1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "user-internals.h" 22 #include "signal-common.h" 23 #include "linux-user/trace.h" 24 25 /* A Sparc register window */ 26 struct target_reg_window { 27 abi_ulong locals[8]; 28 abi_ulong ins[8]; 29 }; 30 31 /* A Sparc stack frame. */ 32 struct target_stackf { 33 /* 34 * Since qemu does not reference fp or callers_pc directly, 35 * it's simpler to treat fp and callers_pc as elements of ins[], 36 * and then bundle locals[] and ins[] into reg_window. 37 */ 38 struct target_reg_window win; 39 /* 40 * Similarly, bundle structptr and xxargs into xargs[]. 41 * This portion of the struct is part of the function call abi, 42 * and belongs to the callee for spilling argument registers. 43 */ 44 abi_ulong xargs[8]; 45 }; 46 47 struct target_siginfo_fpu { 48 #ifdef TARGET_SPARC64 49 uint64_t si_double_regs[32]; 50 uint64_t si_fsr; 51 uint64_t si_gsr; 52 uint64_t si_fprs; 53 #else 54 /* It is more convenient for qemu to move doubles, not singles. */ 55 uint64_t si_double_regs[16]; 56 uint32_t si_fsr; 57 uint32_t si_fpqdepth; 58 struct { 59 uint32_t insn_addr; 60 uint32_t insn; 61 } si_fpqueue [16]; 62 #endif 63 }; 64 65 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 66 struct target_signal_frame { 67 struct target_stackf ss; 68 struct target_pt_regs regs; 69 uint32_t si_mask; 70 abi_ulong fpu_save; 71 uint32_t insns[2] QEMU_ALIGNED(8); 72 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 73 abi_ulong extra_size; /* Should be 0 */ 74 abi_ulong rwin_save; 75 }; 76 #endif 77 78 struct target_rt_signal_frame { 79 struct target_stackf ss; 80 target_siginfo_t info; 81 struct target_pt_regs regs; 82 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 83 abi_ulong fpu_save; 84 target_stack_t stack; 85 target_sigset_t mask; 86 #else 87 target_sigset_t mask; 88 abi_ulong fpu_save; 89 uint32_t insns[2]; 90 target_stack_t stack; 91 abi_ulong extra_size; /* Should be 0 */ 92 #endif 93 abi_ulong rwin_save; 94 }; 95 96 static abi_ulong get_sigframe(struct target_sigaction *sa, 97 CPUSPARCState *env, 98 size_t framesize) 99 { 100 abi_ulong sp = get_sp_from_cpustate(env); 101 102 /* 103 * If we are on the alternate signal stack and would overflow it, don't. 104 * Return an always-bogus address instead so we will die with SIGSEGV. 105 */ 106 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { 107 return -1; 108 } 109 110 /* This is the X/Open sanctioned signal stack switching. */ 111 sp = target_sigsp(sp, sa) - framesize; 112 113 /* 114 * Always align the stack frame. This handles two cases. First, 115 * sigaltstack need not be mindful of platform specific stack 116 * alignment. Second, if we took this signal because the stack 117 * is not aligned properly, we'd like to take the signal cleanly 118 * and report that. 119 */ 120 sp &= ~15UL; 121 122 return sp; 123 } 124 125 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 126 { 127 int i; 128 129 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 130 __put_user(sparc64_tstate(env), ®s->tstate); 131 /* TODO: magic should contain PT_REG_MAGIC + %tt. */ 132 __put_user(0, ®s->magic); 133 #else 134 __put_user(cpu_get_psr(env), ®s->psr); 135 #endif 136 137 __put_user(env->pc, ®s->pc); 138 __put_user(env->npc, ®s->npc); 139 __put_user(env->y, ®s->y); 140 141 for (i = 0; i < 8; i++) { 142 __put_user(env->gregs[i], ®s->u_regs[i]); 143 } 144 for (i = 0; i < 8; i++) { 145 __put_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 146 } 147 } 148 149 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 150 { 151 int i; 152 153 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 154 /* User can only change condition codes and %asi in %tstate. */ 155 uint64_t tstate; 156 __get_user(tstate, ®s->tstate); 157 cpu_put_ccr(env, tstate >> 32); 158 env->asi = extract64(tstate, 24, 8); 159 #else 160 /* 161 * User can only change condition codes and FPU enabling in %psr. 162 * But don't bother with FPU enabling, since a real kernel would 163 * just re-enable the FPU upon the next fpu trap. 164 */ 165 uint32_t psr; 166 __get_user(psr, ®s->psr); 167 cpu_put_psr_icc(env, psr); 168 #endif 169 170 /* Note that pc and npc are handled in the caller. */ 171 172 __get_user(env->y, ®s->y); 173 174 for (i = 0; i < 8; i++) { 175 __get_user(env->gregs[i], ®s->u_regs[i]); 176 } 177 for (i = 0; i < 8; i++) { 178 __get_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 179 } 180 } 181 182 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env) 183 { 184 int i; 185 186 for (i = 0; i < 8; i++) { 187 __put_user(env->regwptr[i + WREG_L0], &win->locals[i]); 188 } 189 for (i = 0; i < 8; i++) { 190 __put_user(env->regwptr[i + WREG_I0], &win->ins[i]); 191 } 192 } 193 194 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 195 { 196 int i; 197 198 #ifdef TARGET_SPARC64 199 for (i = 0; i < 32; ++i) { 200 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 201 } 202 __put_user(cpu_get_fsr(env), &fpu->si_fsr); 203 __put_user(env->gsr, &fpu->si_gsr); 204 __put_user(env->fprs, &fpu->si_fprs); 205 #else 206 for (i = 0; i < 16; ++i) { 207 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 208 } 209 __put_user(cpu_get_fsr(env), &fpu->si_fsr); 210 __put_user(0, &fpu->si_fpqdepth); 211 #endif 212 } 213 214 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 215 { 216 target_ulong fsr; 217 int i; 218 219 #ifdef TARGET_SPARC64 220 uint64_t fprs; 221 __get_user(fprs, &fpu->si_fprs); 222 223 /* In case the user mucks about with FPRS, restore as directed. */ 224 if (fprs & FPRS_DL) { 225 for (i = 0; i < 16; ++i) { 226 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 227 } 228 } 229 if (fprs & FPRS_DU) { 230 for (i = 16; i < 32; ++i) { 231 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 232 } 233 } 234 __get_user(env->gsr, &fpu->si_gsr); 235 env->fprs |= fprs; 236 #else 237 for (i = 0; i < 16; ++i) { 238 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 239 } 240 #endif 241 242 __get_user(fsr, &fpu->si_fsr); 243 cpu_put_fsr(env, fsr); 244 } 245 246 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 247 static void install_sigtramp(uint32_t *tramp, int syscall) 248 { 249 __put_user(0x82102000u + syscall, &tramp[0]); /* mov syscall, %g1 */ 250 __put_user(0x91d02010u, &tramp[1]); /* t 0x10 */ 251 } 252 253 void setup_frame(int sig, struct target_sigaction *ka, 254 target_sigset_t *set, CPUSPARCState *env) 255 { 256 abi_ulong sf_addr; 257 struct target_signal_frame *sf; 258 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 259 int i; 260 261 sf_addr = get_sigframe(ka, env, sf_size); 262 trace_user_setup_frame(env, sf_addr); 263 264 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 265 if (!sf) { 266 force_sigsegv(sig); 267 return; 268 } 269 270 /* 2. Save the current process state */ 271 save_pt_regs(&sf->regs, env); 272 __put_user(0, &sf->extra_size); 273 274 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 275 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 276 277 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 278 279 __put_user(set->sig[0], &sf->si_mask); 280 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 281 __put_user(set->sig[i + 1], &sf->extramask[i]); 282 } 283 284 save_reg_win(&sf->ss.win, env); 285 286 /* 3. signal handler back-trampoline and parameters */ 287 env->regwptr[WREG_SP] = sf_addr; 288 env->regwptr[WREG_O0] = sig; 289 env->regwptr[WREG_O1] = sf_addr + 290 offsetof(struct target_signal_frame, regs); 291 env->regwptr[WREG_O2] = sf_addr + 292 offsetof(struct target_signal_frame, regs); 293 294 /* 4. signal handler */ 295 env->pc = ka->_sa_handler; 296 env->npc = env->pc + 4; 297 298 /* 5. return to kernel instructions */ 299 if (ka->ka_restorer) { 300 env->regwptr[WREG_O7] = ka->ka_restorer; 301 } else { 302 /* Not used, but retain for ABI compatibility. */ 303 install_sigtramp(sf->insns, TARGET_NR_sigreturn); 304 env->regwptr[WREG_O7] = default_sigreturn; 305 } 306 unlock_user(sf, sf_addr, sf_size); 307 } 308 #endif /* TARGET_ARCH_HAS_SETUP_FRAME */ 309 310 void setup_rt_frame(int sig, struct target_sigaction *ka, 311 target_siginfo_t *info, 312 target_sigset_t *set, CPUSPARCState *env) 313 { 314 abi_ulong sf_addr; 315 struct target_rt_signal_frame *sf; 316 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 317 318 sf_addr = get_sigframe(ka, env, sf_size); 319 trace_user_setup_rt_frame(env, sf_addr); 320 321 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 322 if (!sf) { 323 force_sigsegv(sig); 324 return; 325 } 326 327 /* 2. Save the current process state */ 328 save_reg_win(&sf->ss.win, env); 329 save_pt_regs(&sf->regs, env); 330 331 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 332 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 333 334 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 335 336 sf->info = *info; 337 tswap_sigset(&sf->mask, set); 338 target_save_altstack(&sf->stack, env); 339 340 #ifdef TARGET_ABI32 341 __put_user(0, &sf->extra_size); 342 #endif 343 344 /* 3. signal handler back-trampoline and parameters */ 345 env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS; 346 env->regwptr[WREG_O0] = sig; 347 env->regwptr[WREG_O1] = 348 sf_addr + offsetof(struct target_rt_signal_frame, info); 349 #ifdef TARGET_ABI32 350 env->regwptr[WREG_O2] = 351 sf_addr + offsetof(struct target_rt_signal_frame, regs); 352 #else 353 env->regwptr[WREG_O2] = env->regwptr[WREG_O1]; 354 #endif 355 356 /* 4. signal handler */ 357 env->pc = ka->_sa_handler; 358 env->npc = env->pc + 4; 359 360 /* 5. return to kernel instructions */ 361 #ifdef TARGET_ABI32 362 if (ka->ka_restorer) { 363 env->regwptr[WREG_O7] = ka->ka_restorer; 364 } else { 365 /* Not used, but retain for ABI compatibility. */ 366 install_sigtramp(sf->insns, TARGET_NR_rt_sigreturn); 367 env->regwptr[WREG_O7] = default_rt_sigreturn; 368 } 369 #else 370 env->regwptr[WREG_O7] = ka->ka_restorer; 371 #endif 372 373 unlock_user(sf, sf_addr, sf_size); 374 } 375 376 long do_sigreturn(CPUSPARCState *env) 377 { 378 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 379 abi_ulong sf_addr; 380 struct target_signal_frame *sf = NULL; 381 abi_ulong pc, npc, ptr; 382 target_sigset_t set; 383 sigset_t host_set; 384 int i; 385 386 sf_addr = env->regwptr[WREG_SP]; 387 trace_user_do_sigreturn(env, sf_addr); 388 389 /* 1. Make sure we are not getting garbage from the user */ 390 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 391 goto segv_and_exit; 392 } 393 394 /* Make sure stack pointer is aligned. */ 395 __get_user(ptr, &sf->regs.u_regs[14]); 396 if (ptr & 7) { 397 goto segv_and_exit; 398 } 399 400 /* Make sure instruction pointers are aligned. */ 401 __get_user(pc, &sf->regs.pc); 402 __get_user(npc, &sf->regs.npc); 403 if ((pc | npc) & 3) { 404 goto segv_and_exit; 405 } 406 407 /* 2. Restore the state */ 408 restore_pt_regs(&sf->regs, env); 409 env->pc = pc; 410 env->npc = npc; 411 412 __get_user(ptr, &sf->fpu_save); 413 if (ptr) { 414 struct target_siginfo_fpu *fpu; 415 if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 416 goto segv_and_exit; 417 } 418 restore_fpu(fpu, env); 419 unlock_user_struct(fpu, ptr, 0); 420 } 421 422 __get_user(ptr, &sf->rwin_save); 423 if (ptr) { 424 goto segv_and_exit; /* TODO: restore_rwin */ 425 } 426 427 __get_user(set.sig[0], &sf->si_mask); 428 for (i = 1; i < TARGET_NSIG_WORDS; i++) { 429 __get_user(set.sig[i], &sf->extramask[i - 1]); 430 } 431 432 target_to_host_sigset_internal(&host_set, &set); 433 set_sigmask(&host_set); 434 435 unlock_user_struct(sf, sf_addr, 0); 436 return -QEMU_ESIGRETURN; 437 438 segv_and_exit: 439 unlock_user_struct(sf, sf_addr, 0); 440 force_sig(TARGET_SIGSEGV); 441 return -QEMU_ESIGRETURN; 442 #else 443 return -TARGET_ENOSYS; 444 #endif 445 } 446 447 long do_rt_sigreturn(CPUSPARCState *env) 448 { 449 abi_ulong sf_addr, tpc, tnpc, ptr; 450 struct target_rt_signal_frame *sf = NULL; 451 sigset_t set; 452 453 sf_addr = get_sp_from_cpustate(env); 454 trace_user_do_rt_sigreturn(env, sf_addr); 455 456 /* 1. Make sure we are not getting garbage from the user */ 457 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 458 goto segv_and_exit; 459 } 460 461 /* Validate SP alignment. */ 462 __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]); 463 if ((ptr + TARGET_STACK_BIAS) & 7) { 464 goto segv_and_exit; 465 } 466 467 /* Validate PC and NPC alignment. */ 468 __get_user(tpc, &sf->regs.pc); 469 __get_user(tnpc, &sf->regs.npc); 470 if ((tpc | tnpc) & 3) { 471 goto segv_and_exit; 472 } 473 474 /* 2. Restore the state */ 475 restore_pt_regs(&sf->regs, env); 476 477 __get_user(ptr, &sf->fpu_save); 478 if (ptr) { 479 struct target_siginfo_fpu *fpu; 480 if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 481 goto segv_and_exit; 482 } 483 restore_fpu(fpu, env); 484 unlock_user_struct(fpu, ptr, 0); 485 } 486 487 __get_user(ptr, &sf->rwin_save); 488 if (ptr) { 489 goto segv_and_exit; /* TODO: restore_rwin_state */ 490 } 491 492 target_restore_altstack(&sf->stack, env); 493 target_to_host_sigset(&set, &sf->mask); 494 set_sigmask(&set); 495 496 env->pc = tpc; 497 env->npc = tnpc; 498 499 unlock_user_struct(sf, sf_addr, 0); 500 return -QEMU_ESIGRETURN; 501 502 segv_and_exit: 503 unlock_user_struct(sf, sf_addr, 0); 504 force_sig(TARGET_SIGSEGV); 505 return -QEMU_ESIGRETURN; 506 } 507 508 #ifdef TARGET_ABI32 509 void setup_sigtramp(abi_ulong sigtramp_page) 510 { 511 uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 2 * 8, 0); 512 assert(tramp != NULL); 513 514 default_sigreturn = sigtramp_page; 515 install_sigtramp(tramp, TARGET_NR_sigreturn); 516 517 default_rt_sigreturn = sigtramp_page + 8; 518 install_sigtramp(tramp + 2, TARGET_NR_rt_sigreturn); 519 520 unlock_user(tramp, sigtramp_page, 2 * 8); 521 } 522 #endif 523 524 #ifdef TARGET_SPARC64 525 #define SPARC_MC_TSTATE 0 526 #define SPARC_MC_PC 1 527 #define SPARC_MC_NPC 2 528 #define SPARC_MC_Y 3 529 #define SPARC_MC_G1 4 530 #define SPARC_MC_G2 5 531 #define SPARC_MC_G3 6 532 #define SPARC_MC_G4 7 533 #define SPARC_MC_G5 8 534 #define SPARC_MC_G6 9 535 #define SPARC_MC_G7 10 536 #define SPARC_MC_O0 11 537 #define SPARC_MC_O1 12 538 #define SPARC_MC_O2 13 539 #define SPARC_MC_O3 14 540 #define SPARC_MC_O4 15 541 #define SPARC_MC_O5 16 542 #define SPARC_MC_O6 17 543 #define SPARC_MC_O7 18 544 #define SPARC_MC_NGREG 19 545 546 typedef abi_ulong target_mc_greg_t; 547 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; 548 549 struct target_mc_fq { 550 abi_ulong mcfq_addr; 551 uint32_t mcfq_insn; 552 }; 553 554 /* 555 * Note the manual 16-alignment; the kernel gets this because it 556 * includes a "long double qregs[16]" in the mcpu_fregs union, 557 * which we can't do. 558 */ 559 struct target_mc_fpu { 560 union { 561 uint32_t sregs[32]; 562 uint64_t dregs[32]; 563 //uint128_t qregs[16]; 564 } mcfpu_fregs; 565 abi_ulong mcfpu_fsr; 566 abi_ulong mcfpu_fprs; 567 abi_ulong mcfpu_gsr; 568 abi_ulong mcfpu_fq; 569 unsigned char mcfpu_qcnt; 570 unsigned char mcfpu_qentsz; 571 unsigned char mcfpu_enab; 572 } __attribute__((aligned(16))); 573 typedef struct target_mc_fpu target_mc_fpu_t; 574 575 typedef struct { 576 target_mc_gregset_t mc_gregs; 577 target_mc_greg_t mc_fp; 578 target_mc_greg_t mc_i7; 579 target_mc_fpu_t mc_fpregs; 580 } target_mcontext_t; 581 582 struct target_ucontext { 583 abi_ulong tuc_link; 584 abi_ulong tuc_flags; 585 target_sigset_t tuc_sigmask; 586 target_mcontext_t tuc_mcontext; 587 }; 588 589 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 590 void sparc64_set_context(CPUSPARCState *env) 591 { 592 abi_ulong ucp_addr; 593 struct target_ucontext *ucp; 594 target_mc_gregset_t *grp; 595 target_mc_fpu_t *fpup; 596 target_ulong pc, npc, tstate; 597 unsigned int i; 598 unsigned char fenab; 599 600 ucp_addr = env->regwptr[WREG_O0]; 601 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 602 goto do_sigsegv; 603 } 604 grp = &ucp->tuc_mcontext.mc_gregs; 605 __get_user(pc, &((*grp)[SPARC_MC_PC])); 606 __get_user(npc, &((*grp)[SPARC_MC_NPC])); 607 if ((pc | npc) & 3) { 608 goto do_sigsegv; 609 } 610 if (env->regwptr[WREG_O1]) { 611 target_sigset_t target_set; 612 sigset_t set; 613 614 if (TARGET_NSIG_WORDS == 1) { 615 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 616 } else { 617 abi_ulong *src, *dst; 618 src = ucp->tuc_sigmask.sig; 619 dst = target_set.sig; 620 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 621 __get_user(*dst, src); 622 } 623 } 624 target_to_host_sigset_internal(&set, &target_set); 625 set_sigmask(&set); 626 } 627 env->pc = pc; 628 env->npc = npc; 629 __get_user(env->y, &((*grp)[SPARC_MC_Y])); 630 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); 631 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */ 632 env->asi = (tstate >> 24) & 0xff; 633 cpu_put_ccr(env, (tstate >> 32) & 0xff); 634 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); 635 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); 636 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); 637 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); 638 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); 639 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); 640 /* Skip g7 as that's the thread register in userspace */ 641 642 /* 643 * Note that unlike the kernel, we didn't need to mess with the 644 * guest register window state to save it into a pt_regs to run 645 * the kernel. So for us the guest's O regs are still in WREG_O* 646 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 647 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 648 * need to be written back to userspace memory. 649 */ 650 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); 651 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); 652 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); 653 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); 654 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); 655 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); 656 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); 657 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); 658 659 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); 660 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); 661 662 fpup = &ucp->tuc_mcontext.mc_fpregs; 663 664 __get_user(fenab, &(fpup->mcfpu_enab)); 665 if (fenab) { 666 abi_ulong fprs; 667 abi_ulong fsr; 668 669 /* 670 * We use the FPRS from the guest only in deciding whether 671 * to restore the upper, lower, or both banks of the FPU regs. 672 * The kernel here writes the FPU register data into the 673 * process's current_thread_info state and unconditionally 674 * clears FPRS and TSTATE_PEF: this disables the FPU so that the 675 * next FPU-disabled trap will copy the data out of 676 * current_thread_info and into the real FPU registers. 677 * QEMU doesn't need to handle lazy-FPU-state-restoring like that, 678 * so we always load the data directly into the FPU registers 679 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled). 680 * Note that because we (and the kernel) always write zeroes for 681 * the fenab and fprs in sparc64_get_context() none of this code 682 * will execute unless the guest manually constructed or changed 683 * the context structure. 684 */ 685 __get_user(fprs, &(fpup->mcfpu_fprs)); 686 if (fprs & FPRS_DL) { 687 for (i = 0; i < 16; i++) { 688 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 689 } 690 } 691 if (fprs & FPRS_DU) { 692 for (i = 16; i < 32; i++) { 693 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 694 } 695 } 696 __get_user(fsr, &(fpup->mcfpu_fsr)); 697 cpu_put_fsr(env, fsr); 698 __get_user(env->gsr, &(fpup->mcfpu_gsr)); 699 } 700 unlock_user_struct(ucp, ucp_addr, 0); 701 return; 702 do_sigsegv: 703 unlock_user_struct(ucp, ucp_addr, 0); 704 force_sig(TARGET_SIGSEGV); 705 } 706 707 void sparc64_get_context(CPUSPARCState *env) 708 { 709 abi_ulong ucp_addr; 710 struct target_ucontext *ucp; 711 target_mc_gregset_t *grp; 712 target_mcontext_t *mcp; 713 int err; 714 unsigned int i; 715 target_sigset_t target_set; 716 sigset_t set; 717 718 ucp_addr = env->regwptr[WREG_O0]; 719 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 720 goto do_sigsegv; 721 } 722 723 memset(ucp, 0, sizeof(*ucp)); 724 725 mcp = &ucp->tuc_mcontext; 726 grp = &mcp->mc_gregs; 727 728 /* Skip over the trap instruction, first. */ 729 env->pc = env->npc; 730 env->npc += 4; 731 732 /* If we're only reading the signal mask then do_sigprocmask() 733 * is guaranteed not to fail, which is important because we don't 734 * have any way to signal a failure or restart this operation since 735 * this is not a normal syscall. 736 */ 737 err = do_sigprocmask(0, NULL, &set); 738 assert(err == 0); 739 host_to_target_sigset_internal(&target_set, &set); 740 if (TARGET_NSIG_WORDS == 1) { 741 __put_user(target_set.sig[0], 742 (abi_ulong *)&ucp->tuc_sigmask); 743 } else { 744 abi_ulong *src, *dst; 745 src = target_set.sig; 746 dst = ucp->tuc_sigmask.sig; 747 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 748 __put_user(*src, dst); 749 } 750 } 751 752 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE])); 753 __put_user(env->pc, &((*grp)[SPARC_MC_PC])); 754 __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); 755 __put_user(env->y, &((*grp)[SPARC_MC_Y])); 756 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); 757 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); 758 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); 759 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); 760 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); 761 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); 762 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); 763 764 /* 765 * Note that unlike the kernel, we didn't need to mess with the 766 * guest register window state to save it into a pt_regs to run 767 * the kernel. So for us the guest's O regs are still in WREG_O* 768 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 769 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 770 * need to be fished out of userspace memory. 771 */ 772 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); 773 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); 774 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); 775 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); 776 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); 777 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); 778 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); 779 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); 780 781 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); 782 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); 783 784 /* 785 * We don't write out the FPU state. This matches the kernel's 786 * implementation (which has the code for doing this but 787 * hidden behind an "if (fenab)" where fenab is always 0). 788 */ 789 790 unlock_user_struct(ucp, ucp_addr, 1); 791 return; 792 do_sigsegv: 793 unlock_user_struct(ucp, ucp_addr, 1); 794 force_sig(TARGET_SIGSEGV); 795 } 796 #endif /* TARGET_SPARC64 */ 797