xref: /openbmc/qemu/linux-user/syscall.c (revision 06d4c71f)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/ip.h>
55 #include <netinet/tcp.h>
56 #include <linux/wireless.h>
57 #include <linux/icmp.h>
58 #include <linux/icmpv6.h>
59 #include <linux/errqueue.h>
60 #include <linux/random.h>
61 #ifdef CONFIG_TIMERFD
62 #include <sys/timerfd.h>
63 #endif
64 #ifdef CONFIG_EVENTFD
65 #include <sys/eventfd.h>
66 #endif
67 #ifdef CONFIG_EPOLL
68 #include <sys/epoll.h>
69 #endif
70 #ifdef CONFIG_ATTR
71 #include "qemu/xattr.h"
72 #endif
73 #ifdef CONFIG_SENDFILE
74 #include <sys/sendfile.h>
75 #endif
76 #ifdef CONFIG_KCOV
77 #include <sys/kcov.h>
78 #endif
79 
80 #define termios host_termios
81 #define winsize host_winsize
82 #define termio host_termio
83 #define sgttyb host_sgttyb /* same as target */
84 #define tchars host_tchars /* same as target */
85 #define ltchars host_ltchars /* same as target */
86 
87 #include <linux/termios.h>
88 #include <linux/unistd.h>
89 #include <linux/cdrom.h>
90 #include <linux/hdreg.h>
91 #include <linux/soundcard.h>
92 #include <linux/kd.h>
93 #include <linux/mtio.h>
94 #include <linux/fs.h>
95 #include <linux/fd.h>
96 #if defined(CONFIG_FIEMAP)
97 #include <linux/fiemap.h>
98 #endif
99 #include <linux/fb.h>
100 #if defined(CONFIG_USBFS)
101 #include <linux/usbdevice_fs.h>
102 #include <linux/usb/ch9.h>
103 #endif
104 #include <linux/vt.h>
105 #include <linux/dm-ioctl.h>
106 #include <linux/reboot.h>
107 #include <linux/route.h>
108 #include <linux/filter.h>
109 #include <linux/blkpg.h>
110 #include <netpacket/packet.h>
111 #include <linux/netlink.h>
112 #include <linux/if_alg.h>
113 #include <linux/rtc.h>
114 #include <sound/asound.h>
115 #include "linux_loop.h"
116 #include "uname.h"
117 
118 #include "qemu.h"
119 #include "qemu/guest-random.h"
120 #include "qemu/selfmap.h"
121 #include "user/syscall-trace.h"
122 #include "qapi/error.h"
123 #include "fd-trans.h"
124 #include "tcg/tcg.h"
125 
126 #ifndef CLONE_IO
127 #define CLONE_IO                0x80000000      /* Clone io context */
128 #endif
129 
130 /* We can't directly call the host clone syscall, because this will
131  * badly confuse libc (breaking mutexes, for example). So we must
132  * divide clone flags into:
133  *  * flag combinations that look like pthread_create()
134  *  * flag combinations that look like fork()
135  *  * flags we can implement within QEMU itself
136  *  * flags we can't support and will return an error for
137  */
138 /* For thread creation, all these flags must be present; for
139  * fork, none must be present.
140  */
141 #define CLONE_THREAD_FLAGS                              \
142     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
143      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
144 
145 /* These flags are ignored:
146  * CLONE_DETACHED is now ignored by the kernel;
147  * CLONE_IO is just an optimisation hint to the I/O scheduler
148  */
149 #define CLONE_IGNORED_FLAGS                     \
150     (CLONE_DETACHED | CLONE_IO)
151 
152 /* Flags for fork which we can implement within QEMU itself */
153 #define CLONE_OPTIONAL_FORK_FLAGS               \
154     (CLONE_SETTLS | CLONE_PARENT_SETTID |       \
155      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
156 
157 /* Flags for thread creation which we can implement within QEMU itself */
158 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
159     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
160      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
161 
162 #define CLONE_INVALID_FORK_FLAGS                                        \
163     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
164 
165 #define CLONE_INVALID_THREAD_FLAGS                                      \
166     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
167        CLONE_IGNORED_FLAGS))
168 
169 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
170  * have almost all been allocated. We cannot support any of
171  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
172  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
173  * The checks against the invalid thread masks above will catch these.
174  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
175  */
176 
177 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
178  * once. This exercises the codepaths for restart.
179  */
180 //#define DEBUG_ERESTARTSYS
181 
182 //#include <linux/msdos_fs.h>
183 #define	VFAT_IOCTL_READDIR_BOTH		_IOR('r', 1, struct linux_dirent [2])
184 #define	VFAT_IOCTL_READDIR_SHORT	_IOR('r', 2, struct linux_dirent [2])
185 
186 #undef _syscall0
187 #undef _syscall1
188 #undef _syscall2
189 #undef _syscall3
190 #undef _syscall4
191 #undef _syscall5
192 #undef _syscall6
193 
194 #define _syscall0(type,name)		\
195 static type name (void)			\
196 {					\
197 	return syscall(__NR_##name);	\
198 }
199 
200 #define _syscall1(type,name,type1,arg1)		\
201 static type name (type1 arg1)			\
202 {						\
203 	return syscall(__NR_##name, arg1);	\
204 }
205 
206 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
207 static type name (type1 arg1,type2 arg2)		\
208 {							\
209 	return syscall(__NR_##name, arg1, arg2);	\
210 }
211 
212 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
213 static type name (type1 arg1,type2 arg2,type3 arg3)		\
214 {								\
215 	return syscall(__NR_##name, arg1, arg2, arg3);		\
216 }
217 
218 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
219 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
220 {										\
221 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
222 }
223 
224 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
225 		  type5,arg5)							\
226 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
227 {										\
228 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
229 }
230 
231 
232 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
233 		  type5,arg5,type6,arg6)					\
234 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
235                   type6 arg6)							\
236 {										\
237 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
238 }
239 
240 
241 #define __NR_sys_uname __NR_uname
242 #define __NR_sys_getcwd1 __NR_getcwd
243 #define __NR_sys_getdents __NR_getdents
244 #define __NR_sys_getdents64 __NR_getdents64
245 #define __NR_sys_getpriority __NR_getpriority
246 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
247 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
248 #define __NR_sys_syslog __NR_syslog
249 #if defined(__NR_futex)
250 # define __NR_sys_futex __NR_futex
251 #endif
252 #if defined(__NR_futex_time64)
253 # define __NR_sys_futex_time64 __NR_futex_time64
254 #endif
255 #define __NR_sys_inotify_init __NR_inotify_init
256 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
257 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
258 #define __NR_sys_statx __NR_statx
259 
260 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
261 #define __NR__llseek __NR_lseek
262 #endif
263 
264 /* Newer kernel ports have llseek() instead of _llseek() */
265 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
266 #define TARGET_NR__llseek TARGET_NR_llseek
267 #endif
268 
269 #define __NR_sys_gettid __NR_gettid
270 _syscall0(int, sys_gettid)
271 
272 /* For the 64-bit guest on 32-bit host case we must emulate
273  * getdents using getdents64, because otherwise the host
274  * might hand us back more dirent records than we can fit
275  * into the guest buffer after structure format conversion.
276  * Otherwise we emulate getdents with getdents if the host has it.
277  */
278 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
279 #define EMULATE_GETDENTS_WITH_GETDENTS
280 #endif
281 
282 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
283 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
284 #endif
285 #if (defined(TARGET_NR_getdents) && \
286       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
287     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
288 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
289 #endif
290 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
291 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
292           loff_t *, res, uint, wh);
293 #endif
294 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
295 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
296           siginfo_t *, uinfo)
297 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
298 #ifdef __NR_exit_group
299 _syscall1(int,exit_group,int,error_code)
300 #endif
301 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
302 _syscall1(int,set_tid_address,int *,tidptr)
303 #endif
304 #if defined(__NR_futex)
305 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
306           const struct timespec *,timeout,int *,uaddr2,int,val3)
307 #endif
308 #if defined(__NR_futex_time64)
309 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
310           const struct timespec *,timeout,int *,uaddr2,int,val3)
311 #endif
312 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
313 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
314           unsigned long *, user_mask_ptr);
315 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
316 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
317           unsigned long *, user_mask_ptr);
318 #define __NR_sys_getcpu __NR_getcpu
319 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
320 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
321           void *, arg);
322 _syscall2(int, capget, struct __user_cap_header_struct *, header,
323           struct __user_cap_data_struct *, data);
324 _syscall2(int, capset, struct __user_cap_header_struct *, header,
325           struct __user_cap_data_struct *, data);
326 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
327 _syscall2(int, ioprio_get, int, which, int, who)
328 #endif
329 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
330 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
331 #endif
332 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
333 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
334 #endif
335 
336 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
337 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
338           unsigned long, idx1, unsigned long, idx2)
339 #endif
340 
341 /*
342  * It is assumed that struct statx is architecture independent.
343  */
344 #if defined(TARGET_NR_statx) && defined(__NR_statx)
345 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
346           unsigned int, mask, struct target_statx *, statxbuf)
347 #endif
348 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
349 _syscall2(int, membarrier, int, cmd, int, flags)
350 #endif
351 
352 static bitmask_transtbl fcntl_flags_tbl[] = {
353   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
354   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
355   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
356   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
357   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
358   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
359   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
360   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
361   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
362   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
363   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
364   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
365   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
366 #if defined(O_DIRECT)
367   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
368 #endif
369 #if defined(O_NOATIME)
370   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
371 #endif
372 #if defined(O_CLOEXEC)
373   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
374 #endif
375 #if defined(O_PATH)
376   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
377 #endif
378 #if defined(O_TMPFILE)
379   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
380 #endif
381   /* Don't terminate the list prematurely on 64-bit host+guest.  */
382 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
383   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
384 #endif
385   { 0, 0, 0, 0 }
386 };
387 
388 static int sys_getcwd1(char *buf, size_t size)
389 {
390   if (getcwd(buf, size) == NULL) {
391       /* getcwd() sets errno */
392       return (-1);
393   }
394   return strlen(buf)+1;
395 }
396 
397 #ifdef TARGET_NR_utimensat
398 #if defined(__NR_utimensat)
399 #define __NR_sys_utimensat __NR_utimensat
400 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
401           const struct timespec *,tsp,int,flags)
402 #else
403 static int sys_utimensat(int dirfd, const char *pathname,
404                          const struct timespec times[2], int flags)
405 {
406     errno = ENOSYS;
407     return -1;
408 }
409 #endif
410 #endif /* TARGET_NR_utimensat */
411 
412 #ifdef TARGET_NR_renameat2
413 #if defined(__NR_renameat2)
414 #define __NR_sys_renameat2 __NR_renameat2
415 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
416           const char *, new, unsigned int, flags)
417 #else
418 static int sys_renameat2(int oldfd, const char *old,
419                          int newfd, const char *new, int flags)
420 {
421     if (flags == 0) {
422         return renameat(oldfd, old, newfd, new);
423     }
424     errno = ENOSYS;
425     return -1;
426 }
427 #endif
428 #endif /* TARGET_NR_renameat2 */
429 
430 #ifdef CONFIG_INOTIFY
431 #include <sys/inotify.h>
432 
433 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
434 static int sys_inotify_init(void)
435 {
436   return (inotify_init());
437 }
438 #endif
439 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
440 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
441 {
442   return (inotify_add_watch(fd, pathname, mask));
443 }
444 #endif
445 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
446 static int sys_inotify_rm_watch(int fd, int32_t wd)
447 {
448   return (inotify_rm_watch(fd, wd));
449 }
450 #endif
451 #ifdef CONFIG_INOTIFY1
452 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
453 static int sys_inotify_init1(int flags)
454 {
455   return (inotify_init1(flags));
456 }
457 #endif
458 #endif
459 #else
460 /* Userspace can usually survive runtime without inotify */
461 #undef TARGET_NR_inotify_init
462 #undef TARGET_NR_inotify_init1
463 #undef TARGET_NR_inotify_add_watch
464 #undef TARGET_NR_inotify_rm_watch
465 #endif /* CONFIG_INOTIFY  */
466 
467 #if defined(TARGET_NR_prlimit64)
468 #ifndef __NR_prlimit64
469 # define __NR_prlimit64 -1
470 #endif
471 #define __NR_sys_prlimit64 __NR_prlimit64
472 /* The glibc rlimit structure may not be that used by the underlying syscall */
473 struct host_rlimit64 {
474     uint64_t rlim_cur;
475     uint64_t rlim_max;
476 };
477 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
478           const struct host_rlimit64 *, new_limit,
479           struct host_rlimit64 *, old_limit)
480 #endif
481 
482 
483 #if defined(TARGET_NR_timer_create)
484 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
485 static timer_t g_posix_timers[32] = { 0, } ;
486 
487 static inline int next_free_host_timer(void)
488 {
489     int k ;
490     /* FIXME: Does finding the next free slot require a lock? */
491     for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
492         if (g_posix_timers[k] == 0) {
493             g_posix_timers[k] = (timer_t) 1;
494             return k;
495         }
496     }
497     return -1;
498 }
499 #endif
500 
501 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
502 #ifdef TARGET_ARM
503 static inline int regpairs_aligned(void *cpu_env, int num)
504 {
505     return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
506 }
507 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
508 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
509 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
510 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
511  * of registers which translates to the same as ARM/MIPS, because we start with
512  * r3 as arg1 */
513 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
514 #elif defined(TARGET_SH4)
515 /* SH4 doesn't align register pairs, except for p{read,write}64 */
516 static inline int regpairs_aligned(void *cpu_env, int num)
517 {
518     switch (num) {
519     case TARGET_NR_pread64:
520     case TARGET_NR_pwrite64:
521         return 1;
522 
523     default:
524         return 0;
525     }
526 }
527 #elif defined(TARGET_XTENSA)
528 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
529 #else
530 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
531 #endif
532 
533 #define ERRNO_TABLE_SIZE 1200
534 
535 /* target_to_host_errno_table[] is initialized from
536  * host_to_target_errno_table[] in syscall_init(). */
537 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
538 };
539 
540 /*
541  * This list is the union of errno values overridden in asm-<arch>/errno.h
542  * minus the errnos that are not actually generic to all archs.
543  */
544 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
545     [EAGAIN]		= TARGET_EAGAIN,
546     [EIDRM]		= TARGET_EIDRM,
547     [ECHRNG]		= TARGET_ECHRNG,
548     [EL2NSYNC]		= TARGET_EL2NSYNC,
549     [EL3HLT]		= TARGET_EL3HLT,
550     [EL3RST]		= TARGET_EL3RST,
551     [ELNRNG]		= TARGET_ELNRNG,
552     [EUNATCH]		= TARGET_EUNATCH,
553     [ENOCSI]		= TARGET_ENOCSI,
554     [EL2HLT]		= TARGET_EL2HLT,
555     [EDEADLK]		= TARGET_EDEADLK,
556     [ENOLCK]		= TARGET_ENOLCK,
557     [EBADE]		= TARGET_EBADE,
558     [EBADR]		= TARGET_EBADR,
559     [EXFULL]		= TARGET_EXFULL,
560     [ENOANO]		= TARGET_ENOANO,
561     [EBADRQC]		= TARGET_EBADRQC,
562     [EBADSLT]		= TARGET_EBADSLT,
563     [EBFONT]		= TARGET_EBFONT,
564     [ENOSTR]		= TARGET_ENOSTR,
565     [ENODATA]		= TARGET_ENODATA,
566     [ETIME]		= TARGET_ETIME,
567     [ENOSR]		= TARGET_ENOSR,
568     [ENONET]		= TARGET_ENONET,
569     [ENOPKG]		= TARGET_ENOPKG,
570     [EREMOTE]		= TARGET_EREMOTE,
571     [ENOLINK]		= TARGET_ENOLINK,
572     [EADV]		= TARGET_EADV,
573     [ESRMNT]		= TARGET_ESRMNT,
574     [ECOMM]		= TARGET_ECOMM,
575     [EPROTO]		= TARGET_EPROTO,
576     [EDOTDOT]		= TARGET_EDOTDOT,
577     [EMULTIHOP]		= TARGET_EMULTIHOP,
578     [EBADMSG]		= TARGET_EBADMSG,
579     [ENAMETOOLONG]	= TARGET_ENAMETOOLONG,
580     [EOVERFLOW]		= TARGET_EOVERFLOW,
581     [ENOTUNIQ]		= TARGET_ENOTUNIQ,
582     [EBADFD]		= TARGET_EBADFD,
583     [EREMCHG]		= TARGET_EREMCHG,
584     [ELIBACC]		= TARGET_ELIBACC,
585     [ELIBBAD]		= TARGET_ELIBBAD,
586     [ELIBSCN]		= TARGET_ELIBSCN,
587     [ELIBMAX]		= TARGET_ELIBMAX,
588     [ELIBEXEC]		= TARGET_ELIBEXEC,
589     [EILSEQ]		= TARGET_EILSEQ,
590     [ENOSYS]		= TARGET_ENOSYS,
591     [ELOOP]		= TARGET_ELOOP,
592     [ERESTART]		= TARGET_ERESTART,
593     [ESTRPIPE]		= TARGET_ESTRPIPE,
594     [ENOTEMPTY]		= TARGET_ENOTEMPTY,
595     [EUSERS]		= TARGET_EUSERS,
596     [ENOTSOCK]		= TARGET_ENOTSOCK,
597     [EDESTADDRREQ]	= TARGET_EDESTADDRREQ,
598     [EMSGSIZE]		= TARGET_EMSGSIZE,
599     [EPROTOTYPE]	= TARGET_EPROTOTYPE,
600     [ENOPROTOOPT]	= TARGET_ENOPROTOOPT,
601     [EPROTONOSUPPORT]	= TARGET_EPROTONOSUPPORT,
602     [ESOCKTNOSUPPORT]	= TARGET_ESOCKTNOSUPPORT,
603     [EOPNOTSUPP]	= TARGET_EOPNOTSUPP,
604     [EPFNOSUPPORT]	= TARGET_EPFNOSUPPORT,
605     [EAFNOSUPPORT]	= TARGET_EAFNOSUPPORT,
606     [EADDRINUSE]	= TARGET_EADDRINUSE,
607     [EADDRNOTAVAIL]	= TARGET_EADDRNOTAVAIL,
608     [ENETDOWN]		= TARGET_ENETDOWN,
609     [ENETUNREACH]	= TARGET_ENETUNREACH,
610     [ENETRESET]		= TARGET_ENETRESET,
611     [ECONNABORTED]	= TARGET_ECONNABORTED,
612     [ECONNRESET]	= TARGET_ECONNRESET,
613     [ENOBUFS]		= TARGET_ENOBUFS,
614     [EISCONN]		= TARGET_EISCONN,
615     [ENOTCONN]		= TARGET_ENOTCONN,
616     [EUCLEAN]		= TARGET_EUCLEAN,
617     [ENOTNAM]		= TARGET_ENOTNAM,
618     [ENAVAIL]		= TARGET_ENAVAIL,
619     [EISNAM]		= TARGET_EISNAM,
620     [EREMOTEIO]		= TARGET_EREMOTEIO,
621     [EDQUOT]            = TARGET_EDQUOT,
622     [ESHUTDOWN]		= TARGET_ESHUTDOWN,
623     [ETOOMANYREFS]	= TARGET_ETOOMANYREFS,
624     [ETIMEDOUT]		= TARGET_ETIMEDOUT,
625     [ECONNREFUSED]	= TARGET_ECONNREFUSED,
626     [EHOSTDOWN]		= TARGET_EHOSTDOWN,
627     [EHOSTUNREACH]	= TARGET_EHOSTUNREACH,
628     [EALREADY]		= TARGET_EALREADY,
629     [EINPROGRESS]	= TARGET_EINPROGRESS,
630     [ESTALE]		= TARGET_ESTALE,
631     [ECANCELED]		= TARGET_ECANCELED,
632     [ENOMEDIUM]		= TARGET_ENOMEDIUM,
633     [EMEDIUMTYPE]	= TARGET_EMEDIUMTYPE,
634 #ifdef ENOKEY
635     [ENOKEY]		= TARGET_ENOKEY,
636 #endif
637 #ifdef EKEYEXPIRED
638     [EKEYEXPIRED]	= TARGET_EKEYEXPIRED,
639 #endif
640 #ifdef EKEYREVOKED
641     [EKEYREVOKED]	= TARGET_EKEYREVOKED,
642 #endif
643 #ifdef EKEYREJECTED
644     [EKEYREJECTED]	= TARGET_EKEYREJECTED,
645 #endif
646 #ifdef EOWNERDEAD
647     [EOWNERDEAD]	= TARGET_EOWNERDEAD,
648 #endif
649 #ifdef ENOTRECOVERABLE
650     [ENOTRECOVERABLE]	= TARGET_ENOTRECOVERABLE,
651 #endif
652 #ifdef ENOMSG
653     [ENOMSG]            = TARGET_ENOMSG,
654 #endif
655 #ifdef ERKFILL
656     [ERFKILL]           = TARGET_ERFKILL,
657 #endif
658 #ifdef EHWPOISON
659     [EHWPOISON]         = TARGET_EHWPOISON,
660 #endif
661 };
662 
663 static inline int host_to_target_errno(int err)
664 {
665     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
666         host_to_target_errno_table[err]) {
667         return host_to_target_errno_table[err];
668     }
669     return err;
670 }
671 
672 static inline int target_to_host_errno(int err)
673 {
674     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
675         target_to_host_errno_table[err]) {
676         return target_to_host_errno_table[err];
677     }
678     return err;
679 }
680 
681 static inline abi_long get_errno(abi_long ret)
682 {
683     if (ret == -1)
684         return -host_to_target_errno(errno);
685     else
686         return ret;
687 }
688 
689 const char *target_strerror(int err)
690 {
691     if (err == TARGET_ERESTARTSYS) {
692         return "To be restarted";
693     }
694     if (err == TARGET_QEMU_ESIGRETURN) {
695         return "Successful exit from sigreturn";
696     }
697 
698     if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
699         return NULL;
700     }
701     return strerror(target_to_host_errno(err));
702 }
703 
704 #define safe_syscall0(type, name) \
705 static type safe_##name(void) \
706 { \
707     return safe_syscall(__NR_##name); \
708 }
709 
710 #define safe_syscall1(type, name, type1, arg1) \
711 static type safe_##name(type1 arg1) \
712 { \
713     return safe_syscall(__NR_##name, arg1); \
714 }
715 
716 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
717 static type safe_##name(type1 arg1, type2 arg2) \
718 { \
719     return safe_syscall(__NR_##name, arg1, arg2); \
720 }
721 
722 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
723 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
724 { \
725     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
726 }
727 
728 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
729     type4, arg4) \
730 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
731 { \
732     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
733 }
734 
735 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
736     type4, arg4, type5, arg5) \
737 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
738     type5 arg5) \
739 { \
740     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
741 }
742 
743 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
744     type4, arg4, type5, arg5, type6, arg6) \
745 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
746     type5 arg5, type6 arg6) \
747 { \
748     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
749 }
750 
751 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
752 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
753 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
754               int, flags, mode_t, mode)
755 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
756 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
757               struct rusage *, rusage)
758 #endif
759 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
760               int, options, struct rusage *, rusage)
761 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
762 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
763     defined(TARGET_NR_pselect6)
764 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
765               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
766 #endif
767 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_poll)
768 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
769               struct timespec *, tsp, const sigset_t *, sigmask,
770               size_t, sigsetsize)
771 #endif
772 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
773               int, maxevents, int, timeout, const sigset_t *, sigmask,
774               size_t, sigsetsize)
775 #if defined(__NR_futex)
776 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
777               const struct timespec *,timeout,int *,uaddr2,int,val3)
778 #endif
779 #if defined(__NR_futex_time64)
780 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
781               const struct timespec *,timeout,int *,uaddr2,int,val3)
782 #endif
783 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
784 safe_syscall2(int, kill, pid_t, pid, int, sig)
785 safe_syscall2(int, tkill, int, tid, int, sig)
786 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
787 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
788 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
789 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
790               unsigned long, pos_l, unsigned long, pos_h)
791 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
792               unsigned long, pos_l, unsigned long, pos_h)
793 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
794               socklen_t, addrlen)
795 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
796               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
797 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
798               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
799 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
800 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
801 safe_syscall2(int, flock, int, fd, int, operation)
802 #ifdef TARGET_NR_rt_sigtimedwait
803 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
804               const struct timespec *, uts, size_t, sigsetsize)
805 #endif
806 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
807               int, flags)
808 #if defined(TARGET_NR_nanosleep)
809 safe_syscall2(int, nanosleep, const struct timespec *, req,
810               struct timespec *, rem)
811 #endif
812 #ifdef TARGET_NR_clock_nanosleep
813 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
814               const struct timespec *, req, struct timespec *, rem)
815 #endif
816 #ifdef __NR_ipc
817 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
818               void *, ptr, long, fifth)
819 #endif
820 #ifdef __NR_msgsnd
821 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
822               int, flags)
823 #endif
824 #ifdef __NR_msgrcv
825 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
826               long, msgtype, int, flags)
827 #endif
828 #ifdef __NR_semtimedop
829 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
830               unsigned, nsops, const struct timespec *, timeout)
831 #endif
832 #ifdef TARGET_NR_mq_timedsend
833 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
834               size_t, len, unsigned, prio, const struct timespec *, timeout)
835 #endif
836 #ifdef TARGET_NR_mq_timedreceive
837 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
838               size_t, len, unsigned *, prio, const struct timespec *, timeout)
839 #endif
840 /* We do ioctl like this rather than via safe_syscall3 to preserve the
841  * "third argument might be integer or pointer or not present" behaviour of
842  * the libc function.
843  */
844 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
845 /* Similarly for fcntl. Note that callers must always:
846  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
847  *  use the flock64 struct rather than unsuffixed flock
848  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
849  */
850 #ifdef __NR_fcntl64
851 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
852 #else
853 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
854 #endif
855 
856 static inline int host_to_target_sock_type(int host_type)
857 {
858     int target_type;
859 
860     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
861     case SOCK_DGRAM:
862         target_type = TARGET_SOCK_DGRAM;
863         break;
864     case SOCK_STREAM:
865         target_type = TARGET_SOCK_STREAM;
866         break;
867     default:
868         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
869         break;
870     }
871 
872 #if defined(SOCK_CLOEXEC)
873     if (host_type & SOCK_CLOEXEC) {
874         target_type |= TARGET_SOCK_CLOEXEC;
875     }
876 #endif
877 
878 #if defined(SOCK_NONBLOCK)
879     if (host_type & SOCK_NONBLOCK) {
880         target_type |= TARGET_SOCK_NONBLOCK;
881     }
882 #endif
883 
884     return target_type;
885 }
886 
887 static abi_ulong target_brk;
888 static abi_ulong target_original_brk;
889 static abi_ulong brk_page;
890 
891 void target_set_brk(abi_ulong new_brk)
892 {
893     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
894     brk_page = HOST_PAGE_ALIGN(target_brk);
895 }
896 
897 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
898 #define DEBUGF_BRK(message, args...)
899 
900 /* do_brk() must return target values and target errnos. */
901 abi_long do_brk(abi_ulong new_brk)
902 {
903     abi_long mapped_addr;
904     abi_ulong new_alloc_size;
905 
906     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
907 
908     if (!new_brk) {
909         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
910         return target_brk;
911     }
912     if (new_brk < target_original_brk) {
913         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
914                    target_brk);
915         return target_brk;
916     }
917 
918     /* If the new brk is less than the highest page reserved to the
919      * target heap allocation, set it and we're almost done...  */
920     if (new_brk <= brk_page) {
921         /* Heap contents are initialized to zero, as for anonymous
922          * mapped pages.  */
923         if (new_brk > target_brk) {
924             memset(g2h(target_brk), 0, new_brk - target_brk);
925         }
926 	target_brk = new_brk;
927         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
928 	return target_brk;
929     }
930 
931     /* We need to allocate more memory after the brk... Note that
932      * we don't use MAP_FIXED because that will map over the top of
933      * any existing mapping (like the one with the host libc or qemu
934      * itself); instead we treat "mapped but at wrong address" as
935      * a failure and unmap again.
936      */
937     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
938     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
939                                         PROT_READ|PROT_WRITE,
940                                         MAP_ANON|MAP_PRIVATE, 0, 0));
941 
942     if (mapped_addr == brk_page) {
943         /* Heap contents are initialized to zero, as for anonymous
944          * mapped pages.  Technically the new pages are already
945          * initialized to zero since they *are* anonymous mapped
946          * pages, however we have to take care with the contents that
947          * come from the remaining part of the previous page: it may
948          * contains garbage data due to a previous heap usage (grown
949          * then shrunken).  */
950         memset(g2h(target_brk), 0, brk_page - target_brk);
951 
952         target_brk = new_brk;
953         brk_page = HOST_PAGE_ALIGN(target_brk);
954         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
955             target_brk);
956         return target_brk;
957     } else if (mapped_addr != -1) {
958         /* Mapped but at wrong address, meaning there wasn't actually
959          * enough space for this brk.
960          */
961         target_munmap(mapped_addr, new_alloc_size);
962         mapped_addr = -1;
963         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
964     }
965     else {
966         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
967     }
968 
969 #if defined(TARGET_ALPHA)
970     /* We (partially) emulate OSF/1 on Alpha, which requires we
971        return a proper errno, not an unchanged brk value.  */
972     return -TARGET_ENOMEM;
973 #endif
974     /* For everything else, return the previous break. */
975     return target_brk;
976 }
977 
978 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
979     defined(TARGET_NR_pselect6)
980 static inline abi_long copy_from_user_fdset(fd_set *fds,
981                                             abi_ulong target_fds_addr,
982                                             int n)
983 {
984     int i, nw, j, k;
985     abi_ulong b, *target_fds;
986 
987     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
988     if (!(target_fds = lock_user(VERIFY_READ,
989                                  target_fds_addr,
990                                  sizeof(abi_ulong) * nw,
991                                  1)))
992         return -TARGET_EFAULT;
993 
994     FD_ZERO(fds);
995     k = 0;
996     for (i = 0; i < nw; i++) {
997         /* grab the abi_ulong */
998         __get_user(b, &target_fds[i]);
999         for (j = 0; j < TARGET_ABI_BITS; j++) {
1000             /* check the bit inside the abi_ulong */
1001             if ((b >> j) & 1)
1002                 FD_SET(k, fds);
1003             k++;
1004         }
1005     }
1006 
1007     unlock_user(target_fds, target_fds_addr, 0);
1008 
1009     return 0;
1010 }
1011 
1012 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1013                                                  abi_ulong target_fds_addr,
1014                                                  int n)
1015 {
1016     if (target_fds_addr) {
1017         if (copy_from_user_fdset(fds, target_fds_addr, n))
1018             return -TARGET_EFAULT;
1019         *fds_ptr = fds;
1020     } else {
1021         *fds_ptr = NULL;
1022     }
1023     return 0;
1024 }
1025 
1026 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1027                                           const fd_set *fds,
1028                                           int n)
1029 {
1030     int i, nw, j, k;
1031     abi_long v;
1032     abi_ulong *target_fds;
1033 
1034     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1035     if (!(target_fds = lock_user(VERIFY_WRITE,
1036                                  target_fds_addr,
1037                                  sizeof(abi_ulong) * nw,
1038                                  0)))
1039         return -TARGET_EFAULT;
1040 
1041     k = 0;
1042     for (i = 0; i < nw; i++) {
1043         v = 0;
1044         for (j = 0; j < TARGET_ABI_BITS; j++) {
1045             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1046             k++;
1047         }
1048         __put_user(v, &target_fds[i]);
1049     }
1050 
1051     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1052 
1053     return 0;
1054 }
1055 #endif
1056 
1057 #if defined(__alpha__)
1058 #define HOST_HZ 1024
1059 #else
1060 #define HOST_HZ 100
1061 #endif
1062 
1063 static inline abi_long host_to_target_clock_t(long ticks)
1064 {
1065 #if HOST_HZ == TARGET_HZ
1066     return ticks;
1067 #else
1068     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1069 #endif
1070 }
1071 
1072 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1073                                              const struct rusage *rusage)
1074 {
1075     struct target_rusage *target_rusage;
1076 
1077     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1078         return -TARGET_EFAULT;
1079     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1080     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1081     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1082     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1083     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1084     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1085     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1086     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1087     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1088     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1089     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1090     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1091     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1092     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1093     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1094     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1095     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1096     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1097     unlock_user_struct(target_rusage, target_addr, 1);
1098 
1099     return 0;
1100 }
1101 
1102 #ifdef TARGET_NR_setrlimit
1103 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1104 {
1105     abi_ulong target_rlim_swap;
1106     rlim_t result;
1107 
1108     target_rlim_swap = tswapal(target_rlim);
1109     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1110         return RLIM_INFINITY;
1111 
1112     result = target_rlim_swap;
1113     if (target_rlim_swap != (rlim_t)result)
1114         return RLIM_INFINITY;
1115 
1116     return result;
1117 }
1118 #endif
1119 
1120 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1121 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1122 {
1123     abi_ulong target_rlim_swap;
1124     abi_ulong result;
1125 
1126     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1127         target_rlim_swap = TARGET_RLIM_INFINITY;
1128     else
1129         target_rlim_swap = rlim;
1130     result = tswapal(target_rlim_swap);
1131 
1132     return result;
1133 }
1134 #endif
1135 
1136 static inline int target_to_host_resource(int code)
1137 {
1138     switch (code) {
1139     case TARGET_RLIMIT_AS:
1140         return RLIMIT_AS;
1141     case TARGET_RLIMIT_CORE:
1142         return RLIMIT_CORE;
1143     case TARGET_RLIMIT_CPU:
1144         return RLIMIT_CPU;
1145     case TARGET_RLIMIT_DATA:
1146         return RLIMIT_DATA;
1147     case TARGET_RLIMIT_FSIZE:
1148         return RLIMIT_FSIZE;
1149     case TARGET_RLIMIT_LOCKS:
1150         return RLIMIT_LOCKS;
1151     case TARGET_RLIMIT_MEMLOCK:
1152         return RLIMIT_MEMLOCK;
1153     case TARGET_RLIMIT_MSGQUEUE:
1154         return RLIMIT_MSGQUEUE;
1155     case TARGET_RLIMIT_NICE:
1156         return RLIMIT_NICE;
1157     case TARGET_RLIMIT_NOFILE:
1158         return RLIMIT_NOFILE;
1159     case TARGET_RLIMIT_NPROC:
1160         return RLIMIT_NPROC;
1161     case TARGET_RLIMIT_RSS:
1162         return RLIMIT_RSS;
1163     case TARGET_RLIMIT_RTPRIO:
1164         return RLIMIT_RTPRIO;
1165     case TARGET_RLIMIT_SIGPENDING:
1166         return RLIMIT_SIGPENDING;
1167     case TARGET_RLIMIT_STACK:
1168         return RLIMIT_STACK;
1169     default:
1170         return code;
1171     }
1172 }
1173 
1174 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1175                                               abi_ulong target_tv_addr)
1176 {
1177     struct target_timeval *target_tv;
1178 
1179     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1180         return -TARGET_EFAULT;
1181     }
1182 
1183     __get_user(tv->tv_sec, &target_tv->tv_sec);
1184     __get_user(tv->tv_usec, &target_tv->tv_usec);
1185 
1186     unlock_user_struct(target_tv, target_tv_addr, 0);
1187 
1188     return 0;
1189 }
1190 
1191 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1192                                             const struct timeval *tv)
1193 {
1194     struct target_timeval *target_tv;
1195 
1196     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1197         return -TARGET_EFAULT;
1198     }
1199 
1200     __put_user(tv->tv_sec, &target_tv->tv_sec);
1201     __put_user(tv->tv_usec, &target_tv->tv_usec);
1202 
1203     unlock_user_struct(target_tv, target_tv_addr, 1);
1204 
1205     return 0;
1206 }
1207 
1208 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1209                                              const struct timeval *tv)
1210 {
1211     struct target__kernel_sock_timeval *target_tv;
1212 
1213     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1214         return -TARGET_EFAULT;
1215     }
1216 
1217     __put_user(tv->tv_sec, &target_tv->tv_sec);
1218     __put_user(tv->tv_usec, &target_tv->tv_usec);
1219 
1220     unlock_user_struct(target_tv, target_tv_addr, 1);
1221 
1222     return 0;
1223 }
1224 
1225 #if defined(TARGET_NR_futex) || \
1226     defined(TARGET_NR_rt_sigtimedwait) || \
1227     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1228     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1229     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1230     defined(TARGET_NR_mq_timedreceive)
1231 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1232                                                abi_ulong target_addr)
1233 {
1234     struct target_timespec *target_ts;
1235 
1236     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1237         return -TARGET_EFAULT;
1238     }
1239     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1240     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1241     unlock_user_struct(target_ts, target_addr, 0);
1242     return 0;
1243 }
1244 #endif
1245 
1246 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64)
1247 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1248                                                  abi_ulong target_addr)
1249 {
1250     struct target__kernel_timespec *target_ts;
1251 
1252     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1253         return -TARGET_EFAULT;
1254     }
1255     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1256     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1257     unlock_user_struct(target_ts, target_addr, 0);
1258     return 0;
1259 }
1260 #endif
1261 
1262 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1263                                                struct timespec *host_ts)
1264 {
1265     struct target_timespec *target_ts;
1266 
1267     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1268         return -TARGET_EFAULT;
1269     }
1270     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1271     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1272     unlock_user_struct(target_ts, target_addr, 1);
1273     return 0;
1274 }
1275 
1276 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1277                                                  struct timespec *host_ts)
1278 {
1279     struct target__kernel_timespec *target_ts;
1280 
1281     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1282         return -TARGET_EFAULT;
1283     }
1284     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1285     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1286     unlock_user_struct(target_ts, target_addr, 1);
1287     return 0;
1288 }
1289 
1290 #if defined(TARGET_NR_gettimeofday)
1291 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1292                                              struct timezone *tz)
1293 {
1294     struct target_timezone *target_tz;
1295 
1296     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1297         return -TARGET_EFAULT;
1298     }
1299 
1300     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1301     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1302 
1303     unlock_user_struct(target_tz, target_tz_addr, 1);
1304 
1305     return 0;
1306 }
1307 #endif
1308 
1309 #if defined(TARGET_NR_settimeofday)
1310 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1311                                                abi_ulong target_tz_addr)
1312 {
1313     struct target_timezone *target_tz;
1314 
1315     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1316         return -TARGET_EFAULT;
1317     }
1318 
1319     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1320     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1321 
1322     unlock_user_struct(target_tz, target_tz_addr, 0);
1323 
1324     return 0;
1325 }
1326 #endif
1327 
1328 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1329 #include <mqueue.h>
1330 
1331 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1332                                               abi_ulong target_mq_attr_addr)
1333 {
1334     struct target_mq_attr *target_mq_attr;
1335 
1336     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1337                           target_mq_attr_addr, 1))
1338         return -TARGET_EFAULT;
1339 
1340     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1341     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1342     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1343     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1344 
1345     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1346 
1347     return 0;
1348 }
1349 
1350 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1351                                             const struct mq_attr *attr)
1352 {
1353     struct target_mq_attr *target_mq_attr;
1354 
1355     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1356                           target_mq_attr_addr, 0))
1357         return -TARGET_EFAULT;
1358 
1359     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1360     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1361     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1362     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1363 
1364     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1365 
1366     return 0;
1367 }
1368 #endif
1369 
1370 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1371 /* do_select() must return target values and target errnos. */
1372 static abi_long do_select(int n,
1373                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1374                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1375 {
1376     fd_set rfds, wfds, efds;
1377     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1378     struct timeval tv;
1379     struct timespec ts, *ts_ptr;
1380     abi_long ret;
1381 
1382     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1383     if (ret) {
1384         return ret;
1385     }
1386     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1387     if (ret) {
1388         return ret;
1389     }
1390     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1391     if (ret) {
1392         return ret;
1393     }
1394 
1395     if (target_tv_addr) {
1396         if (copy_from_user_timeval(&tv, target_tv_addr))
1397             return -TARGET_EFAULT;
1398         ts.tv_sec = tv.tv_sec;
1399         ts.tv_nsec = tv.tv_usec * 1000;
1400         ts_ptr = &ts;
1401     } else {
1402         ts_ptr = NULL;
1403     }
1404 
1405     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1406                                   ts_ptr, NULL));
1407 
1408     if (!is_error(ret)) {
1409         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1410             return -TARGET_EFAULT;
1411         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1412             return -TARGET_EFAULT;
1413         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1414             return -TARGET_EFAULT;
1415 
1416         if (target_tv_addr) {
1417             tv.tv_sec = ts.tv_sec;
1418             tv.tv_usec = ts.tv_nsec / 1000;
1419             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1420                 return -TARGET_EFAULT;
1421             }
1422         }
1423     }
1424 
1425     return ret;
1426 }
1427 
1428 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1429 static abi_long do_old_select(abi_ulong arg1)
1430 {
1431     struct target_sel_arg_struct *sel;
1432     abi_ulong inp, outp, exp, tvp;
1433     long nsel;
1434 
1435     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1436         return -TARGET_EFAULT;
1437     }
1438 
1439     nsel = tswapal(sel->n);
1440     inp = tswapal(sel->inp);
1441     outp = tswapal(sel->outp);
1442     exp = tswapal(sel->exp);
1443     tvp = tswapal(sel->tvp);
1444 
1445     unlock_user_struct(sel, arg1, 0);
1446 
1447     return do_select(nsel, inp, outp, exp, tvp);
1448 }
1449 #endif
1450 #endif
1451 
1452 static abi_long do_pipe2(int host_pipe[], int flags)
1453 {
1454 #ifdef CONFIG_PIPE2
1455     return pipe2(host_pipe, flags);
1456 #else
1457     return -ENOSYS;
1458 #endif
1459 }
1460 
1461 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1462                         int flags, int is_pipe2)
1463 {
1464     int host_pipe[2];
1465     abi_long ret;
1466     ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1467 
1468     if (is_error(ret))
1469         return get_errno(ret);
1470 
1471     /* Several targets have special calling conventions for the original
1472        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1473     if (!is_pipe2) {
1474 #if defined(TARGET_ALPHA)
1475         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1476         return host_pipe[0];
1477 #elif defined(TARGET_MIPS)
1478         ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1479         return host_pipe[0];
1480 #elif defined(TARGET_SH4)
1481         ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1482         return host_pipe[0];
1483 #elif defined(TARGET_SPARC)
1484         ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1485         return host_pipe[0];
1486 #endif
1487     }
1488 
1489     if (put_user_s32(host_pipe[0], pipedes)
1490         || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1491         return -TARGET_EFAULT;
1492     return get_errno(ret);
1493 }
1494 
1495 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1496                                               abi_ulong target_addr,
1497                                               socklen_t len)
1498 {
1499     struct target_ip_mreqn *target_smreqn;
1500 
1501     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1502     if (!target_smreqn)
1503         return -TARGET_EFAULT;
1504     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1505     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1506     if (len == sizeof(struct target_ip_mreqn))
1507         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1508     unlock_user(target_smreqn, target_addr, 0);
1509 
1510     return 0;
1511 }
1512 
1513 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1514                                                abi_ulong target_addr,
1515                                                socklen_t len)
1516 {
1517     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1518     sa_family_t sa_family;
1519     struct target_sockaddr *target_saddr;
1520 
1521     if (fd_trans_target_to_host_addr(fd)) {
1522         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1523     }
1524 
1525     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1526     if (!target_saddr)
1527         return -TARGET_EFAULT;
1528 
1529     sa_family = tswap16(target_saddr->sa_family);
1530 
1531     /* Oops. The caller might send a incomplete sun_path; sun_path
1532      * must be terminated by \0 (see the manual page), but
1533      * unfortunately it is quite common to specify sockaddr_un
1534      * length as "strlen(x->sun_path)" while it should be
1535      * "strlen(...) + 1". We'll fix that here if needed.
1536      * Linux kernel has a similar feature.
1537      */
1538 
1539     if (sa_family == AF_UNIX) {
1540         if (len < unix_maxlen && len > 0) {
1541             char *cp = (char*)target_saddr;
1542 
1543             if ( cp[len-1] && !cp[len] )
1544                 len++;
1545         }
1546         if (len > unix_maxlen)
1547             len = unix_maxlen;
1548     }
1549 
1550     memcpy(addr, target_saddr, len);
1551     addr->sa_family = sa_family;
1552     if (sa_family == AF_NETLINK) {
1553         struct sockaddr_nl *nladdr;
1554 
1555         nladdr = (struct sockaddr_nl *)addr;
1556         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1557         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1558     } else if (sa_family == AF_PACKET) {
1559 	struct target_sockaddr_ll *lladdr;
1560 
1561 	lladdr = (struct target_sockaddr_ll *)addr;
1562 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1563 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1564     }
1565     unlock_user(target_saddr, target_addr, 0);
1566 
1567     return 0;
1568 }
1569 
1570 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1571                                                struct sockaddr *addr,
1572                                                socklen_t len)
1573 {
1574     struct target_sockaddr *target_saddr;
1575 
1576     if (len == 0) {
1577         return 0;
1578     }
1579     assert(addr);
1580 
1581     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1582     if (!target_saddr)
1583         return -TARGET_EFAULT;
1584     memcpy(target_saddr, addr, len);
1585     if (len >= offsetof(struct target_sockaddr, sa_family) +
1586         sizeof(target_saddr->sa_family)) {
1587         target_saddr->sa_family = tswap16(addr->sa_family);
1588     }
1589     if (addr->sa_family == AF_NETLINK &&
1590         len >= sizeof(struct target_sockaddr_nl)) {
1591         struct target_sockaddr_nl *target_nl =
1592                (struct target_sockaddr_nl *)target_saddr;
1593         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1594         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1595     } else if (addr->sa_family == AF_PACKET) {
1596         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1597         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1598         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1599     } else if (addr->sa_family == AF_INET6 &&
1600                len >= sizeof(struct target_sockaddr_in6)) {
1601         struct target_sockaddr_in6 *target_in6 =
1602                (struct target_sockaddr_in6 *)target_saddr;
1603         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1604     }
1605     unlock_user(target_saddr, target_addr, len);
1606 
1607     return 0;
1608 }
1609 
1610 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1611                                            struct target_msghdr *target_msgh)
1612 {
1613     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1614     abi_long msg_controllen;
1615     abi_ulong target_cmsg_addr;
1616     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1617     socklen_t space = 0;
1618 
1619     msg_controllen = tswapal(target_msgh->msg_controllen);
1620     if (msg_controllen < sizeof (struct target_cmsghdr))
1621         goto the_end;
1622     target_cmsg_addr = tswapal(target_msgh->msg_control);
1623     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1624     target_cmsg_start = target_cmsg;
1625     if (!target_cmsg)
1626         return -TARGET_EFAULT;
1627 
1628     while (cmsg && target_cmsg) {
1629         void *data = CMSG_DATA(cmsg);
1630         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1631 
1632         int len = tswapal(target_cmsg->cmsg_len)
1633             - sizeof(struct target_cmsghdr);
1634 
1635         space += CMSG_SPACE(len);
1636         if (space > msgh->msg_controllen) {
1637             space -= CMSG_SPACE(len);
1638             /* This is a QEMU bug, since we allocated the payload
1639              * area ourselves (unlike overflow in host-to-target
1640              * conversion, which is just the guest giving us a buffer
1641              * that's too small). It can't happen for the payload types
1642              * we currently support; if it becomes an issue in future
1643              * we would need to improve our allocation strategy to
1644              * something more intelligent than "twice the size of the
1645              * target buffer we're reading from".
1646              */
1647             qemu_log_mask(LOG_UNIMP,
1648                           ("Unsupported ancillary data %d/%d: "
1649                            "unhandled msg size\n"),
1650                           tswap32(target_cmsg->cmsg_level),
1651                           tswap32(target_cmsg->cmsg_type));
1652             break;
1653         }
1654 
1655         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1656             cmsg->cmsg_level = SOL_SOCKET;
1657         } else {
1658             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1659         }
1660         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1661         cmsg->cmsg_len = CMSG_LEN(len);
1662 
1663         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1664             int *fd = (int *)data;
1665             int *target_fd = (int *)target_data;
1666             int i, numfds = len / sizeof(int);
1667 
1668             for (i = 0; i < numfds; i++) {
1669                 __get_user(fd[i], target_fd + i);
1670             }
1671         } else if (cmsg->cmsg_level == SOL_SOCKET
1672                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1673             struct ucred *cred = (struct ucred *)data;
1674             struct target_ucred *target_cred =
1675                 (struct target_ucred *)target_data;
1676 
1677             __get_user(cred->pid, &target_cred->pid);
1678             __get_user(cred->uid, &target_cred->uid);
1679             __get_user(cred->gid, &target_cred->gid);
1680         } else {
1681             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1682                           cmsg->cmsg_level, cmsg->cmsg_type);
1683             memcpy(data, target_data, len);
1684         }
1685 
1686         cmsg = CMSG_NXTHDR(msgh, cmsg);
1687         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1688                                          target_cmsg_start);
1689     }
1690     unlock_user(target_cmsg, target_cmsg_addr, 0);
1691  the_end:
1692     msgh->msg_controllen = space;
1693     return 0;
1694 }
1695 
1696 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1697                                            struct msghdr *msgh)
1698 {
1699     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1700     abi_long msg_controllen;
1701     abi_ulong target_cmsg_addr;
1702     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1703     socklen_t space = 0;
1704 
1705     msg_controllen = tswapal(target_msgh->msg_controllen);
1706     if (msg_controllen < sizeof (struct target_cmsghdr))
1707         goto the_end;
1708     target_cmsg_addr = tswapal(target_msgh->msg_control);
1709     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1710     target_cmsg_start = target_cmsg;
1711     if (!target_cmsg)
1712         return -TARGET_EFAULT;
1713 
1714     while (cmsg && target_cmsg) {
1715         void *data = CMSG_DATA(cmsg);
1716         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1717 
1718         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1719         int tgt_len, tgt_space;
1720 
1721         /* We never copy a half-header but may copy half-data;
1722          * this is Linux's behaviour in put_cmsg(). Note that
1723          * truncation here is a guest problem (which we report
1724          * to the guest via the CTRUNC bit), unlike truncation
1725          * in target_to_host_cmsg, which is a QEMU bug.
1726          */
1727         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1728             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1729             break;
1730         }
1731 
1732         if (cmsg->cmsg_level == SOL_SOCKET) {
1733             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1734         } else {
1735             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1736         }
1737         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1738 
1739         /* Payload types which need a different size of payload on
1740          * the target must adjust tgt_len here.
1741          */
1742         tgt_len = len;
1743         switch (cmsg->cmsg_level) {
1744         case SOL_SOCKET:
1745             switch (cmsg->cmsg_type) {
1746             case SO_TIMESTAMP:
1747                 tgt_len = sizeof(struct target_timeval);
1748                 break;
1749             default:
1750                 break;
1751             }
1752             break;
1753         default:
1754             break;
1755         }
1756 
1757         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1758             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1759             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1760         }
1761 
1762         /* We must now copy-and-convert len bytes of payload
1763          * into tgt_len bytes of destination space. Bear in mind
1764          * that in both source and destination we may be dealing
1765          * with a truncated value!
1766          */
1767         switch (cmsg->cmsg_level) {
1768         case SOL_SOCKET:
1769             switch (cmsg->cmsg_type) {
1770             case SCM_RIGHTS:
1771             {
1772                 int *fd = (int *)data;
1773                 int *target_fd = (int *)target_data;
1774                 int i, numfds = tgt_len / sizeof(int);
1775 
1776                 for (i = 0; i < numfds; i++) {
1777                     __put_user(fd[i], target_fd + i);
1778                 }
1779                 break;
1780             }
1781             case SO_TIMESTAMP:
1782             {
1783                 struct timeval *tv = (struct timeval *)data;
1784                 struct target_timeval *target_tv =
1785                     (struct target_timeval *)target_data;
1786 
1787                 if (len != sizeof(struct timeval) ||
1788                     tgt_len != sizeof(struct target_timeval)) {
1789                     goto unimplemented;
1790                 }
1791 
1792                 /* copy struct timeval to target */
1793                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1794                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1795                 break;
1796             }
1797             case SCM_CREDENTIALS:
1798             {
1799                 struct ucred *cred = (struct ucred *)data;
1800                 struct target_ucred *target_cred =
1801                     (struct target_ucred *)target_data;
1802 
1803                 __put_user(cred->pid, &target_cred->pid);
1804                 __put_user(cred->uid, &target_cred->uid);
1805                 __put_user(cred->gid, &target_cred->gid);
1806                 break;
1807             }
1808             default:
1809                 goto unimplemented;
1810             }
1811             break;
1812 
1813         case SOL_IP:
1814             switch (cmsg->cmsg_type) {
1815             case IP_TTL:
1816             {
1817                 uint32_t *v = (uint32_t *)data;
1818                 uint32_t *t_int = (uint32_t *)target_data;
1819 
1820                 if (len != sizeof(uint32_t) ||
1821                     tgt_len != sizeof(uint32_t)) {
1822                     goto unimplemented;
1823                 }
1824                 __put_user(*v, t_int);
1825                 break;
1826             }
1827             case IP_RECVERR:
1828             {
1829                 struct errhdr_t {
1830                    struct sock_extended_err ee;
1831                    struct sockaddr_in offender;
1832                 };
1833                 struct errhdr_t *errh = (struct errhdr_t *)data;
1834                 struct errhdr_t *target_errh =
1835                     (struct errhdr_t *)target_data;
1836 
1837                 if (len != sizeof(struct errhdr_t) ||
1838                     tgt_len != sizeof(struct errhdr_t)) {
1839                     goto unimplemented;
1840                 }
1841                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1842                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1843                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1844                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1845                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1846                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1847                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1848                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1849                     (void *) &errh->offender, sizeof(errh->offender));
1850                 break;
1851             }
1852             default:
1853                 goto unimplemented;
1854             }
1855             break;
1856 
1857         case SOL_IPV6:
1858             switch (cmsg->cmsg_type) {
1859             case IPV6_HOPLIMIT:
1860             {
1861                 uint32_t *v = (uint32_t *)data;
1862                 uint32_t *t_int = (uint32_t *)target_data;
1863 
1864                 if (len != sizeof(uint32_t) ||
1865                     tgt_len != sizeof(uint32_t)) {
1866                     goto unimplemented;
1867                 }
1868                 __put_user(*v, t_int);
1869                 break;
1870             }
1871             case IPV6_RECVERR:
1872             {
1873                 struct errhdr6_t {
1874                    struct sock_extended_err ee;
1875                    struct sockaddr_in6 offender;
1876                 };
1877                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1878                 struct errhdr6_t *target_errh =
1879                     (struct errhdr6_t *)target_data;
1880 
1881                 if (len != sizeof(struct errhdr6_t) ||
1882                     tgt_len != sizeof(struct errhdr6_t)) {
1883                     goto unimplemented;
1884                 }
1885                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1886                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1887                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1888                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1889                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1890                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1891                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1892                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1893                     (void *) &errh->offender, sizeof(errh->offender));
1894                 break;
1895             }
1896             default:
1897                 goto unimplemented;
1898             }
1899             break;
1900 
1901         default:
1902         unimplemented:
1903             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1904                           cmsg->cmsg_level, cmsg->cmsg_type);
1905             memcpy(target_data, data, MIN(len, tgt_len));
1906             if (tgt_len > len) {
1907                 memset(target_data + len, 0, tgt_len - len);
1908             }
1909         }
1910 
1911         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
1912         tgt_space = TARGET_CMSG_SPACE(tgt_len);
1913         if (msg_controllen < tgt_space) {
1914             tgt_space = msg_controllen;
1915         }
1916         msg_controllen -= tgt_space;
1917         space += tgt_space;
1918         cmsg = CMSG_NXTHDR(msgh, cmsg);
1919         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1920                                          target_cmsg_start);
1921     }
1922     unlock_user(target_cmsg, target_cmsg_addr, space);
1923  the_end:
1924     target_msgh->msg_controllen = tswapal(space);
1925     return 0;
1926 }
1927 
1928 /* do_setsockopt() Must return target values and target errnos. */
1929 static abi_long do_setsockopt(int sockfd, int level, int optname,
1930                               abi_ulong optval_addr, socklen_t optlen)
1931 {
1932     abi_long ret;
1933     int val;
1934     struct ip_mreqn *ip_mreq;
1935     struct ip_mreq_source *ip_mreq_source;
1936 
1937     switch(level) {
1938     case SOL_TCP:
1939         /* TCP options all take an 'int' value.  */
1940         if (optlen < sizeof(uint32_t))
1941             return -TARGET_EINVAL;
1942 
1943         if (get_user_u32(val, optval_addr))
1944             return -TARGET_EFAULT;
1945         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1946         break;
1947     case SOL_IP:
1948         switch(optname) {
1949         case IP_TOS:
1950         case IP_TTL:
1951         case IP_HDRINCL:
1952         case IP_ROUTER_ALERT:
1953         case IP_RECVOPTS:
1954         case IP_RETOPTS:
1955         case IP_PKTINFO:
1956         case IP_MTU_DISCOVER:
1957         case IP_RECVERR:
1958         case IP_RECVTTL:
1959         case IP_RECVTOS:
1960 #ifdef IP_FREEBIND
1961         case IP_FREEBIND:
1962 #endif
1963         case IP_MULTICAST_TTL:
1964         case IP_MULTICAST_LOOP:
1965             val = 0;
1966             if (optlen >= sizeof(uint32_t)) {
1967                 if (get_user_u32(val, optval_addr))
1968                     return -TARGET_EFAULT;
1969             } else if (optlen >= 1) {
1970                 if (get_user_u8(val, optval_addr))
1971                     return -TARGET_EFAULT;
1972             }
1973             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1974             break;
1975         case IP_ADD_MEMBERSHIP:
1976         case IP_DROP_MEMBERSHIP:
1977             if (optlen < sizeof (struct target_ip_mreq) ||
1978                 optlen > sizeof (struct target_ip_mreqn))
1979                 return -TARGET_EINVAL;
1980 
1981             ip_mreq = (struct ip_mreqn *) alloca(optlen);
1982             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
1983             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
1984             break;
1985 
1986         case IP_BLOCK_SOURCE:
1987         case IP_UNBLOCK_SOURCE:
1988         case IP_ADD_SOURCE_MEMBERSHIP:
1989         case IP_DROP_SOURCE_MEMBERSHIP:
1990             if (optlen != sizeof (struct target_ip_mreq_source))
1991                 return -TARGET_EINVAL;
1992 
1993             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
1994             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
1995             unlock_user (ip_mreq_source, optval_addr, 0);
1996             break;
1997 
1998         default:
1999             goto unimplemented;
2000         }
2001         break;
2002     case SOL_IPV6:
2003         switch (optname) {
2004         case IPV6_MTU_DISCOVER:
2005         case IPV6_MTU:
2006         case IPV6_V6ONLY:
2007         case IPV6_RECVPKTINFO:
2008         case IPV6_UNICAST_HOPS:
2009         case IPV6_MULTICAST_HOPS:
2010         case IPV6_MULTICAST_LOOP:
2011         case IPV6_RECVERR:
2012         case IPV6_RECVHOPLIMIT:
2013         case IPV6_2292HOPLIMIT:
2014         case IPV6_CHECKSUM:
2015         case IPV6_ADDRFORM:
2016         case IPV6_2292PKTINFO:
2017         case IPV6_RECVTCLASS:
2018         case IPV6_RECVRTHDR:
2019         case IPV6_2292RTHDR:
2020         case IPV6_RECVHOPOPTS:
2021         case IPV6_2292HOPOPTS:
2022         case IPV6_RECVDSTOPTS:
2023         case IPV6_2292DSTOPTS:
2024         case IPV6_TCLASS:
2025 #ifdef IPV6_RECVPATHMTU
2026         case IPV6_RECVPATHMTU:
2027 #endif
2028 #ifdef IPV6_TRANSPARENT
2029         case IPV6_TRANSPARENT:
2030 #endif
2031 #ifdef IPV6_FREEBIND
2032         case IPV6_FREEBIND:
2033 #endif
2034 #ifdef IPV6_RECVORIGDSTADDR
2035         case IPV6_RECVORIGDSTADDR:
2036 #endif
2037             val = 0;
2038             if (optlen < sizeof(uint32_t)) {
2039                 return -TARGET_EINVAL;
2040             }
2041             if (get_user_u32(val, optval_addr)) {
2042                 return -TARGET_EFAULT;
2043             }
2044             ret = get_errno(setsockopt(sockfd, level, optname,
2045                                        &val, sizeof(val)));
2046             break;
2047         case IPV6_PKTINFO:
2048         {
2049             struct in6_pktinfo pki;
2050 
2051             if (optlen < sizeof(pki)) {
2052                 return -TARGET_EINVAL;
2053             }
2054 
2055             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2056                 return -TARGET_EFAULT;
2057             }
2058 
2059             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2060 
2061             ret = get_errno(setsockopt(sockfd, level, optname,
2062                                        &pki, sizeof(pki)));
2063             break;
2064         }
2065         case IPV6_ADD_MEMBERSHIP:
2066         case IPV6_DROP_MEMBERSHIP:
2067         {
2068             struct ipv6_mreq ipv6mreq;
2069 
2070             if (optlen < sizeof(ipv6mreq)) {
2071                 return -TARGET_EINVAL;
2072             }
2073 
2074             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2075                 return -TARGET_EFAULT;
2076             }
2077 
2078             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2079 
2080             ret = get_errno(setsockopt(sockfd, level, optname,
2081                                        &ipv6mreq, sizeof(ipv6mreq)));
2082             break;
2083         }
2084         default:
2085             goto unimplemented;
2086         }
2087         break;
2088     case SOL_ICMPV6:
2089         switch (optname) {
2090         case ICMPV6_FILTER:
2091         {
2092             struct icmp6_filter icmp6f;
2093 
2094             if (optlen > sizeof(icmp6f)) {
2095                 optlen = sizeof(icmp6f);
2096             }
2097 
2098             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2099                 return -TARGET_EFAULT;
2100             }
2101 
2102             for (val = 0; val < 8; val++) {
2103                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2104             }
2105 
2106             ret = get_errno(setsockopt(sockfd, level, optname,
2107                                        &icmp6f, optlen));
2108             break;
2109         }
2110         default:
2111             goto unimplemented;
2112         }
2113         break;
2114     case SOL_RAW:
2115         switch (optname) {
2116         case ICMP_FILTER:
2117         case IPV6_CHECKSUM:
2118             /* those take an u32 value */
2119             if (optlen < sizeof(uint32_t)) {
2120                 return -TARGET_EINVAL;
2121             }
2122 
2123             if (get_user_u32(val, optval_addr)) {
2124                 return -TARGET_EFAULT;
2125             }
2126             ret = get_errno(setsockopt(sockfd, level, optname,
2127                                        &val, sizeof(val)));
2128             break;
2129 
2130         default:
2131             goto unimplemented;
2132         }
2133         break;
2134 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2135     case SOL_ALG:
2136         switch (optname) {
2137         case ALG_SET_KEY:
2138         {
2139             char *alg_key = g_malloc(optlen);
2140 
2141             if (!alg_key) {
2142                 return -TARGET_ENOMEM;
2143             }
2144             if (copy_from_user(alg_key, optval_addr, optlen)) {
2145                 g_free(alg_key);
2146                 return -TARGET_EFAULT;
2147             }
2148             ret = get_errno(setsockopt(sockfd, level, optname,
2149                                        alg_key, optlen));
2150             g_free(alg_key);
2151             break;
2152         }
2153         case ALG_SET_AEAD_AUTHSIZE:
2154         {
2155             ret = get_errno(setsockopt(sockfd, level, optname,
2156                                        NULL, optlen));
2157             break;
2158         }
2159         default:
2160             goto unimplemented;
2161         }
2162         break;
2163 #endif
2164     case TARGET_SOL_SOCKET:
2165         switch (optname) {
2166         case TARGET_SO_RCVTIMEO:
2167         {
2168                 struct timeval tv;
2169 
2170                 optname = SO_RCVTIMEO;
2171 
2172 set_timeout:
2173                 if (optlen != sizeof(struct target_timeval)) {
2174                     return -TARGET_EINVAL;
2175                 }
2176 
2177                 if (copy_from_user_timeval(&tv, optval_addr)) {
2178                     return -TARGET_EFAULT;
2179                 }
2180 
2181                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2182                                 &tv, sizeof(tv)));
2183                 return ret;
2184         }
2185         case TARGET_SO_SNDTIMEO:
2186                 optname = SO_SNDTIMEO;
2187                 goto set_timeout;
2188         case TARGET_SO_ATTACH_FILTER:
2189         {
2190                 struct target_sock_fprog *tfprog;
2191                 struct target_sock_filter *tfilter;
2192                 struct sock_fprog fprog;
2193                 struct sock_filter *filter;
2194                 int i;
2195 
2196                 if (optlen != sizeof(*tfprog)) {
2197                     return -TARGET_EINVAL;
2198                 }
2199                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2200                     return -TARGET_EFAULT;
2201                 }
2202                 if (!lock_user_struct(VERIFY_READ, tfilter,
2203                                       tswapal(tfprog->filter), 0)) {
2204                     unlock_user_struct(tfprog, optval_addr, 1);
2205                     return -TARGET_EFAULT;
2206                 }
2207 
2208                 fprog.len = tswap16(tfprog->len);
2209                 filter = g_try_new(struct sock_filter, fprog.len);
2210                 if (filter == NULL) {
2211                     unlock_user_struct(tfilter, tfprog->filter, 1);
2212                     unlock_user_struct(tfprog, optval_addr, 1);
2213                     return -TARGET_ENOMEM;
2214                 }
2215                 for (i = 0; i < fprog.len; i++) {
2216                     filter[i].code = tswap16(tfilter[i].code);
2217                     filter[i].jt = tfilter[i].jt;
2218                     filter[i].jf = tfilter[i].jf;
2219                     filter[i].k = tswap32(tfilter[i].k);
2220                 }
2221                 fprog.filter = filter;
2222 
2223                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2224                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2225                 g_free(filter);
2226 
2227                 unlock_user_struct(tfilter, tfprog->filter, 1);
2228                 unlock_user_struct(tfprog, optval_addr, 1);
2229                 return ret;
2230         }
2231 	case TARGET_SO_BINDTODEVICE:
2232 	{
2233 		char *dev_ifname, *addr_ifname;
2234 
2235 		if (optlen > IFNAMSIZ - 1) {
2236 		    optlen = IFNAMSIZ - 1;
2237 		}
2238 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2239 		if (!dev_ifname) {
2240 		    return -TARGET_EFAULT;
2241 		}
2242 		optname = SO_BINDTODEVICE;
2243 		addr_ifname = alloca(IFNAMSIZ);
2244 		memcpy(addr_ifname, dev_ifname, optlen);
2245 		addr_ifname[optlen] = 0;
2246 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2247                                            addr_ifname, optlen));
2248 		unlock_user (dev_ifname, optval_addr, 0);
2249 		return ret;
2250 	}
2251         case TARGET_SO_LINGER:
2252         {
2253                 struct linger lg;
2254                 struct target_linger *tlg;
2255 
2256                 if (optlen != sizeof(struct target_linger)) {
2257                     return -TARGET_EINVAL;
2258                 }
2259                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2260                     return -TARGET_EFAULT;
2261                 }
2262                 __get_user(lg.l_onoff, &tlg->l_onoff);
2263                 __get_user(lg.l_linger, &tlg->l_linger);
2264                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2265                                 &lg, sizeof(lg)));
2266                 unlock_user_struct(tlg, optval_addr, 0);
2267                 return ret;
2268         }
2269             /* Options with 'int' argument.  */
2270         case TARGET_SO_DEBUG:
2271 		optname = SO_DEBUG;
2272 		break;
2273         case TARGET_SO_REUSEADDR:
2274 		optname = SO_REUSEADDR;
2275 		break;
2276 #ifdef SO_REUSEPORT
2277         case TARGET_SO_REUSEPORT:
2278                 optname = SO_REUSEPORT;
2279                 break;
2280 #endif
2281         case TARGET_SO_TYPE:
2282 		optname = SO_TYPE;
2283 		break;
2284         case TARGET_SO_ERROR:
2285 		optname = SO_ERROR;
2286 		break;
2287         case TARGET_SO_DONTROUTE:
2288 		optname = SO_DONTROUTE;
2289 		break;
2290         case TARGET_SO_BROADCAST:
2291 		optname = SO_BROADCAST;
2292 		break;
2293         case TARGET_SO_SNDBUF:
2294 		optname = SO_SNDBUF;
2295 		break;
2296         case TARGET_SO_SNDBUFFORCE:
2297                 optname = SO_SNDBUFFORCE;
2298                 break;
2299         case TARGET_SO_RCVBUF:
2300 		optname = SO_RCVBUF;
2301 		break;
2302         case TARGET_SO_RCVBUFFORCE:
2303                 optname = SO_RCVBUFFORCE;
2304                 break;
2305         case TARGET_SO_KEEPALIVE:
2306 		optname = SO_KEEPALIVE;
2307 		break;
2308         case TARGET_SO_OOBINLINE:
2309 		optname = SO_OOBINLINE;
2310 		break;
2311         case TARGET_SO_NO_CHECK:
2312 		optname = SO_NO_CHECK;
2313 		break;
2314         case TARGET_SO_PRIORITY:
2315 		optname = SO_PRIORITY;
2316 		break;
2317 #ifdef SO_BSDCOMPAT
2318         case TARGET_SO_BSDCOMPAT:
2319 		optname = SO_BSDCOMPAT;
2320 		break;
2321 #endif
2322         case TARGET_SO_PASSCRED:
2323 		optname = SO_PASSCRED;
2324 		break;
2325         case TARGET_SO_PASSSEC:
2326                 optname = SO_PASSSEC;
2327                 break;
2328         case TARGET_SO_TIMESTAMP:
2329 		optname = SO_TIMESTAMP;
2330 		break;
2331         case TARGET_SO_RCVLOWAT:
2332 		optname = SO_RCVLOWAT;
2333 		break;
2334         default:
2335             goto unimplemented;
2336         }
2337 	if (optlen < sizeof(uint32_t))
2338             return -TARGET_EINVAL;
2339 
2340 	if (get_user_u32(val, optval_addr))
2341             return -TARGET_EFAULT;
2342 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2343         break;
2344 #ifdef SOL_NETLINK
2345     case SOL_NETLINK:
2346         switch (optname) {
2347         case NETLINK_PKTINFO:
2348         case NETLINK_ADD_MEMBERSHIP:
2349         case NETLINK_DROP_MEMBERSHIP:
2350         case NETLINK_BROADCAST_ERROR:
2351         case NETLINK_NO_ENOBUFS:
2352 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2353         case NETLINK_LISTEN_ALL_NSID:
2354         case NETLINK_CAP_ACK:
2355 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2356 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2357         case NETLINK_EXT_ACK:
2358 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2359 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2360         case NETLINK_GET_STRICT_CHK:
2361 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2362             break;
2363         default:
2364             goto unimplemented;
2365         }
2366         val = 0;
2367         if (optlen < sizeof(uint32_t)) {
2368             return -TARGET_EINVAL;
2369         }
2370         if (get_user_u32(val, optval_addr)) {
2371             return -TARGET_EFAULT;
2372         }
2373         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2374                                    sizeof(val)));
2375         break;
2376 #endif /* SOL_NETLINK */
2377     default:
2378     unimplemented:
2379         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2380                       level, optname);
2381         ret = -TARGET_ENOPROTOOPT;
2382     }
2383     return ret;
2384 }
2385 
2386 /* do_getsockopt() Must return target values and target errnos. */
2387 static abi_long do_getsockopt(int sockfd, int level, int optname,
2388                               abi_ulong optval_addr, abi_ulong optlen)
2389 {
2390     abi_long ret;
2391     int len, val;
2392     socklen_t lv;
2393 
2394     switch(level) {
2395     case TARGET_SOL_SOCKET:
2396         level = SOL_SOCKET;
2397         switch (optname) {
2398         /* These don't just return a single integer */
2399         case TARGET_SO_PEERNAME:
2400             goto unimplemented;
2401         case TARGET_SO_RCVTIMEO: {
2402             struct timeval tv;
2403             socklen_t tvlen;
2404 
2405             optname = SO_RCVTIMEO;
2406 
2407 get_timeout:
2408             if (get_user_u32(len, optlen)) {
2409                 return -TARGET_EFAULT;
2410             }
2411             if (len < 0) {
2412                 return -TARGET_EINVAL;
2413             }
2414 
2415             tvlen = sizeof(tv);
2416             ret = get_errno(getsockopt(sockfd, level, optname,
2417                                        &tv, &tvlen));
2418             if (ret < 0) {
2419                 return ret;
2420             }
2421             if (len > sizeof(struct target_timeval)) {
2422                 len = sizeof(struct target_timeval);
2423             }
2424             if (copy_to_user_timeval(optval_addr, &tv)) {
2425                 return -TARGET_EFAULT;
2426             }
2427             if (put_user_u32(len, optlen)) {
2428                 return -TARGET_EFAULT;
2429             }
2430             break;
2431         }
2432         case TARGET_SO_SNDTIMEO:
2433             optname = SO_SNDTIMEO;
2434             goto get_timeout;
2435         case TARGET_SO_PEERCRED: {
2436             struct ucred cr;
2437             socklen_t crlen;
2438             struct target_ucred *tcr;
2439 
2440             if (get_user_u32(len, optlen)) {
2441                 return -TARGET_EFAULT;
2442             }
2443             if (len < 0) {
2444                 return -TARGET_EINVAL;
2445             }
2446 
2447             crlen = sizeof(cr);
2448             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2449                                        &cr, &crlen));
2450             if (ret < 0) {
2451                 return ret;
2452             }
2453             if (len > crlen) {
2454                 len = crlen;
2455             }
2456             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2457                 return -TARGET_EFAULT;
2458             }
2459             __put_user(cr.pid, &tcr->pid);
2460             __put_user(cr.uid, &tcr->uid);
2461             __put_user(cr.gid, &tcr->gid);
2462             unlock_user_struct(tcr, optval_addr, 1);
2463             if (put_user_u32(len, optlen)) {
2464                 return -TARGET_EFAULT;
2465             }
2466             break;
2467         }
2468         case TARGET_SO_PEERSEC: {
2469             char *name;
2470 
2471             if (get_user_u32(len, optlen)) {
2472                 return -TARGET_EFAULT;
2473             }
2474             if (len < 0) {
2475                 return -TARGET_EINVAL;
2476             }
2477             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2478             if (!name) {
2479                 return -TARGET_EFAULT;
2480             }
2481             lv = len;
2482             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2483                                        name, &lv));
2484             if (put_user_u32(lv, optlen)) {
2485                 ret = -TARGET_EFAULT;
2486             }
2487             unlock_user(name, optval_addr, lv);
2488             break;
2489         }
2490         case TARGET_SO_LINGER:
2491         {
2492             struct linger lg;
2493             socklen_t lglen;
2494             struct target_linger *tlg;
2495 
2496             if (get_user_u32(len, optlen)) {
2497                 return -TARGET_EFAULT;
2498             }
2499             if (len < 0) {
2500                 return -TARGET_EINVAL;
2501             }
2502 
2503             lglen = sizeof(lg);
2504             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2505                                        &lg, &lglen));
2506             if (ret < 0) {
2507                 return ret;
2508             }
2509             if (len > lglen) {
2510                 len = lglen;
2511             }
2512             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2513                 return -TARGET_EFAULT;
2514             }
2515             __put_user(lg.l_onoff, &tlg->l_onoff);
2516             __put_user(lg.l_linger, &tlg->l_linger);
2517             unlock_user_struct(tlg, optval_addr, 1);
2518             if (put_user_u32(len, optlen)) {
2519                 return -TARGET_EFAULT;
2520             }
2521             break;
2522         }
2523         /* Options with 'int' argument.  */
2524         case TARGET_SO_DEBUG:
2525             optname = SO_DEBUG;
2526             goto int_case;
2527         case TARGET_SO_REUSEADDR:
2528             optname = SO_REUSEADDR;
2529             goto int_case;
2530 #ifdef SO_REUSEPORT
2531         case TARGET_SO_REUSEPORT:
2532             optname = SO_REUSEPORT;
2533             goto int_case;
2534 #endif
2535         case TARGET_SO_TYPE:
2536             optname = SO_TYPE;
2537             goto int_case;
2538         case TARGET_SO_ERROR:
2539             optname = SO_ERROR;
2540             goto int_case;
2541         case TARGET_SO_DONTROUTE:
2542             optname = SO_DONTROUTE;
2543             goto int_case;
2544         case TARGET_SO_BROADCAST:
2545             optname = SO_BROADCAST;
2546             goto int_case;
2547         case TARGET_SO_SNDBUF:
2548             optname = SO_SNDBUF;
2549             goto int_case;
2550         case TARGET_SO_RCVBUF:
2551             optname = SO_RCVBUF;
2552             goto int_case;
2553         case TARGET_SO_KEEPALIVE:
2554             optname = SO_KEEPALIVE;
2555             goto int_case;
2556         case TARGET_SO_OOBINLINE:
2557             optname = SO_OOBINLINE;
2558             goto int_case;
2559         case TARGET_SO_NO_CHECK:
2560             optname = SO_NO_CHECK;
2561             goto int_case;
2562         case TARGET_SO_PRIORITY:
2563             optname = SO_PRIORITY;
2564             goto int_case;
2565 #ifdef SO_BSDCOMPAT
2566         case TARGET_SO_BSDCOMPAT:
2567             optname = SO_BSDCOMPAT;
2568             goto int_case;
2569 #endif
2570         case TARGET_SO_PASSCRED:
2571             optname = SO_PASSCRED;
2572             goto int_case;
2573         case TARGET_SO_TIMESTAMP:
2574             optname = SO_TIMESTAMP;
2575             goto int_case;
2576         case TARGET_SO_RCVLOWAT:
2577             optname = SO_RCVLOWAT;
2578             goto int_case;
2579         case TARGET_SO_ACCEPTCONN:
2580             optname = SO_ACCEPTCONN;
2581             goto int_case;
2582         default:
2583             goto int_case;
2584         }
2585         break;
2586     case SOL_TCP:
2587         /* TCP options all take an 'int' value.  */
2588     int_case:
2589         if (get_user_u32(len, optlen))
2590             return -TARGET_EFAULT;
2591         if (len < 0)
2592             return -TARGET_EINVAL;
2593         lv = sizeof(lv);
2594         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2595         if (ret < 0)
2596             return ret;
2597         if (optname == SO_TYPE) {
2598             val = host_to_target_sock_type(val);
2599         }
2600         if (len > lv)
2601             len = lv;
2602         if (len == 4) {
2603             if (put_user_u32(val, optval_addr))
2604                 return -TARGET_EFAULT;
2605         } else {
2606             if (put_user_u8(val, optval_addr))
2607                 return -TARGET_EFAULT;
2608         }
2609         if (put_user_u32(len, optlen))
2610             return -TARGET_EFAULT;
2611         break;
2612     case SOL_IP:
2613         switch(optname) {
2614         case IP_TOS:
2615         case IP_TTL:
2616         case IP_HDRINCL:
2617         case IP_ROUTER_ALERT:
2618         case IP_RECVOPTS:
2619         case IP_RETOPTS:
2620         case IP_PKTINFO:
2621         case IP_MTU_DISCOVER:
2622         case IP_RECVERR:
2623         case IP_RECVTOS:
2624 #ifdef IP_FREEBIND
2625         case IP_FREEBIND:
2626 #endif
2627         case IP_MULTICAST_TTL:
2628         case IP_MULTICAST_LOOP:
2629             if (get_user_u32(len, optlen))
2630                 return -TARGET_EFAULT;
2631             if (len < 0)
2632                 return -TARGET_EINVAL;
2633             lv = sizeof(lv);
2634             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2635             if (ret < 0)
2636                 return ret;
2637             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2638                 len = 1;
2639                 if (put_user_u32(len, optlen)
2640                     || put_user_u8(val, optval_addr))
2641                     return -TARGET_EFAULT;
2642             } else {
2643                 if (len > sizeof(int))
2644                     len = sizeof(int);
2645                 if (put_user_u32(len, optlen)
2646                     || put_user_u32(val, optval_addr))
2647                     return -TARGET_EFAULT;
2648             }
2649             break;
2650         default:
2651             ret = -TARGET_ENOPROTOOPT;
2652             break;
2653         }
2654         break;
2655     case SOL_IPV6:
2656         switch (optname) {
2657         case IPV6_MTU_DISCOVER:
2658         case IPV6_MTU:
2659         case IPV6_V6ONLY:
2660         case IPV6_RECVPKTINFO:
2661         case IPV6_UNICAST_HOPS:
2662         case IPV6_MULTICAST_HOPS:
2663         case IPV6_MULTICAST_LOOP:
2664         case IPV6_RECVERR:
2665         case IPV6_RECVHOPLIMIT:
2666         case IPV6_2292HOPLIMIT:
2667         case IPV6_CHECKSUM:
2668         case IPV6_ADDRFORM:
2669         case IPV6_2292PKTINFO:
2670         case IPV6_RECVTCLASS:
2671         case IPV6_RECVRTHDR:
2672         case IPV6_2292RTHDR:
2673         case IPV6_RECVHOPOPTS:
2674         case IPV6_2292HOPOPTS:
2675         case IPV6_RECVDSTOPTS:
2676         case IPV6_2292DSTOPTS:
2677         case IPV6_TCLASS:
2678 #ifdef IPV6_RECVPATHMTU
2679         case IPV6_RECVPATHMTU:
2680 #endif
2681 #ifdef IPV6_TRANSPARENT
2682         case IPV6_TRANSPARENT:
2683 #endif
2684 #ifdef IPV6_FREEBIND
2685         case IPV6_FREEBIND:
2686 #endif
2687 #ifdef IPV6_RECVORIGDSTADDR
2688         case IPV6_RECVORIGDSTADDR:
2689 #endif
2690             if (get_user_u32(len, optlen))
2691                 return -TARGET_EFAULT;
2692             if (len < 0)
2693                 return -TARGET_EINVAL;
2694             lv = sizeof(lv);
2695             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2696             if (ret < 0)
2697                 return ret;
2698             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2699                 len = 1;
2700                 if (put_user_u32(len, optlen)
2701                     || put_user_u8(val, optval_addr))
2702                     return -TARGET_EFAULT;
2703             } else {
2704                 if (len > sizeof(int))
2705                     len = sizeof(int);
2706                 if (put_user_u32(len, optlen)
2707                     || put_user_u32(val, optval_addr))
2708                     return -TARGET_EFAULT;
2709             }
2710             break;
2711         default:
2712             ret = -TARGET_ENOPROTOOPT;
2713             break;
2714         }
2715         break;
2716 #ifdef SOL_NETLINK
2717     case SOL_NETLINK:
2718         switch (optname) {
2719         case NETLINK_PKTINFO:
2720         case NETLINK_BROADCAST_ERROR:
2721         case NETLINK_NO_ENOBUFS:
2722 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2723         case NETLINK_LISTEN_ALL_NSID:
2724         case NETLINK_CAP_ACK:
2725 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2726 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2727         case NETLINK_EXT_ACK:
2728 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2729 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2730         case NETLINK_GET_STRICT_CHK:
2731 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2732             if (get_user_u32(len, optlen)) {
2733                 return -TARGET_EFAULT;
2734             }
2735             if (len != sizeof(val)) {
2736                 return -TARGET_EINVAL;
2737             }
2738             lv = len;
2739             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2740             if (ret < 0) {
2741                 return ret;
2742             }
2743             if (put_user_u32(lv, optlen)
2744                 || put_user_u32(val, optval_addr)) {
2745                 return -TARGET_EFAULT;
2746             }
2747             break;
2748 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2749         case NETLINK_LIST_MEMBERSHIPS:
2750         {
2751             uint32_t *results;
2752             int i;
2753             if (get_user_u32(len, optlen)) {
2754                 return -TARGET_EFAULT;
2755             }
2756             if (len < 0) {
2757                 return -TARGET_EINVAL;
2758             }
2759             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2760             if (!results) {
2761                 return -TARGET_EFAULT;
2762             }
2763             lv = len;
2764             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2765             if (ret < 0) {
2766                 unlock_user(results, optval_addr, 0);
2767                 return ret;
2768             }
2769             /* swap host endianess to target endianess. */
2770             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2771                 results[i] = tswap32(results[i]);
2772             }
2773             if (put_user_u32(lv, optlen)) {
2774                 return -TARGET_EFAULT;
2775             }
2776             unlock_user(results, optval_addr, 0);
2777             break;
2778         }
2779 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2780         default:
2781             goto unimplemented;
2782         }
2783         break;
2784 #endif /* SOL_NETLINK */
2785     default:
2786     unimplemented:
2787         qemu_log_mask(LOG_UNIMP,
2788                       "getsockopt level=%d optname=%d not yet supported\n",
2789                       level, optname);
2790         ret = -TARGET_EOPNOTSUPP;
2791         break;
2792     }
2793     return ret;
2794 }
2795 
2796 /* Convert target low/high pair representing file offset into the host
2797  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2798  * as the kernel doesn't handle them either.
2799  */
2800 static void target_to_host_low_high(abi_ulong tlow,
2801                                     abi_ulong thigh,
2802                                     unsigned long *hlow,
2803                                     unsigned long *hhigh)
2804 {
2805     uint64_t off = tlow |
2806         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2807         TARGET_LONG_BITS / 2;
2808 
2809     *hlow = off;
2810     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2811 }
2812 
2813 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2814                                 abi_ulong count, int copy)
2815 {
2816     struct target_iovec *target_vec;
2817     struct iovec *vec;
2818     abi_ulong total_len, max_len;
2819     int i;
2820     int err = 0;
2821     bool bad_address = false;
2822 
2823     if (count == 0) {
2824         errno = 0;
2825         return NULL;
2826     }
2827     if (count > IOV_MAX) {
2828         errno = EINVAL;
2829         return NULL;
2830     }
2831 
2832     vec = g_try_new0(struct iovec, count);
2833     if (vec == NULL) {
2834         errno = ENOMEM;
2835         return NULL;
2836     }
2837 
2838     target_vec = lock_user(VERIFY_READ, target_addr,
2839                            count * sizeof(struct target_iovec), 1);
2840     if (target_vec == NULL) {
2841         err = EFAULT;
2842         goto fail2;
2843     }
2844 
2845     /* ??? If host page size > target page size, this will result in a
2846        value larger than what we can actually support.  */
2847     max_len = 0x7fffffff & TARGET_PAGE_MASK;
2848     total_len = 0;
2849 
2850     for (i = 0; i < count; i++) {
2851         abi_ulong base = tswapal(target_vec[i].iov_base);
2852         abi_long len = tswapal(target_vec[i].iov_len);
2853 
2854         if (len < 0) {
2855             err = EINVAL;
2856             goto fail;
2857         } else if (len == 0) {
2858             /* Zero length pointer is ignored.  */
2859             vec[i].iov_base = 0;
2860         } else {
2861             vec[i].iov_base = lock_user(type, base, len, copy);
2862             /* If the first buffer pointer is bad, this is a fault.  But
2863              * subsequent bad buffers will result in a partial write; this
2864              * is realized by filling the vector with null pointers and
2865              * zero lengths. */
2866             if (!vec[i].iov_base) {
2867                 if (i == 0) {
2868                     err = EFAULT;
2869                     goto fail;
2870                 } else {
2871                     bad_address = true;
2872                 }
2873             }
2874             if (bad_address) {
2875                 len = 0;
2876             }
2877             if (len > max_len - total_len) {
2878                 len = max_len - total_len;
2879             }
2880         }
2881         vec[i].iov_len = len;
2882         total_len += len;
2883     }
2884 
2885     unlock_user(target_vec, target_addr, 0);
2886     return vec;
2887 
2888  fail:
2889     while (--i >= 0) {
2890         if (tswapal(target_vec[i].iov_len) > 0) {
2891             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
2892         }
2893     }
2894     unlock_user(target_vec, target_addr, 0);
2895  fail2:
2896     g_free(vec);
2897     errno = err;
2898     return NULL;
2899 }
2900 
2901 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
2902                          abi_ulong count, int copy)
2903 {
2904     struct target_iovec *target_vec;
2905     int i;
2906 
2907     target_vec = lock_user(VERIFY_READ, target_addr,
2908                            count * sizeof(struct target_iovec), 1);
2909     if (target_vec) {
2910         for (i = 0; i < count; i++) {
2911             abi_ulong base = tswapal(target_vec[i].iov_base);
2912             abi_long len = tswapal(target_vec[i].iov_len);
2913             if (len < 0) {
2914                 break;
2915             }
2916             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
2917         }
2918         unlock_user(target_vec, target_addr, 0);
2919     }
2920 
2921     g_free(vec);
2922 }
2923 
2924 static inline int target_to_host_sock_type(int *type)
2925 {
2926     int host_type = 0;
2927     int target_type = *type;
2928 
2929     switch (target_type & TARGET_SOCK_TYPE_MASK) {
2930     case TARGET_SOCK_DGRAM:
2931         host_type = SOCK_DGRAM;
2932         break;
2933     case TARGET_SOCK_STREAM:
2934         host_type = SOCK_STREAM;
2935         break;
2936     default:
2937         host_type = target_type & TARGET_SOCK_TYPE_MASK;
2938         break;
2939     }
2940     if (target_type & TARGET_SOCK_CLOEXEC) {
2941 #if defined(SOCK_CLOEXEC)
2942         host_type |= SOCK_CLOEXEC;
2943 #else
2944         return -TARGET_EINVAL;
2945 #endif
2946     }
2947     if (target_type & TARGET_SOCK_NONBLOCK) {
2948 #if defined(SOCK_NONBLOCK)
2949         host_type |= SOCK_NONBLOCK;
2950 #elif !defined(O_NONBLOCK)
2951         return -TARGET_EINVAL;
2952 #endif
2953     }
2954     *type = host_type;
2955     return 0;
2956 }
2957 
2958 /* Try to emulate socket type flags after socket creation.  */
2959 static int sock_flags_fixup(int fd, int target_type)
2960 {
2961 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
2962     if (target_type & TARGET_SOCK_NONBLOCK) {
2963         int flags = fcntl(fd, F_GETFL);
2964         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
2965             close(fd);
2966             return -TARGET_EINVAL;
2967         }
2968     }
2969 #endif
2970     return fd;
2971 }
2972 
2973 /* do_socket() Must return target values and target errnos. */
2974 static abi_long do_socket(int domain, int type, int protocol)
2975 {
2976     int target_type = type;
2977     int ret;
2978 
2979     ret = target_to_host_sock_type(&type);
2980     if (ret) {
2981         return ret;
2982     }
2983 
2984     if (domain == PF_NETLINK && !(
2985 #ifdef CONFIG_RTNETLINK
2986          protocol == NETLINK_ROUTE ||
2987 #endif
2988          protocol == NETLINK_KOBJECT_UEVENT ||
2989          protocol == NETLINK_AUDIT)) {
2990         return -EPFNOSUPPORT;
2991     }
2992 
2993     if (domain == AF_PACKET ||
2994         (domain == AF_INET && type == SOCK_PACKET)) {
2995         protocol = tswap16(protocol);
2996     }
2997 
2998     ret = get_errno(socket(domain, type, protocol));
2999     if (ret >= 0) {
3000         ret = sock_flags_fixup(ret, target_type);
3001         if (type == SOCK_PACKET) {
3002             /* Manage an obsolete case :
3003              * if socket type is SOCK_PACKET, bind by name
3004              */
3005             fd_trans_register(ret, &target_packet_trans);
3006         } else if (domain == PF_NETLINK) {
3007             switch (protocol) {
3008 #ifdef CONFIG_RTNETLINK
3009             case NETLINK_ROUTE:
3010                 fd_trans_register(ret, &target_netlink_route_trans);
3011                 break;
3012 #endif
3013             case NETLINK_KOBJECT_UEVENT:
3014                 /* nothing to do: messages are strings */
3015                 break;
3016             case NETLINK_AUDIT:
3017                 fd_trans_register(ret, &target_netlink_audit_trans);
3018                 break;
3019             default:
3020                 g_assert_not_reached();
3021             }
3022         }
3023     }
3024     return ret;
3025 }
3026 
3027 /* do_bind() Must return target values and target errnos. */
3028 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3029                         socklen_t addrlen)
3030 {
3031     void *addr;
3032     abi_long ret;
3033 
3034     if ((int)addrlen < 0) {
3035         return -TARGET_EINVAL;
3036     }
3037 
3038     addr = alloca(addrlen+1);
3039 
3040     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3041     if (ret)
3042         return ret;
3043 
3044     return get_errno(bind(sockfd, addr, addrlen));
3045 }
3046 
3047 /* do_connect() Must return target values and target errnos. */
3048 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3049                            socklen_t addrlen)
3050 {
3051     void *addr;
3052     abi_long ret;
3053 
3054     if ((int)addrlen < 0) {
3055         return -TARGET_EINVAL;
3056     }
3057 
3058     addr = alloca(addrlen+1);
3059 
3060     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3061     if (ret)
3062         return ret;
3063 
3064     return get_errno(safe_connect(sockfd, addr, addrlen));
3065 }
3066 
3067 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3068 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3069                                       int flags, int send)
3070 {
3071     abi_long ret, len;
3072     struct msghdr msg;
3073     abi_ulong count;
3074     struct iovec *vec;
3075     abi_ulong target_vec;
3076 
3077     if (msgp->msg_name) {
3078         msg.msg_namelen = tswap32(msgp->msg_namelen);
3079         msg.msg_name = alloca(msg.msg_namelen+1);
3080         ret = target_to_host_sockaddr(fd, msg.msg_name,
3081                                       tswapal(msgp->msg_name),
3082                                       msg.msg_namelen);
3083         if (ret == -TARGET_EFAULT) {
3084             /* For connected sockets msg_name and msg_namelen must
3085              * be ignored, so returning EFAULT immediately is wrong.
3086              * Instead, pass a bad msg_name to the host kernel, and
3087              * let it decide whether to return EFAULT or not.
3088              */
3089             msg.msg_name = (void *)-1;
3090         } else if (ret) {
3091             goto out2;
3092         }
3093     } else {
3094         msg.msg_name = NULL;
3095         msg.msg_namelen = 0;
3096     }
3097     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3098     msg.msg_control = alloca(msg.msg_controllen);
3099     memset(msg.msg_control, 0, msg.msg_controllen);
3100 
3101     msg.msg_flags = tswap32(msgp->msg_flags);
3102 
3103     count = tswapal(msgp->msg_iovlen);
3104     target_vec = tswapal(msgp->msg_iov);
3105 
3106     if (count > IOV_MAX) {
3107         /* sendrcvmsg returns a different errno for this condition than
3108          * readv/writev, so we must catch it here before lock_iovec() does.
3109          */
3110         ret = -TARGET_EMSGSIZE;
3111         goto out2;
3112     }
3113 
3114     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3115                      target_vec, count, send);
3116     if (vec == NULL) {
3117         ret = -host_to_target_errno(errno);
3118         goto out2;
3119     }
3120     msg.msg_iovlen = count;
3121     msg.msg_iov = vec;
3122 
3123     if (send) {
3124         if (fd_trans_target_to_host_data(fd)) {
3125             void *host_msg;
3126 
3127             host_msg = g_malloc(msg.msg_iov->iov_len);
3128             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3129             ret = fd_trans_target_to_host_data(fd)(host_msg,
3130                                                    msg.msg_iov->iov_len);
3131             if (ret >= 0) {
3132                 msg.msg_iov->iov_base = host_msg;
3133                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3134             }
3135             g_free(host_msg);
3136         } else {
3137             ret = target_to_host_cmsg(&msg, msgp);
3138             if (ret == 0) {
3139                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3140             }
3141         }
3142     } else {
3143         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3144         if (!is_error(ret)) {
3145             len = ret;
3146             if (fd_trans_host_to_target_data(fd)) {
3147                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3148                                                MIN(msg.msg_iov->iov_len, len));
3149             } else {
3150                 ret = host_to_target_cmsg(msgp, &msg);
3151             }
3152             if (!is_error(ret)) {
3153                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3154                 msgp->msg_flags = tswap32(msg.msg_flags);
3155                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3156                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3157                                     msg.msg_name, msg.msg_namelen);
3158                     if (ret) {
3159                         goto out;
3160                     }
3161                 }
3162 
3163                 ret = len;
3164             }
3165         }
3166     }
3167 
3168 out:
3169     unlock_iovec(vec, target_vec, count, !send);
3170 out2:
3171     return ret;
3172 }
3173 
3174 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3175                                int flags, int send)
3176 {
3177     abi_long ret;
3178     struct target_msghdr *msgp;
3179 
3180     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3181                           msgp,
3182                           target_msg,
3183                           send ? 1 : 0)) {
3184         return -TARGET_EFAULT;
3185     }
3186     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3187     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3188     return ret;
3189 }
3190 
3191 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3192  * so it might not have this *mmsg-specific flag either.
3193  */
3194 #ifndef MSG_WAITFORONE
3195 #define MSG_WAITFORONE 0x10000
3196 #endif
3197 
3198 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3199                                 unsigned int vlen, unsigned int flags,
3200                                 int send)
3201 {
3202     struct target_mmsghdr *mmsgp;
3203     abi_long ret = 0;
3204     int i;
3205 
3206     if (vlen > UIO_MAXIOV) {
3207         vlen = UIO_MAXIOV;
3208     }
3209 
3210     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3211     if (!mmsgp) {
3212         return -TARGET_EFAULT;
3213     }
3214 
3215     for (i = 0; i < vlen; i++) {
3216         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3217         if (is_error(ret)) {
3218             break;
3219         }
3220         mmsgp[i].msg_len = tswap32(ret);
3221         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3222         if (flags & MSG_WAITFORONE) {
3223             flags |= MSG_DONTWAIT;
3224         }
3225     }
3226 
3227     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3228 
3229     /* Return number of datagrams sent if we sent any at all;
3230      * otherwise return the error.
3231      */
3232     if (i) {
3233         return i;
3234     }
3235     return ret;
3236 }
3237 
3238 /* do_accept4() Must return target values and target errnos. */
3239 static abi_long do_accept4(int fd, abi_ulong target_addr,
3240                            abi_ulong target_addrlen_addr, int flags)
3241 {
3242     socklen_t addrlen, ret_addrlen;
3243     void *addr;
3244     abi_long ret;
3245     int host_flags;
3246 
3247     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3248 
3249     if (target_addr == 0) {
3250         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3251     }
3252 
3253     /* linux returns EINVAL if addrlen pointer is invalid */
3254     if (get_user_u32(addrlen, target_addrlen_addr))
3255         return -TARGET_EINVAL;
3256 
3257     if ((int)addrlen < 0) {
3258         return -TARGET_EINVAL;
3259     }
3260 
3261     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3262         return -TARGET_EINVAL;
3263 
3264     addr = alloca(addrlen);
3265 
3266     ret_addrlen = addrlen;
3267     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3268     if (!is_error(ret)) {
3269         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3270         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3271             ret = -TARGET_EFAULT;
3272         }
3273     }
3274     return ret;
3275 }
3276 
3277 /* do_getpeername() Must return target values and target errnos. */
3278 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3279                                abi_ulong target_addrlen_addr)
3280 {
3281     socklen_t addrlen, ret_addrlen;
3282     void *addr;
3283     abi_long ret;
3284 
3285     if (get_user_u32(addrlen, target_addrlen_addr))
3286         return -TARGET_EFAULT;
3287 
3288     if ((int)addrlen < 0) {
3289         return -TARGET_EINVAL;
3290     }
3291 
3292     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3293         return -TARGET_EFAULT;
3294 
3295     addr = alloca(addrlen);
3296 
3297     ret_addrlen = addrlen;
3298     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3299     if (!is_error(ret)) {
3300         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3301         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3302             ret = -TARGET_EFAULT;
3303         }
3304     }
3305     return ret;
3306 }
3307 
3308 /* do_getsockname() Must return target values and target errnos. */
3309 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3310                                abi_ulong target_addrlen_addr)
3311 {
3312     socklen_t addrlen, ret_addrlen;
3313     void *addr;
3314     abi_long ret;
3315 
3316     if (get_user_u32(addrlen, target_addrlen_addr))
3317         return -TARGET_EFAULT;
3318 
3319     if ((int)addrlen < 0) {
3320         return -TARGET_EINVAL;
3321     }
3322 
3323     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3324         return -TARGET_EFAULT;
3325 
3326     addr = alloca(addrlen);
3327 
3328     ret_addrlen = addrlen;
3329     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3330     if (!is_error(ret)) {
3331         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3332         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3333             ret = -TARGET_EFAULT;
3334         }
3335     }
3336     return ret;
3337 }
3338 
3339 /* do_socketpair() Must return target values and target errnos. */
3340 static abi_long do_socketpair(int domain, int type, int protocol,
3341                               abi_ulong target_tab_addr)
3342 {
3343     int tab[2];
3344     abi_long ret;
3345 
3346     target_to_host_sock_type(&type);
3347 
3348     ret = get_errno(socketpair(domain, type, protocol, tab));
3349     if (!is_error(ret)) {
3350         if (put_user_s32(tab[0], target_tab_addr)
3351             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3352             ret = -TARGET_EFAULT;
3353     }
3354     return ret;
3355 }
3356 
3357 /* do_sendto() Must return target values and target errnos. */
3358 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3359                           abi_ulong target_addr, socklen_t addrlen)
3360 {
3361     void *addr;
3362     void *host_msg;
3363     void *copy_msg = NULL;
3364     abi_long ret;
3365 
3366     if ((int)addrlen < 0) {
3367         return -TARGET_EINVAL;
3368     }
3369 
3370     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3371     if (!host_msg)
3372         return -TARGET_EFAULT;
3373     if (fd_trans_target_to_host_data(fd)) {
3374         copy_msg = host_msg;
3375         host_msg = g_malloc(len);
3376         memcpy(host_msg, copy_msg, len);
3377         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3378         if (ret < 0) {
3379             goto fail;
3380         }
3381     }
3382     if (target_addr) {
3383         addr = alloca(addrlen+1);
3384         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3385         if (ret) {
3386             goto fail;
3387         }
3388         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3389     } else {
3390         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3391     }
3392 fail:
3393     if (copy_msg) {
3394         g_free(host_msg);
3395         host_msg = copy_msg;
3396     }
3397     unlock_user(host_msg, msg, 0);
3398     return ret;
3399 }
3400 
3401 /* do_recvfrom() Must return target values and target errnos. */
3402 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3403                             abi_ulong target_addr,
3404                             abi_ulong target_addrlen)
3405 {
3406     socklen_t addrlen, ret_addrlen;
3407     void *addr;
3408     void *host_msg;
3409     abi_long ret;
3410 
3411     host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3412     if (!host_msg)
3413         return -TARGET_EFAULT;
3414     if (target_addr) {
3415         if (get_user_u32(addrlen, target_addrlen)) {
3416             ret = -TARGET_EFAULT;
3417             goto fail;
3418         }
3419         if ((int)addrlen < 0) {
3420             ret = -TARGET_EINVAL;
3421             goto fail;
3422         }
3423         addr = alloca(addrlen);
3424         ret_addrlen = addrlen;
3425         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3426                                       addr, &ret_addrlen));
3427     } else {
3428         addr = NULL; /* To keep compiler quiet.  */
3429         addrlen = 0; /* To keep compiler quiet.  */
3430         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3431     }
3432     if (!is_error(ret)) {
3433         if (fd_trans_host_to_target_data(fd)) {
3434             abi_long trans;
3435             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3436             if (is_error(trans)) {
3437                 ret = trans;
3438                 goto fail;
3439             }
3440         }
3441         if (target_addr) {
3442             host_to_target_sockaddr(target_addr, addr,
3443                                     MIN(addrlen, ret_addrlen));
3444             if (put_user_u32(ret_addrlen, target_addrlen)) {
3445                 ret = -TARGET_EFAULT;
3446                 goto fail;
3447             }
3448         }
3449         unlock_user(host_msg, msg, len);
3450     } else {
3451 fail:
3452         unlock_user(host_msg, msg, 0);
3453     }
3454     return ret;
3455 }
3456 
3457 #ifdef TARGET_NR_socketcall
3458 /* do_socketcall() must return target values and target errnos. */
3459 static abi_long do_socketcall(int num, abi_ulong vptr)
3460 {
3461     static const unsigned nargs[] = { /* number of arguments per operation */
3462         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3463         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3464         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3465         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3466         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3467         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3468         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3469         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3470         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3471         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3472         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3473         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3474         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3475         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3476         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3477         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3478         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3479         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3480         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3481         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3482     };
3483     abi_long a[6]; /* max 6 args */
3484     unsigned i;
3485 
3486     /* check the range of the first argument num */
3487     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3488     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3489         return -TARGET_EINVAL;
3490     }
3491     /* ensure we have space for args */
3492     if (nargs[num] > ARRAY_SIZE(a)) {
3493         return -TARGET_EINVAL;
3494     }
3495     /* collect the arguments in a[] according to nargs[] */
3496     for (i = 0; i < nargs[num]; ++i) {
3497         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3498             return -TARGET_EFAULT;
3499         }
3500     }
3501     /* now when we have the args, invoke the appropriate underlying function */
3502     switch (num) {
3503     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3504         return do_socket(a[0], a[1], a[2]);
3505     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3506         return do_bind(a[0], a[1], a[2]);
3507     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3508         return do_connect(a[0], a[1], a[2]);
3509     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3510         return get_errno(listen(a[0], a[1]));
3511     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3512         return do_accept4(a[0], a[1], a[2], 0);
3513     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3514         return do_getsockname(a[0], a[1], a[2]);
3515     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3516         return do_getpeername(a[0], a[1], a[2]);
3517     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3518         return do_socketpair(a[0], a[1], a[2], a[3]);
3519     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3520         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3521     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3522         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3523     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3524         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3525     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3526         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3527     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3528         return get_errno(shutdown(a[0], a[1]));
3529     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3530         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3531     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3532         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3533     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3534         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3535     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3536         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3537     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3538         return do_accept4(a[0], a[1], a[2], a[3]);
3539     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3540         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3541     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3542         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3543     default:
3544         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3545         return -TARGET_EINVAL;
3546     }
3547 }
3548 #endif
3549 
3550 #define N_SHM_REGIONS	32
3551 
3552 static struct shm_region {
3553     abi_ulong start;
3554     abi_ulong size;
3555     bool in_use;
3556 } shm_regions[N_SHM_REGIONS];
3557 
3558 #ifndef TARGET_SEMID64_DS
3559 /* asm-generic version of this struct */
3560 struct target_semid64_ds
3561 {
3562   struct target_ipc_perm sem_perm;
3563   abi_ulong sem_otime;
3564 #if TARGET_ABI_BITS == 32
3565   abi_ulong __unused1;
3566 #endif
3567   abi_ulong sem_ctime;
3568 #if TARGET_ABI_BITS == 32
3569   abi_ulong __unused2;
3570 #endif
3571   abi_ulong sem_nsems;
3572   abi_ulong __unused3;
3573   abi_ulong __unused4;
3574 };
3575 #endif
3576 
3577 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3578                                                abi_ulong target_addr)
3579 {
3580     struct target_ipc_perm *target_ip;
3581     struct target_semid64_ds *target_sd;
3582 
3583     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3584         return -TARGET_EFAULT;
3585     target_ip = &(target_sd->sem_perm);
3586     host_ip->__key = tswap32(target_ip->__key);
3587     host_ip->uid = tswap32(target_ip->uid);
3588     host_ip->gid = tswap32(target_ip->gid);
3589     host_ip->cuid = tswap32(target_ip->cuid);
3590     host_ip->cgid = tswap32(target_ip->cgid);
3591 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3592     host_ip->mode = tswap32(target_ip->mode);
3593 #else
3594     host_ip->mode = tswap16(target_ip->mode);
3595 #endif
3596 #if defined(TARGET_PPC)
3597     host_ip->__seq = tswap32(target_ip->__seq);
3598 #else
3599     host_ip->__seq = tswap16(target_ip->__seq);
3600 #endif
3601     unlock_user_struct(target_sd, target_addr, 0);
3602     return 0;
3603 }
3604 
3605 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3606                                                struct ipc_perm *host_ip)
3607 {
3608     struct target_ipc_perm *target_ip;
3609     struct target_semid64_ds *target_sd;
3610 
3611     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3612         return -TARGET_EFAULT;
3613     target_ip = &(target_sd->sem_perm);
3614     target_ip->__key = tswap32(host_ip->__key);
3615     target_ip->uid = tswap32(host_ip->uid);
3616     target_ip->gid = tswap32(host_ip->gid);
3617     target_ip->cuid = tswap32(host_ip->cuid);
3618     target_ip->cgid = tswap32(host_ip->cgid);
3619 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3620     target_ip->mode = tswap32(host_ip->mode);
3621 #else
3622     target_ip->mode = tswap16(host_ip->mode);
3623 #endif
3624 #if defined(TARGET_PPC)
3625     target_ip->__seq = tswap32(host_ip->__seq);
3626 #else
3627     target_ip->__seq = tswap16(host_ip->__seq);
3628 #endif
3629     unlock_user_struct(target_sd, target_addr, 1);
3630     return 0;
3631 }
3632 
3633 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3634                                                abi_ulong target_addr)
3635 {
3636     struct target_semid64_ds *target_sd;
3637 
3638     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3639         return -TARGET_EFAULT;
3640     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3641         return -TARGET_EFAULT;
3642     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3643     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3644     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3645     unlock_user_struct(target_sd, target_addr, 0);
3646     return 0;
3647 }
3648 
3649 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3650                                                struct semid_ds *host_sd)
3651 {
3652     struct target_semid64_ds *target_sd;
3653 
3654     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3655         return -TARGET_EFAULT;
3656     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3657         return -TARGET_EFAULT;
3658     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3659     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3660     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3661     unlock_user_struct(target_sd, target_addr, 1);
3662     return 0;
3663 }
3664 
3665 struct target_seminfo {
3666     int semmap;
3667     int semmni;
3668     int semmns;
3669     int semmnu;
3670     int semmsl;
3671     int semopm;
3672     int semume;
3673     int semusz;
3674     int semvmx;
3675     int semaem;
3676 };
3677 
3678 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3679                                               struct seminfo *host_seminfo)
3680 {
3681     struct target_seminfo *target_seminfo;
3682     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3683         return -TARGET_EFAULT;
3684     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3685     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3686     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3687     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3688     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3689     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3690     __put_user(host_seminfo->semume, &target_seminfo->semume);
3691     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3692     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3693     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3694     unlock_user_struct(target_seminfo, target_addr, 1);
3695     return 0;
3696 }
3697 
3698 union semun {
3699 	int val;
3700 	struct semid_ds *buf;
3701 	unsigned short *array;
3702 	struct seminfo *__buf;
3703 };
3704 
3705 union target_semun {
3706 	int val;
3707 	abi_ulong buf;
3708 	abi_ulong array;
3709 	abi_ulong __buf;
3710 };
3711 
3712 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3713                                                abi_ulong target_addr)
3714 {
3715     int nsems;
3716     unsigned short *array;
3717     union semun semun;
3718     struct semid_ds semid_ds;
3719     int i, ret;
3720 
3721     semun.buf = &semid_ds;
3722 
3723     ret = semctl(semid, 0, IPC_STAT, semun);
3724     if (ret == -1)
3725         return get_errno(ret);
3726 
3727     nsems = semid_ds.sem_nsems;
3728 
3729     *host_array = g_try_new(unsigned short, nsems);
3730     if (!*host_array) {
3731         return -TARGET_ENOMEM;
3732     }
3733     array = lock_user(VERIFY_READ, target_addr,
3734                       nsems*sizeof(unsigned short), 1);
3735     if (!array) {
3736         g_free(*host_array);
3737         return -TARGET_EFAULT;
3738     }
3739 
3740     for(i=0; i<nsems; i++) {
3741         __get_user((*host_array)[i], &array[i]);
3742     }
3743     unlock_user(array, target_addr, 0);
3744 
3745     return 0;
3746 }
3747 
3748 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3749                                                unsigned short **host_array)
3750 {
3751     int nsems;
3752     unsigned short *array;
3753     union semun semun;
3754     struct semid_ds semid_ds;
3755     int i, ret;
3756 
3757     semun.buf = &semid_ds;
3758 
3759     ret = semctl(semid, 0, IPC_STAT, semun);
3760     if (ret == -1)
3761         return get_errno(ret);
3762 
3763     nsems = semid_ds.sem_nsems;
3764 
3765     array = lock_user(VERIFY_WRITE, target_addr,
3766                       nsems*sizeof(unsigned short), 0);
3767     if (!array)
3768         return -TARGET_EFAULT;
3769 
3770     for(i=0; i<nsems; i++) {
3771         __put_user((*host_array)[i], &array[i]);
3772     }
3773     g_free(*host_array);
3774     unlock_user(array, target_addr, 1);
3775 
3776     return 0;
3777 }
3778 
3779 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3780                                  abi_ulong target_arg)
3781 {
3782     union target_semun target_su = { .buf = target_arg };
3783     union semun arg;
3784     struct semid_ds dsarg;
3785     unsigned short *array = NULL;
3786     struct seminfo seminfo;
3787     abi_long ret = -TARGET_EINVAL;
3788     abi_long err;
3789     cmd &= 0xff;
3790 
3791     switch( cmd ) {
3792 	case GETVAL:
3793 	case SETVAL:
3794             /* In 64 bit cross-endian situations, we will erroneously pick up
3795              * the wrong half of the union for the "val" element.  To rectify
3796              * this, the entire 8-byte structure is byteswapped, followed by
3797 	     * a swap of the 4 byte val field. In other cases, the data is
3798 	     * already in proper host byte order. */
3799 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3800 		target_su.buf = tswapal(target_su.buf);
3801 		arg.val = tswap32(target_su.val);
3802 	    } else {
3803 		arg.val = target_su.val;
3804 	    }
3805             ret = get_errno(semctl(semid, semnum, cmd, arg));
3806             break;
3807 	case GETALL:
3808 	case SETALL:
3809             err = target_to_host_semarray(semid, &array, target_su.array);
3810             if (err)
3811                 return err;
3812             arg.array = array;
3813             ret = get_errno(semctl(semid, semnum, cmd, arg));
3814             err = host_to_target_semarray(semid, target_su.array, &array);
3815             if (err)
3816                 return err;
3817             break;
3818 	case IPC_STAT:
3819 	case IPC_SET:
3820 	case SEM_STAT:
3821             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3822             if (err)
3823                 return err;
3824             arg.buf = &dsarg;
3825             ret = get_errno(semctl(semid, semnum, cmd, arg));
3826             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3827             if (err)
3828                 return err;
3829             break;
3830 	case IPC_INFO:
3831 	case SEM_INFO:
3832             arg.__buf = &seminfo;
3833             ret = get_errno(semctl(semid, semnum, cmd, arg));
3834             err = host_to_target_seminfo(target_su.__buf, &seminfo);
3835             if (err)
3836                 return err;
3837             break;
3838 	case IPC_RMID:
3839 	case GETPID:
3840 	case GETNCNT:
3841 	case GETZCNT:
3842             ret = get_errno(semctl(semid, semnum, cmd, NULL));
3843             break;
3844     }
3845 
3846     return ret;
3847 }
3848 
3849 struct target_sembuf {
3850     unsigned short sem_num;
3851     short sem_op;
3852     short sem_flg;
3853 };
3854 
3855 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
3856                                              abi_ulong target_addr,
3857                                              unsigned nsops)
3858 {
3859     struct target_sembuf *target_sembuf;
3860     int i;
3861 
3862     target_sembuf = lock_user(VERIFY_READ, target_addr,
3863                               nsops*sizeof(struct target_sembuf), 1);
3864     if (!target_sembuf)
3865         return -TARGET_EFAULT;
3866 
3867     for(i=0; i<nsops; i++) {
3868         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
3869         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
3870         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
3871     }
3872 
3873     unlock_user(target_sembuf, target_addr, 0);
3874 
3875     return 0;
3876 }
3877 
3878 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
3879 {
3880     struct sembuf sops[nsops];
3881     abi_long ret;
3882 
3883     if (target_to_host_sembuf(sops, ptr, nsops))
3884         return -TARGET_EFAULT;
3885 
3886     ret = -TARGET_ENOSYS;
3887 #ifdef __NR_semtimedop
3888     ret = get_errno(safe_semtimedop(semid, sops, nsops, NULL));
3889 #endif
3890 #ifdef __NR_ipc
3891     if (ret == -TARGET_ENOSYS) {
3892         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, nsops, 0, sops, 0));
3893     }
3894 #endif
3895     return ret;
3896 }
3897 
3898 struct target_msqid_ds
3899 {
3900     struct target_ipc_perm msg_perm;
3901     abi_ulong msg_stime;
3902 #if TARGET_ABI_BITS == 32
3903     abi_ulong __unused1;
3904 #endif
3905     abi_ulong msg_rtime;
3906 #if TARGET_ABI_BITS == 32
3907     abi_ulong __unused2;
3908 #endif
3909     abi_ulong msg_ctime;
3910 #if TARGET_ABI_BITS == 32
3911     abi_ulong __unused3;
3912 #endif
3913     abi_ulong __msg_cbytes;
3914     abi_ulong msg_qnum;
3915     abi_ulong msg_qbytes;
3916     abi_ulong msg_lspid;
3917     abi_ulong msg_lrpid;
3918     abi_ulong __unused4;
3919     abi_ulong __unused5;
3920 };
3921 
3922 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
3923                                                abi_ulong target_addr)
3924 {
3925     struct target_msqid_ds *target_md;
3926 
3927     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
3928         return -TARGET_EFAULT;
3929     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
3930         return -TARGET_EFAULT;
3931     host_md->msg_stime = tswapal(target_md->msg_stime);
3932     host_md->msg_rtime = tswapal(target_md->msg_rtime);
3933     host_md->msg_ctime = tswapal(target_md->msg_ctime);
3934     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
3935     host_md->msg_qnum = tswapal(target_md->msg_qnum);
3936     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
3937     host_md->msg_lspid = tswapal(target_md->msg_lspid);
3938     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
3939     unlock_user_struct(target_md, target_addr, 0);
3940     return 0;
3941 }
3942 
3943 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
3944                                                struct msqid_ds *host_md)
3945 {
3946     struct target_msqid_ds *target_md;
3947 
3948     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
3949         return -TARGET_EFAULT;
3950     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
3951         return -TARGET_EFAULT;
3952     target_md->msg_stime = tswapal(host_md->msg_stime);
3953     target_md->msg_rtime = tswapal(host_md->msg_rtime);
3954     target_md->msg_ctime = tswapal(host_md->msg_ctime);
3955     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
3956     target_md->msg_qnum = tswapal(host_md->msg_qnum);
3957     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
3958     target_md->msg_lspid = tswapal(host_md->msg_lspid);
3959     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
3960     unlock_user_struct(target_md, target_addr, 1);
3961     return 0;
3962 }
3963 
3964 struct target_msginfo {
3965     int msgpool;
3966     int msgmap;
3967     int msgmax;
3968     int msgmnb;
3969     int msgmni;
3970     int msgssz;
3971     int msgtql;
3972     unsigned short int msgseg;
3973 };
3974 
3975 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
3976                                               struct msginfo *host_msginfo)
3977 {
3978     struct target_msginfo *target_msginfo;
3979     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
3980         return -TARGET_EFAULT;
3981     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
3982     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
3983     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
3984     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
3985     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
3986     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
3987     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
3988     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
3989     unlock_user_struct(target_msginfo, target_addr, 1);
3990     return 0;
3991 }
3992 
3993 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
3994 {
3995     struct msqid_ds dsarg;
3996     struct msginfo msginfo;
3997     abi_long ret = -TARGET_EINVAL;
3998 
3999     cmd &= 0xff;
4000 
4001     switch (cmd) {
4002     case IPC_STAT:
4003     case IPC_SET:
4004     case MSG_STAT:
4005         if (target_to_host_msqid_ds(&dsarg,ptr))
4006             return -TARGET_EFAULT;
4007         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4008         if (host_to_target_msqid_ds(ptr,&dsarg))
4009             return -TARGET_EFAULT;
4010         break;
4011     case IPC_RMID:
4012         ret = get_errno(msgctl(msgid, cmd, NULL));
4013         break;
4014     case IPC_INFO:
4015     case MSG_INFO:
4016         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4017         if (host_to_target_msginfo(ptr, &msginfo))
4018             return -TARGET_EFAULT;
4019         break;
4020     }
4021 
4022     return ret;
4023 }
4024 
4025 struct target_msgbuf {
4026     abi_long mtype;
4027     char	mtext[1];
4028 };
4029 
4030 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4031                                  ssize_t msgsz, int msgflg)
4032 {
4033     struct target_msgbuf *target_mb;
4034     struct msgbuf *host_mb;
4035     abi_long ret = 0;
4036 
4037     if (msgsz < 0) {
4038         return -TARGET_EINVAL;
4039     }
4040 
4041     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4042         return -TARGET_EFAULT;
4043     host_mb = g_try_malloc(msgsz + sizeof(long));
4044     if (!host_mb) {
4045         unlock_user_struct(target_mb, msgp, 0);
4046         return -TARGET_ENOMEM;
4047     }
4048     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4049     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4050     ret = -TARGET_ENOSYS;
4051 #ifdef __NR_msgsnd
4052     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4053 #endif
4054 #ifdef __NR_ipc
4055     if (ret == -TARGET_ENOSYS) {
4056         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4057                                  host_mb, 0));
4058     }
4059 #endif
4060     g_free(host_mb);
4061     unlock_user_struct(target_mb, msgp, 0);
4062 
4063     return ret;
4064 }
4065 
4066 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4067                                  ssize_t msgsz, abi_long msgtyp,
4068                                  int msgflg)
4069 {
4070     struct target_msgbuf *target_mb;
4071     char *target_mtext;
4072     struct msgbuf *host_mb;
4073     abi_long ret = 0;
4074 
4075     if (msgsz < 0) {
4076         return -TARGET_EINVAL;
4077     }
4078 
4079     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4080         return -TARGET_EFAULT;
4081 
4082     host_mb = g_try_malloc(msgsz + sizeof(long));
4083     if (!host_mb) {
4084         ret = -TARGET_ENOMEM;
4085         goto end;
4086     }
4087     ret = -TARGET_ENOSYS;
4088 #ifdef __NR_msgrcv
4089     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4090 #endif
4091 #ifdef __NR_ipc
4092     if (ret == -TARGET_ENOSYS) {
4093         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4094                         msgflg, host_mb, msgtyp));
4095     }
4096 #endif
4097 
4098     if (ret > 0) {
4099         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4100         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4101         if (!target_mtext) {
4102             ret = -TARGET_EFAULT;
4103             goto end;
4104         }
4105         memcpy(target_mb->mtext, host_mb->mtext, ret);
4106         unlock_user(target_mtext, target_mtext_addr, ret);
4107     }
4108 
4109     target_mb->mtype = tswapal(host_mb->mtype);
4110 
4111 end:
4112     if (target_mb)
4113         unlock_user_struct(target_mb, msgp, 1);
4114     g_free(host_mb);
4115     return ret;
4116 }
4117 
4118 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4119                                                abi_ulong target_addr)
4120 {
4121     struct target_shmid_ds *target_sd;
4122 
4123     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4124         return -TARGET_EFAULT;
4125     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4126         return -TARGET_EFAULT;
4127     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4128     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4129     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4130     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4131     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4132     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4133     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4134     unlock_user_struct(target_sd, target_addr, 0);
4135     return 0;
4136 }
4137 
4138 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4139                                                struct shmid_ds *host_sd)
4140 {
4141     struct target_shmid_ds *target_sd;
4142 
4143     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4144         return -TARGET_EFAULT;
4145     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4146         return -TARGET_EFAULT;
4147     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4148     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4149     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4150     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4151     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4152     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4153     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4154     unlock_user_struct(target_sd, target_addr, 1);
4155     return 0;
4156 }
4157 
4158 struct  target_shminfo {
4159     abi_ulong shmmax;
4160     abi_ulong shmmin;
4161     abi_ulong shmmni;
4162     abi_ulong shmseg;
4163     abi_ulong shmall;
4164 };
4165 
4166 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4167                                               struct shminfo *host_shminfo)
4168 {
4169     struct target_shminfo *target_shminfo;
4170     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4171         return -TARGET_EFAULT;
4172     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4173     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4174     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4175     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4176     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4177     unlock_user_struct(target_shminfo, target_addr, 1);
4178     return 0;
4179 }
4180 
4181 struct target_shm_info {
4182     int used_ids;
4183     abi_ulong shm_tot;
4184     abi_ulong shm_rss;
4185     abi_ulong shm_swp;
4186     abi_ulong swap_attempts;
4187     abi_ulong swap_successes;
4188 };
4189 
4190 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4191                                                struct shm_info *host_shm_info)
4192 {
4193     struct target_shm_info *target_shm_info;
4194     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4195         return -TARGET_EFAULT;
4196     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4197     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4198     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4199     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4200     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4201     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4202     unlock_user_struct(target_shm_info, target_addr, 1);
4203     return 0;
4204 }
4205 
4206 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4207 {
4208     struct shmid_ds dsarg;
4209     struct shminfo shminfo;
4210     struct shm_info shm_info;
4211     abi_long ret = -TARGET_EINVAL;
4212 
4213     cmd &= 0xff;
4214 
4215     switch(cmd) {
4216     case IPC_STAT:
4217     case IPC_SET:
4218     case SHM_STAT:
4219         if (target_to_host_shmid_ds(&dsarg, buf))
4220             return -TARGET_EFAULT;
4221         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4222         if (host_to_target_shmid_ds(buf, &dsarg))
4223             return -TARGET_EFAULT;
4224         break;
4225     case IPC_INFO:
4226         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4227         if (host_to_target_shminfo(buf, &shminfo))
4228             return -TARGET_EFAULT;
4229         break;
4230     case SHM_INFO:
4231         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4232         if (host_to_target_shm_info(buf, &shm_info))
4233             return -TARGET_EFAULT;
4234         break;
4235     case IPC_RMID:
4236     case SHM_LOCK:
4237     case SHM_UNLOCK:
4238         ret = get_errno(shmctl(shmid, cmd, NULL));
4239         break;
4240     }
4241 
4242     return ret;
4243 }
4244 
4245 #ifndef TARGET_FORCE_SHMLBA
4246 /* For most architectures, SHMLBA is the same as the page size;
4247  * some architectures have larger values, in which case they should
4248  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4249  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4250  * and defining its own value for SHMLBA.
4251  *
4252  * The kernel also permits SHMLBA to be set by the architecture to a
4253  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4254  * this means that addresses are rounded to the large size if
4255  * SHM_RND is set but addresses not aligned to that size are not rejected
4256  * as long as they are at least page-aligned. Since the only architecture
4257  * which uses this is ia64 this code doesn't provide for that oddity.
4258  */
4259 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4260 {
4261     return TARGET_PAGE_SIZE;
4262 }
4263 #endif
4264 
4265 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4266                                  int shmid, abi_ulong shmaddr, int shmflg)
4267 {
4268     abi_long raddr;
4269     void *host_raddr;
4270     struct shmid_ds shm_info;
4271     int i,ret;
4272     abi_ulong shmlba;
4273 
4274     /* find out the length of the shared memory segment */
4275     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4276     if (is_error(ret)) {
4277         /* can't get length, bail out */
4278         return ret;
4279     }
4280 
4281     shmlba = target_shmlba(cpu_env);
4282 
4283     if (shmaddr & (shmlba - 1)) {
4284         if (shmflg & SHM_RND) {
4285             shmaddr &= ~(shmlba - 1);
4286         } else {
4287             return -TARGET_EINVAL;
4288         }
4289     }
4290     if (!guest_range_valid(shmaddr, shm_info.shm_segsz)) {
4291         return -TARGET_EINVAL;
4292     }
4293 
4294     mmap_lock();
4295 
4296     if (shmaddr)
4297         host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
4298     else {
4299         abi_ulong mmap_start;
4300 
4301         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4302         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4303 
4304         if (mmap_start == -1) {
4305             errno = ENOMEM;
4306             host_raddr = (void *)-1;
4307         } else
4308             host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
4309     }
4310 
4311     if (host_raddr == (void *)-1) {
4312         mmap_unlock();
4313         return get_errno((long)host_raddr);
4314     }
4315     raddr=h2g((unsigned long)host_raddr);
4316 
4317     page_set_flags(raddr, raddr + shm_info.shm_segsz,
4318                    PAGE_VALID | PAGE_READ |
4319                    ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
4320 
4321     for (i = 0; i < N_SHM_REGIONS; i++) {
4322         if (!shm_regions[i].in_use) {
4323             shm_regions[i].in_use = true;
4324             shm_regions[i].start = raddr;
4325             shm_regions[i].size = shm_info.shm_segsz;
4326             break;
4327         }
4328     }
4329 
4330     mmap_unlock();
4331     return raddr;
4332 
4333 }
4334 
4335 static inline abi_long do_shmdt(abi_ulong shmaddr)
4336 {
4337     int i;
4338     abi_long rv;
4339 
4340     mmap_lock();
4341 
4342     for (i = 0; i < N_SHM_REGIONS; ++i) {
4343         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4344             shm_regions[i].in_use = false;
4345             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4346             break;
4347         }
4348     }
4349     rv = get_errno(shmdt(g2h(shmaddr)));
4350 
4351     mmap_unlock();
4352 
4353     return rv;
4354 }
4355 
4356 #ifdef TARGET_NR_ipc
4357 /* ??? This only works with linear mappings.  */
4358 /* do_ipc() must return target values and target errnos. */
4359 static abi_long do_ipc(CPUArchState *cpu_env,
4360                        unsigned int call, abi_long first,
4361                        abi_long second, abi_long third,
4362                        abi_long ptr, abi_long fifth)
4363 {
4364     int version;
4365     abi_long ret = 0;
4366 
4367     version = call >> 16;
4368     call &= 0xffff;
4369 
4370     switch (call) {
4371     case IPCOP_semop:
4372         ret = do_semop(first, ptr, second);
4373         break;
4374 
4375     case IPCOP_semget:
4376         ret = get_errno(semget(first, second, third));
4377         break;
4378 
4379     case IPCOP_semctl: {
4380         /* The semun argument to semctl is passed by value, so dereference the
4381          * ptr argument. */
4382         abi_ulong atptr;
4383         get_user_ual(atptr, ptr);
4384         ret = do_semctl(first, second, third, atptr);
4385         break;
4386     }
4387 
4388     case IPCOP_msgget:
4389         ret = get_errno(msgget(first, second));
4390         break;
4391 
4392     case IPCOP_msgsnd:
4393         ret = do_msgsnd(first, ptr, second, third);
4394         break;
4395 
4396     case IPCOP_msgctl:
4397         ret = do_msgctl(first, second, ptr);
4398         break;
4399 
4400     case IPCOP_msgrcv:
4401         switch (version) {
4402         case 0:
4403             {
4404                 struct target_ipc_kludge {
4405                     abi_long msgp;
4406                     abi_long msgtyp;
4407                 } *tmp;
4408 
4409                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4410                     ret = -TARGET_EFAULT;
4411                     break;
4412                 }
4413 
4414                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4415 
4416                 unlock_user_struct(tmp, ptr, 0);
4417                 break;
4418             }
4419         default:
4420             ret = do_msgrcv(first, ptr, second, fifth, third);
4421         }
4422         break;
4423 
4424     case IPCOP_shmat:
4425         switch (version) {
4426         default:
4427         {
4428             abi_ulong raddr;
4429             raddr = do_shmat(cpu_env, first, ptr, second);
4430             if (is_error(raddr))
4431                 return get_errno(raddr);
4432             if (put_user_ual(raddr, third))
4433                 return -TARGET_EFAULT;
4434             break;
4435         }
4436         case 1:
4437             ret = -TARGET_EINVAL;
4438             break;
4439         }
4440 	break;
4441     case IPCOP_shmdt:
4442         ret = do_shmdt(ptr);
4443 	break;
4444 
4445     case IPCOP_shmget:
4446 	/* IPC_* flag values are the same on all linux platforms */
4447 	ret = get_errno(shmget(first, second, third));
4448 	break;
4449 
4450 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4451     case IPCOP_shmctl:
4452         ret = do_shmctl(first, second, ptr);
4453         break;
4454     default:
4455         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4456                       call, version);
4457 	ret = -TARGET_ENOSYS;
4458 	break;
4459     }
4460     return ret;
4461 }
4462 #endif
4463 
4464 /* kernel structure types definitions */
4465 
4466 #define STRUCT(name, ...) STRUCT_ ## name,
4467 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4468 enum {
4469 #include "syscall_types.h"
4470 STRUCT_MAX
4471 };
4472 #undef STRUCT
4473 #undef STRUCT_SPECIAL
4474 
4475 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4476 #define STRUCT_SPECIAL(name)
4477 #include "syscall_types.h"
4478 #undef STRUCT
4479 #undef STRUCT_SPECIAL
4480 
4481 typedef struct IOCTLEntry IOCTLEntry;
4482 
4483 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
4484                              int fd, int cmd, abi_long arg);
4485 
4486 struct IOCTLEntry {
4487     int target_cmd;
4488     unsigned int host_cmd;
4489     const char *name;
4490     int access;
4491     do_ioctl_fn *do_ioctl;
4492     const argtype arg_type[5];
4493 };
4494 
4495 #define IOC_R 0x0001
4496 #define IOC_W 0x0002
4497 #define IOC_RW (IOC_R | IOC_W)
4498 
4499 #define MAX_STRUCT_SIZE 4096
4500 
4501 #ifdef CONFIG_FIEMAP
4502 /* So fiemap access checks don't overflow on 32 bit systems.
4503  * This is very slightly smaller than the limit imposed by
4504  * the underlying kernel.
4505  */
4506 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4507                             / sizeof(struct fiemap_extent))
4508 
4509 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4510                                        int fd, int cmd, abi_long arg)
4511 {
4512     /* The parameter for this ioctl is a struct fiemap followed
4513      * by an array of struct fiemap_extent whose size is set
4514      * in fiemap->fm_extent_count. The array is filled in by the
4515      * ioctl.
4516      */
4517     int target_size_in, target_size_out;
4518     struct fiemap *fm;
4519     const argtype *arg_type = ie->arg_type;
4520     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4521     void *argptr, *p;
4522     abi_long ret;
4523     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4524     uint32_t outbufsz;
4525     int free_fm = 0;
4526 
4527     assert(arg_type[0] == TYPE_PTR);
4528     assert(ie->access == IOC_RW);
4529     arg_type++;
4530     target_size_in = thunk_type_size(arg_type, 0);
4531     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4532     if (!argptr) {
4533         return -TARGET_EFAULT;
4534     }
4535     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4536     unlock_user(argptr, arg, 0);
4537     fm = (struct fiemap *)buf_temp;
4538     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4539         return -TARGET_EINVAL;
4540     }
4541 
4542     outbufsz = sizeof (*fm) +
4543         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4544 
4545     if (outbufsz > MAX_STRUCT_SIZE) {
4546         /* We can't fit all the extents into the fixed size buffer.
4547          * Allocate one that is large enough and use it instead.
4548          */
4549         fm = g_try_malloc(outbufsz);
4550         if (!fm) {
4551             return -TARGET_ENOMEM;
4552         }
4553         memcpy(fm, buf_temp, sizeof(struct fiemap));
4554         free_fm = 1;
4555     }
4556     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4557     if (!is_error(ret)) {
4558         target_size_out = target_size_in;
4559         /* An extent_count of 0 means we were only counting the extents
4560          * so there are no structs to copy
4561          */
4562         if (fm->fm_extent_count != 0) {
4563             target_size_out += fm->fm_mapped_extents * extent_size;
4564         }
4565         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4566         if (!argptr) {
4567             ret = -TARGET_EFAULT;
4568         } else {
4569             /* Convert the struct fiemap */
4570             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4571             if (fm->fm_extent_count != 0) {
4572                 p = argptr + target_size_in;
4573                 /* ...and then all the struct fiemap_extents */
4574                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4575                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4576                                   THUNK_TARGET);
4577                     p += extent_size;
4578                 }
4579             }
4580             unlock_user(argptr, arg, target_size_out);
4581         }
4582     }
4583     if (free_fm) {
4584         g_free(fm);
4585     }
4586     return ret;
4587 }
4588 #endif
4589 
4590 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4591                                 int fd, int cmd, abi_long arg)
4592 {
4593     const argtype *arg_type = ie->arg_type;
4594     int target_size;
4595     void *argptr;
4596     int ret;
4597     struct ifconf *host_ifconf;
4598     uint32_t outbufsz;
4599     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4600     int target_ifreq_size;
4601     int nb_ifreq;
4602     int free_buf = 0;
4603     int i;
4604     int target_ifc_len;
4605     abi_long target_ifc_buf;
4606     int host_ifc_len;
4607     char *host_ifc_buf;
4608 
4609     assert(arg_type[0] == TYPE_PTR);
4610     assert(ie->access == IOC_RW);
4611 
4612     arg_type++;
4613     target_size = thunk_type_size(arg_type, 0);
4614 
4615     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4616     if (!argptr)
4617         return -TARGET_EFAULT;
4618     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4619     unlock_user(argptr, arg, 0);
4620 
4621     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4622     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4623     target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
4624 
4625     if (target_ifc_buf != 0) {
4626         target_ifc_len = host_ifconf->ifc_len;
4627         nb_ifreq = target_ifc_len / target_ifreq_size;
4628         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4629 
4630         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4631         if (outbufsz > MAX_STRUCT_SIZE) {
4632             /*
4633              * We can't fit all the extents into the fixed size buffer.
4634              * Allocate one that is large enough and use it instead.
4635              */
4636             host_ifconf = malloc(outbufsz);
4637             if (!host_ifconf) {
4638                 return -TARGET_ENOMEM;
4639             }
4640             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4641             free_buf = 1;
4642         }
4643         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4644 
4645         host_ifconf->ifc_len = host_ifc_len;
4646     } else {
4647       host_ifc_buf = NULL;
4648     }
4649     host_ifconf->ifc_buf = host_ifc_buf;
4650 
4651     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4652     if (!is_error(ret)) {
4653 	/* convert host ifc_len to target ifc_len */
4654 
4655         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4656         target_ifc_len = nb_ifreq * target_ifreq_size;
4657         host_ifconf->ifc_len = target_ifc_len;
4658 
4659 	/* restore target ifc_buf */
4660 
4661         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4662 
4663 	/* copy struct ifconf to target user */
4664 
4665         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4666         if (!argptr)
4667             return -TARGET_EFAULT;
4668         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4669         unlock_user(argptr, arg, target_size);
4670 
4671         if (target_ifc_buf != 0) {
4672             /* copy ifreq[] to target user */
4673             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4674             for (i = 0; i < nb_ifreq ; i++) {
4675                 thunk_convert(argptr + i * target_ifreq_size,
4676                               host_ifc_buf + i * sizeof(struct ifreq),
4677                               ifreq_arg_type, THUNK_TARGET);
4678             }
4679             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4680         }
4681     }
4682 
4683     if (free_buf) {
4684         free(host_ifconf);
4685     }
4686 
4687     return ret;
4688 }
4689 
4690 #if defined(CONFIG_USBFS)
4691 #if HOST_LONG_BITS > 64
4692 #error USBDEVFS thunks do not support >64 bit hosts yet.
4693 #endif
4694 struct live_urb {
4695     uint64_t target_urb_adr;
4696     uint64_t target_buf_adr;
4697     char *target_buf_ptr;
4698     struct usbdevfs_urb host_urb;
4699 };
4700 
4701 static GHashTable *usbdevfs_urb_hashtable(void)
4702 {
4703     static GHashTable *urb_hashtable;
4704 
4705     if (!urb_hashtable) {
4706         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4707     }
4708     return urb_hashtable;
4709 }
4710 
4711 static void urb_hashtable_insert(struct live_urb *urb)
4712 {
4713     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4714     g_hash_table_insert(urb_hashtable, urb, urb);
4715 }
4716 
4717 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4718 {
4719     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4720     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4721 }
4722 
4723 static void urb_hashtable_remove(struct live_urb *urb)
4724 {
4725     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4726     g_hash_table_remove(urb_hashtable, urb);
4727 }
4728 
4729 static abi_long
4730 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4731                           int fd, int cmd, abi_long arg)
4732 {
4733     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4734     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4735     struct live_urb *lurb;
4736     void *argptr;
4737     uint64_t hurb;
4738     int target_size;
4739     uintptr_t target_urb_adr;
4740     abi_long ret;
4741 
4742     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4743 
4744     memset(buf_temp, 0, sizeof(uint64_t));
4745     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4746     if (is_error(ret)) {
4747         return ret;
4748     }
4749 
4750     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4751     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4752     if (!lurb->target_urb_adr) {
4753         return -TARGET_EFAULT;
4754     }
4755     urb_hashtable_remove(lurb);
4756     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4757         lurb->host_urb.buffer_length);
4758     lurb->target_buf_ptr = NULL;
4759 
4760     /* restore the guest buffer pointer */
4761     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4762 
4763     /* update the guest urb struct */
4764     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4765     if (!argptr) {
4766         g_free(lurb);
4767         return -TARGET_EFAULT;
4768     }
4769     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4770     unlock_user(argptr, lurb->target_urb_adr, target_size);
4771 
4772     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4773     /* write back the urb handle */
4774     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4775     if (!argptr) {
4776         g_free(lurb);
4777         return -TARGET_EFAULT;
4778     }
4779 
4780     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4781     target_urb_adr = lurb->target_urb_adr;
4782     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4783     unlock_user(argptr, arg, target_size);
4784 
4785     g_free(lurb);
4786     return ret;
4787 }
4788 
4789 static abi_long
4790 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4791                              uint8_t *buf_temp __attribute__((unused)),
4792                              int fd, int cmd, abi_long arg)
4793 {
4794     struct live_urb *lurb;
4795 
4796     /* map target address back to host URB with metadata. */
4797     lurb = urb_hashtable_lookup(arg);
4798     if (!lurb) {
4799         return -TARGET_EFAULT;
4800     }
4801     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4802 }
4803 
4804 static abi_long
4805 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4806                             int fd, int cmd, abi_long arg)
4807 {
4808     const argtype *arg_type = ie->arg_type;
4809     int target_size;
4810     abi_long ret;
4811     void *argptr;
4812     int rw_dir;
4813     struct live_urb *lurb;
4814 
4815     /*
4816      * each submitted URB needs to map to a unique ID for the
4817      * kernel, and that unique ID needs to be a pointer to
4818      * host memory.  hence, we need to malloc for each URB.
4819      * isochronous transfers have a variable length struct.
4820      */
4821     arg_type++;
4822     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4823 
4824     /* construct host copy of urb and metadata */
4825     lurb = g_try_malloc0(sizeof(struct live_urb));
4826     if (!lurb) {
4827         return -TARGET_ENOMEM;
4828     }
4829 
4830     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4831     if (!argptr) {
4832         g_free(lurb);
4833         return -TARGET_EFAULT;
4834     }
4835     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4836     unlock_user(argptr, arg, 0);
4837 
4838     lurb->target_urb_adr = arg;
4839     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4840 
4841     /* buffer space used depends on endpoint type so lock the entire buffer */
4842     /* control type urbs should check the buffer contents for true direction */
4843     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4844     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4845         lurb->host_urb.buffer_length, 1);
4846     if (lurb->target_buf_ptr == NULL) {
4847         g_free(lurb);
4848         return -TARGET_EFAULT;
4849     }
4850 
4851     /* update buffer pointer in host copy */
4852     lurb->host_urb.buffer = lurb->target_buf_ptr;
4853 
4854     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4855     if (is_error(ret)) {
4856         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4857         g_free(lurb);
4858     } else {
4859         urb_hashtable_insert(lurb);
4860     }
4861 
4862     return ret;
4863 }
4864 #endif /* CONFIG_USBFS */
4865 
4866 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4867                             int cmd, abi_long arg)
4868 {
4869     void *argptr;
4870     struct dm_ioctl *host_dm;
4871     abi_long guest_data;
4872     uint32_t guest_data_size;
4873     int target_size;
4874     const argtype *arg_type = ie->arg_type;
4875     abi_long ret;
4876     void *big_buf = NULL;
4877     char *host_data;
4878 
4879     arg_type++;
4880     target_size = thunk_type_size(arg_type, 0);
4881     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4882     if (!argptr) {
4883         ret = -TARGET_EFAULT;
4884         goto out;
4885     }
4886     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4887     unlock_user(argptr, arg, 0);
4888 
4889     /* buf_temp is too small, so fetch things into a bigger buffer */
4890     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
4891     memcpy(big_buf, buf_temp, target_size);
4892     buf_temp = big_buf;
4893     host_dm = big_buf;
4894 
4895     guest_data = arg + host_dm->data_start;
4896     if ((guest_data - arg) < 0) {
4897         ret = -TARGET_EINVAL;
4898         goto out;
4899     }
4900     guest_data_size = host_dm->data_size - host_dm->data_start;
4901     host_data = (char*)host_dm + host_dm->data_start;
4902 
4903     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
4904     if (!argptr) {
4905         ret = -TARGET_EFAULT;
4906         goto out;
4907     }
4908 
4909     switch (ie->host_cmd) {
4910     case DM_REMOVE_ALL:
4911     case DM_LIST_DEVICES:
4912     case DM_DEV_CREATE:
4913     case DM_DEV_REMOVE:
4914     case DM_DEV_SUSPEND:
4915     case DM_DEV_STATUS:
4916     case DM_DEV_WAIT:
4917     case DM_TABLE_STATUS:
4918     case DM_TABLE_CLEAR:
4919     case DM_TABLE_DEPS:
4920     case DM_LIST_VERSIONS:
4921         /* no input data */
4922         break;
4923     case DM_DEV_RENAME:
4924     case DM_DEV_SET_GEOMETRY:
4925         /* data contains only strings */
4926         memcpy(host_data, argptr, guest_data_size);
4927         break;
4928     case DM_TARGET_MSG:
4929         memcpy(host_data, argptr, guest_data_size);
4930         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
4931         break;
4932     case DM_TABLE_LOAD:
4933     {
4934         void *gspec = argptr;
4935         void *cur_data = host_data;
4936         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
4937         int spec_size = thunk_type_size(arg_type, 0);
4938         int i;
4939 
4940         for (i = 0; i < host_dm->target_count; i++) {
4941             struct dm_target_spec *spec = cur_data;
4942             uint32_t next;
4943             int slen;
4944 
4945             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
4946             slen = strlen((char*)gspec + spec_size) + 1;
4947             next = spec->next;
4948             spec->next = sizeof(*spec) + slen;
4949             strcpy((char*)&spec[1], gspec + spec_size);
4950             gspec += next;
4951             cur_data += spec->next;
4952         }
4953         break;
4954     }
4955     default:
4956         ret = -TARGET_EINVAL;
4957         unlock_user(argptr, guest_data, 0);
4958         goto out;
4959     }
4960     unlock_user(argptr, guest_data, 0);
4961 
4962     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4963     if (!is_error(ret)) {
4964         guest_data = arg + host_dm->data_start;
4965         guest_data_size = host_dm->data_size - host_dm->data_start;
4966         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
4967         switch (ie->host_cmd) {
4968         case DM_REMOVE_ALL:
4969         case DM_DEV_CREATE:
4970         case DM_DEV_REMOVE:
4971         case DM_DEV_RENAME:
4972         case DM_DEV_SUSPEND:
4973         case DM_DEV_STATUS:
4974         case DM_TABLE_LOAD:
4975         case DM_TABLE_CLEAR:
4976         case DM_TARGET_MSG:
4977         case DM_DEV_SET_GEOMETRY:
4978             /* no return data */
4979             break;
4980         case DM_LIST_DEVICES:
4981         {
4982             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
4983             uint32_t remaining_data = guest_data_size;
4984             void *cur_data = argptr;
4985             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
4986             int nl_size = 12; /* can't use thunk_size due to alignment */
4987 
4988             while (1) {
4989                 uint32_t next = nl->next;
4990                 if (next) {
4991                     nl->next = nl_size + (strlen(nl->name) + 1);
4992                 }
4993                 if (remaining_data < nl->next) {
4994                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
4995                     break;
4996                 }
4997                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
4998                 strcpy(cur_data + nl_size, nl->name);
4999                 cur_data += nl->next;
5000                 remaining_data -= nl->next;
5001                 if (!next) {
5002                     break;
5003                 }
5004                 nl = (void*)nl + next;
5005             }
5006             break;
5007         }
5008         case DM_DEV_WAIT:
5009         case DM_TABLE_STATUS:
5010         {
5011             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5012             void *cur_data = argptr;
5013             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5014             int spec_size = thunk_type_size(arg_type, 0);
5015             int i;
5016 
5017             for (i = 0; i < host_dm->target_count; i++) {
5018                 uint32_t next = spec->next;
5019                 int slen = strlen((char*)&spec[1]) + 1;
5020                 spec->next = (cur_data - argptr) + spec_size + slen;
5021                 if (guest_data_size < spec->next) {
5022                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5023                     break;
5024                 }
5025                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5026                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5027                 cur_data = argptr + spec->next;
5028                 spec = (void*)host_dm + host_dm->data_start + next;
5029             }
5030             break;
5031         }
5032         case DM_TABLE_DEPS:
5033         {
5034             void *hdata = (void*)host_dm + host_dm->data_start;
5035             int count = *(uint32_t*)hdata;
5036             uint64_t *hdev = hdata + 8;
5037             uint64_t *gdev = argptr + 8;
5038             int i;
5039 
5040             *(uint32_t*)argptr = tswap32(count);
5041             for (i = 0; i < count; i++) {
5042                 *gdev = tswap64(*hdev);
5043                 gdev++;
5044                 hdev++;
5045             }
5046             break;
5047         }
5048         case DM_LIST_VERSIONS:
5049         {
5050             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5051             uint32_t remaining_data = guest_data_size;
5052             void *cur_data = argptr;
5053             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5054             int vers_size = thunk_type_size(arg_type, 0);
5055 
5056             while (1) {
5057                 uint32_t next = vers->next;
5058                 if (next) {
5059                     vers->next = vers_size + (strlen(vers->name) + 1);
5060                 }
5061                 if (remaining_data < vers->next) {
5062                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5063                     break;
5064                 }
5065                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5066                 strcpy(cur_data + vers_size, vers->name);
5067                 cur_data += vers->next;
5068                 remaining_data -= vers->next;
5069                 if (!next) {
5070                     break;
5071                 }
5072                 vers = (void*)vers + next;
5073             }
5074             break;
5075         }
5076         default:
5077             unlock_user(argptr, guest_data, 0);
5078             ret = -TARGET_EINVAL;
5079             goto out;
5080         }
5081         unlock_user(argptr, guest_data, guest_data_size);
5082 
5083         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5084         if (!argptr) {
5085             ret = -TARGET_EFAULT;
5086             goto out;
5087         }
5088         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5089         unlock_user(argptr, arg, target_size);
5090     }
5091 out:
5092     g_free(big_buf);
5093     return ret;
5094 }
5095 
5096 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5097                                int cmd, abi_long arg)
5098 {
5099     void *argptr;
5100     int target_size;
5101     const argtype *arg_type = ie->arg_type;
5102     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5103     abi_long ret;
5104 
5105     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5106     struct blkpg_partition host_part;
5107 
5108     /* Read and convert blkpg */
5109     arg_type++;
5110     target_size = thunk_type_size(arg_type, 0);
5111     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5112     if (!argptr) {
5113         ret = -TARGET_EFAULT;
5114         goto out;
5115     }
5116     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5117     unlock_user(argptr, arg, 0);
5118 
5119     switch (host_blkpg->op) {
5120     case BLKPG_ADD_PARTITION:
5121     case BLKPG_DEL_PARTITION:
5122         /* payload is struct blkpg_partition */
5123         break;
5124     default:
5125         /* Unknown opcode */
5126         ret = -TARGET_EINVAL;
5127         goto out;
5128     }
5129 
5130     /* Read and convert blkpg->data */
5131     arg = (abi_long)(uintptr_t)host_blkpg->data;
5132     target_size = thunk_type_size(part_arg_type, 0);
5133     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5134     if (!argptr) {
5135         ret = -TARGET_EFAULT;
5136         goto out;
5137     }
5138     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5139     unlock_user(argptr, arg, 0);
5140 
5141     /* Swizzle the data pointer to our local copy and call! */
5142     host_blkpg->data = &host_part;
5143     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5144 
5145 out:
5146     return ret;
5147 }
5148 
5149 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5150                                 int fd, int cmd, abi_long arg)
5151 {
5152     const argtype *arg_type = ie->arg_type;
5153     const StructEntry *se;
5154     const argtype *field_types;
5155     const int *dst_offsets, *src_offsets;
5156     int target_size;
5157     void *argptr;
5158     abi_ulong *target_rt_dev_ptr = NULL;
5159     unsigned long *host_rt_dev_ptr = NULL;
5160     abi_long ret;
5161     int i;
5162 
5163     assert(ie->access == IOC_W);
5164     assert(*arg_type == TYPE_PTR);
5165     arg_type++;
5166     assert(*arg_type == TYPE_STRUCT);
5167     target_size = thunk_type_size(arg_type, 0);
5168     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5169     if (!argptr) {
5170         return -TARGET_EFAULT;
5171     }
5172     arg_type++;
5173     assert(*arg_type == (int)STRUCT_rtentry);
5174     se = struct_entries + *arg_type++;
5175     assert(se->convert[0] == NULL);
5176     /* convert struct here to be able to catch rt_dev string */
5177     field_types = se->field_types;
5178     dst_offsets = se->field_offsets[THUNK_HOST];
5179     src_offsets = se->field_offsets[THUNK_TARGET];
5180     for (i = 0; i < se->nb_fields; i++) {
5181         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5182             assert(*field_types == TYPE_PTRVOID);
5183             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5184             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5185             if (*target_rt_dev_ptr != 0) {
5186                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5187                                                   tswapal(*target_rt_dev_ptr));
5188                 if (!*host_rt_dev_ptr) {
5189                     unlock_user(argptr, arg, 0);
5190                     return -TARGET_EFAULT;
5191                 }
5192             } else {
5193                 *host_rt_dev_ptr = 0;
5194             }
5195             field_types++;
5196             continue;
5197         }
5198         field_types = thunk_convert(buf_temp + dst_offsets[i],
5199                                     argptr + src_offsets[i],
5200                                     field_types, THUNK_HOST);
5201     }
5202     unlock_user(argptr, arg, 0);
5203 
5204     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5205 
5206     assert(host_rt_dev_ptr != NULL);
5207     assert(target_rt_dev_ptr != NULL);
5208     if (*host_rt_dev_ptr != 0) {
5209         unlock_user((void *)*host_rt_dev_ptr,
5210                     *target_rt_dev_ptr, 0);
5211     }
5212     return ret;
5213 }
5214 
5215 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5216                                      int fd, int cmd, abi_long arg)
5217 {
5218     int sig = target_to_host_signal(arg);
5219     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5220 }
5221 
5222 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5223                                     int fd, int cmd, abi_long arg)
5224 {
5225     struct timeval tv;
5226     abi_long ret;
5227 
5228     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5229     if (is_error(ret)) {
5230         return ret;
5231     }
5232 
5233     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5234         if (copy_to_user_timeval(arg, &tv)) {
5235             return -TARGET_EFAULT;
5236         }
5237     } else {
5238         if (copy_to_user_timeval64(arg, &tv)) {
5239             return -TARGET_EFAULT;
5240         }
5241     }
5242 
5243     return ret;
5244 }
5245 
5246 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5247                                       int fd, int cmd, abi_long arg)
5248 {
5249     struct timespec ts;
5250     abi_long ret;
5251 
5252     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5253     if (is_error(ret)) {
5254         return ret;
5255     }
5256 
5257     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5258         if (host_to_target_timespec(arg, &ts)) {
5259             return -TARGET_EFAULT;
5260         }
5261     } else{
5262         if (host_to_target_timespec64(arg, &ts)) {
5263             return -TARGET_EFAULT;
5264         }
5265     }
5266 
5267     return ret;
5268 }
5269 
5270 #ifdef TIOCGPTPEER
5271 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5272                                      int fd, int cmd, abi_long arg)
5273 {
5274     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5275     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5276 }
5277 #endif
5278 
5279 static IOCTLEntry ioctl_entries[] = {
5280 #define IOCTL(cmd, access, ...) \
5281     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5282 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5283     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5284 #define IOCTL_IGNORE(cmd) \
5285     { TARGET_ ## cmd, 0, #cmd },
5286 #include "ioctls.h"
5287     { 0, 0, },
5288 };
5289 
5290 /* ??? Implement proper locking for ioctls.  */
5291 /* do_ioctl() Must return target values and target errnos. */
5292 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5293 {
5294     const IOCTLEntry *ie;
5295     const argtype *arg_type;
5296     abi_long ret;
5297     uint8_t buf_temp[MAX_STRUCT_SIZE];
5298     int target_size;
5299     void *argptr;
5300 
5301     ie = ioctl_entries;
5302     for(;;) {
5303         if (ie->target_cmd == 0) {
5304             qemu_log_mask(
5305                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5306             return -TARGET_ENOSYS;
5307         }
5308         if (ie->target_cmd == cmd)
5309             break;
5310         ie++;
5311     }
5312     arg_type = ie->arg_type;
5313     if (ie->do_ioctl) {
5314         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5315     } else if (!ie->host_cmd) {
5316         /* Some architectures define BSD ioctls in their headers
5317            that are not implemented in Linux.  */
5318         return -TARGET_ENOSYS;
5319     }
5320 
5321     switch(arg_type[0]) {
5322     case TYPE_NULL:
5323         /* no argument */
5324         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5325         break;
5326     case TYPE_PTRVOID:
5327     case TYPE_INT:
5328     case TYPE_LONG:
5329     case TYPE_ULONG:
5330         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5331         break;
5332     case TYPE_PTR:
5333         arg_type++;
5334         target_size = thunk_type_size(arg_type, 0);
5335         switch(ie->access) {
5336         case IOC_R:
5337             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5338             if (!is_error(ret)) {
5339                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5340                 if (!argptr)
5341                     return -TARGET_EFAULT;
5342                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5343                 unlock_user(argptr, arg, target_size);
5344             }
5345             break;
5346         case IOC_W:
5347             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5348             if (!argptr)
5349                 return -TARGET_EFAULT;
5350             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5351             unlock_user(argptr, arg, 0);
5352             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5353             break;
5354         default:
5355         case IOC_RW:
5356             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5357             if (!argptr)
5358                 return -TARGET_EFAULT;
5359             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5360             unlock_user(argptr, arg, 0);
5361             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5362             if (!is_error(ret)) {
5363                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5364                 if (!argptr)
5365                     return -TARGET_EFAULT;
5366                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5367                 unlock_user(argptr, arg, target_size);
5368             }
5369             break;
5370         }
5371         break;
5372     default:
5373         qemu_log_mask(LOG_UNIMP,
5374                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5375                       (long)cmd, arg_type[0]);
5376         ret = -TARGET_ENOSYS;
5377         break;
5378     }
5379     return ret;
5380 }
5381 
5382 static const bitmask_transtbl iflag_tbl[] = {
5383         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5384         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5385         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5386         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5387         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5388         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5389         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5390         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5391         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5392         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5393         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5394         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5395         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5396         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5397         { 0, 0, 0, 0 }
5398 };
5399 
5400 static const bitmask_transtbl oflag_tbl[] = {
5401 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5402 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5403 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5404 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5405 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5406 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5407 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5408 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5409 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5410 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5411 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5412 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5413 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5414 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5415 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5416 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5417 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5418 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5419 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5420 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5421 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5422 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5423 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5424 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5425 	{ 0, 0, 0, 0 }
5426 };
5427 
5428 static const bitmask_transtbl cflag_tbl[] = {
5429 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5430 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5431 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5432 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5433 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5434 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5435 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5436 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5437 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5438 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5439 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5440 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5441 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5442 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5443 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5444 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5445 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5446 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5447 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5448 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5449 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5450 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5451 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5452 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5453 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5454 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5455 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5456 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5457 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5458 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5459 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5460 	{ 0, 0, 0, 0 }
5461 };
5462 
5463 static const bitmask_transtbl lflag_tbl[] = {
5464 	{ TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5465 	{ TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5466 	{ TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5467 	{ TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5468 	{ TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5469 	{ TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5470 	{ TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5471 	{ TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5472 	{ TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5473 	{ TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5474 	{ TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5475 	{ TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5476 	{ TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5477 	{ TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5478 	{ TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5479 	{ 0, 0, 0, 0 }
5480 };
5481 
5482 static void target_to_host_termios (void *dst, const void *src)
5483 {
5484     struct host_termios *host = dst;
5485     const struct target_termios *target = src;
5486 
5487     host->c_iflag =
5488         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5489     host->c_oflag =
5490         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5491     host->c_cflag =
5492         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5493     host->c_lflag =
5494         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5495     host->c_line = target->c_line;
5496 
5497     memset(host->c_cc, 0, sizeof(host->c_cc));
5498     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5499     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5500     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5501     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5502     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5503     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5504     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5505     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5506     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5507     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5508     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5509     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5510     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5511     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5512     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5513     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5514     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5515 }
5516 
5517 static void host_to_target_termios (void *dst, const void *src)
5518 {
5519     struct target_termios *target = dst;
5520     const struct host_termios *host = src;
5521 
5522     target->c_iflag =
5523         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5524     target->c_oflag =
5525         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5526     target->c_cflag =
5527         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5528     target->c_lflag =
5529         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5530     target->c_line = host->c_line;
5531 
5532     memset(target->c_cc, 0, sizeof(target->c_cc));
5533     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5534     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5535     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5536     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5537     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5538     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5539     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5540     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5541     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5542     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5543     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5544     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5545     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5546     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5547     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5548     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5549     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5550 }
5551 
5552 static const StructEntry struct_termios_def = {
5553     .convert = { host_to_target_termios, target_to_host_termios },
5554     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5555     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5556 };
5557 
5558 static bitmask_transtbl mmap_flags_tbl[] = {
5559     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5560     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5561     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5562     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5563       MAP_ANONYMOUS, MAP_ANONYMOUS },
5564     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5565       MAP_GROWSDOWN, MAP_GROWSDOWN },
5566     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5567       MAP_DENYWRITE, MAP_DENYWRITE },
5568     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5569       MAP_EXECUTABLE, MAP_EXECUTABLE },
5570     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5571     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5572       MAP_NORESERVE, MAP_NORESERVE },
5573     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5574     /* MAP_STACK had been ignored by the kernel for quite some time.
5575        Recognize it for the target insofar as we do not want to pass
5576        it through to the host.  */
5577     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5578     { 0, 0, 0, 0 }
5579 };
5580 
5581 /*
5582  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5583  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5584  */
5585 #if defined(TARGET_I386)
5586 
5587 /* NOTE: there is really one LDT for all the threads */
5588 static uint8_t *ldt_table;
5589 
5590 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5591 {
5592     int size;
5593     void *p;
5594 
5595     if (!ldt_table)
5596         return 0;
5597     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5598     if (size > bytecount)
5599         size = bytecount;
5600     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5601     if (!p)
5602         return -TARGET_EFAULT;
5603     /* ??? Should this by byteswapped?  */
5604     memcpy(p, ldt_table, size);
5605     unlock_user(p, ptr, size);
5606     return size;
5607 }
5608 
5609 /* XXX: add locking support */
5610 static abi_long write_ldt(CPUX86State *env,
5611                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5612 {
5613     struct target_modify_ldt_ldt_s ldt_info;
5614     struct target_modify_ldt_ldt_s *target_ldt_info;
5615     int seg_32bit, contents, read_exec_only, limit_in_pages;
5616     int seg_not_present, useable, lm;
5617     uint32_t *lp, entry_1, entry_2;
5618 
5619     if (bytecount != sizeof(ldt_info))
5620         return -TARGET_EINVAL;
5621     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5622         return -TARGET_EFAULT;
5623     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5624     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5625     ldt_info.limit = tswap32(target_ldt_info->limit);
5626     ldt_info.flags = tswap32(target_ldt_info->flags);
5627     unlock_user_struct(target_ldt_info, ptr, 0);
5628 
5629     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5630         return -TARGET_EINVAL;
5631     seg_32bit = ldt_info.flags & 1;
5632     contents = (ldt_info.flags >> 1) & 3;
5633     read_exec_only = (ldt_info.flags >> 3) & 1;
5634     limit_in_pages = (ldt_info.flags >> 4) & 1;
5635     seg_not_present = (ldt_info.flags >> 5) & 1;
5636     useable = (ldt_info.flags >> 6) & 1;
5637 #ifdef TARGET_ABI32
5638     lm = 0;
5639 #else
5640     lm = (ldt_info.flags >> 7) & 1;
5641 #endif
5642     if (contents == 3) {
5643         if (oldmode)
5644             return -TARGET_EINVAL;
5645         if (seg_not_present == 0)
5646             return -TARGET_EINVAL;
5647     }
5648     /* allocate the LDT */
5649     if (!ldt_table) {
5650         env->ldt.base = target_mmap(0,
5651                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
5652                                     PROT_READ|PROT_WRITE,
5653                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
5654         if (env->ldt.base == -1)
5655             return -TARGET_ENOMEM;
5656         memset(g2h(env->ldt.base), 0,
5657                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
5658         env->ldt.limit = 0xffff;
5659         ldt_table = g2h(env->ldt.base);
5660     }
5661 
5662     /* NOTE: same code as Linux kernel */
5663     /* Allow LDTs to be cleared by the user. */
5664     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5665         if (oldmode ||
5666             (contents == 0		&&
5667              read_exec_only == 1	&&
5668              seg_32bit == 0		&&
5669              limit_in_pages == 0	&&
5670              seg_not_present == 1	&&
5671              useable == 0 )) {
5672             entry_1 = 0;
5673             entry_2 = 0;
5674             goto install;
5675         }
5676     }
5677 
5678     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5679         (ldt_info.limit & 0x0ffff);
5680     entry_2 = (ldt_info.base_addr & 0xff000000) |
5681         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5682         (ldt_info.limit & 0xf0000) |
5683         ((read_exec_only ^ 1) << 9) |
5684         (contents << 10) |
5685         ((seg_not_present ^ 1) << 15) |
5686         (seg_32bit << 22) |
5687         (limit_in_pages << 23) |
5688         (lm << 21) |
5689         0x7000;
5690     if (!oldmode)
5691         entry_2 |= (useable << 20);
5692 
5693     /* Install the new entry ...  */
5694 install:
5695     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
5696     lp[0] = tswap32(entry_1);
5697     lp[1] = tswap32(entry_2);
5698     return 0;
5699 }
5700 
5701 /* specific and weird i386 syscalls */
5702 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
5703                               unsigned long bytecount)
5704 {
5705     abi_long ret;
5706 
5707     switch (func) {
5708     case 0:
5709         ret = read_ldt(ptr, bytecount);
5710         break;
5711     case 1:
5712         ret = write_ldt(env, ptr, bytecount, 1);
5713         break;
5714     case 0x11:
5715         ret = write_ldt(env, ptr, bytecount, 0);
5716         break;
5717     default:
5718         ret = -TARGET_ENOSYS;
5719         break;
5720     }
5721     return ret;
5722 }
5723 
5724 #if defined(TARGET_ABI32)
5725 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
5726 {
5727     uint64_t *gdt_table = g2h(env->gdt.base);
5728     struct target_modify_ldt_ldt_s ldt_info;
5729     struct target_modify_ldt_ldt_s *target_ldt_info;
5730     int seg_32bit, contents, read_exec_only, limit_in_pages;
5731     int seg_not_present, useable, lm;
5732     uint32_t *lp, entry_1, entry_2;
5733     int i;
5734 
5735     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5736     if (!target_ldt_info)
5737         return -TARGET_EFAULT;
5738     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5739     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5740     ldt_info.limit = tswap32(target_ldt_info->limit);
5741     ldt_info.flags = tswap32(target_ldt_info->flags);
5742     if (ldt_info.entry_number == -1) {
5743         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
5744             if (gdt_table[i] == 0) {
5745                 ldt_info.entry_number = i;
5746                 target_ldt_info->entry_number = tswap32(i);
5747                 break;
5748             }
5749         }
5750     }
5751     unlock_user_struct(target_ldt_info, ptr, 1);
5752 
5753     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
5754         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
5755            return -TARGET_EINVAL;
5756     seg_32bit = ldt_info.flags & 1;
5757     contents = (ldt_info.flags >> 1) & 3;
5758     read_exec_only = (ldt_info.flags >> 3) & 1;
5759     limit_in_pages = (ldt_info.flags >> 4) & 1;
5760     seg_not_present = (ldt_info.flags >> 5) & 1;
5761     useable = (ldt_info.flags >> 6) & 1;
5762 #ifdef TARGET_ABI32
5763     lm = 0;
5764 #else
5765     lm = (ldt_info.flags >> 7) & 1;
5766 #endif
5767 
5768     if (contents == 3) {
5769         if (seg_not_present == 0)
5770             return -TARGET_EINVAL;
5771     }
5772 
5773     /* NOTE: same code as Linux kernel */
5774     /* Allow LDTs to be cleared by the user. */
5775     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5776         if ((contents == 0             &&
5777              read_exec_only == 1       &&
5778              seg_32bit == 0            &&
5779              limit_in_pages == 0       &&
5780              seg_not_present == 1      &&
5781              useable == 0 )) {
5782             entry_1 = 0;
5783             entry_2 = 0;
5784             goto install;
5785         }
5786     }
5787 
5788     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5789         (ldt_info.limit & 0x0ffff);
5790     entry_2 = (ldt_info.base_addr & 0xff000000) |
5791         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5792         (ldt_info.limit & 0xf0000) |
5793         ((read_exec_only ^ 1) << 9) |
5794         (contents << 10) |
5795         ((seg_not_present ^ 1) << 15) |
5796         (seg_32bit << 22) |
5797         (limit_in_pages << 23) |
5798         (useable << 20) |
5799         (lm << 21) |
5800         0x7000;
5801 
5802     /* Install the new entry ...  */
5803 install:
5804     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
5805     lp[0] = tswap32(entry_1);
5806     lp[1] = tswap32(entry_2);
5807     return 0;
5808 }
5809 
5810 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
5811 {
5812     struct target_modify_ldt_ldt_s *target_ldt_info;
5813     uint64_t *gdt_table = g2h(env->gdt.base);
5814     uint32_t base_addr, limit, flags;
5815     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
5816     int seg_not_present, useable, lm;
5817     uint32_t *lp, entry_1, entry_2;
5818 
5819     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5820     if (!target_ldt_info)
5821         return -TARGET_EFAULT;
5822     idx = tswap32(target_ldt_info->entry_number);
5823     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
5824         idx > TARGET_GDT_ENTRY_TLS_MAX) {
5825         unlock_user_struct(target_ldt_info, ptr, 1);
5826         return -TARGET_EINVAL;
5827     }
5828     lp = (uint32_t *)(gdt_table + idx);
5829     entry_1 = tswap32(lp[0]);
5830     entry_2 = tswap32(lp[1]);
5831 
5832     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
5833     contents = (entry_2 >> 10) & 3;
5834     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
5835     seg_32bit = (entry_2 >> 22) & 1;
5836     limit_in_pages = (entry_2 >> 23) & 1;
5837     useable = (entry_2 >> 20) & 1;
5838 #ifdef TARGET_ABI32
5839     lm = 0;
5840 #else
5841     lm = (entry_2 >> 21) & 1;
5842 #endif
5843     flags = (seg_32bit << 0) | (contents << 1) |
5844         (read_exec_only << 3) | (limit_in_pages << 4) |
5845         (seg_not_present << 5) | (useable << 6) | (lm << 7);
5846     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
5847     base_addr = (entry_1 >> 16) |
5848         (entry_2 & 0xff000000) |
5849         ((entry_2 & 0xff) << 16);
5850     target_ldt_info->base_addr = tswapal(base_addr);
5851     target_ldt_info->limit = tswap32(limit);
5852     target_ldt_info->flags = tswap32(flags);
5853     unlock_user_struct(target_ldt_info, ptr, 1);
5854     return 0;
5855 }
5856 
5857 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5858 {
5859     return -ENOSYS;
5860 }
5861 #else
5862 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5863 {
5864     abi_long ret = 0;
5865     abi_ulong val;
5866     int idx;
5867 
5868     switch(code) {
5869     case TARGET_ARCH_SET_GS:
5870     case TARGET_ARCH_SET_FS:
5871         if (code == TARGET_ARCH_SET_GS)
5872             idx = R_GS;
5873         else
5874             idx = R_FS;
5875         cpu_x86_load_seg(env, idx, 0);
5876         env->segs[idx].base = addr;
5877         break;
5878     case TARGET_ARCH_GET_GS:
5879     case TARGET_ARCH_GET_FS:
5880         if (code == TARGET_ARCH_GET_GS)
5881             idx = R_GS;
5882         else
5883             idx = R_FS;
5884         val = env->segs[idx].base;
5885         if (put_user(val, addr, abi_ulong))
5886             ret = -TARGET_EFAULT;
5887         break;
5888     default:
5889         ret = -TARGET_EINVAL;
5890         break;
5891     }
5892     return ret;
5893 }
5894 #endif /* defined(TARGET_ABI32 */
5895 
5896 #endif /* defined(TARGET_I386) */
5897 
5898 #define NEW_STACK_SIZE 0x40000
5899 
5900 
5901 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
5902 typedef struct {
5903     CPUArchState *env;
5904     pthread_mutex_t mutex;
5905     pthread_cond_t cond;
5906     pthread_t thread;
5907     uint32_t tid;
5908     abi_ulong child_tidptr;
5909     abi_ulong parent_tidptr;
5910     sigset_t sigmask;
5911 } new_thread_info;
5912 
5913 static void *clone_func(void *arg)
5914 {
5915     new_thread_info *info = arg;
5916     CPUArchState *env;
5917     CPUState *cpu;
5918     TaskState *ts;
5919 
5920     rcu_register_thread();
5921     tcg_register_thread();
5922     env = info->env;
5923     cpu = env_cpu(env);
5924     thread_cpu = cpu;
5925     ts = (TaskState *)cpu->opaque;
5926     info->tid = sys_gettid();
5927     task_settid(ts);
5928     if (info->child_tidptr)
5929         put_user_u32(info->tid, info->child_tidptr);
5930     if (info->parent_tidptr)
5931         put_user_u32(info->tid, info->parent_tidptr);
5932     qemu_guest_random_seed_thread_part2(cpu->random_seed);
5933     /* Enable signals.  */
5934     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
5935     /* Signal to the parent that we're ready.  */
5936     pthread_mutex_lock(&info->mutex);
5937     pthread_cond_broadcast(&info->cond);
5938     pthread_mutex_unlock(&info->mutex);
5939     /* Wait until the parent has finished initializing the tls state.  */
5940     pthread_mutex_lock(&clone_lock);
5941     pthread_mutex_unlock(&clone_lock);
5942     cpu_loop(env);
5943     /* never exits */
5944     return NULL;
5945 }
5946 
5947 /* do_fork() Must return host values and target errnos (unlike most
5948    do_*() functions). */
5949 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
5950                    abi_ulong parent_tidptr, target_ulong newtls,
5951                    abi_ulong child_tidptr)
5952 {
5953     CPUState *cpu = env_cpu(env);
5954     int ret;
5955     TaskState *ts;
5956     CPUState *new_cpu;
5957     CPUArchState *new_env;
5958     sigset_t sigmask;
5959 
5960     flags &= ~CLONE_IGNORED_FLAGS;
5961 
5962     /* Emulate vfork() with fork() */
5963     if (flags & CLONE_VFORK)
5964         flags &= ~(CLONE_VFORK | CLONE_VM);
5965 
5966     if (flags & CLONE_VM) {
5967         TaskState *parent_ts = (TaskState *)cpu->opaque;
5968         new_thread_info info;
5969         pthread_attr_t attr;
5970 
5971         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
5972             (flags & CLONE_INVALID_THREAD_FLAGS)) {
5973             return -TARGET_EINVAL;
5974         }
5975 
5976         ts = g_new0(TaskState, 1);
5977         init_task_state(ts);
5978 
5979         /* Grab a mutex so that thread setup appears atomic.  */
5980         pthread_mutex_lock(&clone_lock);
5981 
5982         /* we create a new CPU instance. */
5983         new_env = cpu_copy(env);
5984         /* Init regs that differ from the parent.  */
5985         cpu_clone_regs_child(new_env, newsp, flags);
5986         cpu_clone_regs_parent(env, flags);
5987         new_cpu = env_cpu(new_env);
5988         new_cpu->opaque = ts;
5989         ts->bprm = parent_ts->bprm;
5990         ts->info = parent_ts->info;
5991         ts->signal_mask = parent_ts->signal_mask;
5992 
5993         if (flags & CLONE_CHILD_CLEARTID) {
5994             ts->child_tidptr = child_tidptr;
5995         }
5996 
5997         if (flags & CLONE_SETTLS) {
5998             cpu_set_tls (new_env, newtls);
5999         }
6000 
6001         memset(&info, 0, sizeof(info));
6002         pthread_mutex_init(&info.mutex, NULL);
6003         pthread_mutex_lock(&info.mutex);
6004         pthread_cond_init(&info.cond, NULL);
6005         info.env = new_env;
6006         if (flags & CLONE_CHILD_SETTID) {
6007             info.child_tidptr = child_tidptr;
6008         }
6009         if (flags & CLONE_PARENT_SETTID) {
6010             info.parent_tidptr = parent_tidptr;
6011         }
6012 
6013         ret = pthread_attr_init(&attr);
6014         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6015         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6016         /* It is not safe to deliver signals until the child has finished
6017            initializing, so temporarily block all signals.  */
6018         sigfillset(&sigmask);
6019         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6020         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6021 
6022         /* If this is our first additional thread, we need to ensure we
6023          * generate code for parallel execution and flush old translations.
6024          */
6025         if (!parallel_cpus) {
6026             parallel_cpus = true;
6027             tb_flush(cpu);
6028         }
6029 
6030         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6031         /* TODO: Free new CPU state if thread creation failed.  */
6032 
6033         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6034         pthread_attr_destroy(&attr);
6035         if (ret == 0) {
6036             /* Wait for the child to initialize.  */
6037             pthread_cond_wait(&info.cond, &info.mutex);
6038             ret = info.tid;
6039         } else {
6040             ret = -1;
6041         }
6042         pthread_mutex_unlock(&info.mutex);
6043         pthread_cond_destroy(&info.cond);
6044         pthread_mutex_destroy(&info.mutex);
6045         pthread_mutex_unlock(&clone_lock);
6046     } else {
6047         /* if no CLONE_VM, we consider it is a fork */
6048         if (flags & CLONE_INVALID_FORK_FLAGS) {
6049             return -TARGET_EINVAL;
6050         }
6051 
6052         /* We can't support custom termination signals */
6053         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6054             return -TARGET_EINVAL;
6055         }
6056 
6057         if (block_signals()) {
6058             return -TARGET_ERESTARTSYS;
6059         }
6060 
6061         fork_start();
6062         ret = fork();
6063         if (ret == 0) {
6064             /* Child Process.  */
6065             cpu_clone_regs_child(env, newsp, flags);
6066             fork_end(1);
6067             /* There is a race condition here.  The parent process could
6068                theoretically read the TID in the child process before the child
6069                tid is set.  This would require using either ptrace
6070                (not implemented) or having *_tidptr to point at a shared memory
6071                mapping.  We can't repeat the spinlock hack used above because
6072                the child process gets its own copy of the lock.  */
6073             if (flags & CLONE_CHILD_SETTID)
6074                 put_user_u32(sys_gettid(), child_tidptr);
6075             if (flags & CLONE_PARENT_SETTID)
6076                 put_user_u32(sys_gettid(), parent_tidptr);
6077             ts = (TaskState *)cpu->opaque;
6078             if (flags & CLONE_SETTLS)
6079                 cpu_set_tls (env, newtls);
6080             if (flags & CLONE_CHILD_CLEARTID)
6081                 ts->child_tidptr = child_tidptr;
6082         } else {
6083             cpu_clone_regs_parent(env, flags);
6084             fork_end(0);
6085         }
6086     }
6087     return ret;
6088 }
6089 
6090 /* warning : doesn't handle linux specific flags... */
6091 static int target_to_host_fcntl_cmd(int cmd)
6092 {
6093     int ret;
6094 
6095     switch(cmd) {
6096     case TARGET_F_DUPFD:
6097     case TARGET_F_GETFD:
6098     case TARGET_F_SETFD:
6099     case TARGET_F_GETFL:
6100     case TARGET_F_SETFL:
6101         ret = cmd;
6102         break;
6103     case TARGET_F_GETLK:
6104         ret = F_GETLK64;
6105         break;
6106     case TARGET_F_SETLK:
6107         ret = F_SETLK64;
6108         break;
6109     case TARGET_F_SETLKW:
6110         ret = F_SETLKW64;
6111         break;
6112     case TARGET_F_GETOWN:
6113         ret = F_GETOWN;
6114         break;
6115     case TARGET_F_SETOWN:
6116         ret = F_SETOWN;
6117         break;
6118     case TARGET_F_GETSIG:
6119         ret = F_GETSIG;
6120         break;
6121     case TARGET_F_SETSIG:
6122         ret = F_SETSIG;
6123         break;
6124 #if TARGET_ABI_BITS == 32
6125     case TARGET_F_GETLK64:
6126         ret = F_GETLK64;
6127         break;
6128     case TARGET_F_SETLK64:
6129         ret = F_SETLK64;
6130         break;
6131     case TARGET_F_SETLKW64:
6132         ret = F_SETLKW64;
6133         break;
6134 #endif
6135     case TARGET_F_SETLEASE:
6136         ret = F_SETLEASE;
6137         break;
6138     case TARGET_F_GETLEASE:
6139         ret = F_GETLEASE;
6140         break;
6141 #ifdef F_DUPFD_CLOEXEC
6142     case TARGET_F_DUPFD_CLOEXEC:
6143         ret = F_DUPFD_CLOEXEC;
6144         break;
6145 #endif
6146     case TARGET_F_NOTIFY:
6147         ret = F_NOTIFY;
6148         break;
6149 #ifdef F_GETOWN_EX
6150     case TARGET_F_GETOWN_EX:
6151         ret = F_GETOWN_EX;
6152         break;
6153 #endif
6154 #ifdef F_SETOWN_EX
6155     case TARGET_F_SETOWN_EX:
6156         ret = F_SETOWN_EX;
6157         break;
6158 #endif
6159 #ifdef F_SETPIPE_SZ
6160     case TARGET_F_SETPIPE_SZ:
6161         ret = F_SETPIPE_SZ;
6162         break;
6163     case TARGET_F_GETPIPE_SZ:
6164         ret = F_GETPIPE_SZ;
6165         break;
6166 #endif
6167     default:
6168         ret = -TARGET_EINVAL;
6169         break;
6170     }
6171 
6172 #if defined(__powerpc64__)
6173     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6174      * is not supported by kernel. The glibc fcntl call actually adjusts
6175      * them to 5, 6 and 7 before making the syscall(). Since we make the
6176      * syscall directly, adjust to what is supported by the kernel.
6177      */
6178     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6179         ret -= F_GETLK64 - 5;
6180     }
6181 #endif
6182 
6183     return ret;
6184 }
6185 
6186 #define FLOCK_TRANSTBL \
6187     switch (type) { \
6188     TRANSTBL_CONVERT(F_RDLCK); \
6189     TRANSTBL_CONVERT(F_WRLCK); \
6190     TRANSTBL_CONVERT(F_UNLCK); \
6191     TRANSTBL_CONVERT(F_EXLCK); \
6192     TRANSTBL_CONVERT(F_SHLCK); \
6193     }
6194 
6195 static int target_to_host_flock(int type)
6196 {
6197 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6198     FLOCK_TRANSTBL
6199 #undef  TRANSTBL_CONVERT
6200     return -TARGET_EINVAL;
6201 }
6202 
6203 static int host_to_target_flock(int type)
6204 {
6205 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6206     FLOCK_TRANSTBL
6207 #undef  TRANSTBL_CONVERT
6208     /* if we don't know how to convert the value coming
6209      * from the host we copy to the target field as-is
6210      */
6211     return type;
6212 }
6213 
6214 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6215                                             abi_ulong target_flock_addr)
6216 {
6217     struct target_flock *target_fl;
6218     int l_type;
6219 
6220     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6221         return -TARGET_EFAULT;
6222     }
6223 
6224     __get_user(l_type, &target_fl->l_type);
6225     l_type = target_to_host_flock(l_type);
6226     if (l_type < 0) {
6227         return l_type;
6228     }
6229     fl->l_type = l_type;
6230     __get_user(fl->l_whence, &target_fl->l_whence);
6231     __get_user(fl->l_start, &target_fl->l_start);
6232     __get_user(fl->l_len, &target_fl->l_len);
6233     __get_user(fl->l_pid, &target_fl->l_pid);
6234     unlock_user_struct(target_fl, target_flock_addr, 0);
6235     return 0;
6236 }
6237 
6238 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6239                                           const struct flock64 *fl)
6240 {
6241     struct target_flock *target_fl;
6242     short l_type;
6243 
6244     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6245         return -TARGET_EFAULT;
6246     }
6247 
6248     l_type = host_to_target_flock(fl->l_type);
6249     __put_user(l_type, &target_fl->l_type);
6250     __put_user(fl->l_whence, &target_fl->l_whence);
6251     __put_user(fl->l_start, &target_fl->l_start);
6252     __put_user(fl->l_len, &target_fl->l_len);
6253     __put_user(fl->l_pid, &target_fl->l_pid);
6254     unlock_user_struct(target_fl, target_flock_addr, 1);
6255     return 0;
6256 }
6257 
6258 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6259 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6260 
6261 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6262 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6263                                                    abi_ulong target_flock_addr)
6264 {
6265     struct target_oabi_flock64 *target_fl;
6266     int l_type;
6267 
6268     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6269         return -TARGET_EFAULT;
6270     }
6271 
6272     __get_user(l_type, &target_fl->l_type);
6273     l_type = target_to_host_flock(l_type);
6274     if (l_type < 0) {
6275         return l_type;
6276     }
6277     fl->l_type = l_type;
6278     __get_user(fl->l_whence, &target_fl->l_whence);
6279     __get_user(fl->l_start, &target_fl->l_start);
6280     __get_user(fl->l_len, &target_fl->l_len);
6281     __get_user(fl->l_pid, &target_fl->l_pid);
6282     unlock_user_struct(target_fl, target_flock_addr, 0);
6283     return 0;
6284 }
6285 
6286 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6287                                                  const struct flock64 *fl)
6288 {
6289     struct target_oabi_flock64 *target_fl;
6290     short l_type;
6291 
6292     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6293         return -TARGET_EFAULT;
6294     }
6295 
6296     l_type = host_to_target_flock(fl->l_type);
6297     __put_user(l_type, &target_fl->l_type);
6298     __put_user(fl->l_whence, &target_fl->l_whence);
6299     __put_user(fl->l_start, &target_fl->l_start);
6300     __put_user(fl->l_len, &target_fl->l_len);
6301     __put_user(fl->l_pid, &target_fl->l_pid);
6302     unlock_user_struct(target_fl, target_flock_addr, 1);
6303     return 0;
6304 }
6305 #endif
6306 
6307 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6308                                               abi_ulong target_flock_addr)
6309 {
6310     struct target_flock64 *target_fl;
6311     int l_type;
6312 
6313     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6314         return -TARGET_EFAULT;
6315     }
6316 
6317     __get_user(l_type, &target_fl->l_type);
6318     l_type = target_to_host_flock(l_type);
6319     if (l_type < 0) {
6320         return l_type;
6321     }
6322     fl->l_type = l_type;
6323     __get_user(fl->l_whence, &target_fl->l_whence);
6324     __get_user(fl->l_start, &target_fl->l_start);
6325     __get_user(fl->l_len, &target_fl->l_len);
6326     __get_user(fl->l_pid, &target_fl->l_pid);
6327     unlock_user_struct(target_fl, target_flock_addr, 0);
6328     return 0;
6329 }
6330 
6331 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6332                                             const struct flock64 *fl)
6333 {
6334     struct target_flock64 *target_fl;
6335     short l_type;
6336 
6337     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6338         return -TARGET_EFAULT;
6339     }
6340 
6341     l_type = host_to_target_flock(fl->l_type);
6342     __put_user(l_type, &target_fl->l_type);
6343     __put_user(fl->l_whence, &target_fl->l_whence);
6344     __put_user(fl->l_start, &target_fl->l_start);
6345     __put_user(fl->l_len, &target_fl->l_len);
6346     __put_user(fl->l_pid, &target_fl->l_pid);
6347     unlock_user_struct(target_fl, target_flock_addr, 1);
6348     return 0;
6349 }
6350 
6351 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6352 {
6353     struct flock64 fl64;
6354 #ifdef F_GETOWN_EX
6355     struct f_owner_ex fox;
6356     struct target_f_owner_ex *target_fox;
6357 #endif
6358     abi_long ret;
6359     int host_cmd = target_to_host_fcntl_cmd(cmd);
6360 
6361     if (host_cmd == -TARGET_EINVAL)
6362 	    return host_cmd;
6363 
6364     switch(cmd) {
6365     case TARGET_F_GETLK:
6366         ret = copy_from_user_flock(&fl64, arg);
6367         if (ret) {
6368             return ret;
6369         }
6370         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6371         if (ret == 0) {
6372             ret = copy_to_user_flock(arg, &fl64);
6373         }
6374         break;
6375 
6376     case TARGET_F_SETLK:
6377     case TARGET_F_SETLKW:
6378         ret = copy_from_user_flock(&fl64, arg);
6379         if (ret) {
6380             return ret;
6381         }
6382         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6383         break;
6384 
6385     case TARGET_F_GETLK64:
6386         ret = copy_from_user_flock64(&fl64, arg);
6387         if (ret) {
6388             return ret;
6389         }
6390         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6391         if (ret == 0) {
6392             ret = copy_to_user_flock64(arg, &fl64);
6393         }
6394         break;
6395     case TARGET_F_SETLK64:
6396     case TARGET_F_SETLKW64:
6397         ret = copy_from_user_flock64(&fl64, arg);
6398         if (ret) {
6399             return ret;
6400         }
6401         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6402         break;
6403 
6404     case TARGET_F_GETFL:
6405         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6406         if (ret >= 0) {
6407             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6408         }
6409         break;
6410 
6411     case TARGET_F_SETFL:
6412         ret = get_errno(safe_fcntl(fd, host_cmd,
6413                                    target_to_host_bitmask(arg,
6414                                                           fcntl_flags_tbl)));
6415         break;
6416 
6417 #ifdef F_GETOWN_EX
6418     case TARGET_F_GETOWN_EX:
6419         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6420         if (ret >= 0) {
6421             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6422                 return -TARGET_EFAULT;
6423             target_fox->type = tswap32(fox.type);
6424             target_fox->pid = tswap32(fox.pid);
6425             unlock_user_struct(target_fox, arg, 1);
6426         }
6427         break;
6428 #endif
6429 
6430 #ifdef F_SETOWN_EX
6431     case TARGET_F_SETOWN_EX:
6432         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6433             return -TARGET_EFAULT;
6434         fox.type = tswap32(target_fox->type);
6435         fox.pid = tswap32(target_fox->pid);
6436         unlock_user_struct(target_fox, arg, 0);
6437         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6438         break;
6439 #endif
6440 
6441     case TARGET_F_SETOWN:
6442     case TARGET_F_GETOWN:
6443     case TARGET_F_SETSIG:
6444     case TARGET_F_GETSIG:
6445     case TARGET_F_SETLEASE:
6446     case TARGET_F_GETLEASE:
6447     case TARGET_F_SETPIPE_SZ:
6448     case TARGET_F_GETPIPE_SZ:
6449         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6450         break;
6451 
6452     default:
6453         ret = get_errno(safe_fcntl(fd, cmd, arg));
6454         break;
6455     }
6456     return ret;
6457 }
6458 
6459 #ifdef USE_UID16
6460 
6461 static inline int high2lowuid(int uid)
6462 {
6463     if (uid > 65535)
6464         return 65534;
6465     else
6466         return uid;
6467 }
6468 
6469 static inline int high2lowgid(int gid)
6470 {
6471     if (gid > 65535)
6472         return 65534;
6473     else
6474         return gid;
6475 }
6476 
6477 static inline int low2highuid(int uid)
6478 {
6479     if ((int16_t)uid == -1)
6480         return -1;
6481     else
6482         return uid;
6483 }
6484 
6485 static inline int low2highgid(int gid)
6486 {
6487     if ((int16_t)gid == -1)
6488         return -1;
6489     else
6490         return gid;
6491 }
6492 static inline int tswapid(int id)
6493 {
6494     return tswap16(id);
6495 }
6496 
6497 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6498 
6499 #else /* !USE_UID16 */
6500 static inline int high2lowuid(int uid)
6501 {
6502     return uid;
6503 }
6504 static inline int high2lowgid(int gid)
6505 {
6506     return gid;
6507 }
6508 static inline int low2highuid(int uid)
6509 {
6510     return uid;
6511 }
6512 static inline int low2highgid(int gid)
6513 {
6514     return gid;
6515 }
6516 static inline int tswapid(int id)
6517 {
6518     return tswap32(id);
6519 }
6520 
6521 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6522 
6523 #endif /* USE_UID16 */
6524 
6525 /* We must do direct syscalls for setting UID/GID, because we want to
6526  * implement the Linux system call semantics of "change only for this thread",
6527  * not the libc/POSIX semantics of "change for all threads in process".
6528  * (See http://ewontfix.com/17/ for more details.)
6529  * We use the 32-bit version of the syscalls if present; if it is not
6530  * then either the host architecture supports 32-bit UIDs natively with
6531  * the standard syscall, or the 16-bit UID is the best we can do.
6532  */
6533 #ifdef __NR_setuid32
6534 #define __NR_sys_setuid __NR_setuid32
6535 #else
6536 #define __NR_sys_setuid __NR_setuid
6537 #endif
6538 #ifdef __NR_setgid32
6539 #define __NR_sys_setgid __NR_setgid32
6540 #else
6541 #define __NR_sys_setgid __NR_setgid
6542 #endif
6543 #ifdef __NR_setresuid32
6544 #define __NR_sys_setresuid __NR_setresuid32
6545 #else
6546 #define __NR_sys_setresuid __NR_setresuid
6547 #endif
6548 #ifdef __NR_setresgid32
6549 #define __NR_sys_setresgid __NR_setresgid32
6550 #else
6551 #define __NR_sys_setresgid __NR_setresgid
6552 #endif
6553 
6554 _syscall1(int, sys_setuid, uid_t, uid)
6555 _syscall1(int, sys_setgid, gid_t, gid)
6556 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
6557 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
6558 
6559 void syscall_init(void)
6560 {
6561     IOCTLEntry *ie;
6562     const argtype *arg_type;
6563     int size;
6564     int i;
6565 
6566     thunk_init(STRUCT_MAX);
6567 
6568 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6569 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6570 #include "syscall_types.h"
6571 #undef STRUCT
6572 #undef STRUCT_SPECIAL
6573 
6574     /* Build target_to_host_errno_table[] table from
6575      * host_to_target_errno_table[]. */
6576     for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
6577         target_to_host_errno_table[host_to_target_errno_table[i]] = i;
6578     }
6579 
6580     /* we patch the ioctl size if necessary. We rely on the fact that
6581        no ioctl has all the bits at '1' in the size field */
6582     ie = ioctl_entries;
6583     while (ie->target_cmd != 0) {
6584         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
6585             TARGET_IOC_SIZEMASK) {
6586             arg_type = ie->arg_type;
6587             if (arg_type[0] != TYPE_PTR) {
6588                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
6589                         ie->target_cmd);
6590                 exit(1);
6591             }
6592             arg_type++;
6593             size = thunk_type_size(arg_type, 0);
6594             ie->target_cmd = (ie->target_cmd &
6595                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
6596                 (size << TARGET_IOC_SIZESHIFT);
6597         }
6598 
6599         /* automatic consistency check if same arch */
6600 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6601     (defined(__x86_64__) && defined(TARGET_X86_64))
6602         if (unlikely(ie->target_cmd != ie->host_cmd)) {
6603             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6604                     ie->name, ie->target_cmd, ie->host_cmd);
6605         }
6606 #endif
6607         ie++;
6608     }
6609 }
6610 
6611 #if TARGET_ABI_BITS == 32
6612 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
6613 {
6614 #ifdef TARGET_WORDS_BIGENDIAN
6615     return ((uint64_t)word0 << 32) | word1;
6616 #else
6617     return ((uint64_t)word1 << 32) | word0;
6618 #endif
6619 }
6620 #else /* TARGET_ABI_BITS == 32 */
6621 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
6622 {
6623     return word0;
6624 }
6625 #endif /* TARGET_ABI_BITS != 32 */
6626 
6627 #ifdef TARGET_NR_truncate64
6628 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
6629                                          abi_long arg2,
6630                                          abi_long arg3,
6631                                          abi_long arg4)
6632 {
6633     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
6634         arg2 = arg3;
6635         arg3 = arg4;
6636     }
6637     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
6638 }
6639 #endif
6640 
6641 #ifdef TARGET_NR_ftruncate64
6642 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
6643                                           abi_long arg2,
6644                                           abi_long arg3,
6645                                           abi_long arg4)
6646 {
6647     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
6648         arg2 = arg3;
6649         arg3 = arg4;
6650     }
6651     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
6652 }
6653 #endif
6654 
6655 #if defined(TARGET_NR_timer_settime) || \
6656     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
6657 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
6658                                                  abi_ulong target_addr)
6659 {
6660     struct target_itimerspec *target_itspec;
6661 
6662     if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
6663         return -TARGET_EFAULT;
6664     }
6665 
6666     host_itspec->it_interval.tv_sec =
6667                             tswapal(target_itspec->it_interval.tv_sec);
6668     host_itspec->it_interval.tv_nsec =
6669                             tswapal(target_itspec->it_interval.tv_nsec);
6670     host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
6671     host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
6672 
6673     unlock_user_struct(target_itspec, target_addr, 1);
6674     return 0;
6675 }
6676 #endif
6677 
6678 #if ((defined(TARGET_NR_timerfd_gettime) || \
6679       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
6680     defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
6681 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
6682                                                struct itimerspec *host_its)
6683 {
6684     struct target_itimerspec *target_itspec;
6685 
6686     if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
6687         return -TARGET_EFAULT;
6688     }
6689 
6690     target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
6691     target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
6692 
6693     target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
6694     target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
6695 
6696     unlock_user_struct(target_itspec, target_addr, 0);
6697     return 0;
6698 }
6699 #endif
6700 
6701 #if defined(TARGET_NR_adjtimex) || \
6702     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
6703 static inline abi_long target_to_host_timex(struct timex *host_tx,
6704                                             abi_long target_addr)
6705 {
6706     struct target_timex *target_tx;
6707 
6708     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
6709         return -TARGET_EFAULT;
6710     }
6711 
6712     __get_user(host_tx->modes, &target_tx->modes);
6713     __get_user(host_tx->offset, &target_tx->offset);
6714     __get_user(host_tx->freq, &target_tx->freq);
6715     __get_user(host_tx->maxerror, &target_tx->maxerror);
6716     __get_user(host_tx->esterror, &target_tx->esterror);
6717     __get_user(host_tx->status, &target_tx->status);
6718     __get_user(host_tx->constant, &target_tx->constant);
6719     __get_user(host_tx->precision, &target_tx->precision);
6720     __get_user(host_tx->tolerance, &target_tx->tolerance);
6721     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
6722     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
6723     __get_user(host_tx->tick, &target_tx->tick);
6724     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
6725     __get_user(host_tx->jitter, &target_tx->jitter);
6726     __get_user(host_tx->shift, &target_tx->shift);
6727     __get_user(host_tx->stabil, &target_tx->stabil);
6728     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
6729     __get_user(host_tx->calcnt, &target_tx->calcnt);
6730     __get_user(host_tx->errcnt, &target_tx->errcnt);
6731     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
6732     __get_user(host_tx->tai, &target_tx->tai);
6733 
6734     unlock_user_struct(target_tx, target_addr, 0);
6735     return 0;
6736 }
6737 
6738 static inline abi_long host_to_target_timex(abi_long target_addr,
6739                                             struct timex *host_tx)
6740 {
6741     struct target_timex *target_tx;
6742 
6743     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
6744         return -TARGET_EFAULT;
6745     }
6746 
6747     __put_user(host_tx->modes, &target_tx->modes);
6748     __put_user(host_tx->offset, &target_tx->offset);
6749     __put_user(host_tx->freq, &target_tx->freq);
6750     __put_user(host_tx->maxerror, &target_tx->maxerror);
6751     __put_user(host_tx->esterror, &target_tx->esterror);
6752     __put_user(host_tx->status, &target_tx->status);
6753     __put_user(host_tx->constant, &target_tx->constant);
6754     __put_user(host_tx->precision, &target_tx->precision);
6755     __put_user(host_tx->tolerance, &target_tx->tolerance);
6756     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
6757     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
6758     __put_user(host_tx->tick, &target_tx->tick);
6759     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
6760     __put_user(host_tx->jitter, &target_tx->jitter);
6761     __put_user(host_tx->shift, &target_tx->shift);
6762     __put_user(host_tx->stabil, &target_tx->stabil);
6763     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
6764     __put_user(host_tx->calcnt, &target_tx->calcnt);
6765     __put_user(host_tx->errcnt, &target_tx->errcnt);
6766     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
6767     __put_user(host_tx->tai, &target_tx->tai);
6768 
6769     unlock_user_struct(target_tx, target_addr, 1);
6770     return 0;
6771 }
6772 #endif
6773 
6774 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
6775                                                abi_ulong target_addr)
6776 {
6777     struct target_sigevent *target_sevp;
6778 
6779     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
6780         return -TARGET_EFAULT;
6781     }
6782 
6783     /* This union is awkward on 64 bit systems because it has a 32 bit
6784      * integer and a pointer in it; we follow the conversion approach
6785      * used for handling sigval types in signal.c so the guest should get
6786      * the correct value back even if we did a 64 bit byteswap and it's
6787      * using the 32 bit integer.
6788      */
6789     host_sevp->sigev_value.sival_ptr =
6790         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
6791     host_sevp->sigev_signo =
6792         target_to_host_signal(tswap32(target_sevp->sigev_signo));
6793     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
6794     host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
6795 
6796     unlock_user_struct(target_sevp, target_addr, 1);
6797     return 0;
6798 }
6799 
6800 #if defined(TARGET_NR_mlockall)
6801 static inline int target_to_host_mlockall_arg(int arg)
6802 {
6803     int result = 0;
6804 
6805     if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
6806         result |= MCL_CURRENT;
6807     }
6808     if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
6809         result |= MCL_FUTURE;
6810     }
6811     return result;
6812 }
6813 #endif
6814 
6815 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
6816      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
6817      defined(TARGET_NR_newfstatat))
6818 static inline abi_long host_to_target_stat64(void *cpu_env,
6819                                              abi_ulong target_addr,
6820                                              struct stat *host_st)
6821 {
6822 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
6823     if (((CPUARMState *)cpu_env)->eabi) {
6824         struct target_eabi_stat64 *target_st;
6825 
6826         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6827             return -TARGET_EFAULT;
6828         memset(target_st, 0, sizeof(struct target_eabi_stat64));
6829         __put_user(host_st->st_dev, &target_st->st_dev);
6830         __put_user(host_st->st_ino, &target_st->st_ino);
6831 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6832         __put_user(host_st->st_ino, &target_st->__st_ino);
6833 #endif
6834         __put_user(host_st->st_mode, &target_st->st_mode);
6835         __put_user(host_st->st_nlink, &target_st->st_nlink);
6836         __put_user(host_st->st_uid, &target_st->st_uid);
6837         __put_user(host_st->st_gid, &target_st->st_gid);
6838         __put_user(host_st->st_rdev, &target_st->st_rdev);
6839         __put_user(host_st->st_size, &target_st->st_size);
6840         __put_user(host_st->st_blksize, &target_st->st_blksize);
6841         __put_user(host_st->st_blocks, &target_st->st_blocks);
6842         __put_user(host_st->st_atime, &target_st->target_st_atime);
6843         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6844         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6845 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6846         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
6847         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
6848         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
6849 #endif
6850         unlock_user_struct(target_st, target_addr, 1);
6851     } else
6852 #endif
6853     {
6854 #if defined(TARGET_HAS_STRUCT_STAT64)
6855         struct target_stat64 *target_st;
6856 #else
6857         struct target_stat *target_st;
6858 #endif
6859 
6860         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6861             return -TARGET_EFAULT;
6862         memset(target_st, 0, sizeof(*target_st));
6863         __put_user(host_st->st_dev, &target_st->st_dev);
6864         __put_user(host_st->st_ino, &target_st->st_ino);
6865 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6866         __put_user(host_st->st_ino, &target_st->__st_ino);
6867 #endif
6868         __put_user(host_st->st_mode, &target_st->st_mode);
6869         __put_user(host_st->st_nlink, &target_st->st_nlink);
6870         __put_user(host_st->st_uid, &target_st->st_uid);
6871         __put_user(host_st->st_gid, &target_st->st_gid);
6872         __put_user(host_st->st_rdev, &target_st->st_rdev);
6873         /* XXX: better use of kernel struct */
6874         __put_user(host_st->st_size, &target_st->st_size);
6875         __put_user(host_st->st_blksize, &target_st->st_blksize);
6876         __put_user(host_st->st_blocks, &target_st->st_blocks);
6877         __put_user(host_st->st_atime, &target_st->target_st_atime);
6878         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6879         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6880 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6881         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
6882         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
6883         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
6884 #endif
6885         unlock_user_struct(target_st, target_addr, 1);
6886     }
6887 
6888     return 0;
6889 }
6890 #endif
6891 
6892 #if defined(TARGET_NR_statx) && defined(__NR_statx)
6893 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
6894                                             abi_ulong target_addr)
6895 {
6896     struct target_statx *target_stx;
6897 
6898     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
6899         return -TARGET_EFAULT;
6900     }
6901     memset(target_stx, 0, sizeof(*target_stx));
6902 
6903     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
6904     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
6905     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
6906     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
6907     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
6908     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
6909     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
6910     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
6911     __put_user(host_stx->stx_size, &target_stx->stx_size);
6912     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
6913     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
6914     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
6915     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
6916     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
6917     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
6918     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
6919     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
6920     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
6921     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
6922     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
6923     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
6924     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
6925     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
6926 
6927     unlock_user_struct(target_stx, target_addr, 1);
6928 
6929     return 0;
6930 }
6931 #endif
6932 
6933 static int do_sys_futex(int *uaddr, int op, int val,
6934                          const struct timespec *timeout, int *uaddr2,
6935                          int val3)
6936 {
6937 #if HOST_LONG_BITS == 64
6938 #if defined(__NR_futex)
6939     /* always a 64-bit time_t, it doesn't define _time64 version  */
6940     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
6941 
6942 #endif
6943 #else /* HOST_LONG_BITS == 64 */
6944 #if defined(__NR_futex_time64)
6945     if (sizeof(timeout->tv_sec) == 8) {
6946         /* _time64 function on 32bit arch */
6947         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
6948     }
6949 #endif
6950 #if defined(__NR_futex)
6951     /* old function on 32bit arch */
6952     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
6953 #endif
6954 #endif /* HOST_LONG_BITS == 64 */
6955     g_assert_not_reached();
6956 }
6957 
6958 static int do_safe_futex(int *uaddr, int op, int val,
6959                          const struct timespec *timeout, int *uaddr2,
6960                          int val3)
6961 {
6962 #if HOST_LONG_BITS == 64
6963 #if defined(__NR_futex)
6964     /* always a 64-bit time_t, it doesn't define _time64 version  */
6965     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
6966 #endif
6967 #else /* HOST_LONG_BITS == 64 */
6968 #if defined(__NR_futex_time64)
6969     if (sizeof(timeout->tv_sec) == 8) {
6970         /* _time64 function on 32bit arch */
6971         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
6972                                            val3));
6973     }
6974 #endif
6975 #if defined(__NR_futex)
6976     /* old function on 32bit arch */
6977     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
6978 #endif
6979 #endif /* HOST_LONG_BITS == 64 */
6980     return -TARGET_ENOSYS;
6981 }
6982 
6983 /* ??? Using host futex calls even when target atomic operations
6984    are not really atomic probably breaks things.  However implementing
6985    futexes locally would make futexes shared between multiple processes
6986    tricky.  However they're probably useless because guest atomic
6987    operations won't work either.  */
6988 #if defined(TARGET_NR_futex)
6989 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
6990                     target_ulong uaddr2, int val3)
6991 {
6992     struct timespec ts, *pts;
6993     int base_op;
6994 
6995     /* ??? We assume FUTEX_* constants are the same on both host
6996        and target.  */
6997 #ifdef FUTEX_CMD_MASK
6998     base_op = op & FUTEX_CMD_MASK;
6999 #else
7000     base_op = op;
7001 #endif
7002     switch (base_op) {
7003     case FUTEX_WAIT:
7004     case FUTEX_WAIT_BITSET:
7005         if (timeout) {
7006             pts = &ts;
7007             target_to_host_timespec(pts, timeout);
7008         } else {
7009             pts = NULL;
7010         }
7011         return do_safe_futex(g2h(uaddr), op, tswap32(val), pts, NULL, val3);
7012     case FUTEX_WAKE:
7013         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7014     case FUTEX_FD:
7015         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7016     case FUTEX_REQUEUE:
7017     case FUTEX_CMP_REQUEUE:
7018     case FUTEX_WAKE_OP:
7019         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7020            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7021            But the prototype takes a `struct timespec *'; insert casts
7022            to satisfy the compiler.  We do not need to tswap TIMEOUT
7023            since it's not compared to guest memory.  */
7024         pts = (struct timespec *)(uintptr_t) timeout;
7025         return do_safe_futex(g2h(uaddr), op, val, pts, g2h(uaddr2),
7026                              (base_op == FUTEX_CMP_REQUEUE
7027                                       ? tswap32(val3)
7028                                       : val3));
7029     default:
7030         return -TARGET_ENOSYS;
7031     }
7032 }
7033 #endif
7034 
7035 #if defined(TARGET_NR_futex_time64)
7036 static int do_futex_time64(target_ulong uaddr, int op, int val, target_ulong timeout,
7037                            target_ulong uaddr2, int val3)
7038 {
7039     struct timespec ts, *pts;
7040     int base_op;
7041 
7042     /* ??? We assume FUTEX_* constants are the same on both host
7043        and target.  */
7044 #ifdef FUTEX_CMD_MASK
7045     base_op = op & FUTEX_CMD_MASK;
7046 #else
7047     base_op = op;
7048 #endif
7049     switch (base_op) {
7050     case FUTEX_WAIT:
7051     case FUTEX_WAIT_BITSET:
7052         if (timeout) {
7053             pts = &ts;
7054             target_to_host_timespec64(pts, timeout);
7055         } else {
7056             pts = NULL;
7057         }
7058         return do_safe_futex(g2h(uaddr), op, tswap32(val), pts, NULL, val3);
7059     case FUTEX_WAKE:
7060         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7061     case FUTEX_FD:
7062         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7063     case FUTEX_REQUEUE:
7064     case FUTEX_CMP_REQUEUE:
7065     case FUTEX_WAKE_OP:
7066         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7067            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7068            But the prototype takes a `struct timespec *'; insert casts
7069            to satisfy the compiler.  We do not need to tswap TIMEOUT
7070            since it's not compared to guest memory.  */
7071         pts = (struct timespec *)(uintptr_t) timeout;
7072         return do_safe_futex(g2h(uaddr), op, val, pts, g2h(uaddr2),
7073                              (base_op == FUTEX_CMP_REQUEUE
7074                                       ? tswap32(val3)
7075                                       : val3));
7076     default:
7077         return -TARGET_ENOSYS;
7078     }
7079 }
7080 #endif
7081 
7082 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7083 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7084                                      abi_long handle, abi_long mount_id,
7085                                      abi_long flags)
7086 {
7087     struct file_handle *target_fh;
7088     struct file_handle *fh;
7089     int mid = 0;
7090     abi_long ret;
7091     char *name;
7092     unsigned int size, total_size;
7093 
7094     if (get_user_s32(size, handle)) {
7095         return -TARGET_EFAULT;
7096     }
7097 
7098     name = lock_user_string(pathname);
7099     if (!name) {
7100         return -TARGET_EFAULT;
7101     }
7102 
7103     total_size = sizeof(struct file_handle) + size;
7104     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7105     if (!target_fh) {
7106         unlock_user(name, pathname, 0);
7107         return -TARGET_EFAULT;
7108     }
7109 
7110     fh = g_malloc0(total_size);
7111     fh->handle_bytes = size;
7112 
7113     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7114     unlock_user(name, pathname, 0);
7115 
7116     /* man name_to_handle_at(2):
7117      * Other than the use of the handle_bytes field, the caller should treat
7118      * the file_handle structure as an opaque data type
7119      */
7120 
7121     memcpy(target_fh, fh, total_size);
7122     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7123     target_fh->handle_type = tswap32(fh->handle_type);
7124     g_free(fh);
7125     unlock_user(target_fh, handle, total_size);
7126 
7127     if (put_user_s32(mid, mount_id)) {
7128         return -TARGET_EFAULT;
7129     }
7130 
7131     return ret;
7132 
7133 }
7134 #endif
7135 
7136 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7137 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7138                                      abi_long flags)
7139 {
7140     struct file_handle *target_fh;
7141     struct file_handle *fh;
7142     unsigned int size, total_size;
7143     abi_long ret;
7144 
7145     if (get_user_s32(size, handle)) {
7146         return -TARGET_EFAULT;
7147     }
7148 
7149     total_size = sizeof(struct file_handle) + size;
7150     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7151     if (!target_fh) {
7152         return -TARGET_EFAULT;
7153     }
7154 
7155     fh = g_memdup(target_fh, total_size);
7156     fh->handle_bytes = size;
7157     fh->handle_type = tswap32(target_fh->handle_type);
7158 
7159     ret = get_errno(open_by_handle_at(mount_fd, fh,
7160                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7161 
7162     g_free(fh);
7163 
7164     unlock_user(target_fh, handle, total_size);
7165 
7166     return ret;
7167 }
7168 #endif
7169 
7170 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7171 
7172 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7173 {
7174     int host_flags;
7175     target_sigset_t *target_mask;
7176     sigset_t host_mask;
7177     abi_long ret;
7178 
7179     if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
7180         return -TARGET_EINVAL;
7181     }
7182     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7183         return -TARGET_EFAULT;
7184     }
7185 
7186     target_to_host_sigset(&host_mask, target_mask);
7187 
7188     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7189 
7190     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7191     if (ret >= 0) {
7192         fd_trans_register(ret, &target_signalfd_trans);
7193     }
7194 
7195     unlock_user_struct(target_mask, mask, 0);
7196 
7197     return ret;
7198 }
7199 #endif
7200 
7201 /* Map host to target signal numbers for the wait family of syscalls.
7202    Assume all other status bits are the same.  */
7203 int host_to_target_waitstatus(int status)
7204 {
7205     if (WIFSIGNALED(status)) {
7206         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7207     }
7208     if (WIFSTOPPED(status)) {
7209         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7210                | (status & 0xff);
7211     }
7212     return status;
7213 }
7214 
7215 static int open_self_cmdline(void *cpu_env, int fd)
7216 {
7217     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7218     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7219     int i;
7220 
7221     for (i = 0; i < bprm->argc; i++) {
7222         size_t len = strlen(bprm->argv[i]) + 1;
7223 
7224         if (write(fd, bprm->argv[i], len) != len) {
7225             return -1;
7226         }
7227     }
7228 
7229     return 0;
7230 }
7231 
7232 static int open_self_maps(void *cpu_env, int fd)
7233 {
7234     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7235     TaskState *ts = cpu->opaque;
7236     GSList *map_info = read_self_maps();
7237     GSList *s;
7238     int count;
7239 
7240     for (s = map_info; s; s = g_slist_next(s)) {
7241         MapInfo *e = (MapInfo *) s->data;
7242 
7243         if (h2g_valid(e->start)) {
7244             unsigned long min = e->start;
7245             unsigned long max = e->end;
7246             int flags = page_get_flags(h2g(min));
7247             const char *path;
7248 
7249             max = h2g_valid(max - 1) ?
7250                 max : (uintptr_t) g2h(GUEST_ADDR_MAX) + 1;
7251 
7252             if (page_check_range(h2g(min), max - min, flags) == -1) {
7253                 continue;
7254             }
7255 
7256             if (h2g(min) == ts->info->stack_limit) {
7257                 path = "[stack]";
7258             } else {
7259                 path = e->path;
7260             }
7261 
7262             count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
7263                             " %c%c%c%c %08" PRIx64 " %s %"PRId64,
7264                             h2g(min), h2g(max - 1) + 1,
7265                             e->is_read ? 'r' : '-',
7266                             e->is_write ? 'w' : '-',
7267                             e->is_exec ? 'x' : '-',
7268                             e->is_priv ? 'p' : '-',
7269                             (uint64_t) e->offset, e->dev, e->inode);
7270             if (path) {
7271                 dprintf(fd, "%*s%s\n", 73 - count, "", path);
7272             } else {
7273                 dprintf(fd, "\n");
7274             }
7275         }
7276     }
7277 
7278     free_self_maps(map_info);
7279 
7280 #ifdef TARGET_VSYSCALL_PAGE
7281     /*
7282      * We only support execution from the vsyscall page.
7283      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
7284      */
7285     count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
7286                     " --xp 00000000 00:00 0",
7287                     TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
7288     dprintf(fd, "%*s%s\n", 73 - count, "",  "[vsyscall]");
7289 #endif
7290 
7291     return 0;
7292 }
7293 
7294 static int open_self_stat(void *cpu_env, int fd)
7295 {
7296     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7297     TaskState *ts = cpu->opaque;
7298     g_autoptr(GString) buf = g_string_new(NULL);
7299     int i;
7300 
7301     for (i = 0; i < 44; i++) {
7302         if (i == 0) {
7303             /* pid */
7304             g_string_printf(buf, FMT_pid " ", getpid());
7305         } else if (i == 1) {
7306             /* app name */
7307             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
7308             bin = bin ? bin + 1 : ts->bprm->argv[0];
7309             g_string_printf(buf, "(%.15s) ", bin);
7310         } else if (i == 27) {
7311             /* stack bottom */
7312             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
7313         } else {
7314             /* for the rest, there is MasterCard */
7315             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
7316         }
7317 
7318         if (write(fd, buf->str, buf->len) != buf->len) {
7319             return -1;
7320         }
7321     }
7322 
7323     return 0;
7324 }
7325 
7326 static int open_self_auxv(void *cpu_env, int fd)
7327 {
7328     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7329     TaskState *ts = cpu->opaque;
7330     abi_ulong auxv = ts->info->saved_auxv;
7331     abi_ulong len = ts->info->auxv_len;
7332     char *ptr;
7333 
7334     /*
7335      * Auxiliary vector is stored in target process stack.
7336      * read in whole auxv vector and copy it to file
7337      */
7338     ptr = lock_user(VERIFY_READ, auxv, len, 0);
7339     if (ptr != NULL) {
7340         while (len > 0) {
7341             ssize_t r;
7342             r = write(fd, ptr, len);
7343             if (r <= 0) {
7344                 break;
7345             }
7346             len -= r;
7347             ptr += r;
7348         }
7349         lseek(fd, 0, SEEK_SET);
7350         unlock_user(ptr, auxv, len);
7351     }
7352 
7353     return 0;
7354 }
7355 
7356 static int is_proc_myself(const char *filename, const char *entry)
7357 {
7358     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7359         filename += strlen("/proc/");
7360         if (!strncmp(filename, "self/", strlen("self/"))) {
7361             filename += strlen("self/");
7362         } else if (*filename >= '1' && *filename <= '9') {
7363             char myself[80];
7364             snprintf(myself, sizeof(myself), "%d/", getpid());
7365             if (!strncmp(filename, myself, strlen(myself))) {
7366                 filename += strlen(myself);
7367             } else {
7368                 return 0;
7369             }
7370         } else {
7371             return 0;
7372         }
7373         if (!strcmp(filename, entry)) {
7374             return 1;
7375         }
7376     }
7377     return 0;
7378 }
7379 
7380 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
7381     defined(TARGET_SPARC) || defined(TARGET_M68K)
7382 static int is_proc(const char *filename, const char *entry)
7383 {
7384     return strcmp(filename, entry) == 0;
7385 }
7386 #endif
7387 
7388 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7389 static int open_net_route(void *cpu_env, int fd)
7390 {
7391     FILE *fp;
7392     char *line = NULL;
7393     size_t len = 0;
7394     ssize_t read;
7395 
7396     fp = fopen("/proc/net/route", "r");
7397     if (fp == NULL) {
7398         return -1;
7399     }
7400 
7401     /* read header */
7402 
7403     read = getline(&line, &len, fp);
7404     dprintf(fd, "%s", line);
7405 
7406     /* read routes */
7407 
7408     while ((read = getline(&line, &len, fp)) != -1) {
7409         char iface[16];
7410         uint32_t dest, gw, mask;
7411         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
7412         int fields;
7413 
7414         fields = sscanf(line,
7415                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7416                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
7417                         &mask, &mtu, &window, &irtt);
7418         if (fields != 11) {
7419             continue;
7420         }
7421         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7422                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
7423                 metric, tswap32(mask), mtu, window, irtt);
7424     }
7425 
7426     free(line);
7427     fclose(fp);
7428 
7429     return 0;
7430 }
7431 #endif
7432 
7433 #if defined(TARGET_SPARC)
7434 static int open_cpuinfo(void *cpu_env, int fd)
7435 {
7436     dprintf(fd, "type\t\t: sun4u\n");
7437     return 0;
7438 }
7439 #endif
7440 
7441 #if defined(TARGET_M68K)
7442 static int open_hardware(void *cpu_env, int fd)
7443 {
7444     dprintf(fd, "Model:\t\tqemu-m68k\n");
7445     return 0;
7446 }
7447 #endif
7448 
7449 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
7450 {
7451     struct fake_open {
7452         const char *filename;
7453         int (*fill)(void *cpu_env, int fd);
7454         int (*cmp)(const char *s1, const char *s2);
7455     };
7456     const struct fake_open *fake_open;
7457     static const struct fake_open fakes[] = {
7458         { "maps", open_self_maps, is_proc_myself },
7459         { "stat", open_self_stat, is_proc_myself },
7460         { "auxv", open_self_auxv, is_proc_myself },
7461         { "cmdline", open_self_cmdline, is_proc_myself },
7462 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7463         { "/proc/net/route", open_net_route, is_proc },
7464 #endif
7465 #if defined(TARGET_SPARC)
7466         { "/proc/cpuinfo", open_cpuinfo, is_proc },
7467 #endif
7468 #if defined(TARGET_M68K)
7469         { "/proc/hardware", open_hardware, is_proc },
7470 #endif
7471         { NULL, NULL, NULL }
7472     };
7473 
7474     if (is_proc_myself(pathname, "exe")) {
7475         int execfd = qemu_getauxval(AT_EXECFD);
7476         return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
7477     }
7478 
7479     for (fake_open = fakes; fake_open->filename; fake_open++) {
7480         if (fake_open->cmp(pathname, fake_open->filename)) {
7481             break;
7482         }
7483     }
7484 
7485     if (fake_open->filename) {
7486         const char *tmpdir;
7487         char filename[PATH_MAX];
7488         int fd, r;
7489 
7490         /* create temporary file to map stat to */
7491         tmpdir = getenv("TMPDIR");
7492         if (!tmpdir)
7493             tmpdir = "/tmp";
7494         snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
7495         fd = mkstemp(filename);
7496         if (fd < 0) {
7497             return fd;
7498         }
7499         unlink(filename);
7500 
7501         if ((r = fake_open->fill(cpu_env, fd))) {
7502             int e = errno;
7503             close(fd);
7504             errno = e;
7505             return r;
7506         }
7507         lseek(fd, 0, SEEK_SET);
7508 
7509         return fd;
7510     }
7511 
7512     return safe_openat(dirfd, path(pathname), flags, mode);
7513 }
7514 
7515 #define TIMER_MAGIC 0x0caf0000
7516 #define TIMER_MAGIC_MASK 0xffff0000
7517 
7518 /* Convert QEMU provided timer ID back to internal 16bit index format */
7519 static target_timer_t get_timer_id(abi_long arg)
7520 {
7521     target_timer_t timerid = arg;
7522 
7523     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
7524         return -TARGET_EINVAL;
7525     }
7526 
7527     timerid &= 0xffff;
7528 
7529     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
7530         return -TARGET_EINVAL;
7531     }
7532 
7533     return timerid;
7534 }
7535 
7536 static int target_to_host_cpu_mask(unsigned long *host_mask,
7537                                    size_t host_size,
7538                                    abi_ulong target_addr,
7539                                    size_t target_size)
7540 {
7541     unsigned target_bits = sizeof(abi_ulong) * 8;
7542     unsigned host_bits = sizeof(*host_mask) * 8;
7543     abi_ulong *target_mask;
7544     unsigned i, j;
7545 
7546     assert(host_size >= target_size);
7547 
7548     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
7549     if (!target_mask) {
7550         return -TARGET_EFAULT;
7551     }
7552     memset(host_mask, 0, host_size);
7553 
7554     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7555         unsigned bit = i * target_bits;
7556         abi_ulong val;
7557 
7558         __get_user(val, &target_mask[i]);
7559         for (j = 0; j < target_bits; j++, bit++) {
7560             if (val & (1UL << j)) {
7561                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
7562             }
7563         }
7564     }
7565 
7566     unlock_user(target_mask, target_addr, 0);
7567     return 0;
7568 }
7569 
7570 static int host_to_target_cpu_mask(const unsigned long *host_mask,
7571                                    size_t host_size,
7572                                    abi_ulong target_addr,
7573                                    size_t target_size)
7574 {
7575     unsigned target_bits = sizeof(abi_ulong) * 8;
7576     unsigned host_bits = sizeof(*host_mask) * 8;
7577     abi_ulong *target_mask;
7578     unsigned i, j;
7579 
7580     assert(host_size >= target_size);
7581 
7582     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
7583     if (!target_mask) {
7584         return -TARGET_EFAULT;
7585     }
7586 
7587     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7588         unsigned bit = i * target_bits;
7589         abi_ulong val = 0;
7590 
7591         for (j = 0; j < target_bits; j++, bit++) {
7592             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
7593                 val |= 1UL << j;
7594             }
7595         }
7596         __put_user(val, &target_mask[i]);
7597     }
7598 
7599     unlock_user(target_mask, target_addr, target_size);
7600     return 0;
7601 }
7602 
7603 /* This is an internal helper for do_syscall so that it is easier
7604  * to have a single return point, so that actions, such as logging
7605  * of syscall results, can be performed.
7606  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
7607  */
7608 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
7609                             abi_long arg2, abi_long arg3, abi_long arg4,
7610                             abi_long arg5, abi_long arg6, abi_long arg7,
7611                             abi_long arg8)
7612 {
7613     CPUState *cpu = env_cpu(cpu_env);
7614     abi_long ret;
7615 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
7616     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
7617     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
7618     || defined(TARGET_NR_statx)
7619     struct stat st;
7620 #endif
7621 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
7622     || defined(TARGET_NR_fstatfs)
7623     struct statfs stfs;
7624 #endif
7625     void *p;
7626 
7627     switch(num) {
7628     case TARGET_NR_exit:
7629         /* In old applications this may be used to implement _exit(2).
7630            However in threaded applictions it is used for thread termination,
7631            and _exit_group is used for application termination.
7632            Do thread termination if we have more then one thread.  */
7633 
7634         if (block_signals()) {
7635             return -TARGET_ERESTARTSYS;
7636         }
7637 
7638         pthread_mutex_lock(&clone_lock);
7639 
7640         if (CPU_NEXT(first_cpu)) {
7641             TaskState *ts = cpu->opaque;
7642 
7643             object_property_set_bool(OBJECT(cpu), false, "realized", NULL);
7644             object_unref(OBJECT(cpu));
7645             /*
7646              * At this point the CPU should be unrealized and removed
7647              * from cpu lists. We can clean-up the rest of the thread
7648              * data without the lock held.
7649              */
7650 
7651             pthread_mutex_unlock(&clone_lock);
7652 
7653             if (ts->child_tidptr) {
7654                 put_user_u32(0, ts->child_tidptr);
7655                 do_sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
7656                           NULL, NULL, 0);
7657             }
7658             thread_cpu = NULL;
7659             g_free(ts);
7660             rcu_unregister_thread();
7661             pthread_exit(NULL);
7662         }
7663 
7664         pthread_mutex_unlock(&clone_lock);
7665         preexit_cleanup(cpu_env, arg1);
7666         _exit(arg1);
7667         return 0; /* avoid warning */
7668     case TARGET_NR_read:
7669         if (arg2 == 0 && arg3 == 0) {
7670             return get_errno(safe_read(arg1, 0, 0));
7671         } else {
7672             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
7673                 return -TARGET_EFAULT;
7674             ret = get_errno(safe_read(arg1, p, arg3));
7675             if (ret >= 0 &&
7676                 fd_trans_host_to_target_data(arg1)) {
7677                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
7678             }
7679             unlock_user(p, arg2, ret);
7680         }
7681         return ret;
7682     case TARGET_NR_write:
7683         if (arg2 == 0 && arg3 == 0) {
7684             return get_errno(safe_write(arg1, 0, 0));
7685         }
7686         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
7687             return -TARGET_EFAULT;
7688         if (fd_trans_target_to_host_data(arg1)) {
7689             void *copy = g_malloc(arg3);
7690             memcpy(copy, p, arg3);
7691             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
7692             if (ret >= 0) {
7693                 ret = get_errno(safe_write(arg1, copy, ret));
7694             }
7695             g_free(copy);
7696         } else {
7697             ret = get_errno(safe_write(arg1, p, arg3));
7698         }
7699         unlock_user(p, arg2, 0);
7700         return ret;
7701 
7702 #ifdef TARGET_NR_open
7703     case TARGET_NR_open:
7704         if (!(p = lock_user_string(arg1)))
7705             return -TARGET_EFAULT;
7706         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
7707                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
7708                                   arg3));
7709         fd_trans_unregister(ret);
7710         unlock_user(p, arg1, 0);
7711         return ret;
7712 #endif
7713     case TARGET_NR_openat:
7714         if (!(p = lock_user_string(arg2)))
7715             return -TARGET_EFAULT;
7716         ret = get_errno(do_openat(cpu_env, arg1, p,
7717                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
7718                                   arg4));
7719         fd_trans_unregister(ret);
7720         unlock_user(p, arg2, 0);
7721         return ret;
7722 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7723     case TARGET_NR_name_to_handle_at:
7724         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
7725         return ret;
7726 #endif
7727 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7728     case TARGET_NR_open_by_handle_at:
7729         ret = do_open_by_handle_at(arg1, arg2, arg3);
7730         fd_trans_unregister(ret);
7731         return ret;
7732 #endif
7733     case TARGET_NR_close:
7734         fd_trans_unregister(arg1);
7735         return get_errno(close(arg1));
7736 
7737     case TARGET_NR_brk:
7738         return do_brk(arg1);
7739 #ifdef TARGET_NR_fork
7740     case TARGET_NR_fork:
7741         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
7742 #endif
7743 #ifdef TARGET_NR_waitpid
7744     case TARGET_NR_waitpid:
7745         {
7746             int status;
7747             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
7748             if (!is_error(ret) && arg2 && ret
7749                 && put_user_s32(host_to_target_waitstatus(status), arg2))
7750                 return -TARGET_EFAULT;
7751         }
7752         return ret;
7753 #endif
7754 #ifdef TARGET_NR_waitid
7755     case TARGET_NR_waitid:
7756         {
7757             siginfo_t info;
7758             info.si_pid = 0;
7759             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
7760             if (!is_error(ret) && arg3 && info.si_pid != 0) {
7761                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
7762                     return -TARGET_EFAULT;
7763                 host_to_target_siginfo(p, &info);
7764                 unlock_user(p, arg3, sizeof(target_siginfo_t));
7765             }
7766         }
7767         return ret;
7768 #endif
7769 #ifdef TARGET_NR_creat /* not on alpha */
7770     case TARGET_NR_creat:
7771         if (!(p = lock_user_string(arg1)))
7772             return -TARGET_EFAULT;
7773         ret = get_errno(creat(p, arg2));
7774         fd_trans_unregister(ret);
7775         unlock_user(p, arg1, 0);
7776         return ret;
7777 #endif
7778 #ifdef TARGET_NR_link
7779     case TARGET_NR_link:
7780         {
7781             void * p2;
7782             p = lock_user_string(arg1);
7783             p2 = lock_user_string(arg2);
7784             if (!p || !p2)
7785                 ret = -TARGET_EFAULT;
7786             else
7787                 ret = get_errno(link(p, p2));
7788             unlock_user(p2, arg2, 0);
7789             unlock_user(p, arg1, 0);
7790         }
7791         return ret;
7792 #endif
7793 #if defined(TARGET_NR_linkat)
7794     case TARGET_NR_linkat:
7795         {
7796             void * p2 = NULL;
7797             if (!arg2 || !arg4)
7798                 return -TARGET_EFAULT;
7799             p  = lock_user_string(arg2);
7800             p2 = lock_user_string(arg4);
7801             if (!p || !p2)
7802                 ret = -TARGET_EFAULT;
7803             else
7804                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
7805             unlock_user(p, arg2, 0);
7806             unlock_user(p2, arg4, 0);
7807         }
7808         return ret;
7809 #endif
7810 #ifdef TARGET_NR_unlink
7811     case TARGET_NR_unlink:
7812         if (!(p = lock_user_string(arg1)))
7813             return -TARGET_EFAULT;
7814         ret = get_errno(unlink(p));
7815         unlock_user(p, arg1, 0);
7816         return ret;
7817 #endif
7818 #if defined(TARGET_NR_unlinkat)
7819     case TARGET_NR_unlinkat:
7820         if (!(p = lock_user_string(arg2)))
7821             return -TARGET_EFAULT;
7822         ret = get_errno(unlinkat(arg1, p, arg3));
7823         unlock_user(p, arg2, 0);
7824         return ret;
7825 #endif
7826     case TARGET_NR_execve:
7827         {
7828             char **argp, **envp;
7829             int argc, envc;
7830             abi_ulong gp;
7831             abi_ulong guest_argp;
7832             abi_ulong guest_envp;
7833             abi_ulong addr;
7834             char **q;
7835             int total_size = 0;
7836 
7837             argc = 0;
7838             guest_argp = arg2;
7839             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
7840                 if (get_user_ual(addr, gp))
7841                     return -TARGET_EFAULT;
7842                 if (!addr)
7843                     break;
7844                 argc++;
7845             }
7846             envc = 0;
7847             guest_envp = arg3;
7848             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
7849                 if (get_user_ual(addr, gp))
7850                     return -TARGET_EFAULT;
7851                 if (!addr)
7852                     break;
7853                 envc++;
7854             }
7855 
7856             argp = g_new0(char *, argc + 1);
7857             envp = g_new0(char *, envc + 1);
7858 
7859             for (gp = guest_argp, q = argp; gp;
7860                   gp += sizeof(abi_ulong), q++) {
7861                 if (get_user_ual(addr, gp))
7862                     goto execve_efault;
7863                 if (!addr)
7864                     break;
7865                 if (!(*q = lock_user_string(addr)))
7866                     goto execve_efault;
7867                 total_size += strlen(*q) + 1;
7868             }
7869             *q = NULL;
7870 
7871             for (gp = guest_envp, q = envp; gp;
7872                   gp += sizeof(abi_ulong), q++) {
7873                 if (get_user_ual(addr, gp))
7874                     goto execve_efault;
7875                 if (!addr)
7876                     break;
7877                 if (!(*q = lock_user_string(addr)))
7878                     goto execve_efault;
7879                 total_size += strlen(*q) + 1;
7880             }
7881             *q = NULL;
7882 
7883             if (!(p = lock_user_string(arg1)))
7884                 goto execve_efault;
7885             /* Although execve() is not an interruptible syscall it is
7886              * a special case where we must use the safe_syscall wrapper:
7887              * if we allow a signal to happen before we make the host
7888              * syscall then we will 'lose' it, because at the point of
7889              * execve the process leaves QEMU's control. So we use the
7890              * safe syscall wrapper to ensure that we either take the
7891              * signal as a guest signal, or else it does not happen
7892              * before the execve completes and makes it the other
7893              * program's problem.
7894              */
7895             ret = get_errno(safe_execve(p, argp, envp));
7896             unlock_user(p, arg1, 0);
7897 
7898             goto execve_end;
7899 
7900         execve_efault:
7901             ret = -TARGET_EFAULT;
7902 
7903         execve_end:
7904             for (gp = guest_argp, q = argp; *q;
7905                   gp += sizeof(abi_ulong), q++) {
7906                 if (get_user_ual(addr, gp)
7907                     || !addr)
7908                     break;
7909                 unlock_user(*q, addr, 0);
7910             }
7911             for (gp = guest_envp, q = envp; *q;
7912                   gp += sizeof(abi_ulong), q++) {
7913                 if (get_user_ual(addr, gp)
7914                     || !addr)
7915                     break;
7916                 unlock_user(*q, addr, 0);
7917             }
7918 
7919             g_free(argp);
7920             g_free(envp);
7921         }
7922         return ret;
7923     case TARGET_NR_chdir:
7924         if (!(p = lock_user_string(arg1)))
7925             return -TARGET_EFAULT;
7926         ret = get_errno(chdir(p));
7927         unlock_user(p, arg1, 0);
7928         return ret;
7929 #ifdef TARGET_NR_time
7930     case TARGET_NR_time:
7931         {
7932             time_t host_time;
7933             ret = get_errno(time(&host_time));
7934             if (!is_error(ret)
7935                 && arg1
7936                 && put_user_sal(host_time, arg1))
7937                 return -TARGET_EFAULT;
7938         }
7939         return ret;
7940 #endif
7941 #ifdef TARGET_NR_mknod
7942     case TARGET_NR_mknod:
7943         if (!(p = lock_user_string(arg1)))
7944             return -TARGET_EFAULT;
7945         ret = get_errno(mknod(p, arg2, arg3));
7946         unlock_user(p, arg1, 0);
7947         return ret;
7948 #endif
7949 #if defined(TARGET_NR_mknodat)
7950     case TARGET_NR_mknodat:
7951         if (!(p = lock_user_string(arg2)))
7952             return -TARGET_EFAULT;
7953         ret = get_errno(mknodat(arg1, p, arg3, arg4));
7954         unlock_user(p, arg2, 0);
7955         return ret;
7956 #endif
7957 #ifdef TARGET_NR_chmod
7958     case TARGET_NR_chmod:
7959         if (!(p = lock_user_string(arg1)))
7960             return -TARGET_EFAULT;
7961         ret = get_errno(chmod(p, arg2));
7962         unlock_user(p, arg1, 0);
7963         return ret;
7964 #endif
7965 #ifdef TARGET_NR_lseek
7966     case TARGET_NR_lseek:
7967         return get_errno(lseek(arg1, arg2, arg3));
7968 #endif
7969 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
7970     /* Alpha specific */
7971     case TARGET_NR_getxpid:
7972         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
7973         return get_errno(getpid());
7974 #endif
7975 #ifdef TARGET_NR_getpid
7976     case TARGET_NR_getpid:
7977         return get_errno(getpid());
7978 #endif
7979     case TARGET_NR_mount:
7980         {
7981             /* need to look at the data field */
7982             void *p2, *p3;
7983 
7984             if (arg1) {
7985                 p = lock_user_string(arg1);
7986                 if (!p) {
7987                     return -TARGET_EFAULT;
7988                 }
7989             } else {
7990                 p = NULL;
7991             }
7992 
7993             p2 = lock_user_string(arg2);
7994             if (!p2) {
7995                 if (arg1) {
7996                     unlock_user(p, arg1, 0);
7997                 }
7998                 return -TARGET_EFAULT;
7999             }
8000 
8001             if (arg3) {
8002                 p3 = lock_user_string(arg3);
8003                 if (!p3) {
8004                     if (arg1) {
8005                         unlock_user(p, arg1, 0);
8006                     }
8007                     unlock_user(p2, arg2, 0);
8008                     return -TARGET_EFAULT;
8009                 }
8010             } else {
8011                 p3 = NULL;
8012             }
8013 
8014             /* FIXME - arg5 should be locked, but it isn't clear how to
8015              * do that since it's not guaranteed to be a NULL-terminated
8016              * string.
8017              */
8018             if (!arg5) {
8019                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8020             } else {
8021                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
8022             }
8023             ret = get_errno(ret);
8024 
8025             if (arg1) {
8026                 unlock_user(p, arg1, 0);
8027             }
8028             unlock_user(p2, arg2, 0);
8029             if (arg3) {
8030                 unlock_user(p3, arg3, 0);
8031             }
8032         }
8033         return ret;
8034 #ifdef TARGET_NR_umount
8035     case TARGET_NR_umount:
8036         if (!(p = lock_user_string(arg1)))
8037             return -TARGET_EFAULT;
8038         ret = get_errno(umount(p));
8039         unlock_user(p, arg1, 0);
8040         return ret;
8041 #endif
8042 #ifdef TARGET_NR_stime /* not on alpha */
8043     case TARGET_NR_stime:
8044         {
8045             struct timespec ts;
8046             ts.tv_nsec = 0;
8047             if (get_user_sal(ts.tv_sec, arg1)) {
8048                 return -TARGET_EFAULT;
8049             }
8050             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
8051         }
8052 #endif
8053 #ifdef TARGET_NR_alarm /* not on alpha */
8054     case TARGET_NR_alarm:
8055         return alarm(arg1);
8056 #endif
8057 #ifdef TARGET_NR_pause /* not on alpha */
8058     case TARGET_NR_pause:
8059         if (!block_signals()) {
8060             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
8061         }
8062         return -TARGET_EINTR;
8063 #endif
8064 #ifdef TARGET_NR_utime
8065     case TARGET_NR_utime:
8066         {
8067             struct utimbuf tbuf, *host_tbuf;
8068             struct target_utimbuf *target_tbuf;
8069             if (arg2) {
8070                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
8071                     return -TARGET_EFAULT;
8072                 tbuf.actime = tswapal(target_tbuf->actime);
8073                 tbuf.modtime = tswapal(target_tbuf->modtime);
8074                 unlock_user_struct(target_tbuf, arg2, 0);
8075                 host_tbuf = &tbuf;
8076             } else {
8077                 host_tbuf = NULL;
8078             }
8079             if (!(p = lock_user_string(arg1)))
8080                 return -TARGET_EFAULT;
8081             ret = get_errno(utime(p, host_tbuf));
8082             unlock_user(p, arg1, 0);
8083         }
8084         return ret;
8085 #endif
8086 #ifdef TARGET_NR_utimes
8087     case TARGET_NR_utimes:
8088         {
8089             struct timeval *tvp, tv[2];
8090             if (arg2) {
8091                 if (copy_from_user_timeval(&tv[0], arg2)
8092                     || copy_from_user_timeval(&tv[1],
8093                                               arg2 + sizeof(struct target_timeval)))
8094                     return -TARGET_EFAULT;
8095                 tvp = tv;
8096             } else {
8097                 tvp = NULL;
8098             }
8099             if (!(p = lock_user_string(arg1)))
8100                 return -TARGET_EFAULT;
8101             ret = get_errno(utimes(p, tvp));
8102             unlock_user(p, arg1, 0);
8103         }
8104         return ret;
8105 #endif
8106 #if defined(TARGET_NR_futimesat)
8107     case TARGET_NR_futimesat:
8108         {
8109             struct timeval *tvp, tv[2];
8110             if (arg3) {
8111                 if (copy_from_user_timeval(&tv[0], arg3)
8112                     || copy_from_user_timeval(&tv[1],
8113                                               arg3 + sizeof(struct target_timeval)))
8114                     return -TARGET_EFAULT;
8115                 tvp = tv;
8116             } else {
8117                 tvp = NULL;
8118             }
8119             if (!(p = lock_user_string(arg2))) {
8120                 return -TARGET_EFAULT;
8121             }
8122             ret = get_errno(futimesat(arg1, path(p), tvp));
8123             unlock_user(p, arg2, 0);
8124         }
8125         return ret;
8126 #endif
8127 #ifdef TARGET_NR_access
8128     case TARGET_NR_access:
8129         if (!(p = lock_user_string(arg1))) {
8130             return -TARGET_EFAULT;
8131         }
8132         ret = get_errno(access(path(p), arg2));
8133         unlock_user(p, arg1, 0);
8134         return ret;
8135 #endif
8136 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8137     case TARGET_NR_faccessat:
8138         if (!(p = lock_user_string(arg2))) {
8139             return -TARGET_EFAULT;
8140         }
8141         ret = get_errno(faccessat(arg1, p, arg3, 0));
8142         unlock_user(p, arg2, 0);
8143         return ret;
8144 #endif
8145 #ifdef TARGET_NR_nice /* not on alpha */
8146     case TARGET_NR_nice:
8147         return get_errno(nice(arg1));
8148 #endif
8149     case TARGET_NR_sync:
8150         sync();
8151         return 0;
8152 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8153     case TARGET_NR_syncfs:
8154         return get_errno(syncfs(arg1));
8155 #endif
8156     case TARGET_NR_kill:
8157         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8158 #ifdef TARGET_NR_rename
8159     case TARGET_NR_rename:
8160         {
8161             void *p2;
8162             p = lock_user_string(arg1);
8163             p2 = lock_user_string(arg2);
8164             if (!p || !p2)
8165                 ret = -TARGET_EFAULT;
8166             else
8167                 ret = get_errno(rename(p, p2));
8168             unlock_user(p2, arg2, 0);
8169             unlock_user(p, arg1, 0);
8170         }
8171         return ret;
8172 #endif
8173 #if defined(TARGET_NR_renameat)
8174     case TARGET_NR_renameat:
8175         {
8176             void *p2;
8177             p  = lock_user_string(arg2);
8178             p2 = lock_user_string(arg4);
8179             if (!p || !p2)
8180                 ret = -TARGET_EFAULT;
8181             else
8182                 ret = get_errno(renameat(arg1, p, arg3, p2));
8183             unlock_user(p2, arg4, 0);
8184             unlock_user(p, arg2, 0);
8185         }
8186         return ret;
8187 #endif
8188 #if defined(TARGET_NR_renameat2)
8189     case TARGET_NR_renameat2:
8190         {
8191             void *p2;
8192             p  = lock_user_string(arg2);
8193             p2 = lock_user_string(arg4);
8194             if (!p || !p2) {
8195                 ret = -TARGET_EFAULT;
8196             } else {
8197                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
8198             }
8199             unlock_user(p2, arg4, 0);
8200             unlock_user(p, arg2, 0);
8201         }
8202         return ret;
8203 #endif
8204 #ifdef TARGET_NR_mkdir
8205     case TARGET_NR_mkdir:
8206         if (!(p = lock_user_string(arg1)))
8207             return -TARGET_EFAULT;
8208         ret = get_errno(mkdir(p, arg2));
8209         unlock_user(p, arg1, 0);
8210         return ret;
8211 #endif
8212 #if defined(TARGET_NR_mkdirat)
8213     case TARGET_NR_mkdirat:
8214         if (!(p = lock_user_string(arg2)))
8215             return -TARGET_EFAULT;
8216         ret = get_errno(mkdirat(arg1, p, arg3));
8217         unlock_user(p, arg2, 0);
8218         return ret;
8219 #endif
8220 #ifdef TARGET_NR_rmdir
8221     case TARGET_NR_rmdir:
8222         if (!(p = lock_user_string(arg1)))
8223             return -TARGET_EFAULT;
8224         ret = get_errno(rmdir(p));
8225         unlock_user(p, arg1, 0);
8226         return ret;
8227 #endif
8228     case TARGET_NR_dup:
8229         ret = get_errno(dup(arg1));
8230         if (ret >= 0) {
8231             fd_trans_dup(arg1, ret);
8232         }
8233         return ret;
8234 #ifdef TARGET_NR_pipe
8235     case TARGET_NR_pipe:
8236         return do_pipe(cpu_env, arg1, 0, 0);
8237 #endif
8238 #ifdef TARGET_NR_pipe2
8239     case TARGET_NR_pipe2:
8240         return do_pipe(cpu_env, arg1,
8241                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8242 #endif
8243     case TARGET_NR_times:
8244         {
8245             struct target_tms *tmsp;
8246             struct tms tms;
8247             ret = get_errno(times(&tms));
8248             if (arg1) {
8249                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8250                 if (!tmsp)
8251                     return -TARGET_EFAULT;
8252                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8253                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8254                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8255                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8256             }
8257             if (!is_error(ret))
8258                 ret = host_to_target_clock_t(ret);
8259         }
8260         return ret;
8261     case TARGET_NR_acct:
8262         if (arg1 == 0) {
8263             ret = get_errno(acct(NULL));
8264         } else {
8265             if (!(p = lock_user_string(arg1))) {
8266                 return -TARGET_EFAULT;
8267             }
8268             ret = get_errno(acct(path(p)));
8269             unlock_user(p, arg1, 0);
8270         }
8271         return ret;
8272 #ifdef TARGET_NR_umount2
8273     case TARGET_NR_umount2:
8274         if (!(p = lock_user_string(arg1)))
8275             return -TARGET_EFAULT;
8276         ret = get_errno(umount2(p, arg2));
8277         unlock_user(p, arg1, 0);
8278         return ret;
8279 #endif
8280     case TARGET_NR_ioctl:
8281         return do_ioctl(arg1, arg2, arg3);
8282 #ifdef TARGET_NR_fcntl
8283     case TARGET_NR_fcntl:
8284         return do_fcntl(arg1, arg2, arg3);
8285 #endif
8286     case TARGET_NR_setpgid:
8287         return get_errno(setpgid(arg1, arg2));
8288     case TARGET_NR_umask:
8289         return get_errno(umask(arg1));
8290     case TARGET_NR_chroot:
8291         if (!(p = lock_user_string(arg1)))
8292             return -TARGET_EFAULT;
8293         ret = get_errno(chroot(p));
8294         unlock_user(p, arg1, 0);
8295         return ret;
8296 #ifdef TARGET_NR_dup2
8297     case TARGET_NR_dup2:
8298         ret = get_errno(dup2(arg1, arg2));
8299         if (ret >= 0) {
8300             fd_trans_dup(arg1, arg2);
8301         }
8302         return ret;
8303 #endif
8304 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8305     case TARGET_NR_dup3:
8306     {
8307         int host_flags;
8308 
8309         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
8310             return -EINVAL;
8311         }
8312         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
8313         ret = get_errno(dup3(arg1, arg2, host_flags));
8314         if (ret >= 0) {
8315             fd_trans_dup(arg1, arg2);
8316         }
8317         return ret;
8318     }
8319 #endif
8320 #ifdef TARGET_NR_getppid /* not on alpha */
8321     case TARGET_NR_getppid:
8322         return get_errno(getppid());
8323 #endif
8324 #ifdef TARGET_NR_getpgrp
8325     case TARGET_NR_getpgrp:
8326         return get_errno(getpgrp());
8327 #endif
8328     case TARGET_NR_setsid:
8329         return get_errno(setsid());
8330 #ifdef TARGET_NR_sigaction
8331     case TARGET_NR_sigaction:
8332         {
8333 #if defined(TARGET_ALPHA)
8334             struct target_sigaction act, oact, *pact = 0;
8335             struct target_old_sigaction *old_act;
8336             if (arg2) {
8337                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8338                     return -TARGET_EFAULT;
8339                 act._sa_handler = old_act->_sa_handler;
8340                 target_siginitset(&act.sa_mask, old_act->sa_mask);
8341                 act.sa_flags = old_act->sa_flags;
8342                 act.sa_restorer = 0;
8343                 unlock_user_struct(old_act, arg2, 0);
8344                 pact = &act;
8345             }
8346             ret = get_errno(do_sigaction(arg1, pact, &oact));
8347             if (!is_error(ret) && arg3) {
8348                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8349                     return -TARGET_EFAULT;
8350                 old_act->_sa_handler = oact._sa_handler;
8351                 old_act->sa_mask = oact.sa_mask.sig[0];
8352                 old_act->sa_flags = oact.sa_flags;
8353                 unlock_user_struct(old_act, arg3, 1);
8354             }
8355 #elif defined(TARGET_MIPS)
8356 	    struct target_sigaction act, oact, *pact, *old_act;
8357 
8358 	    if (arg2) {
8359                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8360                     return -TARGET_EFAULT;
8361 		act._sa_handler = old_act->_sa_handler;
8362 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8363 		act.sa_flags = old_act->sa_flags;
8364 		unlock_user_struct(old_act, arg2, 0);
8365 		pact = &act;
8366 	    } else {
8367 		pact = NULL;
8368 	    }
8369 
8370 	    ret = get_errno(do_sigaction(arg1, pact, &oact));
8371 
8372 	    if (!is_error(ret) && arg3) {
8373                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8374                     return -TARGET_EFAULT;
8375 		old_act->_sa_handler = oact._sa_handler;
8376 		old_act->sa_flags = oact.sa_flags;
8377 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
8378 		old_act->sa_mask.sig[1] = 0;
8379 		old_act->sa_mask.sig[2] = 0;
8380 		old_act->sa_mask.sig[3] = 0;
8381 		unlock_user_struct(old_act, arg3, 1);
8382 	    }
8383 #else
8384             struct target_old_sigaction *old_act;
8385             struct target_sigaction act, oact, *pact;
8386             if (arg2) {
8387                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8388                     return -TARGET_EFAULT;
8389                 act._sa_handler = old_act->_sa_handler;
8390                 target_siginitset(&act.sa_mask, old_act->sa_mask);
8391                 act.sa_flags = old_act->sa_flags;
8392                 act.sa_restorer = old_act->sa_restorer;
8393 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8394                 act.ka_restorer = 0;
8395 #endif
8396                 unlock_user_struct(old_act, arg2, 0);
8397                 pact = &act;
8398             } else {
8399                 pact = NULL;
8400             }
8401             ret = get_errno(do_sigaction(arg1, pact, &oact));
8402             if (!is_error(ret) && arg3) {
8403                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8404                     return -TARGET_EFAULT;
8405                 old_act->_sa_handler = oact._sa_handler;
8406                 old_act->sa_mask = oact.sa_mask.sig[0];
8407                 old_act->sa_flags = oact.sa_flags;
8408                 old_act->sa_restorer = oact.sa_restorer;
8409                 unlock_user_struct(old_act, arg3, 1);
8410             }
8411 #endif
8412         }
8413         return ret;
8414 #endif
8415     case TARGET_NR_rt_sigaction:
8416         {
8417 #if defined(TARGET_ALPHA)
8418             /* For Alpha and SPARC this is a 5 argument syscall, with
8419              * a 'restorer' parameter which must be copied into the
8420              * sa_restorer field of the sigaction struct.
8421              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8422              * and arg5 is the sigsetsize.
8423              * Alpha also has a separate rt_sigaction struct that it uses
8424              * here; SPARC uses the usual sigaction struct.
8425              */
8426             struct target_rt_sigaction *rt_act;
8427             struct target_sigaction act, oact, *pact = 0;
8428 
8429             if (arg4 != sizeof(target_sigset_t)) {
8430                 return -TARGET_EINVAL;
8431             }
8432             if (arg2) {
8433                 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
8434                     return -TARGET_EFAULT;
8435                 act._sa_handler = rt_act->_sa_handler;
8436                 act.sa_mask = rt_act->sa_mask;
8437                 act.sa_flags = rt_act->sa_flags;
8438                 act.sa_restorer = arg5;
8439                 unlock_user_struct(rt_act, arg2, 0);
8440                 pact = &act;
8441             }
8442             ret = get_errno(do_sigaction(arg1, pact, &oact));
8443             if (!is_error(ret) && arg3) {
8444                 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
8445                     return -TARGET_EFAULT;
8446                 rt_act->_sa_handler = oact._sa_handler;
8447                 rt_act->sa_mask = oact.sa_mask;
8448                 rt_act->sa_flags = oact.sa_flags;
8449                 unlock_user_struct(rt_act, arg3, 1);
8450             }
8451 #else
8452 #ifdef TARGET_SPARC
8453             target_ulong restorer = arg4;
8454             target_ulong sigsetsize = arg5;
8455 #else
8456             target_ulong sigsetsize = arg4;
8457 #endif
8458             struct target_sigaction *act;
8459             struct target_sigaction *oact;
8460 
8461             if (sigsetsize != sizeof(target_sigset_t)) {
8462                 return -TARGET_EINVAL;
8463             }
8464             if (arg2) {
8465                 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) {
8466                     return -TARGET_EFAULT;
8467                 }
8468 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8469                 act->ka_restorer = restorer;
8470 #endif
8471             } else {
8472                 act = NULL;
8473             }
8474             if (arg3) {
8475                 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
8476                     ret = -TARGET_EFAULT;
8477                     goto rt_sigaction_fail;
8478                 }
8479             } else
8480                 oact = NULL;
8481             ret = get_errno(do_sigaction(arg1, act, oact));
8482 	rt_sigaction_fail:
8483             if (act)
8484                 unlock_user_struct(act, arg2, 0);
8485             if (oact)
8486                 unlock_user_struct(oact, arg3, 1);
8487 #endif
8488         }
8489         return ret;
8490 #ifdef TARGET_NR_sgetmask /* not on alpha */
8491     case TARGET_NR_sgetmask:
8492         {
8493             sigset_t cur_set;
8494             abi_ulong target_set;
8495             ret = do_sigprocmask(0, NULL, &cur_set);
8496             if (!ret) {
8497                 host_to_target_old_sigset(&target_set, &cur_set);
8498                 ret = target_set;
8499             }
8500         }
8501         return ret;
8502 #endif
8503 #ifdef TARGET_NR_ssetmask /* not on alpha */
8504     case TARGET_NR_ssetmask:
8505         {
8506             sigset_t set, oset;
8507             abi_ulong target_set = arg1;
8508             target_to_host_old_sigset(&set, &target_set);
8509             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
8510             if (!ret) {
8511                 host_to_target_old_sigset(&target_set, &oset);
8512                 ret = target_set;
8513             }
8514         }
8515         return ret;
8516 #endif
8517 #ifdef TARGET_NR_sigprocmask
8518     case TARGET_NR_sigprocmask:
8519         {
8520 #if defined(TARGET_ALPHA)
8521             sigset_t set, oldset;
8522             abi_ulong mask;
8523             int how;
8524 
8525             switch (arg1) {
8526             case TARGET_SIG_BLOCK:
8527                 how = SIG_BLOCK;
8528                 break;
8529             case TARGET_SIG_UNBLOCK:
8530                 how = SIG_UNBLOCK;
8531                 break;
8532             case TARGET_SIG_SETMASK:
8533                 how = SIG_SETMASK;
8534                 break;
8535             default:
8536                 return -TARGET_EINVAL;
8537             }
8538             mask = arg2;
8539             target_to_host_old_sigset(&set, &mask);
8540 
8541             ret = do_sigprocmask(how, &set, &oldset);
8542             if (!is_error(ret)) {
8543                 host_to_target_old_sigset(&mask, &oldset);
8544                 ret = mask;
8545                 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
8546             }
8547 #else
8548             sigset_t set, oldset, *set_ptr;
8549             int how;
8550 
8551             if (arg2) {
8552                 switch (arg1) {
8553                 case TARGET_SIG_BLOCK:
8554                     how = SIG_BLOCK;
8555                     break;
8556                 case TARGET_SIG_UNBLOCK:
8557                     how = SIG_UNBLOCK;
8558                     break;
8559                 case TARGET_SIG_SETMASK:
8560                     how = SIG_SETMASK;
8561                     break;
8562                 default:
8563                     return -TARGET_EINVAL;
8564                 }
8565                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8566                     return -TARGET_EFAULT;
8567                 target_to_host_old_sigset(&set, p);
8568                 unlock_user(p, arg2, 0);
8569                 set_ptr = &set;
8570             } else {
8571                 how = 0;
8572                 set_ptr = NULL;
8573             }
8574             ret = do_sigprocmask(how, set_ptr, &oldset);
8575             if (!is_error(ret) && arg3) {
8576                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8577                     return -TARGET_EFAULT;
8578                 host_to_target_old_sigset(p, &oldset);
8579                 unlock_user(p, arg3, sizeof(target_sigset_t));
8580             }
8581 #endif
8582         }
8583         return ret;
8584 #endif
8585     case TARGET_NR_rt_sigprocmask:
8586         {
8587             int how = arg1;
8588             sigset_t set, oldset, *set_ptr;
8589 
8590             if (arg4 != sizeof(target_sigset_t)) {
8591                 return -TARGET_EINVAL;
8592             }
8593 
8594             if (arg2) {
8595                 switch(how) {
8596                 case TARGET_SIG_BLOCK:
8597                     how = SIG_BLOCK;
8598                     break;
8599                 case TARGET_SIG_UNBLOCK:
8600                     how = SIG_UNBLOCK;
8601                     break;
8602                 case TARGET_SIG_SETMASK:
8603                     how = SIG_SETMASK;
8604                     break;
8605                 default:
8606                     return -TARGET_EINVAL;
8607                 }
8608                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8609                     return -TARGET_EFAULT;
8610                 target_to_host_sigset(&set, p);
8611                 unlock_user(p, arg2, 0);
8612                 set_ptr = &set;
8613             } else {
8614                 how = 0;
8615                 set_ptr = NULL;
8616             }
8617             ret = do_sigprocmask(how, set_ptr, &oldset);
8618             if (!is_error(ret) && arg3) {
8619                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8620                     return -TARGET_EFAULT;
8621                 host_to_target_sigset(p, &oldset);
8622                 unlock_user(p, arg3, sizeof(target_sigset_t));
8623             }
8624         }
8625         return ret;
8626 #ifdef TARGET_NR_sigpending
8627     case TARGET_NR_sigpending:
8628         {
8629             sigset_t set;
8630             ret = get_errno(sigpending(&set));
8631             if (!is_error(ret)) {
8632                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8633                     return -TARGET_EFAULT;
8634                 host_to_target_old_sigset(p, &set);
8635                 unlock_user(p, arg1, sizeof(target_sigset_t));
8636             }
8637         }
8638         return ret;
8639 #endif
8640     case TARGET_NR_rt_sigpending:
8641         {
8642             sigset_t set;
8643 
8644             /* Yes, this check is >, not != like most. We follow the kernel's
8645              * logic and it does it like this because it implements
8646              * NR_sigpending through the same code path, and in that case
8647              * the old_sigset_t is smaller in size.
8648              */
8649             if (arg2 > sizeof(target_sigset_t)) {
8650                 return -TARGET_EINVAL;
8651             }
8652 
8653             ret = get_errno(sigpending(&set));
8654             if (!is_error(ret)) {
8655                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8656                     return -TARGET_EFAULT;
8657                 host_to_target_sigset(p, &set);
8658                 unlock_user(p, arg1, sizeof(target_sigset_t));
8659             }
8660         }
8661         return ret;
8662 #ifdef TARGET_NR_sigsuspend
8663     case TARGET_NR_sigsuspend:
8664         {
8665             TaskState *ts = cpu->opaque;
8666 #if defined(TARGET_ALPHA)
8667             abi_ulong mask = arg1;
8668             target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
8669 #else
8670             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8671                 return -TARGET_EFAULT;
8672             target_to_host_old_sigset(&ts->sigsuspend_mask, p);
8673             unlock_user(p, arg1, 0);
8674 #endif
8675             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8676                                                SIGSET_T_SIZE));
8677             if (ret != -TARGET_ERESTARTSYS) {
8678                 ts->in_sigsuspend = 1;
8679             }
8680         }
8681         return ret;
8682 #endif
8683     case TARGET_NR_rt_sigsuspend:
8684         {
8685             TaskState *ts = cpu->opaque;
8686 
8687             if (arg2 != sizeof(target_sigset_t)) {
8688                 return -TARGET_EINVAL;
8689             }
8690             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8691                 return -TARGET_EFAULT;
8692             target_to_host_sigset(&ts->sigsuspend_mask, p);
8693             unlock_user(p, arg1, 0);
8694             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8695                                                SIGSET_T_SIZE));
8696             if (ret != -TARGET_ERESTARTSYS) {
8697                 ts->in_sigsuspend = 1;
8698             }
8699         }
8700         return ret;
8701 #ifdef TARGET_NR_rt_sigtimedwait
8702     case TARGET_NR_rt_sigtimedwait:
8703         {
8704             sigset_t set;
8705             struct timespec uts, *puts;
8706             siginfo_t uinfo;
8707 
8708             if (arg4 != sizeof(target_sigset_t)) {
8709                 return -TARGET_EINVAL;
8710             }
8711 
8712             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8713                 return -TARGET_EFAULT;
8714             target_to_host_sigset(&set, p);
8715             unlock_user(p, arg1, 0);
8716             if (arg3) {
8717                 puts = &uts;
8718                 target_to_host_timespec(puts, arg3);
8719             } else {
8720                 puts = NULL;
8721             }
8722             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
8723                                                  SIGSET_T_SIZE));
8724             if (!is_error(ret)) {
8725                 if (arg2) {
8726                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
8727                                   0);
8728                     if (!p) {
8729                         return -TARGET_EFAULT;
8730                     }
8731                     host_to_target_siginfo(p, &uinfo);
8732                     unlock_user(p, arg2, sizeof(target_siginfo_t));
8733                 }
8734                 ret = host_to_target_signal(ret);
8735             }
8736         }
8737         return ret;
8738 #endif
8739     case TARGET_NR_rt_sigqueueinfo:
8740         {
8741             siginfo_t uinfo;
8742 
8743             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
8744             if (!p) {
8745                 return -TARGET_EFAULT;
8746             }
8747             target_to_host_siginfo(&uinfo, p);
8748             unlock_user(p, arg3, 0);
8749             ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
8750         }
8751         return ret;
8752     case TARGET_NR_rt_tgsigqueueinfo:
8753         {
8754             siginfo_t uinfo;
8755 
8756             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
8757             if (!p) {
8758                 return -TARGET_EFAULT;
8759             }
8760             target_to_host_siginfo(&uinfo, p);
8761             unlock_user(p, arg4, 0);
8762             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
8763         }
8764         return ret;
8765 #ifdef TARGET_NR_sigreturn
8766     case TARGET_NR_sigreturn:
8767         if (block_signals()) {
8768             return -TARGET_ERESTARTSYS;
8769         }
8770         return do_sigreturn(cpu_env);
8771 #endif
8772     case TARGET_NR_rt_sigreturn:
8773         if (block_signals()) {
8774             return -TARGET_ERESTARTSYS;
8775         }
8776         return do_rt_sigreturn(cpu_env);
8777     case TARGET_NR_sethostname:
8778         if (!(p = lock_user_string(arg1)))
8779             return -TARGET_EFAULT;
8780         ret = get_errno(sethostname(p, arg2));
8781         unlock_user(p, arg1, 0);
8782         return ret;
8783 #ifdef TARGET_NR_setrlimit
8784     case TARGET_NR_setrlimit:
8785         {
8786             int resource = target_to_host_resource(arg1);
8787             struct target_rlimit *target_rlim;
8788             struct rlimit rlim;
8789             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
8790                 return -TARGET_EFAULT;
8791             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
8792             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
8793             unlock_user_struct(target_rlim, arg2, 0);
8794             /*
8795              * If we just passed through resource limit settings for memory then
8796              * they would also apply to QEMU's own allocations, and QEMU will
8797              * crash or hang or die if its allocations fail. Ideally we would
8798              * track the guest allocations in QEMU and apply the limits ourselves.
8799              * For now, just tell the guest the call succeeded but don't actually
8800              * limit anything.
8801              */
8802             if (resource != RLIMIT_AS &&
8803                 resource != RLIMIT_DATA &&
8804                 resource != RLIMIT_STACK) {
8805                 return get_errno(setrlimit(resource, &rlim));
8806             } else {
8807                 return 0;
8808             }
8809         }
8810 #endif
8811 #ifdef TARGET_NR_getrlimit
8812     case TARGET_NR_getrlimit:
8813         {
8814             int resource = target_to_host_resource(arg1);
8815             struct target_rlimit *target_rlim;
8816             struct rlimit rlim;
8817 
8818             ret = get_errno(getrlimit(resource, &rlim));
8819             if (!is_error(ret)) {
8820                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
8821                     return -TARGET_EFAULT;
8822                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
8823                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
8824                 unlock_user_struct(target_rlim, arg2, 1);
8825             }
8826         }
8827         return ret;
8828 #endif
8829     case TARGET_NR_getrusage:
8830         {
8831             struct rusage rusage;
8832             ret = get_errno(getrusage(arg1, &rusage));
8833             if (!is_error(ret)) {
8834                 ret = host_to_target_rusage(arg2, &rusage);
8835             }
8836         }
8837         return ret;
8838 #if defined(TARGET_NR_gettimeofday)
8839     case TARGET_NR_gettimeofday:
8840         {
8841             struct timeval tv;
8842             struct timezone tz;
8843 
8844             ret = get_errno(gettimeofday(&tv, &tz));
8845             if (!is_error(ret)) {
8846                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
8847                     return -TARGET_EFAULT;
8848                 }
8849                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
8850                     return -TARGET_EFAULT;
8851                 }
8852             }
8853         }
8854         return ret;
8855 #endif
8856 #if defined(TARGET_NR_settimeofday)
8857     case TARGET_NR_settimeofday:
8858         {
8859             struct timeval tv, *ptv = NULL;
8860             struct timezone tz, *ptz = NULL;
8861 
8862             if (arg1) {
8863                 if (copy_from_user_timeval(&tv, arg1)) {
8864                     return -TARGET_EFAULT;
8865                 }
8866                 ptv = &tv;
8867             }
8868 
8869             if (arg2) {
8870                 if (copy_from_user_timezone(&tz, arg2)) {
8871                     return -TARGET_EFAULT;
8872                 }
8873                 ptz = &tz;
8874             }
8875 
8876             return get_errno(settimeofday(ptv, ptz));
8877         }
8878 #endif
8879 #if defined(TARGET_NR_select)
8880     case TARGET_NR_select:
8881 #if defined(TARGET_WANT_NI_OLD_SELECT)
8882         /* some architectures used to have old_select here
8883          * but now ENOSYS it.
8884          */
8885         ret = -TARGET_ENOSYS;
8886 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
8887         ret = do_old_select(arg1);
8888 #else
8889         ret = do_select(arg1, arg2, arg3, arg4, arg5);
8890 #endif
8891         return ret;
8892 #endif
8893 #ifdef TARGET_NR_pselect6
8894     case TARGET_NR_pselect6:
8895         {
8896             abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
8897             fd_set rfds, wfds, efds;
8898             fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
8899             struct timespec ts, *ts_ptr;
8900 
8901             /*
8902              * The 6th arg is actually two args smashed together,
8903              * so we cannot use the C library.
8904              */
8905             sigset_t set;
8906             struct {
8907                 sigset_t *set;
8908                 size_t size;
8909             } sig, *sig_ptr;
8910 
8911             abi_ulong arg_sigset, arg_sigsize, *arg7;
8912             target_sigset_t *target_sigset;
8913 
8914             n = arg1;
8915             rfd_addr = arg2;
8916             wfd_addr = arg3;
8917             efd_addr = arg4;
8918             ts_addr = arg5;
8919 
8920             ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
8921             if (ret) {
8922                 return ret;
8923             }
8924             ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
8925             if (ret) {
8926                 return ret;
8927             }
8928             ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
8929             if (ret) {
8930                 return ret;
8931             }
8932 
8933             /*
8934              * This takes a timespec, and not a timeval, so we cannot
8935              * use the do_select() helper ...
8936              */
8937             if (ts_addr) {
8938                 if (target_to_host_timespec(&ts, ts_addr)) {
8939                     return -TARGET_EFAULT;
8940                 }
8941                 ts_ptr = &ts;
8942             } else {
8943                 ts_ptr = NULL;
8944             }
8945 
8946             /* Extract the two packed args for the sigset */
8947             if (arg6) {
8948                 sig_ptr = &sig;
8949                 sig.size = SIGSET_T_SIZE;
8950 
8951                 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
8952                 if (!arg7) {
8953                     return -TARGET_EFAULT;
8954                 }
8955                 arg_sigset = tswapal(arg7[0]);
8956                 arg_sigsize = tswapal(arg7[1]);
8957                 unlock_user(arg7, arg6, 0);
8958 
8959                 if (arg_sigset) {
8960                     sig.set = &set;
8961                     if (arg_sigsize != sizeof(*target_sigset)) {
8962                         /* Like the kernel, we enforce correct size sigsets */
8963                         return -TARGET_EINVAL;
8964                     }
8965                     target_sigset = lock_user(VERIFY_READ, arg_sigset,
8966                                               sizeof(*target_sigset), 1);
8967                     if (!target_sigset) {
8968                         return -TARGET_EFAULT;
8969                     }
8970                     target_to_host_sigset(&set, target_sigset);
8971                     unlock_user(target_sigset, arg_sigset, 0);
8972                 } else {
8973                     sig.set = NULL;
8974                 }
8975             } else {
8976                 sig_ptr = NULL;
8977             }
8978 
8979             ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
8980                                           ts_ptr, sig_ptr));
8981 
8982             if (!is_error(ret)) {
8983                 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
8984                     return -TARGET_EFAULT;
8985                 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
8986                     return -TARGET_EFAULT;
8987                 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
8988                     return -TARGET_EFAULT;
8989 
8990                 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
8991                     return -TARGET_EFAULT;
8992             }
8993         }
8994         return ret;
8995 #endif
8996 #ifdef TARGET_NR_symlink
8997     case TARGET_NR_symlink:
8998         {
8999             void *p2;
9000             p = lock_user_string(arg1);
9001             p2 = lock_user_string(arg2);
9002             if (!p || !p2)
9003                 ret = -TARGET_EFAULT;
9004             else
9005                 ret = get_errno(symlink(p, p2));
9006             unlock_user(p2, arg2, 0);
9007             unlock_user(p, arg1, 0);
9008         }
9009         return ret;
9010 #endif
9011 #if defined(TARGET_NR_symlinkat)
9012     case TARGET_NR_symlinkat:
9013         {
9014             void *p2;
9015             p  = lock_user_string(arg1);
9016             p2 = lock_user_string(arg3);
9017             if (!p || !p2)
9018                 ret = -TARGET_EFAULT;
9019             else
9020                 ret = get_errno(symlinkat(p, arg2, p2));
9021             unlock_user(p2, arg3, 0);
9022             unlock_user(p, arg1, 0);
9023         }
9024         return ret;
9025 #endif
9026 #ifdef TARGET_NR_readlink
9027     case TARGET_NR_readlink:
9028         {
9029             void *p2;
9030             p = lock_user_string(arg1);
9031             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9032             if (!p || !p2) {
9033                 ret = -TARGET_EFAULT;
9034             } else if (!arg3) {
9035                 /* Short circuit this for the magic exe check. */
9036                 ret = -TARGET_EINVAL;
9037             } else if (is_proc_myself((const char *)p, "exe")) {
9038                 char real[PATH_MAX], *temp;
9039                 temp = realpath(exec_path, real);
9040                 /* Return value is # of bytes that we wrote to the buffer. */
9041                 if (temp == NULL) {
9042                     ret = get_errno(-1);
9043                 } else {
9044                     /* Don't worry about sign mismatch as earlier mapping
9045                      * logic would have thrown a bad address error. */
9046                     ret = MIN(strlen(real), arg3);
9047                     /* We cannot NUL terminate the string. */
9048                     memcpy(p2, real, ret);
9049                 }
9050             } else {
9051                 ret = get_errno(readlink(path(p), p2, arg3));
9052             }
9053             unlock_user(p2, arg2, ret);
9054             unlock_user(p, arg1, 0);
9055         }
9056         return ret;
9057 #endif
9058 #if defined(TARGET_NR_readlinkat)
9059     case TARGET_NR_readlinkat:
9060         {
9061             void *p2;
9062             p  = lock_user_string(arg2);
9063             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9064             if (!p || !p2) {
9065                 ret = -TARGET_EFAULT;
9066             } else if (is_proc_myself((const char *)p, "exe")) {
9067                 char real[PATH_MAX], *temp;
9068                 temp = realpath(exec_path, real);
9069                 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9070                 snprintf((char *)p2, arg4, "%s", real);
9071             } else {
9072                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9073             }
9074             unlock_user(p2, arg3, ret);
9075             unlock_user(p, arg2, 0);
9076         }
9077         return ret;
9078 #endif
9079 #ifdef TARGET_NR_swapon
9080     case TARGET_NR_swapon:
9081         if (!(p = lock_user_string(arg1)))
9082             return -TARGET_EFAULT;
9083         ret = get_errno(swapon(p, arg2));
9084         unlock_user(p, arg1, 0);
9085         return ret;
9086 #endif
9087     case TARGET_NR_reboot:
9088         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9089            /* arg4 must be ignored in all other cases */
9090            p = lock_user_string(arg4);
9091            if (!p) {
9092                return -TARGET_EFAULT;
9093            }
9094            ret = get_errno(reboot(arg1, arg2, arg3, p));
9095            unlock_user(p, arg4, 0);
9096         } else {
9097            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9098         }
9099         return ret;
9100 #ifdef TARGET_NR_mmap
9101     case TARGET_NR_mmap:
9102 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9103     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9104     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9105     || defined(TARGET_S390X)
9106         {
9107             abi_ulong *v;
9108             abi_ulong v1, v2, v3, v4, v5, v6;
9109             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9110                 return -TARGET_EFAULT;
9111             v1 = tswapal(v[0]);
9112             v2 = tswapal(v[1]);
9113             v3 = tswapal(v[2]);
9114             v4 = tswapal(v[3]);
9115             v5 = tswapal(v[4]);
9116             v6 = tswapal(v[5]);
9117             unlock_user(v, arg1, 0);
9118             ret = get_errno(target_mmap(v1, v2, v3,
9119                                         target_to_host_bitmask(v4, mmap_flags_tbl),
9120                                         v5, v6));
9121         }
9122 #else
9123         ret = get_errno(target_mmap(arg1, arg2, arg3,
9124                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
9125                                     arg5,
9126                                     arg6));
9127 #endif
9128         return ret;
9129 #endif
9130 #ifdef TARGET_NR_mmap2
9131     case TARGET_NR_mmap2:
9132 #ifndef MMAP_SHIFT
9133 #define MMAP_SHIFT 12
9134 #endif
9135         ret = target_mmap(arg1, arg2, arg3,
9136                           target_to_host_bitmask(arg4, mmap_flags_tbl),
9137                           arg5, arg6 << MMAP_SHIFT);
9138         return get_errno(ret);
9139 #endif
9140     case TARGET_NR_munmap:
9141         return get_errno(target_munmap(arg1, arg2));
9142     case TARGET_NR_mprotect:
9143         {
9144             TaskState *ts = cpu->opaque;
9145             /* Special hack to detect libc making the stack executable.  */
9146             if ((arg3 & PROT_GROWSDOWN)
9147                 && arg1 >= ts->info->stack_limit
9148                 && arg1 <= ts->info->start_stack) {
9149                 arg3 &= ~PROT_GROWSDOWN;
9150                 arg2 = arg2 + arg1 - ts->info->stack_limit;
9151                 arg1 = ts->info->stack_limit;
9152             }
9153         }
9154         return get_errno(target_mprotect(arg1, arg2, arg3));
9155 #ifdef TARGET_NR_mremap
9156     case TARGET_NR_mremap:
9157         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
9158 #endif
9159         /* ??? msync/mlock/munlock are broken for softmmu.  */
9160 #ifdef TARGET_NR_msync
9161     case TARGET_NR_msync:
9162         return get_errno(msync(g2h(arg1), arg2, arg3));
9163 #endif
9164 #ifdef TARGET_NR_mlock
9165     case TARGET_NR_mlock:
9166         return get_errno(mlock(g2h(arg1), arg2));
9167 #endif
9168 #ifdef TARGET_NR_munlock
9169     case TARGET_NR_munlock:
9170         return get_errno(munlock(g2h(arg1), arg2));
9171 #endif
9172 #ifdef TARGET_NR_mlockall
9173     case TARGET_NR_mlockall:
9174         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9175 #endif
9176 #ifdef TARGET_NR_munlockall
9177     case TARGET_NR_munlockall:
9178         return get_errno(munlockall());
9179 #endif
9180 #ifdef TARGET_NR_truncate
9181     case TARGET_NR_truncate:
9182         if (!(p = lock_user_string(arg1)))
9183             return -TARGET_EFAULT;
9184         ret = get_errno(truncate(p, arg2));
9185         unlock_user(p, arg1, 0);
9186         return ret;
9187 #endif
9188 #ifdef TARGET_NR_ftruncate
9189     case TARGET_NR_ftruncate:
9190         return get_errno(ftruncate(arg1, arg2));
9191 #endif
9192     case TARGET_NR_fchmod:
9193         return get_errno(fchmod(arg1, arg2));
9194 #if defined(TARGET_NR_fchmodat)
9195     case TARGET_NR_fchmodat:
9196         if (!(p = lock_user_string(arg2)))
9197             return -TARGET_EFAULT;
9198         ret = get_errno(fchmodat(arg1, p, arg3, 0));
9199         unlock_user(p, arg2, 0);
9200         return ret;
9201 #endif
9202     case TARGET_NR_getpriority:
9203         /* Note that negative values are valid for getpriority, so we must
9204            differentiate based on errno settings.  */
9205         errno = 0;
9206         ret = getpriority(arg1, arg2);
9207         if (ret == -1 && errno != 0) {
9208             return -host_to_target_errno(errno);
9209         }
9210 #ifdef TARGET_ALPHA
9211         /* Return value is the unbiased priority.  Signal no error.  */
9212         ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9213 #else
9214         /* Return value is a biased priority to avoid negative numbers.  */
9215         ret = 20 - ret;
9216 #endif
9217         return ret;
9218     case TARGET_NR_setpriority:
9219         return get_errno(setpriority(arg1, arg2, arg3));
9220 #ifdef TARGET_NR_statfs
9221     case TARGET_NR_statfs:
9222         if (!(p = lock_user_string(arg1))) {
9223             return -TARGET_EFAULT;
9224         }
9225         ret = get_errno(statfs(path(p), &stfs));
9226         unlock_user(p, arg1, 0);
9227     convert_statfs:
9228         if (!is_error(ret)) {
9229             struct target_statfs *target_stfs;
9230 
9231             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9232                 return -TARGET_EFAULT;
9233             __put_user(stfs.f_type, &target_stfs->f_type);
9234             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9235             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9236             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9237             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9238             __put_user(stfs.f_files, &target_stfs->f_files);
9239             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9240             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9241             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9242             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9243             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9244 #ifdef _STATFS_F_FLAGS
9245             __put_user(stfs.f_flags, &target_stfs->f_flags);
9246 #else
9247             __put_user(0, &target_stfs->f_flags);
9248 #endif
9249             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9250             unlock_user_struct(target_stfs, arg2, 1);
9251         }
9252         return ret;
9253 #endif
9254 #ifdef TARGET_NR_fstatfs
9255     case TARGET_NR_fstatfs:
9256         ret = get_errno(fstatfs(arg1, &stfs));
9257         goto convert_statfs;
9258 #endif
9259 #ifdef TARGET_NR_statfs64
9260     case TARGET_NR_statfs64:
9261         if (!(p = lock_user_string(arg1))) {
9262             return -TARGET_EFAULT;
9263         }
9264         ret = get_errno(statfs(path(p), &stfs));
9265         unlock_user(p, arg1, 0);
9266     convert_statfs64:
9267         if (!is_error(ret)) {
9268             struct target_statfs64 *target_stfs;
9269 
9270             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9271                 return -TARGET_EFAULT;
9272             __put_user(stfs.f_type, &target_stfs->f_type);
9273             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9274             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9275             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9276             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9277             __put_user(stfs.f_files, &target_stfs->f_files);
9278             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9279             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9280             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9281             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9282             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9283             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9284             unlock_user_struct(target_stfs, arg3, 1);
9285         }
9286         return ret;
9287     case TARGET_NR_fstatfs64:
9288         ret = get_errno(fstatfs(arg1, &stfs));
9289         goto convert_statfs64;
9290 #endif
9291 #ifdef TARGET_NR_socketcall
9292     case TARGET_NR_socketcall:
9293         return do_socketcall(arg1, arg2);
9294 #endif
9295 #ifdef TARGET_NR_accept
9296     case TARGET_NR_accept:
9297         return do_accept4(arg1, arg2, arg3, 0);
9298 #endif
9299 #ifdef TARGET_NR_accept4
9300     case TARGET_NR_accept4:
9301         return do_accept4(arg1, arg2, arg3, arg4);
9302 #endif
9303 #ifdef TARGET_NR_bind
9304     case TARGET_NR_bind:
9305         return do_bind(arg1, arg2, arg3);
9306 #endif
9307 #ifdef TARGET_NR_connect
9308     case TARGET_NR_connect:
9309         return do_connect(arg1, arg2, arg3);
9310 #endif
9311 #ifdef TARGET_NR_getpeername
9312     case TARGET_NR_getpeername:
9313         return do_getpeername(arg1, arg2, arg3);
9314 #endif
9315 #ifdef TARGET_NR_getsockname
9316     case TARGET_NR_getsockname:
9317         return do_getsockname(arg1, arg2, arg3);
9318 #endif
9319 #ifdef TARGET_NR_getsockopt
9320     case TARGET_NR_getsockopt:
9321         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9322 #endif
9323 #ifdef TARGET_NR_listen
9324     case TARGET_NR_listen:
9325         return get_errno(listen(arg1, arg2));
9326 #endif
9327 #ifdef TARGET_NR_recv
9328     case TARGET_NR_recv:
9329         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9330 #endif
9331 #ifdef TARGET_NR_recvfrom
9332     case TARGET_NR_recvfrom:
9333         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9334 #endif
9335 #ifdef TARGET_NR_recvmsg
9336     case TARGET_NR_recvmsg:
9337         return do_sendrecvmsg(arg1, arg2, arg3, 0);
9338 #endif
9339 #ifdef TARGET_NR_send
9340     case TARGET_NR_send:
9341         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9342 #endif
9343 #ifdef TARGET_NR_sendmsg
9344     case TARGET_NR_sendmsg:
9345         return do_sendrecvmsg(arg1, arg2, arg3, 1);
9346 #endif
9347 #ifdef TARGET_NR_sendmmsg
9348     case TARGET_NR_sendmmsg:
9349         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9350 #endif
9351 #ifdef TARGET_NR_recvmmsg
9352     case TARGET_NR_recvmmsg:
9353         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9354 #endif
9355 #ifdef TARGET_NR_sendto
9356     case TARGET_NR_sendto:
9357         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9358 #endif
9359 #ifdef TARGET_NR_shutdown
9360     case TARGET_NR_shutdown:
9361         return get_errno(shutdown(arg1, arg2));
9362 #endif
9363 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9364     case TARGET_NR_getrandom:
9365         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9366         if (!p) {
9367             return -TARGET_EFAULT;
9368         }
9369         ret = get_errno(getrandom(p, arg2, arg3));
9370         unlock_user(p, arg1, ret);
9371         return ret;
9372 #endif
9373 #ifdef TARGET_NR_socket
9374     case TARGET_NR_socket:
9375         return do_socket(arg1, arg2, arg3);
9376 #endif
9377 #ifdef TARGET_NR_socketpair
9378     case TARGET_NR_socketpair:
9379         return do_socketpair(arg1, arg2, arg3, arg4);
9380 #endif
9381 #ifdef TARGET_NR_setsockopt
9382     case TARGET_NR_setsockopt:
9383         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9384 #endif
9385 #if defined(TARGET_NR_syslog)
9386     case TARGET_NR_syslog:
9387         {
9388             int len = arg2;
9389 
9390             switch (arg1) {
9391             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
9392             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
9393             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
9394             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
9395             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
9396             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
9397             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
9398             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
9399                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
9400             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
9401             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
9402             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
9403                 {
9404                     if (len < 0) {
9405                         return -TARGET_EINVAL;
9406                     }
9407                     if (len == 0) {
9408                         return 0;
9409                     }
9410                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9411                     if (!p) {
9412                         return -TARGET_EFAULT;
9413                     }
9414                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9415                     unlock_user(p, arg2, arg3);
9416                 }
9417                 return ret;
9418             default:
9419                 return -TARGET_EINVAL;
9420             }
9421         }
9422         break;
9423 #endif
9424     case TARGET_NR_setitimer:
9425         {
9426             struct itimerval value, ovalue, *pvalue;
9427 
9428             if (arg2) {
9429                 pvalue = &value;
9430                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9431                     || copy_from_user_timeval(&pvalue->it_value,
9432                                               arg2 + sizeof(struct target_timeval)))
9433                     return -TARGET_EFAULT;
9434             } else {
9435                 pvalue = NULL;
9436             }
9437             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9438             if (!is_error(ret) && arg3) {
9439                 if (copy_to_user_timeval(arg3,
9440                                          &ovalue.it_interval)
9441                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
9442                                             &ovalue.it_value))
9443                     return -TARGET_EFAULT;
9444             }
9445         }
9446         return ret;
9447     case TARGET_NR_getitimer:
9448         {
9449             struct itimerval value;
9450 
9451             ret = get_errno(getitimer(arg1, &value));
9452             if (!is_error(ret) && arg2) {
9453                 if (copy_to_user_timeval(arg2,
9454                                          &value.it_interval)
9455                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
9456                                             &value.it_value))
9457                     return -TARGET_EFAULT;
9458             }
9459         }
9460         return ret;
9461 #ifdef TARGET_NR_stat
9462     case TARGET_NR_stat:
9463         if (!(p = lock_user_string(arg1))) {
9464             return -TARGET_EFAULT;
9465         }
9466         ret = get_errno(stat(path(p), &st));
9467         unlock_user(p, arg1, 0);
9468         goto do_stat;
9469 #endif
9470 #ifdef TARGET_NR_lstat
9471     case TARGET_NR_lstat:
9472         if (!(p = lock_user_string(arg1))) {
9473             return -TARGET_EFAULT;
9474         }
9475         ret = get_errno(lstat(path(p), &st));
9476         unlock_user(p, arg1, 0);
9477         goto do_stat;
9478 #endif
9479 #ifdef TARGET_NR_fstat
9480     case TARGET_NR_fstat:
9481         {
9482             ret = get_errno(fstat(arg1, &st));
9483 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9484         do_stat:
9485 #endif
9486             if (!is_error(ret)) {
9487                 struct target_stat *target_st;
9488 
9489                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
9490                     return -TARGET_EFAULT;
9491                 memset(target_st, 0, sizeof(*target_st));
9492                 __put_user(st.st_dev, &target_st->st_dev);
9493                 __put_user(st.st_ino, &target_st->st_ino);
9494                 __put_user(st.st_mode, &target_st->st_mode);
9495                 __put_user(st.st_uid, &target_st->st_uid);
9496                 __put_user(st.st_gid, &target_st->st_gid);
9497                 __put_user(st.st_nlink, &target_st->st_nlink);
9498                 __put_user(st.st_rdev, &target_st->st_rdev);
9499                 __put_user(st.st_size, &target_st->st_size);
9500                 __put_user(st.st_blksize, &target_st->st_blksize);
9501                 __put_user(st.st_blocks, &target_st->st_blocks);
9502                 __put_user(st.st_atime, &target_st->target_st_atime);
9503                 __put_user(st.st_mtime, &target_st->target_st_mtime);
9504                 __put_user(st.st_ctime, &target_st->target_st_ctime);
9505 #if (_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700) && \
9506     defined(TARGET_STAT_HAVE_NSEC)
9507                 __put_user(st.st_atim.tv_nsec,
9508                            &target_st->target_st_atime_nsec);
9509                 __put_user(st.st_mtim.tv_nsec,
9510                            &target_st->target_st_mtime_nsec);
9511                 __put_user(st.st_ctim.tv_nsec,
9512                            &target_st->target_st_ctime_nsec);
9513 #endif
9514                 unlock_user_struct(target_st, arg2, 1);
9515             }
9516         }
9517         return ret;
9518 #endif
9519     case TARGET_NR_vhangup:
9520         return get_errno(vhangup());
9521 #ifdef TARGET_NR_syscall
9522     case TARGET_NR_syscall:
9523         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
9524                           arg6, arg7, arg8, 0);
9525 #endif
9526 #if defined(TARGET_NR_wait4)
9527     case TARGET_NR_wait4:
9528         {
9529             int status;
9530             abi_long status_ptr = arg2;
9531             struct rusage rusage, *rusage_ptr;
9532             abi_ulong target_rusage = arg4;
9533             abi_long rusage_err;
9534             if (target_rusage)
9535                 rusage_ptr = &rusage;
9536             else
9537                 rusage_ptr = NULL;
9538             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
9539             if (!is_error(ret)) {
9540                 if (status_ptr && ret) {
9541                     status = host_to_target_waitstatus(status);
9542                     if (put_user_s32(status, status_ptr))
9543                         return -TARGET_EFAULT;
9544                 }
9545                 if (target_rusage) {
9546                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
9547                     if (rusage_err) {
9548                         ret = rusage_err;
9549                     }
9550                 }
9551             }
9552         }
9553         return ret;
9554 #endif
9555 #ifdef TARGET_NR_swapoff
9556     case TARGET_NR_swapoff:
9557         if (!(p = lock_user_string(arg1)))
9558             return -TARGET_EFAULT;
9559         ret = get_errno(swapoff(p));
9560         unlock_user(p, arg1, 0);
9561         return ret;
9562 #endif
9563     case TARGET_NR_sysinfo:
9564         {
9565             struct target_sysinfo *target_value;
9566             struct sysinfo value;
9567             ret = get_errno(sysinfo(&value));
9568             if (!is_error(ret) && arg1)
9569             {
9570                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
9571                     return -TARGET_EFAULT;
9572                 __put_user(value.uptime, &target_value->uptime);
9573                 __put_user(value.loads[0], &target_value->loads[0]);
9574                 __put_user(value.loads[1], &target_value->loads[1]);
9575                 __put_user(value.loads[2], &target_value->loads[2]);
9576                 __put_user(value.totalram, &target_value->totalram);
9577                 __put_user(value.freeram, &target_value->freeram);
9578                 __put_user(value.sharedram, &target_value->sharedram);
9579                 __put_user(value.bufferram, &target_value->bufferram);
9580                 __put_user(value.totalswap, &target_value->totalswap);
9581                 __put_user(value.freeswap, &target_value->freeswap);
9582                 __put_user(value.procs, &target_value->procs);
9583                 __put_user(value.totalhigh, &target_value->totalhigh);
9584                 __put_user(value.freehigh, &target_value->freehigh);
9585                 __put_user(value.mem_unit, &target_value->mem_unit);
9586                 unlock_user_struct(target_value, arg1, 1);
9587             }
9588         }
9589         return ret;
9590 #ifdef TARGET_NR_ipc
9591     case TARGET_NR_ipc:
9592         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
9593 #endif
9594 #ifdef TARGET_NR_semget
9595     case TARGET_NR_semget:
9596         return get_errno(semget(arg1, arg2, arg3));
9597 #endif
9598 #ifdef TARGET_NR_semop
9599     case TARGET_NR_semop:
9600         return do_semop(arg1, arg2, arg3);
9601 #endif
9602 #ifdef TARGET_NR_semctl
9603     case TARGET_NR_semctl:
9604         return do_semctl(arg1, arg2, arg3, arg4);
9605 #endif
9606 #ifdef TARGET_NR_msgctl
9607     case TARGET_NR_msgctl:
9608         return do_msgctl(arg1, arg2, arg3);
9609 #endif
9610 #ifdef TARGET_NR_msgget
9611     case TARGET_NR_msgget:
9612         return get_errno(msgget(arg1, arg2));
9613 #endif
9614 #ifdef TARGET_NR_msgrcv
9615     case TARGET_NR_msgrcv:
9616         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
9617 #endif
9618 #ifdef TARGET_NR_msgsnd
9619     case TARGET_NR_msgsnd:
9620         return do_msgsnd(arg1, arg2, arg3, arg4);
9621 #endif
9622 #ifdef TARGET_NR_shmget
9623     case TARGET_NR_shmget:
9624         return get_errno(shmget(arg1, arg2, arg3));
9625 #endif
9626 #ifdef TARGET_NR_shmctl
9627     case TARGET_NR_shmctl:
9628         return do_shmctl(arg1, arg2, arg3);
9629 #endif
9630 #ifdef TARGET_NR_shmat
9631     case TARGET_NR_shmat:
9632         return do_shmat(cpu_env, arg1, arg2, arg3);
9633 #endif
9634 #ifdef TARGET_NR_shmdt
9635     case TARGET_NR_shmdt:
9636         return do_shmdt(arg1);
9637 #endif
9638     case TARGET_NR_fsync:
9639         return get_errno(fsync(arg1));
9640     case TARGET_NR_clone:
9641         /* Linux manages to have three different orderings for its
9642          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
9643          * match the kernel's CONFIG_CLONE_* settings.
9644          * Microblaze is further special in that it uses a sixth
9645          * implicit argument to clone for the TLS pointer.
9646          */
9647 #if defined(TARGET_MICROBLAZE)
9648         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
9649 #elif defined(TARGET_CLONE_BACKWARDS)
9650         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
9651 #elif defined(TARGET_CLONE_BACKWARDS2)
9652         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
9653 #else
9654         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
9655 #endif
9656         return ret;
9657 #ifdef __NR_exit_group
9658         /* new thread calls */
9659     case TARGET_NR_exit_group:
9660         preexit_cleanup(cpu_env, arg1);
9661         return get_errno(exit_group(arg1));
9662 #endif
9663     case TARGET_NR_setdomainname:
9664         if (!(p = lock_user_string(arg1)))
9665             return -TARGET_EFAULT;
9666         ret = get_errno(setdomainname(p, arg2));
9667         unlock_user(p, arg1, 0);
9668         return ret;
9669     case TARGET_NR_uname:
9670         /* no need to transcode because we use the linux syscall */
9671         {
9672             struct new_utsname * buf;
9673 
9674             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
9675                 return -TARGET_EFAULT;
9676             ret = get_errno(sys_uname(buf));
9677             if (!is_error(ret)) {
9678                 /* Overwrite the native machine name with whatever is being
9679                    emulated. */
9680                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
9681                           sizeof(buf->machine));
9682                 /* Allow the user to override the reported release.  */
9683                 if (qemu_uname_release && *qemu_uname_release) {
9684                     g_strlcpy(buf->release, qemu_uname_release,
9685                               sizeof(buf->release));
9686                 }
9687             }
9688             unlock_user_struct(buf, arg1, 1);
9689         }
9690         return ret;
9691 #ifdef TARGET_I386
9692     case TARGET_NR_modify_ldt:
9693         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
9694 #if !defined(TARGET_X86_64)
9695     case TARGET_NR_vm86:
9696         return do_vm86(cpu_env, arg1, arg2);
9697 #endif
9698 #endif
9699 #if defined(TARGET_NR_adjtimex)
9700     case TARGET_NR_adjtimex:
9701         {
9702             struct timex host_buf;
9703 
9704             if (target_to_host_timex(&host_buf, arg1) != 0) {
9705                 return -TARGET_EFAULT;
9706             }
9707             ret = get_errno(adjtimex(&host_buf));
9708             if (!is_error(ret)) {
9709                 if (host_to_target_timex(arg1, &host_buf) != 0) {
9710                     return -TARGET_EFAULT;
9711                 }
9712             }
9713         }
9714         return ret;
9715 #endif
9716 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
9717     case TARGET_NR_clock_adjtime:
9718         {
9719             struct timex htx, *phtx = &htx;
9720 
9721             if (target_to_host_timex(phtx, arg2) != 0) {
9722                 return -TARGET_EFAULT;
9723             }
9724             ret = get_errno(clock_adjtime(arg1, phtx));
9725             if (!is_error(ret) && phtx) {
9726                 if (host_to_target_timex(arg2, phtx) != 0) {
9727                     return -TARGET_EFAULT;
9728                 }
9729             }
9730         }
9731         return ret;
9732 #endif
9733     case TARGET_NR_getpgid:
9734         return get_errno(getpgid(arg1));
9735     case TARGET_NR_fchdir:
9736         return get_errno(fchdir(arg1));
9737     case TARGET_NR_personality:
9738         return get_errno(personality(arg1));
9739 #ifdef TARGET_NR__llseek /* Not on alpha */
9740     case TARGET_NR__llseek:
9741         {
9742             int64_t res;
9743 #if !defined(__NR_llseek)
9744             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
9745             if (res == -1) {
9746                 ret = get_errno(res);
9747             } else {
9748                 ret = 0;
9749             }
9750 #else
9751             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
9752 #endif
9753             if ((ret == 0) && put_user_s64(res, arg4)) {
9754                 return -TARGET_EFAULT;
9755             }
9756         }
9757         return ret;
9758 #endif
9759 #ifdef TARGET_NR_getdents
9760     case TARGET_NR_getdents:
9761 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
9762 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
9763         {
9764             struct target_dirent *target_dirp;
9765             struct linux_dirent *dirp;
9766             abi_long count = arg3;
9767 
9768             dirp = g_try_malloc(count);
9769             if (!dirp) {
9770                 return -TARGET_ENOMEM;
9771             }
9772 
9773             ret = get_errno(sys_getdents(arg1, dirp, count));
9774             if (!is_error(ret)) {
9775                 struct linux_dirent *de;
9776 		struct target_dirent *tde;
9777                 int len = ret;
9778                 int reclen, treclen;
9779 		int count1, tnamelen;
9780 
9781 		count1 = 0;
9782                 de = dirp;
9783                 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9784                     return -TARGET_EFAULT;
9785 		tde = target_dirp;
9786                 while (len > 0) {
9787                     reclen = de->d_reclen;
9788                     tnamelen = reclen - offsetof(struct linux_dirent, d_name);
9789                     assert(tnamelen >= 0);
9790                     treclen = tnamelen + offsetof(struct target_dirent, d_name);
9791                     assert(count1 + treclen <= count);
9792                     tde->d_reclen = tswap16(treclen);
9793                     tde->d_ino = tswapal(de->d_ino);
9794                     tde->d_off = tswapal(de->d_off);
9795                     memcpy(tde->d_name, de->d_name, tnamelen);
9796                     de = (struct linux_dirent *)((char *)de + reclen);
9797                     len -= reclen;
9798                     tde = (struct target_dirent *)((char *)tde + treclen);
9799 		    count1 += treclen;
9800                 }
9801 		ret = count1;
9802                 unlock_user(target_dirp, arg2, ret);
9803             }
9804             g_free(dirp);
9805         }
9806 #else
9807         {
9808             struct linux_dirent *dirp;
9809             abi_long count = arg3;
9810 
9811             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9812                 return -TARGET_EFAULT;
9813             ret = get_errno(sys_getdents(arg1, dirp, count));
9814             if (!is_error(ret)) {
9815                 struct linux_dirent *de;
9816                 int len = ret;
9817                 int reclen;
9818                 de = dirp;
9819                 while (len > 0) {
9820                     reclen = de->d_reclen;
9821                     if (reclen > len)
9822                         break;
9823                     de->d_reclen = tswap16(reclen);
9824                     tswapls(&de->d_ino);
9825                     tswapls(&de->d_off);
9826                     de = (struct linux_dirent *)((char *)de + reclen);
9827                     len -= reclen;
9828                 }
9829             }
9830             unlock_user(dirp, arg2, ret);
9831         }
9832 #endif
9833 #else
9834         /* Implement getdents in terms of getdents64 */
9835         {
9836             struct linux_dirent64 *dirp;
9837             abi_long count = arg3;
9838 
9839             dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
9840             if (!dirp) {
9841                 return -TARGET_EFAULT;
9842             }
9843             ret = get_errno(sys_getdents64(arg1, dirp, count));
9844             if (!is_error(ret)) {
9845                 /* Convert the dirent64 structs to target dirent.  We do this
9846                  * in-place, since we can guarantee that a target_dirent is no
9847                  * larger than a dirent64; however this means we have to be
9848                  * careful to read everything before writing in the new format.
9849                  */
9850                 struct linux_dirent64 *de;
9851                 struct target_dirent *tde;
9852                 int len = ret;
9853                 int tlen = 0;
9854 
9855                 de = dirp;
9856                 tde = (struct target_dirent *)dirp;
9857                 while (len > 0) {
9858                     int namelen, treclen;
9859                     int reclen = de->d_reclen;
9860                     uint64_t ino = de->d_ino;
9861                     int64_t off = de->d_off;
9862                     uint8_t type = de->d_type;
9863 
9864                     namelen = strlen(de->d_name);
9865                     treclen = offsetof(struct target_dirent, d_name)
9866                         + namelen + 2;
9867                     treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
9868 
9869                     memmove(tde->d_name, de->d_name, namelen + 1);
9870                     tde->d_ino = tswapal(ino);
9871                     tde->d_off = tswapal(off);
9872                     tde->d_reclen = tswap16(treclen);
9873                     /* The target_dirent type is in what was formerly a padding
9874                      * byte at the end of the structure:
9875                      */
9876                     *(((char *)tde) + treclen - 1) = type;
9877 
9878                     de = (struct linux_dirent64 *)((char *)de + reclen);
9879                     tde = (struct target_dirent *)((char *)tde + treclen);
9880                     len -= reclen;
9881                     tlen += treclen;
9882                 }
9883                 ret = tlen;
9884             }
9885             unlock_user(dirp, arg2, ret);
9886         }
9887 #endif
9888         return ret;
9889 #endif /* TARGET_NR_getdents */
9890 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
9891     case TARGET_NR_getdents64:
9892         {
9893             struct linux_dirent64 *dirp;
9894             abi_long count = arg3;
9895             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9896                 return -TARGET_EFAULT;
9897             ret = get_errno(sys_getdents64(arg1, dirp, count));
9898             if (!is_error(ret)) {
9899                 struct linux_dirent64 *de;
9900                 int len = ret;
9901                 int reclen;
9902                 de = dirp;
9903                 while (len > 0) {
9904                     reclen = de->d_reclen;
9905                     if (reclen > len)
9906                         break;
9907                     de->d_reclen = tswap16(reclen);
9908                     tswap64s((uint64_t *)&de->d_ino);
9909                     tswap64s((uint64_t *)&de->d_off);
9910                     de = (struct linux_dirent64 *)((char *)de + reclen);
9911                     len -= reclen;
9912                 }
9913             }
9914             unlock_user(dirp, arg2, ret);
9915         }
9916         return ret;
9917 #endif /* TARGET_NR_getdents64 */
9918 #if defined(TARGET_NR__newselect)
9919     case TARGET_NR__newselect:
9920         return do_select(arg1, arg2, arg3, arg4, arg5);
9921 #endif
9922 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
9923 # ifdef TARGET_NR_poll
9924     case TARGET_NR_poll:
9925 # endif
9926 # ifdef TARGET_NR_ppoll
9927     case TARGET_NR_ppoll:
9928 # endif
9929         {
9930             struct target_pollfd *target_pfd;
9931             unsigned int nfds = arg2;
9932             struct pollfd *pfd;
9933             unsigned int i;
9934 
9935             pfd = NULL;
9936             target_pfd = NULL;
9937             if (nfds) {
9938                 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
9939                     return -TARGET_EINVAL;
9940                 }
9941 
9942                 target_pfd = lock_user(VERIFY_WRITE, arg1,
9943                                        sizeof(struct target_pollfd) * nfds, 1);
9944                 if (!target_pfd) {
9945                     return -TARGET_EFAULT;
9946                 }
9947 
9948                 pfd = alloca(sizeof(struct pollfd) * nfds);
9949                 for (i = 0; i < nfds; i++) {
9950                     pfd[i].fd = tswap32(target_pfd[i].fd);
9951                     pfd[i].events = tswap16(target_pfd[i].events);
9952                 }
9953             }
9954 
9955             switch (num) {
9956 # ifdef TARGET_NR_ppoll
9957             case TARGET_NR_ppoll:
9958             {
9959                 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
9960                 target_sigset_t *target_set;
9961                 sigset_t _set, *set = &_set;
9962 
9963                 if (arg3) {
9964                     if (target_to_host_timespec(timeout_ts, arg3)) {
9965                         unlock_user(target_pfd, arg1, 0);
9966                         return -TARGET_EFAULT;
9967                     }
9968                 } else {
9969                     timeout_ts = NULL;
9970                 }
9971 
9972                 if (arg4) {
9973                     if (arg5 != sizeof(target_sigset_t)) {
9974                         unlock_user(target_pfd, arg1, 0);
9975                         return -TARGET_EINVAL;
9976                     }
9977 
9978                     target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
9979                     if (!target_set) {
9980                         unlock_user(target_pfd, arg1, 0);
9981                         return -TARGET_EFAULT;
9982                     }
9983                     target_to_host_sigset(set, target_set);
9984                 } else {
9985                     set = NULL;
9986                 }
9987 
9988                 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
9989                                            set, SIGSET_T_SIZE));
9990 
9991                 if (!is_error(ret) && arg3) {
9992                     host_to_target_timespec(arg3, timeout_ts);
9993                 }
9994                 if (arg4) {
9995                     unlock_user(target_set, arg4, 0);
9996                 }
9997                 break;
9998             }
9999 # endif
10000 # ifdef TARGET_NR_poll
10001             case TARGET_NR_poll:
10002             {
10003                 struct timespec ts, *pts;
10004 
10005                 if (arg3 >= 0) {
10006                     /* Convert ms to secs, ns */
10007                     ts.tv_sec = arg3 / 1000;
10008                     ts.tv_nsec = (arg3 % 1000) * 1000000LL;
10009                     pts = &ts;
10010                 } else {
10011                     /* -ve poll() timeout means "infinite" */
10012                     pts = NULL;
10013                 }
10014                 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
10015                 break;
10016             }
10017 # endif
10018             default:
10019                 g_assert_not_reached();
10020             }
10021 
10022             if (!is_error(ret)) {
10023                 for(i = 0; i < nfds; i++) {
10024                     target_pfd[i].revents = tswap16(pfd[i].revents);
10025                 }
10026             }
10027             unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
10028         }
10029         return ret;
10030 #endif
10031     case TARGET_NR_flock:
10032         /* NOTE: the flock constant seems to be the same for every
10033            Linux platform */
10034         return get_errno(safe_flock(arg1, arg2));
10035     case TARGET_NR_readv:
10036         {
10037             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10038             if (vec != NULL) {
10039                 ret = get_errno(safe_readv(arg1, vec, arg3));
10040                 unlock_iovec(vec, arg2, arg3, 1);
10041             } else {
10042                 ret = -host_to_target_errno(errno);
10043             }
10044         }
10045         return ret;
10046     case TARGET_NR_writev:
10047         {
10048             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10049             if (vec != NULL) {
10050                 ret = get_errno(safe_writev(arg1, vec, arg3));
10051                 unlock_iovec(vec, arg2, arg3, 0);
10052             } else {
10053                 ret = -host_to_target_errno(errno);
10054             }
10055         }
10056         return ret;
10057 #if defined(TARGET_NR_preadv)
10058     case TARGET_NR_preadv:
10059         {
10060             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10061             if (vec != NULL) {
10062                 unsigned long low, high;
10063 
10064                 target_to_host_low_high(arg4, arg5, &low, &high);
10065                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10066                 unlock_iovec(vec, arg2, arg3, 1);
10067             } else {
10068                 ret = -host_to_target_errno(errno);
10069            }
10070         }
10071         return ret;
10072 #endif
10073 #if defined(TARGET_NR_pwritev)
10074     case TARGET_NR_pwritev:
10075         {
10076             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10077             if (vec != NULL) {
10078                 unsigned long low, high;
10079 
10080                 target_to_host_low_high(arg4, arg5, &low, &high);
10081                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10082                 unlock_iovec(vec, arg2, arg3, 0);
10083             } else {
10084                 ret = -host_to_target_errno(errno);
10085            }
10086         }
10087         return ret;
10088 #endif
10089     case TARGET_NR_getsid:
10090         return get_errno(getsid(arg1));
10091 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10092     case TARGET_NR_fdatasync:
10093         return get_errno(fdatasync(arg1));
10094 #endif
10095 #ifdef TARGET_NR__sysctl
10096     case TARGET_NR__sysctl:
10097         /* We don't implement this, but ENOTDIR is always a safe
10098            return value. */
10099         return -TARGET_ENOTDIR;
10100 #endif
10101     case TARGET_NR_sched_getaffinity:
10102         {
10103             unsigned int mask_size;
10104             unsigned long *mask;
10105 
10106             /*
10107              * sched_getaffinity needs multiples of ulong, so need to take
10108              * care of mismatches between target ulong and host ulong sizes.
10109              */
10110             if (arg2 & (sizeof(abi_ulong) - 1)) {
10111                 return -TARGET_EINVAL;
10112             }
10113             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10114 
10115             mask = alloca(mask_size);
10116             memset(mask, 0, mask_size);
10117             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10118 
10119             if (!is_error(ret)) {
10120                 if (ret > arg2) {
10121                     /* More data returned than the caller's buffer will fit.
10122                      * This only happens if sizeof(abi_long) < sizeof(long)
10123                      * and the caller passed us a buffer holding an odd number
10124                      * of abi_longs. If the host kernel is actually using the
10125                      * extra 4 bytes then fail EINVAL; otherwise we can just
10126                      * ignore them and only copy the interesting part.
10127                      */
10128                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10129                     if (numcpus > arg2 * 8) {
10130                         return -TARGET_EINVAL;
10131                     }
10132                     ret = arg2;
10133                 }
10134 
10135                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10136                     return -TARGET_EFAULT;
10137                 }
10138             }
10139         }
10140         return ret;
10141     case TARGET_NR_sched_setaffinity:
10142         {
10143             unsigned int mask_size;
10144             unsigned long *mask;
10145 
10146             /*
10147              * sched_setaffinity needs multiples of ulong, so need to take
10148              * care of mismatches between target ulong and host ulong sizes.
10149              */
10150             if (arg2 & (sizeof(abi_ulong) - 1)) {
10151                 return -TARGET_EINVAL;
10152             }
10153             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10154             mask = alloca(mask_size);
10155 
10156             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10157             if (ret) {
10158                 return ret;
10159             }
10160 
10161             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10162         }
10163     case TARGET_NR_getcpu:
10164         {
10165             unsigned cpu, node;
10166             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10167                                        arg2 ? &node : NULL,
10168                                        NULL));
10169             if (is_error(ret)) {
10170                 return ret;
10171             }
10172             if (arg1 && put_user_u32(cpu, arg1)) {
10173                 return -TARGET_EFAULT;
10174             }
10175             if (arg2 && put_user_u32(node, arg2)) {
10176                 return -TARGET_EFAULT;
10177             }
10178         }
10179         return ret;
10180     case TARGET_NR_sched_setparam:
10181         {
10182             struct sched_param *target_schp;
10183             struct sched_param schp;
10184 
10185             if (arg2 == 0) {
10186                 return -TARGET_EINVAL;
10187             }
10188             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
10189                 return -TARGET_EFAULT;
10190             schp.sched_priority = tswap32(target_schp->sched_priority);
10191             unlock_user_struct(target_schp, arg2, 0);
10192             return get_errno(sched_setparam(arg1, &schp));
10193         }
10194     case TARGET_NR_sched_getparam:
10195         {
10196             struct sched_param *target_schp;
10197             struct sched_param schp;
10198 
10199             if (arg2 == 0) {
10200                 return -TARGET_EINVAL;
10201             }
10202             ret = get_errno(sched_getparam(arg1, &schp));
10203             if (!is_error(ret)) {
10204                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10205                     return -TARGET_EFAULT;
10206                 target_schp->sched_priority = tswap32(schp.sched_priority);
10207                 unlock_user_struct(target_schp, arg2, 1);
10208             }
10209         }
10210         return ret;
10211     case TARGET_NR_sched_setscheduler:
10212         {
10213             struct sched_param *target_schp;
10214             struct sched_param schp;
10215             if (arg3 == 0) {
10216                 return -TARGET_EINVAL;
10217             }
10218             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10219                 return -TARGET_EFAULT;
10220             schp.sched_priority = tswap32(target_schp->sched_priority);
10221             unlock_user_struct(target_schp, arg3, 0);
10222             return get_errno(sched_setscheduler(arg1, arg2, &schp));
10223         }
10224     case TARGET_NR_sched_getscheduler:
10225         return get_errno(sched_getscheduler(arg1));
10226     case TARGET_NR_sched_yield:
10227         return get_errno(sched_yield());
10228     case TARGET_NR_sched_get_priority_max:
10229         return get_errno(sched_get_priority_max(arg1));
10230     case TARGET_NR_sched_get_priority_min:
10231         return get_errno(sched_get_priority_min(arg1));
10232 #ifdef TARGET_NR_sched_rr_get_interval
10233     case TARGET_NR_sched_rr_get_interval:
10234         {
10235             struct timespec ts;
10236             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10237             if (!is_error(ret)) {
10238                 ret = host_to_target_timespec(arg2, &ts);
10239             }
10240         }
10241         return ret;
10242 #endif
10243 #if defined(TARGET_NR_nanosleep)
10244     case TARGET_NR_nanosleep:
10245         {
10246             struct timespec req, rem;
10247             target_to_host_timespec(&req, arg1);
10248             ret = get_errno(safe_nanosleep(&req, &rem));
10249             if (is_error(ret) && arg2) {
10250                 host_to_target_timespec(arg2, &rem);
10251             }
10252         }
10253         return ret;
10254 #endif
10255     case TARGET_NR_prctl:
10256         switch (arg1) {
10257         case PR_GET_PDEATHSIG:
10258         {
10259             int deathsig;
10260             ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10261             if (!is_error(ret) && arg2
10262                 && put_user_ual(deathsig, arg2)) {
10263                 return -TARGET_EFAULT;
10264             }
10265             return ret;
10266         }
10267 #ifdef PR_GET_NAME
10268         case PR_GET_NAME:
10269         {
10270             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10271             if (!name) {
10272                 return -TARGET_EFAULT;
10273             }
10274             ret = get_errno(prctl(arg1, (unsigned long)name,
10275                                   arg3, arg4, arg5));
10276             unlock_user(name, arg2, 16);
10277             return ret;
10278         }
10279         case PR_SET_NAME:
10280         {
10281             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10282             if (!name) {
10283                 return -TARGET_EFAULT;
10284             }
10285             ret = get_errno(prctl(arg1, (unsigned long)name,
10286                                   arg3, arg4, arg5));
10287             unlock_user(name, arg2, 0);
10288             return ret;
10289         }
10290 #endif
10291 #ifdef TARGET_MIPS
10292         case TARGET_PR_GET_FP_MODE:
10293         {
10294             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10295             ret = 0;
10296             if (env->CP0_Status & (1 << CP0St_FR)) {
10297                 ret |= TARGET_PR_FP_MODE_FR;
10298             }
10299             if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
10300                 ret |= TARGET_PR_FP_MODE_FRE;
10301             }
10302             return ret;
10303         }
10304         case TARGET_PR_SET_FP_MODE:
10305         {
10306             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10307             bool old_fr = env->CP0_Status & (1 << CP0St_FR);
10308             bool old_fre = env->CP0_Config5 & (1 << CP0C5_FRE);
10309             bool new_fr = arg2 & TARGET_PR_FP_MODE_FR;
10310             bool new_fre = arg2 & TARGET_PR_FP_MODE_FRE;
10311 
10312             const unsigned int known_bits = TARGET_PR_FP_MODE_FR |
10313                                             TARGET_PR_FP_MODE_FRE;
10314 
10315             /* If nothing to change, return right away, successfully.  */
10316             if (old_fr == new_fr && old_fre == new_fre) {
10317                 return 0;
10318             }
10319             /* Check the value is valid */
10320             if (arg2 & ~known_bits) {
10321                 return -TARGET_EOPNOTSUPP;
10322             }
10323             /* Setting FRE without FR is not supported.  */
10324             if (new_fre && !new_fr) {
10325                 return -TARGET_EOPNOTSUPP;
10326             }
10327             if (new_fr && !(env->active_fpu.fcr0 & (1 << FCR0_F64))) {
10328                 /* FR1 is not supported */
10329                 return -TARGET_EOPNOTSUPP;
10330             }
10331             if (!new_fr && (env->active_fpu.fcr0 & (1 << FCR0_F64))
10332                 && !(env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) {
10333                 /* cannot set FR=0 */
10334                 return -TARGET_EOPNOTSUPP;
10335             }
10336             if (new_fre && !(env->active_fpu.fcr0 & (1 << FCR0_FREP))) {
10337                 /* Cannot set FRE=1 */
10338                 return -TARGET_EOPNOTSUPP;
10339             }
10340 
10341             int i;
10342             fpr_t *fpr = env->active_fpu.fpr;
10343             for (i = 0; i < 32 ; i += 2) {
10344                 if (!old_fr && new_fr) {
10345                     fpr[i].w[!FP_ENDIAN_IDX] = fpr[i + 1].w[FP_ENDIAN_IDX];
10346                 } else if (old_fr && !new_fr) {
10347                     fpr[i + 1].w[FP_ENDIAN_IDX] = fpr[i].w[!FP_ENDIAN_IDX];
10348                 }
10349             }
10350 
10351             if (new_fr) {
10352                 env->CP0_Status |= (1 << CP0St_FR);
10353                 env->hflags |= MIPS_HFLAG_F64;
10354             } else {
10355                 env->CP0_Status &= ~(1 << CP0St_FR);
10356                 env->hflags &= ~MIPS_HFLAG_F64;
10357             }
10358             if (new_fre) {
10359                 env->CP0_Config5 |= (1 << CP0C5_FRE);
10360                 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
10361                     env->hflags |= MIPS_HFLAG_FRE;
10362                 }
10363             } else {
10364                 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
10365                 env->hflags &= ~MIPS_HFLAG_FRE;
10366             }
10367 
10368             return 0;
10369         }
10370 #endif /* MIPS */
10371 #ifdef TARGET_AARCH64
10372         case TARGET_PR_SVE_SET_VL:
10373             /*
10374              * We cannot support either PR_SVE_SET_VL_ONEXEC or
10375              * PR_SVE_VL_INHERIT.  Note the kernel definition
10376              * of sve_vl_valid allows for VQ=512, i.e. VL=8192,
10377              * even though the current architectural maximum is VQ=16.
10378              */
10379             ret = -TARGET_EINVAL;
10380             if (cpu_isar_feature(aa64_sve, env_archcpu(cpu_env))
10381                 && arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) {
10382                 CPUARMState *env = cpu_env;
10383                 ARMCPU *cpu = env_archcpu(env);
10384                 uint32_t vq, old_vq;
10385 
10386                 old_vq = (env->vfp.zcr_el[1] & 0xf) + 1;
10387                 vq = MAX(arg2 / 16, 1);
10388                 vq = MIN(vq, cpu->sve_max_vq);
10389 
10390                 if (vq < old_vq) {
10391                     aarch64_sve_narrow_vq(env, vq);
10392                 }
10393                 env->vfp.zcr_el[1] = vq - 1;
10394                 arm_rebuild_hflags(env);
10395                 ret = vq * 16;
10396             }
10397             return ret;
10398         case TARGET_PR_SVE_GET_VL:
10399             ret = -TARGET_EINVAL;
10400             {
10401                 ARMCPU *cpu = env_archcpu(cpu_env);
10402                 if (cpu_isar_feature(aa64_sve, cpu)) {
10403                     ret = ((cpu->env.vfp.zcr_el[1] & 0xf) + 1) * 16;
10404                 }
10405             }
10406             return ret;
10407         case TARGET_PR_PAC_RESET_KEYS:
10408             {
10409                 CPUARMState *env = cpu_env;
10410                 ARMCPU *cpu = env_archcpu(env);
10411 
10412                 if (arg3 || arg4 || arg5) {
10413                     return -TARGET_EINVAL;
10414                 }
10415                 if (cpu_isar_feature(aa64_pauth, cpu)) {
10416                     int all = (TARGET_PR_PAC_APIAKEY | TARGET_PR_PAC_APIBKEY |
10417                                TARGET_PR_PAC_APDAKEY | TARGET_PR_PAC_APDBKEY |
10418                                TARGET_PR_PAC_APGAKEY);
10419                     int ret = 0;
10420                     Error *err = NULL;
10421 
10422                     if (arg2 == 0) {
10423                         arg2 = all;
10424                     } else if (arg2 & ~all) {
10425                         return -TARGET_EINVAL;
10426                     }
10427                     if (arg2 & TARGET_PR_PAC_APIAKEY) {
10428                         ret |= qemu_guest_getrandom(&env->keys.apia,
10429                                                     sizeof(ARMPACKey), &err);
10430                     }
10431                     if (arg2 & TARGET_PR_PAC_APIBKEY) {
10432                         ret |= qemu_guest_getrandom(&env->keys.apib,
10433                                                     sizeof(ARMPACKey), &err);
10434                     }
10435                     if (arg2 & TARGET_PR_PAC_APDAKEY) {
10436                         ret |= qemu_guest_getrandom(&env->keys.apda,
10437                                                     sizeof(ARMPACKey), &err);
10438                     }
10439                     if (arg2 & TARGET_PR_PAC_APDBKEY) {
10440                         ret |= qemu_guest_getrandom(&env->keys.apdb,
10441                                                     sizeof(ARMPACKey), &err);
10442                     }
10443                     if (arg2 & TARGET_PR_PAC_APGAKEY) {
10444                         ret |= qemu_guest_getrandom(&env->keys.apga,
10445                                                     sizeof(ARMPACKey), &err);
10446                     }
10447                     if (ret != 0) {
10448                         /*
10449                          * Some unknown failure in the crypto.  The best
10450                          * we can do is log it and fail the syscall.
10451                          * The real syscall cannot fail this way.
10452                          */
10453                         qemu_log_mask(LOG_UNIMP,
10454                                       "PR_PAC_RESET_KEYS: Crypto failure: %s",
10455                                       error_get_pretty(err));
10456                         error_free(err);
10457                         return -TARGET_EIO;
10458                     }
10459                     return 0;
10460                 }
10461             }
10462             return -TARGET_EINVAL;
10463 #endif /* AARCH64 */
10464         case PR_GET_SECCOMP:
10465         case PR_SET_SECCOMP:
10466             /* Disable seccomp to prevent the target disabling syscalls we
10467              * need. */
10468             return -TARGET_EINVAL;
10469         default:
10470             /* Most prctl options have no pointer arguments */
10471             return get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
10472         }
10473         break;
10474 #ifdef TARGET_NR_arch_prctl
10475     case TARGET_NR_arch_prctl:
10476         return do_arch_prctl(cpu_env, arg1, arg2);
10477 #endif
10478 #ifdef TARGET_NR_pread64
10479     case TARGET_NR_pread64:
10480         if (regpairs_aligned(cpu_env, num)) {
10481             arg4 = arg5;
10482             arg5 = arg6;
10483         }
10484         if (arg2 == 0 && arg3 == 0) {
10485             /* Special-case NULL buffer and zero length, which should succeed */
10486             p = 0;
10487         } else {
10488             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10489             if (!p) {
10490                 return -TARGET_EFAULT;
10491             }
10492         }
10493         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
10494         unlock_user(p, arg2, ret);
10495         return ret;
10496     case TARGET_NR_pwrite64:
10497         if (regpairs_aligned(cpu_env, num)) {
10498             arg4 = arg5;
10499             arg5 = arg6;
10500         }
10501         if (arg2 == 0 && arg3 == 0) {
10502             /* Special-case NULL buffer and zero length, which should succeed */
10503             p = 0;
10504         } else {
10505             p = lock_user(VERIFY_READ, arg2, arg3, 1);
10506             if (!p) {
10507                 return -TARGET_EFAULT;
10508             }
10509         }
10510         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
10511         unlock_user(p, arg2, 0);
10512         return ret;
10513 #endif
10514     case TARGET_NR_getcwd:
10515         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
10516             return -TARGET_EFAULT;
10517         ret = get_errno(sys_getcwd1(p, arg2));
10518         unlock_user(p, arg1, ret);
10519         return ret;
10520     case TARGET_NR_capget:
10521     case TARGET_NR_capset:
10522     {
10523         struct target_user_cap_header *target_header;
10524         struct target_user_cap_data *target_data = NULL;
10525         struct __user_cap_header_struct header;
10526         struct __user_cap_data_struct data[2];
10527         struct __user_cap_data_struct *dataptr = NULL;
10528         int i, target_datalen;
10529         int data_items = 1;
10530 
10531         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
10532             return -TARGET_EFAULT;
10533         }
10534         header.version = tswap32(target_header->version);
10535         header.pid = tswap32(target_header->pid);
10536 
10537         if (header.version != _LINUX_CAPABILITY_VERSION) {
10538             /* Version 2 and up takes pointer to two user_data structs */
10539             data_items = 2;
10540         }
10541 
10542         target_datalen = sizeof(*target_data) * data_items;
10543 
10544         if (arg2) {
10545             if (num == TARGET_NR_capget) {
10546                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
10547             } else {
10548                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
10549             }
10550             if (!target_data) {
10551                 unlock_user_struct(target_header, arg1, 0);
10552                 return -TARGET_EFAULT;
10553             }
10554 
10555             if (num == TARGET_NR_capset) {
10556                 for (i = 0; i < data_items; i++) {
10557                     data[i].effective = tswap32(target_data[i].effective);
10558                     data[i].permitted = tswap32(target_data[i].permitted);
10559                     data[i].inheritable = tswap32(target_data[i].inheritable);
10560                 }
10561             }
10562 
10563             dataptr = data;
10564         }
10565 
10566         if (num == TARGET_NR_capget) {
10567             ret = get_errno(capget(&header, dataptr));
10568         } else {
10569             ret = get_errno(capset(&header, dataptr));
10570         }
10571 
10572         /* The kernel always updates version for both capget and capset */
10573         target_header->version = tswap32(header.version);
10574         unlock_user_struct(target_header, arg1, 1);
10575 
10576         if (arg2) {
10577             if (num == TARGET_NR_capget) {
10578                 for (i = 0; i < data_items; i++) {
10579                     target_data[i].effective = tswap32(data[i].effective);
10580                     target_data[i].permitted = tswap32(data[i].permitted);
10581                     target_data[i].inheritable = tswap32(data[i].inheritable);
10582                 }
10583                 unlock_user(target_data, arg2, target_datalen);
10584             } else {
10585                 unlock_user(target_data, arg2, 0);
10586             }
10587         }
10588         return ret;
10589     }
10590     case TARGET_NR_sigaltstack:
10591         return do_sigaltstack(arg1, arg2,
10592                               get_sp_from_cpustate((CPUArchState *)cpu_env));
10593 
10594 #ifdef CONFIG_SENDFILE
10595 #ifdef TARGET_NR_sendfile
10596     case TARGET_NR_sendfile:
10597     {
10598         off_t *offp = NULL;
10599         off_t off;
10600         if (arg3) {
10601             ret = get_user_sal(off, arg3);
10602             if (is_error(ret)) {
10603                 return ret;
10604             }
10605             offp = &off;
10606         }
10607         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10608         if (!is_error(ret) && arg3) {
10609             abi_long ret2 = put_user_sal(off, arg3);
10610             if (is_error(ret2)) {
10611                 ret = ret2;
10612             }
10613         }
10614         return ret;
10615     }
10616 #endif
10617 #ifdef TARGET_NR_sendfile64
10618     case TARGET_NR_sendfile64:
10619     {
10620         off_t *offp = NULL;
10621         off_t off;
10622         if (arg3) {
10623             ret = get_user_s64(off, arg3);
10624             if (is_error(ret)) {
10625                 return ret;
10626             }
10627             offp = &off;
10628         }
10629         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10630         if (!is_error(ret) && arg3) {
10631             abi_long ret2 = put_user_s64(off, arg3);
10632             if (is_error(ret2)) {
10633                 ret = ret2;
10634             }
10635         }
10636         return ret;
10637     }
10638 #endif
10639 #endif
10640 #ifdef TARGET_NR_vfork
10641     case TARGET_NR_vfork:
10642         return get_errno(do_fork(cpu_env,
10643                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
10644                          0, 0, 0, 0));
10645 #endif
10646 #ifdef TARGET_NR_ugetrlimit
10647     case TARGET_NR_ugetrlimit:
10648     {
10649 	struct rlimit rlim;
10650 	int resource = target_to_host_resource(arg1);
10651 	ret = get_errno(getrlimit(resource, &rlim));
10652 	if (!is_error(ret)) {
10653 	    struct target_rlimit *target_rlim;
10654             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10655                 return -TARGET_EFAULT;
10656 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10657 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10658             unlock_user_struct(target_rlim, arg2, 1);
10659 	}
10660         return ret;
10661     }
10662 #endif
10663 #ifdef TARGET_NR_truncate64
10664     case TARGET_NR_truncate64:
10665         if (!(p = lock_user_string(arg1)))
10666             return -TARGET_EFAULT;
10667 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
10668         unlock_user(p, arg1, 0);
10669         return ret;
10670 #endif
10671 #ifdef TARGET_NR_ftruncate64
10672     case TARGET_NR_ftruncate64:
10673         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
10674 #endif
10675 #ifdef TARGET_NR_stat64
10676     case TARGET_NR_stat64:
10677         if (!(p = lock_user_string(arg1))) {
10678             return -TARGET_EFAULT;
10679         }
10680         ret = get_errno(stat(path(p), &st));
10681         unlock_user(p, arg1, 0);
10682         if (!is_error(ret))
10683             ret = host_to_target_stat64(cpu_env, arg2, &st);
10684         return ret;
10685 #endif
10686 #ifdef TARGET_NR_lstat64
10687     case TARGET_NR_lstat64:
10688         if (!(p = lock_user_string(arg1))) {
10689             return -TARGET_EFAULT;
10690         }
10691         ret = get_errno(lstat(path(p), &st));
10692         unlock_user(p, arg1, 0);
10693         if (!is_error(ret))
10694             ret = host_to_target_stat64(cpu_env, arg2, &st);
10695         return ret;
10696 #endif
10697 #ifdef TARGET_NR_fstat64
10698     case TARGET_NR_fstat64:
10699         ret = get_errno(fstat(arg1, &st));
10700         if (!is_error(ret))
10701             ret = host_to_target_stat64(cpu_env, arg2, &st);
10702         return ret;
10703 #endif
10704 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10705 #ifdef TARGET_NR_fstatat64
10706     case TARGET_NR_fstatat64:
10707 #endif
10708 #ifdef TARGET_NR_newfstatat
10709     case TARGET_NR_newfstatat:
10710 #endif
10711         if (!(p = lock_user_string(arg2))) {
10712             return -TARGET_EFAULT;
10713         }
10714         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
10715         unlock_user(p, arg2, 0);
10716         if (!is_error(ret))
10717             ret = host_to_target_stat64(cpu_env, arg3, &st);
10718         return ret;
10719 #endif
10720 #if defined(TARGET_NR_statx)
10721     case TARGET_NR_statx:
10722         {
10723             struct target_statx *target_stx;
10724             int dirfd = arg1;
10725             int flags = arg3;
10726 
10727             p = lock_user_string(arg2);
10728             if (p == NULL) {
10729                 return -TARGET_EFAULT;
10730             }
10731 #if defined(__NR_statx)
10732             {
10733                 /*
10734                  * It is assumed that struct statx is architecture independent.
10735                  */
10736                 struct target_statx host_stx;
10737                 int mask = arg4;
10738 
10739                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
10740                 if (!is_error(ret)) {
10741                     if (host_to_target_statx(&host_stx, arg5) != 0) {
10742                         unlock_user(p, arg2, 0);
10743                         return -TARGET_EFAULT;
10744                     }
10745                 }
10746 
10747                 if (ret != -TARGET_ENOSYS) {
10748                     unlock_user(p, arg2, 0);
10749                     return ret;
10750                 }
10751             }
10752 #endif
10753             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
10754             unlock_user(p, arg2, 0);
10755 
10756             if (!is_error(ret)) {
10757                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
10758                     return -TARGET_EFAULT;
10759                 }
10760                 memset(target_stx, 0, sizeof(*target_stx));
10761                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
10762                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
10763                 __put_user(st.st_ino, &target_stx->stx_ino);
10764                 __put_user(st.st_mode, &target_stx->stx_mode);
10765                 __put_user(st.st_uid, &target_stx->stx_uid);
10766                 __put_user(st.st_gid, &target_stx->stx_gid);
10767                 __put_user(st.st_nlink, &target_stx->stx_nlink);
10768                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
10769                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
10770                 __put_user(st.st_size, &target_stx->stx_size);
10771                 __put_user(st.st_blksize, &target_stx->stx_blksize);
10772                 __put_user(st.st_blocks, &target_stx->stx_blocks);
10773                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
10774                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
10775                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
10776                 unlock_user_struct(target_stx, arg5, 1);
10777             }
10778         }
10779         return ret;
10780 #endif
10781 #ifdef TARGET_NR_lchown
10782     case TARGET_NR_lchown:
10783         if (!(p = lock_user_string(arg1)))
10784             return -TARGET_EFAULT;
10785         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
10786         unlock_user(p, arg1, 0);
10787         return ret;
10788 #endif
10789 #ifdef TARGET_NR_getuid
10790     case TARGET_NR_getuid:
10791         return get_errno(high2lowuid(getuid()));
10792 #endif
10793 #ifdef TARGET_NR_getgid
10794     case TARGET_NR_getgid:
10795         return get_errno(high2lowgid(getgid()));
10796 #endif
10797 #ifdef TARGET_NR_geteuid
10798     case TARGET_NR_geteuid:
10799         return get_errno(high2lowuid(geteuid()));
10800 #endif
10801 #ifdef TARGET_NR_getegid
10802     case TARGET_NR_getegid:
10803         return get_errno(high2lowgid(getegid()));
10804 #endif
10805     case TARGET_NR_setreuid:
10806         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
10807     case TARGET_NR_setregid:
10808         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
10809     case TARGET_NR_getgroups:
10810         {
10811             int gidsetsize = arg1;
10812             target_id *target_grouplist;
10813             gid_t *grouplist;
10814             int i;
10815 
10816             grouplist = alloca(gidsetsize * sizeof(gid_t));
10817             ret = get_errno(getgroups(gidsetsize, grouplist));
10818             if (gidsetsize == 0)
10819                 return ret;
10820             if (!is_error(ret)) {
10821                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
10822                 if (!target_grouplist)
10823                     return -TARGET_EFAULT;
10824                 for(i = 0;i < ret; i++)
10825                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
10826                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
10827             }
10828         }
10829         return ret;
10830     case TARGET_NR_setgroups:
10831         {
10832             int gidsetsize = arg1;
10833             target_id *target_grouplist;
10834             gid_t *grouplist = NULL;
10835             int i;
10836             if (gidsetsize) {
10837                 grouplist = alloca(gidsetsize * sizeof(gid_t));
10838                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
10839                 if (!target_grouplist) {
10840                     return -TARGET_EFAULT;
10841                 }
10842                 for (i = 0; i < gidsetsize; i++) {
10843                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
10844                 }
10845                 unlock_user(target_grouplist, arg2, 0);
10846             }
10847             return get_errno(setgroups(gidsetsize, grouplist));
10848         }
10849     case TARGET_NR_fchown:
10850         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
10851 #if defined(TARGET_NR_fchownat)
10852     case TARGET_NR_fchownat:
10853         if (!(p = lock_user_string(arg2)))
10854             return -TARGET_EFAULT;
10855         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
10856                                  low2highgid(arg4), arg5));
10857         unlock_user(p, arg2, 0);
10858         return ret;
10859 #endif
10860 #ifdef TARGET_NR_setresuid
10861     case TARGET_NR_setresuid:
10862         return get_errno(sys_setresuid(low2highuid(arg1),
10863                                        low2highuid(arg2),
10864                                        low2highuid(arg3)));
10865 #endif
10866 #ifdef TARGET_NR_getresuid
10867     case TARGET_NR_getresuid:
10868         {
10869             uid_t ruid, euid, suid;
10870             ret = get_errno(getresuid(&ruid, &euid, &suid));
10871             if (!is_error(ret)) {
10872                 if (put_user_id(high2lowuid(ruid), arg1)
10873                     || put_user_id(high2lowuid(euid), arg2)
10874                     || put_user_id(high2lowuid(suid), arg3))
10875                     return -TARGET_EFAULT;
10876             }
10877         }
10878         return ret;
10879 #endif
10880 #ifdef TARGET_NR_getresgid
10881     case TARGET_NR_setresgid:
10882         return get_errno(sys_setresgid(low2highgid(arg1),
10883                                        low2highgid(arg2),
10884                                        low2highgid(arg3)));
10885 #endif
10886 #ifdef TARGET_NR_getresgid
10887     case TARGET_NR_getresgid:
10888         {
10889             gid_t rgid, egid, sgid;
10890             ret = get_errno(getresgid(&rgid, &egid, &sgid));
10891             if (!is_error(ret)) {
10892                 if (put_user_id(high2lowgid(rgid), arg1)
10893                     || put_user_id(high2lowgid(egid), arg2)
10894                     || put_user_id(high2lowgid(sgid), arg3))
10895                     return -TARGET_EFAULT;
10896             }
10897         }
10898         return ret;
10899 #endif
10900 #ifdef TARGET_NR_chown
10901     case TARGET_NR_chown:
10902         if (!(p = lock_user_string(arg1)))
10903             return -TARGET_EFAULT;
10904         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
10905         unlock_user(p, arg1, 0);
10906         return ret;
10907 #endif
10908     case TARGET_NR_setuid:
10909         return get_errno(sys_setuid(low2highuid(arg1)));
10910     case TARGET_NR_setgid:
10911         return get_errno(sys_setgid(low2highgid(arg1)));
10912     case TARGET_NR_setfsuid:
10913         return get_errno(setfsuid(arg1));
10914     case TARGET_NR_setfsgid:
10915         return get_errno(setfsgid(arg1));
10916 
10917 #ifdef TARGET_NR_lchown32
10918     case TARGET_NR_lchown32:
10919         if (!(p = lock_user_string(arg1)))
10920             return -TARGET_EFAULT;
10921         ret = get_errno(lchown(p, arg2, arg3));
10922         unlock_user(p, arg1, 0);
10923         return ret;
10924 #endif
10925 #ifdef TARGET_NR_getuid32
10926     case TARGET_NR_getuid32:
10927         return get_errno(getuid());
10928 #endif
10929 
10930 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
10931    /* Alpha specific */
10932     case TARGET_NR_getxuid:
10933          {
10934             uid_t euid;
10935             euid=geteuid();
10936             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
10937          }
10938         return get_errno(getuid());
10939 #endif
10940 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
10941    /* Alpha specific */
10942     case TARGET_NR_getxgid:
10943          {
10944             uid_t egid;
10945             egid=getegid();
10946             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
10947          }
10948         return get_errno(getgid());
10949 #endif
10950 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
10951     /* Alpha specific */
10952     case TARGET_NR_osf_getsysinfo:
10953         ret = -TARGET_EOPNOTSUPP;
10954         switch (arg1) {
10955           case TARGET_GSI_IEEE_FP_CONTROL:
10956             {
10957                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
10958                 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr;
10959 
10960                 swcr &= ~SWCR_STATUS_MASK;
10961                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
10962 
10963                 if (put_user_u64 (swcr, arg2))
10964                         return -TARGET_EFAULT;
10965                 ret = 0;
10966             }
10967             break;
10968 
10969           /* case GSI_IEEE_STATE_AT_SIGNAL:
10970              -- Not implemented in linux kernel.
10971              case GSI_UACPROC:
10972              -- Retrieves current unaligned access state; not much used.
10973              case GSI_PROC_TYPE:
10974              -- Retrieves implver information; surely not used.
10975              case GSI_GET_HWRPB:
10976              -- Grabs a copy of the HWRPB; surely not used.
10977           */
10978         }
10979         return ret;
10980 #endif
10981 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
10982     /* Alpha specific */
10983     case TARGET_NR_osf_setsysinfo:
10984         ret = -TARGET_EOPNOTSUPP;
10985         switch (arg1) {
10986           case TARGET_SSI_IEEE_FP_CONTROL:
10987             {
10988                 uint64_t swcr, fpcr;
10989 
10990                 if (get_user_u64 (swcr, arg2)) {
10991                     return -TARGET_EFAULT;
10992                 }
10993 
10994                 /*
10995                  * The kernel calls swcr_update_status to update the
10996                  * status bits from the fpcr at every point that it
10997                  * could be queried.  Therefore, we store the status
10998                  * bits only in FPCR.
10999                  */
11000                 ((CPUAlphaState *)cpu_env)->swcr
11001                     = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11002 
11003                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11004                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11005                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11006                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11007                 ret = 0;
11008             }
11009             break;
11010 
11011           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11012             {
11013                 uint64_t exc, fpcr, fex;
11014 
11015                 if (get_user_u64(exc, arg2)) {
11016                     return -TARGET_EFAULT;
11017                 }
11018                 exc &= SWCR_STATUS_MASK;
11019                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11020 
11021                 /* Old exceptions are not signaled.  */
11022                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11023                 fex = exc & ~fex;
11024                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11025                 fex &= ((CPUArchState *)cpu_env)->swcr;
11026 
11027                 /* Update the hardware fpcr.  */
11028                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11029                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11030 
11031                 if (fex) {
11032                     int si_code = TARGET_FPE_FLTUNK;
11033                     target_siginfo_t info;
11034 
11035                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11036                         si_code = TARGET_FPE_FLTUND;
11037                     }
11038                     if (fex & SWCR_TRAP_ENABLE_INE) {
11039                         si_code = TARGET_FPE_FLTRES;
11040                     }
11041                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11042                         si_code = TARGET_FPE_FLTUND;
11043                     }
11044                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11045                         si_code = TARGET_FPE_FLTOVF;
11046                     }
11047                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11048                         si_code = TARGET_FPE_FLTDIV;
11049                     }
11050                     if (fex & SWCR_TRAP_ENABLE_INV) {
11051                         si_code = TARGET_FPE_FLTINV;
11052                     }
11053 
11054                     info.si_signo = SIGFPE;
11055                     info.si_errno = 0;
11056                     info.si_code = si_code;
11057                     info._sifields._sigfault._addr
11058                         = ((CPUArchState *)cpu_env)->pc;
11059                     queue_signal((CPUArchState *)cpu_env, info.si_signo,
11060                                  QEMU_SI_FAULT, &info);
11061                 }
11062                 ret = 0;
11063             }
11064             break;
11065 
11066           /* case SSI_NVPAIRS:
11067              -- Used with SSIN_UACPROC to enable unaligned accesses.
11068              case SSI_IEEE_STATE_AT_SIGNAL:
11069              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11070              -- Not implemented in linux kernel
11071           */
11072         }
11073         return ret;
11074 #endif
11075 #ifdef TARGET_NR_osf_sigprocmask
11076     /* Alpha specific.  */
11077     case TARGET_NR_osf_sigprocmask:
11078         {
11079             abi_ulong mask;
11080             int how;
11081             sigset_t set, oldset;
11082 
11083             switch(arg1) {
11084             case TARGET_SIG_BLOCK:
11085                 how = SIG_BLOCK;
11086                 break;
11087             case TARGET_SIG_UNBLOCK:
11088                 how = SIG_UNBLOCK;
11089                 break;
11090             case TARGET_SIG_SETMASK:
11091                 how = SIG_SETMASK;
11092                 break;
11093             default:
11094                 return -TARGET_EINVAL;
11095             }
11096             mask = arg2;
11097             target_to_host_old_sigset(&set, &mask);
11098             ret = do_sigprocmask(how, &set, &oldset);
11099             if (!ret) {
11100                 host_to_target_old_sigset(&mask, &oldset);
11101                 ret = mask;
11102             }
11103         }
11104         return ret;
11105 #endif
11106 
11107 #ifdef TARGET_NR_getgid32
11108     case TARGET_NR_getgid32:
11109         return get_errno(getgid());
11110 #endif
11111 #ifdef TARGET_NR_geteuid32
11112     case TARGET_NR_geteuid32:
11113         return get_errno(geteuid());
11114 #endif
11115 #ifdef TARGET_NR_getegid32
11116     case TARGET_NR_getegid32:
11117         return get_errno(getegid());
11118 #endif
11119 #ifdef TARGET_NR_setreuid32
11120     case TARGET_NR_setreuid32:
11121         return get_errno(setreuid(arg1, arg2));
11122 #endif
11123 #ifdef TARGET_NR_setregid32
11124     case TARGET_NR_setregid32:
11125         return get_errno(setregid(arg1, arg2));
11126 #endif
11127 #ifdef TARGET_NR_getgroups32
11128     case TARGET_NR_getgroups32:
11129         {
11130             int gidsetsize = arg1;
11131             uint32_t *target_grouplist;
11132             gid_t *grouplist;
11133             int i;
11134 
11135             grouplist = alloca(gidsetsize * sizeof(gid_t));
11136             ret = get_errno(getgroups(gidsetsize, grouplist));
11137             if (gidsetsize == 0)
11138                 return ret;
11139             if (!is_error(ret)) {
11140                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11141                 if (!target_grouplist) {
11142                     return -TARGET_EFAULT;
11143                 }
11144                 for(i = 0;i < ret; i++)
11145                     target_grouplist[i] = tswap32(grouplist[i]);
11146                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11147             }
11148         }
11149         return ret;
11150 #endif
11151 #ifdef TARGET_NR_setgroups32
11152     case TARGET_NR_setgroups32:
11153         {
11154             int gidsetsize = arg1;
11155             uint32_t *target_grouplist;
11156             gid_t *grouplist;
11157             int i;
11158 
11159             grouplist = alloca(gidsetsize * sizeof(gid_t));
11160             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11161             if (!target_grouplist) {
11162                 return -TARGET_EFAULT;
11163             }
11164             for(i = 0;i < gidsetsize; i++)
11165                 grouplist[i] = tswap32(target_grouplist[i]);
11166             unlock_user(target_grouplist, arg2, 0);
11167             return get_errno(setgroups(gidsetsize, grouplist));
11168         }
11169 #endif
11170 #ifdef TARGET_NR_fchown32
11171     case TARGET_NR_fchown32:
11172         return get_errno(fchown(arg1, arg2, arg3));
11173 #endif
11174 #ifdef TARGET_NR_setresuid32
11175     case TARGET_NR_setresuid32:
11176         return get_errno(sys_setresuid(arg1, arg2, arg3));
11177 #endif
11178 #ifdef TARGET_NR_getresuid32
11179     case TARGET_NR_getresuid32:
11180         {
11181             uid_t ruid, euid, suid;
11182             ret = get_errno(getresuid(&ruid, &euid, &suid));
11183             if (!is_error(ret)) {
11184                 if (put_user_u32(ruid, arg1)
11185                     || put_user_u32(euid, arg2)
11186                     || put_user_u32(suid, arg3))
11187                     return -TARGET_EFAULT;
11188             }
11189         }
11190         return ret;
11191 #endif
11192 #ifdef TARGET_NR_setresgid32
11193     case TARGET_NR_setresgid32:
11194         return get_errno(sys_setresgid(arg1, arg2, arg3));
11195 #endif
11196 #ifdef TARGET_NR_getresgid32
11197     case TARGET_NR_getresgid32:
11198         {
11199             gid_t rgid, egid, sgid;
11200             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11201             if (!is_error(ret)) {
11202                 if (put_user_u32(rgid, arg1)
11203                     || put_user_u32(egid, arg2)
11204                     || put_user_u32(sgid, arg3))
11205                     return -TARGET_EFAULT;
11206             }
11207         }
11208         return ret;
11209 #endif
11210 #ifdef TARGET_NR_chown32
11211     case TARGET_NR_chown32:
11212         if (!(p = lock_user_string(arg1)))
11213             return -TARGET_EFAULT;
11214         ret = get_errno(chown(p, arg2, arg3));
11215         unlock_user(p, arg1, 0);
11216         return ret;
11217 #endif
11218 #ifdef TARGET_NR_setuid32
11219     case TARGET_NR_setuid32:
11220         return get_errno(sys_setuid(arg1));
11221 #endif
11222 #ifdef TARGET_NR_setgid32
11223     case TARGET_NR_setgid32:
11224         return get_errno(sys_setgid(arg1));
11225 #endif
11226 #ifdef TARGET_NR_setfsuid32
11227     case TARGET_NR_setfsuid32:
11228         return get_errno(setfsuid(arg1));
11229 #endif
11230 #ifdef TARGET_NR_setfsgid32
11231     case TARGET_NR_setfsgid32:
11232         return get_errno(setfsgid(arg1));
11233 #endif
11234 #ifdef TARGET_NR_mincore
11235     case TARGET_NR_mincore:
11236         {
11237             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11238             if (!a) {
11239                 return -TARGET_ENOMEM;
11240             }
11241             p = lock_user_string(arg3);
11242             if (!p) {
11243                 ret = -TARGET_EFAULT;
11244             } else {
11245                 ret = get_errno(mincore(a, arg2, p));
11246                 unlock_user(p, arg3, ret);
11247             }
11248             unlock_user(a, arg1, 0);
11249         }
11250         return ret;
11251 #endif
11252 #ifdef TARGET_NR_arm_fadvise64_64
11253     case TARGET_NR_arm_fadvise64_64:
11254         /* arm_fadvise64_64 looks like fadvise64_64 but
11255          * with different argument order: fd, advice, offset, len
11256          * rather than the usual fd, offset, len, advice.
11257          * Note that offset and len are both 64-bit so appear as
11258          * pairs of 32-bit registers.
11259          */
11260         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11261                             target_offset64(arg5, arg6), arg2);
11262         return -host_to_target_errno(ret);
11263 #endif
11264 
11265 #if TARGET_ABI_BITS == 32
11266 
11267 #ifdef TARGET_NR_fadvise64_64
11268     case TARGET_NR_fadvise64_64:
11269 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11270         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11271         ret = arg2;
11272         arg2 = arg3;
11273         arg3 = arg4;
11274         arg4 = arg5;
11275         arg5 = arg6;
11276         arg6 = ret;
11277 #else
11278         /* 6 args: fd, offset (high, low), len (high, low), advice */
11279         if (regpairs_aligned(cpu_env, num)) {
11280             /* offset is in (3,4), len in (5,6) and advice in 7 */
11281             arg2 = arg3;
11282             arg3 = arg4;
11283             arg4 = arg5;
11284             arg5 = arg6;
11285             arg6 = arg7;
11286         }
11287 #endif
11288         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11289                             target_offset64(arg4, arg5), arg6);
11290         return -host_to_target_errno(ret);
11291 #endif
11292 
11293 #ifdef TARGET_NR_fadvise64
11294     case TARGET_NR_fadvise64:
11295         /* 5 args: fd, offset (high, low), len, advice */
11296         if (regpairs_aligned(cpu_env, num)) {
11297             /* offset is in (3,4), len in 5 and advice in 6 */
11298             arg2 = arg3;
11299             arg3 = arg4;
11300             arg4 = arg5;
11301             arg5 = arg6;
11302         }
11303         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11304         return -host_to_target_errno(ret);
11305 #endif
11306 
11307 #else /* not a 32-bit ABI */
11308 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11309 #ifdef TARGET_NR_fadvise64_64
11310     case TARGET_NR_fadvise64_64:
11311 #endif
11312 #ifdef TARGET_NR_fadvise64
11313     case TARGET_NR_fadvise64:
11314 #endif
11315 #ifdef TARGET_S390X
11316         switch (arg4) {
11317         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11318         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11319         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11320         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11321         default: break;
11322         }
11323 #endif
11324         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11325 #endif
11326 #endif /* end of 64-bit ABI fadvise handling */
11327 
11328 #ifdef TARGET_NR_madvise
11329     case TARGET_NR_madvise:
11330         /* A straight passthrough may not be safe because qemu sometimes
11331            turns private file-backed mappings into anonymous mappings.
11332            This will break MADV_DONTNEED.
11333            This is a hint, so ignoring and returning success is ok.  */
11334         return 0;
11335 #endif
11336 #ifdef TARGET_NR_fcntl64
11337     case TARGET_NR_fcntl64:
11338     {
11339         int cmd;
11340         struct flock64 fl;
11341         from_flock64_fn *copyfrom = copy_from_user_flock64;
11342         to_flock64_fn *copyto = copy_to_user_flock64;
11343 
11344 #ifdef TARGET_ARM
11345         if (!((CPUARMState *)cpu_env)->eabi) {
11346             copyfrom = copy_from_user_oabi_flock64;
11347             copyto = copy_to_user_oabi_flock64;
11348         }
11349 #endif
11350 
11351         cmd = target_to_host_fcntl_cmd(arg2);
11352         if (cmd == -TARGET_EINVAL) {
11353             return cmd;
11354         }
11355 
11356         switch(arg2) {
11357         case TARGET_F_GETLK64:
11358             ret = copyfrom(&fl, arg3);
11359             if (ret) {
11360                 break;
11361             }
11362             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11363             if (ret == 0) {
11364                 ret = copyto(arg3, &fl);
11365             }
11366 	    break;
11367 
11368         case TARGET_F_SETLK64:
11369         case TARGET_F_SETLKW64:
11370             ret = copyfrom(&fl, arg3);
11371             if (ret) {
11372                 break;
11373             }
11374             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11375 	    break;
11376         default:
11377             ret = do_fcntl(arg1, arg2, arg3);
11378             break;
11379         }
11380         return ret;
11381     }
11382 #endif
11383 #ifdef TARGET_NR_cacheflush
11384     case TARGET_NR_cacheflush:
11385         /* self-modifying code is handled automatically, so nothing needed */
11386         return 0;
11387 #endif
11388 #ifdef TARGET_NR_getpagesize
11389     case TARGET_NR_getpagesize:
11390         return TARGET_PAGE_SIZE;
11391 #endif
11392     case TARGET_NR_gettid:
11393         return get_errno(sys_gettid());
11394 #ifdef TARGET_NR_readahead
11395     case TARGET_NR_readahead:
11396 #if TARGET_ABI_BITS == 32
11397         if (regpairs_aligned(cpu_env, num)) {
11398             arg2 = arg3;
11399             arg3 = arg4;
11400             arg4 = arg5;
11401         }
11402         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11403 #else
11404         ret = get_errno(readahead(arg1, arg2, arg3));
11405 #endif
11406         return ret;
11407 #endif
11408 #ifdef CONFIG_ATTR
11409 #ifdef TARGET_NR_setxattr
11410     case TARGET_NR_listxattr:
11411     case TARGET_NR_llistxattr:
11412     {
11413         void *p, *b = 0;
11414         if (arg2) {
11415             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11416             if (!b) {
11417                 return -TARGET_EFAULT;
11418             }
11419         }
11420         p = lock_user_string(arg1);
11421         if (p) {
11422             if (num == TARGET_NR_listxattr) {
11423                 ret = get_errno(listxattr(p, b, arg3));
11424             } else {
11425                 ret = get_errno(llistxattr(p, b, arg3));
11426             }
11427         } else {
11428             ret = -TARGET_EFAULT;
11429         }
11430         unlock_user(p, arg1, 0);
11431         unlock_user(b, arg2, arg3);
11432         return ret;
11433     }
11434     case TARGET_NR_flistxattr:
11435     {
11436         void *b = 0;
11437         if (arg2) {
11438             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11439             if (!b) {
11440                 return -TARGET_EFAULT;
11441             }
11442         }
11443         ret = get_errno(flistxattr(arg1, b, arg3));
11444         unlock_user(b, arg2, arg3);
11445         return ret;
11446     }
11447     case TARGET_NR_setxattr:
11448     case TARGET_NR_lsetxattr:
11449         {
11450             void *p, *n, *v = 0;
11451             if (arg3) {
11452                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11453                 if (!v) {
11454                     return -TARGET_EFAULT;
11455                 }
11456             }
11457             p = lock_user_string(arg1);
11458             n = lock_user_string(arg2);
11459             if (p && n) {
11460                 if (num == TARGET_NR_setxattr) {
11461                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
11462                 } else {
11463                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11464                 }
11465             } else {
11466                 ret = -TARGET_EFAULT;
11467             }
11468             unlock_user(p, arg1, 0);
11469             unlock_user(n, arg2, 0);
11470             unlock_user(v, arg3, 0);
11471         }
11472         return ret;
11473     case TARGET_NR_fsetxattr:
11474         {
11475             void *n, *v = 0;
11476             if (arg3) {
11477                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11478                 if (!v) {
11479                     return -TARGET_EFAULT;
11480                 }
11481             }
11482             n = lock_user_string(arg2);
11483             if (n) {
11484                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11485             } else {
11486                 ret = -TARGET_EFAULT;
11487             }
11488             unlock_user(n, arg2, 0);
11489             unlock_user(v, arg3, 0);
11490         }
11491         return ret;
11492     case TARGET_NR_getxattr:
11493     case TARGET_NR_lgetxattr:
11494         {
11495             void *p, *n, *v = 0;
11496             if (arg3) {
11497                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11498                 if (!v) {
11499                     return -TARGET_EFAULT;
11500                 }
11501             }
11502             p = lock_user_string(arg1);
11503             n = lock_user_string(arg2);
11504             if (p && n) {
11505                 if (num == TARGET_NR_getxattr) {
11506                     ret = get_errno(getxattr(p, n, v, arg4));
11507                 } else {
11508                     ret = get_errno(lgetxattr(p, n, v, arg4));
11509                 }
11510             } else {
11511                 ret = -TARGET_EFAULT;
11512             }
11513             unlock_user(p, arg1, 0);
11514             unlock_user(n, arg2, 0);
11515             unlock_user(v, arg3, arg4);
11516         }
11517         return ret;
11518     case TARGET_NR_fgetxattr:
11519         {
11520             void *n, *v = 0;
11521             if (arg3) {
11522                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11523                 if (!v) {
11524                     return -TARGET_EFAULT;
11525                 }
11526             }
11527             n = lock_user_string(arg2);
11528             if (n) {
11529                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
11530             } else {
11531                 ret = -TARGET_EFAULT;
11532             }
11533             unlock_user(n, arg2, 0);
11534             unlock_user(v, arg3, arg4);
11535         }
11536         return ret;
11537     case TARGET_NR_removexattr:
11538     case TARGET_NR_lremovexattr:
11539         {
11540             void *p, *n;
11541             p = lock_user_string(arg1);
11542             n = lock_user_string(arg2);
11543             if (p && n) {
11544                 if (num == TARGET_NR_removexattr) {
11545                     ret = get_errno(removexattr(p, n));
11546                 } else {
11547                     ret = get_errno(lremovexattr(p, n));
11548                 }
11549             } else {
11550                 ret = -TARGET_EFAULT;
11551             }
11552             unlock_user(p, arg1, 0);
11553             unlock_user(n, arg2, 0);
11554         }
11555         return ret;
11556     case TARGET_NR_fremovexattr:
11557         {
11558             void *n;
11559             n = lock_user_string(arg2);
11560             if (n) {
11561                 ret = get_errno(fremovexattr(arg1, n));
11562             } else {
11563                 ret = -TARGET_EFAULT;
11564             }
11565             unlock_user(n, arg2, 0);
11566         }
11567         return ret;
11568 #endif
11569 #endif /* CONFIG_ATTR */
11570 #ifdef TARGET_NR_set_thread_area
11571     case TARGET_NR_set_thread_area:
11572 #if defined(TARGET_MIPS)
11573       ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
11574       return 0;
11575 #elif defined(TARGET_CRIS)
11576       if (arg1 & 0xff)
11577           ret = -TARGET_EINVAL;
11578       else {
11579           ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
11580           ret = 0;
11581       }
11582       return ret;
11583 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11584       return do_set_thread_area(cpu_env, arg1);
11585 #elif defined(TARGET_M68K)
11586       {
11587           TaskState *ts = cpu->opaque;
11588           ts->tp_value = arg1;
11589           return 0;
11590       }
11591 #else
11592       return -TARGET_ENOSYS;
11593 #endif
11594 #endif
11595 #ifdef TARGET_NR_get_thread_area
11596     case TARGET_NR_get_thread_area:
11597 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11598         return do_get_thread_area(cpu_env, arg1);
11599 #elif defined(TARGET_M68K)
11600         {
11601             TaskState *ts = cpu->opaque;
11602             return ts->tp_value;
11603         }
11604 #else
11605         return -TARGET_ENOSYS;
11606 #endif
11607 #endif
11608 #ifdef TARGET_NR_getdomainname
11609     case TARGET_NR_getdomainname:
11610         return -TARGET_ENOSYS;
11611 #endif
11612 
11613 #ifdef TARGET_NR_clock_settime
11614     case TARGET_NR_clock_settime:
11615     {
11616         struct timespec ts;
11617 
11618         ret = target_to_host_timespec(&ts, arg2);
11619         if (!is_error(ret)) {
11620             ret = get_errno(clock_settime(arg1, &ts));
11621         }
11622         return ret;
11623     }
11624 #endif
11625 #ifdef TARGET_NR_clock_settime64
11626     case TARGET_NR_clock_settime64:
11627     {
11628         struct timespec ts;
11629 
11630         ret = target_to_host_timespec64(&ts, arg2);
11631         if (!is_error(ret)) {
11632             ret = get_errno(clock_settime(arg1, &ts));
11633         }
11634         return ret;
11635     }
11636 #endif
11637 #ifdef TARGET_NR_clock_gettime
11638     case TARGET_NR_clock_gettime:
11639     {
11640         struct timespec ts;
11641         ret = get_errno(clock_gettime(arg1, &ts));
11642         if (!is_error(ret)) {
11643             ret = host_to_target_timespec(arg2, &ts);
11644         }
11645         return ret;
11646     }
11647 #endif
11648 #ifdef TARGET_NR_clock_gettime64
11649     case TARGET_NR_clock_gettime64:
11650     {
11651         struct timespec ts;
11652         ret = get_errno(clock_gettime(arg1, &ts));
11653         if (!is_error(ret)) {
11654             ret = host_to_target_timespec64(arg2, &ts);
11655         }
11656         return ret;
11657     }
11658 #endif
11659 #ifdef TARGET_NR_clock_getres
11660     case TARGET_NR_clock_getres:
11661     {
11662         struct timespec ts;
11663         ret = get_errno(clock_getres(arg1, &ts));
11664         if (!is_error(ret)) {
11665             host_to_target_timespec(arg2, &ts);
11666         }
11667         return ret;
11668     }
11669 #endif
11670 #ifdef TARGET_NR_clock_nanosleep
11671     case TARGET_NR_clock_nanosleep:
11672     {
11673         struct timespec ts;
11674         target_to_host_timespec(&ts, arg3);
11675         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
11676                                              &ts, arg4 ? &ts : NULL));
11677         if (arg4)
11678             host_to_target_timespec(arg4, &ts);
11679 
11680 #if defined(TARGET_PPC)
11681         /* clock_nanosleep is odd in that it returns positive errno values.
11682          * On PPC, CR0 bit 3 should be set in such a situation. */
11683         if (ret && ret != -TARGET_ERESTARTSYS) {
11684             ((CPUPPCState *)cpu_env)->crf[0] |= 1;
11685         }
11686 #endif
11687         return ret;
11688     }
11689 #endif
11690 
11691 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11692     case TARGET_NR_set_tid_address:
11693         return get_errno(set_tid_address((int *)g2h(arg1)));
11694 #endif
11695 
11696     case TARGET_NR_tkill:
11697         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
11698 
11699     case TARGET_NR_tgkill:
11700         return get_errno(safe_tgkill((int)arg1, (int)arg2,
11701                          target_to_host_signal(arg3)));
11702 
11703 #ifdef TARGET_NR_set_robust_list
11704     case TARGET_NR_set_robust_list:
11705     case TARGET_NR_get_robust_list:
11706         /* The ABI for supporting robust futexes has userspace pass
11707          * the kernel a pointer to a linked list which is updated by
11708          * userspace after the syscall; the list is walked by the kernel
11709          * when the thread exits. Since the linked list in QEMU guest
11710          * memory isn't a valid linked list for the host and we have
11711          * no way to reliably intercept the thread-death event, we can't
11712          * support these. Silently return ENOSYS so that guest userspace
11713          * falls back to a non-robust futex implementation (which should
11714          * be OK except in the corner case of the guest crashing while
11715          * holding a mutex that is shared with another process via
11716          * shared memory).
11717          */
11718         return -TARGET_ENOSYS;
11719 #endif
11720 
11721 #if defined(TARGET_NR_utimensat)
11722     case TARGET_NR_utimensat:
11723         {
11724             struct timespec *tsp, ts[2];
11725             if (!arg3) {
11726                 tsp = NULL;
11727             } else {
11728                 target_to_host_timespec(ts, arg3);
11729                 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
11730                 tsp = ts;
11731             }
11732             if (!arg2)
11733                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
11734             else {
11735                 if (!(p = lock_user_string(arg2))) {
11736                     return -TARGET_EFAULT;
11737                 }
11738                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
11739                 unlock_user(p, arg2, 0);
11740             }
11741         }
11742         return ret;
11743 #endif
11744 #ifdef TARGET_NR_futex
11745     case TARGET_NR_futex:
11746         return do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
11747 #endif
11748 #ifdef TARGET_NR_futex_time64
11749     case TARGET_NR_futex_time64:
11750         return do_futex_time64(arg1, arg2, arg3, arg4, arg5, arg6);
11751 #endif
11752 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
11753     case TARGET_NR_inotify_init:
11754         ret = get_errno(sys_inotify_init());
11755         if (ret >= 0) {
11756             fd_trans_register(ret, &target_inotify_trans);
11757         }
11758         return ret;
11759 #endif
11760 #ifdef CONFIG_INOTIFY1
11761 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
11762     case TARGET_NR_inotify_init1:
11763         ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
11764                                           fcntl_flags_tbl)));
11765         if (ret >= 0) {
11766             fd_trans_register(ret, &target_inotify_trans);
11767         }
11768         return ret;
11769 #endif
11770 #endif
11771 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
11772     case TARGET_NR_inotify_add_watch:
11773         p = lock_user_string(arg2);
11774         ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
11775         unlock_user(p, arg2, 0);
11776         return ret;
11777 #endif
11778 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
11779     case TARGET_NR_inotify_rm_watch:
11780         return get_errno(sys_inotify_rm_watch(arg1, arg2));
11781 #endif
11782 
11783 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
11784     case TARGET_NR_mq_open:
11785         {
11786             struct mq_attr posix_mq_attr;
11787             struct mq_attr *pposix_mq_attr;
11788             int host_flags;
11789 
11790             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
11791             pposix_mq_attr = NULL;
11792             if (arg4) {
11793                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
11794                     return -TARGET_EFAULT;
11795                 }
11796                 pposix_mq_attr = &posix_mq_attr;
11797             }
11798             p = lock_user_string(arg1 - 1);
11799             if (!p) {
11800                 return -TARGET_EFAULT;
11801             }
11802             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
11803             unlock_user (p, arg1, 0);
11804         }
11805         return ret;
11806 
11807     case TARGET_NR_mq_unlink:
11808         p = lock_user_string(arg1 - 1);
11809         if (!p) {
11810             return -TARGET_EFAULT;
11811         }
11812         ret = get_errno(mq_unlink(p));
11813         unlock_user (p, arg1, 0);
11814         return ret;
11815 
11816 #ifdef TARGET_NR_mq_timedsend
11817     case TARGET_NR_mq_timedsend:
11818         {
11819             struct timespec ts;
11820 
11821             p = lock_user (VERIFY_READ, arg2, arg3, 1);
11822             if (arg5 != 0) {
11823                 target_to_host_timespec(&ts, arg5);
11824                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
11825                 host_to_target_timespec(arg5, &ts);
11826             } else {
11827                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
11828             }
11829             unlock_user (p, arg2, arg3);
11830         }
11831         return ret;
11832 #endif
11833 
11834 #ifdef TARGET_NR_mq_timedreceive
11835     case TARGET_NR_mq_timedreceive:
11836         {
11837             struct timespec ts;
11838             unsigned int prio;
11839 
11840             p = lock_user (VERIFY_READ, arg2, arg3, 1);
11841             if (arg5 != 0) {
11842                 target_to_host_timespec(&ts, arg5);
11843                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11844                                                      &prio, &ts));
11845                 host_to_target_timespec(arg5, &ts);
11846             } else {
11847                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11848                                                      &prio, NULL));
11849             }
11850             unlock_user (p, arg2, arg3);
11851             if (arg4 != 0)
11852                 put_user_u32(prio, arg4);
11853         }
11854         return ret;
11855 #endif
11856 
11857     /* Not implemented for now... */
11858 /*     case TARGET_NR_mq_notify: */
11859 /*         break; */
11860 
11861     case TARGET_NR_mq_getsetattr:
11862         {
11863             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
11864             ret = 0;
11865             if (arg2 != 0) {
11866                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
11867                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
11868                                            &posix_mq_attr_out));
11869             } else if (arg3 != 0) {
11870                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
11871             }
11872             if (ret == 0 && arg3 != 0) {
11873                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
11874             }
11875         }
11876         return ret;
11877 #endif
11878 
11879 #ifdef CONFIG_SPLICE
11880 #ifdef TARGET_NR_tee
11881     case TARGET_NR_tee:
11882         {
11883             ret = get_errno(tee(arg1,arg2,arg3,arg4));
11884         }
11885         return ret;
11886 #endif
11887 #ifdef TARGET_NR_splice
11888     case TARGET_NR_splice:
11889         {
11890             loff_t loff_in, loff_out;
11891             loff_t *ploff_in = NULL, *ploff_out = NULL;
11892             if (arg2) {
11893                 if (get_user_u64(loff_in, arg2)) {
11894                     return -TARGET_EFAULT;
11895                 }
11896                 ploff_in = &loff_in;
11897             }
11898             if (arg4) {
11899                 if (get_user_u64(loff_out, arg4)) {
11900                     return -TARGET_EFAULT;
11901                 }
11902                 ploff_out = &loff_out;
11903             }
11904             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
11905             if (arg2) {
11906                 if (put_user_u64(loff_in, arg2)) {
11907                     return -TARGET_EFAULT;
11908                 }
11909             }
11910             if (arg4) {
11911                 if (put_user_u64(loff_out, arg4)) {
11912                     return -TARGET_EFAULT;
11913                 }
11914             }
11915         }
11916         return ret;
11917 #endif
11918 #ifdef TARGET_NR_vmsplice
11919 	case TARGET_NR_vmsplice:
11920         {
11921             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11922             if (vec != NULL) {
11923                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
11924                 unlock_iovec(vec, arg2, arg3, 0);
11925             } else {
11926                 ret = -host_to_target_errno(errno);
11927             }
11928         }
11929         return ret;
11930 #endif
11931 #endif /* CONFIG_SPLICE */
11932 #ifdef CONFIG_EVENTFD
11933 #if defined(TARGET_NR_eventfd)
11934     case TARGET_NR_eventfd:
11935         ret = get_errno(eventfd(arg1, 0));
11936         if (ret >= 0) {
11937             fd_trans_register(ret, &target_eventfd_trans);
11938         }
11939         return ret;
11940 #endif
11941 #if defined(TARGET_NR_eventfd2)
11942     case TARGET_NR_eventfd2:
11943     {
11944         int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
11945         if (arg2 & TARGET_O_NONBLOCK) {
11946             host_flags |= O_NONBLOCK;
11947         }
11948         if (arg2 & TARGET_O_CLOEXEC) {
11949             host_flags |= O_CLOEXEC;
11950         }
11951         ret = get_errno(eventfd(arg1, host_flags));
11952         if (ret >= 0) {
11953             fd_trans_register(ret, &target_eventfd_trans);
11954         }
11955         return ret;
11956     }
11957 #endif
11958 #endif /* CONFIG_EVENTFD  */
11959 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
11960     case TARGET_NR_fallocate:
11961 #if TARGET_ABI_BITS == 32
11962         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
11963                                   target_offset64(arg5, arg6)));
11964 #else
11965         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
11966 #endif
11967         return ret;
11968 #endif
11969 #if defined(CONFIG_SYNC_FILE_RANGE)
11970 #if defined(TARGET_NR_sync_file_range)
11971     case TARGET_NR_sync_file_range:
11972 #if TARGET_ABI_BITS == 32
11973 #if defined(TARGET_MIPS)
11974         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
11975                                         target_offset64(arg5, arg6), arg7));
11976 #else
11977         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
11978                                         target_offset64(arg4, arg5), arg6));
11979 #endif /* !TARGET_MIPS */
11980 #else
11981         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
11982 #endif
11983         return ret;
11984 #endif
11985 #if defined(TARGET_NR_sync_file_range2) || \
11986     defined(TARGET_NR_arm_sync_file_range)
11987 #if defined(TARGET_NR_sync_file_range2)
11988     case TARGET_NR_sync_file_range2:
11989 #endif
11990 #if defined(TARGET_NR_arm_sync_file_range)
11991     case TARGET_NR_arm_sync_file_range:
11992 #endif
11993         /* This is like sync_file_range but the arguments are reordered */
11994 #if TARGET_ABI_BITS == 32
11995         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
11996                                         target_offset64(arg5, arg6), arg2));
11997 #else
11998         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
11999 #endif
12000         return ret;
12001 #endif
12002 #endif
12003 #if defined(TARGET_NR_signalfd4)
12004     case TARGET_NR_signalfd4:
12005         return do_signalfd4(arg1, arg2, arg4);
12006 #endif
12007 #if defined(TARGET_NR_signalfd)
12008     case TARGET_NR_signalfd:
12009         return do_signalfd4(arg1, arg2, 0);
12010 #endif
12011 #if defined(CONFIG_EPOLL)
12012 #if defined(TARGET_NR_epoll_create)
12013     case TARGET_NR_epoll_create:
12014         return get_errno(epoll_create(arg1));
12015 #endif
12016 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12017     case TARGET_NR_epoll_create1:
12018         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12019 #endif
12020 #if defined(TARGET_NR_epoll_ctl)
12021     case TARGET_NR_epoll_ctl:
12022     {
12023         struct epoll_event ep;
12024         struct epoll_event *epp = 0;
12025         if (arg4) {
12026             struct target_epoll_event *target_ep;
12027             if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12028                 return -TARGET_EFAULT;
12029             }
12030             ep.events = tswap32(target_ep->events);
12031             /* The epoll_data_t union is just opaque data to the kernel,
12032              * so we transfer all 64 bits across and need not worry what
12033              * actual data type it is.
12034              */
12035             ep.data.u64 = tswap64(target_ep->data.u64);
12036             unlock_user_struct(target_ep, arg4, 0);
12037             epp = &ep;
12038         }
12039         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12040     }
12041 #endif
12042 
12043 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12044 #if defined(TARGET_NR_epoll_wait)
12045     case TARGET_NR_epoll_wait:
12046 #endif
12047 #if defined(TARGET_NR_epoll_pwait)
12048     case TARGET_NR_epoll_pwait:
12049 #endif
12050     {
12051         struct target_epoll_event *target_ep;
12052         struct epoll_event *ep;
12053         int epfd = arg1;
12054         int maxevents = arg3;
12055         int timeout = arg4;
12056 
12057         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12058             return -TARGET_EINVAL;
12059         }
12060 
12061         target_ep = lock_user(VERIFY_WRITE, arg2,
12062                               maxevents * sizeof(struct target_epoll_event), 1);
12063         if (!target_ep) {
12064             return -TARGET_EFAULT;
12065         }
12066 
12067         ep = g_try_new(struct epoll_event, maxevents);
12068         if (!ep) {
12069             unlock_user(target_ep, arg2, 0);
12070             return -TARGET_ENOMEM;
12071         }
12072 
12073         switch (num) {
12074 #if defined(TARGET_NR_epoll_pwait)
12075         case TARGET_NR_epoll_pwait:
12076         {
12077             target_sigset_t *target_set;
12078             sigset_t _set, *set = &_set;
12079 
12080             if (arg5) {
12081                 if (arg6 != sizeof(target_sigset_t)) {
12082                     ret = -TARGET_EINVAL;
12083                     break;
12084                 }
12085 
12086                 target_set = lock_user(VERIFY_READ, arg5,
12087                                        sizeof(target_sigset_t), 1);
12088                 if (!target_set) {
12089                     ret = -TARGET_EFAULT;
12090                     break;
12091                 }
12092                 target_to_host_sigset(set, target_set);
12093                 unlock_user(target_set, arg5, 0);
12094             } else {
12095                 set = NULL;
12096             }
12097 
12098             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12099                                              set, SIGSET_T_SIZE));
12100             break;
12101         }
12102 #endif
12103 #if defined(TARGET_NR_epoll_wait)
12104         case TARGET_NR_epoll_wait:
12105             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12106                                              NULL, 0));
12107             break;
12108 #endif
12109         default:
12110             ret = -TARGET_ENOSYS;
12111         }
12112         if (!is_error(ret)) {
12113             int i;
12114             for (i = 0; i < ret; i++) {
12115                 target_ep[i].events = tswap32(ep[i].events);
12116                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12117             }
12118             unlock_user(target_ep, arg2,
12119                         ret * sizeof(struct target_epoll_event));
12120         } else {
12121             unlock_user(target_ep, arg2, 0);
12122         }
12123         g_free(ep);
12124         return ret;
12125     }
12126 #endif
12127 #endif
12128 #ifdef TARGET_NR_prlimit64
12129     case TARGET_NR_prlimit64:
12130     {
12131         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12132         struct target_rlimit64 *target_rnew, *target_rold;
12133         struct host_rlimit64 rnew, rold, *rnewp = 0;
12134         int resource = target_to_host_resource(arg2);
12135 
12136         if (arg3 && (resource != RLIMIT_AS &&
12137                      resource != RLIMIT_DATA &&
12138                      resource != RLIMIT_STACK)) {
12139             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12140                 return -TARGET_EFAULT;
12141             }
12142             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12143             rnew.rlim_max = tswap64(target_rnew->rlim_max);
12144             unlock_user_struct(target_rnew, arg3, 0);
12145             rnewp = &rnew;
12146         }
12147 
12148         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12149         if (!is_error(ret) && arg4) {
12150             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12151                 return -TARGET_EFAULT;
12152             }
12153             target_rold->rlim_cur = tswap64(rold.rlim_cur);
12154             target_rold->rlim_max = tswap64(rold.rlim_max);
12155             unlock_user_struct(target_rold, arg4, 1);
12156         }
12157         return ret;
12158     }
12159 #endif
12160 #ifdef TARGET_NR_gethostname
12161     case TARGET_NR_gethostname:
12162     {
12163         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12164         if (name) {
12165             ret = get_errno(gethostname(name, arg2));
12166             unlock_user(name, arg1, arg2);
12167         } else {
12168             ret = -TARGET_EFAULT;
12169         }
12170         return ret;
12171     }
12172 #endif
12173 #ifdef TARGET_NR_atomic_cmpxchg_32
12174     case TARGET_NR_atomic_cmpxchg_32:
12175     {
12176         /* should use start_exclusive from main.c */
12177         abi_ulong mem_value;
12178         if (get_user_u32(mem_value, arg6)) {
12179             target_siginfo_t info;
12180             info.si_signo = SIGSEGV;
12181             info.si_errno = 0;
12182             info.si_code = TARGET_SEGV_MAPERR;
12183             info._sifields._sigfault._addr = arg6;
12184             queue_signal((CPUArchState *)cpu_env, info.si_signo,
12185                          QEMU_SI_FAULT, &info);
12186             ret = 0xdeadbeef;
12187 
12188         }
12189         if (mem_value == arg2)
12190             put_user_u32(arg1, arg6);
12191         return mem_value;
12192     }
12193 #endif
12194 #ifdef TARGET_NR_atomic_barrier
12195     case TARGET_NR_atomic_barrier:
12196         /* Like the kernel implementation and the
12197            qemu arm barrier, no-op this? */
12198         return 0;
12199 #endif
12200 
12201 #ifdef TARGET_NR_timer_create
12202     case TARGET_NR_timer_create:
12203     {
12204         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12205 
12206         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12207 
12208         int clkid = arg1;
12209         int timer_index = next_free_host_timer();
12210 
12211         if (timer_index < 0) {
12212             ret = -TARGET_EAGAIN;
12213         } else {
12214             timer_t *phtimer = g_posix_timers  + timer_index;
12215 
12216             if (arg2) {
12217                 phost_sevp = &host_sevp;
12218                 ret = target_to_host_sigevent(phost_sevp, arg2);
12219                 if (ret != 0) {
12220                     return ret;
12221                 }
12222             }
12223 
12224             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12225             if (ret) {
12226                 phtimer = NULL;
12227             } else {
12228                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12229                     return -TARGET_EFAULT;
12230                 }
12231             }
12232         }
12233         return ret;
12234     }
12235 #endif
12236 
12237 #ifdef TARGET_NR_timer_settime
12238     case TARGET_NR_timer_settime:
12239     {
12240         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12241          * struct itimerspec * old_value */
12242         target_timer_t timerid = get_timer_id(arg1);
12243 
12244         if (timerid < 0) {
12245             ret = timerid;
12246         } else if (arg3 == 0) {
12247             ret = -TARGET_EINVAL;
12248         } else {
12249             timer_t htimer = g_posix_timers[timerid];
12250             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12251 
12252             if (target_to_host_itimerspec(&hspec_new, arg3)) {
12253                 return -TARGET_EFAULT;
12254             }
12255             ret = get_errno(
12256                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12257             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12258                 return -TARGET_EFAULT;
12259             }
12260         }
12261         return ret;
12262     }
12263 #endif
12264 
12265 #ifdef TARGET_NR_timer_gettime
12266     case TARGET_NR_timer_gettime:
12267     {
12268         /* args: timer_t timerid, struct itimerspec *curr_value */
12269         target_timer_t timerid = get_timer_id(arg1);
12270 
12271         if (timerid < 0) {
12272             ret = timerid;
12273         } else if (!arg2) {
12274             ret = -TARGET_EFAULT;
12275         } else {
12276             timer_t htimer = g_posix_timers[timerid];
12277             struct itimerspec hspec;
12278             ret = get_errno(timer_gettime(htimer, &hspec));
12279 
12280             if (host_to_target_itimerspec(arg2, &hspec)) {
12281                 ret = -TARGET_EFAULT;
12282             }
12283         }
12284         return ret;
12285     }
12286 #endif
12287 
12288 #ifdef TARGET_NR_timer_getoverrun
12289     case TARGET_NR_timer_getoverrun:
12290     {
12291         /* args: timer_t timerid */
12292         target_timer_t timerid = get_timer_id(arg1);
12293 
12294         if (timerid < 0) {
12295             ret = timerid;
12296         } else {
12297             timer_t htimer = g_posix_timers[timerid];
12298             ret = get_errno(timer_getoverrun(htimer));
12299         }
12300         return ret;
12301     }
12302 #endif
12303 
12304 #ifdef TARGET_NR_timer_delete
12305     case TARGET_NR_timer_delete:
12306     {
12307         /* args: timer_t timerid */
12308         target_timer_t timerid = get_timer_id(arg1);
12309 
12310         if (timerid < 0) {
12311             ret = timerid;
12312         } else {
12313             timer_t htimer = g_posix_timers[timerid];
12314             ret = get_errno(timer_delete(htimer));
12315             g_posix_timers[timerid] = 0;
12316         }
12317         return ret;
12318     }
12319 #endif
12320 
12321 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12322     case TARGET_NR_timerfd_create:
12323         return get_errno(timerfd_create(arg1,
12324                           target_to_host_bitmask(arg2, fcntl_flags_tbl)));
12325 #endif
12326 
12327 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12328     case TARGET_NR_timerfd_gettime:
12329         {
12330             struct itimerspec its_curr;
12331 
12332             ret = get_errno(timerfd_gettime(arg1, &its_curr));
12333 
12334             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
12335                 return -TARGET_EFAULT;
12336             }
12337         }
12338         return ret;
12339 #endif
12340 
12341 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12342     case TARGET_NR_timerfd_settime:
12343         {
12344             struct itimerspec its_new, its_old, *p_new;
12345 
12346             if (arg3) {
12347                 if (target_to_host_itimerspec(&its_new, arg3)) {
12348                     return -TARGET_EFAULT;
12349                 }
12350                 p_new = &its_new;
12351             } else {
12352                 p_new = NULL;
12353             }
12354 
12355             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
12356 
12357             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
12358                 return -TARGET_EFAULT;
12359             }
12360         }
12361         return ret;
12362 #endif
12363 
12364 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12365     case TARGET_NR_ioprio_get:
12366         return get_errno(ioprio_get(arg1, arg2));
12367 #endif
12368 
12369 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12370     case TARGET_NR_ioprio_set:
12371         return get_errno(ioprio_set(arg1, arg2, arg3));
12372 #endif
12373 
12374 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12375     case TARGET_NR_setns:
12376         return get_errno(setns(arg1, arg2));
12377 #endif
12378 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12379     case TARGET_NR_unshare:
12380         return get_errno(unshare(arg1));
12381 #endif
12382 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12383     case TARGET_NR_kcmp:
12384         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
12385 #endif
12386 #ifdef TARGET_NR_swapcontext
12387     case TARGET_NR_swapcontext:
12388         /* PowerPC specific.  */
12389         return do_swapcontext(cpu_env, arg1, arg2, arg3);
12390 #endif
12391 #ifdef TARGET_NR_memfd_create
12392     case TARGET_NR_memfd_create:
12393         p = lock_user_string(arg1);
12394         if (!p) {
12395             return -TARGET_EFAULT;
12396         }
12397         ret = get_errno(memfd_create(p, arg2));
12398         fd_trans_unregister(ret);
12399         unlock_user(p, arg1, 0);
12400         return ret;
12401 #endif
12402 #if defined TARGET_NR_membarrier && defined __NR_membarrier
12403     case TARGET_NR_membarrier:
12404         return get_errno(membarrier(arg1, arg2));
12405 #endif
12406 
12407     default:
12408         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
12409         return -TARGET_ENOSYS;
12410     }
12411     return ret;
12412 }
12413 
12414 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
12415                     abi_long arg2, abi_long arg3, abi_long arg4,
12416                     abi_long arg5, abi_long arg6, abi_long arg7,
12417                     abi_long arg8)
12418 {
12419     CPUState *cpu = env_cpu(cpu_env);
12420     abi_long ret;
12421 
12422 #ifdef DEBUG_ERESTARTSYS
12423     /* Debug-only code for exercising the syscall-restart code paths
12424      * in the per-architecture cpu main loops: restart every syscall
12425      * the guest makes once before letting it through.
12426      */
12427     {
12428         static bool flag;
12429         flag = !flag;
12430         if (flag) {
12431             return -TARGET_ERESTARTSYS;
12432         }
12433     }
12434 #endif
12435 
12436     record_syscall_start(cpu, num, arg1,
12437                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
12438 
12439     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
12440         print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
12441     }
12442 
12443     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
12444                       arg5, arg6, arg7, arg8);
12445 
12446     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
12447         print_syscall_ret(num, ret);
12448     }
12449 
12450     record_syscall_return(cpu, num, ret);
12451     return ret;
12452 }
12453