1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "user-internals.h" 22 #include "signal-common.h" 23 #include "linux-user/trace.h" 24 25 /* A Sparc register window */ 26 struct target_reg_window { 27 abi_ulong locals[8]; 28 abi_ulong ins[8]; 29 }; 30 31 /* A Sparc stack frame. */ 32 struct target_stackf { 33 /* 34 * Since qemu does not reference fp or callers_pc directly, 35 * it's simpler to treat fp and callers_pc as elements of ins[], 36 * and then bundle locals[] and ins[] into reg_window. 37 */ 38 struct target_reg_window win; 39 /* 40 * Similarly, bundle structptr and xxargs into xargs[]. 41 * This portion of the struct is part of the function call abi, 42 * and belongs to the callee for spilling argument registers. 43 */ 44 abi_ulong xargs[8]; 45 }; 46 47 struct target_siginfo_fpu { 48 #ifdef TARGET_SPARC64 49 uint64_t si_double_regs[32]; 50 uint64_t si_fsr; 51 uint64_t si_gsr; 52 uint64_t si_fprs; 53 #else 54 /* It is more convenient for qemu to move doubles, not singles. */ 55 uint64_t si_double_regs[16]; 56 uint32_t si_fsr; 57 uint32_t si_fpqdepth; 58 struct { 59 uint32_t insn_addr; 60 uint32_t insn; 61 } si_fpqueue [16]; 62 #endif 63 }; 64 65 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 66 struct target_signal_frame { 67 struct target_stackf ss; 68 struct target_pt_regs regs; 69 uint32_t si_mask; 70 abi_ulong fpu_save; 71 uint32_t insns[2] QEMU_ALIGNED(8); 72 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 73 abi_ulong extra_size; /* Should be 0 */ 74 abi_ulong rwin_save; 75 }; 76 #endif 77 78 struct target_rt_signal_frame { 79 struct target_stackf ss; 80 target_siginfo_t info; 81 struct target_pt_regs regs; 82 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 83 abi_ulong fpu_save; 84 target_stack_t stack; 85 target_sigset_t mask; 86 #else 87 target_sigset_t mask; 88 abi_ulong fpu_save; 89 uint32_t insns[2]; 90 target_stack_t stack; 91 abi_ulong extra_size; /* Should be 0 */ 92 #endif 93 abi_ulong rwin_save; 94 }; 95 96 static abi_ulong get_sigframe(struct target_sigaction *sa, 97 CPUSPARCState *env, 98 size_t framesize) 99 { 100 abi_ulong sp = get_sp_from_cpustate(env); 101 102 /* 103 * If we are on the alternate signal stack and would overflow it, don't. 104 * Return an always-bogus address instead so we will die with SIGSEGV. 105 */ 106 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { 107 return -1; 108 } 109 110 /* This is the X/Open sanctioned signal stack switching. */ 111 sp = target_sigsp(sp, sa) - framesize; 112 113 /* 114 * Always align the stack frame. This handles two cases. First, 115 * sigaltstack need not be mindful of platform specific stack 116 * alignment. Second, if we took this signal because the stack 117 * is not aligned properly, we'd like to take the signal cleanly 118 * and report that. 119 */ 120 sp &= ~15UL; 121 122 return sp; 123 } 124 125 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 126 { 127 int i; 128 129 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 130 __put_user(sparc64_tstate(env), ®s->tstate); 131 /* TODO: magic should contain PT_REG_MAGIC + %tt. */ 132 __put_user(0, ®s->magic); 133 #else 134 __put_user(cpu_get_psr(env), ®s->psr); 135 #endif 136 137 __put_user(env->pc, ®s->pc); 138 __put_user(env->npc, ®s->npc); 139 __put_user(env->y, ®s->y); 140 141 for (i = 0; i < 8; i++) { 142 __put_user(env->gregs[i], ®s->u_regs[i]); 143 } 144 for (i = 0; i < 8; i++) { 145 __put_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 146 } 147 } 148 149 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 150 { 151 int i; 152 153 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 154 /* User can only change condition codes and %asi in %tstate. */ 155 uint64_t tstate; 156 __get_user(tstate, ®s->tstate); 157 cpu_put_ccr(env, tstate >> 32); 158 env->asi = extract64(tstate, 24, 8); 159 #else 160 /* 161 * User can only change condition codes and FPU enabling in %psr. 162 * But don't bother with FPU enabling, since a real kernel would 163 * just re-enable the FPU upon the next fpu trap. 164 */ 165 uint32_t psr; 166 __get_user(psr, ®s->psr); 167 env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC); 168 #endif 169 170 /* Note that pc and npc are handled in the caller. */ 171 172 __get_user(env->y, ®s->y); 173 174 for (i = 0; i < 8; i++) { 175 __get_user(env->gregs[i], ®s->u_regs[i]); 176 } 177 for (i = 0; i < 8; i++) { 178 __get_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 179 } 180 } 181 182 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env) 183 { 184 int i; 185 186 for (i = 0; i < 8; i++) { 187 __put_user(env->regwptr[i + WREG_L0], &win->locals[i]); 188 } 189 for (i = 0; i < 8; i++) { 190 __put_user(env->regwptr[i + WREG_I0], &win->ins[i]); 191 } 192 } 193 194 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 195 { 196 int i; 197 198 #ifdef TARGET_SPARC64 199 for (i = 0; i < 32; ++i) { 200 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 201 } 202 __put_user(env->fsr, &fpu->si_fsr); 203 __put_user(env->gsr, &fpu->si_gsr); 204 __put_user(env->fprs, &fpu->si_fprs); 205 #else 206 for (i = 0; i < 16; ++i) { 207 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 208 } 209 __put_user(env->fsr, &fpu->si_fsr); 210 __put_user(0, &fpu->si_fpqdepth); 211 #endif 212 } 213 214 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 215 { 216 int i; 217 218 #ifdef TARGET_SPARC64 219 uint64_t fprs; 220 __get_user(fprs, &fpu->si_fprs); 221 222 /* In case the user mucks about with FPRS, restore as directed. */ 223 if (fprs & FPRS_DL) { 224 for (i = 0; i < 16; ++i) { 225 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 226 } 227 } 228 if (fprs & FPRS_DU) { 229 for (i = 16; i < 32; ++i) { 230 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 231 } 232 } 233 __get_user(env->fsr, &fpu->si_fsr); 234 __get_user(env->gsr, &fpu->si_gsr); 235 env->fprs |= fprs; 236 #else 237 for (i = 0; i < 16; ++i) { 238 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 239 } 240 __get_user(env->fsr, &fpu->si_fsr); 241 #endif 242 } 243 244 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 245 static void install_sigtramp(uint32_t *tramp, int syscall) 246 { 247 __put_user(0x82102000u + syscall, &tramp[0]); /* mov syscall, %g1 */ 248 __put_user(0x91d02010u, &tramp[1]); /* t 0x10 */ 249 } 250 251 void setup_frame(int sig, struct target_sigaction *ka, 252 target_sigset_t *set, CPUSPARCState *env) 253 { 254 abi_ulong sf_addr; 255 struct target_signal_frame *sf; 256 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 257 int i; 258 259 sf_addr = get_sigframe(ka, env, sf_size); 260 trace_user_setup_frame(env, sf_addr); 261 262 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 263 if (!sf) { 264 force_sigsegv(sig); 265 return; 266 } 267 268 /* 2. Save the current process state */ 269 save_pt_regs(&sf->regs, env); 270 __put_user(0, &sf->extra_size); 271 272 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 273 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 274 275 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 276 277 __put_user(set->sig[0], &sf->si_mask); 278 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 279 __put_user(set->sig[i + 1], &sf->extramask[i]); 280 } 281 282 save_reg_win(&sf->ss.win, env); 283 284 /* 3. signal handler back-trampoline and parameters */ 285 env->regwptr[WREG_SP] = sf_addr; 286 env->regwptr[WREG_O0] = sig; 287 env->regwptr[WREG_O1] = sf_addr + 288 offsetof(struct target_signal_frame, regs); 289 env->regwptr[WREG_O2] = sf_addr + 290 offsetof(struct target_signal_frame, regs); 291 292 /* 4. signal handler */ 293 env->pc = ka->_sa_handler; 294 env->npc = env->pc + 4; 295 296 /* 5. return to kernel instructions */ 297 if (ka->ka_restorer) { 298 env->regwptr[WREG_O7] = ka->ka_restorer; 299 } else { 300 /* Not used, but retain for ABI compatibility. */ 301 install_sigtramp(sf->insns, TARGET_NR_sigreturn); 302 env->regwptr[WREG_O7] = default_sigreturn; 303 } 304 unlock_user(sf, sf_addr, sf_size); 305 } 306 #endif /* TARGET_ARCH_HAS_SETUP_FRAME */ 307 308 void setup_rt_frame(int sig, struct target_sigaction *ka, 309 target_siginfo_t *info, 310 target_sigset_t *set, CPUSPARCState *env) 311 { 312 abi_ulong sf_addr; 313 struct target_rt_signal_frame *sf; 314 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 315 316 sf_addr = get_sigframe(ka, env, sf_size); 317 trace_user_setup_rt_frame(env, sf_addr); 318 319 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 320 if (!sf) { 321 force_sigsegv(sig); 322 return; 323 } 324 325 /* 2. Save the current process state */ 326 save_reg_win(&sf->ss.win, env); 327 save_pt_regs(&sf->regs, env); 328 329 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 330 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 331 332 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 333 334 tswap_siginfo(&sf->info, info); 335 tswap_sigset(&sf->mask, set); 336 target_save_altstack(&sf->stack, env); 337 338 #ifdef TARGET_ABI32 339 __put_user(0, &sf->extra_size); 340 #endif 341 342 /* 3. signal handler back-trampoline and parameters */ 343 env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS; 344 env->regwptr[WREG_O0] = sig; 345 env->regwptr[WREG_O1] = 346 sf_addr + offsetof(struct target_rt_signal_frame, info); 347 #ifdef TARGET_ABI32 348 env->regwptr[WREG_O2] = 349 sf_addr + offsetof(struct target_rt_signal_frame, regs); 350 #else 351 env->regwptr[WREG_O2] = env->regwptr[WREG_O1]; 352 #endif 353 354 /* 4. signal handler */ 355 env->pc = ka->_sa_handler; 356 env->npc = env->pc + 4; 357 358 /* 5. return to kernel instructions */ 359 #ifdef TARGET_ABI32 360 if (ka->ka_restorer) { 361 env->regwptr[WREG_O7] = ka->ka_restorer; 362 } else { 363 /* Not used, but retain for ABI compatibility. */ 364 install_sigtramp(sf->insns, TARGET_NR_rt_sigreturn); 365 env->regwptr[WREG_O7] = default_rt_sigreturn; 366 } 367 #else 368 env->regwptr[WREG_O7] = ka->ka_restorer; 369 #endif 370 371 unlock_user(sf, sf_addr, sf_size); 372 } 373 374 long do_sigreturn(CPUSPARCState *env) 375 { 376 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 377 abi_ulong sf_addr; 378 struct target_signal_frame *sf = NULL; 379 abi_ulong pc, npc, ptr; 380 target_sigset_t set; 381 sigset_t host_set; 382 int i; 383 384 sf_addr = env->regwptr[WREG_SP]; 385 trace_user_do_sigreturn(env, sf_addr); 386 387 /* 1. Make sure we are not getting garbage from the user */ 388 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 389 goto segv_and_exit; 390 } 391 392 /* Make sure stack pointer is aligned. */ 393 __get_user(ptr, &sf->regs.u_regs[14]); 394 if (ptr & 7) { 395 goto segv_and_exit; 396 } 397 398 /* Make sure instruction pointers are aligned. */ 399 __get_user(pc, &sf->regs.pc); 400 __get_user(npc, &sf->regs.npc); 401 if ((pc | npc) & 3) { 402 goto segv_and_exit; 403 } 404 405 /* 2. Restore the state */ 406 restore_pt_regs(&sf->regs, env); 407 env->pc = pc; 408 env->npc = npc; 409 410 __get_user(ptr, &sf->fpu_save); 411 if (ptr) { 412 struct target_siginfo_fpu *fpu; 413 if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 414 goto segv_and_exit; 415 } 416 restore_fpu(fpu, env); 417 unlock_user_struct(fpu, ptr, 0); 418 } 419 420 __get_user(ptr, &sf->rwin_save); 421 if (ptr) { 422 goto segv_and_exit; /* TODO: restore_rwin */ 423 } 424 425 __get_user(set.sig[0], &sf->si_mask); 426 for (i = 1; i < TARGET_NSIG_WORDS; i++) { 427 __get_user(set.sig[i], &sf->extramask[i - 1]); 428 } 429 430 target_to_host_sigset_internal(&host_set, &set); 431 set_sigmask(&host_set); 432 433 unlock_user_struct(sf, sf_addr, 0); 434 return -QEMU_ESIGRETURN; 435 436 segv_and_exit: 437 unlock_user_struct(sf, sf_addr, 0); 438 force_sig(TARGET_SIGSEGV); 439 return -QEMU_ESIGRETURN; 440 #else 441 return -TARGET_ENOSYS; 442 #endif 443 } 444 445 long do_rt_sigreturn(CPUSPARCState *env) 446 { 447 abi_ulong sf_addr, tpc, tnpc, ptr; 448 struct target_rt_signal_frame *sf = NULL; 449 sigset_t set; 450 451 sf_addr = get_sp_from_cpustate(env); 452 trace_user_do_rt_sigreturn(env, sf_addr); 453 454 /* 1. Make sure we are not getting garbage from the user */ 455 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 456 goto segv_and_exit; 457 } 458 459 /* Validate SP alignment. */ 460 __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]); 461 if ((ptr + TARGET_STACK_BIAS) & 7) { 462 goto segv_and_exit; 463 } 464 465 /* Validate PC and NPC alignment. */ 466 __get_user(tpc, &sf->regs.pc); 467 __get_user(tnpc, &sf->regs.npc); 468 if ((tpc | tnpc) & 3) { 469 goto segv_and_exit; 470 } 471 472 /* 2. Restore the state */ 473 restore_pt_regs(&sf->regs, env); 474 475 __get_user(ptr, &sf->fpu_save); 476 if (ptr) { 477 struct target_siginfo_fpu *fpu; 478 if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 479 goto segv_and_exit; 480 } 481 restore_fpu(fpu, env); 482 unlock_user_struct(fpu, ptr, 0); 483 } 484 485 __get_user(ptr, &sf->rwin_save); 486 if (ptr) { 487 goto segv_and_exit; /* TODO: restore_rwin_state */ 488 } 489 490 target_restore_altstack(&sf->stack, env); 491 target_to_host_sigset(&set, &sf->mask); 492 set_sigmask(&set); 493 494 env->pc = tpc; 495 env->npc = tnpc; 496 497 unlock_user_struct(sf, sf_addr, 0); 498 return -QEMU_ESIGRETURN; 499 500 segv_and_exit: 501 unlock_user_struct(sf, sf_addr, 0); 502 force_sig(TARGET_SIGSEGV); 503 return -QEMU_ESIGRETURN; 504 } 505 506 #ifdef TARGET_ABI32 507 void setup_sigtramp(abi_ulong sigtramp_page) 508 { 509 uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 2 * 8, 0); 510 assert(tramp != NULL); 511 512 default_sigreturn = sigtramp_page; 513 install_sigtramp(tramp, TARGET_NR_sigreturn); 514 515 default_rt_sigreturn = sigtramp_page + 8; 516 install_sigtramp(tramp + 2, TARGET_NR_rt_sigreturn); 517 518 unlock_user(tramp, sigtramp_page, 2 * 8); 519 } 520 #endif 521 522 #ifdef TARGET_SPARC64 523 #define SPARC_MC_TSTATE 0 524 #define SPARC_MC_PC 1 525 #define SPARC_MC_NPC 2 526 #define SPARC_MC_Y 3 527 #define SPARC_MC_G1 4 528 #define SPARC_MC_G2 5 529 #define SPARC_MC_G3 6 530 #define SPARC_MC_G4 7 531 #define SPARC_MC_G5 8 532 #define SPARC_MC_G6 9 533 #define SPARC_MC_G7 10 534 #define SPARC_MC_O0 11 535 #define SPARC_MC_O1 12 536 #define SPARC_MC_O2 13 537 #define SPARC_MC_O3 14 538 #define SPARC_MC_O4 15 539 #define SPARC_MC_O5 16 540 #define SPARC_MC_O6 17 541 #define SPARC_MC_O7 18 542 #define SPARC_MC_NGREG 19 543 544 typedef abi_ulong target_mc_greg_t; 545 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; 546 547 struct target_mc_fq { 548 abi_ulong mcfq_addr; 549 uint32_t mcfq_insn; 550 }; 551 552 /* 553 * Note the manual 16-alignment; the kernel gets this because it 554 * includes a "long double qregs[16]" in the mcpu_fregs union, 555 * which we can't do. 556 */ 557 struct target_mc_fpu { 558 union { 559 uint32_t sregs[32]; 560 uint64_t dregs[32]; 561 //uint128_t qregs[16]; 562 } mcfpu_fregs; 563 abi_ulong mcfpu_fsr; 564 abi_ulong mcfpu_fprs; 565 abi_ulong mcfpu_gsr; 566 abi_ulong mcfpu_fq; 567 unsigned char mcfpu_qcnt; 568 unsigned char mcfpu_qentsz; 569 unsigned char mcfpu_enab; 570 } __attribute__((aligned(16))); 571 typedef struct target_mc_fpu target_mc_fpu_t; 572 573 typedef struct { 574 target_mc_gregset_t mc_gregs; 575 target_mc_greg_t mc_fp; 576 target_mc_greg_t mc_i7; 577 target_mc_fpu_t mc_fpregs; 578 } target_mcontext_t; 579 580 struct target_ucontext { 581 abi_ulong tuc_link; 582 abi_ulong tuc_flags; 583 target_sigset_t tuc_sigmask; 584 target_mcontext_t tuc_mcontext; 585 }; 586 587 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 588 void sparc64_set_context(CPUSPARCState *env) 589 { 590 abi_ulong ucp_addr; 591 struct target_ucontext *ucp; 592 target_mc_gregset_t *grp; 593 target_mc_fpu_t *fpup; 594 target_ulong pc, npc, tstate; 595 unsigned int i; 596 unsigned char fenab; 597 598 ucp_addr = env->regwptr[WREG_O0]; 599 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 600 goto do_sigsegv; 601 } 602 grp = &ucp->tuc_mcontext.mc_gregs; 603 __get_user(pc, &((*grp)[SPARC_MC_PC])); 604 __get_user(npc, &((*grp)[SPARC_MC_NPC])); 605 if ((pc | npc) & 3) { 606 goto do_sigsegv; 607 } 608 if (env->regwptr[WREG_O1]) { 609 target_sigset_t target_set; 610 sigset_t set; 611 612 if (TARGET_NSIG_WORDS == 1) { 613 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 614 } else { 615 abi_ulong *src, *dst; 616 src = ucp->tuc_sigmask.sig; 617 dst = target_set.sig; 618 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 619 __get_user(*dst, src); 620 } 621 } 622 target_to_host_sigset_internal(&set, &target_set); 623 set_sigmask(&set); 624 } 625 env->pc = pc; 626 env->npc = npc; 627 __get_user(env->y, &((*grp)[SPARC_MC_Y])); 628 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); 629 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */ 630 env->asi = (tstate >> 24) & 0xff; 631 cpu_put_ccr(env, (tstate >> 32) & 0xff); 632 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); 633 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); 634 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); 635 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); 636 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); 637 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); 638 /* Skip g7 as that's the thread register in userspace */ 639 640 /* 641 * Note that unlike the kernel, we didn't need to mess with the 642 * guest register window state to save it into a pt_regs to run 643 * the kernel. So for us the guest's O regs are still in WREG_O* 644 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 645 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 646 * need to be written back to userspace memory. 647 */ 648 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); 649 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); 650 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); 651 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); 652 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); 653 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); 654 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); 655 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); 656 657 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); 658 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); 659 660 fpup = &ucp->tuc_mcontext.mc_fpregs; 661 662 __get_user(fenab, &(fpup->mcfpu_enab)); 663 if (fenab) { 664 abi_ulong fprs; 665 666 /* 667 * We use the FPRS from the guest only in deciding whether 668 * to restore the upper, lower, or both banks of the FPU regs. 669 * The kernel here writes the FPU register data into the 670 * process's current_thread_info state and unconditionally 671 * clears FPRS and TSTATE_PEF: this disables the FPU so that the 672 * next FPU-disabled trap will copy the data out of 673 * current_thread_info and into the real FPU registers. 674 * QEMU doesn't need to handle lazy-FPU-state-restoring like that, 675 * so we always load the data directly into the FPU registers 676 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled). 677 * Note that because we (and the kernel) always write zeroes for 678 * the fenab and fprs in sparc64_get_context() none of this code 679 * will execute unless the guest manually constructed or changed 680 * the context structure. 681 */ 682 __get_user(fprs, &(fpup->mcfpu_fprs)); 683 if (fprs & FPRS_DL) { 684 for (i = 0; i < 16; i++) { 685 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 686 } 687 } 688 if (fprs & FPRS_DU) { 689 for (i = 16; i < 32; i++) { 690 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 691 } 692 } 693 __get_user(env->fsr, &(fpup->mcfpu_fsr)); 694 __get_user(env->gsr, &(fpup->mcfpu_gsr)); 695 } 696 unlock_user_struct(ucp, ucp_addr, 0); 697 return; 698 do_sigsegv: 699 unlock_user_struct(ucp, ucp_addr, 0); 700 force_sig(TARGET_SIGSEGV); 701 } 702 703 void sparc64_get_context(CPUSPARCState *env) 704 { 705 abi_ulong ucp_addr; 706 struct target_ucontext *ucp; 707 target_mc_gregset_t *grp; 708 target_mcontext_t *mcp; 709 int err; 710 unsigned int i; 711 target_sigset_t target_set; 712 sigset_t set; 713 714 ucp_addr = env->regwptr[WREG_O0]; 715 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 716 goto do_sigsegv; 717 } 718 719 memset(ucp, 0, sizeof(*ucp)); 720 721 mcp = &ucp->tuc_mcontext; 722 grp = &mcp->mc_gregs; 723 724 /* Skip over the trap instruction, first. */ 725 env->pc = env->npc; 726 env->npc += 4; 727 728 /* If we're only reading the signal mask then do_sigprocmask() 729 * is guaranteed not to fail, which is important because we don't 730 * have any way to signal a failure or restart this operation since 731 * this is not a normal syscall. 732 */ 733 err = do_sigprocmask(0, NULL, &set); 734 assert(err == 0); 735 host_to_target_sigset_internal(&target_set, &set); 736 if (TARGET_NSIG_WORDS == 1) { 737 __put_user(target_set.sig[0], 738 (abi_ulong *)&ucp->tuc_sigmask); 739 } else { 740 abi_ulong *src, *dst; 741 src = target_set.sig; 742 dst = ucp->tuc_sigmask.sig; 743 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 744 __put_user(*src, dst); 745 } 746 } 747 748 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE])); 749 __put_user(env->pc, &((*grp)[SPARC_MC_PC])); 750 __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); 751 __put_user(env->y, &((*grp)[SPARC_MC_Y])); 752 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); 753 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); 754 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); 755 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); 756 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); 757 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); 758 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); 759 760 /* 761 * Note that unlike the kernel, we didn't need to mess with the 762 * guest register window state to save it into a pt_regs to run 763 * the kernel. So for us the guest's O regs are still in WREG_O* 764 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 765 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 766 * need to be fished out of userspace memory. 767 */ 768 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); 769 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); 770 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); 771 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); 772 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); 773 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); 774 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); 775 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); 776 777 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); 778 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); 779 780 /* 781 * We don't write out the FPU state. This matches the kernel's 782 * implementation (which has the code for doing this but 783 * hidden behind an "if (fenab)" where fenab is always 0). 784 */ 785 786 unlock_user_struct(ucp, ucp_addr, 1); 787 return; 788 do_sigsegv: 789 unlock_user_struct(ucp, ucp_addr, 1); 790 force_sig(TARGET_SIGSEGV); 791 } 792 #endif /* TARGET_SPARC64 */ 793