xref: /openbmc/qemu/linux-user/syscall.c (revision 02d0de10)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <linux/wireless.h>
59 #include <linux/icmp.h>
60 #include <linux/icmpv6.h>
61 #include <linux/if_tun.h>
62 #include <linux/in6.h>
63 #include <linux/errqueue.h>
64 #include <linux/random.h>
65 #ifdef CONFIG_TIMERFD
66 #include <sys/timerfd.h>
67 #endif
68 #ifdef CONFIG_EVENTFD
69 #include <sys/eventfd.h>
70 #endif
71 #ifdef CONFIG_EPOLL
72 #include <sys/epoll.h>
73 #endif
74 #ifdef CONFIG_ATTR
75 #include "qemu/xattr.h"
76 #endif
77 #ifdef CONFIG_SENDFILE
78 #include <sys/sendfile.h>
79 #endif
80 #ifdef HAVE_SYS_KCOV_H
81 #include <sys/kcov.h>
82 #endif
83 
84 #define termios host_termios
85 #define winsize host_winsize
86 #define termio host_termio
87 #define sgttyb host_sgttyb /* same as target */
88 #define tchars host_tchars /* same as target */
89 #define ltchars host_ltchars /* same as target */
90 
91 #include <linux/termios.h>
92 #include <linux/unistd.h>
93 #include <linux/cdrom.h>
94 #include <linux/hdreg.h>
95 #include <linux/soundcard.h>
96 #include <linux/kd.h>
97 #include <linux/mtio.h>
98 #include <linux/fs.h>
99 #include <linux/fd.h>
100 #if defined(CONFIG_FIEMAP)
101 #include <linux/fiemap.h>
102 #endif
103 #include <linux/fb.h>
104 #if defined(CONFIG_USBFS)
105 #include <linux/usbdevice_fs.h>
106 #include <linux/usb/ch9.h>
107 #endif
108 #include <linux/vt.h>
109 #include <linux/dm-ioctl.h>
110 #include <linux/reboot.h>
111 #include <linux/route.h>
112 #include <linux/filter.h>
113 #include <linux/blkpg.h>
114 #include <netpacket/packet.h>
115 #include <linux/netlink.h>
116 #include <linux/if_alg.h>
117 #include <linux/rtc.h>
118 #include <sound/asound.h>
119 #ifdef HAVE_BTRFS_H
120 #include <linux/btrfs.h>
121 #endif
122 #ifdef HAVE_DRM_H
123 #include <libdrm/drm.h>
124 #include <libdrm/i915_drm.h>
125 #endif
126 #include "linux_loop.h"
127 #include "uname.h"
128 
129 #include "qemu.h"
130 #include "qemu/guest-random.h"
131 #include "qemu/selfmap.h"
132 #include "user/syscall-trace.h"
133 #include "qapi/error.h"
134 #include "fd-trans.h"
135 #include "tcg/tcg.h"
136 
137 #ifndef CLONE_IO
138 #define CLONE_IO                0x80000000      /* Clone io context */
139 #endif
140 
141 /* We can't directly call the host clone syscall, because this will
142  * badly confuse libc (breaking mutexes, for example). So we must
143  * divide clone flags into:
144  *  * flag combinations that look like pthread_create()
145  *  * flag combinations that look like fork()
146  *  * flags we can implement within QEMU itself
147  *  * flags we can't support and will return an error for
148  */
149 /* For thread creation, all these flags must be present; for
150  * fork, none must be present.
151  */
152 #define CLONE_THREAD_FLAGS                              \
153     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
154      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
155 
156 /* These flags are ignored:
157  * CLONE_DETACHED is now ignored by the kernel;
158  * CLONE_IO is just an optimisation hint to the I/O scheduler
159  */
160 #define CLONE_IGNORED_FLAGS                     \
161     (CLONE_DETACHED | CLONE_IO)
162 
163 /* Flags for fork which we can implement within QEMU itself */
164 #define CLONE_OPTIONAL_FORK_FLAGS               \
165     (CLONE_SETTLS | CLONE_PARENT_SETTID |       \
166      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
167 
168 /* Flags for thread creation which we can implement within QEMU itself */
169 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
170     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
171      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
172 
173 #define CLONE_INVALID_FORK_FLAGS                                        \
174     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
175 
176 #define CLONE_INVALID_THREAD_FLAGS                                      \
177     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
178        CLONE_IGNORED_FLAGS))
179 
180 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
181  * have almost all been allocated. We cannot support any of
182  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
183  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
184  * The checks against the invalid thread masks above will catch these.
185  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
186  */
187 
188 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
189  * once. This exercises the codepaths for restart.
190  */
191 //#define DEBUG_ERESTARTSYS
192 
193 //#include <linux/msdos_fs.h>
194 #define	VFAT_IOCTL_READDIR_BOTH		_IOR('r', 1, struct linux_dirent [2])
195 #define	VFAT_IOCTL_READDIR_SHORT	_IOR('r', 2, struct linux_dirent [2])
196 
197 #undef _syscall0
198 #undef _syscall1
199 #undef _syscall2
200 #undef _syscall3
201 #undef _syscall4
202 #undef _syscall5
203 #undef _syscall6
204 
205 #define _syscall0(type,name)		\
206 static type name (void)			\
207 {					\
208 	return syscall(__NR_##name);	\
209 }
210 
211 #define _syscall1(type,name,type1,arg1)		\
212 static type name (type1 arg1)			\
213 {						\
214 	return syscall(__NR_##name, arg1);	\
215 }
216 
217 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
218 static type name (type1 arg1,type2 arg2)		\
219 {							\
220 	return syscall(__NR_##name, arg1, arg2);	\
221 }
222 
223 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
224 static type name (type1 arg1,type2 arg2,type3 arg3)		\
225 {								\
226 	return syscall(__NR_##name, arg1, arg2, arg3);		\
227 }
228 
229 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
230 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
231 {										\
232 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
233 }
234 
235 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
236 		  type5,arg5)							\
237 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
238 {										\
239 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
240 }
241 
242 
243 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
244 		  type5,arg5,type6,arg6)					\
245 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
246                   type6 arg6)							\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
249 }
250 
251 
252 #define __NR_sys_uname __NR_uname
253 #define __NR_sys_getcwd1 __NR_getcwd
254 #define __NR_sys_getdents __NR_getdents
255 #define __NR_sys_getdents64 __NR_getdents64
256 #define __NR_sys_getpriority __NR_getpriority
257 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
258 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
259 #define __NR_sys_syslog __NR_syslog
260 #if defined(__NR_futex)
261 # define __NR_sys_futex __NR_futex
262 #endif
263 #if defined(__NR_futex_time64)
264 # define __NR_sys_futex_time64 __NR_futex_time64
265 #endif
266 #define __NR_sys_inotify_init __NR_inotify_init
267 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
268 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
269 #define __NR_sys_statx __NR_statx
270 
271 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
272 #define __NR__llseek __NR_lseek
273 #endif
274 
275 /* Newer kernel ports have llseek() instead of _llseek() */
276 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
277 #define TARGET_NR__llseek TARGET_NR_llseek
278 #endif
279 
280 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
281 #ifndef TARGET_O_NONBLOCK_MASK
282 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
283 #endif
284 
285 #define __NR_sys_gettid __NR_gettid
286 _syscall0(int, sys_gettid)
287 
288 /* For the 64-bit guest on 32-bit host case we must emulate
289  * getdents using getdents64, because otherwise the host
290  * might hand us back more dirent records than we can fit
291  * into the guest buffer after structure format conversion.
292  * Otherwise we emulate getdents with getdents if the host has it.
293  */
294 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
295 #define EMULATE_GETDENTS_WITH_GETDENTS
296 #endif
297 
298 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
299 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
300 #endif
301 #if (defined(TARGET_NR_getdents) && \
302       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
303     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
304 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
305 #endif
306 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
307 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
308           loff_t *, res, uint, wh);
309 #endif
310 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
311 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
312           siginfo_t *, uinfo)
313 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
314 #ifdef __NR_exit_group
315 _syscall1(int,exit_group,int,error_code)
316 #endif
317 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
318 _syscall1(int,set_tid_address,int *,tidptr)
319 #endif
320 #if defined(__NR_futex)
321 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
322           const struct timespec *,timeout,int *,uaddr2,int,val3)
323 #endif
324 #if defined(__NR_futex_time64)
325 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
326           const struct timespec *,timeout,int *,uaddr2,int,val3)
327 #endif
328 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
329 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
330           unsigned long *, user_mask_ptr);
331 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
332 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
333           unsigned long *, user_mask_ptr);
334 #define __NR_sys_getcpu __NR_getcpu
335 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
336 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
337           void *, arg);
338 _syscall2(int, capget, struct __user_cap_header_struct *, header,
339           struct __user_cap_data_struct *, data);
340 _syscall2(int, capset, struct __user_cap_header_struct *, header,
341           struct __user_cap_data_struct *, data);
342 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
343 _syscall2(int, ioprio_get, int, which, int, who)
344 #endif
345 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
346 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
347 #endif
348 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
349 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
350 #endif
351 
352 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
353 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
354           unsigned long, idx1, unsigned long, idx2)
355 #endif
356 
357 /*
358  * It is assumed that struct statx is architecture independent.
359  */
360 #if defined(TARGET_NR_statx) && defined(__NR_statx)
361 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
362           unsigned int, mask, struct target_statx *, statxbuf)
363 #endif
364 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
365 _syscall2(int, membarrier, int, cmd, int, flags)
366 #endif
367 
368 static bitmask_transtbl fcntl_flags_tbl[] = {
369   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
370   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
371   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
372   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
373   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
374   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
375   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
376   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
377   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
378   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
379   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
380   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
381   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
382 #if defined(O_DIRECT)
383   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
384 #endif
385 #if defined(O_NOATIME)
386   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
387 #endif
388 #if defined(O_CLOEXEC)
389   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
390 #endif
391 #if defined(O_PATH)
392   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
393 #endif
394 #if defined(O_TMPFILE)
395   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
396 #endif
397   /* Don't terminate the list prematurely on 64-bit host+guest.  */
398 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
399   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
400 #endif
401   { 0, 0, 0, 0 }
402 };
403 
404 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
405 
406 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
407 #if defined(__NR_utimensat)
408 #define __NR_sys_utimensat __NR_utimensat
409 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
410           const struct timespec *,tsp,int,flags)
411 #else
412 static int sys_utimensat(int dirfd, const char *pathname,
413                          const struct timespec times[2], int flags)
414 {
415     errno = ENOSYS;
416     return -1;
417 }
418 #endif
419 #endif /* TARGET_NR_utimensat */
420 
421 #ifdef TARGET_NR_renameat2
422 #if defined(__NR_renameat2)
423 #define __NR_sys_renameat2 __NR_renameat2
424 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
425           const char *, new, unsigned int, flags)
426 #else
427 static int sys_renameat2(int oldfd, const char *old,
428                          int newfd, const char *new, int flags)
429 {
430     if (flags == 0) {
431         return renameat(oldfd, old, newfd, new);
432     }
433     errno = ENOSYS;
434     return -1;
435 }
436 #endif
437 #endif /* TARGET_NR_renameat2 */
438 
439 #ifdef CONFIG_INOTIFY
440 #include <sys/inotify.h>
441 
442 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
443 static int sys_inotify_init(void)
444 {
445   return (inotify_init());
446 }
447 #endif
448 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
449 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
450 {
451   return (inotify_add_watch(fd, pathname, mask));
452 }
453 #endif
454 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
455 static int sys_inotify_rm_watch(int fd, int32_t wd)
456 {
457   return (inotify_rm_watch(fd, wd));
458 }
459 #endif
460 #ifdef CONFIG_INOTIFY1
461 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
462 static int sys_inotify_init1(int flags)
463 {
464   return (inotify_init1(flags));
465 }
466 #endif
467 #endif
468 #else
469 /* Userspace can usually survive runtime without inotify */
470 #undef TARGET_NR_inotify_init
471 #undef TARGET_NR_inotify_init1
472 #undef TARGET_NR_inotify_add_watch
473 #undef TARGET_NR_inotify_rm_watch
474 #endif /* CONFIG_INOTIFY  */
475 
476 #if defined(TARGET_NR_prlimit64)
477 #ifndef __NR_prlimit64
478 # define __NR_prlimit64 -1
479 #endif
480 #define __NR_sys_prlimit64 __NR_prlimit64
481 /* The glibc rlimit structure may not be that used by the underlying syscall */
482 struct host_rlimit64 {
483     uint64_t rlim_cur;
484     uint64_t rlim_max;
485 };
486 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
487           const struct host_rlimit64 *, new_limit,
488           struct host_rlimit64 *, old_limit)
489 #endif
490 
491 
492 #if defined(TARGET_NR_timer_create)
493 /* Maximum of 32 active POSIX timers allowed at any one time. */
494 static timer_t g_posix_timers[32] = { 0, } ;
495 
496 static inline int next_free_host_timer(void)
497 {
498     int k ;
499     /* FIXME: Does finding the next free slot require a lock? */
500     for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
501         if (g_posix_timers[k] == 0) {
502             g_posix_timers[k] = (timer_t) 1;
503             return k;
504         }
505     }
506     return -1;
507 }
508 #endif
509 
510 #define ERRNO_TABLE_SIZE 1200
511 
512 /* target_to_host_errno_table[] is initialized from
513  * host_to_target_errno_table[] in syscall_init(). */
514 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
515 };
516 
517 /*
518  * This list is the union of errno values overridden in asm-<arch>/errno.h
519  * minus the errnos that are not actually generic to all archs.
520  */
521 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
522     [EAGAIN]		= TARGET_EAGAIN,
523     [EIDRM]		= TARGET_EIDRM,
524     [ECHRNG]		= TARGET_ECHRNG,
525     [EL2NSYNC]		= TARGET_EL2NSYNC,
526     [EL3HLT]		= TARGET_EL3HLT,
527     [EL3RST]		= TARGET_EL3RST,
528     [ELNRNG]		= TARGET_ELNRNG,
529     [EUNATCH]		= TARGET_EUNATCH,
530     [ENOCSI]		= TARGET_ENOCSI,
531     [EL2HLT]		= TARGET_EL2HLT,
532     [EDEADLK]		= TARGET_EDEADLK,
533     [ENOLCK]		= TARGET_ENOLCK,
534     [EBADE]		= TARGET_EBADE,
535     [EBADR]		= TARGET_EBADR,
536     [EXFULL]		= TARGET_EXFULL,
537     [ENOANO]		= TARGET_ENOANO,
538     [EBADRQC]		= TARGET_EBADRQC,
539     [EBADSLT]		= TARGET_EBADSLT,
540     [EBFONT]		= TARGET_EBFONT,
541     [ENOSTR]		= TARGET_ENOSTR,
542     [ENODATA]		= TARGET_ENODATA,
543     [ETIME]		= TARGET_ETIME,
544     [ENOSR]		= TARGET_ENOSR,
545     [ENONET]		= TARGET_ENONET,
546     [ENOPKG]		= TARGET_ENOPKG,
547     [EREMOTE]		= TARGET_EREMOTE,
548     [ENOLINK]		= TARGET_ENOLINK,
549     [EADV]		= TARGET_EADV,
550     [ESRMNT]		= TARGET_ESRMNT,
551     [ECOMM]		= TARGET_ECOMM,
552     [EPROTO]		= TARGET_EPROTO,
553     [EDOTDOT]		= TARGET_EDOTDOT,
554     [EMULTIHOP]		= TARGET_EMULTIHOP,
555     [EBADMSG]		= TARGET_EBADMSG,
556     [ENAMETOOLONG]	= TARGET_ENAMETOOLONG,
557     [EOVERFLOW]		= TARGET_EOVERFLOW,
558     [ENOTUNIQ]		= TARGET_ENOTUNIQ,
559     [EBADFD]		= TARGET_EBADFD,
560     [EREMCHG]		= TARGET_EREMCHG,
561     [ELIBACC]		= TARGET_ELIBACC,
562     [ELIBBAD]		= TARGET_ELIBBAD,
563     [ELIBSCN]		= TARGET_ELIBSCN,
564     [ELIBMAX]		= TARGET_ELIBMAX,
565     [ELIBEXEC]		= TARGET_ELIBEXEC,
566     [EILSEQ]		= TARGET_EILSEQ,
567     [ENOSYS]		= TARGET_ENOSYS,
568     [ELOOP]		= TARGET_ELOOP,
569     [ERESTART]		= TARGET_ERESTART,
570     [ESTRPIPE]		= TARGET_ESTRPIPE,
571     [ENOTEMPTY]		= TARGET_ENOTEMPTY,
572     [EUSERS]		= TARGET_EUSERS,
573     [ENOTSOCK]		= TARGET_ENOTSOCK,
574     [EDESTADDRREQ]	= TARGET_EDESTADDRREQ,
575     [EMSGSIZE]		= TARGET_EMSGSIZE,
576     [EPROTOTYPE]	= TARGET_EPROTOTYPE,
577     [ENOPROTOOPT]	= TARGET_ENOPROTOOPT,
578     [EPROTONOSUPPORT]	= TARGET_EPROTONOSUPPORT,
579     [ESOCKTNOSUPPORT]	= TARGET_ESOCKTNOSUPPORT,
580     [EOPNOTSUPP]	= TARGET_EOPNOTSUPP,
581     [EPFNOSUPPORT]	= TARGET_EPFNOSUPPORT,
582     [EAFNOSUPPORT]	= TARGET_EAFNOSUPPORT,
583     [EADDRINUSE]	= TARGET_EADDRINUSE,
584     [EADDRNOTAVAIL]	= TARGET_EADDRNOTAVAIL,
585     [ENETDOWN]		= TARGET_ENETDOWN,
586     [ENETUNREACH]	= TARGET_ENETUNREACH,
587     [ENETRESET]		= TARGET_ENETRESET,
588     [ECONNABORTED]	= TARGET_ECONNABORTED,
589     [ECONNRESET]	= TARGET_ECONNRESET,
590     [ENOBUFS]		= TARGET_ENOBUFS,
591     [EISCONN]		= TARGET_EISCONN,
592     [ENOTCONN]		= TARGET_ENOTCONN,
593     [EUCLEAN]		= TARGET_EUCLEAN,
594     [ENOTNAM]		= TARGET_ENOTNAM,
595     [ENAVAIL]		= TARGET_ENAVAIL,
596     [EISNAM]		= TARGET_EISNAM,
597     [EREMOTEIO]		= TARGET_EREMOTEIO,
598     [EDQUOT]            = TARGET_EDQUOT,
599     [ESHUTDOWN]		= TARGET_ESHUTDOWN,
600     [ETOOMANYREFS]	= TARGET_ETOOMANYREFS,
601     [ETIMEDOUT]		= TARGET_ETIMEDOUT,
602     [ECONNREFUSED]	= TARGET_ECONNREFUSED,
603     [EHOSTDOWN]		= TARGET_EHOSTDOWN,
604     [EHOSTUNREACH]	= TARGET_EHOSTUNREACH,
605     [EALREADY]		= TARGET_EALREADY,
606     [EINPROGRESS]	= TARGET_EINPROGRESS,
607     [ESTALE]		= TARGET_ESTALE,
608     [ECANCELED]		= TARGET_ECANCELED,
609     [ENOMEDIUM]		= TARGET_ENOMEDIUM,
610     [EMEDIUMTYPE]	= TARGET_EMEDIUMTYPE,
611 #ifdef ENOKEY
612     [ENOKEY]		= TARGET_ENOKEY,
613 #endif
614 #ifdef EKEYEXPIRED
615     [EKEYEXPIRED]	= TARGET_EKEYEXPIRED,
616 #endif
617 #ifdef EKEYREVOKED
618     [EKEYREVOKED]	= TARGET_EKEYREVOKED,
619 #endif
620 #ifdef EKEYREJECTED
621     [EKEYREJECTED]	= TARGET_EKEYREJECTED,
622 #endif
623 #ifdef EOWNERDEAD
624     [EOWNERDEAD]	= TARGET_EOWNERDEAD,
625 #endif
626 #ifdef ENOTRECOVERABLE
627     [ENOTRECOVERABLE]	= TARGET_ENOTRECOVERABLE,
628 #endif
629 #ifdef ENOMSG
630     [ENOMSG]            = TARGET_ENOMSG,
631 #endif
632 #ifdef ERKFILL
633     [ERFKILL]           = TARGET_ERFKILL,
634 #endif
635 #ifdef EHWPOISON
636     [EHWPOISON]         = TARGET_EHWPOISON,
637 #endif
638 };
639 
640 static inline int host_to_target_errno(int err)
641 {
642     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
643         host_to_target_errno_table[err]) {
644         return host_to_target_errno_table[err];
645     }
646     return err;
647 }
648 
649 static inline int target_to_host_errno(int err)
650 {
651     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
652         target_to_host_errno_table[err]) {
653         return target_to_host_errno_table[err];
654     }
655     return err;
656 }
657 
658 static inline abi_long get_errno(abi_long ret)
659 {
660     if (ret == -1)
661         return -host_to_target_errno(errno);
662     else
663         return ret;
664 }
665 
666 const char *target_strerror(int err)
667 {
668     if (err == TARGET_ERESTARTSYS) {
669         return "To be restarted";
670     }
671     if (err == TARGET_QEMU_ESIGRETURN) {
672         return "Successful exit from sigreturn";
673     }
674 
675     if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
676         return NULL;
677     }
678     return strerror(target_to_host_errno(err));
679 }
680 
681 #define safe_syscall0(type, name) \
682 static type safe_##name(void) \
683 { \
684     return safe_syscall(__NR_##name); \
685 }
686 
687 #define safe_syscall1(type, name, type1, arg1) \
688 static type safe_##name(type1 arg1) \
689 { \
690     return safe_syscall(__NR_##name, arg1); \
691 }
692 
693 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
694 static type safe_##name(type1 arg1, type2 arg2) \
695 { \
696     return safe_syscall(__NR_##name, arg1, arg2); \
697 }
698 
699 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
700 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
701 { \
702     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
703 }
704 
705 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
706     type4, arg4) \
707 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
708 { \
709     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
710 }
711 
712 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
713     type4, arg4, type5, arg5) \
714 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
715     type5 arg5) \
716 { \
717     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
718 }
719 
720 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
721     type4, arg4, type5, arg5, type6, arg6) \
722 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
723     type5 arg5, type6 arg6) \
724 { \
725     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
726 }
727 
728 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
729 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
730 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
731               int, flags, mode_t, mode)
732 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
733 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
734               struct rusage *, rusage)
735 #endif
736 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
737               int, options, struct rusage *, rusage)
738 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
739 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
740     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
741 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
742               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
743 #endif
744 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
745 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
746               struct timespec *, tsp, const sigset_t *, sigmask,
747               size_t, sigsetsize)
748 #endif
749 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
750               int, maxevents, int, timeout, const sigset_t *, sigmask,
751               size_t, sigsetsize)
752 #if defined(__NR_futex)
753 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
754               const struct timespec *,timeout,int *,uaddr2,int,val3)
755 #endif
756 #if defined(__NR_futex_time64)
757 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
758               const struct timespec *,timeout,int *,uaddr2,int,val3)
759 #endif
760 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
761 safe_syscall2(int, kill, pid_t, pid, int, sig)
762 safe_syscall2(int, tkill, int, tid, int, sig)
763 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
764 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
765 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
766 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
767               unsigned long, pos_l, unsigned long, pos_h)
768 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
769               unsigned long, pos_l, unsigned long, pos_h)
770 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
771               socklen_t, addrlen)
772 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
773               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
774 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
775               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
776 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
777 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
778 safe_syscall2(int, flock, int, fd, int, operation)
779 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
780 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
781               const struct timespec *, uts, size_t, sigsetsize)
782 #endif
783 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
784               int, flags)
785 #if defined(TARGET_NR_nanosleep)
786 safe_syscall2(int, nanosleep, const struct timespec *, req,
787               struct timespec *, rem)
788 #endif
789 #if defined(TARGET_NR_clock_nanosleep) || \
790     defined(TARGET_NR_clock_nanosleep_time64)
791 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
792               const struct timespec *, req, struct timespec *, rem)
793 #endif
794 #ifdef __NR_ipc
795 #ifdef __s390x__
796 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
797               void *, ptr)
798 #else
799 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
800               void *, ptr, long, fifth)
801 #endif
802 #endif
803 #ifdef __NR_msgsnd
804 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
805               int, flags)
806 #endif
807 #ifdef __NR_msgrcv
808 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
809               long, msgtype, int, flags)
810 #endif
811 #ifdef __NR_semtimedop
812 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
813               unsigned, nsops, const struct timespec *, timeout)
814 #endif
815 #if defined(TARGET_NR_mq_timedsend) || \
816     defined(TARGET_NR_mq_timedsend_time64)
817 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
818               size_t, len, unsigned, prio, const struct timespec *, timeout)
819 #endif
820 #if defined(TARGET_NR_mq_timedreceive) || \
821     defined(TARGET_NR_mq_timedreceive_time64)
822 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
823               size_t, len, unsigned *, prio, const struct timespec *, timeout)
824 #endif
825 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
826 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
827               int, outfd, loff_t *, poutoff, size_t, length,
828               unsigned int, flags)
829 #endif
830 
831 /* We do ioctl like this rather than via safe_syscall3 to preserve the
832  * "third argument might be integer or pointer or not present" behaviour of
833  * the libc function.
834  */
835 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
836 /* Similarly for fcntl. Note that callers must always:
837  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
838  *  use the flock64 struct rather than unsuffixed flock
839  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
840  */
841 #ifdef __NR_fcntl64
842 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
843 #else
844 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
845 #endif
846 
847 static inline int host_to_target_sock_type(int host_type)
848 {
849     int target_type;
850 
851     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
852     case SOCK_DGRAM:
853         target_type = TARGET_SOCK_DGRAM;
854         break;
855     case SOCK_STREAM:
856         target_type = TARGET_SOCK_STREAM;
857         break;
858     default:
859         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
860         break;
861     }
862 
863 #if defined(SOCK_CLOEXEC)
864     if (host_type & SOCK_CLOEXEC) {
865         target_type |= TARGET_SOCK_CLOEXEC;
866     }
867 #endif
868 
869 #if defined(SOCK_NONBLOCK)
870     if (host_type & SOCK_NONBLOCK) {
871         target_type |= TARGET_SOCK_NONBLOCK;
872     }
873 #endif
874 
875     return target_type;
876 }
877 
878 static abi_ulong target_brk;
879 static abi_ulong target_original_brk;
880 static abi_ulong brk_page;
881 
882 void target_set_brk(abi_ulong new_brk)
883 {
884     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
885     brk_page = HOST_PAGE_ALIGN(target_brk);
886 }
887 
888 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
889 #define DEBUGF_BRK(message, args...)
890 
891 /* do_brk() must return target values and target errnos. */
892 abi_long do_brk(abi_ulong new_brk)
893 {
894     abi_long mapped_addr;
895     abi_ulong new_alloc_size;
896 
897     /* brk pointers are always untagged */
898 
899     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
900 
901     if (!new_brk) {
902         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
903         return target_brk;
904     }
905     if (new_brk < target_original_brk) {
906         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
907                    target_brk);
908         return target_brk;
909     }
910 
911     /* If the new brk is less than the highest page reserved to the
912      * target heap allocation, set it and we're almost done...  */
913     if (new_brk <= brk_page) {
914         /* Heap contents are initialized to zero, as for anonymous
915          * mapped pages.  */
916         if (new_brk > target_brk) {
917             memset(g2h_untagged(target_brk), 0, new_brk - target_brk);
918         }
919 	target_brk = new_brk;
920         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
921 	return target_brk;
922     }
923 
924     /* We need to allocate more memory after the brk... Note that
925      * we don't use MAP_FIXED because that will map over the top of
926      * any existing mapping (like the one with the host libc or qemu
927      * itself); instead we treat "mapped but at wrong address" as
928      * a failure and unmap again.
929      */
930     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
931     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
932                                         PROT_READ|PROT_WRITE,
933                                         MAP_ANON|MAP_PRIVATE, 0, 0));
934 
935     if (mapped_addr == brk_page) {
936         /* Heap contents are initialized to zero, as for anonymous
937          * mapped pages.  Technically the new pages are already
938          * initialized to zero since they *are* anonymous mapped
939          * pages, however we have to take care with the contents that
940          * come from the remaining part of the previous page: it may
941          * contains garbage data due to a previous heap usage (grown
942          * then shrunken).  */
943         memset(g2h_untagged(target_brk), 0, brk_page - target_brk);
944 
945         target_brk = new_brk;
946         brk_page = HOST_PAGE_ALIGN(target_brk);
947         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
948             target_brk);
949         return target_brk;
950     } else if (mapped_addr != -1) {
951         /* Mapped but at wrong address, meaning there wasn't actually
952          * enough space for this brk.
953          */
954         target_munmap(mapped_addr, new_alloc_size);
955         mapped_addr = -1;
956         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
957     }
958     else {
959         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
960     }
961 
962 #if defined(TARGET_ALPHA)
963     /* We (partially) emulate OSF/1 on Alpha, which requires we
964        return a proper errno, not an unchanged brk value.  */
965     return -TARGET_ENOMEM;
966 #endif
967     /* For everything else, return the previous break. */
968     return target_brk;
969 }
970 
971 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
972     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
973 static inline abi_long copy_from_user_fdset(fd_set *fds,
974                                             abi_ulong target_fds_addr,
975                                             int n)
976 {
977     int i, nw, j, k;
978     abi_ulong b, *target_fds;
979 
980     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
981     if (!(target_fds = lock_user(VERIFY_READ,
982                                  target_fds_addr,
983                                  sizeof(abi_ulong) * nw,
984                                  1)))
985         return -TARGET_EFAULT;
986 
987     FD_ZERO(fds);
988     k = 0;
989     for (i = 0; i < nw; i++) {
990         /* grab the abi_ulong */
991         __get_user(b, &target_fds[i]);
992         for (j = 0; j < TARGET_ABI_BITS; j++) {
993             /* check the bit inside the abi_ulong */
994             if ((b >> j) & 1)
995                 FD_SET(k, fds);
996             k++;
997         }
998     }
999 
1000     unlock_user(target_fds, target_fds_addr, 0);
1001 
1002     return 0;
1003 }
1004 
1005 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1006                                                  abi_ulong target_fds_addr,
1007                                                  int n)
1008 {
1009     if (target_fds_addr) {
1010         if (copy_from_user_fdset(fds, target_fds_addr, n))
1011             return -TARGET_EFAULT;
1012         *fds_ptr = fds;
1013     } else {
1014         *fds_ptr = NULL;
1015     }
1016     return 0;
1017 }
1018 
1019 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1020                                           const fd_set *fds,
1021                                           int n)
1022 {
1023     int i, nw, j, k;
1024     abi_long v;
1025     abi_ulong *target_fds;
1026 
1027     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1028     if (!(target_fds = lock_user(VERIFY_WRITE,
1029                                  target_fds_addr,
1030                                  sizeof(abi_ulong) * nw,
1031                                  0)))
1032         return -TARGET_EFAULT;
1033 
1034     k = 0;
1035     for (i = 0; i < nw; i++) {
1036         v = 0;
1037         for (j = 0; j < TARGET_ABI_BITS; j++) {
1038             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1039             k++;
1040         }
1041         __put_user(v, &target_fds[i]);
1042     }
1043 
1044     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1045 
1046     return 0;
1047 }
1048 #endif
1049 
1050 #if defined(__alpha__)
1051 #define HOST_HZ 1024
1052 #else
1053 #define HOST_HZ 100
1054 #endif
1055 
1056 static inline abi_long host_to_target_clock_t(long ticks)
1057 {
1058 #if HOST_HZ == TARGET_HZ
1059     return ticks;
1060 #else
1061     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1062 #endif
1063 }
1064 
1065 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1066                                              const struct rusage *rusage)
1067 {
1068     struct target_rusage *target_rusage;
1069 
1070     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1071         return -TARGET_EFAULT;
1072     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1073     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1074     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1075     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1076     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1077     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1078     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1079     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1080     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1081     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1082     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1083     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1084     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1085     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1086     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1087     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1088     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1089     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1090     unlock_user_struct(target_rusage, target_addr, 1);
1091 
1092     return 0;
1093 }
1094 
1095 #ifdef TARGET_NR_setrlimit
1096 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1097 {
1098     abi_ulong target_rlim_swap;
1099     rlim_t result;
1100 
1101     target_rlim_swap = tswapal(target_rlim);
1102     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1103         return RLIM_INFINITY;
1104 
1105     result = target_rlim_swap;
1106     if (target_rlim_swap != (rlim_t)result)
1107         return RLIM_INFINITY;
1108 
1109     return result;
1110 }
1111 #endif
1112 
1113 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1114 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1115 {
1116     abi_ulong target_rlim_swap;
1117     abi_ulong result;
1118 
1119     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1120         target_rlim_swap = TARGET_RLIM_INFINITY;
1121     else
1122         target_rlim_swap = rlim;
1123     result = tswapal(target_rlim_swap);
1124 
1125     return result;
1126 }
1127 #endif
1128 
1129 static inline int target_to_host_resource(int code)
1130 {
1131     switch (code) {
1132     case TARGET_RLIMIT_AS:
1133         return RLIMIT_AS;
1134     case TARGET_RLIMIT_CORE:
1135         return RLIMIT_CORE;
1136     case TARGET_RLIMIT_CPU:
1137         return RLIMIT_CPU;
1138     case TARGET_RLIMIT_DATA:
1139         return RLIMIT_DATA;
1140     case TARGET_RLIMIT_FSIZE:
1141         return RLIMIT_FSIZE;
1142     case TARGET_RLIMIT_LOCKS:
1143         return RLIMIT_LOCKS;
1144     case TARGET_RLIMIT_MEMLOCK:
1145         return RLIMIT_MEMLOCK;
1146     case TARGET_RLIMIT_MSGQUEUE:
1147         return RLIMIT_MSGQUEUE;
1148     case TARGET_RLIMIT_NICE:
1149         return RLIMIT_NICE;
1150     case TARGET_RLIMIT_NOFILE:
1151         return RLIMIT_NOFILE;
1152     case TARGET_RLIMIT_NPROC:
1153         return RLIMIT_NPROC;
1154     case TARGET_RLIMIT_RSS:
1155         return RLIMIT_RSS;
1156     case TARGET_RLIMIT_RTPRIO:
1157         return RLIMIT_RTPRIO;
1158     case TARGET_RLIMIT_SIGPENDING:
1159         return RLIMIT_SIGPENDING;
1160     case TARGET_RLIMIT_STACK:
1161         return RLIMIT_STACK;
1162     default:
1163         return code;
1164     }
1165 }
1166 
1167 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1168                                               abi_ulong target_tv_addr)
1169 {
1170     struct target_timeval *target_tv;
1171 
1172     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1173         return -TARGET_EFAULT;
1174     }
1175 
1176     __get_user(tv->tv_sec, &target_tv->tv_sec);
1177     __get_user(tv->tv_usec, &target_tv->tv_usec);
1178 
1179     unlock_user_struct(target_tv, target_tv_addr, 0);
1180 
1181     return 0;
1182 }
1183 
1184 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1185                                             const struct timeval *tv)
1186 {
1187     struct target_timeval *target_tv;
1188 
1189     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1190         return -TARGET_EFAULT;
1191     }
1192 
1193     __put_user(tv->tv_sec, &target_tv->tv_sec);
1194     __put_user(tv->tv_usec, &target_tv->tv_usec);
1195 
1196     unlock_user_struct(target_tv, target_tv_addr, 1);
1197 
1198     return 0;
1199 }
1200 
1201 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1202 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1203                                                 abi_ulong target_tv_addr)
1204 {
1205     struct target__kernel_sock_timeval *target_tv;
1206 
1207     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1208         return -TARGET_EFAULT;
1209     }
1210 
1211     __get_user(tv->tv_sec, &target_tv->tv_sec);
1212     __get_user(tv->tv_usec, &target_tv->tv_usec);
1213 
1214     unlock_user_struct(target_tv, target_tv_addr, 0);
1215 
1216     return 0;
1217 }
1218 #endif
1219 
1220 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1221                                               const struct timeval *tv)
1222 {
1223     struct target__kernel_sock_timeval *target_tv;
1224 
1225     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1226         return -TARGET_EFAULT;
1227     }
1228 
1229     __put_user(tv->tv_sec, &target_tv->tv_sec);
1230     __put_user(tv->tv_usec, &target_tv->tv_usec);
1231 
1232     unlock_user_struct(target_tv, target_tv_addr, 1);
1233 
1234     return 0;
1235 }
1236 
1237 #if defined(TARGET_NR_futex) || \
1238     defined(TARGET_NR_rt_sigtimedwait) || \
1239     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1240     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1241     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1242     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1243     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1244     defined(TARGET_NR_timer_settime) || \
1245     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1246 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1247                                                abi_ulong target_addr)
1248 {
1249     struct target_timespec *target_ts;
1250 
1251     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1252         return -TARGET_EFAULT;
1253     }
1254     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1255     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1256     unlock_user_struct(target_ts, target_addr, 0);
1257     return 0;
1258 }
1259 #endif
1260 
1261 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1262     defined(TARGET_NR_timer_settime64) || \
1263     defined(TARGET_NR_mq_timedsend_time64) || \
1264     defined(TARGET_NR_mq_timedreceive_time64) || \
1265     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1266     defined(TARGET_NR_clock_nanosleep_time64) || \
1267     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1268     defined(TARGET_NR_utimensat) || \
1269     defined(TARGET_NR_utimensat_time64) || \
1270     defined(TARGET_NR_semtimedop_time64) || \
1271     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1272 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1273                                                  abi_ulong target_addr)
1274 {
1275     struct target__kernel_timespec *target_ts;
1276 
1277     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1278         return -TARGET_EFAULT;
1279     }
1280     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1281     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1282     /* in 32bit mode, this drops the padding */
1283     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1284     unlock_user_struct(target_ts, target_addr, 0);
1285     return 0;
1286 }
1287 #endif
1288 
1289 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1290                                                struct timespec *host_ts)
1291 {
1292     struct target_timespec *target_ts;
1293 
1294     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1295         return -TARGET_EFAULT;
1296     }
1297     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1298     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1299     unlock_user_struct(target_ts, target_addr, 1);
1300     return 0;
1301 }
1302 
1303 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1304                                                  struct timespec *host_ts)
1305 {
1306     struct target__kernel_timespec *target_ts;
1307 
1308     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1309         return -TARGET_EFAULT;
1310     }
1311     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1312     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1313     unlock_user_struct(target_ts, target_addr, 1);
1314     return 0;
1315 }
1316 
1317 #if defined(TARGET_NR_gettimeofday)
1318 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1319                                              struct timezone *tz)
1320 {
1321     struct target_timezone *target_tz;
1322 
1323     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1324         return -TARGET_EFAULT;
1325     }
1326 
1327     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1328     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1329 
1330     unlock_user_struct(target_tz, target_tz_addr, 1);
1331 
1332     return 0;
1333 }
1334 #endif
1335 
1336 #if defined(TARGET_NR_settimeofday)
1337 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1338                                                abi_ulong target_tz_addr)
1339 {
1340     struct target_timezone *target_tz;
1341 
1342     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1343         return -TARGET_EFAULT;
1344     }
1345 
1346     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1347     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1348 
1349     unlock_user_struct(target_tz, target_tz_addr, 0);
1350 
1351     return 0;
1352 }
1353 #endif
1354 
1355 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1356 #include <mqueue.h>
1357 
1358 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1359                                               abi_ulong target_mq_attr_addr)
1360 {
1361     struct target_mq_attr *target_mq_attr;
1362 
1363     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1364                           target_mq_attr_addr, 1))
1365         return -TARGET_EFAULT;
1366 
1367     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1368     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1369     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1370     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1371 
1372     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1373 
1374     return 0;
1375 }
1376 
1377 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1378                                             const struct mq_attr *attr)
1379 {
1380     struct target_mq_attr *target_mq_attr;
1381 
1382     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1383                           target_mq_attr_addr, 0))
1384         return -TARGET_EFAULT;
1385 
1386     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1387     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1388     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1389     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1390 
1391     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1392 
1393     return 0;
1394 }
1395 #endif
1396 
1397 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1398 /* do_select() must return target values and target errnos. */
1399 static abi_long do_select(int n,
1400                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1401                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1402 {
1403     fd_set rfds, wfds, efds;
1404     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1405     struct timeval tv;
1406     struct timespec ts, *ts_ptr;
1407     abi_long ret;
1408 
1409     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1410     if (ret) {
1411         return ret;
1412     }
1413     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1414     if (ret) {
1415         return ret;
1416     }
1417     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1418     if (ret) {
1419         return ret;
1420     }
1421 
1422     if (target_tv_addr) {
1423         if (copy_from_user_timeval(&tv, target_tv_addr))
1424             return -TARGET_EFAULT;
1425         ts.tv_sec = tv.tv_sec;
1426         ts.tv_nsec = tv.tv_usec * 1000;
1427         ts_ptr = &ts;
1428     } else {
1429         ts_ptr = NULL;
1430     }
1431 
1432     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1433                                   ts_ptr, NULL));
1434 
1435     if (!is_error(ret)) {
1436         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1437             return -TARGET_EFAULT;
1438         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1439             return -TARGET_EFAULT;
1440         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1441             return -TARGET_EFAULT;
1442 
1443         if (target_tv_addr) {
1444             tv.tv_sec = ts.tv_sec;
1445             tv.tv_usec = ts.tv_nsec / 1000;
1446             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1447                 return -TARGET_EFAULT;
1448             }
1449         }
1450     }
1451 
1452     return ret;
1453 }
1454 
1455 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1456 static abi_long do_old_select(abi_ulong arg1)
1457 {
1458     struct target_sel_arg_struct *sel;
1459     abi_ulong inp, outp, exp, tvp;
1460     long nsel;
1461 
1462     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1463         return -TARGET_EFAULT;
1464     }
1465 
1466     nsel = tswapal(sel->n);
1467     inp = tswapal(sel->inp);
1468     outp = tswapal(sel->outp);
1469     exp = tswapal(sel->exp);
1470     tvp = tswapal(sel->tvp);
1471 
1472     unlock_user_struct(sel, arg1, 0);
1473 
1474     return do_select(nsel, inp, outp, exp, tvp);
1475 }
1476 #endif
1477 #endif
1478 
1479 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1480 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1481                             abi_long arg4, abi_long arg5, abi_long arg6,
1482                             bool time64)
1483 {
1484     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1485     fd_set rfds, wfds, efds;
1486     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1487     struct timespec ts, *ts_ptr;
1488     abi_long ret;
1489 
1490     /*
1491      * The 6th arg is actually two args smashed together,
1492      * so we cannot use the C library.
1493      */
1494     sigset_t set;
1495     struct {
1496         sigset_t *set;
1497         size_t size;
1498     } sig, *sig_ptr;
1499 
1500     abi_ulong arg_sigset, arg_sigsize, *arg7;
1501     target_sigset_t *target_sigset;
1502 
1503     n = arg1;
1504     rfd_addr = arg2;
1505     wfd_addr = arg3;
1506     efd_addr = arg4;
1507     ts_addr = arg5;
1508 
1509     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1510     if (ret) {
1511         return ret;
1512     }
1513     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1514     if (ret) {
1515         return ret;
1516     }
1517     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1518     if (ret) {
1519         return ret;
1520     }
1521 
1522     /*
1523      * This takes a timespec, and not a timeval, so we cannot
1524      * use the do_select() helper ...
1525      */
1526     if (ts_addr) {
1527         if (time64) {
1528             if (target_to_host_timespec64(&ts, ts_addr)) {
1529                 return -TARGET_EFAULT;
1530             }
1531         } else {
1532             if (target_to_host_timespec(&ts, ts_addr)) {
1533                 return -TARGET_EFAULT;
1534             }
1535         }
1536             ts_ptr = &ts;
1537     } else {
1538         ts_ptr = NULL;
1539     }
1540 
1541     /* Extract the two packed args for the sigset */
1542     if (arg6) {
1543         sig_ptr = &sig;
1544         sig.size = SIGSET_T_SIZE;
1545 
1546         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1547         if (!arg7) {
1548             return -TARGET_EFAULT;
1549         }
1550         arg_sigset = tswapal(arg7[0]);
1551         arg_sigsize = tswapal(arg7[1]);
1552         unlock_user(arg7, arg6, 0);
1553 
1554         if (arg_sigset) {
1555             sig.set = &set;
1556             if (arg_sigsize != sizeof(*target_sigset)) {
1557                 /* Like the kernel, we enforce correct size sigsets */
1558                 return -TARGET_EINVAL;
1559             }
1560             target_sigset = lock_user(VERIFY_READ, arg_sigset,
1561                                       sizeof(*target_sigset), 1);
1562             if (!target_sigset) {
1563                 return -TARGET_EFAULT;
1564             }
1565             target_to_host_sigset(&set, target_sigset);
1566             unlock_user(target_sigset, arg_sigset, 0);
1567         } else {
1568             sig.set = NULL;
1569         }
1570     } else {
1571         sig_ptr = NULL;
1572     }
1573 
1574     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1575                                   ts_ptr, sig_ptr));
1576 
1577     if (!is_error(ret)) {
1578         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1579             return -TARGET_EFAULT;
1580         }
1581         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1582             return -TARGET_EFAULT;
1583         }
1584         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1585             return -TARGET_EFAULT;
1586         }
1587         if (time64) {
1588             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1589                 return -TARGET_EFAULT;
1590             }
1591         } else {
1592             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1593                 return -TARGET_EFAULT;
1594             }
1595         }
1596     }
1597     return ret;
1598 }
1599 #endif
1600 
1601 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1602     defined(TARGET_NR_ppoll_time64)
1603 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1604                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1605 {
1606     struct target_pollfd *target_pfd;
1607     unsigned int nfds = arg2;
1608     struct pollfd *pfd;
1609     unsigned int i;
1610     abi_long ret;
1611 
1612     pfd = NULL;
1613     target_pfd = NULL;
1614     if (nfds) {
1615         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1616             return -TARGET_EINVAL;
1617         }
1618         target_pfd = lock_user(VERIFY_WRITE, arg1,
1619                                sizeof(struct target_pollfd) * nfds, 1);
1620         if (!target_pfd) {
1621             return -TARGET_EFAULT;
1622         }
1623 
1624         pfd = alloca(sizeof(struct pollfd) * nfds);
1625         for (i = 0; i < nfds; i++) {
1626             pfd[i].fd = tswap32(target_pfd[i].fd);
1627             pfd[i].events = tswap16(target_pfd[i].events);
1628         }
1629     }
1630     if (ppoll) {
1631         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1632         target_sigset_t *target_set;
1633         sigset_t _set, *set = &_set;
1634 
1635         if (arg3) {
1636             if (time64) {
1637                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1638                     unlock_user(target_pfd, arg1, 0);
1639                     return -TARGET_EFAULT;
1640                 }
1641             } else {
1642                 if (target_to_host_timespec(timeout_ts, arg3)) {
1643                     unlock_user(target_pfd, arg1, 0);
1644                     return -TARGET_EFAULT;
1645                 }
1646             }
1647         } else {
1648             timeout_ts = NULL;
1649         }
1650 
1651         if (arg4) {
1652             if (arg5 != sizeof(target_sigset_t)) {
1653                 unlock_user(target_pfd, arg1, 0);
1654                 return -TARGET_EINVAL;
1655             }
1656 
1657             target_set = lock_user(VERIFY_READ, arg4,
1658                                    sizeof(target_sigset_t), 1);
1659             if (!target_set) {
1660                 unlock_user(target_pfd, arg1, 0);
1661                 return -TARGET_EFAULT;
1662             }
1663             target_to_host_sigset(set, target_set);
1664         } else {
1665             set = NULL;
1666         }
1667 
1668         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1669                                    set, SIGSET_T_SIZE));
1670 
1671         if (!is_error(ret) && arg3) {
1672             if (time64) {
1673                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1674                     return -TARGET_EFAULT;
1675                 }
1676             } else {
1677                 if (host_to_target_timespec(arg3, timeout_ts)) {
1678                     return -TARGET_EFAULT;
1679                 }
1680             }
1681         }
1682         if (arg4) {
1683             unlock_user(target_set, arg4, 0);
1684         }
1685     } else {
1686           struct timespec ts, *pts;
1687 
1688           if (arg3 >= 0) {
1689               /* Convert ms to secs, ns */
1690               ts.tv_sec = arg3 / 1000;
1691               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1692               pts = &ts;
1693           } else {
1694               /* -ve poll() timeout means "infinite" */
1695               pts = NULL;
1696           }
1697           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1698     }
1699 
1700     if (!is_error(ret)) {
1701         for (i = 0; i < nfds; i++) {
1702             target_pfd[i].revents = tswap16(pfd[i].revents);
1703         }
1704     }
1705     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1706     return ret;
1707 }
1708 #endif
1709 
1710 static abi_long do_pipe2(int host_pipe[], int flags)
1711 {
1712 #ifdef CONFIG_PIPE2
1713     return pipe2(host_pipe, flags);
1714 #else
1715     return -ENOSYS;
1716 #endif
1717 }
1718 
1719 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1720                         int flags, int is_pipe2)
1721 {
1722     int host_pipe[2];
1723     abi_long ret;
1724     ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1725 
1726     if (is_error(ret))
1727         return get_errno(ret);
1728 
1729     /* Several targets have special calling conventions for the original
1730        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1731     if (!is_pipe2) {
1732 #if defined(TARGET_ALPHA)
1733         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1734         return host_pipe[0];
1735 #elif defined(TARGET_MIPS)
1736         ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1737         return host_pipe[0];
1738 #elif defined(TARGET_SH4)
1739         ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1740         return host_pipe[0];
1741 #elif defined(TARGET_SPARC)
1742         ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1743         return host_pipe[0];
1744 #endif
1745     }
1746 
1747     if (put_user_s32(host_pipe[0], pipedes)
1748         || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1749         return -TARGET_EFAULT;
1750     return get_errno(ret);
1751 }
1752 
1753 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1754                                               abi_ulong target_addr,
1755                                               socklen_t len)
1756 {
1757     struct target_ip_mreqn *target_smreqn;
1758 
1759     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1760     if (!target_smreqn)
1761         return -TARGET_EFAULT;
1762     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1763     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1764     if (len == sizeof(struct target_ip_mreqn))
1765         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1766     unlock_user(target_smreqn, target_addr, 0);
1767 
1768     return 0;
1769 }
1770 
1771 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1772                                                abi_ulong target_addr,
1773                                                socklen_t len)
1774 {
1775     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1776     sa_family_t sa_family;
1777     struct target_sockaddr *target_saddr;
1778 
1779     if (fd_trans_target_to_host_addr(fd)) {
1780         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1781     }
1782 
1783     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1784     if (!target_saddr)
1785         return -TARGET_EFAULT;
1786 
1787     sa_family = tswap16(target_saddr->sa_family);
1788 
1789     /* Oops. The caller might send a incomplete sun_path; sun_path
1790      * must be terminated by \0 (see the manual page), but
1791      * unfortunately it is quite common to specify sockaddr_un
1792      * length as "strlen(x->sun_path)" while it should be
1793      * "strlen(...) + 1". We'll fix that here if needed.
1794      * Linux kernel has a similar feature.
1795      */
1796 
1797     if (sa_family == AF_UNIX) {
1798         if (len < unix_maxlen && len > 0) {
1799             char *cp = (char*)target_saddr;
1800 
1801             if ( cp[len-1] && !cp[len] )
1802                 len++;
1803         }
1804         if (len > unix_maxlen)
1805             len = unix_maxlen;
1806     }
1807 
1808     memcpy(addr, target_saddr, len);
1809     addr->sa_family = sa_family;
1810     if (sa_family == AF_NETLINK) {
1811         struct sockaddr_nl *nladdr;
1812 
1813         nladdr = (struct sockaddr_nl *)addr;
1814         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1815         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1816     } else if (sa_family == AF_PACKET) {
1817 	struct target_sockaddr_ll *lladdr;
1818 
1819 	lladdr = (struct target_sockaddr_ll *)addr;
1820 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1821 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1822     }
1823     unlock_user(target_saddr, target_addr, 0);
1824 
1825     return 0;
1826 }
1827 
1828 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1829                                                struct sockaddr *addr,
1830                                                socklen_t len)
1831 {
1832     struct target_sockaddr *target_saddr;
1833 
1834     if (len == 0) {
1835         return 0;
1836     }
1837     assert(addr);
1838 
1839     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1840     if (!target_saddr)
1841         return -TARGET_EFAULT;
1842     memcpy(target_saddr, addr, len);
1843     if (len >= offsetof(struct target_sockaddr, sa_family) +
1844         sizeof(target_saddr->sa_family)) {
1845         target_saddr->sa_family = tswap16(addr->sa_family);
1846     }
1847     if (addr->sa_family == AF_NETLINK &&
1848         len >= sizeof(struct target_sockaddr_nl)) {
1849         struct target_sockaddr_nl *target_nl =
1850                (struct target_sockaddr_nl *)target_saddr;
1851         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1852         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1853     } else if (addr->sa_family == AF_PACKET) {
1854         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1855         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1856         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1857     } else if (addr->sa_family == AF_INET6 &&
1858                len >= sizeof(struct target_sockaddr_in6)) {
1859         struct target_sockaddr_in6 *target_in6 =
1860                (struct target_sockaddr_in6 *)target_saddr;
1861         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1862     }
1863     unlock_user(target_saddr, target_addr, len);
1864 
1865     return 0;
1866 }
1867 
1868 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1869                                            struct target_msghdr *target_msgh)
1870 {
1871     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1872     abi_long msg_controllen;
1873     abi_ulong target_cmsg_addr;
1874     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1875     socklen_t space = 0;
1876 
1877     msg_controllen = tswapal(target_msgh->msg_controllen);
1878     if (msg_controllen < sizeof (struct target_cmsghdr))
1879         goto the_end;
1880     target_cmsg_addr = tswapal(target_msgh->msg_control);
1881     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1882     target_cmsg_start = target_cmsg;
1883     if (!target_cmsg)
1884         return -TARGET_EFAULT;
1885 
1886     while (cmsg && target_cmsg) {
1887         void *data = CMSG_DATA(cmsg);
1888         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1889 
1890         int len = tswapal(target_cmsg->cmsg_len)
1891             - sizeof(struct target_cmsghdr);
1892 
1893         space += CMSG_SPACE(len);
1894         if (space > msgh->msg_controllen) {
1895             space -= CMSG_SPACE(len);
1896             /* This is a QEMU bug, since we allocated the payload
1897              * area ourselves (unlike overflow in host-to-target
1898              * conversion, which is just the guest giving us a buffer
1899              * that's too small). It can't happen for the payload types
1900              * we currently support; if it becomes an issue in future
1901              * we would need to improve our allocation strategy to
1902              * something more intelligent than "twice the size of the
1903              * target buffer we're reading from".
1904              */
1905             qemu_log_mask(LOG_UNIMP,
1906                           ("Unsupported ancillary data %d/%d: "
1907                            "unhandled msg size\n"),
1908                           tswap32(target_cmsg->cmsg_level),
1909                           tswap32(target_cmsg->cmsg_type));
1910             break;
1911         }
1912 
1913         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1914             cmsg->cmsg_level = SOL_SOCKET;
1915         } else {
1916             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1917         }
1918         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1919         cmsg->cmsg_len = CMSG_LEN(len);
1920 
1921         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1922             int *fd = (int *)data;
1923             int *target_fd = (int *)target_data;
1924             int i, numfds = len / sizeof(int);
1925 
1926             for (i = 0; i < numfds; i++) {
1927                 __get_user(fd[i], target_fd + i);
1928             }
1929         } else if (cmsg->cmsg_level == SOL_SOCKET
1930                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1931             struct ucred *cred = (struct ucred *)data;
1932             struct target_ucred *target_cred =
1933                 (struct target_ucred *)target_data;
1934 
1935             __get_user(cred->pid, &target_cred->pid);
1936             __get_user(cred->uid, &target_cred->uid);
1937             __get_user(cred->gid, &target_cred->gid);
1938         } else {
1939             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1940                           cmsg->cmsg_level, cmsg->cmsg_type);
1941             memcpy(data, target_data, len);
1942         }
1943 
1944         cmsg = CMSG_NXTHDR(msgh, cmsg);
1945         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1946                                          target_cmsg_start);
1947     }
1948     unlock_user(target_cmsg, target_cmsg_addr, 0);
1949  the_end:
1950     msgh->msg_controllen = space;
1951     return 0;
1952 }
1953 
1954 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1955                                            struct msghdr *msgh)
1956 {
1957     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1958     abi_long msg_controllen;
1959     abi_ulong target_cmsg_addr;
1960     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1961     socklen_t space = 0;
1962 
1963     msg_controllen = tswapal(target_msgh->msg_controllen);
1964     if (msg_controllen < sizeof (struct target_cmsghdr))
1965         goto the_end;
1966     target_cmsg_addr = tswapal(target_msgh->msg_control);
1967     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1968     target_cmsg_start = target_cmsg;
1969     if (!target_cmsg)
1970         return -TARGET_EFAULT;
1971 
1972     while (cmsg && target_cmsg) {
1973         void *data = CMSG_DATA(cmsg);
1974         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1975 
1976         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1977         int tgt_len, tgt_space;
1978 
1979         /* We never copy a half-header but may copy half-data;
1980          * this is Linux's behaviour in put_cmsg(). Note that
1981          * truncation here is a guest problem (which we report
1982          * to the guest via the CTRUNC bit), unlike truncation
1983          * in target_to_host_cmsg, which is a QEMU bug.
1984          */
1985         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1986             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1987             break;
1988         }
1989 
1990         if (cmsg->cmsg_level == SOL_SOCKET) {
1991             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1992         } else {
1993             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1994         }
1995         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1996 
1997         /* Payload types which need a different size of payload on
1998          * the target must adjust tgt_len here.
1999          */
2000         tgt_len = len;
2001         switch (cmsg->cmsg_level) {
2002         case SOL_SOCKET:
2003             switch (cmsg->cmsg_type) {
2004             case SO_TIMESTAMP:
2005                 tgt_len = sizeof(struct target_timeval);
2006                 break;
2007             default:
2008                 break;
2009             }
2010             break;
2011         default:
2012             break;
2013         }
2014 
2015         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
2016             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
2017             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
2018         }
2019 
2020         /* We must now copy-and-convert len bytes of payload
2021          * into tgt_len bytes of destination space. Bear in mind
2022          * that in both source and destination we may be dealing
2023          * with a truncated value!
2024          */
2025         switch (cmsg->cmsg_level) {
2026         case SOL_SOCKET:
2027             switch (cmsg->cmsg_type) {
2028             case SCM_RIGHTS:
2029             {
2030                 int *fd = (int *)data;
2031                 int *target_fd = (int *)target_data;
2032                 int i, numfds = tgt_len / sizeof(int);
2033 
2034                 for (i = 0; i < numfds; i++) {
2035                     __put_user(fd[i], target_fd + i);
2036                 }
2037                 break;
2038             }
2039             case SO_TIMESTAMP:
2040             {
2041                 struct timeval *tv = (struct timeval *)data;
2042                 struct target_timeval *target_tv =
2043                     (struct target_timeval *)target_data;
2044 
2045                 if (len != sizeof(struct timeval) ||
2046                     tgt_len != sizeof(struct target_timeval)) {
2047                     goto unimplemented;
2048                 }
2049 
2050                 /* copy struct timeval to target */
2051                 __put_user(tv->tv_sec, &target_tv->tv_sec);
2052                 __put_user(tv->tv_usec, &target_tv->tv_usec);
2053                 break;
2054             }
2055             case SCM_CREDENTIALS:
2056             {
2057                 struct ucred *cred = (struct ucred *)data;
2058                 struct target_ucred *target_cred =
2059                     (struct target_ucred *)target_data;
2060 
2061                 __put_user(cred->pid, &target_cred->pid);
2062                 __put_user(cred->uid, &target_cred->uid);
2063                 __put_user(cred->gid, &target_cred->gid);
2064                 break;
2065             }
2066             default:
2067                 goto unimplemented;
2068             }
2069             break;
2070 
2071         case SOL_IP:
2072             switch (cmsg->cmsg_type) {
2073             case IP_TTL:
2074             {
2075                 uint32_t *v = (uint32_t *)data;
2076                 uint32_t *t_int = (uint32_t *)target_data;
2077 
2078                 if (len != sizeof(uint32_t) ||
2079                     tgt_len != sizeof(uint32_t)) {
2080                     goto unimplemented;
2081                 }
2082                 __put_user(*v, t_int);
2083                 break;
2084             }
2085             case IP_RECVERR:
2086             {
2087                 struct errhdr_t {
2088                    struct sock_extended_err ee;
2089                    struct sockaddr_in offender;
2090                 };
2091                 struct errhdr_t *errh = (struct errhdr_t *)data;
2092                 struct errhdr_t *target_errh =
2093                     (struct errhdr_t *)target_data;
2094 
2095                 if (len != sizeof(struct errhdr_t) ||
2096                     tgt_len != sizeof(struct errhdr_t)) {
2097                     goto unimplemented;
2098                 }
2099                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2100                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2101                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2102                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2103                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2104                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2105                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2106                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2107                     (void *) &errh->offender, sizeof(errh->offender));
2108                 break;
2109             }
2110             default:
2111                 goto unimplemented;
2112             }
2113             break;
2114 
2115         case SOL_IPV6:
2116             switch (cmsg->cmsg_type) {
2117             case IPV6_HOPLIMIT:
2118             {
2119                 uint32_t *v = (uint32_t *)data;
2120                 uint32_t *t_int = (uint32_t *)target_data;
2121 
2122                 if (len != sizeof(uint32_t) ||
2123                     tgt_len != sizeof(uint32_t)) {
2124                     goto unimplemented;
2125                 }
2126                 __put_user(*v, t_int);
2127                 break;
2128             }
2129             case IPV6_RECVERR:
2130             {
2131                 struct errhdr6_t {
2132                    struct sock_extended_err ee;
2133                    struct sockaddr_in6 offender;
2134                 };
2135                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2136                 struct errhdr6_t *target_errh =
2137                     (struct errhdr6_t *)target_data;
2138 
2139                 if (len != sizeof(struct errhdr6_t) ||
2140                     tgt_len != sizeof(struct errhdr6_t)) {
2141                     goto unimplemented;
2142                 }
2143                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2144                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2145                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2146                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2147                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2148                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2149                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2150                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2151                     (void *) &errh->offender, sizeof(errh->offender));
2152                 break;
2153             }
2154             default:
2155                 goto unimplemented;
2156             }
2157             break;
2158 
2159         default:
2160         unimplemented:
2161             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2162                           cmsg->cmsg_level, cmsg->cmsg_type);
2163             memcpy(target_data, data, MIN(len, tgt_len));
2164             if (tgt_len > len) {
2165                 memset(target_data + len, 0, tgt_len - len);
2166             }
2167         }
2168 
2169         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2170         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2171         if (msg_controllen < tgt_space) {
2172             tgt_space = msg_controllen;
2173         }
2174         msg_controllen -= tgt_space;
2175         space += tgt_space;
2176         cmsg = CMSG_NXTHDR(msgh, cmsg);
2177         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2178                                          target_cmsg_start);
2179     }
2180     unlock_user(target_cmsg, target_cmsg_addr, space);
2181  the_end:
2182     target_msgh->msg_controllen = tswapal(space);
2183     return 0;
2184 }
2185 
2186 /* do_setsockopt() Must return target values and target errnos. */
2187 static abi_long do_setsockopt(int sockfd, int level, int optname,
2188                               abi_ulong optval_addr, socklen_t optlen)
2189 {
2190     abi_long ret;
2191     int val;
2192     struct ip_mreqn *ip_mreq;
2193     struct ip_mreq_source *ip_mreq_source;
2194 
2195     switch(level) {
2196     case SOL_TCP:
2197     case SOL_UDP:
2198         /* TCP and UDP options all take an 'int' value.  */
2199         if (optlen < sizeof(uint32_t))
2200             return -TARGET_EINVAL;
2201 
2202         if (get_user_u32(val, optval_addr))
2203             return -TARGET_EFAULT;
2204         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2205         break;
2206     case SOL_IP:
2207         switch(optname) {
2208         case IP_TOS:
2209         case IP_TTL:
2210         case IP_HDRINCL:
2211         case IP_ROUTER_ALERT:
2212         case IP_RECVOPTS:
2213         case IP_RETOPTS:
2214         case IP_PKTINFO:
2215         case IP_MTU_DISCOVER:
2216         case IP_RECVERR:
2217         case IP_RECVTTL:
2218         case IP_RECVTOS:
2219 #ifdef IP_FREEBIND
2220         case IP_FREEBIND:
2221 #endif
2222         case IP_MULTICAST_TTL:
2223         case IP_MULTICAST_LOOP:
2224             val = 0;
2225             if (optlen >= sizeof(uint32_t)) {
2226                 if (get_user_u32(val, optval_addr))
2227                     return -TARGET_EFAULT;
2228             } else if (optlen >= 1) {
2229                 if (get_user_u8(val, optval_addr))
2230                     return -TARGET_EFAULT;
2231             }
2232             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2233             break;
2234         case IP_ADD_MEMBERSHIP:
2235         case IP_DROP_MEMBERSHIP:
2236             if (optlen < sizeof (struct target_ip_mreq) ||
2237                 optlen > sizeof (struct target_ip_mreqn))
2238                 return -TARGET_EINVAL;
2239 
2240             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2241             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2242             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2243             break;
2244 
2245         case IP_BLOCK_SOURCE:
2246         case IP_UNBLOCK_SOURCE:
2247         case IP_ADD_SOURCE_MEMBERSHIP:
2248         case IP_DROP_SOURCE_MEMBERSHIP:
2249             if (optlen != sizeof (struct target_ip_mreq_source))
2250                 return -TARGET_EINVAL;
2251 
2252             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2253             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2254             unlock_user (ip_mreq_source, optval_addr, 0);
2255             break;
2256 
2257         default:
2258             goto unimplemented;
2259         }
2260         break;
2261     case SOL_IPV6:
2262         switch (optname) {
2263         case IPV6_MTU_DISCOVER:
2264         case IPV6_MTU:
2265         case IPV6_V6ONLY:
2266         case IPV6_RECVPKTINFO:
2267         case IPV6_UNICAST_HOPS:
2268         case IPV6_MULTICAST_HOPS:
2269         case IPV6_MULTICAST_LOOP:
2270         case IPV6_RECVERR:
2271         case IPV6_RECVHOPLIMIT:
2272         case IPV6_2292HOPLIMIT:
2273         case IPV6_CHECKSUM:
2274         case IPV6_ADDRFORM:
2275         case IPV6_2292PKTINFO:
2276         case IPV6_RECVTCLASS:
2277         case IPV6_RECVRTHDR:
2278         case IPV6_2292RTHDR:
2279         case IPV6_RECVHOPOPTS:
2280         case IPV6_2292HOPOPTS:
2281         case IPV6_RECVDSTOPTS:
2282         case IPV6_2292DSTOPTS:
2283         case IPV6_TCLASS:
2284         case IPV6_ADDR_PREFERENCES:
2285 #ifdef IPV6_RECVPATHMTU
2286         case IPV6_RECVPATHMTU:
2287 #endif
2288 #ifdef IPV6_TRANSPARENT
2289         case IPV6_TRANSPARENT:
2290 #endif
2291 #ifdef IPV6_FREEBIND
2292         case IPV6_FREEBIND:
2293 #endif
2294 #ifdef IPV6_RECVORIGDSTADDR
2295         case IPV6_RECVORIGDSTADDR:
2296 #endif
2297             val = 0;
2298             if (optlen < sizeof(uint32_t)) {
2299                 return -TARGET_EINVAL;
2300             }
2301             if (get_user_u32(val, optval_addr)) {
2302                 return -TARGET_EFAULT;
2303             }
2304             ret = get_errno(setsockopt(sockfd, level, optname,
2305                                        &val, sizeof(val)));
2306             break;
2307         case IPV6_PKTINFO:
2308         {
2309             struct in6_pktinfo pki;
2310 
2311             if (optlen < sizeof(pki)) {
2312                 return -TARGET_EINVAL;
2313             }
2314 
2315             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2316                 return -TARGET_EFAULT;
2317             }
2318 
2319             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2320 
2321             ret = get_errno(setsockopt(sockfd, level, optname,
2322                                        &pki, sizeof(pki)));
2323             break;
2324         }
2325         case IPV6_ADD_MEMBERSHIP:
2326         case IPV6_DROP_MEMBERSHIP:
2327         {
2328             struct ipv6_mreq ipv6mreq;
2329 
2330             if (optlen < sizeof(ipv6mreq)) {
2331                 return -TARGET_EINVAL;
2332             }
2333 
2334             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2335                 return -TARGET_EFAULT;
2336             }
2337 
2338             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2339 
2340             ret = get_errno(setsockopt(sockfd, level, optname,
2341                                        &ipv6mreq, sizeof(ipv6mreq)));
2342             break;
2343         }
2344         default:
2345             goto unimplemented;
2346         }
2347         break;
2348     case SOL_ICMPV6:
2349         switch (optname) {
2350         case ICMPV6_FILTER:
2351         {
2352             struct icmp6_filter icmp6f;
2353 
2354             if (optlen > sizeof(icmp6f)) {
2355                 optlen = sizeof(icmp6f);
2356             }
2357 
2358             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2359                 return -TARGET_EFAULT;
2360             }
2361 
2362             for (val = 0; val < 8; val++) {
2363                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2364             }
2365 
2366             ret = get_errno(setsockopt(sockfd, level, optname,
2367                                        &icmp6f, optlen));
2368             break;
2369         }
2370         default:
2371             goto unimplemented;
2372         }
2373         break;
2374     case SOL_RAW:
2375         switch (optname) {
2376         case ICMP_FILTER:
2377         case IPV6_CHECKSUM:
2378             /* those take an u32 value */
2379             if (optlen < sizeof(uint32_t)) {
2380                 return -TARGET_EINVAL;
2381             }
2382 
2383             if (get_user_u32(val, optval_addr)) {
2384                 return -TARGET_EFAULT;
2385             }
2386             ret = get_errno(setsockopt(sockfd, level, optname,
2387                                        &val, sizeof(val)));
2388             break;
2389 
2390         default:
2391             goto unimplemented;
2392         }
2393         break;
2394 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2395     case SOL_ALG:
2396         switch (optname) {
2397         case ALG_SET_KEY:
2398         {
2399             char *alg_key = g_malloc(optlen);
2400 
2401             if (!alg_key) {
2402                 return -TARGET_ENOMEM;
2403             }
2404             if (copy_from_user(alg_key, optval_addr, optlen)) {
2405                 g_free(alg_key);
2406                 return -TARGET_EFAULT;
2407             }
2408             ret = get_errno(setsockopt(sockfd, level, optname,
2409                                        alg_key, optlen));
2410             g_free(alg_key);
2411             break;
2412         }
2413         case ALG_SET_AEAD_AUTHSIZE:
2414         {
2415             ret = get_errno(setsockopt(sockfd, level, optname,
2416                                        NULL, optlen));
2417             break;
2418         }
2419         default:
2420             goto unimplemented;
2421         }
2422         break;
2423 #endif
2424     case TARGET_SOL_SOCKET:
2425         switch (optname) {
2426         case TARGET_SO_RCVTIMEO:
2427         {
2428                 struct timeval tv;
2429 
2430                 optname = SO_RCVTIMEO;
2431 
2432 set_timeout:
2433                 if (optlen != sizeof(struct target_timeval)) {
2434                     return -TARGET_EINVAL;
2435                 }
2436 
2437                 if (copy_from_user_timeval(&tv, optval_addr)) {
2438                     return -TARGET_EFAULT;
2439                 }
2440 
2441                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2442                                 &tv, sizeof(tv)));
2443                 return ret;
2444         }
2445         case TARGET_SO_SNDTIMEO:
2446                 optname = SO_SNDTIMEO;
2447                 goto set_timeout;
2448         case TARGET_SO_ATTACH_FILTER:
2449         {
2450                 struct target_sock_fprog *tfprog;
2451                 struct target_sock_filter *tfilter;
2452                 struct sock_fprog fprog;
2453                 struct sock_filter *filter;
2454                 int i;
2455 
2456                 if (optlen != sizeof(*tfprog)) {
2457                     return -TARGET_EINVAL;
2458                 }
2459                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2460                     return -TARGET_EFAULT;
2461                 }
2462                 if (!lock_user_struct(VERIFY_READ, tfilter,
2463                                       tswapal(tfprog->filter), 0)) {
2464                     unlock_user_struct(tfprog, optval_addr, 1);
2465                     return -TARGET_EFAULT;
2466                 }
2467 
2468                 fprog.len = tswap16(tfprog->len);
2469                 filter = g_try_new(struct sock_filter, fprog.len);
2470                 if (filter == NULL) {
2471                     unlock_user_struct(tfilter, tfprog->filter, 1);
2472                     unlock_user_struct(tfprog, optval_addr, 1);
2473                     return -TARGET_ENOMEM;
2474                 }
2475                 for (i = 0; i < fprog.len; i++) {
2476                     filter[i].code = tswap16(tfilter[i].code);
2477                     filter[i].jt = tfilter[i].jt;
2478                     filter[i].jf = tfilter[i].jf;
2479                     filter[i].k = tswap32(tfilter[i].k);
2480                 }
2481                 fprog.filter = filter;
2482 
2483                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2484                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2485                 g_free(filter);
2486 
2487                 unlock_user_struct(tfilter, tfprog->filter, 1);
2488                 unlock_user_struct(tfprog, optval_addr, 1);
2489                 return ret;
2490         }
2491 	case TARGET_SO_BINDTODEVICE:
2492 	{
2493 		char *dev_ifname, *addr_ifname;
2494 
2495 		if (optlen > IFNAMSIZ - 1) {
2496 		    optlen = IFNAMSIZ - 1;
2497 		}
2498 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2499 		if (!dev_ifname) {
2500 		    return -TARGET_EFAULT;
2501 		}
2502 		optname = SO_BINDTODEVICE;
2503 		addr_ifname = alloca(IFNAMSIZ);
2504 		memcpy(addr_ifname, dev_ifname, optlen);
2505 		addr_ifname[optlen] = 0;
2506 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2507                                            addr_ifname, optlen));
2508 		unlock_user (dev_ifname, optval_addr, 0);
2509 		return ret;
2510 	}
2511         case TARGET_SO_LINGER:
2512         {
2513                 struct linger lg;
2514                 struct target_linger *tlg;
2515 
2516                 if (optlen != sizeof(struct target_linger)) {
2517                     return -TARGET_EINVAL;
2518                 }
2519                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2520                     return -TARGET_EFAULT;
2521                 }
2522                 __get_user(lg.l_onoff, &tlg->l_onoff);
2523                 __get_user(lg.l_linger, &tlg->l_linger);
2524                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2525                                 &lg, sizeof(lg)));
2526                 unlock_user_struct(tlg, optval_addr, 0);
2527                 return ret;
2528         }
2529             /* Options with 'int' argument.  */
2530         case TARGET_SO_DEBUG:
2531 		optname = SO_DEBUG;
2532 		break;
2533         case TARGET_SO_REUSEADDR:
2534 		optname = SO_REUSEADDR;
2535 		break;
2536 #ifdef SO_REUSEPORT
2537         case TARGET_SO_REUSEPORT:
2538                 optname = SO_REUSEPORT;
2539                 break;
2540 #endif
2541         case TARGET_SO_TYPE:
2542 		optname = SO_TYPE;
2543 		break;
2544         case TARGET_SO_ERROR:
2545 		optname = SO_ERROR;
2546 		break;
2547         case TARGET_SO_DONTROUTE:
2548 		optname = SO_DONTROUTE;
2549 		break;
2550         case TARGET_SO_BROADCAST:
2551 		optname = SO_BROADCAST;
2552 		break;
2553         case TARGET_SO_SNDBUF:
2554 		optname = SO_SNDBUF;
2555 		break;
2556         case TARGET_SO_SNDBUFFORCE:
2557                 optname = SO_SNDBUFFORCE;
2558                 break;
2559         case TARGET_SO_RCVBUF:
2560 		optname = SO_RCVBUF;
2561 		break;
2562         case TARGET_SO_RCVBUFFORCE:
2563                 optname = SO_RCVBUFFORCE;
2564                 break;
2565         case TARGET_SO_KEEPALIVE:
2566 		optname = SO_KEEPALIVE;
2567 		break;
2568         case TARGET_SO_OOBINLINE:
2569 		optname = SO_OOBINLINE;
2570 		break;
2571         case TARGET_SO_NO_CHECK:
2572 		optname = SO_NO_CHECK;
2573 		break;
2574         case TARGET_SO_PRIORITY:
2575 		optname = SO_PRIORITY;
2576 		break;
2577 #ifdef SO_BSDCOMPAT
2578         case TARGET_SO_BSDCOMPAT:
2579 		optname = SO_BSDCOMPAT;
2580 		break;
2581 #endif
2582         case TARGET_SO_PASSCRED:
2583 		optname = SO_PASSCRED;
2584 		break;
2585         case TARGET_SO_PASSSEC:
2586                 optname = SO_PASSSEC;
2587                 break;
2588         case TARGET_SO_TIMESTAMP:
2589 		optname = SO_TIMESTAMP;
2590 		break;
2591         case TARGET_SO_RCVLOWAT:
2592 		optname = SO_RCVLOWAT;
2593 		break;
2594         default:
2595             goto unimplemented;
2596         }
2597 	if (optlen < sizeof(uint32_t))
2598             return -TARGET_EINVAL;
2599 
2600 	if (get_user_u32(val, optval_addr))
2601             return -TARGET_EFAULT;
2602 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2603         break;
2604 #ifdef SOL_NETLINK
2605     case SOL_NETLINK:
2606         switch (optname) {
2607         case NETLINK_PKTINFO:
2608         case NETLINK_ADD_MEMBERSHIP:
2609         case NETLINK_DROP_MEMBERSHIP:
2610         case NETLINK_BROADCAST_ERROR:
2611         case NETLINK_NO_ENOBUFS:
2612 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2613         case NETLINK_LISTEN_ALL_NSID:
2614         case NETLINK_CAP_ACK:
2615 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2616 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2617         case NETLINK_EXT_ACK:
2618 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2619 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2620         case NETLINK_GET_STRICT_CHK:
2621 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2622             break;
2623         default:
2624             goto unimplemented;
2625         }
2626         val = 0;
2627         if (optlen < sizeof(uint32_t)) {
2628             return -TARGET_EINVAL;
2629         }
2630         if (get_user_u32(val, optval_addr)) {
2631             return -TARGET_EFAULT;
2632         }
2633         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2634                                    sizeof(val)));
2635         break;
2636 #endif /* SOL_NETLINK */
2637     default:
2638     unimplemented:
2639         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2640                       level, optname);
2641         ret = -TARGET_ENOPROTOOPT;
2642     }
2643     return ret;
2644 }
2645 
2646 /* do_getsockopt() Must return target values and target errnos. */
2647 static abi_long do_getsockopt(int sockfd, int level, int optname,
2648                               abi_ulong optval_addr, abi_ulong optlen)
2649 {
2650     abi_long ret;
2651     int len, val;
2652     socklen_t lv;
2653 
2654     switch(level) {
2655     case TARGET_SOL_SOCKET:
2656         level = SOL_SOCKET;
2657         switch (optname) {
2658         /* These don't just return a single integer */
2659         case TARGET_SO_PEERNAME:
2660             goto unimplemented;
2661         case TARGET_SO_RCVTIMEO: {
2662             struct timeval tv;
2663             socklen_t tvlen;
2664 
2665             optname = SO_RCVTIMEO;
2666 
2667 get_timeout:
2668             if (get_user_u32(len, optlen)) {
2669                 return -TARGET_EFAULT;
2670             }
2671             if (len < 0) {
2672                 return -TARGET_EINVAL;
2673             }
2674 
2675             tvlen = sizeof(tv);
2676             ret = get_errno(getsockopt(sockfd, level, optname,
2677                                        &tv, &tvlen));
2678             if (ret < 0) {
2679                 return ret;
2680             }
2681             if (len > sizeof(struct target_timeval)) {
2682                 len = sizeof(struct target_timeval);
2683             }
2684             if (copy_to_user_timeval(optval_addr, &tv)) {
2685                 return -TARGET_EFAULT;
2686             }
2687             if (put_user_u32(len, optlen)) {
2688                 return -TARGET_EFAULT;
2689             }
2690             break;
2691         }
2692         case TARGET_SO_SNDTIMEO:
2693             optname = SO_SNDTIMEO;
2694             goto get_timeout;
2695         case TARGET_SO_PEERCRED: {
2696             struct ucred cr;
2697             socklen_t crlen;
2698             struct target_ucred *tcr;
2699 
2700             if (get_user_u32(len, optlen)) {
2701                 return -TARGET_EFAULT;
2702             }
2703             if (len < 0) {
2704                 return -TARGET_EINVAL;
2705             }
2706 
2707             crlen = sizeof(cr);
2708             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2709                                        &cr, &crlen));
2710             if (ret < 0) {
2711                 return ret;
2712             }
2713             if (len > crlen) {
2714                 len = crlen;
2715             }
2716             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2717                 return -TARGET_EFAULT;
2718             }
2719             __put_user(cr.pid, &tcr->pid);
2720             __put_user(cr.uid, &tcr->uid);
2721             __put_user(cr.gid, &tcr->gid);
2722             unlock_user_struct(tcr, optval_addr, 1);
2723             if (put_user_u32(len, optlen)) {
2724                 return -TARGET_EFAULT;
2725             }
2726             break;
2727         }
2728         case TARGET_SO_PEERSEC: {
2729             char *name;
2730 
2731             if (get_user_u32(len, optlen)) {
2732                 return -TARGET_EFAULT;
2733             }
2734             if (len < 0) {
2735                 return -TARGET_EINVAL;
2736             }
2737             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2738             if (!name) {
2739                 return -TARGET_EFAULT;
2740             }
2741             lv = len;
2742             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2743                                        name, &lv));
2744             if (put_user_u32(lv, optlen)) {
2745                 ret = -TARGET_EFAULT;
2746             }
2747             unlock_user(name, optval_addr, lv);
2748             break;
2749         }
2750         case TARGET_SO_LINGER:
2751         {
2752             struct linger lg;
2753             socklen_t lglen;
2754             struct target_linger *tlg;
2755 
2756             if (get_user_u32(len, optlen)) {
2757                 return -TARGET_EFAULT;
2758             }
2759             if (len < 0) {
2760                 return -TARGET_EINVAL;
2761             }
2762 
2763             lglen = sizeof(lg);
2764             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2765                                        &lg, &lglen));
2766             if (ret < 0) {
2767                 return ret;
2768             }
2769             if (len > lglen) {
2770                 len = lglen;
2771             }
2772             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2773                 return -TARGET_EFAULT;
2774             }
2775             __put_user(lg.l_onoff, &tlg->l_onoff);
2776             __put_user(lg.l_linger, &tlg->l_linger);
2777             unlock_user_struct(tlg, optval_addr, 1);
2778             if (put_user_u32(len, optlen)) {
2779                 return -TARGET_EFAULT;
2780             }
2781             break;
2782         }
2783         /* Options with 'int' argument.  */
2784         case TARGET_SO_DEBUG:
2785             optname = SO_DEBUG;
2786             goto int_case;
2787         case TARGET_SO_REUSEADDR:
2788             optname = SO_REUSEADDR;
2789             goto int_case;
2790 #ifdef SO_REUSEPORT
2791         case TARGET_SO_REUSEPORT:
2792             optname = SO_REUSEPORT;
2793             goto int_case;
2794 #endif
2795         case TARGET_SO_TYPE:
2796             optname = SO_TYPE;
2797             goto int_case;
2798         case TARGET_SO_ERROR:
2799             optname = SO_ERROR;
2800             goto int_case;
2801         case TARGET_SO_DONTROUTE:
2802             optname = SO_DONTROUTE;
2803             goto int_case;
2804         case TARGET_SO_BROADCAST:
2805             optname = SO_BROADCAST;
2806             goto int_case;
2807         case TARGET_SO_SNDBUF:
2808             optname = SO_SNDBUF;
2809             goto int_case;
2810         case TARGET_SO_RCVBUF:
2811             optname = SO_RCVBUF;
2812             goto int_case;
2813         case TARGET_SO_KEEPALIVE:
2814             optname = SO_KEEPALIVE;
2815             goto int_case;
2816         case TARGET_SO_OOBINLINE:
2817             optname = SO_OOBINLINE;
2818             goto int_case;
2819         case TARGET_SO_NO_CHECK:
2820             optname = SO_NO_CHECK;
2821             goto int_case;
2822         case TARGET_SO_PRIORITY:
2823             optname = SO_PRIORITY;
2824             goto int_case;
2825 #ifdef SO_BSDCOMPAT
2826         case TARGET_SO_BSDCOMPAT:
2827             optname = SO_BSDCOMPAT;
2828             goto int_case;
2829 #endif
2830         case TARGET_SO_PASSCRED:
2831             optname = SO_PASSCRED;
2832             goto int_case;
2833         case TARGET_SO_TIMESTAMP:
2834             optname = SO_TIMESTAMP;
2835             goto int_case;
2836         case TARGET_SO_RCVLOWAT:
2837             optname = SO_RCVLOWAT;
2838             goto int_case;
2839         case TARGET_SO_ACCEPTCONN:
2840             optname = SO_ACCEPTCONN;
2841             goto int_case;
2842         case TARGET_SO_PROTOCOL:
2843             optname = SO_PROTOCOL;
2844             goto int_case;
2845         case TARGET_SO_DOMAIN:
2846             optname = SO_DOMAIN;
2847             goto int_case;
2848         default:
2849             goto int_case;
2850         }
2851         break;
2852     case SOL_TCP:
2853     case SOL_UDP:
2854         /* TCP and UDP options all take an 'int' value.  */
2855     int_case:
2856         if (get_user_u32(len, optlen))
2857             return -TARGET_EFAULT;
2858         if (len < 0)
2859             return -TARGET_EINVAL;
2860         lv = sizeof(lv);
2861         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2862         if (ret < 0)
2863             return ret;
2864         if (optname == SO_TYPE) {
2865             val = host_to_target_sock_type(val);
2866         }
2867         if (len > lv)
2868             len = lv;
2869         if (len == 4) {
2870             if (put_user_u32(val, optval_addr))
2871                 return -TARGET_EFAULT;
2872         } else {
2873             if (put_user_u8(val, optval_addr))
2874                 return -TARGET_EFAULT;
2875         }
2876         if (put_user_u32(len, optlen))
2877             return -TARGET_EFAULT;
2878         break;
2879     case SOL_IP:
2880         switch(optname) {
2881         case IP_TOS:
2882         case IP_TTL:
2883         case IP_HDRINCL:
2884         case IP_ROUTER_ALERT:
2885         case IP_RECVOPTS:
2886         case IP_RETOPTS:
2887         case IP_PKTINFO:
2888         case IP_MTU_DISCOVER:
2889         case IP_RECVERR:
2890         case IP_RECVTOS:
2891 #ifdef IP_FREEBIND
2892         case IP_FREEBIND:
2893 #endif
2894         case IP_MULTICAST_TTL:
2895         case IP_MULTICAST_LOOP:
2896             if (get_user_u32(len, optlen))
2897                 return -TARGET_EFAULT;
2898             if (len < 0)
2899                 return -TARGET_EINVAL;
2900             lv = sizeof(lv);
2901             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2902             if (ret < 0)
2903                 return ret;
2904             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2905                 len = 1;
2906                 if (put_user_u32(len, optlen)
2907                     || put_user_u8(val, optval_addr))
2908                     return -TARGET_EFAULT;
2909             } else {
2910                 if (len > sizeof(int))
2911                     len = sizeof(int);
2912                 if (put_user_u32(len, optlen)
2913                     || put_user_u32(val, optval_addr))
2914                     return -TARGET_EFAULT;
2915             }
2916             break;
2917         default:
2918             ret = -TARGET_ENOPROTOOPT;
2919             break;
2920         }
2921         break;
2922     case SOL_IPV6:
2923         switch (optname) {
2924         case IPV6_MTU_DISCOVER:
2925         case IPV6_MTU:
2926         case IPV6_V6ONLY:
2927         case IPV6_RECVPKTINFO:
2928         case IPV6_UNICAST_HOPS:
2929         case IPV6_MULTICAST_HOPS:
2930         case IPV6_MULTICAST_LOOP:
2931         case IPV6_RECVERR:
2932         case IPV6_RECVHOPLIMIT:
2933         case IPV6_2292HOPLIMIT:
2934         case IPV6_CHECKSUM:
2935         case IPV6_ADDRFORM:
2936         case IPV6_2292PKTINFO:
2937         case IPV6_RECVTCLASS:
2938         case IPV6_RECVRTHDR:
2939         case IPV6_2292RTHDR:
2940         case IPV6_RECVHOPOPTS:
2941         case IPV6_2292HOPOPTS:
2942         case IPV6_RECVDSTOPTS:
2943         case IPV6_2292DSTOPTS:
2944         case IPV6_TCLASS:
2945         case IPV6_ADDR_PREFERENCES:
2946 #ifdef IPV6_RECVPATHMTU
2947         case IPV6_RECVPATHMTU:
2948 #endif
2949 #ifdef IPV6_TRANSPARENT
2950         case IPV6_TRANSPARENT:
2951 #endif
2952 #ifdef IPV6_FREEBIND
2953         case IPV6_FREEBIND:
2954 #endif
2955 #ifdef IPV6_RECVORIGDSTADDR
2956         case IPV6_RECVORIGDSTADDR:
2957 #endif
2958             if (get_user_u32(len, optlen))
2959                 return -TARGET_EFAULT;
2960             if (len < 0)
2961                 return -TARGET_EINVAL;
2962             lv = sizeof(lv);
2963             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2964             if (ret < 0)
2965                 return ret;
2966             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2967                 len = 1;
2968                 if (put_user_u32(len, optlen)
2969                     || put_user_u8(val, optval_addr))
2970                     return -TARGET_EFAULT;
2971             } else {
2972                 if (len > sizeof(int))
2973                     len = sizeof(int);
2974                 if (put_user_u32(len, optlen)
2975                     || put_user_u32(val, optval_addr))
2976                     return -TARGET_EFAULT;
2977             }
2978             break;
2979         default:
2980             ret = -TARGET_ENOPROTOOPT;
2981             break;
2982         }
2983         break;
2984 #ifdef SOL_NETLINK
2985     case SOL_NETLINK:
2986         switch (optname) {
2987         case NETLINK_PKTINFO:
2988         case NETLINK_BROADCAST_ERROR:
2989         case NETLINK_NO_ENOBUFS:
2990 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2991         case NETLINK_LISTEN_ALL_NSID:
2992         case NETLINK_CAP_ACK:
2993 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2994 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2995         case NETLINK_EXT_ACK:
2996 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2997 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2998         case NETLINK_GET_STRICT_CHK:
2999 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
3000             if (get_user_u32(len, optlen)) {
3001                 return -TARGET_EFAULT;
3002             }
3003             if (len != sizeof(val)) {
3004                 return -TARGET_EINVAL;
3005             }
3006             lv = len;
3007             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3008             if (ret < 0) {
3009                 return ret;
3010             }
3011             if (put_user_u32(lv, optlen)
3012                 || put_user_u32(val, optval_addr)) {
3013                 return -TARGET_EFAULT;
3014             }
3015             break;
3016 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
3017         case NETLINK_LIST_MEMBERSHIPS:
3018         {
3019             uint32_t *results;
3020             int i;
3021             if (get_user_u32(len, optlen)) {
3022                 return -TARGET_EFAULT;
3023             }
3024             if (len < 0) {
3025                 return -TARGET_EINVAL;
3026             }
3027             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
3028             if (!results && len > 0) {
3029                 return -TARGET_EFAULT;
3030             }
3031             lv = len;
3032             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
3033             if (ret < 0) {
3034                 unlock_user(results, optval_addr, 0);
3035                 return ret;
3036             }
3037             /* swap host endianess to target endianess. */
3038             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
3039                 results[i] = tswap32(results[i]);
3040             }
3041             if (put_user_u32(lv, optlen)) {
3042                 return -TARGET_EFAULT;
3043             }
3044             unlock_user(results, optval_addr, 0);
3045             break;
3046         }
3047 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
3048         default:
3049             goto unimplemented;
3050         }
3051         break;
3052 #endif /* SOL_NETLINK */
3053     default:
3054     unimplemented:
3055         qemu_log_mask(LOG_UNIMP,
3056                       "getsockopt level=%d optname=%d not yet supported\n",
3057                       level, optname);
3058         ret = -TARGET_EOPNOTSUPP;
3059         break;
3060     }
3061     return ret;
3062 }
3063 
3064 /* Convert target low/high pair representing file offset into the host
3065  * low/high pair. This function doesn't handle offsets bigger than 64 bits
3066  * as the kernel doesn't handle them either.
3067  */
3068 static void target_to_host_low_high(abi_ulong tlow,
3069                                     abi_ulong thigh,
3070                                     unsigned long *hlow,
3071                                     unsigned long *hhigh)
3072 {
3073     uint64_t off = tlow |
3074         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
3075         TARGET_LONG_BITS / 2;
3076 
3077     *hlow = off;
3078     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
3079 }
3080 
3081 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3082                                 abi_ulong count, int copy)
3083 {
3084     struct target_iovec *target_vec;
3085     struct iovec *vec;
3086     abi_ulong total_len, max_len;
3087     int i;
3088     int err = 0;
3089     bool bad_address = false;
3090 
3091     if (count == 0) {
3092         errno = 0;
3093         return NULL;
3094     }
3095     if (count > IOV_MAX) {
3096         errno = EINVAL;
3097         return NULL;
3098     }
3099 
3100     vec = g_try_new0(struct iovec, count);
3101     if (vec == NULL) {
3102         errno = ENOMEM;
3103         return NULL;
3104     }
3105 
3106     target_vec = lock_user(VERIFY_READ, target_addr,
3107                            count * sizeof(struct target_iovec), 1);
3108     if (target_vec == NULL) {
3109         err = EFAULT;
3110         goto fail2;
3111     }
3112 
3113     /* ??? If host page size > target page size, this will result in a
3114        value larger than what we can actually support.  */
3115     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3116     total_len = 0;
3117 
3118     for (i = 0; i < count; i++) {
3119         abi_ulong base = tswapal(target_vec[i].iov_base);
3120         abi_long len = tswapal(target_vec[i].iov_len);
3121 
3122         if (len < 0) {
3123             err = EINVAL;
3124             goto fail;
3125         } else if (len == 0) {
3126             /* Zero length pointer is ignored.  */
3127             vec[i].iov_base = 0;
3128         } else {
3129             vec[i].iov_base = lock_user(type, base, len, copy);
3130             /* If the first buffer pointer is bad, this is a fault.  But
3131              * subsequent bad buffers will result in a partial write; this
3132              * is realized by filling the vector with null pointers and
3133              * zero lengths. */
3134             if (!vec[i].iov_base) {
3135                 if (i == 0) {
3136                     err = EFAULT;
3137                     goto fail;
3138                 } else {
3139                     bad_address = true;
3140                 }
3141             }
3142             if (bad_address) {
3143                 len = 0;
3144             }
3145             if (len > max_len - total_len) {
3146                 len = max_len - total_len;
3147             }
3148         }
3149         vec[i].iov_len = len;
3150         total_len += len;
3151     }
3152 
3153     unlock_user(target_vec, target_addr, 0);
3154     return vec;
3155 
3156  fail:
3157     while (--i >= 0) {
3158         if (tswapal(target_vec[i].iov_len) > 0) {
3159             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3160         }
3161     }
3162     unlock_user(target_vec, target_addr, 0);
3163  fail2:
3164     g_free(vec);
3165     errno = err;
3166     return NULL;
3167 }
3168 
3169 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3170                          abi_ulong count, int copy)
3171 {
3172     struct target_iovec *target_vec;
3173     int i;
3174 
3175     target_vec = lock_user(VERIFY_READ, target_addr,
3176                            count * sizeof(struct target_iovec), 1);
3177     if (target_vec) {
3178         for (i = 0; i < count; i++) {
3179             abi_ulong base = tswapal(target_vec[i].iov_base);
3180             abi_long len = tswapal(target_vec[i].iov_len);
3181             if (len < 0) {
3182                 break;
3183             }
3184             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3185         }
3186         unlock_user(target_vec, target_addr, 0);
3187     }
3188 
3189     g_free(vec);
3190 }
3191 
3192 static inline int target_to_host_sock_type(int *type)
3193 {
3194     int host_type = 0;
3195     int target_type = *type;
3196 
3197     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3198     case TARGET_SOCK_DGRAM:
3199         host_type = SOCK_DGRAM;
3200         break;
3201     case TARGET_SOCK_STREAM:
3202         host_type = SOCK_STREAM;
3203         break;
3204     default:
3205         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3206         break;
3207     }
3208     if (target_type & TARGET_SOCK_CLOEXEC) {
3209 #if defined(SOCK_CLOEXEC)
3210         host_type |= SOCK_CLOEXEC;
3211 #else
3212         return -TARGET_EINVAL;
3213 #endif
3214     }
3215     if (target_type & TARGET_SOCK_NONBLOCK) {
3216 #if defined(SOCK_NONBLOCK)
3217         host_type |= SOCK_NONBLOCK;
3218 #elif !defined(O_NONBLOCK)
3219         return -TARGET_EINVAL;
3220 #endif
3221     }
3222     *type = host_type;
3223     return 0;
3224 }
3225 
3226 /* Try to emulate socket type flags after socket creation.  */
3227 static int sock_flags_fixup(int fd, int target_type)
3228 {
3229 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3230     if (target_type & TARGET_SOCK_NONBLOCK) {
3231         int flags = fcntl(fd, F_GETFL);
3232         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3233             close(fd);
3234             return -TARGET_EINVAL;
3235         }
3236     }
3237 #endif
3238     return fd;
3239 }
3240 
3241 /* do_socket() Must return target values and target errnos. */
3242 static abi_long do_socket(int domain, int type, int protocol)
3243 {
3244     int target_type = type;
3245     int ret;
3246 
3247     ret = target_to_host_sock_type(&type);
3248     if (ret) {
3249         return ret;
3250     }
3251 
3252     if (domain == PF_NETLINK && !(
3253 #ifdef CONFIG_RTNETLINK
3254          protocol == NETLINK_ROUTE ||
3255 #endif
3256          protocol == NETLINK_KOBJECT_UEVENT ||
3257          protocol == NETLINK_AUDIT)) {
3258         return -TARGET_EPROTONOSUPPORT;
3259     }
3260 
3261     if (domain == AF_PACKET ||
3262         (domain == AF_INET && type == SOCK_PACKET)) {
3263         protocol = tswap16(protocol);
3264     }
3265 
3266     ret = get_errno(socket(domain, type, protocol));
3267     if (ret >= 0) {
3268         ret = sock_flags_fixup(ret, target_type);
3269         if (type == SOCK_PACKET) {
3270             /* Manage an obsolete case :
3271              * if socket type is SOCK_PACKET, bind by name
3272              */
3273             fd_trans_register(ret, &target_packet_trans);
3274         } else if (domain == PF_NETLINK) {
3275             switch (protocol) {
3276 #ifdef CONFIG_RTNETLINK
3277             case NETLINK_ROUTE:
3278                 fd_trans_register(ret, &target_netlink_route_trans);
3279                 break;
3280 #endif
3281             case NETLINK_KOBJECT_UEVENT:
3282                 /* nothing to do: messages are strings */
3283                 break;
3284             case NETLINK_AUDIT:
3285                 fd_trans_register(ret, &target_netlink_audit_trans);
3286                 break;
3287             default:
3288                 g_assert_not_reached();
3289             }
3290         }
3291     }
3292     return ret;
3293 }
3294 
3295 /* do_bind() Must return target values and target errnos. */
3296 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3297                         socklen_t addrlen)
3298 {
3299     void *addr;
3300     abi_long ret;
3301 
3302     if ((int)addrlen < 0) {
3303         return -TARGET_EINVAL;
3304     }
3305 
3306     addr = alloca(addrlen+1);
3307 
3308     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3309     if (ret)
3310         return ret;
3311 
3312     return get_errno(bind(sockfd, addr, addrlen));
3313 }
3314 
3315 /* do_connect() Must return target values and target errnos. */
3316 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3317                            socklen_t addrlen)
3318 {
3319     void *addr;
3320     abi_long ret;
3321 
3322     if ((int)addrlen < 0) {
3323         return -TARGET_EINVAL;
3324     }
3325 
3326     addr = alloca(addrlen+1);
3327 
3328     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3329     if (ret)
3330         return ret;
3331 
3332     return get_errno(safe_connect(sockfd, addr, addrlen));
3333 }
3334 
3335 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3336 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3337                                       int flags, int send)
3338 {
3339     abi_long ret, len;
3340     struct msghdr msg;
3341     abi_ulong count;
3342     struct iovec *vec;
3343     abi_ulong target_vec;
3344 
3345     if (msgp->msg_name) {
3346         msg.msg_namelen = tswap32(msgp->msg_namelen);
3347         msg.msg_name = alloca(msg.msg_namelen+1);
3348         ret = target_to_host_sockaddr(fd, msg.msg_name,
3349                                       tswapal(msgp->msg_name),
3350                                       msg.msg_namelen);
3351         if (ret == -TARGET_EFAULT) {
3352             /* For connected sockets msg_name and msg_namelen must
3353              * be ignored, so returning EFAULT immediately is wrong.
3354              * Instead, pass a bad msg_name to the host kernel, and
3355              * let it decide whether to return EFAULT or not.
3356              */
3357             msg.msg_name = (void *)-1;
3358         } else if (ret) {
3359             goto out2;
3360         }
3361     } else {
3362         msg.msg_name = NULL;
3363         msg.msg_namelen = 0;
3364     }
3365     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3366     msg.msg_control = alloca(msg.msg_controllen);
3367     memset(msg.msg_control, 0, msg.msg_controllen);
3368 
3369     msg.msg_flags = tswap32(msgp->msg_flags);
3370 
3371     count = tswapal(msgp->msg_iovlen);
3372     target_vec = tswapal(msgp->msg_iov);
3373 
3374     if (count > IOV_MAX) {
3375         /* sendrcvmsg returns a different errno for this condition than
3376          * readv/writev, so we must catch it here before lock_iovec() does.
3377          */
3378         ret = -TARGET_EMSGSIZE;
3379         goto out2;
3380     }
3381 
3382     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3383                      target_vec, count, send);
3384     if (vec == NULL) {
3385         ret = -host_to_target_errno(errno);
3386         goto out2;
3387     }
3388     msg.msg_iovlen = count;
3389     msg.msg_iov = vec;
3390 
3391     if (send) {
3392         if (fd_trans_target_to_host_data(fd)) {
3393             void *host_msg;
3394 
3395             host_msg = g_malloc(msg.msg_iov->iov_len);
3396             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3397             ret = fd_trans_target_to_host_data(fd)(host_msg,
3398                                                    msg.msg_iov->iov_len);
3399             if (ret >= 0) {
3400                 msg.msg_iov->iov_base = host_msg;
3401                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3402             }
3403             g_free(host_msg);
3404         } else {
3405             ret = target_to_host_cmsg(&msg, msgp);
3406             if (ret == 0) {
3407                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3408             }
3409         }
3410     } else {
3411         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3412         if (!is_error(ret)) {
3413             len = ret;
3414             if (fd_trans_host_to_target_data(fd)) {
3415                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3416                                                MIN(msg.msg_iov->iov_len, len));
3417             } else {
3418                 ret = host_to_target_cmsg(msgp, &msg);
3419             }
3420             if (!is_error(ret)) {
3421                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3422                 msgp->msg_flags = tswap32(msg.msg_flags);
3423                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3424                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3425                                     msg.msg_name, msg.msg_namelen);
3426                     if (ret) {
3427                         goto out;
3428                     }
3429                 }
3430 
3431                 ret = len;
3432             }
3433         }
3434     }
3435 
3436 out:
3437     unlock_iovec(vec, target_vec, count, !send);
3438 out2:
3439     return ret;
3440 }
3441 
3442 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3443                                int flags, int send)
3444 {
3445     abi_long ret;
3446     struct target_msghdr *msgp;
3447 
3448     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3449                           msgp,
3450                           target_msg,
3451                           send ? 1 : 0)) {
3452         return -TARGET_EFAULT;
3453     }
3454     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3455     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3456     return ret;
3457 }
3458 
3459 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3460  * so it might not have this *mmsg-specific flag either.
3461  */
3462 #ifndef MSG_WAITFORONE
3463 #define MSG_WAITFORONE 0x10000
3464 #endif
3465 
3466 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3467                                 unsigned int vlen, unsigned int flags,
3468                                 int send)
3469 {
3470     struct target_mmsghdr *mmsgp;
3471     abi_long ret = 0;
3472     int i;
3473 
3474     if (vlen > UIO_MAXIOV) {
3475         vlen = UIO_MAXIOV;
3476     }
3477 
3478     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3479     if (!mmsgp) {
3480         return -TARGET_EFAULT;
3481     }
3482 
3483     for (i = 0; i < vlen; i++) {
3484         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3485         if (is_error(ret)) {
3486             break;
3487         }
3488         mmsgp[i].msg_len = tswap32(ret);
3489         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3490         if (flags & MSG_WAITFORONE) {
3491             flags |= MSG_DONTWAIT;
3492         }
3493     }
3494 
3495     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3496 
3497     /* Return number of datagrams sent if we sent any at all;
3498      * otherwise return the error.
3499      */
3500     if (i) {
3501         return i;
3502     }
3503     return ret;
3504 }
3505 
3506 /* do_accept4() Must return target values and target errnos. */
3507 static abi_long do_accept4(int fd, abi_ulong target_addr,
3508                            abi_ulong target_addrlen_addr, int flags)
3509 {
3510     socklen_t addrlen, ret_addrlen;
3511     void *addr;
3512     abi_long ret;
3513     int host_flags;
3514 
3515     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3516 
3517     if (target_addr == 0) {
3518         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3519     }
3520 
3521     /* linux returns EFAULT if addrlen pointer is invalid */
3522     if (get_user_u32(addrlen, target_addrlen_addr))
3523         return -TARGET_EFAULT;
3524 
3525     if ((int)addrlen < 0) {
3526         return -TARGET_EINVAL;
3527     }
3528 
3529     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3530         return -TARGET_EFAULT;
3531     }
3532 
3533     addr = alloca(addrlen);
3534 
3535     ret_addrlen = addrlen;
3536     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3537     if (!is_error(ret)) {
3538         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3539         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3540             ret = -TARGET_EFAULT;
3541         }
3542     }
3543     return ret;
3544 }
3545 
3546 /* do_getpeername() Must return target values and target errnos. */
3547 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3548                                abi_ulong target_addrlen_addr)
3549 {
3550     socklen_t addrlen, ret_addrlen;
3551     void *addr;
3552     abi_long ret;
3553 
3554     if (get_user_u32(addrlen, target_addrlen_addr))
3555         return -TARGET_EFAULT;
3556 
3557     if ((int)addrlen < 0) {
3558         return -TARGET_EINVAL;
3559     }
3560 
3561     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3562         return -TARGET_EFAULT;
3563     }
3564 
3565     addr = alloca(addrlen);
3566 
3567     ret_addrlen = addrlen;
3568     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3569     if (!is_error(ret)) {
3570         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3571         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3572             ret = -TARGET_EFAULT;
3573         }
3574     }
3575     return ret;
3576 }
3577 
3578 /* do_getsockname() Must return target values and target errnos. */
3579 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3580                                abi_ulong target_addrlen_addr)
3581 {
3582     socklen_t addrlen, ret_addrlen;
3583     void *addr;
3584     abi_long ret;
3585 
3586     if (get_user_u32(addrlen, target_addrlen_addr))
3587         return -TARGET_EFAULT;
3588 
3589     if ((int)addrlen < 0) {
3590         return -TARGET_EINVAL;
3591     }
3592 
3593     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3594         return -TARGET_EFAULT;
3595     }
3596 
3597     addr = alloca(addrlen);
3598 
3599     ret_addrlen = addrlen;
3600     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3601     if (!is_error(ret)) {
3602         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3603         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3604             ret = -TARGET_EFAULT;
3605         }
3606     }
3607     return ret;
3608 }
3609 
3610 /* do_socketpair() Must return target values and target errnos. */
3611 static abi_long do_socketpair(int domain, int type, int protocol,
3612                               abi_ulong target_tab_addr)
3613 {
3614     int tab[2];
3615     abi_long ret;
3616 
3617     target_to_host_sock_type(&type);
3618 
3619     ret = get_errno(socketpair(domain, type, protocol, tab));
3620     if (!is_error(ret)) {
3621         if (put_user_s32(tab[0], target_tab_addr)
3622             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3623             ret = -TARGET_EFAULT;
3624     }
3625     return ret;
3626 }
3627 
3628 /* do_sendto() Must return target values and target errnos. */
3629 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3630                           abi_ulong target_addr, socklen_t addrlen)
3631 {
3632     void *addr;
3633     void *host_msg;
3634     void *copy_msg = NULL;
3635     abi_long ret;
3636 
3637     if ((int)addrlen < 0) {
3638         return -TARGET_EINVAL;
3639     }
3640 
3641     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3642     if (!host_msg)
3643         return -TARGET_EFAULT;
3644     if (fd_trans_target_to_host_data(fd)) {
3645         copy_msg = host_msg;
3646         host_msg = g_malloc(len);
3647         memcpy(host_msg, copy_msg, len);
3648         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3649         if (ret < 0) {
3650             goto fail;
3651         }
3652     }
3653     if (target_addr) {
3654         addr = alloca(addrlen+1);
3655         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3656         if (ret) {
3657             goto fail;
3658         }
3659         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3660     } else {
3661         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3662     }
3663 fail:
3664     if (copy_msg) {
3665         g_free(host_msg);
3666         host_msg = copy_msg;
3667     }
3668     unlock_user(host_msg, msg, 0);
3669     return ret;
3670 }
3671 
3672 /* do_recvfrom() Must return target values and target errnos. */
3673 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3674                             abi_ulong target_addr,
3675                             abi_ulong target_addrlen)
3676 {
3677     socklen_t addrlen, ret_addrlen;
3678     void *addr;
3679     void *host_msg;
3680     abi_long ret;
3681 
3682     if (!msg) {
3683         host_msg = NULL;
3684     } else {
3685         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3686         if (!host_msg) {
3687             return -TARGET_EFAULT;
3688         }
3689     }
3690     if (target_addr) {
3691         if (get_user_u32(addrlen, target_addrlen)) {
3692             ret = -TARGET_EFAULT;
3693             goto fail;
3694         }
3695         if ((int)addrlen < 0) {
3696             ret = -TARGET_EINVAL;
3697             goto fail;
3698         }
3699         addr = alloca(addrlen);
3700         ret_addrlen = addrlen;
3701         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3702                                       addr, &ret_addrlen));
3703     } else {
3704         addr = NULL; /* To keep compiler quiet.  */
3705         addrlen = 0; /* To keep compiler quiet.  */
3706         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3707     }
3708     if (!is_error(ret)) {
3709         if (fd_trans_host_to_target_data(fd)) {
3710             abi_long trans;
3711             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3712             if (is_error(trans)) {
3713                 ret = trans;
3714                 goto fail;
3715             }
3716         }
3717         if (target_addr) {
3718             host_to_target_sockaddr(target_addr, addr,
3719                                     MIN(addrlen, ret_addrlen));
3720             if (put_user_u32(ret_addrlen, target_addrlen)) {
3721                 ret = -TARGET_EFAULT;
3722                 goto fail;
3723             }
3724         }
3725         unlock_user(host_msg, msg, len);
3726     } else {
3727 fail:
3728         unlock_user(host_msg, msg, 0);
3729     }
3730     return ret;
3731 }
3732 
3733 #ifdef TARGET_NR_socketcall
3734 /* do_socketcall() must return target values and target errnos. */
3735 static abi_long do_socketcall(int num, abi_ulong vptr)
3736 {
3737     static const unsigned nargs[] = { /* number of arguments per operation */
3738         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3739         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3740         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3741         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3742         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3743         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3744         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3745         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3746         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3747         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3748         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3749         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3750         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3751         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3752         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3753         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3754         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3755         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3756         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3757         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3758     };
3759     abi_long a[6]; /* max 6 args */
3760     unsigned i;
3761 
3762     /* check the range of the first argument num */
3763     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3764     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3765         return -TARGET_EINVAL;
3766     }
3767     /* ensure we have space for args */
3768     if (nargs[num] > ARRAY_SIZE(a)) {
3769         return -TARGET_EINVAL;
3770     }
3771     /* collect the arguments in a[] according to nargs[] */
3772     for (i = 0; i < nargs[num]; ++i) {
3773         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3774             return -TARGET_EFAULT;
3775         }
3776     }
3777     /* now when we have the args, invoke the appropriate underlying function */
3778     switch (num) {
3779     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3780         return do_socket(a[0], a[1], a[2]);
3781     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3782         return do_bind(a[0], a[1], a[2]);
3783     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3784         return do_connect(a[0], a[1], a[2]);
3785     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3786         return get_errno(listen(a[0], a[1]));
3787     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3788         return do_accept4(a[0], a[1], a[2], 0);
3789     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3790         return do_getsockname(a[0], a[1], a[2]);
3791     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3792         return do_getpeername(a[0], a[1], a[2]);
3793     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3794         return do_socketpair(a[0], a[1], a[2], a[3]);
3795     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3796         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3797     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3798         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3799     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3800         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3801     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3802         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3803     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3804         return get_errno(shutdown(a[0], a[1]));
3805     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3806         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3807     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3808         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3809     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3810         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3811     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3812         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3813     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3814         return do_accept4(a[0], a[1], a[2], a[3]);
3815     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3816         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3817     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3818         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3819     default:
3820         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3821         return -TARGET_EINVAL;
3822     }
3823 }
3824 #endif
3825 
3826 #define N_SHM_REGIONS	32
3827 
3828 static struct shm_region {
3829     abi_ulong start;
3830     abi_ulong size;
3831     bool in_use;
3832 } shm_regions[N_SHM_REGIONS];
3833 
3834 #ifndef TARGET_SEMID64_DS
3835 /* asm-generic version of this struct */
3836 struct target_semid64_ds
3837 {
3838   struct target_ipc_perm sem_perm;
3839   abi_ulong sem_otime;
3840 #if TARGET_ABI_BITS == 32
3841   abi_ulong __unused1;
3842 #endif
3843   abi_ulong sem_ctime;
3844 #if TARGET_ABI_BITS == 32
3845   abi_ulong __unused2;
3846 #endif
3847   abi_ulong sem_nsems;
3848   abi_ulong __unused3;
3849   abi_ulong __unused4;
3850 };
3851 #endif
3852 
3853 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3854                                                abi_ulong target_addr)
3855 {
3856     struct target_ipc_perm *target_ip;
3857     struct target_semid64_ds *target_sd;
3858 
3859     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3860         return -TARGET_EFAULT;
3861     target_ip = &(target_sd->sem_perm);
3862     host_ip->__key = tswap32(target_ip->__key);
3863     host_ip->uid = tswap32(target_ip->uid);
3864     host_ip->gid = tswap32(target_ip->gid);
3865     host_ip->cuid = tswap32(target_ip->cuid);
3866     host_ip->cgid = tswap32(target_ip->cgid);
3867 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3868     host_ip->mode = tswap32(target_ip->mode);
3869 #else
3870     host_ip->mode = tswap16(target_ip->mode);
3871 #endif
3872 #if defined(TARGET_PPC)
3873     host_ip->__seq = tswap32(target_ip->__seq);
3874 #else
3875     host_ip->__seq = tswap16(target_ip->__seq);
3876 #endif
3877     unlock_user_struct(target_sd, target_addr, 0);
3878     return 0;
3879 }
3880 
3881 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3882                                                struct ipc_perm *host_ip)
3883 {
3884     struct target_ipc_perm *target_ip;
3885     struct target_semid64_ds *target_sd;
3886 
3887     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3888         return -TARGET_EFAULT;
3889     target_ip = &(target_sd->sem_perm);
3890     target_ip->__key = tswap32(host_ip->__key);
3891     target_ip->uid = tswap32(host_ip->uid);
3892     target_ip->gid = tswap32(host_ip->gid);
3893     target_ip->cuid = tswap32(host_ip->cuid);
3894     target_ip->cgid = tswap32(host_ip->cgid);
3895 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3896     target_ip->mode = tswap32(host_ip->mode);
3897 #else
3898     target_ip->mode = tswap16(host_ip->mode);
3899 #endif
3900 #if defined(TARGET_PPC)
3901     target_ip->__seq = tswap32(host_ip->__seq);
3902 #else
3903     target_ip->__seq = tswap16(host_ip->__seq);
3904 #endif
3905     unlock_user_struct(target_sd, target_addr, 1);
3906     return 0;
3907 }
3908 
3909 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3910                                                abi_ulong target_addr)
3911 {
3912     struct target_semid64_ds *target_sd;
3913 
3914     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3915         return -TARGET_EFAULT;
3916     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3917         return -TARGET_EFAULT;
3918     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3919     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3920     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3921     unlock_user_struct(target_sd, target_addr, 0);
3922     return 0;
3923 }
3924 
3925 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3926                                                struct semid_ds *host_sd)
3927 {
3928     struct target_semid64_ds *target_sd;
3929 
3930     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3931         return -TARGET_EFAULT;
3932     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3933         return -TARGET_EFAULT;
3934     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3935     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3936     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3937     unlock_user_struct(target_sd, target_addr, 1);
3938     return 0;
3939 }
3940 
3941 struct target_seminfo {
3942     int semmap;
3943     int semmni;
3944     int semmns;
3945     int semmnu;
3946     int semmsl;
3947     int semopm;
3948     int semume;
3949     int semusz;
3950     int semvmx;
3951     int semaem;
3952 };
3953 
3954 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3955                                               struct seminfo *host_seminfo)
3956 {
3957     struct target_seminfo *target_seminfo;
3958     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3959         return -TARGET_EFAULT;
3960     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3961     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3962     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3963     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3964     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3965     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3966     __put_user(host_seminfo->semume, &target_seminfo->semume);
3967     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3968     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3969     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3970     unlock_user_struct(target_seminfo, target_addr, 1);
3971     return 0;
3972 }
3973 
3974 union semun {
3975 	int val;
3976 	struct semid_ds *buf;
3977 	unsigned short *array;
3978 	struct seminfo *__buf;
3979 };
3980 
3981 union target_semun {
3982 	int val;
3983 	abi_ulong buf;
3984 	abi_ulong array;
3985 	abi_ulong __buf;
3986 };
3987 
3988 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3989                                                abi_ulong target_addr)
3990 {
3991     int nsems;
3992     unsigned short *array;
3993     union semun semun;
3994     struct semid_ds semid_ds;
3995     int i, ret;
3996 
3997     semun.buf = &semid_ds;
3998 
3999     ret = semctl(semid, 0, IPC_STAT, semun);
4000     if (ret == -1)
4001         return get_errno(ret);
4002 
4003     nsems = semid_ds.sem_nsems;
4004 
4005     *host_array = g_try_new(unsigned short, nsems);
4006     if (!*host_array) {
4007         return -TARGET_ENOMEM;
4008     }
4009     array = lock_user(VERIFY_READ, target_addr,
4010                       nsems*sizeof(unsigned short), 1);
4011     if (!array) {
4012         g_free(*host_array);
4013         return -TARGET_EFAULT;
4014     }
4015 
4016     for(i=0; i<nsems; i++) {
4017         __get_user((*host_array)[i], &array[i]);
4018     }
4019     unlock_user(array, target_addr, 0);
4020 
4021     return 0;
4022 }
4023 
4024 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
4025                                                unsigned short **host_array)
4026 {
4027     int nsems;
4028     unsigned short *array;
4029     union semun semun;
4030     struct semid_ds semid_ds;
4031     int i, ret;
4032 
4033     semun.buf = &semid_ds;
4034 
4035     ret = semctl(semid, 0, IPC_STAT, semun);
4036     if (ret == -1)
4037         return get_errno(ret);
4038 
4039     nsems = semid_ds.sem_nsems;
4040 
4041     array = lock_user(VERIFY_WRITE, target_addr,
4042                       nsems*sizeof(unsigned short), 0);
4043     if (!array)
4044         return -TARGET_EFAULT;
4045 
4046     for(i=0; i<nsems; i++) {
4047         __put_user((*host_array)[i], &array[i]);
4048     }
4049     g_free(*host_array);
4050     unlock_user(array, target_addr, 1);
4051 
4052     return 0;
4053 }
4054 
4055 static inline abi_long do_semctl(int semid, int semnum, int cmd,
4056                                  abi_ulong target_arg)
4057 {
4058     union target_semun target_su = { .buf = target_arg };
4059     union semun arg;
4060     struct semid_ds dsarg;
4061     unsigned short *array = NULL;
4062     struct seminfo seminfo;
4063     abi_long ret = -TARGET_EINVAL;
4064     abi_long err;
4065     cmd &= 0xff;
4066 
4067     switch( cmd ) {
4068 	case GETVAL:
4069 	case SETVAL:
4070             /* In 64 bit cross-endian situations, we will erroneously pick up
4071              * the wrong half of the union for the "val" element.  To rectify
4072              * this, the entire 8-byte structure is byteswapped, followed by
4073 	     * a swap of the 4 byte val field. In other cases, the data is
4074 	     * already in proper host byte order. */
4075 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
4076 		target_su.buf = tswapal(target_su.buf);
4077 		arg.val = tswap32(target_su.val);
4078 	    } else {
4079 		arg.val = target_su.val;
4080 	    }
4081             ret = get_errno(semctl(semid, semnum, cmd, arg));
4082             break;
4083 	case GETALL:
4084 	case SETALL:
4085             err = target_to_host_semarray(semid, &array, target_su.array);
4086             if (err)
4087                 return err;
4088             arg.array = array;
4089             ret = get_errno(semctl(semid, semnum, cmd, arg));
4090             err = host_to_target_semarray(semid, target_su.array, &array);
4091             if (err)
4092                 return err;
4093             break;
4094 	case IPC_STAT:
4095 	case IPC_SET:
4096 	case SEM_STAT:
4097             err = target_to_host_semid_ds(&dsarg, target_su.buf);
4098             if (err)
4099                 return err;
4100             arg.buf = &dsarg;
4101             ret = get_errno(semctl(semid, semnum, cmd, arg));
4102             err = host_to_target_semid_ds(target_su.buf, &dsarg);
4103             if (err)
4104                 return err;
4105             break;
4106 	case IPC_INFO:
4107 	case SEM_INFO:
4108             arg.__buf = &seminfo;
4109             ret = get_errno(semctl(semid, semnum, cmd, arg));
4110             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4111             if (err)
4112                 return err;
4113             break;
4114 	case IPC_RMID:
4115 	case GETPID:
4116 	case GETNCNT:
4117 	case GETZCNT:
4118             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4119             break;
4120     }
4121 
4122     return ret;
4123 }
4124 
4125 struct target_sembuf {
4126     unsigned short sem_num;
4127     short sem_op;
4128     short sem_flg;
4129 };
4130 
4131 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4132                                              abi_ulong target_addr,
4133                                              unsigned nsops)
4134 {
4135     struct target_sembuf *target_sembuf;
4136     int i;
4137 
4138     target_sembuf = lock_user(VERIFY_READ, target_addr,
4139                               nsops*sizeof(struct target_sembuf), 1);
4140     if (!target_sembuf)
4141         return -TARGET_EFAULT;
4142 
4143     for(i=0; i<nsops; i++) {
4144         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4145         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4146         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4147     }
4148 
4149     unlock_user(target_sembuf, target_addr, 0);
4150 
4151     return 0;
4152 }
4153 
4154 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4155     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4156 
4157 /*
4158  * This macro is required to handle the s390 variants, which passes the
4159  * arguments in a different order than default.
4160  */
4161 #ifdef __s390x__
4162 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4163   (__nsops), (__timeout), (__sops)
4164 #else
4165 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4166   (__nsops), 0, (__sops), (__timeout)
4167 #endif
4168 
4169 static inline abi_long do_semtimedop(int semid,
4170                                      abi_long ptr,
4171                                      unsigned nsops,
4172                                      abi_long timeout, bool time64)
4173 {
4174     struct sembuf *sops;
4175     struct timespec ts, *pts = NULL;
4176     abi_long ret;
4177 
4178     if (timeout) {
4179         pts = &ts;
4180         if (time64) {
4181             if (target_to_host_timespec64(pts, timeout)) {
4182                 return -TARGET_EFAULT;
4183             }
4184         } else {
4185             if (target_to_host_timespec(pts, timeout)) {
4186                 return -TARGET_EFAULT;
4187             }
4188         }
4189     }
4190 
4191     if (nsops > TARGET_SEMOPM) {
4192         return -TARGET_E2BIG;
4193     }
4194 
4195     sops = g_new(struct sembuf, nsops);
4196 
4197     if (target_to_host_sembuf(sops, ptr, nsops)) {
4198         g_free(sops);
4199         return -TARGET_EFAULT;
4200     }
4201 
4202     ret = -TARGET_ENOSYS;
4203 #ifdef __NR_semtimedop
4204     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4205 #endif
4206 #ifdef __NR_ipc
4207     if (ret == -TARGET_ENOSYS) {
4208         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4209                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4210     }
4211 #endif
4212     g_free(sops);
4213     return ret;
4214 }
4215 #endif
4216 
4217 struct target_msqid_ds
4218 {
4219     struct target_ipc_perm msg_perm;
4220     abi_ulong msg_stime;
4221 #if TARGET_ABI_BITS == 32
4222     abi_ulong __unused1;
4223 #endif
4224     abi_ulong msg_rtime;
4225 #if TARGET_ABI_BITS == 32
4226     abi_ulong __unused2;
4227 #endif
4228     abi_ulong msg_ctime;
4229 #if TARGET_ABI_BITS == 32
4230     abi_ulong __unused3;
4231 #endif
4232     abi_ulong __msg_cbytes;
4233     abi_ulong msg_qnum;
4234     abi_ulong msg_qbytes;
4235     abi_ulong msg_lspid;
4236     abi_ulong msg_lrpid;
4237     abi_ulong __unused4;
4238     abi_ulong __unused5;
4239 };
4240 
4241 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4242                                                abi_ulong target_addr)
4243 {
4244     struct target_msqid_ds *target_md;
4245 
4246     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4247         return -TARGET_EFAULT;
4248     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4249         return -TARGET_EFAULT;
4250     host_md->msg_stime = tswapal(target_md->msg_stime);
4251     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4252     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4253     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4254     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4255     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4256     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4257     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4258     unlock_user_struct(target_md, target_addr, 0);
4259     return 0;
4260 }
4261 
4262 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4263                                                struct msqid_ds *host_md)
4264 {
4265     struct target_msqid_ds *target_md;
4266 
4267     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4268         return -TARGET_EFAULT;
4269     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4270         return -TARGET_EFAULT;
4271     target_md->msg_stime = tswapal(host_md->msg_stime);
4272     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4273     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4274     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4275     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4276     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4277     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4278     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4279     unlock_user_struct(target_md, target_addr, 1);
4280     return 0;
4281 }
4282 
4283 struct target_msginfo {
4284     int msgpool;
4285     int msgmap;
4286     int msgmax;
4287     int msgmnb;
4288     int msgmni;
4289     int msgssz;
4290     int msgtql;
4291     unsigned short int msgseg;
4292 };
4293 
4294 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4295                                               struct msginfo *host_msginfo)
4296 {
4297     struct target_msginfo *target_msginfo;
4298     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4299         return -TARGET_EFAULT;
4300     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4301     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4302     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4303     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4304     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4305     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4306     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4307     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4308     unlock_user_struct(target_msginfo, target_addr, 1);
4309     return 0;
4310 }
4311 
4312 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4313 {
4314     struct msqid_ds dsarg;
4315     struct msginfo msginfo;
4316     abi_long ret = -TARGET_EINVAL;
4317 
4318     cmd &= 0xff;
4319 
4320     switch (cmd) {
4321     case IPC_STAT:
4322     case IPC_SET:
4323     case MSG_STAT:
4324         if (target_to_host_msqid_ds(&dsarg,ptr))
4325             return -TARGET_EFAULT;
4326         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4327         if (host_to_target_msqid_ds(ptr,&dsarg))
4328             return -TARGET_EFAULT;
4329         break;
4330     case IPC_RMID:
4331         ret = get_errno(msgctl(msgid, cmd, NULL));
4332         break;
4333     case IPC_INFO:
4334     case MSG_INFO:
4335         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4336         if (host_to_target_msginfo(ptr, &msginfo))
4337             return -TARGET_EFAULT;
4338         break;
4339     }
4340 
4341     return ret;
4342 }
4343 
4344 struct target_msgbuf {
4345     abi_long mtype;
4346     char	mtext[1];
4347 };
4348 
4349 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4350                                  ssize_t msgsz, int msgflg)
4351 {
4352     struct target_msgbuf *target_mb;
4353     struct msgbuf *host_mb;
4354     abi_long ret = 0;
4355 
4356     if (msgsz < 0) {
4357         return -TARGET_EINVAL;
4358     }
4359 
4360     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4361         return -TARGET_EFAULT;
4362     host_mb = g_try_malloc(msgsz + sizeof(long));
4363     if (!host_mb) {
4364         unlock_user_struct(target_mb, msgp, 0);
4365         return -TARGET_ENOMEM;
4366     }
4367     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4368     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4369     ret = -TARGET_ENOSYS;
4370 #ifdef __NR_msgsnd
4371     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4372 #endif
4373 #ifdef __NR_ipc
4374     if (ret == -TARGET_ENOSYS) {
4375 #ifdef __s390x__
4376         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4377                                  host_mb));
4378 #else
4379         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4380                                  host_mb, 0));
4381 #endif
4382     }
4383 #endif
4384     g_free(host_mb);
4385     unlock_user_struct(target_mb, msgp, 0);
4386 
4387     return ret;
4388 }
4389 
4390 #ifdef __NR_ipc
4391 #if defined(__sparc__)
4392 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4393 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4394 #elif defined(__s390x__)
4395 /* The s390 sys_ipc variant has only five parameters.  */
4396 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4397     ((long int[]){(long int)__msgp, __msgtyp})
4398 #else
4399 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4400     ((long int[]){(long int)__msgp, __msgtyp}), 0
4401 #endif
4402 #endif
4403 
4404 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4405                                  ssize_t msgsz, abi_long msgtyp,
4406                                  int msgflg)
4407 {
4408     struct target_msgbuf *target_mb;
4409     char *target_mtext;
4410     struct msgbuf *host_mb;
4411     abi_long ret = 0;
4412 
4413     if (msgsz < 0) {
4414         return -TARGET_EINVAL;
4415     }
4416 
4417     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4418         return -TARGET_EFAULT;
4419 
4420     host_mb = g_try_malloc(msgsz + sizeof(long));
4421     if (!host_mb) {
4422         ret = -TARGET_ENOMEM;
4423         goto end;
4424     }
4425     ret = -TARGET_ENOSYS;
4426 #ifdef __NR_msgrcv
4427     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4428 #endif
4429 #ifdef __NR_ipc
4430     if (ret == -TARGET_ENOSYS) {
4431         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4432                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4433     }
4434 #endif
4435 
4436     if (ret > 0) {
4437         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4438         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4439         if (!target_mtext) {
4440             ret = -TARGET_EFAULT;
4441             goto end;
4442         }
4443         memcpy(target_mb->mtext, host_mb->mtext, ret);
4444         unlock_user(target_mtext, target_mtext_addr, ret);
4445     }
4446 
4447     target_mb->mtype = tswapal(host_mb->mtype);
4448 
4449 end:
4450     if (target_mb)
4451         unlock_user_struct(target_mb, msgp, 1);
4452     g_free(host_mb);
4453     return ret;
4454 }
4455 
4456 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4457                                                abi_ulong target_addr)
4458 {
4459     struct target_shmid_ds *target_sd;
4460 
4461     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4462         return -TARGET_EFAULT;
4463     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4464         return -TARGET_EFAULT;
4465     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4466     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4467     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4468     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4469     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4470     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4471     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4472     unlock_user_struct(target_sd, target_addr, 0);
4473     return 0;
4474 }
4475 
4476 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4477                                                struct shmid_ds *host_sd)
4478 {
4479     struct target_shmid_ds *target_sd;
4480 
4481     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4482         return -TARGET_EFAULT;
4483     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4484         return -TARGET_EFAULT;
4485     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4486     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4487     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4488     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4489     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4490     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4491     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4492     unlock_user_struct(target_sd, target_addr, 1);
4493     return 0;
4494 }
4495 
4496 struct  target_shminfo {
4497     abi_ulong shmmax;
4498     abi_ulong shmmin;
4499     abi_ulong shmmni;
4500     abi_ulong shmseg;
4501     abi_ulong shmall;
4502 };
4503 
4504 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4505                                               struct shminfo *host_shminfo)
4506 {
4507     struct target_shminfo *target_shminfo;
4508     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4509         return -TARGET_EFAULT;
4510     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4511     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4512     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4513     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4514     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4515     unlock_user_struct(target_shminfo, target_addr, 1);
4516     return 0;
4517 }
4518 
4519 struct target_shm_info {
4520     int used_ids;
4521     abi_ulong shm_tot;
4522     abi_ulong shm_rss;
4523     abi_ulong shm_swp;
4524     abi_ulong swap_attempts;
4525     abi_ulong swap_successes;
4526 };
4527 
4528 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4529                                                struct shm_info *host_shm_info)
4530 {
4531     struct target_shm_info *target_shm_info;
4532     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4533         return -TARGET_EFAULT;
4534     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4535     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4536     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4537     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4538     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4539     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4540     unlock_user_struct(target_shm_info, target_addr, 1);
4541     return 0;
4542 }
4543 
4544 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4545 {
4546     struct shmid_ds dsarg;
4547     struct shminfo shminfo;
4548     struct shm_info shm_info;
4549     abi_long ret = -TARGET_EINVAL;
4550 
4551     cmd &= 0xff;
4552 
4553     switch(cmd) {
4554     case IPC_STAT:
4555     case IPC_SET:
4556     case SHM_STAT:
4557         if (target_to_host_shmid_ds(&dsarg, buf))
4558             return -TARGET_EFAULT;
4559         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4560         if (host_to_target_shmid_ds(buf, &dsarg))
4561             return -TARGET_EFAULT;
4562         break;
4563     case IPC_INFO:
4564         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4565         if (host_to_target_shminfo(buf, &shminfo))
4566             return -TARGET_EFAULT;
4567         break;
4568     case SHM_INFO:
4569         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4570         if (host_to_target_shm_info(buf, &shm_info))
4571             return -TARGET_EFAULT;
4572         break;
4573     case IPC_RMID:
4574     case SHM_LOCK:
4575     case SHM_UNLOCK:
4576         ret = get_errno(shmctl(shmid, cmd, NULL));
4577         break;
4578     }
4579 
4580     return ret;
4581 }
4582 
4583 #ifndef TARGET_FORCE_SHMLBA
4584 /* For most architectures, SHMLBA is the same as the page size;
4585  * some architectures have larger values, in which case they should
4586  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4587  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4588  * and defining its own value for SHMLBA.
4589  *
4590  * The kernel also permits SHMLBA to be set by the architecture to a
4591  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4592  * this means that addresses are rounded to the large size if
4593  * SHM_RND is set but addresses not aligned to that size are not rejected
4594  * as long as they are at least page-aligned. Since the only architecture
4595  * which uses this is ia64 this code doesn't provide for that oddity.
4596  */
4597 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4598 {
4599     return TARGET_PAGE_SIZE;
4600 }
4601 #endif
4602 
4603 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4604                                  int shmid, abi_ulong shmaddr, int shmflg)
4605 {
4606     abi_long raddr;
4607     void *host_raddr;
4608     struct shmid_ds shm_info;
4609     int i,ret;
4610     abi_ulong shmlba;
4611 
4612     /* shmat pointers are always untagged */
4613 
4614     /* find out the length of the shared memory segment */
4615     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4616     if (is_error(ret)) {
4617         /* can't get length, bail out */
4618         return ret;
4619     }
4620 
4621     shmlba = target_shmlba(cpu_env);
4622 
4623     if (shmaddr & (shmlba - 1)) {
4624         if (shmflg & SHM_RND) {
4625             shmaddr &= ~(shmlba - 1);
4626         } else {
4627             return -TARGET_EINVAL;
4628         }
4629     }
4630     if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4631         return -TARGET_EINVAL;
4632     }
4633 
4634     mmap_lock();
4635 
4636     if (shmaddr)
4637         host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4638     else {
4639         abi_ulong mmap_start;
4640 
4641         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4642         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4643 
4644         if (mmap_start == -1) {
4645             errno = ENOMEM;
4646             host_raddr = (void *)-1;
4647         } else
4648             host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4649                                shmflg | SHM_REMAP);
4650     }
4651 
4652     if (host_raddr == (void *)-1) {
4653         mmap_unlock();
4654         return get_errno((long)host_raddr);
4655     }
4656     raddr=h2g((unsigned long)host_raddr);
4657 
4658     page_set_flags(raddr, raddr + shm_info.shm_segsz,
4659                    PAGE_VALID | PAGE_RESET | PAGE_READ |
4660                    (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4661 
4662     for (i = 0; i < N_SHM_REGIONS; i++) {
4663         if (!shm_regions[i].in_use) {
4664             shm_regions[i].in_use = true;
4665             shm_regions[i].start = raddr;
4666             shm_regions[i].size = shm_info.shm_segsz;
4667             break;
4668         }
4669     }
4670 
4671     mmap_unlock();
4672     return raddr;
4673 
4674 }
4675 
4676 static inline abi_long do_shmdt(abi_ulong shmaddr)
4677 {
4678     int i;
4679     abi_long rv;
4680 
4681     /* shmdt pointers are always untagged */
4682 
4683     mmap_lock();
4684 
4685     for (i = 0; i < N_SHM_REGIONS; ++i) {
4686         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4687             shm_regions[i].in_use = false;
4688             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4689             break;
4690         }
4691     }
4692     rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4693 
4694     mmap_unlock();
4695 
4696     return rv;
4697 }
4698 
4699 #ifdef TARGET_NR_ipc
4700 /* ??? This only works with linear mappings.  */
4701 /* do_ipc() must return target values and target errnos. */
4702 static abi_long do_ipc(CPUArchState *cpu_env,
4703                        unsigned int call, abi_long first,
4704                        abi_long second, abi_long third,
4705                        abi_long ptr, abi_long fifth)
4706 {
4707     int version;
4708     abi_long ret = 0;
4709 
4710     version = call >> 16;
4711     call &= 0xffff;
4712 
4713     switch (call) {
4714     case IPCOP_semop:
4715         ret = do_semtimedop(first, ptr, second, 0, false);
4716         break;
4717     case IPCOP_semtimedop:
4718     /*
4719      * The s390 sys_ipc variant has only five parameters instead of six
4720      * (as for default variant) and the only difference is the handling of
4721      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4722      * to a struct timespec where the generic variant uses fifth parameter.
4723      */
4724 #if defined(TARGET_S390X)
4725         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4726 #else
4727         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4728 #endif
4729         break;
4730 
4731     case IPCOP_semget:
4732         ret = get_errno(semget(first, second, third));
4733         break;
4734 
4735     case IPCOP_semctl: {
4736         /* The semun argument to semctl is passed by value, so dereference the
4737          * ptr argument. */
4738         abi_ulong atptr;
4739         get_user_ual(atptr, ptr);
4740         ret = do_semctl(first, second, third, atptr);
4741         break;
4742     }
4743 
4744     case IPCOP_msgget:
4745         ret = get_errno(msgget(first, second));
4746         break;
4747 
4748     case IPCOP_msgsnd:
4749         ret = do_msgsnd(first, ptr, second, third);
4750         break;
4751 
4752     case IPCOP_msgctl:
4753         ret = do_msgctl(first, second, ptr);
4754         break;
4755 
4756     case IPCOP_msgrcv:
4757         switch (version) {
4758         case 0:
4759             {
4760                 struct target_ipc_kludge {
4761                     abi_long msgp;
4762                     abi_long msgtyp;
4763                 } *tmp;
4764 
4765                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4766                     ret = -TARGET_EFAULT;
4767                     break;
4768                 }
4769 
4770                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4771 
4772                 unlock_user_struct(tmp, ptr, 0);
4773                 break;
4774             }
4775         default:
4776             ret = do_msgrcv(first, ptr, second, fifth, third);
4777         }
4778         break;
4779 
4780     case IPCOP_shmat:
4781         switch (version) {
4782         default:
4783         {
4784             abi_ulong raddr;
4785             raddr = do_shmat(cpu_env, first, ptr, second);
4786             if (is_error(raddr))
4787                 return get_errno(raddr);
4788             if (put_user_ual(raddr, third))
4789                 return -TARGET_EFAULT;
4790             break;
4791         }
4792         case 1:
4793             ret = -TARGET_EINVAL;
4794             break;
4795         }
4796 	break;
4797     case IPCOP_shmdt:
4798         ret = do_shmdt(ptr);
4799 	break;
4800 
4801     case IPCOP_shmget:
4802 	/* IPC_* flag values are the same on all linux platforms */
4803 	ret = get_errno(shmget(first, second, third));
4804 	break;
4805 
4806 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4807     case IPCOP_shmctl:
4808         ret = do_shmctl(first, second, ptr);
4809         break;
4810     default:
4811         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4812                       call, version);
4813 	ret = -TARGET_ENOSYS;
4814 	break;
4815     }
4816     return ret;
4817 }
4818 #endif
4819 
4820 /* kernel structure types definitions */
4821 
4822 #define STRUCT(name, ...) STRUCT_ ## name,
4823 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4824 enum {
4825 #include "syscall_types.h"
4826 STRUCT_MAX
4827 };
4828 #undef STRUCT
4829 #undef STRUCT_SPECIAL
4830 
4831 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4832 #define STRUCT_SPECIAL(name)
4833 #include "syscall_types.h"
4834 #undef STRUCT
4835 #undef STRUCT_SPECIAL
4836 
4837 #define MAX_STRUCT_SIZE 4096
4838 
4839 #ifdef CONFIG_FIEMAP
4840 /* So fiemap access checks don't overflow on 32 bit systems.
4841  * This is very slightly smaller than the limit imposed by
4842  * the underlying kernel.
4843  */
4844 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4845                             / sizeof(struct fiemap_extent))
4846 
4847 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4848                                        int fd, int cmd, abi_long arg)
4849 {
4850     /* The parameter for this ioctl is a struct fiemap followed
4851      * by an array of struct fiemap_extent whose size is set
4852      * in fiemap->fm_extent_count. The array is filled in by the
4853      * ioctl.
4854      */
4855     int target_size_in, target_size_out;
4856     struct fiemap *fm;
4857     const argtype *arg_type = ie->arg_type;
4858     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4859     void *argptr, *p;
4860     abi_long ret;
4861     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4862     uint32_t outbufsz;
4863     int free_fm = 0;
4864 
4865     assert(arg_type[0] == TYPE_PTR);
4866     assert(ie->access == IOC_RW);
4867     arg_type++;
4868     target_size_in = thunk_type_size(arg_type, 0);
4869     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4870     if (!argptr) {
4871         return -TARGET_EFAULT;
4872     }
4873     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4874     unlock_user(argptr, arg, 0);
4875     fm = (struct fiemap *)buf_temp;
4876     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4877         return -TARGET_EINVAL;
4878     }
4879 
4880     outbufsz = sizeof (*fm) +
4881         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4882 
4883     if (outbufsz > MAX_STRUCT_SIZE) {
4884         /* We can't fit all the extents into the fixed size buffer.
4885          * Allocate one that is large enough and use it instead.
4886          */
4887         fm = g_try_malloc(outbufsz);
4888         if (!fm) {
4889             return -TARGET_ENOMEM;
4890         }
4891         memcpy(fm, buf_temp, sizeof(struct fiemap));
4892         free_fm = 1;
4893     }
4894     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4895     if (!is_error(ret)) {
4896         target_size_out = target_size_in;
4897         /* An extent_count of 0 means we were only counting the extents
4898          * so there are no structs to copy
4899          */
4900         if (fm->fm_extent_count != 0) {
4901             target_size_out += fm->fm_mapped_extents * extent_size;
4902         }
4903         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4904         if (!argptr) {
4905             ret = -TARGET_EFAULT;
4906         } else {
4907             /* Convert the struct fiemap */
4908             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4909             if (fm->fm_extent_count != 0) {
4910                 p = argptr + target_size_in;
4911                 /* ...and then all the struct fiemap_extents */
4912                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4913                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4914                                   THUNK_TARGET);
4915                     p += extent_size;
4916                 }
4917             }
4918             unlock_user(argptr, arg, target_size_out);
4919         }
4920     }
4921     if (free_fm) {
4922         g_free(fm);
4923     }
4924     return ret;
4925 }
4926 #endif
4927 
4928 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4929                                 int fd, int cmd, abi_long arg)
4930 {
4931     const argtype *arg_type = ie->arg_type;
4932     int target_size;
4933     void *argptr;
4934     int ret;
4935     struct ifconf *host_ifconf;
4936     uint32_t outbufsz;
4937     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4938     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4939     int target_ifreq_size;
4940     int nb_ifreq;
4941     int free_buf = 0;
4942     int i;
4943     int target_ifc_len;
4944     abi_long target_ifc_buf;
4945     int host_ifc_len;
4946     char *host_ifc_buf;
4947 
4948     assert(arg_type[0] == TYPE_PTR);
4949     assert(ie->access == IOC_RW);
4950 
4951     arg_type++;
4952     target_size = thunk_type_size(arg_type, 0);
4953 
4954     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4955     if (!argptr)
4956         return -TARGET_EFAULT;
4957     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4958     unlock_user(argptr, arg, 0);
4959 
4960     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4961     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4962     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4963 
4964     if (target_ifc_buf != 0) {
4965         target_ifc_len = host_ifconf->ifc_len;
4966         nb_ifreq = target_ifc_len / target_ifreq_size;
4967         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4968 
4969         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4970         if (outbufsz > MAX_STRUCT_SIZE) {
4971             /*
4972              * We can't fit all the extents into the fixed size buffer.
4973              * Allocate one that is large enough and use it instead.
4974              */
4975             host_ifconf = malloc(outbufsz);
4976             if (!host_ifconf) {
4977                 return -TARGET_ENOMEM;
4978             }
4979             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4980             free_buf = 1;
4981         }
4982         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4983 
4984         host_ifconf->ifc_len = host_ifc_len;
4985     } else {
4986       host_ifc_buf = NULL;
4987     }
4988     host_ifconf->ifc_buf = host_ifc_buf;
4989 
4990     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4991     if (!is_error(ret)) {
4992 	/* convert host ifc_len to target ifc_len */
4993 
4994         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4995         target_ifc_len = nb_ifreq * target_ifreq_size;
4996         host_ifconf->ifc_len = target_ifc_len;
4997 
4998 	/* restore target ifc_buf */
4999 
5000         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
5001 
5002 	/* copy struct ifconf to target user */
5003 
5004         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5005         if (!argptr)
5006             return -TARGET_EFAULT;
5007         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
5008         unlock_user(argptr, arg, target_size);
5009 
5010         if (target_ifc_buf != 0) {
5011             /* copy ifreq[] to target user */
5012             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
5013             for (i = 0; i < nb_ifreq ; i++) {
5014                 thunk_convert(argptr + i * target_ifreq_size,
5015                               host_ifc_buf + i * sizeof(struct ifreq),
5016                               ifreq_arg_type, THUNK_TARGET);
5017             }
5018             unlock_user(argptr, target_ifc_buf, target_ifc_len);
5019         }
5020     }
5021 
5022     if (free_buf) {
5023         free(host_ifconf);
5024     }
5025 
5026     return ret;
5027 }
5028 
5029 #if defined(CONFIG_USBFS)
5030 #if HOST_LONG_BITS > 64
5031 #error USBDEVFS thunks do not support >64 bit hosts yet.
5032 #endif
5033 struct live_urb {
5034     uint64_t target_urb_adr;
5035     uint64_t target_buf_adr;
5036     char *target_buf_ptr;
5037     struct usbdevfs_urb host_urb;
5038 };
5039 
5040 static GHashTable *usbdevfs_urb_hashtable(void)
5041 {
5042     static GHashTable *urb_hashtable;
5043 
5044     if (!urb_hashtable) {
5045         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
5046     }
5047     return urb_hashtable;
5048 }
5049 
5050 static void urb_hashtable_insert(struct live_urb *urb)
5051 {
5052     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5053     g_hash_table_insert(urb_hashtable, urb, urb);
5054 }
5055 
5056 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
5057 {
5058     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5059     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
5060 }
5061 
5062 static void urb_hashtable_remove(struct live_urb *urb)
5063 {
5064     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5065     g_hash_table_remove(urb_hashtable, urb);
5066 }
5067 
5068 static abi_long
5069 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
5070                           int fd, int cmd, abi_long arg)
5071 {
5072     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
5073     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
5074     struct live_urb *lurb;
5075     void *argptr;
5076     uint64_t hurb;
5077     int target_size;
5078     uintptr_t target_urb_adr;
5079     abi_long ret;
5080 
5081     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
5082 
5083     memset(buf_temp, 0, sizeof(uint64_t));
5084     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5085     if (is_error(ret)) {
5086         return ret;
5087     }
5088 
5089     memcpy(&hurb, buf_temp, sizeof(uint64_t));
5090     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
5091     if (!lurb->target_urb_adr) {
5092         return -TARGET_EFAULT;
5093     }
5094     urb_hashtable_remove(lurb);
5095     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
5096         lurb->host_urb.buffer_length);
5097     lurb->target_buf_ptr = NULL;
5098 
5099     /* restore the guest buffer pointer */
5100     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
5101 
5102     /* update the guest urb struct */
5103     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
5104     if (!argptr) {
5105         g_free(lurb);
5106         return -TARGET_EFAULT;
5107     }
5108     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5109     unlock_user(argptr, lurb->target_urb_adr, target_size);
5110 
5111     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5112     /* write back the urb handle */
5113     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5114     if (!argptr) {
5115         g_free(lurb);
5116         return -TARGET_EFAULT;
5117     }
5118 
5119     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5120     target_urb_adr = lurb->target_urb_adr;
5121     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5122     unlock_user(argptr, arg, target_size);
5123 
5124     g_free(lurb);
5125     return ret;
5126 }
5127 
5128 static abi_long
5129 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5130                              uint8_t *buf_temp __attribute__((unused)),
5131                              int fd, int cmd, abi_long arg)
5132 {
5133     struct live_urb *lurb;
5134 
5135     /* map target address back to host URB with metadata. */
5136     lurb = urb_hashtable_lookup(arg);
5137     if (!lurb) {
5138         return -TARGET_EFAULT;
5139     }
5140     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5141 }
5142 
5143 static abi_long
5144 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5145                             int fd, int cmd, abi_long arg)
5146 {
5147     const argtype *arg_type = ie->arg_type;
5148     int target_size;
5149     abi_long ret;
5150     void *argptr;
5151     int rw_dir;
5152     struct live_urb *lurb;
5153 
5154     /*
5155      * each submitted URB needs to map to a unique ID for the
5156      * kernel, and that unique ID needs to be a pointer to
5157      * host memory.  hence, we need to malloc for each URB.
5158      * isochronous transfers have a variable length struct.
5159      */
5160     arg_type++;
5161     target_size = thunk_type_size(arg_type, THUNK_TARGET);
5162 
5163     /* construct host copy of urb and metadata */
5164     lurb = g_try_malloc0(sizeof(struct live_urb));
5165     if (!lurb) {
5166         return -TARGET_ENOMEM;
5167     }
5168 
5169     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5170     if (!argptr) {
5171         g_free(lurb);
5172         return -TARGET_EFAULT;
5173     }
5174     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5175     unlock_user(argptr, arg, 0);
5176 
5177     lurb->target_urb_adr = arg;
5178     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5179 
5180     /* buffer space used depends on endpoint type so lock the entire buffer */
5181     /* control type urbs should check the buffer contents for true direction */
5182     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5183     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5184         lurb->host_urb.buffer_length, 1);
5185     if (lurb->target_buf_ptr == NULL) {
5186         g_free(lurb);
5187         return -TARGET_EFAULT;
5188     }
5189 
5190     /* update buffer pointer in host copy */
5191     lurb->host_urb.buffer = lurb->target_buf_ptr;
5192 
5193     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5194     if (is_error(ret)) {
5195         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5196         g_free(lurb);
5197     } else {
5198         urb_hashtable_insert(lurb);
5199     }
5200 
5201     return ret;
5202 }
5203 #endif /* CONFIG_USBFS */
5204 
5205 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5206                             int cmd, abi_long arg)
5207 {
5208     void *argptr;
5209     struct dm_ioctl *host_dm;
5210     abi_long guest_data;
5211     uint32_t guest_data_size;
5212     int target_size;
5213     const argtype *arg_type = ie->arg_type;
5214     abi_long ret;
5215     void *big_buf = NULL;
5216     char *host_data;
5217 
5218     arg_type++;
5219     target_size = thunk_type_size(arg_type, 0);
5220     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5221     if (!argptr) {
5222         ret = -TARGET_EFAULT;
5223         goto out;
5224     }
5225     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5226     unlock_user(argptr, arg, 0);
5227 
5228     /* buf_temp is too small, so fetch things into a bigger buffer */
5229     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5230     memcpy(big_buf, buf_temp, target_size);
5231     buf_temp = big_buf;
5232     host_dm = big_buf;
5233 
5234     guest_data = arg + host_dm->data_start;
5235     if ((guest_data - arg) < 0) {
5236         ret = -TARGET_EINVAL;
5237         goto out;
5238     }
5239     guest_data_size = host_dm->data_size - host_dm->data_start;
5240     host_data = (char*)host_dm + host_dm->data_start;
5241 
5242     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5243     if (!argptr) {
5244         ret = -TARGET_EFAULT;
5245         goto out;
5246     }
5247 
5248     switch (ie->host_cmd) {
5249     case DM_REMOVE_ALL:
5250     case DM_LIST_DEVICES:
5251     case DM_DEV_CREATE:
5252     case DM_DEV_REMOVE:
5253     case DM_DEV_SUSPEND:
5254     case DM_DEV_STATUS:
5255     case DM_DEV_WAIT:
5256     case DM_TABLE_STATUS:
5257     case DM_TABLE_CLEAR:
5258     case DM_TABLE_DEPS:
5259     case DM_LIST_VERSIONS:
5260         /* no input data */
5261         break;
5262     case DM_DEV_RENAME:
5263     case DM_DEV_SET_GEOMETRY:
5264         /* data contains only strings */
5265         memcpy(host_data, argptr, guest_data_size);
5266         break;
5267     case DM_TARGET_MSG:
5268         memcpy(host_data, argptr, guest_data_size);
5269         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5270         break;
5271     case DM_TABLE_LOAD:
5272     {
5273         void *gspec = argptr;
5274         void *cur_data = host_data;
5275         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5276         int spec_size = thunk_type_size(arg_type, 0);
5277         int i;
5278 
5279         for (i = 0; i < host_dm->target_count; i++) {
5280             struct dm_target_spec *spec = cur_data;
5281             uint32_t next;
5282             int slen;
5283 
5284             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5285             slen = strlen((char*)gspec + spec_size) + 1;
5286             next = spec->next;
5287             spec->next = sizeof(*spec) + slen;
5288             strcpy((char*)&spec[1], gspec + spec_size);
5289             gspec += next;
5290             cur_data += spec->next;
5291         }
5292         break;
5293     }
5294     default:
5295         ret = -TARGET_EINVAL;
5296         unlock_user(argptr, guest_data, 0);
5297         goto out;
5298     }
5299     unlock_user(argptr, guest_data, 0);
5300 
5301     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5302     if (!is_error(ret)) {
5303         guest_data = arg + host_dm->data_start;
5304         guest_data_size = host_dm->data_size - host_dm->data_start;
5305         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5306         switch (ie->host_cmd) {
5307         case DM_REMOVE_ALL:
5308         case DM_DEV_CREATE:
5309         case DM_DEV_REMOVE:
5310         case DM_DEV_RENAME:
5311         case DM_DEV_SUSPEND:
5312         case DM_DEV_STATUS:
5313         case DM_TABLE_LOAD:
5314         case DM_TABLE_CLEAR:
5315         case DM_TARGET_MSG:
5316         case DM_DEV_SET_GEOMETRY:
5317             /* no return data */
5318             break;
5319         case DM_LIST_DEVICES:
5320         {
5321             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5322             uint32_t remaining_data = guest_data_size;
5323             void *cur_data = argptr;
5324             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5325             int nl_size = 12; /* can't use thunk_size due to alignment */
5326 
5327             while (1) {
5328                 uint32_t next = nl->next;
5329                 if (next) {
5330                     nl->next = nl_size + (strlen(nl->name) + 1);
5331                 }
5332                 if (remaining_data < nl->next) {
5333                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5334                     break;
5335                 }
5336                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5337                 strcpy(cur_data + nl_size, nl->name);
5338                 cur_data += nl->next;
5339                 remaining_data -= nl->next;
5340                 if (!next) {
5341                     break;
5342                 }
5343                 nl = (void*)nl + next;
5344             }
5345             break;
5346         }
5347         case DM_DEV_WAIT:
5348         case DM_TABLE_STATUS:
5349         {
5350             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5351             void *cur_data = argptr;
5352             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5353             int spec_size = thunk_type_size(arg_type, 0);
5354             int i;
5355 
5356             for (i = 0; i < host_dm->target_count; i++) {
5357                 uint32_t next = spec->next;
5358                 int slen = strlen((char*)&spec[1]) + 1;
5359                 spec->next = (cur_data - argptr) + spec_size + slen;
5360                 if (guest_data_size < spec->next) {
5361                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5362                     break;
5363                 }
5364                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5365                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5366                 cur_data = argptr + spec->next;
5367                 spec = (void*)host_dm + host_dm->data_start + next;
5368             }
5369             break;
5370         }
5371         case DM_TABLE_DEPS:
5372         {
5373             void *hdata = (void*)host_dm + host_dm->data_start;
5374             int count = *(uint32_t*)hdata;
5375             uint64_t *hdev = hdata + 8;
5376             uint64_t *gdev = argptr + 8;
5377             int i;
5378 
5379             *(uint32_t*)argptr = tswap32(count);
5380             for (i = 0; i < count; i++) {
5381                 *gdev = tswap64(*hdev);
5382                 gdev++;
5383                 hdev++;
5384             }
5385             break;
5386         }
5387         case DM_LIST_VERSIONS:
5388         {
5389             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5390             uint32_t remaining_data = guest_data_size;
5391             void *cur_data = argptr;
5392             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5393             int vers_size = thunk_type_size(arg_type, 0);
5394 
5395             while (1) {
5396                 uint32_t next = vers->next;
5397                 if (next) {
5398                     vers->next = vers_size + (strlen(vers->name) + 1);
5399                 }
5400                 if (remaining_data < vers->next) {
5401                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5402                     break;
5403                 }
5404                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5405                 strcpy(cur_data + vers_size, vers->name);
5406                 cur_data += vers->next;
5407                 remaining_data -= vers->next;
5408                 if (!next) {
5409                     break;
5410                 }
5411                 vers = (void*)vers + next;
5412             }
5413             break;
5414         }
5415         default:
5416             unlock_user(argptr, guest_data, 0);
5417             ret = -TARGET_EINVAL;
5418             goto out;
5419         }
5420         unlock_user(argptr, guest_data, guest_data_size);
5421 
5422         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5423         if (!argptr) {
5424             ret = -TARGET_EFAULT;
5425             goto out;
5426         }
5427         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5428         unlock_user(argptr, arg, target_size);
5429     }
5430 out:
5431     g_free(big_buf);
5432     return ret;
5433 }
5434 
5435 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5436                                int cmd, abi_long arg)
5437 {
5438     void *argptr;
5439     int target_size;
5440     const argtype *arg_type = ie->arg_type;
5441     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5442     abi_long ret;
5443 
5444     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5445     struct blkpg_partition host_part;
5446 
5447     /* Read and convert blkpg */
5448     arg_type++;
5449     target_size = thunk_type_size(arg_type, 0);
5450     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5451     if (!argptr) {
5452         ret = -TARGET_EFAULT;
5453         goto out;
5454     }
5455     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5456     unlock_user(argptr, arg, 0);
5457 
5458     switch (host_blkpg->op) {
5459     case BLKPG_ADD_PARTITION:
5460     case BLKPG_DEL_PARTITION:
5461         /* payload is struct blkpg_partition */
5462         break;
5463     default:
5464         /* Unknown opcode */
5465         ret = -TARGET_EINVAL;
5466         goto out;
5467     }
5468 
5469     /* Read and convert blkpg->data */
5470     arg = (abi_long)(uintptr_t)host_blkpg->data;
5471     target_size = thunk_type_size(part_arg_type, 0);
5472     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5473     if (!argptr) {
5474         ret = -TARGET_EFAULT;
5475         goto out;
5476     }
5477     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5478     unlock_user(argptr, arg, 0);
5479 
5480     /* Swizzle the data pointer to our local copy and call! */
5481     host_blkpg->data = &host_part;
5482     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5483 
5484 out:
5485     return ret;
5486 }
5487 
5488 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5489                                 int fd, int cmd, abi_long arg)
5490 {
5491     const argtype *arg_type = ie->arg_type;
5492     const StructEntry *se;
5493     const argtype *field_types;
5494     const int *dst_offsets, *src_offsets;
5495     int target_size;
5496     void *argptr;
5497     abi_ulong *target_rt_dev_ptr = NULL;
5498     unsigned long *host_rt_dev_ptr = NULL;
5499     abi_long ret;
5500     int i;
5501 
5502     assert(ie->access == IOC_W);
5503     assert(*arg_type == TYPE_PTR);
5504     arg_type++;
5505     assert(*arg_type == TYPE_STRUCT);
5506     target_size = thunk_type_size(arg_type, 0);
5507     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5508     if (!argptr) {
5509         return -TARGET_EFAULT;
5510     }
5511     arg_type++;
5512     assert(*arg_type == (int)STRUCT_rtentry);
5513     se = struct_entries + *arg_type++;
5514     assert(se->convert[0] == NULL);
5515     /* convert struct here to be able to catch rt_dev string */
5516     field_types = se->field_types;
5517     dst_offsets = se->field_offsets[THUNK_HOST];
5518     src_offsets = se->field_offsets[THUNK_TARGET];
5519     for (i = 0; i < se->nb_fields; i++) {
5520         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5521             assert(*field_types == TYPE_PTRVOID);
5522             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5523             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5524             if (*target_rt_dev_ptr != 0) {
5525                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5526                                                   tswapal(*target_rt_dev_ptr));
5527                 if (!*host_rt_dev_ptr) {
5528                     unlock_user(argptr, arg, 0);
5529                     return -TARGET_EFAULT;
5530                 }
5531             } else {
5532                 *host_rt_dev_ptr = 0;
5533             }
5534             field_types++;
5535             continue;
5536         }
5537         field_types = thunk_convert(buf_temp + dst_offsets[i],
5538                                     argptr + src_offsets[i],
5539                                     field_types, THUNK_HOST);
5540     }
5541     unlock_user(argptr, arg, 0);
5542 
5543     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5544 
5545     assert(host_rt_dev_ptr != NULL);
5546     assert(target_rt_dev_ptr != NULL);
5547     if (*host_rt_dev_ptr != 0) {
5548         unlock_user((void *)*host_rt_dev_ptr,
5549                     *target_rt_dev_ptr, 0);
5550     }
5551     return ret;
5552 }
5553 
5554 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5555                                      int fd, int cmd, abi_long arg)
5556 {
5557     int sig = target_to_host_signal(arg);
5558     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5559 }
5560 
5561 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5562                                     int fd, int cmd, abi_long arg)
5563 {
5564     struct timeval tv;
5565     abi_long ret;
5566 
5567     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5568     if (is_error(ret)) {
5569         return ret;
5570     }
5571 
5572     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5573         if (copy_to_user_timeval(arg, &tv)) {
5574             return -TARGET_EFAULT;
5575         }
5576     } else {
5577         if (copy_to_user_timeval64(arg, &tv)) {
5578             return -TARGET_EFAULT;
5579         }
5580     }
5581 
5582     return ret;
5583 }
5584 
5585 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5586                                       int fd, int cmd, abi_long arg)
5587 {
5588     struct timespec ts;
5589     abi_long ret;
5590 
5591     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5592     if (is_error(ret)) {
5593         return ret;
5594     }
5595 
5596     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5597         if (host_to_target_timespec(arg, &ts)) {
5598             return -TARGET_EFAULT;
5599         }
5600     } else{
5601         if (host_to_target_timespec64(arg, &ts)) {
5602             return -TARGET_EFAULT;
5603         }
5604     }
5605 
5606     return ret;
5607 }
5608 
5609 #ifdef TIOCGPTPEER
5610 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5611                                      int fd, int cmd, abi_long arg)
5612 {
5613     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5614     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5615 }
5616 #endif
5617 
5618 #ifdef HAVE_DRM_H
5619 
5620 static void unlock_drm_version(struct drm_version *host_ver,
5621                                struct target_drm_version *target_ver,
5622                                bool copy)
5623 {
5624     unlock_user(host_ver->name, target_ver->name,
5625                                 copy ? host_ver->name_len : 0);
5626     unlock_user(host_ver->date, target_ver->date,
5627                                 copy ? host_ver->date_len : 0);
5628     unlock_user(host_ver->desc, target_ver->desc,
5629                                 copy ? host_ver->desc_len : 0);
5630 }
5631 
5632 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5633                                           struct target_drm_version *target_ver)
5634 {
5635     memset(host_ver, 0, sizeof(*host_ver));
5636 
5637     __get_user(host_ver->name_len, &target_ver->name_len);
5638     if (host_ver->name_len) {
5639         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5640                                    target_ver->name_len, 0);
5641         if (!host_ver->name) {
5642             return -EFAULT;
5643         }
5644     }
5645 
5646     __get_user(host_ver->date_len, &target_ver->date_len);
5647     if (host_ver->date_len) {
5648         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5649                                    target_ver->date_len, 0);
5650         if (!host_ver->date) {
5651             goto err;
5652         }
5653     }
5654 
5655     __get_user(host_ver->desc_len, &target_ver->desc_len);
5656     if (host_ver->desc_len) {
5657         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5658                                    target_ver->desc_len, 0);
5659         if (!host_ver->desc) {
5660             goto err;
5661         }
5662     }
5663 
5664     return 0;
5665 err:
5666     unlock_drm_version(host_ver, target_ver, false);
5667     return -EFAULT;
5668 }
5669 
5670 static inline void host_to_target_drmversion(
5671                                           struct target_drm_version *target_ver,
5672                                           struct drm_version *host_ver)
5673 {
5674     __put_user(host_ver->version_major, &target_ver->version_major);
5675     __put_user(host_ver->version_minor, &target_ver->version_minor);
5676     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5677     __put_user(host_ver->name_len, &target_ver->name_len);
5678     __put_user(host_ver->date_len, &target_ver->date_len);
5679     __put_user(host_ver->desc_len, &target_ver->desc_len);
5680     unlock_drm_version(host_ver, target_ver, true);
5681 }
5682 
5683 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5684                              int fd, int cmd, abi_long arg)
5685 {
5686     struct drm_version *ver;
5687     struct target_drm_version *target_ver;
5688     abi_long ret;
5689 
5690     switch (ie->host_cmd) {
5691     case DRM_IOCTL_VERSION:
5692         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5693             return -TARGET_EFAULT;
5694         }
5695         ver = (struct drm_version *)buf_temp;
5696         ret = target_to_host_drmversion(ver, target_ver);
5697         if (!is_error(ret)) {
5698             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5699             if (is_error(ret)) {
5700                 unlock_drm_version(ver, target_ver, false);
5701             } else {
5702                 host_to_target_drmversion(target_ver, ver);
5703             }
5704         }
5705         unlock_user_struct(target_ver, arg, 0);
5706         return ret;
5707     }
5708     return -TARGET_ENOSYS;
5709 }
5710 
5711 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5712                                            struct drm_i915_getparam *gparam,
5713                                            int fd, abi_long arg)
5714 {
5715     abi_long ret;
5716     int value;
5717     struct target_drm_i915_getparam *target_gparam;
5718 
5719     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5720         return -TARGET_EFAULT;
5721     }
5722 
5723     __get_user(gparam->param, &target_gparam->param);
5724     gparam->value = &value;
5725     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5726     put_user_s32(value, target_gparam->value);
5727 
5728     unlock_user_struct(target_gparam, arg, 0);
5729     return ret;
5730 }
5731 
5732 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5733                                   int fd, int cmd, abi_long arg)
5734 {
5735     switch (ie->host_cmd) {
5736     case DRM_IOCTL_I915_GETPARAM:
5737         return do_ioctl_drm_i915_getparam(ie,
5738                                           (struct drm_i915_getparam *)buf_temp,
5739                                           fd, arg);
5740     default:
5741         return -TARGET_ENOSYS;
5742     }
5743 }
5744 
5745 #endif
5746 
5747 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5748                                         int fd, int cmd, abi_long arg)
5749 {
5750     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5751     struct tun_filter *target_filter;
5752     char *target_addr;
5753 
5754     assert(ie->access == IOC_W);
5755 
5756     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5757     if (!target_filter) {
5758         return -TARGET_EFAULT;
5759     }
5760     filter->flags = tswap16(target_filter->flags);
5761     filter->count = tswap16(target_filter->count);
5762     unlock_user(target_filter, arg, 0);
5763 
5764     if (filter->count) {
5765         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5766             MAX_STRUCT_SIZE) {
5767             return -TARGET_EFAULT;
5768         }
5769 
5770         target_addr = lock_user(VERIFY_READ,
5771                                 arg + offsetof(struct tun_filter, addr),
5772                                 filter->count * ETH_ALEN, 1);
5773         if (!target_addr) {
5774             return -TARGET_EFAULT;
5775         }
5776         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5777         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5778     }
5779 
5780     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5781 }
5782 
5783 IOCTLEntry ioctl_entries[] = {
5784 #define IOCTL(cmd, access, ...) \
5785     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5786 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5787     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5788 #define IOCTL_IGNORE(cmd) \
5789     { TARGET_ ## cmd, 0, #cmd },
5790 #include "ioctls.h"
5791     { 0, 0, },
5792 };
5793 
5794 /* ??? Implement proper locking for ioctls.  */
5795 /* do_ioctl() Must return target values and target errnos. */
5796 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5797 {
5798     const IOCTLEntry *ie;
5799     const argtype *arg_type;
5800     abi_long ret;
5801     uint8_t buf_temp[MAX_STRUCT_SIZE];
5802     int target_size;
5803     void *argptr;
5804 
5805     ie = ioctl_entries;
5806     for(;;) {
5807         if (ie->target_cmd == 0) {
5808             qemu_log_mask(
5809                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5810             return -TARGET_ENOSYS;
5811         }
5812         if (ie->target_cmd == cmd)
5813             break;
5814         ie++;
5815     }
5816     arg_type = ie->arg_type;
5817     if (ie->do_ioctl) {
5818         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5819     } else if (!ie->host_cmd) {
5820         /* Some architectures define BSD ioctls in their headers
5821            that are not implemented in Linux.  */
5822         return -TARGET_ENOSYS;
5823     }
5824 
5825     switch(arg_type[0]) {
5826     case TYPE_NULL:
5827         /* no argument */
5828         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5829         break;
5830     case TYPE_PTRVOID:
5831     case TYPE_INT:
5832     case TYPE_LONG:
5833     case TYPE_ULONG:
5834         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5835         break;
5836     case TYPE_PTR:
5837         arg_type++;
5838         target_size = thunk_type_size(arg_type, 0);
5839         switch(ie->access) {
5840         case IOC_R:
5841             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5842             if (!is_error(ret)) {
5843                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5844                 if (!argptr)
5845                     return -TARGET_EFAULT;
5846                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5847                 unlock_user(argptr, arg, target_size);
5848             }
5849             break;
5850         case IOC_W:
5851             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5852             if (!argptr)
5853                 return -TARGET_EFAULT;
5854             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5855             unlock_user(argptr, arg, 0);
5856             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5857             break;
5858         default:
5859         case IOC_RW:
5860             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5861             if (!argptr)
5862                 return -TARGET_EFAULT;
5863             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5864             unlock_user(argptr, arg, 0);
5865             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5866             if (!is_error(ret)) {
5867                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5868                 if (!argptr)
5869                     return -TARGET_EFAULT;
5870                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5871                 unlock_user(argptr, arg, target_size);
5872             }
5873             break;
5874         }
5875         break;
5876     default:
5877         qemu_log_mask(LOG_UNIMP,
5878                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5879                       (long)cmd, arg_type[0]);
5880         ret = -TARGET_ENOSYS;
5881         break;
5882     }
5883     return ret;
5884 }
5885 
5886 static const bitmask_transtbl iflag_tbl[] = {
5887         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5888         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5889         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5890         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5891         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5892         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5893         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5894         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5895         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5896         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5897         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5898         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5899         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5900         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5901         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5902         { 0, 0, 0, 0 }
5903 };
5904 
5905 static const bitmask_transtbl oflag_tbl[] = {
5906 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5907 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5908 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5909 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5910 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5911 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5912 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5913 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5914 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5915 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5916 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5917 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5918 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5919 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5920 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5921 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5922 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5923 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5924 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5925 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5926 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5927 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5928 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5929 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5930 	{ 0, 0, 0, 0 }
5931 };
5932 
5933 static const bitmask_transtbl cflag_tbl[] = {
5934 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5935 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5936 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5937 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5938 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5939 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5940 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5941 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5942 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5943 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5944 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5945 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5946 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5947 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5948 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5949 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5950 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5951 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5952 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5953 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5954 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5955 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5956 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5957 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5958 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5959 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5960 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5961 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5962 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5963 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5964 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5965 	{ 0, 0, 0, 0 }
5966 };
5967 
5968 static const bitmask_transtbl lflag_tbl[] = {
5969   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5970   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5971   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5972   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5973   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5974   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5975   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5976   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5977   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5978   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5979   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5980   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5981   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5982   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5983   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5984   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5985   { 0, 0, 0, 0 }
5986 };
5987 
5988 static void target_to_host_termios (void *dst, const void *src)
5989 {
5990     struct host_termios *host = dst;
5991     const struct target_termios *target = src;
5992 
5993     host->c_iflag =
5994         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5995     host->c_oflag =
5996         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5997     host->c_cflag =
5998         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5999     host->c_lflag =
6000         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
6001     host->c_line = target->c_line;
6002 
6003     memset(host->c_cc, 0, sizeof(host->c_cc));
6004     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
6005     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
6006     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
6007     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
6008     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
6009     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
6010     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
6011     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
6012     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
6013     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
6014     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
6015     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
6016     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
6017     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
6018     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
6019     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
6020     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
6021 }
6022 
6023 static void host_to_target_termios (void *dst, const void *src)
6024 {
6025     struct target_termios *target = dst;
6026     const struct host_termios *host = src;
6027 
6028     target->c_iflag =
6029         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
6030     target->c_oflag =
6031         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
6032     target->c_cflag =
6033         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
6034     target->c_lflag =
6035         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
6036     target->c_line = host->c_line;
6037 
6038     memset(target->c_cc, 0, sizeof(target->c_cc));
6039     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
6040     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
6041     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
6042     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
6043     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
6044     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
6045     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
6046     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
6047     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
6048     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
6049     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
6050     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
6051     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
6052     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
6053     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
6054     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
6055     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
6056 }
6057 
6058 static const StructEntry struct_termios_def = {
6059     .convert = { host_to_target_termios, target_to_host_termios },
6060     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
6061     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
6062     .print = print_termios,
6063 };
6064 
6065 static bitmask_transtbl mmap_flags_tbl[] = {
6066     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
6067     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
6068     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
6069     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
6070       MAP_ANONYMOUS, MAP_ANONYMOUS },
6071     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
6072       MAP_GROWSDOWN, MAP_GROWSDOWN },
6073     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
6074       MAP_DENYWRITE, MAP_DENYWRITE },
6075     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
6076       MAP_EXECUTABLE, MAP_EXECUTABLE },
6077     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
6078     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
6079       MAP_NORESERVE, MAP_NORESERVE },
6080     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
6081     /* MAP_STACK had been ignored by the kernel for quite some time.
6082        Recognize it for the target insofar as we do not want to pass
6083        it through to the host.  */
6084     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6085     { 0, 0, 0, 0 }
6086 };
6087 
6088 /*
6089  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
6090  *       TARGET_I386 is defined if TARGET_X86_64 is defined
6091  */
6092 #if defined(TARGET_I386)
6093 
6094 /* NOTE: there is really one LDT for all the threads */
6095 static uint8_t *ldt_table;
6096 
6097 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6098 {
6099     int size;
6100     void *p;
6101 
6102     if (!ldt_table)
6103         return 0;
6104     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6105     if (size > bytecount)
6106         size = bytecount;
6107     p = lock_user(VERIFY_WRITE, ptr, size, 0);
6108     if (!p)
6109         return -TARGET_EFAULT;
6110     /* ??? Should this by byteswapped?  */
6111     memcpy(p, ldt_table, size);
6112     unlock_user(p, ptr, size);
6113     return size;
6114 }
6115 
6116 /* XXX: add locking support */
6117 static abi_long write_ldt(CPUX86State *env,
6118                           abi_ulong ptr, unsigned long bytecount, int oldmode)
6119 {
6120     struct target_modify_ldt_ldt_s ldt_info;
6121     struct target_modify_ldt_ldt_s *target_ldt_info;
6122     int seg_32bit, contents, read_exec_only, limit_in_pages;
6123     int seg_not_present, useable, lm;
6124     uint32_t *lp, entry_1, entry_2;
6125 
6126     if (bytecount != sizeof(ldt_info))
6127         return -TARGET_EINVAL;
6128     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6129         return -TARGET_EFAULT;
6130     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6131     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6132     ldt_info.limit = tswap32(target_ldt_info->limit);
6133     ldt_info.flags = tswap32(target_ldt_info->flags);
6134     unlock_user_struct(target_ldt_info, ptr, 0);
6135 
6136     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6137         return -TARGET_EINVAL;
6138     seg_32bit = ldt_info.flags & 1;
6139     contents = (ldt_info.flags >> 1) & 3;
6140     read_exec_only = (ldt_info.flags >> 3) & 1;
6141     limit_in_pages = (ldt_info.flags >> 4) & 1;
6142     seg_not_present = (ldt_info.flags >> 5) & 1;
6143     useable = (ldt_info.flags >> 6) & 1;
6144 #ifdef TARGET_ABI32
6145     lm = 0;
6146 #else
6147     lm = (ldt_info.flags >> 7) & 1;
6148 #endif
6149     if (contents == 3) {
6150         if (oldmode)
6151             return -TARGET_EINVAL;
6152         if (seg_not_present == 0)
6153             return -TARGET_EINVAL;
6154     }
6155     /* allocate the LDT */
6156     if (!ldt_table) {
6157         env->ldt.base = target_mmap(0,
6158                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6159                                     PROT_READ|PROT_WRITE,
6160                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6161         if (env->ldt.base == -1)
6162             return -TARGET_ENOMEM;
6163         memset(g2h_untagged(env->ldt.base), 0,
6164                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6165         env->ldt.limit = 0xffff;
6166         ldt_table = g2h_untagged(env->ldt.base);
6167     }
6168 
6169     /* NOTE: same code as Linux kernel */
6170     /* Allow LDTs to be cleared by the user. */
6171     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6172         if (oldmode ||
6173             (contents == 0		&&
6174              read_exec_only == 1	&&
6175              seg_32bit == 0		&&
6176              limit_in_pages == 0	&&
6177              seg_not_present == 1	&&
6178              useable == 0 )) {
6179             entry_1 = 0;
6180             entry_2 = 0;
6181             goto install;
6182         }
6183     }
6184 
6185     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6186         (ldt_info.limit & 0x0ffff);
6187     entry_2 = (ldt_info.base_addr & 0xff000000) |
6188         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6189         (ldt_info.limit & 0xf0000) |
6190         ((read_exec_only ^ 1) << 9) |
6191         (contents << 10) |
6192         ((seg_not_present ^ 1) << 15) |
6193         (seg_32bit << 22) |
6194         (limit_in_pages << 23) |
6195         (lm << 21) |
6196         0x7000;
6197     if (!oldmode)
6198         entry_2 |= (useable << 20);
6199 
6200     /* Install the new entry ...  */
6201 install:
6202     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6203     lp[0] = tswap32(entry_1);
6204     lp[1] = tswap32(entry_2);
6205     return 0;
6206 }
6207 
6208 /* specific and weird i386 syscalls */
6209 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6210                               unsigned long bytecount)
6211 {
6212     abi_long ret;
6213 
6214     switch (func) {
6215     case 0:
6216         ret = read_ldt(ptr, bytecount);
6217         break;
6218     case 1:
6219         ret = write_ldt(env, ptr, bytecount, 1);
6220         break;
6221     case 0x11:
6222         ret = write_ldt(env, ptr, bytecount, 0);
6223         break;
6224     default:
6225         ret = -TARGET_ENOSYS;
6226         break;
6227     }
6228     return ret;
6229 }
6230 
6231 #if defined(TARGET_ABI32)
6232 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6233 {
6234     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6235     struct target_modify_ldt_ldt_s ldt_info;
6236     struct target_modify_ldt_ldt_s *target_ldt_info;
6237     int seg_32bit, contents, read_exec_only, limit_in_pages;
6238     int seg_not_present, useable, lm;
6239     uint32_t *lp, entry_1, entry_2;
6240     int i;
6241 
6242     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6243     if (!target_ldt_info)
6244         return -TARGET_EFAULT;
6245     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6246     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6247     ldt_info.limit = tswap32(target_ldt_info->limit);
6248     ldt_info.flags = tswap32(target_ldt_info->flags);
6249     if (ldt_info.entry_number == -1) {
6250         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6251             if (gdt_table[i] == 0) {
6252                 ldt_info.entry_number = i;
6253                 target_ldt_info->entry_number = tswap32(i);
6254                 break;
6255             }
6256         }
6257     }
6258     unlock_user_struct(target_ldt_info, ptr, 1);
6259 
6260     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6261         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6262            return -TARGET_EINVAL;
6263     seg_32bit = ldt_info.flags & 1;
6264     contents = (ldt_info.flags >> 1) & 3;
6265     read_exec_only = (ldt_info.flags >> 3) & 1;
6266     limit_in_pages = (ldt_info.flags >> 4) & 1;
6267     seg_not_present = (ldt_info.flags >> 5) & 1;
6268     useable = (ldt_info.flags >> 6) & 1;
6269 #ifdef TARGET_ABI32
6270     lm = 0;
6271 #else
6272     lm = (ldt_info.flags >> 7) & 1;
6273 #endif
6274 
6275     if (contents == 3) {
6276         if (seg_not_present == 0)
6277             return -TARGET_EINVAL;
6278     }
6279 
6280     /* NOTE: same code as Linux kernel */
6281     /* Allow LDTs to be cleared by the user. */
6282     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6283         if ((contents == 0             &&
6284              read_exec_only == 1       &&
6285              seg_32bit == 0            &&
6286              limit_in_pages == 0       &&
6287              seg_not_present == 1      &&
6288              useable == 0 )) {
6289             entry_1 = 0;
6290             entry_2 = 0;
6291             goto install;
6292         }
6293     }
6294 
6295     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6296         (ldt_info.limit & 0x0ffff);
6297     entry_2 = (ldt_info.base_addr & 0xff000000) |
6298         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6299         (ldt_info.limit & 0xf0000) |
6300         ((read_exec_only ^ 1) << 9) |
6301         (contents << 10) |
6302         ((seg_not_present ^ 1) << 15) |
6303         (seg_32bit << 22) |
6304         (limit_in_pages << 23) |
6305         (useable << 20) |
6306         (lm << 21) |
6307         0x7000;
6308 
6309     /* Install the new entry ...  */
6310 install:
6311     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6312     lp[0] = tswap32(entry_1);
6313     lp[1] = tswap32(entry_2);
6314     return 0;
6315 }
6316 
6317 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6318 {
6319     struct target_modify_ldt_ldt_s *target_ldt_info;
6320     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6321     uint32_t base_addr, limit, flags;
6322     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6323     int seg_not_present, useable, lm;
6324     uint32_t *lp, entry_1, entry_2;
6325 
6326     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6327     if (!target_ldt_info)
6328         return -TARGET_EFAULT;
6329     idx = tswap32(target_ldt_info->entry_number);
6330     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6331         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6332         unlock_user_struct(target_ldt_info, ptr, 1);
6333         return -TARGET_EINVAL;
6334     }
6335     lp = (uint32_t *)(gdt_table + idx);
6336     entry_1 = tswap32(lp[0]);
6337     entry_2 = tswap32(lp[1]);
6338 
6339     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6340     contents = (entry_2 >> 10) & 3;
6341     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6342     seg_32bit = (entry_2 >> 22) & 1;
6343     limit_in_pages = (entry_2 >> 23) & 1;
6344     useable = (entry_2 >> 20) & 1;
6345 #ifdef TARGET_ABI32
6346     lm = 0;
6347 #else
6348     lm = (entry_2 >> 21) & 1;
6349 #endif
6350     flags = (seg_32bit << 0) | (contents << 1) |
6351         (read_exec_only << 3) | (limit_in_pages << 4) |
6352         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6353     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6354     base_addr = (entry_1 >> 16) |
6355         (entry_2 & 0xff000000) |
6356         ((entry_2 & 0xff) << 16);
6357     target_ldt_info->base_addr = tswapal(base_addr);
6358     target_ldt_info->limit = tswap32(limit);
6359     target_ldt_info->flags = tswap32(flags);
6360     unlock_user_struct(target_ldt_info, ptr, 1);
6361     return 0;
6362 }
6363 
6364 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6365 {
6366     return -TARGET_ENOSYS;
6367 }
6368 #else
6369 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6370 {
6371     abi_long ret = 0;
6372     abi_ulong val;
6373     int idx;
6374 
6375     switch(code) {
6376     case TARGET_ARCH_SET_GS:
6377     case TARGET_ARCH_SET_FS:
6378         if (code == TARGET_ARCH_SET_GS)
6379             idx = R_GS;
6380         else
6381             idx = R_FS;
6382         cpu_x86_load_seg(env, idx, 0);
6383         env->segs[idx].base = addr;
6384         break;
6385     case TARGET_ARCH_GET_GS:
6386     case TARGET_ARCH_GET_FS:
6387         if (code == TARGET_ARCH_GET_GS)
6388             idx = R_GS;
6389         else
6390             idx = R_FS;
6391         val = env->segs[idx].base;
6392         if (put_user(val, addr, abi_ulong))
6393             ret = -TARGET_EFAULT;
6394         break;
6395     default:
6396         ret = -TARGET_EINVAL;
6397         break;
6398     }
6399     return ret;
6400 }
6401 #endif /* defined(TARGET_ABI32 */
6402 
6403 #endif /* defined(TARGET_I386) */
6404 
6405 #define NEW_STACK_SIZE 0x40000
6406 
6407 
6408 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6409 typedef struct {
6410     CPUArchState *env;
6411     pthread_mutex_t mutex;
6412     pthread_cond_t cond;
6413     pthread_t thread;
6414     uint32_t tid;
6415     abi_ulong child_tidptr;
6416     abi_ulong parent_tidptr;
6417     sigset_t sigmask;
6418 } new_thread_info;
6419 
6420 static void *clone_func(void *arg)
6421 {
6422     new_thread_info *info = arg;
6423     CPUArchState *env;
6424     CPUState *cpu;
6425     TaskState *ts;
6426 
6427     rcu_register_thread();
6428     tcg_register_thread();
6429     env = info->env;
6430     cpu = env_cpu(env);
6431     thread_cpu = cpu;
6432     ts = (TaskState *)cpu->opaque;
6433     info->tid = sys_gettid();
6434     task_settid(ts);
6435     if (info->child_tidptr)
6436         put_user_u32(info->tid, info->child_tidptr);
6437     if (info->parent_tidptr)
6438         put_user_u32(info->tid, info->parent_tidptr);
6439     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6440     /* Enable signals.  */
6441     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6442     /* Signal to the parent that we're ready.  */
6443     pthread_mutex_lock(&info->mutex);
6444     pthread_cond_broadcast(&info->cond);
6445     pthread_mutex_unlock(&info->mutex);
6446     /* Wait until the parent has finished initializing the tls state.  */
6447     pthread_mutex_lock(&clone_lock);
6448     pthread_mutex_unlock(&clone_lock);
6449     cpu_loop(env);
6450     /* never exits */
6451     return NULL;
6452 }
6453 
6454 /* do_fork() Must return host values and target errnos (unlike most
6455    do_*() functions). */
6456 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6457                    abi_ulong parent_tidptr, target_ulong newtls,
6458                    abi_ulong child_tidptr)
6459 {
6460     CPUState *cpu = env_cpu(env);
6461     int ret;
6462     TaskState *ts;
6463     CPUState *new_cpu;
6464     CPUArchState *new_env;
6465     sigset_t sigmask;
6466 
6467     flags &= ~CLONE_IGNORED_FLAGS;
6468 
6469     /* Emulate vfork() with fork() */
6470     if (flags & CLONE_VFORK)
6471         flags &= ~(CLONE_VFORK | CLONE_VM);
6472 
6473     if (flags & CLONE_VM) {
6474         TaskState *parent_ts = (TaskState *)cpu->opaque;
6475         new_thread_info info;
6476         pthread_attr_t attr;
6477 
6478         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6479             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6480             return -TARGET_EINVAL;
6481         }
6482 
6483         ts = g_new0(TaskState, 1);
6484         init_task_state(ts);
6485 
6486         /* Grab a mutex so that thread setup appears atomic.  */
6487         pthread_mutex_lock(&clone_lock);
6488 
6489         /*
6490          * If this is our first additional thread, we need to ensure we
6491          * generate code for parallel execution and flush old translations.
6492          * Do this now so that the copy gets CF_PARALLEL too.
6493          */
6494         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6495             cpu->tcg_cflags |= CF_PARALLEL;
6496             tb_flush(cpu);
6497         }
6498 
6499         /* we create a new CPU instance. */
6500         new_env = cpu_copy(env);
6501         /* Init regs that differ from the parent.  */
6502         cpu_clone_regs_child(new_env, newsp, flags);
6503         cpu_clone_regs_parent(env, flags);
6504         new_cpu = env_cpu(new_env);
6505         new_cpu->opaque = ts;
6506         ts->bprm = parent_ts->bprm;
6507         ts->info = parent_ts->info;
6508         ts->signal_mask = parent_ts->signal_mask;
6509 
6510         if (flags & CLONE_CHILD_CLEARTID) {
6511             ts->child_tidptr = child_tidptr;
6512         }
6513 
6514         if (flags & CLONE_SETTLS) {
6515             cpu_set_tls (new_env, newtls);
6516         }
6517 
6518         memset(&info, 0, sizeof(info));
6519         pthread_mutex_init(&info.mutex, NULL);
6520         pthread_mutex_lock(&info.mutex);
6521         pthread_cond_init(&info.cond, NULL);
6522         info.env = new_env;
6523         if (flags & CLONE_CHILD_SETTID) {
6524             info.child_tidptr = child_tidptr;
6525         }
6526         if (flags & CLONE_PARENT_SETTID) {
6527             info.parent_tidptr = parent_tidptr;
6528         }
6529 
6530         ret = pthread_attr_init(&attr);
6531         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6532         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6533         /* It is not safe to deliver signals until the child has finished
6534            initializing, so temporarily block all signals.  */
6535         sigfillset(&sigmask);
6536         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6537         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6538 
6539         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6540         /* TODO: Free new CPU state if thread creation failed.  */
6541 
6542         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6543         pthread_attr_destroy(&attr);
6544         if (ret == 0) {
6545             /* Wait for the child to initialize.  */
6546             pthread_cond_wait(&info.cond, &info.mutex);
6547             ret = info.tid;
6548         } else {
6549             ret = -1;
6550         }
6551         pthread_mutex_unlock(&info.mutex);
6552         pthread_cond_destroy(&info.cond);
6553         pthread_mutex_destroy(&info.mutex);
6554         pthread_mutex_unlock(&clone_lock);
6555     } else {
6556         /* if no CLONE_VM, we consider it is a fork */
6557         if (flags & CLONE_INVALID_FORK_FLAGS) {
6558             return -TARGET_EINVAL;
6559         }
6560 
6561         /* We can't support custom termination signals */
6562         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6563             return -TARGET_EINVAL;
6564         }
6565 
6566         if (block_signals()) {
6567             return -TARGET_ERESTARTSYS;
6568         }
6569 
6570         fork_start();
6571         ret = fork();
6572         if (ret == 0) {
6573             /* Child Process.  */
6574             cpu_clone_regs_child(env, newsp, flags);
6575             fork_end(1);
6576             /* There is a race condition here.  The parent process could
6577                theoretically read the TID in the child process before the child
6578                tid is set.  This would require using either ptrace
6579                (not implemented) or having *_tidptr to point at a shared memory
6580                mapping.  We can't repeat the spinlock hack used above because
6581                the child process gets its own copy of the lock.  */
6582             if (flags & CLONE_CHILD_SETTID)
6583                 put_user_u32(sys_gettid(), child_tidptr);
6584             if (flags & CLONE_PARENT_SETTID)
6585                 put_user_u32(sys_gettid(), parent_tidptr);
6586             ts = (TaskState *)cpu->opaque;
6587             if (flags & CLONE_SETTLS)
6588                 cpu_set_tls (env, newtls);
6589             if (flags & CLONE_CHILD_CLEARTID)
6590                 ts->child_tidptr = child_tidptr;
6591         } else {
6592             cpu_clone_regs_parent(env, flags);
6593             fork_end(0);
6594         }
6595     }
6596     return ret;
6597 }
6598 
6599 /* warning : doesn't handle linux specific flags... */
6600 static int target_to_host_fcntl_cmd(int cmd)
6601 {
6602     int ret;
6603 
6604     switch(cmd) {
6605     case TARGET_F_DUPFD:
6606     case TARGET_F_GETFD:
6607     case TARGET_F_SETFD:
6608     case TARGET_F_GETFL:
6609     case TARGET_F_SETFL:
6610     case TARGET_F_OFD_GETLK:
6611     case TARGET_F_OFD_SETLK:
6612     case TARGET_F_OFD_SETLKW:
6613         ret = cmd;
6614         break;
6615     case TARGET_F_GETLK:
6616         ret = F_GETLK64;
6617         break;
6618     case TARGET_F_SETLK:
6619         ret = F_SETLK64;
6620         break;
6621     case TARGET_F_SETLKW:
6622         ret = F_SETLKW64;
6623         break;
6624     case TARGET_F_GETOWN:
6625         ret = F_GETOWN;
6626         break;
6627     case TARGET_F_SETOWN:
6628         ret = F_SETOWN;
6629         break;
6630     case TARGET_F_GETSIG:
6631         ret = F_GETSIG;
6632         break;
6633     case TARGET_F_SETSIG:
6634         ret = F_SETSIG;
6635         break;
6636 #if TARGET_ABI_BITS == 32
6637     case TARGET_F_GETLK64:
6638         ret = F_GETLK64;
6639         break;
6640     case TARGET_F_SETLK64:
6641         ret = F_SETLK64;
6642         break;
6643     case TARGET_F_SETLKW64:
6644         ret = F_SETLKW64;
6645         break;
6646 #endif
6647     case TARGET_F_SETLEASE:
6648         ret = F_SETLEASE;
6649         break;
6650     case TARGET_F_GETLEASE:
6651         ret = F_GETLEASE;
6652         break;
6653 #ifdef F_DUPFD_CLOEXEC
6654     case TARGET_F_DUPFD_CLOEXEC:
6655         ret = F_DUPFD_CLOEXEC;
6656         break;
6657 #endif
6658     case TARGET_F_NOTIFY:
6659         ret = F_NOTIFY;
6660         break;
6661 #ifdef F_GETOWN_EX
6662     case TARGET_F_GETOWN_EX:
6663         ret = F_GETOWN_EX;
6664         break;
6665 #endif
6666 #ifdef F_SETOWN_EX
6667     case TARGET_F_SETOWN_EX:
6668         ret = F_SETOWN_EX;
6669         break;
6670 #endif
6671 #ifdef F_SETPIPE_SZ
6672     case TARGET_F_SETPIPE_SZ:
6673         ret = F_SETPIPE_SZ;
6674         break;
6675     case TARGET_F_GETPIPE_SZ:
6676         ret = F_GETPIPE_SZ;
6677         break;
6678 #endif
6679 #ifdef F_ADD_SEALS
6680     case TARGET_F_ADD_SEALS:
6681         ret = F_ADD_SEALS;
6682         break;
6683     case TARGET_F_GET_SEALS:
6684         ret = F_GET_SEALS;
6685         break;
6686 #endif
6687     default:
6688         ret = -TARGET_EINVAL;
6689         break;
6690     }
6691 
6692 #if defined(__powerpc64__)
6693     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6694      * is not supported by kernel. The glibc fcntl call actually adjusts
6695      * them to 5, 6 and 7 before making the syscall(). Since we make the
6696      * syscall directly, adjust to what is supported by the kernel.
6697      */
6698     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6699         ret -= F_GETLK64 - 5;
6700     }
6701 #endif
6702 
6703     return ret;
6704 }
6705 
6706 #define FLOCK_TRANSTBL \
6707     switch (type) { \
6708     TRANSTBL_CONVERT(F_RDLCK); \
6709     TRANSTBL_CONVERT(F_WRLCK); \
6710     TRANSTBL_CONVERT(F_UNLCK); \
6711     }
6712 
6713 static int target_to_host_flock(int type)
6714 {
6715 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6716     FLOCK_TRANSTBL
6717 #undef  TRANSTBL_CONVERT
6718     return -TARGET_EINVAL;
6719 }
6720 
6721 static int host_to_target_flock(int type)
6722 {
6723 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6724     FLOCK_TRANSTBL
6725 #undef  TRANSTBL_CONVERT
6726     /* if we don't know how to convert the value coming
6727      * from the host we copy to the target field as-is
6728      */
6729     return type;
6730 }
6731 
6732 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6733                                             abi_ulong target_flock_addr)
6734 {
6735     struct target_flock *target_fl;
6736     int l_type;
6737 
6738     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6739         return -TARGET_EFAULT;
6740     }
6741 
6742     __get_user(l_type, &target_fl->l_type);
6743     l_type = target_to_host_flock(l_type);
6744     if (l_type < 0) {
6745         return l_type;
6746     }
6747     fl->l_type = l_type;
6748     __get_user(fl->l_whence, &target_fl->l_whence);
6749     __get_user(fl->l_start, &target_fl->l_start);
6750     __get_user(fl->l_len, &target_fl->l_len);
6751     __get_user(fl->l_pid, &target_fl->l_pid);
6752     unlock_user_struct(target_fl, target_flock_addr, 0);
6753     return 0;
6754 }
6755 
6756 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6757                                           const struct flock64 *fl)
6758 {
6759     struct target_flock *target_fl;
6760     short l_type;
6761 
6762     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6763         return -TARGET_EFAULT;
6764     }
6765 
6766     l_type = host_to_target_flock(fl->l_type);
6767     __put_user(l_type, &target_fl->l_type);
6768     __put_user(fl->l_whence, &target_fl->l_whence);
6769     __put_user(fl->l_start, &target_fl->l_start);
6770     __put_user(fl->l_len, &target_fl->l_len);
6771     __put_user(fl->l_pid, &target_fl->l_pid);
6772     unlock_user_struct(target_fl, target_flock_addr, 1);
6773     return 0;
6774 }
6775 
6776 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6777 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6778 
6779 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6780 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6781                                                    abi_ulong target_flock_addr)
6782 {
6783     struct target_oabi_flock64 *target_fl;
6784     int l_type;
6785 
6786     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6787         return -TARGET_EFAULT;
6788     }
6789 
6790     __get_user(l_type, &target_fl->l_type);
6791     l_type = target_to_host_flock(l_type);
6792     if (l_type < 0) {
6793         return l_type;
6794     }
6795     fl->l_type = l_type;
6796     __get_user(fl->l_whence, &target_fl->l_whence);
6797     __get_user(fl->l_start, &target_fl->l_start);
6798     __get_user(fl->l_len, &target_fl->l_len);
6799     __get_user(fl->l_pid, &target_fl->l_pid);
6800     unlock_user_struct(target_fl, target_flock_addr, 0);
6801     return 0;
6802 }
6803 
6804 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6805                                                  const struct flock64 *fl)
6806 {
6807     struct target_oabi_flock64 *target_fl;
6808     short l_type;
6809 
6810     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6811         return -TARGET_EFAULT;
6812     }
6813 
6814     l_type = host_to_target_flock(fl->l_type);
6815     __put_user(l_type, &target_fl->l_type);
6816     __put_user(fl->l_whence, &target_fl->l_whence);
6817     __put_user(fl->l_start, &target_fl->l_start);
6818     __put_user(fl->l_len, &target_fl->l_len);
6819     __put_user(fl->l_pid, &target_fl->l_pid);
6820     unlock_user_struct(target_fl, target_flock_addr, 1);
6821     return 0;
6822 }
6823 #endif
6824 
6825 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6826                                               abi_ulong target_flock_addr)
6827 {
6828     struct target_flock64 *target_fl;
6829     int l_type;
6830 
6831     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6832         return -TARGET_EFAULT;
6833     }
6834 
6835     __get_user(l_type, &target_fl->l_type);
6836     l_type = target_to_host_flock(l_type);
6837     if (l_type < 0) {
6838         return l_type;
6839     }
6840     fl->l_type = l_type;
6841     __get_user(fl->l_whence, &target_fl->l_whence);
6842     __get_user(fl->l_start, &target_fl->l_start);
6843     __get_user(fl->l_len, &target_fl->l_len);
6844     __get_user(fl->l_pid, &target_fl->l_pid);
6845     unlock_user_struct(target_fl, target_flock_addr, 0);
6846     return 0;
6847 }
6848 
6849 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6850                                             const struct flock64 *fl)
6851 {
6852     struct target_flock64 *target_fl;
6853     short l_type;
6854 
6855     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6856         return -TARGET_EFAULT;
6857     }
6858 
6859     l_type = host_to_target_flock(fl->l_type);
6860     __put_user(l_type, &target_fl->l_type);
6861     __put_user(fl->l_whence, &target_fl->l_whence);
6862     __put_user(fl->l_start, &target_fl->l_start);
6863     __put_user(fl->l_len, &target_fl->l_len);
6864     __put_user(fl->l_pid, &target_fl->l_pid);
6865     unlock_user_struct(target_fl, target_flock_addr, 1);
6866     return 0;
6867 }
6868 
6869 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6870 {
6871     struct flock64 fl64;
6872 #ifdef F_GETOWN_EX
6873     struct f_owner_ex fox;
6874     struct target_f_owner_ex *target_fox;
6875 #endif
6876     abi_long ret;
6877     int host_cmd = target_to_host_fcntl_cmd(cmd);
6878 
6879     if (host_cmd == -TARGET_EINVAL)
6880 	    return host_cmd;
6881 
6882     switch(cmd) {
6883     case TARGET_F_GETLK:
6884         ret = copy_from_user_flock(&fl64, arg);
6885         if (ret) {
6886             return ret;
6887         }
6888         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6889         if (ret == 0) {
6890             ret = copy_to_user_flock(arg, &fl64);
6891         }
6892         break;
6893 
6894     case TARGET_F_SETLK:
6895     case TARGET_F_SETLKW:
6896         ret = copy_from_user_flock(&fl64, arg);
6897         if (ret) {
6898             return ret;
6899         }
6900         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6901         break;
6902 
6903     case TARGET_F_GETLK64:
6904     case TARGET_F_OFD_GETLK:
6905         ret = copy_from_user_flock64(&fl64, arg);
6906         if (ret) {
6907             return ret;
6908         }
6909         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6910         if (ret == 0) {
6911             ret = copy_to_user_flock64(arg, &fl64);
6912         }
6913         break;
6914     case TARGET_F_SETLK64:
6915     case TARGET_F_SETLKW64:
6916     case TARGET_F_OFD_SETLK:
6917     case TARGET_F_OFD_SETLKW:
6918         ret = copy_from_user_flock64(&fl64, arg);
6919         if (ret) {
6920             return ret;
6921         }
6922         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6923         break;
6924 
6925     case TARGET_F_GETFL:
6926         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6927         if (ret >= 0) {
6928             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6929         }
6930         break;
6931 
6932     case TARGET_F_SETFL:
6933         ret = get_errno(safe_fcntl(fd, host_cmd,
6934                                    target_to_host_bitmask(arg,
6935                                                           fcntl_flags_tbl)));
6936         break;
6937 
6938 #ifdef F_GETOWN_EX
6939     case TARGET_F_GETOWN_EX:
6940         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6941         if (ret >= 0) {
6942             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6943                 return -TARGET_EFAULT;
6944             target_fox->type = tswap32(fox.type);
6945             target_fox->pid = tswap32(fox.pid);
6946             unlock_user_struct(target_fox, arg, 1);
6947         }
6948         break;
6949 #endif
6950 
6951 #ifdef F_SETOWN_EX
6952     case TARGET_F_SETOWN_EX:
6953         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6954             return -TARGET_EFAULT;
6955         fox.type = tswap32(target_fox->type);
6956         fox.pid = tswap32(target_fox->pid);
6957         unlock_user_struct(target_fox, arg, 0);
6958         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6959         break;
6960 #endif
6961 
6962     case TARGET_F_SETSIG:
6963         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
6964         break;
6965 
6966     case TARGET_F_GETSIG:
6967         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
6968         break;
6969 
6970     case TARGET_F_SETOWN:
6971     case TARGET_F_GETOWN:
6972     case TARGET_F_SETLEASE:
6973     case TARGET_F_GETLEASE:
6974     case TARGET_F_SETPIPE_SZ:
6975     case TARGET_F_GETPIPE_SZ:
6976     case TARGET_F_ADD_SEALS:
6977     case TARGET_F_GET_SEALS:
6978         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6979         break;
6980 
6981     default:
6982         ret = get_errno(safe_fcntl(fd, cmd, arg));
6983         break;
6984     }
6985     return ret;
6986 }
6987 
6988 #ifdef USE_UID16
6989 
6990 static inline int high2lowuid(int uid)
6991 {
6992     if (uid > 65535)
6993         return 65534;
6994     else
6995         return uid;
6996 }
6997 
6998 static inline int high2lowgid(int gid)
6999 {
7000     if (gid > 65535)
7001         return 65534;
7002     else
7003         return gid;
7004 }
7005 
7006 static inline int low2highuid(int uid)
7007 {
7008     if ((int16_t)uid == -1)
7009         return -1;
7010     else
7011         return uid;
7012 }
7013 
7014 static inline int low2highgid(int gid)
7015 {
7016     if ((int16_t)gid == -1)
7017         return -1;
7018     else
7019         return gid;
7020 }
7021 static inline int tswapid(int id)
7022 {
7023     return tswap16(id);
7024 }
7025 
7026 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7027 
7028 #else /* !USE_UID16 */
7029 static inline int high2lowuid(int uid)
7030 {
7031     return uid;
7032 }
7033 static inline int high2lowgid(int gid)
7034 {
7035     return gid;
7036 }
7037 static inline int low2highuid(int uid)
7038 {
7039     return uid;
7040 }
7041 static inline int low2highgid(int gid)
7042 {
7043     return gid;
7044 }
7045 static inline int tswapid(int id)
7046 {
7047     return tswap32(id);
7048 }
7049 
7050 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7051 
7052 #endif /* USE_UID16 */
7053 
7054 /* We must do direct syscalls for setting UID/GID, because we want to
7055  * implement the Linux system call semantics of "change only for this thread",
7056  * not the libc/POSIX semantics of "change for all threads in process".
7057  * (See http://ewontfix.com/17/ for more details.)
7058  * We use the 32-bit version of the syscalls if present; if it is not
7059  * then either the host architecture supports 32-bit UIDs natively with
7060  * the standard syscall, or the 16-bit UID is the best we can do.
7061  */
7062 #ifdef __NR_setuid32
7063 #define __NR_sys_setuid __NR_setuid32
7064 #else
7065 #define __NR_sys_setuid __NR_setuid
7066 #endif
7067 #ifdef __NR_setgid32
7068 #define __NR_sys_setgid __NR_setgid32
7069 #else
7070 #define __NR_sys_setgid __NR_setgid
7071 #endif
7072 #ifdef __NR_setresuid32
7073 #define __NR_sys_setresuid __NR_setresuid32
7074 #else
7075 #define __NR_sys_setresuid __NR_setresuid
7076 #endif
7077 #ifdef __NR_setresgid32
7078 #define __NR_sys_setresgid __NR_setresgid32
7079 #else
7080 #define __NR_sys_setresgid __NR_setresgid
7081 #endif
7082 
7083 _syscall1(int, sys_setuid, uid_t, uid)
7084 _syscall1(int, sys_setgid, gid_t, gid)
7085 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7086 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7087 
7088 void syscall_init(void)
7089 {
7090     IOCTLEntry *ie;
7091     const argtype *arg_type;
7092     int size;
7093     int i;
7094 
7095     thunk_init(STRUCT_MAX);
7096 
7097 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7098 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7099 #include "syscall_types.h"
7100 #undef STRUCT
7101 #undef STRUCT_SPECIAL
7102 
7103     /* Build target_to_host_errno_table[] table from
7104      * host_to_target_errno_table[]. */
7105     for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
7106         target_to_host_errno_table[host_to_target_errno_table[i]] = i;
7107     }
7108 
7109     /* we patch the ioctl size if necessary. We rely on the fact that
7110        no ioctl has all the bits at '1' in the size field */
7111     ie = ioctl_entries;
7112     while (ie->target_cmd != 0) {
7113         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7114             TARGET_IOC_SIZEMASK) {
7115             arg_type = ie->arg_type;
7116             if (arg_type[0] != TYPE_PTR) {
7117                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7118                         ie->target_cmd);
7119                 exit(1);
7120             }
7121             arg_type++;
7122             size = thunk_type_size(arg_type, 0);
7123             ie->target_cmd = (ie->target_cmd &
7124                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7125                 (size << TARGET_IOC_SIZESHIFT);
7126         }
7127 
7128         /* automatic consistency check if same arch */
7129 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7130     (defined(__x86_64__) && defined(TARGET_X86_64))
7131         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7132             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7133                     ie->name, ie->target_cmd, ie->host_cmd);
7134         }
7135 #endif
7136         ie++;
7137     }
7138 }
7139 
7140 #ifdef TARGET_NR_truncate64
7141 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
7142                                          abi_long arg2,
7143                                          abi_long arg3,
7144                                          abi_long arg4)
7145 {
7146     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7147         arg2 = arg3;
7148         arg3 = arg4;
7149     }
7150     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7151 }
7152 #endif
7153 
7154 #ifdef TARGET_NR_ftruncate64
7155 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
7156                                           abi_long arg2,
7157                                           abi_long arg3,
7158                                           abi_long arg4)
7159 {
7160     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7161         arg2 = arg3;
7162         arg3 = arg4;
7163     }
7164     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7165 }
7166 #endif
7167 
7168 #if defined(TARGET_NR_timer_settime) || \
7169     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7170 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7171                                                  abi_ulong target_addr)
7172 {
7173     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7174                                 offsetof(struct target_itimerspec,
7175                                          it_interval)) ||
7176         target_to_host_timespec(&host_its->it_value, target_addr +
7177                                 offsetof(struct target_itimerspec,
7178                                          it_value))) {
7179         return -TARGET_EFAULT;
7180     }
7181 
7182     return 0;
7183 }
7184 #endif
7185 
7186 #if defined(TARGET_NR_timer_settime64) || \
7187     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7188 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7189                                                    abi_ulong target_addr)
7190 {
7191     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7192                                   offsetof(struct target__kernel_itimerspec,
7193                                            it_interval)) ||
7194         target_to_host_timespec64(&host_its->it_value, target_addr +
7195                                   offsetof(struct target__kernel_itimerspec,
7196                                            it_value))) {
7197         return -TARGET_EFAULT;
7198     }
7199 
7200     return 0;
7201 }
7202 #endif
7203 
7204 #if ((defined(TARGET_NR_timerfd_gettime) || \
7205       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7206       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7207 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7208                                                  struct itimerspec *host_its)
7209 {
7210     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7211                                                        it_interval),
7212                                 &host_its->it_interval) ||
7213         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7214                                                        it_value),
7215                                 &host_its->it_value)) {
7216         return -TARGET_EFAULT;
7217     }
7218     return 0;
7219 }
7220 #endif
7221 
7222 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7223       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7224       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7225 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7226                                                    struct itimerspec *host_its)
7227 {
7228     if (host_to_target_timespec64(target_addr +
7229                                   offsetof(struct target__kernel_itimerspec,
7230                                            it_interval),
7231                                   &host_its->it_interval) ||
7232         host_to_target_timespec64(target_addr +
7233                                   offsetof(struct target__kernel_itimerspec,
7234                                            it_value),
7235                                   &host_its->it_value)) {
7236         return -TARGET_EFAULT;
7237     }
7238     return 0;
7239 }
7240 #endif
7241 
7242 #if defined(TARGET_NR_adjtimex) || \
7243     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7244 static inline abi_long target_to_host_timex(struct timex *host_tx,
7245                                             abi_long target_addr)
7246 {
7247     struct target_timex *target_tx;
7248 
7249     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7250         return -TARGET_EFAULT;
7251     }
7252 
7253     __get_user(host_tx->modes, &target_tx->modes);
7254     __get_user(host_tx->offset, &target_tx->offset);
7255     __get_user(host_tx->freq, &target_tx->freq);
7256     __get_user(host_tx->maxerror, &target_tx->maxerror);
7257     __get_user(host_tx->esterror, &target_tx->esterror);
7258     __get_user(host_tx->status, &target_tx->status);
7259     __get_user(host_tx->constant, &target_tx->constant);
7260     __get_user(host_tx->precision, &target_tx->precision);
7261     __get_user(host_tx->tolerance, &target_tx->tolerance);
7262     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7263     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7264     __get_user(host_tx->tick, &target_tx->tick);
7265     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7266     __get_user(host_tx->jitter, &target_tx->jitter);
7267     __get_user(host_tx->shift, &target_tx->shift);
7268     __get_user(host_tx->stabil, &target_tx->stabil);
7269     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7270     __get_user(host_tx->calcnt, &target_tx->calcnt);
7271     __get_user(host_tx->errcnt, &target_tx->errcnt);
7272     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7273     __get_user(host_tx->tai, &target_tx->tai);
7274 
7275     unlock_user_struct(target_tx, target_addr, 0);
7276     return 0;
7277 }
7278 
7279 static inline abi_long host_to_target_timex(abi_long target_addr,
7280                                             struct timex *host_tx)
7281 {
7282     struct target_timex *target_tx;
7283 
7284     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7285         return -TARGET_EFAULT;
7286     }
7287 
7288     __put_user(host_tx->modes, &target_tx->modes);
7289     __put_user(host_tx->offset, &target_tx->offset);
7290     __put_user(host_tx->freq, &target_tx->freq);
7291     __put_user(host_tx->maxerror, &target_tx->maxerror);
7292     __put_user(host_tx->esterror, &target_tx->esterror);
7293     __put_user(host_tx->status, &target_tx->status);
7294     __put_user(host_tx->constant, &target_tx->constant);
7295     __put_user(host_tx->precision, &target_tx->precision);
7296     __put_user(host_tx->tolerance, &target_tx->tolerance);
7297     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7298     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7299     __put_user(host_tx->tick, &target_tx->tick);
7300     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7301     __put_user(host_tx->jitter, &target_tx->jitter);
7302     __put_user(host_tx->shift, &target_tx->shift);
7303     __put_user(host_tx->stabil, &target_tx->stabil);
7304     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7305     __put_user(host_tx->calcnt, &target_tx->calcnt);
7306     __put_user(host_tx->errcnt, &target_tx->errcnt);
7307     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7308     __put_user(host_tx->tai, &target_tx->tai);
7309 
7310     unlock_user_struct(target_tx, target_addr, 1);
7311     return 0;
7312 }
7313 #endif
7314 
7315 
7316 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7317 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7318                                               abi_long target_addr)
7319 {
7320     struct target__kernel_timex *target_tx;
7321 
7322     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7323                                  offsetof(struct target__kernel_timex,
7324                                           time))) {
7325         return -TARGET_EFAULT;
7326     }
7327 
7328     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7329         return -TARGET_EFAULT;
7330     }
7331 
7332     __get_user(host_tx->modes, &target_tx->modes);
7333     __get_user(host_tx->offset, &target_tx->offset);
7334     __get_user(host_tx->freq, &target_tx->freq);
7335     __get_user(host_tx->maxerror, &target_tx->maxerror);
7336     __get_user(host_tx->esterror, &target_tx->esterror);
7337     __get_user(host_tx->status, &target_tx->status);
7338     __get_user(host_tx->constant, &target_tx->constant);
7339     __get_user(host_tx->precision, &target_tx->precision);
7340     __get_user(host_tx->tolerance, &target_tx->tolerance);
7341     __get_user(host_tx->tick, &target_tx->tick);
7342     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7343     __get_user(host_tx->jitter, &target_tx->jitter);
7344     __get_user(host_tx->shift, &target_tx->shift);
7345     __get_user(host_tx->stabil, &target_tx->stabil);
7346     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7347     __get_user(host_tx->calcnt, &target_tx->calcnt);
7348     __get_user(host_tx->errcnt, &target_tx->errcnt);
7349     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7350     __get_user(host_tx->tai, &target_tx->tai);
7351 
7352     unlock_user_struct(target_tx, target_addr, 0);
7353     return 0;
7354 }
7355 
7356 static inline abi_long host_to_target_timex64(abi_long target_addr,
7357                                               struct timex *host_tx)
7358 {
7359     struct target__kernel_timex *target_tx;
7360 
7361    if (copy_to_user_timeval64(target_addr +
7362                               offsetof(struct target__kernel_timex, time),
7363                               &host_tx->time)) {
7364         return -TARGET_EFAULT;
7365     }
7366 
7367     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7368         return -TARGET_EFAULT;
7369     }
7370 
7371     __put_user(host_tx->modes, &target_tx->modes);
7372     __put_user(host_tx->offset, &target_tx->offset);
7373     __put_user(host_tx->freq, &target_tx->freq);
7374     __put_user(host_tx->maxerror, &target_tx->maxerror);
7375     __put_user(host_tx->esterror, &target_tx->esterror);
7376     __put_user(host_tx->status, &target_tx->status);
7377     __put_user(host_tx->constant, &target_tx->constant);
7378     __put_user(host_tx->precision, &target_tx->precision);
7379     __put_user(host_tx->tolerance, &target_tx->tolerance);
7380     __put_user(host_tx->tick, &target_tx->tick);
7381     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7382     __put_user(host_tx->jitter, &target_tx->jitter);
7383     __put_user(host_tx->shift, &target_tx->shift);
7384     __put_user(host_tx->stabil, &target_tx->stabil);
7385     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7386     __put_user(host_tx->calcnt, &target_tx->calcnt);
7387     __put_user(host_tx->errcnt, &target_tx->errcnt);
7388     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7389     __put_user(host_tx->tai, &target_tx->tai);
7390 
7391     unlock_user_struct(target_tx, target_addr, 1);
7392     return 0;
7393 }
7394 #endif
7395 
7396 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7397                                                abi_ulong target_addr)
7398 {
7399     struct target_sigevent *target_sevp;
7400 
7401     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7402         return -TARGET_EFAULT;
7403     }
7404 
7405     /* This union is awkward on 64 bit systems because it has a 32 bit
7406      * integer and a pointer in it; we follow the conversion approach
7407      * used for handling sigval types in signal.c so the guest should get
7408      * the correct value back even if we did a 64 bit byteswap and it's
7409      * using the 32 bit integer.
7410      */
7411     host_sevp->sigev_value.sival_ptr =
7412         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7413     host_sevp->sigev_signo =
7414         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7415     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7416     host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
7417 
7418     unlock_user_struct(target_sevp, target_addr, 1);
7419     return 0;
7420 }
7421 
7422 #if defined(TARGET_NR_mlockall)
7423 static inline int target_to_host_mlockall_arg(int arg)
7424 {
7425     int result = 0;
7426 
7427     if (arg & TARGET_MCL_CURRENT) {
7428         result |= MCL_CURRENT;
7429     }
7430     if (arg & TARGET_MCL_FUTURE) {
7431         result |= MCL_FUTURE;
7432     }
7433 #ifdef MCL_ONFAULT
7434     if (arg & TARGET_MCL_ONFAULT) {
7435         result |= MCL_ONFAULT;
7436     }
7437 #endif
7438 
7439     return result;
7440 }
7441 #endif
7442 
7443 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7444      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7445      defined(TARGET_NR_newfstatat))
7446 static inline abi_long host_to_target_stat64(void *cpu_env,
7447                                              abi_ulong target_addr,
7448                                              struct stat *host_st)
7449 {
7450 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7451     if (((CPUARMState *)cpu_env)->eabi) {
7452         struct target_eabi_stat64 *target_st;
7453 
7454         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7455             return -TARGET_EFAULT;
7456         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7457         __put_user(host_st->st_dev, &target_st->st_dev);
7458         __put_user(host_st->st_ino, &target_st->st_ino);
7459 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7460         __put_user(host_st->st_ino, &target_st->__st_ino);
7461 #endif
7462         __put_user(host_st->st_mode, &target_st->st_mode);
7463         __put_user(host_st->st_nlink, &target_st->st_nlink);
7464         __put_user(host_st->st_uid, &target_st->st_uid);
7465         __put_user(host_st->st_gid, &target_st->st_gid);
7466         __put_user(host_st->st_rdev, &target_st->st_rdev);
7467         __put_user(host_st->st_size, &target_st->st_size);
7468         __put_user(host_st->st_blksize, &target_st->st_blksize);
7469         __put_user(host_st->st_blocks, &target_st->st_blocks);
7470         __put_user(host_st->st_atime, &target_st->target_st_atime);
7471         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7472         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7473 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
7474         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7475         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7476         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7477 #endif
7478         unlock_user_struct(target_st, target_addr, 1);
7479     } else
7480 #endif
7481     {
7482 #if defined(TARGET_HAS_STRUCT_STAT64)
7483         struct target_stat64 *target_st;
7484 #else
7485         struct target_stat *target_st;
7486 #endif
7487 
7488         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7489             return -TARGET_EFAULT;
7490         memset(target_st, 0, sizeof(*target_st));
7491         __put_user(host_st->st_dev, &target_st->st_dev);
7492         __put_user(host_st->st_ino, &target_st->st_ino);
7493 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7494         __put_user(host_st->st_ino, &target_st->__st_ino);
7495 #endif
7496         __put_user(host_st->st_mode, &target_st->st_mode);
7497         __put_user(host_st->st_nlink, &target_st->st_nlink);
7498         __put_user(host_st->st_uid, &target_st->st_uid);
7499         __put_user(host_st->st_gid, &target_st->st_gid);
7500         __put_user(host_st->st_rdev, &target_st->st_rdev);
7501         /* XXX: better use of kernel struct */
7502         __put_user(host_st->st_size, &target_st->st_size);
7503         __put_user(host_st->st_blksize, &target_st->st_blksize);
7504         __put_user(host_st->st_blocks, &target_st->st_blocks);
7505         __put_user(host_st->st_atime, &target_st->target_st_atime);
7506         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7507         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7508 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
7509         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7510         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7511         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7512 #endif
7513         unlock_user_struct(target_st, target_addr, 1);
7514     }
7515 
7516     return 0;
7517 }
7518 #endif
7519 
7520 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7521 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7522                                             abi_ulong target_addr)
7523 {
7524     struct target_statx *target_stx;
7525 
7526     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7527         return -TARGET_EFAULT;
7528     }
7529     memset(target_stx, 0, sizeof(*target_stx));
7530 
7531     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7532     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7533     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7534     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7535     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7536     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7537     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7538     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7539     __put_user(host_stx->stx_size, &target_stx->stx_size);
7540     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7541     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7542     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7543     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7544     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7545     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7546     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7547     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7548     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7549     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7550     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7551     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7552     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7553     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7554 
7555     unlock_user_struct(target_stx, target_addr, 1);
7556 
7557     return 0;
7558 }
7559 #endif
7560 
7561 static int do_sys_futex(int *uaddr, int op, int val,
7562                          const struct timespec *timeout, int *uaddr2,
7563                          int val3)
7564 {
7565 #if HOST_LONG_BITS == 64
7566 #if defined(__NR_futex)
7567     /* always a 64-bit time_t, it doesn't define _time64 version  */
7568     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7569 
7570 #endif
7571 #else /* HOST_LONG_BITS == 64 */
7572 #if defined(__NR_futex_time64)
7573     if (sizeof(timeout->tv_sec) == 8) {
7574         /* _time64 function on 32bit arch */
7575         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7576     }
7577 #endif
7578 #if defined(__NR_futex)
7579     /* old function on 32bit arch */
7580     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7581 #endif
7582 #endif /* HOST_LONG_BITS == 64 */
7583     g_assert_not_reached();
7584 }
7585 
7586 static int do_safe_futex(int *uaddr, int op, int val,
7587                          const struct timespec *timeout, int *uaddr2,
7588                          int val3)
7589 {
7590 #if HOST_LONG_BITS == 64
7591 #if defined(__NR_futex)
7592     /* always a 64-bit time_t, it doesn't define _time64 version  */
7593     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7594 #endif
7595 #else /* HOST_LONG_BITS == 64 */
7596 #if defined(__NR_futex_time64)
7597     if (sizeof(timeout->tv_sec) == 8) {
7598         /* _time64 function on 32bit arch */
7599         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7600                                            val3));
7601     }
7602 #endif
7603 #if defined(__NR_futex)
7604     /* old function on 32bit arch */
7605     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7606 #endif
7607 #endif /* HOST_LONG_BITS == 64 */
7608     return -TARGET_ENOSYS;
7609 }
7610 
7611 /* ??? Using host futex calls even when target atomic operations
7612    are not really atomic probably breaks things.  However implementing
7613    futexes locally would make futexes shared between multiple processes
7614    tricky.  However they're probably useless because guest atomic
7615    operations won't work either.  */
7616 #if defined(TARGET_NR_futex)
7617 static int do_futex(CPUState *cpu, target_ulong uaddr, int op, int val,
7618                     target_ulong timeout, target_ulong uaddr2, int val3)
7619 {
7620     struct timespec ts, *pts;
7621     int base_op;
7622 
7623     /* ??? We assume FUTEX_* constants are the same on both host
7624        and target.  */
7625 #ifdef FUTEX_CMD_MASK
7626     base_op = op & FUTEX_CMD_MASK;
7627 #else
7628     base_op = op;
7629 #endif
7630     switch (base_op) {
7631     case FUTEX_WAIT:
7632     case FUTEX_WAIT_BITSET:
7633         if (timeout) {
7634             pts = &ts;
7635             target_to_host_timespec(pts, timeout);
7636         } else {
7637             pts = NULL;
7638         }
7639         return do_safe_futex(g2h(cpu, uaddr),
7640                              op, tswap32(val), pts, NULL, val3);
7641     case FUTEX_WAKE:
7642         return do_safe_futex(g2h(cpu, uaddr),
7643                              op, val, NULL, NULL, 0);
7644     case FUTEX_FD:
7645         return do_safe_futex(g2h(cpu, uaddr),
7646                              op, val, NULL, NULL, 0);
7647     case FUTEX_REQUEUE:
7648     case FUTEX_CMP_REQUEUE:
7649     case FUTEX_WAKE_OP:
7650         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7651            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7652            But the prototype takes a `struct timespec *'; insert casts
7653            to satisfy the compiler.  We do not need to tswap TIMEOUT
7654            since it's not compared to guest memory.  */
7655         pts = (struct timespec *)(uintptr_t) timeout;
7656         return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7657                              (base_op == FUTEX_CMP_REQUEUE
7658                               ? tswap32(val3) : val3));
7659     default:
7660         return -TARGET_ENOSYS;
7661     }
7662 }
7663 #endif
7664 
7665 #if defined(TARGET_NR_futex_time64)
7666 static int do_futex_time64(CPUState *cpu, target_ulong uaddr, int op,
7667                            int val, target_ulong timeout,
7668                            target_ulong uaddr2, int val3)
7669 {
7670     struct timespec ts, *pts;
7671     int base_op;
7672 
7673     /* ??? We assume FUTEX_* constants are the same on both host
7674        and target.  */
7675 #ifdef FUTEX_CMD_MASK
7676     base_op = op & FUTEX_CMD_MASK;
7677 #else
7678     base_op = op;
7679 #endif
7680     switch (base_op) {
7681     case FUTEX_WAIT:
7682     case FUTEX_WAIT_BITSET:
7683         if (timeout) {
7684             pts = &ts;
7685             if (target_to_host_timespec64(pts, timeout)) {
7686                 return -TARGET_EFAULT;
7687             }
7688         } else {
7689             pts = NULL;
7690         }
7691         return do_safe_futex(g2h(cpu, uaddr), op,
7692                              tswap32(val), pts, NULL, val3);
7693     case FUTEX_WAKE:
7694         return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7695     case FUTEX_FD:
7696         return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7697     case FUTEX_REQUEUE:
7698     case FUTEX_CMP_REQUEUE:
7699     case FUTEX_WAKE_OP:
7700         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7701            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7702            But the prototype takes a `struct timespec *'; insert casts
7703            to satisfy the compiler.  We do not need to tswap TIMEOUT
7704            since it's not compared to guest memory.  */
7705         pts = (struct timespec *)(uintptr_t) timeout;
7706         return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7707                              (base_op == FUTEX_CMP_REQUEUE
7708                               ? tswap32(val3) : val3));
7709     default:
7710         return -TARGET_ENOSYS;
7711     }
7712 }
7713 #endif
7714 
7715 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7716 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7717                                      abi_long handle, abi_long mount_id,
7718                                      abi_long flags)
7719 {
7720     struct file_handle *target_fh;
7721     struct file_handle *fh;
7722     int mid = 0;
7723     abi_long ret;
7724     char *name;
7725     unsigned int size, total_size;
7726 
7727     if (get_user_s32(size, handle)) {
7728         return -TARGET_EFAULT;
7729     }
7730 
7731     name = lock_user_string(pathname);
7732     if (!name) {
7733         return -TARGET_EFAULT;
7734     }
7735 
7736     total_size = sizeof(struct file_handle) + size;
7737     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7738     if (!target_fh) {
7739         unlock_user(name, pathname, 0);
7740         return -TARGET_EFAULT;
7741     }
7742 
7743     fh = g_malloc0(total_size);
7744     fh->handle_bytes = size;
7745 
7746     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7747     unlock_user(name, pathname, 0);
7748 
7749     /* man name_to_handle_at(2):
7750      * Other than the use of the handle_bytes field, the caller should treat
7751      * the file_handle structure as an opaque data type
7752      */
7753 
7754     memcpy(target_fh, fh, total_size);
7755     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7756     target_fh->handle_type = tswap32(fh->handle_type);
7757     g_free(fh);
7758     unlock_user(target_fh, handle, total_size);
7759 
7760     if (put_user_s32(mid, mount_id)) {
7761         return -TARGET_EFAULT;
7762     }
7763 
7764     return ret;
7765 
7766 }
7767 #endif
7768 
7769 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7770 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7771                                      abi_long flags)
7772 {
7773     struct file_handle *target_fh;
7774     struct file_handle *fh;
7775     unsigned int size, total_size;
7776     abi_long ret;
7777 
7778     if (get_user_s32(size, handle)) {
7779         return -TARGET_EFAULT;
7780     }
7781 
7782     total_size = sizeof(struct file_handle) + size;
7783     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7784     if (!target_fh) {
7785         return -TARGET_EFAULT;
7786     }
7787 
7788     fh = g_memdup(target_fh, total_size);
7789     fh->handle_bytes = size;
7790     fh->handle_type = tswap32(target_fh->handle_type);
7791 
7792     ret = get_errno(open_by_handle_at(mount_fd, fh,
7793                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7794 
7795     g_free(fh);
7796 
7797     unlock_user(target_fh, handle, total_size);
7798 
7799     return ret;
7800 }
7801 #endif
7802 
7803 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7804 
7805 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7806 {
7807     int host_flags;
7808     target_sigset_t *target_mask;
7809     sigset_t host_mask;
7810     abi_long ret;
7811 
7812     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7813         return -TARGET_EINVAL;
7814     }
7815     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7816         return -TARGET_EFAULT;
7817     }
7818 
7819     target_to_host_sigset(&host_mask, target_mask);
7820 
7821     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7822 
7823     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7824     if (ret >= 0) {
7825         fd_trans_register(ret, &target_signalfd_trans);
7826     }
7827 
7828     unlock_user_struct(target_mask, mask, 0);
7829 
7830     return ret;
7831 }
7832 #endif
7833 
7834 /* Map host to target signal numbers for the wait family of syscalls.
7835    Assume all other status bits are the same.  */
7836 int host_to_target_waitstatus(int status)
7837 {
7838     if (WIFSIGNALED(status)) {
7839         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7840     }
7841     if (WIFSTOPPED(status)) {
7842         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7843                | (status & 0xff);
7844     }
7845     return status;
7846 }
7847 
7848 static int open_self_cmdline(void *cpu_env, int fd)
7849 {
7850     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7851     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7852     int i;
7853 
7854     for (i = 0; i < bprm->argc; i++) {
7855         size_t len = strlen(bprm->argv[i]) + 1;
7856 
7857         if (write(fd, bprm->argv[i], len) != len) {
7858             return -1;
7859         }
7860     }
7861 
7862     return 0;
7863 }
7864 
7865 static int open_self_maps(void *cpu_env, int fd)
7866 {
7867     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7868     TaskState *ts = cpu->opaque;
7869     GSList *map_info = read_self_maps();
7870     GSList *s;
7871     int count;
7872 
7873     for (s = map_info; s; s = g_slist_next(s)) {
7874         MapInfo *e = (MapInfo *) s->data;
7875 
7876         if (h2g_valid(e->start)) {
7877             unsigned long min = e->start;
7878             unsigned long max = e->end;
7879             int flags = page_get_flags(h2g(min));
7880             const char *path;
7881 
7882             max = h2g_valid(max - 1) ?
7883                 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1;
7884 
7885             if (page_check_range(h2g(min), max - min, flags) == -1) {
7886                 continue;
7887             }
7888 
7889             if (h2g(min) == ts->info->stack_limit) {
7890                 path = "[stack]";
7891             } else {
7892                 path = e->path;
7893             }
7894 
7895             count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
7896                             " %c%c%c%c %08" PRIx64 " %s %"PRId64,
7897                             h2g(min), h2g(max - 1) + 1,
7898                             (flags & PAGE_READ) ? 'r' : '-',
7899                             (flags & PAGE_WRITE_ORG) ? 'w' : '-',
7900                             (flags & PAGE_EXEC) ? 'x' : '-',
7901                             e->is_priv ? 'p' : '-',
7902                             (uint64_t) e->offset, e->dev, e->inode);
7903             if (path) {
7904                 dprintf(fd, "%*s%s\n", 73 - count, "", path);
7905             } else {
7906                 dprintf(fd, "\n");
7907             }
7908         }
7909     }
7910 
7911     free_self_maps(map_info);
7912 
7913 #ifdef TARGET_VSYSCALL_PAGE
7914     /*
7915      * We only support execution from the vsyscall page.
7916      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
7917      */
7918     count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
7919                     " --xp 00000000 00:00 0",
7920                     TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
7921     dprintf(fd, "%*s%s\n", 73 - count, "",  "[vsyscall]");
7922 #endif
7923 
7924     return 0;
7925 }
7926 
7927 static int open_self_stat(void *cpu_env, int fd)
7928 {
7929     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7930     TaskState *ts = cpu->opaque;
7931     g_autoptr(GString) buf = g_string_new(NULL);
7932     int i;
7933 
7934     for (i = 0; i < 44; i++) {
7935         if (i == 0) {
7936             /* pid */
7937             g_string_printf(buf, FMT_pid " ", getpid());
7938         } else if (i == 1) {
7939             /* app name */
7940             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
7941             bin = bin ? bin + 1 : ts->bprm->argv[0];
7942             g_string_printf(buf, "(%.15s) ", bin);
7943         } else if (i == 27) {
7944             /* stack bottom */
7945             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
7946         } else {
7947             /* for the rest, there is MasterCard */
7948             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
7949         }
7950 
7951         if (write(fd, buf->str, buf->len) != buf->len) {
7952             return -1;
7953         }
7954     }
7955 
7956     return 0;
7957 }
7958 
7959 static int open_self_auxv(void *cpu_env, int fd)
7960 {
7961     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7962     TaskState *ts = cpu->opaque;
7963     abi_ulong auxv = ts->info->saved_auxv;
7964     abi_ulong len = ts->info->auxv_len;
7965     char *ptr;
7966 
7967     /*
7968      * Auxiliary vector is stored in target process stack.
7969      * read in whole auxv vector and copy it to file
7970      */
7971     ptr = lock_user(VERIFY_READ, auxv, len, 0);
7972     if (ptr != NULL) {
7973         while (len > 0) {
7974             ssize_t r;
7975             r = write(fd, ptr, len);
7976             if (r <= 0) {
7977                 break;
7978             }
7979             len -= r;
7980             ptr += r;
7981         }
7982         lseek(fd, 0, SEEK_SET);
7983         unlock_user(ptr, auxv, len);
7984     }
7985 
7986     return 0;
7987 }
7988 
7989 static int is_proc_myself(const char *filename, const char *entry)
7990 {
7991     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7992         filename += strlen("/proc/");
7993         if (!strncmp(filename, "self/", strlen("self/"))) {
7994             filename += strlen("self/");
7995         } else if (*filename >= '1' && *filename <= '9') {
7996             char myself[80];
7997             snprintf(myself, sizeof(myself), "%d/", getpid());
7998             if (!strncmp(filename, myself, strlen(myself))) {
7999                 filename += strlen(myself);
8000             } else {
8001                 return 0;
8002             }
8003         } else {
8004             return 0;
8005         }
8006         if (!strcmp(filename, entry)) {
8007             return 1;
8008         }
8009     }
8010     return 0;
8011 }
8012 
8013 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
8014     defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
8015 static int is_proc(const char *filename, const char *entry)
8016 {
8017     return strcmp(filename, entry) == 0;
8018 }
8019 #endif
8020 
8021 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8022 static int open_net_route(void *cpu_env, int fd)
8023 {
8024     FILE *fp;
8025     char *line = NULL;
8026     size_t len = 0;
8027     ssize_t read;
8028 
8029     fp = fopen("/proc/net/route", "r");
8030     if (fp == NULL) {
8031         return -1;
8032     }
8033 
8034     /* read header */
8035 
8036     read = getline(&line, &len, fp);
8037     dprintf(fd, "%s", line);
8038 
8039     /* read routes */
8040 
8041     while ((read = getline(&line, &len, fp)) != -1) {
8042         char iface[16];
8043         uint32_t dest, gw, mask;
8044         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8045         int fields;
8046 
8047         fields = sscanf(line,
8048                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8049                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8050                         &mask, &mtu, &window, &irtt);
8051         if (fields != 11) {
8052             continue;
8053         }
8054         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8055                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8056                 metric, tswap32(mask), mtu, window, irtt);
8057     }
8058 
8059     free(line);
8060     fclose(fp);
8061 
8062     return 0;
8063 }
8064 #endif
8065 
8066 #if defined(TARGET_SPARC)
8067 static int open_cpuinfo(void *cpu_env, int fd)
8068 {
8069     dprintf(fd, "type\t\t: sun4u\n");
8070     return 0;
8071 }
8072 #endif
8073 
8074 #if defined(TARGET_HPPA)
8075 static int open_cpuinfo(void *cpu_env, int fd)
8076 {
8077     dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
8078     dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
8079     dprintf(fd, "capabilities\t: os32\n");
8080     dprintf(fd, "model\t\t: 9000/778/B160L\n");
8081     dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n");
8082     return 0;
8083 }
8084 #endif
8085 
8086 #if defined(TARGET_M68K)
8087 static int open_hardware(void *cpu_env, int fd)
8088 {
8089     dprintf(fd, "Model:\t\tqemu-m68k\n");
8090     return 0;
8091 }
8092 #endif
8093 
8094 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
8095 {
8096     struct fake_open {
8097         const char *filename;
8098         int (*fill)(void *cpu_env, int fd);
8099         int (*cmp)(const char *s1, const char *s2);
8100     };
8101     const struct fake_open *fake_open;
8102     static const struct fake_open fakes[] = {
8103         { "maps", open_self_maps, is_proc_myself },
8104         { "stat", open_self_stat, is_proc_myself },
8105         { "auxv", open_self_auxv, is_proc_myself },
8106         { "cmdline", open_self_cmdline, is_proc_myself },
8107 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8108         { "/proc/net/route", open_net_route, is_proc },
8109 #endif
8110 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
8111         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8112 #endif
8113 #if defined(TARGET_M68K)
8114         { "/proc/hardware", open_hardware, is_proc },
8115 #endif
8116         { NULL, NULL, NULL }
8117     };
8118 
8119     if (is_proc_myself(pathname, "exe")) {
8120         int execfd = qemu_getauxval(AT_EXECFD);
8121         return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
8122     }
8123 
8124     for (fake_open = fakes; fake_open->filename; fake_open++) {
8125         if (fake_open->cmp(pathname, fake_open->filename)) {
8126             break;
8127         }
8128     }
8129 
8130     if (fake_open->filename) {
8131         const char *tmpdir;
8132         char filename[PATH_MAX];
8133         int fd, r;
8134 
8135         /* create temporary file to map stat to */
8136         tmpdir = getenv("TMPDIR");
8137         if (!tmpdir)
8138             tmpdir = "/tmp";
8139         snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8140         fd = mkstemp(filename);
8141         if (fd < 0) {
8142             return fd;
8143         }
8144         unlink(filename);
8145 
8146         if ((r = fake_open->fill(cpu_env, fd))) {
8147             int e = errno;
8148             close(fd);
8149             errno = e;
8150             return r;
8151         }
8152         lseek(fd, 0, SEEK_SET);
8153 
8154         return fd;
8155     }
8156 
8157     return safe_openat(dirfd, path(pathname), flags, mode);
8158 }
8159 
8160 #define TIMER_MAGIC 0x0caf0000
8161 #define TIMER_MAGIC_MASK 0xffff0000
8162 
8163 /* Convert QEMU provided timer ID back to internal 16bit index format */
8164 static target_timer_t get_timer_id(abi_long arg)
8165 {
8166     target_timer_t timerid = arg;
8167 
8168     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8169         return -TARGET_EINVAL;
8170     }
8171 
8172     timerid &= 0xffff;
8173 
8174     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8175         return -TARGET_EINVAL;
8176     }
8177 
8178     return timerid;
8179 }
8180 
8181 static int target_to_host_cpu_mask(unsigned long *host_mask,
8182                                    size_t host_size,
8183                                    abi_ulong target_addr,
8184                                    size_t target_size)
8185 {
8186     unsigned target_bits = sizeof(abi_ulong) * 8;
8187     unsigned host_bits = sizeof(*host_mask) * 8;
8188     abi_ulong *target_mask;
8189     unsigned i, j;
8190 
8191     assert(host_size >= target_size);
8192 
8193     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8194     if (!target_mask) {
8195         return -TARGET_EFAULT;
8196     }
8197     memset(host_mask, 0, host_size);
8198 
8199     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8200         unsigned bit = i * target_bits;
8201         abi_ulong val;
8202 
8203         __get_user(val, &target_mask[i]);
8204         for (j = 0; j < target_bits; j++, bit++) {
8205             if (val & (1UL << j)) {
8206                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8207             }
8208         }
8209     }
8210 
8211     unlock_user(target_mask, target_addr, 0);
8212     return 0;
8213 }
8214 
8215 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8216                                    size_t host_size,
8217                                    abi_ulong target_addr,
8218                                    size_t target_size)
8219 {
8220     unsigned target_bits = sizeof(abi_ulong) * 8;
8221     unsigned host_bits = sizeof(*host_mask) * 8;
8222     abi_ulong *target_mask;
8223     unsigned i, j;
8224 
8225     assert(host_size >= target_size);
8226 
8227     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8228     if (!target_mask) {
8229         return -TARGET_EFAULT;
8230     }
8231 
8232     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8233         unsigned bit = i * target_bits;
8234         abi_ulong val = 0;
8235 
8236         for (j = 0; j < target_bits; j++, bit++) {
8237             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8238                 val |= 1UL << j;
8239             }
8240         }
8241         __put_user(val, &target_mask[i]);
8242     }
8243 
8244     unlock_user(target_mask, target_addr, target_size);
8245     return 0;
8246 }
8247 
8248 /* This is an internal helper for do_syscall so that it is easier
8249  * to have a single return point, so that actions, such as logging
8250  * of syscall results, can be performed.
8251  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8252  */
8253 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
8254                             abi_long arg2, abi_long arg3, abi_long arg4,
8255                             abi_long arg5, abi_long arg6, abi_long arg7,
8256                             abi_long arg8)
8257 {
8258     CPUState *cpu = env_cpu(cpu_env);
8259     abi_long ret;
8260 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8261     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8262     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8263     || defined(TARGET_NR_statx)
8264     struct stat st;
8265 #endif
8266 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8267     || defined(TARGET_NR_fstatfs)
8268     struct statfs stfs;
8269 #endif
8270     void *p;
8271 
8272     switch(num) {
8273     case TARGET_NR_exit:
8274         /* In old applications this may be used to implement _exit(2).
8275            However in threaded applications it is used for thread termination,
8276            and _exit_group is used for application termination.
8277            Do thread termination if we have more then one thread.  */
8278 
8279         if (block_signals()) {
8280             return -TARGET_ERESTARTSYS;
8281         }
8282 
8283         pthread_mutex_lock(&clone_lock);
8284 
8285         if (CPU_NEXT(first_cpu)) {
8286             TaskState *ts = cpu->opaque;
8287 
8288             object_property_set_bool(OBJECT(cpu), "realized", false, NULL);
8289             object_unref(OBJECT(cpu));
8290             /*
8291              * At this point the CPU should be unrealized and removed
8292              * from cpu lists. We can clean-up the rest of the thread
8293              * data without the lock held.
8294              */
8295 
8296             pthread_mutex_unlock(&clone_lock);
8297 
8298             if (ts->child_tidptr) {
8299                 put_user_u32(0, ts->child_tidptr);
8300                 do_sys_futex(g2h(cpu, ts->child_tidptr),
8301                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
8302             }
8303             thread_cpu = NULL;
8304             g_free(ts);
8305             rcu_unregister_thread();
8306             pthread_exit(NULL);
8307         }
8308 
8309         pthread_mutex_unlock(&clone_lock);
8310         preexit_cleanup(cpu_env, arg1);
8311         _exit(arg1);
8312         return 0; /* avoid warning */
8313     case TARGET_NR_read:
8314         if (arg2 == 0 && arg3 == 0) {
8315             return get_errno(safe_read(arg1, 0, 0));
8316         } else {
8317             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8318                 return -TARGET_EFAULT;
8319             ret = get_errno(safe_read(arg1, p, arg3));
8320             if (ret >= 0 &&
8321                 fd_trans_host_to_target_data(arg1)) {
8322                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
8323             }
8324             unlock_user(p, arg2, ret);
8325         }
8326         return ret;
8327     case TARGET_NR_write:
8328         if (arg2 == 0 && arg3 == 0) {
8329             return get_errno(safe_write(arg1, 0, 0));
8330         }
8331         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8332             return -TARGET_EFAULT;
8333         if (fd_trans_target_to_host_data(arg1)) {
8334             void *copy = g_malloc(arg3);
8335             memcpy(copy, p, arg3);
8336             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
8337             if (ret >= 0) {
8338                 ret = get_errno(safe_write(arg1, copy, ret));
8339             }
8340             g_free(copy);
8341         } else {
8342             ret = get_errno(safe_write(arg1, p, arg3));
8343         }
8344         unlock_user(p, arg2, 0);
8345         return ret;
8346 
8347 #ifdef TARGET_NR_open
8348     case TARGET_NR_open:
8349         if (!(p = lock_user_string(arg1)))
8350             return -TARGET_EFAULT;
8351         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
8352                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
8353                                   arg3));
8354         fd_trans_unregister(ret);
8355         unlock_user(p, arg1, 0);
8356         return ret;
8357 #endif
8358     case TARGET_NR_openat:
8359         if (!(p = lock_user_string(arg2)))
8360             return -TARGET_EFAULT;
8361         ret = get_errno(do_openat(cpu_env, arg1, p,
8362                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
8363                                   arg4));
8364         fd_trans_unregister(ret);
8365         unlock_user(p, arg2, 0);
8366         return ret;
8367 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8368     case TARGET_NR_name_to_handle_at:
8369         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
8370         return ret;
8371 #endif
8372 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8373     case TARGET_NR_open_by_handle_at:
8374         ret = do_open_by_handle_at(arg1, arg2, arg3);
8375         fd_trans_unregister(ret);
8376         return ret;
8377 #endif
8378     case TARGET_NR_close:
8379         fd_trans_unregister(arg1);
8380         return get_errno(close(arg1));
8381 
8382     case TARGET_NR_brk:
8383         return do_brk(arg1);
8384 #ifdef TARGET_NR_fork
8385     case TARGET_NR_fork:
8386         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
8387 #endif
8388 #ifdef TARGET_NR_waitpid
8389     case TARGET_NR_waitpid:
8390         {
8391             int status;
8392             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
8393             if (!is_error(ret) && arg2 && ret
8394                 && put_user_s32(host_to_target_waitstatus(status), arg2))
8395                 return -TARGET_EFAULT;
8396         }
8397         return ret;
8398 #endif
8399 #ifdef TARGET_NR_waitid
8400     case TARGET_NR_waitid:
8401         {
8402             siginfo_t info;
8403             info.si_pid = 0;
8404             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
8405             if (!is_error(ret) && arg3 && info.si_pid != 0) {
8406                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
8407                     return -TARGET_EFAULT;
8408                 host_to_target_siginfo(p, &info);
8409                 unlock_user(p, arg3, sizeof(target_siginfo_t));
8410             }
8411         }
8412         return ret;
8413 #endif
8414 #ifdef TARGET_NR_creat /* not on alpha */
8415     case TARGET_NR_creat:
8416         if (!(p = lock_user_string(arg1)))
8417             return -TARGET_EFAULT;
8418         ret = get_errno(creat(p, arg2));
8419         fd_trans_unregister(ret);
8420         unlock_user(p, arg1, 0);
8421         return ret;
8422 #endif
8423 #ifdef TARGET_NR_link
8424     case TARGET_NR_link:
8425         {
8426             void * p2;
8427             p = lock_user_string(arg1);
8428             p2 = lock_user_string(arg2);
8429             if (!p || !p2)
8430                 ret = -TARGET_EFAULT;
8431             else
8432                 ret = get_errno(link(p, p2));
8433             unlock_user(p2, arg2, 0);
8434             unlock_user(p, arg1, 0);
8435         }
8436         return ret;
8437 #endif
8438 #if defined(TARGET_NR_linkat)
8439     case TARGET_NR_linkat:
8440         {
8441             void * p2 = NULL;
8442             if (!arg2 || !arg4)
8443                 return -TARGET_EFAULT;
8444             p  = lock_user_string(arg2);
8445             p2 = lock_user_string(arg4);
8446             if (!p || !p2)
8447                 ret = -TARGET_EFAULT;
8448             else
8449                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8450             unlock_user(p, arg2, 0);
8451             unlock_user(p2, arg4, 0);
8452         }
8453         return ret;
8454 #endif
8455 #ifdef TARGET_NR_unlink
8456     case TARGET_NR_unlink:
8457         if (!(p = lock_user_string(arg1)))
8458             return -TARGET_EFAULT;
8459         ret = get_errno(unlink(p));
8460         unlock_user(p, arg1, 0);
8461         return ret;
8462 #endif
8463 #if defined(TARGET_NR_unlinkat)
8464     case TARGET_NR_unlinkat:
8465         if (!(p = lock_user_string(arg2)))
8466             return -TARGET_EFAULT;
8467         ret = get_errno(unlinkat(arg1, p, arg3));
8468         unlock_user(p, arg2, 0);
8469         return ret;
8470 #endif
8471     case TARGET_NR_execve:
8472         {
8473             char **argp, **envp;
8474             int argc, envc;
8475             abi_ulong gp;
8476             abi_ulong guest_argp;
8477             abi_ulong guest_envp;
8478             abi_ulong addr;
8479             char **q;
8480             int total_size = 0;
8481 
8482             argc = 0;
8483             guest_argp = arg2;
8484             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8485                 if (get_user_ual(addr, gp))
8486                     return -TARGET_EFAULT;
8487                 if (!addr)
8488                     break;
8489                 argc++;
8490             }
8491             envc = 0;
8492             guest_envp = arg3;
8493             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8494                 if (get_user_ual(addr, gp))
8495                     return -TARGET_EFAULT;
8496                 if (!addr)
8497                     break;
8498                 envc++;
8499             }
8500 
8501             argp = g_new0(char *, argc + 1);
8502             envp = g_new0(char *, envc + 1);
8503 
8504             for (gp = guest_argp, q = argp; gp;
8505                   gp += sizeof(abi_ulong), q++) {
8506                 if (get_user_ual(addr, gp))
8507                     goto execve_efault;
8508                 if (!addr)
8509                     break;
8510                 if (!(*q = lock_user_string(addr)))
8511                     goto execve_efault;
8512                 total_size += strlen(*q) + 1;
8513             }
8514             *q = NULL;
8515 
8516             for (gp = guest_envp, q = envp; gp;
8517                   gp += sizeof(abi_ulong), q++) {
8518                 if (get_user_ual(addr, gp))
8519                     goto execve_efault;
8520                 if (!addr)
8521                     break;
8522                 if (!(*q = lock_user_string(addr)))
8523                     goto execve_efault;
8524                 total_size += strlen(*q) + 1;
8525             }
8526             *q = NULL;
8527 
8528             if (!(p = lock_user_string(arg1)))
8529                 goto execve_efault;
8530             /* Although execve() is not an interruptible syscall it is
8531              * a special case where we must use the safe_syscall wrapper:
8532              * if we allow a signal to happen before we make the host
8533              * syscall then we will 'lose' it, because at the point of
8534              * execve the process leaves QEMU's control. So we use the
8535              * safe syscall wrapper to ensure that we either take the
8536              * signal as a guest signal, or else it does not happen
8537              * before the execve completes and makes it the other
8538              * program's problem.
8539              */
8540             ret = get_errno(safe_execve(p, argp, envp));
8541             unlock_user(p, arg1, 0);
8542 
8543             goto execve_end;
8544 
8545         execve_efault:
8546             ret = -TARGET_EFAULT;
8547 
8548         execve_end:
8549             for (gp = guest_argp, q = argp; *q;
8550                   gp += sizeof(abi_ulong), q++) {
8551                 if (get_user_ual(addr, gp)
8552                     || !addr)
8553                     break;
8554                 unlock_user(*q, addr, 0);
8555             }
8556             for (gp = guest_envp, q = envp; *q;
8557                   gp += sizeof(abi_ulong), q++) {
8558                 if (get_user_ual(addr, gp)
8559                     || !addr)
8560                     break;
8561                 unlock_user(*q, addr, 0);
8562             }
8563 
8564             g_free(argp);
8565             g_free(envp);
8566         }
8567         return ret;
8568     case TARGET_NR_chdir:
8569         if (!(p = lock_user_string(arg1)))
8570             return -TARGET_EFAULT;
8571         ret = get_errno(chdir(p));
8572         unlock_user(p, arg1, 0);
8573         return ret;
8574 #ifdef TARGET_NR_time
8575     case TARGET_NR_time:
8576         {
8577             time_t host_time;
8578             ret = get_errno(time(&host_time));
8579             if (!is_error(ret)
8580                 && arg1
8581                 && put_user_sal(host_time, arg1))
8582                 return -TARGET_EFAULT;
8583         }
8584         return ret;
8585 #endif
8586 #ifdef TARGET_NR_mknod
8587     case TARGET_NR_mknod:
8588         if (!(p = lock_user_string(arg1)))
8589             return -TARGET_EFAULT;
8590         ret = get_errno(mknod(p, arg2, arg3));
8591         unlock_user(p, arg1, 0);
8592         return ret;
8593 #endif
8594 #if defined(TARGET_NR_mknodat)
8595     case TARGET_NR_mknodat:
8596         if (!(p = lock_user_string(arg2)))
8597             return -TARGET_EFAULT;
8598         ret = get_errno(mknodat(arg1, p, arg3, arg4));
8599         unlock_user(p, arg2, 0);
8600         return ret;
8601 #endif
8602 #ifdef TARGET_NR_chmod
8603     case TARGET_NR_chmod:
8604         if (!(p = lock_user_string(arg1)))
8605             return -TARGET_EFAULT;
8606         ret = get_errno(chmod(p, arg2));
8607         unlock_user(p, arg1, 0);
8608         return ret;
8609 #endif
8610 #ifdef TARGET_NR_lseek
8611     case TARGET_NR_lseek:
8612         return get_errno(lseek(arg1, arg2, arg3));
8613 #endif
8614 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8615     /* Alpha specific */
8616     case TARGET_NR_getxpid:
8617         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
8618         return get_errno(getpid());
8619 #endif
8620 #ifdef TARGET_NR_getpid
8621     case TARGET_NR_getpid:
8622         return get_errno(getpid());
8623 #endif
8624     case TARGET_NR_mount:
8625         {
8626             /* need to look at the data field */
8627             void *p2, *p3;
8628 
8629             if (arg1) {
8630                 p = lock_user_string(arg1);
8631                 if (!p) {
8632                     return -TARGET_EFAULT;
8633                 }
8634             } else {
8635                 p = NULL;
8636             }
8637 
8638             p2 = lock_user_string(arg2);
8639             if (!p2) {
8640                 if (arg1) {
8641                     unlock_user(p, arg1, 0);
8642                 }
8643                 return -TARGET_EFAULT;
8644             }
8645 
8646             if (arg3) {
8647                 p3 = lock_user_string(arg3);
8648                 if (!p3) {
8649                     if (arg1) {
8650                         unlock_user(p, arg1, 0);
8651                     }
8652                     unlock_user(p2, arg2, 0);
8653                     return -TARGET_EFAULT;
8654                 }
8655             } else {
8656                 p3 = NULL;
8657             }
8658 
8659             /* FIXME - arg5 should be locked, but it isn't clear how to
8660              * do that since it's not guaranteed to be a NULL-terminated
8661              * string.
8662              */
8663             if (!arg5) {
8664                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8665             } else {
8666                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
8667             }
8668             ret = get_errno(ret);
8669 
8670             if (arg1) {
8671                 unlock_user(p, arg1, 0);
8672             }
8673             unlock_user(p2, arg2, 0);
8674             if (arg3) {
8675                 unlock_user(p3, arg3, 0);
8676             }
8677         }
8678         return ret;
8679 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
8680 #if defined(TARGET_NR_umount)
8681     case TARGET_NR_umount:
8682 #endif
8683 #if defined(TARGET_NR_oldumount)
8684     case TARGET_NR_oldumount:
8685 #endif
8686         if (!(p = lock_user_string(arg1)))
8687             return -TARGET_EFAULT;
8688         ret = get_errno(umount(p));
8689         unlock_user(p, arg1, 0);
8690         return ret;
8691 #endif
8692 #ifdef TARGET_NR_stime /* not on alpha */
8693     case TARGET_NR_stime:
8694         {
8695             struct timespec ts;
8696             ts.tv_nsec = 0;
8697             if (get_user_sal(ts.tv_sec, arg1)) {
8698                 return -TARGET_EFAULT;
8699             }
8700             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
8701         }
8702 #endif
8703 #ifdef TARGET_NR_alarm /* not on alpha */
8704     case TARGET_NR_alarm:
8705         return alarm(arg1);
8706 #endif
8707 #ifdef TARGET_NR_pause /* not on alpha */
8708     case TARGET_NR_pause:
8709         if (!block_signals()) {
8710             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
8711         }
8712         return -TARGET_EINTR;
8713 #endif
8714 #ifdef TARGET_NR_utime
8715     case TARGET_NR_utime:
8716         {
8717             struct utimbuf tbuf, *host_tbuf;
8718             struct target_utimbuf *target_tbuf;
8719             if (arg2) {
8720                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
8721                     return -TARGET_EFAULT;
8722                 tbuf.actime = tswapal(target_tbuf->actime);
8723                 tbuf.modtime = tswapal(target_tbuf->modtime);
8724                 unlock_user_struct(target_tbuf, arg2, 0);
8725                 host_tbuf = &tbuf;
8726             } else {
8727                 host_tbuf = NULL;
8728             }
8729             if (!(p = lock_user_string(arg1)))
8730                 return -TARGET_EFAULT;
8731             ret = get_errno(utime(p, host_tbuf));
8732             unlock_user(p, arg1, 0);
8733         }
8734         return ret;
8735 #endif
8736 #ifdef TARGET_NR_utimes
8737     case TARGET_NR_utimes:
8738         {
8739             struct timeval *tvp, tv[2];
8740             if (arg2) {
8741                 if (copy_from_user_timeval(&tv[0], arg2)
8742                     || copy_from_user_timeval(&tv[1],
8743                                               arg2 + sizeof(struct target_timeval)))
8744                     return -TARGET_EFAULT;
8745                 tvp = tv;
8746             } else {
8747                 tvp = NULL;
8748             }
8749             if (!(p = lock_user_string(arg1)))
8750                 return -TARGET_EFAULT;
8751             ret = get_errno(utimes(p, tvp));
8752             unlock_user(p, arg1, 0);
8753         }
8754         return ret;
8755 #endif
8756 #if defined(TARGET_NR_futimesat)
8757     case TARGET_NR_futimesat:
8758         {
8759             struct timeval *tvp, tv[2];
8760             if (arg3) {
8761                 if (copy_from_user_timeval(&tv[0], arg3)
8762                     || copy_from_user_timeval(&tv[1],
8763                                               arg3 + sizeof(struct target_timeval)))
8764                     return -TARGET_EFAULT;
8765                 tvp = tv;
8766             } else {
8767                 tvp = NULL;
8768             }
8769             if (!(p = lock_user_string(arg2))) {
8770                 return -TARGET_EFAULT;
8771             }
8772             ret = get_errno(futimesat(arg1, path(p), tvp));
8773             unlock_user(p, arg2, 0);
8774         }
8775         return ret;
8776 #endif
8777 #ifdef TARGET_NR_access
8778     case TARGET_NR_access:
8779         if (!(p = lock_user_string(arg1))) {
8780             return -TARGET_EFAULT;
8781         }
8782         ret = get_errno(access(path(p), arg2));
8783         unlock_user(p, arg1, 0);
8784         return ret;
8785 #endif
8786 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8787     case TARGET_NR_faccessat:
8788         if (!(p = lock_user_string(arg2))) {
8789             return -TARGET_EFAULT;
8790         }
8791         ret = get_errno(faccessat(arg1, p, arg3, 0));
8792         unlock_user(p, arg2, 0);
8793         return ret;
8794 #endif
8795 #ifdef TARGET_NR_nice /* not on alpha */
8796     case TARGET_NR_nice:
8797         return get_errno(nice(arg1));
8798 #endif
8799     case TARGET_NR_sync:
8800         sync();
8801         return 0;
8802 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8803     case TARGET_NR_syncfs:
8804         return get_errno(syncfs(arg1));
8805 #endif
8806     case TARGET_NR_kill:
8807         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8808 #ifdef TARGET_NR_rename
8809     case TARGET_NR_rename:
8810         {
8811             void *p2;
8812             p = lock_user_string(arg1);
8813             p2 = lock_user_string(arg2);
8814             if (!p || !p2)
8815                 ret = -TARGET_EFAULT;
8816             else
8817                 ret = get_errno(rename(p, p2));
8818             unlock_user(p2, arg2, 0);
8819             unlock_user(p, arg1, 0);
8820         }
8821         return ret;
8822 #endif
8823 #if defined(TARGET_NR_renameat)
8824     case TARGET_NR_renameat:
8825         {
8826             void *p2;
8827             p  = lock_user_string(arg2);
8828             p2 = lock_user_string(arg4);
8829             if (!p || !p2)
8830                 ret = -TARGET_EFAULT;
8831             else
8832                 ret = get_errno(renameat(arg1, p, arg3, p2));
8833             unlock_user(p2, arg4, 0);
8834             unlock_user(p, arg2, 0);
8835         }
8836         return ret;
8837 #endif
8838 #if defined(TARGET_NR_renameat2)
8839     case TARGET_NR_renameat2:
8840         {
8841             void *p2;
8842             p  = lock_user_string(arg2);
8843             p2 = lock_user_string(arg4);
8844             if (!p || !p2) {
8845                 ret = -TARGET_EFAULT;
8846             } else {
8847                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
8848             }
8849             unlock_user(p2, arg4, 0);
8850             unlock_user(p, arg2, 0);
8851         }
8852         return ret;
8853 #endif
8854 #ifdef TARGET_NR_mkdir
8855     case TARGET_NR_mkdir:
8856         if (!(p = lock_user_string(arg1)))
8857             return -TARGET_EFAULT;
8858         ret = get_errno(mkdir(p, arg2));
8859         unlock_user(p, arg1, 0);
8860         return ret;
8861 #endif
8862 #if defined(TARGET_NR_mkdirat)
8863     case TARGET_NR_mkdirat:
8864         if (!(p = lock_user_string(arg2)))
8865             return -TARGET_EFAULT;
8866         ret = get_errno(mkdirat(arg1, p, arg3));
8867         unlock_user(p, arg2, 0);
8868         return ret;
8869 #endif
8870 #ifdef TARGET_NR_rmdir
8871     case TARGET_NR_rmdir:
8872         if (!(p = lock_user_string(arg1)))
8873             return -TARGET_EFAULT;
8874         ret = get_errno(rmdir(p));
8875         unlock_user(p, arg1, 0);
8876         return ret;
8877 #endif
8878     case TARGET_NR_dup:
8879         ret = get_errno(dup(arg1));
8880         if (ret >= 0) {
8881             fd_trans_dup(arg1, ret);
8882         }
8883         return ret;
8884 #ifdef TARGET_NR_pipe
8885     case TARGET_NR_pipe:
8886         return do_pipe(cpu_env, arg1, 0, 0);
8887 #endif
8888 #ifdef TARGET_NR_pipe2
8889     case TARGET_NR_pipe2:
8890         return do_pipe(cpu_env, arg1,
8891                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8892 #endif
8893     case TARGET_NR_times:
8894         {
8895             struct target_tms *tmsp;
8896             struct tms tms;
8897             ret = get_errno(times(&tms));
8898             if (arg1) {
8899                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8900                 if (!tmsp)
8901                     return -TARGET_EFAULT;
8902                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8903                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8904                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8905                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8906             }
8907             if (!is_error(ret))
8908                 ret = host_to_target_clock_t(ret);
8909         }
8910         return ret;
8911     case TARGET_NR_acct:
8912         if (arg1 == 0) {
8913             ret = get_errno(acct(NULL));
8914         } else {
8915             if (!(p = lock_user_string(arg1))) {
8916                 return -TARGET_EFAULT;
8917             }
8918             ret = get_errno(acct(path(p)));
8919             unlock_user(p, arg1, 0);
8920         }
8921         return ret;
8922 #ifdef TARGET_NR_umount2
8923     case TARGET_NR_umount2:
8924         if (!(p = lock_user_string(arg1)))
8925             return -TARGET_EFAULT;
8926         ret = get_errno(umount2(p, arg2));
8927         unlock_user(p, arg1, 0);
8928         return ret;
8929 #endif
8930     case TARGET_NR_ioctl:
8931         return do_ioctl(arg1, arg2, arg3);
8932 #ifdef TARGET_NR_fcntl
8933     case TARGET_NR_fcntl:
8934         return do_fcntl(arg1, arg2, arg3);
8935 #endif
8936     case TARGET_NR_setpgid:
8937         return get_errno(setpgid(arg1, arg2));
8938     case TARGET_NR_umask:
8939         return get_errno(umask(arg1));
8940     case TARGET_NR_chroot:
8941         if (!(p = lock_user_string(arg1)))
8942             return -TARGET_EFAULT;
8943         ret = get_errno(chroot(p));
8944         unlock_user(p, arg1, 0);
8945         return ret;
8946 #ifdef TARGET_NR_dup2
8947     case TARGET_NR_dup2:
8948         ret = get_errno(dup2(arg1, arg2));
8949         if (ret >= 0) {
8950             fd_trans_dup(arg1, arg2);
8951         }
8952         return ret;
8953 #endif
8954 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8955     case TARGET_NR_dup3:
8956     {
8957         int host_flags;
8958 
8959         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
8960             return -EINVAL;
8961         }
8962         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
8963         ret = get_errno(dup3(arg1, arg2, host_flags));
8964         if (ret >= 0) {
8965             fd_trans_dup(arg1, arg2);
8966         }
8967         return ret;
8968     }
8969 #endif
8970 #ifdef TARGET_NR_getppid /* not on alpha */
8971     case TARGET_NR_getppid:
8972         return get_errno(getppid());
8973 #endif
8974 #ifdef TARGET_NR_getpgrp
8975     case TARGET_NR_getpgrp:
8976         return get_errno(getpgrp());
8977 #endif
8978     case TARGET_NR_setsid:
8979         return get_errno(setsid());
8980 #ifdef TARGET_NR_sigaction
8981     case TARGET_NR_sigaction:
8982         {
8983 #if defined(TARGET_MIPS)
8984 	    struct target_sigaction act, oact, *pact, *old_act;
8985 
8986 	    if (arg2) {
8987                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8988                     return -TARGET_EFAULT;
8989 		act._sa_handler = old_act->_sa_handler;
8990 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8991 		act.sa_flags = old_act->sa_flags;
8992 		unlock_user_struct(old_act, arg2, 0);
8993 		pact = &act;
8994 	    } else {
8995 		pact = NULL;
8996 	    }
8997 
8998         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
8999 
9000 	    if (!is_error(ret) && arg3) {
9001                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9002                     return -TARGET_EFAULT;
9003 		old_act->_sa_handler = oact._sa_handler;
9004 		old_act->sa_flags = oact.sa_flags;
9005 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9006 		old_act->sa_mask.sig[1] = 0;
9007 		old_act->sa_mask.sig[2] = 0;
9008 		old_act->sa_mask.sig[3] = 0;
9009 		unlock_user_struct(old_act, arg3, 1);
9010 	    }
9011 #else
9012             struct target_old_sigaction *old_act;
9013             struct target_sigaction act, oact, *pact;
9014             if (arg2) {
9015                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9016                     return -TARGET_EFAULT;
9017                 act._sa_handler = old_act->_sa_handler;
9018                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9019                 act.sa_flags = old_act->sa_flags;
9020 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9021                 act.sa_restorer = old_act->sa_restorer;
9022 #endif
9023                 unlock_user_struct(old_act, arg2, 0);
9024                 pact = &act;
9025             } else {
9026                 pact = NULL;
9027             }
9028             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9029             if (!is_error(ret) && arg3) {
9030                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9031                     return -TARGET_EFAULT;
9032                 old_act->_sa_handler = oact._sa_handler;
9033                 old_act->sa_mask = oact.sa_mask.sig[0];
9034                 old_act->sa_flags = oact.sa_flags;
9035 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9036                 old_act->sa_restorer = oact.sa_restorer;
9037 #endif
9038                 unlock_user_struct(old_act, arg3, 1);
9039             }
9040 #endif
9041         }
9042         return ret;
9043 #endif
9044     case TARGET_NR_rt_sigaction:
9045         {
9046             /*
9047              * For Alpha and SPARC this is a 5 argument syscall, with
9048              * a 'restorer' parameter which must be copied into the
9049              * sa_restorer field of the sigaction struct.
9050              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9051              * and arg5 is the sigsetsize.
9052              */
9053 #if defined(TARGET_ALPHA)
9054             target_ulong sigsetsize = arg4;
9055             target_ulong restorer = arg5;
9056 #elif defined(TARGET_SPARC)
9057             target_ulong restorer = arg4;
9058             target_ulong sigsetsize = arg5;
9059 #else
9060             target_ulong sigsetsize = arg4;
9061             target_ulong restorer = 0;
9062 #endif
9063             struct target_sigaction *act;
9064             struct target_sigaction *oact;
9065 
9066             if (sigsetsize != sizeof(target_sigset_t)) {
9067                 return -TARGET_EINVAL;
9068             }
9069             if (arg2) {
9070                 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9071                     return -TARGET_EFAULT;
9072                 }
9073             } else {
9074                 act = NULL;
9075             }
9076             if (arg3) {
9077                 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9078                     ret = -TARGET_EFAULT;
9079                     goto rt_sigaction_fail;
9080                 }
9081             } else
9082                 oact = NULL;
9083             ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9084 	rt_sigaction_fail:
9085             if (act)
9086                 unlock_user_struct(act, arg2, 0);
9087             if (oact)
9088                 unlock_user_struct(oact, arg3, 1);
9089         }
9090         return ret;
9091 #ifdef TARGET_NR_sgetmask /* not on alpha */
9092     case TARGET_NR_sgetmask:
9093         {
9094             sigset_t cur_set;
9095             abi_ulong target_set;
9096             ret = do_sigprocmask(0, NULL, &cur_set);
9097             if (!ret) {
9098                 host_to_target_old_sigset(&target_set, &cur_set);
9099                 ret = target_set;
9100             }
9101         }
9102         return ret;
9103 #endif
9104 #ifdef TARGET_NR_ssetmask /* not on alpha */
9105     case TARGET_NR_ssetmask:
9106         {
9107             sigset_t set, oset;
9108             abi_ulong target_set = arg1;
9109             target_to_host_old_sigset(&set, &target_set);
9110             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9111             if (!ret) {
9112                 host_to_target_old_sigset(&target_set, &oset);
9113                 ret = target_set;
9114             }
9115         }
9116         return ret;
9117 #endif
9118 #ifdef TARGET_NR_sigprocmask
9119     case TARGET_NR_sigprocmask:
9120         {
9121 #if defined(TARGET_ALPHA)
9122             sigset_t set, oldset;
9123             abi_ulong mask;
9124             int how;
9125 
9126             switch (arg1) {
9127             case TARGET_SIG_BLOCK:
9128                 how = SIG_BLOCK;
9129                 break;
9130             case TARGET_SIG_UNBLOCK:
9131                 how = SIG_UNBLOCK;
9132                 break;
9133             case TARGET_SIG_SETMASK:
9134                 how = SIG_SETMASK;
9135                 break;
9136             default:
9137                 return -TARGET_EINVAL;
9138             }
9139             mask = arg2;
9140             target_to_host_old_sigset(&set, &mask);
9141 
9142             ret = do_sigprocmask(how, &set, &oldset);
9143             if (!is_error(ret)) {
9144                 host_to_target_old_sigset(&mask, &oldset);
9145                 ret = mask;
9146                 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
9147             }
9148 #else
9149             sigset_t set, oldset, *set_ptr;
9150             int how;
9151 
9152             if (arg2) {
9153                 switch (arg1) {
9154                 case TARGET_SIG_BLOCK:
9155                     how = SIG_BLOCK;
9156                     break;
9157                 case TARGET_SIG_UNBLOCK:
9158                     how = SIG_UNBLOCK;
9159                     break;
9160                 case TARGET_SIG_SETMASK:
9161                     how = SIG_SETMASK;
9162                     break;
9163                 default:
9164                     return -TARGET_EINVAL;
9165                 }
9166                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9167                     return -TARGET_EFAULT;
9168                 target_to_host_old_sigset(&set, p);
9169                 unlock_user(p, arg2, 0);
9170                 set_ptr = &set;
9171             } else {
9172                 how = 0;
9173                 set_ptr = NULL;
9174             }
9175             ret = do_sigprocmask(how, set_ptr, &oldset);
9176             if (!is_error(ret) && arg3) {
9177                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9178                     return -TARGET_EFAULT;
9179                 host_to_target_old_sigset(p, &oldset);
9180                 unlock_user(p, arg3, sizeof(target_sigset_t));
9181             }
9182 #endif
9183         }
9184         return ret;
9185 #endif
9186     case TARGET_NR_rt_sigprocmask:
9187         {
9188             int how = arg1;
9189             sigset_t set, oldset, *set_ptr;
9190 
9191             if (arg4 != sizeof(target_sigset_t)) {
9192                 return -TARGET_EINVAL;
9193             }
9194 
9195             if (arg2) {
9196                 switch(how) {
9197                 case TARGET_SIG_BLOCK:
9198                     how = SIG_BLOCK;
9199                     break;
9200                 case TARGET_SIG_UNBLOCK:
9201                     how = SIG_UNBLOCK;
9202                     break;
9203                 case TARGET_SIG_SETMASK:
9204                     how = SIG_SETMASK;
9205                     break;
9206                 default:
9207                     return -TARGET_EINVAL;
9208                 }
9209                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9210                     return -TARGET_EFAULT;
9211                 target_to_host_sigset(&set, p);
9212                 unlock_user(p, arg2, 0);
9213                 set_ptr = &set;
9214             } else {
9215                 how = 0;
9216                 set_ptr = NULL;
9217             }
9218             ret = do_sigprocmask(how, set_ptr, &oldset);
9219             if (!is_error(ret) && arg3) {
9220                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9221                     return -TARGET_EFAULT;
9222                 host_to_target_sigset(p, &oldset);
9223                 unlock_user(p, arg3, sizeof(target_sigset_t));
9224             }
9225         }
9226         return ret;
9227 #ifdef TARGET_NR_sigpending
9228     case TARGET_NR_sigpending:
9229         {
9230             sigset_t set;
9231             ret = get_errno(sigpending(&set));
9232             if (!is_error(ret)) {
9233                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9234                     return -TARGET_EFAULT;
9235                 host_to_target_old_sigset(p, &set);
9236                 unlock_user(p, arg1, sizeof(target_sigset_t));
9237             }
9238         }
9239         return ret;
9240 #endif
9241     case TARGET_NR_rt_sigpending:
9242         {
9243             sigset_t set;
9244 
9245             /* Yes, this check is >, not != like most. We follow the kernel's
9246              * logic and it does it like this because it implements
9247              * NR_sigpending through the same code path, and in that case
9248              * the old_sigset_t is smaller in size.
9249              */
9250             if (arg2 > sizeof(target_sigset_t)) {
9251                 return -TARGET_EINVAL;
9252             }
9253 
9254             ret = get_errno(sigpending(&set));
9255             if (!is_error(ret)) {
9256                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9257                     return -TARGET_EFAULT;
9258                 host_to_target_sigset(p, &set);
9259                 unlock_user(p, arg1, sizeof(target_sigset_t));
9260             }
9261         }
9262         return ret;
9263 #ifdef TARGET_NR_sigsuspend
9264     case TARGET_NR_sigsuspend:
9265         {
9266             TaskState *ts = cpu->opaque;
9267 #if defined(TARGET_ALPHA)
9268             abi_ulong mask = arg1;
9269             target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
9270 #else
9271             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9272                 return -TARGET_EFAULT;
9273             target_to_host_old_sigset(&ts->sigsuspend_mask, p);
9274             unlock_user(p, arg1, 0);
9275 #endif
9276             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9277                                                SIGSET_T_SIZE));
9278             if (ret != -TARGET_ERESTARTSYS) {
9279                 ts->in_sigsuspend = 1;
9280             }
9281         }
9282         return ret;
9283 #endif
9284     case TARGET_NR_rt_sigsuspend:
9285         {
9286             TaskState *ts = cpu->opaque;
9287 
9288             if (arg2 != sizeof(target_sigset_t)) {
9289                 return -TARGET_EINVAL;
9290             }
9291             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9292                 return -TARGET_EFAULT;
9293             target_to_host_sigset(&ts->sigsuspend_mask, p);
9294             unlock_user(p, arg1, 0);
9295             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9296                                                SIGSET_T_SIZE));
9297             if (ret != -TARGET_ERESTARTSYS) {
9298                 ts->in_sigsuspend = 1;
9299             }
9300         }
9301         return ret;
9302 #ifdef TARGET_NR_rt_sigtimedwait
9303     case TARGET_NR_rt_sigtimedwait:
9304         {
9305             sigset_t set;
9306             struct timespec uts, *puts;
9307             siginfo_t uinfo;
9308 
9309             if (arg4 != sizeof(target_sigset_t)) {
9310                 return -TARGET_EINVAL;
9311             }
9312 
9313             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9314                 return -TARGET_EFAULT;
9315             target_to_host_sigset(&set, p);
9316             unlock_user(p, arg1, 0);
9317             if (arg3) {
9318                 puts = &uts;
9319                 if (target_to_host_timespec(puts, arg3)) {
9320                     return -TARGET_EFAULT;
9321                 }
9322             } else {
9323                 puts = NULL;
9324             }
9325             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9326                                                  SIGSET_T_SIZE));
9327             if (!is_error(ret)) {
9328                 if (arg2) {
9329                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9330                                   0);
9331                     if (!p) {
9332                         return -TARGET_EFAULT;
9333                     }
9334                     host_to_target_siginfo(p, &uinfo);
9335                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9336                 }
9337                 ret = host_to_target_signal(ret);
9338             }
9339         }
9340         return ret;
9341 #endif
9342 #ifdef TARGET_NR_rt_sigtimedwait_time64
9343     case TARGET_NR_rt_sigtimedwait_time64:
9344         {
9345             sigset_t set;
9346             struct timespec uts, *puts;
9347             siginfo_t uinfo;
9348 
9349             if (arg4 != sizeof(target_sigset_t)) {
9350                 return -TARGET_EINVAL;
9351             }
9352 
9353             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
9354             if (!p) {
9355                 return -TARGET_EFAULT;
9356             }
9357             target_to_host_sigset(&set, p);
9358             unlock_user(p, arg1, 0);
9359             if (arg3) {
9360                 puts = &uts;
9361                 if (target_to_host_timespec64(puts, arg3)) {
9362                     return -TARGET_EFAULT;
9363                 }
9364             } else {
9365                 puts = NULL;
9366             }
9367             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9368                                                  SIGSET_T_SIZE));
9369             if (!is_error(ret)) {
9370                 if (arg2) {
9371                     p = lock_user(VERIFY_WRITE, arg2,
9372                                   sizeof(target_siginfo_t), 0);
9373                     if (!p) {
9374                         return -TARGET_EFAULT;
9375                     }
9376                     host_to_target_siginfo(p, &uinfo);
9377                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9378                 }
9379                 ret = host_to_target_signal(ret);
9380             }
9381         }
9382         return ret;
9383 #endif
9384     case TARGET_NR_rt_sigqueueinfo:
9385         {
9386             siginfo_t uinfo;
9387 
9388             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9389             if (!p) {
9390                 return -TARGET_EFAULT;
9391             }
9392             target_to_host_siginfo(&uinfo, p);
9393             unlock_user(p, arg3, 0);
9394             ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
9395         }
9396         return ret;
9397     case TARGET_NR_rt_tgsigqueueinfo:
9398         {
9399             siginfo_t uinfo;
9400 
9401             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9402             if (!p) {
9403                 return -TARGET_EFAULT;
9404             }
9405             target_to_host_siginfo(&uinfo, p);
9406             unlock_user(p, arg4, 0);
9407             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
9408         }
9409         return ret;
9410 #ifdef TARGET_NR_sigreturn
9411     case TARGET_NR_sigreturn:
9412         if (block_signals()) {
9413             return -TARGET_ERESTARTSYS;
9414         }
9415         return do_sigreturn(cpu_env);
9416 #endif
9417     case TARGET_NR_rt_sigreturn:
9418         if (block_signals()) {
9419             return -TARGET_ERESTARTSYS;
9420         }
9421         return do_rt_sigreturn(cpu_env);
9422     case TARGET_NR_sethostname:
9423         if (!(p = lock_user_string(arg1)))
9424             return -TARGET_EFAULT;
9425         ret = get_errno(sethostname(p, arg2));
9426         unlock_user(p, arg1, 0);
9427         return ret;
9428 #ifdef TARGET_NR_setrlimit
9429     case TARGET_NR_setrlimit:
9430         {
9431             int resource = target_to_host_resource(arg1);
9432             struct target_rlimit *target_rlim;
9433             struct rlimit rlim;
9434             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9435                 return -TARGET_EFAULT;
9436             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9437             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9438             unlock_user_struct(target_rlim, arg2, 0);
9439             /*
9440              * If we just passed through resource limit settings for memory then
9441              * they would also apply to QEMU's own allocations, and QEMU will
9442              * crash or hang or die if its allocations fail. Ideally we would
9443              * track the guest allocations in QEMU and apply the limits ourselves.
9444              * For now, just tell the guest the call succeeded but don't actually
9445              * limit anything.
9446              */
9447             if (resource != RLIMIT_AS &&
9448                 resource != RLIMIT_DATA &&
9449                 resource != RLIMIT_STACK) {
9450                 return get_errno(setrlimit(resource, &rlim));
9451             } else {
9452                 return 0;
9453             }
9454         }
9455 #endif
9456 #ifdef TARGET_NR_getrlimit
9457     case TARGET_NR_getrlimit:
9458         {
9459             int resource = target_to_host_resource(arg1);
9460             struct target_rlimit *target_rlim;
9461             struct rlimit rlim;
9462 
9463             ret = get_errno(getrlimit(resource, &rlim));
9464             if (!is_error(ret)) {
9465                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9466                     return -TARGET_EFAULT;
9467                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9468                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9469                 unlock_user_struct(target_rlim, arg2, 1);
9470             }
9471         }
9472         return ret;
9473 #endif
9474     case TARGET_NR_getrusage:
9475         {
9476             struct rusage rusage;
9477             ret = get_errno(getrusage(arg1, &rusage));
9478             if (!is_error(ret)) {
9479                 ret = host_to_target_rusage(arg2, &rusage);
9480             }
9481         }
9482         return ret;
9483 #if defined(TARGET_NR_gettimeofday)
9484     case TARGET_NR_gettimeofday:
9485         {
9486             struct timeval tv;
9487             struct timezone tz;
9488 
9489             ret = get_errno(gettimeofday(&tv, &tz));
9490             if (!is_error(ret)) {
9491                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
9492                     return -TARGET_EFAULT;
9493                 }
9494                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
9495                     return -TARGET_EFAULT;
9496                 }
9497             }
9498         }
9499         return ret;
9500 #endif
9501 #if defined(TARGET_NR_settimeofday)
9502     case TARGET_NR_settimeofday:
9503         {
9504             struct timeval tv, *ptv = NULL;
9505             struct timezone tz, *ptz = NULL;
9506 
9507             if (arg1) {
9508                 if (copy_from_user_timeval(&tv, arg1)) {
9509                     return -TARGET_EFAULT;
9510                 }
9511                 ptv = &tv;
9512             }
9513 
9514             if (arg2) {
9515                 if (copy_from_user_timezone(&tz, arg2)) {
9516                     return -TARGET_EFAULT;
9517                 }
9518                 ptz = &tz;
9519             }
9520 
9521             return get_errno(settimeofday(ptv, ptz));
9522         }
9523 #endif
9524 #if defined(TARGET_NR_select)
9525     case TARGET_NR_select:
9526 #if defined(TARGET_WANT_NI_OLD_SELECT)
9527         /* some architectures used to have old_select here
9528          * but now ENOSYS it.
9529          */
9530         ret = -TARGET_ENOSYS;
9531 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9532         ret = do_old_select(arg1);
9533 #else
9534         ret = do_select(arg1, arg2, arg3, arg4, arg5);
9535 #endif
9536         return ret;
9537 #endif
9538 #ifdef TARGET_NR_pselect6
9539     case TARGET_NR_pselect6:
9540         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
9541 #endif
9542 #ifdef TARGET_NR_pselect6_time64
9543     case TARGET_NR_pselect6_time64:
9544         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
9545 #endif
9546 #ifdef TARGET_NR_symlink
9547     case TARGET_NR_symlink:
9548         {
9549             void *p2;
9550             p = lock_user_string(arg1);
9551             p2 = lock_user_string(arg2);
9552             if (!p || !p2)
9553                 ret = -TARGET_EFAULT;
9554             else
9555                 ret = get_errno(symlink(p, p2));
9556             unlock_user(p2, arg2, 0);
9557             unlock_user(p, arg1, 0);
9558         }
9559         return ret;
9560 #endif
9561 #if defined(TARGET_NR_symlinkat)
9562     case TARGET_NR_symlinkat:
9563         {
9564             void *p2;
9565             p  = lock_user_string(arg1);
9566             p2 = lock_user_string(arg3);
9567             if (!p || !p2)
9568                 ret = -TARGET_EFAULT;
9569             else
9570                 ret = get_errno(symlinkat(p, arg2, p2));
9571             unlock_user(p2, arg3, 0);
9572             unlock_user(p, arg1, 0);
9573         }
9574         return ret;
9575 #endif
9576 #ifdef TARGET_NR_readlink
9577     case TARGET_NR_readlink:
9578         {
9579             void *p2;
9580             p = lock_user_string(arg1);
9581             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9582             if (!p || !p2) {
9583                 ret = -TARGET_EFAULT;
9584             } else if (!arg3) {
9585                 /* Short circuit this for the magic exe check. */
9586                 ret = -TARGET_EINVAL;
9587             } else if (is_proc_myself((const char *)p, "exe")) {
9588                 char real[PATH_MAX], *temp;
9589                 temp = realpath(exec_path, real);
9590                 /* Return value is # of bytes that we wrote to the buffer. */
9591                 if (temp == NULL) {
9592                     ret = get_errno(-1);
9593                 } else {
9594                     /* Don't worry about sign mismatch as earlier mapping
9595                      * logic would have thrown a bad address error. */
9596                     ret = MIN(strlen(real), arg3);
9597                     /* We cannot NUL terminate the string. */
9598                     memcpy(p2, real, ret);
9599                 }
9600             } else {
9601                 ret = get_errno(readlink(path(p), p2, arg3));
9602             }
9603             unlock_user(p2, arg2, ret);
9604             unlock_user(p, arg1, 0);
9605         }
9606         return ret;
9607 #endif
9608 #if defined(TARGET_NR_readlinkat)
9609     case TARGET_NR_readlinkat:
9610         {
9611             void *p2;
9612             p  = lock_user_string(arg2);
9613             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9614             if (!p || !p2) {
9615                 ret = -TARGET_EFAULT;
9616             } else if (is_proc_myself((const char *)p, "exe")) {
9617                 char real[PATH_MAX], *temp;
9618                 temp = realpath(exec_path, real);
9619                 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9620                 snprintf((char *)p2, arg4, "%s", real);
9621             } else {
9622                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9623             }
9624             unlock_user(p2, arg3, ret);
9625             unlock_user(p, arg2, 0);
9626         }
9627         return ret;
9628 #endif
9629 #ifdef TARGET_NR_swapon
9630     case TARGET_NR_swapon:
9631         if (!(p = lock_user_string(arg1)))
9632             return -TARGET_EFAULT;
9633         ret = get_errno(swapon(p, arg2));
9634         unlock_user(p, arg1, 0);
9635         return ret;
9636 #endif
9637     case TARGET_NR_reboot:
9638         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9639            /* arg4 must be ignored in all other cases */
9640            p = lock_user_string(arg4);
9641            if (!p) {
9642                return -TARGET_EFAULT;
9643            }
9644            ret = get_errno(reboot(arg1, arg2, arg3, p));
9645            unlock_user(p, arg4, 0);
9646         } else {
9647            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9648         }
9649         return ret;
9650 #ifdef TARGET_NR_mmap
9651     case TARGET_NR_mmap:
9652 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9653     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9654     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9655     || defined(TARGET_S390X)
9656         {
9657             abi_ulong *v;
9658             abi_ulong v1, v2, v3, v4, v5, v6;
9659             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9660                 return -TARGET_EFAULT;
9661             v1 = tswapal(v[0]);
9662             v2 = tswapal(v[1]);
9663             v3 = tswapal(v[2]);
9664             v4 = tswapal(v[3]);
9665             v5 = tswapal(v[4]);
9666             v6 = tswapal(v[5]);
9667             unlock_user(v, arg1, 0);
9668             ret = get_errno(target_mmap(v1, v2, v3,
9669                                         target_to_host_bitmask(v4, mmap_flags_tbl),
9670                                         v5, v6));
9671         }
9672 #else
9673         /* mmap pointers are always untagged */
9674         ret = get_errno(target_mmap(arg1, arg2, arg3,
9675                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
9676                                     arg5,
9677                                     arg6));
9678 #endif
9679         return ret;
9680 #endif
9681 #ifdef TARGET_NR_mmap2
9682     case TARGET_NR_mmap2:
9683 #ifndef MMAP_SHIFT
9684 #define MMAP_SHIFT 12
9685 #endif
9686         ret = target_mmap(arg1, arg2, arg3,
9687                           target_to_host_bitmask(arg4, mmap_flags_tbl),
9688                           arg5, arg6 << MMAP_SHIFT);
9689         return get_errno(ret);
9690 #endif
9691     case TARGET_NR_munmap:
9692         arg1 = cpu_untagged_addr(cpu, arg1);
9693         return get_errno(target_munmap(arg1, arg2));
9694     case TARGET_NR_mprotect:
9695         arg1 = cpu_untagged_addr(cpu, arg1);
9696         {
9697             TaskState *ts = cpu->opaque;
9698             /* Special hack to detect libc making the stack executable.  */
9699             if ((arg3 & PROT_GROWSDOWN)
9700                 && arg1 >= ts->info->stack_limit
9701                 && arg1 <= ts->info->start_stack) {
9702                 arg3 &= ~PROT_GROWSDOWN;
9703                 arg2 = arg2 + arg1 - ts->info->stack_limit;
9704                 arg1 = ts->info->stack_limit;
9705             }
9706         }
9707         return get_errno(target_mprotect(arg1, arg2, arg3));
9708 #ifdef TARGET_NR_mremap
9709     case TARGET_NR_mremap:
9710         arg1 = cpu_untagged_addr(cpu, arg1);
9711         /* mremap new_addr (arg5) is always untagged */
9712         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
9713 #endif
9714         /* ??? msync/mlock/munlock are broken for softmmu.  */
9715 #ifdef TARGET_NR_msync
9716     case TARGET_NR_msync:
9717         return get_errno(msync(g2h(cpu, arg1), arg2, arg3));
9718 #endif
9719 #ifdef TARGET_NR_mlock
9720     case TARGET_NR_mlock:
9721         return get_errno(mlock(g2h(cpu, arg1), arg2));
9722 #endif
9723 #ifdef TARGET_NR_munlock
9724     case TARGET_NR_munlock:
9725         return get_errno(munlock(g2h(cpu, arg1), arg2));
9726 #endif
9727 #ifdef TARGET_NR_mlockall
9728     case TARGET_NR_mlockall:
9729         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9730 #endif
9731 #ifdef TARGET_NR_munlockall
9732     case TARGET_NR_munlockall:
9733         return get_errno(munlockall());
9734 #endif
9735 #ifdef TARGET_NR_truncate
9736     case TARGET_NR_truncate:
9737         if (!(p = lock_user_string(arg1)))
9738             return -TARGET_EFAULT;
9739         ret = get_errno(truncate(p, arg2));
9740         unlock_user(p, arg1, 0);
9741         return ret;
9742 #endif
9743 #ifdef TARGET_NR_ftruncate
9744     case TARGET_NR_ftruncate:
9745         return get_errno(ftruncate(arg1, arg2));
9746 #endif
9747     case TARGET_NR_fchmod:
9748         return get_errno(fchmod(arg1, arg2));
9749 #if defined(TARGET_NR_fchmodat)
9750     case TARGET_NR_fchmodat:
9751         if (!(p = lock_user_string(arg2)))
9752             return -TARGET_EFAULT;
9753         ret = get_errno(fchmodat(arg1, p, arg3, 0));
9754         unlock_user(p, arg2, 0);
9755         return ret;
9756 #endif
9757     case TARGET_NR_getpriority:
9758         /* Note that negative values are valid for getpriority, so we must
9759            differentiate based on errno settings.  */
9760         errno = 0;
9761         ret = getpriority(arg1, arg2);
9762         if (ret == -1 && errno != 0) {
9763             return -host_to_target_errno(errno);
9764         }
9765 #ifdef TARGET_ALPHA
9766         /* Return value is the unbiased priority.  Signal no error.  */
9767         ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9768 #else
9769         /* Return value is a biased priority to avoid negative numbers.  */
9770         ret = 20 - ret;
9771 #endif
9772         return ret;
9773     case TARGET_NR_setpriority:
9774         return get_errno(setpriority(arg1, arg2, arg3));
9775 #ifdef TARGET_NR_statfs
9776     case TARGET_NR_statfs:
9777         if (!(p = lock_user_string(arg1))) {
9778             return -TARGET_EFAULT;
9779         }
9780         ret = get_errno(statfs(path(p), &stfs));
9781         unlock_user(p, arg1, 0);
9782     convert_statfs:
9783         if (!is_error(ret)) {
9784             struct target_statfs *target_stfs;
9785 
9786             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9787                 return -TARGET_EFAULT;
9788             __put_user(stfs.f_type, &target_stfs->f_type);
9789             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9790             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9791             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9792             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9793             __put_user(stfs.f_files, &target_stfs->f_files);
9794             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9795             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9796             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9797             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9798             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9799 #ifdef _STATFS_F_FLAGS
9800             __put_user(stfs.f_flags, &target_stfs->f_flags);
9801 #else
9802             __put_user(0, &target_stfs->f_flags);
9803 #endif
9804             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9805             unlock_user_struct(target_stfs, arg2, 1);
9806         }
9807         return ret;
9808 #endif
9809 #ifdef TARGET_NR_fstatfs
9810     case TARGET_NR_fstatfs:
9811         ret = get_errno(fstatfs(arg1, &stfs));
9812         goto convert_statfs;
9813 #endif
9814 #ifdef TARGET_NR_statfs64
9815     case TARGET_NR_statfs64:
9816         if (!(p = lock_user_string(arg1))) {
9817             return -TARGET_EFAULT;
9818         }
9819         ret = get_errno(statfs(path(p), &stfs));
9820         unlock_user(p, arg1, 0);
9821     convert_statfs64:
9822         if (!is_error(ret)) {
9823             struct target_statfs64 *target_stfs;
9824 
9825             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9826                 return -TARGET_EFAULT;
9827             __put_user(stfs.f_type, &target_stfs->f_type);
9828             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9829             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9830             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9831             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9832             __put_user(stfs.f_files, &target_stfs->f_files);
9833             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9834             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9835             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9836             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9837             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9838 #ifdef _STATFS_F_FLAGS
9839             __put_user(stfs.f_flags, &target_stfs->f_flags);
9840 #else
9841             __put_user(0, &target_stfs->f_flags);
9842 #endif
9843             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9844             unlock_user_struct(target_stfs, arg3, 1);
9845         }
9846         return ret;
9847     case TARGET_NR_fstatfs64:
9848         ret = get_errno(fstatfs(arg1, &stfs));
9849         goto convert_statfs64;
9850 #endif
9851 #ifdef TARGET_NR_socketcall
9852     case TARGET_NR_socketcall:
9853         return do_socketcall(arg1, arg2);
9854 #endif
9855 #ifdef TARGET_NR_accept
9856     case TARGET_NR_accept:
9857         return do_accept4(arg1, arg2, arg3, 0);
9858 #endif
9859 #ifdef TARGET_NR_accept4
9860     case TARGET_NR_accept4:
9861         return do_accept4(arg1, arg2, arg3, arg4);
9862 #endif
9863 #ifdef TARGET_NR_bind
9864     case TARGET_NR_bind:
9865         return do_bind(arg1, arg2, arg3);
9866 #endif
9867 #ifdef TARGET_NR_connect
9868     case TARGET_NR_connect:
9869         return do_connect(arg1, arg2, arg3);
9870 #endif
9871 #ifdef TARGET_NR_getpeername
9872     case TARGET_NR_getpeername:
9873         return do_getpeername(arg1, arg2, arg3);
9874 #endif
9875 #ifdef TARGET_NR_getsockname
9876     case TARGET_NR_getsockname:
9877         return do_getsockname(arg1, arg2, arg3);
9878 #endif
9879 #ifdef TARGET_NR_getsockopt
9880     case TARGET_NR_getsockopt:
9881         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9882 #endif
9883 #ifdef TARGET_NR_listen
9884     case TARGET_NR_listen:
9885         return get_errno(listen(arg1, arg2));
9886 #endif
9887 #ifdef TARGET_NR_recv
9888     case TARGET_NR_recv:
9889         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9890 #endif
9891 #ifdef TARGET_NR_recvfrom
9892     case TARGET_NR_recvfrom:
9893         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9894 #endif
9895 #ifdef TARGET_NR_recvmsg
9896     case TARGET_NR_recvmsg:
9897         return do_sendrecvmsg(arg1, arg2, arg3, 0);
9898 #endif
9899 #ifdef TARGET_NR_send
9900     case TARGET_NR_send:
9901         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9902 #endif
9903 #ifdef TARGET_NR_sendmsg
9904     case TARGET_NR_sendmsg:
9905         return do_sendrecvmsg(arg1, arg2, arg3, 1);
9906 #endif
9907 #ifdef TARGET_NR_sendmmsg
9908     case TARGET_NR_sendmmsg:
9909         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9910 #endif
9911 #ifdef TARGET_NR_recvmmsg
9912     case TARGET_NR_recvmmsg:
9913         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9914 #endif
9915 #ifdef TARGET_NR_sendto
9916     case TARGET_NR_sendto:
9917         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9918 #endif
9919 #ifdef TARGET_NR_shutdown
9920     case TARGET_NR_shutdown:
9921         return get_errno(shutdown(arg1, arg2));
9922 #endif
9923 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9924     case TARGET_NR_getrandom:
9925         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9926         if (!p) {
9927             return -TARGET_EFAULT;
9928         }
9929         ret = get_errno(getrandom(p, arg2, arg3));
9930         unlock_user(p, arg1, ret);
9931         return ret;
9932 #endif
9933 #ifdef TARGET_NR_socket
9934     case TARGET_NR_socket:
9935         return do_socket(arg1, arg2, arg3);
9936 #endif
9937 #ifdef TARGET_NR_socketpair
9938     case TARGET_NR_socketpair:
9939         return do_socketpair(arg1, arg2, arg3, arg4);
9940 #endif
9941 #ifdef TARGET_NR_setsockopt
9942     case TARGET_NR_setsockopt:
9943         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9944 #endif
9945 #if defined(TARGET_NR_syslog)
9946     case TARGET_NR_syslog:
9947         {
9948             int len = arg2;
9949 
9950             switch (arg1) {
9951             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
9952             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
9953             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
9954             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
9955             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
9956             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
9957             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
9958             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
9959                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
9960             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
9961             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
9962             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
9963                 {
9964                     if (len < 0) {
9965                         return -TARGET_EINVAL;
9966                     }
9967                     if (len == 0) {
9968                         return 0;
9969                     }
9970                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9971                     if (!p) {
9972                         return -TARGET_EFAULT;
9973                     }
9974                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9975                     unlock_user(p, arg2, arg3);
9976                 }
9977                 return ret;
9978             default:
9979                 return -TARGET_EINVAL;
9980             }
9981         }
9982         break;
9983 #endif
9984     case TARGET_NR_setitimer:
9985         {
9986             struct itimerval value, ovalue, *pvalue;
9987 
9988             if (arg2) {
9989                 pvalue = &value;
9990                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9991                     || copy_from_user_timeval(&pvalue->it_value,
9992                                               arg2 + sizeof(struct target_timeval)))
9993                     return -TARGET_EFAULT;
9994             } else {
9995                 pvalue = NULL;
9996             }
9997             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9998             if (!is_error(ret) && arg3) {
9999                 if (copy_to_user_timeval(arg3,
10000                                          &ovalue.it_interval)
10001                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10002                                             &ovalue.it_value))
10003                     return -TARGET_EFAULT;
10004             }
10005         }
10006         return ret;
10007     case TARGET_NR_getitimer:
10008         {
10009             struct itimerval value;
10010 
10011             ret = get_errno(getitimer(arg1, &value));
10012             if (!is_error(ret) && arg2) {
10013                 if (copy_to_user_timeval(arg2,
10014                                          &value.it_interval)
10015                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10016                                             &value.it_value))
10017                     return -TARGET_EFAULT;
10018             }
10019         }
10020         return ret;
10021 #ifdef TARGET_NR_stat
10022     case TARGET_NR_stat:
10023         if (!(p = lock_user_string(arg1))) {
10024             return -TARGET_EFAULT;
10025         }
10026         ret = get_errno(stat(path(p), &st));
10027         unlock_user(p, arg1, 0);
10028         goto do_stat;
10029 #endif
10030 #ifdef TARGET_NR_lstat
10031     case TARGET_NR_lstat:
10032         if (!(p = lock_user_string(arg1))) {
10033             return -TARGET_EFAULT;
10034         }
10035         ret = get_errno(lstat(path(p), &st));
10036         unlock_user(p, arg1, 0);
10037         goto do_stat;
10038 #endif
10039 #ifdef TARGET_NR_fstat
10040     case TARGET_NR_fstat:
10041         {
10042             ret = get_errno(fstat(arg1, &st));
10043 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10044         do_stat:
10045 #endif
10046             if (!is_error(ret)) {
10047                 struct target_stat *target_st;
10048 
10049                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10050                     return -TARGET_EFAULT;
10051                 memset(target_st, 0, sizeof(*target_st));
10052                 __put_user(st.st_dev, &target_st->st_dev);
10053                 __put_user(st.st_ino, &target_st->st_ino);
10054                 __put_user(st.st_mode, &target_st->st_mode);
10055                 __put_user(st.st_uid, &target_st->st_uid);
10056                 __put_user(st.st_gid, &target_st->st_gid);
10057                 __put_user(st.st_nlink, &target_st->st_nlink);
10058                 __put_user(st.st_rdev, &target_st->st_rdev);
10059                 __put_user(st.st_size, &target_st->st_size);
10060                 __put_user(st.st_blksize, &target_st->st_blksize);
10061                 __put_user(st.st_blocks, &target_st->st_blocks);
10062                 __put_user(st.st_atime, &target_st->target_st_atime);
10063                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10064                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10065 #if (_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700) && \
10066     defined(TARGET_STAT_HAVE_NSEC)
10067                 __put_user(st.st_atim.tv_nsec,
10068                            &target_st->target_st_atime_nsec);
10069                 __put_user(st.st_mtim.tv_nsec,
10070                            &target_st->target_st_mtime_nsec);
10071                 __put_user(st.st_ctim.tv_nsec,
10072                            &target_st->target_st_ctime_nsec);
10073 #endif
10074                 unlock_user_struct(target_st, arg2, 1);
10075             }
10076         }
10077         return ret;
10078 #endif
10079     case TARGET_NR_vhangup:
10080         return get_errno(vhangup());
10081 #ifdef TARGET_NR_syscall
10082     case TARGET_NR_syscall:
10083         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10084                           arg6, arg7, arg8, 0);
10085 #endif
10086 #if defined(TARGET_NR_wait4)
10087     case TARGET_NR_wait4:
10088         {
10089             int status;
10090             abi_long status_ptr = arg2;
10091             struct rusage rusage, *rusage_ptr;
10092             abi_ulong target_rusage = arg4;
10093             abi_long rusage_err;
10094             if (target_rusage)
10095                 rusage_ptr = &rusage;
10096             else
10097                 rusage_ptr = NULL;
10098             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10099             if (!is_error(ret)) {
10100                 if (status_ptr && ret) {
10101                     status = host_to_target_waitstatus(status);
10102                     if (put_user_s32(status, status_ptr))
10103                         return -TARGET_EFAULT;
10104                 }
10105                 if (target_rusage) {
10106                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10107                     if (rusage_err) {
10108                         ret = rusage_err;
10109                     }
10110                 }
10111             }
10112         }
10113         return ret;
10114 #endif
10115 #ifdef TARGET_NR_swapoff
10116     case TARGET_NR_swapoff:
10117         if (!(p = lock_user_string(arg1)))
10118             return -TARGET_EFAULT;
10119         ret = get_errno(swapoff(p));
10120         unlock_user(p, arg1, 0);
10121         return ret;
10122 #endif
10123     case TARGET_NR_sysinfo:
10124         {
10125             struct target_sysinfo *target_value;
10126             struct sysinfo value;
10127             ret = get_errno(sysinfo(&value));
10128             if (!is_error(ret) && arg1)
10129             {
10130                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10131                     return -TARGET_EFAULT;
10132                 __put_user(value.uptime, &target_value->uptime);
10133                 __put_user(value.loads[0], &target_value->loads[0]);
10134                 __put_user(value.loads[1], &target_value->loads[1]);
10135                 __put_user(value.loads[2], &target_value->loads[2]);
10136                 __put_user(value.totalram, &target_value->totalram);
10137                 __put_user(value.freeram, &target_value->freeram);
10138                 __put_user(value.sharedram, &target_value->sharedram);
10139                 __put_user(value.bufferram, &target_value->bufferram);
10140                 __put_user(value.totalswap, &target_value->totalswap);
10141                 __put_user(value.freeswap, &target_value->freeswap);
10142                 __put_user(value.procs, &target_value->procs);
10143                 __put_user(value.totalhigh, &target_value->totalhigh);
10144                 __put_user(value.freehigh, &target_value->freehigh);
10145                 __put_user(value.mem_unit, &target_value->mem_unit);
10146                 unlock_user_struct(target_value, arg1, 1);
10147             }
10148         }
10149         return ret;
10150 #ifdef TARGET_NR_ipc
10151     case TARGET_NR_ipc:
10152         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10153 #endif
10154 #ifdef TARGET_NR_semget
10155     case TARGET_NR_semget:
10156         return get_errno(semget(arg1, arg2, arg3));
10157 #endif
10158 #ifdef TARGET_NR_semop
10159     case TARGET_NR_semop:
10160         return do_semtimedop(arg1, arg2, arg3, 0, false);
10161 #endif
10162 #ifdef TARGET_NR_semtimedop
10163     case TARGET_NR_semtimedop:
10164         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10165 #endif
10166 #ifdef TARGET_NR_semtimedop_time64
10167     case TARGET_NR_semtimedop_time64:
10168         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10169 #endif
10170 #ifdef TARGET_NR_semctl
10171     case TARGET_NR_semctl:
10172         return do_semctl(arg1, arg2, arg3, arg4);
10173 #endif
10174 #ifdef TARGET_NR_msgctl
10175     case TARGET_NR_msgctl:
10176         return do_msgctl(arg1, arg2, arg3);
10177 #endif
10178 #ifdef TARGET_NR_msgget
10179     case TARGET_NR_msgget:
10180         return get_errno(msgget(arg1, arg2));
10181 #endif
10182 #ifdef TARGET_NR_msgrcv
10183     case TARGET_NR_msgrcv:
10184         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10185 #endif
10186 #ifdef TARGET_NR_msgsnd
10187     case TARGET_NR_msgsnd:
10188         return do_msgsnd(arg1, arg2, arg3, arg4);
10189 #endif
10190 #ifdef TARGET_NR_shmget
10191     case TARGET_NR_shmget:
10192         return get_errno(shmget(arg1, arg2, arg3));
10193 #endif
10194 #ifdef TARGET_NR_shmctl
10195     case TARGET_NR_shmctl:
10196         return do_shmctl(arg1, arg2, arg3);
10197 #endif
10198 #ifdef TARGET_NR_shmat
10199     case TARGET_NR_shmat:
10200         return do_shmat(cpu_env, arg1, arg2, arg3);
10201 #endif
10202 #ifdef TARGET_NR_shmdt
10203     case TARGET_NR_shmdt:
10204         return do_shmdt(arg1);
10205 #endif
10206     case TARGET_NR_fsync:
10207         return get_errno(fsync(arg1));
10208     case TARGET_NR_clone:
10209         /* Linux manages to have three different orderings for its
10210          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10211          * match the kernel's CONFIG_CLONE_* settings.
10212          * Microblaze is further special in that it uses a sixth
10213          * implicit argument to clone for the TLS pointer.
10214          */
10215 #if defined(TARGET_MICROBLAZE)
10216         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10217 #elif defined(TARGET_CLONE_BACKWARDS)
10218         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10219 #elif defined(TARGET_CLONE_BACKWARDS2)
10220         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10221 #else
10222         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10223 #endif
10224         return ret;
10225 #ifdef __NR_exit_group
10226         /* new thread calls */
10227     case TARGET_NR_exit_group:
10228         preexit_cleanup(cpu_env, arg1);
10229         return get_errno(exit_group(arg1));
10230 #endif
10231     case TARGET_NR_setdomainname:
10232         if (!(p = lock_user_string(arg1)))
10233             return -TARGET_EFAULT;
10234         ret = get_errno(setdomainname(p, arg2));
10235         unlock_user(p, arg1, 0);
10236         return ret;
10237     case TARGET_NR_uname:
10238         /* no need to transcode because we use the linux syscall */
10239         {
10240             struct new_utsname * buf;
10241 
10242             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10243                 return -TARGET_EFAULT;
10244             ret = get_errno(sys_uname(buf));
10245             if (!is_error(ret)) {
10246                 /* Overwrite the native machine name with whatever is being
10247                    emulated. */
10248                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10249                           sizeof(buf->machine));
10250                 /* Allow the user to override the reported release.  */
10251                 if (qemu_uname_release && *qemu_uname_release) {
10252                     g_strlcpy(buf->release, qemu_uname_release,
10253                               sizeof(buf->release));
10254                 }
10255             }
10256             unlock_user_struct(buf, arg1, 1);
10257         }
10258         return ret;
10259 #ifdef TARGET_I386
10260     case TARGET_NR_modify_ldt:
10261         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10262 #if !defined(TARGET_X86_64)
10263     case TARGET_NR_vm86:
10264         return do_vm86(cpu_env, arg1, arg2);
10265 #endif
10266 #endif
10267 #if defined(TARGET_NR_adjtimex)
10268     case TARGET_NR_adjtimex:
10269         {
10270             struct timex host_buf;
10271 
10272             if (target_to_host_timex(&host_buf, arg1) != 0) {
10273                 return -TARGET_EFAULT;
10274             }
10275             ret = get_errno(adjtimex(&host_buf));
10276             if (!is_error(ret)) {
10277                 if (host_to_target_timex(arg1, &host_buf) != 0) {
10278                     return -TARGET_EFAULT;
10279                 }
10280             }
10281         }
10282         return ret;
10283 #endif
10284 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10285     case TARGET_NR_clock_adjtime:
10286         {
10287             struct timex htx, *phtx = &htx;
10288 
10289             if (target_to_host_timex(phtx, arg2) != 0) {
10290                 return -TARGET_EFAULT;
10291             }
10292             ret = get_errno(clock_adjtime(arg1, phtx));
10293             if (!is_error(ret) && phtx) {
10294                 if (host_to_target_timex(arg2, phtx) != 0) {
10295                     return -TARGET_EFAULT;
10296                 }
10297             }
10298         }
10299         return ret;
10300 #endif
10301 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10302     case TARGET_NR_clock_adjtime64:
10303         {
10304             struct timex htx;
10305 
10306             if (target_to_host_timex64(&htx, arg2) != 0) {
10307                 return -TARGET_EFAULT;
10308             }
10309             ret = get_errno(clock_adjtime(arg1, &htx));
10310             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
10311                     return -TARGET_EFAULT;
10312             }
10313         }
10314         return ret;
10315 #endif
10316     case TARGET_NR_getpgid:
10317         return get_errno(getpgid(arg1));
10318     case TARGET_NR_fchdir:
10319         return get_errno(fchdir(arg1));
10320     case TARGET_NR_personality:
10321         return get_errno(personality(arg1));
10322 #ifdef TARGET_NR__llseek /* Not on alpha */
10323     case TARGET_NR__llseek:
10324         {
10325             int64_t res;
10326 #if !defined(__NR_llseek)
10327             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10328             if (res == -1) {
10329                 ret = get_errno(res);
10330             } else {
10331                 ret = 0;
10332             }
10333 #else
10334             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10335 #endif
10336             if ((ret == 0) && put_user_s64(res, arg4)) {
10337                 return -TARGET_EFAULT;
10338             }
10339         }
10340         return ret;
10341 #endif
10342 #ifdef TARGET_NR_getdents
10343     case TARGET_NR_getdents:
10344 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
10345 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
10346         {
10347             struct target_dirent *target_dirp;
10348             struct linux_dirent *dirp;
10349             abi_long count = arg3;
10350 
10351             dirp = g_try_malloc(count);
10352             if (!dirp) {
10353                 return -TARGET_ENOMEM;
10354             }
10355 
10356             ret = get_errno(sys_getdents(arg1, dirp, count));
10357             if (!is_error(ret)) {
10358                 struct linux_dirent *de;
10359 		struct target_dirent *tde;
10360                 int len = ret;
10361                 int reclen, treclen;
10362 		int count1, tnamelen;
10363 
10364 		count1 = 0;
10365                 de = dirp;
10366                 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10367                     return -TARGET_EFAULT;
10368 		tde = target_dirp;
10369                 while (len > 0) {
10370                     reclen = de->d_reclen;
10371                     tnamelen = reclen - offsetof(struct linux_dirent, d_name);
10372                     assert(tnamelen >= 0);
10373                     treclen = tnamelen + offsetof(struct target_dirent, d_name);
10374                     assert(count1 + treclen <= count);
10375                     tde->d_reclen = tswap16(treclen);
10376                     tde->d_ino = tswapal(de->d_ino);
10377                     tde->d_off = tswapal(de->d_off);
10378                     memcpy(tde->d_name, de->d_name, tnamelen);
10379                     de = (struct linux_dirent *)((char *)de + reclen);
10380                     len -= reclen;
10381                     tde = (struct target_dirent *)((char *)tde + treclen);
10382 		    count1 += treclen;
10383                 }
10384 		ret = count1;
10385                 unlock_user(target_dirp, arg2, ret);
10386             }
10387             g_free(dirp);
10388         }
10389 #else
10390         {
10391             struct linux_dirent *dirp;
10392             abi_long count = arg3;
10393 
10394             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10395                 return -TARGET_EFAULT;
10396             ret = get_errno(sys_getdents(arg1, dirp, count));
10397             if (!is_error(ret)) {
10398                 struct linux_dirent *de;
10399                 int len = ret;
10400                 int reclen;
10401                 de = dirp;
10402                 while (len > 0) {
10403                     reclen = de->d_reclen;
10404                     if (reclen > len)
10405                         break;
10406                     de->d_reclen = tswap16(reclen);
10407                     tswapls(&de->d_ino);
10408                     tswapls(&de->d_off);
10409                     de = (struct linux_dirent *)((char *)de + reclen);
10410                     len -= reclen;
10411                 }
10412             }
10413             unlock_user(dirp, arg2, ret);
10414         }
10415 #endif
10416 #else
10417         /* Implement getdents in terms of getdents64 */
10418         {
10419             struct linux_dirent64 *dirp;
10420             abi_long count = arg3;
10421 
10422             dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
10423             if (!dirp) {
10424                 return -TARGET_EFAULT;
10425             }
10426             ret = get_errno(sys_getdents64(arg1, dirp, count));
10427             if (!is_error(ret)) {
10428                 /* Convert the dirent64 structs to target dirent.  We do this
10429                  * in-place, since we can guarantee that a target_dirent is no
10430                  * larger than a dirent64; however this means we have to be
10431                  * careful to read everything before writing in the new format.
10432                  */
10433                 struct linux_dirent64 *de;
10434                 struct target_dirent *tde;
10435                 int len = ret;
10436                 int tlen = 0;
10437 
10438                 de = dirp;
10439                 tde = (struct target_dirent *)dirp;
10440                 while (len > 0) {
10441                     int namelen, treclen;
10442                     int reclen = de->d_reclen;
10443                     uint64_t ino = de->d_ino;
10444                     int64_t off = de->d_off;
10445                     uint8_t type = de->d_type;
10446 
10447                     namelen = strlen(de->d_name);
10448                     treclen = offsetof(struct target_dirent, d_name)
10449                         + namelen + 2;
10450                     treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
10451 
10452                     memmove(tde->d_name, de->d_name, namelen + 1);
10453                     tde->d_ino = tswapal(ino);
10454                     tde->d_off = tswapal(off);
10455                     tde->d_reclen = tswap16(treclen);
10456                     /* The target_dirent type is in what was formerly a padding
10457                      * byte at the end of the structure:
10458                      */
10459                     *(((char *)tde) + treclen - 1) = type;
10460 
10461                     de = (struct linux_dirent64 *)((char *)de + reclen);
10462                     tde = (struct target_dirent *)((char *)tde + treclen);
10463                     len -= reclen;
10464                     tlen += treclen;
10465                 }
10466                 ret = tlen;
10467             }
10468             unlock_user(dirp, arg2, ret);
10469         }
10470 #endif
10471         return ret;
10472 #endif /* TARGET_NR_getdents */
10473 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10474     case TARGET_NR_getdents64:
10475         {
10476             struct linux_dirent64 *dirp;
10477             abi_long count = arg3;
10478             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10479                 return -TARGET_EFAULT;
10480             ret = get_errno(sys_getdents64(arg1, dirp, count));
10481             if (!is_error(ret)) {
10482                 struct linux_dirent64 *de;
10483                 int len = ret;
10484                 int reclen;
10485                 de = dirp;
10486                 while (len > 0) {
10487                     reclen = de->d_reclen;
10488                     if (reclen > len)
10489                         break;
10490                     de->d_reclen = tswap16(reclen);
10491                     tswap64s((uint64_t *)&de->d_ino);
10492                     tswap64s((uint64_t *)&de->d_off);
10493                     de = (struct linux_dirent64 *)((char *)de + reclen);
10494                     len -= reclen;
10495                 }
10496             }
10497             unlock_user(dirp, arg2, ret);
10498         }
10499         return ret;
10500 #endif /* TARGET_NR_getdents64 */
10501 #if defined(TARGET_NR__newselect)
10502     case TARGET_NR__newselect:
10503         return do_select(arg1, arg2, arg3, arg4, arg5);
10504 #endif
10505 #ifdef TARGET_NR_poll
10506     case TARGET_NR_poll:
10507         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
10508 #endif
10509 #ifdef TARGET_NR_ppoll
10510     case TARGET_NR_ppoll:
10511         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
10512 #endif
10513 #ifdef TARGET_NR_ppoll_time64
10514     case TARGET_NR_ppoll_time64:
10515         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
10516 #endif
10517     case TARGET_NR_flock:
10518         /* NOTE: the flock constant seems to be the same for every
10519            Linux platform */
10520         return get_errno(safe_flock(arg1, arg2));
10521     case TARGET_NR_readv:
10522         {
10523             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10524             if (vec != NULL) {
10525                 ret = get_errno(safe_readv(arg1, vec, arg3));
10526                 unlock_iovec(vec, arg2, arg3, 1);
10527             } else {
10528                 ret = -host_to_target_errno(errno);
10529             }
10530         }
10531         return ret;
10532     case TARGET_NR_writev:
10533         {
10534             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10535             if (vec != NULL) {
10536                 ret = get_errno(safe_writev(arg1, vec, arg3));
10537                 unlock_iovec(vec, arg2, arg3, 0);
10538             } else {
10539                 ret = -host_to_target_errno(errno);
10540             }
10541         }
10542         return ret;
10543 #if defined(TARGET_NR_preadv)
10544     case TARGET_NR_preadv:
10545         {
10546             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10547             if (vec != NULL) {
10548                 unsigned long low, high;
10549 
10550                 target_to_host_low_high(arg4, arg5, &low, &high);
10551                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10552                 unlock_iovec(vec, arg2, arg3, 1);
10553             } else {
10554                 ret = -host_to_target_errno(errno);
10555            }
10556         }
10557         return ret;
10558 #endif
10559 #if defined(TARGET_NR_pwritev)
10560     case TARGET_NR_pwritev:
10561         {
10562             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10563             if (vec != NULL) {
10564                 unsigned long low, high;
10565 
10566                 target_to_host_low_high(arg4, arg5, &low, &high);
10567                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10568                 unlock_iovec(vec, arg2, arg3, 0);
10569             } else {
10570                 ret = -host_to_target_errno(errno);
10571            }
10572         }
10573         return ret;
10574 #endif
10575     case TARGET_NR_getsid:
10576         return get_errno(getsid(arg1));
10577 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10578     case TARGET_NR_fdatasync:
10579         return get_errno(fdatasync(arg1));
10580 #endif
10581     case TARGET_NR_sched_getaffinity:
10582         {
10583             unsigned int mask_size;
10584             unsigned long *mask;
10585 
10586             /*
10587              * sched_getaffinity needs multiples of ulong, so need to take
10588              * care of mismatches between target ulong and host ulong sizes.
10589              */
10590             if (arg2 & (sizeof(abi_ulong) - 1)) {
10591                 return -TARGET_EINVAL;
10592             }
10593             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10594 
10595             mask = alloca(mask_size);
10596             memset(mask, 0, mask_size);
10597             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10598 
10599             if (!is_error(ret)) {
10600                 if (ret > arg2) {
10601                     /* More data returned than the caller's buffer will fit.
10602                      * This only happens if sizeof(abi_long) < sizeof(long)
10603                      * and the caller passed us a buffer holding an odd number
10604                      * of abi_longs. If the host kernel is actually using the
10605                      * extra 4 bytes then fail EINVAL; otherwise we can just
10606                      * ignore them and only copy the interesting part.
10607                      */
10608                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10609                     if (numcpus > arg2 * 8) {
10610                         return -TARGET_EINVAL;
10611                     }
10612                     ret = arg2;
10613                 }
10614 
10615                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10616                     return -TARGET_EFAULT;
10617                 }
10618             }
10619         }
10620         return ret;
10621     case TARGET_NR_sched_setaffinity:
10622         {
10623             unsigned int mask_size;
10624             unsigned long *mask;
10625 
10626             /*
10627              * sched_setaffinity needs multiples of ulong, so need to take
10628              * care of mismatches between target ulong and host ulong sizes.
10629              */
10630             if (arg2 & (sizeof(abi_ulong) - 1)) {
10631                 return -TARGET_EINVAL;
10632             }
10633             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10634             mask = alloca(mask_size);
10635 
10636             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10637             if (ret) {
10638                 return ret;
10639             }
10640 
10641             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10642         }
10643     case TARGET_NR_getcpu:
10644         {
10645             unsigned cpu, node;
10646             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10647                                        arg2 ? &node : NULL,
10648                                        NULL));
10649             if (is_error(ret)) {
10650                 return ret;
10651             }
10652             if (arg1 && put_user_u32(cpu, arg1)) {
10653                 return -TARGET_EFAULT;
10654             }
10655             if (arg2 && put_user_u32(node, arg2)) {
10656                 return -TARGET_EFAULT;
10657             }
10658         }
10659         return ret;
10660     case TARGET_NR_sched_setparam:
10661         {
10662             struct sched_param *target_schp;
10663             struct sched_param schp;
10664 
10665             if (arg2 == 0) {
10666                 return -TARGET_EINVAL;
10667             }
10668             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
10669                 return -TARGET_EFAULT;
10670             schp.sched_priority = tswap32(target_schp->sched_priority);
10671             unlock_user_struct(target_schp, arg2, 0);
10672             return get_errno(sched_setparam(arg1, &schp));
10673         }
10674     case TARGET_NR_sched_getparam:
10675         {
10676             struct sched_param *target_schp;
10677             struct sched_param schp;
10678 
10679             if (arg2 == 0) {
10680                 return -TARGET_EINVAL;
10681             }
10682             ret = get_errno(sched_getparam(arg1, &schp));
10683             if (!is_error(ret)) {
10684                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10685                     return -TARGET_EFAULT;
10686                 target_schp->sched_priority = tswap32(schp.sched_priority);
10687                 unlock_user_struct(target_schp, arg2, 1);
10688             }
10689         }
10690         return ret;
10691     case TARGET_NR_sched_setscheduler:
10692         {
10693             struct sched_param *target_schp;
10694             struct sched_param schp;
10695             if (arg3 == 0) {
10696                 return -TARGET_EINVAL;
10697             }
10698             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10699                 return -TARGET_EFAULT;
10700             schp.sched_priority = tswap32(target_schp->sched_priority);
10701             unlock_user_struct(target_schp, arg3, 0);
10702             return get_errno(sched_setscheduler(arg1, arg2, &schp));
10703         }
10704     case TARGET_NR_sched_getscheduler:
10705         return get_errno(sched_getscheduler(arg1));
10706     case TARGET_NR_sched_yield:
10707         return get_errno(sched_yield());
10708     case TARGET_NR_sched_get_priority_max:
10709         return get_errno(sched_get_priority_max(arg1));
10710     case TARGET_NR_sched_get_priority_min:
10711         return get_errno(sched_get_priority_min(arg1));
10712 #ifdef TARGET_NR_sched_rr_get_interval
10713     case TARGET_NR_sched_rr_get_interval:
10714         {
10715             struct timespec ts;
10716             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10717             if (!is_error(ret)) {
10718                 ret = host_to_target_timespec(arg2, &ts);
10719             }
10720         }
10721         return ret;
10722 #endif
10723 #ifdef TARGET_NR_sched_rr_get_interval_time64
10724     case TARGET_NR_sched_rr_get_interval_time64:
10725         {
10726             struct timespec ts;
10727             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10728             if (!is_error(ret)) {
10729                 ret = host_to_target_timespec64(arg2, &ts);
10730             }
10731         }
10732         return ret;
10733 #endif
10734 #if defined(TARGET_NR_nanosleep)
10735     case TARGET_NR_nanosleep:
10736         {
10737             struct timespec req, rem;
10738             target_to_host_timespec(&req, arg1);
10739             ret = get_errno(safe_nanosleep(&req, &rem));
10740             if (is_error(ret) && arg2) {
10741                 host_to_target_timespec(arg2, &rem);
10742             }
10743         }
10744         return ret;
10745 #endif
10746     case TARGET_NR_prctl:
10747         switch (arg1) {
10748         case PR_GET_PDEATHSIG:
10749         {
10750             int deathsig;
10751             ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10752             if (!is_error(ret) && arg2
10753                 && put_user_s32(deathsig, arg2)) {
10754                 return -TARGET_EFAULT;
10755             }
10756             return ret;
10757         }
10758 #ifdef PR_GET_NAME
10759         case PR_GET_NAME:
10760         {
10761             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10762             if (!name) {
10763                 return -TARGET_EFAULT;
10764             }
10765             ret = get_errno(prctl(arg1, (unsigned long)name,
10766                                   arg3, arg4, arg5));
10767             unlock_user(name, arg2, 16);
10768             return ret;
10769         }
10770         case PR_SET_NAME:
10771         {
10772             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10773             if (!name) {
10774                 return -TARGET_EFAULT;
10775             }
10776             ret = get_errno(prctl(arg1, (unsigned long)name,
10777                                   arg3, arg4, arg5));
10778             unlock_user(name, arg2, 0);
10779             return ret;
10780         }
10781 #endif
10782 #ifdef TARGET_MIPS
10783         case TARGET_PR_GET_FP_MODE:
10784         {
10785             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10786             ret = 0;
10787             if (env->CP0_Status & (1 << CP0St_FR)) {
10788                 ret |= TARGET_PR_FP_MODE_FR;
10789             }
10790             if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
10791                 ret |= TARGET_PR_FP_MODE_FRE;
10792             }
10793             return ret;
10794         }
10795         case TARGET_PR_SET_FP_MODE:
10796         {
10797             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10798             bool old_fr = env->CP0_Status & (1 << CP0St_FR);
10799             bool old_fre = env->CP0_Config5 & (1 << CP0C5_FRE);
10800             bool new_fr = arg2 & TARGET_PR_FP_MODE_FR;
10801             bool new_fre = arg2 & TARGET_PR_FP_MODE_FRE;
10802 
10803             const unsigned int known_bits = TARGET_PR_FP_MODE_FR |
10804                                             TARGET_PR_FP_MODE_FRE;
10805 
10806             /* If nothing to change, return right away, successfully.  */
10807             if (old_fr == new_fr && old_fre == new_fre) {
10808                 return 0;
10809             }
10810             /* Check the value is valid */
10811             if (arg2 & ~known_bits) {
10812                 return -TARGET_EOPNOTSUPP;
10813             }
10814             /* Setting FRE without FR is not supported.  */
10815             if (new_fre && !new_fr) {
10816                 return -TARGET_EOPNOTSUPP;
10817             }
10818             if (new_fr && !(env->active_fpu.fcr0 & (1 << FCR0_F64))) {
10819                 /* FR1 is not supported */
10820                 return -TARGET_EOPNOTSUPP;
10821             }
10822             if (!new_fr && (env->active_fpu.fcr0 & (1 << FCR0_F64))
10823                 && !(env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) {
10824                 /* cannot set FR=0 */
10825                 return -TARGET_EOPNOTSUPP;
10826             }
10827             if (new_fre && !(env->active_fpu.fcr0 & (1 << FCR0_FREP))) {
10828                 /* Cannot set FRE=1 */
10829                 return -TARGET_EOPNOTSUPP;
10830             }
10831 
10832             int i;
10833             fpr_t *fpr = env->active_fpu.fpr;
10834             for (i = 0; i < 32 ; i += 2) {
10835                 if (!old_fr && new_fr) {
10836                     fpr[i].w[!FP_ENDIAN_IDX] = fpr[i + 1].w[FP_ENDIAN_IDX];
10837                 } else if (old_fr && !new_fr) {
10838                     fpr[i + 1].w[FP_ENDIAN_IDX] = fpr[i].w[!FP_ENDIAN_IDX];
10839                 }
10840             }
10841 
10842             if (new_fr) {
10843                 env->CP0_Status |= (1 << CP0St_FR);
10844                 env->hflags |= MIPS_HFLAG_F64;
10845             } else {
10846                 env->CP0_Status &= ~(1 << CP0St_FR);
10847                 env->hflags &= ~MIPS_HFLAG_F64;
10848             }
10849             if (new_fre) {
10850                 env->CP0_Config5 |= (1 << CP0C5_FRE);
10851                 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
10852                     env->hflags |= MIPS_HFLAG_FRE;
10853                 }
10854             } else {
10855                 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
10856                 env->hflags &= ~MIPS_HFLAG_FRE;
10857             }
10858 
10859             return 0;
10860         }
10861 #endif /* MIPS */
10862 #ifdef TARGET_AARCH64
10863         case TARGET_PR_SVE_SET_VL:
10864             /*
10865              * We cannot support either PR_SVE_SET_VL_ONEXEC or
10866              * PR_SVE_VL_INHERIT.  Note the kernel definition
10867              * of sve_vl_valid allows for VQ=512, i.e. VL=8192,
10868              * even though the current architectural maximum is VQ=16.
10869              */
10870             ret = -TARGET_EINVAL;
10871             if (cpu_isar_feature(aa64_sve, env_archcpu(cpu_env))
10872                 && arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) {
10873                 CPUARMState *env = cpu_env;
10874                 ARMCPU *cpu = env_archcpu(env);
10875                 uint32_t vq, old_vq;
10876 
10877                 old_vq = (env->vfp.zcr_el[1] & 0xf) + 1;
10878                 vq = MAX(arg2 / 16, 1);
10879                 vq = MIN(vq, cpu->sve_max_vq);
10880 
10881                 if (vq < old_vq) {
10882                     aarch64_sve_narrow_vq(env, vq);
10883                 }
10884                 env->vfp.zcr_el[1] = vq - 1;
10885                 arm_rebuild_hflags(env);
10886                 ret = vq * 16;
10887             }
10888             return ret;
10889         case TARGET_PR_SVE_GET_VL:
10890             ret = -TARGET_EINVAL;
10891             {
10892                 ARMCPU *cpu = env_archcpu(cpu_env);
10893                 if (cpu_isar_feature(aa64_sve, cpu)) {
10894                     ret = ((cpu->env.vfp.zcr_el[1] & 0xf) + 1) * 16;
10895                 }
10896             }
10897             return ret;
10898         case TARGET_PR_PAC_RESET_KEYS:
10899             {
10900                 CPUARMState *env = cpu_env;
10901                 ARMCPU *cpu = env_archcpu(env);
10902 
10903                 if (arg3 || arg4 || arg5) {
10904                     return -TARGET_EINVAL;
10905                 }
10906                 if (cpu_isar_feature(aa64_pauth, cpu)) {
10907                     int all = (TARGET_PR_PAC_APIAKEY | TARGET_PR_PAC_APIBKEY |
10908                                TARGET_PR_PAC_APDAKEY | TARGET_PR_PAC_APDBKEY |
10909                                TARGET_PR_PAC_APGAKEY);
10910                     int ret = 0;
10911                     Error *err = NULL;
10912 
10913                     if (arg2 == 0) {
10914                         arg2 = all;
10915                     } else if (arg2 & ~all) {
10916                         return -TARGET_EINVAL;
10917                     }
10918                     if (arg2 & TARGET_PR_PAC_APIAKEY) {
10919                         ret |= qemu_guest_getrandom(&env->keys.apia,
10920                                                     sizeof(ARMPACKey), &err);
10921                     }
10922                     if (arg2 & TARGET_PR_PAC_APIBKEY) {
10923                         ret |= qemu_guest_getrandom(&env->keys.apib,
10924                                                     sizeof(ARMPACKey), &err);
10925                     }
10926                     if (arg2 & TARGET_PR_PAC_APDAKEY) {
10927                         ret |= qemu_guest_getrandom(&env->keys.apda,
10928                                                     sizeof(ARMPACKey), &err);
10929                     }
10930                     if (arg2 & TARGET_PR_PAC_APDBKEY) {
10931                         ret |= qemu_guest_getrandom(&env->keys.apdb,
10932                                                     sizeof(ARMPACKey), &err);
10933                     }
10934                     if (arg2 & TARGET_PR_PAC_APGAKEY) {
10935                         ret |= qemu_guest_getrandom(&env->keys.apga,
10936                                                     sizeof(ARMPACKey), &err);
10937                     }
10938                     if (ret != 0) {
10939                         /*
10940                          * Some unknown failure in the crypto.  The best
10941                          * we can do is log it and fail the syscall.
10942                          * The real syscall cannot fail this way.
10943                          */
10944                         qemu_log_mask(LOG_UNIMP,
10945                                       "PR_PAC_RESET_KEYS: Crypto failure: %s",
10946                                       error_get_pretty(err));
10947                         error_free(err);
10948                         return -TARGET_EIO;
10949                     }
10950                     return 0;
10951                 }
10952             }
10953             return -TARGET_EINVAL;
10954         case TARGET_PR_SET_TAGGED_ADDR_CTRL:
10955             {
10956                 abi_ulong valid_mask = TARGET_PR_TAGGED_ADDR_ENABLE;
10957                 CPUARMState *env = cpu_env;
10958                 ARMCPU *cpu = env_archcpu(env);
10959 
10960                 if (cpu_isar_feature(aa64_mte, cpu)) {
10961                     valid_mask |= TARGET_PR_MTE_TCF_MASK;
10962                     valid_mask |= TARGET_PR_MTE_TAG_MASK;
10963                 }
10964 
10965                 if ((arg2 & ~valid_mask) || arg3 || arg4 || arg5) {
10966                     return -TARGET_EINVAL;
10967                 }
10968                 env->tagged_addr_enable = arg2 & TARGET_PR_TAGGED_ADDR_ENABLE;
10969 
10970                 if (cpu_isar_feature(aa64_mte, cpu)) {
10971                     switch (arg2 & TARGET_PR_MTE_TCF_MASK) {
10972                     case TARGET_PR_MTE_TCF_NONE:
10973                     case TARGET_PR_MTE_TCF_SYNC:
10974                     case TARGET_PR_MTE_TCF_ASYNC:
10975                         break;
10976                     default:
10977                         return -EINVAL;
10978                     }
10979 
10980                     /*
10981                      * Write PR_MTE_TCF to SCTLR_EL1[TCF0].
10982                      * Note that the syscall values are consistent with hw.
10983                      */
10984                     env->cp15.sctlr_el[1] =
10985                         deposit64(env->cp15.sctlr_el[1], 38, 2,
10986                                   arg2 >> TARGET_PR_MTE_TCF_SHIFT);
10987 
10988                     /*
10989                      * Write PR_MTE_TAG to GCR_EL1[Exclude].
10990                      * Note that the syscall uses an include mask,
10991                      * and hardware uses an exclude mask -- invert.
10992                      */
10993                     env->cp15.gcr_el1 =
10994                         deposit64(env->cp15.gcr_el1, 0, 16,
10995                                   ~arg2 >> TARGET_PR_MTE_TAG_SHIFT);
10996                     arm_rebuild_hflags(env);
10997                 }
10998                 return 0;
10999             }
11000         case TARGET_PR_GET_TAGGED_ADDR_CTRL:
11001             {
11002                 abi_long ret = 0;
11003                 CPUARMState *env = cpu_env;
11004                 ARMCPU *cpu = env_archcpu(env);
11005 
11006                 if (arg2 || arg3 || arg4 || arg5) {
11007                     return -TARGET_EINVAL;
11008                 }
11009                 if (env->tagged_addr_enable) {
11010                     ret |= TARGET_PR_TAGGED_ADDR_ENABLE;
11011                 }
11012                 if (cpu_isar_feature(aa64_mte, cpu)) {
11013                     /* See above. */
11014                     ret |= (extract64(env->cp15.sctlr_el[1], 38, 2)
11015                             << TARGET_PR_MTE_TCF_SHIFT);
11016                     ret = deposit64(ret, TARGET_PR_MTE_TAG_SHIFT, 16,
11017                                     ~env->cp15.gcr_el1);
11018                 }
11019                 return ret;
11020             }
11021 #endif /* AARCH64 */
11022         case PR_GET_SECCOMP:
11023         case PR_SET_SECCOMP:
11024             /* Disable seccomp to prevent the target disabling syscalls we
11025              * need. */
11026             return -TARGET_EINVAL;
11027         default:
11028             /* Most prctl options have no pointer arguments */
11029             return get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
11030         }
11031         break;
11032 #ifdef TARGET_NR_arch_prctl
11033     case TARGET_NR_arch_prctl:
11034         return do_arch_prctl(cpu_env, arg1, arg2);
11035 #endif
11036 #ifdef TARGET_NR_pread64
11037     case TARGET_NR_pread64:
11038         if (regpairs_aligned(cpu_env, num)) {
11039             arg4 = arg5;
11040             arg5 = arg6;
11041         }
11042         if (arg2 == 0 && arg3 == 0) {
11043             /* Special-case NULL buffer and zero length, which should succeed */
11044             p = 0;
11045         } else {
11046             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11047             if (!p) {
11048                 return -TARGET_EFAULT;
11049             }
11050         }
11051         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11052         unlock_user(p, arg2, ret);
11053         return ret;
11054     case TARGET_NR_pwrite64:
11055         if (regpairs_aligned(cpu_env, num)) {
11056             arg4 = arg5;
11057             arg5 = arg6;
11058         }
11059         if (arg2 == 0 && arg3 == 0) {
11060             /* Special-case NULL buffer and zero length, which should succeed */
11061             p = 0;
11062         } else {
11063             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11064             if (!p) {
11065                 return -TARGET_EFAULT;
11066             }
11067         }
11068         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11069         unlock_user(p, arg2, 0);
11070         return ret;
11071 #endif
11072     case TARGET_NR_getcwd:
11073         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11074             return -TARGET_EFAULT;
11075         ret = get_errno(sys_getcwd1(p, arg2));
11076         unlock_user(p, arg1, ret);
11077         return ret;
11078     case TARGET_NR_capget:
11079     case TARGET_NR_capset:
11080     {
11081         struct target_user_cap_header *target_header;
11082         struct target_user_cap_data *target_data = NULL;
11083         struct __user_cap_header_struct header;
11084         struct __user_cap_data_struct data[2];
11085         struct __user_cap_data_struct *dataptr = NULL;
11086         int i, target_datalen;
11087         int data_items = 1;
11088 
11089         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11090             return -TARGET_EFAULT;
11091         }
11092         header.version = tswap32(target_header->version);
11093         header.pid = tswap32(target_header->pid);
11094 
11095         if (header.version != _LINUX_CAPABILITY_VERSION) {
11096             /* Version 2 and up takes pointer to two user_data structs */
11097             data_items = 2;
11098         }
11099 
11100         target_datalen = sizeof(*target_data) * data_items;
11101 
11102         if (arg2) {
11103             if (num == TARGET_NR_capget) {
11104                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11105             } else {
11106                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11107             }
11108             if (!target_data) {
11109                 unlock_user_struct(target_header, arg1, 0);
11110                 return -TARGET_EFAULT;
11111             }
11112 
11113             if (num == TARGET_NR_capset) {
11114                 for (i = 0; i < data_items; i++) {
11115                     data[i].effective = tswap32(target_data[i].effective);
11116                     data[i].permitted = tswap32(target_data[i].permitted);
11117                     data[i].inheritable = tswap32(target_data[i].inheritable);
11118                 }
11119             }
11120 
11121             dataptr = data;
11122         }
11123 
11124         if (num == TARGET_NR_capget) {
11125             ret = get_errno(capget(&header, dataptr));
11126         } else {
11127             ret = get_errno(capset(&header, dataptr));
11128         }
11129 
11130         /* The kernel always updates version for both capget and capset */
11131         target_header->version = tswap32(header.version);
11132         unlock_user_struct(target_header, arg1, 1);
11133 
11134         if (arg2) {
11135             if (num == TARGET_NR_capget) {
11136                 for (i = 0; i < data_items; i++) {
11137                     target_data[i].effective = tswap32(data[i].effective);
11138                     target_data[i].permitted = tswap32(data[i].permitted);
11139                     target_data[i].inheritable = tswap32(data[i].inheritable);
11140                 }
11141                 unlock_user(target_data, arg2, target_datalen);
11142             } else {
11143                 unlock_user(target_data, arg2, 0);
11144             }
11145         }
11146         return ret;
11147     }
11148     case TARGET_NR_sigaltstack:
11149         return do_sigaltstack(arg1, arg2, cpu_env);
11150 
11151 #ifdef CONFIG_SENDFILE
11152 #ifdef TARGET_NR_sendfile
11153     case TARGET_NR_sendfile:
11154     {
11155         off_t *offp = NULL;
11156         off_t off;
11157         if (arg3) {
11158             ret = get_user_sal(off, arg3);
11159             if (is_error(ret)) {
11160                 return ret;
11161             }
11162             offp = &off;
11163         }
11164         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11165         if (!is_error(ret) && arg3) {
11166             abi_long ret2 = put_user_sal(off, arg3);
11167             if (is_error(ret2)) {
11168                 ret = ret2;
11169             }
11170         }
11171         return ret;
11172     }
11173 #endif
11174 #ifdef TARGET_NR_sendfile64
11175     case TARGET_NR_sendfile64:
11176     {
11177         off_t *offp = NULL;
11178         off_t off;
11179         if (arg3) {
11180             ret = get_user_s64(off, arg3);
11181             if (is_error(ret)) {
11182                 return ret;
11183             }
11184             offp = &off;
11185         }
11186         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11187         if (!is_error(ret) && arg3) {
11188             abi_long ret2 = put_user_s64(off, arg3);
11189             if (is_error(ret2)) {
11190                 ret = ret2;
11191             }
11192         }
11193         return ret;
11194     }
11195 #endif
11196 #endif
11197 #ifdef TARGET_NR_vfork
11198     case TARGET_NR_vfork:
11199         return get_errno(do_fork(cpu_env,
11200                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11201                          0, 0, 0, 0));
11202 #endif
11203 #ifdef TARGET_NR_ugetrlimit
11204     case TARGET_NR_ugetrlimit:
11205     {
11206 	struct rlimit rlim;
11207 	int resource = target_to_host_resource(arg1);
11208 	ret = get_errno(getrlimit(resource, &rlim));
11209 	if (!is_error(ret)) {
11210 	    struct target_rlimit *target_rlim;
11211             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11212                 return -TARGET_EFAULT;
11213 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11214 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11215             unlock_user_struct(target_rlim, arg2, 1);
11216 	}
11217         return ret;
11218     }
11219 #endif
11220 #ifdef TARGET_NR_truncate64
11221     case TARGET_NR_truncate64:
11222         if (!(p = lock_user_string(arg1)))
11223             return -TARGET_EFAULT;
11224 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11225         unlock_user(p, arg1, 0);
11226         return ret;
11227 #endif
11228 #ifdef TARGET_NR_ftruncate64
11229     case TARGET_NR_ftruncate64:
11230         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11231 #endif
11232 #ifdef TARGET_NR_stat64
11233     case TARGET_NR_stat64:
11234         if (!(p = lock_user_string(arg1))) {
11235             return -TARGET_EFAULT;
11236         }
11237         ret = get_errno(stat(path(p), &st));
11238         unlock_user(p, arg1, 0);
11239         if (!is_error(ret))
11240             ret = host_to_target_stat64(cpu_env, arg2, &st);
11241         return ret;
11242 #endif
11243 #ifdef TARGET_NR_lstat64
11244     case TARGET_NR_lstat64:
11245         if (!(p = lock_user_string(arg1))) {
11246             return -TARGET_EFAULT;
11247         }
11248         ret = get_errno(lstat(path(p), &st));
11249         unlock_user(p, arg1, 0);
11250         if (!is_error(ret))
11251             ret = host_to_target_stat64(cpu_env, arg2, &st);
11252         return ret;
11253 #endif
11254 #ifdef TARGET_NR_fstat64
11255     case TARGET_NR_fstat64:
11256         ret = get_errno(fstat(arg1, &st));
11257         if (!is_error(ret))
11258             ret = host_to_target_stat64(cpu_env, arg2, &st);
11259         return ret;
11260 #endif
11261 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11262 #ifdef TARGET_NR_fstatat64
11263     case TARGET_NR_fstatat64:
11264 #endif
11265 #ifdef TARGET_NR_newfstatat
11266     case TARGET_NR_newfstatat:
11267 #endif
11268         if (!(p = lock_user_string(arg2))) {
11269             return -TARGET_EFAULT;
11270         }
11271         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11272         unlock_user(p, arg2, 0);
11273         if (!is_error(ret))
11274             ret = host_to_target_stat64(cpu_env, arg3, &st);
11275         return ret;
11276 #endif
11277 #if defined(TARGET_NR_statx)
11278     case TARGET_NR_statx:
11279         {
11280             struct target_statx *target_stx;
11281             int dirfd = arg1;
11282             int flags = arg3;
11283 
11284             p = lock_user_string(arg2);
11285             if (p == NULL) {
11286                 return -TARGET_EFAULT;
11287             }
11288 #if defined(__NR_statx)
11289             {
11290                 /*
11291                  * It is assumed that struct statx is architecture independent.
11292                  */
11293                 struct target_statx host_stx;
11294                 int mask = arg4;
11295 
11296                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11297                 if (!is_error(ret)) {
11298                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11299                         unlock_user(p, arg2, 0);
11300                         return -TARGET_EFAULT;
11301                     }
11302                 }
11303 
11304                 if (ret != -TARGET_ENOSYS) {
11305                     unlock_user(p, arg2, 0);
11306                     return ret;
11307                 }
11308             }
11309 #endif
11310             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11311             unlock_user(p, arg2, 0);
11312 
11313             if (!is_error(ret)) {
11314                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11315                     return -TARGET_EFAULT;
11316                 }
11317                 memset(target_stx, 0, sizeof(*target_stx));
11318                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11319                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11320                 __put_user(st.st_ino, &target_stx->stx_ino);
11321                 __put_user(st.st_mode, &target_stx->stx_mode);
11322                 __put_user(st.st_uid, &target_stx->stx_uid);
11323                 __put_user(st.st_gid, &target_stx->stx_gid);
11324                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11325                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11326                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11327                 __put_user(st.st_size, &target_stx->stx_size);
11328                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11329                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11330                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11331                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11332                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11333                 unlock_user_struct(target_stx, arg5, 1);
11334             }
11335         }
11336         return ret;
11337 #endif
11338 #ifdef TARGET_NR_lchown
11339     case TARGET_NR_lchown:
11340         if (!(p = lock_user_string(arg1)))
11341             return -TARGET_EFAULT;
11342         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11343         unlock_user(p, arg1, 0);
11344         return ret;
11345 #endif
11346 #ifdef TARGET_NR_getuid
11347     case TARGET_NR_getuid:
11348         return get_errno(high2lowuid(getuid()));
11349 #endif
11350 #ifdef TARGET_NR_getgid
11351     case TARGET_NR_getgid:
11352         return get_errno(high2lowgid(getgid()));
11353 #endif
11354 #ifdef TARGET_NR_geteuid
11355     case TARGET_NR_geteuid:
11356         return get_errno(high2lowuid(geteuid()));
11357 #endif
11358 #ifdef TARGET_NR_getegid
11359     case TARGET_NR_getegid:
11360         return get_errno(high2lowgid(getegid()));
11361 #endif
11362     case TARGET_NR_setreuid:
11363         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11364     case TARGET_NR_setregid:
11365         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11366     case TARGET_NR_getgroups:
11367         {
11368             int gidsetsize = arg1;
11369             target_id *target_grouplist;
11370             gid_t *grouplist;
11371             int i;
11372 
11373             grouplist = alloca(gidsetsize * sizeof(gid_t));
11374             ret = get_errno(getgroups(gidsetsize, grouplist));
11375             if (gidsetsize == 0)
11376                 return ret;
11377             if (!is_error(ret)) {
11378                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11379                 if (!target_grouplist)
11380                     return -TARGET_EFAULT;
11381                 for(i = 0;i < ret; i++)
11382                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11383                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11384             }
11385         }
11386         return ret;
11387     case TARGET_NR_setgroups:
11388         {
11389             int gidsetsize = arg1;
11390             target_id *target_grouplist;
11391             gid_t *grouplist = NULL;
11392             int i;
11393             if (gidsetsize) {
11394                 grouplist = alloca(gidsetsize * sizeof(gid_t));
11395                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11396                 if (!target_grouplist) {
11397                     return -TARGET_EFAULT;
11398                 }
11399                 for (i = 0; i < gidsetsize; i++) {
11400                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11401                 }
11402                 unlock_user(target_grouplist, arg2, 0);
11403             }
11404             return get_errno(setgroups(gidsetsize, grouplist));
11405         }
11406     case TARGET_NR_fchown:
11407         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11408 #if defined(TARGET_NR_fchownat)
11409     case TARGET_NR_fchownat:
11410         if (!(p = lock_user_string(arg2)))
11411             return -TARGET_EFAULT;
11412         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11413                                  low2highgid(arg4), arg5));
11414         unlock_user(p, arg2, 0);
11415         return ret;
11416 #endif
11417 #ifdef TARGET_NR_setresuid
11418     case TARGET_NR_setresuid:
11419         return get_errno(sys_setresuid(low2highuid(arg1),
11420                                        low2highuid(arg2),
11421                                        low2highuid(arg3)));
11422 #endif
11423 #ifdef TARGET_NR_getresuid
11424     case TARGET_NR_getresuid:
11425         {
11426             uid_t ruid, euid, suid;
11427             ret = get_errno(getresuid(&ruid, &euid, &suid));
11428             if (!is_error(ret)) {
11429                 if (put_user_id(high2lowuid(ruid), arg1)
11430                     || put_user_id(high2lowuid(euid), arg2)
11431                     || put_user_id(high2lowuid(suid), arg3))
11432                     return -TARGET_EFAULT;
11433             }
11434         }
11435         return ret;
11436 #endif
11437 #ifdef TARGET_NR_getresgid
11438     case TARGET_NR_setresgid:
11439         return get_errno(sys_setresgid(low2highgid(arg1),
11440                                        low2highgid(arg2),
11441                                        low2highgid(arg3)));
11442 #endif
11443 #ifdef TARGET_NR_getresgid
11444     case TARGET_NR_getresgid:
11445         {
11446             gid_t rgid, egid, sgid;
11447             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11448             if (!is_error(ret)) {
11449                 if (put_user_id(high2lowgid(rgid), arg1)
11450                     || put_user_id(high2lowgid(egid), arg2)
11451                     || put_user_id(high2lowgid(sgid), arg3))
11452                     return -TARGET_EFAULT;
11453             }
11454         }
11455         return ret;
11456 #endif
11457 #ifdef TARGET_NR_chown
11458     case TARGET_NR_chown:
11459         if (!(p = lock_user_string(arg1)))
11460             return -TARGET_EFAULT;
11461         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11462         unlock_user(p, arg1, 0);
11463         return ret;
11464 #endif
11465     case TARGET_NR_setuid:
11466         return get_errno(sys_setuid(low2highuid(arg1)));
11467     case TARGET_NR_setgid:
11468         return get_errno(sys_setgid(low2highgid(arg1)));
11469     case TARGET_NR_setfsuid:
11470         return get_errno(setfsuid(arg1));
11471     case TARGET_NR_setfsgid:
11472         return get_errno(setfsgid(arg1));
11473 
11474 #ifdef TARGET_NR_lchown32
11475     case TARGET_NR_lchown32:
11476         if (!(p = lock_user_string(arg1)))
11477             return -TARGET_EFAULT;
11478         ret = get_errno(lchown(p, arg2, arg3));
11479         unlock_user(p, arg1, 0);
11480         return ret;
11481 #endif
11482 #ifdef TARGET_NR_getuid32
11483     case TARGET_NR_getuid32:
11484         return get_errno(getuid());
11485 #endif
11486 
11487 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11488    /* Alpha specific */
11489     case TARGET_NR_getxuid:
11490          {
11491             uid_t euid;
11492             euid=geteuid();
11493             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
11494          }
11495         return get_errno(getuid());
11496 #endif
11497 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11498    /* Alpha specific */
11499     case TARGET_NR_getxgid:
11500          {
11501             uid_t egid;
11502             egid=getegid();
11503             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
11504          }
11505         return get_errno(getgid());
11506 #endif
11507 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11508     /* Alpha specific */
11509     case TARGET_NR_osf_getsysinfo:
11510         ret = -TARGET_EOPNOTSUPP;
11511         switch (arg1) {
11512           case TARGET_GSI_IEEE_FP_CONTROL:
11513             {
11514                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11515                 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr;
11516 
11517                 swcr &= ~SWCR_STATUS_MASK;
11518                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11519 
11520                 if (put_user_u64 (swcr, arg2))
11521                         return -TARGET_EFAULT;
11522                 ret = 0;
11523             }
11524             break;
11525 
11526           /* case GSI_IEEE_STATE_AT_SIGNAL:
11527              -- Not implemented in linux kernel.
11528              case GSI_UACPROC:
11529              -- Retrieves current unaligned access state; not much used.
11530              case GSI_PROC_TYPE:
11531              -- Retrieves implver information; surely not used.
11532              case GSI_GET_HWRPB:
11533              -- Grabs a copy of the HWRPB; surely not used.
11534           */
11535         }
11536         return ret;
11537 #endif
11538 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11539     /* Alpha specific */
11540     case TARGET_NR_osf_setsysinfo:
11541         ret = -TARGET_EOPNOTSUPP;
11542         switch (arg1) {
11543           case TARGET_SSI_IEEE_FP_CONTROL:
11544             {
11545                 uint64_t swcr, fpcr;
11546 
11547                 if (get_user_u64 (swcr, arg2)) {
11548                     return -TARGET_EFAULT;
11549                 }
11550 
11551                 /*
11552                  * The kernel calls swcr_update_status to update the
11553                  * status bits from the fpcr at every point that it
11554                  * could be queried.  Therefore, we store the status
11555                  * bits only in FPCR.
11556                  */
11557                 ((CPUAlphaState *)cpu_env)->swcr
11558                     = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11559 
11560                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11561                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11562                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11563                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11564                 ret = 0;
11565             }
11566             break;
11567 
11568           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11569             {
11570                 uint64_t exc, fpcr, fex;
11571 
11572                 if (get_user_u64(exc, arg2)) {
11573                     return -TARGET_EFAULT;
11574                 }
11575                 exc &= SWCR_STATUS_MASK;
11576                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11577 
11578                 /* Old exceptions are not signaled.  */
11579                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11580                 fex = exc & ~fex;
11581                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11582                 fex &= ((CPUArchState *)cpu_env)->swcr;
11583 
11584                 /* Update the hardware fpcr.  */
11585                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11586                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11587 
11588                 if (fex) {
11589                     int si_code = TARGET_FPE_FLTUNK;
11590                     target_siginfo_t info;
11591 
11592                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11593                         si_code = TARGET_FPE_FLTUND;
11594                     }
11595                     if (fex & SWCR_TRAP_ENABLE_INE) {
11596                         si_code = TARGET_FPE_FLTRES;
11597                     }
11598                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11599                         si_code = TARGET_FPE_FLTUND;
11600                     }
11601                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11602                         si_code = TARGET_FPE_FLTOVF;
11603                     }
11604                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11605                         si_code = TARGET_FPE_FLTDIV;
11606                     }
11607                     if (fex & SWCR_TRAP_ENABLE_INV) {
11608                         si_code = TARGET_FPE_FLTINV;
11609                     }
11610 
11611                     info.si_signo = SIGFPE;
11612                     info.si_errno = 0;
11613                     info.si_code = si_code;
11614                     info._sifields._sigfault._addr
11615                         = ((CPUArchState *)cpu_env)->pc;
11616                     queue_signal((CPUArchState *)cpu_env, info.si_signo,
11617                                  QEMU_SI_FAULT, &info);
11618                 }
11619                 ret = 0;
11620             }
11621             break;
11622 
11623           /* case SSI_NVPAIRS:
11624              -- Used with SSIN_UACPROC to enable unaligned accesses.
11625              case SSI_IEEE_STATE_AT_SIGNAL:
11626              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11627              -- Not implemented in linux kernel
11628           */
11629         }
11630         return ret;
11631 #endif
11632 #ifdef TARGET_NR_osf_sigprocmask
11633     /* Alpha specific.  */
11634     case TARGET_NR_osf_sigprocmask:
11635         {
11636             abi_ulong mask;
11637             int how;
11638             sigset_t set, oldset;
11639 
11640             switch(arg1) {
11641             case TARGET_SIG_BLOCK:
11642                 how = SIG_BLOCK;
11643                 break;
11644             case TARGET_SIG_UNBLOCK:
11645                 how = SIG_UNBLOCK;
11646                 break;
11647             case TARGET_SIG_SETMASK:
11648                 how = SIG_SETMASK;
11649                 break;
11650             default:
11651                 return -TARGET_EINVAL;
11652             }
11653             mask = arg2;
11654             target_to_host_old_sigset(&set, &mask);
11655             ret = do_sigprocmask(how, &set, &oldset);
11656             if (!ret) {
11657                 host_to_target_old_sigset(&mask, &oldset);
11658                 ret = mask;
11659             }
11660         }
11661         return ret;
11662 #endif
11663 
11664 #ifdef TARGET_NR_getgid32
11665     case TARGET_NR_getgid32:
11666         return get_errno(getgid());
11667 #endif
11668 #ifdef TARGET_NR_geteuid32
11669     case TARGET_NR_geteuid32:
11670         return get_errno(geteuid());
11671 #endif
11672 #ifdef TARGET_NR_getegid32
11673     case TARGET_NR_getegid32:
11674         return get_errno(getegid());
11675 #endif
11676 #ifdef TARGET_NR_setreuid32
11677     case TARGET_NR_setreuid32:
11678         return get_errno(setreuid(arg1, arg2));
11679 #endif
11680 #ifdef TARGET_NR_setregid32
11681     case TARGET_NR_setregid32:
11682         return get_errno(setregid(arg1, arg2));
11683 #endif
11684 #ifdef TARGET_NR_getgroups32
11685     case TARGET_NR_getgroups32:
11686         {
11687             int gidsetsize = arg1;
11688             uint32_t *target_grouplist;
11689             gid_t *grouplist;
11690             int i;
11691 
11692             grouplist = alloca(gidsetsize * sizeof(gid_t));
11693             ret = get_errno(getgroups(gidsetsize, grouplist));
11694             if (gidsetsize == 0)
11695                 return ret;
11696             if (!is_error(ret)) {
11697                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11698                 if (!target_grouplist) {
11699                     return -TARGET_EFAULT;
11700                 }
11701                 for(i = 0;i < ret; i++)
11702                     target_grouplist[i] = tswap32(grouplist[i]);
11703                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11704             }
11705         }
11706         return ret;
11707 #endif
11708 #ifdef TARGET_NR_setgroups32
11709     case TARGET_NR_setgroups32:
11710         {
11711             int gidsetsize = arg1;
11712             uint32_t *target_grouplist;
11713             gid_t *grouplist;
11714             int i;
11715 
11716             grouplist = alloca(gidsetsize * sizeof(gid_t));
11717             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11718             if (!target_grouplist) {
11719                 return -TARGET_EFAULT;
11720             }
11721             for(i = 0;i < gidsetsize; i++)
11722                 grouplist[i] = tswap32(target_grouplist[i]);
11723             unlock_user(target_grouplist, arg2, 0);
11724             return get_errno(setgroups(gidsetsize, grouplist));
11725         }
11726 #endif
11727 #ifdef TARGET_NR_fchown32
11728     case TARGET_NR_fchown32:
11729         return get_errno(fchown(arg1, arg2, arg3));
11730 #endif
11731 #ifdef TARGET_NR_setresuid32
11732     case TARGET_NR_setresuid32:
11733         return get_errno(sys_setresuid(arg1, arg2, arg3));
11734 #endif
11735 #ifdef TARGET_NR_getresuid32
11736     case TARGET_NR_getresuid32:
11737         {
11738             uid_t ruid, euid, suid;
11739             ret = get_errno(getresuid(&ruid, &euid, &suid));
11740             if (!is_error(ret)) {
11741                 if (put_user_u32(ruid, arg1)
11742                     || put_user_u32(euid, arg2)
11743                     || put_user_u32(suid, arg3))
11744                     return -TARGET_EFAULT;
11745             }
11746         }
11747         return ret;
11748 #endif
11749 #ifdef TARGET_NR_setresgid32
11750     case TARGET_NR_setresgid32:
11751         return get_errno(sys_setresgid(arg1, arg2, arg3));
11752 #endif
11753 #ifdef TARGET_NR_getresgid32
11754     case TARGET_NR_getresgid32:
11755         {
11756             gid_t rgid, egid, sgid;
11757             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11758             if (!is_error(ret)) {
11759                 if (put_user_u32(rgid, arg1)
11760                     || put_user_u32(egid, arg2)
11761                     || put_user_u32(sgid, arg3))
11762                     return -TARGET_EFAULT;
11763             }
11764         }
11765         return ret;
11766 #endif
11767 #ifdef TARGET_NR_chown32
11768     case TARGET_NR_chown32:
11769         if (!(p = lock_user_string(arg1)))
11770             return -TARGET_EFAULT;
11771         ret = get_errno(chown(p, arg2, arg3));
11772         unlock_user(p, arg1, 0);
11773         return ret;
11774 #endif
11775 #ifdef TARGET_NR_setuid32
11776     case TARGET_NR_setuid32:
11777         return get_errno(sys_setuid(arg1));
11778 #endif
11779 #ifdef TARGET_NR_setgid32
11780     case TARGET_NR_setgid32:
11781         return get_errno(sys_setgid(arg1));
11782 #endif
11783 #ifdef TARGET_NR_setfsuid32
11784     case TARGET_NR_setfsuid32:
11785         return get_errno(setfsuid(arg1));
11786 #endif
11787 #ifdef TARGET_NR_setfsgid32
11788     case TARGET_NR_setfsgid32:
11789         return get_errno(setfsgid(arg1));
11790 #endif
11791 #ifdef TARGET_NR_mincore
11792     case TARGET_NR_mincore:
11793         {
11794             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11795             if (!a) {
11796                 return -TARGET_ENOMEM;
11797             }
11798             p = lock_user_string(arg3);
11799             if (!p) {
11800                 ret = -TARGET_EFAULT;
11801             } else {
11802                 ret = get_errno(mincore(a, arg2, p));
11803                 unlock_user(p, arg3, ret);
11804             }
11805             unlock_user(a, arg1, 0);
11806         }
11807         return ret;
11808 #endif
11809 #ifdef TARGET_NR_arm_fadvise64_64
11810     case TARGET_NR_arm_fadvise64_64:
11811         /* arm_fadvise64_64 looks like fadvise64_64 but
11812          * with different argument order: fd, advice, offset, len
11813          * rather than the usual fd, offset, len, advice.
11814          * Note that offset and len are both 64-bit so appear as
11815          * pairs of 32-bit registers.
11816          */
11817         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11818                             target_offset64(arg5, arg6), arg2);
11819         return -host_to_target_errno(ret);
11820 #endif
11821 
11822 #if TARGET_ABI_BITS == 32
11823 
11824 #ifdef TARGET_NR_fadvise64_64
11825     case TARGET_NR_fadvise64_64:
11826 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11827         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11828         ret = arg2;
11829         arg2 = arg3;
11830         arg3 = arg4;
11831         arg4 = arg5;
11832         arg5 = arg6;
11833         arg6 = ret;
11834 #else
11835         /* 6 args: fd, offset (high, low), len (high, low), advice */
11836         if (regpairs_aligned(cpu_env, num)) {
11837             /* offset is in (3,4), len in (5,6) and advice in 7 */
11838             arg2 = arg3;
11839             arg3 = arg4;
11840             arg4 = arg5;
11841             arg5 = arg6;
11842             arg6 = arg7;
11843         }
11844 #endif
11845         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11846                             target_offset64(arg4, arg5), arg6);
11847         return -host_to_target_errno(ret);
11848 #endif
11849 
11850 #ifdef TARGET_NR_fadvise64
11851     case TARGET_NR_fadvise64:
11852         /* 5 args: fd, offset (high, low), len, advice */
11853         if (regpairs_aligned(cpu_env, num)) {
11854             /* offset is in (3,4), len in 5 and advice in 6 */
11855             arg2 = arg3;
11856             arg3 = arg4;
11857             arg4 = arg5;
11858             arg5 = arg6;
11859         }
11860         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11861         return -host_to_target_errno(ret);
11862 #endif
11863 
11864 #else /* not a 32-bit ABI */
11865 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11866 #ifdef TARGET_NR_fadvise64_64
11867     case TARGET_NR_fadvise64_64:
11868 #endif
11869 #ifdef TARGET_NR_fadvise64
11870     case TARGET_NR_fadvise64:
11871 #endif
11872 #ifdef TARGET_S390X
11873         switch (arg4) {
11874         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11875         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11876         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11877         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11878         default: break;
11879         }
11880 #endif
11881         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11882 #endif
11883 #endif /* end of 64-bit ABI fadvise handling */
11884 
11885 #ifdef TARGET_NR_madvise
11886     case TARGET_NR_madvise:
11887         /* A straight passthrough may not be safe because qemu sometimes
11888            turns private file-backed mappings into anonymous mappings.
11889            This will break MADV_DONTNEED.
11890            This is a hint, so ignoring and returning success is ok.  */
11891         return 0;
11892 #endif
11893 #ifdef TARGET_NR_fcntl64
11894     case TARGET_NR_fcntl64:
11895     {
11896         int cmd;
11897         struct flock64 fl;
11898         from_flock64_fn *copyfrom = copy_from_user_flock64;
11899         to_flock64_fn *copyto = copy_to_user_flock64;
11900 
11901 #ifdef TARGET_ARM
11902         if (!((CPUARMState *)cpu_env)->eabi) {
11903             copyfrom = copy_from_user_oabi_flock64;
11904             copyto = copy_to_user_oabi_flock64;
11905         }
11906 #endif
11907 
11908         cmd = target_to_host_fcntl_cmd(arg2);
11909         if (cmd == -TARGET_EINVAL) {
11910             return cmd;
11911         }
11912 
11913         switch(arg2) {
11914         case TARGET_F_GETLK64:
11915             ret = copyfrom(&fl, arg3);
11916             if (ret) {
11917                 break;
11918             }
11919             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11920             if (ret == 0) {
11921                 ret = copyto(arg3, &fl);
11922             }
11923 	    break;
11924 
11925         case TARGET_F_SETLK64:
11926         case TARGET_F_SETLKW64:
11927             ret = copyfrom(&fl, arg3);
11928             if (ret) {
11929                 break;
11930             }
11931             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11932 	    break;
11933         default:
11934             ret = do_fcntl(arg1, arg2, arg3);
11935             break;
11936         }
11937         return ret;
11938     }
11939 #endif
11940 #ifdef TARGET_NR_cacheflush
11941     case TARGET_NR_cacheflush:
11942         /* self-modifying code is handled automatically, so nothing needed */
11943         return 0;
11944 #endif
11945 #ifdef TARGET_NR_getpagesize
11946     case TARGET_NR_getpagesize:
11947         return TARGET_PAGE_SIZE;
11948 #endif
11949     case TARGET_NR_gettid:
11950         return get_errno(sys_gettid());
11951 #ifdef TARGET_NR_readahead
11952     case TARGET_NR_readahead:
11953 #if TARGET_ABI_BITS == 32
11954         if (regpairs_aligned(cpu_env, num)) {
11955             arg2 = arg3;
11956             arg3 = arg4;
11957             arg4 = arg5;
11958         }
11959         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11960 #else
11961         ret = get_errno(readahead(arg1, arg2, arg3));
11962 #endif
11963         return ret;
11964 #endif
11965 #ifdef CONFIG_ATTR
11966 #ifdef TARGET_NR_setxattr
11967     case TARGET_NR_listxattr:
11968     case TARGET_NR_llistxattr:
11969     {
11970         void *p, *b = 0;
11971         if (arg2) {
11972             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11973             if (!b) {
11974                 return -TARGET_EFAULT;
11975             }
11976         }
11977         p = lock_user_string(arg1);
11978         if (p) {
11979             if (num == TARGET_NR_listxattr) {
11980                 ret = get_errno(listxattr(p, b, arg3));
11981             } else {
11982                 ret = get_errno(llistxattr(p, b, arg3));
11983             }
11984         } else {
11985             ret = -TARGET_EFAULT;
11986         }
11987         unlock_user(p, arg1, 0);
11988         unlock_user(b, arg2, arg3);
11989         return ret;
11990     }
11991     case TARGET_NR_flistxattr:
11992     {
11993         void *b = 0;
11994         if (arg2) {
11995             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11996             if (!b) {
11997                 return -TARGET_EFAULT;
11998             }
11999         }
12000         ret = get_errno(flistxattr(arg1, b, arg3));
12001         unlock_user(b, arg2, arg3);
12002         return ret;
12003     }
12004     case TARGET_NR_setxattr:
12005     case TARGET_NR_lsetxattr:
12006         {
12007             void *p, *n, *v = 0;
12008             if (arg3) {
12009                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12010                 if (!v) {
12011                     return -TARGET_EFAULT;
12012                 }
12013             }
12014             p = lock_user_string(arg1);
12015             n = lock_user_string(arg2);
12016             if (p && n) {
12017                 if (num == TARGET_NR_setxattr) {
12018                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12019                 } else {
12020                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12021                 }
12022             } else {
12023                 ret = -TARGET_EFAULT;
12024             }
12025             unlock_user(p, arg1, 0);
12026             unlock_user(n, arg2, 0);
12027             unlock_user(v, arg3, 0);
12028         }
12029         return ret;
12030     case TARGET_NR_fsetxattr:
12031         {
12032             void *n, *v = 0;
12033             if (arg3) {
12034                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12035                 if (!v) {
12036                     return -TARGET_EFAULT;
12037                 }
12038             }
12039             n = lock_user_string(arg2);
12040             if (n) {
12041                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12042             } else {
12043                 ret = -TARGET_EFAULT;
12044             }
12045             unlock_user(n, arg2, 0);
12046             unlock_user(v, arg3, 0);
12047         }
12048         return ret;
12049     case TARGET_NR_getxattr:
12050     case TARGET_NR_lgetxattr:
12051         {
12052             void *p, *n, *v = 0;
12053             if (arg3) {
12054                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12055                 if (!v) {
12056                     return -TARGET_EFAULT;
12057                 }
12058             }
12059             p = lock_user_string(arg1);
12060             n = lock_user_string(arg2);
12061             if (p && n) {
12062                 if (num == TARGET_NR_getxattr) {
12063                     ret = get_errno(getxattr(p, n, v, arg4));
12064                 } else {
12065                     ret = get_errno(lgetxattr(p, n, v, arg4));
12066                 }
12067             } else {
12068                 ret = -TARGET_EFAULT;
12069             }
12070             unlock_user(p, arg1, 0);
12071             unlock_user(n, arg2, 0);
12072             unlock_user(v, arg3, arg4);
12073         }
12074         return ret;
12075     case TARGET_NR_fgetxattr:
12076         {
12077             void *n, *v = 0;
12078             if (arg3) {
12079                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12080                 if (!v) {
12081                     return -TARGET_EFAULT;
12082                 }
12083             }
12084             n = lock_user_string(arg2);
12085             if (n) {
12086                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12087             } else {
12088                 ret = -TARGET_EFAULT;
12089             }
12090             unlock_user(n, arg2, 0);
12091             unlock_user(v, arg3, arg4);
12092         }
12093         return ret;
12094     case TARGET_NR_removexattr:
12095     case TARGET_NR_lremovexattr:
12096         {
12097             void *p, *n;
12098             p = lock_user_string(arg1);
12099             n = lock_user_string(arg2);
12100             if (p && n) {
12101                 if (num == TARGET_NR_removexattr) {
12102                     ret = get_errno(removexattr(p, n));
12103                 } else {
12104                     ret = get_errno(lremovexattr(p, n));
12105                 }
12106             } else {
12107                 ret = -TARGET_EFAULT;
12108             }
12109             unlock_user(p, arg1, 0);
12110             unlock_user(n, arg2, 0);
12111         }
12112         return ret;
12113     case TARGET_NR_fremovexattr:
12114         {
12115             void *n;
12116             n = lock_user_string(arg2);
12117             if (n) {
12118                 ret = get_errno(fremovexattr(arg1, n));
12119             } else {
12120                 ret = -TARGET_EFAULT;
12121             }
12122             unlock_user(n, arg2, 0);
12123         }
12124         return ret;
12125 #endif
12126 #endif /* CONFIG_ATTR */
12127 #ifdef TARGET_NR_set_thread_area
12128     case TARGET_NR_set_thread_area:
12129 #if defined(TARGET_MIPS)
12130       ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
12131       return 0;
12132 #elif defined(TARGET_CRIS)
12133       if (arg1 & 0xff)
12134           ret = -TARGET_EINVAL;
12135       else {
12136           ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
12137           ret = 0;
12138       }
12139       return ret;
12140 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12141       return do_set_thread_area(cpu_env, arg1);
12142 #elif defined(TARGET_M68K)
12143       {
12144           TaskState *ts = cpu->opaque;
12145           ts->tp_value = arg1;
12146           return 0;
12147       }
12148 #else
12149       return -TARGET_ENOSYS;
12150 #endif
12151 #endif
12152 #ifdef TARGET_NR_get_thread_area
12153     case TARGET_NR_get_thread_area:
12154 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12155         return do_get_thread_area(cpu_env, arg1);
12156 #elif defined(TARGET_M68K)
12157         {
12158             TaskState *ts = cpu->opaque;
12159             return ts->tp_value;
12160         }
12161 #else
12162         return -TARGET_ENOSYS;
12163 #endif
12164 #endif
12165 #ifdef TARGET_NR_getdomainname
12166     case TARGET_NR_getdomainname:
12167         return -TARGET_ENOSYS;
12168 #endif
12169 
12170 #ifdef TARGET_NR_clock_settime
12171     case TARGET_NR_clock_settime:
12172     {
12173         struct timespec ts;
12174 
12175         ret = target_to_host_timespec(&ts, arg2);
12176         if (!is_error(ret)) {
12177             ret = get_errno(clock_settime(arg1, &ts));
12178         }
12179         return ret;
12180     }
12181 #endif
12182 #ifdef TARGET_NR_clock_settime64
12183     case TARGET_NR_clock_settime64:
12184     {
12185         struct timespec ts;
12186 
12187         ret = target_to_host_timespec64(&ts, arg2);
12188         if (!is_error(ret)) {
12189             ret = get_errno(clock_settime(arg1, &ts));
12190         }
12191         return ret;
12192     }
12193 #endif
12194 #ifdef TARGET_NR_clock_gettime
12195     case TARGET_NR_clock_gettime:
12196     {
12197         struct timespec ts;
12198         ret = get_errno(clock_gettime(arg1, &ts));
12199         if (!is_error(ret)) {
12200             ret = host_to_target_timespec(arg2, &ts);
12201         }
12202         return ret;
12203     }
12204 #endif
12205 #ifdef TARGET_NR_clock_gettime64
12206     case TARGET_NR_clock_gettime64:
12207     {
12208         struct timespec ts;
12209         ret = get_errno(clock_gettime(arg1, &ts));
12210         if (!is_error(ret)) {
12211             ret = host_to_target_timespec64(arg2, &ts);
12212         }
12213         return ret;
12214     }
12215 #endif
12216 #ifdef TARGET_NR_clock_getres
12217     case TARGET_NR_clock_getres:
12218     {
12219         struct timespec ts;
12220         ret = get_errno(clock_getres(arg1, &ts));
12221         if (!is_error(ret)) {
12222             host_to_target_timespec(arg2, &ts);
12223         }
12224         return ret;
12225     }
12226 #endif
12227 #ifdef TARGET_NR_clock_getres_time64
12228     case TARGET_NR_clock_getres_time64:
12229     {
12230         struct timespec ts;
12231         ret = get_errno(clock_getres(arg1, &ts));
12232         if (!is_error(ret)) {
12233             host_to_target_timespec64(arg2, &ts);
12234         }
12235         return ret;
12236     }
12237 #endif
12238 #ifdef TARGET_NR_clock_nanosleep
12239     case TARGET_NR_clock_nanosleep:
12240     {
12241         struct timespec ts;
12242         if (target_to_host_timespec(&ts, arg3)) {
12243             return -TARGET_EFAULT;
12244         }
12245         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12246                                              &ts, arg4 ? &ts : NULL));
12247         /*
12248          * if the call is interrupted by a signal handler, it fails
12249          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12250          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12251          */
12252         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12253             host_to_target_timespec(arg4, &ts)) {
12254               return -TARGET_EFAULT;
12255         }
12256 
12257         return ret;
12258     }
12259 #endif
12260 #ifdef TARGET_NR_clock_nanosleep_time64
12261     case TARGET_NR_clock_nanosleep_time64:
12262     {
12263         struct timespec ts;
12264 
12265         if (target_to_host_timespec64(&ts, arg3)) {
12266             return -TARGET_EFAULT;
12267         }
12268 
12269         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12270                                              &ts, arg4 ? &ts : NULL));
12271 
12272         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12273             host_to_target_timespec64(arg4, &ts)) {
12274             return -TARGET_EFAULT;
12275         }
12276         return ret;
12277     }
12278 #endif
12279 
12280 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
12281     case TARGET_NR_set_tid_address:
12282         return get_errno(set_tid_address((int *)g2h(cpu, arg1)));
12283 #endif
12284 
12285     case TARGET_NR_tkill:
12286         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12287 
12288     case TARGET_NR_tgkill:
12289         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12290                          target_to_host_signal(arg3)));
12291 
12292 #ifdef TARGET_NR_set_robust_list
12293     case TARGET_NR_set_robust_list:
12294     case TARGET_NR_get_robust_list:
12295         /* The ABI for supporting robust futexes has userspace pass
12296          * the kernel a pointer to a linked list which is updated by
12297          * userspace after the syscall; the list is walked by the kernel
12298          * when the thread exits. Since the linked list in QEMU guest
12299          * memory isn't a valid linked list for the host and we have
12300          * no way to reliably intercept the thread-death event, we can't
12301          * support these. Silently return ENOSYS so that guest userspace
12302          * falls back to a non-robust futex implementation (which should
12303          * be OK except in the corner case of the guest crashing while
12304          * holding a mutex that is shared with another process via
12305          * shared memory).
12306          */
12307         return -TARGET_ENOSYS;
12308 #endif
12309 
12310 #if defined(TARGET_NR_utimensat)
12311     case TARGET_NR_utimensat:
12312         {
12313             struct timespec *tsp, ts[2];
12314             if (!arg3) {
12315                 tsp = NULL;
12316             } else {
12317                 if (target_to_host_timespec(ts, arg3)) {
12318                     return -TARGET_EFAULT;
12319                 }
12320                 if (target_to_host_timespec(ts + 1, arg3 +
12321                                             sizeof(struct target_timespec))) {
12322                     return -TARGET_EFAULT;
12323                 }
12324                 tsp = ts;
12325             }
12326             if (!arg2)
12327                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12328             else {
12329                 if (!(p = lock_user_string(arg2))) {
12330                     return -TARGET_EFAULT;
12331                 }
12332                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12333                 unlock_user(p, arg2, 0);
12334             }
12335         }
12336         return ret;
12337 #endif
12338 #ifdef TARGET_NR_utimensat_time64
12339     case TARGET_NR_utimensat_time64:
12340         {
12341             struct timespec *tsp, ts[2];
12342             if (!arg3) {
12343                 tsp = NULL;
12344             } else {
12345                 if (target_to_host_timespec64(ts, arg3)) {
12346                     return -TARGET_EFAULT;
12347                 }
12348                 if (target_to_host_timespec64(ts + 1, arg3 +
12349                                      sizeof(struct target__kernel_timespec))) {
12350                     return -TARGET_EFAULT;
12351                 }
12352                 tsp = ts;
12353             }
12354             if (!arg2)
12355                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12356             else {
12357                 p = lock_user_string(arg2);
12358                 if (!p) {
12359                     return -TARGET_EFAULT;
12360                 }
12361                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12362                 unlock_user(p, arg2, 0);
12363             }
12364         }
12365         return ret;
12366 #endif
12367 #ifdef TARGET_NR_futex
12368     case TARGET_NR_futex:
12369         return do_futex(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12370 #endif
12371 #ifdef TARGET_NR_futex_time64
12372     case TARGET_NR_futex_time64:
12373         return do_futex_time64(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12374 #endif
12375 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
12376     case TARGET_NR_inotify_init:
12377         ret = get_errno(sys_inotify_init());
12378         if (ret >= 0) {
12379             fd_trans_register(ret, &target_inotify_trans);
12380         }
12381         return ret;
12382 #endif
12383 #ifdef CONFIG_INOTIFY1
12384 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
12385     case TARGET_NR_inotify_init1:
12386         ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
12387                                           fcntl_flags_tbl)));
12388         if (ret >= 0) {
12389             fd_trans_register(ret, &target_inotify_trans);
12390         }
12391         return ret;
12392 #endif
12393 #endif
12394 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
12395     case TARGET_NR_inotify_add_watch:
12396         p = lock_user_string(arg2);
12397         ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
12398         unlock_user(p, arg2, 0);
12399         return ret;
12400 #endif
12401 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
12402     case TARGET_NR_inotify_rm_watch:
12403         return get_errno(sys_inotify_rm_watch(arg1, arg2));
12404 #endif
12405 
12406 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12407     case TARGET_NR_mq_open:
12408         {
12409             struct mq_attr posix_mq_attr;
12410             struct mq_attr *pposix_mq_attr;
12411             int host_flags;
12412 
12413             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12414             pposix_mq_attr = NULL;
12415             if (arg4) {
12416                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12417                     return -TARGET_EFAULT;
12418                 }
12419                 pposix_mq_attr = &posix_mq_attr;
12420             }
12421             p = lock_user_string(arg1 - 1);
12422             if (!p) {
12423                 return -TARGET_EFAULT;
12424             }
12425             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12426             unlock_user (p, arg1, 0);
12427         }
12428         return ret;
12429 
12430     case TARGET_NR_mq_unlink:
12431         p = lock_user_string(arg1 - 1);
12432         if (!p) {
12433             return -TARGET_EFAULT;
12434         }
12435         ret = get_errno(mq_unlink(p));
12436         unlock_user (p, arg1, 0);
12437         return ret;
12438 
12439 #ifdef TARGET_NR_mq_timedsend
12440     case TARGET_NR_mq_timedsend:
12441         {
12442             struct timespec ts;
12443 
12444             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12445             if (arg5 != 0) {
12446                 if (target_to_host_timespec(&ts, arg5)) {
12447                     return -TARGET_EFAULT;
12448                 }
12449                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12450                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12451                     return -TARGET_EFAULT;
12452                 }
12453             } else {
12454                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12455             }
12456             unlock_user (p, arg2, arg3);
12457         }
12458         return ret;
12459 #endif
12460 #ifdef TARGET_NR_mq_timedsend_time64
12461     case TARGET_NR_mq_timedsend_time64:
12462         {
12463             struct timespec ts;
12464 
12465             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12466             if (arg5 != 0) {
12467                 if (target_to_host_timespec64(&ts, arg5)) {
12468                     return -TARGET_EFAULT;
12469                 }
12470                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12471                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12472                     return -TARGET_EFAULT;
12473                 }
12474             } else {
12475                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12476             }
12477             unlock_user(p, arg2, arg3);
12478         }
12479         return ret;
12480 #endif
12481 
12482 #ifdef TARGET_NR_mq_timedreceive
12483     case TARGET_NR_mq_timedreceive:
12484         {
12485             struct timespec ts;
12486             unsigned int prio;
12487 
12488             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12489             if (arg5 != 0) {
12490                 if (target_to_host_timespec(&ts, arg5)) {
12491                     return -TARGET_EFAULT;
12492                 }
12493                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12494                                                      &prio, &ts));
12495                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12496                     return -TARGET_EFAULT;
12497                 }
12498             } else {
12499                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12500                                                      &prio, NULL));
12501             }
12502             unlock_user (p, arg2, arg3);
12503             if (arg4 != 0)
12504                 put_user_u32(prio, arg4);
12505         }
12506         return ret;
12507 #endif
12508 #ifdef TARGET_NR_mq_timedreceive_time64
12509     case TARGET_NR_mq_timedreceive_time64:
12510         {
12511             struct timespec ts;
12512             unsigned int prio;
12513 
12514             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12515             if (arg5 != 0) {
12516                 if (target_to_host_timespec64(&ts, arg5)) {
12517                     return -TARGET_EFAULT;
12518                 }
12519                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12520                                                      &prio, &ts));
12521                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12522                     return -TARGET_EFAULT;
12523                 }
12524             } else {
12525                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12526                                                      &prio, NULL));
12527             }
12528             unlock_user(p, arg2, arg3);
12529             if (arg4 != 0) {
12530                 put_user_u32(prio, arg4);
12531             }
12532         }
12533         return ret;
12534 #endif
12535 
12536     /* Not implemented for now... */
12537 /*     case TARGET_NR_mq_notify: */
12538 /*         break; */
12539 
12540     case TARGET_NR_mq_getsetattr:
12541         {
12542             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12543             ret = 0;
12544             if (arg2 != 0) {
12545                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12546                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12547                                            &posix_mq_attr_out));
12548             } else if (arg3 != 0) {
12549                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12550             }
12551             if (ret == 0 && arg3 != 0) {
12552                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12553             }
12554         }
12555         return ret;
12556 #endif
12557 
12558 #ifdef CONFIG_SPLICE
12559 #ifdef TARGET_NR_tee
12560     case TARGET_NR_tee:
12561         {
12562             ret = get_errno(tee(arg1,arg2,arg3,arg4));
12563         }
12564         return ret;
12565 #endif
12566 #ifdef TARGET_NR_splice
12567     case TARGET_NR_splice:
12568         {
12569             loff_t loff_in, loff_out;
12570             loff_t *ploff_in = NULL, *ploff_out = NULL;
12571             if (arg2) {
12572                 if (get_user_u64(loff_in, arg2)) {
12573                     return -TARGET_EFAULT;
12574                 }
12575                 ploff_in = &loff_in;
12576             }
12577             if (arg4) {
12578                 if (get_user_u64(loff_out, arg4)) {
12579                     return -TARGET_EFAULT;
12580                 }
12581                 ploff_out = &loff_out;
12582             }
12583             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12584             if (arg2) {
12585                 if (put_user_u64(loff_in, arg2)) {
12586                     return -TARGET_EFAULT;
12587                 }
12588             }
12589             if (arg4) {
12590                 if (put_user_u64(loff_out, arg4)) {
12591                     return -TARGET_EFAULT;
12592                 }
12593             }
12594         }
12595         return ret;
12596 #endif
12597 #ifdef TARGET_NR_vmsplice
12598 	case TARGET_NR_vmsplice:
12599         {
12600             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12601             if (vec != NULL) {
12602                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12603                 unlock_iovec(vec, arg2, arg3, 0);
12604             } else {
12605                 ret = -host_to_target_errno(errno);
12606             }
12607         }
12608         return ret;
12609 #endif
12610 #endif /* CONFIG_SPLICE */
12611 #ifdef CONFIG_EVENTFD
12612 #if defined(TARGET_NR_eventfd)
12613     case TARGET_NR_eventfd:
12614         ret = get_errno(eventfd(arg1, 0));
12615         if (ret >= 0) {
12616             fd_trans_register(ret, &target_eventfd_trans);
12617         }
12618         return ret;
12619 #endif
12620 #if defined(TARGET_NR_eventfd2)
12621     case TARGET_NR_eventfd2:
12622     {
12623         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
12624         if (arg2 & TARGET_O_NONBLOCK) {
12625             host_flags |= O_NONBLOCK;
12626         }
12627         if (arg2 & TARGET_O_CLOEXEC) {
12628             host_flags |= O_CLOEXEC;
12629         }
12630         ret = get_errno(eventfd(arg1, host_flags));
12631         if (ret >= 0) {
12632             fd_trans_register(ret, &target_eventfd_trans);
12633         }
12634         return ret;
12635     }
12636 #endif
12637 #endif /* CONFIG_EVENTFD  */
12638 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12639     case TARGET_NR_fallocate:
12640 #if TARGET_ABI_BITS == 32
12641         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12642                                   target_offset64(arg5, arg6)));
12643 #else
12644         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12645 #endif
12646         return ret;
12647 #endif
12648 #if defined(CONFIG_SYNC_FILE_RANGE)
12649 #if defined(TARGET_NR_sync_file_range)
12650     case TARGET_NR_sync_file_range:
12651 #if TARGET_ABI_BITS == 32
12652 #if defined(TARGET_MIPS)
12653         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12654                                         target_offset64(arg5, arg6), arg7));
12655 #else
12656         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12657                                         target_offset64(arg4, arg5), arg6));
12658 #endif /* !TARGET_MIPS */
12659 #else
12660         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12661 #endif
12662         return ret;
12663 #endif
12664 #if defined(TARGET_NR_sync_file_range2) || \
12665     defined(TARGET_NR_arm_sync_file_range)
12666 #if defined(TARGET_NR_sync_file_range2)
12667     case TARGET_NR_sync_file_range2:
12668 #endif
12669 #if defined(TARGET_NR_arm_sync_file_range)
12670     case TARGET_NR_arm_sync_file_range:
12671 #endif
12672         /* This is like sync_file_range but the arguments are reordered */
12673 #if TARGET_ABI_BITS == 32
12674         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12675                                         target_offset64(arg5, arg6), arg2));
12676 #else
12677         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12678 #endif
12679         return ret;
12680 #endif
12681 #endif
12682 #if defined(TARGET_NR_signalfd4)
12683     case TARGET_NR_signalfd4:
12684         return do_signalfd4(arg1, arg2, arg4);
12685 #endif
12686 #if defined(TARGET_NR_signalfd)
12687     case TARGET_NR_signalfd:
12688         return do_signalfd4(arg1, arg2, 0);
12689 #endif
12690 #if defined(CONFIG_EPOLL)
12691 #if defined(TARGET_NR_epoll_create)
12692     case TARGET_NR_epoll_create:
12693         return get_errno(epoll_create(arg1));
12694 #endif
12695 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12696     case TARGET_NR_epoll_create1:
12697         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12698 #endif
12699 #if defined(TARGET_NR_epoll_ctl)
12700     case TARGET_NR_epoll_ctl:
12701     {
12702         struct epoll_event ep;
12703         struct epoll_event *epp = 0;
12704         if (arg4) {
12705             if (arg2 != EPOLL_CTL_DEL) {
12706                 struct target_epoll_event *target_ep;
12707                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12708                     return -TARGET_EFAULT;
12709                 }
12710                 ep.events = tswap32(target_ep->events);
12711                 /*
12712                  * The epoll_data_t union is just opaque data to the kernel,
12713                  * so we transfer all 64 bits across and need not worry what
12714                  * actual data type it is.
12715                  */
12716                 ep.data.u64 = tswap64(target_ep->data.u64);
12717                 unlock_user_struct(target_ep, arg4, 0);
12718             }
12719             /*
12720              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
12721              * non-null pointer, even though this argument is ignored.
12722              *
12723              */
12724             epp = &ep;
12725         }
12726         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12727     }
12728 #endif
12729 
12730 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12731 #if defined(TARGET_NR_epoll_wait)
12732     case TARGET_NR_epoll_wait:
12733 #endif
12734 #if defined(TARGET_NR_epoll_pwait)
12735     case TARGET_NR_epoll_pwait:
12736 #endif
12737     {
12738         struct target_epoll_event *target_ep;
12739         struct epoll_event *ep;
12740         int epfd = arg1;
12741         int maxevents = arg3;
12742         int timeout = arg4;
12743 
12744         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12745             return -TARGET_EINVAL;
12746         }
12747 
12748         target_ep = lock_user(VERIFY_WRITE, arg2,
12749                               maxevents * sizeof(struct target_epoll_event), 1);
12750         if (!target_ep) {
12751             return -TARGET_EFAULT;
12752         }
12753 
12754         ep = g_try_new(struct epoll_event, maxevents);
12755         if (!ep) {
12756             unlock_user(target_ep, arg2, 0);
12757             return -TARGET_ENOMEM;
12758         }
12759 
12760         switch (num) {
12761 #if defined(TARGET_NR_epoll_pwait)
12762         case TARGET_NR_epoll_pwait:
12763         {
12764             target_sigset_t *target_set;
12765             sigset_t _set, *set = &_set;
12766 
12767             if (arg5) {
12768                 if (arg6 != sizeof(target_sigset_t)) {
12769                     ret = -TARGET_EINVAL;
12770                     break;
12771                 }
12772 
12773                 target_set = lock_user(VERIFY_READ, arg5,
12774                                        sizeof(target_sigset_t), 1);
12775                 if (!target_set) {
12776                     ret = -TARGET_EFAULT;
12777                     break;
12778                 }
12779                 target_to_host_sigset(set, target_set);
12780                 unlock_user(target_set, arg5, 0);
12781             } else {
12782                 set = NULL;
12783             }
12784 
12785             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12786                                              set, SIGSET_T_SIZE));
12787             break;
12788         }
12789 #endif
12790 #if defined(TARGET_NR_epoll_wait)
12791         case TARGET_NR_epoll_wait:
12792             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12793                                              NULL, 0));
12794             break;
12795 #endif
12796         default:
12797             ret = -TARGET_ENOSYS;
12798         }
12799         if (!is_error(ret)) {
12800             int i;
12801             for (i = 0; i < ret; i++) {
12802                 target_ep[i].events = tswap32(ep[i].events);
12803                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12804             }
12805             unlock_user(target_ep, arg2,
12806                         ret * sizeof(struct target_epoll_event));
12807         } else {
12808             unlock_user(target_ep, arg2, 0);
12809         }
12810         g_free(ep);
12811         return ret;
12812     }
12813 #endif
12814 #endif
12815 #ifdef TARGET_NR_prlimit64
12816     case TARGET_NR_prlimit64:
12817     {
12818         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12819         struct target_rlimit64 *target_rnew, *target_rold;
12820         struct host_rlimit64 rnew, rold, *rnewp = 0;
12821         int resource = target_to_host_resource(arg2);
12822 
12823         if (arg3 && (resource != RLIMIT_AS &&
12824                      resource != RLIMIT_DATA &&
12825                      resource != RLIMIT_STACK)) {
12826             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12827                 return -TARGET_EFAULT;
12828             }
12829             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12830             rnew.rlim_max = tswap64(target_rnew->rlim_max);
12831             unlock_user_struct(target_rnew, arg3, 0);
12832             rnewp = &rnew;
12833         }
12834 
12835         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12836         if (!is_error(ret) && arg4) {
12837             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12838                 return -TARGET_EFAULT;
12839             }
12840             target_rold->rlim_cur = tswap64(rold.rlim_cur);
12841             target_rold->rlim_max = tswap64(rold.rlim_max);
12842             unlock_user_struct(target_rold, arg4, 1);
12843         }
12844         return ret;
12845     }
12846 #endif
12847 #ifdef TARGET_NR_gethostname
12848     case TARGET_NR_gethostname:
12849     {
12850         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12851         if (name) {
12852             ret = get_errno(gethostname(name, arg2));
12853             unlock_user(name, arg1, arg2);
12854         } else {
12855             ret = -TARGET_EFAULT;
12856         }
12857         return ret;
12858     }
12859 #endif
12860 #ifdef TARGET_NR_atomic_cmpxchg_32
12861     case TARGET_NR_atomic_cmpxchg_32:
12862     {
12863         /* should use start_exclusive from main.c */
12864         abi_ulong mem_value;
12865         if (get_user_u32(mem_value, arg6)) {
12866             target_siginfo_t info;
12867             info.si_signo = SIGSEGV;
12868             info.si_errno = 0;
12869             info.si_code = TARGET_SEGV_MAPERR;
12870             info._sifields._sigfault._addr = arg6;
12871             queue_signal((CPUArchState *)cpu_env, info.si_signo,
12872                          QEMU_SI_FAULT, &info);
12873             ret = 0xdeadbeef;
12874 
12875         }
12876         if (mem_value == arg2)
12877             put_user_u32(arg1, arg6);
12878         return mem_value;
12879     }
12880 #endif
12881 #ifdef TARGET_NR_atomic_barrier
12882     case TARGET_NR_atomic_barrier:
12883         /* Like the kernel implementation and the
12884            qemu arm barrier, no-op this? */
12885         return 0;
12886 #endif
12887 
12888 #ifdef TARGET_NR_timer_create
12889     case TARGET_NR_timer_create:
12890     {
12891         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12892 
12893         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12894 
12895         int clkid = arg1;
12896         int timer_index = next_free_host_timer();
12897 
12898         if (timer_index < 0) {
12899             ret = -TARGET_EAGAIN;
12900         } else {
12901             timer_t *phtimer = g_posix_timers  + timer_index;
12902 
12903             if (arg2) {
12904                 phost_sevp = &host_sevp;
12905                 ret = target_to_host_sigevent(phost_sevp, arg2);
12906                 if (ret != 0) {
12907                     return ret;
12908                 }
12909             }
12910 
12911             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12912             if (ret) {
12913                 phtimer = NULL;
12914             } else {
12915                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12916                     return -TARGET_EFAULT;
12917                 }
12918             }
12919         }
12920         return ret;
12921     }
12922 #endif
12923 
12924 #ifdef TARGET_NR_timer_settime
12925     case TARGET_NR_timer_settime:
12926     {
12927         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12928          * struct itimerspec * old_value */
12929         target_timer_t timerid = get_timer_id(arg1);
12930 
12931         if (timerid < 0) {
12932             ret = timerid;
12933         } else if (arg3 == 0) {
12934             ret = -TARGET_EINVAL;
12935         } else {
12936             timer_t htimer = g_posix_timers[timerid];
12937             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12938 
12939             if (target_to_host_itimerspec(&hspec_new, arg3)) {
12940                 return -TARGET_EFAULT;
12941             }
12942             ret = get_errno(
12943                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12944             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12945                 return -TARGET_EFAULT;
12946             }
12947         }
12948         return ret;
12949     }
12950 #endif
12951 
12952 #ifdef TARGET_NR_timer_settime64
12953     case TARGET_NR_timer_settime64:
12954     {
12955         target_timer_t timerid = get_timer_id(arg1);
12956 
12957         if (timerid < 0) {
12958             ret = timerid;
12959         } else if (arg3 == 0) {
12960             ret = -TARGET_EINVAL;
12961         } else {
12962             timer_t htimer = g_posix_timers[timerid];
12963             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12964 
12965             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
12966                 return -TARGET_EFAULT;
12967             }
12968             ret = get_errno(
12969                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12970             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
12971                 return -TARGET_EFAULT;
12972             }
12973         }
12974         return ret;
12975     }
12976 #endif
12977 
12978 #ifdef TARGET_NR_timer_gettime
12979     case TARGET_NR_timer_gettime:
12980     {
12981         /* args: timer_t timerid, struct itimerspec *curr_value */
12982         target_timer_t timerid = get_timer_id(arg1);
12983 
12984         if (timerid < 0) {
12985             ret = timerid;
12986         } else if (!arg2) {
12987             ret = -TARGET_EFAULT;
12988         } else {
12989             timer_t htimer = g_posix_timers[timerid];
12990             struct itimerspec hspec;
12991             ret = get_errno(timer_gettime(htimer, &hspec));
12992 
12993             if (host_to_target_itimerspec(arg2, &hspec)) {
12994                 ret = -TARGET_EFAULT;
12995             }
12996         }
12997         return ret;
12998     }
12999 #endif
13000 
13001 #ifdef TARGET_NR_timer_gettime64
13002     case TARGET_NR_timer_gettime64:
13003     {
13004         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13005         target_timer_t timerid = get_timer_id(arg1);
13006 
13007         if (timerid < 0) {
13008             ret = timerid;
13009         } else if (!arg2) {
13010             ret = -TARGET_EFAULT;
13011         } else {
13012             timer_t htimer = g_posix_timers[timerid];
13013             struct itimerspec hspec;
13014             ret = get_errno(timer_gettime(htimer, &hspec));
13015 
13016             if (host_to_target_itimerspec64(arg2, &hspec)) {
13017                 ret = -TARGET_EFAULT;
13018             }
13019         }
13020         return ret;
13021     }
13022 #endif
13023 
13024 #ifdef TARGET_NR_timer_getoverrun
13025     case TARGET_NR_timer_getoverrun:
13026     {
13027         /* args: timer_t timerid */
13028         target_timer_t timerid = get_timer_id(arg1);
13029 
13030         if (timerid < 0) {
13031             ret = timerid;
13032         } else {
13033             timer_t htimer = g_posix_timers[timerid];
13034             ret = get_errno(timer_getoverrun(htimer));
13035         }
13036         return ret;
13037     }
13038 #endif
13039 
13040 #ifdef TARGET_NR_timer_delete
13041     case TARGET_NR_timer_delete:
13042     {
13043         /* args: timer_t timerid */
13044         target_timer_t timerid = get_timer_id(arg1);
13045 
13046         if (timerid < 0) {
13047             ret = timerid;
13048         } else {
13049             timer_t htimer = g_posix_timers[timerid];
13050             ret = get_errno(timer_delete(htimer));
13051             g_posix_timers[timerid] = 0;
13052         }
13053         return ret;
13054     }
13055 #endif
13056 
13057 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13058     case TARGET_NR_timerfd_create:
13059         return get_errno(timerfd_create(arg1,
13060                           target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13061 #endif
13062 
13063 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13064     case TARGET_NR_timerfd_gettime:
13065         {
13066             struct itimerspec its_curr;
13067 
13068             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13069 
13070             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13071                 return -TARGET_EFAULT;
13072             }
13073         }
13074         return ret;
13075 #endif
13076 
13077 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13078     case TARGET_NR_timerfd_gettime64:
13079         {
13080             struct itimerspec its_curr;
13081 
13082             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13083 
13084             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13085                 return -TARGET_EFAULT;
13086             }
13087         }
13088         return ret;
13089 #endif
13090 
13091 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13092     case TARGET_NR_timerfd_settime:
13093         {
13094             struct itimerspec its_new, its_old, *p_new;
13095 
13096             if (arg3) {
13097                 if (target_to_host_itimerspec(&its_new, arg3)) {
13098                     return -TARGET_EFAULT;
13099                 }
13100                 p_new = &its_new;
13101             } else {
13102                 p_new = NULL;
13103             }
13104 
13105             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13106 
13107             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13108                 return -TARGET_EFAULT;
13109             }
13110         }
13111         return ret;
13112 #endif
13113 
13114 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13115     case TARGET_NR_timerfd_settime64:
13116         {
13117             struct itimerspec its_new, its_old, *p_new;
13118 
13119             if (arg3) {
13120                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13121                     return -TARGET_EFAULT;
13122                 }
13123                 p_new = &its_new;
13124             } else {
13125                 p_new = NULL;
13126             }
13127 
13128             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13129 
13130             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13131                 return -TARGET_EFAULT;
13132             }
13133         }
13134         return ret;
13135 #endif
13136 
13137 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13138     case TARGET_NR_ioprio_get:
13139         return get_errno(ioprio_get(arg1, arg2));
13140 #endif
13141 
13142 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13143     case TARGET_NR_ioprio_set:
13144         return get_errno(ioprio_set(arg1, arg2, arg3));
13145 #endif
13146 
13147 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13148     case TARGET_NR_setns:
13149         return get_errno(setns(arg1, arg2));
13150 #endif
13151 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13152     case TARGET_NR_unshare:
13153         return get_errno(unshare(arg1));
13154 #endif
13155 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13156     case TARGET_NR_kcmp:
13157         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13158 #endif
13159 #ifdef TARGET_NR_swapcontext
13160     case TARGET_NR_swapcontext:
13161         /* PowerPC specific.  */
13162         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13163 #endif
13164 #ifdef TARGET_NR_memfd_create
13165     case TARGET_NR_memfd_create:
13166         p = lock_user_string(arg1);
13167         if (!p) {
13168             return -TARGET_EFAULT;
13169         }
13170         ret = get_errno(memfd_create(p, arg2));
13171         fd_trans_unregister(ret);
13172         unlock_user(p, arg1, 0);
13173         return ret;
13174 #endif
13175 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13176     case TARGET_NR_membarrier:
13177         return get_errno(membarrier(arg1, arg2));
13178 #endif
13179 
13180 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13181     case TARGET_NR_copy_file_range:
13182         {
13183             loff_t inoff, outoff;
13184             loff_t *pinoff = NULL, *poutoff = NULL;
13185 
13186             if (arg2) {
13187                 if (get_user_u64(inoff, arg2)) {
13188                     return -TARGET_EFAULT;
13189                 }
13190                 pinoff = &inoff;
13191             }
13192             if (arg4) {
13193                 if (get_user_u64(outoff, arg4)) {
13194                     return -TARGET_EFAULT;
13195                 }
13196                 poutoff = &outoff;
13197             }
13198             /* Do not sign-extend the count parameter. */
13199             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13200                                                  (abi_ulong)arg5, arg6));
13201             if (!is_error(ret) && ret > 0) {
13202                 if (arg2) {
13203                     if (put_user_u64(inoff, arg2)) {
13204                         return -TARGET_EFAULT;
13205                     }
13206                 }
13207                 if (arg4) {
13208                     if (put_user_u64(outoff, arg4)) {
13209                         return -TARGET_EFAULT;
13210                     }
13211                 }
13212             }
13213         }
13214         return ret;
13215 #endif
13216 
13217     default:
13218         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13219         return -TARGET_ENOSYS;
13220     }
13221     return ret;
13222 }
13223 
13224 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
13225                     abi_long arg2, abi_long arg3, abi_long arg4,
13226                     abi_long arg5, abi_long arg6, abi_long arg7,
13227                     abi_long arg8)
13228 {
13229     CPUState *cpu = env_cpu(cpu_env);
13230     abi_long ret;
13231 
13232 #ifdef DEBUG_ERESTARTSYS
13233     /* Debug-only code for exercising the syscall-restart code paths
13234      * in the per-architecture cpu main loops: restart every syscall
13235      * the guest makes once before letting it through.
13236      */
13237     {
13238         static bool flag;
13239         flag = !flag;
13240         if (flag) {
13241             return -TARGET_ERESTARTSYS;
13242         }
13243     }
13244 #endif
13245 
13246     record_syscall_start(cpu, num, arg1,
13247                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13248 
13249     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13250         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13251     }
13252 
13253     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13254                       arg5, arg6, arg7, arg8);
13255 
13256     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13257         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13258                           arg3, arg4, arg5, arg6);
13259     }
13260 
13261     record_syscall_return(cpu, num, ret);
13262     return ret;
13263 }
13264