1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include <elf.h> 24 #include <endian.h> 25 #include <grp.h> 26 #include <sys/ipc.h> 27 #include <sys/msg.h> 28 #include <sys/wait.h> 29 #include <sys/mount.h> 30 #include <sys/file.h> 31 #include <sys/fsuid.h> 32 #include <sys/personality.h> 33 #include <sys/prctl.h> 34 #include <sys/resource.h> 35 #include <sys/swap.h> 36 #include <linux/capability.h> 37 #include <sched.h> 38 #include <sys/timex.h> 39 #include <sys/socket.h> 40 #include <sys/un.h> 41 #include <sys/uio.h> 42 #include <poll.h> 43 #include <sys/times.h> 44 #include <sys/shm.h> 45 #include <sys/sem.h> 46 #include <sys/statfs.h> 47 #include <utime.h> 48 #include <sys/sysinfo.h> 49 #include <sys/signalfd.h> 50 //#include <sys/user.h> 51 #include <netinet/ip.h> 52 #include <netinet/tcp.h> 53 #include <linux/wireless.h> 54 #include <linux/icmp.h> 55 #include <linux/icmpv6.h> 56 #include <linux/errqueue.h> 57 #include <linux/random.h> 58 #include "qemu-common.h" 59 #ifdef CONFIG_TIMERFD 60 #include <sys/timerfd.h> 61 #endif 62 #ifdef TARGET_GPROF 63 #include <sys/gmon.h> 64 #endif 65 #ifdef CONFIG_EVENTFD 66 #include <sys/eventfd.h> 67 #endif 68 #ifdef CONFIG_EPOLL 69 #include <sys/epoll.h> 70 #endif 71 #ifdef CONFIG_ATTR 72 #include "qemu/xattr.h" 73 #endif 74 #ifdef CONFIG_SENDFILE 75 #include <sys/sendfile.h> 76 #endif 77 78 #define termios host_termios 79 #define winsize host_winsize 80 #define termio host_termio 81 #define sgttyb host_sgttyb /* same as target */ 82 #define tchars host_tchars /* same as target */ 83 #define ltchars host_ltchars /* same as target */ 84 85 #include <linux/termios.h> 86 #include <linux/unistd.h> 87 #include <linux/cdrom.h> 88 #include <linux/hdreg.h> 89 #include <linux/soundcard.h> 90 #include <linux/kd.h> 91 #include <linux/mtio.h> 92 #include <linux/fs.h> 93 #if defined(CONFIG_FIEMAP) 94 #include <linux/fiemap.h> 95 #endif 96 #include <linux/fb.h> 97 #include <linux/vt.h> 98 #include <linux/dm-ioctl.h> 99 #include <linux/reboot.h> 100 #include <linux/route.h> 101 #include <linux/filter.h> 102 #include <linux/blkpg.h> 103 #include <netpacket/packet.h> 104 #include <linux/netlink.h> 105 #ifdef CONFIG_RTNETLINK 106 #include <linux/rtnetlink.h> 107 #include <linux/if_bridge.h> 108 #endif 109 #include <linux/audit.h> 110 #include "linux_loop.h" 111 #include "uname.h" 112 113 #include "qemu.h" 114 115 #ifndef CLONE_IO 116 #define CLONE_IO 0x80000000 /* Clone io context */ 117 #endif 118 119 /* We can't directly call the host clone syscall, because this will 120 * badly confuse libc (breaking mutexes, for example). So we must 121 * divide clone flags into: 122 * * flag combinations that look like pthread_create() 123 * * flag combinations that look like fork() 124 * * flags we can implement within QEMU itself 125 * * flags we can't support and will return an error for 126 */ 127 /* For thread creation, all these flags must be present; for 128 * fork, none must be present. 129 */ 130 #define CLONE_THREAD_FLAGS \ 131 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 132 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 133 134 /* These flags are ignored: 135 * CLONE_DETACHED is now ignored by the kernel; 136 * CLONE_IO is just an optimisation hint to the I/O scheduler 137 */ 138 #define CLONE_IGNORED_FLAGS \ 139 (CLONE_DETACHED | CLONE_IO) 140 141 /* Flags for fork which we can implement within QEMU itself */ 142 #define CLONE_OPTIONAL_FORK_FLAGS \ 143 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 144 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 145 146 /* Flags for thread creation which we can implement within QEMU itself */ 147 #define CLONE_OPTIONAL_THREAD_FLAGS \ 148 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 149 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 150 151 #define CLONE_INVALID_FORK_FLAGS \ 152 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 153 154 #define CLONE_INVALID_THREAD_FLAGS \ 155 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 156 CLONE_IGNORED_FLAGS)) 157 158 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 159 * have almost all been allocated. We cannot support any of 160 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 161 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 162 * The checks against the invalid thread masks above will catch these. 163 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 164 */ 165 166 //#define DEBUG 167 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 168 * once. This exercises the codepaths for restart. 169 */ 170 //#define DEBUG_ERESTARTSYS 171 172 //#include <linux/msdos_fs.h> 173 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 174 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 175 176 #undef _syscall0 177 #undef _syscall1 178 #undef _syscall2 179 #undef _syscall3 180 #undef _syscall4 181 #undef _syscall5 182 #undef _syscall6 183 184 #define _syscall0(type,name) \ 185 static type name (void) \ 186 { \ 187 return syscall(__NR_##name); \ 188 } 189 190 #define _syscall1(type,name,type1,arg1) \ 191 static type name (type1 arg1) \ 192 { \ 193 return syscall(__NR_##name, arg1); \ 194 } 195 196 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 197 static type name (type1 arg1,type2 arg2) \ 198 { \ 199 return syscall(__NR_##name, arg1, arg2); \ 200 } 201 202 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 203 static type name (type1 arg1,type2 arg2,type3 arg3) \ 204 { \ 205 return syscall(__NR_##name, arg1, arg2, arg3); \ 206 } 207 208 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 209 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 210 { \ 211 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 212 } 213 214 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 215 type5,arg5) \ 216 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 217 { \ 218 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 219 } 220 221 222 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 223 type5,arg5,type6,arg6) \ 224 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 225 type6 arg6) \ 226 { \ 227 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 228 } 229 230 231 #define __NR_sys_uname __NR_uname 232 #define __NR_sys_getcwd1 __NR_getcwd 233 #define __NR_sys_getdents __NR_getdents 234 #define __NR_sys_getdents64 __NR_getdents64 235 #define __NR_sys_getpriority __NR_getpriority 236 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 237 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 238 #define __NR_sys_syslog __NR_syslog 239 #define __NR_sys_futex __NR_futex 240 #define __NR_sys_inotify_init __NR_inotify_init 241 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 242 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 243 244 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 245 #define __NR__llseek __NR_lseek 246 #endif 247 248 /* Newer kernel ports have llseek() instead of _llseek() */ 249 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 250 #define TARGET_NR__llseek TARGET_NR_llseek 251 #endif 252 253 #ifdef __NR_gettid 254 _syscall0(int, gettid) 255 #else 256 /* This is a replacement for the host gettid() and must return a host 257 errno. */ 258 static int gettid(void) { 259 return -ENOSYS; 260 } 261 #endif 262 #if defined(TARGET_NR_getdents) && defined(__NR_getdents) 263 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 264 #endif 265 #if !defined(__NR_getdents) || \ 266 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 267 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 268 #endif 269 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 270 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 271 loff_t *, res, uint, wh); 272 #endif 273 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 274 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 275 siginfo_t *, uinfo) 276 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 277 #ifdef __NR_exit_group 278 _syscall1(int,exit_group,int,error_code) 279 #endif 280 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 281 _syscall1(int,set_tid_address,int *,tidptr) 282 #endif 283 #if defined(TARGET_NR_futex) && defined(__NR_futex) 284 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 285 const struct timespec *,timeout,int *,uaddr2,int,val3) 286 #endif 287 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 288 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 289 unsigned long *, user_mask_ptr); 290 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 291 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 292 unsigned long *, user_mask_ptr); 293 #define __NR_sys_getcpu __NR_getcpu 294 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 295 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 296 void *, arg); 297 _syscall2(int, capget, struct __user_cap_header_struct *, header, 298 struct __user_cap_data_struct *, data); 299 _syscall2(int, capset, struct __user_cap_header_struct *, header, 300 struct __user_cap_data_struct *, data); 301 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 302 _syscall2(int, ioprio_get, int, which, int, who) 303 #endif 304 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 305 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 306 #endif 307 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 308 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 309 #endif 310 311 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 312 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 313 unsigned long, idx1, unsigned long, idx2) 314 #endif 315 316 static bitmask_transtbl fcntl_flags_tbl[] = { 317 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 318 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 319 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 320 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 321 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 322 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 323 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 324 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 325 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 326 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 327 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 328 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 329 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 330 #if defined(O_DIRECT) 331 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 332 #endif 333 #if defined(O_NOATIME) 334 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 335 #endif 336 #if defined(O_CLOEXEC) 337 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 338 #endif 339 #if defined(O_PATH) 340 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 341 #endif 342 #if defined(O_TMPFILE) 343 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 344 #endif 345 /* Don't terminate the list prematurely on 64-bit host+guest. */ 346 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 347 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 348 #endif 349 { 0, 0, 0, 0 } 350 }; 351 352 enum { 353 QEMU_IFLA_BR_UNSPEC, 354 QEMU_IFLA_BR_FORWARD_DELAY, 355 QEMU_IFLA_BR_HELLO_TIME, 356 QEMU_IFLA_BR_MAX_AGE, 357 QEMU_IFLA_BR_AGEING_TIME, 358 QEMU_IFLA_BR_STP_STATE, 359 QEMU_IFLA_BR_PRIORITY, 360 QEMU_IFLA_BR_VLAN_FILTERING, 361 QEMU_IFLA_BR_VLAN_PROTOCOL, 362 QEMU_IFLA_BR_GROUP_FWD_MASK, 363 QEMU_IFLA_BR_ROOT_ID, 364 QEMU_IFLA_BR_BRIDGE_ID, 365 QEMU_IFLA_BR_ROOT_PORT, 366 QEMU_IFLA_BR_ROOT_PATH_COST, 367 QEMU_IFLA_BR_TOPOLOGY_CHANGE, 368 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED, 369 QEMU_IFLA_BR_HELLO_TIMER, 370 QEMU_IFLA_BR_TCN_TIMER, 371 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER, 372 QEMU_IFLA_BR_GC_TIMER, 373 QEMU_IFLA_BR_GROUP_ADDR, 374 QEMU_IFLA_BR_FDB_FLUSH, 375 QEMU_IFLA_BR_MCAST_ROUTER, 376 QEMU_IFLA_BR_MCAST_SNOOPING, 377 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR, 378 QEMU_IFLA_BR_MCAST_QUERIER, 379 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY, 380 QEMU_IFLA_BR_MCAST_HASH_MAX, 381 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT, 382 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT, 383 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL, 384 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL, 385 QEMU_IFLA_BR_MCAST_QUERIER_INTVL, 386 QEMU_IFLA_BR_MCAST_QUERY_INTVL, 387 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL, 388 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL, 389 QEMU_IFLA_BR_NF_CALL_IPTABLES, 390 QEMU_IFLA_BR_NF_CALL_IP6TABLES, 391 QEMU_IFLA_BR_NF_CALL_ARPTABLES, 392 QEMU_IFLA_BR_VLAN_DEFAULT_PVID, 393 QEMU_IFLA_BR_PAD, 394 QEMU_IFLA_BR_VLAN_STATS_ENABLED, 395 QEMU_IFLA_BR_MCAST_STATS_ENABLED, 396 QEMU___IFLA_BR_MAX, 397 }; 398 399 enum { 400 QEMU_IFLA_UNSPEC, 401 QEMU_IFLA_ADDRESS, 402 QEMU_IFLA_BROADCAST, 403 QEMU_IFLA_IFNAME, 404 QEMU_IFLA_MTU, 405 QEMU_IFLA_LINK, 406 QEMU_IFLA_QDISC, 407 QEMU_IFLA_STATS, 408 QEMU_IFLA_COST, 409 QEMU_IFLA_PRIORITY, 410 QEMU_IFLA_MASTER, 411 QEMU_IFLA_WIRELESS, 412 QEMU_IFLA_PROTINFO, 413 QEMU_IFLA_TXQLEN, 414 QEMU_IFLA_MAP, 415 QEMU_IFLA_WEIGHT, 416 QEMU_IFLA_OPERSTATE, 417 QEMU_IFLA_LINKMODE, 418 QEMU_IFLA_LINKINFO, 419 QEMU_IFLA_NET_NS_PID, 420 QEMU_IFLA_IFALIAS, 421 QEMU_IFLA_NUM_VF, 422 QEMU_IFLA_VFINFO_LIST, 423 QEMU_IFLA_STATS64, 424 QEMU_IFLA_VF_PORTS, 425 QEMU_IFLA_PORT_SELF, 426 QEMU_IFLA_AF_SPEC, 427 QEMU_IFLA_GROUP, 428 QEMU_IFLA_NET_NS_FD, 429 QEMU_IFLA_EXT_MASK, 430 QEMU_IFLA_PROMISCUITY, 431 QEMU_IFLA_NUM_TX_QUEUES, 432 QEMU_IFLA_NUM_RX_QUEUES, 433 QEMU_IFLA_CARRIER, 434 QEMU_IFLA_PHYS_PORT_ID, 435 QEMU_IFLA_CARRIER_CHANGES, 436 QEMU_IFLA_PHYS_SWITCH_ID, 437 QEMU_IFLA_LINK_NETNSID, 438 QEMU_IFLA_PHYS_PORT_NAME, 439 QEMU_IFLA_PROTO_DOWN, 440 QEMU_IFLA_GSO_MAX_SEGS, 441 QEMU_IFLA_GSO_MAX_SIZE, 442 QEMU_IFLA_PAD, 443 QEMU_IFLA_XDP, 444 QEMU___IFLA_MAX 445 }; 446 447 enum { 448 QEMU_IFLA_BRPORT_UNSPEC, 449 QEMU_IFLA_BRPORT_STATE, 450 QEMU_IFLA_BRPORT_PRIORITY, 451 QEMU_IFLA_BRPORT_COST, 452 QEMU_IFLA_BRPORT_MODE, 453 QEMU_IFLA_BRPORT_GUARD, 454 QEMU_IFLA_BRPORT_PROTECT, 455 QEMU_IFLA_BRPORT_FAST_LEAVE, 456 QEMU_IFLA_BRPORT_LEARNING, 457 QEMU_IFLA_BRPORT_UNICAST_FLOOD, 458 QEMU_IFLA_BRPORT_PROXYARP, 459 QEMU_IFLA_BRPORT_LEARNING_SYNC, 460 QEMU_IFLA_BRPORT_PROXYARP_WIFI, 461 QEMU_IFLA_BRPORT_ROOT_ID, 462 QEMU_IFLA_BRPORT_BRIDGE_ID, 463 QEMU_IFLA_BRPORT_DESIGNATED_PORT, 464 QEMU_IFLA_BRPORT_DESIGNATED_COST, 465 QEMU_IFLA_BRPORT_ID, 466 QEMU_IFLA_BRPORT_NO, 467 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK, 468 QEMU_IFLA_BRPORT_CONFIG_PENDING, 469 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER, 470 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER, 471 QEMU_IFLA_BRPORT_HOLD_TIMER, 472 QEMU_IFLA_BRPORT_FLUSH, 473 QEMU_IFLA_BRPORT_MULTICAST_ROUTER, 474 QEMU_IFLA_BRPORT_PAD, 475 QEMU___IFLA_BRPORT_MAX 476 }; 477 478 enum { 479 QEMU_IFLA_INFO_UNSPEC, 480 QEMU_IFLA_INFO_KIND, 481 QEMU_IFLA_INFO_DATA, 482 QEMU_IFLA_INFO_XSTATS, 483 QEMU_IFLA_INFO_SLAVE_KIND, 484 QEMU_IFLA_INFO_SLAVE_DATA, 485 QEMU___IFLA_INFO_MAX, 486 }; 487 488 enum { 489 QEMU_IFLA_INET_UNSPEC, 490 QEMU_IFLA_INET_CONF, 491 QEMU___IFLA_INET_MAX, 492 }; 493 494 enum { 495 QEMU_IFLA_INET6_UNSPEC, 496 QEMU_IFLA_INET6_FLAGS, 497 QEMU_IFLA_INET6_CONF, 498 QEMU_IFLA_INET6_STATS, 499 QEMU_IFLA_INET6_MCAST, 500 QEMU_IFLA_INET6_CACHEINFO, 501 QEMU_IFLA_INET6_ICMP6STATS, 502 QEMU_IFLA_INET6_TOKEN, 503 QEMU_IFLA_INET6_ADDR_GEN_MODE, 504 QEMU___IFLA_INET6_MAX 505 }; 506 507 typedef abi_long (*TargetFdDataFunc)(void *, size_t); 508 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t); 509 typedef struct TargetFdTrans { 510 TargetFdDataFunc host_to_target_data; 511 TargetFdDataFunc target_to_host_data; 512 TargetFdAddrFunc target_to_host_addr; 513 } TargetFdTrans; 514 515 static TargetFdTrans **target_fd_trans; 516 517 static unsigned int target_fd_max; 518 519 static TargetFdDataFunc fd_trans_target_to_host_data(int fd) 520 { 521 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 522 return target_fd_trans[fd]->target_to_host_data; 523 } 524 return NULL; 525 } 526 527 static TargetFdDataFunc fd_trans_host_to_target_data(int fd) 528 { 529 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 530 return target_fd_trans[fd]->host_to_target_data; 531 } 532 return NULL; 533 } 534 535 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd) 536 { 537 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 538 return target_fd_trans[fd]->target_to_host_addr; 539 } 540 return NULL; 541 } 542 543 static void fd_trans_register(int fd, TargetFdTrans *trans) 544 { 545 unsigned int oldmax; 546 547 if (fd >= target_fd_max) { 548 oldmax = target_fd_max; 549 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */ 550 target_fd_trans = g_renew(TargetFdTrans *, 551 target_fd_trans, target_fd_max); 552 memset((void *)(target_fd_trans + oldmax), 0, 553 (target_fd_max - oldmax) * sizeof(TargetFdTrans *)); 554 } 555 target_fd_trans[fd] = trans; 556 } 557 558 static void fd_trans_unregister(int fd) 559 { 560 if (fd >= 0 && fd < target_fd_max) { 561 target_fd_trans[fd] = NULL; 562 } 563 } 564 565 static void fd_trans_dup(int oldfd, int newfd) 566 { 567 fd_trans_unregister(newfd); 568 if (oldfd < target_fd_max && target_fd_trans[oldfd]) { 569 fd_trans_register(newfd, target_fd_trans[oldfd]); 570 } 571 } 572 573 static int sys_getcwd1(char *buf, size_t size) 574 { 575 if (getcwd(buf, size) == NULL) { 576 /* getcwd() sets errno */ 577 return (-1); 578 } 579 return strlen(buf)+1; 580 } 581 582 #ifdef TARGET_NR_utimensat 583 #if defined(__NR_utimensat) 584 #define __NR_sys_utimensat __NR_utimensat 585 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 586 const struct timespec *,tsp,int,flags) 587 #else 588 static int sys_utimensat(int dirfd, const char *pathname, 589 const struct timespec times[2], int flags) 590 { 591 errno = ENOSYS; 592 return -1; 593 } 594 #endif 595 #endif /* TARGET_NR_utimensat */ 596 597 #ifdef TARGET_NR_renameat2 598 #if defined(__NR_renameat2) 599 #define __NR_sys_renameat2 __NR_renameat2 600 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 601 const char *, new, unsigned int, flags) 602 #else 603 static int sys_renameat2(int oldfd, const char *old, 604 int newfd, const char *new, int flags) 605 { 606 if (flags == 0) { 607 return renameat(oldfd, old, newfd, new); 608 } 609 errno = ENOSYS; 610 return -1; 611 } 612 #endif 613 #endif /* TARGET_NR_renameat2 */ 614 615 #ifdef CONFIG_INOTIFY 616 #include <sys/inotify.h> 617 618 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 619 static int sys_inotify_init(void) 620 { 621 return (inotify_init()); 622 } 623 #endif 624 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 625 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 626 { 627 return (inotify_add_watch(fd, pathname, mask)); 628 } 629 #endif 630 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 631 static int sys_inotify_rm_watch(int fd, int32_t wd) 632 { 633 return (inotify_rm_watch(fd, wd)); 634 } 635 #endif 636 #ifdef CONFIG_INOTIFY1 637 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 638 static int sys_inotify_init1(int flags) 639 { 640 return (inotify_init1(flags)); 641 } 642 #endif 643 #endif 644 #else 645 /* Userspace can usually survive runtime without inotify */ 646 #undef TARGET_NR_inotify_init 647 #undef TARGET_NR_inotify_init1 648 #undef TARGET_NR_inotify_add_watch 649 #undef TARGET_NR_inotify_rm_watch 650 #endif /* CONFIG_INOTIFY */ 651 652 #if defined(TARGET_NR_prlimit64) 653 #ifndef __NR_prlimit64 654 # define __NR_prlimit64 -1 655 #endif 656 #define __NR_sys_prlimit64 __NR_prlimit64 657 /* The glibc rlimit structure may not be that used by the underlying syscall */ 658 struct host_rlimit64 { 659 uint64_t rlim_cur; 660 uint64_t rlim_max; 661 }; 662 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 663 const struct host_rlimit64 *, new_limit, 664 struct host_rlimit64 *, old_limit) 665 #endif 666 667 668 #if defined(TARGET_NR_timer_create) 669 /* Maxiumum of 32 active POSIX timers allowed at any one time. */ 670 static timer_t g_posix_timers[32] = { 0, } ; 671 672 static inline int next_free_host_timer(void) 673 { 674 int k ; 675 /* FIXME: Does finding the next free slot require a lock? */ 676 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 677 if (g_posix_timers[k] == 0) { 678 g_posix_timers[k] = (timer_t) 1; 679 return k; 680 } 681 } 682 return -1; 683 } 684 #endif 685 686 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 687 #ifdef TARGET_ARM 688 static inline int regpairs_aligned(void *cpu_env, int num) 689 { 690 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 691 } 692 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32) 693 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 694 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 695 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 696 * of registers which translates to the same as ARM/MIPS, because we start with 697 * r3 as arg1 */ 698 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 699 #elif defined(TARGET_SH4) 700 /* SH4 doesn't align register pairs, except for p{read,write}64 */ 701 static inline int regpairs_aligned(void *cpu_env, int num) 702 { 703 switch (num) { 704 case TARGET_NR_pread64: 705 case TARGET_NR_pwrite64: 706 return 1; 707 708 default: 709 return 0; 710 } 711 } 712 #elif defined(TARGET_XTENSA) 713 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 714 #else 715 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; } 716 #endif 717 718 #define ERRNO_TABLE_SIZE 1200 719 720 /* target_to_host_errno_table[] is initialized from 721 * host_to_target_errno_table[] in syscall_init(). */ 722 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 723 }; 724 725 /* 726 * This list is the union of errno values overridden in asm-<arch>/errno.h 727 * minus the errnos that are not actually generic to all archs. 728 */ 729 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 730 [EAGAIN] = TARGET_EAGAIN, 731 [EIDRM] = TARGET_EIDRM, 732 [ECHRNG] = TARGET_ECHRNG, 733 [EL2NSYNC] = TARGET_EL2NSYNC, 734 [EL3HLT] = TARGET_EL3HLT, 735 [EL3RST] = TARGET_EL3RST, 736 [ELNRNG] = TARGET_ELNRNG, 737 [EUNATCH] = TARGET_EUNATCH, 738 [ENOCSI] = TARGET_ENOCSI, 739 [EL2HLT] = TARGET_EL2HLT, 740 [EDEADLK] = TARGET_EDEADLK, 741 [ENOLCK] = TARGET_ENOLCK, 742 [EBADE] = TARGET_EBADE, 743 [EBADR] = TARGET_EBADR, 744 [EXFULL] = TARGET_EXFULL, 745 [ENOANO] = TARGET_ENOANO, 746 [EBADRQC] = TARGET_EBADRQC, 747 [EBADSLT] = TARGET_EBADSLT, 748 [EBFONT] = TARGET_EBFONT, 749 [ENOSTR] = TARGET_ENOSTR, 750 [ENODATA] = TARGET_ENODATA, 751 [ETIME] = TARGET_ETIME, 752 [ENOSR] = TARGET_ENOSR, 753 [ENONET] = TARGET_ENONET, 754 [ENOPKG] = TARGET_ENOPKG, 755 [EREMOTE] = TARGET_EREMOTE, 756 [ENOLINK] = TARGET_ENOLINK, 757 [EADV] = TARGET_EADV, 758 [ESRMNT] = TARGET_ESRMNT, 759 [ECOMM] = TARGET_ECOMM, 760 [EPROTO] = TARGET_EPROTO, 761 [EDOTDOT] = TARGET_EDOTDOT, 762 [EMULTIHOP] = TARGET_EMULTIHOP, 763 [EBADMSG] = TARGET_EBADMSG, 764 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 765 [EOVERFLOW] = TARGET_EOVERFLOW, 766 [ENOTUNIQ] = TARGET_ENOTUNIQ, 767 [EBADFD] = TARGET_EBADFD, 768 [EREMCHG] = TARGET_EREMCHG, 769 [ELIBACC] = TARGET_ELIBACC, 770 [ELIBBAD] = TARGET_ELIBBAD, 771 [ELIBSCN] = TARGET_ELIBSCN, 772 [ELIBMAX] = TARGET_ELIBMAX, 773 [ELIBEXEC] = TARGET_ELIBEXEC, 774 [EILSEQ] = TARGET_EILSEQ, 775 [ENOSYS] = TARGET_ENOSYS, 776 [ELOOP] = TARGET_ELOOP, 777 [ERESTART] = TARGET_ERESTART, 778 [ESTRPIPE] = TARGET_ESTRPIPE, 779 [ENOTEMPTY] = TARGET_ENOTEMPTY, 780 [EUSERS] = TARGET_EUSERS, 781 [ENOTSOCK] = TARGET_ENOTSOCK, 782 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 783 [EMSGSIZE] = TARGET_EMSGSIZE, 784 [EPROTOTYPE] = TARGET_EPROTOTYPE, 785 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 786 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 787 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 788 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 789 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 790 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 791 [EADDRINUSE] = TARGET_EADDRINUSE, 792 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 793 [ENETDOWN] = TARGET_ENETDOWN, 794 [ENETUNREACH] = TARGET_ENETUNREACH, 795 [ENETRESET] = TARGET_ENETRESET, 796 [ECONNABORTED] = TARGET_ECONNABORTED, 797 [ECONNRESET] = TARGET_ECONNRESET, 798 [ENOBUFS] = TARGET_ENOBUFS, 799 [EISCONN] = TARGET_EISCONN, 800 [ENOTCONN] = TARGET_ENOTCONN, 801 [EUCLEAN] = TARGET_EUCLEAN, 802 [ENOTNAM] = TARGET_ENOTNAM, 803 [ENAVAIL] = TARGET_ENAVAIL, 804 [EISNAM] = TARGET_EISNAM, 805 [EREMOTEIO] = TARGET_EREMOTEIO, 806 [EDQUOT] = TARGET_EDQUOT, 807 [ESHUTDOWN] = TARGET_ESHUTDOWN, 808 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 809 [ETIMEDOUT] = TARGET_ETIMEDOUT, 810 [ECONNREFUSED] = TARGET_ECONNREFUSED, 811 [EHOSTDOWN] = TARGET_EHOSTDOWN, 812 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 813 [EALREADY] = TARGET_EALREADY, 814 [EINPROGRESS] = TARGET_EINPROGRESS, 815 [ESTALE] = TARGET_ESTALE, 816 [ECANCELED] = TARGET_ECANCELED, 817 [ENOMEDIUM] = TARGET_ENOMEDIUM, 818 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 819 #ifdef ENOKEY 820 [ENOKEY] = TARGET_ENOKEY, 821 #endif 822 #ifdef EKEYEXPIRED 823 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 824 #endif 825 #ifdef EKEYREVOKED 826 [EKEYREVOKED] = TARGET_EKEYREVOKED, 827 #endif 828 #ifdef EKEYREJECTED 829 [EKEYREJECTED] = TARGET_EKEYREJECTED, 830 #endif 831 #ifdef EOWNERDEAD 832 [EOWNERDEAD] = TARGET_EOWNERDEAD, 833 #endif 834 #ifdef ENOTRECOVERABLE 835 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 836 #endif 837 #ifdef ENOMSG 838 [ENOMSG] = TARGET_ENOMSG, 839 #endif 840 #ifdef ERKFILL 841 [ERFKILL] = TARGET_ERFKILL, 842 #endif 843 #ifdef EHWPOISON 844 [EHWPOISON] = TARGET_EHWPOISON, 845 #endif 846 }; 847 848 static inline int host_to_target_errno(int err) 849 { 850 if (err >= 0 && err < ERRNO_TABLE_SIZE && 851 host_to_target_errno_table[err]) { 852 return host_to_target_errno_table[err]; 853 } 854 return err; 855 } 856 857 static inline int target_to_host_errno(int err) 858 { 859 if (err >= 0 && err < ERRNO_TABLE_SIZE && 860 target_to_host_errno_table[err]) { 861 return target_to_host_errno_table[err]; 862 } 863 return err; 864 } 865 866 static inline abi_long get_errno(abi_long ret) 867 { 868 if (ret == -1) 869 return -host_to_target_errno(errno); 870 else 871 return ret; 872 } 873 874 static inline int is_error(abi_long ret) 875 { 876 return (abi_ulong)ret >= (abi_ulong)(-4096); 877 } 878 879 const char *target_strerror(int err) 880 { 881 if (err == TARGET_ERESTARTSYS) { 882 return "To be restarted"; 883 } 884 if (err == TARGET_QEMU_ESIGRETURN) { 885 return "Successful exit from sigreturn"; 886 } 887 888 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 889 return NULL; 890 } 891 return strerror(target_to_host_errno(err)); 892 } 893 894 #define safe_syscall0(type, name) \ 895 static type safe_##name(void) \ 896 { \ 897 return safe_syscall(__NR_##name); \ 898 } 899 900 #define safe_syscall1(type, name, type1, arg1) \ 901 static type safe_##name(type1 arg1) \ 902 { \ 903 return safe_syscall(__NR_##name, arg1); \ 904 } 905 906 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 907 static type safe_##name(type1 arg1, type2 arg2) \ 908 { \ 909 return safe_syscall(__NR_##name, arg1, arg2); \ 910 } 911 912 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 913 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 914 { \ 915 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 916 } 917 918 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 919 type4, arg4) \ 920 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 921 { \ 922 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 923 } 924 925 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 926 type4, arg4, type5, arg5) \ 927 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 928 type5 arg5) \ 929 { \ 930 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 931 } 932 933 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 934 type4, arg4, type5, arg5, type6, arg6) \ 935 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 936 type5 arg5, type6 arg6) \ 937 { \ 938 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 939 } 940 941 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 942 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 943 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 944 int, flags, mode_t, mode) 945 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 946 struct rusage *, rusage) 947 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 948 int, options, struct rusage *, rusage) 949 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 950 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 951 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 952 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 953 struct timespec *, tsp, const sigset_t *, sigmask, 954 size_t, sigsetsize) 955 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 956 int, maxevents, int, timeout, const sigset_t *, sigmask, 957 size_t, sigsetsize) 958 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 959 const struct timespec *,timeout,int *,uaddr2,int,val3) 960 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 961 safe_syscall2(int, kill, pid_t, pid, int, sig) 962 safe_syscall2(int, tkill, int, tid, int, sig) 963 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 964 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 965 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 966 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 967 unsigned long, pos_l, unsigned long, pos_h) 968 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 969 unsigned long, pos_l, unsigned long, pos_h) 970 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 971 socklen_t, addrlen) 972 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 973 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 974 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 975 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 976 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 977 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 978 safe_syscall2(int, flock, int, fd, int, operation) 979 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 980 const struct timespec *, uts, size_t, sigsetsize) 981 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 982 int, flags) 983 safe_syscall2(int, nanosleep, const struct timespec *, req, 984 struct timespec *, rem) 985 #ifdef TARGET_NR_clock_nanosleep 986 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 987 const struct timespec *, req, struct timespec *, rem) 988 #endif 989 #ifdef __NR_msgsnd 990 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 991 int, flags) 992 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 993 long, msgtype, int, flags) 994 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 995 unsigned, nsops, const struct timespec *, timeout) 996 #else 997 /* This host kernel architecture uses a single ipc syscall; fake up 998 * wrappers for the sub-operations to hide this implementation detail. 999 * Annoyingly we can't include linux/ipc.h to get the constant definitions 1000 * for the call parameter because some structs in there conflict with the 1001 * sys/ipc.h ones. So we just define them here, and rely on them being 1002 * the same for all host architectures. 1003 */ 1004 #define Q_SEMTIMEDOP 4 1005 #define Q_MSGSND 11 1006 #define Q_MSGRCV 12 1007 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP)) 1008 1009 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 1010 void *, ptr, long, fifth) 1011 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags) 1012 { 1013 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0); 1014 } 1015 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags) 1016 { 1017 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type); 1018 } 1019 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops, 1020 const struct timespec *timeout) 1021 { 1022 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops, 1023 (long)timeout); 1024 } 1025 #endif 1026 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1027 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 1028 size_t, len, unsigned, prio, const struct timespec *, timeout) 1029 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 1030 size_t, len, unsigned *, prio, const struct timespec *, timeout) 1031 #endif 1032 /* We do ioctl like this rather than via safe_syscall3 to preserve the 1033 * "third argument might be integer or pointer or not present" behaviour of 1034 * the libc function. 1035 */ 1036 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 1037 /* Similarly for fcntl. Note that callers must always: 1038 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 1039 * use the flock64 struct rather than unsuffixed flock 1040 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 1041 */ 1042 #ifdef __NR_fcntl64 1043 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 1044 #else 1045 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 1046 #endif 1047 1048 static inline int host_to_target_sock_type(int host_type) 1049 { 1050 int target_type; 1051 1052 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 1053 case SOCK_DGRAM: 1054 target_type = TARGET_SOCK_DGRAM; 1055 break; 1056 case SOCK_STREAM: 1057 target_type = TARGET_SOCK_STREAM; 1058 break; 1059 default: 1060 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 1061 break; 1062 } 1063 1064 #if defined(SOCK_CLOEXEC) 1065 if (host_type & SOCK_CLOEXEC) { 1066 target_type |= TARGET_SOCK_CLOEXEC; 1067 } 1068 #endif 1069 1070 #if defined(SOCK_NONBLOCK) 1071 if (host_type & SOCK_NONBLOCK) { 1072 target_type |= TARGET_SOCK_NONBLOCK; 1073 } 1074 #endif 1075 1076 return target_type; 1077 } 1078 1079 static abi_ulong target_brk; 1080 static abi_ulong target_original_brk; 1081 static abi_ulong brk_page; 1082 1083 void target_set_brk(abi_ulong new_brk) 1084 { 1085 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 1086 brk_page = HOST_PAGE_ALIGN(target_brk); 1087 } 1088 1089 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 1090 #define DEBUGF_BRK(message, args...) 1091 1092 /* do_brk() must return target values and target errnos. */ 1093 abi_long do_brk(abi_ulong new_brk) 1094 { 1095 abi_long mapped_addr; 1096 abi_ulong new_alloc_size; 1097 1098 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 1099 1100 if (!new_brk) { 1101 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 1102 return target_brk; 1103 } 1104 if (new_brk < target_original_brk) { 1105 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 1106 target_brk); 1107 return target_brk; 1108 } 1109 1110 /* If the new brk is less than the highest page reserved to the 1111 * target heap allocation, set it and we're almost done... */ 1112 if (new_brk <= brk_page) { 1113 /* Heap contents are initialized to zero, as for anonymous 1114 * mapped pages. */ 1115 if (new_brk > target_brk) { 1116 memset(g2h(target_brk), 0, new_brk - target_brk); 1117 } 1118 target_brk = new_brk; 1119 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 1120 return target_brk; 1121 } 1122 1123 /* We need to allocate more memory after the brk... Note that 1124 * we don't use MAP_FIXED because that will map over the top of 1125 * any existing mapping (like the one with the host libc or qemu 1126 * itself); instead we treat "mapped but at wrong address" as 1127 * a failure and unmap again. 1128 */ 1129 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 1130 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 1131 PROT_READ|PROT_WRITE, 1132 MAP_ANON|MAP_PRIVATE, 0, 0)); 1133 1134 if (mapped_addr == brk_page) { 1135 /* Heap contents are initialized to zero, as for anonymous 1136 * mapped pages. Technically the new pages are already 1137 * initialized to zero since they *are* anonymous mapped 1138 * pages, however we have to take care with the contents that 1139 * come from the remaining part of the previous page: it may 1140 * contains garbage data due to a previous heap usage (grown 1141 * then shrunken). */ 1142 memset(g2h(target_brk), 0, brk_page - target_brk); 1143 1144 target_brk = new_brk; 1145 brk_page = HOST_PAGE_ALIGN(target_brk); 1146 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 1147 target_brk); 1148 return target_brk; 1149 } else if (mapped_addr != -1) { 1150 /* Mapped but at wrong address, meaning there wasn't actually 1151 * enough space for this brk. 1152 */ 1153 target_munmap(mapped_addr, new_alloc_size); 1154 mapped_addr = -1; 1155 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 1156 } 1157 else { 1158 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 1159 } 1160 1161 #if defined(TARGET_ALPHA) 1162 /* We (partially) emulate OSF/1 on Alpha, which requires we 1163 return a proper errno, not an unchanged brk value. */ 1164 return -TARGET_ENOMEM; 1165 #endif 1166 /* For everything else, return the previous break. */ 1167 return target_brk; 1168 } 1169 1170 static inline abi_long copy_from_user_fdset(fd_set *fds, 1171 abi_ulong target_fds_addr, 1172 int n) 1173 { 1174 int i, nw, j, k; 1175 abi_ulong b, *target_fds; 1176 1177 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1178 if (!(target_fds = lock_user(VERIFY_READ, 1179 target_fds_addr, 1180 sizeof(abi_ulong) * nw, 1181 1))) 1182 return -TARGET_EFAULT; 1183 1184 FD_ZERO(fds); 1185 k = 0; 1186 for (i = 0; i < nw; i++) { 1187 /* grab the abi_ulong */ 1188 __get_user(b, &target_fds[i]); 1189 for (j = 0; j < TARGET_ABI_BITS; j++) { 1190 /* check the bit inside the abi_ulong */ 1191 if ((b >> j) & 1) 1192 FD_SET(k, fds); 1193 k++; 1194 } 1195 } 1196 1197 unlock_user(target_fds, target_fds_addr, 0); 1198 1199 return 0; 1200 } 1201 1202 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 1203 abi_ulong target_fds_addr, 1204 int n) 1205 { 1206 if (target_fds_addr) { 1207 if (copy_from_user_fdset(fds, target_fds_addr, n)) 1208 return -TARGET_EFAULT; 1209 *fds_ptr = fds; 1210 } else { 1211 *fds_ptr = NULL; 1212 } 1213 return 0; 1214 } 1215 1216 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 1217 const fd_set *fds, 1218 int n) 1219 { 1220 int i, nw, j, k; 1221 abi_long v; 1222 abi_ulong *target_fds; 1223 1224 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1225 if (!(target_fds = lock_user(VERIFY_WRITE, 1226 target_fds_addr, 1227 sizeof(abi_ulong) * nw, 1228 0))) 1229 return -TARGET_EFAULT; 1230 1231 k = 0; 1232 for (i = 0; i < nw; i++) { 1233 v = 0; 1234 for (j = 0; j < TARGET_ABI_BITS; j++) { 1235 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 1236 k++; 1237 } 1238 __put_user(v, &target_fds[i]); 1239 } 1240 1241 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 1242 1243 return 0; 1244 } 1245 1246 #if defined(__alpha__) 1247 #define HOST_HZ 1024 1248 #else 1249 #define HOST_HZ 100 1250 #endif 1251 1252 static inline abi_long host_to_target_clock_t(long ticks) 1253 { 1254 #if HOST_HZ == TARGET_HZ 1255 return ticks; 1256 #else 1257 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 1258 #endif 1259 } 1260 1261 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 1262 const struct rusage *rusage) 1263 { 1264 struct target_rusage *target_rusage; 1265 1266 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 1267 return -TARGET_EFAULT; 1268 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 1269 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 1270 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 1271 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 1272 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 1273 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 1274 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 1275 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 1276 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 1277 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 1278 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 1279 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 1280 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 1281 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 1282 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 1283 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 1284 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 1285 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 1286 unlock_user_struct(target_rusage, target_addr, 1); 1287 1288 return 0; 1289 } 1290 1291 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 1292 { 1293 abi_ulong target_rlim_swap; 1294 rlim_t result; 1295 1296 target_rlim_swap = tswapal(target_rlim); 1297 if (target_rlim_swap == TARGET_RLIM_INFINITY) 1298 return RLIM_INFINITY; 1299 1300 result = target_rlim_swap; 1301 if (target_rlim_swap != (rlim_t)result) 1302 return RLIM_INFINITY; 1303 1304 return result; 1305 } 1306 1307 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1308 { 1309 abi_ulong target_rlim_swap; 1310 abi_ulong result; 1311 1312 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1313 target_rlim_swap = TARGET_RLIM_INFINITY; 1314 else 1315 target_rlim_swap = rlim; 1316 result = tswapal(target_rlim_swap); 1317 1318 return result; 1319 } 1320 1321 static inline int target_to_host_resource(int code) 1322 { 1323 switch (code) { 1324 case TARGET_RLIMIT_AS: 1325 return RLIMIT_AS; 1326 case TARGET_RLIMIT_CORE: 1327 return RLIMIT_CORE; 1328 case TARGET_RLIMIT_CPU: 1329 return RLIMIT_CPU; 1330 case TARGET_RLIMIT_DATA: 1331 return RLIMIT_DATA; 1332 case TARGET_RLIMIT_FSIZE: 1333 return RLIMIT_FSIZE; 1334 case TARGET_RLIMIT_LOCKS: 1335 return RLIMIT_LOCKS; 1336 case TARGET_RLIMIT_MEMLOCK: 1337 return RLIMIT_MEMLOCK; 1338 case TARGET_RLIMIT_MSGQUEUE: 1339 return RLIMIT_MSGQUEUE; 1340 case TARGET_RLIMIT_NICE: 1341 return RLIMIT_NICE; 1342 case TARGET_RLIMIT_NOFILE: 1343 return RLIMIT_NOFILE; 1344 case TARGET_RLIMIT_NPROC: 1345 return RLIMIT_NPROC; 1346 case TARGET_RLIMIT_RSS: 1347 return RLIMIT_RSS; 1348 case TARGET_RLIMIT_RTPRIO: 1349 return RLIMIT_RTPRIO; 1350 case TARGET_RLIMIT_SIGPENDING: 1351 return RLIMIT_SIGPENDING; 1352 case TARGET_RLIMIT_STACK: 1353 return RLIMIT_STACK; 1354 default: 1355 return code; 1356 } 1357 } 1358 1359 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1360 abi_ulong target_tv_addr) 1361 { 1362 struct target_timeval *target_tv; 1363 1364 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) 1365 return -TARGET_EFAULT; 1366 1367 __get_user(tv->tv_sec, &target_tv->tv_sec); 1368 __get_user(tv->tv_usec, &target_tv->tv_usec); 1369 1370 unlock_user_struct(target_tv, target_tv_addr, 0); 1371 1372 return 0; 1373 } 1374 1375 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1376 const struct timeval *tv) 1377 { 1378 struct target_timeval *target_tv; 1379 1380 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) 1381 return -TARGET_EFAULT; 1382 1383 __put_user(tv->tv_sec, &target_tv->tv_sec); 1384 __put_user(tv->tv_usec, &target_tv->tv_usec); 1385 1386 unlock_user_struct(target_tv, target_tv_addr, 1); 1387 1388 return 0; 1389 } 1390 1391 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1392 abi_ulong target_tz_addr) 1393 { 1394 struct target_timezone *target_tz; 1395 1396 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1397 return -TARGET_EFAULT; 1398 } 1399 1400 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1401 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1402 1403 unlock_user_struct(target_tz, target_tz_addr, 0); 1404 1405 return 0; 1406 } 1407 1408 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1409 #include <mqueue.h> 1410 1411 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1412 abi_ulong target_mq_attr_addr) 1413 { 1414 struct target_mq_attr *target_mq_attr; 1415 1416 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1417 target_mq_attr_addr, 1)) 1418 return -TARGET_EFAULT; 1419 1420 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1421 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1422 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1423 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1424 1425 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1426 1427 return 0; 1428 } 1429 1430 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1431 const struct mq_attr *attr) 1432 { 1433 struct target_mq_attr *target_mq_attr; 1434 1435 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1436 target_mq_attr_addr, 0)) 1437 return -TARGET_EFAULT; 1438 1439 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1440 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1441 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1442 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1443 1444 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1445 1446 return 0; 1447 } 1448 #endif 1449 1450 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1451 /* do_select() must return target values and target errnos. */ 1452 static abi_long do_select(int n, 1453 abi_ulong rfd_addr, abi_ulong wfd_addr, 1454 abi_ulong efd_addr, abi_ulong target_tv_addr) 1455 { 1456 fd_set rfds, wfds, efds; 1457 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1458 struct timeval tv; 1459 struct timespec ts, *ts_ptr; 1460 abi_long ret; 1461 1462 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1463 if (ret) { 1464 return ret; 1465 } 1466 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1467 if (ret) { 1468 return ret; 1469 } 1470 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1471 if (ret) { 1472 return ret; 1473 } 1474 1475 if (target_tv_addr) { 1476 if (copy_from_user_timeval(&tv, target_tv_addr)) 1477 return -TARGET_EFAULT; 1478 ts.tv_sec = tv.tv_sec; 1479 ts.tv_nsec = tv.tv_usec * 1000; 1480 ts_ptr = &ts; 1481 } else { 1482 ts_ptr = NULL; 1483 } 1484 1485 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1486 ts_ptr, NULL)); 1487 1488 if (!is_error(ret)) { 1489 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1490 return -TARGET_EFAULT; 1491 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1492 return -TARGET_EFAULT; 1493 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1494 return -TARGET_EFAULT; 1495 1496 if (target_tv_addr) { 1497 tv.tv_sec = ts.tv_sec; 1498 tv.tv_usec = ts.tv_nsec / 1000; 1499 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1500 return -TARGET_EFAULT; 1501 } 1502 } 1503 } 1504 1505 return ret; 1506 } 1507 1508 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1509 static abi_long do_old_select(abi_ulong arg1) 1510 { 1511 struct target_sel_arg_struct *sel; 1512 abi_ulong inp, outp, exp, tvp; 1513 long nsel; 1514 1515 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1516 return -TARGET_EFAULT; 1517 } 1518 1519 nsel = tswapal(sel->n); 1520 inp = tswapal(sel->inp); 1521 outp = tswapal(sel->outp); 1522 exp = tswapal(sel->exp); 1523 tvp = tswapal(sel->tvp); 1524 1525 unlock_user_struct(sel, arg1, 0); 1526 1527 return do_select(nsel, inp, outp, exp, tvp); 1528 } 1529 #endif 1530 #endif 1531 1532 static abi_long do_pipe2(int host_pipe[], int flags) 1533 { 1534 #ifdef CONFIG_PIPE2 1535 return pipe2(host_pipe, flags); 1536 #else 1537 return -ENOSYS; 1538 #endif 1539 } 1540 1541 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1542 int flags, int is_pipe2) 1543 { 1544 int host_pipe[2]; 1545 abi_long ret; 1546 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1547 1548 if (is_error(ret)) 1549 return get_errno(ret); 1550 1551 /* Several targets have special calling conventions for the original 1552 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1553 if (!is_pipe2) { 1554 #if defined(TARGET_ALPHA) 1555 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1556 return host_pipe[0]; 1557 #elif defined(TARGET_MIPS) 1558 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1559 return host_pipe[0]; 1560 #elif defined(TARGET_SH4) 1561 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1562 return host_pipe[0]; 1563 #elif defined(TARGET_SPARC) 1564 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1565 return host_pipe[0]; 1566 #endif 1567 } 1568 1569 if (put_user_s32(host_pipe[0], pipedes) 1570 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1571 return -TARGET_EFAULT; 1572 return get_errno(ret); 1573 } 1574 1575 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1576 abi_ulong target_addr, 1577 socklen_t len) 1578 { 1579 struct target_ip_mreqn *target_smreqn; 1580 1581 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1582 if (!target_smreqn) 1583 return -TARGET_EFAULT; 1584 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1585 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1586 if (len == sizeof(struct target_ip_mreqn)) 1587 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1588 unlock_user(target_smreqn, target_addr, 0); 1589 1590 return 0; 1591 } 1592 1593 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1594 abi_ulong target_addr, 1595 socklen_t len) 1596 { 1597 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1598 sa_family_t sa_family; 1599 struct target_sockaddr *target_saddr; 1600 1601 if (fd_trans_target_to_host_addr(fd)) { 1602 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1603 } 1604 1605 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1606 if (!target_saddr) 1607 return -TARGET_EFAULT; 1608 1609 sa_family = tswap16(target_saddr->sa_family); 1610 1611 /* Oops. The caller might send a incomplete sun_path; sun_path 1612 * must be terminated by \0 (see the manual page), but 1613 * unfortunately it is quite common to specify sockaddr_un 1614 * length as "strlen(x->sun_path)" while it should be 1615 * "strlen(...) + 1". We'll fix that here if needed. 1616 * Linux kernel has a similar feature. 1617 */ 1618 1619 if (sa_family == AF_UNIX) { 1620 if (len < unix_maxlen && len > 0) { 1621 char *cp = (char*)target_saddr; 1622 1623 if ( cp[len-1] && !cp[len] ) 1624 len++; 1625 } 1626 if (len > unix_maxlen) 1627 len = unix_maxlen; 1628 } 1629 1630 memcpy(addr, target_saddr, len); 1631 addr->sa_family = sa_family; 1632 if (sa_family == AF_NETLINK) { 1633 struct sockaddr_nl *nladdr; 1634 1635 nladdr = (struct sockaddr_nl *)addr; 1636 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1637 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1638 } else if (sa_family == AF_PACKET) { 1639 struct target_sockaddr_ll *lladdr; 1640 1641 lladdr = (struct target_sockaddr_ll *)addr; 1642 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1643 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1644 } 1645 unlock_user(target_saddr, target_addr, 0); 1646 1647 return 0; 1648 } 1649 1650 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1651 struct sockaddr *addr, 1652 socklen_t len) 1653 { 1654 struct target_sockaddr *target_saddr; 1655 1656 if (len == 0) { 1657 return 0; 1658 } 1659 assert(addr); 1660 1661 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1662 if (!target_saddr) 1663 return -TARGET_EFAULT; 1664 memcpy(target_saddr, addr, len); 1665 if (len >= offsetof(struct target_sockaddr, sa_family) + 1666 sizeof(target_saddr->sa_family)) { 1667 target_saddr->sa_family = tswap16(addr->sa_family); 1668 } 1669 if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) { 1670 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr; 1671 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1672 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1673 } else if (addr->sa_family == AF_PACKET) { 1674 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1675 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1676 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1677 } else if (addr->sa_family == AF_INET6 && 1678 len >= sizeof(struct target_sockaddr_in6)) { 1679 struct target_sockaddr_in6 *target_in6 = 1680 (struct target_sockaddr_in6 *)target_saddr; 1681 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1682 } 1683 unlock_user(target_saddr, target_addr, len); 1684 1685 return 0; 1686 } 1687 1688 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1689 struct target_msghdr *target_msgh) 1690 { 1691 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1692 abi_long msg_controllen; 1693 abi_ulong target_cmsg_addr; 1694 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1695 socklen_t space = 0; 1696 1697 msg_controllen = tswapal(target_msgh->msg_controllen); 1698 if (msg_controllen < sizeof (struct target_cmsghdr)) 1699 goto the_end; 1700 target_cmsg_addr = tswapal(target_msgh->msg_control); 1701 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1702 target_cmsg_start = target_cmsg; 1703 if (!target_cmsg) 1704 return -TARGET_EFAULT; 1705 1706 while (cmsg && target_cmsg) { 1707 void *data = CMSG_DATA(cmsg); 1708 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1709 1710 int len = tswapal(target_cmsg->cmsg_len) 1711 - sizeof(struct target_cmsghdr); 1712 1713 space += CMSG_SPACE(len); 1714 if (space > msgh->msg_controllen) { 1715 space -= CMSG_SPACE(len); 1716 /* This is a QEMU bug, since we allocated the payload 1717 * area ourselves (unlike overflow in host-to-target 1718 * conversion, which is just the guest giving us a buffer 1719 * that's too small). It can't happen for the payload types 1720 * we currently support; if it becomes an issue in future 1721 * we would need to improve our allocation strategy to 1722 * something more intelligent than "twice the size of the 1723 * target buffer we're reading from". 1724 */ 1725 gemu_log("Host cmsg overflow\n"); 1726 break; 1727 } 1728 1729 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1730 cmsg->cmsg_level = SOL_SOCKET; 1731 } else { 1732 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1733 } 1734 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1735 cmsg->cmsg_len = CMSG_LEN(len); 1736 1737 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1738 int *fd = (int *)data; 1739 int *target_fd = (int *)target_data; 1740 int i, numfds = len / sizeof(int); 1741 1742 for (i = 0; i < numfds; i++) { 1743 __get_user(fd[i], target_fd + i); 1744 } 1745 } else if (cmsg->cmsg_level == SOL_SOCKET 1746 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1747 struct ucred *cred = (struct ucred *)data; 1748 struct target_ucred *target_cred = 1749 (struct target_ucred *)target_data; 1750 1751 __get_user(cred->pid, &target_cred->pid); 1752 __get_user(cred->uid, &target_cred->uid); 1753 __get_user(cred->gid, &target_cred->gid); 1754 } else { 1755 gemu_log("Unsupported ancillary data: %d/%d\n", 1756 cmsg->cmsg_level, cmsg->cmsg_type); 1757 memcpy(data, target_data, len); 1758 } 1759 1760 cmsg = CMSG_NXTHDR(msgh, cmsg); 1761 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1762 target_cmsg_start); 1763 } 1764 unlock_user(target_cmsg, target_cmsg_addr, 0); 1765 the_end: 1766 msgh->msg_controllen = space; 1767 return 0; 1768 } 1769 1770 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1771 struct msghdr *msgh) 1772 { 1773 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1774 abi_long msg_controllen; 1775 abi_ulong target_cmsg_addr; 1776 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1777 socklen_t space = 0; 1778 1779 msg_controllen = tswapal(target_msgh->msg_controllen); 1780 if (msg_controllen < sizeof (struct target_cmsghdr)) 1781 goto the_end; 1782 target_cmsg_addr = tswapal(target_msgh->msg_control); 1783 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1784 target_cmsg_start = target_cmsg; 1785 if (!target_cmsg) 1786 return -TARGET_EFAULT; 1787 1788 while (cmsg && target_cmsg) { 1789 void *data = CMSG_DATA(cmsg); 1790 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1791 1792 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1793 int tgt_len, tgt_space; 1794 1795 /* We never copy a half-header but may copy half-data; 1796 * this is Linux's behaviour in put_cmsg(). Note that 1797 * truncation here is a guest problem (which we report 1798 * to the guest via the CTRUNC bit), unlike truncation 1799 * in target_to_host_cmsg, which is a QEMU bug. 1800 */ 1801 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1802 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1803 break; 1804 } 1805 1806 if (cmsg->cmsg_level == SOL_SOCKET) { 1807 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1808 } else { 1809 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1810 } 1811 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1812 1813 /* Payload types which need a different size of payload on 1814 * the target must adjust tgt_len here. 1815 */ 1816 switch (cmsg->cmsg_level) { 1817 case SOL_SOCKET: 1818 switch (cmsg->cmsg_type) { 1819 case SO_TIMESTAMP: 1820 tgt_len = sizeof(struct target_timeval); 1821 break; 1822 default: 1823 break; 1824 } 1825 default: 1826 tgt_len = len; 1827 break; 1828 } 1829 1830 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1831 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1832 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1833 } 1834 1835 /* We must now copy-and-convert len bytes of payload 1836 * into tgt_len bytes of destination space. Bear in mind 1837 * that in both source and destination we may be dealing 1838 * with a truncated value! 1839 */ 1840 switch (cmsg->cmsg_level) { 1841 case SOL_SOCKET: 1842 switch (cmsg->cmsg_type) { 1843 case SCM_RIGHTS: 1844 { 1845 int *fd = (int *)data; 1846 int *target_fd = (int *)target_data; 1847 int i, numfds = tgt_len / sizeof(int); 1848 1849 for (i = 0; i < numfds; i++) { 1850 __put_user(fd[i], target_fd + i); 1851 } 1852 break; 1853 } 1854 case SO_TIMESTAMP: 1855 { 1856 struct timeval *tv = (struct timeval *)data; 1857 struct target_timeval *target_tv = 1858 (struct target_timeval *)target_data; 1859 1860 if (len != sizeof(struct timeval) || 1861 tgt_len != sizeof(struct target_timeval)) { 1862 goto unimplemented; 1863 } 1864 1865 /* copy struct timeval to target */ 1866 __put_user(tv->tv_sec, &target_tv->tv_sec); 1867 __put_user(tv->tv_usec, &target_tv->tv_usec); 1868 break; 1869 } 1870 case SCM_CREDENTIALS: 1871 { 1872 struct ucred *cred = (struct ucred *)data; 1873 struct target_ucred *target_cred = 1874 (struct target_ucred *)target_data; 1875 1876 __put_user(cred->pid, &target_cred->pid); 1877 __put_user(cred->uid, &target_cred->uid); 1878 __put_user(cred->gid, &target_cred->gid); 1879 break; 1880 } 1881 default: 1882 goto unimplemented; 1883 } 1884 break; 1885 1886 case SOL_IP: 1887 switch (cmsg->cmsg_type) { 1888 case IP_TTL: 1889 { 1890 uint32_t *v = (uint32_t *)data; 1891 uint32_t *t_int = (uint32_t *)target_data; 1892 1893 if (len != sizeof(uint32_t) || 1894 tgt_len != sizeof(uint32_t)) { 1895 goto unimplemented; 1896 } 1897 __put_user(*v, t_int); 1898 break; 1899 } 1900 case IP_RECVERR: 1901 { 1902 struct errhdr_t { 1903 struct sock_extended_err ee; 1904 struct sockaddr_in offender; 1905 }; 1906 struct errhdr_t *errh = (struct errhdr_t *)data; 1907 struct errhdr_t *target_errh = 1908 (struct errhdr_t *)target_data; 1909 1910 if (len != sizeof(struct errhdr_t) || 1911 tgt_len != sizeof(struct errhdr_t)) { 1912 goto unimplemented; 1913 } 1914 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1915 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1916 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1917 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1918 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1919 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1920 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1921 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1922 (void *) &errh->offender, sizeof(errh->offender)); 1923 break; 1924 } 1925 default: 1926 goto unimplemented; 1927 } 1928 break; 1929 1930 case SOL_IPV6: 1931 switch (cmsg->cmsg_type) { 1932 case IPV6_HOPLIMIT: 1933 { 1934 uint32_t *v = (uint32_t *)data; 1935 uint32_t *t_int = (uint32_t *)target_data; 1936 1937 if (len != sizeof(uint32_t) || 1938 tgt_len != sizeof(uint32_t)) { 1939 goto unimplemented; 1940 } 1941 __put_user(*v, t_int); 1942 break; 1943 } 1944 case IPV6_RECVERR: 1945 { 1946 struct errhdr6_t { 1947 struct sock_extended_err ee; 1948 struct sockaddr_in6 offender; 1949 }; 1950 struct errhdr6_t *errh = (struct errhdr6_t *)data; 1951 struct errhdr6_t *target_errh = 1952 (struct errhdr6_t *)target_data; 1953 1954 if (len != sizeof(struct errhdr6_t) || 1955 tgt_len != sizeof(struct errhdr6_t)) { 1956 goto unimplemented; 1957 } 1958 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1959 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1960 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1961 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1962 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1963 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1964 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1965 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1966 (void *) &errh->offender, sizeof(errh->offender)); 1967 break; 1968 } 1969 default: 1970 goto unimplemented; 1971 } 1972 break; 1973 1974 default: 1975 unimplemented: 1976 gemu_log("Unsupported ancillary data: %d/%d\n", 1977 cmsg->cmsg_level, cmsg->cmsg_type); 1978 memcpy(target_data, data, MIN(len, tgt_len)); 1979 if (tgt_len > len) { 1980 memset(target_data + len, 0, tgt_len - len); 1981 } 1982 } 1983 1984 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 1985 tgt_space = TARGET_CMSG_SPACE(tgt_len); 1986 if (msg_controllen < tgt_space) { 1987 tgt_space = msg_controllen; 1988 } 1989 msg_controllen -= tgt_space; 1990 space += tgt_space; 1991 cmsg = CMSG_NXTHDR(msgh, cmsg); 1992 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1993 target_cmsg_start); 1994 } 1995 unlock_user(target_cmsg, target_cmsg_addr, space); 1996 the_end: 1997 target_msgh->msg_controllen = tswapal(space); 1998 return 0; 1999 } 2000 2001 static void tswap_nlmsghdr(struct nlmsghdr *nlh) 2002 { 2003 nlh->nlmsg_len = tswap32(nlh->nlmsg_len); 2004 nlh->nlmsg_type = tswap16(nlh->nlmsg_type); 2005 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags); 2006 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq); 2007 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid); 2008 } 2009 2010 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh, 2011 size_t len, 2012 abi_long (*host_to_target_nlmsg) 2013 (struct nlmsghdr *)) 2014 { 2015 uint32_t nlmsg_len; 2016 abi_long ret; 2017 2018 while (len > sizeof(struct nlmsghdr)) { 2019 2020 nlmsg_len = nlh->nlmsg_len; 2021 if (nlmsg_len < sizeof(struct nlmsghdr) || 2022 nlmsg_len > len) { 2023 break; 2024 } 2025 2026 switch (nlh->nlmsg_type) { 2027 case NLMSG_DONE: 2028 tswap_nlmsghdr(nlh); 2029 return 0; 2030 case NLMSG_NOOP: 2031 break; 2032 case NLMSG_ERROR: 2033 { 2034 struct nlmsgerr *e = NLMSG_DATA(nlh); 2035 e->error = tswap32(e->error); 2036 tswap_nlmsghdr(&e->msg); 2037 tswap_nlmsghdr(nlh); 2038 return 0; 2039 } 2040 default: 2041 ret = host_to_target_nlmsg(nlh); 2042 if (ret < 0) { 2043 tswap_nlmsghdr(nlh); 2044 return ret; 2045 } 2046 break; 2047 } 2048 tswap_nlmsghdr(nlh); 2049 len -= NLMSG_ALIGN(nlmsg_len); 2050 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len)); 2051 } 2052 return 0; 2053 } 2054 2055 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh, 2056 size_t len, 2057 abi_long (*target_to_host_nlmsg) 2058 (struct nlmsghdr *)) 2059 { 2060 int ret; 2061 2062 while (len > sizeof(struct nlmsghdr)) { 2063 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) || 2064 tswap32(nlh->nlmsg_len) > len) { 2065 break; 2066 } 2067 tswap_nlmsghdr(nlh); 2068 switch (nlh->nlmsg_type) { 2069 case NLMSG_DONE: 2070 return 0; 2071 case NLMSG_NOOP: 2072 break; 2073 case NLMSG_ERROR: 2074 { 2075 struct nlmsgerr *e = NLMSG_DATA(nlh); 2076 e->error = tswap32(e->error); 2077 tswap_nlmsghdr(&e->msg); 2078 return 0; 2079 } 2080 default: 2081 ret = target_to_host_nlmsg(nlh); 2082 if (ret < 0) { 2083 return ret; 2084 } 2085 } 2086 len -= NLMSG_ALIGN(nlh->nlmsg_len); 2087 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len)); 2088 } 2089 return 0; 2090 } 2091 2092 #ifdef CONFIG_RTNETLINK 2093 static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr, 2094 size_t len, void *context, 2095 abi_long (*host_to_target_nlattr) 2096 (struct nlattr *, 2097 void *context)) 2098 { 2099 unsigned short nla_len; 2100 abi_long ret; 2101 2102 while (len > sizeof(struct nlattr)) { 2103 nla_len = nlattr->nla_len; 2104 if (nla_len < sizeof(struct nlattr) || 2105 nla_len > len) { 2106 break; 2107 } 2108 ret = host_to_target_nlattr(nlattr, context); 2109 nlattr->nla_len = tswap16(nlattr->nla_len); 2110 nlattr->nla_type = tswap16(nlattr->nla_type); 2111 if (ret < 0) { 2112 return ret; 2113 } 2114 len -= NLA_ALIGN(nla_len); 2115 nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len)); 2116 } 2117 return 0; 2118 } 2119 2120 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr, 2121 size_t len, 2122 abi_long (*host_to_target_rtattr) 2123 (struct rtattr *)) 2124 { 2125 unsigned short rta_len; 2126 abi_long ret; 2127 2128 while (len > sizeof(struct rtattr)) { 2129 rta_len = rtattr->rta_len; 2130 if (rta_len < sizeof(struct rtattr) || 2131 rta_len > len) { 2132 break; 2133 } 2134 ret = host_to_target_rtattr(rtattr); 2135 rtattr->rta_len = tswap16(rtattr->rta_len); 2136 rtattr->rta_type = tswap16(rtattr->rta_type); 2137 if (ret < 0) { 2138 return ret; 2139 } 2140 len -= RTA_ALIGN(rta_len); 2141 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len)); 2142 } 2143 return 0; 2144 } 2145 2146 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN) 2147 2148 static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr, 2149 void *context) 2150 { 2151 uint16_t *u16; 2152 uint32_t *u32; 2153 uint64_t *u64; 2154 2155 switch (nlattr->nla_type) { 2156 /* no data */ 2157 case QEMU_IFLA_BR_FDB_FLUSH: 2158 break; 2159 /* binary */ 2160 case QEMU_IFLA_BR_GROUP_ADDR: 2161 break; 2162 /* uint8_t */ 2163 case QEMU_IFLA_BR_VLAN_FILTERING: 2164 case QEMU_IFLA_BR_TOPOLOGY_CHANGE: 2165 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED: 2166 case QEMU_IFLA_BR_MCAST_ROUTER: 2167 case QEMU_IFLA_BR_MCAST_SNOOPING: 2168 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR: 2169 case QEMU_IFLA_BR_MCAST_QUERIER: 2170 case QEMU_IFLA_BR_NF_CALL_IPTABLES: 2171 case QEMU_IFLA_BR_NF_CALL_IP6TABLES: 2172 case QEMU_IFLA_BR_NF_CALL_ARPTABLES: 2173 break; 2174 /* uint16_t */ 2175 case QEMU_IFLA_BR_PRIORITY: 2176 case QEMU_IFLA_BR_VLAN_PROTOCOL: 2177 case QEMU_IFLA_BR_GROUP_FWD_MASK: 2178 case QEMU_IFLA_BR_ROOT_PORT: 2179 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID: 2180 u16 = NLA_DATA(nlattr); 2181 *u16 = tswap16(*u16); 2182 break; 2183 /* uint32_t */ 2184 case QEMU_IFLA_BR_FORWARD_DELAY: 2185 case QEMU_IFLA_BR_HELLO_TIME: 2186 case QEMU_IFLA_BR_MAX_AGE: 2187 case QEMU_IFLA_BR_AGEING_TIME: 2188 case QEMU_IFLA_BR_STP_STATE: 2189 case QEMU_IFLA_BR_ROOT_PATH_COST: 2190 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY: 2191 case QEMU_IFLA_BR_MCAST_HASH_MAX: 2192 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT: 2193 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT: 2194 u32 = NLA_DATA(nlattr); 2195 *u32 = tswap32(*u32); 2196 break; 2197 /* uint64_t */ 2198 case QEMU_IFLA_BR_HELLO_TIMER: 2199 case QEMU_IFLA_BR_TCN_TIMER: 2200 case QEMU_IFLA_BR_GC_TIMER: 2201 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER: 2202 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL: 2203 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL: 2204 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL: 2205 case QEMU_IFLA_BR_MCAST_QUERY_INTVL: 2206 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL: 2207 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL: 2208 u64 = NLA_DATA(nlattr); 2209 *u64 = tswap64(*u64); 2210 break; 2211 /* ifla_bridge_id: uin8_t[] */ 2212 case QEMU_IFLA_BR_ROOT_ID: 2213 case QEMU_IFLA_BR_BRIDGE_ID: 2214 break; 2215 default: 2216 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type); 2217 break; 2218 } 2219 return 0; 2220 } 2221 2222 static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr, 2223 void *context) 2224 { 2225 uint16_t *u16; 2226 uint32_t *u32; 2227 uint64_t *u64; 2228 2229 switch (nlattr->nla_type) { 2230 /* uint8_t */ 2231 case QEMU_IFLA_BRPORT_STATE: 2232 case QEMU_IFLA_BRPORT_MODE: 2233 case QEMU_IFLA_BRPORT_GUARD: 2234 case QEMU_IFLA_BRPORT_PROTECT: 2235 case QEMU_IFLA_BRPORT_FAST_LEAVE: 2236 case QEMU_IFLA_BRPORT_LEARNING: 2237 case QEMU_IFLA_BRPORT_UNICAST_FLOOD: 2238 case QEMU_IFLA_BRPORT_PROXYARP: 2239 case QEMU_IFLA_BRPORT_LEARNING_SYNC: 2240 case QEMU_IFLA_BRPORT_PROXYARP_WIFI: 2241 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK: 2242 case QEMU_IFLA_BRPORT_CONFIG_PENDING: 2243 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER: 2244 break; 2245 /* uint16_t */ 2246 case QEMU_IFLA_BRPORT_PRIORITY: 2247 case QEMU_IFLA_BRPORT_DESIGNATED_PORT: 2248 case QEMU_IFLA_BRPORT_DESIGNATED_COST: 2249 case QEMU_IFLA_BRPORT_ID: 2250 case QEMU_IFLA_BRPORT_NO: 2251 u16 = NLA_DATA(nlattr); 2252 *u16 = tswap16(*u16); 2253 break; 2254 /* uin32_t */ 2255 case QEMU_IFLA_BRPORT_COST: 2256 u32 = NLA_DATA(nlattr); 2257 *u32 = tswap32(*u32); 2258 break; 2259 /* uint64_t */ 2260 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER: 2261 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER: 2262 case QEMU_IFLA_BRPORT_HOLD_TIMER: 2263 u64 = NLA_DATA(nlattr); 2264 *u64 = tswap64(*u64); 2265 break; 2266 /* ifla_bridge_id: uint8_t[] */ 2267 case QEMU_IFLA_BRPORT_ROOT_ID: 2268 case QEMU_IFLA_BRPORT_BRIDGE_ID: 2269 break; 2270 default: 2271 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type); 2272 break; 2273 } 2274 return 0; 2275 } 2276 2277 struct linkinfo_context { 2278 int len; 2279 char *name; 2280 int slave_len; 2281 char *slave_name; 2282 }; 2283 2284 static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr, 2285 void *context) 2286 { 2287 struct linkinfo_context *li_context = context; 2288 2289 switch (nlattr->nla_type) { 2290 /* string */ 2291 case QEMU_IFLA_INFO_KIND: 2292 li_context->name = NLA_DATA(nlattr); 2293 li_context->len = nlattr->nla_len - NLA_HDRLEN; 2294 break; 2295 case QEMU_IFLA_INFO_SLAVE_KIND: 2296 li_context->slave_name = NLA_DATA(nlattr); 2297 li_context->slave_len = nlattr->nla_len - NLA_HDRLEN; 2298 break; 2299 /* stats */ 2300 case QEMU_IFLA_INFO_XSTATS: 2301 /* FIXME: only used by CAN */ 2302 break; 2303 /* nested */ 2304 case QEMU_IFLA_INFO_DATA: 2305 if (strncmp(li_context->name, "bridge", 2306 li_context->len) == 0) { 2307 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2308 nlattr->nla_len, 2309 NULL, 2310 host_to_target_data_bridge_nlattr); 2311 } else { 2312 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name); 2313 } 2314 break; 2315 case QEMU_IFLA_INFO_SLAVE_DATA: 2316 if (strncmp(li_context->slave_name, "bridge", 2317 li_context->slave_len) == 0) { 2318 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2319 nlattr->nla_len, 2320 NULL, 2321 host_to_target_slave_data_bridge_nlattr); 2322 } else { 2323 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n", 2324 li_context->slave_name); 2325 } 2326 break; 2327 default: 2328 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type); 2329 break; 2330 } 2331 2332 return 0; 2333 } 2334 2335 static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr, 2336 void *context) 2337 { 2338 uint32_t *u32; 2339 int i; 2340 2341 switch (nlattr->nla_type) { 2342 case QEMU_IFLA_INET_CONF: 2343 u32 = NLA_DATA(nlattr); 2344 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2345 i++) { 2346 u32[i] = tswap32(u32[i]); 2347 } 2348 break; 2349 default: 2350 gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type); 2351 } 2352 return 0; 2353 } 2354 2355 static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr, 2356 void *context) 2357 { 2358 uint32_t *u32; 2359 uint64_t *u64; 2360 struct ifla_cacheinfo *ci; 2361 int i; 2362 2363 switch (nlattr->nla_type) { 2364 /* binaries */ 2365 case QEMU_IFLA_INET6_TOKEN: 2366 break; 2367 /* uint8_t */ 2368 case QEMU_IFLA_INET6_ADDR_GEN_MODE: 2369 break; 2370 /* uint32_t */ 2371 case QEMU_IFLA_INET6_FLAGS: 2372 u32 = NLA_DATA(nlattr); 2373 *u32 = tswap32(*u32); 2374 break; 2375 /* uint32_t[] */ 2376 case QEMU_IFLA_INET6_CONF: 2377 u32 = NLA_DATA(nlattr); 2378 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2379 i++) { 2380 u32[i] = tswap32(u32[i]); 2381 } 2382 break; 2383 /* ifla_cacheinfo */ 2384 case QEMU_IFLA_INET6_CACHEINFO: 2385 ci = NLA_DATA(nlattr); 2386 ci->max_reasm_len = tswap32(ci->max_reasm_len); 2387 ci->tstamp = tswap32(ci->tstamp); 2388 ci->reachable_time = tswap32(ci->reachable_time); 2389 ci->retrans_time = tswap32(ci->retrans_time); 2390 break; 2391 /* uint64_t[] */ 2392 case QEMU_IFLA_INET6_STATS: 2393 case QEMU_IFLA_INET6_ICMP6STATS: 2394 u64 = NLA_DATA(nlattr); 2395 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64); 2396 i++) { 2397 u64[i] = tswap64(u64[i]); 2398 } 2399 break; 2400 default: 2401 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type); 2402 } 2403 return 0; 2404 } 2405 2406 static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr, 2407 void *context) 2408 { 2409 switch (nlattr->nla_type) { 2410 case AF_INET: 2411 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2412 NULL, 2413 host_to_target_data_inet_nlattr); 2414 case AF_INET6: 2415 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2416 NULL, 2417 host_to_target_data_inet6_nlattr); 2418 default: 2419 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type); 2420 break; 2421 } 2422 return 0; 2423 } 2424 2425 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr) 2426 { 2427 uint32_t *u32; 2428 struct rtnl_link_stats *st; 2429 struct rtnl_link_stats64 *st64; 2430 struct rtnl_link_ifmap *map; 2431 struct linkinfo_context li_context; 2432 2433 switch (rtattr->rta_type) { 2434 /* binary stream */ 2435 case QEMU_IFLA_ADDRESS: 2436 case QEMU_IFLA_BROADCAST: 2437 /* string */ 2438 case QEMU_IFLA_IFNAME: 2439 case QEMU_IFLA_QDISC: 2440 break; 2441 /* uin8_t */ 2442 case QEMU_IFLA_OPERSTATE: 2443 case QEMU_IFLA_LINKMODE: 2444 case QEMU_IFLA_CARRIER: 2445 case QEMU_IFLA_PROTO_DOWN: 2446 break; 2447 /* uint32_t */ 2448 case QEMU_IFLA_MTU: 2449 case QEMU_IFLA_LINK: 2450 case QEMU_IFLA_WEIGHT: 2451 case QEMU_IFLA_TXQLEN: 2452 case QEMU_IFLA_CARRIER_CHANGES: 2453 case QEMU_IFLA_NUM_RX_QUEUES: 2454 case QEMU_IFLA_NUM_TX_QUEUES: 2455 case QEMU_IFLA_PROMISCUITY: 2456 case QEMU_IFLA_EXT_MASK: 2457 case QEMU_IFLA_LINK_NETNSID: 2458 case QEMU_IFLA_GROUP: 2459 case QEMU_IFLA_MASTER: 2460 case QEMU_IFLA_NUM_VF: 2461 case QEMU_IFLA_GSO_MAX_SEGS: 2462 case QEMU_IFLA_GSO_MAX_SIZE: 2463 u32 = RTA_DATA(rtattr); 2464 *u32 = tswap32(*u32); 2465 break; 2466 /* struct rtnl_link_stats */ 2467 case QEMU_IFLA_STATS: 2468 st = RTA_DATA(rtattr); 2469 st->rx_packets = tswap32(st->rx_packets); 2470 st->tx_packets = tswap32(st->tx_packets); 2471 st->rx_bytes = tswap32(st->rx_bytes); 2472 st->tx_bytes = tswap32(st->tx_bytes); 2473 st->rx_errors = tswap32(st->rx_errors); 2474 st->tx_errors = tswap32(st->tx_errors); 2475 st->rx_dropped = tswap32(st->rx_dropped); 2476 st->tx_dropped = tswap32(st->tx_dropped); 2477 st->multicast = tswap32(st->multicast); 2478 st->collisions = tswap32(st->collisions); 2479 2480 /* detailed rx_errors: */ 2481 st->rx_length_errors = tswap32(st->rx_length_errors); 2482 st->rx_over_errors = tswap32(st->rx_over_errors); 2483 st->rx_crc_errors = tswap32(st->rx_crc_errors); 2484 st->rx_frame_errors = tswap32(st->rx_frame_errors); 2485 st->rx_fifo_errors = tswap32(st->rx_fifo_errors); 2486 st->rx_missed_errors = tswap32(st->rx_missed_errors); 2487 2488 /* detailed tx_errors */ 2489 st->tx_aborted_errors = tswap32(st->tx_aborted_errors); 2490 st->tx_carrier_errors = tswap32(st->tx_carrier_errors); 2491 st->tx_fifo_errors = tswap32(st->tx_fifo_errors); 2492 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors); 2493 st->tx_window_errors = tswap32(st->tx_window_errors); 2494 2495 /* for cslip etc */ 2496 st->rx_compressed = tswap32(st->rx_compressed); 2497 st->tx_compressed = tswap32(st->tx_compressed); 2498 break; 2499 /* struct rtnl_link_stats64 */ 2500 case QEMU_IFLA_STATS64: 2501 st64 = RTA_DATA(rtattr); 2502 st64->rx_packets = tswap64(st64->rx_packets); 2503 st64->tx_packets = tswap64(st64->tx_packets); 2504 st64->rx_bytes = tswap64(st64->rx_bytes); 2505 st64->tx_bytes = tswap64(st64->tx_bytes); 2506 st64->rx_errors = tswap64(st64->rx_errors); 2507 st64->tx_errors = tswap64(st64->tx_errors); 2508 st64->rx_dropped = tswap64(st64->rx_dropped); 2509 st64->tx_dropped = tswap64(st64->tx_dropped); 2510 st64->multicast = tswap64(st64->multicast); 2511 st64->collisions = tswap64(st64->collisions); 2512 2513 /* detailed rx_errors: */ 2514 st64->rx_length_errors = tswap64(st64->rx_length_errors); 2515 st64->rx_over_errors = tswap64(st64->rx_over_errors); 2516 st64->rx_crc_errors = tswap64(st64->rx_crc_errors); 2517 st64->rx_frame_errors = tswap64(st64->rx_frame_errors); 2518 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors); 2519 st64->rx_missed_errors = tswap64(st64->rx_missed_errors); 2520 2521 /* detailed tx_errors */ 2522 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors); 2523 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors); 2524 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors); 2525 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors); 2526 st64->tx_window_errors = tswap64(st64->tx_window_errors); 2527 2528 /* for cslip etc */ 2529 st64->rx_compressed = tswap64(st64->rx_compressed); 2530 st64->tx_compressed = tswap64(st64->tx_compressed); 2531 break; 2532 /* struct rtnl_link_ifmap */ 2533 case QEMU_IFLA_MAP: 2534 map = RTA_DATA(rtattr); 2535 map->mem_start = tswap64(map->mem_start); 2536 map->mem_end = tswap64(map->mem_end); 2537 map->base_addr = tswap64(map->base_addr); 2538 map->irq = tswap16(map->irq); 2539 break; 2540 /* nested */ 2541 case QEMU_IFLA_LINKINFO: 2542 memset(&li_context, 0, sizeof(li_context)); 2543 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2544 &li_context, 2545 host_to_target_data_linkinfo_nlattr); 2546 case QEMU_IFLA_AF_SPEC: 2547 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2548 NULL, 2549 host_to_target_data_spec_nlattr); 2550 default: 2551 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type); 2552 break; 2553 } 2554 return 0; 2555 } 2556 2557 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr) 2558 { 2559 uint32_t *u32; 2560 struct ifa_cacheinfo *ci; 2561 2562 switch (rtattr->rta_type) { 2563 /* binary: depends on family type */ 2564 case IFA_ADDRESS: 2565 case IFA_LOCAL: 2566 break; 2567 /* string */ 2568 case IFA_LABEL: 2569 break; 2570 /* u32 */ 2571 case IFA_FLAGS: 2572 case IFA_BROADCAST: 2573 u32 = RTA_DATA(rtattr); 2574 *u32 = tswap32(*u32); 2575 break; 2576 /* struct ifa_cacheinfo */ 2577 case IFA_CACHEINFO: 2578 ci = RTA_DATA(rtattr); 2579 ci->ifa_prefered = tswap32(ci->ifa_prefered); 2580 ci->ifa_valid = tswap32(ci->ifa_valid); 2581 ci->cstamp = tswap32(ci->cstamp); 2582 ci->tstamp = tswap32(ci->tstamp); 2583 break; 2584 default: 2585 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type); 2586 break; 2587 } 2588 return 0; 2589 } 2590 2591 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr) 2592 { 2593 uint32_t *u32; 2594 switch (rtattr->rta_type) { 2595 /* binary: depends on family type */ 2596 case RTA_GATEWAY: 2597 case RTA_DST: 2598 case RTA_PREFSRC: 2599 break; 2600 /* u32 */ 2601 case RTA_PRIORITY: 2602 case RTA_TABLE: 2603 case RTA_OIF: 2604 u32 = RTA_DATA(rtattr); 2605 *u32 = tswap32(*u32); 2606 break; 2607 default: 2608 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type); 2609 break; 2610 } 2611 return 0; 2612 } 2613 2614 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr, 2615 uint32_t rtattr_len) 2616 { 2617 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2618 host_to_target_data_link_rtattr); 2619 } 2620 2621 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr, 2622 uint32_t rtattr_len) 2623 { 2624 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2625 host_to_target_data_addr_rtattr); 2626 } 2627 2628 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr, 2629 uint32_t rtattr_len) 2630 { 2631 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2632 host_to_target_data_route_rtattr); 2633 } 2634 2635 static abi_long host_to_target_data_route(struct nlmsghdr *nlh) 2636 { 2637 uint32_t nlmsg_len; 2638 struct ifinfomsg *ifi; 2639 struct ifaddrmsg *ifa; 2640 struct rtmsg *rtm; 2641 2642 nlmsg_len = nlh->nlmsg_len; 2643 switch (nlh->nlmsg_type) { 2644 case RTM_NEWLINK: 2645 case RTM_DELLINK: 2646 case RTM_GETLINK: 2647 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2648 ifi = NLMSG_DATA(nlh); 2649 ifi->ifi_type = tswap16(ifi->ifi_type); 2650 ifi->ifi_index = tswap32(ifi->ifi_index); 2651 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2652 ifi->ifi_change = tswap32(ifi->ifi_change); 2653 host_to_target_link_rtattr(IFLA_RTA(ifi), 2654 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi))); 2655 } 2656 break; 2657 case RTM_NEWADDR: 2658 case RTM_DELADDR: 2659 case RTM_GETADDR: 2660 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2661 ifa = NLMSG_DATA(nlh); 2662 ifa->ifa_index = tswap32(ifa->ifa_index); 2663 host_to_target_addr_rtattr(IFA_RTA(ifa), 2664 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa))); 2665 } 2666 break; 2667 case RTM_NEWROUTE: 2668 case RTM_DELROUTE: 2669 case RTM_GETROUTE: 2670 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2671 rtm = NLMSG_DATA(nlh); 2672 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2673 host_to_target_route_rtattr(RTM_RTA(rtm), 2674 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm))); 2675 } 2676 break; 2677 default: 2678 return -TARGET_EINVAL; 2679 } 2680 return 0; 2681 } 2682 2683 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh, 2684 size_t len) 2685 { 2686 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route); 2687 } 2688 2689 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr, 2690 size_t len, 2691 abi_long (*target_to_host_rtattr) 2692 (struct rtattr *)) 2693 { 2694 abi_long ret; 2695 2696 while (len >= sizeof(struct rtattr)) { 2697 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) || 2698 tswap16(rtattr->rta_len) > len) { 2699 break; 2700 } 2701 rtattr->rta_len = tswap16(rtattr->rta_len); 2702 rtattr->rta_type = tswap16(rtattr->rta_type); 2703 ret = target_to_host_rtattr(rtattr); 2704 if (ret < 0) { 2705 return ret; 2706 } 2707 len -= RTA_ALIGN(rtattr->rta_len); 2708 rtattr = (struct rtattr *)(((char *)rtattr) + 2709 RTA_ALIGN(rtattr->rta_len)); 2710 } 2711 return 0; 2712 } 2713 2714 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr) 2715 { 2716 switch (rtattr->rta_type) { 2717 default: 2718 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type); 2719 break; 2720 } 2721 return 0; 2722 } 2723 2724 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr) 2725 { 2726 switch (rtattr->rta_type) { 2727 /* binary: depends on family type */ 2728 case IFA_LOCAL: 2729 case IFA_ADDRESS: 2730 break; 2731 default: 2732 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type); 2733 break; 2734 } 2735 return 0; 2736 } 2737 2738 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr) 2739 { 2740 uint32_t *u32; 2741 switch (rtattr->rta_type) { 2742 /* binary: depends on family type */ 2743 case RTA_DST: 2744 case RTA_SRC: 2745 case RTA_GATEWAY: 2746 break; 2747 /* u32 */ 2748 case RTA_PRIORITY: 2749 case RTA_OIF: 2750 u32 = RTA_DATA(rtattr); 2751 *u32 = tswap32(*u32); 2752 break; 2753 default: 2754 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type); 2755 break; 2756 } 2757 return 0; 2758 } 2759 2760 static void target_to_host_link_rtattr(struct rtattr *rtattr, 2761 uint32_t rtattr_len) 2762 { 2763 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2764 target_to_host_data_link_rtattr); 2765 } 2766 2767 static void target_to_host_addr_rtattr(struct rtattr *rtattr, 2768 uint32_t rtattr_len) 2769 { 2770 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2771 target_to_host_data_addr_rtattr); 2772 } 2773 2774 static void target_to_host_route_rtattr(struct rtattr *rtattr, 2775 uint32_t rtattr_len) 2776 { 2777 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2778 target_to_host_data_route_rtattr); 2779 } 2780 2781 static abi_long target_to_host_data_route(struct nlmsghdr *nlh) 2782 { 2783 struct ifinfomsg *ifi; 2784 struct ifaddrmsg *ifa; 2785 struct rtmsg *rtm; 2786 2787 switch (nlh->nlmsg_type) { 2788 case RTM_GETLINK: 2789 break; 2790 case RTM_NEWLINK: 2791 case RTM_DELLINK: 2792 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2793 ifi = NLMSG_DATA(nlh); 2794 ifi->ifi_type = tswap16(ifi->ifi_type); 2795 ifi->ifi_index = tswap32(ifi->ifi_index); 2796 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2797 ifi->ifi_change = tswap32(ifi->ifi_change); 2798 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len - 2799 NLMSG_LENGTH(sizeof(*ifi))); 2800 } 2801 break; 2802 case RTM_GETADDR: 2803 case RTM_NEWADDR: 2804 case RTM_DELADDR: 2805 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2806 ifa = NLMSG_DATA(nlh); 2807 ifa->ifa_index = tswap32(ifa->ifa_index); 2808 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len - 2809 NLMSG_LENGTH(sizeof(*ifa))); 2810 } 2811 break; 2812 case RTM_GETROUTE: 2813 break; 2814 case RTM_NEWROUTE: 2815 case RTM_DELROUTE: 2816 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2817 rtm = NLMSG_DATA(nlh); 2818 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2819 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len - 2820 NLMSG_LENGTH(sizeof(*rtm))); 2821 } 2822 break; 2823 default: 2824 return -TARGET_EOPNOTSUPP; 2825 } 2826 return 0; 2827 } 2828 2829 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len) 2830 { 2831 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route); 2832 } 2833 #endif /* CONFIG_RTNETLINK */ 2834 2835 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh) 2836 { 2837 switch (nlh->nlmsg_type) { 2838 default: 2839 gemu_log("Unknown host audit message type %d\n", 2840 nlh->nlmsg_type); 2841 return -TARGET_EINVAL; 2842 } 2843 return 0; 2844 } 2845 2846 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh, 2847 size_t len) 2848 { 2849 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit); 2850 } 2851 2852 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh) 2853 { 2854 switch (nlh->nlmsg_type) { 2855 case AUDIT_USER: 2856 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 2857 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 2858 break; 2859 default: 2860 gemu_log("Unknown target audit message type %d\n", 2861 nlh->nlmsg_type); 2862 return -TARGET_EINVAL; 2863 } 2864 2865 return 0; 2866 } 2867 2868 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len) 2869 { 2870 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit); 2871 } 2872 2873 /* do_setsockopt() Must return target values and target errnos. */ 2874 static abi_long do_setsockopt(int sockfd, int level, int optname, 2875 abi_ulong optval_addr, socklen_t optlen) 2876 { 2877 abi_long ret; 2878 int val; 2879 struct ip_mreqn *ip_mreq; 2880 struct ip_mreq_source *ip_mreq_source; 2881 2882 switch(level) { 2883 case SOL_TCP: 2884 /* TCP options all take an 'int' value. */ 2885 if (optlen < sizeof(uint32_t)) 2886 return -TARGET_EINVAL; 2887 2888 if (get_user_u32(val, optval_addr)) 2889 return -TARGET_EFAULT; 2890 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2891 break; 2892 case SOL_IP: 2893 switch(optname) { 2894 case IP_TOS: 2895 case IP_TTL: 2896 case IP_HDRINCL: 2897 case IP_ROUTER_ALERT: 2898 case IP_RECVOPTS: 2899 case IP_RETOPTS: 2900 case IP_PKTINFO: 2901 case IP_MTU_DISCOVER: 2902 case IP_RECVERR: 2903 case IP_RECVTTL: 2904 case IP_RECVTOS: 2905 #ifdef IP_FREEBIND 2906 case IP_FREEBIND: 2907 #endif 2908 case IP_MULTICAST_TTL: 2909 case IP_MULTICAST_LOOP: 2910 val = 0; 2911 if (optlen >= sizeof(uint32_t)) { 2912 if (get_user_u32(val, optval_addr)) 2913 return -TARGET_EFAULT; 2914 } else if (optlen >= 1) { 2915 if (get_user_u8(val, optval_addr)) 2916 return -TARGET_EFAULT; 2917 } 2918 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2919 break; 2920 case IP_ADD_MEMBERSHIP: 2921 case IP_DROP_MEMBERSHIP: 2922 if (optlen < sizeof (struct target_ip_mreq) || 2923 optlen > sizeof (struct target_ip_mreqn)) 2924 return -TARGET_EINVAL; 2925 2926 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2927 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2928 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2929 break; 2930 2931 case IP_BLOCK_SOURCE: 2932 case IP_UNBLOCK_SOURCE: 2933 case IP_ADD_SOURCE_MEMBERSHIP: 2934 case IP_DROP_SOURCE_MEMBERSHIP: 2935 if (optlen != sizeof (struct target_ip_mreq_source)) 2936 return -TARGET_EINVAL; 2937 2938 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2939 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2940 unlock_user (ip_mreq_source, optval_addr, 0); 2941 break; 2942 2943 default: 2944 goto unimplemented; 2945 } 2946 break; 2947 case SOL_IPV6: 2948 switch (optname) { 2949 case IPV6_MTU_DISCOVER: 2950 case IPV6_MTU: 2951 case IPV6_V6ONLY: 2952 case IPV6_RECVPKTINFO: 2953 case IPV6_UNICAST_HOPS: 2954 case IPV6_RECVERR: 2955 case IPV6_RECVHOPLIMIT: 2956 case IPV6_2292HOPLIMIT: 2957 case IPV6_CHECKSUM: 2958 val = 0; 2959 if (optlen < sizeof(uint32_t)) { 2960 return -TARGET_EINVAL; 2961 } 2962 if (get_user_u32(val, optval_addr)) { 2963 return -TARGET_EFAULT; 2964 } 2965 ret = get_errno(setsockopt(sockfd, level, optname, 2966 &val, sizeof(val))); 2967 break; 2968 case IPV6_PKTINFO: 2969 { 2970 struct in6_pktinfo pki; 2971 2972 if (optlen < sizeof(pki)) { 2973 return -TARGET_EINVAL; 2974 } 2975 2976 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2977 return -TARGET_EFAULT; 2978 } 2979 2980 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2981 2982 ret = get_errno(setsockopt(sockfd, level, optname, 2983 &pki, sizeof(pki))); 2984 break; 2985 } 2986 default: 2987 goto unimplemented; 2988 } 2989 break; 2990 case SOL_ICMPV6: 2991 switch (optname) { 2992 case ICMPV6_FILTER: 2993 { 2994 struct icmp6_filter icmp6f; 2995 2996 if (optlen > sizeof(icmp6f)) { 2997 optlen = sizeof(icmp6f); 2998 } 2999 3000 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 3001 return -TARGET_EFAULT; 3002 } 3003 3004 for (val = 0; val < 8; val++) { 3005 icmp6f.data[val] = tswap32(icmp6f.data[val]); 3006 } 3007 3008 ret = get_errno(setsockopt(sockfd, level, optname, 3009 &icmp6f, optlen)); 3010 break; 3011 } 3012 default: 3013 goto unimplemented; 3014 } 3015 break; 3016 case SOL_RAW: 3017 switch (optname) { 3018 case ICMP_FILTER: 3019 case IPV6_CHECKSUM: 3020 /* those take an u32 value */ 3021 if (optlen < sizeof(uint32_t)) { 3022 return -TARGET_EINVAL; 3023 } 3024 3025 if (get_user_u32(val, optval_addr)) { 3026 return -TARGET_EFAULT; 3027 } 3028 ret = get_errno(setsockopt(sockfd, level, optname, 3029 &val, sizeof(val))); 3030 break; 3031 3032 default: 3033 goto unimplemented; 3034 } 3035 break; 3036 case TARGET_SOL_SOCKET: 3037 switch (optname) { 3038 case TARGET_SO_RCVTIMEO: 3039 { 3040 struct timeval tv; 3041 3042 optname = SO_RCVTIMEO; 3043 3044 set_timeout: 3045 if (optlen != sizeof(struct target_timeval)) { 3046 return -TARGET_EINVAL; 3047 } 3048 3049 if (copy_from_user_timeval(&tv, optval_addr)) { 3050 return -TARGET_EFAULT; 3051 } 3052 3053 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 3054 &tv, sizeof(tv))); 3055 return ret; 3056 } 3057 case TARGET_SO_SNDTIMEO: 3058 optname = SO_SNDTIMEO; 3059 goto set_timeout; 3060 case TARGET_SO_ATTACH_FILTER: 3061 { 3062 struct target_sock_fprog *tfprog; 3063 struct target_sock_filter *tfilter; 3064 struct sock_fprog fprog; 3065 struct sock_filter *filter; 3066 int i; 3067 3068 if (optlen != sizeof(*tfprog)) { 3069 return -TARGET_EINVAL; 3070 } 3071 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 3072 return -TARGET_EFAULT; 3073 } 3074 if (!lock_user_struct(VERIFY_READ, tfilter, 3075 tswapal(tfprog->filter), 0)) { 3076 unlock_user_struct(tfprog, optval_addr, 1); 3077 return -TARGET_EFAULT; 3078 } 3079 3080 fprog.len = tswap16(tfprog->len); 3081 filter = g_try_new(struct sock_filter, fprog.len); 3082 if (filter == NULL) { 3083 unlock_user_struct(tfilter, tfprog->filter, 1); 3084 unlock_user_struct(tfprog, optval_addr, 1); 3085 return -TARGET_ENOMEM; 3086 } 3087 for (i = 0; i < fprog.len; i++) { 3088 filter[i].code = tswap16(tfilter[i].code); 3089 filter[i].jt = tfilter[i].jt; 3090 filter[i].jf = tfilter[i].jf; 3091 filter[i].k = tswap32(tfilter[i].k); 3092 } 3093 fprog.filter = filter; 3094 3095 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 3096 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 3097 g_free(filter); 3098 3099 unlock_user_struct(tfilter, tfprog->filter, 1); 3100 unlock_user_struct(tfprog, optval_addr, 1); 3101 return ret; 3102 } 3103 case TARGET_SO_BINDTODEVICE: 3104 { 3105 char *dev_ifname, *addr_ifname; 3106 3107 if (optlen > IFNAMSIZ - 1) { 3108 optlen = IFNAMSIZ - 1; 3109 } 3110 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 3111 if (!dev_ifname) { 3112 return -TARGET_EFAULT; 3113 } 3114 optname = SO_BINDTODEVICE; 3115 addr_ifname = alloca(IFNAMSIZ); 3116 memcpy(addr_ifname, dev_ifname, optlen); 3117 addr_ifname[optlen] = 0; 3118 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 3119 addr_ifname, optlen)); 3120 unlock_user (dev_ifname, optval_addr, 0); 3121 return ret; 3122 } 3123 /* Options with 'int' argument. */ 3124 case TARGET_SO_DEBUG: 3125 optname = SO_DEBUG; 3126 break; 3127 case TARGET_SO_REUSEADDR: 3128 optname = SO_REUSEADDR; 3129 break; 3130 case TARGET_SO_TYPE: 3131 optname = SO_TYPE; 3132 break; 3133 case TARGET_SO_ERROR: 3134 optname = SO_ERROR; 3135 break; 3136 case TARGET_SO_DONTROUTE: 3137 optname = SO_DONTROUTE; 3138 break; 3139 case TARGET_SO_BROADCAST: 3140 optname = SO_BROADCAST; 3141 break; 3142 case TARGET_SO_SNDBUF: 3143 optname = SO_SNDBUF; 3144 break; 3145 case TARGET_SO_SNDBUFFORCE: 3146 optname = SO_SNDBUFFORCE; 3147 break; 3148 case TARGET_SO_RCVBUF: 3149 optname = SO_RCVBUF; 3150 break; 3151 case TARGET_SO_RCVBUFFORCE: 3152 optname = SO_RCVBUFFORCE; 3153 break; 3154 case TARGET_SO_KEEPALIVE: 3155 optname = SO_KEEPALIVE; 3156 break; 3157 case TARGET_SO_OOBINLINE: 3158 optname = SO_OOBINLINE; 3159 break; 3160 case TARGET_SO_NO_CHECK: 3161 optname = SO_NO_CHECK; 3162 break; 3163 case TARGET_SO_PRIORITY: 3164 optname = SO_PRIORITY; 3165 break; 3166 #ifdef SO_BSDCOMPAT 3167 case TARGET_SO_BSDCOMPAT: 3168 optname = SO_BSDCOMPAT; 3169 break; 3170 #endif 3171 case TARGET_SO_PASSCRED: 3172 optname = SO_PASSCRED; 3173 break; 3174 case TARGET_SO_PASSSEC: 3175 optname = SO_PASSSEC; 3176 break; 3177 case TARGET_SO_TIMESTAMP: 3178 optname = SO_TIMESTAMP; 3179 break; 3180 case TARGET_SO_RCVLOWAT: 3181 optname = SO_RCVLOWAT; 3182 break; 3183 default: 3184 goto unimplemented; 3185 } 3186 if (optlen < sizeof(uint32_t)) 3187 return -TARGET_EINVAL; 3188 3189 if (get_user_u32(val, optval_addr)) 3190 return -TARGET_EFAULT; 3191 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 3192 break; 3193 default: 3194 unimplemented: 3195 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname); 3196 ret = -TARGET_ENOPROTOOPT; 3197 } 3198 return ret; 3199 } 3200 3201 /* do_getsockopt() Must return target values and target errnos. */ 3202 static abi_long do_getsockopt(int sockfd, int level, int optname, 3203 abi_ulong optval_addr, abi_ulong optlen) 3204 { 3205 abi_long ret; 3206 int len, val; 3207 socklen_t lv; 3208 3209 switch(level) { 3210 case TARGET_SOL_SOCKET: 3211 level = SOL_SOCKET; 3212 switch (optname) { 3213 /* These don't just return a single integer */ 3214 case TARGET_SO_LINGER: 3215 case TARGET_SO_RCVTIMEO: 3216 case TARGET_SO_SNDTIMEO: 3217 case TARGET_SO_PEERNAME: 3218 goto unimplemented; 3219 case TARGET_SO_PEERCRED: { 3220 struct ucred cr; 3221 socklen_t crlen; 3222 struct target_ucred *tcr; 3223 3224 if (get_user_u32(len, optlen)) { 3225 return -TARGET_EFAULT; 3226 } 3227 if (len < 0) { 3228 return -TARGET_EINVAL; 3229 } 3230 3231 crlen = sizeof(cr); 3232 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 3233 &cr, &crlen)); 3234 if (ret < 0) { 3235 return ret; 3236 } 3237 if (len > crlen) { 3238 len = crlen; 3239 } 3240 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 3241 return -TARGET_EFAULT; 3242 } 3243 __put_user(cr.pid, &tcr->pid); 3244 __put_user(cr.uid, &tcr->uid); 3245 __put_user(cr.gid, &tcr->gid); 3246 unlock_user_struct(tcr, optval_addr, 1); 3247 if (put_user_u32(len, optlen)) { 3248 return -TARGET_EFAULT; 3249 } 3250 break; 3251 } 3252 /* Options with 'int' argument. */ 3253 case TARGET_SO_DEBUG: 3254 optname = SO_DEBUG; 3255 goto int_case; 3256 case TARGET_SO_REUSEADDR: 3257 optname = SO_REUSEADDR; 3258 goto int_case; 3259 case TARGET_SO_TYPE: 3260 optname = SO_TYPE; 3261 goto int_case; 3262 case TARGET_SO_ERROR: 3263 optname = SO_ERROR; 3264 goto int_case; 3265 case TARGET_SO_DONTROUTE: 3266 optname = SO_DONTROUTE; 3267 goto int_case; 3268 case TARGET_SO_BROADCAST: 3269 optname = SO_BROADCAST; 3270 goto int_case; 3271 case TARGET_SO_SNDBUF: 3272 optname = SO_SNDBUF; 3273 goto int_case; 3274 case TARGET_SO_RCVBUF: 3275 optname = SO_RCVBUF; 3276 goto int_case; 3277 case TARGET_SO_KEEPALIVE: 3278 optname = SO_KEEPALIVE; 3279 goto int_case; 3280 case TARGET_SO_OOBINLINE: 3281 optname = SO_OOBINLINE; 3282 goto int_case; 3283 case TARGET_SO_NO_CHECK: 3284 optname = SO_NO_CHECK; 3285 goto int_case; 3286 case TARGET_SO_PRIORITY: 3287 optname = SO_PRIORITY; 3288 goto int_case; 3289 #ifdef SO_BSDCOMPAT 3290 case TARGET_SO_BSDCOMPAT: 3291 optname = SO_BSDCOMPAT; 3292 goto int_case; 3293 #endif 3294 case TARGET_SO_PASSCRED: 3295 optname = SO_PASSCRED; 3296 goto int_case; 3297 case TARGET_SO_TIMESTAMP: 3298 optname = SO_TIMESTAMP; 3299 goto int_case; 3300 case TARGET_SO_RCVLOWAT: 3301 optname = SO_RCVLOWAT; 3302 goto int_case; 3303 case TARGET_SO_ACCEPTCONN: 3304 optname = SO_ACCEPTCONN; 3305 goto int_case; 3306 default: 3307 goto int_case; 3308 } 3309 break; 3310 case SOL_TCP: 3311 /* TCP options all take an 'int' value. */ 3312 int_case: 3313 if (get_user_u32(len, optlen)) 3314 return -TARGET_EFAULT; 3315 if (len < 0) 3316 return -TARGET_EINVAL; 3317 lv = sizeof(lv); 3318 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3319 if (ret < 0) 3320 return ret; 3321 if (optname == SO_TYPE) { 3322 val = host_to_target_sock_type(val); 3323 } 3324 if (len > lv) 3325 len = lv; 3326 if (len == 4) { 3327 if (put_user_u32(val, optval_addr)) 3328 return -TARGET_EFAULT; 3329 } else { 3330 if (put_user_u8(val, optval_addr)) 3331 return -TARGET_EFAULT; 3332 } 3333 if (put_user_u32(len, optlen)) 3334 return -TARGET_EFAULT; 3335 break; 3336 case SOL_IP: 3337 switch(optname) { 3338 case IP_TOS: 3339 case IP_TTL: 3340 case IP_HDRINCL: 3341 case IP_ROUTER_ALERT: 3342 case IP_RECVOPTS: 3343 case IP_RETOPTS: 3344 case IP_PKTINFO: 3345 case IP_MTU_DISCOVER: 3346 case IP_RECVERR: 3347 case IP_RECVTOS: 3348 #ifdef IP_FREEBIND 3349 case IP_FREEBIND: 3350 #endif 3351 case IP_MULTICAST_TTL: 3352 case IP_MULTICAST_LOOP: 3353 if (get_user_u32(len, optlen)) 3354 return -TARGET_EFAULT; 3355 if (len < 0) 3356 return -TARGET_EINVAL; 3357 lv = sizeof(lv); 3358 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3359 if (ret < 0) 3360 return ret; 3361 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 3362 len = 1; 3363 if (put_user_u32(len, optlen) 3364 || put_user_u8(val, optval_addr)) 3365 return -TARGET_EFAULT; 3366 } else { 3367 if (len > sizeof(int)) 3368 len = sizeof(int); 3369 if (put_user_u32(len, optlen) 3370 || put_user_u32(val, optval_addr)) 3371 return -TARGET_EFAULT; 3372 } 3373 break; 3374 default: 3375 ret = -TARGET_ENOPROTOOPT; 3376 break; 3377 } 3378 break; 3379 default: 3380 unimplemented: 3381 gemu_log("getsockopt level=%d optname=%d not yet supported\n", 3382 level, optname); 3383 ret = -TARGET_EOPNOTSUPP; 3384 break; 3385 } 3386 return ret; 3387 } 3388 3389 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 3390 abi_ulong count, int copy) 3391 { 3392 struct target_iovec *target_vec; 3393 struct iovec *vec; 3394 abi_ulong total_len, max_len; 3395 int i; 3396 int err = 0; 3397 bool bad_address = false; 3398 3399 if (count == 0) { 3400 errno = 0; 3401 return NULL; 3402 } 3403 if (count > IOV_MAX) { 3404 errno = EINVAL; 3405 return NULL; 3406 } 3407 3408 vec = g_try_new0(struct iovec, count); 3409 if (vec == NULL) { 3410 errno = ENOMEM; 3411 return NULL; 3412 } 3413 3414 target_vec = lock_user(VERIFY_READ, target_addr, 3415 count * sizeof(struct target_iovec), 1); 3416 if (target_vec == NULL) { 3417 err = EFAULT; 3418 goto fail2; 3419 } 3420 3421 /* ??? If host page size > target page size, this will result in a 3422 value larger than what we can actually support. */ 3423 max_len = 0x7fffffff & TARGET_PAGE_MASK; 3424 total_len = 0; 3425 3426 for (i = 0; i < count; i++) { 3427 abi_ulong base = tswapal(target_vec[i].iov_base); 3428 abi_long len = tswapal(target_vec[i].iov_len); 3429 3430 if (len < 0) { 3431 err = EINVAL; 3432 goto fail; 3433 } else if (len == 0) { 3434 /* Zero length pointer is ignored. */ 3435 vec[i].iov_base = 0; 3436 } else { 3437 vec[i].iov_base = lock_user(type, base, len, copy); 3438 /* If the first buffer pointer is bad, this is a fault. But 3439 * subsequent bad buffers will result in a partial write; this 3440 * is realized by filling the vector with null pointers and 3441 * zero lengths. */ 3442 if (!vec[i].iov_base) { 3443 if (i == 0) { 3444 err = EFAULT; 3445 goto fail; 3446 } else { 3447 bad_address = true; 3448 } 3449 } 3450 if (bad_address) { 3451 len = 0; 3452 } 3453 if (len > max_len - total_len) { 3454 len = max_len - total_len; 3455 } 3456 } 3457 vec[i].iov_len = len; 3458 total_len += len; 3459 } 3460 3461 unlock_user(target_vec, target_addr, 0); 3462 return vec; 3463 3464 fail: 3465 while (--i >= 0) { 3466 if (tswapal(target_vec[i].iov_len) > 0) { 3467 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3468 } 3469 } 3470 unlock_user(target_vec, target_addr, 0); 3471 fail2: 3472 g_free(vec); 3473 errno = err; 3474 return NULL; 3475 } 3476 3477 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3478 abi_ulong count, int copy) 3479 { 3480 struct target_iovec *target_vec; 3481 int i; 3482 3483 target_vec = lock_user(VERIFY_READ, target_addr, 3484 count * sizeof(struct target_iovec), 1); 3485 if (target_vec) { 3486 for (i = 0; i < count; i++) { 3487 abi_ulong base = tswapal(target_vec[i].iov_base); 3488 abi_long len = tswapal(target_vec[i].iov_len); 3489 if (len < 0) { 3490 break; 3491 } 3492 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3493 } 3494 unlock_user(target_vec, target_addr, 0); 3495 } 3496 3497 g_free(vec); 3498 } 3499 3500 static inline int target_to_host_sock_type(int *type) 3501 { 3502 int host_type = 0; 3503 int target_type = *type; 3504 3505 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3506 case TARGET_SOCK_DGRAM: 3507 host_type = SOCK_DGRAM; 3508 break; 3509 case TARGET_SOCK_STREAM: 3510 host_type = SOCK_STREAM; 3511 break; 3512 default: 3513 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3514 break; 3515 } 3516 if (target_type & TARGET_SOCK_CLOEXEC) { 3517 #if defined(SOCK_CLOEXEC) 3518 host_type |= SOCK_CLOEXEC; 3519 #else 3520 return -TARGET_EINVAL; 3521 #endif 3522 } 3523 if (target_type & TARGET_SOCK_NONBLOCK) { 3524 #if defined(SOCK_NONBLOCK) 3525 host_type |= SOCK_NONBLOCK; 3526 #elif !defined(O_NONBLOCK) 3527 return -TARGET_EINVAL; 3528 #endif 3529 } 3530 *type = host_type; 3531 return 0; 3532 } 3533 3534 /* Try to emulate socket type flags after socket creation. */ 3535 static int sock_flags_fixup(int fd, int target_type) 3536 { 3537 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3538 if (target_type & TARGET_SOCK_NONBLOCK) { 3539 int flags = fcntl(fd, F_GETFL); 3540 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3541 close(fd); 3542 return -TARGET_EINVAL; 3543 } 3544 } 3545 #endif 3546 return fd; 3547 } 3548 3549 static abi_long packet_target_to_host_sockaddr(void *host_addr, 3550 abi_ulong target_addr, 3551 socklen_t len) 3552 { 3553 struct sockaddr *addr = host_addr; 3554 struct target_sockaddr *target_saddr; 3555 3556 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 3557 if (!target_saddr) { 3558 return -TARGET_EFAULT; 3559 } 3560 3561 memcpy(addr, target_saddr, len); 3562 addr->sa_family = tswap16(target_saddr->sa_family); 3563 /* spkt_protocol is big-endian */ 3564 3565 unlock_user(target_saddr, target_addr, 0); 3566 return 0; 3567 } 3568 3569 static TargetFdTrans target_packet_trans = { 3570 .target_to_host_addr = packet_target_to_host_sockaddr, 3571 }; 3572 3573 #ifdef CONFIG_RTNETLINK 3574 static abi_long netlink_route_target_to_host(void *buf, size_t len) 3575 { 3576 abi_long ret; 3577 3578 ret = target_to_host_nlmsg_route(buf, len); 3579 if (ret < 0) { 3580 return ret; 3581 } 3582 3583 return len; 3584 } 3585 3586 static abi_long netlink_route_host_to_target(void *buf, size_t len) 3587 { 3588 abi_long ret; 3589 3590 ret = host_to_target_nlmsg_route(buf, len); 3591 if (ret < 0) { 3592 return ret; 3593 } 3594 3595 return len; 3596 } 3597 3598 static TargetFdTrans target_netlink_route_trans = { 3599 .target_to_host_data = netlink_route_target_to_host, 3600 .host_to_target_data = netlink_route_host_to_target, 3601 }; 3602 #endif /* CONFIG_RTNETLINK */ 3603 3604 static abi_long netlink_audit_target_to_host(void *buf, size_t len) 3605 { 3606 abi_long ret; 3607 3608 ret = target_to_host_nlmsg_audit(buf, len); 3609 if (ret < 0) { 3610 return ret; 3611 } 3612 3613 return len; 3614 } 3615 3616 static abi_long netlink_audit_host_to_target(void *buf, size_t len) 3617 { 3618 abi_long ret; 3619 3620 ret = host_to_target_nlmsg_audit(buf, len); 3621 if (ret < 0) { 3622 return ret; 3623 } 3624 3625 return len; 3626 } 3627 3628 static TargetFdTrans target_netlink_audit_trans = { 3629 .target_to_host_data = netlink_audit_target_to_host, 3630 .host_to_target_data = netlink_audit_host_to_target, 3631 }; 3632 3633 /* do_socket() Must return target values and target errnos. */ 3634 static abi_long do_socket(int domain, int type, int protocol) 3635 { 3636 int target_type = type; 3637 int ret; 3638 3639 ret = target_to_host_sock_type(&type); 3640 if (ret) { 3641 return ret; 3642 } 3643 3644 if (domain == PF_NETLINK && !( 3645 #ifdef CONFIG_RTNETLINK 3646 protocol == NETLINK_ROUTE || 3647 #endif 3648 protocol == NETLINK_KOBJECT_UEVENT || 3649 protocol == NETLINK_AUDIT)) { 3650 return -EPFNOSUPPORT; 3651 } 3652 3653 if (domain == AF_PACKET || 3654 (domain == AF_INET && type == SOCK_PACKET)) { 3655 protocol = tswap16(protocol); 3656 } 3657 3658 ret = get_errno(socket(domain, type, protocol)); 3659 if (ret >= 0) { 3660 ret = sock_flags_fixup(ret, target_type); 3661 if (type == SOCK_PACKET) { 3662 /* Manage an obsolete case : 3663 * if socket type is SOCK_PACKET, bind by name 3664 */ 3665 fd_trans_register(ret, &target_packet_trans); 3666 } else if (domain == PF_NETLINK) { 3667 switch (protocol) { 3668 #ifdef CONFIG_RTNETLINK 3669 case NETLINK_ROUTE: 3670 fd_trans_register(ret, &target_netlink_route_trans); 3671 break; 3672 #endif 3673 case NETLINK_KOBJECT_UEVENT: 3674 /* nothing to do: messages are strings */ 3675 break; 3676 case NETLINK_AUDIT: 3677 fd_trans_register(ret, &target_netlink_audit_trans); 3678 break; 3679 default: 3680 g_assert_not_reached(); 3681 } 3682 } 3683 } 3684 return ret; 3685 } 3686 3687 /* do_bind() Must return target values and target errnos. */ 3688 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3689 socklen_t addrlen) 3690 { 3691 void *addr; 3692 abi_long ret; 3693 3694 if ((int)addrlen < 0) { 3695 return -TARGET_EINVAL; 3696 } 3697 3698 addr = alloca(addrlen+1); 3699 3700 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3701 if (ret) 3702 return ret; 3703 3704 return get_errno(bind(sockfd, addr, addrlen)); 3705 } 3706 3707 /* do_connect() Must return target values and target errnos. */ 3708 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3709 socklen_t addrlen) 3710 { 3711 void *addr; 3712 abi_long ret; 3713 3714 if ((int)addrlen < 0) { 3715 return -TARGET_EINVAL; 3716 } 3717 3718 addr = alloca(addrlen+1); 3719 3720 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3721 if (ret) 3722 return ret; 3723 3724 return get_errno(safe_connect(sockfd, addr, addrlen)); 3725 } 3726 3727 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3728 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3729 int flags, int send) 3730 { 3731 abi_long ret, len; 3732 struct msghdr msg; 3733 abi_ulong count; 3734 struct iovec *vec; 3735 abi_ulong target_vec; 3736 3737 if (msgp->msg_name) { 3738 msg.msg_namelen = tswap32(msgp->msg_namelen); 3739 msg.msg_name = alloca(msg.msg_namelen+1); 3740 ret = target_to_host_sockaddr(fd, msg.msg_name, 3741 tswapal(msgp->msg_name), 3742 msg.msg_namelen); 3743 if (ret == -TARGET_EFAULT) { 3744 /* For connected sockets msg_name and msg_namelen must 3745 * be ignored, so returning EFAULT immediately is wrong. 3746 * Instead, pass a bad msg_name to the host kernel, and 3747 * let it decide whether to return EFAULT or not. 3748 */ 3749 msg.msg_name = (void *)-1; 3750 } else if (ret) { 3751 goto out2; 3752 } 3753 } else { 3754 msg.msg_name = NULL; 3755 msg.msg_namelen = 0; 3756 } 3757 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3758 msg.msg_control = alloca(msg.msg_controllen); 3759 msg.msg_flags = tswap32(msgp->msg_flags); 3760 3761 count = tswapal(msgp->msg_iovlen); 3762 target_vec = tswapal(msgp->msg_iov); 3763 3764 if (count > IOV_MAX) { 3765 /* sendrcvmsg returns a different errno for this condition than 3766 * readv/writev, so we must catch it here before lock_iovec() does. 3767 */ 3768 ret = -TARGET_EMSGSIZE; 3769 goto out2; 3770 } 3771 3772 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3773 target_vec, count, send); 3774 if (vec == NULL) { 3775 ret = -host_to_target_errno(errno); 3776 goto out2; 3777 } 3778 msg.msg_iovlen = count; 3779 msg.msg_iov = vec; 3780 3781 if (send) { 3782 if (fd_trans_target_to_host_data(fd)) { 3783 void *host_msg; 3784 3785 host_msg = g_malloc(msg.msg_iov->iov_len); 3786 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3787 ret = fd_trans_target_to_host_data(fd)(host_msg, 3788 msg.msg_iov->iov_len); 3789 if (ret >= 0) { 3790 msg.msg_iov->iov_base = host_msg; 3791 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3792 } 3793 g_free(host_msg); 3794 } else { 3795 ret = target_to_host_cmsg(&msg, msgp); 3796 if (ret == 0) { 3797 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3798 } 3799 } 3800 } else { 3801 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3802 if (!is_error(ret)) { 3803 len = ret; 3804 if (fd_trans_host_to_target_data(fd)) { 3805 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3806 len); 3807 } else { 3808 ret = host_to_target_cmsg(msgp, &msg); 3809 } 3810 if (!is_error(ret)) { 3811 msgp->msg_namelen = tswap32(msg.msg_namelen); 3812 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3813 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3814 msg.msg_name, msg.msg_namelen); 3815 if (ret) { 3816 goto out; 3817 } 3818 } 3819 3820 ret = len; 3821 } 3822 } 3823 } 3824 3825 out: 3826 unlock_iovec(vec, target_vec, count, !send); 3827 out2: 3828 return ret; 3829 } 3830 3831 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3832 int flags, int send) 3833 { 3834 abi_long ret; 3835 struct target_msghdr *msgp; 3836 3837 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3838 msgp, 3839 target_msg, 3840 send ? 1 : 0)) { 3841 return -TARGET_EFAULT; 3842 } 3843 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3844 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3845 return ret; 3846 } 3847 3848 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3849 * so it might not have this *mmsg-specific flag either. 3850 */ 3851 #ifndef MSG_WAITFORONE 3852 #define MSG_WAITFORONE 0x10000 3853 #endif 3854 3855 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3856 unsigned int vlen, unsigned int flags, 3857 int send) 3858 { 3859 struct target_mmsghdr *mmsgp; 3860 abi_long ret = 0; 3861 int i; 3862 3863 if (vlen > UIO_MAXIOV) { 3864 vlen = UIO_MAXIOV; 3865 } 3866 3867 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3868 if (!mmsgp) { 3869 return -TARGET_EFAULT; 3870 } 3871 3872 for (i = 0; i < vlen; i++) { 3873 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3874 if (is_error(ret)) { 3875 break; 3876 } 3877 mmsgp[i].msg_len = tswap32(ret); 3878 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3879 if (flags & MSG_WAITFORONE) { 3880 flags |= MSG_DONTWAIT; 3881 } 3882 } 3883 3884 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3885 3886 /* Return number of datagrams sent if we sent any at all; 3887 * otherwise return the error. 3888 */ 3889 if (i) { 3890 return i; 3891 } 3892 return ret; 3893 } 3894 3895 /* do_accept4() Must return target values and target errnos. */ 3896 static abi_long do_accept4(int fd, abi_ulong target_addr, 3897 abi_ulong target_addrlen_addr, int flags) 3898 { 3899 socklen_t addrlen; 3900 void *addr; 3901 abi_long ret; 3902 int host_flags; 3903 3904 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 3905 3906 if (target_addr == 0) { 3907 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3908 } 3909 3910 /* linux returns EINVAL if addrlen pointer is invalid */ 3911 if (get_user_u32(addrlen, target_addrlen_addr)) 3912 return -TARGET_EINVAL; 3913 3914 if ((int)addrlen < 0) { 3915 return -TARGET_EINVAL; 3916 } 3917 3918 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3919 return -TARGET_EINVAL; 3920 3921 addr = alloca(addrlen); 3922 3923 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags)); 3924 if (!is_error(ret)) { 3925 host_to_target_sockaddr(target_addr, addr, addrlen); 3926 if (put_user_u32(addrlen, target_addrlen_addr)) 3927 ret = -TARGET_EFAULT; 3928 } 3929 return ret; 3930 } 3931 3932 /* do_getpeername() Must return target values and target errnos. */ 3933 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3934 abi_ulong target_addrlen_addr) 3935 { 3936 socklen_t addrlen; 3937 void *addr; 3938 abi_long ret; 3939 3940 if (get_user_u32(addrlen, target_addrlen_addr)) 3941 return -TARGET_EFAULT; 3942 3943 if ((int)addrlen < 0) { 3944 return -TARGET_EINVAL; 3945 } 3946 3947 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3948 return -TARGET_EFAULT; 3949 3950 addr = alloca(addrlen); 3951 3952 ret = get_errno(getpeername(fd, addr, &addrlen)); 3953 if (!is_error(ret)) { 3954 host_to_target_sockaddr(target_addr, addr, addrlen); 3955 if (put_user_u32(addrlen, target_addrlen_addr)) 3956 ret = -TARGET_EFAULT; 3957 } 3958 return ret; 3959 } 3960 3961 /* do_getsockname() Must return target values and target errnos. */ 3962 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3963 abi_ulong target_addrlen_addr) 3964 { 3965 socklen_t addrlen; 3966 void *addr; 3967 abi_long ret; 3968 3969 if (get_user_u32(addrlen, target_addrlen_addr)) 3970 return -TARGET_EFAULT; 3971 3972 if ((int)addrlen < 0) { 3973 return -TARGET_EINVAL; 3974 } 3975 3976 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3977 return -TARGET_EFAULT; 3978 3979 addr = alloca(addrlen); 3980 3981 ret = get_errno(getsockname(fd, addr, &addrlen)); 3982 if (!is_error(ret)) { 3983 host_to_target_sockaddr(target_addr, addr, addrlen); 3984 if (put_user_u32(addrlen, target_addrlen_addr)) 3985 ret = -TARGET_EFAULT; 3986 } 3987 return ret; 3988 } 3989 3990 /* do_socketpair() Must return target values and target errnos. */ 3991 static abi_long do_socketpair(int domain, int type, int protocol, 3992 abi_ulong target_tab_addr) 3993 { 3994 int tab[2]; 3995 abi_long ret; 3996 3997 target_to_host_sock_type(&type); 3998 3999 ret = get_errno(socketpair(domain, type, protocol, tab)); 4000 if (!is_error(ret)) { 4001 if (put_user_s32(tab[0], target_tab_addr) 4002 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 4003 ret = -TARGET_EFAULT; 4004 } 4005 return ret; 4006 } 4007 4008 /* do_sendto() Must return target values and target errnos. */ 4009 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 4010 abi_ulong target_addr, socklen_t addrlen) 4011 { 4012 void *addr; 4013 void *host_msg; 4014 void *copy_msg = NULL; 4015 abi_long ret; 4016 4017 if ((int)addrlen < 0) { 4018 return -TARGET_EINVAL; 4019 } 4020 4021 host_msg = lock_user(VERIFY_READ, msg, len, 1); 4022 if (!host_msg) 4023 return -TARGET_EFAULT; 4024 if (fd_trans_target_to_host_data(fd)) { 4025 copy_msg = host_msg; 4026 host_msg = g_malloc(len); 4027 memcpy(host_msg, copy_msg, len); 4028 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 4029 if (ret < 0) { 4030 goto fail; 4031 } 4032 } 4033 if (target_addr) { 4034 addr = alloca(addrlen+1); 4035 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 4036 if (ret) { 4037 goto fail; 4038 } 4039 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 4040 } else { 4041 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 4042 } 4043 fail: 4044 if (copy_msg) { 4045 g_free(host_msg); 4046 host_msg = copy_msg; 4047 } 4048 unlock_user(host_msg, msg, 0); 4049 return ret; 4050 } 4051 4052 /* do_recvfrom() Must return target values and target errnos. */ 4053 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 4054 abi_ulong target_addr, 4055 abi_ulong target_addrlen) 4056 { 4057 socklen_t addrlen; 4058 void *addr; 4059 void *host_msg; 4060 abi_long ret; 4061 4062 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 4063 if (!host_msg) 4064 return -TARGET_EFAULT; 4065 if (target_addr) { 4066 if (get_user_u32(addrlen, target_addrlen)) { 4067 ret = -TARGET_EFAULT; 4068 goto fail; 4069 } 4070 if ((int)addrlen < 0) { 4071 ret = -TARGET_EINVAL; 4072 goto fail; 4073 } 4074 addr = alloca(addrlen); 4075 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 4076 addr, &addrlen)); 4077 } else { 4078 addr = NULL; /* To keep compiler quiet. */ 4079 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 4080 } 4081 if (!is_error(ret)) { 4082 if (fd_trans_host_to_target_data(fd)) { 4083 ret = fd_trans_host_to_target_data(fd)(host_msg, ret); 4084 } 4085 if (target_addr) { 4086 host_to_target_sockaddr(target_addr, addr, addrlen); 4087 if (put_user_u32(addrlen, target_addrlen)) { 4088 ret = -TARGET_EFAULT; 4089 goto fail; 4090 } 4091 } 4092 unlock_user(host_msg, msg, len); 4093 } else { 4094 fail: 4095 unlock_user(host_msg, msg, 0); 4096 } 4097 return ret; 4098 } 4099 4100 #ifdef TARGET_NR_socketcall 4101 /* do_socketcall() must return target values and target errnos. */ 4102 static abi_long do_socketcall(int num, abi_ulong vptr) 4103 { 4104 static const unsigned nargs[] = { /* number of arguments per operation */ 4105 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 4106 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 4107 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 4108 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 4109 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 4110 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 4111 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 4112 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 4113 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 4114 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 4115 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 4116 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 4117 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 4118 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 4119 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 4120 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 4121 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 4122 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 4123 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 4124 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 4125 }; 4126 abi_long a[6]; /* max 6 args */ 4127 unsigned i; 4128 4129 /* check the range of the first argument num */ 4130 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 4131 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 4132 return -TARGET_EINVAL; 4133 } 4134 /* ensure we have space for args */ 4135 if (nargs[num] > ARRAY_SIZE(a)) { 4136 return -TARGET_EINVAL; 4137 } 4138 /* collect the arguments in a[] according to nargs[] */ 4139 for (i = 0; i < nargs[num]; ++i) { 4140 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 4141 return -TARGET_EFAULT; 4142 } 4143 } 4144 /* now when we have the args, invoke the appropriate underlying function */ 4145 switch (num) { 4146 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 4147 return do_socket(a[0], a[1], a[2]); 4148 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 4149 return do_bind(a[0], a[1], a[2]); 4150 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 4151 return do_connect(a[0], a[1], a[2]); 4152 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 4153 return get_errno(listen(a[0], a[1])); 4154 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 4155 return do_accept4(a[0], a[1], a[2], 0); 4156 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 4157 return do_getsockname(a[0], a[1], a[2]); 4158 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 4159 return do_getpeername(a[0], a[1], a[2]); 4160 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 4161 return do_socketpair(a[0], a[1], a[2], a[3]); 4162 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 4163 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 4164 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 4165 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 4166 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 4167 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 4168 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 4169 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 4170 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 4171 return get_errno(shutdown(a[0], a[1])); 4172 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 4173 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 4174 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 4175 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 4176 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 4177 return do_sendrecvmsg(a[0], a[1], a[2], 1); 4178 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 4179 return do_sendrecvmsg(a[0], a[1], a[2], 0); 4180 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 4181 return do_accept4(a[0], a[1], a[2], a[3]); 4182 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 4183 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 4184 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 4185 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 4186 default: 4187 gemu_log("Unsupported socketcall: %d\n", num); 4188 return -TARGET_EINVAL; 4189 } 4190 } 4191 #endif 4192 4193 #define N_SHM_REGIONS 32 4194 4195 static struct shm_region { 4196 abi_ulong start; 4197 abi_ulong size; 4198 bool in_use; 4199 } shm_regions[N_SHM_REGIONS]; 4200 4201 #ifndef TARGET_SEMID64_DS 4202 /* asm-generic version of this struct */ 4203 struct target_semid64_ds 4204 { 4205 struct target_ipc_perm sem_perm; 4206 abi_ulong sem_otime; 4207 #if TARGET_ABI_BITS == 32 4208 abi_ulong __unused1; 4209 #endif 4210 abi_ulong sem_ctime; 4211 #if TARGET_ABI_BITS == 32 4212 abi_ulong __unused2; 4213 #endif 4214 abi_ulong sem_nsems; 4215 abi_ulong __unused3; 4216 abi_ulong __unused4; 4217 }; 4218 #endif 4219 4220 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 4221 abi_ulong target_addr) 4222 { 4223 struct target_ipc_perm *target_ip; 4224 struct target_semid64_ds *target_sd; 4225 4226 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4227 return -TARGET_EFAULT; 4228 target_ip = &(target_sd->sem_perm); 4229 host_ip->__key = tswap32(target_ip->__key); 4230 host_ip->uid = tswap32(target_ip->uid); 4231 host_ip->gid = tswap32(target_ip->gid); 4232 host_ip->cuid = tswap32(target_ip->cuid); 4233 host_ip->cgid = tswap32(target_ip->cgid); 4234 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4235 host_ip->mode = tswap32(target_ip->mode); 4236 #else 4237 host_ip->mode = tswap16(target_ip->mode); 4238 #endif 4239 #if defined(TARGET_PPC) 4240 host_ip->__seq = tswap32(target_ip->__seq); 4241 #else 4242 host_ip->__seq = tswap16(target_ip->__seq); 4243 #endif 4244 unlock_user_struct(target_sd, target_addr, 0); 4245 return 0; 4246 } 4247 4248 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 4249 struct ipc_perm *host_ip) 4250 { 4251 struct target_ipc_perm *target_ip; 4252 struct target_semid64_ds *target_sd; 4253 4254 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4255 return -TARGET_EFAULT; 4256 target_ip = &(target_sd->sem_perm); 4257 target_ip->__key = tswap32(host_ip->__key); 4258 target_ip->uid = tswap32(host_ip->uid); 4259 target_ip->gid = tswap32(host_ip->gid); 4260 target_ip->cuid = tswap32(host_ip->cuid); 4261 target_ip->cgid = tswap32(host_ip->cgid); 4262 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4263 target_ip->mode = tswap32(host_ip->mode); 4264 #else 4265 target_ip->mode = tswap16(host_ip->mode); 4266 #endif 4267 #if defined(TARGET_PPC) 4268 target_ip->__seq = tswap32(host_ip->__seq); 4269 #else 4270 target_ip->__seq = tswap16(host_ip->__seq); 4271 #endif 4272 unlock_user_struct(target_sd, target_addr, 1); 4273 return 0; 4274 } 4275 4276 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 4277 abi_ulong target_addr) 4278 { 4279 struct target_semid64_ds *target_sd; 4280 4281 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4282 return -TARGET_EFAULT; 4283 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 4284 return -TARGET_EFAULT; 4285 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 4286 host_sd->sem_otime = tswapal(target_sd->sem_otime); 4287 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 4288 unlock_user_struct(target_sd, target_addr, 0); 4289 return 0; 4290 } 4291 4292 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 4293 struct semid_ds *host_sd) 4294 { 4295 struct target_semid64_ds *target_sd; 4296 4297 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4298 return -TARGET_EFAULT; 4299 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 4300 return -TARGET_EFAULT; 4301 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 4302 target_sd->sem_otime = tswapal(host_sd->sem_otime); 4303 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 4304 unlock_user_struct(target_sd, target_addr, 1); 4305 return 0; 4306 } 4307 4308 struct target_seminfo { 4309 int semmap; 4310 int semmni; 4311 int semmns; 4312 int semmnu; 4313 int semmsl; 4314 int semopm; 4315 int semume; 4316 int semusz; 4317 int semvmx; 4318 int semaem; 4319 }; 4320 4321 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 4322 struct seminfo *host_seminfo) 4323 { 4324 struct target_seminfo *target_seminfo; 4325 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 4326 return -TARGET_EFAULT; 4327 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 4328 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 4329 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 4330 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 4331 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 4332 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 4333 __put_user(host_seminfo->semume, &target_seminfo->semume); 4334 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 4335 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 4336 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 4337 unlock_user_struct(target_seminfo, target_addr, 1); 4338 return 0; 4339 } 4340 4341 union semun { 4342 int val; 4343 struct semid_ds *buf; 4344 unsigned short *array; 4345 struct seminfo *__buf; 4346 }; 4347 4348 union target_semun { 4349 int val; 4350 abi_ulong buf; 4351 abi_ulong array; 4352 abi_ulong __buf; 4353 }; 4354 4355 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 4356 abi_ulong target_addr) 4357 { 4358 int nsems; 4359 unsigned short *array; 4360 union semun semun; 4361 struct semid_ds semid_ds; 4362 int i, ret; 4363 4364 semun.buf = &semid_ds; 4365 4366 ret = semctl(semid, 0, IPC_STAT, semun); 4367 if (ret == -1) 4368 return get_errno(ret); 4369 4370 nsems = semid_ds.sem_nsems; 4371 4372 *host_array = g_try_new(unsigned short, nsems); 4373 if (!*host_array) { 4374 return -TARGET_ENOMEM; 4375 } 4376 array = lock_user(VERIFY_READ, target_addr, 4377 nsems*sizeof(unsigned short), 1); 4378 if (!array) { 4379 g_free(*host_array); 4380 return -TARGET_EFAULT; 4381 } 4382 4383 for(i=0; i<nsems; i++) { 4384 __get_user((*host_array)[i], &array[i]); 4385 } 4386 unlock_user(array, target_addr, 0); 4387 4388 return 0; 4389 } 4390 4391 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 4392 unsigned short **host_array) 4393 { 4394 int nsems; 4395 unsigned short *array; 4396 union semun semun; 4397 struct semid_ds semid_ds; 4398 int i, ret; 4399 4400 semun.buf = &semid_ds; 4401 4402 ret = semctl(semid, 0, IPC_STAT, semun); 4403 if (ret == -1) 4404 return get_errno(ret); 4405 4406 nsems = semid_ds.sem_nsems; 4407 4408 array = lock_user(VERIFY_WRITE, target_addr, 4409 nsems*sizeof(unsigned short), 0); 4410 if (!array) 4411 return -TARGET_EFAULT; 4412 4413 for(i=0; i<nsems; i++) { 4414 __put_user((*host_array)[i], &array[i]); 4415 } 4416 g_free(*host_array); 4417 unlock_user(array, target_addr, 1); 4418 4419 return 0; 4420 } 4421 4422 static inline abi_long do_semctl(int semid, int semnum, int cmd, 4423 abi_ulong target_arg) 4424 { 4425 union target_semun target_su = { .buf = target_arg }; 4426 union semun arg; 4427 struct semid_ds dsarg; 4428 unsigned short *array = NULL; 4429 struct seminfo seminfo; 4430 abi_long ret = -TARGET_EINVAL; 4431 abi_long err; 4432 cmd &= 0xff; 4433 4434 switch( cmd ) { 4435 case GETVAL: 4436 case SETVAL: 4437 /* In 64 bit cross-endian situations, we will erroneously pick up 4438 * the wrong half of the union for the "val" element. To rectify 4439 * this, the entire 8-byte structure is byteswapped, followed by 4440 * a swap of the 4 byte val field. In other cases, the data is 4441 * already in proper host byte order. */ 4442 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 4443 target_su.buf = tswapal(target_su.buf); 4444 arg.val = tswap32(target_su.val); 4445 } else { 4446 arg.val = target_su.val; 4447 } 4448 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4449 break; 4450 case GETALL: 4451 case SETALL: 4452 err = target_to_host_semarray(semid, &array, target_su.array); 4453 if (err) 4454 return err; 4455 arg.array = array; 4456 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4457 err = host_to_target_semarray(semid, target_su.array, &array); 4458 if (err) 4459 return err; 4460 break; 4461 case IPC_STAT: 4462 case IPC_SET: 4463 case SEM_STAT: 4464 err = target_to_host_semid_ds(&dsarg, target_su.buf); 4465 if (err) 4466 return err; 4467 arg.buf = &dsarg; 4468 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4469 err = host_to_target_semid_ds(target_su.buf, &dsarg); 4470 if (err) 4471 return err; 4472 break; 4473 case IPC_INFO: 4474 case SEM_INFO: 4475 arg.__buf = &seminfo; 4476 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4477 err = host_to_target_seminfo(target_su.__buf, &seminfo); 4478 if (err) 4479 return err; 4480 break; 4481 case IPC_RMID: 4482 case GETPID: 4483 case GETNCNT: 4484 case GETZCNT: 4485 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4486 break; 4487 } 4488 4489 return ret; 4490 } 4491 4492 struct target_sembuf { 4493 unsigned short sem_num; 4494 short sem_op; 4495 short sem_flg; 4496 }; 4497 4498 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4499 abi_ulong target_addr, 4500 unsigned nsops) 4501 { 4502 struct target_sembuf *target_sembuf; 4503 int i; 4504 4505 target_sembuf = lock_user(VERIFY_READ, target_addr, 4506 nsops*sizeof(struct target_sembuf), 1); 4507 if (!target_sembuf) 4508 return -TARGET_EFAULT; 4509 4510 for(i=0; i<nsops; i++) { 4511 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4512 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4513 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4514 } 4515 4516 unlock_user(target_sembuf, target_addr, 0); 4517 4518 return 0; 4519 } 4520 4521 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops) 4522 { 4523 struct sembuf sops[nsops]; 4524 4525 if (target_to_host_sembuf(sops, ptr, nsops)) 4526 return -TARGET_EFAULT; 4527 4528 return get_errno(safe_semtimedop(semid, sops, nsops, NULL)); 4529 } 4530 4531 struct target_msqid_ds 4532 { 4533 struct target_ipc_perm msg_perm; 4534 abi_ulong msg_stime; 4535 #if TARGET_ABI_BITS == 32 4536 abi_ulong __unused1; 4537 #endif 4538 abi_ulong msg_rtime; 4539 #if TARGET_ABI_BITS == 32 4540 abi_ulong __unused2; 4541 #endif 4542 abi_ulong msg_ctime; 4543 #if TARGET_ABI_BITS == 32 4544 abi_ulong __unused3; 4545 #endif 4546 abi_ulong __msg_cbytes; 4547 abi_ulong msg_qnum; 4548 abi_ulong msg_qbytes; 4549 abi_ulong msg_lspid; 4550 abi_ulong msg_lrpid; 4551 abi_ulong __unused4; 4552 abi_ulong __unused5; 4553 }; 4554 4555 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4556 abi_ulong target_addr) 4557 { 4558 struct target_msqid_ds *target_md; 4559 4560 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4561 return -TARGET_EFAULT; 4562 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4563 return -TARGET_EFAULT; 4564 host_md->msg_stime = tswapal(target_md->msg_stime); 4565 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4566 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4567 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4568 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4569 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4570 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4571 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4572 unlock_user_struct(target_md, target_addr, 0); 4573 return 0; 4574 } 4575 4576 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4577 struct msqid_ds *host_md) 4578 { 4579 struct target_msqid_ds *target_md; 4580 4581 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4582 return -TARGET_EFAULT; 4583 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4584 return -TARGET_EFAULT; 4585 target_md->msg_stime = tswapal(host_md->msg_stime); 4586 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4587 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4588 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4589 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4590 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4591 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4592 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4593 unlock_user_struct(target_md, target_addr, 1); 4594 return 0; 4595 } 4596 4597 struct target_msginfo { 4598 int msgpool; 4599 int msgmap; 4600 int msgmax; 4601 int msgmnb; 4602 int msgmni; 4603 int msgssz; 4604 int msgtql; 4605 unsigned short int msgseg; 4606 }; 4607 4608 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4609 struct msginfo *host_msginfo) 4610 { 4611 struct target_msginfo *target_msginfo; 4612 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4613 return -TARGET_EFAULT; 4614 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4615 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4616 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4617 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4618 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4619 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4620 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4621 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4622 unlock_user_struct(target_msginfo, target_addr, 1); 4623 return 0; 4624 } 4625 4626 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4627 { 4628 struct msqid_ds dsarg; 4629 struct msginfo msginfo; 4630 abi_long ret = -TARGET_EINVAL; 4631 4632 cmd &= 0xff; 4633 4634 switch (cmd) { 4635 case IPC_STAT: 4636 case IPC_SET: 4637 case MSG_STAT: 4638 if (target_to_host_msqid_ds(&dsarg,ptr)) 4639 return -TARGET_EFAULT; 4640 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4641 if (host_to_target_msqid_ds(ptr,&dsarg)) 4642 return -TARGET_EFAULT; 4643 break; 4644 case IPC_RMID: 4645 ret = get_errno(msgctl(msgid, cmd, NULL)); 4646 break; 4647 case IPC_INFO: 4648 case MSG_INFO: 4649 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4650 if (host_to_target_msginfo(ptr, &msginfo)) 4651 return -TARGET_EFAULT; 4652 break; 4653 } 4654 4655 return ret; 4656 } 4657 4658 struct target_msgbuf { 4659 abi_long mtype; 4660 char mtext[1]; 4661 }; 4662 4663 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4664 ssize_t msgsz, int msgflg) 4665 { 4666 struct target_msgbuf *target_mb; 4667 struct msgbuf *host_mb; 4668 abi_long ret = 0; 4669 4670 if (msgsz < 0) { 4671 return -TARGET_EINVAL; 4672 } 4673 4674 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4675 return -TARGET_EFAULT; 4676 host_mb = g_try_malloc(msgsz + sizeof(long)); 4677 if (!host_mb) { 4678 unlock_user_struct(target_mb, msgp, 0); 4679 return -TARGET_ENOMEM; 4680 } 4681 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4682 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4683 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4684 g_free(host_mb); 4685 unlock_user_struct(target_mb, msgp, 0); 4686 4687 return ret; 4688 } 4689 4690 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4691 ssize_t msgsz, abi_long msgtyp, 4692 int msgflg) 4693 { 4694 struct target_msgbuf *target_mb; 4695 char *target_mtext; 4696 struct msgbuf *host_mb; 4697 abi_long ret = 0; 4698 4699 if (msgsz < 0) { 4700 return -TARGET_EINVAL; 4701 } 4702 4703 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4704 return -TARGET_EFAULT; 4705 4706 host_mb = g_try_malloc(msgsz + sizeof(long)); 4707 if (!host_mb) { 4708 ret = -TARGET_ENOMEM; 4709 goto end; 4710 } 4711 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4712 4713 if (ret > 0) { 4714 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4715 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4716 if (!target_mtext) { 4717 ret = -TARGET_EFAULT; 4718 goto end; 4719 } 4720 memcpy(target_mb->mtext, host_mb->mtext, ret); 4721 unlock_user(target_mtext, target_mtext_addr, ret); 4722 } 4723 4724 target_mb->mtype = tswapal(host_mb->mtype); 4725 4726 end: 4727 if (target_mb) 4728 unlock_user_struct(target_mb, msgp, 1); 4729 g_free(host_mb); 4730 return ret; 4731 } 4732 4733 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4734 abi_ulong target_addr) 4735 { 4736 struct target_shmid_ds *target_sd; 4737 4738 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4739 return -TARGET_EFAULT; 4740 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4741 return -TARGET_EFAULT; 4742 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4743 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4744 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4745 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4746 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4747 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4748 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4749 unlock_user_struct(target_sd, target_addr, 0); 4750 return 0; 4751 } 4752 4753 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4754 struct shmid_ds *host_sd) 4755 { 4756 struct target_shmid_ds *target_sd; 4757 4758 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4759 return -TARGET_EFAULT; 4760 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4761 return -TARGET_EFAULT; 4762 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4763 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4764 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4765 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4766 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4767 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4768 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4769 unlock_user_struct(target_sd, target_addr, 1); 4770 return 0; 4771 } 4772 4773 struct target_shminfo { 4774 abi_ulong shmmax; 4775 abi_ulong shmmin; 4776 abi_ulong shmmni; 4777 abi_ulong shmseg; 4778 abi_ulong shmall; 4779 }; 4780 4781 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4782 struct shminfo *host_shminfo) 4783 { 4784 struct target_shminfo *target_shminfo; 4785 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4786 return -TARGET_EFAULT; 4787 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4788 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4789 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4790 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4791 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4792 unlock_user_struct(target_shminfo, target_addr, 1); 4793 return 0; 4794 } 4795 4796 struct target_shm_info { 4797 int used_ids; 4798 abi_ulong shm_tot; 4799 abi_ulong shm_rss; 4800 abi_ulong shm_swp; 4801 abi_ulong swap_attempts; 4802 abi_ulong swap_successes; 4803 }; 4804 4805 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4806 struct shm_info *host_shm_info) 4807 { 4808 struct target_shm_info *target_shm_info; 4809 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4810 return -TARGET_EFAULT; 4811 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4812 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4813 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4814 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4815 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4816 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4817 unlock_user_struct(target_shm_info, target_addr, 1); 4818 return 0; 4819 } 4820 4821 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4822 { 4823 struct shmid_ds dsarg; 4824 struct shminfo shminfo; 4825 struct shm_info shm_info; 4826 abi_long ret = -TARGET_EINVAL; 4827 4828 cmd &= 0xff; 4829 4830 switch(cmd) { 4831 case IPC_STAT: 4832 case IPC_SET: 4833 case SHM_STAT: 4834 if (target_to_host_shmid_ds(&dsarg, buf)) 4835 return -TARGET_EFAULT; 4836 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4837 if (host_to_target_shmid_ds(buf, &dsarg)) 4838 return -TARGET_EFAULT; 4839 break; 4840 case IPC_INFO: 4841 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4842 if (host_to_target_shminfo(buf, &shminfo)) 4843 return -TARGET_EFAULT; 4844 break; 4845 case SHM_INFO: 4846 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4847 if (host_to_target_shm_info(buf, &shm_info)) 4848 return -TARGET_EFAULT; 4849 break; 4850 case IPC_RMID: 4851 case SHM_LOCK: 4852 case SHM_UNLOCK: 4853 ret = get_errno(shmctl(shmid, cmd, NULL)); 4854 break; 4855 } 4856 4857 return ret; 4858 } 4859 4860 #ifndef TARGET_FORCE_SHMLBA 4861 /* For most architectures, SHMLBA is the same as the page size; 4862 * some architectures have larger values, in which case they should 4863 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function. 4864 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA 4865 * and defining its own value for SHMLBA. 4866 * 4867 * The kernel also permits SHMLBA to be set by the architecture to a 4868 * value larger than the page size without setting __ARCH_FORCE_SHMLBA; 4869 * this means that addresses are rounded to the large size if 4870 * SHM_RND is set but addresses not aligned to that size are not rejected 4871 * as long as they are at least page-aligned. Since the only architecture 4872 * which uses this is ia64 this code doesn't provide for that oddity. 4873 */ 4874 static inline abi_ulong target_shmlba(CPUArchState *cpu_env) 4875 { 4876 return TARGET_PAGE_SIZE; 4877 } 4878 #endif 4879 4880 static inline abi_ulong do_shmat(CPUArchState *cpu_env, 4881 int shmid, abi_ulong shmaddr, int shmflg) 4882 { 4883 abi_long raddr; 4884 void *host_raddr; 4885 struct shmid_ds shm_info; 4886 int i,ret; 4887 abi_ulong shmlba; 4888 4889 /* find out the length of the shared memory segment */ 4890 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 4891 if (is_error(ret)) { 4892 /* can't get length, bail out */ 4893 return ret; 4894 } 4895 4896 shmlba = target_shmlba(cpu_env); 4897 4898 if (shmaddr & (shmlba - 1)) { 4899 if (shmflg & SHM_RND) { 4900 shmaddr &= ~(shmlba - 1); 4901 } else { 4902 return -TARGET_EINVAL; 4903 } 4904 } 4905 if (!guest_range_valid(shmaddr, shm_info.shm_segsz)) { 4906 return -TARGET_EINVAL; 4907 } 4908 4909 mmap_lock(); 4910 4911 if (shmaddr) 4912 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg); 4913 else { 4914 abi_ulong mmap_start; 4915 4916 mmap_start = mmap_find_vma(0, shm_info.shm_segsz); 4917 4918 if (mmap_start == -1) { 4919 errno = ENOMEM; 4920 host_raddr = (void *)-1; 4921 } else 4922 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP); 4923 } 4924 4925 if (host_raddr == (void *)-1) { 4926 mmap_unlock(); 4927 return get_errno((long)host_raddr); 4928 } 4929 raddr=h2g((unsigned long)host_raddr); 4930 4931 page_set_flags(raddr, raddr + shm_info.shm_segsz, 4932 PAGE_VALID | PAGE_READ | 4933 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE)); 4934 4935 for (i = 0; i < N_SHM_REGIONS; i++) { 4936 if (!shm_regions[i].in_use) { 4937 shm_regions[i].in_use = true; 4938 shm_regions[i].start = raddr; 4939 shm_regions[i].size = shm_info.shm_segsz; 4940 break; 4941 } 4942 } 4943 4944 mmap_unlock(); 4945 return raddr; 4946 4947 } 4948 4949 static inline abi_long do_shmdt(abi_ulong shmaddr) 4950 { 4951 int i; 4952 abi_long rv; 4953 4954 mmap_lock(); 4955 4956 for (i = 0; i < N_SHM_REGIONS; ++i) { 4957 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) { 4958 shm_regions[i].in_use = false; 4959 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 4960 break; 4961 } 4962 } 4963 rv = get_errno(shmdt(g2h(shmaddr))); 4964 4965 mmap_unlock(); 4966 4967 return rv; 4968 } 4969 4970 #ifdef TARGET_NR_ipc 4971 /* ??? This only works with linear mappings. */ 4972 /* do_ipc() must return target values and target errnos. */ 4973 static abi_long do_ipc(CPUArchState *cpu_env, 4974 unsigned int call, abi_long first, 4975 abi_long second, abi_long third, 4976 abi_long ptr, abi_long fifth) 4977 { 4978 int version; 4979 abi_long ret = 0; 4980 4981 version = call >> 16; 4982 call &= 0xffff; 4983 4984 switch (call) { 4985 case IPCOP_semop: 4986 ret = do_semop(first, ptr, second); 4987 break; 4988 4989 case IPCOP_semget: 4990 ret = get_errno(semget(first, second, third)); 4991 break; 4992 4993 case IPCOP_semctl: { 4994 /* The semun argument to semctl is passed by value, so dereference the 4995 * ptr argument. */ 4996 abi_ulong atptr; 4997 get_user_ual(atptr, ptr); 4998 ret = do_semctl(first, second, third, atptr); 4999 break; 5000 } 5001 5002 case IPCOP_msgget: 5003 ret = get_errno(msgget(first, second)); 5004 break; 5005 5006 case IPCOP_msgsnd: 5007 ret = do_msgsnd(first, ptr, second, third); 5008 break; 5009 5010 case IPCOP_msgctl: 5011 ret = do_msgctl(first, second, ptr); 5012 break; 5013 5014 case IPCOP_msgrcv: 5015 switch (version) { 5016 case 0: 5017 { 5018 struct target_ipc_kludge { 5019 abi_long msgp; 5020 abi_long msgtyp; 5021 } *tmp; 5022 5023 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 5024 ret = -TARGET_EFAULT; 5025 break; 5026 } 5027 5028 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 5029 5030 unlock_user_struct(tmp, ptr, 0); 5031 break; 5032 } 5033 default: 5034 ret = do_msgrcv(first, ptr, second, fifth, third); 5035 } 5036 break; 5037 5038 case IPCOP_shmat: 5039 switch (version) { 5040 default: 5041 { 5042 abi_ulong raddr; 5043 raddr = do_shmat(cpu_env, first, ptr, second); 5044 if (is_error(raddr)) 5045 return get_errno(raddr); 5046 if (put_user_ual(raddr, third)) 5047 return -TARGET_EFAULT; 5048 break; 5049 } 5050 case 1: 5051 ret = -TARGET_EINVAL; 5052 break; 5053 } 5054 break; 5055 case IPCOP_shmdt: 5056 ret = do_shmdt(ptr); 5057 break; 5058 5059 case IPCOP_shmget: 5060 /* IPC_* flag values are the same on all linux platforms */ 5061 ret = get_errno(shmget(first, second, third)); 5062 break; 5063 5064 /* IPC_* and SHM_* command values are the same on all linux platforms */ 5065 case IPCOP_shmctl: 5066 ret = do_shmctl(first, second, ptr); 5067 break; 5068 default: 5069 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version); 5070 ret = -TARGET_ENOSYS; 5071 break; 5072 } 5073 return ret; 5074 } 5075 #endif 5076 5077 /* kernel structure types definitions */ 5078 5079 #define STRUCT(name, ...) STRUCT_ ## name, 5080 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 5081 enum { 5082 #include "syscall_types.h" 5083 STRUCT_MAX 5084 }; 5085 #undef STRUCT 5086 #undef STRUCT_SPECIAL 5087 5088 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 5089 #define STRUCT_SPECIAL(name) 5090 #include "syscall_types.h" 5091 #undef STRUCT 5092 #undef STRUCT_SPECIAL 5093 5094 typedef struct IOCTLEntry IOCTLEntry; 5095 5096 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 5097 int fd, int cmd, abi_long arg); 5098 5099 struct IOCTLEntry { 5100 int target_cmd; 5101 unsigned int host_cmd; 5102 const char *name; 5103 int access; 5104 do_ioctl_fn *do_ioctl; 5105 const argtype arg_type[5]; 5106 }; 5107 5108 #define IOC_R 0x0001 5109 #define IOC_W 0x0002 5110 #define IOC_RW (IOC_R | IOC_W) 5111 5112 #define MAX_STRUCT_SIZE 4096 5113 5114 #ifdef CONFIG_FIEMAP 5115 /* So fiemap access checks don't overflow on 32 bit systems. 5116 * This is very slightly smaller than the limit imposed by 5117 * the underlying kernel. 5118 */ 5119 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 5120 / sizeof(struct fiemap_extent)) 5121 5122 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 5123 int fd, int cmd, abi_long arg) 5124 { 5125 /* The parameter for this ioctl is a struct fiemap followed 5126 * by an array of struct fiemap_extent whose size is set 5127 * in fiemap->fm_extent_count. The array is filled in by the 5128 * ioctl. 5129 */ 5130 int target_size_in, target_size_out; 5131 struct fiemap *fm; 5132 const argtype *arg_type = ie->arg_type; 5133 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 5134 void *argptr, *p; 5135 abi_long ret; 5136 int i, extent_size = thunk_type_size(extent_arg_type, 0); 5137 uint32_t outbufsz; 5138 int free_fm = 0; 5139 5140 assert(arg_type[0] == TYPE_PTR); 5141 assert(ie->access == IOC_RW); 5142 arg_type++; 5143 target_size_in = thunk_type_size(arg_type, 0); 5144 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 5145 if (!argptr) { 5146 return -TARGET_EFAULT; 5147 } 5148 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5149 unlock_user(argptr, arg, 0); 5150 fm = (struct fiemap *)buf_temp; 5151 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 5152 return -TARGET_EINVAL; 5153 } 5154 5155 outbufsz = sizeof (*fm) + 5156 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 5157 5158 if (outbufsz > MAX_STRUCT_SIZE) { 5159 /* We can't fit all the extents into the fixed size buffer. 5160 * Allocate one that is large enough and use it instead. 5161 */ 5162 fm = g_try_malloc(outbufsz); 5163 if (!fm) { 5164 return -TARGET_ENOMEM; 5165 } 5166 memcpy(fm, buf_temp, sizeof(struct fiemap)); 5167 free_fm = 1; 5168 } 5169 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 5170 if (!is_error(ret)) { 5171 target_size_out = target_size_in; 5172 /* An extent_count of 0 means we were only counting the extents 5173 * so there are no structs to copy 5174 */ 5175 if (fm->fm_extent_count != 0) { 5176 target_size_out += fm->fm_mapped_extents * extent_size; 5177 } 5178 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 5179 if (!argptr) { 5180 ret = -TARGET_EFAULT; 5181 } else { 5182 /* Convert the struct fiemap */ 5183 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 5184 if (fm->fm_extent_count != 0) { 5185 p = argptr + target_size_in; 5186 /* ...and then all the struct fiemap_extents */ 5187 for (i = 0; i < fm->fm_mapped_extents; i++) { 5188 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 5189 THUNK_TARGET); 5190 p += extent_size; 5191 } 5192 } 5193 unlock_user(argptr, arg, target_size_out); 5194 } 5195 } 5196 if (free_fm) { 5197 g_free(fm); 5198 } 5199 return ret; 5200 } 5201 #endif 5202 5203 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 5204 int fd, int cmd, abi_long arg) 5205 { 5206 const argtype *arg_type = ie->arg_type; 5207 int target_size; 5208 void *argptr; 5209 int ret; 5210 struct ifconf *host_ifconf; 5211 uint32_t outbufsz; 5212 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 5213 int target_ifreq_size; 5214 int nb_ifreq; 5215 int free_buf = 0; 5216 int i; 5217 int target_ifc_len; 5218 abi_long target_ifc_buf; 5219 int host_ifc_len; 5220 char *host_ifc_buf; 5221 5222 assert(arg_type[0] == TYPE_PTR); 5223 assert(ie->access == IOC_RW); 5224 5225 arg_type++; 5226 target_size = thunk_type_size(arg_type, 0); 5227 5228 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5229 if (!argptr) 5230 return -TARGET_EFAULT; 5231 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5232 unlock_user(argptr, arg, 0); 5233 5234 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 5235 target_ifc_len = host_ifconf->ifc_len; 5236 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 5237 5238 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0); 5239 nb_ifreq = target_ifc_len / target_ifreq_size; 5240 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 5241 5242 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 5243 if (outbufsz > MAX_STRUCT_SIZE) { 5244 /* We can't fit all the extents into the fixed size buffer. 5245 * Allocate one that is large enough and use it instead. 5246 */ 5247 host_ifconf = malloc(outbufsz); 5248 if (!host_ifconf) { 5249 return -TARGET_ENOMEM; 5250 } 5251 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 5252 free_buf = 1; 5253 } 5254 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf); 5255 5256 host_ifconf->ifc_len = host_ifc_len; 5257 host_ifconf->ifc_buf = host_ifc_buf; 5258 5259 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 5260 if (!is_error(ret)) { 5261 /* convert host ifc_len to target ifc_len */ 5262 5263 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 5264 target_ifc_len = nb_ifreq * target_ifreq_size; 5265 host_ifconf->ifc_len = target_ifc_len; 5266 5267 /* restore target ifc_buf */ 5268 5269 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 5270 5271 /* copy struct ifconf to target user */ 5272 5273 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5274 if (!argptr) 5275 return -TARGET_EFAULT; 5276 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 5277 unlock_user(argptr, arg, target_size); 5278 5279 /* copy ifreq[] to target user */ 5280 5281 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 5282 for (i = 0; i < nb_ifreq ; i++) { 5283 thunk_convert(argptr + i * target_ifreq_size, 5284 host_ifc_buf + i * sizeof(struct ifreq), 5285 ifreq_arg_type, THUNK_TARGET); 5286 } 5287 unlock_user(argptr, target_ifc_buf, target_ifc_len); 5288 } 5289 5290 if (free_buf) { 5291 free(host_ifconf); 5292 } 5293 5294 return ret; 5295 } 5296 5297 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5298 int cmd, abi_long arg) 5299 { 5300 void *argptr; 5301 struct dm_ioctl *host_dm; 5302 abi_long guest_data; 5303 uint32_t guest_data_size; 5304 int target_size; 5305 const argtype *arg_type = ie->arg_type; 5306 abi_long ret; 5307 void *big_buf = NULL; 5308 char *host_data; 5309 5310 arg_type++; 5311 target_size = thunk_type_size(arg_type, 0); 5312 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5313 if (!argptr) { 5314 ret = -TARGET_EFAULT; 5315 goto out; 5316 } 5317 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5318 unlock_user(argptr, arg, 0); 5319 5320 /* buf_temp is too small, so fetch things into a bigger buffer */ 5321 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5322 memcpy(big_buf, buf_temp, target_size); 5323 buf_temp = big_buf; 5324 host_dm = big_buf; 5325 5326 guest_data = arg + host_dm->data_start; 5327 if ((guest_data - arg) < 0) { 5328 ret = -TARGET_EINVAL; 5329 goto out; 5330 } 5331 guest_data_size = host_dm->data_size - host_dm->data_start; 5332 host_data = (char*)host_dm + host_dm->data_start; 5333 5334 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5335 if (!argptr) { 5336 ret = -TARGET_EFAULT; 5337 goto out; 5338 } 5339 5340 switch (ie->host_cmd) { 5341 case DM_REMOVE_ALL: 5342 case DM_LIST_DEVICES: 5343 case DM_DEV_CREATE: 5344 case DM_DEV_REMOVE: 5345 case DM_DEV_SUSPEND: 5346 case DM_DEV_STATUS: 5347 case DM_DEV_WAIT: 5348 case DM_TABLE_STATUS: 5349 case DM_TABLE_CLEAR: 5350 case DM_TABLE_DEPS: 5351 case DM_LIST_VERSIONS: 5352 /* no input data */ 5353 break; 5354 case DM_DEV_RENAME: 5355 case DM_DEV_SET_GEOMETRY: 5356 /* data contains only strings */ 5357 memcpy(host_data, argptr, guest_data_size); 5358 break; 5359 case DM_TARGET_MSG: 5360 memcpy(host_data, argptr, guest_data_size); 5361 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5362 break; 5363 case DM_TABLE_LOAD: 5364 { 5365 void *gspec = argptr; 5366 void *cur_data = host_data; 5367 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5368 int spec_size = thunk_type_size(arg_type, 0); 5369 int i; 5370 5371 for (i = 0; i < host_dm->target_count; i++) { 5372 struct dm_target_spec *spec = cur_data; 5373 uint32_t next; 5374 int slen; 5375 5376 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 5377 slen = strlen((char*)gspec + spec_size) + 1; 5378 next = spec->next; 5379 spec->next = sizeof(*spec) + slen; 5380 strcpy((char*)&spec[1], gspec + spec_size); 5381 gspec += next; 5382 cur_data += spec->next; 5383 } 5384 break; 5385 } 5386 default: 5387 ret = -TARGET_EINVAL; 5388 unlock_user(argptr, guest_data, 0); 5389 goto out; 5390 } 5391 unlock_user(argptr, guest_data, 0); 5392 5393 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5394 if (!is_error(ret)) { 5395 guest_data = arg + host_dm->data_start; 5396 guest_data_size = host_dm->data_size - host_dm->data_start; 5397 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5398 switch (ie->host_cmd) { 5399 case DM_REMOVE_ALL: 5400 case DM_DEV_CREATE: 5401 case DM_DEV_REMOVE: 5402 case DM_DEV_RENAME: 5403 case DM_DEV_SUSPEND: 5404 case DM_DEV_STATUS: 5405 case DM_TABLE_LOAD: 5406 case DM_TABLE_CLEAR: 5407 case DM_TARGET_MSG: 5408 case DM_DEV_SET_GEOMETRY: 5409 /* no return data */ 5410 break; 5411 case DM_LIST_DEVICES: 5412 { 5413 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5414 uint32_t remaining_data = guest_data_size; 5415 void *cur_data = argptr; 5416 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5417 int nl_size = 12; /* can't use thunk_size due to alignment */ 5418 5419 while (1) { 5420 uint32_t next = nl->next; 5421 if (next) { 5422 nl->next = nl_size + (strlen(nl->name) + 1); 5423 } 5424 if (remaining_data < nl->next) { 5425 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5426 break; 5427 } 5428 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 5429 strcpy(cur_data + nl_size, nl->name); 5430 cur_data += nl->next; 5431 remaining_data -= nl->next; 5432 if (!next) { 5433 break; 5434 } 5435 nl = (void*)nl + next; 5436 } 5437 break; 5438 } 5439 case DM_DEV_WAIT: 5440 case DM_TABLE_STATUS: 5441 { 5442 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5443 void *cur_data = argptr; 5444 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5445 int spec_size = thunk_type_size(arg_type, 0); 5446 int i; 5447 5448 for (i = 0; i < host_dm->target_count; i++) { 5449 uint32_t next = spec->next; 5450 int slen = strlen((char*)&spec[1]) + 1; 5451 spec->next = (cur_data - argptr) + spec_size + slen; 5452 if (guest_data_size < spec->next) { 5453 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5454 break; 5455 } 5456 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 5457 strcpy(cur_data + spec_size, (char*)&spec[1]); 5458 cur_data = argptr + spec->next; 5459 spec = (void*)host_dm + host_dm->data_start + next; 5460 } 5461 break; 5462 } 5463 case DM_TABLE_DEPS: 5464 { 5465 void *hdata = (void*)host_dm + host_dm->data_start; 5466 int count = *(uint32_t*)hdata; 5467 uint64_t *hdev = hdata + 8; 5468 uint64_t *gdev = argptr + 8; 5469 int i; 5470 5471 *(uint32_t*)argptr = tswap32(count); 5472 for (i = 0; i < count; i++) { 5473 *gdev = tswap64(*hdev); 5474 gdev++; 5475 hdev++; 5476 } 5477 break; 5478 } 5479 case DM_LIST_VERSIONS: 5480 { 5481 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5482 uint32_t remaining_data = guest_data_size; 5483 void *cur_data = argptr; 5484 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5485 int vers_size = thunk_type_size(arg_type, 0); 5486 5487 while (1) { 5488 uint32_t next = vers->next; 5489 if (next) { 5490 vers->next = vers_size + (strlen(vers->name) + 1); 5491 } 5492 if (remaining_data < vers->next) { 5493 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5494 break; 5495 } 5496 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 5497 strcpy(cur_data + vers_size, vers->name); 5498 cur_data += vers->next; 5499 remaining_data -= vers->next; 5500 if (!next) { 5501 break; 5502 } 5503 vers = (void*)vers + next; 5504 } 5505 break; 5506 } 5507 default: 5508 unlock_user(argptr, guest_data, 0); 5509 ret = -TARGET_EINVAL; 5510 goto out; 5511 } 5512 unlock_user(argptr, guest_data, guest_data_size); 5513 5514 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5515 if (!argptr) { 5516 ret = -TARGET_EFAULT; 5517 goto out; 5518 } 5519 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5520 unlock_user(argptr, arg, target_size); 5521 } 5522 out: 5523 g_free(big_buf); 5524 return ret; 5525 } 5526 5527 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5528 int cmd, abi_long arg) 5529 { 5530 void *argptr; 5531 int target_size; 5532 const argtype *arg_type = ie->arg_type; 5533 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5534 abi_long ret; 5535 5536 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5537 struct blkpg_partition host_part; 5538 5539 /* Read and convert blkpg */ 5540 arg_type++; 5541 target_size = thunk_type_size(arg_type, 0); 5542 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5543 if (!argptr) { 5544 ret = -TARGET_EFAULT; 5545 goto out; 5546 } 5547 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5548 unlock_user(argptr, arg, 0); 5549 5550 switch (host_blkpg->op) { 5551 case BLKPG_ADD_PARTITION: 5552 case BLKPG_DEL_PARTITION: 5553 /* payload is struct blkpg_partition */ 5554 break; 5555 default: 5556 /* Unknown opcode */ 5557 ret = -TARGET_EINVAL; 5558 goto out; 5559 } 5560 5561 /* Read and convert blkpg->data */ 5562 arg = (abi_long)(uintptr_t)host_blkpg->data; 5563 target_size = thunk_type_size(part_arg_type, 0); 5564 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5565 if (!argptr) { 5566 ret = -TARGET_EFAULT; 5567 goto out; 5568 } 5569 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5570 unlock_user(argptr, arg, 0); 5571 5572 /* Swizzle the data pointer to our local copy and call! */ 5573 host_blkpg->data = &host_part; 5574 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5575 5576 out: 5577 return ret; 5578 } 5579 5580 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5581 int fd, int cmd, abi_long arg) 5582 { 5583 const argtype *arg_type = ie->arg_type; 5584 const StructEntry *se; 5585 const argtype *field_types; 5586 const int *dst_offsets, *src_offsets; 5587 int target_size; 5588 void *argptr; 5589 abi_ulong *target_rt_dev_ptr; 5590 unsigned long *host_rt_dev_ptr; 5591 abi_long ret; 5592 int i; 5593 5594 assert(ie->access == IOC_W); 5595 assert(*arg_type == TYPE_PTR); 5596 arg_type++; 5597 assert(*arg_type == TYPE_STRUCT); 5598 target_size = thunk_type_size(arg_type, 0); 5599 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5600 if (!argptr) { 5601 return -TARGET_EFAULT; 5602 } 5603 arg_type++; 5604 assert(*arg_type == (int)STRUCT_rtentry); 5605 se = struct_entries + *arg_type++; 5606 assert(se->convert[0] == NULL); 5607 /* convert struct here to be able to catch rt_dev string */ 5608 field_types = se->field_types; 5609 dst_offsets = se->field_offsets[THUNK_HOST]; 5610 src_offsets = se->field_offsets[THUNK_TARGET]; 5611 for (i = 0; i < se->nb_fields; i++) { 5612 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5613 assert(*field_types == TYPE_PTRVOID); 5614 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 5615 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5616 if (*target_rt_dev_ptr != 0) { 5617 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5618 tswapal(*target_rt_dev_ptr)); 5619 if (!*host_rt_dev_ptr) { 5620 unlock_user(argptr, arg, 0); 5621 return -TARGET_EFAULT; 5622 } 5623 } else { 5624 *host_rt_dev_ptr = 0; 5625 } 5626 field_types++; 5627 continue; 5628 } 5629 field_types = thunk_convert(buf_temp + dst_offsets[i], 5630 argptr + src_offsets[i], 5631 field_types, THUNK_HOST); 5632 } 5633 unlock_user(argptr, arg, 0); 5634 5635 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5636 if (*host_rt_dev_ptr != 0) { 5637 unlock_user((void *)*host_rt_dev_ptr, 5638 *target_rt_dev_ptr, 0); 5639 } 5640 return ret; 5641 } 5642 5643 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5644 int fd, int cmd, abi_long arg) 5645 { 5646 int sig = target_to_host_signal(arg); 5647 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5648 } 5649 5650 #ifdef TIOCGPTPEER 5651 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5652 int fd, int cmd, abi_long arg) 5653 { 5654 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5655 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5656 } 5657 #endif 5658 5659 static IOCTLEntry ioctl_entries[] = { 5660 #define IOCTL(cmd, access, ...) \ 5661 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5662 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5663 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5664 #define IOCTL_IGNORE(cmd) \ 5665 { TARGET_ ## cmd, 0, #cmd }, 5666 #include "ioctls.h" 5667 { 0, 0, }, 5668 }; 5669 5670 /* ??? Implement proper locking for ioctls. */ 5671 /* do_ioctl() Must return target values and target errnos. */ 5672 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5673 { 5674 const IOCTLEntry *ie; 5675 const argtype *arg_type; 5676 abi_long ret; 5677 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5678 int target_size; 5679 void *argptr; 5680 5681 ie = ioctl_entries; 5682 for(;;) { 5683 if (ie->target_cmd == 0) { 5684 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5685 return -TARGET_ENOSYS; 5686 } 5687 if (ie->target_cmd == cmd) 5688 break; 5689 ie++; 5690 } 5691 arg_type = ie->arg_type; 5692 #if defined(DEBUG) 5693 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name); 5694 #endif 5695 if (ie->do_ioctl) { 5696 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5697 } else if (!ie->host_cmd) { 5698 /* Some architectures define BSD ioctls in their headers 5699 that are not implemented in Linux. */ 5700 return -TARGET_ENOSYS; 5701 } 5702 5703 switch(arg_type[0]) { 5704 case TYPE_NULL: 5705 /* no argument */ 5706 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5707 break; 5708 case TYPE_PTRVOID: 5709 case TYPE_INT: 5710 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5711 break; 5712 case TYPE_PTR: 5713 arg_type++; 5714 target_size = thunk_type_size(arg_type, 0); 5715 switch(ie->access) { 5716 case IOC_R: 5717 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5718 if (!is_error(ret)) { 5719 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5720 if (!argptr) 5721 return -TARGET_EFAULT; 5722 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5723 unlock_user(argptr, arg, target_size); 5724 } 5725 break; 5726 case IOC_W: 5727 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5728 if (!argptr) 5729 return -TARGET_EFAULT; 5730 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5731 unlock_user(argptr, arg, 0); 5732 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5733 break; 5734 default: 5735 case IOC_RW: 5736 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5737 if (!argptr) 5738 return -TARGET_EFAULT; 5739 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5740 unlock_user(argptr, arg, 0); 5741 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5742 if (!is_error(ret)) { 5743 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5744 if (!argptr) 5745 return -TARGET_EFAULT; 5746 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5747 unlock_user(argptr, arg, target_size); 5748 } 5749 break; 5750 } 5751 break; 5752 default: 5753 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5754 (long)cmd, arg_type[0]); 5755 ret = -TARGET_ENOSYS; 5756 break; 5757 } 5758 return ret; 5759 } 5760 5761 static const bitmask_transtbl iflag_tbl[] = { 5762 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5763 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5764 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5765 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5766 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5767 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5768 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5769 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5770 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5771 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5772 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5773 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5774 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5775 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5776 { 0, 0, 0, 0 } 5777 }; 5778 5779 static const bitmask_transtbl oflag_tbl[] = { 5780 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5781 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5782 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5783 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5784 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5785 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5786 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5787 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5788 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5789 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5790 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5791 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5792 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5793 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5794 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5795 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5796 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5797 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5798 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5799 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5800 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5801 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5802 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5803 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5804 { 0, 0, 0, 0 } 5805 }; 5806 5807 static const bitmask_transtbl cflag_tbl[] = { 5808 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5809 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5810 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5811 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5812 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5813 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5814 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5815 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5816 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5817 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5818 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5819 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5820 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5821 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5822 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5823 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5824 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5825 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5826 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5827 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5828 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5829 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5830 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5831 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5832 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5833 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5834 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5835 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5836 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5837 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5838 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5839 { 0, 0, 0, 0 } 5840 }; 5841 5842 static const bitmask_transtbl lflag_tbl[] = { 5843 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5844 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5845 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5846 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5847 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5848 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5849 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5850 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5851 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5852 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5853 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5854 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5855 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5856 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5857 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5858 { 0, 0, 0, 0 } 5859 }; 5860 5861 static void target_to_host_termios (void *dst, const void *src) 5862 { 5863 struct host_termios *host = dst; 5864 const struct target_termios *target = src; 5865 5866 host->c_iflag = 5867 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5868 host->c_oflag = 5869 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5870 host->c_cflag = 5871 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5872 host->c_lflag = 5873 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5874 host->c_line = target->c_line; 5875 5876 memset(host->c_cc, 0, sizeof(host->c_cc)); 5877 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5878 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5879 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5880 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5881 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5882 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5883 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5884 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5885 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5886 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5887 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5888 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5889 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5890 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5891 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5892 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5893 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5894 } 5895 5896 static void host_to_target_termios (void *dst, const void *src) 5897 { 5898 struct target_termios *target = dst; 5899 const struct host_termios *host = src; 5900 5901 target->c_iflag = 5902 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5903 target->c_oflag = 5904 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5905 target->c_cflag = 5906 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5907 target->c_lflag = 5908 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5909 target->c_line = host->c_line; 5910 5911 memset(target->c_cc, 0, sizeof(target->c_cc)); 5912 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5913 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5914 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5915 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5916 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5917 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5918 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5919 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5920 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5921 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5922 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5923 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5924 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5925 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5926 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5927 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5928 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5929 } 5930 5931 static const StructEntry struct_termios_def = { 5932 .convert = { host_to_target_termios, target_to_host_termios }, 5933 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5934 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5935 }; 5936 5937 static bitmask_transtbl mmap_flags_tbl[] = { 5938 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 5939 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 5940 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5941 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 5942 MAP_ANONYMOUS, MAP_ANONYMOUS }, 5943 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 5944 MAP_GROWSDOWN, MAP_GROWSDOWN }, 5945 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 5946 MAP_DENYWRITE, MAP_DENYWRITE }, 5947 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 5948 MAP_EXECUTABLE, MAP_EXECUTABLE }, 5949 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5950 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 5951 MAP_NORESERVE, MAP_NORESERVE }, 5952 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 5953 /* MAP_STACK had been ignored by the kernel for quite some time. 5954 Recognize it for the target insofar as we do not want to pass 5955 it through to the host. */ 5956 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 5957 { 0, 0, 0, 0 } 5958 }; 5959 5960 #if defined(TARGET_I386) 5961 5962 /* NOTE: there is really one LDT for all the threads */ 5963 static uint8_t *ldt_table; 5964 5965 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5966 { 5967 int size; 5968 void *p; 5969 5970 if (!ldt_table) 5971 return 0; 5972 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5973 if (size > bytecount) 5974 size = bytecount; 5975 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5976 if (!p) 5977 return -TARGET_EFAULT; 5978 /* ??? Should this by byteswapped? */ 5979 memcpy(p, ldt_table, size); 5980 unlock_user(p, ptr, size); 5981 return size; 5982 } 5983 5984 /* XXX: add locking support */ 5985 static abi_long write_ldt(CPUX86State *env, 5986 abi_ulong ptr, unsigned long bytecount, int oldmode) 5987 { 5988 struct target_modify_ldt_ldt_s ldt_info; 5989 struct target_modify_ldt_ldt_s *target_ldt_info; 5990 int seg_32bit, contents, read_exec_only, limit_in_pages; 5991 int seg_not_present, useable, lm; 5992 uint32_t *lp, entry_1, entry_2; 5993 5994 if (bytecount != sizeof(ldt_info)) 5995 return -TARGET_EINVAL; 5996 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5997 return -TARGET_EFAULT; 5998 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5999 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6000 ldt_info.limit = tswap32(target_ldt_info->limit); 6001 ldt_info.flags = tswap32(target_ldt_info->flags); 6002 unlock_user_struct(target_ldt_info, ptr, 0); 6003 6004 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 6005 return -TARGET_EINVAL; 6006 seg_32bit = ldt_info.flags & 1; 6007 contents = (ldt_info.flags >> 1) & 3; 6008 read_exec_only = (ldt_info.flags >> 3) & 1; 6009 limit_in_pages = (ldt_info.flags >> 4) & 1; 6010 seg_not_present = (ldt_info.flags >> 5) & 1; 6011 useable = (ldt_info.flags >> 6) & 1; 6012 #ifdef TARGET_ABI32 6013 lm = 0; 6014 #else 6015 lm = (ldt_info.flags >> 7) & 1; 6016 #endif 6017 if (contents == 3) { 6018 if (oldmode) 6019 return -TARGET_EINVAL; 6020 if (seg_not_present == 0) 6021 return -TARGET_EINVAL; 6022 } 6023 /* allocate the LDT */ 6024 if (!ldt_table) { 6025 env->ldt.base = target_mmap(0, 6026 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6027 PROT_READ|PROT_WRITE, 6028 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6029 if (env->ldt.base == -1) 6030 return -TARGET_ENOMEM; 6031 memset(g2h(env->ldt.base), 0, 6032 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6033 env->ldt.limit = 0xffff; 6034 ldt_table = g2h(env->ldt.base); 6035 } 6036 6037 /* NOTE: same code as Linux kernel */ 6038 /* Allow LDTs to be cleared by the user. */ 6039 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6040 if (oldmode || 6041 (contents == 0 && 6042 read_exec_only == 1 && 6043 seg_32bit == 0 && 6044 limit_in_pages == 0 && 6045 seg_not_present == 1 && 6046 useable == 0 )) { 6047 entry_1 = 0; 6048 entry_2 = 0; 6049 goto install; 6050 } 6051 } 6052 6053 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6054 (ldt_info.limit & 0x0ffff); 6055 entry_2 = (ldt_info.base_addr & 0xff000000) | 6056 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6057 (ldt_info.limit & 0xf0000) | 6058 ((read_exec_only ^ 1) << 9) | 6059 (contents << 10) | 6060 ((seg_not_present ^ 1) << 15) | 6061 (seg_32bit << 22) | 6062 (limit_in_pages << 23) | 6063 (lm << 21) | 6064 0x7000; 6065 if (!oldmode) 6066 entry_2 |= (useable << 20); 6067 6068 /* Install the new entry ... */ 6069 install: 6070 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6071 lp[0] = tswap32(entry_1); 6072 lp[1] = tswap32(entry_2); 6073 return 0; 6074 } 6075 6076 /* specific and weird i386 syscalls */ 6077 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6078 unsigned long bytecount) 6079 { 6080 abi_long ret; 6081 6082 switch (func) { 6083 case 0: 6084 ret = read_ldt(ptr, bytecount); 6085 break; 6086 case 1: 6087 ret = write_ldt(env, ptr, bytecount, 1); 6088 break; 6089 case 0x11: 6090 ret = write_ldt(env, ptr, bytecount, 0); 6091 break; 6092 default: 6093 ret = -TARGET_ENOSYS; 6094 break; 6095 } 6096 return ret; 6097 } 6098 6099 #if defined(TARGET_I386) && defined(TARGET_ABI32) 6100 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6101 { 6102 uint64_t *gdt_table = g2h(env->gdt.base); 6103 struct target_modify_ldt_ldt_s ldt_info; 6104 struct target_modify_ldt_ldt_s *target_ldt_info; 6105 int seg_32bit, contents, read_exec_only, limit_in_pages; 6106 int seg_not_present, useable, lm; 6107 uint32_t *lp, entry_1, entry_2; 6108 int i; 6109 6110 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6111 if (!target_ldt_info) 6112 return -TARGET_EFAULT; 6113 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6114 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6115 ldt_info.limit = tswap32(target_ldt_info->limit); 6116 ldt_info.flags = tswap32(target_ldt_info->flags); 6117 if (ldt_info.entry_number == -1) { 6118 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6119 if (gdt_table[i] == 0) { 6120 ldt_info.entry_number = i; 6121 target_ldt_info->entry_number = tswap32(i); 6122 break; 6123 } 6124 } 6125 } 6126 unlock_user_struct(target_ldt_info, ptr, 1); 6127 6128 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6129 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6130 return -TARGET_EINVAL; 6131 seg_32bit = ldt_info.flags & 1; 6132 contents = (ldt_info.flags >> 1) & 3; 6133 read_exec_only = (ldt_info.flags >> 3) & 1; 6134 limit_in_pages = (ldt_info.flags >> 4) & 1; 6135 seg_not_present = (ldt_info.flags >> 5) & 1; 6136 useable = (ldt_info.flags >> 6) & 1; 6137 #ifdef TARGET_ABI32 6138 lm = 0; 6139 #else 6140 lm = (ldt_info.flags >> 7) & 1; 6141 #endif 6142 6143 if (contents == 3) { 6144 if (seg_not_present == 0) 6145 return -TARGET_EINVAL; 6146 } 6147 6148 /* NOTE: same code as Linux kernel */ 6149 /* Allow LDTs to be cleared by the user. */ 6150 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6151 if ((contents == 0 && 6152 read_exec_only == 1 && 6153 seg_32bit == 0 && 6154 limit_in_pages == 0 && 6155 seg_not_present == 1 && 6156 useable == 0 )) { 6157 entry_1 = 0; 6158 entry_2 = 0; 6159 goto install; 6160 } 6161 } 6162 6163 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6164 (ldt_info.limit & 0x0ffff); 6165 entry_2 = (ldt_info.base_addr & 0xff000000) | 6166 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6167 (ldt_info.limit & 0xf0000) | 6168 ((read_exec_only ^ 1) << 9) | 6169 (contents << 10) | 6170 ((seg_not_present ^ 1) << 15) | 6171 (seg_32bit << 22) | 6172 (limit_in_pages << 23) | 6173 (useable << 20) | 6174 (lm << 21) | 6175 0x7000; 6176 6177 /* Install the new entry ... */ 6178 install: 6179 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6180 lp[0] = tswap32(entry_1); 6181 lp[1] = tswap32(entry_2); 6182 return 0; 6183 } 6184 6185 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6186 { 6187 struct target_modify_ldt_ldt_s *target_ldt_info; 6188 uint64_t *gdt_table = g2h(env->gdt.base); 6189 uint32_t base_addr, limit, flags; 6190 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6191 int seg_not_present, useable, lm; 6192 uint32_t *lp, entry_1, entry_2; 6193 6194 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6195 if (!target_ldt_info) 6196 return -TARGET_EFAULT; 6197 idx = tswap32(target_ldt_info->entry_number); 6198 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6199 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6200 unlock_user_struct(target_ldt_info, ptr, 1); 6201 return -TARGET_EINVAL; 6202 } 6203 lp = (uint32_t *)(gdt_table + idx); 6204 entry_1 = tswap32(lp[0]); 6205 entry_2 = tswap32(lp[1]); 6206 6207 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6208 contents = (entry_2 >> 10) & 3; 6209 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6210 seg_32bit = (entry_2 >> 22) & 1; 6211 limit_in_pages = (entry_2 >> 23) & 1; 6212 useable = (entry_2 >> 20) & 1; 6213 #ifdef TARGET_ABI32 6214 lm = 0; 6215 #else 6216 lm = (entry_2 >> 21) & 1; 6217 #endif 6218 flags = (seg_32bit << 0) | (contents << 1) | 6219 (read_exec_only << 3) | (limit_in_pages << 4) | 6220 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6221 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6222 base_addr = (entry_1 >> 16) | 6223 (entry_2 & 0xff000000) | 6224 ((entry_2 & 0xff) << 16); 6225 target_ldt_info->base_addr = tswapal(base_addr); 6226 target_ldt_info->limit = tswap32(limit); 6227 target_ldt_info->flags = tswap32(flags); 6228 unlock_user_struct(target_ldt_info, ptr, 1); 6229 return 0; 6230 } 6231 #endif /* TARGET_I386 && TARGET_ABI32 */ 6232 6233 #ifndef TARGET_ABI32 6234 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6235 { 6236 abi_long ret = 0; 6237 abi_ulong val; 6238 int idx; 6239 6240 switch(code) { 6241 case TARGET_ARCH_SET_GS: 6242 case TARGET_ARCH_SET_FS: 6243 if (code == TARGET_ARCH_SET_GS) 6244 idx = R_GS; 6245 else 6246 idx = R_FS; 6247 cpu_x86_load_seg(env, idx, 0); 6248 env->segs[idx].base = addr; 6249 break; 6250 case TARGET_ARCH_GET_GS: 6251 case TARGET_ARCH_GET_FS: 6252 if (code == TARGET_ARCH_GET_GS) 6253 idx = R_GS; 6254 else 6255 idx = R_FS; 6256 val = env->segs[idx].base; 6257 if (put_user(val, addr, abi_ulong)) 6258 ret = -TARGET_EFAULT; 6259 break; 6260 default: 6261 ret = -TARGET_EINVAL; 6262 break; 6263 } 6264 return ret; 6265 } 6266 #endif 6267 6268 #endif /* defined(TARGET_I386) */ 6269 6270 #define NEW_STACK_SIZE 0x40000 6271 6272 6273 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6274 typedef struct { 6275 CPUArchState *env; 6276 pthread_mutex_t mutex; 6277 pthread_cond_t cond; 6278 pthread_t thread; 6279 uint32_t tid; 6280 abi_ulong child_tidptr; 6281 abi_ulong parent_tidptr; 6282 sigset_t sigmask; 6283 } new_thread_info; 6284 6285 static void *clone_func(void *arg) 6286 { 6287 new_thread_info *info = arg; 6288 CPUArchState *env; 6289 CPUState *cpu; 6290 TaskState *ts; 6291 6292 rcu_register_thread(); 6293 tcg_register_thread(); 6294 env = info->env; 6295 cpu = ENV_GET_CPU(env); 6296 thread_cpu = cpu; 6297 ts = (TaskState *)cpu->opaque; 6298 info->tid = gettid(); 6299 task_settid(ts); 6300 if (info->child_tidptr) 6301 put_user_u32(info->tid, info->child_tidptr); 6302 if (info->parent_tidptr) 6303 put_user_u32(info->tid, info->parent_tidptr); 6304 /* Enable signals. */ 6305 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6306 /* Signal to the parent that we're ready. */ 6307 pthread_mutex_lock(&info->mutex); 6308 pthread_cond_broadcast(&info->cond); 6309 pthread_mutex_unlock(&info->mutex); 6310 /* Wait until the parent has finished initializing the tls state. */ 6311 pthread_mutex_lock(&clone_lock); 6312 pthread_mutex_unlock(&clone_lock); 6313 cpu_loop(env); 6314 /* never exits */ 6315 return NULL; 6316 } 6317 6318 /* do_fork() Must return host values and target errnos (unlike most 6319 do_*() functions). */ 6320 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6321 abi_ulong parent_tidptr, target_ulong newtls, 6322 abi_ulong child_tidptr) 6323 { 6324 CPUState *cpu = ENV_GET_CPU(env); 6325 int ret; 6326 TaskState *ts; 6327 CPUState *new_cpu; 6328 CPUArchState *new_env; 6329 sigset_t sigmask; 6330 6331 flags &= ~CLONE_IGNORED_FLAGS; 6332 6333 /* Emulate vfork() with fork() */ 6334 if (flags & CLONE_VFORK) 6335 flags &= ~(CLONE_VFORK | CLONE_VM); 6336 6337 if (flags & CLONE_VM) { 6338 TaskState *parent_ts = (TaskState *)cpu->opaque; 6339 new_thread_info info; 6340 pthread_attr_t attr; 6341 6342 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6343 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6344 return -TARGET_EINVAL; 6345 } 6346 6347 ts = g_new0(TaskState, 1); 6348 init_task_state(ts); 6349 /* we create a new CPU instance. */ 6350 new_env = cpu_copy(env); 6351 /* Init regs that differ from the parent. */ 6352 cpu_clone_regs(new_env, newsp); 6353 new_cpu = ENV_GET_CPU(new_env); 6354 new_cpu->opaque = ts; 6355 ts->bprm = parent_ts->bprm; 6356 ts->info = parent_ts->info; 6357 ts->signal_mask = parent_ts->signal_mask; 6358 6359 if (flags & CLONE_CHILD_CLEARTID) { 6360 ts->child_tidptr = child_tidptr; 6361 } 6362 6363 if (flags & CLONE_SETTLS) { 6364 cpu_set_tls (new_env, newtls); 6365 } 6366 6367 /* Grab a mutex so that thread setup appears atomic. */ 6368 pthread_mutex_lock(&clone_lock); 6369 6370 memset(&info, 0, sizeof(info)); 6371 pthread_mutex_init(&info.mutex, NULL); 6372 pthread_mutex_lock(&info.mutex); 6373 pthread_cond_init(&info.cond, NULL); 6374 info.env = new_env; 6375 if (flags & CLONE_CHILD_SETTID) { 6376 info.child_tidptr = child_tidptr; 6377 } 6378 if (flags & CLONE_PARENT_SETTID) { 6379 info.parent_tidptr = parent_tidptr; 6380 } 6381 6382 ret = pthread_attr_init(&attr); 6383 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6384 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6385 /* It is not safe to deliver signals until the child has finished 6386 initializing, so temporarily block all signals. */ 6387 sigfillset(&sigmask); 6388 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6389 6390 /* If this is our first additional thread, we need to ensure we 6391 * generate code for parallel execution and flush old translations. 6392 */ 6393 if (!parallel_cpus) { 6394 parallel_cpus = true; 6395 tb_flush(cpu); 6396 } 6397 6398 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6399 /* TODO: Free new CPU state if thread creation failed. */ 6400 6401 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6402 pthread_attr_destroy(&attr); 6403 if (ret == 0) { 6404 /* Wait for the child to initialize. */ 6405 pthread_cond_wait(&info.cond, &info.mutex); 6406 ret = info.tid; 6407 } else { 6408 ret = -1; 6409 } 6410 pthread_mutex_unlock(&info.mutex); 6411 pthread_cond_destroy(&info.cond); 6412 pthread_mutex_destroy(&info.mutex); 6413 pthread_mutex_unlock(&clone_lock); 6414 } else { 6415 /* if no CLONE_VM, we consider it is a fork */ 6416 if (flags & CLONE_INVALID_FORK_FLAGS) { 6417 return -TARGET_EINVAL; 6418 } 6419 6420 /* We can't support custom termination signals */ 6421 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6422 return -TARGET_EINVAL; 6423 } 6424 6425 if (block_signals()) { 6426 return -TARGET_ERESTARTSYS; 6427 } 6428 6429 fork_start(); 6430 ret = fork(); 6431 if (ret == 0) { 6432 /* Child Process. */ 6433 cpu_clone_regs(env, newsp); 6434 fork_end(1); 6435 /* There is a race condition here. The parent process could 6436 theoretically read the TID in the child process before the child 6437 tid is set. This would require using either ptrace 6438 (not implemented) or having *_tidptr to point at a shared memory 6439 mapping. We can't repeat the spinlock hack used above because 6440 the child process gets its own copy of the lock. */ 6441 if (flags & CLONE_CHILD_SETTID) 6442 put_user_u32(gettid(), child_tidptr); 6443 if (flags & CLONE_PARENT_SETTID) 6444 put_user_u32(gettid(), parent_tidptr); 6445 ts = (TaskState *)cpu->opaque; 6446 if (flags & CLONE_SETTLS) 6447 cpu_set_tls (env, newtls); 6448 if (flags & CLONE_CHILD_CLEARTID) 6449 ts->child_tidptr = child_tidptr; 6450 } else { 6451 fork_end(0); 6452 } 6453 } 6454 return ret; 6455 } 6456 6457 /* warning : doesn't handle linux specific flags... */ 6458 static int target_to_host_fcntl_cmd(int cmd) 6459 { 6460 switch(cmd) { 6461 case TARGET_F_DUPFD: 6462 case TARGET_F_GETFD: 6463 case TARGET_F_SETFD: 6464 case TARGET_F_GETFL: 6465 case TARGET_F_SETFL: 6466 return cmd; 6467 case TARGET_F_GETLK: 6468 return F_GETLK64; 6469 case TARGET_F_SETLK: 6470 return F_SETLK64; 6471 case TARGET_F_SETLKW: 6472 return F_SETLKW64; 6473 case TARGET_F_GETOWN: 6474 return F_GETOWN; 6475 case TARGET_F_SETOWN: 6476 return F_SETOWN; 6477 case TARGET_F_GETSIG: 6478 return F_GETSIG; 6479 case TARGET_F_SETSIG: 6480 return F_SETSIG; 6481 #if TARGET_ABI_BITS == 32 6482 case TARGET_F_GETLK64: 6483 return F_GETLK64; 6484 case TARGET_F_SETLK64: 6485 return F_SETLK64; 6486 case TARGET_F_SETLKW64: 6487 return F_SETLKW64; 6488 #endif 6489 case TARGET_F_SETLEASE: 6490 return F_SETLEASE; 6491 case TARGET_F_GETLEASE: 6492 return F_GETLEASE; 6493 #ifdef F_DUPFD_CLOEXEC 6494 case TARGET_F_DUPFD_CLOEXEC: 6495 return F_DUPFD_CLOEXEC; 6496 #endif 6497 case TARGET_F_NOTIFY: 6498 return F_NOTIFY; 6499 #ifdef F_GETOWN_EX 6500 case TARGET_F_GETOWN_EX: 6501 return F_GETOWN_EX; 6502 #endif 6503 #ifdef F_SETOWN_EX 6504 case TARGET_F_SETOWN_EX: 6505 return F_SETOWN_EX; 6506 #endif 6507 #ifdef F_SETPIPE_SZ 6508 case TARGET_F_SETPIPE_SZ: 6509 return F_SETPIPE_SZ; 6510 case TARGET_F_GETPIPE_SZ: 6511 return F_GETPIPE_SZ; 6512 #endif 6513 default: 6514 return -TARGET_EINVAL; 6515 } 6516 return -TARGET_EINVAL; 6517 } 6518 6519 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a } 6520 static const bitmask_transtbl flock_tbl[] = { 6521 TRANSTBL_CONVERT(F_RDLCK), 6522 TRANSTBL_CONVERT(F_WRLCK), 6523 TRANSTBL_CONVERT(F_UNLCK), 6524 TRANSTBL_CONVERT(F_EXLCK), 6525 TRANSTBL_CONVERT(F_SHLCK), 6526 { 0, 0, 0, 0 } 6527 }; 6528 6529 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6530 abi_ulong target_flock_addr) 6531 { 6532 struct target_flock *target_fl; 6533 short l_type; 6534 6535 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6536 return -TARGET_EFAULT; 6537 } 6538 6539 __get_user(l_type, &target_fl->l_type); 6540 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6541 __get_user(fl->l_whence, &target_fl->l_whence); 6542 __get_user(fl->l_start, &target_fl->l_start); 6543 __get_user(fl->l_len, &target_fl->l_len); 6544 __get_user(fl->l_pid, &target_fl->l_pid); 6545 unlock_user_struct(target_fl, target_flock_addr, 0); 6546 return 0; 6547 } 6548 6549 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6550 const struct flock64 *fl) 6551 { 6552 struct target_flock *target_fl; 6553 short l_type; 6554 6555 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6556 return -TARGET_EFAULT; 6557 } 6558 6559 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6560 __put_user(l_type, &target_fl->l_type); 6561 __put_user(fl->l_whence, &target_fl->l_whence); 6562 __put_user(fl->l_start, &target_fl->l_start); 6563 __put_user(fl->l_len, &target_fl->l_len); 6564 __put_user(fl->l_pid, &target_fl->l_pid); 6565 unlock_user_struct(target_fl, target_flock_addr, 1); 6566 return 0; 6567 } 6568 6569 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6570 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6571 6572 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6573 static inline abi_long copy_from_user_eabi_flock64(struct flock64 *fl, 6574 abi_ulong target_flock_addr) 6575 { 6576 struct target_eabi_flock64 *target_fl; 6577 short l_type; 6578 6579 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6580 return -TARGET_EFAULT; 6581 } 6582 6583 __get_user(l_type, &target_fl->l_type); 6584 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6585 __get_user(fl->l_whence, &target_fl->l_whence); 6586 __get_user(fl->l_start, &target_fl->l_start); 6587 __get_user(fl->l_len, &target_fl->l_len); 6588 __get_user(fl->l_pid, &target_fl->l_pid); 6589 unlock_user_struct(target_fl, target_flock_addr, 0); 6590 return 0; 6591 } 6592 6593 static inline abi_long copy_to_user_eabi_flock64(abi_ulong target_flock_addr, 6594 const struct flock64 *fl) 6595 { 6596 struct target_eabi_flock64 *target_fl; 6597 short l_type; 6598 6599 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6600 return -TARGET_EFAULT; 6601 } 6602 6603 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6604 __put_user(l_type, &target_fl->l_type); 6605 __put_user(fl->l_whence, &target_fl->l_whence); 6606 __put_user(fl->l_start, &target_fl->l_start); 6607 __put_user(fl->l_len, &target_fl->l_len); 6608 __put_user(fl->l_pid, &target_fl->l_pid); 6609 unlock_user_struct(target_fl, target_flock_addr, 1); 6610 return 0; 6611 } 6612 #endif 6613 6614 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6615 abi_ulong target_flock_addr) 6616 { 6617 struct target_flock64 *target_fl; 6618 short l_type; 6619 6620 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6621 return -TARGET_EFAULT; 6622 } 6623 6624 __get_user(l_type, &target_fl->l_type); 6625 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6626 __get_user(fl->l_whence, &target_fl->l_whence); 6627 __get_user(fl->l_start, &target_fl->l_start); 6628 __get_user(fl->l_len, &target_fl->l_len); 6629 __get_user(fl->l_pid, &target_fl->l_pid); 6630 unlock_user_struct(target_fl, target_flock_addr, 0); 6631 return 0; 6632 } 6633 6634 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6635 const struct flock64 *fl) 6636 { 6637 struct target_flock64 *target_fl; 6638 short l_type; 6639 6640 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6641 return -TARGET_EFAULT; 6642 } 6643 6644 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6645 __put_user(l_type, &target_fl->l_type); 6646 __put_user(fl->l_whence, &target_fl->l_whence); 6647 __put_user(fl->l_start, &target_fl->l_start); 6648 __put_user(fl->l_len, &target_fl->l_len); 6649 __put_user(fl->l_pid, &target_fl->l_pid); 6650 unlock_user_struct(target_fl, target_flock_addr, 1); 6651 return 0; 6652 } 6653 6654 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6655 { 6656 struct flock64 fl64; 6657 #ifdef F_GETOWN_EX 6658 struct f_owner_ex fox; 6659 struct target_f_owner_ex *target_fox; 6660 #endif 6661 abi_long ret; 6662 int host_cmd = target_to_host_fcntl_cmd(cmd); 6663 6664 if (host_cmd == -TARGET_EINVAL) 6665 return host_cmd; 6666 6667 switch(cmd) { 6668 case TARGET_F_GETLK: 6669 ret = copy_from_user_flock(&fl64, arg); 6670 if (ret) { 6671 return ret; 6672 } 6673 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6674 if (ret == 0) { 6675 ret = copy_to_user_flock(arg, &fl64); 6676 } 6677 break; 6678 6679 case TARGET_F_SETLK: 6680 case TARGET_F_SETLKW: 6681 ret = copy_from_user_flock(&fl64, arg); 6682 if (ret) { 6683 return ret; 6684 } 6685 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6686 break; 6687 6688 case TARGET_F_GETLK64: 6689 ret = copy_from_user_flock64(&fl64, arg); 6690 if (ret) { 6691 return ret; 6692 } 6693 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6694 if (ret == 0) { 6695 ret = copy_to_user_flock64(arg, &fl64); 6696 } 6697 break; 6698 case TARGET_F_SETLK64: 6699 case TARGET_F_SETLKW64: 6700 ret = copy_from_user_flock64(&fl64, arg); 6701 if (ret) { 6702 return ret; 6703 } 6704 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6705 break; 6706 6707 case TARGET_F_GETFL: 6708 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6709 if (ret >= 0) { 6710 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 6711 } 6712 break; 6713 6714 case TARGET_F_SETFL: 6715 ret = get_errno(safe_fcntl(fd, host_cmd, 6716 target_to_host_bitmask(arg, 6717 fcntl_flags_tbl))); 6718 break; 6719 6720 #ifdef F_GETOWN_EX 6721 case TARGET_F_GETOWN_EX: 6722 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6723 if (ret >= 0) { 6724 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 6725 return -TARGET_EFAULT; 6726 target_fox->type = tswap32(fox.type); 6727 target_fox->pid = tswap32(fox.pid); 6728 unlock_user_struct(target_fox, arg, 1); 6729 } 6730 break; 6731 #endif 6732 6733 #ifdef F_SETOWN_EX 6734 case TARGET_F_SETOWN_EX: 6735 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 6736 return -TARGET_EFAULT; 6737 fox.type = tswap32(target_fox->type); 6738 fox.pid = tswap32(target_fox->pid); 6739 unlock_user_struct(target_fox, arg, 0); 6740 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6741 break; 6742 #endif 6743 6744 case TARGET_F_SETOWN: 6745 case TARGET_F_GETOWN: 6746 case TARGET_F_SETSIG: 6747 case TARGET_F_GETSIG: 6748 case TARGET_F_SETLEASE: 6749 case TARGET_F_GETLEASE: 6750 case TARGET_F_SETPIPE_SZ: 6751 case TARGET_F_GETPIPE_SZ: 6752 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6753 break; 6754 6755 default: 6756 ret = get_errno(safe_fcntl(fd, cmd, arg)); 6757 break; 6758 } 6759 return ret; 6760 } 6761 6762 #ifdef USE_UID16 6763 6764 static inline int high2lowuid(int uid) 6765 { 6766 if (uid > 65535) 6767 return 65534; 6768 else 6769 return uid; 6770 } 6771 6772 static inline int high2lowgid(int gid) 6773 { 6774 if (gid > 65535) 6775 return 65534; 6776 else 6777 return gid; 6778 } 6779 6780 static inline int low2highuid(int uid) 6781 { 6782 if ((int16_t)uid == -1) 6783 return -1; 6784 else 6785 return uid; 6786 } 6787 6788 static inline int low2highgid(int gid) 6789 { 6790 if ((int16_t)gid == -1) 6791 return -1; 6792 else 6793 return gid; 6794 } 6795 static inline int tswapid(int id) 6796 { 6797 return tswap16(id); 6798 } 6799 6800 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 6801 6802 #else /* !USE_UID16 */ 6803 static inline int high2lowuid(int uid) 6804 { 6805 return uid; 6806 } 6807 static inline int high2lowgid(int gid) 6808 { 6809 return gid; 6810 } 6811 static inline int low2highuid(int uid) 6812 { 6813 return uid; 6814 } 6815 static inline int low2highgid(int gid) 6816 { 6817 return gid; 6818 } 6819 static inline int tswapid(int id) 6820 { 6821 return tswap32(id); 6822 } 6823 6824 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 6825 6826 #endif /* USE_UID16 */ 6827 6828 /* We must do direct syscalls for setting UID/GID, because we want to 6829 * implement the Linux system call semantics of "change only for this thread", 6830 * not the libc/POSIX semantics of "change for all threads in process". 6831 * (See http://ewontfix.com/17/ for more details.) 6832 * We use the 32-bit version of the syscalls if present; if it is not 6833 * then either the host architecture supports 32-bit UIDs natively with 6834 * the standard syscall, or the 16-bit UID is the best we can do. 6835 */ 6836 #ifdef __NR_setuid32 6837 #define __NR_sys_setuid __NR_setuid32 6838 #else 6839 #define __NR_sys_setuid __NR_setuid 6840 #endif 6841 #ifdef __NR_setgid32 6842 #define __NR_sys_setgid __NR_setgid32 6843 #else 6844 #define __NR_sys_setgid __NR_setgid 6845 #endif 6846 #ifdef __NR_setresuid32 6847 #define __NR_sys_setresuid __NR_setresuid32 6848 #else 6849 #define __NR_sys_setresuid __NR_setresuid 6850 #endif 6851 #ifdef __NR_setresgid32 6852 #define __NR_sys_setresgid __NR_setresgid32 6853 #else 6854 #define __NR_sys_setresgid __NR_setresgid 6855 #endif 6856 6857 _syscall1(int, sys_setuid, uid_t, uid) 6858 _syscall1(int, sys_setgid, gid_t, gid) 6859 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 6860 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 6861 6862 void syscall_init(void) 6863 { 6864 IOCTLEntry *ie; 6865 const argtype *arg_type; 6866 int size; 6867 int i; 6868 6869 thunk_init(STRUCT_MAX); 6870 6871 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 6872 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 6873 #include "syscall_types.h" 6874 #undef STRUCT 6875 #undef STRUCT_SPECIAL 6876 6877 /* Build target_to_host_errno_table[] table from 6878 * host_to_target_errno_table[]. */ 6879 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 6880 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 6881 } 6882 6883 /* we patch the ioctl size if necessary. We rely on the fact that 6884 no ioctl has all the bits at '1' in the size field */ 6885 ie = ioctl_entries; 6886 while (ie->target_cmd != 0) { 6887 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 6888 TARGET_IOC_SIZEMASK) { 6889 arg_type = ie->arg_type; 6890 if (arg_type[0] != TYPE_PTR) { 6891 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 6892 ie->target_cmd); 6893 exit(1); 6894 } 6895 arg_type++; 6896 size = thunk_type_size(arg_type, 0); 6897 ie->target_cmd = (ie->target_cmd & 6898 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 6899 (size << TARGET_IOC_SIZESHIFT); 6900 } 6901 6902 /* automatic consistency check if same arch */ 6903 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 6904 (defined(__x86_64__) && defined(TARGET_X86_64)) 6905 if (unlikely(ie->target_cmd != ie->host_cmd)) { 6906 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 6907 ie->name, ie->target_cmd, ie->host_cmd); 6908 } 6909 #endif 6910 ie++; 6911 } 6912 } 6913 6914 #if TARGET_ABI_BITS == 32 6915 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 6916 { 6917 #ifdef TARGET_WORDS_BIGENDIAN 6918 return ((uint64_t)word0 << 32) | word1; 6919 #else 6920 return ((uint64_t)word1 << 32) | word0; 6921 #endif 6922 } 6923 #else /* TARGET_ABI_BITS == 32 */ 6924 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 6925 { 6926 return word0; 6927 } 6928 #endif /* TARGET_ABI_BITS != 32 */ 6929 6930 #ifdef TARGET_NR_truncate64 6931 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 6932 abi_long arg2, 6933 abi_long arg3, 6934 abi_long arg4) 6935 { 6936 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 6937 arg2 = arg3; 6938 arg3 = arg4; 6939 } 6940 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 6941 } 6942 #endif 6943 6944 #ifdef TARGET_NR_ftruncate64 6945 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 6946 abi_long arg2, 6947 abi_long arg3, 6948 abi_long arg4) 6949 { 6950 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 6951 arg2 = arg3; 6952 arg3 = arg4; 6953 } 6954 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 6955 } 6956 #endif 6957 6958 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 6959 abi_ulong target_addr) 6960 { 6961 struct target_timespec *target_ts; 6962 6963 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) 6964 return -TARGET_EFAULT; 6965 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 6966 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 6967 unlock_user_struct(target_ts, target_addr, 0); 6968 return 0; 6969 } 6970 6971 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 6972 struct timespec *host_ts) 6973 { 6974 struct target_timespec *target_ts; 6975 6976 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) 6977 return -TARGET_EFAULT; 6978 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 6979 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 6980 unlock_user_struct(target_ts, target_addr, 1); 6981 return 0; 6982 } 6983 6984 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec, 6985 abi_ulong target_addr) 6986 { 6987 struct target_itimerspec *target_itspec; 6988 6989 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) { 6990 return -TARGET_EFAULT; 6991 } 6992 6993 host_itspec->it_interval.tv_sec = 6994 tswapal(target_itspec->it_interval.tv_sec); 6995 host_itspec->it_interval.tv_nsec = 6996 tswapal(target_itspec->it_interval.tv_nsec); 6997 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec); 6998 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec); 6999 7000 unlock_user_struct(target_itspec, target_addr, 1); 7001 return 0; 7002 } 7003 7004 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7005 struct itimerspec *host_its) 7006 { 7007 struct target_itimerspec *target_itspec; 7008 7009 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) { 7010 return -TARGET_EFAULT; 7011 } 7012 7013 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec); 7014 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec); 7015 7016 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec); 7017 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec); 7018 7019 unlock_user_struct(target_itspec, target_addr, 0); 7020 return 0; 7021 } 7022 7023 static inline abi_long target_to_host_timex(struct timex *host_tx, 7024 abi_long target_addr) 7025 { 7026 struct target_timex *target_tx; 7027 7028 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7029 return -TARGET_EFAULT; 7030 } 7031 7032 __get_user(host_tx->modes, &target_tx->modes); 7033 __get_user(host_tx->offset, &target_tx->offset); 7034 __get_user(host_tx->freq, &target_tx->freq); 7035 __get_user(host_tx->maxerror, &target_tx->maxerror); 7036 __get_user(host_tx->esterror, &target_tx->esterror); 7037 __get_user(host_tx->status, &target_tx->status); 7038 __get_user(host_tx->constant, &target_tx->constant); 7039 __get_user(host_tx->precision, &target_tx->precision); 7040 __get_user(host_tx->tolerance, &target_tx->tolerance); 7041 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7042 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7043 __get_user(host_tx->tick, &target_tx->tick); 7044 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7045 __get_user(host_tx->jitter, &target_tx->jitter); 7046 __get_user(host_tx->shift, &target_tx->shift); 7047 __get_user(host_tx->stabil, &target_tx->stabil); 7048 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7049 __get_user(host_tx->calcnt, &target_tx->calcnt); 7050 __get_user(host_tx->errcnt, &target_tx->errcnt); 7051 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7052 __get_user(host_tx->tai, &target_tx->tai); 7053 7054 unlock_user_struct(target_tx, target_addr, 0); 7055 return 0; 7056 } 7057 7058 static inline abi_long host_to_target_timex(abi_long target_addr, 7059 struct timex *host_tx) 7060 { 7061 struct target_timex *target_tx; 7062 7063 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7064 return -TARGET_EFAULT; 7065 } 7066 7067 __put_user(host_tx->modes, &target_tx->modes); 7068 __put_user(host_tx->offset, &target_tx->offset); 7069 __put_user(host_tx->freq, &target_tx->freq); 7070 __put_user(host_tx->maxerror, &target_tx->maxerror); 7071 __put_user(host_tx->esterror, &target_tx->esterror); 7072 __put_user(host_tx->status, &target_tx->status); 7073 __put_user(host_tx->constant, &target_tx->constant); 7074 __put_user(host_tx->precision, &target_tx->precision); 7075 __put_user(host_tx->tolerance, &target_tx->tolerance); 7076 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7077 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7078 __put_user(host_tx->tick, &target_tx->tick); 7079 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7080 __put_user(host_tx->jitter, &target_tx->jitter); 7081 __put_user(host_tx->shift, &target_tx->shift); 7082 __put_user(host_tx->stabil, &target_tx->stabil); 7083 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7084 __put_user(host_tx->calcnt, &target_tx->calcnt); 7085 __put_user(host_tx->errcnt, &target_tx->errcnt); 7086 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7087 __put_user(host_tx->tai, &target_tx->tai); 7088 7089 unlock_user_struct(target_tx, target_addr, 1); 7090 return 0; 7091 } 7092 7093 7094 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7095 abi_ulong target_addr) 7096 { 7097 struct target_sigevent *target_sevp; 7098 7099 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7100 return -TARGET_EFAULT; 7101 } 7102 7103 /* This union is awkward on 64 bit systems because it has a 32 bit 7104 * integer and a pointer in it; we follow the conversion approach 7105 * used for handling sigval types in signal.c so the guest should get 7106 * the correct value back even if we did a 64 bit byteswap and it's 7107 * using the 32 bit integer. 7108 */ 7109 host_sevp->sigev_value.sival_ptr = 7110 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7111 host_sevp->sigev_signo = 7112 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7113 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7114 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid); 7115 7116 unlock_user_struct(target_sevp, target_addr, 1); 7117 return 0; 7118 } 7119 7120 #if defined(TARGET_NR_mlockall) 7121 static inline int target_to_host_mlockall_arg(int arg) 7122 { 7123 int result = 0; 7124 7125 if (arg & TARGET_MLOCKALL_MCL_CURRENT) { 7126 result |= MCL_CURRENT; 7127 } 7128 if (arg & TARGET_MLOCKALL_MCL_FUTURE) { 7129 result |= MCL_FUTURE; 7130 } 7131 return result; 7132 } 7133 #endif 7134 7135 static inline abi_long host_to_target_stat64(void *cpu_env, 7136 abi_ulong target_addr, 7137 struct stat *host_st) 7138 { 7139 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7140 if (((CPUARMState *)cpu_env)->eabi) { 7141 struct target_eabi_stat64 *target_st; 7142 7143 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7144 return -TARGET_EFAULT; 7145 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7146 __put_user(host_st->st_dev, &target_st->st_dev); 7147 __put_user(host_st->st_ino, &target_st->st_ino); 7148 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7149 __put_user(host_st->st_ino, &target_st->__st_ino); 7150 #endif 7151 __put_user(host_st->st_mode, &target_st->st_mode); 7152 __put_user(host_st->st_nlink, &target_st->st_nlink); 7153 __put_user(host_st->st_uid, &target_st->st_uid); 7154 __put_user(host_st->st_gid, &target_st->st_gid); 7155 __put_user(host_st->st_rdev, &target_st->st_rdev); 7156 __put_user(host_st->st_size, &target_st->st_size); 7157 __put_user(host_st->st_blksize, &target_st->st_blksize); 7158 __put_user(host_st->st_blocks, &target_st->st_blocks); 7159 __put_user(host_st->st_atime, &target_st->target_st_atime); 7160 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7161 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7162 unlock_user_struct(target_st, target_addr, 1); 7163 } else 7164 #endif 7165 { 7166 #if defined(TARGET_HAS_STRUCT_STAT64) 7167 struct target_stat64 *target_st; 7168 #else 7169 struct target_stat *target_st; 7170 #endif 7171 7172 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7173 return -TARGET_EFAULT; 7174 memset(target_st, 0, sizeof(*target_st)); 7175 __put_user(host_st->st_dev, &target_st->st_dev); 7176 __put_user(host_st->st_ino, &target_st->st_ino); 7177 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7178 __put_user(host_st->st_ino, &target_st->__st_ino); 7179 #endif 7180 __put_user(host_st->st_mode, &target_st->st_mode); 7181 __put_user(host_st->st_nlink, &target_st->st_nlink); 7182 __put_user(host_st->st_uid, &target_st->st_uid); 7183 __put_user(host_st->st_gid, &target_st->st_gid); 7184 __put_user(host_st->st_rdev, &target_st->st_rdev); 7185 /* XXX: better use of kernel struct */ 7186 __put_user(host_st->st_size, &target_st->st_size); 7187 __put_user(host_st->st_blksize, &target_st->st_blksize); 7188 __put_user(host_st->st_blocks, &target_st->st_blocks); 7189 __put_user(host_st->st_atime, &target_st->target_st_atime); 7190 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7191 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7192 unlock_user_struct(target_st, target_addr, 1); 7193 } 7194 7195 return 0; 7196 } 7197 7198 /* ??? Using host futex calls even when target atomic operations 7199 are not really atomic probably breaks things. However implementing 7200 futexes locally would make futexes shared between multiple processes 7201 tricky. However they're probably useless because guest atomic 7202 operations won't work either. */ 7203 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout, 7204 target_ulong uaddr2, int val3) 7205 { 7206 struct timespec ts, *pts; 7207 int base_op; 7208 7209 /* ??? We assume FUTEX_* constants are the same on both host 7210 and target. */ 7211 #ifdef FUTEX_CMD_MASK 7212 base_op = op & FUTEX_CMD_MASK; 7213 #else 7214 base_op = op; 7215 #endif 7216 switch (base_op) { 7217 case FUTEX_WAIT: 7218 case FUTEX_WAIT_BITSET: 7219 if (timeout) { 7220 pts = &ts; 7221 target_to_host_timespec(pts, timeout); 7222 } else { 7223 pts = NULL; 7224 } 7225 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val), 7226 pts, NULL, val3)); 7227 case FUTEX_WAKE: 7228 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7229 case FUTEX_FD: 7230 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7231 case FUTEX_REQUEUE: 7232 case FUTEX_CMP_REQUEUE: 7233 case FUTEX_WAKE_OP: 7234 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 7235 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 7236 But the prototype takes a `struct timespec *'; insert casts 7237 to satisfy the compiler. We do not need to tswap TIMEOUT 7238 since it's not compared to guest memory. */ 7239 pts = (struct timespec *)(uintptr_t) timeout; 7240 return get_errno(safe_futex(g2h(uaddr), op, val, pts, 7241 g2h(uaddr2), 7242 (base_op == FUTEX_CMP_REQUEUE 7243 ? tswap32(val3) 7244 : val3))); 7245 default: 7246 return -TARGET_ENOSYS; 7247 } 7248 } 7249 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7250 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7251 abi_long handle, abi_long mount_id, 7252 abi_long flags) 7253 { 7254 struct file_handle *target_fh; 7255 struct file_handle *fh; 7256 int mid = 0; 7257 abi_long ret; 7258 char *name; 7259 unsigned int size, total_size; 7260 7261 if (get_user_s32(size, handle)) { 7262 return -TARGET_EFAULT; 7263 } 7264 7265 name = lock_user_string(pathname); 7266 if (!name) { 7267 return -TARGET_EFAULT; 7268 } 7269 7270 total_size = sizeof(struct file_handle) + size; 7271 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7272 if (!target_fh) { 7273 unlock_user(name, pathname, 0); 7274 return -TARGET_EFAULT; 7275 } 7276 7277 fh = g_malloc0(total_size); 7278 fh->handle_bytes = size; 7279 7280 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7281 unlock_user(name, pathname, 0); 7282 7283 /* man name_to_handle_at(2): 7284 * Other than the use of the handle_bytes field, the caller should treat 7285 * the file_handle structure as an opaque data type 7286 */ 7287 7288 memcpy(target_fh, fh, total_size); 7289 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7290 target_fh->handle_type = tswap32(fh->handle_type); 7291 g_free(fh); 7292 unlock_user(target_fh, handle, total_size); 7293 7294 if (put_user_s32(mid, mount_id)) { 7295 return -TARGET_EFAULT; 7296 } 7297 7298 return ret; 7299 7300 } 7301 #endif 7302 7303 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7304 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7305 abi_long flags) 7306 { 7307 struct file_handle *target_fh; 7308 struct file_handle *fh; 7309 unsigned int size, total_size; 7310 abi_long ret; 7311 7312 if (get_user_s32(size, handle)) { 7313 return -TARGET_EFAULT; 7314 } 7315 7316 total_size = sizeof(struct file_handle) + size; 7317 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7318 if (!target_fh) { 7319 return -TARGET_EFAULT; 7320 } 7321 7322 fh = g_memdup(target_fh, total_size); 7323 fh->handle_bytes = size; 7324 fh->handle_type = tswap32(target_fh->handle_type); 7325 7326 ret = get_errno(open_by_handle_at(mount_fd, fh, 7327 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7328 7329 g_free(fh); 7330 7331 unlock_user(target_fh, handle, total_size); 7332 7333 return ret; 7334 } 7335 #endif 7336 7337 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7338 7339 /* signalfd siginfo conversion */ 7340 7341 static void 7342 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo, 7343 const struct signalfd_siginfo *info) 7344 { 7345 int sig = host_to_target_signal(info->ssi_signo); 7346 7347 /* linux/signalfd.h defines a ssi_addr_lsb 7348 * not defined in sys/signalfd.h but used by some kernels 7349 */ 7350 7351 #ifdef BUS_MCEERR_AO 7352 if (tinfo->ssi_signo == SIGBUS && 7353 (tinfo->ssi_code == BUS_MCEERR_AR || 7354 tinfo->ssi_code == BUS_MCEERR_AO)) { 7355 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1); 7356 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1); 7357 *tssi_addr_lsb = tswap16(*ssi_addr_lsb); 7358 } 7359 #endif 7360 7361 tinfo->ssi_signo = tswap32(sig); 7362 tinfo->ssi_errno = tswap32(tinfo->ssi_errno); 7363 tinfo->ssi_code = tswap32(info->ssi_code); 7364 tinfo->ssi_pid = tswap32(info->ssi_pid); 7365 tinfo->ssi_uid = tswap32(info->ssi_uid); 7366 tinfo->ssi_fd = tswap32(info->ssi_fd); 7367 tinfo->ssi_tid = tswap32(info->ssi_tid); 7368 tinfo->ssi_band = tswap32(info->ssi_band); 7369 tinfo->ssi_overrun = tswap32(info->ssi_overrun); 7370 tinfo->ssi_trapno = tswap32(info->ssi_trapno); 7371 tinfo->ssi_status = tswap32(info->ssi_status); 7372 tinfo->ssi_int = tswap32(info->ssi_int); 7373 tinfo->ssi_ptr = tswap64(info->ssi_ptr); 7374 tinfo->ssi_utime = tswap64(info->ssi_utime); 7375 tinfo->ssi_stime = tswap64(info->ssi_stime); 7376 tinfo->ssi_addr = tswap64(info->ssi_addr); 7377 } 7378 7379 static abi_long host_to_target_data_signalfd(void *buf, size_t len) 7380 { 7381 int i; 7382 7383 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) { 7384 host_to_target_signalfd_siginfo(buf + i, buf + i); 7385 } 7386 7387 return len; 7388 } 7389 7390 static TargetFdTrans target_signalfd_trans = { 7391 .host_to_target_data = host_to_target_data_signalfd, 7392 }; 7393 7394 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7395 { 7396 int host_flags; 7397 target_sigset_t *target_mask; 7398 sigset_t host_mask; 7399 abi_long ret; 7400 7401 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) { 7402 return -TARGET_EINVAL; 7403 } 7404 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7405 return -TARGET_EFAULT; 7406 } 7407 7408 target_to_host_sigset(&host_mask, target_mask); 7409 7410 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7411 7412 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7413 if (ret >= 0) { 7414 fd_trans_register(ret, &target_signalfd_trans); 7415 } 7416 7417 unlock_user_struct(target_mask, mask, 0); 7418 7419 return ret; 7420 } 7421 #endif 7422 7423 /* Map host to target signal numbers for the wait family of syscalls. 7424 Assume all other status bits are the same. */ 7425 int host_to_target_waitstatus(int status) 7426 { 7427 if (WIFSIGNALED(status)) { 7428 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7429 } 7430 if (WIFSTOPPED(status)) { 7431 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7432 | (status & 0xff); 7433 } 7434 return status; 7435 } 7436 7437 static int open_self_cmdline(void *cpu_env, int fd) 7438 { 7439 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7440 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm; 7441 int i; 7442 7443 for (i = 0; i < bprm->argc; i++) { 7444 size_t len = strlen(bprm->argv[i]) + 1; 7445 7446 if (write(fd, bprm->argv[i], len) != len) { 7447 return -1; 7448 } 7449 } 7450 7451 return 0; 7452 } 7453 7454 static int open_self_maps(void *cpu_env, int fd) 7455 { 7456 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7457 TaskState *ts = cpu->opaque; 7458 FILE *fp; 7459 char *line = NULL; 7460 size_t len = 0; 7461 ssize_t read; 7462 7463 fp = fopen("/proc/self/maps", "r"); 7464 if (fp == NULL) { 7465 return -1; 7466 } 7467 7468 while ((read = getline(&line, &len, fp)) != -1) { 7469 int fields, dev_maj, dev_min, inode; 7470 uint64_t min, max, offset; 7471 char flag_r, flag_w, flag_x, flag_p; 7472 char path[512] = ""; 7473 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d" 7474 " %512s", &min, &max, &flag_r, &flag_w, &flag_x, 7475 &flag_p, &offset, &dev_maj, &dev_min, &inode, path); 7476 7477 if ((fields < 10) || (fields > 11)) { 7478 continue; 7479 } 7480 if (h2g_valid(min)) { 7481 int flags = page_get_flags(h2g(min)); 7482 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX) + 1; 7483 if (page_check_range(h2g(min), max - min, flags) == -1) { 7484 continue; 7485 } 7486 if (h2g(min) == ts->info->stack_limit) { 7487 pstrcpy(path, sizeof(path), " [stack]"); 7488 } 7489 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx 7490 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n", 7491 h2g(min), h2g(max - 1) + 1, flag_r, flag_w, 7492 flag_x, flag_p, offset, dev_maj, dev_min, inode, 7493 path[0] ? " " : "", path); 7494 } 7495 } 7496 7497 free(line); 7498 fclose(fp); 7499 7500 return 0; 7501 } 7502 7503 static int open_self_stat(void *cpu_env, int fd) 7504 { 7505 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7506 TaskState *ts = cpu->opaque; 7507 abi_ulong start_stack = ts->info->start_stack; 7508 int i; 7509 7510 for (i = 0; i < 44; i++) { 7511 char buf[128]; 7512 int len; 7513 uint64_t val = 0; 7514 7515 if (i == 0) { 7516 /* pid */ 7517 val = getpid(); 7518 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7519 } else if (i == 1) { 7520 /* app name */ 7521 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]); 7522 } else if (i == 27) { 7523 /* stack bottom */ 7524 val = start_stack; 7525 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7526 } else { 7527 /* for the rest, there is MasterCard */ 7528 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' '); 7529 } 7530 7531 len = strlen(buf); 7532 if (write(fd, buf, len) != len) { 7533 return -1; 7534 } 7535 } 7536 7537 return 0; 7538 } 7539 7540 static int open_self_auxv(void *cpu_env, int fd) 7541 { 7542 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7543 TaskState *ts = cpu->opaque; 7544 abi_ulong auxv = ts->info->saved_auxv; 7545 abi_ulong len = ts->info->auxv_len; 7546 char *ptr; 7547 7548 /* 7549 * Auxiliary vector is stored in target process stack. 7550 * read in whole auxv vector and copy it to file 7551 */ 7552 ptr = lock_user(VERIFY_READ, auxv, len, 0); 7553 if (ptr != NULL) { 7554 while (len > 0) { 7555 ssize_t r; 7556 r = write(fd, ptr, len); 7557 if (r <= 0) { 7558 break; 7559 } 7560 len -= r; 7561 ptr += r; 7562 } 7563 lseek(fd, 0, SEEK_SET); 7564 unlock_user(ptr, auxv, len); 7565 } 7566 7567 return 0; 7568 } 7569 7570 static int is_proc_myself(const char *filename, const char *entry) 7571 { 7572 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 7573 filename += strlen("/proc/"); 7574 if (!strncmp(filename, "self/", strlen("self/"))) { 7575 filename += strlen("self/"); 7576 } else if (*filename >= '1' && *filename <= '9') { 7577 char myself[80]; 7578 snprintf(myself, sizeof(myself), "%d/", getpid()); 7579 if (!strncmp(filename, myself, strlen(myself))) { 7580 filename += strlen(myself); 7581 } else { 7582 return 0; 7583 } 7584 } else { 7585 return 0; 7586 } 7587 if (!strcmp(filename, entry)) { 7588 return 1; 7589 } 7590 } 7591 return 0; 7592 } 7593 7594 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7595 static int is_proc(const char *filename, const char *entry) 7596 { 7597 return strcmp(filename, entry) == 0; 7598 } 7599 7600 static int open_net_route(void *cpu_env, int fd) 7601 { 7602 FILE *fp; 7603 char *line = NULL; 7604 size_t len = 0; 7605 ssize_t read; 7606 7607 fp = fopen("/proc/net/route", "r"); 7608 if (fp == NULL) { 7609 return -1; 7610 } 7611 7612 /* read header */ 7613 7614 read = getline(&line, &len, fp); 7615 dprintf(fd, "%s", line); 7616 7617 /* read routes */ 7618 7619 while ((read = getline(&line, &len, fp)) != -1) { 7620 char iface[16]; 7621 uint32_t dest, gw, mask; 7622 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 7623 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7624 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 7625 &mask, &mtu, &window, &irtt); 7626 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7627 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 7628 metric, tswap32(mask), mtu, window, irtt); 7629 } 7630 7631 free(line); 7632 fclose(fp); 7633 7634 return 0; 7635 } 7636 #endif 7637 7638 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 7639 { 7640 struct fake_open { 7641 const char *filename; 7642 int (*fill)(void *cpu_env, int fd); 7643 int (*cmp)(const char *s1, const char *s2); 7644 }; 7645 const struct fake_open *fake_open; 7646 static const struct fake_open fakes[] = { 7647 { "maps", open_self_maps, is_proc_myself }, 7648 { "stat", open_self_stat, is_proc_myself }, 7649 { "auxv", open_self_auxv, is_proc_myself }, 7650 { "cmdline", open_self_cmdline, is_proc_myself }, 7651 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7652 { "/proc/net/route", open_net_route, is_proc }, 7653 #endif 7654 { NULL, NULL, NULL } 7655 }; 7656 7657 if (is_proc_myself(pathname, "exe")) { 7658 int execfd = qemu_getauxval(AT_EXECFD); 7659 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode); 7660 } 7661 7662 for (fake_open = fakes; fake_open->filename; fake_open++) { 7663 if (fake_open->cmp(pathname, fake_open->filename)) { 7664 break; 7665 } 7666 } 7667 7668 if (fake_open->filename) { 7669 const char *tmpdir; 7670 char filename[PATH_MAX]; 7671 int fd, r; 7672 7673 /* create temporary file to map stat to */ 7674 tmpdir = getenv("TMPDIR"); 7675 if (!tmpdir) 7676 tmpdir = "/tmp"; 7677 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 7678 fd = mkstemp(filename); 7679 if (fd < 0) { 7680 return fd; 7681 } 7682 unlink(filename); 7683 7684 if ((r = fake_open->fill(cpu_env, fd))) { 7685 int e = errno; 7686 close(fd); 7687 errno = e; 7688 return r; 7689 } 7690 lseek(fd, 0, SEEK_SET); 7691 7692 return fd; 7693 } 7694 7695 return safe_openat(dirfd, path(pathname), flags, mode); 7696 } 7697 7698 #define TIMER_MAGIC 0x0caf0000 7699 #define TIMER_MAGIC_MASK 0xffff0000 7700 7701 /* Convert QEMU provided timer ID back to internal 16bit index format */ 7702 static target_timer_t get_timer_id(abi_long arg) 7703 { 7704 target_timer_t timerid = arg; 7705 7706 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 7707 return -TARGET_EINVAL; 7708 } 7709 7710 timerid &= 0xffff; 7711 7712 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 7713 return -TARGET_EINVAL; 7714 } 7715 7716 return timerid; 7717 } 7718 7719 static abi_long swap_data_eventfd(void *buf, size_t len) 7720 { 7721 uint64_t *counter = buf; 7722 int i; 7723 7724 if (len < sizeof(uint64_t)) { 7725 return -EINVAL; 7726 } 7727 7728 for (i = 0; i < len; i += sizeof(uint64_t)) { 7729 *counter = tswap64(*counter); 7730 counter++; 7731 } 7732 7733 return len; 7734 } 7735 7736 static TargetFdTrans target_eventfd_trans = { 7737 .host_to_target_data = swap_data_eventfd, 7738 .target_to_host_data = swap_data_eventfd, 7739 }; 7740 7741 #if (defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)) || \ 7742 (defined(CONFIG_INOTIFY1) && defined(TARGET_NR_inotify_init1) && \ 7743 defined(__NR_inotify_init1)) 7744 static abi_long host_to_target_data_inotify(void *buf, size_t len) 7745 { 7746 struct inotify_event *ev; 7747 int i; 7748 uint32_t name_len; 7749 7750 for (i = 0; i < len; i += sizeof(struct inotify_event) + name_len) { 7751 ev = (struct inotify_event *)((char *)buf + i); 7752 name_len = ev->len; 7753 7754 ev->wd = tswap32(ev->wd); 7755 ev->mask = tswap32(ev->mask); 7756 ev->cookie = tswap32(ev->cookie); 7757 ev->len = tswap32(name_len); 7758 } 7759 7760 return len; 7761 } 7762 7763 static TargetFdTrans target_inotify_trans = { 7764 .host_to_target_data = host_to_target_data_inotify, 7765 }; 7766 #endif 7767 7768 static int target_to_host_cpu_mask(unsigned long *host_mask, 7769 size_t host_size, 7770 abi_ulong target_addr, 7771 size_t target_size) 7772 { 7773 unsigned target_bits = sizeof(abi_ulong) * 8; 7774 unsigned host_bits = sizeof(*host_mask) * 8; 7775 abi_ulong *target_mask; 7776 unsigned i, j; 7777 7778 assert(host_size >= target_size); 7779 7780 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 7781 if (!target_mask) { 7782 return -TARGET_EFAULT; 7783 } 7784 memset(host_mask, 0, host_size); 7785 7786 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 7787 unsigned bit = i * target_bits; 7788 abi_ulong val; 7789 7790 __get_user(val, &target_mask[i]); 7791 for (j = 0; j < target_bits; j++, bit++) { 7792 if (val & (1UL << j)) { 7793 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 7794 } 7795 } 7796 } 7797 7798 unlock_user(target_mask, target_addr, 0); 7799 return 0; 7800 } 7801 7802 static int host_to_target_cpu_mask(const unsigned long *host_mask, 7803 size_t host_size, 7804 abi_ulong target_addr, 7805 size_t target_size) 7806 { 7807 unsigned target_bits = sizeof(abi_ulong) * 8; 7808 unsigned host_bits = sizeof(*host_mask) * 8; 7809 abi_ulong *target_mask; 7810 unsigned i, j; 7811 7812 assert(host_size >= target_size); 7813 7814 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 7815 if (!target_mask) { 7816 return -TARGET_EFAULT; 7817 } 7818 7819 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 7820 unsigned bit = i * target_bits; 7821 abi_ulong val = 0; 7822 7823 for (j = 0; j < target_bits; j++, bit++) { 7824 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 7825 val |= 1UL << j; 7826 } 7827 } 7828 __put_user(val, &target_mask[i]); 7829 } 7830 7831 unlock_user(target_mask, target_addr, target_size); 7832 return 0; 7833 } 7834 7835 /* do_syscall() should always have a single exit point at the end so 7836 that actions, such as logging of syscall results, can be performed. 7837 All errnos that do_syscall() returns must be -TARGET_<errcode>. */ 7838 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 7839 abi_long arg2, abi_long arg3, abi_long arg4, 7840 abi_long arg5, abi_long arg6, abi_long arg7, 7841 abi_long arg8) 7842 { 7843 CPUState *cpu = ENV_GET_CPU(cpu_env); 7844 abi_long ret; 7845 struct stat st; 7846 struct statfs stfs; 7847 void *p; 7848 7849 #if defined(DEBUG_ERESTARTSYS) 7850 /* Debug-only code for exercising the syscall-restart code paths 7851 * in the per-architecture cpu main loops: restart every syscall 7852 * the guest makes once before letting it through. 7853 */ 7854 { 7855 static int flag; 7856 7857 flag = !flag; 7858 if (flag) { 7859 return -TARGET_ERESTARTSYS; 7860 } 7861 } 7862 #endif 7863 7864 #ifdef DEBUG 7865 gemu_log("syscall %d", num); 7866 #endif 7867 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); 7868 if(do_strace) 7869 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); 7870 7871 switch(num) { 7872 case TARGET_NR_exit: 7873 /* In old applications this may be used to implement _exit(2). 7874 However in threaded applictions it is used for thread termination, 7875 and _exit_group is used for application termination. 7876 Do thread termination if we have more then one thread. */ 7877 7878 if (block_signals()) { 7879 ret = -TARGET_ERESTARTSYS; 7880 break; 7881 } 7882 7883 cpu_list_lock(); 7884 7885 if (CPU_NEXT(first_cpu)) { 7886 TaskState *ts; 7887 7888 /* Remove the CPU from the list. */ 7889 QTAILQ_REMOVE(&cpus, cpu, node); 7890 7891 cpu_list_unlock(); 7892 7893 ts = cpu->opaque; 7894 if (ts->child_tidptr) { 7895 put_user_u32(0, ts->child_tidptr); 7896 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX, 7897 NULL, NULL, 0); 7898 } 7899 thread_cpu = NULL; 7900 object_unref(OBJECT(cpu)); 7901 g_free(ts); 7902 rcu_unregister_thread(); 7903 pthread_exit(NULL); 7904 } 7905 7906 cpu_list_unlock(); 7907 #ifdef TARGET_GPROF 7908 _mcleanup(); 7909 #endif 7910 gdb_exit(cpu_env, arg1); 7911 _exit(arg1); 7912 ret = 0; /* avoid warning */ 7913 break; 7914 case TARGET_NR_read: 7915 if (arg3 == 0) 7916 ret = 0; 7917 else { 7918 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 7919 goto efault; 7920 ret = get_errno(safe_read(arg1, p, arg3)); 7921 if (ret >= 0 && 7922 fd_trans_host_to_target_data(arg1)) { 7923 ret = fd_trans_host_to_target_data(arg1)(p, ret); 7924 } 7925 unlock_user(p, arg2, ret); 7926 } 7927 break; 7928 case TARGET_NR_write: 7929 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 7930 goto efault; 7931 if (fd_trans_target_to_host_data(arg1)) { 7932 void *copy = g_malloc(arg3); 7933 memcpy(copy, p, arg3); 7934 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 7935 if (ret >= 0) { 7936 ret = get_errno(safe_write(arg1, copy, ret)); 7937 } 7938 g_free(copy); 7939 } else { 7940 ret = get_errno(safe_write(arg1, p, arg3)); 7941 } 7942 unlock_user(p, arg2, 0); 7943 break; 7944 #ifdef TARGET_NR_open 7945 case TARGET_NR_open: 7946 if (!(p = lock_user_string(arg1))) 7947 goto efault; 7948 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 7949 target_to_host_bitmask(arg2, fcntl_flags_tbl), 7950 arg3)); 7951 fd_trans_unregister(ret); 7952 unlock_user(p, arg1, 0); 7953 break; 7954 #endif 7955 case TARGET_NR_openat: 7956 if (!(p = lock_user_string(arg2))) 7957 goto efault; 7958 ret = get_errno(do_openat(cpu_env, arg1, p, 7959 target_to_host_bitmask(arg3, fcntl_flags_tbl), 7960 arg4)); 7961 fd_trans_unregister(ret); 7962 unlock_user(p, arg2, 0); 7963 break; 7964 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7965 case TARGET_NR_name_to_handle_at: 7966 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 7967 break; 7968 #endif 7969 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7970 case TARGET_NR_open_by_handle_at: 7971 ret = do_open_by_handle_at(arg1, arg2, arg3); 7972 fd_trans_unregister(ret); 7973 break; 7974 #endif 7975 case TARGET_NR_close: 7976 fd_trans_unregister(arg1); 7977 ret = get_errno(close(arg1)); 7978 break; 7979 case TARGET_NR_brk: 7980 ret = do_brk(arg1); 7981 break; 7982 #ifdef TARGET_NR_fork 7983 case TARGET_NR_fork: 7984 ret = get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 7985 break; 7986 #endif 7987 #ifdef TARGET_NR_waitpid 7988 case TARGET_NR_waitpid: 7989 { 7990 int status; 7991 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 7992 if (!is_error(ret) && arg2 && ret 7993 && put_user_s32(host_to_target_waitstatus(status), arg2)) 7994 goto efault; 7995 } 7996 break; 7997 #endif 7998 #ifdef TARGET_NR_waitid 7999 case TARGET_NR_waitid: 8000 { 8001 siginfo_t info; 8002 info.si_pid = 0; 8003 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 8004 if (!is_error(ret) && arg3 && info.si_pid != 0) { 8005 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 8006 goto efault; 8007 host_to_target_siginfo(p, &info); 8008 unlock_user(p, arg3, sizeof(target_siginfo_t)); 8009 } 8010 } 8011 break; 8012 #endif 8013 #ifdef TARGET_NR_creat /* not on alpha */ 8014 case TARGET_NR_creat: 8015 if (!(p = lock_user_string(arg1))) 8016 goto efault; 8017 ret = get_errno(creat(p, arg2)); 8018 fd_trans_unregister(ret); 8019 unlock_user(p, arg1, 0); 8020 break; 8021 #endif 8022 #ifdef TARGET_NR_link 8023 case TARGET_NR_link: 8024 { 8025 void * p2; 8026 p = lock_user_string(arg1); 8027 p2 = lock_user_string(arg2); 8028 if (!p || !p2) 8029 ret = -TARGET_EFAULT; 8030 else 8031 ret = get_errno(link(p, p2)); 8032 unlock_user(p2, arg2, 0); 8033 unlock_user(p, arg1, 0); 8034 } 8035 break; 8036 #endif 8037 #if defined(TARGET_NR_linkat) 8038 case TARGET_NR_linkat: 8039 { 8040 void * p2 = NULL; 8041 if (!arg2 || !arg4) 8042 goto efault; 8043 p = lock_user_string(arg2); 8044 p2 = lock_user_string(arg4); 8045 if (!p || !p2) 8046 ret = -TARGET_EFAULT; 8047 else 8048 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 8049 unlock_user(p, arg2, 0); 8050 unlock_user(p2, arg4, 0); 8051 } 8052 break; 8053 #endif 8054 #ifdef TARGET_NR_unlink 8055 case TARGET_NR_unlink: 8056 if (!(p = lock_user_string(arg1))) 8057 goto efault; 8058 ret = get_errno(unlink(p)); 8059 unlock_user(p, arg1, 0); 8060 break; 8061 #endif 8062 #if defined(TARGET_NR_unlinkat) 8063 case TARGET_NR_unlinkat: 8064 if (!(p = lock_user_string(arg2))) 8065 goto efault; 8066 ret = get_errno(unlinkat(arg1, p, arg3)); 8067 unlock_user(p, arg2, 0); 8068 break; 8069 #endif 8070 case TARGET_NR_execve: 8071 { 8072 char **argp, **envp; 8073 int argc, envc; 8074 abi_ulong gp; 8075 abi_ulong guest_argp; 8076 abi_ulong guest_envp; 8077 abi_ulong addr; 8078 char **q; 8079 int total_size = 0; 8080 8081 argc = 0; 8082 guest_argp = arg2; 8083 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8084 if (get_user_ual(addr, gp)) 8085 goto efault; 8086 if (!addr) 8087 break; 8088 argc++; 8089 } 8090 envc = 0; 8091 guest_envp = arg3; 8092 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8093 if (get_user_ual(addr, gp)) 8094 goto efault; 8095 if (!addr) 8096 break; 8097 envc++; 8098 } 8099 8100 argp = g_new0(char *, argc + 1); 8101 envp = g_new0(char *, envc + 1); 8102 8103 for (gp = guest_argp, q = argp; gp; 8104 gp += sizeof(abi_ulong), q++) { 8105 if (get_user_ual(addr, gp)) 8106 goto execve_efault; 8107 if (!addr) 8108 break; 8109 if (!(*q = lock_user_string(addr))) 8110 goto execve_efault; 8111 total_size += strlen(*q) + 1; 8112 } 8113 *q = NULL; 8114 8115 for (gp = guest_envp, q = envp; gp; 8116 gp += sizeof(abi_ulong), q++) { 8117 if (get_user_ual(addr, gp)) 8118 goto execve_efault; 8119 if (!addr) 8120 break; 8121 if (!(*q = lock_user_string(addr))) 8122 goto execve_efault; 8123 total_size += strlen(*q) + 1; 8124 } 8125 *q = NULL; 8126 8127 if (!(p = lock_user_string(arg1))) 8128 goto execve_efault; 8129 /* Although execve() is not an interruptible syscall it is 8130 * a special case where we must use the safe_syscall wrapper: 8131 * if we allow a signal to happen before we make the host 8132 * syscall then we will 'lose' it, because at the point of 8133 * execve the process leaves QEMU's control. So we use the 8134 * safe syscall wrapper to ensure that we either take the 8135 * signal as a guest signal, or else it does not happen 8136 * before the execve completes and makes it the other 8137 * program's problem. 8138 */ 8139 ret = get_errno(safe_execve(p, argp, envp)); 8140 unlock_user(p, arg1, 0); 8141 8142 goto execve_end; 8143 8144 execve_efault: 8145 ret = -TARGET_EFAULT; 8146 8147 execve_end: 8148 for (gp = guest_argp, q = argp; *q; 8149 gp += sizeof(abi_ulong), q++) { 8150 if (get_user_ual(addr, gp) 8151 || !addr) 8152 break; 8153 unlock_user(*q, addr, 0); 8154 } 8155 for (gp = guest_envp, q = envp; *q; 8156 gp += sizeof(abi_ulong), q++) { 8157 if (get_user_ual(addr, gp) 8158 || !addr) 8159 break; 8160 unlock_user(*q, addr, 0); 8161 } 8162 8163 g_free(argp); 8164 g_free(envp); 8165 } 8166 break; 8167 case TARGET_NR_chdir: 8168 if (!(p = lock_user_string(arg1))) 8169 goto efault; 8170 ret = get_errno(chdir(p)); 8171 unlock_user(p, arg1, 0); 8172 break; 8173 #ifdef TARGET_NR_time 8174 case TARGET_NR_time: 8175 { 8176 time_t host_time; 8177 ret = get_errno(time(&host_time)); 8178 if (!is_error(ret) 8179 && arg1 8180 && put_user_sal(host_time, arg1)) 8181 goto efault; 8182 } 8183 break; 8184 #endif 8185 #ifdef TARGET_NR_mknod 8186 case TARGET_NR_mknod: 8187 if (!(p = lock_user_string(arg1))) 8188 goto efault; 8189 ret = get_errno(mknod(p, arg2, arg3)); 8190 unlock_user(p, arg1, 0); 8191 break; 8192 #endif 8193 #if defined(TARGET_NR_mknodat) 8194 case TARGET_NR_mknodat: 8195 if (!(p = lock_user_string(arg2))) 8196 goto efault; 8197 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 8198 unlock_user(p, arg2, 0); 8199 break; 8200 #endif 8201 #ifdef TARGET_NR_chmod 8202 case TARGET_NR_chmod: 8203 if (!(p = lock_user_string(arg1))) 8204 goto efault; 8205 ret = get_errno(chmod(p, arg2)); 8206 unlock_user(p, arg1, 0); 8207 break; 8208 #endif 8209 #ifdef TARGET_NR_break 8210 case TARGET_NR_break: 8211 goto unimplemented; 8212 #endif 8213 #ifdef TARGET_NR_oldstat 8214 case TARGET_NR_oldstat: 8215 goto unimplemented; 8216 #endif 8217 case TARGET_NR_lseek: 8218 ret = get_errno(lseek(arg1, arg2, arg3)); 8219 break; 8220 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 8221 /* Alpha specific */ 8222 case TARGET_NR_getxpid: 8223 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 8224 ret = get_errno(getpid()); 8225 break; 8226 #endif 8227 #ifdef TARGET_NR_getpid 8228 case TARGET_NR_getpid: 8229 ret = get_errno(getpid()); 8230 break; 8231 #endif 8232 case TARGET_NR_mount: 8233 { 8234 /* need to look at the data field */ 8235 void *p2, *p3; 8236 8237 if (arg1) { 8238 p = lock_user_string(arg1); 8239 if (!p) { 8240 goto efault; 8241 } 8242 } else { 8243 p = NULL; 8244 } 8245 8246 p2 = lock_user_string(arg2); 8247 if (!p2) { 8248 if (arg1) { 8249 unlock_user(p, arg1, 0); 8250 } 8251 goto efault; 8252 } 8253 8254 if (arg3) { 8255 p3 = lock_user_string(arg3); 8256 if (!p3) { 8257 if (arg1) { 8258 unlock_user(p, arg1, 0); 8259 } 8260 unlock_user(p2, arg2, 0); 8261 goto efault; 8262 } 8263 } else { 8264 p3 = NULL; 8265 } 8266 8267 /* FIXME - arg5 should be locked, but it isn't clear how to 8268 * do that since it's not guaranteed to be a NULL-terminated 8269 * string. 8270 */ 8271 if (!arg5) { 8272 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 8273 } else { 8274 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)); 8275 } 8276 ret = get_errno(ret); 8277 8278 if (arg1) { 8279 unlock_user(p, arg1, 0); 8280 } 8281 unlock_user(p2, arg2, 0); 8282 if (arg3) { 8283 unlock_user(p3, arg3, 0); 8284 } 8285 } 8286 break; 8287 #ifdef TARGET_NR_umount 8288 case TARGET_NR_umount: 8289 if (!(p = lock_user_string(arg1))) 8290 goto efault; 8291 ret = get_errno(umount(p)); 8292 unlock_user(p, arg1, 0); 8293 break; 8294 #endif 8295 #ifdef TARGET_NR_stime /* not on alpha */ 8296 case TARGET_NR_stime: 8297 { 8298 time_t host_time; 8299 if (get_user_sal(host_time, arg1)) 8300 goto efault; 8301 ret = get_errno(stime(&host_time)); 8302 } 8303 break; 8304 #endif 8305 case TARGET_NR_ptrace: 8306 goto unimplemented; 8307 #ifdef TARGET_NR_alarm /* not on alpha */ 8308 case TARGET_NR_alarm: 8309 ret = alarm(arg1); 8310 break; 8311 #endif 8312 #ifdef TARGET_NR_oldfstat 8313 case TARGET_NR_oldfstat: 8314 goto unimplemented; 8315 #endif 8316 #ifdef TARGET_NR_pause /* not on alpha */ 8317 case TARGET_NR_pause: 8318 if (!block_signals()) { 8319 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask); 8320 } 8321 ret = -TARGET_EINTR; 8322 break; 8323 #endif 8324 #ifdef TARGET_NR_utime 8325 case TARGET_NR_utime: 8326 { 8327 struct utimbuf tbuf, *host_tbuf; 8328 struct target_utimbuf *target_tbuf; 8329 if (arg2) { 8330 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 8331 goto efault; 8332 tbuf.actime = tswapal(target_tbuf->actime); 8333 tbuf.modtime = tswapal(target_tbuf->modtime); 8334 unlock_user_struct(target_tbuf, arg2, 0); 8335 host_tbuf = &tbuf; 8336 } else { 8337 host_tbuf = NULL; 8338 } 8339 if (!(p = lock_user_string(arg1))) 8340 goto efault; 8341 ret = get_errno(utime(p, host_tbuf)); 8342 unlock_user(p, arg1, 0); 8343 } 8344 break; 8345 #endif 8346 #ifdef TARGET_NR_utimes 8347 case TARGET_NR_utimes: 8348 { 8349 struct timeval *tvp, tv[2]; 8350 if (arg2) { 8351 if (copy_from_user_timeval(&tv[0], arg2) 8352 || copy_from_user_timeval(&tv[1], 8353 arg2 + sizeof(struct target_timeval))) 8354 goto efault; 8355 tvp = tv; 8356 } else { 8357 tvp = NULL; 8358 } 8359 if (!(p = lock_user_string(arg1))) 8360 goto efault; 8361 ret = get_errno(utimes(p, tvp)); 8362 unlock_user(p, arg1, 0); 8363 } 8364 break; 8365 #endif 8366 #if defined(TARGET_NR_futimesat) 8367 case TARGET_NR_futimesat: 8368 { 8369 struct timeval *tvp, tv[2]; 8370 if (arg3) { 8371 if (copy_from_user_timeval(&tv[0], arg3) 8372 || copy_from_user_timeval(&tv[1], 8373 arg3 + sizeof(struct target_timeval))) 8374 goto efault; 8375 tvp = tv; 8376 } else { 8377 tvp = NULL; 8378 } 8379 if (!(p = lock_user_string(arg2))) 8380 goto efault; 8381 ret = get_errno(futimesat(arg1, path(p), tvp)); 8382 unlock_user(p, arg2, 0); 8383 } 8384 break; 8385 #endif 8386 #ifdef TARGET_NR_stty 8387 case TARGET_NR_stty: 8388 goto unimplemented; 8389 #endif 8390 #ifdef TARGET_NR_gtty 8391 case TARGET_NR_gtty: 8392 goto unimplemented; 8393 #endif 8394 #ifdef TARGET_NR_access 8395 case TARGET_NR_access: 8396 if (!(p = lock_user_string(arg1))) 8397 goto efault; 8398 ret = get_errno(access(path(p), arg2)); 8399 unlock_user(p, arg1, 0); 8400 break; 8401 #endif 8402 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 8403 case TARGET_NR_faccessat: 8404 if (!(p = lock_user_string(arg2))) 8405 goto efault; 8406 ret = get_errno(faccessat(arg1, p, arg3, 0)); 8407 unlock_user(p, arg2, 0); 8408 break; 8409 #endif 8410 #ifdef TARGET_NR_nice /* not on alpha */ 8411 case TARGET_NR_nice: 8412 ret = get_errno(nice(arg1)); 8413 break; 8414 #endif 8415 #ifdef TARGET_NR_ftime 8416 case TARGET_NR_ftime: 8417 goto unimplemented; 8418 #endif 8419 case TARGET_NR_sync: 8420 sync(); 8421 ret = 0; 8422 break; 8423 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 8424 case TARGET_NR_syncfs: 8425 ret = get_errno(syncfs(arg1)); 8426 break; 8427 #endif 8428 case TARGET_NR_kill: 8429 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 8430 break; 8431 #ifdef TARGET_NR_rename 8432 case TARGET_NR_rename: 8433 { 8434 void *p2; 8435 p = lock_user_string(arg1); 8436 p2 = lock_user_string(arg2); 8437 if (!p || !p2) 8438 ret = -TARGET_EFAULT; 8439 else 8440 ret = get_errno(rename(p, p2)); 8441 unlock_user(p2, arg2, 0); 8442 unlock_user(p, arg1, 0); 8443 } 8444 break; 8445 #endif 8446 #if defined(TARGET_NR_renameat) 8447 case TARGET_NR_renameat: 8448 { 8449 void *p2; 8450 p = lock_user_string(arg2); 8451 p2 = lock_user_string(arg4); 8452 if (!p || !p2) 8453 ret = -TARGET_EFAULT; 8454 else 8455 ret = get_errno(renameat(arg1, p, arg3, p2)); 8456 unlock_user(p2, arg4, 0); 8457 unlock_user(p, arg2, 0); 8458 } 8459 break; 8460 #endif 8461 #if defined(TARGET_NR_renameat2) 8462 case TARGET_NR_renameat2: 8463 { 8464 void *p2; 8465 p = lock_user_string(arg2); 8466 p2 = lock_user_string(arg4); 8467 if (!p || !p2) { 8468 ret = -TARGET_EFAULT; 8469 } else { 8470 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 8471 } 8472 unlock_user(p2, arg4, 0); 8473 unlock_user(p, arg2, 0); 8474 } 8475 break; 8476 #endif 8477 #ifdef TARGET_NR_mkdir 8478 case TARGET_NR_mkdir: 8479 if (!(p = lock_user_string(arg1))) 8480 goto efault; 8481 ret = get_errno(mkdir(p, arg2)); 8482 unlock_user(p, arg1, 0); 8483 break; 8484 #endif 8485 #if defined(TARGET_NR_mkdirat) 8486 case TARGET_NR_mkdirat: 8487 if (!(p = lock_user_string(arg2))) 8488 goto efault; 8489 ret = get_errno(mkdirat(arg1, p, arg3)); 8490 unlock_user(p, arg2, 0); 8491 break; 8492 #endif 8493 #ifdef TARGET_NR_rmdir 8494 case TARGET_NR_rmdir: 8495 if (!(p = lock_user_string(arg1))) 8496 goto efault; 8497 ret = get_errno(rmdir(p)); 8498 unlock_user(p, arg1, 0); 8499 break; 8500 #endif 8501 case TARGET_NR_dup: 8502 ret = get_errno(dup(arg1)); 8503 if (ret >= 0) { 8504 fd_trans_dup(arg1, ret); 8505 } 8506 break; 8507 #ifdef TARGET_NR_pipe 8508 case TARGET_NR_pipe: 8509 ret = do_pipe(cpu_env, arg1, 0, 0); 8510 break; 8511 #endif 8512 #ifdef TARGET_NR_pipe2 8513 case TARGET_NR_pipe2: 8514 ret = do_pipe(cpu_env, arg1, 8515 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 8516 break; 8517 #endif 8518 case TARGET_NR_times: 8519 { 8520 struct target_tms *tmsp; 8521 struct tms tms; 8522 ret = get_errno(times(&tms)); 8523 if (arg1) { 8524 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 8525 if (!tmsp) 8526 goto efault; 8527 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 8528 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 8529 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 8530 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 8531 } 8532 if (!is_error(ret)) 8533 ret = host_to_target_clock_t(ret); 8534 } 8535 break; 8536 #ifdef TARGET_NR_prof 8537 case TARGET_NR_prof: 8538 goto unimplemented; 8539 #endif 8540 #ifdef TARGET_NR_signal 8541 case TARGET_NR_signal: 8542 goto unimplemented; 8543 #endif 8544 case TARGET_NR_acct: 8545 if (arg1 == 0) { 8546 ret = get_errno(acct(NULL)); 8547 } else { 8548 if (!(p = lock_user_string(arg1))) 8549 goto efault; 8550 ret = get_errno(acct(path(p))); 8551 unlock_user(p, arg1, 0); 8552 } 8553 break; 8554 #ifdef TARGET_NR_umount2 8555 case TARGET_NR_umount2: 8556 if (!(p = lock_user_string(arg1))) 8557 goto efault; 8558 ret = get_errno(umount2(p, arg2)); 8559 unlock_user(p, arg1, 0); 8560 break; 8561 #endif 8562 #ifdef TARGET_NR_lock 8563 case TARGET_NR_lock: 8564 goto unimplemented; 8565 #endif 8566 case TARGET_NR_ioctl: 8567 ret = do_ioctl(arg1, arg2, arg3); 8568 break; 8569 #ifdef TARGET_NR_fcntl 8570 case TARGET_NR_fcntl: 8571 ret = do_fcntl(arg1, arg2, arg3); 8572 break; 8573 #endif 8574 #ifdef TARGET_NR_mpx 8575 case TARGET_NR_mpx: 8576 goto unimplemented; 8577 #endif 8578 case TARGET_NR_setpgid: 8579 ret = get_errno(setpgid(arg1, arg2)); 8580 break; 8581 #ifdef TARGET_NR_ulimit 8582 case TARGET_NR_ulimit: 8583 goto unimplemented; 8584 #endif 8585 #ifdef TARGET_NR_oldolduname 8586 case TARGET_NR_oldolduname: 8587 goto unimplemented; 8588 #endif 8589 case TARGET_NR_umask: 8590 ret = get_errno(umask(arg1)); 8591 break; 8592 case TARGET_NR_chroot: 8593 if (!(p = lock_user_string(arg1))) 8594 goto efault; 8595 ret = get_errno(chroot(p)); 8596 unlock_user(p, arg1, 0); 8597 break; 8598 #ifdef TARGET_NR_ustat 8599 case TARGET_NR_ustat: 8600 goto unimplemented; 8601 #endif 8602 #ifdef TARGET_NR_dup2 8603 case TARGET_NR_dup2: 8604 ret = get_errno(dup2(arg1, arg2)); 8605 if (ret >= 0) { 8606 fd_trans_dup(arg1, arg2); 8607 } 8608 break; 8609 #endif 8610 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 8611 case TARGET_NR_dup3: 8612 { 8613 int host_flags; 8614 8615 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 8616 return -EINVAL; 8617 } 8618 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 8619 ret = get_errno(dup3(arg1, arg2, host_flags)); 8620 if (ret >= 0) { 8621 fd_trans_dup(arg1, arg2); 8622 } 8623 break; 8624 } 8625 #endif 8626 #ifdef TARGET_NR_getppid /* not on alpha */ 8627 case TARGET_NR_getppid: 8628 ret = get_errno(getppid()); 8629 break; 8630 #endif 8631 #ifdef TARGET_NR_getpgrp 8632 case TARGET_NR_getpgrp: 8633 ret = get_errno(getpgrp()); 8634 break; 8635 #endif 8636 case TARGET_NR_setsid: 8637 ret = get_errno(setsid()); 8638 break; 8639 #ifdef TARGET_NR_sigaction 8640 case TARGET_NR_sigaction: 8641 { 8642 #if defined(TARGET_ALPHA) 8643 struct target_sigaction act, oact, *pact = 0; 8644 struct target_old_sigaction *old_act; 8645 if (arg2) { 8646 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8647 goto efault; 8648 act._sa_handler = old_act->_sa_handler; 8649 target_siginitset(&act.sa_mask, old_act->sa_mask); 8650 act.sa_flags = old_act->sa_flags; 8651 act.sa_restorer = 0; 8652 unlock_user_struct(old_act, arg2, 0); 8653 pact = &act; 8654 } 8655 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8656 if (!is_error(ret) && arg3) { 8657 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8658 goto efault; 8659 old_act->_sa_handler = oact._sa_handler; 8660 old_act->sa_mask = oact.sa_mask.sig[0]; 8661 old_act->sa_flags = oact.sa_flags; 8662 unlock_user_struct(old_act, arg3, 1); 8663 } 8664 #elif defined(TARGET_MIPS) 8665 struct target_sigaction act, oact, *pact, *old_act; 8666 8667 if (arg2) { 8668 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8669 goto efault; 8670 act._sa_handler = old_act->_sa_handler; 8671 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 8672 act.sa_flags = old_act->sa_flags; 8673 unlock_user_struct(old_act, arg2, 0); 8674 pact = &act; 8675 } else { 8676 pact = NULL; 8677 } 8678 8679 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8680 8681 if (!is_error(ret) && arg3) { 8682 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8683 goto efault; 8684 old_act->_sa_handler = oact._sa_handler; 8685 old_act->sa_flags = oact.sa_flags; 8686 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 8687 old_act->sa_mask.sig[1] = 0; 8688 old_act->sa_mask.sig[2] = 0; 8689 old_act->sa_mask.sig[3] = 0; 8690 unlock_user_struct(old_act, arg3, 1); 8691 } 8692 #else 8693 struct target_old_sigaction *old_act; 8694 struct target_sigaction act, oact, *pact; 8695 if (arg2) { 8696 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8697 goto efault; 8698 act._sa_handler = old_act->_sa_handler; 8699 target_siginitset(&act.sa_mask, old_act->sa_mask); 8700 act.sa_flags = old_act->sa_flags; 8701 act.sa_restorer = old_act->sa_restorer; 8702 unlock_user_struct(old_act, arg2, 0); 8703 pact = &act; 8704 } else { 8705 pact = NULL; 8706 } 8707 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8708 if (!is_error(ret) && arg3) { 8709 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8710 goto efault; 8711 old_act->_sa_handler = oact._sa_handler; 8712 old_act->sa_mask = oact.sa_mask.sig[0]; 8713 old_act->sa_flags = oact.sa_flags; 8714 old_act->sa_restorer = oact.sa_restorer; 8715 unlock_user_struct(old_act, arg3, 1); 8716 } 8717 #endif 8718 } 8719 break; 8720 #endif 8721 case TARGET_NR_rt_sigaction: 8722 { 8723 #if defined(TARGET_ALPHA) 8724 /* For Alpha and SPARC this is a 5 argument syscall, with 8725 * a 'restorer' parameter which must be copied into the 8726 * sa_restorer field of the sigaction struct. 8727 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 8728 * and arg5 is the sigsetsize. 8729 * Alpha also has a separate rt_sigaction struct that it uses 8730 * here; SPARC uses the usual sigaction struct. 8731 */ 8732 struct target_rt_sigaction *rt_act; 8733 struct target_sigaction act, oact, *pact = 0; 8734 8735 if (arg4 != sizeof(target_sigset_t)) { 8736 ret = -TARGET_EINVAL; 8737 break; 8738 } 8739 if (arg2) { 8740 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1)) 8741 goto efault; 8742 act._sa_handler = rt_act->_sa_handler; 8743 act.sa_mask = rt_act->sa_mask; 8744 act.sa_flags = rt_act->sa_flags; 8745 act.sa_restorer = arg5; 8746 unlock_user_struct(rt_act, arg2, 0); 8747 pact = &act; 8748 } 8749 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8750 if (!is_error(ret) && arg3) { 8751 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0)) 8752 goto efault; 8753 rt_act->_sa_handler = oact._sa_handler; 8754 rt_act->sa_mask = oact.sa_mask; 8755 rt_act->sa_flags = oact.sa_flags; 8756 unlock_user_struct(rt_act, arg3, 1); 8757 } 8758 #else 8759 #ifdef TARGET_SPARC 8760 target_ulong restorer = arg4; 8761 target_ulong sigsetsize = arg5; 8762 #else 8763 target_ulong sigsetsize = arg4; 8764 #endif 8765 struct target_sigaction *act; 8766 struct target_sigaction *oact; 8767 8768 if (sigsetsize != sizeof(target_sigset_t)) { 8769 ret = -TARGET_EINVAL; 8770 break; 8771 } 8772 if (arg2) { 8773 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) { 8774 goto efault; 8775 } 8776 #ifdef TARGET_SPARC 8777 act->sa_restorer = restorer; 8778 #endif 8779 } else { 8780 act = NULL; 8781 } 8782 if (arg3) { 8783 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 8784 ret = -TARGET_EFAULT; 8785 goto rt_sigaction_fail; 8786 } 8787 } else 8788 oact = NULL; 8789 ret = get_errno(do_sigaction(arg1, act, oact)); 8790 rt_sigaction_fail: 8791 if (act) 8792 unlock_user_struct(act, arg2, 0); 8793 if (oact) 8794 unlock_user_struct(oact, arg3, 1); 8795 #endif 8796 } 8797 break; 8798 #ifdef TARGET_NR_sgetmask /* not on alpha */ 8799 case TARGET_NR_sgetmask: 8800 { 8801 sigset_t cur_set; 8802 abi_ulong target_set; 8803 ret = do_sigprocmask(0, NULL, &cur_set); 8804 if (!ret) { 8805 host_to_target_old_sigset(&target_set, &cur_set); 8806 ret = target_set; 8807 } 8808 } 8809 break; 8810 #endif 8811 #ifdef TARGET_NR_ssetmask /* not on alpha */ 8812 case TARGET_NR_ssetmask: 8813 { 8814 sigset_t set, oset; 8815 abi_ulong target_set = arg1; 8816 target_to_host_old_sigset(&set, &target_set); 8817 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 8818 if (!ret) { 8819 host_to_target_old_sigset(&target_set, &oset); 8820 ret = target_set; 8821 } 8822 } 8823 break; 8824 #endif 8825 #ifdef TARGET_NR_sigprocmask 8826 case TARGET_NR_sigprocmask: 8827 { 8828 #if defined(TARGET_ALPHA) 8829 sigset_t set, oldset; 8830 abi_ulong mask; 8831 int how; 8832 8833 switch (arg1) { 8834 case TARGET_SIG_BLOCK: 8835 how = SIG_BLOCK; 8836 break; 8837 case TARGET_SIG_UNBLOCK: 8838 how = SIG_UNBLOCK; 8839 break; 8840 case TARGET_SIG_SETMASK: 8841 how = SIG_SETMASK; 8842 break; 8843 default: 8844 ret = -TARGET_EINVAL; 8845 goto fail; 8846 } 8847 mask = arg2; 8848 target_to_host_old_sigset(&set, &mask); 8849 8850 ret = do_sigprocmask(how, &set, &oldset); 8851 if (!is_error(ret)) { 8852 host_to_target_old_sigset(&mask, &oldset); 8853 ret = mask; 8854 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 8855 } 8856 #else 8857 sigset_t set, oldset, *set_ptr; 8858 int how; 8859 8860 if (arg2) { 8861 switch (arg1) { 8862 case TARGET_SIG_BLOCK: 8863 how = SIG_BLOCK; 8864 break; 8865 case TARGET_SIG_UNBLOCK: 8866 how = SIG_UNBLOCK; 8867 break; 8868 case TARGET_SIG_SETMASK: 8869 how = SIG_SETMASK; 8870 break; 8871 default: 8872 ret = -TARGET_EINVAL; 8873 goto fail; 8874 } 8875 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 8876 goto efault; 8877 target_to_host_old_sigset(&set, p); 8878 unlock_user(p, arg2, 0); 8879 set_ptr = &set; 8880 } else { 8881 how = 0; 8882 set_ptr = NULL; 8883 } 8884 ret = do_sigprocmask(how, set_ptr, &oldset); 8885 if (!is_error(ret) && arg3) { 8886 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 8887 goto efault; 8888 host_to_target_old_sigset(p, &oldset); 8889 unlock_user(p, arg3, sizeof(target_sigset_t)); 8890 } 8891 #endif 8892 } 8893 break; 8894 #endif 8895 case TARGET_NR_rt_sigprocmask: 8896 { 8897 int how = arg1; 8898 sigset_t set, oldset, *set_ptr; 8899 8900 if (arg4 != sizeof(target_sigset_t)) { 8901 ret = -TARGET_EINVAL; 8902 break; 8903 } 8904 8905 if (arg2) { 8906 switch(how) { 8907 case TARGET_SIG_BLOCK: 8908 how = SIG_BLOCK; 8909 break; 8910 case TARGET_SIG_UNBLOCK: 8911 how = SIG_UNBLOCK; 8912 break; 8913 case TARGET_SIG_SETMASK: 8914 how = SIG_SETMASK; 8915 break; 8916 default: 8917 ret = -TARGET_EINVAL; 8918 goto fail; 8919 } 8920 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 8921 goto efault; 8922 target_to_host_sigset(&set, p); 8923 unlock_user(p, arg2, 0); 8924 set_ptr = &set; 8925 } else { 8926 how = 0; 8927 set_ptr = NULL; 8928 } 8929 ret = do_sigprocmask(how, set_ptr, &oldset); 8930 if (!is_error(ret) && arg3) { 8931 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 8932 goto efault; 8933 host_to_target_sigset(p, &oldset); 8934 unlock_user(p, arg3, sizeof(target_sigset_t)); 8935 } 8936 } 8937 break; 8938 #ifdef TARGET_NR_sigpending 8939 case TARGET_NR_sigpending: 8940 { 8941 sigset_t set; 8942 ret = get_errno(sigpending(&set)); 8943 if (!is_error(ret)) { 8944 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 8945 goto efault; 8946 host_to_target_old_sigset(p, &set); 8947 unlock_user(p, arg1, sizeof(target_sigset_t)); 8948 } 8949 } 8950 break; 8951 #endif 8952 case TARGET_NR_rt_sigpending: 8953 { 8954 sigset_t set; 8955 8956 /* Yes, this check is >, not != like most. We follow the kernel's 8957 * logic and it does it like this because it implements 8958 * NR_sigpending through the same code path, and in that case 8959 * the old_sigset_t is smaller in size. 8960 */ 8961 if (arg2 > sizeof(target_sigset_t)) { 8962 ret = -TARGET_EINVAL; 8963 break; 8964 } 8965 8966 ret = get_errno(sigpending(&set)); 8967 if (!is_error(ret)) { 8968 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 8969 goto efault; 8970 host_to_target_sigset(p, &set); 8971 unlock_user(p, arg1, sizeof(target_sigset_t)); 8972 } 8973 } 8974 break; 8975 #ifdef TARGET_NR_sigsuspend 8976 case TARGET_NR_sigsuspend: 8977 { 8978 TaskState *ts = cpu->opaque; 8979 #if defined(TARGET_ALPHA) 8980 abi_ulong mask = arg1; 8981 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask); 8982 #else 8983 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 8984 goto efault; 8985 target_to_host_old_sigset(&ts->sigsuspend_mask, p); 8986 unlock_user(p, arg1, 0); 8987 #endif 8988 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 8989 SIGSET_T_SIZE)); 8990 if (ret != -TARGET_ERESTARTSYS) { 8991 ts->in_sigsuspend = 1; 8992 } 8993 } 8994 break; 8995 #endif 8996 case TARGET_NR_rt_sigsuspend: 8997 { 8998 TaskState *ts = cpu->opaque; 8999 9000 if (arg2 != sizeof(target_sigset_t)) { 9001 ret = -TARGET_EINVAL; 9002 break; 9003 } 9004 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9005 goto efault; 9006 target_to_host_sigset(&ts->sigsuspend_mask, p); 9007 unlock_user(p, arg1, 0); 9008 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 9009 SIGSET_T_SIZE)); 9010 if (ret != -TARGET_ERESTARTSYS) { 9011 ts->in_sigsuspend = 1; 9012 } 9013 } 9014 break; 9015 case TARGET_NR_rt_sigtimedwait: 9016 { 9017 sigset_t set; 9018 struct timespec uts, *puts; 9019 siginfo_t uinfo; 9020 9021 if (arg4 != sizeof(target_sigset_t)) { 9022 ret = -TARGET_EINVAL; 9023 break; 9024 } 9025 9026 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9027 goto efault; 9028 target_to_host_sigset(&set, p); 9029 unlock_user(p, arg1, 0); 9030 if (arg3) { 9031 puts = &uts; 9032 target_to_host_timespec(puts, arg3); 9033 } else { 9034 puts = NULL; 9035 } 9036 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 9037 SIGSET_T_SIZE)); 9038 if (!is_error(ret)) { 9039 if (arg2) { 9040 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 9041 0); 9042 if (!p) { 9043 goto efault; 9044 } 9045 host_to_target_siginfo(p, &uinfo); 9046 unlock_user(p, arg2, sizeof(target_siginfo_t)); 9047 } 9048 ret = host_to_target_signal(ret); 9049 } 9050 } 9051 break; 9052 case TARGET_NR_rt_sigqueueinfo: 9053 { 9054 siginfo_t uinfo; 9055 9056 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9057 if (!p) { 9058 goto efault; 9059 } 9060 target_to_host_siginfo(&uinfo, p); 9061 unlock_user(p, arg3, 0); 9062 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 9063 } 9064 break; 9065 case TARGET_NR_rt_tgsigqueueinfo: 9066 { 9067 siginfo_t uinfo; 9068 9069 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 9070 if (!p) { 9071 goto efault; 9072 } 9073 target_to_host_siginfo(&uinfo, p); 9074 unlock_user(p, arg4, 0); 9075 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo)); 9076 } 9077 break; 9078 #ifdef TARGET_NR_sigreturn 9079 case TARGET_NR_sigreturn: 9080 if (block_signals()) { 9081 ret = -TARGET_ERESTARTSYS; 9082 } else { 9083 ret = do_sigreturn(cpu_env); 9084 } 9085 break; 9086 #endif 9087 case TARGET_NR_rt_sigreturn: 9088 if (block_signals()) { 9089 ret = -TARGET_ERESTARTSYS; 9090 } else { 9091 ret = do_rt_sigreturn(cpu_env); 9092 } 9093 break; 9094 case TARGET_NR_sethostname: 9095 if (!(p = lock_user_string(arg1))) 9096 goto efault; 9097 ret = get_errno(sethostname(p, arg2)); 9098 unlock_user(p, arg1, 0); 9099 break; 9100 case TARGET_NR_setrlimit: 9101 { 9102 int resource = target_to_host_resource(arg1); 9103 struct target_rlimit *target_rlim; 9104 struct rlimit rlim; 9105 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 9106 goto efault; 9107 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 9108 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 9109 unlock_user_struct(target_rlim, arg2, 0); 9110 ret = get_errno(setrlimit(resource, &rlim)); 9111 } 9112 break; 9113 case TARGET_NR_getrlimit: 9114 { 9115 int resource = target_to_host_resource(arg1); 9116 struct target_rlimit *target_rlim; 9117 struct rlimit rlim; 9118 9119 ret = get_errno(getrlimit(resource, &rlim)); 9120 if (!is_error(ret)) { 9121 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 9122 goto efault; 9123 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 9124 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 9125 unlock_user_struct(target_rlim, arg2, 1); 9126 } 9127 } 9128 break; 9129 case TARGET_NR_getrusage: 9130 { 9131 struct rusage rusage; 9132 ret = get_errno(getrusage(arg1, &rusage)); 9133 if (!is_error(ret)) { 9134 ret = host_to_target_rusage(arg2, &rusage); 9135 } 9136 } 9137 break; 9138 case TARGET_NR_gettimeofday: 9139 { 9140 struct timeval tv; 9141 ret = get_errno(gettimeofday(&tv, NULL)); 9142 if (!is_error(ret)) { 9143 if (copy_to_user_timeval(arg1, &tv)) 9144 goto efault; 9145 } 9146 } 9147 break; 9148 case TARGET_NR_settimeofday: 9149 { 9150 struct timeval tv, *ptv = NULL; 9151 struct timezone tz, *ptz = NULL; 9152 9153 if (arg1) { 9154 if (copy_from_user_timeval(&tv, arg1)) { 9155 goto efault; 9156 } 9157 ptv = &tv; 9158 } 9159 9160 if (arg2) { 9161 if (copy_from_user_timezone(&tz, arg2)) { 9162 goto efault; 9163 } 9164 ptz = &tz; 9165 } 9166 9167 ret = get_errno(settimeofday(ptv, ptz)); 9168 } 9169 break; 9170 #if defined(TARGET_NR_select) 9171 case TARGET_NR_select: 9172 #if defined(TARGET_WANT_NI_OLD_SELECT) 9173 /* some architectures used to have old_select here 9174 * but now ENOSYS it. 9175 */ 9176 ret = -TARGET_ENOSYS; 9177 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 9178 ret = do_old_select(arg1); 9179 #else 9180 ret = do_select(arg1, arg2, arg3, arg4, arg5); 9181 #endif 9182 break; 9183 #endif 9184 #ifdef TARGET_NR_pselect6 9185 case TARGET_NR_pselect6: 9186 { 9187 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 9188 fd_set rfds, wfds, efds; 9189 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 9190 struct timespec ts, *ts_ptr; 9191 9192 /* 9193 * The 6th arg is actually two args smashed together, 9194 * so we cannot use the C library. 9195 */ 9196 sigset_t set; 9197 struct { 9198 sigset_t *set; 9199 size_t size; 9200 } sig, *sig_ptr; 9201 9202 abi_ulong arg_sigset, arg_sigsize, *arg7; 9203 target_sigset_t *target_sigset; 9204 9205 n = arg1; 9206 rfd_addr = arg2; 9207 wfd_addr = arg3; 9208 efd_addr = arg4; 9209 ts_addr = arg5; 9210 9211 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 9212 if (ret) { 9213 goto fail; 9214 } 9215 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 9216 if (ret) { 9217 goto fail; 9218 } 9219 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 9220 if (ret) { 9221 goto fail; 9222 } 9223 9224 /* 9225 * This takes a timespec, and not a timeval, so we cannot 9226 * use the do_select() helper ... 9227 */ 9228 if (ts_addr) { 9229 if (target_to_host_timespec(&ts, ts_addr)) { 9230 goto efault; 9231 } 9232 ts_ptr = &ts; 9233 } else { 9234 ts_ptr = NULL; 9235 } 9236 9237 /* Extract the two packed args for the sigset */ 9238 if (arg6) { 9239 sig_ptr = &sig; 9240 sig.size = SIGSET_T_SIZE; 9241 9242 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 9243 if (!arg7) { 9244 goto efault; 9245 } 9246 arg_sigset = tswapal(arg7[0]); 9247 arg_sigsize = tswapal(arg7[1]); 9248 unlock_user(arg7, arg6, 0); 9249 9250 if (arg_sigset) { 9251 sig.set = &set; 9252 if (arg_sigsize != sizeof(*target_sigset)) { 9253 /* Like the kernel, we enforce correct size sigsets */ 9254 ret = -TARGET_EINVAL; 9255 goto fail; 9256 } 9257 target_sigset = lock_user(VERIFY_READ, arg_sigset, 9258 sizeof(*target_sigset), 1); 9259 if (!target_sigset) { 9260 goto efault; 9261 } 9262 target_to_host_sigset(&set, target_sigset); 9263 unlock_user(target_sigset, arg_sigset, 0); 9264 } else { 9265 sig.set = NULL; 9266 } 9267 } else { 9268 sig_ptr = NULL; 9269 } 9270 9271 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 9272 ts_ptr, sig_ptr)); 9273 9274 if (!is_error(ret)) { 9275 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 9276 goto efault; 9277 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 9278 goto efault; 9279 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 9280 goto efault; 9281 9282 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) 9283 goto efault; 9284 } 9285 } 9286 break; 9287 #endif 9288 #ifdef TARGET_NR_symlink 9289 case TARGET_NR_symlink: 9290 { 9291 void *p2; 9292 p = lock_user_string(arg1); 9293 p2 = lock_user_string(arg2); 9294 if (!p || !p2) 9295 ret = -TARGET_EFAULT; 9296 else 9297 ret = get_errno(symlink(p, p2)); 9298 unlock_user(p2, arg2, 0); 9299 unlock_user(p, arg1, 0); 9300 } 9301 break; 9302 #endif 9303 #if defined(TARGET_NR_symlinkat) 9304 case TARGET_NR_symlinkat: 9305 { 9306 void *p2; 9307 p = lock_user_string(arg1); 9308 p2 = lock_user_string(arg3); 9309 if (!p || !p2) 9310 ret = -TARGET_EFAULT; 9311 else 9312 ret = get_errno(symlinkat(p, arg2, p2)); 9313 unlock_user(p2, arg3, 0); 9314 unlock_user(p, arg1, 0); 9315 } 9316 break; 9317 #endif 9318 #ifdef TARGET_NR_oldlstat 9319 case TARGET_NR_oldlstat: 9320 goto unimplemented; 9321 #endif 9322 #ifdef TARGET_NR_readlink 9323 case TARGET_NR_readlink: 9324 { 9325 void *p2; 9326 p = lock_user_string(arg1); 9327 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9328 if (!p || !p2) { 9329 ret = -TARGET_EFAULT; 9330 } else if (!arg3) { 9331 /* Short circuit this for the magic exe check. */ 9332 ret = -TARGET_EINVAL; 9333 } else if (is_proc_myself((const char *)p, "exe")) { 9334 char real[PATH_MAX], *temp; 9335 temp = realpath(exec_path, real); 9336 /* Return value is # of bytes that we wrote to the buffer. */ 9337 if (temp == NULL) { 9338 ret = get_errno(-1); 9339 } else { 9340 /* Don't worry about sign mismatch as earlier mapping 9341 * logic would have thrown a bad address error. */ 9342 ret = MIN(strlen(real), arg3); 9343 /* We cannot NUL terminate the string. */ 9344 memcpy(p2, real, ret); 9345 } 9346 } else { 9347 ret = get_errno(readlink(path(p), p2, arg3)); 9348 } 9349 unlock_user(p2, arg2, ret); 9350 unlock_user(p, arg1, 0); 9351 } 9352 break; 9353 #endif 9354 #if defined(TARGET_NR_readlinkat) 9355 case TARGET_NR_readlinkat: 9356 { 9357 void *p2; 9358 p = lock_user_string(arg2); 9359 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9360 if (!p || !p2) { 9361 ret = -TARGET_EFAULT; 9362 } else if (is_proc_myself((const char *)p, "exe")) { 9363 char real[PATH_MAX], *temp; 9364 temp = realpath(exec_path, real); 9365 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 9366 snprintf((char *)p2, arg4, "%s", real); 9367 } else { 9368 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 9369 } 9370 unlock_user(p2, arg3, ret); 9371 unlock_user(p, arg2, 0); 9372 } 9373 break; 9374 #endif 9375 #ifdef TARGET_NR_uselib 9376 case TARGET_NR_uselib: 9377 goto unimplemented; 9378 #endif 9379 #ifdef TARGET_NR_swapon 9380 case TARGET_NR_swapon: 9381 if (!(p = lock_user_string(arg1))) 9382 goto efault; 9383 ret = get_errno(swapon(p, arg2)); 9384 unlock_user(p, arg1, 0); 9385 break; 9386 #endif 9387 case TARGET_NR_reboot: 9388 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 9389 /* arg4 must be ignored in all other cases */ 9390 p = lock_user_string(arg4); 9391 if (!p) { 9392 goto efault; 9393 } 9394 ret = get_errno(reboot(arg1, arg2, arg3, p)); 9395 unlock_user(p, arg4, 0); 9396 } else { 9397 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 9398 } 9399 break; 9400 #ifdef TARGET_NR_readdir 9401 case TARGET_NR_readdir: 9402 goto unimplemented; 9403 #endif 9404 #ifdef TARGET_NR_mmap 9405 case TARGET_NR_mmap: 9406 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 9407 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 9408 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 9409 || defined(TARGET_S390X) 9410 { 9411 abi_ulong *v; 9412 abi_ulong v1, v2, v3, v4, v5, v6; 9413 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 9414 goto efault; 9415 v1 = tswapal(v[0]); 9416 v2 = tswapal(v[1]); 9417 v3 = tswapal(v[2]); 9418 v4 = tswapal(v[3]); 9419 v5 = tswapal(v[4]); 9420 v6 = tswapal(v[5]); 9421 unlock_user(v, arg1, 0); 9422 ret = get_errno(target_mmap(v1, v2, v3, 9423 target_to_host_bitmask(v4, mmap_flags_tbl), 9424 v5, v6)); 9425 } 9426 #else 9427 ret = get_errno(target_mmap(arg1, arg2, arg3, 9428 target_to_host_bitmask(arg4, mmap_flags_tbl), 9429 arg5, 9430 arg6)); 9431 #endif 9432 break; 9433 #endif 9434 #ifdef TARGET_NR_mmap2 9435 case TARGET_NR_mmap2: 9436 #ifndef MMAP_SHIFT 9437 #define MMAP_SHIFT 12 9438 #endif 9439 ret = get_errno(target_mmap(arg1, arg2, arg3, 9440 target_to_host_bitmask(arg4, mmap_flags_tbl), 9441 arg5, 9442 arg6 << MMAP_SHIFT)); 9443 break; 9444 #endif 9445 case TARGET_NR_munmap: 9446 ret = get_errno(target_munmap(arg1, arg2)); 9447 break; 9448 case TARGET_NR_mprotect: 9449 { 9450 TaskState *ts = cpu->opaque; 9451 /* Special hack to detect libc making the stack executable. */ 9452 if ((arg3 & PROT_GROWSDOWN) 9453 && arg1 >= ts->info->stack_limit 9454 && arg1 <= ts->info->start_stack) { 9455 arg3 &= ~PROT_GROWSDOWN; 9456 arg2 = arg2 + arg1 - ts->info->stack_limit; 9457 arg1 = ts->info->stack_limit; 9458 } 9459 } 9460 ret = get_errno(target_mprotect(arg1, arg2, arg3)); 9461 break; 9462 #ifdef TARGET_NR_mremap 9463 case TARGET_NR_mremap: 9464 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 9465 break; 9466 #endif 9467 /* ??? msync/mlock/munlock are broken for softmmu. */ 9468 #ifdef TARGET_NR_msync 9469 case TARGET_NR_msync: 9470 ret = get_errno(msync(g2h(arg1), arg2, arg3)); 9471 break; 9472 #endif 9473 #ifdef TARGET_NR_mlock 9474 case TARGET_NR_mlock: 9475 ret = get_errno(mlock(g2h(arg1), arg2)); 9476 break; 9477 #endif 9478 #ifdef TARGET_NR_munlock 9479 case TARGET_NR_munlock: 9480 ret = get_errno(munlock(g2h(arg1), arg2)); 9481 break; 9482 #endif 9483 #ifdef TARGET_NR_mlockall 9484 case TARGET_NR_mlockall: 9485 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 9486 break; 9487 #endif 9488 #ifdef TARGET_NR_munlockall 9489 case TARGET_NR_munlockall: 9490 ret = get_errno(munlockall()); 9491 break; 9492 #endif 9493 case TARGET_NR_truncate: 9494 if (!(p = lock_user_string(arg1))) 9495 goto efault; 9496 ret = get_errno(truncate(p, arg2)); 9497 unlock_user(p, arg1, 0); 9498 break; 9499 case TARGET_NR_ftruncate: 9500 ret = get_errno(ftruncate(arg1, arg2)); 9501 break; 9502 case TARGET_NR_fchmod: 9503 ret = get_errno(fchmod(arg1, arg2)); 9504 break; 9505 #if defined(TARGET_NR_fchmodat) 9506 case TARGET_NR_fchmodat: 9507 if (!(p = lock_user_string(arg2))) 9508 goto efault; 9509 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 9510 unlock_user(p, arg2, 0); 9511 break; 9512 #endif 9513 case TARGET_NR_getpriority: 9514 /* Note that negative values are valid for getpriority, so we must 9515 differentiate based on errno settings. */ 9516 errno = 0; 9517 ret = getpriority(arg1, arg2); 9518 if (ret == -1 && errno != 0) { 9519 ret = -host_to_target_errno(errno); 9520 break; 9521 } 9522 #ifdef TARGET_ALPHA 9523 /* Return value is the unbiased priority. Signal no error. */ 9524 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 9525 #else 9526 /* Return value is a biased priority to avoid negative numbers. */ 9527 ret = 20 - ret; 9528 #endif 9529 break; 9530 case TARGET_NR_setpriority: 9531 ret = get_errno(setpriority(arg1, arg2, arg3)); 9532 break; 9533 #ifdef TARGET_NR_profil 9534 case TARGET_NR_profil: 9535 goto unimplemented; 9536 #endif 9537 case TARGET_NR_statfs: 9538 if (!(p = lock_user_string(arg1))) 9539 goto efault; 9540 ret = get_errno(statfs(path(p), &stfs)); 9541 unlock_user(p, arg1, 0); 9542 convert_statfs: 9543 if (!is_error(ret)) { 9544 struct target_statfs *target_stfs; 9545 9546 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 9547 goto efault; 9548 __put_user(stfs.f_type, &target_stfs->f_type); 9549 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9550 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9551 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9552 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9553 __put_user(stfs.f_files, &target_stfs->f_files); 9554 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9555 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9556 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9557 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9558 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9559 #ifdef _STATFS_F_FLAGS 9560 __put_user(stfs.f_flags, &target_stfs->f_flags); 9561 #else 9562 __put_user(0, &target_stfs->f_flags); 9563 #endif 9564 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9565 unlock_user_struct(target_stfs, arg2, 1); 9566 } 9567 break; 9568 case TARGET_NR_fstatfs: 9569 ret = get_errno(fstatfs(arg1, &stfs)); 9570 goto convert_statfs; 9571 #ifdef TARGET_NR_statfs64 9572 case TARGET_NR_statfs64: 9573 if (!(p = lock_user_string(arg1))) 9574 goto efault; 9575 ret = get_errno(statfs(path(p), &stfs)); 9576 unlock_user(p, arg1, 0); 9577 convert_statfs64: 9578 if (!is_error(ret)) { 9579 struct target_statfs64 *target_stfs; 9580 9581 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 9582 goto efault; 9583 __put_user(stfs.f_type, &target_stfs->f_type); 9584 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9585 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9586 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9587 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9588 __put_user(stfs.f_files, &target_stfs->f_files); 9589 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9590 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9591 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9592 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9593 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9594 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9595 unlock_user_struct(target_stfs, arg3, 1); 9596 } 9597 break; 9598 case TARGET_NR_fstatfs64: 9599 ret = get_errno(fstatfs(arg1, &stfs)); 9600 goto convert_statfs64; 9601 #endif 9602 #ifdef TARGET_NR_ioperm 9603 case TARGET_NR_ioperm: 9604 goto unimplemented; 9605 #endif 9606 #ifdef TARGET_NR_socketcall 9607 case TARGET_NR_socketcall: 9608 ret = do_socketcall(arg1, arg2); 9609 break; 9610 #endif 9611 #ifdef TARGET_NR_accept 9612 case TARGET_NR_accept: 9613 ret = do_accept4(arg1, arg2, arg3, 0); 9614 break; 9615 #endif 9616 #ifdef TARGET_NR_accept4 9617 case TARGET_NR_accept4: 9618 ret = do_accept4(arg1, arg2, arg3, arg4); 9619 break; 9620 #endif 9621 #ifdef TARGET_NR_bind 9622 case TARGET_NR_bind: 9623 ret = do_bind(arg1, arg2, arg3); 9624 break; 9625 #endif 9626 #ifdef TARGET_NR_connect 9627 case TARGET_NR_connect: 9628 ret = do_connect(arg1, arg2, arg3); 9629 break; 9630 #endif 9631 #ifdef TARGET_NR_getpeername 9632 case TARGET_NR_getpeername: 9633 ret = do_getpeername(arg1, arg2, arg3); 9634 break; 9635 #endif 9636 #ifdef TARGET_NR_getsockname 9637 case TARGET_NR_getsockname: 9638 ret = do_getsockname(arg1, arg2, arg3); 9639 break; 9640 #endif 9641 #ifdef TARGET_NR_getsockopt 9642 case TARGET_NR_getsockopt: 9643 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); 9644 break; 9645 #endif 9646 #ifdef TARGET_NR_listen 9647 case TARGET_NR_listen: 9648 ret = get_errno(listen(arg1, arg2)); 9649 break; 9650 #endif 9651 #ifdef TARGET_NR_recv 9652 case TARGET_NR_recv: 9653 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 9654 break; 9655 #endif 9656 #ifdef TARGET_NR_recvfrom 9657 case TARGET_NR_recvfrom: 9658 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 9659 break; 9660 #endif 9661 #ifdef TARGET_NR_recvmsg 9662 case TARGET_NR_recvmsg: 9663 ret = do_sendrecvmsg(arg1, arg2, arg3, 0); 9664 break; 9665 #endif 9666 #ifdef TARGET_NR_send 9667 case TARGET_NR_send: 9668 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0); 9669 break; 9670 #endif 9671 #ifdef TARGET_NR_sendmsg 9672 case TARGET_NR_sendmsg: 9673 ret = do_sendrecvmsg(arg1, arg2, arg3, 1); 9674 break; 9675 #endif 9676 #ifdef TARGET_NR_sendmmsg 9677 case TARGET_NR_sendmmsg: 9678 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 9679 break; 9680 case TARGET_NR_recvmmsg: 9681 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 9682 break; 9683 #endif 9684 #ifdef TARGET_NR_sendto 9685 case TARGET_NR_sendto: 9686 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 9687 break; 9688 #endif 9689 #ifdef TARGET_NR_shutdown 9690 case TARGET_NR_shutdown: 9691 ret = get_errno(shutdown(arg1, arg2)); 9692 break; 9693 #endif 9694 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 9695 case TARGET_NR_getrandom: 9696 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 9697 if (!p) { 9698 goto efault; 9699 } 9700 ret = get_errno(getrandom(p, arg2, arg3)); 9701 unlock_user(p, arg1, ret); 9702 break; 9703 #endif 9704 #ifdef TARGET_NR_socket 9705 case TARGET_NR_socket: 9706 ret = do_socket(arg1, arg2, arg3); 9707 break; 9708 #endif 9709 #ifdef TARGET_NR_socketpair 9710 case TARGET_NR_socketpair: 9711 ret = do_socketpair(arg1, arg2, arg3, arg4); 9712 break; 9713 #endif 9714 #ifdef TARGET_NR_setsockopt 9715 case TARGET_NR_setsockopt: 9716 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 9717 break; 9718 #endif 9719 #if defined(TARGET_NR_syslog) 9720 case TARGET_NR_syslog: 9721 { 9722 int len = arg2; 9723 9724 switch (arg1) { 9725 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 9726 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 9727 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 9728 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 9729 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 9730 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 9731 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 9732 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 9733 { 9734 ret = get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 9735 } 9736 break; 9737 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 9738 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 9739 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 9740 { 9741 ret = -TARGET_EINVAL; 9742 if (len < 0) { 9743 goto fail; 9744 } 9745 ret = 0; 9746 if (len == 0) { 9747 break; 9748 } 9749 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9750 if (!p) { 9751 ret = -TARGET_EFAULT; 9752 goto fail; 9753 } 9754 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 9755 unlock_user(p, arg2, arg3); 9756 } 9757 break; 9758 default: 9759 ret = -EINVAL; 9760 break; 9761 } 9762 } 9763 break; 9764 #endif 9765 case TARGET_NR_setitimer: 9766 { 9767 struct itimerval value, ovalue, *pvalue; 9768 9769 if (arg2) { 9770 pvalue = &value; 9771 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 9772 || copy_from_user_timeval(&pvalue->it_value, 9773 arg2 + sizeof(struct target_timeval))) 9774 goto efault; 9775 } else { 9776 pvalue = NULL; 9777 } 9778 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 9779 if (!is_error(ret) && arg3) { 9780 if (copy_to_user_timeval(arg3, 9781 &ovalue.it_interval) 9782 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 9783 &ovalue.it_value)) 9784 goto efault; 9785 } 9786 } 9787 break; 9788 case TARGET_NR_getitimer: 9789 { 9790 struct itimerval value; 9791 9792 ret = get_errno(getitimer(arg1, &value)); 9793 if (!is_error(ret) && arg2) { 9794 if (copy_to_user_timeval(arg2, 9795 &value.it_interval) 9796 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 9797 &value.it_value)) 9798 goto efault; 9799 } 9800 } 9801 break; 9802 #ifdef TARGET_NR_stat 9803 case TARGET_NR_stat: 9804 if (!(p = lock_user_string(arg1))) 9805 goto efault; 9806 ret = get_errno(stat(path(p), &st)); 9807 unlock_user(p, arg1, 0); 9808 goto do_stat; 9809 #endif 9810 #ifdef TARGET_NR_lstat 9811 case TARGET_NR_lstat: 9812 if (!(p = lock_user_string(arg1))) 9813 goto efault; 9814 ret = get_errno(lstat(path(p), &st)); 9815 unlock_user(p, arg1, 0); 9816 goto do_stat; 9817 #endif 9818 case TARGET_NR_fstat: 9819 { 9820 ret = get_errno(fstat(arg1, &st)); 9821 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 9822 do_stat: 9823 #endif 9824 if (!is_error(ret)) { 9825 struct target_stat *target_st; 9826 9827 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 9828 goto efault; 9829 memset(target_st, 0, sizeof(*target_st)); 9830 __put_user(st.st_dev, &target_st->st_dev); 9831 __put_user(st.st_ino, &target_st->st_ino); 9832 __put_user(st.st_mode, &target_st->st_mode); 9833 __put_user(st.st_uid, &target_st->st_uid); 9834 __put_user(st.st_gid, &target_st->st_gid); 9835 __put_user(st.st_nlink, &target_st->st_nlink); 9836 __put_user(st.st_rdev, &target_st->st_rdev); 9837 __put_user(st.st_size, &target_st->st_size); 9838 __put_user(st.st_blksize, &target_st->st_blksize); 9839 __put_user(st.st_blocks, &target_st->st_blocks); 9840 __put_user(st.st_atime, &target_st->target_st_atime); 9841 __put_user(st.st_mtime, &target_st->target_st_mtime); 9842 __put_user(st.st_ctime, &target_st->target_st_ctime); 9843 unlock_user_struct(target_st, arg2, 1); 9844 } 9845 } 9846 break; 9847 #ifdef TARGET_NR_olduname 9848 case TARGET_NR_olduname: 9849 goto unimplemented; 9850 #endif 9851 #ifdef TARGET_NR_iopl 9852 case TARGET_NR_iopl: 9853 goto unimplemented; 9854 #endif 9855 case TARGET_NR_vhangup: 9856 ret = get_errno(vhangup()); 9857 break; 9858 #ifdef TARGET_NR_idle 9859 case TARGET_NR_idle: 9860 goto unimplemented; 9861 #endif 9862 #ifdef TARGET_NR_syscall 9863 case TARGET_NR_syscall: 9864 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 9865 arg6, arg7, arg8, 0); 9866 break; 9867 #endif 9868 case TARGET_NR_wait4: 9869 { 9870 int status; 9871 abi_long status_ptr = arg2; 9872 struct rusage rusage, *rusage_ptr; 9873 abi_ulong target_rusage = arg4; 9874 abi_long rusage_err; 9875 if (target_rusage) 9876 rusage_ptr = &rusage; 9877 else 9878 rusage_ptr = NULL; 9879 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 9880 if (!is_error(ret)) { 9881 if (status_ptr && ret) { 9882 status = host_to_target_waitstatus(status); 9883 if (put_user_s32(status, status_ptr)) 9884 goto efault; 9885 } 9886 if (target_rusage) { 9887 rusage_err = host_to_target_rusage(target_rusage, &rusage); 9888 if (rusage_err) { 9889 ret = rusage_err; 9890 } 9891 } 9892 } 9893 } 9894 break; 9895 #ifdef TARGET_NR_swapoff 9896 case TARGET_NR_swapoff: 9897 if (!(p = lock_user_string(arg1))) 9898 goto efault; 9899 ret = get_errno(swapoff(p)); 9900 unlock_user(p, arg1, 0); 9901 break; 9902 #endif 9903 case TARGET_NR_sysinfo: 9904 { 9905 struct target_sysinfo *target_value; 9906 struct sysinfo value; 9907 ret = get_errno(sysinfo(&value)); 9908 if (!is_error(ret) && arg1) 9909 { 9910 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 9911 goto efault; 9912 __put_user(value.uptime, &target_value->uptime); 9913 __put_user(value.loads[0], &target_value->loads[0]); 9914 __put_user(value.loads[1], &target_value->loads[1]); 9915 __put_user(value.loads[2], &target_value->loads[2]); 9916 __put_user(value.totalram, &target_value->totalram); 9917 __put_user(value.freeram, &target_value->freeram); 9918 __put_user(value.sharedram, &target_value->sharedram); 9919 __put_user(value.bufferram, &target_value->bufferram); 9920 __put_user(value.totalswap, &target_value->totalswap); 9921 __put_user(value.freeswap, &target_value->freeswap); 9922 __put_user(value.procs, &target_value->procs); 9923 __put_user(value.totalhigh, &target_value->totalhigh); 9924 __put_user(value.freehigh, &target_value->freehigh); 9925 __put_user(value.mem_unit, &target_value->mem_unit); 9926 unlock_user_struct(target_value, arg1, 1); 9927 } 9928 } 9929 break; 9930 #ifdef TARGET_NR_ipc 9931 case TARGET_NR_ipc: 9932 ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 9933 break; 9934 #endif 9935 #ifdef TARGET_NR_semget 9936 case TARGET_NR_semget: 9937 ret = get_errno(semget(arg1, arg2, arg3)); 9938 break; 9939 #endif 9940 #ifdef TARGET_NR_semop 9941 case TARGET_NR_semop: 9942 ret = do_semop(arg1, arg2, arg3); 9943 break; 9944 #endif 9945 #ifdef TARGET_NR_semctl 9946 case TARGET_NR_semctl: 9947 ret = do_semctl(arg1, arg2, arg3, arg4); 9948 break; 9949 #endif 9950 #ifdef TARGET_NR_msgctl 9951 case TARGET_NR_msgctl: 9952 ret = do_msgctl(arg1, arg2, arg3); 9953 break; 9954 #endif 9955 #ifdef TARGET_NR_msgget 9956 case TARGET_NR_msgget: 9957 ret = get_errno(msgget(arg1, arg2)); 9958 break; 9959 #endif 9960 #ifdef TARGET_NR_msgrcv 9961 case TARGET_NR_msgrcv: 9962 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5); 9963 break; 9964 #endif 9965 #ifdef TARGET_NR_msgsnd 9966 case TARGET_NR_msgsnd: 9967 ret = do_msgsnd(arg1, arg2, arg3, arg4); 9968 break; 9969 #endif 9970 #ifdef TARGET_NR_shmget 9971 case TARGET_NR_shmget: 9972 ret = get_errno(shmget(arg1, arg2, arg3)); 9973 break; 9974 #endif 9975 #ifdef TARGET_NR_shmctl 9976 case TARGET_NR_shmctl: 9977 ret = do_shmctl(arg1, arg2, arg3); 9978 break; 9979 #endif 9980 #ifdef TARGET_NR_shmat 9981 case TARGET_NR_shmat: 9982 ret = do_shmat(cpu_env, arg1, arg2, arg3); 9983 break; 9984 #endif 9985 #ifdef TARGET_NR_shmdt 9986 case TARGET_NR_shmdt: 9987 ret = do_shmdt(arg1); 9988 break; 9989 #endif 9990 case TARGET_NR_fsync: 9991 ret = get_errno(fsync(arg1)); 9992 break; 9993 case TARGET_NR_clone: 9994 /* Linux manages to have three different orderings for its 9995 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 9996 * match the kernel's CONFIG_CLONE_* settings. 9997 * Microblaze is further special in that it uses a sixth 9998 * implicit argument to clone for the TLS pointer. 9999 */ 10000 #if defined(TARGET_MICROBLAZE) 10001 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 10002 #elif defined(TARGET_CLONE_BACKWARDS) 10003 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 10004 #elif defined(TARGET_CLONE_BACKWARDS2) 10005 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 10006 #else 10007 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 10008 #endif 10009 break; 10010 #ifdef __NR_exit_group 10011 /* new thread calls */ 10012 case TARGET_NR_exit_group: 10013 #ifdef TARGET_GPROF 10014 _mcleanup(); 10015 #endif 10016 gdb_exit(cpu_env, arg1); 10017 ret = get_errno(exit_group(arg1)); 10018 break; 10019 #endif 10020 case TARGET_NR_setdomainname: 10021 if (!(p = lock_user_string(arg1))) 10022 goto efault; 10023 ret = get_errno(setdomainname(p, arg2)); 10024 unlock_user(p, arg1, 0); 10025 break; 10026 case TARGET_NR_uname: 10027 /* no need to transcode because we use the linux syscall */ 10028 { 10029 struct new_utsname * buf; 10030 10031 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 10032 goto efault; 10033 ret = get_errno(sys_uname(buf)); 10034 if (!is_error(ret)) { 10035 /* Overwrite the native machine name with whatever is being 10036 emulated. */ 10037 strcpy (buf->machine, cpu_to_uname_machine(cpu_env)); 10038 /* Allow the user to override the reported release. */ 10039 if (qemu_uname_release && *qemu_uname_release) { 10040 g_strlcpy(buf->release, qemu_uname_release, 10041 sizeof(buf->release)); 10042 } 10043 } 10044 unlock_user_struct(buf, arg1, 1); 10045 } 10046 break; 10047 #ifdef TARGET_I386 10048 case TARGET_NR_modify_ldt: 10049 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3); 10050 break; 10051 #if !defined(TARGET_X86_64) 10052 case TARGET_NR_vm86old: 10053 goto unimplemented; 10054 case TARGET_NR_vm86: 10055 ret = do_vm86(cpu_env, arg1, arg2); 10056 break; 10057 #endif 10058 #endif 10059 case TARGET_NR_adjtimex: 10060 { 10061 struct timex host_buf; 10062 10063 if (target_to_host_timex(&host_buf, arg1) != 0) { 10064 goto efault; 10065 } 10066 ret = get_errno(adjtimex(&host_buf)); 10067 if (!is_error(ret)) { 10068 if (host_to_target_timex(arg1, &host_buf) != 0) { 10069 goto efault; 10070 } 10071 } 10072 } 10073 break; 10074 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 10075 case TARGET_NR_clock_adjtime: 10076 { 10077 struct timex htx, *phtx = &htx; 10078 10079 if (target_to_host_timex(phtx, arg2) != 0) { 10080 goto efault; 10081 } 10082 ret = get_errno(clock_adjtime(arg1, phtx)); 10083 if (!is_error(ret) && phtx) { 10084 if (host_to_target_timex(arg2, phtx) != 0) { 10085 goto efault; 10086 } 10087 } 10088 } 10089 break; 10090 #endif 10091 #ifdef TARGET_NR_create_module 10092 case TARGET_NR_create_module: 10093 #endif 10094 case TARGET_NR_init_module: 10095 case TARGET_NR_delete_module: 10096 #ifdef TARGET_NR_get_kernel_syms 10097 case TARGET_NR_get_kernel_syms: 10098 #endif 10099 goto unimplemented; 10100 case TARGET_NR_quotactl: 10101 goto unimplemented; 10102 case TARGET_NR_getpgid: 10103 ret = get_errno(getpgid(arg1)); 10104 break; 10105 case TARGET_NR_fchdir: 10106 ret = get_errno(fchdir(arg1)); 10107 break; 10108 #ifdef TARGET_NR_bdflush /* not on x86_64 */ 10109 case TARGET_NR_bdflush: 10110 goto unimplemented; 10111 #endif 10112 #ifdef TARGET_NR_sysfs 10113 case TARGET_NR_sysfs: 10114 goto unimplemented; 10115 #endif 10116 case TARGET_NR_personality: 10117 ret = get_errno(personality(arg1)); 10118 break; 10119 #ifdef TARGET_NR_afs_syscall 10120 case TARGET_NR_afs_syscall: 10121 goto unimplemented; 10122 #endif 10123 #ifdef TARGET_NR__llseek /* Not on alpha */ 10124 case TARGET_NR__llseek: 10125 { 10126 int64_t res; 10127 #if !defined(__NR_llseek) 10128 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 10129 if (res == -1) { 10130 ret = get_errno(res); 10131 } else { 10132 ret = 0; 10133 } 10134 #else 10135 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 10136 #endif 10137 if ((ret == 0) && put_user_s64(res, arg4)) { 10138 goto efault; 10139 } 10140 } 10141 break; 10142 #endif 10143 #ifdef TARGET_NR_getdents 10144 case TARGET_NR_getdents: 10145 #ifdef __NR_getdents 10146 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 10147 { 10148 struct target_dirent *target_dirp; 10149 struct linux_dirent *dirp; 10150 abi_long count = arg3; 10151 10152 dirp = g_try_malloc(count); 10153 if (!dirp) { 10154 ret = -TARGET_ENOMEM; 10155 goto fail; 10156 } 10157 10158 ret = get_errno(sys_getdents(arg1, dirp, count)); 10159 if (!is_error(ret)) { 10160 struct linux_dirent *de; 10161 struct target_dirent *tde; 10162 int len = ret; 10163 int reclen, treclen; 10164 int count1, tnamelen; 10165 10166 count1 = 0; 10167 de = dirp; 10168 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10169 goto efault; 10170 tde = target_dirp; 10171 while (len > 0) { 10172 reclen = de->d_reclen; 10173 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 10174 assert(tnamelen >= 0); 10175 treclen = tnamelen + offsetof(struct target_dirent, d_name); 10176 assert(count1 + treclen <= count); 10177 tde->d_reclen = tswap16(treclen); 10178 tde->d_ino = tswapal(de->d_ino); 10179 tde->d_off = tswapal(de->d_off); 10180 memcpy(tde->d_name, de->d_name, tnamelen); 10181 de = (struct linux_dirent *)((char *)de + reclen); 10182 len -= reclen; 10183 tde = (struct target_dirent *)((char *)tde + treclen); 10184 count1 += treclen; 10185 } 10186 ret = count1; 10187 unlock_user(target_dirp, arg2, ret); 10188 } 10189 g_free(dirp); 10190 } 10191 #else 10192 { 10193 struct linux_dirent *dirp; 10194 abi_long count = arg3; 10195 10196 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10197 goto efault; 10198 ret = get_errno(sys_getdents(arg1, dirp, count)); 10199 if (!is_error(ret)) { 10200 struct linux_dirent *de; 10201 int len = ret; 10202 int reclen; 10203 de = dirp; 10204 while (len > 0) { 10205 reclen = de->d_reclen; 10206 if (reclen > len) 10207 break; 10208 de->d_reclen = tswap16(reclen); 10209 tswapls(&de->d_ino); 10210 tswapls(&de->d_off); 10211 de = (struct linux_dirent *)((char *)de + reclen); 10212 len -= reclen; 10213 } 10214 } 10215 unlock_user(dirp, arg2, ret); 10216 } 10217 #endif 10218 #else 10219 /* Implement getdents in terms of getdents64 */ 10220 { 10221 struct linux_dirent64 *dirp; 10222 abi_long count = arg3; 10223 10224 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 10225 if (!dirp) { 10226 goto efault; 10227 } 10228 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10229 if (!is_error(ret)) { 10230 /* Convert the dirent64 structs to target dirent. We do this 10231 * in-place, since we can guarantee that a target_dirent is no 10232 * larger than a dirent64; however this means we have to be 10233 * careful to read everything before writing in the new format. 10234 */ 10235 struct linux_dirent64 *de; 10236 struct target_dirent *tde; 10237 int len = ret; 10238 int tlen = 0; 10239 10240 de = dirp; 10241 tde = (struct target_dirent *)dirp; 10242 while (len > 0) { 10243 int namelen, treclen; 10244 int reclen = de->d_reclen; 10245 uint64_t ino = de->d_ino; 10246 int64_t off = de->d_off; 10247 uint8_t type = de->d_type; 10248 10249 namelen = strlen(de->d_name); 10250 treclen = offsetof(struct target_dirent, d_name) 10251 + namelen + 2; 10252 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 10253 10254 memmove(tde->d_name, de->d_name, namelen + 1); 10255 tde->d_ino = tswapal(ino); 10256 tde->d_off = tswapal(off); 10257 tde->d_reclen = tswap16(treclen); 10258 /* The target_dirent type is in what was formerly a padding 10259 * byte at the end of the structure: 10260 */ 10261 *(((char *)tde) + treclen - 1) = type; 10262 10263 de = (struct linux_dirent64 *)((char *)de + reclen); 10264 tde = (struct target_dirent *)((char *)tde + treclen); 10265 len -= reclen; 10266 tlen += treclen; 10267 } 10268 ret = tlen; 10269 } 10270 unlock_user(dirp, arg2, ret); 10271 } 10272 #endif 10273 break; 10274 #endif /* TARGET_NR_getdents */ 10275 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 10276 case TARGET_NR_getdents64: 10277 { 10278 struct linux_dirent64 *dirp; 10279 abi_long count = arg3; 10280 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10281 goto efault; 10282 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10283 if (!is_error(ret)) { 10284 struct linux_dirent64 *de; 10285 int len = ret; 10286 int reclen; 10287 de = dirp; 10288 while (len > 0) { 10289 reclen = de->d_reclen; 10290 if (reclen > len) 10291 break; 10292 de->d_reclen = tswap16(reclen); 10293 tswap64s((uint64_t *)&de->d_ino); 10294 tswap64s((uint64_t *)&de->d_off); 10295 de = (struct linux_dirent64 *)((char *)de + reclen); 10296 len -= reclen; 10297 } 10298 } 10299 unlock_user(dirp, arg2, ret); 10300 } 10301 break; 10302 #endif /* TARGET_NR_getdents64 */ 10303 #if defined(TARGET_NR__newselect) 10304 case TARGET_NR__newselect: 10305 ret = do_select(arg1, arg2, arg3, arg4, arg5); 10306 break; 10307 #endif 10308 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) 10309 # ifdef TARGET_NR_poll 10310 case TARGET_NR_poll: 10311 # endif 10312 # ifdef TARGET_NR_ppoll 10313 case TARGET_NR_ppoll: 10314 # endif 10315 { 10316 struct target_pollfd *target_pfd; 10317 unsigned int nfds = arg2; 10318 struct pollfd *pfd; 10319 unsigned int i; 10320 10321 pfd = NULL; 10322 target_pfd = NULL; 10323 if (nfds) { 10324 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 10325 ret = -TARGET_EINVAL; 10326 break; 10327 } 10328 10329 target_pfd = lock_user(VERIFY_WRITE, arg1, 10330 sizeof(struct target_pollfd) * nfds, 1); 10331 if (!target_pfd) { 10332 goto efault; 10333 } 10334 10335 pfd = alloca(sizeof(struct pollfd) * nfds); 10336 for (i = 0; i < nfds; i++) { 10337 pfd[i].fd = tswap32(target_pfd[i].fd); 10338 pfd[i].events = tswap16(target_pfd[i].events); 10339 } 10340 } 10341 10342 switch (num) { 10343 # ifdef TARGET_NR_ppoll 10344 case TARGET_NR_ppoll: 10345 { 10346 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 10347 target_sigset_t *target_set; 10348 sigset_t _set, *set = &_set; 10349 10350 if (arg3) { 10351 if (target_to_host_timespec(timeout_ts, arg3)) { 10352 unlock_user(target_pfd, arg1, 0); 10353 goto efault; 10354 } 10355 } else { 10356 timeout_ts = NULL; 10357 } 10358 10359 if (arg4) { 10360 if (arg5 != sizeof(target_sigset_t)) { 10361 unlock_user(target_pfd, arg1, 0); 10362 ret = -TARGET_EINVAL; 10363 break; 10364 } 10365 10366 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1); 10367 if (!target_set) { 10368 unlock_user(target_pfd, arg1, 0); 10369 goto efault; 10370 } 10371 target_to_host_sigset(set, target_set); 10372 } else { 10373 set = NULL; 10374 } 10375 10376 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 10377 set, SIGSET_T_SIZE)); 10378 10379 if (!is_error(ret) && arg3) { 10380 host_to_target_timespec(arg3, timeout_ts); 10381 } 10382 if (arg4) { 10383 unlock_user(target_set, arg4, 0); 10384 } 10385 break; 10386 } 10387 # endif 10388 # ifdef TARGET_NR_poll 10389 case TARGET_NR_poll: 10390 { 10391 struct timespec ts, *pts; 10392 10393 if (arg3 >= 0) { 10394 /* Convert ms to secs, ns */ 10395 ts.tv_sec = arg3 / 1000; 10396 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 10397 pts = &ts; 10398 } else { 10399 /* -ve poll() timeout means "infinite" */ 10400 pts = NULL; 10401 } 10402 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 10403 break; 10404 } 10405 # endif 10406 default: 10407 g_assert_not_reached(); 10408 } 10409 10410 if (!is_error(ret)) { 10411 for(i = 0; i < nfds; i++) { 10412 target_pfd[i].revents = tswap16(pfd[i].revents); 10413 } 10414 } 10415 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 10416 } 10417 break; 10418 #endif 10419 case TARGET_NR_flock: 10420 /* NOTE: the flock constant seems to be the same for every 10421 Linux platform */ 10422 ret = get_errno(safe_flock(arg1, arg2)); 10423 break; 10424 case TARGET_NR_readv: 10425 { 10426 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10427 if (vec != NULL) { 10428 ret = get_errno(safe_readv(arg1, vec, arg3)); 10429 unlock_iovec(vec, arg2, arg3, 1); 10430 } else { 10431 ret = -host_to_target_errno(errno); 10432 } 10433 } 10434 break; 10435 case TARGET_NR_writev: 10436 { 10437 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10438 if (vec != NULL) { 10439 ret = get_errno(safe_writev(arg1, vec, arg3)); 10440 unlock_iovec(vec, arg2, arg3, 0); 10441 } else { 10442 ret = -host_to_target_errno(errno); 10443 } 10444 } 10445 break; 10446 #if defined(TARGET_NR_preadv) 10447 case TARGET_NR_preadv: 10448 { 10449 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10450 if (vec != NULL) { 10451 ret = get_errno(safe_preadv(arg1, vec, arg3, arg4, arg5)); 10452 unlock_iovec(vec, arg2, arg3, 1); 10453 } else { 10454 ret = -host_to_target_errno(errno); 10455 } 10456 } 10457 break; 10458 #endif 10459 #if defined(TARGET_NR_pwritev) 10460 case TARGET_NR_pwritev: 10461 { 10462 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10463 if (vec != NULL) { 10464 ret = get_errno(safe_pwritev(arg1, vec, arg3, arg4, arg5)); 10465 unlock_iovec(vec, arg2, arg3, 0); 10466 } else { 10467 ret = -host_to_target_errno(errno); 10468 } 10469 } 10470 break; 10471 #endif 10472 case TARGET_NR_getsid: 10473 ret = get_errno(getsid(arg1)); 10474 break; 10475 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 10476 case TARGET_NR_fdatasync: 10477 ret = get_errno(fdatasync(arg1)); 10478 break; 10479 #endif 10480 #ifdef TARGET_NR__sysctl 10481 case TARGET_NR__sysctl: 10482 /* We don't implement this, but ENOTDIR is always a safe 10483 return value. */ 10484 ret = -TARGET_ENOTDIR; 10485 break; 10486 #endif 10487 case TARGET_NR_sched_getaffinity: 10488 { 10489 unsigned int mask_size; 10490 unsigned long *mask; 10491 10492 /* 10493 * sched_getaffinity needs multiples of ulong, so need to take 10494 * care of mismatches between target ulong and host ulong sizes. 10495 */ 10496 if (arg2 & (sizeof(abi_ulong) - 1)) { 10497 ret = -TARGET_EINVAL; 10498 break; 10499 } 10500 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10501 10502 mask = alloca(mask_size); 10503 memset(mask, 0, mask_size); 10504 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 10505 10506 if (!is_error(ret)) { 10507 if (ret > arg2) { 10508 /* More data returned than the caller's buffer will fit. 10509 * This only happens if sizeof(abi_long) < sizeof(long) 10510 * and the caller passed us a buffer holding an odd number 10511 * of abi_longs. If the host kernel is actually using the 10512 * extra 4 bytes then fail EINVAL; otherwise we can just 10513 * ignore them and only copy the interesting part. 10514 */ 10515 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 10516 if (numcpus > arg2 * 8) { 10517 ret = -TARGET_EINVAL; 10518 break; 10519 } 10520 ret = arg2; 10521 } 10522 10523 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 10524 goto efault; 10525 } 10526 } 10527 } 10528 break; 10529 case TARGET_NR_sched_setaffinity: 10530 { 10531 unsigned int mask_size; 10532 unsigned long *mask; 10533 10534 /* 10535 * sched_setaffinity needs multiples of ulong, so need to take 10536 * care of mismatches between target ulong and host ulong sizes. 10537 */ 10538 if (arg2 & (sizeof(abi_ulong) - 1)) { 10539 ret = -TARGET_EINVAL; 10540 break; 10541 } 10542 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10543 mask = alloca(mask_size); 10544 10545 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 10546 if (ret) { 10547 break; 10548 } 10549 10550 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 10551 } 10552 break; 10553 case TARGET_NR_getcpu: 10554 { 10555 unsigned cpu, node; 10556 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL, 10557 arg2 ? &node : NULL, 10558 NULL)); 10559 if (is_error(ret)) { 10560 goto fail; 10561 } 10562 if (arg1 && put_user_u32(cpu, arg1)) { 10563 goto efault; 10564 } 10565 if (arg2 && put_user_u32(node, arg2)) { 10566 goto efault; 10567 } 10568 } 10569 break; 10570 case TARGET_NR_sched_setparam: 10571 { 10572 struct sched_param *target_schp; 10573 struct sched_param schp; 10574 10575 if (arg2 == 0) { 10576 return -TARGET_EINVAL; 10577 } 10578 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 10579 goto efault; 10580 schp.sched_priority = tswap32(target_schp->sched_priority); 10581 unlock_user_struct(target_schp, arg2, 0); 10582 ret = get_errno(sched_setparam(arg1, &schp)); 10583 } 10584 break; 10585 case TARGET_NR_sched_getparam: 10586 { 10587 struct sched_param *target_schp; 10588 struct sched_param schp; 10589 10590 if (arg2 == 0) { 10591 return -TARGET_EINVAL; 10592 } 10593 ret = get_errno(sched_getparam(arg1, &schp)); 10594 if (!is_error(ret)) { 10595 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 10596 goto efault; 10597 target_schp->sched_priority = tswap32(schp.sched_priority); 10598 unlock_user_struct(target_schp, arg2, 1); 10599 } 10600 } 10601 break; 10602 case TARGET_NR_sched_setscheduler: 10603 { 10604 struct sched_param *target_schp; 10605 struct sched_param schp; 10606 if (arg3 == 0) { 10607 return -TARGET_EINVAL; 10608 } 10609 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 10610 goto efault; 10611 schp.sched_priority = tswap32(target_schp->sched_priority); 10612 unlock_user_struct(target_schp, arg3, 0); 10613 ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); 10614 } 10615 break; 10616 case TARGET_NR_sched_getscheduler: 10617 ret = get_errno(sched_getscheduler(arg1)); 10618 break; 10619 case TARGET_NR_sched_yield: 10620 ret = get_errno(sched_yield()); 10621 break; 10622 case TARGET_NR_sched_get_priority_max: 10623 ret = get_errno(sched_get_priority_max(arg1)); 10624 break; 10625 case TARGET_NR_sched_get_priority_min: 10626 ret = get_errno(sched_get_priority_min(arg1)); 10627 break; 10628 case TARGET_NR_sched_rr_get_interval: 10629 { 10630 struct timespec ts; 10631 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 10632 if (!is_error(ret)) { 10633 ret = host_to_target_timespec(arg2, &ts); 10634 } 10635 } 10636 break; 10637 case TARGET_NR_nanosleep: 10638 { 10639 struct timespec req, rem; 10640 target_to_host_timespec(&req, arg1); 10641 ret = get_errno(safe_nanosleep(&req, &rem)); 10642 if (is_error(ret) && arg2) { 10643 host_to_target_timespec(arg2, &rem); 10644 } 10645 } 10646 break; 10647 #ifdef TARGET_NR_query_module 10648 case TARGET_NR_query_module: 10649 goto unimplemented; 10650 #endif 10651 #ifdef TARGET_NR_nfsservctl 10652 case TARGET_NR_nfsservctl: 10653 goto unimplemented; 10654 #endif 10655 case TARGET_NR_prctl: 10656 switch (arg1) { 10657 case PR_GET_PDEATHSIG: 10658 { 10659 int deathsig; 10660 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 10661 if (!is_error(ret) && arg2 10662 && put_user_ual(deathsig, arg2)) { 10663 goto efault; 10664 } 10665 break; 10666 } 10667 #ifdef PR_GET_NAME 10668 case PR_GET_NAME: 10669 { 10670 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 10671 if (!name) { 10672 goto efault; 10673 } 10674 ret = get_errno(prctl(arg1, (unsigned long)name, 10675 arg3, arg4, arg5)); 10676 unlock_user(name, arg2, 16); 10677 break; 10678 } 10679 case PR_SET_NAME: 10680 { 10681 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 10682 if (!name) { 10683 goto efault; 10684 } 10685 ret = get_errno(prctl(arg1, (unsigned long)name, 10686 arg3, arg4, arg5)); 10687 unlock_user(name, arg2, 0); 10688 break; 10689 } 10690 #endif 10691 #ifdef TARGET_AARCH64 10692 case TARGET_PR_SVE_SET_VL: 10693 /* We cannot support either PR_SVE_SET_VL_ONEXEC 10694 or PR_SVE_VL_INHERIT. Therefore, anything above 10695 ARM_MAX_VQ results in EINVAL. */ 10696 ret = -TARGET_EINVAL; 10697 if (arm_feature(cpu_env, ARM_FEATURE_SVE) 10698 && arg2 >= 0 && arg2 <= ARM_MAX_VQ * 16 && !(arg2 & 15)) { 10699 CPUARMState *env = cpu_env; 10700 int old_vq = (env->vfp.zcr_el[1] & 0xf) + 1; 10701 int vq = MAX(arg2 / 16, 1); 10702 10703 if (vq < old_vq) { 10704 aarch64_sve_narrow_vq(env, vq); 10705 } 10706 env->vfp.zcr_el[1] = vq - 1; 10707 ret = vq * 16; 10708 } 10709 break; 10710 case TARGET_PR_SVE_GET_VL: 10711 ret = -TARGET_EINVAL; 10712 if (arm_feature(cpu_env, ARM_FEATURE_SVE)) { 10713 CPUARMState *env = cpu_env; 10714 ret = ((env->vfp.zcr_el[1] & 0xf) + 1) * 16; 10715 } 10716 break; 10717 #endif /* AARCH64 */ 10718 case PR_GET_SECCOMP: 10719 case PR_SET_SECCOMP: 10720 /* Disable seccomp to prevent the target disabling syscalls we 10721 * need. */ 10722 ret = -TARGET_EINVAL; 10723 break; 10724 default: 10725 /* Most prctl options have no pointer arguments */ 10726 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 10727 break; 10728 } 10729 break; 10730 #ifdef TARGET_NR_arch_prctl 10731 case TARGET_NR_arch_prctl: 10732 #if defined(TARGET_I386) && !defined(TARGET_ABI32) 10733 ret = do_arch_prctl(cpu_env, arg1, arg2); 10734 break; 10735 #else 10736 goto unimplemented; 10737 #endif 10738 #endif 10739 #ifdef TARGET_NR_pread64 10740 case TARGET_NR_pread64: 10741 if (regpairs_aligned(cpu_env, num)) { 10742 arg4 = arg5; 10743 arg5 = arg6; 10744 } 10745 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 10746 goto efault; 10747 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 10748 unlock_user(p, arg2, ret); 10749 break; 10750 case TARGET_NR_pwrite64: 10751 if (regpairs_aligned(cpu_env, num)) { 10752 arg4 = arg5; 10753 arg5 = arg6; 10754 } 10755 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 10756 goto efault; 10757 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 10758 unlock_user(p, arg2, 0); 10759 break; 10760 #endif 10761 case TARGET_NR_getcwd: 10762 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 10763 goto efault; 10764 ret = get_errno(sys_getcwd1(p, arg2)); 10765 unlock_user(p, arg1, ret); 10766 break; 10767 case TARGET_NR_capget: 10768 case TARGET_NR_capset: 10769 { 10770 struct target_user_cap_header *target_header; 10771 struct target_user_cap_data *target_data = NULL; 10772 struct __user_cap_header_struct header; 10773 struct __user_cap_data_struct data[2]; 10774 struct __user_cap_data_struct *dataptr = NULL; 10775 int i, target_datalen; 10776 int data_items = 1; 10777 10778 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 10779 goto efault; 10780 } 10781 header.version = tswap32(target_header->version); 10782 header.pid = tswap32(target_header->pid); 10783 10784 if (header.version != _LINUX_CAPABILITY_VERSION) { 10785 /* Version 2 and up takes pointer to two user_data structs */ 10786 data_items = 2; 10787 } 10788 10789 target_datalen = sizeof(*target_data) * data_items; 10790 10791 if (arg2) { 10792 if (num == TARGET_NR_capget) { 10793 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 10794 } else { 10795 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 10796 } 10797 if (!target_data) { 10798 unlock_user_struct(target_header, arg1, 0); 10799 goto efault; 10800 } 10801 10802 if (num == TARGET_NR_capset) { 10803 for (i = 0; i < data_items; i++) { 10804 data[i].effective = tswap32(target_data[i].effective); 10805 data[i].permitted = tswap32(target_data[i].permitted); 10806 data[i].inheritable = tswap32(target_data[i].inheritable); 10807 } 10808 } 10809 10810 dataptr = data; 10811 } 10812 10813 if (num == TARGET_NR_capget) { 10814 ret = get_errno(capget(&header, dataptr)); 10815 } else { 10816 ret = get_errno(capset(&header, dataptr)); 10817 } 10818 10819 /* The kernel always updates version for both capget and capset */ 10820 target_header->version = tswap32(header.version); 10821 unlock_user_struct(target_header, arg1, 1); 10822 10823 if (arg2) { 10824 if (num == TARGET_NR_capget) { 10825 for (i = 0; i < data_items; i++) { 10826 target_data[i].effective = tswap32(data[i].effective); 10827 target_data[i].permitted = tswap32(data[i].permitted); 10828 target_data[i].inheritable = tswap32(data[i].inheritable); 10829 } 10830 unlock_user(target_data, arg2, target_datalen); 10831 } else { 10832 unlock_user(target_data, arg2, 0); 10833 } 10834 } 10835 break; 10836 } 10837 case TARGET_NR_sigaltstack: 10838 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env)); 10839 break; 10840 10841 #ifdef CONFIG_SENDFILE 10842 case TARGET_NR_sendfile: 10843 { 10844 off_t *offp = NULL; 10845 off_t off; 10846 if (arg3) { 10847 ret = get_user_sal(off, arg3); 10848 if (is_error(ret)) { 10849 break; 10850 } 10851 offp = &off; 10852 } 10853 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10854 if (!is_error(ret) && arg3) { 10855 abi_long ret2 = put_user_sal(off, arg3); 10856 if (is_error(ret2)) { 10857 ret = ret2; 10858 } 10859 } 10860 break; 10861 } 10862 #ifdef TARGET_NR_sendfile64 10863 case TARGET_NR_sendfile64: 10864 { 10865 off_t *offp = NULL; 10866 off_t off; 10867 if (arg3) { 10868 ret = get_user_s64(off, arg3); 10869 if (is_error(ret)) { 10870 break; 10871 } 10872 offp = &off; 10873 } 10874 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10875 if (!is_error(ret) && arg3) { 10876 abi_long ret2 = put_user_s64(off, arg3); 10877 if (is_error(ret2)) { 10878 ret = ret2; 10879 } 10880 } 10881 break; 10882 } 10883 #endif 10884 #else 10885 case TARGET_NR_sendfile: 10886 #ifdef TARGET_NR_sendfile64 10887 case TARGET_NR_sendfile64: 10888 #endif 10889 goto unimplemented; 10890 #endif 10891 10892 #ifdef TARGET_NR_getpmsg 10893 case TARGET_NR_getpmsg: 10894 goto unimplemented; 10895 #endif 10896 #ifdef TARGET_NR_putpmsg 10897 case TARGET_NR_putpmsg: 10898 goto unimplemented; 10899 #endif 10900 #ifdef TARGET_NR_vfork 10901 case TARGET_NR_vfork: 10902 ret = get_errno(do_fork(cpu_env, 10903 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 10904 0, 0, 0, 0)); 10905 break; 10906 #endif 10907 #ifdef TARGET_NR_ugetrlimit 10908 case TARGET_NR_ugetrlimit: 10909 { 10910 struct rlimit rlim; 10911 int resource = target_to_host_resource(arg1); 10912 ret = get_errno(getrlimit(resource, &rlim)); 10913 if (!is_error(ret)) { 10914 struct target_rlimit *target_rlim; 10915 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 10916 goto efault; 10917 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 10918 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 10919 unlock_user_struct(target_rlim, arg2, 1); 10920 } 10921 break; 10922 } 10923 #endif 10924 #ifdef TARGET_NR_truncate64 10925 case TARGET_NR_truncate64: 10926 if (!(p = lock_user_string(arg1))) 10927 goto efault; 10928 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 10929 unlock_user(p, arg1, 0); 10930 break; 10931 #endif 10932 #ifdef TARGET_NR_ftruncate64 10933 case TARGET_NR_ftruncate64: 10934 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 10935 break; 10936 #endif 10937 #ifdef TARGET_NR_stat64 10938 case TARGET_NR_stat64: 10939 if (!(p = lock_user_string(arg1))) 10940 goto efault; 10941 ret = get_errno(stat(path(p), &st)); 10942 unlock_user(p, arg1, 0); 10943 if (!is_error(ret)) 10944 ret = host_to_target_stat64(cpu_env, arg2, &st); 10945 break; 10946 #endif 10947 #ifdef TARGET_NR_lstat64 10948 case TARGET_NR_lstat64: 10949 if (!(p = lock_user_string(arg1))) 10950 goto efault; 10951 ret = get_errno(lstat(path(p), &st)); 10952 unlock_user(p, arg1, 0); 10953 if (!is_error(ret)) 10954 ret = host_to_target_stat64(cpu_env, arg2, &st); 10955 break; 10956 #endif 10957 #ifdef TARGET_NR_fstat64 10958 case TARGET_NR_fstat64: 10959 ret = get_errno(fstat(arg1, &st)); 10960 if (!is_error(ret)) 10961 ret = host_to_target_stat64(cpu_env, arg2, &st); 10962 break; 10963 #endif 10964 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 10965 #ifdef TARGET_NR_fstatat64 10966 case TARGET_NR_fstatat64: 10967 #endif 10968 #ifdef TARGET_NR_newfstatat 10969 case TARGET_NR_newfstatat: 10970 #endif 10971 if (!(p = lock_user_string(arg2))) 10972 goto efault; 10973 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 10974 if (!is_error(ret)) 10975 ret = host_to_target_stat64(cpu_env, arg3, &st); 10976 break; 10977 #endif 10978 #ifdef TARGET_NR_lchown 10979 case TARGET_NR_lchown: 10980 if (!(p = lock_user_string(arg1))) 10981 goto efault; 10982 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 10983 unlock_user(p, arg1, 0); 10984 break; 10985 #endif 10986 #ifdef TARGET_NR_getuid 10987 case TARGET_NR_getuid: 10988 ret = get_errno(high2lowuid(getuid())); 10989 break; 10990 #endif 10991 #ifdef TARGET_NR_getgid 10992 case TARGET_NR_getgid: 10993 ret = get_errno(high2lowgid(getgid())); 10994 break; 10995 #endif 10996 #ifdef TARGET_NR_geteuid 10997 case TARGET_NR_geteuid: 10998 ret = get_errno(high2lowuid(geteuid())); 10999 break; 11000 #endif 11001 #ifdef TARGET_NR_getegid 11002 case TARGET_NR_getegid: 11003 ret = get_errno(high2lowgid(getegid())); 11004 break; 11005 #endif 11006 case TARGET_NR_setreuid: 11007 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11008 break; 11009 case TARGET_NR_setregid: 11010 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11011 break; 11012 case TARGET_NR_getgroups: 11013 { 11014 int gidsetsize = arg1; 11015 target_id *target_grouplist; 11016 gid_t *grouplist; 11017 int i; 11018 11019 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11020 ret = get_errno(getgroups(gidsetsize, grouplist)); 11021 if (gidsetsize == 0) 11022 break; 11023 if (!is_error(ret)) { 11024 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 11025 if (!target_grouplist) 11026 goto efault; 11027 for(i = 0;i < ret; i++) 11028 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11029 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 11030 } 11031 } 11032 break; 11033 case TARGET_NR_setgroups: 11034 { 11035 int gidsetsize = arg1; 11036 target_id *target_grouplist; 11037 gid_t *grouplist = NULL; 11038 int i; 11039 if (gidsetsize) { 11040 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11041 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 11042 if (!target_grouplist) { 11043 ret = -TARGET_EFAULT; 11044 goto fail; 11045 } 11046 for (i = 0; i < gidsetsize; i++) { 11047 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11048 } 11049 unlock_user(target_grouplist, arg2, 0); 11050 } 11051 ret = get_errno(setgroups(gidsetsize, grouplist)); 11052 } 11053 break; 11054 case TARGET_NR_fchown: 11055 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11056 break; 11057 #if defined(TARGET_NR_fchownat) 11058 case TARGET_NR_fchownat: 11059 if (!(p = lock_user_string(arg2))) 11060 goto efault; 11061 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11062 low2highgid(arg4), arg5)); 11063 unlock_user(p, arg2, 0); 11064 break; 11065 #endif 11066 #ifdef TARGET_NR_setresuid 11067 case TARGET_NR_setresuid: 11068 ret = get_errno(sys_setresuid(low2highuid(arg1), 11069 low2highuid(arg2), 11070 low2highuid(arg3))); 11071 break; 11072 #endif 11073 #ifdef TARGET_NR_getresuid 11074 case TARGET_NR_getresuid: 11075 { 11076 uid_t ruid, euid, suid; 11077 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11078 if (!is_error(ret)) { 11079 if (put_user_id(high2lowuid(ruid), arg1) 11080 || put_user_id(high2lowuid(euid), arg2) 11081 || put_user_id(high2lowuid(suid), arg3)) 11082 goto efault; 11083 } 11084 } 11085 break; 11086 #endif 11087 #ifdef TARGET_NR_getresgid 11088 case TARGET_NR_setresgid: 11089 ret = get_errno(sys_setresgid(low2highgid(arg1), 11090 low2highgid(arg2), 11091 low2highgid(arg3))); 11092 break; 11093 #endif 11094 #ifdef TARGET_NR_getresgid 11095 case TARGET_NR_getresgid: 11096 { 11097 gid_t rgid, egid, sgid; 11098 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11099 if (!is_error(ret)) { 11100 if (put_user_id(high2lowgid(rgid), arg1) 11101 || put_user_id(high2lowgid(egid), arg2) 11102 || put_user_id(high2lowgid(sgid), arg3)) 11103 goto efault; 11104 } 11105 } 11106 break; 11107 #endif 11108 #ifdef TARGET_NR_chown 11109 case TARGET_NR_chown: 11110 if (!(p = lock_user_string(arg1))) 11111 goto efault; 11112 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11113 unlock_user(p, arg1, 0); 11114 break; 11115 #endif 11116 case TARGET_NR_setuid: 11117 ret = get_errno(sys_setuid(low2highuid(arg1))); 11118 break; 11119 case TARGET_NR_setgid: 11120 ret = get_errno(sys_setgid(low2highgid(arg1))); 11121 break; 11122 case TARGET_NR_setfsuid: 11123 ret = get_errno(setfsuid(arg1)); 11124 break; 11125 case TARGET_NR_setfsgid: 11126 ret = get_errno(setfsgid(arg1)); 11127 break; 11128 11129 #ifdef TARGET_NR_lchown32 11130 case TARGET_NR_lchown32: 11131 if (!(p = lock_user_string(arg1))) 11132 goto efault; 11133 ret = get_errno(lchown(p, arg2, arg3)); 11134 unlock_user(p, arg1, 0); 11135 break; 11136 #endif 11137 #ifdef TARGET_NR_getuid32 11138 case TARGET_NR_getuid32: 11139 ret = get_errno(getuid()); 11140 break; 11141 #endif 11142 11143 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11144 /* Alpha specific */ 11145 case TARGET_NR_getxuid: 11146 { 11147 uid_t euid; 11148 euid=geteuid(); 11149 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 11150 } 11151 ret = get_errno(getuid()); 11152 break; 11153 #endif 11154 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11155 /* Alpha specific */ 11156 case TARGET_NR_getxgid: 11157 { 11158 uid_t egid; 11159 egid=getegid(); 11160 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 11161 } 11162 ret = get_errno(getgid()); 11163 break; 11164 #endif 11165 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 11166 /* Alpha specific */ 11167 case TARGET_NR_osf_getsysinfo: 11168 ret = -TARGET_EOPNOTSUPP; 11169 switch (arg1) { 11170 case TARGET_GSI_IEEE_FP_CONTROL: 11171 { 11172 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env); 11173 11174 /* Copied from linux ieee_fpcr_to_swcr. */ 11175 swcr = (fpcr >> 35) & SWCR_STATUS_MASK; 11176 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ; 11177 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV 11178 | SWCR_TRAP_ENABLE_DZE 11179 | SWCR_TRAP_ENABLE_OVF); 11180 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF 11181 | SWCR_TRAP_ENABLE_INE); 11182 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ; 11183 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO; 11184 11185 if (put_user_u64 (swcr, arg2)) 11186 goto efault; 11187 ret = 0; 11188 } 11189 break; 11190 11191 /* case GSI_IEEE_STATE_AT_SIGNAL: 11192 -- Not implemented in linux kernel. 11193 case GSI_UACPROC: 11194 -- Retrieves current unaligned access state; not much used. 11195 case GSI_PROC_TYPE: 11196 -- Retrieves implver information; surely not used. 11197 case GSI_GET_HWRPB: 11198 -- Grabs a copy of the HWRPB; surely not used. 11199 */ 11200 } 11201 break; 11202 #endif 11203 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 11204 /* Alpha specific */ 11205 case TARGET_NR_osf_setsysinfo: 11206 ret = -TARGET_EOPNOTSUPP; 11207 switch (arg1) { 11208 case TARGET_SSI_IEEE_FP_CONTROL: 11209 { 11210 uint64_t swcr, fpcr, orig_fpcr; 11211 11212 if (get_user_u64 (swcr, arg2)) { 11213 goto efault; 11214 } 11215 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 11216 fpcr = orig_fpcr & FPCR_DYN_MASK; 11217 11218 /* Copied from linux ieee_swcr_to_fpcr. */ 11219 fpcr |= (swcr & SWCR_STATUS_MASK) << 35; 11220 fpcr |= (swcr & SWCR_MAP_DMZ) << 36; 11221 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV 11222 | SWCR_TRAP_ENABLE_DZE 11223 | SWCR_TRAP_ENABLE_OVF)) << 48; 11224 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF 11225 | SWCR_TRAP_ENABLE_INE)) << 57; 11226 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0); 11227 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41; 11228 11229 cpu_alpha_store_fpcr(cpu_env, fpcr); 11230 ret = 0; 11231 } 11232 break; 11233 11234 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 11235 { 11236 uint64_t exc, fpcr, orig_fpcr; 11237 int si_code; 11238 11239 if (get_user_u64(exc, arg2)) { 11240 goto efault; 11241 } 11242 11243 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 11244 11245 /* We only add to the exception status here. */ 11246 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35); 11247 11248 cpu_alpha_store_fpcr(cpu_env, fpcr); 11249 ret = 0; 11250 11251 /* Old exceptions are not signaled. */ 11252 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK); 11253 11254 /* If any exceptions set by this call, 11255 and are unmasked, send a signal. */ 11256 si_code = 0; 11257 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) { 11258 si_code = TARGET_FPE_FLTRES; 11259 } 11260 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) { 11261 si_code = TARGET_FPE_FLTUND; 11262 } 11263 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) { 11264 si_code = TARGET_FPE_FLTOVF; 11265 } 11266 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) { 11267 si_code = TARGET_FPE_FLTDIV; 11268 } 11269 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) { 11270 si_code = TARGET_FPE_FLTINV; 11271 } 11272 if (si_code != 0) { 11273 target_siginfo_t info; 11274 info.si_signo = SIGFPE; 11275 info.si_errno = 0; 11276 info.si_code = si_code; 11277 info._sifields._sigfault._addr 11278 = ((CPUArchState *)cpu_env)->pc; 11279 queue_signal((CPUArchState *)cpu_env, info.si_signo, 11280 QEMU_SI_FAULT, &info); 11281 } 11282 } 11283 break; 11284 11285 /* case SSI_NVPAIRS: 11286 -- Used with SSIN_UACPROC to enable unaligned accesses. 11287 case SSI_IEEE_STATE_AT_SIGNAL: 11288 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 11289 -- Not implemented in linux kernel 11290 */ 11291 } 11292 break; 11293 #endif 11294 #ifdef TARGET_NR_osf_sigprocmask 11295 /* Alpha specific. */ 11296 case TARGET_NR_osf_sigprocmask: 11297 { 11298 abi_ulong mask; 11299 int how; 11300 sigset_t set, oldset; 11301 11302 switch(arg1) { 11303 case TARGET_SIG_BLOCK: 11304 how = SIG_BLOCK; 11305 break; 11306 case TARGET_SIG_UNBLOCK: 11307 how = SIG_UNBLOCK; 11308 break; 11309 case TARGET_SIG_SETMASK: 11310 how = SIG_SETMASK; 11311 break; 11312 default: 11313 ret = -TARGET_EINVAL; 11314 goto fail; 11315 } 11316 mask = arg2; 11317 target_to_host_old_sigset(&set, &mask); 11318 ret = do_sigprocmask(how, &set, &oldset); 11319 if (!ret) { 11320 host_to_target_old_sigset(&mask, &oldset); 11321 ret = mask; 11322 } 11323 } 11324 break; 11325 #endif 11326 11327 #ifdef TARGET_NR_getgid32 11328 case TARGET_NR_getgid32: 11329 ret = get_errno(getgid()); 11330 break; 11331 #endif 11332 #ifdef TARGET_NR_geteuid32 11333 case TARGET_NR_geteuid32: 11334 ret = get_errno(geteuid()); 11335 break; 11336 #endif 11337 #ifdef TARGET_NR_getegid32 11338 case TARGET_NR_getegid32: 11339 ret = get_errno(getegid()); 11340 break; 11341 #endif 11342 #ifdef TARGET_NR_setreuid32 11343 case TARGET_NR_setreuid32: 11344 ret = get_errno(setreuid(arg1, arg2)); 11345 break; 11346 #endif 11347 #ifdef TARGET_NR_setregid32 11348 case TARGET_NR_setregid32: 11349 ret = get_errno(setregid(arg1, arg2)); 11350 break; 11351 #endif 11352 #ifdef TARGET_NR_getgroups32 11353 case TARGET_NR_getgroups32: 11354 { 11355 int gidsetsize = arg1; 11356 uint32_t *target_grouplist; 11357 gid_t *grouplist; 11358 int i; 11359 11360 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11361 ret = get_errno(getgroups(gidsetsize, grouplist)); 11362 if (gidsetsize == 0) 11363 break; 11364 if (!is_error(ret)) { 11365 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 11366 if (!target_grouplist) { 11367 ret = -TARGET_EFAULT; 11368 goto fail; 11369 } 11370 for(i = 0;i < ret; i++) 11371 target_grouplist[i] = tswap32(grouplist[i]); 11372 unlock_user(target_grouplist, arg2, gidsetsize * 4); 11373 } 11374 } 11375 break; 11376 #endif 11377 #ifdef TARGET_NR_setgroups32 11378 case TARGET_NR_setgroups32: 11379 { 11380 int gidsetsize = arg1; 11381 uint32_t *target_grouplist; 11382 gid_t *grouplist; 11383 int i; 11384 11385 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11386 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 11387 if (!target_grouplist) { 11388 ret = -TARGET_EFAULT; 11389 goto fail; 11390 } 11391 for(i = 0;i < gidsetsize; i++) 11392 grouplist[i] = tswap32(target_grouplist[i]); 11393 unlock_user(target_grouplist, arg2, 0); 11394 ret = get_errno(setgroups(gidsetsize, grouplist)); 11395 } 11396 break; 11397 #endif 11398 #ifdef TARGET_NR_fchown32 11399 case TARGET_NR_fchown32: 11400 ret = get_errno(fchown(arg1, arg2, arg3)); 11401 break; 11402 #endif 11403 #ifdef TARGET_NR_setresuid32 11404 case TARGET_NR_setresuid32: 11405 ret = get_errno(sys_setresuid(arg1, arg2, arg3)); 11406 break; 11407 #endif 11408 #ifdef TARGET_NR_getresuid32 11409 case TARGET_NR_getresuid32: 11410 { 11411 uid_t ruid, euid, suid; 11412 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11413 if (!is_error(ret)) { 11414 if (put_user_u32(ruid, arg1) 11415 || put_user_u32(euid, arg2) 11416 || put_user_u32(suid, arg3)) 11417 goto efault; 11418 } 11419 } 11420 break; 11421 #endif 11422 #ifdef TARGET_NR_setresgid32 11423 case TARGET_NR_setresgid32: 11424 ret = get_errno(sys_setresgid(arg1, arg2, arg3)); 11425 break; 11426 #endif 11427 #ifdef TARGET_NR_getresgid32 11428 case TARGET_NR_getresgid32: 11429 { 11430 gid_t rgid, egid, sgid; 11431 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11432 if (!is_error(ret)) { 11433 if (put_user_u32(rgid, arg1) 11434 || put_user_u32(egid, arg2) 11435 || put_user_u32(sgid, arg3)) 11436 goto efault; 11437 } 11438 } 11439 break; 11440 #endif 11441 #ifdef TARGET_NR_chown32 11442 case TARGET_NR_chown32: 11443 if (!(p = lock_user_string(arg1))) 11444 goto efault; 11445 ret = get_errno(chown(p, arg2, arg3)); 11446 unlock_user(p, arg1, 0); 11447 break; 11448 #endif 11449 #ifdef TARGET_NR_setuid32 11450 case TARGET_NR_setuid32: 11451 ret = get_errno(sys_setuid(arg1)); 11452 break; 11453 #endif 11454 #ifdef TARGET_NR_setgid32 11455 case TARGET_NR_setgid32: 11456 ret = get_errno(sys_setgid(arg1)); 11457 break; 11458 #endif 11459 #ifdef TARGET_NR_setfsuid32 11460 case TARGET_NR_setfsuid32: 11461 ret = get_errno(setfsuid(arg1)); 11462 break; 11463 #endif 11464 #ifdef TARGET_NR_setfsgid32 11465 case TARGET_NR_setfsgid32: 11466 ret = get_errno(setfsgid(arg1)); 11467 break; 11468 #endif 11469 11470 case TARGET_NR_pivot_root: 11471 goto unimplemented; 11472 #ifdef TARGET_NR_mincore 11473 case TARGET_NR_mincore: 11474 { 11475 void *a; 11476 ret = -TARGET_ENOMEM; 11477 a = lock_user(VERIFY_READ, arg1, arg2, 0); 11478 if (!a) { 11479 goto fail; 11480 } 11481 ret = -TARGET_EFAULT; 11482 p = lock_user_string(arg3); 11483 if (!p) { 11484 goto mincore_fail; 11485 } 11486 ret = get_errno(mincore(a, arg2, p)); 11487 unlock_user(p, arg3, ret); 11488 mincore_fail: 11489 unlock_user(a, arg1, 0); 11490 } 11491 break; 11492 #endif 11493 #ifdef TARGET_NR_arm_fadvise64_64 11494 case TARGET_NR_arm_fadvise64_64: 11495 /* arm_fadvise64_64 looks like fadvise64_64 but 11496 * with different argument order: fd, advice, offset, len 11497 * rather than the usual fd, offset, len, advice. 11498 * Note that offset and len are both 64-bit so appear as 11499 * pairs of 32-bit registers. 11500 */ 11501 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 11502 target_offset64(arg5, arg6), arg2); 11503 ret = -host_to_target_errno(ret); 11504 break; 11505 #endif 11506 11507 #if TARGET_ABI_BITS == 32 11508 11509 #ifdef TARGET_NR_fadvise64_64 11510 case TARGET_NR_fadvise64_64: 11511 #if defined(TARGET_PPC) 11512 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 11513 ret = arg2; 11514 arg2 = arg3; 11515 arg3 = arg4; 11516 arg4 = arg5; 11517 arg5 = arg6; 11518 arg6 = ret; 11519 #else 11520 /* 6 args: fd, offset (high, low), len (high, low), advice */ 11521 if (regpairs_aligned(cpu_env, num)) { 11522 /* offset is in (3,4), len in (5,6) and advice in 7 */ 11523 arg2 = arg3; 11524 arg3 = arg4; 11525 arg4 = arg5; 11526 arg5 = arg6; 11527 arg6 = arg7; 11528 } 11529 #endif 11530 ret = -host_to_target_errno(posix_fadvise(arg1, 11531 target_offset64(arg2, arg3), 11532 target_offset64(arg4, arg5), 11533 arg6)); 11534 break; 11535 #endif 11536 11537 #ifdef TARGET_NR_fadvise64 11538 case TARGET_NR_fadvise64: 11539 /* 5 args: fd, offset (high, low), len, advice */ 11540 if (regpairs_aligned(cpu_env, num)) { 11541 /* offset is in (3,4), len in 5 and advice in 6 */ 11542 arg2 = arg3; 11543 arg3 = arg4; 11544 arg4 = arg5; 11545 arg5 = arg6; 11546 } 11547 ret = -host_to_target_errno(posix_fadvise(arg1, 11548 target_offset64(arg2, arg3), 11549 arg4, arg5)); 11550 break; 11551 #endif 11552 11553 #else /* not a 32-bit ABI */ 11554 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 11555 #ifdef TARGET_NR_fadvise64_64 11556 case TARGET_NR_fadvise64_64: 11557 #endif 11558 #ifdef TARGET_NR_fadvise64 11559 case TARGET_NR_fadvise64: 11560 #endif 11561 #ifdef TARGET_S390X 11562 switch (arg4) { 11563 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 11564 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 11565 case 6: arg4 = POSIX_FADV_DONTNEED; break; 11566 case 7: arg4 = POSIX_FADV_NOREUSE; break; 11567 default: break; 11568 } 11569 #endif 11570 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 11571 break; 11572 #endif 11573 #endif /* end of 64-bit ABI fadvise handling */ 11574 11575 #ifdef TARGET_NR_madvise 11576 case TARGET_NR_madvise: 11577 /* A straight passthrough may not be safe because qemu sometimes 11578 turns private file-backed mappings into anonymous mappings. 11579 This will break MADV_DONTNEED. 11580 This is a hint, so ignoring and returning success is ok. */ 11581 ret = get_errno(0); 11582 break; 11583 #endif 11584 #if TARGET_ABI_BITS == 32 11585 case TARGET_NR_fcntl64: 11586 { 11587 int cmd; 11588 struct flock64 fl; 11589 from_flock64_fn *copyfrom = copy_from_user_flock64; 11590 to_flock64_fn *copyto = copy_to_user_flock64; 11591 11592 #ifdef TARGET_ARM 11593 if (((CPUARMState *)cpu_env)->eabi) { 11594 copyfrom = copy_from_user_eabi_flock64; 11595 copyto = copy_to_user_eabi_flock64; 11596 } 11597 #endif 11598 11599 cmd = target_to_host_fcntl_cmd(arg2); 11600 if (cmd == -TARGET_EINVAL) { 11601 ret = cmd; 11602 break; 11603 } 11604 11605 switch(arg2) { 11606 case TARGET_F_GETLK64: 11607 ret = copyfrom(&fl, arg3); 11608 if (ret) { 11609 break; 11610 } 11611 ret = get_errno(fcntl(arg1, cmd, &fl)); 11612 if (ret == 0) { 11613 ret = copyto(arg3, &fl); 11614 } 11615 break; 11616 11617 case TARGET_F_SETLK64: 11618 case TARGET_F_SETLKW64: 11619 ret = copyfrom(&fl, arg3); 11620 if (ret) { 11621 break; 11622 } 11623 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11624 break; 11625 default: 11626 ret = do_fcntl(arg1, arg2, arg3); 11627 break; 11628 } 11629 break; 11630 } 11631 #endif 11632 #ifdef TARGET_NR_cacheflush 11633 case TARGET_NR_cacheflush: 11634 /* self-modifying code is handled automatically, so nothing needed */ 11635 ret = 0; 11636 break; 11637 #endif 11638 #ifdef TARGET_NR_security 11639 case TARGET_NR_security: 11640 goto unimplemented; 11641 #endif 11642 #ifdef TARGET_NR_getpagesize 11643 case TARGET_NR_getpagesize: 11644 ret = TARGET_PAGE_SIZE; 11645 break; 11646 #endif 11647 case TARGET_NR_gettid: 11648 ret = get_errno(gettid()); 11649 break; 11650 #ifdef TARGET_NR_readahead 11651 case TARGET_NR_readahead: 11652 #if TARGET_ABI_BITS == 32 11653 if (regpairs_aligned(cpu_env, num)) { 11654 arg2 = arg3; 11655 arg3 = arg4; 11656 arg4 = arg5; 11657 } 11658 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 11659 #else 11660 ret = get_errno(readahead(arg1, arg2, arg3)); 11661 #endif 11662 break; 11663 #endif 11664 #ifdef CONFIG_ATTR 11665 #ifdef TARGET_NR_setxattr 11666 case TARGET_NR_listxattr: 11667 case TARGET_NR_llistxattr: 11668 { 11669 void *p, *b = 0; 11670 if (arg2) { 11671 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11672 if (!b) { 11673 ret = -TARGET_EFAULT; 11674 break; 11675 } 11676 } 11677 p = lock_user_string(arg1); 11678 if (p) { 11679 if (num == TARGET_NR_listxattr) { 11680 ret = get_errno(listxattr(p, b, arg3)); 11681 } else { 11682 ret = get_errno(llistxattr(p, b, arg3)); 11683 } 11684 } else { 11685 ret = -TARGET_EFAULT; 11686 } 11687 unlock_user(p, arg1, 0); 11688 unlock_user(b, arg2, arg3); 11689 break; 11690 } 11691 case TARGET_NR_flistxattr: 11692 { 11693 void *b = 0; 11694 if (arg2) { 11695 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11696 if (!b) { 11697 ret = -TARGET_EFAULT; 11698 break; 11699 } 11700 } 11701 ret = get_errno(flistxattr(arg1, b, arg3)); 11702 unlock_user(b, arg2, arg3); 11703 break; 11704 } 11705 case TARGET_NR_setxattr: 11706 case TARGET_NR_lsetxattr: 11707 { 11708 void *p, *n, *v = 0; 11709 if (arg3) { 11710 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11711 if (!v) { 11712 ret = -TARGET_EFAULT; 11713 break; 11714 } 11715 } 11716 p = lock_user_string(arg1); 11717 n = lock_user_string(arg2); 11718 if (p && n) { 11719 if (num == TARGET_NR_setxattr) { 11720 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 11721 } else { 11722 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 11723 } 11724 } else { 11725 ret = -TARGET_EFAULT; 11726 } 11727 unlock_user(p, arg1, 0); 11728 unlock_user(n, arg2, 0); 11729 unlock_user(v, arg3, 0); 11730 } 11731 break; 11732 case TARGET_NR_fsetxattr: 11733 { 11734 void *n, *v = 0; 11735 if (arg3) { 11736 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11737 if (!v) { 11738 ret = -TARGET_EFAULT; 11739 break; 11740 } 11741 } 11742 n = lock_user_string(arg2); 11743 if (n) { 11744 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 11745 } else { 11746 ret = -TARGET_EFAULT; 11747 } 11748 unlock_user(n, arg2, 0); 11749 unlock_user(v, arg3, 0); 11750 } 11751 break; 11752 case TARGET_NR_getxattr: 11753 case TARGET_NR_lgetxattr: 11754 { 11755 void *p, *n, *v = 0; 11756 if (arg3) { 11757 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11758 if (!v) { 11759 ret = -TARGET_EFAULT; 11760 break; 11761 } 11762 } 11763 p = lock_user_string(arg1); 11764 n = lock_user_string(arg2); 11765 if (p && n) { 11766 if (num == TARGET_NR_getxattr) { 11767 ret = get_errno(getxattr(p, n, v, arg4)); 11768 } else { 11769 ret = get_errno(lgetxattr(p, n, v, arg4)); 11770 } 11771 } else { 11772 ret = -TARGET_EFAULT; 11773 } 11774 unlock_user(p, arg1, 0); 11775 unlock_user(n, arg2, 0); 11776 unlock_user(v, arg3, arg4); 11777 } 11778 break; 11779 case TARGET_NR_fgetxattr: 11780 { 11781 void *n, *v = 0; 11782 if (arg3) { 11783 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11784 if (!v) { 11785 ret = -TARGET_EFAULT; 11786 break; 11787 } 11788 } 11789 n = lock_user_string(arg2); 11790 if (n) { 11791 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 11792 } else { 11793 ret = -TARGET_EFAULT; 11794 } 11795 unlock_user(n, arg2, 0); 11796 unlock_user(v, arg3, arg4); 11797 } 11798 break; 11799 case TARGET_NR_removexattr: 11800 case TARGET_NR_lremovexattr: 11801 { 11802 void *p, *n; 11803 p = lock_user_string(arg1); 11804 n = lock_user_string(arg2); 11805 if (p && n) { 11806 if (num == TARGET_NR_removexattr) { 11807 ret = get_errno(removexattr(p, n)); 11808 } else { 11809 ret = get_errno(lremovexattr(p, n)); 11810 } 11811 } else { 11812 ret = -TARGET_EFAULT; 11813 } 11814 unlock_user(p, arg1, 0); 11815 unlock_user(n, arg2, 0); 11816 } 11817 break; 11818 case TARGET_NR_fremovexattr: 11819 { 11820 void *n; 11821 n = lock_user_string(arg2); 11822 if (n) { 11823 ret = get_errno(fremovexattr(arg1, n)); 11824 } else { 11825 ret = -TARGET_EFAULT; 11826 } 11827 unlock_user(n, arg2, 0); 11828 } 11829 break; 11830 #endif 11831 #endif /* CONFIG_ATTR */ 11832 #ifdef TARGET_NR_set_thread_area 11833 case TARGET_NR_set_thread_area: 11834 #if defined(TARGET_MIPS) 11835 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 11836 ret = 0; 11837 break; 11838 #elif defined(TARGET_CRIS) 11839 if (arg1 & 0xff) 11840 ret = -TARGET_EINVAL; 11841 else { 11842 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 11843 ret = 0; 11844 } 11845 break; 11846 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 11847 ret = do_set_thread_area(cpu_env, arg1); 11848 break; 11849 #elif defined(TARGET_M68K) 11850 { 11851 TaskState *ts = cpu->opaque; 11852 ts->tp_value = arg1; 11853 ret = 0; 11854 break; 11855 } 11856 #else 11857 goto unimplemented_nowarn; 11858 #endif 11859 #endif 11860 #ifdef TARGET_NR_get_thread_area 11861 case TARGET_NR_get_thread_area: 11862 #if defined(TARGET_I386) && defined(TARGET_ABI32) 11863 ret = do_get_thread_area(cpu_env, arg1); 11864 break; 11865 #elif defined(TARGET_M68K) 11866 { 11867 TaskState *ts = cpu->opaque; 11868 ret = ts->tp_value; 11869 break; 11870 } 11871 #else 11872 goto unimplemented_nowarn; 11873 #endif 11874 #endif 11875 #ifdef TARGET_NR_getdomainname 11876 case TARGET_NR_getdomainname: 11877 goto unimplemented_nowarn; 11878 #endif 11879 11880 #ifdef TARGET_NR_clock_gettime 11881 case TARGET_NR_clock_gettime: 11882 { 11883 struct timespec ts; 11884 ret = get_errno(clock_gettime(arg1, &ts)); 11885 if (!is_error(ret)) { 11886 host_to_target_timespec(arg2, &ts); 11887 } 11888 break; 11889 } 11890 #endif 11891 #ifdef TARGET_NR_clock_getres 11892 case TARGET_NR_clock_getres: 11893 { 11894 struct timespec ts; 11895 ret = get_errno(clock_getres(arg1, &ts)); 11896 if (!is_error(ret)) { 11897 host_to_target_timespec(arg2, &ts); 11898 } 11899 break; 11900 } 11901 #endif 11902 #ifdef TARGET_NR_clock_nanosleep 11903 case TARGET_NR_clock_nanosleep: 11904 { 11905 struct timespec ts; 11906 target_to_host_timespec(&ts, arg3); 11907 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 11908 &ts, arg4 ? &ts : NULL)); 11909 if (arg4) 11910 host_to_target_timespec(arg4, &ts); 11911 11912 #if defined(TARGET_PPC) 11913 /* clock_nanosleep is odd in that it returns positive errno values. 11914 * On PPC, CR0 bit 3 should be set in such a situation. */ 11915 if (ret && ret != -TARGET_ERESTARTSYS) { 11916 ((CPUPPCState *)cpu_env)->crf[0] |= 1; 11917 } 11918 #endif 11919 break; 11920 } 11921 #endif 11922 11923 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 11924 case TARGET_NR_set_tid_address: 11925 ret = get_errno(set_tid_address((int *)g2h(arg1))); 11926 break; 11927 #endif 11928 11929 case TARGET_NR_tkill: 11930 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 11931 break; 11932 11933 case TARGET_NR_tgkill: 11934 ret = get_errno(safe_tgkill((int)arg1, (int)arg2, 11935 target_to_host_signal(arg3))); 11936 break; 11937 11938 #ifdef TARGET_NR_set_robust_list 11939 case TARGET_NR_set_robust_list: 11940 case TARGET_NR_get_robust_list: 11941 /* The ABI for supporting robust futexes has userspace pass 11942 * the kernel a pointer to a linked list which is updated by 11943 * userspace after the syscall; the list is walked by the kernel 11944 * when the thread exits. Since the linked list in QEMU guest 11945 * memory isn't a valid linked list for the host and we have 11946 * no way to reliably intercept the thread-death event, we can't 11947 * support these. Silently return ENOSYS so that guest userspace 11948 * falls back to a non-robust futex implementation (which should 11949 * be OK except in the corner case of the guest crashing while 11950 * holding a mutex that is shared with another process via 11951 * shared memory). 11952 */ 11953 goto unimplemented_nowarn; 11954 #endif 11955 11956 #if defined(TARGET_NR_utimensat) 11957 case TARGET_NR_utimensat: 11958 { 11959 struct timespec *tsp, ts[2]; 11960 if (!arg3) { 11961 tsp = NULL; 11962 } else { 11963 target_to_host_timespec(ts, arg3); 11964 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec)); 11965 tsp = ts; 11966 } 11967 if (!arg2) 11968 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 11969 else { 11970 if (!(p = lock_user_string(arg2))) { 11971 ret = -TARGET_EFAULT; 11972 goto fail; 11973 } 11974 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 11975 unlock_user(p, arg2, 0); 11976 } 11977 } 11978 break; 11979 #endif 11980 case TARGET_NR_futex: 11981 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6); 11982 break; 11983 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 11984 case TARGET_NR_inotify_init: 11985 ret = get_errno(sys_inotify_init()); 11986 if (ret >= 0) { 11987 fd_trans_register(ret, &target_inotify_trans); 11988 } 11989 break; 11990 #endif 11991 #ifdef CONFIG_INOTIFY1 11992 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 11993 case TARGET_NR_inotify_init1: 11994 ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1, 11995 fcntl_flags_tbl))); 11996 if (ret >= 0) { 11997 fd_trans_register(ret, &target_inotify_trans); 11998 } 11999 break; 12000 #endif 12001 #endif 12002 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 12003 case TARGET_NR_inotify_add_watch: 12004 p = lock_user_string(arg2); 12005 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 12006 unlock_user(p, arg2, 0); 12007 break; 12008 #endif 12009 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 12010 case TARGET_NR_inotify_rm_watch: 12011 ret = get_errno(sys_inotify_rm_watch(arg1, arg2)); 12012 break; 12013 #endif 12014 12015 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12016 case TARGET_NR_mq_open: 12017 { 12018 struct mq_attr posix_mq_attr; 12019 struct mq_attr *pposix_mq_attr; 12020 int host_flags; 12021 12022 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12023 pposix_mq_attr = NULL; 12024 if (arg4) { 12025 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12026 goto efault; 12027 } 12028 pposix_mq_attr = &posix_mq_attr; 12029 } 12030 p = lock_user_string(arg1 - 1); 12031 if (!p) { 12032 goto efault; 12033 } 12034 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12035 unlock_user (p, arg1, 0); 12036 } 12037 break; 12038 12039 case TARGET_NR_mq_unlink: 12040 p = lock_user_string(arg1 - 1); 12041 if (!p) { 12042 ret = -TARGET_EFAULT; 12043 break; 12044 } 12045 ret = get_errno(mq_unlink(p)); 12046 unlock_user (p, arg1, 0); 12047 break; 12048 12049 case TARGET_NR_mq_timedsend: 12050 { 12051 struct timespec ts; 12052 12053 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12054 if (arg5 != 0) { 12055 target_to_host_timespec(&ts, arg5); 12056 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12057 host_to_target_timespec(arg5, &ts); 12058 } else { 12059 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12060 } 12061 unlock_user (p, arg2, arg3); 12062 } 12063 break; 12064 12065 case TARGET_NR_mq_timedreceive: 12066 { 12067 struct timespec ts; 12068 unsigned int prio; 12069 12070 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12071 if (arg5 != 0) { 12072 target_to_host_timespec(&ts, arg5); 12073 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12074 &prio, &ts)); 12075 host_to_target_timespec(arg5, &ts); 12076 } else { 12077 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12078 &prio, NULL)); 12079 } 12080 unlock_user (p, arg2, arg3); 12081 if (arg4 != 0) 12082 put_user_u32(prio, arg4); 12083 } 12084 break; 12085 12086 /* Not implemented for now... */ 12087 /* case TARGET_NR_mq_notify: */ 12088 /* break; */ 12089 12090 case TARGET_NR_mq_getsetattr: 12091 { 12092 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 12093 ret = 0; 12094 if (arg3 != 0) { 12095 ret = mq_getattr(arg1, &posix_mq_attr_out); 12096 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 12097 } 12098 if (arg2 != 0) { 12099 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 12100 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out); 12101 } 12102 12103 } 12104 break; 12105 #endif 12106 12107 #ifdef CONFIG_SPLICE 12108 #ifdef TARGET_NR_tee 12109 case TARGET_NR_tee: 12110 { 12111 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 12112 } 12113 break; 12114 #endif 12115 #ifdef TARGET_NR_splice 12116 case TARGET_NR_splice: 12117 { 12118 loff_t loff_in, loff_out; 12119 loff_t *ploff_in = NULL, *ploff_out = NULL; 12120 if (arg2) { 12121 if (get_user_u64(loff_in, arg2)) { 12122 goto efault; 12123 } 12124 ploff_in = &loff_in; 12125 } 12126 if (arg4) { 12127 if (get_user_u64(loff_out, arg4)) { 12128 goto efault; 12129 } 12130 ploff_out = &loff_out; 12131 } 12132 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 12133 if (arg2) { 12134 if (put_user_u64(loff_in, arg2)) { 12135 goto efault; 12136 } 12137 } 12138 if (arg4) { 12139 if (put_user_u64(loff_out, arg4)) { 12140 goto efault; 12141 } 12142 } 12143 } 12144 break; 12145 #endif 12146 #ifdef TARGET_NR_vmsplice 12147 case TARGET_NR_vmsplice: 12148 { 12149 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 12150 if (vec != NULL) { 12151 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 12152 unlock_iovec(vec, arg2, arg3, 0); 12153 } else { 12154 ret = -host_to_target_errno(errno); 12155 } 12156 } 12157 break; 12158 #endif 12159 #endif /* CONFIG_SPLICE */ 12160 #ifdef CONFIG_EVENTFD 12161 #if defined(TARGET_NR_eventfd) 12162 case TARGET_NR_eventfd: 12163 ret = get_errno(eventfd(arg1, 0)); 12164 if (ret >= 0) { 12165 fd_trans_register(ret, &target_eventfd_trans); 12166 } 12167 break; 12168 #endif 12169 #if defined(TARGET_NR_eventfd2) 12170 case TARGET_NR_eventfd2: 12171 { 12172 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)); 12173 if (arg2 & TARGET_O_NONBLOCK) { 12174 host_flags |= O_NONBLOCK; 12175 } 12176 if (arg2 & TARGET_O_CLOEXEC) { 12177 host_flags |= O_CLOEXEC; 12178 } 12179 ret = get_errno(eventfd(arg1, host_flags)); 12180 if (ret >= 0) { 12181 fd_trans_register(ret, &target_eventfd_trans); 12182 } 12183 break; 12184 } 12185 #endif 12186 #endif /* CONFIG_EVENTFD */ 12187 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 12188 case TARGET_NR_fallocate: 12189 #if TARGET_ABI_BITS == 32 12190 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 12191 target_offset64(arg5, arg6))); 12192 #else 12193 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 12194 #endif 12195 break; 12196 #endif 12197 #if defined(CONFIG_SYNC_FILE_RANGE) 12198 #if defined(TARGET_NR_sync_file_range) 12199 case TARGET_NR_sync_file_range: 12200 #if TARGET_ABI_BITS == 32 12201 #if defined(TARGET_MIPS) 12202 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12203 target_offset64(arg5, arg6), arg7)); 12204 #else 12205 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 12206 target_offset64(arg4, arg5), arg6)); 12207 #endif /* !TARGET_MIPS */ 12208 #else 12209 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 12210 #endif 12211 break; 12212 #endif 12213 #if defined(TARGET_NR_sync_file_range2) 12214 case TARGET_NR_sync_file_range2: 12215 /* This is like sync_file_range but the arguments are reordered */ 12216 #if TARGET_ABI_BITS == 32 12217 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12218 target_offset64(arg5, arg6), arg2)); 12219 #else 12220 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 12221 #endif 12222 break; 12223 #endif 12224 #endif 12225 #if defined(TARGET_NR_signalfd4) 12226 case TARGET_NR_signalfd4: 12227 ret = do_signalfd4(arg1, arg2, arg4); 12228 break; 12229 #endif 12230 #if defined(TARGET_NR_signalfd) 12231 case TARGET_NR_signalfd: 12232 ret = do_signalfd4(arg1, arg2, 0); 12233 break; 12234 #endif 12235 #if defined(CONFIG_EPOLL) 12236 #if defined(TARGET_NR_epoll_create) 12237 case TARGET_NR_epoll_create: 12238 ret = get_errno(epoll_create(arg1)); 12239 break; 12240 #endif 12241 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 12242 case TARGET_NR_epoll_create1: 12243 ret = get_errno(epoll_create1(arg1)); 12244 break; 12245 #endif 12246 #if defined(TARGET_NR_epoll_ctl) 12247 case TARGET_NR_epoll_ctl: 12248 { 12249 struct epoll_event ep; 12250 struct epoll_event *epp = 0; 12251 if (arg4) { 12252 struct target_epoll_event *target_ep; 12253 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 12254 goto efault; 12255 } 12256 ep.events = tswap32(target_ep->events); 12257 /* The epoll_data_t union is just opaque data to the kernel, 12258 * so we transfer all 64 bits across and need not worry what 12259 * actual data type it is. 12260 */ 12261 ep.data.u64 = tswap64(target_ep->data.u64); 12262 unlock_user_struct(target_ep, arg4, 0); 12263 epp = &ep; 12264 } 12265 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 12266 break; 12267 } 12268 #endif 12269 12270 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 12271 #if defined(TARGET_NR_epoll_wait) 12272 case TARGET_NR_epoll_wait: 12273 #endif 12274 #if defined(TARGET_NR_epoll_pwait) 12275 case TARGET_NR_epoll_pwait: 12276 #endif 12277 { 12278 struct target_epoll_event *target_ep; 12279 struct epoll_event *ep; 12280 int epfd = arg1; 12281 int maxevents = arg3; 12282 int timeout = arg4; 12283 12284 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 12285 ret = -TARGET_EINVAL; 12286 break; 12287 } 12288 12289 target_ep = lock_user(VERIFY_WRITE, arg2, 12290 maxevents * sizeof(struct target_epoll_event), 1); 12291 if (!target_ep) { 12292 goto efault; 12293 } 12294 12295 ep = g_try_new(struct epoll_event, maxevents); 12296 if (!ep) { 12297 unlock_user(target_ep, arg2, 0); 12298 ret = -TARGET_ENOMEM; 12299 break; 12300 } 12301 12302 switch (num) { 12303 #if defined(TARGET_NR_epoll_pwait) 12304 case TARGET_NR_epoll_pwait: 12305 { 12306 target_sigset_t *target_set; 12307 sigset_t _set, *set = &_set; 12308 12309 if (arg5) { 12310 if (arg6 != sizeof(target_sigset_t)) { 12311 ret = -TARGET_EINVAL; 12312 break; 12313 } 12314 12315 target_set = lock_user(VERIFY_READ, arg5, 12316 sizeof(target_sigset_t), 1); 12317 if (!target_set) { 12318 ret = -TARGET_EFAULT; 12319 break; 12320 } 12321 target_to_host_sigset(set, target_set); 12322 unlock_user(target_set, arg5, 0); 12323 } else { 12324 set = NULL; 12325 } 12326 12327 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12328 set, SIGSET_T_SIZE)); 12329 break; 12330 } 12331 #endif 12332 #if defined(TARGET_NR_epoll_wait) 12333 case TARGET_NR_epoll_wait: 12334 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12335 NULL, 0)); 12336 break; 12337 #endif 12338 default: 12339 ret = -TARGET_ENOSYS; 12340 } 12341 if (!is_error(ret)) { 12342 int i; 12343 for (i = 0; i < ret; i++) { 12344 target_ep[i].events = tswap32(ep[i].events); 12345 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 12346 } 12347 unlock_user(target_ep, arg2, 12348 ret * sizeof(struct target_epoll_event)); 12349 } else { 12350 unlock_user(target_ep, arg2, 0); 12351 } 12352 g_free(ep); 12353 break; 12354 } 12355 #endif 12356 #endif 12357 #ifdef TARGET_NR_prlimit64 12358 case TARGET_NR_prlimit64: 12359 { 12360 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 12361 struct target_rlimit64 *target_rnew, *target_rold; 12362 struct host_rlimit64 rnew, rold, *rnewp = 0; 12363 int resource = target_to_host_resource(arg2); 12364 if (arg3) { 12365 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 12366 goto efault; 12367 } 12368 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 12369 rnew.rlim_max = tswap64(target_rnew->rlim_max); 12370 unlock_user_struct(target_rnew, arg3, 0); 12371 rnewp = &rnew; 12372 } 12373 12374 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 12375 if (!is_error(ret) && arg4) { 12376 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 12377 goto efault; 12378 } 12379 target_rold->rlim_cur = tswap64(rold.rlim_cur); 12380 target_rold->rlim_max = tswap64(rold.rlim_max); 12381 unlock_user_struct(target_rold, arg4, 1); 12382 } 12383 break; 12384 } 12385 #endif 12386 #ifdef TARGET_NR_gethostname 12387 case TARGET_NR_gethostname: 12388 { 12389 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 12390 if (name) { 12391 ret = get_errno(gethostname(name, arg2)); 12392 unlock_user(name, arg1, arg2); 12393 } else { 12394 ret = -TARGET_EFAULT; 12395 } 12396 break; 12397 } 12398 #endif 12399 #ifdef TARGET_NR_atomic_cmpxchg_32 12400 case TARGET_NR_atomic_cmpxchg_32: 12401 { 12402 /* should use start_exclusive from main.c */ 12403 abi_ulong mem_value; 12404 if (get_user_u32(mem_value, arg6)) { 12405 target_siginfo_t info; 12406 info.si_signo = SIGSEGV; 12407 info.si_errno = 0; 12408 info.si_code = TARGET_SEGV_MAPERR; 12409 info._sifields._sigfault._addr = arg6; 12410 queue_signal((CPUArchState *)cpu_env, info.si_signo, 12411 QEMU_SI_FAULT, &info); 12412 ret = 0xdeadbeef; 12413 12414 } 12415 if (mem_value == arg2) 12416 put_user_u32(arg1, arg6); 12417 ret = mem_value; 12418 break; 12419 } 12420 #endif 12421 #ifdef TARGET_NR_atomic_barrier 12422 case TARGET_NR_atomic_barrier: 12423 { 12424 /* Like the kernel implementation and the qemu arm barrier, no-op this? */ 12425 ret = 0; 12426 break; 12427 } 12428 #endif 12429 12430 #ifdef TARGET_NR_timer_create 12431 case TARGET_NR_timer_create: 12432 { 12433 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 12434 12435 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 12436 12437 int clkid = arg1; 12438 int timer_index = next_free_host_timer(); 12439 12440 if (timer_index < 0) { 12441 ret = -TARGET_EAGAIN; 12442 } else { 12443 timer_t *phtimer = g_posix_timers + timer_index; 12444 12445 if (arg2) { 12446 phost_sevp = &host_sevp; 12447 ret = target_to_host_sigevent(phost_sevp, arg2); 12448 if (ret != 0) { 12449 break; 12450 } 12451 } 12452 12453 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 12454 if (ret) { 12455 phtimer = NULL; 12456 } else { 12457 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 12458 goto efault; 12459 } 12460 } 12461 } 12462 break; 12463 } 12464 #endif 12465 12466 #ifdef TARGET_NR_timer_settime 12467 case TARGET_NR_timer_settime: 12468 { 12469 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 12470 * struct itimerspec * old_value */ 12471 target_timer_t timerid = get_timer_id(arg1); 12472 12473 if (timerid < 0) { 12474 ret = timerid; 12475 } else if (arg3 == 0) { 12476 ret = -TARGET_EINVAL; 12477 } else { 12478 timer_t htimer = g_posix_timers[timerid]; 12479 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12480 12481 if (target_to_host_itimerspec(&hspec_new, arg3)) { 12482 goto efault; 12483 } 12484 ret = get_errno( 12485 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 12486 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 12487 goto efault; 12488 } 12489 } 12490 break; 12491 } 12492 #endif 12493 12494 #ifdef TARGET_NR_timer_gettime 12495 case TARGET_NR_timer_gettime: 12496 { 12497 /* args: timer_t timerid, struct itimerspec *curr_value */ 12498 target_timer_t timerid = get_timer_id(arg1); 12499 12500 if (timerid < 0) { 12501 ret = timerid; 12502 } else if (!arg2) { 12503 ret = -TARGET_EFAULT; 12504 } else { 12505 timer_t htimer = g_posix_timers[timerid]; 12506 struct itimerspec hspec; 12507 ret = get_errno(timer_gettime(htimer, &hspec)); 12508 12509 if (host_to_target_itimerspec(arg2, &hspec)) { 12510 ret = -TARGET_EFAULT; 12511 } 12512 } 12513 break; 12514 } 12515 #endif 12516 12517 #ifdef TARGET_NR_timer_getoverrun 12518 case TARGET_NR_timer_getoverrun: 12519 { 12520 /* args: timer_t timerid */ 12521 target_timer_t timerid = get_timer_id(arg1); 12522 12523 if (timerid < 0) { 12524 ret = timerid; 12525 } else { 12526 timer_t htimer = g_posix_timers[timerid]; 12527 ret = get_errno(timer_getoverrun(htimer)); 12528 } 12529 fd_trans_unregister(ret); 12530 break; 12531 } 12532 #endif 12533 12534 #ifdef TARGET_NR_timer_delete 12535 case TARGET_NR_timer_delete: 12536 { 12537 /* args: timer_t timerid */ 12538 target_timer_t timerid = get_timer_id(arg1); 12539 12540 if (timerid < 0) { 12541 ret = timerid; 12542 } else { 12543 timer_t htimer = g_posix_timers[timerid]; 12544 ret = get_errno(timer_delete(htimer)); 12545 g_posix_timers[timerid] = 0; 12546 } 12547 break; 12548 } 12549 #endif 12550 12551 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 12552 case TARGET_NR_timerfd_create: 12553 ret = get_errno(timerfd_create(arg1, 12554 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 12555 break; 12556 #endif 12557 12558 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 12559 case TARGET_NR_timerfd_gettime: 12560 { 12561 struct itimerspec its_curr; 12562 12563 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 12564 12565 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 12566 goto efault; 12567 } 12568 } 12569 break; 12570 #endif 12571 12572 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 12573 case TARGET_NR_timerfd_settime: 12574 { 12575 struct itimerspec its_new, its_old, *p_new; 12576 12577 if (arg3) { 12578 if (target_to_host_itimerspec(&its_new, arg3)) { 12579 goto efault; 12580 } 12581 p_new = &its_new; 12582 } else { 12583 p_new = NULL; 12584 } 12585 12586 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 12587 12588 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 12589 goto efault; 12590 } 12591 } 12592 break; 12593 #endif 12594 12595 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 12596 case TARGET_NR_ioprio_get: 12597 ret = get_errno(ioprio_get(arg1, arg2)); 12598 break; 12599 #endif 12600 12601 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 12602 case TARGET_NR_ioprio_set: 12603 ret = get_errno(ioprio_set(arg1, arg2, arg3)); 12604 break; 12605 #endif 12606 12607 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 12608 case TARGET_NR_setns: 12609 ret = get_errno(setns(arg1, arg2)); 12610 break; 12611 #endif 12612 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 12613 case TARGET_NR_unshare: 12614 ret = get_errno(unshare(arg1)); 12615 break; 12616 #endif 12617 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 12618 case TARGET_NR_kcmp: 12619 ret = get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 12620 break; 12621 #endif 12622 12623 default: 12624 unimplemented: 12625 gemu_log("qemu: Unsupported syscall: %d\n", num); 12626 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list) 12627 unimplemented_nowarn: 12628 #endif 12629 ret = -TARGET_ENOSYS; 12630 break; 12631 } 12632 fail: 12633 #ifdef DEBUG 12634 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret); 12635 #endif 12636 if(do_strace) 12637 print_syscall_ret(num, ret); 12638 trace_guest_user_syscall_ret(cpu, num, ret); 12639 return ret; 12640 efault: 12641 ret = -TARGET_EFAULT; 12642 goto fail; 12643 } 12644