1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "signal-common.h" 22 #include "linux-user/trace.h" 23 24 /* A Sparc register window */ 25 struct target_reg_window { 26 abi_ulong locals[8]; 27 abi_ulong ins[8]; 28 }; 29 30 /* A Sparc stack frame. */ 31 struct target_stackf { 32 /* 33 * Since qemu does not reference fp or callers_pc directly, 34 * it's simpler to treat fp and callers_pc as elements of ins[], 35 * and then bundle locals[] and ins[] into reg_window. 36 */ 37 struct target_reg_window win; 38 /* 39 * Similarly, bundle structptr and xxargs into xargs[]. 40 * This portion of the struct is part of the function call abi, 41 * and belongs to the callee for spilling argument registers. 42 */ 43 abi_ulong xargs[8]; 44 }; 45 46 typedef struct { 47 abi_ulong si_float_regs[32]; 48 unsigned long si_fsr; 49 unsigned long si_fpqdepth; 50 struct { 51 unsigned long *insn_addr; 52 unsigned long insn; 53 } si_fpqueue [16]; 54 } qemu_siginfo_fpu_t; 55 56 57 struct target_signal_frame { 58 struct target_stackf ss; 59 struct target_pt_regs regs; 60 uint32_t si_mask; 61 abi_ulong fpu_save; 62 uint32_t insns[2] QEMU_ALIGNED(8); 63 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 64 abi_ulong extra_size; /* Should be 0 */ 65 qemu_siginfo_fpu_t fpu_state; 66 }; 67 68 static inline abi_ulong get_sigframe(struct target_sigaction *sa, 69 CPUSPARCState *env, 70 unsigned long framesize) 71 { 72 abi_ulong sp = get_sp_from_cpustate(env); 73 74 /* 75 * If we are on the alternate signal stack and would overflow it, don't. 76 * Return an always-bogus address instead so we will die with SIGSEGV. 77 */ 78 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { 79 return -1; 80 } 81 82 /* This is the X/Open sanctioned signal stack switching. */ 83 sp = target_sigsp(sp, sa) - framesize; 84 85 /* Always align the stack frame. This handles two cases. First, 86 * sigaltstack need not be mindful of platform specific stack 87 * alignment. Second, if we took this signal because the stack 88 * is not aligned properly, we'd like to take the signal cleanly 89 * and report that. 90 */ 91 sp &= ~15UL; 92 93 return sp; 94 } 95 96 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 97 { 98 int i; 99 100 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 101 __put_user(sparc64_tstate(env), ®s->tstate); 102 /* TODO: magic should contain PT_REG_MAGIC + %tt. */ 103 __put_user(0, ®s->magic); 104 #else 105 __put_user(cpu_get_psr(env), ®s->psr); 106 #endif 107 108 __put_user(env->pc, ®s->pc); 109 __put_user(env->npc, ®s->npc); 110 __put_user(env->y, ®s->y); 111 112 for (i = 0; i < 8; i++) { 113 __put_user(env->gregs[i], ®s->u_regs[i]); 114 } 115 for (i = 0; i < 8; i++) { 116 __put_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 117 } 118 } 119 120 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 121 { 122 int i; 123 124 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 125 /* User can only change condition codes and %asi in %tstate. */ 126 uint64_t tstate; 127 __get_user(tstate, ®s->tstate); 128 cpu_put_ccr(env, tstate >> 32); 129 env->asi = extract64(tstate, 24, 8); 130 #else 131 /* 132 * User can only change condition codes and FPU enabling in %psr. 133 * But don't bother with FPU enabling, since a real kernel would 134 * just re-enable the FPU upon the next fpu trap. 135 */ 136 uint32_t psr; 137 __get_user(psr, ®s->psr); 138 env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC); 139 #endif 140 141 /* Note that pc and npc are handled in the caller. */ 142 143 __get_user(env->y, ®s->y); 144 145 for (i = 0; i < 8; i++) { 146 __get_user(env->gregs[i], ®s->u_regs[i]); 147 } 148 for (i = 0; i < 8; i++) { 149 __get_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 150 } 151 } 152 153 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env) 154 { 155 int i; 156 157 for (i = 0; i < 8; i++) { 158 __put_user(env->regwptr[i + WREG_L0], &win->locals[i]); 159 } 160 for (i = 0; i < 8; i++) { 161 __put_user(env->regwptr[i + WREG_I0], &win->ins[i]); 162 } 163 } 164 165 #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) 166 167 void setup_frame(int sig, struct target_sigaction *ka, 168 target_sigset_t *set, CPUSPARCState *env) 169 { 170 abi_ulong sf_addr; 171 struct target_signal_frame *sf; 172 int sigframe_size, i; 173 174 /* 1. Make sure everything is clean */ 175 //synchronize_user_stack(); 176 177 sigframe_size = NF_ALIGNEDSZ; 178 sf_addr = get_sigframe(ka, env, sigframe_size); 179 trace_user_setup_frame(env, sf_addr); 180 181 sf = lock_user(VERIFY_WRITE, sf_addr, 182 sizeof(struct target_signal_frame), 0); 183 if (!sf) { 184 goto sigsegv; 185 } 186 /* 2. Save the current process state */ 187 save_pt_regs(&sf->regs, env); 188 __put_user(0, &sf->extra_size); 189 190 //save_fpu_state(regs, &sf->fpu_state); 191 //__put_user(&sf->fpu_state, &sf->fpu_save); 192 193 __put_user(set->sig[0], &sf->si_mask); 194 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 195 __put_user(set->sig[i + 1], &sf->extramask[i]); 196 } 197 198 save_reg_win(&sf->ss.win, env); 199 200 /* 3. signal handler back-trampoline and parameters */ 201 env->regwptr[WREG_SP] = sf_addr; 202 env->regwptr[WREG_O0] = sig; 203 env->regwptr[WREG_O1] = sf_addr + 204 offsetof(struct target_signal_frame, regs); 205 env->regwptr[WREG_O2] = sf_addr + 206 offsetof(struct target_signal_frame, regs); 207 208 /* 4. signal handler */ 209 env->pc = ka->_sa_handler; 210 env->npc = (env->pc + 4); 211 /* 5. return to kernel instructions */ 212 if (ka->ka_restorer) { 213 env->regwptr[WREG_O7] = ka->ka_restorer; 214 } else { 215 uint32_t val32; 216 217 env->regwptr[WREG_O7] = sf_addr + 218 offsetof(struct target_signal_frame, insns) - 2 * 4; 219 220 /* mov __NR_sigreturn, %g1 */ 221 val32 = 0x821020d8; 222 __put_user(val32, &sf->insns[0]); 223 224 /* t 0x10 */ 225 val32 = 0x91d02010; 226 __put_user(val32, &sf->insns[1]); 227 } 228 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); 229 return; 230 #if 0 231 sigill_and_return: 232 force_sig(TARGET_SIGILL); 233 #endif 234 sigsegv: 235 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); 236 force_sigsegv(sig); 237 } 238 239 void setup_rt_frame(int sig, struct target_sigaction *ka, 240 target_siginfo_t *info, 241 target_sigset_t *set, CPUSPARCState *env) 242 { 243 qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n"); 244 } 245 246 long do_sigreturn(CPUSPARCState *env) 247 { 248 abi_ulong sf_addr; 249 struct target_signal_frame *sf; 250 abi_ulong pc, npc; 251 target_sigset_t set; 252 sigset_t host_set; 253 int i; 254 255 sf_addr = env->regwptr[WREG_SP]; 256 trace_user_do_sigreturn(env, sf_addr); 257 if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 258 goto segv_and_exit; 259 } 260 261 /* 1. Make sure we are not getting garbage from the user */ 262 263 if (sf_addr & 3) 264 goto segv_and_exit; 265 266 __get_user(pc, &sf->regs.pc); 267 __get_user(npc, &sf->regs.npc); 268 269 if ((pc | npc) & 3) { 270 goto segv_and_exit; 271 } 272 273 /* 2. Restore the state */ 274 restore_pt_regs(&sf->regs, env); 275 env->pc = pc; 276 env->npc = npc; 277 278 /* FIXME: implement FPU save/restore: 279 * __get_user(fpu_save, &sf->fpu_save); 280 * if (fpu_save) { 281 * if (restore_fpu_state(env, fpu_save)) { 282 * goto segv_and_exit; 283 * } 284 * } 285 */ 286 287 __get_user(set.sig[0], &sf->si_mask); 288 for (i = 1; i < TARGET_NSIG_WORDS; i++) { 289 __get_user(set.sig[i], &sf->extramask[i - 1]); 290 } 291 292 target_to_host_sigset_internal(&host_set, &set); 293 set_sigmask(&host_set); 294 295 unlock_user_struct(sf, sf_addr, 0); 296 return -TARGET_QEMU_ESIGRETURN; 297 298 segv_and_exit: 299 unlock_user_struct(sf, sf_addr, 0); 300 force_sig(TARGET_SIGSEGV); 301 return -TARGET_QEMU_ESIGRETURN; 302 } 303 304 long do_rt_sigreturn(CPUSPARCState *env) 305 { 306 trace_user_do_rt_sigreturn(env, 0); 307 qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n"); 308 return -TARGET_ENOSYS; 309 } 310 311 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 312 #define SPARC_MC_TSTATE 0 313 #define SPARC_MC_PC 1 314 #define SPARC_MC_NPC 2 315 #define SPARC_MC_Y 3 316 #define SPARC_MC_G1 4 317 #define SPARC_MC_G2 5 318 #define SPARC_MC_G3 6 319 #define SPARC_MC_G4 7 320 #define SPARC_MC_G5 8 321 #define SPARC_MC_G6 9 322 #define SPARC_MC_G7 10 323 #define SPARC_MC_O0 11 324 #define SPARC_MC_O1 12 325 #define SPARC_MC_O2 13 326 #define SPARC_MC_O3 14 327 #define SPARC_MC_O4 15 328 #define SPARC_MC_O5 16 329 #define SPARC_MC_O6 17 330 #define SPARC_MC_O7 18 331 #define SPARC_MC_NGREG 19 332 333 typedef abi_ulong target_mc_greg_t; 334 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; 335 336 struct target_mc_fq { 337 abi_ulong mcfq_addr; 338 uint32_t mcfq_insn; 339 }; 340 341 /* 342 * Note the manual 16-alignment; the kernel gets this because it 343 * includes a "long double qregs[16]" in the mcpu_fregs union, 344 * which we can't do. 345 */ 346 struct target_mc_fpu { 347 union { 348 uint32_t sregs[32]; 349 uint64_t dregs[32]; 350 //uint128_t qregs[16]; 351 } mcfpu_fregs; 352 abi_ulong mcfpu_fsr; 353 abi_ulong mcfpu_fprs; 354 abi_ulong mcfpu_gsr; 355 abi_ulong mcfpu_fq; 356 unsigned char mcfpu_qcnt; 357 unsigned char mcfpu_qentsz; 358 unsigned char mcfpu_enab; 359 } __attribute__((aligned(16))); 360 typedef struct target_mc_fpu target_mc_fpu_t; 361 362 typedef struct { 363 target_mc_gregset_t mc_gregs; 364 target_mc_greg_t mc_fp; 365 target_mc_greg_t mc_i7; 366 target_mc_fpu_t mc_fpregs; 367 } target_mcontext_t; 368 369 struct target_ucontext { 370 abi_ulong tuc_link; 371 abi_ulong tuc_flags; 372 target_sigset_t tuc_sigmask; 373 target_mcontext_t tuc_mcontext; 374 }; 375 376 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 377 void sparc64_set_context(CPUSPARCState *env) 378 { 379 abi_ulong ucp_addr; 380 struct target_ucontext *ucp; 381 target_mc_gregset_t *grp; 382 target_mc_fpu_t *fpup; 383 abi_ulong pc, npc, tstate; 384 unsigned int i; 385 unsigned char fenab; 386 387 ucp_addr = env->regwptr[WREG_O0]; 388 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 389 goto do_sigsegv; 390 } 391 grp = &ucp->tuc_mcontext.mc_gregs; 392 __get_user(pc, &((*grp)[SPARC_MC_PC])); 393 __get_user(npc, &((*grp)[SPARC_MC_NPC])); 394 if ((pc | npc) & 3) { 395 goto do_sigsegv; 396 } 397 if (env->regwptr[WREG_O1]) { 398 target_sigset_t target_set; 399 sigset_t set; 400 401 if (TARGET_NSIG_WORDS == 1) { 402 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 403 } else { 404 abi_ulong *src, *dst; 405 src = ucp->tuc_sigmask.sig; 406 dst = target_set.sig; 407 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 408 __get_user(*dst, src); 409 } 410 } 411 target_to_host_sigset_internal(&set, &target_set); 412 set_sigmask(&set); 413 } 414 env->pc = pc; 415 env->npc = npc; 416 __get_user(env->y, &((*grp)[SPARC_MC_Y])); 417 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); 418 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */ 419 env->asi = (tstate >> 24) & 0xff; 420 cpu_put_ccr(env, (tstate >> 32) & 0xff); 421 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); 422 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); 423 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); 424 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); 425 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); 426 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); 427 /* Skip g7 as that's the thread register in userspace */ 428 429 /* 430 * Note that unlike the kernel, we didn't need to mess with the 431 * guest register window state to save it into a pt_regs to run 432 * the kernel. So for us the guest's O regs are still in WREG_O* 433 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 434 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 435 * need to be written back to userspace memory. 436 */ 437 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); 438 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); 439 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); 440 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); 441 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); 442 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); 443 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); 444 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); 445 446 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); 447 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); 448 449 fpup = &ucp->tuc_mcontext.mc_fpregs; 450 451 __get_user(fenab, &(fpup->mcfpu_enab)); 452 if (fenab) { 453 abi_ulong fprs; 454 455 /* 456 * We use the FPRS from the guest only in deciding whether 457 * to restore the upper, lower, or both banks of the FPU regs. 458 * The kernel here writes the FPU register data into the 459 * process's current_thread_info state and unconditionally 460 * clears FPRS and TSTATE_PEF: this disables the FPU so that the 461 * next FPU-disabled trap will copy the data out of 462 * current_thread_info and into the real FPU registers. 463 * QEMU doesn't need to handle lazy-FPU-state-restoring like that, 464 * so we always load the data directly into the FPU registers 465 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled). 466 * Note that because we (and the kernel) always write zeroes for 467 * the fenab and fprs in sparc64_get_context() none of this code 468 * will execute unless the guest manually constructed or changed 469 * the context structure. 470 */ 471 __get_user(fprs, &(fpup->mcfpu_fprs)); 472 if (fprs & FPRS_DL) { 473 for (i = 0; i < 16; i++) { 474 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 475 } 476 } 477 if (fprs & FPRS_DU) { 478 for (i = 16; i < 32; i++) { 479 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 480 } 481 } 482 __get_user(env->fsr, &(fpup->mcfpu_fsr)); 483 __get_user(env->gsr, &(fpup->mcfpu_gsr)); 484 } 485 unlock_user_struct(ucp, ucp_addr, 0); 486 return; 487 do_sigsegv: 488 unlock_user_struct(ucp, ucp_addr, 0); 489 force_sig(TARGET_SIGSEGV); 490 } 491 492 void sparc64_get_context(CPUSPARCState *env) 493 { 494 abi_ulong ucp_addr; 495 struct target_ucontext *ucp; 496 target_mc_gregset_t *grp; 497 target_mcontext_t *mcp; 498 int err; 499 unsigned int i; 500 target_sigset_t target_set; 501 sigset_t set; 502 503 ucp_addr = env->regwptr[WREG_O0]; 504 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 505 goto do_sigsegv; 506 } 507 508 memset(ucp, 0, sizeof(*ucp)); 509 510 mcp = &ucp->tuc_mcontext; 511 grp = &mcp->mc_gregs; 512 513 /* Skip over the trap instruction, first. */ 514 env->pc = env->npc; 515 env->npc += 4; 516 517 /* If we're only reading the signal mask then do_sigprocmask() 518 * is guaranteed not to fail, which is important because we don't 519 * have any way to signal a failure or restart this operation since 520 * this is not a normal syscall. 521 */ 522 err = do_sigprocmask(0, NULL, &set); 523 assert(err == 0); 524 host_to_target_sigset_internal(&target_set, &set); 525 if (TARGET_NSIG_WORDS == 1) { 526 __put_user(target_set.sig[0], 527 (abi_ulong *)&ucp->tuc_sigmask); 528 } else { 529 abi_ulong *src, *dst; 530 src = target_set.sig; 531 dst = ucp->tuc_sigmask.sig; 532 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 533 __put_user(*src, dst); 534 } 535 } 536 537 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE])); 538 __put_user(env->pc, &((*grp)[SPARC_MC_PC])); 539 __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); 540 __put_user(env->y, &((*grp)[SPARC_MC_Y])); 541 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); 542 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); 543 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); 544 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); 545 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); 546 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); 547 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); 548 549 /* 550 * Note that unlike the kernel, we didn't need to mess with the 551 * guest register window state to save it into a pt_regs to run 552 * the kernel. So for us the guest's O regs are still in WREG_O* 553 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 554 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 555 * need to be fished out of userspace memory. 556 */ 557 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); 558 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); 559 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); 560 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); 561 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); 562 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); 563 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); 564 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); 565 566 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); 567 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); 568 569 /* 570 * We don't write out the FPU state. This matches the kernel's 571 * implementation (which has the code for doing this but 572 * hidden behind an "if (fenab)" where fenab is always 0). 573 */ 574 575 unlock_user_struct(ucp, ucp_addr, 1); 576 return; 577 do_sigsegv: 578 unlock_user_struct(ucp, ucp_addr, 1); 579 force_sig(TARGET_SIGSEGV); 580 } 581 #endif 582