1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "signal-common.h" 22 #include "linux-user/trace.h" 23 24 /* A Sparc register window */ 25 struct target_reg_window { 26 abi_ulong locals[8]; 27 abi_ulong ins[8]; 28 }; 29 30 /* A Sparc stack frame. */ 31 struct target_stackf { 32 /* 33 * Since qemu does not reference fp or callers_pc directly, 34 * it's simpler to treat fp and callers_pc as elements of ins[], 35 * and then bundle locals[] and ins[] into reg_window. 36 */ 37 struct target_reg_window win; 38 /* 39 * Similarly, bundle structptr and xxargs into xargs[]. 40 * This portion of the struct is part of the function call abi, 41 * and belongs to the callee for spilling argument registers. 42 */ 43 abi_ulong xargs[8]; 44 }; 45 46 typedef struct { 47 abi_ulong si_float_regs[32]; 48 unsigned long si_fsr; 49 unsigned long si_fpqdepth; 50 struct { 51 unsigned long *insn_addr; 52 unsigned long insn; 53 } si_fpqueue [16]; 54 } qemu_siginfo_fpu_t; 55 56 57 struct target_signal_frame { 58 struct target_stackf ss; 59 struct target_pt_regs regs; 60 uint32_t si_mask; 61 abi_ulong fpu_save; 62 uint32_t insns[2] QEMU_ALIGNED(8); 63 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 64 abi_ulong extra_size; /* Should be 0 */ 65 qemu_siginfo_fpu_t fpu_state; 66 }; 67 68 static inline abi_ulong get_sigframe(struct target_sigaction *sa, 69 CPUSPARCState *env, 70 unsigned long framesize) 71 { 72 abi_ulong sp = get_sp_from_cpustate(env); 73 74 /* 75 * If we are on the alternate signal stack and would overflow it, don't. 76 * Return an always-bogus address instead so we will die with SIGSEGV. 77 */ 78 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { 79 return -1; 80 } 81 82 /* This is the X/Open sanctioned signal stack switching. */ 83 sp = target_sigsp(sp, sa) - framesize; 84 85 /* Always align the stack frame. This handles two cases. First, 86 * sigaltstack need not be mindful of platform specific stack 87 * alignment. Second, if we took this signal because the stack 88 * is not aligned properly, we'd like to take the signal cleanly 89 * and report that. 90 */ 91 sp &= ~15UL; 92 93 return sp; 94 } 95 96 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 97 { 98 int i; 99 100 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 101 __put_user(sparc64_tstate(env), ®s->tstate); 102 /* TODO: magic should contain PT_REG_MAGIC + %tt. */ 103 __put_user(0, ®s->magic); 104 #else 105 __put_user(cpu_get_psr(env), ®s->psr); 106 #endif 107 108 __put_user(env->pc, ®s->pc); 109 __put_user(env->npc, ®s->npc); 110 __put_user(env->y, ®s->y); 111 112 for (i = 0; i < 8; i++) { 113 __put_user(env->gregs[i], ®s->u_regs[i]); 114 } 115 for (i = 0; i < 8; i++) { 116 __put_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 117 } 118 } 119 120 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 121 { 122 int i; 123 124 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 125 /* User can only change condition codes and %asi in %tstate. */ 126 uint64_t tstate; 127 __get_user(tstate, ®s->tstate); 128 cpu_put_ccr(env, tstate >> 32); 129 env->asi = extract64(tstate, 24, 8); 130 #else 131 /* 132 * User can only change condition codes and FPU enabling in %psr. 133 * But don't bother with FPU enabling, since a real kernel would 134 * just re-enable the FPU upon the next fpu trap. 135 */ 136 uint32_t psr; 137 __get_user(psr, ®s->psr); 138 env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC); 139 #endif 140 141 /* Note that pc and npc are handled in the caller. */ 142 143 __get_user(env->y, ®s->y); 144 145 for (i = 0; i < 8; i++) { 146 __get_user(env->gregs[i], ®s->u_regs[i]); 147 } 148 for (i = 0; i < 8; i++) { 149 __get_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 150 } 151 } 152 153 #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) 154 155 void setup_frame(int sig, struct target_sigaction *ka, 156 target_sigset_t *set, CPUSPARCState *env) 157 { 158 abi_ulong sf_addr; 159 struct target_signal_frame *sf; 160 int sigframe_size, i; 161 162 /* 1. Make sure everything is clean */ 163 //synchronize_user_stack(); 164 165 sigframe_size = NF_ALIGNEDSZ; 166 sf_addr = get_sigframe(ka, env, sigframe_size); 167 trace_user_setup_frame(env, sf_addr); 168 169 sf = lock_user(VERIFY_WRITE, sf_addr, 170 sizeof(struct target_signal_frame), 0); 171 if (!sf) { 172 goto sigsegv; 173 } 174 /* 2. Save the current process state */ 175 save_pt_regs(&sf->regs, env); 176 __put_user(0, &sf->extra_size); 177 178 //save_fpu_state(regs, &sf->fpu_state); 179 //__put_user(&sf->fpu_state, &sf->fpu_save); 180 181 __put_user(set->sig[0], &sf->si_mask); 182 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 183 __put_user(set->sig[i + 1], &sf->extramask[i]); 184 } 185 186 for (i = 0; i < 8; i++) { 187 __put_user(env->regwptr[i + WREG_L0], &sf->ss.win.locals[i]); 188 } 189 for (i = 0; i < 8; i++) { 190 __put_user(env->regwptr[i + WREG_I0], &sf->ss.win.ins[i]); 191 } 192 193 /* 3. signal handler back-trampoline and parameters */ 194 env->regwptr[WREG_SP] = sf_addr; 195 env->regwptr[WREG_O0] = sig; 196 env->regwptr[WREG_O1] = sf_addr + 197 offsetof(struct target_signal_frame, regs); 198 env->regwptr[WREG_O2] = sf_addr + 199 offsetof(struct target_signal_frame, regs); 200 201 /* 4. signal handler */ 202 env->pc = ka->_sa_handler; 203 env->npc = (env->pc + 4); 204 /* 5. return to kernel instructions */ 205 if (ka->ka_restorer) { 206 env->regwptr[WREG_O7] = ka->ka_restorer; 207 } else { 208 uint32_t val32; 209 210 env->regwptr[WREG_O7] = sf_addr + 211 offsetof(struct target_signal_frame, insns) - 2 * 4; 212 213 /* mov __NR_sigreturn, %g1 */ 214 val32 = 0x821020d8; 215 __put_user(val32, &sf->insns[0]); 216 217 /* t 0x10 */ 218 val32 = 0x91d02010; 219 __put_user(val32, &sf->insns[1]); 220 } 221 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); 222 return; 223 #if 0 224 sigill_and_return: 225 force_sig(TARGET_SIGILL); 226 #endif 227 sigsegv: 228 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); 229 force_sigsegv(sig); 230 } 231 232 void setup_rt_frame(int sig, struct target_sigaction *ka, 233 target_siginfo_t *info, 234 target_sigset_t *set, CPUSPARCState *env) 235 { 236 qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n"); 237 } 238 239 long do_sigreturn(CPUSPARCState *env) 240 { 241 abi_ulong sf_addr; 242 struct target_signal_frame *sf; 243 abi_ulong pc, npc; 244 target_sigset_t set; 245 sigset_t host_set; 246 int i; 247 248 sf_addr = env->regwptr[WREG_SP]; 249 trace_user_do_sigreturn(env, sf_addr); 250 if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 251 goto segv_and_exit; 252 } 253 254 /* 1. Make sure we are not getting garbage from the user */ 255 256 if (sf_addr & 3) 257 goto segv_and_exit; 258 259 __get_user(pc, &sf->regs.pc); 260 __get_user(npc, &sf->regs.npc); 261 262 if ((pc | npc) & 3) { 263 goto segv_and_exit; 264 } 265 266 /* 2. Restore the state */ 267 restore_pt_regs(&sf->regs, env); 268 env->pc = pc; 269 env->npc = npc; 270 271 /* FIXME: implement FPU save/restore: 272 * __get_user(fpu_save, &sf->fpu_save); 273 * if (fpu_save) { 274 * if (restore_fpu_state(env, fpu_save)) { 275 * goto segv_and_exit; 276 * } 277 * } 278 */ 279 280 __get_user(set.sig[0], &sf->si_mask); 281 for (i = 1; i < TARGET_NSIG_WORDS; i++) { 282 __get_user(set.sig[i], &sf->extramask[i - 1]); 283 } 284 285 target_to_host_sigset_internal(&host_set, &set); 286 set_sigmask(&host_set); 287 288 unlock_user_struct(sf, sf_addr, 0); 289 return -TARGET_QEMU_ESIGRETURN; 290 291 segv_and_exit: 292 unlock_user_struct(sf, sf_addr, 0); 293 force_sig(TARGET_SIGSEGV); 294 return -TARGET_QEMU_ESIGRETURN; 295 } 296 297 long do_rt_sigreturn(CPUSPARCState *env) 298 { 299 trace_user_do_rt_sigreturn(env, 0); 300 qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n"); 301 return -TARGET_ENOSYS; 302 } 303 304 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 305 #define SPARC_MC_TSTATE 0 306 #define SPARC_MC_PC 1 307 #define SPARC_MC_NPC 2 308 #define SPARC_MC_Y 3 309 #define SPARC_MC_G1 4 310 #define SPARC_MC_G2 5 311 #define SPARC_MC_G3 6 312 #define SPARC_MC_G4 7 313 #define SPARC_MC_G5 8 314 #define SPARC_MC_G6 9 315 #define SPARC_MC_G7 10 316 #define SPARC_MC_O0 11 317 #define SPARC_MC_O1 12 318 #define SPARC_MC_O2 13 319 #define SPARC_MC_O3 14 320 #define SPARC_MC_O4 15 321 #define SPARC_MC_O5 16 322 #define SPARC_MC_O6 17 323 #define SPARC_MC_O7 18 324 #define SPARC_MC_NGREG 19 325 326 typedef abi_ulong target_mc_greg_t; 327 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; 328 329 struct target_mc_fq { 330 abi_ulong mcfq_addr; 331 uint32_t mcfq_insn; 332 }; 333 334 /* 335 * Note the manual 16-alignment; the kernel gets this because it 336 * includes a "long double qregs[16]" in the mcpu_fregs union, 337 * which we can't do. 338 */ 339 struct target_mc_fpu { 340 union { 341 uint32_t sregs[32]; 342 uint64_t dregs[32]; 343 //uint128_t qregs[16]; 344 } mcfpu_fregs; 345 abi_ulong mcfpu_fsr; 346 abi_ulong mcfpu_fprs; 347 abi_ulong mcfpu_gsr; 348 abi_ulong mcfpu_fq; 349 unsigned char mcfpu_qcnt; 350 unsigned char mcfpu_qentsz; 351 unsigned char mcfpu_enab; 352 } __attribute__((aligned(16))); 353 typedef struct target_mc_fpu target_mc_fpu_t; 354 355 typedef struct { 356 target_mc_gregset_t mc_gregs; 357 target_mc_greg_t mc_fp; 358 target_mc_greg_t mc_i7; 359 target_mc_fpu_t mc_fpregs; 360 } target_mcontext_t; 361 362 struct target_ucontext { 363 abi_ulong tuc_link; 364 abi_ulong tuc_flags; 365 target_sigset_t tuc_sigmask; 366 target_mcontext_t tuc_mcontext; 367 }; 368 369 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 370 void sparc64_set_context(CPUSPARCState *env) 371 { 372 abi_ulong ucp_addr; 373 struct target_ucontext *ucp; 374 target_mc_gregset_t *grp; 375 target_mc_fpu_t *fpup; 376 abi_ulong pc, npc, tstate; 377 unsigned int i; 378 unsigned char fenab; 379 380 ucp_addr = env->regwptr[WREG_O0]; 381 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 382 goto do_sigsegv; 383 } 384 grp = &ucp->tuc_mcontext.mc_gregs; 385 __get_user(pc, &((*grp)[SPARC_MC_PC])); 386 __get_user(npc, &((*grp)[SPARC_MC_NPC])); 387 if ((pc | npc) & 3) { 388 goto do_sigsegv; 389 } 390 if (env->regwptr[WREG_O1]) { 391 target_sigset_t target_set; 392 sigset_t set; 393 394 if (TARGET_NSIG_WORDS == 1) { 395 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 396 } else { 397 abi_ulong *src, *dst; 398 src = ucp->tuc_sigmask.sig; 399 dst = target_set.sig; 400 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 401 __get_user(*dst, src); 402 } 403 } 404 target_to_host_sigset_internal(&set, &target_set); 405 set_sigmask(&set); 406 } 407 env->pc = pc; 408 env->npc = npc; 409 __get_user(env->y, &((*grp)[SPARC_MC_Y])); 410 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); 411 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */ 412 env->asi = (tstate >> 24) & 0xff; 413 cpu_put_ccr(env, (tstate >> 32) & 0xff); 414 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); 415 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); 416 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); 417 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); 418 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); 419 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); 420 /* Skip g7 as that's the thread register in userspace */ 421 422 /* 423 * Note that unlike the kernel, we didn't need to mess with the 424 * guest register window state to save it into a pt_regs to run 425 * the kernel. So for us the guest's O regs are still in WREG_O* 426 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 427 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 428 * need to be written back to userspace memory. 429 */ 430 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); 431 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); 432 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); 433 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); 434 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); 435 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); 436 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); 437 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); 438 439 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); 440 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); 441 442 fpup = &ucp->tuc_mcontext.mc_fpregs; 443 444 __get_user(fenab, &(fpup->mcfpu_enab)); 445 if (fenab) { 446 abi_ulong fprs; 447 448 /* 449 * We use the FPRS from the guest only in deciding whether 450 * to restore the upper, lower, or both banks of the FPU regs. 451 * The kernel here writes the FPU register data into the 452 * process's current_thread_info state and unconditionally 453 * clears FPRS and TSTATE_PEF: this disables the FPU so that the 454 * next FPU-disabled trap will copy the data out of 455 * current_thread_info and into the real FPU registers. 456 * QEMU doesn't need to handle lazy-FPU-state-restoring like that, 457 * so we always load the data directly into the FPU registers 458 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled). 459 * Note that because we (and the kernel) always write zeroes for 460 * the fenab and fprs in sparc64_get_context() none of this code 461 * will execute unless the guest manually constructed or changed 462 * the context structure. 463 */ 464 __get_user(fprs, &(fpup->mcfpu_fprs)); 465 if (fprs & FPRS_DL) { 466 for (i = 0; i < 16; i++) { 467 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 468 } 469 } 470 if (fprs & FPRS_DU) { 471 for (i = 16; i < 32; i++) { 472 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 473 } 474 } 475 __get_user(env->fsr, &(fpup->mcfpu_fsr)); 476 __get_user(env->gsr, &(fpup->mcfpu_gsr)); 477 } 478 unlock_user_struct(ucp, ucp_addr, 0); 479 return; 480 do_sigsegv: 481 unlock_user_struct(ucp, ucp_addr, 0); 482 force_sig(TARGET_SIGSEGV); 483 } 484 485 void sparc64_get_context(CPUSPARCState *env) 486 { 487 abi_ulong ucp_addr; 488 struct target_ucontext *ucp; 489 target_mc_gregset_t *grp; 490 target_mcontext_t *mcp; 491 int err; 492 unsigned int i; 493 target_sigset_t target_set; 494 sigset_t set; 495 496 ucp_addr = env->regwptr[WREG_O0]; 497 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 498 goto do_sigsegv; 499 } 500 501 memset(ucp, 0, sizeof(*ucp)); 502 503 mcp = &ucp->tuc_mcontext; 504 grp = &mcp->mc_gregs; 505 506 /* Skip over the trap instruction, first. */ 507 env->pc = env->npc; 508 env->npc += 4; 509 510 /* If we're only reading the signal mask then do_sigprocmask() 511 * is guaranteed not to fail, which is important because we don't 512 * have any way to signal a failure or restart this operation since 513 * this is not a normal syscall. 514 */ 515 err = do_sigprocmask(0, NULL, &set); 516 assert(err == 0); 517 host_to_target_sigset_internal(&target_set, &set); 518 if (TARGET_NSIG_WORDS == 1) { 519 __put_user(target_set.sig[0], 520 (abi_ulong *)&ucp->tuc_sigmask); 521 } else { 522 abi_ulong *src, *dst; 523 src = target_set.sig; 524 dst = ucp->tuc_sigmask.sig; 525 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 526 __put_user(*src, dst); 527 } 528 } 529 530 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE])); 531 __put_user(env->pc, &((*grp)[SPARC_MC_PC])); 532 __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); 533 __put_user(env->y, &((*grp)[SPARC_MC_Y])); 534 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); 535 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); 536 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); 537 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); 538 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); 539 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); 540 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); 541 542 /* 543 * Note that unlike the kernel, we didn't need to mess with the 544 * guest register window state to save it into a pt_regs to run 545 * the kernel. So for us the guest's O regs are still in WREG_O* 546 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 547 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 548 * need to be fished out of userspace memory. 549 */ 550 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); 551 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); 552 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); 553 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); 554 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); 555 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); 556 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); 557 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); 558 559 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); 560 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); 561 562 /* 563 * We don't write out the FPU state. This matches the kernel's 564 * implementation (which has the code for doing this but 565 * hidden behind an "if (fenab)" where fenab is always 0). 566 */ 567 568 unlock_user_struct(ucp, ucp_addr, 1); 569 return; 570 do_sigsegv: 571 unlock_user_struct(ucp, ucp_addr, 1); 572 force_sig(TARGET_SIGSEGV); 573 } 574 #endif 575