xref: /openbmc/qemu/linux-user/sparc/signal.c (revision 4a9b31b8)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
23 
24 #define __SUNOS_MAXWIN   31
25 
26 /* This is what SunOS does, so shall I. */
27 struct target_sigcontext {
28     abi_ulong sigc_onstack;      /* state to restore */
29 
30     abi_ulong sigc_mask;         /* sigmask to restore */
31     abi_ulong sigc_sp;           /* stack pointer */
32     abi_ulong sigc_pc;           /* program counter */
33     abi_ulong sigc_npc;          /* next program counter */
34     abi_ulong sigc_psr;          /* for condition codes etc */
35     abi_ulong sigc_g1;           /* User uses these two registers */
36     abi_ulong sigc_o0;           /* within the trampoline code. */
37 
38     /* Now comes information regarding the users window set
39          * at the time of the signal.
40          */
41     abi_ulong sigc_oswins;       /* outstanding windows */
42 
43     /* stack ptrs for each regwin buf */
44     char *sigc_spbuf[__SUNOS_MAXWIN];
45 
46     /* Windows to restore after signal */
47     struct {
48         abi_ulong locals[8];
49         abi_ulong ins[8];
50     } sigc_wbuf[__SUNOS_MAXWIN];
51 };
52 /* A Sparc stack frame */
53 struct sparc_stackf {
54     abi_ulong locals[8];
55     abi_ulong ins[8];
56     /* It's simpler to treat fp and callers_pc as elements of ins[]
57          * since we never need to access them ourselves.
58          */
59     char *structptr;
60     abi_ulong xargs[6];
61     abi_ulong xxargs[1];
62 };
63 
64 typedef struct {
65     struct {
66         abi_ulong psr;
67         abi_ulong pc;
68         abi_ulong npc;
69         abi_ulong y;
70         abi_ulong u_regs[16]; /* globals and ins */
71     }               si_regs;
72     int             si_mask;
73 } __siginfo_t;
74 
75 typedef struct {
76     abi_ulong  si_float_regs[32];
77     unsigned   long si_fsr;
78     unsigned   long si_fpqdepth;
79     struct {
80         unsigned long *insn_addr;
81         unsigned long insn;
82     } si_fpqueue [16];
83 } qemu_siginfo_fpu_t;
84 
85 
86 struct target_signal_frame {
87     struct sparc_stackf ss;
88     __siginfo_t         info;
89     abi_ulong           fpu_save;
90     abi_ulong           insns[2] __attribute__ ((aligned (8)));
91     abi_ulong           extramask[TARGET_NSIG_WORDS - 1];
92     abi_ulong           extra_size; /* Should be 0 */
93     qemu_siginfo_fpu_t fpu_state;
94 };
95 struct target_rt_signal_frame {
96     struct sparc_stackf ss;
97     siginfo_t           info;
98     abi_ulong           regs[20];
99     sigset_t            mask;
100     abi_ulong           fpu_save;
101     unsigned int        insns[2];
102     stack_t             stack;
103     unsigned int        extra_size; /* Should be 0 */
104     qemu_siginfo_fpu_t  fpu_state;
105 };
106 
107 #define UREG_O0        16
108 #define UREG_O6        22
109 #define UREG_I0        0
110 #define UREG_I1        1
111 #define UREG_I2        2
112 #define UREG_I3        3
113 #define UREG_I4        4
114 #define UREG_I5        5
115 #define UREG_I6        6
116 #define UREG_I7        7
117 #define UREG_L0        8
118 #define UREG_FP        UREG_I6
119 #define UREG_SP        UREG_O6
120 
121 static inline abi_ulong get_sigframe(struct target_sigaction *sa,
122                                      CPUSPARCState *env,
123                                      unsigned long framesize)
124 {
125     abi_ulong sp = get_sp_from_cpustate(env);
126 
127     /*
128      * If we are on the alternate signal stack and would overflow it, don't.
129      * Return an always-bogus address instead so we will die with SIGSEGV.
130          */
131     if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
132             return -1;
133     }
134 
135     /* This is the X/Open sanctioned signal stack switching.  */
136     sp = target_sigsp(sp, sa) - framesize;
137 
138     /* Always align the stack frame.  This handles two cases.  First,
139      * sigaltstack need not be mindful of platform specific stack
140      * alignment.  Second, if we took this signal because the stack
141      * is not aligned properly, we'd like to take the signal cleanly
142      * and report that.
143      */
144     sp &= ~15UL;
145 
146     return sp;
147 }
148 
149 static int
150 setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask)
151 {
152     int err = 0, i;
153 
154     __put_user(env->psr, &si->si_regs.psr);
155     __put_user(env->pc, &si->si_regs.pc);
156     __put_user(env->npc, &si->si_regs.npc);
157     __put_user(env->y, &si->si_regs.y);
158     for (i=0; i < 8; i++) {
159         __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
160     }
161     for (i=0; i < 8; i++) {
162         __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]);
163     }
164     __put_user(mask, &si->si_mask);
165     return err;
166 }
167 
168 #if 0
169 static int
170 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
171                  CPUSPARCState *env, unsigned long mask)
172 {
173     int err = 0;
174 
175     __put_user(mask, &sc->sigc_mask);
176     __put_user(env->regwptr[UREG_SP], &sc->sigc_sp);
177     __put_user(env->pc, &sc->sigc_pc);
178     __put_user(env->npc, &sc->sigc_npc);
179     __put_user(env->psr, &sc->sigc_psr);
180     __put_user(env->gregs[1], &sc->sigc_g1);
181     __put_user(env->regwptr[UREG_O0], &sc->sigc_o0);
182 
183     return err;
184 }
185 #endif
186 #define NF_ALIGNEDSZ  (((sizeof(struct target_signal_frame) + 7) & (~7)))
187 
188 void setup_frame(int sig, struct target_sigaction *ka,
189                  target_sigset_t *set, CPUSPARCState *env)
190 {
191     abi_ulong sf_addr;
192     struct target_signal_frame *sf;
193     int sigframe_size, err, i;
194 
195     /* 1. Make sure everything is clean */
196     //synchronize_user_stack();
197 
198     sigframe_size = NF_ALIGNEDSZ;
199     sf_addr = get_sigframe(ka, env, sigframe_size);
200     trace_user_setup_frame(env, sf_addr);
201 
202     sf = lock_user(VERIFY_WRITE, sf_addr,
203                    sizeof(struct target_signal_frame), 0);
204     if (!sf) {
205         goto sigsegv;
206     }
207 #if 0
208     if (invalid_frame_pointer(sf, sigframe_size))
209         goto sigill_and_return;
210 #endif
211     /* 2. Save the current process state */
212     err = setup___siginfo(&sf->info, env, set->sig[0]);
213     __put_user(0, &sf->extra_size);
214 
215     //save_fpu_state(regs, &sf->fpu_state);
216     //__put_user(&sf->fpu_state, &sf->fpu_save);
217 
218     __put_user(set->sig[0], &sf->info.si_mask);
219     for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
220         __put_user(set->sig[i + 1], &sf->extramask[i]);
221     }
222 
223     for (i = 0; i < 8; i++) {
224         __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]);
225     }
226     for (i = 0; i < 8; i++) {
227         __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]);
228     }
229     if (err)
230         goto sigsegv;
231 
232     /* 3. signal handler back-trampoline and parameters */
233     env->regwptr[UREG_FP] = sf_addr;
234     env->regwptr[UREG_I0] = sig;
235     env->regwptr[UREG_I1] = sf_addr +
236             offsetof(struct target_signal_frame, info);
237     env->regwptr[UREG_I2] = sf_addr +
238             offsetof(struct target_signal_frame, info);
239 
240     /* 4. signal handler */
241     env->pc = ka->_sa_handler;
242     env->npc = (env->pc + 4);
243     /* 5. return to kernel instructions */
244     if (ka->ka_restorer) {
245         env->regwptr[UREG_I7] = ka->ka_restorer;
246     } else {
247         uint32_t val32;
248 
249         env->regwptr[UREG_I7] = sf_addr +
250                 offsetof(struct target_signal_frame, insns) - 2 * 4;
251 
252         /* mov __NR_sigreturn, %g1 */
253         val32 = 0x821020d8;
254         __put_user(val32, &sf->insns[0]);
255 
256         /* t 0x10 */
257         val32 = 0x91d02010;
258         __put_user(val32, &sf->insns[1]);
259         if (err)
260             goto sigsegv;
261     }
262     unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
263     return;
264 #if 0
265 sigill_and_return:
266     force_sig(TARGET_SIGILL);
267 #endif
268 sigsegv:
269     unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
270     force_sigsegv(sig);
271 }
272 
273 void setup_rt_frame(int sig, struct target_sigaction *ka,
274                     target_siginfo_t *info,
275                     target_sigset_t *set, CPUSPARCState *env)
276 {
277     qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
278 }
279 
280 long do_sigreturn(CPUSPARCState *env)
281 {
282     abi_ulong sf_addr;
283     struct target_signal_frame *sf;
284     uint32_t up_psr, pc, npc;
285     target_sigset_t set;
286     sigset_t host_set;
287     int err=0, i;
288 
289     sf_addr = env->regwptr[UREG_FP];
290     trace_user_do_sigreturn(env, sf_addr);
291     if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
292         goto segv_and_exit;
293     }
294 
295     /* 1. Make sure we are not getting garbage from the user */
296 
297     if (sf_addr & 3)
298         goto segv_and_exit;
299 
300     __get_user(pc,  &sf->info.si_regs.pc);
301     __get_user(npc, &sf->info.si_regs.npc);
302 
303     if ((pc | npc) & 3) {
304         goto segv_and_exit;
305     }
306 
307     /* 2. Restore the state */
308     __get_user(up_psr, &sf->info.si_regs.psr);
309 
310     /* User can only change condition codes and FPU enabling in %psr. */
311     env->psr = (up_psr & (PSR_ICC /* | PSR_EF */))
312             | (env->psr & ~(PSR_ICC /* | PSR_EF */));
313 
314     env->pc = pc;
315     env->npc = npc;
316     __get_user(env->y, &sf->info.si_regs.y);
317     for (i=0; i < 8; i++) {
318         __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
319     }
320     for (i=0; i < 8; i++) {
321         __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]);
322     }
323 
324     /* FIXME: implement FPU save/restore:
325          * __get_user(fpu_save, &sf->fpu_save);
326          * if (fpu_save)
327          *        err |= restore_fpu_state(env, fpu_save);
328          */
329 
330     /* This is pretty much atomic, no amount locking would prevent
331          * the races which exist anyways.
332          */
333     __get_user(set.sig[0], &sf->info.si_mask);
334     for(i = 1; i < TARGET_NSIG_WORDS; i++) {
335         __get_user(set.sig[i], &sf->extramask[i - 1]);
336     }
337 
338     target_to_host_sigset_internal(&host_set, &set);
339     set_sigmask(&host_set);
340 
341     if (err) {
342         goto segv_and_exit;
343     }
344     unlock_user_struct(sf, sf_addr, 0);
345     return -TARGET_QEMU_ESIGRETURN;
346 
347 segv_and_exit:
348     unlock_user_struct(sf, sf_addr, 0);
349     force_sig(TARGET_SIGSEGV);
350     return -TARGET_QEMU_ESIGRETURN;
351 }
352 
353 long do_rt_sigreturn(CPUSPARCState *env)
354 {
355     trace_user_do_rt_sigreturn(env, 0);
356     qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
357     return -TARGET_ENOSYS;
358 }
359 
360 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
361 #define SPARC_MC_TSTATE 0
362 #define SPARC_MC_PC 1
363 #define SPARC_MC_NPC 2
364 #define SPARC_MC_Y 3
365 #define SPARC_MC_G1 4
366 #define SPARC_MC_G2 5
367 #define SPARC_MC_G3 6
368 #define SPARC_MC_G4 7
369 #define SPARC_MC_G5 8
370 #define SPARC_MC_G6 9
371 #define SPARC_MC_G7 10
372 #define SPARC_MC_O0 11
373 #define SPARC_MC_O1 12
374 #define SPARC_MC_O2 13
375 #define SPARC_MC_O3 14
376 #define SPARC_MC_O4 15
377 #define SPARC_MC_O5 16
378 #define SPARC_MC_O6 17
379 #define SPARC_MC_O7 18
380 #define SPARC_MC_NGREG 19
381 
382 typedef abi_ulong target_mc_greg_t;
383 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
384 
385 struct target_mc_fq {
386     abi_ulong *mcfq_addr;
387     uint32_t mcfq_insn;
388 };
389 
390 struct target_mc_fpu {
391     union {
392         uint32_t sregs[32];
393         uint64_t dregs[32];
394         //uint128_t qregs[16];
395     } mcfpu_fregs;
396     abi_ulong mcfpu_fsr;
397     abi_ulong mcfpu_fprs;
398     abi_ulong mcfpu_gsr;
399     struct target_mc_fq *mcfpu_fq;
400     unsigned char mcfpu_qcnt;
401     unsigned char mcfpu_qentsz;
402     unsigned char mcfpu_enab;
403 };
404 typedef struct target_mc_fpu target_mc_fpu_t;
405 
406 typedef struct {
407     target_mc_gregset_t mc_gregs;
408     target_mc_greg_t mc_fp;
409     target_mc_greg_t mc_i7;
410     target_mc_fpu_t mc_fpregs;
411 } target_mcontext_t;
412 
413 struct target_ucontext {
414     struct target_ucontext *tuc_link;
415     abi_ulong tuc_flags;
416     target_sigset_t tuc_sigmask;
417     target_mcontext_t tuc_mcontext;
418 };
419 
420 /* A V9 register window */
421 struct target_reg_window {
422     abi_ulong locals[8];
423     abi_ulong ins[8];
424 };
425 
426 #define TARGET_STACK_BIAS 2047
427 
428 /* {set, get}context() needed for 64-bit SparcLinux userland. */
429 void sparc64_set_context(CPUSPARCState *env)
430 {
431     abi_ulong ucp_addr;
432     struct target_ucontext *ucp;
433     target_mc_gregset_t *grp;
434     abi_ulong pc, npc, tstate;
435     abi_ulong fp, i7, w_addr;
436     unsigned int i;
437 
438     ucp_addr = env->regwptr[UREG_I0];
439     if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
440         goto do_sigsegv;
441     }
442     grp  = &ucp->tuc_mcontext.mc_gregs;
443     __get_user(pc, &((*grp)[SPARC_MC_PC]));
444     __get_user(npc, &((*grp)[SPARC_MC_NPC]));
445     if ((pc | npc) & 3) {
446         goto do_sigsegv;
447     }
448     if (env->regwptr[UREG_I1]) {
449         target_sigset_t target_set;
450         sigset_t set;
451 
452         if (TARGET_NSIG_WORDS == 1) {
453             __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
454         } else {
455             abi_ulong *src, *dst;
456             src = ucp->tuc_sigmask.sig;
457             dst = target_set.sig;
458             for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
459                 __get_user(*dst, src);
460             }
461         }
462         target_to_host_sigset_internal(&set, &target_set);
463         set_sigmask(&set);
464     }
465     env->pc = pc;
466     env->npc = npc;
467     __get_user(env->y, &((*grp)[SPARC_MC_Y]));
468     __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
469     env->asi = (tstate >> 24) & 0xff;
470     cpu_put_ccr(env, tstate >> 32);
471     cpu_put_cwp64(env, tstate & 0x1f);
472     __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
473     __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
474     __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
475     __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
476     __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
477     __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
478     __get_user(env->gregs[7], (&(*grp)[SPARC_MC_G7]));
479     __get_user(env->regwptr[UREG_I0], (&(*grp)[SPARC_MC_O0]));
480     __get_user(env->regwptr[UREG_I1], (&(*grp)[SPARC_MC_O1]));
481     __get_user(env->regwptr[UREG_I2], (&(*grp)[SPARC_MC_O2]));
482     __get_user(env->regwptr[UREG_I3], (&(*grp)[SPARC_MC_O3]));
483     __get_user(env->regwptr[UREG_I4], (&(*grp)[SPARC_MC_O4]));
484     __get_user(env->regwptr[UREG_I5], (&(*grp)[SPARC_MC_O5]));
485     __get_user(env->regwptr[UREG_I6], (&(*grp)[SPARC_MC_O6]));
486     __get_user(env->regwptr[UREG_I7], (&(*grp)[SPARC_MC_O7]));
487 
488     __get_user(fp, &(ucp->tuc_mcontext.mc_fp));
489     __get_user(i7, &(ucp->tuc_mcontext.mc_i7));
490 
491     w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6];
492     if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]),
493                  abi_ulong) != 0) {
494         goto do_sigsegv;
495     }
496     if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]),
497                  abi_ulong) != 0) {
498         goto do_sigsegv;
499     }
500     /* FIXME this does not match how the kernel handles the FPU in
501      * its sparc64_set_context implementation. In particular the FPU
502      * is only restored if fenab is non-zero in:
503      *   __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab));
504      */
505     __get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs));
506     {
507         uint32_t *src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs;
508         for (i = 0; i < 64; i++, src++) {
509             if (i & 1) {
510                 __get_user(env->fpr[i/2].l.lower, src);
511             } else {
512                 __get_user(env->fpr[i/2].l.upper, src);
513             }
514         }
515     }
516     __get_user(env->fsr,
517                &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr));
518     __get_user(env->gsr,
519                &(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr));
520     unlock_user_struct(ucp, ucp_addr, 0);
521     return;
522 do_sigsegv:
523     unlock_user_struct(ucp, ucp_addr, 0);
524     force_sig(TARGET_SIGSEGV);
525 }
526 
527 void sparc64_get_context(CPUSPARCState *env)
528 {
529     abi_ulong ucp_addr;
530     struct target_ucontext *ucp;
531     target_mc_gregset_t *grp;
532     target_mcontext_t *mcp;
533     abi_ulong fp, i7, w_addr;
534     int err;
535     unsigned int i;
536     target_sigset_t target_set;
537     sigset_t set;
538 
539     ucp_addr = env->regwptr[UREG_I0];
540     if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
541         goto do_sigsegv;
542     }
543 
544     mcp = &ucp->tuc_mcontext;
545     grp = &mcp->mc_gregs;
546 
547     /* Skip over the trap instruction, first. */
548     env->pc = env->npc;
549     env->npc += 4;
550 
551     /* If we're only reading the signal mask then do_sigprocmask()
552      * is guaranteed not to fail, which is important because we don't
553      * have any way to signal a failure or restart this operation since
554      * this is not a normal syscall.
555      */
556     err = do_sigprocmask(0, NULL, &set);
557     assert(err == 0);
558     host_to_target_sigset_internal(&target_set, &set);
559     if (TARGET_NSIG_WORDS == 1) {
560         __put_user(target_set.sig[0],
561                    (abi_ulong *)&ucp->tuc_sigmask);
562     } else {
563         abi_ulong *src, *dst;
564         src = target_set.sig;
565         dst = ucp->tuc_sigmask.sig;
566         for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
567             __put_user(*src, dst);
568         }
569         if (err)
570             goto do_sigsegv;
571     }
572 
573     /* XXX: tstate must be saved properly */
574     //    __put_user(env->tstate, &((*grp)[SPARC_MC_TSTATE]));
575     __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
576     __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
577     __put_user(env->y, &((*grp)[SPARC_MC_Y]));
578     __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
579     __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
580     __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
581     __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
582     __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
583     __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
584     __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
585     __put_user(env->regwptr[UREG_I0], &((*grp)[SPARC_MC_O0]));
586     __put_user(env->regwptr[UREG_I1], &((*grp)[SPARC_MC_O1]));
587     __put_user(env->regwptr[UREG_I2], &((*grp)[SPARC_MC_O2]));
588     __put_user(env->regwptr[UREG_I3], &((*grp)[SPARC_MC_O3]));
589     __put_user(env->regwptr[UREG_I4], &((*grp)[SPARC_MC_O4]));
590     __put_user(env->regwptr[UREG_I5], &((*grp)[SPARC_MC_O5]));
591     __put_user(env->regwptr[UREG_I6], &((*grp)[SPARC_MC_O6]));
592     __put_user(env->regwptr[UREG_I7], &((*grp)[SPARC_MC_O7]));
593 
594     w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6];
595     fp = i7 = 0;
596     if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]),
597                  abi_ulong) != 0) {
598         goto do_sigsegv;
599     }
600     if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]),
601                  abi_ulong) != 0) {
602         goto do_sigsegv;
603     }
604     __put_user(fp, &(mcp->mc_fp));
605     __put_user(i7, &(mcp->mc_i7));
606 
607     {
608         uint32_t *dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs;
609         for (i = 0; i < 64; i++, dst++) {
610             if (i & 1) {
611                 __put_user(env->fpr[i/2].l.lower, dst);
612             } else {
613                 __put_user(env->fpr[i/2].l.upper, dst);
614             }
615         }
616     }
617     __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr));
618     __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr));
619     __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs));
620 
621     if (err)
622         goto do_sigsegv;
623     unlock_user_struct(ucp, ucp_addr, 1);
624     return;
625 do_sigsegv:
626     unlock_user_struct(ucp, ucp_addr, 1);
627     force_sig(TARGET_SIGSEGV);
628 }
629 #endif
630