xref: /openbmc/qemu/linux-user/syscall.c (revision 01ef6b9e)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/ip.h>
55 #include <netinet/tcp.h>
56 #include <linux/wireless.h>
57 #include <linux/icmp.h>
58 #include <linux/icmpv6.h>
59 #include <linux/errqueue.h>
60 #include <linux/random.h>
61 #ifdef CONFIG_TIMERFD
62 #include <sys/timerfd.h>
63 #endif
64 #ifdef CONFIG_EVENTFD
65 #include <sys/eventfd.h>
66 #endif
67 #ifdef CONFIG_EPOLL
68 #include <sys/epoll.h>
69 #endif
70 #ifdef CONFIG_ATTR
71 #include "qemu/xattr.h"
72 #endif
73 #ifdef CONFIG_SENDFILE
74 #include <sys/sendfile.h>
75 #endif
76 #ifdef CONFIG_KCOV
77 #include <sys/kcov.h>
78 #endif
79 
80 #define termios host_termios
81 #define winsize host_winsize
82 #define termio host_termio
83 #define sgttyb host_sgttyb /* same as target */
84 #define tchars host_tchars /* same as target */
85 #define ltchars host_ltchars /* same as target */
86 
87 #include <linux/termios.h>
88 #include <linux/unistd.h>
89 #include <linux/cdrom.h>
90 #include <linux/hdreg.h>
91 #include <linux/soundcard.h>
92 #include <linux/kd.h>
93 #include <linux/mtio.h>
94 #include <linux/fs.h>
95 #include <linux/fd.h>
96 #if defined(CONFIG_FIEMAP)
97 #include <linux/fiemap.h>
98 #endif
99 #include <linux/fb.h>
100 #if defined(CONFIG_USBFS)
101 #include <linux/usbdevice_fs.h>
102 #include <linux/usb/ch9.h>
103 #endif
104 #include <linux/vt.h>
105 #include <linux/dm-ioctl.h>
106 #include <linux/reboot.h>
107 #include <linux/route.h>
108 #include <linux/filter.h>
109 #include <linux/blkpg.h>
110 #include <netpacket/packet.h>
111 #include <linux/netlink.h>
112 #include <linux/if_alg.h>
113 #include <linux/rtc.h>
114 #include <sound/asound.h>
115 #include "linux_loop.h"
116 #include "uname.h"
117 
118 #include "qemu.h"
119 #include "qemu/guest-random.h"
120 #include "qemu/selfmap.h"
121 #include "user/syscall-trace.h"
122 #include "qapi/error.h"
123 #include "fd-trans.h"
124 #include "tcg/tcg.h"
125 
126 #ifndef CLONE_IO
127 #define CLONE_IO                0x80000000      /* Clone io context */
128 #endif
129 
130 /* We can't directly call the host clone syscall, because this will
131  * badly confuse libc (breaking mutexes, for example). So we must
132  * divide clone flags into:
133  *  * flag combinations that look like pthread_create()
134  *  * flag combinations that look like fork()
135  *  * flags we can implement within QEMU itself
136  *  * flags we can't support and will return an error for
137  */
138 /* For thread creation, all these flags must be present; for
139  * fork, none must be present.
140  */
141 #define CLONE_THREAD_FLAGS                              \
142     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
143      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
144 
145 /* These flags are ignored:
146  * CLONE_DETACHED is now ignored by the kernel;
147  * CLONE_IO is just an optimisation hint to the I/O scheduler
148  */
149 #define CLONE_IGNORED_FLAGS                     \
150     (CLONE_DETACHED | CLONE_IO)
151 
152 /* Flags for fork which we can implement within QEMU itself */
153 #define CLONE_OPTIONAL_FORK_FLAGS               \
154     (CLONE_SETTLS | CLONE_PARENT_SETTID |       \
155      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
156 
157 /* Flags for thread creation which we can implement within QEMU itself */
158 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
159     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
160      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
161 
162 #define CLONE_INVALID_FORK_FLAGS                                        \
163     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
164 
165 #define CLONE_INVALID_THREAD_FLAGS                                      \
166     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
167        CLONE_IGNORED_FLAGS))
168 
169 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
170  * have almost all been allocated. We cannot support any of
171  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
172  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
173  * The checks against the invalid thread masks above will catch these.
174  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
175  */
176 
177 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
178  * once. This exercises the codepaths for restart.
179  */
180 //#define DEBUG_ERESTARTSYS
181 
182 //#include <linux/msdos_fs.h>
183 #define	VFAT_IOCTL_READDIR_BOTH		_IOR('r', 1, struct linux_dirent [2])
184 #define	VFAT_IOCTL_READDIR_SHORT	_IOR('r', 2, struct linux_dirent [2])
185 
186 #undef _syscall0
187 #undef _syscall1
188 #undef _syscall2
189 #undef _syscall3
190 #undef _syscall4
191 #undef _syscall5
192 #undef _syscall6
193 
194 #define _syscall0(type,name)		\
195 static type name (void)			\
196 {					\
197 	return syscall(__NR_##name);	\
198 }
199 
200 #define _syscall1(type,name,type1,arg1)		\
201 static type name (type1 arg1)			\
202 {						\
203 	return syscall(__NR_##name, arg1);	\
204 }
205 
206 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
207 static type name (type1 arg1,type2 arg2)		\
208 {							\
209 	return syscall(__NR_##name, arg1, arg2);	\
210 }
211 
212 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
213 static type name (type1 arg1,type2 arg2,type3 arg3)		\
214 {								\
215 	return syscall(__NR_##name, arg1, arg2, arg3);		\
216 }
217 
218 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
219 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
220 {										\
221 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
222 }
223 
224 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
225 		  type5,arg5)							\
226 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
227 {										\
228 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
229 }
230 
231 
232 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
233 		  type5,arg5,type6,arg6)					\
234 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
235                   type6 arg6)							\
236 {										\
237 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
238 }
239 
240 
241 #define __NR_sys_uname __NR_uname
242 #define __NR_sys_getcwd1 __NR_getcwd
243 #define __NR_sys_getdents __NR_getdents
244 #define __NR_sys_getdents64 __NR_getdents64
245 #define __NR_sys_getpriority __NR_getpriority
246 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
247 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
248 #define __NR_sys_syslog __NR_syslog
249 #if defined(__NR_futex)
250 # define __NR_sys_futex __NR_futex
251 #endif
252 #if defined(__NR_futex_time64)
253 # define __NR_sys_futex_time64 __NR_futex_time64
254 #endif
255 #define __NR_sys_inotify_init __NR_inotify_init
256 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
257 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
258 #define __NR_sys_statx __NR_statx
259 
260 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
261 #define __NR__llseek __NR_lseek
262 #endif
263 
264 /* Newer kernel ports have llseek() instead of _llseek() */
265 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
266 #define TARGET_NR__llseek TARGET_NR_llseek
267 #endif
268 
269 #define __NR_sys_gettid __NR_gettid
270 _syscall0(int, sys_gettid)
271 
272 /* For the 64-bit guest on 32-bit host case we must emulate
273  * getdents using getdents64, because otherwise the host
274  * might hand us back more dirent records than we can fit
275  * into the guest buffer after structure format conversion.
276  * Otherwise we emulate getdents with getdents if the host has it.
277  */
278 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
279 #define EMULATE_GETDENTS_WITH_GETDENTS
280 #endif
281 
282 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
283 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
284 #endif
285 #if (defined(TARGET_NR_getdents) && \
286       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
287     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
288 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
289 #endif
290 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
291 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
292           loff_t *, res, uint, wh);
293 #endif
294 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
295 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
296           siginfo_t *, uinfo)
297 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
298 #ifdef __NR_exit_group
299 _syscall1(int,exit_group,int,error_code)
300 #endif
301 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
302 _syscall1(int,set_tid_address,int *,tidptr)
303 #endif
304 #if defined(__NR_futex)
305 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
306           const struct timespec *,timeout,int *,uaddr2,int,val3)
307 #endif
308 #if defined(__NR_futex_time64)
309 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
310           const struct timespec *,timeout,int *,uaddr2,int,val3)
311 #endif
312 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
313 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
314           unsigned long *, user_mask_ptr);
315 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
316 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
317           unsigned long *, user_mask_ptr);
318 #define __NR_sys_getcpu __NR_getcpu
319 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
320 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
321           void *, arg);
322 _syscall2(int, capget, struct __user_cap_header_struct *, header,
323           struct __user_cap_data_struct *, data);
324 _syscall2(int, capset, struct __user_cap_header_struct *, header,
325           struct __user_cap_data_struct *, data);
326 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
327 _syscall2(int, ioprio_get, int, which, int, who)
328 #endif
329 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
330 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
331 #endif
332 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
333 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
334 #endif
335 
336 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
337 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
338           unsigned long, idx1, unsigned long, idx2)
339 #endif
340 
341 /*
342  * It is assumed that struct statx is architecture independent.
343  */
344 #if defined(TARGET_NR_statx) && defined(__NR_statx)
345 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
346           unsigned int, mask, struct target_statx *, statxbuf)
347 #endif
348 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
349 _syscall2(int, membarrier, int, cmd, int, flags)
350 #endif
351 
352 static bitmask_transtbl fcntl_flags_tbl[] = {
353   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
354   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
355   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
356   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
357   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
358   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
359   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
360   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
361   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
362   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
363   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
364   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
365   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
366 #if defined(O_DIRECT)
367   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
368 #endif
369 #if defined(O_NOATIME)
370   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
371 #endif
372 #if defined(O_CLOEXEC)
373   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
374 #endif
375 #if defined(O_PATH)
376   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
377 #endif
378 #if defined(O_TMPFILE)
379   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
380 #endif
381   /* Don't terminate the list prematurely on 64-bit host+guest.  */
382 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
383   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
384 #endif
385   { 0, 0, 0, 0 }
386 };
387 
388 static int sys_getcwd1(char *buf, size_t size)
389 {
390   if (getcwd(buf, size) == NULL) {
391       /* getcwd() sets errno */
392       return (-1);
393   }
394   return strlen(buf)+1;
395 }
396 
397 #ifdef TARGET_NR_utimensat
398 #if defined(__NR_utimensat)
399 #define __NR_sys_utimensat __NR_utimensat
400 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
401           const struct timespec *,tsp,int,flags)
402 #else
403 static int sys_utimensat(int dirfd, const char *pathname,
404                          const struct timespec times[2], int flags)
405 {
406     errno = ENOSYS;
407     return -1;
408 }
409 #endif
410 #endif /* TARGET_NR_utimensat */
411 
412 #ifdef TARGET_NR_renameat2
413 #if defined(__NR_renameat2)
414 #define __NR_sys_renameat2 __NR_renameat2
415 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
416           const char *, new, unsigned int, flags)
417 #else
418 static int sys_renameat2(int oldfd, const char *old,
419                          int newfd, const char *new, int flags)
420 {
421     if (flags == 0) {
422         return renameat(oldfd, old, newfd, new);
423     }
424     errno = ENOSYS;
425     return -1;
426 }
427 #endif
428 #endif /* TARGET_NR_renameat2 */
429 
430 #ifdef CONFIG_INOTIFY
431 #include <sys/inotify.h>
432 
433 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
434 static int sys_inotify_init(void)
435 {
436   return (inotify_init());
437 }
438 #endif
439 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
440 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
441 {
442   return (inotify_add_watch(fd, pathname, mask));
443 }
444 #endif
445 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
446 static int sys_inotify_rm_watch(int fd, int32_t wd)
447 {
448   return (inotify_rm_watch(fd, wd));
449 }
450 #endif
451 #ifdef CONFIG_INOTIFY1
452 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
453 static int sys_inotify_init1(int flags)
454 {
455   return (inotify_init1(flags));
456 }
457 #endif
458 #endif
459 #else
460 /* Userspace can usually survive runtime without inotify */
461 #undef TARGET_NR_inotify_init
462 #undef TARGET_NR_inotify_init1
463 #undef TARGET_NR_inotify_add_watch
464 #undef TARGET_NR_inotify_rm_watch
465 #endif /* CONFIG_INOTIFY  */
466 
467 #if defined(TARGET_NR_prlimit64)
468 #ifndef __NR_prlimit64
469 # define __NR_prlimit64 -1
470 #endif
471 #define __NR_sys_prlimit64 __NR_prlimit64
472 /* The glibc rlimit structure may not be that used by the underlying syscall */
473 struct host_rlimit64 {
474     uint64_t rlim_cur;
475     uint64_t rlim_max;
476 };
477 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
478           const struct host_rlimit64 *, new_limit,
479           struct host_rlimit64 *, old_limit)
480 #endif
481 
482 
483 #if defined(TARGET_NR_timer_create)
484 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
485 static timer_t g_posix_timers[32] = { 0, } ;
486 
487 static inline int next_free_host_timer(void)
488 {
489     int k ;
490     /* FIXME: Does finding the next free slot require a lock? */
491     for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
492         if (g_posix_timers[k] == 0) {
493             g_posix_timers[k] = (timer_t) 1;
494             return k;
495         }
496     }
497     return -1;
498 }
499 #endif
500 
501 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
502 #ifdef TARGET_ARM
503 static inline int regpairs_aligned(void *cpu_env, int num)
504 {
505     return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
506 }
507 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
508 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
509 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
510 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
511  * of registers which translates to the same as ARM/MIPS, because we start with
512  * r3 as arg1 */
513 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
514 #elif defined(TARGET_SH4)
515 /* SH4 doesn't align register pairs, except for p{read,write}64 */
516 static inline int regpairs_aligned(void *cpu_env, int num)
517 {
518     switch (num) {
519     case TARGET_NR_pread64:
520     case TARGET_NR_pwrite64:
521         return 1;
522 
523     default:
524         return 0;
525     }
526 }
527 #elif defined(TARGET_XTENSA)
528 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
529 #else
530 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
531 #endif
532 
533 #define ERRNO_TABLE_SIZE 1200
534 
535 /* target_to_host_errno_table[] is initialized from
536  * host_to_target_errno_table[] in syscall_init(). */
537 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
538 };
539 
540 /*
541  * This list is the union of errno values overridden in asm-<arch>/errno.h
542  * minus the errnos that are not actually generic to all archs.
543  */
544 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
545     [EAGAIN]		= TARGET_EAGAIN,
546     [EIDRM]		= TARGET_EIDRM,
547     [ECHRNG]		= TARGET_ECHRNG,
548     [EL2NSYNC]		= TARGET_EL2NSYNC,
549     [EL3HLT]		= TARGET_EL3HLT,
550     [EL3RST]		= TARGET_EL3RST,
551     [ELNRNG]		= TARGET_ELNRNG,
552     [EUNATCH]		= TARGET_EUNATCH,
553     [ENOCSI]		= TARGET_ENOCSI,
554     [EL2HLT]		= TARGET_EL2HLT,
555     [EDEADLK]		= TARGET_EDEADLK,
556     [ENOLCK]		= TARGET_ENOLCK,
557     [EBADE]		= TARGET_EBADE,
558     [EBADR]		= TARGET_EBADR,
559     [EXFULL]		= TARGET_EXFULL,
560     [ENOANO]		= TARGET_ENOANO,
561     [EBADRQC]		= TARGET_EBADRQC,
562     [EBADSLT]		= TARGET_EBADSLT,
563     [EBFONT]		= TARGET_EBFONT,
564     [ENOSTR]		= TARGET_ENOSTR,
565     [ENODATA]		= TARGET_ENODATA,
566     [ETIME]		= TARGET_ETIME,
567     [ENOSR]		= TARGET_ENOSR,
568     [ENONET]		= TARGET_ENONET,
569     [ENOPKG]		= TARGET_ENOPKG,
570     [EREMOTE]		= TARGET_EREMOTE,
571     [ENOLINK]		= TARGET_ENOLINK,
572     [EADV]		= TARGET_EADV,
573     [ESRMNT]		= TARGET_ESRMNT,
574     [ECOMM]		= TARGET_ECOMM,
575     [EPROTO]		= TARGET_EPROTO,
576     [EDOTDOT]		= TARGET_EDOTDOT,
577     [EMULTIHOP]		= TARGET_EMULTIHOP,
578     [EBADMSG]		= TARGET_EBADMSG,
579     [ENAMETOOLONG]	= TARGET_ENAMETOOLONG,
580     [EOVERFLOW]		= TARGET_EOVERFLOW,
581     [ENOTUNIQ]		= TARGET_ENOTUNIQ,
582     [EBADFD]		= TARGET_EBADFD,
583     [EREMCHG]		= TARGET_EREMCHG,
584     [ELIBACC]		= TARGET_ELIBACC,
585     [ELIBBAD]		= TARGET_ELIBBAD,
586     [ELIBSCN]		= TARGET_ELIBSCN,
587     [ELIBMAX]		= TARGET_ELIBMAX,
588     [ELIBEXEC]		= TARGET_ELIBEXEC,
589     [EILSEQ]		= TARGET_EILSEQ,
590     [ENOSYS]		= TARGET_ENOSYS,
591     [ELOOP]		= TARGET_ELOOP,
592     [ERESTART]		= TARGET_ERESTART,
593     [ESTRPIPE]		= TARGET_ESTRPIPE,
594     [ENOTEMPTY]		= TARGET_ENOTEMPTY,
595     [EUSERS]		= TARGET_EUSERS,
596     [ENOTSOCK]		= TARGET_ENOTSOCK,
597     [EDESTADDRREQ]	= TARGET_EDESTADDRREQ,
598     [EMSGSIZE]		= TARGET_EMSGSIZE,
599     [EPROTOTYPE]	= TARGET_EPROTOTYPE,
600     [ENOPROTOOPT]	= TARGET_ENOPROTOOPT,
601     [EPROTONOSUPPORT]	= TARGET_EPROTONOSUPPORT,
602     [ESOCKTNOSUPPORT]	= TARGET_ESOCKTNOSUPPORT,
603     [EOPNOTSUPP]	= TARGET_EOPNOTSUPP,
604     [EPFNOSUPPORT]	= TARGET_EPFNOSUPPORT,
605     [EAFNOSUPPORT]	= TARGET_EAFNOSUPPORT,
606     [EADDRINUSE]	= TARGET_EADDRINUSE,
607     [EADDRNOTAVAIL]	= TARGET_EADDRNOTAVAIL,
608     [ENETDOWN]		= TARGET_ENETDOWN,
609     [ENETUNREACH]	= TARGET_ENETUNREACH,
610     [ENETRESET]		= TARGET_ENETRESET,
611     [ECONNABORTED]	= TARGET_ECONNABORTED,
612     [ECONNRESET]	= TARGET_ECONNRESET,
613     [ENOBUFS]		= TARGET_ENOBUFS,
614     [EISCONN]		= TARGET_EISCONN,
615     [ENOTCONN]		= TARGET_ENOTCONN,
616     [EUCLEAN]		= TARGET_EUCLEAN,
617     [ENOTNAM]		= TARGET_ENOTNAM,
618     [ENAVAIL]		= TARGET_ENAVAIL,
619     [EISNAM]		= TARGET_EISNAM,
620     [EREMOTEIO]		= TARGET_EREMOTEIO,
621     [EDQUOT]            = TARGET_EDQUOT,
622     [ESHUTDOWN]		= TARGET_ESHUTDOWN,
623     [ETOOMANYREFS]	= TARGET_ETOOMANYREFS,
624     [ETIMEDOUT]		= TARGET_ETIMEDOUT,
625     [ECONNREFUSED]	= TARGET_ECONNREFUSED,
626     [EHOSTDOWN]		= TARGET_EHOSTDOWN,
627     [EHOSTUNREACH]	= TARGET_EHOSTUNREACH,
628     [EALREADY]		= TARGET_EALREADY,
629     [EINPROGRESS]	= TARGET_EINPROGRESS,
630     [ESTALE]		= TARGET_ESTALE,
631     [ECANCELED]		= TARGET_ECANCELED,
632     [ENOMEDIUM]		= TARGET_ENOMEDIUM,
633     [EMEDIUMTYPE]	= TARGET_EMEDIUMTYPE,
634 #ifdef ENOKEY
635     [ENOKEY]		= TARGET_ENOKEY,
636 #endif
637 #ifdef EKEYEXPIRED
638     [EKEYEXPIRED]	= TARGET_EKEYEXPIRED,
639 #endif
640 #ifdef EKEYREVOKED
641     [EKEYREVOKED]	= TARGET_EKEYREVOKED,
642 #endif
643 #ifdef EKEYREJECTED
644     [EKEYREJECTED]	= TARGET_EKEYREJECTED,
645 #endif
646 #ifdef EOWNERDEAD
647     [EOWNERDEAD]	= TARGET_EOWNERDEAD,
648 #endif
649 #ifdef ENOTRECOVERABLE
650     [ENOTRECOVERABLE]	= TARGET_ENOTRECOVERABLE,
651 #endif
652 #ifdef ENOMSG
653     [ENOMSG]            = TARGET_ENOMSG,
654 #endif
655 #ifdef ERKFILL
656     [ERFKILL]           = TARGET_ERFKILL,
657 #endif
658 #ifdef EHWPOISON
659     [EHWPOISON]         = TARGET_EHWPOISON,
660 #endif
661 };
662 
663 static inline int host_to_target_errno(int err)
664 {
665     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
666         host_to_target_errno_table[err]) {
667         return host_to_target_errno_table[err];
668     }
669     return err;
670 }
671 
672 static inline int target_to_host_errno(int err)
673 {
674     if (err >= 0 && err < ERRNO_TABLE_SIZE &&
675         target_to_host_errno_table[err]) {
676         return target_to_host_errno_table[err];
677     }
678     return err;
679 }
680 
681 static inline abi_long get_errno(abi_long ret)
682 {
683     if (ret == -1)
684         return -host_to_target_errno(errno);
685     else
686         return ret;
687 }
688 
689 const char *target_strerror(int err)
690 {
691     if (err == TARGET_ERESTARTSYS) {
692         return "To be restarted";
693     }
694     if (err == TARGET_QEMU_ESIGRETURN) {
695         return "Successful exit from sigreturn";
696     }
697 
698     if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
699         return NULL;
700     }
701     return strerror(target_to_host_errno(err));
702 }
703 
704 #define safe_syscall0(type, name) \
705 static type safe_##name(void) \
706 { \
707     return safe_syscall(__NR_##name); \
708 }
709 
710 #define safe_syscall1(type, name, type1, arg1) \
711 static type safe_##name(type1 arg1) \
712 { \
713     return safe_syscall(__NR_##name, arg1); \
714 }
715 
716 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
717 static type safe_##name(type1 arg1, type2 arg2) \
718 { \
719     return safe_syscall(__NR_##name, arg1, arg2); \
720 }
721 
722 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
723 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
724 { \
725     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
726 }
727 
728 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
729     type4, arg4) \
730 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
731 { \
732     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
733 }
734 
735 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
736     type4, arg4, type5, arg5) \
737 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
738     type5 arg5) \
739 { \
740     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
741 }
742 
743 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
744     type4, arg4, type5, arg5, type6, arg6) \
745 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
746     type5 arg5, type6 arg6) \
747 { \
748     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
749 }
750 
751 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
752 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
753 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
754               int, flags, mode_t, mode)
755 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
756 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
757               struct rusage *, rusage)
758 #endif
759 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
760               int, options, struct rusage *, rusage)
761 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
762 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
763     defined(TARGET_NR_pselect6)
764 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
765               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
766 #endif
767 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_poll)
768 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
769               struct timespec *, tsp, const sigset_t *, sigmask,
770               size_t, sigsetsize)
771 #endif
772 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
773               int, maxevents, int, timeout, const sigset_t *, sigmask,
774               size_t, sigsetsize)
775 #if defined(__NR_futex)
776 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
777               const struct timespec *,timeout,int *,uaddr2,int,val3)
778 #endif
779 #if defined(__NR_futex_time64)
780 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
781               const struct timespec *,timeout,int *,uaddr2,int,val3)
782 #endif
783 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
784 safe_syscall2(int, kill, pid_t, pid, int, sig)
785 safe_syscall2(int, tkill, int, tid, int, sig)
786 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
787 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
788 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
789 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
790               unsigned long, pos_l, unsigned long, pos_h)
791 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
792               unsigned long, pos_l, unsigned long, pos_h)
793 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
794               socklen_t, addrlen)
795 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
796               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
797 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
798               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
799 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
800 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
801 safe_syscall2(int, flock, int, fd, int, operation)
802 #ifdef TARGET_NR_rt_sigtimedwait
803 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
804               const struct timespec *, uts, size_t, sigsetsize)
805 #endif
806 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
807               int, flags)
808 #if defined(TARGET_NR_nanosleep)
809 safe_syscall2(int, nanosleep, const struct timespec *, req,
810               struct timespec *, rem)
811 #endif
812 #ifdef TARGET_NR_clock_nanosleep
813 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
814               const struct timespec *, req, struct timespec *, rem)
815 #endif
816 #ifdef __NR_ipc
817 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
818               void *, ptr, long, fifth)
819 #endif
820 #ifdef __NR_msgsnd
821 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
822               int, flags)
823 #endif
824 #ifdef __NR_msgrcv
825 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
826               long, msgtype, int, flags)
827 #endif
828 #ifdef __NR_semtimedop
829 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
830               unsigned, nsops, const struct timespec *, timeout)
831 #endif
832 #ifdef TARGET_NR_mq_timedsend
833 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
834               size_t, len, unsigned, prio, const struct timespec *, timeout)
835 #endif
836 #ifdef TARGET_NR_mq_timedreceive
837 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
838               size_t, len, unsigned *, prio, const struct timespec *, timeout)
839 #endif
840 /* We do ioctl like this rather than via safe_syscall3 to preserve the
841  * "third argument might be integer or pointer or not present" behaviour of
842  * the libc function.
843  */
844 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
845 /* Similarly for fcntl. Note that callers must always:
846  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
847  *  use the flock64 struct rather than unsuffixed flock
848  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
849  */
850 #ifdef __NR_fcntl64
851 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
852 #else
853 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
854 #endif
855 
856 static inline int host_to_target_sock_type(int host_type)
857 {
858     int target_type;
859 
860     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
861     case SOCK_DGRAM:
862         target_type = TARGET_SOCK_DGRAM;
863         break;
864     case SOCK_STREAM:
865         target_type = TARGET_SOCK_STREAM;
866         break;
867     default:
868         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
869         break;
870     }
871 
872 #if defined(SOCK_CLOEXEC)
873     if (host_type & SOCK_CLOEXEC) {
874         target_type |= TARGET_SOCK_CLOEXEC;
875     }
876 #endif
877 
878 #if defined(SOCK_NONBLOCK)
879     if (host_type & SOCK_NONBLOCK) {
880         target_type |= TARGET_SOCK_NONBLOCK;
881     }
882 #endif
883 
884     return target_type;
885 }
886 
887 static abi_ulong target_brk;
888 static abi_ulong target_original_brk;
889 static abi_ulong brk_page;
890 
891 void target_set_brk(abi_ulong new_brk)
892 {
893     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
894     brk_page = HOST_PAGE_ALIGN(target_brk);
895 }
896 
897 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
898 #define DEBUGF_BRK(message, args...)
899 
900 /* do_brk() must return target values and target errnos. */
901 abi_long do_brk(abi_ulong new_brk)
902 {
903     abi_long mapped_addr;
904     abi_ulong new_alloc_size;
905 
906     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
907 
908     if (!new_brk) {
909         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
910         return target_brk;
911     }
912     if (new_brk < target_original_brk) {
913         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
914                    target_brk);
915         return target_brk;
916     }
917 
918     /* If the new brk is less than the highest page reserved to the
919      * target heap allocation, set it and we're almost done...  */
920     if (new_brk <= brk_page) {
921         /* Heap contents are initialized to zero, as for anonymous
922          * mapped pages.  */
923         if (new_brk > target_brk) {
924             memset(g2h(target_brk), 0, new_brk - target_brk);
925         }
926 	target_brk = new_brk;
927         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
928 	return target_brk;
929     }
930 
931     /* We need to allocate more memory after the brk... Note that
932      * we don't use MAP_FIXED because that will map over the top of
933      * any existing mapping (like the one with the host libc or qemu
934      * itself); instead we treat "mapped but at wrong address" as
935      * a failure and unmap again.
936      */
937     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
938     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
939                                         PROT_READ|PROT_WRITE,
940                                         MAP_ANON|MAP_PRIVATE, 0, 0));
941 
942     if (mapped_addr == brk_page) {
943         /* Heap contents are initialized to zero, as for anonymous
944          * mapped pages.  Technically the new pages are already
945          * initialized to zero since they *are* anonymous mapped
946          * pages, however we have to take care with the contents that
947          * come from the remaining part of the previous page: it may
948          * contains garbage data due to a previous heap usage (grown
949          * then shrunken).  */
950         memset(g2h(target_brk), 0, brk_page - target_brk);
951 
952         target_brk = new_brk;
953         brk_page = HOST_PAGE_ALIGN(target_brk);
954         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
955             target_brk);
956         return target_brk;
957     } else if (mapped_addr != -1) {
958         /* Mapped but at wrong address, meaning there wasn't actually
959          * enough space for this brk.
960          */
961         target_munmap(mapped_addr, new_alloc_size);
962         mapped_addr = -1;
963         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
964     }
965     else {
966         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
967     }
968 
969 #if defined(TARGET_ALPHA)
970     /* We (partially) emulate OSF/1 on Alpha, which requires we
971        return a proper errno, not an unchanged brk value.  */
972     return -TARGET_ENOMEM;
973 #endif
974     /* For everything else, return the previous break. */
975     return target_brk;
976 }
977 
978 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
979     defined(TARGET_NR_pselect6)
980 static inline abi_long copy_from_user_fdset(fd_set *fds,
981                                             abi_ulong target_fds_addr,
982                                             int n)
983 {
984     int i, nw, j, k;
985     abi_ulong b, *target_fds;
986 
987     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
988     if (!(target_fds = lock_user(VERIFY_READ,
989                                  target_fds_addr,
990                                  sizeof(abi_ulong) * nw,
991                                  1)))
992         return -TARGET_EFAULT;
993 
994     FD_ZERO(fds);
995     k = 0;
996     for (i = 0; i < nw; i++) {
997         /* grab the abi_ulong */
998         __get_user(b, &target_fds[i]);
999         for (j = 0; j < TARGET_ABI_BITS; j++) {
1000             /* check the bit inside the abi_ulong */
1001             if ((b >> j) & 1)
1002                 FD_SET(k, fds);
1003             k++;
1004         }
1005     }
1006 
1007     unlock_user(target_fds, target_fds_addr, 0);
1008 
1009     return 0;
1010 }
1011 
1012 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1013                                                  abi_ulong target_fds_addr,
1014                                                  int n)
1015 {
1016     if (target_fds_addr) {
1017         if (copy_from_user_fdset(fds, target_fds_addr, n))
1018             return -TARGET_EFAULT;
1019         *fds_ptr = fds;
1020     } else {
1021         *fds_ptr = NULL;
1022     }
1023     return 0;
1024 }
1025 
1026 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1027                                           const fd_set *fds,
1028                                           int n)
1029 {
1030     int i, nw, j, k;
1031     abi_long v;
1032     abi_ulong *target_fds;
1033 
1034     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1035     if (!(target_fds = lock_user(VERIFY_WRITE,
1036                                  target_fds_addr,
1037                                  sizeof(abi_ulong) * nw,
1038                                  0)))
1039         return -TARGET_EFAULT;
1040 
1041     k = 0;
1042     for (i = 0; i < nw; i++) {
1043         v = 0;
1044         for (j = 0; j < TARGET_ABI_BITS; j++) {
1045             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1046             k++;
1047         }
1048         __put_user(v, &target_fds[i]);
1049     }
1050 
1051     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1052 
1053     return 0;
1054 }
1055 #endif
1056 
1057 #if defined(__alpha__)
1058 #define HOST_HZ 1024
1059 #else
1060 #define HOST_HZ 100
1061 #endif
1062 
1063 static inline abi_long host_to_target_clock_t(long ticks)
1064 {
1065 #if HOST_HZ == TARGET_HZ
1066     return ticks;
1067 #else
1068     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1069 #endif
1070 }
1071 
1072 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1073                                              const struct rusage *rusage)
1074 {
1075     struct target_rusage *target_rusage;
1076 
1077     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1078         return -TARGET_EFAULT;
1079     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1080     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1081     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1082     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1083     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1084     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1085     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1086     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1087     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1088     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1089     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1090     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1091     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1092     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1093     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1094     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1095     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1096     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1097     unlock_user_struct(target_rusage, target_addr, 1);
1098 
1099     return 0;
1100 }
1101 
1102 #ifdef TARGET_NR_setrlimit
1103 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1104 {
1105     abi_ulong target_rlim_swap;
1106     rlim_t result;
1107 
1108     target_rlim_swap = tswapal(target_rlim);
1109     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1110         return RLIM_INFINITY;
1111 
1112     result = target_rlim_swap;
1113     if (target_rlim_swap != (rlim_t)result)
1114         return RLIM_INFINITY;
1115 
1116     return result;
1117 }
1118 #endif
1119 
1120 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1121 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1122 {
1123     abi_ulong target_rlim_swap;
1124     abi_ulong result;
1125 
1126     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1127         target_rlim_swap = TARGET_RLIM_INFINITY;
1128     else
1129         target_rlim_swap = rlim;
1130     result = tswapal(target_rlim_swap);
1131 
1132     return result;
1133 }
1134 #endif
1135 
1136 static inline int target_to_host_resource(int code)
1137 {
1138     switch (code) {
1139     case TARGET_RLIMIT_AS:
1140         return RLIMIT_AS;
1141     case TARGET_RLIMIT_CORE:
1142         return RLIMIT_CORE;
1143     case TARGET_RLIMIT_CPU:
1144         return RLIMIT_CPU;
1145     case TARGET_RLIMIT_DATA:
1146         return RLIMIT_DATA;
1147     case TARGET_RLIMIT_FSIZE:
1148         return RLIMIT_FSIZE;
1149     case TARGET_RLIMIT_LOCKS:
1150         return RLIMIT_LOCKS;
1151     case TARGET_RLIMIT_MEMLOCK:
1152         return RLIMIT_MEMLOCK;
1153     case TARGET_RLIMIT_MSGQUEUE:
1154         return RLIMIT_MSGQUEUE;
1155     case TARGET_RLIMIT_NICE:
1156         return RLIMIT_NICE;
1157     case TARGET_RLIMIT_NOFILE:
1158         return RLIMIT_NOFILE;
1159     case TARGET_RLIMIT_NPROC:
1160         return RLIMIT_NPROC;
1161     case TARGET_RLIMIT_RSS:
1162         return RLIMIT_RSS;
1163     case TARGET_RLIMIT_RTPRIO:
1164         return RLIMIT_RTPRIO;
1165     case TARGET_RLIMIT_SIGPENDING:
1166         return RLIMIT_SIGPENDING;
1167     case TARGET_RLIMIT_STACK:
1168         return RLIMIT_STACK;
1169     default:
1170         return code;
1171     }
1172 }
1173 
1174 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1175                                               abi_ulong target_tv_addr)
1176 {
1177     struct target_timeval *target_tv;
1178 
1179     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1180         return -TARGET_EFAULT;
1181     }
1182 
1183     __get_user(tv->tv_sec, &target_tv->tv_sec);
1184     __get_user(tv->tv_usec, &target_tv->tv_usec);
1185 
1186     unlock_user_struct(target_tv, target_tv_addr, 0);
1187 
1188     return 0;
1189 }
1190 
1191 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1192                                             const struct timeval *tv)
1193 {
1194     struct target_timeval *target_tv;
1195 
1196     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1197         return -TARGET_EFAULT;
1198     }
1199 
1200     __put_user(tv->tv_sec, &target_tv->tv_sec);
1201     __put_user(tv->tv_usec, &target_tv->tv_usec);
1202 
1203     unlock_user_struct(target_tv, target_tv_addr, 1);
1204 
1205     return 0;
1206 }
1207 
1208 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1209                                              const struct timeval *tv)
1210 {
1211     struct target__kernel_sock_timeval *target_tv;
1212 
1213     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1214         return -TARGET_EFAULT;
1215     }
1216 
1217     __put_user(tv->tv_sec, &target_tv->tv_sec);
1218     __put_user(tv->tv_usec, &target_tv->tv_usec);
1219 
1220     unlock_user_struct(target_tv, target_tv_addr, 1);
1221 
1222     return 0;
1223 }
1224 
1225 #if defined(TARGET_NR_futex) || \
1226     defined(TARGET_NR_rt_sigtimedwait) || \
1227     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1228     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1229     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1230     defined(TARGET_NR_mq_timedreceive)
1231 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1232                                                abi_ulong target_addr)
1233 {
1234     struct target_timespec *target_ts;
1235 
1236     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1237         return -TARGET_EFAULT;
1238     }
1239     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1240     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1241     unlock_user_struct(target_ts, target_addr, 0);
1242     return 0;
1243 }
1244 #endif
1245 
1246 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64)
1247 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1248                                                  abi_ulong target_addr)
1249 {
1250     struct target__kernel_timespec *target_ts;
1251 
1252     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1253         return -TARGET_EFAULT;
1254     }
1255     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1256     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1257     unlock_user_struct(target_ts, target_addr, 0);
1258     return 0;
1259 }
1260 #endif
1261 
1262 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1263                                                struct timespec *host_ts)
1264 {
1265     struct target_timespec *target_ts;
1266 
1267     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1268         return -TARGET_EFAULT;
1269     }
1270     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1271     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1272     unlock_user_struct(target_ts, target_addr, 1);
1273     return 0;
1274 }
1275 
1276 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1277                                                  struct timespec *host_ts)
1278 {
1279     struct target__kernel_timespec *target_ts;
1280 
1281     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1282         return -TARGET_EFAULT;
1283     }
1284     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1285     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1286     unlock_user_struct(target_ts, target_addr, 1);
1287     return 0;
1288 }
1289 
1290 #if defined(TARGET_NR_gettimeofday)
1291 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1292                                              struct timezone *tz)
1293 {
1294     struct target_timezone *target_tz;
1295 
1296     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1297         return -TARGET_EFAULT;
1298     }
1299 
1300     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1301     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1302 
1303     unlock_user_struct(target_tz, target_tz_addr, 1);
1304 
1305     return 0;
1306 }
1307 #endif
1308 
1309 #if defined(TARGET_NR_settimeofday)
1310 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1311                                                abi_ulong target_tz_addr)
1312 {
1313     struct target_timezone *target_tz;
1314 
1315     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1316         return -TARGET_EFAULT;
1317     }
1318 
1319     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1320     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1321 
1322     unlock_user_struct(target_tz, target_tz_addr, 0);
1323 
1324     return 0;
1325 }
1326 #endif
1327 
1328 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1329 #include <mqueue.h>
1330 
1331 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1332                                               abi_ulong target_mq_attr_addr)
1333 {
1334     struct target_mq_attr *target_mq_attr;
1335 
1336     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1337                           target_mq_attr_addr, 1))
1338         return -TARGET_EFAULT;
1339 
1340     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1341     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1342     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1343     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1344 
1345     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1346 
1347     return 0;
1348 }
1349 
1350 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1351                                             const struct mq_attr *attr)
1352 {
1353     struct target_mq_attr *target_mq_attr;
1354 
1355     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1356                           target_mq_attr_addr, 0))
1357         return -TARGET_EFAULT;
1358 
1359     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1360     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1361     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1362     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1363 
1364     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1365 
1366     return 0;
1367 }
1368 #endif
1369 
1370 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1371 /* do_select() must return target values and target errnos. */
1372 static abi_long do_select(int n,
1373                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1374                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1375 {
1376     fd_set rfds, wfds, efds;
1377     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1378     struct timeval tv;
1379     struct timespec ts, *ts_ptr;
1380     abi_long ret;
1381 
1382     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1383     if (ret) {
1384         return ret;
1385     }
1386     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1387     if (ret) {
1388         return ret;
1389     }
1390     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1391     if (ret) {
1392         return ret;
1393     }
1394 
1395     if (target_tv_addr) {
1396         if (copy_from_user_timeval(&tv, target_tv_addr))
1397             return -TARGET_EFAULT;
1398         ts.tv_sec = tv.tv_sec;
1399         ts.tv_nsec = tv.tv_usec * 1000;
1400         ts_ptr = &ts;
1401     } else {
1402         ts_ptr = NULL;
1403     }
1404 
1405     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1406                                   ts_ptr, NULL));
1407 
1408     if (!is_error(ret)) {
1409         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1410             return -TARGET_EFAULT;
1411         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1412             return -TARGET_EFAULT;
1413         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1414             return -TARGET_EFAULT;
1415 
1416         if (target_tv_addr) {
1417             tv.tv_sec = ts.tv_sec;
1418             tv.tv_usec = ts.tv_nsec / 1000;
1419             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1420                 return -TARGET_EFAULT;
1421             }
1422         }
1423     }
1424 
1425     return ret;
1426 }
1427 
1428 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1429 static abi_long do_old_select(abi_ulong arg1)
1430 {
1431     struct target_sel_arg_struct *sel;
1432     abi_ulong inp, outp, exp, tvp;
1433     long nsel;
1434 
1435     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1436         return -TARGET_EFAULT;
1437     }
1438 
1439     nsel = tswapal(sel->n);
1440     inp = tswapal(sel->inp);
1441     outp = tswapal(sel->outp);
1442     exp = tswapal(sel->exp);
1443     tvp = tswapal(sel->tvp);
1444 
1445     unlock_user_struct(sel, arg1, 0);
1446 
1447     return do_select(nsel, inp, outp, exp, tvp);
1448 }
1449 #endif
1450 #endif
1451 
1452 static abi_long do_pipe2(int host_pipe[], int flags)
1453 {
1454 #ifdef CONFIG_PIPE2
1455     return pipe2(host_pipe, flags);
1456 #else
1457     return -ENOSYS;
1458 #endif
1459 }
1460 
1461 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1462                         int flags, int is_pipe2)
1463 {
1464     int host_pipe[2];
1465     abi_long ret;
1466     ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1467 
1468     if (is_error(ret))
1469         return get_errno(ret);
1470 
1471     /* Several targets have special calling conventions for the original
1472        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1473     if (!is_pipe2) {
1474 #if defined(TARGET_ALPHA)
1475         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1476         return host_pipe[0];
1477 #elif defined(TARGET_MIPS)
1478         ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1479         return host_pipe[0];
1480 #elif defined(TARGET_SH4)
1481         ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1482         return host_pipe[0];
1483 #elif defined(TARGET_SPARC)
1484         ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1485         return host_pipe[0];
1486 #endif
1487     }
1488 
1489     if (put_user_s32(host_pipe[0], pipedes)
1490         || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1491         return -TARGET_EFAULT;
1492     return get_errno(ret);
1493 }
1494 
1495 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1496                                               abi_ulong target_addr,
1497                                               socklen_t len)
1498 {
1499     struct target_ip_mreqn *target_smreqn;
1500 
1501     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1502     if (!target_smreqn)
1503         return -TARGET_EFAULT;
1504     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1505     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1506     if (len == sizeof(struct target_ip_mreqn))
1507         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1508     unlock_user(target_smreqn, target_addr, 0);
1509 
1510     return 0;
1511 }
1512 
1513 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1514                                                abi_ulong target_addr,
1515                                                socklen_t len)
1516 {
1517     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1518     sa_family_t sa_family;
1519     struct target_sockaddr *target_saddr;
1520 
1521     if (fd_trans_target_to_host_addr(fd)) {
1522         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1523     }
1524 
1525     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1526     if (!target_saddr)
1527         return -TARGET_EFAULT;
1528 
1529     sa_family = tswap16(target_saddr->sa_family);
1530 
1531     /* Oops. The caller might send a incomplete sun_path; sun_path
1532      * must be terminated by \0 (see the manual page), but
1533      * unfortunately it is quite common to specify sockaddr_un
1534      * length as "strlen(x->sun_path)" while it should be
1535      * "strlen(...) + 1". We'll fix that here if needed.
1536      * Linux kernel has a similar feature.
1537      */
1538 
1539     if (sa_family == AF_UNIX) {
1540         if (len < unix_maxlen && len > 0) {
1541             char *cp = (char*)target_saddr;
1542 
1543             if ( cp[len-1] && !cp[len] )
1544                 len++;
1545         }
1546         if (len > unix_maxlen)
1547             len = unix_maxlen;
1548     }
1549 
1550     memcpy(addr, target_saddr, len);
1551     addr->sa_family = sa_family;
1552     if (sa_family == AF_NETLINK) {
1553         struct sockaddr_nl *nladdr;
1554 
1555         nladdr = (struct sockaddr_nl *)addr;
1556         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1557         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1558     } else if (sa_family == AF_PACKET) {
1559 	struct target_sockaddr_ll *lladdr;
1560 
1561 	lladdr = (struct target_sockaddr_ll *)addr;
1562 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1563 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1564     }
1565     unlock_user(target_saddr, target_addr, 0);
1566 
1567     return 0;
1568 }
1569 
1570 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1571                                                struct sockaddr *addr,
1572                                                socklen_t len)
1573 {
1574     struct target_sockaddr *target_saddr;
1575 
1576     if (len == 0) {
1577         return 0;
1578     }
1579     assert(addr);
1580 
1581     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1582     if (!target_saddr)
1583         return -TARGET_EFAULT;
1584     memcpy(target_saddr, addr, len);
1585     if (len >= offsetof(struct target_sockaddr, sa_family) +
1586         sizeof(target_saddr->sa_family)) {
1587         target_saddr->sa_family = tswap16(addr->sa_family);
1588     }
1589     if (addr->sa_family == AF_NETLINK &&
1590         len >= sizeof(struct target_sockaddr_nl)) {
1591         struct target_sockaddr_nl *target_nl =
1592                (struct target_sockaddr_nl *)target_saddr;
1593         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1594         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1595     } else if (addr->sa_family == AF_PACKET) {
1596         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1597         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1598         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1599     } else if (addr->sa_family == AF_INET6 &&
1600                len >= sizeof(struct target_sockaddr_in6)) {
1601         struct target_sockaddr_in6 *target_in6 =
1602                (struct target_sockaddr_in6 *)target_saddr;
1603         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1604     }
1605     unlock_user(target_saddr, target_addr, len);
1606 
1607     return 0;
1608 }
1609 
1610 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1611                                            struct target_msghdr *target_msgh)
1612 {
1613     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1614     abi_long msg_controllen;
1615     abi_ulong target_cmsg_addr;
1616     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1617     socklen_t space = 0;
1618 
1619     msg_controllen = tswapal(target_msgh->msg_controllen);
1620     if (msg_controllen < sizeof (struct target_cmsghdr))
1621         goto the_end;
1622     target_cmsg_addr = tswapal(target_msgh->msg_control);
1623     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1624     target_cmsg_start = target_cmsg;
1625     if (!target_cmsg)
1626         return -TARGET_EFAULT;
1627 
1628     while (cmsg && target_cmsg) {
1629         void *data = CMSG_DATA(cmsg);
1630         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1631 
1632         int len = tswapal(target_cmsg->cmsg_len)
1633             - sizeof(struct target_cmsghdr);
1634 
1635         space += CMSG_SPACE(len);
1636         if (space > msgh->msg_controllen) {
1637             space -= CMSG_SPACE(len);
1638             /* This is a QEMU bug, since we allocated the payload
1639              * area ourselves (unlike overflow in host-to-target
1640              * conversion, which is just the guest giving us a buffer
1641              * that's too small). It can't happen for the payload types
1642              * we currently support; if it becomes an issue in future
1643              * we would need to improve our allocation strategy to
1644              * something more intelligent than "twice the size of the
1645              * target buffer we're reading from".
1646              */
1647             qemu_log_mask(LOG_UNIMP,
1648                           ("Unsupported ancillary data %d/%d: "
1649                            "unhandled msg size\n"),
1650                           tswap32(target_cmsg->cmsg_level),
1651                           tswap32(target_cmsg->cmsg_type));
1652             break;
1653         }
1654 
1655         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1656             cmsg->cmsg_level = SOL_SOCKET;
1657         } else {
1658             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1659         }
1660         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1661         cmsg->cmsg_len = CMSG_LEN(len);
1662 
1663         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1664             int *fd = (int *)data;
1665             int *target_fd = (int *)target_data;
1666             int i, numfds = len / sizeof(int);
1667 
1668             for (i = 0; i < numfds; i++) {
1669                 __get_user(fd[i], target_fd + i);
1670             }
1671         } else if (cmsg->cmsg_level == SOL_SOCKET
1672                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1673             struct ucred *cred = (struct ucred *)data;
1674             struct target_ucred *target_cred =
1675                 (struct target_ucred *)target_data;
1676 
1677             __get_user(cred->pid, &target_cred->pid);
1678             __get_user(cred->uid, &target_cred->uid);
1679             __get_user(cred->gid, &target_cred->gid);
1680         } else {
1681             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1682                           cmsg->cmsg_level, cmsg->cmsg_type);
1683             memcpy(data, target_data, len);
1684         }
1685 
1686         cmsg = CMSG_NXTHDR(msgh, cmsg);
1687         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1688                                          target_cmsg_start);
1689     }
1690     unlock_user(target_cmsg, target_cmsg_addr, 0);
1691  the_end:
1692     msgh->msg_controllen = space;
1693     return 0;
1694 }
1695 
1696 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1697                                            struct msghdr *msgh)
1698 {
1699     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1700     abi_long msg_controllen;
1701     abi_ulong target_cmsg_addr;
1702     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1703     socklen_t space = 0;
1704 
1705     msg_controllen = tswapal(target_msgh->msg_controllen);
1706     if (msg_controllen < sizeof (struct target_cmsghdr))
1707         goto the_end;
1708     target_cmsg_addr = tswapal(target_msgh->msg_control);
1709     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1710     target_cmsg_start = target_cmsg;
1711     if (!target_cmsg)
1712         return -TARGET_EFAULT;
1713 
1714     while (cmsg && target_cmsg) {
1715         void *data = CMSG_DATA(cmsg);
1716         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1717 
1718         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1719         int tgt_len, tgt_space;
1720 
1721         /* We never copy a half-header but may copy half-data;
1722          * this is Linux's behaviour in put_cmsg(). Note that
1723          * truncation here is a guest problem (which we report
1724          * to the guest via the CTRUNC bit), unlike truncation
1725          * in target_to_host_cmsg, which is a QEMU bug.
1726          */
1727         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1728             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1729             break;
1730         }
1731 
1732         if (cmsg->cmsg_level == SOL_SOCKET) {
1733             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1734         } else {
1735             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1736         }
1737         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1738 
1739         /* Payload types which need a different size of payload on
1740          * the target must adjust tgt_len here.
1741          */
1742         tgt_len = len;
1743         switch (cmsg->cmsg_level) {
1744         case SOL_SOCKET:
1745             switch (cmsg->cmsg_type) {
1746             case SO_TIMESTAMP:
1747                 tgt_len = sizeof(struct target_timeval);
1748                 break;
1749             default:
1750                 break;
1751             }
1752             break;
1753         default:
1754             break;
1755         }
1756 
1757         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1758             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1759             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1760         }
1761 
1762         /* We must now copy-and-convert len bytes of payload
1763          * into tgt_len bytes of destination space. Bear in mind
1764          * that in both source and destination we may be dealing
1765          * with a truncated value!
1766          */
1767         switch (cmsg->cmsg_level) {
1768         case SOL_SOCKET:
1769             switch (cmsg->cmsg_type) {
1770             case SCM_RIGHTS:
1771             {
1772                 int *fd = (int *)data;
1773                 int *target_fd = (int *)target_data;
1774                 int i, numfds = tgt_len / sizeof(int);
1775 
1776                 for (i = 0; i < numfds; i++) {
1777                     __put_user(fd[i], target_fd + i);
1778                 }
1779                 break;
1780             }
1781             case SO_TIMESTAMP:
1782             {
1783                 struct timeval *tv = (struct timeval *)data;
1784                 struct target_timeval *target_tv =
1785                     (struct target_timeval *)target_data;
1786 
1787                 if (len != sizeof(struct timeval) ||
1788                     tgt_len != sizeof(struct target_timeval)) {
1789                     goto unimplemented;
1790                 }
1791 
1792                 /* copy struct timeval to target */
1793                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1794                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1795                 break;
1796             }
1797             case SCM_CREDENTIALS:
1798             {
1799                 struct ucred *cred = (struct ucred *)data;
1800                 struct target_ucred *target_cred =
1801                     (struct target_ucred *)target_data;
1802 
1803                 __put_user(cred->pid, &target_cred->pid);
1804                 __put_user(cred->uid, &target_cred->uid);
1805                 __put_user(cred->gid, &target_cred->gid);
1806                 break;
1807             }
1808             default:
1809                 goto unimplemented;
1810             }
1811             break;
1812 
1813         case SOL_IP:
1814             switch (cmsg->cmsg_type) {
1815             case IP_TTL:
1816             {
1817                 uint32_t *v = (uint32_t *)data;
1818                 uint32_t *t_int = (uint32_t *)target_data;
1819 
1820                 if (len != sizeof(uint32_t) ||
1821                     tgt_len != sizeof(uint32_t)) {
1822                     goto unimplemented;
1823                 }
1824                 __put_user(*v, t_int);
1825                 break;
1826             }
1827             case IP_RECVERR:
1828             {
1829                 struct errhdr_t {
1830                    struct sock_extended_err ee;
1831                    struct sockaddr_in offender;
1832                 };
1833                 struct errhdr_t *errh = (struct errhdr_t *)data;
1834                 struct errhdr_t *target_errh =
1835                     (struct errhdr_t *)target_data;
1836 
1837                 if (len != sizeof(struct errhdr_t) ||
1838                     tgt_len != sizeof(struct errhdr_t)) {
1839                     goto unimplemented;
1840                 }
1841                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1842                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1843                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1844                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1845                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1846                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1847                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1848                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1849                     (void *) &errh->offender, sizeof(errh->offender));
1850                 break;
1851             }
1852             default:
1853                 goto unimplemented;
1854             }
1855             break;
1856 
1857         case SOL_IPV6:
1858             switch (cmsg->cmsg_type) {
1859             case IPV6_HOPLIMIT:
1860             {
1861                 uint32_t *v = (uint32_t *)data;
1862                 uint32_t *t_int = (uint32_t *)target_data;
1863 
1864                 if (len != sizeof(uint32_t) ||
1865                     tgt_len != sizeof(uint32_t)) {
1866                     goto unimplemented;
1867                 }
1868                 __put_user(*v, t_int);
1869                 break;
1870             }
1871             case IPV6_RECVERR:
1872             {
1873                 struct errhdr6_t {
1874                    struct sock_extended_err ee;
1875                    struct sockaddr_in6 offender;
1876                 };
1877                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1878                 struct errhdr6_t *target_errh =
1879                     (struct errhdr6_t *)target_data;
1880 
1881                 if (len != sizeof(struct errhdr6_t) ||
1882                     tgt_len != sizeof(struct errhdr6_t)) {
1883                     goto unimplemented;
1884                 }
1885                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1886                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1887                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1888                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1889                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1890                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1891                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1892                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1893                     (void *) &errh->offender, sizeof(errh->offender));
1894                 break;
1895             }
1896             default:
1897                 goto unimplemented;
1898             }
1899             break;
1900 
1901         default:
1902         unimplemented:
1903             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1904                           cmsg->cmsg_level, cmsg->cmsg_type);
1905             memcpy(target_data, data, MIN(len, tgt_len));
1906             if (tgt_len > len) {
1907                 memset(target_data + len, 0, tgt_len - len);
1908             }
1909         }
1910 
1911         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
1912         tgt_space = TARGET_CMSG_SPACE(tgt_len);
1913         if (msg_controllen < tgt_space) {
1914             tgt_space = msg_controllen;
1915         }
1916         msg_controllen -= tgt_space;
1917         space += tgt_space;
1918         cmsg = CMSG_NXTHDR(msgh, cmsg);
1919         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1920                                          target_cmsg_start);
1921     }
1922     unlock_user(target_cmsg, target_cmsg_addr, space);
1923  the_end:
1924     target_msgh->msg_controllen = tswapal(space);
1925     return 0;
1926 }
1927 
1928 /* do_setsockopt() Must return target values and target errnos. */
1929 static abi_long do_setsockopt(int sockfd, int level, int optname,
1930                               abi_ulong optval_addr, socklen_t optlen)
1931 {
1932     abi_long ret;
1933     int val;
1934     struct ip_mreqn *ip_mreq;
1935     struct ip_mreq_source *ip_mreq_source;
1936 
1937     switch(level) {
1938     case SOL_TCP:
1939         /* TCP options all take an 'int' value.  */
1940         if (optlen < sizeof(uint32_t))
1941             return -TARGET_EINVAL;
1942 
1943         if (get_user_u32(val, optval_addr))
1944             return -TARGET_EFAULT;
1945         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1946         break;
1947     case SOL_IP:
1948         switch(optname) {
1949         case IP_TOS:
1950         case IP_TTL:
1951         case IP_HDRINCL:
1952         case IP_ROUTER_ALERT:
1953         case IP_RECVOPTS:
1954         case IP_RETOPTS:
1955         case IP_PKTINFO:
1956         case IP_MTU_DISCOVER:
1957         case IP_RECVERR:
1958         case IP_RECVTTL:
1959         case IP_RECVTOS:
1960 #ifdef IP_FREEBIND
1961         case IP_FREEBIND:
1962 #endif
1963         case IP_MULTICAST_TTL:
1964         case IP_MULTICAST_LOOP:
1965             val = 0;
1966             if (optlen >= sizeof(uint32_t)) {
1967                 if (get_user_u32(val, optval_addr))
1968                     return -TARGET_EFAULT;
1969             } else if (optlen >= 1) {
1970                 if (get_user_u8(val, optval_addr))
1971                     return -TARGET_EFAULT;
1972             }
1973             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1974             break;
1975         case IP_ADD_MEMBERSHIP:
1976         case IP_DROP_MEMBERSHIP:
1977             if (optlen < sizeof (struct target_ip_mreq) ||
1978                 optlen > sizeof (struct target_ip_mreqn))
1979                 return -TARGET_EINVAL;
1980 
1981             ip_mreq = (struct ip_mreqn *) alloca(optlen);
1982             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
1983             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
1984             break;
1985 
1986         case IP_BLOCK_SOURCE:
1987         case IP_UNBLOCK_SOURCE:
1988         case IP_ADD_SOURCE_MEMBERSHIP:
1989         case IP_DROP_SOURCE_MEMBERSHIP:
1990             if (optlen != sizeof (struct target_ip_mreq_source))
1991                 return -TARGET_EINVAL;
1992 
1993             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
1994             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
1995             unlock_user (ip_mreq_source, optval_addr, 0);
1996             break;
1997 
1998         default:
1999             goto unimplemented;
2000         }
2001         break;
2002     case SOL_IPV6:
2003         switch (optname) {
2004         case IPV6_MTU_DISCOVER:
2005         case IPV6_MTU:
2006         case IPV6_V6ONLY:
2007         case IPV6_RECVPKTINFO:
2008         case IPV6_UNICAST_HOPS:
2009         case IPV6_MULTICAST_HOPS:
2010         case IPV6_MULTICAST_LOOP:
2011         case IPV6_RECVERR:
2012         case IPV6_RECVHOPLIMIT:
2013         case IPV6_2292HOPLIMIT:
2014         case IPV6_CHECKSUM:
2015         case IPV6_ADDRFORM:
2016         case IPV6_2292PKTINFO:
2017         case IPV6_RECVTCLASS:
2018         case IPV6_RECVRTHDR:
2019         case IPV6_2292RTHDR:
2020         case IPV6_RECVHOPOPTS:
2021         case IPV6_2292HOPOPTS:
2022         case IPV6_RECVDSTOPTS:
2023         case IPV6_2292DSTOPTS:
2024         case IPV6_TCLASS:
2025 #ifdef IPV6_RECVPATHMTU
2026         case IPV6_RECVPATHMTU:
2027 #endif
2028 #ifdef IPV6_TRANSPARENT
2029         case IPV6_TRANSPARENT:
2030 #endif
2031 #ifdef IPV6_FREEBIND
2032         case IPV6_FREEBIND:
2033 #endif
2034 #ifdef IPV6_RECVORIGDSTADDR
2035         case IPV6_RECVORIGDSTADDR:
2036 #endif
2037             val = 0;
2038             if (optlen < sizeof(uint32_t)) {
2039                 return -TARGET_EINVAL;
2040             }
2041             if (get_user_u32(val, optval_addr)) {
2042                 return -TARGET_EFAULT;
2043             }
2044             ret = get_errno(setsockopt(sockfd, level, optname,
2045                                        &val, sizeof(val)));
2046             break;
2047         case IPV6_PKTINFO:
2048         {
2049             struct in6_pktinfo pki;
2050 
2051             if (optlen < sizeof(pki)) {
2052                 return -TARGET_EINVAL;
2053             }
2054 
2055             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2056                 return -TARGET_EFAULT;
2057             }
2058 
2059             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2060 
2061             ret = get_errno(setsockopt(sockfd, level, optname,
2062                                        &pki, sizeof(pki)));
2063             break;
2064         }
2065         case IPV6_ADD_MEMBERSHIP:
2066         case IPV6_DROP_MEMBERSHIP:
2067         {
2068             struct ipv6_mreq ipv6mreq;
2069 
2070             if (optlen < sizeof(ipv6mreq)) {
2071                 return -TARGET_EINVAL;
2072             }
2073 
2074             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2075                 return -TARGET_EFAULT;
2076             }
2077 
2078             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2079 
2080             ret = get_errno(setsockopt(sockfd, level, optname,
2081                                        &ipv6mreq, sizeof(ipv6mreq)));
2082             break;
2083         }
2084         default:
2085             goto unimplemented;
2086         }
2087         break;
2088     case SOL_ICMPV6:
2089         switch (optname) {
2090         case ICMPV6_FILTER:
2091         {
2092             struct icmp6_filter icmp6f;
2093 
2094             if (optlen > sizeof(icmp6f)) {
2095                 optlen = sizeof(icmp6f);
2096             }
2097 
2098             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2099                 return -TARGET_EFAULT;
2100             }
2101 
2102             for (val = 0; val < 8; val++) {
2103                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2104             }
2105 
2106             ret = get_errno(setsockopt(sockfd, level, optname,
2107                                        &icmp6f, optlen));
2108             break;
2109         }
2110         default:
2111             goto unimplemented;
2112         }
2113         break;
2114     case SOL_RAW:
2115         switch (optname) {
2116         case ICMP_FILTER:
2117         case IPV6_CHECKSUM:
2118             /* those take an u32 value */
2119             if (optlen < sizeof(uint32_t)) {
2120                 return -TARGET_EINVAL;
2121             }
2122 
2123             if (get_user_u32(val, optval_addr)) {
2124                 return -TARGET_EFAULT;
2125             }
2126             ret = get_errno(setsockopt(sockfd, level, optname,
2127                                        &val, sizeof(val)));
2128             break;
2129 
2130         default:
2131             goto unimplemented;
2132         }
2133         break;
2134 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2135     case SOL_ALG:
2136         switch (optname) {
2137         case ALG_SET_KEY:
2138         {
2139             char *alg_key = g_malloc(optlen);
2140 
2141             if (!alg_key) {
2142                 return -TARGET_ENOMEM;
2143             }
2144             if (copy_from_user(alg_key, optval_addr, optlen)) {
2145                 g_free(alg_key);
2146                 return -TARGET_EFAULT;
2147             }
2148             ret = get_errno(setsockopt(sockfd, level, optname,
2149                                        alg_key, optlen));
2150             g_free(alg_key);
2151             break;
2152         }
2153         case ALG_SET_AEAD_AUTHSIZE:
2154         {
2155             ret = get_errno(setsockopt(sockfd, level, optname,
2156                                        NULL, optlen));
2157             break;
2158         }
2159         default:
2160             goto unimplemented;
2161         }
2162         break;
2163 #endif
2164     case TARGET_SOL_SOCKET:
2165         switch (optname) {
2166         case TARGET_SO_RCVTIMEO:
2167         {
2168                 struct timeval tv;
2169 
2170                 optname = SO_RCVTIMEO;
2171 
2172 set_timeout:
2173                 if (optlen != sizeof(struct target_timeval)) {
2174                     return -TARGET_EINVAL;
2175                 }
2176 
2177                 if (copy_from_user_timeval(&tv, optval_addr)) {
2178                     return -TARGET_EFAULT;
2179                 }
2180 
2181                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2182                                 &tv, sizeof(tv)));
2183                 return ret;
2184         }
2185         case TARGET_SO_SNDTIMEO:
2186                 optname = SO_SNDTIMEO;
2187                 goto set_timeout;
2188         case TARGET_SO_ATTACH_FILTER:
2189         {
2190                 struct target_sock_fprog *tfprog;
2191                 struct target_sock_filter *tfilter;
2192                 struct sock_fprog fprog;
2193                 struct sock_filter *filter;
2194                 int i;
2195 
2196                 if (optlen != sizeof(*tfprog)) {
2197                     return -TARGET_EINVAL;
2198                 }
2199                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2200                     return -TARGET_EFAULT;
2201                 }
2202                 if (!lock_user_struct(VERIFY_READ, tfilter,
2203                                       tswapal(tfprog->filter), 0)) {
2204                     unlock_user_struct(tfprog, optval_addr, 1);
2205                     return -TARGET_EFAULT;
2206                 }
2207 
2208                 fprog.len = tswap16(tfprog->len);
2209                 filter = g_try_new(struct sock_filter, fprog.len);
2210                 if (filter == NULL) {
2211                     unlock_user_struct(tfilter, tfprog->filter, 1);
2212                     unlock_user_struct(tfprog, optval_addr, 1);
2213                     return -TARGET_ENOMEM;
2214                 }
2215                 for (i = 0; i < fprog.len; i++) {
2216                     filter[i].code = tswap16(tfilter[i].code);
2217                     filter[i].jt = tfilter[i].jt;
2218                     filter[i].jf = tfilter[i].jf;
2219                     filter[i].k = tswap32(tfilter[i].k);
2220                 }
2221                 fprog.filter = filter;
2222 
2223                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2224                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2225                 g_free(filter);
2226 
2227                 unlock_user_struct(tfilter, tfprog->filter, 1);
2228                 unlock_user_struct(tfprog, optval_addr, 1);
2229                 return ret;
2230         }
2231 	case TARGET_SO_BINDTODEVICE:
2232 	{
2233 		char *dev_ifname, *addr_ifname;
2234 
2235 		if (optlen > IFNAMSIZ - 1) {
2236 		    optlen = IFNAMSIZ - 1;
2237 		}
2238 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2239 		if (!dev_ifname) {
2240 		    return -TARGET_EFAULT;
2241 		}
2242 		optname = SO_BINDTODEVICE;
2243 		addr_ifname = alloca(IFNAMSIZ);
2244 		memcpy(addr_ifname, dev_ifname, optlen);
2245 		addr_ifname[optlen] = 0;
2246 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2247                                            addr_ifname, optlen));
2248 		unlock_user (dev_ifname, optval_addr, 0);
2249 		return ret;
2250 	}
2251         case TARGET_SO_LINGER:
2252         {
2253                 struct linger lg;
2254                 struct target_linger *tlg;
2255 
2256                 if (optlen != sizeof(struct target_linger)) {
2257                     return -TARGET_EINVAL;
2258                 }
2259                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2260                     return -TARGET_EFAULT;
2261                 }
2262                 __get_user(lg.l_onoff, &tlg->l_onoff);
2263                 __get_user(lg.l_linger, &tlg->l_linger);
2264                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2265                                 &lg, sizeof(lg)));
2266                 unlock_user_struct(tlg, optval_addr, 0);
2267                 return ret;
2268         }
2269             /* Options with 'int' argument.  */
2270         case TARGET_SO_DEBUG:
2271 		optname = SO_DEBUG;
2272 		break;
2273         case TARGET_SO_REUSEADDR:
2274 		optname = SO_REUSEADDR;
2275 		break;
2276 #ifdef SO_REUSEPORT
2277         case TARGET_SO_REUSEPORT:
2278                 optname = SO_REUSEPORT;
2279                 break;
2280 #endif
2281         case TARGET_SO_TYPE:
2282 		optname = SO_TYPE;
2283 		break;
2284         case TARGET_SO_ERROR:
2285 		optname = SO_ERROR;
2286 		break;
2287         case TARGET_SO_DONTROUTE:
2288 		optname = SO_DONTROUTE;
2289 		break;
2290         case TARGET_SO_BROADCAST:
2291 		optname = SO_BROADCAST;
2292 		break;
2293         case TARGET_SO_SNDBUF:
2294 		optname = SO_SNDBUF;
2295 		break;
2296         case TARGET_SO_SNDBUFFORCE:
2297                 optname = SO_SNDBUFFORCE;
2298                 break;
2299         case TARGET_SO_RCVBUF:
2300 		optname = SO_RCVBUF;
2301 		break;
2302         case TARGET_SO_RCVBUFFORCE:
2303                 optname = SO_RCVBUFFORCE;
2304                 break;
2305         case TARGET_SO_KEEPALIVE:
2306 		optname = SO_KEEPALIVE;
2307 		break;
2308         case TARGET_SO_OOBINLINE:
2309 		optname = SO_OOBINLINE;
2310 		break;
2311         case TARGET_SO_NO_CHECK:
2312 		optname = SO_NO_CHECK;
2313 		break;
2314         case TARGET_SO_PRIORITY:
2315 		optname = SO_PRIORITY;
2316 		break;
2317 #ifdef SO_BSDCOMPAT
2318         case TARGET_SO_BSDCOMPAT:
2319 		optname = SO_BSDCOMPAT;
2320 		break;
2321 #endif
2322         case TARGET_SO_PASSCRED:
2323 		optname = SO_PASSCRED;
2324 		break;
2325         case TARGET_SO_PASSSEC:
2326                 optname = SO_PASSSEC;
2327                 break;
2328         case TARGET_SO_TIMESTAMP:
2329 		optname = SO_TIMESTAMP;
2330 		break;
2331         case TARGET_SO_RCVLOWAT:
2332 		optname = SO_RCVLOWAT;
2333 		break;
2334         default:
2335             goto unimplemented;
2336         }
2337 	if (optlen < sizeof(uint32_t))
2338             return -TARGET_EINVAL;
2339 
2340 	if (get_user_u32(val, optval_addr))
2341             return -TARGET_EFAULT;
2342 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2343         break;
2344 #ifdef SOL_NETLINK
2345     case SOL_NETLINK:
2346         switch (optname) {
2347         case NETLINK_PKTINFO:
2348         case NETLINK_ADD_MEMBERSHIP:
2349         case NETLINK_DROP_MEMBERSHIP:
2350         case NETLINK_BROADCAST_ERROR:
2351         case NETLINK_NO_ENOBUFS:
2352 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2353         case NETLINK_LISTEN_ALL_NSID:
2354         case NETLINK_CAP_ACK:
2355 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2356 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2357         case NETLINK_EXT_ACK:
2358 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2359 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2360         case NETLINK_GET_STRICT_CHK:
2361 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2362             break;
2363         default:
2364             goto unimplemented;
2365         }
2366         val = 0;
2367         if (optlen < sizeof(uint32_t)) {
2368             return -TARGET_EINVAL;
2369         }
2370         if (get_user_u32(val, optval_addr)) {
2371             return -TARGET_EFAULT;
2372         }
2373         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2374                                    sizeof(val)));
2375         break;
2376 #endif /* SOL_NETLINK */
2377     default:
2378     unimplemented:
2379         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2380                       level, optname);
2381         ret = -TARGET_ENOPROTOOPT;
2382     }
2383     return ret;
2384 }
2385 
2386 /* do_getsockopt() Must return target values and target errnos. */
2387 static abi_long do_getsockopt(int sockfd, int level, int optname,
2388                               abi_ulong optval_addr, abi_ulong optlen)
2389 {
2390     abi_long ret;
2391     int len, val;
2392     socklen_t lv;
2393 
2394     switch(level) {
2395     case TARGET_SOL_SOCKET:
2396         level = SOL_SOCKET;
2397         switch (optname) {
2398         /* These don't just return a single integer */
2399         case TARGET_SO_PEERNAME:
2400             goto unimplemented;
2401         case TARGET_SO_RCVTIMEO: {
2402             struct timeval tv;
2403             socklen_t tvlen;
2404 
2405             optname = SO_RCVTIMEO;
2406 
2407 get_timeout:
2408             if (get_user_u32(len, optlen)) {
2409                 return -TARGET_EFAULT;
2410             }
2411             if (len < 0) {
2412                 return -TARGET_EINVAL;
2413             }
2414 
2415             tvlen = sizeof(tv);
2416             ret = get_errno(getsockopt(sockfd, level, optname,
2417                                        &tv, &tvlen));
2418             if (ret < 0) {
2419                 return ret;
2420             }
2421             if (len > sizeof(struct target_timeval)) {
2422                 len = sizeof(struct target_timeval);
2423             }
2424             if (copy_to_user_timeval(optval_addr, &tv)) {
2425                 return -TARGET_EFAULT;
2426             }
2427             if (put_user_u32(len, optlen)) {
2428                 return -TARGET_EFAULT;
2429             }
2430             break;
2431         }
2432         case TARGET_SO_SNDTIMEO:
2433             optname = SO_SNDTIMEO;
2434             goto get_timeout;
2435         case TARGET_SO_PEERCRED: {
2436             struct ucred cr;
2437             socklen_t crlen;
2438             struct target_ucred *tcr;
2439 
2440             if (get_user_u32(len, optlen)) {
2441                 return -TARGET_EFAULT;
2442             }
2443             if (len < 0) {
2444                 return -TARGET_EINVAL;
2445             }
2446 
2447             crlen = sizeof(cr);
2448             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2449                                        &cr, &crlen));
2450             if (ret < 0) {
2451                 return ret;
2452             }
2453             if (len > crlen) {
2454                 len = crlen;
2455             }
2456             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2457                 return -TARGET_EFAULT;
2458             }
2459             __put_user(cr.pid, &tcr->pid);
2460             __put_user(cr.uid, &tcr->uid);
2461             __put_user(cr.gid, &tcr->gid);
2462             unlock_user_struct(tcr, optval_addr, 1);
2463             if (put_user_u32(len, optlen)) {
2464                 return -TARGET_EFAULT;
2465             }
2466             break;
2467         }
2468         case TARGET_SO_PEERSEC: {
2469             char *name;
2470 
2471             if (get_user_u32(len, optlen)) {
2472                 return -TARGET_EFAULT;
2473             }
2474             if (len < 0) {
2475                 return -TARGET_EINVAL;
2476             }
2477             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2478             if (!name) {
2479                 return -TARGET_EFAULT;
2480             }
2481             lv = len;
2482             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2483                                        name, &lv));
2484             if (put_user_u32(lv, optlen)) {
2485                 ret = -TARGET_EFAULT;
2486             }
2487             unlock_user(name, optval_addr, lv);
2488             break;
2489         }
2490         case TARGET_SO_LINGER:
2491         {
2492             struct linger lg;
2493             socklen_t lglen;
2494             struct target_linger *tlg;
2495 
2496             if (get_user_u32(len, optlen)) {
2497                 return -TARGET_EFAULT;
2498             }
2499             if (len < 0) {
2500                 return -TARGET_EINVAL;
2501             }
2502 
2503             lglen = sizeof(lg);
2504             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2505                                        &lg, &lglen));
2506             if (ret < 0) {
2507                 return ret;
2508             }
2509             if (len > lglen) {
2510                 len = lglen;
2511             }
2512             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2513                 return -TARGET_EFAULT;
2514             }
2515             __put_user(lg.l_onoff, &tlg->l_onoff);
2516             __put_user(lg.l_linger, &tlg->l_linger);
2517             unlock_user_struct(tlg, optval_addr, 1);
2518             if (put_user_u32(len, optlen)) {
2519                 return -TARGET_EFAULT;
2520             }
2521             break;
2522         }
2523         /* Options with 'int' argument.  */
2524         case TARGET_SO_DEBUG:
2525             optname = SO_DEBUG;
2526             goto int_case;
2527         case TARGET_SO_REUSEADDR:
2528             optname = SO_REUSEADDR;
2529             goto int_case;
2530 #ifdef SO_REUSEPORT
2531         case TARGET_SO_REUSEPORT:
2532             optname = SO_REUSEPORT;
2533             goto int_case;
2534 #endif
2535         case TARGET_SO_TYPE:
2536             optname = SO_TYPE;
2537             goto int_case;
2538         case TARGET_SO_ERROR:
2539             optname = SO_ERROR;
2540             goto int_case;
2541         case TARGET_SO_DONTROUTE:
2542             optname = SO_DONTROUTE;
2543             goto int_case;
2544         case TARGET_SO_BROADCAST:
2545             optname = SO_BROADCAST;
2546             goto int_case;
2547         case TARGET_SO_SNDBUF:
2548             optname = SO_SNDBUF;
2549             goto int_case;
2550         case TARGET_SO_RCVBUF:
2551             optname = SO_RCVBUF;
2552             goto int_case;
2553         case TARGET_SO_KEEPALIVE:
2554             optname = SO_KEEPALIVE;
2555             goto int_case;
2556         case TARGET_SO_OOBINLINE:
2557             optname = SO_OOBINLINE;
2558             goto int_case;
2559         case TARGET_SO_NO_CHECK:
2560             optname = SO_NO_CHECK;
2561             goto int_case;
2562         case TARGET_SO_PRIORITY:
2563             optname = SO_PRIORITY;
2564             goto int_case;
2565 #ifdef SO_BSDCOMPAT
2566         case TARGET_SO_BSDCOMPAT:
2567             optname = SO_BSDCOMPAT;
2568             goto int_case;
2569 #endif
2570         case TARGET_SO_PASSCRED:
2571             optname = SO_PASSCRED;
2572             goto int_case;
2573         case TARGET_SO_TIMESTAMP:
2574             optname = SO_TIMESTAMP;
2575             goto int_case;
2576         case TARGET_SO_RCVLOWAT:
2577             optname = SO_RCVLOWAT;
2578             goto int_case;
2579         case TARGET_SO_ACCEPTCONN:
2580             optname = SO_ACCEPTCONN;
2581             goto int_case;
2582         default:
2583             goto int_case;
2584         }
2585         break;
2586     case SOL_TCP:
2587         /* TCP options all take an 'int' value.  */
2588     int_case:
2589         if (get_user_u32(len, optlen))
2590             return -TARGET_EFAULT;
2591         if (len < 0)
2592             return -TARGET_EINVAL;
2593         lv = sizeof(lv);
2594         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2595         if (ret < 0)
2596             return ret;
2597         if (optname == SO_TYPE) {
2598             val = host_to_target_sock_type(val);
2599         }
2600         if (len > lv)
2601             len = lv;
2602         if (len == 4) {
2603             if (put_user_u32(val, optval_addr))
2604                 return -TARGET_EFAULT;
2605         } else {
2606             if (put_user_u8(val, optval_addr))
2607                 return -TARGET_EFAULT;
2608         }
2609         if (put_user_u32(len, optlen))
2610             return -TARGET_EFAULT;
2611         break;
2612     case SOL_IP:
2613         switch(optname) {
2614         case IP_TOS:
2615         case IP_TTL:
2616         case IP_HDRINCL:
2617         case IP_ROUTER_ALERT:
2618         case IP_RECVOPTS:
2619         case IP_RETOPTS:
2620         case IP_PKTINFO:
2621         case IP_MTU_DISCOVER:
2622         case IP_RECVERR:
2623         case IP_RECVTOS:
2624 #ifdef IP_FREEBIND
2625         case IP_FREEBIND:
2626 #endif
2627         case IP_MULTICAST_TTL:
2628         case IP_MULTICAST_LOOP:
2629             if (get_user_u32(len, optlen))
2630                 return -TARGET_EFAULT;
2631             if (len < 0)
2632                 return -TARGET_EINVAL;
2633             lv = sizeof(lv);
2634             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2635             if (ret < 0)
2636                 return ret;
2637             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2638                 len = 1;
2639                 if (put_user_u32(len, optlen)
2640                     || put_user_u8(val, optval_addr))
2641                     return -TARGET_EFAULT;
2642             } else {
2643                 if (len > sizeof(int))
2644                     len = sizeof(int);
2645                 if (put_user_u32(len, optlen)
2646                     || put_user_u32(val, optval_addr))
2647                     return -TARGET_EFAULT;
2648             }
2649             break;
2650         default:
2651             ret = -TARGET_ENOPROTOOPT;
2652             break;
2653         }
2654         break;
2655     case SOL_IPV6:
2656         switch (optname) {
2657         case IPV6_MTU_DISCOVER:
2658         case IPV6_MTU:
2659         case IPV6_V6ONLY:
2660         case IPV6_RECVPKTINFO:
2661         case IPV6_UNICAST_HOPS:
2662         case IPV6_MULTICAST_HOPS:
2663         case IPV6_MULTICAST_LOOP:
2664         case IPV6_RECVERR:
2665         case IPV6_RECVHOPLIMIT:
2666         case IPV6_2292HOPLIMIT:
2667         case IPV6_CHECKSUM:
2668         case IPV6_ADDRFORM:
2669         case IPV6_2292PKTINFO:
2670         case IPV6_RECVTCLASS:
2671         case IPV6_RECVRTHDR:
2672         case IPV6_2292RTHDR:
2673         case IPV6_RECVHOPOPTS:
2674         case IPV6_2292HOPOPTS:
2675         case IPV6_RECVDSTOPTS:
2676         case IPV6_2292DSTOPTS:
2677         case IPV6_TCLASS:
2678 #ifdef IPV6_RECVPATHMTU
2679         case IPV6_RECVPATHMTU:
2680 #endif
2681 #ifdef IPV6_TRANSPARENT
2682         case IPV6_TRANSPARENT:
2683 #endif
2684 #ifdef IPV6_FREEBIND
2685         case IPV6_FREEBIND:
2686 #endif
2687 #ifdef IPV6_RECVORIGDSTADDR
2688         case IPV6_RECVORIGDSTADDR:
2689 #endif
2690             if (get_user_u32(len, optlen))
2691                 return -TARGET_EFAULT;
2692             if (len < 0)
2693                 return -TARGET_EINVAL;
2694             lv = sizeof(lv);
2695             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2696             if (ret < 0)
2697                 return ret;
2698             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2699                 len = 1;
2700                 if (put_user_u32(len, optlen)
2701                     || put_user_u8(val, optval_addr))
2702                     return -TARGET_EFAULT;
2703             } else {
2704                 if (len > sizeof(int))
2705                     len = sizeof(int);
2706                 if (put_user_u32(len, optlen)
2707                     || put_user_u32(val, optval_addr))
2708                     return -TARGET_EFAULT;
2709             }
2710             break;
2711         default:
2712             ret = -TARGET_ENOPROTOOPT;
2713             break;
2714         }
2715         break;
2716 #ifdef SOL_NETLINK
2717     case SOL_NETLINK:
2718         switch (optname) {
2719         case NETLINK_PKTINFO:
2720         case NETLINK_BROADCAST_ERROR:
2721         case NETLINK_NO_ENOBUFS:
2722 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2723         case NETLINK_LISTEN_ALL_NSID:
2724         case NETLINK_CAP_ACK:
2725 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2726 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2727         case NETLINK_EXT_ACK:
2728 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2729 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2730         case NETLINK_GET_STRICT_CHK:
2731 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2732             if (get_user_u32(len, optlen)) {
2733                 return -TARGET_EFAULT;
2734             }
2735             if (len != sizeof(val)) {
2736                 return -TARGET_EINVAL;
2737             }
2738             lv = len;
2739             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2740             if (ret < 0) {
2741                 return ret;
2742             }
2743             if (put_user_u32(lv, optlen)
2744                 || put_user_u32(val, optval_addr)) {
2745                 return -TARGET_EFAULT;
2746             }
2747             break;
2748 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2749         case NETLINK_LIST_MEMBERSHIPS:
2750         {
2751             uint32_t *results;
2752             int i;
2753             if (get_user_u32(len, optlen)) {
2754                 return -TARGET_EFAULT;
2755             }
2756             if (len < 0) {
2757                 return -TARGET_EINVAL;
2758             }
2759             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2760             if (!results) {
2761                 return -TARGET_EFAULT;
2762             }
2763             lv = len;
2764             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2765             if (ret < 0) {
2766                 unlock_user(results, optval_addr, 0);
2767                 return ret;
2768             }
2769             /* swap host endianess to target endianess. */
2770             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2771                 results[i] = tswap32(results[i]);
2772             }
2773             if (put_user_u32(lv, optlen)) {
2774                 return -TARGET_EFAULT;
2775             }
2776             unlock_user(results, optval_addr, 0);
2777             break;
2778         }
2779 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2780         default:
2781             goto unimplemented;
2782         }
2783         break;
2784 #endif /* SOL_NETLINK */
2785     default:
2786     unimplemented:
2787         qemu_log_mask(LOG_UNIMP,
2788                       "getsockopt level=%d optname=%d not yet supported\n",
2789                       level, optname);
2790         ret = -TARGET_EOPNOTSUPP;
2791         break;
2792     }
2793     return ret;
2794 }
2795 
2796 /* Convert target low/high pair representing file offset into the host
2797  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2798  * as the kernel doesn't handle them either.
2799  */
2800 static void target_to_host_low_high(abi_ulong tlow,
2801                                     abi_ulong thigh,
2802                                     unsigned long *hlow,
2803                                     unsigned long *hhigh)
2804 {
2805     uint64_t off = tlow |
2806         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2807         TARGET_LONG_BITS / 2;
2808 
2809     *hlow = off;
2810     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2811 }
2812 
2813 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2814                                 abi_ulong count, int copy)
2815 {
2816     struct target_iovec *target_vec;
2817     struct iovec *vec;
2818     abi_ulong total_len, max_len;
2819     int i;
2820     int err = 0;
2821     bool bad_address = false;
2822 
2823     if (count == 0) {
2824         errno = 0;
2825         return NULL;
2826     }
2827     if (count > IOV_MAX) {
2828         errno = EINVAL;
2829         return NULL;
2830     }
2831 
2832     vec = g_try_new0(struct iovec, count);
2833     if (vec == NULL) {
2834         errno = ENOMEM;
2835         return NULL;
2836     }
2837 
2838     target_vec = lock_user(VERIFY_READ, target_addr,
2839                            count * sizeof(struct target_iovec), 1);
2840     if (target_vec == NULL) {
2841         err = EFAULT;
2842         goto fail2;
2843     }
2844 
2845     /* ??? If host page size > target page size, this will result in a
2846        value larger than what we can actually support.  */
2847     max_len = 0x7fffffff & TARGET_PAGE_MASK;
2848     total_len = 0;
2849 
2850     for (i = 0; i < count; i++) {
2851         abi_ulong base = tswapal(target_vec[i].iov_base);
2852         abi_long len = tswapal(target_vec[i].iov_len);
2853 
2854         if (len < 0) {
2855             err = EINVAL;
2856             goto fail;
2857         } else if (len == 0) {
2858             /* Zero length pointer is ignored.  */
2859             vec[i].iov_base = 0;
2860         } else {
2861             vec[i].iov_base = lock_user(type, base, len, copy);
2862             /* If the first buffer pointer is bad, this is a fault.  But
2863              * subsequent bad buffers will result in a partial write; this
2864              * is realized by filling the vector with null pointers and
2865              * zero lengths. */
2866             if (!vec[i].iov_base) {
2867                 if (i == 0) {
2868                     err = EFAULT;
2869                     goto fail;
2870                 } else {
2871                     bad_address = true;
2872                 }
2873             }
2874             if (bad_address) {
2875                 len = 0;
2876             }
2877             if (len > max_len - total_len) {
2878                 len = max_len - total_len;
2879             }
2880         }
2881         vec[i].iov_len = len;
2882         total_len += len;
2883     }
2884 
2885     unlock_user(target_vec, target_addr, 0);
2886     return vec;
2887 
2888  fail:
2889     while (--i >= 0) {
2890         if (tswapal(target_vec[i].iov_len) > 0) {
2891             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
2892         }
2893     }
2894     unlock_user(target_vec, target_addr, 0);
2895  fail2:
2896     g_free(vec);
2897     errno = err;
2898     return NULL;
2899 }
2900 
2901 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
2902                          abi_ulong count, int copy)
2903 {
2904     struct target_iovec *target_vec;
2905     int i;
2906 
2907     target_vec = lock_user(VERIFY_READ, target_addr,
2908                            count * sizeof(struct target_iovec), 1);
2909     if (target_vec) {
2910         for (i = 0; i < count; i++) {
2911             abi_ulong base = tswapal(target_vec[i].iov_base);
2912             abi_long len = tswapal(target_vec[i].iov_len);
2913             if (len < 0) {
2914                 break;
2915             }
2916             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
2917         }
2918         unlock_user(target_vec, target_addr, 0);
2919     }
2920 
2921     g_free(vec);
2922 }
2923 
2924 static inline int target_to_host_sock_type(int *type)
2925 {
2926     int host_type = 0;
2927     int target_type = *type;
2928 
2929     switch (target_type & TARGET_SOCK_TYPE_MASK) {
2930     case TARGET_SOCK_DGRAM:
2931         host_type = SOCK_DGRAM;
2932         break;
2933     case TARGET_SOCK_STREAM:
2934         host_type = SOCK_STREAM;
2935         break;
2936     default:
2937         host_type = target_type & TARGET_SOCK_TYPE_MASK;
2938         break;
2939     }
2940     if (target_type & TARGET_SOCK_CLOEXEC) {
2941 #if defined(SOCK_CLOEXEC)
2942         host_type |= SOCK_CLOEXEC;
2943 #else
2944         return -TARGET_EINVAL;
2945 #endif
2946     }
2947     if (target_type & TARGET_SOCK_NONBLOCK) {
2948 #if defined(SOCK_NONBLOCK)
2949         host_type |= SOCK_NONBLOCK;
2950 #elif !defined(O_NONBLOCK)
2951         return -TARGET_EINVAL;
2952 #endif
2953     }
2954     *type = host_type;
2955     return 0;
2956 }
2957 
2958 /* Try to emulate socket type flags after socket creation.  */
2959 static int sock_flags_fixup(int fd, int target_type)
2960 {
2961 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
2962     if (target_type & TARGET_SOCK_NONBLOCK) {
2963         int flags = fcntl(fd, F_GETFL);
2964         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
2965             close(fd);
2966             return -TARGET_EINVAL;
2967         }
2968     }
2969 #endif
2970     return fd;
2971 }
2972 
2973 /* do_socket() Must return target values and target errnos. */
2974 static abi_long do_socket(int domain, int type, int protocol)
2975 {
2976     int target_type = type;
2977     int ret;
2978 
2979     ret = target_to_host_sock_type(&type);
2980     if (ret) {
2981         return ret;
2982     }
2983 
2984     if (domain == PF_NETLINK && !(
2985 #ifdef CONFIG_RTNETLINK
2986          protocol == NETLINK_ROUTE ||
2987 #endif
2988          protocol == NETLINK_KOBJECT_UEVENT ||
2989          protocol == NETLINK_AUDIT)) {
2990         return -EPFNOSUPPORT;
2991     }
2992 
2993     if (domain == AF_PACKET ||
2994         (domain == AF_INET && type == SOCK_PACKET)) {
2995         protocol = tswap16(protocol);
2996     }
2997 
2998     ret = get_errno(socket(domain, type, protocol));
2999     if (ret >= 0) {
3000         ret = sock_flags_fixup(ret, target_type);
3001         if (type == SOCK_PACKET) {
3002             /* Manage an obsolete case :
3003              * if socket type is SOCK_PACKET, bind by name
3004              */
3005             fd_trans_register(ret, &target_packet_trans);
3006         } else if (domain == PF_NETLINK) {
3007             switch (protocol) {
3008 #ifdef CONFIG_RTNETLINK
3009             case NETLINK_ROUTE:
3010                 fd_trans_register(ret, &target_netlink_route_trans);
3011                 break;
3012 #endif
3013             case NETLINK_KOBJECT_UEVENT:
3014                 /* nothing to do: messages are strings */
3015                 break;
3016             case NETLINK_AUDIT:
3017                 fd_trans_register(ret, &target_netlink_audit_trans);
3018                 break;
3019             default:
3020                 g_assert_not_reached();
3021             }
3022         }
3023     }
3024     return ret;
3025 }
3026 
3027 /* do_bind() Must return target values and target errnos. */
3028 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3029                         socklen_t addrlen)
3030 {
3031     void *addr;
3032     abi_long ret;
3033 
3034     if ((int)addrlen < 0) {
3035         return -TARGET_EINVAL;
3036     }
3037 
3038     addr = alloca(addrlen+1);
3039 
3040     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3041     if (ret)
3042         return ret;
3043 
3044     return get_errno(bind(sockfd, addr, addrlen));
3045 }
3046 
3047 /* do_connect() Must return target values and target errnos. */
3048 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3049                            socklen_t addrlen)
3050 {
3051     void *addr;
3052     abi_long ret;
3053 
3054     if ((int)addrlen < 0) {
3055         return -TARGET_EINVAL;
3056     }
3057 
3058     addr = alloca(addrlen+1);
3059 
3060     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3061     if (ret)
3062         return ret;
3063 
3064     return get_errno(safe_connect(sockfd, addr, addrlen));
3065 }
3066 
3067 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3068 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3069                                       int flags, int send)
3070 {
3071     abi_long ret, len;
3072     struct msghdr msg;
3073     abi_ulong count;
3074     struct iovec *vec;
3075     abi_ulong target_vec;
3076 
3077     if (msgp->msg_name) {
3078         msg.msg_namelen = tswap32(msgp->msg_namelen);
3079         msg.msg_name = alloca(msg.msg_namelen+1);
3080         ret = target_to_host_sockaddr(fd, msg.msg_name,
3081                                       tswapal(msgp->msg_name),
3082                                       msg.msg_namelen);
3083         if (ret == -TARGET_EFAULT) {
3084             /* For connected sockets msg_name and msg_namelen must
3085              * be ignored, so returning EFAULT immediately is wrong.
3086              * Instead, pass a bad msg_name to the host kernel, and
3087              * let it decide whether to return EFAULT or not.
3088              */
3089             msg.msg_name = (void *)-1;
3090         } else if (ret) {
3091             goto out2;
3092         }
3093     } else {
3094         msg.msg_name = NULL;
3095         msg.msg_namelen = 0;
3096     }
3097     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3098     msg.msg_control = alloca(msg.msg_controllen);
3099     memset(msg.msg_control, 0, msg.msg_controllen);
3100 
3101     msg.msg_flags = tswap32(msgp->msg_flags);
3102 
3103     count = tswapal(msgp->msg_iovlen);
3104     target_vec = tswapal(msgp->msg_iov);
3105 
3106     if (count > IOV_MAX) {
3107         /* sendrcvmsg returns a different errno for this condition than
3108          * readv/writev, so we must catch it here before lock_iovec() does.
3109          */
3110         ret = -TARGET_EMSGSIZE;
3111         goto out2;
3112     }
3113 
3114     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3115                      target_vec, count, send);
3116     if (vec == NULL) {
3117         ret = -host_to_target_errno(errno);
3118         goto out2;
3119     }
3120     msg.msg_iovlen = count;
3121     msg.msg_iov = vec;
3122 
3123     if (send) {
3124         if (fd_trans_target_to_host_data(fd)) {
3125             void *host_msg;
3126 
3127             host_msg = g_malloc(msg.msg_iov->iov_len);
3128             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3129             ret = fd_trans_target_to_host_data(fd)(host_msg,
3130                                                    msg.msg_iov->iov_len);
3131             if (ret >= 0) {
3132                 msg.msg_iov->iov_base = host_msg;
3133                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3134             }
3135             g_free(host_msg);
3136         } else {
3137             ret = target_to_host_cmsg(&msg, msgp);
3138             if (ret == 0) {
3139                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3140             }
3141         }
3142     } else {
3143         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3144         if (!is_error(ret)) {
3145             len = ret;
3146             if (fd_trans_host_to_target_data(fd)) {
3147                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3148                                                MIN(msg.msg_iov->iov_len, len));
3149             } else {
3150                 ret = host_to_target_cmsg(msgp, &msg);
3151             }
3152             if (!is_error(ret)) {
3153                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3154                 msgp->msg_flags = tswap32(msg.msg_flags);
3155                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3156                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3157                                     msg.msg_name, msg.msg_namelen);
3158                     if (ret) {
3159                         goto out;
3160                     }
3161                 }
3162 
3163                 ret = len;
3164             }
3165         }
3166     }
3167 
3168 out:
3169     unlock_iovec(vec, target_vec, count, !send);
3170 out2:
3171     return ret;
3172 }
3173 
3174 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3175                                int flags, int send)
3176 {
3177     abi_long ret;
3178     struct target_msghdr *msgp;
3179 
3180     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3181                           msgp,
3182                           target_msg,
3183                           send ? 1 : 0)) {
3184         return -TARGET_EFAULT;
3185     }
3186     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3187     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3188     return ret;
3189 }
3190 
3191 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3192  * so it might not have this *mmsg-specific flag either.
3193  */
3194 #ifndef MSG_WAITFORONE
3195 #define MSG_WAITFORONE 0x10000
3196 #endif
3197 
3198 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3199                                 unsigned int vlen, unsigned int flags,
3200                                 int send)
3201 {
3202     struct target_mmsghdr *mmsgp;
3203     abi_long ret = 0;
3204     int i;
3205 
3206     if (vlen > UIO_MAXIOV) {
3207         vlen = UIO_MAXIOV;
3208     }
3209 
3210     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3211     if (!mmsgp) {
3212         return -TARGET_EFAULT;
3213     }
3214 
3215     for (i = 0; i < vlen; i++) {
3216         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3217         if (is_error(ret)) {
3218             break;
3219         }
3220         mmsgp[i].msg_len = tswap32(ret);
3221         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3222         if (flags & MSG_WAITFORONE) {
3223             flags |= MSG_DONTWAIT;
3224         }
3225     }
3226 
3227     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3228 
3229     /* Return number of datagrams sent if we sent any at all;
3230      * otherwise return the error.
3231      */
3232     if (i) {
3233         return i;
3234     }
3235     return ret;
3236 }
3237 
3238 /* do_accept4() Must return target values and target errnos. */
3239 static abi_long do_accept4(int fd, abi_ulong target_addr,
3240                            abi_ulong target_addrlen_addr, int flags)
3241 {
3242     socklen_t addrlen, ret_addrlen;
3243     void *addr;
3244     abi_long ret;
3245     int host_flags;
3246 
3247     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3248 
3249     if (target_addr == 0) {
3250         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3251     }
3252 
3253     /* linux returns EINVAL if addrlen pointer is invalid */
3254     if (get_user_u32(addrlen, target_addrlen_addr))
3255         return -TARGET_EINVAL;
3256 
3257     if ((int)addrlen < 0) {
3258         return -TARGET_EINVAL;
3259     }
3260 
3261     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3262         return -TARGET_EINVAL;
3263 
3264     addr = alloca(addrlen);
3265 
3266     ret_addrlen = addrlen;
3267     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3268     if (!is_error(ret)) {
3269         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3270         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3271             ret = -TARGET_EFAULT;
3272         }
3273     }
3274     return ret;
3275 }
3276 
3277 /* do_getpeername() Must return target values and target errnos. */
3278 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3279                                abi_ulong target_addrlen_addr)
3280 {
3281     socklen_t addrlen, ret_addrlen;
3282     void *addr;
3283     abi_long ret;
3284 
3285     if (get_user_u32(addrlen, target_addrlen_addr))
3286         return -TARGET_EFAULT;
3287 
3288     if ((int)addrlen < 0) {
3289         return -TARGET_EINVAL;
3290     }
3291 
3292     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3293         return -TARGET_EFAULT;
3294 
3295     addr = alloca(addrlen);
3296 
3297     ret_addrlen = addrlen;
3298     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3299     if (!is_error(ret)) {
3300         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3301         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3302             ret = -TARGET_EFAULT;
3303         }
3304     }
3305     return ret;
3306 }
3307 
3308 /* do_getsockname() Must return target values and target errnos. */
3309 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3310                                abi_ulong target_addrlen_addr)
3311 {
3312     socklen_t addrlen, ret_addrlen;
3313     void *addr;
3314     abi_long ret;
3315 
3316     if (get_user_u32(addrlen, target_addrlen_addr))
3317         return -TARGET_EFAULT;
3318 
3319     if ((int)addrlen < 0) {
3320         return -TARGET_EINVAL;
3321     }
3322 
3323     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3324         return -TARGET_EFAULT;
3325 
3326     addr = alloca(addrlen);
3327 
3328     ret_addrlen = addrlen;
3329     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3330     if (!is_error(ret)) {
3331         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3332         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3333             ret = -TARGET_EFAULT;
3334         }
3335     }
3336     return ret;
3337 }
3338 
3339 /* do_socketpair() Must return target values and target errnos. */
3340 static abi_long do_socketpair(int domain, int type, int protocol,
3341                               abi_ulong target_tab_addr)
3342 {
3343     int tab[2];
3344     abi_long ret;
3345 
3346     target_to_host_sock_type(&type);
3347 
3348     ret = get_errno(socketpair(domain, type, protocol, tab));
3349     if (!is_error(ret)) {
3350         if (put_user_s32(tab[0], target_tab_addr)
3351             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3352             ret = -TARGET_EFAULT;
3353     }
3354     return ret;
3355 }
3356 
3357 /* do_sendto() Must return target values and target errnos. */
3358 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3359                           abi_ulong target_addr, socklen_t addrlen)
3360 {
3361     void *addr;
3362     void *host_msg;
3363     void *copy_msg = NULL;
3364     abi_long ret;
3365 
3366     if ((int)addrlen < 0) {
3367         return -TARGET_EINVAL;
3368     }
3369 
3370     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3371     if (!host_msg)
3372         return -TARGET_EFAULT;
3373     if (fd_trans_target_to_host_data(fd)) {
3374         copy_msg = host_msg;
3375         host_msg = g_malloc(len);
3376         memcpy(host_msg, copy_msg, len);
3377         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3378         if (ret < 0) {
3379             goto fail;
3380         }
3381     }
3382     if (target_addr) {
3383         addr = alloca(addrlen+1);
3384         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3385         if (ret) {
3386             goto fail;
3387         }
3388         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3389     } else {
3390         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3391     }
3392 fail:
3393     if (copy_msg) {
3394         g_free(host_msg);
3395         host_msg = copy_msg;
3396     }
3397     unlock_user(host_msg, msg, 0);
3398     return ret;
3399 }
3400 
3401 /* do_recvfrom() Must return target values and target errnos. */
3402 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3403                             abi_ulong target_addr,
3404                             abi_ulong target_addrlen)
3405 {
3406     socklen_t addrlen, ret_addrlen;
3407     void *addr;
3408     void *host_msg;
3409     abi_long ret;
3410 
3411     host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3412     if (!host_msg)
3413         return -TARGET_EFAULT;
3414     if (target_addr) {
3415         if (get_user_u32(addrlen, target_addrlen)) {
3416             ret = -TARGET_EFAULT;
3417             goto fail;
3418         }
3419         if ((int)addrlen < 0) {
3420             ret = -TARGET_EINVAL;
3421             goto fail;
3422         }
3423         addr = alloca(addrlen);
3424         ret_addrlen = addrlen;
3425         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3426                                       addr, &ret_addrlen));
3427     } else {
3428         addr = NULL; /* To keep compiler quiet.  */
3429         addrlen = 0; /* To keep compiler quiet.  */
3430         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3431     }
3432     if (!is_error(ret)) {
3433         if (fd_trans_host_to_target_data(fd)) {
3434             abi_long trans;
3435             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3436             if (is_error(trans)) {
3437                 ret = trans;
3438                 goto fail;
3439             }
3440         }
3441         if (target_addr) {
3442             host_to_target_sockaddr(target_addr, addr,
3443                                     MIN(addrlen, ret_addrlen));
3444             if (put_user_u32(ret_addrlen, target_addrlen)) {
3445                 ret = -TARGET_EFAULT;
3446                 goto fail;
3447             }
3448         }
3449         unlock_user(host_msg, msg, len);
3450     } else {
3451 fail:
3452         unlock_user(host_msg, msg, 0);
3453     }
3454     return ret;
3455 }
3456 
3457 #ifdef TARGET_NR_socketcall
3458 /* do_socketcall() must return target values and target errnos. */
3459 static abi_long do_socketcall(int num, abi_ulong vptr)
3460 {
3461     static const unsigned nargs[] = { /* number of arguments per operation */
3462         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3463         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3464         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3465         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3466         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3467         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3468         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3469         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3470         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3471         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3472         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3473         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3474         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3475         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3476         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3477         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3478         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3479         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3480         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3481         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3482     };
3483     abi_long a[6]; /* max 6 args */
3484     unsigned i;
3485 
3486     /* check the range of the first argument num */
3487     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3488     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3489         return -TARGET_EINVAL;
3490     }
3491     /* ensure we have space for args */
3492     if (nargs[num] > ARRAY_SIZE(a)) {
3493         return -TARGET_EINVAL;
3494     }
3495     /* collect the arguments in a[] according to nargs[] */
3496     for (i = 0; i < nargs[num]; ++i) {
3497         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3498             return -TARGET_EFAULT;
3499         }
3500     }
3501     /* now when we have the args, invoke the appropriate underlying function */
3502     switch (num) {
3503     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3504         return do_socket(a[0], a[1], a[2]);
3505     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3506         return do_bind(a[0], a[1], a[2]);
3507     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3508         return do_connect(a[0], a[1], a[2]);
3509     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3510         return get_errno(listen(a[0], a[1]));
3511     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3512         return do_accept4(a[0], a[1], a[2], 0);
3513     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3514         return do_getsockname(a[0], a[1], a[2]);
3515     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3516         return do_getpeername(a[0], a[1], a[2]);
3517     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3518         return do_socketpair(a[0], a[1], a[2], a[3]);
3519     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3520         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3521     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3522         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3523     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3524         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3525     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3526         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3527     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3528         return get_errno(shutdown(a[0], a[1]));
3529     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3530         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3531     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3532         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3533     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3534         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3535     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3536         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3537     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3538         return do_accept4(a[0], a[1], a[2], a[3]);
3539     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3540         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3541     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3542         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3543     default:
3544         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3545         return -TARGET_EINVAL;
3546     }
3547 }
3548 #endif
3549 
3550 #define N_SHM_REGIONS	32
3551 
3552 static struct shm_region {
3553     abi_ulong start;
3554     abi_ulong size;
3555     bool in_use;
3556 } shm_regions[N_SHM_REGIONS];
3557 
3558 #ifndef TARGET_SEMID64_DS
3559 /* asm-generic version of this struct */
3560 struct target_semid64_ds
3561 {
3562   struct target_ipc_perm sem_perm;
3563   abi_ulong sem_otime;
3564 #if TARGET_ABI_BITS == 32
3565   abi_ulong __unused1;
3566 #endif
3567   abi_ulong sem_ctime;
3568 #if TARGET_ABI_BITS == 32
3569   abi_ulong __unused2;
3570 #endif
3571   abi_ulong sem_nsems;
3572   abi_ulong __unused3;
3573   abi_ulong __unused4;
3574 };
3575 #endif
3576 
3577 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3578                                                abi_ulong target_addr)
3579 {
3580     struct target_ipc_perm *target_ip;
3581     struct target_semid64_ds *target_sd;
3582 
3583     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3584         return -TARGET_EFAULT;
3585     target_ip = &(target_sd->sem_perm);
3586     host_ip->__key = tswap32(target_ip->__key);
3587     host_ip->uid = tswap32(target_ip->uid);
3588     host_ip->gid = tswap32(target_ip->gid);
3589     host_ip->cuid = tswap32(target_ip->cuid);
3590     host_ip->cgid = tswap32(target_ip->cgid);
3591 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3592     host_ip->mode = tswap32(target_ip->mode);
3593 #else
3594     host_ip->mode = tswap16(target_ip->mode);
3595 #endif
3596 #if defined(TARGET_PPC)
3597     host_ip->__seq = tswap32(target_ip->__seq);
3598 #else
3599     host_ip->__seq = tswap16(target_ip->__seq);
3600 #endif
3601     unlock_user_struct(target_sd, target_addr, 0);
3602     return 0;
3603 }
3604 
3605 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3606                                                struct ipc_perm *host_ip)
3607 {
3608     struct target_ipc_perm *target_ip;
3609     struct target_semid64_ds *target_sd;
3610 
3611     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3612         return -TARGET_EFAULT;
3613     target_ip = &(target_sd->sem_perm);
3614     target_ip->__key = tswap32(host_ip->__key);
3615     target_ip->uid = tswap32(host_ip->uid);
3616     target_ip->gid = tswap32(host_ip->gid);
3617     target_ip->cuid = tswap32(host_ip->cuid);
3618     target_ip->cgid = tswap32(host_ip->cgid);
3619 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3620     target_ip->mode = tswap32(host_ip->mode);
3621 #else
3622     target_ip->mode = tswap16(host_ip->mode);
3623 #endif
3624 #if defined(TARGET_PPC)
3625     target_ip->__seq = tswap32(host_ip->__seq);
3626 #else
3627     target_ip->__seq = tswap16(host_ip->__seq);
3628 #endif
3629     unlock_user_struct(target_sd, target_addr, 1);
3630     return 0;
3631 }
3632 
3633 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3634                                                abi_ulong target_addr)
3635 {
3636     struct target_semid64_ds *target_sd;
3637 
3638     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3639         return -TARGET_EFAULT;
3640     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3641         return -TARGET_EFAULT;
3642     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3643     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3644     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3645     unlock_user_struct(target_sd, target_addr, 0);
3646     return 0;
3647 }
3648 
3649 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3650                                                struct semid_ds *host_sd)
3651 {
3652     struct target_semid64_ds *target_sd;
3653 
3654     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3655         return -TARGET_EFAULT;
3656     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3657         return -TARGET_EFAULT;
3658     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3659     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3660     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3661     unlock_user_struct(target_sd, target_addr, 1);
3662     return 0;
3663 }
3664 
3665 struct target_seminfo {
3666     int semmap;
3667     int semmni;
3668     int semmns;
3669     int semmnu;
3670     int semmsl;
3671     int semopm;
3672     int semume;
3673     int semusz;
3674     int semvmx;
3675     int semaem;
3676 };
3677 
3678 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3679                                               struct seminfo *host_seminfo)
3680 {
3681     struct target_seminfo *target_seminfo;
3682     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3683         return -TARGET_EFAULT;
3684     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3685     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3686     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3687     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3688     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3689     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3690     __put_user(host_seminfo->semume, &target_seminfo->semume);
3691     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3692     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3693     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3694     unlock_user_struct(target_seminfo, target_addr, 1);
3695     return 0;
3696 }
3697 
3698 union semun {
3699 	int val;
3700 	struct semid_ds *buf;
3701 	unsigned short *array;
3702 	struct seminfo *__buf;
3703 };
3704 
3705 union target_semun {
3706 	int val;
3707 	abi_ulong buf;
3708 	abi_ulong array;
3709 	abi_ulong __buf;
3710 };
3711 
3712 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3713                                                abi_ulong target_addr)
3714 {
3715     int nsems;
3716     unsigned short *array;
3717     union semun semun;
3718     struct semid_ds semid_ds;
3719     int i, ret;
3720 
3721     semun.buf = &semid_ds;
3722 
3723     ret = semctl(semid, 0, IPC_STAT, semun);
3724     if (ret == -1)
3725         return get_errno(ret);
3726 
3727     nsems = semid_ds.sem_nsems;
3728 
3729     *host_array = g_try_new(unsigned short, nsems);
3730     if (!*host_array) {
3731         return -TARGET_ENOMEM;
3732     }
3733     array = lock_user(VERIFY_READ, target_addr,
3734                       nsems*sizeof(unsigned short), 1);
3735     if (!array) {
3736         g_free(*host_array);
3737         return -TARGET_EFAULT;
3738     }
3739 
3740     for(i=0; i<nsems; i++) {
3741         __get_user((*host_array)[i], &array[i]);
3742     }
3743     unlock_user(array, target_addr, 0);
3744 
3745     return 0;
3746 }
3747 
3748 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3749                                                unsigned short **host_array)
3750 {
3751     int nsems;
3752     unsigned short *array;
3753     union semun semun;
3754     struct semid_ds semid_ds;
3755     int i, ret;
3756 
3757     semun.buf = &semid_ds;
3758 
3759     ret = semctl(semid, 0, IPC_STAT, semun);
3760     if (ret == -1)
3761         return get_errno(ret);
3762 
3763     nsems = semid_ds.sem_nsems;
3764 
3765     array = lock_user(VERIFY_WRITE, target_addr,
3766                       nsems*sizeof(unsigned short), 0);
3767     if (!array)
3768         return -TARGET_EFAULT;
3769 
3770     for(i=0; i<nsems; i++) {
3771         __put_user((*host_array)[i], &array[i]);
3772     }
3773     g_free(*host_array);
3774     unlock_user(array, target_addr, 1);
3775 
3776     return 0;
3777 }
3778 
3779 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3780                                  abi_ulong target_arg)
3781 {
3782     union target_semun target_su = { .buf = target_arg };
3783     union semun arg;
3784     struct semid_ds dsarg;
3785     unsigned short *array = NULL;
3786     struct seminfo seminfo;
3787     abi_long ret = -TARGET_EINVAL;
3788     abi_long err;
3789     cmd &= 0xff;
3790 
3791     switch( cmd ) {
3792 	case GETVAL:
3793 	case SETVAL:
3794             /* In 64 bit cross-endian situations, we will erroneously pick up
3795              * the wrong half of the union for the "val" element.  To rectify
3796              * this, the entire 8-byte structure is byteswapped, followed by
3797 	     * a swap of the 4 byte val field. In other cases, the data is
3798 	     * already in proper host byte order. */
3799 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3800 		target_su.buf = tswapal(target_su.buf);
3801 		arg.val = tswap32(target_su.val);
3802 	    } else {
3803 		arg.val = target_su.val;
3804 	    }
3805             ret = get_errno(semctl(semid, semnum, cmd, arg));
3806             break;
3807 	case GETALL:
3808 	case SETALL:
3809             err = target_to_host_semarray(semid, &array, target_su.array);
3810             if (err)
3811                 return err;
3812             arg.array = array;
3813             ret = get_errno(semctl(semid, semnum, cmd, arg));
3814             err = host_to_target_semarray(semid, target_su.array, &array);
3815             if (err)
3816                 return err;
3817             break;
3818 	case IPC_STAT:
3819 	case IPC_SET:
3820 	case SEM_STAT:
3821             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3822             if (err)
3823                 return err;
3824             arg.buf = &dsarg;
3825             ret = get_errno(semctl(semid, semnum, cmd, arg));
3826             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3827             if (err)
3828                 return err;
3829             break;
3830 	case IPC_INFO:
3831 	case SEM_INFO:
3832             arg.__buf = &seminfo;
3833             ret = get_errno(semctl(semid, semnum, cmd, arg));
3834             err = host_to_target_seminfo(target_su.__buf, &seminfo);
3835             if (err)
3836                 return err;
3837             break;
3838 	case IPC_RMID:
3839 	case GETPID:
3840 	case GETNCNT:
3841 	case GETZCNT:
3842             ret = get_errno(semctl(semid, semnum, cmd, NULL));
3843             break;
3844     }
3845 
3846     return ret;
3847 }
3848 
3849 struct target_sembuf {
3850     unsigned short sem_num;
3851     short sem_op;
3852     short sem_flg;
3853 };
3854 
3855 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
3856                                              abi_ulong target_addr,
3857                                              unsigned nsops)
3858 {
3859     struct target_sembuf *target_sembuf;
3860     int i;
3861 
3862     target_sembuf = lock_user(VERIFY_READ, target_addr,
3863                               nsops*sizeof(struct target_sembuf), 1);
3864     if (!target_sembuf)
3865         return -TARGET_EFAULT;
3866 
3867     for(i=0; i<nsops; i++) {
3868         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
3869         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
3870         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
3871     }
3872 
3873     unlock_user(target_sembuf, target_addr, 0);
3874 
3875     return 0;
3876 }
3877 
3878 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
3879 {
3880     struct sembuf sops[nsops];
3881     abi_long ret;
3882 
3883     if (target_to_host_sembuf(sops, ptr, nsops))
3884         return -TARGET_EFAULT;
3885 
3886     ret = -TARGET_ENOSYS;
3887 #ifdef __NR_semtimedop
3888     ret = get_errno(safe_semtimedop(semid, sops, nsops, NULL));
3889 #endif
3890 #ifdef __NR_ipc
3891     if (ret == -TARGET_ENOSYS) {
3892         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, nsops, 0, sops, 0));
3893     }
3894 #endif
3895     return ret;
3896 }
3897 
3898 struct target_msqid_ds
3899 {
3900     struct target_ipc_perm msg_perm;
3901     abi_ulong msg_stime;
3902 #if TARGET_ABI_BITS == 32
3903     abi_ulong __unused1;
3904 #endif
3905     abi_ulong msg_rtime;
3906 #if TARGET_ABI_BITS == 32
3907     abi_ulong __unused2;
3908 #endif
3909     abi_ulong msg_ctime;
3910 #if TARGET_ABI_BITS == 32
3911     abi_ulong __unused3;
3912 #endif
3913     abi_ulong __msg_cbytes;
3914     abi_ulong msg_qnum;
3915     abi_ulong msg_qbytes;
3916     abi_ulong msg_lspid;
3917     abi_ulong msg_lrpid;
3918     abi_ulong __unused4;
3919     abi_ulong __unused5;
3920 };
3921 
3922 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
3923                                                abi_ulong target_addr)
3924 {
3925     struct target_msqid_ds *target_md;
3926 
3927     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
3928         return -TARGET_EFAULT;
3929     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
3930         return -TARGET_EFAULT;
3931     host_md->msg_stime = tswapal(target_md->msg_stime);
3932     host_md->msg_rtime = tswapal(target_md->msg_rtime);
3933     host_md->msg_ctime = tswapal(target_md->msg_ctime);
3934     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
3935     host_md->msg_qnum = tswapal(target_md->msg_qnum);
3936     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
3937     host_md->msg_lspid = tswapal(target_md->msg_lspid);
3938     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
3939     unlock_user_struct(target_md, target_addr, 0);
3940     return 0;
3941 }
3942 
3943 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
3944                                                struct msqid_ds *host_md)
3945 {
3946     struct target_msqid_ds *target_md;
3947 
3948     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
3949         return -TARGET_EFAULT;
3950     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
3951         return -TARGET_EFAULT;
3952     target_md->msg_stime = tswapal(host_md->msg_stime);
3953     target_md->msg_rtime = tswapal(host_md->msg_rtime);
3954     target_md->msg_ctime = tswapal(host_md->msg_ctime);
3955     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
3956     target_md->msg_qnum = tswapal(host_md->msg_qnum);
3957     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
3958     target_md->msg_lspid = tswapal(host_md->msg_lspid);
3959     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
3960     unlock_user_struct(target_md, target_addr, 1);
3961     return 0;
3962 }
3963 
3964 struct target_msginfo {
3965     int msgpool;
3966     int msgmap;
3967     int msgmax;
3968     int msgmnb;
3969     int msgmni;
3970     int msgssz;
3971     int msgtql;
3972     unsigned short int msgseg;
3973 };
3974 
3975 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
3976                                               struct msginfo *host_msginfo)
3977 {
3978     struct target_msginfo *target_msginfo;
3979     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
3980         return -TARGET_EFAULT;
3981     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
3982     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
3983     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
3984     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
3985     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
3986     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
3987     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
3988     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
3989     unlock_user_struct(target_msginfo, target_addr, 1);
3990     return 0;
3991 }
3992 
3993 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
3994 {
3995     struct msqid_ds dsarg;
3996     struct msginfo msginfo;
3997     abi_long ret = -TARGET_EINVAL;
3998 
3999     cmd &= 0xff;
4000 
4001     switch (cmd) {
4002     case IPC_STAT:
4003     case IPC_SET:
4004     case MSG_STAT:
4005         if (target_to_host_msqid_ds(&dsarg,ptr))
4006             return -TARGET_EFAULT;
4007         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4008         if (host_to_target_msqid_ds(ptr,&dsarg))
4009             return -TARGET_EFAULT;
4010         break;
4011     case IPC_RMID:
4012         ret = get_errno(msgctl(msgid, cmd, NULL));
4013         break;
4014     case IPC_INFO:
4015     case MSG_INFO:
4016         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4017         if (host_to_target_msginfo(ptr, &msginfo))
4018             return -TARGET_EFAULT;
4019         break;
4020     }
4021 
4022     return ret;
4023 }
4024 
4025 struct target_msgbuf {
4026     abi_long mtype;
4027     char	mtext[1];
4028 };
4029 
4030 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4031                                  ssize_t msgsz, int msgflg)
4032 {
4033     struct target_msgbuf *target_mb;
4034     struct msgbuf *host_mb;
4035     abi_long ret = 0;
4036 
4037     if (msgsz < 0) {
4038         return -TARGET_EINVAL;
4039     }
4040 
4041     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4042         return -TARGET_EFAULT;
4043     host_mb = g_try_malloc(msgsz + sizeof(long));
4044     if (!host_mb) {
4045         unlock_user_struct(target_mb, msgp, 0);
4046         return -TARGET_ENOMEM;
4047     }
4048     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4049     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4050     ret = -TARGET_ENOSYS;
4051 #ifdef __NR_msgsnd
4052     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4053 #endif
4054 #ifdef __NR_ipc
4055     if (ret == -TARGET_ENOSYS) {
4056         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4057                                  host_mb, 0));
4058     }
4059 #endif
4060     g_free(host_mb);
4061     unlock_user_struct(target_mb, msgp, 0);
4062 
4063     return ret;
4064 }
4065 
4066 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4067                                  ssize_t msgsz, abi_long msgtyp,
4068                                  int msgflg)
4069 {
4070     struct target_msgbuf *target_mb;
4071     char *target_mtext;
4072     struct msgbuf *host_mb;
4073     abi_long ret = 0;
4074 
4075     if (msgsz < 0) {
4076         return -TARGET_EINVAL;
4077     }
4078 
4079     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4080         return -TARGET_EFAULT;
4081 
4082     host_mb = g_try_malloc(msgsz + sizeof(long));
4083     if (!host_mb) {
4084         ret = -TARGET_ENOMEM;
4085         goto end;
4086     }
4087     ret = -TARGET_ENOSYS;
4088 #ifdef __NR_msgrcv
4089     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4090 #endif
4091 #ifdef __NR_ipc
4092     if (ret == -TARGET_ENOSYS) {
4093         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4094                         msgflg, host_mb, msgtyp));
4095     }
4096 #endif
4097 
4098     if (ret > 0) {
4099         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4100         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4101         if (!target_mtext) {
4102             ret = -TARGET_EFAULT;
4103             goto end;
4104         }
4105         memcpy(target_mb->mtext, host_mb->mtext, ret);
4106         unlock_user(target_mtext, target_mtext_addr, ret);
4107     }
4108 
4109     target_mb->mtype = tswapal(host_mb->mtype);
4110 
4111 end:
4112     if (target_mb)
4113         unlock_user_struct(target_mb, msgp, 1);
4114     g_free(host_mb);
4115     return ret;
4116 }
4117 
4118 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4119                                                abi_ulong target_addr)
4120 {
4121     struct target_shmid_ds *target_sd;
4122 
4123     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4124         return -TARGET_EFAULT;
4125     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4126         return -TARGET_EFAULT;
4127     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4128     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4129     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4130     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4131     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4132     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4133     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4134     unlock_user_struct(target_sd, target_addr, 0);
4135     return 0;
4136 }
4137 
4138 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4139                                                struct shmid_ds *host_sd)
4140 {
4141     struct target_shmid_ds *target_sd;
4142 
4143     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4144         return -TARGET_EFAULT;
4145     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4146         return -TARGET_EFAULT;
4147     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4148     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4149     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4150     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4151     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4152     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4153     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4154     unlock_user_struct(target_sd, target_addr, 1);
4155     return 0;
4156 }
4157 
4158 struct  target_shminfo {
4159     abi_ulong shmmax;
4160     abi_ulong shmmin;
4161     abi_ulong shmmni;
4162     abi_ulong shmseg;
4163     abi_ulong shmall;
4164 };
4165 
4166 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4167                                               struct shminfo *host_shminfo)
4168 {
4169     struct target_shminfo *target_shminfo;
4170     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4171         return -TARGET_EFAULT;
4172     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4173     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4174     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4175     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4176     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4177     unlock_user_struct(target_shminfo, target_addr, 1);
4178     return 0;
4179 }
4180 
4181 struct target_shm_info {
4182     int used_ids;
4183     abi_ulong shm_tot;
4184     abi_ulong shm_rss;
4185     abi_ulong shm_swp;
4186     abi_ulong swap_attempts;
4187     abi_ulong swap_successes;
4188 };
4189 
4190 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4191                                                struct shm_info *host_shm_info)
4192 {
4193     struct target_shm_info *target_shm_info;
4194     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4195         return -TARGET_EFAULT;
4196     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4197     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4198     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4199     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4200     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4201     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4202     unlock_user_struct(target_shm_info, target_addr, 1);
4203     return 0;
4204 }
4205 
4206 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4207 {
4208     struct shmid_ds dsarg;
4209     struct shminfo shminfo;
4210     struct shm_info shm_info;
4211     abi_long ret = -TARGET_EINVAL;
4212 
4213     cmd &= 0xff;
4214 
4215     switch(cmd) {
4216     case IPC_STAT:
4217     case IPC_SET:
4218     case SHM_STAT:
4219         if (target_to_host_shmid_ds(&dsarg, buf))
4220             return -TARGET_EFAULT;
4221         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4222         if (host_to_target_shmid_ds(buf, &dsarg))
4223             return -TARGET_EFAULT;
4224         break;
4225     case IPC_INFO:
4226         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4227         if (host_to_target_shminfo(buf, &shminfo))
4228             return -TARGET_EFAULT;
4229         break;
4230     case SHM_INFO:
4231         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4232         if (host_to_target_shm_info(buf, &shm_info))
4233             return -TARGET_EFAULT;
4234         break;
4235     case IPC_RMID:
4236     case SHM_LOCK:
4237     case SHM_UNLOCK:
4238         ret = get_errno(shmctl(shmid, cmd, NULL));
4239         break;
4240     }
4241 
4242     return ret;
4243 }
4244 
4245 #ifndef TARGET_FORCE_SHMLBA
4246 /* For most architectures, SHMLBA is the same as the page size;
4247  * some architectures have larger values, in which case they should
4248  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4249  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4250  * and defining its own value for SHMLBA.
4251  *
4252  * The kernel also permits SHMLBA to be set by the architecture to a
4253  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4254  * this means that addresses are rounded to the large size if
4255  * SHM_RND is set but addresses not aligned to that size are not rejected
4256  * as long as they are at least page-aligned. Since the only architecture
4257  * which uses this is ia64 this code doesn't provide for that oddity.
4258  */
4259 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4260 {
4261     return TARGET_PAGE_SIZE;
4262 }
4263 #endif
4264 
4265 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4266                                  int shmid, abi_ulong shmaddr, int shmflg)
4267 {
4268     abi_long raddr;
4269     void *host_raddr;
4270     struct shmid_ds shm_info;
4271     int i,ret;
4272     abi_ulong shmlba;
4273 
4274     /* find out the length of the shared memory segment */
4275     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4276     if (is_error(ret)) {
4277         /* can't get length, bail out */
4278         return ret;
4279     }
4280 
4281     shmlba = target_shmlba(cpu_env);
4282 
4283     if (shmaddr & (shmlba - 1)) {
4284         if (shmflg & SHM_RND) {
4285             shmaddr &= ~(shmlba - 1);
4286         } else {
4287             return -TARGET_EINVAL;
4288         }
4289     }
4290     if (!guest_range_valid(shmaddr, shm_info.shm_segsz)) {
4291         return -TARGET_EINVAL;
4292     }
4293 
4294     mmap_lock();
4295 
4296     if (shmaddr)
4297         host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
4298     else {
4299         abi_ulong mmap_start;
4300 
4301         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4302         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4303 
4304         if (mmap_start == -1) {
4305             errno = ENOMEM;
4306             host_raddr = (void *)-1;
4307         } else
4308             host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
4309     }
4310 
4311     if (host_raddr == (void *)-1) {
4312         mmap_unlock();
4313         return get_errno((long)host_raddr);
4314     }
4315     raddr=h2g((unsigned long)host_raddr);
4316 
4317     page_set_flags(raddr, raddr + shm_info.shm_segsz,
4318                    PAGE_VALID | PAGE_READ |
4319                    ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
4320 
4321     for (i = 0; i < N_SHM_REGIONS; i++) {
4322         if (!shm_regions[i].in_use) {
4323             shm_regions[i].in_use = true;
4324             shm_regions[i].start = raddr;
4325             shm_regions[i].size = shm_info.shm_segsz;
4326             break;
4327         }
4328     }
4329 
4330     mmap_unlock();
4331     return raddr;
4332 
4333 }
4334 
4335 static inline abi_long do_shmdt(abi_ulong shmaddr)
4336 {
4337     int i;
4338     abi_long rv;
4339 
4340     mmap_lock();
4341 
4342     for (i = 0; i < N_SHM_REGIONS; ++i) {
4343         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4344             shm_regions[i].in_use = false;
4345             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4346             break;
4347         }
4348     }
4349     rv = get_errno(shmdt(g2h(shmaddr)));
4350 
4351     mmap_unlock();
4352 
4353     return rv;
4354 }
4355 
4356 #ifdef TARGET_NR_ipc
4357 /* ??? This only works with linear mappings.  */
4358 /* do_ipc() must return target values and target errnos. */
4359 static abi_long do_ipc(CPUArchState *cpu_env,
4360                        unsigned int call, abi_long first,
4361                        abi_long second, abi_long third,
4362                        abi_long ptr, abi_long fifth)
4363 {
4364     int version;
4365     abi_long ret = 0;
4366 
4367     version = call >> 16;
4368     call &= 0xffff;
4369 
4370     switch (call) {
4371     case IPCOP_semop:
4372         ret = do_semop(first, ptr, second);
4373         break;
4374 
4375     case IPCOP_semget:
4376         ret = get_errno(semget(first, second, third));
4377         break;
4378 
4379     case IPCOP_semctl: {
4380         /* The semun argument to semctl is passed by value, so dereference the
4381          * ptr argument. */
4382         abi_ulong atptr;
4383         get_user_ual(atptr, ptr);
4384         ret = do_semctl(first, second, third, atptr);
4385         break;
4386     }
4387 
4388     case IPCOP_msgget:
4389         ret = get_errno(msgget(first, second));
4390         break;
4391 
4392     case IPCOP_msgsnd:
4393         ret = do_msgsnd(first, ptr, second, third);
4394         break;
4395 
4396     case IPCOP_msgctl:
4397         ret = do_msgctl(first, second, ptr);
4398         break;
4399 
4400     case IPCOP_msgrcv:
4401         switch (version) {
4402         case 0:
4403             {
4404                 struct target_ipc_kludge {
4405                     abi_long msgp;
4406                     abi_long msgtyp;
4407                 } *tmp;
4408 
4409                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4410                     ret = -TARGET_EFAULT;
4411                     break;
4412                 }
4413 
4414                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4415 
4416                 unlock_user_struct(tmp, ptr, 0);
4417                 break;
4418             }
4419         default:
4420             ret = do_msgrcv(first, ptr, second, fifth, third);
4421         }
4422         break;
4423 
4424     case IPCOP_shmat:
4425         switch (version) {
4426         default:
4427         {
4428             abi_ulong raddr;
4429             raddr = do_shmat(cpu_env, first, ptr, second);
4430             if (is_error(raddr))
4431                 return get_errno(raddr);
4432             if (put_user_ual(raddr, third))
4433                 return -TARGET_EFAULT;
4434             break;
4435         }
4436         case 1:
4437             ret = -TARGET_EINVAL;
4438             break;
4439         }
4440 	break;
4441     case IPCOP_shmdt:
4442         ret = do_shmdt(ptr);
4443 	break;
4444 
4445     case IPCOP_shmget:
4446 	/* IPC_* flag values are the same on all linux platforms */
4447 	ret = get_errno(shmget(first, second, third));
4448 	break;
4449 
4450 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4451     case IPCOP_shmctl:
4452         ret = do_shmctl(first, second, ptr);
4453         break;
4454     default:
4455         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4456                       call, version);
4457 	ret = -TARGET_ENOSYS;
4458 	break;
4459     }
4460     return ret;
4461 }
4462 #endif
4463 
4464 /* kernel structure types definitions */
4465 
4466 #define STRUCT(name, ...) STRUCT_ ## name,
4467 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4468 enum {
4469 #include "syscall_types.h"
4470 STRUCT_MAX
4471 };
4472 #undef STRUCT
4473 #undef STRUCT_SPECIAL
4474 
4475 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4476 #define STRUCT_SPECIAL(name)
4477 #include "syscall_types.h"
4478 #undef STRUCT
4479 #undef STRUCT_SPECIAL
4480 
4481 typedef struct IOCTLEntry IOCTLEntry;
4482 
4483 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
4484                              int fd, int cmd, abi_long arg);
4485 
4486 struct IOCTLEntry {
4487     int target_cmd;
4488     unsigned int host_cmd;
4489     const char *name;
4490     int access;
4491     do_ioctl_fn *do_ioctl;
4492     const argtype arg_type[5];
4493 };
4494 
4495 #define IOC_R 0x0001
4496 #define IOC_W 0x0002
4497 #define IOC_RW (IOC_R | IOC_W)
4498 
4499 #define MAX_STRUCT_SIZE 4096
4500 
4501 #ifdef CONFIG_FIEMAP
4502 /* So fiemap access checks don't overflow on 32 bit systems.
4503  * This is very slightly smaller than the limit imposed by
4504  * the underlying kernel.
4505  */
4506 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4507                             / sizeof(struct fiemap_extent))
4508 
4509 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4510                                        int fd, int cmd, abi_long arg)
4511 {
4512     /* The parameter for this ioctl is a struct fiemap followed
4513      * by an array of struct fiemap_extent whose size is set
4514      * in fiemap->fm_extent_count. The array is filled in by the
4515      * ioctl.
4516      */
4517     int target_size_in, target_size_out;
4518     struct fiemap *fm;
4519     const argtype *arg_type = ie->arg_type;
4520     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4521     void *argptr, *p;
4522     abi_long ret;
4523     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4524     uint32_t outbufsz;
4525     int free_fm = 0;
4526 
4527     assert(arg_type[0] == TYPE_PTR);
4528     assert(ie->access == IOC_RW);
4529     arg_type++;
4530     target_size_in = thunk_type_size(arg_type, 0);
4531     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4532     if (!argptr) {
4533         return -TARGET_EFAULT;
4534     }
4535     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4536     unlock_user(argptr, arg, 0);
4537     fm = (struct fiemap *)buf_temp;
4538     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4539         return -TARGET_EINVAL;
4540     }
4541 
4542     outbufsz = sizeof (*fm) +
4543         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4544 
4545     if (outbufsz > MAX_STRUCT_SIZE) {
4546         /* We can't fit all the extents into the fixed size buffer.
4547          * Allocate one that is large enough and use it instead.
4548          */
4549         fm = g_try_malloc(outbufsz);
4550         if (!fm) {
4551             return -TARGET_ENOMEM;
4552         }
4553         memcpy(fm, buf_temp, sizeof(struct fiemap));
4554         free_fm = 1;
4555     }
4556     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4557     if (!is_error(ret)) {
4558         target_size_out = target_size_in;
4559         /* An extent_count of 0 means we were only counting the extents
4560          * so there are no structs to copy
4561          */
4562         if (fm->fm_extent_count != 0) {
4563             target_size_out += fm->fm_mapped_extents * extent_size;
4564         }
4565         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4566         if (!argptr) {
4567             ret = -TARGET_EFAULT;
4568         } else {
4569             /* Convert the struct fiemap */
4570             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4571             if (fm->fm_extent_count != 0) {
4572                 p = argptr + target_size_in;
4573                 /* ...and then all the struct fiemap_extents */
4574                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4575                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4576                                   THUNK_TARGET);
4577                     p += extent_size;
4578                 }
4579             }
4580             unlock_user(argptr, arg, target_size_out);
4581         }
4582     }
4583     if (free_fm) {
4584         g_free(fm);
4585     }
4586     return ret;
4587 }
4588 #endif
4589 
4590 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4591                                 int fd, int cmd, abi_long arg)
4592 {
4593     const argtype *arg_type = ie->arg_type;
4594     int target_size;
4595     void *argptr;
4596     int ret;
4597     struct ifconf *host_ifconf;
4598     uint32_t outbufsz;
4599     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4600     int target_ifreq_size;
4601     int nb_ifreq;
4602     int free_buf = 0;
4603     int i;
4604     int target_ifc_len;
4605     abi_long target_ifc_buf;
4606     int host_ifc_len;
4607     char *host_ifc_buf;
4608 
4609     assert(arg_type[0] == TYPE_PTR);
4610     assert(ie->access == IOC_RW);
4611 
4612     arg_type++;
4613     target_size = thunk_type_size(arg_type, 0);
4614 
4615     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4616     if (!argptr)
4617         return -TARGET_EFAULT;
4618     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4619     unlock_user(argptr, arg, 0);
4620 
4621     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4622     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4623     target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
4624 
4625     if (target_ifc_buf != 0) {
4626         target_ifc_len = host_ifconf->ifc_len;
4627         nb_ifreq = target_ifc_len / target_ifreq_size;
4628         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4629 
4630         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4631         if (outbufsz > MAX_STRUCT_SIZE) {
4632             /*
4633              * We can't fit all the extents into the fixed size buffer.
4634              * Allocate one that is large enough and use it instead.
4635              */
4636             host_ifconf = malloc(outbufsz);
4637             if (!host_ifconf) {
4638                 return -TARGET_ENOMEM;
4639             }
4640             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4641             free_buf = 1;
4642         }
4643         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4644 
4645         host_ifconf->ifc_len = host_ifc_len;
4646     } else {
4647       host_ifc_buf = NULL;
4648     }
4649     host_ifconf->ifc_buf = host_ifc_buf;
4650 
4651     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4652     if (!is_error(ret)) {
4653 	/* convert host ifc_len to target ifc_len */
4654 
4655         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4656         target_ifc_len = nb_ifreq * target_ifreq_size;
4657         host_ifconf->ifc_len = target_ifc_len;
4658 
4659 	/* restore target ifc_buf */
4660 
4661         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4662 
4663 	/* copy struct ifconf to target user */
4664 
4665         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4666         if (!argptr)
4667             return -TARGET_EFAULT;
4668         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4669         unlock_user(argptr, arg, target_size);
4670 
4671         if (target_ifc_buf != 0) {
4672             /* copy ifreq[] to target user */
4673             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4674             for (i = 0; i < nb_ifreq ; i++) {
4675                 thunk_convert(argptr + i * target_ifreq_size,
4676                               host_ifc_buf + i * sizeof(struct ifreq),
4677                               ifreq_arg_type, THUNK_TARGET);
4678             }
4679             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4680         }
4681     }
4682 
4683     if (free_buf) {
4684         free(host_ifconf);
4685     }
4686 
4687     return ret;
4688 }
4689 
4690 #if defined(CONFIG_USBFS)
4691 #if HOST_LONG_BITS > 64
4692 #error USBDEVFS thunks do not support >64 bit hosts yet.
4693 #endif
4694 struct live_urb {
4695     uint64_t target_urb_adr;
4696     uint64_t target_buf_adr;
4697     char *target_buf_ptr;
4698     struct usbdevfs_urb host_urb;
4699 };
4700 
4701 static GHashTable *usbdevfs_urb_hashtable(void)
4702 {
4703     static GHashTable *urb_hashtable;
4704 
4705     if (!urb_hashtable) {
4706         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4707     }
4708     return urb_hashtable;
4709 }
4710 
4711 static void urb_hashtable_insert(struct live_urb *urb)
4712 {
4713     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4714     g_hash_table_insert(urb_hashtable, urb, urb);
4715 }
4716 
4717 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4718 {
4719     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4720     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4721 }
4722 
4723 static void urb_hashtable_remove(struct live_urb *urb)
4724 {
4725     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4726     g_hash_table_remove(urb_hashtable, urb);
4727 }
4728 
4729 static abi_long
4730 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4731                           int fd, int cmd, abi_long arg)
4732 {
4733     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4734     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4735     struct live_urb *lurb;
4736     void *argptr;
4737     uint64_t hurb;
4738     int target_size;
4739     uintptr_t target_urb_adr;
4740     abi_long ret;
4741 
4742     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4743 
4744     memset(buf_temp, 0, sizeof(uint64_t));
4745     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4746     if (is_error(ret)) {
4747         return ret;
4748     }
4749 
4750     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4751     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4752     if (!lurb->target_urb_adr) {
4753         return -TARGET_EFAULT;
4754     }
4755     urb_hashtable_remove(lurb);
4756     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4757         lurb->host_urb.buffer_length);
4758     lurb->target_buf_ptr = NULL;
4759 
4760     /* restore the guest buffer pointer */
4761     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4762 
4763     /* update the guest urb struct */
4764     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4765     if (!argptr) {
4766         g_free(lurb);
4767         return -TARGET_EFAULT;
4768     }
4769     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4770     unlock_user(argptr, lurb->target_urb_adr, target_size);
4771 
4772     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4773     /* write back the urb handle */
4774     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4775     if (!argptr) {
4776         g_free(lurb);
4777         return -TARGET_EFAULT;
4778     }
4779 
4780     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4781     target_urb_adr = lurb->target_urb_adr;
4782     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4783     unlock_user(argptr, arg, target_size);
4784 
4785     g_free(lurb);
4786     return ret;
4787 }
4788 
4789 static abi_long
4790 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4791                              uint8_t *buf_temp __attribute__((unused)),
4792                              int fd, int cmd, abi_long arg)
4793 {
4794     struct live_urb *lurb;
4795 
4796     /* map target address back to host URB with metadata. */
4797     lurb = urb_hashtable_lookup(arg);
4798     if (!lurb) {
4799         return -TARGET_EFAULT;
4800     }
4801     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4802 }
4803 
4804 static abi_long
4805 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4806                             int fd, int cmd, abi_long arg)
4807 {
4808     const argtype *arg_type = ie->arg_type;
4809     int target_size;
4810     abi_long ret;
4811     void *argptr;
4812     int rw_dir;
4813     struct live_urb *lurb;
4814 
4815     /*
4816      * each submitted URB needs to map to a unique ID for the
4817      * kernel, and that unique ID needs to be a pointer to
4818      * host memory.  hence, we need to malloc for each URB.
4819      * isochronous transfers have a variable length struct.
4820      */
4821     arg_type++;
4822     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4823 
4824     /* construct host copy of urb and metadata */
4825     lurb = g_try_malloc0(sizeof(struct live_urb));
4826     if (!lurb) {
4827         return -TARGET_ENOMEM;
4828     }
4829 
4830     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4831     if (!argptr) {
4832         g_free(lurb);
4833         return -TARGET_EFAULT;
4834     }
4835     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4836     unlock_user(argptr, arg, 0);
4837 
4838     lurb->target_urb_adr = arg;
4839     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4840 
4841     /* buffer space used depends on endpoint type so lock the entire buffer */
4842     /* control type urbs should check the buffer contents for true direction */
4843     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4844     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4845         lurb->host_urb.buffer_length, 1);
4846     if (lurb->target_buf_ptr == NULL) {
4847         g_free(lurb);
4848         return -TARGET_EFAULT;
4849     }
4850 
4851     /* update buffer pointer in host copy */
4852     lurb->host_urb.buffer = lurb->target_buf_ptr;
4853 
4854     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4855     if (is_error(ret)) {
4856         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4857         g_free(lurb);
4858     } else {
4859         urb_hashtable_insert(lurb);
4860     }
4861 
4862     return ret;
4863 }
4864 #endif /* CONFIG_USBFS */
4865 
4866 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4867                             int cmd, abi_long arg)
4868 {
4869     void *argptr;
4870     struct dm_ioctl *host_dm;
4871     abi_long guest_data;
4872     uint32_t guest_data_size;
4873     int target_size;
4874     const argtype *arg_type = ie->arg_type;
4875     abi_long ret;
4876     void *big_buf = NULL;
4877     char *host_data;
4878 
4879     arg_type++;
4880     target_size = thunk_type_size(arg_type, 0);
4881     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4882     if (!argptr) {
4883         ret = -TARGET_EFAULT;
4884         goto out;
4885     }
4886     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4887     unlock_user(argptr, arg, 0);
4888 
4889     /* buf_temp is too small, so fetch things into a bigger buffer */
4890     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
4891     memcpy(big_buf, buf_temp, target_size);
4892     buf_temp = big_buf;
4893     host_dm = big_buf;
4894 
4895     guest_data = arg + host_dm->data_start;
4896     if ((guest_data - arg) < 0) {
4897         ret = -TARGET_EINVAL;
4898         goto out;
4899     }
4900     guest_data_size = host_dm->data_size - host_dm->data_start;
4901     host_data = (char*)host_dm + host_dm->data_start;
4902 
4903     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
4904     if (!argptr) {
4905         ret = -TARGET_EFAULT;
4906         goto out;
4907     }
4908 
4909     switch (ie->host_cmd) {
4910     case DM_REMOVE_ALL:
4911     case DM_LIST_DEVICES:
4912     case DM_DEV_CREATE:
4913     case DM_DEV_REMOVE:
4914     case DM_DEV_SUSPEND:
4915     case DM_DEV_STATUS:
4916     case DM_DEV_WAIT:
4917     case DM_TABLE_STATUS:
4918     case DM_TABLE_CLEAR:
4919     case DM_TABLE_DEPS:
4920     case DM_LIST_VERSIONS:
4921         /* no input data */
4922         break;
4923     case DM_DEV_RENAME:
4924     case DM_DEV_SET_GEOMETRY:
4925         /* data contains only strings */
4926         memcpy(host_data, argptr, guest_data_size);
4927         break;
4928     case DM_TARGET_MSG:
4929         memcpy(host_data, argptr, guest_data_size);
4930         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
4931         break;
4932     case DM_TABLE_LOAD:
4933     {
4934         void *gspec = argptr;
4935         void *cur_data = host_data;
4936         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
4937         int spec_size = thunk_type_size(arg_type, 0);
4938         int i;
4939 
4940         for (i = 0; i < host_dm->target_count; i++) {
4941             struct dm_target_spec *spec = cur_data;
4942             uint32_t next;
4943             int slen;
4944 
4945             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
4946             slen = strlen((char*)gspec + spec_size) + 1;
4947             next = spec->next;
4948             spec->next = sizeof(*spec) + slen;
4949             strcpy((char*)&spec[1], gspec + spec_size);
4950             gspec += next;
4951             cur_data += spec->next;
4952         }
4953         break;
4954     }
4955     default:
4956         ret = -TARGET_EINVAL;
4957         unlock_user(argptr, guest_data, 0);
4958         goto out;
4959     }
4960     unlock_user(argptr, guest_data, 0);
4961 
4962     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4963     if (!is_error(ret)) {
4964         guest_data = arg + host_dm->data_start;
4965         guest_data_size = host_dm->data_size - host_dm->data_start;
4966         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
4967         switch (ie->host_cmd) {
4968         case DM_REMOVE_ALL:
4969         case DM_DEV_CREATE:
4970         case DM_DEV_REMOVE:
4971         case DM_DEV_RENAME:
4972         case DM_DEV_SUSPEND:
4973         case DM_DEV_STATUS:
4974         case DM_TABLE_LOAD:
4975         case DM_TABLE_CLEAR:
4976         case DM_TARGET_MSG:
4977         case DM_DEV_SET_GEOMETRY:
4978             /* no return data */
4979             break;
4980         case DM_LIST_DEVICES:
4981         {
4982             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
4983             uint32_t remaining_data = guest_data_size;
4984             void *cur_data = argptr;
4985             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
4986             int nl_size = 12; /* can't use thunk_size due to alignment */
4987 
4988             while (1) {
4989                 uint32_t next = nl->next;
4990                 if (next) {
4991                     nl->next = nl_size + (strlen(nl->name) + 1);
4992                 }
4993                 if (remaining_data < nl->next) {
4994                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
4995                     break;
4996                 }
4997                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
4998                 strcpy(cur_data + nl_size, nl->name);
4999                 cur_data += nl->next;
5000                 remaining_data -= nl->next;
5001                 if (!next) {
5002                     break;
5003                 }
5004                 nl = (void*)nl + next;
5005             }
5006             break;
5007         }
5008         case DM_DEV_WAIT:
5009         case DM_TABLE_STATUS:
5010         {
5011             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5012             void *cur_data = argptr;
5013             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5014             int spec_size = thunk_type_size(arg_type, 0);
5015             int i;
5016 
5017             for (i = 0; i < host_dm->target_count; i++) {
5018                 uint32_t next = spec->next;
5019                 int slen = strlen((char*)&spec[1]) + 1;
5020                 spec->next = (cur_data - argptr) + spec_size + slen;
5021                 if (guest_data_size < spec->next) {
5022                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5023                     break;
5024                 }
5025                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5026                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5027                 cur_data = argptr + spec->next;
5028                 spec = (void*)host_dm + host_dm->data_start + next;
5029             }
5030             break;
5031         }
5032         case DM_TABLE_DEPS:
5033         {
5034             void *hdata = (void*)host_dm + host_dm->data_start;
5035             int count = *(uint32_t*)hdata;
5036             uint64_t *hdev = hdata + 8;
5037             uint64_t *gdev = argptr + 8;
5038             int i;
5039 
5040             *(uint32_t*)argptr = tswap32(count);
5041             for (i = 0; i < count; i++) {
5042                 *gdev = tswap64(*hdev);
5043                 gdev++;
5044                 hdev++;
5045             }
5046             break;
5047         }
5048         case DM_LIST_VERSIONS:
5049         {
5050             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5051             uint32_t remaining_data = guest_data_size;
5052             void *cur_data = argptr;
5053             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5054             int vers_size = thunk_type_size(arg_type, 0);
5055 
5056             while (1) {
5057                 uint32_t next = vers->next;
5058                 if (next) {
5059                     vers->next = vers_size + (strlen(vers->name) + 1);
5060                 }
5061                 if (remaining_data < vers->next) {
5062                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5063                     break;
5064                 }
5065                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5066                 strcpy(cur_data + vers_size, vers->name);
5067                 cur_data += vers->next;
5068                 remaining_data -= vers->next;
5069                 if (!next) {
5070                     break;
5071                 }
5072                 vers = (void*)vers + next;
5073             }
5074             break;
5075         }
5076         default:
5077             unlock_user(argptr, guest_data, 0);
5078             ret = -TARGET_EINVAL;
5079             goto out;
5080         }
5081         unlock_user(argptr, guest_data, guest_data_size);
5082 
5083         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5084         if (!argptr) {
5085             ret = -TARGET_EFAULT;
5086             goto out;
5087         }
5088         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5089         unlock_user(argptr, arg, target_size);
5090     }
5091 out:
5092     g_free(big_buf);
5093     return ret;
5094 }
5095 
5096 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5097                                int cmd, abi_long arg)
5098 {
5099     void *argptr;
5100     int target_size;
5101     const argtype *arg_type = ie->arg_type;
5102     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5103     abi_long ret;
5104 
5105     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5106     struct blkpg_partition host_part;
5107 
5108     /* Read and convert blkpg */
5109     arg_type++;
5110     target_size = thunk_type_size(arg_type, 0);
5111     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5112     if (!argptr) {
5113         ret = -TARGET_EFAULT;
5114         goto out;
5115     }
5116     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5117     unlock_user(argptr, arg, 0);
5118 
5119     switch (host_blkpg->op) {
5120     case BLKPG_ADD_PARTITION:
5121     case BLKPG_DEL_PARTITION:
5122         /* payload is struct blkpg_partition */
5123         break;
5124     default:
5125         /* Unknown opcode */
5126         ret = -TARGET_EINVAL;
5127         goto out;
5128     }
5129 
5130     /* Read and convert blkpg->data */
5131     arg = (abi_long)(uintptr_t)host_blkpg->data;
5132     target_size = thunk_type_size(part_arg_type, 0);
5133     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5134     if (!argptr) {
5135         ret = -TARGET_EFAULT;
5136         goto out;
5137     }
5138     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5139     unlock_user(argptr, arg, 0);
5140 
5141     /* Swizzle the data pointer to our local copy and call! */
5142     host_blkpg->data = &host_part;
5143     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5144 
5145 out:
5146     return ret;
5147 }
5148 
5149 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5150                                 int fd, int cmd, abi_long arg)
5151 {
5152     const argtype *arg_type = ie->arg_type;
5153     const StructEntry *se;
5154     const argtype *field_types;
5155     const int *dst_offsets, *src_offsets;
5156     int target_size;
5157     void *argptr;
5158     abi_ulong *target_rt_dev_ptr = NULL;
5159     unsigned long *host_rt_dev_ptr = NULL;
5160     abi_long ret;
5161     int i;
5162 
5163     assert(ie->access == IOC_W);
5164     assert(*arg_type == TYPE_PTR);
5165     arg_type++;
5166     assert(*arg_type == TYPE_STRUCT);
5167     target_size = thunk_type_size(arg_type, 0);
5168     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5169     if (!argptr) {
5170         return -TARGET_EFAULT;
5171     }
5172     arg_type++;
5173     assert(*arg_type == (int)STRUCT_rtentry);
5174     se = struct_entries + *arg_type++;
5175     assert(se->convert[0] == NULL);
5176     /* convert struct here to be able to catch rt_dev string */
5177     field_types = se->field_types;
5178     dst_offsets = se->field_offsets[THUNK_HOST];
5179     src_offsets = se->field_offsets[THUNK_TARGET];
5180     for (i = 0; i < se->nb_fields; i++) {
5181         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5182             assert(*field_types == TYPE_PTRVOID);
5183             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5184             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5185             if (*target_rt_dev_ptr != 0) {
5186                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5187                                                   tswapal(*target_rt_dev_ptr));
5188                 if (!*host_rt_dev_ptr) {
5189                     unlock_user(argptr, arg, 0);
5190                     return -TARGET_EFAULT;
5191                 }
5192             } else {
5193                 *host_rt_dev_ptr = 0;
5194             }
5195             field_types++;
5196             continue;
5197         }
5198         field_types = thunk_convert(buf_temp + dst_offsets[i],
5199                                     argptr + src_offsets[i],
5200                                     field_types, THUNK_HOST);
5201     }
5202     unlock_user(argptr, arg, 0);
5203 
5204     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5205 
5206     assert(host_rt_dev_ptr != NULL);
5207     assert(target_rt_dev_ptr != NULL);
5208     if (*host_rt_dev_ptr != 0) {
5209         unlock_user((void *)*host_rt_dev_ptr,
5210                     *target_rt_dev_ptr, 0);
5211     }
5212     return ret;
5213 }
5214 
5215 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5216                                      int fd, int cmd, abi_long arg)
5217 {
5218     int sig = target_to_host_signal(arg);
5219     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5220 }
5221 
5222 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5223                                     int fd, int cmd, abi_long arg)
5224 {
5225     struct timeval tv;
5226     abi_long ret;
5227 
5228     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5229     if (is_error(ret)) {
5230         return ret;
5231     }
5232 
5233     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5234         if (copy_to_user_timeval(arg, &tv)) {
5235             return -TARGET_EFAULT;
5236         }
5237     } else {
5238         if (copy_to_user_timeval64(arg, &tv)) {
5239             return -TARGET_EFAULT;
5240         }
5241     }
5242 
5243     return ret;
5244 }
5245 
5246 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5247                                       int fd, int cmd, abi_long arg)
5248 {
5249     struct timespec ts;
5250     abi_long ret;
5251 
5252     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5253     if (is_error(ret)) {
5254         return ret;
5255     }
5256 
5257     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5258         if (host_to_target_timespec(arg, &ts)) {
5259             return -TARGET_EFAULT;
5260         }
5261     } else{
5262         if (host_to_target_timespec64(arg, &ts)) {
5263             return -TARGET_EFAULT;
5264         }
5265     }
5266 
5267     return ret;
5268 }
5269 
5270 #ifdef TIOCGPTPEER
5271 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5272                                      int fd, int cmd, abi_long arg)
5273 {
5274     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5275     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5276 }
5277 #endif
5278 
5279 static IOCTLEntry ioctl_entries[] = {
5280 #define IOCTL(cmd, access, ...) \
5281     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5282 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5283     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5284 #define IOCTL_IGNORE(cmd) \
5285     { TARGET_ ## cmd, 0, #cmd },
5286 #include "ioctls.h"
5287     { 0, 0, },
5288 };
5289 
5290 /* ??? Implement proper locking for ioctls.  */
5291 /* do_ioctl() Must return target values and target errnos. */
5292 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5293 {
5294     const IOCTLEntry *ie;
5295     const argtype *arg_type;
5296     abi_long ret;
5297     uint8_t buf_temp[MAX_STRUCT_SIZE];
5298     int target_size;
5299     void *argptr;
5300 
5301     ie = ioctl_entries;
5302     for(;;) {
5303         if (ie->target_cmd == 0) {
5304             qemu_log_mask(
5305                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5306             return -TARGET_ENOSYS;
5307         }
5308         if (ie->target_cmd == cmd)
5309             break;
5310         ie++;
5311     }
5312     arg_type = ie->arg_type;
5313     if (ie->do_ioctl) {
5314         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5315     } else if (!ie->host_cmd) {
5316         /* Some architectures define BSD ioctls in their headers
5317            that are not implemented in Linux.  */
5318         return -TARGET_ENOSYS;
5319     }
5320 
5321     switch(arg_type[0]) {
5322     case TYPE_NULL:
5323         /* no argument */
5324         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5325         break;
5326     case TYPE_PTRVOID:
5327     case TYPE_INT:
5328     case TYPE_LONG:
5329     case TYPE_ULONG:
5330         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5331         break;
5332     case TYPE_PTR:
5333         arg_type++;
5334         target_size = thunk_type_size(arg_type, 0);
5335         switch(ie->access) {
5336         case IOC_R:
5337             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5338             if (!is_error(ret)) {
5339                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5340                 if (!argptr)
5341                     return -TARGET_EFAULT;
5342                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5343                 unlock_user(argptr, arg, target_size);
5344             }
5345             break;
5346         case IOC_W:
5347             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5348             if (!argptr)
5349                 return -TARGET_EFAULT;
5350             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5351             unlock_user(argptr, arg, 0);
5352             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5353             break;
5354         default:
5355         case IOC_RW:
5356             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5357             if (!argptr)
5358                 return -TARGET_EFAULT;
5359             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5360             unlock_user(argptr, arg, 0);
5361             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5362             if (!is_error(ret)) {
5363                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5364                 if (!argptr)
5365                     return -TARGET_EFAULT;
5366                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5367                 unlock_user(argptr, arg, target_size);
5368             }
5369             break;
5370         }
5371         break;
5372     default:
5373         qemu_log_mask(LOG_UNIMP,
5374                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5375                       (long)cmd, arg_type[0]);
5376         ret = -TARGET_ENOSYS;
5377         break;
5378     }
5379     return ret;
5380 }
5381 
5382 static const bitmask_transtbl iflag_tbl[] = {
5383         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5384         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5385         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5386         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5387         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5388         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5389         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5390         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5391         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5392         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5393         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5394         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5395         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5396         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5397         { 0, 0, 0, 0 }
5398 };
5399 
5400 static const bitmask_transtbl oflag_tbl[] = {
5401 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5402 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5403 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5404 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5405 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5406 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5407 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5408 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5409 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5410 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5411 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5412 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5413 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5414 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5415 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5416 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5417 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5418 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5419 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5420 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5421 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5422 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5423 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5424 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5425 	{ 0, 0, 0, 0 }
5426 };
5427 
5428 static const bitmask_transtbl cflag_tbl[] = {
5429 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5430 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5431 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5432 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5433 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5434 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5435 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5436 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5437 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5438 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5439 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5440 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5441 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5442 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5443 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5444 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5445 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5446 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5447 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5448 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5449 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5450 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5451 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5452 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5453 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5454 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5455 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5456 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5457 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5458 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5459 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5460 	{ 0, 0, 0, 0 }
5461 };
5462 
5463 static const bitmask_transtbl lflag_tbl[] = {
5464 	{ TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5465 	{ TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5466 	{ TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5467 	{ TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5468 	{ TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5469 	{ TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5470 	{ TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5471 	{ TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5472 	{ TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5473 	{ TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5474 	{ TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5475 	{ TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5476 	{ TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5477 	{ TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5478 	{ TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5479 	{ 0, 0, 0, 0 }
5480 };
5481 
5482 static void target_to_host_termios (void *dst, const void *src)
5483 {
5484     struct host_termios *host = dst;
5485     const struct target_termios *target = src;
5486 
5487     host->c_iflag =
5488         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5489     host->c_oflag =
5490         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5491     host->c_cflag =
5492         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5493     host->c_lflag =
5494         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5495     host->c_line = target->c_line;
5496 
5497     memset(host->c_cc, 0, sizeof(host->c_cc));
5498     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5499     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5500     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5501     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5502     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5503     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5504     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5505     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5506     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5507     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5508     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5509     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5510     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5511     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5512     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5513     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5514     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5515 }
5516 
5517 static void host_to_target_termios (void *dst, const void *src)
5518 {
5519     struct target_termios *target = dst;
5520     const struct host_termios *host = src;
5521 
5522     target->c_iflag =
5523         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5524     target->c_oflag =
5525         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5526     target->c_cflag =
5527         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5528     target->c_lflag =
5529         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5530     target->c_line = host->c_line;
5531 
5532     memset(target->c_cc, 0, sizeof(target->c_cc));
5533     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5534     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5535     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5536     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5537     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5538     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5539     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5540     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5541     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5542     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5543     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5544     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5545     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5546     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5547     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5548     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5549     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5550 }
5551 
5552 static const StructEntry struct_termios_def = {
5553     .convert = { host_to_target_termios, target_to_host_termios },
5554     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5555     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5556 };
5557 
5558 static bitmask_transtbl mmap_flags_tbl[] = {
5559     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5560     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5561     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5562     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5563       MAP_ANONYMOUS, MAP_ANONYMOUS },
5564     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5565       MAP_GROWSDOWN, MAP_GROWSDOWN },
5566     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5567       MAP_DENYWRITE, MAP_DENYWRITE },
5568     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5569       MAP_EXECUTABLE, MAP_EXECUTABLE },
5570     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5571     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5572       MAP_NORESERVE, MAP_NORESERVE },
5573     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5574     /* MAP_STACK had been ignored by the kernel for quite some time.
5575        Recognize it for the target insofar as we do not want to pass
5576        it through to the host.  */
5577     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5578     { 0, 0, 0, 0 }
5579 };
5580 
5581 /*
5582  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5583  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5584  */
5585 #if defined(TARGET_I386)
5586 
5587 /* NOTE: there is really one LDT for all the threads */
5588 static uint8_t *ldt_table;
5589 
5590 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5591 {
5592     int size;
5593     void *p;
5594 
5595     if (!ldt_table)
5596         return 0;
5597     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5598     if (size > bytecount)
5599         size = bytecount;
5600     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5601     if (!p)
5602         return -TARGET_EFAULT;
5603     /* ??? Should this by byteswapped?  */
5604     memcpy(p, ldt_table, size);
5605     unlock_user(p, ptr, size);
5606     return size;
5607 }
5608 
5609 /* XXX: add locking support */
5610 static abi_long write_ldt(CPUX86State *env,
5611                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5612 {
5613     struct target_modify_ldt_ldt_s ldt_info;
5614     struct target_modify_ldt_ldt_s *target_ldt_info;
5615     int seg_32bit, contents, read_exec_only, limit_in_pages;
5616     int seg_not_present, useable, lm;
5617     uint32_t *lp, entry_1, entry_2;
5618 
5619     if (bytecount != sizeof(ldt_info))
5620         return -TARGET_EINVAL;
5621     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5622         return -TARGET_EFAULT;
5623     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5624     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5625     ldt_info.limit = tswap32(target_ldt_info->limit);
5626     ldt_info.flags = tswap32(target_ldt_info->flags);
5627     unlock_user_struct(target_ldt_info, ptr, 0);
5628 
5629     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5630         return -TARGET_EINVAL;
5631     seg_32bit = ldt_info.flags & 1;
5632     contents = (ldt_info.flags >> 1) & 3;
5633     read_exec_only = (ldt_info.flags >> 3) & 1;
5634     limit_in_pages = (ldt_info.flags >> 4) & 1;
5635     seg_not_present = (ldt_info.flags >> 5) & 1;
5636     useable = (ldt_info.flags >> 6) & 1;
5637 #ifdef TARGET_ABI32
5638     lm = 0;
5639 #else
5640     lm = (ldt_info.flags >> 7) & 1;
5641 #endif
5642     if (contents == 3) {
5643         if (oldmode)
5644             return -TARGET_EINVAL;
5645         if (seg_not_present == 0)
5646             return -TARGET_EINVAL;
5647     }
5648     /* allocate the LDT */
5649     if (!ldt_table) {
5650         env->ldt.base = target_mmap(0,
5651                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
5652                                     PROT_READ|PROT_WRITE,
5653                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
5654         if (env->ldt.base == -1)
5655             return -TARGET_ENOMEM;
5656         memset(g2h(env->ldt.base), 0,
5657                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
5658         env->ldt.limit = 0xffff;
5659         ldt_table = g2h(env->ldt.base);
5660     }
5661 
5662     /* NOTE: same code as Linux kernel */
5663     /* Allow LDTs to be cleared by the user. */
5664     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5665         if (oldmode ||
5666             (contents == 0		&&
5667              read_exec_only == 1	&&
5668              seg_32bit == 0		&&
5669              limit_in_pages == 0	&&
5670              seg_not_present == 1	&&
5671              useable == 0 )) {
5672             entry_1 = 0;
5673             entry_2 = 0;
5674             goto install;
5675         }
5676     }
5677 
5678     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5679         (ldt_info.limit & 0x0ffff);
5680     entry_2 = (ldt_info.base_addr & 0xff000000) |
5681         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5682         (ldt_info.limit & 0xf0000) |
5683         ((read_exec_only ^ 1) << 9) |
5684         (contents << 10) |
5685         ((seg_not_present ^ 1) << 15) |
5686         (seg_32bit << 22) |
5687         (limit_in_pages << 23) |
5688         (lm << 21) |
5689         0x7000;
5690     if (!oldmode)
5691         entry_2 |= (useable << 20);
5692 
5693     /* Install the new entry ...  */
5694 install:
5695     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
5696     lp[0] = tswap32(entry_1);
5697     lp[1] = tswap32(entry_2);
5698     return 0;
5699 }
5700 
5701 /* specific and weird i386 syscalls */
5702 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
5703                               unsigned long bytecount)
5704 {
5705     abi_long ret;
5706 
5707     switch (func) {
5708     case 0:
5709         ret = read_ldt(ptr, bytecount);
5710         break;
5711     case 1:
5712         ret = write_ldt(env, ptr, bytecount, 1);
5713         break;
5714     case 0x11:
5715         ret = write_ldt(env, ptr, bytecount, 0);
5716         break;
5717     default:
5718         ret = -TARGET_ENOSYS;
5719         break;
5720     }
5721     return ret;
5722 }
5723 
5724 #if defined(TARGET_ABI32)
5725 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
5726 {
5727     uint64_t *gdt_table = g2h(env->gdt.base);
5728     struct target_modify_ldt_ldt_s ldt_info;
5729     struct target_modify_ldt_ldt_s *target_ldt_info;
5730     int seg_32bit, contents, read_exec_only, limit_in_pages;
5731     int seg_not_present, useable, lm;
5732     uint32_t *lp, entry_1, entry_2;
5733     int i;
5734 
5735     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5736     if (!target_ldt_info)
5737         return -TARGET_EFAULT;
5738     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5739     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5740     ldt_info.limit = tswap32(target_ldt_info->limit);
5741     ldt_info.flags = tswap32(target_ldt_info->flags);
5742     if (ldt_info.entry_number == -1) {
5743         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
5744             if (gdt_table[i] == 0) {
5745                 ldt_info.entry_number = i;
5746                 target_ldt_info->entry_number = tswap32(i);
5747                 break;
5748             }
5749         }
5750     }
5751     unlock_user_struct(target_ldt_info, ptr, 1);
5752 
5753     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
5754         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
5755            return -TARGET_EINVAL;
5756     seg_32bit = ldt_info.flags & 1;
5757     contents = (ldt_info.flags >> 1) & 3;
5758     read_exec_only = (ldt_info.flags >> 3) & 1;
5759     limit_in_pages = (ldt_info.flags >> 4) & 1;
5760     seg_not_present = (ldt_info.flags >> 5) & 1;
5761     useable = (ldt_info.flags >> 6) & 1;
5762 #ifdef TARGET_ABI32
5763     lm = 0;
5764 #else
5765     lm = (ldt_info.flags >> 7) & 1;
5766 #endif
5767 
5768     if (contents == 3) {
5769         if (seg_not_present == 0)
5770             return -TARGET_EINVAL;
5771     }
5772 
5773     /* NOTE: same code as Linux kernel */
5774     /* Allow LDTs to be cleared by the user. */
5775     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5776         if ((contents == 0             &&
5777              read_exec_only == 1       &&
5778              seg_32bit == 0            &&
5779              limit_in_pages == 0       &&
5780              seg_not_present == 1      &&
5781              useable == 0 )) {
5782             entry_1 = 0;
5783             entry_2 = 0;
5784             goto install;
5785         }
5786     }
5787 
5788     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5789         (ldt_info.limit & 0x0ffff);
5790     entry_2 = (ldt_info.base_addr & 0xff000000) |
5791         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5792         (ldt_info.limit & 0xf0000) |
5793         ((read_exec_only ^ 1) << 9) |
5794         (contents << 10) |
5795         ((seg_not_present ^ 1) << 15) |
5796         (seg_32bit << 22) |
5797         (limit_in_pages << 23) |
5798         (useable << 20) |
5799         (lm << 21) |
5800         0x7000;
5801 
5802     /* Install the new entry ...  */
5803 install:
5804     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
5805     lp[0] = tswap32(entry_1);
5806     lp[1] = tswap32(entry_2);
5807     return 0;
5808 }
5809 
5810 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
5811 {
5812     struct target_modify_ldt_ldt_s *target_ldt_info;
5813     uint64_t *gdt_table = g2h(env->gdt.base);
5814     uint32_t base_addr, limit, flags;
5815     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
5816     int seg_not_present, useable, lm;
5817     uint32_t *lp, entry_1, entry_2;
5818 
5819     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5820     if (!target_ldt_info)
5821         return -TARGET_EFAULT;
5822     idx = tswap32(target_ldt_info->entry_number);
5823     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
5824         idx > TARGET_GDT_ENTRY_TLS_MAX) {
5825         unlock_user_struct(target_ldt_info, ptr, 1);
5826         return -TARGET_EINVAL;
5827     }
5828     lp = (uint32_t *)(gdt_table + idx);
5829     entry_1 = tswap32(lp[0]);
5830     entry_2 = tswap32(lp[1]);
5831 
5832     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
5833     contents = (entry_2 >> 10) & 3;
5834     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
5835     seg_32bit = (entry_2 >> 22) & 1;
5836     limit_in_pages = (entry_2 >> 23) & 1;
5837     useable = (entry_2 >> 20) & 1;
5838 #ifdef TARGET_ABI32
5839     lm = 0;
5840 #else
5841     lm = (entry_2 >> 21) & 1;
5842 #endif
5843     flags = (seg_32bit << 0) | (contents << 1) |
5844         (read_exec_only << 3) | (limit_in_pages << 4) |
5845         (seg_not_present << 5) | (useable << 6) | (lm << 7);
5846     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
5847     base_addr = (entry_1 >> 16) |
5848         (entry_2 & 0xff000000) |
5849         ((entry_2 & 0xff) << 16);
5850     target_ldt_info->base_addr = tswapal(base_addr);
5851     target_ldt_info->limit = tswap32(limit);
5852     target_ldt_info->flags = tswap32(flags);
5853     unlock_user_struct(target_ldt_info, ptr, 1);
5854     return 0;
5855 }
5856 
5857 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5858 {
5859     return -ENOSYS;
5860 }
5861 #else
5862 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5863 {
5864     abi_long ret = 0;
5865     abi_ulong val;
5866     int idx;
5867 
5868     switch(code) {
5869     case TARGET_ARCH_SET_GS:
5870     case TARGET_ARCH_SET_FS:
5871         if (code == TARGET_ARCH_SET_GS)
5872             idx = R_GS;
5873         else
5874             idx = R_FS;
5875         cpu_x86_load_seg(env, idx, 0);
5876         env->segs[idx].base = addr;
5877         break;
5878     case TARGET_ARCH_GET_GS:
5879     case TARGET_ARCH_GET_FS:
5880         if (code == TARGET_ARCH_GET_GS)
5881             idx = R_GS;
5882         else
5883             idx = R_FS;
5884         val = env->segs[idx].base;
5885         if (put_user(val, addr, abi_ulong))
5886             ret = -TARGET_EFAULT;
5887         break;
5888     default:
5889         ret = -TARGET_EINVAL;
5890         break;
5891     }
5892     return ret;
5893 }
5894 #endif /* defined(TARGET_ABI32 */
5895 
5896 #endif /* defined(TARGET_I386) */
5897 
5898 #define NEW_STACK_SIZE 0x40000
5899 
5900 
5901 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
5902 typedef struct {
5903     CPUArchState *env;
5904     pthread_mutex_t mutex;
5905     pthread_cond_t cond;
5906     pthread_t thread;
5907     uint32_t tid;
5908     abi_ulong child_tidptr;
5909     abi_ulong parent_tidptr;
5910     sigset_t sigmask;
5911 } new_thread_info;
5912 
5913 static void *clone_func(void *arg)
5914 {
5915     new_thread_info *info = arg;
5916     CPUArchState *env;
5917     CPUState *cpu;
5918     TaskState *ts;
5919 
5920     rcu_register_thread();
5921     tcg_register_thread();
5922     env = info->env;
5923     cpu = env_cpu(env);
5924     thread_cpu = cpu;
5925     ts = (TaskState *)cpu->opaque;
5926     info->tid = sys_gettid();
5927     task_settid(ts);
5928     if (info->child_tidptr)
5929         put_user_u32(info->tid, info->child_tidptr);
5930     if (info->parent_tidptr)
5931         put_user_u32(info->tid, info->parent_tidptr);
5932     qemu_guest_random_seed_thread_part2(cpu->random_seed);
5933     /* Enable signals.  */
5934     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
5935     /* Signal to the parent that we're ready.  */
5936     pthread_mutex_lock(&info->mutex);
5937     pthread_cond_broadcast(&info->cond);
5938     pthread_mutex_unlock(&info->mutex);
5939     /* Wait until the parent has finished initializing the tls state.  */
5940     pthread_mutex_lock(&clone_lock);
5941     pthread_mutex_unlock(&clone_lock);
5942     cpu_loop(env);
5943     /* never exits */
5944     return NULL;
5945 }
5946 
5947 /* do_fork() Must return host values and target errnos (unlike most
5948    do_*() functions). */
5949 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
5950                    abi_ulong parent_tidptr, target_ulong newtls,
5951                    abi_ulong child_tidptr)
5952 {
5953     CPUState *cpu = env_cpu(env);
5954     int ret;
5955     TaskState *ts;
5956     CPUState *new_cpu;
5957     CPUArchState *new_env;
5958     sigset_t sigmask;
5959 
5960     flags &= ~CLONE_IGNORED_FLAGS;
5961 
5962     /* Emulate vfork() with fork() */
5963     if (flags & CLONE_VFORK)
5964         flags &= ~(CLONE_VFORK | CLONE_VM);
5965 
5966     if (flags & CLONE_VM) {
5967         TaskState *parent_ts = (TaskState *)cpu->opaque;
5968         new_thread_info info;
5969         pthread_attr_t attr;
5970 
5971         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
5972             (flags & CLONE_INVALID_THREAD_FLAGS)) {
5973             return -TARGET_EINVAL;
5974         }
5975 
5976         ts = g_new0(TaskState, 1);
5977         init_task_state(ts);
5978 
5979         /* Grab a mutex so that thread setup appears atomic.  */
5980         pthread_mutex_lock(&clone_lock);
5981 
5982         /* we create a new CPU instance. */
5983         new_env = cpu_copy(env);
5984         /* Init regs that differ from the parent.  */
5985         cpu_clone_regs_child(new_env, newsp, flags);
5986         cpu_clone_regs_parent(env, flags);
5987         new_cpu = env_cpu(new_env);
5988         new_cpu->opaque = ts;
5989         ts->bprm = parent_ts->bprm;
5990         ts->info = parent_ts->info;
5991         ts->signal_mask = parent_ts->signal_mask;
5992 
5993         if (flags & CLONE_CHILD_CLEARTID) {
5994             ts->child_tidptr = child_tidptr;
5995         }
5996 
5997         if (flags & CLONE_SETTLS) {
5998             cpu_set_tls (new_env, newtls);
5999         }
6000 
6001         memset(&info, 0, sizeof(info));
6002         pthread_mutex_init(&info.mutex, NULL);
6003         pthread_mutex_lock(&info.mutex);
6004         pthread_cond_init(&info.cond, NULL);
6005         info.env = new_env;
6006         if (flags & CLONE_CHILD_SETTID) {
6007             info.child_tidptr = child_tidptr;
6008         }
6009         if (flags & CLONE_PARENT_SETTID) {
6010             info.parent_tidptr = parent_tidptr;
6011         }
6012 
6013         ret = pthread_attr_init(&attr);
6014         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6015         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6016         /* It is not safe to deliver signals until the child has finished
6017            initializing, so temporarily block all signals.  */
6018         sigfillset(&sigmask);
6019         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6020         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6021 
6022         /* If this is our first additional thread, we need to ensure we
6023          * generate code for parallel execution and flush old translations.
6024          */
6025         if (!parallel_cpus) {
6026             parallel_cpus = true;
6027             tb_flush(cpu);
6028         }
6029 
6030         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6031         /* TODO: Free new CPU state if thread creation failed.  */
6032 
6033         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6034         pthread_attr_destroy(&attr);
6035         if (ret == 0) {
6036             /* Wait for the child to initialize.  */
6037             pthread_cond_wait(&info.cond, &info.mutex);
6038             ret = info.tid;
6039         } else {
6040             ret = -1;
6041         }
6042         pthread_mutex_unlock(&info.mutex);
6043         pthread_cond_destroy(&info.cond);
6044         pthread_mutex_destroy(&info.mutex);
6045         pthread_mutex_unlock(&clone_lock);
6046     } else {
6047         /* if no CLONE_VM, we consider it is a fork */
6048         if (flags & CLONE_INVALID_FORK_FLAGS) {
6049             return -TARGET_EINVAL;
6050         }
6051 
6052         /* We can't support custom termination signals */
6053         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6054             return -TARGET_EINVAL;
6055         }
6056 
6057         if (block_signals()) {
6058             return -TARGET_ERESTARTSYS;
6059         }
6060 
6061         fork_start();
6062         ret = fork();
6063         if (ret == 0) {
6064             /* Child Process.  */
6065             cpu_clone_regs_child(env, newsp, flags);
6066             fork_end(1);
6067             /* There is a race condition here.  The parent process could
6068                theoretically read the TID in the child process before the child
6069                tid is set.  This would require using either ptrace
6070                (not implemented) or having *_tidptr to point at a shared memory
6071                mapping.  We can't repeat the spinlock hack used above because
6072                the child process gets its own copy of the lock.  */
6073             if (flags & CLONE_CHILD_SETTID)
6074                 put_user_u32(sys_gettid(), child_tidptr);
6075             if (flags & CLONE_PARENT_SETTID)
6076                 put_user_u32(sys_gettid(), parent_tidptr);
6077             ts = (TaskState *)cpu->opaque;
6078             if (flags & CLONE_SETTLS)
6079                 cpu_set_tls (env, newtls);
6080             if (flags & CLONE_CHILD_CLEARTID)
6081                 ts->child_tidptr = child_tidptr;
6082         } else {
6083             cpu_clone_regs_parent(env, flags);
6084             fork_end(0);
6085         }
6086     }
6087     return ret;
6088 }
6089 
6090 /* warning : doesn't handle linux specific flags... */
6091 static int target_to_host_fcntl_cmd(int cmd)
6092 {
6093     int ret;
6094 
6095     switch(cmd) {
6096     case TARGET_F_DUPFD:
6097     case TARGET_F_GETFD:
6098     case TARGET_F_SETFD:
6099     case TARGET_F_GETFL:
6100     case TARGET_F_SETFL:
6101         ret = cmd;
6102         break;
6103     case TARGET_F_GETLK:
6104         ret = F_GETLK64;
6105         break;
6106     case TARGET_F_SETLK:
6107         ret = F_SETLK64;
6108         break;
6109     case TARGET_F_SETLKW:
6110         ret = F_SETLKW64;
6111         break;
6112     case TARGET_F_GETOWN:
6113         ret = F_GETOWN;
6114         break;
6115     case TARGET_F_SETOWN:
6116         ret = F_SETOWN;
6117         break;
6118     case TARGET_F_GETSIG:
6119         ret = F_GETSIG;
6120         break;
6121     case TARGET_F_SETSIG:
6122         ret = F_SETSIG;
6123         break;
6124 #if TARGET_ABI_BITS == 32
6125     case TARGET_F_GETLK64:
6126         ret = F_GETLK64;
6127         break;
6128     case TARGET_F_SETLK64:
6129         ret = F_SETLK64;
6130         break;
6131     case TARGET_F_SETLKW64:
6132         ret = F_SETLKW64;
6133         break;
6134 #endif
6135     case TARGET_F_SETLEASE:
6136         ret = F_SETLEASE;
6137         break;
6138     case TARGET_F_GETLEASE:
6139         ret = F_GETLEASE;
6140         break;
6141 #ifdef F_DUPFD_CLOEXEC
6142     case TARGET_F_DUPFD_CLOEXEC:
6143         ret = F_DUPFD_CLOEXEC;
6144         break;
6145 #endif
6146     case TARGET_F_NOTIFY:
6147         ret = F_NOTIFY;
6148         break;
6149 #ifdef F_GETOWN_EX
6150     case TARGET_F_GETOWN_EX:
6151         ret = F_GETOWN_EX;
6152         break;
6153 #endif
6154 #ifdef F_SETOWN_EX
6155     case TARGET_F_SETOWN_EX:
6156         ret = F_SETOWN_EX;
6157         break;
6158 #endif
6159 #ifdef F_SETPIPE_SZ
6160     case TARGET_F_SETPIPE_SZ:
6161         ret = F_SETPIPE_SZ;
6162         break;
6163     case TARGET_F_GETPIPE_SZ:
6164         ret = F_GETPIPE_SZ;
6165         break;
6166 #endif
6167     default:
6168         ret = -TARGET_EINVAL;
6169         break;
6170     }
6171 
6172 #if defined(__powerpc64__)
6173     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6174      * is not supported by kernel. The glibc fcntl call actually adjusts
6175      * them to 5, 6 and 7 before making the syscall(). Since we make the
6176      * syscall directly, adjust to what is supported by the kernel.
6177      */
6178     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6179         ret -= F_GETLK64 - 5;
6180     }
6181 #endif
6182 
6183     return ret;
6184 }
6185 
6186 #define FLOCK_TRANSTBL \
6187     switch (type) { \
6188     TRANSTBL_CONVERT(F_RDLCK); \
6189     TRANSTBL_CONVERT(F_WRLCK); \
6190     TRANSTBL_CONVERT(F_UNLCK); \
6191     TRANSTBL_CONVERT(F_EXLCK); \
6192     TRANSTBL_CONVERT(F_SHLCK); \
6193     }
6194 
6195 static int target_to_host_flock(int type)
6196 {
6197 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6198     FLOCK_TRANSTBL
6199 #undef  TRANSTBL_CONVERT
6200     return -TARGET_EINVAL;
6201 }
6202 
6203 static int host_to_target_flock(int type)
6204 {
6205 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6206     FLOCK_TRANSTBL
6207 #undef  TRANSTBL_CONVERT
6208     /* if we don't know how to convert the value coming
6209      * from the host we copy to the target field as-is
6210      */
6211     return type;
6212 }
6213 
6214 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6215                                             abi_ulong target_flock_addr)
6216 {
6217     struct target_flock *target_fl;
6218     int l_type;
6219 
6220     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6221         return -TARGET_EFAULT;
6222     }
6223 
6224     __get_user(l_type, &target_fl->l_type);
6225     l_type = target_to_host_flock(l_type);
6226     if (l_type < 0) {
6227         return l_type;
6228     }
6229     fl->l_type = l_type;
6230     __get_user(fl->l_whence, &target_fl->l_whence);
6231     __get_user(fl->l_start, &target_fl->l_start);
6232     __get_user(fl->l_len, &target_fl->l_len);
6233     __get_user(fl->l_pid, &target_fl->l_pid);
6234     unlock_user_struct(target_fl, target_flock_addr, 0);
6235     return 0;
6236 }
6237 
6238 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6239                                           const struct flock64 *fl)
6240 {
6241     struct target_flock *target_fl;
6242     short l_type;
6243 
6244     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6245         return -TARGET_EFAULT;
6246     }
6247 
6248     l_type = host_to_target_flock(fl->l_type);
6249     __put_user(l_type, &target_fl->l_type);
6250     __put_user(fl->l_whence, &target_fl->l_whence);
6251     __put_user(fl->l_start, &target_fl->l_start);
6252     __put_user(fl->l_len, &target_fl->l_len);
6253     __put_user(fl->l_pid, &target_fl->l_pid);
6254     unlock_user_struct(target_fl, target_flock_addr, 1);
6255     return 0;
6256 }
6257 
6258 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6259 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6260 
6261 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6262 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6263                                                    abi_ulong target_flock_addr)
6264 {
6265     struct target_oabi_flock64 *target_fl;
6266     int l_type;
6267 
6268     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6269         return -TARGET_EFAULT;
6270     }
6271 
6272     __get_user(l_type, &target_fl->l_type);
6273     l_type = target_to_host_flock(l_type);
6274     if (l_type < 0) {
6275         return l_type;
6276     }
6277     fl->l_type = l_type;
6278     __get_user(fl->l_whence, &target_fl->l_whence);
6279     __get_user(fl->l_start, &target_fl->l_start);
6280     __get_user(fl->l_len, &target_fl->l_len);
6281     __get_user(fl->l_pid, &target_fl->l_pid);
6282     unlock_user_struct(target_fl, target_flock_addr, 0);
6283     return 0;
6284 }
6285 
6286 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6287                                                  const struct flock64 *fl)
6288 {
6289     struct target_oabi_flock64 *target_fl;
6290     short l_type;
6291 
6292     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6293         return -TARGET_EFAULT;
6294     }
6295 
6296     l_type = host_to_target_flock(fl->l_type);
6297     __put_user(l_type, &target_fl->l_type);
6298     __put_user(fl->l_whence, &target_fl->l_whence);
6299     __put_user(fl->l_start, &target_fl->l_start);
6300     __put_user(fl->l_len, &target_fl->l_len);
6301     __put_user(fl->l_pid, &target_fl->l_pid);
6302     unlock_user_struct(target_fl, target_flock_addr, 1);
6303     return 0;
6304 }
6305 #endif
6306 
6307 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6308                                               abi_ulong target_flock_addr)
6309 {
6310     struct target_flock64 *target_fl;
6311     int l_type;
6312 
6313     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6314         return -TARGET_EFAULT;
6315     }
6316 
6317     __get_user(l_type, &target_fl->l_type);
6318     l_type = target_to_host_flock(l_type);
6319     if (l_type < 0) {
6320         return l_type;
6321     }
6322     fl->l_type = l_type;
6323     __get_user(fl->l_whence, &target_fl->l_whence);
6324     __get_user(fl->l_start, &target_fl->l_start);
6325     __get_user(fl->l_len, &target_fl->l_len);
6326     __get_user(fl->l_pid, &target_fl->l_pid);
6327     unlock_user_struct(target_fl, target_flock_addr, 0);
6328     return 0;
6329 }
6330 
6331 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6332                                             const struct flock64 *fl)
6333 {
6334     struct target_flock64 *target_fl;
6335     short l_type;
6336 
6337     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6338         return -TARGET_EFAULT;
6339     }
6340 
6341     l_type = host_to_target_flock(fl->l_type);
6342     __put_user(l_type, &target_fl->l_type);
6343     __put_user(fl->l_whence, &target_fl->l_whence);
6344     __put_user(fl->l_start, &target_fl->l_start);
6345     __put_user(fl->l_len, &target_fl->l_len);
6346     __put_user(fl->l_pid, &target_fl->l_pid);
6347     unlock_user_struct(target_fl, target_flock_addr, 1);
6348     return 0;
6349 }
6350 
6351 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6352 {
6353     struct flock64 fl64;
6354 #ifdef F_GETOWN_EX
6355     struct f_owner_ex fox;
6356     struct target_f_owner_ex *target_fox;
6357 #endif
6358     abi_long ret;
6359     int host_cmd = target_to_host_fcntl_cmd(cmd);
6360 
6361     if (host_cmd == -TARGET_EINVAL)
6362 	    return host_cmd;
6363 
6364     switch(cmd) {
6365     case TARGET_F_GETLK:
6366         ret = copy_from_user_flock(&fl64, arg);
6367         if (ret) {
6368             return ret;
6369         }
6370         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6371         if (ret == 0) {
6372             ret = copy_to_user_flock(arg, &fl64);
6373         }
6374         break;
6375 
6376     case TARGET_F_SETLK:
6377     case TARGET_F_SETLKW:
6378         ret = copy_from_user_flock(&fl64, arg);
6379         if (ret) {
6380             return ret;
6381         }
6382         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6383         break;
6384 
6385     case TARGET_F_GETLK64:
6386         ret = copy_from_user_flock64(&fl64, arg);
6387         if (ret) {
6388             return ret;
6389         }
6390         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6391         if (ret == 0) {
6392             ret = copy_to_user_flock64(arg, &fl64);
6393         }
6394         break;
6395     case TARGET_F_SETLK64:
6396     case TARGET_F_SETLKW64:
6397         ret = copy_from_user_flock64(&fl64, arg);
6398         if (ret) {
6399             return ret;
6400         }
6401         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6402         break;
6403 
6404     case TARGET_F_GETFL:
6405         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6406         if (ret >= 0) {
6407             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6408         }
6409         break;
6410 
6411     case TARGET_F_SETFL:
6412         ret = get_errno(safe_fcntl(fd, host_cmd,
6413                                    target_to_host_bitmask(arg,
6414                                                           fcntl_flags_tbl)));
6415         break;
6416 
6417 #ifdef F_GETOWN_EX
6418     case TARGET_F_GETOWN_EX:
6419         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6420         if (ret >= 0) {
6421             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6422                 return -TARGET_EFAULT;
6423             target_fox->type = tswap32(fox.type);
6424             target_fox->pid = tswap32(fox.pid);
6425             unlock_user_struct(target_fox, arg, 1);
6426         }
6427         break;
6428 #endif
6429 
6430 #ifdef F_SETOWN_EX
6431     case TARGET_F_SETOWN_EX:
6432         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6433             return -TARGET_EFAULT;
6434         fox.type = tswap32(target_fox->type);
6435         fox.pid = tswap32(target_fox->pid);
6436         unlock_user_struct(target_fox, arg, 0);
6437         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6438         break;
6439 #endif
6440 
6441     case TARGET_F_SETOWN:
6442     case TARGET_F_GETOWN:
6443     case TARGET_F_SETSIG:
6444     case TARGET_F_GETSIG:
6445     case TARGET_F_SETLEASE:
6446     case TARGET_F_GETLEASE:
6447     case TARGET_F_SETPIPE_SZ:
6448     case TARGET_F_GETPIPE_SZ:
6449         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6450         break;
6451 
6452     default:
6453         ret = get_errno(safe_fcntl(fd, cmd, arg));
6454         break;
6455     }
6456     return ret;
6457 }
6458 
6459 #ifdef USE_UID16
6460 
6461 static inline int high2lowuid(int uid)
6462 {
6463     if (uid > 65535)
6464         return 65534;
6465     else
6466         return uid;
6467 }
6468 
6469 static inline int high2lowgid(int gid)
6470 {
6471     if (gid > 65535)
6472         return 65534;
6473     else
6474         return gid;
6475 }
6476 
6477 static inline int low2highuid(int uid)
6478 {
6479     if ((int16_t)uid == -1)
6480         return -1;
6481     else
6482         return uid;
6483 }
6484 
6485 static inline int low2highgid(int gid)
6486 {
6487     if ((int16_t)gid == -1)
6488         return -1;
6489     else
6490         return gid;
6491 }
6492 static inline int tswapid(int id)
6493 {
6494     return tswap16(id);
6495 }
6496 
6497 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6498 
6499 #else /* !USE_UID16 */
6500 static inline int high2lowuid(int uid)
6501 {
6502     return uid;
6503 }
6504 static inline int high2lowgid(int gid)
6505 {
6506     return gid;
6507 }
6508 static inline int low2highuid(int uid)
6509 {
6510     return uid;
6511 }
6512 static inline int low2highgid(int gid)
6513 {
6514     return gid;
6515 }
6516 static inline int tswapid(int id)
6517 {
6518     return tswap32(id);
6519 }
6520 
6521 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6522 
6523 #endif /* USE_UID16 */
6524 
6525 /* We must do direct syscalls for setting UID/GID, because we want to
6526  * implement the Linux system call semantics of "change only for this thread",
6527  * not the libc/POSIX semantics of "change for all threads in process".
6528  * (See http://ewontfix.com/17/ for more details.)
6529  * We use the 32-bit version of the syscalls if present; if it is not
6530  * then either the host architecture supports 32-bit UIDs natively with
6531  * the standard syscall, or the 16-bit UID is the best we can do.
6532  */
6533 #ifdef __NR_setuid32
6534 #define __NR_sys_setuid __NR_setuid32
6535 #else
6536 #define __NR_sys_setuid __NR_setuid
6537 #endif
6538 #ifdef __NR_setgid32
6539 #define __NR_sys_setgid __NR_setgid32
6540 #else
6541 #define __NR_sys_setgid __NR_setgid
6542 #endif
6543 #ifdef __NR_setresuid32
6544 #define __NR_sys_setresuid __NR_setresuid32
6545 #else
6546 #define __NR_sys_setresuid __NR_setresuid
6547 #endif
6548 #ifdef __NR_setresgid32
6549 #define __NR_sys_setresgid __NR_setresgid32
6550 #else
6551 #define __NR_sys_setresgid __NR_setresgid
6552 #endif
6553 
6554 _syscall1(int, sys_setuid, uid_t, uid)
6555 _syscall1(int, sys_setgid, gid_t, gid)
6556 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
6557 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
6558 
6559 void syscall_init(void)
6560 {
6561     IOCTLEntry *ie;
6562     const argtype *arg_type;
6563     int size;
6564     int i;
6565 
6566     thunk_init(STRUCT_MAX);
6567 
6568 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6569 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6570 #include "syscall_types.h"
6571 #undef STRUCT
6572 #undef STRUCT_SPECIAL
6573 
6574     /* Build target_to_host_errno_table[] table from
6575      * host_to_target_errno_table[]. */
6576     for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
6577         target_to_host_errno_table[host_to_target_errno_table[i]] = i;
6578     }
6579 
6580     /* we patch the ioctl size if necessary. We rely on the fact that
6581        no ioctl has all the bits at '1' in the size field */
6582     ie = ioctl_entries;
6583     while (ie->target_cmd != 0) {
6584         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
6585             TARGET_IOC_SIZEMASK) {
6586             arg_type = ie->arg_type;
6587             if (arg_type[0] != TYPE_PTR) {
6588                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
6589                         ie->target_cmd);
6590                 exit(1);
6591             }
6592             arg_type++;
6593             size = thunk_type_size(arg_type, 0);
6594             ie->target_cmd = (ie->target_cmd &
6595                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
6596                 (size << TARGET_IOC_SIZESHIFT);
6597         }
6598 
6599         /* automatic consistency check if same arch */
6600 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6601     (defined(__x86_64__) && defined(TARGET_X86_64))
6602         if (unlikely(ie->target_cmd != ie->host_cmd)) {
6603             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6604                     ie->name, ie->target_cmd, ie->host_cmd);
6605         }
6606 #endif
6607         ie++;
6608     }
6609 }
6610 
6611 #if TARGET_ABI_BITS == 32
6612 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
6613 {
6614 #ifdef TARGET_WORDS_BIGENDIAN
6615     return ((uint64_t)word0 << 32) | word1;
6616 #else
6617     return ((uint64_t)word1 << 32) | word0;
6618 #endif
6619 }
6620 #else /* TARGET_ABI_BITS == 32 */
6621 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
6622 {
6623     return word0;
6624 }
6625 #endif /* TARGET_ABI_BITS != 32 */
6626 
6627 #ifdef TARGET_NR_truncate64
6628 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
6629                                          abi_long arg2,
6630                                          abi_long arg3,
6631                                          abi_long arg4)
6632 {
6633     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
6634         arg2 = arg3;
6635         arg3 = arg4;
6636     }
6637     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
6638 }
6639 #endif
6640 
6641 #ifdef TARGET_NR_ftruncate64
6642 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
6643                                           abi_long arg2,
6644                                           abi_long arg3,
6645                                           abi_long arg4)
6646 {
6647     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
6648         arg2 = arg3;
6649         arg3 = arg4;
6650     }
6651     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
6652 }
6653 #endif
6654 
6655 #if defined(TARGET_NR_timer_settime) || \
6656     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
6657 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
6658                                                  abi_ulong target_addr)
6659 {
6660     struct target_itimerspec *target_itspec;
6661 
6662     if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
6663         return -TARGET_EFAULT;
6664     }
6665 
6666     host_itspec->it_interval.tv_sec =
6667                             tswapal(target_itspec->it_interval.tv_sec);
6668     host_itspec->it_interval.tv_nsec =
6669                             tswapal(target_itspec->it_interval.tv_nsec);
6670     host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
6671     host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
6672 
6673     unlock_user_struct(target_itspec, target_addr, 1);
6674     return 0;
6675 }
6676 #endif
6677 
6678 #if ((defined(TARGET_NR_timerfd_gettime) || \
6679       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
6680     defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
6681 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
6682                                                struct itimerspec *host_its)
6683 {
6684     struct target_itimerspec *target_itspec;
6685 
6686     if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
6687         return -TARGET_EFAULT;
6688     }
6689 
6690     target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
6691     target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
6692 
6693     target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
6694     target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
6695 
6696     unlock_user_struct(target_itspec, target_addr, 0);
6697     return 0;
6698 }
6699 #endif
6700 
6701 #if defined(TARGET_NR_adjtimex) || \
6702     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
6703 static inline abi_long target_to_host_timex(struct timex *host_tx,
6704                                             abi_long target_addr)
6705 {
6706     struct target_timex *target_tx;
6707 
6708     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
6709         return -TARGET_EFAULT;
6710     }
6711 
6712     __get_user(host_tx->modes, &target_tx->modes);
6713     __get_user(host_tx->offset, &target_tx->offset);
6714     __get_user(host_tx->freq, &target_tx->freq);
6715     __get_user(host_tx->maxerror, &target_tx->maxerror);
6716     __get_user(host_tx->esterror, &target_tx->esterror);
6717     __get_user(host_tx->status, &target_tx->status);
6718     __get_user(host_tx->constant, &target_tx->constant);
6719     __get_user(host_tx->precision, &target_tx->precision);
6720     __get_user(host_tx->tolerance, &target_tx->tolerance);
6721     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
6722     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
6723     __get_user(host_tx->tick, &target_tx->tick);
6724     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
6725     __get_user(host_tx->jitter, &target_tx->jitter);
6726     __get_user(host_tx->shift, &target_tx->shift);
6727     __get_user(host_tx->stabil, &target_tx->stabil);
6728     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
6729     __get_user(host_tx->calcnt, &target_tx->calcnt);
6730     __get_user(host_tx->errcnt, &target_tx->errcnt);
6731     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
6732     __get_user(host_tx->tai, &target_tx->tai);
6733 
6734     unlock_user_struct(target_tx, target_addr, 0);
6735     return 0;
6736 }
6737 
6738 static inline abi_long host_to_target_timex(abi_long target_addr,
6739                                             struct timex *host_tx)
6740 {
6741     struct target_timex *target_tx;
6742 
6743     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
6744         return -TARGET_EFAULT;
6745     }
6746 
6747     __put_user(host_tx->modes, &target_tx->modes);
6748     __put_user(host_tx->offset, &target_tx->offset);
6749     __put_user(host_tx->freq, &target_tx->freq);
6750     __put_user(host_tx->maxerror, &target_tx->maxerror);
6751     __put_user(host_tx->esterror, &target_tx->esterror);
6752     __put_user(host_tx->status, &target_tx->status);
6753     __put_user(host_tx->constant, &target_tx->constant);
6754     __put_user(host_tx->precision, &target_tx->precision);
6755     __put_user(host_tx->tolerance, &target_tx->tolerance);
6756     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
6757     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
6758     __put_user(host_tx->tick, &target_tx->tick);
6759     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
6760     __put_user(host_tx->jitter, &target_tx->jitter);
6761     __put_user(host_tx->shift, &target_tx->shift);
6762     __put_user(host_tx->stabil, &target_tx->stabil);
6763     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
6764     __put_user(host_tx->calcnt, &target_tx->calcnt);
6765     __put_user(host_tx->errcnt, &target_tx->errcnt);
6766     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
6767     __put_user(host_tx->tai, &target_tx->tai);
6768 
6769     unlock_user_struct(target_tx, target_addr, 1);
6770     return 0;
6771 }
6772 #endif
6773 
6774 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
6775                                                abi_ulong target_addr)
6776 {
6777     struct target_sigevent *target_sevp;
6778 
6779     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
6780         return -TARGET_EFAULT;
6781     }
6782 
6783     /* This union is awkward on 64 bit systems because it has a 32 bit
6784      * integer and a pointer in it; we follow the conversion approach
6785      * used for handling sigval types in signal.c so the guest should get
6786      * the correct value back even if we did a 64 bit byteswap and it's
6787      * using the 32 bit integer.
6788      */
6789     host_sevp->sigev_value.sival_ptr =
6790         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
6791     host_sevp->sigev_signo =
6792         target_to_host_signal(tswap32(target_sevp->sigev_signo));
6793     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
6794     host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
6795 
6796     unlock_user_struct(target_sevp, target_addr, 1);
6797     return 0;
6798 }
6799 
6800 #if defined(TARGET_NR_mlockall)
6801 static inline int target_to_host_mlockall_arg(int arg)
6802 {
6803     int result = 0;
6804 
6805     if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
6806         result |= MCL_CURRENT;
6807     }
6808     if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
6809         result |= MCL_FUTURE;
6810     }
6811     return result;
6812 }
6813 #endif
6814 
6815 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
6816      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
6817      defined(TARGET_NR_newfstatat))
6818 static inline abi_long host_to_target_stat64(void *cpu_env,
6819                                              abi_ulong target_addr,
6820                                              struct stat *host_st)
6821 {
6822 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
6823     if (((CPUARMState *)cpu_env)->eabi) {
6824         struct target_eabi_stat64 *target_st;
6825 
6826         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6827             return -TARGET_EFAULT;
6828         memset(target_st, 0, sizeof(struct target_eabi_stat64));
6829         __put_user(host_st->st_dev, &target_st->st_dev);
6830         __put_user(host_st->st_ino, &target_st->st_ino);
6831 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6832         __put_user(host_st->st_ino, &target_st->__st_ino);
6833 #endif
6834         __put_user(host_st->st_mode, &target_st->st_mode);
6835         __put_user(host_st->st_nlink, &target_st->st_nlink);
6836         __put_user(host_st->st_uid, &target_st->st_uid);
6837         __put_user(host_st->st_gid, &target_st->st_gid);
6838         __put_user(host_st->st_rdev, &target_st->st_rdev);
6839         __put_user(host_st->st_size, &target_st->st_size);
6840         __put_user(host_st->st_blksize, &target_st->st_blksize);
6841         __put_user(host_st->st_blocks, &target_st->st_blocks);
6842         __put_user(host_st->st_atime, &target_st->target_st_atime);
6843         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6844         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6845 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6846         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
6847         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
6848         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
6849 #endif
6850         unlock_user_struct(target_st, target_addr, 1);
6851     } else
6852 #endif
6853     {
6854 #if defined(TARGET_HAS_STRUCT_STAT64)
6855         struct target_stat64 *target_st;
6856 #else
6857         struct target_stat *target_st;
6858 #endif
6859 
6860         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6861             return -TARGET_EFAULT;
6862         memset(target_st, 0, sizeof(*target_st));
6863         __put_user(host_st->st_dev, &target_st->st_dev);
6864         __put_user(host_st->st_ino, &target_st->st_ino);
6865 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6866         __put_user(host_st->st_ino, &target_st->__st_ino);
6867 #endif
6868         __put_user(host_st->st_mode, &target_st->st_mode);
6869         __put_user(host_st->st_nlink, &target_st->st_nlink);
6870         __put_user(host_st->st_uid, &target_st->st_uid);
6871         __put_user(host_st->st_gid, &target_st->st_gid);
6872         __put_user(host_st->st_rdev, &target_st->st_rdev);
6873         /* XXX: better use of kernel struct */
6874         __put_user(host_st->st_size, &target_st->st_size);
6875         __put_user(host_st->st_blksize, &target_st->st_blksize);
6876         __put_user(host_st->st_blocks, &target_st->st_blocks);
6877         __put_user(host_st->st_atime, &target_st->target_st_atime);
6878         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6879         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6880 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6881         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
6882         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
6883         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
6884 #endif
6885         unlock_user_struct(target_st, target_addr, 1);
6886     }
6887 
6888     return 0;
6889 }
6890 #endif
6891 
6892 #if defined(TARGET_NR_statx) && defined(__NR_statx)
6893 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
6894                                             abi_ulong target_addr)
6895 {
6896     struct target_statx *target_stx;
6897 
6898     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
6899         return -TARGET_EFAULT;
6900     }
6901     memset(target_stx, 0, sizeof(*target_stx));
6902 
6903     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
6904     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
6905     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
6906     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
6907     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
6908     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
6909     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
6910     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
6911     __put_user(host_stx->stx_size, &target_stx->stx_size);
6912     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
6913     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
6914     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
6915     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
6916     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
6917     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
6918     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
6919     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
6920     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
6921     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
6922     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
6923     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
6924     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
6925     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
6926 
6927     unlock_user_struct(target_stx, target_addr, 1);
6928 
6929     return 0;
6930 }
6931 #endif
6932 
6933 static int do_sys_futex(int *uaddr, int op, int val,
6934                          const struct timespec *timeout, int *uaddr2,
6935                          int val3)
6936 {
6937 #if HOST_LONG_BITS == 64
6938 #if defined(__NR_futex)
6939     /* always a 64-bit time_t, it doesn't define _time64 version  */
6940     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
6941 
6942 #endif
6943 #else /* HOST_LONG_BITS == 64 */
6944 #if defined(__NR_futex_time64)
6945     if (sizeof(timeout->tv_sec) == 8) {
6946         /* _time64 function on 32bit arch */
6947         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
6948     }
6949 #endif
6950 #if defined(__NR_futex)
6951     /* old function on 32bit arch */
6952     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
6953 #endif
6954 #endif /* HOST_LONG_BITS == 64 */
6955     g_assert_not_reached();
6956 }
6957 
6958 static int do_safe_futex(int *uaddr, int op, int val,
6959                          const struct timespec *timeout, int *uaddr2,
6960                          int val3)
6961 {
6962 #if HOST_LONG_BITS == 64
6963 #if defined(__NR_futex)
6964     /* always a 64-bit time_t, it doesn't define _time64 version  */
6965     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
6966 #endif
6967 #else /* HOST_LONG_BITS == 64 */
6968 #if defined(__NR_futex_time64)
6969     if (sizeof(timeout->tv_sec) == 8) {
6970         /* _time64 function on 32bit arch */
6971         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
6972                                            val3));
6973     }
6974 #endif
6975 #if defined(__NR_futex)
6976     /* old function on 32bit arch */
6977     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
6978 #endif
6979 #endif /* HOST_LONG_BITS == 64 */
6980     return -TARGET_ENOSYS;
6981 }
6982 
6983 /* ??? Using host futex calls even when target atomic operations
6984    are not really atomic probably breaks things.  However implementing
6985    futexes locally would make futexes shared between multiple processes
6986    tricky.  However they're probably useless because guest atomic
6987    operations won't work either.  */
6988 #if defined(TARGET_NR_futex)
6989 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
6990                     target_ulong uaddr2, int val3)
6991 {
6992     struct timespec ts, *pts;
6993     int base_op;
6994 
6995     /* ??? We assume FUTEX_* constants are the same on both host
6996        and target.  */
6997 #ifdef FUTEX_CMD_MASK
6998     base_op = op & FUTEX_CMD_MASK;
6999 #else
7000     base_op = op;
7001 #endif
7002     switch (base_op) {
7003     case FUTEX_WAIT:
7004     case FUTEX_WAIT_BITSET:
7005         if (timeout) {
7006             pts = &ts;
7007             target_to_host_timespec(pts, timeout);
7008         } else {
7009             pts = NULL;
7010         }
7011         return do_safe_futex(g2h(uaddr), op, tswap32(val), pts, NULL, val3);
7012     case FUTEX_WAKE:
7013         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7014     case FUTEX_FD:
7015         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7016     case FUTEX_REQUEUE:
7017     case FUTEX_CMP_REQUEUE:
7018     case FUTEX_WAKE_OP:
7019         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7020            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7021            But the prototype takes a `struct timespec *'; insert casts
7022            to satisfy the compiler.  We do not need to tswap TIMEOUT
7023            since it's not compared to guest memory.  */
7024         pts = (struct timespec *)(uintptr_t) timeout;
7025         return do_safe_futex(g2h(uaddr), op, val, pts, g2h(uaddr2),
7026                              (base_op == FUTEX_CMP_REQUEUE
7027                                       ? tswap32(val3)
7028                                       : val3));
7029     default:
7030         return -TARGET_ENOSYS;
7031     }
7032 }
7033 #endif
7034 
7035 #if defined(TARGET_NR_futex_time64)
7036 static int do_futex_time64(target_ulong uaddr, int op, int val, target_ulong timeout,
7037                            target_ulong uaddr2, int val3)
7038 {
7039     struct timespec ts, *pts;
7040     int base_op;
7041 
7042     /* ??? We assume FUTEX_* constants are the same on both host
7043        and target.  */
7044 #ifdef FUTEX_CMD_MASK
7045     base_op = op & FUTEX_CMD_MASK;
7046 #else
7047     base_op = op;
7048 #endif
7049     switch (base_op) {
7050     case FUTEX_WAIT:
7051     case FUTEX_WAIT_BITSET:
7052         if (timeout) {
7053             pts = &ts;
7054             target_to_host_timespec64(pts, timeout);
7055         } else {
7056             pts = NULL;
7057         }
7058         return do_safe_futex(g2h(uaddr), op, tswap32(val), pts, NULL, val3);
7059     case FUTEX_WAKE:
7060         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7061     case FUTEX_FD:
7062         return do_safe_futex(g2h(uaddr), op, val, NULL, NULL, 0);
7063     case FUTEX_REQUEUE:
7064     case FUTEX_CMP_REQUEUE:
7065     case FUTEX_WAKE_OP:
7066         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7067            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7068            But the prototype takes a `struct timespec *'; insert casts
7069            to satisfy the compiler.  We do not need to tswap TIMEOUT
7070            since it's not compared to guest memory.  */
7071         pts = (struct timespec *)(uintptr_t) timeout;
7072         return do_safe_futex(g2h(uaddr), op, val, pts, g2h(uaddr2),
7073                              (base_op == FUTEX_CMP_REQUEUE
7074                                       ? tswap32(val3)
7075                                       : val3));
7076     default:
7077         return -TARGET_ENOSYS;
7078     }
7079 }
7080 #endif
7081 
7082 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7083 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7084                                      abi_long handle, abi_long mount_id,
7085                                      abi_long flags)
7086 {
7087     struct file_handle *target_fh;
7088     struct file_handle *fh;
7089     int mid = 0;
7090     abi_long ret;
7091     char *name;
7092     unsigned int size, total_size;
7093 
7094     if (get_user_s32(size, handle)) {
7095         return -TARGET_EFAULT;
7096     }
7097 
7098     name = lock_user_string(pathname);
7099     if (!name) {
7100         return -TARGET_EFAULT;
7101     }
7102 
7103     total_size = sizeof(struct file_handle) + size;
7104     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7105     if (!target_fh) {
7106         unlock_user(name, pathname, 0);
7107         return -TARGET_EFAULT;
7108     }
7109 
7110     fh = g_malloc0(total_size);
7111     fh->handle_bytes = size;
7112 
7113     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7114     unlock_user(name, pathname, 0);
7115 
7116     /* man name_to_handle_at(2):
7117      * Other than the use of the handle_bytes field, the caller should treat
7118      * the file_handle structure as an opaque data type
7119      */
7120 
7121     memcpy(target_fh, fh, total_size);
7122     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7123     target_fh->handle_type = tswap32(fh->handle_type);
7124     g_free(fh);
7125     unlock_user(target_fh, handle, total_size);
7126 
7127     if (put_user_s32(mid, mount_id)) {
7128         return -TARGET_EFAULT;
7129     }
7130 
7131     return ret;
7132 
7133 }
7134 #endif
7135 
7136 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7137 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7138                                      abi_long flags)
7139 {
7140     struct file_handle *target_fh;
7141     struct file_handle *fh;
7142     unsigned int size, total_size;
7143     abi_long ret;
7144 
7145     if (get_user_s32(size, handle)) {
7146         return -TARGET_EFAULT;
7147     }
7148 
7149     total_size = sizeof(struct file_handle) + size;
7150     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7151     if (!target_fh) {
7152         return -TARGET_EFAULT;
7153     }
7154 
7155     fh = g_memdup(target_fh, total_size);
7156     fh->handle_bytes = size;
7157     fh->handle_type = tswap32(target_fh->handle_type);
7158 
7159     ret = get_errno(open_by_handle_at(mount_fd, fh,
7160                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7161 
7162     g_free(fh);
7163 
7164     unlock_user(target_fh, handle, total_size);
7165 
7166     return ret;
7167 }
7168 #endif
7169 
7170 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7171 
7172 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7173 {
7174     int host_flags;
7175     target_sigset_t *target_mask;
7176     sigset_t host_mask;
7177     abi_long ret;
7178 
7179     if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
7180         return -TARGET_EINVAL;
7181     }
7182     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7183         return -TARGET_EFAULT;
7184     }
7185 
7186     target_to_host_sigset(&host_mask, target_mask);
7187 
7188     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7189 
7190     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7191     if (ret >= 0) {
7192         fd_trans_register(ret, &target_signalfd_trans);
7193     }
7194 
7195     unlock_user_struct(target_mask, mask, 0);
7196 
7197     return ret;
7198 }
7199 #endif
7200 
7201 /* Map host to target signal numbers for the wait family of syscalls.
7202    Assume all other status bits are the same.  */
7203 int host_to_target_waitstatus(int status)
7204 {
7205     if (WIFSIGNALED(status)) {
7206         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7207     }
7208     if (WIFSTOPPED(status)) {
7209         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7210                | (status & 0xff);
7211     }
7212     return status;
7213 }
7214 
7215 static int open_self_cmdline(void *cpu_env, int fd)
7216 {
7217     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7218     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7219     int i;
7220 
7221     for (i = 0; i < bprm->argc; i++) {
7222         size_t len = strlen(bprm->argv[i]) + 1;
7223 
7224         if (write(fd, bprm->argv[i], len) != len) {
7225             return -1;
7226         }
7227     }
7228 
7229     return 0;
7230 }
7231 
7232 static int open_self_maps(void *cpu_env, int fd)
7233 {
7234     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7235     TaskState *ts = cpu->opaque;
7236     GSList *map_info = read_self_maps();
7237     GSList *s;
7238 
7239     for (s = map_info; s; s = g_slist_next(s)) {
7240         MapInfo *e = (MapInfo *) s->data;
7241 
7242         if (h2g_valid(e->start)) {
7243             unsigned long min = e->start;
7244             unsigned long max = e->end;
7245             int flags = page_get_flags(h2g(min));
7246             const char *path;
7247 
7248             max = h2g_valid(max - 1) ?
7249                 max : (uintptr_t) g2h(GUEST_ADDR_MAX) + 1;
7250 
7251             if (page_check_range(h2g(min), max - min, flags) == -1) {
7252                 continue;
7253             }
7254 
7255             if (h2g(min) == ts->info->stack_limit) {
7256                 path = "      [stack]";
7257             } else {
7258                 path = e->path;
7259             }
7260 
7261             dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
7262                     " %c%c%c%c %08" PRIx64 " %s %"PRId64" %s%s\n",
7263                     h2g(min), h2g(max - 1) + 1,
7264                     e->is_read ? 'r' : '-',
7265                     e->is_write ? 'w' : '-',
7266                     e->is_exec ? 'x' : '-',
7267                     e->is_priv ? 'p' : '-',
7268                     (uint64_t) e->offset, e->dev, e->inode,
7269                     path ? "         " : "", path ? path : "");
7270         }
7271     }
7272 
7273     free_self_maps(map_info);
7274 
7275 #ifdef TARGET_VSYSCALL_PAGE
7276     /*
7277      * We only support execution from the vsyscall page.
7278      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
7279      */
7280     dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
7281             " --xp 00000000 00:00 0 [vsyscall]\n",
7282             TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
7283 #endif
7284 
7285     return 0;
7286 }
7287 
7288 static int open_self_stat(void *cpu_env, int fd)
7289 {
7290     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7291     TaskState *ts = cpu->opaque;
7292     abi_ulong start_stack = ts->info->start_stack;
7293     int i;
7294 
7295     for (i = 0; i < 44; i++) {
7296       char buf[128];
7297       int len;
7298       uint64_t val = 0;
7299 
7300       if (i == 0) {
7301         /* pid */
7302         val = getpid();
7303         snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7304       } else if (i == 1) {
7305         /* app name */
7306         snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]);
7307       } else if (i == 27) {
7308         /* stack bottom */
7309         val = start_stack;
7310         snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7311       } else {
7312         /* for the rest, there is MasterCard */
7313         snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' ');
7314       }
7315 
7316       len = strlen(buf);
7317       if (write(fd, buf, len) != len) {
7318           return -1;
7319       }
7320     }
7321 
7322     return 0;
7323 }
7324 
7325 static int open_self_auxv(void *cpu_env, int fd)
7326 {
7327     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7328     TaskState *ts = cpu->opaque;
7329     abi_ulong auxv = ts->info->saved_auxv;
7330     abi_ulong len = ts->info->auxv_len;
7331     char *ptr;
7332 
7333     /*
7334      * Auxiliary vector is stored in target process stack.
7335      * read in whole auxv vector and copy it to file
7336      */
7337     ptr = lock_user(VERIFY_READ, auxv, len, 0);
7338     if (ptr != NULL) {
7339         while (len > 0) {
7340             ssize_t r;
7341             r = write(fd, ptr, len);
7342             if (r <= 0) {
7343                 break;
7344             }
7345             len -= r;
7346             ptr += r;
7347         }
7348         lseek(fd, 0, SEEK_SET);
7349         unlock_user(ptr, auxv, len);
7350     }
7351 
7352     return 0;
7353 }
7354 
7355 static int is_proc_myself(const char *filename, const char *entry)
7356 {
7357     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7358         filename += strlen("/proc/");
7359         if (!strncmp(filename, "self/", strlen("self/"))) {
7360             filename += strlen("self/");
7361         } else if (*filename >= '1' && *filename <= '9') {
7362             char myself[80];
7363             snprintf(myself, sizeof(myself), "%d/", getpid());
7364             if (!strncmp(filename, myself, strlen(myself))) {
7365                 filename += strlen(myself);
7366             } else {
7367                 return 0;
7368             }
7369         } else {
7370             return 0;
7371         }
7372         if (!strcmp(filename, entry)) {
7373             return 1;
7374         }
7375     }
7376     return 0;
7377 }
7378 
7379 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
7380     defined(TARGET_SPARC) || defined(TARGET_M68K)
7381 static int is_proc(const char *filename, const char *entry)
7382 {
7383     return strcmp(filename, entry) == 0;
7384 }
7385 #endif
7386 
7387 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7388 static int open_net_route(void *cpu_env, int fd)
7389 {
7390     FILE *fp;
7391     char *line = NULL;
7392     size_t len = 0;
7393     ssize_t read;
7394 
7395     fp = fopen("/proc/net/route", "r");
7396     if (fp == NULL) {
7397         return -1;
7398     }
7399 
7400     /* read header */
7401 
7402     read = getline(&line, &len, fp);
7403     dprintf(fd, "%s", line);
7404 
7405     /* read routes */
7406 
7407     while ((read = getline(&line, &len, fp)) != -1) {
7408         char iface[16];
7409         uint32_t dest, gw, mask;
7410         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
7411         int fields;
7412 
7413         fields = sscanf(line,
7414                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7415                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
7416                         &mask, &mtu, &window, &irtt);
7417         if (fields != 11) {
7418             continue;
7419         }
7420         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7421                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
7422                 metric, tswap32(mask), mtu, window, irtt);
7423     }
7424 
7425     free(line);
7426     fclose(fp);
7427 
7428     return 0;
7429 }
7430 #endif
7431 
7432 #if defined(TARGET_SPARC)
7433 static int open_cpuinfo(void *cpu_env, int fd)
7434 {
7435     dprintf(fd, "type\t\t: sun4u\n");
7436     return 0;
7437 }
7438 #endif
7439 
7440 #if defined(TARGET_M68K)
7441 static int open_hardware(void *cpu_env, int fd)
7442 {
7443     dprintf(fd, "Model:\t\tqemu-m68k\n");
7444     return 0;
7445 }
7446 #endif
7447 
7448 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
7449 {
7450     struct fake_open {
7451         const char *filename;
7452         int (*fill)(void *cpu_env, int fd);
7453         int (*cmp)(const char *s1, const char *s2);
7454     };
7455     const struct fake_open *fake_open;
7456     static const struct fake_open fakes[] = {
7457         { "maps", open_self_maps, is_proc_myself },
7458         { "stat", open_self_stat, is_proc_myself },
7459         { "auxv", open_self_auxv, is_proc_myself },
7460         { "cmdline", open_self_cmdline, is_proc_myself },
7461 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7462         { "/proc/net/route", open_net_route, is_proc },
7463 #endif
7464 #if defined(TARGET_SPARC)
7465         { "/proc/cpuinfo", open_cpuinfo, is_proc },
7466 #endif
7467 #if defined(TARGET_M68K)
7468         { "/proc/hardware", open_hardware, is_proc },
7469 #endif
7470         { NULL, NULL, NULL }
7471     };
7472 
7473     if (is_proc_myself(pathname, "exe")) {
7474         int execfd = qemu_getauxval(AT_EXECFD);
7475         return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
7476     }
7477 
7478     for (fake_open = fakes; fake_open->filename; fake_open++) {
7479         if (fake_open->cmp(pathname, fake_open->filename)) {
7480             break;
7481         }
7482     }
7483 
7484     if (fake_open->filename) {
7485         const char *tmpdir;
7486         char filename[PATH_MAX];
7487         int fd, r;
7488 
7489         /* create temporary file to map stat to */
7490         tmpdir = getenv("TMPDIR");
7491         if (!tmpdir)
7492             tmpdir = "/tmp";
7493         snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
7494         fd = mkstemp(filename);
7495         if (fd < 0) {
7496             return fd;
7497         }
7498         unlink(filename);
7499 
7500         if ((r = fake_open->fill(cpu_env, fd))) {
7501             int e = errno;
7502             close(fd);
7503             errno = e;
7504             return r;
7505         }
7506         lseek(fd, 0, SEEK_SET);
7507 
7508         return fd;
7509     }
7510 
7511     return safe_openat(dirfd, path(pathname), flags, mode);
7512 }
7513 
7514 #define TIMER_MAGIC 0x0caf0000
7515 #define TIMER_MAGIC_MASK 0xffff0000
7516 
7517 /* Convert QEMU provided timer ID back to internal 16bit index format */
7518 static target_timer_t get_timer_id(abi_long arg)
7519 {
7520     target_timer_t timerid = arg;
7521 
7522     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
7523         return -TARGET_EINVAL;
7524     }
7525 
7526     timerid &= 0xffff;
7527 
7528     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
7529         return -TARGET_EINVAL;
7530     }
7531 
7532     return timerid;
7533 }
7534 
7535 static int target_to_host_cpu_mask(unsigned long *host_mask,
7536                                    size_t host_size,
7537                                    abi_ulong target_addr,
7538                                    size_t target_size)
7539 {
7540     unsigned target_bits = sizeof(abi_ulong) * 8;
7541     unsigned host_bits = sizeof(*host_mask) * 8;
7542     abi_ulong *target_mask;
7543     unsigned i, j;
7544 
7545     assert(host_size >= target_size);
7546 
7547     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
7548     if (!target_mask) {
7549         return -TARGET_EFAULT;
7550     }
7551     memset(host_mask, 0, host_size);
7552 
7553     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7554         unsigned bit = i * target_bits;
7555         abi_ulong val;
7556 
7557         __get_user(val, &target_mask[i]);
7558         for (j = 0; j < target_bits; j++, bit++) {
7559             if (val & (1UL << j)) {
7560                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
7561             }
7562         }
7563     }
7564 
7565     unlock_user(target_mask, target_addr, 0);
7566     return 0;
7567 }
7568 
7569 static int host_to_target_cpu_mask(const unsigned long *host_mask,
7570                                    size_t host_size,
7571                                    abi_ulong target_addr,
7572                                    size_t target_size)
7573 {
7574     unsigned target_bits = sizeof(abi_ulong) * 8;
7575     unsigned host_bits = sizeof(*host_mask) * 8;
7576     abi_ulong *target_mask;
7577     unsigned i, j;
7578 
7579     assert(host_size >= target_size);
7580 
7581     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
7582     if (!target_mask) {
7583         return -TARGET_EFAULT;
7584     }
7585 
7586     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7587         unsigned bit = i * target_bits;
7588         abi_ulong val = 0;
7589 
7590         for (j = 0; j < target_bits; j++, bit++) {
7591             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
7592                 val |= 1UL << j;
7593             }
7594         }
7595         __put_user(val, &target_mask[i]);
7596     }
7597 
7598     unlock_user(target_mask, target_addr, target_size);
7599     return 0;
7600 }
7601 
7602 /* This is an internal helper for do_syscall so that it is easier
7603  * to have a single return point, so that actions, such as logging
7604  * of syscall results, can be performed.
7605  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
7606  */
7607 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
7608                             abi_long arg2, abi_long arg3, abi_long arg4,
7609                             abi_long arg5, abi_long arg6, abi_long arg7,
7610                             abi_long arg8)
7611 {
7612     CPUState *cpu = env_cpu(cpu_env);
7613     abi_long ret;
7614 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
7615     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
7616     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
7617     || defined(TARGET_NR_statx)
7618     struct stat st;
7619 #endif
7620 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
7621     || defined(TARGET_NR_fstatfs)
7622     struct statfs stfs;
7623 #endif
7624     void *p;
7625 
7626     switch(num) {
7627     case TARGET_NR_exit:
7628         /* In old applications this may be used to implement _exit(2).
7629            However in threaded applictions it is used for thread termination,
7630            and _exit_group is used for application termination.
7631            Do thread termination if we have more then one thread.  */
7632 
7633         if (block_signals()) {
7634             return -TARGET_ERESTARTSYS;
7635         }
7636 
7637         cpu_list_lock();
7638 
7639         if (CPU_NEXT(first_cpu)) {
7640             TaskState *ts;
7641 
7642             /* Remove the CPU from the list.  */
7643             QTAILQ_REMOVE_RCU(&cpus, cpu, node);
7644 
7645             cpu_list_unlock();
7646 
7647             ts = cpu->opaque;
7648             if (ts->child_tidptr) {
7649                 put_user_u32(0, ts->child_tidptr);
7650                 do_sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
7651                           NULL, NULL, 0);
7652             }
7653             thread_cpu = NULL;
7654             object_unref(OBJECT(cpu));
7655             g_free(ts);
7656             rcu_unregister_thread();
7657             pthread_exit(NULL);
7658         }
7659 
7660         cpu_list_unlock();
7661         preexit_cleanup(cpu_env, arg1);
7662         _exit(arg1);
7663         return 0; /* avoid warning */
7664     case TARGET_NR_read:
7665         if (arg2 == 0 && arg3 == 0) {
7666             return get_errno(safe_read(arg1, 0, 0));
7667         } else {
7668             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
7669                 return -TARGET_EFAULT;
7670             ret = get_errno(safe_read(arg1, p, arg3));
7671             if (ret >= 0 &&
7672                 fd_trans_host_to_target_data(arg1)) {
7673                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
7674             }
7675             unlock_user(p, arg2, ret);
7676         }
7677         return ret;
7678     case TARGET_NR_write:
7679         if (arg2 == 0 && arg3 == 0) {
7680             return get_errno(safe_write(arg1, 0, 0));
7681         }
7682         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
7683             return -TARGET_EFAULT;
7684         if (fd_trans_target_to_host_data(arg1)) {
7685             void *copy = g_malloc(arg3);
7686             memcpy(copy, p, arg3);
7687             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
7688             if (ret >= 0) {
7689                 ret = get_errno(safe_write(arg1, copy, ret));
7690             }
7691             g_free(copy);
7692         } else {
7693             ret = get_errno(safe_write(arg1, p, arg3));
7694         }
7695         unlock_user(p, arg2, 0);
7696         return ret;
7697 
7698 #ifdef TARGET_NR_open
7699     case TARGET_NR_open:
7700         if (!(p = lock_user_string(arg1)))
7701             return -TARGET_EFAULT;
7702         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
7703                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
7704                                   arg3));
7705         fd_trans_unregister(ret);
7706         unlock_user(p, arg1, 0);
7707         return ret;
7708 #endif
7709     case TARGET_NR_openat:
7710         if (!(p = lock_user_string(arg2)))
7711             return -TARGET_EFAULT;
7712         ret = get_errno(do_openat(cpu_env, arg1, p,
7713                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
7714                                   arg4));
7715         fd_trans_unregister(ret);
7716         unlock_user(p, arg2, 0);
7717         return ret;
7718 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7719     case TARGET_NR_name_to_handle_at:
7720         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
7721         return ret;
7722 #endif
7723 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7724     case TARGET_NR_open_by_handle_at:
7725         ret = do_open_by_handle_at(arg1, arg2, arg3);
7726         fd_trans_unregister(ret);
7727         return ret;
7728 #endif
7729     case TARGET_NR_close:
7730         fd_trans_unregister(arg1);
7731         return get_errno(close(arg1));
7732 
7733     case TARGET_NR_brk:
7734         return do_brk(arg1);
7735 #ifdef TARGET_NR_fork
7736     case TARGET_NR_fork:
7737         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
7738 #endif
7739 #ifdef TARGET_NR_waitpid
7740     case TARGET_NR_waitpid:
7741         {
7742             int status;
7743             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
7744             if (!is_error(ret) && arg2 && ret
7745                 && put_user_s32(host_to_target_waitstatus(status), arg2))
7746                 return -TARGET_EFAULT;
7747         }
7748         return ret;
7749 #endif
7750 #ifdef TARGET_NR_waitid
7751     case TARGET_NR_waitid:
7752         {
7753             siginfo_t info;
7754             info.si_pid = 0;
7755             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
7756             if (!is_error(ret) && arg3 && info.si_pid != 0) {
7757                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
7758                     return -TARGET_EFAULT;
7759                 host_to_target_siginfo(p, &info);
7760                 unlock_user(p, arg3, sizeof(target_siginfo_t));
7761             }
7762         }
7763         return ret;
7764 #endif
7765 #ifdef TARGET_NR_creat /* not on alpha */
7766     case TARGET_NR_creat:
7767         if (!(p = lock_user_string(arg1)))
7768             return -TARGET_EFAULT;
7769         ret = get_errno(creat(p, arg2));
7770         fd_trans_unregister(ret);
7771         unlock_user(p, arg1, 0);
7772         return ret;
7773 #endif
7774 #ifdef TARGET_NR_link
7775     case TARGET_NR_link:
7776         {
7777             void * p2;
7778             p = lock_user_string(arg1);
7779             p2 = lock_user_string(arg2);
7780             if (!p || !p2)
7781                 ret = -TARGET_EFAULT;
7782             else
7783                 ret = get_errno(link(p, p2));
7784             unlock_user(p2, arg2, 0);
7785             unlock_user(p, arg1, 0);
7786         }
7787         return ret;
7788 #endif
7789 #if defined(TARGET_NR_linkat)
7790     case TARGET_NR_linkat:
7791         {
7792             void * p2 = NULL;
7793             if (!arg2 || !arg4)
7794                 return -TARGET_EFAULT;
7795             p  = lock_user_string(arg2);
7796             p2 = lock_user_string(arg4);
7797             if (!p || !p2)
7798                 ret = -TARGET_EFAULT;
7799             else
7800                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
7801             unlock_user(p, arg2, 0);
7802             unlock_user(p2, arg4, 0);
7803         }
7804         return ret;
7805 #endif
7806 #ifdef TARGET_NR_unlink
7807     case TARGET_NR_unlink:
7808         if (!(p = lock_user_string(arg1)))
7809             return -TARGET_EFAULT;
7810         ret = get_errno(unlink(p));
7811         unlock_user(p, arg1, 0);
7812         return ret;
7813 #endif
7814 #if defined(TARGET_NR_unlinkat)
7815     case TARGET_NR_unlinkat:
7816         if (!(p = lock_user_string(arg2)))
7817             return -TARGET_EFAULT;
7818         ret = get_errno(unlinkat(arg1, p, arg3));
7819         unlock_user(p, arg2, 0);
7820         return ret;
7821 #endif
7822     case TARGET_NR_execve:
7823         {
7824             char **argp, **envp;
7825             int argc, envc;
7826             abi_ulong gp;
7827             abi_ulong guest_argp;
7828             abi_ulong guest_envp;
7829             abi_ulong addr;
7830             char **q;
7831             int total_size = 0;
7832 
7833             argc = 0;
7834             guest_argp = arg2;
7835             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
7836                 if (get_user_ual(addr, gp))
7837                     return -TARGET_EFAULT;
7838                 if (!addr)
7839                     break;
7840                 argc++;
7841             }
7842             envc = 0;
7843             guest_envp = arg3;
7844             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
7845                 if (get_user_ual(addr, gp))
7846                     return -TARGET_EFAULT;
7847                 if (!addr)
7848                     break;
7849                 envc++;
7850             }
7851 
7852             argp = g_new0(char *, argc + 1);
7853             envp = g_new0(char *, envc + 1);
7854 
7855             for (gp = guest_argp, q = argp; gp;
7856                   gp += sizeof(abi_ulong), q++) {
7857                 if (get_user_ual(addr, gp))
7858                     goto execve_efault;
7859                 if (!addr)
7860                     break;
7861                 if (!(*q = lock_user_string(addr)))
7862                     goto execve_efault;
7863                 total_size += strlen(*q) + 1;
7864             }
7865             *q = NULL;
7866 
7867             for (gp = guest_envp, q = envp; gp;
7868                   gp += sizeof(abi_ulong), q++) {
7869                 if (get_user_ual(addr, gp))
7870                     goto execve_efault;
7871                 if (!addr)
7872                     break;
7873                 if (!(*q = lock_user_string(addr)))
7874                     goto execve_efault;
7875                 total_size += strlen(*q) + 1;
7876             }
7877             *q = NULL;
7878 
7879             if (!(p = lock_user_string(arg1)))
7880                 goto execve_efault;
7881             /* Although execve() is not an interruptible syscall it is
7882              * a special case where we must use the safe_syscall wrapper:
7883              * if we allow a signal to happen before we make the host
7884              * syscall then we will 'lose' it, because at the point of
7885              * execve the process leaves QEMU's control. So we use the
7886              * safe syscall wrapper to ensure that we either take the
7887              * signal as a guest signal, or else it does not happen
7888              * before the execve completes and makes it the other
7889              * program's problem.
7890              */
7891             ret = get_errno(safe_execve(p, argp, envp));
7892             unlock_user(p, arg1, 0);
7893 
7894             goto execve_end;
7895 
7896         execve_efault:
7897             ret = -TARGET_EFAULT;
7898 
7899         execve_end:
7900             for (gp = guest_argp, q = argp; *q;
7901                   gp += sizeof(abi_ulong), q++) {
7902                 if (get_user_ual(addr, gp)
7903                     || !addr)
7904                     break;
7905                 unlock_user(*q, addr, 0);
7906             }
7907             for (gp = guest_envp, q = envp; *q;
7908                   gp += sizeof(abi_ulong), q++) {
7909                 if (get_user_ual(addr, gp)
7910                     || !addr)
7911                     break;
7912                 unlock_user(*q, addr, 0);
7913             }
7914 
7915             g_free(argp);
7916             g_free(envp);
7917         }
7918         return ret;
7919     case TARGET_NR_chdir:
7920         if (!(p = lock_user_string(arg1)))
7921             return -TARGET_EFAULT;
7922         ret = get_errno(chdir(p));
7923         unlock_user(p, arg1, 0);
7924         return ret;
7925 #ifdef TARGET_NR_time
7926     case TARGET_NR_time:
7927         {
7928             time_t host_time;
7929             ret = get_errno(time(&host_time));
7930             if (!is_error(ret)
7931                 && arg1
7932                 && put_user_sal(host_time, arg1))
7933                 return -TARGET_EFAULT;
7934         }
7935         return ret;
7936 #endif
7937 #ifdef TARGET_NR_mknod
7938     case TARGET_NR_mknod:
7939         if (!(p = lock_user_string(arg1)))
7940             return -TARGET_EFAULT;
7941         ret = get_errno(mknod(p, arg2, arg3));
7942         unlock_user(p, arg1, 0);
7943         return ret;
7944 #endif
7945 #if defined(TARGET_NR_mknodat)
7946     case TARGET_NR_mknodat:
7947         if (!(p = lock_user_string(arg2)))
7948             return -TARGET_EFAULT;
7949         ret = get_errno(mknodat(arg1, p, arg3, arg4));
7950         unlock_user(p, arg2, 0);
7951         return ret;
7952 #endif
7953 #ifdef TARGET_NR_chmod
7954     case TARGET_NR_chmod:
7955         if (!(p = lock_user_string(arg1)))
7956             return -TARGET_EFAULT;
7957         ret = get_errno(chmod(p, arg2));
7958         unlock_user(p, arg1, 0);
7959         return ret;
7960 #endif
7961 #ifdef TARGET_NR_lseek
7962     case TARGET_NR_lseek:
7963         return get_errno(lseek(arg1, arg2, arg3));
7964 #endif
7965 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
7966     /* Alpha specific */
7967     case TARGET_NR_getxpid:
7968         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
7969         return get_errno(getpid());
7970 #endif
7971 #ifdef TARGET_NR_getpid
7972     case TARGET_NR_getpid:
7973         return get_errno(getpid());
7974 #endif
7975     case TARGET_NR_mount:
7976         {
7977             /* need to look at the data field */
7978             void *p2, *p3;
7979 
7980             if (arg1) {
7981                 p = lock_user_string(arg1);
7982                 if (!p) {
7983                     return -TARGET_EFAULT;
7984                 }
7985             } else {
7986                 p = NULL;
7987             }
7988 
7989             p2 = lock_user_string(arg2);
7990             if (!p2) {
7991                 if (arg1) {
7992                     unlock_user(p, arg1, 0);
7993                 }
7994                 return -TARGET_EFAULT;
7995             }
7996 
7997             if (arg3) {
7998                 p3 = lock_user_string(arg3);
7999                 if (!p3) {
8000                     if (arg1) {
8001                         unlock_user(p, arg1, 0);
8002                     }
8003                     unlock_user(p2, arg2, 0);
8004                     return -TARGET_EFAULT;
8005                 }
8006             } else {
8007                 p3 = NULL;
8008             }
8009 
8010             /* FIXME - arg5 should be locked, but it isn't clear how to
8011              * do that since it's not guaranteed to be a NULL-terminated
8012              * string.
8013              */
8014             if (!arg5) {
8015                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8016             } else {
8017                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
8018             }
8019             ret = get_errno(ret);
8020 
8021             if (arg1) {
8022                 unlock_user(p, arg1, 0);
8023             }
8024             unlock_user(p2, arg2, 0);
8025             if (arg3) {
8026                 unlock_user(p3, arg3, 0);
8027             }
8028         }
8029         return ret;
8030 #ifdef TARGET_NR_umount
8031     case TARGET_NR_umount:
8032         if (!(p = lock_user_string(arg1)))
8033             return -TARGET_EFAULT;
8034         ret = get_errno(umount(p));
8035         unlock_user(p, arg1, 0);
8036         return ret;
8037 #endif
8038 #ifdef TARGET_NR_stime /* not on alpha */
8039     case TARGET_NR_stime:
8040         {
8041             struct timespec ts;
8042             ts.tv_nsec = 0;
8043             if (get_user_sal(ts.tv_sec, arg1)) {
8044                 return -TARGET_EFAULT;
8045             }
8046             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
8047         }
8048 #endif
8049 #ifdef TARGET_NR_alarm /* not on alpha */
8050     case TARGET_NR_alarm:
8051         return alarm(arg1);
8052 #endif
8053 #ifdef TARGET_NR_pause /* not on alpha */
8054     case TARGET_NR_pause:
8055         if (!block_signals()) {
8056             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
8057         }
8058         return -TARGET_EINTR;
8059 #endif
8060 #ifdef TARGET_NR_utime
8061     case TARGET_NR_utime:
8062         {
8063             struct utimbuf tbuf, *host_tbuf;
8064             struct target_utimbuf *target_tbuf;
8065             if (arg2) {
8066                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
8067                     return -TARGET_EFAULT;
8068                 tbuf.actime = tswapal(target_tbuf->actime);
8069                 tbuf.modtime = tswapal(target_tbuf->modtime);
8070                 unlock_user_struct(target_tbuf, arg2, 0);
8071                 host_tbuf = &tbuf;
8072             } else {
8073                 host_tbuf = NULL;
8074             }
8075             if (!(p = lock_user_string(arg1)))
8076                 return -TARGET_EFAULT;
8077             ret = get_errno(utime(p, host_tbuf));
8078             unlock_user(p, arg1, 0);
8079         }
8080         return ret;
8081 #endif
8082 #ifdef TARGET_NR_utimes
8083     case TARGET_NR_utimes:
8084         {
8085             struct timeval *tvp, tv[2];
8086             if (arg2) {
8087                 if (copy_from_user_timeval(&tv[0], arg2)
8088                     || copy_from_user_timeval(&tv[1],
8089                                               arg2 + sizeof(struct target_timeval)))
8090                     return -TARGET_EFAULT;
8091                 tvp = tv;
8092             } else {
8093                 tvp = NULL;
8094             }
8095             if (!(p = lock_user_string(arg1)))
8096                 return -TARGET_EFAULT;
8097             ret = get_errno(utimes(p, tvp));
8098             unlock_user(p, arg1, 0);
8099         }
8100         return ret;
8101 #endif
8102 #if defined(TARGET_NR_futimesat)
8103     case TARGET_NR_futimesat:
8104         {
8105             struct timeval *tvp, tv[2];
8106             if (arg3) {
8107                 if (copy_from_user_timeval(&tv[0], arg3)
8108                     || copy_from_user_timeval(&tv[1],
8109                                               arg3 + sizeof(struct target_timeval)))
8110                     return -TARGET_EFAULT;
8111                 tvp = tv;
8112             } else {
8113                 tvp = NULL;
8114             }
8115             if (!(p = lock_user_string(arg2))) {
8116                 return -TARGET_EFAULT;
8117             }
8118             ret = get_errno(futimesat(arg1, path(p), tvp));
8119             unlock_user(p, arg2, 0);
8120         }
8121         return ret;
8122 #endif
8123 #ifdef TARGET_NR_access
8124     case TARGET_NR_access:
8125         if (!(p = lock_user_string(arg1))) {
8126             return -TARGET_EFAULT;
8127         }
8128         ret = get_errno(access(path(p), arg2));
8129         unlock_user(p, arg1, 0);
8130         return ret;
8131 #endif
8132 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8133     case TARGET_NR_faccessat:
8134         if (!(p = lock_user_string(arg2))) {
8135             return -TARGET_EFAULT;
8136         }
8137         ret = get_errno(faccessat(arg1, p, arg3, 0));
8138         unlock_user(p, arg2, 0);
8139         return ret;
8140 #endif
8141 #ifdef TARGET_NR_nice /* not on alpha */
8142     case TARGET_NR_nice:
8143         return get_errno(nice(arg1));
8144 #endif
8145     case TARGET_NR_sync:
8146         sync();
8147         return 0;
8148 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8149     case TARGET_NR_syncfs:
8150         return get_errno(syncfs(arg1));
8151 #endif
8152     case TARGET_NR_kill:
8153         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8154 #ifdef TARGET_NR_rename
8155     case TARGET_NR_rename:
8156         {
8157             void *p2;
8158             p = lock_user_string(arg1);
8159             p2 = lock_user_string(arg2);
8160             if (!p || !p2)
8161                 ret = -TARGET_EFAULT;
8162             else
8163                 ret = get_errno(rename(p, p2));
8164             unlock_user(p2, arg2, 0);
8165             unlock_user(p, arg1, 0);
8166         }
8167         return ret;
8168 #endif
8169 #if defined(TARGET_NR_renameat)
8170     case TARGET_NR_renameat:
8171         {
8172             void *p2;
8173             p  = lock_user_string(arg2);
8174             p2 = lock_user_string(arg4);
8175             if (!p || !p2)
8176                 ret = -TARGET_EFAULT;
8177             else
8178                 ret = get_errno(renameat(arg1, p, arg3, p2));
8179             unlock_user(p2, arg4, 0);
8180             unlock_user(p, arg2, 0);
8181         }
8182         return ret;
8183 #endif
8184 #if defined(TARGET_NR_renameat2)
8185     case TARGET_NR_renameat2:
8186         {
8187             void *p2;
8188             p  = lock_user_string(arg2);
8189             p2 = lock_user_string(arg4);
8190             if (!p || !p2) {
8191                 ret = -TARGET_EFAULT;
8192             } else {
8193                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
8194             }
8195             unlock_user(p2, arg4, 0);
8196             unlock_user(p, arg2, 0);
8197         }
8198         return ret;
8199 #endif
8200 #ifdef TARGET_NR_mkdir
8201     case TARGET_NR_mkdir:
8202         if (!(p = lock_user_string(arg1)))
8203             return -TARGET_EFAULT;
8204         ret = get_errno(mkdir(p, arg2));
8205         unlock_user(p, arg1, 0);
8206         return ret;
8207 #endif
8208 #if defined(TARGET_NR_mkdirat)
8209     case TARGET_NR_mkdirat:
8210         if (!(p = lock_user_string(arg2)))
8211             return -TARGET_EFAULT;
8212         ret = get_errno(mkdirat(arg1, p, arg3));
8213         unlock_user(p, arg2, 0);
8214         return ret;
8215 #endif
8216 #ifdef TARGET_NR_rmdir
8217     case TARGET_NR_rmdir:
8218         if (!(p = lock_user_string(arg1)))
8219             return -TARGET_EFAULT;
8220         ret = get_errno(rmdir(p));
8221         unlock_user(p, arg1, 0);
8222         return ret;
8223 #endif
8224     case TARGET_NR_dup:
8225         ret = get_errno(dup(arg1));
8226         if (ret >= 0) {
8227             fd_trans_dup(arg1, ret);
8228         }
8229         return ret;
8230 #ifdef TARGET_NR_pipe
8231     case TARGET_NR_pipe:
8232         return do_pipe(cpu_env, arg1, 0, 0);
8233 #endif
8234 #ifdef TARGET_NR_pipe2
8235     case TARGET_NR_pipe2:
8236         return do_pipe(cpu_env, arg1,
8237                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8238 #endif
8239     case TARGET_NR_times:
8240         {
8241             struct target_tms *tmsp;
8242             struct tms tms;
8243             ret = get_errno(times(&tms));
8244             if (arg1) {
8245                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8246                 if (!tmsp)
8247                     return -TARGET_EFAULT;
8248                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8249                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8250                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8251                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8252             }
8253             if (!is_error(ret))
8254                 ret = host_to_target_clock_t(ret);
8255         }
8256         return ret;
8257     case TARGET_NR_acct:
8258         if (arg1 == 0) {
8259             ret = get_errno(acct(NULL));
8260         } else {
8261             if (!(p = lock_user_string(arg1))) {
8262                 return -TARGET_EFAULT;
8263             }
8264             ret = get_errno(acct(path(p)));
8265             unlock_user(p, arg1, 0);
8266         }
8267         return ret;
8268 #ifdef TARGET_NR_umount2
8269     case TARGET_NR_umount2:
8270         if (!(p = lock_user_string(arg1)))
8271             return -TARGET_EFAULT;
8272         ret = get_errno(umount2(p, arg2));
8273         unlock_user(p, arg1, 0);
8274         return ret;
8275 #endif
8276     case TARGET_NR_ioctl:
8277         return do_ioctl(arg1, arg2, arg3);
8278 #ifdef TARGET_NR_fcntl
8279     case TARGET_NR_fcntl:
8280         return do_fcntl(arg1, arg2, arg3);
8281 #endif
8282     case TARGET_NR_setpgid:
8283         return get_errno(setpgid(arg1, arg2));
8284     case TARGET_NR_umask:
8285         return get_errno(umask(arg1));
8286     case TARGET_NR_chroot:
8287         if (!(p = lock_user_string(arg1)))
8288             return -TARGET_EFAULT;
8289         ret = get_errno(chroot(p));
8290         unlock_user(p, arg1, 0);
8291         return ret;
8292 #ifdef TARGET_NR_dup2
8293     case TARGET_NR_dup2:
8294         ret = get_errno(dup2(arg1, arg2));
8295         if (ret >= 0) {
8296             fd_trans_dup(arg1, arg2);
8297         }
8298         return ret;
8299 #endif
8300 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8301     case TARGET_NR_dup3:
8302     {
8303         int host_flags;
8304 
8305         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
8306             return -EINVAL;
8307         }
8308         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
8309         ret = get_errno(dup3(arg1, arg2, host_flags));
8310         if (ret >= 0) {
8311             fd_trans_dup(arg1, arg2);
8312         }
8313         return ret;
8314     }
8315 #endif
8316 #ifdef TARGET_NR_getppid /* not on alpha */
8317     case TARGET_NR_getppid:
8318         return get_errno(getppid());
8319 #endif
8320 #ifdef TARGET_NR_getpgrp
8321     case TARGET_NR_getpgrp:
8322         return get_errno(getpgrp());
8323 #endif
8324     case TARGET_NR_setsid:
8325         return get_errno(setsid());
8326 #ifdef TARGET_NR_sigaction
8327     case TARGET_NR_sigaction:
8328         {
8329 #if defined(TARGET_ALPHA)
8330             struct target_sigaction act, oact, *pact = 0;
8331             struct target_old_sigaction *old_act;
8332             if (arg2) {
8333                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8334                     return -TARGET_EFAULT;
8335                 act._sa_handler = old_act->_sa_handler;
8336                 target_siginitset(&act.sa_mask, old_act->sa_mask);
8337                 act.sa_flags = old_act->sa_flags;
8338                 act.sa_restorer = 0;
8339                 unlock_user_struct(old_act, arg2, 0);
8340                 pact = &act;
8341             }
8342             ret = get_errno(do_sigaction(arg1, pact, &oact));
8343             if (!is_error(ret) && arg3) {
8344                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8345                     return -TARGET_EFAULT;
8346                 old_act->_sa_handler = oact._sa_handler;
8347                 old_act->sa_mask = oact.sa_mask.sig[0];
8348                 old_act->sa_flags = oact.sa_flags;
8349                 unlock_user_struct(old_act, arg3, 1);
8350             }
8351 #elif defined(TARGET_MIPS)
8352 	    struct target_sigaction act, oact, *pact, *old_act;
8353 
8354 	    if (arg2) {
8355                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8356                     return -TARGET_EFAULT;
8357 		act._sa_handler = old_act->_sa_handler;
8358 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8359 		act.sa_flags = old_act->sa_flags;
8360 		unlock_user_struct(old_act, arg2, 0);
8361 		pact = &act;
8362 	    } else {
8363 		pact = NULL;
8364 	    }
8365 
8366 	    ret = get_errno(do_sigaction(arg1, pact, &oact));
8367 
8368 	    if (!is_error(ret) && arg3) {
8369                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8370                     return -TARGET_EFAULT;
8371 		old_act->_sa_handler = oact._sa_handler;
8372 		old_act->sa_flags = oact.sa_flags;
8373 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
8374 		old_act->sa_mask.sig[1] = 0;
8375 		old_act->sa_mask.sig[2] = 0;
8376 		old_act->sa_mask.sig[3] = 0;
8377 		unlock_user_struct(old_act, arg3, 1);
8378 	    }
8379 #else
8380             struct target_old_sigaction *old_act;
8381             struct target_sigaction act, oact, *pact;
8382             if (arg2) {
8383                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8384                     return -TARGET_EFAULT;
8385                 act._sa_handler = old_act->_sa_handler;
8386                 target_siginitset(&act.sa_mask, old_act->sa_mask);
8387                 act.sa_flags = old_act->sa_flags;
8388                 act.sa_restorer = old_act->sa_restorer;
8389 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8390                 act.ka_restorer = 0;
8391 #endif
8392                 unlock_user_struct(old_act, arg2, 0);
8393                 pact = &act;
8394             } else {
8395                 pact = NULL;
8396             }
8397             ret = get_errno(do_sigaction(arg1, pact, &oact));
8398             if (!is_error(ret) && arg3) {
8399                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8400                     return -TARGET_EFAULT;
8401                 old_act->_sa_handler = oact._sa_handler;
8402                 old_act->sa_mask = oact.sa_mask.sig[0];
8403                 old_act->sa_flags = oact.sa_flags;
8404                 old_act->sa_restorer = oact.sa_restorer;
8405                 unlock_user_struct(old_act, arg3, 1);
8406             }
8407 #endif
8408         }
8409         return ret;
8410 #endif
8411     case TARGET_NR_rt_sigaction:
8412         {
8413 #if defined(TARGET_ALPHA)
8414             /* For Alpha and SPARC this is a 5 argument syscall, with
8415              * a 'restorer' parameter which must be copied into the
8416              * sa_restorer field of the sigaction struct.
8417              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8418              * and arg5 is the sigsetsize.
8419              * Alpha also has a separate rt_sigaction struct that it uses
8420              * here; SPARC uses the usual sigaction struct.
8421              */
8422             struct target_rt_sigaction *rt_act;
8423             struct target_sigaction act, oact, *pact = 0;
8424 
8425             if (arg4 != sizeof(target_sigset_t)) {
8426                 return -TARGET_EINVAL;
8427             }
8428             if (arg2) {
8429                 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
8430                     return -TARGET_EFAULT;
8431                 act._sa_handler = rt_act->_sa_handler;
8432                 act.sa_mask = rt_act->sa_mask;
8433                 act.sa_flags = rt_act->sa_flags;
8434                 act.sa_restorer = arg5;
8435                 unlock_user_struct(rt_act, arg2, 0);
8436                 pact = &act;
8437             }
8438             ret = get_errno(do_sigaction(arg1, pact, &oact));
8439             if (!is_error(ret) && arg3) {
8440                 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
8441                     return -TARGET_EFAULT;
8442                 rt_act->_sa_handler = oact._sa_handler;
8443                 rt_act->sa_mask = oact.sa_mask;
8444                 rt_act->sa_flags = oact.sa_flags;
8445                 unlock_user_struct(rt_act, arg3, 1);
8446             }
8447 #else
8448 #ifdef TARGET_SPARC
8449             target_ulong restorer = arg4;
8450             target_ulong sigsetsize = arg5;
8451 #else
8452             target_ulong sigsetsize = arg4;
8453 #endif
8454             struct target_sigaction *act;
8455             struct target_sigaction *oact;
8456 
8457             if (sigsetsize != sizeof(target_sigset_t)) {
8458                 return -TARGET_EINVAL;
8459             }
8460             if (arg2) {
8461                 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) {
8462                     return -TARGET_EFAULT;
8463                 }
8464 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8465                 act->ka_restorer = restorer;
8466 #endif
8467             } else {
8468                 act = NULL;
8469             }
8470             if (arg3) {
8471                 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
8472                     ret = -TARGET_EFAULT;
8473                     goto rt_sigaction_fail;
8474                 }
8475             } else
8476                 oact = NULL;
8477             ret = get_errno(do_sigaction(arg1, act, oact));
8478 	rt_sigaction_fail:
8479             if (act)
8480                 unlock_user_struct(act, arg2, 0);
8481             if (oact)
8482                 unlock_user_struct(oact, arg3, 1);
8483 #endif
8484         }
8485         return ret;
8486 #ifdef TARGET_NR_sgetmask /* not on alpha */
8487     case TARGET_NR_sgetmask:
8488         {
8489             sigset_t cur_set;
8490             abi_ulong target_set;
8491             ret = do_sigprocmask(0, NULL, &cur_set);
8492             if (!ret) {
8493                 host_to_target_old_sigset(&target_set, &cur_set);
8494                 ret = target_set;
8495             }
8496         }
8497         return ret;
8498 #endif
8499 #ifdef TARGET_NR_ssetmask /* not on alpha */
8500     case TARGET_NR_ssetmask:
8501         {
8502             sigset_t set, oset;
8503             abi_ulong target_set = arg1;
8504             target_to_host_old_sigset(&set, &target_set);
8505             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
8506             if (!ret) {
8507                 host_to_target_old_sigset(&target_set, &oset);
8508                 ret = target_set;
8509             }
8510         }
8511         return ret;
8512 #endif
8513 #ifdef TARGET_NR_sigprocmask
8514     case TARGET_NR_sigprocmask:
8515         {
8516 #if defined(TARGET_ALPHA)
8517             sigset_t set, oldset;
8518             abi_ulong mask;
8519             int how;
8520 
8521             switch (arg1) {
8522             case TARGET_SIG_BLOCK:
8523                 how = SIG_BLOCK;
8524                 break;
8525             case TARGET_SIG_UNBLOCK:
8526                 how = SIG_UNBLOCK;
8527                 break;
8528             case TARGET_SIG_SETMASK:
8529                 how = SIG_SETMASK;
8530                 break;
8531             default:
8532                 return -TARGET_EINVAL;
8533             }
8534             mask = arg2;
8535             target_to_host_old_sigset(&set, &mask);
8536 
8537             ret = do_sigprocmask(how, &set, &oldset);
8538             if (!is_error(ret)) {
8539                 host_to_target_old_sigset(&mask, &oldset);
8540                 ret = mask;
8541                 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
8542             }
8543 #else
8544             sigset_t set, oldset, *set_ptr;
8545             int how;
8546 
8547             if (arg2) {
8548                 switch (arg1) {
8549                 case TARGET_SIG_BLOCK:
8550                     how = SIG_BLOCK;
8551                     break;
8552                 case TARGET_SIG_UNBLOCK:
8553                     how = SIG_UNBLOCK;
8554                     break;
8555                 case TARGET_SIG_SETMASK:
8556                     how = SIG_SETMASK;
8557                     break;
8558                 default:
8559                     return -TARGET_EINVAL;
8560                 }
8561                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8562                     return -TARGET_EFAULT;
8563                 target_to_host_old_sigset(&set, p);
8564                 unlock_user(p, arg2, 0);
8565                 set_ptr = &set;
8566             } else {
8567                 how = 0;
8568                 set_ptr = NULL;
8569             }
8570             ret = do_sigprocmask(how, set_ptr, &oldset);
8571             if (!is_error(ret) && arg3) {
8572                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8573                     return -TARGET_EFAULT;
8574                 host_to_target_old_sigset(p, &oldset);
8575                 unlock_user(p, arg3, sizeof(target_sigset_t));
8576             }
8577 #endif
8578         }
8579         return ret;
8580 #endif
8581     case TARGET_NR_rt_sigprocmask:
8582         {
8583             int how = arg1;
8584             sigset_t set, oldset, *set_ptr;
8585 
8586             if (arg4 != sizeof(target_sigset_t)) {
8587                 return -TARGET_EINVAL;
8588             }
8589 
8590             if (arg2) {
8591                 switch(how) {
8592                 case TARGET_SIG_BLOCK:
8593                     how = SIG_BLOCK;
8594                     break;
8595                 case TARGET_SIG_UNBLOCK:
8596                     how = SIG_UNBLOCK;
8597                     break;
8598                 case TARGET_SIG_SETMASK:
8599                     how = SIG_SETMASK;
8600                     break;
8601                 default:
8602                     return -TARGET_EINVAL;
8603                 }
8604                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8605                     return -TARGET_EFAULT;
8606                 target_to_host_sigset(&set, p);
8607                 unlock_user(p, arg2, 0);
8608                 set_ptr = &set;
8609             } else {
8610                 how = 0;
8611                 set_ptr = NULL;
8612             }
8613             ret = do_sigprocmask(how, set_ptr, &oldset);
8614             if (!is_error(ret) && arg3) {
8615                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8616                     return -TARGET_EFAULT;
8617                 host_to_target_sigset(p, &oldset);
8618                 unlock_user(p, arg3, sizeof(target_sigset_t));
8619             }
8620         }
8621         return ret;
8622 #ifdef TARGET_NR_sigpending
8623     case TARGET_NR_sigpending:
8624         {
8625             sigset_t set;
8626             ret = get_errno(sigpending(&set));
8627             if (!is_error(ret)) {
8628                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8629                     return -TARGET_EFAULT;
8630                 host_to_target_old_sigset(p, &set);
8631                 unlock_user(p, arg1, sizeof(target_sigset_t));
8632             }
8633         }
8634         return ret;
8635 #endif
8636     case TARGET_NR_rt_sigpending:
8637         {
8638             sigset_t set;
8639 
8640             /* Yes, this check is >, not != like most. We follow the kernel's
8641              * logic and it does it like this because it implements
8642              * NR_sigpending through the same code path, and in that case
8643              * the old_sigset_t is smaller in size.
8644              */
8645             if (arg2 > sizeof(target_sigset_t)) {
8646                 return -TARGET_EINVAL;
8647             }
8648 
8649             ret = get_errno(sigpending(&set));
8650             if (!is_error(ret)) {
8651                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8652                     return -TARGET_EFAULT;
8653                 host_to_target_sigset(p, &set);
8654                 unlock_user(p, arg1, sizeof(target_sigset_t));
8655             }
8656         }
8657         return ret;
8658 #ifdef TARGET_NR_sigsuspend
8659     case TARGET_NR_sigsuspend:
8660         {
8661             TaskState *ts = cpu->opaque;
8662 #if defined(TARGET_ALPHA)
8663             abi_ulong mask = arg1;
8664             target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
8665 #else
8666             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8667                 return -TARGET_EFAULT;
8668             target_to_host_old_sigset(&ts->sigsuspend_mask, p);
8669             unlock_user(p, arg1, 0);
8670 #endif
8671             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8672                                                SIGSET_T_SIZE));
8673             if (ret != -TARGET_ERESTARTSYS) {
8674                 ts->in_sigsuspend = 1;
8675             }
8676         }
8677         return ret;
8678 #endif
8679     case TARGET_NR_rt_sigsuspend:
8680         {
8681             TaskState *ts = cpu->opaque;
8682 
8683             if (arg2 != sizeof(target_sigset_t)) {
8684                 return -TARGET_EINVAL;
8685             }
8686             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8687                 return -TARGET_EFAULT;
8688             target_to_host_sigset(&ts->sigsuspend_mask, p);
8689             unlock_user(p, arg1, 0);
8690             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8691                                                SIGSET_T_SIZE));
8692             if (ret != -TARGET_ERESTARTSYS) {
8693                 ts->in_sigsuspend = 1;
8694             }
8695         }
8696         return ret;
8697 #ifdef TARGET_NR_rt_sigtimedwait
8698     case TARGET_NR_rt_sigtimedwait:
8699         {
8700             sigset_t set;
8701             struct timespec uts, *puts;
8702             siginfo_t uinfo;
8703 
8704             if (arg4 != sizeof(target_sigset_t)) {
8705                 return -TARGET_EINVAL;
8706             }
8707 
8708             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8709                 return -TARGET_EFAULT;
8710             target_to_host_sigset(&set, p);
8711             unlock_user(p, arg1, 0);
8712             if (arg3) {
8713                 puts = &uts;
8714                 target_to_host_timespec(puts, arg3);
8715             } else {
8716                 puts = NULL;
8717             }
8718             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
8719                                                  SIGSET_T_SIZE));
8720             if (!is_error(ret)) {
8721                 if (arg2) {
8722                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
8723                                   0);
8724                     if (!p) {
8725                         return -TARGET_EFAULT;
8726                     }
8727                     host_to_target_siginfo(p, &uinfo);
8728                     unlock_user(p, arg2, sizeof(target_siginfo_t));
8729                 }
8730                 ret = host_to_target_signal(ret);
8731             }
8732         }
8733         return ret;
8734 #endif
8735     case TARGET_NR_rt_sigqueueinfo:
8736         {
8737             siginfo_t uinfo;
8738 
8739             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
8740             if (!p) {
8741                 return -TARGET_EFAULT;
8742             }
8743             target_to_host_siginfo(&uinfo, p);
8744             unlock_user(p, arg3, 0);
8745             ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
8746         }
8747         return ret;
8748     case TARGET_NR_rt_tgsigqueueinfo:
8749         {
8750             siginfo_t uinfo;
8751 
8752             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
8753             if (!p) {
8754                 return -TARGET_EFAULT;
8755             }
8756             target_to_host_siginfo(&uinfo, p);
8757             unlock_user(p, arg4, 0);
8758             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
8759         }
8760         return ret;
8761 #ifdef TARGET_NR_sigreturn
8762     case TARGET_NR_sigreturn:
8763         if (block_signals()) {
8764             return -TARGET_ERESTARTSYS;
8765         }
8766         return do_sigreturn(cpu_env);
8767 #endif
8768     case TARGET_NR_rt_sigreturn:
8769         if (block_signals()) {
8770             return -TARGET_ERESTARTSYS;
8771         }
8772         return do_rt_sigreturn(cpu_env);
8773     case TARGET_NR_sethostname:
8774         if (!(p = lock_user_string(arg1)))
8775             return -TARGET_EFAULT;
8776         ret = get_errno(sethostname(p, arg2));
8777         unlock_user(p, arg1, 0);
8778         return ret;
8779 #ifdef TARGET_NR_setrlimit
8780     case TARGET_NR_setrlimit:
8781         {
8782             int resource = target_to_host_resource(arg1);
8783             struct target_rlimit *target_rlim;
8784             struct rlimit rlim;
8785             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
8786                 return -TARGET_EFAULT;
8787             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
8788             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
8789             unlock_user_struct(target_rlim, arg2, 0);
8790             /*
8791              * If we just passed through resource limit settings for memory then
8792              * they would also apply to QEMU's own allocations, and QEMU will
8793              * crash or hang or die if its allocations fail. Ideally we would
8794              * track the guest allocations in QEMU and apply the limits ourselves.
8795              * For now, just tell the guest the call succeeded but don't actually
8796              * limit anything.
8797              */
8798             if (resource != RLIMIT_AS &&
8799                 resource != RLIMIT_DATA &&
8800                 resource != RLIMIT_STACK) {
8801                 return get_errno(setrlimit(resource, &rlim));
8802             } else {
8803                 return 0;
8804             }
8805         }
8806 #endif
8807 #ifdef TARGET_NR_getrlimit
8808     case TARGET_NR_getrlimit:
8809         {
8810             int resource = target_to_host_resource(arg1);
8811             struct target_rlimit *target_rlim;
8812             struct rlimit rlim;
8813 
8814             ret = get_errno(getrlimit(resource, &rlim));
8815             if (!is_error(ret)) {
8816                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
8817                     return -TARGET_EFAULT;
8818                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
8819                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
8820                 unlock_user_struct(target_rlim, arg2, 1);
8821             }
8822         }
8823         return ret;
8824 #endif
8825     case TARGET_NR_getrusage:
8826         {
8827             struct rusage rusage;
8828             ret = get_errno(getrusage(arg1, &rusage));
8829             if (!is_error(ret)) {
8830                 ret = host_to_target_rusage(arg2, &rusage);
8831             }
8832         }
8833         return ret;
8834 #if defined(TARGET_NR_gettimeofday)
8835     case TARGET_NR_gettimeofday:
8836         {
8837             struct timeval tv;
8838             struct timezone tz;
8839 
8840             ret = get_errno(gettimeofday(&tv, &tz));
8841             if (!is_error(ret)) {
8842                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
8843                     return -TARGET_EFAULT;
8844                 }
8845                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
8846                     return -TARGET_EFAULT;
8847                 }
8848             }
8849         }
8850         return ret;
8851 #endif
8852 #if defined(TARGET_NR_settimeofday)
8853     case TARGET_NR_settimeofday:
8854         {
8855             struct timeval tv, *ptv = NULL;
8856             struct timezone tz, *ptz = NULL;
8857 
8858             if (arg1) {
8859                 if (copy_from_user_timeval(&tv, arg1)) {
8860                     return -TARGET_EFAULT;
8861                 }
8862                 ptv = &tv;
8863             }
8864 
8865             if (arg2) {
8866                 if (copy_from_user_timezone(&tz, arg2)) {
8867                     return -TARGET_EFAULT;
8868                 }
8869                 ptz = &tz;
8870             }
8871 
8872             return get_errno(settimeofday(ptv, ptz));
8873         }
8874 #endif
8875 #if defined(TARGET_NR_select)
8876     case TARGET_NR_select:
8877 #if defined(TARGET_WANT_NI_OLD_SELECT)
8878         /* some architectures used to have old_select here
8879          * but now ENOSYS it.
8880          */
8881         ret = -TARGET_ENOSYS;
8882 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
8883         ret = do_old_select(arg1);
8884 #else
8885         ret = do_select(arg1, arg2, arg3, arg4, arg5);
8886 #endif
8887         return ret;
8888 #endif
8889 #ifdef TARGET_NR_pselect6
8890     case TARGET_NR_pselect6:
8891         {
8892             abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
8893             fd_set rfds, wfds, efds;
8894             fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
8895             struct timespec ts, *ts_ptr;
8896 
8897             /*
8898              * The 6th arg is actually two args smashed together,
8899              * so we cannot use the C library.
8900              */
8901             sigset_t set;
8902             struct {
8903                 sigset_t *set;
8904                 size_t size;
8905             } sig, *sig_ptr;
8906 
8907             abi_ulong arg_sigset, arg_sigsize, *arg7;
8908             target_sigset_t *target_sigset;
8909 
8910             n = arg1;
8911             rfd_addr = arg2;
8912             wfd_addr = arg3;
8913             efd_addr = arg4;
8914             ts_addr = arg5;
8915 
8916             ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
8917             if (ret) {
8918                 return ret;
8919             }
8920             ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
8921             if (ret) {
8922                 return ret;
8923             }
8924             ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
8925             if (ret) {
8926                 return ret;
8927             }
8928 
8929             /*
8930              * This takes a timespec, and not a timeval, so we cannot
8931              * use the do_select() helper ...
8932              */
8933             if (ts_addr) {
8934                 if (target_to_host_timespec(&ts, ts_addr)) {
8935                     return -TARGET_EFAULT;
8936                 }
8937                 ts_ptr = &ts;
8938             } else {
8939                 ts_ptr = NULL;
8940             }
8941 
8942             /* Extract the two packed args for the sigset */
8943             if (arg6) {
8944                 sig_ptr = &sig;
8945                 sig.size = SIGSET_T_SIZE;
8946 
8947                 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
8948                 if (!arg7) {
8949                     return -TARGET_EFAULT;
8950                 }
8951                 arg_sigset = tswapal(arg7[0]);
8952                 arg_sigsize = tswapal(arg7[1]);
8953                 unlock_user(arg7, arg6, 0);
8954 
8955                 if (arg_sigset) {
8956                     sig.set = &set;
8957                     if (arg_sigsize != sizeof(*target_sigset)) {
8958                         /* Like the kernel, we enforce correct size sigsets */
8959                         return -TARGET_EINVAL;
8960                     }
8961                     target_sigset = lock_user(VERIFY_READ, arg_sigset,
8962                                               sizeof(*target_sigset), 1);
8963                     if (!target_sigset) {
8964                         return -TARGET_EFAULT;
8965                     }
8966                     target_to_host_sigset(&set, target_sigset);
8967                     unlock_user(target_sigset, arg_sigset, 0);
8968                 } else {
8969                     sig.set = NULL;
8970                 }
8971             } else {
8972                 sig_ptr = NULL;
8973             }
8974 
8975             ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
8976                                           ts_ptr, sig_ptr));
8977 
8978             if (!is_error(ret)) {
8979                 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
8980                     return -TARGET_EFAULT;
8981                 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
8982                     return -TARGET_EFAULT;
8983                 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
8984                     return -TARGET_EFAULT;
8985 
8986                 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
8987                     return -TARGET_EFAULT;
8988             }
8989         }
8990         return ret;
8991 #endif
8992 #ifdef TARGET_NR_symlink
8993     case TARGET_NR_symlink:
8994         {
8995             void *p2;
8996             p = lock_user_string(arg1);
8997             p2 = lock_user_string(arg2);
8998             if (!p || !p2)
8999                 ret = -TARGET_EFAULT;
9000             else
9001                 ret = get_errno(symlink(p, p2));
9002             unlock_user(p2, arg2, 0);
9003             unlock_user(p, arg1, 0);
9004         }
9005         return ret;
9006 #endif
9007 #if defined(TARGET_NR_symlinkat)
9008     case TARGET_NR_symlinkat:
9009         {
9010             void *p2;
9011             p  = lock_user_string(arg1);
9012             p2 = lock_user_string(arg3);
9013             if (!p || !p2)
9014                 ret = -TARGET_EFAULT;
9015             else
9016                 ret = get_errno(symlinkat(p, arg2, p2));
9017             unlock_user(p2, arg3, 0);
9018             unlock_user(p, arg1, 0);
9019         }
9020         return ret;
9021 #endif
9022 #ifdef TARGET_NR_readlink
9023     case TARGET_NR_readlink:
9024         {
9025             void *p2;
9026             p = lock_user_string(arg1);
9027             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9028             if (!p || !p2) {
9029                 ret = -TARGET_EFAULT;
9030             } else if (!arg3) {
9031                 /* Short circuit this for the magic exe check. */
9032                 ret = -TARGET_EINVAL;
9033             } else if (is_proc_myself((const char *)p, "exe")) {
9034                 char real[PATH_MAX], *temp;
9035                 temp = realpath(exec_path, real);
9036                 /* Return value is # of bytes that we wrote to the buffer. */
9037                 if (temp == NULL) {
9038                     ret = get_errno(-1);
9039                 } else {
9040                     /* Don't worry about sign mismatch as earlier mapping
9041                      * logic would have thrown a bad address error. */
9042                     ret = MIN(strlen(real), arg3);
9043                     /* We cannot NUL terminate the string. */
9044                     memcpy(p2, real, ret);
9045                 }
9046             } else {
9047                 ret = get_errno(readlink(path(p), p2, arg3));
9048             }
9049             unlock_user(p2, arg2, ret);
9050             unlock_user(p, arg1, 0);
9051         }
9052         return ret;
9053 #endif
9054 #if defined(TARGET_NR_readlinkat)
9055     case TARGET_NR_readlinkat:
9056         {
9057             void *p2;
9058             p  = lock_user_string(arg2);
9059             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9060             if (!p || !p2) {
9061                 ret = -TARGET_EFAULT;
9062             } else if (is_proc_myself((const char *)p, "exe")) {
9063                 char real[PATH_MAX], *temp;
9064                 temp = realpath(exec_path, real);
9065                 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9066                 snprintf((char *)p2, arg4, "%s", real);
9067             } else {
9068                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9069             }
9070             unlock_user(p2, arg3, ret);
9071             unlock_user(p, arg2, 0);
9072         }
9073         return ret;
9074 #endif
9075 #ifdef TARGET_NR_swapon
9076     case TARGET_NR_swapon:
9077         if (!(p = lock_user_string(arg1)))
9078             return -TARGET_EFAULT;
9079         ret = get_errno(swapon(p, arg2));
9080         unlock_user(p, arg1, 0);
9081         return ret;
9082 #endif
9083     case TARGET_NR_reboot:
9084         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9085            /* arg4 must be ignored in all other cases */
9086            p = lock_user_string(arg4);
9087            if (!p) {
9088                return -TARGET_EFAULT;
9089            }
9090            ret = get_errno(reboot(arg1, arg2, arg3, p));
9091            unlock_user(p, arg4, 0);
9092         } else {
9093            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9094         }
9095         return ret;
9096 #ifdef TARGET_NR_mmap
9097     case TARGET_NR_mmap:
9098 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9099     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9100     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9101     || defined(TARGET_S390X)
9102         {
9103             abi_ulong *v;
9104             abi_ulong v1, v2, v3, v4, v5, v6;
9105             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9106                 return -TARGET_EFAULT;
9107             v1 = tswapal(v[0]);
9108             v2 = tswapal(v[1]);
9109             v3 = tswapal(v[2]);
9110             v4 = tswapal(v[3]);
9111             v5 = tswapal(v[4]);
9112             v6 = tswapal(v[5]);
9113             unlock_user(v, arg1, 0);
9114             ret = get_errno(target_mmap(v1, v2, v3,
9115                                         target_to_host_bitmask(v4, mmap_flags_tbl),
9116                                         v5, v6));
9117         }
9118 #else
9119         ret = get_errno(target_mmap(arg1, arg2, arg3,
9120                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
9121                                     arg5,
9122                                     arg6));
9123 #endif
9124         return ret;
9125 #endif
9126 #ifdef TARGET_NR_mmap2
9127     case TARGET_NR_mmap2:
9128 #ifndef MMAP_SHIFT
9129 #define MMAP_SHIFT 12
9130 #endif
9131         ret = target_mmap(arg1, arg2, arg3,
9132                           target_to_host_bitmask(arg4, mmap_flags_tbl),
9133                           arg5, arg6 << MMAP_SHIFT);
9134         return get_errno(ret);
9135 #endif
9136     case TARGET_NR_munmap:
9137         return get_errno(target_munmap(arg1, arg2));
9138     case TARGET_NR_mprotect:
9139         {
9140             TaskState *ts = cpu->opaque;
9141             /* Special hack to detect libc making the stack executable.  */
9142             if ((arg3 & PROT_GROWSDOWN)
9143                 && arg1 >= ts->info->stack_limit
9144                 && arg1 <= ts->info->start_stack) {
9145                 arg3 &= ~PROT_GROWSDOWN;
9146                 arg2 = arg2 + arg1 - ts->info->stack_limit;
9147                 arg1 = ts->info->stack_limit;
9148             }
9149         }
9150         return get_errno(target_mprotect(arg1, arg2, arg3));
9151 #ifdef TARGET_NR_mremap
9152     case TARGET_NR_mremap:
9153         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
9154 #endif
9155         /* ??? msync/mlock/munlock are broken for softmmu.  */
9156 #ifdef TARGET_NR_msync
9157     case TARGET_NR_msync:
9158         return get_errno(msync(g2h(arg1), arg2, arg3));
9159 #endif
9160 #ifdef TARGET_NR_mlock
9161     case TARGET_NR_mlock:
9162         return get_errno(mlock(g2h(arg1), arg2));
9163 #endif
9164 #ifdef TARGET_NR_munlock
9165     case TARGET_NR_munlock:
9166         return get_errno(munlock(g2h(arg1), arg2));
9167 #endif
9168 #ifdef TARGET_NR_mlockall
9169     case TARGET_NR_mlockall:
9170         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9171 #endif
9172 #ifdef TARGET_NR_munlockall
9173     case TARGET_NR_munlockall:
9174         return get_errno(munlockall());
9175 #endif
9176 #ifdef TARGET_NR_truncate
9177     case TARGET_NR_truncate:
9178         if (!(p = lock_user_string(arg1)))
9179             return -TARGET_EFAULT;
9180         ret = get_errno(truncate(p, arg2));
9181         unlock_user(p, arg1, 0);
9182         return ret;
9183 #endif
9184 #ifdef TARGET_NR_ftruncate
9185     case TARGET_NR_ftruncate:
9186         return get_errno(ftruncate(arg1, arg2));
9187 #endif
9188     case TARGET_NR_fchmod:
9189         return get_errno(fchmod(arg1, arg2));
9190 #if defined(TARGET_NR_fchmodat)
9191     case TARGET_NR_fchmodat:
9192         if (!(p = lock_user_string(arg2)))
9193             return -TARGET_EFAULT;
9194         ret = get_errno(fchmodat(arg1, p, arg3, 0));
9195         unlock_user(p, arg2, 0);
9196         return ret;
9197 #endif
9198     case TARGET_NR_getpriority:
9199         /* Note that negative values are valid for getpriority, so we must
9200            differentiate based on errno settings.  */
9201         errno = 0;
9202         ret = getpriority(arg1, arg2);
9203         if (ret == -1 && errno != 0) {
9204             return -host_to_target_errno(errno);
9205         }
9206 #ifdef TARGET_ALPHA
9207         /* Return value is the unbiased priority.  Signal no error.  */
9208         ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9209 #else
9210         /* Return value is a biased priority to avoid negative numbers.  */
9211         ret = 20 - ret;
9212 #endif
9213         return ret;
9214     case TARGET_NR_setpriority:
9215         return get_errno(setpriority(arg1, arg2, arg3));
9216 #ifdef TARGET_NR_statfs
9217     case TARGET_NR_statfs:
9218         if (!(p = lock_user_string(arg1))) {
9219             return -TARGET_EFAULT;
9220         }
9221         ret = get_errno(statfs(path(p), &stfs));
9222         unlock_user(p, arg1, 0);
9223     convert_statfs:
9224         if (!is_error(ret)) {
9225             struct target_statfs *target_stfs;
9226 
9227             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9228                 return -TARGET_EFAULT;
9229             __put_user(stfs.f_type, &target_stfs->f_type);
9230             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9231             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9232             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9233             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9234             __put_user(stfs.f_files, &target_stfs->f_files);
9235             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9236             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9237             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9238             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9239             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9240 #ifdef _STATFS_F_FLAGS
9241             __put_user(stfs.f_flags, &target_stfs->f_flags);
9242 #else
9243             __put_user(0, &target_stfs->f_flags);
9244 #endif
9245             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9246             unlock_user_struct(target_stfs, arg2, 1);
9247         }
9248         return ret;
9249 #endif
9250 #ifdef TARGET_NR_fstatfs
9251     case TARGET_NR_fstatfs:
9252         ret = get_errno(fstatfs(arg1, &stfs));
9253         goto convert_statfs;
9254 #endif
9255 #ifdef TARGET_NR_statfs64
9256     case TARGET_NR_statfs64:
9257         if (!(p = lock_user_string(arg1))) {
9258             return -TARGET_EFAULT;
9259         }
9260         ret = get_errno(statfs(path(p), &stfs));
9261         unlock_user(p, arg1, 0);
9262     convert_statfs64:
9263         if (!is_error(ret)) {
9264             struct target_statfs64 *target_stfs;
9265 
9266             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9267                 return -TARGET_EFAULT;
9268             __put_user(stfs.f_type, &target_stfs->f_type);
9269             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9270             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9271             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9272             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9273             __put_user(stfs.f_files, &target_stfs->f_files);
9274             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9275             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9276             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9277             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9278             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9279             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9280             unlock_user_struct(target_stfs, arg3, 1);
9281         }
9282         return ret;
9283     case TARGET_NR_fstatfs64:
9284         ret = get_errno(fstatfs(arg1, &stfs));
9285         goto convert_statfs64;
9286 #endif
9287 #ifdef TARGET_NR_socketcall
9288     case TARGET_NR_socketcall:
9289         return do_socketcall(arg1, arg2);
9290 #endif
9291 #ifdef TARGET_NR_accept
9292     case TARGET_NR_accept:
9293         return do_accept4(arg1, arg2, arg3, 0);
9294 #endif
9295 #ifdef TARGET_NR_accept4
9296     case TARGET_NR_accept4:
9297         return do_accept4(arg1, arg2, arg3, arg4);
9298 #endif
9299 #ifdef TARGET_NR_bind
9300     case TARGET_NR_bind:
9301         return do_bind(arg1, arg2, arg3);
9302 #endif
9303 #ifdef TARGET_NR_connect
9304     case TARGET_NR_connect:
9305         return do_connect(arg1, arg2, arg3);
9306 #endif
9307 #ifdef TARGET_NR_getpeername
9308     case TARGET_NR_getpeername:
9309         return do_getpeername(arg1, arg2, arg3);
9310 #endif
9311 #ifdef TARGET_NR_getsockname
9312     case TARGET_NR_getsockname:
9313         return do_getsockname(arg1, arg2, arg3);
9314 #endif
9315 #ifdef TARGET_NR_getsockopt
9316     case TARGET_NR_getsockopt:
9317         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9318 #endif
9319 #ifdef TARGET_NR_listen
9320     case TARGET_NR_listen:
9321         return get_errno(listen(arg1, arg2));
9322 #endif
9323 #ifdef TARGET_NR_recv
9324     case TARGET_NR_recv:
9325         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9326 #endif
9327 #ifdef TARGET_NR_recvfrom
9328     case TARGET_NR_recvfrom:
9329         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9330 #endif
9331 #ifdef TARGET_NR_recvmsg
9332     case TARGET_NR_recvmsg:
9333         return do_sendrecvmsg(arg1, arg2, arg3, 0);
9334 #endif
9335 #ifdef TARGET_NR_send
9336     case TARGET_NR_send:
9337         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9338 #endif
9339 #ifdef TARGET_NR_sendmsg
9340     case TARGET_NR_sendmsg:
9341         return do_sendrecvmsg(arg1, arg2, arg3, 1);
9342 #endif
9343 #ifdef TARGET_NR_sendmmsg
9344     case TARGET_NR_sendmmsg:
9345         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9346 #endif
9347 #ifdef TARGET_NR_recvmmsg
9348     case TARGET_NR_recvmmsg:
9349         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9350 #endif
9351 #ifdef TARGET_NR_sendto
9352     case TARGET_NR_sendto:
9353         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9354 #endif
9355 #ifdef TARGET_NR_shutdown
9356     case TARGET_NR_shutdown:
9357         return get_errno(shutdown(arg1, arg2));
9358 #endif
9359 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9360     case TARGET_NR_getrandom:
9361         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9362         if (!p) {
9363             return -TARGET_EFAULT;
9364         }
9365         ret = get_errno(getrandom(p, arg2, arg3));
9366         unlock_user(p, arg1, ret);
9367         return ret;
9368 #endif
9369 #ifdef TARGET_NR_socket
9370     case TARGET_NR_socket:
9371         return do_socket(arg1, arg2, arg3);
9372 #endif
9373 #ifdef TARGET_NR_socketpair
9374     case TARGET_NR_socketpair:
9375         return do_socketpair(arg1, arg2, arg3, arg4);
9376 #endif
9377 #ifdef TARGET_NR_setsockopt
9378     case TARGET_NR_setsockopt:
9379         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9380 #endif
9381 #if defined(TARGET_NR_syslog)
9382     case TARGET_NR_syslog:
9383         {
9384             int len = arg2;
9385 
9386             switch (arg1) {
9387             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
9388             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
9389             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
9390             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
9391             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
9392             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
9393             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
9394             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
9395                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
9396             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
9397             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
9398             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
9399                 {
9400                     if (len < 0) {
9401                         return -TARGET_EINVAL;
9402                     }
9403                     if (len == 0) {
9404                         return 0;
9405                     }
9406                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9407                     if (!p) {
9408                         return -TARGET_EFAULT;
9409                     }
9410                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9411                     unlock_user(p, arg2, arg3);
9412                 }
9413                 return ret;
9414             default:
9415                 return -TARGET_EINVAL;
9416             }
9417         }
9418         break;
9419 #endif
9420     case TARGET_NR_setitimer:
9421         {
9422             struct itimerval value, ovalue, *pvalue;
9423 
9424             if (arg2) {
9425                 pvalue = &value;
9426                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9427                     || copy_from_user_timeval(&pvalue->it_value,
9428                                               arg2 + sizeof(struct target_timeval)))
9429                     return -TARGET_EFAULT;
9430             } else {
9431                 pvalue = NULL;
9432             }
9433             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9434             if (!is_error(ret) && arg3) {
9435                 if (copy_to_user_timeval(arg3,
9436                                          &ovalue.it_interval)
9437                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
9438                                             &ovalue.it_value))
9439                     return -TARGET_EFAULT;
9440             }
9441         }
9442         return ret;
9443     case TARGET_NR_getitimer:
9444         {
9445             struct itimerval value;
9446 
9447             ret = get_errno(getitimer(arg1, &value));
9448             if (!is_error(ret) && arg2) {
9449                 if (copy_to_user_timeval(arg2,
9450                                          &value.it_interval)
9451                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
9452                                             &value.it_value))
9453                     return -TARGET_EFAULT;
9454             }
9455         }
9456         return ret;
9457 #ifdef TARGET_NR_stat
9458     case TARGET_NR_stat:
9459         if (!(p = lock_user_string(arg1))) {
9460             return -TARGET_EFAULT;
9461         }
9462         ret = get_errno(stat(path(p), &st));
9463         unlock_user(p, arg1, 0);
9464         goto do_stat;
9465 #endif
9466 #ifdef TARGET_NR_lstat
9467     case TARGET_NR_lstat:
9468         if (!(p = lock_user_string(arg1))) {
9469             return -TARGET_EFAULT;
9470         }
9471         ret = get_errno(lstat(path(p), &st));
9472         unlock_user(p, arg1, 0);
9473         goto do_stat;
9474 #endif
9475 #ifdef TARGET_NR_fstat
9476     case TARGET_NR_fstat:
9477         {
9478             ret = get_errno(fstat(arg1, &st));
9479 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9480         do_stat:
9481 #endif
9482             if (!is_error(ret)) {
9483                 struct target_stat *target_st;
9484 
9485                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
9486                     return -TARGET_EFAULT;
9487                 memset(target_st, 0, sizeof(*target_st));
9488                 __put_user(st.st_dev, &target_st->st_dev);
9489                 __put_user(st.st_ino, &target_st->st_ino);
9490                 __put_user(st.st_mode, &target_st->st_mode);
9491                 __put_user(st.st_uid, &target_st->st_uid);
9492                 __put_user(st.st_gid, &target_st->st_gid);
9493                 __put_user(st.st_nlink, &target_st->st_nlink);
9494                 __put_user(st.st_rdev, &target_st->st_rdev);
9495                 __put_user(st.st_size, &target_st->st_size);
9496                 __put_user(st.st_blksize, &target_st->st_blksize);
9497                 __put_user(st.st_blocks, &target_st->st_blocks);
9498                 __put_user(st.st_atime, &target_st->target_st_atime);
9499                 __put_user(st.st_mtime, &target_st->target_st_mtime);
9500                 __put_user(st.st_ctime, &target_st->target_st_ctime);
9501 #if (_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700) && \
9502     defined(TARGET_STAT_HAVE_NSEC)
9503                 __put_user(st.st_atim.tv_nsec,
9504                            &target_st->target_st_atime_nsec);
9505                 __put_user(st.st_mtim.tv_nsec,
9506                            &target_st->target_st_mtime_nsec);
9507                 __put_user(st.st_ctim.tv_nsec,
9508                            &target_st->target_st_ctime_nsec);
9509 #endif
9510                 unlock_user_struct(target_st, arg2, 1);
9511             }
9512         }
9513         return ret;
9514 #endif
9515     case TARGET_NR_vhangup:
9516         return get_errno(vhangup());
9517 #ifdef TARGET_NR_syscall
9518     case TARGET_NR_syscall:
9519         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
9520                           arg6, arg7, arg8, 0);
9521 #endif
9522 #if defined(TARGET_NR_wait4)
9523     case TARGET_NR_wait4:
9524         {
9525             int status;
9526             abi_long status_ptr = arg2;
9527             struct rusage rusage, *rusage_ptr;
9528             abi_ulong target_rusage = arg4;
9529             abi_long rusage_err;
9530             if (target_rusage)
9531                 rusage_ptr = &rusage;
9532             else
9533                 rusage_ptr = NULL;
9534             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
9535             if (!is_error(ret)) {
9536                 if (status_ptr && ret) {
9537                     status = host_to_target_waitstatus(status);
9538                     if (put_user_s32(status, status_ptr))
9539                         return -TARGET_EFAULT;
9540                 }
9541                 if (target_rusage) {
9542                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
9543                     if (rusage_err) {
9544                         ret = rusage_err;
9545                     }
9546                 }
9547             }
9548         }
9549         return ret;
9550 #endif
9551 #ifdef TARGET_NR_swapoff
9552     case TARGET_NR_swapoff:
9553         if (!(p = lock_user_string(arg1)))
9554             return -TARGET_EFAULT;
9555         ret = get_errno(swapoff(p));
9556         unlock_user(p, arg1, 0);
9557         return ret;
9558 #endif
9559     case TARGET_NR_sysinfo:
9560         {
9561             struct target_sysinfo *target_value;
9562             struct sysinfo value;
9563             ret = get_errno(sysinfo(&value));
9564             if (!is_error(ret) && arg1)
9565             {
9566                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
9567                     return -TARGET_EFAULT;
9568                 __put_user(value.uptime, &target_value->uptime);
9569                 __put_user(value.loads[0], &target_value->loads[0]);
9570                 __put_user(value.loads[1], &target_value->loads[1]);
9571                 __put_user(value.loads[2], &target_value->loads[2]);
9572                 __put_user(value.totalram, &target_value->totalram);
9573                 __put_user(value.freeram, &target_value->freeram);
9574                 __put_user(value.sharedram, &target_value->sharedram);
9575                 __put_user(value.bufferram, &target_value->bufferram);
9576                 __put_user(value.totalswap, &target_value->totalswap);
9577                 __put_user(value.freeswap, &target_value->freeswap);
9578                 __put_user(value.procs, &target_value->procs);
9579                 __put_user(value.totalhigh, &target_value->totalhigh);
9580                 __put_user(value.freehigh, &target_value->freehigh);
9581                 __put_user(value.mem_unit, &target_value->mem_unit);
9582                 unlock_user_struct(target_value, arg1, 1);
9583             }
9584         }
9585         return ret;
9586 #ifdef TARGET_NR_ipc
9587     case TARGET_NR_ipc:
9588         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
9589 #endif
9590 #ifdef TARGET_NR_semget
9591     case TARGET_NR_semget:
9592         return get_errno(semget(arg1, arg2, arg3));
9593 #endif
9594 #ifdef TARGET_NR_semop
9595     case TARGET_NR_semop:
9596         return do_semop(arg1, arg2, arg3);
9597 #endif
9598 #ifdef TARGET_NR_semctl
9599     case TARGET_NR_semctl:
9600         return do_semctl(arg1, arg2, arg3, arg4);
9601 #endif
9602 #ifdef TARGET_NR_msgctl
9603     case TARGET_NR_msgctl:
9604         return do_msgctl(arg1, arg2, arg3);
9605 #endif
9606 #ifdef TARGET_NR_msgget
9607     case TARGET_NR_msgget:
9608         return get_errno(msgget(arg1, arg2));
9609 #endif
9610 #ifdef TARGET_NR_msgrcv
9611     case TARGET_NR_msgrcv:
9612         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
9613 #endif
9614 #ifdef TARGET_NR_msgsnd
9615     case TARGET_NR_msgsnd:
9616         return do_msgsnd(arg1, arg2, arg3, arg4);
9617 #endif
9618 #ifdef TARGET_NR_shmget
9619     case TARGET_NR_shmget:
9620         return get_errno(shmget(arg1, arg2, arg3));
9621 #endif
9622 #ifdef TARGET_NR_shmctl
9623     case TARGET_NR_shmctl:
9624         return do_shmctl(arg1, arg2, arg3);
9625 #endif
9626 #ifdef TARGET_NR_shmat
9627     case TARGET_NR_shmat:
9628         return do_shmat(cpu_env, arg1, arg2, arg3);
9629 #endif
9630 #ifdef TARGET_NR_shmdt
9631     case TARGET_NR_shmdt:
9632         return do_shmdt(arg1);
9633 #endif
9634     case TARGET_NR_fsync:
9635         return get_errno(fsync(arg1));
9636     case TARGET_NR_clone:
9637         /* Linux manages to have three different orderings for its
9638          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
9639          * match the kernel's CONFIG_CLONE_* settings.
9640          * Microblaze is further special in that it uses a sixth
9641          * implicit argument to clone for the TLS pointer.
9642          */
9643 #if defined(TARGET_MICROBLAZE)
9644         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
9645 #elif defined(TARGET_CLONE_BACKWARDS)
9646         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
9647 #elif defined(TARGET_CLONE_BACKWARDS2)
9648         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
9649 #else
9650         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
9651 #endif
9652         return ret;
9653 #ifdef __NR_exit_group
9654         /* new thread calls */
9655     case TARGET_NR_exit_group:
9656         preexit_cleanup(cpu_env, arg1);
9657         return get_errno(exit_group(arg1));
9658 #endif
9659     case TARGET_NR_setdomainname:
9660         if (!(p = lock_user_string(arg1)))
9661             return -TARGET_EFAULT;
9662         ret = get_errno(setdomainname(p, arg2));
9663         unlock_user(p, arg1, 0);
9664         return ret;
9665     case TARGET_NR_uname:
9666         /* no need to transcode because we use the linux syscall */
9667         {
9668             struct new_utsname * buf;
9669 
9670             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
9671                 return -TARGET_EFAULT;
9672             ret = get_errno(sys_uname(buf));
9673             if (!is_error(ret)) {
9674                 /* Overwrite the native machine name with whatever is being
9675                    emulated. */
9676                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
9677                           sizeof(buf->machine));
9678                 /* Allow the user to override the reported release.  */
9679                 if (qemu_uname_release && *qemu_uname_release) {
9680                     g_strlcpy(buf->release, qemu_uname_release,
9681                               sizeof(buf->release));
9682                 }
9683             }
9684             unlock_user_struct(buf, arg1, 1);
9685         }
9686         return ret;
9687 #ifdef TARGET_I386
9688     case TARGET_NR_modify_ldt:
9689         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
9690 #if !defined(TARGET_X86_64)
9691     case TARGET_NR_vm86:
9692         return do_vm86(cpu_env, arg1, arg2);
9693 #endif
9694 #endif
9695 #if defined(TARGET_NR_adjtimex)
9696     case TARGET_NR_adjtimex:
9697         {
9698             struct timex host_buf;
9699 
9700             if (target_to_host_timex(&host_buf, arg1) != 0) {
9701                 return -TARGET_EFAULT;
9702             }
9703             ret = get_errno(adjtimex(&host_buf));
9704             if (!is_error(ret)) {
9705                 if (host_to_target_timex(arg1, &host_buf) != 0) {
9706                     return -TARGET_EFAULT;
9707                 }
9708             }
9709         }
9710         return ret;
9711 #endif
9712 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
9713     case TARGET_NR_clock_adjtime:
9714         {
9715             struct timex htx, *phtx = &htx;
9716 
9717             if (target_to_host_timex(phtx, arg2) != 0) {
9718                 return -TARGET_EFAULT;
9719             }
9720             ret = get_errno(clock_adjtime(arg1, phtx));
9721             if (!is_error(ret) && phtx) {
9722                 if (host_to_target_timex(arg2, phtx) != 0) {
9723                     return -TARGET_EFAULT;
9724                 }
9725             }
9726         }
9727         return ret;
9728 #endif
9729     case TARGET_NR_getpgid:
9730         return get_errno(getpgid(arg1));
9731     case TARGET_NR_fchdir:
9732         return get_errno(fchdir(arg1));
9733     case TARGET_NR_personality:
9734         return get_errno(personality(arg1));
9735 #ifdef TARGET_NR__llseek /* Not on alpha */
9736     case TARGET_NR__llseek:
9737         {
9738             int64_t res;
9739 #if !defined(__NR_llseek)
9740             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
9741             if (res == -1) {
9742                 ret = get_errno(res);
9743             } else {
9744                 ret = 0;
9745             }
9746 #else
9747             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
9748 #endif
9749             if ((ret == 0) && put_user_s64(res, arg4)) {
9750                 return -TARGET_EFAULT;
9751             }
9752         }
9753         return ret;
9754 #endif
9755 #ifdef TARGET_NR_getdents
9756     case TARGET_NR_getdents:
9757 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
9758 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
9759         {
9760             struct target_dirent *target_dirp;
9761             struct linux_dirent *dirp;
9762             abi_long count = arg3;
9763 
9764             dirp = g_try_malloc(count);
9765             if (!dirp) {
9766                 return -TARGET_ENOMEM;
9767             }
9768 
9769             ret = get_errno(sys_getdents(arg1, dirp, count));
9770             if (!is_error(ret)) {
9771                 struct linux_dirent *de;
9772 		struct target_dirent *tde;
9773                 int len = ret;
9774                 int reclen, treclen;
9775 		int count1, tnamelen;
9776 
9777 		count1 = 0;
9778                 de = dirp;
9779                 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9780                     return -TARGET_EFAULT;
9781 		tde = target_dirp;
9782                 while (len > 0) {
9783                     reclen = de->d_reclen;
9784                     tnamelen = reclen - offsetof(struct linux_dirent, d_name);
9785                     assert(tnamelen >= 0);
9786                     treclen = tnamelen + offsetof(struct target_dirent, d_name);
9787                     assert(count1 + treclen <= count);
9788                     tde->d_reclen = tswap16(treclen);
9789                     tde->d_ino = tswapal(de->d_ino);
9790                     tde->d_off = tswapal(de->d_off);
9791                     memcpy(tde->d_name, de->d_name, tnamelen);
9792                     de = (struct linux_dirent *)((char *)de + reclen);
9793                     len -= reclen;
9794                     tde = (struct target_dirent *)((char *)tde + treclen);
9795 		    count1 += treclen;
9796                 }
9797 		ret = count1;
9798                 unlock_user(target_dirp, arg2, ret);
9799             }
9800             g_free(dirp);
9801         }
9802 #else
9803         {
9804             struct linux_dirent *dirp;
9805             abi_long count = arg3;
9806 
9807             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9808                 return -TARGET_EFAULT;
9809             ret = get_errno(sys_getdents(arg1, dirp, count));
9810             if (!is_error(ret)) {
9811                 struct linux_dirent *de;
9812                 int len = ret;
9813                 int reclen;
9814                 de = dirp;
9815                 while (len > 0) {
9816                     reclen = de->d_reclen;
9817                     if (reclen > len)
9818                         break;
9819                     de->d_reclen = tswap16(reclen);
9820                     tswapls(&de->d_ino);
9821                     tswapls(&de->d_off);
9822                     de = (struct linux_dirent *)((char *)de + reclen);
9823                     len -= reclen;
9824                 }
9825             }
9826             unlock_user(dirp, arg2, ret);
9827         }
9828 #endif
9829 #else
9830         /* Implement getdents in terms of getdents64 */
9831         {
9832             struct linux_dirent64 *dirp;
9833             abi_long count = arg3;
9834 
9835             dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
9836             if (!dirp) {
9837                 return -TARGET_EFAULT;
9838             }
9839             ret = get_errno(sys_getdents64(arg1, dirp, count));
9840             if (!is_error(ret)) {
9841                 /* Convert the dirent64 structs to target dirent.  We do this
9842                  * in-place, since we can guarantee that a target_dirent is no
9843                  * larger than a dirent64; however this means we have to be
9844                  * careful to read everything before writing in the new format.
9845                  */
9846                 struct linux_dirent64 *de;
9847                 struct target_dirent *tde;
9848                 int len = ret;
9849                 int tlen = 0;
9850 
9851                 de = dirp;
9852                 tde = (struct target_dirent *)dirp;
9853                 while (len > 0) {
9854                     int namelen, treclen;
9855                     int reclen = de->d_reclen;
9856                     uint64_t ino = de->d_ino;
9857                     int64_t off = de->d_off;
9858                     uint8_t type = de->d_type;
9859 
9860                     namelen = strlen(de->d_name);
9861                     treclen = offsetof(struct target_dirent, d_name)
9862                         + namelen + 2;
9863                     treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
9864 
9865                     memmove(tde->d_name, de->d_name, namelen + 1);
9866                     tde->d_ino = tswapal(ino);
9867                     tde->d_off = tswapal(off);
9868                     tde->d_reclen = tswap16(treclen);
9869                     /* The target_dirent type is in what was formerly a padding
9870                      * byte at the end of the structure:
9871                      */
9872                     *(((char *)tde) + treclen - 1) = type;
9873 
9874                     de = (struct linux_dirent64 *)((char *)de + reclen);
9875                     tde = (struct target_dirent *)((char *)tde + treclen);
9876                     len -= reclen;
9877                     tlen += treclen;
9878                 }
9879                 ret = tlen;
9880             }
9881             unlock_user(dirp, arg2, ret);
9882         }
9883 #endif
9884         return ret;
9885 #endif /* TARGET_NR_getdents */
9886 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
9887     case TARGET_NR_getdents64:
9888         {
9889             struct linux_dirent64 *dirp;
9890             abi_long count = arg3;
9891             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9892                 return -TARGET_EFAULT;
9893             ret = get_errno(sys_getdents64(arg1, dirp, count));
9894             if (!is_error(ret)) {
9895                 struct linux_dirent64 *de;
9896                 int len = ret;
9897                 int reclen;
9898                 de = dirp;
9899                 while (len > 0) {
9900                     reclen = de->d_reclen;
9901                     if (reclen > len)
9902                         break;
9903                     de->d_reclen = tswap16(reclen);
9904                     tswap64s((uint64_t *)&de->d_ino);
9905                     tswap64s((uint64_t *)&de->d_off);
9906                     de = (struct linux_dirent64 *)((char *)de + reclen);
9907                     len -= reclen;
9908                 }
9909             }
9910             unlock_user(dirp, arg2, ret);
9911         }
9912         return ret;
9913 #endif /* TARGET_NR_getdents64 */
9914 #if defined(TARGET_NR__newselect)
9915     case TARGET_NR__newselect:
9916         return do_select(arg1, arg2, arg3, arg4, arg5);
9917 #endif
9918 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
9919 # ifdef TARGET_NR_poll
9920     case TARGET_NR_poll:
9921 # endif
9922 # ifdef TARGET_NR_ppoll
9923     case TARGET_NR_ppoll:
9924 # endif
9925         {
9926             struct target_pollfd *target_pfd;
9927             unsigned int nfds = arg2;
9928             struct pollfd *pfd;
9929             unsigned int i;
9930 
9931             pfd = NULL;
9932             target_pfd = NULL;
9933             if (nfds) {
9934                 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
9935                     return -TARGET_EINVAL;
9936                 }
9937 
9938                 target_pfd = lock_user(VERIFY_WRITE, arg1,
9939                                        sizeof(struct target_pollfd) * nfds, 1);
9940                 if (!target_pfd) {
9941                     return -TARGET_EFAULT;
9942                 }
9943 
9944                 pfd = alloca(sizeof(struct pollfd) * nfds);
9945                 for (i = 0; i < nfds; i++) {
9946                     pfd[i].fd = tswap32(target_pfd[i].fd);
9947                     pfd[i].events = tswap16(target_pfd[i].events);
9948                 }
9949             }
9950 
9951             switch (num) {
9952 # ifdef TARGET_NR_ppoll
9953             case TARGET_NR_ppoll:
9954             {
9955                 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
9956                 target_sigset_t *target_set;
9957                 sigset_t _set, *set = &_set;
9958 
9959                 if (arg3) {
9960                     if (target_to_host_timespec(timeout_ts, arg3)) {
9961                         unlock_user(target_pfd, arg1, 0);
9962                         return -TARGET_EFAULT;
9963                     }
9964                 } else {
9965                     timeout_ts = NULL;
9966                 }
9967 
9968                 if (arg4) {
9969                     if (arg5 != sizeof(target_sigset_t)) {
9970                         unlock_user(target_pfd, arg1, 0);
9971                         return -TARGET_EINVAL;
9972                     }
9973 
9974                     target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
9975                     if (!target_set) {
9976                         unlock_user(target_pfd, arg1, 0);
9977                         return -TARGET_EFAULT;
9978                     }
9979                     target_to_host_sigset(set, target_set);
9980                 } else {
9981                     set = NULL;
9982                 }
9983 
9984                 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
9985                                            set, SIGSET_T_SIZE));
9986 
9987                 if (!is_error(ret) && arg3) {
9988                     host_to_target_timespec(arg3, timeout_ts);
9989                 }
9990                 if (arg4) {
9991                     unlock_user(target_set, arg4, 0);
9992                 }
9993                 break;
9994             }
9995 # endif
9996 # ifdef TARGET_NR_poll
9997             case TARGET_NR_poll:
9998             {
9999                 struct timespec ts, *pts;
10000 
10001                 if (arg3 >= 0) {
10002                     /* Convert ms to secs, ns */
10003                     ts.tv_sec = arg3 / 1000;
10004                     ts.tv_nsec = (arg3 % 1000) * 1000000LL;
10005                     pts = &ts;
10006                 } else {
10007                     /* -ve poll() timeout means "infinite" */
10008                     pts = NULL;
10009                 }
10010                 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
10011                 break;
10012             }
10013 # endif
10014             default:
10015                 g_assert_not_reached();
10016             }
10017 
10018             if (!is_error(ret)) {
10019                 for(i = 0; i < nfds; i++) {
10020                     target_pfd[i].revents = tswap16(pfd[i].revents);
10021                 }
10022             }
10023             unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
10024         }
10025         return ret;
10026 #endif
10027     case TARGET_NR_flock:
10028         /* NOTE: the flock constant seems to be the same for every
10029            Linux platform */
10030         return get_errno(safe_flock(arg1, arg2));
10031     case TARGET_NR_readv:
10032         {
10033             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10034             if (vec != NULL) {
10035                 ret = get_errno(safe_readv(arg1, vec, arg3));
10036                 unlock_iovec(vec, arg2, arg3, 1);
10037             } else {
10038                 ret = -host_to_target_errno(errno);
10039             }
10040         }
10041         return ret;
10042     case TARGET_NR_writev:
10043         {
10044             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10045             if (vec != NULL) {
10046                 ret = get_errno(safe_writev(arg1, vec, arg3));
10047                 unlock_iovec(vec, arg2, arg3, 0);
10048             } else {
10049                 ret = -host_to_target_errno(errno);
10050             }
10051         }
10052         return ret;
10053 #if defined(TARGET_NR_preadv)
10054     case TARGET_NR_preadv:
10055         {
10056             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10057             if (vec != NULL) {
10058                 unsigned long low, high;
10059 
10060                 target_to_host_low_high(arg4, arg5, &low, &high);
10061                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10062                 unlock_iovec(vec, arg2, arg3, 1);
10063             } else {
10064                 ret = -host_to_target_errno(errno);
10065            }
10066         }
10067         return ret;
10068 #endif
10069 #if defined(TARGET_NR_pwritev)
10070     case TARGET_NR_pwritev:
10071         {
10072             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10073             if (vec != NULL) {
10074                 unsigned long low, high;
10075 
10076                 target_to_host_low_high(arg4, arg5, &low, &high);
10077                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10078                 unlock_iovec(vec, arg2, arg3, 0);
10079             } else {
10080                 ret = -host_to_target_errno(errno);
10081            }
10082         }
10083         return ret;
10084 #endif
10085     case TARGET_NR_getsid:
10086         return get_errno(getsid(arg1));
10087 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10088     case TARGET_NR_fdatasync:
10089         return get_errno(fdatasync(arg1));
10090 #endif
10091 #ifdef TARGET_NR__sysctl
10092     case TARGET_NR__sysctl:
10093         /* We don't implement this, but ENOTDIR is always a safe
10094            return value. */
10095         return -TARGET_ENOTDIR;
10096 #endif
10097     case TARGET_NR_sched_getaffinity:
10098         {
10099             unsigned int mask_size;
10100             unsigned long *mask;
10101 
10102             /*
10103              * sched_getaffinity needs multiples of ulong, so need to take
10104              * care of mismatches between target ulong and host ulong sizes.
10105              */
10106             if (arg2 & (sizeof(abi_ulong) - 1)) {
10107                 return -TARGET_EINVAL;
10108             }
10109             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10110 
10111             mask = alloca(mask_size);
10112             memset(mask, 0, mask_size);
10113             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10114 
10115             if (!is_error(ret)) {
10116                 if (ret > arg2) {
10117                     /* More data returned than the caller's buffer will fit.
10118                      * This only happens if sizeof(abi_long) < sizeof(long)
10119                      * and the caller passed us a buffer holding an odd number
10120                      * of abi_longs. If the host kernel is actually using the
10121                      * extra 4 bytes then fail EINVAL; otherwise we can just
10122                      * ignore them and only copy the interesting part.
10123                      */
10124                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10125                     if (numcpus > arg2 * 8) {
10126                         return -TARGET_EINVAL;
10127                     }
10128                     ret = arg2;
10129                 }
10130 
10131                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10132                     return -TARGET_EFAULT;
10133                 }
10134             }
10135         }
10136         return ret;
10137     case TARGET_NR_sched_setaffinity:
10138         {
10139             unsigned int mask_size;
10140             unsigned long *mask;
10141 
10142             /*
10143              * sched_setaffinity needs multiples of ulong, so need to take
10144              * care of mismatches between target ulong and host ulong sizes.
10145              */
10146             if (arg2 & (sizeof(abi_ulong) - 1)) {
10147                 return -TARGET_EINVAL;
10148             }
10149             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10150             mask = alloca(mask_size);
10151 
10152             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10153             if (ret) {
10154                 return ret;
10155             }
10156 
10157             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10158         }
10159     case TARGET_NR_getcpu:
10160         {
10161             unsigned cpu, node;
10162             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10163                                        arg2 ? &node : NULL,
10164                                        NULL));
10165             if (is_error(ret)) {
10166                 return ret;
10167             }
10168             if (arg1 && put_user_u32(cpu, arg1)) {
10169                 return -TARGET_EFAULT;
10170             }
10171             if (arg2 && put_user_u32(node, arg2)) {
10172                 return -TARGET_EFAULT;
10173             }
10174         }
10175         return ret;
10176     case TARGET_NR_sched_setparam:
10177         {
10178             struct sched_param *target_schp;
10179             struct sched_param schp;
10180 
10181             if (arg2 == 0) {
10182                 return -TARGET_EINVAL;
10183             }
10184             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
10185                 return -TARGET_EFAULT;
10186             schp.sched_priority = tswap32(target_schp->sched_priority);
10187             unlock_user_struct(target_schp, arg2, 0);
10188             return get_errno(sched_setparam(arg1, &schp));
10189         }
10190     case TARGET_NR_sched_getparam:
10191         {
10192             struct sched_param *target_schp;
10193             struct sched_param schp;
10194 
10195             if (arg2 == 0) {
10196                 return -TARGET_EINVAL;
10197             }
10198             ret = get_errno(sched_getparam(arg1, &schp));
10199             if (!is_error(ret)) {
10200                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10201                     return -TARGET_EFAULT;
10202                 target_schp->sched_priority = tswap32(schp.sched_priority);
10203                 unlock_user_struct(target_schp, arg2, 1);
10204             }
10205         }
10206         return ret;
10207     case TARGET_NR_sched_setscheduler:
10208         {
10209             struct sched_param *target_schp;
10210             struct sched_param schp;
10211             if (arg3 == 0) {
10212                 return -TARGET_EINVAL;
10213             }
10214             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10215                 return -TARGET_EFAULT;
10216             schp.sched_priority = tswap32(target_schp->sched_priority);
10217             unlock_user_struct(target_schp, arg3, 0);
10218             return get_errno(sched_setscheduler(arg1, arg2, &schp));
10219         }
10220     case TARGET_NR_sched_getscheduler:
10221         return get_errno(sched_getscheduler(arg1));
10222     case TARGET_NR_sched_yield:
10223         return get_errno(sched_yield());
10224     case TARGET_NR_sched_get_priority_max:
10225         return get_errno(sched_get_priority_max(arg1));
10226     case TARGET_NR_sched_get_priority_min:
10227         return get_errno(sched_get_priority_min(arg1));
10228 #ifdef TARGET_NR_sched_rr_get_interval
10229     case TARGET_NR_sched_rr_get_interval:
10230         {
10231             struct timespec ts;
10232             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10233             if (!is_error(ret)) {
10234                 ret = host_to_target_timespec(arg2, &ts);
10235             }
10236         }
10237         return ret;
10238 #endif
10239 #if defined(TARGET_NR_nanosleep)
10240     case TARGET_NR_nanosleep:
10241         {
10242             struct timespec req, rem;
10243             target_to_host_timespec(&req, arg1);
10244             ret = get_errno(safe_nanosleep(&req, &rem));
10245             if (is_error(ret) && arg2) {
10246                 host_to_target_timespec(arg2, &rem);
10247             }
10248         }
10249         return ret;
10250 #endif
10251     case TARGET_NR_prctl:
10252         switch (arg1) {
10253         case PR_GET_PDEATHSIG:
10254         {
10255             int deathsig;
10256             ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10257             if (!is_error(ret) && arg2
10258                 && put_user_ual(deathsig, arg2)) {
10259                 return -TARGET_EFAULT;
10260             }
10261             return ret;
10262         }
10263 #ifdef PR_GET_NAME
10264         case PR_GET_NAME:
10265         {
10266             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10267             if (!name) {
10268                 return -TARGET_EFAULT;
10269             }
10270             ret = get_errno(prctl(arg1, (unsigned long)name,
10271                                   arg3, arg4, arg5));
10272             unlock_user(name, arg2, 16);
10273             return ret;
10274         }
10275         case PR_SET_NAME:
10276         {
10277             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10278             if (!name) {
10279                 return -TARGET_EFAULT;
10280             }
10281             ret = get_errno(prctl(arg1, (unsigned long)name,
10282                                   arg3, arg4, arg5));
10283             unlock_user(name, arg2, 0);
10284             return ret;
10285         }
10286 #endif
10287 #ifdef TARGET_MIPS
10288         case TARGET_PR_GET_FP_MODE:
10289         {
10290             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10291             ret = 0;
10292             if (env->CP0_Status & (1 << CP0St_FR)) {
10293                 ret |= TARGET_PR_FP_MODE_FR;
10294             }
10295             if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
10296                 ret |= TARGET_PR_FP_MODE_FRE;
10297             }
10298             return ret;
10299         }
10300         case TARGET_PR_SET_FP_MODE:
10301         {
10302             CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10303             bool old_fr = env->CP0_Status & (1 << CP0St_FR);
10304             bool old_fre = env->CP0_Config5 & (1 << CP0C5_FRE);
10305             bool new_fr = arg2 & TARGET_PR_FP_MODE_FR;
10306             bool new_fre = arg2 & TARGET_PR_FP_MODE_FRE;
10307 
10308             const unsigned int known_bits = TARGET_PR_FP_MODE_FR |
10309                                             TARGET_PR_FP_MODE_FRE;
10310 
10311             /* If nothing to change, return right away, successfully.  */
10312             if (old_fr == new_fr && old_fre == new_fre) {
10313                 return 0;
10314             }
10315             /* Check the value is valid */
10316             if (arg2 & ~known_bits) {
10317                 return -TARGET_EOPNOTSUPP;
10318             }
10319             /* Setting FRE without FR is not supported.  */
10320             if (new_fre && !new_fr) {
10321                 return -TARGET_EOPNOTSUPP;
10322             }
10323             if (new_fr && !(env->active_fpu.fcr0 & (1 << FCR0_F64))) {
10324                 /* FR1 is not supported */
10325                 return -TARGET_EOPNOTSUPP;
10326             }
10327             if (!new_fr && (env->active_fpu.fcr0 & (1 << FCR0_F64))
10328                 && !(env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) {
10329                 /* cannot set FR=0 */
10330                 return -TARGET_EOPNOTSUPP;
10331             }
10332             if (new_fre && !(env->active_fpu.fcr0 & (1 << FCR0_FREP))) {
10333                 /* Cannot set FRE=1 */
10334                 return -TARGET_EOPNOTSUPP;
10335             }
10336 
10337             int i;
10338             fpr_t *fpr = env->active_fpu.fpr;
10339             for (i = 0; i < 32 ; i += 2) {
10340                 if (!old_fr && new_fr) {
10341                     fpr[i].w[!FP_ENDIAN_IDX] = fpr[i + 1].w[FP_ENDIAN_IDX];
10342                 } else if (old_fr && !new_fr) {
10343                     fpr[i + 1].w[FP_ENDIAN_IDX] = fpr[i].w[!FP_ENDIAN_IDX];
10344                 }
10345             }
10346 
10347             if (new_fr) {
10348                 env->CP0_Status |= (1 << CP0St_FR);
10349                 env->hflags |= MIPS_HFLAG_F64;
10350             } else {
10351                 env->CP0_Status &= ~(1 << CP0St_FR);
10352                 env->hflags &= ~MIPS_HFLAG_F64;
10353             }
10354             if (new_fre) {
10355                 env->CP0_Config5 |= (1 << CP0C5_FRE);
10356                 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
10357                     env->hflags |= MIPS_HFLAG_FRE;
10358                 }
10359             } else {
10360                 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
10361                 env->hflags &= ~MIPS_HFLAG_FRE;
10362             }
10363 
10364             return 0;
10365         }
10366 #endif /* MIPS */
10367 #ifdef TARGET_AARCH64
10368         case TARGET_PR_SVE_SET_VL:
10369             /*
10370              * We cannot support either PR_SVE_SET_VL_ONEXEC or
10371              * PR_SVE_VL_INHERIT.  Note the kernel definition
10372              * of sve_vl_valid allows for VQ=512, i.e. VL=8192,
10373              * even though the current architectural maximum is VQ=16.
10374              */
10375             ret = -TARGET_EINVAL;
10376             if (cpu_isar_feature(aa64_sve, env_archcpu(cpu_env))
10377                 && arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) {
10378                 CPUARMState *env = cpu_env;
10379                 ARMCPU *cpu = env_archcpu(env);
10380                 uint32_t vq, old_vq;
10381 
10382                 old_vq = (env->vfp.zcr_el[1] & 0xf) + 1;
10383                 vq = MAX(arg2 / 16, 1);
10384                 vq = MIN(vq, cpu->sve_max_vq);
10385 
10386                 if (vq < old_vq) {
10387                     aarch64_sve_narrow_vq(env, vq);
10388                 }
10389                 env->vfp.zcr_el[1] = vq - 1;
10390                 arm_rebuild_hflags(env);
10391                 ret = vq * 16;
10392             }
10393             return ret;
10394         case TARGET_PR_SVE_GET_VL:
10395             ret = -TARGET_EINVAL;
10396             {
10397                 ARMCPU *cpu = env_archcpu(cpu_env);
10398                 if (cpu_isar_feature(aa64_sve, cpu)) {
10399                     ret = ((cpu->env.vfp.zcr_el[1] & 0xf) + 1) * 16;
10400                 }
10401             }
10402             return ret;
10403         case TARGET_PR_PAC_RESET_KEYS:
10404             {
10405                 CPUARMState *env = cpu_env;
10406                 ARMCPU *cpu = env_archcpu(env);
10407 
10408                 if (arg3 || arg4 || arg5) {
10409                     return -TARGET_EINVAL;
10410                 }
10411                 if (cpu_isar_feature(aa64_pauth, cpu)) {
10412                     int all = (TARGET_PR_PAC_APIAKEY | TARGET_PR_PAC_APIBKEY |
10413                                TARGET_PR_PAC_APDAKEY | TARGET_PR_PAC_APDBKEY |
10414                                TARGET_PR_PAC_APGAKEY);
10415                     int ret = 0;
10416                     Error *err = NULL;
10417 
10418                     if (arg2 == 0) {
10419                         arg2 = all;
10420                     } else if (arg2 & ~all) {
10421                         return -TARGET_EINVAL;
10422                     }
10423                     if (arg2 & TARGET_PR_PAC_APIAKEY) {
10424                         ret |= qemu_guest_getrandom(&env->keys.apia,
10425                                                     sizeof(ARMPACKey), &err);
10426                     }
10427                     if (arg2 & TARGET_PR_PAC_APIBKEY) {
10428                         ret |= qemu_guest_getrandom(&env->keys.apib,
10429                                                     sizeof(ARMPACKey), &err);
10430                     }
10431                     if (arg2 & TARGET_PR_PAC_APDAKEY) {
10432                         ret |= qemu_guest_getrandom(&env->keys.apda,
10433                                                     sizeof(ARMPACKey), &err);
10434                     }
10435                     if (arg2 & TARGET_PR_PAC_APDBKEY) {
10436                         ret |= qemu_guest_getrandom(&env->keys.apdb,
10437                                                     sizeof(ARMPACKey), &err);
10438                     }
10439                     if (arg2 & TARGET_PR_PAC_APGAKEY) {
10440                         ret |= qemu_guest_getrandom(&env->keys.apga,
10441                                                     sizeof(ARMPACKey), &err);
10442                     }
10443                     if (ret != 0) {
10444                         /*
10445                          * Some unknown failure in the crypto.  The best
10446                          * we can do is log it and fail the syscall.
10447                          * The real syscall cannot fail this way.
10448                          */
10449                         qemu_log_mask(LOG_UNIMP,
10450                                       "PR_PAC_RESET_KEYS: Crypto failure: %s",
10451                                       error_get_pretty(err));
10452                         error_free(err);
10453                         return -TARGET_EIO;
10454                     }
10455                     return 0;
10456                 }
10457             }
10458             return -TARGET_EINVAL;
10459 #endif /* AARCH64 */
10460         case PR_GET_SECCOMP:
10461         case PR_SET_SECCOMP:
10462             /* Disable seccomp to prevent the target disabling syscalls we
10463              * need. */
10464             return -TARGET_EINVAL;
10465         default:
10466             /* Most prctl options have no pointer arguments */
10467             return get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
10468         }
10469         break;
10470 #ifdef TARGET_NR_arch_prctl
10471     case TARGET_NR_arch_prctl:
10472         return do_arch_prctl(cpu_env, arg1, arg2);
10473 #endif
10474 #ifdef TARGET_NR_pread64
10475     case TARGET_NR_pread64:
10476         if (regpairs_aligned(cpu_env, num)) {
10477             arg4 = arg5;
10478             arg5 = arg6;
10479         }
10480         if (arg2 == 0 && arg3 == 0) {
10481             /* Special-case NULL buffer and zero length, which should succeed */
10482             p = 0;
10483         } else {
10484             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10485             if (!p) {
10486                 return -TARGET_EFAULT;
10487             }
10488         }
10489         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
10490         unlock_user(p, arg2, ret);
10491         return ret;
10492     case TARGET_NR_pwrite64:
10493         if (regpairs_aligned(cpu_env, num)) {
10494             arg4 = arg5;
10495             arg5 = arg6;
10496         }
10497         if (arg2 == 0 && arg3 == 0) {
10498             /* Special-case NULL buffer and zero length, which should succeed */
10499             p = 0;
10500         } else {
10501             p = lock_user(VERIFY_READ, arg2, arg3, 1);
10502             if (!p) {
10503                 return -TARGET_EFAULT;
10504             }
10505         }
10506         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
10507         unlock_user(p, arg2, 0);
10508         return ret;
10509 #endif
10510     case TARGET_NR_getcwd:
10511         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
10512             return -TARGET_EFAULT;
10513         ret = get_errno(sys_getcwd1(p, arg2));
10514         unlock_user(p, arg1, ret);
10515         return ret;
10516     case TARGET_NR_capget:
10517     case TARGET_NR_capset:
10518     {
10519         struct target_user_cap_header *target_header;
10520         struct target_user_cap_data *target_data = NULL;
10521         struct __user_cap_header_struct header;
10522         struct __user_cap_data_struct data[2];
10523         struct __user_cap_data_struct *dataptr = NULL;
10524         int i, target_datalen;
10525         int data_items = 1;
10526 
10527         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
10528             return -TARGET_EFAULT;
10529         }
10530         header.version = tswap32(target_header->version);
10531         header.pid = tswap32(target_header->pid);
10532 
10533         if (header.version != _LINUX_CAPABILITY_VERSION) {
10534             /* Version 2 and up takes pointer to two user_data structs */
10535             data_items = 2;
10536         }
10537 
10538         target_datalen = sizeof(*target_data) * data_items;
10539 
10540         if (arg2) {
10541             if (num == TARGET_NR_capget) {
10542                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
10543             } else {
10544                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
10545             }
10546             if (!target_data) {
10547                 unlock_user_struct(target_header, arg1, 0);
10548                 return -TARGET_EFAULT;
10549             }
10550 
10551             if (num == TARGET_NR_capset) {
10552                 for (i = 0; i < data_items; i++) {
10553                     data[i].effective = tswap32(target_data[i].effective);
10554                     data[i].permitted = tswap32(target_data[i].permitted);
10555                     data[i].inheritable = tswap32(target_data[i].inheritable);
10556                 }
10557             }
10558 
10559             dataptr = data;
10560         }
10561 
10562         if (num == TARGET_NR_capget) {
10563             ret = get_errno(capget(&header, dataptr));
10564         } else {
10565             ret = get_errno(capset(&header, dataptr));
10566         }
10567 
10568         /* The kernel always updates version for both capget and capset */
10569         target_header->version = tswap32(header.version);
10570         unlock_user_struct(target_header, arg1, 1);
10571 
10572         if (arg2) {
10573             if (num == TARGET_NR_capget) {
10574                 for (i = 0; i < data_items; i++) {
10575                     target_data[i].effective = tswap32(data[i].effective);
10576                     target_data[i].permitted = tswap32(data[i].permitted);
10577                     target_data[i].inheritable = tswap32(data[i].inheritable);
10578                 }
10579                 unlock_user(target_data, arg2, target_datalen);
10580             } else {
10581                 unlock_user(target_data, arg2, 0);
10582             }
10583         }
10584         return ret;
10585     }
10586     case TARGET_NR_sigaltstack:
10587         return do_sigaltstack(arg1, arg2,
10588                               get_sp_from_cpustate((CPUArchState *)cpu_env));
10589 
10590 #ifdef CONFIG_SENDFILE
10591 #ifdef TARGET_NR_sendfile
10592     case TARGET_NR_sendfile:
10593     {
10594         off_t *offp = NULL;
10595         off_t off;
10596         if (arg3) {
10597             ret = get_user_sal(off, arg3);
10598             if (is_error(ret)) {
10599                 return ret;
10600             }
10601             offp = &off;
10602         }
10603         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10604         if (!is_error(ret) && arg3) {
10605             abi_long ret2 = put_user_sal(off, arg3);
10606             if (is_error(ret2)) {
10607                 ret = ret2;
10608             }
10609         }
10610         return ret;
10611     }
10612 #endif
10613 #ifdef TARGET_NR_sendfile64
10614     case TARGET_NR_sendfile64:
10615     {
10616         off_t *offp = NULL;
10617         off_t off;
10618         if (arg3) {
10619             ret = get_user_s64(off, arg3);
10620             if (is_error(ret)) {
10621                 return ret;
10622             }
10623             offp = &off;
10624         }
10625         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10626         if (!is_error(ret) && arg3) {
10627             abi_long ret2 = put_user_s64(off, arg3);
10628             if (is_error(ret2)) {
10629                 ret = ret2;
10630             }
10631         }
10632         return ret;
10633     }
10634 #endif
10635 #endif
10636 #ifdef TARGET_NR_vfork
10637     case TARGET_NR_vfork:
10638         return get_errno(do_fork(cpu_env,
10639                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
10640                          0, 0, 0, 0));
10641 #endif
10642 #ifdef TARGET_NR_ugetrlimit
10643     case TARGET_NR_ugetrlimit:
10644     {
10645 	struct rlimit rlim;
10646 	int resource = target_to_host_resource(arg1);
10647 	ret = get_errno(getrlimit(resource, &rlim));
10648 	if (!is_error(ret)) {
10649 	    struct target_rlimit *target_rlim;
10650             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10651                 return -TARGET_EFAULT;
10652 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10653 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10654             unlock_user_struct(target_rlim, arg2, 1);
10655 	}
10656         return ret;
10657     }
10658 #endif
10659 #ifdef TARGET_NR_truncate64
10660     case TARGET_NR_truncate64:
10661         if (!(p = lock_user_string(arg1)))
10662             return -TARGET_EFAULT;
10663 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
10664         unlock_user(p, arg1, 0);
10665         return ret;
10666 #endif
10667 #ifdef TARGET_NR_ftruncate64
10668     case TARGET_NR_ftruncate64:
10669         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
10670 #endif
10671 #ifdef TARGET_NR_stat64
10672     case TARGET_NR_stat64:
10673         if (!(p = lock_user_string(arg1))) {
10674             return -TARGET_EFAULT;
10675         }
10676         ret = get_errno(stat(path(p), &st));
10677         unlock_user(p, arg1, 0);
10678         if (!is_error(ret))
10679             ret = host_to_target_stat64(cpu_env, arg2, &st);
10680         return ret;
10681 #endif
10682 #ifdef TARGET_NR_lstat64
10683     case TARGET_NR_lstat64:
10684         if (!(p = lock_user_string(arg1))) {
10685             return -TARGET_EFAULT;
10686         }
10687         ret = get_errno(lstat(path(p), &st));
10688         unlock_user(p, arg1, 0);
10689         if (!is_error(ret))
10690             ret = host_to_target_stat64(cpu_env, arg2, &st);
10691         return ret;
10692 #endif
10693 #ifdef TARGET_NR_fstat64
10694     case TARGET_NR_fstat64:
10695         ret = get_errno(fstat(arg1, &st));
10696         if (!is_error(ret))
10697             ret = host_to_target_stat64(cpu_env, arg2, &st);
10698         return ret;
10699 #endif
10700 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10701 #ifdef TARGET_NR_fstatat64
10702     case TARGET_NR_fstatat64:
10703 #endif
10704 #ifdef TARGET_NR_newfstatat
10705     case TARGET_NR_newfstatat:
10706 #endif
10707         if (!(p = lock_user_string(arg2))) {
10708             return -TARGET_EFAULT;
10709         }
10710         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
10711         unlock_user(p, arg2, 0);
10712         if (!is_error(ret))
10713             ret = host_to_target_stat64(cpu_env, arg3, &st);
10714         return ret;
10715 #endif
10716 #if defined(TARGET_NR_statx)
10717     case TARGET_NR_statx:
10718         {
10719             struct target_statx *target_stx;
10720             int dirfd = arg1;
10721             int flags = arg3;
10722 
10723             p = lock_user_string(arg2);
10724             if (p == NULL) {
10725                 return -TARGET_EFAULT;
10726             }
10727 #if defined(__NR_statx)
10728             {
10729                 /*
10730                  * It is assumed that struct statx is architecture independent.
10731                  */
10732                 struct target_statx host_stx;
10733                 int mask = arg4;
10734 
10735                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
10736                 if (!is_error(ret)) {
10737                     if (host_to_target_statx(&host_stx, arg5) != 0) {
10738                         unlock_user(p, arg2, 0);
10739                         return -TARGET_EFAULT;
10740                     }
10741                 }
10742 
10743                 if (ret != -TARGET_ENOSYS) {
10744                     unlock_user(p, arg2, 0);
10745                     return ret;
10746                 }
10747             }
10748 #endif
10749             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
10750             unlock_user(p, arg2, 0);
10751 
10752             if (!is_error(ret)) {
10753                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
10754                     return -TARGET_EFAULT;
10755                 }
10756                 memset(target_stx, 0, sizeof(*target_stx));
10757                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
10758                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
10759                 __put_user(st.st_ino, &target_stx->stx_ino);
10760                 __put_user(st.st_mode, &target_stx->stx_mode);
10761                 __put_user(st.st_uid, &target_stx->stx_uid);
10762                 __put_user(st.st_gid, &target_stx->stx_gid);
10763                 __put_user(st.st_nlink, &target_stx->stx_nlink);
10764                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
10765                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
10766                 __put_user(st.st_size, &target_stx->stx_size);
10767                 __put_user(st.st_blksize, &target_stx->stx_blksize);
10768                 __put_user(st.st_blocks, &target_stx->stx_blocks);
10769                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
10770                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
10771                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
10772                 unlock_user_struct(target_stx, arg5, 1);
10773             }
10774         }
10775         return ret;
10776 #endif
10777 #ifdef TARGET_NR_lchown
10778     case TARGET_NR_lchown:
10779         if (!(p = lock_user_string(arg1)))
10780             return -TARGET_EFAULT;
10781         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
10782         unlock_user(p, arg1, 0);
10783         return ret;
10784 #endif
10785 #ifdef TARGET_NR_getuid
10786     case TARGET_NR_getuid:
10787         return get_errno(high2lowuid(getuid()));
10788 #endif
10789 #ifdef TARGET_NR_getgid
10790     case TARGET_NR_getgid:
10791         return get_errno(high2lowgid(getgid()));
10792 #endif
10793 #ifdef TARGET_NR_geteuid
10794     case TARGET_NR_geteuid:
10795         return get_errno(high2lowuid(geteuid()));
10796 #endif
10797 #ifdef TARGET_NR_getegid
10798     case TARGET_NR_getegid:
10799         return get_errno(high2lowgid(getegid()));
10800 #endif
10801     case TARGET_NR_setreuid:
10802         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
10803     case TARGET_NR_setregid:
10804         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
10805     case TARGET_NR_getgroups:
10806         {
10807             int gidsetsize = arg1;
10808             target_id *target_grouplist;
10809             gid_t *grouplist;
10810             int i;
10811 
10812             grouplist = alloca(gidsetsize * sizeof(gid_t));
10813             ret = get_errno(getgroups(gidsetsize, grouplist));
10814             if (gidsetsize == 0)
10815                 return ret;
10816             if (!is_error(ret)) {
10817                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
10818                 if (!target_grouplist)
10819                     return -TARGET_EFAULT;
10820                 for(i = 0;i < ret; i++)
10821                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
10822                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
10823             }
10824         }
10825         return ret;
10826     case TARGET_NR_setgroups:
10827         {
10828             int gidsetsize = arg1;
10829             target_id *target_grouplist;
10830             gid_t *grouplist = NULL;
10831             int i;
10832             if (gidsetsize) {
10833                 grouplist = alloca(gidsetsize * sizeof(gid_t));
10834                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
10835                 if (!target_grouplist) {
10836                     return -TARGET_EFAULT;
10837                 }
10838                 for (i = 0; i < gidsetsize; i++) {
10839                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
10840                 }
10841                 unlock_user(target_grouplist, arg2, 0);
10842             }
10843             return get_errno(setgroups(gidsetsize, grouplist));
10844         }
10845     case TARGET_NR_fchown:
10846         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
10847 #if defined(TARGET_NR_fchownat)
10848     case TARGET_NR_fchownat:
10849         if (!(p = lock_user_string(arg2)))
10850             return -TARGET_EFAULT;
10851         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
10852                                  low2highgid(arg4), arg5));
10853         unlock_user(p, arg2, 0);
10854         return ret;
10855 #endif
10856 #ifdef TARGET_NR_setresuid
10857     case TARGET_NR_setresuid:
10858         return get_errno(sys_setresuid(low2highuid(arg1),
10859                                        low2highuid(arg2),
10860                                        low2highuid(arg3)));
10861 #endif
10862 #ifdef TARGET_NR_getresuid
10863     case TARGET_NR_getresuid:
10864         {
10865             uid_t ruid, euid, suid;
10866             ret = get_errno(getresuid(&ruid, &euid, &suid));
10867             if (!is_error(ret)) {
10868                 if (put_user_id(high2lowuid(ruid), arg1)
10869                     || put_user_id(high2lowuid(euid), arg2)
10870                     || put_user_id(high2lowuid(suid), arg3))
10871                     return -TARGET_EFAULT;
10872             }
10873         }
10874         return ret;
10875 #endif
10876 #ifdef TARGET_NR_getresgid
10877     case TARGET_NR_setresgid:
10878         return get_errno(sys_setresgid(low2highgid(arg1),
10879                                        low2highgid(arg2),
10880                                        low2highgid(arg3)));
10881 #endif
10882 #ifdef TARGET_NR_getresgid
10883     case TARGET_NR_getresgid:
10884         {
10885             gid_t rgid, egid, sgid;
10886             ret = get_errno(getresgid(&rgid, &egid, &sgid));
10887             if (!is_error(ret)) {
10888                 if (put_user_id(high2lowgid(rgid), arg1)
10889                     || put_user_id(high2lowgid(egid), arg2)
10890                     || put_user_id(high2lowgid(sgid), arg3))
10891                     return -TARGET_EFAULT;
10892             }
10893         }
10894         return ret;
10895 #endif
10896 #ifdef TARGET_NR_chown
10897     case TARGET_NR_chown:
10898         if (!(p = lock_user_string(arg1)))
10899             return -TARGET_EFAULT;
10900         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
10901         unlock_user(p, arg1, 0);
10902         return ret;
10903 #endif
10904     case TARGET_NR_setuid:
10905         return get_errno(sys_setuid(low2highuid(arg1)));
10906     case TARGET_NR_setgid:
10907         return get_errno(sys_setgid(low2highgid(arg1)));
10908     case TARGET_NR_setfsuid:
10909         return get_errno(setfsuid(arg1));
10910     case TARGET_NR_setfsgid:
10911         return get_errno(setfsgid(arg1));
10912 
10913 #ifdef TARGET_NR_lchown32
10914     case TARGET_NR_lchown32:
10915         if (!(p = lock_user_string(arg1)))
10916             return -TARGET_EFAULT;
10917         ret = get_errno(lchown(p, arg2, arg3));
10918         unlock_user(p, arg1, 0);
10919         return ret;
10920 #endif
10921 #ifdef TARGET_NR_getuid32
10922     case TARGET_NR_getuid32:
10923         return get_errno(getuid());
10924 #endif
10925 
10926 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
10927    /* Alpha specific */
10928     case TARGET_NR_getxuid:
10929          {
10930             uid_t euid;
10931             euid=geteuid();
10932             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
10933          }
10934         return get_errno(getuid());
10935 #endif
10936 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
10937    /* Alpha specific */
10938     case TARGET_NR_getxgid:
10939          {
10940             uid_t egid;
10941             egid=getegid();
10942             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
10943          }
10944         return get_errno(getgid());
10945 #endif
10946 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
10947     /* Alpha specific */
10948     case TARGET_NR_osf_getsysinfo:
10949         ret = -TARGET_EOPNOTSUPP;
10950         switch (arg1) {
10951           case TARGET_GSI_IEEE_FP_CONTROL:
10952             {
10953                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
10954                 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr;
10955 
10956                 swcr &= ~SWCR_STATUS_MASK;
10957                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
10958 
10959                 if (put_user_u64 (swcr, arg2))
10960                         return -TARGET_EFAULT;
10961                 ret = 0;
10962             }
10963             break;
10964 
10965           /* case GSI_IEEE_STATE_AT_SIGNAL:
10966              -- Not implemented in linux kernel.
10967              case GSI_UACPROC:
10968              -- Retrieves current unaligned access state; not much used.
10969              case GSI_PROC_TYPE:
10970              -- Retrieves implver information; surely not used.
10971              case GSI_GET_HWRPB:
10972              -- Grabs a copy of the HWRPB; surely not used.
10973           */
10974         }
10975         return ret;
10976 #endif
10977 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
10978     /* Alpha specific */
10979     case TARGET_NR_osf_setsysinfo:
10980         ret = -TARGET_EOPNOTSUPP;
10981         switch (arg1) {
10982           case TARGET_SSI_IEEE_FP_CONTROL:
10983             {
10984                 uint64_t swcr, fpcr;
10985 
10986                 if (get_user_u64 (swcr, arg2)) {
10987                     return -TARGET_EFAULT;
10988                 }
10989 
10990                 /*
10991                  * The kernel calls swcr_update_status to update the
10992                  * status bits from the fpcr at every point that it
10993                  * could be queried.  Therefore, we store the status
10994                  * bits only in FPCR.
10995                  */
10996                 ((CPUAlphaState *)cpu_env)->swcr
10997                     = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
10998 
10999                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11000                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11001                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11002                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11003                 ret = 0;
11004             }
11005             break;
11006 
11007           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11008             {
11009                 uint64_t exc, fpcr, fex;
11010 
11011                 if (get_user_u64(exc, arg2)) {
11012                     return -TARGET_EFAULT;
11013                 }
11014                 exc &= SWCR_STATUS_MASK;
11015                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11016 
11017                 /* Old exceptions are not signaled.  */
11018                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11019                 fex = exc & ~fex;
11020                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11021                 fex &= ((CPUArchState *)cpu_env)->swcr;
11022 
11023                 /* Update the hardware fpcr.  */
11024                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11025                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11026 
11027                 if (fex) {
11028                     int si_code = TARGET_FPE_FLTUNK;
11029                     target_siginfo_t info;
11030 
11031                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11032                         si_code = TARGET_FPE_FLTUND;
11033                     }
11034                     if (fex & SWCR_TRAP_ENABLE_INE) {
11035                         si_code = TARGET_FPE_FLTRES;
11036                     }
11037                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11038                         si_code = TARGET_FPE_FLTUND;
11039                     }
11040                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11041                         si_code = TARGET_FPE_FLTOVF;
11042                     }
11043                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11044                         si_code = TARGET_FPE_FLTDIV;
11045                     }
11046                     if (fex & SWCR_TRAP_ENABLE_INV) {
11047                         si_code = TARGET_FPE_FLTINV;
11048                     }
11049 
11050                     info.si_signo = SIGFPE;
11051                     info.si_errno = 0;
11052                     info.si_code = si_code;
11053                     info._sifields._sigfault._addr
11054                         = ((CPUArchState *)cpu_env)->pc;
11055                     queue_signal((CPUArchState *)cpu_env, info.si_signo,
11056                                  QEMU_SI_FAULT, &info);
11057                 }
11058                 ret = 0;
11059             }
11060             break;
11061 
11062           /* case SSI_NVPAIRS:
11063              -- Used with SSIN_UACPROC to enable unaligned accesses.
11064              case SSI_IEEE_STATE_AT_SIGNAL:
11065              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11066              -- Not implemented in linux kernel
11067           */
11068         }
11069         return ret;
11070 #endif
11071 #ifdef TARGET_NR_osf_sigprocmask
11072     /* Alpha specific.  */
11073     case TARGET_NR_osf_sigprocmask:
11074         {
11075             abi_ulong mask;
11076             int how;
11077             sigset_t set, oldset;
11078 
11079             switch(arg1) {
11080             case TARGET_SIG_BLOCK:
11081                 how = SIG_BLOCK;
11082                 break;
11083             case TARGET_SIG_UNBLOCK:
11084                 how = SIG_UNBLOCK;
11085                 break;
11086             case TARGET_SIG_SETMASK:
11087                 how = SIG_SETMASK;
11088                 break;
11089             default:
11090                 return -TARGET_EINVAL;
11091             }
11092             mask = arg2;
11093             target_to_host_old_sigset(&set, &mask);
11094             ret = do_sigprocmask(how, &set, &oldset);
11095             if (!ret) {
11096                 host_to_target_old_sigset(&mask, &oldset);
11097                 ret = mask;
11098             }
11099         }
11100         return ret;
11101 #endif
11102 
11103 #ifdef TARGET_NR_getgid32
11104     case TARGET_NR_getgid32:
11105         return get_errno(getgid());
11106 #endif
11107 #ifdef TARGET_NR_geteuid32
11108     case TARGET_NR_geteuid32:
11109         return get_errno(geteuid());
11110 #endif
11111 #ifdef TARGET_NR_getegid32
11112     case TARGET_NR_getegid32:
11113         return get_errno(getegid());
11114 #endif
11115 #ifdef TARGET_NR_setreuid32
11116     case TARGET_NR_setreuid32:
11117         return get_errno(setreuid(arg1, arg2));
11118 #endif
11119 #ifdef TARGET_NR_setregid32
11120     case TARGET_NR_setregid32:
11121         return get_errno(setregid(arg1, arg2));
11122 #endif
11123 #ifdef TARGET_NR_getgroups32
11124     case TARGET_NR_getgroups32:
11125         {
11126             int gidsetsize = arg1;
11127             uint32_t *target_grouplist;
11128             gid_t *grouplist;
11129             int i;
11130 
11131             grouplist = alloca(gidsetsize * sizeof(gid_t));
11132             ret = get_errno(getgroups(gidsetsize, grouplist));
11133             if (gidsetsize == 0)
11134                 return ret;
11135             if (!is_error(ret)) {
11136                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11137                 if (!target_grouplist) {
11138                     return -TARGET_EFAULT;
11139                 }
11140                 for(i = 0;i < ret; i++)
11141                     target_grouplist[i] = tswap32(grouplist[i]);
11142                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11143             }
11144         }
11145         return ret;
11146 #endif
11147 #ifdef TARGET_NR_setgroups32
11148     case TARGET_NR_setgroups32:
11149         {
11150             int gidsetsize = arg1;
11151             uint32_t *target_grouplist;
11152             gid_t *grouplist;
11153             int i;
11154 
11155             grouplist = alloca(gidsetsize * sizeof(gid_t));
11156             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11157             if (!target_grouplist) {
11158                 return -TARGET_EFAULT;
11159             }
11160             for(i = 0;i < gidsetsize; i++)
11161                 grouplist[i] = tswap32(target_grouplist[i]);
11162             unlock_user(target_grouplist, arg2, 0);
11163             return get_errno(setgroups(gidsetsize, grouplist));
11164         }
11165 #endif
11166 #ifdef TARGET_NR_fchown32
11167     case TARGET_NR_fchown32:
11168         return get_errno(fchown(arg1, arg2, arg3));
11169 #endif
11170 #ifdef TARGET_NR_setresuid32
11171     case TARGET_NR_setresuid32:
11172         return get_errno(sys_setresuid(arg1, arg2, arg3));
11173 #endif
11174 #ifdef TARGET_NR_getresuid32
11175     case TARGET_NR_getresuid32:
11176         {
11177             uid_t ruid, euid, suid;
11178             ret = get_errno(getresuid(&ruid, &euid, &suid));
11179             if (!is_error(ret)) {
11180                 if (put_user_u32(ruid, arg1)
11181                     || put_user_u32(euid, arg2)
11182                     || put_user_u32(suid, arg3))
11183                     return -TARGET_EFAULT;
11184             }
11185         }
11186         return ret;
11187 #endif
11188 #ifdef TARGET_NR_setresgid32
11189     case TARGET_NR_setresgid32:
11190         return get_errno(sys_setresgid(arg1, arg2, arg3));
11191 #endif
11192 #ifdef TARGET_NR_getresgid32
11193     case TARGET_NR_getresgid32:
11194         {
11195             gid_t rgid, egid, sgid;
11196             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11197             if (!is_error(ret)) {
11198                 if (put_user_u32(rgid, arg1)
11199                     || put_user_u32(egid, arg2)
11200                     || put_user_u32(sgid, arg3))
11201                     return -TARGET_EFAULT;
11202             }
11203         }
11204         return ret;
11205 #endif
11206 #ifdef TARGET_NR_chown32
11207     case TARGET_NR_chown32:
11208         if (!(p = lock_user_string(arg1)))
11209             return -TARGET_EFAULT;
11210         ret = get_errno(chown(p, arg2, arg3));
11211         unlock_user(p, arg1, 0);
11212         return ret;
11213 #endif
11214 #ifdef TARGET_NR_setuid32
11215     case TARGET_NR_setuid32:
11216         return get_errno(sys_setuid(arg1));
11217 #endif
11218 #ifdef TARGET_NR_setgid32
11219     case TARGET_NR_setgid32:
11220         return get_errno(sys_setgid(arg1));
11221 #endif
11222 #ifdef TARGET_NR_setfsuid32
11223     case TARGET_NR_setfsuid32:
11224         return get_errno(setfsuid(arg1));
11225 #endif
11226 #ifdef TARGET_NR_setfsgid32
11227     case TARGET_NR_setfsgid32:
11228         return get_errno(setfsgid(arg1));
11229 #endif
11230 #ifdef TARGET_NR_mincore
11231     case TARGET_NR_mincore:
11232         {
11233             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11234             if (!a) {
11235                 return -TARGET_ENOMEM;
11236             }
11237             p = lock_user_string(arg3);
11238             if (!p) {
11239                 ret = -TARGET_EFAULT;
11240             } else {
11241                 ret = get_errno(mincore(a, arg2, p));
11242                 unlock_user(p, arg3, ret);
11243             }
11244             unlock_user(a, arg1, 0);
11245         }
11246         return ret;
11247 #endif
11248 #ifdef TARGET_NR_arm_fadvise64_64
11249     case TARGET_NR_arm_fadvise64_64:
11250         /* arm_fadvise64_64 looks like fadvise64_64 but
11251          * with different argument order: fd, advice, offset, len
11252          * rather than the usual fd, offset, len, advice.
11253          * Note that offset and len are both 64-bit so appear as
11254          * pairs of 32-bit registers.
11255          */
11256         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11257                             target_offset64(arg5, arg6), arg2);
11258         return -host_to_target_errno(ret);
11259 #endif
11260 
11261 #if TARGET_ABI_BITS == 32
11262 
11263 #ifdef TARGET_NR_fadvise64_64
11264     case TARGET_NR_fadvise64_64:
11265 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11266         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11267         ret = arg2;
11268         arg2 = arg3;
11269         arg3 = arg4;
11270         arg4 = arg5;
11271         arg5 = arg6;
11272         arg6 = ret;
11273 #else
11274         /* 6 args: fd, offset (high, low), len (high, low), advice */
11275         if (regpairs_aligned(cpu_env, num)) {
11276             /* offset is in (3,4), len in (5,6) and advice in 7 */
11277             arg2 = arg3;
11278             arg3 = arg4;
11279             arg4 = arg5;
11280             arg5 = arg6;
11281             arg6 = arg7;
11282         }
11283 #endif
11284         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11285                             target_offset64(arg4, arg5), arg6);
11286         return -host_to_target_errno(ret);
11287 #endif
11288 
11289 #ifdef TARGET_NR_fadvise64
11290     case TARGET_NR_fadvise64:
11291         /* 5 args: fd, offset (high, low), len, advice */
11292         if (regpairs_aligned(cpu_env, num)) {
11293             /* offset is in (3,4), len in 5 and advice in 6 */
11294             arg2 = arg3;
11295             arg3 = arg4;
11296             arg4 = arg5;
11297             arg5 = arg6;
11298         }
11299         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11300         return -host_to_target_errno(ret);
11301 #endif
11302 
11303 #else /* not a 32-bit ABI */
11304 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11305 #ifdef TARGET_NR_fadvise64_64
11306     case TARGET_NR_fadvise64_64:
11307 #endif
11308 #ifdef TARGET_NR_fadvise64
11309     case TARGET_NR_fadvise64:
11310 #endif
11311 #ifdef TARGET_S390X
11312         switch (arg4) {
11313         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11314         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11315         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11316         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11317         default: break;
11318         }
11319 #endif
11320         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11321 #endif
11322 #endif /* end of 64-bit ABI fadvise handling */
11323 
11324 #ifdef TARGET_NR_madvise
11325     case TARGET_NR_madvise:
11326         /* A straight passthrough may not be safe because qemu sometimes
11327            turns private file-backed mappings into anonymous mappings.
11328            This will break MADV_DONTNEED.
11329            This is a hint, so ignoring and returning success is ok.  */
11330         return 0;
11331 #endif
11332 #ifdef TARGET_NR_fcntl64
11333     case TARGET_NR_fcntl64:
11334     {
11335         int cmd;
11336         struct flock64 fl;
11337         from_flock64_fn *copyfrom = copy_from_user_flock64;
11338         to_flock64_fn *copyto = copy_to_user_flock64;
11339 
11340 #ifdef TARGET_ARM
11341         if (!((CPUARMState *)cpu_env)->eabi) {
11342             copyfrom = copy_from_user_oabi_flock64;
11343             copyto = copy_to_user_oabi_flock64;
11344         }
11345 #endif
11346 
11347         cmd = target_to_host_fcntl_cmd(arg2);
11348         if (cmd == -TARGET_EINVAL) {
11349             return cmd;
11350         }
11351 
11352         switch(arg2) {
11353         case TARGET_F_GETLK64:
11354             ret = copyfrom(&fl, arg3);
11355             if (ret) {
11356                 break;
11357             }
11358             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11359             if (ret == 0) {
11360                 ret = copyto(arg3, &fl);
11361             }
11362 	    break;
11363 
11364         case TARGET_F_SETLK64:
11365         case TARGET_F_SETLKW64:
11366             ret = copyfrom(&fl, arg3);
11367             if (ret) {
11368                 break;
11369             }
11370             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11371 	    break;
11372         default:
11373             ret = do_fcntl(arg1, arg2, arg3);
11374             break;
11375         }
11376         return ret;
11377     }
11378 #endif
11379 #ifdef TARGET_NR_cacheflush
11380     case TARGET_NR_cacheflush:
11381         /* self-modifying code is handled automatically, so nothing needed */
11382         return 0;
11383 #endif
11384 #ifdef TARGET_NR_getpagesize
11385     case TARGET_NR_getpagesize:
11386         return TARGET_PAGE_SIZE;
11387 #endif
11388     case TARGET_NR_gettid:
11389         return get_errno(sys_gettid());
11390 #ifdef TARGET_NR_readahead
11391     case TARGET_NR_readahead:
11392 #if TARGET_ABI_BITS == 32
11393         if (regpairs_aligned(cpu_env, num)) {
11394             arg2 = arg3;
11395             arg3 = arg4;
11396             arg4 = arg5;
11397         }
11398         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11399 #else
11400         ret = get_errno(readahead(arg1, arg2, arg3));
11401 #endif
11402         return ret;
11403 #endif
11404 #ifdef CONFIG_ATTR
11405 #ifdef TARGET_NR_setxattr
11406     case TARGET_NR_listxattr:
11407     case TARGET_NR_llistxattr:
11408     {
11409         void *p, *b = 0;
11410         if (arg2) {
11411             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11412             if (!b) {
11413                 return -TARGET_EFAULT;
11414             }
11415         }
11416         p = lock_user_string(arg1);
11417         if (p) {
11418             if (num == TARGET_NR_listxattr) {
11419                 ret = get_errno(listxattr(p, b, arg3));
11420             } else {
11421                 ret = get_errno(llistxattr(p, b, arg3));
11422             }
11423         } else {
11424             ret = -TARGET_EFAULT;
11425         }
11426         unlock_user(p, arg1, 0);
11427         unlock_user(b, arg2, arg3);
11428         return ret;
11429     }
11430     case TARGET_NR_flistxattr:
11431     {
11432         void *b = 0;
11433         if (arg2) {
11434             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11435             if (!b) {
11436                 return -TARGET_EFAULT;
11437             }
11438         }
11439         ret = get_errno(flistxattr(arg1, b, arg3));
11440         unlock_user(b, arg2, arg3);
11441         return ret;
11442     }
11443     case TARGET_NR_setxattr:
11444     case TARGET_NR_lsetxattr:
11445         {
11446             void *p, *n, *v = 0;
11447             if (arg3) {
11448                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11449                 if (!v) {
11450                     return -TARGET_EFAULT;
11451                 }
11452             }
11453             p = lock_user_string(arg1);
11454             n = lock_user_string(arg2);
11455             if (p && n) {
11456                 if (num == TARGET_NR_setxattr) {
11457                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
11458                 } else {
11459                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11460                 }
11461             } else {
11462                 ret = -TARGET_EFAULT;
11463             }
11464             unlock_user(p, arg1, 0);
11465             unlock_user(n, arg2, 0);
11466             unlock_user(v, arg3, 0);
11467         }
11468         return ret;
11469     case TARGET_NR_fsetxattr:
11470         {
11471             void *n, *v = 0;
11472             if (arg3) {
11473                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11474                 if (!v) {
11475                     return -TARGET_EFAULT;
11476                 }
11477             }
11478             n = lock_user_string(arg2);
11479             if (n) {
11480                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11481             } else {
11482                 ret = -TARGET_EFAULT;
11483             }
11484             unlock_user(n, arg2, 0);
11485             unlock_user(v, arg3, 0);
11486         }
11487         return ret;
11488     case TARGET_NR_getxattr:
11489     case TARGET_NR_lgetxattr:
11490         {
11491             void *p, *n, *v = 0;
11492             if (arg3) {
11493                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11494                 if (!v) {
11495                     return -TARGET_EFAULT;
11496                 }
11497             }
11498             p = lock_user_string(arg1);
11499             n = lock_user_string(arg2);
11500             if (p && n) {
11501                 if (num == TARGET_NR_getxattr) {
11502                     ret = get_errno(getxattr(p, n, v, arg4));
11503                 } else {
11504                     ret = get_errno(lgetxattr(p, n, v, arg4));
11505                 }
11506             } else {
11507                 ret = -TARGET_EFAULT;
11508             }
11509             unlock_user(p, arg1, 0);
11510             unlock_user(n, arg2, 0);
11511             unlock_user(v, arg3, arg4);
11512         }
11513         return ret;
11514     case TARGET_NR_fgetxattr:
11515         {
11516             void *n, *v = 0;
11517             if (arg3) {
11518                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11519                 if (!v) {
11520                     return -TARGET_EFAULT;
11521                 }
11522             }
11523             n = lock_user_string(arg2);
11524             if (n) {
11525                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
11526             } else {
11527                 ret = -TARGET_EFAULT;
11528             }
11529             unlock_user(n, arg2, 0);
11530             unlock_user(v, arg3, arg4);
11531         }
11532         return ret;
11533     case TARGET_NR_removexattr:
11534     case TARGET_NR_lremovexattr:
11535         {
11536             void *p, *n;
11537             p = lock_user_string(arg1);
11538             n = lock_user_string(arg2);
11539             if (p && n) {
11540                 if (num == TARGET_NR_removexattr) {
11541                     ret = get_errno(removexattr(p, n));
11542                 } else {
11543                     ret = get_errno(lremovexattr(p, n));
11544                 }
11545             } else {
11546                 ret = -TARGET_EFAULT;
11547             }
11548             unlock_user(p, arg1, 0);
11549             unlock_user(n, arg2, 0);
11550         }
11551         return ret;
11552     case TARGET_NR_fremovexattr:
11553         {
11554             void *n;
11555             n = lock_user_string(arg2);
11556             if (n) {
11557                 ret = get_errno(fremovexattr(arg1, n));
11558             } else {
11559                 ret = -TARGET_EFAULT;
11560             }
11561             unlock_user(n, arg2, 0);
11562         }
11563         return ret;
11564 #endif
11565 #endif /* CONFIG_ATTR */
11566 #ifdef TARGET_NR_set_thread_area
11567     case TARGET_NR_set_thread_area:
11568 #if defined(TARGET_MIPS)
11569       ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
11570       return 0;
11571 #elif defined(TARGET_CRIS)
11572       if (arg1 & 0xff)
11573           ret = -TARGET_EINVAL;
11574       else {
11575           ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
11576           ret = 0;
11577       }
11578       return ret;
11579 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11580       return do_set_thread_area(cpu_env, arg1);
11581 #elif defined(TARGET_M68K)
11582       {
11583           TaskState *ts = cpu->opaque;
11584           ts->tp_value = arg1;
11585           return 0;
11586       }
11587 #else
11588       return -TARGET_ENOSYS;
11589 #endif
11590 #endif
11591 #ifdef TARGET_NR_get_thread_area
11592     case TARGET_NR_get_thread_area:
11593 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11594         return do_get_thread_area(cpu_env, arg1);
11595 #elif defined(TARGET_M68K)
11596         {
11597             TaskState *ts = cpu->opaque;
11598             return ts->tp_value;
11599         }
11600 #else
11601         return -TARGET_ENOSYS;
11602 #endif
11603 #endif
11604 #ifdef TARGET_NR_getdomainname
11605     case TARGET_NR_getdomainname:
11606         return -TARGET_ENOSYS;
11607 #endif
11608 
11609 #ifdef TARGET_NR_clock_settime
11610     case TARGET_NR_clock_settime:
11611     {
11612         struct timespec ts;
11613 
11614         ret = target_to_host_timespec(&ts, arg2);
11615         if (!is_error(ret)) {
11616             ret = get_errno(clock_settime(arg1, &ts));
11617         }
11618         return ret;
11619     }
11620 #endif
11621 #ifdef TARGET_NR_clock_settime64
11622     case TARGET_NR_clock_settime64:
11623     {
11624         struct timespec ts;
11625 
11626         ret = target_to_host_timespec64(&ts, arg2);
11627         if (!is_error(ret)) {
11628             ret = get_errno(clock_settime(arg1, &ts));
11629         }
11630         return ret;
11631     }
11632 #endif
11633 #ifdef TARGET_NR_clock_gettime
11634     case TARGET_NR_clock_gettime:
11635     {
11636         struct timespec ts;
11637         ret = get_errno(clock_gettime(arg1, &ts));
11638         if (!is_error(ret)) {
11639             ret = host_to_target_timespec(arg2, &ts);
11640         }
11641         return ret;
11642     }
11643 #endif
11644 #ifdef TARGET_NR_clock_gettime64
11645     case TARGET_NR_clock_gettime64:
11646     {
11647         struct timespec ts;
11648         ret = get_errno(clock_gettime(arg1, &ts));
11649         if (!is_error(ret)) {
11650             ret = host_to_target_timespec64(arg2, &ts);
11651         }
11652         return ret;
11653     }
11654 #endif
11655 #ifdef TARGET_NR_clock_getres
11656     case TARGET_NR_clock_getres:
11657     {
11658         struct timespec ts;
11659         ret = get_errno(clock_getres(arg1, &ts));
11660         if (!is_error(ret)) {
11661             host_to_target_timespec(arg2, &ts);
11662         }
11663         return ret;
11664     }
11665 #endif
11666 #ifdef TARGET_NR_clock_nanosleep
11667     case TARGET_NR_clock_nanosleep:
11668     {
11669         struct timespec ts;
11670         target_to_host_timespec(&ts, arg3);
11671         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
11672                                              &ts, arg4 ? &ts : NULL));
11673         if (arg4)
11674             host_to_target_timespec(arg4, &ts);
11675 
11676 #if defined(TARGET_PPC)
11677         /* clock_nanosleep is odd in that it returns positive errno values.
11678          * On PPC, CR0 bit 3 should be set in such a situation. */
11679         if (ret && ret != -TARGET_ERESTARTSYS) {
11680             ((CPUPPCState *)cpu_env)->crf[0] |= 1;
11681         }
11682 #endif
11683         return ret;
11684     }
11685 #endif
11686 
11687 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11688     case TARGET_NR_set_tid_address:
11689         return get_errno(set_tid_address((int *)g2h(arg1)));
11690 #endif
11691 
11692     case TARGET_NR_tkill:
11693         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
11694 
11695     case TARGET_NR_tgkill:
11696         return get_errno(safe_tgkill((int)arg1, (int)arg2,
11697                          target_to_host_signal(arg3)));
11698 
11699 #ifdef TARGET_NR_set_robust_list
11700     case TARGET_NR_set_robust_list:
11701     case TARGET_NR_get_robust_list:
11702         /* The ABI for supporting robust futexes has userspace pass
11703          * the kernel a pointer to a linked list which is updated by
11704          * userspace after the syscall; the list is walked by the kernel
11705          * when the thread exits. Since the linked list in QEMU guest
11706          * memory isn't a valid linked list for the host and we have
11707          * no way to reliably intercept the thread-death event, we can't
11708          * support these. Silently return ENOSYS so that guest userspace
11709          * falls back to a non-robust futex implementation (which should
11710          * be OK except in the corner case of the guest crashing while
11711          * holding a mutex that is shared with another process via
11712          * shared memory).
11713          */
11714         return -TARGET_ENOSYS;
11715 #endif
11716 
11717 #if defined(TARGET_NR_utimensat)
11718     case TARGET_NR_utimensat:
11719         {
11720             struct timespec *tsp, ts[2];
11721             if (!arg3) {
11722                 tsp = NULL;
11723             } else {
11724                 target_to_host_timespec(ts, arg3);
11725                 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
11726                 tsp = ts;
11727             }
11728             if (!arg2)
11729                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
11730             else {
11731                 if (!(p = lock_user_string(arg2))) {
11732                     return -TARGET_EFAULT;
11733                 }
11734                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
11735                 unlock_user(p, arg2, 0);
11736             }
11737         }
11738         return ret;
11739 #endif
11740 #ifdef TARGET_NR_futex
11741     case TARGET_NR_futex:
11742         return do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
11743 #endif
11744 #ifdef TARGET_NR_futex_time64
11745     case TARGET_NR_futex_time64:
11746         return do_futex_time64(arg1, arg2, arg3, arg4, arg5, arg6);
11747 #endif
11748 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
11749     case TARGET_NR_inotify_init:
11750         ret = get_errno(sys_inotify_init());
11751         if (ret >= 0) {
11752             fd_trans_register(ret, &target_inotify_trans);
11753         }
11754         return ret;
11755 #endif
11756 #ifdef CONFIG_INOTIFY1
11757 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
11758     case TARGET_NR_inotify_init1:
11759         ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
11760                                           fcntl_flags_tbl)));
11761         if (ret >= 0) {
11762             fd_trans_register(ret, &target_inotify_trans);
11763         }
11764         return ret;
11765 #endif
11766 #endif
11767 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
11768     case TARGET_NR_inotify_add_watch:
11769         p = lock_user_string(arg2);
11770         ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
11771         unlock_user(p, arg2, 0);
11772         return ret;
11773 #endif
11774 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
11775     case TARGET_NR_inotify_rm_watch:
11776         return get_errno(sys_inotify_rm_watch(arg1, arg2));
11777 #endif
11778 
11779 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
11780     case TARGET_NR_mq_open:
11781         {
11782             struct mq_attr posix_mq_attr;
11783             struct mq_attr *pposix_mq_attr;
11784             int host_flags;
11785 
11786             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
11787             pposix_mq_attr = NULL;
11788             if (arg4) {
11789                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
11790                     return -TARGET_EFAULT;
11791                 }
11792                 pposix_mq_attr = &posix_mq_attr;
11793             }
11794             p = lock_user_string(arg1 - 1);
11795             if (!p) {
11796                 return -TARGET_EFAULT;
11797             }
11798             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
11799             unlock_user (p, arg1, 0);
11800         }
11801         return ret;
11802 
11803     case TARGET_NR_mq_unlink:
11804         p = lock_user_string(arg1 - 1);
11805         if (!p) {
11806             return -TARGET_EFAULT;
11807         }
11808         ret = get_errno(mq_unlink(p));
11809         unlock_user (p, arg1, 0);
11810         return ret;
11811 
11812 #ifdef TARGET_NR_mq_timedsend
11813     case TARGET_NR_mq_timedsend:
11814         {
11815             struct timespec ts;
11816 
11817             p = lock_user (VERIFY_READ, arg2, arg3, 1);
11818             if (arg5 != 0) {
11819                 target_to_host_timespec(&ts, arg5);
11820                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
11821                 host_to_target_timespec(arg5, &ts);
11822             } else {
11823                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
11824             }
11825             unlock_user (p, arg2, arg3);
11826         }
11827         return ret;
11828 #endif
11829 
11830 #ifdef TARGET_NR_mq_timedreceive
11831     case TARGET_NR_mq_timedreceive:
11832         {
11833             struct timespec ts;
11834             unsigned int prio;
11835 
11836             p = lock_user (VERIFY_READ, arg2, arg3, 1);
11837             if (arg5 != 0) {
11838                 target_to_host_timespec(&ts, arg5);
11839                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11840                                                      &prio, &ts));
11841                 host_to_target_timespec(arg5, &ts);
11842             } else {
11843                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11844                                                      &prio, NULL));
11845             }
11846             unlock_user (p, arg2, arg3);
11847             if (arg4 != 0)
11848                 put_user_u32(prio, arg4);
11849         }
11850         return ret;
11851 #endif
11852 
11853     /* Not implemented for now... */
11854 /*     case TARGET_NR_mq_notify: */
11855 /*         break; */
11856 
11857     case TARGET_NR_mq_getsetattr:
11858         {
11859             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
11860             ret = 0;
11861             if (arg2 != 0) {
11862                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
11863                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
11864                                            &posix_mq_attr_out));
11865             } else if (arg3 != 0) {
11866                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
11867             }
11868             if (ret == 0 && arg3 != 0) {
11869                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
11870             }
11871         }
11872         return ret;
11873 #endif
11874 
11875 #ifdef CONFIG_SPLICE
11876 #ifdef TARGET_NR_tee
11877     case TARGET_NR_tee:
11878         {
11879             ret = get_errno(tee(arg1,arg2,arg3,arg4));
11880         }
11881         return ret;
11882 #endif
11883 #ifdef TARGET_NR_splice
11884     case TARGET_NR_splice:
11885         {
11886             loff_t loff_in, loff_out;
11887             loff_t *ploff_in = NULL, *ploff_out = NULL;
11888             if (arg2) {
11889                 if (get_user_u64(loff_in, arg2)) {
11890                     return -TARGET_EFAULT;
11891                 }
11892                 ploff_in = &loff_in;
11893             }
11894             if (arg4) {
11895                 if (get_user_u64(loff_out, arg4)) {
11896                     return -TARGET_EFAULT;
11897                 }
11898                 ploff_out = &loff_out;
11899             }
11900             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
11901             if (arg2) {
11902                 if (put_user_u64(loff_in, arg2)) {
11903                     return -TARGET_EFAULT;
11904                 }
11905             }
11906             if (arg4) {
11907                 if (put_user_u64(loff_out, arg4)) {
11908                     return -TARGET_EFAULT;
11909                 }
11910             }
11911         }
11912         return ret;
11913 #endif
11914 #ifdef TARGET_NR_vmsplice
11915 	case TARGET_NR_vmsplice:
11916         {
11917             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11918             if (vec != NULL) {
11919                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
11920                 unlock_iovec(vec, arg2, arg3, 0);
11921             } else {
11922                 ret = -host_to_target_errno(errno);
11923             }
11924         }
11925         return ret;
11926 #endif
11927 #endif /* CONFIG_SPLICE */
11928 #ifdef CONFIG_EVENTFD
11929 #if defined(TARGET_NR_eventfd)
11930     case TARGET_NR_eventfd:
11931         ret = get_errno(eventfd(arg1, 0));
11932         if (ret >= 0) {
11933             fd_trans_register(ret, &target_eventfd_trans);
11934         }
11935         return ret;
11936 #endif
11937 #if defined(TARGET_NR_eventfd2)
11938     case TARGET_NR_eventfd2:
11939     {
11940         int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
11941         if (arg2 & TARGET_O_NONBLOCK) {
11942             host_flags |= O_NONBLOCK;
11943         }
11944         if (arg2 & TARGET_O_CLOEXEC) {
11945             host_flags |= O_CLOEXEC;
11946         }
11947         ret = get_errno(eventfd(arg1, host_flags));
11948         if (ret >= 0) {
11949             fd_trans_register(ret, &target_eventfd_trans);
11950         }
11951         return ret;
11952     }
11953 #endif
11954 #endif /* CONFIG_EVENTFD  */
11955 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
11956     case TARGET_NR_fallocate:
11957 #if TARGET_ABI_BITS == 32
11958         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
11959                                   target_offset64(arg5, arg6)));
11960 #else
11961         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
11962 #endif
11963         return ret;
11964 #endif
11965 #if defined(CONFIG_SYNC_FILE_RANGE)
11966 #if defined(TARGET_NR_sync_file_range)
11967     case TARGET_NR_sync_file_range:
11968 #if TARGET_ABI_BITS == 32
11969 #if defined(TARGET_MIPS)
11970         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
11971                                         target_offset64(arg5, arg6), arg7));
11972 #else
11973         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
11974                                         target_offset64(arg4, arg5), arg6));
11975 #endif /* !TARGET_MIPS */
11976 #else
11977         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
11978 #endif
11979         return ret;
11980 #endif
11981 #if defined(TARGET_NR_sync_file_range2) || \
11982     defined(TARGET_NR_arm_sync_file_range)
11983 #if defined(TARGET_NR_sync_file_range2)
11984     case TARGET_NR_sync_file_range2:
11985 #endif
11986 #if defined(TARGET_NR_arm_sync_file_range)
11987     case TARGET_NR_arm_sync_file_range:
11988 #endif
11989         /* This is like sync_file_range but the arguments are reordered */
11990 #if TARGET_ABI_BITS == 32
11991         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
11992                                         target_offset64(arg5, arg6), arg2));
11993 #else
11994         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
11995 #endif
11996         return ret;
11997 #endif
11998 #endif
11999 #if defined(TARGET_NR_signalfd4)
12000     case TARGET_NR_signalfd4:
12001         return do_signalfd4(arg1, arg2, arg4);
12002 #endif
12003 #if defined(TARGET_NR_signalfd)
12004     case TARGET_NR_signalfd:
12005         return do_signalfd4(arg1, arg2, 0);
12006 #endif
12007 #if defined(CONFIG_EPOLL)
12008 #if defined(TARGET_NR_epoll_create)
12009     case TARGET_NR_epoll_create:
12010         return get_errno(epoll_create(arg1));
12011 #endif
12012 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12013     case TARGET_NR_epoll_create1:
12014         return get_errno(epoll_create1(arg1));
12015 #endif
12016 #if defined(TARGET_NR_epoll_ctl)
12017     case TARGET_NR_epoll_ctl:
12018     {
12019         struct epoll_event ep;
12020         struct epoll_event *epp = 0;
12021         if (arg4) {
12022             struct target_epoll_event *target_ep;
12023             if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12024                 return -TARGET_EFAULT;
12025             }
12026             ep.events = tswap32(target_ep->events);
12027             /* The epoll_data_t union is just opaque data to the kernel,
12028              * so we transfer all 64 bits across and need not worry what
12029              * actual data type it is.
12030              */
12031             ep.data.u64 = tswap64(target_ep->data.u64);
12032             unlock_user_struct(target_ep, arg4, 0);
12033             epp = &ep;
12034         }
12035         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12036     }
12037 #endif
12038 
12039 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12040 #if defined(TARGET_NR_epoll_wait)
12041     case TARGET_NR_epoll_wait:
12042 #endif
12043 #if defined(TARGET_NR_epoll_pwait)
12044     case TARGET_NR_epoll_pwait:
12045 #endif
12046     {
12047         struct target_epoll_event *target_ep;
12048         struct epoll_event *ep;
12049         int epfd = arg1;
12050         int maxevents = arg3;
12051         int timeout = arg4;
12052 
12053         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12054             return -TARGET_EINVAL;
12055         }
12056 
12057         target_ep = lock_user(VERIFY_WRITE, arg2,
12058                               maxevents * sizeof(struct target_epoll_event), 1);
12059         if (!target_ep) {
12060             return -TARGET_EFAULT;
12061         }
12062 
12063         ep = g_try_new(struct epoll_event, maxevents);
12064         if (!ep) {
12065             unlock_user(target_ep, arg2, 0);
12066             return -TARGET_ENOMEM;
12067         }
12068 
12069         switch (num) {
12070 #if defined(TARGET_NR_epoll_pwait)
12071         case TARGET_NR_epoll_pwait:
12072         {
12073             target_sigset_t *target_set;
12074             sigset_t _set, *set = &_set;
12075 
12076             if (arg5) {
12077                 if (arg6 != sizeof(target_sigset_t)) {
12078                     ret = -TARGET_EINVAL;
12079                     break;
12080                 }
12081 
12082                 target_set = lock_user(VERIFY_READ, arg5,
12083                                        sizeof(target_sigset_t), 1);
12084                 if (!target_set) {
12085                     ret = -TARGET_EFAULT;
12086                     break;
12087                 }
12088                 target_to_host_sigset(set, target_set);
12089                 unlock_user(target_set, arg5, 0);
12090             } else {
12091                 set = NULL;
12092             }
12093 
12094             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12095                                              set, SIGSET_T_SIZE));
12096             break;
12097         }
12098 #endif
12099 #if defined(TARGET_NR_epoll_wait)
12100         case TARGET_NR_epoll_wait:
12101             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12102                                              NULL, 0));
12103             break;
12104 #endif
12105         default:
12106             ret = -TARGET_ENOSYS;
12107         }
12108         if (!is_error(ret)) {
12109             int i;
12110             for (i = 0; i < ret; i++) {
12111                 target_ep[i].events = tswap32(ep[i].events);
12112                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12113             }
12114             unlock_user(target_ep, arg2,
12115                         ret * sizeof(struct target_epoll_event));
12116         } else {
12117             unlock_user(target_ep, arg2, 0);
12118         }
12119         g_free(ep);
12120         return ret;
12121     }
12122 #endif
12123 #endif
12124 #ifdef TARGET_NR_prlimit64
12125     case TARGET_NR_prlimit64:
12126     {
12127         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12128         struct target_rlimit64 *target_rnew, *target_rold;
12129         struct host_rlimit64 rnew, rold, *rnewp = 0;
12130         int resource = target_to_host_resource(arg2);
12131 
12132         if (arg3 && (resource != RLIMIT_AS &&
12133                      resource != RLIMIT_DATA &&
12134                      resource != RLIMIT_STACK)) {
12135             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12136                 return -TARGET_EFAULT;
12137             }
12138             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12139             rnew.rlim_max = tswap64(target_rnew->rlim_max);
12140             unlock_user_struct(target_rnew, arg3, 0);
12141             rnewp = &rnew;
12142         }
12143 
12144         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12145         if (!is_error(ret) && arg4) {
12146             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12147                 return -TARGET_EFAULT;
12148             }
12149             target_rold->rlim_cur = tswap64(rold.rlim_cur);
12150             target_rold->rlim_max = tswap64(rold.rlim_max);
12151             unlock_user_struct(target_rold, arg4, 1);
12152         }
12153         return ret;
12154     }
12155 #endif
12156 #ifdef TARGET_NR_gethostname
12157     case TARGET_NR_gethostname:
12158     {
12159         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12160         if (name) {
12161             ret = get_errno(gethostname(name, arg2));
12162             unlock_user(name, arg1, arg2);
12163         } else {
12164             ret = -TARGET_EFAULT;
12165         }
12166         return ret;
12167     }
12168 #endif
12169 #ifdef TARGET_NR_atomic_cmpxchg_32
12170     case TARGET_NR_atomic_cmpxchg_32:
12171     {
12172         /* should use start_exclusive from main.c */
12173         abi_ulong mem_value;
12174         if (get_user_u32(mem_value, arg6)) {
12175             target_siginfo_t info;
12176             info.si_signo = SIGSEGV;
12177             info.si_errno = 0;
12178             info.si_code = TARGET_SEGV_MAPERR;
12179             info._sifields._sigfault._addr = arg6;
12180             queue_signal((CPUArchState *)cpu_env, info.si_signo,
12181                          QEMU_SI_FAULT, &info);
12182             ret = 0xdeadbeef;
12183 
12184         }
12185         if (mem_value == arg2)
12186             put_user_u32(arg1, arg6);
12187         return mem_value;
12188     }
12189 #endif
12190 #ifdef TARGET_NR_atomic_barrier
12191     case TARGET_NR_atomic_barrier:
12192         /* Like the kernel implementation and the
12193            qemu arm barrier, no-op this? */
12194         return 0;
12195 #endif
12196 
12197 #ifdef TARGET_NR_timer_create
12198     case TARGET_NR_timer_create:
12199     {
12200         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12201 
12202         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12203 
12204         int clkid = arg1;
12205         int timer_index = next_free_host_timer();
12206 
12207         if (timer_index < 0) {
12208             ret = -TARGET_EAGAIN;
12209         } else {
12210             timer_t *phtimer = g_posix_timers  + timer_index;
12211 
12212             if (arg2) {
12213                 phost_sevp = &host_sevp;
12214                 ret = target_to_host_sigevent(phost_sevp, arg2);
12215                 if (ret != 0) {
12216                     return ret;
12217                 }
12218             }
12219 
12220             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12221             if (ret) {
12222                 phtimer = NULL;
12223             } else {
12224                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12225                     return -TARGET_EFAULT;
12226                 }
12227             }
12228         }
12229         return ret;
12230     }
12231 #endif
12232 
12233 #ifdef TARGET_NR_timer_settime
12234     case TARGET_NR_timer_settime:
12235     {
12236         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12237          * struct itimerspec * old_value */
12238         target_timer_t timerid = get_timer_id(arg1);
12239 
12240         if (timerid < 0) {
12241             ret = timerid;
12242         } else if (arg3 == 0) {
12243             ret = -TARGET_EINVAL;
12244         } else {
12245             timer_t htimer = g_posix_timers[timerid];
12246             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12247 
12248             if (target_to_host_itimerspec(&hspec_new, arg3)) {
12249                 return -TARGET_EFAULT;
12250             }
12251             ret = get_errno(
12252                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12253             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12254                 return -TARGET_EFAULT;
12255             }
12256         }
12257         return ret;
12258     }
12259 #endif
12260 
12261 #ifdef TARGET_NR_timer_gettime
12262     case TARGET_NR_timer_gettime:
12263     {
12264         /* args: timer_t timerid, struct itimerspec *curr_value */
12265         target_timer_t timerid = get_timer_id(arg1);
12266 
12267         if (timerid < 0) {
12268             ret = timerid;
12269         } else if (!arg2) {
12270             ret = -TARGET_EFAULT;
12271         } else {
12272             timer_t htimer = g_posix_timers[timerid];
12273             struct itimerspec hspec;
12274             ret = get_errno(timer_gettime(htimer, &hspec));
12275 
12276             if (host_to_target_itimerspec(arg2, &hspec)) {
12277                 ret = -TARGET_EFAULT;
12278             }
12279         }
12280         return ret;
12281     }
12282 #endif
12283 
12284 #ifdef TARGET_NR_timer_getoverrun
12285     case TARGET_NR_timer_getoverrun:
12286     {
12287         /* args: timer_t timerid */
12288         target_timer_t timerid = get_timer_id(arg1);
12289 
12290         if (timerid < 0) {
12291             ret = timerid;
12292         } else {
12293             timer_t htimer = g_posix_timers[timerid];
12294             ret = get_errno(timer_getoverrun(htimer));
12295         }
12296         return ret;
12297     }
12298 #endif
12299 
12300 #ifdef TARGET_NR_timer_delete
12301     case TARGET_NR_timer_delete:
12302     {
12303         /* args: timer_t timerid */
12304         target_timer_t timerid = get_timer_id(arg1);
12305 
12306         if (timerid < 0) {
12307             ret = timerid;
12308         } else {
12309             timer_t htimer = g_posix_timers[timerid];
12310             ret = get_errno(timer_delete(htimer));
12311             g_posix_timers[timerid] = 0;
12312         }
12313         return ret;
12314     }
12315 #endif
12316 
12317 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12318     case TARGET_NR_timerfd_create:
12319         return get_errno(timerfd_create(arg1,
12320                           target_to_host_bitmask(arg2, fcntl_flags_tbl)));
12321 #endif
12322 
12323 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12324     case TARGET_NR_timerfd_gettime:
12325         {
12326             struct itimerspec its_curr;
12327 
12328             ret = get_errno(timerfd_gettime(arg1, &its_curr));
12329 
12330             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
12331                 return -TARGET_EFAULT;
12332             }
12333         }
12334         return ret;
12335 #endif
12336 
12337 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12338     case TARGET_NR_timerfd_settime:
12339         {
12340             struct itimerspec its_new, its_old, *p_new;
12341 
12342             if (arg3) {
12343                 if (target_to_host_itimerspec(&its_new, arg3)) {
12344                     return -TARGET_EFAULT;
12345                 }
12346                 p_new = &its_new;
12347             } else {
12348                 p_new = NULL;
12349             }
12350 
12351             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
12352 
12353             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
12354                 return -TARGET_EFAULT;
12355             }
12356         }
12357         return ret;
12358 #endif
12359 
12360 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12361     case TARGET_NR_ioprio_get:
12362         return get_errno(ioprio_get(arg1, arg2));
12363 #endif
12364 
12365 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12366     case TARGET_NR_ioprio_set:
12367         return get_errno(ioprio_set(arg1, arg2, arg3));
12368 #endif
12369 
12370 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12371     case TARGET_NR_setns:
12372         return get_errno(setns(arg1, arg2));
12373 #endif
12374 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12375     case TARGET_NR_unshare:
12376         return get_errno(unshare(arg1));
12377 #endif
12378 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12379     case TARGET_NR_kcmp:
12380         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
12381 #endif
12382 #ifdef TARGET_NR_swapcontext
12383     case TARGET_NR_swapcontext:
12384         /* PowerPC specific.  */
12385         return do_swapcontext(cpu_env, arg1, arg2, arg3);
12386 #endif
12387 #ifdef TARGET_NR_memfd_create
12388     case TARGET_NR_memfd_create:
12389         p = lock_user_string(arg1);
12390         if (!p) {
12391             return -TARGET_EFAULT;
12392         }
12393         ret = get_errno(memfd_create(p, arg2));
12394         fd_trans_unregister(ret);
12395         unlock_user(p, arg1, 0);
12396         return ret;
12397 #endif
12398 #if defined TARGET_NR_membarrier && defined __NR_membarrier
12399     case TARGET_NR_membarrier:
12400         return get_errno(membarrier(arg1, arg2));
12401 #endif
12402 
12403     default:
12404         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
12405         return -TARGET_ENOSYS;
12406     }
12407     return ret;
12408 }
12409 
12410 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
12411                     abi_long arg2, abi_long arg3, abi_long arg4,
12412                     abi_long arg5, abi_long arg6, abi_long arg7,
12413                     abi_long arg8)
12414 {
12415     CPUState *cpu = env_cpu(cpu_env);
12416     abi_long ret;
12417 
12418 #ifdef DEBUG_ERESTARTSYS
12419     /* Debug-only code for exercising the syscall-restart code paths
12420      * in the per-architecture cpu main loops: restart every syscall
12421      * the guest makes once before letting it through.
12422      */
12423     {
12424         static bool flag;
12425         flag = !flag;
12426         if (flag) {
12427             return -TARGET_ERESTARTSYS;
12428         }
12429     }
12430 #endif
12431 
12432     record_syscall_start(cpu, num, arg1,
12433                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
12434 
12435     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
12436         print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
12437     }
12438 
12439     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
12440                       arg5, arg6, arg7, arg8);
12441 
12442     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
12443         print_syscall_ret(num, ret);
12444     }
12445 
12446     record_syscall_return(cpu, num, ret);
12447     return ret;
12448 }
12449