_list:
12255     case TARGET_NR_get_robust_list:
12256         /* The ABI for supporting robust futexes has userspace pass
12257          * the kernel a pointer to a linked list which is updated by
12258          * userspace after the syscall; the list is walked by the kernel
12259          * when the thread exits. Since the linked list in QEMU guest
12260          * memory isn't a valid linked list for the host and we have
12261          * no way to reliably intercept the thread-death event, we can't
12262          * support these. Silently return ENOSYS so that guest userspace
12263          * falls back to a non-robust futex implementation (which should
12264          * be OK except in the corner case of the guest crashing while
12265          * holding a mutex that is shared with another process via
12266          * shared memory).
12267          */
12268         return -TARGET_ENOSYS;
12269 #endif
12270 
12271 #if defined(TARGET_NR_utimensat)
12272     case TARGET_NR_utimensat:
12273         {
12274             struct timespec *tsp, ts[2];
12275             if (!arg3) {
12276                 tsp = NULL;
12277             } else {
12278                 if (target_to_host_timespec(ts, arg3)) {
12279                     return -TARGET_EFAULT;
12280                 }
12281                 if (target_to_host_timespec(ts + 1, arg3 +
12282                                             sizeof(struct target_timespec))) {
12283                     return -TARGET_EFAULT;
12284                 }
12285                 tsp = ts;
12286             }
12287             if (!arg2)
12288                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12289             else {
12290                 if (!(p = lock_user_string(arg2))) {
12291                     return -TARGET_EFAULT;
12292                 }
12293                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12294                 unlock_user(p, arg2, 0);
12295             }
12296         }
12297         return ret;
12298 #endif
12299 #ifdef TARGET_NR_utimensat_time64
12300     case TARGET_NR_utimensat_time64:
12301         {
12302             struct timespec *tsp, ts[2];
12303             if (!arg3) {
12304                 tsp = NULL;
12305             } else {
12306                 if (target_to_host_timespec64(ts, arg3)) {
12307                     return -TARGET_EFAULT;
12308                 }
12309                 if (target_to_host_timespec64(ts + 1, arg3 +
12310                                      sizeof(struct target__kernel_timespec))) {
12311                     return -TARGET_EFAULT;
12312                 }
12313                 tsp = ts;
12314             }
12315             if (!arg2)
12316                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12317             else {
12318                 p = lock_user_string(arg2);
12319                 if (!p) {
12320                     return -TARGET_EFAULT;
12321                 }
12322                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12323                 unlock_user(p, arg2, 0);
12324             }
12325         }
12326         return ret;
12327 #endif
12328 #ifdef TARGET_NR_futex
12329     case TARGET_NR_futex:
12330         return do_futex(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12331 #endif
12332 #ifdef TARGET_NR_futex_time64
12333     case TARGET_NR_futex_time64:
12334         return do_futex_time64(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12335 #endif
12336 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
12337     case TARGET_NR_inotify_init:
12338         ret = get_errno(sys_inotify_init());
12339         if (ret >= 0) {
12340             fd_trans_register(ret, &target_inotify_trans);
12341         }
12342         return ret;
12343 #endif
12344 #ifdef CONFIG_INOTIFY1
12345 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
12346     case TARGET_NR_inotify_init1:
12347         ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
12348                                           fcntl_flags_tbl)));
12349         if (ret >= 0) {
12350             fd_trans_register(ret, &target_inotify_trans);
12351         }
12352         return ret;
12353 #endif
12354 #endif
12355 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
12356     case TARGET_NR_inotify_add_watch:
12357         p = lock_user_string(arg2);
12358         ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
12359         unlock_user(p, arg2, 0);
12360         return ret;
12361 #endif
12362 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
12363     case TARGET_NR_inotify_rm_watch:
12364         return get_errno(sys_inotify_rm_watch(arg1, arg2));
12365 #endif
12366 
12367 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12368     case TARGET_NR_mq_open:
12369         {
12370             struct mq_attr posix_mq_attr;
12371             struct mq_attr *pposix_mq_attr;
12372             int host_flags;
12373 
12374             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12375             pposix_mq_attr = NULL;
12376             if (arg4) {
12377                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12378                     return -TARGET_EFAULT;
12379                 }
12380                 pposix_mq_attr = &posix_mq_attr;
12381             }
12382             p = lock_user_string(arg1 - 1);
12383             if (!p) {
12384                 return -TARGET_EFAULT;
12385             }
12386             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12387             unlock_user (p, arg1, 0);
12388         }
12389         return ret;
12390 
12391     case TARGET_NR_mq_unlink:
12392         p = lock_user_string(arg1 - 1);
12393         if (!p) {
12394             return -TARGET_EFAULT;
12395         }
12396         ret = get_errno(mq_unlink(p));
12397         unlock_user (p, arg1, 0);
12398         return ret;
12399 
12400 #ifdef TARGET_NR_mq_timedsend
12401     case TARGET_NR_mq_timedsend:
12402         {
12403             struct timespec ts;
12404 
12405             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12406             if (arg5 != 0) {
12407                 if (target_to_host_timespec(&ts, arg5)) {
12408                     return -TARGET_EFAULT;
12409                 }
12410                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12411                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12412                     return -TARGET_EFAULT;
12413                 }
12414             } else {
12415                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12416             }
12417             unlock_user (p, arg2, arg3);
12418         }
12419         return ret;
12420 #endif
12421 #ifdef TARGET_NR_mq_timedsend_time64
12422     case TARGET_NR_mq_timedsend_time64:
12423         {
12424             struct timespec ts;
12425 
12426             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12427             if (arg5 != 0) {
12428                 if (target_to_host_timespec64(&ts, arg5)) {
12429                     return -TARGET_EFAULT;
12430                 }
12431                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12432                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12433                     return -TARGET_EFAULT;
12434                 }
12435             } else {
12436                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12437             }
12438             unlock_user(p, arg2, arg3);
12439         }
12440         return ret;
12441 #endif
12442 
12443 #ifdef TARGET_NR_mq_timedreceive
12444     case TARGET_NR_mq_timedreceive:
12445         {
12446             struct timespec ts;
12447             unsigned int prio;
12448 
12449             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12450             if (arg5 != 0) {
12451                 if (target_to_host_timespec(&ts, arg5)) {
12452                     return -TARGET_EFAULT;
12453                 }
12454                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12455                                                      &prio, &ts));
12456                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12457                     return -TARGET_EFAULT;
12458                 }
12459             } else {
12460                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12461                                                      &prio, NULL));
12462             }
12463             unlock_user (p, arg2, arg3);
12464             if (arg4 != 0)
12465                 put_user_u32(prio, arg4);
12466         }
12467         return ret;
12468 #endif
12469 #ifdef TARGET_NR_mq_timedreceive_time64
12470     case TARGET_NR_mq_timedreceive_time64:
12471         {
12472             struct timespec ts;
12473             unsigned int prio;
12474 
12475             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12476             if (arg5 != 0) {
12477                 if (target_to_host_timespec64(&ts, arg5)) {
12478                     return -TARGET_EFAULT;
12479                 }
12480                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12481                                                      &prio, &ts));
12482                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12483                     return -TARGET_EFAULT;
12484                 }
12485             } else {
12486                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12487                                                      &prio, NULL));
12488             }
12489             unlock_user(p, arg2, arg3);
12490             if (arg4 != 0) {
12491                 put_user_u32(prio, arg4);
12492             }
12493         }
12494         return ret;
12495 #endif
12496 
12497     /* Not implemented for now... */
12498 /*     case TARGET_NR_mq_notify: */
12499 /*         break; */
12500 
12501     case TARGET_NR_mq_getsetattr:
12502         {
12503             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12504             ret = 0;
12505             if (arg2 != 0) {
12506                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12507                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12508                                            &posix_mq_attr_out));
12509             } else if (arg3 != 0) {
12510                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12511             }
12512             if (ret == 0 && arg3 != 0) {
12513                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12514             }
12515         }
12516         return ret;
12517 #endif
12518 
12519 #ifdef CONFIG_SPLICE
12520 #ifdef TARGET_NR_tee
12521     case TARGET_NR_tee:
12522         {
12523             ret = get_errno(tee(arg1,arg2,arg3,arg4));
12524         }
12525         return ret;
12526 #endif
12527 #ifdef TARGET_NR_splice
12528     case TARGET_NR_splice:
12529         {
12530             loff_t loff_in, loff_out;
12531             loff_t *ploff_in = NULL, *ploff_out = NULL;
12532             if (arg2) {
12533                 if (get_user_u64(loff_in, arg2)) {
12534                     return -TARGET_EFAULT;
12535                 }
12536                 ploff_in = &loff_in;
12537             }
12538             if (arg4) {
12539                 if (get_user_u64(loff_out, arg4)) {
12540                     return -TARGET_EFAULT;
12541                 }
12542                 ploff_out = &loff_out;
12543             }
12544             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12545             if (arg2) {
12546                 if (put_user_u64(loff_in, arg2)) {
12547                     return -TARGET_EFAULT;
12548                 }
12549             }
12550             if (arg4) {
12551                 if (put_user_u64(loff_out, arg4)) {
12552                     return -TARGET_EFAULT;
12553                 }
12554             }
12555         }
12556         return ret;
12557 #endif
12558 #ifdef TARGET_NR_vmsplice
12559 	case TARGET_NR_vmsplice:
12560         {
12561             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12562             if (vec != NULL) {
12563                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12564                 unlock_iovec(vec, arg2, arg3, 0);
12565             } else {
12566                 ret = -host_to_target_errno(errno);
12567             }
12568         }
12569         return ret;
12570 #endif
12571 #endif /* CONFIG_SPLICE */
12572 #ifdef CONFIG_EVENTFD
12573 #if defined(TARGET_NR_eventfd)
12574     case TARGET_NR_eventfd:
12575         ret = get_errno(eventfd(arg1, 0));
12576         if (ret >= 0) {
12577             fd_trans_register(ret, &target_eventfd_trans);
12578         }
12579         return ret;
12580 #endif
12581 #if defined(TARGET_NR_eventfd2)
12582     case TARGET_NR_eventfd2:
12583     {
12584         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
12585         if (arg2 & TARGET_O_NONBLOCK) {
12586             host_flags |= O_NONBLOCK;
12587         }
12588         if (arg2 & TARGET_O_CLOEXEC) {
12589             host_flags |= O_CLOEXEC;
12590         }
12591         ret = get_errno(eventfd(arg1, host_flags));
12592         if (ret >= 0) {
12593             fd_trans_register(ret, &target_eventfd_trans);
12594         }
12595         return ret;
12596     }
12597 #endif
12598 #endif /* CONFIG_EVENTFD  */
12599 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12600     case TARGET_NR_fallocate:
12601 #if TARGET_ABI_BITS == 32
12602         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12603                                   target_offset64(arg5, arg6)));
12604 #else
12605         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12606 #endif
12607         return ret;
12608 #endif
12609 #if defined(CONFIG_SYNC_FILE_RANGE)
12610 #if defined(TARGET_NR_sync_file_range)
12611     case TARGET_NR_sync_file_range:
12612 #if TARGET_ABI_BITS == 32
12613 #if defined(TARGET_MIPS)
12614         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12615                                         target_offset64(arg5, arg6), arg7));
12616 #else
12617         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12618                                         target_offset64(arg4, arg5), arg6));
12619 #endif /* !TARGET_MIPS */
12620 #else
12621         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12622 #endif
12623         return ret;
12624 #endif
12625 #if defined(TARGET_NR_sync_file_range2) || \
12626     defined(TARGET_NR_arm_sync_file_range)
12627 #if defined(TARGET_NR_sync_file_range2)
12628     case TARGET_NR_sync_file_range2:
12629 #endif
12630 #if defined(TARGET_NR_arm_sync_file_range)
12631     case TARGET_NR_arm_sync_file_range:
12632 #endif
12633         /* This is like sync_file_range but the arguments are reordered */
12634 #if TARGET_ABI_BITS == 32
12635         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12636                                         target_offset64(arg5, arg6), arg2));
12637 #else
12638         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12639 #endif
12640         return ret;
12641 #endif
12642 #endif
12643 #if defined(TARGET_NR_signalfd4)
12644     case TARGET_NR_signalfd4:
12645         return do_signalfd4(arg1, arg2, arg4);
12646 #endif
12647 #if defined(TARGET_NR_signalfd)
12648     case TARGET_NR_signalfd:
12649         return do_signalfd4(arg1, arg2, 0);
12650 #endif
12651 #if defined(CONFIG_EPOLL)
12652 #if defined(TARGET_NR_epoll_create)
12653     case TARGET_NR_epoll_create:
12654         return get_errno(epoll_create(arg1));
12655 #endif
12656 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12657     case TARGET_NR_epoll_create1:
12658         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12659 #endif
12660 #if defined(TARGET_NR_epoll_ctl)
12661     case TARGET_NR_epoll_ctl:
12662     {
12663         struct epoll_event ep;
12664         struct epoll_event *epp = 0;
12665         if (arg4) {
12666             if (arg2 != EPOLL_CTL_DEL) {
12667                 struct target_epoll_event *target_ep;
12668                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12669                     return -TARGET_EFAULT;
12670                 }
12671                 ep.events = tswap32(target_ep->events);
12672                 /*
12673                  * The epoll_data_t union is just opaque data to the kernel,
12674                  * so we transfer all 64 bits across and need not worry what
12675                  * actual data type it is.
12676                  */
12677                 ep.data.u64 = tswap64(target_ep->data.u64);
12678                 unlock_user_struct(target_ep, arg4, 0);
12679             }
12680             /*
12681              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
12682              * non-null pointer, even though this argument is ignored.
12683              *
12684              */
12685             epp = &ep;
12686         }
12687         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12688     }
12689 #endif
12690 
12691 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12692 #if defined(TARGET_NR_epoll_wait)
12693     case TARGET_NR_epoll_wait:
12694 #endif
12695 #if defined(TARGET_NR_epoll_pwait)
12696     case TARGET_NR_epoll_pwait:
12697 #endif
12698     {
12699         struct target_epoll_event *target_ep;
12700         struct epoll_event *ep;
12701         int epfd = arg1;
12702         int maxevents = arg3;
12703         int timeout = arg4;
12704 
12705         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12706             return -TARGET_EINVAL;
12707         }
12708 
12709         target_ep = lock_user(VERIFY_WRITE, arg2,
12710                               maxevents * sizeof(struct target_epoll_event), 1);
12711         if (!target_ep) {
12712             return -TARGET_EFAULT;
12713         }
12714 
12715         ep = g_try_new(struct epoll_event, maxevents);
12716         if (!ep) {
12717             unlock_user(target_ep, arg2, 0);
12718             return -TARGET_ENOMEM;
12719         }
12720 
12721         switch (num) {
12722 #if defined(TARGET_NR_epoll_pwait)
12723         case TARGET_NR_epoll_pwait:
12724         {
12725             target_sigset_t *target_set;
12726             sigset_t _set, *set = &_set;
12727 
12728             if (arg5) {
12729                 if (arg6 != sizeof(target_sigset_t)) {
12730                     ret = -TARGET_EINVAL;
12731                     break;
12732                 }
12733 
12734                 target_set = lock_user(VERIFY_READ, arg5,
12735                                        sizeof(target_sigset_t), 1);
12736                 if (!target_set) {
12737                     ret = -TARGET_EFAULT;
12738                     break;
12739                 }
12740                 target_to_host_sigset(set, target_set);
12741                 unlock_user(target_set, arg5, 0);
12742             } else {
12743                 set = NULL;
12744             }
12745 
12746             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12747                                              set, SIGSET_T_SIZE));
12748             break;
12749         }
12750 #endif
12751 #if defined(TARGET_NR_epoll_wait)
12752         case TARGET_NR_epoll_wait:
12753             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12754                                              NULL, 0));
12755             break;
12756 #endif
12757         default:
12758             ret = -TARGET_ENOSYS;
12759         }
12760         if (!is_error(ret)) {
12761             int i;
12762             for (i = 0; i < ret; i++) {
12763                 target_ep[i].events = tswap32(ep[i].events);
12764                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12765             }
12766             unlock_user(target_ep, arg2,
12767                         ret * sizeof(struct target_epoll_event));
12768         } else {
12769             unlock_user(target_ep, arg2, 0);
12770         }
12771         g_free(ep);
12772         return ret;
12773     }
12774 #endif
12775 #endif
12776 #ifdef TARGET_NR_prlimit64
12777     case TARGET_NR_prlimit64:
12778     {
12779         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12780         struct target_rlimit64 *target_rnew, *target_rold;
12781         struct host_rlimit64 rnew, rold, *rnewp = 0;
12782         int resource = target_to_host_resource(arg2);
12783 
12784         if (arg3 && (resource != RLIMIT_AS &&
12785                      resource != RLIMIT_DATA &&
12786                      resource != RLIMIT_STACK)) {
12787             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12788                 return -TARGET_EFAULT;
12789             }
12790             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12791             rnew.rlim_max = tswap64(target_rnew->rlim_max);
12792             unlock_user_struct(target_rnew, arg3, 0);
12793             rnewp = &rnew;
12794         }
12795 
12796         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12797         if (!is_error(ret) && arg4) {
12798             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12799                 return -TARGET_EFAULT;
12800             }
12801             target_rold->rlim_cur = tswap64(rold.rlim_cur);
12802             target_rold->rlim_max = tswap64(rold.rlim_max);
12803             unlock_user_struct(target_rold, arg4, 1);
12804         }
12805         return ret;
12806     }
12807 #endif
12808 #ifdef TARGET_NR_gethostname
12809     case TARGET_NR_gethostname:
12810     {
12811         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12812         if (name) {
12813             ret = get_errno(gethostname(name, arg2));
12814             unlock_user(name, arg1, arg2);
12815         } else {
12816             ret = -TARGET_EFAULT;
12817         }
12818         return ret;
12819     }
12820 #endif
12821 #ifdef TARGET_NR_atomic_cmpxchg_32
12822     case TARGET_NR_atomic_cmpxchg_32:
12823     {
12824         /* should use start_exclusive from main.c */
12825         abi_ulong mem_value;
12826         if (get_user_u32(mem_value, arg6)) {
12827             target_siginfo_t info;
12828             info.si_signo = SIGSEGV;
12829             info.si_errno = 0;
12830             info.si_code = TARGET_SEGV_MAPERR;
12831             info._sifields._sigfault._addr = arg6;
12832             queue_signal((CPUArchState *)cpu_env, info.si_signo,
12833                          QEMU_SI_FAULT, &info);
12834             ret = 0xdeadbeef;
12835 
12836         }
12837         if (mem_value == arg2)
12838             put_user_u32(arg1, arg6);
12839         return mem_value;
12840     }
12841 #endif
12842 #ifdef TARGET_NR_atomic_barrier
12843     case TARGET_NR_atomic_barrier:
12844         /* Like the kernel implementation and the
12845            qemu arm barrier, no-op this? */
12846         return 0;
12847 #endif
12848 
12849 #ifdef TARGET_NR_timer_create
12850     case TARGET_NR_timer_create:
12851     {
12852         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12853 
12854         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12855 
12856         int clkid = arg1;
12857         int timer_index = next_free_host_timer();
12858 
12859         if (timer_index < 0) {
12860             ret = -TARGET_EAGAIN;
12861         } else {
12862             timer_t *phtimer = g_posix_timers  + timer_index;
12863 
12864             if (arg2) {
12865                 phost_sevp = &host_sevp;
12866                 ret = target_to_host_sigevent(phost_sevp, arg2);
12867                 if (ret != 0) {
12868                     return ret;
12869                 }
12870             }
12871 
12872             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12873             if (ret) {
12874                 phtimer = NULL;
12875             } else {
12876                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12877                     return -TARGET_EFAULT;
12878                 }
12879             }
12880         }
12881         return ret;
12882     }
12883 #endif
12884 
12885 #ifdef TARGET_NR_timer_settime
12886     case TARGET_NR_timer_settime:
12887     {
12888         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12889          * struct itimerspec * old_value */
12890         target_timer_t timerid = get_timer_id(arg1);
12891 
12892         if (timerid < 0) {
12893             ret = timerid;
12894         } else if (arg3 == 0) {
12895             ret = -TARGET_EINVAL;
12896         } else {
12897             timer_t htimer = g_posix_timers[timerid];
12898             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12899 
12900             if (target_to_host_itimerspec(&hspec_new, arg3)) {
12901                 return -TARGET_EFAULT;
12902             }
12903             ret = get_errno(
12904                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12905             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12906                 return -TARGET_EFAULT;
12907             }
12908         }
12909         return ret;
12910     }
12911 #endif
12912 
12913 #ifdef TARGET_NR_timer_settime64
12914     case TARGET_NR_timer_settime64:
12915     {
12916         target_timer_t timerid = get_timer_id(arg1);
12917 
12918         if (timerid < 0) {
12919             ret = timerid;
12920         } else if (arg3 == 0) {
12921             ret = -TARGET_EINVAL;
12922         } else {
12923             timer_t htimer = g_posix_timers[timerid];
12924             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12925 
12926             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
12927                 return -TARGET_EFAULT;
12928             }
12929             ret = get_errno(
12930                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12931             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
12932                 return -TARGET_EFAULT;
12933             }
12934         }
12935         return ret;
12936     }
12937 #endif
12938 
12939 #ifdef TARGET_NR_timer_gettime
12940     case TARGET_NR_timer_gettime:
12941     {
12942         /* args: timer_t timerid, struct itimerspec *curr_value */
12943         target_timer_t timerid = get_timer_id(arg1);
12944 
12945         if (timerid < 0) {
12946             ret = timerid;
12947         } else if (!arg2) {
12948             ret = -TARGET_EFAULT;
12949         } else {
12950             timer_t htimer = g_posix_timers[timerid];
12951             struct itimerspec hspec;
12952             ret = get_errno(timer_gettime(htimer, &hspec));
12953 
12954             if (host_to_target_itimerspec(arg2, &hspec)) {
12955                 ret = -TARGET_EFAULT;
12956             }
12957         }
12958         return ret;
12959     }
12960 #endif
12961 
12962 #ifdef TARGET_NR_timer_gettime64
12963     case TARGET_NR_timer_gettime64:
12964     {
12965         /* args: timer_t timerid, struct itimerspec64 *curr_value */
12966         target_timer_t timerid = get_timer_id(arg1);
12967 
12968         if (timerid < 0) {
12969             ret = timerid;
12970         } else if (!arg2) {
12971             ret = -TARGET_EFAULT;
12972         } else {
12973             timer_t htimer = g_posix_timers[timerid];
12974             struct itimerspec hspec;
12975             ret = get_errno(timer_gettime(htimer, &hspec));
12976 
12977             if (host_to_target_itimerspec64(arg2, &hspec)) {
12978                 ret = -TARGET_EFAULT;
12979             }
12980         }
12981         return ret;
12982     }
12983 #endif
12984 
12985 #ifdef TARGET_NR_timer_getoverrun
12986     case TARGET_NR_timer_getoverrun:
12987     {
12988         /* args: timer_t timerid */
12989         target_timer_t timerid = get_timer_id(arg1);
12990 
12991         if (timerid < 0) {
12992             ret = timerid;
12993         } else {
12994             timer_t htimer = g_posix_timers[timerid];
12995             ret = get_errno(timer_getoverrun(htimer));
12996         }
12997         return ret;
12998     }
12999 #endif
13000 
13001 #ifdef TARGET_NR_timer_delete
13002     case TARGET_NR_timer_delete:
13003     {
13004         /* args: timer_t timerid */
13005         target_timer_t timerid = get_timer_id(arg1);
13006 
13007         if (timerid < 0) {
13008             ret = timerid;
13009         } else {
13010             timer_t htimer = g_posix_timers[timerid];
13011             ret = get_errno(timer_delete(htimer));
13012             g_posix_timers[timerid] = 0;
13013         }
13014         return ret;
13015     }
13016 #endif
13017 
13018 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13019     case TARGET_NR_timerfd_create:
13020         return get_errno(timerfd_create(arg1,
13021                           target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13022 #endif
13023 
13024 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13025     case TARGET_NR_timerfd_gettime:
13026         {
13027             struct itimerspec its_curr;
13028 
13029             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13030 
13031             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13032                 return -TARGET_EFAULT;
13033             }
13034         }
13035         return ret;
13036 #endif
13037 
13038 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13039     case TARGET_NR_timerfd_gettime64:
13040         {
13041             struct itimerspec its_curr;
13042 
13043             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13044 
13045             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13046                 return -TARGET_EFAULT;
13047             }
13048         }
13049         return ret;
13050 #endif
13051 
13052 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13053     case TARGET_NR_timerfd_settime:
13054         {
13055             struct itimerspec its_new, its_old, *p_new;
13056 
13057             if (arg3) {
13058                 if (target_to_host_itimerspec(&its_new, arg3)) {
13059                     return -TARGET_EFAULT;
13060                 }
13061                 p_new = &its_new;
13062             } else {
13063                 p_new = NULL;
13064             }
13065 
13066             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13067 
13068             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13069                 return -TARGET_EFAULT;
13070             }
13071         }
13072         return ret;
13073 #endif
13074 
13075 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13076     case TARGET_NR_timerfd_settime64:
13077         {
13078             struct itimerspec its_new, its_old, *p_new;
13079 
13080             if (arg3) {
13081                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13082                     return -TARGET_EFAULT;
13083                 }
13084                 p_new = &its_new;
13085             } else {
13086                 p_new = NULL;
13087             }
13088 
13089             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13090 
13091             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13092                 return -TARGET_EFAULT;
13093             }
13094         }
13095         return ret;
13096 #endif
13097 
13098 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13099     case TARGET_NR_ioprio_get:
13100         return get_errno(ioprio_get(arg1, arg2));
13101 #endif
13102 
13103 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13104     case TARGET_NR_ioprio_set:
13105         return get_errno(ioprio_set(arg1, arg2, arg3));
13106 #endif
13107 
13108 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13109     case TARGET_NR_setns:
13110         return get_errno(setns(arg1, arg2));
13111 #endif
13112 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13113     case TARGET_NR_unshare:
13114         return get_errno(unshare(arg1));
13115 #endif
13116 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13117     case TARGET_NR_kcmp:
13118         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13119 #endif
13120 #ifdef TARGET_NR_swapcontext
13121     case TARGET_NR_swapcontext:
13122         /* PowerPC specific.  */
13123         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13124 #endif
13125 #ifdef TARGET_NR_memfd_create
13126     case TARGET_NR_memfd_create:
13127         p = lock_user_string(arg1);
13128         if (!p) {
13129             return -TARGET_EFAULT;
13130         }
13131         ret = get_errno(memfd_create(p, arg2));
13132         fd_trans_unregister(ret);
13133         unlock_user(p, arg1, 0);
13134         return ret;
13135 #endif
13136 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13137     case TARGET_NR_membarrier:
13138         return get_errno(membarrier(arg1, arg2));
13139 #endif
13140 
13141 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13142     case TARGET_NR_copy_file_range:
13143         {
13144             loff_t inoff, outoff;
13145             loff_t *pinoff = NULL, *poutoff = NULL;
13146 
13147             if (arg2) {
13148                 if (get_user_u64(inoff, arg2)) {
13149                     return -TARGET_EFAULT;
13150                 }
13151                 pinoff = &inoff;
13152             }
13153             if (arg4) {
13154                 if (get_user_u64(outoff, arg4)) {
13155                     return -TARGET_EFAULT;
13156                 }
13157                 poutoff = &outoff;
13158             }
13159             /* Do not sign-extend the count parameter. */
13160             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13161                                                  (abi_ulong)arg5, arg6));
13162             if (!is_error(ret) && ret > 0) {
13163                 if (arg2) {
13164                     if (put_user_u64(inoff, arg2)) {
13165                         return -TARGET_EFAULT;
13166                     }
13167                 }
13168                 if (arg4) {
13169                     if (put_user_u64(outoff, arg4)) {
13170                         return -TARGET_EFAULT;
13171                     }
13172                 }
13173             }
13174         }
13175         return ret;
13176 #endif
13177 
13178 #if defined(TARGET_NR_pivot_root)
13179     case TARGET_NR_pivot_root:
13180         {
13181             void *p2;
13182             p = lock_user_string(arg1); /* new_root */
13183             p2 = lock_user_string(arg2); /* put_old */
13184             if (!p || !p2) {
13185                 ret = -TARGET_EFAULT;
13186             } else {
13187                 ret = get_errno(pivot_root(p, p2));
13188             }
13189             unlock_user(p2, arg2, 0);
13190             unlock_user(p, arg1, 0);
13191         }
13192         return ret;
13193 #endif
13194 
13195     default:
13196         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13197         return -TARGET_ENOSYS;
13198     }
13199     return ret;
13200 }
13201 
13202 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
13203                     abi_long arg2, abi_long arg3, abi_long arg4,
13204                     abi_long arg5, abi_long arg6, abi_long arg7,
13205                     abi_long arg8)
13206 {
13207     CPUState *cpu = env_cpu(cpu_env);
13208     abi_long ret;
13209 
13210 #ifdef DEBUG_ERESTARTSYS
13211     /* Debug-only code for exercising the syscall-restart code paths
13212      * in the per-architecture cpu main loops: restart every syscall
13213      * the guest makes once before letting it through.
13214      */
13215     {
13216         static bool flag;
13217         flag = !flag;
13218         if (flag) {
13219             return -QEMU_ERESTARTSYS;
13220         }
13221     }
13222 #endif
13223 
13224     record_syscall_start(cpu, num, arg1,
13225                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13226 
13227     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13228         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13229     }
13230 
13231     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13232                       arg5, arg6, arg7, arg8);
13233 
13234     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13235         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13236                           arg3, arg4, arg5, arg6);
13237     }
13238 
13239     record_syscall_return(cpu, num, ret);
13240     return ret;
13241 }
13242