1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "signal-common.h" 22 #include "linux-user/trace.h" 23 24 #define __SUNOS_MAXWIN 31 25 26 /* This is what SunOS does, so shall I. */ 27 struct target_sigcontext { 28 abi_ulong sigc_onstack; /* state to restore */ 29 30 abi_ulong sigc_mask; /* sigmask to restore */ 31 abi_ulong sigc_sp; /* stack pointer */ 32 abi_ulong sigc_pc; /* program counter */ 33 abi_ulong sigc_npc; /* next program counter */ 34 abi_ulong sigc_psr; /* for condition codes etc */ 35 abi_ulong sigc_g1; /* User uses these two registers */ 36 abi_ulong sigc_o0; /* within the trampoline code. */ 37 38 /* Now comes information regarding the users window set 39 * at the time of the signal. 40 */ 41 abi_ulong sigc_oswins; /* outstanding windows */ 42 43 /* stack ptrs for each regwin buf */ 44 char *sigc_spbuf[__SUNOS_MAXWIN]; 45 46 /* Windows to restore after signal */ 47 struct { 48 abi_ulong locals[8]; 49 abi_ulong ins[8]; 50 } sigc_wbuf[__SUNOS_MAXWIN]; 51 }; 52 /* A Sparc stack frame */ 53 struct sparc_stackf { 54 abi_ulong locals[8]; 55 abi_ulong ins[8]; 56 /* It's simpler to treat fp and callers_pc as elements of ins[] 57 * since we never need to access them ourselves. 58 */ 59 char *structptr; 60 abi_ulong xargs[6]; 61 abi_ulong xxargs[1]; 62 }; 63 64 typedef struct { 65 struct { 66 abi_ulong psr; 67 abi_ulong pc; 68 abi_ulong npc; 69 abi_ulong y; 70 abi_ulong u_regs[16]; /* globals and ins */ 71 } si_regs; 72 int si_mask; 73 } __siginfo_t; 74 75 typedef struct { 76 abi_ulong si_float_regs[32]; 77 unsigned long si_fsr; 78 unsigned long si_fpqdepth; 79 struct { 80 unsigned long *insn_addr; 81 unsigned long insn; 82 } si_fpqueue [16]; 83 } qemu_siginfo_fpu_t; 84 85 86 struct target_signal_frame { 87 struct sparc_stackf ss; 88 __siginfo_t info; 89 abi_ulong fpu_save; 90 uint32_t insns[2] QEMU_ALIGNED(8); 91 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 92 abi_ulong extra_size; /* Should be 0 */ 93 qemu_siginfo_fpu_t fpu_state; 94 }; 95 struct target_rt_signal_frame { 96 struct sparc_stackf ss; 97 siginfo_t info; 98 abi_ulong regs[20]; 99 sigset_t mask; 100 abi_ulong fpu_save; 101 uint32_t insns[2]; 102 stack_t stack; 103 unsigned int extra_size; /* Should be 0 */ 104 qemu_siginfo_fpu_t fpu_state; 105 }; 106 107 static inline abi_ulong get_sigframe(struct target_sigaction *sa, 108 CPUSPARCState *env, 109 unsigned long framesize) 110 { 111 abi_ulong sp = get_sp_from_cpustate(env); 112 113 /* 114 * If we are on the alternate signal stack and would overflow it, don't. 115 * Return an always-bogus address instead so we will die with SIGSEGV. 116 */ 117 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { 118 return -1; 119 } 120 121 /* This is the X/Open sanctioned signal stack switching. */ 122 sp = target_sigsp(sp, sa) - framesize; 123 124 /* Always align the stack frame. This handles two cases. First, 125 * sigaltstack need not be mindful of platform specific stack 126 * alignment. Second, if we took this signal because the stack 127 * is not aligned properly, we'd like to take the signal cleanly 128 * and report that. 129 */ 130 sp &= ~15UL; 131 132 return sp; 133 } 134 135 static int 136 setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask) 137 { 138 int err = 0, i; 139 140 __put_user(env->psr, &si->si_regs.psr); 141 __put_user(env->pc, &si->si_regs.pc); 142 __put_user(env->npc, &si->si_regs.npc); 143 __put_user(env->y, &si->si_regs.y); 144 for (i=0; i < 8; i++) { 145 __put_user(env->gregs[i], &si->si_regs.u_regs[i]); 146 } 147 for (i=0; i < 8; i++) { 148 __put_user(env->regwptr[WREG_O0 + i], &si->si_regs.u_regs[i + 8]); 149 } 150 __put_user(mask, &si->si_mask); 151 return err; 152 } 153 154 #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) 155 156 void setup_frame(int sig, struct target_sigaction *ka, 157 target_sigset_t *set, CPUSPARCState *env) 158 { 159 abi_ulong sf_addr; 160 struct target_signal_frame *sf; 161 int sigframe_size, err, i; 162 163 /* 1. Make sure everything is clean */ 164 //synchronize_user_stack(); 165 166 sigframe_size = NF_ALIGNEDSZ; 167 sf_addr = get_sigframe(ka, env, sigframe_size); 168 trace_user_setup_frame(env, sf_addr); 169 170 sf = lock_user(VERIFY_WRITE, sf_addr, 171 sizeof(struct target_signal_frame), 0); 172 if (!sf) { 173 goto sigsegv; 174 } 175 #if 0 176 if (invalid_frame_pointer(sf, sigframe_size)) 177 goto sigill_and_return; 178 #endif 179 /* 2. Save the current process state */ 180 err = setup___siginfo(&sf->info, env, set->sig[0]); 181 __put_user(0, &sf->extra_size); 182 183 //save_fpu_state(regs, &sf->fpu_state); 184 //__put_user(&sf->fpu_state, &sf->fpu_save); 185 186 __put_user(set->sig[0], &sf->info.si_mask); 187 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 188 __put_user(set->sig[i + 1], &sf->extramask[i]); 189 } 190 191 for (i = 0; i < 8; i++) { 192 __put_user(env->regwptr[i + WREG_L0], &sf->ss.locals[i]); 193 } 194 for (i = 0; i < 8; i++) { 195 __put_user(env->regwptr[i + WREG_I0], &sf->ss.ins[i]); 196 } 197 if (err) 198 goto sigsegv; 199 200 /* 3. signal handler back-trampoline and parameters */ 201 env->regwptr[WREG_SP] = sf_addr; 202 env->regwptr[WREG_O0] = sig; 203 env->regwptr[WREG_O1] = sf_addr + 204 offsetof(struct target_signal_frame, info); 205 env->regwptr[WREG_O2] = sf_addr + 206 offsetof(struct target_signal_frame, info); 207 208 /* 4. signal handler */ 209 env->pc = ka->_sa_handler; 210 env->npc = (env->pc + 4); 211 /* 5. return to kernel instructions */ 212 if (ka->ka_restorer) { 213 env->regwptr[WREG_O7] = ka->ka_restorer; 214 } else { 215 uint32_t val32; 216 217 env->regwptr[WREG_O7] = sf_addr + 218 offsetof(struct target_signal_frame, insns) - 2 * 4; 219 220 /* mov __NR_sigreturn, %g1 */ 221 val32 = 0x821020d8; 222 __put_user(val32, &sf->insns[0]); 223 224 /* t 0x10 */ 225 val32 = 0x91d02010; 226 __put_user(val32, &sf->insns[1]); 227 } 228 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); 229 return; 230 #if 0 231 sigill_and_return: 232 force_sig(TARGET_SIGILL); 233 #endif 234 sigsegv: 235 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); 236 force_sigsegv(sig); 237 } 238 239 void setup_rt_frame(int sig, struct target_sigaction *ka, 240 target_siginfo_t *info, 241 target_sigset_t *set, CPUSPARCState *env) 242 { 243 qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n"); 244 } 245 246 long do_sigreturn(CPUSPARCState *env) 247 { 248 abi_ulong sf_addr; 249 struct target_signal_frame *sf; 250 abi_ulong up_psr, pc, npc; 251 target_sigset_t set; 252 sigset_t host_set; 253 int i; 254 255 sf_addr = env->regwptr[WREG_SP]; 256 trace_user_do_sigreturn(env, sf_addr); 257 if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 258 goto segv_and_exit; 259 } 260 261 /* 1. Make sure we are not getting garbage from the user */ 262 263 if (sf_addr & 3) 264 goto segv_and_exit; 265 266 __get_user(pc, &sf->info.si_regs.pc); 267 __get_user(npc, &sf->info.si_regs.npc); 268 269 if ((pc | npc) & 3) { 270 goto segv_and_exit; 271 } 272 273 /* 2. Restore the state */ 274 __get_user(up_psr, &sf->info.si_regs.psr); 275 276 /* User can only change condition codes and FPU enabling in %psr. */ 277 env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) 278 | (env->psr & ~(PSR_ICC /* | PSR_EF */)); 279 280 env->pc = pc; 281 env->npc = npc; 282 __get_user(env->y, &sf->info.si_regs.y); 283 for (i=0; i < 8; i++) { 284 __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); 285 } 286 for (i=0; i < 8; i++) { 287 __get_user(env->regwptr[i + WREG_O0], &sf->info.si_regs.u_regs[i + 8]); 288 } 289 290 /* FIXME: implement FPU save/restore: 291 * __get_user(fpu_save, &sf->fpu_save); 292 * if (fpu_save) { 293 * if (restore_fpu_state(env, fpu_save)) { 294 * goto segv_and_exit; 295 * } 296 * } 297 */ 298 299 /* This is pretty much atomic, no amount locking would prevent 300 * the races which exist anyways. 301 */ 302 __get_user(set.sig[0], &sf->info.si_mask); 303 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 304 __get_user(set.sig[i], &sf->extramask[i - 1]); 305 } 306 307 target_to_host_sigset_internal(&host_set, &set); 308 set_sigmask(&host_set); 309 310 unlock_user_struct(sf, sf_addr, 0); 311 return -TARGET_QEMU_ESIGRETURN; 312 313 segv_and_exit: 314 unlock_user_struct(sf, sf_addr, 0); 315 force_sig(TARGET_SIGSEGV); 316 return -TARGET_QEMU_ESIGRETURN; 317 } 318 319 long do_rt_sigreturn(CPUSPARCState *env) 320 { 321 trace_user_do_rt_sigreturn(env, 0); 322 qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n"); 323 return -TARGET_ENOSYS; 324 } 325 326 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 327 #define SPARC_MC_TSTATE 0 328 #define SPARC_MC_PC 1 329 #define SPARC_MC_NPC 2 330 #define SPARC_MC_Y 3 331 #define SPARC_MC_G1 4 332 #define SPARC_MC_G2 5 333 #define SPARC_MC_G3 6 334 #define SPARC_MC_G4 7 335 #define SPARC_MC_G5 8 336 #define SPARC_MC_G6 9 337 #define SPARC_MC_G7 10 338 #define SPARC_MC_O0 11 339 #define SPARC_MC_O1 12 340 #define SPARC_MC_O2 13 341 #define SPARC_MC_O3 14 342 #define SPARC_MC_O4 15 343 #define SPARC_MC_O5 16 344 #define SPARC_MC_O6 17 345 #define SPARC_MC_O7 18 346 #define SPARC_MC_NGREG 19 347 348 typedef abi_ulong target_mc_greg_t; 349 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; 350 351 struct target_mc_fq { 352 abi_ulong mcfq_addr; 353 uint32_t mcfq_insn; 354 }; 355 356 /* 357 * Note the manual 16-alignment; the kernel gets this because it 358 * includes a "long double qregs[16]" in the mcpu_fregs union, 359 * which we can't do. 360 */ 361 struct target_mc_fpu { 362 union { 363 uint32_t sregs[32]; 364 uint64_t dregs[32]; 365 //uint128_t qregs[16]; 366 } mcfpu_fregs; 367 abi_ulong mcfpu_fsr; 368 abi_ulong mcfpu_fprs; 369 abi_ulong mcfpu_gsr; 370 abi_ulong mcfpu_fq; 371 unsigned char mcfpu_qcnt; 372 unsigned char mcfpu_qentsz; 373 unsigned char mcfpu_enab; 374 } __attribute__((aligned(16))); 375 typedef struct target_mc_fpu target_mc_fpu_t; 376 377 typedef struct { 378 target_mc_gregset_t mc_gregs; 379 target_mc_greg_t mc_fp; 380 target_mc_greg_t mc_i7; 381 target_mc_fpu_t mc_fpregs; 382 } target_mcontext_t; 383 384 struct target_ucontext { 385 abi_ulong tuc_link; 386 abi_ulong tuc_flags; 387 target_sigset_t tuc_sigmask; 388 target_mcontext_t tuc_mcontext; 389 }; 390 391 /* A V9 register window */ 392 struct target_reg_window { 393 abi_ulong locals[8]; 394 abi_ulong ins[8]; 395 }; 396 397 #define TARGET_STACK_BIAS 2047 398 399 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 400 void sparc64_set_context(CPUSPARCState *env) 401 { 402 abi_ulong ucp_addr; 403 struct target_ucontext *ucp; 404 target_mc_gregset_t *grp; 405 abi_ulong pc, npc, tstate; 406 unsigned int i; 407 408 ucp_addr = env->regwptr[WREG_O0]; 409 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 410 goto do_sigsegv; 411 } 412 grp = &ucp->tuc_mcontext.mc_gregs; 413 __get_user(pc, &((*grp)[SPARC_MC_PC])); 414 __get_user(npc, &((*grp)[SPARC_MC_NPC])); 415 if ((pc | npc) & 3) { 416 goto do_sigsegv; 417 } 418 if (env->regwptr[WREG_O1]) { 419 target_sigset_t target_set; 420 sigset_t set; 421 422 if (TARGET_NSIG_WORDS == 1) { 423 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 424 } else { 425 abi_ulong *src, *dst; 426 src = ucp->tuc_sigmask.sig; 427 dst = target_set.sig; 428 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 429 __get_user(*dst, src); 430 } 431 } 432 target_to_host_sigset_internal(&set, &target_set); 433 set_sigmask(&set); 434 } 435 env->pc = pc; 436 env->npc = npc; 437 __get_user(env->y, &((*grp)[SPARC_MC_Y])); 438 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); 439 env->asi = (tstate >> 24) & 0xff; 440 cpu_put_ccr(env, tstate >> 32); 441 cpu_put_cwp64(env, tstate & 0x1f); 442 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); 443 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); 444 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); 445 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); 446 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); 447 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); 448 __get_user(env->gregs[7], (&(*grp)[SPARC_MC_G7])); 449 450 /* 451 * Note that unlike the kernel, we didn't need to mess with the 452 * guest register window state to save it into a pt_regs to run 453 * the kernel. So for us the guest's O regs are still in WREG_O* 454 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 455 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 456 * need to be written back to userspace memory. 457 */ 458 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); 459 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); 460 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); 461 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); 462 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); 463 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); 464 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); 465 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); 466 467 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); 468 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); 469 470 /* FIXME this does not match how the kernel handles the FPU in 471 * its sparc64_set_context implementation. In particular the FPU 472 * is only restored if fenab is non-zero in: 473 * __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab)); 474 */ 475 __get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs)); 476 { 477 uint32_t *src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; 478 for (i = 0; i < 64; i++, src++) { 479 if (i & 1) { 480 __get_user(env->fpr[i/2].l.lower, src); 481 } else { 482 __get_user(env->fpr[i/2].l.upper, src); 483 } 484 } 485 } 486 __get_user(env->fsr, 487 &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr)); 488 __get_user(env->gsr, 489 &(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr)); 490 unlock_user_struct(ucp, ucp_addr, 0); 491 return; 492 do_sigsegv: 493 unlock_user_struct(ucp, ucp_addr, 0); 494 force_sig(TARGET_SIGSEGV); 495 } 496 497 void sparc64_get_context(CPUSPARCState *env) 498 { 499 abi_ulong ucp_addr; 500 struct target_ucontext *ucp; 501 target_mc_gregset_t *grp; 502 target_mcontext_t *mcp; 503 int err; 504 unsigned int i; 505 target_sigset_t target_set; 506 sigset_t set; 507 508 ucp_addr = env->regwptr[WREG_O0]; 509 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 510 goto do_sigsegv; 511 } 512 513 mcp = &ucp->tuc_mcontext; 514 grp = &mcp->mc_gregs; 515 516 /* Skip over the trap instruction, first. */ 517 env->pc = env->npc; 518 env->npc += 4; 519 520 /* If we're only reading the signal mask then do_sigprocmask() 521 * is guaranteed not to fail, which is important because we don't 522 * have any way to signal a failure or restart this operation since 523 * this is not a normal syscall. 524 */ 525 err = do_sigprocmask(0, NULL, &set); 526 assert(err == 0); 527 host_to_target_sigset_internal(&target_set, &set); 528 if (TARGET_NSIG_WORDS == 1) { 529 __put_user(target_set.sig[0], 530 (abi_ulong *)&ucp->tuc_sigmask); 531 } else { 532 abi_ulong *src, *dst; 533 src = target_set.sig; 534 dst = ucp->tuc_sigmask.sig; 535 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 536 __put_user(*src, dst); 537 } 538 if (err) 539 goto do_sigsegv; 540 } 541 542 /* XXX: tstate must be saved properly */ 543 // __put_user(env->tstate, &((*grp)[SPARC_MC_TSTATE])); 544 __put_user(env->pc, &((*grp)[SPARC_MC_PC])); 545 __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); 546 __put_user(env->y, &((*grp)[SPARC_MC_Y])); 547 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); 548 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); 549 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); 550 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); 551 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); 552 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); 553 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); 554 555 /* 556 * Note that unlike the kernel, we didn't need to mess with the 557 * guest register window state to save it into a pt_regs to run 558 * the kernel. So for us the guest's O regs are still in WREG_O* 559 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 560 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 561 * need to be fished out of userspace memory. 562 */ 563 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); 564 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); 565 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); 566 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); 567 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); 568 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); 569 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); 570 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); 571 572 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); 573 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); 574 575 { 576 uint32_t *dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; 577 for (i = 0; i < 64; i++, dst++) { 578 if (i & 1) { 579 __put_user(env->fpr[i/2].l.lower, dst); 580 } else { 581 __put_user(env->fpr[i/2].l.upper, dst); 582 } 583 } 584 } 585 __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); 586 __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); 587 __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); 588 589 if (err) 590 goto do_sigsegv; 591 unlock_user_struct(ucp, ucp_addr, 1); 592 return; 593 do_sigsegv: 594 unlock_user_struct(ucp, ucp_addr, 1); 595 force_sig(TARGET_SIGSEGV); 596 } 597 #endif 598