xref: /openbmc/qemu/linux-user/sparc/signal.c (revision 819f6df1ef83385e59e182dc6223d1ad533d393c)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
23 
24 /* A Sparc register window */
25 struct target_reg_window {
26     abi_ulong locals[8];
27     abi_ulong ins[8];
28 };
29 
30 /* A Sparc stack frame. */
31 struct target_stackf {
32     /*
33      * Since qemu does not reference fp or callers_pc directly,
34      * it's simpler to treat fp and callers_pc as elements of ins[],
35      * and then bundle locals[] and ins[] into reg_window.
36      */
37     struct target_reg_window win;
38     /*
39      * Similarly, bundle structptr and xxargs into xargs[].
40      * This portion of the struct is part of the function call abi,
41      * and belongs to the callee for spilling argument registers.
42      */
43     abi_ulong xargs[8];
44 };
45 
46 struct target_siginfo_fpu {
47     /* It is more convenient for qemu to move doubles, not singles. */
48     uint64_t si_double_regs[16];
49     uint32_t si_fsr;
50     uint32_t si_fpqdepth;
51     struct {
52         uint32_t insn_addr;
53         uint32_t insn;
54     } si_fpqueue [16];
55 };
56 
57 struct target_signal_frame {
58     struct target_stackf ss;
59     struct target_pt_regs regs;
60     uint32_t si_mask;
61     abi_ulong fpu_save;
62     uint32_t insns[2] QEMU_ALIGNED(8);
63     abi_ulong extramask[TARGET_NSIG_WORDS - 1];
64     abi_ulong extra_size; /* Should be 0 */
65     abi_ulong rwin_save;
66 };
67 
68 static abi_ulong get_sigframe(struct target_sigaction *sa,
69                               CPUSPARCState *env,
70                               size_t framesize)
71 {
72     abi_ulong sp = get_sp_from_cpustate(env);
73 
74     /*
75      * If we are on the alternate signal stack and would overflow it, don't.
76      * Return an always-bogus address instead so we will die with SIGSEGV.
77      */
78     if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
79         return -1;
80     }
81 
82     /* This is the X/Open sanctioned signal stack switching.  */
83     sp = target_sigsp(sp, sa) - framesize;
84 
85     /*
86      * Always align the stack frame.  This handles two cases.  First,
87      * sigaltstack need not be mindful of platform specific stack
88      * alignment.  Second, if we took this signal because the stack
89      * is not aligned properly, we'd like to take the signal cleanly
90      * and report that.
91      */
92     sp &= ~15UL;
93 
94     return sp;
95 }
96 
97 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
98 {
99     int i;
100 
101 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
102     __put_user(sparc64_tstate(env), &regs->tstate);
103     /* TODO: magic should contain PT_REG_MAGIC + %tt. */
104     __put_user(0, &regs->magic);
105 #else
106     __put_user(cpu_get_psr(env), &regs->psr);
107 #endif
108 
109     __put_user(env->pc, &regs->pc);
110     __put_user(env->npc, &regs->npc);
111     __put_user(env->y, &regs->y);
112 
113     for (i = 0; i < 8; i++) {
114         __put_user(env->gregs[i], &regs->u_regs[i]);
115     }
116     for (i = 0; i < 8; i++) {
117         __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
118     }
119 }
120 
121 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
122 {
123     int i;
124 
125 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
126     /* User can only change condition codes and %asi in %tstate. */
127     uint64_t tstate;
128     __get_user(tstate, &regs->tstate);
129     cpu_put_ccr(env, tstate >> 32);
130     env->asi = extract64(tstate, 24, 8);
131 #else
132     /*
133      * User can only change condition codes and FPU enabling in %psr.
134      * But don't bother with FPU enabling, since a real kernel would
135      * just re-enable the FPU upon the next fpu trap.
136      */
137     uint32_t psr;
138     __get_user(psr, &regs->psr);
139     env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC);
140 #endif
141 
142     /* Note that pc and npc are handled in the caller. */
143 
144     __get_user(env->y, &regs->y);
145 
146     for (i = 0; i < 8; i++) {
147         __get_user(env->gregs[i], &regs->u_regs[i]);
148     }
149     for (i = 0; i < 8; i++) {
150         __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
151     }
152 }
153 
154 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
155 {
156     int i;
157 
158     for (i = 0; i < 8; i++) {
159         __put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
160     }
161     for (i = 0; i < 8; i++) {
162         __put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
163     }
164 }
165 
166 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
167 {
168     int i;
169 
170     for (i = 0; i < 16; ++i) {
171         __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
172     }
173     __put_user(env->fsr, &fpu->si_fsr);
174     __put_user(0, &fpu->si_fpqdepth);
175 }
176 
177 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
178 {
179     int i;
180 
181     for (i = 0; i < 16; ++i) {
182         __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
183     }
184     __get_user(env->fsr, &fpu->si_fsr);
185 }
186 
187 void setup_frame(int sig, struct target_sigaction *ka,
188                  target_sigset_t *set, CPUSPARCState *env)
189 {
190     abi_ulong sf_addr;
191     struct target_signal_frame *sf;
192     size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
193     int i;
194 
195     /* 1. Make sure everything is clean */
196 
197     sf_addr = get_sigframe(ka, env, sf_size);
198     trace_user_setup_frame(env, sf_addr);
199 
200     sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
201     if (!sf) {
202         goto sigsegv;
203     }
204 
205     /* 2. Save the current process state */
206     save_pt_regs(&sf->regs, env);
207     __put_user(0, &sf->extra_size);
208 
209     save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
210     __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
211 
212     __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */
213 
214     __put_user(set->sig[0], &sf->si_mask);
215     for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
216         __put_user(set->sig[i + 1], &sf->extramask[i]);
217     }
218 
219     save_reg_win(&sf->ss.win, env);
220 
221     /* 3. signal handler back-trampoline and parameters */
222     env->regwptr[WREG_SP] = sf_addr;
223     env->regwptr[WREG_O0] = sig;
224     env->regwptr[WREG_O1] = sf_addr +
225             offsetof(struct target_signal_frame, regs);
226     env->regwptr[WREG_O2] = sf_addr +
227             offsetof(struct target_signal_frame, regs);
228 
229     /* 4. signal handler */
230     env->pc = ka->_sa_handler;
231     env->npc = (env->pc + 4);
232     /* 5. return to kernel instructions */
233     if (ka->ka_restorer) {
234         env->regwptr[WREG_O7] = ka->ka_restorer;
235     } else {
236         uint32_t val32;
237 
238         env->regwptr[WREG_O7] = sf_addr +
239                 offsetof(struct target_signal_frame, insns) - 2 * 4;
240 
241         /* mov __NR_sigreturn, %g1 */
242         val32 = 0x821020d8;
243         __put_user(val32, &sf->insns[0]);
244 
245         /* t 0x10 */
246         val32 = 0x91d02010;
247         __put_user(val32, &sf->insns[1]);
248     }
249     unlock_user(sf, sf_addr, sf_size);
250     return;
251 #if 0
252 sigill_and_return:
253     force_sig(TARGET_SIGILL);
254 #endif
255 sigsegv:
256     unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
257     force_sigsegv(sig);
258 }
259 
260 void setup_rt_frame(int sig, struct target_sigaction *ka,
261                     target_siginfo_t *info,
262                     target_sigset_t *set, CPUSPARCState *env)
263 {
264     qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
265 }
266 
267 long do_sigreturn(CPUSPARCState *env)
268 {
269     abi_ulong sf_addr;
270     struct target_signal_frame *sf;
271     abi_ulong pc, npc, ptr;
272     target_sigset_t set;
273     sigset_t host_set;
274     int i;
275 
276     sf_addr = env->regwptr[WREG_SP];
277     trace_user_do_sigreturn(env, sf_addr);
278     if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
279         goto segv_and_exit;
280     }
281 
282     /* 1. Make sure we are not getting garbage from the user */
283 
284     if (sf_addr & 3)
285         goto segv_and_exit;
286 
287     __get_user(pc,  &sf->regs.pc);
288     __get_user(npc, &sf->regs.npc);
289 
290     if ((pc | npc) & 3) {
291         goto segv_and_exit;
292     }
293 
294     /* 2. Restore the state */
295     restore_pt_regs(&sf->regs, env);
296     env->pc = pc;
297     env->npc = npc;
298 
299     __get_user(ptr, &sf->fpu_save);
300     if (ptr) {
301         struct target_siginfo_fpu *fpu;
302         if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
303             goto segv_and_exit;
304         }
305         restore_fpu(fpu, env);
306         unlock_user_struct(fpu, ptr, 0);
307     }
308 
309     __get_user(ptr, &sf->rwin_save);
310     if (ptr) {
311         goto segv_and_exit;  /* TODO: restore_rwin */
312     }
313 
314     __get_user(set.sig[0], &sf->si_mask);
315     for (i = 1; i < TARGET_NSIG_WORDS; i++) {
316         __get_user(set.sig[i], &sf->extramask[i - 1]);
317     }
318 
319     target_to_host_sigset_internal(&host_set, &set);
320     set_sigmask(&host_set);
321 
322     unlock_user_struct(sf, sf_addr, 0);
323     return -TARGET_QEMU_ESIGRETURN;
324 
325 segv_and_exit:
326     unlock_user_struct(sf, sf_addr, 0);
327     force_sig(TARGET_SIGSEGV);
328     return -TARGET_QEMU_ESIGRETURN;
329 }
330 
331 long do_rt_sigreturn(CPUSPARCState *env)
332 {
333     trace_user_do_rt_sigreturn(env, 0);
334     qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
335     return -TARGET_ENOSYS;
336 }
337 
338 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
339 #define SPARC_MC_TSTATE 0
340 #define SPARC_MC_PC 1
341 #define SPARC_MC_NPC 2
342 #define SPARC_MC_Y 3
343 #define SPARC_MC_G1 4
344 #define SPARC_MC_G2 5
345 #define SPARC_MC_G3 6
346 #define SPARC_MC_G4 7
347 #define SPARC_MC_G5 8
348 #define SPARC_MC_G6 9
349 #define SPARC_MC_G7 10
350 #define SPARC_MC_O0 11
351 #define SPARC_MC_O1 12
352 #define SPARC_MC_O2 13
353 #define SPARC_MC_O3 14
354 #define SPARC_MC_O4 15
355 #define SPARC_MC_O5 16
356 #define SPARC_MC_O6 17
357 #define SPARC_MC_O7 18
358 #define SPARC_MC_NGREG 19
359 
360 typedef abi_ulong target_mc_greg_t;
361 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
362 
363 struct target_mc_fq {
364     abi_ulong mcfq_addr;
365     uint32_t mcfq_insn;
366 };
367 
368 /*
369  * Note the manual 16-alignment; the kernel gets this because it
370  * includes a "long double qregs[16]" in the mcpu_fregs union,
371  * which we can't do.
372  */
373 struct target_mc_fpu {
374     union {
375         uint32_t sregs[32];
376         uint64_t dregs[32];
377         //uint128_t qregs[16];
378     } mcfpu_fregs;
379     abi_ulong mcfpu_fsr;
380     abi_ulong mcfpu_fprs;
381     abi_ulong mcfpu_gsr;
382     abi_ulong mcfpu_fq;
383     unsigned char mcfpu_qcnt;
384     unsigned char mcfpu_qentsz;
385     unsigned char mcfpu_enab;
386 } __attribute__((aligned(16)));
387 typedef struct target_mc_fpu target_mc_fpu_t;
388 
389 typedef struct {
390     target_mc_gregset_t mc_gregs;
391     target_mc_greg_t mc_fp;
392     target_mc_greg_t mc_i7;
393     target_mc_fpu_t mc_fpregs;
394 } target_mcontext_t;
395 
396 struct target_ucontext {
397     abi_ulong tuc_link;
398     abi_ulong tuc_flags;
399     target_sigset_t tuc_sigmask;
400     target_mcontext_t tuc_mcontext;
401 };
402 
403 /* {set, get}context() needed for 64-bit SparcLinux userland. */
404 void sparc64_set_context(CPUSPARCState *env)
405 {
406     abi_ulong ucp_addr;
407     struct target_ucontext *ucp;
408     target_mc_gregset_t *grp;
409     target_mc_fpu_t *fpup;
410     abi_ulong pc, npc, tstate;
411     unsigned int i;
412     unsigned char fenab;
413 
414     ucp_addr = env->regwptr[WREG_O0];
415     if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
416         goto do_sigsegv;
417     }
418     grp  = &ucp->tuc_mcontext.mc_gregs;
419     __get_user(pc, &((*grp)[SPARC_MC_PC]));
420     __get_user(npc, &((*grp)[SPARC_MC_NPC]));
421     if ((pc | npc) & 3) {
422         goto do_sigsegv;
423     }
424     if (env->regwptr[WREG_O1]) {
425         target_sigset_t target_set;
426         sigset_t set;
427 
428         if (TARGET_NSIG_WORDS == 1) {
429             __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
430         } else {
431             abi_ulong *src, *dst;
432             src = ucp->tuc_sigmask.sig;
433             dst = target_set.sig;
434             for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
435                 __get_user(*dst, src);
436             }
437         }
438         target_to_host_sigset_internal(&set, &target_set);
439         set_sigmask(&set);
440     }
441     env->pc = pc;
442     env->npc = npc;
443     __get_user(env->y, &((*grp)[SPARC_MC_Y]));
444     __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
445     /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
446     env->asi = (tstate >> 24) & 0xff;
447     cpu_put_ccr(env, (tstate >> 32) & 0xff);
448     __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
449     __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
450     __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
451     __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
452     __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
453     __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
454     /* Skip g7 as that's the thread register in userspace */
455 
456     /*
457      * Note that unlike the kernel, we didn't need to mess with the
458      * guest register window state to save it into a pt_regs to run
459      * the kernel. So for us the guest's O regs are still in WREG_O*
460      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
461      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
462      * need to be written back to userspace memory.
463      */
464     __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
465     __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
466     __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
467     __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
468     __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
469     __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
470     __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
471     __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
472 
473     __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
474     __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
475 
476     fpup = &ucp->tuc_mcontext.mc_fpregs;
477 
478     __get_user(fenab, &(fpup->mcfpu_enab));
479     if (fenab) {
480         abi_ulong fprs;
481 
482         /*
483          * We use the FPRS from the guest only in deciding whether
484          * to restore the upper, lower, or both banks of the FPU regs.
485          * The kernel here writes the FPU register data into the
486          * process's current_thread_info state and unconditionally
487          * clears FPRS and TSTATE_PEF: this disables the FPU so that the
488          * next FPU-disabled trap will copy the data out of
489          * current_thread_info and into the real FPU registers.
490          * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
491          * so we always load the data directly into the FPU registers
492          * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
493          * Note that because we (and the kernel) always write zeroes for
494          * the fenab and fprs in sparc64_get_context() none of this code
495          * will execute unless the guest manually constructed or changed
496          * the context structure.
497          */
498         __get_user(fprs, &(fpup->mcfpu_fprs));
499         if (fprs & FPRS_DL) {
500             for (i = 0; i < 16; i++) {
501                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
502             }
503         }
504         if (fprs & FPRS_DU) {
505             for (i = 16; i < 32; i++) {
506                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
507             }
508         }
509         __get_user(env->fsr, &(fpup->mcfpu_fsr));
510         __get_user(env->gsr, &(fpup->mcfpu_gsr));
511     }
512     unlock_user_struct(ucp, ucp_addr, 0);
513     return;
514 do_sigsegv:
515     unlock_user_struct(ucp, ucp_addr, 0);
516     force_sig(TARGET_SIGSEGV);
517 }
518 
519 void sparc64_get_context(CPUSPARCState *env)
520 {
521     abi_ulong ucp_addr;
522     struct target_ucontext *ucp;
523     target_mc_gregset_t *grp;
524     target_mcontext_t *mcp;
525     int err;
526     unsigned int i;
527     target_sigset_t target_set;
528     sigset_t set;
529 
530     ucp_addr = env->regwptr[WREG_O0];
531     if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
532         goto do_sigsegv;
533     }
534 
535     memset(ucp, 0, sizeof(*ucp));
536 
537     mcp = &ucp->tuc_mcontext;
538     grp = &mcp->mc_gregs;
539 
540     /* Skip over the trap instruction, first. */
541     env->pc = env->npc;
542     env->npc += 4;
543 
544     /* If we're only reading the signal mask then do_sigprocmask()
545      * is guaranteed not to fail, which is important because we don't
546      * have any way to signal a failure or restart this operation since
547      * this is not a normal syscall.
548      */
549     err = do_sigprocmask(0, NULL, &set);
550     assert(err == 0);
551     host_to_target_sigset_internal(&target_set, &set);
552     if (TARGET_NSIG_WORDS == 1) {
553         __put_user(target_set.sig[0],
554                    (abi_ulong *)&ucp->tuc_sigmask);
555     } else {
556         abi_ulong *src, *dst;
557         src = target_set.sig;
558         dst = ucp->tuc_sigmask.sig;
559         for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
560             __put_user(*src, dst);
561         }
562     }
563 
564     __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
565     __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
566     __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
567     __put_user(env->y, &((*grp)[SPARC_MC_Y]));
568     __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
569     __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
570     __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
571     __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
572     __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
573     __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
574     __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
575 
576     /*
577      * Note that unlike the kernel, we didn't need to mess with the
578      * guest register window state to save it into a pt_regs to run
579      * the kernel. So for us the guest's O regs are still in WREG_O*
580      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
581      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
582      * need to be fished out of userspace memory.
583      */
584     __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
585     __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
586     __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
587     __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
588     __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
589     __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
590     __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
591     __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
592 
593     __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
594     __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
595 
596     /*
597      * We don't write out the FPU state. This matches the kernel's
598      * implementation (which has the code for doing this but
599      * hidden behind an "if (fenab)" where fenab is always 0).
600      */
601 
602     unlock_user_struct(ucp, ucp_addr, 1);
603     return;
604 do_sigsegv:
605     unlock_user_struct(ucp, ucp_addr, 1);
606     force_sig(TARGET_SIGSEGV);
607 }
608 #endif
609