xref: /openbmc/qemu/linux-user/sparc/signal.c (revision a0774ec4d4934b375a118a65104f658ef3b5b834)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
23 
24 /* A Sparc register window */
25 struct target_reg_window {
26     abi_ulong locals[8];
27     abi_ulong ins[8];
28 };
29 
30 /* A Sparc stack frame. */
31 struct target_stackf {
32     /*
33      * Since qemu does not reference fp or callers_pc directly,
34      * it's simpler to treat fp and callers_pc as elements of ins[],
35      * and then bundle locals[] and ins[] into reg_window.
36      */
37     struct target_reg_window win;
38     /*
39      * Similarly, bundle structptr and xxargs into xargs[].
40      * This portion of the struct is part of the function call abi,
41      * and belongs to the callee for spilling argument registers.
42      */
43     abi_ulong xargs[8];
44 };
45 
46 typedef struct {
47     abi_ulong  si_float_regs[32];
48     unsigned   long si_fsr;
49     unsigned   long si_fpqdepth;
50     struct {
51         unsigned long *insn_addr;
52         unsigned long insn;
53     } si_fpqueue [16];
54 } qemu_siginfo_fpu_t;
55 
56 
57 struct target_signal_frame {
58     struct target_stackf ss;
59     struct target_pt_regs regs;
60     uint32_t            si_mask;
61     abi_ulong           fpu_save;
62     uint32_t            insns[2] QEMU_ALIGNED(8);
63     abi_ulong           extramask[TARGET_NSIG_WORDS - 1];
64     abi_ulong           extra_size; /* Should be 0 */
65     qemu_siginfo_fpu_t fpu_state;
66 };
67 
68 static abi_ulong get_sigframe(struct target_sigaction *sa,
69                               CPUSPARCState *env,
70                               size_t framesize)
71 {
72     abi_ulong sp = get_sp_from_cpustate(env);
73 
74     /*
75      * If we are on the alternate signal stack and would overflow it, don't.
76      * Return an always-bogus address instead so we will die with SIGSEGV.
77      */
78     if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
79         return -1;
80     }
81 
82     /* This is the X/Open sanctioned signal stack switching.  */
83     sp = target_sigsp(sp, sa) - framesize;
84 
85     /*
86      * Always align the stack frame.  This handles two cases.  First,
87      * sigaltstack need not be mindful of platform specific stack
88      * alignment.  Second, if we took this signal because the stack
89      * is not aligned properly, we'd like to take the signal cleanly
90      * and report that.
91      */
92     sp &= ~15UL;
93 
94     return sp;
95 }
96 
97 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
98 {
99     int i;
100 
101 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
102     __put_user(sparc64_tstate(env), &regs->tstate);
103     /* TODO: magic should contain PT_REG_MAGIC + %tt. */
104     __put_user(0, &regs->magic);
105 #else
106     __put_user(cpu_get_psr(env), &regs->psr);
107 #endif
108 
109     __put_user(env->pc, &regs->pc);
110     __put_user(env->npc, &regs->npc);
111     __put_user(env->y, &regs->y);
112 
113     for (i = 0; i < 8; i++) {
114         __put_user(env->gregs[i], &regs->u_regs[i]);
115     }
116     for (i = 0; i < 8; i++) {
117         __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
118     }
119 }
120 
121 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
122 {
123     int i;
124 
125 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
126     /* User can only change condition codes and %asi in %tstate. */
127     uint64_t tstate;
128     __get_user(tstate, &regs->tstate);
129     cpu_put_ccr(env, tstate >> 32);
130     env->asi = extract64(tstate, 24, 8);
131 #else
132     /*
133      * User can only change condition codes and FPU enabling in %psr.
134      * But don't bother with FPU enabling, since a real kernel would
135      * just re-enable the FPU upon the next fpu trap.
136      */
137     uint32_t psr;
138     __get_user(psr, &regs->psr);
139     env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC);
140 #endif
141 
142     /* Note that pc and npc are handled in the caller. */
143 
144     __get_user(env->y, &regs->y);
145 
146     for (i = 0; i < 8; i++) {
147         __get_user(env->gregs[i], &regs->u_regs[i]);
148     }
149     for (i = 0; i < 8; i++) {
150         __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
151     }
152 }
153 
154 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
155 {
156     int i;
157 
158     for (i = 0; i < 8; i++) {
159         __put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
160     }
161     for (i = 0; i < 8; i++) {
162         __put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
163     }
164 }
165 
166 #define NF_ALIGNEDSZ  (((sizeof(struct target_signal_frame) + 7) & (~7)))
167 
168 void setup_frame(int sig, struct target_sigaction *ka,
169                  target_sigset_t *set, CPUSPARCState *env)
170 {
171     abi_ulong sf_addr;
172     struct target_signal_frame *sf;
173     int sigframe_size, i;
174 
175     /* 1. Make sure everything is clean */
176     //synchronize_user_stack();
177 
178     sigframe_size = NF_ALIGNEDSZ;
179     sf_addr = get_sigframe(ka, env, sigframe_size);
180     trace_user_setup_frame(env, sf_addr);
181 
182     sf = lock_user(VERIFY_WRITE, sf_addr,
183                    sizeof(struct target_signal_frame), 0);
184     if (!sf) {
185         goto sigsegv;
186     }
187     /* 2. Save the current process state */
188     save_pt_regs(&sf->regs, env);
189     __put_user(0, &sf->extra_size);
190 
191     //save_fpu_state(regs, &sf->fpu_state);
192     //__put_user(&sf->fpu_state, &sf->fpu_save);
193 
194     __put_user(set->sig[0], &sf->si_mask);
195     for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
196         __put_user(set->sig[i + 1], &sf->extramask[i]);
197     }
198 
199     save_reg_win(&sf->ss.win, env);
200 
201     /* 3. signal handler back-trampoline and parameters */
202     env->regwptr[WREG_SP] = sf_addr;
203     env->regwptr[WREG_O0] = sig;
204     env->regwptr[WREG_O1] = sf_addr +
205             offsetof(struct target_signal_frame, regs);
206     env->regwptr[WREG_O2] = sf_addr +
207             offsetof(struct target_signal_frame, regs);
208 
209     /* 4. signal handler */
210     env->pc = ka->_sa_handler;
211     env->npc = (env->pc + 4);
212     /* 5. return to kernel instructions */
213     if (ka->ka_restorer) {
214         env->regwptr[WREG_O7] = ka->ka_restorer;
215     } else {
216         uint32_t val32;
217 
218         env->regwptr[WREG_O7] = sf_addr +
219                 offsetof(struct target_signal_frame, insns) - 2 * 4;
220 
221         /* mov __NR_sigreturn, %g1 */
222         val32 = 0x821020d8;
223         __put_user(val32, &sf->insns[0]);
224 
225         /* t 0x10 */
226         val32 = 0x91d02010;
227         __put_user(val32, &sf->insns[1]);
228     }
229     unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
230     return;
231 #if 0
232 sigill_and_return:
233     force_sig(TARGET_SIGILL);
234 #endif
235 sigsegv:
236     unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
237     force_sigsegv(sig);
238 }
239 
240 void setup_rt_frame(int sig, struct target_sigaction *ka,
241                     target_siginfo_t *info,
242                     target_sigset_t *set, CPUSPARCState *env)
243 {
244     qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
245 }
246 
247 long do_sigreturn(CPUSPARCState *env)
248 {
249     abi_ulong sf_addr;
250     struct target_signal_frame *sf;
251     abi_ulong pc, npc;
252     target_sigset_t set;
253     sigset_t host_set;
254     int i;
255 
256     sf_addr = env->regwptr[WREG_SP];
257     trace_user_do_sigreturn(env, sf_addr);
258     if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
259         goto segv_and_exit;
260     }
261 
262     /* 1. Make sure we are not getting garbage from the user */
263 
264     if (sf_addr & 3)
265         goto segv_and_exit;
266 
267     __get_user(pc,  &sf->regs.pc);
268     __get_user(npc, &sf->regs.npc);
269 
270     if ((pc | npc) & 3) {
271         goto segv_and_exit;
272     }
273 
274     /* 2. Restore the state */
275     restore_pt_regs(&sf->regs, env);
276     env->pc = pc;
277     env->npc = npc;
278 
279     /* FIXME: implement FPU save/restore:
280      * __get_user(fpu_save, &sf->fpu_save);
281      * if (fpu_save) {
282      *     if (restore_fpu_state(env, fpu_save)) {
283      *         goto segv_and_exit;
284      *     }
285      * }
286      */
287 
288     __get_user(set.sig[0], &sf->si_mask);
289     for (i = 1; i < TARGET_NSIG_WORDS; i++) {
290         __get_user(set.sig[i], &sf->extramask[i - 1]);
291     }
292 
293     target_to_host_sigset_internal(&host_set, &set);
294     set_sigmask(&host_set);
295 
296     unlock_user_struct(sf, sf_addr, 0);
297     return -TARGET_QEMU_ESIGRETURN;
298 
299 segv_and_exit:
300     unlock_user_struct(sf, sf_addr, 0);
301     force_sig(TARGET_SIGSEGV);
302     return -TARGET_QEMU_ESIGRETURN;
303 }
304 
305 long do_rt_sigreturn(CPUSPARCState *env)
306 {
307     trace_user_do_rt_sigreturn(env, 0);
308     qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
309     return -TARGET_ENOSYS;
310 }
311 
312 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
313 #define SPARC_MC_TSTATE 0
314 #define SPARC_MC_PC 1
315 #define SPARC_MC_NPC 2
316 #define SPARC_MC_Y 3
317 #define SPARC_MC_G1 4
318 #define SPARC_MC_G2 5
319 #define SPARC_MC_G3 6
320 #define SPARC_MC_G4 7
321 #define SPARC_MC_G5 8
322 #define SPARC_MC_G6 9
323 #define SPARC_MC_G7 10
324 #define SPARC_MC_O0 11
325 #define SPARC_MC_O1 12
326 #define SPARC_MC_O2 13
327 #define SPARC_MC_O3 14
328 #define SPARC_MC_O4 15
329 #define SPARC_MC_O5 16
330 #define SPARC_MC_O6 17
331 #define SPARC_MC_O7 18
332 #define SPARC_MC_NGREG 19
333 
334 typedef abi_ulong target_mc_greg_t;
335 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
336 
337 struct target_mc_fq {
338     abi_ulong mcfq_addr;
339     uint32_t mcfq_insn;
340 };
341 
342 /*
343  * Note the manual 16-alignment; the kernel gets this because it
344  * includes a "long double qregs[16]" in the mcpu_fregs union,
345  * which we can't do.
346  */
347 struct target_mc_fpu {
348     union {
349         uint32_t sregs[32];
350         uint64_t dregs[32];
351         //uint128_t qregs[16];
352     } mcfpu_fregs;
353     abi_ulong mcfpu_fsr;
354     abi_ulong mcfpu_fprs;
355     abi_ulong mcfpu_gsr;
356     abi_ulong mcfpu_fq;
357     unsigned char mcfpu_qcnt;
358     unsigned char mcfpu_qentsz;
359     unsigned char mcfpu_enab;
360 } __attribute__((aligned(16)));
361 typedef struct target_mc_fpu target_mc_fpu_t;
362 
363 typedef struct {
364     target_mc_gregset_t mc_gregs;
365     target_mc_greg_t mc_fp;
366     target_mc_greg_t mc_i7;
367     target_mc_fpu_t mc_fpregs;
368 } target_mcontext_t;
369 
370 struct target_ucontext {
371     abi_ulong tuc_link;
372     abi_ulong tuc_flags;
373     target_sigset_t tuc_sigmask;
374     target_mcontext_t tuc_mcontext;
375 };
376 
377 /* {set, get}context() needed for 64-bit SparcLinux userland. */
378 void sparc64_set_context(CPUSPARCState *env)
379 {
380     abi_ulong ucp_addr;
381     struct target_ucontext *ucp;
382     target_mc_gregset_t *grp;
383     target_mc_fpu_t *fpup;
384     abi_ulong pc, npc, tstate;
385     unsigned int i;
386     unsigned char fenab;
387 
388     ucp_addr = env->regwptr[WREG_O0];
389     if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
390         goto do_sigsegv;
391     }
392     grp  = &ucp->tuc_mcontext.mc_gregs;
393     __get_user(pc, &((*grp)[SPARC_MC_PC]));
394     __get_user(npc, &((*grp)[SPARC_MC_NPC]));
395     if ((pc | npc) & 3) {
396         goto do_sigsegv;
397     }
398     if (env->regwptr[WREG_O1]) {
399         target_sigset_t target_set;
400         sigset_t set;
401 
402         if (TARGET_NSIG_WORDS == 1) {
403             __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
404         } else {
405             abi_ulong *src, *dst;
406             src = ucp->tuc_sigmask.sig;
407             dst = target_set.sig;
408             for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
409                 __get_user(*dst, src);
410             }
411         }
412         target_to_host_sigset_internal(&set, &target_set);
413         set_sigmask(&set);
414     }
415     env->pc = pc;
416     env->npc = npc;
417     __get_user(env->y, &((*grp)[SPARC_MC_Y]));
418     __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
419     /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
420     env->asi = (tstate >> 24) & 0xff;
421     cpu_put_ccr(env, (tstate >> 32) & 0xff);
422     __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
423     __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
424     __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
425     __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
426     __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
427     __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
428     /* Skip g7 as that's the thread register in userspace */
429 
430     /*
431      * Note that unlike the kernel, we didn't need to mess with the
432      * guest register window state to save it into a pt_regs to run
433      * the kernel. So for us the guest's O regs are still in WREG_O*
434      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
435      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
436      * need to be written back to userspace memory.
437      */
438     __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
439     __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
440     __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
441     __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
442     __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
443     __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
444     __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
445     __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
446 
447     __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
448     __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
449 
450     fpup = &ucp->tuc_mcontext.mc_fpregs;
451 
452     __get_user(fenab, &(fpup->mcfpu_enab));
453     if (fenab) {
454         abi_ulong fprs;
455 
456         /*
457          * We use the FPRS from the guest only in deciding whether
458          * to restore the upper, lower, or both banks of the FPU regs.
459          * The kernel here writes the FPU register data into the
460          * process's current_thread_info state and unconditionally
461          * clears FPRS and TSTATE_PEF: this disables the FPU so that the
462          * next FPU-disabled trap will copy the data out of
463          * current_thread_info and into the real FPU registers.
464          * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
465          * so we always load the data directly into the FPU registers
466          * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
467          * Note that because we (and the kernel) always write zeroes for
468          * the fenab and fprs in sparc64_get_context() none of this code
469          * will execute unless the guest manually constructed or changed
470          * the context structure.
471          */
472         __get_user(fprs, &(fpup->mcfpu_fprs));
473         if (fprs & FPRS_DL) {
474             for (i = 0; i < 16; i++) {
475                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
476             }
477         }
478         if (fprs & FPRS_DU) {
479             for (i = 16; i < 32; i++) {
480                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
481             }
482         }
483         __get_user(env->fsr, &(fpup->mcfpu_fsr));
484         __get_user(env->gsr, &(fpup->mcfpu_gsr));
485     }
486     unlock_user_struct(ucp, ucp_addr, 0);
487     return;
488 do_sigsegv:
489     unlock_user_struct(ucp, ucp_addr, 0);
490     force_sig(TARGET_SIGSEGV);
491 }
492 
493 void sparc64_get_context(CPUSPARCState *env)
494 {
495     abi_ulong ucp_addr;
496     struct target_ucontext *ucp;
497     target_mc_gregset_t *grp;
498     target_mcontext_t *mcp;
499     int err;
500     unsigned int i;
501     target_sigset_t target_set;
502     sigset_t set;
503 
504     ucp_addr = env->regwptr[WREG_O0];
505     if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
506         goto do_sigsegv;
507     }
508 
509     memset(ucp, 0, sizeof(*ucp));
510 
511     mcp = &ucp->tuc_mcontext;
512     grp = &mcp->mc_gregs;
513 
514     /* Skip over the trap instruction, first. */
515     env->pc = env->npc;
516     env->npc += 4;
517 
518     /* If we're only reading the signal mask then do_sigprocmask()
519      * is guaranteed not to fail, which is important because we don't
520      * have any way to signal a failure or restart this operation since
521      * this is not a normal syscall.
522      */
523     err = do_sigprocmask(0, NULL, &set);
524     assert(err == 0);
525     host_to_target_sigset_internal(&target_set, &set);
526     if (TARGET_NSIG_WORDS == 1) {
527         __put_user(target_set.sig[0],
528                    (abi_ulong *)&ucp->tuc_sigmask);
529     } else {
530         abi_ulong *src, *dst;
531         src = target_set.sig;
532         dst = ucp->tuc_sigmask.sig;
533         for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
534             __put_user(*src, dst);
535         }
536     }
537 
538     __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
539     __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
540     __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
541     __put_user(env->y, &((*grp)[SPARC_MC_Y]));
542     __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
543     __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
544     __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
545     __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
546     __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
547     __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
548     __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
549 
550     /*
551      * Note that unlike the kernel, we didn't need to mess with the
552      * guest register window state to save it into a pt_regs to run
553      * the kernel. So for us the guest's O regs are still in WREG_O*
554      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
555      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
556      * need to be fished out of userspace memory.
557      */
558     __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
559     __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
560     __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
561     __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
562     __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
563     __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
564     __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
565     __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
566 
567     __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
568     __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
569 
570     /*
571      * We don't write out the FPU state. This matches the kernel's
572      * implementation (which has the code for doing this but
573      * hidden behind an "if (fenab)" where fenab is always 0).
574      */
575 
576     unlock_user_struct(ucp, ucp_addr, 1);
577     return;
578 do_sigsegv:
579     unlock_user_struct(ucp, ucp_addr, 1);
580     force_sig(TARGET_SIGSEGV);
581 }
582 #endif
583