xref: /openbmc/qemu/linux-user/sparc/signal.c (revision 587adaca)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
23 
24 /* A Sparc register window */
25 struct target_reg_window {
26     abi_ulong locals[8];
27     abi_ulong ins[8];
28 };
29 
30 /* A Sparc stack frame. */
31 struct target_stackf {
32     /*
33      * Since qemu does not reference fp or callers_pc directly,
34      * it's simpler to treat fp and callers_pc as elements of ins[],
35      * and then bundle locals[] and ins[] into reg_window.
36      */
37     struct target_reg_window win;
38     /*
39      * Similarly, bundle structptr and xxargs into xargs[].
40      * This portion of the struct is part of the function call abi,
41      * and belongs to the callee for spilling argument registers.
42      */
43     abi_ulong xargs[8];
44 };
45 
46 struct target_siginfo_fpu {
47 #ifdef TARGET_SPARC64
48     uint64_t si_double_regs[32];
49     uint64_t si_fsr;
50     uint64_t si_gsr;
51     uint64_t si_fprs;
52 #else
53     /* It is more convenient for qemu to move doubles, not singles. */
54     uint64_t si_double_regs[16];
55     uint32_t si_fsr;
56     uint32_t si_fpqdepth;
57     struct {
58         uint32_t insn_addr;
59         uint32_t insn;
60     } si_fpqueue [16];
61 #endif
62 };
63 
64 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
65 struct target_signal_frame {
66     struct target_stackf ss;
67     struct target_pt_regs regs;
68     uint32_t si_mask;
69     abi_ulong fpu_save;
70     uint32_t insns[2] QEMU_ALIGNED(8);
71     abi_ulong extramask[TARGET_NSIG_WORDS - 1];
72     abi_ulong extra_size; /* Should be 0 */
73     abi_ulong rwin_save;
74 };
75 #endif
76 
77 struct target_rt_signal_frame {
78     struct target_stackf ss;
79     target_siginfo_t info;
80     struct target_pt_regs regs;
81 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
82     abi_ulong fpu_save;
83     target_stack_t stack;
84     target_sigset_t mask;
85 #else
86     target_sigset_t mask;
87     abi_ulong fpu_save;
88     uint32_t insns[2];
89     target_stack_t stack;
90     abi_ulong extra_size; /* Should be 0 */
91 #endif
92     abi_ulong rwin_save;
93 };
94 
95 static abi_ulong get_sigframe(struct target_sigaction *sa,
96                               CPUSPARCState *env,
97                               size_t framesize)
98 {
99     abi_ulong sp = get_sp_from_cpustate(env);
100 
101     /*
102      * If we are on the alternate signal stack and would overflow it, don't.
103      * Return an always-bogus address instead so we will die with SIGSEGV.
104      */
105     if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
106         return -1;
107     }
108 
109     /* This is the X/Open sanctioned signal stack switching.  */
110     sp = target_sigsp(sp, sa) - framesize;
111 
112     /*
113      * Always align the stack frame.  This handles two cases.  First,
114      * sigaltstack need not be mindful of platform specific stack
115      * alignment.  Second, if we took this signal because the stack
116      * is not aligned properly, we'd like to take the signal cleanly
117      * and report that.
118      */
119     sp &= ~15UL;
120 
121     return sp;
122 }
123 
124 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
125 {
126     int i;
127 
128 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
129     __put_user(sparc64_tstate(env), &regs->tstate);
130     /* TODO: magic should contain PT_REG_MAGIC + %tt. */
131     __put_user(0, &regs->magic);
132 #else
133     __put_user(cpu_get_psr(env), &regs->psr);
134 #endif
135 
136     __put_user(env->pc, &regs->pc);
137     __put_user(env->npc, &regs->npc);
138     __put_user(env->y, &regs->y);
139 
140     for (i = 0; i < 8; i++) {
141         __put_user(env->gregs[i], &regs->u_regs[i]);
142     }
143     for (i = 0; i < 8; i++) {
144         __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
145     }
146 }
147 
148 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
149 {
150     int i;
151 
152 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
153     /* User can only change condition codes and %asi in %tstate. */
154     uint64_t tstate;
155     __get_user(tstate, &regs->tstate);
156     cpu_put_ccr(env, tstate >> 32);
157     env->asi = extract64(tstate, 24, 8);
158 #else
159     /*
160      * User can only change condition codes and FPU enabling in %psr.
161      * But don't bother with FPU enabling, since a real kernel would
162      * just re-enable the FPU upon the next fpu trap.
163      */
164     uint32_t psr;
165     __get_user(psr, &regs->psr);
166     env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC);
167 #endif
168 
169     /* Note that pc and npc are handled in the caller. */
170 
171     __get_user(env->y, &regs->y);
172 
173     for (i = 0; i < 8; i++) {
174         __get_user(env->gregs[i], &regs->u_regs[i]);
175     }
176     for (i = 0; i < 8; i++) {
177         __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
178     }
179 }
180 
181 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
182 {
183     int i;
184 
185     for (i = 0; i < 8; i++) {
186         __put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
187     }
188     for (i = 0; i < 8; i++) {
189         __put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
190     }
191 }
192 
193 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
194 {
195     int i;
196 
197 #ifdef TARGET_SPARC64
198     for (i = 0; i < 32; ++i) {
199         __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
200     }
201     __put_user(env->fsr, &fpu->si_fsr);
202     __put_user(env->gsr, &fpu->si_gsr);
203     __put_user(env->fprs, &fpu->si_fprs);
204 #else
205     for (i = 0; i < 16; ++i) {
206         __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
207     }
208     __put_user(env->fsr, &fpu->si_fsr);
209     __put_user(0, &fpu->si_fpqdepth);
210 #endif
211 }
212 
213 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
214 {
215     int i;
216 
217 #ifdef TARGET_SPARC64
218     uint64_t fprs;
219     __get_user(fprs, &fpu->si_fprs);
220 
221     /* In case the user mucks about with FPRS, restore as directed. */
222     if (fprs & FPRS_DL) {
223         for (i = 0; i < 16; ++i) {
224             __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
225         }
226     }
227     if (fprs & FPRS_DU) {
228         for (i = 16; i < 32; ++i) {
229             __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
230         }
231     }
232     __get_user(env->fsr, &fpu->si_fsr);
233     __get_user(env->gsr, &fpu->si_gsr);
234     env->fprs |= fprs;
235 #else
236     for (i = 0; i < 16; ++i) {
237         __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
238     }
239     __get_user(env->fsr, &fpu->si_fsr);
240 #endif
241 }
242 
243 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
244 void setup_frame(int sig, struct target_sigaction *ka,
245                  target_sigset_t *set, CPUSPARCState *env)
246 {
247     abi_ulong sf_addr;
248     struct target_signal_frame *sf;
249     size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
250     int i;
251 
252     sf_addr = get_sigframe(ka, env, sf_size);
253     trace_user_setup_frame(env, sf_addr);
254 
255     sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
256     if (!sf) {
257         force_sigsegv(sig);
258         return;
259     }
260 
261     /* 2. Save the current process state */
262     save_pt_regs(&sf->regs, env);
263     __put_user(0, &sf->extra_size);
264 
265     save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
266     __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
267 
268     __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */
269 
270     __put_user(set->sig[0], &sf->si_mask);
271     for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
272         __put_user(set->sig[i + 1], &sf->extramask[i]);
273     }
274 
275     save_reg_win(&sf->ss.win, env);
276 
277     /* 3. signal handler back-trampoline and parameters */
278     env->regwptr[WREG_SP] = sf_addr;
279     env->regwptr[WREG_O0] = sig;
280     env->regwptr[WREG_O1] = sf_addr +
281             offsetof(struct target_signal_frame, regs);
282     env->regwptr[WREG_O2] = sf_addr +
283             offsetof(struct target_signal_frame, regs);
284 
285     /* 4. signal handler */
286     env->pc = ka->_sa_handler;
287     env->npc = env->pc + 4;
288 
289     /* 5. return to kernel instructions */
290     if (ka->ka_restorer) {
291         env->regwptr[WREG_O7] = ka->ka_restorer;
292     } else {
293         env->regwptr[WREG_O7] = sf_addr +
294                 offsetof(struct target_signal_frame, insns) - 2 * 4;
295 
296         /* mov __NR_sigreturn, %g1 */
297         __put_user(0x821020d8u, &sf->insns[0]);
298         /* t 0x10 */
299         __put_user(0x91d02010u, &sf->insns[1]);
300     }
301     unlock_user(sf, sf_addr, sf_size);
302 }
303 #endif /* TARGET_ARCH_HAS_SETUP_FRAME */
304 
305 void setup_rt_frame(int sig, struct target_sigaction *ka,
306                     target_siginfo_t *info,
307                     target_sigset_t *set, CPUSPARCState *env)
308 {
309     abi_ulong sf_addr;
310     struct target_rt_signal_frame *sf;
311     size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
312 
313     sf_addr = get_sigframe(ka, env, sf_size);
314     trace_user_setup_rt_frame(env, sf_addr);
315 
316     sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
317     if (!sf) {
318         force_sigsegv(sig);
319         return;
320     }
321 
322     /* 2. Save the current process state */
323     save_reg_win(&sf->ss.win, env);
324     save_pt_regs(&sf->regs, env);
325 
326     save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
327     __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
328 
329     __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */
330 
331     tswap_siginfo(&sf->info, info);
332     tswap_sigset(&sf->mask, set);
333     target_save_altstack(&sf->stack, env);
334 
335 #ifdef TARGET_ABI32
336     __put_user(0, &sf->extra_size);
337 #endif
338 
339     /* 3. signal handler back-trampoline and parameters */
340     env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS;
341     env->regwptr[WREG_O0] = sig;
342     env->regwptr[WREG_O1] =
343         sf_addr + offsetof(struct target_rt_signal_frame, info);
344 #ifdef TARGET_ABI32
345     env->regwptr[WREG_O2] =
346         sf_addr + offsetof(struct target_rt_signal_frame, regs);
347 #else
348     env->regwptr[WREG_O2] = env->regwptr[WREG_O1];
349 #endif
350 
351     /* 4. signal handler */
352     env->pc = ka->_sa_handler;
353     env->npc = env->pc + 4;
354 
355     /* 5. return to kernel instructions */
356 #ifdef TARGET_ABI32
357     if (ka->ka_restorer) {
358         env->regwptr[WREG_O7] = ka->ka_restorer;
359     } else {
360         env->regwptr[WREG_O7] =
361             sf_addr + offsetof(struct target_rt_signal_frame, insns) - 2 * 4;
362 
363         /* mov __NR_rt_sigreturn, %g1 */
364         __put_user(0x82102065u, &sf->insns[0]);
365         /* t 0x10 */
366         __put_user(0x91d02010u, &sf->insns[1]);
367     }
368 #else
369     env->regwptr[WREG_O7] = ka->ka_restorer;
370 #endif
371 
372     unlock_user(sf, sf_addr, sf_size);
373 }
374 
375 long do_sigreturn(CPUSPARCState *env)
376 {
377 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
378     abi_ulong sf_addr;
379     struct target_signal_frame *sf = NULL;
380     abi_ulong pc, npc, ptr;
381     target_sigset_t set;
382     sigset_t host_set;
383     int i;
384 
385     sf_addr = env->regwptr[WREG_SP];
386     trace_user_do_sigreturn(env, sf_addr);
387 
388     /* 1. Make sure we are not getting garbage from the user */
389     if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
390         goto segv_and_exit;
391     }
392 
393     /* Make sure stack pointer is aligned.  */
394     __get_user(ptr, &sf->regs.u_regs[14]);
395     if (ptr & 7) {
396         goto segv_and_exit;
397     }
398 
399     /* Make sure instruction pointers are aligned.  */
400     __get_user(pc, &sf->regs.pc);
401     __get_user(npc, &sf->regs.npc);
402     if ((pc | npc) & 3) {
403         goto segv_and_exit;
404     }
405 
406     /* 2. Restore the state */
407     restore_pt_regs(&sf->regs, env);
408     env->pc = pc;
409     env->npc = npc;
410 
411     __get_user(ptr, &sf->fpu_save);
412     if (ptr) {
413         struct target_siginfo_fpu *fpu;
414         if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
415             goto segv_and_exit;
416         }
417         restore_fpu(fpu, env);
418         unlock_user_struct(fpu, ptr, 0);
419     }
420 
421     __get_user(ptr, &sf->rwin_save);
422     if (ptr) {
423         goto segv_and_exit;  /* TODO: restore_rwin */
424     }
425 
426     __get_user(set.sig[0], &sf->si_mask);
427     for (i = 1; i < TARGET_NSIG_WORDS; i++) {
428         __get_user(set.sig[i], &sf->extramask[i - 1]);
429     }
430 
431     target_to_host_sigset_internal(&host_set, &set);
432     set_sigmask(&host_set);
433 
434     unlock_user_struct(sf, sf_addr, 0);
435     return -TARGET_QEMU_ESIGRETURN;
436 
437  segv_and_exit:
438     unlock_user_struct(sf, sf_addr, 0);
439     force_sig(TARGET_SIGSEGV);
440     return -TARGET_QEMU_ESIGRETURN;
441 #else
442     return -TARGET_ENOSYS;
443 #endif
444 }
445 
446 long do_rt_sigreturn(CPUSPARCState *env)
447 {
448     abi_ulong sf_addr, tpc, tnpc, ptr;
449     struct target_rt_signal_frame *sf = NULL;
450     sigset_t set;
451 
452     sf_addr = get_sp_from_cpustate(env);
453     trace_user_do_rt_sigreturn(env, sf_addr);
454 
455     /* 1. Make sure we are not getting garbage from the user */
456     if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
457         goto segv_and_exit;
458     }
459 
460     /* Validate SP alignment.  */
461     __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]);
462     if ((ptr + TARGET_STACK_BIAS) & 7) {
463         goto segv_and_exit;
464     }
465 
466     /* Validate PC and NPC alignment.  */
467     __get_user(tpc, &sf->regs.pc);
468     __get_user(tnpc, &sf->regs.npc);
469     if ((tpc | tnpc) & 3) {
470         goto segv_and_exit;
471     }
472 
473     /* 2. Restore the state */
474     restore_pt_regs(&sf->regs, env);
475 
476     __get_user(ptr, &sf->fpu_save);
477     if (ptr) {
478         struct target_siginfo_fpu *fpu;
479         if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
480             goto segv_and_exit;
481         }
482         restore_fpu(fpu, env);
483         unlock_user_struct(fpu, ptr, 0);
484     }
485 
486     __get_user(ptr, &sf->rwin_save);
487     if (ptr) {
488         goto segv_and_exit;  /* TODO: restore_rwin_state */
489     }
490 
491     target_restore_altstack(&sf->stack, env);
492     target_to_host_sigset(&set, &sf->mask);
493     set_sigmask(&set);
494 
495     env->pc = tpc;
496     env->npc = tnpc;
497 
498     unlock_user_struct(sf, sf_addr, 0);
499     return -TARGET_QEMU_ESIGRETURN;
500 
501  segv_and_exit:
502     unlock_user_struct(sf, sf_addr, 0);
503     force_sig(TARGET_SIGSEGV);
504     return -TARGET_QEMU_ESIGRETURN;
505 }
506 
507 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
508 #define SPARC_MC_TSTATE 0
509 #define SPARC_MC_PC 1
510 #define SPARC_MC_NPC 2
511 #define SPARC_MC_Y 3
512 #define SPARC_MC_G1 4
513 #define SPARC_MC_G2 5
514 #define SPARC_MC_G3 6
515 #define SPARC_MC_G4 7
516 #define SPARC_MC_G5 8
517 #define SPARC_MC_G6 9
518 #define SPARC_MC_G7 10
519 #define SPARC_MC_O0 11
520 #define SPARC_MC_O1 12
521 #define SPARC_MC_O2 13
522 #define SPARC_MC_O3 14
523 #define SPARC_MC_O4 15
524 #define SPARC_MC_O5 16
525 #define SPARC_MC_O6 17
526 #define SPARC_MC_O7 18
527 #define SPARC_MC_NGREG 19
528 
529 typedef abi_ulong target_mc_greg_t;
530 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
531 
532 struct target_mc_fq {
533     abi_ulong mcfq_addr;
534     uint32_t mcfq_insn;
535 };
536 
537 /*
538  * Note the manual 16-alignment; the kernel gets this because it
539  * includes a "long double qregs[16]" in the mcpu_fregs union,
540  * which we can't do.
541  */
542 struct target_mc_fpu {
543     union {
544         uint32_t sregs[32];
545         uint64_t dregs[32];
546         //uint128_t qregs[16];
547     } mcfpu_fregs;
548     abi_ulong mcfpu_fsr;
549     abi_ulong mcfpu_fprs;
550     abi_ulong mcfpu_gsr;
551     abi_ulong mcfpu_fq;
552     unsigned char mcfpu_qcnt;
553     unsigned char mcfpu_qentsz;
554     unsigned char mcfpu_enab;
555 } __attribute__((aligned(16)));
556 typedef struct target_mc_fpu target_mc_fpu_t;
557 
558 typedef struct {
559     target_mc_gregset_t mc_gregs;
560     target_mc_greg_t mc_fp;
561     target_mc_greg_t mc_i7;
562     target_mc_fpu_t mc_fpregs;
563 } target_mcontext_t;
564 
565 struct target_ucontext {
566     abi_ulong tuc_link;
567     abi_ulong tuc_flags;
568     target_sigset_t tuc_sigmask;
569     target_mcontext_t tuc_mcontext;
570 };
571 
572 /* {set, get}context() needed for 64-bit SparcLinux userland. */
573 void sparc64_set_context(CPUSPARCState *env)
574 {
575     abi_ulong ucp_addr;
576     struct target_ucontext *ucp;
577     target_mc_gregset_t *grp;
578     target_mc_fpu_t *fpup;
579     abi_ulong pc, npc, tstate;
580     unsigned int i;
581     unsigned char fenab;
582 
583     ucp_addr = env->regwptr[WREG_O0];
584     if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
585         goto do_sigsegv;
586     }
587     grp  = &ucp->tuc_mcontext.mc_gregs;
588     __get_user(pc, &((*grp)[SPARC_MC_PC]));
589     __get_user(npc, &((*grp)[SPARC_MC_NPC]));
590     if ((pc | npc) & 3) {
591         goto do_sigsegv;
592     }
593     if (env->regwptr[WREG_O1]) {
594         target_sigset_t target_set;
595         sigset_t set;
596 
597         if (TARGET_NSIG_WORDS == 1) {
598             __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
599         } else {
600             abi_ulong *src, *dst;
601             src = ucp->tuc_sigmask.sig;
602             dst = target_set.sig;
603             for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
604                 __get_user(*dst, src);
605             }
606         }
607         target_to_host_sigset_internal(&set, &target_set);
608         set_sigmask(&set);
609     }
610     env->pc = pc;
611     env->npc = npc;
612     __get_user(env->y, &((*grp)[SPARC_MC_Y]));
613     __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
614     /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
615     env->asi = (tstate >> 24) & 0xff;
616     cpu_put_ccr(env, (tstate >> 32) & 0xff);
617     __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
618     __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
619     __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
620     __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
621     __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
622     __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
623     /* Skip g7 as that's the thread register in userspace */
624 
625     /*
626      * Note that unlike the kernel, we didn't need to mess with the
627      * guest register window state to save it into a pt_regs to run
628      * the kernel. So for us the guest's O regs are still in WREG_O*
629      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
630      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
631      * need to be written back to userspace memory.
632      */
633     __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
634     __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
635     __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
636     __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
637     __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
638     __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
639     __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
640     __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
641 
642     __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
643     __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
644 
645     fpup = &ucp->tuc_mcontext.mc_fpregs;
646 
647     __get_user(fenab, &(fpup->mcfpu_enab));
648     if (fenab) {
649         abi_ulong fprs;
650 
651         /*
652          * We use the FPRS from the guest only in deciding whether
653          * to restore the upper, lower, or both banks of the FPU regs.
654          * The kernel here writes the FPU register data into the
655          * process's current_thread_info state and unconditionally
656          * clears FPRS and TSTATE_PEF: this disables the FPU so that the
657          * next FPU-disabled trap will copy the data out of
658          * current_thread_info and into the real FPU registers.
659          * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
660          * so we always load the data directly into the FPU registers
661          * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
662          * Note that because we (and the kernel) always write zeroes for
663          * the fenab and fprs in sparc64_get_context() none of this code
664          * will execute unless the guest manually constructed or changed
665          * the context structure.
666          */
667         __get_user(fprs, &(fpup->mcfpu_fprs));
668         if (fprs & FPRS_DL) {
669             for (i = 0; i < 16; i++) {
670                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
671             }
672         }
673         if (fprs & FPRS_DU) {
674             for (i = 16; i < 32; i++) {
675                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
676             }
677         }
678         __get_user(env->fsr, &(fpup->mcfpu_fsr));
679         __get_user(env->gsr, &(fpup->mcfpu_gsr));
680     }
681     unlock_user_struct(ucp, ucp_addr, 0);
682     return;
683 do_sigsegv:
684     unlock_user_struct(ucp, ucp_addr, 0);
685     force_sig(TARGET_SIGSEGV);
686 }
687 
688 void sparc64_get_context(CPUSPARCState *env)
689 {
690     abi_ulong ucp_addr;
691     struct target_ucontext *ucp;
692     target_mc_gregset_t *grp;
693     target_mcontext_t *mcp;
694     int err;
695     unsigned int i;
696     target_sigset_t target_set;
697     sigset_t set;
698 
699     ucp_addr = env->regwptr[WREG_O0];
700     if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
701         goto do_sigsegv;
702     }
703 
704     memset(ucp, 0, sizeof(*ucp));
705 
706     mcp = &ucp->tuc_mcontext;
707     grp = &mcp->mc_gregs;
708 
709     /* Skip over the trap instruction, first. */
710     env->pc = env->npc;
711     env->npc += 4;
712 
713     /* If we're only reading the signal mask then do_sigprocmask()
714      * is guaranteed not to fail, which is important because we don't
715      * have any way to signal a failure or restart this operation since
716      * this is not a normal syscall.
717      */
718     err = do_sigprocmask(0, NULL, &set);
719     assert(err == 0);
720     host_to_target_sigset_internal(&target_set, &set);
721     if (TARGET_NSIG_WORDS == 1) {
722         __put_user(target_set.sig[0],
723                    (abi_ulong *)&ucp->tuc_sigmask);
724     } else {
725         abi_ulong *src, *dst;
726         src = target_set.sig;
727         dst = ucp->tuc_sigmask.sig;
728         for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
729             __put_user(*src, dst);
730         }
731     }
732 
733     __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
734     __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
735     __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
736     __put_user(env->y, &((*grp)[SPARC_MC_Y]));
737     __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
738     __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
739     __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
740     __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
741     __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
742     __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
743     __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
744 
745     /*
746      * Note that unlike the kernel, we didn't need to mess with the
747      * guest register window state to save it into a pt_regs to run
748      * the kernel. So for us the guest's O regs are still in WREG_O*
749      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
750      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
751      * need to be fished out of userspace memory.
752      */
753     __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
754     __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
755     __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
756     __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
757     __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
758     __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
759     __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
760     __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
761 
762     __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
763     __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
764 
765     /*
766      * We don't write out the FPU state. This matches the kernel's
767      * implementation (which has the code for doing this but
768      * hidden behind an "if (fenab)" where fenab is always 0).
769      */
770 
771     unlock_user_struct(ucp, ucp_addr, 1);
772     return;
773 do_sigsegv:
774     unlock_user_struct(ucp, ucp_addr, 1);
775     force_sig(TARGET_SIGSEGV);
776 }
777 #endif
778