1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include "qemu/memfd.h" 24 #include "qemu/queue.h" 25 #include "qemu/plugin.h" 26 #include "tcg/startup.h" 27 #include "target_mman.h" 28 #include "exec/page-protection.h" 29 #include <elf.h> 30 #include <endian.h> 31 #include <grp.h> 32 #include <sys/ipc.h> 33 #include <sys/msg.h> 34 #include <sys/wait.h> 35 #include <sys/mount.h> 36 #include <sys/file.h> 37 #include <sys/fsuid.h> 38 #include <sys/personality.h> 39 #include <sys/prctl.h> 40 #include <sys/resource.h> 41 #include <sys/swap.h> 42 #include <linux/capability.h> 43 #include <sched.h> 44 #include <sys/timex.h> 45 #include <sys/socket.h> 46 #include <linux/sockios.h> 47 #include <sys/un.h> 48 #include <sys/uio.h> 49 #include <poll.h> 50 #include <sys/times.h> 51 #include <sys/shm.h> 52 #include <sys/sem.h> 53 #include <sys/statfs.h> 54 #include <utime.h> 55 #include <sys/sysinfo.h> 56 #include <sys/signalfd.h> 57 //#include <sys/user.h> 58 #include <netinet/in.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp.h> 61 #include <netinet/udp.h> 62 #include <linux/wireless.h> 63 #include <linux/icmp.h> 64 #include <linux/icmpv6.h> 65 #include <linux/if_tun.h> 66 #include <linux/in6.h> 67 #include <linux/errqueue.h> 68 #include <linux/random.h> 69 #ifdef CONFIG_TIMERFD 70 #include <sys/timerfd.h> 71 #endif 72 #ifdef CONFIG_EVENTFD 73 #include <sys/eventfd.h> 74 #endif 75 #ifdef CONFIG_EPOLL 76 #include <sys/epoll.h> 77 #endif 78 #ifdef CONFIG_ATTR 79 #include "qemu/xattr.h" 80 #endif 81 #ifdef CONFIG_SENDFILE 82 #include <sys/sendfile.h> 83 #endif 84 #ifdef HAVE_SYS_KCOV_H 85 #include <sys/kcov.h> 86 #endif 87 88 #define termios host_termios 89 #define winsize host_winsize 90 #define termio host_termio 91 #define sgttyb host_sgttyb /* same as target */ 92 #define tchars host_tchars /* same as target */ 93 #define ltchars host_ltchars /* same as target */ 94 95 #include <linux/termios.h> 96 #include <linux/unistd.h> 97 #include <linux/cdrom.h> 98 #include <linux/hdreg.h> 99 #include <linux/soundcard.h> 100 #include <linux/kd.h> 101 #include <linux/mtio.h> 102 #include <linux/fs.h> 103 #include <linux/fd.h> 104 #if defined(CONFIG_FIEMAP) 105 #include <linux/fiemap.h> 106 #endif 107 #include <linux/fb.h> 108 #if defined(CONFIG_USBFS) 109 #include <linux/usbdevice_fs.h> 110 #include <linux/usb/ch9.h> 111 #endif 112 #include <linux/vt.h> 113 #include <linux/dm-ioctl.h> 114 #include <linux/reboot.h> 115 #include <linux/route.h> 116 #include <linux/filter.h> 117 #include <linux/blkpg.h> 118 #include <netpacket/packet.h> 119 #include <linux/netlink.h> 120 #include <linux/if_alg.h> 121 #include <linux/rtc.h> 122 #include <sound/asound.h> 123 #ifdef HAVE_BTRFS_H 124 #include <linux/btrfs.h> 125 #endif 126 #ifdef HAVE_DRM_H 127 #include <libdrm/drm.h> 128 #include <libdrm/i915_drm.h> 129 #endif 130 #include "linux_loop.h" 131 #include "uname.h" 132 133 #include "qemu.h" 134 #include "user-internals.h" 135 #include "strace.h" 136 #include "signal-common.h" 137 #include "loader.h" 138 #include "user-mmap.h" 139 #include "user/safe-syscall.h" 140 #include "qemu/guest-random.h" 141 #include "qemu/selfmap.h" 142 #include "user/syscall-trace.h" 143 #include "special-errno.h" 144 #include "qapi/error.h" 145 #include "fd-trans.h" 146 #include "cpu_loop-common.h" 147 148 #ifndef CLONE_IO 149 #define CLONE_IO 0x80000000 /* Clone io context */ 150 #endif 151 152 /* We can't directly call the host clone syscall, because this will 153 * badly confuse libc (breaking mutexes, for example). So we must 154 * divide clone flags into: 155 * * flag combinations that look like pthread_create() 156 * * flag combinations that look like fork() 157 * * flags we can implement within QEMU itself 158 * * flags we can't support and will return an error for 159 */ 160 /* For thread creation, all these flags must be present; for 161 * fork, none must be present. 162 */ 163 #define CLONE_THREAD_FLAGS \ 164 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 165 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 166 167 /* These flags are ignored: 168 * CLONE_DETACHED is now ignored by the kernel; 169 * CLONE_IO is just an optimisation hint to the I/O scheduler 170 */ 171 #define CLONE_IGNORED_FLAGS \ 172 (CLONE_DETACHED | CLONE_IO) 173 174 #ifndef CLONE_PIDFD 175 # define CLONE_PIDFD 0x00001000 176 #endif 177 178 /* Flags for fork which we can implement within QEMU itself */ 179 #define CLONE_OPTIONAL_FORK_FLAGS \ 180 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \ 181 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 182 183 /* Flags for thread creation which we can implement within QEMU itself */ 184 #define CLONE_OPTIONAL_THREAD_FLAGS \ 185 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 186 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 187 188 #define CLONE_INVALID_FORK_FLAGS \ 189 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 190 191 #define CLONE_INVALID_THREAD_FLAGS \ 192 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 193 CLONE_IGNORED_FLAGS)) 194 195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 196 * have almost all been allocated. We cannot support any of 197 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 198 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 199 * The checks against the invalid thread masks above will catch these. 200 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 201 */ 202 203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 204 * once. This exercises the codepaths for restart. 205 */ 206 //#define DEBUG_ERESTARTSYS 207 208 //#include <linux/msdos_fs.h> 209 #define VFAT_IOCTL_READDIR_BOTH \ 210 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2) 211 #define VFAT_IOCTL_READDIR_SHORT \ 212 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2) 213 214 #undef _syscall0 215 #undef _syscall1 216 #undef _syscall2 217 #undef _syscall3 218 #undef _syscall4 219 #undef _syscall5 220 #undef _syscall6 221 222 #define _syscall0(type,name) \ 223 static type name (void) \ 224 { \ 225 return syscall(__NR_##name); \ 226 } 227 228 #define _syscall1(type,name,type1,arg1) \ 229 static type name (type1 arg1) \ 230 { \ 231 return syscall(__NR_##name, arg1); \ 232 } 233 234 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 235 static type name (type1 arg1,type2 arg2) \ 236 { \ 237 return syscall(__NR_##name, arg1, arg2); \ 238 } 239 240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 241 static type name (type1 arg1,type2 arg2,type3 arg3) \ 242 { \ 243 return syscall(__NR_##name, arg1, arg2, arg3); \ 244 } 245 246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 248 { \ 249 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 250 } 251 252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 253 type5,arg5) \ 254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 255 { \ 256 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 257 } 258 259 260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 261 type5,arg5,type6,arg6) \ 262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 263 type6 arg6) \ 264 { \ 265 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 266 } 267 268 269 #define __NR_sys_uname __NR_uname 270 #define __NR_sys_getcwd1 __NR_getcwd 271 #define __NR_sys_getdents __NR_getdents 272 #define __NR_sys_getdents64 __NR_getdents64 273 #define __NR_sys_getpriority __NR_getpriority 274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 276 #define __NR_sys_syslog __NR_syslog 277 #if defined(__NR_futex) 278 # define __NR_sys_futex __NR_futex 279 #endif 280 #if defined(__NR_futex_time64) 281 # define __NR_sys_futex_time64 __NR_futex_time64 282 #endif 283 #define __NR_sys_statx __NR_statx 284 285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 286 #define __NR__llseek __NR_lseek 287 #endif 288 289 /* Newer kernel ports have llseek() instead of _llseek() */ 290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 291 #define TARGET_NR__llseek TARGET_NR_llseek 292 #endif 293 294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */ 295 #ifndef TARGET_O_NONBLOCK_MASK 296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK 297 #endif 298 299 #define __NR_sys_gettid __NR_gettid 300 _syscall0(int, sys_gettid) 301 302 /* For the 64-bit guest on 32-bit host case we must emulate 303 * getdents using getdents64, because otherwise the host 304 * might hand us back more dirent records than we can fit 305 * into the guest buffer after structure format conversion. 306 * Otherwise we emulate getdents with getdents if the host has it. 307 */ 308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS 309 #define EMULATE_GETDENTS_WITH_GETDENTS 310 #endif 311 312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS) 313 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count); 314 #endif 315 #if (defined(TARGET_NR_getdents) && \ 316 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \ 317 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 318 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count); 319 #endif 320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 321 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo, 322 loff_t *, res, unsigned int, wh); 323 #endif 324 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 325 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 326 siginfo_t *, uinfo) 327 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 328 #ifdef __NR_exit_group 329 _syscall1(int,exit_group,int,error_code) 330 #endif 331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 332 #define __NR_sys_close_range __NR_close_range 333 _syscall3(int,sys_close_range,int,first,int,last,int,flags) 334 #ifndef CLOSE_RANGE_CLOEXEC 335 #define CLOSE_RANGE_CLOEXEC (1U << 2) 336 #endif 337 #endif 338 #if defined(__NR_futex) 339 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 340 const struct timespec *,timeout,int *,uaddr2,int,val3) 341 #endif 342 #if defined(__NR_futex_time64) 343 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val, 344 const struct timespec *,timeout,int *,uaddr2,int,val3) 345 #endif 346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 347 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags); 348 #endif 349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 350 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info, 351 unsigned int, flags); 352 #endif 353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 354 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags); 355 #endif 356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 357 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 358 unsigned long *, user_mask_ptr); 359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 360 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 361 unsigned long *, user_mask_ptr); 362 /* sched_attr is not defined in glibc */ 363 struct sched_attr { 364 uint32_t size; 365 uint32_t sched_policy; 366 uint64_t sched_flags; 367 int32_t sched_nice; 368 uint32_t sched_priority; 369 uint64_t sched_runtime; 370 uint64_t sched_deadline; 371 uint64_t sched_period; 372 uint32_t sched_util_min; 373 uint32_t sched_util_max; 374 }; 375 #define __NR_sys_sched_getattr __NR_sched_getattr 376 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr, 377 unsigned int, size, unsigned int, flags); 378 #define __NR_sys_sched_setattr __NR_sched_setattr 379 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr, 380 unsigned int, flags); 381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler 382 _syscall1(int, sys_sched_getscheduler, pid_t, pid); 383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler 384 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy, 385 const struct sched_param *, param); 386 #define __NR_sys_sched_getparam __NR_sched_getparam 387 _syscall2(int, sys_sched_getparam, pid_t, pid, 388 struct sched_param *, param); 389 #define __NR_sys_sched_setparam __NR_sched_setparam 390 _syscall2(int, sys_sched_setparam, pid_t, pid, 391 const struct sched_param *, param); 392 #define __NR_sys_getcpu __NR_getcpu 393 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 394 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 395 void *, arg); 396 _syscall2(int, capget, struct __user_cap_header_struct *, header, 397 struct __user_cap_data_struct *, data); 398 _syscall2(int, capset, struct __user_cap_header_struct *, header, 399 struct __user_cap_data_struct *, data); 400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 401 _syscall2(int, ioprio_get, int, which, int, who) 402 #endif 403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 404 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 405 #endif 406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 407 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 408 #endif 409 410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 411 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 412 unsigned long, idx1, unsigned long, idx2) 413 #endif 414 415 /* 416 * It is assumed that struct statx is architecture independent. 417 */ 418 #if defined(TARGET_NR_statx) && defined(__NR_statx) 419 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags, 420 unsigned int, mask, struct target_statx *, statxbuf) 421 #endif 422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier) 423 _syscall2(int, membarrier, int, cmd, int, flags) 424 #endif 425 426 static const bitmask_transtbl fcntl_flags_tbl[] = { 427 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 428 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 429 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 430 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 431 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 432 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 433 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 434 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 435 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 436 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 437 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 438 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 439 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 440 #if defined(O_DIRECT) 441 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 442 #endif 443 #if defined(O_NOATIME) 444 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 445 #endif 446 #if defined(O_CLOEXEC) 447 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 448 #endif 449 #if defined(O_PATH) 450 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 451 #endif 452 #if defined(O_TMPFILE) 453 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 454 #endif 455 /* Don't terminate the list prematurely on 64-bit host+guest. */ 456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 457 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 458 #endif 459 }; 460 461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size) 462 463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64) 464 #if defined(__NR_utimensat) 465 #define __NR_sys_utimensat __NR_utimensat 466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 467 const struct timespec *,tsp,int,flags) 468 #else 469 static int sys_utimensat(int dirfd, const char *pathname, 470 const struct timespec times[2], int flags) 471 { 472 errno = ENOSYS; 473 return -1; 474 } 475 #endif 476 #endif /* TARGET_NR_utimensat */ 477 478 #ifdef TARGET_NR_renameat2 479 #if defined(__NR_renameat2) 480 #define __NR_sys_renameat2 __NR_renameat2 481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 482 const char *, new, unsigned int, flags) 483 #else 484 static int sys_renameat2(int oldfd, const char *old, 485 int newfd, const char *new, int flags) 486 { 487 if (flags == 0) { 488 return renameat(oldfd, old, newfd, new); 489 } 490 errno = ENOSYS; 491 return -1; 492 } 493 #endif 494 #endif /* TARGET_NR_renameat2 */ 495 496 #ifdef CONFIG_INOTIFY 497 #include <sys/inotify.h> 498 #else 499 /* Userspace can usually survive runtime without inotify */ 500 #undef TARGET_NR_inotify_init 501 #undef TARGET_NR_inotify_init1 502 #undef TARGET_NR_inotify_add_watch 503 #undef TARGET_NR_inotify_rm_watch 504 #endif /* CONFIG_INOTIFY */ 505 506 #if defined(TARGET_NR_prlimit64) 507 #ifndef __NR_prlimit64 508 # define __NR_prlimit64 -1 509 #endif 510 #define __NR_sys_prlimit64 __NR_prlimit64 511 /* The glibc rlimit structure may not be that used by the underlying syscall */ 512 struct host_rlimit64 { 513 uint64_t rlim_cur; 514 uint64_t rlim_max; 515 }; 516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 517 const struct host_rlimit64 *, new_limit, 518 struct host_rlimit64 *, old_limit) 519 #endif 520 521 522 #if defined(TARGET_NR_timer_create) 523 /* Maximum of 32 active POSIX timers allowed at any one time. */ 524 #define GUEST_TIMER_MAX 32 525 static timer_t g_posix_timers[GUEST_TIMER_MAX]; 526 static int g_posix_timer_allocated[GUEST_TIMER_MAX]; 527 528 static inline int next_free_host_timer(void) 529 { 530 int k; 531 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) { 532 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) { 533 return k; 534 } 535 } 536 return -1; 537 } 538 539 static inline void free_host_timer_slot(int id) 540 { 541 qatomic_store_release(g_posix_timer_allocated + id, 0); 542 } 543 #endif 544 545 static inline int host_to_target_errno(int host_errno) 546 { 547 switch (host_errno) { 548 #define E(X) case X: return TARGET_##X; 549 #include "errnos.c.inc" 550 #undef E 551 default: 552 return host_errno; 553 } 554 } 555 556 static inline int target_to_host_errno(int target_errno) 557 { 558 switch (target_errno) { 559 #define E(X) case TARGET_##X: return X; 560 #include "errnos.c.inc" 561 #undef E 562 default: 563 return target_errno; 564 } 565 } 566 567 abi_long get_errno(abi_long ret) 568 { 569 if (ret == -1) 570 return -host_to_target_errno(errno); 571 else 572 return ret; 573 } 574 575 const char *target_strerror(int err) 576 { 577 if (err == QEMU_ERESTARTSYS) { 578 return "To be restarted"; 579 } 580 if (err == QEMU_ESIGRETURN) { 581 return "Successful exit from sigreturn"; 582 } 583 584 return strerror(target_to_host_errno(err)); 585 } 586 587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize) 588 { 589 int i; 590 uint8_t b; 591 if (usize <= ksize) { 592 return 1; 593 } 594 for (i = ksize; i < usize; i++) { 595 if (get_user_u8(b, addr + i)) { 596 return -TARGET_EFAULT; 597 } 598 if (b != 0) { 599 return 0; 600 } 601 } 602 return 1; 603 } 604 605 #define safe_syscall0(type, name) \ 606 static type safe_##name(void) \ 607 { \ 608 return safe_syscall(__NR_##name); \ 609 } 610 611 #define safe_syscall1(type, name, type1, arg1) \ 612 static type safe_##name(type1 arg1) \ 613 { \ 614 return safe_syscall(__NR_##name, arg1); \ 615 } 616 617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 618 static type safe_##name(type1 arg1, type2 arg2) \ 619 { \ 620 return safe_syscall(__NR_##name, arg1, arg2); \ 621 } 622 623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 625 { \ 626 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 627 } 628 629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 630 type4, arg4) \ 631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 632 { \ 633 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 634 } 635 636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 637 type4, arg4, type5, arg5) \ 638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 639 type5 arg5) \ 640 { \ 641 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 642 } 643 644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 645 type4, arg4, type5, arg5, type6, arg6) \ 646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 647 type5 arg5, type6 arg6) \ 648 { \ 649 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 650 } 651 652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 655 int, flags, mode_t, mode) 656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid) 657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 658 struct rusage *, rusage) 659 #endif 660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 661 int, options, struct rusage *, rusage) 662 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 663 safe_syscall5(int, execveat, int, dirfd, const char *, filename, 664 char **, argv, char **, envp, int, flags) 665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 666 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 667 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 668 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 669 #endif 670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64) 671 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 672 struct timespec *, tsp, const sigset_t *, sigmask, 673 size_t, sigsetsize) 674 #endif 675 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 676 int, maxevents, int, timeout, const sigset_t *, sigmask, 677 size_t, sigsetsize) 678 #if defined(__NR_futex) 679 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 680 const struct timespec *,timeout,int *,uaddr2,int,val3) 681 #endif 682 #if defined(__NR_futex_time64) 683 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \ 684 const struct timespec *,timeout,int *,uaddr2,int,val3) 685 #endif 686 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 687 safe_syscall2(int, kill, pid_t, pid, int, sig) 688 safe_syscall2(int, tkill, int, tid, int, sig) 689 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 690 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 691 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 692 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 693 unsigned long, pos_l, unsigned long, pos_h) 694 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 695 unsigned long, pos_l, unsigned long, pos_h) 696 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 697 socklen_t, addrlen) 698 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 699 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 700 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 701 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 702 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 703 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 704 safe_syscall2(int, flock, int, fd, int, operation) 705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64) 706 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 707 const struct timespec *, uts, size_t, sigsetsize) 708 #endif 709 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 710 int, flags) 711 #if defined(TARGET_NR_nanosleep) 712 safe_syscall2(int, nanosleep, const struct timespec *, req, 713 struct timespec *, rem) 714 #endif 715 #if defined(TARGET_NR_clock_nanosleep) || \ 716 defined(TARGET_NR_clock_nanosleep_time64) 717 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 718 const struct timespec *, req, struct timespec *, rem) 719 #endif 720 #ifdef __NR_ipc 721 #ifdef __s390x__ 722 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third, 723 void *, ptr) 724 #else 725 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 726 void *, ptr, long, fifth) 727 #endif 728 #endif 729 #ifdef __NR_msgsnd 730 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 731 int, flags) 732 #endif 733 #ifdef __NR_msgrcv 734 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 735 long, msgtype, int, flags) 736 #endif 737 #ifdef __NR_semtimedop 738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 739 unsigned, nsops, const struct timespec *, timeout) 740 #endif 741 #if defined(TARGET_NR_mq_timedsend) || \ 742 defined(TARGET_NR_mq_timedsend_time64) 743 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 744 size_t, len, unsigned, prio, const struct timespec *, timeout) 745 #endif 746 #if defined(TARGET_NR_mq_timedreceive) || \ 747 defined(TARGET_NR_mq_timedreceive_time64) 748 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 749 size_t, len, unsigned *, prio, const struct timespec *, timeout) 750 #endif 751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 752 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff, 753 int, outfd, loff_t *, poutoff, size_t, length, 754 unsigned int, flags) 755 #endif 756 757 /* We do ioctl like this rather than via safe_syscall3 to preserve the 758 * "third argument might be integer or pointer or not present" behaviour of 759 * the libc function. 760 */ 761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 762 /* Similarly for fcntl. Note that callers must always: 763 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 764 * use the flock64 struct rather than unsuffixed flock 765 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 766 */ 767 #ifdef __NR_fcntl64 768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 769 #else 770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 771 #endif 772 773 static inline int host_to_target_sock_type(int host_type) 774 { 775 int target_type; 776 777 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 778 case SOCK_DGRAM: 779 target_type = TARGET_SOCK_DGRAM; 780 break; 781 case SOCK_STREAM: 782 target_type = TARGET_SOCK_STREAM; 783 break; 784 default: 785 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 786 break; 787 } 788 789 #if defined(SOCK_CLOEXEC) 790 if (host_type & SOCK_CLOEXEC) { 791 target_type |= TARGET_SOCK_CLOEXEC; 792 } 793 #endif 794 795 #if defined(SOCK_NONBLOCK) 796 if (host_type & SOCK_NONBLOCK) { 797 target_type |= TARGET_SOCK_NONBLOCK; 798 } 799 #endif 800 801 return target_type; 802 } 803 804 static abi_ulong target_brk, initial_target_brk; 805 806 void target_set_brk(abi_ulong new_brk) 807 { 808 target_brk = TARGET_PAGE_ALIGN(new_brk); 809 initial_target_brk = target_brk; 810 } 811 812 /* do_brk() must return target values and target errnos. */ 813 abi_long do_brk(abi_ulong brk_val) 814 { 815 abi_long mapped_addr; 816 abi_ulong new_brk; 817 abi_ulong old_brk; 818 819 /* brk pointers are always untagged */ 820 821 /* do not allow to shrink below initial brk value */ 822 if (brk_val < initial_target_brk) { 823 return target_brk; 824 } 825 826 new_brk = TARGET_PAGE_ALIGN(brk_val); 827 old_brk = TARGET_PAGE_ALIGN(target_brk); 828 829 /* new and old target_brk might be on the same page */ 830 if (new_brk == old_brk) { 831 target_brk = brk_val; 832 return target_brk; 833 } 834 835 /* Release heap if necessary */ 836 if (new_brk < old_brk) { 837 target_munmap(new_brk, old_brk - new_brk); 838 839 target_brk = brk_val; 840 return target_brk; 841 } 842 843 mapped_addr = target_mmap(old_brk, new_brk - old_brk, 844 PROT_READ | PROT_WRITE, 845 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE, 846 -1, 0); 847 848 if (mapped_addr == old_brk) { 849 target_brk = brk_val; 850 return target_brk; 851 } 852 853 #if defined(TARGET_ALPHA) 854 /* We (partially) emulate OSF/1 on Alpha, which requires we 855 return a proper errno, not an unchanged brk value. */ 856 return -TARGET_ENOMEM; 857 #endif 858 /* For everything else, return the previous break. */ 859 return target_brk; 860 } 861 862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 863 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 864 static inline abi_long copy_from_user_fdset(fd_set *fds, 865 abi_ulong target_fds_addr, 866 int n) 867 { 868 int i, nw, j, k; 869 abi_ulong b, *target_fds; 870 871 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 872 if (!(target_fds = lock_user(VERIFY_READ, 873 target_fds_addr, 874 sizeof(abi_ulong) * nw, 875 1))) 876 return -TARGET_EFAULT; 877 878 FD_ZERO(fds); 879 k = 0; 880 for (i = 0; i < nw; i++) { 881 /* grab the abi_ulong */ 882 __get_user(b, &target_fds[i]); 883 for (j = 0; j < TARGET_ABI_BITS; j++) { 884 /* check the bit inside the abi_ulong */ 885 if ((b >> j) & 1) 886 FD_SET(k, fds); 887 k++; 888 } 889 } 890 891 unlock_user(target_fds, target_fds_addr, 0); 892 893 return 0; 894 } 895 896 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 897 abi_ulong target_fds_addr, 898 int n) 899 { 900 if (target_fds_addr) { 901 if (copy_from_user_fdset(fds, target_fds_addr, n)) 902 return -TARGET_EFAULT; 903 *fds_ptr = fds; 904 } else { 905 *fds_ptr = NULL; 906 } 907 return 0; 908 } 909 910 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 911 const fd_set *fds, 912 int n) 913 { 914 int i, nw, j, k; 915 abi_long v; 916 abi_ulong *target_fds; 917 918 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 919 if (!(target_fds = lock_user(VERIFY_WRITE, 920 target_fds_addr, 921 sizeof(abi_ulong) * nw, 922 0))) 923 return -TARGET_EFAULT; 924 925 k = 0; 926 for (i = 0; i < nw; i++) { 927 v = 0; 928 for (j = 0; j < TARGET_ABI_BITS; j++) { 929 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 930 k++; 931 } 932 __put_user(v, &target_fds[i]); 933 } 934 935 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 936 937 return 0; 938 } 939 #endif 940 941 #if defined(__alpha__) 942 #define HOST_HZ 1024 943 #else 944 #define HOST_HZ 100 945 #endif 946 947 static inline abi_long host_to_target_clock_t(long ticks) 948 { 949 #if HOST_HZ == TARGET_HZ 950 return ticks; 951 #else 952 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 953 #endif 954 } 955 956 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 957 const struct rusage *rusage) 958 { 959 struct target_rusage *target_rusage; 960 961 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 962 return -TARGET_EFAULT; 963 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 964 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 965 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 966 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 967 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 968 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 969 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 970 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 971 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 972 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 973 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 974 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 975 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 976 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 977 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 978 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 979 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 980 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 981 unlock_user_struct(target_rusage, target_addr, 1); 982 983 return 0; 984 } 985 986 #ifdef TARGET_NR_setrlimit 987 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 988 { 989 abi_ulong target_rlim_swap; 990 rlim_t result; 991 992 target_rlim_swap = tswapal(target_rlim); 993 if (target_rlim_swap == TARGET_RLIM_INFINITY) 994 return RLIM_INFINITY; 995 996 result = target_rlim_swap; 997 if (target_rlim_swap != (rlim_t)result) 998 return RLIM_INFINITY; 999 1000 return result; 1001 } 1002 #endif 1003 1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit) 1005 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1006 { 1007 abi_ulong target_rlim_swap; 1008 abi_ulong result; 1009 1010 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1011 target_rlim_swap = TARGET_RLIM_INFINITY; 1012 else 1013 target_rlim_swap = rlim; 1014 result = tswapal(target_rlim_swap); 1015 1016 return result; 1017 } 1018 #endif 1019 1020 static inline int target_to_host_resource(int code) 1021 { 1022 switch (code) { 1023 case TARGET_RLIMIT_AS: 1024 return RLIMIT_AS; 1025 case TARGET_RLIMIT_CORE: 1026 return RLIMIT_CORE; 1027 case TARGET_RLIMIT_CPU: 1028 return RLIMIT_CPU; 1029 case TARGET_RLIMIT_DATA: 1030 return RLIMIT_DATA; 1031 case TARGET_RLIMIT_FSIZE: 1032 return RLIMIT_FSIZE; 1033 case TARGET_RLIMIT_LOCKS: 1034 return RLIMIT_LOCKS; 1035 case TARGET_RLIMIT_MEMLOCK: 1036 return RLIMIT_MEMLOCK; 1037 case TARGET_RLIMIT_MSGQUEUE: 1038 return RLIMIT_MSGQUEUE; 1039 case TARGET_RLIMIT_NICE: 1040 return RLIMIT_NICE; 1041 case TARGET_RLIMIT_NOFILE: 1042 return RLIMIT_NOFILE; 1043 case TARGET_RLIMIT_NPROC: 1044 return RLIMIT_NPROC; 1045 case TARGET_RLIMIT_RSS: 1046 return RLIMIT_RSS; 1047 case TARGET_RLIMIT_RTPRIO: 1048 return RLIMIT_RTPRIO; 1049 #ifdef RLIMIT_RTTIME 1050 case TARGET_RLIMIT_RTTIME: 1051 return RLIMIT_RTTIME; 1052 #endif 1053 case TARGET_RLIMIT_SIGPENDING: 1054 return RLIMIT_SIGPENDING; 1055 case TARGET_RLIMIT_STACK: 1056 return RLIMIT_STACK; 1057 default: 1058 return code; 1059 } 1060 } 1061 1062 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1063 abi_ulong target_tv_addr) 1064 { 1065 struct target_timeval *target_tv; 1066 1067 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1068 return -TARGET_EFAULT; 1069 } 1070 1071 __get_user(tv->tv_sec, &target_tv->tv_sec); 1072 __get_user(tv->tv_usec, &target_tv->tv_usec); 1073 1074 unlock_user_struct(target_tv, target_tv_addr, 0); 1075 1076 return 0; 1077 } 1078 1079 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1080 const struct timeval *tv) 1081 { 1082 struct target_timeval *target_tv; 1083 1084 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1085 return -TARGET_EFAULT; 1086 } 1087 1088 __put_user(tv->tv_sec, &target_tv->tv_sec); 1089 __put_user(tv->tv_usec, &target_tv->tv_usec); 1090 1091 unlock_user_struct(target_tv, target_tv_addr, 1); 1092 1093 return 0; 1094 } 1095 1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 1097 static inline abi_long copy_from_user_timeval64(struct timeval *tv, 1098 abi_ulong target_tv_addr) 1099 { 1100 struct target__kernel_sock_timeval *target_tv; 1101 1102 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1103 return -TARGET_EFAULT; 1104 } 1105 1106 __get_user(tv->tv_sec, &target_tv->tv_sec); 1107 __get_user(tv->tv_usec, &target_tv->tv_usec); 1108 1109 unlock_user_struct(target_tv, target_tv_addr, 0); 1110 1111 return 0; 1112 } 1113 #endif 1114 1115 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr, 1116 const struct timeval *tv) 1117 { 1118 struct target__kernel_sock_timeval *target_tv; 1119 1120 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1121 return -TARGET_EFAULT; 1122 } 1123 1124 __put_user(tv->tv_sec, &target_tv->tv_sec); 1125 __put_user(tv->tv_usec, &target_tv->tv_usec); 1126 1127 unlock_user_struct(target_tv, target_tv_addr, 1); 1128 1129 return 0; 1130 } 1131 1132 #if defined(TARGET_NR_futex) || \ 1133 defined(TARGET_NR_rt_sigtimedwait) || \ 1134 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \ 1135 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \ 1136 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \ 1137 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \ 1138 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \ 1139 defined(TARGET_NR_timer_settime) || \ 1140 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 1141 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 1142 abi_ulong target_addr) 1143 { 1144 struct target_timespec *target_ts; 1145 1146 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1147 return -TARGET_EFAULT; 1148 } 1149 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1150 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1151 unlock_user_struct(target_ts, target_addr, 0); 1152 return 0; 1153 } 1154 #endif 1155 1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \ 1157 defined(TARGET_NR_timer_settime64) || \ 1158 defined(TARGET_NR_mq_timedsend_time64) || \ 1159 defined(TARGET_NR_mq_timedreceive_time64) || \ 1160 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \ 1161 defined(TARGET_NR_clock_nanosleep_time64) || \ 1162 defined(TARGET_NR_rt_sigtimedwait_time64) || \ 1163 defined(TARGET_NR_utimensat) || \ 1164 defined(TARGET_NR_utimensat_time64) || \ 1165 defined(TARGET_NR_semtimedop_time64) || \ 1166 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64) 1167 static inline abi_long target_to_host_timespec64(struct timespec *host_ts, 1168 abi_ulong target_addr) 1169 { 1170 struct target__kernel_timespec *target_ts; 1171 1172 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1173 return -TARGET_EFAULT; 1174 } 1175 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1176 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1177 /* in 32bit mode, this drops the padding */ 1178 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec; 1179 unlock_user_struct(target_ts, target_addr, 0); 1180 return 0; 1181 } 1182 #endif 1183 1184 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 1185 struct timespec *host_ts) 1186 { 1187 struct target_timespec *target_ts; 1188 1189 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1190 return -TARGET_EFAULT; 1191 } 1192 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1193 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1194 unlock_user_struct(target_ts, target_addr, 1); 1195 return 0; 1196 } 1197 1198 static inline abi_long host_to_target_timespec64(abi_ulong target_addr, 1199 struct timespec *host_ts) 1200 { 1201 struct target__kernel_timespec *target_ts; 1202 1203 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1204 return -TARGET_EFAULT; 1205 } 1206 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1207 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1208 unlock_user_struct(target_ts, target_addr, 1); 1209 return 0; 1210 } 1211 1212 #if defined(TARGET_NR_gettimeofday) 1213 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr, 1214 struct timezone *tz) 1215 { 1216 struct target_timezone *target_tz; 1217 1218 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) { 1219 return -TARGET_EFAULT; 1220 } 1221 1222 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1223 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1224 1225 unlock_user_struct(target_tz, target_tz_addr, 1); 1226 1227 return 0; 1228 } 1229 #endif 1230 1231 #if defined(TARGET_NR_settimeofday) 1232 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1233 abi_ulong target_tz_addr) 1234 { 1235 struct target_timezone *target_tz; 1236 1237 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1238 return -TARGET_EFAULT; 1239 } 1240 1241 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1242 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1243 1244 unlock_user_struct(target_tz, target_tz_addr, 0); 1245 1246 return 0; 1247 } 1248 #endif 1249 1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1251 #include <mqueue.h> 1252 1253 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1254 abi_ulong target_mq_attr_addr) 1255 { 1256 struct target_mq_attr *target_mq_attr; 1257 1258 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1259 target_mq_attr_addr, 1)) 1260 return -TARGET_EFAULT; 1261 1262 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1263 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1264 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1265 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1266 1267 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1268 1269 return 0; 1270 } 1271 1272 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1273 const struct mq_attr *attr) 1274 { 1275 struct target_mq_attr *target_mq_attr; 1276 1277 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1278 target_mq_attr_addr, 0)) 1279 return -TARGET_EFAULT; 1280 1281 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1282 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1283 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1284 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1285 1286 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1287 1288 return 0; 1289 } 1290 #endif 1291 1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1293 /* do_select() must return target values and target errnos. */ 1294 static abi_long do_select(int n, 1295 abi_ulong rfd_addr, abi_ulong wfd_addr, 1296 abi_ulong efd_addr, abi_ulong target_tv_addr) 1297 { 1298 fd_set rfds, wfds, efds; 1299 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1300 struct timeval tv; 1301 struct timespec ts, *ts_ptr; 1302 abi_long ret; 1303 1304 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1305 if (ret) { 1306 return ret; 1307 } 1308 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1309 if (ret) { 1310 return ret; 1311 } 1312 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1313 if (ret) { 1314 return ret; 1315 } 1316 1317 if (target_tv_addr) { 1318 if (copy_from_user_timeval(&tv, target_tv_addr)) 1319 return -TARGET_EFAULT; 1320 ts.tv_sec = tv.tv_sec; 1321 ts.tv_nsec = tv.tv_usec * 1000; 1322 ts_ptr = &ts; 1323 } else { 1324 ts_ptr = NULL; 1325 } 1326 1327 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1328 ts_ptr, NULL)); 1329 1330 if (!is_error(ret)) { 1331 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1332 return -TARGET_EFAULT; 1333 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1334 return -TARGET_EFAULT; 1335 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1336 return -TARGET_EFAULT; 1337 1338 if (target_tv_addr) { 1339 tv.tv_sec = ts.tv_sec; 1340 tv.tv_usec = ts.tv_nsec / 1000; 1341 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1342 return -TARGET_EFAULT; 1343 } 1344 } 1345 } 1346 1347 return ret; 1348 } 1349 1350 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1351 static abi_long do_old_select(abi_ulong arg1) 1352 { 1353 struct target_sel_arg_struct *sel; 1354 abi_ulong inp, outp, exp, tvp; 1355 long nsel; 1356 1357 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1358 return -TARGET_EFAULT; 1359 } 1360 1361 nsel = tswapal(sel->n); 1362 inp = tswapal(sel->inp); 1363 outp = tswapal(sel->outp); 1364 exp = tswapal(sel->exp); 1365 tvp = tswapal(sel->tvp); 1366 1367 unlock_user_struct(sel, arg1, 0); 1368 1369 return do_select(nsel, inp, outp, exp, tvp); 1370 } 1371 #endif 1372 #endif 1373 1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 1375 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3, 1376 abi_long arg4, abi_long arg5, abi_long arg6, 1377 bool time64) 1378 { 1379 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 1380 fd_set rfds, wfds, efds; 1381 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1382 struct timespec ts, *ts_ptr; 1383 abi_long ret; 1384 1385 /* 1386 * The 6th arg is actually two args smashed together, 1387 * so we cannot use the C library. 1388 */ 1389 struct { 1390 sigset_t *set; 1391 size_t size; 1392 } sig, *sig_ptr; 1393 1394 abi_ulong arg_sigset, arg_sigsize, *arg7; 1395 1396 n = arg1; 1397 rfd_addr = arg2; 1398 wfd_addr = arg3; 1399 efd_addr = arg4; 1400 ts_addr = arg5; 1401 1402 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1403 if (ret) { 1404 return ret; 1405 } 1406 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1407 if (ret) { 1408 return ret; 1409 } 1410 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1411 if (ret) { 1412 return ret; 1413 } 1414 1415 /* 1416 * This takes a timespec, and not a timeval, so we cannot 1417 * use the do_select() helper ... 1418 */ 1419 if (ts_addr) { 1420 if (time64) { 1421 if (target_to_host_timespec64(&ts, ts_addr)) { 1422 return -TARGET_EFAULT; 1423 } 1424 } else { 1425 if (target_to_host_timespec(&ts, ts_addr)) { 1426 return -TARGET_EFAULT; 1427 } 1428 } 1429 ts_ptr = &ts; 1430 } else { 1431 ts_ptr = NULL; 1432 } 1433 1434 /* Extract the two packed args for the sigset */ 1435 sig_ptr = NULL; 1436 if (arg6) { 1437 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 1438 if (!arg7) { 1439 return -TARGET_EFAULT; 1440 } 1441 arg_sigset = tswapal(arg7[0]); 1442 arg_sigsize = tswapal(arg7[1]); 1443 unlock_user(arg7, arg6, 0); 1444 1445 if (arg_sigset) { 1446 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize); 1447 if (ret != 0) { 1448 return ret; 1449 } 1450 sig_ptr = &sig; 1451 sig.size = SIGSET_T_SIZE; 1452 } 1453 } 1454 1455 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1456 ts_ptr, sig_ptr)); 1457 1458 if (sig_ptr) { 1459 finish_sigsuspend_mask(ret); 1460 } 1461 1462 if (!is_error(ret)) { 1463 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) { 1464 return -TARGET_EFAULT; 1465 } 1466 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) { 1467 return -TARGET_EFAULT; 1468 } 1469 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) { 1470 return -TARGET_EFAULT; 1471 } 1472 if (time64) { 1473 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) { 1474 return -TARGET_EFAULT; 1475 } 1476 } else { 1477 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) { 1478 return -TARGET_EFAULT; 1479 } 1480 } 1481 } 1482 return ret; 1483 } 1484 #endif 1485 1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \ 1487 defined(TARGET_NR_ppoll_time64) 1488 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3, 1489 abi_long arg4, abi_long arg5, bool ppoll, bool time64) 1490 { 1491 struct target_pollfd *target_pfd; 1492 unsigned int nfds = arg2; 1493 struct pollfd *pfd; 1494 unsigned int i; 1495 abi_long ret; 1496 1497 pfd = NULL; 1498 target_pfd = NULL; 1499 if (nfds) { 1500 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 1501 return -TARGET_EINVAL; 1502 } 1503 target_pfd = lock_user(VERIFY_WRITE, arg1, 1504 sizeof(struct target_pollfd) * nfds, 1); 1505 if (!target_pfd) { 1506 return -TARGET_EFAULT; 1507 } 1508 1509 pfd = alloca(sizeof(struct pollfd) * nfds); 1510 for (i = 0; i < nfds; i++) { 1511 pfd[i].fd = tswap32(target_pfd[i].fd); 1512 pfd[i].events = tswap16(target_pfd[i].events); 1513 } 1514 } 1515 if (ppoll) { 1516 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 1517 sigset_t *set = NULL; 1518 1519 if (arg3) { 1520 if (time64) { 1521 if (target_to_host_timespec64(timeout_ts, arg3)) { 1522 unlock_user(target_pfd, arg1, 0); 1523 return -TARGET_EFAULT; 1524 } 1525 } else { 1526 if (target_to_host_timespec(timeout_ts, arg3)) { 1527 unlock_user(target_pfd, arg1, 0); 1528 return -TARGET_EFAULT; 1529 } 1530 } 1531 } else { 1532 timeout_ts = NULL; 1533 } 1534 1535 if (arg4) { 1536 ret = process_sigsuspend_mask(&set, arg4, arg5); 1537 if (ret != 0) { 1538 unlock_user(target_pfd, arg1, 0); 1539 return ret; 1540 } 1541 } 1542 1543 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 1544 set, SIGSET_T_SIZE)); 1545 1546 if (set) { 1547 finish_sigsuspend_mask(ret); 1548 } 1549 if (!is_error(ret) && arg3) { 1550 if (time64) { 1551 if (host_to_target_timespec64(arg3, timeout_ts)) { 1552 return -TARGET_EFAULT; 1553 } 1554 } else { 1555 if (host_to_target_timespec(arg3, timeout_ts)) { 1556 return -TARGET_EFAULT; 1557 } 1558 } 1559 } 1560 } else { 1561 struct timespec ts, *pts; 1562 1563 if (arg3 >= 0) { 1564 /* Convert ms to secs, ns */ 1565 ts.tv_sec = arg3 / 1000; 1566 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 1567 pts = &ts; 1568 } else { 1569 /* -ve poll() timeout means "infinite" */ 1570 pts = NULL; 1571 } 1572 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 1573 } 1574 1575 if (!is_error(ret)) { 1576 for (i = 0; i < nfds; i++) { 1577 target_pfd[i].revents = tswap16(pfd[i].revents); 1578 } 1579 } 1580 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 1581 return ret; 1582 } 1583 #endif 1584 1585 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes, 1586 int flags, int is_pipe2) 1587 { 1588 int host_pipe[2]; 1589 abi_long ret; 1590 ret = pipe2(host_pipe, flags); 1591 1592 if (is_error(ret)) 1593 return get_errno(ret); 1594 1595 /* Several targets have special calling conventions for the original 1596 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1597 if (!is_pipe2) { 1598 #if defined(TARGET_ALPHA) 1599 cpu_env->ir[IR_A4] = host_pipe[1]; 1600 return host_pipe[0]; 1601 #elif defined(TARGET_MIPS) 1602 cpu_env->active_tc.gpr[3] = host_pipe[1]; 1603 return host_pipe[0]; 1604 #elif defined(TARGET_SH4) 1605 cpu_env->gregs[1] = host_pipe[1]; 1606 return host_pipe[0]; 1607 #elif defined(TARGET_SPARC) 1608 cpu_env->regwptr[1] = host_pipe[1]; 1609 return host_pipe[0]; 1610 #endif 1611 } 1612 1613 if (put_user_s32(host_pipe[0], pipedes) 1614 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int))) 1615 return -TARGET_EFAULT; 1616 return get_errno(ret); 1617 } 1618 1619 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1620 abi_ulong target_addr, 1621 socklen_t len) 1622 { 1623 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1624 sa_family_t sa_family; 1625 struct target_sockaddr *target_saddr; 1626 1627 if (fd_trans_target_to_host_addr(fd)) { 1628 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1629 } 1630 1631 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1632 if (!target_saddr) 1633 return -TARGET_EFAULT; 1634 1635 sa_family = tswap16(target_saddr->sa_family); 1636 1637 /* Oops. The caller might send a incomplete sun_path; sun_path 1638 * must be terminated by \0 (see the manual page), but 1639 * unfortunately it is quite common to specify sockaddr_un 1640 * length as "strlen(x->sun_path)" while it should be 1641 * "strlen(...) + 1". We'll fix that here if needed. 1642 * Linux kernel has a similar feature. 1643 */ 1644 1645 if (sa_family == AF_UNIX) { 1646 if (len < unix_maxlen && len > 0) { 1647 char *cp = (char*)target_saddr; 1648 1649 if ( cp[len-1] && !cp[len] ) 1650 len++; 1651 } 1652 if (len > unix_maxlen) 1653 len = unix_maxlen; 1654 } 1655 1656 memcpy(addr, target_saddr, len); 1657 addr->sa_family = sa_family; 1658 if (sa_family == AF_NETLINK) { 1659 struct sockaddr_nl *nladdr; 1660 1661 nladdr = (struct sockaddr_nl *)addr; 1662 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1663 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1664 } else if (sa_family == AF_PACKET) { 1665 struct target_sockaddr_ll *lladdr; 1666 1667 lladdr = (struct target_sockaddr_ll *)addr; 1668 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1669 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1670 } else if (sa_family == AF_INET6) { 1671 struct sockaddr_in6 *in6addr; 1672 1673 in6addr = (struct sockaddr_in6 *)addr; 1674 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id); 1675 } 1676 unlock_user(target_saddr, target_addr, 0); 1677 1678 return 0; 1679 } 1680 1681 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1682 struct sockaddr *addr, 1683 socklen_t len) 1684 { 1685 struct target_sockaddr *target_saddr; 1686 1687 if (len == 0) { 1688 return 0; 1689 } 1690 assert(addr); 1691 1692 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1693 if (!target_saddr) 1694 return -TARGET_EFAULT; 1695 memcpy(target_saddr, addr, len); 1696 if (len >= offsetof(struct target_sockaddr, sa_family) + 1697 sizeof(target_saddr->sa_family)) { 1698 target_saddr->sa_family = tswap16(addr->sa_family); 1699 } 1700 if (addr->sa_family == AF_NETLINK && 1701 len >= sizeof(struct target_sockaddr_nl)) { 1702 struct target_sockaddr_nl *target_nl = 1703 (struct target_sockaddr_nl *)target_saddr; 1704 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1705 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1706 } else if (addr->sa_family == AF_PACKET) { 1707 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1708 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1709 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1710 } else if (addr->sa_family == AF_INET6 && 1711 len >= sizeof(struct target_sockaddr_in6)) { 1712 struct target_sockaddr_in6 *target_in6 = 1713 (struct target_sockaddr_in6 *)target_saddr; 1714 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1715 } 1716 unlock_user(target_saddr, target_addr, len); 1717 1718 return 0; 1719 } 1720 1721 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1722 struct target_msghdr *target_msgh) 1723 { 1724 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1725 abi_long msg_controllen; 1726 abi_ulong target_cmsg_addr; 1727 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1728 socklen_t space = 0; 1729 1730 msg_controllen = tswapal(target_msgh->msg_controllen); 1731 if (msg_controllen < sizeof (struct target_cmsghdr)) 1732 goto the_end; 1733 target_cmsg_addr = tswapal(target_msgh->msg_control); 1734 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1735 target_cmsg_start = target_cmsg; 1736 if (!target_cmsg) 1737 return -TARGET_EFAULT; 1738 1739 while (cmsg && target_cmsg) { 1740 void *data = CMSG_DATA(cmsg); 1741 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1742 1743 int len = tswapal(target_cmsg->cmsg_len) 1744 - sizeof(struct target_cmsghdr); 1745 1746 space += CMSG_SPACE(len); 1747 if (space > msgh->msg_controllen) { 1748 space -= CMSG_SPACE(len); 1749 /* This is a QEMU bug, since we allocated the payload 1750 * area ourselves (unlike overflow in host-to-target 1751 * conversion, which is just the guest giving us a buffer 1752 * that's too small). It can't happen for the payload types 1753 * we currently support; if it becomes an issue in future 1754 * we would need to improve our allocation strategy to 1755 * something more intelligent than "twice the size of the 1756 * target buffer we're reading from". 1757 */ 1758 qemu_log_mask(LOG_UNIMP, 1759 ("Unsupported ancillary data %d/%d: " 1760 "unhandled msg size\n"), 1761 tswap32(target_cmsg->cmsg_level), 1762 tswap32(target_cmsg->cmsg_type)); 1763 break; 1764 } 1765 1766 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1767 cmsg->cmsg_level = SOL_SOCKET; 1768 } else { 1769 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1770 } 1771 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1772 cmsg->cmsg_len = CMSG_LEN(len); 1773 1774 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1775 int *fd = (int *)data; 1776 int *target_fd = (int *)target_data; 1777 int i, numfds = len / sizeof(int); 1778 1779 for (i = 0; i < numfds; i++) { 1780 __get_user(fd[i], target_fd + i); 1781 } 1782 } else if (cmsg->cmsg_level == SOL_SOCKET 1783 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1784 struct ucred *cred = (struct ucred *)data; 1785 struct target_ucred *target_cred = 1786 (struct target_ucred *)target_data; 1787 1788 __get_user(cred->pid, &target_cred->pid); 1789 __get_user(cred->uid, &target_cred->uid); 1790 __get_user(cred->gid, &target_cred->gid); 1791 } else if (cmsg->cmsg_level == SOL_ALG) { 1792 uint32_t *dst = (uint32_t *)data; 1793 1794 memcpy(dst, target_data, len); 1795 /* fix endianness of first 32-bit word */ 1796 if (len >= sizeof(uint32_t)) { 1797 *dst = tswap32(*dst); 1798 } 1799 } else { 1800 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 1801 cmsg->cmsg_level, cmsg->cmsg_type); 1802 memcpy(data, target_data, len); 1803 } 1804 1805 cmsg = CMSG_NXTHDR(msgh, cmsg); 1806 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1807 target_cmsg_start); 1808 } 1809 unlock_user(target_cmsg, target_cmsg_addr, 0); 1810 the_end: 1811 msgh->msg_controllen = space; 1812 return 0; 1813 } 1814 1815 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1816 struct msghdr *msgh) 1817 { 1818 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1819 abi_long msg_controllen; 1820 abi_ulong target_cmsg_addr; 1821 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1822 socklen_t space = 0; 1823 1824 msg_controllen = tswapal(target_msgh->msg_controllen); 1825 if (msg_controllen < sizeof (struct target_cmsghdr)) 1826 goto the_end; 1827 target_cmsg_addr = tswapal(target_msgh->msg_control); 1828 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1829 target_cmsg_start = target_cmsg; 1830 if (!target_cmsg) 1831 return -TARGET_EFAULT; 1832 1833 while (cmsg && target_cmsg) { 1834 void *data = CMSG_DATA(cmsg); 1835 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1836 1837 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1838 int tgt_len, tgt_space; 1839 1840 /* We never copy a half-header but may copy half-data; 1841 * this is Linux's behaviour in put_cmsg(). Note that 1842 * truncation here is a guest problem (which we report 1843 * to the guest via the CTRUNC bit), unlike truncation 1844 * in target_to_host_cmsg, which is a QEMU bug. 1845 */ 1846 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1847 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1848 break; 1849 } 1850 1851 if (cmsg->cmsg_level == SOL_SOCKET) { 1852 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1853 } else { 1854 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1855 } 1856 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1857 1858 /* Payload types which need a different size of payload on 1859 * the target must adjust tgt_len here. 1860 */ 1861 tgt_len = len; 1862 switch (cmsg->cmsg_level) { 1863 case SOL_SOCKET: 1864 switch (cmsg->cmsg_type) { 1865 case SO_TIMESTAMP: 1866 tgt_len = sizeof(struct target_timeval); 1867 break; 1868 default: 1869 break; 1870 } 1871 break; 1872 default: 1873 break; 1874 } 1875 1876 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1877 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1878 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1879 } 1880 1881 /* We must now copy-and-convert len bytes of payload 1882 * into tgt_len bytes of destination space. Bear in mind 1883 * that in both source and destination we may be dealing 1884 * with a truncated value! 1885 */ 1886 switch (cmsg->cmsg_level) { 1887 case SOL_SOCKET: 1888 switch (cmsg->cmsg_type) { 1889 case SCM_RIGHTS: 1890 { 1891 int *fd = (int *)data; 1892 int *target_fd = (int *)target_data; 1893 int i, numfds = tgt_len / sizeof(int); 1894 1895 for (i = 0; i < numfds; i++) { 1896 __put_user(fd[i], target_fd + i); 1897 } 1898 break; 1899 } 1900 case SO_TIMESTAMP: 1901 { 1902 struct timeval *tv = (struct timeval *)data; 1903 struct target_timeval *target_tv = 1904 (struct target_timeval *)target_data; 1905 1906 if (len != sizeof(struct timeval) || 1907 tgt_len != sizeof(struct target_timeval)) { 1908 goto unimplemented; 1909 } 1910 1911 /* copy struct timeval to target */ 1912 __put_user(tv->tv_sec, &target_tv->tv_sec); 1913 __put_user(tv->tv_usec, &target_tv->tv_usec); 1914 break; 1915 } 1916 case SCM_CREDENTIALS: 1917 { 1918 struct ucred *cred = (struct ucred *)data; 1919 struct target_ucred *target_cred = 1920 (struct target_ucred *)target_data; 1921 1922 __put_user(cred->pid, &target_cred->pid); 1923 __put_user(cred->uid, &target_cred->uid); 1924 __put_user(cred->gid, &target_cred->gid); 1925 break; 1926 } 1927 default: 1928 goto unimplemented; 1929 } 1930 break; 1931 1932 case SOL_IP: 1933 switch (cmsg->cmsg_type) { 1934 case IP_TTL: 1935 { 1936 uint32_t *v = (uint32_t *)data; 1937 uint32_t *t_int = (uint32_t *)target_data; 1938 1939 if (len != sizeof(uint32_t) || 1940 tgt_len != sizeof(uint32_t)) { 1941 goto unimplemented; 1942 } 1943 __put_user(*v, t_int); 1944 break; 1945 } 1946 case IP_RECVERR: 1947 { 1948 struct errhdr_t { 1949 struct sock_extended_err ee; 1950 struct sockaddr_in offender; 1951 }; 1952 struct errhdr_t *errh = (struct errhdr_t *)data; 1953 struct errhdr_t *target_errh = 1954 (struct errhdr_t *)target_data; 1955 1956 if (len != sizeof(struct errhdr_t) || 1957 tgt_len != sizeof(struct errhdr_t)) { 1958 goto unimplemented; 1959 } 1960 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1961 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1962 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1963 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1964 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1965 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1966 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1967 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1968 (void *) &errh->offender, sizeof(errh->offender)); 1969 break; 1970 } 1971 default: 1972 goto unimplemented; 1973 } 1974 break; 1975 1976 case SOL_IPV6: 1977 switch (cmsg->cmsg_type) { 1978 case IPV6_HOPLIMIT: 1979 { 1980 uint32_t *v = (uint32_t *)data; 1981 uint32_t *t_int = (uint32_t *)target_data; 1982 1983 if (len != sizeof(uint32_t) || 1984 tgt_len != sizeof(uint32_t)) { 1985 goto unimplemented; 1986 } 1987 __put_user(*v, t_int); 1988 break; 1989 } 1990 case IPV6_RECVERR: 1991 { 1992 struct errhdr6_t { 1993 struct sock_extended_err ee; 1994 struct sockaddr_in6 offender; 1995 }; 1996 struct errhdr6_t *errh = (struct errhdr6_t *)data; 1997 struct errhdr6_t *target_errh = 1998 (struct errhdr6_t *)target_data; 1999 2000 if (len != sizeof(struct errhdr6_t) || 2001 tgt_len != sizeof(struct errhdr6_t)) { 2002 goto unimplemented; 2003 } 2004 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2005 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2006 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2007 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2008 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2009 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2010 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2011 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2012 (void *) &errh->offender, sizeof(errh->offender)); 2013 break; 2014 } 2015 default: 2016 goto unimplemented; 2017 } 2018 break; 2019 2020 default: 2021 unimplemented: 2022 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 2023 cmsg->cmsg_level, cmsg->cmsg_type); 2024 memcpy(target_data, data, MIN(len, tgt_len)); 2025 if (tgt_len > len) { 2026 memset(target_data + len, 0, tgt_len - len); 2027 } 2028 } 2029 2030 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 2031 tgt_space = TARGET_CMSG_SPACE(tgt_len); 2032 if (msg_controllen < tgt_space) { 2033 tgt_space = msg_controllen; 2034 } 2035 msg_controllen -= tgt_space; 2036 space += tgt_space; 2037 cmsg = CMSG_NXTHDR(msgh, cmsg); 2038 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 2039 target_cmsg_start); 2040 } 2041 unlock_user(target_cmsg, target_cmsg_addr, space); 2042 the_end: 2043 target_msgh->msg_controllen = tswapal(space); 2044 return 0; 2045 } 2046 2047 /* do_setsockopt() Must return target values and target errnos. */ 2048 static abi_long do_setsockopt(int sockfd, int level, int optname, 2049 abi_ulong optval_addr, socklen_t optlen) 2050 { 2051 abi_long ret; 2052 int val; 2053 2054 switch(level) { 2055 case SOL_TCP: 2056 case SOL_UDP: 2057 /* TCP and UDP options all take an 'int' value. */ 2058 if (optlen < sizeof(uint32_t)) 2059 return -TARGET_EINVAL; 2060 2061 if (get_user_u32(val, optval_addr)) 2062 return -TARGET_EFAULT; 2063 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2064 break; 2065 case SOL_IP: 2066 switch(optname) { 2067 case IP_TOS: 2068 case IP_TTL: 2069 case IP_HDRINCL: 2070 case IP_ROUTER_ALERT: 2071 case IP_RECVOPTS: 2072 case IP_RETOPTS: 2073 case IP_PKTINFO: 2074 case IP_MTU_DISCOVER: 2075 case IP_RECVERR: 2076 case IP_RECVTTL: 2077 case IP_RECVTOS: 2078 #ifdef IP_FREEBIND 2079 case IP_FREEBIND: 2080 #endif 2081 case IP_MULTICAST_TTL: 2082 case IP_MULTICAST_LOOP: 2083 val = 0; 2084 if (optlen >= sizeof(uint32_t)) { 2085 if (get_user_u32(val, optval_addr)) 2086 return -TARGET_EFAULT; 2087 } else if (optlen >= 1) { 2088 if (get_user_u8(val, optval_addr)) 2089 return -TARGET_EFAULT; 2090 } 2091 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2092 break; 2093 case IP_ADD_MEMBERSHIP: 2094 case IP_DROP_MEMBERSHIP: 2095 { 2096 struct ip_mreqn ip_mreq; 2097 struct target_ip_mreqn *target_smreqn; 2098 2099 QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq) != 2100 sizeof(struct target_ip_mreq)); 2101 2102 if (optlen < sizeof (struct target_ip_mreq) || 2103 optlen > sizeof (struct target_ip_mreqn)) { 2104 return -TARGET_EINVAL; 2105 } 2106 2107 target_smreqn = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2108 if (!target_smreqn) { 2109 return -TARGET_EFAULT; 2110 } 2111 ip_mreq.imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 2112 ip_mreq.imr_address.s_addr = target_smreqn->imr_address.s_addr; 2113 if (optlen == sizeof(struct target_ip_mreqn)) { 2114 ip_mreq.imr_ifindex = tswapal(target_smreqn->imr_ifindex); 2115 optlen = sizeof(struct ip_mreqn); 2116 } 2117 unlock_user(target_smreqn, optval_addr, 0); 2118 2119 ret = get_errno(setsockopt(sockfd, level, optname, &ip_mreq, optlen)); 2120 break; 2121 } 2122 case IP_BLOCK_SOURCE: 2123 case IP_UNBLOCK_SOURCE: 2124 case IP_ADD_SOURCE_MEMBERSHIP: 2125 case IP_DROP_SOURCE_MEMBERSHIP: 2126 { 2127 struct ip_mreq_source *ip_mreq_source; 2128 2129 if (optlen != sizeof (struct target_ip_mreq_source)) 2130 return -TARGET_EINVAL; 2131 2132 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2133 if (!ip_mreq_source) { 2134 return -TARGET_EFAULT; 2135 } 2136 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2137 unlock_user (ip_mreq_source, optval_addr, 0); 2138 break; 2139 } 2140 default: 2141 goto unimplemented; 2142 } 2143 break; 2144 case SOL_IPV6: 2145 switch (optname) { 2146 case IPV6_MTU_DISCOVER: 2147 case IPV6_MTU: 2148 case IPV6_V6ONLY: 2149 case IPV6_RECVPKTINFO: 2150 case IPV6_UNICAST_HOPS: 2151 case IPV6_MULTICAST_HOPS: 2152 case IPV6_MULTICAST_LOOP: 2153 case IPV6_RECVERR: 2154 case IPV6_RECVHOPLIMIT: 2155 case IPV6_2292HOPLIMIT: 2156 case IPV6_CHECKSUM: 2157 case IPV6_ADDRFORM: 2158 case IPV6_2292PKTINFO: 2159 case IPV6_RECVTCLASS: 2160 case IPV6_RECVRTHDR: 2161 case IPV6_2292RTHDR: 2162 case IPV6_RECVHOPOPTS: 2163 case IPV6_2292HOPOPTS: 2164 case IPV6_RECVDSTOPTS: 2165 case IPV6_2292DSTOPTS: 2166 case IPV6_TCLASS: 2167 case IPV6_ADDR_PREFERENCES: 2168 #ifdef IPV6_RECVPATHMTU 2169 case IPV6_RECVPATHMTU: 2170 #endif 2171 #ifdef IPV6_TRANSPARENT 2172 case IPV6_TRANSPARENT: 2173 #endif 2174 #ifdef IPV6_FREEBIND 2175 case IPV6_FREEBIND: 2176 #endif 2177 #ifdef IPV6_RECVORIGDSTADDR 2178 case IPV6_RECVORIGDSTADDR: 2179 #endif 2180 val = 0; 2181 if (optlen < sizeof(uint32_t)) { 2182 return -TARGET_EINVAL; 2183 } 2184 if (get_user_u32(val, optval_addr)) { 2185 return -TARGET_EFAULT; 2186 } 2187 ret = get_errno(setsockopt(sockfd, level, optname, 2188 &val, sizeof(val))); 2189 break; 2190 case IPV6_PKTINFO: 2191 { 2192 struct in6_pktinfo pki; 2193 2194 if (optlen < sizeof(pki)) { 2195 return -TARGET_EINVAL; 2196 } 2197 2198 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2199 return -TARGET_EFAULT; 2200 } 2201 2202 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2203 2204 ret = get_errno(setsockopt(sockfd, level, optname, 2205 &pki, sizeof(pki))); 2206 break; 2207 } 2208 case IPV6_ADD_MEMBERSHIP: 2209 case IPV6_DROP_MEMBERSHIP: 2210 { 2211 struct ipv6_mreq ipv6mreq; 2212 2213 if (optlen < sizeof(ipv6mreq)) { 2214 return -TARGET_EINVAL; 2215 } 2216 2217 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) { 2218 return -TARGET_EFAULT; 2219 } 2220 2221 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface); 2222 2223 ret = get_errno(setsockopt(sockfd, level, optname, 2224 &ipv6mreq, sizeof(ipv6mreq))); 2225 break; 2226 } 2227 default: 2228 goto unimplemented; 2229 } 2230 break; 2231 case SOL_ICMPV6: 2232 switch (optname) { 2233 case ICMPV6_FILTER: 2234 { 2235 struct icmp6_filter icmp6f; 2236 2237 if (optlen > sizeof(icmp6f)) { 2238 optlen = sizeof(icmp6f); 2239 } 2240 2241 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 2242 return -TARGET_EFAULT; 2243 } 2244 2245 for (val = 0; val < 8; val++) { 2246 icmp6f.data[val] = tswap32(icmp6f.data[val]); 2247 } 2248 2249 ret = get_errno(setsockopt(sockfd, level, optname, 2250 &icmp6f, optlen)); 2251 break; 2252 } 2253 default: 2254 goto unimplemented; 2255 } 2256 break; 2257 case SOL_RAW: 2258 switch (optname) { 2259 case ICMP_FILTER: 2260 case IPV6_CHECKSUM: 2261 /* those take an u32 value */ 2262 if (optlen < sizeof(uint32_t)) { 2263 return -TARGET_EINVAL; 2264 } 2265 2266 if (get_user_u32(val, optval_addr)) { 2267 return -TARGET_EFAULT; 2268 } 2269 ret = get_errno(setsockopt(sockfd, level, optname, 2270 &val, sizeof(val))); 2271 break; 2272 2273 default: 2274 goto unimplemented; 2275 } 2276 break; 2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE) 2278 case SOL_ALG: 2279 switch (optname) { 2280 case ALG_SET_KEY: 2281 { 2282 char *alg_key = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2283 if (!alg_key) { 2284 return -TARGET_EFAULT; 2285 } 2286 ret = get_errno(setsockopt(sockfd, level, optname, 2287 alg_key, optlen)); 2288 unlock_user(alg_key, optval_addr, optlen); 2289 break; 2290 } 2291 case ALG_SET_AEAD_AUTHSIZE: 2292 { 2293 ret = get_errno(setsockopt(sockfd, level, optname, 2294 NULL, optlen)); 2295 break; 2296 } 2297 default: 2298 goto unimplemented; 2299 } 2300 break; 2301 #endif 2302 case TARGET_SOL_SOCKET: 2303 switch (optname) { 2304 case TARGET_SO_RCVTIMEO: 2305 case TARGET_SO_SNDTIMEO: 2306 { 2307 struct timeval tv; 2308 2309 if (optlen != sizeof(struct target_timeval)) { 2310 return -TARGET_EINVAL; 2311 } 2312 2313 if (copy_from_user_timeval(&tv, optval_addr)) { 2314 return -TARGET_EFAULT; 2315 } 2316 2317 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2318 optname == TARGET_SO_RCVTIMEO ? 2319 SO_RCVTIMEO : SO_SNDTIMEO, 2320 &tv, sizeof(tv))); 2321 return ret; 2322 } 2323 case TARGET_SO_ATTACH_FILTER: 2324 { 2325 struct target_sock_fprog *tfprog; 2326 struct target_sock_filter *tfilter; 2327 struct sock_fprog fprog; 2328 struct sock_filter *filter; 2329 int i; 2330 2331 if (optlen != sizeof(*tfprog)) { 2332 return -TARGET_EINVAL; 2333 } 2334 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2335 return -TARGET_EFAULT; 2336 } 2337 if (!lock_user_struct(VERIFY_READ, tfilter, 2338 tswapal(tfprog->filter), 0)) { 2339 unlock_user_struct(tfprog, optval_addr, 1); 2340 return -TARGET_EFAULT; 2341 } 2342 2343 fprog.len = tswap16(tfprog->len); 2344 filter = g_try_new(struct sock_filter, fprog.len); 2345 if (filter == NULL) { 2346 unlock_user_struct(tfilter, tfprog->filter, 1); 2347 unlock_user_struct(tfprog, optval_addr, 1); 2348 return -TARGET_ENOMEM; 2349 } 2350 for (i = 0; i < fprog.len; i++) { 2351 filter[i].code = tswap16(tfilter[i].code); 2352 filter[i].jt = tfilter[i].jt; 2353 filter[i].jf = tfilter[i].jf; 2354 filter[i].k = tswap32(tfilter[i].k); 2355 } 2356 fprog.filter = filter; 2357 2358 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2359 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2360 g_free(filter); 2361 2362 unlock_user_struct(tfilter, tfprog->filter, 1); 2363 unlock_user_struct(tfprog, optval_addr, 1); 2364 return ret; 2365 } 2366 case TARGET_SO_BINDTODEVICE: 2367 { 2368 char *dev_ifname, *addr_ifname; 2369 2370 if (optlen > IFNAMSIZ - 1) { 2371 optlen = IFNAMSIZ - 1; 2372 } 2373 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2374 if (!dev_ifname) { 2375 return -TARGET_EFAULT; 2376 } 2377 optname = SO_BINDTODEVICE; 2378 addr_ifname = alloca(IFNAMSIZ); 2379 memcpy(addr_ifname, dev_ifname, optlen); 2380 addr_ifname[optlen] = 0; 2381 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2382 addr_ifname, optlen)); 2383 unlock_user (dev_ifname, optval_addr, 0); 2384 return ret; 2385 } 2386 case TARGET_SO_LINGER: 2387 { 2388 struct linger lg; 2389 struct target_linger *tlg; 2390 2391 if (optlen != sizeof(struct target_linger)) { 2392 return -TARGET_EINVAL; 2393 } 2394 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) { 2395 return -TARGET_EFAULT; 2396 } 2397 __get_user(lg.l_onoff, &tlg->l_onoff); 2398 __get_user(lg.l_linger, &tlg->l_linger); 2399 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER, 2400 &lg, sizeof(lg))); 2401 unlock_user_struct(tlg, optval_addr, 0); 2402 return ret; 2403 } 2404 /* Options with 'int' argument. */ 2405 case TARGET_SO_DEBUG: 2406 optname = SO_DEBUG; 2407 break; 2408 case TARGET_SO_REUSEADDR: 2409 optname = SO_REUSEADDR; 2410 break; 2411 #ifdef SO_REUSEPORT 2412 case TARGET_SO_REUSEPORT: 2413 optname = SO_REUSEPORT; 2414 break; 2415 #endif 2416 case TARGET_SO_TYPE: 2417 optname = SO_TYPE; 2418 break; 2419 case TARGET_SO_ERROR: 2420 optname = SO_ERROR; 2421 break; 2422 case TARGET_SO_DONTROUTE: 2423 optname = SO_DONTROUTE; 2424 break; 2425 case TARGET_SO_BROADCAST: 2426 optname = SO_BROADCAST; 2427 break; 2428 case TARGET_SO_SNDBUF: 2429 optname = SO_SNDBUF; 2430 break; 2431 case TARGET_SO_SNDBUFFORCE: 2432 optname = SO_SNDBUFFORCE; 2433 break; 2434 case TARGET_SO_RCVBUF: 2435 optname = SO_RCVBUF; 2436 break; 2437 case TARGET_SO_RCVBUFFORCE: 2438 optname = SO_RCVBUFFORCE; 2439 break; 2440 case TARGET_SO_KEEPALIVE: 2441 optname = SO_KEEPALIVE; 2442 break; 2443 case TARGET_SO_OOBINLINE: 2444 optname = SO_OOBINLINE; 2445 break; 2446 case TARGET_SO_NO_CHECK: 2447 optname = SO_NO_CHECK; 2448 break; 2449 case TARGET_SO_PRIORITY: 2450 optname = SO_PRIORITY; 2451 break; 2452 #ifdef SO_BSDCOMPAT 2453 case TARGET_SO_BSDCOMPAT: 2454 optname = SO_BSDCOMPAT; 2455 break; 2456 #endif 2457 case TARGET_SO_PASSCRED: 2458 optname = SO_PASSCRED; 2459 break; 2460 case TARGET_SO_PASSSEC: 2461 optname = SO_PASSSEC; 2462 break; 2463 case TARGET_SO_TIMESTAMP: 2464 optname = SO_TIMESTAMP; 2465 break; 2466 case TARGET_SO_RCVLOWAT: 2467 optname = SO_RCVLOWAT; 2468 break; 2469 default: 2470 goto unimplemented; 2471 } 2472 if (optlen < sizeof(uint32_t)) 2473 return -TARGET_EINVAL; 2474 2475 if (get_user_u32(val, optval_addr)) 2476 return -TARGET_EFAULT; 2477 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 2478 break; 2479 #ifdef SOL_NETLINK 2480 case SOL_NETLINK: 2481 switch (optname) { 2482 case NETLINK_PKTINFO: 2483 case NETLINK_ADD_MEMBERSHIP: 2484 case NETLINK_DROP_MEMBERSHIP: 2485 case NETLINK_BROADCAST_ERROR: 2486 case NETLINK_NO_ENOBUFS: 2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2488 case NETLINK_LISTEN_ALL_NSID: 2489 case NETLINK_CAP_ACK: 2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2492 case NETLINK_EXT_ACK: 2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2495 case NETLINK_GET_STRICT_CHK: 2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2497 break; 2498 default: 2499 goto unimplemented; 2500 } 2501 val = 0; 2502 if (optlen < sizeof(uint32_t)) { 2503 return -TARGET_EINVAL; 2504 } 2505 if (get_user_u32(val, optval_addr)) { 2506 return -TARGET_EFAULT; 2507 } 2508 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val, 2509 sizeof(val))); 2510 break; 2511 #endif /* SOL_NETLINK */ 2512 default: 2513 unimplemented: 2514 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n", 2515 level, optname); 2516 ret = -TARGET_ENOPROTOOPT; 2517 } 2518 return ret; 2519 } 2520 2521 /* do_getsockopt() Must return target values and target errnos. */ 2522 static abi_long do_getsockopt(int sockfd, int level, int optname, 2523 abi_ulong optval_addr, abi_ulong optlen) 2524 { 2525 abi_long ret; 2526 int len, val; 2527 socklen_t lv; 2528 2529 switch(level) { 2530 case TARGET_SOL_SOCKET: 2531 level = SOL_SOCKET; 2532 switch (optname) { 2533 /* These don't just return a single integer */ 2534 case TARGET_SO_PEERNAME: 2535 goto unimplemented; 2536 case TARGET_SO_RCVTIMEO: { 2537 struct timeval tv; 2538 socklen_t tvlen; 2539 2540 optname = SO_RCVTIMEO; 2541 2542 get_timeout: 2543 if (get_user_u32(len, optlen)) { 2544 return -TARGET_EFAULT; 2545 } 2546 if (len < 0) { 2547 return -TARGET_EINVAL; 2548 } 2549 2550 tvlen = sizeof(tv); 2551 ret = get_errno(getsockopt(sockfd, level, optname, 2552 &tv, &tvlen)); 2553 if (ret < 0) { 2554 return ret; 2555 } 2556 if (len > sizeof(struct target_timeval)) { 2557 len = sizeof(struct target_timeval); 2558 } 2559 if (copy_to_user_timeval(optval_addr, &tv)) { 2560 return -TARGET_EFAULT; 2561 } 2562 if (put_user_u32(len, optlen)) { 2563 return -TARGET_EFAULT; 2564 } 2565 break; 2566 } 2567 case TARGET_SO_SNDTIMEO: 2568 optname = SO_SNDTIMEO; 2569 goto get_timeout; 2570 case TARGET_SO_PEERCRED: { 2571 struct ucred cr; 2572 socklen_t crlen; 2573 struct target_ucred *tcr; 2574 2575 if (get_user_u32(len, optlen)) { 2576 return -TARGET_EFAULT; 2577 } 2578 if (len < 0) { 2579 return -TARGET_EINVAL; 2580 } 2581 2582 crlen = sizeof(cr); 2583 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 2584 &cr, &crlen)); 2585 if (ret < 0) { 2586 return ret; 2587 } 2588 if (len > crlen) { 2589 len = crlen; 2590 } 2591 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 2592 return -TARGET_EFAULT; 2593 } 2594 __put_user(cr.pid, &tcr->pid); 2595 __put_user(cr.uid, &tcr->uid); 2596 __put_user(cr.gid, &tcr->gid); 2597 unlock_user_struct(tcr, optval_addr, 1); 2598 if (put_user_u32(len, optlen)) { 2599 return -TARGET_EFAULT; 2600 } 2601 break; 2602 } 2603 case TARGET_SO_PEERSEC: { 2604 char *name; 2605 2606 if (get_user_u32(len, optlen)) { 2607 return -TARGET_EFAULT; 2608 } 2609 if (len < 0) { 2610 return -TARGET_EINVAL; 2611 } 2612 name = lock_user(VERIFY_WRITE, optval_addr, len, 0); 2613 if (!name) { 2614 return -TARGET_EFAULT; 2615 } 2616 lv = len; 2617 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC, 2618 name, &lv)); 2619 if (put_user_u32(lv, optlen)) { 2620 ret = -TARGET_EFAULT; 2621 } 2622 unlock_user(name, optval_addr, lv); 2623 break; 2624 } 2625 case TARGET_SO_LINGER: 2626 { 2627 struct linger lg; 2628 socklen_t lglen; 2629 struct target_linger *tlg; 2630 2631 if (get_user_u32(len, optlen)) { 2632 return -TARGET_EFAULT; 2633 } 2634 if (len < 0) { 2635 return -TARGET_EINVAL; 2636 } 2637 2638 lglen = sizeof(lg); 2639 ret = get_errno(getsockopt(sockfd, level, SO_LINGER, 2640 &lg, &lglen)); 2641 if (ret < 0) { 2642 return ret; 2643 } 2644 if (len > lglen) { 2645 len = lglen; 2646 } 2647 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) { 2648 return -TARGET_EFAULT; 2649 } 2650 __put_user(lg.l_onoff, &tlg->l_onoff); 2651 __put_user(lg.l_linger, &tlg->l_linger); 2652 unlock_user_struct(tlg, optval_addr, 1); 2653 if (put_user_u32(len, optlen)) { 2654 return -TARGET_EFAULT; 2655 } 2656 break; 2657 } 2658 /* Options with 'int' argument. */ 2659 case TARGET_SO_DEBUG: 2660 optname = SO_DEBUG; 2661 goto int_case; 2662 case TARGET_SO_REUSEADDR: 2663 optname = SO_REUSEADDR; 2664 goto int_case; 2665 #ifdef SO_REUSEPORT 2666 case TARGET_SO_REUSEPORT: 2667 optname = SO_REUSEPORT; 2668 goto int_case; 2669 #endif 2670 case TARGET_SO_TYPE: 2671 optname = SO_TYPE; 2672 goto int_case; 2673 case TARGET_SO_ERROR: 2674 optname = SO_ERROR; 2675 goto int_case; 2676 case TARGET_SO_DONTROUTE: 2677 optname = SO_DONTROUTE; 2678 goto int_case; 2679 case TARGET_SO_BROADCAST: 2680 optname = SO_BROADCAST; 2681 goto int_case; 2682 case TARGET_SO_SNDBUF: 2683 optname = SO_SNDBUF; 2684 goto int_case; 2685 case TARGET_SO_RCVBUF: 2686 optname = SO_RCVBUF; 2687 goto int_case; 2688 case TARGET_SO_KEEPALIVE: 2689 optname = SO_KEEPALIVE; 2690 goto int_case; 2691 case TARGET_SO_OOBINLINE: 2692 optname = SO_OOBINLINE; 2693 goto int_case; 2694 case TARGET_SO_NO_CHECK: 2695 optname = SO_NO_CHECK; 2696 goto int_case; 2697 case TARGET_SO_PRIORITY: 2698 optname = SO_PRIORITY; 2699 goto int_case; 2700 #ifdef SO_BSDCOMPAT 2701 case TARGET_SO_BSDCOMPAT: 2702 optname = SO_BSDCOMPAT; 2703 goto int_case; 2704 #endif 2705 case TARGET_SO_PASSCRED: 2706 optname = SO_PASSCRED; 2707 goto int_case; 2708 case TARGET_SO_TIMESTAMP: 2709 optname = SO_TIMESTAMP; 2710 goto int_case; 2711 case TARGET_SO_RCVLOWAT: 2712 optname = SO_RCVLOWAT; 2713 goto int_case; 2714 case TARGET_SO_ACCEPTCONN: 2715 optname = SO_ACCEPTCONN; 2716 goto int_case; 2717 case TARGET_SO_PROTOCOL: 2718 optname = SO_PROTOCOL; 2719 goto int_case; 2720 case TARGET_SO_DOMAIN: 2721 optname = SO_DOMAIN; 2722 goto int_case; 2723 default: 2724 goto int_case; 2725 } 2726 break; 2727 case SOL_TCP: 2728 case SOL_UDP: 2729 /* TCP and UDP options all take an 'int' value. */ 2730 int_case: 2731 if (get_user_u32(len, optlen)) 2732 return -TARGET_EFAULT; 2733 if (len < 0) 2734 return -TARGET_EINVAL; 2735 lv = sizeof(lv); 2736 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2737 if (ret < 0) 2738 return ret; 2739 switch (optname) { 2740 case SO_TYPE: 2741 val = host_to_target_sock_type(val); 2742 break; 2743 case SO_ERROR: 2744 val = host_to_target_errno(val); 2745 break; 2746 } 2747 if (len > lv) 2748 len = lv; 2749 if (len == 4) { 2750 if (put_user_u32(val, optval_addr)) 2751 return -TARGET_EFAULT; 2752 } else { 2753 if (put_user_u8(val, optval_addr)) 2754 return -TARGET_EFAULT; 2755 } 2756 if (put_user_u32(len, optlen)) 2757 return -TARGET_EFAULT; 2758 break; 2759 case SOL_IP: 2760 switch(optname) { 2761 case IP_TOS: 2762 case IP_TTL: 2763 case IP_HDRINCL: 2764 case IP_ROUTER_ALERT: 2765 case IP_RECVOPTS: 2766 case IP_RETOPTS: 2767 case IP_PKTINFO: 2768 case IP_MTU_DISCOVER: 2769 case IP_RECVERR: 2770 case IP_RECVTOS: 2771 #ifdef IP_FREEBIND 2772 case IP_FREEBIND: 2773 #endif 2774 case IP_MULTICAST_TTL: 2775 case IP_MULTICAST_LOOP: 2776 if (get_user_u32(len, optlen)) 2777 return -TARGET_EFAULT; 2778 if (len < 0) 2779 return -TARGET_EINVAL; 2780 lv = sizeof(lv); 2781 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2782 if (ret < 0) 2783 return ret; 2784 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2785 len = 1; 2786 if (put_user_u32(len, optlen) 2787 || put_user_u8(val, optval_addr)) 2788 return -TARGET_EFAULT; 2789 } else { 2790 if (len > sizeof(int)) 2791 len = sizeof(int); 2792 if (put_user_u32(len, optlen) 2793 || put_user_u32(val, optval_addr)) 2794 return -TARGET_EFAULT; 2795 } 2796 break; 2797 default: 2798 ret = -TARGET_ENOPROTOOPT; 2799 break; 2800 } 2801 break; 2802 case SOL_IPV6: 2803 switch (optname) { 2804 case IPV6_MTU_DISCOVER: 2805 case IPV6_MTU: 2806 case IPV6_V6ONLY: 2807 case IPV6_RECVPKTINFO: 2808 case IPV6_UNICAST_HOPS: 2809 case IPV6_MULTICAST_HOPS: 2810 case IPV6_MULTICAST_LOOP: 2811 case IPV6_RECVERR: 2812 case IPV6_RECVHOPLIMIT: 2813 case IPV6_2292HOPLIMIT: 2814 case IPV6_CHECKSUM: 2815 case IPV6_ADDRFORM: 2816 case IPV6_2292PKTINFO: 2817 case IPV6_RECVTCLASS: 2818 case IPV6_RECVRTHDR: 2819 case IPV6_2292RTHDR: 2820 case IPV6_RECVHOPOPTS: 2821 case IPV6_2292HOPOPTS: 2822 case IPV6_RECVDSTOPTS: 2823 case IPV6_2292DSTOPTS: 2824 case IPV6_TCLASS: 2825 case IPV6_ADDR_PREFERENCES: 2826 #ifdef IPV6_RECVPATHMTU 2827 case IPV6_RECVPATHMTU: 2828 #endif 2829 #ifdef IPV6_TRANSPARENT 2830 case IPV6_TRANSPARENT: 2831 #endif 2832 #ifdef IPV6_FREEBIND 2833 case IPV6_FREEBIND: 2834 #endif 2835 #ifdef IPV6_RECVORIGDSTADDR 2836 case IPV6_RECVORIGDSTADDR: 2837 #endif 2838 if (get_user_u32(len, optlen)) 2839 return -TARGET_EFAULT; 2840 if (len < 0) 2841 return -TARGET_EINVAL; 2842 lv = sizeof(lv); 2843 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2844 if (ret < 0) 2845 return ret; 2846 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2847 len = 1; 2848 if (put_user_u32(len, optlen) 2849 || put_user_u8(val, optval_addr)) 2850 return -TARGET_EFAULT; 2851 } else { 2852 if (len > sizeof(int)) 2853 len = sizeof(int); 2854 if (put_user_u32(len, optlen) 2855 || put_user_u32(val, optval_addr)) 2856 return -TARGET_EFAULT; 2857 } 2858 break; 2859 default: 2860 ret = -TARGET_ENOPROTOOPT; 2861 break; 2862 } 2863 break; 2864 #ifdef SOL_NETLINK 2865 case SOL_NETLINK: 2866 switch (optname) { 2867 case NETLINK_PKTINFO: 2868 case NETLINK_BROADCAST_ERROR: 2869 case NETLINK_NO_ENOBUFS: 2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2871 case NETLINK_LISTEN_ALL_NSID: 2872 case NETLINK_CAP_ACK: 2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2875 case NETLINK_EXT_ACK: 2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2878 case NETLINK_GET_STRICT_CHK: 2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2880 if (get_user_u32(len, optlen)) { 2881 return -TARGET_EFAULT; 2882 } 2883 if (len != sizeof(val)) { 2884 return -TARGET_EINVAL; 2885 } 2886 lv = len; 2887 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2888 if (ret < 0) { 2889 return ret; 2890 } 2891 if (put_user_u32(lv, optlen) 2892 || put_user_u32(val, optval_addr)) { 2893 return -TARGET_EFAULT; 2894 } 2895 break; 2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2897 case NETLINK_LIST_MEMBERSHIPS: 2898 { 2899 uint32_t *results; 2900 int i; 2901 if (get_user_u32(len, optlen)) { 2902 return -TARGET_EFAULT; 2903 } 2904 if (len < 0) { 2905 return -TARGET_EINVAL; 2906 } 2907 results = lock_user(VERIFY_WRITE, optval_addr, len, 1); 2908 if (!results && len > 0) { 2909 return -TARGET_EFAULT; 2910 } 2911 lv = len; 2912 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv)); 2913 if (ret < 0) { 2914 unlock_user(results, optval_addr, 0); 2915 return ret; 2916 } 2917 /* swap host endianness to target endianness. */ 2918 for (i = 0; i < (len / sizeof(uint32_t)); i++) { 2919 results[i] = tswap32(results[i]); 2920 } 2921 if (put_user_u32(lv, optlen)) { 2922 return -TARGET_EFAULT; 2923 } 2924 unlock_user(results, optval_addr, 0); 2925 break; 2926 } 2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2928 default: 2929 goto unimplemented; 2930 } 2931 break; 2932 #endif /* SOL_NETLINK */ 2933 default: 2934 unimplemented: 2935 qemu_log_mask(LOG_UNIMP, 2936 "getsockopt level=%d optname=%d not yet supported\n", 2937 level, optname); 2938 ret = -TARGET_EOPNOTSUPP; 2939 break; 2940 } 2941 return ret; 2942 } 2943 2944 /* Convert target low/high pair representing file offset into the host 2945 * low/high pair. This function doesn't handle offsets bigger than 64 bits 2946 * as the kernel doesn't handle them either. 2947 */ 2948 static void target_to_host_low_high(abi_ulong tlow, 2949 abi_ulong thigh, 2950 unsigned long *hlow, 2951 unsigned long *hhigh) 2952 { 2953 uint64_t off = tlow | 2954 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) << 2955 TARGET_LONG_BITS / 2; 2956 2957 *hlow = off; 2958 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2; 2959 } 2960 2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 2962 abi_ulong count, int copy) 2963 { 2964 struct target_iovec *target_vec; 2965 struct iovec *vec; 2966 abi_ulong total_len, max_len; 2967 int i; 2968 int err = 0; 2969 bool bad_address = false; 2970 2971 if (count == 0) { 2972 errno = 0; 2973 return NULL; 2974 } 2975 if (count > IOV_MAX) { 2976 errno = EINVAL; 2977 return NULL; 2978 } 2979 2980 vec = g_try_new0(struct iovec, count); 2981 if (vec == NULL) { 2982 errno = ENOMEM; 2983 return NULL; 2984 } 2985 2986 target_vec = lock_user(VERIFY_READ, target_addr, 2987 count * sizeof(struct target_iovec), 1); 2988 if (target_vec == NULL) { 2989 err = EFAULT; 2990 goto fail2; 2991 } 2992 2993 /* ??? If host page size > target page size, this will result in a 2994 value larger than what we can actually support. */ 2995 max_len = 0x7fffffff & TARGET_PAGE_MASK; 2996 total_len = 0; 2997 2998 for (i = 0; i < count; i++) { 2999 abi_ulong base = tswapal(target_vec[i].iov_base); 3000 abi_long len = tswapal(target_vec[i].iov_len); 3001 3002 if (len < 0) { 3003 err = EINVAL; 3004 goto fail; 3005 } else if (len == 0) { 3006 /* Zero length pointer is ignored. */ 3007 vec[i].iov_base = 0; 3008 } else { 3009 vec[i].iov_base = lock_user(type, base, len, copy); 3010 /* If the first buffer pointer is bad, this is a fault. But 3011 * subsequent bad buffers will result in a partial write; this 3012 * is realized by filling the vector with null pointers and 3013 * zero lengths. */ 3014 if (!vec[i].iov_base) { 3015 if (i == 0) { 3016 err = EFAULT; 3017 goto fail; 3018 } else { 3019 bad_address = true; 3020 } 3021 } 3022 if (bad_address) { 3023 len = 0; 3024 } 3025 if (len > max_len - total_len) { 3026 len = max_len - total_len; 3027 } 3028 } 3029 vec[i].iov_len = len; 3030 total_len += len; 3031 } 3032 3033 unlock_user(target_vec, target_addr, 0); 3034 return vec; 3035 3036 fail: 3037 while (--i >= 0) { 3038 if (tswapal(target_vec[i].iov_len) > 0) { 3039 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3040 } 3041 } 3042 unlock_user(target_vec, target_addr, 0); 3043 fail2: 3044 g_free(vec); 3045 errno = err; 3046 return NULL; 3047 } 3048 3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3050 abi_ulong count, int copy) 3051 { 3052 struct target_iovec *target_vec; 3053 int i; 3054 3055 target_vec = lock_user(VERIFY_READ, target_addr, 3056 count * sizeof(struct target_iovec), 1); 3057 if (target_vec) { 3058 for (i = 0; i < count; i++) { 3059 abi_ulong base = tswapal(target_vec[i].iov_base); 3060 abi_long len = tswapal(target_vec[i].iov_len); 3061 if (len < 0) { 3062 break; 3063 } 3064 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3065 } 3066 unlock_user(target_vec, target_addr, 0); 3067 } 3068 3069 g_free(vec); 3070 } 3071 3072 static inline int target_to_host_sock_type(int *type) 3073 { 3074 int host_type = 0; 3075 int target_type = *type; 3076 3077 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3078 case TARGET_SOCK_DGRAM: 3079 host_type = SOCK_DGRAM; 3080 break; 3081 case TARGET_SOCK_STREAM: 3082 host_type = SOCK_STREAM; 3083 break; 3084 default: 3085 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3086 break; 3087 } 3088 if (target_type & TARGET_SOCK_CLOEXEC) { 3089 #if defined(SOCK_CLOEXEC) 3090 host_type |= SOCK_CLOEXEC; 3091 #else 3092 return -TARGET_EINVAL; 3093 #endif 3094 } 3095 if (target_type & TARGET_SOCK_NONBLOCK) { 3096 #if defined(SOCK_NONBLOCK) 3097 host_type |= SOCK_NONBLOCK; 3098 #elif !defined(O_NONBLOCK) 3099 return -TARGET_EINVAL; 3100 #endif 3101 } 3102 *type = host_type; 3103 return 0; 3104 } 3105 3106 /* Try to emulate socket type flags after socket creation. */ 3107 static int sock_flags_fixup(int fd, int target_type) 3108 { 3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3110 if (target_type & TARGET_SOCK_NONBLOCK) { 3111 int flags = fcntl(fd, F_GETFL); 3112 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3113 close(fd); 3114 return -TARGET_EINVAL; 3115 } 3116 } 3117 #endif 3118 return fd; 3119 } 3120 3121 /* do_socket() Must return target values and target errnos. */ 3122 static abi_long do_socket(int domain, int type, int protocol) 3123 { 3124 int target_type = type; 3125 int ret; 3126 3127 ret = target_to_host_sock_type(&type); 3128 if (ret) { 3129 return ret; 3130 } 3131 3132 if (domain == PF_NETLINK && !( 3133 #ifdef CONFIG_RTNETLINK 3134 protocol == NETLINK_ROUTE || 3135 #endif 3136 protocol == NETLINK_KOBJECT_UEVENT || 3137 protocol == NETLINK_AUDIT)) { 3138 return -TARGET_EPROTONOSUPPORT; 3139 } 3140 3141 if (domain == AF_PACKET || 3142 (domain == AF_INET && type == SOCK_PACKET)) { 3143 protocol = tswap16(protocol); 3144 } 3145 3146 ret = get_errno(socket(domain, type, protocol)); 3147 if (ret >= 0) { 3148 ret = sock_flags_fixup(ret, target_type); 3149 if (type == SOCK_PACKET) { 3150 /* Manage an obsolete case : 3151 * if socket type is SOCK_PACKET, bind by name 3152 */ 3153 fd_trans_register(ret, &target_packet_trans); 3154 } else if (domain == PF_NETLINK) { 3155 switch (protocol) { 3156 #ifdef CONFIG_RTNETLINK 3157 case NETLINK_ROUTE: 3158 fd_trans_register(ret, &target_netlink_route_trans); 3159 break; 3160 #endif 3161 case NETLINK_KOBJECT_UEVENT: 3162 /* nothing to do: messages are strings */ 3163 break; 3164 case NETLINK_AUDIT: 3165 fd_trans_register(ret, &target_netlink_audit_trans); 3166 break; 3167 default: 3168 g_assert_not_reached(); 3169 } 3170 } 3171 } 3172 return ret; 3173 } 3174 3175 /* do_bind() Must return target values and target errnos. */ 3176 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3177 socklen_t addrlen) 3178 { 3179 void *addr; 3180 abi_long ret; 3181 3182 if ((int)addrlen < 0) { 3183 return -TARGET_EINVAL; 3184 } 3185 3186 addr = alloca(addrlen+1); 3187 3188 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3189 if (ret) 3190 return ret; 3191 3192 return get_errno(bind(sockfd, addr, addrlen)); 3193 } 3194 3195 /* do_connect() Must return target values and target errnos. */ 3196 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3197 socklen_t addrlen) 3198 { 3199 void *addr; 3200 abi_long ret; 3201 3202 if ((int)addrlen < 0) { 3203 return -TARGET_EINVAL; 3204 } 3205 3206 addr = alloca(addrlen+1); 3207 3208 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3209 if (ret) 3210 return ret; 3211 3212 return get_errno(safe_connect(sockfd, addr, addrlen)); 3213 } 3214 3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3217 int flags, int send) 3218 { 3219 abi_long ret, len; 3220 struct msghdr msg; 3221 abi_ulong count; 3222 struct iovec *vec; 3223 abi_ulong target_vec; 3224 3225 if (msgp->msg_name) { 3226 msg.msg_namelen = tswap32(msgp->msg_namelen); 3227 msg.msg_name = alloca(msg.msg_namelen+1); 3228 ret = target_to_host_sockaddr(fd, msg.msg_name, 3229 tswapal(msgp->msg_name), 3230 msg.msg_namelen); 3231 if (ret == -TARGET_EFAULT) { 3232 /* For connected sockets msg_name and msg_namelen must 3233 * be ignored, so returning EFAULT immediately is wrong. 3234 * Instead, pass a bad msg_name to the host kernel, and 3235 * let it decide whether to return EFAULT or not. 3236 */ 3237 msg.msg_name = (void *)-1; 3238 } else if (ret) { 3239 goto out2; 3240 } 3241 } else { 3242 msg.msg_name = NULL; 3243 msg.msg_namelen = 0; 3244 } 3245 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3246 msg.msg_control = alloca(msg.msg_controllen); 3247 memset(msg.msg_control, 0, msg.msg_controllen); 3248 3249 msg.msg_flags = tswap32(msgp->msg_flags); 3250 3251 count = tswapal(msgp->msg_iovlen); 3252 target_vec = tswapal(msgp->msg_iov); 3253 3254 if (count > IOV_MAX) { 3255 /* sendrcvmsg returns a different errno for this condition than 3256 * readv/writev, so we must catch it here before lock_iovec() does. 3257 */ 3258 ret = -TARGET_EMSGSIZE; 3259 goto out2; 3260 } 3261 3262 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3263 target_vec, count, send); 3264 if (vec == NULL) { 3265 ret = -host_to_target_errno(errno); 3266 /* allow sending packet without any iov, e.g. with MSG_MORE flag */ 3267 if (!send || ret) { 3268 goto out2; 3269 } 3270 } 3271 msg.msg_iovlen = count; 3272 msg.msg_iov = vec; 3273 3274 if (send) { 3275 if (fd_trans_target_to_host_data(fd)) { 3276 void *host_msg; 3277 3278 host_msg = g_malloc(msg.msg_iov->iov_len); 3279 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3280 ret = fd_trans_target_to_host_data(fd)(host_msg, 3281 msg.msg_iov->iov_len); 3282 if (ret >= 0) { 3283 msg.msg_iov->iov_base = host_msg; 3284 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3285 } 3286 g_free(host_msg); 3287 } else { 3288 ret = target_to_host_cmsg(&msg, msgp); 3289 if (ret == 0) { 3290 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3291 } 3292 } 3293 } else { 3294 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3295 if (!is_error(ret)) { 3296 len = ret; 3297 if (fd_trans_host_to_target_data(fd)) { 3298 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3299 MIN(msg.msg_iov->iov_len, len)); 3300 } 3301 if (!is_error(ret)) { 3302 ret = host_to_target_cmsg(msgp, &msg); 3303 } 3304 if (!is_error(ret)) { 3305 msgp->msg_namelen = tswap32(msg.msg_namelen); 3306 msgp->msg_flags = tswap32(msg.msg_flags); 3307 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3308 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3309 msg.msg_name, msg.msg_namelen); 3310 if (ret) { 3311 goto out; 3312 } 3313 } 3314 3315 ret = len; 3316 } 3317 } 3318 } 3319 3320 out: 3321 if (vec) { 3322 unlock_iovec(vec, target_vec, count, !send); 3323 } 3324 out2: 3325 return ret; 3326 } 3327 3328 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3329 int flags, int send) 3330 { 3331 abi_long ret; 3332 struct target_msghdr *msgp; 3333 3334 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3335 msgp, 3336 target_msg, 3337 send ? 1 : 0)) { 3338 return -TARGET_EFAULT; 3339 } 3340 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3341 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3342 return ret; 3343 } 3344 3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3346 * so it might not have this *mmsg-specific flag either. 3347 */ 3348 #ifndef MSG_WAITFORONE 3349 #define MSG_WAITFORONE 0x10000 3350 #endif 3351 3352 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3353 unsigned int vlen, unsigned int flags, 3354 int send) 3355 { 3356 struct target_mmsghdr *mmsgp; 3357 abi_long ret = 0; 3358 int i; 3359 3360 if (vlen > UIO_MAXIOV) { 3361 vlen = UIO_MAXIOV; 3362 } 3363 3364 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3365 if (!mmsgp) { 3366 return -TARGET_EFAULT; 3367 } 3368 3369 for (i = 0; i < vlen; i++) { 3370 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3371 if (is_error(ret)) { 3372 break; 3373 } 3374 mmsgp[i].msg_len = tswap32(ret); 3375 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3376 if (flags & MSG_WAITFORONE) { 3377 flags |= MSG_DONTWAIT; 3378 } 3379 } 3380 3381 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3382 3383 /* Return number of datagrams sent if we sent any at all; 3384 * otherwise return the error. 3385 */ 3386 if (i) { 3387 return i; 3388 } 3389 return ret; 3390 } 3391 3392 /* do_accept4() Must return target values and target errnos. */ 3393 static abi_long do_accept4(int fd, abi_ulong target_addr, 3394 abi_ulong target_addrlen_addr, int flags) 3395 { 3396 socklen_t addrlen, ret_addrlen; 3397 void *addr; 3398 abi_long ret; 3399 int host_flags; 3400 3401 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) { 3402 return -TARGET_EINVAL; 3403 } 3404 3405 host_flags = 0; 3406 if (flags & TARGET_SOCK_NONBLOCK) { 3407 host_flags |= SOCK_NONBLOCK; 3408 } 3409 if (flags & TARGET_SOCK_CLOEXEC) { 3410 host_flags |= SOCK_CLOEXEC; 3411 } 3412 3413 if (target_addr == 0) { 3414 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3415 } 3416 3417 /* linux returns EFAULT if addrlen pointer is invalid */ 3418 if (get_user_u32(addrlen, target_addrlen_addr)) 3419 return -TARGET_EFAULT; 3420 3421 if ((int)addrlen < 0) { 3422 return -TARGET_EINVAL; 3423 } 3424 3425 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3426 return -TARGET_EFAULT; 3427 } 3428 3429 addr = alloca(addrlen); 3430 3431 ret_addrlen = addrlen; 3432 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags)); 3433 if (!is_error(ret)) { 3434 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3435 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3436 ret = -TARGET_EFAULT; 3437 } 3438 } 3439 return ret; 3440 } 3441 3442 /* do_getpeername() Must return target values and target errnos. */ 3443 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3444 abi_ulong target_addrlen_addr) 3445 { 3446 socklen_t addrlen, ret_addrlen; 3447 void *addr; 3448 abi_long ret; 3449 3450 if (get_user_u32(addrlen, target_addrlen_addr)) 3451 return -TARGET_EFAULT; 3452 3453 if ((int)addrlen < 0) { 3454 return -TARGET_EINVAL; 3455 } 3456 3457 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3458 return -TARGET_EFAULT; 3459 } 3460 3461 addr = alloca(addrlen); 3462 3463 ret_addrlen = addrlen; 3464 ret = get_errno(getpeername(fd, addr, &ret_addrlen)); 3465 if (!is_error(ret)) { 3466 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3467 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3468 ret = -TARGET_EFAULT; 3469 } 3470 } 3471 return ret; 3472 } 3473 3474 /* do_getsockname() Must return target values and target errnos. */ 3475 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3476 abi_ulong target_addrlen_addr) 3477 { 3478 socklen_t addrlen, ret_addrlen; 3479 void *addr; 3480 abi_long ret; 3481 3482 if (get_user_u32(addrlen, target_addrlen_addr)) 3483 return -TARGET_EFAULT; 3484 3485 if ((int)addrlen < 0) { 3486 return -TARGET_EINVAL; 3487 } 3488 3489 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3490 return -TARGET_EFAULT; 3491 } 3492 3493 addr = alloca(addrlen); 3494 3495 ret_addrlen = addrlen; 3496 ret = get_errno(getsockname(fd, addr, &ret_addrlen)); 3497 if (!is_error(ret)) { 3498 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3499 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3500 ret = -TARGET_EFAULT; 3501 } 3502 } 3503 return ret; 3504 } 3505 3506 /* do_socketpair() Must return target values and target errnos. */ 3507 static abi_long do_socketpair(int domain, int type, int protocol, 3508 abi_ulong target_tab_addr) 3509 { 3510 int tab[2]; 3511 abi_long ret; 3512 3513 target_to_host_sock_type(&type); 3514 3515 ret = get_errno(socketpair(domain, type, protocol, tab)); 3516 if (!is_error(ret)) { 3517 if (put_user_s32(tab[0], target_tab_addr) 3518 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3519 ret = -TARGET_EFAULT; 3520 } 3521 return ret; 3522 } 3523 3524 /* do_sendto() Must return target values and target errnos. */ 3525 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3526 abi_ulong target_addr, socklen_t addrlen) 3527 { 3528 void *addr; 3529 void *host_msg; 3530 void *copy_msg = NULL; 3531 abi_long ret; 3532 3533 if ((int)addrlen < 0) { 3534 return -TARGET_EINVAL; 3535 } 3536 3537 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3538 if (!host_msg) 3539 return -TARGET_EFAULT; 3540 if (fd_trans_target_to_host_data(fd)) { 3541 copy_msg = host_msg; 3542 host_msg = g_malloc(len); 3543 memcpy(host_msg, copy_msg, len); 3544 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3545 if (ret < 0) { 3546 goto fail; 3547 } 3548 } 3549 if (target_addr) { 3550 addr = alloca(addrlen+1); 3551 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3552 if (ret) { 3553 goto fail; 3554 } 3555 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3556 } else { 3557 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3558 } 3559 fail: 3560 if (copy_msg) { 3561 g_free(host_msg); 3562 host_msg = copy_msg; 3563 } 3564 unlock_user(host_msg, msg, 0); 3565 return ret; 3566 } 3567 3568 /* do_recvfrom() Must return target values and target errnos. */ 3569 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3570 abi_ulong target_addr, 3571 abi_ulong target_addrlen) 3572 { 3573 socklen_t addrlen, ret_addrlen; 3574 void *addr; 3575 void *host_msg; 3576 abi_long ret; 3577 3578 if (!msg) { 3579 host_msg = NULL; 3580 } else { 3581 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3582 if (!host_msg) { 3583 return -TARGET_EFAULT; 3584 } 3585 } 3586 if (target_addr) { 3587 if (get_user_u32(addrlen, target_addrlen)) { 3588 ret = -TARGET_EFAULT; 3589 goto fail; 3590 } 3591 if ((int)addrlen < 0) { 3592 ret = -TARGET_EINVAL; 3593 goto fail; 3594 } 3595 addr = alloca(addrlen); 3596 ret_addrlen = addrlen; 3597 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3598 addr, &ret_addrlen)); 3599 } else { 3600 addr = NULL; /* To keep compiler quiet. */ 3601 addrlen = 0; /* To keep compiler quiet. */ 3602 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3603 } 3604 if (!is_error(ret)) { 3605 if (fd_trans_host_to_target_data(fd)) { 3606 abi_long trans; 3607 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len)); 3608 if (is_error(trans)) { 3609 ret = trans; 3610 goto fail; 3611 } 3612 } 3613 if (target_addr) { 3614 host_to_target_sockaddr(target_addr, addr, 3615 MIN(addrlen, ret_addrlen)); 3616 if (put_user_u32(ret_addrlen, target_addrlen)) { 3617 ret = -TARGET_EFAULT; 3618 goto fail; 3619 } 3620 } 3621 unlock_user(host_msg, msg, len); 3622 } else { 3623 fail: 3624 unlock_user(host_msg, msg, 0); 3625 } 3626 return ret; 3627 } 3628 3629 #ifdef TARGET_NR_socketcall 3630 /* do_socketcall() must return target values and target errnos. */ 3631 static abi_long do_socketcall(int num, abi_ulong vptr) 3632 { 3633 static const unsigned nargs[] = { /* number of arguments per operation */ 3634 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 3635 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 3636 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 3637 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 3638 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 3639 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 3640 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 3641 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 3642 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 3643 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 3644 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 3645 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 3646 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 3647 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3648 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3649 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 3650 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 3651 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 3652 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 3653 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 3654 }; 3655 abi_long a[6]; /* max 6 args */ 3656 unsigned i; 3657 3658 /* check the range of the first argument num */ 3659 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 3660 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 3661 return -TARGET_EINVAL; 3662 } 3663 /* ensure we have space for args */ 3664 if (nargs[num] > ARRAY_SIZE(a)) { 3665 return -TARGET_EINVAL; 3666 } 3667 /* collect the arguments in a[] according to nargs[] */ 3668 for (i = 0; i < nargs[num]; ++i) { 3669 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3670 return -TARGET_EFAULT; 3671 } 3672 } 3673 /* now when we have the args, invoke the appropriate underlying function */ 3674 switch (num) { 3675 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 3676 return do_socket(a[0], a[1], a[2]); 3677 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 3678 return do_bind(a[0], a[1], a[2]); 3679 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 3680 return do_connect(a[0], a[1], a[2]); 3681 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 3682 return get_errno(listen(a[0], a[1])); 3683 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 3684 return do_accept4(a[0], a[1], a[2], 0); 3685 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 3686 return do_getsockname(a[0], a[1], a[2]); 3687 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 3688 return do_getpeername(a[0], a[1], a[2]); 3689 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 3690 return do_socketpair(a[0], a[1], a[2], a[3]); 3691 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 3692 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3693 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 3694 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3695 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 3696 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3697 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 3698 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3699 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 3700 return get_errno(shutdown(a[0], a[1])); 3701 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3702 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3703 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3704 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3705 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 3706 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3707 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 3708 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3709 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 3710 return do_accept4(a[0], a[1], a[2], a[3]); 3711 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 3712 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 3713 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 3714 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 3715 default: 3716 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num); 3717 return -TARGET_EINVAL; 3718 } 3719 } 3720 #endif 3721 3722 #ifndef TARGET_SEMID64_DS 3723 /* asm-generic version of this struct */ 3724 struct target_semid64_ds 3725 { 3726 struct target_ipc_perm sem_perm; 3727 abi_ulong sem_otime; 3728 #if TARGET_ABI_BITS == 32 3729 abi_ulong __unused1; 3730 #endif 3731 abi_ulong sem_ctime; 3732 #if TARGET_ABI_BITS == 32 3733 abi_ulong __unused2; 3734 #endif 3735 abi_ulong sem_nsems; 3736 abi_ulong __unused3; 3737 abi_ulong __unused4; 3738 }; 3739 #endif 3740 3741 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 3742 abi_ulong target_addr) 3743 { 3744 struct target_ipc_perm *target_ip; 3745 struct target_semid64_ds *target_sd; 3746 3747 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3748 return -TARGET_EFAULT; 3749 target_ip = &(target_sd->sem_perm); 3750 host_ip->__key = tswap32(target_ip->__key); 3751 host_ip->uid = tswap32(target_ip->uid); 3752 host_ip->gid = tswap32(target_ip->gid); 3753 host_ip->cuid = tswap32(target_ip->cuid); 3754 host_ip->cgid = tswap32(target_ip->cgid); 3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3756 host_ip->mode = tswap32(target_ip->mode); 3757 #else 3758 host_ip->mode = tswap16(target_ip->mode); 3759 #endif 3760 #if defined(TARGET_PPC) 3761 host_ip->__seq = tswap32(target_ip->__seq); 3762 #else 3763 host_ip->__seq = tswap16(target_ip->__seq); 3764 #endif 3765 unlock_user_struct(target_sd, target_addr, 0); 3766 return 0; 3767 } 3768 3769 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 3770 struct ipc_perm *host_ip) 3771 { 3772 struct target_ipc_perm *target_ip; 3773 struct target_semid64_ds *target_sd; 3774 3775 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3776 return -TARGET_EFAULT; 3777 target_ip = &(target_sd->sem_perm); 3778 target_ip->__key = tswap32(host_ip->__key); 3779 target_ip->uid = tswap32(host_ip->uid); 3780 target_ip->gid = tswap32(host_ip->gid); 3781 target_ip->cuid = tswap32(host_ip->cuid); 3782 target_ip->cgid = tswap32(host_ip->cgid); 3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3784 target_ip->mode = tswap32(host_ip->mode); 3785 #else 3786 target_ip->mode = tswap16(host_ip->mode); 3787 #endif 3788 #if defined(TARGET_PPC) 3789 target_ip->__seq = tswap32(host_ip->__seq); 3790 #else 3791 target_ip->__seq = tswap16(host_ip->__seq); 3792 #endif 3793 unlock_user_struct(target_sd, target_addr, 1); 3794 return 0; 3795 } 3796 3797 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 3798 abi_ulong target_addr) 3799 { 3800 struct target_semid64_ds *target_sd; 3801 3802 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3803 return -TARGET_EFAULT; 3804 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 3805 return -TARGET_EFAULT; 3806 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 3807 host_sd->sem_otime = tswapal(target_sd->sem_otime); 3808 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 3809 unlock_user_struct(target_sd, target_addr, 0); 3810 return 0; 3811 } 3812 3813 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 3814 struct semid_ds *host_sd) 3815 { 3816 struct target_semid64_ds *target_sd; 3817 3818 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3819 return -TARGET_EFAULT; 3820 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 3821 return -TARGET_EFAULT; 3822 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 3823 target_sd->sem_otime = tswapal(host_sd->sem_otime); 3824 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 3825 unlock_user_struct(target_sd, target_addr, 1); 3826 return 0; 3827 } 3828 3829 struct target_seminfo { 3830 int semmap; 3831 int semmni; 3832 int semmns; 3833 int semmnu; 3834 int semmsl; 3835 int semopm; 3836 int semume; 3837 int semusz; 3838 int semvmx; 3839 int semaem; 3840 }; 3841 3842 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 3843 struct seminfo *host_seminfo) 3844 { 3845 struct target_seminfo *target_seminfo; 3846 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 3847 return -TARGET_EFAULT; 3848 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 3849 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 3850 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 3851 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 3852 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 3853 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 3854 __put_user(host_seminfo->semume, &target_seminfo->semume); 3855 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 3856 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 3857 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 3858 unlock_user_struct(target_seminfo, target_addr, 1); 3859 return 0; 3860 } 3861 3862 union semun { 3863 int val; 3864 struct semid_ds *buf; 3865 unsigned short *array; 3866 struct seminfo *__buf; 3867 }; 3868 3869 union target_semun { 3870 int val; 3871 abi_ulong buf; 3872 abi_ulong array; 3873 abi_ulong __buf; 3874 }; 3875 3876 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 3877 abi_ulong target_addr) 3878 { 3879 int nsems; 3880 unsigned short *array; 3881 union semun semun; 3882 struct semid_ds semid_ds; 3883 int i, ret; 3884 3885 semun.buf = &semid_ds; 3886 3887 ret = semctl(semid, 0, IPC_STAT, semun); 3888 if (ret == -1) 3889 return get_errno(ret); 3890 3891 nsems = semid_ds.sem_nsems; 3892 3893 *host_array = g_try_new(unsigned short, nsems); 3894 if (!*host_array) { 3895 return -TARGET_ENOMEM; 3896 } 3897 array = lock_user(VERIFY_READ, target_addr, 3898 nsems*sizeof(unsigned short), 1); 3899 if (!array) { 3900 g_free(*host_array); 3901 return -TARGET_EFAULT; 3902 } 3903 3904 for(i=0; i<nsems; i++) { 3905 __get_user((*host_array)[i], &array[i]); 3906 } 3907 unlock_user(array, target_addr, 0); 3908 3909 return 0; 3910 } 3911 3912 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 3913 unsigned short **host_array) 3914 { 3915 int nsems; 3916 unsigned short *array; 3917 union semun semun; 3918 struct semid_ds semid_ds; 3919 int i, ret; 3920 3921 semun.buf = &semid_ds; 3922 3923 ret = semctl(semid, 0, IPC_STAT, semun); 3924 if (ret == -1) 3925 return get_errno(ret); 3926 3927 nsems = semid_ds.sem_nsems; 3928 3929 array = lock_user(VERIFY_WRITE, target_addr, 3930 nsems*sizeof(unsigned short), 0); 3931 if (!array) 3932 return -TARGET_EFAULT; 3933 3934 for(i=0; i<nsems; i++) { 3935 __put_user((*host_array)[i], &array[i]); 3936 } 3937 g_free(*host_array); 3938 unlock_user(array, target_addr, 1); 3939 3940 return 0; 3941 } 3942 3943 static inline abi_long do_semctl(int semid, int semnum, int cmd, 3944 abi_ulong target_arg) 3945 { 3946 union target_semun target_su = { .buf = target_arg }; 3947 union semun arg; 3948 struct semid_ds dsarg; 3949 unsigned short *array = NULL; 3950 struct seminfo seminfo; 3951 abi_long ret = -TARGET_EINVAL; 3952 abi_long err; 3953 cmd &= 0xff; 3954 3955 switch( cmd ) { 3956 case GETVAL: 3957 case SETVAL: 3958 /* In 64 bit cross-endian situations, we will erroneously pick up 3959 * the wrong half of the union for the "val" element. To rectify 3960 * this, the entire 8-byte structure is byteswapped, followed by 3961 * a swap of the 4 byte val field. In other cases, the data is 3962 * already in proper host byte order. */ 3963 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 3964 target_su.buf = tswapal(target_su.buf); 3965 arg.val = tswap32(target_su.val); 3966 } else { 3967 arg.val = target_su.val; 3968 } 3969 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3970 break; 3971 case GETALL: 3972 case SETALL: 3973 err = target_to_host_semarray(semid, &array, target_su.array); 3974 if (err) 3975 return err; 3976 arg.array = array; 3977 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3978 err = host_to_target_semarray(semid, target_su.array, &array); 3979 if (err) 3980 return err; 3981 break; 3982 case IPC_STAT: 3983 case IPC_SET: 3984 case SEM_STAT: 3985 err = target_to_host_semid_ds(&dsarg, target_su.buf); 3986 if (err) 3987 return err; 3988 arg.buf = &dsarg; 3989 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3990 err = host_to_target_semid_ds(target_su.buf, &dsarg); 3991 if (err) 3992 return err; 3993 break; 3994 case IPC_INFO: 3995 case SEM_INFO: 3996 arg.__buf = &seminfo; 3997 ret = get_errno(semctl(semid, semnum, cmd, arg)); 3998 err = host_to_target_seminfo(target_su.__buf, &seminfo); 3999 if (err) 4000 return err; 4001 break; 4002 case IPC_RMID: 4003 case GETPID: 4004 case GETNCNT: 4005 case GETZCNT: 4006 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4007 break; 4008 } 4009 4010 return ret; 4011 } 4012 4013 struct target_sembuf { 4014 unsigned short sem_num; 4015 short sem_op; 4016 short sem_flg; 4017 }; 4018 4019 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4020 abi_ulong target_addr, 4021 unsigned nsops) 4022 { 4023 struct target_sembuf *target_sembuf; 4024 int i; 4025 4026 target_sembuf = lock_user(VERIFY_READ, target_addr, 4027 nsops*sizeof(struct target_sembuf), 1); 4028 if (!target_sembuf) 4029 return -TARGET_EFAULT; 4030 4031 for(i=0; i<nsops; i++) { 4032 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4033 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4034 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4035 } 4036 4037 unlock_user(target_sembuf, target_addr, 0); 4038 4039 return 0; 4040 } 4041 4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \ 4043 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64) 4044 4045 /* 4046 * This macro is required to handle the s390 variants, which passes the 4047 * arguments in a different order than default. 4048 */ 4049 #ifdef __s390x__ 4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4051 (__nsops), (__timeout), (__sops) 4052 #else 4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4054 (__nsops), 0, (__sops), (__timeout) 4055 #endif 4056 4057 static inline abi_long do_semtimedop(int semid, 4058 abi_long ptr, 4059 unsigned nsops, 4060 abi_long timeout, bool time64) 4061 { 4062 struct sembuf *sops; 4063 struct timespec ts, *pts = NULL; 4064 abi_long ret; 4065 4066 if (timeout) { 4067 pts = &ts; 4068 if (time64) { 4069 if (target_to_host_timespec64(pts, timeout)) { 4070 return -TARGET_EFAULT; 4071 } 4072 } else { 4073 if (target_to_host_timespec(pts, timeout)) { 4074 return -TARGET_EFAULT; 4075 } 4076 } 4077 } 4078 4079 if (nsops > TARGET_SEMOPM) { 4080 return -TARGET_E2BIG; 4081 } 4082 4083 sops = g_new(struct sembuf, nsops); 4084 4085 if (target_to_host_sembuf(sops, ptr, nsops)) { 4086 g_free(sops); 4087 return -TARGET_EFAULT; 4088 } 4089 4090 ret = -TARGET_ENOSYS; 4091 #ifdef __NR_semtimedop 4092 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts)); 4093 #endif 4094 #ifdef __NR_ipc 4095 if (ret == -TARGET_ENOSYS) { 4096 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, 4097 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts))); 4098 } 4099 #endif 4100 g_free(sops); 4101 return ret; 4102 } 4103 #endif 4104 4105 struct target_msqid_ds 4106 { 4107 struct target_ipc_perm msg_perm; 4108 abi_ulong msg_stime; 4109 #if TARGET_ABI_BITS == 32 4110 abi_ulong __unused1; 4111 #endif 4112 abi_ulong msg_rtime; 4113 #if TARGET_ABI_BITS == 32 4114 abi_ulong __unused2; 4115 #endif 4116 abi_ulong msg_ctime; 4117 #if TARGET_ABI_BITS == 32 4118 abi_ulong __unused3; 4119 #endif 4120 abi_ulong __msg_cbytes; 4121 abi_ulong msg_qnum; 4122 abi_ulong msg_qbytes; 4123 abi_ulong msg_lspid; 4124 abi_ulong msg_lrpid; 4125 abi_ulong __unused4; 4126 abi_ulong __unused5; 4127 }; 4128 4129 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4130 abi_ulong target_addr) 4131 { 4132 struct target_msqid_ds *target_md; 4133 4134 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4135 return -TARGET_EFAULT; 4136 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4137 return -TARGET_EFAULT; 4138 host_md->msg_stime = tswapal(target_md->msg_stime); 4139 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4140 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4141 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4142 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4143 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4144 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4145 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4146 unlock_user_struct(target_md, target_addr, 0); 4147 return 0; 4148 } 4149 4150 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4151 struct msqid_ds *host_md) 4152 { 4153 struct target_msqid_ds *target_md; 4154 4155 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4156 return -TARGET_EFAULT; 4157 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4158 return -TARGET_EFAULT; 4159 target_md->msg_stime = tswapal(host_md->msg_stime); 4160 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4161 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4162 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4163 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4164 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4165 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4166 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4167 unlock_user_struct(target_md, target_addr, 1); 4168 return 0; 4169 } 4170 4171 struct target_msginfo { 4172 int msgpool; 4173 int msgmap; 4174 int msgmax; 4175 int msgmnb; 4176 int msgmni; 4177 int msgssz; 4178 int msgtql; 4179 unsigned short int msgseg; 4180 }; 4181 4182 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4183 struct msginfo *host_msginfo) 4184 { 4185 struct target_msginfo *target_msginfo; 4186 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4187 return -TARGET_EFAULT; 4188 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4189 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4190 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4191 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4192 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4193 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4194 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4195 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4196 unlock_user_struct(target_msginfo, target_addr, 1); 4197 return 0; 4198 } 4199 4200 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4201 { 4202 struct msqid_ds dsarg; 4203 struct msginfo msginfo; 4204 abi_long ret = -TARGET_EINVAL; 4205 4206 cmd &= 0xff; 4207 4208 switch (cmd) { 4209 case IPC_STAT: 4210 case IPC_SET: 4211 case MSG_STAT: 4212 if (target_to_host_msqid_ds(&dsarg,ptr)) 4213 return -TARGET_EFAULT; 4214 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4215 if (host_to_target_msqid_ds(ptr,&dsarg)) 4216 return -TARGET_EFAULT; 4217 break; 4218 case IPC_RMID: 4219 ret = get_errno(msgctl(msgid, cmd, NULL)); 4220 break; 4221 case IPC_INFO: 4222 case MSG_INFO: 4223 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4224 if (host_to_target_msginfo(ptr, &msginfo)) 4225 return -TARGET_EFAULT; 4226 break; 4227 } 4228 4229 return ret; 4230 } 4231 4232 struct target_msgbuf { 4233 abi_long mtype; 4234 char mtext[1]; 4235 }; 4236 4237 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4238 ssize_t msgsz, int msgflg) 4239 { 4240 struct target_msgbuf *target_mb; 4241 struct msgbuf *host_mb; 4242 abi_long ret = 0; 4243 4244 if (msgsz < 0) { 4245 return -TARGET_EINVAL; 4246 } 4247 4248 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4249 return -TARGET_EFAULT; 4250 host_mb = g_try_malloc(msgsz + sizeof(long)); 4251 if (!host_mb) { 4252 unlock_user_struct(target_mb, msgp, 0); 4253 return -TARGET_ENOMEM; 4254 } 4255 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4256 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4257 ret = -TARGET_ENOSYS; 4258 #ifdef __NR_msgsnd 4259 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4260 #endif 4261 #ifdef __NR_ipc 4262 if (ret == -TARGET_ENOSYS) { 4263 #ifdef __s390x__ 4264 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4265 host_mb)); 4266 #else 4267 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4268 host_mb, 0)); 4269 #endif 4270 } 4271 #endif 4272 g_free(host_mb); 4273 unlock_user_struct(target_mb, msgp, 0); 4274 4275 return ret; 4276 } 4277 4278 #ifdef __NR_ipc 4279 #if defined(__sparc__) 4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */ 4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp 4282 #elif defined(__s390x__) 4283 /* The s390 sys_ipc variant has only five parameters. */ 4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4285 ((long int[]){(long int)__msgp, __msgtyp}) 4286 #else 4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4288 ((long int[]){(long int)__msgp, __msgtyp}), 0 4289 #endif 4290 #endif 4291 4292 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4293 ssize_t msgsz, abi_long msgtyp, 4294 int msgflg) 4295 { 4296 struct target_msgbuf *target_mb; 4297 char *target_mtext; 4298 struct msgbuf *host_mb; 4299 abi_long ret = 0; 4300 4301 if (msgsz < 0) { 4302 return -TARGET_EINVAL; 4303 } 4304 4305 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4306 return -TARGET_EFAULT; 4307 4308 host_mb = g_try_malloc(msgsz + sizeof(long)); 4309 if (!host_mb) { 4310 ret = -TARGET_ENOMEM; 4311 goto end; 4312 } 4313 ret = -TARGET_ENOSYS; 4314 #ifdef __NR_msgrcv 4315 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4316 #endif 4317 #ifdef __NR_ipc 4318 if (ret == -TARGET_ENOSYS) { 4319 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz, 4320 msgflg, MSGRCV_ARGS(host_mb, msgtyp))); 4321 } 4322 #endif 4323 4324 if (ret > 0) { 4325 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4326 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4327 if (!target_mtext) { 4328 ret = -TARGET_EFAULT; 4329 goto end; 4330 } 4331 memcpy(target_mb->mtext, host_mb->mtext, ret); 4332 unlock_user(target_mtext, target_mtext_addr, ret); 4333 } 4334 4335 target_mb->mtype = tswapal(host_mb->mtype); 4336 4337 end: 4338 if (target_mb) 4339 unlock_user_struct(target_mb, msgp, 1); 4340 g_free(host_mb); 4341 return ret; 4342 } 4343 4344 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4345 abi_ulong target_addr) 4346 { 4347 struct target_shmid_ds *target_sd; 4348 4349 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4350 return -TARGET_EFAULT; 4351 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4352 return -TARGET_EFAULT; 4353 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4354 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4355 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4356 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4357 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4358 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4359 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4360 unlock_user_struct(target_sd, target_addr, 0); 4361 return 0; 4362 } 4363 4364 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4365 struct shmid_ds *host_sd) 4366 { 4367 struct target_shmid_ds *target_sd; 4368 4369 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4370 return -TARGET_EFAULT; 4371 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4372 return -TARGET_EFAULT; 4373 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4374 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4375 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4376 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4377 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4378 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4379 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4380 unlock_user_struct(target_sd, target_addr, 1); 4381 return 0; 4382 } 4383 4384 struct target_shminfo { 4385 abi_ulong shmmax; 4386 abi_ulong shmmin; 4387 abi_ulong shmmni; 4388 abi_ulong shmseg; 4389 abi_ulong shmall; 4390 }; 4391 4392 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4393 struct shminfo *host_shminfo) 4394 { 4395 struct target_shminfo *target_shminfo; 4396 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4397 return -TARGET_EFAULT; 4398 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4399 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4400 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4401 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4402 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4403 unlock_user_struct(target_shminfo, target_addr, 1); 4404 return 0; 4405 } 4406 4407 struct target_shm_info { 4408 int used_ids; 4409 abi_ulong shm_tot; 4410 abi_ulong shm_rss; 4411 abi_ulong shm_swp; 4412 abi_ulong swap_attempts; 4413 abi_ulong swap_successes; 4414 }; 4415 4416 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4417 struct shm_info *host_shm_info) 4418 { 4419 struct target_shm_info *target_shm_info; 4420 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4421 return -TARGET_EFAULT; 4422 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4423 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4424 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4425 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4426 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4427 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4428 unlock_user_struct(target_shm_info, target_addr, 1); 4429 return 0; 4430 } 4431 4432 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4433 { 4434 struct shmid_ds dsarg; 4435 struct shminfo shminfo; 4436 struct shm_info shm_info; 4437 abi_long ret = -TARGET_EINVAL; 4438 4439 cmd &= 0xff; 4440 4441 switch(cmd) { 4442 case IPC_STAT: 4443 case IPC_SET: 4444 case SHM_STAT: 4445 if (target_to_host_shmid_ds(&dsarg, buf)) 4446 return -TARGET_EFAULT; 4447 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4448 if (host_to_target_shmid_ds(buf, &dsarg)) 4449 return -TARGET_EFAULT; 4450 break; 4451 case IPC_INFO: 4452 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4453 if (host_to_target_shminfo(buf, &shminfo)) 4454 return -TARGET_EFAULT; 4455 break; 4456 case SHM_INFO: 4457 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4458 if (host_to_target_shm_info(buf, &shm_info)) 4459 return -TARGET_EFAULT; 4460 break; 4461 case IPC_RMID: 4462 case SHM_LOCK: 4463 case SHM_UNLOCK: 4464 ret = get_errno(shmctl(shmid, cmd, NULL)); 4465 break; 4466 } 4467 4468 return ret; 4469 } 4470 4471 #ifdef TARGET_NR_ipc 4472 /* ??? This only works with linear mappings. */ 4473 /* do_ipc() must return target values and target errnos. */ 4474 static abi_long do_ipc(CPUArchState *cpu_env, 4475 unsigned int call, abi_long first, 4476 abi_long second, abi_long third, 4477 abi_long ptr, abi_long fifth) 4478 { 4479 int version; 4480 abi_long ret = 0; 4481 4482 version = call >> 16; 4483 call &= 0xffff; 4484 4485 switch (call) { 4486 case IPCOP_semop: 4487 ret = do_semtimedop(first, ptr, second, 0, false); 4488 break; 4489 case IPCOP_semtimedop: 4490 /* 4491 * The s390 sys_ipc variant has only five parameters instead of six 4492 * (as for default variant) and the only difference is the handling of 4493 * SEMTIMEDOP where on s390 the third parameter is used as a pointer 4494 * to a struct timespec where the generic variant uses fifth parameter. 4495 */ 4496 #if defined(TARGET_S390X) 4497 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64); 4498 #else 4499 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64); 4500 #endif 4501 break; 4502 4503 case IPCOP_semget: 4504 ret = get_errno(semget(first, second, third)); 4505 break; 4506 4507 case IPCOP_semctl: { 4508 /* The semun argument to semctl is passed by value, so dereference the 4509 * ptr argument. */ 4510 abi_ulong atptr; 4511 get_user_ual(atptr, ptr); 4512 ret = do_semctl(first, second, third, atptr); 4513 break; 4514 } 4515 4516 case IPCOP_msgget: 4517 ret = get_errno(msgget(first, second)); 4518 break; 4519 4520 case IPCOP_msgsnd: 4521 ret = do_msgsnd(first, ptr, second, third); 4522 break; 4523 4524 case IPCOP_msgctl: 4525 ret = do_msgctl(first, second, ptr); 4526 break; 4527 4528 case IPCOP_msgrcv: 4529 switch (version) { 4530 case 0: 4531 { 4532 struct target_ipc_kludge { 4533 abi_long msgp; 4534 abi_long msgtyp; 4535 } *tmp; 4536 4537 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4538 ret = -TARGET_EFAULT; 4539 break; 4540 } 4541 4542 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4543 4544 unlock_user_struct(tmp, ptr, 0); 4545 break; 4546 } 4547 default: 4548 ret = do_msgrcv(first, ptr, second, fifth, third); 4549 } 4550 break; 4551 4552 case IPCOP_shmat: 4553 switch (version) { 4554 default: 4555 { 4556 abi_ulong raddr; 4557 raddr = target_shmat(cpu_env, first, ptr, second); 4558 if (is_error(raddr)) 4559 return get_errno(raddr); 4560 if (put_user_ual(raddr, third)) 4561 return -TARGET_EFAULT; 4562 break; 4563 } 4564 case 1: 4565 ret = -TARGET_EINVAL; 4566 break; 4567 } 4568 break; 4569 case IPCOP_shmdt: 4570 ret = target_shmdt(ptr); 4571 break; 4572 4573 case IPCOP_shmget: 4574 /* IPC_* flag values are the same on all linux platforms */ 4575 ret = get_errno(shmget(first, second, third)); 4576 break; 4577 4578 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4579 case IPCOP_shmctl: 4580 ret = do_shmctl(first, second, ptr); 4581 break; 4582 default: 4583 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n", 4584 call, version); 4585 ret = -TARGET_ENOSYS; 4586 break; 4587 } 4588 return ret; 4589 } 4590 #endif 4591 4592 /* kernel structure types definitions */ 4593 4594 #define STRUCT(name, ...) STRUCT_ ## name, 4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4596 enum { 4597 #include "syscall_types.h" 4598 STRUCT_MAX 4599 }; 4600 #undef STRUCT 4601 #undef STRUCT_SPECIAL 4602 4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4604 #define STRUCT_SPECIAL(name) 4605 #include "syscall_types.h" 4606 #undef STRUCT 4607 #undef STRUCT_SPECIAL 4608 4609 #define MAX_STRUCT_SIZE 4096 4610 4611 #ifdef CONFIG_FIEMAP 4612 /* So fiemap access checks don't overflow on 32 bit systems. 4613 * This is very slightly smaller than the limit imposed by 4614 * the underlying kernel. 4615 */ 4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4617 / sizeof(struct fiemap_extent)) 4618 4619 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4620 int fd, int cmd, abi_long arg) 4621 { 4622 /* The parameter for this ioctl is a struct fiemap followed 4623 * by an array of struct fiemap_extent whose size is set 4624 * in fiemap->fm_extent_count. The array is filled in by the 4625 * ioctl. 4626 */ 4627 int target_size_in, target_size_out; 4628 struct fiemap *fm; 4629 const argtype *arg_type = ie->arg_type; 4630 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4631 void *argptr, *p; 4632 abi_long ret; 4633 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4634 uint32_t outbufsz; 4635 int free_fm = 0; 4636 4637 assert(arg_type[0] == TYPE_PTR); 4638 assert(ie->access == IOC_RW); 4639 arg_type++; 4640 target_size_in = thunk_type_size(arg_type, 0); 4641 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4642 if (!argptr) { 4643 return -TARGET_EFAULT; 4644 } 4645 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4646 unlock_user(argptr, arg, 0); 4647 fm = (struct fiemap *)buf_temp; 4648 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4649 return -TARGET_EINVAL; 4650 } 4651 4652 outbufsz = sizeof (*fm) + 4653 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4654 4655 if (outbufsz > MAX_STRUCT_SIZE) { 4656 /* We can't fit all the extents into the fixed size buffer. 4657 * Allocate one that is large enough and use it instead. 4658 */ 4659 fm = g_try_malloc(outbufsz); 4660 if (!fm) { 4661 return -TARGET_ENOMEM; 4662 } 4663 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4664 free_fm = 1; 4665 } 4666 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4667 if (!is_error(ret)) { 4668 target_size_out = target_size_in; 4669 /* An extent_count of 0 means we were only counting the extents 4670 * so there are no structs to copy 4671 */ 4672 if (fm->fm_extent_count != 0) { 4673 target_size_out += fm->fm_mapped_extents * extent_size; 4674 } 4675 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4676 if (!argptr) { 4677 ret = -TARGET_EFAULT; 4678 } else { 4679 /* Convert the struct fiemap */ 4680 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4681 if (fm->fm_extent_count != 0) { 4682 p = argptr + target_size_in; 4683 /* ...and then all the struct fiemap_extents */ 4684 for (i = 0; i < fm->fm_mapped_extents; i++) { 4685 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4686 THUNK_TARGET); 4687 p += extent_size; 4688 } 4689 } 4690 unlock_user(argptr, arg, target_size_out); 4691 } 4692 } 4693 if (free_fm) { 4694 g_free(fm); 4695 } 4696 return ret; 4697 } 4698 #endif 4699 4700 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 4701 int fd, int cmd, abi_long arg) 4702 { 4703 const argtype *arg_type = ie->arg_type; 4704 int target_size; 4705 void *argptr; 4706 int ret; 4707 struct ifconf *host_ifconf; 4708 uint32_t outbufsz; 4709 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 4710 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) }; 4711 int target_ifreq_size; 4712 int nb_ifreq; 4713 int free_buf = 0; 4714 int i; 4715 int target_ifc_len; 4716 abi_long target_ifc_buf; 4717 int host_ifc_len; 4718 char *host_ifc_buf; 4719 4720 assert(arg_type[0] == TYPE_PTR); 4721 assert(ie->access == IOC_RW); 4722 4723 arg_type++; 4724 target_size = thunk_type_size(arg_type, 0); 4725 4726 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4727 if (!argptr) 4728 return -TARGET_EFAULT; 4729 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4730 unlock_user(argptr, arg, 0); 4731 4732 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 4733 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 4734 target_ifreq_size = thunk_type_size(ifreq_max_type, 0); 4735 4736 if (target_ifc_buf != 0) { 4737 target_ifc_len = host_ifconf->ifc_len; 4738 nb_ifreq = target_ifc_len / target_ifreq_size; 4739 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 4740 4741 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 4742 if (outbufsz > MAX_STRUCT_SIZE) { 4743 /* 4744 * We can't fit all the extents into the fixed size buffer. 4745 * Allocate one that is large enough and use it instead. 4746 */ 4747 host_ifconf = g_try_malloc(outbufsz); 4748 if (!host_ifconf) { 4749 return -TARGET_ENOMEM; 4750 } 4751 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 4752 free_buf = 1; 4753 } 4754 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf); 4755 4756 host_ifconf->ifc_len = host_ifc_len; 4757 } else { 4758 host_ifc_buf = NULL; 4759 } 4760 host_ifconf->ifc_buf = host_ifc_buf; 4761 4762 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 4763 if (!is_error(ret)) { 4764 /* convert host ifc_len to target ifc_len */ 4765 4766 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 4767 target_ifc_len = nb_ifreq * target_ifreq_size; 4768 host_ifconf->ifc_len = target_ifc_len; 4769 4770 /* restore target ifc_buf */ 4771 4772 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 4773 4774 /* copy struct ifconf to target user */ 4775 4776 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4777 if (!argptr) 4778 return -TARGET_EFAULT; 4779 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 4780 unlock_user(argptr, arg, target_size); 4781 4782 if (target_ifc_buf != 0) { 4783 /* copy ifreq[] to target user */ 4784 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 4785 for (i = 0; i < nb_ifreq ; i++) { 4786 thunk_convert(argptr + i * target_ifreq_size, 4787 host_ifc_buf + i * sizeof(struct ifreq), 4788 ifreq_arg_type, THUNK_TARGET); 4789 } 4790 unlock_user(argptr, target_ifc_buf, target_ifc_len); 4791 } 4792 } 4793 4794 if (free_buf) { 4795 g_free(host_ifconf); 4796 } 4797 4798 return ret; 4799 } 4800 4801 #if defined(CONFIG_USBFS) 4802 #if HOST_LONG_BITS > 64 4803 #error USBDEVFS thunks do not support >64 bit hosts yet. 4804 #endif 4805 struct live_urb { 4806 uint64_t target_urb_adr; 4807 uint64_t target_buf_adr; 4808 char *target_buf_ptr; 4809 struct usbdevfs_urb host_urb; 4810 }; 4811 4812 static GHashTable *usbdevfs_urb_hashtable(void) 4813 { 4814 static GHashTable *urb_hashtable; 4815 4816 if (!urb_hashtable) { 4817 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal); 4818 } 4819 return urb_hashtable; 4820 } 4821 4822 static void urb_hashtable_insert(struct live_urb *urb) 4823 { 4824 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4825 g_hash_table_insert(urb_hashtable, urb, urb); 4826 } 4827 4828 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr) 4829 { 4830 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4831 return g_hash_table_lookup(urb_hashtable, &target_urb_adr); 4832 } 4833 4834 static void urb_hashtable_remove(struct live_urb *urb) 4835 { 4836 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 4837 g_hash_table_remove(urb_hashtable, urb); 4838 } 4839 4840 static abi_long 4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp, 4842 int fd, int cmd, abi_long arg) 4843 { 4844 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) }; 4845 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 }; 4846 struct live_urb *lurb; 4847 void *argptr; 4848 uint64_t hurb; 4849 int target_size; 4850 uintptr_t target_urb_adr; 4851 abi_long ret; 4852 4853 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET); 4854 4855 memset(buf_temp, 0, sizeof(uint64_t)); 4856 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 4857 if (is_error(ret)) { 4858 return ret; 4859 } 4860 4861 memcpy(&hurb, buf_temp, sizeof(uint64_t)); 4862 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb)); 4863 if (!lurb->target_urb_adr) { 4864 return -TARGET_EFAULT; 4865 } 4866 urb_hashtable_remove(lurb); 4867 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 4868 lurb->host_urb.buffer_length); 4869 lurb->target_buf_ptr = NULL; 4870 4871 /* restore the guest buffer pointer */ 4872 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr; 4873 4874 /* update the guest urb struct */ 4875 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0); 4876 if (!argptr) { 4877 g_free(lurb); 4878 return -TARGET_EFAULT; 4879 } 4880 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET); 4881 unlock_user(argptr, lurb->target_urb_adr, target_size); 4882 4883 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET); 4884 /* write back the urb handle */ 4885 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4886 if (!argptr) { 4887 g_free(lurb); 4888 return -TARGET_EFAULT; 4889 } 4890 4891 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */ 4892 target_urb_adr = lurb->target_urb_adr; 4893 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET); 4894 unlock_user(argptr, arg, target_size); 4895 4896 g_free(lurb); 4897 return ret; 4898 } 4899 4900 static abi_long 4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie, 4902 uint8_t *buf_temp __attribute__((unused)), 4903 int fd, int cmd, abi_long arg) 4904 { 4905 struct live_urb *lurb; 4906 4907 /* map target address back to host URB with metadata. */ 4908 lurb = urb_hashtable_lookup(arg); 4909 if (!lurb) { 4910 return -TARGET_EFAULT; 4911 } 4912 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4913 } 4914 4915 static abi_long 4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp, 4917 int fd, int cmd, abi_long arg) 4918 { 4919 const argtype *arg_type = ie->arg_type; 4920 int target_size; 4921 abi_long ret; 4922 void *argptr; 4923 int rw_dir; 4924 struct live_urb *lurb; 4925 4926 /* 4927 * each submitted URB needs to map to a unique ID for the 4928 * kernel, and that unique ID needs to be a pointer to 4929 * host memory. hence, we need to malloc for each URB. 4930 * isochronous transfers have a variable length struct. 4931 */ 4932 arg_type++; 4933 target_size = thunk_type_size(arg_type, THUNK_TARGET); 4934 4935 /* construct host copy of urb and metadata */ 4936 lurb = g_try_new0(struct live_urb, 1); 4937 if (!lurb) { 4938 return -TARGET_ENOMEM; 4939 } 4940 4941 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4942 if (!argptr) { 4943 g_free(lurb); 4944 return -TARGET_EFAULT; 4945 } 4946 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST); 4947 unlock_user(argptr, arg, 0); 4948 4949 lurb->target_urb_adr = arg; 4950 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer; 4951 4952 /* buffer space used depends on endpoint type so lock the entire buffer */ 4953 /* control type urbs should check the buffer contents for true direction */ 4954 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ; 4955 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr, 4956 lurb->host_urb.buffer_length, 1); 4957 if (lurb->target_buf_ptr == NULL) { 4958 g_free(lurb); 4959 return -TARGET_EFAULT; 4960 } 4961 4962 /* update buffer pointer in host copy */ 4963 lurb->host_urb.buffer = lurb->target_buf_ptr; 4964 4965 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 4966 if (is_error(ret)) { 4967 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0); 4968 g_free(lurb); 4969 } else { 4970 urb_hashtable_insert(lurb); 4971 } 4972 4973 return ret; 4974 } 4975 #endif /* CONFIG_USBFS */ 4976 4977 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 4978 int cmd, abi_long arg) 4979 { 4980 void *argptr; 4981 struct dm_ioctl *host_dm; 4982 abi_long guest_data; 4983 uint32_t guest_data_size; 4984 int target_size; 4985 const argtype *arg_type = ie->arg_type; 4986 abi_long ret; 4987 void *big_buf = NULL; 4988 char *host_data; 4989 4990 arg_type++; 4991 target_size = thunk_type_size(arg_type, 0); 4992 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4993 if (!argptr) { 4994 ret = -TARGET_EFAULT; 4995 goto out; 4996 } 4997 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4998 unlock_user(argptr, arg, 0); 4999 5000 /* buf_temp is too small, so fetch things into a bigger buffer */ 5001 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5002 memcpy(big_buf, buf_temp, target_size); 5003 buf_temp = big_buf; 5004 host_dm = big_buf; 5005 5006 guest_data = arg + host_dm->data_start; 5007 if ((guest_data - arg) < 0) { 5008 ret = -TARGET_EINVAL; 5009 goto out; 5010 } 5011 guest_data_size = host_dm->data_size - host_dm->data_start; 5012 host_data = (char*)host_dm + host_dm->data_start; 5013 5014 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5015 if (!argptr) { 5016 ret = -TARGET_EFAULT; 5017 goto out; 5018 } 5019 5020 switch (ie->host_cmd) { 5021 case DM_REMOVE_ALL: 5022 case DM_LIST_DEVICES: 5023 case DM_DEV_CREATE: 5024 case DM_DEV_REMOVE: 5025 case DM_DEV_SUSPEND: 5026 case DM_DEV_STATUS: 5027 case DM_DEV_WAIT: 5028 case DM_TABLE_STATUS: 5029 case DM_TABLE_CLEAR: 5030 case DM_TABLE_DEPS: 5031 case DM_LIST_VERSIONS: 5032 /* no input data */ 5033 break; 5034 case DM_DEV_RENAME: 5035 case DM_DEV_SET_GEOMETRY: 5036 /* data contains only strings */ 5037 memcpy(host_data, argptr, guest_data_size); 5038 break; 5039 case DM_TARGET_MSG: 5040 memcpy(host_data, argptr, guest_data_size); 5041 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5042 break; 5043 case DM_TABLE_LOAD: 5044 { 5045 void *gspec = argptr; 5046 void *cur_data = host_data; 5047 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5048 int spec_size = thunk_type_size(dm_arg_type, 0); 5049 int i; 5050 5051 for (i = 0; i < host_dm->target_count; i++) { 5052 struct dm_target_spec *spec = cur_data; 5053 uint32_t next; 5054 int slen; 5055 5056 thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST); 5057 slen = strlen((char*)gspec + spec_size) + 1; 5058 next = spec->next; 5059 spec->next = sizeof(*spec) + slen; 5060 strcpy((char*)&spec[1], gspec + spec_size); 5061 gspec += next; 5062 cur_data += spec->next; 5063 } 5064 break; 5065 } 5066 default: 5067 ret = -TARGET_EINVAL; 5068 unlock_user(argptr, guest_data, 0); 5069 goto out; 5070 } 5071 unlock_user(argptr, guest_data, 0); 5072 5073 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5074 if (!is_error(ret)) { 5075 guest_data = arg + host_dm->data_start; 5076 guest_data_size = host_dm->data_size - host_dm->data_start; 5077 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5078 switch (ie->host_cmd) { 5079 case DM_REMOVE_ALL: 5080 case DM_DEV_CREATE: 5081 case DM_DEV_REMOVE: 5082 case DM_DEV_RENAME: 5083 case DM_DEV_SUSPEND: 5084 case DM_DEV_STATUS: 5085 case DM_TABLE_LOAD: 5086 case DM_TABLE_CLEAR: 5087 case DM_TARGET_MSG: 5088 case DM_DEV_SET_GEOMETRY: 5089 /* no return data */ 5090 break; 5091 case DM_LIST_DEVICES: 5092 { 5093 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5094 uint32_t remaining_data = guest_data_size; 5095 void *cur_data = argptr; 5096 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5097 int nl_size = 12; /* can't use thunk_size due to alignment */ 5098 5099 while (1) { 5100 uint32_t next = nl->next; 5101 if (next) { 5102 nl->next = nl_size + (strlen(nl->name) + 1); 5103 } 5104 if (remaining_data < nl->next) { 5105 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5106 break; 5107 } 5108 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET); 5109 strcpy(cur_data + nl_size, nl->name); 5110 cur_data += nl->next; 5111 remaining_data -= nl->next; 5112 if (!next) { 5113 break; 5114 } 5115 nl = (void*)nl + next; 5116 } 5117 break; 5118 } 5119 case DM_DEV_WAIT: 5120 case DM_TABLE_STATUS: 5121 { 5122 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5123 void *cur_data = argptr; 5124 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5125 int spec_size = thunk_type_size(dm_arg_type, 0); 5126 int i; 5127 5128 for (i = 0; i < host_dm->target_count; i++) { 5129 uint32_t next = spec->next; 5130 int slen = strlen((char*)&spec[1]) + 1; 5131 spec->next = (cur_data - argptr) + spec_size + slen; 5132 if (guest_data_size < spec->next) { 5133 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5134 break; 5135 } 5136 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET); 5137 strcpy(cur_data + spec_size, (char*)&spec[1]); 5138 cur_data = argptr + spec->next; 5139 spec = (void*)host_dm + host_dm->data_start + next; 5140 } 5141 break; 5142 } 5143 case DM_TABLE_DEPS: 5144 { 5145 void *hdata = (void*)host_dm + host_dm->data_start; 5146 int count = *(uint32_t*)hdata; 5147 uint64_t *hdev = hdata + 8; 5148 uint64_t *gdev = argptr + 8; 5149 int i; 5150 5151 *(uint32_t*)argptr = tswap32(count); 5152 for (i = 0; i < count; i++) { 5153 *gdev = tswap64(*hdev); 5154 gdev++; 5155 hdev++; 5156 } 5157 break; 5158 } 5159 case DM_LIST_VERSIONS: 5160 { 5161 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5162 uint32_t remaining_data = guest_data_size; 5163 void *cur_data = argptr; 5164 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5165 int vers_size = thunk_type_size(dm_arg_type, 0); 5166 5167 while (1) { 5168 uint32_t next = vers->next; 5169 if (next) { 5170 vers->next = vers_size + (strlen(vers->name) + 1); 5171 } 5172 if (remaining_data < vers->next) { 5173 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5174 break; 5175 } 5176 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET); 5177 strcpy(cur_data + vers_size, vers->name); 5178 cur_data += vers->next; 5179 remaining_data -= vers->next; 5180 if (!next) { 5181 break; 5182 } 5183 vers = (void*)vers + next; 5184 } 5185 break; 5186 } 5187 default: 5188 unlock_user(argptr, guest_data, 0); 5189 ret = -TARGET_EINVAL; 5190 goto out; 5191 } 5192 unlock_user(argptr, guest_data, guest_data_size); 5193 5194 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5195 if (!argptr) { 5196 ret = -TARGET_EFAULT; 5197 goto out; 5198 } 5199 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5200 unlock_user(argptr, arg, target_size); 5201 } 5202 out: 5203 g_free(big_buf); 5204 return ret; 5205 } 5206 5207 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5208 int cmd, abi_long arg) 5209 { 5210 void *argptr; 5211 int target_size; 5212 const argtype *arg_type = ie->arg_type; 5213 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5214 abi_long ret; 5215 5216 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5217 struct blkpg_partition host_part; 5218 5219 /* Read and convert blkpg */ 5220 arg_type++; 5221 target_size = thunk_type_size(arg_type, 0); 5222 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5223 if (!argptr) { 5224 ret = -TARGET_EFAULT; 5225 goto out; 5226 } 5227 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5228 unlock_user(argptr, arg, 0); 5229 5230 switch (host_blkpg->op) { 5231 case BLKPG_ADD_PARTITION: 5232 case BLKPG_DEL_PARTITION: 5233 /* payload is struct blkpg_partition */ 5234 break; 5235 default: 5236 /* Unknown opcode */ 5237 ret = -TARGET_EINVAL; 5238 goto out; 5239 } 5240 5241 /* Read and convert blkpg->data */ 5242 arg = (abi_long)(uintptr_t)host_blkpg->data; 5243 target_size = thunk_type_size(part_arg_type, 0); 5244 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5245 if (!argptr) { 5246 ret = -TARGET_EFAULT; 5247 goto out; 5248 } 5249 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5250 unlock_user(argptr, arg, 0); 5251 5252 /* Swizzle the data pointer to our local copy and call! */ 5253 host_blkpg->data = &host_part; 5254 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5255 5256 out: 5257 return ret; 5258 } 5259 5260 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5261 int fd, int cmd, abi_long arg) 5262 { 5263 const argtype *arg_type = ie->arg_type; 5264 const StructEntry *se; 5265 const argtype *field_types; 5266 const int *dst_offsets, *src_offsets; 5267 int target_size; 5268 void *argptr; 5269 abi_ulong *target_rt_dev_ptr = NULL; 5270 unsigned long *host_rt_dev_ptr = NULL; 5271 abi_long ret; 5272 int i; 5273 5274 assert(ie->access == IOC_W); 5275 assert(*arg_type == TYPE_PTR); 5276 arg_type++; 5277 assert(*arg_type == TYPE_STRUCT); 5278 target_size = thunk_type_size(arg_type, 0); 5279 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5280 if (!argptr) { 5281 return -TARGET_EFAULT; 5282 } 5283 arg_type++; 5284 assert(*arg_type == (int)STRUCT_rtentry); 5285 se = struct_entries + *arg_type++; 5286 assert(se->convert[0] == NULL); 5287 /* convert struct here to be able to catch rt_dev string */ 5288 field_types = se->field_types; 5289 dst_offsets = se->field_offsets[THUNK_HOST]; 5290 src_offsets = se->field_offsets[THUNK_TARGET]; 5291 for (i = 0; i < se->nb_fields; i++) { 5292 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5293 assert(*field_types == TYPE_PTRVOID); 5294 target_rt_dev_ptr = argptr + src_offsets[i]; 5295 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5296 if (*target_rt_dev_ptr != 0) { 5297 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5298 tswapal(*target_rt_dev_ptr)); 5299 if (!*host_rt_dev_ptr) { 5300 unlock_user(argptr, arg, 0); 5301 return -TARGET_EFAULT; 5302 } 5303 } else { 5304 *host_rt_dev_ptr = 0; 5305 } 5306 field_types++; 5307 continue; 5308 } 5309 field_types = thunk_convert(buf_temp + dst_offsets[i], 5310 argptr + src_offsets[i], 5311 field_types, THUNK_HOST); 5312 } 5313 unlock_user(argptr, arg, 0); 5314 5315 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5316 5317 assert(host_rt_dev_ptr != NULL); 5318 assert(target_rt_dev_ptr != NULL); 5319 if (*host_rt_dev_ptr != 0) { 5320 unlock_user((void *)*host_rt_dev_ptr, 5321 *target_rt_dev_ptr, 0); 5322 } 5323 return ret; 5324 } 5325 5326 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5327 int fd, int cmd, abi_long arg) 5328 { 5329 int sig = target_to_host_signal(arg); 5330 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5331 } 5332 5333 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp, 5334 int fd, int cmd, abi_long arg) 5335 { 5336 struct timeval tv; 5337 abi_long ret; 5338 5339 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv)); 5340 if (is_error(ret)) { 5341 return ret; 5342 } 5343 5344 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) { 5345 if (copy_to_user_timeval(arg, &tv)) { 5346 return -TARGET_EFAULT; 5347 } 5348 } else { 5349 if (copy_to_user_timeval64(arg, &tv)) { 5350 return -TARGET_EFAULT; 5351 } 5352 } 5353 5354 return ret; 5355 } 5356 5357 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp, 5358 int fd, int cmd, abi_long arg) 5359 { 5360 struct timespec ts; 5361 abi_long ret; 5362 5363 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts)); 5364 if (is_error(ret)) { 5365 return ret; 5366 } 5367 5368 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) { 5369 if (host_to_target_timespec(arg, &ts)) { 5370 return -TARGET_EFAULT; 5371 } 5372 } else{ 5373 if (host_to_target_timespec64(arg, &ts)) { 5374 return -TARGET_EFAULT; 5375 } 5376 } 5377 5378 return ret; 5379 } 5380 5381 #ifdef TIOCGPTPEER 5382 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5383 int fd, int cmd, abi_long arg) 5384 { 5385 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5386 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5387 } 5388 #endif 5389 5390 #ifdef HAVE_DRM_H 5391 5392 static void unlock_drm_version(struct drm_version *host_ver, 5393 struct target_drm_version *target_ver, 5394 bool copy) 5395 { 5396 unlock_user(host_ver->name, target_ver->name, 5397 copy ? host_ver->name_len : 0); 5398 unlock_user(host_ver->date, target_ver->date, 5399 copy ? host_ver->date_len : 0); 5400 unlock_user(host_ver->desc, target_ver->desc, 5401 copy ? host_ver->desc_len : 0); 5402 } 5403 5404 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver, 5405 struct target_drm_version *target_ver) 5406 { 5407 memset(host_ver, 0, sizeof(*host_ver)); 5408 5409 __get_user(host_ver->name_len, &target_ver->name_len); 5410 if (host_ver->name_len) { 5411 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name, 5412 target_ver->name_len, 0); 5413 if (!host_ver->name) { 5414 return -EFAULT; 5415 } 5416 } 5417 5418 __get_user(host_ver->date_len, &target_ver->date_len); 5419 if (host_ver->date_len) { 5420 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date, 5421 target_ver->date_len, 0); 5422 if (!host_ver->date) { 5423 goto err; 5424 } 5425 } 5426 5427 __get_user(host_ver->desc_len, &target_ver->desc_len); 5428 if (host_ver->desc_len) { 5429 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc, 5430 target_ver->desc_len, 0); 5431 if (!host_ver->desc) { 5432 goto err; 5433 } 5434 } 5435 5436 return 0; 5437 err: 5438 unlock_drm_version(host_ver, target_ver, false); 5439 return -EFAULT; 5440 } 5441 5442 static inline void host_to_target_drmversion( 5443 struct target_drm_version *target_ver, 5444 struct drm_version *host_ver) 5445 { 5446 __put_user(host_ver->version_major, &target_ver->version_major); 5447 __put_user(host_ver->version_minor, &target_ver->version_minor); 5448 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel); 5449 __put_user(host_ver->name_len, &target_ver->name_len); 5450 __put_user(host_ver->date_len, &target_ver->date_len); 5451 __put_user(host_ver->desc_len, &target_ver->desc_len); 5452 unlock_drm_version(host_ver, target_ver, true); 5453 } 5454 5455 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp, 5456 int fd, int cmd, abi_long arg) 5457 { 5458 struct drm_version *ver; 5459 struct target_drm_version *target_ver; 5460 abi_long ret; 5461 5462 switch (ie->host_cmd) { 5463 case DRM_IOCTL_VERSION: 5464 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) { 5465 return -TARGET_EFAULT; 5466 } 5467 ver = (struct drm_version *)buf_temp; 5468 ret = target_to_host_drmversion(ver, target_ver); 5469 if (!is_error(ret)) { 5470 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver)); 5471 if (is_error(ret)) { 5472 unlock_drm_version(ver, target_ver, false); 5473 } else { 5474 host_to_target_drmversion(target_ver, ver); 5475 } 5476 } 5477 unlock_user_struct(target_ver, arg, 0); 5478 return ret; 5479 } 5480 return -TARGET_ENOSYS; 5481 } 5482 5483 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie, 5484 struct drm_i915_getparam *gparam, 5485 int fd, abi_long arg) 5486 { 5487 abi_long ret; 5488 int value; 5489 struct target_drm_i915_getparam *target_gparam; 5490 5491 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) { 5492 return -TARGET_EFAULT; 5493 } 5494 5495 __get_user(gparam->param, &target_gparam->param); 5496 gparam->value = &value; 5497 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam)); 5498 put_user_s32(value, target_gparam->value); 5499 5500 unlock_user_struct(target_gparam, arg, 0); 5501 return ret; 5502 } 5503 5504 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp, 5505 int fd, int cmd, abi_long arg) 5506 { 5507 switch (ie->host_cmd) { 5508 case DRM_IOCTL_I915_GETPARAM: 5509 return do_ioctl_drm_i915_getparam(ie, 5510 (struct drm_i915_getparam *)buf_temp, 5511 fd, arg); 5512 default: 5513 return -TARGET_ENOSYS; 5514 } 5515 } 5516 5517 #endif 5518 5519 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp, 5520 int fd, int cmd, abi_long arg) 5521 { 5522 struct tun_filter *filter = (struct tun_filter *)buf_temp; 5523 struct tun_filter *target_filter; 5524 char *target_addr; 5525 5526 assert(ie->access == IOC_W); 5527 5528 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1); 5529 if (!target_filter) { 5530 return -TARGET_EFAULT; 5531 } 5532 filter->flags = tswap16(target_filter->flags); 5533 filter->count = tswap16(target_filter->count); 5534 unlock_user(target_filter, arg, 0); 5535 5536 if (filter->count) { 5537 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN > 5538 MAX_STRUCT_SIZE) { 5539 return -TARGET_EFAULT; 5540 } 5541 5542 target_addr = lock_user(VERIFY_READ, 5543 arg + offsetof(struct tun_filter, addr), 5544 filter->count * ETH_ALEN, 1); 5545 if (!target_addr) { 5546 return -TARGET_EFAULT; 5547 } 5548 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN); 5549 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0); 5550 } 5551 5552 return get_errno(safe_ioctl(fd, ie->host_cmd, filter)); 5553 } 5554 5555 IOCTLEntry ioctl_entries[] = { 5556 #define IOCTL(cmd, access, ...) \ 5557 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5559 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5560 #define IOCTL_IGNORE(cmd) \ 5561 { TARGET_ ## cmd, 0, #cmd }, 5562 #include "ioctls.h" 5563 { 0, 0, }, 5564 }; 5565 5566 /* ??? Implement proper locking for ioctls. */ 5567 /* do_ioctl() Must return target values and target errnos. */ 5568 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5569 { 5570 const IOCTLEntry *ie; 5571 const argtype *arg_type; 5572 abi_long ret; 5573 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5574 int target_size; 5575 void *argptr; 5576 5577 ie = ioctl_entries; 5578 for(;;) { 5579 if (ie->target_cmd == 0) { 5580 qemu_log_mask( 5581 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5582 return -TARGET_ENOTTY; 5583 } 5584 if (ie->target_cmd == cmd) 5585 break; 5586 ie++; 5587 } 5588 arg_type = ie->arg_type; 5589 if (ie->do_ioctl) { 5590 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5591 } else if (!ie->host_cmd) { 5592 /* Some architectures define BSD ioctls in their headers 5593 that are not implemented in Linux. */ 5594 return -TARGET_ENOTTY; 5595 } 5596 5597 switch(arg_type[0]) { 5598 case TYPE_NULL: 5599 /* no argument */ 5600 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5601 break; 5602 case TYPE_PTRVOID: 5603 case TYPE_INT: 5604 case TYPE_LONG: 5605 case TYPE_ULONG: 5606 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5607 break; 5608 case TYPE_PTR: 5609 arg_type++; 5610 target_size = thunk_type_size(arg_type, 0); 5611 switch(ie->access) { 5612 case IOC_R: 5613 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5614 if (!is_error(ret)) { 5615 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5616 if (!argptr) 5617 return -TARGET_EFAULT; 5618 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5619 unlock_user(argptr, arg, target_size); 5620 } 5621 break; 5622 case IOC_W: 5623 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5624 if (!argptr) 5625 return -TARGET_EFAULT; 5626 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5627 unlock_user(argptr, arg, 0); 5628 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5629 break; 5630 default: 5631 case IOC_RW: 5632 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5633 if (!argptr) 5634 return -TARGET_EFAULT; 5635 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5636 unlock_user(argptr, arg, 0); 5637 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5638 if (!is_error(ret)) { 5639 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5640 if (!argptr) 5641 return -TARGET_EFAULT; 5642 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5643 unlock_user(argptr, arg, target_size); 5644 } 5645 break; 5646 } 5647 break; 5648 default: 5649 qemu_log_mask(LOG_UNIMP, 5650 "Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5651 (long)cmd, arg_type[0]); 5652 ret = -TARGET_ENOTTY; 5653 break; 5654 } 5655 return ret; 5656 } 5657 5658 static const bitmask_transtbl iflag_tbl[] = { 5659 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5660 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5661 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5662 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5663 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5664 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5665 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5666 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5667 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5668 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5669 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5670 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5671 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5672 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5673 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8}, 5674 }; 5675 5676 static const bitmask_transtbl oflag_tbl[] = { 5677 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5678 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5679 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5680 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5681 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5682 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5683 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5684 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5685 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5686 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5687 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5688 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5689 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5690 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5691 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5692 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5693 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5694 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5695 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5696 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5697 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5698 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5699 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5700 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5701 }; 5702 5703 static const bitmask_transtbl cflag_tbl[] = { 5704 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5705 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5706 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5707 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5708 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5709 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5710 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5711 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5712 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5713 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5714 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5715 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5716 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5717 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5718 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5719 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5720 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5721 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5722 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5723 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5724 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5725 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5726 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5727 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5728 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5729 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5730 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5731 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5732 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5733 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5734 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5735 }; 5736 5737 static const bitmask_transtbl lflag_tbl[] = { 5738 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5739 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5740 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5741 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5742 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5743 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5744 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5745 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5746 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5747 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5748 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5749 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5750 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5751 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5752 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5753 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC}, 5754 }; 5755 5756 static void target_to_host_termios (void *dst, const void *src) 5757 { 5758 struct host_termios *host = dst; 5759 const struct target_termios *target = src; 5760 5761 host->c_iflag = 5762 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5763 host->c_oflag = 5764 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5765 host->c_cflag = 5766 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5767 host->c_lflag = 5768 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5769 host->c_line = target->c_line; 5770 5771 memset(host->c_cc, 0, sizeof(host->c_cc)); 5772 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5773 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5774 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5775 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5776 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5777 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5778 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5779 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5780 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5781 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5782 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5783 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5784 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5785 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5786 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5787 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5788 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5789 } 5790 5791 static void host_to_target_termios (void *dst, const void *src) 5792 { 5793 struct target_termios *target = dst; 5794 const struct host_termios *host = src; 5795 5796 target->c_iflag = 5797 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5798 target->c_oflag = 5799 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5800 target->c_cflag = 5801 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5802 target->c_lflag = 5803 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5804 target->c_line = host->c_line; 5805 5806 memset(target->c_cc, 0, sizeof(target->c_cc)); 5807 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5808 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5809 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5810 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5811 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5812 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5813 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5814 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5815 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5816 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5817 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5818 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5819 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5820 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5821 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5822 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5823 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5824 } 5825 5826 static const StructEntry struct_termios_def = { 5827 .convert = { host_to_target_termios, target_to_host_termios }, 5828 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5829 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5830 .print = print_termios, 5831 }; 5832 5833 /* If the host does not provide these bits, they may be safely discarded. */ 5834 #ifndef MAP_SYNC 5835 #define MAP_SYNC 0 5836 #endif 5837 #ifndef MAP_UNINITIALIZED 5838 #define MAP_UNINITIALIZED 0 5839 #endif 5840 5841 static const bitmask_transtbl mmap_flags_tbl[] = { 5842 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5843 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 5844 MAP_ANONYMOUS, MAP_ANONYMOUS }, 5845 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 5846 MAP_GROWSDOWN, MAP_GROWSDOWN }, 5847 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 5848 MAP_DENYWRITE, MAP_DENYWRITE }, 5849 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 5850 MAP_EXECUTABLE, MAP_EXECUTABLE }, 5851 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5852 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 5853 MAP_NORESERVE, MAP_NORESERVE }, 5854 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 5855 /* MAP_STACK had been ignored by the kernel for quite some time. 5856 Recognize it for the target insofar as we do not want to pass 5857 it through to the host. */ 5858 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 5859 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK }, 5860 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE }, 5861 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE, 5862 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE }, 5863 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED, 5864 MAP_UNINITIALIZED, MAP_UNINITIALIZED }, 5865 }; 5866 5867 /* 5868 * Arrange for legacy / undefined architecture specific flags to be 5869 * ignored by mmap handling code. 5870 */ 5871 #ifndef TARGET_MAP_32BIT 5872 #define TARGET_MAP_32BIT 0 5873 #endif 5874 #ifndef TARGET_MAP_HUGE_2MB 5875 #define TARGET_MAP_HUGE_2MB 0 5876 #endif 5877 #ifndef TARGET_MAP_HUGE_1GB 5878 #define TARGET_MAP_HUGE_1GB 0 5879 #endif 5880 5881 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot, 5882 int target_flags, int fd, off_t offset) 5883 { 5884 /* 5885 * The historical set of flags that all mmap types implicitly support. 5886 */ 5887 enum { 5888 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED 5889 | TARGET_MAP_PRIVATE 5890 | TARGET_MAP_FIXED 5891 | TARGET_MAP_ANONYMOUS 5892 | TARGET_MAP_DENYWRITE 5893 | TARGET_MAP_EXECUTABLE 5894 | TARGET_MAP_UNINITIALIZED 5895 | TARGET_MAP_GROWSDOWN 5896 | TARGET_MAP_LOCKED 5897 | TARGET_MAP_NORESERVE 5898 | TARGET_MAP_POPULATE 5899 | TARGET_MAP_NONBLOCK 5900 | TARGET_MAP_STACK 5901 | TARGET_MAP_HUGETLB 5902 | TARGET_MAP_32BIT 5903 | TARGET_MAP_HUGE_2MB 5904 | TARGET_MAP_HUGE_1GB 5905 }; 5906 int host_flags; 5907 5908 switch (target_flags & TARGET_MAP_TYPE) { 5909 case TARGET_MAP_PRIVATE: 5910 host_flags = MAP_PRIVATE; 5911 break; 5912 case TARGET_MAP_SHARED: 5913 host_flags = MAP_SHARED; 5914 break; 5915 case TARGET_MAP_SHARED_VALIDATE: 5916 /* 5917 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is 5918 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK. 5919 */ 5920 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) { 5921 return -TARGET_EOPNOTSUPP; 5922 } 5923 host_flags = MAP_SHARED_VALIDATE; 5924 if (target_flags & TARGET_MAP_SYNC) { 5925 host_flags |= MAP_SYNC; 5926 } 5927 break; 5928 default: 5929 return -TARGET_EINVAL; 5930 } 5931 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl); 5932 5933 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset)); 5934 } 5935 5936 /* 5937 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64) 5938 * TARGET_I386 is defined if TARGET_X86_64 is defined 5939 */ 5940 #if defined(TARGET_I386) 5941 5942 /* NOTE: there is really one LDT for all the threads */ 5943 static uint8_t *ldt_table; 5944 5945 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5946 { 5947 int size; 5948 void *p; 5949 5950 if (!ldt_table) 5951 return 0; 5952 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5953 if (size > bytecount) 5954 size = bytecount; 5955 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5956 if (!p) 5957 return -TARGET_EFAULT; 5958 /* ??? Should this by byteswapped? */ 5959 memcpy(p, ldt_table, size); 5960 unlock_user(p, ptr, size); 5961 return size; 5962 } 5963 5964 /* XXX: add locking support */ 5965 static abi_long write_ldt(CPUX86State *env, 5966 abi_ulong ptr, unsigned long bytecount, int oldmode) 5967 { 5968 struct target_modify_ldt_ldt_s ldt_info; 5969 struct target_modify_ldt_ldt_s *target_ldt_info; 5970 int seg_32bit, contents, read_exec_only, limit_in_pages; 5971 int seg_not_present, useable, lm; 5972 uint32_t *lp, entry_1, entry_2; 5973 5974 if (bytecount != sizeof(ldt_info)) 5975 return -TARGET_EINVAL; 5976 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5977 return -TARGET_EFAULT; 5978 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5979 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 5980 ldt_info.limit = tswap32(target_ldt_info->limit); 5981 ldt_info.flags = tswap32(target_ldt_info->flags); 5982 unlock_user_struct(target_ldt_info, ptr, 0); 5983 5984 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 5985 return -TARGET_EINVAL; 5986 seg_32bit = ldt_info.flags & 1; 5987 contents = (ldt_info.flags >> 1) & 3; 5988 read_exec_only = (ldt_info.flags >> 3) & 1; 5989 limit_in_pages = (ldt_info.flags >> 4) & 1; 5990 seg_not_present = (ldt_info.flags >> 5) & 1; 5991 useable = (ldt_info.flags >> 6) & 1; 5992 #ifdef TARGET_ABI32 5993 lm = 0; 5994 #else 5995 lm = (ldt_info.flags >> 7) & 1; 5996 #endif 5997 if (contents == 3) { 5998 if (oldmode) 5999 return -TARGET_EINVAL; 6000 if (seg_not_present == 0) 6001 return -TARGET_EINVAL; 6002 } 6003 /* allocate the LDT */ 6004 if (!ldt_table) { 6005 env->ldt.base = target_mmap(0, 6006 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6007 PROT_READ|PROT_WRITE, 6008 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6009 if (env->ldt.base == -1) 6010 return -TARGET_ENOMEM; 6011 memset(g2h_untagged(env->ldt.base), 0, 6012 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6013 env->ldt.limit = 0xffff; 6014 ldt_table = g2h_untagged(env->ldt.base); 6015 } 6016 6017 /* NOTE: same code as Linux kernel */ 6018 /* Allow LDTs to be cleared by the user. */ 6019 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6020 if (oldmode || 6021 (contents == 0 && 6022 read_exec_only == 1 && 6023 seg_32bit == 0 && 6024 limit_in_pages == 0 && 6025 seg_not_present == 1 && 6026 useable == 0 )) { 6027 entry_1 = 0; 6028 entry_2 = 0; 6029 goto install; 6030 } 6031 } 6032 6033 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6034 (ldt_info.limit & 0x0ffff); 6035 entry_2 = (ldt_info.base_addr & 0xff000000) | 6036 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6037 (ldt_info.limit & 0xf0000) | 6038 ((read_exec_only ^ 1) << 9) | 6039 (contents << 10) | 6040 ((seg_not_present ^ 1) << 15) | 6041 (seg_32bit << 22) | 6042 (limit_in_pages << 23) | 6043 (lm << 21) | 6044 0x7000; 6045 if (!oldmode) 6046 entry_2 |= (useable << 20); 6047 6048 /* Install the new entry ... */ 6049 install: 6050 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6051 lp[0] = tswap32(entry_1); 6052 lp[1] = tswap32(entry_2); 6053 return 0; 6054 } 6055 6056 /* specific and weird i386 syscalls */ 6057 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6058 unsigned long bytecount) 6059 { 6060 abi_long ret; 6061 6062 switch (func) { 6063 case 0: 6064 ret = read_ldt(ptr, bytecount); 6065 break; 6066 case 1: 6067 ret = write_ldt(env, ptr, bytecount, 1); 6068 break; 6069 case 0x11: 6070 ret = write_ldt(env, ptr, bytecount, 0); 6071 break; 6072 default: 6073 ret = -TARGET_ENOSYS; 6074 break; 6075 } 6076 return ret; 6077 } 6078 6079 #if defined(TARGET_ABI32) 6080 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6081 { 6082 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6083 struct target_modify_ldt_ldt_s ldt_info; 6084 struct target_modify_ldt_ldt_s *target_ldt_info; 6085 int seg_32bit, contents, read_exec_only, limit_in_pages; 6086 int seg_not_present, useable, lm; 6087 uint32_t *lp, entry_1, entry_2; 6088 int i; 6089 6090 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6091 if (!target_ldt_info) 6092 return -TARGET_EFAULT; 6093 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6094 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6095 ldt_info.limit = tswap32(target_ldt_info->limit); 6096 ldt_info.flags = tswap32(target_ldt_info->flags); 6097 if (ldt_info.entry_number == -1) { 6098 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6099 if (gdt_table[i] == 0) { 6100 ldt_info.entry_number = i; 6101 target_ldt_info->entry_number = tswap32(i); 6102 break; 6103 } 6104 } 6105 } 6106 unlock_user_struct(target_ldt_info, ptr, 1); 6107 6108 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6109 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6110 return -TARGET_EINVAL; 6111 seg_32bit = ldt_info.flags & 1; 6112 contents = (ldt_info.flags >> 1) & 3; 6113 read_exec_only = (ldt_info.flags >> 3) & 1; 6114 limit_in_pages = (ldt_info.flags >> 4) & 1; 6115 seg_not_present = (ldt_info.flags >> 5) & 1; 6116 useable = (ldt_info.flags >> 6) & 1; 6117 #ifdef TARGET_ABI32 6118 lm = 0; 6119 #else 6120 lm = (ldt_info.flags >> 7) & 1; 6121 #endif 6122 6123 if (contents == 3) { 6124 if (seg_not_present == 0) 6125 return -TARGET_EINVAL; 6126 } 6127 6128 /* NOTE: same code as Linux kernel */ 6129 /* Allow LDTs to be cleared by the user. */ 6130 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6131 if ((contents == 0 && 6132 read_exec_only == 1 && 6133 seg_32bit == 0 && 6134 limit_in_pages == 0 && 6135 seg_not_present == 1 && 6136 useable == 0 )) { 6137 entry_1 = 0; 6138 entry_2 = 0; 6139 goto install; 6140 } 6141 } 6142 6143 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6144 (ldt_info.limit & 0x0ffff); 6145 entry_2 = (ldt_info.base_addr & 0xff000000) | 6146 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6147 (ldt_info.limit & 0xf0000) | 6148 ((read_exec_only ^ 1) << 9) | 6149 (contents << 10) | 6150 ((seg_not_present ^ 1) << 15) | 6151 (seg_32bit << 22) | 6152 (limit_in_pages << 23) | 6153 (useable << 20) | 6154 (lm << 21) | 6155 0x7000; 6156 6157 /* Install the new entry ... */ 6158 install: 6159 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6160 lp[0] = tswap32(entry_1); 6161 lp[1] = tswap32(entry_2); 6162 return 0; 6163 } 6164 6165 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6166 { 6167 struct target_modify_ldt_ldt_s *target_ldt_info; 6168 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6169 uint32_t base_addr, limit, flags; 6170 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6171 int seg_not_present, useable, lm; 6172 uint32_t *lp, entry_1, entry_2; 6173 6174 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6175 if (!target_ldt_info) 6176 return -TARGET_EFAULT; 6177 idx = tswap32(target_ldt_info->entry_number); 6178 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6179 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6180 unlock_user_struct(target_ldt_info, ptr, 1); 6181 return -TARGET_EINVAL; 6182 } 6183 lp = (uint32_t *)(gdt_table + idx); 6184 entry_1 = tswap32(lp[0]); 6185 entry_2 = tswap32(lp[1]); 6186 6187 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6188 contents = (entry_2 >> 10) & 3; 6189 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6190 seg_32bit = (entry_2 >> 22) & 1; 6191 limit_in_pages = (entry_2 >> 23) & 1; 6192 useable = (entry_2 >> 20) & 1; 6193 #ifdef TARGET_ABI32 6194 lm = 0; 6195 #else 6196 lm = (entry_2 >> 21) & 1; 6197 #endif 6198 flags = (seg_32bit << 0) | (contents << 1) | 6199 (read_exec_only << 3) | (limit_in_pages << 4) | 6200 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6201 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6202 base_addr = (entry_1 >> 16) | 6203 (entry_2 & 0xff000000) | 6204 ((entry_2 & 0xff) << 16); 6205 target_ldt_info->base_addr = tswapal(base_addr); 6206 target_ldt_info->limit = tswap32(limit); 6207 target_ldt_info->flags = tswap32(flags); 6208 unlock_user_struct(target_ldt_info, ptr, 1); 6209 return 0; 6210 } 6211 6212 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6213 { 6214 return -TARGET_ENOSYS; 6215 } 6216 #else 6217 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6218 { 6219 abi_long ret = 0; 6220 abi_ulong val; 6221 int idx; 6222 6223 switch(code) { 6224 case TARGET_ARCH_SET_GS: 6225 case TARGET_ARCH_SET_FS: 6226 if (code == TARGET_ARCH_SET_GS) 6227 idx = R_GS; 6228 else 6229 idx = R_FS; 6230 cpu_x86_load_seg(env, idx, 0); 6231 env->segs[idx].base = addr; 6232 break; 6233 case TARGET_ARCH_GET_GS: 6234 case TARGET_ARCH_GET_FS: 6235 if (code == TARGET_ARCH_GET_GS) 6236 idx = R_GS; 6237 else 6238 idx = R_FS; 6239 val = env->segs[idx].base; 6240 if (put_user(val, addr, abi_ulong)) 6241 ret = -TARGET_EFAULT; 6242 break; 6243 default: 6244 ret = -TARGET_EINVAL; 6245 break; 6246 } 6247 return ret; 6248 } 6249 #endif /* defined(TARGET_ABI32 */ 6250 #endif /* defined(TARGET_I386) */ 6251 6252 /* 6253 * These constants are generic. Supply any that are missing from the host. 6254 */ 6255 #ifndef PR_SET_NAME 6256 # define PR_SET_NAME 15 6257 # define PR_GET_NAME 16 6258 #endif 6259 #ifndef PR_SET_FP_MODE 6260 # define PR_SET_FP_MODE 45 6261 # define PR_GET_FP_MODE 46 6262 # define PR_FP_MODE_FR (1 << 0) 6263 # define PR_FP_MODE_FRE (1 << 1) 6264 #endif 6265 #ifndef PR_SVE_SET_VL 6266 # define PR_SVE_SET_VL 50 6267 # define PR_SVE_GET_VL 51 6268 # define PR_SVE_VL_LEN_MASK 0xffff 6269 # define PR_SVE_VL_INHERIT (1 << 17) 6270 #endif 6271 #ifndef PR_PAC_RESET_KEYS 6272 # define PR_PAC_RESET_KEYS 54 6273 # define PR_PAC_APIAKEY (1 << 0) 6274 # define PR_PAC_APIBKEY (1 << 1) 6275 # define PR_PAC_APDAKEY (1 << 2) 6276 # define PR_PAC_APDBKEY (1 << 3) 6277 # define PR_PAC_APGAKEY (1 << 4) 6278 #endif 6279 #ifndef PR_SET_TAGGED_ADDR_CTRL 6280 # define PR_SET_TAGGED_ADDR_CTRL 55 6281 # define PR_GET_TAGGED_ADDR_CTRL 56 6282 # define PR_TAGGED_ADDR_ENABLE (1UL << 0) 6283 #endif 6284 #ifndef PR_SET_IO_FLUSHER 6285 # define PR_SET_IO_FLUSHER 57 6286 # define PR_GET_IO_FLUSHER 58 6287 #endif 6288 #ifndef PR_SET_SYSCALL_USER_DISPATCH 6289 # define PR_SET_SYSCALL_USER_DISPATCH 59 6290 #endif 6291 #ifndef PR_SME_SET_VL 6292 # define PR_SME_SET_VL 63 6293 # define PR_SME_GET_VL 64 6294 # define PR_SME_VL_LEN_MASK 0xffff 6295 # define PR_SME_VL_INHERIT (1 << 17) 6296 #endif 6297 6298 #include "target_prctl.h" 6299 6300 static abi_long do_prctl_inval0(CPUArchState *env) 6301 { 6302 return -TARGET_EINVAL; 6303 } 6304 6305 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2) 6306 { 6307 return -TARGET_EINVAL; 6308 } 6309 6310 #ifndef do_prctl_get_fp_mode 6311 #define do_prctl_get_fp_mode do_prctl_inval0 6312 #endif 6313 #ifndef do_prctl_set_fp_mode 6314 #define do_prctl_set_fp_mode do_prctl_inval1 6315 #endif 6316 #ifndef do_prctl_sve_get_vl 6317 #define do_prctl_sve_get_vl do_prctl_inval0 6318 #endif 6319 #ifndef do_prctl_sve_set_vl 6320 #define do_prctl_sve_set_vl do_prctl_inval1 6321 #endif 6322 #ifndef do_prctl_reset_keys 6323 #define do_prctl_reset_keys do_prctl_inval1 6324 #endif 6325 #ifndef do_prctl_set_tagged_addr_ctrl 6326 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1 6327 #endif 6328 #ifndef do_prctl_get_tagged_addr_ctrl 6329 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0 6330 #endif 6331 #ifndef do_prctl_get_unalign 6332 #define do_prctl_get_unalign do_prctl_inval1 6333 #endif 6334 #ifndef do_prctl_set_unalign 6335 #define do_prctl_set_unalign do_prctl_inval1 6336 #endif 6337 #ifndef do_prctl_sme_get_vl 6338 #define do_prctl_sme_get_vl do_prctl_inval0 6339 #endif 6340 #ifndef do_prctl_sme_set_vl 6341 #define do_prctl_sme_set_vl do_prctl_inval1 6342 #endif 6343 6344 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2, 6345 abi_long arg3, abi_long arg4, abi_long arg5) 6346 { 6347 abi_long ret; 6348 6349 switch (option) { 6350 case PR_GET_PDEATHSIG: 6351 { 6352 int deathsig; 6353 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig, 6354 arg3, arg4, arg5)); 6355 if (!is_error(ret) && 6356 put_user_s32(host_to_target_signal(deathsig), arg2)) { 6357 return -TARGET_EFAULT; 6358 } 6359 return ret; 6360 } 6361 case PR_SET_PDEATHSIG: 6362 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2), 6363 arg3, arg4, arg5)); 6364 case PR_GET_NAME: 6365 { 6366 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 6367 if (!name) { 6368 return -TARGET_EFAULT; 6369 } 6370 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name, 6371 arg3, arg4, arg5)); 6372 unlock_user(name, arg2, 16); 6373 return ret; 6374 } 6375 case PR_SET_NAME: 6376 { 6377 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 6378 if (!name) { 6379 return -TARGET_EFAULT; 6380 } 6381 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name, 6382 arg3, arg4, arg5)); 6383 unlock_user(name, arg2, 0); 6384 return ret; 6385 } 6386 case PR_GET_FP_MODE: 6387 return do_prctl_get_fp_mode(env); 6388 case PR_SET_FP_MODE: 6389 return do_prctl_set_fp_mode(env, arg2); 6390 case PR_SVE_GET_VL: 6391 return do_prctl_sve_get_vl(env); 6392 case PR_SVE_SET_VL: 6393 return do_prctl_sve_set_vl(env, arg2); 6394 case PR_SME_GET_VL: 6395 return do_prctl_sme_get_vl(env); 6396 case PR_SME_SET_VL: 6397 return do_prctl_sme_set_vl(env, arg2); 6398 case PR_PAC_RESET_KEYS: 6399 if (arg3 || arg4 || arg5) { 6400 return -TARGET_EINVAL; 6401 } 6402 return do_prctl_reset_keys(env, arg2); 6403 case PR_SET_TAGGED_ADDR_CTRL: 6404 if (arg3 || arg4 || arg5) { 6405 return -TARGET_EINVAL; 6406 } 6407 return do_prctl_set_tagged_addr_ctrl(env, arg2); 6408 case PR_GET_TAGGED_ADDR_CTRL: 6409 if (arg2 || arg3 || arg4 || arg5) { 6410 return -TARGET_EINVAL; 6411 } 6412 return do_prctl_get_tagged_addr_ctrl(env); 6413 6414 case PR_GET_UNALIGN: 6415 return do_prctl_get_unalign(env, arg2); 6416 case PR_SET_UNALIGN: 6417 return do_prctl_set_unalign(env, arg2); 6418 6419 case PR_CAP_AMBIENT: 6420 case PR_CAPBSET_READ: 6421 case PR_CAPBSET_DROP: 6422 case PR_GET_DUMPABLE: 6423 case PR_SET_DUMPABLE: 6424 case PR_GET_KEEPCAPS: 6425 case PR_SET_KEEPCAPS: 6426 case PR_GET_SECUREBITS: 6427 case PR_SET_SECUREBITS: 6428 case PR_GET_TIMING: 6429 case PR_SET_TIMING: 6430 case PR_GET_TIMERSLACK: 6431 case PR_SET_TIMERSLACK: 6432 case PR_MCE_KILL: 6433 case PR_MCE_KILL_GET: 6434 case PR_GET_NO_NEW_PRIVS: 6435 case PR_SET_NO_NEW_PRIVS: 6436 case PR_GET_IO_FLUSHER: 6437 case PR_SET_IO_FLUSHER: 6438 case PR_SET_CHILD_SUBREAPER: 6439 case PR_GET_SPECULATION_CTRL: 6440 case PR_SET_SPECULATION_CTRL: 6441 /* Some prctl options have no pointer arguments and we can pass on. */ 6442 return get_errno(prctl(option, arg2, arg3, arg4, arg5)); 6443 6444 case PR_GET_CHILD_SUBREAPER: 6445 { 6446 int val; 6447 ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val, 6448 arg3, arg4, arg5)); 6449 if (!is_error(ret) && put_user_s32(val, arg2)) { 6450 return -TARGET_EFAULT; 6451 } 6452 return ret; 6453 } 6454 6455 case PR_GET_TID_ADDRESS: 6456 { 6457 TaskState *ts = get_task_state(env_cpu(env)); 6458 return put_user_ual(ts->child_tidptr, arg2); 6459 } 6460 6461 case PR_GET_FPEXC: 6462 case PR_SET_FPEXC: 6463 /* Was used for SPE on PowerPC. */ 6464 return -TARGET_EINVAL; 6465 6466 case PR_GET_ENDIAN: 6467 case PR_SET_ENDIAN: 6468 case PR_GET_FPEMU: 6469 case PR_SET_FPEMU: 6470 case PR_SET_MM: 6471 case PR_GET_SECCOMP: 6472 case PR_SET_SECCOMP: 6473 case PR_SET_SYSCALL_USER_DISPATCH: 6474 case PR_GET_THP_DISABLE: 6475 case PR_SET_THP_DISABLE: 6476 case PR_GET_TSC: 6477 case PR_SET_TSC: 6478 /* Disable to prevent the target disabling stuff we need. */ 6479 return -TARGET_EINVAL; 6480 6481 default: 6482 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n", 6483 option); 6484 return -TARGET_EINVAL; 6485 } 6486 } 6487 6488 #define NEW_STACK_SIZE 0x40000 6489 6490 6491 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6492 typedef struct { 6493 CPUArchState *env; 6494 pthread_mutex_t mutex; 6495 pthread_cond_t cond; 6496 pthread_t thread; 6497 uint32_t tid; 6498 abi_ulong child_tidptr; 6499 abi_ulong parent_tidptr; 6500 sigset_t sigmask; 6501 } new_thread_info; 6502 6503 static void *clone_func(void *arg) 6504 { 6505 new_thread_info *info = arg; 6506 CPUArchState *env; 6507 CPUState *cpu; 6508 TaskState *ts; 6509 6510 rcu_register_thread(); 6511 tcg_register_thread(); 6512 env = info->env; 6513 cpu = env_cpu(env); 6514 thread_cpu = cpu; 6515 ts = get_task_state(cpu); 6516 info->tid = sys_gettid(); 6517 task_settid(ts); 6518 if (info->child_tidptr) 6519 put_user_u32(info->tid, info->child_tidptr); 6520 if (info->parent_tidptr) 6521 put_user_u32(info->tid, info->parent_tidptr); 6522 qemu_guest_random_seed_thread_part2(cpu->random_seed); 6523 /* Enable signals. */ 6524 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6525 /* Signal to the parent that we're ready. */ 6526 pthread_mutex_lock(&info->mutex); 6527 pthread_cond_broadcast(&info->cond); 6528 pthread_mutex_unlock(&info->mutex); 6529 /* Wait until the parent has finished initializing the tls state. */ 6530 pthread_mutex_lock(&clone_lock); 6531 pthread_mutex_unlock(&clone_lock); 6532 cpu_loop(env); 6533 /* never exits */ 6534 return NULL; 6535 } 6536 6537 /* do_fork() Must return host values and target errnos (unlike most 6538 do_*() functions). */ 6539 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6540 abi_ulong parent_tidptr, target_ulong newtls, 6541 abi_ulong child_tidptr) 6542 { 6543 CPUState *cpu = env_cpu(env); 6544 int ret; 6545 TaskState *ts; 6546 CPUState *new_cpu; 6547 CPUArchState *new_env; 6548 sigset_t sigmask; 6549 6550 flags &= ~CLONE_IGNORED_FLAGS; 6551 6552 /* Emulate vfork() with fork() */ 6553 if (flags & CLONE_VFORK) 6554 flags &= ~(CLONE_VFORK | CLONE_VM); 6555 6556 if (flags & CLONE_VM) { 6557 TaskState *parent_ts = get_task_state(cpu); 6558 new_thread_info info; 6559 pthread_attr_t attr; 6560 6561 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6562 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6563 return -TARGET_EINVAL; 6564 } 6565 6566 ts = g_new0(TaskState, 1); 6567 init_task_state(ts); 6568 6569 /* Grab a mutex so that thread setup appears atomic. */ 6570 pthread_mutex_lock(&clone_lock); 6571 6572 /* 6573 * If this is our first additional thread, we need to ensure we 6574 * generate code for parallel execution and flush old translations. 6575 * Do this now so that the copy gets CF_PARALLEL too. 6576 */ 6577 if (!tcg_cflags_has(cpu, CF_PARALLEL)) { 6578 tcg_cflags_set(cpu, CF_PARALLEL); 6579 tb_flush(cpu); 6580 } 6581 6582 /* we create a new CPU instance. */ 6583 new_env = cpu_copy(env); 6584 /* Init regs that differ from the parent. */ 6585 cpu_clone_regs_child(new_env, newsp, flags); 6586 cpu_clone_regs_parent(env, flags); 6587 new_cpu = env_cpu(new_env); 6588 new_cpu->opaque = ts; 6589 ts->bprm = parent_ts->bprm; 6590 ts->info = parent_ts->info; 6591 ts->signal_mask = parent_ts->signal_mask; 6592 6593 if (flags & CLONE_CHILD_CLEARTID) { 6594 ts->child_tidptr = child_tidptr; 6595 } 6596 6597 if (flags & CLONE_SETTLS) { 6598 cpu_set_tls (new_env, newtls); 6599 } 6600 6601 memset(&info, 0, sizeof(info)); 6602 pthread_mutex_init(&info.mutex, NULL); 6603 pthread_mutex_lock(&info.mutex); 6604 pthread_cond_init(&info.cond, NULL); 6605 info.env = new_env; 6606 if (flags & CLONE_CHILD_SETTID) { 6607 info.child_tidptr = child_tidptr; 6608 } 6609 if (flags & CLONE_PARENT_SETTID) { 6610 info.parent_tidptr = parent_tidptr; 6611 } 6612 6613 ret = pthread_attr_init(&attr); 6614 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6615 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6616 /* It is not safe to deliver signals until the child has finished 6617 initializing, so temporarily block all signals. */ 6618 sigfillset(&sigmask); 6619 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6620 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 6621 6622 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6623 /* TODO: Free new CPU state if thread creation failed. */ 6624 6625 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6626 pthread_attr_destroy(&attr); 6627 if (ret == 0) { 6628 /* Wait for the child to initialize. */ 6629 pthread_cond_wait(&info.cond, &info.mutex); 6630 ret = info.tid; 6631 } else { 6632 ret = -1; 6633 } 6634 pthread_mutex_unlock(&info.mutex); 6635 pthread_cond_destroy(&info.cond); 6636 pthread_mutex_destroy(&info.mutex); 6637 pthread_mutex_unlock(&clone_lock); 6638 } else { 6639 /* if no CLONE_VM, we consider it is a fork */ 6640 if (flags & CLONE_INVALID_FORK_FLAGS) { 6641 return -TARGET_EINVAL; 6642 } 6643 6644 /* We can't support custom termination signals */ 6645 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6646 return -TARGET_EINVAL; 6647 } 6648 6649 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open) 6650 if (flags & CLONE_PIDFD) { 6651 return -TARGET_EINVAL; 6652 } 6653 #endif 6654 6655 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */ 6656 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) { 6657 return -TARGET_EINVAL; 6658 } 6659 6660 if (block_signals()) { 6661 return -QEMU_ERESTARTSYS; 6662 } 6663 6664 fork_start(); 6665 ret = fork(); 6666 if (ret == 0) { 6667 /* Child Process. */ 6668 cpu_clone_regs_child(env, newsp, flags); 6669 fork_end(ret); 6670 /* There is a race condition here. The parent process could 6671 theoretically read the TID in the child process before the child 6672 tid is set. This would require using either ptrace 6673 (not implemented) or having *_tidptr to point at a shared memory 6674 mapping. We can't repeat the spinlock hack used above because 6675 the child process gets its own copy of the lock. */ 6676 if (flags & CLONE_CHILD_SETTID) 6677 put_user_u32(sys_gettid(), child_tidptr); 6678 if (flags & CLONE_PARENT_SETTID) 6679 put_user_u32(sys_gettid(), parent_tidptr); 6680 ts = get_task_state(cpu); 6681 if (flags & CLONE_SETTLS) 6682 cpu_set_tls (env, newtls); 6683 if (flags & CLONE_CHILD_CLEARTID) 6684 ts->child_tidptr = child_tidptr; 6685 } else { 6686 cpu_clone_regs_parent(env, flags); 6687 if (flags & CLONE_PIDFD) { 6688 int pid_fd = 0; 6689 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 6690 int pid_child = ret; 6691 pid_fd = pidfd_open(pid_child, 0); 6692 if (pid_fd >= 0) { 6693 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL) 6694 | FD_CLOEXEC); 6695 } else { 6696 pid_fd = 0; 6697 } 6698 #endif 6699 put_user_u32(pid_fd, parent_tidptr); 6700 } 6701 fork_end(ret); 6702 } 6703 g_assert(!cpu_in_exclusive_context(cpu)); 6704 } 6705 return ret; 6706 } 6707 6708 /* warning : doesn't handle linux specific flags... */ 6709 static int target_to_host_fcntl_cmd(int cmd) 6710 { 6711 int ret; 6712 6713 switch(cmd) { 6714 case TARGET_F_DUPFD: 6715 case TARGET_F_GETFD: 6716 case TARGET_F_SETFD: 6717 case TARGET_F_GETFL: 6718 case TARGET_F_SETFL: 6719 case TARGET_F_OFD_GETLK: 6720 case TARGET_F_OFD_SETLK: 6721 case TARGET_F_OFD_SETLKW: 6722 ret = cmd; 6723 break; 6724 case TARGET_F_GETLK: 6725 ret = F_GETLK64; 6726 break; 6727 case TARGET_F_SETLK: 6728 ret = F_SETLK64; 6729 break; 6730 case TARGET_F_SETLKW: 6731 ret = F_SETLKW64; 6732 break; 6733 case TARGET_F_GETOWN: 6734 ret = F_GETOWN; 6735 break; 6736 case TARGET_F_SETOWN: 6737 ret = F_SETOWN; 6738 break; 6739 case TARGET_F_GETSIG: 6740 ret = F_GETSIG; 6741 break; 6742 case TARGET_F_SETSIG: 6743 ret = F_SETSIG; 6744 break; 6745 #if TARGET_ABI_BITS == 32 6746 case TARGET_F_GETLK64: 6747 ret = F_GETLK64; 6748 break; 6749 case TARGET_F_SETLK64: 6750 ret = F_SETLK64; 6751 break; 6752 case TARGET_F_SETLKW64: 6753 ret = F_SETLKW64; 6754 break; 6755 #endif 6756 case TARGET_F_SETLEASE: 6757 ret = F_SETLEASE; 6758 break; 6759 case TARGET_F_GETLEASE: 6760 ret = F_GETLEASE; 6761 break; 6762 #ifdef F_DUPFD_CLOEXEC 6763 case TARGET_F_DUPFD_CLOEXEC: 6764 ret = F_DUPFD_CLOEXEC; 6765 break; 6766 #endif 6767 case TARGET_F_NOTIFY: 6768 ret = F_NOTIFY; 6769 break; 6770 #ifdef F_GETOWN_EX 6771 case TARGET_F_GETOWN_EX: 6772 ret = F_GETOWN_EX; 6773 break; 6774 #endif 6775 #ifdef F_SETOWN_EX 6776 case TARGET_F_SETOWN_EX: 6777 ret = F_SETOWN_EX; 6778 break; 6779 #endif 6780 #ifdef F_SETPIPE_SZ 6781 case TARGET_F_SETPIPE_SZ: 6782 ret = F_SETPIPE_SZ; 6783 break; 6784 case TARGET_F_GETPIPE_SZ: 6785 ret = F_GETPIPE_SZ; 6786 break; 6787 #endif 6788 #ifdef F_ADD_SEALS 6789 case TARGET_F_ADD_SEALS: 6790 ret = F_ADD_SEALS; 6791 break; 6792 case TARGET_F_GET_SEALS: 6793 ret = F_GET_SEALS; 6794 break; 6795 #endif 6796 default: 6797 ret = -TARGET_EINVAL; 6798 break; 6799 } 6800 6801 #if defined(__powerpc64__) 6802 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and 6803 * is not supported by kernel. The glibc fcntl call actually adjusts 6804 * them to 5, 6 and 7 before making the syscall(). Since we make the 6805 * syscall directly, adjust to what is supported by the kernel. 6806 */ 6807 if (ret >= F_GETLK64 && ret <= F_SETLKW64) { 6808 ret -= F_GETLK64 - 5; 6809 } 6810 #endif 6811 6812 return ret; 6813 } 6814 6815 #define FLOCK_TRANSTBL \ 6816 switch (type) { \ 6817 TRANSTBL_CONVERT(F_RDLCK); \ 6818 TRANSTBL_CONVERT(F_WRLCK); \ 6819 TRANSTBL_CONVERT(F_UNLCK); \ 6820 } 6821 6822 static int target_to_host_flock(int type) 6823 { 6824 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a 6825 FLOCK_TRANSTBL 6826 #undef TRANSTBL_CONVERT 6827 return -TARGET_EINVAL; 6828 } 6829 6830 static int host_to_target_flock(int type) 6831 { 6832 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a 6833 FLOCK_TRANSTBL 6834 #undef TRANSTBL_CONVERT 6835 /* if we don't know how to convert the value coming 6836 * from the host we copy to the target field as-is 6837 */ 6838 return type; 6839 } 6840 6841 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6842 abi_ulong target_flock_addr) 6843 { 6844 struct target_flock *target_fl; 6845 int l_type; 6846 6847 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6848 return -TARGET_EFAULT; 6849 } 6850 6851 __get_user(l_type, &target_fl->l_type); 6852 l_type = target_to_host_flock(l_type); 6853 if (l_type < 0) { 6854 return l_type; 6855 } 6856 fl->l_type = l_type; 6857 __get_user(fl->l_whence, &target_fl->l_whence); 6858 __get_user(fl->l_start, &target_fl->l_start); 6859 __get_user(fl->l_len, &target_fl->l_len); 6860 __get_user(fl->l_pid, &target_fl->l_pid); 6861 unlock_user_struct(target_fl, target_flock_addr, 0); 6862 return 0; 6863 } 6864 6865 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6866 const struct flock64 *fl) 6867 { 6868 struct target_flock *target_fl; 6869 short l_type; 6870 6871 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6872 return -TARGET_EFAULT; 6873 } 6874 6875 l_type = host_to_target_flock(fl->l_type); 6876 __put_user(l_type, &target_fl->l_type); 6877 __put_user(fl->l_whence, &target_fl->l_whence); 6878 __put_user(fl->l_start, &target_fl->l_start); 6879 __put_user(fl->l_len, &target_fl->l_len); 6880 __put_user(fl->l_pid, &target_fl->l_pid); 6881 unlock_user_struct(target_fl, target_flock_addr, 1); 6882 return 0; 6883 } 6884 6885 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6886 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6887 6888 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6889 struct target_oabi_flock64 { 6890 abi_short l_type; 6891 abi_short l_whence; 6892 abi_llong l_start; 6893 abi_llong l_len; 6894 abi_int l_pid; 6895 } QEMU_PACKED; 6896 6897 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl, 6898 abi_ulong target_flock_addr) 6899 { 6900 struct target_oabi_flock64 *target_fl; 6901 int l_type; 6902 6903 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6904 return -TARGET_EFAULT; 6905 } 6906 6907 __get_user(l_type, &target_fl->l_type); 6908 l_type = target_to_host_flock(l_type); 6909 if (l_type < 0) { 6910 return l_type; 6911 } 6912 fl->l_type = l_type; 6913 __get_user(fl->l_whence, &target_fl->l_whence); 6914 __get_user(fl->l_start, &target_fl->l_start); 6915 __get_user(fl->l_len, &target_fl->l_len); 6916 __get_user(fl->l_pid, &target_fl->l_pid); 6917 unlock_user_struct(target_fl, target_flock_addr, 0); 6918 return 0; 6919 } 6920 6921 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr, 6922 const struct flock64 *fl) 6923 { 6924 struct target_oabi_flock64 *target_fl; 6925 short l_type; 6926 6927 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6928 return -TARGET_EFAULT; 6929 } 6930 6931 l_type = host_to_target_flock(fl->l_type); 6932 __put_user(l_type, &target_fl->l_type); 6933 __put_user(fl->l_whence, &target_fl->l_whence); 6934 __put_user(fl->l_start, &target_fl->l_start); 6935 __put_user(fl->l_len, &target_fl->l_len); 6936 __put_user(fl->l_pid, &target_fl->l_pid); 6937 unlock_user_struct(target_fl, target_flock_addr, 1); 6938 return 0; 6939 } 6940 #endif 6941 6942 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6943 abi_ulong target_flock_addr) 6944 { 6945 struct target_flock64 *target_fl; 6946 int l_type; 6947 6948 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6949 return -TARGET_EFAULT; 6950 } 6951 6952 __get_user(l_type, &target_fl->l_type); 6953 l_type = target_to_host_flock(l_type); 6954 if (l_type < 0) { 6955 return l_type; 6956 } 6957 fl->l_type = l_type; 6958 __get_user(fl->l_whence, &target_fl->l_whence); 6959 __get_user(fl->l_start, &target_fl->l_start); 6960 __get_user(fl->l_len, &target_fl->l_len); 6961 __get_user(fl->l_pid, &target_fl->l_pid); 6962 unlock_user_struct(target_fl, target_flock_addr, 0); 6963 return 0; 6964 } 6965 6966 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6967 const struct flock64 *fl) 6968 { 6969 struct target_flock64 *target_fl; 6970 short l_type; 6971 6972 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6973 return -TARGET_EFAULT; 6974 } 6975 6976 l_type = host_to_target_flock(fl->l_type); 6977 __put_user(l_type, &target_fl->l_type); 6978 __put_user(fl->l_whence, &target_fl->l_whence); 6979 __put_user(fl->l_start, &target_fl->l_start); 6980 __put_user(fl->l_len, &target_fl->l_len); 6981 __put_user(fl->l_pid, &target_fl->l_pid); 6982 unlock_user_struct(target_fl, target_flock_addr, 1); 6983 return 0; 6984 } 6985 6986 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6987 { 6988 struct flock64 fl64; 6989 #ifdef F_GETOWN_EX 6990 struct f_owner_ex fox; 6991 struct target_f_owner_ex *target_fox; 6992 #endif 6993 abi_long ret; 6994 int host_cmd = target_to_host_fcntl_cmd(cmd); 6995 6996 if (host_cmd == -TARGET_EINVAL) 6997 return host_cmd; 6998 6999 switch(cmd) { 7000 case TARGET_F_GETLK: 7001 ret = copy_from_user_flock(&fl64, arg); 7002 if (ret) { 7003 return ret; 7004 } 7005 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7006 if (ret == 0) { 7007 ret = copy_to_user_flock(arg, &fl64); 7008 } 7009 break; 7010 7011 case TARGET_F_SETLK: 7012 case TARGET_F_SETLKW: 7013 ret = copy_from_user_flock(&fl64, arg); 7014 if (ret) { 7015 return ret; 7016 } 7017 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7018 break; 7019 7020 case TARGET_F_GETLK64: 7021 case TARGET_F_OFD_GETLK: 7022 ret = copy_from_user_flock64(&fl64, arg); 7023 if (ret) { 7024 return ret; 7025 } 7026 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7027 if (ret == 0) { 7028 ret = copy_to_user_flock64(arg, &fl64); 7029 } 7030 break; 7031 case TARGET_F_SETLK64: 7032 case TARGET_F_SETLKW64: 7033 case TARGET_F_OFD_SETLK: 7034 case TARGET_F_OFD_SETLKW: 7035 ret = copy_from_user_flock64(&fl64, arg); 7036 if (ret) { 7037 return ret; 7038 } 7039 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7040 break; 7041 7042 case TARGET_F_GETFL: 7043 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7044 if (ret >= 0) { 7045 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 7046 /* tell 32-bit guests it uses largefile on 64-bit hosts: */ 7047 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) { 7048 ret |= TARGET_O_LARGEFILE; 7049 } 7050 } 7051 break; 7052 7053 case TARGET_F_SETFL: 7054 ret = get_errno(safe_fcntl(fd, host_cmd, 7055 target_to_host_bitmask(arg, 7056 fcntl_flags_tbl))); 7057 break; 7058 7059 #ifdef F_GETOWN_EX 7060 case TARGET_F_GETOWN_EX: 7061 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7062 if (ret >= 0) { 7063 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 7064 return -TARGET_EFAULT; 7065 target_fox->type = tswap32(fox.type); 7066 target_fox->pid = tswap32(fox.pid); 7067 unlock_user_struct(target_fox, arg, 1); 7068 } 7069 break; 7070 #endif 7071 7072 #ifdef F_SETOWN_EX 7073 case TARGET_F_SETOWN_EX: 7074 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 7075 return -TARGET_EFAULT; 7076 fox.type = tswap32(target_fox->type); 7077 fox.pid = tswap32(target_fox->pid); 7078 unlock_user_struct(target_fox, arg, 0); 7079 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7080 break; 7081 #endif 7082 7083 case TARGET_F_SETSIG: 7084 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg))); 7085 break; 7086 7087 case TARGET_F_GETSIG: 7088 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg))); 7089 break; 7090 7091 case TARGET_F_SETOWN: 7092 case TARGET_F_GETOWN: 7093 case TARGET_F_SETLEASE: 7094 case TARGET_F_GETLEASE: 7095 case TARGET_F_SETPIPE_SZ: 7096 case TARGET_F_GETPIPE_SZ: 7097 case TARGET_F_ADD_SEALS: 7098 case TARGET_F_GET_SEALS: 7099 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7100 break; 7101 7102 default: 7103 ret = get_errno(safe_fcntl(fd, cmd, arg)); 7104 break; 7105 } 7106 return ret; 7107 } 7108 7109 #ifdef USE_UID16 7110 7111 static inline int high2lowuid(int uid) 7112 { 7113 if (uid > 65535) 7114 return 65534; 7115 else 7116 return uid; 7117 } 7118 7119 static inline int high2lowgid(int gid) 7120 { 7121 if (gid > 65535) 7122 return 65534; 7123 else 7124 return gid; 7125 } 7126 7127 static inline int low2highuid(int uid) 7128 { 7129 if ((int16_t)uid == -1) 7130 return -1; 7131 else 7132 return uid; 7133 } 7134 7135 static inline int low2highgid(int gid) 7136 { 7137 if ((int16_t)gid == -1) 7138 return -1; 7139 else 7140 return gid; 7141 } 7142 static inline int tswapid(int id) 7143 { 7144 return tswap16(id); 7145 } 7146 7147 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 7148 7149 #else /* !USE_UID16 */ 7150 static inline int high2lowuid(int uid) 7151 { 7152 return uid; 7153 } 7154 static inline int high2lowgid(int gid) 7155 { 7156 return gid; 7157 } 7158 static inline int low2highuid(int uid) 7159 { 7160 return uid; 7161 } 7162 static inline int low2highgid(int gid) 7163 { 7164 return gid; 7165 } 7166 static inline int tswapid(int id) 7167 { 7168 return tswap32(id); 7169 } 7170 7171 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 7172 7173 #endif /* USE_UID16 */ 7174 7175 /* We must do direct syscalls for setting UID/GID, because we want to 7176 * implement the Linux system call semantics of "change only for this thread", 7177 * not the libc/POSIX semantics of "change for all threads in process". 7178 * (See http://ewontfix.com/17/ for more details.) 7179 * We use the 32-bit version of the syscalls if present; if it is not 7180 * then either the host architecture supports 32-bit UIDs natively with 7181 * the standard syscall, or the 16-bit UID is the best we can do. 7182 */ 7183 #ifdef __NR_setuid32 7184 #define __NR_sys_setuid __NR_setuid32 7185 #else 7186 #define __NR_sys_setuid __NR_setuid 7187 #endif 7188 #ifdef __NR_setgid32 7189 #define __NR_sys_setgid __NR_setgid32 7190 #else 7191 #define __NR_sys_setgid __NR_setgid 7192 #endif 7193 #ifdef __NR_setresuid32 7194 #define __NR_sys_setresuid __NR_setresuid32 7195 #else 7196 #define __NR_sys_setresuid __NR_setresuid 7197 #endif 7198 #ifdef __NR_setresgid32 7199 #define __NR_sys_setresgid __NR_setresgid32 7200 #else 7201 #define __NR_sys_setresgid __NR_setresgid 7202 #endif 7203 #ifdef __NR_setgroups32 7204 #define __NR_sys_setgroups __NR_setgroups32 7205 #else 7206 #define __NR_sys_setgroups __NR_setgroups 7207 #endif 7208 7209 _syscall1(int, sys_setuid, uid_t, uid) 7210 _syscall1(int, sys_setgid, gid_t, gid) 7211 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 7212 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 7213 _syscall2(int, sys_setgroups, int, size, gid_t *, grouplist) 7214 7215 void syscall_init(void) 7216 { 7217 IOCTLEntry *ie; 7218 const argtype *arg_type; 7219 int size; 7220 7221 thunk_init(STRUCT_MAX); 7222 7223 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 7224 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 7225 #include "syscall_types.h" 7226 #undef STRUCT 7227 #undef STRUCT_SPECIAL 7228 7229 /* we patch the ioctl size if necessary. We rely on the fact that 7230 no ioctl has all the bits at '1' in the size field */ 7231 ie = ioctl_entries; 7232 while (ie->target_cmd != 0) { 7233 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 7234 TARGET_IOC_SIZEMASK) { 7235 arg_type = ie->arg_type; 7236 if (arg_type[0] != TYPE_PTR) { 7237 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 7238 ie->target_cmd); 7239 exit(1); 7240 } 7241 arg_type++; 7242 size = thunk_type_size(arg_type, 0); 7243 ie->target_cmd = (ie->target_cmd & 7244 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 7245 (size << TARGET_IOC_SIZESHIFT); 7246 } 7247 7248 /* automatic consistency check if same arch */ 7249 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 7250 (defined(__x86_64__) && defined(TARGET_X86_64)) 7251 if (unlikely(ie->target_cmd != ie->host_cmd)) { 7252 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 7253 ie->name, ie->target_cmd, ie->host_cmd); 7254 } 7255 #endif 7256 ie++; 7257 } 7258 } 7259 7260 #ifdef TARGET_NR_truncate64 7261 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1, 7262 abi_long arg2, 7263 abi_long arg3, 7264 abi_long arg4) 7265 { 7266 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 7267 arg2 = arg3; 7268 arg3 = arg4; 7269 } 7270 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 7271 } 7272 #endif 7273 7274 #ifdef TARGET_NR_ftruncate64 7275 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1, 7276 abi_long arg2, 7277 abi_long arg3, 7278 abi_long arg4) 7279 { 7280 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 7281 arg2 = arg3; 7282 arg3 = arg4; 7283 } 7284 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 7285 } 7286 #endif 7287 7288 #if defined(TARGET_NR_timer_settime) || \ 7289 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 7290 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its, 7291 abi_ulong target_addr) 7292 { 7293 if (target_to_host_timespec(&host_its->it_interval, target_addr + 7294 offsetof(struct target_itimerspec, 7295 it_interval)) || 7296 target_to_host_timespec(&host_its->it_value, target_addr + 7297 offsetof(struct target_itimerspec, 7298 it_value))) { 7299 return -TARGET_EFAULT; 7300 } 7301 7302 return 0; 7303 } 7304 #endif 7305 7306 #if defined(TARGET_NR_timer_settime64) || \ 7307 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) 7308 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its, 7309 abi_ulong target_addr) 7310 { 7311 if (target_to_host_timespec64(&host_its->it_interval, target_addr + 7312 offsetof(struct target__kernel_itimerspec, 7313 it_interval)) || 7314 target_to_host_timespec64(&host_its->it_value, target_addr + 7315 offsetof(struct target__kernel_itimerspec, 7316 it_value))) { 7317 return -TARGET_EFAULT; 7318 } 7319 7320 return 0; 7321 } 7322 #endif 7323 7324 #if ((defined(TARGET_NR_timerfd_gettime) || \ 7325 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \ 7326 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime) 7327 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7328 struct itimerspec *host_its) 7329 { 7330 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7331 it_interval), 7332 &host_its->it_interval) || 7333 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7334 it_value), 7335 &host_its->it_value)) { 7336 return -TARGET_EFAULT; 7337 } 7338 return 0; 7339 } 7340 #endif 7341 7342 #if ((defined(TARGET_NR_timerfd_gettime64) || \ 7343 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \ 7344 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64) 7345 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr, 7346 struct itimerspec *host_its) 7347 { 7348 if (host_to_target_timespec64(target_addr + 7349 offsetof(struct target__kernel_itimerspec, 7350 it_interval), 7351 &host_its->it_interval) || 7352 host_to_target_timespec64(target_addr + 7353 offsetof(struct target__kernel_itimerspec, 7354 it_value), 7355 &host_its->it_value)) { 7356 return -TARGET_EFAULT; 7357 } 7358 return 0; 7359 } 7360 #endif 7361 7362 #if defined(TARGET_NR_adjtimex) || \ 7363 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)) 7364 static inline abi_long target_to_host_timex(struct timex *host_tx, 7365 abi_long target_addr) 7366 { 7367 struct target_timex *target_tx; 7368 7369 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7370 return -TARGET_EFAULT; 7371 } 7372 7373 __get_user(host_tx->modes, &target_tx->modes); 7374 __get_user(host_tx->offset, &target_tx->offset); 7375 __get_user(host_tx->freq, &target_tx->freq); 7376 __get_user(host_tx->maxerror, &target_tx->maxerror); 7377 __get_user(host_tx->esterror, &target_tx->esterror); 7378 __get_user(host_tx->status, &target_tx->status); 7379 __get_user(host_tx->constant, &target_tx->constant); 7380 __get_user(host_tx->precision, &target_tx->precision); 7381 __get_user(host_tx->tolerance, &target_tx->tolerance); 7382 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7383 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7384 __get_user(host_tx->tick, &target_tx->tick); 7385 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7386 __get_user(host_tx->jitter, &target_tx->jitter); 7387 __get_user(host_tx->shift, &target_tx->shift); 7388 __get_user(host_tx->stabil, &target_tx->stabil); 7389 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7390 __get_user(host_tx->calcnt, &target_tx->calcnt); 7391 __get_user(host_tx->errcnt, &target_tx->errcnt); 7392 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7393 __get_user(host_tx->tai, &target_tx->tai); 7394 7395 unlock_user_struct(target_tx, target_addr, 0); 7396 return 0; 7397 } 7398 7399 static inline abi_long host_to_target_timex(abi_long target_addr, 7400 struct timex *host_tx) 7401 { 7402 struct target_timex *target_tx; 7403 7404 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7405 return -TARGET_EFAULT; 7406 } 7407 7408 __put_user(host_tx->modes, &target_tx->modes); 7409 __put_user(host_tx->offset, &target_tx->offset); 7410 __put_user(host_tx->freq, &target_tx->freq); 7411 __put_user(host_tx->maxerror, &target_tx->maxerror); 7412 __put_user(host_tx->esterror, &target_tx->esterror); 7413 __put_user(host_tx->status, &target_tx->status); 7414 __put_user(host_tx->constant, &target_tx->constant); 7415 __put_user(host_tx->precision, &target_tx->precision); 7416 __put_user(host_tx->tolerance, &target_tx->tolerance); 7417 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7418 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7419 __put_user(host_tx->tick, &target_tx->tick); 7420 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7421 __put_user(host_tx->jitter, &target_tx->jitter); 7422 __put_user(host_tx->shift, &target_tx->shift); 7423 __put_user(host_tx->stabil, &target_tx->stabil); 7424 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7425 __put_user(host_tx->calcnt, &target_tx->calcnt); 7426 __put_user(host_tx->errcnt, &target_tx->errcnt); 7427 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7428 __put_user(host_tx->tai, &target_tx->tai); 7429 7430 unlock_user_struct(target_tx, target_addr, 1); 7431 return 0; 7432 } 7433 #endif 7434 7435 7436 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 7437 static inline abi_long target_to_host_timex64(struct timex *host_tx, 7438 abi_long target_addr) 7439 { 7440 struct target__kernel_timex *target_tx; 7441 7442 if (copy_from_user_timeval64(&host_tx->time, target_addr + 7443 offsetof(struct target__kernel_timex, 7444 time))) { 7445 return -TARGET_EFAULT; 7446 } 7447 7448 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7449 return -TARGET_EFAULT; 7450 } 7451 7452 __get_user(host_tx->modes, &target_tx->modes); 7453 __get_user(host_tx->offset, &target_tx->offset); 7454 __get_user(host_tx->freq, &target_tx->freq); 7455 __get_user(host_tx->maxerror, &target_tx->maxerror); 7456 __get_user(host_tx->esterror, &target_tx->esterror); 7457 __get_user(host_tx->status, &target_tx->status); 7458 __get_user(host_tx->constant, &target_tx->constant); 7459 __get_user(host_tx->precision, &target_tx->precision); 7460 __get_user(host_tx->tolerance, &target_tx->tolerance); 7461 __get_user(host_tx->tick, &target_tx->tick); 7462 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7463 __get_user(host_tx->jitter, &target_tx->jitter); 7464 __get_user(host_tx->shift, &target_tx->shift); 7465 __get_user(host_tx->stabil, &target_tx->stabil); 7466 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7467 __get_user(host_tx->calcnt, &target_tx->calcnt); 7468 __get_user(host_tx->errcnt, &target_tx->errcnt); 7469 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7470 __get_user(host_tx->tai, &target_tx->tai); 7471 7472 unlock_user_struct(target_tx, target_addr, 0); 7473 return 0; 7474 } 7475 7476 static inline abi_long host_to_target_timex64(abi_long target_addr, 7477 struct timex *host_tx) 7478 { 7479 struct target__kernel_timex *target_tx; 7480 7481 if (copy_to_user_timeval64(target_addr + 7482 offsetof(struct target__kernel_timex, time), 7483 &host_tx->time)) { 7484 return -TARGET_EFAULT; 7485 } 7486 7487 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7488 return -TARGET_EFAULT; 7489 } 7490 7491 __put_user(host_tx->modes, &target_tx->modes); 7492 __put_user(host_tx->offset, &target_tx->offset); 7493 __put_user(host_tx->freq, &target_tx->freq); 7494 __put_user(host_tx->maxerror, &target_tx->maxerror); 7495 __put_user(host_tx->esterror, &target_tx->esterror); 7496 __put_user(host_tx->status, &target_tx->status); 7497 __put_user(host_tx->constant, &target_tx->constant); 7498 __put_user(host_tx->precision, &target_tx->precision); 7499 __put_user(host_tx->tolerance, &target_tx->tolerance); 7500 __put_user(host_tx->tick, &target_tx->tick); 7501 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7502 __put_user(host_tx->jitter, &target_tx->jitter); 7503 __put_user(host_tx->shift, &target_tx->shift); 7504 __put_user(host_tx->stabil, &target_tx->stabil); 7505 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7506 __put_user(host_tx->calcnt, &target_tx->calcnt); 7507 __put_user(host_tx->errcnt, &target_tx->errcnt); 7508 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7509 __put_user(host_tx->tai, &target_tx->tai); 7510 7511 unlock_user_struct(target_tx, target_addr, 1); 7512 return 0; 7513 } 7514 #endif 7515 7516 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID 7517 #define sigev_notify_thread_id _sigev_un._tid 7518 #endif 7519 7520 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7521 abi_ulong target_addr) 7522 { 7523 struct target_sigevent *target_sevp; 7524 7525 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7526 return -TARGET_EFAULT; 7527 } 7528 7529 /* This union is awkward on 64 bit systems because it has a 32 bit 7530 * integer and a pointer in it; we follow the conversion approach 7531 * used for handling sigval types in signal.c so the guest should get 7532 * the correct value back even if we did a 64 bit byteswap and it's 7533 * using the 32 bit integer. 7534 */ 7535 host_sevp->sigev_value.sival_ptr = 7536 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7537 host_sevp->sigev_signo = 7538 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7539 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7540 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid); 7541 7542 unlock_user_struct(target_sevp, target_addr, 1); 7543 return 0; 7544 } 7545 7546 #if defined(TARGET_NR_mlockall) 7547 static inline int target_to_host_mlockall_arg(int arg) 7548 { 7549 int result = 0; 7550 7551 if (arg & TARGET_MCL_CURRENT) { 7552 result |= MCL_CURRENT; 7553 } 7554 if (arg & TARGET_MCL_FUTURE) { 7555 result |= MCL_FUTURE; 7556 } 7557 #ifdef MCL_ONFAULT 7558 if (arg & TARGET_MCL_ONFAULT) { 7559 result |= MCL_ONFAULT; 7560 } 7561 #endif 7562 7563 return result; 7564 } 7565 #endif 7566 7567 static inline int target_to_host_msync_arg(abi_long arg) 7568 { 7569 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) | 7570 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) | 7571 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) | 7572 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC)); 7573 } 7574 7575 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \ 7576 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \ 7577 defined(TARGET_NR_newfstatat)) 7578 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env, 7579 abi_ulong target_addr, 7580 struct stat *host_st) 7581 { 7582 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7583 if (cpu_env->eabi) { 7584 struct target_eabi_stat64 *target_st; 7585 7586 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7587 return -TARGET_EFAULT; 7588 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7589 __put_user(host_st->st_dev, &target_st->st_dev); 7590 __put_user(host_st->st_ino, &target_st->st_ino); 7591 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7592 __put_user(host_st->st_ino, &target_st->__st_ino); 7593 #endif 7594 __put_user(host_st->st_mode, &target_st->st_mode); 7595 __put_user(host_st->st_nlink, &target_st->st_nlink); 7596 __put_user(host_st->st_uid, &target_st->st_uid); 7597 __put_user(host_st->st_gid, &target_st->st_gid); 7598 __put_user(host_st->st_rdev, &target_st->st_rdev); 7599 __put_user(host_st->st_size, &target_st->st_size); 7600 __put_user(host_st->st_blksize, &target_st->st_blksize); 7601 __put_user(host_st->st_blocks, &target_st->st_blocks); 7602 __put_user(host_st->st_atime, &target_st->target_st_atime); 7603 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7604 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7605 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7606 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7607 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7608 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7609 #endif 7610 unlock_user_struct(target_st, target_addr, 1); 7611 } else 7612 #endif 7613 { 7614 #if defined(TARGET_HAS_STRUCT_STAT64) 7615 struct target_stat64 *target_st; 7616 #else 7617 struct target_stat *target_st; 7618 #endif 7619 7620 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7621 return -TARGET_EFAULT; 7622 memset(target_st, 0, sizeof(*target_st)); 7623 __put_user(host_st->st_dev, &target_st->st_dev); 7624 __put_user(host_st->st_ino, &target_st->st_ino); 7625 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7626 __put_user(host_st->st_ino, &target_st->__st_ino); 7627 #endif 7628 __put_user(host_st->st_mode, &target_st->st_mode); 7629 __put_user(host_st->st_nlink, &target_st->st_nlink); 7630 __put_user(host_st->st_uid, &target_st->st_uid); 7631 __put_user(host_st->st_gid, &target_st->st_gid); 7632 __put_user(host_st->st_rdev, &target_st->st_rdev); 7633 /* XXX: better use of kernel struct */ 7634 __put_user(host_st->st_size, &target_st->st_size); 7635 __put_user(host_st->st_blksize, &target_st->st_blksize); 7636 __put_user(host_st->st_blocks, &target_st->st_blocks); 7637 __put_user(host_st->st_atime, &target_st->target_st_atime); 7638 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7639 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7640 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7641 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7642 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7643 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7644 #endif 7645 unlock_user_struct(target_st, target_addr, 1); 7646 } 7647 7648 return 0; 7649 } 7650 #endif 7651 7652 #if defined(TARGET_NR_statx) && defined(__NR_statx) 7653 static inline abi_long host_to_target_statx(struct target_statx *host_stx, 7654 abi_ulong target_addr) 7655 { 7656 struct target_statx *target_stx; 7657 7658 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) { 7659 return -TARGET_EFAULT; 7660 } 7661 memset(target_stx, 0, sizeof(*target_stx)); 7662 7663 __put_user(host_stx->stx_mask, &target_stx->stx_mask); 7664 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize); 7665 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes); 7666 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink); 7667 __put_user(host_stx->stx_uid, &target_stx->stx_uid); 7668 __put_user(host_stx->stx_gid, &target_stx->stx_gid); 7669 __put_user(host_stx->stx_mode, &target_stx->stx_mode); 7670 __put_user(host_stx->stx_ino, &target_stx->stx_ino); 7671 __put_user(host_stx->stx_size, &target_stx->stx_size); 7672 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks); 7673 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask); 7674 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec); 7675 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec); 7676 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec); 7677 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec); 7678 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec); 7679 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec); 7680 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec); 7681 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec); 7682 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major); 7683 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor); 7684 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major); 7685 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor); 7686 7687 unlock_user_struct(target_stx, target_addr, 1); 7688 7689 return 0; 7690 } 7691 #endif 7692 7693 static int do_sys_futex(int *uaddr, int op, int val, 7694 const struct timespec *timeout, int *uaddr2, 7695 int val3) 7696 { 7697 #if HOST_LONG_BITS == 64 7698 #if defined(__NR_futex) 7699 /* always a 64-bit time_t, it doesn't define _time64 version */ 7700 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7701 7702 #endif 7703 #else /* HOST_LONG_BITS == 64 */ 7704 #if defined(__NR_futex_time64) 7705 if (sizeof(timeout->tv_sec) == 8) { 7706 /* _time64 function on 32bit arch */ 7707 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3); 7708 } 7709 #endif 7710 #if defined(__NR_futex) 7711 /* old function on 32bit arch */ 7712 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7713 #endif 7714 #endif /* HOST_LONG_BITS == 64 */ 7715 g_assert_not_reached(); 7716 } 7717 7718 static int do_safe_futex(int *uaddr, int op, int val, 7719 const struct timespec *timeout, int *uaddr2, 7720 int val3) 7721 { 7722 #if HOST_LONG_BITS == 64 7723 #if defined(__NR_futex) 7724 /* always a 64-bit time_t, it doesn't define _time64 version */ 7725 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7726 #endif 7727 #else /* HOST_LONG_BITS == 64 */ 7728 #if defined(__NR_futex_time64) 7729 if (sizeof(timeout->tv_sec) == 8) { 7730 /* _time64 function on 32bit arch */ 7731 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2, 7732 val3)); 7733 } 7734 #endif 7735 #if defined(__NR_futex) 7736 /* old function on 32bit arch */ 7737 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7738 #endif 7739 #endif /* HOST_LONG_BITS == 64 */ 7740 return -TARGET_ENOSYS; 7741 } 7742 7743 /* ??? Using host futex calls even when target atomic operations 7744 are not really atomic probably breaks things. However implementing 7745 futexes locally would make futexes shared between multiple processes 7746 tricky. However they're probably useless because guest atomic 7747 operations won't work either. */ 7748 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64) 7749 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr, 7750 int op, int val, target_ulong timeout, 7751 target_ulong uaddr2, int val3) 7752 { 7753 struct timespec ts, *pts = NULL; 7754 void *haddr2 = NULL; 7755 int base_op; 7756 7757 /* We assume FUTEX_* constants are the same on both host and target. */ 7758 #ifdef FUTEX_CMD_MASK 7759 base_op = op & FUTEX_CMD_MASK; 7760 #else 7761 base_op = op; 7762 #endif 7763 switch (base_op) { 7764 case FUTEX_WAIT: 7765 case FUTEX_WAIT_BITSET: 7766 val = tswap32(val); 7767 break; 7768 case FUTEX_WAIT_REQUEUE_PI: 7769 val = tswap32(val); 7770 haddr2 = g2h(cpu, uaddr2); 7771 break; 7772 case FUTEX_LOCK_PI: 7773 case FUTEX_LOCK_PI2: 7774 break; 7775 case FUTEX_WAKE: 7776 case FUTEX_WAKE_BITSET: 7777 case FUTEX_TRYLOCK_PI: 7778 case FUTEX_UNLOCK_PI: 7779 timeout = 0; 7780 break; 7781 case FUTEX_FD: 7782 val = target_to_host_signal(val); 7783 timeout = 0; 7784 break; 7785 case FUTEX_CMP_REQUEUE: 7786 case FUTEX_CMP_REQUEUE_PI: 7787 val3 = tswap32(val3); 7788 /* fall through */ 7789 case FUTEX_REQUEUE: 7790 case FUTEX_WAKE_OP: 7791 /* 7792 * For these, the 4th argument is not TIMEOUT, but VAL2. 7793 * But the prototype of do_safe_futex takes a pointer, so 7794 * insert casts to satisfy the compiler. We do not need 7795 * to tswap VAL2 since it's not compared to guest memory. 7796 */ 7797 pts = (struct timespec *)(uintptr_t)timeout; 7798 timeout = 0; 7799 haddr2 = g2h(cpu, uaddr2); 7800 break; 7801 default: 7802 return -TARGET_ENOSYS; 7803 } 7804 if (timeout) { 7805 pts = &ts; 7806 if (time64 7807 ? target_to_host_timespec64(pts, timeout) 7808 : target_to_host_timespec(pts, timeout)) { 7809 return -TARGET_EFAULT; 7810 } 7811 } 7812 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3); 7813 } 7814 #endif 7815 7816 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7817 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7818 abi_long handle, abi_long mount_id, 7819 abi_long flags) 7820 { 7821 struct file_handle *target_fh; 7822 struct file_handle *fh; 7823 int mid = 0; 7824 abi_long ret; 7825 char *name; 7826 unsigned int size, total_size; 7827 7828 if (get_user_s32(size, handle)) { 7829 return -TARGET_EFAULT; 7830 } 7831 7832 name = lock_user_string(pathname); 7833 if (!name) { 7834 return -TARGET_EFAULT; 7835 } 7836 7837 total_size = sizeof(struct file_handle) + size; 7838 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7839 if (!target_fh) { 7840 unlock_user(name, pathname, 0); 7841 return -TARGET_EFAULT; 7842 } 7843 7844 fh = g_malloc0(total_size); 7845 fh->handle_bytes = size; 7846 7847 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7848 unlock_user(name, pathname, 0); 7849 7850 /* man name_to_handle_at(2): 7851 * Other than the use of the handle_bytes field, the caller should treat 7852 * the file_handle structure as an opaque data type 7853 */ 7854 7855 memcpy(target_fh, fh, total_size); 7856 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7857 target_fh->handle_type = tswap32(fh->handle_type); 7858 g_free(fh); 7859 unlock_user(target_fh, handle, total_size); 7860 7861 if (put_user_s32(mid, mount_id)) { 7862 return -TARGET_EFAULT; 7863 } 7864 7865 return ret; 7866 7867 } 7868 #endif 7869 7870 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7871 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7872 abi_long flags) 7873 { 7874 struct file_handle *target_fh; 7875 struct file_handle *fh; 7876 unsigned int size, total_size; 7877 abi_long ret; 7878 7879 if (get_user_s32(size, handle)) { 7880 return -TARGET_EFAULT; 7881 } 7882 7883 total_size = sizeof(struct file_handle) + size; 7884 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7885 if (!target_fh) { 7886 return -TARGET_EFAULT; 7887 } 7888 7889 fh = g_memdup(target_fh, total_size); 7890 fh->handle_bytes = size; 7891 fh->handle_type = tswap32(target_fh->handle_type); 7892 7893 ret = get_errno(open_by_handle_at(mount_fd, fh, 7894 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7895 7896 g_free(fh); 7897 7898 unlock_user(target_fh, handle, total_size); 7899 7900 return ret; 7901 } 7902 #endif 7903 7904 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7905 7906 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7907 { 7908 int host_flags; 7909 target_sigset_t *target_mask; 7910 sigset_t host_mask; 7911 abi_long ret; 7912 7913 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) { 7914 return -TARGET_EINVAL; 7915 } 7916 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7917 return -TARGET_EFAULT; 7918 } 7919 7920 target_to_host_sigset(&host_mask, target_mask); 7921 7922 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7923 7924 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7925 if (ret >= 0) { 7926 fd_trans_register(ret, &target_signalfd_trans); 7927 } 7928 7929 unlock_user_struct(target_mask, mask, 0); 7930 7931 return ret; 7932 } 7933 #endif 7934 7935 /* Map host to target signal numbers for the wait family of syscalls. 7936 Assume all other status bits are the same. */ 7937 int host_to_target_waitstatus(int status) 7938 { 7939 if (WIFSIGNALED(status)) { 7940 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7941 } 7942 if (WIFSTOPPED(status)) { 7943 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7944 | (status & 0xff); 7945 } 7946 return status; 7947 } 7948 7949 static int open_self_cmdline(CPUArchState *cpu_env, int fd) 7950 { 7951 CPUState *cpu = env_cpu(cpu_env); 7952 struct linux_binprm *bprm = get_task_state(cpu)->bprm; 7953 int i; 7954 7955 for (i = 0; i < bprm->argc; i++) { 7956 size_t len = strlen(bprm->argv[i]) + 1; 7957 7958 if (write(fd, bprm->argv[i], len) != len) { 7959 return -1; 7960 } 7961 } 7962 7963 return 0; 7964 } 7965 7966 struct open_self_maps_data { 7967 TaskState *ts; 7968 IntervalTreeRoot *host_maps; 7969 int fd; 7970 bool smaps; 7971 }; 7972 7973 /* 7974 * Subroutine to output one line of /proc/self/maps, 7975 * or one region of /proc/self/smaps. 7976 */ 7977 7978 #ifdef TARGET_HPPA 7979 # define test_stack(S, E, L) (E == L) 7980 #else 7981 # define test_stack(S, E, L) (S == L) 7982 #endif 7983 7984 static void open_self_maps_4(const struct open_self_maps_data *d, 7985 const MapInfo *mi, abi_ptr start, 7986 abi_ptr end, unsigned flags) 7987 { 7988 const struct image_info *info = d->ts->info; 7989 const char *path = mi->path; 7990 uint64_t offset; 7991 int fd = d->fd; 7992 int count; 7993 7994 if (test_stack(start, end, info->stack_limit)) { 7995 path = "[stack]"; 7996 } else if (start == info->brk) { 7997 path = "[heap]"; 7998 } else if (start == info->vdso) { 7999 path = "[vdso]"; 8000 #ifdef TARGET_X86_64 8001 } else if (start == TARGET_VSYSCALL_PAGE) { 8002 path = "[vsyscall]"; 8003 #endif 8004 } 8005 8006 /* Except null device (MAP_ANON), adjust offset for this fragment. */ 8007 offset = mi->offset; 8008 if (mi->dev) { 8009 uintptr_t hstart = (uintptr_t)g2h_untagged(start); 8010 offset += hstart - mi->itree.start; 8011 } 8012 8013 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr 8014 " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64, 8015 start, end, 8016 (flags & PAGE_READ) ? 'r' : '-', 8017 (flags & PAGE_WRITE_ORG) ? 'w' : '-', 8018 (flags & PAGE_EXEC) ? 'x' : '-', 8019 mi->is_priv ? 'p' : 's', 8020 offset, major(mi->dev), minor(mi->dev), 8021 (uint64_t)mi->inode); 8022 if (path) { 8023 dprintf(fd, "%*s%s\n", 73 - count, "", path); 8024 } else { 8025 dprintf(fd, "\n"); 8026 } 8027 8028 if (d->smaps) { 8029 unsigned long size = end - start; 8030 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10; 8031 unsigned long size_kb = size >> 10; 8032 8033 dprintf(fd, "Size: %lu kB\n" 8034 "KernelPageSize: %lu kB\n" 8035 "MMUPageSize: %lu kB\n" 8036 "Rss: 0 kB\n" 8037 "Pss: 0 kB\n" 8038 "Pss_Dirty: 0 kB\n" 8039 "Shared_Clean: 0 kB\n" 8040 "Shared_Dirty: 0 kB\n" 8041 "Private_Clean: 0 kB\n" 8042 "Private_Dirty: 0 kB\n" 8043 "Referenced: 0 kB\n" 8044 "Anonymous: %lu kB\n" 8045 "LazyFree: 0 kB\n" 8046 "AnonHugePages: 0 kB\n" 8047 "ShmemPmdMapped: 0 kB\n" 8048 "FilePmdMapped: 0 kB\n" 8049 "Shared_Hugetlb: 0 kB\n" 8050 "Private_Hugetlb: 0 kB\n" 8051 "Swap: 0 kB\n" 8052 "SwapPss: 0 kB\n" 8053 "Locked: 0 kB\n" 8054 "THPeligible: 0\n" 8055 "VmFlags:%s%s%s%s%s%s%s%s\n", 8056 size_kb, page_size_kb, page_size_kb, 8057 (flags & PAGE_ANON ? size_kb : 0), 8058 (flags & PAGE_READ) ? " rd" : "", 8059 (flags & PAGE_WRITE_ORG) ? " wr" : "", 8060 (flags & PAGE_EXEC) ? " ex" : "", 8061 mi->is_priv ? "" : " sh", 8062 (flags & PAGE_READ) ? " mr" : "", 8063 (flags & PAGE_WRITE_ORG) ? " mw" : "", 8064 (flags & PAGE_EXEC) ? " me" : "", 8065 mi->is_priv ? "" : " ms"); 8066 } 8067 } 8068 8069 /* 8070 * Callback for walk_memory_regions, when read_self_maps() fails. 8071 * Proceed without the benefit of host /proc/self/maps cross-check. 8072 */ 8073 static int open_self_maps_3(void *opaque, target_ulong guest_start, 8074 target_ulong guest_end, unsigned long flags) 8075 { 8076 static const MapInfo mi = { .is_priv = true }; 8077 8078 open_self_maps_4(opaque, &mi, guest_start, guest_end, flags); 8079 return 0; 8080 } 8081 8082 /* 8083 * Callback for walk_memory_regions, when read_self_maps() succeeds. 8084 */ 8085 static int open_self_maps_2(void *opaque, target_ulong guest_start, 8086 target_ulong guest_end, unsigned long flags) 8087 { 8088 const struct open_self_maps_data *d = opaque; 8089 uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start); 8090 uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1); 8091 8092 #ifdef TARGET_X86_64 8093 /* 8094 * Because of the extremely high position of the page within the guest 8095 * virtual address space, this is not backed by host memory at all. 8096 * Therefore the loop below would fail. This is the only instance 8097 * of not having host backing memory. 8098 */ 8099 if (guest_start == TARGET_VSYSCALL_PAGE) { 8100 return open_self_maps_3(opaque, guest_start, guest_end, flags); 8101 } 8102 #endif 8103 8104 while (1) { 8105 IntervalTreeNode *n = 8106 interval_tree_iter_first(d->host_maps, host_start, host_start); 8107 MapInfo *mi = container_of(n, MapInfo, itree); 8108 uintptr_t this_hlast = MIN(host_last, n->last); 8109 target_ulong this_gend = h2g(this_hlast) + 1; 8110 8111 open_self_maps_4(d, mi, guest_start, this_gend, flags); 8112 8113 if (this_hlast == host_last) { 8114 return 0; 8115 } 8116 host_start = this_hlast + 1; 8117 guest_start = h2g(host_start); 8118 } 8119 } 8120 8121 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps) 8122 { 8123 struct open_self_maps_data d = { 8124 .ts = get_task_state(env_cpu(env)), 8125 .host_maps = read_self_maps(), 8126 .fd = fd, 8127 .smaps = smaps 8128 }; 8129 8130 if (d.host_maps) { 8131 walk_memory_regions(&d, open_self_maps_2); 8132 free_self_maps(d.host_maps); 8133 } else { 8134 walk_memory_regions(&d, open_self_maps_3); 8135 } 8136 return 0; 8137 } 8138 8139 static int open_self_maps(CPUArchState *cpu_env, int fd) 8140 { 8141 return open_self_maps_1(cpu_env, fd, false); 8142 } 8143 8144 static int open_self_smaps(CPUArchState *cpu_env, int fd) 8145 { 8146 return open_self_maps_1(cpu_env, fd, true); 8147 } 8148 8149 static int open_self_stat(CPUArchState *cpu_env, int fd) 8150 { 8151 CPUState *cpu = env_cpu(cpu_env); 8152 TaskState *ts = get_task_state(cpu); 8153 g_autoptr(GString) buf = g_string_new(NULL); 8154 int i; 8155 8156 for (i = 0; i < 44; i++) { 8157 if (i == 0) { 8158 /* pid */ 8159 g_string_printf(buf, FMT_pid " ", getpid()); 8160 } else if (i == 1) { 8161 /* app name */ 8162 gchar *bin = g_strrstr(ts->bprm->argv[0], "/"); 8163 bin = bin ? bin + 1 : ts->bprm->argv[0]; 8164 g_string_printf(buf, "(%.15s) ", bin); 8165 } else if (i == 2) { 8166 /* task state */ 8167 g_string_assign(buf, "R "); /* we are running right now */ 8168 } else if (i == 3) { 8169 /* ppid */ 8170 g_string_printf(buf, FMT_pid " ", getppid()); 8171 } else if (i == 21) { 8172 /* starttime */ 8173 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime); 8174 } else if (i == 27) { 8175 /* stack bottom */ 8176 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack); 8177 } else { 8178 /* for the rest, there is MasterCard */ 8179 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' '); 8180 } 8181 8182 if (write(fd, buf->str, buf->len) != buf->len) { 8183 return -1; 8184 } 8185 } 8186 8187 return 0; 8188 } 8189 8190 static int open_self_auxv(CPUArchState *cpu_env, int fd) 8191 { 8192 CPUState *cpu = env_cpu(cpu_env); 8193 TaskState *ts = get_task_state(cpu); 8194 abi_ulong auxv = ts->info->saved_auxv; 8195 abi_ulong len = ts->info->auxv_len; 8196 char *ptr; 8197 8198 /* 8199 * Auxiliary vector is stored in target process stack. 8200 * read in whole auxv vector and copy it to file 8201 */ 8202 ptr = lock_user(VERIFY_READ, auxv, len, 0); 8203 if (ptr != NULL) { 8204 while (len > 0) { 8205 ssize_t r; 8206 r = write(fd, ptr, len); 8207 if (r <= 0) { 8208 break; 8209 } 8210 len -= r; 8211 ptr += r; 8212 } 8213 lseek(fd, 0, SEEK_SET); 8214 unlock_user(ptr, auxv, len); 8215 } 8216 8217 return 0; 8218 } 8219 8220 static int is_proc_myself(const char *filename, const char *entry) 8221 { 8222 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 8223 filename += strlen("/proc/"); 8224 if (!strncmp(filename, "self/", strlen("self/"))) { 8225 filename += strlen("self/"); 8226 } else if (*filename >= '1' && *filename <= '9') { 8227 char myself[80]; 8228 snprintf(myself, sizeof(myself), "%d/", getpid()); 8229 if (!strncmp(filename, myself, strlen(myself))) { 8230 filename += strlen(myself); 8231 } else { 8232 return 0; 8233 } 8234 } else { 8235 return 0; 8236 } 8237 if (!strcmp(filename, entry)) { 8238 return 1; 8239 } 8240 } 8241 return 0; 8242 } 8243 8244 static void excp_dump_file(FILE *logfile, CPUArchState *env, 8245 const char *fmt, int code) 8246 { 8247 if (logfile) { 8248 CPUState *cs = env_cpu(env); 8249 8250 fprintf(logfile, fmt, code); 8251 fprintf(logfile, "Failing executable: %s\n", exec_path); 8252 cpu_dump_state(cs, logfile, 0); 8253 open_self_maps(env, fileno(logfile)); 8254 } 8255 } 8256 8257 void target_exception_dump(CPUArchState *env, const char *fmt, int code) 8258 { 8259 /* dump to console */ 8260 excp_dump_file(stderr, env, fmt, code); 8261 8262 /* dump to log file */ 8263 if (qemu_log_separate()) { 8264 FILE *logfile = qemu_log_trylock(); 8265 8266 excp_dump_file(logfile, env, fmt, code); 8267 qemu_log_unlock(logfile); 8268 } 8269 } 8270 8271 #include "target_proc.h" 8272 8273 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \ 8274 defined(HAVE_ARCH_PROC_CPUINFO) || \ 8275 defined(HAVE_ARCH_PROC_HARDWARE) 8276 static int is_proc(const char *filename, const char *entry) 8277 { 8278 return strcmp(filename, entry) == 0; 8279 } 8280 #endif 8281 8282 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8283 static int open_net_route(CPUArchState *cpu_env, int fd) 8284 { 8285 FILE *fp; 8286 char *line = NULL; 8287 size_t len = 0; 8288 ssize_t read; 8289 8290 fp = fopen("/proc/net/route", "r"); 8291 if (fp == NULL) { 8292 return -1; 8293 } 8294 8295 /* read header */ 8296 8297 read = getline(&line, &len, fp); 8298 dprintf(fd, "%s", line); 8299 8300 /* read routes */ 8301 8302 while ((read = getline(&line, &len, fp)) != -1) { 8303 char iface[16]; 8304 uint32_t dest, gw, mask; 8305 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 8306 int fields; 8307 8308 fields = sscanf(line, 8309 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8310 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 8311 &mask, &mtu, &window, &irtt); 8312 if (fields != 11) { 8313 continue; 8314 } 8315 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8316 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 8317 metric, tswap32(mask), mtu, window, irtt); 8318 } 8319 8320 free(line); 8321 fclose(fp); 8322 8323 return 0; 8324 } 8325 #endif 8326 8327 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname, 8328 int flags, mode_t mode, bool safe) 8329 { 8330 g_autofree char *proc_name = NULL; 8331 const char *pathname; 8332 struct fake_open { 8333 const char *filename; 8334 int (*fill)(CPUArchState *cpu_env, int fd); 8335 int (*cmp)(const char *s1, const char *s2); 8336 }; 8337 const struct fake_open *fake_open; 8338 static const struct fake_open fakes[] = { 8339 { "maps", open_self_maps, is_proc_myself }, 8340 { "smaps", open_self_smaps, is_proc_myself }, 8341 { "stat", open_self_stat, is_proc_myself }, 8342 { "auxv", open_self_auxv, is_proc_myself }, 8343 { "cmdline", open_self_cmdline, is_proc_myself }, 8344 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8345 { "/proc/net/route", open_net_route, is_proc }, 8346 #endif 8347 #if defined(HAVE_ARCH_PROC_CPUINFO) 8348 { "/proc/cpuinfo", open_cpuinfo, is_proc }, 8349 #endif 8350 #if defined(HAVE_ARCH_PROC_HARDWARE) 8351 { "/proc/hardware", open_hardware, is_proc }, 8352 #endif 8353 { NULL, NULL, NULL } 8354 }; 8355 8356 /* if this is a file from /proc/ filesystem, expand full name */ 8357 proc_name = realpath(fname, NULL); 8358 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) { 8359 pathname = proc_name; 8360 } else { 8361 pathname = fname; 8362 } 8363 8364 if (is_proc_myself(pathname, "exe")) { 8365 if (safe) { 8366 return safe_openat(dirfd, exec_path, flags, mode); 8367 } else { 8368 return openat(dirfd, exec_path, flags, mode); 8369 } 8370 } 8371 8372 for (fake_open = fakes; fake_open->filename; fake_open++) { 8373 if (fake_open->cmp(pathname, fake_open->filename)) { 8374 break; 8375 } 8376 } 8377 8378 if (fake_open->filename) { 8379 const char *tmpdir; 8380 char filename[PATH_MAX]; 8381 int fd, r; 8382 8383 fd = memfd_create("qemu-open", 0); 8384 if (fd < 0) { 8385 if (errno != ENOSYS) { 8386 return fd; 8387 } 8388 /* create temporary file to map stat to */ 8389 tmpdir = getenv("TMPDIR"); 8390 if (!tmpdir) 8391 tmpdir = "/tmp"; 8392 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 8393 fd = mkstemp(filename); 8394 if (fd < 0) { 8395 return fd; 8396 } 8397 unlink(filename); 8398 } 8399 8400 if ((r = fake_open->fill(cpu_env, fd))) { 8401 int e = errno; 8402 close(fd); 8403 errno = e; 8404 return r; 8405 } 8406 lseek(fd, 0, SEEK_SET); 8407 8408 return fd; 8409 } 8410 8411 if (safe) { 8412 return safe_openat(dirfd, path(pathname), flags, mode); 8413 } else { 8414 return openat(dirfd, path(pathname), flags, mode); 8415 } 8416 } 8417 8418 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz) 8419 { 8420 ssize_t ret; 8421 8422 if (!pathname || !buf) { 8423 errno = EFAULT; 8424 return -1; 8425 } 8426 8427 if (!bufsiz) { 8428 /* Short circuit this for the magic exe check. */ 8429 errno = EINVAL; 8430 return -1; 8431 } 8432 8433 if (is_proc_myself((const char *)pathname, "exe")) { 8434 /* 8435 * Don't worry about sign mismatch as earlier mapping 8436 * logic would have thrown a bad address error. 8437 */ 8438 ret = MIN(strlen(exec_path), bufsiz); 8439 /* We cannot NUL terminate the string. */ 8440 memcpy(buf, exec_path, ret); 8441 } else { 8442 ret = readlink(path(pathname), buf, bufsiz); 8443 } 8444 8445 return ret; 8446 } 8447 8448 static int do_execv(CPUArchState *cpu_env, int dirfd, 8449 abi_long pathname, abi_long guest_argp, 8450 abi_long guest_envp, int flags, bool is_execveat) 8451 { 8452 int ret; 8453 char **argp, **envp; 8454 int argc, envc; 8455 abi_ulong gp; 8456 abi_ulong addr; 8457 char **q; 8458 void *p; 8459 8460 argc = 0; 8461 8462 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8463 if (get_user_ual(addr, gp)) { 8464 return -TARGET_EFAULT; 8465 } 8466 if (!addr) { 8467 break; 8468 } 8469 argc++; 8470 } 8471 envc = 0; 8472 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8473 if (get_user_ual(addr, gp)) { 8474 return -TARGET_EFAULT; 8475 } 8476 if (!addr) { 8477 break; 8478 } 8479 envc++; 8480 } 8481 8482 argp = g_new0(char *, argc + 1); 8483 envp = g_new0(char *, envc + 1); 8484 8485 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) { 8486 if (get_user_ual(addr, gp)) { 8487 goto execve_efault; 8488 } 8489 if (!addr) { 8490 break; 8491 } 8492 *q = lock_user_string(addr); 8493 if (!*q) { 8494 goto execve_efault; 8495 } 8496 } 8497 *q = NULL; 8498 8499 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) { 8500 if (get_user_ual(addr, gp)) { 8501 goto execve_efault; 8502 } 8503 if (!addr) { 8504 break; 8505 } 8506 *q = lock_user_string(addr); 8507 if (!*q) { 8508 goto execve_efault; 8509 } 8510 } 8511 *q = NULL; 8512 8513 /* 8514 * Although execve() is not an interruptible syscall it is 8515 * a special case where we must use the safe_syscall wrapper: 8516 * if we allow a signal to happen before we make the host 8517 * syscall then we will 'lose' it, because at the point of 8518 * execve the process leaves QEMU's control. So we use the 8519 * safe syscall wrapper to ensure that we either take the 8520 * signal as a guest signal, or else it does not happen 8521 * before the execve completes and makes it the other 8522 * program's problem. 8523 */ 8524 p = lock_user_string(pathname); 8525 if (!p) { 8526 goto execve_efault; 8527 } 8528 8529 const char *exe = p; 8530 if (is_proc_myself(p, "exe")) { 8531 exe = exec_path; 8532 } 8533 ret = is_execveat 8534 ? safe_execveat(dirfd, exe, argp, envp, flags) 8535 : safe_execve(exe, argp, envp); 8536 ret = get_errno(ret); 8537 8538 unlock_user(p, pathname, 0); 8539 8540 goto execve_end; 8541 8542 execve_efault: 8543 ret = -TARGET_EFAULT; 8544 8545 execve_end: 8546 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) { 8547 if (get_user_ual(addr, gp) || !addr) { 8548 break; 8549 } 8550 unlock_user(*q, addr, 0); 8551 } 8552 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) { 8553 if (get_user_ual(addr, gp) || !addr) { 8554 break; 8555 } 8556 unlock_user(*q, addr, 0); 8557 } 8558 8559 g_free(argp); 8560 g_free(envp); 8561 return ret; 8562 } 8563 8564 #define TIMER_MAGIC 0x0caf0000 8565 #define TIMER_MAGIC_MASK 0xffff0000 8566 8567 /* Convert QEMU provided timer ID back to internal 16bit index format */ 8568 static target_timer_t get_timer_id(abi_long arg) 8569 { 8570 target_timer_t timerid = arg; 8571 8572 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 8573 return -TARGET_EINVAL; 8574 } 8575 8576 timerid &= 0xffff; 8577 8578 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 8579 return -TARGET_EINVAL; 8580 } 8581 8582 return timerid; 8583 } 8584 8585 static int target_to_host_cpu_mask(unsigned long *host_mask, 8586 size_t host_size, 8587 abi_ulong target_addr, 8588 size_t target_size) 8589 { 8590 unsigned target_bits = sizeof(abi_ulong) * 8; 8591 unsigned host_bits = sizeof(*host_mask) * 8; 8592 abi_ulong *target_mask; 8593 unsigned i, j; 8594 8595 assert(host_size >= target_size); 8596 8597 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 8598 if (!target_mask) { 8599 return -TARGET_EFAULT; 8600 } 8601 memset(host_mask, 0, host_size); 8602 8603 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8604 unsigned bit = i * target_bits; 8605 abi_ulong val; 8606 8607 __get_user(val, &target_mask[i]); 8608 for (j = 0; j < target_bits; j++, bit++) { 8609 if (val & (1UL << j)) { 8610 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 8611 } 8612 } 8613 } 8614 8615 unlock_user(target_mask, target_addr, 0); 8616 return 0; 8617 } 8618 8619 static int host_to_target_cpu_mask(const unsigned long *host_mask, 8620 size_t host_size, 8621 abi_ulong target_addr, 8622 size_t target_size) 8623 { 8624 unsigned target_bits = sizeof(abi_ulong) * 8; 8625 unsigned host_bits = sizeof(*host_mask) * 8; 8626 abi_ulong *target_mask; 8627 unsigned i, j; 8628 8629 assert(host_size >= target_size); 8630 8631 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 8632 if (!target_mask) { 8633 return -TARGET_EFAULT; 8634 } 8635 8636 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8637 unsigned bit = i * target_bits; 8638 abi_ulong val = 0; 8639 8640 for (j = 0; j < target_bits; j++, bit++) { 8641 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 8642 val |= 1UL << j; 8643 } 8644 } 8645 __put_user(val, &target_mask[i]); 8646 } 8647 8648 unlock_user(target_mask, target_addr, target_size); 8649 return 0; 8650 } 8651 8652 #ifdef TARGET_NR_getdents 8653 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count) 8654 { 8655 g_autofree void *hdirp = NULL; 8656 void *tdirp; 8657 int hlen, hoff, toff; 8658 int hreclen, treclen; 8659 off64_t prev_diroff = 0; 8660 8661 hdirp = g_try_malloc(count); 8662 if (!hdirp) { 8663 return -TARGET_ENOMEM; 8664 } 8665 8666 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8667 hlen = sys_getdents(dirfd, hdirp, count); 8668 #else 8669 hlen = sys_getdents64(dirfd, hdirp, count); 8670 #endif 8671 8672 hlen = get_errno(hlen); 8673 if (is_error(hlen)) { 8674 return hlen; 8675 } 8676 8677 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8678 if (!tdirp) { 8679 return -TARGET_EFAULT; 8680 } 8681 8682 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8683 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8684 struct linux_dirent *hde = hdirp + hoff; 8685 #else 8686 struct linux_dirent64 *hde = hdirp + hoff; 8687 #endif 8688 struct target_dirent *tde = tdirp + toff; 8689 int namelen; 8690 uint8_t type; 8691 8692 namelen = strlen(hde->d_name); 8693 hreclen = hde->d_reclen; 8694 treclen = offsetof(struct target_dirent, d_name) + namelen + 2; 8695 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent)); 8696 8697 if (toff + treclen > count) { 8698 /* 8699 * If the host struct is smaller than the target struct, or 8700 * requires less alignment and thus packs into less space, 8701 * then the host can return more entries than we can pass 8702 * on to the guest. 8703 */ 8704 if (toff == 0) { 8705 toff = -TARGET_EINVAL; /* result buffer is too small */ 8706 break; 8707 } 8708 /* 8709 * Return what we have, resetting the file pointer to the 8710 * location of the first record not returned. 8711 */ 8712 lseek64(dirfd, prev_diroff, SEEK_SET); 8713 break; 8714 } 8715 8716 prev_diroff = hde->d_off; 8717 tde->d_ino = tswapal(hde->d_ino); 8718 tde->d_off = tswapal(hde->d_off); 8719 tde->d_reclen = tswap16(treclen); 8720 memcpy(tde->d_name, hde->d_name, namelen + 1); 8721 8722 /* 8723 * The getdents type is in what was formerly a padding byte at the 8724 * end of the structure. 8725 */ 8726 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8727 type = *((uint8_t *)hde + hreclen - 1); 8728 #else 8729 type = hde->d_type; 8730 #endif 8731 *((uint8_t *)tde + treclen - 1) = type; 8732 } 8733 8734 unlock_user(tdirp, arg2, toff); 8735 return toff; 8736 } 8737 #endif /* TARGET_NR_getdents */ 8738 8739 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 8740 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count) 8741 { 8742 g_autofree void *hdirp = NULL; 8743 void *tdirp; 8744 int hlen, hoff, toff; 8745 int hreclen, treclen; 8746 off64_t prev_diroff = 0; 8747 8748 hdirp = g_try_malloc(count); 8749 if (!hdirp) { 8750 return -TARGET_ENOMEM; 8751 } 8752 8753 hlen = get_errno(sys_getdents64(dirfd, hdirp, count)); 8754 if (is_error(hlen)) { 8755 return hlen; 8756 } 8757 8758 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8759 if (!tdirp) { 8760 return -TARGET_EFAULT; 8761 } 8762 8763 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8764 struct linux_dirent64 *hde = hdirp + hoff; 8765 struct target_dirent64 *tde = tdirp + toff; 8766 int namelen; 8767 8768 namelen = strlen(hde->d_name) + 1; 8769 hreclen = hde->d_reclen; 8770 treclen = offsetof(struct target_dirent64, d_name) + namelen; 8771 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64)); 8772 8773 if (toff + treclen > count) { 8774 /* 8775 * If the host struct is smaller than the target struct, or 8776 * requires less alignment and thus packs into less space, 8777 * then the host can return more entries than we can pass 8778 * on to the guest. 8779 */ 8780 if (toff == 0) { 8781 toff = -TARGET_EINVAL; /* result buffer is too small */ 8782 break; 8783 } 8784 /* 8785 * Return what we have, resetting the file pointer to the 8786 * location of the first record not returned. 8787 */ 8788 lseek64(dirfd, prev_diroff, SEEK_SET); 8789 break; 8790 } 8791 8792 prev_diroff = hde->d_off; 8793 tde->d_ino = tswap64(hde->d_ino); 8794 tde->d_off = tswap64(hde->d_off); 8795 tde->d_reclen = tswap16(treclen); 8796 tde->d_type = hde->d_type; 8797 memcpy(tde->d_name, hde->d_name, namelen); 8798 } 8799 8800 unlock_user(tdirp, arg2, toff); 8801 return toff; 8802 } 8803 #endif /* TARGET_NR_getdents64 */ 8804 8805 #if defined(TARGET_NR_riscv_hwprobe) 8806 8807 #define RISCV_HWPROBE_KEY_MVENDORID 0 8808 #define RISCV_HWPROBE_KEY_MARCHID 1 8809 #define RISCV_HWPROBE_KEY_MIMPID 2 8810 8811 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3 8812 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0) 8813 8814 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4 8815 #define RISCV_HWPROBE_IMA_FD (1 << 0) 8816 #define RISCV_HWPROBE_IMA_C (1 << 1) 8817 #define RISCV_HWPROBE_IMA_V (1 << 2) 8818 #define RISCV_HWPROBE_EXT_ZBA (1 << 3) 8819 #define RISCV_HWPROBE_EXT_ZBB (1 << 4) 8820 #define RISCV_HWPROBE_EXT_ZBS (1 << 5) 8821 #define RISCV_HWPROBE_EXT_ZICBOZ (1 << 6) 8822 #define RISCV_HWPROBE_EXT_ZBC (1 << 7) 8823 #define RISCV_HWPROBE_EXT_ZBKB (1 << 8) 8824 #define RISCV_HWPROBE_EXT_ZBKC (1 << 9) 8825 #define RISCV_HWPROBE_EXT_ZBKX (1 << 10) 8826 #define RISCV_HWPROBE_EXT_ZKND (1 << 11) 8827 #define RISCV_HWPROBE_EXT_ZKNE (1 << 12) 8828 #define RISCV_HWPROBE_EXT_ZKNH (1 << 13) 8829 #define RISCV_HWPROBE_EXT_ZKSED (1 << 14) 8830 #define RISCV_HWPROBE_EXT_ZKSH (1 << 15) 8831 #define RISCV_HWPROBE_EXT_ZKT (1 << 16) 8832 #define RISCV_HWPROBE_EXT_ZVBB (1 << 17) 8833 #define RISCV_HWPROBE_EXT_ZVBC (1 << 18) 8834 #define RISCV_HWPROBE_EXT_ZVKB (1 << 19) 8835 #define RISCV_HWPROBE_EXT_ZVKG (1 << 20) 8836 #define RISCV_HWPROBE_EXT_ZVKNED (1 << 21) 8837 #define RISCV_HWPROBE_EXT_ZVKNHA (1 << 22) 8838 #define RISCV_HWPROBE_EXT_ZVKNHB (1 << 23) 8839 #define RISCV_HWPROBE_EXT_ZVKSED (1 << 24) 8840 #define RISCV_HWPROBE_EXT_ZVKSH (1 << 25) 8841 #define RISCV_HWPROBE_EXT_ZVKT (1 << 26) 8842 #define RISCV_HWPROBE_EXT_ZFH (1 << 27) 8843 #define RISCV_HWPROBE_EXT_ZFHMIN (1 << 28) 8844 #define RISCV_HWPROBE_EXT_ZIHINTNTL (1 << 29) 8845 #define RISCV_HWPROBE_EXT_ZVFH (1 << 30) 8846 #define RISCV_HWPROBE_EXT_ZVFHMIN (1 << 31) 8847 #define RISCV_HWPROBE_EXT_ZFA (1ULL << 32) 8848 #define RISCV_HWPROBE_EXT_ZTSO (1ULL << 33) 8849 #define RISCV_HWPROBE_EXT_ZACAS (1ULL << 34) 8850 #define RISCV_HWPROBE_EXT_ZICOND (1ULL << 35) 8851 8852 #define RISCV_HWPROBE_KEY_CPUPERF_0 5 8853 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0) 8854 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0) 8855 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0) 8856 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0) 8857 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0) 8858 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0) 8859 8860 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6 8861 8862 struct riscv_hwprobe { 8863 abi_llong key; 8864 abi_ullong value; 8865 }; 8866 8867 static void risc_hwprobe_fill_pairs(CPURISCVState *env, 8868 struct riscv_hwprobe *pair, 8869 size_t pair_count) 8870 { 8871 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 8872 8873 for (; pair_count > 0; pair_count--, pair++) { 8874 abi_llong key; 8875 abi_ullong value; 8876 __put_user(0, &pair->value); 8877 __get_user(key, &pair->key); 8878 switch (key) { 8879 case RISCV_HWPROBE_KEY_MVENDORID: 8880 __put_user(cfg->mvendorid, &pair->value); 8881 break; 8882 case RISCV_HWPROBE_KEY_MARCHID: 8883 __put_user(cfg->marchid, &pair->value); 8884 break; 8885 case RISCV_HWPROBE_KEY_MIMPID: 8886 __put_user(cfg->mimpid, &pair->value); 8887 break; 8888 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR: 8889 value = riscv_has_ext(env, RVI) && 8890 riscv_has_ext(env, RVM) && 8891 riscv_has_ext(env, RVA) ? 8892 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0; 8893 __put_user(value, &pair->value); 8894 break; 8895 case RISCV_HWPROBE_KEY_IMA_EXT_0: 8896 value = riscv_has_ext(env, RVF) && 8897 riscv_has_ext(env, RVD) ? 8898 RISCV_HWPROBE_IMA_FD : 0; 8899 value |= riscv_has_ext(env, RVC) ? 8900 RISCV_HWPROBE_IMA_C : 0; 8901 value |= riscv_has_ext(env, RVV) ? 8902 RISCV_HWPROBE_IMA_V : 0; 8903 value |= cfg->ext_zba ? 8904 RISCV_HWPROBE_EXT_ZBA : 0; 8905 value |= cfg->ext_zbb ? 8906 RISCV_HWPROBE_EXT_ZBB : 0; 8907 value |= cfg->ext_zbs ? 8908 RISCV_HWPROBE_EXT_ZBS : 0; 8909 value |= cfg->ext_zicboz ? 8910 RISCV_HWPROBE_EXT_ZICBOZ : 0; 8911 value |= cfg->ext_zbc ? 8912 RISCV_HWPROBE_EXT_ZBC : 0; 8913 value |= cfg->ext_zbkb ? 8914 RISCV_HWPROBE_EXT_ZBKB : 0; 8915 value |= cfg->ext_zbkc ? 8916 RISCV_HWPROBE_EXT_ZBKC : 0; 8917 value |= cfg->ext_zbkx ? 8918 RISCV_HWPROBE_EXT_ZBKX : 0; 8919 value |= cfg->ext_zknd ? 8920 RISCV_HWPROBE_EXT_ZKND : 0; 8921 value |= cfg->ext_zkne ? 8922 RISCV_HWPROBE_EXT_ZKNE : 0; 8923 value |= cfg->ext_zknh ? 8924 RISCV_HWPROBE_EXT_ZKNH : 0; 8925 value |= cfg->ext_zksed ? 8926 RISCV_HWPROBE_EXT_ZKSED : 0; 8927 value |= cfg->ext_zksh ? 8928 RISCV_HWPROBE_EXT_ZKSH : 0; 8929 value |= cfg->ext_zkt ? 8930 RISCV_HWPROBE_EXT_ZKT : 0; 8931 value |= cfg->ext_zvbb ? 8932 RISCV_HWPROBE_EXT_ZVBB : 0; 8933 value |= cfg->ext_zvbc ? 8934 RISCV_HWPROBE_EXT_ZVBC : 0; 8935 value |= cfg->ext_zvkb ? 8936 RISCV_HWPROBE_EXT_ZVKB : 0; 8937 value |= cfg->ext_zvkg ? 8938 RISCV_HWPROBE_EXT_ZVKG : 0; 8939 value |= cfg->ext_zvkned ? 8940 RISCV_HWPROBE_EXT_ZVKNED : 0; 8941 value |= cfg->ext_zvknha ? 8942 RISCV_HWPROBE_EXT_ZVKNHA : 0; 8943 value |= cfg->ext_zvknhb ? 8944 RISCV_HWPROBE_EXT_ZVKNHB : 0; 8945 value |= cfg->ext_zvksed ? 8946 RISCV_HWPROBE_EXT_ZVKSED : 0; 8947 value |= cfg->ext_zvksh ? 8948 RISCV_HWPROBE_EXT_ZVKSH : 0; 8949 value |= cfg->ext_zvkt ? 8950 RISCV_HWPROBE_EXT_ZVKT : 0; 8951 value |= cfg->ext_zfh ? 8952 RISCV_HWPROBE_EXT_ZFH : 0; 8953 value |= cfg->ext_zfhmin ? 8954 RISCV_HWPROBE_EXT_ZFHMIN : 0; 8955 value |= cfg->ext_zihintntl ? 8956 RISCV_HWPROBE_EXT_ZIHINTNTL : 0; 8957 value |= cfg->ext_zvfh ? 8958 RISCV_HWPROBE_EXT_ZVFH : 0; 8959 value |= cfg->ext_zvfhmin ? 8960 RISCV_HWPROBE_EXT_ZVFHMIN : 0; 8961 value |= cfg->ext_zfa ? 8962 RISCV_HWPROBE_EXT_ZFA : 0; 8963 value |= cfg->ext_ztso ? 8964 RISCV_HWPROBE_EXT_ZTSO : 0; 8965 value |= cfg->ext_zacas ? 8966 RISCV_HWPROBE_EXT_ZACAS : 0; 8967 value |= cfg->ext_zicond ? 8968 RISCV_HWPROBE_EXT_ZICOND : 0; 8969 __put_user(value, &pair->value); 8970 break; 8971 case RISCV_HWPROBE_KEY_CPUPERF_0: 8972 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value); 8973 break; 8974 case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE: 8975 value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0; 8976 __put_user(value, &pair->value); 8977 break; 8978 default: 8979 __put_user(-1, &pair->key); 8980 break; 8981 } 8982 } 8983 } 8984 8985 static int cpu_set_valid(abi_long arg3, abi_long arg4) 8986 { 8987 int ret, i, tmp; 8988 size_t host_mask_size, target_mask_size; 8989 unsigned long *host_mask; 8990 8991 /* 8992 * cpu_set_t represent CPU masks as bit masks of type unsigned long *. 8993 * arg3 contains the cpu count. 8994 */ 8995 tmp = (8 * sizeof(abi_ulong)); 8996 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong); 8997 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) & 8998 ~(sizeof(*host_mask) - 1); 8999 9000 host_mask = alloca(host_mask_size); 9001 9002 ret = target_to_host_cpu_mask(host_mask, host_mask_size, 9003 arg4, target_mask_size); 9004 if (ret != 0) { 9005 return ret; 9006 } 9007 9008 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) { 9009 if (host_mask[i] != 0) { 9010 return 0; 9011 } 9012 } 9013 return -TARGET_EINVAL; 9014 } 9015 9016 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1, 9017 abi_long arg2, abi_long arg3, 9018 abi_long arg4, abi_long arg5) 9019 { 9020 int ret; 9021 struct riscv_hwprobe *host_pairs; 9022 9023 /* flags must be 0 */ 9024 if (arg5 != 0) { 9025 return -TARGET_EINVAL; 9026 } 9027 9028 /* check cpu_set */ 9029 if (arg3 != 0) { 9030 ret = cpu_set_valid(arg3, arg4); 9031 if (ret != 0) { 9032 return ret; 9033 } 9034 } else if (arg4 != 0) { 9035 return -TARGET_EINVAL; 9036 } 9037 9038 /* no pairs */ 9039 if (arg2 == 0) { 9040 return 0; 9041 } 9042 9043 host_pairs = lock_user(VERIFY_WRITE, arg1, 9044 sizeof(*host_pairs) * (size_t)arg2, 0); 9045 if (host_pairs == NULL) { 9046 return -TARGET_EFAULT; 9047 } 9048 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2); 9049 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2); 9050 return 0; 9051 } 9052 #endif /* TARGET_NR_riscv_hwprobe */ 9053 9054 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root) 9055 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old) 9056 #endif 9057 9058 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9059 #define __NR_sys_open_tree __NR_open_tree 9060 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename, 9061 unsigned int, __flags) 9062 #endif 9063 9064 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9065 #define __NR_sys_move_mount __NR_move_mount 9066 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname, 9067 int, __to_dfd, const char *, __to_pathname, unsigned int, flag) 9068 #endif 9069 9070 /* This is an internal helper for do_syscall so that it is easier 9071 * to have a single return point, so that actions, such as logging 9072 * of syscall results, can be performed. 9073 * All errnos that do_syscall() returns must be -TARGET_<errcode>. 9074 */ 9075 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1, 9076 abi_long arg2, abi_long arg3, abi_long arg4, 9077 abi_long arg5, abi_long arg6, abi_long arg7, 9078 abi_long arg8) 9079 { 9080 CPUState *cpu = env_cpu(cpu_env); 9081 abi_long ret; 9082 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \ 9083 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \ 9084 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \ 9085 || defined(TARGET_NR_statx) 9086 struct stat st; 9087 #endif 9088 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \ 9089 || defined(TARGET_NR_fstatfs) 9090 struct statfs stfs; 9091 #endif 9092 void *p; 9093 9094 switch(num) { 9095 case TARGET_NR_exit: 9096 /* In old applications this may be used to implement _exit(2). 9097 However in threaded applications it is used for thread termination, 9098 and _exit_group is used for application termination. 9099 Do thread termination if we have more then one thread. */ 9100 9101 if (block_signals()) { 9102 return -QEMU_ERESTARTSYS; 9103 } 9104 9105 pthread_mutex_lock(&clone_lock); 9106 9107 if (CPU_NEXT(first_cpu)) { 9108 TaskState *ts = get_task_state(cpu); 9109 9110 if (ts->child_tidptr) { 9111 put_user_u32(0, ts->child_tidptr); 9112 do_sys_futex(g2h(cpu, ts->child_tidptr), 9113 FUTEX_WAKE, INT_MAX, NULL, NULL, 0); 9114 } 9115 9116 object_unparent(OBJECT(cpu)); 9117 object_unref(OBJECT(cpu)); 9118 /* 9119 * At this point the CPU should be unrealized and removed 9120 * from cpu lists. We can clean-up the rest of the thread 9121 * data without the lock held. 9122 */ 9123 9124 pthread_mutex_unlock(&clone_lock); 9125 9126 thread_cpu = NULL; 9127 g_free(ts); 9128 rcu_unregister_thread(); 9129 pthread_exit(NULL); 9130 } 9131 9132 pthread_mutex_unlock(&clone_lock); 9133 preexit_cleanup(cpu_env, arg1); 9134 _exit(arg1); 9135 return 0; /* avoid warning */ 9136 case TARGET_NR_read: 9137 if (arg2 == 0 && arg3 == 0) { 9138 return get_errno(safe_read(arg1, 0, 0)); 9139 } else { 9140 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 9141 return -TARGET_EFAULT; 9142 ret = get_errno(safe_read(arg1, p, arg3)); 9143 if (ret >= 0 && 9144 fd_trans_host_to_target_data(arg1)) { 9145 ret = fd_trans_host_to_target_data(arg1)(p, ret); 9146 } 9147 unlock_user(p, arg2, ret); 9148 } 9149 return ret; 9150 case TARGET_NR_write: 9151 if (arg2 == 0 && arg3 == 0) { 9152 return get_errno(safe_write(arg1, 0, 0)); 9153 } 9154 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 9155 return -TARGET_EFAULT; 9156 if (fd_trans_target_to_host_data(arg1)) { 9157 void *copy = g_malloc(arg3); 9158 memcpy(copy, p, arg3); 9159 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 9160 if (ret >= 0) { 9161 ret = get_errno(safe_write(arg1, copy, ret)); 9162 } 9163 g_free(copy); 9164 } else { 9165 ret = get_errno(safe_write(arg1, p, arg3)); 9166 } 9167 unlock_user(p, arg2, 0); 9168 return ret; 9169 9170 #ifdef TARGET_NR_open 9171 case TARGET_NR_open: 9172 if (!(p = lock_user_string(arg1))) 9173 return -TARGET_EFAULT; 9174 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p, 9175 target_to_host_bitmask(arg2, fcntl_flags_tbl), 9176 arg3, true)); 9177 fd_trans_unregister(ret); 9178 unlock_user(p, arg1, 0); 9179 return ret; 9180 #endif 9181 case TARGET_NR_openat: 9182 if (!(p = lock_user_string(arg2))) 9183 return -TARGET_EFAULT; 9184 ret = get_errno(do_guest_openat(cpu_env, arg1, p, 9185 target_to_host_bitmask(arg3, fcntl_flags_tbl), 9186 arg4, true)); 9187 fd_trans_unregister(ret); 9188 unlock_user(p, arg2, 0); 9189 return ret; 9190 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9191 case TARGET_NR_name_to_handle_at: 9192 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 9193 return ret; 9194 #endif 9195 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 9196 case TARGET_NR_open_by_handle_at: 9197 ret = do_open_by_handle_at(arg1, arg2, arg3); 9198 fd_trans_unregister(ret); 9199 return ret; 9200 #endif 9201 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 9202 case TARGET_NR_pidfd_open: 9203 return get_errno(pidfd_open(arg1, arg2)); 9204 #endif 9205 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 9206 case TARGET_NR_pidfd_send_signal: 9207 { 9208 siginfo_t uinfo, *puinfo; 9209 9210 if (arg3) { 9211 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9212 if (!p) { 9213 return -TARGET_EFAULT; 9214 } 9215 target_to_host_siginfo(&uinfo, p); 9216 unlock_user(p, arg3, 0); 9217 puinfo = &uinfo; 9218 } else { 9219 puinfo = NULL; 9220 } 9221 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2), 9222 puinfo, arg4)); 9223 } 9224 return ret; 9225 #endif 9226 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 9227 case TARGET_NR_pidfd_getfd: 9228 return get_errno(pidfd_getfd(arg1, arg2, arg3)); 9229 #endif 9230 case TARGET_NR_close: 9231 fd_trans_unregister(arg1); 9232 return get_errno(close(arg1)); 9233 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 9234 case TARGET_NR_close_range: 9235 ret = get_errno(sys_close_range(arg1, arg2, arg3)); 9236 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) { 9237 abi_long fd, maxfd; 9238 maxfd = MIN(arg2, target_fd_max); 9239 for (fd = arg1; fd < maxfd; fd++) { 9240 fd_trans_unregister(fd); 9241 } 9242 } 9243 return ret; 9244 #endif 9245 9246 case TARGET_NR_brk: 9247 return do_brk(arg1); 9248 #ifdef TARGET_NR_fork 9249 case TARGET_NR_fork: 9250 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 9251 #endif 9252 #ifdef TARGET_NR_waitpid 9253 case TARGET_NR_waitpid: 9254 { 9255 int status; 9256 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 9257 if (!is_error(ret) && arg2 && ret 9258 && put_user_s32(host_to_target_waitstatus(status), arg2)) 9259 return -TARGET_EFAULT; 9260 } 9261 return ret; 9262 #endif 9263 #ifdef TARGET_NR_waitid 9264 case TARGET_NR_waitid: 9265 { 9266 struct rusage ru; 9267 siginfo_t info; 9268 9269 ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL), 9270 arg4, (arg5 ? &ru : NULL))); 9271 if (!is_error(ret)) { 9272 if (arg3) { 9273 p = lock_user(VERIFY_WRITE, arg3, 9274 sizeof(target_siginfo_t), 0); 9275 if (!p) { 9276 return -TARGET_EFAULT; 9277 } 9278 host_to_target_siginfo(p, &info); 9279 unlock_user(p, arg3, sizeof(target_siginfo_t)); 9280 } 9281 if (arg5 && host_to_target_rusage(arg5, &ru)) { 9282 return -TARGET_EFAULT; 9283 } 9284 } 9285 } 9286 return ret; 9287 #endif 9288 #ifdef TARGET_NR_creat /* not on alpha */ 9289 case TARGET_NR_creat: 9290 if (!(p = lock_user_string(arg1))) 9291 return -TARGET_EFAULT; 9292 ret = get_errno(creat(p, arg2)); 9293 fd_trans_unregister(ret); 9294 unlock_user(p, arg1, 0); 9295 return ret; 9296 #endif 9297 #ifdef TARGET_NR_link 9298 case TARGET_NR_link: 9299 { 9300 void * p2; 9301 p = lock_user_string(arg1); 9302 p2 = lock_user_string(arg2); 9303 if (!p || !p2) 9304 ret = -TARGET_EFAULT; 9305 else 9306 ret = get_errno(link(p, p2)); 9307 unlock_user(p2, arg2, 0); 9308 unlock_user(p, arg1, 0); 9309 } 9310 return ret; 9311 #endif 9312 #if defined(TARGET_NR_linkat) 9313 case TARGET_NR_linkat: 9314 { 9315 void * p2 = NULL; 9316 if (!arg2 || !arg4) 9317 return -TARGET_EFAULT; 9318 p = lock_user_string(arg2); 9319 p2 = lock_user_string(arg4); 9320 if (!p || !p2) 9321 ret = -TARGET_EFAULT; 9322 else 9323 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 9324 unlock_user(p, arg2, 0); 9325 unlock_user(p2, arg4, 0); 9326 } 9327 return ret; 9328 #endif 9329 #ifdef TARGET_NR_unlink 9330 case TARGET_NR_unlink: 9331 if (!(p = lock_user_string(arg1))) 9332 return -TARGET_EFAULT; 9333 ret = get_errno(unlink(p)); 9334 unlock_user(p, arg1, 0); 9335 return ret; 9336 #endif 9337 #if defined(TARGET_NR_unlinkat) 9338 case TARGET_NR_unlinkat: 9339 if (!(p = lock_user_string(arg2))) 9340 return -TARGET_EFAULT; 9341 ret = get_errno(unlinkat(arg1, p, arg3)); 9342 unlock_user(p, arg2, 0); 9343 return ret; 9344 #endif 9345 case TARGET_NR_execveat: 9346 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true); 9347 case TARGET_NR_execve: 9348 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false); 9349 case TARGET_NR_chdir: 9350 if (!(p = lock_user_string(arg1))) 9351 return -TARGET_EFAULT; 9352 ret = get_errno(chdir(p)); 9353 unlock_user(p, arg1, 0); 9354 return ret; 9355 #ifdef TARGET_NR_time 9356 case TARGET_NR_time: 9357 { 9358 time_t host_time; 9359 ret = get_errno(time(&host_time)); 9360 if (!is_error(ret) 9361 && arg1 9362 && put_user_sal(host_time, arg1)) 9363 return -TARGET_EFAULT; 9364 } 9365 return ret; 9366 #endif 9367 #ifdef TARGET_NR_mknod 9368 case TARGET_NR_mknod: 9369 if (!(p = lock_user_string(arg1))) 9370 return -TARGET_EFAULT; 9371 ret = get_errno(mknod(p, arg2, arg3)); 9372 unlock_user(p, arg1, 0); 9373 return ret; 9374 #endif 9375 #if defined(TARGET_NR_mknodat) 9376 case TARGET_NR_mknodat: 9377 if (!(p = lock_user_string(arg2))) 9378 return -TARGET_EFAULT; 9379 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 9380 unlock_user(p, arg2, 0); 9381 return ret; 9382 #endif 9383 #ifdef TARGET_NR_chmod 9384 case TARGET_NR_chmod: 9385 if (!(p = lock_user_string(arg1))) 9386 return -TARGET_EFAULT; 9387 ret = get_errno(chmod(p, arg2)); 9388 unlock_user(p, arg1, 0); 9389 return ret; 9390 #endif 9391 #ifdef TARGET_NR_lseek 9392 case TARGET_NR_lseek: 9393 return get_errno(lseek(arg1, arg2, arg3)); 9394 #endif 9395 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 9396 /* Alpha specific */ 9397 case TARGET_NR_getxpid: 9398 cpu_env->ir[IR_A4] = getppid(); 9399 return get_errno(getpid()); 9400 #endif 9401 #ifdef TARGET_NR_getpid 9402 case TARGET_NR_getpid: 9403 return get_errno(getpid()); 9404 #endif 9405 case TARGET_NR_mount: 9406 { 9407 /* need to look at the data field */ 9408 void *p2, *p3; 9409 9410 if (arg1) { 9411 p = lock_user_string(arg1); 9412 if (!p) { 9413 return -TARGET_EFAULT; 9414 } 9415 } else { 9416 p = NULL; 9417 } 9418 9419 p2 = lock_user_string(arg2); 9420 if (!p2) { 9421 if (arg1) { 9422 unlock_user(p, arg1, 0); 9423 } 9424 return -TARGET_EFAULT; 9425 } 9426 9427 if (arg3) { 9428 p3 = lock_user_string(arg3); 9429 if (!p3) { 9430 if (arg1) { 9431 unlock_user(p, arg1, 0); 9432 } 9433 unlock_user(p2, arg2, 0); 9434 return -TARGET_EFAULT; 9435 } 9436 } else { 9437 p3 = NULL; 9438 } 9439 9440 /* FIXME - arg5 should be locked, but it isn't clear how to 9441 * do that since it's not guaranteed to be a NULL-terminated 9442 * string. 9443 */ 9444 if (!arg5) { 9445 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 9446 } else { 9447 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5)); 9448 } 9449 ret = get_errno(ret); 9450 9451 if (arg1) { 9452 unlock_user(p, arg1, 0); 9453 } 9454 unlock_user(p2, arg2, 0); 9455 if (arg3) { 9456 unlock_user(p3, arg3, 0); 9457 } 9458 } 9459 return ret; 9460 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount) 9461 #if defined(TARGET_NR_umount) 9462 case TARGET_NR_umount: 9463 #endif 9464 #if defined(TARGET_NR_oldumount) 9465 case TARGET_NR_oldumount: 9466 #endif 9467 if (!(p = lock_user_string(arg1))) 9468 return -TARGET_EFAULT; 9469 ret = get_errno(umount(p)); 9470 unlock_user(p, arg1, 0); 9471 return ret; 9472 #endif 9473 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount) 9474 case TARGET_NR_move_mount: 9475 { 9476 void *p2, *p4; 9477 9478 if (!arg2 || !arg4) { 9479 return -TARGET_EFAULT; 9480 } 9481 9482 p2 = lock_user_string(arg2); 9483 if (!p2) { 9484 return -TARGET_EFAULT; 9485 } 9486 9487 p4 = lock_user_string(arg4); 9488 if (!p4) { 9489 unlock_user(p2, arg2, 0); 9490 return -TARGET_EFAULT; 9491 } 9492 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5)); 9493 9494 unlock_user(p2, arg2, 0); 9495 unlock_user(p4, arg4, 0); 9496 9497 return ret; 9498 } 9499 #endif 9500 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree) 9501 case TARGET_NR_open_tree: 9502 { 9503 void *p2; 9504 int host_flags; 9505 9506 if (!arg2) { 9507 return -TARGET_EFAULT; 9508 } 9509 9510 p2 = lock_user_string(arg2); 9511 if (!p2) { 9512 return -TARGET_EFAULT; 9513 } 9514 9515 host_flags = arg3 & ~TARGET_O_CLOEXEC; 9516 if (arg3 & TARGET_O_CLOEXEC) { 9517 host_flags |= O_CLOEXEC; 9518 } 9519 9520 ret = get_errno(sys_open_tree(arg1, p2, host_flags)); 9521 9522 unlock_user(p2, arg2, 0); 9523 9524 return ret; 9525 } 9526 #endif 9527 #ifdef TARGET_NR_stime /* not on alpha */ 9528 case TARGET_NR_stime: 9529 { 9530 struct timespec ts; 9531 ts.tv_nsec = 0; 9532 if (get_user_sal(ts.tv_sec, arg1)) { 9533 return -TARGET_EFAULT; 9534 } 9535 return get_errno(clock_settime(CLOCK_REALTIME, &ts)); 9536 } 9537 #endif 9538 #ifdef TARGET_NR_alarm /* not on alpha */ 9539 case TARGET_NR_alarm: 9540 return alarm(arg1); 9541 #endif 9542 #ifdef TARGET_NR_pause /* not on alpha */ 9543 case TARGET_NR_pause: 9544 if (!block_signals()) { 9545 sigsuspend(&get_task_state(cpu)->signal_mask); 9546 } 9547 return -TARGET_EINTR; 9548 #endif 9549 #ifdef TARGET_NR_utime 9550 case TARGET_NR_utime: 9551 { 9552 struct utimbuf tbuf, *host_tbuf; 9553 struct target_utimbuf *target_tbuf; 9554 if (arg2) { 9555 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 9556 return -TARGET_EFAULT; 9557 tbuf.actime = tswapal(target_tbuf->actime); 9558 tbuf.modtime = tswapal(target_tbuf->modtime); 9559 unlock_user_struct(target_tbuf, arg2, 0); 9560 host_tbuf = &tbuf; 9561 } else { 9562 host_tbuf = NULL; 9563 } 9564 if (!(p = lock_user_string(arg1))) 9565 return -TARGET_EFAULT; 9566 ret = get_errno(utime(p, host_tbuf)); 9567 unlock_user(p, arg1, 0); 9568 } 9569 return ret; 9570 #endif 9571 #ifdef TARGET_NR_utimes 9572 case TARGET_NR_utimes: 9573 { 9574 struct timeval *tvp, tv[2]; 9575 if (arg2) { 9576 if (copy_from_user_timeval(&tv[0], arg2) 9577 || copy_from_user_timeval(&tv[1], 9578 arg2 + sizeof(struct target_timeval))) 9579 return -TARGET_EFAULT; 9580 tvp = tv; 9581 } else { 9582 tvp = NULL; 9583 } 9584 if (!(p = lock_user_string(arg1))) 9585 return -TARGET_EFAULT; 9586 ret = get_errno(utimes(p, tvp)); 9587 unlock_user(p, arg1, 0); 9588 } 9589 return ret; 9590 #endif 9591 #if defined(TARGET_NR_futimesat) 9592 case TARGET_NR_futimesat: 9593 { 9594 struct timeval *tvp, tv[2]; 9595 if (arg3) { 9596 if (copy_from_user_timeval(&tv[0], arg3) 9597 || copy_from_user_timeval(&tv[1], 9598 arg3 + sizeof(struct target_timeval))) 9599 return -TARGET_EFAULT; 9600 tvp = tv; 9601 } else { 9602 tvp = NULL; 9603 } 9604 if (!(p = lock_user_string(arg2))) { 9605 return -TARGET_EFAULT; 9606 } 9607 ret = get_errno(futimesat(arg1, path(p), tvp)); 9608 unlock_user(p, arg2, 0); 9609 } 9610 return ret; 9611 #endif 9612 #ifdef TARGET_NR_access 9613 case TARGET_NR_access: 9614 if (!(p = lock_user_string(arg1))) { 9615 return -TARGET_EFAULT; 9616 } 9617 ret = get_errno(access(path(p), arg2)); 9618 unlock_user(p, arg1, 0); 9619 return ret; 9620 #endif 9621 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 9622 case TARGET_NR_faccessat: 9623 if (!(p = lock_user_string(arg2))) { 9624 return -TARGET_EFAULT; 9625 } 9626 ret = get_errno(faccessat(arg1, p, arg3, 0)); 9627 unlock_user(p, arg2, 0); 9628 return ret; 9629 #endif 9630 #if defined(TARGET_NR_faccessat2) 9631 case TARGET_NR_faccessat2: 9632 if (!(p = lock_user_string(arg2))) { 9633 return -TARGET_EFAULT; 9634 } 9635 ret = get_errno(faccessat(arg1, p, arg3, arg4)); 9636 unlock_user(p, arg2, 0); 9637 return ret; 9638 #endif 9639 #ifdef TARGET_NR_nice /* not on alpha */ 9640 case TARGET_NR_nice: 9641 return get_errno(nice(arg1)); 9642 #endif 9643 case TARGET_NR_sync: 9644 sync(); 9645 return 0; 9646 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 9647 case TARGET_NR_syncfs: 9648 return get_errno(syncfs(arg1)); 9649 #endif 9650 case TARGET_NR_kill: 9651 return get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 9652 #ifdef TARGET_NR_rename 9653 case TARGET_NR_rename: 9654 { 9655 void *p2; 9656 p = lock_user_string(arg1); 9657 p2 = lock_user_string(arg2); 9658 if (!p || !p2) 9659 ret = -TARGET_EFAULT; 9660 else 9661 ret = get_errno(rename(p, p2)); 9662 unlock_user(p2, arg2, 0); 9663 unlock_user(p, arg1, 0); 9664 } 9665 return ret; 9666 #endif 9667 #if defined(TARGET_NR_renameat) 9668 case TARGET_NR_renameat: 9669 { 9670 void *p2; 9671 p = lock_user_string(arg2); 9672 p2 = lock_user_string(arg4); 9673 if (!p || !p2) 9674 ret = -TARGET_EFAULT; 9675 else 9676 ret = get_errno(renameat(arg1, p, arg3, p2)); 9677 unlock_user(p2, arg4, 0); 9678 unlock_user(p, arg2, 0); 9679 } 9680 return ret; 9681 #endif 9682 #if defined(TARGET_NR_renameat2) 9683 case TARGET_NR_renameat2: 9684 { 9685 void *p2; 9686 p = lock_user_string(arg2); 9687 p2 = lock_user_string(arg4); 9688 if (!p || !p2) { 9689 ret = -TARGET_EFAULT; 9690 } else { 9691 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 9692 } 9693 unlock_user(p2, arg4, 0); 9694 unlock_user(p, arg2, 0); 9695 } 9696 return ret; 9697 #endif 9698 #ifdef TARGET_NR_mkdir 9699 case TARGET_NR_mkdir: 9700 if (!(p = lock_user_string(arg1))) 9701 return -TARGET_EFAULT; 9702 ret = get_errno(mkdir(p, arg2)); 9703 unlock_user(p, arg1, 0); 9704 return ret; 9705 #endif 9706 #if defined(TARGET_NR_mkdirat) 9707 case TARGET_NR_mkdirat: 9708 if (!(p = lock_user_string(arg2))) 9709 return -TARGET_EFAULT; 9710 ret = get_errno(mkdirat(arg1, p, arg3)); 9711 unlock_user(p, arg2, 0); 9712 return ret; 9713 #endif 9714 #ifdef TARGET_NR_rmdir 9715 case TARGET_NR_rmdir: 9716 if (!(p = lock_user_string(arg1))) 9717 return -TARGET_EFAULT; 9718 ret = get_errno(rmdir(p)); 9719 unlock_user(p, arg1, 0); 9720 return ret; 9721 #endif 9722 case TARGET_NR_dup: 9723 ret = get_errno(dup(arg1)); 9724 if (ret >= 0) { 9725 fd_trans_dup(arg1, ret); 9726 } 9727 return ret; 9728 #ifdef TARGET_NR_pipe 9729 case TARGET_NR_pipe: 9730 return do_pipe(cpu_env, arg1, 0, 0); 9731 #endif 9732 #ifdef TARGET_NR_pipe2 9733 case TARGET_NR_pipe2: 9734 return do_pipe(cpu_env, arg1, 9735 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 9736 #endif 9737 case TARGET_NR_times: 9738 { 9739 struct target_tms *tmsp; 9740 struct tms tms; 9741 ret = get_errno(times(&tms)); 9742 if (arg1) { 9743 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 9744 if (!tmsp) 9745 return -TARGET_EFAULT; 9746 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 9747 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 9748 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 9749 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 9750 } 9751 if (!is_error(ret)) 9752 ret = host_to_target_clock_t(ret); 9753 } 9754 return ret; 9755 case TARGET_NR_acct: 9756 if (arg1 == 0) { 9757 ret = get_errno(acct(NULL)); 9758 } else { 9759 if (!(p = lock_user_string(arg1))) { 9760 return -TARGET_EFAULT; 9761 } 9762 ret = get_errno(acct(path(p))); 9763 unlock_user(p, arg1, 0); 9764 } 9765 return ret; 9766 #ifdef TARGET_NR_umount2 9767 case TARGET_NR_umount2: 9768 if (!(p = lock_user_string(arg1))) 9769 return -TARGET_EFAULT; 9770 ret = get_errno(umount2(p, arg2)); 9771 unlock_user(p, arg1, 0); 9772 return ret; 9773 #endif 9774 case TARGET_NR_ioctl: 9775 return do_ioctl(arg1, arg2, arg3); 9776 #ifdef TARGET_NR_fcntl 9777 case TARGET_NR_fcntl: 9778 return do_fcntl(arg1, arg2, arg3); 9779 #endif 9780 case TARGET_NR_setpgid: 9781 return get_errno(setpgid(arg1, arg2)); 9782 case TARGET_NR_umask: 9783 return get_errno(umask(arg1)); 9784 case TARGET_NR_chroot: 9785 if (!(p = lock_user_string(arg1))) 9786 return -TARGET_EFAULT; 9787 ret = get_errno(chroot(p)); 9788 unlock_user(p, arg1, 0); 9789 return ret; 9790 #ifdef TARGET_NR_dup2 9791 case TARGET_NR_dup2: 9792 ret = get_errno(dup2(arg1, arg2)); 9793 if (ret >= 0) { 9794 fd_trans_dup(arg1, arg2); 9795 } 9796 return ret; 9797 #endif 9798 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 9799 case TARGET_NR_dup3: 9800 { 9801 int host_flags; 9802 9803 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 9804 return -EINVAL; 9805 } 9806 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 9807 ret = get_errno(dup3(arg1, arg2, host_flags)); 9808 if (ret >= 0) { 9809 fd_trans_dup(arg1, arg2); 9810 } 9811 return ret; 9812 } 9813 #endif 9814 #ifdef TARGET_NR_getppid /* not on alpha */ 9815 case TARGET_NR_getppid: 9816 return get_errno(getppid()); 9817 #endif 9818 #ifdef TARGET_NR_getpgrp 9819 case TARGET_NR_getpgrp: 9820 return get_errno(getpgrp()); 9821 #endif 9822 case TARGET_NR_setsid: 9823 return get_errno(setsid()); 9824 #ifdef TARGET_NR_sigaction 9825 case TARGET_NR_sigaction: 9826 { 9827 #if defined(TARGET_MIPS) 9828 struct target_sigaction act, oact, *pact, *old_act; 9829 9830 if (arg2) { 9831 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9832 return -TARGET_EFAULT; 9833 act._sa_handler = old_act->_sa_handler; 9834 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 9835 act.sa_flags = old_act->sa_flags; 9836 unlock_user_struct(old_act, arg2, 0); 9837 pact = &act; 9838 } else { 9839 pact = NULL; 9840 } 9841 9842 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9843 9844 if (!is_error(ret) && arg3) { 9845 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9846 return -TARGET_EFAULT; 9847 old_act->_sa_handler = oact._sa_handler; 9848 old_act->sa_flags = oact.sa_flags; 9849 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 9850 old_act->sa_mask.sig[1] = 0; 9851 old_act->sa_mask.sig[2] = 0; 9852 old_act->sa_mask.sig[3] = 0; 9853 unlock_user_struct(old_act, arg3, 1); 9854 } 9855 #else 9856 struct target_old_sigaction *old_act; 9857 struct target_sigaction act, oact, *pact; 9858 if (arg2) { 9859 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9860 return -TARGET_EFAULT; 9861 act._sa_handler = old_act->_sa_handler; 9862 target_siginitset(&act.sa_mask, old_act->sa_mask); 9863 act.sa_flags = old_act->sa_flags; 9864 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9865 act.sa_restorer = old_act->sa_restorer; 9866 #endif 9867 unlock_user_struct(old_act, arg2, 0); 9868 pact = &act; 9869 } else { 9870 pact = NULL; 9871 } 9872 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9873 if (!is_error(ret) && arg3) { 9874 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9875 return -TARGET_EFAULT; 9876 old_act->_sa_handler = oact._sa_handler; 9877 old_act->sa_mask = oact.sa_mask.sig[0]; 9878 old_act->sa_flags = oact.sa_flags; 9879 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9880 old_act->sa_restorer = oact.sa_restorer; 9881 #endif 9882 unlock_user_struct(old_act, arg3, 1); 9883 } 9884 #endif 9885 } 9886 return ret; 9887 #endif 9888 case TARGET_NR_rt_sigaction: 9889 { 9890 /* 9891 * For Alpha and SPARC this is a 5 argument syscall, with 9892 * a 'restorer' parameter which must be copied into the 9893 * sa_restorer field of the sigaction struct. 9894 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 9895 * and arg5 is the sigsetsize. 9896 */ 9897 #if defined(TARGET_ALPHA) 9898 target_ulong sigsetsize = arg4; 9899 target_ulong restorer = arg5; 9900 #elif defined(TARGET_SPARC) 9901 target_ulong restorer = arg4; 9902 target_ulong sigsetsize = arg5; 9903 #else 9904 target_ulong sigsetsize = arg4; 9905 target_ulong restorer = 0; 9906 #endif 9907 struct target_sigaction *act = NULL; 9908 struct target_sigaction *oact = NULL; 9909 9910 if (sigsetsize != sizeof(target_sigset_t)) { 9911 return -TARGET_EINVAL; 9912 } 9913 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) { 9914 return -TARGET_EFAULT; 9915 } 9916 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 9917 ret = -TARGET_EFAULT; 9918 } else { 9919 ret = get_errno(do_sigaction(arg1, act, oact, restorer)); 9920 if (oact) { 9921 unlock_user_struct(oact, arg3, 1); 9922 } 9923 } 9924 if (act) { 9925 unlock_user_struct(act, arg2, 0); 9926 } 9927 } 9928 return ret; 9929 #ifdef TARGET_NR_sgetmask /* not on alpha */ 9930 case TARGET_NR_sgetmask: 9931 { 9932 sigset_t cur_set; 9933 abi_ulong target_set; 9934 ret = do_sigprocmask(0, NULL, &cur_set); 9935 if (!ret) { 9936 host_to_target_old_sigset(&target_set, &cur_set); 9937 ret = target_set; 9938 } 9939 } 9940 return ret; 9941 #endif 9942 #ifdef TARGET_NR_ssetmask /* not on alpha */ 9943 case TARGET_NR_ssetmask: 9944 { 9945 sigset_t set, oset; 9946 abi_ulong target_set = arg1; 9947 target_to_host_old_sigset(&set, &target_set); 9948 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 9949 if (!ret) { 9950 host_to_target_old_sigset(&target_set, &oset); 9951 ret = target_set; 9952 } 9953 } 9954 return ret; 9955 #endif 9956 #ifdef TARGET_NR_sigprocmask 9957 case TARGET_NR_sigprocmask: 9958 { 9959 #if defined(TARGET_ALPHA) 9960 sigset_t set, oldset; 9961 abi_ulong mask; 9962 int how; 9963 9964 switch (arg1) { 9965 case TARGET_SIG_BLOCK: 9966 how = SIG_BLOCK; 9967 break; 9968 case TARGET_SIG_UNBLOCK: 9969 how = SIG_UNBLOCK; 9970 break; 9971 case TARGET_SIG_SETMASK: 9972 how = SIG_SETMASK; 9973 break; 9974 default: 9975 return -TARGET_EINVAL; 9976 } 9977 mask = arg2; 9978 target_to_host_old_sigset(&set, &mask); 9979 9980 ret = do_sigprocmask(how, &set, &oldset); 9981 if (!is_error(ret)) { 9982 host_to_target_old_sigset(&mask, &oldset); 9983 ret = mask; 9984 cpu_env->ir[IR_V0] = 0; /* force no error */ 9985 } 9986 #else 9987 sigset_t set, oldset, *set_ptr; 9988 int how; 9989 9990 if (arg2) { 9991 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 9992 if (!p) { 9993 return -TARGET_EFAULT; 9994 } 9995 target_to_host_old_sigset(&set, p); 9996 unlock_user(p, arg2, 0); 9997 set_ptr = &set; 9998 switch (arg1) { 9999 case TARGET_SIG_BLOCK: 10000 how = SIG_BLOCK; 10001 break; 10002 case TARGET_SIG_UNBLOCK: 10003 how = SIG_UNBLOCK; 10004 break; 10005 case TARGET_SIG_SETMASK: 10006 how = SIG_SETMASK; 10007 break; 10008 default: 10009 return -TARGET_EINVAL; 10010 } 10011 } else { 10012 how = 0; 10013 set_ptr = NULL; 10014 } 10015 ret = do_sigprocmask(how, set_ptr, &oldset); 10016 if (!is_error(ret) && arg3) { 10017 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10018 return -TARGET_EFAULT; 10019 host_to_target_old_sigset(p, &oldset); 10020 unlock_user(p, arg3, sizeof(target_sigset_t)); 10021 } 10022 #endif 10023 } 10024 return ret; 10025 #endif 10026 case TARGET_NR_rt_sigprocmask: 10027 { 10028 int how = arg1; 10029 sigset_t set, oldset, *set_ptr; 10030 10031 if (arg4 != sizeof(target_sigset_t)) { 10032 return -TARGET_EINVAL; 10033 } 10034 10035 if (arg2) { 10036 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 10037 if (!p) { 10038 return -TARGET_EFAULT; 10039 } 10040 target_to_host_sigset(&set, p); 10041 unlock_user(p, arg2, 0); 10042 set_ptr = &set; 10043 switch(how) { 10044 case TARGET_SIG_BLOCK: 10045 how = SIG_BLOCK; 10046 break; 10047 case TARGET_SIG_UNBLOCK: 10048 how = SIG_UNBLOCK; 10049 break; 10050 case TARGET_SIG_SETMASK: 10051 how = SIG_SETMASK; 10052 break; 10053 default: 10054 return -TARGET_EINVAL; 10055 } 10056 } else { 10057 how = 0; 10058 set_ptr = NULL; 10059 } 10060 ret = do_sigprocmask(how, set_ptr, &oldset); 10061 if (!is_error(ret) && arg3) { 10062 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 10063 return -TARGET_EFAULT; 10064 host_to_target_sigset(p, &oldset); 10065 unlock_user(p, arg3, sizeof(target_sigset_t)); 10066 } 10067 } 10068 return ret; 10069 #ifdef TARGET_NR_sigpending 10070 case TARGET_NR_sigpending: 10071 { 10072 sigset_t set; 10073 ret = get_errno(sigpending(&set)); 10074 if (!is_error(ret)) { 10075 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10076 return -TARGET_EFAULT; 10077 host_to_target_old_sigset(p, &set); 10078 unlock_user(p, arg1, sizeof(target_sigset_t)); 10079 } 10080 } 10081 return ret; 10082 #endif 10083 case TARGET_NR_rt_sigpending: 10084 { 10085 sigset_t set; 10086 10087 /* Yes, this check is >, not != like most. We follow the kernel's 10088 * logic and it does it like this because it implements 10089 * NR_sigpending through the same code path, and in that case 10090 * the old_sigset_t is smaller in size. 10091 */ 10092 if (arg2 > sizeof(target_sigset_t)) { 10093 return -TARGET_EINVAL; 10094 } 10095 10096 ret = get_errno(sigpending(&set)); 10097 if (!is_error(ret)) { 10098 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 10099 return -TARGET_EFAULT; 10100 host_to_target_sigset(p, &set); 10101 unlock_user(p, arg1, sizeof(target_sigset_t)); 10102 } 10103 } 10104 return ret; 10105 #ifdef TARGET_NR_sigsuspend 10106 case TARGET_NR_sigsuspend: 10107 { 10108 sigset_t *set; 10109 10110 #if defined(TARGET_ALPHA) 10111 TaskState *ts = get_task_state(cpu); 10112 /* target_to_host_old_sigset will bswap back */ 10113 abi_ulong mask = tswapal(arg1); 10114 set = &ts->sigsuspend_mask; 10115 target_to_host_old_sigset(set, &mask); 10116 #else 10117 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t)); 10118 if (ret != 0) { 10119 return ret; 10120 } 10121 #endif 10122 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10123 finish_sigsuspend_mask(ret); 10124 } 10125 return ret; 10126 #endif 10127 case TARGET_NR_rt_sigsuspend: 10128 { 10129 sigset_t *set; 10130 10131 ret = process_sigsuspend_mask(&set, arg1, arg2); 10132 if (ret != 0) { 10133 return ret; 10134 } 10135 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 10136 finish_sigsuspend_mask(ret); 10137 } 10138 return ret; 10139 #ifdef TARGET_NR_rt_sigtimedwait 10140 case TARGET_NR_rt_sigtimedwait: 10141 { 10142 sigset_t set; 10143 struct timespec uts, *puts; 10144 siginfo_t uinfo; 10145 10146 if (arg4 != sizeof(target_sigset_t)) { 10147 return -TARGET_EINVAL; 10148 } 10149 10150 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 10151 return -TARGET_EFAULT; 10152 target_to_host_sigset(&set, p); 10153 unlock_user(p, arg1, 0); 10154 if (arg3) { 10155 puts = &uts; 10156 if (target_to_host_timespec(puts, arg3)) { 10157 return -TARGET_EFAULT; 10158 } 10159 } else { 10160 puts = NULL; 10161 } 10162 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10163 SIGSET_T_SIZE)); 10164 if (!is_error(ret)) { 10165 if (arg2) { 10166 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 10167 0); 10168 if (!p) { 10169 return -TARGET_EFAULT; 10170 } 10171 host_to_target_siginfo(p, &uinfo); 10172 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10173 } 10174 ret = host_to_target_signal(ret); 10175 } 10176 } 10177 return ret; 10178 #endif 10179 #ifdef TARGET_NR_rt_sigtimedwait_time64 10180 case TARGET_NR_rt_sigtimedwait_time64: 10181 { 10182 sigset_t set; 10183 struct timespec uts, *puts; 10184 siginfo_t uinfo; 10185 10186 if (arg4 != sizeof(target_sigset_t)) { 10187 return -TARGET_EINVAL; 10188 } 10189 10190 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1); 10191 if (!p) { 10192 return -TARGET_EFAULT; 10193 } 10194 target_to_host_sigset(&set, p); 10195 unlock_user(p, arg1, 0); 10196 if (arg3) { 10197 puts = &uts; 10198 if (target_to_host_timespec64(puts, arg3)) { 10199 return -TARGET_EFAULT; 10200 } 10201 } else { 10202 puts = NULL; 10203 } 10204 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 10205 SIGSET_T_SIZE)); 10206 if (!is_error(ret)) { 10207 if (arg2) { 10208 p = lock_user(VERIFY_WRITE, arg2, 10209 sizeof(target_siginfo_t), 0); 10210 if (!p) { 10211 return -TARGET_EFAULT; 10212 } 10213 host_to_target_siginfo(p, &uinfo); 10214 unlock_user(p, arg2, sizeof(target_siginfo_t)); 10215 } 10216 ret = host_to_target_signal(ret); 10217 } 10218 } 10219 return ret; 10220 #endif 10221 case TARGET_NR_rt_sigqueueinfo: 10222 { 10223 siginfo_t uinfo; 10224 10225 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 10226 if (!p) { 10227 return -TARGET_EFAULT; 10228 } 10229 target_to_host_siginfo(&uinfo, p); 10230 unlock_user(p, arg3, 0); 10231 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo)); 10232 } 10233 return ret; 10234 case TARGET_NR_rt_tgsigqueueinfo: 10235 { 10236 siginfo_t uinfo; 10237 10238 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 10239 if (!p) { 10240 return -TARGET_EFAULT; 10241 } 10242 target_to_host_siginfo(&uinfo, p); 10243 unlock_user(p, arg4, 0); 10244 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo)); 10245 } 10246 return ret; 10247 #ifdef TARGET_NR_sigreturn 10248 case TARGET_NR_sigreturn: 10249 if (block_signals()) { 10250 return -QEMU_ERESTARTSYS; 10251 } 10252 return do_sigreturn(cpu_env); 10253 #endif 10254 case TARGET_NR_rt_sigreturn: 10255 if (block_signals()) { 10256 return -QEMU_ERESTARTSYS; 10257 } 10258 return do_rt_sigreturn(cpu_env); 10259 case TARGET_NR_sethostname: 10260 if (!(p = lock_user_string(arg1))) 10261 return -TARGET_EFAULT; 10262 ret = get_errno(sethostname(p, arg2)); 10263 unlock_user(p, arg1, 0); 10264 return ret; 10265 #ifdef TARGET_NR_setrlimit 10266 case TARGET_NR_setrlimit: 10267 { 10268 int resource = target_to_host_resource(arg1); 10269 struct target_rlimit *target_rlim; 10270 struct rlimit rlim; 10271 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 10272 return -TARGET_EFAULT; 10273 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 10274 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 10275 unlock_user_struct(target_rlim, arg2, 0); 10276 /* 10277 * If we just passed through resource limit settings for memory then 10278 * they would also apply to QEMU's own allocations, and QEMU will 10279 * crash or hang or die if its allocations fail. Ideally we would 10280 * track the guest allocations in QEMU and apply the limits ourselves. 10281 * For now, just tell the guest the call succeeded but don't actually 10282 * limit anything. 10283 */ 10284 if (resource != RLIMIT_AS && 10285 resource != RLIMIT_DATA && 10286 resource != RLIMIT_STACK) { 10287 return get_errno(setrlimit(resource, &rlim)); 10288 } else { 10289 return 0; 10290 } 10291 } 10292 #endif 10293 #ifdef TARGET_NR_getrlimit 10294 case TARGET_NR_getrlimit: 10295 { 10296 int resource = target_to_host_resource(arg1); 10297 struct target_rlimit *target_rlim; 10298 struct rlimit rlim; 10299 10300 ret = get_errno(getrlimit(resource, &rlim)); 10301 if (!is_error(ret)) { 10302 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 10303 return -TARGET_EFAULT; 10304 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 10305 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 10306 unlock_user_struct(target_rlim, arg2, 1); 10307 } 10308 } 10309 return ret; 10310 #endif 10311 case TARGET_NR_getrusage: 10312 { 10313 struct rusage rusage; 10314 ret = get_errno(getrusage(arg1, &rusage)); 10315 if (!is_error(ret)) { 10316 ret = host_to_target_rusage(arg2, &rusage); 10317 } 10318 } 10319 return ret; 10320 #if defined(TARGET_NR_gettimeofday) 10321 case TARGET_NR_gettimeofday: 10322 { 10323 struct timeval tv; 10324 struct timezone tz; 10325 10326 ret = get_errno(gettimeofday(&tv, &tz)); 10327 if (!is_error(ret)) { 10328 if (arg1 && copy_to_user_timeval(arg1, &tv)) { 10329 return -TARGET_EFAULT; 10330 } 10331 if (arg2 && copy_to_user_timezone(arg2, &tz)) { 10332 return -TARGET_EFAULT; 10333 } 10334 } 10335 } 10336 return ret; 10337 #endif 10338 #if defined(TARGET_NR_settimeofday) 10339 case TARGET_NR_settimeofday: 10340 { 10341 struct timeval tv, *ptv = NULL; 10342 struct timezone tz, *ptz = NULL; 10343 10344 if (arg1) { 10345 if (copy_from_user_timeval(&tv, arg1)) { 10346 return -TARGET_EFAULT; 10347 } 10348 ptv = &tv; 10349 } 10350 10351 if (arg2) { 10352 if (copy_from_user_timezone(&tz, arg2)) { 10353 return -TARGET_EFAULT; 10354 } 10355 ptz = &tz; 10356 } 10357 10358 return get_errno(settimeofday(ptv, ptz)); 10359 } 10360 #endif 10361 #if defined(TARGET_NR_select) 10362 case TARGET_NR_select: 10363 #if defined(TARGET_WANT_NI_OLD_SELECT) 10364 /* some architectures used to have old_select here 10365 * but now ENOSYS it. 10366 */ 10367 ret = -TARGET_ENOSYS; 10368 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 10369 ret = do_old_select(arg1); 10370 #else 10371 ret = do_select(arg1, arg2, arg3, arg4, arg5); 10372 #endif 10373 return ret; 10374 #endif 10375 #ifdef TARGET_NR_pselect6 10376 case TARGET_NR_pselect6: 10377 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false); 10378 #endif 10379 #ifdef TARGET_NR_pselect6_time64 10380 case TARGET_NR_pselect6_time64: 10381 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true); 10382 #endif 10383 #ifdef TARGET_NR_symlink 10384 case TARGET_NR_symlink: 10385 { 10386 void *p2; 10387 p = lock_user_string(arg1); 10388 p2 = lock_user_string(arg2); 10389 if (!p || !p2) 10390 ret = -TARGET_EFAULT; 10391 else 10392 ret = get_errno(symlink(p, p2)); 10393 unlock_user(p2, arg2, 0); 10394 unlock_user(p, arg1, 0); 10395 } 10396 return ret; 10397 #endif 10398 #if defined(TARGET_NR_symlinkat) 10399 case TARGET_NR_symlinkat: 10400 { 10401 void *p2; 10402 p = lock_user_string(arg1); 10403 p2 = lock_user_string(arg3); 10404 if (!p || !p2) 10405 ret = -TARGET_EFAULT; 10406 else 10407 ret = get_errno(symlinkat(p, arg2, p2)); 10408 unlock_user(p2, arg3, 0); 10409 unlock_user(p, arg1, 0); 10410 } 10411 return ret; 10412 #endif 10413 #ifdef TARGET_NR_readlink 10414 case TARGET_NR_readlink: 10415 { 10416 void *p2; 10417 p = lock_user_string(arg1); 10418 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10419 ret = get_errno(do_guest_readlink(p, p2, arg3)); 10420 unlock_user(p2, arg2, ret); 10421 unlock_user(p, arg1, 0); 10422 } 10423 return ret; 10424 #endif 10425 #if defined(TARGET_NR_readlinkat) 10426 case TARGET_NR_readlinkat: 10427 { 10428 void *p2; 10429 p = lock_user_string(arg2); 10430 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 10431 if (!p || !p2) { 10432 ret = -TARGET_EFAULT; 10433 } else if (!arg4) { 10434 /* Short circuit this for the magic exe check. */ 10435 ret = -TARGET_EINVAL; 10436 } else if (is_proc_myself((const char *)p, "exe")) { 10437 /* 10438 * Don't worry about sign mismatch as earlier mapping 10439 * logic would have thrown a bad address error. 10440 */ 10441 ret = MIN(strlen(exec_path), arg4); 10442 /* We cannot NUL terminate the string. */ 10443 memcpy(p2, exec_path, ret); 10444 } else { 10445 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 10446 } 10447 unlock_user(p2, arg3, ret); 10448 unlock_user(p, arg2, 0); 10449 } 10450 return ret; 10451 #endif 10452 #ifdef TARGET_NR_swapon 10453 case TARGET_NR_swapon: 10454 if (!(p = lock_user_string(arg1))) 10455 return -TARGET_EFAULT; 10456 ret = get_errno(swapon(p, arg2)); 10457 unlock_user(p, arg1, 0); 10458 return ret; 10459 #endif 10460 case TARGET_NR_reboot: 10461 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 10462 /* arg4 must be ignored in all other cases */ 10463 p = lock_user_string(arg4); 10464 if (!p) { 10465 return -TARGET_EFAULT; 10466 } 10467 ret = get_errno(reboot(arg1, arg2, arg3, p)); 10468 unlock_user(p, arg4, 0); 10469 } else { 10470 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 10471 } 10472 return ret; 10473 #ifdef TARGET_NR_mmap 10474 case TARGET_NR_mmap: 10475 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 10476 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 10477 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 10478 || defined(TARGET_S390X) 10479 { 10480 abi_ulong *v; 10481 abi_ulong v1, v2, v3, v4, v5, v6; 10482 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 10483 return -TARGET_EFAULT; 10484 v1 = tswapal(v[0]); 10485 v2 = tswapal(v[1]); 10486 v3 = tswapal(v[2]); 10487 v4 = tswapal(v[3]); 10488 v5 = tswapal(v[4]); 10489 v6 = tswapal(v[5]); 10490 unlock_user(v, arg1, 0); 10491 return do_mmap(v1, v2, v3, v4, v5, v6); 10492 } 10493 #else 10494 /* mmap pointers are always untagged */ 10495 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6); 10496 #endif 10497 #endif 10498 #ifdef TARGET_NR_mmap2 10499 case TARGET_NR_mmap2: 10500 #ifndef MMAP_SHIFT 10501 #define MMAP_SHIFT 12 10502 #endif 10503 return do_mmap(arg1, arg2, arg3, arg4, arg5, 10504 (off_t)(abi_ulong)arg6 << MMAP_SHIFT); 10505 #endif 10506 case TARGET_NR_munmap: 10507 arg1 = cpu_untagged_addr(cpu, arg1); 10508 return get_errno(target_munmap(arg1, arg2)); 10509 case TARGET_NR_mprotect: 10510 arg1 = cpu_untagged_addr(cpu, arg1); 10511 { 10512 TaskState *ts = get_task_state(cpu); 10513 /* Special hack to detect libc making the stack executable. */ 10514 if ((arg3 & PROT_GROWSDOWN) 10515 && arg1 >= ts->info->stack_limit 10516 && arg1 <= ts->info->start_stack) { 10517 arg3 &= ~PROT_GROWSDOWN; 10518 arg2 = arg2 + arg1 - ts->info->stack_limit; 10519 arg1 = ts->info->stack_limit; 10520 } 10521 } 10522 return get_errno(target_mprotect(arg1, arg2, arg3)); 10523 #ifdef TARGET_NR_mremap 10524 case TARGET_NR_mremap: 10525 arg1 = cpu_untagged_addr(cpu, arg1); 10526 /* mremap new_addr (arg5) is always untagged */ 10527 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 10528 #endif 10529 /* ??? msync/mlock/munlock are broken for softmmu. */ 10530 #ifdef TARGET_NR_msync 10531 case TARGET_NR_msync: 10532 return get_errno(msync(g2h(cpu, arg1), arg2, 10533 target_to_host_msync_arg(arg3))); 10534 #endif 10535 #ifdef TARGET_NR_mlock 10536 case TARGET_NR_mlock: 10537 return get_errno(mlock(g2h(cpu, arg1), arg2)); 10538 #endif 10539 #ifdef TARGET_NR_munlock 10540 case TARGET_NR_munlock: 10541 return get_errno(munlock(g2h(cpu, arg1), arg2)); 10542 #endif 10543 #ifdef TARGET_NR_mlockall 10544 case TARGET_NR_mlockall: 10545 return get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 10546 #endif 10547 #ifdef TARGET_NR_munlockall 10548 case TARGET_NR_munlockall: 10549 return get_errno(munlockall()); 10550 #endif 10551 #ifdef TARGET_NR_truncate 10552 case TARGET_NR_truncate: 10553 if (!(p = lock_user_string(arg1))) 10554 return -TARGET_EFAULT; 10555 ret = get_errno(truncate(p, arg2)); 10556 unlock_user(p, arg1, 0); 10557 return ret; 10558 #endif 10559 #ifdef TARGET_NR_ftruncate 10560 case TARGET_NR_ftruncate: 10561 return get_errno(ftruncate(arg1, arg2)); 10562 #endif 10563 case TARGET_NR_fchmod: 10564 return get_errno(fchmod(arg1, arg2)); 10565 #if defined(TARGET_NR_fchmodat) 10566 case TARGET_NR_fchmodat: 10567 if (!(p = lock_user_string(arg2))) 10568 return -TARGET_EFAULT; 10569 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 10570 unlock_user(p, arg2, 0); 10571 return ret; 10572 #endif 10573 case TARGET_NR_getpriority: 10574 /* Note that negative values are valid for getpriority, so we must 10575 differentiate based on errno settings. */ 10576 errno = 0; 10577 ret = getpriority(arg1, arg2); 10578 if (ret == -1 && errno != 0) { 10579 return -host_to_target_errno(errno); 10580 } 10581 #ifdef TARGET_ALPHA 10582 /* Return value is the unbiased priority. Signal no error. */ 10583 cpu_env->ir[IR_V0] = 0; 10584 #else 10585 /* Return value is a biased priority to avoid negative numbers. */ 10586 ret = 20 - ret; 10587 #endif 10588 return ret; 10589 case TARGET_NR_setpriority: 10590 return get_errno(setpriority(arg1, arg2, arg3)); 10591 #ifdef TARGET_NR_statfs 10592 case TARGET_NR_statfs: 10593 if (!(p = lock_user_string(arg1))) { 10594 return -TARGET_EFAULT; 10595 } 10596 ret = get_errno(statfs(path(p), &stfs)); 10597 unlock_user(p, arg1, 0); 10598 convert_statfs: 10599 if (!is_error(ret)) { 10600 struct target_statfs *target_stfs; 10601 10602 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 10603 return -TARGET_EFAULT; 10604 __put_user(stfs.f_type, &target_stfs->f_type); 10605 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10606 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10607 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10608 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10609 __put_user(stfs.f_files, &target_stfs->f_files); 10610 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10611 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10612 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10613 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10614 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10615 #ifdef _STATFS_F_FLAGS 10616 __put_user(stfs.f_flags, &target_stfs->f_flags); 10617 #else 10618 __put_user(0, &target_stfs->f_flags); 10619 #endif 10620 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10621 unlock_user_struct(target_stfs, arg2, 1); 10622 } 10623 return ret; 10624 #endif 10625 #ifdef TARGET_NR_fstatfs 10626 case TARGET_NR_fstatfs: 10627 ret = get_errno(fstatfs(arg1, &stfs)); 10628 goto convert_statfs; 10629 #endif 10630 #ifdef TARGET_NR_statfs64 10631 case TARGET_NR_statfs64: 10632 if (!(p = lock_user_string(arg1))) { 10633 return -TARGET_EFAULT; 10634 } 10635 ret = get_errno(statfs(path(p), &stfs)); 10636 unlock_user(p, arg1, 0); 10637 convert_statfs64: 10638 if (!is_error(ret)) { 10639 struct target_statfs64 *target_stfs; 10640 10641 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 10642 return -TARGET_EFAULT; 10643 __put_user(stfs.f_type, &target_stfs->f_type); 10644 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10645 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10646 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10647 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10648 __put_user(stfs.f_files, &target_stfs->f_files); 10649 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10650 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10651 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10652 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10653 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10654 #ifdef _STATFS_F_FLAGS 10655 __put_user(stfs.f_flags, &target_stfs->f_flags); 10656 #else 10657 __put_user(0, &target_stfs->f_flags); 10658 #endif 10659 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10660 unlock_user_struct(target_stfs, arg3, 1); 10661 } 10662 return ret; 10663 case TARGET_NR_fstatfs64: 10664 ret = get_errno(fstatfs(arg1, &stfs)); 10665 goto convert_statfs64; 10666 #endif 10667 #ifdef TARGET_NR_socketcall 10668 case TARGET_NR_socketcall: 10669 return do_socketcall(arg1, arg2); 10670 #endif 10671 #ifdef TARGET_NR_accept 10672 case TARGET_NR_accept: 10673 return do_accept4(arg1, arg2, arg3, 0); 10674 #endif 10675 #ifdef TARGET_NR_accept4 10676 case TARGET_NR_accept4: 10677 return do_accept4(arg1, arg2, arg3, arg4); 10678 #endif 10679 #ifdef TARGET_NR_bind 10680 case TARGET_NR_bind: 10681 return do_bind(arg1, arg2, arg3); 10682 #endif 10683 #ifdef TARGET_NR_connect 10684 case TARGET_NR_connect: 10685 return do_connect(arg1, arg2, arg3); 10686 #endif 10687 #ifdef TARGET_NR_getpeername 10688 case TARGET_NR_getpeername: 10689 return do_getpeername(arg1, arg2, arg3); 10690 #endif 10691 #ifdef TARGET_NR_getsockname 10692 case TARGET_NR_getsockname: 10693 return do_getsockname(arg1, arg2, arg3); 10694 #endif 10695 #ifdef TARGET_NR_getsockopt 10696 case TARGET_NR_getsockopt: 10697 return do_getsockopt(arg1, arg2, arg3, arg4, arg5); 10698 #endif 10699 #ifdef TARGET_NR_listen 10700 case TARGET_NR_listen: 10701 return get_errno(listen(arg1, arg2)); 10702 #endif 10703 #ifdef TARGET_NR_recv 10704 case TARGET_NR_recv: 10705 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 10706 #endif 10707 #ifdef TARGET_NR_recvfrom 10708 case TARGET_NR_recvfrom: 10709 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 10710 #endif 10711 #ifdef TARGET_NR_recvmsg 10712 case TARGET_NR_recvmsg: 10713 return do_sendrecvmsg(arg1, arg2, arg3, 0); 10714 #endif 10715 #ifdef TARGET_NR_send 10716 case TARGET_NR_send: 10717 return do_sendto(arg1, arg2, arg3, arg4, 0, 0); 10718 #endif 10719 #ifdef TARGET_NR_sendmsg 10720 case TARGET_NR_sendmsg: 10721 return do_sendrecvmsg(arg1, arg2, arg3, 1); 10722 #endif 10723 #ifdef TARGET_NR_sendmmsg 10724 case TARGET_NR_sendmmsg: 10725 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 10726 #endif 10727 #ifdef TARGET_NR_recvmmsg 10728 case TARGET_NR_recvmmsg: 10729 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 10730 #endif 10731 #ifdef TARGET_NR_sendto 10732 case TARGET_NR_sendto: 10733 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 10734 #endif 10735 #ifdef TARGET_NR_shutdown 10736 case TARGET_NR_shutdown: 10737 return get_errno(shutdown(arg1, arg2)); 10738 #endif 10739 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 10740 case TARGET_NR_getrandom: 10741 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 10742 if (!p) { 10743 return -TARGET_EFAULT; 10744 } 10745 ret = get_errno(getrandom(p, arg2, arg3)); 10746 unlock_user(p, arg1, ret); 10747 return ret; 10748 #endif 10749 #ifdef TARGET_NR_socket 10750 case TARGET_NR_socket: 10751 return do_socket(arg1, arg2, arg3); 10752 #endif 10753 #ifdef TARGET_NR_socketpair 10754 case TARGET_NR_socketpair: 10755 return do_socketpair(arg1, arg2, arg3, arg4); 10756 #endif 10757 #ifdef TARGET_NR_setsockopt 10758 case TARGET_NR_setsockopt: 10759 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 10760 #endif 10761 #if defined(TARGET_NR_syslog) 10762 case TARGET_NR_syslog: 10763 { 10764 int len = arg2; 10765 10766 switch (arg1) { 10767 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 10768 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 10769 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 10770 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 10771 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 10772 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 10773 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 10774 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 10775 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 10776 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 10777 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 10778 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 10779 { 10780 if (len < 0) { 10781 return -TARGET_EINVAL; 10782 } 10783 if (len == 0) { 10784 return 0; 10785 } 10786 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10787 if (!p) { 10788 return -TARGET_EFAULT; 10789 } 10790 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 10791 unlock_user(p, arg2, arg3); 10792 } 10793 return ret; 10794 default: 10795 return -TARGET_EINVAL; 10796 } 10797 } 10798 break; 10799 #endif 10800 case TARGET_NR_setitimer: 10801 { 10802 struct itimerval value, ovalue, *pvalue; 10803 10804 if (arg2) { 10805 pvalue = &value; 10806 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 10807 || copy_from_user_timeval(&pvalue->it_value, 10808 arg2 + sizeof(struct target_timeval))) 10809 return -TARGET_EFAULT; 10810 } else { 10811 pvalue = NULL; 10812 } 10813 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 10814 if (!is_error(ret) && arg3) { 10815 if (copy_to_user_timeval(arg3, 10816 &ovalue.it_interval) 10817 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 10818 &ovalue.it_value)) 10819 return -TARGET_EFAULT; 10820 } 10821 } 10822 return ret; 10823 case TARGET_NR_getitimer: 10824 { 10825 struct itimerval value; 10826 10827 ret = get_errno(getitimer(arg1, &value)); 10828 if (!is_error(ret) && arg2) { 10829 if (copy_to_user_timeval(arg2, 10830 &value.it_interval) 10831 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 10832 &value.it_value)) 10833 return -TARGET_EFAULT; 10834 } 10835 } 10836 return ret; 10837 #ifdef TARGET_NR_stat 10838 case TARGET_NR_stat: 10839 if (!(p = lock_user_string(arg1))) { 10840 return -TARGET_EFAULT; 10841 } 10842 ret = get_errno(stat(path(p), &st)); 10843 unlock_user(p, arg1, 0); 10844 goto do_stat; 10845 #endif 10846 #ifdef TARGET_NR_lstat 10847 case TARGET_NR_lstat: 10848 if (!(p = lock_user_string(arg1))) { 10849 return -TARGET_EFAULT; 10850 } 10851 ret = get_errno(lstat(path(p), &st)); 10852 unlock_user(p, arg1, 0); 10853 goto do_stat; 10854 #endif 10855 #ifdef TARGET_NR_fstat 10856 case TARGET_NR_fstat: 10857 { 10858 ret = get_errno(fstat(arg1, &st)); 10859 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 10860 do_stat: 10861 #endif 10862 if (!is_error(ret)) { 10863 struct target_stat *target_st; 10864 10865 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 10866 return -TARGET_EFAULT; 10867 memset(target_st, 0, sizeof(*target_st)); 10868 __put_user(st.st_dev, &target_st->st_dev); 10869 __put_user(st.st_ino, &target_st->st_ino); 10870 __put_user(st.st_mode, &target_st->st_mode); 10871 __put_user(st.st_uid, &target_st->st_uid); 10872 __put_user(st.st_gid, &target_st->st_gid); 10873 __put_user(st.st_nlink, &target_st->st_nlink); 10874 __put_user(st.st_rdev, &target_st->st_rdev); 10875 __put_user(st.st_size, &target_st->st_size); 10876 __put_user(st.st_blksize, &target_st->st_blksize); 10877 __put_user(st.st_blocks, &target_st->st_blocks); 10878 __put_user(st.st_atime, &target_st->target_st_atime); 10879 __put_user(st.st_mtime, &target_st->target_st_mtime); 10880 __put_user(st.st_ctime, &target_st->target_st_ctime); 10881 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC) 10882 __put_user(st.st_atim.tv_nsec, 10883 &target_st->target_st_atime_nsec); 10884 __put_user(st.st_mtim.tv_nsec, 10885 &target_st->target_st_mtime_nsec); 10886 __put_user(st.st_ctim.tv_nsec, 10887 &target_st->target_st_ctime_nsec); 10888 #endif 10889 unlock_user_struct(target_st, arg2, 1); 10890 } 10891 } 10892 return ret; 10893 #endif 10894 case TARGET_NR_vhangup: 10895 return get_errno(vhangup()); 10896 #ifdef TARGET_NR_syscall 10897 case TARGET_NR_syscall: 10898 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 10899 arg6, arg7, arg8, 0); 10900 #endif 10901 #if defined(TARGET_NR_wait4) 10902 case TARGET_NR_wait4: 10903 { 10904 int status; 10905 abi_long status_ptr = arg2; 10906 struct rusage rusage, *rusage_ptr; 10907 abi_ulong target_rusage = arg4; 10908 abi_long rusage_err; 10909 if (target_rusage) 10910 rusage_ptr = &rusage; 10911 else 10912 rusage_ptr = NULL; 10913 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 10914 if (!is_error(ret)) { 10915 if (status_ptr && ret) { 10916 status = host_to_target_waitstatus(status); 10917 if (put_user_s32(status, status_ptr)) 10918 return -TARGET_EFAULT; 10919 } 10920 if (target_rusage) { 10921 rusage_err = host_to_target_rusage(target_rusage, &rusage); 10922 if (rusage_err) { 10923 ret = rusage_err; 10924 } 10925 } 10926 } 10927 } 10928 return ret; 10929 #endif 10930 #ifdef TARGET_NR_swapoff 10931 case TARGET_NR_swapoff: 10932 if (!(p = lock_user_string(arg1))) 10933 return -TARGET_EFAULT; 10934 ret = get_errno(swapoff(p)); 10935 unlock_user(p, arg1, 0); 10936 return ret; 10937 #endif 10938 case TARGET_NR_sysinfo: 10939 { 10940 struct target_sysinfo *target_value; 10941 struct sysinfo value; 10942 ret = get_errno(sysinfo(&value)); 10943 if (!is_error(ret) && arg1) 10944 { 10945 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 10946 return -TARGET_EFAULT; 10947 __put_user(value.uptime, &target_value->uptime); 10948 __put_user(value.loads[0], &target_value->loads[0]); 10949 __put_user(value.loads[1], &target_value->loads[1]); 10950 __put_user(value.loads[2], &target_value->loads[2]); 10951 __put_user(value.totalram, &target_value->totalram); 10952 __put_user(value.freeram, &target_value->freeram); 10953 __put_user(value.sharedram, &target_value->sharedram); 10954 __put_user(value.bufferram, &target_value->bufferram); 10955 __put_user(value.totalswap, &target_value->totalswap); 10956 __put_user(value.freeswap, &target_value->freeswap); 10957 __put_user(value.procs, &target_value->procs); 10958 __put_user(value.totalhigh, &target_value->totalhigh); 10959 __put_user(value.freehigh, &target_value->freehigh); 10960 __put_user(value.mem_unit, &target_value->mem_unit); 10961 unlock_user_struct(target_value, arg1, 1); 10962 } 10963 } 10964 return ret; 10965 #ifdef TARGET_NR_ipc 10966 case TARGET_NR_ipc: 10967 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 10968 #endif 10969 #ifdef TARGET_NR_semget 10970 case TARGET_NR_semget: 10971 return get_errno(semget(arg1, arg2, arg3)); 10972 #endif 10973 #ifdef TARGET_NR_semop 10974 case TARGET_NR_semop: 10975 return do_semtimedop(arg1, arg2, arg3, 0, false); 10976 #endif 10977 #ifdef TARGET_NR_semtimedop 10978 case TARGET_NR_semtimedop: 10979 return do_semtimedop(arg1, arg2, arg3, arg4, false); 10980 #endif 10981 #ifdef TARGET_NR_semtimedop_time64 10982 case TARGET_NR_semtimedop_time64: 10983 return do_semtimedop(arg1, arg2, arg3, arg4, true); 10984 #endif 10985 #ifdef TARGET_NR_semctl 10986 case TARGET_NR_semctl: 10987 return do_semctl(arg1, arg2, arg3, arg4); 10988 #endif 10989 #ifdef TARGET_NR_msgctl 10990 case TARGET_NR_msgctl: 10991 return do_msgctl(arg1, arg2, arg3); 10992 #endif 10993 #ifdef TARGET_NR_msgget 10994 case TARGET_NR_msgget: 10995 return get_errno(msgget(arg1, arg2)); 10996 #endif 10997 #ifdef TARGET_NR_msgrcv 10998 case TARGET_NR_msgrcv: 10999 return do_msgrcv(arg1, arg2, arg3, arg4, arg5); 11000 #endif 11001 #ifdef TARGET_NR_msgsnd 11002 case TARGET_NR_msgsnd: 11003 return do_msgsnd(arg1, arg2, arg3, arg4); 11004 #endif 11005 #ifdef TARGET_NR_shmget 11006 case TARGET_NR_shmget: 11007 return get_errno(shmget(arg1, arg2, arg3)); 11008 #endif 11009 #ifdef TARGET_NR_shmctl 11010 case TARGET_NR_shmctl: 11011 return do_shmctl(arg1, arg2, arg3); 11012 #endif 11013 #ifdef TARGET_NR_shmat 11014 case TARGET_NR_shmat: 11015 return target_shmat(cpu_env, arg1, arg2, arg3); 11016 #endif 11017 #ifdef TARGET_NR_shmdt 11018 case TARGET_NR_shmdt: 11019 return target_shmdt(arg1); 11020 #endif 11021 case TARGET_NR_fsync: 11022 return get_errno(fsync(arg1)); 11023 case TARGET_NR_clone: 11024 /* Linux manages to have three different orderings for its 11025 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 11026 * match the kernel's CONFIG_CLONE_* settings. 11027 * Microblaze is further special in that it uses a sixth 11028 * implicit argument to clone for the TLS pointer. 11029 */ 11030 #if defined(TARGET_MICROBLAZE) 11031 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 11032 #elif defined(TARGET_CLONE_BACKWARDS) 11033 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 11034 #elif defined(TARGET_CLONE_BACKWARDS2) 11035 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 11036 #else 11037 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 11038 #endif 11039 return ret; 11040 #ifdef __NR_exit_group 11041 /* new thread calls */ 11042 case TARGET_NR_exit_group: 11043 preexit_cleanup(cpu_env, arg1); 11044 return get_errno(exit_group(arg1)); 11045 #endif 11046 case TARGET_NR_setdomainname: 11047 if (!(p = lock_user_string(arg1))) 11048 return -TARGET_EFAULT; 11049 ret = get_errno(setdomainname(p, arg2)); 11050 unlock_user(p, arg1, 0); 11051 return ret; 11052 case TARGET_NR_uname: 11053 /* no need to transcode because we use the linux syscall */ 11054 { 11055 struct new_utsname * buf; 11056 11057 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 11058 return -TARGET_EFAULT; 11059 ret = get_errno(sys_uname(buf)); 11060 if (!is_error(ret)) { 11061 /* Overwrite the native machine name with whatever is being 11062 emulated. */ 11063 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env), 11064 sizeof(buf->machine)); 11065 /* Allow the user to override the reported release. */ 11066 if (qemu_uname_release && *qemu_uname_release) { 11067 g_strlcpy(buf->release, qemu_uname_release, 11068 sizeof(buf->release)); 11069 } 11070 } 11071 unlock_user_struct(buf, arg1, 1); 11072 } 11073 return ret; 11074 #ifdef TARGET_I386 11075 case TARGET_NR_modify_ldt: 11076 return do_modify_ldt(cpu_env, arg1, arg2, arg3); 11077 #if !defined(TARGET_X86_64) 11078 case TARGET_NR_vm86: 11079 return do_vm86(cpu_env, arg1, arg2); 11080 #endif 11081 #endif 11082 #if defined(TARGET_NR_adjtimex) 11083 case TARGET_NR_adjtimex: 11084 { 11085 struct timex host_buf; 11086 11087 if (target_to_host_timex(&host_buf, arg1) != 0) { 11088 return -TARGET_EFAULT; 11089 } 11090 ret = get_errno(adjtimex(&host_buf)); 11091 if (!is_error(ret)) { 11092 if (host_to_target_timex(arg1, &host_buf) != 0) { 11093 return -TARGET_EFAULT; 11094 } 11095 } 11096 } 11097 return ret; 11098 #endif 11099 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 11100 case TARGET_NR_clock_adjtime: 11101 { 11102 struct timex htx; 11103 11104 if (target_to_host_timex(&htx, arg2) != 0) { 11105 return -TARGET_EFAULT; 11106 } 11107 ret = get_errno(clock_adjtime(arg1, &htx)); 11108 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) { 11109 return -TARGET_EFAULT; 11110 } 11111 } 11112 return ret; 11113 #endif 11114 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 11115 case TARGET_NR_clock_adjtime64: 11116 { 11117 struct timex htx; 11118 11119 if (target_to_host_timex64(&htx, arg2) != 0) { 11120 return -TARGET_EFAULT; 11121 } 11122 ret = get_errno(clock_adjtime(arg1, &htx)); 11123 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) { 11124 return -TARGET_EFAULT; 11125 } 11126 } 11127 return ret; 11128 #endif 11129 case TARGET_NR_getpgid: 11130 return get_errno(getpgid(arg1)); 11131 case TARGET_NR_fchdir: 11132 return get_errno(fchdir(arg1)); 11133 case TARGET_NR_personality: 11134 return get_errno(personality(arg1)); 11135 #ifdef TARGET_NR__llseek /* Not on alpha */ 11136 case TARGET_NR__llseek: 11137 { 11138 int64_t res; 11139 #if !defined(__NR_llseek) 11140 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 11141 if (res == -1) { 11142 ret = get_errno(res); 11143 } else { 11144 ret = 0; 11145 } 11146 #else 11147 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 11148 #endif 11149 if ((ret == 0) && put_user_s64(res, arg4)) { 11150 return -TARGET_EFAULT; 11151 } 11152 } 11153 return ret; 11154 #endif 11155 #ifdef TARGET_NR_getdents 11156 case TARGET_NR_getdents: 11157 return do_getdents(arg1, arg2, arg3); 11158 #endif /* TARGET_NR_getdents */ 11159 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 11160 case TARGET_NR_getdents64: 11161 return do_getdents64(arg1, arg2, arg3); 11162 #endif /* TARGET_NR_getdents64 */ 11163 #if defined(TARGET_NR__newselect) 11164 case TARGET_NR__newselect: 11165 return do_select(arg1, arg2, arg3, arg4, arg5); 11166 #endif 11167 #ifdef TARGET_NR_poll 11168 case TARGET_NR_poll: 11169 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false); 11170 #endif 11171 #ifdef TARGET_NR_ppoll 11172 case TARGET_NR_ppoll: 11173 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false); 11174 #endif 11175 #ifdef TARGET_NR_ppoll_time64 11176 case TARGET_NR_ppoll_time64: 11177 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true); 11178 #endif 11179 case TARGET_NR_flock: 11180 /* NOTE: the flock constant seems to be the same for every 11181 Linux platform */ 11182 return get_errno(safe_flock(arg1, arg2)); 11183 case TARGET_NR_readv: 11184 { 11185 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11186 if (vec != NULL) { 11187 ret = get_errno(safe_readv(arg1, vec, arg3)); 11188 unlock_iovec(vec, arg2, arg3, 1); 11189 } else { 11190 ret = -host_to_target_errno(errno); 11191 } 11192 } 11193 return ret; 11194 case TARGET_NR_writev: 11195 { 11196 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11197 if (vec != NULL) { 11198 ret = get_errno(safe_writev(arg1, vec, arg3)); 11199 unlock_iovec(vec, arg2, arg3, 0); 11200 } else { 11201 ret = -host_to_target_errno(errno); 11202 } 11203 } 11204 return ret; 11205 #if defined(TARGET_NR_preadv) 11206 case TARGET_NR_preadv: 11207 { 11208 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 11209 if (vec != NULL) { 11210 unsigned long low, high; 11211 11212 target_to_host_low_high(arg4, arg5, &low, &high); 11213 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high)); 11214 unlock_iovec(vec, arg2, arg3, 1); 11215 } else { 11216 ret = -host_to_target_errno(errno); 11217 } 11218 } 11219 return ret; 11220 #endif 11221 #if defined(TARGET_NR_pwritev) 11222 case TARGET_NR_pwritev: 11223 { 11224 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 11225 if (vec != NULL) { 11226 unsigned long low, high; 11227 11228 target_to_host_low_high(arg4, arg5, &low, &high); 11229 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high)); 11230 unlock_iovec(vec, arg2, arg3, 0); 11231 } else { 11232 ret = -host_to_target_errno(errno); 11233 } 11234 } 11235 return ret; 11236 #endif 11237 case TARGET_NR_getsid: 11238 return get_errno(getsid(arg1)); 11239 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 11240 case TARGET_NR_fdatasync: 11241 return get_errno(fdatasync(arg1)); 11242 #endif 11243 case TARGET_NR_sched_getaffinity: 11244 { 11245 unsigned int mask_size; 11246 unsigned long *mask; 11247 11248 /* 11249 * sched_getaffinity needs multiples of ulong, so need to take 11250 * care of mismatches between target ulong and host ulong sizes. 11251 */ 11252 if (arg2 & (sizeof(abi_ulong) - 1)) { 11253 return -TARGET_EINVAL; 11254 } 11255 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11256 11257 mask = alloca(mask_size); 11258 memset(mask, 0, mask_size); 11259 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 11260 11261 if (!is_error(ret)) { 11262 if (ret > arg2) { 11263 /* More data returned than the caller's buffer will fit. 11264 * This only happens if sizeof(abi_long) < sizeof(long) 11265 * and the caller passed us a buffer holding an odd number 11266 * of abi_longs. If the host kernel is actually using the 11267 * extra 4 bytes then fail EINVAL; otherwise we can just 11268 * ignore them and only copy the interesting part. 11269 */ 11270 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 11271 if (numcpus > arg2 * 8) { 11272 return -TARGET_EINVAL; 11273 } 11274 ret = arg2; 11275 } 11276 11277 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 11278 return -TARGET_EFAULT; 11279 } 11280 } 11281 } 11282 return ret; 11283 case TARGET_NR_sched_setaffinity: 11284 { 11285 unsigned int mask_size; 11286 unsigned long *mask; 11287 11288 /* 11289 * sched_setaffinity needs multiples of ulong, so need to take 11290 * care of mismatches between target ulong and host ulong sizes. 11291 */ 11292 if (arg2 & (sizeof(abi_ulong) - 1)) { 11293 return -TARGET_EINVAL; 11294 } 11295 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 11296 mask = alloca(mask_size); 11297 11298 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 11299 if (ret) { 11300 return ret; 11301 } 11302 11303 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 11304 } 11305 case TARGET_NR_getcpu: 11306 { 11307 unsigned cpuid, node; 11308 ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL, 11309 arg2 ? &node : NULL, 11310 NULL)); 11311 if (is_error(ret)) { 11312 return ret; 11313 } 11314 if (arg1 && put_user_u32(cpuid, arg1)) { 11315 return -TARGET_EFAULT; 11316 } 11317 if (arg2 && put_user_u32(node, arg2)) { 11318 return -TARGET_EFAULT; 11319 } 11320 } 11321 return ret; 11322 case TARGET_NR_sched_setparam: 11323 { 11324 struct target_sched_param *target_schp; 11325 struct sched_param schp; 11326 11327 if (arg2 == 0) { 11328 return -TARGET_EINVAL; 11329 } 11330 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) { 11331 return -TARGET_EFAULT; 11332 } 11333 schp.sched_priority = tswap32(target_schp->sched_priority); 11334 unlock_user_struct(target_schp, arg2, 0); 11335 return get_errno(sys_sched_setparam(arg1, &schp)); 11336 } 11337 case TARGET_NR_sched_getparam: 11338 { 11339 struct target_sched_param *target_schp; 11340 struct sched_param schp; 11341 11342 if (arg2 == 0) { 11343 return -TARGET_EINVAL; 11344 } 11345 ret = get_errno(sys_sched_getparam(arg1, &schp)); 11346 if (!is_error(ret)) { 11347 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) { 11348 return -TARGET_EFAULT; 11349 } 11350 target_schp->sched_priority = tswap32(schp.sched_priority); 11351 unlock_user_struct(target_schp, arg2, 1); 11352 } 11353 } 11354 return ret; 11355 case TARGET_NR_sched_setscheduler: 11356 { 11357 struct target_sched_param *target_schp; 11358 struct sched_param schp; 11359 if (arg3 == 0) { 11360 return -TARGET_EINVAL; 11361 } 11362 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) { 11363 return -TARGET_EFAULT; 11364 } 11365 schp.sched_priority = tswap32(target_schp->sched_priority); 11366 unlock_user_struct(target_schp, arg3, 0); 11367 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp)); 11368 } 11369 case TARGET_NR_sched_getscheduler: 11370 return get_errno(sys_sched_getscheduler(arg1)); 11371 case TARGET_NR_sched_getattr: 11372 { 11373 struct target_sched_attr *target_scha; 11374 struct sched_attr scha; 11375 if (arg2 == 0) { 11376 return -TARGET_EINVAL; 11377 } 11378 if (arg3 > sizeof(scha)) { 11379 arg3 = sizeof(scha); 11380 } 11381 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4)); 11382 if (!is_error(ret)) { 11383 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11384 if (!target_scha) { 11385 return -TARGET_EFAULT; 11386 } 11387 target_scha->size = tswap32(scha.size); 11388 target_scha->sched_policy = tswap32(scha.sched_policy); 11389 target_scha->sched_flags = tswap64(scha.sched_flags); 11390 target_scha->sched_nice = tswap32(scha.sched_nice); 11391 target_scha->sched_priority = tswap32(scha.sched_priority); 11392 target_scha->sched_runtime = tswap64(scha.sched_runtime); 11393 target_scha->sched_deadline = tswap64(scha.sched_deadline); 11394 target_scha->sched_period = tswap64(scha.sched_period); 11395 if (scha.size > offsetof(struct sched_attr, sched_util_min)) { 11396 target_scha->sched_util_min = tswap32(scha.sched_util_min); 11397 target_scha->sched_util_max = tswap32(scha.sched_util_max); 11398 } 11399 unlock_user(target_scha, arg2, arg3); 11400 } 11401 return ret; 11402 } 11403 case TARGET_NR_sched_setattr: 11404 { 11405 struct target_sched_attr *target_scha; 11406 struct sched_attr scha; 11407 uint32_t size; 11408 int zeroed; 11409 if (arg2 == 0) { 11410 return -TARGET_EINVAL; 11411 } 11412 if (get_user_u32(size, arg2)) { 11413 return -TARGET_EFAULT; 11414 } 11415 if (!size) { 11416 size = offsetof(struct target_sched_attr, sched_util_min); 11417 } 11418 if (size < offsetof(struct target_sched_attr, sched_util_min)) { 11419 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11420 return -TARGET_EFAULT; 11421 } 11422 return -TARGET_E2BIG; 11423 } 11424 11425 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size); 11426 if (zeroed < 0) { 11427 return zeroed; 11428 } else if (zeroed == 0) { 11429 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11430 return -TARGET_EFAULT; 11431 } 11432 return -TARGET_E2BIG; 11433 } 11434 if (size > sizeof(struct target_sched_attr)) { 11435 size = sizeof(struct target_sched_attr); 11436 } 11437 11438 target_scha = lock_user(VERIFY_READ, arg2, size, 1); 11439 if (!target_scha) { 11440 return -TARGET_EFAULT; 11441 } 11442 scha.size = size; 11443 scha.sched_policy = tswap32(target_scha->sched_policy); 11444 scha.sched_flags = tswap64(target_scha->sched_flags); 11445 scha.sched_nice = tswap32(target_scha->sched_nice); 11446 scha.sched_priority = tswap32(target_scha->sched_priority); 11447 scha.sched_runtime = tswap64(target_scha->sched_runtime); 11448 scha.sched_deadline = tswap64(target_scha->sched_deadline); 11449 scha.sched_period = tswap64(target_scha->sched_period); 11450 if (size > offsetof(struct target_sched_attr, sched_util_min)) { 11451 scha.sched_util_min = tswap32(target_scha->sched_util_min); 11452 scha.sched_util_max = tswap32(target_scha->sched_util_max); 11453 } 11454 unlock_user(target_scha, arg2, 0); 11455 return get_errno(sys_sched_setattr(arg1, &scha, arg3)); 11456 } 11457 case TARGET_NR_sched_yield: 11458 return get_errno(sched_yield()); 11459 case TARGET_NR_sched_get_priority_max: 11460 return get_errno(sched_get_priority_max(arg1)); 11461 case TARGET_NR_sched_get_priority_min: 11462 return get_errno(sched_get_priority_min(arg1)); 11463 #ifdef TARGET_NR_sched_rr_get_interval 11464 case TARGET_NR_sched_rr_get_interval: 11465 { 11466 struct timespec ts; 11467 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11468 if (!is_error(ret)) { 11469 ret = host_to_target_timespec(arg2, &ts); 11470 } 11471 } 11472 return ret; 11473 #endif 11474 #ifdef TARGET_NR_sched_rr_get_interval_time64 11475 case TARGET_NR_sched_rr_get_interval_time64: 11476 { 11477 struct timespec ts; 11478 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11479 if (!is_error(ret)) { 11480 ret = host_to_target_timespec64(arg2, &ts); 11481 } 11482 } 11483 return ret; 11484 #endif 11485 #if defined(TARGET_NR_nanosleep) 11486 case TARGET_NR_nanosleep: 11487 { 11488 struct timespec req, rem; 11489 target_to_host_timespec(&req, arg1); 11490 ret = get_errno(safe_nanosleep(&req, &rem)); 11491 if (is_error(ret) && arg2) { 11492 host_to_target_timespec(arg2, &rem); 11493 } 11494 } 11495 return ret; 11496 #endif 11497 case TARGET_NR_prctl: 11498 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5); 11499 break; 11500 #ifdef TARGET_NR_arch_prctl 11501 case TARGET_NR_arch_prctl: 11502 return do_arch_prctl(cpu_env, arg1, arg2); 11503 #endif 11504 #ifdef TARGET_NR_pread64 11505 case TARGET_NR_pread64: 11506 if (regpairs_aligned(cpu_env, num)) { 11507 arg4 = arg5; 11508 arg5 = arg6; 11509 } 11510 if (arg2 == 0 && arg3 == 0) { 11511 /* Special-case NULL buffer and zero length, which should succeed */ 11512 p = 0; 11513 } else { 11514 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11515 if (!p) { 11516 return -TARGET_EFAULT; 11517 } 11518 } 11519 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 11520 unlock_user(p, arg2, ret); 11521 return ret; 11522 case TARGET_NR_pwrite64: 11523 if (regpairs_aligned(cpu_env, num)) { 11524 arg4 = arg5; 11525 arg5 = arg6; 11526 } 11527 if (arg2 == 0 && arg3 == 0) { 11528 /* Special-case NULL buffer and zero length, which should succeed */ 11529 p = 0; 11530 } else { 11531 p = lock_user(VERIFY_READ, arg2, arg3, 1); 11532 if (!p) { 11533 return -TARGET_EFAULT; 11534 } 11535 } 11536 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 11537 unlock_user(p, arg2, 0); 11538 return ret; 11539 #endif 11540 case TARGET_NR_getcwd: 11541 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 11542 return -TARGET_EFAULT; 11543 ret = get_errno(sys_getcwd1(p, arg2)); 11544 unlock_user(p, arg1, ret); 11545 return ret; 11546 case TARGET_NR_capget: 11547 case TARGET_NR_capset: 11548 { 11549 struct target_user_cap_header *target_header; 11550 struct target_user_cap_data *target_data = NULL; 11551 struct __user_cap_header_struct header; 11552 struct __user_cap_data_struct data[2]; 11553 struct __user_cap_data_struct *dataptr = NULL; 11554 int i, target_datalen; 11555 int data_items = 1; 11556 11557 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 11558 return -TARGET_EFAULT; 11559 } 11560 header.version = tswap32(target_header->version); 11561 header.pid = tswap32(target_header->pid); 11562 11563 if (header.version != _LINUX_CAPABILITY_VERSION) { 11564 /* Version 2 and up takes pointer to two user_data structs */ 11565 data_items = 2; 11566 } 11567 11568 target_datalen = sizeof(*target_data) * data_items; 11569 11570 if (arg2) { 11571 if (num == TARGET_NR_capget) { 11572 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 11573 } else { 11574 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 11575 } 11576 if (!target_data) { 11577 unlock_user_struct(target_header, arg1, 0); 11578 return -TARGET_EFAULT; 11579 } 11580 11581 if (num == TARGET_NR_capset) { 11582 for (i = 0; i < data_items; i++) { 11583 data[i].effective = tswap32(target_data[i].effective); 11584 data[i].permitted = tswap32(target_data[i].permitted); 11585 data[i].inheritable = tswap32(target_data[i].inheritable); 11586 } 11587 } 11588 11589 dataptr = data; 11590 } 11591 11592 if (num == TARGET_NR_capget) { 11593 ret = get_errno(capget(&header, dataptr)); 11594 } else { 11595 ret = get_errno(capset(&header, dataptr)); 11596 } 11597 11598 /* The kernel always updates version for both capget and capset */ 11599 target_header->version = tswap32(header.version); 11600 unlock_user_struct(target_header, arg1, 1); 11601 11602 if (arg2) { 11603 if (num == TARGET_NR_capget) { 11604 for (i = 0; i < data_items; i++) { 11605 target_data[i].effective = tswap32(data[i].effective); 11606 target_data[i].permitted = tswap32(data[i].permitted); 11607 target_data[i].inheritable = tswap32(data[i].inheritable); 11608 } 11609 unlock_user(target_data, arg2, target_datalen); 11610 } else { 11611 unlock_user(target_data, arg2, 0); 11612 } 11613 } 11614 return ret; 11615 } 11616 case TARGET_NR_sigaltstack: 11617 return do_sigaltstack(arg1, arg2, cpu_env); 11618 11619 #ifdef CONFIG_SENDFILE 11620 #ifdef TARGET_NR_sendfile 11621 case TARGET_NR_sendfile: 11622 { 11623 off_t *offp = NULL; 11624 off_t off; 11625 if (arg3) { 11626 ret = get_user_sal(off, arg3); 11627 if (is_error(ret)) { 11628 return ret; 11629 } 11630 offp = &off; 11631 } 11632 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11633 if (!is_error(ret) && arg3) { 11634 abi_long ret2 = put_user_sal(off, arg3); 11635 if (is_error(ret2)) { 11636 ret = ret2; 11637 } 11638 } 11639 return ret; 11640 } 11641 #endif 11642 #ifdef TARGET_NR_sendfile64 11643 case TARGET_NR_sendfile64: 11644 { 11645 off_t *offp = NULL; 11646 off_t off; 11647 if (arg3) { 11648 ret = get_user_s64(off, arg3); 11649 if (is_error(ret)) { 11650 return ret; 11651 } 11652 offp = &off; 11653 } 11654 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11655 if (!is_error(ret) && arg3) { 11656 abi_long ret2 = put_user_s64(off, arg3); 11657 if (is_error(ret2)) { 11658 ret = ret2; 11659 } 11660 } 11661 return ret; 11662 } 11663 #endif 11664 #endif 11665 #ifdef TARGET_NR_vfork 11666 case TARGET_NR_vfork: 11667 return get_errno(do_fork(cpu_env, 11668 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 11669 0, 0, 0, 0)); 11670 #endif 11671 #ifdef TARGET_NR_ugetrlimit 11672 case TARGET_NR_ugetrlimit: 11673 { 11674 struct rlimit rlim; 11675 int resource = target_to_host_resource(arg1); 11676 ret = get_errno(getrlimit(resource, &rlim)); 11677 if (!is_error(ret)) { 11678 struct target_rlimit *target_rlim; 11679 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 11680 return -TARGET_EFAULT; 11681 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 11682 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 11683 unlock_user_struct(target_rlim, arg2, 1); 11684 } 11685 return ret; 11686 } 11687 #endif 11688 #ifdef TARGET_NR_truncate64 11689 case TARGET_NR_truncate64: 11690 if (!(p = lock_user_string(arg1))) 11691 return -TARGET_EFAULT; 11692 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 11693 unlock_user(p, arg1, 0); 11694 return ret; 11695 #endif 11696 #ifdef TARGET_NR_ftruncate64 11697 case TARGET_NR_ftruncate64: 11698 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 11699 #endif 11700 #ifdef TARGET_NR_stat64 11701 case TARGET_NR_stat64: 11702 if (!(p = lock_user_string(arg1))) { 11703 return -TARGET_EFAULT; 11704 } 11705 ret = get_errno(stat(path(p), &st)); 11706 unlock_user(p, arg1, 0); 11707 if (!is_error(ret)) 11708 ret = host_to_target_stat64(cpu_env, arg2, &st); 11709 return ret; 11710 #endif 11711 #ifdef TARGET_NR_lstat64 11712 case TARGET_NR_lstat64: 11713 if (!(p = lock_user_string(arg1))) { 11714 return -TARGET_EFAULT; 11715 } 11716 ret = get_errno(lstat(path(p), &st)); 11717 unlock_user(p, arg1, 0); 11718 if (!is_error(ret)) 11719 ret = host_to_target_stat64(cpu_env, arg2, &st); 11720 return ret; 11721 #endif 11722 #ifdef TARGET_NR_fstat64 11723 case TARGET_NR_fstat64: 11724 ret = get_errno(fstat(arg1, &st)); 11725 if (!is_error(ret)) 11726 ret = host_to_target_stat64(cpu_env, arg2, &st); 11727 return ret; 11728 #endif 11729 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 11730 #ifdef TARGET_NR_fstatat64 11731 case TARGET_NR_fstatat64: 11732 #endif 11733 #ifdef TARGET_NR_newfstatat 11734 case TARGET_NR_newfstatat: 11735 #endif 11736 if (!(p = lock_user_string(arg2))) { 11737 return -TARGET_EFAULT; 11738 } 11739 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 11740 unlock_user(p, arg2, 0); 11741 if (!is_error(ret)) 11742 ret = host_to_target_stat64(cpu_env, arg3, &st); 11743 return ret; 11744 #endif 11745 #if defined(TARGET_NR_statx) 11746 case TARGET_NR_statx: 11747 { 11748 struct target_statx *target_stx; 11749 int dirfd = arg1; 11750 int flags = arg3; 11751 11752 p = lock_user_string(arg2); 11753 if (p == NULL) { 11754 return -TARGET_EFAULT; 11755 } 11756 #if defined(__NR_statx) 11757 { 11758 /* 11759 * It is assumed that struct statx is architecture independent. 11760 */ 11761 struct target_statx host_stx; 11762 int mask = arg4; 11763 11764 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx)); 11765 if (!is_error(ret)) { 11766 if (host_to_target_statx(&host_stx, arg5) != 0) { 11767 unlock_user(p, arg2, 0); 11768 return -TARGET_EFAULT; 11769 } 11770 } 11771 11772 if (ret != -TARGET_ENOSYS) { 11773 unlock_user(p, arg2, 0); 11774 return ret; 11775 } 11776 } 11777 #endif 11778 ret = get_errno(fstatat(dirfd, path(p), &st, flags)); 11779 unlock_user(p, arg2, 0); 11780 11781 if (!is_error(ret)) { 11782 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) { 11783 return -TARGET_EFAULT; 11784 } 11785 memset(target_stx, 0, sizeof(*target_stx)); 11786 __put_user(major(st.st_dev), &target_stx->stx_dev_major); 11787 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor); 11788 __put_user(st.st_ino, &target_stx->stx_ino); 11789 __put_user(st.st_mode, &target_stx->stx_mode); 11790 __put_user(st.st_uid, &target_stx->stx_uid); 11791 __put_user(st.st_gid, &target_stx->stx_gid); 11792 __put_user(st.st_nlink, &target_stx->stx_nlink); 11793 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major); 11794 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor); 11795 __put_user(st.st_size, &target_stx->stx_size); 11796 __put_user(st.st_blksize, &target_stx->stx_blksize); 11797 __put_user(st.st_blocks, &target_stx->stx_blocks); 11798 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec); 11799 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec); 11800 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec); 11801 unlock_user_struct(target_stx, arg5, 1); 11802 } 11803 } 11804 return ret; 11805 #endif 11806 #ifdef TARGET_NR_lchown 11807 case TARGET_NR_lchown: 11808 if (!(p = lock_user_string(arg1))) 11809 return -TARGET_EFAULT; 11810 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 11811 unlock_user(p, arg1, 0); 11812 return ret; 11813 #endif 11814 #ifdef TARGET_NR_getuid 11815 case TARGET_NR_getuid: 11816 return get_errno(high2lowuid(getuid())); 11817 #endif 11818 #ifdef TARGET_NR_getgid 11819 case TARGET_NR_getgid: 11820 return get_errno(high2lowgid(getgid())); 11821 #endif 11822 #ifdef TARGET_NR_geteuid 11823 case TARGET_NR_geteuid: 11824 return get_errno(high2lowuid(geteuid())); 11825 #endif 11826 #ifdef TARGET_NR_getegid 11827 case TARGET_NR_getegid: 11828 return get_errno(high2lowgid(getegid())); 11829 #endif 11830 case TARGET_NR_setreuid: 11831 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11832 case TARGET_NR_setregid: 11833 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11834 case TARGET_NR_getgroups: 11835 { /* the same code as for TARGET_NR_getgroups32 */ 11836 int gidsetsize = arg1; 11837 target_id *target_grouplist; 11838 g_autofree gid_t *grouplist = NULL; 11839 int i; 11840 11841 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11842 return -TARGET_EINVAL; 11843 } 11844 if (gidsetsize > 0) { 11845 grouplist = g_try_new(gid_t, gidsetsize); 11846 if (!grouplist) { 11847 return -TARGET_ENOMEM; 11848 } 11849 } 11850 ret = get_errno(getgroups(gidsetsize, grouplist)); 11851 if (!is_error(ret) && gidsetsize > 0) { 11852 target_grouplist = lock_user(VERIFY_WRITE, arg2, 11853 gidsetsize * sizeof(target_id), 0); 11854 if (!target_grouplist) { 11855 return -TARGET_EFAULT; 11856 } 11857 for (i = 0; i < ret; i++) { 11858 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11859 } 11860 unlock_user(target_grouplist, arg2, 11861 gidsetsize * sizeof(target_id)); 11862 } 11863 return ret; 11864 } 11865 case TARGET_NR_setgroups: 11866 { /* the same code as for TARGET_NR_setgroups32 */ 11867 int gidsetsize = arg1; 11868 target_id *target_grouplist; 11869 g_autofree gid_t *grouplist = NULL; 11870 int i; 11871 11872 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 11873 return -TARGET_EINVAL; 11874 } 11875 if (gidsetsize > 0) { 11876 grouplist = g_try_new(gid_t, gidsetsize); 11877 if (!grouplist) { 11878 return -TARGET_ENOMEM; 11879 } 11880 target_grouplist = lock_user(VERIFY_READ, arg2, 11881 gidsetsize * sizeof(target_id), 1); 11882 if (!target_grouplist) { 11883 return -TARGET_EFAULT; 11884 } 11885 for (i = 0; i < gidsetsize; i++) { 11886 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11887 } 11888 unlock_user(target_grouplist, arg2, 11889 gidsetsize * sizeof(target_id)); 11890 } 11891 return get_errno(sys_setgroups(gidsetsize, grouplist)); 11892 } 11893 case TARGET_NR_fchown: 11894 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11895 #if defined(TARGET_NR_fchownat) 11896 case TARGET_NR_fchownat: 11897 if (!(p = lock_user_string(arg2))) 11898 return -TARGET_EFAULT; 11899 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11900 low2highgid(arg4), arg5)); 11901 unlock_user(p, arg2, 0); 11902 return ret; 11903 #endif 11904 #ifdef TARGET_NR_setresuid 11905 case TARGET_NR_setresuid: 11906 return get_errno(sys_setresuid(low2highuid(arg1), 11907 low2highuid(arg2), 11908 low2highuid(arg3))); 11909 #endif 11910 #ifdef TARGET_NR_getresuid 11911 case TARGET_NR_getresuid: 11912 { 11913 uid_t ruid, euid, suid; 11914 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11915 if (!is_error(ret)) { 11916 if (put_user_id(high2lowuid(ruid), arg1) 11917 || put_user_id(high2lowuid(euid), arg2) 11918 || put_user_id(high2lowuid(suid), arg3)) 11919 return -TARGET_EFAULT; 11920 } 11921 } 11922 return ret; 11923 #endif 11924 #ifdef TARGET_NR_getresgid 11925 case TARGET_NR_setresgid: 11926 return get_errno(sys_setresgid(low2highgid(arg1), 11927 low2highgid(arg2), 11928 low2highgid(arg3))); 11929 #endif 11930 #ifdef TARGET_NR_getresgid 11931 case TARGET_NR_getresgid: 11932 { 11933 gid_t rgid, egid, sgid; 11934 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11935 if (!is_error(ret)) { 11936 if (put_user_id(high2lowgid(rgid), arg1) 11937 || put_user_id(high2lowgid(egid), arg2) 11938 || put_user_id(high2lowgid(sgid), arg3)) 11939 return -TARGET_EFAULT; 11940 } 11941 } 11942 return ret; 11943 #endif 11944 #ifdef TARGET_NR_chown 11945 case TARGET_NR_chown: 11946 if (!(p = lock_user_string(arg1))) 11947 return -TARGET_EFAULT; 11948 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11949 unlock_user(p, arg1, 0); 11950 return ret; 11951 #endif 11952 case TARGET_NR_setuid: 11953 return get_errno(sys_setuid(low2highuid(arg1))); 11954 case TARGET_NR_setgid: 11955 return get_errno(sys_setgid(low2highgid(arg1))); 11956 case TARGET_NR_setfsuid: 11957 return get_errno(setfsuid(arg1)); 11958 case TARGET_NR_setfsgid: 11959 return get_errno(setfsgid(arg1)); 11960 11961 #ifdef TARGET_NR_lchown32 11962 case TARGET_NR_lchown32: 11963 if (!(p = lock_user_string(arg1))) 11964 return -TARGET_EFAULT; 11965 ret = get_errno(lchown(p, arg2, arg3)); 11966 unlock_user(p, arg1, 0); 11967 return ret; 11968 #endif 11969 #ifdef TARGET_NR_getuid32 11970 case TARGET_NR_getuid32: 11971 return get_errno(getuid()); 11972 #endif 11973 11974 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11975 /* Alpha specific */ 11976 case TARGET_NR_getxuid: 11977 { 11978 uid_t euid; 11979 euid=geteuid(); 11980 cpu_env->ir[IR_A4]=euid; 11981 } 11982 return get_errno(getuid()); 11983 #endif 11984 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11985 /* Alpha specific */ 11986 case TARGET_NR_getxgid: 11987 { 11988 uid_t egid; 11989 egid=getegid(); 11990 cpu_env->ir[IR_A4]=egid; 11991 } 11992 return get_errno(getgid()); 11993 #endif 11994 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 11995 /* Alpha specific */ 11996 case TARGET_NR_osf_getsysinfo: 11997 ret = -TARGET_EOPNOTSUPP; 11998 switch (arg1) { 11999 case TARGET_GSI_IEEE_FP_CONTROL: 12000 { 12001 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env); 12002 uint64_t swcr = cpu_env->swcr; 12003 12004 swcr &= ~SWCR_STATUS_MASK; 12005 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK; 12006 12007 if (put_user_u64 (swcr, arg2)) 12008 return -TARGET_EFAULT; 12009 ret = 0; 12010 } 12011 break; 12012 12013 /* case GSI_IEEE_STATE_AT_SIGNAL: 12014 -- Not implemented in linux kernel. 12015 case GSI_UACPROC: 12016 -- Retrieves current unaligned access state; not much used. 12017 case GSI_PROC_TYPE: 12018 -- Retrieves implver information; surely not used. 12019 case GSI_GET_HWRPB: 12020 -- Grabs a copy of the HWRPB; surely not used. 12021 */ 12022 } 12023 return ret; 12024 #endif 12025 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 12026 /* Alpha specific */ 12027 case TARGET_NR_osf_setsysinfo: 12028 ret = -TARGET_EOPNOTSUPP; 12029 switch (arg1) { 12030 case TARGET_SSI_IEEE_FP_CONTROL: 12031 { 12032 uint64_t swcr, fpcr; 12033 12034 if (get_user_u64 (swcr, arg2)) { 12035 return -TARGET_EFAULT; 12036 } 12037 12038 /* 12039 * The kernel calls swcr_update_status to update the 12040 * status bits from the fpcr at every point that it 12041 * could be queried. Therefore, we store the status 12042 * bits only in FPCR. 12043 */ 12044 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK); 12045 12046 fpcr = cpu_alpha_load_fpcr(cpu_env); 12047 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32); 12048 fpcr |= alpha_ieee_swcr_to_fpcr(swcr); 12049 cpu_alpha_store_fpcr(cpu_env, fpcr); 12050 ret = 0; 12051 } 12052 break; 12053 12054 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 12055 { 12056 uint64_t exc, fpcr, fex; 12057 12058 if (get_user_u64(exc, arg2)) { 12059 return -TARGET_EFAULT; 12060 } 12061 exc &= SWCR_STATUS_MASK; 12062 fpcr = cpu_alpha_load_fpcr(cpu_env); 12063 12064 /* Old exceptions are not signaled. */ 12065 fex = alpha_ieee_fpcr_to_swcr(fpcr); 12066 fex = exc & ~fex; 12067 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT; 12068 fex &= (cpu_env)->swcr; 12069 12070 /* Update the hardware fpcr. */ 12071 fpcr |= alpha_ieee_swcr_to_fpcr(exc); 12072 cpu_alpha_store_fpcr(cpu_env, fpcr); 12073 12074 if (fex) { 12075 int si_code = TARGET_FPE_FLTUNK; 12076 target_siginfo_t info; 12077 12078 if (fex & SWCR_TRAP_ENABLE_DNO) { 12079 si_code = TARGET_FPE_FLTUND; 12080 } 12081 if (fex & SWCR_TRAP_ENABLE_INE) { 12082 si_code = TARGET_FPE_FLTRES; 12083 } 12084 if (fex & SWCR_TRAP_ENABLE_UNF) { 12085 si_code = TARGET_FPE_FLTUND; 12086 } 12087 if (fex & SWCR_TRAP_ENABLE_OVF) { 12088 si_code = TARGET_FPE_FLTOVF; 12089 } 12090 if (fex & SWCR_TRAP_ENABLE_DZE) { 12091 si_code = TARGET_FPE_FLTDIV; 12092 } 12093 if (fex & SWCR_TRAP_ENABLE_INV) { 12094 si_code = TARGET_FPE_FLTINV; 12095 } 12096 12097 info.si_signo = SIGFPE; 12098 info.si_errno = 0; 12099 info.si_code = si_code; 12100 info._sifields._sigfault._addr = (cpu_env)->pc; 12101 queue_signal(cpu_env, info.si_signo, 12102 QEMU_SI_FAULT, &info); 12103 } 12104 ret = 0; 12105 } 12106 break; 12107 12108 /* case SSI_NVPAIRS: 12109 -- Used with SSIN_UACPROC to enable unaligned accesses. 12110 case SSI_IEEE_STATE_AT_SIGNAL: 12111 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 12112 -- Not implemented in linux kernel 12113 */ 12114 } 12115 return ret; 12116 #endif 12117 #ifdef TARGET_NR_osf_sigprocmask 12118 /* Alpha specific. */ 12119 case TARGET_NR_osf_sigprocmask: 12120 { 12121 abi_ulong mask; 12122 int how; 12123 sigset_t set, oldset; 12124 12125 switch(arg1) { 12126 case TARGET_SIG_BLOCK: 12127 how = SIG_BLOCK; 12128 break; 12129 case TARGET_SIG_UNBLOCK: 12130 how = SIG_UNBLOCK; 12131 break; 12132 case TARGET_SIG_SETMASK: 12133 how = SIG_SETMASK; 12134 break; 12135 default: 12136 return -TARGET_EINVAL; 12137 } 12138 mask = arg2; 12139 target_to_host_old_sigset(&set, &mask); 12140 ret = do_sigprocmask(how, &set, &oldset); 12141 if (!ret) { 12142 host_to_target_old_sigset(&mask, &oldset); 12143 ret = mask; 12144 } 12145 } 12146 return ret; 12147 #endif 12148 12149 #ifdef TARGET_NR_getgid32 12150 case TARGET_NR_getgid32: 12151 return get_errno(getgid()); 12152 #endif 12153 #ifdef TARGET_NR_geteuid32 12154 case TARGET_NR_geteuid32: 12155 return get_errno(geteuid()); 12156 #endif 12157 #ifdef TARGET_NR_getegid32 12158 case TARGET_NR_getegid32: 12159 return get_errno(getegid()); 12160 #endif 12161 #ifdef TARGET_NR_setreuid32 12162 case TARGET_NR_setreuid32: 12163 return get_errno(setreuid(arg1, arg2)); 12164 #endif 12165 #ifdef TARGET_NR_setregid32 12166 case TARGET_NR_setregid32: 12167 return get_errno(setregid(arg1, arg2)); 12168 #endif 12169 #ifdef TARGET_NR_getgroups32 12170 case TARGET_NR_getgroups32: 12171 { /* the same code as for TARGET_NR_getgroups */ 12172 int gidsetsize = arg1; 12173 uint32_t *target_grouplist; 12174 g_autofree gid_t *grouplist = NULL; 12175 int i; 12176 12177 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12178 return -TARGET_EINVAL; 12179 } 12180 if (gidsetsize > 0) { 12181 grouplist = g_try_new(gid_t, gidsetsize); 12182 if (!grouplist) { 12183 return -TARGET_ENOMEM; 12184 } 12185 } 12186 ret = get_errno(getgroups(gidsetsize, grouplist)); 12187 if (!is_error(ret) && gidsetsize > 0) { 12188 target_grouplist = lock_user(VERIFY_WRITE, arg2, 12189 gidsetsize * 4, 0); 12190 if (!target_grouplist) { 12191 return -TARGET_EFAULT; 12192 } 12193 for (i = 0; i < ret; i++) { 12194 target_grouplist[i] = tswap32(grouplist[i]); 12195 } 12196 unlock_user(target_grouplist, arg2, gidsetsize * 4); 12197 } 12198 return ret; 12199 } 12200 #endif 12201 #ifdef TARGET_NR_setgroups32 12202 case TARGET_NR_setgroups32: 12203 { /* the same code as for TARGET_NR_setgroups */ 12204 int gidsetsize = arg1; 12205 uint32_t *target_grouplist; 12206 g_autofree gid_t *grouplist = NULL; 12207 int i; 12208 12209 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) { 12210 return -TARGET_EINVAL; 12211 } 12212 if (gidsetsize > 0) { 12213 grouplist = g_try_new(gid_t, gidsetsize); 12214 if (!grouplist) { 12215 return -TARGET_ENOMEM; 12216 } 12217 target_grouplist = lock_user(VERIFY_READ, arg2, 12218 gidsetsize * 4, 1); 12219 if (!target_grouplist) { 12220 return -TARGET_EFAULT; 12221 } 12222 for (i = 0; i < gidsetsize; i++) { 12223 grouplist[i] = tswap32(target_grouplist[i]); 12224 } 12225 unlock_user(target_grouplist, arg2, 0); 12226 } 12227 return get_errno(sys_setgroups(gidsetsize, grouplist)); 12228 } 12229 #endif 12230 #ifdef TARGET_NR_fchown32 12231 case TARGET_NR_fchown32: 12232 return get_errno(fchown(arg1, arg2, arg3)); 12233 #endif 12234 #ifdef TARGET_NR_setresuid32 12235 case TARGET_NR_setresuid32: 12236 return get_errno(sys_setresuid(arg1, arg2, arg3)); 12237 #endif 12238 #ifdef TARGET_NR_getresuid32 12239 case TARGET_NR_getresuid32: 12240 { 12241 uid_t ruid, euid, suid; 12242 ret = get_errno(getresuid(&ruid, &euid, &suid)); 12243 if (!is_error(ret)) { 12244 if (put_user_u32(ruid, arg1) 12245 || put_user_u32(euid, arg2) 12246 || put_user_u32(suid, arg3)) 12247 return -TARGET_EFAULT; 12248 } 12249 } 12250 return ret; 12251 #endif 12252 #ifdef TARGET_NR_setresgid32 12253 case TARGET_NR_setresgid32: 12254 return get_errno(sys_setresgid(arg1, arg2, arg3)); 12255 #endif 12256 #ifdef TARGET_NR_getresgid32 12257 case TARGET_NR_getresgid32: 12258 { 12259 gid_t rgid, egid, sgid; 12260 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 12261 if (!is_error(ret)) { 12262 if (put_user_u32(rgid, arg1) 12263 || put_user_u32(egid, arg2) 12264 || put_user_u32(sgid, arg3)) 12265 return -TARGET_EFAULT; 12266 } 12267 } 12268 return ret; 12269 #endif 12270 #ifdef TARGET_NR_chown32 12271 case TARGET_NR_chown32: 12272 if (!(p = lock_user_string(arg1))) 12273 return -TARGET_EFAULT; 12274 ret = get_errno(chown(p, arg2, arg3)); 12275 unlock_user(p, arg1, 0); 12276 return ret; 12277 #endif 12278 #ifdef TARGET_NR_setuid32 12279 case TARGET_NR_setuid32: 12280 return get_errno(sys_setuid(arg1)); 12281 #endif 12282 #ifdef TARGET_NR_setgid32 12283 case TARGET_NR_setgid32: 12284 return get_errno(sys_setgid(arg1)); 12285 #endif 12286 #ifdef TARGET_NR_setfsuid32 12287 case TARGET_NR_setfsuid32: 12288 return get_errno(setfsuid(arg1)); 12289 #endif 12290 #ifdef TARGET_NR_setfsgid32 12291 case TARGET_NR_setfsgid32: 12292 return get_errno(setfsgid(arg1)); 12293 #endif 12294 #ifdef TARGET_NR_mincore 12295 case TARGET_NR_mincore: 12296 { 12297 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0); 12298 if (!a) { 12299 return -TARGET_ENOMEM; 12300 } 12301 p = lock_user_string(arg3); 12302 if (!p) { 12303 ret = -TARGET_EFAULT; 12304 } else { 12305 ret = get_errno(mincore(a, arg2, p)); 12306 unlock_user(p, arg3, ret); 12307 } 12308 unlock_user(a, arg1, 0); 12309 } 12310 return ret; 12311 #endif 12312 #ifdef TARGET_NR_arm_fadvise64_64 12313 case TARGET_NR_arm_fadvise64_64: 12314 /* arm_fadvise64_64 looks like fadvise64_64 but 12315 * with different argument order: fd, advice, offset, len 12316 * rather than the usual fd, offset, len, advice. 12317 * Note that offset and len are both 64-bit so appear as 12318 * pairs of 32-bit registers. 12319 */ 12320 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 12321 target_offset64(arg5, arg6), arg2); 12322 return -host_to_target_errno(ret); 12323 #endif 12324 12325 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12326 12327 #ifdef TARGET_NR_fadvise64_64 12328 case TARGET_NR_fadvise64_64: 12329 #if defined(TARGET_PPC) || defined(TARGET_XTENSA) 12330 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 12331 ret = arg2; 12332 arg2 = arg3; 12333 arg3 = arg4; 12334 arg4 = arg5; 12335 arg5 = arg6; 12336 arg6 = ret; 12337 #else 12338 /* 6 args: fd, offset (high, low), len (high, low), advice */ 12339 if (regpairs_aligned(cpu_env, num)) { 12340 /* offset is in (3,4), len in (5,6) and advice in 7 */ 12341 arg2 = arg3; 12342 arg3 = arg4; 12343 arg4 = arg5; 12344 arg5 = arg6; 12345 arg6 = arg7; 12346 } 12347 #endif 12348 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), 12349 target_offset64(arg4, arg5), arg6); 12350 return -host_to_target_errno(ret); 12351 #endif 12352 12353 #ifdef TARGET_NR_fadvise64 12354 case TARGET_NR_fadvise64: 12355 /* 5 args: fd, offset (high, low), len, advice */ 12356 if (regpairs_aligned(cpu_env, num)) { 12357 /* offset is in (3,4), len in 5 and advice in 6 */ 12358 arg2 = arg3; 12359 arg3 = arg4; 12360 arg4 = arg5; 12361 arg5 = arg6; 12362 } 12363 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5); 12364 return -host_to_target_errno(ret); 12365 #endif 12366 12367 #else /* not a 32-bit ABI */ 12368 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 12369 #ifdef TARGET_NR_fadvise64_64 12370 case TARGET_NR_fadvise64_64: 12371 #endif 12372 #ifdef TARGET_NR_fadvise64 12373 case TARGET_NR_fadvise64: 12374 #endif 12375 #ifdef TARGET_S390X 12376 switch (arg4) { 12377 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 12378 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 12379 case 6: arg4 = POSIX_FADV_DONTNEED; break; 12380 case 7: arg4 = POSIX_FADV_NOREUSE; break; 12381 default: break; 12382 } 12383 #endif 12384 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 12385 #endif 12386 #endif /* end of 64-bit ABI fadvise handling */ 12387 12388 #ifdef TARGET_NR_madvise 12389 case TARGET_NR_madvise: 12390 return target_madvise(arg1, arg2, arg3); 12391 #endif 12392 #ifdef TARGET_NR_fcntl64 12393 case TARGET_NR_fcntl64: 12394 { 12395 int cmd; 12396 struct flock64 fl; 12397 from_flock64_fn *copyfrom = copy_from_user_flock64; 12398 to_flock64_fn *copyto = copy_to_user_flock64; 12399 12400 #ifdef TARGET_ARM 12401 if (!cpu_env->eabi) { 12402 copyfrom = copy_from_user_oabi_flock64; 12403 copyto = copy_to_user_oabi_flock64; 12404 } 12405 #endif 12406 12407 cmd = target_to_host_fcntl_cmd(arg2); 12408 if (cmd == -TARGET_EINVAL) { 12409 return cmd; 12410 } 12411 12412 switch(arg2) { 12413 case TARGET_F_GETLK64: 12414 ret = copyfrom(&fl, arg3); 12415 if (ret) { 12416 break; 12417 } 12418 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12419 if (ret == 0) { 12420 ret = copyto(arg3, &fl); 12421 } 12422 break; 12423 12424 case TARGET_F_SETLK64: 12425 case TARGET_F_SETLKW64: 12426 ret = copyfrom(&fl, arg3); 12427 if (ret) { 12428 break; 12429 } 12430 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 12431 break; 12432 default: 12433 ret = do_fcntl(arg1, arg2, arg3); 12434 break; 12435 } 12436 return ret; 12437 } 12438 #endif 12439 #ifdef TARGET_NR_cacheflush 12440 case TARGET_NR_cacheflush: 12441 /* self-modifying code is handled automatically, so nothing needed */ 12442 return 0; 12443 #endif 12444 #ifdef TARGET_NR_getpagesize 12445 case TARGET_NR_getpagesize: 12446 return TARGET_PAGE_SIZE; 12447 #endif 12448 case TARGET_NR_gettid: 12449 return get_errno(sys_gettid()); 12450 #ifdef TARGET_NR_readahead 12451 case TARGET_NR_readahead: 12452 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12453 if (regpairs_aligned(cpu_env, num)) { 12454 arg2 = arg3; 12455 arg3 = arg4; 12456 arg4 = arg5; 12457 } 12458 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 12459 #else 12460 ret = get_errno(readahead(arg1, arg2, arg3)); 12461 #endif 12462 return ret; 12463 #endif 12464 #ifdef CONFIG_ATTR 12465 #ifdef TARGET_NR_setxattr 12466 case TARGET_NR_listxattr: 12467 case TARGET_NR_llistxattr: 12468 { 12469 void *b = 0; 12470 if (arg2) { 12471 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12472 if (!b) { 12473 return -TARGET_EFAULT; 12474 } 12475 } 12476 p = lock_user_string(arg1); 12477 if (p) { 12478 if (num == TARGET_NR_listxattr) { 12479 ret = get_errno(listxattr(p, b, arg3)); 12480 } else { 12481 ret = get_errno(llistxattr(p, b, arg3)); 12482 } 12483 } else { 12484 ret = -TARGET_EFAULT; 12485 } 12486 unlock_user(p, arg1, 0); 12487 unlock_user(b, arg2, arg3); 12488 return ret; 12489 } 12490 case TARGET_NR_flistxattr: 12491 { 12492 void *b = 0; 12493 if (arg2) { 12494 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12495 if (!b) { 12496 return -TARGET_EFAULT; 12497 } 12498 } 12499 ret = get_errno(flistxattr(arg1, b, arg3)); 12500 unlock_user(b, arg2, arg3); 12501 return ret; 12502 } 12503 case TARGET_NR_setxattr: 12504 case TARGET_NR_lsetxattr: 12505 { 12506 void *n, *v = 0; 12507 if (arg3) { 12508 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12509 if (!v) { 12510 return -TARGET_EFAULT; 12511 } 12512 } 12513 p = lock_user_string(arg1); 12514 n = lock_user_string(arg2); 12515 if (p && n) { 12516 if (num == TARGET_NR_setxattr) { 12517 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 12518 } else { 12519 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 12520 } 12521 } else { 12522 ret = -TARGET_EFAULT; 12523 } 12524 unlock_user(p, arg1, 0); 12525 unlock_user(n, arg2, 0); 12526 unlock_user(v, arg3, 0); 12527 } 12528 return ret; 12529 case TARGET_NR_fsetxattr: 12530 { 12531 void *n, *v = 0; 12532 if (arg3) { 12533 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12534 if (!v) { 12535 return -TARGET_EFAULT; 12536 } 12537 } 12538 n = lock_user_string(arg2); 12539 if (n) { 12540 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 12541 } else { 12542 ret = -TARGET_EFAULT; 12543 } 12544 unlock_user(n, arg2, 0); 12545 unlock_user(v, arg3, 0); 12546 } 12547 return ret; 12548 case TARGET_NR_getxattr: 12549 case TARGET_NR_lgetxattr: 12550 { 12551 void *n, *v = 0; 12552 if (arg3) { 12553 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12554 if (!v) { 12555 return -TARGET_EFAULT; 12556 } 12557 } 12558 p = lock_user_string(arg1); 12559 n = lock_user_string(arg2); 12560 if (p && n) { 12561 if (num == TARGET_NR_getxattr) { 12562 ret = get_errno(getxattr(p, n, v, arg4)); 12563 } else { 12564 ret = get_errno(lgetxattr(p, n, v, arg4)); 12565 } 12566 } else { 12567 ret = -TARGET_EFAULT; 12568 } 12569 unlock_user(p, arg1, 0); 12570 unlock_user(n, arg2, 0); 12571 unlock_user(v, arg3, arg4); 12572 } 12573 return ret; 12574 case TARGET_NR_fgetxattr: 12575 { 12576 void *n, *v = 0; 12577 if (arg3) { 12578 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12579 if (!v) { 12580 return -TARGET_EFAULT; 12581 } 12582 } 12583 n = lock_user_string(arg2); 12584 if (n) { 12585 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 12586 } else { 12587 ret = -TARGET_EFAULT; 12588 } 12589 unlock_user(n, arg2, 0); 12590 unlock_user(v, arg3, arg4); 12591 } 12592 return ret; 12593 case TARGET_NR_removexattr: 12594 case TARGET_NR_lremovexattr: 12595 { 12596 void *n; 12597 p = lock_user_string(arg1); 12598 n = lock_user_string(arg2); 12599 if (p && n) { 12600 if (num == TARGET_NR_removexattr) { 12601 ret = get_errno(removexattr(p, n)); 12602 } else { 12603 ret = get_errno(lremovexattr(p, n)); 12604 } 12605 } else { 12606 ret = -TARGET_EFAULT; 12607 } 12608 unlock_user(p, arg1, 0); 12609 unlock_user(n, arg2, 0); 12610 } 12611 return ret; 12612 case TARGET_NR_fremovexattr: 12613 { 12614 void *n; 12615 n = lock_user_string(arg2); 12616 if (n) { 12617 ret = get_errno(fremovexattr(arg1, n)); 12618 } else { 12619 ret = -TARGET_EFAULT; 12620 } 12621 unlock_user(n, arg2, 0); 12622 } 12623 return ret; 12624 #endif 12625 #endif /* CONFIG_ATTR */ 12626 #ifdef TARGET_NR_set_thread_area 12627 case TARGET_NR_set_thread_area: 12628 #if defined(TARGET_MIPS) 12629 cpu_env->active_tc.CP0_UserLocal = arg1; 12630 return 0; 12631 #elif defined(TARGET_CRIS) 12632 if (arg1 & 0xff) 12633 ret = -TARGET_EINVAL; 12634 else { 12635 cpu_env->pregs[PR_PID] = arg1; 12636 ret = 0; 12637 } 12638 return ret; 12639 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 12640 return do_set_thread_area(cpu_env, arg1); 12641 #elif defined(TARGET_M68K) 12642 { 12643 TaskState *ts = get_task_state(cpu); 12644 ts->tp_value = arg1; 12645 return 0; 12646 } 12647 #else 12648 return -TARGET_ENOSYS; 12649 #endif 12650 #endif 12651 #ifdef TARGET_NR_get_thread_area 12652 case TARGET_NR_get_thread_area: 12653 #if defined(TARGET_I386) && defined(TARGET_ABI32) 12654 return do_get_thread_area(cpu_env, arg1); 12655 #elif defined(TARGET_M68K) 12656 { 12657 TaskState *ts = get_task_state(cpu); 12658 return ts->tp_value; 12659 } 12660 #else 12661 return -TARGET_ENOSYS; 12662 #endif 12663 #endif 12664 #ifdef TARGET_NR_getdomainname 12665 case TARGET_NR_getdomainname: 12666 return -TARGET_ENOSYS; 12667 #endif 12668 12669 #ifdef TARGET_NR_clock_settime 12670 case TARGET_NR_clock_settime: 12671 { 12672 struct timespec ts; 12673 12674 ret = target_to_host_timespec(&ts, arg2); 12675 if (!is_error(ret)) { 12676 ret = get_errno(clock_settime(arg1, &ts)); 12677 } 12678 return ret; 12679 } 12680 #endif 12681 #ifdef TARGET_NR_clock_settime64 12682 case TARGET_NR_clock_settime64: 12683 { 12684 struct timespec ts; 12685 12686 ret = target_to_host_timespec64(&ts, arg2); 12687 if (!is_error(ret)) { 12688 ret = get_errno(clock_settime(arg1, &ts)); 12689 } 12690 return ret; 12691 } 12692 #endif 12693 #ifdef TARGET_NR_clock_gettime 12694 case TARGET_NR_clock_gettime: 12695 { 12696 struct timespec ts; 12697 ret = get_errno(clock_gettime(arg1, &ts)); 12698 if (!is_error(ret)) { 12699 ret = host_to_target_timespec(arg2, &ts); 12700 } 12701 return ret; 12702 } 12703 #endif 12704 #ifdef TARGET_NR_clock_gettime64 12705 case TARGET_NR_clock_gettime64: 12706 { 12707 struct timespec ts; 12708 ret = get_errno(clock_gettime(arg1, &ts)); 12709 if (!is_error(ret)) { 12710 ret = host_to_target_timespec64(arg2, &ts); 12711 } 12712 return ret; 12713 } 12714 #endif 12715 #ifdef TARGET_NR_clock_getres 12716 case TARGET_NR_clock_getres: 12717 { 12718 struct timespec ts; 12719 ret = get_errno(clock_getres(arg1, &ts)); 12720 if (!is_error(ret)) { 12721 host_to_target_timespec(arg2, &ts); 12722 } 12723 return ret; 12724 } 12725 #endif 12726 #ifdef TARGET_NR_clock_getres_time64 12727 case TARGET_NR_clock_getres_time64: 12728 { 12729 struct timespec ts; 12730 ret = get_errno(clock_getres(arg1, &ts)); 12731 if (!is_error(ret)) { 12732 host_to_target_timespec64(arg2, &ts); 12733 } 12734 return ret; 12735 } 12736 #endif 12737 #ifdef TARGET_NR_clock_nanosleep 12738 case TARGET_NR_clock_nanosleep: 12739 { 12740 struct timespec ts; 12741 if (target_to_host_timespec(&ts, arg3)) { 12742 return -TARGET_EFAULT; 12743 } 12744 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12745 &ts, arg4 ? &ts : NULL)); 12746 /* 12747 * if the call is interrupted by a signal handler, it fails 12748 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not 12749 * TIMER_ABSTIME, it returns the remaining unslept time in arg4. 12750 */ 12751 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12752 host_to_target_timespec(arg4, &ts)) { 12753 return -TARGET_EFAULT; 12754 } 12755 12756 return ret; 12757 } 12758 #endif 12759 #ifdef TARGET_NR_clock_nanosleep_time64 12760 case TARGET_NR_clock_nanosleep_time64: 12761 { 12762 struct timespec ts; 12763 12764 if (target_to_host_timespec64(&ts, arg3)) { 12765 return -TARGET_EFAULT; 12766 } 12767 12768 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12769 &ts, arg4 ? &ts : NULL)); 12770 12771 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12772 host_to_target_timespec64(arg4, &ts)) { 12773 return -TARGET_EFAULT; 12774 } 12775 return ret; 12776 } 12777 #endif 12778 12779 #if defined(TARGET_NR_set_tid_address) 12780 case TARGET_NR_set_tid_address: 12781 { 12782 TaskState *ts = get_task_state(cpu); 12783 ts->child_tidptr = arg1; 12784 /* do not call host set_tid_address() syscall, instead return tid() */ 12785 return get_errno(sys_gettid()); 12786 } 12787 #endif 12788 12789 case TARGET_NR_tkill: 12790 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 12791 12792 case TARGET_NR_tgkill: 12793 return get_errno(safe_tgkill((int)arg1, (int)arg2, 12794 target_to_host_signal(arg3))); 12795 12796 #ifdef TARGET_NR_set_robust_list 12797 case TARGET_NR_set_robust_list: 12798 case TARGET_NR_get_robust_list: 12799 /* The ABI for supporting robust futexes has userspace pass 12800 * the kernel a pointer to a linked list which is updated by 12801 * userspace after the syscall; the list is walked by the kernel 12802 * when the thread exits. Since the linked list in QEMU guest 12803 * memory isn't a valid linked list for the host and we have 12804 * no way to reliably intercept the thread-death event, we can't 12805 * support these. Silently return ENOSYS so that guest userspace 12806 * falls back to a non-robust futex implementation (which should 12807 * be OK except in the corner case of the guest crashing while 12808 * holding a mutex that is shared with another process via 12809 * shared memory). 12810 */ 12811 return -TARGET_ENOSYS; 12812 #endif 12813 12814 #if defined(TARGET_NR_utimensat) 12815 case TARGET_NR_utimensat: 12816 { 12817 struct timespec *tsp, ts[2]; 12818 if (!arg3) { 12819 tsp = NULL; 12820 } else { 12821 if (target_to_host_timespec(ts, arg3)) { 12822 return -TARGET_EFAULT; 12823 } 12824 if (target_to_host_timespec(ts + 1, arg3 + 12825 sizeof(struct target_timespec))) { 12826 return -TARGET_EFAULT; 12827 } 12828 tsp = ts; 12829 } 12830 if (!arg2) 12831 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12832 else { 12833 if (!(p = lock_user_string(arg2))) { 12834 return -TARGET_EFAULT; 12835 } 12836 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12837 unlock_user(p, arg2, 0); 12838 } 12839 } 12840 return ret; 12841 #endif 12842 #ifdef TARGET_NR_utimensat_time64 12843 case TARGET_NR_utimensat_time64: 12844 { 12845 struct timespec *tsp, ts[2]; 12846 if (!arg3) { 12847 tsp = NULL; 12848 } else { 12849 if (target_to_host_timespec64(ts, arg3)) { 12850 return -TARGET_EFAULT; 12851 } 12852 if (target_to_host_timespec64(ts + 1, arg3 + 12853 sizeof(struct target__kernel_timespec))) { 12854 return -TARGET_EFAULT; 12855 } 12856 tsp = ts; 12857 } 12858 if (!arg2) 12859 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12860 else { 12861 p = lock_user_string(arg2); 12862 if (!p) { 12863 return -TARGET_EFAULT; 12864 } 12865 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12866 unlock_user(p, arg2, 0); 12867 } 12868 } 12869 return ret; 12870 #endif 12871 #ifdef TARGET_NR_futex 12872 case TARGET_NR_futex: 12873 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6); 12874 #endif 12875 #ifdef TARGET_NR_futex_time64 12876 case TARGET_NR_futex_time64: 12877 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6); 12878 #endif 12879 #ifdef CONFIG_INOTIFY 12880 #if defined(TARGET_NR_inotify_init) 12881 case TARGET_NR_inotify_init: 12882 ret = get_errno(inotify_init()); 12883 if (ret >= 0) { 12884 fd_trans_register(ret, &target_inotify_trans); 12885 } 12886 return ret; 12887 #endif 12888 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1) 12889 case TARGET_NR_inotify_init1: 12890 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1, 12891 fcntl_flags_tbl))); 12892 if (ret >= 0) { 12893 fd_trans_register(ret, &target_inotify_trans); 12894 } 12895 return ret; 12896 #endif 12897 #if defined(TARGET_NR_inotify_add_watch) 12898 case TARGET_NR_inotify_add_watch: 12899 p = lock_user_string(arg2); 12900 ret = get_errno(inotify_add_watch(arg1, path(p), arg3)); 12901 unlock_user(p, arg2, 0); 12902 return ret; 12903 #endif 12904 #if defined(TARGET_NR_inotify_rm_watch) 12905 case TARGET_NR_inotify_rm_watch: 12906 return get_errno(inotify_rm_watch(arg1, arg2)); 12907 #endif 12908 #endif 12909 12910 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12911 case TARGET_NR_mq_open: 12912 { 12913 struct mq_attr posix_mq_attr; 12914 struct mq_attr *pposix_mq_attr; 12915 int host_flags; 12916 12917 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12918 pposix_mq_attr = NULL; 12919 if (arg4) { 12920 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12921 return -TARGET_EFAULT; 12922 } 12923 pposix_mq_attr = &posix_mq_attr; 12924 } 12925 p = lock_user_string(arg1 - 1); 12926 if (!p) { 12927 return -TARGET_EFAULT; 12928 } 12929 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12930 unlock_user (p, arg1, 0); 12931 } 12932 return ret; 12933 12934 case TARGET_NR_mq_unlink: 12935 p = lock_user_string(arg1 - 1); 12936 if (!p) { 12937 return -TARGET_EFAULT; 12938 } 12939 ret = get_errno(mq_unlink(p)); 12940 unlock_user (p, arg1, 0); 12941 return ret; 12942 12943 #ifdef TARGET_NR_mq_timedsend 12944 case TARGET_NR_mq_timedsend: 12945 { 12946 struct timespec ts; 12947 12948 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12949 if (arg5 != 0) { 12950 if (target_to_host_timespec(&ts, arg5)) { 12951 return -TARGET_EFAULT; 12952 } 12953 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12954 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12955 return -TARGET_EFAULT; 12956 } 12957 } else { 12958 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12959 } 12960 unlock_user (p, arg2, arg3); 12961 } 12962 return ret; 12963 #endif 12964 #ifdef TARGET_NR_mq_timedsend_time64 12965 case TARGET_NR_mq_timedsend_time64: 12966 { 12967 struct timespec ts; 12968 12969 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12970 if (arg5 != 0) { 12971 if (target_to_host_timespec64(&ts, arg5)) { 12972 return -TARGET_EFAULT; 12973 } 12974 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12975 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12976 return -TARGET_EFAULT; 12977 } 12978 } else { 12979 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12980 } 12981 unlock_user(p, arg2, arg3); 12982 } 12983 return ret; 12984 #endif 12985 12986 #ifdef TARGET_NR_mq_timedreceive 12987 case TARGET_NR_mq_timedreceive: 12988 { 12989 struct timespec ts; 12990 unsigned int prio; 12991 12992 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12993 if (arg5 != 0) { 12994 if (target_to_host_timespec(&ts, arg5)) { 12995 return -TARGET_EFAULT; 12996 } 12997 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12998 &prio, &ts)); 12999 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 13000 return -TARGET_EFAULT; 13001 } 13002 } else { 13003 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13004 &prio, NULL)); 13005 } 13006 unlock_user (p, arg2, arg3); 13007 if (arg4 != 0) 13008 put_user_u32(prio, arg4); 13009 } 13010 return ret; 13011 #endif 13012 #ifdef TARGET_NR_mq_timedreceive_time64 13013 case TARGET_NR_mq_timedreceive_time64: 13014 { 13015 struct timespec ts; 13016 unsigned int prio; 13017 13018 p = lock_user(VERIFY_READ, arg2, arg3, 1); 13019 if (arg5 != 0) { 13020 if (target_to_host_timespec64(&ts, arg5)) { 13021 return -TARGET_EFAULT; 13022 } 13023 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13024 &prio, &ts)); 13025 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 13026 return -TARGET_EFAULT; 13027 } 13028 } else { 13029 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 13030 &prio, NULL)); 13031 } 13032 unlock_user(p, arg2, arg3); 13033 if (arg4 != 0) { 13034 put_user_u32(prio, arg4); 13035 } 13036 } 13037 return ret; 13038 #endif 13039 13040 /* Not implemented for now... */ 13041 /* case TARGET_NR_mq_notify: */ 13042 /* break; */ 13043 13044 case TARGET_NR_mq_getsetattr: 13045 { 13046 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 13047 ret = 0; 13048 if (arg2 != 0) { 13049 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 13050 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in, 13051 &posix_mq_attr_out)); 13052 } else if (arg3 != 0) { 13053 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out)); 13054 } 13055 if (ret == 0 && arg3 != 0) { 13056 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 13057 } 13058 } 13059 return ret; 13060 #endif 13061 13062 #ifdef CONFIG_SPLICE 13063 #ifdef TARGET_NR_tee 13064 case TARGET_NR_tee: 13065 { 13066 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 13067 } 13068 return ret; 13069 #endif 13070 #ifdef TARGET_NR_splice 13071 case TARGET_NR_splice: 13072 { 13073 loff_t loff_in, loff_out; 13074 loff_t *ploff_in = NULL, *ploff_out = NULL; 13075 if (arg2) { 13076 if (get_user_u64(loff_in, arg2)) { 13077 return -TARGET_EFAULT; 13078 } 13079 ploff_in = &loff_in; 13080 } 13081 if (arg4) { 13082 if (get_user_u64(loff_out, arg4)) { 13083 return -TARGET_EFAULT; 13084 } 13085 ploff_out = &loff_out; 13086 } 13087 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 13088 if (arg2) { 13089 if (put_user_u64(loff_in, arg2)) { 13090 return -TARGET_EFAULT; 13091 } 13092 } 13093 if (arg4) { 13094 if (put_user_u64(loff_out, arg4)) { 13095 return -TARGET_EFAULT; 13096 } 13097 } 13098 } 13099 return ret; 13100 #endif 13101 #ifdef TARGET_NR_vmsplice 13102 case TARGET_NR_vmsplice: 13103 { 13104 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 13105 if (vec != NULL) { 13106 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 13107 unlock_iovec(vec, arg2, arg3, 0); 13108 } else { 13109 ret = -host_to_target_errno(errno); 13110 } 13111 } 13112 return ret; 13113 #endif 13114 #endif /* CONFIG_SPLICE */ 13115 #ifdef CONFIG_EVENTFD 13116 #if defined(TARGET_NR_eventfd) 13117 case TARGET_NR_eventfd: 13118 ret = get_errno(eventfd(arg1, 0)); 13119 if (ret >= 0) { 13120 fd_trans_register(ret, &target_eventfd_trans); 13121 } 13122 return ret; 13123 #endif 13124 #if defined(TARGET_NR_eventfd2) 13125 case TARGET_NR_eventfd2: 13126 { 13127 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)); 13128 if (arg2 & TARGET_O_NONBLOCK) { 13129 host_flags |= O_NONBLOCK; 13130 } 13131 if (arg2 & TARGET_O_CLOEXEC) { 13132 host_flags |= O_CLOEXEC; 13133 } 13134 ret = get_errno(eventfd(arg1, host_flags)); 13135 if (ret >= 0) { 13136 fd_trans_register(ret, &target_eventfd_trans); 13137 } 13138 return ret; 13139 } 13140 #endif 13141 #endif /* CONFIG_EVENTFD */ 13142 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 13143 case TARGET_NR_fallocate: 13144 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13145 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 13146 target_offset64(arg5, arg6))); 13147 #else 13148 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 13149 #endif 13150 return ret; 13151 #endif 13152 #if defined(CONFIG_SYNC_FILE_RANGE) 13153 #if defined(TARGET_NR_sync_file_range) 13154 case TARGET_NR_sync_file_range: 13155 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13156 #if defined(TARGET_MIPS) 13157 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13158 target_offset64(arg5, arg6), arg7)); 13159 #else 13160 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 13161 target_offset64(arg4, arg5), arg6)); 13162 #endif /* !TARGET_MIPS */ 13163 #else 13164 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 13165 #endif 13166 return ret; 13167 #endif 13168 #if defined(TARGET_NR_sync_file_range2) || \ 13169 defined(TARGET_NR_arm_sync_file_range) 13170 #if defined(TARGET_NR_sync_file_range2) 13171 case TARGET_NR_sync_file_range2: 13172 #endif 13173 #if defined(TARGET_NR_arm_sync_file_range) 13174 case TARGET_NR_arm_sync_file_range: 13175 #endif 13176 /* This is like sync_file_range but the arguments are reordered */ 13177 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 13178 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 13179 target_offset64(arg5, arg6), arg2)); 13180 #else 13181 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 13182 #endif 13183 return ret; 13184 #endif 13185 #endif 13186 #if defined(TARGET_NR_signalfd4) 13187 case TARGET_NR_signalfd4: 13188 return do_signalfd4(arg1, arg2, arg4); 13189 #endif 13190 #if defined(TARGET_NR_signalfd) 13191 case TARGET_NR_signalfd: 13192 return do_signalfd4(arg1, arg2, 0); 13193 #endif 13194 #if defined(CONFIG_EPOLL) 13195 #if defined(TARGET_NR_epoll_create) 13196 case TARGET_NR_epoll_create: 13197 return get_errno(epoll_create(arg1)); 13198 #endif 13199 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 13200 case TARGET_NR_epoll_create1: 13201 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl))); 13202 #endif 13203 #if defined(TARGET_NR_epoll_ctl) 13204 case TARGET_NR_epoll_ctl: 13205 { 13206 struct epoll_event ep; 13207 struct epoll_event *epp = 0; 13208 if (arg4) { 13209 if (arg2 != EPOLL_CTL_DEL) { 13210 struct target_epoll_event *target_ep; 13211 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 13212 return -TARGET_EFAULT; 13213 } 13214 ep.events = tswap32(target_ep->events); 13215 /* 13216 * The epoll_data_t union is just opaque data to the kernel, 13217 * so we transfer all 64 bits across and need not worry what 13218 * actual data type it is. 13219 */ 13220 ep.data.u64 = tswap64(target_ep->data.u64); 13221 unlock_user_struct(target_ep, arg4, 0); 13222 } 13223 /* 13224 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a 13225 * non-null pointer, even though this argument is ignored. 13226 * 13227 */ 13228 epp = &ep; 13229 } 13230 return get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 13231 } 13232 #endif 13233 13234 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 13235 #if defined(TARGET_NR_epoll_wait) 13236 case TARGET_NR_epoll_wait: 13237 #endif 13238 #if defined(TARGET_NR_epoll_pwait) 13239 case TARGET_NR_epoll_pwait: 13240 #endif 13241 { 13242 struct target_epoll_event *target_ep; 13243 struct epoll_event *ep; 13244 int epfd = arg1; 13245 int maxevents = arg3; 13246 int timeout = arg4; 13247 13248 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 13249 return -TARGET_EINVAL; 13250 } 13251 13252 target_ep = lock_user(VERIFY_WRITE, arg2, 13253 maxevents * sizeof(struct target_epoll_event), 1); 13254 if (!target_ep) { 13255 return -TARGET_EFAULT; 13256 } 13257 13258 ep = g_try_new(struct epoll_event, maxevents); 13259 if (!ep) { 13260 unlock_user(target_ep, arg2, 0); 13261 return -TARGET_ENOMEM; 13262 } 13263 13264 switch (num) { 13265 #if defined(TARGET_NR_epoll_pwait) 13266 case TARGET_NR_epoll_pwait: 13267 { 13268 sigset_t *set = NULL; 13269 13270 if (arg5) { 13271 ret = process_sigsuspend_mask(&set, arg5, arg6); 13272 if (ret != 0) { 13273 break; 13274 } 13275 } 13276 13277 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13278 set, SIGSET_T_SIZE)); 13279 13280 if (set) { 13281 finish_sigsuspend_mask(ret); 13282 } 13283 break; 13284 } 13285 #endif 13286 #if defined(TARGET_NR_epoll_wait) 13287 case TARGET_NR_epoll_wait: 13288 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 13289 NULL, 0)); 13290 break; 13291 #endif 13292 default: 13293 ret = -TARGET_ENOSYS; 13294 } 13295 if (!is_error(ret)) { 13296 int i; 13297 for (i = 0; i < ret; i++) { 13298 target_ep[i].events = tswap32(ep[i].events); 13299 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 13300 } 13301 unlock_user(target_ep, arg2, 13302 ret * sizeof(struct target_epoll_event)); 13303 } else { 13304 unlock_user(target_ep, arg2, 0); 13305 } 13306 g_free(ep); 13307 return ret; 13308 } 13309 #endif 13310 #endif 13311 #ifdef TARGET_NR_prlimit64 13312 case TARGET_NR_prlimit64: 13313 { 13314 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 13315 struct target_rlimit64 *target_rnew, *target_rold; 13316 struct host_rlimit64 rnew, rold, *rnewp = 0; 13317 int resource = target_to_host_resource(arg2); 13318 13319 if (arg3 && (resource != RLIMIT_AS && 13320 resource != RLIMIT_DATA && 13321 resource != RLIMIT_STACK)) { 13322 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 13323 return -TARGET_EFAULT; 13324 } 13325 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur); 13326 __get_user(rnew.rlim_max, &target_rnew->rlim_max); 13327 unlock_user_struct(target_rnew, arg3, 0); 13328 rnewp = &rnew; 13329 } 13330 13331 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 13332 if (!is_error(ret) && arg4) { 13333 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 13334 return -TARGET_EFAULT; 13335 } 13336 __put_user(rold.rlim_cur, &target_rold->rlim_cur); 13337 __put_user(rold.rlim_max, &target_rold->rlim_max); 13338 unlock_user_struct(target_rold, arg4, 1); 13339 } 13340 return ret; 13341 } 13342 #endif 13343 #ifdef TARGET_NR_gethostname 13344 case TARGET_NR_gethostname: 13345 { 13346 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 13347 if (name) { 13348 ret = get_errno(gethostname(name, arg2)); 13349 unlock_user(name, arg1, arg2); 13350 } else { 13351 ret = -TARGET_EFAULT; 13352 } 13353 return ret; 13354 } 13355 #endif 13356 #ifdef TARGET_NR_atomic_cmpxchg_32 13357 case TARGET_NR_atomic_cmpxchg_32: 13358 { 13359 /* should use start_exclusive from main.c */ 13360 abi_ulong mem_value; 13361 if (get_user_u32(mem_value, arg6)) { 13362 target_siginfo_t info; 13363 info.si_signo = SIGSEGV; 13364 info.si_errno = 0; 13365 info.si_code = TARGET_SEGV_MAPERR; 13366 info._sifields._sigfault._addr = arg6; 13367 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info); 13368 ret = 0xdeadbeef; 13369 13370 } 13371 if (mem_value == arg2) 13372 put_user_u32(arg1, arg6); 13373 return mem_value; 13374 } 13375 #endif 13376 #ifdef TARGET_NR_atomic_barrier 13377 case TARGET_NR_atomic_barrier: 13378 /* Like the kernel implementation and the 13379 qemu arm barrier, no-op this? */ 13380 return 0; 13381 #endif 13382 13383 #ifdef TARGET_NR_timer_create 13384 case TARGET_NR_timer_create: 13385 { 13386 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 13387 13388 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 13389 13390 int clkid = arg1; 13391 int timer_index = next_free_host_timer(); 13392 13393 if (timer_index < 0) { 13394 ret = -TARGET_EAGAIN; 13395 } else { 13396 timer_t *phtimer = g_posix_timers + timer_index; 13397 13398 if (arg2) { 13399 phost_sevp = &host_sevp; 13400 ret = target_to_host_sigevent(phost_sevp, arg2); 13401 if (ret != 0) { 13402 free_host_timer_slot(timer_index); 13403 return ret; 13404 } 13405 } 13406 13407 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 13408 if (ret) { 13409 free_host_timer_slot(timer_index); 13410 } else { 13411 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 13412 timer_delete(*phtimer); 13413 free_host_timer_slot(timer_index); 13414 return -TARGET_EFAULT; 13415 } 13416 } 13417 } 13418 return ret; 13419 } 13420 #endif 13421 13422 #ifdef TARGET_NR_timer_settime 13423 case TARGET_NR_timer_settime: 13424 { 13425 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 13426 * struct itimerspec * old_value */ 13427 target_timer_t timerid = get_timer_id(arg1); 13428 13429 if (timerid < 0) { 13430 ret = timerid; 13431 } else if (arg3 == 0) { 13432 ret = -TARGET_EINVAL; 13433 } else { 13434 timer_t htimer = g_posix_timers[timerid]; 13435 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13436 13437 if (target_to_host_itimerspec(&hspec_new, arg3)) { 13438 return -TARGET_EFAULT; 13439 } 13440 ret = get_errno( 13441 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13442 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 13443 return -TARGET_EFAULT; 13444 } 13445 } 13446 return ret; 13447 } 13448 #endif 13449 13450 #ifdef TARGET_NR_timer_settime64 13451 case TARGET_NR_timer_settime64: 13452 { 13453 target_timer_t timerid = get_timer_id(arg1); 13454 13455 if (timerid < 0) { 13456 ret = timerid; 13457 } else if (arg3 == 0) { 13458 ret = -TARGET_EINVAL; 13459 } else { 13460 timer_t htimer = g_posix_timers[timerid]; 13461 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13462 13463 if (target_to_host_itimerspec64(&hspec_new, arg3)) { 13464 return -TARGET_EFAULT; 13465 } 13466 ret = get_errno( 13467 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13468 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) { 13469 return -TARGET_EFAULT; 13470 } 13471 } 13472 return ret; 13473 } 13474 #endif 13475 13476 #ifdef TARGET_NR_timer_gettime 13477 case TARGET_NR_timer_gettime: 13478 { 13479 /* args: timer_t timerid, struct itimerspec *curr_value */ 13480 target_timer_t timerid = get_timer_id(arg1); 13481 13482 if (timerid < 0) { 13483 ret = timerid; 13484 } else if (!arg2) { 13485 ret = -TARGET_EFAULT; 13486 } else { 13487 timer_t htimer = g_posix_timers[timerid]; 13488 struct itimerspec hspec; 13489 ret = get_errno(timer_gettime(htimer, &hspec)); 13490 13491 if (host_to_target_itimerspec(arg2, &hspec)) { 13492 ret = -TARGET_EFAULT; 13493 } 13494 } 13495 return ret; 13496 } 13497 #endif 13498 13499 #ifdef TARGET_NR_timer_gettime64 13500 case TARGET_NR_timer_gettime64: 13501 { 13502 /* args: timer_t timerid, struct itimerspec64 *curr_value */ 13503 target_timer_t timerid = get_timer_id(arg1); 13504 13505 if (timerid < 0) { 13506 ret = timerid; 13507 } else if (!arg2) { 13508 ret = -TARGET_EFAULT; 13509 } else { 13510 timer_t htimer = g_posix_timers[timerid]; 13511 struct itimerspec hspec; 13512 ret = get_errno(timer_gettime(htimer, &hspec)); 13513 13514 if (host_to_target_itimerspec64(arg2, &hspec)) { 13515 ret = -TARGET_EFAULT; 13516 } 13517 } 13518 return ret; 13519 } 13520 #endif 13521 13522 #ifdef TARGET_NR_timer_getoverrun 13523 case TARGET_NR_timer_getoverrun: 13524 { 13525 /* args: timer_t timerid */ 13526 target_timer_t timerid = get_timer_id(arg1); 13527 13528 if (timerid < 0) { 13529 ret = timerid; 13530 } else { 13531 timer_t htimer = g_posix_timers[timerid]; 13532 ret = get_errno(timer_getoverrun(htimer)); 13533 } 13534 return ret; 13535 } 13536 #endif 13537 13538 #ifdef TARGET_NR_timer_delete 13539 case TARGET_NR_timer_delete: 13540 { 13541 /* args: timer_t timerid */ 13542 target_timer_t timerid = get_timer_id(arg1); 13543 13544 if (timerid < 0) { 13545 ret = timerid; 13546 } else { 13547 timer_t htimer = g_posix_timers[timerid]; 13548 ret = get_errno(timer_delete(htimer)); 13549 free_host_timer_slot(timerid); 13550 } 13551 return ret; 13552 } 13553 #endif 13554 13555 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 13556 case TARGET_NR_timerfd_create: 13557 ret = get_errno(timerfd_create(arg1, 13558 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 13559 if (ret >= 0) { 13560 fd_trans_register(ret, &target_timerfd_trans); 13561 } 13562 return ret; 13563 #endif 13564 13565 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 13566 case TARGET_NR_timerfd_gettime: 13567 { 13568 struct itimerspec its_curr; 13569 13570 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13571 13572 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 13573 return -TARGET_EFAULT; 13574 } 13575 } 13576 return ret; 13577 #endif 13578 13579 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD) 13580 case TARGET_NR_timerfd_gettime64: 13581 { 13582 struct itimerspec its_curr; 13583 13584 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13585 13586 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) { 13587 return -TARGET_EFAULT; 13588 } 13589 } 13590 return ret; 13591 #endif 13592 13593 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 13594 case TARGET_NR_timerfd_settime: 13595 { 13596 struct itimerspec its_new, its_old, *p_new; 13597 13598 if (arg3) { 13599 if (target_to_host_itimerspec(&its_new, arg3)) { 13600 return -TARGET_EFAULT; 13601 } 13602 p_new = &its_new; 13603 } else { 13604 p_new = NULL; 13605 } 13606 13607 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13608 13609 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 13610 return -TARGET_EFAULT; 13611 } 13612 } 13613 return ret; 13614 #endif 13615 13616 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD) 13617 case TARGET_NR_timerfd_settime64: 13618 { 13619 struct itimerspec its_new, its_old, *p_new; 13620 13621 if (arg3) { 13622 if (target_to_host_itimerspec64(&its_new, arg3)) { 13623 return -TARGET_EFAULT; 13624 } 13625 p_new = &its_new; 13626 } else { 13627 p_new = NULL; 13628 } 13629 13630 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13631 13632 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) { 13633 return -TARGET_EFAULT; 13634 } 13635 } 13636 return ret; 13637 #endif 13638 13639 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 13640 case TARGET_NR_ioprio_get: 13641 return get_errno(ioprio_get(arg1, arg2)); 13642 #endif 13643 13644 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 13645 case TARGET_NR_ioprio_set: 13646 return get_errno(ioprio_set(arg1, arg2, arg3)); 13647 #endif 13648 13649 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 13650 case TARGET_NR_setns: 13651 return get_errno(setns(arg1, arg2)); 13652 #endif 13653 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 13654 case TARGET_NR_unshare: 13655 return get_errno(unshare(arg1)); 13656 #endif 13657 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 13658 case TARGET_NR_kcmp: 13659 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 13660 #endif 13661 #ifdef TARGET_NR_swapcontext 13662 case TARGET_NR_swapcontext: 13663 /* PowerPC specific. */ 13664 return do_swapcontext(cpu_env, arg1, arg2, arg3); 13665 #endif 13666 #ifdef TARGET_NR_memfd_create 13667 case TARGET_NR_memfd_create: 13668 p = lock_user_string(arg1); 13669 if (!p) { 13670 return -TARGET_EFAULT; 13671 } 13672 ret = get_errno(memfd_create(p, arg2)); 13673 fd_trans_unregister(ret); 13674 unlock_user(p, arg1, 0); 13675 return ret; 13676 #endif 13677 #if defined TARGET_NR_membarrier && defined __NR_membarrier 13678 case TARGET_NR_membarrier: 13679 return get_errno(membarrier(arg1, arg2)); 13680 #endif 13681 13682 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 13683 case TARGET_NR_copy_file_range: 13684 { 13685 loff_t inoff, outoff; 13686 loff_t *pinoff = NULL, *poutoff = NULL; 13687 13688 if (arg2) { 13689 if (get_user_u64(inoff, arg2)) { 13690 return -TARGET_EFAULT; 13691 } 13692 pinoff = &inoff; 13693 } 13694 if (arg4) { 13695 if (get_user_u64(outoff, arg4)) { 13696 return -TARGET_EFAULT; 13697 } 13698 poutoff = &outoff; 13699 } 13700 /* Do not sign-extend the count parameter. */ 13701 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff, 13702 (abi_ulong)arg5, arg6)); 13703 if (!is_error(ret) && ret > 0) { 13704 if (arg2) { 13705 if (put_user_u64(inoff, arg2)) { 13706 return -TARGET_EFAULT; 13707 } 13708 } 13709 if (arg4) { 13710 if (put_user_u64(outoff, arg4)) { 13711 return -TARGET_EFAULT; 13712 } 13713 } 13714 } 13715 } 13716 return ret; 13717 #endif 13718 13719 #if defined(TARGET_NR_pivot_root) 13720 case TARGET_NR_pivot_root: 13721 { 13722 void *p2; 13723 p = lock_user_string(arg1); /* new_root */ 13724 p2 = lock_user_string(arg2); /* put_old */ 13725 if (!p || !p2) { 13726 ret = -TARGET_EFAULT; 13727 } else { 13728 ret = get_errno(pivot_root(p, p2)); 13729 } 13730 unlock_user(p2, arg2, 0); 13731 unlock_user(p, arg1, 0); 13732 } 13733 return ret; 13734 #endif 13735 13736 #if defined(TARGET_NR_riscv_hwprobe) 13737 case TARGET_NR_riscv_hwprobe: 13738 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5); 13739 #endif 13740 13741 default: 13742 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); 13743 return -TARGET_ENOSYS; 13744 } 13745 return ret; 13746 } 13747 13748 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1, 13749 abi_long arg2, abi_long arg3, abi_long arg4, 13750 abi_long arg5, abi_long arg6, abi_long arg7, 13751 abi_long arg8) 13752 { 13753 CPUState *cpu = env_cpu(cpu_env); 13754 abi_long ret; 13755 13756 #ifdef DEBUG_ERESTARTSYS 13757 /* Debug-only code for exercising the syscall-restart code paths 13758 * in the per-architecture cpu main loops: restart every syscall 13759 * the guest makes once before letting it through. 13760 */ 13761 { 13762 static bool flag; 13763 flag = !flag; 13764 if (flag) { 13765 return -QEMU_ERESTARTSYS; 13766 } 13767 } 13768 #endif 13769 13770 record_syscall_start(cpu, num, arg1, 13771 arg2, arg3, arg4, arg5, arg6, arg7, arg8); 13772 13773 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13774 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6); 13775 } 13776 13777 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4, 13778 arg5, arg6, arg7, arg8); 13779 13780 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13781 print_syscall_ret(cpu_env, num, ret, arg1, arg2, 13782 arg3, arg4, arg5, arg6); 13783 } 13784 13785 record_syscall_return(cpu, num, ret); 13786 return ret; 13787 } 13788