xref: /openbmc/qemu/linux-user/syscall.c (revision 0c4e9931)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/ip.h>
55 #include <netinet/tcp.h>
56 #include <linux/wireless.h>
57 #include <linux/icmp.h>
58 #include <linux/icmpv6.h>
59 #include <linux/errqueue.h>
60 #include <linux/random.h>
61 #ifdef CONFIG_TIMERFD
62 #include <sys/timerfd.h>
63 #endif
64 #ifdef CONFIG_EVENTFD
65 #include <sys/eventfd.h>
66 #endif
67 #ifdef CONFIG_EPOLL
68 #include <sys/epoll.h>
69 #endif
70 #ifdef CONFIG_ATTR
71 #include "qemu/xattr.h"
72 #endif
73 #ifdef CONFIG_SENDFILE
74 #include <sys/sendfile.h>
75 #endif
76 #ifdef CONFIG_KCOV
77 #include <sys/kcov.h>
78 #endif
79 
80 #define termios host_termios
81 #define winsize host_winsize
82 #define termio host_termio
83 #define sgttyb host_sgttyb /* same as target */
84 #define tchars host_tchars /* same as target */
85 #define ltchars host_ltchars /* same as target */
86 
87 #include <linux/termios.h>
88 #include <linux/unistd.h>
89 #include <linux/cdrom.h>
90 #include <linux/hdreg.h>
91 #include <linux/soundcard.h>
92 #include <linux/kd.h>
93 #include <linux/mtio.h>
94 #include <linux/fs.h>
95 #include <linux/fd.h>
96 #if defined(CONFIG_FIEMAP)
97 #include <linux/fiemap.h>
98 #endif
99 #include <linux/fb.h>
100 #if defined(CONFIG_USBFS)
101 #include <linux/usbdevice_fs.h>
102 #include <linux/usb/ch9.h>
103 #endif
104 #include <linux/vt.h>
105 #include <linux/dm-ioctl.h>
106 #include <linux/reboot.h>
107 #include <linux/route.h>
108 #include <linux/filter.h>
109 #include <linux/blkpg.h>
110 #include <netpacket/packet.h>
111 #include <linux/netlink.h>
112 #include <linux/if_alg.h>
113 #include <linux/rtc.h>
114 #include <sound/asound.h>
115 #include "linux_loop.h"
116 #include "uname.h"
117 
118 #include "qemu.h"
119 #include "qemu/guest-random.h"
120 #include "qemu/selfmap.h"
121 #include "user/syscall-trace.h"
122 #include "qapi/error.h"
123 #include "fd-trans.h"
124 #include "tcg/tcg.h"
125 
126 #ifndef CLONE_IO
127 #define CLONE_IO                0x80000000      /* Clone io context */
128 #endif
129 
130 /* We can't directly call the host clone syscall, because this will
131  * badly confuse libc (breaking mutexes, for example). So we must
132  * divide clone flags into:
133  *  * flag combinations that look like pthread_create()
134  *  * flag combinations that look like fork()
135  *  * flags we can implement within QEMU itself
136  *  * flags we can't support and will return an error for
137  */
138 /* For thread creation, all these flags must be present; for
139  * fork, none must be present.
140  */
141 #define CLONE_THREAD_FLAGS                              \
142     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
143      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
144 
145 /* These flags are ignored:
146  * CLONE_DETACHED is now ignored by the kernel;
147  * CLONE_IO is just an optimisation hint to the I/O scheduler
148  */
149 #define CLONE_IGNORED_FLAGS                     \
150     (CLONE_DETACHED | CLONE_IO)
151 
152 /* Flags for fork which we can implement within QEMU itself */
153 #define CLONE_OPTIONAL_FORK_FLAGS               \
154     (CLONE_SETTLS | CLONE_PARENT_SETTID |       \
155      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
156 
157 /* Flags for thread creation which we can implement within QEMU itself */
158 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
159     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
160      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
161 
162 #define CLONE_INVALID_FORK_FLAGS                                        \
163     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
164 
165 #define CLONE_INVALID_THREAD_FLAGS                                      \
166     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
167        CLONE_IGNORED_FLAGS))
168 
169 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
170  * have almost all been allocated. We cannot support any of
171  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
172  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
173  * The checks against the invalid thread masks above will catch these.
174  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
175  */
176 
177 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
178  * once. This exercises the codepaths for restart.
179  */
180 //#define DEBUG_ERESTARTSYS
181 
182 //#include <linux/msdos_fs.h>
183 #define	VFAT_IOCTL_READDIR_BOTH		_IOR('r', 1, struct linux_dirent [2])
184 #define	VFAT_IOCTL_READDIR_SHORT	_IOR('r', 2, struct linux_dirent [2])
185 
186 #undef _syscall0
187 #undef _syscall1
188 #undef _syscall2
189 #undef _syscall3
190 #undef _syscall4
191 #undef _syscall5
192 #undef _syscall6
193 
194 #define _syscall0(type,name)		\
195 static type name (void)			\
196 {					\
197 	return syscall(__NR_##name);	\
198 }
199 
200 #define _syscall1(type,name,type1,arg1)		\
201 static type name (type1 arg1)			\
202 {						\
203 	return syscall(__NR_##name, arg1);	\
204 }
205 
206 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
207 static type name (type1 arg1,type2 arg2)		\
208 {							\
209 	return syscall(__NR_##name, arg1, arg2);	\
210 }
211 
212 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
213 static type name (type1 arg1,type2 arg2,type3 arg3)		\
214 {								\
215 	return syscall(__NR_##name, arg1, arg2, arg3);		\
216 }
217 
218 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
219 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
220 {										\
221 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
222 }
223 
224 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
225 		  type5,arg5)							\
226 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
227 {										\
228 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
229 }
230 
231 
232 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
233 		  type5,arg5,type6,arg6)					\
234 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
235                   type6 arg6)							\
236 {										\
237 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
238 }
239 
240 
241 #define __NR_sys_uname __NR_uname
242 #define __NR_sys_getcwd1 __NR_getcwd
243 #define __NR_sys_getdents __NR_getdents
244 #define __NR_sys_getdents64 __NR_getdents64
245 #define __NR_sys_getpriority __NR_getpriority
246 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
247 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
248 #define __NR_sys_syslog __NR_syslog
249 #if defined(__NR_futex)
250 # define __NR_sys_futex __NR_futex
251 #endif
252 #if defined(__NR_futex_time64)
253 # define __NR_sys_futex_time64 __NR_futex_time64
254 #endif
255 #define __NR_sys_inotify_init __NR_inotify_init
256 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
257 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
258 #define __NR_sys_statx __NR_statx
259 
260 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
261 #define __NR__llseek __NR_lseek
262 #endif
263 
264 /* Newer kernel ports have llseek() instead of _llseek() */
265 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
266 #define TARGET_NR__llseek TARGET_NR_llseek
267 #endif
268 
269 #define __NR_sys_gettid __NR_gettid
270 _syscall0(int, sys_gettid)
271 
272 /* For the 64-bit guest on 32-bit host case we must emulate
273  * getdents using getdents64, because otherwise the host
274  * might hand us back more dirent records than we can fit
275  * into the guest buffer after structure format conversion.
276  * Otherwise we emulate getdents with getdents if the host has it.
277  */
278 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
279 #define EMULATE_GETDENTS_WITH_GETDENTS
280 #endif
281 
282 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
283 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
284 #endif
285 #if (defined(TARGET_NR_getdents) && \
286       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
287     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
288 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
289 #endif
290 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
291 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
292           loff_t *, res, uint, wh);
293 #endif
294 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
295 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
296           siginfo_t *, uinfo)
297 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
298 #ifdef __NR_exit_group
299 _syscall1(int,exit_group,int,error_code)
300 #endif
301 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
302 _syscall1(int,set_tid_address,int *,tidptr)
303 #endif
304 #if defined(__NR_futex)
305 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
306           const struct timespec *,timeout,int *,uaddr2,int,val3)
307 #endif
308 #if defined(__NR_futex_time64)
309 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
310           const struct timespec *,timeout,int *,uaddr2,int,val3)
311 #endif
312 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
313 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
314           unsigned long *, user_mask_ptr);
315 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
316 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
317           unsigned long *, user_mask_ptr);
318 #define __NR_sys_getcpu __NR_getcpu
319 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
320 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
321           void *, arg);
322 _syscall2(int, capget, struct __user_cap_header_struct *, header,
323           struct __user_cap_data_struct *, data);
324 _syscall2(int, capset, struct __user_cap_header_struct *, header,
325           struct __user_cap_data_struct *, data);
326 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
327 _syscall2(int, ioprio_get, int, which, int, who)
328 #endif
329 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
330 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
331 #endif
332 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
333 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
334 #endif
335 
336 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
337 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
338           unsigned long, idx1, unsigned long, idx2)
339 #endif
340 
341 /*
342  * It is assumed that struct statx is architecture independent.
343  */
344 #if defined(TARGET_NR_statx) && defined(__NR_statx)
345 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
346           unsigned int, mask, struct target_statx *, statxbuf)
347 #endif
348 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
349 _syscall2(int, membarrier, int, cmd, int, flags)
350 #endif
351 
352 static bitmask_transtbl fcntl_flags_tbl[] = {
353   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
354   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
355   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
356   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
357   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
358   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
359   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
360   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
361   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
362   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
363   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
364   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
365   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
366 #if defined(O_DIRECT)
367   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
368 #endif
369 #if defined(O_NOATIME)
370   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
371 #endif
372 #if defined(O_CLOEXEC)
373   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
374 #endif
375 #if defined(O_PATH)
376   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
377 #endif
378 #if defined(O_TMPFILE)
379   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
380 #endif
381   /* Don't terminate the list prematurely on 64-bit host+guest.  */
382 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
383   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
384 #endif
385   { 0, 0, 0, 0 }
386 };
387 
388 static int sys_getcwd1(char *buf, size_t size)
389 {
390   if (getcwd(buf, size) == NULL) {
391       /* getcwd() sets errno */
392       return (-1);
393   }
394   return strlen(buf)+1;
395 }
396 
397 #ifdef TARGET_NR_utimensat
398 #if defined(__NR_utimensat)
399 #define __NR_sys_utimensat __NR_utimensat
400 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
401           const struct timespec *,tsp,int,flags)
402 #else
403 static int sys_utimensat(int dirfd, const char *pathname,
404                          const struct timespec times[2], int flags)
405 {
406     errno = ENOSYS;
407     return -1;
408 }
409 #endif
410 #endif /* TARGET_NR_utimensat */
411 
412 #ifdef TARGET_NR_renameat2
413 #if defined(__NR_renameat2)
414 #define __NR_sys_renameat2 __NR_renameat2
415 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
416           const char *, new, unsigned int, flags)
417 #else
418 static int sys_renameat2(int oldfd, const char *old,
419                          int newfd, const char *new, int flags)
420 {
421     if (flags == 0) {
422         return renameat(oldfd, old, newfd, new);
423     }
424     errno = ENOSYS;
425     return -1;
426 }
427 #endif
428 #endif /* TARGET_NR_renameat2 */
429 
430 #ifdef CONFIG_INOTIFY
431 #include <sys/inotify.h>
432 
433 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
434 static int sys_inotify_init(void)
435 {
436   return (inotify_init());
437 }
438 #endif
439 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
440 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
441 {
442   return (inotify_add_watch(fd, pathname, mask));
443 }
444 #endif
445 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
446 static int sys_inotify_rm_watch(int fd, int32_t wd)
447 {
448   return (inotify_rm_watch(fd, wd));
449 }
450 #endif
451 #ifdef CONFIG_INOTIFY1
452 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
453 static int sys_inotify_init1(int flags)
454 {
455   return (inotify_init1(flags));
456 }
457 #endif
458 #endif
459 #else
460 /* Userspace can usually survive runtime without inotify */
461 #undef TARGET_NR_inotify_init
462 #undef TARGET_NR_inotify_init1
463 #undef TARGET_NR_inotify_add_watch
464 #undef TARGET_NR_inotify_rm_watch
465 #endif /* CONFIG_INOTIFY  */
466 
467 #if defined(TARGET_NR_prlimit64)
468 #ifndef __NR_prlimit64
469 # define __NR_prlimit64 -1
470 #endif
471 #define __NR_sys_prlimit64 __NR_prlimit64
472 /* The glibc rlimit structure may not be that used by the underlying syscall */
473 struct host_rlimit64 {
474     uint64_t rlim_cur;
475     uint64_t rlim_max;
476 };
477 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
478           const struct host_rlimit64 *, new_limit,
479           struct host_rlimit64 *, old_limit)
480 #endif
481 
482 
483 #if defined(TARGET_NR_timer_create)
484 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
485 static timer_t g_posix_timers[32] = { 0, } ;
486 
487 static inline int next_free_host_timer(void)
488 {
489     int k ;
490     /* FIXME: Does finding the next free slot require a lock? */
491     for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
492         if (g_posix_timers[k] == 0) {
493             g_posix_timers[k] = (timer_t) 1;
494             return k;
495         }
496     }
497     return -1;
498 }
499 #endif
500 
501 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
502 #ifdef TARGET_ARM
503 static inline int regpairs_aligned(void *cpu_env, int num)
504 {
505     return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
506 }
507 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
508 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
509 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
510 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
511  * of registers which translates to the same as ARM/MIPS, because we start with
512  * r3 as arg1 */
513 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
514 #elif defined(TARGET_SH4)
515 /* SH4 doesn't align register pairs, except for p{read,write}64 */
516 static inline int regpairs_aligned(void *cpu_env, int num)
517 {
518     switch (num) {
519     case TARGET_NR_pread64:
520     case TARGET_NR_pwrite64:
521         return 1;
522 
523     default:
524         return 0;
525     }
526 }
527 #elif defined(TARGET_XTENSA)
528 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
529 #else
530 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
531 #endif
532 
533 #define ERRNO_TABLE_SIZE 1200
534 
535 /* target_to_host_errno_table[] is initialized from
536  * host_to_target_errno_table[] in syscall_init(). */
537 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
538 };
539 
540 /*
541  * This list is the union of errno values overridden in asm-<arch>/errno.h
542  * minus the errnos that are not actually generic to all archs.
543  */
544 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
545     [EAGAIN]		= TARGET_EAGAIN,
546     [EIDRM]		= TARGET_EIDRM,
547     [ECHRNG]		= TARGET_ECHRNG,
548     [EL2NSYNC]		= TARGET_EL2NSYNC,
549     [EL3HLT]		= TARGET_EL3HLT,
550     [EL3RST]		= TARGET_EL3RST,
551     [ELNRNG]		= TARGET_ELNRNG,
552     [EUNATCH]		= TARGET_EUNATCH,
553     [ENOCSI]		= TARGET_ENOCSI,
554     [EL2HLT]		= TARGET_EL2HLT,
555     [EDEADLK]		= TARGET_EDEADLK,
556     [ENOLCK]		= TARGET_ENOLCK,
557     [EBADE]		= TARGET_EBADE,
558     [EBADR]		= TARGET_EBADR,
559     [EXFULL]		= TARGET_EXFULL,
560     [ENOANO]		= TARGET_ENOANO,
561     [EBADRQC]		= TARGET_EBADRQC,
562     [EBADSLT]		= TARGET_EBADSLT,
563     [EBFONT]		= TARGET_EBFONT,
564     [ENOSTR]		= TARGET_ENOSTR,
565     [ENODATA]		= TARGET_ENODATA,
566     [ETIME]		= TARGET_ETIME,
567     [ENOSR]		= TARGET_ENOSR,
568     [ENONET]		= TARGET_ENONET,
569     [ENOPKG]		= TARGET_ENOPKG,
570     [EREMOTE]		= TARGET_EREMOTE,
571     [ENOLINK]		= TARGET_ENOLINK,
572     [EADV]		= TARGET_EADV,
573     [ESRMNT]		= TARGET_ESRMNT,
574     [ECOMM]		= TARGET_ECOMM,
575     [EPROTO]		= TARGET_EPROTO,
576     [EDOTDOT]		= TARGET_EDOTDOT,
577     [EMULTIHOP]		= TARGET_EMULTIHOP,
578     [EBADMSG]		= TARGET_EBADMSG,
579     [ENAMETOOLONG]	= TARGET_ENAMETOOLONG,
580     [EOVERFLOW]		= TARGET_EOVERFLOW,
581     [ENOTUNIQ]		= TARGET_ENOTUNIQ,
582     [EBADFD]		= TARGET_EBADFD,
583     [EREMCHG]		= TARGET_EREMCHG,
584     [ELIBACC]		= TARGET_ELIBACC,
585     [ELIBBAD]		= TARGET_ELIBBAD,
586     [ELIBSCN]		= TARGET_ELIBSCN,
587     [ELIBMAX]		= TARGET_ELIBMAX,
588     [ELIBEXEC]		= TARGET_ELIBEXEC,
589     [EILSEQ]		= TARGET_EILSEQ,
590     [ENOSYS]		= TARGET_ENOSYS,
591     [ELOOP]		= TARGET_ELOOP,
592     [ERESTART]		= TARGET_ERESTART,
593     [ESTRPIPE]		= TARGET_ESTRPIPE,
594     [ENOTEMPTY]		= TARGET_ENOTEMPTY,
595     [EUSERS]		= TARGET_EUSERS,
596     [ENOTSOCK]		= TARGET_ENOTSOCK,
597     [EDESTADDRREQ]	= TARGET_EDESTADDRREQ,
598     [EMSGSIZE]		= TARGET_EMSGSIZE,
599     [EPROTOTYPE]	= TARGET_EPROTOTYPE,
600     [ENOPROTOOPT]	= TARGET_ENOPROTOOPT,
601     [EPROTONOSUPPORT]	= TARGET_EPROTONOSUPPORT,
602     [ESOCKTNOSUPPORT]	= TARGET_ESOCKTNOSUPPORT,
603     [EOPNOTSUPP]	= TARGET_EOPNOTSUPP,
604     [EPFNOSUPPORT]	= TARGET_EPFNOSUPPORT,
605     [EAFNOSUPPORT]	= TARGET_EAFNOSUPPORT,
606     [EADDRINUSE]	= TARGET_EADDRINUSE,
607     [EADDRNOTAVAIL]	= TARGET_EADDRNOTAVAIL,
608     [ENETDOWN]		= TARGET_ENETDOWN,
609     [ENETUNREACH]	= TARGET_ENETUNREACH,
610     [ENETRESET]		= TARGET_ENETRESET,
611     [ECONNABORTED]	= TARGET_ECONNABORTED,
612     [ECONNRESET]	= TARGET_ECONNRESET,
613     [ENOBUFS]		= TARGET_ENOBUFS,
614     [EISCONN]		= TARGET_EISCONN,
615     [ENOTCONN]		= TARGET_ENOTCONN,
616     [EUCLEAN]		= TARGET_EUCLEAN,
617     [ENOTNAM]		= TARGET_ENOTNAM,
618     [ENAVAIL]		= TARGET_ENAVAIL,
619     [EISNAM]		= TARGET_EISNAM,
620     [EREMOTEIO]		= TARGET_EREMOTEIO,
621     [EDQUOT]            = TARGET_EDQUOT,
622     [ESHUTDOWN]		= TARGET_ESHUTDOWN,
623     [ETOOMANYREFS]	= TARGET_ETOOMANYREFS,
624     [ETIMEDOUT]		= TARGET_ETIMEDOUT,
625     [ECONNREFUSED]	= TARGET_ECONNREFUSED,
626     [EHOSTDOWN]		= TARGET_EHOSTDOWN,
627     [EHOSTUNREACH]	= TARGET_EHOSTUNREACH,
628     [EALREADY]		= TARGET_EALREADY,
629     [EINPROGRESS]	= TARGET_EINPROGRESS,
630     [ESTALE]		= TARGET_ESTALE,
631     [ECANCELED]		= TARGET_ECANCELED,
632     [ENOMEDIUM]		= TARGET_ENOMEDIUM,
633     [EMEDIUMTYPE]	= TARGET_EMEDIUMTYPE,
634 #ifdef ENOKEY
635     [ENOKEY]		= TARGET_ENOKEY,
636 #endif
637 #ifdef EKEYEXPIRED
638     [EKEYEXPIRED]	= TARGET_EKEYEXPIRED,
639 #endif
640 #ifdef EKEYREVOKED
641     [EKEYREVOKED]	= TARGET_EKEYREVOKED,
642 #endif
643 #ifdef EKEYREJECTED
644     [EKEYREJECTED]	= TARGET_EKEYREJECTED,
645 #endif
646 #ifdef EOWNERDEAD
647     [EOWNERDEAD]	= TARGET_EOWNERDEAD,
648 #endif
649 #ifdef ENOTRECOVERABLE
650     [ENOTRECOVERABLE]	= TARGET_ENOTRECOVERABLE,
651 #endif
652 #ifdef ENOMSG
653     [ENOMSG]            = TARGET_ENOMSG,
654 #endif
655 #ifdef ERKFILL
656     [ERFKILL]           = TARGET_ERFKILL,
657 #endif
658 #ifdef EHWPOISON
659     [EHWPOISON]         = TARGET_EHWPOISON,
660 #endif
661 };
662 
663 static inline int host_to_target_errno(int err)
664 {
665     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
666         host_to_target_errno_table[err]) {
667         return host_to_target_errno_table[err];
668     }
669     return err;
670 }
671 
672 static inline int target_to_host_errno(int err)
673 {
674     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
675         target_to_host_errno_table[err]) {
676         return target_to_host_errno_table[err];
677     }
678     return err;
679 }
680 
681 static inline abi_long get_errno(abi_long ret)
682 {
683     if (ret == -1)
684         return -host_to_target_errno(errno);
685     else
686         return ret;
687 }
688 
689 const char *target_strerror(int err)
690 {
691     if (err == TARGET_ERESTARTSYS) {
692         return "To be restarted";
693     }
694     if (err == TARGET_QEMU_ESIGRETURN) {
695         return "Successful exit from sigreturn";
696     }
697 
698     if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
699         return NULL;
700     }
701     return strerror(target_to_host_errno(err));
702 }
703 
704 #define safe_syscall0(type, name) \
705 static type safe_##name(void) \
706 { \
707     return safe_syscall(__NR_##name); \
708 }
709 
710 #define safe_syscall1(type, name, type1, arg1) \
711 static type safe_##name(type1 arg1) \
712 { \
713     return safe_syscall(__NR_##name, arg1); \
714 }
715 
716 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
717 static type safe_##name(type1 arg1, type2 arg2) \
718 { \
719     return safe_syscall(__NR_##name, arg1, arg2); \
720 }
721 
722 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
723 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
724 { \
725     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
726 }
727 
728 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
729     type4, arg4) \
730 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
731 { \
732     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
733 }
734 
735 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
736     type4, arg4, type5, arg5) \
737 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
738     type5 arg5) \
739 { \
740     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
741 }
742 
743 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
744     type4, arg4, type5, arg5, type6, arg6) \
745 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
746     type5 arg5, type6 arg6) \
747 { \
748     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
749 }
750 
751 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
752 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
753 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
754               int, flags, mode_t, mode)
755 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
756 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
757               struct rusage *, rusage)
758 #endif
759 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
760               int, options, struct rusage *, rusage)
761 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
762 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
763     defined(TARGET_NR_pselect6)
764 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
765               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
766 #endif
767 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_poll)
768 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
769               struct timespec *, tsp, const sigset_t *, sigmask,
770               size_t, sigsetsize)
771 #endif
772 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
773               int, maxevents, int, timeout, const sigset_t *, sigmask,
774               size_t, sigsetsize)
775 #if defined(__NR_futex)
776 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
777               const struct timespec *,timeout,int *,uaddr2,int,val3)
778 #endif
779 #if defined(__NR_futex_time64)
780 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
781               const struct timespec *,timeout,int *,uaddr2,int,val3)
782 #endif
783 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
784 safe_syscall2(int, kill, pid_t, pid, int, sig)
785 safe_syscall2(int, tkill, int, tid, int, sig)
786 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
787 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
788 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
789 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
790               unsigned long, pos_l, unsigned long, pos_h)
791 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
792               unsigned long, pos_l, unsigned long, pos_h)
793 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
794               socklen_t, addrlen)
795 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
796               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
797 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
798               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
799 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
800 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
801 safe_syscall2(int, flock, int, fd, int, operation)
802 #ifdef TARGET_NR_rt_sigtimedwait
803 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
804               const struct timespec *, uts, size_t, sigsetsize)
805 #endif
806 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
807               int, flags)
808 #if defined(TARGET_NR_nanosleep)
809 safe_syscall2(int, nanosleep, const struct timespec *, req,
810               struct timespec *, rem)
811 #endif
812 #ifdef TARGET_NR_clock_nanosleep
813 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
814               const struct timespec *, req, struct timespec *, rem)
815 #endif
816 #ifdef __NR_ipc
817 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
818               void *, ptr, long, fifth)
819 #endif
820 #ifdef __NR_msgsnd
821 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
822               int, flags)
823 #endif
824 #ifdef __NR_msgrcv
825 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
826               long, msgtype, int, flags)
827 #endif
828 #ifdef __NR_semtimedop
829 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
830               unsigned, nsops, const struct timespec *, timeout)
831 #endif
832 #ifdef TARGET_NR_mq_timedsend
833 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
834               size_t, len, unsigned, prio, const struct timespec *, timeout)
835 #endif
836 #ifdef TARGET_NR_mq_timedreceive
837 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
838               size_t, len, unsigned *, prio, const struct timespec *, timeout)
839 #endif
840 /* We do ioctl like this rather than via safe_syscall3 to preserve the
841  * "third argument might be integer or pointer or not present" behaviour of
842  * the libc function.
843  */
844 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
845 /* Similarly for fcntl. Note that callers must always:
846  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
847  *  use the flock64 struct rather than unsuffixed flock
848  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
849  */
850 #ifdef __NR_fcntl64
851 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
852 #else
853 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
854 #endif
855 
856 static inline int host_to_target_sock_type(int host_type)
857 {
858     int target_type;
859 
860     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
861     case SOCK_DGRAM:
862         target_type = TARGET_SOCK_DGRAM;
863         break;
864     case SOCK_STREAM:
865         target_type = TARGET_SOCK_STREAM;
866         break;
867     default:
868         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
869         break;
870     }
871 
872 #if defined(SOCK_CLOEXEC)
873     if (host_type & SOCK_CLOEXEC) {
874         target_type |= TARGET_SOCK_CLOEXEC;
875     }
876 #endif
877 
878 #if defined(SOCK_NONBLOCK)
879     if (host_type & SOCK_NONBLOCK) {
880         target_type |= TARGET_SOCK_NONBLOCK;
881     }
882 #endif
883 
884     return target_type;
885 }
886 
887 static abi_ulong target_brk;
888 static abi_ulong target_original_brk;
889 static abi_ulong brk_page;
890 
891 void target_set_brk(abi_ulong new_brk)
892 {
893     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
894     brk_page = HOST_PAGE_ALIGN(target_brk);
895 }
896 
897 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
898 #define DEBUGF_BRK(message, args...)
899 
900 /* do_brk() must return target values and target errnos. */
901 abi_long do_brk(abi_ulong new_brk)
902 {
903     abi_long mapped_addr;
904     abi_ulong new_alloc_size;
905 
906     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
907 
908     if (!new_brk) {
909         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
910         return target_brk;
911     }
912     if (new_brk < target_original_brk) {
913         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
914                    target_brk);
915         return target_brk;
916     }
917 
918     /* If the new brk is less than the highest page reserved to the
919      * target heap allocation, set it and we're almost done...  */
920     if (new_brk <= brk_page) {
921         /* Heap contents are initialized to zero, as for anonymous
922          * mapped pages.  */
923         if (new_brk > target_brk) {
924             memset(g2h(target_brk), 0, new_brk - target_brk);
925         }
926 	target_brk = new_brk;
927         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
928 	return target_brk;
929     }
930 
931     /* We need to allocate more memory after the brk... Note that
932      * we don't use MAP_FIXED because that will map over the top of
933      * any existing mapping (like the one with the host libc or qemu
934      * itself); instead we treat "mapped but at wrong address" as
935      * a failure and unmap again.
936      */
937     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
938     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
939                                         PROT_READ|PROT_WRITE,
940                                         MAP_ANON|MAP_PRIVATE, 0, 0));
941 
942     if (mapped_addr == brk_page) {
943         /* Heap contents are initialized to zero, as for anonymous
944          * mapped pages.  Technically the new pages are already
945          * initialized to zero since they *are* anonymous mapped
946          * pages, however we have to take care with the contents that
947          * come from the remaining part of the previous page: it may
948          * contains garbage data due to a previous heap usage (grown
949          * then shrunken).  */
950         memset(g2h(target_brk), 0, brk_page - target_brk);
951 
952         target_brk = new_brk;
953         brk_page = HOST_PAGE_ALIGN(target_brk);
954         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
955             target_brk);
956         return target_brk;
957     } else if (mapped_addr != -1) {
958         /* Mapped but at wrong address, meaning there wasn't actually
959          * enough space for this brk.
960          */
961         target_munmap(mapped_addr, new_alloc_size);
962         mapped_addr = -1;
963         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
964     }
965     else {
966         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
967     }
968 
969 #if defined(TARGET_ALPHA)
970     /* We (partially) emulate OSF/1 on Alpha, which requires we
971        return a proper errno, not an unchanged brk value.  */
972     return -TARGET_ENOMEM;
973 #endif
974     /* For everything else, return the previous break. */
975     return target_brk;
976 }
977 
978 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
979     defined(TARGET_NR_pselect6)
980 static inline abi_long copy_from_user_fdset(fd_set *fds,
981                                             abi_ulong target_fds_addr,
982                                             int n)
983 {
984     int i, nw, j, k;
985     abi_ulong b, *target_fds;
986 
987     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
988     if (!(target_fds = lock_user(VERIFY_READ,
989                                  target_fds_addr,
990                                  sizeof(abi_ulong) * nw,
991                                  1)))
992         return -TARGET_EFAULT;
993 
994     FD_ZERO(fds);
995     k = 0;
996     for (i = 0; i < nw; i++) {
997         /* grab the abi_ulong */
998         __get_user(b, &target_fds[i]);
999         for (j = 0; j < TARGET_ABI_BITS; j++) {
1000             /* check the bit inside the abi_ulong */
1001             if ((b >> j) & 1)
1002                 FD_SET(k, fds);
1003             k++;
1004         }
1005     }
1006 
1007     unlock_user(target_fds, target_fds_addr, 0);
1008 
1009     return 0;
1010 }
1011 
1012 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1013                                                  abi_ulong target_fds_addr,
1014                                                  int n)
1015 {
1016     if (target_fds_addr) {
1017         if (copy_from_user_fdset(fds, target_fds_addr, n))
1018             return -TARGET_EFAULT;
1019         *fds_ptr = fds;
1020     } else {
1021         *fds_ptr = NULL;
1022     }
1023     return 0;
1024 }
1025 
1026 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1027                                           const fd_set *fds,
1028                                           int n)
1029 {
1030     int i, nw, j, k;
1031     abi_long v;
1032     abi_ulong *target_fds;
1033 
1034     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1035     if (!(target_fds = lock_user(VERIFY_WRITE,
1036                                  target_fds_addr,
1037                                  sizeof(abi_ulong) * nw,
1038                                  0)))
1039         return -TARGET_EFAULT;
1040 
1041     k = 0;
1042     for (i = 0; i < nw; i++) {
1043         v = 0;
1044         for (j = 0; j < TARGET_ABI_BITS; j++) {
1045             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1046             k++;
1047         }
1048         __put_user(v, &target_fds[i]);
1049     }
1050 
1051     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1052 
1053     return 0;
1054 }
1055 #endif
1056 
1057 #if defined(__alpha__)
1058 #define HOST_HZ 1024
1059 #else
1060 #define HOST_HZ 100
1061 #endif
1062 
1063 static inline abi_long host_to_target_clock_t(long ticks)
1064 {
1065 #if HOST_HZ == TARGET_HZ
1066     return ticks;
1067 #else
1068     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1069 #endif
1070 }
1071 
1072 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1073                                              const struct rusage *rusage)
1074 {
1075     struct target_rusage *target_rusage;
1076 
1077     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1078         return -TARGET_EFAULT;
1079     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1080     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1081     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1082     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1083     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1084     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1085     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1086     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1087     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1088     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1089     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1090     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1091     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1092     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1093     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1094     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1095     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1096     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1097     unlock_user_struct(target_rusage, target_addr, 1);
1098 
1099     return 0;
1100 }
1101 
1102 #ifdef TARGET_NR_setrlimit
1103 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1104 {
1105     abi_ulong target_rlim_swap;
1106     rlim_t result;
1107 
1108     target_rlim_swap = tswapal(target_rlim);
1109     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1110         return RLIM_INFINITY;
1111 
1112     result = target_rlim_swap;
1113     if (target_rlim_swap != (rlim_t)result)
1114         return RLIM_INFINITY;
1115 
1116     return result;
1117 }
1118 #endif
1119 
1120 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1121 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1122 {
1123     abi_ulong target_rlim_swap;
1124     abi_ulong result;
1125 
1126     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1127         target_rlim_swap = TARGET_RLIM_INFINITY;
1128     else
1129         target_rlim_swap = rlim;
1130     result = tswapal(target_rlim_swap);
1131 
1132     return result;
1133 }
1134 #endif
1135 
1136 static inline int target_to_host_resource(int code)
1137 {
1138     switch (code) {
1139     case TARGET_RLIMIT_AS:
1140         return RLIMIT_AS;
1141     case TARGET_RLIMIT_CORE:
1142         return RLIMIT_CORE;
1143     case TARGET_RLIMIT_CPU:
1144         return RLIMIT_CPU;
1145     case TARGET_RLIMIT_DATA:
1146         return RLIMIT_DATA;
1147     case TARGET_RLIMIT_FSIZE:
1148         return RLIMIT_FSIZE;
1149     case TARGET_RLIMIT_LOCKS:
1150         return RLIMIT_LOCKS;
1151     case TARGET_RLIMIT_MEMLOCK:
1152         return RLIMIT_MEMLOCK;
1153     case TARGET_RLIMIT_MSGQUEUE:
1154         return RLIMIT_MSGQUEUE;
1155     case TARGET_RLIMIT_NICE:
1156         return RLIMIT_NICE;
1157     case TARGET_RLIMIT_NOFILE:
1158         return RLIMIT_NOFILE;
1159     case TARGET_RLIMIT_NPROC:
1160         return RLIMIT_NPROC;
1161     case TARGET_RLIMIT_RSS:
1162         return RLIMIT_RSS;
1163     case TARGET_RLIMIT_RTPRIO:
1164         return RLIMIT_RTPRIO;
1165     case TARGET_RLIMIT_SIGPENDING:
1166         return RLIMIT_SIGPENDING;
1167     case TARGET_RLIMIT_STACK:
1168         return RLIMIT_STACK;
1169     default:
1170         return code;
1171     }
1172 }
1173 
1174 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1175                                               abi_ulong target_tv_addr)
1176 {
1177     struct target_timeval *target_tv;
1178 
1179     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1180         return -TARGET_EFAULT;
1181     }
1182 
1183     __get_user(tv->tv_sec, &target_tv->tv_sec);
1184     __get_user(tv->tv_usec, &target_tv->tv_usec);
1185 
1186     unlock_user_struct(target_tv, target_tv_addr, 0);
1187 
1188     return 0;
1189 }
1190 
1191 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1192                                             const struct timeval *tv)
1193 {
1194     struct target_timeval *target_tv;
1195 
1196     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1197         return -TARGET_EFAULT;
1198     }
1199 
1200     __put_user(tv->tv_sec, &target_tv->tv_sec);
1201     __put_user(tv->tv_usec, &target_tv->tv_usec);
1202 
1203     unlock_user_struct(target_tv, target_tv_addr, 1);
1204 
1205     return 0;
1206 }
1207 
1208 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1209                                              const struct timeval *tv)
1210 {
1211     struct target__kernel_sock_timeval *target_tv;
1212 
1213     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1214         return -TARGET_EFAULT;
1215     }
1216 
1217     __put_user(tv->tv_sec, &target_tv->tv_sec);
1218     __put_user(tv->tv_usec, &target_tv->tv_usec);
1219 
1220     unlock_user_struct(target_tv, target_tv_addr, 1);
1221 
1222     return 0;
1223 }
1224 
1225 #if defined(TARGET_NR_futex) || \
1226     defined(TARGET_NR_rt_sigtimedwait) || \
1227     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1228     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1229     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1230     defined(TARGET_NR_mq_timedreceive)
1231 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1232                                                abi_ulong target_addr)
1233 {
1234     struct target_timespec *target_ts;
1235 
1236     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1237         return -TARGET_EFAULT;
1238     }
1239     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1240     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1241     unlock_user_struct(target_ts, target_addr, 0);
1242     return 0;
1243 }
1244 #endif
1245 
1246 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64)
1247 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1248                                                  abi_ulong target_addr)
1249 {
1250     struct target__kernel_timespec *target_ts;
1251 
1252     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1253         return -TARGET_EFAULT;
1254     }
1255     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1256     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1257     unlock_user_struct(target_ts, target_addr, 0);
1258     return 0;
1259 }
1260 #endif
1261 
1262 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1263                                                struct timespec *host_ts)
1264 {
1265     struct target_timespec *target_ts;
1266 
1267     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1268         return -TARGET_EFAULT;
1269     }
1270     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1271     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1272     unlock_user_struct(target_ts, target_addr, 1);
1273     return 0;
1274 }
1275 
1276 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1277                                                  struct timespec *host_ts)
1278 {
1279     struct target__kernel_timespec *target_ts;
1280 
1281     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1282         return -TARGET_EFAULT;
1283     }
1284     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1285     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1286     unlock_user_struct(target_ts, target_addr, 1);
1287     return 0;
1288 }
1289 
1290 #if defined(TARGET_NR_gettimeofday)
1291 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1292                                              struct timezone *tz)
1293 {
1294     struct target_timezone *target_tz;
1295 
1296     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1297         return -TARGET_EFAULT;
1298     }
1299 
1300     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1301     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1302 
1303     unlock_user_struct(target_tz, target_tz_addr, 1);
1304 
1305     return 0;
1306 }
1307 #endif
1308 
1309 #if defined(TARGET_NR_settimeofday)
1310 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1311                                                abi_ulong target_tz_addr)
1312 {
1313     struct target_timezone *target_tz;
1314 
1315     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1316         return -TARGET_EFAULT;
1317     }
1318 
1319     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1320     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1321 
1322     unlock_user_struct(target_tz, target_tz_addr, 0);
1323 
1324     return 0;
1325 }
1326 #endif
1327 
1328 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1329 #include <mqueue.h>
1330 
1331 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1332                                               abi_ulong target_mq_attr_addr)
1333 {
1334     struct target_mq_attr *target_mq_attr;
1335 
1336     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1337                           target_mq_attr_addr, 1))
1338         return -TARGET_EFAULT;
1339 
1340     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1341     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1342     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1343     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1344 
1345     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1346 
1347     return 0;
1348 }
1349 
1350 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1351                                             const struct mq_attr *attr)
1352 {
1353     struct target_mq_attr *target_mq_attr;
1354 
1355     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1356                           target_mq_attr_addr, 0))
1357         return -TARGET_EFAULT;
1358 
1359     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1360     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1361     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1362     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1363 
1364     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1365 
1366     return 0;
1367 }
1368 #endif
1369 
1370 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1371 /* do_select() must return target values and target errnos. */
1372 static abi_long do_select(int n,
1373                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1374                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1375 {
1376     fd_set rfds, wfds, efds;
1377     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1378     struct timeval tv;
1379     struct timespec ts, *ts_ptr;
1380     abi_long ret;
1381 
1382     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1383     if (ret) {
1384         return ret;
1385     }
1386     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1387     if (ret) {
1388         return ret;
1389     }
1390     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1391     if (ret) {
1392         return ret;
1393     }
1394 
1395     if (target_tv_addr) {
1396         if (copy_from_user_timeval(&tv, target_tv_addr))
1397             return -TARGET_EFAULT;
1398         ts.tv_sec = tv.tv_sec;
1399         ts.tv_nsec = tv.tv_usec * 1000;
1400         ts_ptr = &ts;
1401     } else {
1402         ts_ptr = NULL;
1403     }
1404 
1405     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1406                                   ts_ptr, NULL));
1407 
1408     if (!is_error(ret)) {
1409         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1410             return -TARGET_EFAULT;
1411         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1412             return -TARGET_EFAULT;
1413         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1414             return -TARGET_EFAULT;
1415 
1416         if (target_tv_addr) {
1417             tv.tv_sec = ts.tv_sec;
1418             tv.tv_usec = ts.tv_nsec / 1000;
1419             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1420                 return -TARGET_EFAULT;
1421             }
1422         }
1423     }
1424 
1425     return ret;
1426 }
1427 
1428 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1429 static abi_long do_old_select(abi_ulong arg1)
1430 {
1431     struct target_sel_arg_struct *sel;
1432     abi_ulong inp, outp, exp, tvp;
1433     long nsel;
1434 
1435     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1436         return -TARGET_EFAULT;
1437     }
1438 
1439     nsel = tswapal(sel->n);
1440     inp = tswapal(sel->inp);
1441     outp = tswapal(sel->outp);
1442     exp = tswapal(sel->exp);
1443     tvp = tswapal(sel->tvp);
1444 
1445     unlock_user_struct(sel, arg1, 0);
1446 
1447     return do_select(nsel, inp, outp, exp, tvp);
1448 }
1449 #endif
1450 #endif
1451 
1452 static abi_long do_pipe2(int host_pipe[], int flags)
1453 {
1454 #ifdef CONFIG_PIPE2
1455     return pipe2(host_pipe, flags);
1456 #else
1457     return -ENOSYS;
1458 #endif
1459 }
1460 
1461 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1462                         int flags, int is_pipe2)
1463 {
1464     int host_pipe[2];
1465     abi_long ret;
1466     ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1467 
1468     if (is_error(ret))
1469         return get_errno(ret);
1470 
1471     /* Several targets have special calling conventions for the original
1472        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1473     if (!is_pipe2) {
1474 #if defined(TARGET_ALPHA)
1475         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1476         return host_pipe[0];
1477 #elif defined(TARGET_MIPS)
1478         ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1479         return host_pipe[0];
1480 #elif defined(TARGET_SH4)
1481         ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1482         return host_pipe[0];
1483 #elif defined(TARGET_SPARC)
1484         ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1485         return host_pipe[0];
1486 #endif
1487     }
1488 
1489     if (put_user_s32(host_pipe[0], pipedes)
1490         || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1491         return -TARGET_EFAULT;
1492     return get_errno(ret);
1493 }
1494 
1495 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1496                                               abi_ulong target_addr,
1497                                               socklen_t len)
1498 {
1499     struct target_ip_mreqn *target_smreqn;
1500 
1501     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1502     if (!target_smreqn)
1503         return -TARGET_EFAULT;
1504     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1505     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1506     if (len == sizeof(struct target_ip_mreqn))
1507         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1508     unlock_user(target_smreqn, target_addr, 0);
1509 
1510     return 0;
1511 }
1512 
1513 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1514                                                abi_ulong target_addr,
1515                                                socklen_t len)
1516 {
1517     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1518     sa_family_t sa_family;
1519     struct target_sockaddr *target_saddr;
1520 
1521     if (fd_trans_target_to_host_addr(fd)) {
1522         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1523     }
1524 
1525     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1526     if (!target_saddr)
1527         return -TARGET_EFAULT;
1528 
1529     sa_family = tswap16(target_saddr->sa_family);
1530 
1531     /* Oops. The caller might send a incomplete sun_path; sun_path
1532      * must be terminated by \0 (see the manual page), but
1533      * unfortunately it is quite common to specify sockaddr_un
1534      * length as "strlen(x->sun_path)" while it should be
1535      * "strlen(...) + 1". We'll fix that here if needed.
1536      * Linux kernel has a similar feature.
1537      */
1538 
1539     if (sa_family == AF_UNIX) {
1540         if (len < unix_maxlen && len > 0) {
1541             char *cp = (char*)target_saddr;
1542 
1543             if ( cp[len-1] && !cp[len] )
1544                 len++;
1545         }
1546         if (len > unix_maxlen)
1547             len = unix_maxlen;
1548     }
1549 
1550     memcpy(addr, target_saddr, len);
1551     addr->sa_family = sa_family;
1552     if (sa_family == AF_NETLINK) {
1553         struct sockaddr_nl *nladdr;
1554 
1555         nladdr = (struct sockaddr_nl *)addr;
1556         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1557         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1558     } else if (sa_family == AF_PACKET) {
1559 	struct target_sockaddr_ll *lladdr;
1560 
1561 	lladdr = (struct target_sockaddr_ll *)addr;
1562 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1563 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1564     }
1565     unlock_user(target_saddr, target_addr, 0);
1566 
1567     return 0;
1568 }
1569 
1570 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1571                                                struct sockaddr *addr,
1572                                                socklen_t len)
1573 {
1574     struct target_sockaddr *target_saddr;
1575 
1576     if (len == 0) {
1577         return 0;
1578     }
1579     assert(addr);
1580 
1581     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1582     if (!target_saddr)
1583         return -TARGET_EFAULT;
1584     memcpy(target_saddr, addr, len);
1585     if (len >= offsetof(struct target_sockaddr, sa_family) +
1586         sizeof(target_saddr->sa_family)) {
1587         target_saddr->sa_family = tswap16(addr->sa_family);
1588     }
1589     if (addr->sa_family == AF_NETLINK &&
1590         len >= sizeof(struct target_sockaddr_nl)) {
1591         struct target_sockaddr_nl *target_nl =
1592                (struct target_sockaddr_nl *)target_saddr;
1593         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1594         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1595     } else if (addr->sa_family == AF_PACKET) {
1596         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1597         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1598         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1599     } else if (addr->sa_family == AF_INET6 &&
1600                len >= sizeof(struct target_sockaddr_in6)) {
1601         struct target_sockaddr_in6 *target_in6 =
1602                (struct target_sockaddr_in6 *)target_saddr;
1603         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1604     }
1605     unlock_user(target_saddr, target_addr, len);
1606 
1607     return 0;
1608 }
1609 
1610 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1611                                            struct target_msghdr *target_msgh)
1612 {
1613     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1614     abi_long msg_controllen;
1615     abi_ulong target_cmsg_addr;
1616     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1617     socklen_t space = 0;
1618 
1619     msg_controllen = tswapal(target_msgh->msg_controllen);
1620     if (msg_controllen < sizeof (struct target_cmsghdr))
1621         goto the_end;
1622     target_cmsg_addr = tswapal(target_msgh->msg_control);
1623     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1624     target_cmsg_start = target_cmsg;
1625     if (!target_cmsg)
1626         return -TARGET_EFAULT;
1627 
1628     while (cmsg && target_cmsg) {
1629         void *data = CMSG_DATA(cmsg);
1630         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1631 
1632         int len = tswapal(target_cmsg->cmsg_len)
1633             - sizeof(struct target_cmsghdr);
1634 
1635         space += CMSG_SPACE(len);
1636         if (space > msgh->msg_controllen) {
1637             space -= CMSG_SPACE(len);
1638             /* This is a QEMU bug, since we allocated the payload
1639              * area ourselves (unlike overflow in host-to-target
1640              * conversion, which is just the guest giving us a buffer
1641              * that's too small). It can't happen for the payload types
1642              * we currently support; if it becomes an issue in future
1643              * we would need to improve our allocation strategy to
1644              * something more intelligent than "twice the size of the
1645              * target buffer we're reading from".
1646              */
1647             qemu_log_mask(LOG_UNIMP,
1648                           ("Unsupported ancillary data %d/%d: "
1649                            "unhandled msg size\n"),
1650                           tswap32(target_cmsg->cmsg_level),
1651                           tswap32(target_cmsg->cmsg_type));
1652             break;
1653         }
1654 
1655         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1656             cmsg->cmsg_level = SOL_SOCKET;
1657         } else {
1658             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1659         }
1660         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1661         cmsg->cmsg_len = CMSG_LEN(len);
1662 
1663         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1664             int *fd = (int *)data;
1665             int *target_fd = (int *)target_data;
1666             int i, numfds = len / sizeof(int);
1667 
1668             for (i = 0; i < numfds; i++) {
1669                 __get_user(fd[i], target_fd + i);
1670             }
1671         } else if (cmsg->cmsg_level == SOL_SOCKET
1672                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1673             struct ucred *cred = (struct ucred *)data;
1674             struct target_ucred *target_cred =
1675                 (struct target_ucred *)target_data;
1676 
1677             __get_user(cred->pid, &target_cred->pid);
1678             __get_user(cred->uid, &target_cred->uid);
1679             __get_user(cred->gid, &target_cred->gid);
1680         } else {
1681             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1682                           cmsg->cmsg_level, cmsg->cmsg_type);
1683             memcpy(data, target_data, len);
1684         }
1685 
1686         cmsg = CMSG_NXTHDR(msgh, cmsg);
1687         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1688                                          target_cmsg_start);
1689     }
1690     unlock_user(target_cmsg, target_cmsg_addr, 0);
1691  the_end:
1692     msgh->msg_controllen = space;
1693     return 0;
1694 }
1695 
1696 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1697                                            struct msghdr *msgh)
1698 {
1699     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1700     abi_long msg_controllen;
1701     abi_ulong target_cmsg_addr;
1702     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1703     socklen_t space = 0;
1704 
1705     msg_controllen = tswapal(target_msgh->msg_controllen);
1706     if (msg_controllen < sizeof (struct target_cmsghdr))
1707         goto the_end;
1708     target_cmsg_addr = tswapal(target_msgh->msg_control);
1709     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1710     target_cmsg_start = target_cmsg;
1711     if (!target_cmsg)
1712         return -TARGET_EFAULT;
1713 
1714     while (cmsg && target_cmsg) {
1715         void *data = CMSG_DATA(cmsg);
1716         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1717 
1718         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1719         int tgt_len, tgt_space;
1720 
1721         /* We never copy a half-header but may copy half-data;
1722          * this is Linux's behaviour in put_cmsg(). Note that
1723          * truncation here is a guest problem (which we report
1724          * to the guest via the CTRUNC bit), unlike truncation
1725          * in target_to_host_cmsg, which is a QEMU bug.
1726          */
1727         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1728             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1729             break;
1730         }
1731 
1732         if (cmsg->cmsg_level == SOL_SOCKET) {
1733             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1734         } else {
1735             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1736         }
1737         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1738 
1739         /* Payload types which need a different size of payload on
1740          * the target must adjust tgt_len here.
1741          */
1742         tgt_len = len;
1743         switch (cmsg->cmsg_level) {
1744         case SOL_SOCKET:
1745             switch (cmsg->cmsg_type) {
1746             case SO_TIMESTAMP:
1747                 tgt_len = sizeof(struct target_timeval);
1748                 break;
1749             default:
1750                 break;
1751             }
1752             break;
1753         default:
1754             break;
1755         }
1756 
1757         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1758             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1759             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1760         }
1761 
1762         /* We must now copy-and-convert len bytes of payload
1763          * into tgt_len bytes of destination space. Bear in mind
1764          * that in both source and destination we may be dealing
1765          * with a truncated value!
1766          */
1767         switch (cmsg->cmsg_level) {
1768         case SOL_SOCKET:
1769             switch (cmsg->cmsg_type) {
1770             case SCM_RIGHTS:
1771             {
1772                 int *fd = (int *)data;
1773                 int *target_fd = (int *)target_data;
1774                 int i, numfds = tgt_len / sizeof(int);
1775 
1776                 for (i = 0; i < numfds; i++) {
1777                     __put_user(fd[i], target_fd + i);
1778                 }
1779                 break;
1780             }
1781             case SO_TIMESTAMP:
1782             {
1783                 struct timeval *tv = (struct timeval *)data;
1784                 struct target_timeval *target_tv =
1785                     (struct target_timeval *)target_data;
1786 
1787                 if (len != sizeof(struct timeval) ||
1788                     tgt_len != sizeof(struct target_timeval)) {
1789                     goto unimplemented;
1790                 }
1791 
1792                 /* copy struct timeval to target */
1793                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1794                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1795                 break;
1796             }
1797             case SCM_CREDENTIALS:
1798             {
1799                 struct ucred *cred = (struct ucred *)data;
1800                 struct target_ucred *target_cred =
1801                     (struct target_ucred *)target_data;
1802 
1803                 __put_user(cred->pid, &target_cred->pid);
1804                 __put_user(cred->uid, &target_cred->uid);
1805                 __put_user(cred->gid, &target_cred->gid);
1806                 break;
1807             }
1808             default:
1809                 goto unimplemented;
1810             }
1811             break;
1812 
1813         case SOL_IP:
1814             switch (cmsg->cmsg_type) {
1815             case IP_TTL:
1816             {
1817                 uint32_t *v = (uint32_t *)data;
1818                 uint32_t *t_int = (uint32_t *)target_data;
1819 
1820                 if (len != sizeof(uint32_t) ||
1821                     tgt_len != sizeof(uint32_t)) {
1822                     goto unimplemented;
1823                 }
1824                 __put_user(*v, t_int);
1825                 break;
1826             }
1827             case IP_RECVERR:
1828             {
1829                 struct errhdr_t {
1830                    struct sock_extended_err ee;
1831                    struct sockaddr_in offender;
1832                 };
1833                 struct errhdr_t *errh = (struct errhdr_t *)data;
1834                 struct errhdr_t *target_errh =
1835                     (struct errhdr_t *)target_data;
1836 
1837                 if (len != sizeof(struct errhdr_t) ||
1838                     tgt_len != sizeof(struct errhdr_t)) {
1839                     goto unimplemented;
1840                 }
1841                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1842                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1843                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1844                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1845                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1846                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1847                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1848                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1849                     (void *) &errh->offender, sizeof(errh->offender));
1850                 break;
1851             }
1852             default:
1853                 goto unimplemented;
1854             }
1855             break;
1856 
1857         case SOL_IPV6:
1858             switch (cmsg->cmsg_type) {
1859             case IPV6_HOPLIMIT:
1860             {
1861                 uint32_t *v = (uint32_t *)data;
1862                 uint32_t *t_int = (uint32_t *)target_data;
1863 
1864                 if (len != sizeof(uint32_t) ||
1865                     tgt_len != sizeof(uint32_t)) {
1866                     goto unimplemented;
1867                 }
1868                 __put_user(*v, t_int);
1869                 break;
1870             }
1871             case IPV6_RECVERR:
1872             {
1873                 struct errhdr6_t {
1874                    struct sock_extended_err ee;
1875                    struct sockaddr_in6 offender;
1876                 };
1877                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1878                 struct errhdr6_t *target_errh =
1879                     (struct errhdr6_t *)target_data;
1880 
1881                 if (len != sizeof(struct errhdr6_t) ||
1882                     tgt_len != sizeof(struct errhdr6_t)) {
1883                     goto unimplemented;
1884                 }
1885                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1886                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1887                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1888                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1889                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1890                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1891                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1892                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1893                     (void *) &errh->offender, sizeof(errh->offender));
1894                 break;
1895             }
1896             default:
1897                 goto unimplemented;
1898             }
1899             break;
1900 
1901         default:
1902         unimplemented:
1903             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1904                           cmsg->cmsg_level, cmsg->cmsg_type);
1905             memcpy(target_data, data, MIN(len, tgt_len));
1906             if (tgt_len > len) {
1907                 memset(target_data + len, 0, tgt_len - len);
1908             }
1909         }
1910 
1911         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
1912         tgt_space = TARGET_CMSG_SPACE(tgt_len);
1913         if (msg_controllen < tgt_space) {
1914             tgt_space = msg_controllen;
1915         }
1916         msg_controllen -= tgt_space;
1917         space += tgt_space;
1918         cmsg = CMSG_NXTHDR(msgh, cmsg);
1919         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1920                                          target_cmsg_start);
1921     }
1922     unlock_user(target_cmsg, target_cmsg_addr, space);
1923  the_end:
1924     target_msgh->msg_controllen = tswapal(space);
1925     return 0;
1926 }
1927 
1928 /* do_setsockopt() Must return target values and target errnos. */
1929 static abi_long do_setsockopt(int sockfd, int level, int optname,
1930                               abi_ulong optval_addr, socklen_t optlen)
1931 {
1932     abi_long ret;
1933     int val;
1934     struct ip_mreqn *ip_mreq;
1935     struct ip_mreq_source *ip_mreq_source;
1936 
1937     switch(level) {
1938     case SOL_TCP:
1939         /* TCP options all take an 'int' value.  */
1940         if (optlen < sizeof(uint32_t))
1941             return -TARGET_EINVAL;
1942 
1943         if (get_user_u32(val, optval_addr))
1944             return -TARGET_EFAULT;
1945         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1946         break;
1947     case SOL_IP:
1948         switch(optname) {
1949         case IP_TOS:
1950         case IP_TTL:
1951         case IP_HDRINCL:
1952         case IP_ROUTER_ALERT:
1953         case IP_RECVOPTS:
1954         case IP_RETOPTS:
1955         case IP_PKTINFO:
1956         case IP_MTU_DISCOVER:
1957         case IP_RECVERR:
1958         case IP_RECVTTL:
1959         case IP_RECVTOS:
1960 #ifdef IP_FREEBIND
1961         case IP_FREEBIND:
1962 #endif
1963         case IP_MULTICAST_TTL:
1964         case IP_MULTICAST_LOOP:
1965             val = 0;
1966             if (optlen >= sizeof(uint32_t)) {
1967                 if (get_user_u32(val, optval_addr))
1968                     return -TARGET_EFAULT;
1969             } else if (optlen >= 1) {
1970                 if (get_user_u8(val, optval_addr))
1971                     return -TARGET_EFAULT;
1972             }
1973             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1974             break;
1975         case IP_ADD_MEMBERSHIP:
1976         case IP_DROP_MEMBERSHIP:
1977             if (optlen < sizeof (struct target_ip_mreq) ||
1978                 optlen > sizeof (struct target_ip_mreqn))
1979                 return -TARGET_EINVAL;
1980 
1981             ip_mreq = (struct ip_mreqn *) alloca(optlen);
1982             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
1983             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
1984             break;
1985 
1986         case IP_BLOCK_SOURCE:
1987         case IP_UNBLOCK_SOURCE:
1988         case IP_ADD_SOURCE_MEMBERSHIP:
1989         case IP_DROP_SOURCE_MEMBERSHIP:
1990             if (optlen != sizeof (struct target_ip_mreq_source))
1991                 return -TARGET_EINVAL;
1992 
1993             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
1994             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
1995             unlock_user (ip_mreq_source, optval_addr, 0);
1996             break;
1997 
1998         default:
1999             goto unimplemented;
2000         }
2001         break;
2002     case SOL_IPV6:
2003         switch (optname) {
2004         case IPV6_MTU_DISCOVER:
2005         case IPV6_MTU:
2006         case IPV6_V6ONLY:
2007         case IPV6_RECVPKTINFO:
2008         case IPV6_UNICAST_HOPS:
2009         case IPV6_MULTICAST_HOPS:
2010         case IPV6_MULTICAST_LOOP:
2011         case IPV6_RECVERR:
2012         case IPV6_RECVHOPLIMIT:
2013         case IPV6_2292HOPLIMIT:
2014         case IPV6_CHECKSUM:
2015         case IPV6_ADDRFORM:
2016         case IPV6_2292PKTINFO:
2017         case IPV6_RECVTCLASS:
2018         case IPV6_RECVRTHDR:
2019         case IPV6_2292RTHDR:
2020         case IPV6_RECVHOPOPTS:
2021         case IPV6_2292HOPOPTS:
2022         case IPV6_RECVDSTOPTS:
2023         case IPV6_2292DSTOPTS:
2024         case IPV6_TCLASS:
2025 #ifdef IPV6_RECVPATHMTU
2026         case IPV6_RECVPATHMTU:
2027 #endif
2028 #ifdef IPV6_TRANSPARENT
2029         case IPV6_TRANSPARENT:
2030 #endif
2031 #ifdef IPV6_FREEBIND
2032         case IPV6_FREEBIND:
2033 #endif
2034 #ifdef IPV6_RECVORIGDSTADDR
2035         case IPV6_RECVORIGDSTADDR:
2036 #endif
2037             val = 0;
2038             if (optlen < sizeof(uint32_t)) {
2039                 return -TARGET_EINVAL;
2040             }
2041             if (get_user_u32(val, optval_addr)) {
2042                 return -TARGET_EFAULT;
2043             }
2044             ret = get_errno(setsockopt(sockfd, level, optname,
2045                                        &val, sizeof(val)));
2046             break;
2047         case IPV6_PKTINFO:
2048         {
2049             struct in6_pktinfo pki;
2050 
2051             if (optlen < sizeof(pki)) {
2052                 return -TARGET_EINVAL;
2053             }
2054 
2055             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2056                 return -TARGET_EFAULT;
2057             }
2058 
2059             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2060 
2061             ret = get_errno(setsockopt(sockfd, level, optname,
2062                                        &pki, sizeof(pki)));
2063             break;
2064         }
2065         case IPV6_ADD_MEMBERSHIP:
2066         case IPV6_DROP_MEMBERSHIP:
2067         {
2068             struct ipv6_mreq ipv6mreq;
2069 
2070             if (optlen < sizeof(ipv6mreq)) {
2071                 return -TARGET_EINVAL;
2072             }
2073 
2074             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2075                 return -TARGET_EFAULT;
2076             }
2077 
2078             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2079 
2080             ret = get_errno(setsockopt(sockfd, level, optname,
2081                                        &ipv6mreq, sizeof(ipv6mreq)));
2082             break;
2083         }
2084         default:
2085             goto unimplemented;
2086         }
2087         break;
2088     case SOL_ICMPV6:
2089         switch (optname) {
2090         case ICMPV6_FILTER:
2091         {
2092             struct icmp6_filter icmp6f;
2093 
2094             if (optlen > sizeof(icmp6f)) {
2095                 optlen = sizeof(icmp6f);
2096             }
2097 
2098             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2099                 return -TARGET_EFAULT;
2100             }
2101 
2102             for (val = 0; val < 8; val++) {
2103                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2104             }
2105 
2106             ret = get_errno(setsockopt(sockfd, level, optname,
2107                                        &icmp6f, optlen));
2108             break;
2109         }
2110         default:
2111             goto unimplemented;
2112         }
2113         break;
2114     case SOL_RAW:
2115         switch (optname) {
2116         case ICMP_FILTER:
2117         case IPV6_CHECKSUM:
2118             /* those take an u32 value */
2119             if (optlen < sizeof(uint32_t)) {
2120                 return -TARGET_EINVAL;
2121             }
2122 
2123             if (get_user_u32(val, optval_addr)) {
2124                 return -TARGET_EFAULT;
2125             }
2126             ret = get_errno(setsockopt(sockfd, level, optname,
2127                                        &val, sizeof(val)));
2128             break;
2129 
2130         default:
2131             goto unimplemented;
2132         }
2133         break;
2134 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2135     case SOL_ALG:
2136         switch (optname) {
2137         case ALG_SET_KEY:
2138         {
2139             char *alg_key = g_malloc(optlen);
2140 
2141             if (!alg_key) {
2142                 return -TARGET_ENOMEM;
2143             }
2144             if (copy_from_user(alg_key, optval_addr, optlen)) {
2145                 g_free(alg_key);
2146                 return -TARGET_EFAULT;
2147             }
2148             ret = get_errno(setsockopt(sockfd, level, optname,
2149                                        alg_key, optlen));
2150             g_free(alg_key);
2151             break;
2152         }
2153         case ALG_SET_AEAD_AUTHSIZE:
2154         {
2155             ret = get_errno(setsockopt(sockfd, level, optname,
2156                                        NULL, optlen));
2157             break;
2158         }
2159         default:
2160             goto unimplemented;
2161         }
2162         break;
2163 #endif
2164     case TARGET_SOL_SOCKET:
2165         switch (optname) {
2166         case TARGET_SO_RCVTIMEO:
2167         {
2168                 struct timeval tv;
2169 
2170                 optname = SO_RCVTIMEO;
2171 
2172 set_timeout:
2173                 if (optlen != sizeof(struct target_timeval)) {
2174                     return -TARGET_EINVAL;
2175                 }
2176 
2177                 if (copy_from_user_timeval(&tv, optval_addr)) {
2178                     return -TARGET_EFAULT;
2179                 }
2180 
2181                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2182                                 &tv, sizeof(tv)));
2183                 return ret;
2184         }
2185         case TARGET_SO_SNDTIMEO:
2186                 optname = SO_SNDTIMEO;
2187                 goto set_timeout;
2188         case TARGET_SO_ATTACH_FILTER:
2189         {
2190                 struct target_sock_fprog *tfprog;
2191                 struct target_sock_filter *tfilter;
2192                 struct sock_fprog fprog;
2193                 struct sock_filter *filter;
2194                 int i;
2195 
2196                 if (optlen != sizeof(*tfprog)) {
2197                     return -TARGET_EINVAL;
2198                 }
2199                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2200                     return -TARGET_EFAULT;
2201                 }
2202                 if (!lock_user_struct(VERIFY_READ, tfilter,
2203                                       tswapal(tfprog->filter), 0)) {
2204                     unlock_user_struct(tfprog, optval_addr, 1);
2205                     return -TARGET_EFAULT;
2206                 }
2207 
2208                 fprog.len = tswap16(tfprog->len);
2209                 filter = g_try_new(struct sock_filter, fprog.len);
2210                 if (filter == NULL) {
2211                     unlock_user_struct(tfilter, tfprog->filter, 1);
2212                     unlock_user_struct(tfprog, optval_addr, 1);
2213                     return -TARGET_ENOMEM;
2214                 }
2215                 for (i = 0; i < fprog.len; i++) {
2216                     filter[i].code = tswap16(tfilter[i].code);
2217                     filter[i].jt = tfilter[i].jt;
2218                     filter[i].jf = tfilter[i].jf;
2219                     filter[i].k = tswap32(tfilter[i].k);
2220                 }
2221                 fprog.filter = filter;
2222 
2223                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2224                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2225                 g_free(filter);
2226 
2227                 unlock_user_struct(tfilter, tfprog->filter, 1);
2228                 unlock_user_struct(tfprog, optval_addr, 1);
2229                 return ret;
2230         }
2231 	case TARGET_SO_BINDTODEVICE:
2232 	{
2233 		char *dev_ifname, *addr_ifname;
2234 
2235 		if (optlen > IFNAMSIZ - 1) {
2236 		    optlen = IFNAMSIZ - 1;
2237 		}
2238 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2239 		if (!dev_ifname) {
2240 		    return -TARGET_EFAULT;
2241 		}
2242 		optname = SO_BINDTODEVICE;
2243 		addr_ifname = alloca(IFNAMSIZ);
2244 		memcpy(addr_ifname, dev_ifname, optlen);
2245 		addr_ifname[optlen] = 0;
2246 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2247                                            addr_ifname, optlen));
2248 		unlock_user (dev_ifname, optval_addr, 0);
2249 		return ret;
2250 	}
2251         case TARGET_SO_LINGER:
2252         {
2253                 struct linger lg;
2254                 struct target_linger *tlg;
2255 
2256                 if (optlen != sizeof(struct target_linger)) {
2257                     return -TARGET_EINVAL;
2258                 }
2259                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2260                     return -TARGET_EFAULT;
2261                 }
2262                 __get_user(lg.l_onoff, &tlg->l_onoff);
2263                 __get_user(lg.l_linger, &tlg->l_linger);
2264                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2265                                 &lg, sizeof(lg)));
2266                 unlock_user_struct(tlg, optval_addr, 0);
2267                 return ret;
2268         }
2269             /* Options with 'int' argument.  */
2270         case TARGET_SO_DEBUG:
2271 		optname = SO_DEBUG;
2272 		break;
2273         case TARGET_SO_REUSEADDR:
2274 		optname = SO_REUSEADDR;
2275 		break;
2276 #ifdef SO_REUSEPORT
2277         case TARGET_SO_REUSEPORT:
2278                 optname = SO_REUSEPORT;
2279                 break;
2280 #endif
2281         case TARGET_SO_TYPE:
2282 		optname = SO_TYPE;
2283 		break;
2284         case TARGET_SO_ERROR:
2285 		optname = SO_ERROR;
2286 		break;
2287         case TARGET_SO_DONTROUTE:
2288 		optname = SO_DONTROUTE;
2289 		break;
2290         case TARGET_SO_BROADCAST:
2291 		optname = SO_BROADCAST;
2292 		break;
2293         case TARGET_SO_SNDBUF:
2294 		optname = SO_SNDBUF;
2295 		break;
2296         case TARGET_SO_SNDBUFFORCE:
2297                 optname = SO_SNDBUFFORCE;
2298                 break;
2299         case TARGET_SO_RCVBUF:
2300 		optname = SO_RCVBUF;
2301 		break;
2302         case TARGET_SO_RCVBUFFORCE:
2303                 optname = SO_RCVBUFFORCE;
2304                 break;
2305         case TARGET_SO_KEEPALIVE:
2306 		optname = SO_KEEPALIVE;
2307 		break;
2308         case TARGET_SO_OOBINLINE:
2309 		optname = SO_OOBINLINE;
2310 		break;
2311         case TARGET_SO_NO_CHECK:
2312 		optname = SO_NO_CHECK;
2313 		break;
2314         case TARGET_SO_PRIORITY:
2315 		optname = SO_PRIORITY;
2316 		break;
2317 #ifdef SO_BSDCOMPAT
2318         case TARGET_SO_BSDCOMPAT:
2319 		optname = SO_BSDCOMPAT;
2320 		break;
2321 #endif
2322         case TARGET_SO_PASSCRED:
2323 		optname = SO_PASSCRED;
2324 		break;
2325         case TARGET_SO_PASSSEC:
2326                 optname = SO_PASSSEC;
2327                 break;
2328         case TARGET_SO_TIMESTAMP:
2329 		optname = SO_TIMESTAMP;
2330 		break;
2331         case TARGET_SO_RCVLOWAT:
2332 		optname = SO_RCVLOWAT;
2333 		break;
2334         default:
2335             goto unimplemented;
2336         }
2337 	if (optlen < sizeof(uint32_t))
2338             return -TARGET_EINVAL;
2339 
2340 	if (get_user_u32(val, optval_addr))
2341             return -TARGET_EFAULT;
2342 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2343         break;
2344 #ifdef SOL_NETLINK
2345     case SOL_NETLINK:
2346         switch (optname) {
2347         case NETLINK_PKTINFO:
2348         case NETLINK_ADD_MEMBERSHIP:
2349         case NETLINK_DROP_MEMBERSHIP:
2350         case NETLINK_BROADCAST_ERROR:
2351         case NETLINK_NO_ENOBUFS:
2352 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2353         case NETLINK_LISTEN_ALL_NSID:
2354         case NETLINK_CAP_ACK:
2355 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2356 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2357         case NETLINK_EXT_ACK:
2358 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2359 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2360         case NETLINK_GET_STRICT_CHK:
2361 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2362             break;
2363         default:
2364             goto unimplemented;
2365         }
2366         val = 0;
2367         if (optlen < sizeof(uint32_t)) {
2368             return -TARGET_EINVAL;
2369         }
2370         if (get_user_u32(val, optval_addr)) {
2371             return -TARGET_EFAULT;
2372         }
2373         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2374                                    sizeof(val)));
2375         break;
2376 #endif /* SOL_NETLINK */
2377     default:
2378     unimplemented:
2379         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2380                       level, optname);
2381         ret = -TARGET_ENOPROTOOPT;
2382     }
2383     return ret;
2384 }
2385 
2386 /* do_getsockopt() Must return target values and target errnos. */
2387 static abi_long do_getsockopt(int sockfd, int level, int optname,
2388                               abi_ulong optval_addr, abi_ulong optlen)
2389 {
2390     abi_long ret;
2391     int len, val;
2392     socklen_t lv;
2393 
2394     switch(level) {
2395     case TARGET_SOL_SOCKET:
2396         level = SOL_SOCKET;
2397         switch (optname) {
2398         /* These don't just return a single integer */
2399         case TARGET_SO_PEERNAME:
2400             goto unimplemented;
2401         case TARGET_SO_RCVTIMEO: {
2402             struct timeval tv;
2403             socklen_t tvlen;
2404 
2405             optname = SO_RCVTIMEO;
2406 
2407 get_timeout:
2408             if (get_user_u32(len, optlen)) {
2409                 return -TARGET_EFAULT;
2410             }
2411             if (len < 0) {
2412                 return -TARGET_EINVAL;
2413             }
2414 
2415             tvlen = sizeof(tv);
2416             ret = get_errno(getsockopt(sockfd, level, optname,
2417                                        &tv, &tvlen));
2418             if (ret < 0) {
2419                 return ret;
2420             }
2421             if (len > sizeof(struct target_timeval)) {
2422                 len = sizeof(struct target_timeval);
2423             }
2424             if (copy_to_user_timeval(optval_addr, &tv)) {
2425                 return -TARGET_EFAULT;
2426             }
2427             if (put_user_u32(len, optlen)) {
2428                 return -TARGET_EFAULT;
2429             }
2430             break;
2431         }
2432         case TARGET_SO_SNDTIMEO:
2433             optname = SO_SNDTIMEO;
2434             goto get_timeout;
2435         case TARGET_SO_PEERCRED: {
2436             struct ucred cr;
2437             socklen_t crlen;
2438             struct target_ucred *tcr;
2439 
2440             if (get_user_u32(len, optlen)) {
2441                 return -TARGET_EFAULT;
2442             }
2443             if (len < 0) {
2444                 return -TARGET_EINVAL;
2445             }
2446 
2447             crlen = sizeof(cr);
2448             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2449                                        &cr, &crlen));
2450             if (ret < 0) {
2451                 return ret;
2452             }
2453             if (len > crlen) {
2454                 len = crlen;
2455             }
2456             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2457                 return -TARGET_EFAULT;
2458             }
2459             __put_user(cr.pid, &tcr->pid);
2460             __put_user(cr.uid, &tcr->uid);
2461             __put_user(cr.gid, &tcr->gid);
2462             unlock_user_struct(tcr, optval_addr, 1);
2463             if (put_user_u32(len, optlen)) {
2464                 return -TARGET_EFAULT;
2465             }
2466             break;
2467         }
2468         case TARGET_SO_PEERSEC: {
2469             char *name;
2470 
2471             if (get_user_u32(len, optlen)) {
2472                 return -TARGET_EFAULT;
2473             }
2474             if (len < 0) {
2475                 return -TARGET_EINVAL;
2476             }
2477             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2478             if (!name) {
2479                 return -TARGET_EFAULT;
2480             }
2481             lv = len;
2482             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2483                                        name, &lv));
2484             if (put_user_u32(lv, optlen)) {
2485                 ret = -TARGET_EFAULT;
2486             }
2487             unlock_user(name, optval_addr, lv);
2488             break;
2489         }
2490         case TARGET_SO_LINGER:
2491         {
2492             struct linger lg;
2493             socklen_t lglen;
2494             struct target_linger *tlg;
2495 
2496             if (get_user_u32(len, optlen)) {
2497                 return -TARGET_EFAULT;
2498             }
2499             if (len < 0) {
2500                 return -TARGET_EINVAL;
2501             }
2502 
2503             lglen = sizeof(lg);
2504             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2505                                        &lg, &lglen));
2506             if (ret < 0) {
2507                 return ret;
2508             }
2509             if (len > lglen) {
2510                 len = lglen;
2511             }
2512             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2513                 return -TARGET_EFAULT;
2514             }
2515             __put_user(lg.l_onoff, &tlg->l_onoff);
2516             __put_user(lg.l_linger, &tlg->l_linger);
2517             unlock_user_struct(tlg, optval_addr, 1);
2518             if (put_user_u32(len, optlen)) {
2519                 return -TARGET_EFAULT;
2520             }
2521             break;
2522         }
2523         /* Options with 'int' argument.  */
2524         case TARGET_SO_DEBUG:
2525             optname = SO_DEBUG;
2526             goto int_case;
2527         case TARGET_SO_REUSEADDR:
2528             optname = SO_REUSEADDR;
2529             goto int_case;
2530 #ifdef SO_REUSEPORT
2531         case TARGET_SO_REUSEPORT:
2532             optname = SO_REUSEPORT;
2533             goto int_case;
2534 #endif
2535         case TARGET_SO_TYPE:
2536             optname = SO_TYPE;
2537             goto int_case;
2538         case TARGET_SO_ERROR:
2539             optname = SO_ERROR;
2540             goto int_case;
2541         case TARGET_SO_DONTROUTE:
2542             optname = SO_DONTROUTE;
2543             goto int_case;
2544         case TARGET_SO_BROADCAST:
2545             optname = SO_BROADCAST;
2546             goto int_case;
2547         case TARGET_SO_SNDBUF:
2548             optname = SO_SNDBUF;
2549             goto int_case;
2550         case TARGET_SO_RCVBUF:
2551             optname = SO_RCVBUF;
2552             goto int_case;
2553         case TARGET_SO_KEEPALIVE:
2554             optname = SO_KEEPALIVE;
2555             goto int_case;
2556         case TARGET_SO_OOBINLINE:
2557             optname = SO_OOBINLINE;
2558             goto int_case;
2559         case TARGET_SO_NO_CHECK:
2560             optname = SO_NO_CHECK;
2561             goto int_case;
2562         case TARGET_SO_PRIORITY:
2563             optname = SO_PRIORITY;
2564             goto int_case;
2565 #ifdef SO_BSDCOMPAT
2566         case TARGET_SO_BSDCOMPAT:
2567             optname = SO_BSDCOMPAT;
2568             goto int_case;
2569 #endif
2570         case TARGET_SO_PASSCRED:
2571             optname = SO_PASSCRED;
2572             goto int_case;
2573         case TARGET_SO_TIMESTAMP:
2574             optname = SO_TIMESTAMP;
2575             goto int_case;
2576         case TARGET_SO_RCVLOWAT:
2577             optname = SO_RCVLOWAT;
2578             goto int_case;
2579         case TARGET_SO_ACCEPTCONN:
2580             optname = SO_ACCEPTCONN;
2581             goto int_case;
2582         default:
2583             goto int_case;
2584         }
2585         break;
2586     case SOL_TCP:
2587         /* TCP options all take an 'int' value.  */
2588     int_case:
2589         if (get_user_u32(len, optlen))
2590             return -TARGET_EFAULT;
2591         if (len < 0)
2592             return -TARGET_EINVAL;
2593         lv = sizeof(lv);
2594         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2595         if (ret < 0)
2596             return ret;
2597         if (optname == SO_TYPE) {
2598             val = host_to_target_sock_type(val);
2599         }
2600         if (len > lv)
2601             len = lv;
2602         if (len == 4) {
2603             if (put_user_u32(val, optval_addr))
2604                 return -TARGET_EFAULT;
2605         } else {
2606             if (put_user_u8(val, optval_addr))
2607                 return -TARGET_EFAULT;
2608         }
2609         if (put_user_u32(len, optlen))
2610             return -TARGET_EFAULT;
2611         break;
2612     case SOL_IP:
2613         switch(optname) {
2614         case IP_TOS:
2615         case IP_TTL:
2616         case IP_HDRINCL:
2617         case IP_ROUTER_ALERT:
2618         case IP_RECVOPTS:
2619         case IP_RETOPTS:
2620         case IP_PKTINFO:
2621         case IP_MTU_DISCOVER:
2622         case IP_RECVERR:
2623         case IP_RECVTOS:
2624 #ifdef IP_FREEBIND
2625         case IP_FREEBIND:
2626 #endif
2627         case IP_MULTICAST_TTL:
2628         case IP_MULTICAST_LOOP:
2629             if (get_user_u32(len, optlen))
2630                 return -TARGET_EFAULT;
2631             if (len < 0)
2632                 return -TARGET_EINVAL;
2633             lv = sizeof(lv);
2634             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2635             if (ret < 0)
2636                 return ret;
2637             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2638                 len = 1;
2639                 if (put_user_u32(len, optlen)
2640                     || put_user_u8(val, optval_addr))
2641                     return -TARGET_EFAULT;
2642             } else {
2643                 if (len > sizeof(int))
2644                     len = sizeof(int);
2645                 if (put_user_u32(len, optlen)
2646                     || put_user_u32(val, optval_addr))
2647                     return -TARGET_EFAULT;
2648             }
2649             break;
2650         default:
2651             ret = -TARGET_ENOPROTOOPT;
2652             break;
2653         }
2654         break;
2655     case SOL_IPV6:
2656         switch (optname) {
2657         case IPV6_MTU_DISCOVER:
2658         case IPV6_MTU:
2659         case IPV6_V6ONLY:
2660         case IPV6_RECVPKTINFO:
2661         case IPV6_UNICAST_HOPS:
2662         case IPV6_MULTICAST_HOPS:
2663         case IPV6_MULTICAST_LOOP:
2664         case IPV6_RECVERR:
2665         case IPV6_RECVHOPLIMIT:
2666         case IPV6_2292HOPLIMIT:
2667         case IPV6_CHECKSUM:
2668         case IPV6_ADDRFORM:
2669         case IPV6_2292PKTINFO:
2670         case IPV6_RECVTCLASS:
2671         case IPV6_RECVRTHDR:
2672         case IPV6_2292RTHDR:
2673         case IPV6_RECVHOPOPTS:
2674         case IPV6_2292HOPOPTS:
2675         case IPV6_RECVDSTOPTS:
2676         case IPV6_2292DSTOPTS:
2677         case IPV6_TCLASS:
2678 #ifdef IPV6_RECVPATHMTU
2679         case IPV6_RECVPATHMTU:
2680 #endif
2681 #ifdef IPV6_TRANSPARENT
2682         case IPV6_TRANSPARENT:
2683 #endif
2684 #ifdef IPV6_FREEBIND
2685         case IPV6_FREEBIND:
2686 #endif
2687 #ifdef IPV6_RECVORIGDSTADDR
2688         case IPV6_RECVORIGDSTADDR:
2689 #endif
2690             if (get_user_u32(len, optlen))
2691                 return -TARGET_EFAULT;
2692             if (len < 0)
2693                 return -TARGET_EINVAL;
2694             lv = sizeof(lv);
2695             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2696             if (ret < 0)
2697                 return ret;
2698             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2699                 len = 1;
2700                 if (put_user_u32(len, optlen)
2701                     || put_user_u8(val, optval_addr))
2702                     return -TARGET_EFAULT;
2703             } else {
2704                 if (len > sizeof(int))
2705                     len = sizeof(int);
2706                 if (put_user_u32(len, optlen)
2707                     || put_user_u32(val, optval_addr))
2708                     return -TARGET_EFAULT;
2709             }
2710             break;
2711         default:
2712             ret = -TARGET_ENOPROTOOPT;
2713             break;
2714         }
2715         break;
2716 #ifdef SOL_NETLINK
2717     case SOL_NETLINK:
2718         switch (optname) {
2719         case NETLINK_PKTINFO:
2720         case NETLINK_BROADCAST_ERROR:
2721         case NETLINK_NO_ENOBUFS:
2722 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2723         case NETLINK_LISTEN_ALL_NSID:
2724         case NETLINK_CAP_ACK:
2725 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2726 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2727         case NETLINK_EXT_ACK:
2728 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2729 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2730         case NETLINK_GET_STRICT_CHK:
2731 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2732             if (get_user_u32(len, optlen)) {
2733                 return -TARGET_EFAULT;
2734             }
2735             if (len != sizeof(val)) {
2736                 return -TARGET_EINVAL;
2737             }
2738             lv = len;
2739             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2740             if (ret < 0) {
2741                 return ret;
2742             }
2743             if (put_user_u32(lv, optlen)
2744                 || put_user_u32(val, optval_addr)) {
2745                 return -TARGET_EFAULT;
2746             }
2747             break;
2748 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2749         case NETLINK_LIST_MEMBERSHIPS:
2750         {
2751             uint32_t *results;
2752             int i;
2753             if (get_user_u32(len, optlen)) {
2754                 return -TARGET_EFAULT;
2755             }
2756             if (len < 0) {
2757                 return -TARGET_EINVAL;
2758             }
2759             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2760             if (!results) {
2761                 return -TARGET_EFAULT;
2762             }
2763             lv = len;
2764             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2765             if (ret < 0) {
2766                 unlock_user(results, optval_addr, 0);
2767                 return ret;
2768             }
2769             /* swap host endianess to target endianess. */
2770             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2771                 results[i] = tswap32(results[i]);
2772             }
2773             if (put_user_u32(lv, optlen)) {
2774                 return -TARGET_EFAULT;
2775             }
2776             unlock_user(results, optval_addr, 0);
2777             break;
2778         }
2779 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2780         default:
2781             goto unimplemented;
2782         }
2783         break;
2784 #endif /* SOL_NETLINK */
2785     default:
2786     unimplemented:
2787         qemu_log_mask(LOG_UNIMP,
2788                       "getsockopt level=%d optname=%d not yet supported\n",
2789                       level, optname);
2790         ret = -TARGET_EOPNOTSUPP;
2791         break;
2792     }
2793     return ret;
2794 }
2795 
2796 /* Convert target low/high pair representing file offset into the host
2797  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2798  * as the kernel doesn't handle them either.
2799  */
2800 static void target_to_host_low_high(abi_ulong tlow,
2801                                     abi_ulong thigh,
2802                                     unsigned long *hlow,
2803                                     unsigned long *hhigh)
2804 {
2805     uint64_t off = tlow |
2806         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2807         TARGET_LONG_BITS / 2;
2808 
2809     *hlow = off;
2810     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2811 }
2812 
2813 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2814                                 abi_ulong count, int copy)
2815 {
2816     struct target_iovec *target_vec;
2817     struct iovec *vec;
2818     abi_ulong total_len, max_len;
2819     int i;
2820     int err = 0;
2821     bool bad_address = false;
2822 
2823     if (count == 0) {
2824         errno = 0;
2825         return NULL;
2826     }
2827     if (count > IOV_MAX) {
2828         errno = EINVAL;
2829         return NULL;
2830     }
2831 
2832     vec = g_try_new0(struct iovec, count);
2833     if (vec == NULL) {
2834         errno = ENOMEM;
2835         return NULL;
2836     }
2837 
2838     target_vec = lock_user(VERIFY_READ, target_addr,
2839                            count * sizeof(struct target_iovec), 1);
2840     if (target_vec == NULL) {
2841         err = EFAULT;
2842         goto fail2;
2843     }
2844 
2845     /* ??? If host page size > target page size, this will result in a
2846        value larger than what we can actually support.  */
2847     max_len = 0x7fffffff & TARGET_PAGE_MASK;
2848     total_len = 0;
2849 
2850     for (i = 0; i < count; i++) {
2851         abi_ulong base = tswapal(target_vec[i].iov_base);
2852         abi_long len = tswapal(target_vec[i].iov_len);
2853 
2854         if (len < 0) {
2855             err = EINVAL;
2856             goto fail;
2857         } else if (len == 0) {
2858             /* Zero length pointer is ignored.  */
2859             vec[i].iov_base = 0;
2860         } else {
2861             vec[i].iov_base = lock_user(type, base, len, copy);
2862             /* If the first buffer pointer is bad, this is a fault.  But
2863              * subsequent bad buffers will result in a partial write; this
2864              * is realized by filling the vector with null pointers and
2865              * zero lengths. */
2866             if (!vec[i].iov_base) {
2867                 if (i == 0) {
2868                     err = EFAULT;
2869                     goto fail;
2870                 } else {
2871                     bad_address = true;
2872                 }
2873             }
2874             if (bad_address) {
2875                 len = 0;
2876             }
2877             if (len > max_len - total_len) {
2878                 len = max_len - total_len;
2879             }
2880         }
2881         vec[i].iov_len = len;
2882         total_len += len;
2883     }
2884 
2885     unlock_user(target_vec, target_addr, 0);
2886     return vec;
2887 
2888  fail:
2889     while (--i >= 0) {
2890         if (tswapal(target_vec[i].iov_len) > 0) {
2891             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
2892         }
2893     }
2894     unlock_user(target_vec, target_addr, 0);
2895  fail2:
2896     g_free(vec);
2897     errno = err;
2898     return NULL;
2899 }
2900 
2901 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
2902                          abi_ulong count, int copy)
2903 {
2904     struct target_iovec *target_vec;
2905     int i;
2906 
2907     target_vec = lock_user(VERIFY_READ, target_addr,
2908                            count * sizeof(struct target_iovec), 1);
2909     if (target_vec) {
2910         for (i = 0; i < count; i++) {
2911             abi_ulong base = tswapal(target_vec[i].iov_base);
2912             abi_long len = tswapal(target_vec[i].iov_len);
2913             if (len < 0) {
2914                 break;
2915             }
2916             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
2917         }
2918         unlock_user(target_vec, target_addr, 0);
2919     }
2920 
2921     g_free(vec);
2922 }
2923 
2924 static inline int target_to_host_sock_type(int *type)
2925 {
2926     int host_type = 0;
2927     int target_type = *type;
2928 
2929     switch (target_type & TARGET_SOCK_TYPE_MASK) {
2930     case TARGET_SOCK_DGRAM:
2931         host_type = SOCK_DGRAM;
2932         break;
2933     case TARGET_SOCK_STREAM:
2934         host_type = SOCK_STREAM;
2935         break;
2936     default:
2937         host_type = target_type & TARGET_SOCK_TYPE_MASK;
2938         break;
2939     }
2940     if (target_type & TARGET_SOCK_CLOEXEC) {
2941 #if defined(SOCK_CLOEXEC)
2942         host_type |= SOCK_CLOEXEC;
2943 #else
2944         return -TARGET_EINVAL;
2945 #endif
2946     }
2947     if (target_type & TARGET_SOCK_NONBLOCK) {
2948 #if defined(SOCK_NONBLOCK)
2949         host_type |= SOCK_NONBLOCK;
2950 #elif !defined(O_NONBLOCK)
2951         return -TARGET_EINVAL;
2952 #endif
2953     }
2954     *type = host_type;
2955     return 0;
2956 }
2957 
2958 /* Try to emulate socket type flags after socket creation.  */
2959 static int sock_flags_fixup(int fd, int target_type)
2960 {
2961 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
2962     if (target_type & TARGET_SOCK_NONBLOCK) {
2963         int flags = fcntl(fd, F_GETFL);
2964         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
2965             close(fd);
2966             return -TARGET_EINVAL;
2967         }
2968     }
2969 #endif
2970     return fd;
2971 }
2972 
2973 /* do_socket() Must return target values and target errnos. */
2974 static abi_long do_socket(int domain, int type, int protocol)
2975 {
2976     int target_type = type;
2977     int ret;
2978 
2979     ret = target_to_host_sock_type(&type);
2980     if (ret) {
2981         return ret;
2982     }
2983 
2984     if (domain == PF_NETLINK && !(
2985 #ifdef CONFIG_RTNETLINK
2986          protocol == NETLINK_ROUTE ||
2987 #endif
2988          protocol == NETLINK_KOBJECT_UEVENT ||
2989          protocol == NETLINK_AUDIT)) {
2990         return -TARGET_EPFNOSUPPORT;
2991     }
2992 
2993     if (domain == AF_PACKET ||
2994         (domain == AF_INET && type == SOCK_PACKET)) {
2995         protocol = tswap16(protocol);
2996     }
2997 
2998     ret = get_errno(socket(domain, type, protocol));
2999     if (ret >= 0) {
3000         ret = sock_flags_fixup(ret, target_type);
3001         if (type == SOCK_PACKET) {
3002             /* Manage an obsolete case :
3003              * if socket type is SOCK_PACKET, bind by name
3004              */
3005             fd_trans_register(ret, &target_packet_trans);
3006         } else if (domain == PF_NETLINK) {
3007             switch (protocol) {
3008 #ifdef CONFIG_RTNETLINK
3009             case NETLINK_ROUTE:
3010                 fd_trans_register(ret, &target_netlink_route_trans);
3011                 break;
3012 #endif
3013             case NETLINK_KOBJECT_UEVENT:
3014                 /* nothing to do: messages are strings */
3015                 break;
3016             case NETLINK_AUDIT:
3017                 fd_trans_register(ret, &target_netlink_audit_trans);
3018                 break;
3019             default:
3020                 g_assert_not_reached();
3021             }
3022         }
3023     }
3024     return ret;
3025 }
3026 
3027 /* do_bind() Must return target values and target errnos. */
3028 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3029                         socklen_t addrlen)
3030 {
3031     void *addr;
3032     abi_long ret;
3033 
3034     if ((int)addrlen < 0) {
3035         return -TARGET_EINVAL;
3036     }
3037 
3038     addr = alloca(addrlen+1);
3039 
3040     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3041     if (ret)
3042         return ret;
3043 
3044     return get_errno(bind(sockfd, addr, addrlen));
3045 }
3046 
3047 /* do_connect() Must return target values and target errnos. */
3048 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3049                            socklen_t addrlen)
3050 {
3051     void *addr;
3052     abi_long ret;
3053 
3054     if ((int)addrlen < 0) {
3055         return -TARGET_EINVAL;
3056     }
3057 
3058     addr = alloca(addrlen+1);
3059 
3060     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3061     if (ret)
3062         return ret;
3063 
3064     return get_errno(safe_connect(sockfd, addr, addrlen));
3065 }
3066 
3067 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3068 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3069                                       int flags, int send)
3070 {
3071     abi_long ret, len;
3072     struct msghdr msg;
3073     abi_ulong count;
3074     struct iovec *vec;
3075     abi_ulong target_vec;
3076 
3077     if (msgp->msg_name) {
3078         msg.msg_namelen = tswap32(msgp->msg_namelen);
3079         msg.msg_name = alloca(msg.msg_namelen+1);
3080         ret = target_to_host_sockaddr(fd, msg.msg_name,
3081                                       tswapal(msgp->msg_name),
3082                                       msg.msg_namelen);
3083         if (ret == -TARGET_EFAULT) {
3084             /* For connected sockets msg_name and msg_namelen must
3085              * be ignored, so returning EFAULT immediately is wrong.
3086              * Instead, pass a bad msg_name to the host kernel, and
3087              * let it decide whether to return EFAULT or not.
3088              */
3089             msg.msg_name = (void *)-1;
3090         } else if (ret) {
3091             goto out2;
3092         }
3093     } else {
3094         msg.msg_name = NULL;
3095         msg.msg_namelen = 0;
3096     }
3097     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3098     msg.msg_control = alloca(msg.msg_controllen);
3099     memset(msg.msg_control, 0, msg.msg_controllen);
3100 
3101     msg.msg_flags = tswap32(msgp->msg_flags);
3102 
3103     count = tswapal(msgp->msg_iovlen);
3104     target_vec = tswapal(msgp->msg_iov);
3105 
3106     if (count > IOV_MAX) {
3107         /* sendrcvmsg returns a different errno for this condition than
3108          * readv/writev, so we must catch it here before lock_iovec() does.
3109          */
3110         ret = -TARGET_EMSGSIZE;
3111         goto out2;
3112     }
3113 
3114     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3115                      target_vec, count, send);
3116     if (vec == NULL) {
3117         ret = -host_to_target_errno(errno);
3118         goto out2;
3119     }
3120     msg.msg_iovlen = count;
3121     msg.msg_iov = vec;
3122 
3123     if (send) {
3124         if (fd_trans_target_to_host_data(fd)) {
3125             void *host_msg;
3126 
3127             host_msg = g_malloc(msg.msg_iov->iov_len);
3128             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3129             ret = fd_trans_target_to_host_data(fd)(host_msg,
3130                                                    msg.msg_iov->iov_len);
3131             if (ret >= 0) {
3132                 msg.msg_iov->iov_base = host_msg;
3133                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3134             }
3135             g_free(host_msg);
3136         } else {
3137             ret = target_to_host_cmsg(&msg, msgp);
3138             if (ret == 0) {
3139                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3140             }
3141         }
3142     } else {
3143         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3144         if (!is_error(ret)) {
3145             len = ret;
3146             if (fd_trans_host_to_target_data(fd)) {
3147                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3148                                                MIN(msg.msg_iov->iov_len, len));
3149             } else {
3150                 ret = host_to_target_cmsg(msgp, &msg);
3151             }
3152             if (!is_error(ret)) {
3153                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3154                 msgp->msg_flags = tswap32(msg.msg_flags);
3155                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3156                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3157                                     msg.msg_name, msg.msg_namelen);
3158                     if (ret) {
3159                         goto out;
3160                     }
3161                 }
3162 
3163                 ret = len;
3164             }
3165         }
3166     }
3167 
3168 out:
3169     unlock_iovec(vec, target_vec, count, !send);
3170 out2:
3171     return ret;
3172 }
3173 
3174 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3175                                int flags, int send)
3176 {
3177     abi_long ret;
3178     struct target_msghdr *msgp;
3179 
3180     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3181                           msgp,
3182                           target_msg,
3183                           send ? 1 : 0)) {
3184         return -TARGET_EFAULT;
3185     }
3186     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3187     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3188     return ret;
3189 }
3190 
3191 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3192  * so it might not have this *mmsg-specific flag either.
3193  */
3194 #ifndef MSG_WAITFORONE
3195 #define MSG_WAITFORONE 0x10000
3196 #endif
3197 
3198 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3199                                 unsigned int vlen, unsigned int flags,
3200                                 int send)
3201 {
3202     struct target_mmsghdr *mmsgp;
3203     abi_long ret = 0;
3204     int i;
3205 
3206     if (vlen > UIO_MAXIOV) {
3207         vlen = UIO_MAXIOV;
3208     }
3209 
3210     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3211     if (!mmsgp) {
3212         return -TARGET_EFAULT;
3213     }
3214 
3215     for (i = 0; i < vlen; i++) {
3216         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3217         if (is_error(ret)) {
3218             break;
3219         }
3220         mmsgp[i].msg_len = tswap32(ret);
3221         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3222         if (flags & MSG_WAITFORONE) {
3223             flags |= MSG_DONTWAIT;
3224         }
3225     }
3226 
3227     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3228 
3229     /* Return number of datagrams sent if we sent any at all;
3230      * otherwise return the error.
3231      */
3232     if (i) {
3233         return i;
3234     }
3235     return ret;
3236 }
3237 
3238 /* do_accept4() Must return target values and target errnos. */
3239 static abi_long do_accept4(int fd, abi_ulong target_addr,
3240                            abi_ulong target_addrlen_addr, int flags)
3241 {
3242     socklen_t addrlen, ret_addrlen;
3243     void *addr;
3244     abi_long ret;
3245     int host_flags;
3246 
3247     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3248 
3249     if (target_addr == 0) {
3250         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3251     }
3252 
3253     /* linux returns EINVAL if addrlen pointer is invalid */
3254     if (get_user_u32(addrlen, target_addrlen_addr))
3255         return -TARGET_EINVAL;
3256 
3257     if ((int)addrlen < 0) {
3258         return -TARGET_EINVAL;
3259     }
3260 
3261     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3262         return -TARGET_EINVAL;
3263 
3264     addr = alloca(addrlen);
3265 
3266     ret_addrlen = addrlen;
3267     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3268     if (!is_error(ret)) {
3269         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3270         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3271             ret = -TARGET_EFAULT;
3272         }
3273     }
3274     return ret;
3275 }
3276 
3277 /* do_getpeername() Must return target values and target errnos. */
3278 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3279                                abi_ulong target_addrlen_addr)
3280 {
3281     socklen_t addrlen, ret_addrlen;
3282     void *addr;
3283     abi_long ret;
3284 
3285     if (get_user_u32(addrlen, target_addrlen_addr))
3286         return -TARGET_EFAULT;
3287 
3288     if ((int)addrlen < 0) {
3289         return -TARGET_EINVAL;
3290     }
3291 
3292     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3293         return -TARGET_EFAULT;
3294 
3295     addr = alloca(addrlen);
3296 
3297     ret_addrlen = addrlen;
3298     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3299     if (!is_error(ret)) {
3300         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3301         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3302             ret = -TARGET_EFAULT;
3303         }
3304     }
3305     return ret;
3306 }
3307 
3308 /* do_getsockname() Must return target values and target errnos. */
3309 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3310                                abi_ulong target_addrlen_addr)
3311 {
3312     socklen_t addrlen, ret_addrlen;
3313     void *addr;
3314     abi_long ret;
3315 
3316     if (get_user_u32(addrlen, target_addrlen_addr))
3317         return -TARGET_EFAULT;
3318 
3319     if ((int)addrlen < 0) {
3320         return -TARGET_EINVAL;
3321     }
3322 
3323     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3324         return -TARGET_EFAULT;
3325 
3326     addr = alloca(addrlen);
3327 
3328     ret_addrlen = addrlen;
3329     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3330     if (!is_error(ret)) {
3331         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3332         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3333             ret = -TARGET_EFAULT;
3334         }
3335     }
3336     return ret;
3337 }
3338 
3339 /* do_socketpair() Must return target values and target errnos. */
3340 static abi_long do_socketpair(int domain, int type, int protocol,
3341                               abi_ulong target_tab_addr)
3342 {
3343     int tab[2];
3344     abi_long ret;
3345 
3346     target_to_host_sock_type(&type);
3347 
3348     ret = get_errno(socketpair(domain, type, protocol, tab));
3349     if (!is_error(ret)) {
3350         if (put_user_s32(tab[0], target_tab_addr)
3351             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3352             ret = -TARGET_EFAULT;
3353     }
3354     return ret;
3355 }
3356 
3357 /* do_sendto() Must return target values and target errnos. */
3358 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3359                           abi_ulong target_addr, socklen_t addrlen)
3360 {
3361     void *addr;
3362     void *host_msg;
3363     void *copy_msg = NULL;
3364     abi_long ret;
3365 
3366     if ((int)addrlen < 0) {
3367         return -TARGET_EINVAL;
3368     }
3369 
3370     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3371     if (!host_msg)
3372         return -TARGET_EFAULT;
3373     if (fd_trans_target_to_host_data(fd)) {
3374         copy_msg = host_msg;
3375         host_msg = g_malloc(len);
3376         memcpy(host_msg, copy_msg, len);
3377         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3378         if (ret < 0) {
3379             goto fail;
3380         }
3381     }
3382     if (target_addr) {
3383         addr = alloca(addrlen+1);
3384         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3385         if (ret) {
3386             goto fail;
3387         }
3388         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3389     } else {
3390         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3391     }
3392 fail:
3393     if (copy_msg) {
3394         g_free(host_msg);
3395         host_msg = copy_msg;
3396     }
3397     unlock_user(host_msg, msg, 0);
3398     return ret;
3399 }
3400 
3401 /* do_recvfrom() Must return target values and target errnos. */
3402 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3403                             abi_ulong target_addr,
3404                             abi_ulong target_addrlen)
3405 {
3406     socklen_t addrlen, ret_addrlen;
3407     void *addr;
3408     void *host_msg;
3409     abi_long ret;
3410 
3411     host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3412     if (!host_msg)
3413         return -TARGET_EFAULT;
3414     if (target_addr) {
3415         if (get_user_u32(addrlen, target_addrlen)) {
3416             ret = -TARGET_EFAULT;
3417             goto fail;
3418         }
3419         if ((int)addrlen < 0) {
3420             ret = -TARGET_EINVAL;
3421             goto fail;
3422         }
3423         addr = alloca(addrlen);
3424         ret_addrlen = addrlen;
3425         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3426                                       addr, &ret_addrlen));
3427     } else {
3428         addr = NULL; /* To keep compiler quiet.  */
3429         addrlen = 0; /* To keep compiler quiet.  */
3430         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3431     }
3432     if (!is_error(ret)) {
3433         if (fd_trans_host_to_target_data(fd)) {
3434             abi_long trans;
3435             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3436             if (is_error(trans)) {
3437                 ret = trans;
3438                 goto fail;
3439             }
3440         }
3441         if (target_addr) {
3442             host_to_target_sockaddr(target_addr, addr,
3443                                     MIN(addrlen, ret_addrlen));
3444             if (put_user_u32(ret_addrlen, target_addrlen)) {
3445                 ret = -TARGET_EFAULT;
3446                 goto fail;
3447             }
3448         }
3449         unlock_user(host_msg, msg, len);
3450     } else {
3451 fail:
3452         unlock_user(host_msg, msg, 0);
3453     }
3454     return ret;
3455 }
3456 
3457 #ifdef TARGET_NR_socketcall
3458 /* do_socketcall() must return target values and target errnos. */
3459 static abi_long do_socketcall(int num, abi_ulong vptr)
3460 {
3461     static const unsigned nargs[] = { /* number of arguments per operation */
3462         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3463         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3464         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3465         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3466         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3467         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3468         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3469         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3470         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3471         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3472         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3473         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3474         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3475         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3476         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3477         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3478         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3479         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3480         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3481         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3482     };
3483     abi_long a[6]; /* max 6 args */
3484     unsigned i;
3485 
3486     /* check the range of the first argument num */
3487     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3488     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3489         return -TARGET_EINVAL;
3490     }
3491     /* ensure we have space for args */
3492     if (nargs[num] > ARRAY_SIZE(a)) {
3493         return -TARGET_EINVAL;
3494     }
3495     /* collect the arguments in a[] according to nargs[] */
3496     for (i = 0; i < nargs[num]; ++i) {
3497         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3498             return -TARGET_EFAULT;
3499         }
3500     }
3501     /* now when we have the args, invoke the appropriate underlying function */
3502     switch (num) {
3503     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3504         return do_socket(a[0], a[1], a[2]);
3505     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3506         return do_bind(a[0], a[1], a[2]);
3507     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3508         return do_connect(a[0], a[1], a[2]);
3509     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3510         return get_errno(listen(a[0], a[1]));
3511     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3512         return do_accept4(a[0], a[1], a[2], 0);
3513     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3514         return do_getsockname(a[0], a[1], a[2]);
3515     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3516         return do_getpeername(a[0], a[1], a[2]);
3517     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3518         return do_socketpair(a[0], a[1], a[2], a[3]);
3519     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3520         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3521     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3522         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3523     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3524         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3525     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3526         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3527     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3528         return get_errno(shutdown(a[0], a[1]));
3529     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3530         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3531     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3532         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3533     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3534         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3535     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3536         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3537     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3538         return do_accept4(a[0], a[1], a[2], a[3]);
3539     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3540         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3541     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3542         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3543     default:
3544         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3545         return -TARGET_EINVAL;
3546     }
3547 }
3548 #endif
3549 
3550 #define N_SHM_REGIONS	32
3551 
3552 static struct shm_region {
3553     abi_ulong start;
3554     abi_ulong size;
3555     bool in_use;
3556 } shm_regions[N_SHM_REGIONS];
3557 
3558 #ifndef TARGET_SEMID64_DS
3559 /* asm-generic version of this struct */
3560 struct target_semid64_ds
3561 {
3562   struct target_ipc_perm sem_perm;
3563   abi_ulong sem_otime;
3564 #if TARGET_ABI_BITS == 32
3565   abi_ulong __unused1;
3566 #endif
3567   abi_ulong sem_ctime;
3568 #if TARGET_ABI_BITS == 32
3569   abi_ulong __unused2;
3570 #endif
3571   abi_ulong sem_nsems;
3572   abi_ulong __unused3;
3573   abi_ulong __unused4;
3574 };
3575 #endif
3576 
3577 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3578                                                abi_ulong target_addr)
3579 {
3580     struct target_ipc_perm *target_ip;
3581     struct target_semid64_ds *target_sd;
3582 
3583     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3584         return -TARGET_EFAULT;
3585     target_ip = &(target_sd->sem_perm);
3586     host_ip->__key = tswap32(target_ip->__key);
3587     host_ip->uid = tswap32(target_ip->uid);
3588     host_ip->gid = tswap32(target_ip->gid);
3589     host_ip->cuid = tswap32(target_ip->cuid);
3590     host_ip->cgid = tswap32(target_ip->cgid);
3591 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3592     host_ip->mode = tswap32(target_ip->mode);
3593 #else
3594     host_ip->mode = tswap16(target_ip->mode);
3595 #endif
3596 #if defined(TARGET_PPC)
3597     host_ip->__seq = tswap32(target_ip->__seq);
3598 #else
3599     host_ip->__seq = tswap16(target_ip->__seq);
3600 #endif
3601     unlock_user_struct(target_sd, target_addr, 0);
3602     return 0;
3603 }
3604 
3605 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3606                                                struct ipc_perm *host_ip)
3607 {
3608     struct target_ipc_perm *target_ip;
3609     struct target_semid64_ds *target_sd;
3610 
3611     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3612         return -TARGET_EFAULT;
3613     target_ip = &(target_sd->sem_perm);
3614     target_ip->__key = tswap32(host_ip->__key);
3615     target_ip->uid = tswap32(host_ip->uid);
3616     target_ip->gid = tswap32(host_ip->gid);
3617     target_ip->cuid = tswap32(host_ip->cuid);
3618     target_ip->cgid = tswap32(host_ip->cgid);
3619 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3620     target_ip->mode = tswap32(host_ip->mode);
3621 #else
3622     target_ip->mode = tswap16(host_ip->mode);
3623 #endif
3624 #if defined(TARGET_PPC)
3625     target_ip->__seq = tswap32(host_ip->__seq);
3626 #else
3627     target_ip->__seq = tswap16(host_ip->__seq);
3628 #endif
3629     unlock_user_struct(target_sd, target_addr, 1);
3630     return 0;
3631 }
3632 
3633 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3634                                                abi_ulong target_addr)
3635 {
3636     struct target_semid64_ds *target_sd;
3637 
3638     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3639         return -TARGET_EFAULT;
3640     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3641         return -TARGET_EFAULT;
3642     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3643     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3644     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3645     unlock_user_struct(target_sd, target_addr, 0);
3646     return 0;
3647 }
3648 
3649 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3650                                                struct semid_ds *host_sd)
3651 {
3652     struct target_semid64_ds *target_sd;
3653 
3654     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3655         return -TARGET_EFAULT;
3656     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3657         return -TARGET_EFAULT;
3658     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3659     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3660     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3661     unlock_user_struct(target_sd, target_addr, 1);
3662     return 0;
3663 }
3664 
3665 struct target_seminfo {
3666     int semmap;
3667     int semmni;
3668     int semmns;
3669     int semmnu;
3670     int semmsl;
3671     int semopm;
3672     int semume;
3673     int semusz;
3674     int semvmx;
3675     int semaem;
3676 };
3677 
3678 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3679                                               struct seminfo *host_seminfo)
3680 {
3681     struct target_seminfo *target_seminfo;
3682     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3683         return -TARGET_EFAULT;
3684     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3685     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3686     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3687     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3688     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3689     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3690     __put_user(host_seminfo->semume, &target_seminfo->semume);
3691     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3692     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3693     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3694     unlock_user_struct(target_seminfo, target_addr, 1);
3695     return 0;
3696 }
3697 
3698 union semun {
3699 	int val;
3700 	struct semid_ds *buf;
3701 	unsigned short *array;
3702 	struct seminfo *__buf;
3703 };
3704 
3705 union target_semun {
3706 	int val;
3707 	abi_ulong buf;
3708 	abi_ulong array;
3709 	abi_ulong __buf;
3710 };
3711 
3712 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3713                                                abi_ulong target_addr)
3714 {
3715     int nsems;
3716     unsigned short *array;
3717     union semun semun;
3718     struct semid_ds semid_ds;
3719     int i, ret;
3720 
3721     semun.buf = &semid_ds;
3722 
3723     ret = semctl(semid, 0, IPC_STAT, semun);
3724     if (ret == -1)
3725         return get_errno(ret);
3726 
3727     nsems = semid_ds.sem_nsems;
3728 
3729     *host_array = g_try_new(unsigned short, nsems);
3730     if (!*host_array) {
3731         return -TARGET_ENOMEM;
3732     }
3733     array = lock_user(VERIFY_READ, target_addr,
3734                       nsems*sizeof(unsigned short), 1);
3735     if (!array) {
3736         g_free(*host_array);
3737         return -TARGET_EFAULT;
3738     }
3739 
3740     for(i=0; i<nsems; i++) {
3741         __get_user((*host_array)[i], &array[i]);
3742     }
3743     unlock_user(array, target_addr, 0);
3744 
3745     return 0;
3746 }
3747 
3748 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3749                                                unsigned short **host_array)
3750 {
3751     int nsems;
3752     unsigned short *array;
3753     union semun semun;
3754     struct semid_ds semid_ds;
3755     int i, ret;
3756 
3757     semun.buf = &semid_ds;
3758 
3759     ret = semctl(semid, 0, IPC_STAT, semun);
3760     if (ret == -1)
3761         return get_errno(ret);
3762 
3763     nsems = semid_ds.sem_nsems;
3764 
3765     array = lock_user(VERIFY_WRITE, target_addr,
3766                       nsems*sizeof(unsigned short), 0);
3767     if (!array)
3768         return -TARGET_EFAULT;
3769 
3770     for(i=0; i<nsems; i++) {
3771         __put_user((*host_array)[i], &array[i]);
3772     }
3773     g_free(*host_array);
3774     unlock_user(array, target_addr, 1);
3775 
3776     return 0;
3777 }
3778 
3779 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3780                                  abi_ulong target_arg)
3781 {
3782     union target_semun target_su = { .buf = target_arg };
3783     union semun arg;
3784     struct semid_ds dsarg;
3785     unsigned short *array = NULL;
3786     struct seminfo seminfo;
3787     abi_long ret = -TARGET_EINVAL;
3788     abi_long err;
3789     cmd &= 0xff;
3790 
3791     switch( cmd ) {
3792 	case GETVAL:
3793 	case SETVAL:
3794             /* In 64 bit cross-endian situations, we will erroneously pick up
3795              * the wrong half of the union for the "val" element.  To rectify
3796              * this, the entire 8-byte structure is byteswapped, followed by
3797 	     * a swap of the 4 byte val field. In other cases, the data is
3798 	     * already in proper host byte order. */
3799 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3800 		target_su.buf = tswapal(target_su.buf);
3801 		arg.val = tswap32(target_su.val);
3802 	    } else {
3803 		arg.val = target_su.val;
3804 	    }
3805             ret = get_errno(semctl(semid, semnum, cmd, arg));
3806             break;
3807 	case GETALL:
3808 	case SETALL:
3809             err = target_to_host_semarray(semid, &array, target_su.array);
3810             if (err)
3811                 return err;
3812             arg.array = array;
3813             ret = get_errno(semctl(semid, semnum, cmd, arg));
3814             err = host_to_target_semarray(semid, target_su.array, &array);
3815             if (err)
3816                 return err;
3817             break;
3818 	case IPC_STAT:
3819 	case IPC_SET:
3820 	case SEM_STAT:
3821             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3822             if (err)
3823                 return err;
3824             arg.buf = &dsarg;
3825             ret = get_errno(semctl(semid, semnum, cmd, arg));
3826             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3827             if (err)
3828                 return err;
3829             break;
3830 	case IPC_INFO:
3831 	case SEM_INFO:
3832             arg.__buf = &seminfo;
3833             ret = get_errno(semctl(semid, semnum, cmd, arg));
3834             err = host_to_target_seminfo(target_su.__buf, &seminfo);
3835             if (err)
3836                 return err;
3837             break;
3838 	case IPC_RMID:
3839 	case GETPID:
3840 	case GETNCNT:
3841 	case GETZCNT:
3842             ret = get_errno(semctl(semid, semnum, cmd, NULL));
3843             break;
3844     }
3845 
3846     return ret;
3847 }
3848 
3849 struct target_sembuf {
3850     unsigned short sem_num;
3851     short sem_op;
3852     short sem_flg;
3853 };
3854 
3855 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
3856                                              abi_ulong target_addr,
3857                                              unsigned nsops)
3858 {
3859     struct target_sembuf *target_sembuf;
3860     int i;
3861 
3862     target_sembuf = lock_user(VERIFY_READ, target_addr,
3863                               nsops*sizeof(struct target_sembuf), 1);
3864     if (!target_sembuf)
3865         return -TARGET_EFAULT;
3866 
3867     for(i=0; i<nsops; i++) {
3868         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
3869         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
3870         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
3871     }
3872 
3873     unlock_user(target_sembuf, target_addr, 0);
3874 
3875     return 0;
3876 }
3877 
3878 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
3879 {
3880     struct sembuf sops[nsops];
3881     abi_long ret;
3882 
3883     if (target_to_host_sembuf(sops, ptr, nsops))
3884         return -TARGET_EFAULT;
3885 
3886     ret = -TARGET_ENOSYS;
3887 #ifdef __NR_semtimedop
3888     ret = get_errno(safe_semtimedop(semid, sops, nsops, NULL));
3889 #endif
3890 #ifdef __NR_ipc
3891     if (ret == -TARGET_ENOSYS) {
3892         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, nsops, 0, sops, 0));
3893     }
3894 #endif
3895     return ret;
3896 }
3897 
3898 struct target_msqid_ds
3899 {
3900     struct target_ipc_perm msg_perm;
3901     abi_ulong msg_stime;
3902 #if TARGET_ABI_BITS == 32
3903     abi_ulong __unused1;
3904 #endif
3905     abi_ulong msg_rtime;
3906 #if TARGET_ABI_BITS == 32
3907     abi_ulong __unused2;
3908 #endif
3909     abi_ulong msg_ctime;
3910 #if TARGET_ABI_BITS == 32
3911     abi_ulong __unused3;
3912 #endif
3913     abi_ulong __msg_cbytes;
3914     abi_ulong msg_qnum;
3915     abi_ulong msg_qbytes;
3916     abi_ulong msg_lspid;
3917     abi_ulong msg_lrpid;
3918     abi_ulong __unused4;
3919     abi_ulong __unused5;
3920 };
3921 
3922 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
3923                                                abi_ulong target_addr)
3924 {
3925     struct target_msqid_ds *target_md;
3926 
3927     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
3928         return -TARGET_EFAULT;
3929     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
3930         return -TARGET_EFAULT;
3931     host_md->msg_stime = tswapal(target_md->msg_stime);
3932     host_md->msg_rtime = tswapal(target_md->msg_rtime);
3933     host_md->msg_ctime = tswapal(target_md->msg_ctime);
3934     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
3935     host_md->msg_qnum = tswapal(target_md->msg_qnum);
3936     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
3937     host_md->msg_lspid = tswapal(target_md->msg_lspid);
3938     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
3939     unlock_user_struct(target_md, target_addr, 0);
3940     return 0;
3941 }
3942 
3943 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
3944                                                struct msqid_ds *host_md)
3945 {
3946     struct target_msqid_ds *target_md;
3947 
3948     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
3949         return -TARGET_EFAULT;
3950     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
3951         return -TARGET_EFAULT;
3952     target_md->msg_stime = tswapal(host_md->msg_stime);
3953     target_md->msg_rtime = tswapal(host_md->msg_rtime);
3954     target_md->msg_ctime = tswapal(host_md->msg_ctime);
3955     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
3956     target_md->msg_qnum = tswapal(host_md->msg_qnum);
3957     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
3958     target_md->msg_lspid = tswapal(host_md->msg_lspid);
3959     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
3960     unlock_user_struct(target_md, target_addr, 1);
3961     return 0;
3962 }
3963 
3964 struct target_msginfo {
3965     int msgpool;
3966     int msgmap;
3967     int msgmax;
3968     int msgmnb;
3969     int msgmni;
3970     int msgssz;
3971     int msgtql;
3972     unsigned short int msgseg;
3973 };
3974 
3975 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
3976                                               struct msginfo *host_msginfo)
3977 {
3978     struct target_msginfo *target_msginfo;
3979     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
3980         return -TARGET_EFAULT;
3981     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
3982     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
3983     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
3984     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
3985     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
3986     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
3987     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
3988     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
3989     unlock_user_struct(target_msginfo, target_addr, 1);
3990     return 0;
3991 }
3992 
3993 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
3994 {
3995     struct msqid_ds dsarg;
3996     struct msginfo msginfo;
3997     abi_long ret = -TARGET_EINVAL;
3998 
3999     cmd &= 0xff;
4000 
4001     switch (cmd) {
4002     case IPC_STAT:
4003     case IPC_SET:
4004     case MSG_STAT:
4005         if (target_to_host_msqid_ds(&dsarg,ptr))
4006             return -TARGET_EFAULT;
4007         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4008         if (host_to_target_msqid_ds(ptr,&dsarg))
4009             return -TARGET_EFAULT;
4010         break;
4011     case IPC_RMID:
4012         ret = get_errno(msgctl(msgid, cmd, NULL));
4013         break;
4014     case IPC_INFO:
4015     case MSG_INFO:
4016         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4017         if (host_to_target_msginfo(ptr, &msginfo))
4018             return -TARGET_EFAULT;
4019         break;
4020     }
4021 
4022     return ret;
4023 }
4024 
4025 struct target_msgbuf {
4026     abi_long mtype;
4027     char	mtext[1];
4028 };
4029 
4030 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4031                                  ssize_t msgsz, int msgflg)
4032 {
4033     struct target_msgbuf *target_mb;
4034     struct msgbuf *host_mb;
4035     abi_long ret = 0;
4036 
4037     if (msgsz < 0) {
4038         return -TARGET_EINVAL;
4039     }
4040 
4041     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4042         return -TARGET_EFAULT;
4043     host_mb = g_try_malloc(msgsz + sizeof(long));
4044     if (!host_mb) {
4045         unlock_user_struct(target_mb, msgp, 0);
4046         return -TARGET_ENOMEM;
4047     }
4048     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4049     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4050     ret = -TARGET_ENOSYS;
4051 #ifdef __NR_msgsnd
4052     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4053 #endif
4054 #ifdef __NR_ipc
4055     if (ret == -TARGET_ENOSYS) {
4056         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4057                                  host_mb, 0));
4058     }
4059 #endif
4060     g_free(host_mb);
4061     unlock_user_struct(target_mb, msgp, 0);
4062 
4063     return ret;
4064 }
4065 
4066 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4067                                  ssize_t msgsz, abi_long msgtyp,
4068                                  int msgflg)
4069 {
4070     struct target_msgbuf *target_mb;
4071     char *target_mtext;
4072     struct msgbuf *host_mb;
4073     abi_long ret = 0;
4074 
4075     if (msgsz < 0) {
4076         return -TARGET_EINVAL;
4077     }
4078 
4079     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4080         return -TARGET_EFAULT;
4081 
4082     host_mb = g_try_malloc(msgsz + sizeof(long));
4083     if (!host_mb) {
4084         ret = -TARGET_ENOMEM;
4085         goto end;
4086     }
4087     ret = -TARGET_ENOSYS;
4088 #ifdef __NR_msgrcv
4089     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4090 #endif
4091 #ifdef __NR_ipc
4092     if (ret == -TARGET_ENOSYS) {
4093         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4094                         msgflg, host_mb, msgtyp));
4095     }
4096 #endif
4097 
4098     if (ret > 0) {
4099         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4100         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4101         if (!target_mtext) {
4102             ret = -TARGET_EFAULT;
4103             goto end;
4104         }
4105         memcpy(target_mb->mtext, host_mb->mtext, ret);
4106         unlock_user(target_mtext, target_mtext_addr, ret);
4107     }
4108 
4109     target_mb->mtype = tswapal(host_mb->mtype);
4110 
4111 end:
4112     if (target_mb)
4113         unlock_user_struct(target_mb, msgp, 1);
4114     g_free(host_mb);
4115     return ret;
4116 }
4117 
4118 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4119                                                abi_ulong target_addr)
4120 {
4121     struct target_shmid_ds *target_sd;
4122 
4123     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4124         return -TARGET_EFAULT;
4125     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4126         return -TARGET_EFAULT;
4127     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4128     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4129     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4130     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4131     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4132     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4133     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4134     unlock_user_struct(target_sd, target_addr, 0);
4135     return 0;
4136 }
4137 
4138 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4139                                                struct shmid_ds *host_sd)
4140 {
4141     struct target_shmid_ds *target_sd;
4142 
4143     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4144         return -TARGET_EFAULT;
4145     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4146         return -TARGET_EFAULT;
4147     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4148     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4149     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4150     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4151     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4152     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4153     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4154     unlock_user_struct(target_sd, target_addr, 1);
4155     return 0;
4156 }
4157 
4158 struct  target_shminfo {
4159     abi_ulong shmmax;
4160     abi_ulong shmmin;
4161     abi_ulong shmmni;
4162     abi_ulong shmseg;
4163     abi_ulong shmall;
4164 };
4165 
4166 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4167                                               struct shminfo *host_shminfo)
4168 {
4169     struct target_shminfo *target_shminfo;
4170     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4171         return -TARGET_EFAULT;
4172     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4173     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4174     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4175     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4176     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4177     unlock_user_struct(target_shminfo, target_addr, 1);
4178     return 0;
4179 }
4180 
4181 struct target_shm_info {
4182     int used_ids;
4183     abi_ulong shm_tot;
4184     abi_ulong shm_rss;
4185     abi_ulong shm_swp;
4186     abi_ulong swap_attempts;
4187     abi_ulong swap_successes;
4188 };
4189 
4190 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4191                                                struct shm_info *host_shm_info)
4192 {
4193     struct target_shm_info *target_shm_info;
4194     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4195         return -TARGET_EFAULT;
4196     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4197     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4198     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4199     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4200     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4201     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4202     unlock_user_struct(target_shm_info, target_addr, 1);
4203     return 0;
4204 }
4205 
4206 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4207 {
4208     struct shmid_ds dsarg;
4209     struct shminfo shminfo;
4210     struct shm_info shm_info;
4211     abi_long ret = -TARGET_EINVAL;
4212 
4213     cmd &= 0xff;
4214 
4215     switch(cmd) {
4216     case IPC_STAT:
4217     case IPC_SET:
4218     case SHM_STAT:
4219         if (target_to_host_shmid_ds(&dsarg, buf))
4220             return -TARGET_EFAULT;
4221         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4222         if (host_to_target_shmid_ds(buf, &dsarg))
4223             return -TARGET_EFAULT;
4224         break;
4225     case IPC_INFO:
4226         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4227         if (host_to_target_shminfo(buf, &shminfo))
4228             return -TARGET_EFAULT;
4229         break;
4230     case SHM_INFO:
4231         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4232         if (host_to_target_shm_info(buf, &shm_info))
4233             return -TARGET_EFAULT;
4234         break;
4235     case IPC_RMID:
4236     case SHM_LOCK:
4237     case SHM_UNLOCK:
4238         ret = get_errno(shmctl(shmid, cmd, NULL));
4239         break;
4240     }
4241 
4242     return ret;
4243 }
4244 
4245 #ifndef TARGET_FORCE_SHMLBA
4246 /* For most architectures, SHMLBA is the same as the page size;
4247  * some architectures have larger values, in which case they should
4248  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4249  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4250  * and defining its own value for SHMLBA.
4251  *
4252  * The kernel also permits SHMLBA to be set by the architecture to a
4253  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4254  * this means that addresses are rounded to the large size if
4255  * SHM_RND is set but addresses not aligned to that size are not rejected
4256  * as long as they are at least page-aligned. Since the only architecture
4257  * which uses this is ia64 this code doesn't provide for that oddity.
4258  */
4259 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4260 {
4261     return TARGET_PAGE_SIZE;
4262 }
4263 #endif
4264 
4265 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4266                                  int shmid, abi_ulong shmaddr, int shmflg)
4267 {
4268     abi_long raddr;
4269     void *host_raddr;
4270     struct shmid_ds shm_info;
4271     int i,ret;
4272     abi_ulong shmlba;
4273 
4274     /* find out the length of the shared memory segment */
4275     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4276     if (is_error(ret)) {
4277         /* can't get length, bail out */
4278         return ret;
4279     }
4280 
4281     shmlba = target_shmlba(cpu_env);
4282 
4283     if (shmaddr & (shmlba - 1)) {
4284         if (shmflg & SHM_RND) {
4285             shmaddr &= ~(shmlba - 1);
4286         } else {
4287             return -TARGET_EINVAL;
4288         }
4289     }
4290     if (!guest_range_valid(shmaddr, shm_info.shm_segsz)) {
4291         return -TARGET_EINVAL;
4292     }
4293 
4294     mmap_lock();
4295 
4296     if (shmaddr)
4297         host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
4298     else {
4299         abi_ulong mmap_start;
4300 
4301         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4302         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4303 
4304         if (mmap_start == -1) {
4305             errno = ENOMEM;
4306             host_raddr = (void *)-1;
4307         } else
4308             host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
4309     }
4310 
4311     if (host_raddr == (void *)-1) {
4312         mmap_unlock();
4313         return get_errno((long)host_raddr);
4314     }
4315     raddr=h2g((unsigned long)host_raddr);
4316 
4317     page_set_flags(raddr, raddr + shm_info.shm_segsz,
4318                    PAGE_VALID | PAGE_READ |
4319                    ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
4320 
4321     for (i = 0; i < N_SHM_REGIONS; i++) {
4322         if (!shm_regions[i].in_use) {
4323             shm_regions[i].in_use = true;
4324             shm_regions[i].start = raddr;
4325             shm_regions[i].size = shm_info.shm_segsz;
4326             break;
4327         }
4328     }
4329 
4330     mmap_unlock();
4331     return raddr;
4332 
4333 }
4334 
4335 static inline abi_long do_shmdt(abi_ulong shmaddr)
4336 {
4337     int i;
4338     abi_long rv;
4339 
4340     mmap_lock();
4341 
4342     for (i = 0; i < N_SHM_REGIONS; ++i) {
4343         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4344             shm_regions[i].in_use = false;
4345             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4346             break;
4347         }
4348     }
4349     rv = get_errno(shmdt(g2h(shmaddr)));
4350 
4351     mmap_unlock();
4352 
4353     return rv;
4354 }
4355 
4356 #ifdef TARGET_NR_ipc
4357 /* ??? This only works with linear mappings.  */
4358 /* do_ipc() must return target values and target errnos. */
4359 static abi_long do_ipc(CPUArchState *cpu_env,
4360                        unsigned int call, abi_long first,
4361                        abi_long second, abi_long third,
4362                        abi_long ptr, abi_long fifth)
4363 {
4364     int version;
4365     abi_long ret = 0;
4366 
4367     version = call >> 16;
4368     call &= 0xffff;
4369 
4370     switch (call) {
4371     case IPCOP_semop:
4372         ret = do_semop(first, ptr, second);
4373         break;
4374 
4375     case IPCOP_semget:
4376         ret = get_errno(semget(first, second, third));
4377         break;
4378 
4379     case IPCOP_semctl: {
4380         /* The semun argument to semctl is passed by value, so dereference the
4381          * ptr argument. */
4382         abi_ulong atptr;
4383         get_user_ual(atptr, ptr);
4384         ret = do_semctl(first, second, third, atptr);
4385         break;
4386     }
4387 
4388     case IPCOP_msgget:
4389         ret = get_errno(msgget(first, second));
4390         break;
4391 
4392     case IPCOP_msgsnd:
4393         ret = do_msgsnd(first, ptr, second, third);
4394         break;
4395 
4396     case IPCOP_msgctl:
4397         ret = do_msgctl(first, second, ptr);
4398         break;
4399 
4400     case IPCOP_msgrcv:
4401         switch (version) {
4402         case 0:
4403             {
4404                 struct target_ipc_kludge {
4405                     abi_long msgp;
4406                     abi_long msgtyp;
4407                 } *tmp;
4408 
4409                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4410                     ret = -TARGET_EFAULT;
4411                     break;
4412                 }
4413 
4414                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4415 
4416                 unlock_user_struct(tmp, ptr, 0);
4417                 break;
4418             }
4419         default:
4420             ret = do_msgrcv(first, ptr, second, fifth, third);
4421         }
4422         break;
4423 
4424     case IPCOP_shmat:
4425         switch (version) {
4426         default:
4427         {
4428             abi_ulong raddr;
4429             raddr = do_shmat(cpu_env, first, ptr, second);
4430             if (is_error(raddr))
4431                 return get_errno(raddr);
4432             if (put_user_ual(raddr, third))
4433                 return -TARGET_EFAULT;
4434             break;
4435         }
4436         case 1:
4437             ret = -TARGET_EINVAL;
4438             break;
4439         }
4440 	break;
4441     case IPCOP_shmdt:
4442         ret = do_shmdt(ptr);
4443 	break;
4444 
4445     case IPCOP_shmget:
4446 	/* IPC_* flag values are the same on all linux platforms */
4447 	ret = get_errno(shmget(first, second, third));
4448 	break;
4449 
4450 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4451     case IPCOP_shmctl:
4452         ret = do_shmctl(first, second, ptr);
4453         break;
4454     default:
4455         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4456                       call, version);
4457 	ret = -TARGET_ENOSYS;
4458 	break;
4459     }
4460     return ret;
4461 }
4462 #endif
4463 
4464 /* kernel structure types definitions */
4465 
4466 #define STRUCT(name, ...) STRUCT_ ## name,
4467 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4468 enum {
4469 #include "syscall_types.h"
4470 STRUCT_MAX
4471 };
4472 #undef STRUCT
4473 #undef STRUCT_SPECIAL
4474 
4475 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4476 #define STRUCT_SPECIAL(name)
4477 #include "syscall_types.h"
4478 #undef STRUCT
4479 #undef STRUCT_SPECIAL
4480 
4481 typedef struct IOCTLEntry IOCTLEntry;
4482 
4483 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
4484                              int fd, int cmd, abi_long arg);
4485 
4486 struct IOCTLEntry {
4487     int target_cmd;
4488     unsigned int host_cmd;
4489     const char *name;
4490     int access;
4491     do_ioctl_fn *do_ioctl;
4492     const argtype arg_type[5];
4493 };
4494 
4495 #define IOC_R 0x0001
4496 #define IOC_W 0x0002
4497 #define IOC_RW (IOC_R | IOC_W)
4498 
4499 #define MAX_STRUCT_SIZE 4096
4500 
4501 #ifdef CONFIG_FIEMAP
4502 /* So fiemap access checks don't overflow on 32 bit systems.
4503  * This is very slightly smaller than the limit imposed by
4504  * the underlying kernel.
4505  */
4506 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4507                             / sizeof(struct fiemap_extent))
4508 
4509 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4510                                        int fd, int cmd, abi_long arg)
4511 {
4512     /* The parameter for this ioctl is a struct fiemap followed
4513      * by an array of struct fiemap_extent whose size is set
4514      * in fiemap->fm_extent_count. The array is filled in by the
4515      * ioctl.
4516      */
4517     int target_size_in, target_size_out;
4518     struct fiemap *fm;
4519     const argtype *arg_type = ie->arg_type;
4520     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4521     void *argptr, *p;
4522     abi_long ret;
4523     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4524     uint32_t outbufsz;
4525     int free_fm = 0;
4526 
4527     assert(arg_type[0] == TYPE_PTR);
4528     assert(ie->access == IOC_RW);
4529     arg_type++;
4530     target_size_in = thunk_type_size(arg_type, 0);
4531     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4532     if (!argptr) {
4533         return -TARGET_EFAULT;
4534     }
4535     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4536     unlock_user(argptr, arg, 0);
4537     fm = (struct fiemap *)buf_temp;
4538     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4539         return -TARGET_EINVAL;
4540     }
4541 
4542     outbufsz = sizeof (*fm) +
4543         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4544 
4545     if (outbufsz > MAX_STRUCT_SIZE) {
4546         /* We can't fit all the extents into the fixed size buffer.
4547          * Allocate one that is large enough and use it instead.
4548          */
4549         fm = g_try_malloc(outbufsz);
4550         if (!fm) {
4551             return -TARGET_ENOMEM;
4552         }
4553         memcpy(fm, buf_temp, sizeof(struct fiemap));
4554         free_fm = 1;
4555     }
4556     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4557     if (!is_error(ret)) {
4558         target_size_out = target_size_in;
4559         /* An extent_count of 0 means we were only counting the extents
4560          * so there are no structs to copy
4561          */
4562         if (fm->fm_extent_count != 0) {
4563             target_size_out += fm->fm_mapped_extents * extent_size;
4564         }
4565         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4566         if (!argptr) {
4567             ret = -TARGET_EFAULT;
4568         } else {
4569             /* Convert the struct fiemap */
4570             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4571             if (fm->fm_extent_count != 0) {
4572                 p = argptr + target_size_in;
4573                 /* ...and then all the struct fiemap_extents */
4574                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4575                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4576                                   THUNK_TARGET);
4577                     p += extent_size;
4578                 }
4579             }
4580             unlock_user(argptr, arg, target_size_out);
4581         }
4582     }
4583     if (free_fm) {
4584         g_free(fm);
4585     }
4586     return ret;
4587 }
4588 #endif
4589 
4590 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4591                                 int fd, int cmd, abi_long arg)
4592 {
4593     const argtype *arg_type = ie->arg_type;
4594     int target_size;
4595     void *argptr;
4596     int ret;
4597     struct ifconf *host_ifconf;
4598     uint32_t outbufsz;
4599     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4600     int target_ifreq_size;
4601     int nb_ifreq;
4602     int free_buf = 0;
4603     int i;
4604     int target_ifc_len;
4605     abi_long target_ifc_buf;
4606     int host_ifc_len;
4607     char *host_ifc_buf;
4608 
4609     assert(arg_type[0] == TYPE_PTR);
4610     assert(ie->access == IOC_RW);
4611 
4612     arg_type++;
4613     target_size = thunk_type_size(arg_type, 0);
4614 
4615     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4616     if (!argptr)
4617         return -TARGET_EFAULT;
4618     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4619     unlock_user(argptr, arg, 0);
4620 
4621     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4622     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4623     target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
4624 
4625     if (target_ifc_buf != 0) {
4626         target_ifc_len = host_ifconf->ifc_len;
4627         nb_ifreq = target_ifc_len / target_ifreq_size;
4628         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4629 
4630         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4631         if (outbufsz > MAX_STRUCT_SIZE) {
4632             /*
4633              * We can't fit all the extents into the fixed size buffer.
4634              * Allocate one that is large enough and use it instead.
4635              */
4636             host_ifconf = malloc(outbufsz);
4637             if (!host_ifconf) {
4638                 return -TARGET_ENOMEM;
4639             }
4640             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4641             free_buf = 1;
4642         }
4643         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4644 
4645         host_ifconf->ifc_len = host_ifc_len;
4646     } else {
4647       host_ifc_buf = NULL;
4648     }
4649     host_ifconf->ifc_buf = host_ifc_buf;
4650 
4651     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4652     if (!is_error(ret)) {
4653 	/* convert host ifc_len to target ifc_len */
4654 
4655         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4656         target_ifc_len = nb_ifreq * target_ifreq_size;
4657         host_ifconf->ifc_len = target_ifc_len;
4658 
4659 	/* restore target ifc_buf */
4660 
4661         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4662 
4663 	/* copy struct ifconf to target user */
4664 
4665         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4666         if (!argptr)
4667             return -TARGET_EFAULT;
4668         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4669         unlock_user(argptr, arg, target_size);
4670 
4671         if (target_ifc_buf != 0) {
4672             /* copy ifreq[] to target user */
4673             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4674             for (i = 0; i < nb_ifreq ; i++) {
4675                 thunk_convert(argptr + i * target_ifreq_size,
4676                               host_ifc_buf + i * sizeof(struct ifreq),
4677                               ifreq_arg_type, THUNK_TARGET);
4678             }
4679             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4680         }
4681     }
4682 
4683     if (free_buf) {
4684         free(host_ifconf);
4685     }
4686 
4687     return ret;
4688 }
4689 
4690 #if defined(CONFIG_USBFS)
4691 #if HOST_LONG_BITS > 64
4692 #error USBDEVFS thunks do not support >64 bit hosts yet.
4693 #endif
4694 struct live_urb {
4695     uint64_t target_urb_adr;
4696     uint64_t target_buf_adr;
4697     char *target_buf_ptr;
4698     struct usbdevfs_urb host_urb;
4699 };
4700 
4701 static GHashTable *usbdevfs_urb_hashtable(void)
4702 {
4703     static GHashTable *urb_hashtable;
4704 
4705     if (!urb_hashtable) {
4706         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4707     }
4708     return urb_hashtable;
4709 }
4710 
4711 static void urb_hashtable_insert(struct live_urb *urb)
4712 {
4713     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4714     g_hash_table_insert(urb_hashtable, urb, urb);
4715 }
4716 
4717 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4718 {
4719     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4720     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4721 }
4722 
4723 static void urb_hashtable_remove(struct live_urb *urb)
4724 {
4725     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4726     g_hash_table_remove(urb_hashtable, urb);
4727 }
4728 
4729 static abi_long
4730 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4731                           int fd, int cmd, abi_long arg)
4732 {
4733     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4734     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4735     struct live_urb *lurb;
4736     void *argptr;
4737     uint64_t hurb;
4738     int target_size;
4739     uintptr_t target_urb_adr;
4740     abi_long ret;
4741 
4742     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4743 
4744     memset(buf_temp, 0, sizeof(uint64_t));
4745     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4746     if (is_error(ret)) {
4747         return ret;
4748     }
4749 
4750     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4751     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4752     if (!lurb->target_urb_adr) {
4753         return -TARGET_EFAULT;
4754     }
4755     urb_hashtable_remove(lurb);
4756     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4757         lurb->host_urb.buffer_length);
4758     lurb->target_buf_ptr = NULL;
4759 
4760     /* restore the guest buffer pointer */
4761     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4762 
4763     /* update the guest urb struct */
4764     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4765     if (!argptr) {
4766         g_free(lurb);
4767         return -TARGET_EFAULT;
4768     }
4769     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4770     unlock_user(argptr, lurb->target_urb_adr, target_size);
4771 
4772     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4773     /* write back the urb handle */
4774     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4775     if (!argptr) {
4776         g_free(lurb);
4777         return -TARGET_EFAULT;
4778     }
4779 
4780     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4781     target_urb_adr = lurb->target_urb_adr;
4782     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4783     unlock_user(argptr, arg, target_size);
4784 
4785     g_free(lurb);
4786     return ret;
4787 }
4788 
4789 static abi_long
4790 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4791                              uint8_t *buf_temp __attribute__((unused)),
4792                              int fd, int cmd, abi_long arg)
4793 {
4794     struct live_urb *lurb;
4795 
4796     /* map target address back to host URB with metadata. */
4797     lurb = urb_hashtable_lookup(arg);
4798     if (!lurb) {
4799         return -TARGET_EFAULT;
4800     }
4801     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4802 }
4803 
4804 static abi_long
4805 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4806                             int fd, int cmd, abi_long arg)
4807 {
4808     const argtype *arg_type = ie->arg_type;
4809     int target_size;
4810     abi_long ret;
4811     void *argptr;
4812     int rw_dir;
4813     struct live_urb *lurb;
4814 
4815     /*
4816      * each submitted URB needs to map to a unique ID for the
4817      * kernel, and that unique ID needs to be a pointer to
4818      * host memory.  hence, we need to malloc for each URB.
4819      * isochronous transfers have a variable length struct.
4820      */
4821     arg_type++;
4822     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4823 
4824     /* construct host copy of urb and metadata */
4825     lurb = g_try_malloc0(sizeof(struct live_urb));
4826     if (!lurb) {
4827         return -TARGET_ENOMEM;
4828     }
4829 
4830     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4831     if (!argptr) {
4832         g_free(lurb);
4833         return -TARGET_EFAULT;
4834     }
4835     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4836     unlock_user(argptr, arg, 0);
4837 
4838     lurb->target_urb_adr = arg;
4839     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4840 
4841     /* buffer space used depends on endpoint type so lock the entire buffer */
4842     /* control type urbs should check the buffer contents for true direction */
4843     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4844     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4845         lurb->host_urb.buffer_length, 1);
4846     if (lurb->target_buf_ptr == NULL) {
4847         g_free(lurb);
4848         return -TARGET_EFAULT;
4849     }
4850 
4851     /* update buffer pointer in host copy */
4852     lurb->host_urb.buffer = lurb->target_buf_ptr;
4853 
4854     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4855     if (is_error(ret)) {
4856         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4857         g_free(lurb);
4858     } else {
4859         urb_hashtable_insert(lurb);
4860     }
4861 
4862     return ret;
4863 }
4864 #endif /* CONFIG_USBFS */
4865 
4866 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4867                             int cmd, abi_long arg)
4868 {
4869     void *argptr;
4870     struct dm_ioctl *host_dm;
4871     abi_long guest_data;
4872     uint32_t guest_data_size;
4873     int target_size;
4874     const argtype *arg_type = ie->arg_type;
4875     abi_long ret;
4876     void *big_buf = NULL;
4877     char *host_data;
4878 
4879     arg_type++;
4880     target_size = thunk_type_size(arg_type, 0);
4881     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4882     if (!argptr) {
4883         ret = -TARGET_EFAULT;
4884         goto out;
4885     }
4886     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4887     unlock_user(argptr, arg, 0);
4888 
4889     /* buf_temp is too small, so fetch things into a bigger buffer */
4890     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
4891     memcpy(big_buf, buf_temp, target_size);
4892     buf_temp = big_buf;
4893     host_dm = big_buf;
4894 
4895     guest_data = arg + host_dm->data_start;
4896     if ((guest_data - arg) < 0) {
4897         ret = -TARGET_EINVAL;
4898         goto out;
4899     }
4900     guest_data_size = host_dm->data_size - host_dm->data_start;
4901     host_data = (char*)host_dm + host_dm->data_start;
4902 
4903     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
4904     if (!argptr) {
4905         ret = -TARGET_EFAULT;
4906         goto out;
4907     }
4908 
4909     switch (ie->host_cmd) {
4910     case DM_REMOVE_ALL:
4911     case DM_LIST_DEVICES:
4912     case DM_DEV_CREATE:
4913     case DM_DEV_REMOVE:
4914     case DM_DEV_SUSPEND:
4915     case DM_DEV_STATUS:
4916     case DM_DEV_WAIT:
4917     case DM_TABLE_STATUS:
4918     case DM_TABLE_CLEAR:
4919     case DM_TABLE_DEPS:
4920     case DM_LIST_VERSIONS:
4921         /* no input data */
4922         break;
4923     case DM_DEV_RENAME:
4924     case DM_DEV_SET_GEOMETRY:
4925         /* data contains only strings */
4926         memcpy(host_data, argptr, guest_data_size);
4927         break;
4928     case DM_TARGET_MSG:
4929         memcpy(host_data, argptr, guest_data_size);
4930         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
4931         break;
4932     case DM_TABLE_LOAD:
4933     {
4934         void *gspec = argptr;
4935         void *cur_data = host_data;
4936         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
4937         int spec_size = thunk_type_size(arg_type, 0);
4938         int i;
4939 
4940         for (i = 0; i < host_dm->target_count; i++) {
4941             struct dm_target_spec *spec = cur_data;
4942             uint32_t next;
4943             int slen;
4944 
4945             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
4946             slen = strlen((char*)gspec + spec_size) + 1;
4947             next = spec->next;
4948             spec->next = sizeof(*spec) + slen;
4949             strcpy((char*)&spec[1], gspec + spec_size);
4950             gspec += next;
4951             cur_data += spec->next;
4952         }
4953         break;
4954     }
4955     default:
4956         ret = -TARGET_EINVAL;
4957         unlock_user(argptr, guest_data, 0);
4958         goto out;
4959     }
4960     unlock_user(argptr, guest_data, 0);
4961 
4962     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4963     if (!is_error(ret)) {
4964         guest_data = arg + host_dm->data_start;
4965         guest_data_size = host_dm->data_size - host_dm->data_start;
4966         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
4967         switch (ie->host_cmd) {
4968         case DM_REMOVE_ALL:
4969         case DM_DEV_CREATE:
4970         case DM_DEV_REMOVE:
4971         case DM_DEV_RENAME:
4972         case DM_DEV_SUSPEND:
4973         case DM_DEV_STATUS:
4974         case DM_TABLE_LOAD:
4975         case DM_TABLE_CLEAR:
4976         case DM_TARGET_MSG:
4977         case DM_DEV_SET_GEOMETRY:
4978             /* no return data */
4979             break;
4980         case DM_LIST_DEVICES:
4981         {
4982             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
4983             uint32_t remaining_data = guest_data_size;
4984             void *cur_data = argptr;
4985             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
4986             int nl_size = 12; /* can't use thunk_size due to alignment */
4987 
4988             while (1) {
4989                 uint32_t next = nl->next;
4990                 if (next) {
4991                     nl->next = nl_size + (strlen(nl->name) + 1);
4992                 }
4993                 if (remaining_data < nl->next) {
4994                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
4995                     break;
4996                 }
4997                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
4998                 strcpy(cur_data + nl_size, nl->name);
4999                 cur_data += nl->next;
5000                 remaining_data -= nl->next;
5001                 if (!next) {
5002                     break;
5003                 }
5004                 nl = (void*)nl + next;
5005             }
5006             break;
5007         }
5008         case DM_DEV_WAIT:
5009         case DM_TABLE_STATUS:
5010         {
5011             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5012             void *cur_data = argptr;
5013             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5014             int spec_size = thunk_type_size(arg_type, 0);
5015             int i;
5016 
5017             for (i = 0; i < host_dm->target_count; i++) {
5018                 uint32_t next = spec->next;
5019                 int slen = strlen((char*)&spec[1]) + 1;
5020                 spec->next = (cur_data - argptr) + spec_size + slen;
5021                 if (guest_data_size < spec->next) {
5022                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5023                     break;
5024                 }
5025                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5026                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5027                 cur_data = argptr + spec->next;
5028                 spec = (void*)host_dm + host_dm->data_start + next;
5029             }
5030             break;
5031         }
5032         case DM_TABLE_DEPS:
5033         {
5034             void *hdata = (void*)host_dm + host_dm->data_start;
5035             int count = *(uint32_t*)hdata;
5036             uint64_t *hdev = hdata + 8;
5037             uint64_t *gdev = argptr + 8;
5038             int i;
5039 
5040             *(uint32_t*)argptr = tswap32(count);
5041             for (i = 0; i < count; i++) {
5042                 *gdev = tswap64(*hdev);
5043                 gdev++;
5044                 hdev++;
5045             }
5046             break;
5047         }
5048         case DM_LIST_VERSIONS:
5049         {
5050             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5051             uint32_t remaining_data = guest_data_size;
5052             void *cur_data = argptr;
5053             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5054             int vers_size = thunk_type_size(arg_type, 0);
5055 
5056             while (1) {
5057                 uint32_t next = vers->next;
5058                 if (next) {
5059                     vers->next = vers_size + (strlen(vers->name) + 1);
5060                 }
5061                 if (remaining_data < vers->next) {
5062                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5063                     break;
5064                 }
5065                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5066                 strcpy(cur_data + vers_size, vers->name);
5067                 cur_data += vers->next;
5068                 remaining_data -= vers->next;
5069                 if (!next) {
5070                     break;
5071                 }
5072                 vers = (void*)vers + next;
5073             }
5074             break;
5075         }
5076         default:
5077             unlock_user(argptr, guest_data, 0);
5078             ret = -TARGET_EINVAL;
5079             goto out;
5080         }
5081         unlock_user(argptr, guest_data, guest_data_size);
5082 
5083         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5084         if (!argptr) {
5085             ret = -TARGET_EFAULT;
5086             goto out;
5087         }
5088         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5089         unlock_user(argptr, arg, target_size);
5090     }
5091 out:
5092     g_free(big_buf);
5093     return ret;
5094 }
5095 
5096 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5097                                int cmd, abi_long arg)
5098 {
5099     void *argptr;
5100     int target_size;
5101     const argtype *arg_type = ie->arg_type;
5102     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5103     abi_long ret;
5104 
5105     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5106     struct blkpg_partition host_part;
5107 
5108     /* Read and convert blkpg */
5109     arg_type++;
5110     target_size = thunk_type_size(arg_type, 0);
5111     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5112     if (!argptr) {
5113         ret = -TARGET_EFAULT;
5114         goto out;
5115     }
5116     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5117     unlock_user(argptr, arg, 0);
5118 
5119     switch (host_blkpg->op) {
5120     case BLKPG_ADD_PARTITION:
5121     case BLKPG_DEL_PARTITION:
5122         /* payload is struct blkpg_partition */
5123         break;
5124     default:
5125         /* Unknown opcode */
5126         ret = -TARGET_EINVAL;
5127         goto out;
5128     }
5129 
5130     /* Read and convert blkpg->data */
5131     arg = (abi_long)(uintptr_t)host_blkpg->data;
5132     target_size = thunk_type_size(part_arg_type, 0);
5133     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5134     if (!argptr) {
5135         ret = -TARGET_EFAULT;
5136         goto out;
5137     }
5138     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5139     unlock_user(argptr, arg, 0);
5140 
5141     /* Swizzle the data pointer to our local copy and call! */
5142     host_blkpg->data = &host_part;
5143     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5144 
5145 out:
5146     return ret;
5147 }
5148 
5149 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5150                                 int fd, int cmd, abi_long arg)
5151 {
5152     const argtype *arg_type = ie->arg_type;
5153     const StructEntry *se;
5154     const argtype *field_types;
5155     const int *dst_offsets, *src_offsets;
5156     int target_size;
5157     void *argptr;
5158     abi_ulong *target_rt_dev_ptr = NULL;
5159     unsigned long *host_rt_dev_ptr = NULL;
5160     abi_long ret;
5161     int i;
5162 
5163     assert(ie->access == IOC_W);
5164     assert(*arg_type == TYPE_PTR);
5165     arg_type++;
5166     assert(*arg_type == TYPE_STRUCT);
5167     target_size = thunk_type_size(arg_type, 0);
5168     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5169     if (!argptr) {
5170         return -TARGET_EFAULT;
5171     }
5172     arg_type++;
5173     assert(*arg_type == (int)STRUCT_rtentry);
5174     se = struct_entries + *arg_type++;
5175     assert(se->convert[0] == NULL);
5176     /* convert struct here to be able to catch rt_dev string */
5177     field_types = se->field_types;
5178     dst_offsets = se->field_offsets[THUNK_HOST];
5179     src_offsets = se->field_offsets[THUNK_TARGET];
5180     for (i = 0; i < se->nb_fields; i++) {
5181         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5182             assert(*field_types == TYPE_PTRVOID);
5183             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5184             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5185             if (*target_rt_dev_ptr != 0) {
5186                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5187                                                   tswapal(*target_rt_dev_ptr));
5188                 if (!*host_rt_dev_ptr) {
5189                     unlock_user(argptr, arg, 0);
5190                     return -TARGET_EFAULT;
5191                 }
5192             } else {
5193                 *host_rt_dev_ptr = 0;
5194             }
5195             field_types++;
5196             continue;
5197         }
5198         field_types = thunk_convert(buf_temp + dst_offsets[i],
5199                                     argptr + src_offsets[i],
5200                                     field_types, THUNK_HOST);
5201     }
5202     unlock_user(argptr, arg, 0);
5203 
5204     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5205 
5206     assert(host_rt_dev_ptr != NULL);
5207     assert(target_rt_dev_ptr != NULL);
5208     if (*host_rt_dev_ptr != 0) {
5209         unlock_user((void *)*host_rt_dev_ptr,
5210                     *target_rt_dev_ptr, 0);
5211     }
5212     return ret;
5213 }
5214 
5215 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5216                                      int fd, int cmd, abi_long arg)
5217 {
5218     int sig = target_to_host_signal(arg);
5219     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5220 }
5221 
5222 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5223                                     int fd, int cmd, abi_long arg)
5224 {
5225     struct timeval tv;
5226     abi_long ret;
5227 
5228     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5229     if (is_error(ret)) {
5230         return ret;
5231     }
5232 
5233     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5234         if (copy_to_user_timeval(arg, &tv)) {
5235             return -TARGET_EFAULT;
5236         }
5237     } else {
5238         if (copy_to_user_timeval64(arg, &tv)) {
5239             return -TARGET_EFAULT;
5240         }
5241     }
5242 
5243     return ret;
5244 }
5245 
5246 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5247                                       int fd, int cmd, abi_long arg)
5248 {
5249     struct timespec ts;
5250     abi_long ret;
5251 
5252     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5253     if (is_error(ret)) {
5254         return ret;
5255     }
5256 
5257     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5258         if (host_to_target_timespec(arg, &ts)) {
5259             return -TARGET_EFAULT;
5260         }
5261     } else{
5262         if (host_to_target_timespec64(arg, &ts)) {
5263             return -TARGET_EFAULT;
5264         }
5265     }
5266 
5267     return ret;
5268 }
5269 
5270 #ifdef TIOCGPTPEER
5271 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5272                                      int fd, int cmd, abi_long arg)
5273 {
5274     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5275     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5276 }
5277 #endif
5278 
5279 static IOCTLEntry ioctl_entries[] = {
5280 #define IOCTL(cmd, access, ...) \
5281     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5282 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5283     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5284 #define IOCTL_IGNORE(cmd) \
5285     { TARGET_ ## cmd, 0, #cmd },
5286 #include "ioctls.h"
5287     { 0, 0, },
5288 };
5289 
5290 /* ??? Implement proper locking for ioctls.  */
5291 /* do_ioctl() Must return target values and target errnos. */
5292 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5293 {
5294     const IOCTLEntry *ie;
5295     const argtype *arg_type;
5296     abi_long ret;
5297     uint8_t buf_temp[MAX_STRUCT_SIZE];
5298     int target_size;
5299     void *argptr;
5300 
5301     ie = ioctl_entries;
5302     for(;;) {
5303         if (ie->target_cmd == 0) {
5304             qemu_log_mask(
5305                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5306             return -TARGET_ENOSYS;
5307         }
5308         if (ie->target_cmd == cmd)
5309             break;
5310         ie++;
5311     }
5312     arg_type = ie->arg_type;
5313     if (ie->do_ioctl) {
5314         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5315     } else if (!ie->host_cmd) {
5316         /* Some architectures define BSD ioctls in their headers
5317            that are not implemented in Linux.  */
5318         return -TARGET_ENOSYS;
5319     }
5320 
5321     switch(arg_type[0]) {
5322     case TYPE_NULL:
5323         /* no argument */
5324         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5325         break;
5326     case TYPE_PTRVOID:
5327     case TYPE_INT:
5328     case TYPE_LONG:
5329     case TYPE_ULONG:
5330         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5331         break;
5332     case TYPE_PTR:
5333         arg_type++;
5334         target_size = thunk_type_size(arg_type, 0);
5335         switch(ie->access) {
5336         case IOC_R:
5337             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5338             if (!is_error(ret)) {
5339                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5340                 if (!argptr)
5341                     return -TARGET_EFAULT;
5342                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5343                 unlock_user(argptr, arg, target_size);
5344             }
5345             break;
5346         case IOC_W:
5347             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5348             if (!argptr)
5349                 return -TARGET_EFAULT;
5350             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5351             unlock_user(argptr, arg, 0);
5352             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5353             break;
5354         default:
5355         case IOC_RW:
5356             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5357             if (!argptr)
5358                 return -TARGET_EFAULT;
5359             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5360             unlock_user(argptr, arg, 0);
5361             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5362             if (!is_error(ret)) {
5363                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5364                 if (!argptr)
5365                     return -TARGET_EFAULT;
5366                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5367                 unlock_user(argptr, arg, target_size);
5368             }
5369             break;
5370         }
5371         break;
5372     default:
5373         qemu_log_mask(LOG_UNIMP,
5374                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5375                       (long)cmd, arg_type[0]);
5376         ret = -TARGET_ENOSYS;
5377         break;
5378     }
5379     return ret;
5380 }
5381 
5382 static const bitmask_transtbl iflag_tbl[] = {
5383         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5384         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5385         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5386         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5387         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5388         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5389         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5390         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5391         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5392         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5393         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5394         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5395         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5396         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5397         { 0, 0, 0, 0 }
5398 };
5399 
5400 static const bitmask_transtbl oflag_tbl[] = {
5401 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5402 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5403 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5404 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5405 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5406 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5407 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5408 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5409 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5410 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5411 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5412 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5413 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5414 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5415 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5416 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5417 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5418 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5419 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5420 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5421 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5422 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5423 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5424 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5425 	{ 0, 0, 0, 0 }
5426 };
5427 
5428 static const bitmask_transtbl cflag_tbl[] = {
5429 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5430 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5431 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5432 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5433 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5434 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5435 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5436 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5437 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5438 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5439 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5440 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5441 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5442 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5443 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5444 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5445 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5446 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5447 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5448 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5449 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5450 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5451 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5452 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5453 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5454 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5455 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5456 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5457 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5458 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5459 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5460 	{ 0, 0, 0, 0 }
5461 };
5462 
5463 static const bitmask_transtbl lflag_tbl[] = {
5464 	{ TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5465 	{ TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5466 	{ TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5467 	{ TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5468 	{ TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5469 	{ TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5470 	{ TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5471 	{ TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5472 	{ TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5473 	{ TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5474 	{ TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5475 	{ TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5476 	{ TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5477 	{ TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5478 	{ TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5479 	{ 0, 0, 0, 0 }
5480 };
5481 
5482 static void target_to_host_termios (void *dst, const void *src)
5483 {
5484     struct host_termios *host = dst;
5485     const struct target_termios *target = src;
5486 
5487     host->c_iflag =
5488         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5489     host->c_oflag =
5490         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5491     host->c_cflag =
5492         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5493     host->c_lflag =
5494         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5495     host->c_line = target->c_line;
5496 
5497     memset(host->c_cc, 0, sizeof(host->c_cc));
5498     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5499     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5500     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5501     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5502     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5503     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5504     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5505     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5506     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5507     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5508     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5509     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5510     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5511     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5512     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5513     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5514     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5515 }
5516 
5517 static void host_to_target_termios (void *dst, const void *src)
5518 {
5519     struct target_termios *target = dst;
5520     const struct host_termios *host = src;
5521 
5522     target->c_iflag =
5523         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5524     target->c_oflag =
5525         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5526     target->c_cflag =
5527         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5528     target->c_lflag =
5529         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5530     target->c_line = host->c_line;
5531 
5532     memset(target->c_cc, 0, sizeof(target->c_cc));
5533     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5534     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5535     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5536     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5537     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5538     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5539     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5540     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5541     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5542     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5543     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5544     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5545     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5546     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5547     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5548     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5549     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5550 }
5551 
5552 static const StructEntry struct_termios_def = {
5553     .convert = { host_to_target_termios, target_to_host_termios },
5554     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5555     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5556 };
5557 
5558 static bitmask_transtbl mmap_flags_tbl[] = {
5559     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5560     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5561     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5562     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5563       MAP_ANONYMOUS, MAP_ANONYMOUS },
5564     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5565       MAP_GROWSDOWN, MAP_GROWSDOWN },
5566     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5567       MAP_DENYWRITE, MAP_DENYWRITE },
5568     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5569       MAP_EXECUTABLE, MAP_EXECUTABLE },
5570     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5571     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5572       MAP_NORESERVE, MAP_NORESERVE },
5573     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5574     /* MAP_STACK had been ignored by the kernel for quite some time.
5575        Recognize it for the target insofar as we do not want to pass
5576        it through to the host.  */
5577     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5578     { 0, 0, 0, 0 }
5579 };
5580 
5581 /*
5582  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5583  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5584  */
5585 #if defined(TARGET_I386)
5586 
5587 /* NOTE: there is really one LDT for all the threads */
5588 static uint8_t *ldt_table;
5589 
5590 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5591 {
5592     int size;
5593     void *p;
5594 
5595     if (!ldt_table)
5596         return 0;
5597     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5598     if (size > bytecount)
5599         size = bytecount;
5600     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5601     if (!p)
5602         return -TARGET_EFAULT;
5603     /* ??? Should this by byteswapped?  */
5604     memcpy(p, ldt_table, size);
5605     unlock_user(p, ptr, size);
5606     return size;
5607 }
5608 
5609 /* XXX: add locking support */
5610 static abi_long write_ldt(CPUX86State *env,
5611                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5612 {
5613     struct target_modify_ldt_ldt_s ldt_info;
5614     struct target_modify_ldt_ldt_s *target_ldt_info;
5615     int seg_32bit, contents, read_exec_only, limit_in_pages;
5616     int seg_not_present, useable, lm;
5617     uint32_t *lp, entry_1, entry_2;
5618 
5619     if (bytecount != sizeof(ldt_info))
5620         return -TARGET_EINVAL;
5621     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5622         return -TARGET_EFAULT;
5623     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5624     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5625     ldt_info.limit = tswap32(target_ldt_info->limit);
5626     ldt_info.flags = tswap32(target_ldt_info->flags);
5627     unlock_user_struct(target_ldt_info, ptr, 0);
5628 
5629     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5630         return -TARGET_EINVAL;
5631     seg_32bit = ldt_info.flags & 1;
5632     contents = (ldt_info.flags >> 1) & 3;
5633     read_exec_only = (ldt_info.flags >> 3) & 1;
5634     limit_in_pages = (ldt_info.flags >> 4) & 1;
5635     seg_not_present = (ldt_info.flags >> 5) & 1;
5636     useable = (ldt_info.flags >> 6) & 1;
5637 #ifdef TARGET_ABI32
5638     lm = 0;
5639 #else
5640     lm = (ldt_info.flags >> 7) & 1;
5641 #endif
5642     if (contents == 3) {
5643         if (oldmode)
5644             return -TARGET_EINVAL;
5645         if (seg_not_present == 0)
5646             return -TARGET_EINVAL;
5647     }
5648     /* allocate the LDT */
5649     if (!ldt_table) {
5650         env->ldt.base = target_mmap(0,
5651                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
5652                                     PROT_READ|PROT_WRITE,
5653                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
5654         if (env->ldt.base == -1)
5655             return -TARGET_ENOMEM;
5656         memset(g2h(env->ldt.base), 0,
5657                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
5658         env->ldt.limit = 0xffff;
5659         ldt_table = g2h(env->ldt.base);
5660     }
5661 
5662     /* NOTE: same code as Linux kernel */
5663     /* Allow LDTs to be cleared by the user. */
5664     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5665         if (oldmode ||
5666             (contents == 0		&&
5667              read_exec_only == 1	&&
5668              seg_32bit == 0		&&
5669              limit_in_pages == 0	&&
5670              seg_not_present == 1	&&
5671              useable == 0 )) {
5672             entry_1 = 0;
5673             entry_2 = 0;
5674             goto install;
5675         }
5676     }
5677 
5678     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5679         (ldt_info.limit & 0x0ffff);
5680     entry_2 = (ldt_info.base_addr & 0xff000000) |
5681         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5682         (ldt_info.limit & 0xf0000) |
5683         ((read_exec_only ^ 1) << 9) |
5684         (contents << 10) |
5685         ((seg_not_present ^ 1) << 15) |
5686         (seg_32bit << 22) |
5687         (limit_in_pages << 23) |
5688         (lm << 21) |
5689         0x7000;
5690     if (!oldmode)
5691         entry_2 |= (useable << 20);
5692 
5693     /* Install the new entry ...  */
5694 install:
5695     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
5696     lp[0] = tswap32(entry_1);
5697     lp[1] = tswap32(entry_2);
5698     return 0;
5699 }
5700 
5701 /* specific and weird i386 syscalls */
5702 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
5703                               unsigned long bytecount)
5704 {
5705     abi_long ret;
5706 
5707     switch (func) {
5708     case 0:
5709         ret = read_ldt(ptr, bytecount);
5710         break;
5711     case 1:
5712         ret = write_ldt(env, ptr, bytecount, 1);
5713         break;
5714     case 0x11:
5715         ret = write_ldt(env, ptr, bytecount, 0);
5716         break;
5717     default:
5718         ret = -TARGET_ENOSYS;
5719         break;
5720     }
5721     return ret;
5722 }
5723 
5724 #if defined(TARGET_ABI32)
5725 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
5726 {
5727     uint64_t *gdt_table = g2h(env->gdt.base);
5728     struct target_modify_ldt_ldt_s ldt_info;
5729     struct target_modify_ldt_ldt_s *target_ldt_info;
5730     int seg_32bit, contents, read_exec_only, limit_in_pages;
5731     int seg_not_present, useable, lm;
5732     uint32_t *lp, entry_1, entry_2;
5733     int i;
5734 
5735     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5736     if (!target_ldt_info)
5737         return -TARGET_EFAULT;
5738     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5739     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5740     ldt_info.limit = tswap32(target_ldt_info->limit);
5741     ldt_info.flags = tswap32(target_ldt_info->flags);
5742     if (ldt_info.entry_number == -1) {
5743         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
5744             if (gdt_table[i] == 0) {
5745                 ldt_info.entry_number = i;
5746                 target_ldt_info->entry_number = tswap32(i);
5747                 break;
5748             }
5749         }
5750     }
5751     unlock_user_struct(target_ldt_info, ptr, 1);
5752 
5753     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
5754         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
5755            return -TARGET_EINVAL;
5756     seg_32bit = ldt_info.flags & 1;
5757     contents = (ldt_info.flags >> 1) & 3;
5758     read_exec_only = (ldt_info.flags >> 3) & 1;
5759     limit_in_pages = (ldt_info.flags >> 4) & 1;
5760     seg_not_present = (ldt_info.flags >> 5) & 1;
5761     useable = (ldt_info.flags >> 6) & 1;
5762 #ifdef TARGET_ABI32
5763     lm = 0;
5764 #else
5765     lm = (ldt_info.flags >> 7) & 1;
5766 #endif
5767 
5768     if (contents == 3) {
5769         if (seg_not_present == 0)
5770             return -TARGET_EINVAL;
5771     }
5772 
5773     /* NOTE: same code as Linux kernel */
5774     /* Allow LDTs to be cleared by the user. */
5775     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5776         if ((contents == 0             &&
5777              read_exec_only == 1       &&
5778              seg_32bit == 0            &&
5779              limit_in_pages == 0       &&
5780              seg_not_present == 1      &&
5781              useable == 0 )) {
5782             entry_1 = 0;
5783             entry_2 = 0;
5784             goto install;
5785         }
5786     }
5787 
5788     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5789         (ldt_info.limit & 0x0ffff);
5790     entry_2 = (ldt_info.base_addr & 0xff000000) |
5791         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5792         (ldt_info.limit & 0xf0000) |
5793         ((read_exec_only ^ 1) << 9) |
5794         (contents << 10) |
5795         ((seg_not_present ^ 1) << 15) |
5796         (seg_32bit << 22) |
5797         (limit_in_pages << 23) |
5798         (useable << 20) |
5799         (lm << 21) |
5800         0x7000;
5801 
5802     /* Install the new entry ...  */
5803 install:
5804     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
5805     lp[0] = tswap32(entry_1);
5806     lp[1] = tswap32(entry_2);
5807     return 0;
5808 }
5809 
5810 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
5811 {
5812     struct target_modify_ldt_ldt_s *target_ldt_info;
5813     uint64_t *gdt_table = g2h(env->gdt.base);
5814     uint32_t base_addr, limit, flags;
5815     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
5816     int seg_not_present, useable, lm;
5817     uint32_t *lp, entry_1, entry_2;
5818 
5819     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5820     if (!target_ldt_info)
5821         return -TARGET_EFAULT;
5822     idx = tswap32(target_ldt_info->entry_number);
5823     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
5824         idx > TARGET_GDT_ENTRY_TLS_MAX) {
5825         unlock_user_struct(target_ldt_info, ptr, 1);
5826         return -TARGET_EINVAL;
5827     }
5828     lp = (uint32_t *)(gdt_table + idx);
5829     entry_1 = tswap32(lp[0]);
5830     entry_2 = tswap32(lp[1]);
5831 
5832     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
5833     contents = (entry_2 >> 10) & 3;
5834     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
5835     seg_32bit = (entry_2 >> 22) & 1;
5836     limit_in_pages = (entry_2 >> 23) & 1;
5837     useable = (entry_2 >> 20) & 1;
5838 #ifdef TARGET_ABI32
5839     lm = 0;
5840 #else
5841     lm = (entry_2 >> 21) & 1;
5842 #endif
5843     flags = (seg_32bit << 0) | (contents << 1) |
5844         (read_exec_only << 3) | (limit_in_pages << 4) |
5845         (seg_not_present << 5) | (useable << 6) | (lm << 7);
5846     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
5847     base_addr = (entry_1 >> 16) |
5848         (entry_2 & 0xff000000) |
5849         ((entry_2 & 0xff) << 16);
5850     target_ldt_info->base_addr = tswapal(base_addr);
5851     target_ldt_info->limit = tswap32(limit);
5852     target_ldt_info->flags = tswap32(flags);
5853     unlock_user_struct(target_ldt_info, ptr, 1);
5854     return 0;
5855 }
5856 
5857 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5858 {
5859     return -TARGET_ENOSYS;
5860 }
5861 #else
5862 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5863 {
5864     abi_long ret = 0;
5865     abi_ulong val;
5866     int idx;
5867 
5868     switch(code) {
5869     case TARGET_ARCH_SET_GS:
5870     case TARGET_ARCH_SET_FS:
5871         if (code == TARGET_ARCH_SET_GS)
5872             idx = R_GS;
5873         else
5874             idx = R_FS;
5875         cpu_x86_load_seg(env, idx, 0);
5876         env->segs[idx].base = addr;
5877         break;
5878     case TARGET_ARCH_GET_GS:
5879     case TARGET_ARCH_GET_FS:
5880         if (code == TARGET_ARCH_GET_GS)
5881             idx = R_GS;
5882         else
5883             idx = R_FS;
5884         val = env->segs[idx].base;
5885         if (put_user(val, addr, abi_ulong))
5886             ret = -TARGET_EFAULT;
5887         break;
5888     default:
5889         ret = -TARGET_EINVAL;
5890         break;
5891     }
5892     return ret;
5893 }
5894 #endif /* defined(TARGET_ABI32 */
5895 
5896 #endif /* defined(TARGET_I386) */
5897 
5898 #define NEW_STACK_SIZE 0x40000
5899 
5900 
5901 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
5902 typedef struct {
5903     CPUArchState *env;
5904     pthread_mutex_t mutex;
5905     pthread_cond_t cond;
5906     pthread_t thread;
5907     uint32_t tid;
5908     abi_ulong child_tidptr;
5909     abi_ulong parent_tidptr;
5910     sigset_t sigmask;
5911 } new_thread_info;
5912 
5913 static void *clone_func(void *arg)
5914 {
5915     new_thread_info *info = arg;
5916     CPUArchState *env;
5917     CPUState *cpu;
5918     TaskState *ts;
5919 
5920     rcu_register_thread();
5921     tcg_register_thread();
5922     env = info->env;
5923     cpu = env_cpu(env);
5924     thread_cpu = cpu;
5925     ts = (TaskState *)cpu->opaque;
5926     info->tid = sys_gettid();
5927     task_settid(ts);
5928     if (info->child_tidptr)
5929         put_user_u32(info->tid, info->child_tidptr);
5930     if (info->parent_tidptr)
5931         put_user_u32(info->tid, info->parent_tidptr);
5932     qemu_guest_random_seed_thread_part2(cpu->random_seed);
5933     /* Enable signals.  */
5934     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
5935     /* Signal to the parent that we're ready.  */
5936     pthread_mutex_lock(&info->mutex);
5937     pthread_cond_broadcast(&info->cond);
5938     pthread_mutex_unlock(&info->mutex);
5939     /* Wait until the parent has finished initializing the tls state.  */
5940     pthread_mutex_lock(&clone_lock);
5941     pthread_mutex_unlock(&clone_lock);
5942     cpu_loop(env);
5943     /* never exits */
5944     return NULL;
5945 }
5946 
5947 /* do_fork() Must return host values and target errnos (unlike most
5948    do_*() functions). */
5949 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
5950                    abi_ulong parent_tidptr, target_ulong newtls,
5951                    abi_ulong child_tidptr)
5952 {
5953     CPUState *cpu = env_cpu(env);
5954     int ret;
5955     TaskState *ts;
5956     CPUState *new_cpu;
5957     CPUArchState *new_env;
5958     sigset_t sigmask;
5959 
5960     flags &= ~CLONE_IGNORED_FLAGS;
5961 
5962     /* Emulate vfork() with fork() */
5963     if (flags & CLONE_VFORK)
5964         flags &= ~(CLONE_VFORK | CLONE_VM);
5965 
5966     if (flags & CLONE_VM) {
5967         TaskState *parent_ts = (TaskState *)cpu->opaque;
5968         new_thread_info info;
5969         pthread_attr_t attr;
5970 
5971         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
5972             (flags & CLONE_INVALID_THREAD_FLAGS)) {
5973             return -TARGET_EINVAL;
5974         }
5975 
5976         ts = g_new0(TaskState, 1);
5977         init_task_state(ts);
5978 
5979         /* Grab a mutex so that thread setup appears atomic.  */
5980         pthread_mutex_lock(&clone_lock);
5981 
5982         /* we create a new CPU instance. */
5983         new_env = cpu_copy(env);
5984         /* Init regs that differ from the parent.  */
5985         cpu_clone_regs_child(new_env, newsp, flags);
5986         cpu_clone_regs_parent(env, flags);
5987         new_cpu = env_cpu(new_env);
5988         new_cpu->opaque = ts;
5989         ts->bprm = parent_ts->bprm;
5990         ts->info = parent_ts->info;
5991         ts->signal_mask = parent_ts->signal_mask;
5992 
5993         if (flags & CLONE_CHILD_CLEARTID) {
5994             ts->child_tidptr = child_tidptr;
5995         }
5996 
5997         if (flags & CLONE_SETTLS) {
5998             cpu_set_tls (new_env, newtls);
5999         }
6000 
6001         memset(&info, 0, sizeof(info));
6002         pthread_mutex_init(&info.mutex, NULL);
6003         pthread_mutex_lock(&info.mutex);
6004         pthread_cond_init(&info.cond, NULL);
6005         info.env = new_env;
6006         if (flags & CLONE_CHILD_SETTID) {
6007             info.child_tidptr = child_tidptr;
6008         }
6009         if (flags & CLONE_PARENT_SETTID) {
6010             info.parent_tidptr = parent_tidptr;
6011         }
6012 
6013         ret = pthread_attr_init(&attr);
6014         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6015         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6016         /* It is not safe to deliver signals until the child has finished
6017            initializing, so temporarily block all signals.  */
6018         sigfillset(&sigmask);
6019         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6020         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6021 
6022         /* If this is our first additional thread, we need to ensure we
6023          * generate code for parallel execution and flush old translations.
6024          */
6025         if (!parallel_cpus) {
6026             parallel_cpus = true;
6027             tb_flush(cpu);
6028         }
6029 
6030         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6031         /* TODO: Free new CPU state if thread creation failed.  */
6032 
6033         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6034         pthread_attr_destroy(&attr);
6035         if (ret == 0) {
6036             /* Wait for the child to initialize.  */
6037             pthread_cond_wait(&info.cond, &info.mutex);
6038             ret = info.tid;
6039         } else {
6040             ret = -1;
6041         }
6042         pthread_mutex_unlock(&info.mutex);
6043         pthread_cond_destroy(&info.cond);
6044         pthread_mutex_destroy(&info.mutex);
6045         pthread_mutex_unlock(&clone_lock);
6046     } else {
6047         /* if no CLONE_VM, we consider it is a fork */
6048         if (flags & CLONE_INVALID_FORK_FLAGS) {
6049             return -TARGET_EINVAL;
6050         }
6051 
6052         /* We can't support custom termination signals */
6053         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6054             return -TARGET_EINVAL;
6055         }
6056 
6057         if (block_signals()) {
6058             return -TARGET_ERESTARTSYS;
6059         }
6060 
6061         fork_start();
6062         ret = fork();
6063         if (ret == 0) {
6064             /* Child Process.  */
6065             cpu_clone_regs_child(env, newsp, flags);
6066             fork_end(1);
6067             /* There is a race condition here.  The parent process could
6068                theoretically read the TID in the child process before the child
6069                tid is set.  This would require using either ptrace
6070                (not implemented) or having *_tidptr to point at a shared memory
6071                mapping.  We can't repeat the spinlock hack used above because
6072                the child process gets its own copy of the lock.  */
6073             if (flags & CLONE_CHILD_SETTID)
6074                 put_user_u32(sys_gettid(), child_tidptr);
6075             if (flags & CLONE_PARENT_SETTID)
6076                 put_user_u32(sys_gettid(), parent_tidptr);
6077             ts = (TaskState *)cpu->opaque;
6078             if (flags & CLONE_SETTLS)
6079                 cpu_set_tls (env, newtls);
6080             if (flags & CLONE_CHILD_CLEARTID)
6081                 ts->child_tidptr = child_tidptr;
6082         } else {
6083             cpu_clone_regs_parent(env, flags);
6084             fork_end(0);
6085         }
6086     }
6087     return ret;
6088 }
6089 
6090 /* warning : doesn't handle linux specific flags... */
6091 static int target_to_host_fcntl_cmd(int cmd)
6092 {
6093     int ret;
6094 
6095     switch(cmd) {
6096     case TARGET_F_DUPFD:
6097     case TARGET_F_GETFD:
6098     case TARGET_F_SETFD:
6099     case TARGET_F_GETFL:
6100     case TARGET_F_SETFL:
6101     case TARGET_F_OFD_GETLK:
6102     case TARGET_F_OFD_SETLK:
6103     case TARGET_F_OFD_SETLKW:
6104         ret = cmd;
6105         break;
6106     case TARGET_F_GETLK:
6107         ret = F_GETLK64;
6108         break;
6109     case TARGET_F_SETLK:
6110         ret = F_SETLK64;
6111         break;
6112     case TARGET_F_SETLKW:
6113         ret = F_SETLKW64;
6114         break;
6115     case TARGET_F_GETOWN:
6116         ret = F_GETOWN;
6117         break;
6118     case TARGET_F_SETOWN:
6119         ret = F_SETOWN;
6120         break;
6121     case TARGET_F_GETSIG:
6122         ret = F_GETSIG;
6123         break;
6124     case TARGET_F_SETSIG:
6125         ret = F_SETSIG;
6126         break;
6127 #if TARGET_ABI_BITS == 32
6128     case TARGET_F_GETLK64:
6129         ret = F_GETLK64;
6130         break;
6131     case TARGET_F_SETLK64:
6132         ret = F_SETLK64;
6133         break;
6134     case TARGET_F_SETLKW64:
6135         ret = F_SETLKW64;
6136         break;
6137 #endif
6138     case TARGET_F_SETLEASE:
6139         ret = F_SETLEASE;
6140         break;
6141     case TARGET_F_GETLEASE:
6142         ret = F_GETLEASE;
6143         break;
6144 #ifdef F_DUPFD_CLOEXEC
6145     case TARGET_F_DUPFD_CLOEXEC:
6146         ret = F_DUPFD_CLOEXEC;
6147         break;
6148 #endif
6149     case TARGET_F_NOTIFY:
6150         ret = F_NOTIFY;
6151         break;
6152 #ifdef F_GETOWN_EX
6153     case TARGET_F_GETOWN_EX:
6154         ret = F_GETOWN_EX;
6155         break;
6156 #endif
6157 #ifdef F_SETOWN_EX
6158     case TARGET_F_SETOWN_EX:
6159         ret = F_SETOWN_EX;
6160         break;
6161 #endif
6162 #ifdef F_SETPIPE_SZ
6163     case TARGET_F_SETPIPE_SZ:
6164         ret = F_SETPIPE_SZ;
6165         break;
6166     case TARGET_F_GETPIPE_SZ:
6167         ret = F_GETPIPE_SZ;
6168         break;
6169 #endif
6170     default:
6171         ret = -TARGET_EINVAL;
6172         break;
6173     }
6174 
6175 #if defined(__powerpc64__)
6176     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6177      * is not supported by kernel. The glibc fcntl call actually adjusts
6178      * them to 5, 6 and 7 before making the syscall(). Since we make the
6179      * syscall directly, adjust to what is supported by the kernel.
6180      */
6181     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6182         ret -= F_GETLK64 - 5;
6183     }
6184 #endif
6185 
6186     return ret;
6187 }
6188 
6189 #define FLOCK_TRANSTBL \
6190     switch (type) { \
6191     TRANSTBL_CONVERT(F_RDLCK); \
6192     TRANSTBL_CONVERT(F_WRLCK); \
6193     TRANSTBL_CONVERT(F_UNLCK); \
6194     TRANSTBL_CONVERT(F_EXLCK); \
6195     TRANSTBL_CONVERT(F_SHLCK); \
6196     }
6197 
6198 static int target_to_host_flock(int type)
6199 {
6200 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6201     FLOCK_TRANSTBL
6202 #undef  TRANSTBL_CONVERT
6203     return -TARGET_EINVAL;
6204 }
6205 
6206 static int host_to_target_flock(int type)
6207 {
6208 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6209     FLOCK_TRANSTBL
6210 #undef  TRANSTBL_CONVERT
6211     /* if we don't know how to convert the value coming
6212      * from the host we copy to the target field as-is
6213      */
6214     return type;
6215 }
6216 
6217 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6218                                             abi_ulong target_flock_addr)
6219 {
6220     struct target_flock *target_fl;
6221     int l_type;
6222 
6223     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6224         return -TARGET_EFAULT;
6225     }
6226 
6227     __get_user(l_type, &target_fl->l_type);
6228     l_type = target_to_host_flock(l_type);
6229     if (l_type < 0) {
6230         return l_type;
6231     }
6232     fl->l_type = l_type;
6233     __get_user(fl->l_whence, &target_fl->l_whence);
6234     __get_user(fl->l_start, &target_fl->l_start);
6235     __get_user(fl->l_len, &target_fl->l_len);
6236     __get_user(fl->l_pid, &target_fl->l_pid);
6237     unlock_user_struct(target_fl, target_flock_addr, 0);
6238     return 0;
6239 }
6240 
6241 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6242                                           const struct flock64 *fl)
6243 {
6244     struct target_flock *target_fl;
6245     short l_type;
6246 
6247     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6248         return -TARGET_EFAULT;
6249     }
6250 
6251     l_type = host_to_target_flock(fl->l_type);
6252     __put_user(l_type, &target_fl->l_type);
6253     __put_user(fl->l_whence, &target_fl->l_whence);
6254     __put_user(fl->l_start, &target_fl->l_start);
6255     __put_user(fl->l_len, &target_fl->l_len);
6256     __put_user(fl->l_pid, &target_fl->l_pid);
6257     unlock_user_struct(target_fl, target_flock_addr, 1);
6258     return 0;
6259 }
6260 
6261 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6262 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6263 
6264 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6265 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6266                                                    abi_ulong target_flock_addr)
6267 {
6268     struct target_oabi_flock64 *target_fl;
6269     int l_type;
6270 
6271     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6272         return -TARGET_EFAULT;
6273     }
6274 
6275     __get_user(l_type, &target_fl->l_type);
6276     l_type = target_to_host_flock(l_type);
6277     if (l_type < 0) {
6278         return l_type;
6279     }
6280     fl->l_type = l_type;
6281     __get_user(fl->l_whence, &target_fl->l_whence);
6282     __get_user(fl->l_start, &target_fl->l_start);
6283     __get_user(fl->l_len, &target_fl->l_len);
6284     __get_user(fl->l_pid, &target_fl->l_pid);
6285     unlock_user_struct(target_fl, target_flock_addr, 0);
6286     return 0;
6287 }
6288 
6289 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6290                                                  const struct flock64 *fl)
6291 {
6292     struct target_oabi_flock64 *target_fl;
6293     short l_type;
6294 
6295     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6296         return -TARGET_EFAULT;
6297     }
6298 
6299     l_type = host_to_target_flock(fl->l_type);
6300     __put_user(l_type, &target_fl->l_type);
6301     __put_user(fl->l_whence, &target_fl->l_whence);
6302     __put_user(fl->l_start, &target_fl->l_start);
6303     __put_user(fl->l_len, &target_fl->l_len);
6304     __put_user(fl->l_pid, &target_fl->l_pid);
6305     unlock_user_struct(target_fl, target_flock_addr, 1);
6306     return 0;
6307 }
6308 #endif
6309 
6310 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6311                                               abi_ulong target_flock_addr)
6312 {
6313     struct target_flock64 *target_fl;
6314     int l_type;
6315 
6316     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6317         return -TARGET_EFAULT;
6318     }
6319 
6320     __get_user(l_type, &target_fl->l_type);
6321     l_type = target_to_host_flock(l_type);
6322     if (l_type < 0) {
6323         return l_type;
6324     }
6325     fl->l_type = l_type;
6326     __get_user(fl->l_whence, &target_fl->l_whence);
6327     __get_user(fl->l_start, &target_fl->l_start);
6328     __get_user(fl->l_len, &target_fl->l_len);
6329     __get_user(fl->l_pid, &target_fl->l_pid);
6330     unlock_user_struct(target_fl, target_flock_addr, 0);
6331     return 0;
6332 }
6333 
6334 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6335                                             const struct flock64 *fl)
6336 {
6337     struct target_flock64 *target_fl;
6338     short l_type;
6339 
6340     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6341         return -TARGET_EFAULT;
6342     }
6343 
6344     l_type = host_to_target_flock(fl->l_type);
6345     __put_user(l_type, &target_fl->l_type);
6346     __put_user(fl->l_whence, &target_fl->l_whence);
6347     __put_user(fl->l_start, &target_fl->l_start);
6348     __put_user(fl->l_len, &target_fl->l_len);
6349     __put_user(fl->l_pid, &target_fl->l_pid);
6350     unlock_user_struct(target_fl, target_flock_addr, 1);
6351     return 0;
6352 }
6353 
6354 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6355 {
6356     struct flock64 fl64;
6357 #ifdef F_GETOWN_EX
6358     struct f_owner_ex fox;
6359     struct target_f_owner_ex *target_fox;
6360 #endif
6361     abi_long ret;
6362     int host_cmd = target_to_host_fcntl_cmd(cmd);
6363 
6364     if (host_cmd == -TARGET_EINVAL)
6365 	    return host_cmd;
6366 
6367     switch(cmd) {
6368     case TARGET_F_GETLK:
6369         ret = copy_from_user_flock(&fl64, arg);
6370         if (ret) {
6371             return ret;
6372         }
6373         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6374         if (ret == 0) {
6375             ret = copy_to_user_flock(arg, &fl64);
6376         }
6377         break;
6378 
6379     case TARGET_F_SETLK:
6380     case TARGET_F_SETLKW:
6381         ret = copy_from_user_flock(&fl64, arg);
6382         if (ret) {
6383             return ret;
6384         }
6385         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6386         break;
6387 
6388     case TARGET_F_GETLK64:
6389     case TARGET_F_OFD_GETLK:
6390         ret = copy_from_user_flock64(&fl64, arg);
6391         if (ret) {
6392             return ret;
6393         }
6394         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6395         if (ret == 0) {
6396             ret = copy_to_user_flock64(arg, &fl64);
6397         }
6398         break;
6399     case TARGET_F_SETLK64:
6400     case TARGET_F_SETLKW64:
6401     case TARGET_F_OFD_SETLK:
6402     case TARGET_F_OFD_SETLKW:
6403         ret = copy_from_user_flock64(&fl64, arg);
6404         if (ret) {
6405             return ret;
6406         }
6407         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6408         break;
6409 
6410     case TARGET_F_GETFL:
6411         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6412         if (ret >= 0) {
6413             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6414         }
6415         break;
6416 
6417     case TARGET_F_SETFL:
6418         ret = get_errno(safe_fcntl(fd, host_cmd,
6419                                    target_to_host_bitmask(arg,
6420                                                           fcntl_flags_tbl)));
6421         break;
6422 
6423 #ifdef F_GETOWN_EX
6424     case TARGET_F_GETOWN_EX:
6425         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6426         if (ret >= 0) {
6427             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6428                 return -TARGET_EFAULT;
6429             target_fox->type = tswap32(fox.type);
6430             target_fox->pid = tswap32(fox.pid);
6431             unlock_user_struct(target_fox, arg, 1);
6432         }
6433         break;
6434 #endif
6435 
6436 #ifdef F_SETOWN_EX
6437     case TARGET_F_SETOWN_EX:
6438         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6439             return -TARGET_EFAULT;
6440         fox.type = tswap32(target_fox->type);
6441         fox.pid = tswap32(target_fox->pid);
6442         unlock_user_struct(target_fox, arg, 0);
6443         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6444         break;
6445 #endif
6446 
6447     case TARGET_F_SETOWN:
6448     case TARGET_F_GETOWN:
6449     case TARGET_F_SETSIG:
6450     case TARGET_F_GETSIG:
6451     case TARGET_F_SETLEASE:
6452     case TARGET_F_GETLEASE:
6453     case TARGET_F_SETPIPE_SZ:
6454     case TARGET_F_GETPIPE_SZ:
6455         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6456         break;
6457 
6458     default:
6459         ret = get_errno(safe_fcntl(fd, cmd, arg));
6460         break;
6461     }
6462     return ret;
6463 }
6464 
6465 #ifdef USE_UID16
6466 
6467 static inline int high2lowuid(int uid)
6468 {
6469     if (uid > 65535)
6470         return 65534;
6471     else
6472         return uid;
6473 }
6474 
6475 static inline int high2lowgid(int gid)
6476 {
6477     if (gid > 65535)
6478         return 65534;
6479     else
6480         return gid;
6481 }
6482 
6483 static inline int low2highuid(int uid)
6484 {
6485     if ((int16_t)uid == -1)
6486         return -1;
6487     else
6488         return uid;
6489 }
6490 
6491 static inline int low2highgid(int gid)
6492 {
6493     if ((int16_t)gid == -1)
6494         return -1;
6495     else
6496         return gid;
6497 }
6498 static inline int tswapid(int id)
6499 {
6500     return tswap16(id);
6501 }
6502 
6503 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6504 
6505 #else /* !USE_UID16 */
6506 static inline int high2lowuid(int uid)
6507 {
6508     return uid;
6509 }
6510 static inline int high2lowgid(int gid)
6511 {
6512     return gid;
6513 }
6514 static inline int low2highuid(int uid)
6515 {
6516     return uid;
6517 }
6518 static inline int low2highgid(int gid)
6519 {
6520     return gid;
6521 }
6522 static inline int tswapid(int id)
6523 {
6524     return tswap32(id);
6525 }
6526 
6527 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6528 
6529 #endif /* USE_UID16 */
6530 
6531 /* We must do direct syscalls for setting UID/GID, because we want to
6532  * implement the Linux system call semantics of "change only for this thread",
6533  * not the libc/POSIX semantics of "change for all threads in process".
6534  * (See http://ewontfix.com/17/ for more details.)
6535  * We use the 32-bit version of the syscalls if present; if it is not
6536  * then either the host architecture supports 32-bit UIDs natively with
6537  * the standard syscall, or the 16-bit UID is the best we can do.
6538  */
6539 #ifdef __NR_setuid32
6540 #define __NR_sys_setuid __NR_setuid32
6541 #else
6542 #define __NR_sys_setuid __NR_setuid
6543 #endif
6544 #ifdef __NR_setgid32
6545 #define __NR_sys_setgid __NR_setgid32
6546 #else
6547 #define __NR_sys_setgid __NR_setgid
6548 #endif
6549 #ifdef __NR_setresuid32
6550 #define __NR_sys_setresuid __NR_setresuid32
6551 #else
6552 #define __NR_sys_setresuid __NR_setresuid
6553 #endif
6554 #ifdef __NR_setresgid32
6555 #define __NR_sys_setresgid __NR_setresgid32
6556 #else
6557 #define __NR_sys_setresgid __NR_setresgid
6558 #endif
6559 
6560 _syscall1(int, sys_setuid, uid_t, uid)
6561 _syscall1(int, sys_setgid, gid_t, gid)
6562 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
6563 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
6564 
6565 void syscall_init(void)
6566 {
6567     IOCTLEntry *ie;
6568     const argtype *arg_type;
6569     int size;
6570     int i;
6571 
6572     thunk_init(STRUCT_MAX);
6573 
6574 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6575 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6576 #include "syscall_types.h"
6577 #undef STRUCT
6578 #undef STRUCT_SPECIAL
6579 
6580     /* Build target_to_host_errno_table[] table from
6581      * host_to_target_errno_table[]. */
6582     for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
6583         target_to_host_errno_table[host_to_target_errno_table[i]] = i;
6584     }
6585 
6586     /* we patch the ioctl size if necessary. We rely on the fact that
6587        no ioctl has all the bits at '1' in the size field */
6588     ie = ioctl_entries;
6589     while (ie->target_cmd != 0) {
6590         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
6591             TARGET_IOC_SIZEMASK) {
6592             arg_type = ie->arg_type;
6593             if (arg_type[0] != TYPE_PTR) {
6594                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
6595                         ie->target_cmd);
6596                 exit(1);
6597             }
6598             arg_type++;
6599             size = thunk_type_size(arg_type, 0);
6600             ie->target_cmd = (ie->target_cmd &
6601                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
6602                 (size << TARGET_IOC_SIZESHIFT);
6603         }
6604 
6605         /* automatic consistency check if same arch */
6606 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6607     (defined(__x86_64__) && defined(TARGET_X86_64))
6608         if (unlikely(ie->target_cmd != ie->host_cmd)) {
6609             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6610                     ie->name, ie->target_cmd, ie->host_cmd);
6611         }
6612 #endif
6613         ie++;
6614     }
6615 }
6616 
6617 #if TARGET_ABI_BITS == 32
6618 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
6619 {
6620 #ifdef TARGET_WORDS_BIGENDIAN
6621     return ((uint64_t)word0 << 32) | word1;
6622 #else
6623     return ((uint64_t)word1 << 32) | word0;
6624 #endif
6625 }
6626 #else /* TARGET_ABI_BITS == 32 */
6627 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
6628 {
6629     return word0;
6630 }
6631 #endif /* TARGET_ABI_BITS != 32 */
6632 
6633 #ifdef TARGET_NR_truncate64
6634 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
6635                                          abi_long arg2,
6636                                          abi_long arg3,
6637                                          abi_long arg4)
6638 {
6639     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
6640         arg2 = arg3;
6641         arg3 = arg4;
6642     }
6643     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
6644 }
6645 #endif
6646 
6647 #ifdef TARGET_NR_ftruncate64
6648 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
6649                                           abi_long arg2,
6650                                           abi_long arg3,
6651                                           abi_long arg4)
6652 {
6653     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
6654         arg2 = arg3;
6655         arg3 = arg4;
6656     }
6657     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
6658 }
6659 #endif
6660 
6661 #if defined(TARGET_NR_timer_settime) || \
6662     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
6663 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
6664                                                  abi_ulong target_addr)
6665 {
6666     struct target_itimerspec *target_itspec;
6667 
6668     if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
6669         return -TARGET_EFAULT;
6670     }
6671 
6672     host_itspec->it_interval.tv_sec =
6673                             tswapal(target_itspec->it_interval.tv_sec);
6674     host_itspec->it_interval.tv_nsec =
6675                             tswapal(target_itspec->it_interval.tv_nsec);
6676     host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
6677     host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
6678 
6679     unlock_user_struct(target_itspec, target_addr, 1);
6680     return 0;
6681 }
6682 #endif
6683 
6684 #if ((defined(TARGET_NR_timerfd_gettime) || \
6685       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
6686     defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
6687 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
6688                                                struct itimerspec *host_its)
6689 {
6690     struct target_itimerspec *target_itspec;
6691 
6692     if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
6693         return -TARGET_EFAULT;
6694     }
6695 
6696     target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
6697     target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
6698 
6699     target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
6700     target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
6701 
6702     unlock_user_struct(target_itspec, target_addr, 0);
6703     return 0;
6704 }
6705 #endif
6706 
6707 #if defined(TARGET_NR_adjtimex) || \
6708     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
6709 static inline abi_long target_to_host_timex(struct timex *host_tx,
6710                                             abi_long target_addr)
6711 {
6712     struct target_timex *target_tx;
6713 
6714     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
6715         return -TARGET_EFAULT;
6716     }
6717 
6718     __get_user(host_tx->modes, &target_tx->modes);
6719     __get_user(host_tx->offset, &target_tx->offset);
6720     __get_user(host_tx->freq, &target_tx->freq);
6721     __get_user(host_tx->maxerror, &target_tx->maxerror);
6722     __get_user(host_tx->esterror, &target_tx->esterror);
6723     __get_user(host_tx->status, &target_tx->status);
6724     __get_user(host_tx->constant, &target_tx->constant);
6725     __get_user(host_tx->precision, &target_tx->precision);
6726     __get_user(host_tx->tolerance, &target_tx->tolerance);
6727     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
6728     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
6729     __get_user(host_tx->tick, &target_tx->tick);
6730     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
6731     __get_user(host_tx->jitter, &target_tx->jitter);
6732     __get_user(host_tx->shift, &target_tx->shift);
6733     __get_user(host_tx->stabil, &target_tx->stabil);
6734     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
6735     __get_user(host_tx->calcnt, &target_tx->calcnt);
6736     __get_user(host_tx->errcnt, &target_tx->errcnt);
6737     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
6738     __get_user(host_tx->tai, &target_tx->tai);
6739 
6740     unlock_user_struct(target_tx, target_addr, 0);
6741     return 0;
6742 }
6743 
6744 static inline abi_long host_to_target_timex(abi_long target_addr,
6745                                             struct timex *host_tx)
6746 {
6747     struct target_timex *target_tx;
6748 
6749     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
6750         return -TARGET_EFAULT;
6751     }
6752 
6753     __put_user(host_tx->modes, &target_tx->modes);
6754     __put_user(host_tx->offset, &target_tx->offset);
6755     __put_user(host_tx->freq, &target_tx->freq);
6756     __put_user(host_tx->maxerror, &target_tx->maxerror);
6757     __put_user(host_tx->esterror, &target_tx->esterror);
6758     __put_user(host_tx->status, &target_tx->status);
6759     __put_user(host_tx->constant, &target_tx->constant);
6760     __put_user(host_tx->precision, &target_tx->precision);
6761     __put_user(host_tx->tolerance, &target_tx->tolerance);
6762     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
6763     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
6764     __put_user(host_tx->tick, &target_tx->tick);
6765     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
6766     __put_user(host_tx->jitter, &target_tx->jitter);
6767     __put_user(host_tx->shift, &target_tx->shift);
6768     __put_user(host_tx->stabil, &target_tx->stabil);
6769     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
6770     __put_user(host_tx->calcnt, &target_tx->calcnt);
6771     __put_user(host_tx->errcnt, &target_tx->errcnt);
6772     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
6773     __put_user(host_tx->tai, &target_tx->tai);
6774 
6775     unlock_user_struct(target_tx, target_addr, 1);
6776     return 0;
6777 }
6778 #endif
6779 
6780 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
6781                                                abi_ulong target_addr)
6782 {
6783     struct target_sigevent *target_sevp;
6784 
6785     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
6786         return -TARGET_EFAULT;
6787     }
6788 
6789     /* This union is awkward on 64 bit systems because it has a 32 bit
6790      * integer and a pointer in it; we follow the conversion approach
6791      * used for handling sigval types in signal.c so the guest should get
6792      * the correct value back even if we did a 64 bit byteswap and it's
6793      * using the 32 bit integer.
6794      */
6795     host_sevp->sigev_value.sival_ptr =
6796         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
6797     host_sevp->sigev_signo =
6798         target_to_host_signal(tswap32(target_sevp->sigev_signo));
6799     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
6800     host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
6801 
6802     unlock_user_struct(target_sevp, target_addr, 1);
6803     return 0;
6804 }
6805 
6806 #if defined(TARGET_NR_mlockall)
6807 static inline int target_to_host_mlockall_arg(int arg)
6808 {
6809     int result = 0;
6810 
6811     if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
6812         result |= MCL_CURRENT;
6813     }
6814     if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
6815         result |= MCL_FUTURE;
6816     }
6817     return result;
6818 }
6819 #endif
6820 
6821 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
6822      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
6823      defined(TARGET_NR_newfstatat))
6824 static inline abi_long host_to_target_stat64(void *cpu_env,
6825                                              abi_ulong target_addr,
6826                                              struct stat *host_st)
6827 {
6828 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
6829     if (((CPUARMState *)cpu_env)->eabi) {
6830         struct target_eabi_stat64 *target_st;
6831 
6832         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6833             return -TARGET_EFAULT;
6834         memset(target_st, 0, sizeof(struct target_eabi_stat64));
6835         __put_user(host_st->st_dev, &target_st->st_dev);
6836         __put_user(host_st->st_ino, &target_st->st_ino);
6837 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6838         __put_user(host_st->st_ino, &target_st->__st_ino);
6839 #endif
6840         __put_user(host_st->st_mode, &target_st->st_mode);
6841         __put_user(host_st->st_nlink, &target_st->st_nlink);
6842         __put_user(host_st->st_uid, &target_st->st_uid);
6843         __put_user(host_st->st_gid, &target_st->st_gid);
6844         __put_user(host_st->st_rdev, &target_st->st_rdev);
6845         __put_user(host_st->st_size, &target_st->st_size);
6846         __put_user(host_st->st_blksize, &target_st->st_blksize);
6847         __put_user(host_st->st_blocks, &target_st->st_blocks);
6848         __put_user(host_st->st_atime, &target_st->target_st_atime);
6849         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6850         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6851 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6852         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
6853         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
6854         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
6855 #endif
6856         unlock_user_struct(target_st, target_addr, 1);
6857     } else
6858 #endif
6859     {
6860 #if defined(TARGET_HAS_STRUCT_STAT64)
6861         struct target_stat64 *target_st;
6862 #else
6863         struct target_stat *target_st;
6864 #endif
6865 
6866         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6867             return -TARGET_EFAULT;
6868         memset(target_st, 0, sizeof(*target_st));
6869         __put_user(host_st->st_dev, &target_st->st_dev);
6870         __put_user(host_st->st_ino, &target_st->st_ino);
6871 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6872         __put_user(host_st->st_ino, &target_st->__st_ino);
6873 #endif
6874         __put_user(host_st->st_mode, &target_st->st_mode);
6875         __put_user(host_st->st_nlink, &target_st->st_nlink);
6876         __put_user(host_st->st_uid, &target_st->st_uid);
6877         __put_user(host_st->st_gid, &target_st->st_gid);
6878         __put_user(host_st->st_rdev, &target_st->st_rdev);
6879         /* XXX: better use of kernel struct */
6880         __put_user(host_st->st_size, &target_st->st_size);
6881         __put_user(host_st->st_blksize, &target_st->st_blksize);
6882         __put_user(host_st->st_blocks, &target_st->st_blocks);
6883         __put_user(host_st->st_atime, &target_st->target_st_atime);
6884         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6885         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6886 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6887         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
6888         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
6889         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
6890 #endif
6891         unlock_user_struct(target_st, target_addr, 1);
6892     }
6893 
6894     return 0;
6895 }
6896 #endif
6897 
6898 #if defined(TARGET_NR_statx) && defined(__NR_statx)
6899 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
6900                                             abi_ulong target_addr)
6901 {
6902     struct target_statx *target_stx;
6903 
6904     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
6905         return -TARGET_EFAULT;
6906     }
6907     memset(target_stx, 0, sizeof(*target_stx));
6908 
6909     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
6910     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
6911     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
6912     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
6913     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
6914     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
6915     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
6916     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
6917     __put_user(host_stx->stx_size, &target_stx->stx_size);
6918     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
6919     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
6920     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
6921     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
6922     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
6923     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
6924     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
6925     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
6926     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
6927     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
6928     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
6929     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
6930     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
6931     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
6932 
6933     unlock_user_struct(target_stx, target_addr, 1);
6934 
6935     return 0;
6936 }
6937 #endif
6938 
6939 static int do_sys_futex(int *uaddr, int op, int val,
6940                          const struct timespec *timeout, int *uaddr2,
6941                          int val3)
6942 {
6943 #if HOST_LONG_BITS == 64
6944 #if defined(__NR_futex)
6945     /* always a 64-bit time_t, it doesn't define _time64 version  */
6946     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
6947 
6948 #endif
6949 #else /* HOST_LONG_BITS == 64 */
6950 #if defined(__NR_futex_time64)
6951     if (sizeof(timeout->tv_sec) == 8) {
6952         /* _time64 function on 32bit arch */
6953         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
6954     }
6955 #endif
6956 #if defined(__NR_futex)
6957     /* old function on 32bit arch */
6958     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
6959 #endif
6960 #endif /* HOST_LONG_BITS == 64 */
6961     g_assert_not_reached();
6962 }
6963 
6964 static int do_safe_futex(int *uaddr, int op, int val,
6965                          const struct timespec *timeout, int *uaddr2,
6966                          int val3)
6967 {
6968 #if HOST_LONG_BITS == 64
6969 #if defined(__NR_futex)
6970     /* always a 64-bit time_t, it doesn't define _time64 version  */
6971     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
6972 #endif
6973 #else /* HOST_LONG_BITS == 64 */
6974 #if defined(__NR_futex_time64)
6975     if (sizeof(timeout->tv_sec) == 8) {
6976         /* _time64 function on 32bit arch */
6977         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
6978                                            val3));
6979     }
6980 #endif
6981 #if defined(__NR_futex)
6982     /* old function on 32bit arch */
6983     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
6984 #endif
6985 #endif /* HOST_LONG_BITS == 64 */
6986     return -TARGET_ENOSYS;
6987 }
6988 
6989 /* ??? Using host futex calls even when target atomic operations
6990    are not really atomic probably breaks things.  However implementing
6991    futexes locally would make futexes shared between multiple processes
6992    tricky.  However they're probably useless because guest atomic
6993    operations won't work either.  */
6994 #if defined(TARGET_NR_futex)
6995 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
6996                     target_ulong uaddr2, int val3)
6997 {
6998     struct timespec ts, *pts;
6999     int base_op;
7000 
7001     /* ??? We assume FUTEX_* constants are the same on both host
7002        and target.  */
7003 #ifdef FUTEX_CMD_MASK
7004     base_op = op & FUTEX_CMD_MASK;
7005 #else
7006     base_op = op;
7007 #endif
7008     switch (base_op) {
7009     case FUTEX_WAIT:
7010     case FUTEX_WAIT_BITSET:
7011         if (timeout) {
7012             pts = &ts;
7013             target_to_host_timespec(pts, timeout);
7014         } else {
7015             pts = NULL;
7016         }
7017         return do_safe_futex(g2h(uaddr), op, tswap32(val), pts, NULL, val3);
7018     case FUTEX_WAKE:
7019         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7020     case FUTEX_FD:
7021         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7022     case FUTEX_REQUEUE:
7023     case FUTEX_CMP_REQUEUE:
7024     case FUTEX_WAKE_OP:
7025         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7026            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7027            But the prototype takes a `struct timespec *'; insert casts
7028            to satisfy the compiler.  We do not need to tswap TIMEOUT
7029            since it's not compared to guest memory.  */
7030         pts = (struct timespec *)(uintptr_t) timeout;
7031         return do_safe_futex(g2h(uaddr), op, val, pts, g2h(uaddr2),
7032                              (base_op == FUTEX_CMP_REQUEUE
7033                                       ? tswap32(val3)
7034                                       : val3));
7035     default:
7036         return -TARGET_ENOSYS;
7037     }
7038 }
7039 #endif
7040 
7041 #if defined(TARGET_NR_futex_time64)
7042 static int do_futex_time64(target_ulong uaddr, int op, int val, target_ulong timeout,
7043                            target_ulong uaddr2, int val3)
7044 {
7045     struct timespec ts, *pts;
7046     int base_op;
7047 
7048     /* ??? We assume FUTEX_* constants are the same on both host
7049        and target.  */
7050 #ifdef FUTEX_CMD_MASK
7051     base_op = op & FUTEX_CMD_MASK;
7052 #else
7053     base_op = op;
7054 #endif
7055     switch (base_op) {
7056     case FUTEX_WAIT:
7057     case FUTEX_WAIT_BITSET:
7058         if (timeout) {
7059             pts = &ts;
7060             target_to_host_timespec64(pts, timeout);
7061         } else {
7062             pts = NULL;
7063         }
7064         return do_safe_futex(g2h(uaddr), op, tswap32(val), pts, NULL, val3);
7065     case FUTEX_WAKE:
7066         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7067     case FUTEX_FD:
7068         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7069     case FUTEX_REQUEUE:
7070     case FUTEX_CMP_REQUEUE:
7071     case FUTEX_WAKE_OP:
7072         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7073            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7074            But the prototype takes a `struct timespec *'; insert casts
7075            to satisfy the compiler.  We do not need to tswap TIMEOUT
7076            since it's not compared to guest memory.  */
7077         pts = (struct timespec *)(uintptr_t) timeout;
7078         return do_safe_futex(g2h(uaddr), op, val, pts, g2h(uaddr2),
7079                              (base_op == FUTEX_CMP_REQUEUE
7080                                       ? tswap32(val3)
7081                                       : val3));
7082     default:
7083         return -TARGET_ENOSYS;
7084     }
7085 }
7086 #endif
7087 
7088 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7089 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7090                                      abi_long handle, abi_long mount_id,
7091                                      abi_long flags)
7092 {
7093     struct file_handle *target_fh;
7094     struct file_handle *fh;
7095     int mid = 0;
7096     abi_long ret;
7097     char *name;
7098     unsigned int size, total_size;
7099 
7100     if (get_user_s32(size, handle)) {
7101         return -TARGET_EFAULT;
7102     }
7103 
7104     name = lock_user_string(pathname);
7105     if (!name) {
7106         return -TARGET_EFAULT;
7107     }
7108 
7109     total_size = sizeof(struct file_handle) + size;
7110     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7111     if (!target_fh) {
7112         unlock_user(name, pathname, 0);
7113         return -TARGET_EFAULT;
7114     }
7115 
7116     fh = g_malloc0(total_size);
7117     fh->handle_bytes = size;
7118 
7119     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7120     unlock_user(name, pathname, 0);
7121 
7122     /* man name_to_handle_at(2):
7123      * Other than the use of the handle_bytes field, the caller should treat
7124      * the file_handle structure as an opaque data type
7125      */
7126 
7127     memcpy(target_fh, fh, total_size);
7128     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7129     target_fh->handle_type = tswap32(fh->handle_type);
7130     g_free(fh);
7131     unlock_user(target_fh, handle, total_size);
7132 
7133     if (put_user_s32(mid, mount_id)) {
7134         return -TARGET_EFAULT;
7135     }
7136 
7137     return ret;
7138 
7139 }
7140 #endif
7141 
7142 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7143 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7144                                      abi_long flags)
7145 {
7146     struct file_handle *target_fh;
7147     struct file_handle *fh;
7148     unsigned int size, total_size;
7149     abi_long ret;
7150 
7151     if (get_user_s32(size, handle)) {
7152         return -TARGET_EFAULT;
7153     }
7154 
7155     total_size = sizeof(struct file_handle) + size;
7156     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7157     if (!target_fh) {
7158         return -TARGET_EFAULT;
7159     }
7160 
7161     fh = g_memdup(target_fh, total_size);
7162     fh->handle_bytes = size;
7163     fh->handle_type = tswap32(target_fh->handle_type);
7164 
7165     ret = get_errno(open_by_handle_at(mount_fd, fh,
7166                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7167 
7168     g_free(fh);
7169 
7170     unlock_user(target_fh, handle, total_size);
7171 
7172     return ret;
7173 }
7174 #endif
7175 
7176 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7177 
7178 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7179 {
7180     int host_flags;
7181     target_sigset_t *target_mask;
7182     sigset_t host_mask;
7183     abi_long ret;
7184 
7185     if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
7186         return -TARGET_EINVAL;
7187     }
7188     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7189         return -TARGET_EFAULT;
7190     }
7191 
7192     target_to_host_sigset(&host_mask, target_mask);
7193 
7194     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7195 
7196     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7197     if (ret >= 0) {
7198         fd_trans_register(ret, &target_signalfd_trans);
7199     }
7200 
7201     unlock_user_struct(target_mask, mask, 0);
7202 
7203     return ret;
7204 }
7205 #endif
7206 
7207 /* Map host to target signal numbers for the wait family of syscalls.
7208    Assume all other status bits are the same.  */
7209 int host_to_target_waitstatus(int status)
7210 {
7211     if (WIFSIGNALED(status)) {
7212         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7213     }
7214     if (WIFSTOPPED(status)) {
7215         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7216                | (status & 0xff);
7217     }
7218     return status;
7219 }
7220 
7221 static int open_self_cmdline(void *cpu_env, int fd)
7222 {
7223     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7224     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7225     int i;
7226 
7227     for (i = 0; i < bprm->argc; i++) {
7228         size_t len = strlen(bprm->argv[i]) + 1;
7229 
7230         if (write(fd, bprm->argv[i], len) != len) {
7231             return -1;
7232         }
7233     }
7234 
7235     return 0;
7236 }
7237 
7238 static int open_self_maps(void *cpu_env, int fd)
7239 {
7240     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7241     TaskState *ts = cpu->opaque;
7242     GSList *map_info = read_self_maps();
7243     GSList *s;
7244     int count;
7245 
7246     for (s = map_info; s; s = g_slist_next(s)) {
7247         MapInfo *e = (MapInfo *) s->data;
7248 
7249         if (h2g_valid(e->start)) {
7250             unsigned long min = e->start;
7251             unsigned long max = e->end;
7252             int flags = page_get_flags(h2g(min));
7253             const char *path;
7254 
7255             max = h2g_valid(max - 1) ?
7256                 max : (uintptr_t) g2h(GUEST_ADDR_MAX) + 1;
7257 
7258             if (page_check_range(h2g(min), max - min, flags) == -1) {
7259                 continue;
7260             }
7261 
7262             if (h2g(min) == ts->info->stack_limit) {
7263                 path = "[stack]";
7264             } else {
7265                 path = e->path;
7266             }
7267 
7268             count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
7269                             " %c%c%c%c %08" PRIx64 " %s %"PRId64,
7270                             h2g(min), h2g(max - 1) + 1,
7271                             e->is_read ? 'r' : '-',
7272                             e->is_write ? 'w' : '-',
7273                             e->is_exec ? 'x' : '-',
7274                             e->is_priv ? 'p' : '-',
7275                             (uint64_t) e->offset, e->dev, e->inode);
7276             if (path) {
7277                 dprintf(fd, "%*s%s\n", 73 - count, "", path);
7278             } else {
7279                 dprintf(fd, "\n");
7280             }
7281         }
7282     }
7283 
7284     free_self_maps(map_info);
7285 
7286 #ifdef TARGET_VSYSCALL_PAGE
7287     /*
7288      * We only support execution from the vsyscall page.
7289      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
7290      */
7291     count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
7292                     " --xp 00000000 00:00 0",
7293                     TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
7294     dprintf(fd, "%*s%s\n", 73 - count, "",  "[vsyscall]");
7295 #endif
7296 
7297     return 0;
7298 }
7299 
7300 static int open_self_stat(void *cpu_env, int fd)
7301 {
7302     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7303     TaskState *ts = cpu->opaque;
7304     g_autoptr(GString) buf = g_string_new(NULL);
7305     int i;
7306 
7307     for (i = 0; i < 44; i++) {
7308         if (i == 0) {
7309             /* pid */
7310             g_string_printf(buf, FMT_pid " ", getpid());
7311         } else if (i == 1) {
7312             /* app name */
7313             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
7314             bin = bin ? bin + 1 : ts->bprm->argv[0];
7315             g_string_printf(buf, "(%.15s) ", bin);
7316         } else if (i == 27) {
7317             /* stack bottom */
7318             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
7319         } else {
7320             /* for the rest, there is MasterCard */
7321             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
7322         }
7323 
7324         if (write(fd, buf->str, buf->len) != buf->len) {
7325             return -1;
7326         }
7327     }
7328 
7329     return 0;
7330 }
7331 
7332 static int open_self_auxv(void *cpu_env, int fd)
7333 {
7334     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7335     TaskState *ts = cpu->opaque;
7336     abi_ulong auxv = ts->info->saved_auxv;
7337     abi_ulong len = ts->info->auxv_len;
7338     char *ptr;
7339 
7340     /*
7341      * Auxiliary vector is stored in target process stack.
7342      * read in whole auxv vector and copy it to file
7343      */
7344     ptr = lock_user(VERIFY_READ, auxv, len, 0);
7345     if (ptr != NULL) {
7346         while (len > 0) {
7347             ssize_t r;
7348             r = write(fd, ptr, len);
7349             if (r <= 0) {
7350                 break;
7351             }
7352             len -= r;
7353             ptr += r;
7354         }
7355         lseek(fd, 0, SEEK_SET);
7356         unlock_user(ptr, auxv, len);
7357     }
7358 
7359     return 0;
7360 }
7361 
7362 static int is_proc_myself(const char *filename, const char *entry)
7363 {
7364     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7365         filename += strlen("/proc/");
7366         if (!strncmp(filename, "self/", strlen("self/"))) {
7367             filename += strlen("self/");
7368         } else if (*filename >= '1' && *filename <= '9') {
7369             char myself[80];
7370             snprintf(myself, sizeof(myself), "%d/", getpid());
7371             if (!strncmp(filename, myself, strlen(myself))) {
7372                 filename += strlen(myself);
7373             } else {
7374                 return 0;
7375             }
7376         } else {
7377             return 0;
7378         }
7379         if (!strcmp(filename, entry)) {
7380             return 1;
7381         }
7382     }
7383     return 0;
7384 }
7385 
7386 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
7387     defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
7388 static int is_proc(const char *filename, const char *entry)
7389 {
7390     return strcmp(filename, entry) == 0;
7391 }
7392 #endif
7393 
7394 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7395 static int open_net_route(void *cpu_env, int fd)
7396 {
7397     FILE *fp;
7398     char *line = NULL;
7399     size_t len = 0;
7400     ssize_t read;
7401 
7402     fp = fopen("/proc/net/route", "r");
7403     if (fp == NULL) {
7404         return -1;
7405     }
7406 
7407     /* read header */
7408 
7409     read = getline(&line, &len, fp);
7410     dprintf(fd, "%s", line);
7411 
7412     /* read routes */
7413 
7414     while ((read = getline(&line, &len, fp)) != -1) {
7415         char iface[16];
7416         uint32_t dest, gw, mask;
7417         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
7418         int fields;
7419 
7420         fields = sscanf(line,
7421                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7422                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
7423                         &mask, &mtu, &window, &irtt);
7424         if (fields != 11) {
7425             continue;
7426         }
7427         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7428                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
7429                 metric, tswap32(mask), mtu, window, irtt);
7430     }
7431 
7432     free(line);
7433     fclose(fp);
7434 
7435     return 0;
7436 }
7437 #endif
7438 
7439 #if defined(TARGET_SPARC)
7440 static int open_cpuinfo(void *cpu_env, int fd)
7441 {
7442     dprintf(fd, "type\t\t: sun4u\n");
7443     return 0;
7444 }
7445 #endif
7446 
7447 #if defined(TARGET_HPPA)
7448 static int open_cpuinfo(void *cpu_env, int fd)
7449 {
7450     dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
7451     dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
7452     dprintf(fd, "capabilities\t: os32\n");
7453     dprintf(fd, "model\t\t: 9000/778/B160L\n");
7454     dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n");
7455     return 0;
7456 }
7457 #endif
7458 
7459 #if defined(TARGET_M68K)
7460 static int open_hardware(void *cpu_env, int fd)
7461 {
7462     dprintf(fd, "Model:\t\tqemu-m68k\n");
7463     return 0;
7464 }
7465 #endif
7466 
7467 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
7468 {
7469     struct fake_open {
7470         const char *filename;
7471         int (*fill)(void *cpu_env, int fd);
7472         int (*cmp)(const char *s1, const char *s2);
7473     };
7474     const struct fake_open *fake_open;
7475     static const struct fake_open fakes[] = {
7476         { "maps", open_self_maps, is_proc_myself },
7477         { "stat", open_self_stat, is_proc_myself },
7478         { "auxv", open_self_auxv, is_proc_myself },
7479         { "cmdline", open_self_cmdline, is_proc_myself },
7480 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7481         { "/proc/net/route", open_net_route, is_proc },
7482 #endif
7483 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
7484         { "/proc/cpuinfo", open_cpuinfo, is_proc },
7485 #endif
7486 #if defined(TARGET_M68K)
7487         { "/proc/hardware", open_hardware, is_proc },
7488 #endif
7489         { NULL, NULL, NULL }
7490     };
7491 
7492     if (is_proc_myself(pathname, "exe")) {
7493         int execfd = qemu_getauxval(AT_EXECFD);
7494         return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
7495     }
7496 
7497     for (fake_open = fakes; fake_open->filename; fake_open++) {
7498         if (fake_open->cmp(pathname, fake_open->filename)) {
7499             break;
7500         }
7501     }
7502 
7503     if (fake_open->filename) {
7504         const char *tmpdir;
7505         char filename[PATH_MAX];
7506         int fd, r;
7507 
7508         /* create temporary file to map stat to */
7509         tmpdir = getenv("TMPDIR");
7510         if (!tmpdir)
7511             tmpdir = "/tmp";
7512         snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
7513         fd = mkstemp(filename);
7514         if (fd < 0) {
7515             return fd;
7516         }
7517         unlink(filename);
7518 
7519         if ((r = fake_open->fill(cpu_env, fd))) {
7520             int e = errno;
7521             close(fd);
7522             errno = e;
7523             return r;
7524         }
7525         lseek(fd, 0, SEEK_SET);
7526 
7527         return fd;
7528     }
7529 
7530     return safe_openat(dirfd, path(pathname), flags, mode);
7531 }
7532 
7533 #define TIMER_MAGIC 0x0caf0000
7534 #define TIMER_MAGIC_MASK 0xffff0000
7535 
7536 /* Convert QEMU provided timer ID back to internal 16bit index format */
7537 static target_timer_t get_timer_id(abi_long arg)
7538 {
7539     target_timer_t timerid = arg;
7540 
7541     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
7542         return -TARGET_EINVAL;
7543     }
7544 
7545     timerid &= 0xffff;
7546 
7547     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
7548         return -TARGET_EINVAL;
7549     }
7550 
7551     return timerid;
7552 }
7553 
7554 static int target_to_host_cpu_mask(unsigned long *host_mask,
7555                                    size_t host_size,
7556                                    abi_ulong target_addr,
7557                                    size_t target_size)
7558 {
7559     unsigned target_bits = sizeof(abi_ulong) * 8;
7560     unsigned host_bits = sizeof(*host_mask) * 8;
7561     abi_ulong *target_mask;
7562     unsigned i, j;
7563 
7564     assert(host_size >= target_size);
7565 
7566     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
7567     if (!target_mask) {
7568         return -TARGET_EFAULT;
7569     }
7570     memset(host_mask, 0, host_size);
7571 
7572     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7573         unsigned bit = i * target_bits;
7574         abi_ulong val;
7575 
7576         __get_user(val, &target_mask[i]);
7577         for (j = 0; j < target_bits; j++, bit++) {
7578             if (val & (1UL << j)) {
7579                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
7580             }
7581         }
7582     }
7583 
7584     unlock_user(target_mask, target_addr, 0);
7585     return 0;
7586 }
7587 
7588 static int host_to_target_cpu_mask(const unsigned long *host_mask,
7589                                    size_t host_size,
7590                                    abi_ulong target_addr,
7591                                    size_t target_size)
7592 {
7593     unsigned target_bits = sizeof(abi_ulong) * 8;
7594     unsigned host_bits = sizeof(*host_mask) * 8;
7595     abi_ulong *target_mask;
7596     unsigned i, j;
7597 
7598     assert(host_size >= target_size);
7599 
7600     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
7601     if (!target_mask) {
7602         return -TARGET_EFAULT;
7603     }
7604 
7605     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7606         unsigned bit = i * target_bits;
7607         abi_ulong val = 0;
7608 
7609         for (j = 0; j < target_bits; j++, bit++) {
7610             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
7611                 val |= 1UL << j;
7612             }
7613         }
7614         __put_user(val, &target_mask[i]);
7615     }
7616 
7617     unlock_user(target_mask, target_addr, target_size);
7618     return 0;
7619 }
7620 
7621 /* This is an internal helper for do_syscall so that it is easier
7622  * to have a single return point, so that actions, such as logging
7623  * of syscall results, can be performed.
7624  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
7625  */
7626 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
7627                             abi_long arg2, abi_long arg3, abi_long arg4,
7628                             abi_long arg5, abi_long arg6, abi_long arg7,
7629                             abi_long arg8)
7630 {
7631     CPUState *cpu = env_cpu(cpu_env);
7632     abi_long ret;
7633 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
7634     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
7635     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
7636     || defined(TARGET_NR_statx)
7637     struct stat st;
7638 #endif
7639 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
7640     || defined(TARGET_NR_fstatfs)
7641     struct statfs stfs;
7642 #endif
7643     void *p;
7644 
7645     switch(num) {
7646     case TARGET_NR_exit:
7647         /* In old applications this may be used to implement _exit(2).
7648            However in threaded applictions it is used for thread termination,
7649            and _exit_group is used for application termination.
7650            Do thread termination if we have more then one thread.  */
7651 
7652         if (block_signals()) {
7653             return -TARGET_ERESTARTSYS;
7654         }
7655 
7656         cpu_list_lock();
7657 
7658         if (CPU_NEXT(first_cpu)) {
7659             TaskState *ts;
7660 
7661             /* Remove the CPU from the list.  */
7662             QTAILQ_REMOVE_RCU(&cpus, cpu, node);
7663 
7664             cpu_list_unlock();
7665 
7666             ts = cpu->opaque;
7667             if (ts->child_tidptr) {
7668                 put_user_u32(0, ts->child_tidptr);
7669                 do_sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
7670                           NULL, NULL, 0);
7671             }
7672             thread_cpu = NULL;
7673             object_unref(OBJECT(cpu));
7674             g_free(ts);
7675             rcu_unregister_thread();
7676             pthread_exit(NULL);
7677         }
7678 
7679         cpu_list_unlock();
7680         preexit_cleanup(cpu_env, arg1);
7681         _exit(arg1);
7682         return 0; /* avoid warning */
7683     case TARGET_NR_read:
7684         if (arg2 == 0 && arg3 == 0) {
7685             return get_errno(safe_read(arg1, 0, 0));
7686         } else {
7687             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
7688                 return -TARGET_EFAULT;
7689             ret = get_errno(safe_read(arg1, p, arg3));
7690             if (ret >= 0 &&
7691                 fd_trans_host_to_target_data(arg1)) {
7692                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
7693             }
7694             unlock_user(p, arg2, ret);
7695         }
7696         return ret;
7697     case TARGET_NR_write:
7698         if (arg2 == 0 && arg3 == 0) {
7699             return get_errno(safe_write(arg1, 0, 0));
7700         }
7701         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
7702             return -TARGET_EFAULT;
7703         if (fd_trans_target_to_host_data(arg1)) {
7704             void *copy = g_malloc(arg3);
7705             memcpy(copy, p, arg3);
7706             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
7707             if (ret >= 0) {
7708                 ret = get_errno(safe_write(arg1, copy, ret));
7709             }
7710             g_free(copy);
7711         } else {
7712             ret = get_errno(safe_write(arg1, p, arg3));
7713         }
7714         unlock_user(p, arg2, 0);
7715         return ret;
7716 
7717 #ifdef TARGET_NR_open
7718     case TARGET_NR_open:
7719         if (!(p = lock_user_string(arg1)))
7720             return -TARGET_EFAULT;
7721         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
7722                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
7723                                   arg3));
7724         fd_trans_unregister(ret);
7725         unlock_user(p, arg1, 0);
7726         return ret;
7727 #endif
7728     case TARGET_NR_openat:
7729         if (!(p = lock_user_string(arg2)))
7730             return -TARGET_EFAULT;
7731         ret = get_errno(do_openat(cpu_env, arg1, p,
7732                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
7733                                   arg4));
7734         fd_trans_unregister(ret);
7735         unlock_user(p, arg2, 0);
7736         return ret;
7737 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7738     case TARGET_NR_name_to_handle_at:
7739         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
7740         return ret;
7741 #endif
7742 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7743     case TARGET_NR_open_by_handle_at:
7744         ret = do_open_by_handle_at(arg1, arg2, arg3);
7745         fd_trans_unregister(ret);
7746         return ret;
7747 #endif
7748     case TARGET_NR_close:
7749         fd_trans_unregister(arg1);
7750         return get_errno(close(arg1));
7751 
7752     case TARGET_NR_brk:
7753         return do_brk(arg1);
7754 #ifdef TARGET_NR_fork
7755     case TARGET_NR_fork:
7756         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
7757 #endif
7758 #ifdef TARGET_NR_waitpid
7759     case TARGET_NR_waitpid:
7760         {
7761             int status;
7762             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
7763             if (!is_error(ret) && arg2 && ret
7764                 && put_user_s32(host_to_target_waitstatus(status), arg2))
7765                 return -TARGET_EFAULT;
7766         }
7767         return ret;
7768 #endif
7769 #ifdef TARGET_NR_waitid
7770     case TARGET_NR_waitid:
7771         {
7772             siginfo_t info;
7773             info.si_pid = 0;
7774             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
7775             if (!is_error(ret) && arg3 && info.si_pid != 0) {
7776                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
7777                     return -TARGET_EFAULT;
7778                 host_to_target_siginfo(p, &info);
7779                 unlock_user(p, arg3, sizeof(target_siginfo_t));
7780             }
7781         }
7782         return ret;
7783 #endif
7784 #ifdef TARGET_NR_creat /* not on alpha */
7785     case TARGET_NR_creat:
7786         if (!(p = lock_user_string(arg1)))
7787             return -TARGET_EFAULT;
7788         ret = get_errno(creat(p, arg2));
7789         fd_trans_unregister(ret);
7790         unlock_user(p, arg1, 0);
7791         return ret;
7792 #endif
7793 #ifdef TARGET_NR_link
7794     case TARGET_NR_link:
7795         {
7796             void * p2;
7797             p = lock_user_string(arg1);
7798             p2 = lock_user_string(arg2);
7799             if (!p || !p2)
7800                 ret = -TARGET_EFAULT;
7801             else
7802                 ret = get_errno(link(p, p2));
7803             unlock_user(p2, arg2, 0);
7804             unlock_user(p, arg1, 0);
7805         }
7806         return ret;
7807 #endif
7808 #if defined(TARGET_NR_linkat)
7809     case TARGET_NR_linkat:
7810         {
7811             void * p2 = NULL;
7812             if (!arg2 || !arg4)
7813                 return -TARGET_EFAULT;
7814             p  = lock_user_string(arg2);
7815             p2 = lock_user_string(arg4);
7816             if (!p || !p2)
7817                 ret = -TARGET_EFAULT;
7818             else
7819                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
7820             unlock_user(p, arg2, 0);
7821             unlock_user(p2, arg4, 0);
7822         }
7823         return ret;
7824 #endif
7825 #ifdef TARGET_NR_unlink
7826     case TARGET_NR_unlink:
7827         if (!(p = lock_user_string(arg1)))
7828             return -TARGET_EFAULT;
7829         ret = get_errno(unlink(p));
7830         unlock_user(p, arg1, 0);
7831         return ret;
7832 #endif
7833 #if defined(TARGET_NR_unlinkat)
7834     case TARGET_NR_unlinkat:
7835         if (!(p = lock_user_string(arg2)))
7836             return -TARGET_EFAULT;
7837         ret = get_errno(unlinkat(arg1, p, arg3));
7838         unlock_user(p, arg2, 0);
7839         return ret;
7840 #endif
7841     case TARGET_NR_execve:
7842         {
7843             char **argp, **envp;
7844             int argc, envc;
7845             abi_ulong gp;
7846             abi_ulong guest_argp;
7847             abi_ulong guest_envp;
7848             abi_ulong addr;
7849             char **q;
7850             int total_size = 0;
7851 
7852             argc = 0;
7853             guest_argp = arg2;
7854             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
7855                 if (get_user_ual(addr, gp))
7856                     return -TARGET_EFAULT;
7857                 if (!addr)
7858                     break;
7859                 argc++;
7860             }
7861             envc = 0;
7862             guest_envp = arg3;
7863             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
7864                 if (get_user_ual(addr, gp))
7865                     return -TARGET_EFAULT;
7866                 if (!addr)
7867                     break;
7868                 envc++;
7869             }
7870 
7871             argp = g_new0(char *, argc + 1);
7872             envp = g_new0(char *, envc + 1);
7873 
7874             for (gp = guest_argp, q = argp; gp;
7875                   gp += sizeof(abi_ulong), q++) {
7876                 if (get_user_ual(addr, gp))
7877                     goto execve_efault;
7878                 if (!addr)
7879                     break;
7880                 if (!(*q = lock_user_string(addr)))
7881                     goto execve_efault;
7882                 total_size += strlen(*q) + 1;
7883             }
7884             *q = NULL;
7885 
7886             for (gp = guest_envp, q = envp; gp;
7887                   gp += sizeof(abi_ulong), q++) {
7888                 if (get_user_ual(addr, gp))
7889                     goto execve_efault;
7890                 if (!addr)
7891                     break;
7892                 if (!(*q = lock_user_string(addr)))
7893                     goto execve_efault;
7894                 total_size += strlen(*q) + 1;
7895             }
7896             *q = NULL;
7897 
7898             if (!(p = lock_user_string(arg1)))
7899                 goto execve_efault;
7900             /* Although execve() is not an interruptible syscall it is
7901              * a special case where we must use the safe_syscall wrapper:
7902              * if we allow a signal to happen before we make the host
7903              * syscall then we will 'lose' it, because at the point of
7904              * execve the process leaves QEMU's control. So we use the
7905              * safe syscall wrapper to ensure that we either take the
7906              * signal as a guest signal, or else it does not happen
7907              * before the execve completes and makes it the other
7908              * program's problem.
7909              */
7910             ret = get_errno(safe_execve(p, argp, envp));
7911             unlock_user(p, arg1, 0);
7912 
7913             goto execve_end;
7914 
7915         execve_efault:
7916             ret = -TARGET_EFAULT;
7917 
7918         execve_end:
7919             for (gp = guest_argp, q = argp; *q;
7920                   gp += sizeof(abi_ulong), q++) {
7921                 if (get_user_ual(addr, gp)
7922                     || !addr)
7923                     break;
7924                 unlock_user(*q, addr, 0);
7925             }
7926             for (gp = guest_envp, q = envp; *q;
7927                   gp += sizeof(abi_ulong), q++) {
7928                 if (get_user_ual(addr, gp)
7929                     || !addr)
7930                     break;
7931                 unlock_user(*q, addr, 0);
7932             }
7933 
7934             g_free(argp);
7935             g_free(envp);
7936         }
7937         return ret;
7938     case TARGET_NR_chdir:
7939         if (!(p = lock_user_string(arg1)))
7940             return -TARGET_EFAULT;
7941         ret = get_errno(chdir(p));
7942         unlock_user(p, arg1, 0);
7943         return ret;
7944 #ifdef TARGET_NR_time
7945     case TARGET_NR_time:
7946         {
7947             time_t host_time;
7948             ret = get_errno(time(&host_time));
7949             if (!is_error(ret)
7950                 && arg1
7951                 && put_user_sal(host_time, arg1))
7952                 return -TARGET_EFAULT;
7953         }
7954         return ret;
7955 #endif
7956 #ifdef TARGET_NR_mknod
7957     case TARGET_NR_mknod:
7958         if (!(p = lock_user_string(arg1)))
7959             return -TARGET_EFAULT;
7960         ret = get_errno(mknod(p, arg2, arg3));
7961         unlock_user(p, arg1, 0);
7962         return ret;
7963 #endif
7964 #if defined(TARGET_NR_mknodat)
7965     case TARGET_NR_mknodat:
7966         if (!(p = lock_user_string(arg2)))
7967             return -TARGET_EFAULT;
7968         ret = get_errno(mknodat(arg1, p, arg3, arg4));
7969         unlock_user(p, arg2, 0);
7970         return ret;
7971 #endif
7972 #ifdef TARGET_NR_chmod
7973     case TARGET_NR_chmod:
7974         if (!(p = lock_user_string(arg1)))
7975             return -TARGET_EFAULT;
7976         ret = get_errno(chmod(p, arg2));
7977         unlock_user(p, arg1, 0);
7978         return ret;
7979 #endif
7980 #ifdef TARGET_NR_lseek
7981     case TARGET_NR_lseek:
7982         return get_errno(lseek(arg1, arg2, arg3));
7983 #endif
7984 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
7985     /* Alpha specific */
7986     case TARGET_NR_getxpid:
7987         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
7988         return get_errno(getpid());
7989 #endif
7990 #ifdef TARGET_NR_getpid
7991     case TARGET_NR_getpid:
7992         return get_errno(getpid());
7993 #endif
7994     case TARGET_NR_mount:
7995         {
7996             /* need to look at the data field */
7997             void *p2, *p3;
7998 
7999             if (arg1) {
8000                 p = lock_user_string(arg1);
8001                 if (!p) {
8002                     return -TARGET_EFAULT;
8003                 }
8004             } else {
8005                 p = NULL;
8006             }
8007 
8008             p2 = lock_user_string(arg2);
8009             if (!p2) {
8010                 if (arg1) {
8011                     unlock_user(p, arg1, 0);
8012                 }
8013                 return -TARGET_EFAULT;
8014             }
8015 
8016             if (arg3) {
8017                 p3 = lock_user_string(arg3);
8018                 if (!p3) {
8019                     if (arg1) {
8020                         unlock_user(p, arg1, 0);
8021                     }
8022                     unlock_user(p2, arg2, 0);
8023                     return -TARGET_EFAULT;
8024                 }
8025             } else {
8026                 p3 = NULL;
8027             }
8028 
8029             /* FIXME - arg5 should be locked, but it isn't clear how to
8030              * do that since it's not guaranteed to be a NULL-terminated
8031              * string.
8032              */
8033             if (!arg5) {
8034                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8035             } else {
8036                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
8037             }
8038             ret = get_errno(ret);
8039 
8040             if (arg1) {
8041                 unlock_user(p, arg1, 0);
8042             }
8043             unlock_user(p2, arg2, 0);
8044             if (arg3) {
8045                 unlock_user(p3, arg3, 0);
8046             }
8047         }
8048         return ret;
8049 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
8050 #if defined(TARGET_NR_umount)
8051     case TARGET_NR_umount:
8052 #endif
8053 #if defined(TARGET_NR_oldumount)
8054     case TARGET_NR_oldumount:
8055 #endif
8056         if (!(p = lock_user_string(arg1)))
8057             return -TARGET_EFAULT;
8058         ret = get_errno(umount(p));
8059         unlock_user(p, arg1, 0);
8060         return ret;
8061 #endif
8062 #ifdef TARGET_NR_stime /* not on alpha */
8063     case TARGET_NR_stime:
8064         {
8065             struct timespec ts;
8066             ts.tv_nsec = 0;
8067             if (get_user_sal(ts.tv_sec, arg1)) {
8068                 return -TARGET_EFAULT;
8069             }
8070             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
8071         }
8072 #endif
8073 #ifdef TARGET_NR_alarm /* not on alpha */
8074     case TARGET_NR_alarm:
8075         return alarm(arg1);
8076 #endif
8077 #ifdef TARGET_NR_pause /* not on alpha */
8078     case TARGET_NR_pause:
8079         if (!block_signals()) {
8080             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
8081         }
8082         return -TARGET_EINTR;
8083 #endif
8084 #ifdef TARGET_NR_utime
8085     case TARGET_NR_utime:
8086         {
8087             struct utimbuf tbuf, *host_tbuf;
8088             struct target_utimbuf *target_tbuf;
8089             if (arg2) {
8090                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
8091                     return -TARGET_EFAULT;
8092                 tbuf.actime = tswapal(target_tbuf->actime);
8093                 tbuf.modtime = tswapal(target_tbuf->modtime);
8094                 unlock_user_struct(target_tbuf, arg2, 0);
8095                 host_tbuf = &tbuf;
8096             } else {
8097                 host_tbuf = NULL;
8098             }
8099             if (!(p = lock_user_string(arg1)))
8100                 return -TARGET_EFAULT;
8101             ret = get_errno(utime(p, host_tbuf));
8102             unlock_user(p, arg1, 0);
8103         }
8104         return ret;
8105 #endif
8106 #ifdef TARGET_NR_utimes
8107     case TARGET_NR_utimes:
8108         {
8109             struct timeval *tvp, tv[2];
8110             if (arg2) {
8111                 if (copy_from_user_timeval(&tv[0], arg2)
8112                     || copy_from_user_timeval(&tv[1],
8113                                               arg2 + sizeof(struct target_timeval)))
8114                     return -TARGET_EFAULT;
8115                 tvp = tv;
8116             } else {
8117                 tvp = NULL;
8118             }
8119             if (!(p = lock_user_string(arg1)))
8120                 return -TARGET_EFAULT;
8121             ret = get_errno(utimes(p, tvp));
8122             unlock_user(p, arg1, 0);
8123         }
8124         return ret;
8125 #endif
8126 #if defined(TARGET_NR_futimesat)
8127     case TARGET_NR_futimesat:
8128         {
8129             struct timeval *tvp, tv[2];
8130             if (arg3) {
8131                 if (copy_from_user_timeval(&tv[0], arg3)
8132                     || copy_from_user_timeval(&tv[1],
8133                                               arg3 + sizeof(struct target_timeval)))
8134                     return -TARGET_EFAULT;
8135                 tvp = tv;
8136             } else {
8137                 tvp = NULL;
8138             }
8139             if (!(p = lock_user_string(arg2))) {
8140                 return -TARGET_EFAULT;
8141             }
8142             ret = get_errno(futimesat(arg1, path(p), tvp));
8143             unlock_user(p, arg2, 0);
8144         }
8145         return ret;
8146 #endif
8147 #ifdef TARGET_NR_access
8148     case TARGET_NR_access:
8149         if (!(p = lock_user_string(arg1))) {
8150             return -TARGET_EFAULT;
8151         }
8152         ret = get_errno(access(path(p), arg2));
8153         unlock_user(p, arg1, 0);
8154         return ret;
8155 #endif
8156 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8157     case TARGET_NR_faccessat:
8158         if (!(p = lock_user_string(arg2))) {
8159             return -TARGET_EFAULT;
8160         }
8161         ret = get_errno(faccessat(arg1, p, arg3, 0));
8162         unlock_user(p, arg2, 0);
8163         return ret;
8164 #endif
8165 #ifdef TARGET_NR_nice /* not on alpha */
8166     case TARGET_NR_nice:
8167         return get_errno(nice(arg1));
8168 #endif
8169     case TARGET_NR_sync:
8170         sync();
8171         return 0;
8172 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8173     case TARGET_NR_syncfs:
8174         return get_errno(syncfs(arg1));
8175 #endif
8176     case TARGET_NR_kill:
8177         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8178 #ifdef TARGET_NR_rename
8179     case TARGET_NR_rename:
8180         {
8181             void *p2;
8182             p = lock_user_string(arg1);
8183             p2 = lock_user_string(arg2);
8184             if (!p || !p2)
8185                 ret = -TARGET_EFAULT;
8186             else
8187                 ret = get_errno(rename(p, p2));
8188             unlock_user(p2, arg2, 0);
8189             unlock_user(p, arg1, 0);
8190         }
8191         return ret;
8192 #endif
8193 #if defined(TARGET_NR_renameat)
8194     case TARGET_NR_renameat:
8195         {
8196             void *p2;
8197             p  = lock_user_string(arg2);
8198             p2 = lock_user_string(arg4);
8199             if (!p || !p2)
8200                 ret = -TARGET_EFAULT;
8201             else
8202                 ret = get_errno(renameat(arg1, p, arg3, p2));
8203             unlock_user(p2, arg4, 0);
8204             unlock_user(p, arg2, 0);
8205         }
8206         return ret;
8207 #endif
8208 #if defined(TARGET_NR_renameat2)
8209     case TARGET_NR_renameat2:
8210         {
8211             void *p2;
8212             p  = lock_user_string(arg2);
8213             p2 = lock_user_string(arg4);
8214             if (!p || !p2) {
8215                 ret = -TARGET_EFAULT;
8216             } else {
8217                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
8218             }
8219             unlock_user(p2, arg4, 0);
8220             unlock_user(p, arg2, 0);
8221         }
8222         return ret;
8223 #endif
8224 #ifdef TARGET_NR_mkdir
8225     case TARGET_NR_mkdir:
8226         if (!(p = lock_user_string(arg1)))
8227             return -TARGET_EFAULT;
8228         ret = get_errno(mkdir(p, arg2));
8229         unlock_user(p, arg1, 0);
8230         return ret;
8231 #endif
8232 #if defined(TARGET_NR_mkdirat)
8233     case TARGET_NR_mkdirat:
8234         if (!(p = lock_user_string(arg2)))
8235             return -TARGET_EFAULT;
8236         ret = get_errno(mkdirat(arg1, p, arg3));
8237         unlock_user(p, arg2, 0);
8238         return ret;
8239 #endif
8240 #ifdef TARGET_NR_rmdir
8241     case TARGET_NR_rmdir:
8242         if (!(p = lock_user_string(arg1)))
8243             return -TARGET_EFAULT;
8244         ret = get_errno(rmdir(p));
8245         unlock_user(p, arg1, 0);
8246         return ret;
8247 #endif
8248     case TARGET_NR_dup:
8249         ret = get_errno(dup(arg1));
8250         if (ret >= 0) {
8251             fd_trans_dup(arg1, ret);
8252         }
8253         return ret;
8254 #ifdef TARGET_NR_pipe
8255     case TARGET_NR_pipe:
8256         return do_pipe(cpu_env, arg1, 0, 0);
8257 #endif
8258 #ifdef TARGET_NR_pipe2
8259     case TARGET_NR_pipe2:
8260         return do_pipe(cpu_env, arg1,
8261                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8262 #endif
8263     case TARGET_NR_times:
8264         {
8265             struct target_tms *tmsp;
8266             struct tms tms;
8267             ret = get_errno(times(&tms));
8268             if (arg1) {
8269                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8270                 if (!tmsp)
8271                     return -TARGET_EFAULT;
8272                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8273                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8274                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8275                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8276             }
8277             if (!is_error(ret))
8278                 ret = host_to_target_clock_t(ret);
8279         }
8280         return ret;
8281     case TARGET_NR_acct:
8282         if (arg1 == 0) {
8283             ret = get_errno(acct(NULL));
8284         } else {
8285             if (!(p = lock_user_string(arg1))) {
8286                 return -TARGET_EFAULT;
8287             }
8288             ret = get_errno(acct(path(p)));
8289             unlock_user(p, arg1, 0);
8290         }
8291         return ret;
8292 #ifdef TARGET_NR_umount2
8293     case TARGET_NR_umount2:
8294         if (!(p = lock_user_string(arg1)))
8295             return -TARGET_EFAULT;
8296         ret = get_errno(umount2(p, arg2));
8297         unlock_user(p, arg1, 0);
8298         return ret;
8299 #endif
8300     case TARGET_NR_ioctl:
8301         return do_ioctl(arg1, arg2, arg3);
8302 #ifdef TARGET_NR_fcntl
8303     case TARGET_NR_fcntl:
8304         return do_fcntl(arg1, arg2, arg3);
8305 #endif
8306     case TARGET_NR_setpgid:
8307         return get_errno(setpgid(arg1, arg2));
8308     case TARGET_NR_umask:
8309         return get_errno(umask(arg1));
8310     case TARGET_NR_chroot:
8311         if (!(p = lock_user_string(arg1)))
8312             return -TARGET_EFAULT;
8313         ret = get_errno(chroot(p));
8314         unlock_user(p, arg1, 0);
8315         return ret;
8316 #ifdef TARGET_NR_dup2
8317     case TARGET_NR_dup2:
8318         ret = get_errno(dup2(arg1, arg2));
8319         if (ret >= 0) {
8320             fd_trans_dup(arg1, arg2);
8321         }
8322         return ret;
8323 #endif
8324 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8325     case TARGET_NR_dup3:
8326     {
8327         int host_flags;
8328 
8329         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
8330             return -EINVAL;
8331         }
8332         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
8333         ret = get_errno(dup3(arg1, arg2, host_flags));
8334         if (ret >= 0) {
8335             fd_trans_dup(arg1, arg2);
8336         }
8337         return ret;
8338     }
8339 #endif
8340 #ifdef TARGET_NR_getppid /* not on alpha */
8341     case TARGET_NR_getppid:
8342         return get_errno(getppid());
8343 #endif
8344 #ifdef TARGET_NR_getpgrp
8345     case TARGET_NR_getpgrp:
8346         return get_errno(getpgrp());
8347 #endif
8348     case TARGET_NR_setsid:
8349         return get_errno(setsid());
8350 #ifdef TARGET_NR_sigaction
8351     case TARGET_NR_sigaction:
8352         {
8353 #if defined(TARGET_ALPHA)
8354             struct target_sigaction act, oact, *pact = 0;
8355             struct target_old_sigaction *old_act;
8356             if (arg2) {
8357                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8358                     return -TARGET_EFAULT;
8359                 act._sa_handler = old_act->_sa_handler;
8360                 target_siginitset(&act.sa_mask, old_act->sa_mask);
8361                 act.sa_flags = old_act->sa_flags;
8362                 act.sa_restorer = 0;
8363                 unlock_user_struct(old_act, arg2, 0);
8364                 pact = &act;
8365             }
8366             ret = get_errno(do_sigaction(arg1, pact, &oact));
8367             if (!is_error(ret) && arg3) {
8368                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8369                     return -TARGET_EFAULT;
8370                 old_act->_sa_handler = oact._sa_handler;
8371                 old_act->sa_mask = oact.sa_mask.sig[0];
8372                 old_act->sa_flags = oact.sa_flags;
8373                 unlock_user_struct(old_act, arg3, 1);
8374             }
8375 #elif defined(TARGET_MIPS)
8376 	    struct target_sigaction act, oact, *pact, *old_act;
8377 
8378 	    if (arg2) {
8379                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8380                     return -TARGET_EFAULT;
8381 		act._sa_handler = old_act->_sa_handler;
8382 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8383 		act.sa_flags = old_act->sa_flags;
8384 		unlock_user_struct(old_act, arg2, 0);
8385 		pact = &act;
8386 	    } else {
8387 		pact = NULL;
8388 	    }
8389 
8390 	    ret = get_errno(do_sigaction(arg1, pact, &oact));
8391 
8392 	    if (!is_error(ret) && arg3) {
8393                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8394                     return -TARGET_EFAULT;
8395 		old_act->_sa_handler = oact._sa_handler;
8396 		old_act->sa_flags = oact.sa_flags;
8397 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
8398 		old_act->sa_mask.sig[1] = 0;
8399 		old_act->sa_mask.sig[2] = 0;
8400 		old_act->sa_mask.sig[3] = 0;
8401 		unlock_user_struct(old_act, arg3, 1);
8402 	    }
8403 #else
8404             struct target_old_sigaction *old_act;
8405             struct target_sigaction act, oact, *pact;
8406             if (arg2) {
8407                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8408                     return -TARGET_EFAULT;
8409                 act._sa_handler = old_act->_sa_handler;
8410                 target_siginitset(&act.sa_mask, old_act->sa_mask);
8411                 act.sa_flags = old_act->sa_flags;
8412                 act.sa_restorer = old_act->sa_restorer;
8413 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8414                 act.ka_restorer = 0;
8415 #endif
8416                 unlock_user_struct(old_act, arg2, 0);
8417                 pact = &act;
8418             } else {
8419                 pact = NULL;
8420             }
8421             ret = get_errno(do_sigaction(arg1, pact, &oact));
8422             if (!is_error(ret) && arg3) {
8423                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8424                     return -TARGET_EFAULT;
8425                 old_act->_sa_handler = oact._sa_handler;
8426                 old_act->sa_mask = oact.sa_mask.sig[0];
8427                 old_act->sa_flags = oact.sa_flags;
8428                 old_act->sa_restorer = oact.sa_restorer;
8429                 unlock_user_struct(old_act, arg3, 1);
8430             }
8431 #endif
8432         }
8433         return ret;
8434 #endif
8435     case TARGET_NR_rt_sigaction:
8436         {
8437 #if defined(TARGET_ALPHA)
8438             /* For Alpha and SPARC this is a 5 argument syscall, with
8439              * a 'restorer' parameter which must be copied into the
8440              * sa_restorer field of the sigaction struct.
8441              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8442              * and arg5 is the sigsetsize.
8443              * Alpha also has a separate rt_sigaction struct that it uses
8444              * here; SPARC uses the usual sigaction struct.
8445              */
8446             struct target_rt_sigaction *rt_act;
8447             struct target_sigaction act, oact, *pact = 0;
8448 
8449             if (arg4 != sizeof(target_sigset_t)) {
8450                 return -TARGET_EINVAL;
8451             }
8452             if (arg2) {
8453                 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
8454                     return -TARGET_EFAULT;
8455                 act._sa_handler = rt_act->_sa_handler;
8456                 act.sa_mask = rt_act->sa_mask;
8457                 act.sa_flags = rt_act->sa_flags;
8458                 act.sa_restorer = arg5;
8459                 unlock_user_struct(rt_act, arg2, 0);
8460                 pact = &act;
8461             }
8462             ret = get_errno(do_sigaction(arg1, pact, &oact));
8463             if (!is_error(ret) && arg3) {
8464                 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
8465                     return -TARGET_EFAULT;
8466                 rt_act->_sa_handler = oact._sa_handler;
8467                 rt_act->sa_mask = oact.sa_mask;
8468                 rt_act->sa_flags = oact.sa_flags;
8469                 unlock_user_struct(rt_act, arg3, 1);
8470             }
8471 #else
8472 #ifdef TARGET_SPARC
8473             target_ulong restorer = arg4;
8474             target_ulong sigsetsize = arg5;
8475 #else
8476             target_ulong sigsetsize = arg4;
8477 #endif
8478             struct target_sigaction *act;
8479             struct target_sigaction *oact;
8480 
8481             if (sigsetsize != sizeof(target_sigset_t)) {
8482                 return -TARGET_EINVAL;
8483             }
8484             if (arg2) {
8485                 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) {
8486                     return -TARGET_EFAULT;
8487                 }
8488 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8489                 act->ka_restorer = restorer;
8490 #endif
8491             } else {
8492                 act = NULL;
8493             }
8494             if (arg3) {
8495                 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
8496                     ret = -TARGET_EFAULT;
8497                     goto rt_sigaction_fail;
8498                 }
8499             } else
8500                 oact = NULL;
8501             ret = get_errno(do_sigaction(arg1, act, oact));
8502 	rt_sigaction_fail:
8503             if (act)
8504                 unlock_user_struct(act, arg2, 0);
8505             if (oact)
8506                 unlock_user_struct(oact, arg3, 1);
8507 #endif
8508         }
8509         return ret;
8510 #ifdef TARGET_NR_sgetmask /* not on alpha */
8511     case TARGET_NR_sgetmask:
8512         {
8513             sigset_t cur_set;
8514             abi_ulong target_set;
8515             ret = do_sigprocmask(0, NULL, &cur_set);
8516             if (!ret) {
8517                 host_to_target_old_sigset(&target_set, &cur_set);
8518                 ret = target_set;
8519             }
8520         }
8521         return ret;
8522 #endif
8523 #ifdef TARGET_NR_ssetmask /* not on alpha */
8524     case TARGET_NR_ssetmask:
8525         {
8526             sigset_t set, oset;
8527             abi_ulong target_set = arg1;
8528             target_to_host_old_sigset(&set, &target_set);
8529             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
8530             if (!ret) {
8531                 host_to_target_old_sigset(&target_set, &oset);
8532                 ret = target_set;
8533             }
8534         }
8535         return ret;
8536 #endif
8537 #ifdef TARGET_NR_sigprocmask
8538     case TARGET_NR_sigprocmask:
8539         {
8540 #if defined(TARGET_ALPHA)
8541             sigset_t set, oldset;
8542             abi_ulong mask;
8543             int how;
8544 
8545             switch (arg1) {
8546             case TARGET_SIG_BLOCK:
8547                 how = SIG_BLOCK;
8548                 break;
8549             case TARGET_SIG_UNBLOCK:
8550                 how = SIG_UNBLOCK;
8551                 break;
8552             case TARGET_SIG_SETMASK:
8553                 how = SIG_SETMASK;
8554                 break;
8555             default:
8556                 return -TARGET_EINVAL;
8557             }
8558             mask = arg2;
8559             target_to_host_old_sigset(&set, &mask);
8560 
8561             ret = do_sigprocmask(how, &set, &oldset);
8562             if (!is_error(ret)) {
8563                 host_to_target_old_sigset(&mask, &oldset);
8564                 ret = mask;
8565                 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
8566             }
8567 #else
8568             sigset_t set, oldset, *set_ptr;
8569             int how;
8570 
8571             if (arg2) {
8572                 switch (arg1) {
8573                 case TARGET_SIG_BLOCK:
8574                     how = SIG_BLOCK;
8575                     break;
8576                 case TARGET_SIG_UNBLOCK:
8577                     how = SIG_UNBLOCK;
8578                     break;
8579                 case TARGET_SIG_SETMASK:
8580                     how = SIG_SETMASK;
8581                     break;
8582                 default:
8583                     return -TARGET_EINVAL;
8584                 }
8585                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8586                     return -TARGET_EFAULT;
8587                 target_to_host_old_sigset(&set, p);
8588                 unlock_user(p, arg2, 0);
8589                 set_ptr = &set;
8590             } else {
8591                 how = 0;
8592                 set_ptr = NULL;
8593             }
8594             ret = do_sigprocmask(how, set_ptr, &oldset);
8595             if (!is_error(ret) && arg3) {
8596                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8597                     return -TARGET_EFAULT;
8598                 host_to_target_old_sigset(p, &oldset);
8599                 unlock_user(p, arg3, sizeof(target_sigset_t));
8600             }
8601 #endif
8602         }
8603         return ret;
8604 #endif
8605     case TARGET_NR_rt_sigprocmask:
8606         {
8607             int how = arg1;
8608             sigset_t set, oldset, *set_ptr;
8609 
8610             if (arg4 != sizeof(target_sigset_t)) {
8611                 return -TARGET_EINVAL;
8612             }
8613 
8614             if (arg2) {
8615                 switch(how) {
8616                 case TARGET_SIG_BLOCK:
8617                     how = SIG_BLOCK;
8618                     break;
8619                 case TARGET_SIG_UNBLOCK:
8620                     how = SIG_UNBLOCK;
8621                     break;
8622                 case TARGET_SIG_SETMASK:
8623                     how = SIG_SETMASK;
8624                     break;
8625                 default:
8626                     return -TARGET_EINVAL;
8627                 }
8628                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8629                     return -TARGET_EFAULT;
8630                 target_to_host_sigset(&set, p);
8631                 unlock_user(p, arg2, 0);
8632                 set_ptr = &set;
8633             } else {
8634                 how = 0;
8635                 set_ptr = NULL;
8636             }
8637             ret = do_sigprocmask(how, set_ptr, &oldset);
8638             if (!is_error(ret) && arg3) {
8639                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8640                     return -TARGET_EFAULT;
8641                 host_to_target_sigset(p, &oldset);
8642                 unlock_user(p, arg3, sizeof(target_sigset_t));
8643             }
8644         }
8645         return ret;
8646 #ifdef TARGET_NR_sigpending
8647     case TARGET_NR_sigpending:
8648         {
8649             sigset_t set;
8650             ret = get_errno(sigpending(&set));
8651             if (!is_error(ret)) {
8652                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8653                     return -TARGET_EFAULT;
8654                 host_to_target_old_sigset(p, &set);
8655                 unlock_user(p, arg1, sizeof(target_sigset_t));
8656             }
8657         }
8658         return ret;
8659 #endif
8660     case TARGET_NR_rt_sigpending:
8661         {
8662             sigset_t set;
8663 
8664             /* Yes, this check is >, not != like most. We follow the kernel's
8665              * logic and it does it like this because it implements
8666              * NR_sigpending through the same code path, and in that case
8667              * the old_sigset_t is smaller in size.
8668              */
8669             if (arg2 > sizeof(target_sigset_t)) {
8670                 return -TARGET_EINVAL;
8671             }
8672 
8673             ret = get_errno(sigpending(&set));
8674             if (!is_error(ret)) {
8675                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8676                     return -TARGET_EFAULT;
8677                 host_to_target_sigset(p, &set);
8678                 unlock_user(p, arg1, sizeof(target_sigset_t));
8679             }
8680         }
8681         return ret;
8682 #ifdef TARGET_NR_sigsuspend
8683     case TARGET_NR_sigsuspend:
8684         {
8685             TaskState *ts = cpu->opaque;
8686 #if defined(TARGET_ALPHA)
8687             abi_ulong mask = arg1;
8688             target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
8689 #else
8690             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8691                 return -TARGET_EFAULT;
8692             target_to_host_old_sigset(&ts->sigsuspend_mask, p);
8693             unlock_user(p, arg1, 0);
8694 #endif
8695             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8696                                                SIGSET_T_SIZE));
8697             if (ret != -TARGET_ERESTARTSYS) {
8698                 ts->in_sigsuspend = 1;
8699             }
8700         }
8701         return ret;
8702 #endif
8703     case TARGET_NR_rt_sigsuspend:
8704         {
8705             TaskState *ts = cpu->opaque;
8706 
8707             if (arg2 != sizeof(target_sigset_t)) {
8708                 return -TARGET_EINVAL;
8709             }
8710             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8711                 return -TARGET_EFAULT;
8712             target_to_host_sigset(&ts->sigsuspend_mask, p);
8713             unlock_user(p, arg1, 0);
8714             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8715                                                SIGSET_T_SIZE));
8716             if (ret != -TARGET_ERESTARTSYS) {
8717                 ts->in_sigsuspend = 1;
8718             }
8719         }
8720         return ret;
8721 #ifdef TARGET_NR_rt_sigtimedwait
8722     case TARGET_NR_rt_sigtimedwait:
8723         {
8724             sigset_t set;
8725             struct timespec uts, *puts;
8726             siginfo_t uinfo;
8727 
8728             if (arg4 != sizeof(target_sigset_t)) {
8729                 return -TARGET_EINVAL;
8730             }
8731 
8732             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8733                 return -TARGET_EFAULT;
8734             target_to_host_sigset(&set, p);
8735             unlock_user(p, arg1, 0);
8736             if (arg3) {
8737                 puts = &uts;
8738                 target_to_host_timespec(puts, arg3);
8739             } else {
8740                 puts = NULL;
8741             }
8742             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
8743                                                  SIGSET_T_SIZE));
8744             if (!is_error(ret)) {
8745                 if (arg2) {
8746                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
8747                                   0);
8748                     if (!p) {
8749                         return -TARGET_EFAULT;
8750                     }
8751                     host_to_target_siginfo(p, &uinfo);
8752                     unlock_user(p, arg2, sizeof(target_siginfo_t));
8753                 }
8754                 ret = host_to_target_signal(ret);
8755             }
8756         }
8757         return ret;
8758 #endif
8759     case TARGET_NR_rt_sigqueueinfo:
8760         {
8761             siginfo_t uinfo;
8762 
8763             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
8764             if (!p) {
8765                 return -TARGET_EFAULT;
8766             }
8767             target_to_host_siginfo(&uinfo, p);
8768             unlock_user(p, arg3, 0);
8769             ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
8770         }
8771         return ret;
8772     case TARGET_NR_rt_tgsigqueueinfo:
8773         {
8774             siginfo_t uinfo;
8775 
8776             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
8777             if (!p) {
8778                 return -TARGET_EFAULT;
8779             }
8780             target_to_host_siginfo(&uinfo, p);
8781             unlock_user(p, arg4, 0);
8782             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
8783         }
8784         return ret;
8785 #ifdef TARGET_NR_sigreturn
8786     case TARGET_NR_sigreturn:
8787         if (block_signals()) {
8788             return -TARGET_ERESTARTSYS;
8789         }
8790         return do_sigreturn(cpu_env);
8791 #endif
8792     case TARGET_NR_rt_sigreturn:
8793         if (block_signals()) {
8794             return -TARGET_ERESTARTSYS;
8795         }
8796         return do_rt_sigreturn(cpu_env);
8797     case TARGET_NR_sethostname:
8798         if (!(p = lock_user_string(arg1)))
8799             return -TARGET_EFAULT;
8800         ret = get_errno(sethostname(p, arg2));
8801         unlock_user(p, arg1, 0);
8802         return ret;
8803 #ifdef TARGET_NR_setrlimit
8804     case TARGET_NR_setrlimit:
8805         {
8806             int resource = target_to_host_resource(arg1);
8807             struct target_rlimit *target_rlim;
8808             struct rlimit rlim;
8809             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
8810                 return -TARGET_EFAULT;
8811             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
8812             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
8813             unlock_user_struct(target_rlim, arg2, 0);
8814             /*
8815              * If we just passed through resource limit settings for memory then
8816              * they would also apply to QEMU's own allocations, and QEMU will
8817              * crash or hang or die if its allocations fail. Ideally we would
8818              * track the guest allocations in QEMU and apply the limits ourselves.
8819              * For now, just tell the guest the call succeeded but don't actually
8820              * limit anything.
8821              */
8822             if (resource != RLIMIT_AS &&
8823                 resource != RLIMIT_DATA &&
8824                 resource != RLIMIT_STACK) {
8825                 return get_errno(setrlimit(resource, &rlim));
8826             } else {
8827                 return 0;
8828             }
8829         }
8830 #endif
8831 #ifdef TARGET_NR_getrlimit
8832     case TARGET_NR_getrlimit:
8833         {
8834             int resource = target_to_host_resource(arg1);
8835             struct target_rlimit *target_rlim;
8836             struct rlimit rlim;
8837 
8838             ret = get_errno(getrlimit(resource, &rlim));
8839             if (!is_error(ret)) {
8840                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
8841                     return -TARGET_EFAULT;
8842                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
8843                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
8844                 unlock_user_struct(target_rlim, arg2, 1);
8845             }
8846         }
8847         return ret;
8848 #endif
8849     case TARGET_NR_getrusage:
8850         {
8851             struct rusage rusage;
8852             ret = get_errno(getrusage(arg1, &rusage));
8853             if (!is_error(ret)) {
8854                 ret = host_to_target_rusage(arg2, &rusage);
8855             }
8856         }
8857         return ret;
8858 #if defined(TARGET_NR_gettimeofday)
8859     case TARGET_NR_gettimeofday:
8860         {
8861             struct timeval tv;
8862             struct timezone tz;
8863 
8864             ret = get_errno(gettimeofday(&tv, &tz));
8865             if (!is_error(ret)) {
8866                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
8867                     return -TARGET_EFAULT;
8868                 }
8869                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
8870                     return -TARGET_EFAULT;
8871                 }
8872             }
8873         }
8874         return ret;
8875 #endif
8876 #if defined(TARGET_NR_settimeofday)
8877     case TARGET_NR_settimeofday:
8878         {
8879             struct timeval tv, *ptv = NULL;
8880             struct timezone tz, *ptz = NULL;
8881 
8882             if (arg1) {
8883                 if (copy_from_user_timeval(&tv, arg1)) {
8884                     return -TARGET_EFAULT;
8885                 }
8886                 ptv = &tv;
8887             }
8888 
8889             if (arg2) {
8890                 if (copy_from_user_timezone(&tz, arg2)) {
8891                     return -TARGET_EFAULT;
8892                 }
8893                 ptz = &tz;
8894             }
8895 
8896             return get_errno(settimeofday(ptv, ptz));
8897         }
8898 #endif
8899 #if defined(TARGET_NR_select)
8900     case TARGET_NR_select:
8901 #if defined(TARGET_WANT_NI_OLD_SELECT)
8902         /* some architectures used to have old_select here
8903          * but now ENOSYS it.
8904          */
8905         ret = -TARGET_ENOSYS;
8906 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
8907         ret = do_old_select(arg1);
8908 #else
8909         ret = do_select(arg1, arg2, arg3, arg4, arg5);
8910 #endif
8911         return ret;
8912 #endif
8913 #ifdef TARGET_NR_pselect6
8914     case TARGET_NR_pselect6:
8915         {
8916             abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
8917             fd_set rfds, wfds, efds;
8918             fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
8919             struct timespec ts, *ts_ptr;
8920 
8921             /*
8922              * The 6th arg is actually two args smashed together,
8923              * so we cannot use the C library.
8924              */
8925             sigset_t set;
8926             struct {
8927                 sigset_t *set;
8928                 size_t size;
8929             } sig, *sig_ptr;
8930 
8931             abi_ulong arg_sigset, arg_sigsize, *arg7;
8932             target_sigset_t *target_sigset;
8933 
8934             n = arg1;
8935             rfd_addr = arg2;
8936             wfd_addr = arg3;
8937             efd_addr = arg4;
8938             ts_addr = arg5;
8939 
8940             ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
8941             if (ret) {
8942                 return ret;
8943             }
8944             ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
8945             if (ret) {
8946                 return ret;
8947             }
8948             ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
8949             if (ret) {
8950                 return ret;
8951             }
8952 
8953             /*
8954              * This takes a timespec, and not a timeval, so we cannot
8955              * use the do_select() helper ...
8956              */
8957             if (ts_addr) {
8958                 if (target_to_host_timespec(&ts, ts_addr)) {
8959                     return -TARGET_EFAULT;
8960                 }
8961                 ts_ptr = &ts;
8962             } else {
8963                 ts_ptr = NULL;
8964             }
8965 
8966             /* Extract the two packed args for the sigset */
8967             if (arg6) {
8968                 sig_ptr = &sig;
8969                 sig.size = SIGSET_T_SIZE;
8970 
8971                 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
8972                 if (!arg7) {
8973                     return -TARGET_EFAULT;
8974                 }
8975                 arg_sigset = tswapal(arg7[0]);
8976                 arg_sigsize = tswapal(arg7[1]);
8977                 unlock_user(arg7, arg6, 0);
8978 
8979                 if (arg_sigset) {
8980                     sig.set = &set;
8981                     if (arg_sigsize != sizeof(*target_sigset)) {
8982                         /* Like the kernel, we enforce correct size sigsets */
8983                         return -TARGET_EINVAL;
8984                     }
8985                     target_sigset = lock_user(VERIFY_READ, arg_sigset,
8986                                               sizeof(*target_sigset), 1);
8987                     if (!target_sigset) {
8988                         return -TARGET_EFAULT;
8989                     }
8990                     target_to_host_sigset(&set, target_sigset);
8991                     unlock_user(target_sigset, arg_sigset, 0);
8992                 } else {
8993                     sig.set = NULL;
8994                 }
8995             } else {
8996                 sig_ptr = NULL;
8997             }
8998 
8999             ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
9000                                           ts_ptr, sig_ptr));
9001 
9002             if (!is_error(ret)) {
9003                 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
9004                     return -TARGET_EFAULT;
9005                 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
9006                     return -TARGET_EFAULT;
9007                 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
9008                     return -TARGET_EFAULT;
9009 
9010                 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
9011                     return -TARGET_EFAULT;
9012             }
9013         }
9014         return ret;
9015 #endif
9016 #ifdef TARGET_NR_symlink
9017     case TARGET_NR_symlink:
9018         {
9019             void *p2;
9020             p = lock_user_string(arg1);
9021             p2 = lock_user_string(arg2);
9022             if (!p || !p2)
9023                 ret = -TARGET_EFAULT;
9024             else
9025                 ret = get_errno(symlink(p, p2));
9026             unlock_user(p2, arg2, 0);
9027             unlock_user(p, arg1, 0);
9028         }
9029         return ret;
9030 #endif
9031 #if defined(TARGET_NR_symlinkat)
9032     case TARGET_NR_symlinkat:
9033         {
9034             void *p2;
9035             p  = lock_user_string(arg1);
9036             p2 = lock_user_string(arg3);
9037             if (!p || !p2)
9038                 ret = -TARGET_EFAULT;
9039             else
9040                 ret = get_errno(symlinkat(p, arg2, p2));
9041             unlock_user(p2, arg3, 0);
9042             unlock_user(p, arg1, 0);
9043         }
9044         return ret;
9045 #endif
9046 #ifdef TARGET_NR_readlink
9047     case TARGET_NR_readlink:
9048         {
9049             void *p2;
9050             p = lock_user_string(arg1);
9051             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9052             if (!p || !p2) {
9053                 ret = -TARGET_EFAULT;
9054             } else if (!arg3) {
9055                 /* Short circuit this for the magic exe check. */
9056                 ret = -TARGET_EINVAL;
9057             } else if (is_proc_myself((const char *)p, "exe")) {
9058                 char real[PATH_MAX], *temp;
9059                 temp = realpath(exec_path, real);
9060                 /* Return value is # of bytes that we wrote to the buffer. */
9061                 if (temp == NULL) {
9062                     ret = get_errno(-1);
9063                 } else {
9064                     /* Don't worry about sign mismatch as earlier mapping
9065                      * logic would have thrown a bad address error. */
9066                     ret = MIN(strlen(real), arg3);
9067                     /* We cannot NUL terminate the string. */
9068                     memcpy(p2, real, ret);
9069                 }
9070             } else {
9071                 ret = get_errno(readlink(path(p), p2, arg3));
9072             }
9073             unlock_user(p2, arg2, ret);
9074             unlock_user(p, arg1, 0);
9075         }
9076         return ret;
9077 #endif
9078 #if defined(TARGET_NR_readlinkat)
9079     case TARGET_NR_readlinkat:
9080         {
9081             void *p2;
9082             p  = lock_user_string(arg2);
9083             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9084             if (!p || !p2) {
9085                 ret = -TARGET_EFAULT;
9086             } else if (is_proc_myself((const char *)p, "exe")) {
9087                 char real[PATH_MAX], *temp;
9088                 temp = realpath(exec_path, real);
9089                 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9090                 snprintf((char *)p2, arg4, "%s", real);
9091             } else {
9092                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9093             }
9094             unlock_user(p2, arg3, ret);
9095             unlock_user(p, arg2, 0);
9096         }
9097         return ret;
9098 #endif
9099 #ifdef TARGET_NR_swapon
9100     case TARGET_NR_swapon:
9101         if (!(p = lock_user_string(arg1)))
9102             return -TARGET_EFAULT;
9103         ret = get_errno(swapon(p, arg2));
9104         unlock_user(p, arg1, 0);
9105         return ret;
9106 #endif
9107     case TARGET_NR_reboot:
9108         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9109            /* arg4 must be ignored in all other cases */
9110            p = lock_user_string(arg4);
9111            if (!p) {
9112                return -TARGET_EFAULT;
9113            }
9114            ret = get_errno(reboot(arg1, arg2, arg3, p));
9115            unlock_user(p, arg4, 0);
9116         } else {
9117            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9118         }
9119         return ret;
9120 #ifdef TARGET_NR_mmap
9121     case TARGET_NR_mmap:
9122 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9123     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9124     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9125     || defined(TARGET_S390X)
9126         {
9127             abi_ulong *v;
9128             abi_ulong v1, v2, v3, v4, v5, v6;
9129             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9130                 return -TARGET_EFAULT;
9131             v1 = tswapal(v[0]);
9132             v2 = tswapal(v[1]);
9133             v3 = tswapal(v[2]);
9134             v4 = tswapal(v[3]);
9135             v5 = tswapal(v[4]);
9136             v6 = tswapal(v[5]);
9137             unlock_user(v, arg1, 0);
9138             ret = get_errno(target_mmap(v1, v2, v3,
9139                                         target_to_host_bitmask(v4, mmap_flags_tbl),
9140                                         v5, v6));
9141         }
9142 #else
9143         ret = get_errno(target_mmap(arg1, arg2, arg3,
9144                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
9145                                     arg5,
9146                                     arg6));
9147 #endif
9148         return ret;
9149 #endif
9150 #ifdef TARGET_NR_mmap2
9151     case TARGET_NR_mmap2:
9152 #ifndef MMAP_SHIFT
9153 #define MMAP_SHIFT 12
9154 #endif
9155         ret = target_mmap(arg1, arg2, arg3,
9156                           target_to_host_bitmask(arg4, mmap_flags_tbl),
9157                           arg5, arg6 << MMAP_SHIFT);
9158         return get_errno(ret);
9159 #endif
9160     case TARGET_NR_munmap:
9161         return get_errno(target_munmap(arg1, arg2));
9162     case TARGET_NR_mprotect:
9163         {
9164             TaskState *ts = cpu->opaque;
9165             /* Special hack to detect libc making the stack executable.  */
9166             if ((arg3 & PROT_GROWSDOWN)
9167                 && arg1 >= ts->info->stack_limit
9168                 && arg1 <= ts->info->start_stack) {
9169                 arg3 &= ~PROT_GROWSDOWN;
9170                 arg2 = arg2 + arg1 - ts->info->stack_limit;
9171                 arg1 = ts->info->stack_limit;
9172             }
9173         }
9174         return get_errno(target_mprotect(arg1, arg2, arg3));
9175 #ifdef TARGET_NR_mremap
9176     case TARGET_NR_mremap:
9177         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
9178 #endif
9179         /* ??? msync/mlock/munlock are broken for softmmu.  */
9180 #ifdef TARGET_NR_msync
9181     case TARGET_NR_msync:
9182         return get_errno(msync(g2h(arg1), arg2, arg3));
9183 #endif
9184 #ifdef TARGET_NR_mlock
9185     case TARGET_NR_mlock:
9186         return get_errno(mlock(g2h(arg1), arg2));
9187 #endif
9188 #ifdef TARGET_NR_munlock
9189     case TARGET_NR_munlock:
9190         return get_errno(munlock(g2h(arg1), arg2));
9191 #endif
9192 #ifdef TARGET_NR_mlockall
9193     case TARGET_NR_mlockall:
9194         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9195 #endif
9196 #ifdef TARGET_NR_munlockall
9197     case TARGET_NR_munlockall:
9198         return get_errno(munlockall());
9199 #endif
9200 #ifdef TARGET_NR_truncate
9201     case TARGET_NR_truncate:
9202         if (!(p = lock_user_string(arg1)))
9203             return -TARGET_EFAULT;
9204         ret = get_errno(truncate(p, arg2));
9205         unlock_user(p, arg1, 0);
9206         return ret;
9207 #endif
9208 #ifdef TARGET_NR_ftruncate
9209     case TARGET_NR_ftruncate:
9210         return get_errno(ftruncate(arg1, arg2));
9211 #endif
9212     case TARGET_NR_fchmod:
9213         return get_errno(fchmod(arg1, arg2));
9214 #if defined(TARGET_NR_fchmodat)
9215     case TARGET_NR_fchmodat:
9216         if (!(p = lock_user_string(arg2)))
9217             return -TARGET_EFAULT;
9218         ret = get_errno(fchmodat(arg1, p, arg3, 0));
9219         unlock_user(p, arg2, 0);
9220         return ret;
9221 #endif
9222     case TARGET_NR_getpriority:
9223         /* Note that negative values are valid for getpriority, so we must
9224            differentiate based on errno settings.  */
9225         errno = 0;
9226         ret = getpriority(arg1, arg2);
9227         if (ret == -1 && errno != 0) {
9228             return -host_to_target_errno(errno);
9229         }
9230 #ifdef TARGET_ALPHA
9231         /* Return value is the unbiased priority.  Signal no error.  */
9232         ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9233 #else
9234         /* Return value is a biased priority to avoid negative numbers.  */
9235         ret = 20 - ret;
9236 #endif
9237         return ret;
9238     case TARGET_NR_setpriority:
9239         return get_errno(setpriority(arg1, arg2, arg3));
9240 #ifdef TARGET_NR_statfs
9241     case TARGET_NR_statfs:
9242         if (!(p = lock_user_string(arg1))) {
9243             return -TARGET_EFAULT;
9244         }
9245         ret = get_errno(statfs(path(p), &stfs));
9246         unlock_user(p, arg1, 0);
9247     convert_statfs:
9248         if (!is_error(ret)) {
9249             struct target_statfs *target_stfs;
9250 
9251             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9252                 return -TARGET_EFAULT;
9253             __put_user(stfs.f_type, &target_stfs->f_type);
9254             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9255             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9256             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9257             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9258             __put_user(stfs.f_files, &target_stfs->f_files);
9259             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9260             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9261             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9262             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9263             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9264 #ifdef _STATFS_F_FLAGS
9265             __put_user(stfs.f_flags, &target_stfs->f_flags);
9266 #else
9267             __put_user(0, &target_stfs->f_flags);
9268 #endif
9269             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9270             unlock_user_struct(target_stfs, arg2, 1);
9271         }
9272         return ret;
9273 #endif
9274 #ifdef TARGET_NR_fstatfs
9275     case TARGET_NR_fstatfs:
9276         ret = get_errno(fstatfs(arg1, &stfs));
9277         goto convert_statfs;
9278 #endif
9279 #ifdef TARGET_NR_statfs64
9280     case TARGET_NR_statfs64:
9281         if (!(p = lock_user_string(arg1))) {
9282             return -TARGET_EFAULT;
9283         }
9284         ret = get_errno(statfs(path(p), &stfs));
9285         unlock_user(p, arg1, 0);
9286     convert_statfs64:
9287         if (!is_error(ret)) {
9288             struct target_statfs64 *target_stfs;
9289 
9290             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9291                 return -TARGET_EFAULT;
9292             __put_user(stfs.f_type, &target_stfs->f_type);
9293             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9294             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9295             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9296             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9297             __put_user(stfs.f_files, &target_stfs->f_files);
9298             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9299             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9300             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9301             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9302             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9303             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9304             unlock_user_struct(target_stfs, arg3, 1);
9305         }
9306         return ret;
9307     case TARGET_NR_fstatfs64:
9308         ret = get_errno(fstatfs(arg1, &stfs));
9309         goto convert_statfs64;
9310 #endif
9311 #ifdef TARGET_NR_socketcall
9312     case TARGET_NR_socketcall:
9313         return do_socketcall(arg1, arg2);
9314 #endif
9315 #ifdef TARGET_NR_accept
9316     case TARGET_NR_accept:
9317         return do_accept4(arg1, arg2, arg3, 0);
9318 #endif
9319 #ifdef TARGET_NR_accept4
9320     case TARGET_NR_accept4:
9321         return do_accept4(arg1, arg2, arg3, arg4);
9322 #endif
9323 #ifdef TARGET_NR_bind
9324     case TARGET_NR_bind:
9325         return do_bind(arg1, arg2, arg3);
9326 #endif
9327 #ifdef TARGET_NR_connect
9328     case TARGET_NR_connect:
9329         return do_connect(arg1, arg2, arg3);
9330 #endif
9331 #ifdef TARGET_NR_getpeername
9332     case TARGET_NR_getpeername:
9333         return do_getpeername(arg1, arg2, arg3);
9334 #endif
9335 #ifdef TARGET_NR_getsockname
9336     case TARGET_NR_getsockname:
9337         return do_getsockname(arg1, arg2, arg3);
9338 #endif
9339 #ifdef TARGET_NR_getsockopt
9340     case TARGET_NR_getsockopt:
9341         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9342 #endif
9343 #ifdef TARGET_NR_listen
9344     case TARGET_NR_listen:
9345         return get_errno(listen(arg1, arg2));
9346 #endif
9347 #ifdef TARGET_NR_recv
9348     case TARGET_NR_recv:
9349         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9350 #endif
9351 #ifdef TARGET_NR_recvfrom
9352     case TARGET_NR_recvfrom:
9353         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9354 #endif
9355 #ifdef TARGET_NR_recvmsg
9356     case TARGET_NR_recvmsg:
9357         return do_sendrecvmsg(arg1, arg2, arg3, 0);
9358 #endif
9359 #ifdef TARGET_NR_send
9360     case TARGET_NR_send:
9361         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9362 #endif
9363 #ifdef TARGET_NR_sendmsg
9364     case TARGET_NR_sendmsg:
9365         return do_sendrecvmsg(arg1, arg2, arg3, 1);
9366 #endif
9367 #ifdef TARGET_NR_sendmmsg
9368     case TARGET_NR_sendmmsg:
9369         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9370 #endif
9371 #ifdef TARGET_NR_recvmmsg
9372     case TARGET_NR_recvmmsg:
9373         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9374 #endif
9375 #ifdef TARGET_NR_sendto
9376     case TARGET_NR_sendto:
9377         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9378 #endif
9379 #ifdef TARGET_NR_shutdown
9380     case TARGET_NR_shutdown:
9381         return get_errno(shutdown(arg1, arg2));
9382 #endif
9383 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9384     case TARGET_NR_getrandom:
9385         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9386         if (!p) {
9387             return -TARGET_EFAULT;
9388         }
9389         ret = get_errno(getrandom(p, arg2, arg3));
9390         unlock_user(p, arg1, ret);
9391         return ret;
9392 #endif
9393 #ifdef TARGET_NR_socket
9394     case TARGET_NR_socket:
9395         return do_socket(arg1, arg2, arg3);
9396 #endif
9397 #ifdef TARGET_NR_socketpair
9398     case TARGET_NR_socketpair:
9399         return do_socketpair(arg1, arg2, arg3, arg4);
9400 #endif
9401 #ifdef TARGET_NR_setsockopt
9402     case TARGET_NR_setsockopt:
9403         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9404 #endif
9405 #if defined(TARGET_NR_syslog)
9406     case TARGET_NR_syslog:
9407         {
9408             int len = arg2;
9409 
9410             switch (arg1) {
9411             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
9412             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
9413             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
9414             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
9415             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
9416             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
9417             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
9418             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
9419                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
9420             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
9421             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
9422             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
9423                 {
9424                     if (len < 0) {
9425                         return -TARGET_EINVAL;
9426                     }
9427                     if (len == 0) {
9428                         return 0;
9429                     }
9430                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9431                     if (!p) {
9432                         return -TARGET_EFAULT;
9433                     }
9434                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9435                     unlock_user(p, arg2, arg3);
9436                 }
9437                 return ret;
9438             default:
9439                 return -TARGET_EINVAL;
9440             }
9441         }
9442         break;
9443 #endif
9444     case TARGET_NR_setitimer:
9445         {
9446             struct itimerval value, ovalue, *pvalue;
9447 
9448             if (arg2) {
9449                 pvalue = &value;
9450                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9451                     || copy_from_user_timeval(&pvalue->it_value,
9452                                               arg2 + sizeof(struct target_timeval)))
9453                     return -TARGET_EFAULT;
9454             } else {
9455                 pvalue = NULL;
9456             }
9457             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9458             if (!is_error(ret) && arg3) {
9459                 if (copy_to_user_timeval(arg3,
9460                                          &ovalue.it_interval)
9461                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
9462                                             &ovalue.it_value))
9463                     return -TARGET_EFAULT;
9464             }
9465         }
9466         return ret;
9467     case TARGET_NR_getitimer:
9468         {
9469             struct itimerval value;
9470 
9471             ret = get_errno(getitimer(arg1, &value));
9472             if (!is_error(ret) && arg2) {
9473                 if (copy_to_user_timeval(arg2,
9474                                          &value.it_interval)
9475                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
9476                                             &value.it_value))
9477                     return -TARGET_EFAULT;
9478             }
9479         }
9480         return ret;
9481 #ifdef TARGET_NR_stat
9482     case TARGET_NR_stat:
9483         if (!(p = lock_user_string(arg1))) {
9484             return -TARGET_EFAULT;
9485         }
9486         ret = get_errno(stat(path(p), &st));
9487         unlock_user(p, arg1, 0);
9488         goto do_stat;
9489 #endif
9490 #ifdef TARGET_NR_lstat
9491     case TARGET_NR_lstat:
9492         if (!(p = lock_user_string(arg1))) {
9493             return -TARGET_EFAULT;
9494         }
9495         ret = get_errno(lstat(path(p), &st));
9496         unlock_user(p, arg1, 0);
9497         goto do_stat;
9498 #endif
9499 #ifdef TARGET_NR_fstat
9500     case TARGET_NR_fstat:
9501         {
9502             ret = get_errno(fstat(arg1, &st));
9503 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9504         do_stat:
9505 #endif
9506             if (!is_error(ret)) {
9507                 struct target_stat *target_st;
9508 
9509                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
9510                     return -TARGET_EFAULT;
9511                 memset(target_st, 0, sizeof(*target_st));
9512                 __put_user(st.st_dev, &target_st->st_dev);
9513                 __put_user(st.st_ino, &target_st->st_ino);
9514                 __put_user(st.st_mode, &target_st->st_mode);
9515                 __put_user(st.st_uid, &target_st->st_uid);
9516                 __put_user(st.st_gid, &target_st->st_gid);
9517                 __put_user(st.st_nlink, &target_st->st_nlink);
9518                 __put_user(st.st_rdev, &target_st->st_rdev);
9519                 __put_user(st.st_size, &target_st->st_size);
9520                 __put_user(st.st_blksize, &target_st->st_blksize);
9521                 __put_user(st.st_blocks, &target_st->st_blocks);
9522                 __put_user(st.st_atime, &target_st->target_st_atime);
9523                 __put_user(st.st_mtime, &target_st->target_st_mtime);
9524                 __put_user(st.st_ctime, &target_st->target_st_ctime);
9525 #if (_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700) && \
9526     defined(TARGET_STAT_HAVE_NSEC)
9527                 __put_user(st.st_atim.tv_nsec,
9528                            &target_st->target_st_atime_nsec);
9529                 __put_user(st.st_mtim.tv_nsec,
9530                            &target_st->target_st_mtime_nsec);
9531                 __put_user(st.st_ctim.tv_nsec,
9532                            &target_st->target_st_ctime_nsec);
9533 #endif
9534                 unlock_user_struct(target_st, arg2, 1);
9535             }
9536         }
9537         return ret;
9538 #endif
9539     case TARGET_NR_vhangup:
9540         return get_errno(vhangup());
9541 #ifdef TARGET_NR_syscall
9542     case TARGET_NR_syscall:
9543         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
9544                           arg6, arg7, arg8, 0);
9545 #endif
9546 #if defined(TARGET_NR_wait4)
9547     case TARGET_NR_wait4:
9548         {
9549             int status;
9550             abi_long status_ptr = arg2;
9551             struct rusage rusage, *rusage_ptr;
9552             abi_ulong target_rusage = arg4;
9553             abi_long rusage_err;
9554             if (target_rusage)
9555                 rusage_ptr = &rusage;
9556             else
9557                 rusage_ptr = NULL;
9558             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
9559             if (!is_error(ret)) {
9560                 if (status_ptr && ret) {
9561                     status = host_to_target_waitstatus(status);
9562                     if (put_user_s32(status, status_ptr))
9563                         return -TARGET_EFAULT;
9564                 }
9565                 if (target_rusage) {
9566                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
9567                     if (rusage_err) {
9568                         ret = rusage_err;
9569                     }
9570                 }
9571             }
9572         }
9573         return ret;
9574 #endif
9575 #ifdef TARGET_NR_swapoff
9576     case TARGET_NR_swapoff:
9577         if (!(p = lock_user_string(arg1)))
9578             return -TARGET_EFAULT;
9579         ret = get_errno(swapoff(p));
9580         unlock_user(p, arg1, 0);
9581         return ret;
9582 #endif
9583     case TARGET_NR_sysinfo:
9584         {
9585             struct target_sysinfo *target_value;
9586             struct sysinfo value;
9587             ret = get_errno(sysinfo(&value));
9588             if (!is_error(ret) && arg1)
9589             {
9590                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
9591                     return -TARGET_EFAULT;
9592                 __put_user(value.uptime, &target_value->uptime);
9593                 __put_user(value.loads[0], &target_value->loads[0]);
9594                 __put_user(value.loads[1], &target_value->loads[1]);
9595                 __put_user(value.loads[2], &target_value->loads[2]);
9596                 __put_user(value.totalram, &target_value->totalram);
9597                 __put_user(value.freeram, &target_value->freeram);
9598                 __put_user(value.sharedram, &target_value->sharedram);
9599                 __put_user(value.bufferram, &target_value->bufferram);
9600                 __put_user(value.totalswap, &target_value->totalswap);
9601                 __put_user(value.freeswap, &target_value->freeswap);
9602                 __put_user(value.procs, &target_value->procs);
9603                 __put_user(value.totalhigh, &target_value->totalhigh);
9604                 __put_user(value.freehigh, &target_value->freehigh);
9605                 __put_user(value.mem_unit, &target_value->mem_unit);
9606                 unlock_user_struct(target_value, arg1, 1);
9607             }
9608         }
9609         return ret;
9610 #ifdef TARGET_NR_ipc
9611     case TARGET_NR_ipc:
9612         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
9613 #endif
9614 #ifdef TARGET_NR_semget
9615     case TARGET_NR_semget:
9616         return get_errno(semget(arg1, arg2, arg3));
9617 #endif
9618 #ifdef TARGET_NR_semop
9619     case TARGET_NR_semop:
9620         return do_semop(arg1, arg2, arg3);
9621 #endif
9622 #ifdef TARGET_NR_semctl
9623     case TARGET_NR_semctl:
9624         return do_semctl(arg1, arg2, arg3, arg4);
9625 #endif
9626 #ifdef TARGET_NR_msgctl
9627     case TARGET_NR_msgctl:
9628         return do_msgctl(arg1, arg2, arg3);
9629 #endif
9630 #ifdef TARGET_NR_msgget
9631     case TARGET_NR_msgget:
9632         return get_errno(msgget(arg1, arg2));
9633 #endif
9634 #ifdef TARGET_NR_msgrcv
9635     case TARGET_NR_msgrcv:
9636         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
9637 #endif
9638 #ifdef TARGET_NR_msgsnd
9639     case TARGET_NR_msgsnd:
9640         return do_msgsnd(arg1, arg2, arg3, arg4);
9641 #endif
9642 #ifdef TARGET_NR_shmget
9643     case TARGET_NR_shmget:
9644         return get_errno(shmget(arg1, arg2, arg3));
9645 #endif
9646 #ifdef TARGET_NR_shmctl
9647     case TARGET_NR_shmctl:
9648         return do_shmctl(arg1, arg2, arg3);
9649 #endif
9650 #ifdef TARGET_NR_shmat
9651     case TARGET_NR_shmat:
9652         return do_shmat(cpu_env, arg1, arg2, arg3);
9653 #endif
9654 #ifdef TARGET_NR_shmdt
9655     case TARGET_NR_shmdt:
9656         return do_shmdt(arg1);
9657 #endif
9658     case TARGET_NR_fsync:
9659         return get_errno(fsync(arg1));
9660     case TARGET_NR_clone:
9661         /* Linux manages to have three different orderings for its
9662          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
9663          * match the kernel's CONFIG_CLONE_* settings.
9664          * Microblaze is further special in that it uses a sixth
9665          * implicit argument to clone for the TLS pointer.
9666          */
9667 #if defined(TARGET_MICROBLAZE)
9668         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
9669 #elif defined(TARGET_CLONE_BACKWARDS)
9670         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
9671 #elif defined(TARGET_CLONE_BACKWARDS2)
9672         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
9673 #else
9674         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
9675 #endif
9676         return ret;
9677 #ifdef __NR_exit_group
9678         /* new thread calls */
9679     case TARGET_NR_exit_group:
9680         preexit_cleanup(cpu_env, arg1);
9681         return get_errno(exit_group(arg1));
9682 #endif
9683     case TARGET_NR_setdomainname:
9684         if (!(p = lock_user_string(arg1)))
9685             return -TARGET_EFAULT;
9686         ret = get_errno(setdomainname(p, arg2));
9687         unlock_user(p, arg1, 0);
9688         return ret;
9689     case TARGET_NR_uname:
9690         /* no need to transcode because we use the linux syscall */
9691         {
9692             struct new_utsname * buf;
9693 
9694             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
9695                 return -TARGET_EFAULT;
9696             ret = get_errno(sys_uname(buf));
9697             if (!is_error(ret)) {
9698                 /* Overwrite the native machine name with whatever is being
9699                    emulated. */
9700                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
9701                           sizeof(buf->machine));
9702                 /* Allow the user to override the reported release.  */
9703                 if (qemu_uname_release && *qemu_uname_release) {
9704                     g_strlcpy(buf->release, qemu_uname_release,
9705                               sizeof(buf->release));
9706                 }
9707             }
9708             unlock_user_struct(buf, arg1, 1);
9709         }
9710         return ret;
9711 #ifdef TARGET_I386
9712     case TARGET_NR_modify_ldt:
9713         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
9714 #if !defined(TARGET_X86_64)
9715     case TARGET_NR_vm86:
9716         return do_vm86(cpu_env, arg1, arg2);
9717 #endif
9718 #endif
9719 #if defined(TARGET_NR_adjtimex)
9720     case TARGET_NR_adjtimex:
9721         {
9722             struct timex host_buf;
9723 
9724             if (target_to_host_timex(&host_buf, arg1) != 0) {
9725                 return -TARGET_EFAULT;
9726             }
9727             ret = get_errno(adjtimex(&host_buf));
9728             if (!is_error(ret)) {
9729                 if (host_to_target_timex(arg1, &host_buf) != 0) {
9730                     return -TARGET_EFAULT;
9731                 }
9732             }
9733         }
9734         return ret;
9735 #endif
9736 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
9737     case TARGET_NR_clock_adjtime:
9738         {
9739             struct timex htx, *phtx = &htx;
9740 
9741             if (target_to_host_timex(phtx, arg2) != 0) {
9742                 return -TARGET_EFAULT;
9743             }
9744             ret = get_errno(clock_adjtime(arg1, phtx));
9745             if (!is_error(ret) && phtx) {
9746                 if (host_to_target_timex(arg2, phtx) != 0) {
9747                     return -TARGET_EFAULT;
9748                 }
9749             }
9750         }
9751         return ret;
9752 #endif
9753     case TARGET_NR_getpgid:
9754         return get_errno(getpgid(arg1));
9755     case TARGET_NR_fchdir:
9756         return get_errno(fchdir(arg1));
9757     case TARGET_NR_personality:
9758         return get_errno(personality(arg1));
9759 #ifdef TARGET_NR__llseek /* Not on alpha */
9760     case TARGET_NR__llseek:
9761         {
9762             int64_t res;
9763 #if !defined(__NR_llseek)
9764             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
9765             if (res == -1) {
9766                 ret = get_errno(res);
9767             } else {
9768                 ret = 0;
9769             }
9770 #else
9771             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
9772 #endif
9773             if ((ret == 0) && put_user_s64(res, arg4)) {
9774                 return -TARGET_EFAULT;
9775             }
9776         }
9777         return ret;
9778 #endif
9779 #ifdef TARGET_NR_getdents
9780     case TARGET_NR_getdents:
9781 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
9782 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
9783         {
9784             struct target_dirent *target_dirp;
9785             struct linux_dirent *dirp;
9786             abi_long count = arg3;
9787 
9788             dirp = g_try_malloc(count);
9789             if (!dirp) {
9790                 return -TARGET_ENOMEM;
9791             }
9792 
9793             ret = get_errno(sys_getdents(arg1, dirp, count));
9794             if (!is_error(ret)) {
9795                 struct linux_dirent *de;
9796 		struct target_dirent *tde;
9797                 int len = ret;
9798                 int reclen, treclen;
9799 		int count1, tnamelen;
9800 
9801 		count1 = 0;
9802                 de = dirp;
9803                 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9804                     return -TARGET_EFAULT;
9805 		tde = target_dirp;
9806                 while (len > 0) {
9807                     reclen = de->d_reclen;
9808                     tnamelen = reclen - offsetof(struct linux_dirent, d_name);
9809                     assert(tnamelen >= 0);
9810                     treclen = tnamelen + offsetof(struct target_dirent, d_name);
9811                     assert(count1 + treclen <= count);
9812                     tde->d_reclen = tswap16(treclen);
9813                     tde->d_ino = tswapal(de->d_ino);
9814                     tde->d_off = tswapal(de->d_off);
9815                     memcpy(tde->d_name, de->d_name, tnamelen);
9816                     de = (struct linux_dirent *)((char *)de + reclen);
9817                     len -= reclen;
9818                     tde = (struct target_dirent *)((char *)tde + treclen);
9819 		    count1 += treclen;
9820                 }
9821 		ret = count1;
9822                 unlock_user(target_dirp, arg2, ret);
9823             }
9824             g_free(dirp);
9825         }
9826 #else
9827         {
9828             struct linux_dirent *dirp;
9829             abi_long count = arg3;
9830 
9831             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9832                 return -TARGET_EFAULT;
9833             ret = get_errno(sys_getdents(arg1, dirp, count));
9834             if (!is_error(ret)) {
9835                 struct linux_dirent *de;
9836                 int len = ret;
9837                 int reclen;
9838                 de = dirp;
9839                 while (len > 0) {
9840                     reclen = de->d_reclen;
9841                     if (reclen > len)
9842                         break;
9843                     de->d_reclen = tswap16(reclen);
9844                     tswapls(&de->d_ino);
9845                     tswapls(&de->d_off);
9846                     de = (struct linux_dirent *)((char *)de + reclen);
9847                     len -= reclen;
9848                 }
9849             }
9850             unlock_user(dirp, arg2, ret);
9851         }
9852 #endif
9853 #else
9854         /* Implement getdents in terms of getdents64 */
9855         {
9856             struct linux_dirent64 *dirp;
9857             abi_long count = arg3;
9858 
9859             dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
9860             if (!dirp) {
9861                 return -TARGET_EFAULT;
9862             }
9863             ret = get_errno(sys_getdents64(arg1, dirp, count));
9864             if (!is_error(ret)) {
9865                 /* Convert the dirent64 structs to target dirent.  We do this
9866                  * in-place, since we can guarantee that a target_dirent is no
9867                  * larger than a dirent64; however this means we have to be
9868                  * careful to read everything before writing in the new format.
9869                  */
9870                 struct linux_dirent64 *de;
9871                 struct target_dirent *tde;
9872                 int len = ret;
9873                 int tlen = 0;
9874 
9875                 de = dirp;
9876                 tde = (struct target_dirent *)dirp;
9877                 while (len > 0) {
9878                     int namelen, treclen;
9879                     int reclen = de->d_reclen;
9880                     uint64_t ino = de->d_ino;
9881                     int64_t off = de->d_off;
9882                     uint8_t type = de->d_type;
9883 
9884                     namelen = strlen(de->d_name);
9885                     treclen = offsetof(struct target_dirent, d_name)
9886                         + namelen + 2;
9887                     treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
9888 
9889                     memmove(tde->d_name, de->d_name, namelen + 1);
9890                     tde->d_ino = tswapal(ino);
9891                     tde->d_off = tswapal(off);
9892                     tde->d_reclen = tswap16(treclen);
9893                     /* The target_dirent type is in what was formerly a padding
9894                      * byte at the end of the structure:
9895                      */
9896                     *(((char *)tde) + treclen - 1) = type;
9897 
9898                     de = (struct linux_dirent64 *)((char *)de + reclen);
9899                     tde = (struct target_dirent *)((char *)tde + treclen);
9900                     len -= reclen;
9901                     tlen += treclen;
9902                 }
9903                 ret = tlen;
9904             }
9905             unlock_user(dirp, arg2, ret);
9906         }
9907 #endif
9908         return ret;
9909 #endif /* TARGET_NR_getdents */
9910 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
9911     case TARGET_NR_getdents64:
9912         {
9913             struct linux_dirent64 *dirp;
9914             abi_long count = arg3;
9915             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9916                 return -TARGET_EFAULT;
9917             ret = get_errno(sys_getdents64(arg1, dirp, count));
9918             if (!is_error(ret)) {
9919                 struct linux_dirent64 *de;
9920                 int len = ret;
9921                 int reclen;
9922                 de = dirp;
9923                 while (len > 0) {
9924                     reclen = de->d_reclen;
9925                     if (reclen > len)
9926                         break;
9927                     de->d_reclen = tswap16(reclen);
9928                     tswap64s((uint64_t *)&de->d_ino);
9929                     tswap64s((uint64_t *)&de->d_off);
9930                     de = (struct linux_dirent64 *)((char *)de + reclen);
9931                     len -= reclen;
9932                 }
9933             }
9934             unlock_user(dirp, arg2, ret);
9935         }
9936         return ret;
9937 #endif /* TARGET_NR_getdents64 */
9938 #if defined(TARGET_NR__newselect)
9939     case TARGET_NR__newselect:
9940         return do_select(arg1, arg2, arg3, arg4, arg5);
9941 #endif
9942 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
9943 # ifdef TARGET_NR_poll
9944     case TARGET_NR_poll:
9945 # endif
9946 # ifdef TARGET_NR_ppoll
9947     case TARGET_NR_ppoll:
9948 # endif
9949         {
9950             struct target_pollfd *target_pfd;
9951             unsigned int nfds = arg2;
9952             struct pollfd *pfd;
9953             unsigned int i;
9954 
9955             pfd = NULL;
9956             target_pfd = NULL;
9957             if (nfds) {
9958                 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
9959                     return -TARGET_EINVAL;
9960                 }
9961 
9962                 target_pfd = lock_user(VERIFY_WRITE, arg1,
9963                                        sizeof(struct target_pollfd) * nfds, 1);
9964                 if (!target_pfd) {
9965                     return -TARGET_EFAULT;
9966                 }
9967 
9968                 pfd = alloca(sizeof(struct pollfd) * nfds);
9969                 for (i = 0; i < nfds; i++) {
9970                     pfd[i].fd = tswap32(target_pfd[i].fd);
9971                     pfd[i].events = tswap16(target_pfd[i].events);
9972                 }
9973             }
9974 
9975             switch (num) {
9976 # ifdef TARGET_NR_ppoll
9977             case TARGET_NR_ppoll:
9978             {
9979                 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
9980                 target_sigset_t *target_set;
9981                 sigset_t _set, *set = &_set;
9982 
9983                 if (arg3) {
9984                     if (target_to_host_timespec(timeout_ts, arg3)) {
9985                         unlock_user(target_pfd, arg1, 0);
9986                         return -TARGET_EFAULT;
9987                     }
9988                 } else {
9989                     timeout_ts = NULL;
9990                 }
9991 
9992                 if (arg4) {
9993                     if (arg5 != sizeof(target_sigset_t)) {
9994                         unlock_user(target_pfd, arg1, 0);
9995                         return -TARGET_EINVAL;
9996                     }
9997 
9998                     target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
9999                     if (!target_set) {
10000                         unlock_user(target_pfd, arg1, 0);
10001                         return -TARGET_EFAULT;
10002                     }
10003                     target_to_host_sigset(set, target_set);
10004                 } else {
10005                     set = NULL;
10006                 }
10007 
10008                 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
10009                                            set, SIGSET_T_SIZE));
10010 
10011                 if (!is_error(ret) && arg3) {
10012                     host_to_target_timespec(arg3, timeout_ts);
10013                 }
10014                 if (arg4) {
10015                     unlock_user(target_set, arg4, 0);
10016                 }
10017                 break;
10018             }
10019 # endif
10020 # ifdef TARGET_NR_poll
10021             case TARGET_NR_poll:
10022             {
10023                 struct timespec ts, *pts;
10024 
10025                 if (arg3 >= 0) {
10026                     /* Convert ms to secs, ns */
10027                     ts.tv_sec = arg3 / 1000;
10028                     ts.tv_nsec = (arg3 % 1000) * 1000000LL;
10029                     pts = &ts;
10030                 } else {
10031                     /* -ve poll() timeout means "infinite" */
10032                     pts = NULL;
10033                 }
10034                 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
10035                 break;
10036             }
10037 # endif
10038             default:
10039                 g_assert_not_reached();
10040             }
10041 
10042             if (!is_error(ret)) {
10043                 for(i = 0; i < nfds; i++) {
10044                     target_pfd[i].revents = tswap16(pfd[i].revents);
10045                 }
10046             }
10047             unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
10048         }
10049         return ret;
10050 #endif
10051     case TARGET_NR_flock:
10052         /* NOTE: the flock constant seems to be the same for every
10053            Linux platform */
10054         return get_errno(safe_flock(arg1, arg2));
10055     case TARGET_NR_readv:
10056         {
10057             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10058             if (vec != NULL) {
10059                 ret = get_errno(safe_readv(arg1, vec, arg3));
10060                 unlock_iovec(vec, arg2, arg3, 1);
10061             } else {
10062                 ret = -host_to_target_errno(errno);
10063             }
10064         }
10065         return ret;
10066     case TARGET_NR_writev:
10067         {
10068             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10069             if (vec != NULL) {
10070                 ret = get_errno(safe_writev(arg1, vec, arg3));
10071                 unlock_iovec(vec, arg2, arg3, 0);
10072             } else {
10073                 ret = -host_to_target_errno(errno);
10074             }
10075         }
10076         return ret;
10077 #if defined(TARGET_NR_preadv)
10078     case TARGET_NR_preadv:
10079         {
10080             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10081             if (vec != NULL) {
10082                 unsigned long low, high;
10083 
10084                 target_to_host_low_high(arg4, arg5, &low, &high);
10085                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10086                 unlock_iovec(vec, arg2, arg3, 1);
10087             } else {
10088                 ret = -host_to_target_errno(errno);
10089            }
10090         }
10091         return ret;
10092 #endif
10093 #if defined(TARGET_NR_pwritev)
10094     case TARGET_NR_pwritev:
10095         {
10096             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10097             if (vec != NULL) {
10098                 unsigned long low, high;
10099 
10100                 target_to_host_low_high(arg4, arg5, &low, &high);
10101                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10102                 unlock_iovec(vec, arg2, arg3, 0);
10103             } else {
10104                 ret = -host_to_target_errno(errno);
10105            }
10106         }
10107         return ret;
10108 #endif
10109     case TARGET_NR_getsid:
10110         return get_errno(getsid(arg1));
10111 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10112     case TARGET_NR_fdatasync:
10113         return get_errno(fdatasync(arg1));
10114 #endif
10115 #ifdef TARGET_NR__sysctl
10116     case TARGET_NR__sysctl:
10117         /* We don't implement this, but ENOTDIR is always a safe
10118            return value. */
10119         return -TARGET_ENOTDIR;
10120 #endif
10121     case TARGET_NR_sched_getaffinity:
10122         {
10123             unsigned int mask_size;
10124             unsigned long *mask;
10125 
10126             /*
10127              * sched_getaffinity needs multiples of ulong, so need to take
10128              * care of mismatches between target ulong and host ulong sizes.
10129              */
10130             if (arg2 & (sizeof(abi_ulong) - 1)) {
10131                 return -TARGET_EINVAL;
10132             }
10133             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10134 
10135             mask = alloca(mask_size);
10136             memset(mask, 0, mask_size);
10137             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10138 
10139             if (!is_error(ret)) {
10140                 if (ret > arg2) {
10141                     /* More data returned than the caller's buffer will fit.
10142                      * This only happens if sizeof(abi_long) < sizeof(long)
10143                      * and the caller passed us a buffer holding an odd number
10144                      * of abi_longs. If the host kernel is actually using the
10145                      * extra 4 bytes then fail EINVAL; otherwise we can just
10146                      * ignore them and only copy the interesting part.
10147                      */
10148                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10149                     if (numcpus > arg2 * 8) {
10150                         return -TARGET_EINVAL;
10151                     }
10152                     ret = arg2;
10153                 }
10154 
10155                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10156                     return -TARGET_EFAULT;
10157                 }
10158             }
10159         }
10160         return ret;
10161     case TARGET_NR_sched_setaffinity:
10162         {
10163             unsigned int mask_size;
10164             unsigned long *mask;
10165 
10166             /*
10167              * sched_setaffinity needs multiples of ulong, so need to take
10168              * care of mismatches between target ulong and host ulong sizes.
10169              */
10170             if (arg2 & (sizeof(abi_ulong) - 1)) {
10171                 return -TARGET_EINVAL;
10172             }
10173             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10174             mask = alloca(mask_size);
10175 
10176             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10177             if (ret) {
10178                 return ret;
10179             }
10180 
10181             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10182         }
10183     case TARGET_NR_getcpu:
10184         {
10185             unsigned cpu, node;
10186             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10187                                        arg2 ? &node : NULL,
10188                                        NULL));
10189             if (is_error(ret)) {
10190                 return ret;
10191             }
10192             if (arg1 && put_user_u32(cpu, arg1)) {
10193                 return -TARGET_EFAULT;
10194             }
10195             if (arg2 && put_user_u32(node, arg2)) {
10196                 return -TARGET_EFAULT;
10197             }
10198         }
10199         return ret;
10200     case TARGET_NR_sched_setparam:
10201         {
10202             struct sched_param *target_schp;
10203             struct sched_param schp;
10204 
10205             if (arg2 == 0) {
10206                 return -TARGET_EINVAL;
10207             }
10208             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
10209                 return -TARGET_EFAULT;
10210             schp.sched_priority = tswap32(target_schp->sched_priority);
10211             unlock_user_struct(target_schp, arg2, 0);
10212             return get_errno(sched_setparam(arg1, &schp));
10213         }
10214     case TARGET_NR_sched_getparam:
10215         {
10216             struct sched_param *target_schp;
10217             struct sched_param schp;
10218 
10219             if (arg2 == 0) {
10220                 return -TARGET_EINVAL;
10221             }
10222             ret = get_errno(sched_getparam(arg1, &schp));
10223             if (!is_error(ret)) {
10224                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10225                     return -TARGET_EFAULT;
10226                 target_schp->sched_priority = tswap32(schp.sched_priority);
10227                 unlock_user_struct(target_schp, arg2, 1);
10228             }
10229         }
10230         return ret;
10231     case TARGET_NR_sched_setscheduler:
10232         {
10233             struct sched_param *target_schp;
10234             struct sched_param schp;
10235             if (arg3 == 0) {
10236                 return -TARGET_EINVAL;
10237             }
10238             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10239                 return -TARGET_EFAULT;
10240             schp.sched_priority = tswap32(target_schp->sched_priority);
10241             unlock_user_struct(target_schp, arg3, 0);
10242             return get_errno(sched_setscheduler(arg1, arg2, &schp));
10243         }
10244     case TARGET_NR_sched_getscheduler:
10245         return get_errno(sched_getscheduler(arg1));
10246     case TARGET_NR_sched_yield:
10247         return get_errno(sched_yield());
10248     case TARGET_NR_sched_get_priority_max:
10249         return get_errno(sched_get_priority_max(arg1));
10250     case TARGET_NR_sched_get_priority_min:
10251         return get_errno(sched_get_priority_min(arg1));
10252 #ifdef TARGET_NR_sched_rr_get_interval
10253     case TARGET_NR_sched_rr_get_interval:
10254         {
10255             struct timespec ts;
10256             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10257             if (!is_error(ret)) {
10258                 ret = host_to_target_timespec(arg2, &ts);
10259             }
10260         }
10261         return ret;
10262 #endif
10263 #if defined(TARGET_NR_nanosleep)
10264     case TARGET_NR_nanosleep:
10265         {
10266             struct timespec req, rem;
10267             target_to_host_timespec(&req, arg1);
10268             ret = get_errno(safe_nanosleep(&req, &rem));
10269             if (is_error(ret) && arg2) {
10270                 host_to_target_timespec(arg2, &rem);
10271             }
10272         }
10273         return ret;
10274 #endif
10275     case TARGET_NR_prctl:
10276         switch (arg1) {
10277         case PR_GET_PDEATHSIG:
10278         {
10279             int deathsig;
10280             ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10281             if (!is_error(ret) && arg2
10282                 && put_user_ual(deathsig, arg2)) {
10283                 return -TARGET_EFAULT;
10284             }
10285             return ret;
10286         }
10287 #ifdef PR_GET_NAME
10288         case PR_GET_NAME:
10289         {
10290             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10291             if (!name) {
10292                 return -TARGET_EFAULT;
10293             }
10294             ret = get_errno(prctl(arg1, (unsigned long)name,
10295                                   arg3, arg4, arg5));
10296             unlock_user(name, arg2, 16);
10297             return ret;
10298         }
10299         case PR_SET_NAME:
10300         {
10301             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10302             if (!name) {
10303                 return -TARGET_EFAULT;
10304             }
10305             ret = get_errno(prctl(arg1, (unsigned long)name,
10306                                   arg3, arg4, arg5));
10307             unlock_user(name, arg2, 0);
10308             return ret;
10309         }
10310 #endif
10311 #ifdef TARGET_MIPS
10312         case TARGET_PR_GET_FP_MODE:
10313         {
10314             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10315             ret = 0;
10316             if (env->CP0_Status & (1 << CP0St_FR)) {
10317                 ret |= TARGET_PR_FP_MODE_FR;
10318             }
10319             if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
10320                 ret |= TARGET_PR_FP_MODE_FRE;
10321             }
10322             return ret;
10323         }
10324         case TARGET_PR_SET_FP_MODE:
10325         {
10326             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10327             bool old_fr = env->CP0_Status & (1 << CP0St_FR);
10328             bool old_fre = env->CP0_Config5 & (1 << CP0C5_FRE);
10329             bool new_fr = arg2 & TARGET_PR_FP_MODE_FR;
10330             bool new_fre = arg2 & TARGET_PR_FP_MODE_FRE;
10331 
10332             const unsigned int known_bits = TARGET_PR_FP_MODE_FR |
10333                                             TARGET_PR_FP_MODE_FRE;
10334 
10335             /* If nothing to change, return right away, successfully.  */
10336             if (old_fr == new_fr && old_fre == new_fre) {
10337                 return 0;
10338             }
10339             /* Check the value is valid */
10340             if (arg2 & ~known_bits) {
10341                 return -TARGET_EOPNOTSUPP;
10342             }
10343             /* Setting FRE without FR is not supported.  */
10344             if (new_fre && !new_fr) {
10345                 return -TARGET_EOPNOTSUPP;
10346             }
10347             if (new_fr && !(env->active_fpu.fcr0 & (1 << FCR0_F64))) {
10348                 /* FR1 is not supported */
10349                 return -TARGET_EOPNOTSUPP;
10350             }
10351             if (!new_fr && (env->active_fpu.fcr0 & (1 << FCR0_F64))
10352                 && !(env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) {
10353                 /* cannot set FR=0 */
10354                 return -TARGET_EOPNOTSUPP;
10355             }
10356             if (new_fre && !(env->active_fpu.fcr0 & (1 << FCR0_FREP))) {
10357                 /* Cannot set FRE=1 */
10358                 return -TARGET_EOPNOTSUPP;
10359             }
10360 
10361             int i;
10362             fpr_t *fpr = env->active_fpu.fpr;
10363             for (i = 0; i < 32 ; i += 2) {
10364                 if (!old_fr && new_fr) {
10365                     fpr[i].w[!FP_ENDIAN_IDX] = fpr[i + 1].w[FP_ENDIAN_IDX];
10366                 } else if (old_fr && !new_fr) {
10367                     fpr[i + 1].w[FP_ENDIAN_IDX] = fpr[i].w[!FP_ENDIAN_IDX];
10368                 }
10369             }
10370 
10371             if (new_fr) {
10372                 env->CP0_Status |= (1 << CP0St_FR);
10373                 env->hflags |= MIPS_HFLAG_F64;
10374             } else {
10375                 env->CP0_Status &= ~(1 << CP0St_FR);
10376                 env->hflags &= ~MIPS_HFLAG_F64;
10377             }
10378             if (new_fre) {
10379                 env->CP0_Config5 |= (1 << CP0C5_FRE);
10380                 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
10381                     env->hflags |= MIPS_HFLAG_FRE;
10382                 }
10383             } else {
10384                 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
10385                 env->hflags &= ~MIPS_HFLAG_FRE;
10386             }
10387 
10388             return 0;
10389         }
10390 #endif /* MIPS */
10391 #ifdef TARGET_AARCH64
10392         case TARGET_PR_SVE_SET_VL:
10393             /*
10394              * We cannot support either PR_SVE_SET_VL_ONEXEC or
10395              * PR_SVE_VL_INHERIT.  Note the kernel definition
10396              * of sve_vl_valid allows for VQ=512, i.e. VL=8192,
10397              * even though the current architectural maximum is VQ=16.
10398              */
10399             ret = -TARGET_EINVAL;
10400             if (cpu_isar_feature(aa64_sve, env_archcpu(cpu_env))
10401                 && arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) {
10402                 CPUARMState *env = cpu_env;
10403                 ARMCPU *cpu = env_archcpu(env);
10404                 uint32_t vq, old_vq;
10405 
10406                 old_vq = (env->vfp.zcr_el[1] & 0xf) + 1;
10407                 vq = MAX(arg2 / 16, 1);
10408                 vq = MIN(vq, cpu->sve_max_vq);
10409 
10410                 if (vq < old_vq) {
10411                     aarch64_sve_narrow_vq(env, vq);
10412                 }
10413                 env->vfp.zcr_el[1] = vq - 1;
10414                 arm_rebuild_hflags(env);
10415                 ret = vq * 16;
10416             }
10417             return ret;
10418         case TARGET_PR_SVE_GET_VL:
10419             ret = -TARGET_EINVAL;
10420             {
10421                 ARMCPU *cpu = env_archcpu(cpu_env);
10422                 if (cpu_isar_feature(aa64_sve, cpu)) {
10423                     ret = ((cpu->env.vfp.zcr_el[1] & 0xf) + 1) * 16;
10424                 }
10425             }
10426             return ret;
10427         case TARGET_PR_PAC_RESET_KEYS:
10428             {
10429                 CPUARMState *env = cpu_env;
10430                 ARMCPU *cpu = env_archcpu(env);
10431 
10432                 if (arg3 || arg4 || arg5) {
10433                     return -TARGET_EINVAL;
10434                 }
10435                 if (cpu_isar_feature(aa64_pauth, cpu)) {
10436                     int all = (TARGET_PR_PAC_APIAKEY | TARGET_PR_PAC_APIBKEY |
10437                                TARGET_PR_PAC_APDAKEY | TARGET_PR_PAC_APDBKEY |
10438                                TARGET_PR_PAC_APGAKEY);
10439                     int ret = 0;
10440                     Error *err = NULL;
10441 
10442                     if (arg2 == 0) {
10443                         arg2 = all;
10444                     } else if (arg2 & ~all) {
10445                         return -TARGET_EINVAL;
10446                     }
10447                     if (arg2 & TARGET_PR_PAC_APIAKEY) {
10448                         ret |= qemu_guest_getrandom(&env->keys.apia,
10449                                                     sizeof(ARMPACKey), &err);
10450                     }
10451                     if (arg2 & TARGET_PR_PAC_APIBKEY) {
10452                         ret |= qemu_guest_getrandom(&env->keys.apib,
10453                                                     sizeof(ARMPACKey), &err);
10454                     }
10455                     if (arg2 & TARGET_PR_PAC_APDAKEY) {
10456                         ret |= qemu_guest_getrandom(&env->keys.apda,
10457                                                     sizeof(ARMPACKey), &err);
10458                     }
10459                     if (arg2 & TARGET_PR_PAC_APDBKEY) {
10460                         ret |= qemu_guest_getrandom(&env->keys.apdb,
10461                                                     sizeof(ARMPACKey), &err);
10462                     }
10463                     if (arg2 & TARGET_PR_PAC_APGAKEY) {
10464                         ret |= qemu_guest_getrandom(&env->keys.apga,
10465                                                     sizeof(ARMPACKey), &err);
10466                     }
10467                     if (ret != 0) {
10468                         /*
10469                          * Some unknown failure in the crypto.  The best
10470                          * we can do is log it and fail the syscall.
10471                          * The real syscall cannot fail this way.
10472                          */
10473                         qemu_log_mask(LOG_UNIMP,
10474                                       "PR_PAC_RESET_KEYS: Crypto failure: %s",
10475                                       error_get_pretty(err));
10476                         error_free(err);
10477                         return -TARGET_EIO;
10478                     }
10479                     return 0;
10480                 }
10481             }
10482             return -TARGET_EINVAL;
10483 #endif /* AARCH64 */
10484         case PR_GET_SECCOMP:
10485         case PR_SET_SECCOMP:
10486             /* Disable seccomp to prevent the target disabling syscalls we
10487              * need. */
10488             return -TARGET_EINVAL;
10489         default:
10490             /* Most prctl options have no pointer arguments */
10491             return get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
10492         }
10493         break;
10494 #ifdef TARGET_NR_arch_prctl
10495     case TARGET_NR_arch_prctl:
10496         return do_arch_prctl(cpu_env, arg1, arg2);
10497 #endif
10498 #ifdef TARGET_NR_pread64
10499     case TARGET_NR_pread64:
10500         if (regpairs_aligned(cpu_env, num)) {
10501             arg4 = arg5;
10502             arg5 = arg6;
10503         }
10504         if (arg2 == 0 && arg3 == 0) {
10505             /* Special-case NULL buffer and zero length, which should succeed */
10506             p = 0;
10507         } else {
10508             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10509             if (!p) {
10510                 return -TARGET_EFAULT;
10511             }
10512         }
10513         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
10514         unlock_user(p, arg2, ret);
10515         return ret;
10516     case TARGET_NR_pwrite64:
10517         if (regpairs_aligned(cpu_env, num)) {
10518             arg4 = arg5;
10519             arg5 = arg6;
10520         }
10521         if (arg2 == 0 && arg3 == 0) {
10522             /* Special-case NULL buffer and zero length, which should succeed */
10523             p = 0;
10524         } else {
10525             p = lock_user(VERIFY_READ, arg2, arg3, 1);
10526             if (!p) {
10527                 return -TARGET_EFAULT;
10528             }
10529         }
10530         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
10531         unlock_user(p, arg2, 0);
10532         return ret;
10533 #endif
10534     case TARGET_NR_getcwd:
10535         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
10536             return -TARGET_EFAULT;
10537         ret = get_errno(sys_getcwd1(p, arg2));
10538         unlock_user(p, arg1, ret);
10539         return ret;
10540     case TARGET_NR_capget:
10541     case TARGET_NR_capset:
10542     {
10543         struct target_user_cap_header *target_header;
10544         struct target_user_cap_data *target_data = NULL;
10545         struct __user_cap_header_struct header;
10546         struct __user_cap_data_struct data[2];
10547         struct __user_cap_data_struct *dataptr = NULL;
10548         int i, target_datalen;
10549         int data_items = 1;
10550 
10551         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
10552             return -TARGET_EFAULT;
10553         }
10554         header.version = tswap32(target_header->version);
10555         header.pid = tswap32(target_header->pid);
10556 
10557         if (header.version != _LINUX_CAPABILITY_VERSION) {
10558             /* Version 2 and up takes pointer to two user_data structs */
10559             data_items = 2;
10560         }
10561 
10562         target_datalen = sizeof(*target_data) * data_items;
10563 
10564         if (arg2) {
10565             if (num == TARGET_NR_capget) {
10566                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
10567             } else {
10568                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
10569             }
10570             if (!target_data) {
10571                 unlock_user_struct(target_header, arg1, 0);
10572                 return -TARGET_EFAULT;
10573             }
10574 
10575             if (num == TARGET_NR_capset) {
10576                 for (i = 0; i < data_items; i++) {
10577                     data[i].effective = tswap32(target_data[i].effective);
10578                     data[i].permitted = tswap32(target_data[i].permitted);
10579                     data[i].inheritable = tswap32(target_data[i].inheritable);
10580                 }
10581             }
10582 
10583             dataptr = data;
10584         }
10585 
10586         if (num == TARGET_NR_capget) {
10587             ret = get_errno(capget(&header, dataptr));
10588         } else {
10589             ret = get_errno(capset(&header, dataptr));
10590         }
10591 
10592         /* The kernel always updates version for both capget and capset */
10593         target_header->version = tswap32(header.version);
10594         unlock_user_struct(target_header, arg1, 1);
10595 
10596         if (arg2) {
10597             if (num == TARGET_NR_capget) {
10598                 for (i = 0; i < data_items; i++) {
10599                     target_data[i].effective = tswap32(data[i].effective);
10600                     target_data[i].permitted = tswap32(data[i].permitted);
10601                     target_data[i].inheritable = tswap32(data[i].inheritable);
10602                 }
10603                 unlock_user(target_data, arg2, target_datalen);
10604             } else {
10605                 unlock_user(target_data, arg2, 0);
10606             }
10607         }
10608         return ret;
10609     }
10610     case TARGET_NR_sigaltstack:
10611         return do_sigaltstack(arg1, arg2,
10612                               get_sp_from_cpustate((CPUArchState *)cpu_env));
10613 
10614 #ifdef CONFIG_SENDFILE
10615 #ifdef TARGET_NR_sendfile
10616     case TARGET_NR_sendfile:
10617     {
10618         off_t *offp = NULL;
10619         off_t off;
10620         if (arg3) {
10621             ret = get_user_sal(off, arg3);
10622             if (is_error(ret)) {
10623                 return ret;
10624             }
10625             offp = &off;
10626         }
10627         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10628         if (!is_error(ret) && arg3) {
10629             abi_long ret2 = put_user_sal(off, arg3);
10630             if (is_error(ret2)) {
10631                 ret = ret2;
10632             }
10633         }
10634         return ret;
10635     }
10636 #endif
10637 #ifdef TARGET_NR_sendfile64
10638     case TARGET_NR_sendfile64:
10639     {
10640         off_t *offp = NULL;
10641         off_t off;
10642         if (arg3) {
10643             ret = get_user_s64(off, arg3);
10644             if (is_error(ret)) {
10645                 return ret;
10646             }
10647             offp = &off;
10648         }
10649         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10650         if (!is_error(ret) && arg3) {
10651             abi_long ret2 = put_user_s64(off, arg3);
10652             if (is_error(ret2)) {
10653                 ret = ret2;
10654             }
10655         }
10656         return ret;
10657     }
10658 #endif
10659 #endif
10660 #ifdef TARGET_NR_vfork
10661     case TARGET_NR_vfork:
10662         return get_errno(do_fork(cpu_env,
10663                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
10664                          0, 0, 0, 0));
10665 #endif
10666 #ifdef TARGET_NR_ugetrlimit
10667     case TARGET_NR_ugetrlimit:
10668     {
10669 	struct rlimit rlim;
10670 	int resource = target_to_host_resource(arg1);
10671 	ret = get_errno(getrlimit(resource, &rlim));
10672 	if (!is_error(ret)) {
10673 	    struct target_rlimit *target_rlim;
10674             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10675                 return -TARGET_EFAULT;
10676 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10677 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10678             unlock_user_struct(target_rlim, arg2, 1);
10679 	}
10680         return ret;
10681     }
10682 #endif
10683 #ifdef TARGET_NR_truncate64
10684     case TARGET_NR_truncate64:
10685         if (!(p = lock_user_string(arg1)))
10686             return -TARGET_EFAULT;
10687 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
10688         unlock_user(p, arg1, 0);
10689         return ret;
10690 #endif
10691 #ifdef TARGET_NR_ftruncate64
10692     case TARGET_NR_ftruncate64:
10693         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
10694 #endif
10695 #ifdef TARGET_NR_stat64
10696     case TARGET_NR_stat64:
10697         if (!(p = lock_user_string(arg1))) {
10698             return -TARGET_EFAULT;
10699         }
10700         ret = get_errno(stat(path(p), &st));
10701         unlock_user(p, arg1, 0);
10702         if (!is_error(ret))
10703             ret = host_to_target_stat64(cpu_env, arg2, &st);
10704         return ret;
10705 #endif
10706 #ifdef TARGET_NR_lstat64
10707     case TARGET_NR_lstat64:
10708         if (!(p = lock_user_string(arg1))) {
10709             return -TARGET_EFAULT;
10710         }
10711         ret = get_errno(lstat(path(p), &st));
10712         unlock_user(p, arg1, 0);
10713         if (!is_error(ret))
10714             ret = host_to_target_stat64(cpu_env, arg2, &st);
10715         return ret;
10716 #endif
10717 #ifdef TARGET_NR_fstat64
10718     case TARGET_NR_fstat64:
10719         ret = get_errno(fstat(arg1, &st));
10720         if (!is_error(ret))
10721             ret = host_to_target_stat64(cpu_env, arg2, &st);
10722         return ret;
10723 #endif
10724 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10725 #ifdef TARGET_NR_fstatat64
10726     case TARGET_NR_fstatat64:
10727 #endif
10728 #ifdef TARGET_NR_newfstatat
10729     case TARGET_NR_newfstatat:
10730 #endif
10731         if (!(p = lock_user_string(arg2))) {
10732             return -TARGET_EFAULT;
10733         }
10734         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
10735         unlock_user(p, arg2, 0);
10736         if (!is_error(ret))
10737             ret = host_to_target_stat64(cpu_env, arg3, &st);
10738         return ret;
10739 #endif
10740 #if defined(TARGET_NR_statx)
10741     case TARGET_NR_statx:
10742         {
10743             struct target_statx *target_stx;
10744             int dirfd = arg1;
10745             int flags = arg3;
10746 
10747             p = lock_user_string(arg2);
10748             if (p == NULL) {
10749                 return -TARGET_EFAULT;
10750             }
10751 #if defined(__NR_statx)
10752             {
10753                 /*
10754                  * It is assumed that struct statx is architecture independent.
10755                  */
10756                 struct target_statx host_stx;
10757                 int mask = arg4;
10758 
10759                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
10760                 if (!is_error(ret)) {
10761                     if (host_to_target_statx(&host_stx, arg5) != 0) {
10762                         unlock_user(p, arg2, 0);
10763                         return -TARGET_EFAULT;
10764                     }
10765                 }
10766 
10767                 if (ret != -TARGET_ENOSYS) {
10768                     unlock_user(p, arg2, 0);
10769                     return ret;
10770                 }
10771             }
10772 #endif
10773             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
10774             unlock_user(p, arg2, 0);
10775 
10776             if (!is_error(ret)) {
10777                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
10778                     return -TARGET_EFAULT;
10779                 }
10780                 memset(target_stx, 0, sizeof(*target_stx));
10781                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
10782                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
10783                 __put_user(st.st_ino, &target_stx->stx_ino);
10784                 __put_user(st.st_mode, &target_stx->stx_mode);
10785                 __put_user(st.st_uid, &target_stx->stx_uid);
10786                 __put_user(st.st_gid, &target_stx->stx_gid);
10787                 __put_user(st.st_nlink, &target_stx->stx_nlink);
10788                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
10789                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
10790                 __put_user(st.st_size, &target_stx->stx_size);
10791                 __put_user(st.st_blksize, &target_stx->stx_blksize);
10792                 __put_user(st.st_blocks, &target_stx->stx_blocks);
10793                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
10794                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
10795                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
10796                 unlock_user_struct(target_stx, arg5, 1);
10797             }
10798         }
10799         return ret;
10800 #endif
10801 #ifdef TARGET_NR_lchown
10802     case TARGET_NR_lchown:
10803         if (!(p = lock_user_string(arg1)))
10804             return -TARGET_EFAULT;
10805         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
10806         unlock_user(p, arg1, 0);
10807         return ret;
10808 #endif
10809 #ifdef TARGET_NR_getuid
10810     case TARGET_NR_getuid:
10811         return get_errno(high2lowuid(getuid()));
10812 #endif
10813 #ifdef TARGET_NR_getgid
10814     case TARGET_NR_getgid:
10815         return get_errno(high2lowgid(getgid()));
10816 #endif
10817 #ifdef TARGET_NR_geteuid
10818     case TARGET_NR_geteuid:
10819         return get_errno(high2lowuid(geteuid()));
10820 #endif
10821 #ifdef TARGET_NR_getegid
10822     case TARGET_NR_getegid:
10823         return get_errno(high2lowgid(getegid()));
10824 #endif
10825     case TARGET_NR_setreuid:
10826         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
10827     case TARGET_NR_setregid:
10828         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
10829     case TARGET_NR_getgroups:
10830         {
10831             int gidsetsize = arg1;
10832             target_id *target_grouplist;
10833             gid_t *grouplist;
10834             int i;
10835 
10836             grouplist = alloca(gidsetsize * sizeof(gid_t));
10837             ret = get_errno(getgroups(gidsetsize, grouplist));
10838             if (gidsetsize == 0)
10839                 return ret;
10840             if (!is_error(ret)) {
10841                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
10842                 if (!target_grouplist)
10843                     return -TARGET_EFAULT;
10844                 for(i = 0;i < ret; i++)
10845                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
10846                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
10847             }
10848         }
10849         return ret;
10850     case TARGET_NR_setgroups:
10851         {
10852             int gidsetsize = arg1;
10853             target_id *target_grouplist;
10854             gid_t *grouplist = NULL;
10855             int i;
10856             if (gidsetsize) {
10857                 grouplist = alloca(gidsetsize * sizeof(gid_t));
10858                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
10859                 if (!target_grouplist) {
10860                     return -TARGET_EFAULT;
10861                 }
10862                 for (i = 0; i < gidsetsize; i++) {
10863                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
10864                 }
10865                 unlock_user(target_grouplist, arg2, 0);
10866             }
10867             return get_errno(setgroups(gidsetsize, grouplist));
10868         }
10869     case TARGET_NR_fchown:
10870         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
10871 #if defined(TARGET_NR_fchownat)
10872     case TARGET_NR_fchownat:
10873         if (!(p = lock_user_string(arg2)))
10874             return -TARGET_EFAULT;
10875         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
10876                                  low2highgid(arg4), arg5));
10877         unlock_user(p, arg2, 0);
10878         return ret;
10879 #endif
10880 #ifdef TARGET_NR_setresuid
10881     case TARGET_NR_setresuid:
10882         return get_errno(sys_setresuid(low2highuid(arg1),
10883                                        low2highuid(arg2),
10884                                        low2highuid(arg3)));
10885 #endif
10886 #ifdef TARGET_NR_getresuid
10887     case TARGET_NR_getresuid:
10888         {
10889             uid_t ruid, euid, suid;
10890             ret = get_errno(getresuid(&ruid, &euid, &suid));
10891             if (!is_error(ret)) {
10892                 if (put_user_id(high2lowuid(ruid), arg1)
10893                     || put_user_id(high2lowuid(euid), arg2)
10894                     || put_user_id(high2lowuid(suid), arg3))
10895                     return -TARGET_EFAULT;
10896             }
10897         }
10898         return ret;
10899 #endif
10900 #ifdef TARGET_NR_getresgid
10901     case TARGET_NR_setresgid:
10902         return get_errno(sys_setresgid(low2highgid(arg1),
10903                                        low2highgid(arg2),
10904                                        low2highgid(arg3)));
10905 #endif
10906 #ifdef TARGET_NR_getresgid
10907     case TARGET_NR_getresgid:
10908         {
10909             gid_t rgid, egid, sgid;
10910             ret = get_errno(getresgid(&rgid, &egid, &sgid));
10911             if (!is_error(ret)) {
10912                 if (put_user_id(high2lowgid(rgid), arg1)
10913                     || put_user_id(high2lowgid(egid), arg2)
10914                     || put_user_id(high2lowgid(sgid), arg3))
10915                     return -TARGET_EFAULT;
10916             }
10917         }
10918         return ret;
10919 #endif
10920 #ifdef TARGET_NR_chown
10921     case TARGET_NR_chown:
10922         if (!(p = lock_user_string(arg1)))
10923             return -TARGET_EFAULT;
10924         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
10925         unlock_user(p, arg1, 0);
10926         return ret;
10927 #endif
10928     case TARGET_NR_setuid:
10929         return get_errno(sys_setuid(low2highuid(arg1)));
10930     case TARGET_NR_setgid:
10931         return get_errno(sys_setgid(low2highgid(arg1)));
10932     case TARGET_NR_setfsuid:
10933         return get_errno(setfsuid(arg1));
10934     case TARGET_NR_setfsgid:
10935         return get_errno(setfsgid(arg1));
10936 
10937 #ifdef TARGET_NR_lchown32
10938     case TARGET_NR_lchown32:
10939         if (!(p = lock_user_string(arg1)))
10940             return -TARGET_EFAULT;
10941         ret = get_errno(lchown(p, arg2, arg3));
10942         unlock_user(p, arg1, 0);
10943         return ret;
10944 #endif
10945 #ifdef TARGET_NR_getuid32
10946     case TARGET_NR_getuid32:
10947         return get_errno(getuid());
10948 #endif
10949 
10950 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
10951    /* Alpha specific */
10952     case TARGET_NR_getxuid:
10953          {
10954             uid_t euid;
10955             euid=geteuid();
10956             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
10957          }
10958         return get_errno(getuid());
10959 #endif
10960 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
10961    /* Alpha specific */
10962     case TARGET_NR_getxgid:
10963          {
10964             uid_t egid;
10965             egid=getegid();
10966             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
10967          }
10968         return get_errno(getgid());
10969 #endif
10970 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
10971     /* Alpha specific */
10972     case TARGET_NR_osf_getsysinfo:
10973         ret = -TARGET_EOPNOTSUPP;
10974         switch (arg1) {
10975           case TARGET_GSI_IEEE_FP_CONTROL:
10976             {
10977                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
10978                 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr;
10979 
10980                 swcr &= ~SWCR_STATUS_MASK;
10981                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
10982 
10983                 if (put_user_u64 (swcr, arg2))
10984                         return -TARGET_EFAULT;
10985                 ret = 0;
10986             }
10987             break;
10988 
10989           /* case GSI_IEEE_STATE_AT_SIGNAL:
10990              -- Not implemented in linux kernel.
10991              case GSI_UACPROC:
10992              -- Retrieves current unaligned access state; not much used.
10993              case GSI_PROC_TYPE:
10994              -- Retrieves implver information; surely not used.
10995              case GSI_GET_HWRPB:
10996              -- Grabs a copy of the HWRPB; surely not used.
10997           */
10998         }
10999         return ret;
11000 #endif
11001 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11002     /* Alpha specific */
11003     case TARGET_NR_osf_setsysinfo:
11004         ret = -TARGET_EOPNOTSUPP;
11005         switch (arg1) {
11006           case TARGET_SSI_IEEE_FP_CONTROL:
11007             {
11008                 uint64_t swcr, fpcr;
11009 
11010                 if (get_user_u64 (swcr, arg2)) {
11011                     return -TARGET_EFAULT;
11012                 }
11013 
11014                 /*
11015                  * The kernel calls swcr_update_status to update the
11016                  * status bits from the fpcr at every point that it
11017                  * could be queried.  Therefore, we store the status
11018                  * bits only in FPCR.
11019                  */
11020                 ((CPUAlphaState *)cpu_env)->swcr
11021                     = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11022 
11023                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11024                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11025                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11026                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11027                 ret = 0;
11028             }
11029             break;
11030 
11031           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11032             {
11033                 uint64_t exc, fpcr, fex;
11034 
11035                 if (get_user_u64(exc, arg2)) {
11036                     return -TARGET_EFAULT;
11037                 }
11038                 exc &= SWCR_STATUS_MASK;
11039                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11040 
11041                 /* Old exceptions are not signaled.  */
11042                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11043                 fex = exc & ~fex;
11044                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11045                 fex &= ((CPUArchState *)cpu_env)->swcr;
11046 
11047                 /* Update the hardware fpcr.  */
11048                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11049                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11050 
11051                 if (fex) {
11052                     int si_code = TARGET_FPE_FLTUNK;
11053                     target_siginfo_t info;
11054 
11055                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11056                         si_code = TARGET_FPE_FLTUND;
11057                     }
11058                     if (fex & SWCR_TRAP_ENABLE_INE) {
11059                         si_code = TARGET_FPE_FLTRES;
11060                     }
11061                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11062                         si_code = TARGET_FPE_FLTUND;
11063                     }
11064                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11065                         si_code = TARGET_FPE_FLTOVF;
11066                     }
11067                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11068                         si_code = TARGET_FPE_FLTDIV;
11069                     }
11070                     if (fex & SWCR_TRAP_ENABLE_INV) {
11071                         si_code = TARGET_FPE_FLTINV;
11072                     }
11073 
11074                     info.si_signo = SIGFPE;
11075                     info.si_errno = 0;
11076                     info.si_code = si_code;
11077                     info._sifields._sigfault._addr
11078                         = ((CPUArchState *)cpu_env)->pc;
11079                     queue_signal((CPUArchState *)cpu_env, info.si_signo,
11080                                  QEMU_SI_FAULT, &info);
11081                 }
11082                 ret = 0;
11083             }
11084             break;
11085 
11086           /* case SSI_NVPAIRS:
11087              -- Used with SSIN_UACPROC to enable unaligned accesses.
11088              case SSI_IEEE_STATE_AT_SIGNAL:
11089              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11090              -- Not implemented in linux kernel
11091           */
11092         }
11093         return ret;
11094 #endif
11095 #ifdef TARGET_NR_osf_sigprocmask
11096     /* Alpha specific.  */
11097     case TARGET_NR_osf_sigprocmask:
11098         {
11099             abi_ulong mask;
11100             int how;
11101             sigset_t set, oldset;
11102 
11103             switch(arg1) {
11104             case TARGET_SIG_BLOCK:
11105                 how = SIG_BLOCK;
11106                 break;
11107             case TARGET_SIG_UNBLOCK:
11108                 how = SIG_UNBLOCK;
11109                 break;
11110             case TARGET_SIG_SETMASK:
11111                 how = SIG_SETMASK;
11112                 break;
11113             default:
11114                 return -TARGET_EINVAL;
11115             }
11116             mask = arg2;
11117             target_to_host_old_sigset(&set, &mask);
11118             ret = do_sigprocmask(how, &set, &oldset);
11119             if (!ret) {
11120                 host_to_target_old_sigset(&mask, &oldset);
11121                 ret = mask;
11122             }
11123         }
11124         return ret;
11125 #endif
11126 
11127 #ifdef TARGET_NR_getgid32
11128     case TARGET_NR_getgid32:
11129         return get_errno(getgid());
11130 #endif
11131 #ifdef TARGET_NR_geteuid32
11132     case TARGET_NR_geteuid32:
11133         return get_errno(geteuid());
11134 #endif
11135 #ifdef TARGET_NR_getegid32
11136     case TARGET_NR_getegid32:
11137         return get_errno(getegid());
11138 #endif
11139 #ifdef TARGET_NR_setreuid32
11140     case TARGET_NR_setreuid32:
11141         return get_errno(setreuid(arg1, arg2));
11142 #endif
11143 #ifdef TARGET_NR_setregid32
11144     case TARGET_NR_setregid32:
11145         return get_errno(setregid(arg1, arg2));
11146 #endif
11147 #ifdef TARGET_NR_getgroups32
11148     case TARGET_NR_getgroups32:
11149         {
11150             int gidsetsize = arg1;
11151             uint32_t *target_grouplist;
11152             gid_t *grouplist;
11153             int i;
11154 
11155             grouplist = alloca(gidsetsize * sizeof(gid_t));
11156             ret = get_errno(getgroups(gidsetsize, grouplist));
11157             if (gidsetsize == 0)
11158                 return ret;
11159             if (!is_error(ret)) {
11160                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11161                 if (!target_grouplist) {
11162                     return -TARGET_EFAULT;
11163                 }
11164                 for(i = 0;i < ret; i++)
11165                     target_grouplist[i] = tswap32(grouplist[i]);
11166                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11167             }
11168         }
11169         return ret;
11170 #endif
11171 #ifdef TARGET_NR_setgroups32
11172     case TARGET_NR_setgroups32:
11173         {
11174             int gidsetsize = arg1;
11175             uint32_t *target_grouplist;
11176             gid_t *grouplist;
11177             int i;
11178 
11179             grouplist = alloca(gidsetsize * sizeof(gid_t));
11180             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11181             if (!target_grouplist) {
11182                 return -TARGET_EFAULT;
11183             }
11184             for(i = 0;i < gidsetsize; i++)
11185                 grouplist[i] = tswap32(target_grouplist[i]);
11186             unlock_user(target_grouplist, arg2, 0);
11187             return get_errno(setgroups(gidsetsize, grouplist));
11188         }
11189 #endif
11190 #ifdef TARGET_NR_fchown32
11191     case TARGET_NR_fchown32:
11192         return get_errno(fchown(arg1, arg2, arg3));
11193 #endif
11194 #ifdef TARGET_NR_setresuid32
11195     case TARGET_NR_setresuid32:
11196         return get_errno(sys_setresuid(arg1, arg2, arg3));
11197 #endif
11198 #ifdef TARGET_NR_getresuid32
11199     case TARGET_NR_getresuid32:
11200         {
11201             uid_t ruid, euid, suid;
11202             ret = get_errno(getresuid(&ruid, &euid, &suid));
11203             if (!is_error(ret)) {
11204                 if (put_user_u32(ruid, arg1)
11205                     || put_user_u32(euid, arg2)
11206                     || put_user_u32(suid, arg3))
11207                     return -TARGET_EFAULT;
11208             }
11209         }
11210         return ret;
11211 #endif
11212 #ifdef TARGET_NR_setresgid32
11213     case TARGET_NR_setresgid32:
11214         return get_errno(sys_setresgid(arg1, arg2, arg3));
11215 #endif
11216 #ifdef TARGET_NR_getresgid32
11217     case TARGET_NR_getresgid32:
11218         {
11219             gid_t rgid, egid, sgid;
11220             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11221             if (!is_error(ret)) {
11222                 if (put_user_u32(rgid, arg1)
11223                     || put_user_u32(egid, arg2)
11224                     || put_user_u32(sgid, arg3))
11225                     return -TARGET_EFAULT;
11226             }
11227         }
11228         return ret;
11229 #endif
11230 #ifdef TARGET_NR_chown32
11231     case TARGET_NR_chown32:
11232         if (!(p = lock_user_string(arg1)))
11233             return -TARGET_EFAULT;
11234         ret = get_errno(chown(p, arg2, arg3));
11235         unlock_user(p, arg1, 0);
11236         return ret;
11237 #endif
11238 #ifdef TARGET_NR_setuid32
11239     case TARGET_NR_setuid32:
11240         return get_errno(sys_setuid(arg1));
11241 #endif
11242 #ifdef TARGET_NR_setgid32
11243     case TARGET_NR_setgid32:
11244         return get_errno(sys_setgid(arg1));
11245 #endif
11246 #ifdef TARGET_NR_setfsuid32
11247     case TARGET_NR_setfsuid32:
11248         return get_errno(setfsuid(arg1));
11249 #endif
11250 #ifdef TARGET_NR_setfsgid32
11251     case TARGET_NR_setfsgid32:
11252         return get_errno(setfsgid(arg1));
11253 #endif
11254 #ifdef TARGET_NR_mincore
11255     case TARGET_NR_mincore:
11256         {
11257             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11258             if (!a) {
11259                 return -TARGET_ENOMEM;
11260             }
11261             p = lock_user_string(arg3);
11262             if (!p) {
11263                 ret = -TARGET_EFAULT;
11264             } else {
11265                 ret = get_errno(mincore(a, arg2, p));
11266                 unlock_user(p, arg3, ret);
11267             }
11268             unlock_user(a, arg1, 0);
11269         }
11270         return ret;
11271 #endif
11272 #ifdef TARGET_NR_arm_fadvise64_64
11273     case TARGET_NR_arm_fadvise64_64:
11274         /* arm_fadvise64_64 looks like fadvise64_64 but
11275          * with different argument order: fd, advice, offset, len
11276          * rather than the usual fd, offset, len, advice.
11277          * Note that offset and len are both 64-bit so appear as
11278          * pairs of 32-bit registers.
11279          */
11280         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11281                             target_offset64(arg5, arg6), arg2);
11282         return -host_to_target_errno(ret);
11283 #endif
11284 
11285 #if TARGET_ABI_BITS == 32
11286 
11287 #ifdef TARGET_NR_fadvise64_64
11288     case TARGET_NR_fadvise64_64:
11289 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11290         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11291         ret = arg2;
11292         arg2 = arg3;
11293         arg3 = arg4;
11294         arg4 = arg5;
11295         arg5 = arg6;
11296         arg6 = ret;
11297 #else
11298         /* 6 args: fd, offset (high, low), len (high, low), advice */
11299         if (regpairs_aligned(cpu_env, num)) {
11300             /* offset is in (3,4), len in (5,6) and advice in 7 */
11301             arg2 = arg3;
11302             arg3 = arg4;
11303             arg4 = arg5;
11304             arg5 = arg6;
11305             arg6 = arg7;
11306         }
11307 #endif
11308         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11309                             target_offset64(arg4, arg5), arg6);
11310         return -host_to_target_errno(ret);
11311 #endif
11312 
11313 #ifdef TARGET_NR_fadvise64
11314     case TARGET_NR_fadvise64:
11315         /* 5 args: fd, offset (high, low), len, advice */
11316         if (regpairs_aligned(cpu_env, num)) {
11317             /* offset is in (3,4), len in 5 and advice in 6 */
11318             arg2 = arg3;
11319             arg3 = arg4;
11320             arg4 = arg5;
11321             arg5 = arg6;
11322         }
11323         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11324         return -host_to_target_errno(ret);
11325 #endif
11326 
11327 #else /* not a 32-bit ABI */
11328 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11329 #ifdef TARGET_NR_fadvise64_64
11330     case TARGET_NR_fadvise64_64:
11331 #endif
11332 #ifdef TARGET_NR_fadvise64
11333     case TARGET_NR_fadvise64:
11334 #endif
11335 #ifdef TARGET_S390X
11336         switch (arg4) {
11337         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11338         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11339         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11340         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11341         default: break;
11342         }
11343 #endif
11344         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11345 #endif
11346 #endif /* end of 64-bit ABI fadvise handling */
11347 
11348 #ifdef TARGET_NR_madvise
11349     case TARGET_NR_madvise:
11350         /* A straight passthrough may not be safe because qemu sometimes
11351            turns private file-backed mappings into anonymous mappings.
11352            This will break MADV_DONTNEED.
11353            This is a hint, so ignoring and returning success is ok.  */
11354         return 0;
11355 #endif
11356 #ifdef TARGET_NR_fcntl64
11357     case TARGET_NR_fcntl64:
11358     {
11359         int cmd;
11360         struct flock64 fl;
11361         from_flock64_fn *copyfrom = copy_from_user_flock64;
11362         to_flock64_fn *copyto = copy_to_user_flock64;
11363 
11364 #ifdef TARGET_ARM
11365         if (!((CPUARMState *)cpu_env)->eabi) {
11366             copyfrom = copy_from_user_oabi_flock64;
11367             copyto = copy_to_user_oabi_flock64;
11368         }
11369 #endif
11370 
11371         cmd = target_to_host_fcntl_cmd(arg2);
11372         if (cmd == -TARGET_EINVAL) {
11373             return cmd;
11374         }
11375 
11376         switch(arg2) {
11377         case TARGET_F_GETLK64:
11378             ret = copyfrom(&fl, arg3);
11379             if (ret) {
11380                 break;
11381             }
11382             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11383             if (ret == 0) {
11384                 ret = copyto(arg3, &fl);
11385             }
11386 	    break;
11387 
11388         case TARGET_F_SETLK64:
11389         case TARGET_F_SETLKW64:
11390             ret = copyfrom(&fl, arg3);
11391             if (ret) {
11392                 break;
11393             }
11394             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11395 	    break;
11396         default:
11397             ret = do_fcntl(arg1, arg2, arg3);
11398             break;
11399         }
11400         return ret;
11401     }
11402 #endif
11403 #ifdef TARGET_NR_cacheflush
11404     case TARGET_NR_cacheflush:
11405         /* self-modifying code is handled automatically, so nothing needed */
11406         return 0;
11407 #endif
11408 #ifdef TARGET_NR_getpagesize
11409     case TARGET_NR_getpagesize:
11410         return TARGET_PAGE_SIZE;
11411 #endif
11412     case TARGET_NR_gettid:
11413         return get_errno(sys_gettid());
11414 #ifdef TARGET_NR_readahead
11415     case TARGET_NR_readahead:
11416 #if TARGET_ABI_BITS == 32
11417         if (regpairs_aligned(cpu_env, num)) {
11418             arg2 = arg3;
11419             arg3 = arg4;
11420             arg4 = arg5;
11421         }
11422         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11423 #else
11424         ret = get_errno(readahead(arg1, arg2, arg3));
11425 #endif
11426         return ret;
11427 #endif
11428 #ifdef CONFIG_ATTR
11429 #ifdef TARGET_NR_setxattr
11430     case TARGET_NR_listxattr:
11431     case TARGET_NR_llistxattr:
11432     {
11433         void *p, *b = 0;
11434         if (arg2) {
11435             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11436             if (!b) {
11437                 return -TARGET_EFAULT;
11438             }
11439         }
11440         p = lock_user_string(arg1);
11441         if (p) {
11442             if (num == TARGET_NR_listxattr) {
11443                 ret = get_errno(listxattr(p, b, arg3));
11444             } else {
11445                 ret = get_errno(llistxattr(p, b, arg3));
11446             }
11447         } else {
11448             ret = -TARGET_EFAULT;
11449         }
11450         unlock_user(p, arg1, 0);
11451         unlock_user(b, arg2, arg3);
11452         return ret;
11453     }
11454     case TARGET_NR_flistxattr:
11455     {
11456         void *b = 0;
11457         if (arg2) {
11458             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11459             if (!b) {
11460                 return -TARGET_EFAULT;
11461             }
11462         }
11463         ret = get_errno(flistxattr(arg1, b, arg3));
11464         unlock_user(b, arg2, arg3);
11465         return ret;
11466     }
11467     case TARGET_NR_setxattr:
11468     case TARGET_NR_lsetxattr:
11469         {
11470             void *p, *n, *v = 0;
11471             if (arg3) {
11472                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11473                 if (!v) {
11474                     return -TARGET_EFAULT;
11475                 }
11476             }
11477             p = lock_user_string(arg1);
11478             n = lock_user_string(arg2);
11479             if (p && n) {
11480                 if (num == TARGET_NR_setxattr) {
11481                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
11482                 } else {
11483                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11484                 }
11485             } else {
11486                 ret = -TARGET_EFAULT;
11487             }
11488             unlock_user(p, arg1, 0);
11489             unlock_user(n, arg2, 0);
11490             unlock_user(v, arg3, 0);
11491         }
11492         return ret;
11493     case TARGET_NR_fsetxattr:
11494         {
11495             void *n, *v = 0;
11496             if (arg3) {
11497                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11498                 if (!v) {
11499                     return -TARGET_EFAULT;
11500                 }
11501             }
11502             n = lock_user_string(arg2);
11503             if (n) {
11504                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11505             } else {
11506                 ret = -TARGET_EFAULT;
11507             }
11508             unlock_user(n, arg2, 0);
11509             unlock_user(v, arg3, 0);
11510         }
11511         return ret;
11512     case TARGET_NR_getxattr:
11513     case TARGET_NR_lgetxattr:
11514         {
11515             void *p, *n, *v = 0;
11516             if (arg3) {
11517                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11518                 if (!v) {
11519                     return -TARGET_EFAULT;
11520                 }
11521             }
11522             p = lock_user_string(arg1);
11523             n = lock_user_string(arg2);
11524             if (p && n) {
11525                 if (num == TARGET_NR_getxattr) {
11526                     ret = get_errno(getxattr(p, n, v, arg4));
11527                 } else {
11528                     ret = get_errno(lgetxattr(p, n, v, arg4));
11529                 }
11530             } else {
11531                 ret = -TARGET_EFAULT;
11532             }
11533             unlock_user(p, arg1, 0);
11534             unlock_user(n, arg2, 0);
11535             unlock_user(v, arg3, arg4);
11536         }
11537         return ret;
11538     case TARGET_NR_fgetxattr:
11539         {
11540             void *n, *v = 0;
11541             if (arg3) {
11542                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11543                 if (!v) {
11544                     return -TARGET_EFAULT;
11545                 }
11546             }
11547             n = lock_user_string(arg2);
11548             if (n) {
11549                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
11550             } else {
11551                 ret = -TARGET_EFAULT;
11552             }
11553             unlock_user(n, arg2, 0);
11554             unlock_user(v, arg3, arg4);
11555         }
11556         return ret;
11557     case TARGET_NR_removexattr:
11558     case TARGET_NR_lremovexattr:
11559         {
11560             void *p, *n;
11561             p = lock_user_string(arg1);
11562             n = lock_user_string(arg2);
11563             if (p && n) {
11564                 if (num == TARGET_NR_removexattr) {
11565                     ret = get_errno(removexattr(p, n));
11566                 } else {
11567                     ret = get_errno(lremovexattr(p, n));
11568                 }
11569             } else {
11570                 ret = -TARGET_EFAULT;
11571             }
11572             unlock_user(p, arg1, 0);
11573             unlock_user(n, arg2, 0);
11574         }
11575         return ret;
11576     case TARGET_NR_fremovexattr:
11577         {
11578             void *n;
11579             n = lock_user_string(arg2);
11580             if (n) {
11581                 ret = get_errno(fremovexattr(arg1, n));
11582             } else {
11583                 ret = -TARGET_EFAULT;
11584             }
11585             unlock_user(n, arg2, 0);
11586         }
11587         return ret;
11588 #endif
11589 #endif /* CONFIG_ATTR */
11590 #ifdef TARGET_NR_set_thread_area
11591     case TARGET_NR_set_thread_area:
11592 #if defined(TARGET_MIPS)
11593       ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
11594       return 0;
11595 #elif defined(TARGET_CRIS)
11596       if (arg1 & 0xff)
11597           ret = -TARGET_EINVAL;
11598       else {
11599           ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
11600           ret = 0;
11601       }
11602       return ret;
11603 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11604       return do_set_thread_area(cpu_env, arg1);
11605 #elif defined(TARGET_M68K)
11606       {
11607           TaskState *ts = cpu->opaque;
11608           ts->tp_value = arg1;
11609           return 0;
11610       }
11611 #else
11612       return -TARGET_ENOSYS;
11613 #endif
11614 #endif
11615 #ifdef TARGET_NR_get_thread_area
11616     case TARGET_NR_get_thread_area:
11617 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11618         return do_get_thread_area(cpu_env, arg1);
11619 #elif defined(TARGET_M68K)
11620         {
11621             TaskState *ts = cpu->opaque;
11622             return ts->tp_value;
11623         }
11624 #else
11625         return -TARGET_ENOSYS;
11626 #endif
11627 #endif
11628 #ifdef TARGET_NR_getdomainname
11629     case TARGET_NR_getdomainname:
11630         return -TARGET_ENOSYS;
11631 #endif
11632 
11633 #ifdef TARGET_NR_clock_settime
11634     case TARGET_NR_clock_settime:
11635     {
11636         struct timespec ts;
11637 
11638         ret = target_to_host_timespec(&ts, arg2);
11639         if (!is_error(ret)) {
11640             ret = get_errno(clock_settime(arg1, &ts));
11641         }
11642         return ret;
11643     }
11644 #endif
11645 #ifdef TARGET_NR_clock_settime64
11646     case TARGET_NR_clock_settime64:
11647     {
11648         struct timespec ts;
11649 
11650         ret = target_to_host_timespec64(&ts, arg2);
11651         if (!is_error(ret)) {
11652             ret = get_errno(clock_settime(arg1, &ts));
11653         }
11654         return ret;
11655     }
11656 #endif
11657 #ifdef TARGET_NR_clock_gettime
11658     case TARGET_NR_clock_gettime:
11659     {
11660         struct timespec ts;
11661         ret = get_errno(clock_gettime(arg1, &ts));
11662         if (!is_error(ret)) {
11663             ret = host_to_target_timespec(arg2, &ts);
11664         }
11665         return ret;
11666     }
11667 #endif
11668 #ifdef TARGET_NR_clock_gettime64
11669     case TARGET_NR_clock_gettime64:
11670     {
11671         struct timespec ts;
11672         ret = get_errno(clock_gettime(arg1, &ts));
11673         if (!is_error(ret)) {
11674             ret = host_to_target_timespec64(arg2, &ts);
11675         }
11676         return ret;
11677     }
11678 #endif
11679 #ifdef TARGET_NR_clock_getres
11680     case TARGET_NR_clock_getres:
11681     {
11682         struct timespec ts;
11683         ret = get_errno(clock_getres(arg1, &ts));
11684         if (!is_error(ret)) {
11685             host_to_target_timespec(arg2, &ts);
11686         }
11687         return ret;
11688     }
11689 #endif
11690 #ifdef TARGET_NR_clock_nanosleep
11691     case TARGET_NR_clock_nanosleep:
11692     {
11693         struct timespec ts;
11694         target_to_host_timespec(&ts, arg3);
11695         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
11696                                              &ts, arg4 ? &ts : NULL));
11697         if (arg4)
11698             host_to_target_timespec(arg4, &ts);
11699 
11700 #if defined(TARGET_PPC)
11701         /* clock_nanosleep is odd in that it returns positive errno values.
11702          * On PPC, CR0 bit 3 should be set in such a situation. */
11703         if (ret && ret != -TARGET_ERESTARTSYS) {
11704             ((CPUPPCState *)cpu_env)->crf[0] |= 1;
11705         }
11706 #endif
11707         return ret;
11708     }
11709 #endif
11710 
11711 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11712     case TARGET_NR_set_tid_address:
11713         return get_errno(set_tid_address((int *)g2h(arg1)));
11714 #endif
11715 
11716     case TARGET_NR_tkill:
11717         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
11718 
11719     case TARGET_NR_tgkill:
11720         return get_errno(safe_tgkill((int)arg1, (int)arg2,
11721                          target_to_host_signal(arg3)));
11722 
11723 #ifdef TARGET_NR_set_robust_list
11724     case TARGET_NR_set_robust_list:
11725     case TARGET_NR_get_robust_list:
11726         /* The ABI for supporting robust futexes has userspace pass
11727          * the kernel a pointer to a linked list which is updated by
11728          * userspace after the syscall; the list is walked by the kernel
11729          * when the thread exits. Since the linked list in QEMU guest
11730          * memory isn't a valid linked list for the host and we have
11731          * no way to reliably intercept the thread-death event, we can't
11732          * support these. Silently return ENOSYS so that guest userspace
11733          * falls back to a non-robust futex implementation (which should
11734          * be OK except in the corner case of the guest crashing while
11735          * holding a mutex that is shared with another process via
11736          * shared memory).
11737          */
11738         return -TARGET_ENOSYS;
11739 #endif
11740 
11741 #if defined(TARGET_NR_utimensat)
11742     case TARGET_NR_utimensat:
11743         {
11744             struct timespec *tsp, ts[2];
11745             if (!arg3) {
11746                 tsp = NULL;
11747             } else {
11748                 target_to_host_timespec(ts, arg3);
11749                 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
11750                 tsp = ts;
11751             }
11752             if (!arg2)
11753                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
11754             else {
11755                 if (!(p = lock_user_string(arg2))) {
11756                     return -TARGET_EFAULT;
11757                 }
11758                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
11759                 unlock_user(p, arg2, 0);
11760             }
11761         }
11762         return ret;
11763 #endif
11764 #ifdef TARGET_NR_futex
11765     case TARGET_NR_futex:
11766         return do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
11767 #endif
11768 #ifdef TARGET_NR_futex_time64
11769     case TARGET_NR_futex_time64:
11770         return do_futex_time64(arg1, arg2, arg3, arg4, arg5, arg6);
11771 #endif
11772 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
11773     case TARGET_NR_inotify_init:
11774         ret = get_errno(sys_inotify_init());
11775         if (ret >= 0) {
11776             fd_trans_register(ret, &target_inotify_trans);
11777         }
11778         return ret;
11779 #endif
11780 #ifdef CONFIG_INOTIFY1
11781 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
11782     case TARGET_NR_inotify_init1:
11783         ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
11784                                           fcntl_flags_tbl)));
11785         if (ret >= 0) {
11786             fd_trans_register(ret, &target_inotify_trans);
11787         }
11788         return ret;
11789 #endif
11790 #endif
11791 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
11792     case TARGET_NR_inotify_add_watch:
11793         p = lock_user_string(arg2);
11794         ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
11795         unlock_user(p, arg2, 0);
11796         return ret;
11797 #endif
11798 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
11799     case TARGET_NR_inotify_rm_watch:
11800         return get_errno(sys_inotify_rm_watch(arg1, arg2));
11801 #endif
11802 
11803 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
11804     case TARGET_NR_mq_open:
11805         {
11806             struct mq_attr posix_mq_attr;
11807             struct mq_attr *pposix_mq_attr;
11808             int host_flags;
11809 
11810             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
11811             pposix_mq_attr = NULL;
11812             if (arg4) {
11813                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
11814                     return -TARGET_EFAULT;
11815                 }
11816                 pposix_mq_attr = &posix_mq_attr;
11817             }
11818             p = lock_user_string(arg1 - 1);
11819             if (!p) {
11820                 return -TARGET_EFAULT;
11821             }
11822             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
11823             unlock_user (p, arg1, 0);
11824         }
11825         return ret;
11826 
11827     case TARGET_NR_mq_unlink:
11828         p = lock_user_string(arg1 - 1);
11829         if (!p) {
11830             return -TARGET_EFAULT;
11831         }
11832         ret = get_errno(mq_unlink(p));
11833         unlock_user (p, arg1, 0);
11834         return ret;
11835 
11836 #ifdef TARGET_NR_mq_timedsend
11837     case TARGET_NR_mq_timedsend:
11838         {
11839             struct timespec ts;
11840 
11841             p = lock_user (VERIFY_READ, arg2, arg3, 1);
11842             if (arg5 != 0) {
11843                 target_to_host_timespec(&ts, arg5);
11844                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
11845                 host_to_target_timespec(arg5, &ts);
11846             } else {
11847                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
11848             }
11849             unlock_user (p, arg2, arg3);
11850         }
11851         return ret;
11852 #endif
11853 
11854 #ifdef TARGET_NR_mq_timedreceive
11855     case TARGET_NR_mq_timedreceive:
11856         {
11857             struct timespec ts;
11858             unsigned int prio;
11859 
11860             p = lock_user (VERIFY_READ, arg2, arg3, 1);
11861             if (arg5 != 0) {
11862                 target_to_host_timespec(&ts, arg5);
11863                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11864                                                      &prio, &ts));
11865                 host_to_target_timespec(arg5, &ts);
11866             } else {
11867                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11868                                                      &prio, NULL));
11869             }
11870             unlock_user (p, arg2, arg3);
11871             if (arg4 != 0)
11872                 put_user_u32(prio, arg4);
11873         }
11874         return ret;
11875 #endif
11876 
11877     /* Not implemented for now... */
11878 /*     case TARGET_NR_mq_notify: */
11879 /*         break; */
11880 
11881     case TARGET_NR_mq_getsetattr:
11882         {
11883             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
11884             ret = 0;
11885             if (arg2 != 0) {
11886                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
11887                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
11888                                            &posix_mq_attr_out));
11889             } else if (arg3 != 0) {
11890                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
11891             }
11892             if (ret == 0 && arg3 != 0) {
11893                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
11894             }
11895         }
11896         return ret;
11897 #endif
11898 
11899 #ifdef CONFIG_SPLICE
11900 #ifdef TARGET_NR_tee
11901     case TARGET_NR_tee:
11902         {
11903             ret = get_errno(tee(arg1,arg2,arg3,arg4));
11904         }
11905         return ret;
11906 #endif
11907 #ifdef TARGET_NR_splice
11908     case TARGET_NR_splice:
11909         {
11910             loff_t loff_in, loff_out;
11911             loff_t *ploff_in = NULL, *ploff_out = NULL;
11912             if (arg2) {
11913                 if (get_user_u64(loff_in, arg2)) {
11914                     return -TARGET_EFAULT;
11915                 }
11916                 ploff_in = &loff_in;
11917             }
11918             if (arg4) {
11919                 if (get_user_u64(loff_out, arg4)) {
11920                     return -TARGET_EFAULT;
11921                 }
11922                 ploff_out = &loff_out;
11923             }
11924             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
11925             if (arg2) {
11926                 if (put_user_u64(loff_in, arg2)) {
11927                     return -TARGET_EFAULT;
11928                 }
11929             }
11930             if (arg4) {
11931                 if (put_user_u64(loff_out, arg4)) {
11932                     return -TARGET_EFAULT;
11933                 }
11934             }
11935         }
11936         return ret;
11937 #endif
11938 #ifdef TARGET_NR_vmsplice
11939 	case TARGET_NR_vmsplice:
11940         {
11941             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11942             if (vec != NULL) {
11943                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
11944                 unlock_iovec(vec, arg2, arg3, 0);
11945             } else {
11946                 ret = -host_to_target_errno(errno);
11947             }
11948         }
11949         return ret;
11950 #endif
11951 #endif /* CONFIG_SPLICE */
11952 #ifdef CONFIG_EVENTFD
11953 #if defined(TARGET_NR_eventfd)
11954     case TARGET_NR_eventfd:
11955         ret = get_errno(eventfd(arg1, 0));
11956         if (ret >= 0) {
11957             fd_trans_register(ret, &target_eventfd_trans);
11958         }
11959         return ret;
11960 #endif
11961 #if defined(TARGET_NR_eventfd2)
11962     case TARGET_NR_eventfd2:
11963     {
11964         int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
11965         if (arg2 & TARGET_O_NONBLOCK) {
11966             host_flags |= O_NONBLOCK;
11967         }
11968         if (arg2 & TARGET_O_CLOEXEC) {
11969             host_flags |= O_CLOEXEC;
11970         }
11971         ret = get_errno(eventfd(arg1, host_flags));
11972         if (ret >= 0) {
11973             fd_trans_register(ret, &target_eventfd_trans);
11974         }
11975         return ret;
11976     }
11977 #endif
11978 #endif /* CONFIG_EVENTFD  */
11979 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
11980     case TARGET_NR_fallocate:
11981 #if TARGET_ABI_BITS == 32
11982         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
11983                                   target_offset64(arg5, arg6)));
11984 #else
11985         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
11986 #endif
11987         return ret;
11988 #endif
11989 #if defined(CONFIG_SYNC_FILE_RANGE)
11990 #if defined(TARGET_NR_sync_file_range)
11991     case TARGET_NR_sync_file_range:
11992 #if TARGET_ABI_BITS == 32
11993 #if defined(TARGET_MIPS)
11994         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
11995                                         target_offset64(arg5, arg6), arg7));
11996 #else
11997         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
11998                                         target_offset64(arg4, arg5), arg6));
11999 #endif /* !TARGET_MIPS */
12000 #else
12001         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12002 #endif
12003         return ret;
12004 #endif
12005 #if defined(TARGET_NR_sync_file_range2) || \
12006     defined(TARGET_NR_arm_sync_file_range)
12007 #if defined(TARGET_NR_sync_file_range2)
12008     case TARGET_NR_sync_file_range2:
12009 #endif
12010 #if defined(TARGET_NR_arm_sync_file_range)
12011     case TARGET_NR_arm_sync_file_range:
12012 #endif
12013         /* This is like sync_file_range but the arguments are reordered */
12014 #if TARGET_ABI_BITS == 32
12015         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12016                                         target_offset64(arg5, arg6), arg2));
12017 #else
12018         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12019 #endif
12020         return ret;
12021 #endif
12022 #endif
12023 #if defined(TARGET_NR_signalfd4)
12024     case TARGET_NR_signalfd4:
12025         return do_signalfd4(arg1, arg2, arg4);
12026 #endif
12027 #if defined(TARGET_NR_signalfd)
12028     case TARGET_NR_signalfd:
12029         return do_signalfd4(arg1, arg2, 0);
12030 #endif
12031 #if defined(CONFIG_EPOLL)
12032 #if defined(TARGET_NR_epoll_create)
12033     case TARGET_NR_epoll_create:
12034         return get_errno(epoll_create(arg1));
12035 #endif
12036 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12037     case TARGET_NR_epoll_create1:
12038         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12039 #endif
12040 #if defined(TARGET_NR_epoll_ctl)
12041     case TARGET_NR_epoll_ctl:
12042     {
12043         struct epoll_event ep;
12044         struct epoll_event *epp = 0;
12045         if (arg4) {
12046             struct target_epoll_event *target_ep;
12047             if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12048                 return -TARGET_EFAULT;
12049             }
12050             ep.events = tswap32(target_ep->events);
12051             /* The epoll_data_t union is just opaque data to the kernel,
12052              * so we transfer all 64 bits across and need not worry what
12053              * actual data type it is.
12054              */
12055             ep.data.u64 = tswap64(target_ep->data.u64);
12056             unlock_user_struct(target_ep, arg4, 0);
12057             epp = &ep;
12058         }
12059         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12060     }
12061 #endif
12062 
12063 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12064 #if defined(TARGET_NR_epoll_wait)
12065     case TARGET_NR_epoll_wait:
12066 #endif
12067 #if defined(TARGET_NR_epoll_pwait)
12068     case TARGET_NR_epoll_pwait:
12069 #endif
12070     {
12071         struct target_epoll_event *target_ep;
12072         struct epoll_event *ep;
12073         int epfd = arg1;
12074         int maxevents = arg3;
12075         int timeout = arg4;
12076 
12077         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12078             return -TARGET_EINVAL;
12079         }
12080 
12081         target_ep = lock_user(VERIFY_WRITE, arg2,
12082                               maxevents * sizeof(struct target_epoll_event), 1);
12083         if (!target_ep) {
12084             return -TARGET_EFAULT;
12085         }
12086 
12087         ep = g_try_new(struct epoll_event, maxevents);
12088         if (!ep) {
12089             unlock_user(target_ep, arg2, 0);
12090             return -TARGET_ENOMEM;
12091         }
12092 
12093         switch (num) {
12094 #if defined(TARGET_NR_epoll_pwait)
12095         case TARGET_NR_epoll_pwait:
12096         {
12097             target_sigset_t *target_set;
12098             sigset_t _set, *set = &_set;
12099 
12100             if (arg5) {
12101                 if (arg6 != sizeof(target_sigset_t)) {
12102                     ret = -TARGET_EINVAL;
12103                     break;
12104                 }
12105 
12106                 target_set = lock_user(VERIFY_READ, arg5,
12107                                        sizeof(target_sigset_t), 1);
12108                 if (!target_set) {
12109                     ret = -TARGET_EFAULT;
12110                     break;
12111                 }
12112                 target_to_host_sigset(set, target_set);
12113                 unlock_user(target_set, arg5, 0);
12114             } else {
12115                 set = NULL;
12116             }
12117 
12118             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12119                                              set, SIGSET_T_SIZE));
12120             break;
12121         }
12122 #endif
12123 #if defined(TARGET_NR_epoll_wait)
12124         case TARGET_NR_epoll_wait:
12125             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12126                                              NULL, 0));
12127             break;
12128 #endif
12129         default:
12130             ret = -TARGET_ENOSYS;
12131         }
12132         if (!is_error(ret)) {
12133             int i;
12134             for (i = 0; i < ret; i++) {
12135                 target_ep[i].events = tswap32(ep[i].events);
12136                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12137             }
12138             unlock_user(target_ep, arg2,
12139                         ret * sizeof(struct target_epoll_event));
12140         } else {
12141             unlock_user(target_ep, arg2, 0);
12142         }
12143         g_free(ep);
12144         return ret;
12145     }
12146 #endif
12147 #endif
12148 #ifdef TARGET_NR_prlimit64
12149     case TARGET_NR_prlimit64:
12150     {
12151         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12152         struct target_rlimit64 *target_rnew, *target_rold;
12153         struct host_rlimit64 rnew, rold, *rnewp = 0;
12154         int resource = target_to_host_resource(arg2);
12155 
12156         if (arg3 && (resource != RLIMIT_AS &&
12157                      resource != RLIMIT_DATA &&
12158                      resource != RLIMIT_STACK)) {
12159             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12160                 return -TARGET_EFAULT;
12161             }
12162             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12163             rnew.rlim_max = tswap64(target_rnew->rlim_max);
12164             unlock_user_struct(target_rnew, arg3, 0);
12165             rnewp = &rnew;
12166         }
12167 
12168         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12169         if (!is_error(ret) && arg4) {
12170             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12171                 return -TARGET_EFAULT;
12172             }
12173             target_rold->rlim_cur = tswap64(rold.rlim_cur);
12174             target_rold->rlim_max = tswap64(rold.rlim_max);
12175             unlock_user_struct(target_rold, arg4, 1);
12176         }
12177         return ret;
12178     }
12179 #endif
12180 #ifdef TARGET_NR_gethostname
12181     case TARGET_NR_gethostname:
12182     {
12183         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12184         if (name) {
12185             ret = get_errno(gethostname(name, arg2));
12186             unlock_user(name, arg1, arg2);
12187         } else {
12188             ret = -TARGET_EFAULT;
12189         }
12190         return ret;
12191     }
12192 #endif
12193 #ifdef TARGET_NR_atomic_cmpxchg_32
12194     case TARGET_NR_atomic_cmpxchg_32:
12195     {
12196         /* should use start_exclusive from main.c */
12197         abi_ulong mem_value;
12198         if (get_user_u32(mem_value, arg6)) {
12199             target_siginfo_t info;
12200             info.si_signo = SIGSEGV;
12201             info.si_errno = 0;
12202             info.si_code = TARGET_SEGV_MAPERR;
12203             info._sifields._sigfault._addr = arg6;
12204             queue_signal((CPUArchState *)cpu_env, info.si_signo,
12205                          QEMU_SI_FAULT, &info);
12206             ret = 0xdeadbeef;
12207 
12208         }
12209         if (mem_value == arg2)
12210             put_user_u32(arg1, arg6);
12211         return mem_value;
12212     }
12213 #endif
12214 #ifdef TARGET_NR_atomic_barrier
12215     case TARGET_NR_atomic_barrier:
12216         /* Like the kernel implementation and the
12217            qemu arm barrier, no-op this? */
12218         return 0;
12219 #endif
12220 
12221 #ifdef TARGET_NR_timer_create
12222     case TARGET_NR_timer_create:
12223     {
12224         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12225 
12226         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12227 
12228         int clkid = arg1;
12229         int timer_index = next_free_host_timer();
12230 
12231         if (timer_index < 0) {
12232             ret = -TARGET_EAGAIN;
12233         } else {
12234             timer_t *phtimer = g_posix_timers  + timer_index;
12235 
12236             if (arg2) {
12237                 phost_sevp = &host_sevp;
12238                 ret = target_to_host_sigevent(phost_sevp, arg2);
12239                 if (ret != 0) {
12240                     return ret;
12241                 }
12242             }
12243 
12244             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12245             if (ret) {
12246                 phtimer = NULL;
12247             } else {
12248                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12249                     return -TARGET_EFAULT;
12250                 }
12251             }
12252         }
12253         return ret;
12254     }
12255 #endif
12256 
12257 #ifdef TARGET_NR_timer_settime
12258     case TARGET_NR_timer_settime:
12259     {
12260         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12261          * struct itimerspec * old_value */
12262         target_timer_t timerid = get_timer_id(arg1);
12263 
12264         if (timerid < 0) {
12265             ret = timerid;
12266         } else if (arg3 == 0) {
12267             ret = -TARGET_EINVAL;
12268         } else {
12269             timer_t htimer = g_posix_timers[timerid];
12270             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12271 
12272             if (target_to_host_itimerspec(&hspec_new, arg3)) {
12273                 return -TARGET_EFAULT;
12274             }
12275             ret = get_errno(
12276                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12277             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12278                 return -TARGET_EFAULT;
12279             }
12280         }
12281         return ret;
12282     }
12283 #endif
12284 
12285 #ifdef TARGET_NR_timer_gettime
12286     case TARGET_NR_timer_gettime:
12287     {
12288         /* args: timer_t timerid, struct itimerspec *curr_value */
12289         target_timer_t timerid = get_timer_id(arg1);
12290 
12291         if (timerid < 0) {
12292             ret = timerid;
12293         } else if (!arg2) {
12294             ret = -TARGET_EFAULT;
12295         } else {
12296             timer_t htimer = g_posix_timers[timerid];
12297             struct itimerspec hspec;
12298             ret = get_errno(timer_gettime(htimer, &hspec));
12299 
12300             if (host_to_target_itimerspec(arg2, &hspec)) {
12301                 ret = -TARGET_EFAULT;
12302             }
12303         }
12304         return ret;
12305     }
12306 #endif
12307 
12308 #ifdef TARGET_NR_timer_getoverrun
12309     case TARGET_NR_timer_getoverrun:
12310     {
12311         /* args: timer_t timerid */
12312         target_timer_t timerid = get_timer_id(arg1);
12313 
12314         if (timerid < 0) {
12315             ret = timerid;
12316         } else {
12317             timer_t htimer = g_posix_timers[timerid];
12318             ret = get_errno(timer_getoverrun(htimer));
12319         }
12320         return ret;
12321     }
12322 #endif
12323 
12324 #ifdef TARGET_NR_timer_delete
12325     case TARGET_NR_timer_delete:
12326     {
12327         /* args: timer_t timerid */
12328         target_timer_t timerid = get_timer_id(arg1);
12329 
12330         if (timerid < 0) {
12331             ret = timerid;
12332         } else {
12333             timer_t htimer = g_posix_timers[timerid];
12334             ret = get_errno(timer_delete(htimer));
12335             g_posix_timers[timerid] = 0;
12336         }
12337         return ret;
12338     }
12339 #endif
12340 
12341 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12342     case TARGET_NR_timerfd_create:
12343         return get_errno(timerfd_create(arg1,
12344                           target_to_host_bitmask(arg2, fcntl_flags_tbl)));
12345 #endif
12346 
12347 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12348     case TARGET_NR_timerfd_gettime:
12349         {
12350             struct itimerspec its_curr;
12351 
12352             ret = get_errno(timerfd_gettime(arg1, &its_curr));
12353 
12354             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
12355                 return -TARGET_EFAULT;
12356             }
12357         }
12358         return ret;
12359 #endif
12360 
12361 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12362     case TARGET_NR_timerfd_settime:
12363         {
12364             struct itimerspec its_new, its_old, *p_new;
12365 
12366             if (arg3) {
12367                 if (target_to_host_itimerspec(&its_new, arg3)) {
12368                     return -TARGET_EFAULT;
12369                 }
12370                 p_new = &its_new;
12371             } else {
12372                 p_new = NULL;
12373             }
12374 
12375             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
12376 
12377             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
12378                 return -TARGET_EFAULT;
12379             }
12380         }
12381         return ret;
12382 #endif
12383 
12384 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12385     case TARGET_NR_ioprio_get:
12386         return get_errno(ioprio_get(arg1, arg2));
12387 #endif
12388 
12389 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12390     case TARGET_NR_ioprio_set:
12391         return get_errno(ioprio_set(arg1, arg2, arg3));
12392 #endif
12393 
12394 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12395     case TARGET_NR_setns:
12396         return get_errno(setns(arg1, arg2));
12397 #endif
12398 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12399     case TARGET_NR_unshare:
12400         return get_errno(unshare(arg1));
12401 #endif
12402 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12403     case TARGET_NR_kcmp:
12404         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
12405 #endif
12406 #ifdef TARGET_NR_swapcontext
12407     case TARGET_NR_swapcontext:
12408         /* PowerPC specific.  */
12409         return do_swapcontext(cpu_env, arg1, arg2, arg3);
12410 #endif
12411 #ifdef TARGET_NR_memfd_create
12412     case TARGET_NR_memfd_create:
12413         p = lock_user_string(arg1);
12414         if (!p) {
12415             return -TARGET_EFAULT;
12416         }
12417         ret = get_errno(memfd_create(p, arg2));
12418         fd_trans_unregister(ret);
12419         unlock_user(p, arg1, 0);
12420         return ret;
12421 #endif
12422 #if defined TARGET_NR_membarrier && defined __NR_membarrier
12423     case TARGET_NR_membarrier:
12424         return get_errno(membarrier(arg1, arg2));
12425 #endif
12426 
12427     default:
12428         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
12429         return -TARGET_ENOSYS;
12430     }
12431     return ret;
12432 }
12433 
12434 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
12435                     abi_long arg2, abi_long arg3, abi_long arg4,
12436                     abi_long arg5, abi_long arg6, abi_long arg7,
12437                     abi_long arg8)
12438 {
12439     CPUState *cpu = env_cpu(cpu_env);
12440     abi_long ret;
12441 
12442 #ifdef DEBUG_ERESTARTSYS
12443     /* Debug-only code for exercising the syscall-restart code paths
12444      * in the per-architecture cpu main loops: restart every syscall
12445      * the guest makes once before letting it through.
12446      */
12447     {
12448         static bool flag;
12449         flag = !flag;
12450         if (flag) {
12451             return -TARGET_ERESTARTSYS;
12452         }
12453     }
12454 #endif
12455 
12456     record_syscall_start(cpu, num, arg1,
12457                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
12458 
12459     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
12460         print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
12461     }
12462 
12463     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
12464                       arg5, arg6, arg7, arg8);
12465 
12466     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
12467         print_syscall_ret(num, ret);
12468     }
12469 
12470     record_syscall_return(cpu, num, ret);
12471     return ret;
12472 }
12473