1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "signal-common.h" 22 #include "linux-user/trace.h" 23 24 /* A Sparc register window */ 25 struct target_reg_window { 26 abi_ulong locals[8]; 27 abi_ulong ins[8]; 28 }; 29 30 /* A Sparc stack frame. */ 31 struct target_stackf { 32 /* 33 * Since qemu does not reference fp or callers_pc directly, 34 * it's simpler to treat fp and callers_pc as elements of ins[], 35 * and then bundle locals[] and ins[] into reg_window. 36 */ 37 struct target_reg_window win; 38 /* 39 * Similarly, bundle structptr and xxargs into xargs[]. 40 * This portion of the struct is part of the function call abi, 41 * and belongs to the callee for spilling argument registers. 42 */ 43 abi_ulong xargs[8]; 44 }; 45 46 struct target_siginfo_fpu { 47 #ifdef TARGET_SPARC64 48 uint64_t si_double_regs[32]; 49 uint64_t si_fsr; 50 uint64_t si_gsr; 51 uint64_t si_fprs; 52 #else 53 /* It is more convenient for qemu to move doubles, not singles. */ 54 uint64_t si_double_regs[16]; 55 uint32_t si_fsr; 56 uint32_t si_fpqdepth; 57 struct { 58 uint32_t insn_addr; 59 uint32_t insn; 60 } si_fpqueue [16]; 61 #endif 62 }; 63 64 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 65 struct target_signal_frame { 66 struct target_stackf ss; 67 struct target_pt_regs regs; 68 uint32_t si_mask; 69 abi_ulong fpu_save; 70 uint32_t insns[2] QEMU_ALIGNED(8); 71 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 72 abi_ulong extra_size; /* Should be 0 */ 73 abi_ulong rwin_save; 74 }; 75 #endif 76 77 struct target_rt_signal_frame { 78 struct target_stackf ss; 79 target_siginfo_t info; 80 struct target_pt_regs regs; 81 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 82 abi_ulong fpu_save; 83 target_stack_t stack; 84 target_sigset_t mask; 85 #else 86 target_sigset_t mask; 87 abi_ulong fpu_save; 88 uint32_t insns[2]; 89 target_stack_t stack; 90 abi_ulong extra_size; /* Should be 0 */ 91 #endif 92 abi_ulong rwin_save; 93 }; 94 95 static abi_ulong get_sigframe(struct target_sigaction *sa, 96 CPUSPARCState *env, 97 size_t framesize) 98 { 99 abi_ulong sp = get_sp_from_cpustate(env); 100 101 /* 102 * If we are on the alternate signal stack and would overflow it, don't. 103 * Return an always-bogus address instead so we will die with SIGSEGV. 104 */ 105 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { 106 return -1; 107 } 108 109 /* This is the X/Open sanctioned signal stack switching. */ 110 sp = target_sigsp(sp, sa) - framesize; 111 112 /* 113 * Always align the stack frame. This handles two cases. First, 114 * sigaltstack need not be mindful of platform specific stack 115 * alignment. Second, if we took this signal because the stack 116 * is not aligned properly, we'd like to take the signal cleanly 117 * and report that. 118 */ 119 sp &= ~15UL; 120 121 return sp; 122 } 123 124 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 125 { 126 int i; 127 128 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 129 __put_user(sparc64_tstate(env), ®s->tstate); 130 /* TODO: magic should contain PT_REG_MAGIC + %tt. */ 131 __put_user(0, ®s->magic); 132 #else 133 __put_user(cpu_get_psr(env), ®s->psr); 134 #endif 135 136 __put_user(env->pc, ®s->pc); 137 __put_user(env->npc, ®s->npc); 138 __put_user(env->y, ®s->y); 139 140 for (i = 0; i < 8; i++) { 141 __put_user(env->gregs[i], ®s->u_regs[i]); 142 } 143 for (i = 0; i < 8; i++) { 144 __put_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 145 } 146 } 147 148 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 149 { 150 int i; 151 152 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 153 /* User can only change condition codes and %asi in %tstate. */ 154 uint64_t tstate; 155 __get_user(tstate, ®s->tstate); 156 cpu_put_ccr(env, tstate >> 32); 157 env->asi = extract64(tstate, 24, 8); 158 #else 159 /* 160 * User can only change condition codes and FPU enabling in %psr. 161 * But don't bother with FPU enabling, since a real kernel would 162 * just re-enable the FPU upon the next fpu trap. 163 */ 164 uint32_t psr; 165 __get_user(psr, ®s->psr); 166 env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC); 167 #endif 168 169 /* Note that pc and npc are handled in the caller. */ 170 171 __get_user(env->y, ®s->y); 172 173 for (i = 0; i < 8; i++) { 174 __get_user(env->gregs[i], ®s->u_regs[i]); 175 } 176 for (i = 0; i < 8; i++) { 177 __get_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 178 } 179 } 180 181 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env) 182 { 183 int i; 184 185 for (i = 0; i < 8; i++) { 186 __put_user(env->regwptr[i + WREG_L0], &win->locals[i]); 187 } 188 for (i = 0; i < 8; i++) { 189 __put_user(env->regwptr[i + WREG_I0], &win->ins[i]); 190 } 191 } 192 193 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 194 { 195 int i; 196 197 #ifdef TARGET_SPARC64 198 for (i = 0; i < 32; ++i) { 199 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 200 } 201 __put_user(env->fsr, &fpu->si_fsr); 202 __put_user(env->gsr, &fpu->si_gsr); 203 __put_user(env->fprs, &fpu->si_fprs); 204 #else 205 for (i = 0; i < 16; ++i) { 206 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 207 } 208 __put_user(env->fsr, &fpu->si_fsr); 209 __put_user(0, &fpu->si_fpqdepth); 210 #endif 211 } 212 213 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 214 { 215 int i; 216 217 #ifdef TARGET_SPARC64 218 uint64_t fprs; 219 __get_user(fprs, &fpu->si_fprs); 220 221 /* In case the user mucks about with FPRS, restore as directed. */ 222 if (fprs & FPRS_DL) { 223 for (i = 0; i < 16; ++i) { 224 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 225 } 226 } 227 if (fprs & FPRS_DU) { 228 for (i = 16; i < 32; ++i) { 229 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 230 } 231 } 232 __get_user(env->fsr, &fpu->si_fsr); 233 __get_user(env->gsr, &fpu->si_gsr); 234 env->fprs |= fprs; 235 #else 236 for (i = 0; i < 16; ++i) { 237 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 238 } 239 __get_user(env->fsr, &fpu->si_fsr); 240 #endif 241 } 242 243 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 244 void setup_frame(int sig, struct target_sigaction *ka, 245 target_sigset_t *set, CPUSPARCState *env) 246 { 247 abi_ulong sf_addr; 248 struct target_signal_frame *sf; 249 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 250 int i; 251 252 sf_addr = get_sigframe(ka, env, sf_size); 253 trace_user_setup_frame(env, sf_addr); 254 255 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 256 if (!sf) { 257 force_sigsegv(sig); 258 return; 259 } 260 261 /* 2. Save the current process state */ 262 save_pt_regs(&sf->regs, env); 263 __put_user(0, &sf->extra_size); 264 265 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 266 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 267 268 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 269 270 __put_user(set->sig[0], &sf->si_mask); 271 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 272 __put_user(set->sig[i + 1], &sf->extramask[i]); 273 } 274 275 save_reg_win(&sf->ss.win, env); 276 277 /* 3. signal handler back-trampoline and parameters */ 278 env->regwptr[WREG_SP] = sf_addr; 279 env->regwptr[WREG_O0] = sig; 280 env->regwptr[WREG_O1] = sf_addr + 281 offsetof(struct target_signal_frame, regs); 282 env->regwptr[WREG_O2] = sf_addr + 283 offsetof(struct target_signal_frame, regs); 284 285 /* 4. signal handler */ 286 env->pc = ka->_sa_handler; 287 env->npc = env->pc + 4; 288 289 /* 5. return to kernel instructions */ 290 if (ka->ka_restorer) { 291 env->regwptr[WREG_O7] = ka->ka_restorer; 292 } else { 293 env->regwptr[WREG_O7] = sf_addr + 294 offsetof(struct target_signal_frame, insns) - 2 * 4; 295 296 /* mov __NR_sigreturn, %g1 */ 297 __put_user(0x821020d8u, &sf->insns[0]); 298 /* t 0x10 */ 299 __put_user(0x91d02010u, &sf->insns[1]); 300 } 301 unlock_user(sf, sf_addr, sf_size); 302 } 303 #endif /* TARGET_ARCH_HAS_SETUP_FRAME */ 304 305 void setup_rt_frame(int sig, struct target_sigaction *ka, 306 target_siginfo_t *info, 307 target_sigset_t *set, CPUSPARCState *env) 308 { 309 abi_ulong sf_addr; 310 struct target_rt_signal_frame *sf; 311 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 312 313 sf_addr = get_sigframe(ka, env, sf_size); 314 trace_user_setup_rt_frame(env, sf_addr); 315 316 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 317 if (!sf) { 318 force_sigsegv(sig); 319 return; 320 } 321 322 /* 2. Save the current process state */ 323 save_reg_win(&sf->ss.win, env); 324 save_pt_regs(&sf->regs, env); 325 326 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 327 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 328 329 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 330 331 tswap_siginfo(&sf->info, info); 332 tswap_sigset(&sf->mask, set); 333 target_save_altstack(&sf->stack, env); 334 335 #ifdef TARGET_ABI32 336 __put_user(0, &sf->extra_size); 337 #endif 338 339 /* 3. signal handler back-trampoline and parameters */ 340 env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS; 341 env->regwptr[WREG_O0] = sig; 342 env->regwptr[WREG_O1] = 343 sf_addr + offsetof(struct target_rt_signal_frame, info); 344 #ifdef TARGET_ABI32 345 env->regwptr[WREG_O2] = 346 sf_addr + offsetof(struct target_rt_signal_frame, regs); 347 #else 348 env->regwptr[WREG_O2] = env->regwptr[WREG_O1]; 349 #endif 350 351 /* 4. signal handler */ 352 env->pc = ka->_sa_handler; 353 env->npc = env->pc + 4; 354 355 /* 5. return to kernel instructions */ 356 #ifdef TARGET_ABI32 357 if (ka->ka_restorer) { 358 env->regwptr[WREG_O7] = ka->ka_restorer; 359 } else { 360 env->regwptr[WREG_O7] = 361 sf_addr + offsetof(struct target_rt_signal_frame, insns) - 2 * 4; 362 363 /* mov __NR_rt_sigreturn, %g1 */ 364 __put_user(0x82102065u, &sf->insns[0]); 365 /* t 0x10 */ 366 __put_user(0x91d02010u, &sf->insns[1]); 367 } 368 #else 369 env->regwptr[WREG_O7] = ka->ka_restorer; 370 #endif 371 372 unlock_user(sf, sf_addr, sf_size); 373 } 374 375 long do_sigreturn(CPUSPARCState *env) 376 { 377 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 378 abi_ulong sf_addr; 379 struct target_signal_frame *sf = NULL; 380 abi_ulong pc, npc, ptr; 381 target_sigset_t set; 382 sigset_t host_set; 383 int i; 384 385 sf_addr = env->regwptr[WREG_SP]; 386 trace_user_do_sigreturn(env, sf_addr); 387 388 /* 1. Make sure we are not getting garbage from the user */ 389 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 390 goto segv_and_exit; 391 } 392 393 /* Make sure stack pointer is aligned. */ 394 __get_user(ptr, &sf->regs.u_regs[14]); 395 if (ptr & 7) { 396 goto segv_and_exit; 397 } 398 399 /* Make sure instruction pointers are aligned. */ 400 __get_user(pc, &sf->regs.pc); 401 __get_user(npc, &sf->regs.npc); 402 if ((pc | npc) & 3) { 403 goto segv_and_exit; 404 } 405 406 /* 2. Restore the state */ 407 restore_pt_regs(&sf->regs, env); 408 env->pc = pc; 409 env->npc = npc; 410 411 __get_user(ptr, &sf->fpu_save); 412 if (ptr) { 413 struct target_siginfo_fpu *fpu; 414 if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 415 goto segv_and_exit; 416 } 417 restore_fpu(fpu, env); 418 unlock_user_struct(fpu, ptr, 0); 419 } 420 421 __get_user(ptr, &sf->rwin_save); 422 if (ptr) { 423 goto segv_and_exit; /* TODO: restore_rwin */ 424 } 425 426 __get_user(set.sig[0], &sf->si_mask); 427 for (i = 1; i < TARGET_NSIG_WORDS; i++) { 428 __get_user(set.sig[i], &sf->extramask[i - 1]); 429 } 430 431 target_to_host_sigset_internal(&host_set, &set); 432 set_sigmask(&host_set); 433 434 unlock_user_struct(sf, sf_addr, 0); 435 return -TARGET_QEMU_ESIGRETURN; 436 437 segv_and_exit: 438 unlock_user_struct(sf, sf_addr, 0); 439 force_sig(TARGET_SIGSEGV); 440 return -TARGET_QEMU_ESIGRETURN; 441 #else 442 return -TARGET_ENOSYS; 443 #endif 444 } 445 446 long do_rt_sigreturn(CPUSPARCState *env) 447 { 448 abi_ulong sf_addr, tpc, tnpc, ptr; 449 struct target_rt_signal_frame *sf = NULL; 450 sigset_t set; 451 452 sf_addr = get_sp_from_cpustate(env); 453 trace_user_do_rt_sigreturn(env, sf_addr); 454 455 /* 1. Make sure we are not getting garbage from the user */ 456 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 457 goto segv_and_exit; 458 } 459 460 /* Validate SP alignment. */ 461 __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]); 462 if ((ptr + TARGET_STACK_BIAS) & 7) { 463 goto segv_and_exit; 464 } 465 466 /* Validate PC and NPC alignment. */ 467 __get_user(tpc, &sf->regs.pc); 468 __get_user(tnpc, &sf->regs.npc); 469 if ((tpc | tnpc) & 3) { 470 goto segv_and_exit; 471 } 472 473 /* 2. Restore the state */ 474 restore_pt_regs(&sf->regs, env); 475 476 __get_user(ptr, &sf->fpu_save); 477 if (ptr) { 478 struct target_siginfo_fpu *fpu; 479 if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 480 goto segv_and_exit; 481 } 482 restore_fpu(fpu, env); 483 unlock_user_struct(fpu, ptr, 0); 484 } 485 486 __get_user(ptr, &sf->rwin_save); 487 if (ptr) { 488 goto segv_and_exit; /* TODO: restore_rwin_state */ 489 } 490 491 target_restore_altstack(&sf->stack, env); 492 target_to_host_sigset(&set, &sf->mask); 493 set_sigmask(&set); 494 495 env->pc = tpc; 496 env->npc = tnpc; 497 498 unlock_user_struct(sf, sf_addr, 0); 499 return -TARGET_QEMU_ESIGRETURN; 500 501 segv_and_exit: 502 unlock_user_struct(sf, sf_addr, 0); 503 force_sig(TARGET_SIGSEGV); 504 return -TARGET_QEMU_ESIGRETURN; 505 } 506 507 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 508 #define SPARC_MC_TSTATE 0 509 #define SPARC_MC_PC 1 510 #define SPARC_MC_NPC 2 511 #define SPARC_MC_Y 3 512 #define SPARC_MC_G1 4 513 #define SPARC_MC_G2 5 514 #define SPARC_MC_G3 6 515 #define SPARC_MC_G4 7 516 #define SPARC_MC_G5 8 517 #define SPARC_MC_G6 9 518 #define SPARC_MC_G7 10 519 #define SPARC_MC_O0 11 520 #define SPARC_MC_O1 12 521 #define SPARC_MC_O2 13 522 #define SPARC_MC_O3 14 523 #define SPARC_MC_O4 15 524 #define SPARC_MC_O5 16 525 #define SPARC_MC_O6 17 526 #define SPARC_MC_O7 18 527 #define SPARC_MC_NGREG 19 528 529 typedef abi_ulong target_mc_greg_t; 530 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; 531 532 struct target_mc_fq { 533 abi_ulong mcfq_addr; 534 uint32_t mcfq_insn; 535 }; 536 537 /* 538 * Note the manual 16-alignment; the kernel gets this because it 539 * includes a "long double qregs[16]" in the mcpu_fregs union, 540 * which we can't do. 541 */ 542 struct target_mc_fpu { 543 union { 544 uint32_t sregs[32]; 545 uint64_t dregs[32]; 546 //uint128_t qregs[16]; 547 } mcfpu_fregs; 548 abi_ulong mcfpu_fsr; 549 abi_ulong mcfpu_fprs; 550 abi_ulong mcfpu_gsr; 551 abi_ulong mcfpu_fq; 552 unsigned char mcfpu_qcnt; 553 unsigned char mcfpu_qentsz; 554 unsigned char mcfpu_enab; 555 } __attribute__((aligned(16))); 556 typedef struct target_mc_fpu target_mc_fpu_t; 557 558 typedef struct { 559 target_mc_gregset_t mc_gregs; 560 target_mc_greg_t mc_fp; 561 target_mc_greg_t mc_i7; 562 target_mc_fpu_t mc_fpregs; 563 } target_mcontext_t; 564 565 struct target_ucontext { 566 abi_ulong tuc_link; 567 abi_ulong tuc_flags; 568 target_sigset_t tuc_sigmask; 569 target_mcontext_t tuc_mcontext; 570 }; 571 572 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 573 void sparc64_set_context(CPUSPARCState *env) 574 { 575 abi_ulong ucp_addr; 576 struct target_ucontext *ucp; 577 target_mc_gregset_t *grp; 578 target_mc_fpu_t *fpup; 579 abi_ulong pc, npc, tstate; 580 unsigned int i; 581 unsigned char fenab; 582 583 ucp_addr = env->regwptr[WREG_O0]; 584 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 585 goto do_sigsegv; 586 } 587 grp = &ucp->tuc_mcontext.mc_gregs; 588 __get_user(pc, &((*grp)[SPARC_MC_PC])); 589 __get_user(npc, &((*grp)[SPARC_MC_NPC])); 590 if ((pc | npc) & 3) { 591 goto do_sigsegv; 592 } 593 if (env->regwptr[WREG_O1]) { 594 target_sigset_t target_set; 595 sigset_t set; 596 597 if (TARGET_NSIG_WORDS == 1) { 598 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 599 } else { 600 abi_ulong *src, *dst; 601 src = ucp->tuc_sigmask.sig; 602 dst = target_set.sig; 603 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 604 __get_user(*dst, src); 605 } 606 } 607 target_to_host_sigset_internal(&set, &target_set); 608 set_sigmask(&set); 609 } 610 env->pc = pc; 611 env->npc = npc; 612 __get_user(env->y, &((*grp)[SPARC_MC_Y])); 613 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); 614 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */ 615 env->asi = (tstate >> 24) & 0xff; 616 cpu_put_ccr(env, (tstate >> 32) & 0xff); 617 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); 618 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); 619 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); 620 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); 621 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); 622 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); 623 /* Skip g7 as that's the thread register in userspace */ 624 625 /* 626 * Note that unlike the kernel, we didn't need to mess with the 627 * guest register window state to save it into a pt_regs to run 628 * the kernel. So for us the guest's O regs are still in WREG_O* 629 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 630 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 631 * need to be written back to userspace memory. 632 */ 633 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); 634 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); 635 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); 636 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); 637 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); 638 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); 639 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); 640 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); 641 642 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); 643 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); 644 645 fpup = &ucp->tuc_mcontext.mc_fpregs; 646 647 __get_user(fenab, &(fpup->mcfpu_enab)); 648 if (fenab) { 649 abi_ulong fprs; 650 651 /* 652 * We use the FPRS from the guest only in deciding whether 653 * to restore the upper, lower, or both banks of the FPU regs. 654 * The kernel here writes the FPU register data into the 655 * process's current_thread_info state and unconditionally 656 * clears FPRS and TSTATE_PEF: this disables the FPU so that the 657 * next FPU-disabled trap will copy the data out of 658 * current_thread_info and into the real FPU registers. 659 * QEMU doesn't need to handle lazy-FPU-state-restoring like that, 660 * so we always load the data directly into the FPU registers 661 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled). 662 * Note that because we (and the kernel) always write zeroes for 663 * the fenab and fprs in sparc64_get_context() none of this code 664 * will execute unless the guest manually constructed or changed 665 * the context structure. 666 */ 667 __get_user(fprs, &(fpup->mcfpu_fprs)); 668 if (fprs & FPRS_DL) { 669 for (i = 0; i < 16; i++) { 670 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 671 } 672 } 673 if (fprs & FPRS_DU) { 674 for (i = 16; i < 32; i++) { 675 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 676 } 677 } 678 __get_user(env->fsr, &(fpup->mcfpu_fsr)); 679 __get_user(env->gsr, &(fpup->mcfpu_gsr)); 680 } 681 unlock_user_struct(ucp, ucp_addr, 0); 682 return; 683 do_sigsegv: 684 unlock_user_struct(ucp, ucp_addr, 0); 685 force_sig(TARGET_SIGSEGV); 686 } 687 688 void sparc64_get_context(CPUSPARCState *env) 689 { 690 abi_ulong ucp_addr; 691 struct target_ucontext *ucp; 692 target_mc_gregset_t *grp; 693 target_mcontext_t *mcp; 694 int err; 695 unsigned int i; 696 target_sigset_t target_set; 697 sigset_t set; 698 699 ucp_addr = env->regwptr[WREG_O0]; 700 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 701 goto do_sigsegv; 702 } 703 704 memset(ucp, 0, sizeof(*ucp)); 705 706 mcp = &ucp->tuc_mcontext; 707 grp = &mcp->mc_gregs; 708 709 /* Skip over the trap instruction, first. */ 710 env->pc = env->npc; 711 env->npc += 4; 712 713 /* If we're only reading the signal mask then do_sigprocmask() 714 * is guaranteed not to fail, which is important because we don't 715 * have any way to signal a failure or restart this operation since 716 * this is not a normal syscall. 717 */ 718 err = do_sigprocmask(0, NULL, &set); 719 assert(err == 0); 720 host_to_target_sigset_internal(&target_set, &set); 721 if (TARGET_NSIG_WORDS == 1) { 722 __put_user(target_set.sig[0], 723 (abi_ulong *)&ucp->tuc_sigmask); 724 } else { 725 abi_ulong *src, *dst; 726 src = target_set.sig; 727 dst = ucp->tuc_sigmask.sig; 728 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 729 __put_user(*src, dst); 730 } 731 } 732 733 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE])); 734 __put_user(env->pc, &((*grp)[SPARC_MC_PC])); 735 __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); 736 __put_user(env->y, &((*grp)[SPARC_MC_Y])); 737 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); 738 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); 739 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); 740 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); 741 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); 742 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); 743 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); 744 745 /* 746 * Note that unlike the kernel, we didn't need to mess with the 747 * guest register window state to save it into a pt_regs to run 748 * the kernel. So for us the guest's O regs are still in WREG_O* 749 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 750 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 751 * need to be fished out of userspace memory. 752 */ 753 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); 754 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); 755 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); 756 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); 757 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); 758 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); 759 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); 760 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); 761 762 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); 763 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); 764 765 /* 766 * We don't write out the FPU state. This matches the kernel's 767 * implementation (which has the code for doing this but 768 * hidden behind an "if (fenab)" where fenab is always 0). 769 */ 770 771 unlock_user_struct(ucp, ucp_addr, 1); 772 return; 773 do_sigsegv: 774 unlock_user_struct(ucp, ucp_addr, 1); 775 force_sig(TARGET_SIGSEGV); 776 } 777 #endif 778