xref: /openbmc/qemu/linux-user/syscall.c (revision 1a7a31ae)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include "exec/page-protection.h"
29 #include <elf.h>
30 #include <endian.h>
31 #include <grp.h>
32 #include <sys/ipc.h>
33 #include <sys/msg.h>
34 #include <sys/wait.h>
35 #include <sys/mount.h>
36 #include <sys/file.h>
37 #include <sys/fsuid.h>
38 #include <sys/personality.h>
39 #include <sys/prctl.h>
40 #include <sys/resource.h>
41 #include <sys/swap.h>
42 #include <linux/capability.h>
43 #include <sched.h>
44 #include <sys/timex.h>
45 #include <sys/socket.h>
46 #include <linux/sockios.h>
47 #include <sys/un.h>
48 #include <sys/uio.h>
49 #include <poll.h>
50 #include <sys/times.h>
51 #include <sys/shm.h>
52 #include <sys/sem.h>
53 #include <sys/statfs.h>
54 #include <utime.h>
55 #include <sys/sysinfo.h>
56 #include <sys/signalfd.h>
57 //#include <sys/user.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <linux/wireless.h>
63 #include <linux/icmp.h>
64 #include <linux/icmpv6.h>
65 #include <linux/if_tun.h>
66 #include <linux/in6.h>
67 #include <linux/errqueue.h>
68 #include <linux/random.h>
69 #ifdef CONFIG_TIMERFD
70 #include <sys/timerfd.h>
71 #endif
72 #ifdef CONFIG_EVENTFD
73 #include <sys/eventfd.h>
74 #endif
75 #ifdef CONFIG_EPOLL
76 #include <sys/epoll.h>
77 #endif
78 #ifdef CONFIG_ATTR
79 #include "qemu/xattr.h"
80 #endif
81 #ifdef CONFIG_SENDFILE
82 #include <sys/sendfile.h>
83 #endif
84 #ifdef HAVE_SYS_KCOV_H
85 #include <sys/kcov.h>
86 #endif
87 
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
94 
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #include <linux/fd.h>
104 #if defined(CONFIG_FIEMAP)
105 #include <linux/fiemap.h>
106 #endif
107 #include <linux/fb.h>
108 #if defined(CONFIG_USBFS)
109 #include <linux/usbdevice_fs.h>
110 #include <linux/usb/ch9.h>
111 #endif
112 #include <linux/vt.h>
113 #include <linux/dm-ioctl.h>
114 #include <linux/reboot.h>
115 #include <linux/route.h>
116 #include <linux/filter.h>
117 #include <linux/blkpg.h>
118 #include <netpacket/packet.h>
119 #include <linux/netlink.h>
120 #include <linux/if_alg.h>
121 #include <linux/rtc.h>
122 #include <sound/asound.h>
123 #ifdef HAVE_BTRFS_H
124 #include <linux/btrfs.h>
125 #endif
126 #ifdef HAVE_DRM_H
127 #include <libdrm/drm.h>
128 #include <libdrm/i915_drm.h>
129 #endif
130 #include "linux_loop.h"
131 #include "uname.h"
132 
133 #include "qemu.h"
134 #include "user-internals.h"
135 #include "strace.h"
136 #include "signal-common.h"
137 #include "loader.h"
138 #include "user-mmap.h"
139 #include "user/safe-syscall.h"
140 #include "qemu/guest-random.h"
141 #include "qemu/selfmap.h"
142 #include "user/syscall-trace.h"
143 #include "special-errno.h"
144 #include "qapi/error.h"
145 #include "fd-trans.h"
146 #include "cpu_loop-common.h"
147 
148 #ifndef CLONE_IO
149 #define CLONE_IO                0x80000000      /* Clone io context */
150 #endif
151 
152 /* We can't directly call the host clone syscall, because this will
153  * badly confuse libc (breaking mutexes, for example). So we must
154  * divide clone flags into:
155  *  * flag combinations that look like pthread_create()
156  *  * flag combinations that look like fork()
157  *  * flags we can implement within QEMU itself
158  *  * flags we can't support and will return an error for
159  */
160 /* For thread creation, all these flags must be present; for
161  * fork, none must be present.
162  */
163 #define CLONE_THREAD_FLAGS                              \
164     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
165      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
166 
167 /* These flags are ignored:
168  * CLONE_DETACHED is now ignored by the kernel;
169  * CLONE_IO is just an optimisation hint to the I/O scheduler
170  */
171 #define CLONE_IGNORED_FLAGS                     \
172     (CLONE_DETACHED | CLONE_IO)
173 
174 #ifndef CLONE_PIDFD
175 # define CLONE_PIDFD 0x00001000
176 #endif
177 
178 /* Flags for fork which we can implement within QEMU itself */
179 #define CLONE_OPTIONAL_FORK_FLAGS               \
180     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
181      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
182 
183 /* Flags for thread creation which we can implement within QEMU itself */
184 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
185     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
186      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
187 
188 #define CLONE_INVALID_FORK_FLAGS                                        \
189     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
190 
191 #define CLONE_INVALID_THREAD_FLAGS                                      \
192     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
193        CLONE_IGNORED_FLAGS))
194 
195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
196  * have almost all been allocated. We cannot support any of
197  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
198  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
199  * The checks against the invalid thread masks above will catch these.
200  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
201  */
202 
203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
204  * once. This exercises the codepaths for restart.
205  */
206 //#define DEBUG_ERESTARTSYS
207 
208 //#include <linux/msdos_fs.h>
209 #define VFAT_IOCTL_READDIR_BOTH \
210     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
211 #define VFAT_IOCTL_READDIR_SHORT \
212     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
213 
214 #undef _syscall0
215 #undef _syscall1
216 #undef _syscall2
217 #undef _syscall3
218 #undef _syscall4
219 #undef _syscall5
220 #undef _syscall6
221 
222 #define _syscall0(type,name)		\
223 static type name (void)			\
224 {					\
225 	return syscall(__NR_##name);	\
226 }
227 
228 #define _syscall1(type,name,type1,arg1)		\
229 static type name (type1 arg1)			\
230 {						\
231 	return syscall(__NR_##name, arg1);	\
232 }
233 
234 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
235 static type name (type1 arg1,type2 arg2)		\
236 {							\
237 	return syscall(__NR_##name, arg1, arg2);	\
238 }
239 
240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
241 static type name (type1 arg1,type2 arg2,type3 arg3)		\
242 {								\
243 	return syscall(__NR_##name, arg1, arg2, arg3);		\
244 }
245 
246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
248 {										\
249 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
250 }
251 
252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
253 		  type5,arg5)							\
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
255 {										\
256 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
257 }
258 
259 
260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
261 		  type5,arg5,type6,arg6)					\
262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
263                   type6 arg6)							\
264 {										\
265 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
266 }
267 
268 
269 #define __NR_sys_uname __NR_uname
270 #define __NR_sys_getcwd1 __NR_getcwd
271 #define __NR_sys_getdents __NR_getdents
272 #define __NR_sys_getdents64 __NR_getdents64
273 #define __NR_sys_getpriority __NR_getpriority
274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
276 #define __NR_sys_syslog __NR_syslog
277 #if defined(__NR_futex)
278 # define __NR_sys_futex __NR_futex
279 #endif
280 #if defined(__NR_futex_time64)
281 # define __NR_sys_futex_time64 __NR_futex_time64
282 #endif
283 #define __NR_sys_statx __NR_statx
284 
285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
286 #define __NR__llseek __NR_lseek
287 #endif
288 
289 /* Newer kernel ports have llseek() instead of _llseek() */
290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
291 #define TARGET_NR__llseek TARGET_NR_llseek
292 #endif
293 
294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
295 #ifndef TARGET_O_NONBLOCK_MASK
296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
297 #endif
298 
299 #define __NR_sys_gettid __NR_gettid
300 _syscall0(int, sys_gettid)
301 
302 /* For the 64-bit guest on 32-bit host case we must emulate
303  * getdents using getdents64, because otherwise the host
304  * might hand us back more dirent records than we can fit
305  * into the guest buffer after structure format conversion.
306  * Otherwise we emulate getdents with getdents if the host has it.
307  */
308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
309 #define EMULATE_GETDENTS_WITH_GETDENTS
310 #endif
311 
312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
313 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
314 #endif
315 #if (defined(TARGET_NR_getdents) && \
316       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
317     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
318 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
319 #endif
320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
321 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
322           loff_t *, res, unsigned int, wh);
323 #endif
324 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
325 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
326           siginfo_t *, uinfo)
327 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
328 #ifdef __NR_exit_group
329 _syscall1(int,exit_group,int,error_code)
330 #endif
331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
332 #define __NR_sys_close_range __NR_close_range
333 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
334 #ifndef CLOSE_RANGE_CLOEXEC
335 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
336 #endif
337 #endif
338 #if defined(__NR_futex)
339 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
340           const struct timespec *,timeout,int *,uaddr2,int,val3)
341 #endif
342 #if defined(__NR_futex_time64)
343 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
344           const struct timespec *,timeout,int *,uaddr2,int,val3)
345 #endif
346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
347 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
348 #endif
349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
350 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
351                              unsigned int, flags);
352 #endif
353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
354 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
355 #endif
356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
357 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
358           unsigned long *, user_mask_ptr);
359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
360 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
361           unsigned long *, user_mask_ptr);
362 /* sched_attr is not defined in glibc */
363 struct sched_attr {
364     uint32_t size;
365     uint32_t sched_policy;
366     uint64_t sched_flags;
367     int32_t sched_nice;
368     uint32_t sched_priority;
369     uint64_t sched_runtime;
370     uint64_t sched_deadline;
371     uint64_t sched_period;
372     uint32_t sched_util_min;
373     uint32_t sched_util_max;
374 };
375 #define __NR_sys_sched_getattr __NR_sched_getattr
376 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
377           unsigned int, size, unsigned int, flags);
378 #define __NR_sys_sched_setattr __NR_sched_setattr
379 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
380           unsigned int, flags);
381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
382 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
384 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
385           const struct sched_param *, param);
386 #define __NR_sys_sched_getparam __NR_sched_getparam
387 _syscall2(int, sys_sched_getparam, pid_t, pid,
388           struct sched_param *, param);
389 #define __NR_sys_sched_setparam __NR_sched_setparam
390 _syscall2(int, sys_sched_setparam, pid_t, pid,
391           const struct sched_param *, param);
392 #define __NR_sys_getcpu __NR_getcpu
393 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
394 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
395           void *, arg);
396 _syscall2(int, capget, struct __user_cap_header_struct *, header,
397           struct __user_cap_data_struct *, data);
398 _syscall2(int, capset, struct __user_cap_header_struct *, header,
399           struct __user_cap_data_struct *, data);
400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
401 _syscall2(int, ioprio_get, int, which, int, who)
402 #endif
403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
404 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
405 #endif
406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
407 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
408 #endif
409 
410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
411 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
412           unsigned long, idx1, unsigned long, idx2)
413 #endif
414 
415 /*
416  * It is assumed that struct statx is architecture independent.
417  */
418 #if defined(TARGET_NR_statx) && defined(__NR_statx)
419 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
420           unsigned int, mask, struct target_statx *, statxbuf)
421 #endif
422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
423 _syscall2(int, membarrier, int, cmd, int, flags)
424 #endif
425 
426 static const bitmask_transtbl fcntl_flags_tbl[] = {
427   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
428   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
429   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
430   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
431   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
432   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
433   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
434   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
435   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
436   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
437   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
438   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
439   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
440 #if defined(O_DIRECT)
441   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
442 #endif
443 #if defined(O_NOATIME)
444   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
445 #endif
446 #if defined(O_CLOEXEC)
447   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
448 #endif
449 #if defined(O_PATH)
450   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
451 #endif
452 #if defined(O_TMPFILE)
453   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
454 #endif
455   /* Don't terminate the list prematurely on 64-bit host+guest.  */
456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
457   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
458 #endif
459 };
460 
461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
462 
463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
464 #if defined(__NR_utimensat)
465 #define __NR_sys_utimensat __NR_utimensat
466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
467           const struct timespec *,tsp,int,flags)
468 #else
469 static int sys_utimensat(int dirfd, const char *pathname,
470                          const struct timespec times[2], int flags)
471 {
472     errno = ENOSYS;
473     return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_utimensat */
477 
478 #ifdef TARGET_NR_renameat2
479 #if defined(__NR_renameat2)
480 #define __NR_sys_renameat2 __NR_renameat2
481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
482           const char *, new, unsigned int, flags)
483 #else
484 static int sys_renameat2(int oldfd, const char *old,
485                          int newfd, const char *new, int flags)
486 {
487     if (flags == 0) {
488         return renameat(oldfd, old, newfd, new);
489     }
490     errno = ENOSYS;
491     return -1;
492 }
493 #endif
494 #endif /* TARGET_NR_renameat2 */
495 
496 #ifdef CONFIG_INOTIFY
497 #include <sys/inotify.h>
498 #else
499 /* Userspace can usually survive runtime without inotify */
500 #undef TARGET_NR_inotify_init
501 #undef TARGET_NR_inotify_init1
502 #undef TARGET_NR_inotify_add_watch
503 #undef TARGET_NR_inotify_rm_watch
504 #endif /* CONFIG_INOTIFY  */
505 
506 #if defined(TARGET_NR_prlimit64)
507 #ifndef __NR_prlimit64
508 # define __NR_prlimit64 -1
509 #endif
510 #define __NR_sys_prlimit64 __NR_prlimit64
511 /* The glibc rlimit structure may not be that used by the underlying syscall */
512 struct host_rlimit64 {
513     uint64_t rlim_cur;
514     uint64_t rlim_max;
515 };
516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
517           const struct host_rlimit64 *, new_limit,
518           struct host_rlimit64 *, old_limit)
519 #endif
520 
521 
522 #if defined(TARGET_NR_timer_create)
523 /* Maximum of 32 active POSIX timers allowed at any one time. */
524 #define GUEST_TIMER_MAX 32
525 static timer_t g_posix_timers[GUEST_TIMER_MAX];
526 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
527 
528 static inline int next_free_host_timer(void)
529 {
530     int k;
531     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
532         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
533             return k;
534         }
535     }
536     return -1;
537 }
538 
539 static inline void free_host_timer_slot(int id)
540 {
541     qatomic_store_release(g_posix_timer_allocated + id, 0);
542 }
543 #endif
544 
545 static inline int host_to_target_errno(int host_errno)
546 {
547     switch (host_errno) {
548 #define E(X)  case X: return TARGET_##X;
549 #include "errnos.c.inc"
550 #undef E
551     default:
552         return host_errno;
553     }
554 }
555 
556 static inline int target_to_host_errno(int target_errno)
557 {
558     switch (target_errno) {
559 #define E(X)  case TARGET_##X: return X;
560 #include "errnos.c.inc"
561 #undef E
562     default:
563         return target_errno;
564     }
565 }
566 
567 abi_long get_errno(abi_long ret)
568 {
569     if (ret == -1)
570         return -host_to_target_errno(errno);
571     else
572         return ret;
573 }
574 
575 const char *target_strerror(int err)
576 {
577     if (err == QEMU_ERESTARTSYS) {
578         return "To be restarted";
579     }
580     if (err == QEMU_ESIGRETURN) {
581         return "Successful exit from sigreturn";
582     }
583 
584     return strerror(target_to_host_errno(err));
585 }
586 
587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
588 {
589     int i;
590     uint8_t b;
591     if (usize <= ksize) {
592         return 1;
593     }
594     for (i = ksize; i < usize; i++) {
595         if (get_user_u8(b, addr + i)) {
596             return -TARGET_EFAULT;
597         }
598         if (b != 0) {
599             return 0;
600         }
601     }
602     return 1;
603 }
604 
605 #define safe_syscall0(type, name) \
606 static type safe_##name(void) \
607 { \
608     return safe_syscall(__NR_##name); \
609 }
610 
611 #define safe_syscall1(type, name, type1, arg1) \
612 static type safe_##name(type1 arg1) \
613 { \
614     return safe_syscall(__NR_##name, arg1); \
615 }
616 
617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
618 static type safe_##name(type1 arg1, type2 arg2) \
619 { \
620     return safe_syscall(__NR_##name, arg1, arg2); \
621 }
622 
623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 { \
626     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
627 }
628 
629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
630     type4, arg4) \
631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 { \
633     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
634 }
635 
636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
637     type4, arg4, type5, arg5) \
638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
639     type5 arg5) \
640 { \
641     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
642 }
643 
644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
645     type4, arg4, type5, arg5, type6, arg6) \
646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
647     type5 arg5, type6 arg6) \
648 { \
649     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
650 }
651 
652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
655               int, flags, mode_t, mode)
656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
658               struct rusage *, rusage)
659 #endif
660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
661               int, options, struct rusage *, rusage)
662 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
663 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
664               char **, argv, char **, envp, int, flags)
665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
666     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
667 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
668               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
669 #endif
670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
671 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
672               struct timespec *, tsp, const sigset_t *, sigmask,
673               size_t, sigsetsize)
674 #endif
675 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
676               int, maxevents, int, timeout, const sigset_t *, sigmask,
677               size_t, sigsetsize)
678 #if defined(__NR_futex)
679 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
680               const struct timespec *,timeout,int *,uaddr2,int,val3)
681 #endif
682 #if defined(__NR_futex_time64)
683 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
684               const struct timespec *,timeout,int *,uaddr2,int,val3)
685 #endif
686 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
687 safe_syscall2(int, kill, pid_t, pid, int, sig)
688 safe_syscall2(int, tkill, int, tid, int, sig)
689 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
690 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
692 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
693               unsigned long, pos_l, unsigned long, pos_h)
694 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
695               unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
697               socklen_t, addrlen)
698 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
699               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
700 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
701               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
702 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
703 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
704 safe_syscall2(int, flock, int, fd, int, operation)
705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
706 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
707               const struct timespec *, uts, size_t, sigsetsize)
708 #endif
709 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
710               int, flags)
711 #if defined(TARGET_NR_nanosleep)
712 safe_syscall2(int, nanosleep, const struct timespec *, req,
713               struct timespec *, rem)
714 #endif
715 #if defined(TARGET_NR_clock_nanosleep) || \
716     defined(TARGET_NR_clock_nanosleep_time64)
717 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
718               const struct timespec *, req, struct timespec *, rem)
719 #endif
720 #ifdef __NR_ipc
721 #ifdef __s390x__
722 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
723               void *, ptr)
724 #else
725 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
726               void *, ptr, long, fifth)
727 #endif
728 #endif
729 #ifdef __NR_msgsnd
730 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
731               int, flags)
732 #endif
733 #ifdef __NR_msgrcv
734 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
735               long, msgtype, int, flags)
736 #endif
737 #ifdef __NR_semtimedop
738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
739               unsigned, nsops, const struct timespec *, timeout)
740 #endif
741 #if defined(TARGET_NR_mq_timedsend) || \
742     defined(TARGET_NR_mq_timedsend_time64)
743 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
744               size_t, len, unsigned, prio, const struct timespec *, timeout)
745 #endif
746 #if defined(TARGET_NR_mq_timedreceive) || \
747     defined(TARGET_NR_mq_timedreceive_time64)
748 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
749               size_t, len, unsigned *, prio, const struct timespec *, timeout)
750 #endif
751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
752 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
753               int, outfd, loff_t *, poutoff, size_t, length,
754               unsigned int, flags)
755 #endif
756 
757 /* We do ioctl like this rather than via safe_syscall3 to preserve the
758  * "third argument might be integer or pointer or not present" behaviour of
759  * the libc function.
760  */
761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
762 /* Similarly for fcntl. Note that callers must always:
763  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
764  *  use the flock64 struct rather than unsuffixed flock
765  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
766  */
767 #ifdef __NR_fcntl64
768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
769 #else
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
771 #endif
772 
773 static inline int host_to_target_sock_type(int host_type)
774 {
775     int target_type;
776 
777     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
778     case SOCK_DGRAM:
779         target_type = TARGET_SOCK_DGRAM;
780         break;
781     case SOCK_STREAM:
782         target_type = TARGET_SOCK_STREAM;
783         break;
784     default:
785         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
786         break;
787     }
788 
789 #if defined(SOCK_CLOEXEC)
790     if (host_type & SOCK_CLOEXEC) {
791         target_type |= TARGET_SOCK_CLOEXEC;
792     }
793 #endif
794 
795 #if defined(SOCK_NONBLOCK)
796     if (host_type & SOCK_NONBLOCK) {
797         target_type |= TARGET_SOCK_NONBLOCK;
798     }
799 #endif
800 
801     return target_type;
802 }
803 
804 static abi_ulong target_brk, initial_target_brk;
805 
806 void target_set_brk(abi_ulong new_brk)
807 {
808     target_brk = TARGET_PAGE_ALIGN(new_brk);
809     initial_target_brk = target_brk;
810 }
811 
812 /* do_brk() must return target values and target errnos. */
813 abi_long do_brk(abi_ulong brk_val)
814 {
815     abi_long mapped_addr;
816     abi_ulong new_brk;
817     abi_ulong old_brk;
818 
819     /* brk pointers are always untagged */
820 
821     /* do not allow to shrink below initial brk value */
822     if (brk_val < initial_target_brk) {
823         return target_brk;
824     }
825 
826     new_brk = TARGET_PAGE_ALIGN(brk_val);
827     old_brk = TARGET_PAGE_ALIGN(target_brk);
828 
829     /* new and old target_brk might be on the same page */
830     if (new_brk == old_brk) {
831         target_brk = brk_val;
832         return target_brk;
833     }
834 
835     /* Release heap if necessary */
836     if (new_brk < old_brk) {
837         target_munmap(new_brk, old_brk - new_brk);
838 
839         target_brk = brk_val;
840         return target_brk;
841     }
842 
843     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
844                               PROT_READ | PROT_WRITE,
845                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
846                               -1, 0);
847 
848     if (mapped_addr == old_brk) {
849         target_brk = brk_val;
850         return target_brk;
851     }
852 
853 #if defined(TARGET_ALPHA)
854     /* We (partially) emulate OSF/1 on Alpha, which requires we
855        return a proper errno, not an unchanged brk value.  */
856     return -TARGET_ENOMEM;
857 #endif
858     /* For everything else, return the previous break. */
859     return target_brk;
860 }
861 
862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
863     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
864 static inline abi_long copy_from_user_fdset(fd_set *fds,
865                                             abi_ulong target_fds_addr,
866                                             int n)
867 {
868     int i, nw, j, k;
869     abi_ulong b, *target_fds;
870 
871     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
872     if (!(target_fds = lock_user(VERIFY_READ,
873                                  target_fds_addr,
874                                  sizeof(abi_ulong) * nw,
875                                  1)))
876         return -TARGET_EFAULT;
877 
878     FD_ZERO(fds);
879     k = 0;
880     for (i = 0; i < nw; i++) {
881         /* grab the abi_ulong */
882         __get_user(b, &target_fds[i]);
883         for (j = 0; j < TARGET_ABI_BITS; j++) {
884             /* check the bit inside the abi_ulong */
885             if ((b >> j) & 1)
886                 FD_SET(k, fds);
887             k++;
888         }
889     }
890 
891     unlock_user(target_fds, target_fds_addr, 0);
892 
893     return 0;
894 }
895 
896 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
897                                                  abi_ulong target_fds_addr,
898                                                  int n)
899 {
900     if (target_fds_addr) {
901         if (copy_from_user_fdset(fds, target_fds_addr, n))
902             return -TARGET_EFAULT;
903         *fds_ptr = fds;
904     } else {
905         *fds_ptr = NULL;
906     }
907     return 0;
908 }
909 
910 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
911                                           const fd_set *fds,
912                                           int n)
913 {
914     int i, nw, j, k;
915     abi_long v;
916     abi_ulong *target_fds;
917 
918     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
919     if (!(target_fds = lock_user(VERIFY_WRITE,
920                                  target_fds_addr,
921                                  sizeof(abi_ulong) * nw,
922                                  0)))
923         return -TARGET_EFAULT;
924 
925     k = 0;
926     for (i = 0; i < nw; i++) {
927         v = 0;
928         for (j = 0; j < TARGET_ABI_BITS; j++) {
929             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
930             k++;
931         }
932         __put_user(v, &target_fds[i]);
933     }
934 
935     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
936 
937     return 0;
938 }
939 #endif
940 
941 #if defined(__alpha__)
942 #define HOST_HZ 1024
943 #else
944 #define HOST_HZ 100
945 #endif
946 
947 static inline abi_long host_to_target_clock_t(long ticks)
948 {
949 #if HOST_HZ == TARGET_HZ
950     return ticks;
951 #else
952     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
953 #endif
954 }
955 
956 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
957                                              const struct rusage *rusage)
958 {
959     struct target_rusage *target_rusage;
960 
961     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
962         return -TARGET_EFAULT;
963     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
964     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
965     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
966     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
967     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
968     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
969     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
970     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
971     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
972     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
973     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
974     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
975     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
976     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
977     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
978     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
979     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
980     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
981     unlock_user_struct(target_rusage, target_addr, 1);
982 
983     return 0;
984 }
985 
986 #ifdef TARGET_NR_setrlimit
987 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
988 {
989     abi_ulong target_rlim_swap;
990     rlim_t result;
991 
992     target_rlim_swap = tswapal(target_rlim);
993     if (target_rlim_swap == TARGET_RLIM_INFINITY)
994         return RLIM_INFINITY;
995 
996     result = target_rlim_swap;
997     if (target_rlim_swap != (rlim_t)result)
998         return RLIM_INFINITY;
999 
1000     return result;
1001 }
1002 #endif
1003 
1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1005 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1006 {
1007     abi_ulong target_rlim_swap;
1008     abi_ulong result;
1009 
1010     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1011         target_rlim_swap = TARGET_RLIM_INFINITY;
1012     else
1013         target_rlim_swap = rlim;
1014     result = tswapal(target_rlim_swap);
1015 
1016     return result;
1017 }
1018 #endif
1019 
1020 static inline int target_to_host_resource(int code)
1021 {
1022     switch (code) {
1023     case TARGET_RLIMIT_AS:
1024         return RLIMIT_AS;
1025     case TARGET_RLIMIT_CORE:
1026         return RLIMIT_CORE;
1027     case TARGET_RLIMIT_CPU:
1028         return RLIMIT_CPU;
1029     case TARGET_RLIMIT_DATA:
1030         return RLIMIT_DATA;
1031     case TARGET_RLIMIT_FSIZE:
1032         return RLIMIT_FSIZE;
1033     case TARGET_RLIMIT_LOCKS:
1034         return RLIMIT_LOCKS;
1035     case TARGET_RLIMIT_MEMLOCK:
1036         return RLIMIT_MEMLOCK;
1037     case TARGET_RLIMIT_MSGQUEUE:
1038         return RLIMIT_MSGQUEUE;
1039     case TARGET_RLIMIT_NICE:
1040         return RLIMIT_NICE;
1041     case TARGET_RLIMIT_NOFILE:
1042         return RLIMIT_NOFILE;
1043     case TARGET_RLIMIT_NPROC:
1044         return RLIMIT_NPROC;
1045     case TARGET_RLIMIT_RSS:
1046         return RLIMIT_RSS;
1047     case TARGET_RLIMIT_RTPRIO:
1048         return RLIMIT_RTPRIO;
1049 #ifdef RLIMIT_RTTIME
1050     case TARGET_RLIMIT_RTTIME:
1051         return RLIMIT_RTTIME;
1052 #endif
1053     case TARGET_RLIMIT_SIGPENDING:
1054         return RLIMIT_SIGPENDING;
1055     case TARGET_RLIMIT_STACK:
1056         return RLIMIT_STACK;
1057     default:
1058         return code;
1059     }
1060 }
1061 
1062 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1063                                               abi_ulong target_tv_addr)
1064 {
1065     struct target_timeval *target_tv;
1066 
1067     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1068         return -TARGET_EFAULT;
1069     }
1070 
1071     __get_user(tv->tv_sec, &target_tv->tv_sec);
1072     __get_user(tv->tv_usec, &target_tv->tv_usec);
1073 
1074     unlock_user_struct(target_tv, target_tv_addr, 0);
1075 
1076     return 0;
1077 }
1078 
1079 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1080                                             const struct timeval *tv)
1081 {
1082     struct target_timeval *target_tv;
1083 
1084     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1085         return -TARGET_EFAULT;
1086     }
1087 
1088     __put_user(tv->tv_sec, &target_tv->tv_sec);
1089     __put_user(tv->tv_usec, &target_tv->tv_usec);
1090 
1091     unlock_user_struct(target_tv, target_tv_addr, 1);
1092 
1093     return 0;
1094 }
1095 
1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1097 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1098                                                 abi_ulong target_tv_addr)
1099 {
1100     struct target__kernel_sock_timeval *target_tv;
1101 
1102     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1103         return -TARGET_EFAULT;
1104     }
1105 
1106     __get_user(tv->tv_sec, &target_tv->tv_sec);
1107     __get_user(tv->tv_usec, &target_tv->tv_usec);
1108 
1109     unlock_user_struct(target_tv, target_tv_addr, 0);
1110 
1111     return 0;
1112 }
1113 #endif
1114 
1115 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1116                                               const struct timeval *tv)
1117 {
1118     struct target__kernel_sock_timeval *target_tv;
1119 
1120     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1121         return -TARGET_EFAULT;
1122     }
1123 
1124     __put_user(tv->tv_sec, &target_tv->tv_sec);
1125     __put_user(tv->tv_usec, &target_tv->tv_usec);
1126 
1127     unlock_user_struct(target_tv, target_tv_addr, 1);
1128 
1129     return 0;
1130 }
1131 
1132 #if defined(TARGET_NR_futex) || \
1133     defined(TARGET_NR_rt_sigtimedwait) || \
1134     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1135     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1136     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1137     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1138     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1139     defined(TARGET_NR_timer_settime) || \
1140     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1141 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1142                                                abi_ulong target_addr)
1143 {
1144     struct target_timespec *target_ts;
1145 
1146     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1147         return -TARGET_EFAULT;
1148     }
1149     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1150     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1151     unlock_user_struct(target_ts, target_addr, 0);
1152     return 0;
1153 }
1154 #endif
1155 
1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1157     defined(TARGET_NR_timer_settime64) || \
1158     defined(TARGET_NR_mq_timedsend_time64) || \
1159     defined(TARGET_NR_mq_timedreceive_time64) || \
1160     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1161     defined(TARGET_NR_clock_nanosleep_time64) || \
1162     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1163     defined(TARGET_NR_utimensat) || \
1164     defined(TARGET_NR_utimensat_time64) || \
1165     defined(TARGET_NR_semtimedop_time64) || \
1166     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1167 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1168                                                  abi_ulong target_addr)
1169 {
1170     struct target__kernel_timespec *target_ts;
1171 
1172     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1173         return -TARGET_EFAULT;
1174     }
1175     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1176     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1177     /* in 32bit mode, this drops the padding */
1178     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1179     unlock_user_struct(target_ts, target_addr, 0);
1180     return 0;
1181 }
1182 #endif
1183 
1184 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1185                                                struct timespec *host_ts)
1186 {
1187     struct target_timespec *target_ts;
1188 
1189     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1190         return -TARGET_EFAULT;
1191     }
1192     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1193     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1194     unlock_user_struct(target_ts, target_addr, 1);
1195     return 0;
1196 }
1197 
1198 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1199                                                  struct timespec *host_ts)
1200 {
1201     struct target__kernel_timespec *target_ts;
1202 
1203     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1204         return -TARGET_EFAULT;
1205     }
1206     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1207     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1208     unlock_user_struct(target_ts, target_addr, 1);
1209     return 0;
1210 }
1211 
1212 #if defined(TARGET_NR_gettimeofday)
1213 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1214                                              struct timezone *tz)
1215 {
1216     struct target_timezone *target_tz;
1217 
1218     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1219         return -TARGET_EFAULT;
1220     }
1221 
1222     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1223     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1224 
1225     unlock_user_struct(target_tz, target_tz_addr, 1);
1226 
1227     return 0;
1228 }
1229 #endif
1230 
1231 #if defined(TARGET_NR_settimeofday)
1232 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1233                                                abi_ulong target_tz_addr)
1234 {
1235     struct target_timezone *target_tz;
1236 
1237     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1238         return -TARGET_EFAULT;
1239     }
1240 
1241     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1242     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1243 
1244     unlock_user_struct(target_tz, target_tz_addr, 0);
1245 
1246     return 0;
1247 }
1248 #endif
1249 
1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1251 #include <mqueue.h>
1252 
1253 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1254                                               abi_ulong target_mq_attr_addr)
1255 {
1256     struct target_mq_attr *target_mq_attr;
1257 
1258     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1259                           target_mq_attr_addr, 1))
1260         return -TARGET_EFAULT;
1261 
1262     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1263     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1264     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1265     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1266 
1267     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1268 
1269     return 0;
1270 }
1271 
1272 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1273                                             const struct mq_attr *attr)
1274 {
1275     struct target_mq_attr *target_mq_attr;
1276 
1277     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1278                           target_mq_attr_addr, 0))
1279         return -TARGET_EFAULT;
1280 
1281     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1282     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1283     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1284     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1285 
1286     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1287 
1288     return 0;
1289 }
1290 #endif
1291 
1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1293 /* do_select() must return target values and target errnos. */
1294 static abi_long do_select(int n,
1295                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1296                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1297 {
1298     fd_set rfds, wfds, efds;
1299     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1300     struct timeval tv;
1301     struct timespec ts, *ts_ptr;
1302     abi_long ret;
1303 
1304     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1305     if (ret) {
1306         return ret;
1307     }
1308     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1309     if (ret) {
1310         return ret;
1311     }
1312     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1313     if (ret) {
1314         return ret;
1315     }
1316 
1317     if (target_tv_addr) {
1318         if (copy_from_user_timeval(&tv, target_tv_addr))
1319             return -TARGET_EFAULT;
1320         ts.tv_sec = tv.tv_sec;
1321         ts.tv_nsec = tv.tv_usec * 1000;
1322         ts_ptr = &ts;
1323     } else {
1324         ts_ptr = NULL;
1325     }
1326 
1327     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1328                                   ts_ptr, NULL));
1329 
1330     if (!is_error(ret)) {
1331         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1332             return -TARGET_EFAULT;
1333         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1334             return -TARGET_EFAULT;
1335         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1336             return -TARGET_EFAULT;
1337 
1338         if (target_tv_addr) {
1339             tv.tv_sec = ts.tv_sec;
1340             tv.tv_usec = ts.tv_nsec / 1000;
1341             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1342                 return -TARGET_EFAULT;
1343             }
1344         }
1345     }
1346 
1347     return ret;
1348 }
1349 
1350 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1351 static abi_long do_old_select(abi_ulong arg1)
1352 {
1353     struct target_sel_arg_struct *sel;
1354     abi_ulong inp, outp, exp, tvp;
1355     long nsel;
1356 
1357     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1358         return -TARGET_EFAULT;
1359     }
1360 
1361     nsel = tswapal(sel->n);
1362     inp = tswapal(sel->inp);
1363     outp = tswapal(sel->outp);
1364     exp = tswapal(sel->exp);
1365     tvp = tswapal(sel->tvp);
1366 
1367     unlock_user_struct(sel, arg1, 0);
1368 
1369     return do_select(nsel, inp, outp, exp, tvp);
1370 }
1371 #endif
1372 #endif
1373 
1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1375 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1376                             abi_long arg4, abi_long arg5, abi_long arg6,
1377                             bool time64)
1378 {
1379     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1380     fd_set rfds, wfds, efds;
1381     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1382     struct timespec ts, *ts_ptr;
1383     abi_long ret;
1384 
1385     /*
1386      * The 6th arg is actually two args smashed together,
1387      * so we cannot use the C library.
1388      */
1389     struct {
1390         sigset_t *set;
1391         size_t size;
1392     } sig, *sig_ptr;
1393 
1394     abi_ulong arg_sigset, arg_sigsize, *arg7;
1395 
1396     n = arg1;
1397     rfd_addr = arg2;
1398     wfd_addr = arg3;
1399     efd_addr = arg4;
1400     ts_addr = arg5;
1401 
1402     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1403     if (ret) {
1404         return ret;
1405     }
1406     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1407     if (ret) {
1408         return ret;
1409     }
1410     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1411     if (ret) {
1412         return ret;
1413     }
1414 
1415     /*
1416      * This takes a timespec, and not a timeval, so we cannot
1417      * use the do_select() helper ...
1418      */
1419     if (ts_addr) {
1420         if (time64) {
1421             if (target_to_host_timespec64(&ts, ts_addr)) {
1422                 return -TARGET_EFAULT;
1423             }
1424         } else {
1425             if (target_to_host_timespec(&ts, ts_addr)) {
1426                 return -TARGET_EFAULT;
1427             }
1428         }
1429             ts_ptr = &ts;
1430     } else {
1431         ts_ptr = NULL;
1432     }
1433 
1434     /* Extract the two packed args for the sigset */
1435     sig_ptr = NULL;
1436     if (arg6) {
1437         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1438         if (!arg7) {
1439             return -TARGET_EFAULT;
1440         }
1441         arg_sigset = tswapal(arg7[0]);
1442         arg_sigsize = tswapal(arg7[1]);
1443         unlock_user(arg7, arg6, 0);
1444 
1445         if (arg_sigset) {
1446             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1447             if (ret != 0) {
1448                 return ret;
1449             }
1450             sig_ptr = &sig;
1451             sig.size = SIGSET_T_SIZE;
1452         }
1453     }
1454 
1455     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1456                                   ts_ptr, sig_ptr));
1457 
1458     if (sig_ptr) {
1459         finish_sigsuspend_mask(ret);
1460     }
1461 
1462     if (!is_error(ret)) {
1463         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1464             return -TARGET_EFAULT;
1465         }
1466         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1467             return -TARGET_EFAULT;
1468         }
1469         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1470             return -TARGET_EFAULT;
1471         }
1472         if (time64) {
1473             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1474                 return -TARGET_EFAULT;
1475             }
1476         } else {
1477             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1478                 return -TARGET_EFAULT;
1479             }
1480         }
1481     }
1482     return ret;
1483 }
1484 #endif
1485 
1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1487     defined(TARGET_NR_ppoll_time64)
1488 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1489                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1490 {
1491     struct target_pollfd *target_pfd;
1492     unsigned int nfds = arg2;
1493     struct pollfd *pfd;
1494     unsigned int i;
1495     abi_long ret;
1496 
1497     pfd = NULL;
1498     target_pfd = NULL;
1499     if (nfds) {
1500         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1501             return -TARGET_EINVAL;
1502         }
1503         target_pfd = lock_user(VERIFY_WRITE, arg1,
1504                                sizeof(struct target_pollfd) * nfds, 1);
1505         if (!target_pfd) {
1506             return -TARGET_EFAULT;
1507         }
1508 
1509         pfd = alloca(sizeof(struct pollfd) * nfds);
1510         for (i = 0; i < nfds; i++) {
1511             pfd[i].fd = tswap32(target_pfd[i].fd);
1512             pfd[i].events = tswap16(target_pfd[i].events);
1513         }
1514     }
1515     if (ppoll) {
1516         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1517         sigset_t *set = NULL;
1518 
1519         if (arg3) {
1520             if (time64) {
1521                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1522                     unlock_user(target_pfd, arg1, 0);
1523                     return -TARGET_EFAULT;
1524                 }
1525             } else {
1526                 if (target_to_host_timespec(timeout_ts, arg3)) {
1527                     unlock_user(target_pfd, arg1, 0);
1528                     return -TARGET_EFAULT;
1529                 }
1530             }
1531         } else {
1532             timeout_ts = NULL;
1533         }
1534 
1535         if (arg4) {
1536             ret = process_sigsuspend_mask(&set, arg4, arg5);
1537             if (ret != 0) {
1538                 unlock_user(target_pfd, arg1, 0);
1539                 return ret;
1540             }
1541         }
1542 
1543         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1544                                    set, SIGSET_T_SIZE));
1545 
1546         if (set) {
1547             finish_sigsuspend_mask(ret);
1548         }
1549         if (!is_error(ret) && arg3) {
1550             if (time64) {
1551                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1552                     return -TARGET_EFAULT;
1553                 }
1554             } else {
1555                 if (host_to_target_timespec(arg3, timeout_ts)) {
1556                     return -TARGET_EFAULT;
1557                 }
1558             }
1559         }
1560     } else {
1561           struct timespec ts, *pts;
1562 
1563           if (arg3 >= 0) {
1564               /* Convert ms to secs, ns */
1565               ts.tv_sec = arg3 / 1000;
1566               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1567               pts = &ts;
1568           } else {
1569               /* -ve poll() timeout means "infinite" */
1570               pts = NULL;
1571           }
1572           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1573     }
1574 
1575     if (!is_error(ret)) {
1576         for (i = 0; i < nfds; i++) {
1577             target_pfd[i].revents = tswap16(pfd[i].revents);
1578         }
1579     }
1580     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1581     return ret;
1582 }
1583 #endif
1584 
1585 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1586                         int flags, int is_pipe2)
1587 {
1588     int host_pipe[2];
1589     abi_long ret;
1590     ret = pipe2(host_pipe, flags);
1591 
1592     if (is_error(ret))
1593         return get_errno(ret);
1594 
1595     /* Several targets have special calling conventions for the original
1596        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1597     if (!is_pipe2) {
1598 #if defined(TARGET_ALPHA)
1599         cpu_env->ir[IR_A4] = host_pipe[1];
1600         return host_pipe[0];
1601 #elif defined(TARGET_MIPS)
1602         cpu_env->active_tc.gpr[3] = host_pipe[1];
1603         return host_pipe[0];
1604 #elif defined(TARGET_SH4)
1605         cpu_env->gregs[1] = host_pipe[1];
1606         return host_pipe[0];
1607 #elif defined(TARGET_SPARC)
1608         cpu_env->regwptr[1] = host_pipe[1];
1609         return host_pipe[0];
1610 #endif
1611     }
1612 
1613     if (put_user_s32(host_pipe[0], pipedes)
1614         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1615         return -TARGET_EFAULT;
1616     return get_errno(ret);
1617 }
1618 
1619 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1620                                                abi_ulong target_addr,
1621                                                socklen_t len)
1622 {
1623     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1624     sa_family_t sa_family;
1625     struct target_sockaddr *target_saddr;
1626 
1627     if (fd_trans_target_to_host_addr(fd)) {
1628         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1629     }
1630 
1631     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1632     if (!target_saddr)
1633         return -TARGET_EFAULT;
1634 
1635     sa_family = tswap16(target_saddr->sa_family);
1636 
1637     /* Oops. The caller might send a incomplete sun_path; sun_path
1638      * must be terminated by \0 (see the manual page), but
1639      * unfortunately it is quite common to specify sockaddr_un
1640      * length as "strlen(x->sun_path)" while it should be
1641      * "strlen(...) + 1". We'll fix that here if needed.
1642      * Linux kernel has a similar feature.
1643      */
1644 
1645     if (sa_family == AF_UNIX) {
1646         if (len < unix_maxlen && len > 0) {
1647             char *cp = (char*)target_saddr;
1648 
1649             if ( cp[len-1] && !cp[len] )
1650                 len++;
1651         }
1652         if (len > unix_maxlen)
1653             len = unix_maxlen;
1654     }
1655 
1656     memcpy(addr, target_saddr, len);
1657     addr->sa_family = sa_family;
1658     if (sa_family == AF_NETLINK) {
1659         struct sockaddr_nl *nladdr;
1660 
1661         nladdr = (struct sockaddr_nl *)addr;
1662         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1663         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1664     } else if (sa_family == AF_PACKET) {
1665 	struct target_sockaddr_ll *lladdr;
1666 
1667 	lladdr = (struct target_sockaddr_ll *)addr;
1668 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1669 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1670     } else if (sa_family == AF_INET6) {
1671         struct sockaddr_in6 *in6addr;
1672 
1673         in6addr = (struct sockaddr_in6 *)addr;
1674         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1675     }
1676     unlock_user(target_saddr, target_addr, 0);
1677 
1678     return 0;
1679 }
1680 
1681 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1682                                                struct sockaddr *addr,
1683                                                socklen_t len)
1684 {
1685     struct target_sockaddr *target_saddr;
1686 
1687     if (len == 0) {
1688         return 0;
1689     }
1690     assert(addr);
1691 
1692     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1693     if (!target_saddr)
1694         return -TARGET_EFAULT;
1695     memcpy(target_saddr, addr, len);
1696     if (len >= offsetof(struct target_sockaddr, sa_family) +
1697         sizeof(target_saddr->sa_family)) {
1698         target_saddr->sa_family = tswap16(addr->sa_family);
1699     }
1700     if (addr->sa_family == AF_NETLINK &&
1701         len >= sizeof(struct target_sockaddr_nl)) {
1702         struct target_sockaddr_nl *target_nl =
1703                (struct target_sockaddr_nl *)target_saddr;
1704         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1705         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1706     } else if (addr->sa_family == AF_PACKET) {
1707         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1708         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1709         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1710     } else if (addr->sa_family == AF_INET6 &&
1711                len >= sizeof(struct target_sockaddr_in6)) {
1712         struct target_sockaddr_in6 *target_in6 =
1713                (struct target_sockaddr_in6 *)target_saddr;
1714         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1715     }
1716     unlock_user(target_saddr, target_addr, len);
1717 
1718     return 0;
1719 }
1720 
1721 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1722                                            struct target_msghdr *target_msgh)
1723 {
1724     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1725     abi_long msg_controllen;
1726     abi_ulong target_cmsg_addr;
1727     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1728     socklen_t space = 0;
1729 
1730     msg_controllen = tswapal(target_msgh->msg_controllen);
1731     if (msg_controllen < sizeof (struct target_cmsghdr))
1732         goto the_end;
1733     target_cmsg_addr = tswapal(target_msgh->msg_control);
1734     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1735     target_cmsg_start = target_cmsg;
1736     if (!target_cmsg)
1737         return -TARGET_EFAULT;
1738 
1739     while (cmsg && target_cmsg) {
1740         void *data = CMSG_DATA(cmsg);
1741         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1742 
1743         int len = tswapal(target_cmsg->cmsg_len)
1744             - sizeof(struct target_cmsghdr);
1745 
1746         space += CMSG_SPACE(len);
1747         if (space > msgh->msg_controllen) {
1748             space -= CMSG_SPACE(len);
1749             /* This is a QEMU bug, since we allocated the payload
1750              * area ourselves (unlike overflow in host-to-target
1751              * conversion, which is just the guest giving us a buffer
1752              * that's too small). It can't happen for the payload types
1753              * we currently support; if it becomes an issue in future
1754              * we would need to improve our allocation strategy to
1755              * something more intelligent than "twice the size of the
1756              * target buffer we're reading from".
1757              */
1758             qemu_log_mask(LOG_UNIMP,
1759                           ("Unsupported ancillary data %d/%d: "
1760                            "unhandled msg size\n"),
1761                           tswap32(target_cmsg->cmsg_level),
1762                           tswap32(target_cmsg->cmsg_type));
1763             break;
1764         }
1765 
1766         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1767             cmsg->cmsg_level = SOL_SOCKET;
1768         } else {
1769             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1770         }
1771         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1772         cmsg->cmsg_len = CMSG_LEN(len);
1773 
1774         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1775             int *fd = (int *)data;
1776             int *target_fd = (int *)target_data;
1777             int i, numfds = len / sizeof(int);
1778 
1779             for (i = 0; i < numfds; i++) {
1780                 __get_user(fd[i], target_fd + i);
1781             }
1782         } else if (cmsg->cmsg_level == SOL_SOCKET
1783                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1784             struct ucred *cred = (struct ucred *)data;
1785             struct target_ucred *target_cred =
1786                 (struct target_ucred *)target_data;
1787 
1788             __get_user(cred->pid, &target_cred->pid);
1789             __get_user(cred->uid, &target_cred->uid);
1790             __get_user(cred->gid, &target_cred->gid);
1791         } else if (cmsg->cmsg_level == SOL_ALG) {
1792             uint32_t *dst = (uint32_t *)data;
1793 
1794             memcpy(dst, target_data, len);
1795             /* fix endianness of first 32-bit word */
1796             if (len >= sizeof(uint32_t)) {
1797                 *dst = tswap32(*dst);
1798             }
1799         } else {
1800             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1801                           cmsg->cmsg_level, cmsg->cmsg_type);
1802             memcpy(data, target_data, len);
1803         }
1804 
1805         cmsg = CMSG_NXTHDR(msgh, cmsg);
1806         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1807                                          target_cmsg_start);
1808     }
1809     unlock_user(target_cmsg, target_cmsg_addr, 0);
1810  the_end:
1811     msgh->msg_controllen = space;
1812     return 0;
1813 }
1814 
1815 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1816                                            struct msghdr *msgh)
1817 {
1818     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1819     abi_long msg_controllen;
1820     abi_ulong target_cmsg_addr;
1821     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1822     socklen_t space = 0;
1823 
1824     msg_controllen = tswapal(target_msgh->msg_controllen);
1825     if (msg_controllen < sizeof (struct target_cmsghdr))
1826         goto the_end;
1827     target_cmsg_addr = tswapal(target_msgh->msg_control);
1828     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1829     target_cmsg_start = target_cmsg;
1830     if (!target_cmsg)
1831         return -TARGET_EFAULT;
1832 
1833     while (cmsg && target_cmsg) {
1834         void *data = CMSG_DATA(cmsg);
1835         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1836 
1837         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1838         int tgt_len, tgt_space;
1839 
1840         /* We never copy a half-header but may copy half-data;
1841          * this is Linux's behaviour in put_cmsg(). Note that
1842          * truncation here is a guest problem (which we report
1843          * to the guest via the CTRUNC bit), unlike truncation
1844          * in target_to_host_cmsg, which is a QEMU bug.
1845          */
1846         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1847             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1848             break;
1849         }
1850 
1851         if (cmsg->cmsg_level == SOL_SOCKET) {
1852             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1853         } else {
1854             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1855         }
1856         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1857 
1858         /* Payload types which need a different size of payload on
1859          * the target must adjust tgt_len here.
1860          */
1861         tgt_len = len;
1862         switch (cmsg->cmsg_level) {
1863         case SOL_SOCKET:
1864             switch (cmsg->cmsg_type) {
1865             case SO_TIMESTAMP:
1866                 tgt_len = sizeof(struct target_timeval);
1867                 break;
1868             default:
1869                 break;
1870             }
1871             break;
1872         default:
1873             break;
1874         }
1875 
1876         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1877             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1878             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1879         }
1880 
1881         /* We must now copy-and-convert len bytes of payload
1882          * into tgt_len bytes of destination space. Bear in mind
1883          * that in both source and destination we may be dealing
1884          * with a truncated value!
1885          */
1886         switch (cmsg->cmsg_level) {
1887         case SOL_SOCKET:
1888             switch (cmsg->cmsg_type) {
1889             case SCM_RIGHTS:
1890             {
1891                 int *fd = (int *)data;
1892                 int *target_fd = (int *)target_data;
1893                 int i, numfds = tgt_len / sizeof(int);
1894 
1895                 for (i = 0; i < numfds; i++) {
1896                     __put_user(fd[i], target_fd + i);
1897                 }
1898                 break;
1899             }
1900             case SO_TIMESTAMP:
1901             {
1902                 struct timeval *tv = (struct timeval *)data;
1903                 struct target_timeval *target_tv =
1904                     (struct target_timeval *)target_data;
1905 
1906                 if (len != sizeof(struct timeval) ||
1907                     tgt_len != sizeof(struct target_timeval)) {
1908                     goto unimplemented;
1909                 }
1910 
1911                 /* copy struct timeval to target */
1912                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1913                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1914                 break;
1915             }
1916             case SCM_CREDENTIALS:
1917             {
1918                 struct ucred *cred = (struct ucred *)data;
1919                 struct target_ucred *target_cred =
1920                     (struct target_ucred *)target_data;
1921 
1922                 __put_user(cred->pid, &target_cred->pid);
1923                 __put_user(cred->uid, &target_cred->uid);
1924                 __put_user(cred->gid, &target_cred->gid);
1925                 break;
1926             }
1927             default:
1928                 goto unimplemented;
1929             }
1930             break;
1931 
1932         case SOL_IP:
1933             switch (cmsg->cmsg_type) {
1934             case IP_TTL:
1935             {
1936                 uint32_t *v = (uint32_t *)data;
1937                 uint32_t *t_int = (uint32_t *)target_data;
1938 
1939                 if (len != sizeof(uint32_t) ||
1940                     tgt_len != sizeof(uint32_t)) {
1941                     goto unimplemented;
1942                 }
1943                 __put_user(*v, t_int);
1944                 break;
1945             }
1946             case IP_RECVERR:
1947             {
1948                 struct errhdr_t {
1949                    struct sock_extended_err ee;
1950                    struct sockaddr_in offender;
1951                 };
1952                 struct errhdr_t *errh = (struct errhdr_t *)data;
1953                 struct errhdr_t *target_errh =
1954                     (struct errhdr_t *)target_data;
1955 
1956                 if (len != sizeof(struct errhdr_t) ||
1957                     tgt_len != sizeof(struct errhdr_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1961                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1962                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1963                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1964                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1965                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1966                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1967                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1968                     (void *) &errh->offender, sizeof(errh->offender));
1969                 break;
1970             }
1971             default:
1972                 goto unimplemented;
1973             }
1974             break;
1975 
1976         case SOL_IPV6:
1977             switch (cmsg->cmsg_type) {
1978             case IPV6_HOPLIMIT:
1979             {
1980                 uint32_t *v = (uint32_t *)data;
1981                 uint32_t *t_int = (uint32_t *)target_data;
1982 
1983                 if (len != sizeof(uint32_t) ||
1984                     tgt_len != sizeof(uint32_t)) {
1985                     goto unimplemented;
1986                 }
1987                 __put_user(*v, t_int);
1988                 break;
1989             }
1990             case IPV6_RECVERR:
1991             {
1992                 struct errhdr6_t {
1993                    struct sock_extended_err ee;
1994                    struct sockaddr_in6 offender;
1995                 };
1996                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1997                 struct errhdr6_t *target_errh =
1998                     (struct errhdr6_t *)target_data;
1999 
2000                 if (len != sizeof(struct errhdr6_t) ||
2001                     tgt_len != sizeof(struct errhdr6_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2005                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2006                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2007                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2008                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2009                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2010                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2011                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2012                     (void *) &errh->offender, sizeof(errh->offender));
2013                 break;
2014             }
2015             default:
2016                 goto unimplemented;
2017             }
2018             break;
2019 
2020         default:
2021         unimplemented:
2022             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2023                           cmsg->cmsg_level, cmsg->cmsg_type);
2024             memcpy(target_data, data, MIN(len, tgt_len));
2025             if (tgt_len > len) {
2026                 memset(target_data + len, 0, tgt_len - len);
2027             }
2028         }
2029 
2030         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2031         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2032         if (msg_controllen < tgt_space) {
2033             tgt_space = msg_controllen;
2034         }
2035         msg_controllen -= tgt_space;
2036         space += tgt_space;
2037         cmsg = CMSG_NXTHDR(msgh, cmsg);
2038         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2039                                          target_cmsg_start);
2040     }
2041     unlock_user(target_cmsg, target_cmsg_addr, space);
2042  the_end:
2043     target_msgh->msg_controllen = tswapal(space);
2044     return 0;
2045 }
2046 
2047 /* do_setsockopt() Must return target values and target errnos. */
2048 static abi_long do_setsockopt(int sockfd, int level, int optname,
2049                               abi_ulong optval_addr, socklen_t optlen)
2050 {
2051     abi_long ret;
2052     int val;
2053 
2054     switch(level) {
2055     case SOL_TCP:
2056     case SOL_UDP:
2057         /* TCP and UDP options all take an 'int' value.  */
2058         if (optlen < sizeof(uint32_t))
2059             return -TARGET_EINVAL;
2060 
2061         if (get_user_u32(val, optval_addr))
2062             return -TARGET_EFAULT;
2063         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2064         break;
2065     case SOL_IP:
2066         switch(optname) {
2067         case IP_TOS:
2068         case IP_TTL:
2069         case IP_HDRINCL:
2070         case IP_ROUTER_ALERT:
2071         case IP_RECVOPTS:
2072         case IP_RETOPTS:
2073         case IP_PKTINFO:
2074         case IP_MTU_DISCOVER:
2075         case IP_RECVERR:
2076         case IP_RECVTTL:
2077         case IP_RECVTOS:
2078 #ifdef IP_FREEBIND
2079         case IP_FREEBIND:
2080 #endif
2081         case IP_MULTICAST_TTL:
2082         case IP_MULTICAST_LOOP:
2083             val = 0;
2084             if (optlen >= sizeof(uint32_t)) {
2085                 if (get_user_u32(val, optval_addr))
2086                     return -TARGET_EFAULT;
2087             } else if (optlen >= 1) {
2088                 if (get_user_u8(val, optval_addr))
2089                     return -TARGET_EFAULT;
2090             }
2091             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2092             break;
2093         case IP_ADD_MEMBERSHIP:
2094         case IP_DROP_MEMBERSHIP:
2095         {
2096             struct ip_mreqn ip_mreq;
2097             struct target_ip_mreqn *target_smreqn;
2098 
2099             QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq) !=
2100                               sizeof(struct target_ip_mreq));
2101 
2102             if (optlen < sizeof (struct target_ip_mreq) ||
2103                 optlen > sizeof (struct target_ip_mreqn)) {
2104                 return -TARGET_EINVAL;
2105             }
2106 
2107             target_smreqn = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2108             if (!target_smreqn) {
2109                 return -TARGET_EFAULT;
2110             }
2111             ip_mreq.imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
2112             ip_mreq.imr_address.s_addr = target_smreqn->imr_address.s_addr;
2113             if (optlen == sizeof(struct target_ip_mreqn)) {
2114                 ip_mreq.imr_ifindex = tswapal(target_smreqn->imr_ifindex);
2115                 optlen = sizeof(struct ip_mreqn);
2116             }
2117             unlock_user(target_smreqn, optval_addr, 0);
2118 
2119             ret = get_errno(setsockopt(sockfd, level, optname, &ip_mreq, optlen));
2120             break;
2121         }
2122         case IP_BLOCK_SOURCE:
2123         case IP_UNBLOCK_SOURCE:
2124         case IP_ADD_SOURCE_MEMBERSHIP:
2125         case IP_DROP_SOURCE_MEMBERSHIP:
2126         {
2127             struct ip_mreq_source *ip_mreq_source;
2128 
2129             if (optlen != sizeof (struct target_ip_mreq_source))
2130                 return -TARGET_EINVAL;
2131 
2132             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2133             if (!ip_mreq_source) {
2134                 return -TARGET_EFAULT;
2135             }
2136             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2137             unlock_user (ip_mreq_source, optval_addr, 0);
2138             break;
2139         }
2140         default:
2141             goto unimplemented;
2142         }
2143         break;
2144     case SOL_IPV6:
2145         switch (optname) {
2146         case IPV6_MTU_DISCOVER:
2147         case IPV6_MTU:
2148         case IPV6_V6ONLY:
2149         case IPV6_RECVPKTINFO:
2150         case IPV6_UNICAST_HOPS:
2151         case IPV6_MULTICAST_HOPS:
2152         case IPV6_MULTICAST_LOOP:
2153         case IPV6_RECVERR:
2154         case IPV6_RECVHOPLIMIT:
2155         case IPV6_2292HOPLIMIT:
2156         case IPV6_CHECKSUM:
2157         case IPV6_ADDRFORM:
2158         case IPV6_2292PKTINFO:
2159         case IPV6_RECVTCLASS:
2160         case IPV6_RECVRTHDR:
2161         case IPV6_2292RTHDR:
2162         case IPV6_RECVHOPOPTS:
2163         case IPV6_2292HOPOPTS:
2164         case IPV6_RECVDSTOPTS:
2165         case IPV6_2292DSTOPTS:
2166         case IPV6_TCLASS:
2167         case IPV6_ADDR_PREFERENCES:
2168 #ifdef IPV6_RECVPATHMTU
2169         case IPV6_RECVPATHMTU:
2170 #endif
2171 #ifdef IPV6_TRANSPARENT
2172         case IPV6_TRANSPARENT:
2173 #endif
2174 #ifdef IPV6_FREEBIND
2175         case IPV6_FREEBIND:
2176 #endif
2177 #ifdef IPV6_RECVORIGDSTADDR
2178         case IPV6_RECVORIGDSTADDR:
2179 #endif
2180             val = 0;
2181             if (optlen < sizeof(uint32_t)) {
2182                 return -TARGET_EINVAL;
2183             }
2184             if (get_user_u32(val, optval_addr)) {
2185                 return -TARGET_EFAULT;
2186             }
2187             ret = get_errno(setsockopt(sockfd, level, optname,
2188                                        &val, sizeof(val)));
2189             break;
2190         case IPV6_PKTINFO:
2191         {
2192             struct in6_pktinfo pki;
2193 
2194             if (optlen < sizeof(pki)) {
2195                 return -TARGET_EINVAL;
2196             }
2197 
2198             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2199                 return -TARGET_EFAULT;
2200             }
2201 
2202             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2203 
2204             ret = get_errno(setsockopt(sockfd, level, optname,
2205                                        &pki, sizeof(pki)));
2206             break;
2207         }
2208         case IPV6_ADD_MEMBERSHIP:
2209         case IPV6_DROP_MEMBERSHIP:
2210         {
2211             struct ipv6_mreq ipv6mreq;
2212 
2213             if (optlen < sizeof(ipv6mreq)) {
2214                 return -TARGET_EINVAL;
2215             }
2216 
2217             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2218                 return -TARGET_EFAULT;
2219             }
2220 
2221             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2222 
2223             ret = get_errno(setsockopt(sockfd, level, optname,
2224                                        &ipv6mreq, sizeof(ipv6mreq)));
2225             break;
2226         }
2227         default:
2228             goto unimplemented;
2229         }
2230         break;
2231     case SOL_ICMPV6:
2232         switch (optname) {
2233         case ICMPV6_FILTER:
2234         {
2235             struct icmp6_filter icmp6f;
2236 
2237             if (optlen > sizeof(icmp6f)) {
2238                 optlen = sizeof(icmp6f);
2239             }
2240 
2241             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2242                 return -TARGET_EFAULT;
2243             }
2244 
2245             for (val = 0; val < 8; val++) {
2246                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2247             }
2248 
2249             ret = get_errno(setsockopt(sockfd, level, optname,
2250                                        &icmp6f, optlen));
2251             break;
2252         }
2253         default:
2254             goto unimplemented;
2255         }
2256         break;
2257     case SOL_RAW:
2258         switch (optname) {
2259         case ICMP_FILTER:
2260         case IPV6_CHECKSUM:
2261             /* those take an u32 value */
2262             if (optlen < sizeof(uint32_t)) {
2263                 return -TARGET_EINVAL;
2264             }
2265 
2266             if (get_user_u32(val, optval_addr)) {
2267                 return -TARGET_EFAULT;
2268             }
2269             ret = get_errno(setsockopt(sockfd, level, optname,
2270                                        &val, sizeof(val)));
2271             break;
2272 
2273         default:
2274             goto unimplemented;
2275         }
2276         break;
2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2278     case SOL_ALG:
2279         switch (optname) {
2280         case ALG_SET_KEY:
2281         {
2282             char *alg_key = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2283             if (!alg_key) {
2284                 return -TARGET_EFAULT;
2285             }
2286             ret = get_errno(setsockopt(sockfd, level, optname,
2287                                        alg_key, optlen));
2288             unlock_user(alg_key, optval_addr, optlen);
2289             break;
2290         }
2291         case ALG_SET_AEAD_AUTHSIZE:
2292         {
2293             ret = get_errno(setsockopt(sockfd, level, optname,
2294                                        NULL, optlen));
2295             break;
2296         }
2297         default:
2298             goto unimplemented;
2299         }
2300         break;
2301 #endif
2302     case TARGET_SOL_SOCKET:
2303         switch (optname) {
2304         case TARGET_SO_RCVTIMEO:
2305         case TARGET_SO_SNDTIMEO:
2306         {
2307                 struct timeval tv;
2308 
2309                 if (optlen != sizeof(struct target_timeval)) {
2310                     return -TARGET_EINVAL;
2311                 }
2312 
2313                 if (copy_from_user_timeval(&tv, optval_addr)) {
2314                     return -TARGET_EFAULT;
2315                 }
2316 
2317                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2318                                 optname == TARGET_SO_RCVTIMEO ?
2319                                     SO_RCVTIMEO : SO_SNDTIMEO,
2320                                 &tv, sizeof(tv)));
2321                 return ret;
2322         }
2323         case TARGET_SO_ATTACH_FILTER:
2324         {
2325                 struct target_sock_fprog *tfprog;
2326                 struct target_sock_filter *tfilter;
2327                 struct sock_fprog fprog;
2328                 struct sock_filter *filter;
2329                 int i;
2330 
2331                 if (optlen != sizeof(*tfprog)) {
2332                     return -TARGET_EINVAL;
2333                 }
2334                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2335                     return -TARGET_EFAULT;
2336                 }
2337                 if (!lock_user_struct(VERIFY_READ, tfilter,
2338                                       tswapal(tfprog->filter), 0)) {
2339                     unlock_user_struct(tfprog, optval_addr, 1);
2340                     return -TARGET_EFAULT;
2341                 }
2342 
2343                 fprog.len = tswap16(tfprog->len);
2344                 filter = g_try_new(struct sock_filter, fprog.len);
2345                 if (filter == NULL) {
2346                     unlock_user_struct(tfilter, tfprog->filter, 1);
2347                     unlock_user_struct(tfprog, optval_addr, 1);
2348                     return -TARGET_ENOMEM;
2349                 }
2350                 for (i = 0; i < fprog.len; i++) {
2351                     filter[i].code = tswap16(tfilter[i].code);
2352                     filter[i].jt = tfilter[i].jt;
2353                     filter[i].jf = tfilter[i].jf;
2354                     filter[i].k = tswap32(tfilter[i].k);
2355                 }
2356                 fprog.filter = filter;
2357 
2358                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2359                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2360                 g_free(filter);
2361 
2362                 unlock_user_struct(tfilter, tfprog->filter, 1);
2363                 unlock_user_struct(tfprog, optval_addr, 1);
2364                 return ret;
2365         }
2366 	case TARGET_SO_BINDTODEVICE:
2367 	{
2368 		char *dev_ifname, *addr_ifname;
2369 
2370 		if (optlen > IFNAMSIZ - 1) {
2371 		    optlen = IFNAMSIZ - 1;
2372 		}
2373 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2374 		if (!dev_ifname) {
2375 		    return -TARGET_EFAULT;
2376 		}
2377 		optname = SO_BINDTODEVICE;
2378 		addr_ifname = alloca(IFNAMSIZ);
2379 		memcpy(addr_ifname, dev_ifname, optlen);
2380 		addr_ifname[optlen] = 0;
2381 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2382                                            addr_ifname, optlen));
2383 		unlock_user (dev_ifname, optval_addr, 0);
2384 		return ret;
2385 	}
2386         case TARGET_SO_LINGER:
2387         {
2388                 struct linger lg;
2389                 struct target_linger *tlg;
2390 
2391                 if (optlen != sizeof(struct target_linger)) {
2392                     return -TARGET_EINVAL;
2393                 }
2394                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2395                     return -TARGET_EFAULT;
2396                 }
2397                 __get_user(lg.l_onoff, &tlg->l_onoff);
2398                 __get_user(lg.l_linger, &tlg->l_linger);
2399                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2400                                 &lg, sizeof(lg)));
2401                 unlock_user_struct(tlg, optval_addr, 0);
2402                 return ret;
2403         }
2404             /* Options with 'int' argument.  */
2405         case TARGET_SO_DEBUG:
2406 		optname = SO_DEBUG;
2407 		break;
2408         case TARGET_SO_REUSEADDR:
2409 		optname = SO_REUSEADDR;
2410 		break;
2411 #ifdef SO_REUSEPORT
2412         case TARGET_SO_REUSEPORT:
2413                 optname = SO_REUSEPORT;
2414                 break;
2415 #endif
2416         case TARGET_SO_TYPE:
2417 		optname = SO_TYPE;
2418 		break;
2419         case TARGET_SO_ERROR:
2420 		optname = SO_ERROR;
2421 		break;
2422         case TARGET_SO_DONTROUTE:
2423 		optname = SO_DONTROUTE;
2424 		break;
2425         case TARGET_SO_BROADCAST:
2426 		optname = SO_BROADCAST;
2427 		break;
2428         case TARGET_SO_SNDBUF:
2429 		optname = SO_SNDBUF;
2430 		break;
2431         case TARGET_SO_SNDBUFFORCE:
2432                 optname = SO_SNDBUFFORCE;
2433                 break;
2434         case TARGET_SO_RCVBUF:
2435 		optname = SO_RCVBUF;
2436 		break;
2437         case TARGET_SO_RCVBUFFORCE:
2438                 optname = SO_RCVBUFFORCE;
2439                 break;
2440         case TARGET_SO_KEEPALIVE:
2441 		optname = SO_KEEPALIVE;
2442 		break;
2443         case TARGET_SO_OOBINLINE:
2444 		optname = SO_OOBINLINE;
2445 		break;
2446         case TARGET_SO_NO_CHECK:
2447 		optname = SO_NO_CHECK;
2448 		break;
2449         case TARGET_SO_PRIORITY:
2450 		optname = SO_PRIORITY;
2451 		break;
2452 #ifdef SO_BSDCOMPAT
2453         case TARGET_SO_BSDCOMPAT:
2454 		optname = SO_BSDCOMPAT;
2455 		break;
2456 #endif
2457         case TARGET_SO_PASSCRED:
2458 		optname = SO_PASSCRED;
2459 		break;
2460         case TARGET_SO_PASSSEC:
2461                 optname = SO_PASSSEC;
2462                 break;
2463         case TARGET_SO_TIMESTAMP:
2464 		optname = SO_TIMESTAMP;
2465 		break;
2466         case TARGET_SO_RCVLOWAT:
2467 		optname = SO_RCVLOWAT;
2468 		break;
2469         default:
2470             goto unimplemented;
2471         }
2472 	if (optlen < sizeof(uint32_t))
2473             return -TARGET_EINVAL;
2474 
2475 	if (get_user_u32(val, optval_addr))
2476             return -TARGET_EFAULT;
2477 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2478         break;
2479 #ifdef SOL_NETLINK
2480     case SOL_NETLINK:
2481         switch (optname) {
2482         case NETLINK_PKTINFO:
2483         case NETLINK_ADD_MEMBERSHIP:
2484         case NETLINK_DROP_MEMBERSHIP:
2485         case NETLINK_BROADCAST_ERROR:
2486         case NETLINK_NO_ENOBUFS:
2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2488         case NETLINK_LISTEN_ALL_NSID:
2489         case NETLINK_CAP_ACK:
2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2492         case NETLINK_EXT_ACK:
2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2495         case NETLINK_GET_STRICT_CHK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2497             break;
2498         default:
2499             goto unimplemented;
2500         }
2501         val = 0;
2502         if (optlen < sizeof(uint32_t)) {
2503             return -TARGET_EINVAL;
2504         }
2505         if (get_user_u32(val, optval_addr)) {
2506             return -TARGET_EFAULT;
2507         }
2508         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2509                                    sizeof(val)));
2510         break;
2511 #endif /* SOL_NETLINK */
2512     default:
2513     unimplemented:
2514         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2515                       level, optname);
2516         ret = -TARGET_ENOPROTOOPT;
2517     }
2518     return ret;
2519 }
2520 
2521 /* do_getsockopt() Must return target values and target errnos. */
2522 static abi_long do_getsockopt(int sockfd, int level, int optname,
2523                               abi_ulong optval_addr, abi_ulong optlen)
2524 {
2525     abi_long ret;
2526     int len, val;
2527     socklen_t lv;
2528 
2529     switch(level) {
2530     case TARGET_SOL_SOCKET:
2531         level = SOL_SOCKET;
2532         switch (optname) {
2533         /* These don't just return a single integer */
2534         case TARGET_SO_PEERNAME:
2535             goto unimplemented;
2536         case TARGET_SO_RCVTIMEO: {
2537             struct timeval tv;
2538             socklen_t tvlen;
2539 
2540             optname = SO_RCVTIMEO;
2541 
2542 get_timeout:
2543             if (get_user_u32(len, optlen)) {
2544                 return -TARGET_EFAULT;
2545             }
2546             if (len < 0) {
2547                 return -TARGET_EINVAL;
2548             }
2549 
2550             tvlen = sizeof(tv);
2551             ret = get_errno(getsockopt(sockfd, level, optname,
2552                                        &tv, &tvlen));
2553             if (ret < 0) {
2554                 return ret;
2555             }
2556             if (len > sizeof(struct target_timeval)) {
2557                 len = sizeof(struct target_timeval);
2558             }
2559             if (copy_to_user_timeval(optval_addr, &tv)) {
2560                 return -TARGET_EFAULT;
2561             }
2562             if (put_user_u32(len, optlen)) {
2563                 return -TARGET_EFAULT;
2564             }
2565             break;
2566         }
2567         case TARGET_SO_SNDTIMEO:
2568             optname = SO_SNDTIMEO;
2569             goto get_timeout;
2570         case TARGET_SO_PEERCRED: {
2571             struct ucred cr;
2572             socklen_t crlen;
2573             struct target_ucred *tcr;
2574 
2575             if (get_user_u32(len, optlen)) {
2576                 return -TARGET_EFAULT;
2577             }
2578             if (len < 0) {
2579                 return -TARGET_EINVAL;
2580             }
2581 
2582             crlen = sizeof(cr);
2583             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2584                                        &cr, &crlen));
2585             if (ret < 0) {
2586                 return ret;
2587             }
2588             if (len > crlen) {
2589                 len = crlen;
2590             }
2591             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2592                 return -TARGET_EFAULT;
2593             }
2594             __put_user(cr.pid, &tcr->pid);
2595             __put_user(cr.uid, &tcr->uid);
2596             __put_user(cr.gid, &tcr->gid);
2597             unlock_user_struct(tcr, optval_addr, 1);
2598             if (put_user_u32(len, optlen)) {
2599                 return -TARGET_EFAULT;
2600             }
2601             break;
2602         }
2603         case TARGET_SO_PEERSEC: {
2604             char *name;
2605 
2606             if (get_user_u32(len, optlen)) {
2607                 return -TARGET_EFAULT;
2608             }
2609             if (len < 0) {
2610                 return -TARGET_EINVAL;
2611             }
2612             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2613             if (!name) {
2614                 return -TARGET_EFAULT;
2615             }
2616             lv = len;
2617             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2618                                        name, &lv));
2619             if (put_user_u32(lv, optlen)) {
2620                 ret = -TARGET_EFAULT;
2621             }
2622             unlock_user(name, optval_addr, lv);
2623             break;
2624         }
2625         case TARGET_SO_LINGER:
2626         {
2627             struct linger lg;
2628             socklen_t lglen;
2629             struct target_linger *tlg;
2630 
2631             if (get_user_u32(len, optlen)) {
2632                 return -TARGET_EFAULT;
2633             }
2634             if (len < 0) {
2635                 return -TARGET_EINVAL;
2636             }
2637 
2638             lglen = sizeof(lg);
2639             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2640                                        &lg, &lglen));
2641             if (ret < 0) {
2642                 return ret;
2643             }
2644             if (len > lglen) {
2645                 len = lglen;
2646             }
2647             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2648                 return -TARGET_EFAULT;
2649             }
2650             __put_user(lg.l_onoff, &tlg->l_onoff);
2651             __put_user(lg.l_linger, &tlg->l_linger);
2652             unlock_user_struct(tlg, optval_addr, 1);
2653             if (put_user_u32(len, optlen)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             break;
2657         }
2658         /* Options with 'int' argument.  */
2659         case TARGET_SO_DEBUG:
2660             optname = SO_DEBUG;
2661             goto int_case;
2662         case TARGET_SO_REUSEADDR:
2663             optname = SO_REUSEADDR;
2664             goto int_case;
2665 #ifdef SO_REUSEPORT
2666         case TARGET_SO_REUSEPORT:
2667             optname = SO_REUSEPORT;
2668             goto int_case;
2669 #endif
2670         case TARGET_SO_TYPE:
2671             optname = SO_TYPE;
2672             goto int_case;
2673         case TARGET_SO_ERROR:
2674             optname = SO_ERROR;
2675             goto int_case;
2676         case TARGET_SO_DONTROUTE:
2677             optname = SO_DONTROUTE;
2678             goto int_case;
2679         case TARGET_SO_BROADCAST:
2680             optname = SO_BROADCAST;
2681             goto int_case;
2682         case TARGET_SO_SNDBUF:
2683             optname = SO_SNDBUF;
2684             goto int_case;
2685         case TARGET_SO_RCVBUF:
2686             optname = SO_RCVBUF;
2687             goto int_case;
2688         case TARGET_SO_KEEPALIVE:
2689             optname = SO_KEEPALIVE;
2690             goto int_case;
2691         case TARGET_SO_OOBINLINE:
2692             optname = SO_OOBINLINE;
2693             goto int_case;
2694         case TARGET_SO_NO_CHECK:
2695             optname = SO_NO_CHECK;
2696             goto int_case;
2697         case TARGET_SO_PRIORITY:
2698             optname = SO_PRIORITY;
2699             goto int_case;
2700 #ifdef SO_BSDCOMPAT
2701         case TARGET_SO_BSDCOMPAT:
2702             optname = SO_BSDCOMPAT;
2703             goto int_case;
2704 #endif
2705         case TARGET_SO_PASSCRED:
2706             optname = SO_PASSCRED;
2707             goto int_case;
2708         case TARGET_SO_TIMESTAMP:
2709             optname = SO_TIMESTAMP;
2710             goto int_case;
2711         case TARGET_SO_RCVLOWAT:
2712             optname = SO_RCVLOWAT;
2713             goto int_case;
2714         case TARGET_SO_ACCEPTCONN:
2715             optname = SO_ACCEPTCONN;
2716             goto int_case;
2717         case TARGET_SO_PROTOCOL:
2718             optname = SO_PROTOCOL;
2719             goto int_case;
2720         case TARGET_SO_DOMAIN:
2721             optname = SO_DOMAIN;
2722             goto int_case;
2723         default:
2724             goto int_case;
2725         }
2726         break;
2727     case SOL_TCP:
2728     case SOL_UDP:
2729         /* TCP and UDP options all take an 'int' value.  */
2730     int_case:
2731         if (get_user_u32(len, optlen))
2732             return -TARGET_EFAULT;
2733         if (len < 0)
2734             return -TARGET_EINVAL;
2735         lv = sizeof(lv);
2736         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2737         if (ret < 0)
2738             return ret;
2739         switch (optname) {
2740         case SO_TYPE:
2741             val = host_to_target_sock_type(val);
2742             break;
2743         case SO_ERROR:
2744             val = host_to_target_errno(val);
2745             break;
2746         }
2747         if (len > lv)
2748             len = lv;
2749         if (len == 4) {
2750             if (put_user_u32(val, optval_addr))
2751                 return -TARGET_EFAULT;
2752         } else {
2753             if (put_user_u8(val, optval_addr))
2754                 return -TARGET_EFAULT;
2755         }
2756         if (put_user_u32(len, optlen))
2757             return -TARGET_EFAULT;
2758         break;
2759     case SOL_IP:
2760         switch(optname) {
2761         case IP_TOS:
2762         case IP_TTL:
2763         case IP_HDRINCL:
2764         case IP_ROUTER_ALERT:
2765         case IP_RECVOPTS:
2766         case IP_RETOPTS:
2767         case IP_PKTINFO:
2768         case IP_MTU_DISCOVER:
2769         case IP_RECVERR:
2770         case IP_RECVTOS:
2771 #ifdef IP_FREEBIND
2772         case IP_FREEBIND:
2773 #endif
2774         case IP_MULTICAST_TTL:
2775         case IP_MULTICAST_LOOP:
2776             if (get_user_u32(len, optlen))
2777                 return -TARGET_EFAULT;
2778             if (len < 0)
2779                 return -TARGET_EINVAL;
2780             lv = sizeof(lv);
2781             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2782             if (ret < 0)
2783                 return ret;
2784             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2785                 len = 1;
2786                 if (put_user_u32(len, optlen)
2787                     || put_user_u8(val, optval_addr))
2788                     return -TARGET_EFAULT;
2789             } else {
2790                 if (len > sizeof(int))
2791                     len = sizeof(int);
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u32(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             }
2796             break;
2797         default:
2798             ret = -TARGET_ENOPROTOOPT;
2799             break;
2800         }
2801         break;
2802     case SOL_IPV6:
2803         switch (optname) {
2804         case IPV6_MTU_DISCOVER:
2805         case IPV6_MTU:
2806         case IPV6_V6ONLY:
2807         case IPV6_RECVPKTINFO:
2808         case IPV6_UNICAST_HOPS:
2809         case IPV6_MULTICAST_HOPS:
2810         case IPV6_MULTICAST_LOOP:
2811         case IPV6_RECVERR:
2812         case IPV6_RECVHOPLIMIT:
2813         case IPV6_2292HOPLIMIT:
2814         case IPV6_CHECKSUM:
2815         case IPV6_ADDRFORM:
2816         case IPV6_2292PKTINFO:
2817         case IPV6_RECVTCLASS:
2818         case IPV6_RECVRTHDR:
2819         case IPV6_2292RTHDR:
2820         case IPV6_RECVHOPOPTS:
2821         case IPV6_2292HOPOPTS:
2822         case IPV6_RECVDSTOPTS:
2823         case IPV6_2292DSTOPTS:
2824         case IPV6_TCLASS:
2825         case IPV6_ADDR_PREFERENCES:
2826 #ifdef IPV6_RECVPATHMTU
2827         case IPV6_RECVPATHMTU:
2828 #endif
2829 #ifdef IPV6_TRANSPARENT
2830         case IPV6_TRANSPARENT:
2831 #endif
2832 #ifdef IPV6_FREEBIND
2833         case IPV6_FREEBIND:
2834 #endif
2835 #ifdef IPV6_RECVORIGDSTADDR
2836         case IPV6_RECVORIGDSTADDR:
2837 #endif
2838             if (get_user_u32(len, optlen))
2839                 return -TARGET_EFAULT;
2840             if (len < 0)
2841                 return -TARGET_EINVAL;
2842             lv = sizeof(lv);
2843             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2844             if (ret < 0)
2845                 return ret;
2846             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2847                 len = 1;
2848                 if (put_user_u32(len, optlen)
2849                     || put_user_u8(val, optval_addr))
2850                     return -TARGET_EFAULT;
2851             } else {
2852                 if (len > sizeof(int))
2853                     len = sizeof(int);
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u32(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             }
2858             break;
2859         default:
2860             ret = -TARGET_ENOPROTOOPT;
2861             break;
2862         }
2863         break;
2864 #ifdef SOL_NETLINK
2865     case SOL_NETLINK:
2866         switch (optname) {
2867         case NETLINK_PKTINFO:
2868         case NETLINK_BROADCAST_ERROR:
2869         case NETLINK_NO_ENOBUFS:
2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2871         case NETLINK_LISTEN_ALL_NSID:
2872         case NETLINK_CAP_ACK:
2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2875         case NETLINK_EXT_ACK:
2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2878         case NETLINK_GET_STRICT_CHK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2880             if (get_user_u32(len, optlen)) {
2881                 return -TARGET_EFAULT;
2882             }
2883             if (len != sizeof(val)) {
2884                 return -TARGET_EINVAL;
2885             }
2886             lv = len;
2887             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2888             if (ret < 0) {
2889                 return ret;
2890             }
2891             if (put_user_u32(lv, optlen)
2892                 || put_user_u32(val, optval_addr)) {
2893                 return -TARGET_EFAULT;
2894             }
2895             break;
2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2897         case NETLINK_LIST_MEMBERSHIPS:
2898         {
2899             uint32_t *results;
2900             int i;
2901             if (get_user_u32(len, optlen)) {
2902                 return -TARGET_EFAULT;
2903             }
2904             if (len < 0) {
2905                 return -TARGET_EINVAL;
2906             }
2907             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2908             if (!results && len > 0) {
2909                 return -TARGET_EFAULT;
2910             }
2911             lv = len;
2912             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2913             if (ret < 0) {
2914                 unlock_user(results, optval_addr, 0);
2915                 return ret;
2916             }
2917             /* swap host endianness to target endianness. */
2918             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2919                 results[i] = tswap32(results[i]);
2920             }
2921             if (put_user_u32(lv, optlen)) {
2922                 return -TARGET_EFAULT;
2923             }
2924             unlock_user(results, optval_addr, 0);
2925             break;
2926         }
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2928         default:
2929             goto unimplemented;
2930         }
2931         break;
2932 #endif /* SOL_NETLINK */
2933     default:
2934     unimplemented:
2935         qemu_log_mask(LOG_UNIMP,
2936                       "getsockopt level=%d optname=%d not yet supported\n",
2937                       level, optname);
2938         ret = -TARGET_EOPNOTSUPP;
2939         break;
2940     }
2941     return ret;
2942 }
2943 
2944 /* Convert target low/high pair representing file offset into the host
2945  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2946  * as the kernel doesn't handle them either.
2947  */
2948 static void target_to_host_low_high(abi_ulong tlow,
2949                                     abi_ulong thigh,
2950                                     unsigned long *hlow,
2951                                     unsigned long *hhigh)
2952 {
2953     uint64_t off = tlow |
2954         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2955         TARGET_LONG_BITS / 2;
2956 
2957     *hlow = off;
2958     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2959 }
2960 
2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2962                                 abi_ulong count, int copy)
2963 {
2964     struct target_iovec *target_vec;
2965     struct iovec *vec;
2966     abi_ulong total_len, max_len;
2967     int i;
2968     int err = 0;
2969     bool bad_address = false;
2970 
2971     if (count == 0) {
2972         errno = 0;
2973         return NULL;
2974     }
2975     if (count > IOV_MAX) {
2976         errno = EINVAL;
2977         return NULL;
2978     }
2979 
2980     vec = g_try_new0(struct iovec, count);
2981     if (vec == NULL) {
2982         errno = ENOMEM;
2983         return NULL;
2984     }
2985 
2986     target_vec = lock_user(VERIFY_READ, target_addr,
2987                            count * sizeof(struct target_iovec), 1);
2988     if (target_vec == NULL) {
2989         err = EFAULT;
2990         goto fail2;
2991     }
2992 
2993     /* ??? If host page size > target page size, this will result in a
2994        value larger than what we can actually support.  */
2995     max_len = 0x7fffffff & TARGET_PAGE_MASK;
2996     total_len = 0;
2997 
2998     for (i = 0; i < count; i++) {
2999         abi_ulong base = tswapal(target_vec[i].iov_base);
3000         abi_long len = tswapal(target_vec[i].iov_len);
3001 
3002         if (len < 0) {
3003             err = EINVAL;
3004             goto fail;
3005         } else if (len == 0) {
3006             /* Zero length pointer is ignored.  */
3007             vec[i].iov_base = 0;
3008         } else {
3009             vec[i].iov_base = lock_user(type, base, len, copy);
3010             /* If the first buffer pointer is bad, this is a fault.  But
3011              * subsequent bad buffers will result in a partial write; this
3012              * is realized by filling the vector with null pointers and
3013              * zero lengths. */
3014             if (!vec[i].iov_base) {
3015                 if (i == 0) {
3016                     err = EFAULT;
3017                     goto fail;
3018                 } else {
3019                     bad_address = true;
3020                 }
3021             }
3022             if (bad_address) {
3023                 len = 0;
3024             }
3025             if (len > max_len - total_len) {
3026                 len = max_len - total_len;
3027             }
3028         }
3029         vec[i].iov_len = len;
3030         total_len += len;
3031     }
3032 
3033     unlock_user(target_vec, target_addr, 0);
3034     return vec;
3035 
3036  fail:
3037     while (--i >= 0) {
3038         if (tswapal(target_vec[i].iov_len) > 0) {
3039             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3040         }
3041     }
3042     unlock_user(target_vec, target_addr, 0);
3043  fail2:
3044     g_free(vec);
3045     errno = err;
3046     return NULL;
3047 }
3048 
3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3050                          abi_ulong count, int copy)
3051 {
3052     struct target_iovec *target_vec;
3053     int i;
3054 
3055     target_vec = lock_user(VERIFY_READ, target_addr,
3056                            count * sizeof(struct target_iovec), 1);
3057     if (target_vec) {
3058         for (i = 0; i < count; i++) {
3059             abi_ulong base = tswapal(target_vec[i].iov_base);
3060             abi_long len = tswapal(target_vec[i].iov_len);
3061             if (len < 0) {
3062                 break;
3063             }
3064             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3065         }
3066         unlock_user(target_vec, target_addr, 0);
3067     }
3068 
3069     g_free(vec);
3070 }
3071 
3072 static inline int target_to_host_sock_type(int *type)
3073 {
3074     int host_type = 0;
3075     int target_type = *type;
3076 
3077     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3078     case TARGET_SOCK_DGRAM:
3079         host_type = SOCK_DGRAM;
3080         break;
3081     case TARGET_SOCK_STREAM:
3082         host_type = SOCK_STREAM;
3083         break;
3084     default:
3085         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3086         break;
3087     }
3088     if (target_type & TARGET_SOCK_CLOEXEC) {
3089 #if defined(SOCK_CLOEXEC)
3090         host_type |= SOCK_CLOEXEC;
3091 #else
3092         return -TARGET_EINVAL;
3093 #endif
3094     }
3095     if (target_type & TARGET_SOCK_NONBLOCK) {
3096 #if defined(SOCK_NONBLOCK)
3097         host_type |= SOCK_NONBLOCK;
3098 #elif !defined(O_NONBLOCK)
3099         return -TARGET_EINVAL;
3100 #endif
3101     }
3102     *type = host_type;
3103     return 0;
3104 }
3105 
3106 /* Try to emulate socket type flags after socket creation.  */
3107 static int sock_flags_fixup(int fd, int target_type)
3108 {
3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3110     if (target_type & TARGET_SOCK_NONBLOCK) {
3111         int flags = fcntl(fd, F_GETFL);
3112         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3113             close(fd);
3114             return -TARGET_EINVAL;
3115         }
3116     }
3117 #endif
3118     return fd;
3119 }
3120 
3121 /* do_socket() Must return target values and target errnos. */
3122 static abi_long do_socket(int domain, int type, int protocol)
3123 {
3124     int target_type = type;
3125     int ret;
3126 
3127     ret = target_to_host_sock_type(&type);
3128     if (ret) {
3129         return ret;
3130     }
3131 
3132     if (domain == PF_NETLINK && !(
3133 #ifdef CONFIG_RTNETLINK
3134          protocol == NETLINK_ROUTE ||
3135 #endif
3136          protocol == NETLINK_KOBJECT_UEVENT ||
3137          protocol == NETLINK_AUDIT)) {
3138         return -TARGET_EPROTONOSUPPORT;
3139     }
3140 
3141     if (domain == AF_PACKET ||
3142         (domain == AF_INET && type == SOCK_PACKET)) {
3143         protocol = tswap16(protocol);
3144     }
3145 
3146     ret = get_errno(socket(domain, type, protocol));
3147     if (ret >= 0) {
3148         ret = sock_flags_fixup(ret, target_type);
3149         if (type == SOCK_PACKET) {
3150             /* Manage an obsolete case :
3151              * if socket type is SOCK_PACKET, bind by name
3152              */
3153             fd_trans_register(ret, &target_packet_trans);
3154         } else if (domain == PF_NETLINK) {
3155             switch (protocol) {
3156 #ifdef CONFIG_RTNETLINK
3157             case NETLINK_ROUTE:
3158                 fd_trans_register(ret, &target_netlink_route_trans);
3159                 break;
3160 #endif
3161             case NETLINK_KOBJECT_UEVENT:
3162                 /* nothing to do: messages are strings */
3163                 break;
3164             case NETLINK_AUDIT:
3165                 fd_trans_register(ret, &target_netlink_audit_trans);
3166                 break;
3167             default:
3168                 g_assert_not_reached();
3169             }
3170         }
3171     }
3172     return ret;
3173 }
3174 
3175 /* do_bind() Must return target values and target errnos. */
3176 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3177                         socklen_t addrlen)
3178 {
3179     void *addr;
3180     abi_long ret;
3181 
3182     if ((int)addrlen < 0) {
3183         return -TARGET_EINVAL;
3184     }
3185 
3186     addr = alloca(addrlen+1);
3187 
3188     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3189     if (ret)
3190         return ret;
3191 
3192     return get_errno(bind(sockfd, addr, addrlen));
3193 }
3194 
3195 /* do_connect() Must return target values and target errnos. */
3196 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3197                            socklen_t addrlen)
3198 {
3199     void *addr;
3200     abi_long ret;
3201 
3202     if ((int)addrlen < 0) {
3203         return -TARGET_EINVAL;
3204     }
3205 
3206     addr = alloca(addrlen+1);
3207 
3208     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3209     if (ret)
3210         return ret;
3211 
3212     return get_errno(safe_connect(sockfd, addr, addrlen));
3213 }
3214 
3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3217                                       int flags, int send)
3218 {
3219     abi_long ret, len;
3220     struct msghdr msg;
3221     abi_ulong count;
3222     struct iovec *vec;
3223     abi_ulong target_vec;
3224 
3225     if (msgp->msg_name) {
3226         msg.msg_namelen = tswap32(msgp->msg_namelen);
3227         msg.msg_name = alloca(msg.msg_namelen+1);
3228         ret = target_to_host_sockaddr(fd, msg.msg_name,
3229                                       tswapal(msgp->msg_name),
3230                                       msg.msg_namelen);
3231         if (ret == -TARGET_EFAULT) {
3232             /* For connected sockets msg_name and msg_namelen must
3233              * be ignored, so returning EFAULT immediately is wrong.
3234              * Instead, pass a bad msg_name to the host kernel, and
3235              * let it decide whether to return EFAULT or not.
3236              */
3237             msg.msg_name = (void *)-1;
3238         } else if (ret) {
3239             goto out2;
3240         }
3241     } else {
3242         msg.msg_name = NULL;
3243         msg.msg_namelen = 0;
3244     }
3245     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3246     msg.msg_control = alloca(msg.msg_controllen);
3247     memset(msg.msg_control, 0, msg.msg_controllen);
3248 
3249     msg.msg_flags = tswap32(msgp->msg_flags);
3250 
3251     count = tswapal(msgp->msg_iovlen);
3252     target_vec = tswapal(msgp->msg_iov);
3253 
3254     if (count > IOV_MAX) {
3255         /* sendrcvmsg returns a different errno for this condition than
3256          * readv/writev, so we must catch it here before lock_iovec() does.
3257          */
3258         ret = -TARGET_EMSGSIZE;
3259         goto out2;
3260     }
3261 
3262     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3263                      target_vec, count, send);
3264     if (vec == NULL) {
3265         ret = -host_to_target_errno(errno);
3266         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3267         if (!send || ret) {
3268             goto out2;
3269         }
3270     }
3271     msg.msg_iovlen = count;
3272     msg.msg_iov = vec;
3273 
3274     if (send) {
3275         if (fd_trans_target_to_host_data(fd)) {
3276             void *host_msg;
3277 
3278             host_msg = g_malloc(msg.msg_iov->iov_len);
3279             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3280             ret = fd_trans_target_to_host_data(fd)(host_msg,
3281                                                    msg.msg_iov->iov_len);
3282             if (ret >= 0) {
3283                 msg.msg_iov->iov_base = host_msg;
3284                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3285             }
3286             g_free(host_msg);
3287         } else {
3288             ret = target_to_host_cmsg(&msg, msgp);
3289             if (ret == 0) {
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292         }
3293     } else {
3294         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3295         if (!is_error(ret)) {
3296             len = ret;
3297             if (fd_trans_host_to_target_data(fd)) {
3298                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3299                                                MIN(msg.msg_iov->iov_len, len));
3300             }
3301             if (!is_error(ret)) {
3302                 ret = host_to_target_cmsg(msgp, &msg);
3303             }
3304             if (!is_error(ret)) {
3305                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3306                 msgp->msg_flags = tswap32(msg.msg_flags);
3307                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3308                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3309                                     msg.msg_name, msg.msg_namelen);
3310                     if (ret) {
3311                         goto out;
3312                     }
3313                 }
3314 
3315                 ret = len;
3316             }
3317         }
3318     }
3319 
3320 out:
3321     if (vec) {
3322         unlock_iovec(vec, target_vec, count, !send);
3323     }
3324 out2:
3325     return ret;
3326 }
3327 
3328 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3329                                int flags, int send)
3330 {
3331     abi_long ret;
3332     struct target_msghdr *msgp;
3333 
3334     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3335                           msgp,
3336                           target_msg,
3337                           send ? 1 : 0)) {
3338         return -TARGET_EFAULT;
3339     }
3340     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3341     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3342     return ret;
3343 }
3344 
3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3346  * so it might not have this *mmsg-specific flag either.
3347  */
3348 #ifndef MSG_WAITFORONE
3349 #define MSG_WAITFORONE 0x10000
3350 #endif
3351 
3352 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3353                                 unsigned int vlen, unsigned int flags,
3354                                 int send)
3355 {
3356     struct target_mmsghdr *mmsgp;
3357     abi_long ret = 0;
3358     int i;
3359 
3360     if (vlen > UIO_MAXIOV) {
3361         vlen = UIO_MAXIOV;
3362     }
3363 
3364     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3365     if (!mmsgp) {
3366         return -TARGET_EFAULT;
3367     }
3368 
3369     for (i = 0; i < vlen; i++) {
3370         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3371         if (is_error(ret)) {
3372             break;
3373         }
3374         mmsgp[i].msg_len = tswap32(ret);
3375         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3376         if (flags & MSG_WAITFORONE) {
3377             flags |= MSG_DONTWAIT;
3378         }
3379     }
3380 
3381     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3382 
3383     /* Return number of datagrams sent if we sent any at all;
3384      * otherwise return the error.
3385      */
3386     if (i) {
3387         return i;
3388     }
3389     return ret;
3390 }
3391 
3392 /* do_accept4() Must return target values and target errnos. */
3393 static abi_long do_accept4(int fd, abi_ulong target_addr,
3394                            abi_ulong target_addrlen_addr, int flags)
3395 {
3396     socklen_t addrlen, ret_addrlen;
3397     void *addr;
3398     abi_long ret;
3399     int host_flags;
3400 
3401     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3402         return -TARGET_EINVAL;
3403     }
3404 
3405     host_flags = 0;
3406     if (flags & TARGET_SOCK_NONBLOCK) {
3407         host_flags |= SOCK_NONBLOCK;
3408     }
3409     if (flags & TARGET_SOCK_CLOEXEC) {
3410         host_flags |= SOCK_CLOEXEC;
3411     }
3412 
3413     if (target_addr == 0) {
3414         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3415     }
3416 
3417     /* linux returns EFAULT if addrlen pointer is invalid */
3418     if (get_user_u32(addrlen, target_addrlen_addr))
3419         return -TARGET_EFAULT;
3420 
3421     if ((int)addrlen < 0) {
3422         return -TARGET_EINVAL;
3423     }
3424 
3425     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3426         return -TARGET_EFAULT;
3427     }
3428 
3429     addr = alloca(addrlen);
3430 
3431     ret_addrlen = addrlen;
3432     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3433     if (!is_error(ret)) {
3434         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3435         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3436             ret = -TARGET_EFAULT;
3437         }
3438     }
3439     return ret;
3440 }
3441 
3442 /* do_getpeername() Must return target values and target errnos. */
3443 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3444                                abi_ulong target_addrlen_addr)
3445 {
3446     socklen_t addrlen, ret_addrlen;
3447     void *addr;
3448     abi_long ret;
3449 
3450     if (get_user_u32(addrlen, target_addrlen_addr))
3451         return -TARGET_EFAULT;
3452 
3453     if ((int)addrlen < 0) {
3454         return -TARGET_EINVAL;
3455     }
3456 
3457     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3458         return -TARGET_EFAULT;
3459     }
3460 
3461     addr = alloca(addrlen);
3462 
3463     ret_addrlen = addrlen;
3464     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3465     if (!is_error(ret)) {
3466         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3467         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3468             ret = -TARGET_EFAULT;
3469         }
3470     }
3471     return ret;
3472 }
3473 
3474 /* do_getsockname() Must return target values and target errnos. */
3475 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3476                                abi_ulong target_addrlen_addr)
3477 {
3478     socklen_t addrlen, ret_addrlen;
3479     void *addr;
3480     abi_long ret;
3481 
3482     if (get_user_u32(addrlen, target_addrlen_addr))
3483         return -TARGET_EFAULT;
3484 
3485     if ((int)addrlen < 0) {
3486         return -TARGET_EINVAL;
3487     }
3488 
3489     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3490         return -TARGET_EFAULT;
3491     }
3492 
3493     addr = alloca(addrlen);
3494 
3495     ret_addrlen = addrlen;
3496     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3497     if (!is_error(ret)) {
3498         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3499         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3500             ret = -TARGET_EFAULT;
3501         }
3502     }
3503     return ret;
3504 }
3505 
3506 /* do_socketpair() Must return target values and target errnos. */
3507 static abi_long do_socketpair(int domain, int type, int protocol,
3508                               abi_ulong target_tab_addr)
3509 {
3510     int tab[2];
3511     abi_long ret;
3512 
3513     target_to_host_sock_type(&type);
3514 
3515     ret = get_errno(socketpair(domain, type, protocol, tab));
3516     if (!is_error(ret)) {
3517         if (put_user_s32(tab[0], target_tab_addr)
3518             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3519             ret = -TARGET_EFAULT;
3520     }
3521     return ret;
3522 }
3523 
3524 /* do_sendto() Must return target values and target errnos. */
3525 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3526                           abi_ulong target_addr, socklen_t addrlen)
3527 {
3528     void *addr;
3529     void *host_msg;
3530     void *copy_msg = NULL;
3531     abi_long ret;
3532 
3533     if ((int)addrlen < 0) {
3534         return -TARGET_EINVAL;
3535     }
3536 
3537     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3538     if (!host_msg)
3539         return -TARGET_EFAULT;
3540     if (fd_trans_target_to_host_data(fd)) {
3541         copy_msg = host_msg;
3542         host_msg = g_malloc(len);
3543         memcpy(host_msg, copy_msg, len);
3544         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3545         if (ret < 0) {
3546             goto fail;
3547         }
3548     }
3549     if (target_addr) {
3550         addr = alloca(addrlen+1);
3551         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3552         if (ret) {
3553             goto fail;
3554         }
3555         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3556     } else {
3557         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3558     }
3559 fail:
3560     if (copy_msg) {
3561         g_free(host_msg);
3562         host_msg = copy_msg;
3563     }
3564     unlock_user(host_msg, msg, 0);
3565     return ret;
3566 }
3567 
3568 /* do_recvfrom() Must return target values and target errnos. */
3569 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3570                             abi_ulong target_addr,
3571                             abi_ulong target_addrlen)
3572 {
3573     socklen_t addrlen, ret_addrlen;
3574     void *addr;
3575     void *host_msg;
3576     abi_long ret;
3577 
3578     if (!msg) {
3579         host_msg = NULL;
3580     } else {
3581         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3582         if (!host_msg) {
3583             return -TARGET_EFAULT;
3584         }
3585     }
3586     if (target_addr) {
3587         if (get_user_u32(addrlen, target_addrlen)) {
3588             ret = -TARGET_EFAULT;
3589             goto fail;
3590         }
3591         if ((int)addrlen < 0) {
3592             ret = -TARGET_EINVAL;
3593             goto fail;
3594         }
3595         addr = alloca(addrlen);
3596         ret_addrlen = addrlen;
3597         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3598                                       addr, &ret_addrlen));
3599     } else {
3600         addr = NULL; /* To keep compiler quiet.  */
3601         addrlen = 0; /* To keep compiler quiet.  */
3602         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3603     }
3604     if (!is_error(ret)) {
3605         if (fd_trans_host_to_target_data(fd)) {
3606             abi_long trans;
3607             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3608             if (is_error(trans)) {
3609                 ret = trans;
3610                 goto fail;
3611             }
3612         }
3613         if (target_addr) {
3614             host_to_target_sockaddr(target_addr, addr,
3615                                     MIN(addrlen, ret_addrlen));
3616             if (put_user_u32(ret_addrlen, target_addrlen)) {
3617                 ret = -TARGET_EFAULT;
3618                 goto fail;
3619             }
3620         }
3621         unlock_user(host_msg, msg, len);
3622     } else {
3623 fail:
3624         unlock_user(host_msg, msg, 0);
3625     }
3626     return ret;
3627 }
3628 
3629 #ifdef TARGET_NR_socketcall
3630 /* do_socketcall() must return target values and target errnos. */
3631 static abi_long do_socketcall(int num, abi_ulong vptr)
3632 {
3633     static const unsigned nargs[] = { /* number of arguments per operation */
3634         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3635         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3636         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3637         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3638         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3639         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3640         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3641         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3642         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3643         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3644         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3645         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3646         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3647         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3648         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3649         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3650         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3651         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3652         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3653         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3654     };
3655     abi_long a[6]; /* max 6 args */
3656     unsigned i;
3657 
3658     /* check the range of the first argument num */
3659     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3660     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3661         return -TARGET_EINVAL;
3662     }
3663     /* ensure we have space for args */
3664     if (nargs[num] > ARRAY_SIZE(a)) {
3665         return -TARGET_EINVAL;
3666     }
3667     /* collect the arguments in a[] according to nargs[] */
3668     for (i = 0; i < nargs[num]; ++i) {
3669         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3670             return -TARGET_EFAULT;
3671         }
3672     }
3673     /* now when we have the args, invoke the appropriate underlying function */
3674     switch (num) {
3675     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3676         return do_socket(a[0], a[1], a[2]);
3677     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3678         return do_bind(a[0], a[1], a[2]);
3679     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3680         return do_connect(a[0], a[1], a[2]);
3681     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3682         return get_errno(listen(a[0], a[1]));
3683     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3684         return do_accept4(a[0], a[1], a[2], 0);
3685     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3686         return do_getsockname(a[0], a[1], a[2]);
3687     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3688         return do_getpeername(a[0], a[1], a[2]);
3689     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3690         return do_socketpair(a[0], a[1], a[2], a[3]);
3691     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3692         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3693     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3694         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3695     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3696         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3697     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3698         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3699     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3700         return get_errno(shutdown(a[0], a[1]));
3701     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3702         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3703     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3704         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3705     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3706         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3707     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3708         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3709     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3710         return do_accept4(a[0], a[1], a[2], a[3]);
3711     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3712         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3713     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3714         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3715     default:
3716         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3717         return -TARGET_EINVAL;
3718     }
3719 }
3720 #endif
3721 
3722 #ifndef TARGET_SEMID64_DS
3723 /* asm-generic version of this struct */
3724 struct target_semid64_ds
3725 {
3726   struct target_ipc_perm sem_perm;
3727   abi_ulong sem_otime;
3728 #if TARGET_ABI_BITS == 32
3729   abi_ulong __unused1;
3730 #endif
3731   abi_ulong sem_ctime;
3732 #if TARGET_ABI_BITS == 32
3733   abi_ulong __unused2;
3734 #endif
3735   abi_ulong sem_nsems;
3736   abi_ulong __unused3;
3737   abi_ulong __unused4;
3738 };
3739 #endif
3740 
3741 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3742                                                abi_ulong target_addr)
3743 {
3744     struct target_ipc_perm *target_ip;
3745     struct target_semid64_ds *target_sd;
3746 
3747     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3748         return -TARGET_EFAULT;
3749     target_ip = &(target_sd->sem_perm);
3750     host_ip->__key = tswap32(target_ip->__key);
3751     host_ip->uid = tswap32(target_ip->uid);
3752     host_ip->gid = tswap32(target_ip->gid);
3753     host_ip->cuid = tswap32(target_ip->cuid);
3754     host_ip->cgid = tswap32(target_ip->cgid);
3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3756     host_ip->mode = tswap32(target_ip->mode);
3757 #else
3758     host_ip->mode = tswap16(target_ip->mode);
3759 #endif
3760 #if defined(TARGET_PPC)
3761     host_ip->__seq = tswap32(target_ip->__seq);
3762 #else
3763     host_ip->__seq = tswap16(target_ip->__seq);
3764 #endif
3765     unlock_user_struct(target_sd, target_addr, 0);
3766     return 0;
3767 }
3768 
3769 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3770                                                struct ipc_perm *host_ip)
3771 {
3772     struct target_ipc_perm *target_ip;
3773     struct target_semid64_ds *target_sd;
3774 
3775     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3776         return -TARGET_EFAULT;
3777     target_ip = &(target_sd->sem_perm);
3778     target_ip->__key = tswap32(host_ip->__key);
3779     target_ip->uid = tswap32(host_ip->uid);
3780     target_ip->gid = tswap32(host_ip->gid);
3781     target_ip->cuid = tswap32(host_ip->cuid);
3782     target_ip->cgid = tswap32(host_ip->cgid);
3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3784     target_ip->mode = tswap32(host_ip->mode);
3785 #else
3786     target_ip->mode = tswap16(host_ip->mode);
3787 #endif
3788 #if defined(TARGET_PPC)
3789     target_ip->__seq = tswap32(host_ip->__seq);
3790 #else
3791     target_ip->__seq = tswap16(host_ip->__seq);
3792 #endif
3793     unlock_user_struct(target_sd, target_addr, 1);
3794     return 0;
3795 }
3796 
3797 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3798                                                abi_ulong target_addr)
3799 {
3800     struct target_semid64_ds *target_sd;
3801 
3802     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3803         return -TARGET_EFAULT;
3804     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3805         return -TARGET_EFAULT;
3806     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3807     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3808     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3809     unlock_user_struct(target_sd, target_addr, 0);
3810     return 0;
3811 }
3812 
3813 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3814                                                struct semid_ds *host_sd)
3815 {
3816     struct target_semid64_ds *target_sd;
3817 
3818     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3819         return -TARGET_EFAULT;
3820     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3821         return -TARGET_EFAULT;
3822     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3823     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3824     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3825     unlock_user_struct(target_sd, target_addr, 1);
3826     return 0;
3827 }
3828 
3829 struct target_seminfo {
3830     int semmap;
3831     int semmni;
3832     int semmns;
3833     int semmnu;
3834     int semmsl;
3835     int semopm;
3836     int semume;
3837     int semusz;
3838     int semvmx;
3839     int semaem;
3840 };
3841 
3842 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3843                                               struct seminfo *host_seminfo)
3844 {
3845     struct target_seminfo *target_seminfo;
3846     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3847         return -TARGET_EFAULT;
3848     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3849     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3850     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3851     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3852     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3853     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3854     __put_user(host_seminfo->semume, &target_seminfo->semume);
3855     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3856     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3857     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3858     unlock_user_struct(target_seminfo, target_addr, 1);
3859     return 0;
3860 }
3861 
3862 union semun {
3863 	int val;
3864 	struct semid_ds *buf;
3865 	unsigned short *array;
3866 	struct seminfo *__buf;
3867 };
3868 
3869 union target_semun {
3870 	int val;
3871 	abi_ulong buf;
3872 	abi_ulong array;
3873 	abi_ulong __buf;
3874 };
3875 
3876 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3877                                                abi_ulong target_addr)
3878 {
3879     int nsems;
3880     unsigned short *array;
3881     union semun semun;
3882     struct semid_ds semid_ds;
3883     int i, ret;
3884 
3885     semun.buf = &semid_ds;
3886 
3887     ret = semctl(semid, 0, IPC_STAT, semun);
3888     if (ret == -1)
3889         return get_errno(ret);
3890 
3891     nsems = semid_ds.sem_nsems;
3892 
3893     *host_array = g_try_new(unsigned short, nsems);
3894     if (!*host_array) {
3895         return -TARGET_ENOMEM;
3896     }
3897     array = lock_user(VERIFY_READ, target_addr,
3898                       nsems*sizeof(unsigned short), 1);
3899     if (!array) {
3900         g_free(*host_array);
3901         return -TARGET_EFAULT;
3902     }
3903 
3904     for(i=0; i<nsems; i++) {
3905         __get_user((*host_array)[i], &array[i]);
3906     }
3907     unlock_user(array, target_addr, 0);
3908 
3909     return 0;
3910 }
3911 
3912 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3913                                                unsigned short **host_array)
3914 {
3915     int nsems;
3916     unsigned short *array;
3917     union semun semun;
3918     struct semid_ds semid_ds;
3919     int i, ret;
3920 
3921     semun.buf = &semid_ds;
3922 
3923     ret = semctl(semid, 0, IPC_STAT, semun);
3924     if (ret == -1)
3925         return get_errno(ret);
3926 
3927     nsems = semid_ds.sem_nsems;
3928 
3929     array = lock_user(VERIFY_WRITE, target_addr,
3930                       nsems*sizeof(unsigned short), 0);
3931     if (!array)
3932         return -TARGET_EFAULT;
3933 
3934     for(i=0; i<nsems; i++) {
3935         __put_user((*host_array)[i], &array[i]);
3936     }
3937     g_free(*host_array);
3938     unlock_user(array, target_addr, 1);
3939 
3940     return 0;
3941 }
3942 
3943 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3944                                  abi_ulong target_arg)
3945 {
3946     union target_semun target_su = { .buf = target_arg };
3947     union semun arg;
3948     struct semid_ds dsarg;
3949     unsigned short *array = NULL;
3950     struct seminfo seminfo;
3951     abi_long ret = -TARGET_EINVAL;
3952     abi_long err;
3953     cmd &= 0xff;
3954 
3955     switch( cmd ) {
3956 	case GETVAL:
3957 	case SETVAL:
3958             /* In 64 bit cross-endian situations, we will erroneously pick up
3959              * the wrong half of the union for the "val" element.  To rectify
3960              * this, the entire 8-byte structure is byteswapped, followed by
3961 	     * a swap of the 4 byte val field. In other cases, the data is
3962 	     * already in proper host byte order. */
3963 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3964 		target_su.buf = tswapal(target_su.buf);
3965 		arg.val = tswap32(target_su.val);
3966 	    } else {
3967 		arg.val = target_su.val;
3968 	    }
3969             ret = get_errno(semctl(semid, semnum, cmd, arg));
3970             break;
3971 	case GETALL:
3972 	case SETALL:
3973             err = target_to_host_semarray(semid, &array, target_su.array);
3974             if (err)
3975                 return err;
3976             arg.array = array;
3977             ret = get_errno(semctl(semid, semnum, cmd, arg));
3978             err = host_to_target_semarray(semid, target_su.array, &array);
3979             if (err)
3980                 return err;
3981             break;
3982 	case IPC_STAT:
3983 	case IPC_SET:
3984 	case SEM_STAT:
3985             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3986             if (err)
3987                 return err;
3988             arg.buf = &dsarg;
3989             ret = get_errno(semctl(semid, semnum, cmd, arg));
3990             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3991             if (err)
3992                 return err;
3993             break;
3994 	case IPC_INFO:
3995 	case SEM_INFO:
3996             arg.__buf = &seminfo;
3997             ret = get_errno(semctl(semid, semnum, cmd, arg));
3998             err = host_to_target_seminfo(target_su.__buf, &seminfo);
3999             if (err)
4000                 return err;
4001             break;
4002 	case IPC_RMID:
4003 	case GETPID:
4004 	case GETNCNT:
4005 	case GETZCNT:
4006             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4007             break;
4008     }
4009 
4010     return ret;
4011 }
4012 
4013 struct target_sembuf {
4014     unsigned short sem_num;
4015     short sem_op;
4016     short sem_flg;
4017 };
4018 
4019 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4020                                              abi_ulong target_addr,
4021                                              unsigned nsops)
4022 {
4023     struct target_sembuf *target_sembuf;
4024     int i;
4025 
4026     target_sembuf = lock_user(VERIFY_READ, target_addr,
4027                               nsops*sizeof(struct target_sembuf), 1);
4028     if (!target_sembuf)
4029         return -TARGET_EFAULT;
4030 
4031     for(i=0; i<nsops; i++) {
4032         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4033         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4034         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4035     }
4036 
4037     unlock_user(target_sembuf, target_addr, 0);
4038 
4039     return 0;
4040 }
4041 
4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4043     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4044 
4045 /*
4046  * This macro is required to handle the s390 variants, which passes the
4047  * arguments in a different order than default.
4048  */
4049 #ifdef __s390x__
4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4051   (__nsops), (__timeout), (__sops)
4052 #else
4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4054   (__nsops), 0, (__sops), (__timeout)
4055 #endif
4056 
4057 static inline abi_long do_semtimedop(int semid,
4058                                      abi_long ptr,
4059                                      unsigned nsops,
4060                                      abi_long timeout, bool time64)
4061 {
4062     struct sembuf *sops;
4063     struct timespec ts, *pts = NULL;
4064     abi_long ret;
4065 
4066     if (timeout) {
4067         pts = &ts;
4068         if (time64) {
4069             if (target_to_host_timespec64(pts, timeout)) {
4070                 return -TARGET_EFAULT;
4071             }
4072         } else {
4073             if (target_to_host_timespec(pts, timeout)) {
4074                 return -TARGET_EFAULT;
4075             }
4076         }
4077     }
4078 
4079     if (nsops > TARGET_SEMOPM) {
4080         return -TARGET_E2BIG;
4081     }
4082 
4083     sops = g_new(struct sembuf, nsops);
4084 
4085     if (target_to_host_sembuf(sops, ptr, nsops)) {
4086         g_free(sops);
4087         return -TARGET_EFAULT;
4088     }
4089 
4090     ret = -TARGET_ENOSYS;
4091 #ifdef __NR_semtimedop
4092     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4093 #endif
4094 #ifdef __NR_ipc
4095     if (ret == -TARGET_ENOSYS) {
4096         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4097                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4098     }
4099 #endif
4100     g_free(sops);
4101     return ret;
4102 }
4103 #endif
4104 
4105 struct target_msqid_ds
4106 {
4107     struct target_ipc_perm msg_perm;
4108     abi_ulong msg_stime;
4109 #if TARGET_ABI_BITS == 32
4110     abi_ulong __unused1;
4111 #endif
4112     abi_ulong msg_rtime;
4113 #if TARGET_ABI_BITS == 32
4114     abi_ulong __unused2;
4115 #endif
4116     abi_ulong msg_ctime;
4117 #if TARGET_ABI_BITS == 32
4118     abi_ulong __unused3;
4119 #endif
4120     abi_ulong __msg_cbytes;
4121     abi_ulong msg_qnum;
4122     abi_ulong msg_qbytes;
4123     abi_ulong msg_lspid;
4124     abi_ulong msg_lrpid;
4125     abi_ulong __unused4;
4126     abi_ulong __unused5;
4127 };
4128 
4129 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4130                                                abi_ulong target_addr)
4131 {
4132     struct target_msqid_ds *target_md;
4133 
4134     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4135         return -TARGET_EFAULT;
4136     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4137         return -TARGET_EFAULT;
4138     host_md->msg_stime = tswapal(target_md->msg_stime);
4139     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4140     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4141     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4142     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4143     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4144     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4145     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4146     unlock_user_struct(target_md, target_addr, 0);
4147     return 0;
4148 }
4149 
4150 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4151                                                struct msqid_ds *host_md)
4152 {
4153     struct target_msqid_ds *target_md;
4154 
4155     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4156         return -TARGET_EFAULT;
4157     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4158         return -TARGET_EFAULT;
4159     target_md->msg_stime = tswapal(host_md->msg_stime);
4160     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4161     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4162     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4163     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4164     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4165     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4166     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4167     unlock_user_struct(target_md, target_addr, 1);
4168     return 0;
4169 }
4170 
4171 struct target_msginfo {
4172     int msgpool;
4173     int msgmap;
4174     int msgmax;
4175     int msgmnb;
4176     int msgmni;
4177     int msgssz;
4178     int msgtql;
4179     unsigned short int msgseg;
4180 };
4181 
4182 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4183                                               struct msginfo *host_msginfo)
4184 {
4185     struct target_msginfo *target_msginfo;
4186     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4187         return -TARGET_EFAULT;
4188     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4189     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4190     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4191     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4192     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4193     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4194     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4195     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4196     unlock_user_struct(target_msginfo, target_addr, 1);
4197     return 0;
4198 }
4199 
4200 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4201 {
4202     struct msqid_ds dsarg;
4203     struct msginfo msginfo;
4204     abi_long ret = -TARGET_EINVAL;
4205 
4206     cmd &= 0xff;
4207 
4208     switch (cmd) {
4209     case IPC_STAT:
4210     case IPC_SET:
4211     case MSG_STAT:
4212         if (target_to_host_msqid_ds(&dsarg,ptr))
4213             return -TARGET_EFAULT;
4214         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4215         if (host_to_target_msqid_ds(ptr,&dsarg))
4216             return -TARGET_EFAULT;
4217         break;
4218     case IPC_RMID:
4219         ret = get_errno(msgctl(msgid, cmd, NULL));
4220         break;
4221     case IPC_INFO:
4222     case MSG_INFO:
4223         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4224         if (host_to_target_msginfo(ptr, &msginfo))
4225             return -TARGET_EFAULT;
4226         break;
4227     }
4228 
4229     return ret;
4230 }
4231 
4232 struct target_msgbuf {
4233     abi_long mtype;
4234     char	mtext[1];
4235 };
4236 
4237 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4238                                  ssize_t msgsz, int msgflg)
4239 {
4240     struct target_msgbuf *target_mb;
4241     struct msgbuf *host_mb;
4242     abi_long ret = 0;
4243 
4244     if (msgsz < 0) {
4245         return -TARGET_EINVAL;
4246     }
4247 
4248     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4249         return -TARGET_EFAULT;
4250     host_mb = g_try_malloc(msgsz + sizeof(long));
4251     if (!host_mb) {
4252         unlock_user_struct(target_mb, msgp, 0);
4253         return -TARGET_ENOMEM;
4254     }
4255     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4256     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4257     ret = -TARGET_ENOSYS;
4258 #ifdef __NR_msgsnd
4259     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4260 #endif
4261 #ifdef __NR_ipc
4262     if (ret == -TARGET_ENOSYS) {
4263 #ifdef __s390x__
4264         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4265                                  host_mb));
4266 #else
4267         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4268                                  host_mb, 0));
4269 #endif
4270     }
4271 #endif
4272     g_free(host_mb);
4273     unlock_user_struct(target_mb, msgp, 0);
4274 
4275     return ret;
4276 }
4277 
4278 #ifdef __NR_ipc
4279 #if defined(__sparc__)
4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4282 #elif defined(__s390x__)
4283 /* The s390 sys_ipc variant has only five parameters.  */
4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4285     ((long int[]){(long int)__msgp, __msgtyp})
4286 #else
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4288     ((long int[]){(long int)__msgp, __msgtyp}), 0
4289 #endif
4290 #endif
4291 
4292 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4293                                  ssize_t msgsz, abi_long msgtyp,
4294                                  int msgflg)
4295 {
4296     struct target_msgbuf *target_mb;
4297     char *target_mtext;
4298     struct msgbuf *host_mb;
4299     abi_long ret = 0;
4300 
4301     if (msgsz < 0) {
4302         return -TARGET_EINVAL;
4303     }
4304 
4305     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4306         return -TARGET_EFAULT;
4307 
4308     host_mb = g_try_malloc(msgsz + sizeof(long));
4309     if (!host_mb) {
4310         ret = -TARGET_ENOMEM;
4311         goto end;
4312     }
4313     ret = -TARGET_ENOSYS;
4314 #ifdef __NR_msgrcv
4315     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4316 #endif
4317 #ifdef __NR_ipc
4318     if (ret == -TARGET_ENOSYS) {
4319         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4320                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4321     }
4322 #endif
4323 
4324     if (ret > 0) {
4325         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4326         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4327         if (!target_mtext) {
4328             ret = -TARGET_EFAULT;
4329             goto end;
4330         }
4331         memcpy(target_mb->mtext, host_mb->mtext, ret);
4332         unlock_user(target_mtext, target_mtext_addr, ret);
4333     }
4334 
4335     target_mb->mtype = tswapal(host_mb->mtype);
4336 
4337 end:
4338     if (target_mb)
4339         unlock_user_struct(target_mb, msgp, 1);
4340     g_free(host_mb);
4341     return ret;
4342 }
4343 
4344 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4345                                                abi_ulong target_addr)
4346 {
4347     struct target_shmid_ds *target_sd;
4348 
4349     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4350         return -TARGET_EFAULT;
4351     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4352         return -TARGET_EFAULT;
4353     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4354     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4355     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4356     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4357     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4358     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4359     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4360     unlock_user_struct(target_sd, target_addr, 0);
4361     return 0;
4362 }
4363 
4364 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4365                                                struct shmid_ds *host_sd)
4366 {
4367     struct target_shmid_ds *target_sd;
4368 
4369     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4370         return -TARGET_EFAULT;
4371     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4372         return -TARGET_EFAULT;
4373     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4374     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4375     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4376     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4377     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4378     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4379     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4380     unlock_user_struct(target_sd, target_addr, 1);
4381     return 0;
4382 }
4383 
4384 struct  target_shminfo {
4385     abi_ulong shmmax;
4386     abi_ulong shmmin;
4387     abi_ulong shmmni;
4388     abi_ulong shmseg;
4389     abi_ulong shmall;
4390 };
4391 
4392 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4393                                               struct shminfo *host_shminfo)
4394 {
4395     struct target_shminfo *target_shminfo;
4396     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4397         return -TARGET_EFAULT;
4398     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4399     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4400     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4401     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4402     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4403     unlock_user_struct(target_shminfo, target_addr, 1);
4404     return 0;
4405 }
4406 
4407 struct target_shm_info {
4408     int used_ids;
4409     abi_ulong shm_tot;
4410     abi_ulong shm_rss;
4411     abi_ulong shm_swp;
4412     abi_ulong swap_attempts;
4413     abi_ulong swap_successes;
4414 };
4415 
4416 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4417                                                struct shm_info *host_shm_info)
4418 {
4419     struct target_shm_info *target_shm_info;
4420     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4421         return -TARGET_EFAULT;
4422     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4423     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4424     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4425     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4426     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4427     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4428     unlock_user_struct(target_shm_info, target_addr, 1);
4429     return 0;
4430 }
4431 
4432 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4433 {
4434     struct shmid_ds dsarg;
4435     struct shminfo shminfo;
4436     struct shm_info shm_info;
4437     abi_long ret = -TARGET_EINVAL;
4438 
4439     cmd &= 0xff;
4440 
4441     switch(cmd) {
4442     case IPC_STAT:
4443     case IPC_SET:
4444     case SHM_STAT:
4445         if (target_to_host_shmid_ds(&dsarg, buf))
4446             return -TARGET_EFAULT;
4447         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4448         if (host_to_target_shmid_ds(buf, &dsarg))
4449             return -TARGET_EFAULT;
4450         break;
4451     case IPC_INFO:
4452         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4453         if (host_to_target_shminfo(buf, &shminfo))
4454             return -TARGET_EFAULT;
4455         break;
4456     case SHM_INFO:
4457         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4458         if (host_to_target_shm_info(buf, &shm_info))
4459             return -TARGET_EFAULT;
4460         break;
4461     case IPC_RMID:
4462     case SHM_LOCK:
4463     case SHM_UNLOCK:
4464         ret = get_errno(shmctl(shmid, cmd, NULL));
4465         break;
4466     }
4467 
4468     return ret;
4469 }
4470 
4471 #ifdef TARGET_NR_ipc
4472 /* ??? This only works with linear mappings.  */
4473 /* do_ipc() must return target values and target errnos. */
4474 static abi_long do_ipc(CPUArchState *cpu_env,
4475                        unsigned int call, abi_long first,
4476                        abi_long second, abi_long third,
4477                        abi_long ptr, abi_long fifth)
4478 {
4479     int version;
4480     abi_long ret = 0;
4481 
4482     version = call >> 16;
4483     call &= 0xffff;
4484 
4485     switch (call) {
4486     case IPCOP_semop:
4487         ret = do_semtimedop(first, ptr, second, 0, false);
4488         break;
4489     case IPCOP_semtimedop:
4490     /*
4491      * The s390 sys_ipc variant has only five parameters instead of six
4492      * (as for default variant) and the only difference is the handling of
4493      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4494      * to a struct timespec where the generic variant uses fifth parameter.
4495      */
4496 #if defined(TARGET_S390X)
4497         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4498 #else
4499         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4500 #endif
4501         break;
4502 
4503     case IPCOP_semget:
4504         ret = get_errno(semget(first, second, third));
4505         break;
4506 
4507     case IPCOP_semctl: {
4508         /* The semun argument to semctl is passed by value, so dereference the
4509          * ptr argument. */
4510         abi_ulong atptr;
4511         get_user_ual(atptr, ptr);
4512         ret = do_semctl(first, second, third, atptr);
4513         break;
4514     }
4515 
4516     case IPCOP_msgget:
4517         ret = get_errno(msgget(first, second));
4518         break;
4519 
4520     case IPCOP_msgsnd:
4521         ret = do_msgsnd(first, ptr, second, third);
4522         break;
4523 
4524     case IPCOP_msgctl:
4525         ret = do_msgctl(first, second, ptr);
4526         break;
4527 
4528     case IPCOP_msgrcv:
4529         switch (version) {
4530         case 0:
4531             {
4532                 struct target_ipc_kludge {
4533                     abi_long msgp;
4534                     abi_long msgtyp;
4535                 } *tmp;
4536 
4537                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4538                     ret = -TARGET_EFAULT;
4539                     break;
4540                 }
4541 
4542                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4543 
4544                 unlock_user_struct(tmp, ptr, 0);
4545                 break;
4546             }
4547         default:
4548             ret = do_msgrcv(first, ptr, second, fifth, third);
4549         }
4550         break;
4551 
4552     case IPCOP_shmat:
4553         switch (version) {
4554         default:
4555         {
4556             abi_ulong raddr;
4557             raddr = target_shmat(cpu_env, first, ptr, second);
4558             if (is_error(raddr))
4559                 return get_errno(raddr);
4560             if (put_user_ual(raddr, third))
4561                 return -TARGET_EFAULT;
4562             break;
4563         }
4564         case 1:
4565             ret = -TARGET_EINVAL;
4566             break;
4567         }
4568 	break;
4569     case IPCOP_shmdt:
4570         ret = target_shmdt(ptr);
4571 	break;
4572 
4573     case IPCOP_shmget:
4574 	/* IPC_* flag values are the same on all linux platforms */
4575 	ret = get_errno(shmget(first, second, third));
4576 	break;
4577 
4578 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4579     case IPCOP_shmctl:
4580         ret = do_shmctl(first, second, ptr);
4581         break;
4582     default:
4583         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4584                       call, version);
4585 	ret = -TARGET_ENOSYS;
4586 	break;
4587     }
4588     return ret;
4589 }
4590 #endif
4591 
4592 /* kernel structure types definitions */
4593 
4594 #define STRUCT(name, ...) STRUCT_ ## name,
4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4596 enum {
4597 #include "syscall_types.h"
4598 STRUCT_MAX
4599 };
4600 #undef STRUCT
4601 #undef STRUCT_SPECIAL
4602 
4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4604 #define STRUCT_SPECIAL(name)
4605 #include "syscall_types.h"
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608 
4609 #define MAX_STRUCT_SIZE 4096
4610 
4611 #ifdef CONFIG_FIEMAP
4612 /* So fiemap access checks don't overflow on 32 bit systems.
4613  * This is very slightly smaller than the limit imposed by
4614  * the underlying kernel.
4615  */
4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4617                             / sizeof(struct fiemap_extent))
4618 
4619 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4620                                        int fd, int cmd, abi_long arg)
4621 {
4622     /* The parameter for this ioctl is a struct fiemap followed
4623      * by an array of struct fiemap_extent whose size is set
4624      * in fiemap->fm_extent_count. The array is filled in by the
4625      * ioctl.
4626      */
4627     int target_size_in, target_size_out;
4628     struct fiemap *fm;
4629     const argtype *arg_type = ie->arg_type;
4630     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4631     void *argptr, *p;
4632     abi_long ret;
4633     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4634     uint32_t outbufsz;
4635     int free_fm = 0;
4636 
4637     assert(arg_type[0] == TYPE_PTR);
4638     assert(ie->access == IOC_RW);
4639     arg_type++;
4640     target_size_in = thunk_type_size(arg_type, 0);
4641     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4642     if (!argptr) {
4643         return -TARGET_EFAULT;
4644     }
4645     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4646     unlock_user(argptr, arg, 0);
4647     fm = (struct fiemap *)buf_temp;
4648     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4649         return -TARGET_EINVAL;
4650     }
4651 
4652     outbufsz = sizeof (*fm) +
4653         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4654 
4655     if (outbufsz > MAX_STRUCT_SIZE) {
4656         /* We can't fit all the extents into the fixed size buffer.
4657          * Allocate one that is large enough and use it instead.
4658          */
4659         fm = g_try_malloc(outbufsz);
4660         if (!fm) {
4661             return -TARGET_ENOMEM;
4662         }
4663         memcpy(fm, buf_temp, sizeof(struct fiemap));
4664         free_fm = 1;
4665     }
4666     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4667     if (!is_error(ret)) {
4668         target_size_out = target_size_in;
4669         /* An extent_count of 0 means we were only counting the extents
4670          * so there are no structs to copy
4671          */
4672         if (fm->fm_extent_count != 0) {
4673             target_size_out += fm->fm_mapped_extents * extent_size;
4674         }
4675         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4676         if (!argptr) {
4677             ret = -TARGET_EFAULT;
4678         } else {
4679             /* Convert the struct fiemap */
4680             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4681             if (fm->fm_extent_count != 0) {
4682                 p = argptr + target_size_in;
4683                 /* ...and then all the struct fiemap_extents */
4684                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4685                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4686                                   THUNK_TARGET);
4687                     p += extent_size;
4688                 }
4689             }
4690             unlock_user(argptr, arg, target_size_out);
4691         }
4692     }
4693     if (free_fm) {
4694         g_free(fm);
4695     }
4696     return ret;
4697 }
4698 #endif
4699 
4700 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4701                                 int fd, int cmd, abi_long arg)
4702 {
4703     const argtype *arg_type = ie->arg_type;
4704     int target_size;
4705     void *argptr;
4706     int ret;
4707     struct ifconf *host_ifconf;
4708     uint32_t outbufsz;
4709     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4710     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4711     int target_ifreq_size;
4712     int nb_ifreq;
4713     int free_buf = 0;
4714     int i;
4715     int target_ifc_len;
4716     abi_long target_ifc_buf;
4717     int host_ifc_len;
4718     char *host_ifc_buf;
4719 
4720     assert(arg_type[0] == TYPE_PTR);
4721     assert(ie->access == IOC_RW);
4722 
4723     arg_type++;
4724     target_size = thunk_type_size(arg_type, 0);
4725 
4726     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4727     if (!argptr)
4728         return -TARGET_EFAULT;
4729     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4730     unlock_user(argptr, arg, 0);
4731 
4732     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4733     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4734     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4735 
4736     if (target_ifc_buf != 0) {
4737         target_ifc_len = host_ifconf->ifc_len;
4738         nb_ifreq = target_ifc_len / target_ifreq_size;
4739         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4740 
4741         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4742         if (outbufsz > MAX_STRUCT_SIZE) {
4743             /*
4744              * We can't fit all the extents into the fixed size buffer.
4745              * Allocate one that is large enough and use it instead.
4746              */
4747             host_ifconf = g_try_malloc(outbufsz);
4748             if (!host_ifconf) {
4749                 return -TARGET_ENOMEM;
4750             }
4751             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4752             free_buf = 1;
4753         }
4754         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4755 
4756         host_ifconf->ifc_len = host_ifc_len;
4757     } else {
4758       host_ifc_buf = NULL;
4759     }
4760     host_ifconf->ifc_buf = host_ifc_buf;
4761 
4762     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4763     if (!is_error(ret)) {
4764 	/* convert host ifc_len to target ifc_len */
4765 
4766         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4767         target_ifc_len = nb_ifreq * target_ifreq_size;
4768         host_ifconf->ifc_len = target_ifc_len;
4769 
4770 	/* restore target ifc_buf */
4771 
4772         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4773 
4774 	/* copy struct ifconf to target user */
4775 
4776         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4777         if (!argptr)
4778             return -TARGET_EFAULT;
4779         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4780         unlock_user(argptr, arg, target_size);
4781 
4782         if (target_ifc_buf != 0) {
4783             /* copy ifreq[] to target user */
4784             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4785             for (i = 0; i < nb_ifreq ; i++) {
4786                 thunk_convert(argptr + i * target_ifreq_size,
4787                               host_ifc_buf + i * sizeof(struct ifreq),
4788                               ifreq_arg_type, THUNK_TARGET);
4789             }
4790             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4791         }
4792     }
4793 
4794     if (free_buf) {
4795         g_free(host_ifconf);
4796     }
4797 
4798     return ret;
4799 }
4800 
4801 #if defined(CONFIG_USBFS)
4802 #if HOST_LONG_BITS > 64
4803 #error USBDEVFS thunks do not support >64 bit hosts yet.
4804 #endif
4805 struct live_urb {
4806     uint64_t target_urb_adr;
4807     uint64_t target_buf_adr;
4808     char *target_buf_ptr;
4809     struct usbdevfs_urb host_urb;
4810 };
4811 
4812 static GHashTable *usbdevfs_urb_hashtable(void)
4813 {
4814     static GHashTable *urb_hashtable;
4815 
4816     if (!urb_hashtable) {
4817         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4818     }
4819     return urb_hashtable;
4820 }
4821 
4822 static void urb_hashtable_insert(struct live_urb *urb)
4823 {
4824     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4825     g_hash_table_insert(urb_hashtable, urb, urb);
4826 }
4827 
4828 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4829 {
4830     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4832 }
4833 
4834 static void urb_hashtable_remove(struct live_urb *urb)
4835 {
4836     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837     g_hash_table_remove(urb_hashtable, urb);
4838 }
4839 
4840 static abi_long
4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4842                           int fd, int cmd, abi_long arg)
4843 {
4844     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4845     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4846     struct live_urb *lurb;
4847     void *argptr;
4848     uint64_t hurb;
4849     int target_size;
4850     uintptr_t target_urb_adr;
4851     abi_long ret;
4852 
4853     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4854 
4855     memset(buf_temp, 0, sizeof(uint64_t));
4856     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4857     if (is_error(ret)) {
4858         return ret;
4859     }
4860 
4861     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4862     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4863     if (!lurb->target_urb_adr) {
4864         return -TARGET_EFAULT;
4865     }
4866     urb_hashtable_remove(lurb);
4867     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4868         lurb->host_urb.buffer_length);
4869     lurb->target_buf_ptr = NULL;
4870 
4871     /* restore the guest buffer pointer */
4872     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4873 
4874     /* update the guest urb struct */
4875     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4876     if (!argptr) {
4877         g_free(lurb);
4878         return -TARGET_EFAULT;
4879     }
4880     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4881     unlock_user(argptr, lurb->target_urb_adr, target_size);
4882 
4883     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4884     /* write back the urb handle */
4885     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4886     if (!argptr) {
4887         g_free(lurb);
4888         return -TARGET_EFAULT;
4889     }
4890 
4891     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4892     target_urb_adr = lurb->target_urb_adr;
4893     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4894     unlock_user(argptr, arg, target_size);
4895 
4896     g_free(lurb);
4897     return ret;
4898 }
4899 
4900 static abi_long
4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4902                              uint8_t *buf_temp __attribute__((unused)),
4903                              int fd, int cmd, abi_long arg)
4904 {
4905     struct live_urb *lurb;
4906 
4907     /* map target address back to host URB with metadata. */
4908     lurb = urb_hashtable_lookup(arg);
4909     if (!lurb) {
4910         return -TARGET_EFAULT;
4911     }
4912     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4913 }
4914 
4915 static abi_long
4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4917                             int fd, int cmd, abi_long arg)
4918 {
4919     const argtype *arg_type = ie->arg_type;
4920     int target_size;
4921     abi_long ret;
4922     void *argptr;
4923     int rw_dir;
4924     struct live_urb *lurb;
4925 
4926     /*
4927      * each submitted URB needs to map to a unique ID for the
4928      * kernel, and that unique ID needs to be a pointer to
4929      * host memory.  hence, we need to malloc for each URB.
4930      * isochronous transfers have a variable length struct.
4931      */
4932     arg_type++;
4933     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4934 
4935     /* construct host copy of urb and metadata */
4936     lurb = g_try_new0(struct live_urb, 1);
4937     if (!lurb) {
4938         return -TARGET_ENOMEM;
4939     }
4940 
4941     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4942     if (!argptr) {
4943         g_free(lurb);
4944         return -TARGET_EFAULT;
4945     }
4946     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4947     unlock_user(argptr, arg, 0);
4948 
4949     lurb->target_urb_adr = arg;
4950     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4951 
4952     /* buffer space used depends on endpoint type so lock the entire buffer */
4953     /* control type urbs should check the buffer contents for true direction */
4954     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4955     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4956         lurb->host_urb.buffer_length, 1);
4957     if (lurb->target_buf_ptr == NULL) {
4958         g_free(lurb);
4959         return -TARGET_EFAULT;
4960     }
4961 
4962     /* update buffer pointer in host copy */
4963     lurb->host_urb.buffer = lurb->target_buf_ptr;
4964 
4965     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4966     if (is_error(ret)) {
4967         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4968         g_free(lurb);
4969     } else {
4970         urb_hashtable_insert(lurb);
4971     }
4972 
4973     return ret;
4974 }
4975 #endif /* CONFIG_USBFS */
4976 
4977 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4978                             int cmd, abi_long arg)
4979 {
4980     void *argptr;
4981     struct dm_ioctl *host_dm;
4982     abi_long guest_data;
4983     uint32_t guest_data_size;
4984     int target_size;
4985     const argtype *arg_type = ie->arg_type;
4986     abi_long ret;
4987     void *big_buf = NULL;
4988     char *host_data;
4989 
4990     arg_type++;
4991     target_size = thunk_type_size(arg_type, 0);
4992     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4993     if (!argptr) {
4994         ret = -TARGET_EFAULT;
4995         goto out;
4996     }
4997     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4998     unlock_user(argptr, arg, 0);
4999 
5000     /* buf_temp is too small, so fetch things into a bigger buffer */
5001     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5002     memcpy(big_buf, buf_temp, target_size);
5003     buf_temp = big_buf;
5004     host_dm = big_buf;
5005 
5006     guest_data = arg + host_dm->data_start;
5007     if ((guest_data - arg) < 0) {
5008         ret = -TARGET_EINVAL;
5009         goto out;
5010     }
5011     guest_data_size = host_dm->data_size - host_dm->data_start;
5012     host_data = (char*)host_dm + host_dm->data_start;
5013 
5014     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5015     if (!argptr) {
5016         ret = -TARGET_EFAULT;
5017         goto out;
5018     }
5019 
5020     switch (ie->host_cmd) {
5021     case DM_REMOVE_ALL:
5022     case DM_LIST_DEVICES:
5023     case DM_DEV_CREATE:
5024     case DM_DEV_REMOVE:
5025     case DM_DEV_SUSPEND:
5026     case DM_DEV_STATUS:
5027     case DM_DEV_WAIT:
5028     case DM_TABLE_STATUS:
5029     case DM_TABLE_CLEAR:
5030     case DM_TABLE_DEPS:
5031     case DM_LIST_VERSIONS:
5032         /* no input data */
5033         break;
5034     case DM_DEV_RENAME:
5035     case DM_DEV_SET_GEOMETRY:
5036         /* data contains only strings */
5037         memcpy(host_data, argptr, guest_data_size);
5038         break;
5039     case DM_TARGET_MSG:
5040         memcpy(host_data, argptr, guest_data_size);
5041         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5042         break;
5043     case DM_TABLE_LOAD:
5044     {
5045         void *gspec = argptr;
5046         void *cur_data = host_data;
5047         const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5048         int spec_size = thunk_type_size(dm_arg_type, 0);
5049         int i;
5050 
5051         for (i = 0; i < host_dm->target_count; i++) {
5052             struct dm_target_spec *spec = cur_data;
5053             uint32_t next;
5054             int slen;
5055 
5056             thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5057             slen = strlen((char*)gspec + spec_size) + 1;
5058             next = spec->next;
5059             spec->next = sizeof(*spec) + slen;
5060             strcpy((char*)&spec[1], gspec + spec_size);
5061             gspec += next;
5062             cur_data += spec->next;
5063         }
5064         break;
5065     }
5066     default:
5067         ret = -TARGET_EINVAL;
5068         unlock_user(argptr, guest_data, 0);
5069         goto out;
5070     }
5071     unlock_user(argptr, guest_data, 0);
5072 
5073     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5074     if (!is_error(ret)) {
5075         guest_data = arg + host_dm->data_start;
5076         guest_data_size = host_dm->data_size - host_dm->data_start;
5077         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5078         switch (ie->host_cmd) {
5079         case DM_REMOVE_ALL:
5080         case DM_DEV_CREATE:
5081         case DM_DEV_REMOVE:
5082         case DM_DEV_RENAME:
5083         case DM_DEV_SUSPEND:
5084         case DM_DEV_STATUS:
5085         case DM_TABLE_LOAD:
5086         case DM_TABLE_CLEAR:
5087         case DM_TARGET_MSG:
5088         case DM_DEV_SET_GEOMETRY:
5089             /* no return data */
5090             break;
5091         case DM_LIST_DEVICES:
5092         {
5093             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5094             uint32_t remaining_data = guest_data_size;
5095             void *cur_data = argptr;
5096             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5097             int nl_size = 12; /* can't use thunk_size due to alignment */
5098 
5099             while (1) {
5100                 uint32_t next = nl->next;
5101                 if (next) {
5102                     nl->next = nl_size + (strlen(nl->name) + 1);
5103                 }
5104                 if (remaining_data < nl->next) {
5105                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5106                     break;
5107                 }
5108                 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5109                 strcpy(cur_data + nl_size, nl->name);
5110                 cur_data += nl->next;
5111                 remaining_data -= nl->next;
5112                 if (!next) {
5113                     break;
5114                 }
5115                 nl = (void*)nl + next;
5116             }
5117             break;
5118         }
5119         case DM_DEV_WAIT:
5120         case DM_TABLE_STATUS:
5121         {
5122             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5123             void *cur_data = argptr;
5124             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5125             int spec_size = thunk_type_size(dm_arg_type, 0);
5126             int i;
5127 
5128             for (i = 0; i < host_dm->target_count; i++) {
5129                 uint32_t next = spec->next;
5130                 int slen = strlen((char*)&spec[1]) + 1;
5131                 spec->next = (cur_data - argptr) + spec_size + slen;
5132                 if (guest_data_size < spec->next) {
5133                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5134                     break;
5135                 }
5136                 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5137                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5138                 cur_data = argptr + spec->next;
5139                 spec = (void*)host_dm + host_dm->data_start + next;
5140             }
5141             break;
5142         }
5143         case DM_TABLE_DEPS:
5144         {
5145             void *hdata = (void*)host_dm + host_dm->data_start;
5146             int count = *(uint32_t*)hdata;
5147             uint64_t *hdev = hdata + 8;
5148             uint64_t *gdev = argptr + 8;
5149             int i;
5150 
5151             *(uint32_t*)argptr = tswap32(count);
5152             for (i = 0; i < count; i++) {
5153                 *gdev = tswap64(*hdev);
5154                 gdev++;
5155                 hdev++;
5156             }
5157             break;
5158         }
5159         case DM_LIST_VERSIONS:
5160         {
5161             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5162             uint32_t remaining_data = guest_data_size;
5163             void *cur_data = argptr;
5164             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5165             int vers_size = thunk_type_size(dm_arg_type, 0);
5166 
5167             while (1) {
5168                 uint32_t next = vers->next;
5169                 if (next) {
5170                     vers->next = vers_size + (strlen(vers->name) + 1);
5171                 }
5172                 if (remaining_data < vers->next) {
5173                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5174                     break;
5175                 }
5176                 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5177                 strcpy(cur_data + vers_size, vers->name);
5178                 cur_data += vers->next;
5179                 remaining_data -= vers->next;
5180                 if (!next) {
5181                     break;
5182                 }
5183                 vers = (void*)vers + next;
5184             }
5185             break;
5186         }
5187         default:
5188             unlock_user(argptr, guest_data, 0);
5189             ret = -TARGET_EINVAL;
5190             goto out;
5191         }
5192         unlock_user(argptr, guest_data, guest_data_size);
5193 
5194         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5195         if (!argptr) {
5196             ret = -TARGET_EFAULT;
5197             goto out;
5198         }
5199         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5200         unlock_user(argptr, arg, target_size);
5201     }
5202 out:
5203     g_free(big_buf);
5204     return ret;
5205 }
5206 
5207 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5208                                int cmd, abi_long arg)
5209 {
5210     void *argptr;
5211     int target_size;
5212     const argtype *arg_type = ie->arg_type;
5213     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5214     abi_long ret;
5215 
5216     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5217     struct blkpg_partition host_part;
5218 
5219     /* Read and convert blkpg */
5220     arg_type++;
5221     target_size = thunk_type_size(arg_type, 0);
5222     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5223     if (!argptr) {
5224         ret = -TARGET_EFAULT;
5225         goto out;
5226     }
5227     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5228     unlock_user(argptr, arg, 0);
5229 
5230     switch (host_blkpg->op) {
5231     case BLKPG_ADD_PARTITION:
5232     case BLKPG_DEL_PARTITION:
5233         /* payload is struct blkpg_partition */
5234         break;
5235     default:
5236         /* Unknown opcode */
5237         ret = -TARGET_EINVAL;
5238         goto out;
5239     }
5240 
5241     /* Read and convert blkpg->data */
5242     arg = (abi_long)(uintptr_t)host_blkpg->data;
5243     target_size = thunk_type_size(part_arg_type, 0);
5244     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5245     if (!argptr) {
5246         ret = -TARGET_EFAULT;
5247         goto out;
5248     }
5249     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5250     unlock_user(argptr, arg, 0);
5251 
5252     /* Swizzle the data pointer to our local copy and call! */
5253     host_blkpg->data = &host_part;
5254     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5255 
5256 out:
5257     return ret;
5258 }
5259 
5260 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5261                                 int fd, int cmd, abi_long arg)
5262 {
5263     const argtype *arg_type = ie->arg_type;
5264     const StructEntry *se;
5265     const argtype *field_types;
5266     const int *dst_offsets, *src_offsets;
5267     int target_size;
5268     void *argptr;
5269     abi_ulong *target_rt_dev_ptr = NULL;
5270     unsigned long *host_rt_dev_ptr = NULL;
5271     abi_long ret;
5272     int i;
5273 
5274     assert(ie->access == IOC_W);
5275     assert(*arg_type == TYPE_PTR);
5276     arg_type++;
5277     assert(*arg_type == TYPE_STRUCT);
5278     target_size = thunk_type_size(arg_type, 0);
5279     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5280     if (!argptr) {
5281         return -TARGET_EFAULT;
5282     }
5283     arg_type++;
5284     assert(*arg_type == (int)STRUCT_rtentry);
5285     se = struct_entries + *arg_type++;
5286     assert(se->convert[0] == NULL);
5287     /* convert struct here to be able to catch rt_dev string */
5288     field_types = se->field_types;
5289     dst_offsets = se->field_offsets[THUNK_HOST];
5290     src_offsets = se->field_offsets[THUNK_TARGET];
5291     for (i = 0; i < se->nb_fields; i++) {
5292         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5293             assert(*field_types == TYPE_PTRVOID);
5294             target_rt_dev_ptr = argptr + src_offsets[i];
5295             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5296             if (*target_rt_dev_ptr != 0) {
5297                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5298                                                   tswapal(*target_rt_dev_ptr));
5299                 if (!*host_rt_dev_ptr) {
5300                     unlock_user(argptr, arg, 0);
5301                     return -TARGET_EFAULT;
5302                 }
5303             } else {
5304                 *host_rt_dev_ptr = 0;
5305             }
5306             field_types++;
5307             continue;
5308         }
5309         field_types = thunk_convert(buf_temp + dst_offsets[i],
5310                                     argptr + src_offsets[i],
5311                                     field_types, THUNK_HOST);
5312     }
5313     unlock_user(argptr, arg, 0);
5314 
5315     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5316 
5317     assert(host_rt_dev_ptr != NULL);
5318     assert(target_rt_dev_ptr != NULL);
5319     if (*host_rt_dev_ptr != 0) {
5320         unlock_user((void *)*host_rt_dev_ptr,
5321                     *target_rt_dev_ptr, 0);
5322     }
5323     return ret;
5324 }
5325 
5326 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5327                                      int fd, int cmd, abi_long arg)
5328 {
5329     int sig = target_to_host_signal(arg);
5330     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5331 }
5332 
5333 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5334                                     int fd, int cmd, abi_long arg)
5335 {
5336     struct timeval tv;
5337     abi_long ret;
5338 
5339     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5340     if (is_error(ret)) {
5341         return ret;
5342     }
5343 
5344     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5345         if (copy_to_user_timeval(arg, &tv)) {
5346             return -TARGET_EFAULT;
5347         }
5348     } else {
5349         if (copy_to_user_timeval64(arg, &tv)) {
5350             return -TARGET_EFAULT;
5351         }
5352     }
5353 
5354     return ret;
5355 }
5356 
5357 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5358                                       int fd, int cmd, abi_long arg)
5359 {
5360     struct timespec ts;
5361     abi_long ret;
5362 
5363     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5364     if (is_error(ret)) {
5365         return ret;
5366     }
5367 
5368     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5369         if (host_to_target_timespec(arg, &ts)) {
5370             return -TARGET_EFAULT;
5371         }
5372     } else{
5373         if (host_to_target_timespec64(arg, &ts)) {
5374             return -TARGET_EFAULT;
5375         }
5376     }
5377 
5378     return ret;
5379 }
5380 
5381 #ifdef TIOCGPTPEER
5382 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5383                                      int fd, int cmd, abi_long arg)
5384 {
5385     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5386     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5387 }
5388 #endif
5389 
5390 #ifdef HAVE_DRM_H
5391 
5392 static void unlock_drm_version(struct drm_version *host_ver,
5393                                struct target_drm_version *target_ver,
5394                                bool copy)
5395 {
5396     unlock_user(host_ver->name, target_ver->name,
5397                                 copy ? host_ver->name_len : 0);
5398     unlock_user(host_ver->date, target_ver->date,
5399                                 copy ? host_ver->date_len : 0);
5400     unlock_user(host_ver->desc, target_ver->desc,
5401                                 copy ? host_ver->desc_len : 0);
5402 }
5403 
5404 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5405                                           struct target_drm_version *target_ver)
5406 {
5407     memset(host_ver, 0, sizeof(*host_ver));
5408 
5409     __get_user(host_ver->name_len, &target_ver->name_len);
5410     if (host_ver->name_len) {
5411         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5412                                    target_ver->name_len, 0);
5413         if (!host_ver->name) {
5414             return -EFAULT;
5415         }
5416     }
5417 
5418     __get_user(host_ver->date_len, &target_ver->date_len);
5419     if (host_ver->date_len) {
5420         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5421                                    target_ver->date_len, 0);
5422         if (!host_ver->date) {
5423             goto err;
5424         }
5425     }
5426 
5427     __get_user(host_ver->desc_len, &target_ver->desc_len);
5428     if (host_ver->desc_len) {
5429         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5430                                    target_ver->desc_len, 0);
5431         if (!host_ver->desc) {
5432             goto err;
5433         }
5434     }
5435 
5436     return 0;
5437 err:
5438     unlock_drm_version(host_ver, target_ver, false);
5439     return -EFAULT;
5440 }
5441 
5442 static inline void host_to_target_drmversion(
5443                                           struct target_drm_version *target_ver,
5444                                           struct drm_version *host_ver)
5445 {
5446     __put_user(host_ver->version_major, &target_ver->version_major);
5447     __put_user(host_ver->version_minor, &target_ver->version_minor);
5448     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5449     __put_user(host_ver->name_len, &target_ver->name_len);
5450     __put_user(host_ver->date_len, &target_ver->date_len);
5451     __put_user(host_ver->desc_len, &target_ver->desc_len);
5452     unlock_drm_version(host_ver, target_ver, true);
5453 }
5454 
5455 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5456                              int fd, int cmd, abi_long arg)
5457 {
5458     struct drm_version *ver;
5459     struct target_drm_version *target_ver;
5460     abi_long ret;
5461 
5462     switch (ie->host_cmd) {
5463     case DRM_IOCTL_VERSION:
5464         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5465             return -TARGET_EFAULT;
5466         }
5467         ver = (struct drm_version *)buf_temp;
5468         ret = target_to_host_drmversion(ver, target_ver);
5469         if (!is_error(ret)) {
5470             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5471             if (is_error(ret)) {
5472                 unlock_drm_version(ver, target_ver, false);
5473             } else {
5474                 host_to_target_drmversion(target_ver, ver);
5475             }
5476         }
5477         unlock_user_struct(target_ver, arg, 0);
5478         return ret;
5479     }
5480     return -TARGET_ENOSYS;
5481 }
5482 
5483 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5484                                            struct drm_i915_getparam *gparam,
5485                                            int fd, abi_long arg)
5486 {
5487     abi_long ret;
5488     int value;
5489     struct target_drm_i915_getparam *target_gparam;
5490 
5491     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5492         return -TARGET_EFAULT;
5493     }
5494 
5495     __get_user(gparam->param, &target_gparam->param);
5496     gparam->value = &value;
5497     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5498     put_user_s32(value, target_gparam->value);
5499 
5500     unlock_user_struct(target_gparam, arg, 0);
5501     return ret;
5502 }
5503 
5504 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5505                                   int fd, int cmd, abi_long arg)
5506 {
5507     switch (ie->host_cmd) {
5508     case DRM_IOCTL_I915_GETPARAM:
5509         return do_ioctl_drm_i915_getparam(ie,
5510                                           (struct drm_i915_getparam *)buf_temp,
5511                                           fd, arg);
5512     default:
5513         return -TARGET_ENOSYS;
5514     }
5515 }
5516 
5517 #endif
5518 
5519 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5520                                         int fd, int cmd, abi_long arg)
5521 {
5522     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5523     struct tun_filter *target_filter;
5524     char *target_addr;
5525 
5526     assert(ie->access == IOC_W);
5527 
5528     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5529     if (!target_filter) {
5530         return -TARGET_EFAULT;
5531     }
5532     filter->flags = tswap16(target_filter->flags);
5533     filter->count = tswap16(target_filter->count);
5534     unlock_user(target_filter, arg, 0);
5535 
5536     if (filter->count) {
5537         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5538             MAX_STRUCT_SIZE) {
5539             return -TARGET_EFAULT;
5540         }
5541 
5542         target_addr = lock_user(VERIFY_READ,
5543                                 arg + offsetof(struct tun_filter, addr),
5544                                 filter->count * ETH_ALEN, 1);
5545         if (!target_addr) {
5546             return -TARGET_EFAULT;
5547         }
5548         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5549         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5550     }
5551 
5552     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5553 }
5554 
5555 IOCTLEntry ioctl_entries[] = {
5556 #define IOCTL(cmd, access, ...) \
5557     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5559     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5560 #define IOCTL_IGNORE(cmd) \
5561     { TARGET_ ## cmd, 0, #cmd },
5562 #include "ioctls.h"
5563     { 0, 0, },
5564 };
5565 
5566 /* ??? Implement proper locking for ioctls.  */
5567 /* do_ioctl() Must return target values and target errnos. */
5568 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5569 {
5570     const IOCTLEntry *ie;
5571     const argtype *arg_type;
5572     abi_long ret;
5573     uint8_t buf_temp[MAX_STRUCT_SIZE];
5574     int target_size;
5575     void *argptr;
5576 
5577     ie = ioctl_entries;
5578     for(;;) {
5579         if (ie->target_cmd == 0) {
5580             qemu_log_mask(
5581                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5582             return -TARGET_ENOTTY;
5583         }
5584         if (ie->target_cmd == cmd)
5585             break;
5586         ie++;
5587     }
5588     arg_type = ie->arg_type;
5589     if (ie->do_ioctl) {
5590         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5591     } else if (!ie->host_cmd) {
5592         /* Some architectures define BSD ioctls in their headers
5593            that are not implemented in Linux.  */
5594         return -TARGET_ENOTTY;
5595     }
5596 
5597     switch(arg_type[0]) {
5598     case TYPE_NULL:
5599         /* no argument */
5600         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5601         break;
5602     case TYPE_PTRVOID:
5603     case TYPE_INT:
5604     case TYPE_LONG:
5605     case TYPE_ULONG:
5606         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5607         break;
5608     case TYPE_PTR:
5609         arg_type++;
5610         target_size = thunk_type_size(arg_type, 0);
5611         switch(ie->access) {
5612         case IOC_R:
5613             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5614             if (!is_error(ret)) {
5615                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5616                 if (!argptr)
5617                     return -TARGET_EFAULT;
5618                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5619                 unlock_user(argptr, arg, target_size);
5620             }
5621             break;
5622         case IOC_W:
5623             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5624             if (!argptr)
5625                 return -TARGET_EFAULT;
5626             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5627             unlock_user(argptr, arg, 0);
5628             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5629             break;
5630         default:
5631         case IOC_RW:
5632             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5633             if (!argptr)
5634                 return -TARGET_EFAULT;
5635             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5636             unlock_user(argptr, arg, 0);
5637             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5638             if (!is_error(ret)) {
5639                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5640                 if (!argptr)
5641                     return -TARGET_EFAULT;
5642                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5643                 unlock_user(argptr, arg, target_size);
5644             }
5645             break;
5646         }
5647         break;
5648     default:
5649         qemu_log_mask(LOG_UNIMP,
5650                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5651                       (long)cmd, arg_type[0]);
5652         ret = -TARGET_ENOTTY;
5653         break;
5654     }
5655     return ret;
5656 }
5657 
5658 static const bitmask_transtbl iflag_tbl[] = {
5659         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5660         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5661         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5662         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5663         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5664         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5665         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5666         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5667         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5668         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5669         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5670         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5671         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5672         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5673         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5674 };
5675 
5676 static const bitmask_transtbl oflag_tbl[] = {
5677 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5678 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5679 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5680 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5681 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5682 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5683 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5684 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5685 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5686 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5687 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5688 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5689 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5690 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5691 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5692 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5693 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5694 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5695 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5696 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5697 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5698 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5699 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5700 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5701 };
5702 
5703 static const bitmask_transtbl cflag_tbl[] = {
5704 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5705 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5706 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5707 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5708 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5709 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5710 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5711 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5712 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5713 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5714 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5715 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5716 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5717 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5718 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5719 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5720 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5721 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5722 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5723 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5724 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5725 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5726 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5727 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5728 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5729 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5730 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5731 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5732 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5733 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5734 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5735 };
5736 
5737 static const bitmask_transtbl lflag_tbl[] = {
5738   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5739   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5740   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5741   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5742   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5743   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5744   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5745   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5746   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5747   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5748   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5749   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5750   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5751   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5752   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5753   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5754 };
5755 
5756 static void target_to_host_termios (void *dst, const void *src)
5757 {
5758     struct host_termios *host = dst;
5759     const struct target_termios *target = src;
5760 
5761     host->c_iflag =
5762         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5763     host->c_oflag =
5764         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5765     host->c_cflag =
5766         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5767     host->c_lflag =
5768         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5769     host->c_line = target->c_line;
5770 
5771     memset(host->c_cc, 0, sizeof(host->c_cc));
5772     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5773     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5774     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5775     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5776     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5777     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5778     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5779     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5780     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5781     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5782     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5783     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5784     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5785     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5786     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5787     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5788     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5789 }
5790 
5791 static void host_to_target_termios (void *dst, const void *src)
5792 {
5793     struct target_termios *target = dst;
5794     const struct host_termios *host = src;
5795 
5796     target->c_iflag =
5797         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5798     target->c_oflag =
5799         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5800     target->c_cflag =
5801         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5802     target->c_lflag =
5803         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5804     target->c_line = host->c_line;
5805 
5806     memset(target->c_cc, 0, sizeof(target->c_cc));
5807     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5808     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5809     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5810     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5811     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5812     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5813     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5814     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5815     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5816     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5817     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5818     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5819     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5820     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5821     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5822     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5823     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5824 }
5825 
5826 static const StructEntry struct_termios_def = {
5827     .convert = { host_to_target_termios, target_to_host_termios },
5828     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5829     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5830     .print = print_termios,
5831 };
5832 
5833 /* If the host does not provide these bits, they may be safely discarded. */
5834 #ifndef MAP_SYNC
5835 #define MAP_SYNC 0
5836 #endif
5837 #ifndef MAP_UNINITIALIZED
5838 #define MAP_UNINITIALIZED 0
5839 #endif
5840 
5841 static const bitmask_transtbl mmap_flags_tbl[] = {
5842     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5843     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5844       MAP_ANONYMOUS, MAP_ANONYMOUS },
5845     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5846       MAP_GROWSDOWN, MAP_GROWSDOWN },
5847     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5848       MAP_DENYWRITE, MAP_DENYWRITE },
5849     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5850       MAP_EXECUTABLE, MAP_EXECUTABLE },
5851     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5852     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5853       MAP_NORESERVE, MAP_NORESERVE },
5854     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5855     /* MAP_STACK had been ignored by the kernel for quite some time.
5856        Recognize it for the target insofar as we do not want to pass
5857        it through to the host.  */
5858     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5859     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5860     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5861     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5862       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5863     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5864       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5865 };
5866 
5867 /*
5868  * Arrange for legacy / undefined architecture specific flags to be
5869  * ignored by mmap handling code.
5870  */
5871 #ifndef TARGET_MAP_32BIT
5872 #define TARGET_MAP_32BIT 0
5873 #endif
5874 #ifndef TARGET_MAP_HUGE_2MB
5875 #define TARGET_MAP_HUGE_2MB 0
5876 #endif
5877 #ifndef TARGET_MAP_HUGE_1GB
5878 #define TARGET_MAP_HUGE_1GB 0
5879 #endif
5880 
5881 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5882                         int target_flags, int fd, off_t offset)
5883 {
5884     /*
5885      * The historical set of flags that all mmap types implicitly support.
5886      */
5887     enum {
5888         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5889                                | TARGET_MAP_PRIVATE
5890                                | TARGET_MAP_FIXED
5891                                | TARGET_MAP_ANONYMOUS
5892                                | TARGET_MAP_DENYWRITE
5893                                | TARGET_MAP_EXECUTABLE
5894                                | TARGET_MAP_UNINITIALIZED
5895                                | TARGET_MAP_GROWSDOWN
5896                                | TARGET_MAP_LOCKED
5897                                | TARGET_MAP_NORESERVE
5898                                | TARGET_MAP_POPULATE
5899                                | TARGET_MAP_NONBLOCK
5900                                | TARGET_MAP_STACK
5901                                | TARGET_MAP_HUGETLB
5902                                | TARGET_MAP_32BIT
5903                                | TARGET_MAP_HUGE_2MB
5904                                | TARGET_MAP_HUGE_1GB
5905     };
5906     int host_flags;
5907 
5908     switch (target_flags & TARGET_MAP_TYPE) {
5909     case TARGET_MAP_PRIVATE:
5910         host_flags = MAP_PRIVATE;
5911         break;
5912     case TARGET_MAP_SHARED:
5913         host_flags = MAP_SHARED;
5914         break;
5915     case TARGET_MAP_SHARED_VALIDATE:
5916         /*
5917          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5918          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5919          */
5920         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5921             return -TARGET_EOPNOTSUPP;
5922         }
5923         host_flags = MAP_SHARED_VALIDATE;
5924         if (target_flags & TARGET_MAP_SYNC) {
5925             host_flags |= MAP_SYNC;
5926         }
5927         break;
5928     default:
5929         return -TARGET_EINVAL;
5930     }
5931     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5932 
5933     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5934 }
5935 
5936 /*
5937  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5938  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5939  */
5940 #if defined(TARGET_I386)
5941 
5942 /* NOTE: there is really one LDT for all the threads */
5943 static uint8_t *ldt_table;
5944 
5945 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5946 {
5947     int size;
5948     void *p;
5949 
5950     if (!ldt_table)
5951         return 0;
5952     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5953     if (size > bytecount)
5954         size = bytecount;
5955     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5956     if (!p)
5957         return -TARGET_EFAULT;
5958     /* ??? Should this by byteswapped?  */
5959     memcpy(p, ldt_table, size);
5960     unlock_user(p, ptr, size);
5961     return size;
5962 }
5963 
5964 /* XXX: add locking support */
5965 static abi_long write_ldt(CPUX86State *env,
5966                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5967 {
5968     struct target_modify_ldt_ldt_s ldt_info;
5969     struct target_modify_ldt_ldt_s *target_ldt_info;
5970     int seg_32bit, contents, read_exec_only, limit_in_pages;
5971     int seg_not_present, useable, lm;
5972     uint32_t *lp, entry_1, entry_2;
5973 
5974     if (bytecount != sizeof(ldt_info))
5975         return -TARGET_EINVAL;
5976     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5977         return -TARGET_EFAULT;
5978     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5979     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5980     ldt_info.limit = tswap32(target_ldt_info->limit);
5981     ldt_info.flags = tswap32(target_ldt_info->flags);
5982     unlock_user_struct(target_ldt_info, ptr, 0);
5983 
5984     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5985         return -TARGET_EINVAL;
5986     seg_32bit = ldt_info.flags & 1;
5987     contents = (ldt_info.flags >> 1) & 3;
5988     read_exec_only = (ldt_info.flags >> 3) & 1;
5989     limit_in_pages = (ldt_info.flags >> 4) & 1;
5990     seg_not_present = (ldt_info.flags >> 5) & 1;
5991     useable = (ldt_info.flags >> 6) & 1;
5992 #ifdef TARGET_ABI32
5993     lm = 0;
5994 #else
5995     lm = (ldt_info.flags >> 7) & 1;
5996 #endif
5997     if (contents == 3) {
5998         if (oldmode)
5999             return -TARGET_EINVAL;
6000         if (seg_not_present == 0)
6001             return -TARGET_EINVAL;
6002     }
6003     /* allocate the LDT */
6004     if (!ldt_table) {
6005         env->ldt.base = target_mmap(0,
6006                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6007                                     PROT_READ|PROT_WRITE,
6008                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6009         if (env->ldt.base == -1)
6010             return -TARGET_ENOMEM;
6011         memset(g2h_untagged(env->ldt.base), 0,
6012                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6013         env->ldt.limit = 0xffff;
6014         ldt_table = g2h_untagged(env->ldt.base);
6015     }
6016 
6017     /* NOTE: same code as Linux kernel */
6018     /* Allow LDTs to be cleared by the user. */
6019     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6020         if (oldmode ||
6021             (contents == 0		&&
6022              read_exec_only == 1	&&
6023              seg_32bit == 0		&&
6024              limit_in_pages == 0	&&
6025              seg_not_present == 1	&&
6026              useable == 0 )) {
6027             entry_1 = 0;
6028             entry_2 = 0;
6029             goto install;
6030         }
6031     }
6032 
6033     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6034         (ldt_info.limit & 0x0ffff);
6035     entry_2 = (ldt_info.base_addr & 0xff000000) |
6036         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6037         (ldt_info.limit & 0xf0000) |
6038         ((read_exec_only ^ 1) << 9) |
6039         (contents << 10) |
6040         ((seg_not_present ^ 1) << 15) |
6041         (seg_32bit << 22) |
6042         (limit_in_pages << 23) |
6043         (lm << 21) |
6044         0x7000;
6045     if (!oldmode)
6046         entry_2 |= (useable << 20);
6047 
6048     /* Install the new entry ...  */
6049 install:
6050     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6051     lp[0] = tswap32(entry_1);
6052     lp[1] = tswap32(entry_2);
6053     return 0;
6054 }
6055 
6056 /* specific and weird i386 syscalls */
6057 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6058                               unsigned long bytecount)
6059 {
6060     abi_long ret;
6061 
6062     switch (func) {
6063     case 0:
6064         ret = read_ldt(ptr, bytecount);
6065         break;
6066     case 1:
6067         ret = write_ldt(env, ptr, bytecount, 1);
6068         break;
6069     case 0x11:
6070         ret = write_ldt(env, ptr, bytecount, 0);
6071         break;
6072     default:
6073         ret = -TARGET_ENOSYS;
6074         break;
6075     }
6076     return ret;
6077 }
6078 
6079 #if defined(TARGET_ABI32)
6080 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6081 {
6082     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6083     struct target_modify_ldt_ldt_s ldt_info;
6084     struct target_modify_ldt_ldt_s *target_ldt_info;
6085     int seg_32bit, contents, read_exec_only, limit_in_pages;
6086     int seg_not_present, useable, lm;
6087     uint32_t *lp, entry_1, entry_2;
6088     int i;
6089 
6090     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6091     if (!target_ldt_info)
6092         return -TARGET_EFAULT;
6093     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6094     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6095     ldt_info.limit = tswap32(target_ldt_info->limit);
6096     ldt_info.flags = tswap32(target_ldt_info->flags);
6097     if (ldt_info.entry_number == -1) {
6098         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6099             if (gdt_table[i] == 0) {
6100                 ldt_info.entry_number = i;
6101                 target_ldt_info->entry_number = tswap32(i);
6102                 break;
6103             }
6104         }
6105     }
6106     unlock_user_struct(target_ldt_info, ptr, 1);
6107 
6108     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6109         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6110            return -TARGET_EINVAL;
6111     seg_32bit = ldt_info.flags & 1;
6112     contents = (ldt_info.flags >> 1) & 3;
6113     read_exec_only = (ldt_info.flags >> 3) & 1;
6114     limit_in_pages = (ldt_info.flags >> 4) & 1;
6115     seg_not_present = (ldt_info.flags >> 5) & 1;
6116     useable = (ldt_info.flags >> 6) & 1;
6117 #ifdef TARGET_ABI32
6118     lm = 0;
6119 #else
6120     lm = (ldt_info.flags >> 7) & 1;
6121 #endif
6122 
6123     if (contents == 3) {
6124         if (seg_not_present == 0)
6125             return -TARGET_EINVAL;
6126     }
6127 
6128     /* NOTE: same code as Linux kernel */
6129     /* Allow LDTs to be cleared by the user. */
6130     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6131         if ((contents == 0             &&
6132              read_exec_only == 1       &&
6133              seg_32bit == 0            &&
6134              limit_in_pages == 0       &&
6135              seg_not_present == 1      &&
6136              useable == 0 )) {
6137             entry_1 = 0;
6138             entry_2 = 0;
6139             goto install;
6140         }
6141     }
6142 
6143     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6144         (ldt_info.limit & 0x0ffff);
6145     entry_2 = (ldt_info.base_addr & 0xff000000) |
6146         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6147         (ldt_info.limit & 0xf0000) |
6148         ((read_exec_only ^ 1) << 9) |
6149         (contents << 10) |
6150         ((seg_not_present ^ 1) << 15) |
6151         (seg_32bit << 22) |
6152         (limit_in_pages << 23) |
6153         (useable << 20) |
6154         (lm << 21) |
6155         0x7000;
6156 
6157     /* Install the new entry ...  */
6158 install:
6159     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6160     lp[0] = tswap32(entry_1);
6161     lp[1] = tswap32(entry_2);
6162     return 0;
6163 }
6164 
6165 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6166 {
6167     struct target_modify_ldt_ldt_s *target_ldt_info;
6168     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6169     uint32_t base_addr, limit, flags;
6170     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6171     int seg_not_present, useable, lm;
6172     uint32_t *lp, entry_1, entry_2;
6173 
6174     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6175     if (!target_ldt_info)
6176         return -TARGET_EFAULT;
6177     idx = tswap32(target_ldt_info->entry_number);
6178     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6179         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6180         unlock_user_struct(target_ldt_info, ptr, 1);
6181         return -TARGET_EINVAL;
6182     }
6183     lp = (uint32_t *)(gdt_table + idx);
6184     entry_1 = tswap32(lp[0]);
6185     entry_2 = tswap32(lp[1]);
6186 
6187     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6188     contents = (entry_2 >> 10) & 3;
6189     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6190     seg_32bit = (entry_2 >> 22) & 1;
6191     limit_in_pages = (entry_2 >> 23) & 1;
6192     useable = (entry_2 >> 20) & 1;
6193 #ifdef TARGET_ABI32
6194     lm = 0;
6195 #else
6196     lm = (entry_2 >> 21) & 1;
6197 #endif
6198     flags = (seg_32bit << 0) | (contents << 1) |
6199         (read_exec_only << 3) | (limit_in_pages << 4) |
6200         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6201     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6202     base_addr = (entry_1 >> 16) |
6203         (entry_2 & 0xff000000) |
6204         ((entry_2 & 0xff) << 16);
6205     target_ldt_info->base_addr = tswapal(base_addr);
6206     target_ldt_info->limit = tswap32(limit);
6207     target_ldt_info->flags = tswap32(flags);
6208     unlock_user_struct(target_ldt_info, ptr, 1);
6209     return 0;
6210 }
6211 
6212 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6213 {
6214     return -TARGET_ENOSYS;
6215 }
6216 #else
6217 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6218 {
6219     abi_long ret = 0;
6220     abi_ulong val;
6221     int idx;
6222 
6223     switch(code) {
6224     case TARGET_ARCH_SET_GS:
6225     case TARGET_ARCH_SET_FS:
6226         if (code == TARGET_ARCH_SET_GS)
6227             idx = R_GS;
6228         else
6229             idx = R_FS;
6230         cpu_x86_load_seg(env, idx, 0);
6231         env->segs[idx].base = addr;
6232         break;
6233     case TARGET_ARCH_GET_GS:
6234     case TARGET_ARCH_GET_FS:
6235         if (code == TARGET_ARCH_GET_GS)
6236             idx = R_GS;
6237         else
6238             idx = R_FS;
6239         val = env->segs[idx].base;
6240         if (put_user(val, addr, abi_ulong))
6241             ret = -TARGET_EFAULT;
6242         break;
6243     default:
6244         ret = -TARGET_EINVAL;
6245         break;
6246     }
6247     return ret;
6248 }
6249 #endif /* defined(TARGET_ABI32 */
6250 #endif /* defined(TARGET_I386) */
6251 
6252 /*
6253  * These constants are generic.  Supply any that are missing from the host.
6254  */
6255 #ifndef PR_SET_NAME
6256 # define PR_SET_NAME    15
6257 # define PR_GET_NAME    16
6258 #endif
6259 #ifndef PR_SET_FP_MODE
6260 # define PR_SET_FP_MODE 45
6261 # define PR_GET_FP_MODE 46
6262 # define PR_FP_MODE_FR   (1 << 0)
6263 # define PR_FP_MODE_FRE  (1 << 1)
6264 #endif
6265 #ifndef PR_SVE_SET_VL
6266 # define PR_SVE_SET_VL  50
6267 # define PR_SVE_GET_VL  51
6268 # define PR_SVE_VL_LEN_MASK  0xffff
6269 # define PR_SVE_VL_INHERIT   (1 << 17)
6270 #endif
6271 #ifndef PR_PAC_RESET_KEYS
6272 # define PR_PAC_RESET_KEYS  54
6273 # define PR_PAC_APIAKEY   (1 << 0)
6274 # define PR_PAC_APIBKEY   (1 << 1)
6275 # define PR_PAC_APDAKEY   (1 << 2)
6276 # define PR_PAC_APDBKEY   (1 << 3)
6277 # define PR_PAC_APGAKEY   (1 << 4)
6278 #endif
6279 #ifndef PR_SET_TAGGED_ADDR_CTRL
6280 # define PR_SET_TAGGED_ADDR_CTRL 55
6281 # define PR_GET_TAGGED_ADDR_CTRL 56
6282 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6283 #endif
6284 #ifndef PR_SET_IO_FLUSHER
6285 # define PR_SET_IO_FLUSHER 57
6286 # define PR_GET_IO_FLUSHER 58
6287 #endif
6288 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6289 # define PR_SET_SYSCALL_USER_DISPATCH 59
6290 #endif
6291 #ifndef PR_SME_SET_VL
6292 # define PR_SME_SET_VL  63
6293 # define PR_SME_GET_VL  64
6294 # define PR_SME_VL_LEN_MASK  0xffff
6295 # define PR_SME_VL_INHERIT   (1 << 17)
6296 #endif
6297 
6298 #include "target_prctl.h"
6299 
6300 static abi_long do_prctl_inval0(CPUArchState *env)
6301 {
6302     return -TARGET_EINVAL;
6303 }
6304 
6305 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6306 {
6307     return -TARGET_EINVAL;
6308 }
6309 
6310 #ifndef do_prctl_get_fp_mode
6311 #define do_prctl_get_fp_mode do_prctl_inval0
6312 #endif
6313 #ifndef do_prctl_set_fp_mode
6314 #define do_prctl_set_fp_mode do_prctl_inval1
6315 #endif
6316 #ifndef do_prctl_sve_get_vl
6317 #define do_prctl_sve_get_vl do_prctl_inval0
6318 #endif
6319 #ifndef do_prctl_sve_set_vl
6320 #define do_prctl_sve_set_vl do_prctl_inval1
6321 #endif
6322 #ifndef do_prctl_reset_keys
6323 #define do_prctl_reset_keys do_prctl_inval1
6324 #endif
6325 #ifndef do_prctl_set_tagged_addr_ctrl
6326 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6327 #endif
6328 #ifndef do_prctl_get_tagged_addr_ctrl
6329 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6330 #endif
6331 #ifndef do_prctl_get_unalign
6332 #define do_prctl_get_unalign do_prctl_inval1
6333 #endif
6334 #ifndef do_prctl_set_unalign
6335 #define do_prctl_set_unalign do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_sme_get_vl
6338 #define do_prctl_sme_get_vl do_prctl_inval0
6339 #endif
6340 #ifndef do_prctl_sme_set_vl
6341 #define do_prctl_sme_set_vl do_prctl_inval1
6342 #endif
6343 
6344 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6345                          abi_long arg3, abi_long arg4, abi_long arg5)
6346 {
6347     abi_long ret;
6348 
6349     switch (option) {
6350     case PR_GET_PDEATHSIG:
6351         {
6352             int deathsig;
6353             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6354                                   arg3, arg4, arg5));
6355             if (!is_error(ret) &&
6356                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6357                 return -TARGET_EFAULT;
6358             }
6359             return ret;
6360         }
6361     case PR_SET_PDEATHSIG:
6362         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6363                                arg3, arg4, arg5));
6364     case PR_GET_NAME:
6365         {
6366             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6367             if (!name) {
6368                 return -TARGET_EFAULT;
6369             }
6370             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6371                                   arg3, arg4, arg5));
6372             unlock_user(name, arg2, 16);
6373             return ret;
6374         }
6375     case PR_SET_NAME:
6376         {
6377             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6378             if (!name) {
6379                 return -TARGET_EFAULT;
6380             }
6381             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6382                                   arg3, arg4, arg5));
6383             unlock_user(name, arg2, 0);
6384             return ret;
6385         }
6386     case PR_GET_FP_MODE:
6387         return do_prctl_get_fp_mode(env);
6388     case PR_SET_FP_MODE:
6389         return do_prctl_set_fp_mode(env, arg2);
6390     case PR_SVE_GET_VL:
6391         return do_prctl_sve_get_vl(env);
6392     case PR_SVE_SET_VL:
6393         return do_prctl_sve_set_vl(env, arg2);
6394     case PR_SME_GET_VL:
6395         return do_prctl_sme_get_vl(env);
6396     case PR_SME_SET_VL:
6397         return do_prctl_sme_set_vl(env, arg2);
6398     case PR_PAC_RESET_KEYS:
6399         if (arg3 || arg4 || arg5) {
6400             return -TARGET_EINVAL;
6401         }
6402         return do_prctl_reset_keys(env, arg2);
6403     case PR_SET_TAGGED_ADDR_CTRL:
6404         if (arg3 || arg4 || arg5) {
6405             return -TARGET_EINVAL;
6406         }
6407         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6408     case PR_GET_TAGGED_ADDR_CTRL:
6409         if (arg2 || arg3 || arg4 || arg5) {
6410             return -TARGET_EINVAL;
6411         }
6412         return do_prctl_get_tagged_addr_ctrl(env);
6413 
6414     case PR_GET_UNALIGN:
6415         return do_prctl_get_unalign(env, arg2);
6416     case PR_SET_UNALIGN:
6417         return do_prctl_set_unalign(env, arg2);
6418 
6419     case PR_CAP_AMBIENT:
6420     case PR_CAPBSET_READ:
6421     case PR_CAPBSET_DROP:
6422     case PR_GET_DUMPABLE:
6423     case PR_SET_DUMPABLE:
6424     case PR_GET_KEEPCAPS:
6425     case PR_SET_KEEPCAPS:
6426     case PR_GET_SECUREBITS:
6427     case PR_SET_SECUREBITS:
6428     case PR_GET_TIMING:
6429     case PR_SET_TIMING:
6430     case PR_GET_TIMERSLACK:
6431     case PR_SET_TIMERSLACK:
6432     case PR_MCE_KILL:
6433     case PR_MCE_KILL_GET:
6434     case PR_GET_NO_NEW_PRIVS:
6435     case PR_SET_NO_NEW_PRIVS:
6436     case PR_GET_IO_FLUSHER:
6437     case PR_SET_IO_FLUSHER:
6438     case PR_SET_CHILD_SUBREAPER:
6439     case PR_GET_SPECULATION_CTRL:
6440     case PR_SET_SPECULATION_CTRL:
6441         /* Some prctl options have no pointer arguments and we can pass on. */
6442         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6443 
6444     case PR_GET_CHILD_SUBREAPER:
6445         {
6446             int val;
6447             ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val,
6448                                   arg3, arg4, arg5));
6449             if (!is_error(ret) && put_user_s32(val, arg2)) {
6450                 return -TARGET_EFAULT;
6451             }
6452             return ret;
6453         }
6454 
6455     case PR_GET_TID_ADDRESS:
6456         {
6457             TaskState *ts = get_task_state(env_cpu(env));
6458             return put_user_ual(ts->child_tidptr, arg2);
6459         }
6460 
6461     case PR_GET_FPEXC:
6462     case PR_SET_FPEXC:
6463         /* Was used for SPE on PowerPC. */
6464         return -TARGET_EINVAL;
6465 
6466     case PR_GET_ENDIAN:
6467     case PR_SET_ENDIAN:
6468     case PR_GET_FPEMU:
6469     case PR_SET_FPEMU:
6470     case PR_SET_MM:
6471     case PR_GET_SECCOMP:
6472     case PR_SET_SECCOMP:
6473     case PR_SET_SYSCALL_USER_DISPATCH:
6474     case PR_GET_THP_DISABLE:
6475     case PR_SET_THP_DISABLE:
6476     case PR_GET_TSC:
6477     case PR_SET_TSC:
6478         /* Disable to prevent the target disabling stuff we need. */
6479         return -TARGET_EINVAL;
6480 
6481     default:
6482         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6483                       option);
6484         return -TARGET_EINVAL;
6485     }
6486 }
6487 
6488 #define NEW_STACK_SIZE 0x40000
6489 
6490 
6491 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6492 typedef struct {
6493     CPUArchState *env;
6494     pthread_mutex_t mutex;
6495     pthread_cond_t cond;
6496     pthread_t thread;
6497     uint32_t tid;
6498     abi_ulong child_tidptr;
6499     abi_ulong parent_tidptr;
6500     sigset_t sigmask;
6501 } new_thread_info;
6502 
6503 static void *clone_func(void *arg)
6504 {
6505     new_thread_info *info = arg;
6506     CPUArchState *env;
6507     CPUState *cpu;
6508     TaskState *ts;
6509 
6510     rcu_register_thread();
6511     tcg_register_thread();
6512     env = info->env;
6513     cpu = env_cpu(env);
6514     thread_cpu = cpu;
6515     ts = get_task_state(cpu);
6516     info->tid = sys_gettid();
6517     task_settid(ts);
6518     if (info->child_tidptr)
6519         put_user_u32(info->tid, info->child_tidptr);
6520     if (info->parent_tidptr)
6521         put_user_u32(info->tid, info->parent_tidptr);
6522     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6523     /* Enable signals.  */
6524     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6525     /* Signal to the parent that we're ready.  */
6526     pthread_mutex_lock(&info->mutex);
6527     pthread_cond_broadcast(&info->cond);
6528     pthread_mutex_unlock(&info->mutex);
6529     /* Wait until the parent has finished initializing the tls state.  */
6530     pthread_mutex_lock(&clone_lock);
6531     pthread_mutex_unlock(&clone_lock);
6532     cpu_loop(env);
6533     /* never exits */
6534     return NULL;
6535 }
6536 
6537 /* do_fork() Must return host values and target errnos (unlike most
6538    do_*() functions). */
6539 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6540                    abi_ulong parent_tidptr, target_ulong newtls,
6541                    abi_ulong child_tidptr)
6542 {
6543     CPUState *cpu = env_cpu(env);
6544     int ret;
6545     TaskState *ts;
6546     CPUState *new_cpu;
6547     CPUArchState *new_env;
6548     sigset_t sigmask;
6549 
6550     flags &= ~CLONE_IGNORED_FLAGS;
6551 
6552     /* Emulate vfork() with fork() */
6553     if (flags & CLONE_VFORK)
6554         flags &= ~(CLONE_VFORK | CLONE_VM);
6555 
6556     if (flags & CLONE_VM) {
6557         TaskState *parent_ts = get_task_state(cpu);
6558         new_thread_info info;
6559         pthread_attr_t attr;
6560 
6561         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6562             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6563             return -TARGET_EINVAL;
6564         }
6565 
6566         ts = g_new0(TaskState, 1);
6567         init_task_state(ts);
6568 
6569         /* Grab a mutex so that thread setup appears atomic.  */
6570         pthread_mutex_lock(&clone_lock);
6571 
6572         /*
6573          * If this is our first additional thread, we need to ensure we
6574          * generate code for parallel execution and flush old translations.
6575          * Do this now so that the copy gets CF_PARALLEL too.
6576          */
6577         if (!tcg_cflags_has(cpu, CF_PARALLEL)) {
6578             tcg_cflags_set(cpu, CF_PARALLEL);
6579             tb_flush(cpu);
6580         }
6581 
6582         /* we create a new CPU instance. */
6583         new_env = cpu_copy(env);
6584         /* Init regs that differ from the parent.  */
6585         cpu_clone_regs_child(new_env, newsp, flags);
6586         cpu_clone_regs_parent(env, flags);
6587         new_cpu = env_cpu(new_env);
6588         new_cpu->opaque = ts;
6589         ts->bprm = parent_ts->bprm;
6590         ts->info = parent_ts->info;
6591         ts->signal_mask = parent_ts->signal_mask;
6592 
6593         if (flags & CLONE_CHILD_CLEARTID) {
6594             ts->child_tidptr = child_tidptr;
6595         }
6596 
6597         if (flags & CLONE_SETTLS) {
6598             cpu_set_tls (new_env, newtls);
6599         }
6600 
6601         memset(&info, 0, sizeof(info));
6602         pthread_mutex_init(&info.mutex, NULL);
6603         pthread_mutex_lock(&info.mutex);
6604         pthread_cond_init(&info.cond, NULL);
6605         info.env = new_env;
6606         if (flags & CLONE_CHILD_SETTID) {
6607             info.child_tidptr = child_tidptr;
6608         }
6609         if (flags & CLONE_PARENT_SETTID) {
6610             info.parent_tidptr = parent_tidptr;
6611         }
6612 
6613         ret = pthread_attr_init(&attr);
6614         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6615         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6616         /* It is not safe to deliver signals until the child has finished
6617            initializing, so temporarily block all signals.  */
6618         sigfillset(&sigmask);
6619         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6620         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6621 
6622         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6623         /* TODO: Free new CPU state if thread creation failed.  */
6624 
6625         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6626         pthread_attr_destroy(&attr);
6627         if (ret == 0) {
6628             /* Wait for the child to initialize.  */
6629             pthread_cond_wait(&info.cond, &info.mutex);
6630             ret = info.tid;
6631         } else {
6632             ret = -1;
6633         }
6634         pthread_mutex_unlock(&info.mutex);
6635         pthread_cond_destroy(&info.cond);
6636         pthread_mutex_destroy(&info.mutex);
6637         pthread_mutex_unlock(&clone_lock);
6638     } else {
6639         /* if no CLONE_VM, we consider it is a fork */
6640         if (flags & CLONE_INVALID_FORK_FLAGS) {
6641             return -TARGET_EINVAL;
6642         }
6643 
6644         /* We can't support custom termination signals */
6645         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6646             return -TARGET_EINVAL;
6647         }
6648 
6649 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6650         if (flags & CLONE_PIDFD) {
6651             return -TARGET_EINVAL;
6652         }
6653 #endif
6654 
6655         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6656         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6657             return -TARGET_EINVAL;
6658         }
6659 
6660         if (block_signals()) {
6661             return -QEMU_ERESTARTSYS;
6662         }
6663 
6664         fork_start();
6665         ret = fork();
6666         if (ret == 0) {
6667             /* Child Process.  */
6668             cpu_clone_regs_child(env, newsp, flags);
6669             fork_end(ret);
6670             /* There is a race condition here.  The parent process could
6671                theoretically read the TID in the child process before the child
6672                tid is set.  This would require using either ptrace
6673                (not implemented) or having *_tidptr to point at a shared memory
6674                mapping.  We can't repeat the spinlock hack used above because
6675                the child process gets its own copy of the lock.  */
6676             if (flags & CLONE_CHILD_SETTID)
6677                 put_user_u32(sys_gettid(), child_tidptr);
6678             if (flags & CLONE_PARENT_SETTID)
6679                 put_user_u32(sys_gettid(), parent_tidptr);
6680             ts = get_task_state(cpu);
6681             if (flags & CLONE_SETTLS)
6682                 cpu_set_tls (env, newtls);
6683             if (flags & CLONE_CHILD_CLEARTID)
6684                 ts->child_tidptr = child_tidptr;
6685         } else {
6686             cpu_clone_regs_parent(env, flags);
6687             if (flags & CLONE_PIDFD) {
6688                 int pid_fd = 0;
6689 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6690                 int pid_child = ret;
6691                 pid_fd = pidfd_open(pid_child, 0);
6692                 if (pid_fd >= 0) {
6693                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6694                                                | FD_CLOEXEC);
6695                 } else {
6696                         pid_fd = 0;
6697                 }
6698 #endif
6699                 put_user_u32(pid_fd, parent_tidptr);
6700             }
6701             fork_end(ret);
6702         }
6703         g_assert(!cpu_in_exclusive_context(cpu));
6704     }
6705     return ret;
6706 }
6707 
6708 /* warning : doesn't handle linux specific flags... */
6709 static int target_to_host_fcntl_cmd(int cmd)
6710 {
6711     int ret;
6712 
6713     switch(cmd) {
6714     case TARGET_F_DUPFD:
6715     case TARGET_F_GETFD:
6716     case TARGET_F_SETFD:
6717     case TARGET_F_GETFL:
6718     case TARGET_F_SETFL:
6719     case TARGET_F_OFD_GETLK:
6720     case TARGET_F_OFD_SETLK:
6721     case TARGET_F_OFD_SETLKW:
6722         ret = cmd;
6723         break;
6724     case TARGET_F_GETLK:
6725         ret = F_GETLK64;
6726         break;
6727     case TARGET_F_SETLK:
6728         ret = F_SETLK64;
6729         break;
6730     case TARGET_F_SETLKW:
6731         ret = F_SETLKW64;
6732         break;
6733     case TARGET_F_GETOWN:
6734         ret = F_GETOWN;
6735         break;
6736     case TARGET_F_SETOWN:
6737         ret = F_SETOWN;
6738         break;
6739     case TARGET_F_GETSIG:
6740         ret = F_GETSIG;
6741         break;
6742     case TARGET_F_SETSIG:
6743         ret = F_SETSIG;
6744         break;
6745 #if TARGET_ABI_BITS == 32
6746     case TARGET_F_GETLK64:
6747         ret = F_GETLK64;
6748         break;
6749     case TARGET_F_SETLK64:
6750         ret = F_SETLK64;
6751         break;
6752     case TARGET_F_SETLKW64:
6753         ret = F_SETLKW64;
6754         break;
6755 #endif
6756     case TARGET_F_SETLEASE:
6757         ret = F_SETLEASE;
6758         break;
6759     case TARGET_F_GETLEASE:
6760         ret = F_GETLEASE;
6761         break;
6762 #ifdef F_DUPFD_CLOEXEC
6763     case TARGET_F_DUPFD_CLOEXEC:
6764         ret = F_DUPFD_CLOEXEC;
6765         break;
6766 #endif
6767     case TARGET_F_NOTIFY:
6768         ret = F_NOTIFY;
6769         break;
6770 #ifdef F_GETOWN_EX
6771     case TARGET_F_GETOWN_EX:
6772         ret = F_GETOWN_EX;
6773         break;
6774 #endif
6775 #ifdef F_SETOWN_EX
6776     case TARGET_F_SETOWN_EX:
6777         ret = F_SETOWN_EX;
6778         break;
6779 #endif
6780 #ifdef F_SETPIPE_SZ
6781     case TARGET_F_SETPIPE_SZ:
6782         ret = F_SETPIPE_SZ;
6783         break;
6784     case TARGET_F_GETPIPE_SZ:
6785         ret = F_GETPIPE_SZ;
6786         break;
6787 #endif
6788 #ifdef F_ADD_SEALS
6789     case TARGET_F_ADD_SEALS:
6790         ret = F_ADD_SEALS;
6791         break;
6792     case TARGET_F_GET_SEALS:
6793         ret = F_GET_SEALS;
6794         break;
6795 #endif
6796     default:
6797         ret = -TARGET_EINVAL;
6798         break;
6799     }
6800 
6801 #if defined(__powerpc64__)
6802     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6803      * is not supported by kernel. The glibc fcntl call actually adjusts
6804      * them to 5, 6 and 7 before making the syscall(). Since we make the
6805      * syscall directly, adjust to what is supported by the kernel.
6806      */
6807     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6808         ret -= F_GETLK64 - 5;
6809     }
6810 #endif
6811 
6812     return ret;
6813 }
6814 
6815 #define FLOCK_TRANSTBL \
6816     switch (type) { \
6817     TRANSTBL_CONVERT(F_RDLCK); \
6818     TRANSTBL_CONVERT(F_WRLCK); \
6819     TRANSTBL_CONVERT(F_UNLCK); \
6820     }
6821 
6822 static int target_to_host_flock(int type)
6823 {
6824 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6825     FLOCK_TRANSTBL
6826 #undef  TRANSTBL_CONVERT
6827     return -TARGET_EINVAL;
6828 }
6829 
6830 static int host_to_target_flock(int type)
6831 {
6832 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6833     FLOCK_TRANSTBL
6834 #undef  TRANSTBL_CONVERT
6835     /* if we don't know how to convert the value coming
6836      * from the host we copy to the target field as-is
6837      */
6838     return type;
6839 }
6840 
6841 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6842                                             abi_ulong target_flock_addr)
6843 {
6844     struct target_flock *target_fl;
6845     int l_type;
6846 
6847     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6848         return -TARGET_EFAULT;
6849     }
6850 
6851     __get_user(l_type, &target_fl->l_type);
6852     l_type = target_to_host_flock(l_type);
6853     if (l_type < 0) {
6854         return l_type;
6855     }
6856     fl->l_type = l_type;
6857     __get_user(fl->l_whence, &target_fl->l_whence);
6858     __get_user(fl->l_start, &target_fl->l_start);
6859     __get_user(fl->l_len, &target_fl->l_len);
6860     __get_user(fl->l_pid, &target_fl->l_pid);
6861     unlock_user_struct(target_fl, target_flock_addr, 0);
6862     return 0;
6863 }
6864 
6865 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6866                                           const struct flock64 *fl)
6867 {
6868     struct target_flock *target_fl;
6869     short l_type;
6870 
6871     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6872         return -TARGET_EFAULT;
6873     }
6874 
6875     l_type = host_to_target_flock(fl->l_type);
6876     __put_user(l_type, &target_fl->l_type);
6877     __put_user(fl->l_whence, &target_fl->l_whence);
6878     __put_user(fl->l_start, &target_fl->l_start);
6879     __put_user(fl->l_len, &target_fl->l_len);
6880     __put_user(fl->l_pid, &target_fl->l_pid);
6881     unlock_user_struct(target_fl, target_flock_addr, 1);
6882     return 0;
6883 }
6884 
6885 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6886 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6887 
6888 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6889 struct target_oabi_flock64 {
6890     abi_short l_type;
6891     abi_short l_whence;
6892     abi_llong l_start;
6893     abi_llong l_len;
6894     abi_int   l_pid;
6895 } QEMU_PACKED;
6896 
6897 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6898                                                    abi_ulong target_flock_addr)
6899 {
6900     struct target_oabi_flock64 *target_fl;
6901     int l_type;
6902 
6903     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6904         return -TARGET_EFAULT;
6905     }
6906 
6907     __get_user(l_type, &target_fl->l_type);
6908     l_type = target_to_host_flock(l_type);
6909     if (l_type < 0) {
6910         return l_type;
6911     }
6912     fl->l_type = l_type;
6913     __get_user(fl->l_whence, &target_fl->l_whence);
6914     __get_user(fl->l_start, &target_fl->l_start);
6915     __get_user(fl->l_len, &target_fl->l_len);
6916     __get_user(fl->l_pid, &target_fl->l_pid);
6917     unlock_user_struct(target_fl, target_flock_addr, 0);
6918     return 0;
6919 }
6920 
6921 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6922                                                  const struct flock64 *fl)
6923 {
6924     struct target_oabi_flock64 *target_fl;
6925     short l_type;
6926 
6927     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6928         return -TARGET_EFAULT;
6929     }
6930 
6931     l_type = host_to_target_flock(fl->l_type);
6932     __put_user(l_type, &target_fl->l_type);
6933     __put_user(fl->l_whence, &target_fl->l_whence);
6934     __put_user(fl->l_start, &target_fl->l_start);
6935     __put_user(fl->l_len, &target_fl->l_len);
6936     __put_user(fl->l_pid, &target_fl->l_pid);
6937     unlock_user_struct(target_fl, target_flock_addr, 1);
6938     return 0;
6939 }
6940 #endif
6941 
6942 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6943                                               abi_ulong target_flock_addr)
6944 {
6945     struct target_flock64 *target_fl;
6946     int l_type;
6947 
6948     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6949         return -TARGET_EFAULT;
6950     }
6951 
6952     __get_user(l_type, &target_fl->l_type);
6953     l_type = target_to_host_flock(l_type);
6954     if (l_type < 0) {
6955         return l_type;
6956     }
6957     fl->l_type = l_type;
6958     __get_user(fl->l_whence, &target_fl->l_whence);
6959     __get_user(fl->l_start, &target_fl->l_start);
6960     __get_user(fl->l_len, &target_fl->l_len);
6961     __get_user(fl->l_pid, &target_fl->l_pid);
6962     unlock_user_struct(target_fl, target_flock_addr, 0);
6963     return 0;
6964 }
6965 
6966 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6967                                             const struct flock64 *fl)
6968 {
6969     struct target_flock64 *target_fl;
6970     short l_type;
6971 
6972     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6973         return -TARGET_EFAULT;
6974     }
6975 
6976     l_type = host_to_target_flock(fl->l_type);
6977     __put_user(l_type, &target_fl->l_type);
6978     __put_user(fl->l_whence, &target_fl->l_whence);
6979     __put_user(fl->l_start, &target_fl->l_start);
6980     __put_user(fl->l_len, &target_fl->l_len);
6981     __put_user(fl->l_pid, &target_fl->l_pid);
6982     unlock_user_struct(target_fl, target_flock_addr, 1);
6983     return 0;
6984 }
6985 
6986 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6987 {
6988     struct flock64 fl64;
6989 #ifdef F_GETOWN_EX
6990     struct f_owner_ex fox;
6991     struct target_f_owner_ex *target_fox;
6992 #endif
6993     abi_long ret;
6994     int host_cmd = target_to_host_fcntl_cmd(cmd);
6995 
6996     if (host_cmd == -TARGET_EINVAL)
6997 	    return host_cmd;
6998 
6999     switch(cmd) {
7000     case TARGET_F_GETLK:
7001         ret = copy_from_user_flock(&fl64, arg);
7002         if (ret) {
7003             return ret;
7004         }
7005         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7006         if (ret == 0) {
7007             ret = copy_to_user_flock(arg, &fl64);
7008         }
7009         break;
7010 
7011     case TARGET_F_SETLK:
7012     case TARGET_F_SETLKW:
7013         ret = copy_from_user_flock(&fl64, arg);
7014         if (ret) {
7015             return ret;
7016         }
7017         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7018         break;
7019 
7020     case TARGET_F_GETLK64:
7021     case TARGET_F_OFD_GETLK:
7022         ret = copy_from_user_flock64(&fl64, arg);
7023         if (ret) {
7024             return ret;
7025         }
7026         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7027         if (ret == 0) {
7028             ret = copy_to_user_flock64(arg, &fl64);
7029         }
7030         break;
7031     case TARGET_F_SETLK64:
7032     case TARGET_F_SETLKW64:
7033     case TARGET_F_OFD_SETLK:
7034     case TARGET_F_OFD_SETLKW:
7035         ret = copy_from_user_flock64(&fl64, arg);
7036         if (ret) {
7037             return ret;
7038         }
7039         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7040         break;
7041 
7042     case TARGET_F_GETFL:
7043         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7044         if (ret >= 0) {
7045             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7046             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7047             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7048                 ret |= TARGET_O_LARGEFILE;
7049             }
7050         }
7051         break;
7052 
7053     case TARGET_F_SETFL:
7054         ret = get_errno(safe_fcntl(fd, host_cmd,
7055                                    target_to_host_bitmask(arg,
7056                                                           fcntl_flags_tbl)));
7057         break;
7058 
7059 #ifdef F_GETOWN_EX
7060     case TARGET_F_GETOWN_EX:
7061         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7062         if (ret >= 0) {
7063             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7064                 return -TARGET_EFAULT;
7065             target_fox->type = tswap32(fox.type);
7066             target_fox->pid = tswap32(fox.pid);
7067             unlock_user_struct(target_fox, arg, 1);
7068         }
7069         break;
7070 #endif
7071 
7072 #ifdef F_SETOWN_EX
7073     case TARGET_F_SETOWN_EX:
7074         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7075             return -TARGET_EFAULT;
7076         fox.type = tswap32(target_fox->type);
7077         fox.pid = tswap32(target_fox->pid);
7078         unlock_user_struct(target_fox, arg, 0);
7079         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7080         break;
7081 #endif
7082 
7083     case TARGET_F_SETSIG:
7084         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7085         break;
7086 
7087     case TARGET_F_GETSIG:
7088         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7089         break;
7090 
7091     case TARGET_F_SETOWN:
7092     case TARGET_F_GETOWN:
7093     case TARGET_F_SETLEASE:
7094     case TARGET_F_GETLEASE:
7095     case TARGET_F_SETPIPE_SZ:
7096     case TARGET_F_GETPIPE_SZ:
7097     case TARGET_F_ADD_SEALS:
7098     case TARGET_F_GET_SEALS:
7099         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7100         break;
7101 
7102     default:
7103         ret = get_errno(safe_fcntl(fd, cmd, arg));
7104         break;
7105     }
7106     return ret;
7107 }
7108 
7109 #ifdef USE_UID16
7110 
7111 static inline int high2lowuid(int uid)
7112 {
7113     if (uid > 65535)
7114         return 65534;
7115     else
7116         return uid;
7117 }
7118 
7119 static inline int high2lowgid(int gid)
7120 {
7121     if (gid > 65535)
7122         return 65534;
7123     else
7124         return gid;
7125 }
7126 
7127 static inline int low2highuid(int uid)
7128 {
7129     if ((int16_t)uid == -1)
7130         return -1;
7131     else
7132         return uid;
7133 }
7134 
7135 static inline int low2highgid(int gid)
7136 {
7137     if ((int16_t)gid == -1)
7138         return -1;
7139     else
7140         return gid;
7141 }
7142 static inline int tswapid(int id)
7143 {
7144     return tswap16(id);
7145 }
7146 
7147 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7148 
7149 #else /* !USE_UID16 */
7150 static inline int high2lowuid(int uid)
7151 {
7152     return uid;
7153 }
7154 static inline int high2lowgid(int gid)
7155 {
7156     return gid;
7157 }
7158 static inline int low2highuid(int uid)
7159 {
7160     return uid;
7161 }
7162 static inline int low2highgid(int gid)
7163 {
7164     return gid;
7165 }
7166 static inline int tswapid(int id)
7167 {
7168     return tswap32(id);
7169 }
7170 
7171 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7172 
7173 #endif /* USE_UID16 */
7174 
7175 /* We must do direct syscalls for setting UID/GID, because we want to
7176  * implement the Linux system call semantics of "change only for this thread",
7177  * not the libc/POSIX semantics of "change for all threads in process".
7178  * (See http://ewontfix.com/17/ for more details.)
7179  * We use the 32-bit version of the syscalls if present; if it is not
7180  * then either the host architecture supports 32-bit UIDs natively with
7181  * the standard syscall, or the 16-bit UID is the best we can do.
7182  */
7183 #ifdef __NR_setuid32
7184 #define __NR_sys_setuid __NR_setuid32
7185 #else
7186 #define __NR_sys_setuid __NR_setuid
7187 #endif
7188 #ifdef __NR_setgid32
7189 #define __NR_sys_setgid __NR_setgid32
7190 #else
7191 #define __NR_sys_setgid __NR_setgid
7192 #endif
7193 #ifdef __NR_setresuid32
7194 #define __NR_sys_setresuid __NR_setresuid32
7195 #else
7196 #define __NR_sys_setresuid __NR_setresuid
7197 #endif
7198 #ifdef __NR_setresgid32
7199 #define __NR_sys_setresgid __NR_setresgid32
7200 #else
7201 #define __NR_sys_setresgid __NR_setresgid
7202 #endif
7203 #ifdef __NR_setgroups32
7204 #define __NR_sys_setgroups __NR_setgroups32
7205 #else
7206 #define __NR_sys_setgroups __NR_setgroups
7207 #endif
7208 
7209 _syscall1(int, sys_setuid, uid_t, uid)
7210 _syscall1(int, sys_setgid, gid_t, gid)
7211 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7212 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7213 _syscall2(int, sys_setgroups, int, size, gid_t *, grouplist)
7214 
7215 void syscall_init(void)
7216 {
7217     IOCTLEntry *ie;
7218     const argtype *arg_type;
7219     int size;
7220 
7221     thunk_init(STRUCT_MAX);
7222 
7223 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7224 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7225 #include "syscall_types.h"
7226 #undef STRUCT
7227 #undef STRUCT_SPECIAL
7228 
7229     /* we patch the ioctl size if necessary. We rely on the fact that
7230        no ioctl has all the bits at '1' in the size field */
7231     ie = ioctl_entries;
7232     while (ie->target_cmd != 0) {
7233         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7234             TARGET_IOC_SIZEMASK) {
7235             arg_type = ie->arg_type;
7236             if (arg_type[0] != TYPE_PTR) {
7237                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7238                         ie->target_cmd);
7239                 exit(1);
7240             }
7241             arg_type++;
7242             size = thunk_type_size(arg_type, 0);
7243             ie->target_cmd = (ie->target_cmd &
7244                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7245                 (size << TARGET_IOC_SIZESHIFT);
7246         }
7247 
7248         /* automatic consistency check if same arch */
7249 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7250     (defined(__x86_64__) && defined(TARGET_X86_64))
7251         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7252             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7253                     ie->name, ie->target_cmd, ie->host_cmd);
7254         }
7255 #endif
7256         ie++;
7257     }
7258 }
7259 
7260 #ifdef TARGET_NR_truncate64
7261 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7262                                          abi_long arg2,
7263                                          abi_long arg3,
7264                                          abi_long arg4)
7265 {
7266     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7267         arg2 = arg3;
7268         arg3 = arg4;
7269     }
7270     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7271 }
7272 #endif
7273 
7274 #ifdef TARGET_NR_ftruncate64
7275 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7276                                           abi_long arg2,
7277                                           abi_long arg3,
7278                                           abi_long arg4)
7279 {
7280     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7281         arg2 = arg3;
7282         arg3 = arg4;
7283     }
7284     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7285 }
7286 #endif
7287 
7288 #if defined(TARGET_NR_timer_settime) || \
7289     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7290 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7291                                                  abi_ulong target_addr)
7292 {
7293     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7294                                 offsetof(struct target_itimerspec,
7295                                          it_interval)) ||
7296         target_to_host_timespec(&host_its->it_value, target_addr +
7297                                 offsetof(struct target_itimerspec,
7298                                          it_value))) {
7299         return -TARGET_EFAULT;
7300     }
7301 
7302     return 0;
7303 }
7304 #endif
7305 
7306 #if defined(TARGET_NR_timer_settime64) || \
7307     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7308 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7309                                                    abi_ulong target_addr)
7310 {
7311     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7312                                   offsetof(struct target__kernel_itimerspec,
7313                                            it_interval)) ||
7314         target_to_host_timespec64(&host_its->it_value, target_addr +
7315                                   offsetof(struct target__kernel_itimerspec,
7316                                            it_value))) {
7317         return -TARGET_EFAULT;
7318     }
7319 
7320     return 0;
7321 }
7322 #endif
7323 
7324 #if ((defined(TARGET_NR_timerfd_gettime) || \
7325       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7326       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7327 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7328                                                  struct itimerspec *host_its)
7329 {
7330     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7331                                                        it_interval),
7332                                 &host_its->it_interval) ||
7333         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7334                                                        it_value),
7335                                 &host_its->it_value)) {
7336         return -TARGET_EFAULT;
7337     }
7338     return 0;
7339 }
7340 #endif
7341 
7342 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7343       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7344       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7345 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7346                                                    struct itimerspec *host_its)
7347 {
7348     if (host_to_target_timespec64(target_addr +
7349                                   offsetof(struct target__kernel_itimerspec,
7350                                            it_interval),
7351                                   &host_its->it_interval) ||
7352         host_to_target_timespec64(target_addr +
7353                                   offsetof(struct target__kernel_itimerspec,
7354                                            it_value),
7355                                   &host_its->it_value)) {
7356         return -TARGET_EFAULT;
7357     }
7358     return 0;
7359 }
7360 #endif
7361 
7362 #if defined(TARGET_NR_adjtimex) || \
7363     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7364 static inline abi_long target_to_host_timex(struct timex *host_tx,
7365                                             abi_long target_addr)
7366 {
7367     struct target_timex *target_tx;
7368 
7369     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7370         return -TARGET_EFAULT;
7371     }
7372 
7373     __get_user(host_tx->modes, &target_tx->modes);
7374     __get_user(host_tx->offset, &target_tx->offset);
7375     __get_user(host_tx->freq, &target_tx->freq);
7376     __get_user(host_tx->maxerror, &target_tx->maxerror);
7377     __get_user(host_tx->esterror, &target_tx->esterror);
7378     __get_user(host_tx->status, &target_tx->status);
7379     __get_user(host_tx->constant, &target_tx->constant);
7380     __get_user(host_tx->precision, &target_tx->precision);
7381     __get_user(host_tx->tolerance, &target_tx->tolerance);
7382     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7383     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7384     __get_user(host_tx->tick, &target_tx->tick);
7385     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7386     __get_user(host_tx->jitter, &target_tx->jitter);
7387     __get_user(host_tx->shift, &target_tx->shift);
7388     __get_user(host_tx->stabil, &target_tx->stabil);
7389     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7390     __get_user(host_tx->calcnt, &target_tx->calcnt);
7391     __get_user(host_tx->errcnt, &target_tx->errcnt);
7392     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7393     __get_user(host_tx->tai, &target_tx->tai);
7394 
7395     unlock_user_struct(target_tx, target_addr, 0);
7396     return 0;
7397 }
7398 
7399 static inline abi_long host_to_target_timex(abi_long target_addr,
7400                                             struct timex *host_tx)
7401 {
7402     struct target_timex *target_tx;
7403 
7404     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7405         return -TARGET_EFAULT;
7406     }
7407 
7408     __put_user(host_tx->modes, &target_tx->modes);
7409     __put_user(host_tx->offset, &target_tx->offset);
7410     __put_user(host_tx->freq, &target_tx->freq);
7411     __put_user(host_tx->maxerror, &target_tx->maxerror);
7412     __put_user(host_tx->esterror, &target_tx->esterror);
7413     __put_user(host_tx->status, &target_tx->status);
7414     __put_user(host_tx->constant, &target_tx->constant);
7415     __put_user(host_tx->precision, &target_tx->precision);
7416     __put_user(host_tx->tolerance, &target_tx->tolerance);
7417     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7418     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7419     __put_user(host_tx->tick, &target_tx->tick);
7420     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7421     __put_user(host_tx->jitter, &target_tx->jitter);
7422     __put_user(host_tx->shift, &target_tx->shift);
7423     __put_user(host_tx->stabil, &target_tx->stabil);
7424     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7425     __put_user(host_tx->calcnt, &target_tx->calcnt);
7426     __put_user(host_tx->errcnt, &target_tx->errcnt);
7427     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7428     __put_user(host_tx->tai, &target_tx->tai);
7429 
7430     unlock_user_struct(target_tx, target_addr, 1);
7431     return 0;
7432 }
7433 #endif
7434 
7435 
7436 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7437 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7438                                               abi_long target_addr)
7439 {
7440     struct target__kernel_timex *target_tx;
7441 
7442     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7443                                  offsetof(struct target__kernel_timex,
7444                                           time))) {
7445         return -TARGET_EFAULT;
7446     }
7447 
7448     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7449         return -TARGET_EFAULT;
7450     }
7451 
7452     __get_user(host_tx->modes, &target_tx->modes);
7453     __get_user(host_tx->offset, &target_tx->offset);
7454     __get_user(host_tx->freq, &target_tx->freq);
7455     __get_user(host_tx->maxerror, &target_tx->maxerror);
7456     __get_user(host_tx->esterror, &target_tx->esterror);
7457     __get_user(host_tx->status, &target_tx->status);
7458     __get_user(host_tx->constant, &target_tx->constant);
7459     __get_user(host_tx->precision, &target_tx->precision);
7460     __get_user(host_tx->tolerance, &target_tx->tolerance);
7461     __get_user(host_tx->tick, &target_tx->tick);
7462     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7463     __get_user(host_tx->jitter, &target_tx->jitter);
7464     __get_user(host_tx->shift, &target_tx->shift);
7465     __get_user(host_tx->stabil, &target_tx->stabil);
7466     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7467     __get_user(host_tx->calcnt, &target_tx->calcnt);
7468     __get_user(host_tx->errcnt, &target_tx->errcnt);
7469     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7470     __get_user(host_tx->tai, &target_tx->tai);
7471 
7472     unlock_user_struct(target_tx, target_addr, 0);
7473     return 0;
7474 }
7475 
7476 static inline abi_long host_to_target_timex64(abi_long target_addr,
7477                                               struct timex *host_tx)
7478 {
7479     struct target__kernel_timex *target_tx;
7480 
7481    if (copy_to_user_timeval64(target_addr +
7482                               offsetof(struct target__kernel_timex, time),
7483                               &host_tx->time)) {
7484         return -TARGET_EFAULT;
7485     }
7486 
7487     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7488         return -TARGET_EFAULT;
7489     }
7490 
7491     __put_user(host_tx->modes, &target_tx->modes);
7492     __put_user(host_tx->offset, &target_tx->offset);
7493     __put_user(host_tx->freq, &target_tx->freq);
7494     __put_user(host_tx->maxerror, &target_tx->maxerror);
7495     __put_user(host_tx->esterror, &target_tx->esterror);
7496     __put_user(host_tx->status, &target_tx->status);
7497     __put_user(host_tx->constant, &target_tx->constant);
7498     __put_user(host_tx->precision, &target_tx->precision);
7499     __put_user(host_tx->tolerance, &target_tx->tolerance);
7500     __put_user(host_tx->tick, &target_tx->tick);
7501     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7502     __put_user(host_tx->jitter, &target_tx->jitter);
7503     __put_user(host_tx->shift, &target_tx->shift);
7504     __put_user(host_tx->stabil, &target_tx->stabil);
7505     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7506     __put_user(host_tx->calcnt, &target_tx->calcnt);
7507     __put_user(host_tx->errcnt, &target_tx->errcnt);
7508     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7509     __put_user(host_tx->tai, &target_tx->tai);
7510 
7511     unlock_user_struct(target_tx, target_addr, 1);
7512     return 0;
7513 }
7514 #endif
7515 
7516 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7517 #define sigev_notify_thread_id _sigev_un._tid
7518 #endif
7519 
7520 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7521                                                abi_ulong target_addr)
7522 {
7523     struct target_sigevent *target_sevp;
7524 
7525     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7526         return -TARGET_EFAULT;
7527     }
7528 
7529     /* This union is awkward on 64 bit systems because it has a 32 bit
7530      * integer and a pointer in it; we follow the conversion approach
7531      * used for handling sigval types in signal.c so the guest should get
7532      * the correct value back even if we did a 64 bit byteswap and it's
7533      * using the 32 bit integer.
7534      */
7535     host_sevp->sigev_value.sival_ptr =
7536         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7537     host_sevp->sigev_signo =
7538         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7539     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7540     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7541 
7542     unlock_user_struct(target_sevp, target_addr, 1);
7543     return 0;
7544 }
7545 
7546 #if defined(TARGET_NR_mlockall)
7547 static inline int target_to_host_mlockall_arg(int arg)
7548 {
7549     int result = 0;
7550 
7551     if (arg & TARGET_MCL_CURRENT) {
7552         result |= MCL_CURRENT;
7553     }
7554     if (arg & TARGET_MCL_FUTURE) {
7555         result |= MCL_FUTURE;
7556     }
7557 #ifdef MCL_ONFAULT
7558     if (arg & TARGET_MCL_ONFAULT) {
7559         result |= MCL_ONFAULT;
7560     }
7561 #endif
7562 
7563     return result;
7564 }
7565 #endif
7566 
7567 static inline int target_to_host_msync_arg(abi_long arg)
7568 {
7569     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7570            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7571            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7572            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7573 }
7574 
7575 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7576      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7577      defined(TARGET_NR_newfstatat))
7578 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7579                                              abi_ulong target_addr,
7580                                              struct stat *host_st)
7581 {
7582 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7583     if (cpu_env->eabi) {
7584         struct target_eabi_stat64 *target_st;
7585 
7586         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7587             return -TARGET_EFAULT;
7588         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7589         __put_user(host_st->st_dev, &target_st->st_dev);
7590         __put_user(host_st->st_ino, &target_st->st_ino);
7591 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7592         __put_user(host_st->st_ino, &target_st->__st_ino);
7593 #endif
7594         __put_user(host_st->st_mode, &target_st->st_mode);
7595         __put_user(host_st->st_nlink, &target_st->st_nlink);
7596         __put_user(host_st->st_uid, &target_st->st_uid);
7597         __put_user(host_st->st_gid, &target_st->st_gid);
7598         __put_user(host_st->st_rdev, &target_st->st_rdev);
7599         __put_user(host_st->st_size, &target_st->st_size);
7600         __put_user(host_st->st_blksize, &target_st->st_blksize);
7601         __put_user(host_st->st_blocks, &target_st->st_blocks);
7602         __put_user(host_st->st_atime, &target_st->target_st_atime);
7603         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7604         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7605 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7606         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7607         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7608         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7609 #endif
7610         unlock_user_struct(target_st, target_addr, 1);
7611     } else
7612 #endif
7613     {
7614 #if defined(TARGET_HAS_STRUCT_STAT64)
7615         struct target_stat64 *target_st;
7616 #else
7617         struct target_stat *target_st;
7618 #endif
7619 
7620         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7621             return -TARGET_EFAULT;
7622         memset(target_st, 0, sizeof(*target_st));
7623         __put_user(host_st->st_dev, &target_st->st_dev);
7624         __put_user(host_st->st_ino, &target_st->st_ino);
7625 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7626         __put_user(host_st->st_ino, &target_st->__st_ino);
7627 #endif
7628         __put_user(host_st->st_mode, &target_st->st_mode);
7629         __put_user(host_st->st_nlink, &target_st->st_nlink);
7630         __put_user(host_st->st_uid, &target_st->st_uid);
7631         __put_user(host_st->st_gid, &target_st->st_gid);
7632         __put_user(host_st->st_rdev, &target_st->st_rdev);
7633         /* XXX: better use of kernel struct */
7634         __put_user(host_st->st_size, &target_st->st_size);
7635         __put_user(host_st->st_blksize, &target_st->st_blksize);
7636         __put_user(host_st->st_blocks, &target_st->st_blocks);
7637         __put_user(host_st->st_atime, &target_st->target_st_atime);
7638         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7639         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7640 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7641         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7642         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7643         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7644 #endif
7645         unlock_user_struct(target_st, target_addr, 1);
7646     }
7647 
7648     return 0;
7649 }
7650 #endif
7651 
7652 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7653 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7654                                             abi_ulong target_addr)
7655 {
7656     struct target_statx *target_stx;
7657 
7658     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7659         return -TARGET_EFAULT;
7660     }
7661     memset(target_stx, 0, sizeof(*target_stx));
7662 
7663     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7664     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7665     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7666     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7667     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7668     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7669     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7670     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7671     __put_user(host_stx->stx_size, &target_stx->stx_size);
7672     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7673     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7674     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7675     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7676     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7677     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7678     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7679     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7680     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7681     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7682     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7683     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7684     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7685     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7686 
7687     unlock_user_struct(target_stx, target_addr, 1);
7688 
7689     return 0;
7690 }
7691 #endif
7692 
7693 static int do_sys_futex(int *uaddr, int op, int val,
7694                          const struct timespec *timeout, int *uaddr2,
7695                          int val3)
7696 {
7697 #if HOST_LONG_BITS == 64
7698 #if defined(__NR_futex)
7699     /* always a 64-bit time_t, it doesn't define _time64 version  */
7700     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7701 
7702 #endif
7703 #else /* HOST_LONG_BITS == 64 */
7704 #if defined(__NR_futex_time64)
7705     if (sizeof(timeout->tv_sec) == 8) {
7706         /* _time64 function on 32bit arch */
7707         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7708     }
7709 #endif
7710 #if defined(__NR_futex)
7711     /* old function on 32bit arch */
7712     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7713 #endif
7714 #endif /* HOST_LONG_BITS == 64 */
7715     g_assert_not_reached();
7716 }
7717 
7718 static int do_safe_futex(int *uaddr, int op, int val,
7719                          const struct timespec *timeout, int *uaddr2,
7720                          int val3)
7721 {
7722 #if HOST_LONG_BITS == 64
7723 #if defined(__NR_futex)
7724     /* always a 64-bit time_t, it doesn't define _time64 version  */
7725     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7726 #endif
7727 #else /* HOST_LONG_BITS == 64 */
7728 #if defined(__NR_futex_time64)
7729     if (sizeof(timeout->tv_sec) == 8) {
7730         /* _time64 function on 32bit arch */
7731         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7732                                            val3));
7733     }
7734 #endif
7735 #if defined(__NR_futex)
7736     /* old function on 32bit arch */
7737     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7738 #endif
7739 #endif /* HOST_LONG_BITS == 64 */
7740     return -TARGET_ENOSYS;
7741 }
7742 
7743 /* ??? Using host futex calls even when target atomic operations
7744    are not really atomic probably breaks things.  However implementing
7745    futexes locally would make futexes shared between multiple processes
7746    tricky.  However they're probably useless because guest atomic
7747    operations won't work either.  */
7748 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7749 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7750                     int op, int val, target_ulong timeout,
7751                     target_ulong uaddr2, int val3)
7752 {
7753     struct timespec ts, *pts = NULL;
7754     void *haddr2 = NULL;
7755     int base_op;
7756 
7757     /* We assume FUTEX_* constants are the same on both host and target. */
7758 #ifdef FUTEX_CMD_MASK
7759     base_op = op & FUTEX_CMD_MASK;
7760 #else
7761     base_op = op;
7762 #endif
7763     switch (base_op) {
7764     case FUTEX_WAIT:
7765     case FUTEX_WAIT_BITSET:
7766         val = tswap32(val);
7767         break;
7768     case FUTEX_WAIT_REQUEUE_PI:
7769         val = tswap32(val);
7770         haddr2 = g2h(cpu, uaddr2);
7771         break;
7772     case FUTEX_LOCK_PI:
7773     case FUTEX_LOCK_PI2:
7774         break;
7775     case FUTEX_WAKE:
7776     case FUTEX_WAKE_BITSET:
7777     case FUTEX_TRYLOCK_PI:
7778     case FUTEX_UNLOCK_PI:
7779         timeout = 0;
7780         break;
7781     case FUTEX_FD:
7782         val = target_to_host_signal(val);
7783         timeout = 0;
7784         break;
7785     case FUTEX_CMP_REQUEUE:
7786     case FUTEX_CMP_REQUEUE_PI:
7787         val3 = tswap32(val3);
7788         /* fall through */
7789     case FUTEX_REQUEUE:
7790     case FUTEX_WAKE_OP:
7791         /*
7792          * For these, the 4th argument is not TIMEOUT, but VAL2.
7793          * But the prototype of do_safe_futex takes a pointer, so
7794          * insert casts to satisfy the compiler.  We do not need
7795          * to tswap VAL2 since it's not compared to guest memory.
7796           */
7797         pts = (struct timespec *)(uintptr_t)timeout;
7798         timeout = 0;
7799         haddr2 = g2h(cpu, uaddr2);
7800         break;
7801     default:
7802         return -TARGET_ENOSYS;
7803     }
7804     if (timeout) {
7805         pts = &ts;
7806         if (time64
7807             ? target_to_host_timespec64(pts, timeout)
7808             : target_to_host_timespec(pts, timeout)) {
7809             return -TARGET_EFAULT;
7810         }
7811     }
7812     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7813 }
7814 #endif
7815 
7816 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7817 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7818                                      abi_long handle, abi_long mount_id,
7819                                      abi_long flags)
7820 {
7821     struct file_handle *target_fh;
7822     struct file_handle *fh;
7823     int mid = 0;
7824     abi_long ret;
7825     char *name;
7826     unsigned int size, total_size;
7827 
7828     if (get_user_s32(size, handle)) {
7829         return -TARGET_EFAULT;
7830     }
7831 
7832     name = lock_user_string(pathname);
7833     if (!name) {
7834         return -TARGET_EFAULT;
7835     }
7836 
7837     total_size = sizeof(struct file_handle) + size;
7838     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7839     if (!target_fh) {
7840         unlock_user(name, pathname, 0);
7841         return -TARGET_EFAULT;
7842     }
7843 
7844     fh = g_malloc0(total_size);
7845     fh->handle_bytes = size;
7846 
7847     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7848     unlock_user(name, pathname, 0);
7849 
7850     /* man name_to_handle_at(2):
7851      * Other than the use of the handle_bytes field, the caller should treat
7852      * the file_handle structure as an opaque data type
7853      */
7854 
7855     memcpy(target_fh, fh, total_size);
7856     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7857     target_fh->handle_type = tswap32(fh->handle_type);
7858     g_free(fh);
7859     unlock_user(target_fh, handle, total_size);
7860 
7861     if (put_user_s32(mid, mount_id)) {
7862         return -TARGET_EFAULT;
7863     }
7864 
7865     return ret;
7866 
7867 }
7868 #endif
7869 
7870 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7871 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7872                                      abi_long flags)
7873 {
7874     struct file_handle *target_fh;
7875     struct file_handle *fh;
7876     unsigned int size, total_size;
7877     abi_long ret;
7878 
7879     if (get_user_s32(size, handle)) {
7880         return -TARGET_EFAULT;
7881     }
7882 
7883     total_size = sizeof(struct file_handle) + size;
7884     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7885     if (!target_fh) {
7886         return -TARGET_EFAULT;
7887     }
7888 
7889     fh = g_memdup(target_fh, total_size);
7890     fh->handle_bytes = size;
7891     fh->handle_type = tswap32(target_fh->handle_type);
7892 
7893     ret = get_errno(open_by_handle_at(mount_fd, fh,
7894                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7895 
7896     g_free(fh);
7897 
7898     unlock_user(target_fh, handle, total_size);
7899 
7900     return ret;
7901 }
7902 #endif
7903 
7904 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7905 
7906 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7907 {
7908     int host_flags;
7909     target_sigset_t *target_mask;
7910     sigset_t host_mask;
7911     abi_long ret;
7912 
7913     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7914         return -TARGET_EINVAL;
7915     }
7916     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7917         return -TARGET_EFAULT;
7918     }
7919 
7920     target_to_host_sigset(&host_mask, target_mask);
7921 
7922     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7923 
7924     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7925     if (ret >= 0) {
7926         fd_trans_register(ret, &target_signalfd_trans);
7927     }
7928 
7929     unlock_user_struct(target_mask, mask, 0);
7930 
7931     return ret;
7932 }
7933 #endif
7934 
7935 /* Map host to target signal numbers for the wait family of syscalls.
7936    Assume all other status bits are the same.  */
7937 int host_to_target_waitstatus(int status)
7938 {
7939     if (WIFSIGNALED(status)) {
7940         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7941     }
7942     if (WIFSTOPPED(status)) {
7943         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7944                | (status & 0xff);
7945     }
7946     return status;
7947 }
7948 
7949 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7950 {
7951     CPUState *cpu = env_cpu(cpu_env);
7952     struct linux_binprm *bprm = get_task_state(cpu)->bprm;
7953     int i;
7954 
7955     for (i = 0; i < bprm->argc; i++) {
7956         size_t len = strlen(bprm->argv[i]) + 1;
7957 
7958         if (write(fd, bprm->argv[i], len) != len) {
7959             return -1;
7960         }
7961     }
7962 
7963     return 0;
7964 }
7965 
7966 struct open_self_maps_data {
7967     TaskState *ts;
7968     IntervalTreeRoot *host_maps;
7969     int fd;
7970     bool smaps;
7971 };
7972 
7973 /*
7974  * Subroutine to output one line of /proc/self/maps,
7975  * or one region of /proc/self/smaps.
7976  */
7977 
7978 #ifdef TARGET_HPPA
7979 # define test_stack(S, E, L)  (E == L)
7980 #else
7981 # define test_stack(S, E, L)  (S == L)
7982 #endif
7983 
7984 static void open_self_maps_4(const struct open_self_maps_data *d,
7985                              const MapInfo *mi, abi_ptr start,
7986                              abi_ptr end, unsigned flags)
7987 {
7988     const struct image_info *info = d->ts->info;
7989     const char *path = mi->path;
7990     uint64_t offset;
7991     int fd = d->fd;
7992     int count;
7993 
7994     if (test_stack(start, end, info->stack_limit)) {
7995         path = "[stack]";
7996     } else if (start == info->brk) {
7997         path = "[heap]";
7998     } else if (start == info->vdso) {
7999         path = "[vdso]";
8000 #ifdef TARGET_X86_64
8001     } else if (start == TARGET_VSYSCALL_PAGE) {
8002         path = "[vsyscall]";
8003 #endif
8004     }
8005 
8006     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8007     offset = mi->offset;
8008     if (mi->dev) {
8009         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8010         offset += hstart - mi->itree.start;
8011     }
8012 
8013     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8014                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8015                     start, end,
8016                     (flags & PAGE_READ) ? 'r' : '-',
8017                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8018                     (flags & PAGE_EXEC) ? 'x' : '-',
8019                     mi->is_priv ? 'p' : 's',
8020                     offset, major(mi->dev), minor(mi->dev),
8021                     (uint64_t)mi->inode);
8022     if (path) {
8023         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8024     } else {
8025         dprintf(fd, "\n");
8026     }
8027 
8028     if (d->smaps) {
8029         unsigned long size = end - start;
8030         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8031         unsigned long size_kb = size >> 10;
8032 
8033         dprintf(fd, "Size:                  %lu kB\n"
8034                 "KernelPageSize:        %lu kB\n"
8035                 "MMUPageSize:           %lu kB\n"
8036                 "Rss:                   0 kB\n"
8037                 "Pss:                   0 kB\n"
8038                 "Pss_Dirty:             0 kB\n"
8039                 "Shared_Clean:          0 kB\n"
8040                 "Shared_Dirty:          0 kB\n"
8041                 "Private_Clean:         0 kB\n"
8042                 "Private_Dirty:         0 kB\n"
8043                 "Referenced:            0 kB\n"
8044                 "Anonymous:             %lu kB\n"
8045                 "LazyFree:              0 kB\n"
8046                 "AnonHugePages:         0 kB\n"
8047                 "ShmemPmdMapped:        0 kB\n"
8048                 "FilePmdMapped:         0 kB\n"
8049                 "Shared_Hugetlb:        0 kB\n"
8050                 "Private_Hugetlb:       0 kB\n"
8051                 "Swap:                  0 kB\n"
8052                 "SwapPss:               0 kB\n"
8053                 "Locked:                0 kB\n"
8054                 "THPeligible:    0\n"
8055                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8056                 size_kb, page_size_kb, page_size_kb,
8057                 (flags & PAGE_ANON ? size_kb : 0),
8058                 (flags & PAGE_READ) ? " rd" : "",
8059                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8060                 (flags & PAGE_EXEC) ? " ex" : "",
8061                 mi->is_priv ? "" : " sh",
8062                 (flags & PAGE_READ) ? " mr" : "",
8063                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8064                 (flags & PAGE_EXEC) ? " me" : "",
8065                 mi->is_priv ? "" : " ms");
8066     }
8067 }
8068 
8069 /*
8070  * Callback for walk_memory_regions, when read_self_maps() fails.
8071  * Proceed without the benefit of host /proc/self/maps cross-check.
8072  */
8073 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8074                             target_ulong guest_end, unsigned long flags)
8075 {
8076     static const MapInfo mi = { .is_priv = true };
8077 
8078     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8079     return 0;
8080 }
8081 
8082 /*
8083  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8084  */
8085 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8086                             target_ulong guest_end, unsigned long flags)
8087 {
8088     const struct open_self_maps_data *d = opaque;
8089     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8090     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8091 
8092 #ifdef TARGET_X86_64
8093     /*
8094      * Because of the extremely high position of the page within the guest
8095      * virtual address space, this is not backed by host memory at all.
8096      * Therefore the loop below would fail.  This is the only instance
8097      * of not having host backing memory.
8098      */
8099     if (guest_start == TARGET_VSYSCALL_PAGE) {
8100         return open_self_maps_3(opaque, guest_start, guest_end, flags);
8101     }
8102 #endif
8103 
8104     while (1) {
8105         IntervalTreeNode *n =
8106             interval_tree_iter_first(d->host_maps, host_start, host_start);
8107         MapInfo *mi = container_of(n, MapInfo, itree);
8108         uintptr_t this_hlast = MIN(host_last, n->last);
8109         target_ulong this_gend = h2g(this_hlast) + 1;
8110 
8111         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8112 
8113         if (this_hlast == host_last) {
8114             return 0;
8115         }
8116         host_start = this_hlast + 1;
8117         guest_start = h2g(host_start);
8118     }
8119 }
8120 
8121 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8122 {
8123     struct open_self_maps_data d = {
8124         .ts = get_task_state(env_cpu(env)),
8125         .host_maps = read_self_maps(),
8126         .fd = fd,
8127         .smaps = smaps
8128     };
8129 
8130     if (d.host_maps) {
8131         walk_memory_regions(&d, open_self_maps_2);
8132         free_self_maps(d.host_maps);
8133     } else {
8134         walk_memory_regions(&d, open_self_maps_3);
8135     }
8136     return 0;
8137 }
8138 
8139 static int open_self_maps(CPUArchState *cpu_env, int fd)
8140 {
8141     return open_self_maps_1(cpu_env, fd, false);
8142 }
8143 
8144 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8145 {
8146     return open_self_maps_1(cpu_env, fd, true);
8147 }
8148 
8149 static int open_self_stat(CPUArchState *cpu_env, int fd)
8150 {
8151     CPUState *cpu = env_cpu(cpu_env);
8152     TaskState *ts = get_task_state(cpu);
8153     g_autoptr(GString) buf = g_string_new(NULL);
8154     int i;
8155 
8156     for (i = 0; i < 44; i++) {
8157         if (i == 0) {
8158             /* pid */
8159             g_string_printf(buf, FMT_pid " ", getpid());
8160         } else if (i == 1) {
8161             /* app name */
8162             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8163             bin = bin ? bin + 1 : ts->bprm->argv[0];
8164             g_string_printf(buf, "(%.15s) ", bin);
8165         } else if (i == 2) {
8166             /* task state */
8167             g_string_assign(buf, "R "); /* we are running right now */
8168         } else if (i == 3) {
8169             /* ppid */
8170             g_string_printf(buf, FMT_pid " ", getppid());
8171         } else if (i == 21) {
8172             /* starttime */
8173             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8174         } else if (i == 27) {
8175             /* stack bottom */
8176             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8177         } else {
8178             /* for the rest, there is MasterCard */
8179             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8180         }
8181 
8182         if (write(fd, buf->str, buf->len) != buf->len) {
8183             return -1;
8184         }
8185     }
8186 
8187     return 0;
8188 }
8189 
8190 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8191 {
8192     CPUState *cpu = env_cpu(cpu_env);
8193     TaskState *ts = get_task_state(cpu);
8194     abi_ulong auxv = ts->info->saved_auxv;
8195     abi_ulong len = ts->info->auxv_len;
8196     char *ptr;
8197 
8198     /*
8199      * Auxiliary vector is stored in target process stack.
8200      * read in whole auxv vector and copy it to file
8201      */
8202     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8203     if (ptr != NULL) {
8204         while (len > 0) {
8205             ssize_t r;
8206             r = write(fd, ptr, len);
8207             if (r <= 0) {
8208                 break;
8209             }
8210             len -= r;
8211             ptr += r;
8212         }
8213         lseek(fd, 0, SEEK_SET);
8214         unlock_user(ptr, auxv, len);
8215     }
8216 
8217     return 0;
8218 }
8219 
8220 static int is_proc_myself(const char *filename, const char *entry)
8221 {
8222     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8223         filename += strlen("/proc/");
8224         if (!strncmp(filename, "self/", strlen("self/"))) {
8225             filename += strlen("self/");
8226         } else if (*filename >= '1' && *filename <= '9') {
8227             char myself[80];
8228             snprintf(myself, sizeof(myself), "%d/", getpid());
8229             if (!strncmp(filename, myself, strlen(myself))) {
8230                 filename += strlen(myself);
8231             } else {
8232                 return 0;
8233             }
8234         } else {
8235             return 0;
8236         }
8237         if (!strcmp(filename, entry)) {
8238             return 1;
8239         }
8240     }
8241     return 0;
8242 }
8243 
8244 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8245                       const char *fmt, int code)
8246 {
8247     if (logfile) {
8248         CPUState *cs = env_cpu(env);
8249 
8250         fprintf(logfile, fmt, code);
8251         fprintf(logfile, "Failing executable: %s\n", exec_path);
8252         cpu_dump_state(cs, logfile, 0);
8253         open_self_maps(env, fileno(logfile));
8254     }
8255 }
8256 
8257 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8258 {
8259     /* dump to console */
8260     excp_dump_file(stderr, env, fmt, code);
8261 
8262     /* dump to log file */
8263     if (qemu_log_separate()) {
8264         FILE *logfile = qemu_log_trylock();
8265 
8266         excp_dump_file(logfile, env, fmt, code);
8267         qemu_log_unlock(logfile);
8268     }
8269 }
8270 
8271 #include "target_proc.h"
8272 
8273 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8274     defined(HAVE_ARCH_PROC_CPUINFO) || \
8275     defined(HAVE_ARCH_PROC_HARDWARE)
8276 static int is_proc(const char *filename, const char *entry)
8277 {
8278     return strcmp(filename, entry) == 0;
8279 }
8280 #endif
8281 
8282 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8283 static int open_net_route(CPUArchState *cpu_env, int fd)
8284 {
8285     FILE *fp;
8286     char *line = NULL;
8287     size_t len = 0;
8288     ssize_t read;
8289 
8290     fp = fopen("/proc/net/route", "r");
8291     if (fp == NULL) {
8292         return -1;
8293     }
8294 
8295     /* read header */
8296 
8297     read = getline(&line, &len, fp);
8298     dprintf(fd, "%s", line);
8299 
8300     /* read routes */
8301 
8302     while ((read = getline(&line, &len, fp)) != -1) {
8303         char iface[16];
8304         uint32_t dest, gw, mask;
8305         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8306         int fields;
8307 
8308         fields = sscanf(line,
8309                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8310                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8311                         &mask, &mtu, &window, &irtt);
8312         if (fields != 11) {
8313             continue;
8314         }
8315         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8316                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8317                 metric, tswap32(mask), mtu, window, irtt);
8318     }
8319 
8320     free(line);
8321     fclose(fp);
8322 
8323     return 0;
8324 }
8325 #endif
8326 
8327 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8328                     int flags, mode_t mode, bool safe)
8329 {
8330     g_autofree char *proc_name = NULL;
8331     const char *pathname;
8332     struct fake_open {
8333         const char *filename;
8334         int (*fill)(CPUArchState *cpu_env, int fd);
8335         int (*cmp)(const char *s1, const char *s2);
8336     };
8337     const struct fake_open *fake_open;
8338     static const struct fake_open fakes[] = {
8339         { "maps", open_self_maps, is_proc_myself },
8340         { "smaps", open_self_smaps, is_proc_myself },
8341         { "stat", open_self_stat, is_proc_myself },
8342         { "auxv", open_self_auxv, is_proc_myself },
8343         { "cmdline", open_self_cmdline, is_proc_myself },
8344 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8345         { "/proc/net/route", open_net_route, is_proc },
8346 #endif
8347 #if defined(HAVE_ARCH_PROC_CPUINFO)
8348         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8349 #endif
8350 #if defined(HAVE_ARCH_PROC_HARDWARE)
8351         { "/proc/hardware", open_hardware, is_proc },
8352 #endif
8353         { NULL, NULL, NULL }
8354     };
8355 
8356     /* if this is a file from /proc/ filesystem, expand full name */
8357     proc_name = realpath(fname, NULL);
8358     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8359         pathname = proc_name;
8360     } else {
8361         pathname = fname;
8362     }
8363 
8364     if (is_proc_myself(pathname, "exe")) {
8365         if (safe) {
8366             return safe_openat(dirfd, exec_path, flags, mode);
8367         } else {
8368             return openat(dirfd, exec_path, flags, mode);
8369         }
8370     }
8371 
8372     for (fake_open = fakes; fake_open->filename; fake_open++) {
8373         if (fake_open->cmp(pathname, fake_open->filename)) {
8374             break;
8375         }
8376     }
8377 
8378     if (fake_open->filename) {
8379         const char *tmpdir;
8380         char filename[PATH_MAX];
8381         int fd, r;
8382 
8383         fd = memfd_create("qemu-open", 0);
8384         if (fd < 0) {
8385             if (errno != ENOSYS) {
8386                 return fd;
8387             }
8388             /* create temporary file to map stat to */
8389             tmpdir = getenv("TMPDIR");
8390             if (!tmpdir)
8391                 tmpdir = "/tmp";
8392             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8393             fd = mkstemp(filename);
8394             if (fd < 0) {
8395                 return fd;
8396             }
8397             unlink(filename);
8398         }
8399 
8400         if ((r = fake_open->fill(cpu_env, fd))) {
8401             int e = errno;
8402             close(fd);
8403             errno = e;
8404             return r;
8405         }
8406         lseek(fd, 0, SEEK_SET);
8407 
8408         return fd;
8409     }
8410 
8411     if (safe) {
8412         return safe_openat(dirfd, path(pathname), flags, mode);
8413     } else {
8414         return openat(dirfd, path(pathname), flags, mode);
8415     }
8416 }
8417 
8418 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8419 {
8420     ssize_t ret;
8421 
8422     if (!pathname || !buf) {
8423         errno = EFAULT;
8424         return -1;
8425     }
8426 
8427     if (!bufsiz) {
8428         /* Short circuit this for the magic exe check. */
8429         errno = EINVAL;
8430         return -1;
8431     }
8432 
8433     if (is_proc_myself((const char *)pathname, "exe")) {
8434         /*
8435          * Don't worry about sign mismatch as earlier mapping
8436          * logic would have thrown a bad address error.
8437          */
8438         ret = MIN(strlen(exec_path), bufsiz);
8439         /* We cannot NUL terminate the string. */
8440         memcpy(buf, exec_path, ret);
8441     } else {
8442         ret = readlink(path(pathname), buf, bufsiz);
8443     }
8444 
8445     return ret;
8446 }
8447 
8448 static int do_execv(CPUArchState *cpu_env, int dirfd,
8449                     abi_long pathname, abi_long guest_argp,
8450                     abi_long guest_envp, int flags, bool is_execveat)
8451 {
8452     int ret;
8453     char **argp, **envp;
8454     int argc, envc;
8455     abi_ulong gp;
8456     abi_ulong addr;
8457     char **q;
8458     void *p;
8459 
8460     argc = 0;
8461 
8462     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8463         if (get_user_ual(addr, gp)) {
8464             return -TARGET_EFAULT;
8465         }
8466         if (!addr) {
8467             break;
8468         }
8469         argc++;
8470     }
8471     envc = 0;
8472     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8473         if (get_user_ual(addr, gp)) {
8474             return -TARGET_EFAULT;
8475         }
8476         if (!addr) {
8477             break;
8478         }
8479         envc++;
8480     }
8481 
8482     argp = g_new0(char *, argc + 1);
8483     envp = g_new0(char *, envc + 1);
8484 
8485     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8486         if (get_user_ual(addr, gp)) {
8487             goto execve_efault;
8488         }
8489         if (!addr) {
8490             break;
8491         }
8492         *q = lock_user_string(addr);
8493         if (!*q) {
8494             goto execve_efault;
8495         }
8496     }
8497     *q = NULL;
8498 
8499     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8500         if (get_user_ual(addr, gp)) {
8501             goto execve_efault;
8502         }
8503         if (!addr) {
8504             break;
8505         }
8506         *q = lock_user_string(addr);
8507         if (!*q) {
8508             goto execve_efault;
8509         }
8510     }
8511     *q = NULL;
8512 
8513     /*
8514      * Although execve() is not an interruptible syscall it is
8515      * a special case where we must use the safe_syscall wrapper:
8516      * if we allow a signal to happen before we make the host
8517      * syscall then we will 'lose' it, because at the point of
8518      * execve the process leaves QEMU's control. So we use the
8519      * safe syscall wrapper to ensure that we either take the
8520      * signal as a guest signal, or else it does not happen
8521      * before the execve completes and makes it the other
8522      * program's problem.
8523      */
8524     p = lock_user_string(pathname);
8525     if (!p) {
8526         goto execve_efault;
8527     }
8528 
8529     const char *exe = p;
8530     if (is_proc_myself(p, "exe")) {
8531         exe = exec_path;
8532     }
8533     ret = is_execveat
8534         ? safe_execveat(dirfd, exe, argp, envp, flags)
8535         : safe_execve(exe, argp, envp);
8536     ret = get_errno(ret);
8537 
8538     unlock_user(p, pathname, 0);
8539 
8540     goto execve_end;
8541 
8542 execve_efault:
8543     ret = -TARGET_EFAULT;
8544 
8545 execve_end:
8546     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8547         if (get_user_ual(addr, gp) || !addr) {
8548             break;
8549         }
8550         unlock_user(*q, addr, 0);
8551     }
8552     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8553         if (get_user_ual(addr, gp) || !addr) {
8554             break;
8555         }
8556         unlock_user(*q, addr, 0);
8557     }
8558 
8559     g_free(argp);
8560     g_free(envp);
8561     return ret;
8562 }
8563 
8564 #define TIMER_MAGIC 0x0caf0000
8565 #define TIMER_MAGIC_MASK 0xffff0000
8566 
8567 /* Convert QEMU provided timer ID back to internal 16bit index format */
8568 static target_timer_t get_timer_id(abi_long arg)
8569 {
8570     target_timer_t timerid = arg;
8571 
8572     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8573         return -TARGET_EINVAL;
8574     }
8575 
8576     timerid &= 0xffff;
8577 
8578     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8579         return -TARGET_EINVAL;
8580     }
8581 
8582     return timerid;
8583 }
8584 
8585 static int target_to_host_cpu_mask(unsigned long *host_mask,
8586                                    size_t host_size,
8587                                    abi_ulong target_addr,
8588                                    size_t target_size)
8589 {
8590     unsigned target_bits = sizeof(abi_ulong) * 8;
8591     unsigned host_bits = sizeof(*host_mask) * 8;
8592     abi_ulong *target_mask;
8593     unsigned i, j;
8594 
8595     assert(host_size >= target_size);
8596 
8597     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8598     if (!target_mask) {
8599         return -TARGET_EFAULT;
8600     }
8601     memset(host_mask, 0, host_size);
8602 
8603     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8604         unsigned bit = i * target_bits;
8605         abi_ulong val;
8606 
8607         __get_user(val, &target_mask[i]);
8608         for (j = 0; j < target_bits; j++, bit++) {
8609             if (val & (1UL << j)) {
8610                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8611             }
8612         }
8613     }
8614 
8615     unlock_user(target_mask, target_addr, 0);
8616     return 0;
8617 }
8618 
8619 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8620                                    size_t host_size,
8621                                    abi_ulong target_addr,
8622                                    size_t target_size)
8623 {
8624     unsigned target_bits = sizeof(abi_ulong) * 8;
8625     unsigned host_bits = sizeof(*host_mask) * 8;
8626     abi_ulong *target_mask;
8627     unsigned i, j;
8628 
8629     assert(host_size >= target_size);
8630 
8631     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8632     if (!target_mask) {
8633         return -TARGET_EFAULT;
8634     }
8635 
8636     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8637         unsigned bit = i * target_bits;
8638         abi_ulong val = 0;
8639 
8640         for (j = 0; j < target_bits; j++, bit++) {
8641             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8642                 val |= 1UL << j;
8643             }
8644         }
8645         __put_user(val, &target_mask[i]);
8646     }
8647 
8648     unlock_user(target_mask, target_addr, target_size);
8649     return 0;
8650 }
8651 
8652 #ifdef TARGET_NR_getdents
8653 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8654 {
8655     g_autofree void *hdirp = NULL;
8656     void *tdirp;
8657     int hlen, hoff, toff;
8658     int hreclen, treclen;
8659     off64_t prev_diroff = 0;
8660 
8661     hdirp = g_try_malloc(count);
8662     if (!hdirp) {
8663         return -TARGET_ENOMEM;
8664     }
8665 
8666 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8667     hlen = sys_getdents(dirfd, hdirp, count);
8668 #else
8669     hlen = sys_getdents64(dirfd, hdirp, count);
8670 #endif
8671 
8672     hlen = get_errno(hlen);
8673     if (is_error(hlen)) {
8674         return hlen;
8675     }
8676 
8677     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8678     if (!tdirp) {
8679         return -TARGET_EFAULT;
8680     }
8681 
8682     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8683 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8684         struct linux_dirent *hde = hdirp + hoff;
8685 #else
8686         struct linux_dirent64 *hde = hdirp + hoff;
8687 #endif
8688         struct target_dirent *tde = tdirp + toff;
8689         int namelen;
8690         uint8_t type;
8691 
8692         namelen = strlen(hde->d_name);
8693         hreclen = hde->d_reclen;
8694         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8695         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8696 
8697         if (toff + treclen > count) {
8698             /*
8699              * If the host struct is smaller than the target struct, or
8700              * requires less alignment and thus packs into less space,
8701              * then the host can return more entries than we can pass
8702              * on to the guest.
8703              */
8704             if (toff == 0) {
8705                 toff = -TARGET_EINVAL; /* result buffer is too small */
8706                 break;
8707             }
8708             /*
8709              * Return what we have, resetting the file pointer to the
8710              * location of the first record not returned.
8711              */
8712             lseek64(dirfd, prev_diroff, SEEK_SET);
8713             break;
8714         }
8715 
8716         prev_diroff = hde->d_off;
8717         tde->d_ino = tswapal(hde->d_ino);
8718         tde->d_off = tswapal(hde->d_off);
8719         tde->d_reclen = tswap16(treclen);
8720         memcpy(tde->d_name, hde->d_name, namelen + 1);
8721 
8722         /*
8723          * The getdents type is in what was formerly a padding byte at the
8724          * end of the structure.
8725          */
8726 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8727         type = *((uint8_t *)hde + hreclen - 1);
8728 #else
8729         type = hde->d_type;
8730 #endif
8731         *((uint8_t *)tde + treclen - 1) = type;
8732     }
8733 
8734     unlock_user(tdirp, arg2, toff);
8735     return toff;
8736 }
8737 #endif /* TARGET_NR_getdents */
8738 
8739 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8740 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8741 {
8742     g_autofree void *hdirp = NULL;
8743     void *tdirp;
8744     int hlen, hoff, toff;
8745     int hreclen, treclen;
8746     off64_t prev_diroff = 0;
8747 
8748     hdirp = g_try_malloc(count);
8749     if (!hdirp) {
8750         return -TARGET_ENOMEM;
8751     }
8752 
8753     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8754     if (is_error(hlen)) {
8755         return hlen;
8756     }
8757 
8758     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8759     if (!tdirp) {
8760         return -TARGET_EFAULT;
8761     }
8762 
8763     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8764         struct linux_dirent64 *hde = hdirp + hoff;
8765         struct target_dirent64 *tde = tdirp + toff;
8766         int namelen;
8767 
8768         namelen = strlen(hde->d_name) + 1;
8769         hreclen = hde->d_reclen;
8770         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8771         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8772 
8773         if (toff + treclen > count) {
8774             /*
8775              * If the host struct is smaller than the target struct, or
8776              * requires less alignment and thus packs into less space,
8777              * then the host can return more entries than we can pass
8778              * on to the guest.
8779              */
8780             if (toff == 0) {
8781                 toff = -TARGET_EINVAL; /* result buffer is too small */
8782                 break;
8783             }
8784             /*
8785              * Return what we have, resetting the file pointer to the
8786              * location of the first record not returned.
8787              */
8788             lseek64(dirfd, prev_diroff, SEEK_SET);
8789             break;
8790         }
8791 
8792         prev_diroff = hde->d_off;
8793         tde->d_ino = tswap64(hde->d_ino);
8794         tde->d_off = tswap64(hde->d_off);
8795         tde->d_reclen = tswap16(treclen);
8796         tde->d_type = hde->d_type;
8797         memcpy(tde->d_name, hde->d_name, namelen);
8798     }
8799 
8800     unlock_user(tdirp, arg2, toff);
8801     return toff;
8802 }
8803 #endif /* TARGET_NR_getdents64 */
8804 
8805 #if defined(TARGET_NR_riscv_hwprobe)
8806 
8807 #define RISCV_HWPROBE_KEY_MVENDORID     0
8808 #define RISCV_HWPROBE_KEY_MARCHID       1
8809 #define RISCV_HWPROBE_KEY_MIMPID        2
8810 
8811 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8812 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8813 
8814 #define RISCV_HWPROBE_KEY_IMA_EXT_0         4
8815 #define     RISCV_HWPROBE_IMA_FD            (1 << 0)
8816 #define     RISCV_HWPROBE_IMA_C             (1 << 1)
8817 #define     RISCV_HWPROBE_IMA_V             (1 << 2)
8818 #define     RISCV_HWPROBE_EXT_ZBA           (1 << 3)
8819 #define     RISCV_HWPROBE_EXT_ZBB           (1 << 4)
8820 #define     RISCV_HWPROBE_EXT_ZBS           (1 << 5)
8821 #define     RISCV_HWPROBE_EXT_ZICBOZ        (1 << 6)
8822 #define     RISCV_HWPROBE_EXT_ZBC           (1 << 7)
8823 #define     RISCV_HWPROBE_EXT_ZBKB          (1 << 8)
8824 #define     RISCV_HWPROBE_EXT_ZBKC          (1 << 9)
8825 #define     RISCV_HWPROBE_EXT_ZBKX          (1 << 10)
8826 #define     RISCV_HWPROBE_EXT_ZKND          (1 << 11)
8827 #define     RISCV_HWPROBE_EXT_ZKNE          (1 << 12)
8828 #define     RISCV_HWPROBE_EXT_ZKNH          (1 << 13)
8829 #define     RISCV_HWPROBE_EXT_ZKSED         (1 << 14)
8830 #define     RISCV_HWPROBE_EXT_ZKSH          (1 << 15)
8831 #define     RISCV_HWPROBE_EXT_ZKT           (1 << 16)
8832 #define     RISCV_HWPROBE_EXT_ZVBB          (1 << 17)
8833 #define     RISCV_HWPROBE_EXT_ZVBC          (1 << 18)
8834 #define     RISCV_HWPROBE_EXT_ZVKB          (1 << 19)
8835 #define     RISCV_HWPROBE_EXT_ZVKG          (1 << 20)
8836 #define     RISCV_HWPROBE_EXT_ZVKNED        (1 << 21)
8837 #define     RISCV_HWPROBE_EXT_ZVKNHA        (1 << 22)
8838 #define     RISCV_HWPROBE_EXT_ZVKNHB        (1 << 23)
8839 #define     RISCV_HWPROBE_EXT_ZVKSED        (1 << 24)
8840 #define     RISCV_HWPROBE_EXT_ZVKSH         (1 << 25)
8841 #define     RISCV_HWPROBE_EXT_ZVKT          (1 << 26)
8842 #define     RISCV_HWPROBE_EXT_ZFH           (1 << 27)
8843 #define     RISCV_HWPROBE_EXT_ZFHMIN        (1 << 28)
8844 #define     RISCV_HWPROBE_EXT_ZIHINTNTL     (1 << 29)
8845 #define     RISCV_HWPROBE_EXT_ZVFH          (1 << 30)
8846 #define     RISCV_HWPROBE_EXT_ZVFHMIN       (1 << 31)
8847 #define     RISCV_HWPROBE_EXT_ZFA           (1ULL << 32)
8848 #define     RISCV_HWPROBE_EXT_ZTSO          (1ULL << 33)
8849 #define     RISCV_HWPROBE_EXT_ZACAS         (1ULL << 34)
8850 #define     RISCV_HWPROBE_EXT_ZICOND        (1ULL << 35)
8851 
8852 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8853 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8854 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8855 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8856 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8857 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8858 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8859 
8860 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8861 
8862 struct riscv_hwprobe {
8863     abi_llong  key;
8864     abi_ullong value;
8865 };
8866 
8867 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8868                                     struct riscv_hwprobe *pair,
8869                                     size_t pair_count)
8870 {
8871     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8872 
8873     for (; pair_count > 0; pair_count--, pair++) {
8874         abi_llong key;
8875         abi_ullong value;
8876         __put_user(0, &pair->value);
8877         __get_user(key, &pair->key);
8878         switch (key) {
8879         case RISCV_HWPROBE_KEY_MVENDORID:
8880             __put_user(cfg->mvendorid, &pair->value);
8881             break;
8882         case RISCV_HWPROBE_KEY_MARCHID:
8883             __put_user(cfg->marchid, &pair->value);
8884             break;
8885         case RISCV_HWPROBE_KEY_MIMPID:
8886             __put_user(cfg->mimpid, &pair->value);
8887             break;
8888         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8889             value = riscv_has_ext(env, RVI) &&
8890                     riscv_has_ext(env, RVM) &&
8891                     riscv_has_ext(env, RVA) ?
8892                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8893             __put_user(value, &pair->value);
8894             break;
8895         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8896             value = riscv_has_ext(env, RVF) &&
8897                     riscv_has_ext(env, RVD) ?
8898                     RISCV_HWPROBE_IMA_FD : 0;
8899             value |= riscv_has_ext(env, RVC) ?
8900                      RISCV_HWPROBE_IMA_C : 0;
8901             value |= riscv_has_ext(env, RVV) ?
8902                      RISCV_HWPROBE_IMA_V : 0;
8903             value |= cfg->ext_zba ?
8904                      RISCV_HWPROBE_EXT_ZBA : 0;
8905             value |= cfg->ext_zbb ?
8906                      RISCV_HWPROBE_EXT_ZBB : 0;
8907             value |= cfg->ext_zbs ?
8908                      RISCV_HWPROBE_EXT_ZBS : 0;
8909             value |= cfg->ext_zicboz ?
8910                      RISCV_HWPROBE_EXT_ZICBOZ : 0;
8911             value |= cfg->ext_zbc ?
8912                      RISCV_HWPROBE_EXT_ZBC : 0;
8913             value |= cfg->ext_zbkb ?
8914                      RISCV_HWPROBE_EXT_ZBKB : 0;
8915             value |= cfg->ext_zbkc ?
8916                      RISCV_HWPROBE_EXT_ZBKC : 0;
8917             value |= cfg->ext_zbkx ?
8918                      RISCV_HWPROBE_EXT_ZBKX : 0;
8919             value |= cfg->ext_zknd ?
8920                      RISCV_HWPROBE_EXT_ZKND : 0;
8921             value |= cfg->ext_zkne ?
8922                      RISCV_HWPROBE_EXT_ZKNE : 0;
8923             value |= cfg->ext_zknh ?
8924                      RISCV_HWPROBE_EXT_ZKNH : 0;
8925             value |= cfg->ext_zksed ?
8926                      RISCV_HWPROBE_EXT_ZKSED : 0;
8927             value |= cfg->ext_zksh ?
8928                      RISCV_HWPROBE_EXT_ZKSH : 0;
8929             value |= cfg->ext_zkt ?
8930                      RISCV_HWPROBE_EXT_ZKT : 0;
8931             value |= cfg->ext_zvbb ?
8932                      RISCV_HWPROBE_EXT_ZVBB : 0;
8933             value |= cfg->ext_zvbc ?
8934                      RISCV_HWPROBE_EXT_ZVBC : 0;
8935             value |= cfg->ext_zvkb ?
8936                      RISCV_HWPROBE_EXT_ZVKB : 0;
8937             value |= cfg->ext_zvkg ?
8938                      RISCV_HWPROBE_EXT_ZVKG : 0;
8939             value |= cfg->ext_zvkned ?
8940                      RISCV_HWPROBE_EXT_ZVKNED : 0;
8941             value |= cfg->ext_zvknha ?
8942                      RISCV_HWPROBE_EXT_ZVKNHA : 0;
8943             value |= cfg->ext_zvknhb ?
8944                      RISCV_HWPROBE_EXT_ZVKNHB : 0;
8945             value |= cfg->ext_zvksed ?
8946                      RISCV_HWPROBE_EXT_ZVKSED : 0;
8947             value |= cfg->ext_zvksh ?
8948                      RISCV_HWPROBE_EXT_ZVKSH : 0;
8949             value |= cfg->ext_zvkt ?
8950                      RISCV_HWPROBE_EXT_ZVKT : 0;
8951             value |= cfg->ext_zfh ?
8952                      RISCV_HWPROBE_EXT_ZFH : 0;
8953             value |= cfg->ext_zfhmin ?
8954                      RISCV_HWPROBE_EXT_ZFHMIN : 0;
8955             value |= cfg->ext_zihintntl ?
8956                      RISCV_HWPROBE_EXT_ZIHINTNTL : 0;
8957             value |= cfg->ext_zvfh ?
8958                      RISCV_HWPROBE_EXT_ZVFH : 0;
8959             value |= cfg->ext_zvfhmin ?
8960                      RISCV_HWPROBE_EXT_ZVFHMIN : 0;
8961             value |= cfg->ext_zfa ?
8962                      RISCV_HWPROBE_EXT_ZFA : 0;
8963             value |= cfg->ext_ztso ?
8964                      RISCV_HWPROBE_EXT_ZTSO : 0;
8965             value |= cfg->ext_zacas ?
8966                      RISCV_HWPROBE_EXT_ZACAS : 0;
8967             value |= cfg->ext_zicond ?
8968                      RISCV_HWPROBE_EXT_ZICOND : 0;
8969             __put_user(value, &pair->value);
8970             break;
8971         case RISCV_HWPROBE_KEY_CPUPERF_0:
8972             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8973             break;
8974         case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8975             value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8976             __put_user(value, &pair->value);
8977             break;
8978         default:
8979             __put_user(-1, &pair->key);
8980             break;
8981         }
8982     }
8983 }
8984 
8985 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8986 {
8987     int ret, i, tmp;
8988     size_t host_mask_size, target_mask_size;
8989     unsigned long *host_mask;
8990 
8991     /*
8992      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8993      * arg3 contains the cpu count.
8994      */
8995     tmp = (8 * sizeof(abi_ulong));
8996     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
8997     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
8998                      ~(sizeof(*host_mask) - 1);
8999 
9000     host_mask = alloca(host_mask_size);
9001 
9002     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9003                                   arg4, target_mask_size);
9004     if (ret != 0) {
9005         return ret;
9006     }
9007 
9008     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9009         if (host_mask[i] != 0) {
9010             return 0;
9011         }
9012     }
9013     return -TARGET_EINVAL;
9014 }
9015 
9016 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9017                                  abi_long arg2, abi_long arg3,
9018                                  abi_long arg4, abi_long arg5)
9019 {
9020     int ret;
9021     struct riscv_hwprobe *host_pairs;
9022 
9023     /* flags must be 0 */
9024     if (arg5 != 0) {
9025         return -TARGET_EINVAL;
9026     }
9027 
9028     /* check cpu_set */
9029     if (arg3 != 0) {
9030         ret = cpu_set_valid(arg3, arg4);
9031         if (ret != 0) {
9032             return ret;
9033         }
9034     } else if (arg4 != 0) {
9035         return -TARGET_EINVAL;
9036     }
9037 
9038     /* no pairs */
9039     if (arg2 == 0) {
9040         return 0;
9041     }
9042 
9043     host_pairs = lock_user(VERIFY_WRITE, arg1,
9044                            sizeof(*host_pairs) * (size_t)arg2, 0);
9045     if (host_pairs == NULL) {
9046         return -TARGET_EFAULT;
9047     }
9048     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9049     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9050     return 0;
9051 }
9052 #endif /* TARGET_NR_riscv_hwprobe */
9053 
9054 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9055 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9056 #endif
9057 
9058 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9059 #define __NR_sys_open_tree __NR_open_tree
9060 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9061           unsigned int, __flags)
9062 #endif
9063 
9064 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9065 #define __NR_sys_move_mount __NR_move_mount
9066 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9067            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9068 #endif
9069 
9070 /* This is an internal helper for do_syscall so that it is easier
9071  * to have a single return point, so that actions, such as logging
9072  * of syscall results, can be performed.
9073  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9074  */
9075 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9076                             abi_long arg2, abi_long arg3, abi_long arg4,
9077                             abi_long arg5, abi_long arg6, abi_long arg7,
9078                             abi_long arg8)
9079 {
9080     CPUState *cpu = env_cpu(cpu_env);
9081     abi_long ret;
9082 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9083     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9084     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9085     || defined(TARGET_NR_statx)
9086     struct stat st;
9087 #endif
9088 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9089     || defined(TARGET_NR_fstatfs)
9090     struct statfs stfs;
9091 #endif
9092     void *p;
9093 
9094     switch(num) {
9095     case TARGET_NR_exit:
9096         /* In old applications this may be used to implement _exit(2).
9097            However in threaded applications it is used for thread termination,
9098            and _exit_group is used for application termination.
9099            Do thread termination if we have more then one thread.  */
9100 
9101         if (block_signals()) {
9102             return -QEMU_ERESTARTSYS;
9103         }
9104 
9105         pthread_mutex_lock(&clone_lock);
9106 
9107         if (CPU_NEXT(first_cpu)) {
9108             TaskState *ts = get_task_state(cpu);
9109 
9110             if (ts->child_tidptr) {
9111                 put_user_u32(0, ts->child_tidptr);
9112                 do_sys_futex(g2h(cpu, ts->child_tidptr),
9113                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9114             }
9115 
9116             object_unparent(OBJECT(cpu));
9117             object_unref(OBJECT(cpu));
9118             /*
9119              * At this point the CPU should be unrealized and removed
9120              * from cpu lists. We can clean-up the rest of the thread
9121              * data without the lock held.
9122              */
9123 
9124             pthread_mutex_unlock(&clone_lock);
9125 
9126             thread_cpu = NULL;
9127             g_free(ts);
9128             rcu_unregister_thread();
9129             pthread_exit(NULL);
9130         }
9131 
9132         pthread_mutex_unlock(&clone_lock);
9133         preexit_cleanup(cpu_env, arg1);
9134         _exit(arg1);
9135         return 0; /* avoid warning */
9136     case TARGET_NR_read:
9137         if (arg2 == 0 && arg3 == 0) {
9138             return get_errno(safe_read(arg1, 0, 0));
9139         } else {
9140             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9141                 return -TARGET_EFAULT;
9142             ret = get_errno(safe_read(arg1, p, arg3));
9143             if (ret >= 0 &&
9144                 fd_trans_host_to_target_data(arg1)) {
9145                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9146             }
9147             unlock_user(p, arg2, ret);
9148         }
9149         return ret;
9150     case TARGET_NR_write:
9151         if (arg2 == 0 && arg3 == 0) {
9152             return get_errno(safe_write(arg1, 0, 0));
9153         }
9154         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9155             return -TARGET_EFAULT;
9156         if (fd_trans_target_to_host_data(arg1)) {
9157             void *copy = g_malloc(arg3);
9158             memcpy(copy, p, arg3);
9159             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9160             if (ret >= 0) {
9161                 ret = get_errno(safe_write(arg1, copy, ret));
9162             }
9163             g_free(copy);
9164         } else {
9165             ret = get_errno(safe_write(arg1, p, arg3));
9166         }
9167         unlock_user(p, arg2, 0);
9168         return ret;
9169 
9170 #ifdef TARGET_NR_open
9171     case TARGET_NR_open:
9172         if (!(p = lock_user_string(arg1)))
9173             return -TARGET_EFAULT;
9174         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9175                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9176                                   arg3, true));
9177         fd_trans_unregister(ret);
9178         unlock_user(p, arg1, 0);
9179         return ret;
9180 #endif
9181     case TARGET_NR_openat:
9182         if (!(p = lock_user_string(arg2)))
9183             return -TARGET_EFAULT;
9184         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9185                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9186                                   arg4, true));
9187         fd_trans_unregister(ret);
9188         unlock_user(p, arg2, 0);
9189         return ret;
9190 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9191     case TARGET_NR_name_to_handle_at:
9192         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9193         return ret;
9194 #endif
9195 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9196     case TARGET_NR_open_by_handle_at:
9197         ret = do_open_by_handle_at(arg1, arg2, arg3);
9198         fd_trans_unregister(ret);
9199         return ret;
9200 #endif
9201 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9202     case TARGET_NR_pidfd_open:
9203         return get_errno(pidfd_open(arg1, arg2));
9204 #endif
9205 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9206     case TARGET_NR_pidfd_send_signal:
9207         {
9208             siginfo_t uinfo, *puinfo;
9209 
9210             if (arg3) {
9211                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9212                 if (!p) {
9213                     return -TARGET_EFAULT;
9214                  }
9215                  target_to_host_siginfo(&uinfo, p);
9216                  unlock_user(p, arg3, 0);
9217                  puinfo = &uinfo;
9218             } else {
9219                  puinfo = NULL;
9220             }
9221             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9222                                               puinfo, arg4));
9223         }
9224         return ret;
9225 #endif
9226 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9227     case TARGET_NR_pidfd_getfd:
9228         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9229 #endif
9230     case TARGET_NR_close:
9231         fd_trans_unregister(arg1);
9232         return get_errno(close(arg1));
9233 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9234     case TARGET_NR_close_range:
9235         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9236         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9237             abi_long fd, maxfd;
9238             maxfd = MIN(arg2, target_fd_max);
9239             for (fd = arg1; fd < maxfd; fd++) {
9240                 fd_trans_unregister(fd);
9241             }
9242         }
9243         return ret;
9244 #endif
9245 
9246     case TARGET_NR_brk:
9247         return do_brk(arg1);
9248 #ifdef TARGET_NR_fork
9249     case TARGET_NR_fork:
9250         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9251 #endif
9252 #ifdef TARGET_NR_waitpid
9253     case TARGET_NR_waitpid:
9254         {
9255             int status;
9256             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9257             if (!is_error(ret) && arg2 && ret
9258                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9259                 return -TARGET_EFAULT;
9260         }
9261         return ret;
9262 #endif
9263 #ifdef TARGET_NR_waitid
9264     case TARGET_NR_waitid:
9265         {
9266             struct rusage ru;
9267             siginfo_t info;
9268 
9269             ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL),
9270                                         arg4, (arg5 ? &ru : NULL)));
9271             if (!is_error(ret)) {
9272                 if (arg3) {
9273                     p = lock_user(VERIFY_WRITE, arg3,
9274                                   sizeof(target_siginfo_t), 0);
9275                     if (!p) {
9276                         return -TARGET_EFAULT;
9277                     }
9278                     host_to_target_siginfo(p, &info);
9279                     unlock_user(p, arg3, sizeof(target_siginfo_t));
9280                 }
9281                 if (arg5 && host_to_target_rusage(arg5, &ru)) {
9282                     return -TARGET_EFAULT;
9283                 }
9284             }
9285         }
9286         return ret;
9287 #endif
9288 #ifdef TARGET_NR_creat /* not on alpha */
9289     case TARGET_NR_creat:
9290         if (!(p = lock_user_string(arg1)))
9291             return -TARGET_EFAULT;
9292         ret = get_errno(creat(p, arg2));
9293         fd_trans_unregister(ret);
9294         unlock_user(p, arg1, 0);
9295         return ret;
9296 #endif
9297 #ifdef TARGET_NR_link
9298     case TARGET_NR_link:
9299         {
9300             void * p2;
9301             p = lock_user_string(arg1);
9302             p2 = lock_user_string(arg2);
9303             if (!p || !p2)
9304                 ret = -TARGET_EFAULT;
9305             else
9306                 ret = get_errno(link(p, p2));
9307             unlock_user(p2, arg2, 0);
9308             unlock_user(p, arg1, 0);
9309         }
9310         return ret;
9311 #endif
9312 #if defined(TARGET_NR_linkat)
9313     case TARGET_NR_linkat:
9314         {
9315             void * p2 = NULL;
9316             if (!arg2 || !arg4)
9317                 return -TARGET_EFAULT;
9318             p  = lock_user_string(arg2);
9319             p2 = lock_user_string(arg4);
9320             if (!p || !p2)
9321                 ret = -TARGET_EFAULT;
9322             else
9323                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9324             unlock_user(p, arg2, 0);
9325             unlock_user(p2, arg4, 0);
9326         }
9327         return ret;
9328 #endif
9329 #ifdef TARGET_NR_unlink
9330     case TARGET_NR_unlink:
9331         if (!(p = lock_user_string(arg1)))
9332             return -TARGET_EFAULT;
9333         ret = get_errno(unlink(p));
9334         unlock_user(p, arg1, 0);
9335         return ret;
9336 #endif
9337 #if defined(TARGET_NR_unlinkat)
9338     case TARGET_NR_unlinkat:
9339         if (!(p = lock_user_string(arg2)))
9340             return -TARGET_EFAULT;
9341         ret = get_errno(unlinkat(arg1, p, arg3));
9342         unlock_user(p, arg2, 0);
9343         return ret;
9344 #endif
9345     case TARGET_NR_execveat:
9346         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9347     case TARGET_NR_execve:
9348         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9349     case TARGET_NR_chdir:
9350         if (!(p = lock_user_string(arg1)))
9351             return -TARGET_EFAULT;
9352         ret = get_errno(chdir(p));
9353         unlock_user(p, arg1, 0);
9354         return ret;
9355 #ifdef TARGET_NR_time
9356     case TARGET_NR_time:
9357         {
9358             time_t host_time;
9359             ret = get_errno(time(&host_time));
9360             if (!is_error(ret)
9361                 && arg1
9362                 && put_user_sal(host_time, arg1))
9363                 return -TARGET_EFAULT;
9364         }
9365         return ret;
9366 #endif
9367 #ifdef TARGET_NR_mknod
9368     case TARGET_NR_mknod:
9369         if (!(p = lock_user_string(arg1)))
9370             return -TARGET_EFAULT;
9371         ret = get_errno(mknod(p, arg2, arg3));
9372         unlock_user(p, arg1, 0);
9373         return ret;
9374 #endif
9375 #if defined(TARGET_NR_mknodat)
9376     case TARGET_NR_mknodat:
9377         if (!(p = lock_user_string(arg2)))
9378             return -TARGET_EFAULT;
9379         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9380         unlock_user(p, arg2, 0);
9381         return ret;
9382 #endif
9383 #ifdef TARGET_NR_chmod
9384     case TARGET_NR_chmod:
9385         if (!(p = lock_user_string(arg1)))
9386             return -TARGET_EFAULT;
9387         ret = get_errno(chmod(p, arg2));
9388         unlock_user(p, arg1, 0);
9389         return ret;
9390 #endif
9391 #ifdef TARGET_NR_lseek
9392     case TARGET_NR_lseek:
9393         return get_errno(lseek(arg1, arg2, arg3));
9394 #endif
9395 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9396     /* Alpha specific */
9397     case TARGET_NR_getxpid:
9398         cpu_env->ir[IR_A4] = getppid();
9399         return get_errno(getpid());
9400 #endif
9401 #ifdef TARGET_NR_getpid
9402     case TARGET_NR_getpid:
9403         return get_errno(getpid());
9404 #endif
9405     case TARGET_NR_mount:
9406         {
9407             /* need to look at the data field */
9408             void *p2, *p3;
9409 
9410             if (arg1) {
9411                 p = lock_user_string(arg1);
9412                 if (!p) {
9413                     return -TARGET_EFAULT;
9414                 }
9415             } else {
9416                 p = NULL;
9417             }
9418 
9419             p2 = lock_user_string(arg2);
9420             if (!p2) {
9421                 if (arg1) {
9422                     unlock_user(p, arg1, 0);
9423                 }
9424                 return -TARGET_EFAULT;
9425             }
9426 
9427             if (arg3) {
9428                 p3 = lock_user_string(arg3);
9429                 if (!p3) {
9430                     if (arg1) {
9431                         unlock_user(p, arg1, 0);
9432                     }
9433                     unlock_user(p2, arg2, 0);
9434                     return -TARGET_EFAULT;
9435                 }
9436             } else {
9437                 p3 = NULL;
9438             }
9439 
9440             /* FIXME - arg5 should be locked, but it isn't clear how to
9441              * do that since it's not guaranteed to be a NULL-terminated
9442              * string.
9443              */
9444             if (!arg5) {
9445                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9446             } else {
9447                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9448             }
9449             ret = get_errno(ret);
9450 
9451             if (arg1) {
9452                 unlock_user(p, arg1, 0);
9453             }
9454             unlock_user(p2, arg2, 0);
9455             if (arg3) {
9456                 unlock_user(p3, arg3, 0);
9457             }
9458         }
9459         return ret;
9460 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9461 #if defined(TARGET_NR_umount)
9462     case TARGET_NR_umount:
9463 #endif
9464 #if defined(TARGET_NR_oldumount)
9465     case TARGET_NR_oldumount:
9466 #endif
9467         if (!(p = lock_user_string(arg1)))
9468             return -TARGET_EFAULT;
9469         ret = get_errno(umount(p));
9470         unlock_user(p, arg1, 0);
9471         return ret;
9472 #endif
9473 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9474     case TARGET_NR_move_mount:
9475         {
9476             void *p2, *p4;
9477 
9478             if (!arg2 || !arg4) {
9479                 return -TARGET_EFAULT;
9480             }
9481 
9482             p2 = lock_user_string(arg2);
9483             if (!p2) {
9484                 return -TARGET_EFAULT;
9485             }
9486 
9487             p4 = lock_user_string(arg4);
9488             if (!p4) {
9489                 unlock_user(p2, arg2, 0);
9490                 return -TARGET_EFAULT;
9491             }
9492             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9493 
9494             unlock_user(p2, arg2, 0);
9495             unlock_user(p4, arg4, 0);
9496 
9497             return ret;
9498         }
9499 #endif
9500 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9501     case TARGET_NR_open_tree:
9502         {
9503             void *p2;
9504             int host_flags;
9505 
9506             if (!arg2) {
9507                 return -TARGET_EFAULT;
9508             }
9509 
9510             p2 = lock_user_string(arg2);
9511             if (!p2) {
9512                 return -TARGET_EFAULT;
9513             }
9514 
9515             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9516             if (arg3 & TARGET_O_CLOEXEC) {
9517                 host_flags |= O_CLOEXEC;
9518             }
9519 
9520             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9521 
9522             unlock_user(p2, arg2, 0);
9523 
9524             return ret;
9525         }
9526 #endif
9527 #ifdef TARGET_NR_stime /* not on alpha */
9528     case TARGET_NR_stime:
9529         {
9530             struct timespec ts;
9531             ts.tv_nsec = 0;
9532             if (get_user_sal(ts.tv_sec, arg1)) {
9533                 return -TARGET_EFAULT;
9534             }
9535             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9536         }
9537 #endif
9538 #ifdef TARGET_NR_alarm /* not on alpha */
9539     case TARGET_NR_alarm:
9540         return alarm(arg1);
9541 #endif
9542 #ifdef TARGET_NR_pause /* not on alpha */
9543     case TARGET_NR_pause:
9544         if (!block_signals()) {
9545             sigsuspend(&get_task_state(cpu)->signal_mask);
9546         }
9547         return -TARGET_EINTR;
9548 #endif
9549 #ifdef TARGET_NR_utime
9550     case TARGET_NR_utime:
9551         {
9552             struct utimbuf tbuf, *host_tbuf;
9553             struct target_utimbuf *target_tbuf;
9554             if (arg2) {
9555                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9556                     return -TARGET_EFAULT;
9557                 tbuf.actime = tswapal(target_tbuf->actime);
9558                 tbuf.modtime = tswapal(target_tbuf->modtime);
9559                 unlock_user_struct(target_tbuf, arg2, 0);
9560                 host_tbuf = &tbuf;
9561             } else {
9562                 host_tbuf = NULL;
9563             }
9564             if (!(p = lock_user_string(arg1)))
9565                 return -TARGET_EFAULT;
9566             ret = get_errno(utime(p, host_tbuf));
9567             unlock_user(p, arg1, 0);
9568         }
9569         return ret;
9570 #endif
9571 #ifdef TARGET_NR_utimes
9572     case TARGET_NR_utimes:
9573         {
9574             struct timeval *tvp, tv[2];
9575             if (arg2) {
9576                 if (copy_from_user_timeval(&tv[0], arg2)
9577                     || copy_from_user_timeval(&tv[1],
9578                                               arg2 + sizeof(struct target_timeval)))
9579                     return -TARGET_EFAULT;
9580                 tvp = tv;
9581             } else {
9582                 tvp = NULL;
9583             }
9584             if (!(p = lock_user_string(arg1)))
9585                 return -TARGET_EFAULT;
9586             ret = get_errno(utimes(p, tvp));
9587             unlock_user(p, arg1, 0);
9588         }
9589         return ret;
9590 #endif
9591 #if defined(TARGET_NR_futimesat)
9592     case TARGET_NR_futimesat:
9593         {
9594             struct timeval *tvp, tv[2];
9595             if (arg3) {
9596                 if (copy_from_user_timeval(&tv[0], arg3)
9597                     || copy_from_user_timeval(&tv[1],
9598                                               arg3 + sizeof(struct target_timeval)))
9599                     return -TARGET_EFAULT;
9600                 tvp = tv;
9601             } else {
9602                 tvp = NULL;
9603             }
9604             if (!(p = lock_user_string(arg2))) {
9605                 return -TARGET_EFAULT;
9606             }
9607             ret = get_errno(futimesat(arg1, path(p), tvp));
9608             unlock_user(p, arg2, 0);
9609         }
9610         return ret;
9611 #endif
9612 #ifdef TARGET_NR_access
9613     case TARGET_NR_access:
9614         if (!(p = lock_user_string(arg1))) {
9615             return -TARGET_EFAULT;
9616         }
9617         ret = get_errno(access(path(p), arg2));
9618         unlock_user(p, arg1, 0);
9619         return ret;
9620 #endif
9621 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9622     case TARGET_NR_faccessat:
9623         if (!(p = lock_user_string(arg2))) {
9624             return -TARGET_EFAULT;
9625         }
9626         ret = get_errno(faccessat(arg1, p, arg3, 0));
9627         unlock_user(p, arg2, 0);
9628         return ret;
9629 #endif
9630 #if defined(TARGET_NR_faccessat2)
9631     case TARGET_NR_faccessat2:
9632         if (!(p = lock_user_string(arg2))) {
9633             return -TARGET_EFAULT;
9634         }
9635         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9636         unlock_user(p, arg2, 0);
9637         return ret;
9638 #endif
9639 #ifdef TARGET_NR_nice /* not on alpha */
9640     case TARGET_NR_nice:
9641         return get_errno(nice(arg1));
9642 #endif
9643     case TARGET_NR_sync:
9644         sync();
9645         return 0;
9646 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9647     case TARGET_NR_syncfs:
9648         return get_errno(syncfs(arg1));
9649 #endif
9650     case TARGET_NR_kill:
9651         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9652 #ifdef TARGET_NR_rename
9653     case TARGET_NR_rename:
9654         {
9655             void *p2;
9656             p = lock_user_string(arg1);
9657             p2 = lock_user_string(arg2);
9658             if (!p || !p2)
9659                 ret = -TARGET_EFAULT;
9660             else
9661                 ret = get_errno(rename(p, p2));
9662             unlock_user(p2, arg2, 0);
9663             unlock_user(p, arg1, 0);
9664         }
9665         return ret;
9666 #endif
9667 #if defined(TARGET_NR_renameat)
9668     case TARGET_NR_renameat:
9669         {
9670             void *p2;
9671             p  = lock_user_string(arg2);
9672             p2 = lock_user_string(arg4);
9673             if (!p || !p2)
9674                 ret = -TARGET_EFAULT;
9675             else
9676                 ret = get_errno(renameat(arg1, p, arg3, p2));
9677             unlock_user(p2, arg4, 0);
9678             unlock_user(p, arg2, 0);
9679         }
9680         return ret;
9681 #endif
9682 #if defined(TARGET_NR_renameat2)
9683     case TARGET_NR_renameat2:
9684         {
9685             void *p2;
9686             p  = lock_user_string(arg2);
9687             p2 = lock_user_string(arg4);
9688             if (!p || !p2) {
9689                 ret = -TARGET_EFAULT;
9690             } else {
9691                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9692             }
9693             unlock_user(p2, arg4, 0);
9694             unlock_user(p, arg2, 0);
9695         }
9696         return ret;
9697 #endif
9698 #ifdef TARGET_NR_mkdir
9699     case TARGET_NR_mkdir:
9700         if (!(p = lock_user_string(arg1)))
9701             return -TARGET_EFAULT;
9702         ret = get_errno(mkdir(p, arg2));
9703         unlock_user(p, arg1, 0);
9704         return ret;
9705 #endif
9706 #if defined(TARGET_NR_mkdirat)
9707     case TARGET_NR_mkdirat:
9708         if (!(p = lock_user_string(arg2)))
9709             return -TARGET_EFAULT;
9710         ret = get_errno(mkdirat(arg1, p, arg3));
9711         unlock_user(p, arg2, 0);
9712         return ret;
9713 #endif
9714 #ifdef TARGET_NR_rmdir
9715     case TARGET_NR_rmdir:
9716         if (!(p = lock_user_string(arg1)))
9717             return -TARGET_EFAULT;
9718         ret = get_errno(rmdir(p));
9719         unlock_user(p, arg1, 0);
9720         return ret;
9721 #endif
9722     case TARGET_NR_dup:
9723         ret = get_errno(dup(arg1));
9724         if (ret >= 0) {
9725             fd_trans_dup(arg1, ret);
9726         }
9727         return ret;
9728 #ifdef TARGET_NR_pipe
9729     case TARGET_NR_pipe:
9730         return do_pipe(cpu_env, arg1, 0, 0);
9731 #endif
9732 #ifdef TARGET_NR_pipe2
9733     case TARGET_NR_pipe2:
9734         return do_pipe(cpu_env, arg1,
9735                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9736 #endif
9737     case TARGET_NR_times:
9738         {
9739             struct target_tms *tmsp;
9740             struct tms tms;
9741             ret = get_errno(times(&tms));
9742             if (arg1) {
9743                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9744                 if (!tmsp)
9745                     return -TARGET_EFAULT;
9746                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9747                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9748                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9749                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9750             }
9751             if (!is_error(ret))
9752                 ret = host_to_target_clock_t(ret);
9753         }
9754         return ret;
9755     case TARGET_NR_acct:
9756         if (arg1 == 0) {
9757             ret = get_errno(acct(NULL));
9758         } else {
9759             if (!(p = lock_user_string(arg1))) {
9760                 return -TARGET_EFAULT;
9761             }
9762             ret = get_errno(acct(path(p)));
9763             unlock_user(p, arg1, 0);
9764         }
9765         return ret;
9766 #ifdef TARGET_NR_umount2
9767     case TARGET_NR_umount2:
9768         if (!(p = lock_user_string(arg1)))
9769             return -TARGET_EFAULT;
9770         ret = get_errno(umount2(p, arg2));
9771         unlock_user(p, arg1, 0);
9772         return ret;
9773 #endif
9774     case TARGET_NR_ioctl:
9775         return do_ioctl(arg1, arg2, arg3);
9776 #ifdef TARGET_NR_fcntl
9777     case TARGET_NR_fcntl:
9778         return do_fcntl(arg1, arg2, arg3);
9779 #endif
9780     case TARGET_NR_setpgid:
9781         return get_errno(setpgid(arg1, arg2));
9782     case TARGET_NR_umask:
9783         return get_errno(umask(arg1));
9784     case TARGET_NR_chroot:
9785         if (!(p = lock_user_string(arg1)))
9786             return -TARGET_EFAULT;
9787         ret = get_errno(chroot(p));
9788         unlock_user(p, arg1, 0);
9789         return ret;
9790 #ifdef TARGET_NR_dup2
9791     case TARGET_NR_dup2:
9792         ret = get_errno(dup2(arg1, arg2));
9793         if (ret >= 0) {
9794             fd_trans_dup(arg1, arg2);
9795         }
9796         return ret;
9797 #endif
9798 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9799     case TARGET_NR_dup3:
9800     {
9801         int host_flags;
9802 
9803         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9804             return -EINVAL;
9805         }
9806         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9807         ret = get_errno(dup3(arg1, arg2, host_flags));
9808         if (ret >= 0) {
9809             fd_trans_dup(arg1, arg2);
9810         }
9811         return ret;
9812     }
9813 #endif
9814 #ifdef TARGET_NR_getppid /* not on alpha */
9815     case TARGET_NR_getppid:
9816         return get_errno(getppid());
9817 #endif
9818 #ifdef TARGET_NR_getpgrp
9819     case TARGET_NR_getpgrp:
9820         return get_errno(getpgrp());
9821 #endif
9822     case TARGET_NR_setsid:
9823         return get_errno(setsid());
9824 #ifdef TARGET_NR_sigaction
9825     case TARGET_NR_sigaction:
9826         {
9827 #if defined(TARGET_MIPS)
9828 	    struct target_sigaction act, oact, *pact, *old_act;
9829 
9830 	    if (arg2) {
9831                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9832                     return -TARGET_EFAULT;
9833 		act._sa_handler = old_act->_sa_handler;
9834 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9835 		act.sa_flags = old_act->sa_flags;
9836 		unlock_user_struct(old_act, arg2, 0);
9837 		pact = &act;
9838 	    } else {
9839 		pact = NULL;
9840 	    }
9841 
9842         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9843 
9844 	    if (!is_error(ret) && arg3) {
9845                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9846                     return -TARGET_EFAULT;
9847 		old_act->_sa_handler = oact._sa_handler;
9848 		old_act->sa_flags = oact.sa_flags;
9849 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9850 		old_act->sa_mask.sig[1] = 0;
9851 		old_act->sa_mask.sig[2] = 0;
9852 		old_act->sa_mask.sig[3] = 0;
9853 		unlock_user_struct(old_act, arg3, 1);
9854 	    }
9855 #else
9856             struct target_old_sigaction *old_act;
9857             struct target_sigaction act, oact, *pact;
9858             if (arg2) {
9859                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9860                     return -TARGET_EFAULT;
9861                 act._sa_handler = old_act->_sa_handler;
9862                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9863                 act.sa_flags = old_act->sa_flags;
9864 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9865                 act.sa_restorer = old_act->sa_restorer;
9866 #endif
9867                 unlock_user_struct(old_act, arg2, 0);
9868                 pact = &act;
9869             } else {
9870                 pact = NULL;
9871             }
9872             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9873             if (!is_error(ret) && arg3) {
9874                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9875                     return -TARGET_EFAULT;
9876                 old_act->_sa_handler = oact._sa_handler;
9877                 old_act->sa_mask = oact.sa_mask.sig[0];
9878                 old_act->sa_flags = oact.sa_flags;
9879 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9880                 old_act->sa_restorer = oact.sa_restorer;
9881 #endif
9882                 unlock_user_struct(old_act, arg3, 1);
9883             }
9884 #endif
9885         }
9886         return ret;
9887 #endif
9888     case TARGET_NR_rt_sigaction:
9889         {
9890             /*
9891              * For Alpha and SPARC this is a 5 argument syscall, with
9892              * a 'restorer' parameter which must be copied into the
9893              * sa_restorer field of the sigaction struct.
9894              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9895              * and arg5 is the sigsetsize.
9896              */
9897 #if defined(TARGET_ALPHA)
9898             target_ulong sigsetsize = arg4;
9899             target_ulong restorer = arg5;
9900 #elif defined(TARGET_SPARC)
9901             target_ulong restorer = arg4;
9902             target_ulong sigsetsize = arg5;
9903 #else
9904             target_ulong sigsetsize = arg4;
9905             target_ulong restorer = 0;
9906 #endif
9907             struct target_sigaction *act = NULL;
9908             struct target_sigaction *oact = NULL;
9909 
9910             if (sigsetsize != sizeof(target_sigset_t)) {
9911                 return -TARGET_EINVAL;
9912             }
9913             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9914                 return -TARGET_EFAULT;
9915             }
9916             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9917                 ret = -TARGET_EFAULT;
9918             } else {
9919                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9920                 if (oact) {
9921                     unlock_user_struct(oact, arg3, 1);
9922                 }
9923             }
9924             if (act) {
9925                 unlock_user_struct(act, arg2, 0);
9926             }
9927         }
9928         return ret;
9929 #ifdef TARGET_NR_sgetmask /* not on alpha */
9930     case TARGET_NR_sgetmask:
9931         {
9932             sigset_t cur_set;
9933             abi_ulong target_set;
9934             ret = do_sigprocmask(0, NULL, &cur_set);
9935             if (!ret) {
9936                 host_to_target_old_sigset(&target_set, &cur_set);
9937                 ret = target_set;
9938             }
9939         }
9940         return ret;
9941 #endif
9942 #ifdef TARGET_NR_ssetmask /* not on alpha */
9943     case TARGET_NR_ssetmask:
9944         {
9945             sigset_t set, oset;
9946             abi_ulong target_set = arg1;
9947             target_to_host_old_sigset(&set, &target_set);
9948             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9949             if (!ret) {
9950                 host_to_target_old_sigset(&target_set, &oset);
9951                 ret = target_set;
9952             }
9953         }
9954         return ret;
9955 #endif
9956 #ifdef TARGET_NR_sigprocmask
9957     case TARGET_NR_sigprocmask:
9958         {
9959 #if defined(TARGET_ALPHA)
9960             sigset_t set, oldset;
9961             abi_ulong mask;
9962             int how;
9963 
9964             switch (arg1) {
9965             case TARGET_SIG_BLOCK:
9966                 how = SIG_BLOCK;
9967                 break;
9968             case TARGET_SIG_UNBLOCK:
9969                 how = SIG_UNBLOCK;
9970                 break;
9971             case TARGET_SIG_SETMASK:
9972                 how = SIG_SETMASK;
9973                 break;
9974             default:
9975                 return -TARGET_EINVAL;
9976             }
9977             mask = arg2;
9978             target_to_host_old_sigset(&set, &mask);
9979 
9980             ret = do_sigprocmask(how, &set, &oldset);
9981             if (!is_error(ret)) {
9982                 host_to_target_old_sigset(&mask, &oldset);
9983                 ret = mask;
9984                 cpu_env->ir[IR_V0] = 0; /* force no error */
9985             }
9986 #else
9987             sigset_t set, oldset, *set_ptr;
9988             int how;
9989 
9990             if (arg2) {
9991                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9992                 if (!p) {
9993                     return -TARGET_EFAULT;
9994                 }
9995                 target_to_host_old_sigset(&set, p);
9996                 unlock_user(p, arg2, 0);
9997                 set_ptr = &set;
9998                 switch (arg1) {
9999                 case TARGET_SIG_BLOCK:
10000                     how = SIG_BLOCK;
10001                     break;
10002                 case TARGET_SIG_UNBLOCK:
10003                     how = SIG_UNBLOCK;
10004                     break;
10005                 case TARGET_SIG_SETMASK:
10006                     how = SIG_SETMASK;
10007                     break;
10008                 default:
10009                     return -TARGET_EINVAL;
10010                 }
10011             } else {
10012                 how = 0;
10013                 set_ptr = NULL;
10014             }
10015             ret = do_sigprocmask(how, set_ptr, &oldset);
10016             if (!is_error(ret) && arg3) {
10017                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10018                     return -TARGET_EFAULT;
10019                 host_to_target_old_sigset(p, &oldset);
10020                 unlock_user(p, arg3, sizeof(target_sigset_t));
10021             }
10022 #endif
10023         }
10024         return ret;
10025 #endif
10026     case TARGET_NR_rt_sigprocmask:
10027         {
10028             int how = arg1;
10029             sigset_t set, oldset, *set_ptr;
10030 
10031             if (arg4 != sizeof(target_sigset_t)) {
10032                 return -TARGET_EINVAL;
10033             }
10034 
10035             if (arg2) {
10036                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10037                 if (!p) {
10038                     return -TARGET_EFAULT;
10039                 }
10040                 target_to_host_sigset(&set, p);
10041                 unlock_user(p, arg2, 0);
10042                 set_ptr = &set;
10043                 switch(how) {
10044                 case TARGET_SIG_BLOCK:
10045                     how = SIG_BLOCK;
10046                     break;
10047                 case TARGET_SIG_UNBLOCK:
10048                     how = SIG_UNBLOCK;
10049                     break;
10050                 case TARGET_SIG_SETMASK:
10051                     how = SIG_SETMASK;
10052                     break;
10053                 default:
10054                     return -TARGET_EINVAL;
10055                 }
10056             } else {
10057                 how = 0;
10058                 set_ptr = NULL;
10059             }
10060             ret = do_sigprocmask(how, set_ptr, &oldset);
10061             if (!is_error(ret) && arg3) {
10062                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10063                     return -TARGET_EFAULT;
10064                 host_to_target_sigset(p, &oldset);
10065                 unlock_user(p, arg3, sizeof(target_sigset_t));
10066             }
10067         }
10068         return ret;
10069 #ifdef TARGET_NR_sigpending
10070     case TARGET_NR_sigpending:
10071         {
10072             sigset_t set;
10073             ret = get_errno(sigpending(&set));
10074             if (!is_error(ret)) {
10075                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10076                     return -TARGET_EFAULT;
10077                 host_to_target_old_sigset(p, &set);
10078                 unlock_user(p, arg1, sizeof(target_sigset_t));
10079             }
10080         }
10081         return ret;
10082 #endif
10083     case TARGET_NR_rt_sigpending:
10084         {
10085             sigset_t set;
10086 
10087             /* Yes, this check is >, not != like most. We follow the kernel's
10088              * logic and it does it like this because it implements
10089              * NR_sigpending through the same code path, and in that case
10090              * the old_sigset_t is smaller in size.
10091              */
10092             if (arg2 > sizeof(target_sigset_t)) {
10093                 return -TARGET_EINVAL;
10094             }
10095 
10096             ret = get_errno(sigpending(&set));
10097             if (!is_error(ret)) {
10098                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10099                     return -TARGET_EFAULT;
10100                 host_to_target_sigset(p, &set);
10101                 unlock_user(p, arg1, sizeof(target_sigset_t));
10102             }
10103         }
10104         return ret;
10105 #ifdef TARGET_NR_sigsuspend
10106     case TARGET_NR_sigsuspend:
10107         {
10108             sigset_t *set;
10109 
10110 #if defined(TARGET_ALPHA)
10111             TaskState *ts = get_task_state(cpu);
10112             /* target_to_host_old_sigset will bswap back */
10113             abi_ulong mask = tswapal(arg1);
10114             set = &ts->sigsuspend_mask;
10115             target_to_host_old_sigset(set, &mask);
10116 #else
10117             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10118             if (ret != 0) {
10119                 return ret;
10120             }
10121 #endif
10122             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10123             finish_sigsuspend_mask(ret);
10124         }
10125         return ret;
10126 #endif
10127     case TARGET_NR_rt_sigsuspend:
10128         {
10129             sigset_t *set;
10130 
10131             ret = process_sigsuspend_mask(&set, arg1, arg2);
10132             if (ret != 0) {
10133                 return ret;
10134             }
10135             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10136             finish_sigsuspend_mask(ret);
10137         }
10138         return ret;
10139 #ifdef TARGET_NR_rt_sigtimedwait
10140     case TARGET_NR_rt_sigtimedwait:
10141         {
10142             sigset_t set;
10143             struct timespec uts, *puts;
10144             siginfo_t uinfo;
10145 
10146             if (arg4 != sizeof(target_sigset_t)) {
10147                 return -TARGET_EINVAL;
10148             }
10149 
10150             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10151                 return -TARGET_EFAULT;
10152             target_to_host_sigset(&set, p);
10153             unlock_user(p, arg1, 0);
10154             if (arg3) {
10155                 puts = &uts;
10156                 if (target_to_host_timespec(puts, arg3)) {
10157                     return -TARGET_EFAULT;
10158                 }
10159             } else {
10160                 puts = NULL;
10161             }
10162             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10163                                                  SIGSET_T_SIZE));
10164             if (!is_error(ret)) {
10165                 if (arg2) {
10166                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10167                                   0);
10168                     if (!p) {
10169                         return -TARGET_EFAULT;
10170                     }
10171                     host_to_target_siginfo(p, &uinfo);
10172                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10173                 }
10174                 ret = host_to_target_signal(ret);
10175             }
10176         }
10177         return ret;
10178 #endif
10179 #ifdef TARGET_NR_rt_sigtimedwait_time64
10180     case TARGET_NR_rt_sigtimedwait_time64:
10181         {
10182             sigset_t set;
10183             struct timespec uts, *puts;
10184             siginfo_t uinfo;
10185 
10186             if (arg4 != sizeof(target_sigset_t)) {
10187                 return -TARGET_EINVAL;
10188             }
10189 
10190             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10191             if (!p) {
10192                 return -TARGET_EFAULT;
10193             }
10194             target_to_host_sigset(&set, p);
10195             unlock_user(p, arg1, 0);
10196             if (arg3) {
10197                 puts = &uts;
10198                 if (target_to_host_timespec64(puts, arg3)) {
10199                     return -TARGET_EFAULT;
10200                 }
10201             } else {
10202                 puts = NULL;
10203             }
10204             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10205                                                  SIGSET_T_SIZE));
10206             if (!is_error(ret)) {
10207                 if (arg2) {
10208                     p = lock_user(VERIFY_WRITE, arg2,
10209                                   sizeof(target_siginfo_t), 0);
10210                     if (!p) {
10211                         return -TARGET_EFAULT;
10212                     }
10213                     host_to_target_siginfo(p, &uinfo);
10214                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10215                 }
10216                 ret = host_to_target_signal(ret);
10217             }
10218         }
10219         return ret;
10220 #endif
10221     case TARGET_NR_rt_sigqueueinfo:
10222         {
10223             siginfo_t uinfo;
10224 
10225             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10226             if (!p) {
10227                 return -TARGET_EFAULT;
10228             }
10229             target_to_host_siginfo(&uinfo, p);
10230             unlock_user(p, arg3, 0);
10231             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10232         }
10233         return ret;
10234     case TARGET_NR_rt_tgsigqueueinfo:
10235         {
10236             siginfo_t uinfo;
10237 
10238             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10239             if (!p) {
10240                 return -TARGET_EFAULT;
10241             }
10242             target_to_host_siginfo(&uinfo, p);
10243             unlock_user(p, arg4, 0);
10244             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10245         }
10246         return ret;
10247 #ifdef TARGET_NR_sigreturn
10248     case TARGET_NR_sigreturn:
10249         if (block_signals()) {
10250             return -QEMU_ERESTARTSYS;
10251         }
10252         return do_sigreturn(cpu_env);
10253 #endif
10254     case TARGET_NR_rt_sigreturn:
10255         if (block_signals()) {
10256             return -QEMU_ERESTARTSYS;
10257         }
10258         return do_rt_sigreturn(cpu_env);
10259     case TARGET_NR_sethostname:
10260         if (!(p = lock_user_string(arg1)))
10261             return -TARGET_EFAULT;
10262         ret = get_errno(sethostname(p, arg2));
10263         unlock_user(p, arg1, 0);
10264         return ret;
10265 #ifdef TARGET_NR_setrlimit
10266     case TARGET_NR_setrlimit:
10267         {
10268             int resource = target_to_host_resource(arg1);
10269             struct target_rlimit *target_rlim;
10270             struct rlimit rlim;
10271             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10272                 return -TARGET_EFAULT;
10273             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10274             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10275             unlock_user_struct(target_rlim, arg2, 0);
10276             /*
10277              * If we just passed through resource limit settings for memory then
10278              * they would also apply to QEMU's own allocations, and QEMU will
10279              * crash or hang or die if its allocations fail. Ideally we would
10280              * track the guest allocations in QEMU and apply the limits ourselves.
10281              * For now, just tell the guest the call succeeded but don't actually
10282              * limit anything.
10283              */
10284             if (resource != RLIMIT_AS &&
10285                 resource != RLIMIT_DATA &&
10286                 resource != RLIMIT_STACK) {
10287                 return get_errno(setrlimit(resource, &rlim));
10288             } else {
10289                 return 0;
10290             }
10291         }
10292 #endif
10293 #ifdef TARGET_NR_getrlimit
10294     case TARGET_NR_getrlimit:
10295         {
10296             int resource = target_to_host_resource(arg1);
10297             struct target_rlimit *target_rlim;
10298             struct rlimit rlim;
10299 
10300             ret = get_errno(getrlimit(resource, &rlim));
10301             if (!is_error(ret)) {
10302                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10303                     return -TARGET_EFAULT;
10304                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10305                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10306                 unlock_user_struct(target_rlim, arg2, 1);
10307             }
10308         }
10309         return ret;
10310 #endif
10311     case TARGET_NR_getrusage:
10312         {
10313             struct rusage rusage;
10314             ret = get_errno(getrusage(arg1, &rusage));
10315             if (!is_error(ret)) {
10316                 ret = host_to_target_rusage(arg2, &rusage);
10317             }
10318         }
10319         return ret;
10320 #if defined(TARGET_NR_gettimeofday)
10321     case TARGET_NR_gettimeofday:
10322         {
10323             struct timeval tv;
10324             struct timezone tz;
10325 
10326             ret = get_errno(gettimeofday(&tv, &tz));
10327             if (!is_error(ret)) {
10328                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10329                     return -TARGET_EFAULT;
10330                 }
10331                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10332                     return -TARGET_EFAULT;
10333                 }
10334             }
10335         }
10336         return ret;
10337 #endif
10338 #if defined(TARGET_NR_settimeofday)
10339     case TARGET_NR_settimeofday:
10340         {
10341             struct timeval tv, *ptv = NULL;
10342             struct timezone tz, *ptz = NULL;
10343 
10344             if (arg1) {
10345                 if (copy_from_user_timeval(&tv, arg1)) {
10346                     return -TARGET_EFAULT;
10347                 }
10348                 ptv = &tv;
10349             }
10350 
10351             if (arg2) {
10352                 if (copy_from_user_timezone(&tz, arg2)) {
10353                     return -TARGET_EFAULT;
10354                 }
10355                 ptz = &tz;
10356             }
10357 
10358             return get_errno(settimeofday(ptv, ptz));
10359         }
10360 #endif
10361 #if defined(TARGET_NR_select)
10362     case TARGET_NR_select:
10363 #if defined(TARGET_WANT_NI_OLD_SELECT)
10364         /* some architectures used to have old_select here
10365          * but now ENOSYS it.
10366          */
10367         ret = -TARGET_ENOSYS;
10368 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10369         ret = do_old_select(arg1);
10370 #else
10371         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10372 #endif
10373         return ret;
10374 #endif
10375 #ifdef TARGET_NR_pselect6
10376     case TARGET_NR_pselect6:
10377         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10378 #endif
10379 #ifdef TARGET_NR_pselect6_time64
10380     case TARGET_NR_pselect6_time64:
10381         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10382 #endif
10383 #ifdef TARGET_NR_symlink
10384     case TARGET_NR_symlink:
10385         {
10386             void *p2;
10387             p = lock_user_string(arg1);
10388             p2 = lock_user_string(arg2);
10389             if (!p || !p2)
10390                 ret = -TARGET_EFAULT;
10391             else
10392                 ret = get_errno(symlink(p, p2));
10393             unlock_user(p2, arg2, 0);
10394             unlock_user(p, arg1, 0);
10395         }
10396         return ret;
10397 #endif
10398 #if defined(TARGET_NR_symlinkat)
10399     case TARGET_NR_symlinkat:
10400         {
10401             void *p2;
10402             p  = lock_user_string(arg1);
10403             p2 = lock_user_string(arg3);
10404             if (!p || !p2)
10405                 ret = -TARGET_EFAULT;
10406             else
10407                 ret = get_errno(symlinkat(p, arg2, p2));
10408             unlock_user(p2, arg3, 0);
10409             unlock_user(p, arg1, 0);
10410         }
10411         return ret;
10412 #endif
10413 #ifdef TARGET_NR_readlink
10414     case TARGET_NR_readlink:
10415         {
10416             void *p2;
10417             p = lock_user_string(arg1);
10418             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10419             ret = get_errno(do_guest_readlink(p, p2, arg3));
10420             unlock_user(p2, arg2, ret);
10421             unlock_user(p, arg1, 0);
10422         }
10423         return ret;
10424 #endif
10425 #if defined(TARGET_NR_readlinkat)
10426     case TARGET_NR_readlinkat:
10427         {
10428             void *p2;
10429             p  = lock_user_string(arg2);
10430             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10431             if (!p || !p2) {
10432                 ret = -TARGET_EFAULT;
10433             } else if (!arg4) {
10434                 /* Short circuit this for the magic exe check. */
10435                 ret = -TARGET_EINVAL;
10436             } else if (is_proc_myself((const char *)p, "exe")) {
10437                 /*
10438                  * Don't worry about sign mismatch as earlier mapping
10439                  * logic would have thrown a bad address error.
10440                  */
10441                 ret = MIN(strlen(exec_path), arg4);
10442                 /* We cannot NUL terminate the string. */
10443                 memcpy(p2, exec_path, ret);
10444             } else {
10445                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10446             }
10447             unlock_user(p2, arg3, ret);
10448             unlock_user(p, arg2, 0);
10449         }
10450         return ret;
10451 #endif
10452 #ifdef TARGET_NR_swapon
10453     case TARGET_NR_swapon:
10454         if (!(p = lock_user_string(arg1)))
10455             return -TARGET_EFAULT;
10456         ret = get_errno(swapon(p, arg2));
10457         unlock_user(p, arg1, 0);
10458         return ret;
10459 #endif
10460     case TARGET_NR_reboot:
10461         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10462            /* arg4 must be ignored in all other cases */
10463            p = lock_user_string(arg4);
10464            if (!p) {
10465                return -TARGET_EFAULT;
10466            }
10467            ret = get_errno(reboot(arg1, arg2, arg3, p));
10468            unlock_user(p, arg4, 0);
10469         } else {
10470            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10471         }
10472         return ret;
10473 #ifdef TARGET_NR_mmap
10474     case TARGET_NR_mmap:
10475 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10476     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10477     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10478     || defined(TARGET_S390X)
10479         {
10480             abi_ulong *v;
10481             abi_ulong v1, v2, v3, v4, v5, v6;
10482             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10483                 return -TARGET_EFAULT;
10484             v1 = tswapal(v[0]);
10485             v2 = tswapal(v[1]);
10486             v3 = tswapal(v[2]);
10487             v4 = tswapal(v[3]);
10488             v5 = tswapal(v[4]);
10489             v6 = tswapal(v[5]);
10490             unlock_user(v, arg1, 0);
10491             return do_mmap(v1, v2, v3, v4, v5, v6);
10492         }
10493 #else
10494         /* mmap pointers are always untagged */
10495         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10496 #endif
10497 #endif
10498 #ifdef TARGET_NR_mmap2
10499     case TARGET_NR_mmap2:
10500 #ifndef MMAP_SHIFT
10501 #define MMAP_SHIFT 12
10502 #endif
10503         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10504                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10505 #endif
10506     case TARGET_NR_munmap:
10507         arg1 = cpu_untagged_addr(cpu, arg1);
10508         return get_errno(target_munmap(arg1, arg2));
10509     case TARGET_NR_mprotect:
10510         arg1 = cpu_untagged_addr(cpu, arg1);
10511         {
10512             TaskState *ts = get_task_state(cpu);
10513             /* Special hack to detect libc making the stack executable.  */
10514             if ((arg3 & PROT_GROWSDOWN)
10515                 && arg1 >= ts->info->stack_limit
10516                 && arg1 <= ts->info->start_stack) {
10517                 arg3 &= ~PROT_GROWSDOWN;
10518                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10519                 arg1 = ts->info->stack_limit;
10520             }
10521         }
10522         return get_errno(target_mprotect(arg1, arg2, arg3));
10523 #ifdef TARGET_NR_mremap
10524     case TARGET_NR_mremap:
10525         arg1 = cpu_untagged_addr(cpu, arg1);
10526         /* mremap new_addr (arg5) is always untagged */
10527         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10528 #endif
10529         /* ??? msync/mlock/munlock are broken for softmmu.  */
10530 #ifdef TARGET_NR_msync
10531     case TARGET_NR_msync:
10532         return get_errno(msync(g2h(cpu, arg1), arg2,
10533                                target_to_host_msync_arg(arg3)));
10534 #endif
10535 #ifdef TARGET_NR_mlock
10536     case TARGET_NR_mlock:
10537         return get_errno(mlock(g2h(cpu, arg1), arg2));
10538 #endif
10539 #ifdef TARGET_NR_munlock
10540     case TARGET_NR_munlock:
10541         return get_errno(munlock(g2h(cpu, arg1), arg2));
10542 #endif
10543 #ifdef TARGET_NR_mlockall
10544     case TARGET_NR_mlockall:
10545         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10546 #endif
10547 #ifdef TARGET_NR_munlockall
10548     case TARGET_NR_munlockall:
10549         return get_errno(munlockall());
10550 #endif
10551 #ifdef TARGET_NR_truncate
10552     case TARGET_NR_truncate:
10553         if (!(p = lock_user_string(arg1)))
10554             return -TARGET_EFAULT;
10555         ret = get_errno(truncate(p, arg2));
10556         unlock_user(p, arg1, 0);
10557         return ret;
10558 #endif
10559 #ifdef TARGET_NR_ftruncate
10560     case TARGET_NR_ftruncate:
10561         return get_errno(ftruncate(arg1, arg2));
10562 #endif
10563     case TARGET_NR_fchmod:
10564         return get_errno(fchmod(arg1, arg2));
10565 #if defined(TARGET_NR_fchmodat)
10566     case TARGET_NR_fchmodat:
10567         if (!(p = lock_user_string(arg2)))
10568             return -TARGET_EFAULT;
10569         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10570         unlock_user(p, arg2, 0);
10571         return ret;
10572 #endif
10573     case TARGET_NR_getpriority:
10574         /* Note that negative values are valid for getpriority, so we must
10575            differentiate based on errno settings.  */
10576         errno = 0;
10577         ret = getpriority(arg1, arg2);
10578         if (ret == -1 && errno != 0) {
10579             return -host_to_target_errno(errno);
10580         }
10581 #ifdef TARGET_ALPHA
10582         /* Return value is the unbiased priority.  Signal no error.  */
10583         cpu_env->ir[IR_V0] = 0;
10584 #else
10585         /* Return value is a biased priority to avoid negative numbers.  */
10586         ret = 20 - ret;
10587 #endif
10588         return ret;
10589     case TARGET_NR_setpriority:
10590         return get_errno(setpriority(arg1, arg2, arg3));
10591 #ifdef TARGET_NR_statfs
10592     case TARGET_NR_statfs:
10593         if (!(p = lock_user_string(arg1))) {
10594             return -TARGET_EFAULT;
10595         }
10596         ret = get_errno(statfs(path(p), &stfs));
10597         unlock_user(p, arg1, 0);
10598     convert_statfs:
10599         if (!is_error(ret)) {
10600             struct target_statfs *target_stfs;
10601 
10602             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10603                 return -TARGET_EFAULT;
10604             __put_user(stfs.f_type, &target_stfs->f_type);
10605             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10606             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10607             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10608             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10609             __put_user(stfs.f_files, &target_stfs->f_files);
10610             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10611             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10612             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10613             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10614             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10615 #ifdef _STATFS_F_FLAGS
10616             __put_user(stfs.f_flags, &target_stfs->f_flags);
10617 #else
10618             __put_user(0, &target_stfs->f_flags);
10619 #endif
10620             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10621             unlock_user_struct(target_stfs, arg2, 1);
10622         }
10623         return ret;
10624 #endif
10625 #ifdef TARGET_NR_fstatfs
10626     case TARGET_NR_fstatfs:
10627         ret = get_errno(fstatfs(arg1, &stfs));
10628         goto convert_statfs;
10629 #endif
10630 #ifdef TARGET_NR_statfs64
10631     case TARGET_NR_statfs64:
10632         if (!(p = lock_user_string(arg1))) {
10633             return -TARGET_EFAULT;
10634         }
10635         ret = get_errno(statfs(path(p), &stfs));
10636         unlock_user(p, arg1, 0);
10637     convert_statfs64:
10638         if (!is_error(ret)) {
10639             struct target_statfs64 *target_stfs;
10640 
10641             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10642                 return -TARGET_EFAULT;
10643             __put_user(stfs.f_type, &target_stfs->f_type);
10644             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10645             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10646             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10647             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10648             __put_user(stfs.f_files, &target_stfs->f_files);
10649             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10650             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10651             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10652             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10653             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10654 #ifdef _STATFS_F_FLAGS
10655             __put_user(stfs.f_flags, &target_stfs->f_flags);
10656 #else
10657             __put_user(0, &target_stfs->f_flags);
10658 #endif
10659             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10660             unlock_user_struct(target_stfs, arg3, 1);
10661         }
10662         return ret;
10663     case TARGET_NR_fstatfs64:
10664         ret = get_errno(fstatfs(arg1, &stfs));
10665         goto convert_statfs64;
10666 #endif
10667 #ifdef TARGET_NR_socketcall
10668     case TARGET_NR_socketcall:
10669         return do_socketcall(arg1, arg2);
10670 #endif
10671 #ifdef TARGET_NR_accept
10672     case TARGET_NR_accept:
10673         return do_accept4(arg1, arg2, arg3, 0);
10674 #endif
10675 #ifdef TARGET_NR_accept4
10676     case TARGET_NR_accept4:
10677         return do_accept4(arg1, arg2, arg3, arg4);
10678 #endif
10679 #ifdef TARGET_NR_bind
10680     case TARGET_NR_bind:
10681         return do_bind(arg1, arg2, arg3);
10682 #endif
10683 #ifdef TARGET_NR_connect
10684     case TARGET_NR_connect:
10685         return do_connect(arg1, arg2, arg3);
10686 #endif
10687 #ifdef TARGET_NR_getpeername
10688     case TARGET_NR_getpeername:
10689         return do_getpeername(arg1, arg2, arg3);
10690 #endif
10691 #ifdef TARGET_NR_getsockname
10692     case TARGET_NR_getsockname:
10693         return do_getsockname(arg1, arg2, arg3);
10694 #endif
10695 #ifdef TARGET_NR_getsockopt
10696     case TARGET_NR_getsockopt:
10697         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10698 #endif
10699 #ifdef TARGET_NR_listen
10700     case TARGET_NR_listen:
10701         return get_errno(listen(arg1, arg2));
10702 #endif
10703 #ifdef TARGET_NR_recv
10704     case TARGET_NR_recv:
10705         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10706 #endif
10707 #ifdef TARGET_NR_recvfrom
10708     case TARGET_NR_recvfrom:
10709         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10710 #endif
10711 #ifdef TARGET_NR_recvmsg
10712     case TARGET_NR_recvmsg:
10713         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10714 #endif
10715 #ifdef TARGET_NR_send
10716     case TARGET_NR_send:
10717         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10718 #endif
10719 #ifdef TARGET_NR_sendmsg
10720     case TARGET_NR_sendmsg:
10721         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10722 #endif
10723 #ifdef TARGET_NR_sendmmsg
10724     case TARGET_NR_sendmmsg:
10725         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10726 #endif
10727 #ifdef TARGET_NR_recvmmsg
10728     case TARGET_NR_recvmmsg:
10729         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10730 #endif
10731 #ifdef TARGET_NR_sendto
10732     case TARGET_NR_sendto:
10733         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10734 #endif
10735 #ifdef TARGET_NR_shutdown
10736     case TARGET_NR_shutdown:
10737         return get_errno(shutdown(arg1, arg2));
10738 #endif
10739 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10740     case TARGET_NR_getrandom:
10741         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10742         if (!p) {
10743             return -TARGET_EFAULT;
10744         }
10745         ret = get_errno(getrandom(p, arg2, arg3));
10746         unlock_user(p, arg1, ret);
10747         return ret;
10748 #endif
10749 #ifdef TARGET_NR_socket
10750     case TARGET_NR_socket:
10751         return do_socket(arg1, arg2, arg3);
10752 #endif
10753 #ifdef TARGET_NR_socketpair
10754     case TARGET_NR_socketpair:
10755         return do_socketpair(arg1, arg2, arg3, arg4);
10756 #endif
10757 #ifdef TARGET_NR_setsockopt
10758     case TARGET_NR_setsockopt:
10759         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10760 #endif
10761 #if defined(TARGET_NR_syslog)
10762     case TARGET_NR_syslog:
10763         {
10764             int len = arg2;
10765 
10766             switch (arg1) {
10767             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10768             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10769             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10770             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10771             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10772             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10773             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10774             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10775                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10776             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10777             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10778             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10779                 {
10780                     if (len < 0) {
10781                         return -TARGET_EINVAL;
10782                     }
10783                     if (len == 0) {
10784                         return 0;
10785                     }
10786                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10787                     if (!p) {
10788                         return -TARGET_EFAULT;
10789                     }
10790                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10791                     unlock_user(p, arg2, arg3);
10792                 }
10793                 return ret;
10794             default:
10795                 return -TARGET_EINVAL;
10796             }
10797         }
10798         break;
10799 #endif
10800     case TARGET_NR_setitimer:
10801         {
10802             struct itimerval value, ovalue, *pvalue;
10803 
10804             if (arg2) {
10805                 pvalue = &value;
10806                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10807                     || copy_from_user_timeval(&pvalue->it_value,
10808                                               arg2 + sizeof(struct target_timeval)))
10809                     return -TARGET_EFAULT;
10810             } else {
10811                 pvalue = NULL;
10812             }
10813             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10814             if (!is_error(ret) && arg3) {
10815                 if (copy_to_user_timeval(arg3,
10816                                          &ovalue.it_interval)
10817                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10818                                             &ovalue.it_value))
10819                     return -TARGET_EFAULT;
10820             }
10821         }
10822         return ret;
10823     case TARGET_NR_getitimer:
10824         {
10825             struct itimerval value;
10826 
10827             ret = get_errno(getitimer(arg1, &value));
10828             if (!is_error(ret) && arg2) {
10829                 if (copy_to_user_timeval(arg2,
10830                                          &value.it_interval)
10831                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10832                                             &value.it_value))
10833                     return -TARGET_EFAULT;
10834             }
10835         }
10836         return ret;
10837 #ifdef TARGET_NR_stat
10838     case TARGET_NR_stat:
10839         if (!(p = lock_user_string(arg1))) {
10840             return -TARGET_EFAULT;
10841         }
10842         ret = get_errno(stat(path(p), &st));
10843         unlock_user(p, arg1, 0);
10844         goto do_stat;
10845 #endif
10846 #ifdef TARGET_NR_lstat
10847     case TARGET_NR_lstat:
10848         if (!(p = lock_user_string(arg1))) {
10849             return -TARGET_EFAULT;
10850         }
10851         ret = get_errno(lstat(path(p), &st));
10852         unlock_user(p, arg1, 0);
10853         goto do_stat;
10854 #endif
10855 #ifdef TARGET_NR_fstat
10856     case TARGET_NR_fstat:
10857         {
10858             ret = get_errno(fstat(arg1, &st));
10859 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10860         do_stat:
10861 #endif
10862             if (!is_error(ret)) {
10863                 struct target_stat *target_st;
10864 
10865                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10866                     return -TARGET_EFAULT;
10867                 memset(target_st, 0, sizeof(*target_st));
10868                 __put_user(st.st_dev, &target_st->st_dev);
10869                 __put_user(st.st_ino, &target_st->st_ino);
10870                 __put_user(st.st_mode, &target_st->st_mode);
10871                 __put_user(st.st_uid, &target_st->st_uid);
10872                 __put_user(st.st_gid, &target_st->st_gid);
10873                 __put_user(st.st_nlink, &target_st->st_nlink);
10874                 __put_user(st.st_rdev, &target_st->st_rdev);
10875                 __put_user(st.st_size, &target_st->st_size);
10876                 __put_user(st.st_blksize, &target_st->st_blksize);
10877                 __put_user(st.st_blocks, &target_st->st_blocks);
10878                 __put_user(st.st_atime, &target_st->target_st_atime);
10879                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10880                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10881 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10882                 __put_user(st.st_atim.tv_nsec,
10883                            &target_st->target_st_atime_nsec);
10884                 __put_user(st.st_mtim.tv_nsec,
10885                            &target_st->target_st_mtime_nsec);
10886                 __put_user(st.st_ctim.tv_nsec,
10887                            &target_st->target_st_ctime_nsec);
10888 #endif
10889                 unlock_user_struct(target_st, arg2, 1);
10890             }
10891         }
10892         return ret;
10893 #endif
10894     case TARGET_NR_vhangup:
10895         return get_errno(vhangup());
10896 #ifdef TARGET_NR_syscall
10897     case TARGET_NR_syscall:
10898         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10899                           arg6, arg7, arg8, 0);
10900 #endif
10901 #if defined(TARGET_NR_wait4)
10902     case TARGET_NR_wait4:
10903         {
10904             int status;
10905             abi_long status_ptr = arg2;
10906             struct rusage rusage, *rusage_ptr;
10907             abi_ulong target_rusage = arg4;
10908             abi_long rusage_err;
10909             if (target_rusage)
10910                 rusage_ptr = &rusage;
10911             else
10912                 rusage_ptr = NULL;
10913             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10914             if (!is_error(ret)) {
10915                 if (status_ptr && ret) {
10916                     status = host_to_target_waitstatus(status);
10917                     if (put_user_s32(status, status_ptr))
10918                         return -TARGET_EFAULT;
10919                 }
10920                 if (target_rusage) {
10921                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10922                     if (rusage_err) {
10923                         ret = rusage_err;
10924                     }
10925                 }
10926             }
10927         }
10928         return ret;
10929 #endif
10930 #ifdef TARGET_NR_swapoff
10931     case TARGET_NR_swapoff:
10932         if (!(p = lock_user_string(arg1)))
10933             return -TARGET_EFAULT;
10934         ret = get_errno(swapoff(p));
10935         unlock_user(p, arg1, 0);
10936         return ret;
10937 #endif
10938     case TARGET_NR_sysinfo:
10939         {
10940             struct target_sysinfo *target_value;
10941             struct sysinfo value;
10942             ret = get_errno(sysinfo(&value));
10943             if (!is_error(ret) && arg1)
10944             {
10945                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10946                     return -TARGET_EFAULT;
10947                 __put_user(value.uptime, &target_value->uptime);
10948                 __put_user(value.loads[0], &target_value->loads[0]);
10949                 __put_user(value.loads[1], &target_value->loads[1]);
10950                 __put_user(value.loads[2], &target_value->loads[2]);
10951                 __put_user(value.totalram, &target_value->totalram);
10952                 __put_user(value.freeram, &target_value->freeram);
10953                 __put_user(value.sharedram, &target_value->sharedram);
10954                 __put_user(value.bufferram, &target_value->bufferram);
10955                 __put_user(value.totalswap, &target_value->totalswap);
10956                 __put_user(value.freeswap, &target_value->freeswap);
10957                 __put_user(value.procs, &target_value->procs);
10958                 __put_user(value.totalhigh, &target_value->totalhigh);
10959                 __put_user(value.freehigh, &target_value->freehigh);
10960                 __put_user(value.mem_unit, &target_value->mem_unit);
10961                 unlock_user_struct(target_value, arg1, 1);
10962             }
10963         }
10964         return ret;
10965 #ifdef TARGET_NR_ipc
10966     case TARGET_NR_ipc:
10967         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10968 #endif
10969 #ifdef TARGET_NR_semget
10970     case TARGET_NR_semget:
10971         return get_errno(semget(arg1, arg2, arg3));
10972 #endif
10973 #ifdef TARGET_NR_semop
10974     case TARGET_NR_semop:
10975         return do_semtimedop(arg1, arg2, arg3, 0, false);
10976 #endif
10977 #ifdef TARGET_NR_semtimedop
10978     case TARGET_NR_semtimedop:
10979         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10980 #endif
10981 #ifdef TARGET_NR_semtimedop_time64
10982     case TARGET_NR_semtimedop_time64:
10983         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10984 #endif
10985 #ifdef TARGET_NR_semctl
10986     case TARGET_NR_semctl:
10987         return do_semctl(arg1, arg2, arg3, arg4);
10988 #endif
10989 #ifdef TARGET_NR_msgctl
10990     case TARGET_NR_msgctl:
10991         return do_msgctl(arg1, arg2, arg3);
10992 #endif
10993 #ifdef TARGET_NR_msgget
10994     case TARGET_NR_msgget:
10995         return get_errno(msgget(arg1, arg2));
10996 #endif
10997 #ifdef TARGET_NR_msgrcv
10998     case TARGET_NR_msgrcv:
10999         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
11000 #endif
11001 #ifdef TARGET_NR_msgsnd
11002     case TARGET_NR_msgsnd:
11003         return do_msgsnd(arg1, arg2, arg3, arg4);
11004 #endif
11005 #ifdef TARGET_NR_shmget
11006     case TARGET_NR_shmget:
11007         return get_errno(shmget(arg1, arg2, arg3));
11008 #endif
11009 #ifdef TARGET_NR_shmctl
11010     case TARGET_NR_shmctl:
11011         return do_shmctl(arg1, arg2, arg3);
11012 #endif
11013 #ifdef TARGET_NR_shmat
11014     case TARGET_NR_shmat:
11015         return target_shmat(cpu_env, arg1, arg2, arg3);
11016 #endif
11017 #ifdef TARGET_NR_shmdt
11018     case TARGET_NR_shmdt:
11019         return target_shmdt(arg1);
11020 #endif
11021     case TARGET_NR_fsync:
11022         return get_errno(fsync(arg1));
11023     case TARGET_NR_clone:
11024         /* Linux manages to have three different orderings for its
11025          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11026          * match the kernel's CONFIG_CLONE_* settings.
11027          * Microblaze is further special in that it uses a sixth
11028          * implicit argument to clone for the TLS pointer.
11029          */
11030 #if defined(TARGET_MICROBLAZE)
11031         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11032 #elif defined(TARGET_CLONE_BACKWARDS)
11033         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11034 #elif defined(TARGET_CLONE_BACKWARDS2)
11035         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11036 #else
11037         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11038 #endif
11039         return ret;
11040 #ifdef __NR_exit_group
11041         /* new thread calls */
11042     case TARGET_NR_exit_group:
11043         preexit_cleanup(cpu_env, arg1);
11044         return get_errno(exit_group(arg1));
11045 #endif
11046     case TARGET_NR_setdomainname:
11047         if (!(p = lock_user_string(arg1)))
11048             return -TARGET_EFAULT;
11049         ret = get_errno(setdomainname(p, arg2));
11050         unlock_user(p, arg1, 0);
11051         return ret;
11052     case TARGET_NR_uname:
11053         /* no need to transcode because we use the linux syscall */
11054         {
11055             struct new_utsname * buf;
11056 
11057             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11058                 return -TARGET_EFAULT;
11059             ret = get_errno(sys_uname(buf));
11060             if (!is_error(ret)) {
11061                 /* Overwrite the native machine name with whatever is being
11062                    emulated. */
11063                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11064                           sizeof(buf->machine));
11065                 /* Allow the user to override the reported release.  */
11066                 if (qemu_uname_release && *qemu_uname_release) {
11067                     g_strlcpy(buf->release, qemu_uname_release,
11068                               sizeof(buf->release));
11069                 }
11070             }
11071             unlock_user_struct(buf, arg1, 1);
11072         }
11073         return ret;
11074 #ifdef TARGET_I386
11075     case TARGET_NR_modify_ldt:
11076         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11077 #if !defined(TARGET_X86_64)
11078     case TARGET_NR_vm86:
11079         return do_vm86(cpu_env, arg1, arg2);
11080 #endif
11081 #endif
11082 #if defined(TARGET_NR_adjtimex)
11083     case TARGET_NR_adjtimex:
11084         {
11085             struct timex host_buf;
11086 
11087             if (target_to_host_timex(&host_buf, arg1) != 0) {
11088                 return -TARGET_EFAULT;
11089             }
11090             ret = get_errno(adjtimex(&host_buf));
11091             if (!is_error(ret)) {
11092                 if (host_to_target_timex(arg1, &host_buf) != 0) {
11093                     return -TARGET_EFAULT;
11094                 }
11095             }
11096         }
11097         return ret;
11098 #endif
11099 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11100     case TARGET_NR_clock_adjtime:
11101         {
11102             struct timex htx;
11103 
11104             if (target_to_host_timex(&htx, arg2) != 0) {
11105                 return -TARGET_EFAULT;
11106             }
11107             ret = get_errno(clock_adjtime(arg1, &htx));
11108             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11109                 return -TARGET_EFAULT;
11110             }
11111         }
11112         return ret;
11113 #endif
11114 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11115     case TARGET_NR_clock_adjtime64:
11116         {
11117             struct timex htx;
11118 
11119             if (target_to_host_timex64(&htx, arg2) != 0) {
11120                 return -TARGET_EFAULT;
11121             }
11122             ret = get_errno(clock_adjtime(arg1, &htx));
11123             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11124                     return -TARGET_EFAULT;
11125             }
11126         }
11127         return ret;
11128 #endif
11129     case TARGET_NR_getpgid:
11130         return get_errno(getpgid(arg1));
11131     case TARGET_NR_fchdir:
11132         return get_errno(fchdir(arg1));
11133     case TARGET_NR_personality:
11134         return get_errno(personality(arg1));
11135 #ifdef TARGET_NR__llseek /* Not on alpha */
11136     case TARGET_NR__llseek:
11137         {
11138             int64_t res;
11139 #if !defined(__NR_llseek)
11140             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11141             if (res == -1) {
11142                 ret = get_errno(res);
11143             } else {
11144                 ret = 0;
11145             }
11146 #else
11147             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11148 #endif
11149             if ((ret == 0) && put_user_s64(res, arg4)) {
11150                 return -TARGET_EFAULT;
11151             }
11152         }
11153         return ret;
11154 #endif
11155 #ifdef TARGET_NR_getdents
11156     case TARGET_NR_getdents:
11157         return do_getdents(arg1, arg2, arg3);
11158 #endif /* TARGET_NR_getdents */
11159 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11160     case TARGET_NR_getdents64:
11161         return do_getdents64(arg1, arg2, arg3);
11162 #endif /* TARGET_NR_getdents64 */
11163 #if defined(TARGET_NR__newselect)
11164     case TARGET_NR__newselect:
11165         return do_select(arg1, arg2, arg3, arg4, arg5);
11166 #endif
11167 #ifdef TARGET_NR_poll
11168     case TARGET_NR_poll:
11169         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11170 #endif
11171 #ifdef TARGET_NR_ppoll
11172     case TARGET_NR_ppoll:
11173         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11174 #endif
11175 #ifdef TARGET_NR_ppoll_time64
11176     case TARGET_NR_ppoll_time64:
11177         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11178 #endif
11179     case TARGET_NR_flock:
11180         /* NOTE: the flock constant seems to be the same for every
11181            Linux platform */
11182         return get_errno(safe_flock(arg1, arg2));
11183     case TARGET_NR_readv:
11184         {
11185             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11186             if (vec != NULL) {
11187                 ret = get_errno(safe_readv(arg1, vec, arg3));
11188                 unlock_iovec(vec, arg2, arg3, 1);
11189             } else {
11190                 ret = -host_to_target_errno(errno);
11191             }
11192         }
11193         return ret;
11194     case TARGET_NR_writev:
11195         {
11196             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11197             if (vec != NULL) {
11198                 ret = get_errno(safe_writev(arg1, vec, arg3));
11199                 unlock_iovec(vec, arg2, arg3, 0);
11200             } else {
11201                 ret = -host_to_target_errno(errno);
11202             }
11203         }
11204         return ret;
11205 #if defined(TARGET_NR_preadv)
11206     case TARGET_NR_preadv:
11207         {
11208             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11209             if (vec != NULL) {
11210                 unsigned long low, high;
11211 
11212                 target_to_host_low_high(arg4, arg5, &low, &high);
11213                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11214                 unlock_iovec(vec, arg2, arg3, 1);
11215             } else {
11216                 ret = -host_to_target_errno(errno);
11217            }
11218         }
11219         return ret;
11220 #endif
11221 #if defined(TARGET_NR_pwritev)
11222     case TARGET_NR_pwritev:
11223         {
11224             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11225             if (vec != NULL) {
11226                 unsigned long low, high;
11227 
11228                 target_to_host_low_high(arg4, arg5, &low, &high);
11229                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11230                 unlock_iovec(vec, arg2, arg3, 0);
11231             } else {
11232                 ret = -host_to_target_errno(errno);
11233            }
11234         }
11235         return ret;
11236 #endif
11237     case TARGET_NR_getsid:
11238         return get_errno(getsid(arg1));
11239 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11240     case TARGET_NR_fdatasync:
11241         return get_errno(fdatasync(arg1));
11242 #endif
11243     case TARGET_NR_sched_getaffinity:
11244         {
11245             unsigned int mask_size;
11246             unsigned long *mask;
11247 
11248             /*
11249              * sched_getaffinity needs multiples of ulong, so need to take
11250              * care of mismatches between target ulong and host ulong sizes.
11251              */
11252             if (arg2 & (sizeof(abi_ulong) - 1)) {
11253                 return -TARGET_EINVAL;
11254             }
11255             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11256 
11257             mask = alloca(mask_size);
11258             memset(mask, 0, mask_size);
11259             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11260 
11261             if (!is_error(ret)) {
11262                 if (ret > arg2) {
11263                     /* More data returned than the caller's buffer will fit.
11264                      * This only happens if sizeof(abi_long) < sizeof(long)
11265                      * and the caller passed us a buffer holding an odd number
11266                      * of abi_longs. If the host kernel is actually using the
11267                      * extra 4 bytes then fail EINVAL; otherwise we can just
11268                      * ignore them and only copy the interesting part.
11269                      */
11270                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11271                     if (numcpus > arg2 * 8) {
11272                         return -TARGET_EINVAL;
11273                     }
11274                     ret = arg2;
11275                 }
11276 
11277                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11278                     return -TARGET_EFAULT;
11279                 }
11280             }
11281         }
11282         return ret;
11283     case TARGET_NR_sched_setaffinity:
11284         {
11285             unsigned int mask_size;
11286             unsigned long *mask;
11287 
11288             /*
11289              * sched_setaffinity needs multiples of ulong, so need to take
11290              * care of mismatches between target ulong and host ulong sizes.
11291              */
11292             if (arg2 & (sizeof(abi_ulong) - 1)) {
11293                 return -TARGET_EINVAL;
11294             }
11295             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11296             mask = alloca(mask_size);
11297 
11298             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11299             if (ret) {
11300                 return ret;
11301             }
11302 
11303             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11304         }
11305     case TARGET_NR_getcpu:
11306         {
11307             unsigned cpuid, node;
11308             ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11309                                        arg2 ? &node : NULL,
11310                                        NULL));
11311             if (is_error(ret)) {
11312                 return ret;
11313             }
11314             if (arg1 && put_user_u32(cpuid, arg1)) {
11315                 return -TARGET_EFAULT;
11316             }
11317             if (arg2 && put_user_u32(node, arg2)) {
11318                 return -TARGET_EFAULT;
11319             }
11320         }
11321         return ret;
11322     case TARGET_NR_sched_setparam:
11323         {
11324             struct target_sched_param *target_schp;
11325             struct sched_param schp;
11326 
11327             if (arg2 == 0) {
11328                 return -TARGET_EINVAL;
11329             }
11330             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11331                 return -TARGET_EFAULT;
11332             }
11333             schp.sched_priority = tswap32(target_schp->sched_priority);
11334             unlock_user_struct(target_schp, arg2, 0);
11335             return get_errno(sys_sched_setparam(arg1, &schp));
11336         }
11337     case TARGET_NR_sched_getparam:
11338         {
11339             struct target_sched_param *target_schp;
11340             struct sched_param schp;
11341 
11342             if (arg2 == 0) {
11343                 return -TARGET_EINVAL;
11344             }
11345             ret = get_errno(sys_sched_getparam(arg1, &schp));
11346             if (!is_error(ret)) {
11347                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11348                     return -TARGET_EFAULT;
11349                 }
11350                 target_schp->sched_priority = tswap32(schp.sched_priority);
11351                 unlock_user_struct(target_schp, arg2, 1);
11352             }
11353         }
11354         return ret;
11355     case TARGET_NR_sched_setscheduler:
11356         {
11357             struct target_sched_param *target_schp;
11358             struct sched_param schp;
11359             if (arg3 == 0) {
11360                 return -TARGET_EINVAL;
11361             }
11362             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11363                 return -TARGET_EFAULT;
11364             }
11365             schp.sched_priority = tswap32(target_schp->sched_priority);
11366             unlock_user_struct(target_schp, arg3, 0);
11367             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11368         }
11369     case TARGET_NR_sched_getscheduler:
11370         return get_errno(sys_sched_getscheduler(arg1));
11371     case TARGET_NR_sched_getattr:
11372         {
11373             struct target_sched_attr *target_scha;
11374             struct sched_attr scha;
11375             if (arg2 == 0) {
11376                 return -TARGET_EINVAL;
11377             }
11378             if (arg3 > sizeof(scha)) {
11379                 arg3 = sizeof(scha);
11380             }
11381             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11382             if (!is_error(ret)) {
11383                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11384                 if (!target_scha) {
11385                     return -TARGET_EFAULT;
11386                 }
11387                 target_scha->size = tswap32(scha.size);
11388                 target_scha->sched_policy = tswap32(scha.sched_policy);
11389                 target_scha->sched_flags = tswap64(scha.sched_flags);
11390                 target_scha->sched_nice = tswap32(scha.sched_nice);
11391                 target_scha->sched_priority = tswap32(scha.sched_priority);
11392                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11393                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11394                 target_scha->sched_period = tswap64(scha.sched_period);
11395                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11396                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11397                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11398                 }
11399                 unlock_user(target_scha, arg2, arg3);
11400             }
11401             return ret;
11402         }
11403     case TARGET_NR_sched_setattr:
11404         {
11405             struct target_sched_attr *target_scha;
11406             struct sched_attr scha;
11407             uint32_t size;
11408             int zeroed;
11409             if (arg2 == 0) {
11410                 return -TARGET_EINVAL;
11411             }
11412             if (get_user_u32(size, arg2)) {
11413                 return -TARGET_EFAULT;
11414             }
11415             if (!size) {
11416                 size = offsetof(struct target_sched_attr, sched_util_min);
11417             }
11418             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11419                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11420                     return -TARGET_EFAULT;
11421                 }
11422                 return -TARGET_E2BIG;
11423             }
11424 
11425             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11426             if (zeroed < 0) {
11427                 return zeroed;
11428             } else if (zeroed == 0) {
11429                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11430                     return -TARGET_EFAULT;
11431                 }
11432                 return -TARGET_E2BIG;
11433             }
11434             if (size > sizeof(struct target_sched_attr)) {
11435                 size = sizeof(struct target_sched_attr);
11436             }
11437 
11438             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11439             if (!target_scha) {
11440                 return -TARGET_EFAULT;
11441             }
11442             scha.size = size;
11443             scha.sched_policy = tswap32(target_scha->sched_policy);
11444             scha.sched_flags = tswap64(target_scha->sched_flags);
11445             scha.sched_nice = tswap32(target_scha->sched_nice);
11446             scha.sched_priority = tswap32(target_scha->sched_priority);
11447             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11448             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11449             scha.sched_period = tswap64(target_scha->sched_period);
11450             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11451                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11452                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11453             }
11454             unlock_user(target_scha, arg2, 0);
11455             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11456         }
11457     case TARGET_NR_sched_yield:
11458         return get_errno(sched_yield());
11459     case TARGET_NR_sched_get_priority_max:
11460         return get_errno(sched_get_priority_max(arg1));
11461     case TARGET_NR_sched_get_priority_min:
11462         return get_errno(sched_get_priority_min(arg1));
11463 #ifdef TARGET_NR_sched_rr_get_interval
11464     case TARGET_NR_sched_rr_get_interval:
11465         {
11466             struct timespec ts;
11467             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11468             if (!is_error(ret)) {
11469                 ret = host_to_target_timespec(arg2, &ts);
11470             }
11471         }
11472         return ret;
11473 #endif
11474 #ifdef TARGET_NR_sched_rr_get_interval_time64
11475     case TARGET_NR_sched_rr_get_interval_time64:
11476         {
11477             struct timespec ts;
11478             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11479             if (!is_error(ret)) {
11480                 ret = host_to_target_timespec64(arg2, &ts);
11481             }
11482         }
11483         return ret;
11484 #endif
11485 #if defined(TARGET_NR_nanosleep)
11486     case TARGET_NR_nanosleep:
11487         {
11488             struct timespec req, rem;
11489             target_to_host_timespec(&req, arg1);
11490             ret = get_errno(safe_nanosleep(&req, &rem));
11491             if (is_error(ret) && arg2) {
11492                 host_to_target_timespec(arg2, &rem);
11493             }
11494         }
11495         return ret;
11496 #endif
11497     case TARGET_NR_prctl:
11498         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11499         break;
11500 #ifdef TARGET_NR_arch_prctl
11501     case TARGET_NR_arch_prctl:
11502         return do_arch_prctl(cpu_env, arg1, arg2);
11503 #endif
11504 #ifdef TARGET_NR_pread64
11505     case TARGET_NR_pread64:
11506         if (regpairs_aligned(cpu_env, num)) {
11507             arg4 = arg5;
11508             arg5 = arg6;
11509         }
11510         if (arg2 == 0 && arg3 == 0) {
11511             /* Special-case NULL buffer and zero length, which should succeed */
11512             p = 0;
11513         } else {
11514             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11515             if (!p) {
11516                 return -TARGET_EFAULT;
11517             }
11518         }
11519         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11520         unlock_user(p, arg2, ret);
11521         return ret;
11522     case TARGET_NR_pwrite64:
11523         if (regpairs_aligned(cpu_env, num)) {
11524             arg4 = arg5;
11525             arg5 = arg6;
11526         }
11527         if (arg2 == 0 && arg3 == 0) {
11528             /* Special-case NULL buffer and zero length, which should succeed */
11529             p = 0;
11530         } else {
11531             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11532             if (!p) {
11533                 return -TARGET_EFAULT;
11534             }
11535         }
11536         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11537         unlock_user(p, arg2, 0);
11538         return ret;
11539 #endif
11540     case TARGET_NR_getcwd:
11541         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11542             return -TARGET_EFAULT;
11543         ret = get_errno(sys_getcwd1(p, arg2));
11544         unlock_user(p, arg1, ret);
11545         return ret;
11546     case TARGET_NR_capget:
11547     case TARGET_NR_capset:
11548     {
11549         struct target_user_cap_header *target_header;
11550         struct target_user_cap_data *target_data = NULL;
11551         struct __user_cap_header_struct header;
11552         struct __user_cap_data_struct data[2];
11553         struct __user_cap_data_struct *dataptr = NULL;
11554         int i, target_datalen;
11555         int data_items = 1;
11556 
11557         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11558             return -TARGET_EFAULT;
11559         }
11560         header.version = tswap32(target_header->version);
11561         header.pid = tswap32(target_header->pid);
11562 
11563         if (header.version != _LINUX_CAPABILITY_VERSION) {
11564             /* Version 2 and up takes pointer to two user_data structs */
11565             data_items = 2;
11566         }
11567 
11568         target_datalen = sizeof(*target_data) * data_items;
11569 
11570         if (arg2) {
11571             if (num == TARGET_NR_capget) {
11572                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11573             } else {
11574                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11575             }
11576             if (!target_data) {
11577                 unlock_user_struct(target_header, arg1, 0);
11578                 return -TARGET_EFAULT;
11579             }
11580 
11581             if (num == TARGET_NR_capset) {
11582                 for (i = 0; i < data_items; i++) {
11583                     data[i].effective = tswap32(target_data[i].effective);
11584                     data[i].permitted = tswap32(target_data[i].permitted);
11585                     data[i].inheritable = tswap32(target_data[i].inheritable);
11586                 }
11587             }
11588 
11589             dataptr = data;
11590         }
11591 
11592         if (num == TARGET_NR_capget) {
11593             ret = get_errno(capget(&header, dataptr));
11594         } else {
11595             ret = get_errno(capset(&header, dataptr));
11596         }
11597 
11598         /* The kernel always updates version for both capget and capset */
11599         target_header->version = tswap32(header.version);
11600         unlock_user_struct(target_header, arg1, 1);
11601 
11602         if (arg2) {
11603             if (num == TARGET_NR_capget) {
11604                 for (i = 0; i < data_items; i++) {
11605                     target_data[i].effective = tswap32(data[i].effective);
11606                     target_data[i].permitted = tswap32(data[i].permitted);
11607                     target_data[i].inheritable = tswap32(data[i].inheritable);
11608                 }
11609                 unlock_user(target_data, arg2, target_datalen);
11610             } else {
11611                 unlock_user(target_data, arg2, 0);
11612             }
11613         }
11614         return ret;
11615     }
11616     case TARGET_NR_sigaltstack:
11617         return do_sigaltstack(arg1, arg2, cpu_env);
11618 
11619 #ifdef CONFIG_SENDFILE
11620 #ifdef TARGET_NR_sendfile
11621     case TARGET_NR_sendfile:
11622     {
11623         off_t *offp = NULL;
11624         off_t off;
11625         if (arg3) {
11626             ret = get_user_sal(off, arg3);
11627             if (is_error(ret)) {
11628                 return ret;
11629             }
11630             offp = &off;
11631         }
11632         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11633         if (!is_error(ret) && arg3) {
11634             abi_long ret2 = put_user_sal(off, arg3);
11635             if (is_error(ret2)) {
11636                 ret = ret2;
11637             }
11638         }
11639         return ret;
11640     }
11641 #endif
11642 #ifdef TARGET_NR_sendfile64
11643     case TARGET_NR_sendfile64:
11644     {
11645         off_t *offp = NULL;
11646         off_t off;
11647         if (arg3) {
11648             ret = get_user_s64(off, arg3);
11649             if (is_error(ret)) {
11650                 return ret;
11651             }
11652             offp = &off;
11653         }
11654         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11655         if (!is_error(ret) && arg3) {
11656             abi_long ret2 = put_user_s64(off, arg3);
11657             if (is_error(ret2)) {
11658                 ret = ret2;
11659             }
11660         }
11661         return ret;
11662     }
11663 #endif
11664 #endif
11665 #ifdef TARGET_NR_vfork
11666     case TARGET_NR_vfork:
11667         return get_errno(do_fork(cpu_env,
11668                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11669                          0, 0, 0, 0));
11670 #endif
11671 #ifdef TARGET_NR_ugetrlimit
11672     case TARGET_NR_ugetrlimit:
11673     {
11674 	struct rlimit rlim;
11675 	int resource = target_to_host_resource(arg1);
11676 	ret = get_errno(getrlimit(resource, &rlim));
11677 	if (!is_error(ret)) {
11678 	    struct target_rlimit *target_rlim;
11679             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11680                 return -TARGET_EFAULT;
11681 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11682 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11683             unlock_user_struct(target_rlim, arg2, 1);
11684 	}
11685         return ret;
11686     }
11687 #endif
11688 #ifdef TARGET_NR_truncate64
11689     case TARGET_NR_truncate64:
11690         if (!(p = lock_user_string(arg1)))
11691             return -TARGET_EFAULT;
11692 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11693         unlock_user(p, arg1, 0);
11694         return ret;
11695 #endif
11696 #ifdef TARGET_NR_ftruncate64
11697     case TARGET_NR_ftruncate64:
11698         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11699 #endif
11700 #ifdef TARGET_NR_stat64
11701     case TARGET_NR_stat64:
11702         if (!(p = lock_user_string(arg1))) {
11703             return -TARGET_EFAULT;
11704         }
11705         ret = get_errno(stat(path(p), &st));
11706         unlock_user(p, arg1, 0);
11707         if (!is_error(ret))
11708             ret = host_to_target_stat64(cpu_env, arg2, &st);
11709         return ret;
11710 #endif
11711 #ifdef TARGET_NR_lstat64
11712     case TARGET_NR_lstat64:
11713         if (!(p = lock_user_string(arg1))) {
11714             return -TARGET_EFAULT;
11715         }
11716         ret = get_errno(lstat(path(p), &st));
11717         unlock_user(p, arg1, 0);
11718         if (!is_error(ret))
11719             ret = host_to_target_stat64(cpu_env, arg2, &st);
11720         return ret;
11721 #endif
11722 #ifdef TARGET_NR_fstat64
11723     case TARGET_NR_fstat64:
11724         ret = get_errno(fstat(arg1, &st));
11725         if (!is_error(ret))
11726             ret = host_to_target_stat64(cpu_env, arg2, &st);
11727         return ret;
11728 #endif
11729 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11730 #ifdef TARGET_NR_fstatat64
11731     case TARGET_NR_fstatat64:
11732 #endif
11733 #ifdef TARGET_NR_newfstatat
11734     case TARGET_NR_newfstatat:
11735 #endif
11736         if (!(p = lock_user_string(arg2))) {
11737             return -TARGET_EFAULT;
11738         }
11739         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11740         unlock_user(p, arg2, 0);
11741         if (!is_error(ret))
11742             ret = host_to_target_stat64(cpu_env, arg3, &st);
11743         return ret;
11744 #endif
11745 #if defined(TARGET_NR_statx)
11746     case TARGET_NR_statx:
11747         {
11748             struct target_statx *target_stx;
11749             int dirfd = arg1;
11750             int flags = arg3;
11751 
11752             p = lock_user_string(arg2);
11753             if (p == NULL) {
11754                 return -TARGET_EFAULT;
11755             }
11756 #if defined(__NR_statx)
11757             {
11758                 /*
11759                  * It is assumed that struct statx is architecture independent.
11760                  */
11761                 struct target_statx host_stx;
11762                 int mask = arg4;
11763 
11764                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11765                 if (!is_error(ret)) {
11766                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11767                         unlock_user(p, arg2, 0);
11768                         return -TARGET_EFAULT;
11769                     }
11770                 }
11771 
11772                 if (ret != -TARGET_ENOSYS) {
11773                     unlock_user(p, arg2, 0);
11774                     return ret;
11775                 }
11776             }
11777 #endif
11778             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11779             unlock_user(p, arg2, 0);
11780 
11781             if (!is_error(ret)) {
11782                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11783                     return -TARGET_EFAULT;
11784                 }
11785                 memset(target_stx, 0, sizeof(*target_stx));
11786                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11787                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11788                 __put_user(st.st_ino, &target_stx->stx_ino);
11789                 __put_user(st.st_mode, &target_stx->stx_mode);
11790                 __put_user(st.st_uid, &target_stx->stx_uid);
11791                 __put_user(st.st_gid, &target_stx->stx_gid);
11792                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11793                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11794                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11795                 __put_user(st.st_size, &target_stx->stx_size);
11796                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11797                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11798                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11799                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11800                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11801                 unlock_user_struct(target_stx, arg5, 1);
11802             }
11803         }
11804         return ret;
11805 #endif
11806 #ifdef TARGET_NR_lchown
11807     case TARGET_NR_lchown:
11808         if (!(p = lock_user_string(arg1)))
11809             return -TARGET_EFAULT;
11810         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11811         unlock_user(p, arg1, 0);
11812         return ret;
11813 #endif
11814 #ifdef TARGET_NR_getuid
11815     case TARGET_NR_getuid:
11816         return get_errno(high2lowuid(getuid()));
11817 #endif
11818 #ifdef TARGET_NR_getgid
11819     case TARGET_NR_getgid:
11820         return get_errno(high2lowgid(getgid()));
11821 #endif
11822 #ifdef TARGET_NR_geteuid
11823     case TARGET_NR_geteuid:
11824         return get_errno(high2lowuid(geteuid()));
11825 #endif
11826 #ifdef TARGET_NR_getegid
11827     case TARGET_NR_getegid:
11828         return get_errno(high2lowgid(getegid()));
11829 #endif
11830     case TARGET_NR_setreuid:
11831         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11832     case TARGET_NR_setregid:
11833         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11834     case TARGET_NR_getgroups:
11835         { /* the same code as for TARGET_NR_getgroups32 */
11836             int gidsetsize = arg1;
11837             target_id *target_grouplist;
11838             g_autofree gid_t *grouplist = NULL;
11839             int i;
11840 
11841             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11842                 return -TARGET_EINVAL;
11843             }
11844             if (gidsetsize > 0) {
11845                 grouplist = g_try_new(gid_t, gidsetsize);
11846                 if (!grouplist) {
11847                     return -TARGET_ENOMEM;
11848                 }
11849             }
11850             ret = get_errno(getgroups(gidsetsize, grouplist));
11851             if (!is_error(ret) && gidsetsize > 0) {
11852                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11853                                              gidsetsize * sizeof(target_id), 0);
11854                 if (!target_grouplist) {
11855                     return -TARGET_EFAULT;
11856                 }
11857                 for (i = 0; i < ret; i++) {
11858                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11859                 }
11860                 unlock_user(target_grouplist, arg2,
11861                             gidsetsize * sizeof(target_id));
11862             }
11863             return ret;
11864         }
11865     case TARGET_NR_setgroups:
11866         { /* the same code as for TARGET_NR_setgroups32 */
11867             int gidsetsize = arg1;
11868             target_id *target_grouplist;
11869             g_autofree gid_t *grouplist = NULL;
11870             int i;
11871 
11872             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11873                 return -TARGET_EINVAL;
11874             }
11875             if (gidsetsize > 0) {
11876                 grouplist = g_try_new(gid_t, gidsetsize);
11877                 if (!grouplist) {
11878                     return -TARGET_ENOMEM;
11879                 }
11880                 target_grouplist = lock_user(VERIFY_READ, arg2,
11881                                              gidsetsize * sizeof(target_id), 1);
11882                 if (!target_grouplist) {
11883                     return -TARGET_EFAULT;
11884                 }
11885                 for (i = 0; i < gidsetsize; i++) {
11886                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11887                 }
11888                 unlock_user(target_grouplist, arg2,
11889                             gidsetsize * sizeof(target_id));
11890             }
11891             return get_errno(sys_setgroups(gidsetsize, grouplist));
11892         }
11893     case TARGET_NR_fchown:
11894         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11895 #if defined(TARGET_NR_fchownat)
11896     case TARGET_NR_fchownat:
11897         if (!(p = lock_user_string(arg2)))
11898             return -TARGET_EFAULT;
11899         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11900                                  low2highgid(arg4), arg5));
11901         unlock_user(p, arg2, 0);
11902         return ret;
11903 #endif
11904 #ifdef TARGET_NR_setresuid
11905     case TARGET_NR_setresuid:
11906         return get_errno(sys_setresuid(low2highuid(arg1),
11907                                        low2highuid(arg2),
11908                                        low2highuid(arg3)));
11909 #endif
11910 #ifdef TARGET_NR_getresuid
11911     case TARGET_NR_getresuid:
11912         {
11913             uid_t ruid, euid, suid;
11914             ret = get_errno(getresuid(&ruid, &euid, &suid));
11915             if (!is_error(ret)) {
11916                 if (put_user_id(high2lowuid(ruid), arg1)
11917                     || put_user_id(high2lowuid(euid), arg2)
11918                     || put_user_id(high2lowuid(suid), arg3))
11919                     return -TARGET_EFAULT;
11920             }
11921         }
11922         return ret;
11923 #endif
11924 #ifdef TARGET_NR_getresgid
11925     case TARGET_NR_setresgid:
11926         return get_errno(sys_setresgid(low2highgid(arg1),
11927                                        low2highgid(arg2),
11928                                        low2highgid(arg3)));
11929 #endif
11930 #ifdef TARGET_NR_getresgid
11931     case TARGET_NR_getresgid:
11932         {
11933             gid_t rgid, egid, sgid;
11934             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11935             if (!is_error(ret)) {
11936                 if (put_user_id(high2lowgid(rgid), arg1)
11937                     || put_user_id(high2lowgid(egid), arg2)
11938                     || put_user_id(high2lowgid(sgid), arg3))
11939                     return -TARGET_EFAULT;
11940             }
11941         }
11942         return ret;
11943 #endif
11944 #ifdef TARGET_NR_chown
11945     case TARGET_NR_chown:
11946         if (!(p = lock_user_string(arg1)))
11947             return -TARGET_EFAULT;
11948         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11949         unlock_user(p, arg1, 0);
11950         return ret;
11951 #endif
11952     case TARGET_NR_setuid:
11953         return get_errno(sys_setuid(low2highuid(arg1)));
11954     case TARGET_NR_setgid:
11955         return get_errno(sys_setgid(low2highgid(arg1)));
11956     case TARGET_NR_setfsuid:
11957         return get_errno(setfsuid(arg1));
11958     case TARGET_NR_setfsgid:
11959         return get_errno(setfsgid(arg1));
11960 
11961 #ifdef TARGET_NR_lchown32
11962     case TARGET_NR_lchown32:
11963         if (!(p = lock_user_string(arg1)))
11964             return -TARGET_EFAULT;
11965         ret = get_errno(lchown(p, arg2, arg3));
11966         unlock_user(p, arg1, 0);
11967         return ret;
11968 #endif
11969 #ifdef TARGET_NR_getuid32
11970     case TARGET_NR_getuid32:
11971         return get_errno(getuid());
11972 #endif
11973 
11974 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11975    /* Alpha specific */
11976     case TARGET_NR_getxuid:
11977          {
11978             uid_t euid;
11979             euid=geteuid();
11980             cpu_env->ir[IR_A4]=euid;
11981          }
11982         return get_errno(getuid());
11983 #endif
11984 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11985    /* Alpha specific */
11986     case TARGET_NR_getxgid:
11987          {
11988             uid_t egid;
11989             egid=getegid();
11990             cpu_env->ir[IR_A4]=egid;
11991          }
11992         return get_errno(getgid());
11993 #endif
11994 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11995     /* Alpha specific */
11996     case TARGET_NR_osf_getsysinfo:
11997         ret = -TARGET_EOPNOTSUPP;
11998         switch (arg1) {
11999           case TARGET_GSI_IEEE_FP_CONTROL:
12000             {
12001                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
12002                 uint64_t swcr = cpu_env->swcr;
12003 
12004                 swcr &= ~SWCR_STATUS_MASK;
12005                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12006 
12007                 if (put_user_u64 (swcr, arg2))
12008                         return -TARGET_EFAULT;
12009                 ret = 0;
12010             }
12011             break;
12012 
12013           /* case GSI_IEEE_STATE_AT_SIGNAL:
12014              -- Not implemented in linux kernel.
12015              case GSI_UACPROC:
12016              -- Retrieves current unaligned access state; not much used.
12017              case GSI_PROC_TYPE:
12018              -- Retrieves implver information; surely not used.
12019              case GSI_GET_HWRPB:
12020              -- Grabs a copy of the HWRPB; surely not used.
12021           */
12022         }
12023         return ret;
12024 #endif
12025 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12026     /* Alpha specific */
12027     case TARGET_NR_osf_setsysinfo:
12028         ret = -TARGET_EOPNOTSUPP;
12029         switch (arg1) {
12030           case TARGET_SSI_IEEE_FP_CONTROL:
12031             {
12032                 uint64_t swcr, fpcr;
12033 
12034                 if (get_user_u64 (swcr, arg2)) {
12035                     return -TARGET_EFAULT;
12036                 }
12037 
12038                 /*
12039                  * The kernel calls swcr_update_status to update the
12040                  * status bits from the fpcr at every point that it
12041                  * could be queried.  Therefore, we store the status
12042                  * bits only in FPCR.
12043                  */
12044                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12045 
12046                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12047                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12048                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12049                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12050                 ret = 0;
12051             }
12052             break;
12053 
12054           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12055             {
12056                 uint64_t exc, fpcr, fex;
12057 
12058                 if (get_user_u64(exc, arg2)) {
12059                     return -TARGET_EFAULT;
12060                 }
12061                 exc &= SWCR_STATUS_MASK;
12062                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12063 
12064                 /* Old exceptions are not signaled.  */
12065                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12066                 fex = exc & ~fex;
12067                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12068                 fex &= (cpu_env)->swcr;
12069 
12070                 /* Update the hardware fpcr.  */
12071                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12072                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12073 
12074                 if (fex) {
12075                     int si_code = TARGET_FPE_FLTUNK;
12076                     target_siginfo_t info;
12077 
12078                     if (fex & SWCR_TRAP_ENABLE_DNO) {
12079                         si_code = TARGET_FPE_FLTUND;
12080                     }
12081                     if (fex & SWCR_TRAP_ENABLE_INE) {
12082                         si_code = TARGET_FPE_FLTRES;
12083                     }
12084                     if (fex & SWCR_TRAP_ENABLE_UNF) {
12085                         si_code = TARGET_FPE_FLTUND;
12086                     }
12087                     if (fex & SWCR_TRAP_ENABLE_OVF) {
12088                         si_code = TARGET_FPE_FLTOVF;
12089                     }
12090                     if (fex & SWCR_TRAP_ENABLE_DZE) {
12091                         si_code = TARGET_FPE_FLTDIV;
12092                     }
12093                     if (fex & SWCR_TRAP_ENABLE_INV) {
12094                         si_code = TARGET_FPE_FLTINV;
12095                     }
12096 
12097                     info.si_signo = SIGFPE;
12098                     info.si_errno = 0;
12099                     info.si_code = si_code;
12100                     info._sifields._sigfault._addr = (cpu_env)->pc;
12101                     queue_signal(cpu_env, info.si_signo,
12102                                  QEMU_SI_FAULT, &info);
12103                 }
12104                 ret = 0;
12105             }
12106             break;
12107 
12108           /* case SSI_NVPAIRS:
12109              -- Used with SSIN_UACPROC to enable unaligned accesses.
12110              case SSI_IEEE_STATE_AT_SIGNAL:
12111              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12112              -- Not implemented in linux kernel
12113           */
12114         }
12115         return ret;
12116 #endif
12117 #ifdef TARGET_NR_osf_sigprocmask
12118     /* Alpha specific.  */
12119     case TARGET_NR_osf_sigprocmask:
12120         {
12121             abi_ulong mask;
12122             int how;
12123             sigset_t set, oldset;
12124 
12125             switch(arg1) {
12126             case TARGET_SIG_BLOCK:
12127                 how = SIG_BLOCK;
12128                 break;
12129             case TARGET_SIG_UNBLOCK:
12130                 how = SIG_UNBLOCK;
12131                 break;
12132             case TARGET_SIG_SETMASK:
12133                 how = SIG_SETMASK;
12134                 break;
12135             default:
12136                 return -TARGET_EINVAL;
12137             }
12138             mask = arg2;
12139             target_to_host_old_sigset(&set, &mask);
12140             ret = do_sigprocmask(how, &set, &oldset);
12141             if (!ret) {
12142                 host_to_target_old_sigset(&mask, &oldset);
12143                 ret = mask;
12144             }
12145         }
12146         return ret;
12147 #endif
12148 
12149 #ifdef TARGET_NR_getgid32
12150     case TARGET_NR_getgid32:
12151         return get_errno(getgid());
12152 #endif
12153 #ifdef TARGET_NR_geteuid32
12154     case TARGET_NR_geteuid32:
12155         return get_errno(geteuid());
12156 #endif
12157 #ifdef TARGET_NR_getegid32
12158     case TARGET_NR_getegid32:
12159         return get_errno(getegid());
12160 #endif
12161 #ifdef TARGET_NR_setreuid32
12162     case TARGET_NR_setreuid32:
12163         return get_errno(setreuid(arg1, arg2));
12164 #endif
12165 #ifdef TARGET_NR_setregid32
12166     case TARGET_NR_setregid32:
12167         return get_errno(setregid(arg1, arg2));
12168 #endif
12169 #ifdef TARGET_NR_getgroups32
12170     case TARGET_NR_getgroups32:
12171         { /* the same code as for TARGET_NR_getgroups */
12172             int gidsetsize = arg1;
12173             uint32_t *target_grouplist;
12174             g_autofree gid_t *grouplist = NULL;
12175             int i;
12176 
12177             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12178                 return -TARGET_EINVAL;
12179             }
12180             if (gidsetsize > 0) {
12181                 grouplist = g_try_new(gid_t, gidsetsize);
12182                 if (!grouplist) {
12183                     return -TARGET_ENOMEM;
12184                 }
12185             }
12186             ret = get_errno(getgroups(gidsetsize, grouplist));
12187             if (!is_error(ret) && gidsetsize > 0) {
12188                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12189                                              gidsetsize * 4, 0);
12190                 if (!target_grouplist) {
12191                     return -TARGET_EFAULT;
12192                 }
12193                 for (i = 0; i < ret; i++) {
12194                     target_grouplist[i] = tswap32(grouplist[i]);
12195                 }
12196                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12197             }
12198             return ret;
12199         }
12200 #endif
12201 #ifdef TARGET_NR_setgroups32
12202     case TARGET_NR_setgroups32:
12203         { /* the same code as for TARGET_NR_setgroups */
12204             int gidsetsize = arg1;
12205             uint32_t *target_grouplist;
12206             g_autofree gid_t *grouplist = NULL;
12207             int i;
12208 
12209             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12210                 return -TARGET_EINVAL;
12211             }
12212             if (gidsetsize > 0) {
12213                 grouplist = g_try_new(gid_t, gidsetsize);
12214                 if (!grouplist) {
12215                     return -TARGET_ENOMEM;
12216                 }
12217                 target_grouplist = lock_user(VERIFY_READ, arg2,
12218                                              gidsetsize * 4, 1);
12219                 if (!target_grouplist) {
12220                     return -TARGET_EFAULT;
12221                 }
12222                 for (i = 0; i < gidsetsize; i++) {
12223                     grouplist[i] = tswap32(target_grouplist[i]);
12224                 }
12225                 unlock_user(target_grouplist, arg2, 0);
12226             }
12227             return get_errno(sys_setgroups(gidsetsize, grouplist));
12228         }
12229 #endif
12230 #ifdef TARGET_NR_fchown32
12231     case TARGET_NR_fchown32:
12232         return get_errno(fchown(arg1, arg2, arg3));
12233 #endif
12234 #ifdef TARGET_NR_setresuid32
12235     case TARGET_NR_setresuid32:
12236         return get_errno(sys_setresuid(arg1, arg2, arg3));
12237 #endif
12238 #ifdef TARGET_NR_getresuid32
12239     case TARGET_NR_getresuid32:
12240         {
12241             uid_t ruid, euid, suid;
12242             ret = get_errno(getresuid(&ruid, &euid, &suid));
12243             if (!is_error(ret)) {
12244                 if (put_user_u32(ruid, arg1)
12245                     || put_user_u32(euid, arg2)
12246                     || put_user_u32(suid, arg3))
12247                     return -TARGET_EFAULT;
12248             }
12249         }
12250         return ret;
12251 #endif
12252 #ifdef TARGET_NR_setresgid32
12253     case TARGET_NR_setresgid32:
12254         return get_errno(sys_setresgid(arg1, arg2, arg3));
12255 #endif
12256 #ifdef TARGET_NR_getresgid32
12257     case TARGET_NR_getresgid32:
12258         {
12259             gid_t rgid, egid, sgid;
12260             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12261             if (!is_error(ret)) {
12262                 if (put_user_u32(rgid, arg1)
12263                     || put_user_u32(egid, arg2)
12264                     || put_user_u32(sgid, arg3))
12265                     return -TARGET_EFAULT;
12266             }
12267         }
12268         return ret;
12269 #endif
12270 #ifdef TARGET_NR_chown32
12271     case TARGET_NR_chown32:
12272         if (!(p = lock_user_string(arg1)))
12273             return -TARGET_EFAULT;
12274         ret = get_errno(chown(p, arg2, arg3));
12275         unlock_user(p, arg1, 0);
12276         return ret;
12277 #endif
12278 #ifdef TARGET_NR_setuid32
12279     case TARGET_NR_setuid32:
12280         return get_errno(sys_setuid(arg1));
12281 #endif
12282 #ifdef TARGET_NR_setgid32
12283     case TARGET_NR_setgid32:
12284         return get_errno(sys_setgid(arg1));
12285 #endif
12286 #ifdef TARGET_NR_setfsuid32
12287     case TARGET_NR_setfsuid32:
12288         return get_errno(setfsuid(arg1));
12289 #endif
12290 #ifdef TARGET_NR_setfsgid32
12291     case TARGET_NR_setfsgid32:
12292         return get_errno(setfsgid(arg1));
12293 #endif
12294 #ifdef TARGET_NR_mincore
12295     case TARGET_NR_mincore:
12296         {
12297             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12298             if (!a) {
12299                 return -TARGET_ENOMEM;
12300             }
12301             p = lock_user_string(arg3);
12302             if (!p) {
12303                 ret = -TARGET_EFAULT;
12304             } else {
12305                 ret = get_errno(mincore(a, arg2, p));
12306                 unlock_user(p, arg3, ret);
12307             }
12308             unlock_user(a, arg1, 0);
12309         }
12310         return ret;
12311 #endif
12312 #ifdef TARGET_NR_arm_fadvise64_64
12313     case TARGET_NR_arm_fadvise64_64:
12314         /* arm_fadvise64_64 looks like fadvise64_64 but
12315          * with different argument order: fd, advice, offset, len
12316          * rather than the usual fd, offset, len, advice.
12317          * Note that offset and len are both 64-bit so appear as
12318          * pairs of 32-bit registers.
12319          */
12320         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12321                             target_offset64(arg5, arg6), arg2);
12322         return -host_to_target_errno(ret);
12323 #endif
12324 
12325 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12326 
12327 #ifdef TARGET_NR_fadvise64_64
12328     case TARGET_NR_fadvise64_64:
12329 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12330         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12331         ret = arg2;
12332         arg2 = arg3;
12333         arg3 = arg4;
12334         arg4 = arg5;
12335         arg5 = arg6;
12336         arg6 = ret;
12337 #else
12338         /* 6 args: fd, offset (high, low), len (high, low), advice */
12339         if (regpairs_aligned(cpu_env, num)) {
12340             /* offset is in (3,4), len in (5,6) and advice in 7 */
12341             arg2 = arg3;
12342             arg3 = arg4;
12343             arg4 = arg5;
12344             arg5 = arg6;
12345             arg6 = arg7;
12346         }
12347 #endif
12348         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12349                             target_offset64(arg4, arg5), arg6);
12350         return -host_to_target_errno(ret);
12351 #endif
12352 
12353 #ifdef TARGET_NR_fadvise64
12354     case TARGET_NR_fadvise64:
12355         /* 5 args: fd, offset (high, low), len, advice */
12356         if (regpairs_aligned(cpu_env, num)) {
12357             /* offset is in (3,4), len in 5 and advice in 6 */
12358             arg2 = arg3;
12359             arg3 = arg4;
12360             arg4 = arg5;
12361             arg5 = arg6;
12362         }
12363         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12364         return -host_to_target_errno(ret);
12365 #endif
12366 
12367 #else /* not a 32-bit ABI */
12368 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12369 #ifdef TARGET_NR_fadvise64_64
12370     case TARGET_NR_fadvise64_64:
12371 #endif
12372 #ifdef TARGET_NR_fadvise64
12373     case TARGET_NR_fadvise64:
12374 #endif
12375 #ifdef TARGET_S390X
12376         switch (arg4) {
12377         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12378         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12379         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12380         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12381         default: break;
12382         }
12383 #endif
12384         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12385 #endif
12386 #endif /* end of 64-bit ABI fadvise handling */
12387 
12388 #ifdef TARGET_NR_madvise
12389     case TARGET_NR_madvise:
12390         return target_madvise(arg1, arg2, arg3);
12391 #endif
12392 #ifdef TARGET_NR_fcntl64
12393     case TARGET_NR_fcntl64:
12394     {
12395         int cmd;
12396         struct flock64 fl;
12397         from_flock64_fn *copyfrom = copy_from_user_flock64;
12398         to_flock64_fn *copyto = copy_to_user_flock64;
12399 
12400 #ifdef TARGET_ARM
12401         if (!cpu_env->eabi) {
12402             copyfrom = copy_from_user_oabi_flock64;
12403             copyto = copy_to_user_oabi_flock64;
12404         }
12405 #endif
12406 
12407         cmd = target_to_host_fcntl_cmd(arg2);
12408         if (cmd == -TARGET_EINVAL) {
12409             return cmd;
12410         }
12411 
12412         switch(arg2) {
12413         case TARGET_F_GETLK64:
12414             ret = copyfrom(&fl, arg3);
12415             if (ret) {
12416                 break;
12417             }
12418             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12419             if (ret == 0) {
12420                 ret = copyto(arg3, &fl);
12421             }
12422 	    break;
12423 
12424         case TARGET_F_SETLK64:
12425         case TARGET_F_SETLKW64:
12426             ret = copyfrom(&fl, arg3);
12427             if (ret) {
12428                 break;
12429             }
12430             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12431 	    break;
12432         default:
12433             ret = do_fcntl(arg1, arg2, arg3);
12434             break;
12435         }
12436         return ret;
12437     }
12438 #endif
12439 #ifdef TARGET_NR_cacheflush
12440     case TARGET_NR_cacheflush:
12441         /* self-modifying code is handled automatically, so nothing needed */
12442         return 0;
12443 #endif
12444 #ifdef TARGET_NR_getpagesize
12445     case TARGET_NR_getpagesize:
12446         return TARGET_PAGE_SIZE;
12447 #endif
12448     case TARGET_NR_gettid:
12449         return get_errno(sys_gettid());
12450 #ifdef TARGET_NR_readahead
12451     case TARGET_NR_readahead:
12452 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12453         if (regpairs_aligned(cpu_env, num)) {
12454             arg2 = arg3;
12455             arg3 = arg4;
12456             arg4 = arg5;
12457         }
12458         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12459 #else
12460         ret = get_errno(readahead(arg1, arg2, arg3));
12461 #endif
12462         return ret;
12463 #endif
12464 #ifdef CONFIG_ATTR
12465 #ifdef TARGET_NR_setxattr
12466     case TARGET_NR_listxattr:
12467     case TARGET_NR_llistxattr:
12468     {
12469         void *b = 0;
12470         if (arg2) {
12471             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12472             if (!b) {
12473                 return -TARGET_EFAULT;
12474             }
12475         }
12476         p = lock_user_string(arg1);
12477         if (p) {
12478             if (num == TARGET_NR_listxattr) {
12479                 ret = get_errno(listxattr(p, b, arg3));
12480             } else {
12481                 ret = get_errno(llistxattr(p, b, arg3));
12482             }
12483         } else {
12484             ret = -TARGET_EFAULT;
12485         }
12486         unlock_user(p, arg1, 0);
12487         unlock_user(b, arg2, arg3);
12488         return ret;
12489     }
12490     case TARGET_NR_flistxattr:
12491     {
12492         void *b = 0;
12493         if (arg2) {
12494             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12495             if (!b) {
12496                 return -TARGET_EFAULT;
12497             }
12498         }
12499         ret = get_errno(flistxattr(arg1, b, arg3));
12500         unlock_user(b, arg2, arg3);
12501         return ret;
12502     }
12503     case TARGET_NR_setxattr:
12504     case TARGET_NR_lsetxattr:
12505         {
12506             void *n, *v = 0;
12507             if (arg3) {
12508                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12509                 if (!v) {
12510                     return -TARGET_EFAULT;
12511                 }
12512             }
12513             p = lock_user_string(arg1);
12514             n = lock_user_string(arg2);
12515             if (p && n) {
12516                 if (num == TARGET_NR_setxattr) {
12517                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12518                 } else {
12519                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12520                 }
12521             } else {
12522                 ret = -TARGET_EFAULT;
12523             }
12524             unlock_user(p, arg1, 0);
12525             unlock_user(n, arg2, 0);
12526             unlock_user(v, arg3, 0);
12527         }
12528         return ret;
12529     case TARGET_NR_fsetxattr:
12530         {
12531             void *n, *v = 0;
12532             if (arg3) {
12533                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12534                 if (!v) {
12535                     return -TARGET_EFAULT;
12536                 }
12537             }
12538             n = lock_user_string(arg2);
12539             if (n) {
12540                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12541             } else {
12542                 ret = -TARGET_EFAULT;
12543             }
12544             unlock_user(n, arg2, 0);
12545             unlock_user(v, arg3, 0);
12546         }
12547         return ret;
12548     case TARGET_NR_getxattr:
12549     case TARGET_NR_lgetxattr:
12550         {
12551             void *n, *v = 0;
12552             if (arg3) {
12553                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12554                 if (!v) {
12555                     return -TARGET_EFAULT;
12556                 }
12557             }
12558             p = lock_user_string(arg1);
12559             n = lock_user_string(arg2);
12560             if (p && n) {
12561                 if (num == TARGET_NR_getxattr) {
12562                     ret = get_errno(getxattr(p, n, v, arg4));
12563                 } else {
12564                     ret = get_errno(lgetxattr(p, n, v, arg4));
12565                 }
12566             } else {
12567                 ret = -TARGET_EFAULT;
12568             }
12569             unlock_user(p, arg1, 0);
12570             unlock_user(n, arg2, 0);
12571             unlock_user(v, arg3, arg4);
12572         }
12573         return ret;
12574     case TARGET_NR_fgetxattr:
12575         {
12576             void *n, *v = 0;
12577             if (arg3) {
12578                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12579                 if (!v) {
12580                     return -TARGET_EFAULT;
12581                 }
12582             }
12583             n = lock_user_string(arg2);
12584             if (n) {
12585                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12586             } else {
12587                 ret = -TARGET_EFAULT;
12588             }
12589             unlock_user(n, arg2, 0);
12590             unlock_user(v, arg3, arg4);
12591         }
12592         return ret;
12593     case TARGET_NR_removexattr:
12594     case TARGET_NR_lremovexattr:
12595         {
12596             void *n;
12597             p = lock_user_string(arg1);
12598             n = lock_user_string(arg2);
12599             if (p && n) {
12600                 if (num == TARGET_NR_removexattr) {
12601                     ret = get_errno(removexattr(p, n));
12602                 } else {
12603                     ret = get_errno(lremovexattr(p, n));
12604                 }
12605             } else {
12606                 ret = -TARGET_EFAULT;
12607             }
12608             unlock_user(p, arg1, 0);
12609             unlock_user(n, arg2, 0);
12610         }
12611         return ret;
12612     case TARGET_NR_fremovexattr:
12613         {
12614             void *n;
12615             n = lock_user_string(arg2);
12616             if (n) {
12617                 ret = get_errno(fremovexattr(arg1, n));
12618             } else {
12619                 ret = -TARGET_EFAULT;
12620             }
12621             unlock_user(n, arg2, 0);
12622         }
12623         return ret;
12624 #endif
12625 #endif /* CONFIG_ATTR */
12626 #ifdef TARGET_NR_set_thread_area
12627     case TARGET_NR_set_thread_area:
12628 #if defined(TARGET_MIPS)
12629       cpu_env->active_tc.CP0_UserLocal = arg1;
12630       return 0;
12631 #elif defined(TARGET_CRIS)
12632       if (arg1 & 0xff)
12633           ret = -TARGET_EINVAL;
12634       else {
12635           cpu_env->pregs[PR_PID] = arg1;
12636           ret = 0;
12637       }
12638       return ret;
12639 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12640       return do_set_thread_area(cpu_env, arg1);
12641 #elif defined(TARGET_M68K)
12642       {
12643           TaskState *ts = get_task_state(cpu);
12644           ts->tp_value = arg1;
12645           return 0;
12646       }
12647 #else
12648       return -TARGET_ENOSYS;
12649 #endif
12650 #endif
12651 #ifdef TARGET_NR_get_thread_area
12652     case TARGET_NR_get_thread_area:
12653 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12654         return do_get_thread_area(cpu_env, arg1);
12655 #elif defined(TARGET_M68K)
12656         {
12657             TaskState *ts = get_task_state(cpu);
12658             return ts->tp_value;
12659         }
12660 #else
12661         return -TARGET_ENOSYS;
12662 #endif
12663 #endif
12664 #ifdef TARGET_NR_getdomainname
12665     case TARGET_NR_getdomainname:
12666         return -TARGET_ENOSYS;
12667 #endif
12668 
12669 #ifdef TARGET_NR_clock_settime
12670     case TARGET_NR_clock_settime:
12671     {
12672         struct timespec ts;
12673 
12674         ret = target_to_host_timespec(&ts, arg2);
12675         if (!is_error(ret)) {
12676             ret = get_errno(clock_settime(arg1, &ts));
12677         }
12678         return ret;
12679     }
12680 #endif
12681 #ifdef TARGET_NR_clock_settime64
12682     case TARGET_NR_clock_settime64:
12683     {
12684         struct timespec ts;
12685 
12686         ret = target_to_host_timespec64(&ts, arg2);
12687         if (!is_error(ret)) {
12688             ret = get_errno(clock_settime(arg1, &ts));
12689         }
12690         return ret;
12691     }
12692 #endif
12693 #ifdef TARGET_NR_clock_gettime
12694     case TARGET_NR_clock_gettime:
12695     {
12696         struct timespec ts;
12697         ret = get_errno(clock_gettime(arg1, &ts));
12698         if (!is_error(ret)) {
12699             ret = host_to_target_timespec(arg2, &ts);
12700         }
12701         return ret;
12702     }
12703 #endif
12704 #ifdef TARGET_NR_clock_gettime64
12705     case TARGET_NR_clock_gettime64:
12706     {
12707         struct timespec ts;
12708         ret = get_errno(clock_gettime(arg1, &ts));
12709         if (!is_error(ret)) {
12710             ret = host_to_target_timespec64(arg2, &ts);
12711         }
12712         return ret;
12713     }
12714 #endif
12715 #ifdef TARGET_NR_clock_getres
12716     case TARGET_NR_clock_getres:
12717     {
12718         struct timespec ts;
12719         ret = get_errno(clock_getres(arg1, &ts));
12720         if (!is_error(ret)) {
12721             host_to_target_timespec(arg2, &ts);
12722         }
12723         return ret;
12724     }
12725 #endif
12726 #ifdef TARGET_NR_clock_getres_time64
12727     case TARGET_NR_clock_getres_time64:
12728     {
12729         struct timespec ts;
12730         ret = get_errno(clock_getres(arg1, &ts));
12731         if (!is_error(ret)) {
12732             host_to_target_timespec64(arg2, &ts);
12733         }
12734         return ret;
12735     }
12736 #endif
12737 #ifdef TARGET_NR_clock_nanosleep
12738     case TARGET_NR_clock_nanosleep:
12739     {
12740         struct timespec ts;
12741         if (target_to_host_timespec(&ts, arg3)) {
12742             return -TARGET_EFAULT;
12743         }
12744         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12745                                              &ts, arg4 ? &ts : NULL));
12746         /*
12747          * if the call is interrupted by a signal handler, it fails
12748          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12749          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12750          */
12751         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12752             host_to_target_timespec(arg4, &ts)) {
12753               return -TARGET_EFAULT;
12754         }
12755 
12756         return ret;
12757     }
12758 #endif
12759 #ifdef TARGET_NR_clock_nanosleep_time64
12760     case TARGET_NR_clock_nanosleep_time64:
12761     {
12762         struct timespec ts;
12763 
12764         if (target_to_host_timespec64(&ts, arg3)) {
12765             return -TARGET_EFAULT;
12766         }
12767 
12768         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12769                                              &ts, arg4 ? &ts : NULL));
12770 
12771         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12772             host_to_target_timespec64(arg4, &ts)) {
12773             return -TARGET_EFAULT;
12774         }
12775         return ret;
12776     }
12777 #endif
12778 
12779 #if defined(TARGET_NR_set_tid_address)
12780     case TARGET_NR_set_tid_address:
12781     {
12782         TaskState *ts = get_task_state(cpu);
12783         ts->child_tidptr = arg1;
12784         /* do not call host set_tid_address() syscall, instead return tid() */
12785         return get_errno(sys_gettid());
12786     }
12787 #endif
12788 
12789     case TARGET_NR_tkill:
12790         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12791 
12792     case TARGET_NR_tgkill:
12793         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12794                          target_to_host_signal(arg3)));
12795 
12796 #ifdef TARGET_NR_set_robust_list
12797     case TARGET_NR_set_robust_list:
12798     case TARGET_NR_get_robust_list:
12799         /* The ABI for supporting robust futexes has userspace pass
12800          * the kernel a pointer to a linked list which is updated by
12801          * userspace after the syscall; the list is walked by the kernel
12802          * when the thread exits. Since the linked list in QEMU guest
12803          * memory isn't a valid linked list for the host and we have
12804          * no way to reliably intercept the thread-death event, we can't
12805          * support these. Silently return ENOSYS so that guest userspace
12806          * falls back to a non-robust futex implementation (which should
12807          * be OK except in the corner case of the guest crashing while
12808          * holding a mutex that is shared with another process via
12809          * shared memory).
12810          */
12811         return -TARGET_ENOSYS;
12812 #endif
12813 
12814 #if defined(TARGET_NR_utimensat)
12815     case TARGET_NR_utimensat:
12816         {
12817             struct timespec *tsp, ts[2];
12818             if (!arg3) {
12819                 tsp = NULL;
12820             } else {
12821                 if (target_to_host_timespec(ts, arg3)) {
12822                     return -TARGET_EFAULT;
12823                 }
12824                 if (target_to_host_timespec(ts + 1, arg3 +
12825                                             sizeof(struct target_timespec))) {
12826                     return -TARGET_EFAULT;
12827                 }
12828                 tsp = ts;
12829             }
12830             if (!arg2)
12831                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12832             else {
12833                 if (!(p = lock_user_string(arg2))) {
12834                     return -TARGET_EFAULT;
12835                 }
12836                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12837                 unlock_user(p, arg2, 0);
12838             }
12839         }
12840         return ret;
12841 #endif
12842 #ifdef TARGET_NR_utimensat_time64
12843     case TARGET_NR_utimensat_time64:
12844         {
12845             struct timespec *tsp, ts[2];
12846             if (!arg3) {
12847                 tsp = NULL;
12848             } else {
12849                 if (target_to_host_timespec64(ts, arg3)) {
12850                     return -TARGET_EFAULT;
12851                 }
12852                 if (target_to_host_timespec64(ts + 1, arg3 +
12853                                      sizeof(struct target__kernel_timespec))) {
12854                     return -TARGET_EFAULT;
12855                 }
12856                 tsp = ts;
12857             }
12858             if (!arg2)
12859                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12860             else {
12861                 p = lock_user_string(arg2);
12862                 if (!p) {
12863                     return -TARGET_EFAULT;
12864                 }
12865                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12866                 unlock_user(p, arg2, 0);
12867             }
12868         }
12869         return ret;
12870 #endif
12871 #ifdef TARGET_NR_futex
12872     case TARGET_NR_futex:
12873         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12874 #endif
12875 #ifdef TARGET_NR_futex_time64
12876     case TARGET_NR_futex_time64:
12877         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12878 #endif
12879 #ifdef CONFIG_INOTIFY
12880 #if defined(TARGET_NR_inotify_init)
12881     case TARGET_NR_inotify_init:
12882         ret = get_errno(inotify_init());
12883         if (ret >= 0) {
12884             fd_trans_register(ret, &target_inotify_trans);
12885         }
12886         return ret;
12887 #endif
12888 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12889     case TARGET_NR_inotify_init1:
12890         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12891                                           fcntl_flags_tbl)));
12892         if (ret >= 0) {
12893             fd_trans_register(ret, &target_inotify_trans);
12894         }
12895         return ret;
12896 #endif
12897 #if defined(TARGET_NR_inotify_add_watch)
12898     case TARGET_NR_inotify_add_watch:
12899         p = lock_user_string(arg2);
12900         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12901         unlock_user(p, arg2, 0);
12902         return ret;
12903 #endif
12904 #if defined(TARGET_NR_inotify_rm_watch)
12905     case TARGET_NR_inotify_rm_watch:
12906         return get_errno(inotify_rm_watch(arg1, arg2));
12907 #endif
12908 #endif
12909 
12910 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12911     case TARGET_NR_mq_open:
12912         {
12913             struct mq_attr posix_mq_attr;
12914             struct mq_attr *pposix_mq_attr;
12915             int host_flags;
12916 
12917             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12918             pposix_mq_attr = NULL;
12919             if (arg4) {
12920                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12921                     return -TARGET_EFAULT;
12922                 }
12923                 pposix_mq_attr = &posix_mq_attr;
12924             }
12925             p = lock_user_string(arg1 - 1);
12926             if (!p) {
12927                 return -TARGET_EFAULT;
12928             }
12929             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12930             unlock_user (p, arg1, 0);
12931         }
12932         return ret;
12933 
12934     case TARGET_NR_mq_unlink:
12935         p = lock_user_string(arg1 - 1);
12936         if (!p) {
12937             return -TARGET_EFAULT;
12938         }
12939         ret = get_errno(mq_unlink(p));
12940         unlock_user (p, arg1, 0);
12941         return ret;
12942 
12943 #ifdef TARGET_NR_mq_timedsend
12944     case TARGET_NR_mq_timedsend:
12945         {
12946             struct timespec ts;
12947 
12948             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12949             if (arg5 != 0) {
12950                 if (target_to_host_timespec(&ts, arg5)) {
12951                     return -TARGET_EFAULT;
12952                 }
12953                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12954                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12955                     return -TARGET_EFAULT;
12956                 }
12957             } else {
12958                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12959             }
12960             unlock_user (p, arg2, arg3);
12961         }
12962         return ret;
12963 #endif
12964 #ifdef TARGET_NR_mq_timedsend_time64
12965     case TARGET_NR_mq_timedsend_time64:
12966         {
12967             struct timespec ts;
12968 
12969             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12970             if (arg5 != 0) {
12971                 if (target_to_host_timespec64(&ts, arg5)) {
12972                     return -TARGET_EFAULT;
12973                 }
12974                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12975                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12976                     return -TARGET_EFAULT;
12977                 }
12978             } else {
12979                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12980             }
12981             unlock_user(p, arg2, arg3);
12982         }
12983         return ret;
12984 #endif
12985 
12986 #ifdef TARGET_NR_mq_timedreceive
12987     case TARGET_NR_mq_timedreceive:
12988         {
12989             struct timespec ts;
12990             unsigned int prio;
12991 
12992             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12993             if (arg5 != 0) {
12994                 if (target_to_host_timespec(&ts, arg5)) {
12995                     return -TARGET_EFAULT;
12996                 }
12997                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12998                                                      &prio, &ts));
12999                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
13000                     return -TARGET_EFAULT;
13001                 }
13002             } else {
13003                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13004                                                      &prio, NULL));
13005             }
13006             unlock_user (p, arg2, arg3);
13007             if (arg4 != 0)
13008                 put_user_u32(prio, arg4);
13009         }
13010         return ret;
13011 #endif
13012 #ifdef TARGET_NR_mq_timedreceive_time64
13013     case TARGET_NR_mq_timedreceive_time64:
13014         {
13015             struct timespec ts;
13016             unsigned int prio;
13017 
13018             p = lock_user(VERIFY_READ, arg2, arg3, 1);
13019             if (arg5 != 0) {
13020                 if (target_to_host_timespec64(&ts, arg5)) {
13021                     return -TARGET_EFAULT;
13022                 }
13023                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13024                                                      &prio, &ts));
13025                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13026                     return -TARGET_EFAULT;
13027                 }
13028             } else {
13029                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13030                                                      &prio, NULL));
13031             }
13032             unlock_user(p, arg2, arg3);
13033             if (arg4 != 0) {
13034                 put_user_u32(prio, arg4);
13035             }
13036         }
13037         return ret;
13038 #endif
13039 
13040     /* Not implemented for now... */
13041 /*     case TARGET_NR_mq_notify: */
13042 /*         break; */
13043 
13044     case TARGET_NR_mq_getsetattr:
13045         {
13046             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13047             ret = 0;
13048             if (arg2 != 0) {
13049                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13050                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13051                                            &posix_mq_attr_out));
13052             } else if (arg3 != 0) {
13053                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13054             }
13055             if (ret == 0 && arg3 != 0) {
13056                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13057             }
13058         }
13059         return ret;
13060 #endif
13061 
13062 #ifdef CONFIG_SPLICE
13063 #ifdef TARGET_NR_tee
13064     case TARGET_NR_tee:
13065         {
13066             ret = get_errno(tee(arg1,arg2,arg3,arg4));
13067         }
13068         return ret;
13069 #endif
13070 #ifdef TARGET_NR_splice
13071     case TARGET_NR_splice:
13072         {
13073             loff_t loff_in, loff_out;
13074             loff_t *ploff_in = NULL, *ploff_out = NULL;
13075             if (arg2) {
13076                 if (get_user_u64(loff_in, arg2)) {
13077                     return -TARGET_EFAULT;
13078                 }
13079                 ploff_in = &loff_in;
13080             }
13081             if (arg4) {
13082                 if (get_user_u64(loff_out, arg4)) {
13083                     return -TARGET_EFAULT;
13084                 }
13085                 ploff_out = &loff_out;
13086             }
13087             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13088             if (arg2) {
13089                 if (put_user_u64(loff_in, arg2)) {
13090                     return -TARGET_EFAULT;
13091                 }
13092             }
13093             if (arg4) {
13094                 if (put_user_u64(loff_out, arg4)) {
13095                     return -TARGET_EFAULT;
13096                 }
13097             }
13098         }
13099         return ret;
13100 #endif
13101 #ifdef TARGET_NR_vmsplice
13102 	case TARGET_NR_vmsplice:
13103         {
13104             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13105             if (vec != NULL) {
13106                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13107                 unlock_iovec(vec, arg2, arg3, 0);
13108             } else {
13109                 ret = -host_to_target_errno(errno);
13110             }
13111         }
13112         return ret;
13113 #endif
13114 #endif /* CONFIG_SPLICE */
13115 #ifdef CONFIG_EVENTFD
13116 #if defined(TARGET_NR_eventfd)
13117     case TARGET_NR_eventfd:
13118         ret = get_errno(eventfd(arg1, 0));
13119         if (ret >= 0) {
13120             fd_trans_register(ret, &target_eventfd_trans);
13121         }
13122         return ret;
13123 #endif
13124 #if defined(TARGET_NR_eventfd2)
13125     case TARGET_NR_eventfd2:
13126     {
13127         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13128         if (arg2 & TARGET_O_NONBLOCK) {
13129             host_flags |= O_NONBLOCK;
13130         }
13131         if (arg2 & TARGET_O_CLOEXEC) {
13132             host_flags |= O_CLOEXEC;
13133         }
13134         ret = get_errno(eventfd(arg1, host_flags));
13135         if (ret >= 0) {
13136             fd_trans_register(ret, &target_eventfd_trans);
13137         }
13138         return ret;
13139     }
13140 #endif
13141 #endif /* CONFIG_EVENTFD  */
13142 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13143     case TARGET_NR_fallocate:
13144 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13145         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13146                                   target_offset64(arg5, arg6)));
13147 #else
13148         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13149 #endif
13150         return ret;
13151 #endif
13152 #if defined(CONFIG_SYNC_FILE_RANGE)
13153 #if defined(TARGET_NR_sync_file_range)
13154     case TARGET_NR_sync_file_range:
13155 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13156 #if defined(TARGET_MIPS)
13157         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13158                                         target_offset64(arg5, arg6), arg7));
13159 #else
13160         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13161                                         target_offset64(arg4, arg5), arg6));
13162 #endif /* !TARGET_MIPS */
13163 #else
13164         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13165 #endif
13166         return ret;
13167 #endif
13168 #if defined(TARGET_NR_sync_file_range2) || \
13169     defined(TARGET_NR_arm_sync_file_range)
13170 #if defined(TARGET_NR_sync_file_range2)
13171     case TARGET_NR_sync_file_range2:
13172 #endif
13173 #if defined(TARGET_NR_arm_sync_file_range)
13174     case TARGET_NR_arm_sync_file_range:
13175 #endif
13176         /* This is like sync_file_range but the arguments are reordered */
13177 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13178         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13179                                         target_offset64(arg5, arg6), arg2));
13180 #else
13181         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13182 #endif
13183         return ret;
13184 #endif
13185 #endif
13186 #if defined(TARGET_NR_signalfd4)
13187     case TARGET_NR_signalfd4:
13188         return do_signalfd4(arg1, arg2, arg4);
13189 #endif
13190 #if defined(TARGET_NR_signalfd)
13191     case TARGET_NR_signalfd:
13192         return do_signalfd4(arg1, arg2, 0);
13193 #endif
13194 #if defined(CONFIG_EPOLL)
13195 #if defined(TARGET_NR_epoll_create)
13196     case TARGET_NR_epoll_create:
13197         return get_errno(epoll_create(arg1));
13198 #endif
13199 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13200     case TARGET_NR_epoll_create1:
13201         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13202 #endif
13203 #if defined(TARGET_NR_epoll_ctl)
13204     case TARGET_NR_epoll_ctl:
13205     {
13206         struct epoll_event ep;
13207         struct epoll_event *epp = 0;
13208         if (arg4) {
13209             if (arg2 != EPOLL_CTL_DEL) {
13210                 struct target_epoll_event *target_ep;
13211                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13212                     return -TARGET_EFAULT;
13213                 }
13214                 ep.events = tswap32(target_ep->events);
13215                 /*
13216                  * The epoll_data_t union is just opaque data to the kernel,
13217                  * so we transfer all 64 bits across and need not worry what
13218                  * actual data type it is.
13219                  */
13220                 ep.data.u64 = tswap64(target_ep->data.u64);
13221                 unlock_user_struct(target_ep, arg4, 0);
13222             }
13223             /*
13224              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13225              * non-null pointer, even though this argument is ignored.
13226              *
13227              */
13228             epp = &ep;
13229         }
13230         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13231     }
13232 #endif
13233 
13234 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13235 #if defined(TARGET_NR_epoll_wait)
13236     case TARGET_NR_epoll_wait:
13237 #endif
13238 #if defined(TARGET_NR_epoll_pwait)
13239     case TARGET_NR_epoll_pwait:
13240 #endif
13241     {
13242         struct target_epoll_event *target_ep;
13243         struct epoll_event *ep;
13244         int epfd = arg1;
13245         int maxevents = arg3;
13246         int timeout = arg4;
13247 
13248         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13249             return -TARGET_EINVAL;
13250         }
13251 
13252         target_ep = lock_user(VERIFY_WRITE, arg2,
13253                               maxevents * sizeof(struct target_epoll_event), 1);
13254         if (!target_ep) {
13255             return -TARGET_EFAULT;
13256         }
13257 
13258         ep = g_try_new(struct epoll_event, maxevents);
13259         if (!ep) {
13260             unlock_user(target_ep, arg2, 0);
13261             return -TARGET_ENOMEM;
13262         }
13263 
13264         switch (num) {
13265 #if defined(TARGET_NR_epoll_pwait)
13266         case TARGET_NR_epoll_pwait:
13267         {
13268             sigset_t *set = NULL;
13269 
13270             if (arg5) {
13271                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13272                 if (ret != 0) {
13273                     break;
13274                 }
13275             }
13276 
13277             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13278                                              set, SIGSET_T_SIZE));
13279 
13280             if (set) {
13281                 finish_sigsuspend_mask(ret);
13282             }
13283             break;
13284         }
13285 #endif
13286 #if defined(TARGET_NR_epoll_wait)
13287         case TARGET_NR_epoll_wait:
13288             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13289                                              NULL, 0));
13290             break;
13291 #endif
13292         default:
13293             ret = -TARGET_ENOSYS;
13294         }
13295         if (!is_error(ret)) {
13296             int i;
13297             for (i = 0; i < ret; i++) {
13298                 target_ep[i].events = tswap32(ep[i].events);
13299                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13300             }
13301             unlock_user(target_ep, arg2,
13302                         ret * sizeof(struct target_epoll_event));
13303         } else {
13304             unlock_user(target_ep, arg2, 0);
13305         }
13306         g_free(ep);
13307         return ret;
13308     }
13309 #endif
13310 #endif
13311 #ifdef TARGET_NR_prlimit64
13312     case TARGET_NR_prlimit64:
13313     {
13314         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13315         struct target_rlimit64 *target_rnew, *target_rold;
13316         struct host_rlimit64 rnew, rold, *rnewp = 0;
13317         int resource = target_to_host_resource(arg2);
13318 
13319         if (arg3 && (resource != RLIMIT_AS &&
13320                      resource != RLIMIT_DATA &&
13321                      resource != RLIMIT_STACK)) {
13322             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13323                 return -TARGET_EFAULT;
13324             }
13325             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13326             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13327             unlock_user_struct(target_rnew, arg3, 0);
13328             rnewp = &rnew;
13329         }
13330 
13331         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13332         if (!is_error(ret) && arg4) {
13333             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13334                 return -TARGET_EFAULT;
13335             }
13336             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13337             __put_user(rold.rlim_max, &target_rold->rlim_max);
13338             unlock_user_struct(target_rold, arg4, 1);
13339         }
13340         return ret;
13341     }
13342 #endif
13343 #ifdef TARGET_NR_gethostname
13344     case TARGET_NR_gethostname:
13345     {
13346         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13347         if (name) {
13348             ret = get_errno(gethostname(name, arg2));
13349             unlock_user(name, arg1, arg2);
13350         } else {
13351             ret = -TARGET_EFAULT;
13352         }
13353         return ret;
13354     }
13355 #endif
13356 #ifdef TARGET_NR_atomic_cmpxchg_32
13357     case TARGET_NR_atomic_cmpxchg_32:
13358     {
13359         /* should use start_exclusive from main.c */
13360         abi_ulong mem_value;
13361         if (get_user_u32(mem_value, arg6)) {
13362             target_siginfo_t info;
13363             info.si_signo = SIGSEGV;
13364             info.si_errno = 0;
13365             info.si_code = TARGET_SEGV_MAPERR;
13366             info._sifields._sigfault._addr = arg6;
13367             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13368             ret = 0xdeadbeef;
13369 
13370         }
13371         if (mem_value == arg2)
13372             put_user_u32(arg1, arg6);
13373         return mem_value;
13374     }
13375 #endif
13376 #ifdef TARGET_NR_atomic_barrier
13377     case TARGET_NR_atomic_barrier:
13378         /* Like the kernel implementation and the
13379            qemu arm barrier, no-op this? */
13380         return 0;
13381 #endif
13382 
13383 #ifdef TARGET_NR_timer_create
13384     case TARGET_NR_timer_create:
13385     {
13386         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13387 
13388         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13389 
13390         int clkid = arg1;
13391         int timer_index = next_free_host_timer();
13392 
13393         if (timer_index < 0) {
13394             ret = -TARGET_EAGAIN;
13395         } else {
13396             timer_t *phtimer = g_posix_timers  + timer_index;
13397 
13398             if (arg2) {
13399                 phost_sevp = &host_sevp;
13400                 ret = target_to_host_sigevent(phost_sevp, arg2);
13401                 if (ret != 0) {
13402                     free_host_timer_slot(timer_index);
13403                     return ret;
13404                 }
13405             }
13406 
13407             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13408             if (ret) {
13409                 free_host_timer_slot(timer_index);
13410             } else {
13411                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13412                     timer_delete(*phtimer);
13413                     free_host_timer_slot(timer_index);
13414                     return -TARGET_EFAULT;
13415                 }
13416             }
13417         }
13418         return ret;
13419     }
13420 #endif
13421 
13422 #ifdef TARGET_NR_timer_settime
13423     case TARGET_NR_timer_settime:
13424     {
13425         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13426          * struct itimerspec * old_value */
13427         target_timer_t timerid = get_timer_id(arg1);
13428 
13429         if (timerid < 0) {
13430             ret = timerid;
13431         } else if (arg3 == 0) {
13432             ret = -TARGET_EINVAL;
13433         } else {
13434             timer_t htimer = g_posix_timers[timerid];
13435             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13436 
13437             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13438                 return -TARGET_EFAULT;
13439             }
13440             ret = get_errno(
13441                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13442             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13443                 return -TARGET_EFAULT;
13444             }
13445         }
13446         return ret;
13447     }
13448 #endif
13449 
13450 #ifdef TARGET_NR_timer_settime64
13451     case TARGET_NR_timer_settime64:
13452     {
13453         target_timer_t timerid = get_timer_id(arg1);
13454 
13455         if (timerid < 0) {
13456             ret = timerid;
13457         } else if (arg3 == 0) {
13458             ret = -TARGET_EINVAL;
13459         } else {
13460             timer_t htimer = g_posix_timers[timerid];
13461             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13462 
13463             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13464                 return -TARGET_EFAULT;
13465             }
13466             ret = get_errno(
13467                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13468             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13469                 return -TARGET_EFAULT;
13470             }
13471         }
13472         return ret;
13473     }
13474 #endif
13475 
13476 #ifdef TARGET_NR_timer_gettime
13477     case TARGET_NR_timer_gettime:
13478     {
13479         /* args: timer_t timerid, struct itimerspec *curr_value */
13480         target_timer_t timerid = get_timer_id(arg1);
13481 
13482         if (timerid < 0) {
13483             ret = timerid;
13484         } else if (!arg2) {
13485             ret = -TARGET_EFAULT;
13486         } else {
13487             timer_t htimer = g_posix_timers[timerid];
13488             struct itimerspec hspec;
13489             ret = get_errno(timer_gettime(htimer, &hspec));
13490 
13491             if (host_to_target_itimerspec(arg2, &hspec)) {
13492                 ret = -TARGET_EFAULT;
13493             }
13494         }
13495         return ret;
13496     }
13497 #endif
13498 
13499 #ifdef TARGET_NR_timer_gettime64
13500     case TARGET_NR_timer_gettime64:
13501     {
13502         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13503         target_timer_t timerid = get_timer_id(arg1);
13504 
13505         if (timerid < 0) {
13506             ret = timerid;
13507         } else if (!arg2) {
13508             ret = -TARGET_EFAULT;
13509         } else {
13510             timer_t htimer = g_posix_timers[timerid];
13511             struct itimerspec hspec;
13512             ret = get_errno(timer_gettime(htimer, &hspec));
13513 
13514             if (host_to_target_itimerspec64(arg2, &hspec)) {
13515                 ret = -TARGET_EFAULT;
13516             }
13517         }
13518         return ret;
13519     }
13520 #endif
13521 
13522 #ifdef TARGET_NR_timer_getoverrun
13523     case TARGET_NR_timer_getoverrun:
13524     {
13525         /* args: timer_t timerid */
13526         target_timer_t timerid = get_timer_id(arg1);
13527 
13528         if (timerid < 0) {
13529             ret = timerid;
13530         } else {
13531             timer_t htimer = g_posix_timers[timerid];
13532             ret = get_errno(timer_getoverrun(htimer));
13533         }
13534         return ret;
13535     }
13536 #endif
13537 
13538 #ifdef TARGET_NR_timer_delete
13539     case TARGET_NR_timer_delete:
13540     {
13541         /* args: timer_t timerid */
13542         target_timer_t timerid = get_timer_id(arg1);
13543 
13544         if (timerid < 0) {
13545             ret = timerid;
13546         } else {
13547             timer_t htimer = g_posix_timers[timerid];
13548             ret = get_errno(timer_delete(htimer));
13549             free_host_timer_slot(timerid);
13550         }
13551         return ret;
13552     }
13553 #endif
13554 
13555 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13556     case TARGET_NR_timerfd_create:
13557         ret = get_errno(timerfd_create(arg1,
13558                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13559         if (ret >= 0) {
13560             fd_trans_register(ret, &target_timerfd_trans);
13561         }
13562         return ret;
13563 #endif
13564 
13565 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13566     case TARGET_NR_timerfd_gettime:
13567         {
13568             struct itimerspec its_curr;
13569 
13570             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13571 
13572             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13573                 return -TARGET_EFAULT;
13574             }
13575         }
13576         return ret;
13577 #endif
13578 
13579 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13580     case TARGET_NR_timerfd_gettime64:
13581         {
13582             struct itimerspec its_curr;
13583 
13584             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13585 
13586             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13587                 return -TARGET_EFAULT;
13588             }
13589         }
13590         return ret;
13591 #endif
13592 
13593 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13594     case TARGET_NR_timerfd_settime:
13595         {
13596             struct itimerspec its_new, its_old, *p_new;
13597 
13598             if (arg3) {
13599                 if (target_to_host_itimerspec(&its_new, arg3)) {
13600                     return -TARGET_EFAULT;
13601                 }
13602                 p_new = &its_new;
13603             } else {
13604                 p_new = NULL;
13605             }
13606 
13607             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13608 
13609             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13610                 return -TARGET_EFAULT;
13611             }
13612         }
13613         return ret;
13614 #endif
13615 
13616 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13617     case TARGET_NR_timerfd_settime64:
13618         {
13619             struct itimerspec its_new, its_old, *p_new;
13620 
13621             if (arg3) {
13622                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13623                     return -TARGET_EFAULT;
13624                 }
13625                 p_new = &its_new;
13626             } else {
13627                 p_new = NULL;
13628             }
13629 
13630             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13631 
13632             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13633                 return -TARGET_EFAULT;
13634             }
13635         }
13636         return ret;
13637 #endif
13638 
13639 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13640     case TARGET_NR_ioprio_get:
13641         return get_errno(ioprio_get(arg1, arg2));
13642 #endif
13643 
13644 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13645     case TARGET_NR_ioprio_set:
13646         return get_errno(ioprio_set(arg1, arg2, arg3));
13647 #endif
13648 
13649 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13650     case TARGET_NR_setns:
13651         return get_errno(setns(arg1, arg2));
13652 #endif
13653 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13654     case TARGET_NR_unshare:
13655         return get_errno(unshare(arg1));
13656 #endif
13657 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13658     case TARGET_NR_kcmp:
13659         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13660 #endif
13661 #ifdef TARGET_NR_swapcontext
13662     case TARGET_NR_swapcontext:
13663         /* PowerPC specific.  */
13664         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13665 #endif
13666 #ifdef TARGET_NR_memfd_create
13667     case TARGET_NR_memfd_create:
13668         p = lock_user_string(arg1);
13669         if (!p) {
13670             return -TARGET_EFAULT;
13671         }
13672         ret = get_errno(memfd_create(p, arg2));
13673         fd_trans_unregister(ret);
13674         unlock_user(p, arg1, 0);
13675         return ret;
13676 #endif
13677 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13678     case TARGET_NR_membarrier:
13679         return get_errno(membarrier(arg1, arg2));
13680 #endif
13681 
13682 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13683     case TARGET_NR_copy_file_range:
13684         {
13685             loff_t inoff, outoff;
13686             loff_t *pinoff = NULL, *poutoff = NULL;
13687 
13688             if (arg2) {
13689                 if (get_user_u64(inoff, arg2)) {
13690                     return -TARGET_EFAULT;
13691                 }
13692                 pinoff = &inoff;
13693             }
13694             if (arg4) {
13695                 if (get_user_u64(outoff, arg4)) {
13696                     return -TARGET_EFAULT;
13697                 }
13698                 poutoff = &outoff;
13699             }
13700             /* Do not sign-extend the count parameter. */
13701             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13702                                                  (abi_ulong)arg5, arg6));
13703             if (!is_error(ret) && ret > 0) {
13704                 if (arg2) {
13705                     if (put_user_u64(inoff, arg2)) {
13706                         return -TARGET_EFAULT;
13707                     }
13708                 }
13709                 if (arg4) {
13710                     if (put_user_u64(outoff, arg4)) {
13711                         return -TARGET_EFAULT;
13712                     }
13713                 }
13714             }
13715         }
13716         return ret;
13717 #endif
13718 
13719 #if defined(TARGET_NR_pivot_root)
13720     case TARGET_NR_pivot_root:
13721         {
13722             void *p2;
13723             p = lock_user_string(arg1); /* new_root */
13724             p2 = lock_user_string(arg2); /* put_old */
13725             if (!p || !p2) {
13726                 ret = -TARGET_EFAULT;
13727             } else {
13728                 ret = get_errno(pivot_root(p, p2));
13729             }
13730             unlock_user(p2, arg2, 0);
13731             unlock_user(p, arg1, 0);
13732         }
13733         return ret;
13734 #endif
13735 
13736 #if defined(TARGET_NR_riscv_hwprobe)
13737     case TARGET_NR_riscv_hwprobe:
13738         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13739 #endif
13740 
13741     default:
13742         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13743         return -TARGET_ENOSYS;
13744     }
13745     return ret;
13746 }
13747 
13748 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13749                     abi_long arg2, abi_long arg3, abi_long arg4,
13750                     abi_long arg5, abi_long arg6, abi_long arg7,
13751                     abi_long arg8)
13752 {
13753     CPUState *cpu = env_cpu(cpu_env);
13754     abi_long ret;
13755 
13756 #ifdef DEBUG_ERESTARTSYS
13757     /* Debug-only code for exercising the syscall-restart code paths
13758      * in the per-architecture cpu main loops: restart every syscall
13759      * the guest makes once before letting it through.
13760      */
13761     {
13762         static bool flag;
13763         flag = !flag;
13764         if (flag) {
13765             return -QEMU_ERESTARTSYS;
13766         }
13767     }
13768 #endif
13769 
13770     record_syscall_start(cpu, num, arg1,
13771                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13772 
13773     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13774         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13775     }
13776 
13777     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13778                       arg5, arg6, arg7, arg8);
13779 
13780     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13781         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13782                           arg3, arg4, arg5, arg6);
13783     }
13784 
13785     record_syscall_return(cpu, num, ret);
13786     return ret;
13787 }
13788