1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "signal-common.h" 22 #include "linux-user/trace.h" 23 24 /* A Sparc register window */ 25 struct target_reg_window { 26 abi_ulong locals[8]; 27 abi_ulong ins[8]; 28 }; 29 30 /* A Sparc stack frame. */ 31 struct target_stackf { 32 /* 33 * Since qemu does not reference fp or callers_pc directly, 34 * it's simpler to treat fp and callers_pc as elements of ins[], 35 * and then bundle locals[] and ins[] into reg_window. 36 */ 37 struct target_reg_window win; 38 /* 39 * Similarly, bundle structptr and xxargs into xargs[]. 40 * This portion of the struct is part of the function call abi, 41 * and belongs to the callee for spilling argument registers. 42 */ 43 abi_ulong xargs[8]; 44 }; 45 46 struct target_siginfo_fpu { 47 #ifdef TARGET_SPARC64 48 uint64_t si_double_regs[32]; 49 uint64_t si_fsr; 50 uint64_t si_gsr; 51 uint64_t si_fprs; 52 #else 53 /* It is more convenient for qemu to move doubles, not singles. */ 54 uint64_t si_double_regs[16]; 55 uint32_t si_fsr; 56 uint32_t si_fpqdepth; 57 struct { 58 uint32_t insn_addr; 59 uint32_t insn; 60 } si_fpqueue [16]; 61 #endif 62 }; 63 64 struct target_signal_frame { 65 struct target_stackf ss; 66 struct target_pt_regs regs; 67 uint32_t si_mask; 68 abi_ulong fpu_save; 69 uint32_t insns[2] QEMU_ALIGNED(8); 70 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 71 abi_ulong extra_size; /* Should be 0 */ 72 abi_ulong rwin_save; 73 }; 74 75 struct target_rt_signal_frame { 76 struct target_stackf ss; 77 target_siginfo_t info; 78 struct target_pt_regs regs; 79 target_sigset_t mask; 80 abi_ulong fpu_save; 81 uint32_t insns[2]; 82 target_stack_t stack; 83 abi_ulong extra_size; /* Should be 0 */ 84 abi_ulong rwin_save; 85 }; 86 87 static abi_ulong get_sigframe(struct target_sigaction *sa, 88 CPUSPARCState *env, 89 size_t framesize) 90 { 91 abi_ulong sp = get_sp_from_cpustate(env); 92 93 /* 94 * If we are on the alternate signal stack and would overflow it, don't. 95 * Return an always-bogus address instead so we will die with SIGSEGV. 96 */ 97 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { 98 return -1; 99 } 100 101 /* This is the X/Open sanctioned signal stack switching. */ 102 sp = target_sigsp(sp, sa) - framesize; 103 104 /* 105 * Always align the stack frame. This handles two cases. First, 106 * sigaltstack need not be mindful of platform specific stack 107 * alignment. Second, if we took this signal because the stack 108 * is not aligned properly, we'd like to take the signal cleanly 109 * and report that. 110 */ 111 sp &= ~15UL; 112 113 return sp; 114 } 115 116 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 117 { 118 int i; 119 120 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 121 __put_user(sparc64_tstate(env), ®s->tstate); 122 /* TODO: magic should contain PT_REG_MAGIC + %tt. */ 123 __put_user(0, ®s->magic); 124 #else 125 __put_user(cpu_get_psr(env), ®s->psr); 126 #endif 127 128 __put_user(env->pc, ®s->pc); 129 __put_user(env->npc, ®s->npc); 130 __put_user(env->y, ®s->y); 131 132 for (i = 0; i < 8; i++) { 133 __put_user(env->gregs[i], ®s->u_regs[i]); 134 } 135 for (i = 0; i < 8; i++) { 136 __put_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 137 } 138 } 139 140 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 141 { 142 int i; 143 144 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 145 /* User can only change condition codes and %asi in %tstate. */ 146 uint64_t tstate; 147 __get_user(tstate, ®s->tstate); 148 cpu_put_ccr(env, tstate >> 32); 149 env->asi = extract64(tstate, 24, 8); 150 #else 151 /* 152 * User can only change condition codes and FPU enabling in %psr. 153 * But don't bother with FPU enabling, since a real kernel would 154 * just re-enable the FPU upon the next fpu trap. 155 */ 156 uint32_t psr; 157 __get_user(psr, ®s->psr); 158 env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC); 159 #endif 160 161 /* Note that pc and npc are handled in the caller. */ 162 163 __get_user(env->y, ®s->y); 164 165 for (i = 0; i < 8; i++) { 166 __get_user(env->gregs[i], ®s->u_regs[i]); 167 } 168 for (i = 0; i < 8; i++) { 169 __get_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 170 } 171 } 172 173 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env) 174 { 175 int i; 176 177 for (i = 0; i < 8; i++) { 178 __put_user(env->regwptr[i + WREG_L0], &win->locals[i]); 179 } 180 for (i = 0; i < 8; i++) { 181 __put_user(env->regwptr[i + WREG_I0], &win->ins[i]); 182 } 183 } 184 185 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 186 { 187 int i; 188 189 #ifdef TARGET_SPARC64 190 for (i = 0; i < 32; ++i) { 191 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 192 } 193 __put_user(env->fsr, &fpu->si_fsr); 194 __put_user(env->gsr, &fpu->si_gsr); 195 __put_user(env->fprs, &fpu->si_fprs); 196 #else 197 for (i = 0; i < 16; ++i) { 198 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 199 } 200 __put_user(env->fsr, &fpu->si_fsr); 201 __put_user(0, &fpu->si_fpqdepth); 202 #endif 203 } 204 205 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 206 { 207 int i; 208 209 #ifdef TARGET_SPARC64 210 uint64_t fprs; 211 __get_user(fprs, &fpu->si_fprs); 212 213 /* In case the user mucks about with FPRS, restore as directed. */ 214 if (fprs & FPRS_DL) { 215 for (i = 0; i < 16; ++i) { 216 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 217 } 218 } 219 if (fprs & FPRS_DU) { 220 for (i = 16; i < 32; ++i) { 221 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 222 } 223 } 224 __get_user(env->fsr, &fpu->si_fsr); 225 __get_user(env->gsr, &fpu->si_gsr); 226 env->fprs |= fprs; 227 #else 228 for (i = 0; i < 16; ++i) { 229 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 230 } 231 __get_user(env->fsr, &fpu->si_fsr); 232 #endif 233 } 234 235 void setup_frame(int sig, struct target_sigaction *ka, 236 target_sigset_t *set, CPUSPARCState *env) 237 { 238 abi_ulong sf_addr; 239 struct target_signal_frame *sf; 240 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 241 int i; 242 243 sf_addr = get_sigframe(ka, env, sf_size); 244 trace_user_setup_frame(env, sf_addr); 245 246 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 247 if (!sf) { 248 force_sigsegv(sig); 249 return; 250 } 251 252 /* 2. Save the current process state */ 253 save_pt_regs(&sf->regs, env); 254 __put_user(0, &sf->extra_size); 255 256 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 257 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 258 259 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 260 261 __put_user(set->sig[0], &sf->si_mask); 262 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 263 __put_user(set->sig[i + 1], &sf->extramask[i]); 264 } 265 266 save_reg_win(&sf->ss.win, env); 267 268 /* 3. signal handler back-trampoline and parameters */ 269 env->regwptr[WREG_SP] = sf_addr; 270 env->regwptr[WREG_O0] = sig; 271 env->regwptr[WREG_O1] = sf_addr + 272 offsetof(struct target_signal_frame, regs); 273 env->regwptr[WREG_O2] = sf_addr + 274 offsetof(struct target_signal_frame, regs); 275 276 /* 4. signal handler */ 277 env->pc = ka->_sa_handler; 278 env->npc = env->pc + 4; 279 280 /* 5. return to kernel instructions */ 281 if (ka->ka_restorer) { 282 env->regwptr[WREG_O7] = ka->ka_restorer; 283 } else { 284 env->regwptr[WREG_O7] = sf_addr + 285 offsetof(struct target_signal_frame, insns) - 2 * 4; 286 287 /* mov __NR_sigreturn, %g1 */ 288 __put_user(0x821020d8u, &sf->insns[0]); 289 /* t 0x10 */ 290 __put_user(0x91d02010u, &sf->insns[1]); 291 } 292 unlock_user(sf, sf_addr, sf_size); 293 } 294 295 void setup_rt_frame(int sig, struct target_sigaction *ka, 296 target_siginfo_t *info, 297 target_sigset_t *set, CPUSPARCState *env) 298 { 299 abi_ulong sf_addr; 300 struct target_rt_signal_frame *sf; 301 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 302 303 sf_addr = get_sigframe(ka, env, sf_size); 304 trace_user_setup_rt_frame(env, sf_addr); 305 306 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 307 if (!sf) { 308 force_sigsegv(sig); 309 return; 310 } 311 312 /* 2. Save the current process state */ 313 save_reg_win(&sf->ss.win, env); 314 save_pt_regs(&sf->regs, env); 315 316 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 317 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 318 319 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 320 321 tswap_siginfo(&sf->info, info); 322 tswap_sigset(&sf->mask, set); 323 target_save_altstack(&sf->stack, env); 324 325 __put_user(0, &sf->extra_size); 326 327 /* 3. signal handler back-trampoline and parameters */ 328 env->regwptr[WREG_SP] = sf_addr; 329 env->regwptr[WREG_O0] = sig; 330 env->regwptr[WREG_O1] = 331 sf_addr + offsetof(struct target_rt_signal_frame, info); 332 env->regwptr[WREG_O2] = 333 sf_addr + offsetof(struct target_rt_signal_frame, regs); 334 335 /* 4. signal handler */ 336 env->pc = ka->_sa_handler; 337 env->npc = env->pc + 4; 338 339 /* 5. return to kernel instructions */ 340 if (ka->ka_restorer) { 341 env->regwptr[WREG_O7] = ka->ka_restorer; 342 } else { 343 env->regwptr[WREG_O7] = 344 sf_addr + offsetof(struct target_rt_signal_frame, insns) - 2 * 4; 345 346 /* mov __NR_rt_sigreturn, %g1 */ 347 __put_user(0x82102065u, &sf->insns[0]); 348 /* t 0x10 */ 349 __put_user(0x91d02010u, &sf->insns[1]); 350 } 351 unlock_user(sf, sf_addr, sf_size); 352 } 353 354 long do_sigreturn(CPUSPARCState *env) 355 { 356 abi_ulong sf_addr; 357 struct target_signal_frame *sf = NULL; 358 abi_ulong pc, npc, ptr; 359 target_sigset_t set; 360 sigset_t host_set; 361 int i; 362 363 sf_addr = env->regwptr[WREG_SP]; 364 trace_user_do_sigreturn(env, sf_addr); 365 366 /* 1. Make sure we are not getting garbage from the user */ 367 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 368 goto segv_and_exit; 369 } 370 371 /* Make sure stack pointer is aligned. */ 372 __get_user(ptr, &sf->regs.u_regs[14]); 373 if (ptr & 7) { 374 goto segv_and_exit; 375 } 376 377 /* Make sure instruction pointers are aligned. */ 378 __get_user(pc, &sf->regs.pc); 379 __get_user(npc, &sf->regs.npc); 380 if ((pc | npc) & 3) { 381 goto segv_and_exit; 382 } 383 384 /* 2. Restore the state */ 385 restore_pt_regs(&sf->regs, env); 386 env->pc = pc; 387 env->npc = npc; 388 389 __get_user(ptr, &sf->fpu_save); 390 if (ptr) { 391 struct target_siginfo_fpu *fpu; 392 if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 393 goto segv_and_exit; 394 } 395 restore_fpu(fpu, env); 396 unlock_user_struct(fpu, ptr, 0); 397 } 398 399 __get_user(ptr, &sf->rwin_save); 400 if (ptr) { 401 goto segv_and_exit; /* TODO: restore_rwin */ 402 } 403 404 __get_user(set.sig[0], &sf->si_mask); 405 for (i = 1; i < TARGET_NSIG_WORDS; i++) { 406 __get_user(set.sig[i], &sf->extramask[i - 1]); 407 } 408 409 target_to_host_sigset_internal(&host_set, &set); 410 set_sigmask(&host_set); 411 412 unlock_user_struct(sf, sf_addr, 0); 413 return -TARGET_QEMU_ESIGRETURN; 414 415 segv_and_exit: 416 unlock_user_struct(sf, sf_addr, 0); 417 force_sig(TARGET_SIGSEGV); 418 return -TARGET_QEMU_ESIGRETURN; 419 } 420 421 long do_rt_sigreturn(CPUSPARCState *env) 422 { 423 abi_ulong sf_addr, tpc, tnpc, ptr; 424 struct target_rt_signal_frame *sf = NULL; 425 sigset_t set; 426 427 sf_addr = get_sp_from_cpustate(env); 428 trace_user_do_rt_sigreturn(env, sf_addr); 429 430 /* 1. Make sure we are not getting garbage from the user */ 431 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 432 goto segv_and_exit; 433 } 434 435 /* Validate SP alignment. */ 436 __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]); 437 if ((ptr + TARGET_STACK_BIAS) & 7) { 438 goto segv_and_exit; 439 } 440 441 /* Validate PC and NPC alignment. */ 442 __get_user(tpc, &sf->regs.pc); 443 __get_user(tnpc, &sf->regs.npc); 444 if ((tpc | tnpc) & 3) { 445 goto segv_and_exit; 446 } 447 448 /* 2. Restore the state */ 449 restore_pt_regs(&sf->regs, env); 450 451 __get_user(ptr, &sf->fpu_save); 452 if (ptr) { 453 struct target_siginfo_fpu *fpu; 454 if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 455 goto segv_and_exit; 456 } 457 restore_fpu(fpu, env); 458 unlock_user_struct(fpu, ptr, 0); 459 } 460 461 __get_user(ptr, &sf->rwin_save); 462 if (ptr) { 463 goto segv_and_exit; /* TODO: restore_rwin_state */ 464 } 465 466 target_restore_altstack(&sf->stack, env); 467 target_to_host_sigset(&set, &sf->mask); 468 set_sigmask(&set); 469 470 env->pc = tpc; 471 env->npc = tnpc; 472 473 unlock_user_struct(sf, sf_addr, 0); 474 return -TARGET_QEMU_ESIGRETURN; 475 476 segv_and_exit: 477 unlock_user_struct(sf, sf_addr, 0); 478 force_sig(TARGET_SIGSEGV); 479 return -TARGET_QEMU_ESIGRETURN; 480 } 481 482 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 483 #define SPARC_MC_TSTATE 0 484 #define SPARC_MC_PC 1 485 #define SPARC_MC_NPC 2 486 #define SPARC_MC_Y 3 487 #define SPARC_MC_G1 4 488 #define SPARC_MC_G2 5 489 #define SPARC_MC_G3 6 490 #define SPARC_MC_G4 7 491 #define SPARC_MC_G5 8 492 #define SPARC_MC_G6 9 493 #define SPARC_MC_G7 10 494 #define SPARC_MC_O0 11 495 #define SPARC_MC_O1 12 496 #define SPARC_MC_O2 13 497 #define SPARC_MC_O3 14 498 #define SPARC_MC_O4 15 499 #define SPARC_MC_O5 16 500 #define SPARC_MC_O6 17 501 #define SPARC_MC_O7 18 502 #define SPARC_MC_NGREG 19 503 504 typedef abi_ulong target_mc_greg_t; 505 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; 506 507 struct target_mc_fq { 508 abi_ulong mcfq_addr; 509 uint32_t mcfq_insn; 510 }; 511 512 /* 513 * Note the manual 16-alignment; the kernel gets this because it 514 * includes a "long double qregs[16]" in the mcpu_fregs union, 515 * which we can't do. 516 */ 517 struct target_mc_fpu { 518 union { 519 uint32_t sregs[32]; 520 uint64_t dregs[32]; 521 //uint128_t qregs[16]; 522 } mcfpu_fregs; 523 abi_ulong mcfpu_fsr; 524 abi_ulong mcfpu_fprs; 525 abi_ulong mcfpu_gsr; 526 abi_ulong mcfpu_fq; 527 unsigned char mcfpu_qcnt; 528 unsigned char mcfpu_qentsz; 529 unsigned char mcfpu_enab; 530 } __attribute__((aligned(16))); 531 typedef struct target_mc_fpu target_mc_fpu_t; 532 533 typedef struct { 534 target_mc_gregset_t mc_gregs; 535 target_mc_greg_t mc_fp; 536 target_mc_greg_t mc_i7; 537 target_mc_fpu_t mc_fpregs; 538 } target_mcontext_t; 539 540 struct target_ucontext { 541 abi_ulong tuc_link; 542 abi_ulong tuc_flags; 543 target_sigset_t tuc_sigmask; 544 target_mcontext_t tuc_mcontext; 545 }; 546 547 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 548 void sparc64_set_context(CPUSPARCState *env) 549 { 550 abi_ulong ucp_addr; 551 struct target_ucontext *ucp; 552 target_mc_gregset_t *grp; 553 target_mc_fpu_t *fpup; 554 abi_ulong pc, npc, tstate; 555 unsigned int i; 556 unsigned char fenab; 557 558 ucp_addr = env->regwptr[WREG_O0]; 559 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 560 goto do_sigsegv; 561 } 562 grp = &ucp->tuc_mcontext.mc_gregs; 563 __get_user(pc, &((*grp)[SPARC_MC_PC])); 564 __get_user(npc, &((*grp)[SPARC_MC_NPC])); 565 if ((pc | npc) & 3) { 566 goto do_sigsegv; 567 } 568 if (env->regwptr[WREG_O1]) { 569 target_sigset_t target_set; 570 sigset_t set; 571 572 if (TARGET_NSIG_WORDS == 1) { 573 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 574 } else { 575 abi_ulong *src, *dst; 576 src = ucp->tuc_sigmask.sig; 577 dst = target_set.sig; 578 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 579 __get_user(*dst, src); 580 } 581 } 582 target_to_host_sigset_internal(&set, &target_set); 583 set_sigmask(&set); 584 } 585 env->pc = pc; 586 env->npc = npc; 587 __get_user(env->y, &((*grp)[SPARC_MC_Y])); 588 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); 589 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */ 590 env->asi = (tstate >> 24) & 0xff; 591 cpu_put_ccr(env, (tstate >> 32) & 0xff); 592 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); 593 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); 594 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); 595 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); 596 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); 597 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); 598 /* Skip g7 as that's the thread register in userspace */ 599 600 /* 601 * Note that unlike the kernel, we didn't need to mess with the 602 * guest register window state to save it into a pt_regs to run 603 * the kernel. So for us the guest's O regs are still in WREG_O* 604 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 605 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 606 * need to be written back to userspace memory. 607 */ 608 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); 609 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); 610 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); 611 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); 612 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); 613 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); 614 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); 615 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); 616 617 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); 618 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); 619 620 fpup = &ucp->tuc_mcontext.mc_fpregs; 621 622 __get_user(fenab, &(fpup->mcfpu_enab)); 623 if (fenab) { 624 abi_ulong fprs; 625 626 /* 627 * We use the FPRS from the guest only in deciding whether 628 * to restore the upper, lower, or both banks of the FPU regs. 629 * The kernel here writes the FPU register data into the 630 * process's current_thread_info state and unconditionally 631 * clears FPRS and TSTATE_PEF: this disables the FPU so that the 632 * next FPU-disabled trap will copy the data out of 633 * current_thread_info and into the real FPU registers. 634 * QEMU doesn't need to handle lazy-FPU-state-restoring like that, 635 * so we always load the data directly into the FPU registers 636 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled). 637 * Note that because we (and the kernel) always write zeroes for 638 * the fenab and fprs in sparc64_get_context() none of this code 639 * will execute unless the guest manually constructed or changed 640 * the context structure. 641 */ 642 __get_user(fprs, &(fpup->mcfpu_fprs)); 643 if (fprs & FPRS_DL) { 644 for (i = 0; i < 16; i++) { 645 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 646 } 647 } 648 if (fprs & FPRS_DU) { 649 for (i = 16; i < 32; i++) { 650 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 651 } 652 } 653 __get_user(env->fsr, &(fpup->mcfpu_fsr)); 654 __get_user(env->gsr, &(fpup->mcfpu_gsr)); 655 } 656 unlock_user_struct(ucp, ucp_addr, 0); 657 return; 658 do_sigsegv: 659 unlock_user_struct(ucp, ucp_addr, 0); 660 force_sig(TARGET_SIGSEGV); 661 } 662 663 void sparc64_get_context(CPUSPARCState *env) 664 { 665 abi_ulong ucp_addr; 666 struct target_ucontext *ucp; 667 target_mc_gregset_t *grp; 668 target_mcontext_t *mcp; 669 int err; 670 unsigned int i; 671 target_sigset_t target_set; 672 sigset_t set; 673 674 ucp_addr = env->regwptr[WREG_O0]; 675 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 676 goto do_sigsegv; 677 } 678 679 memset(ucp, 0, sizeof(*ucp)); 680 681 mcp = &ucp->tuc_mcontext; 682 grp = &mcp->mc_gregs; 683 684 /* Skip over the trap instruction, first. */ 685 env->pc = env->npc; 686 env->npc += 4; 687 688 /* If we're only reading the signal mask then do_sigprocmask() 689 * is guaranteed not to fail, which is important because we don't 690 * have any way to signal a failure or restart this operation since 691 * this is not a normal syscall. 692 */ 693 err = do_sigprocmask(0, NULL, &set); 694 assert(err == 0); 695 host_to_target_sigset_internal(&target_set, &set); 696 if (TARGET_NSIG_WORDS == 1) { 697 __put_user(target_set.sig[0], 698 (abi_ulong *)&ucp->tuc_sigmask); 699 } else { 700 abi_ulong *src, *dst; 701 src = target_set.sig; 702 dst = ucp->tuc_sigmask.sig; 703 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 704 __put_user(*src, dst); 705 } 706 } 707 708 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE])); 709 __put_user(env->pc, &((*grp)[SPARC_MC_PC])); 710 __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); 711 __put_user(env->y, &((*grp)[SPARC_MC_Y])); 712 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); 713 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); 714 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); 715 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); 716 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); 717 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); 718 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); 719 720 /* 721 * Note that unlike the kernel, we didn't need to mess with the 722 * guest register window state to save it into a pt_regs to run 723 * the kernel. So for us the guest's O regs are still in WREG_O* 724 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 725 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 726 * need to be fished out of userspace memory. 727 */ 728 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); 729 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); 730 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); 731 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); 732 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); 733 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); 734 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); 735 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); 736 737 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); 738 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); 739 740 /* 741 * We don't write out the FPU state. This matches the kernel's 742 * implementation (which has the code for doing this but 743 * hidden behind an "if (fenab)" where fenab is always 0). 744 */ 745 746 unlock_user_struct(ucp, ucp_addr, 1); 747 return; 748 do_sigsegv: 749 unlock_user_struct(ucp, ucp_addr, 1); 750 force_sig(TARGET_SIGSEGV); 751 } 752 #endif 753