xref: /openbmc/qemu/linux-user/sparc/signal.c (revision a1181d53a97dbed24b68fd04d700679cf9d6af65)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
23 
24 /* A Sparc register window */
25 struct target_reg_window {
26     abi_ulong locals[8];
27     abi_ulong ins[8];
28 };
29 
30 /* A Sparc stack frame. */
31 struct target_stackf {
32     /*
33      * Since qemu does not reference fp or callers_pc directly,
34      * it's simpler to treat fp and callers_pc as elements of ins[],
35      * and then bundle locals[] and ins[] into reg_window.
36      */
37     struct target_reg_window win;
38     /*
39      * Similarly, bundle structptr and xxargs into xargs[].
40      * This portion of the struct is part of the function call abi,
41      * and belongs to the callee for spilling argument registers.
42      */
43     abi_ulong xargs[8];
44 };
45 
46 typedef struct {
47     abi_ulong  si_float_regs[32];
48     unsigned   long si_fsr;
49     unsigned   long si_fpqdepth;
50     struct {
51         unsigned long *insn_addr;
52         unsigned long insn;
53     } si_fpqueue [16];
54 } qemu_siginfo_fpu_t;
55 
56 
57 struct target_signal_frame {
58     struct target_stackf ss;
59     struct target_pt_regs regs;
60     uint32_t            si_mask;
61     abi_ulong           fpu_save;
62     uint32_t            insns[2] QEMU_ALIGNED(8);
63     abi_ulong           extramask[TARGET_NSIG_WORDS - 1];
64     abi_ulong           extra_size; /* Should be 0 */
65     qemu_siginfo_fpu_t fpu_state;
66 };
67 
68 static inline abi_ulong get_sigframe(struct target_sigaction *sa,
69                                      CPUSPARCState *env,
70                                      unsigned long framesize)
71 {
72     abi_ulong sp = get_sp_from_cpustate(env);
73 
74     /*
75      * If we are on the alternate signal stack and would overflow it, don't.
76      * Return an always-bogus address instead so we will die with SIGSEGV.
77          */
78     if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
79             return -1;
80     }
81 
82     /* This is the X/Open sanctioned signal stack switching.  */
83     sp = target_sigsp(sp, sa) - framesize;
84 
85     /* Always align the stack frame.  This handles two cases.  First,
86      * sigaltstack need not be mindful of platform specific stack
87      * alignment.  Second, if we took this signal because the stack
88      * is not aligned properly, we'd like to take the signal cleanly
89      * and report that.
90      */
91     sp &= ~15UL;
92 
93     return sp;
94 }
95 
96 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
97 {
98     int i;
99 
100 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
101     __put_user(sparc64_tstate(env), &regs->tstate);
102     /* TODO: magic should contain PT_REG_MAGIC + %tt. */
103     __put_user(0, &regs->magic);
104 #else
105     __put_user(cpu_get_psr(env), &regs->psr);
106 #endif
107 
108     __put_user(env->pc, &regs->pc);
109     __put_user(env->npc, &regs->npc);
110     __put_user(env->y, &regs->y);
111 
112     for (i = 0; i < 8; i++) {
113         __put_user(env->gregs[i], &regs->u_regs[i]);
114     }
115     for (i = 0; i < 8; i++) {
116         __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
117     }
118 }
119 
120 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
121 {
122     int i;
123 
124 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
125     /* User can only change condition codes and %asi in %tstate. */
126     uint64_t tstate;
127     __get_user(tstate, &regs->tstate);
128     cpu_put_ccr(env, tstate >> 32);
129     env->asi = extract64(tstate, 24, 8);
130 #else
131     /*
132      * User can only change condition codes and FPU enabling in %psr.
133      * But don't bother with FPU enabling, since a real kernel would
134      * just re-enable the FPU upon the next fpu trap.
135      */
136     uint32_t psr;
137     __get_user(psr, &regs->psr);
138     env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC);
139 #endif
140 
141     /* Note that pc and npc are handled in the caller. */
142 
143     __get_user(env->y, &regs->y);
144 
145     for (i = 0; i < 8; i++) {
146         __get_user(env->gregs[i], &regs->u_regs[i]);
147     }
148     for (i = 0; i < 8; i++) {
149         __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
150     }
151 }
152 
153 #define NF_ALIGNEDSZ  (((sizeof(struct target_signal_frame) + 7) & (~7)))
154 
155 void setup_frame(int sig, struct target_sigaction *ka,
156                  target_sigset_t *set, CPUSPARCState *env)
157 {
158     abi_ulong sf_addr;
159     struct target_signal_frame *sf;
160     int sigframe_size, i;
161 
162     /* 1. Make sure everything is clean */
163     //synchronize_user_stack();
164 
165     sigframe_size = NF_ALIGNEDSZ;
166     sf_addr = get_sigframe(ka, env, sigframe_size);
167     trace_user_setup_frame(env, sf_addr);
168 
169     sf = lock_user(VERIFY_WRITE, sf_addr,
170                    sizeof(struct target_signal_frame), 0);
171     if (!sf) {
172         goto sigsegv;
173     }
174     /* 2. Save the current process state */
175     save_pt_regs(&sf->regs, env);
176     __put_user(0, &sf->extra_size);
177 
178     //save_fpu_state(regs, &sf->fpu_state);
179     //__put_user(&sf->fpu_state, &sf->fpu_save);
180 
181     __put_user(set->sig[0], &sf->si_mask);
182     for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
183         __put_user(set->sig[i + 1], &sf->extramask[i]);
184     }
185 
186     for (i = 0; i < 8; i++) {
187         __put_user(env->regwptr[i + WREG_L0], &sf->ss.win.locals[i]);
188     }
189     for (i = 0; i < 8; i++) {
190         __put_user(env->regwptr[i + WREG_I0], &sf->ss.win.ins[i]);
191     }
192 
193     /* 3. signal handler back-trampoline and parameters */
194     env->regwptr[WREG_SP] = sf_addr;
195     env->regwptr[WREG_O0] = sig;
196     env->regwptr[WREG_O1] = sf_addr +
197             offsetof(struct target_signal_frame, regs);
198     env->regwptr[WREG_O2] = sf_addr +
199             offsetof(struct target_signal_frame, regs);
200 
201     /* 4. signal handler */
202     env->pc = ka->_sa_handler;
203     env->npc = (env->pc + 4);
204     /* 5. return to kernel instructions */
205     if (ka->ka_restorer) {
206         env->regwptr[WREG_O7] = ka->ka_restorer;
207     } else {
208         uint32_t val32;
209 
210         env->regwptr[WREG_O7] = sf_addr +
211                 offsetof(struct target_signal_frame, insns) - 2 * 4;
212 
213         /* mov __NR_sigreturn, %g1 */
214         val32 = 0x821020d8;
215         __put_user(val32, &sf->insns[0]);
216 
217         /* t 0x10 */
218         val32 = 0x91d02010;
219         __put_user(val32, &sf->insns[1]);
220     }
221     unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
222     return;
223 #if 0
224 sigill_and_return:
225     force_sig(TARGET_SIGILL);
226 #endif
227 sigsegv:
228     unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
229     force_sigsegv(sig);
230 }
231 
232 void setup_rt_frame(int sig, struct target_sigaction *ka,
233                     target_siginfo_t *info,
234                     target_sigset_t *set, CPUSPARCState *env)
235 {
236     qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
237 }
238 
239 long do_sigreturn(CPUSPARCState *env)
240 {
241     abi_ulong sf_addr;
242     struct target_signal_frame *sf;
243     abi_ulong pc, npc;
244     target_sigset_t set;
245     sigset_t host_set;
246     int i;
247 
248     sf_addr = env->regwptr[WREG_SP];
249     trace_user_do_sigreturn(env, sf_addr);
250     if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
251         goto segv_and_exit;
252     }
253 
254     /* 1. Make sure we are not getting garbage from the user */
255 
256     if (sf_addr & 3)
257         goto segv_and_exit;
258 
259     __get_user(pc,  &sf->regs.pc);
260     __get_user(npc, &sf->regs.npc);
261 
262     if ((pc | npc) & 3) {
263         goto segv_and_exit;
264     }
265 
266     /* 2. Restore the state */
267     restore_pt_regs(&sf->regs, env);
268     env->pc = pc;
269     env->npc = npc;
270 
271     /* FIXME: implement FPU save/restore:
272      * __get_user(fpu_save, &sf->fpu_save);
273      * if (fpu_save) {
274      *     if (restore_fpu_state(env, fpu_save)) {
275      *         goto segv_and_exit;
276      *     }
277      * }
278      */
279 
280     __get_user(set.sig[0], &sf->si_mask);
281     for (i = 1; i < TARGET_NSIG_WORDS; i++) {
282         __get_user(set.sig[i], &sf->extramask[i - 1]);
283     }
284 
285     target_to_host_sigset_internal(&host_set, &set);
286     set_sigmask(&host_set);
287 
288     unlock_user_struct(sf, sf_addr, 0);
289     return -TARGET_QEMU_ESIGRETURN;
290 
291 segv_and_exit:
292     unlock_user_struct(sf, sf_addr, 0);
293     force_sig(TARGET_SIGSEGV);
294     return -TARGET_QEMU_ESIGRETURN;
295 }
296 
297 long do_rt_sigreturn(CPUSPARCState *env)
298 {
299     trace_user_do_rt_sigreturn(env, 0);
300     qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
301     return -TARGET_ENOSYS;
302 }
303 
304 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
305 #define SPARC_MC_TSTATE 0
306 #define SPARC_MC_PC 1
307 #define SPARC_MC_NPC 2
308 #define SPARC_MC_Y 3
309 #define SPARC_MC_G1 4
310 #define SPARC_MC_G2 5
311 #define SPARC_MC_G3 6
312 #define SPARC_MC_G4 7
313 #define SPARC_MC_G5 8
314 #define SPARC_MC_G6 9
315 #define SPARC_MC_G7 10
316 #define SPARC_MC_O0 11
317 #define SPARC_MC_O1 12
318 #define SPARC_MC_O2 13
319 #define SPARC_MC_O3 14
320 #define SPARC_MC_O4 15
321 #define SPARC_MC_O5 16
322 #define SPARC_MC_O6 17
323 #define SPARC_MC_O7 18
324 #define SPARC_MC_NGREG 19
325 
326 typedef abi_ulong target_mc_greg_t;
327 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
328 
329 struct target_mc_fq {
330     abi_ulong mcfq_addr;
331     uint32_t mcfq_insn;
332 };
333 
334 /*
335  * Note the manual 16-alignment; the kernel gets this because it
336  * includes a "long double qregs[16]" in the mcpu_fregs union,
337  * which we can't do.
338  */
339 struct target_mc_fpu {
340     union {
341         uint32_t sregs[32];
342         uint64_t dregs[32];
343         //uint128_t qregs[16];
344     } mcfpu_fregs;
345     abi_ulong mcfpu_fsr;
346     abi_ulong mcfpu_fprs;
347     abi_ulong mcfpu_gsr;
348     abi_ulong mcfpu_fq;
349     unsigned char mcfpu_qcnt;
350     unsigned char mcfpu_qentsz;
351     unsigned char mcfpu_enab;
352 } __attribute__((aligned(16)));
353 typedef struct target_mc_fpu target_mc_fpu_t;
354 
355 typedef struct {
356     target_mc_gregset_t mc_gregs;
357     target_mc_greg_t mc_fp;
358     target_mc_greg_t mc_i7;
359     target_mc_fpu_t mc_fpregs;
360 } target_mcontext_t;
361 
362 struct target_ucontext {
363     abi_ulong tuc_link;
364     abi_ulong tuc_flags;
365     target_sigset_t tuc_sigmask;
366     target_mcontext_t tuc_mcontext;
367 };
368 
369 /* {set, get}context() needed for 64-bit SparcLinux userland. */
370 void sparc64_set_context(CPUSPARCState *env)
371 {
372     abi_ulong ucp_addr;
373     struct target_ucontext *ucp;
374     target_mc_gregset_t *grp;
375     target_mc_fpu_t *fpup;
376     abi_ulong pc, npc, tstate;
377     unsigned int i;
378     unsigned char fenab;
379 
380     ucp_addr = env->regwptr[WREG_O0];
381     if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
382         goto do_sigsegv;
383     }
384     grp  = &ucp->tuc_mcontext.mc_gregs;
385     __get_user(pc, &((*grp)[SPARC_MC_PC]));
386     __get_user(npc, &((*grp)[SPARC_MC_NPC]));
387     if ((pc | npc) & 3) {
388         goto do_sigsegv;
389     }
390     if (env->regwptr[WREG_O1]) {
391         target_sigset_t target_set;
392         sigset_t set;
393 
394         if (TARGET_NSIG_WORDS == 1) {
395             __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
396         } else {
397             abi_ulong *src, *dst;
398             src = ucp->tuc_sigmask.sig;
399             dst = target_set.sig;
400             for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
401                 __get_user(*dst, src);
402             }
403         }
404         target_to_host_sigset_internal(&set, &target_set);
405         set_sigmask(&set);
406     }
407     env->pc = pc;
408     env->npc = npc;
409     __get_user(env->y, &((*grp)[SPARC_MC_Y]));
410     __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
411     /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
412     env->asi = (tstate >> 24) & 0xff;
413     cpu_put_ccr(env, (tstate >> 32) & 0xff);
414     __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
415     __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
416     __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
417     __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
418     __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
419     __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
420     /* Skip g7 as that's the thread register in userspace */
421 
422     /*
423      * Note that unlike the kernel, we didn't need to mess with the
424      * guest register window state to save it into a pt_regs to run
425      * the kernel. So for us the guest's O regs are still in WREG_O*
426      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
427      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
428      * need to be written back to userspace memory.
429      */
430     __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
431     __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
432     __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
433     __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
434     __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
435     __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
436     __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
437     __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
438 
439     __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
440     __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
441 
442     fpup = &ucp->tuc_mcontext.mc_fpregs;
443 
444     __get_user(fenab, &(fpup->mcfpu_enab));
445     if (fenab) {
446         abi_ulong fprs;
447 
448         /*
449          * We use the FPRS from the guest only in deciding whether
450          * to restore the upper, lower, or both banks of the FPU regs.
451          * The kernel here writes the FPU register data into the
452          * process's current_thread_info state and unconditionally
453          * clears FPRS and TSTATE_PEF: this disables the FPU so that the
454          * next FPU-disabled trap will copy the data out of
455          * current_thread_info and into the real FPU registers.
456          * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
457          * so we always load the data directly into the FPU registers
458          * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
459          * Note that because we (and the kernel) always write zeroes for
460          * the fenab and fprs in sparc64_get_context() none of this code
461          * will execute unless the guest manually constructed or changed
462          * the context structure.
463          */
464         __get_user(fprs, &(fpup->mcfpu_fprs));
465         if (fprs & FPRS_DL) {
466             for (i = 0; i < 16; i++) {
467                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
468             }
469         }
470         if (fprs & FPRS_DU) {
471             for (i = 16; i < 32; i++) {
472                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
473             }
474         }
475         __get_user(env->fsr, &(fpup->mcfpu_fsr));
476         __get_user(env->gsr, &(fpup->mcfpu_gsr));
477     }
478     unlock_user_struct(ucp, ucp_addr, 0);
479     return;
480 do_sigsegv:
481     unlock_user_struct(ucp, ucp_addr, 0);
482     force_sig(TARGET_SIGSEGV);
483 }
484 
485 void sparc64_get_context(CPUSPARCState *env)
486 {
487     abi_ulong ucp_addr;
488     struct target_ucontext *ucp;
489     target_mc_gregset_t *grp;
490     target_mcontext_t *mcp;
491     int err;
492     unsigned int i;
493     target_sigset_t target_set;
494     sigset_t set;
495 
496     ucp_addr = env->regwptr[WREG_O0];
497     if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
498         goto do_sigsegv;
499     }
500 
501     memset(ucp, 0, sizeof(*ucp));
502 
503     mcp = &ucp->tuc_mcontext;
504     grp = &mcp->mc_gregs;
505 
506     /* Skip over the trap instruction, first. */
507     env->pc = env->npc;
508     env->npc += 4;
509 
510     /* If we're only reading the signal mask then do_sigprocmask()
511      * is guaranteed not to fail, which is important because we don't
512      * have any way to signal a failure or restart this operation since
513      * this is not a normal syscall.
514      */
515     err = do_sigprocmask(0, NULL, &set);
516     assert(err == 0);
517     host_to_target_sigset_internal(&target_set, &set);
518     if (TARGET_NSIG_WORDS == 1) {
519         __put_user(target_set.sig[0],
520                    (abi_ulong *)&ucp->tuc_sigmask);
521     } else {
522         abi_ulong *src, *dst;
523         src = target_set.sig;
524         dst = ucp->tuc_sigmask.sig;
525         for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
526             __put_user(*src, dst);
527         }
528     }
529 
530     __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
531     __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
532     __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
533     __put_user(env->y, &((*grp)[SPARC_MC_Y]));
534     __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
535     __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
536     __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
537     __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
538     __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
539     __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
540     __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
541 
542     /*
543      * Note that unlike the kernel, we didn't need to mess with the
544      * guest register window state to save it into a pt_regs to run
545      * the kernel. So for us the guest's O regs are still in WREG_O*
546      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
547      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
548      * need to be fished out of userspace memory.
549      */
550     __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
551     __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
552     __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
553     __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
554     __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
555     __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
556     __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
557     __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
558 
559     __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
560     __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
561 
562     /*
563      * We don't write out the FPU state. This matches the kernel's
564      * implementation (which has the code for doing this but
565      * hidden behind an "if (fenab)" where fenab is always 0).
566      */
567 
568     unlock_user_struct(ucp, ucp_addr, 1);
569     return;
570 do_sigsegv:
571     unlock_user_struct(ucp, ucp_addr, 1);
572     force_sig(TARGET_SIGSEGV);
573 }
574 #endif
575