1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "user-internals.h" 22 #include "signal-common.h" 23 #include "linux-user/trace.h" 24 25 /* A Sparc register window */ 26 struct target_reg_window { 27 abi_ulong locals[8]; 28 abi_ulong ins[8]; 29 }; 30 31 /* A Sparc stack frame. */ 32 struct target_stackf { 33 /* 34 * Since qemu does not reference fp or callers_pc directly, 35 * it's simpler to treat fp and callers_pc as elements of ins[], 36 * and then bundle locals[] and ins[] into reg_window. 37 */ 38 struct target_reg_window win; 39 /* 40 * Similarly, bundle structptr and xxargs into xargs[]. 41 * This portion of the struct is part of the function call abi, 42 * and belongs to the callee for spilling argument registers. 43 */ 44 abi_ulong xargs[8]; 45 }; 46 47 struct target_siginfo_fpu { 48 #ifdef TARGET_SPARC64 49 uint64_t si_double_regs[32]; 50 uint64_t si_fsr; 51 uint64_t si_gsr; 52 uint64_t si_fprs; 53 #else 54 /* It is more convenient for qemu to move doubles, not singles. */ 55 uint64_t si_double_regs[16]; 56 uint32_t si_fsr; 57 uint32_t si_fpqdepth; 58 struct { 59 uint32_t insn_addr; 60 uint32_t insn; 61 } si_fpqueue [16]; 62 #endif 63 }; 64 65 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 66 struct target_signal_frame { 67 struct target_stackf ss; 68 struct target_pt_regs regs; 69 uint32_t si_mask; 70 abi_ulong fpu_save; 71 uint32_t insns[2] QEMU_ALIGNED(8); 72 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 73 abi_ulong extra_size; /* Should be 0 */ 74 abi_ulong rwin_save; 75 }; 76 #endif 77 78 struct target_rt_signal_frame { 79 struct target_stackf ss; 80 target_siginfo_t info; 81 struct target_pt_regs regs; 82 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 83 abi_ulong fpu_save; 84 target_stack_t stack; 85 target_sigset_t mask; 86 #else 87 target_sigset_t mask; 88 abi_ulong fpu_save; 89 uint32_t insns[2]; 90 target_stack_t stack; 91 abi_ulong extra_size; /* Should be 0 */ 92 #endif 93 abi_ulong rwin_save; 94 }; 95 96 static abi_ulong get_sigframe(struct target_sigaction *sa, 97 CPUSPARCState *env, 98 size_t framesize) 99 { 100 abi_ulong sp = get_sp_from_cpustate(env); 101 102 /* 103 * If we are on the alternate signal stack and would overflow it, don't. 104 * Return an always-bogus address instead so we will die with SIGSEGV. 105 */ 106 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { 107 return -1; 108 } 109 110 /* This is the X/Open sanctioned signal stack switching. */ 111 sp = target_sigsp(sp, sa) - framesize; 112 113 /* 114 * Always align the stack frame. This handles two cases. First, 115 * sigaltstack need not be mindful of platform specific stack 116 * alignment. Second, if we took this signal because the stack 117 * is not aligned properly, we'd like to take the signal cleanly 118 * and report that. 119 */ 120 sp &= ~15UL; 121 122 return sp; 123 } 124 125 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 126 { 127 int i; 128 129 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 130 __put_user(sparc64_tstate(env), ®s->tstate); 131 /* TODO: magic should contain PT_REG_MAGIC + %tt. */ 132 __put_user(0, ®s->magic); 133 #else 134 __put_user(cpu_get_psr(env), ®s->psr); 135 #endif 136 137 __put_user(env->pc, ®s->pc); 138 __put_user(env->npc, ®s->npc); 139 __put_user(env->y, ®s->y); 140 141 for (i = 0; i < 8; i++) { 142 __put_user(env->gregs[i], ®s->u_regs[i]); 143 } 144 for (i = 0; i < 8; i++) { 145 __put_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 146 } 147 } 148 149 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 150 { 151 int i; 152 153 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 154 /* User can only change condition codes and %asi in %tstate. */ 155 uint64_t tstate; 156 __get_user(tstate, ®s->tstate); 157 cpu_put_ccr(env, tstate >> 32); 158 env->asi = extract64(tstate, 24, 8); 159 #else 160 /* 161 * User can only change condition codes and FPU enabling in %psr. 162 * But don't bother with FPU enabling, since a real kernel would 163 * just re-enable the FPU upon the next fpu trap. 164 */ 165 uint32_t psr; 166 __get_user(psr, ®s->psr); 167 env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC); 168 #endif 169 170 /* Note that pc and npc are handled in the caller. */ 171 172 __get_user(env->y, ®s->y); 173 174 for (i = 0; i < 8; i++) { 175 __get_user(env->gregs[i], ®s->u_regs[i]); 176 } 177 for (i = 0; i < 8; i++) { 178 __get_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 179 } 180 } 181 182 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env) 183 { 184 int i; 185 186 for (i = 0; i < 8; i++) { 187 __put_user(env->regwptr[i + WREG_L0], &win->locals[i]); 188 } 189 for (i = 0; i < 8; i++) { 190 __put_user(env->regwptr[i + WREG_I0], &win->ins[i]); 191 } 192 } 193 194 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 195 { 196 int i; 197 198 #ifdef TARGET_SPARC64 199 for (i = 0; i < 32; ++i) { 200 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 201 } 202 __put_user(env->fsr, &fpu->si_fsr); 203 __put_user(env->gsr, &fpu->si_gsr); 204 __put_user(env->fprs, &fpu->si_fprs); 205 #else 206 for (i = 0; i < 16; ++i) { 207 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 208 } 209 __put_user(env->fsr, &fpu->si_fsr); 210 __put_user(0, &fpu->si_fpqdepth); 211 #endif 212 } 213 214 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 215 { 216 int i; 217 218 #ifdef TARGET_SPARC64 219 uint64_t fprs; 220 __get_user(fprs, &fpu->si_fprs); 221 222 /* In case the user mucks about with FPRS, restore as directed. */ 223 if (fprs & FPRS_DL) { 224 for (i = 0; i < 16; ++i) { 225 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 226 } 227 } 228 if (fprs & FPRS_DU) { 229 for (i = 16; i < 32; ++i) { 230 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 231 } 232 } 233 __get_user(env->fsr, &fpu->si_fsr); 234 __get_user(env->gsr, &fpu->si_gsr); 235 env->fprs |= fprs; 236 #else 237 for (i = 0; i < 16; ++i) { 238 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 239 } 240 __get_user(env->fsr, &fpu->si_fsr); 241 #endif 242 } 243 244 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 245 void setup_frame(int sig, struct target_sigaction *ka, 246 target_sigset_t *set, CPUSPARCState *env) 247 { 248 abi_ulong sf_addr; 249 struct target_signal_frame *sf; 250 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 251 int i; 252 253 sf_addr = get_sigframe(ka, env, sf_size); 254 trace_user_setup_frame(env, sf_addr); 255 256 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 257 if (!sf) { 258 force_sigsegv(sig); 259 return; 260 } 261 262 /* 2. Save the current process state */ 263 save_pt_regs(&sf->regs, env); 264 __put_user(0, &sf->extra_size); 265 266 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 267 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 268 269 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 270 271 __put_user(set->sig[0], &sf->si_mask); 272 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 273 __put_user(set->sig[i + 1], &sf->extramask[i]); 274 } 275 276 save_reg_win(&sf->ss.win, env); 277 278 /* 3. signal handler back-trampoline and parameters */ 279 env->regwptr[WREG_SP] = sf_addr; 280 env->regwptr[WREG_O0] = sig; 281 env->regwptr[WREG_O1] = sf_addr + 282 offsetof(struct target_signal_frame, regs); 283 env->regwptr[WREG_O2] = sf_addr + 284 offsetof(struct target_signal_frame, regs); 285 286 /* 4. signal handler */ 287 env->pc = ka->_sa_handler; 288 env->npc = env->pc + 4; 289 290 /* 5. return to kernel instructions */ 291 if (ka->ka_restorer) { 292 env->regwptr[WREG_O7] = ka->ka_restorer; 293 } else { 294 env->regwptr[WREG_O7] = sf_addr + 295 offsetof(struct target_signal_frame, insns) - 2 * 4; 296 297 /* mov __NR_sigreturn, %g1 */ 298 __put_user(0x821020d8u, &sf->insns[0]); 299 /* t 0x10 */ 300 __put_user(0x91d02010u, &sf->insns[1]); 301 } 302 unlock_user(sf, sf_addr, sf_size); 303 } 304 #endif /* TARGET_ARCH_HAS_SETUP_FRAME */ 305 306 void setup_rt_frame(int sig, struct target_sigaction *ka, 307 target_siginfo_t *info, 308 target_sigset_t *set, CPUSPARCState *env) 309 { 310 abi_ulong sf_addr; 311 struct target_rt_signal_frame *sf; 312 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 313 314 sf_addr = get_sigframe(ka, env, sf_size); 315 trace_user_setup_rt_frame(env, sf_addr); 316 317 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 318 if (!sf) { 319 force_sigsegv(sig); 320 return; 321 } 322 323 /* 2. Save the current process state */ 324 save_reg_win(&sf->ss.win, env); 325 save_pt_regs(&sf->regs, env); 326 327 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 328 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 329 330 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 331 332 tswap_siginfo(&sf->info, info); 333 tswap_sigset(&sf->mask, set); 334 target_save_altstack(&sf->stack, env); 335 336 #ifdef TARGET_ABI32 337 __put_user(0, &sf->extra_size); 338 #endif 339 340 /* 3. signal handler back-trampoline and parameters */ 341 env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS; 342 env->regwptr[WREG_O0] = sig; 343 env->regwptr[WREG_O1] = 344 sf_addr + offsetof(struct target_rt_signal_frame, info); 345 #ifdef TARGET_ABI32 346 env->regwptr[WREG_O2] = 347 sf_addr + offsetof(struct target_rt_signal_frame, regs); 348 #else 349 env->regwptr[WREG_O2] = env->regwptr[WREG_O1]; 350 #endif 351 352 /* 4. signal handler */ 353 env->pc = ka->_sa_handler; 354 env->npc = env->pc + 4; 355 356 /* 5. return to kernel instructions */ 357 #ifdef TARGET_ABI32 358 if (ka->ka_restorer) { 359 env->regwptr[WREG_O7] = ka->ka_restorer; 360 } else { 361 env->regwptr[WREG_O7] = 362 sf_addr + offsetof(struct target_rt_signal_frame, insns) - 2 * 4; 363 364 /* mov __NR_rt_sigreturn, %g1 */ 365 __put_user(0x82102065u, &sf->insns[0]); 366 /* t 0x10 */ 367 __put_user(0x91d02010u, &sf->insns[1]); 368 } 369 #else 370 env->regwptr[WREG_O7] = ka->ka_restorer; 371 #endif 372 373 unlock_user(sf, sf_addr, sf_size); 374 } 375 376 long do_sigreturn(CPUSPARCState *env) 377 { 378 #ifdef TARGET_ARCH_HAS_SETUP_FRAME 379 abi_ulong sf_addr; 380 struct target_signal_frame *sf = NULL; 381 abi_ulong pc, npc, ptr; 382 target_sigset_t set; 383 sigset_t host_set; 384 int i; 385 386 sf_addr = env->regwptr[WREG_SP]; 387 trace_user_do_sigreturn(env, sf_addr); 388 389 /* 1. Make sure we are not getting garbage from the user */ 390 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 391 goto segv_and_exit; 392 } 393 394 /* Make sure stack pointer is aligned. */ 395 __get_user(ptr, &sf->regs.u_regs[14]); 396 if (ptr & 7) { 397 goto segv_and_exit; 398 } 399 400 /* Make sure instruction pointers are aligned. */ 401 __get_user(pc, &sf->regs.pc); 402 __get_user(npc, &sf->regs.npc); 403 if ((pc | npc) & 3) { 404 goto segv_and_exit; 405 } 406 407 /* 2. Restore the state */ 408 restore_pt_regs(&sf->regs, env); 409 env->pc = pc; 410 env->npc = npc; 411 412 __get_user(ptr, &sf->fpu_save); 413 if (ptr) { 414 struct target_siginfo_fpu *fpu; 415 if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 416 goto segv_and_exit; 417 } 418 restore_fpu(fpu, env); 419 unlock_user_struct(fpu, ptr, 0); 420 } 421 422 __get_user(ptr, &sf->rwin_save); 423 if (ptr) { 424 goto segv_and_exit; /* TODO: restore_rwin */ 425 } 426 427 __get_user(set.sig[0], &sf->si_mask); 428 for (i = 1; i < TARGET_NSIG_WORDS; i++) { 429 __get_user(set.sig[i], &sf->extramask[i - 1]); 430 } 431 432 target_to_host_sigset_internal(&host_set, &set); 433 set_sigmask(&host_set); 434 435 unlock_user_struct(sf, sf_addr, 0); 436 return -TARGET_QEMU_ESIGRETURN; 437 438 segv_and_exit: 439 unlock_user_struct(sf, sf_addr, 0); 440 force_sig(TARGET_SIGSEGV); 441 return -TARGET_QEMU_ESIGRETURN; 442 #else 443 return -TARGET_ENOSYS; 444 #endif 445 } 446 447 long do_rt_sigreturn(CPUSPARCState *env) 448 { 449 abi_ulong sf_addr, tpc, tnpc, ptr; 450 struct target_rt_signal_frame *sf = NULL; 451 sigset_t set; 452 453 sf_addr = get_sp_from_cpustate(env); 454 trace_user_do_rt_sigreturn(env, sf_addr); 455 456 /* 1. Make sure we are not getting garbage from the user */ 457 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 458 goto segv_and_exit; 459 } 460 461 /* Validate SP alignment. */ 462 __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]); 463 if ((ptr + TARGET_STACK_BIAS) & 7) { 464 goto segv_and_exit; 465 } 466 467 /* Validate PC and NPC alignment. */ 468 __get_user(tpc, &sf->regs.pc); 469 __get_user(tnpc, &sf->regs.npc); 470 if ((tpc | tnpc) & 3) { 471 goto segv_and_exit; 472 } 473 474 /* 2. Restore the state */ 475 restore_pt_regs(&sf->regs, env); 476 477 __get_user(ptr, &sf->fpu_save); 478 if (ptr) { 479 struct target_siginfo_fpu *fpu; 480 if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 481 goto segv_and_exit; 482 } 483 restore_fpu(fpu, env); 484 unlock_user_struct(fpu, ptr, 0); 485 } 486 487 __get_user(ptr, &sf->rwin_save); 488 if (ptr) { 489 goto segv_and_exit; /* TODO: restore_rwin_state */ 490 } 491 492 target_restore_altstack(&sf->stack, env); 493 target_to_host_sigset(&set, &sf->mask); 494 set_sigmask(&set); 495 496 env->pc = tpc; 497 env->npc = tnpc; 498 499 unlock_user_struct(sf, sf_addr, 0); 500 return -TARGET_QEMU_ESIGRETURN; 501 502 segv_and_exit: 503 unlock_user_struct(sf, sf_addr, 0); 504 force_sig(TARGET_SIGSEGV); 505 return -TARGET_QEMU_ESIGRETURN; 506 } 507 508 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 509 #define SPARC_MC_TSTATE 0 510 #define SPARC_MC_PC 1 511 #define SPARC_MC_NPC 2 512 #define SPARC_MC_Y 3 513 #define SPARC_MC_G1 4 514 #define SPARC_MC_G2 5 515 #define SPARC_MC_G3 6 516 #define SPARC_MC_G4 7 517 #define SPARC_MC_G5 8 518 #define SPARC_MC_G6 9 519 #define SPARC_MC_G7 10 520 #define SPARC_MC_O0 11 521 #define SPARC_MC_O1 12 522 #define SPARC_MC_O2 13 523 #define SPARC_MC_O3 14 524 #define SPARC_MC_O4 15 525 #define SPARC_MC_O5 16 526 #define SPARC_MC_O6 17 527 #define SPARC_MC_O7 18 528 #define SPARC_MC_NGREG 19 529 530 typedef abi_ulong target_mc_greg_t; 531 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; 532 533 struct target_mc_fq { 534 abi_ulong mcfq_addr; 535 uint32_t mcfq_insn; 536 }; 537 538 /* 539 * Note the manual 16-alignment; the kernel gets this because it 540 * includes a "long double qregs[16]" in the mcpu_fregs union, 541 * which we can't do. 542 */ 543 struct target_mc_fpu { 544 union { 545 uint32_t sregs[32]; 546 uint64_t dregs[32]; 547 //uint128_t qregs[16]; 548 } mcfpu_fregs; 549 abi_ulong mcfpu_fsr; 550 abi_ulong mcfpu_fprs; 551 abi_ulong mcfpu_gsr; 552 abi_ulong mcfpu_fq; 553 unsigned char mcfpu_qcnt; 554 unsigned char mcfpu_qentsz; 555 unsigned char mcfpu_enab; 556 } __attribute__((aligned(16))); 557 typedef struct target_mc_fpu target_mc_fpu_t; 558 559 typedef struct { 560 target_mc_gregset_t mc_gregs; 561 target_mc_greg_t mc_fp; 562 target_mc_greg_t mc_i7; 563 target_mc_fpu_t mc_fpregs; 564 } target_mcontext_t; 565 566 struct target_ucontext { 567 abi_ulong tuc_link; 568 abi_ulong tuc_flags; 569 target_sigset_t tuc_sigmask; 570 target_mcontext_t tuc_mcontext; 571 }; 572 573 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 574 void sparc64_set_context(CPUSPARCState *env) 575 { 576 abi_ulong ucp_addr; 577 struct target_ucontext *ucp; 578 target_mc_gregset_t *grp; 579 target_mc_fpu_t *fpup; 580 abi_ulong pc, npc, tstate; 581 unsigned int i; 582 unsigned char fenab; 583 584 ucp_addr = env->regwptr[WREG_O0]; 585 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 586 goto do_sigsegv; 587 } 588 grp = &ucp->tuc_mcontext.mc_gregs; 589 __get_user(pc, &((*grp)[SPARC_MC_PC])); 590 __get_user(npc, &((*grp)[SPARC_MC_NPC])); 591 if ((pc | npc) & 3) { 592 goto do_sigsegv; 593 } 594 if (env->regwptr[WREG_O1]) { 595 target_sigset_t target_set; 596 sigset_t set; 597 598 if (TARGET_NSIG_WORDS == 1) { 599 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 600 } else { 601 abi_ulong *src, *dst; 602 src = ucp->tuc_sigmask.sig; 603 dst = target_set.sig; 604 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 605 __get_user(*dst, src); 606 } 607 } 608 target_to_host_sigset_internal(&set, &target_set); 609 set_sigmask(&set); 610 } 611 env->pc = pc; 612 env->npc = npc; 613 __get_user(env->y, &((*grp)[SPARC_MC_Y])); 614 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); 615 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */ 616 env->asi = (tstate >> 24) & 0xff; 617 cpu_put_ccr(env, (tstate >> 32) & 0xff); 618 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); 619 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); 620 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); 621 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); 622 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); 623 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); 624 /* Skip g7 as that's the thread register in userspace */ 625 626 /* 627 * Note that unlike the kernel, we didn't need to mess with the 628 * guest register window state to save it into a pt_regs to run 629 * the kernel. So for us the guest's O regs are still in WREG_O* 630 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 631 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 632 * need to be written back to userspace memory. 633 */ 634 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); 635 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); 636 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); 637 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); 638 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); 639 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); 640 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); 641 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); 642 643 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); 644 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); 645 646 fpup = &ucp->tuc_mcontext.mc_fpregs; 647 648 __get_user(fenab, &(fpup->mcfpu_enab)); 649 if (fenab) { 650 abi_ulong fprs; 651 652 /* 653 * We use the FPRS from the guest only in deciding whether 654 * to restore the upper, lower, or both banks of the FPU regs. 655 * The kernel here writes the FPU register data into the 656 * process's current_thread_info state and unconditionally 657 * clears FPRS and TSTATE_PEF: this disables the FPU so that the 658 * next FPU-disabled trap will copy the data out of 659 * current_thread_info and into the real FPU registers. 660 * QEMU doesn't need to handle lazy-FPU-state-restoring like that, 661 * so we always load the data directly into the FPU registers 662 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled). 663 * Note that because we (and the kernel) always write zeroes for 664 * the fenab and fprs in sparc64_get_context() none of this code 665 * will execute unless the guest manually constructed or changed 666 * the context structure. 667 */ 668 __get_user(fprs, &(fpup->mcfpu_fprs)); 669 if (fprs & FPRS_DL) { 670 for (i = 0; i < 16; i++) { 671 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 672 } 673 } 674 if (fprs & FPRS_DU) { 675 for (i = 16; i < 32; i++) { 676 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 677 } 678 } 679 __get_user(env->fsr, &(fpup->mcfpu_fsr)); 680 __get_user(env->gsr, &(fpup->mcfpu_gsr)); 681 } 682 unlock_user_struct(ucp, ucp_addr, 0); 683 return; 684 do_sigsegv: 685 unlock_user_struct(ucp, ucp_addr, 0); 686 force_sig(TARGET_SIGSEGV); 687 } 688 689 void sparc64_get_context(CPUSPARCState *env) 690 { 691 abi_ulong ucp_addr; 692 struct target_ucontext *ucp; 693 target_mc_gregset_t *grp; 694 target_mcontext_t *mcp; 695 int err; 696 unsigned int i; 697 target_sigset_t target_set; 698 sigset_t set; 699 700 ucp_addr = env->regwptr[WREG_O0]; 701 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 702 goto do_sigsegv; 703 } 704 705 memset(ucp, 0, sizeof(*ucp)); 706 707 mcp = &ucp->tuc_mcontext; 708 grp = &mcp->mc_gregs; 709 710 /* Skip over the trap instruction, first. */ 711 env->pc = env->npc; 712 env->npc += 4; 713 714 /* If we're only reading the signal mask then do_sigprocmask() 715 * is guaranteed not to fail, which is important because we don't 716 * have any way to signal a failure or restart this operation since 717 * this is not a normal syscall. 718 */ 719 err = do_sigprocmask(0, NULL, &set); 720 assert(err == 0); 721 host_to_target_sigset_internal(&target_set, &set); 722 if (TARGET_NSIG_WORDS == 1) { 723 __put_user(target_set.sig[0], 724 (abi_ulong *)&ucp->tuc_sigmask); 725 } else { 726 abi_ulong *src, *dst; 727 src = target_set.sig; 728 dst = ucp->tuc_sigmask.sig; 729 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 730 __put_user(*src, dst); 731 } 732 } 733 734 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE])); 735 __put_user(env->pc, &((*grp)[SPARC_MC_PC])); 736 __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); 737 __put_user(env->y, &((*grp)[SPARC_MC_Y])); 738 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); 739 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); 740 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); 741 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); 742 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); 743 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); 744 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); 745 746 /* 747 * Note that unlike the kernel, we didn't need to mess with the 748 * guest register window state to save it into a pt_regs to run 749 * the kernel. So for us the guest's O regs are still in WREG_O* 750 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 751 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 752 * need to be fished out of userspace memory. 753 */ 754 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); 755 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); 756 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); 757 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); 758 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); 759 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); 760 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); 761 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); 762 763 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); 764 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); 765 766 /* 767 * We don't write out the FPU state. This matches the kernel's 768 * implementation (which has the code for doing this but 769 * hidden behind an "if (fenab)" where fenab is always 0). 770 */ 771 772 unlock_user_struct(ucp, ucp_addr, 1); 773 return; 774 do_sigsegv: 775 unlock_user_struct(ucp, ucp_addr, 1); 776 force_sig(TARGET_SIGSEGV); 777 } 778 #endif 779