xref: /openbmc/qemu/linux-user/sparc/signal.c (revision ac89de40)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
23 
24 #define __SUNOS_MAXWIN   31
25 
26 /* This is what SunOS does, so shall I. */
27 struct target_sigcontext {
28     abi_ulong sigc_onstack;      /* state to restore */
29 
30     abi_ulong sigc_mask;         /* sigmask to restore */
31     abi_ulong sigc_sp;           /* stack pointer */
32     abi_ulong sigc_pc;           /* program counter */
33     abi_ulong sigc_npc;          /* next program counter */
34     abi_ulong sigc_psr;          /* for condition codes etc */
35     abi_ulong sigc_g1;           /* User uses these two registers */
36     abi_ulong sigc_o0;           /* within the trampoline code. */
37 
38     /* Now comes information regarding the users window set
39          * at the time of the signal.
40          */
41     abi_ulong sigc_oswins;       /* outstanding windows */
42 
43     /* stack ptrs for each regwin buf */
44     char *sigc_spbuf[__SUNOS_MAXWIN];
45 
46     /* Windows to restore after signal */
47     struct {
48         abi_ulong locals[8];
49         abi_ulong ins[8];
50     } sigc_wbuf[__SUNOS_MAXWIN];
51 };
52 /* A Sparc stack frame */
53 struct sparc_stackf {
54     abi_ulong locals[8];
55     abi_ulong ins[8];
56     /* It's simpler to treat fp and callers_pc as elements of ins[]
57          * since we never need to access them ourselves.
58          */
59     char *structptr;
60     abi_ulong xargs[6];
61     abi_ulong xxargs[1];
62 };
63 
64 typedef struct {
65     struct {
66         abi_ulong psr;
67         abi_ulong pc;
68         abi_ulong npc;
69         abi_ulong y;
70         abi_ulong u_regs[16]; /* globals and ins */
71     }               si_regs;
72     int             si_mask;
73 } __siginfo_t;
74 
75 typedef struct {
76     abi_ulong  si_float_regs[32];
77     unsigned   long si_fsr;
78     unsigned   long si_fpqdepth;
79     struct {
80         unsigned long *insn_addr;
81         unsigned long insn;
82     } si_fpqueue [16];
83 } qemu_siginfo_fpu_t;
84 
85 
86 struct target_signal_frame {
87     struct sparc_stackf ss;
88     __siginfo_t         info;
89     abi_ulong           fpu_save;
90     abi_ulong           insns[2] __attribute__ ((aligned (8)));
91     abi_ulong           extramask[TARGET_NSIG_WORDS - 1];
92     abi_ulong           extra_size; /* Should be 0 */
93     qemu_siginfo_fpu_t fpu_state;
94 };
95 struct target_rt_signal_frame {
96     struct sparc_stackf ss;
97     siginfo_t           info;
98     abi_ulong           regs[20];
99     sigset_t            mask;
100     abi_ulong           fpu_save;
101     unsigned int        insns[2];
102     stack_t             stack;
103     unsigned int        extra_size; /* Should be 0 */
104     qemu_siginfo_fpu_t  fpu_state;
105 };
106 
107 #define UREG_O0        16
108 #define UREG_O6        22
109 #define UREG_I0        0
110 #define UREG_I1        1
111 #define UREG_I2        2
112 #define UREG_I3        3
113 #define UREG_I4        4
114 #define UREG_I5        5
115 #define UREG_I6        6
116 #define UREG_I7        7
117 #define UREG_L0        8
118 #define UREG_FP        UREG_I6
119 #define UREG_SP        UREG_O6
120 
121 static inline abi_ulong get_sigframe(struct target_sigaction *sa,
122                                      CPUSPARCState *env,
123                                      unsigned long framesize)
124 {
125     abi_ulong sp = get_sp_from_cpustate(env);
126 
127     /*
128      * If we are on the alternate signal stack and would overflow it, don't.
129      * Return an always-bogus address instead so we will die with SIGSEGV.
130          */
131     if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
132             return -1;
133     }
134 
135     /* This is the X/Open sanctioned signal stack switching.  */
136     sp = target_sigsp(sp, sa) - framesize;
137 
138     /* Always align the stack frame.  This handles two cases.  First,
139      * sigaltstack need not be mindful of platform specific stack
140      * alignment.  Second, if we took this signal because the stack
141      * is not aligned properly, we'd like to take the signal cleanly
142      * and report that.
143      */
144     sp &= ~15UL;
145 
146     return sp;
147 }
148 
149 static int
150 setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask)
151 {
152     int err = 0, i;
153 
154     __put_user(env->psr, &si->si_regs.psr);
155     __put_user(env->pc, &si->si_regs.pc);
156     __put_user(env->npc, &si->si_regs.npc);
157     __put_user(env->y, &si->si_regs.y);
158     for (i=0; i < 8; i++) {
159         __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
160     }
161     for (i=0; i < 8; i++) {
162         __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]);
163     }
164     __put_user(mask, &si->si_mask);
165     return err;
166 }
167 
168 #if 0
169 static int
170 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
171                  CPUSPARCState *env, unsigned long mask)
172 {
173     int err = 0;
174 
175     __put_user(mask, &sc->sigc_mask);
176     __put_user(env->regwptr[UREG_SP], &sc->sigc_sp);
177     __put_user(env->pc, &sc->sigc_pc);
178     __put_user(env->npc, &sc->sigc_npc);
179     __put_user(env->psr, &sc->sigc_psr);
180     __put_user(env->gregs[1], &sc->sigc_g1);
181     __put_user(env->regwptr[UREG_O0], &sc->sigc_o0);
182 
183     return err;
184 }
185 #endif
186 #define NF_ALIGNEDSZ  (((sizeof(struct target_signal_frame) + 7) & (~7)))
187 
188 void setup_frame(int sig, struct target_sigaction *ka,
189                  target_sigset_t *set, CPUSPARCState *env)
190 {
191     abi_ulong sf_addr;
192     struct target_signal_frame *sf;
193     int sigframe_size, err, i;
194 
195     /* 1. Make sure everything is clean */
196     //synchronize_user_stack();
197 
198     sigframe_size = NF_ALIGNEDSZ;
199     sf_addr = get_sigframe(ka, env, sigframe_size);
200     trace_user_setup_frame(env, sf_addr);
201 
202     sf = lock_user(VERIFY_WRITE, sf_addr,
203                    sizeof(struct target_signal_frame), 0);
204     if (!sf) {
205         goto sigsegv;
206     }
207 #if 0
208     if (invalid_frame_pointer(sf, sigframe_size))
209         goto sigill_and_return;
210 #endif
211     /* 2. Save the current process state */
212     err = setup___siginfo(&sf->info, env, set->sig[0]);
213     __put_user(0, &sf->extra_size);
214 
215     //save_fpu_state(regs, &sf->fpu_state);
216     //__put_user(&sf->fpu_state, &sf->fpu_save);
217 
218     __put_user(set->sig[0], &sf->info.si_mask);
219     for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
220         __put_user(set->sig[i + 1], &sf->extramask[i]);
221     }
222 
223     for (i = 0; i < 8; i++) {
224         __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]);
225     }
226     for (i = 0; i < 8; i++) {
227         __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]);
228     }
229     if (err)
230         goto sigsegv;
231 
232     /* 3. signal handler back-trampoline and parameters */
233     env->regwptr[UREG_FP] = sf_addr;
234     env->regwptr[UREG_I0] = sig;
235     env->regwptr[UREG_I1] = sf_addr +
236             offsetof(struct target_signal_frame, info);
237     env->regwptr[UREG_I2] = sf_addr +
238             offsetof(struct target_signal_frame, info);
239 
240     /* 4. signal handler */
241     env->pc = ka->_sa_handler;
242     env->npc = (env->pc + 4);
243     /* 5. return to kernel instructions */
244     if (ka->ka_restorer) {
245         env->regwptr[UREG_I7] = ka->ka_restorer;
246     } else {
247         uint32_t val32;
248 
249         env->regwptr[UREG_I7] = sf_addr +
250                 offsetof(struct target_signal_frame, insns) - 2 * 4;
251 
252         /* mov __NR_sigreturn, %g1 */
253         val32 = 0x821020d8;
254         __put_user(val32, &sf->insns[0]);
255 
256         /* t 0x10 */
257         val32 = 0x91d02010;
258         __put_user(val32, &sf->insns[1]);
259     }
260     unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
261     return;
262 #if 0
263 sigill_and_return:
264     force_sig(TARGET_SIGILL);
265 #endif
266 sigsegv:
267     unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
268     force_sigsegv(sig);
269 }
270 
271 void setup_rt_frame(int sig, struct target_sigaction *ka,
272                     target_siginfo_t *info,
273                     target_sigset_t *set, CPUSPARCState *env)
274 {
275     qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
276 }
277 
278 long do_sigreturn(CPUSPARCState *env)
279 {
280     abi_ulong sf_addr;
281     struct target_signal_frame *sf;
282     uint32_t up_psr, pc, npc;
283     target_sigset_t set;
284     sigset_t host_set;
285     int i;
286 
287     sf_addr = env->regwptr[UREG_FP];
288     trace_user_do_sigreturn(env, sf_addr);
289     if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
290         goto segv_and_exit;
291     }
292 
293     /* 1. Make sure we are not getting garbage from the user */
294 
295     if (sf_addr & 3)
296         goto segv_and_exit;
297 
298     __get_user(pc,  &sf->info.si_regs.pc);
299     __get_user(npc, &sf->info.si_regs.npc);
300 
301     if ((pc | npc) & 3) {
302         goto segv_and_exit;
303     }
304 
305     /* 2. Restore the state */
306     __get_user(up_psr, &sf->info.si_regs.psr);
307 
308     /* User can only change condition codes and FPU enabling in %psr. */
309     env->psr = (up_psr & (PSR_ICC /* | PSR_EF */))
310             | (env->psr & ~(PSR_ICC /* | PSR_EF */));
311 
312     env->pc = pc;
313     env->npc = npc;
314     __get_user(env->y, &sf->info.si_regs.y);
315     for (i=0; i < 8; i++) {
316         __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
317     }
318     for (i=0; i < 8; i++) {
319         __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]);
320     }
321 
322     /* FIXME: implement FPU save/restore:
323      * __get_user(fpu_save, &sf->fpu_save);
324      * if (fpu_save) {
325      *     if (restore_fpu_state(env, fpu_save)) {
326      *         goto segv_and_exit;
327      *     }
328      * }
329      */
330 
331     /* This is pretty much atomic, no amount locking would prevent
332          * the races which exist anyways.
333          */
334     __get_user(set.sig[0], &sf->info.si_mask);
335     for(i = 1; i < TARGET_NSIG_WORDS; i++) {
336         __get_user(set.sig[i], &sf->extramask[i - 1]);
337     }
338 
339     target_to_host_sigset_internal(&host_set, &set);
340     set_sigmask(&host_set);
341 
342     unlock_user_struct(sf, sf_addr, 0);
343     return -TARGET_QEMU_ESIGRETURN;
344 
345 segv_and_exit:
346     unlock_user_struct(sf, sf_addr, 0);
347     force_sig(TARGET_SIGSEGV);
348     return -TARGET_QEMU_ESIGRETURN;
349 }
350 
351 long do_rt_sigreturn(CPUSPARCState *env)
352 {
353     trace_user_do_rt_sigreturn(env, 0);
354     qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
355     return -TARGET_ENOSYS;
356 }
357 
358 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
359 #define SPARC_MC_TSTATE 0
360 #define SPARC_MC_PC 1
361 #define SPARC_MC_NPC 2
362 #define SPARC_MC_Y 3
363 #define SPARC_MC_G1 4
364 #define SPARC_MC_G2 5
365 #define SPARC_MC_G3 6
366 #define SPARC_MC_G4 7
367 #define SPARC_MC_G5 8
368 #define SPARC_MC_G6 9
369 #define SPARC_MC_G7 10
370 #define SPARC_MC_O0 11
371 #define SPARC_MC_O1 12
372 #define SPARC_MC_O2 13
373 #define SPARC_MC_O3 14
374 #define SPARC_MC_O4 15
375 #define SPARC_MC_O5 16
376 #define SPARC_MC_O6 17
377 #define SPARC_MC_O7 18
378 #define SPARC_MC_NGREG 19
379 
380 typedef abi_ulong target_mc_greg_t;
381 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
382 
383 struct target_mc_fq {
384     abi_ulong *mcfq_addr;
385     uint32_t mcfq_insn;
386 };
387 
388 struct target_mc_fpu {
389     union {
390         uint32_t sregs[32];
391         uint64_t dregs[32];
392         //uint128_t qregs[16];
393     } mcfpu_fregs;
394     abi_ulong mcfpu_fsr;
395     abi_ulong mcfpu_fprs;
396     abi_ulong mcfpu_gsr;
397     struct target_mc_fq *mcfpu_fq;
398     unsigned char mcfpu_qcnt;
399     unsigned char mcfpu_qentsz;
400     unsigned char mcfpu_enab;
401 };
402 typedef struct target_mc_fpu target_mc_fpu_t;
403 
404 typedef struct {
405     target_mc_gregset_t mc_gregs;
406     target_mc_greg_t mc_fp;
407     target_mc_greg_t mc_i7;
408     target_mc_fpu_t mc_fpregs;
409 } target_mcontext_t;
410 
411 struct target_ucontext {
412     struct target_ucontext *tuc_link;
413     abi_ulong tuc_flags;
414     target_sigset_t tuc_sigmask;
415     target_mcontext_t tuc_mcontext;
416 };
417 
418 /* A V9 register window */
419 struct target_reg_window {
420     abi_ulong locals[8];
421     abi_ulong ins[8];
422 };
423 
424 #define TARGET_STACK_BIAS 2047
425 
426 /* {set, get}context() needed for 64-bit SparcLinux userland. */
427 void sparc64_set_context(CPUSPARCState *env)
428 {
429     abi_ulong ucp_addr;
430     struct target_ucontext *ucp;
431     target_mc_gregset_t *grp;
432     abi_ulong pc, npc, tstate;
433     abi_ulong fp, i7, w_addr;
434     unsigned int i;
435 
436     ucp_addr = env->regwptr[UREG_I0];
437     if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
438         goto do_sigsegv;
439     }
440     grp  = &ucp->tuc_mcontext.mc_gregs;
441     __get_user(pc, &((*grp)[SPARC_MC_PC]));
442     __get_user(npc, &((*grp)[SPARC_MC_NPC]));
443     if ((pc | npc) & 3) {
444         goto do_sigsegv;
445     }
446     if (env->regwptr[UREG_I1]) {
447         target_sigset_t target_set;
448         sigset_t set;
449 
450         if (TARGET_NSIG_WORDS == 1) {
451             __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
452         } else {
453             abi_ulong *src, *dst;
454             src = ucp->tuc_sigmask.sig;
455             dst = target_set.sig;
456             for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
457                 __get_user(*dst, src);
458             }
459         }
460         target_to_host_sigset_internal(&set, &target_set);
461         set_sigmask(&set);
462     }
463     env->pc = pc;
464     env->npc = npc;
465     __get_user(env->y, &((*grp)[SPARC_MC_Y]));
466     __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
467     env->asi = (tstate >> 24) & 0xff;
468     cpu_put_ccr(env, tstate >> 32);
469     cpu_put_cwp64(env, tstate & 0x1f);
470     __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
471     __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
472     __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
473     __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
474     __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
475     __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
476     __get_user(env->gregs[7], (&(*grp)[SPARC_MC_G7]));
477     __get_user(env->regwptr[UREG_I0], (&(*grp)[SPARC_MC_O0]));
478     __get_user(env->regwptr[UREG_I1], (&(*grp)[SPARC_MC_O1]));
479     __get_user(env->regwptr[UREG_I2], (&(*grp)[SPARC_MC_O2]));
480     __get_user(env->regwptr[UREG_I3], (&(*grp)[SPARC_MC_O3]));
481     __get_user(env->regwptr[UREG_I4], (&(*grp)[SPARC_MC_O4]));
482     __get_user(env->regwptr[UREG_I5], (&(*grp)[SPARC_MC_O5]));
483     __get_user(env->regwptr[UREG_I6], (&(*grp)[SPARC_MC_O6]));
484     __get_user(env->regwptr[UREG_I7], (&(*grp)[SPARC_MC_O7]));
485 
486     __get_user(fp, &(ucp->tuc_mcontext.mc_fp));
487     __get_user(i7, &(ucp->tuc_mcontext.mc_i7));
488 
489     w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6];
490     if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]),
491                  abi_ulong) != 0) {
492         goto do_sigsegv;
493     }
494     if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]),
495                  abi_ulong) != 0) {
496         goto do_sigsegv;
497     }
498     /* FIXME this does not match how the kernel handles the FPU in
499      * its sparc64_set_context implementation. In particular the FPU
500      * is only restored if fenab is non-zero in:
501      *   __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab));
502      */
503     __get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs));
504     {
505         uint32_t *src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs;
506         for (i = 0; i < 64; i++, src++) {
507             if (i & 1) {
508                 __get_user(env->fpr[i/2].l.lower, src);
509             } else {
510                 __get_user(env->fpr[i/2].l.upper, src);
511             }
512         }
513     }
514     __get_user(env->fsr,
515                &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr));
516     __get_user(env->gsr,
517                &(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr));
518     unlock_user_struct(ucp, ucp_addr, 0);
519     return;
520 do_sigsegv:
521     unlock_user_struct(ucp, ucp_addr, 0);
522     force_sig(TARGET_SIGSEGV);
523 }
524 
525 void sparc64_get_context(CPUSPARCState *env)
526 {
527     abi_ulong ucp_addr;
528     struct target_ucontext *ucp;
529     target_mc_gregset_t *grp;
530     target_mcontext_t *mcp;
531     abi_ulong fp, i7, w_addr;
532     int err;
533     unsigned int i;
534     target_sigset_t target_set;
535     sigset_t set;
536 
537     ucp_addr = env->regwptr[UREG_I0];
538     if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
539         goto do_sigsegv;
540     }
541 
542     mcp = &ucp->tuc_mcontext;
543     grp = &mcp->mc_gregs;
544 
545     /* Skip over the trap instruction, first. */
546     env->pc = env->npc;
547     env->npc += 4;
548 
549     /* If we're only reading the signal mask then do_sigprocmask()
550      * is guaranteed not to fail, which is important because we don't
551      * have any way to signal a failure or restart this operation since
552      * this is not a normal syscall.
553      */
554     err = do_sigprocmask(0, NULL, &set);
555     assert(err == 0);
556     host_to_target_sigset_internal(&target_set, &set);
557     if (TARGET_NSIG_WORDS == 1) {
558         __put_user(target_set.sig[0],
559                    (abi_ulong *)&ucp->tuc_sigmask);
560     } else {
561         abi_ulong *src, *dst;
562         src = target_set.sig;
563         dst = ucp->tuc_sigmask.sig;
564         for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
565             __put_user(*src, dst);
566         }
567         if (err)
568             goto do_sigsegv;
569     }
570 
571     /* XXX: tstate must be saved properly */
572     //    __put_user(env->tstate, &((*grp)[SPARC_MC_TSTATE]));
573     __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
574     __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
575     __put_user(env->y, &((*grp)[SPARC_MC_Y]));
576     __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
577     __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
578     __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
579     __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
580     __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
581     __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
582     __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
583     __put_user(env->regwptr[UREG_I0], &((*grp)[SPARC_MC_O0]));
584     __put_user(env->regwptr[UREG_I1], &((*grp)[SPARC_MC_O1]));
585     __put_user(env->regwptr[UREG_I2], &((*grp)[SPARC_MC_O2]));
586     __put_user(env->regwptr[UREG_I3], &((*grp)[SPARC_MC_O3]));
587     __put_user(env->regwptr[UREG_I4], &((*grp)[SPARC_MC_O4]));
588     __put_user(env->regwptr[UREG_I5], &((*grp)[SPARC_MC_O5]));
589     __put_user(env->regwptr[UREG_I6], &((*grp)[SPARC_MC_O6]));
590     __put_user(env->regwptr[UREG_I7], &((*grp)[SPARC_MC_O7]));
591 
592     w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6];
593     fp = i7 = 0;
594     if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]),
595                  abi_ulong) != 0) {
596         goto do_sigsegv;
597     }
598     if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]),
599                  abi_ulong) != 0) {
600         goto do_sigsegv;
601     }
602     __put_user(fp, &(mcp->mc_fp));
603     __put_user(i7, &(mcp->mc_i7));
604 
605     {
606         uint32_t *dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs;
607         for (i = 0; i < 64; i++, dst++) {
608             if (i & 1) {
609                 __put_user(env->fpr[i/2].l.lower, dst);
610             } else {
611                 __put_user(env->fpr[i/2].l.upper, dst);
612             }
613         }
614     }
615     __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr));
616     __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr));
617     __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs));
618 
619     if (err)
620         goto do_sigsegv;
621     unlock_user_struct(ucp, ucp_addr, 1);
622     return;
623 do_sigsegv:
624     unlock_user_struct(ucp, ucp_addr, 1);
625     force_sig(TARGET_SIGSEGV);
626 }
627 #endif
628