xref: /openbmc/qemu/linux-user/sparc/signal.c (revision 1176e57a8b34c845a89b2b0f86e424a825d40faa)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
23 
24 /* A Sparc register window */
25 struct target_reg_window {
26     abi_ulong locals[8];
27     abi_ulong ins[8];
28 };
29 
30 /* A Sparc stack frame. */
31 struct target_stackf {
32     /*
33      * Since qemu does not reference fp or callers_pc directly,
34      * it's simpler to treat fp and callers_pc as elements of ins[],
35      * and then bundle locals[] and ins[] into reg_window.
36      */
37     struct target_reg_window win;
38     /*
39      * Similarly, bundle structptr and xxargs into xargs[].
40      * This portion of the struct is part of the function call abi,
41      * and belongs to the callee for spilling argument registers.
42      */
43     abi_ulong xargs[8];
44 };
45 
46 struct target_siginfo_fpu {
47     /* It is more convenient for qemu to move doubles, not singles. */
48     uint64_t si_double_regs[16];
49     uint32_t si_fsr;
50     uint32_t si_fpqdepth;
51     struct {
52         uint32_t insn_addr;
53         uint32_t insn;
54     } si_fpqueue [16];
55 };
56 
57 struct target_signal_frame {
58     struct target_stackf ss;
59     struct target_pt_regs regs;
60     uint32_t si_mask;
61     abi_ulong fpu_save;
62     uint32_t insns[2] QEMU_ALIGNED(8);
63     abi_ulong extramask[TARGET_NSIG_WORDS - 1];
64     abi_ulong extra_size; /* Should be 0 */
65     abi_ulong rwin_save;
66 };
67 
68 static abi_ulong get_sigframe(struct target_sigaction *sa,
69                               CPUSPARCState *env,
70                               size_t framesize)
71 {
72     abi_ulong sp = get_sp_from_cpustate(env);
73 
74     /*
75      * If we are on the alternate signal stack and would overflow it, don't.
76      * Return an always-bogus address instead so we will die with SIGSEGV.
77      */
78     if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
79         return -1;
80     }
81 
82     /* This is the X/Open sanctioned signal stack switching.  */
83     sp = target_sigsp(sp, sa) - framesize;
84 
85     /*
86      * Always align the stack frame.  This handles two cases.  First,
87      * sigaltstack need not be mindful of platform specific stack
88      * alignment.  Second, if we took this signal because the stack
89      * is not aligned properly, we'd like to take the signal cleanly
90      * and report that.
91      */
92     sp &= ~15UL;
93 
94     return sp;
95 }
96 
97 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
98 {
99     int i;
100 
101 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
102     __put_user(sparc64_tstate(env), &regs->tstate);
103     /* TODO: magic should contain PT_REG_MAGIC + %tt. */
104     __put_user(0, &regs->magic);
105 #else
106     __put_user(cpu_get_psr(env), &regs->psr);
107 #endif
108 
109     __put_user(env->pc, &regs->pc);
110     __put_user(env->npc, &regs->npc);
111     __put_user(env->y, &regs->y);
112 
113     for (i = 0; i < 8; i++) {
114         __put_user(env->gregs[i], &regs->u_regs[i]);
115     }
116     for (i = 0; i < 8; i++) {
117         __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
118     }
119 }
120 
121 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
122 {
123     int i;
124 
125 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
126     /* User can only change condition codes and %asi in %tstate. */
127     uint64_t tstate;
128     __get_user(tstate, &regs->tstate);
129     cpu_put_ccr(env, tstate >> 32);
130     env->asi = extract64(tstate, 24, 8);
131 #else
132     /*
133      * User can only change condition codes and FPU enabling in %psr.
134      * But don't bother with FPU enabling, since a real kernel would
135      * just re-enable the FPU upon the next fpu trap.
136      */
137     uint32_t psr;
138     __get_user(psr, &regs->psr);
139     env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC);
140 #endif
141 
142     /* Note that pc and npc are handled in the caller. */
143 
144     __get_user(env->y, &regs->y);
145 
146     for (i = 0; i < 8; i++) {
147         __get_user(env->gregs[i], &regs->u_regs[i]);
148     }
149     for (i = 0; i < 8; i++) {
150         __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
151     }
152 }
153 
154 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
155 {
156     int i;
157 
158     for (i = 0; i < 8; i++) {
159         __put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
160     }
161     for (i = 0; i < 8; i++) {
162         __put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
163     }
164 }
165 
166 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
167 {
168     int i;
169 
170     for (i = 0; i < 16; ++i) {
171         __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
172     }
173     __put_user(env->fsr, &fpu->si_fsr);
174     __put_user(0, &fpu->si_fpqdepth);
175 }
176 
177 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
178 {
179     int i;
180 
181     for (i = 0; i < 16; ++i) {
182         __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
183     }
184     __get_user(env->fsr, &fpu->si_fsr);
185 }
186 
187 void setup_frame(int sig, struct target_sigaction *ka,
188                  target_sigset_t *set, CPUSPARCState *env)
189 {
190     abi_ulong sf_addr;
191     struct target_signal_frame *sf;
192     size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
193     int i;
194 
195     sf_addr = get_sigframe(ka, env, sf_size);
196     trace_user_setup_frame(env, sf_addr);
197 
198     sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
199     if (!sf) {
200         force_sigsegv(sig);
201         return;
202     }
203 
204     /* 2. Save the current process state */
205     save_pt_regs(&sf->regs, env);
206     __put_user(0, &sf->extra_size);
207 
208     save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
209     __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
210 
211     __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */
212 
213     __put_user(set->sig[0], &sf->si_mask);
214     for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
215         __put_user(set->sig[i + 1], &sf->extramask[i]);
216     }
217 
218     save_reg_win(&sf->ss.win, env);
219 
220     /* 3. signal handler back-trampoline and parameters */
221     env->regwptr[WREG_SP] = sf_addr;
222     env->regwptr[WREG_O0] = sig;
223     env->regwptr[WREG_O1] = sf_addr +
224             offsetof(struct target_signal_frame, regs);
225     env->regwptr[WREG_O2] = sf_addr +
226             offsetof(struct target_signal_frame, regs);
227 
228     /* 4. signal handler */
229     env->pc = ka->_sa_handler;
230     env->npc = env->pc + 4;
231 
232     /* 5. return to kernel instructions */
233     if (ka->ka_restorer) {
234         env->regwptr[WREG_O7] = ka->ka_restorer;
235     } else {
236         env->regwptr[WREG_O7] = sf_addr +
237                 offsetof(struct target_signal_frame, insns) - 2 * 4;
238 
239         /* mov __NR_sigreturn, %g1 */
240         __put_user(0x821020d8u, &sf->insns[0]);
241         /* t 0x10 */
242         __put_user(0x91d02010u, &sf->insns[1]);
243     }
244     unlock_user(sf, sf_addr, sf_size);
245 }
246 
247 void setup_rt_frame(int sig, struct target_sigaction *ka,
248                     target_siginfo_t *info,
249                     target_sigset_t *set, CPUSPARCState *env)
250 {
251     qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
252 }
253 
254 long do_sigreturn(CPUSPARCState *env)
255 {
256     abi_ulong sf_addr;
257     struct target_signal_frame *sf = NULL;
258     abi_ulong pc, npc, ptr;
259     target_sigset_t set;
260     sigset_t host_set;
261     int i;
262 
263     sf_addr = env->regwptr[WREG_SP];
264     trace_user_do_sigreturn(env, sf_addr);
265 
266     /* 1. Make sure we are not getting garbage from the user */
267     if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
268         goto segv_and_exit;
269     }
270 
271     /* Make sure stack pointer is aligned.  */
272     __get_user(ptr, &sf->regs.u_regs[14]);
273     if (ptr & 7) {
274         goto segv_and_exit;
275     }
276 
277     /* Make sure instruction pointers are aligned.  */
278     __get_user(pc, &sf->regs.pc);
279     __get_user(npc, &sf->regs.npc);
280     if ((pc | npc) & 3) {
281         goto segv_and_exit;
282     }
283 
284     /* 2. Restore the state */
285     restore_pt_regs(&sf->regs, env);
286     env->pc = pc;
287     env->npc = npc;
288 
289     __get_user(ptr, &sf->fpu_save);
290     if (ptr) {
291         struct target_siginfo_fpu *fpu;
292         if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
293             goto segv_and_exit;
294         }
295         restore_fpu(fpu, env);
296         unlock_user_struct(fpu, ptr, 0);
297     }
298 
299     __get_user(ptr, &sf->rwin_save);
300     if (ptr) {
301         goto segv_and_exit;  /* TODO: restore_rwin */
302     }
303 
304     __get_user(set.sig[0], &sf->si_mask);
305     for (i = 1; i < TARGET_NSIG_WORDS; i++) {
306         __get_user(set.sig[i], &sf->extramask[i - 1]);
307     }
308 
309     target_to_host_sigset_internal(&host_set, &set);
310     set_sigmask(&host_set);
311 
312     unlock_user_struct(sf, sf_addr, 0);
313     return -TARGET_QEMU_ESIGRETURN;
314 
315  segv_and_exit:
316     unlock_user_struct(sf, sf_addr, 0);
317     force_sig(TARGET_SIGSEGV);
318     return -TARGET_QEMU_ESIGRETURN;
319 }
320 
321 long do_rt_sigreturn(CPUSPARCState *env)
322 {
323     trace_user_do_rt_sigreturn(env, 0);
324     qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
325     return -TARGET_ENOSYS;
326 }
327 
328 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
329 #define SPARC_MC_TSTATE 0
330 #define SPARC_MC_PC 1
331 #define SPARC_MC_NPC 2
332 #define SPARC_MC_Y 3
333 #define SPARC_MC_G1 4
334 #define SPARC_MC_G2 5
335 #define SPARC_MC_G3 6
336 #define SPARC_MC_G4 7
337 #define SPARC_MC_G5 8
338 #define SPARC_MC_G6 9
339 #define SPARC_MC_G7 10
340 #define SPARC_MC_O0 11
341 #define SPARC_MC_O1 12
342 #define SPARC_MC_O2 13
343 #define SPARC_MC_O3 14
344 #define SPARC_MC_O4 15
345 #define SPARC_MC_O5 16
346 #define SPARC_MC_O6 17
347 #define SPARC_MC_O7 18
348 #define SPARC_MC_NGREG 19
349 
350 typedef abi_ulong target_mc_greg_t;
351 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
352 
353 struct target_mc_fq {
354     abi_ulong mcfq_addr;
355     uint32_t mcfq_insn;
356 };
357 
358 /*
359  * Note the manual 16-alignment; the kernel gets this because it
360  * includes a "long double qregs[16]" in the mcpu_fregs union,
361  * which we can't do.
362  */
363 struct target_mc_fpu {
364     union {
365         uint32_t sregs[32];
366         uint64_t dregs[32];
367         //uint128_t qregs[16];
368     } mcfpu_fregs;
369     abi_ulong mcfpu_fsr;
370     abi_ulong mcfpu_fprs;
371     abi_ulong mcfpu_gsr;
372     abi_ulong mcfpu_fq;
373     unsigned char mcfpu_qcnt;
374     unsigned char mcfpu_qentsz;
375     unsigned char mcfpu_enab;
376 } __attribute__((aligned(16)));
377 typedef struct target_mc_fpu target_mc_fpu_t;
378 
379 typedef struct {
380     target_mc_gregset_t mc_gregs;
381     target_mc_greg_t mc_fp;
382     target_mc_greg_t mc_i7;
383     target_mc_fpu_t mc_fpregs;
384 } target_mcontext_t;
385 
386 struct target_ucontext {
387     abi_ulong tuc_link;
388     abi_ulong tuc_flags;
389     target_sigset_t tuc_sigmask;
390     target_mcontext_t tuc_mcontext;
391 };
392 
393 /* {set, get}context() needed for 64-bit SparcLinux userland. */
394 void sparc64_set_context(CPUSPARCState *env)
395 {
396     abi_ulong ucp_addr;
397     struct target_ucontext *ucp;
398     target_mc_gregset_t *grp;
399     target_mc_fpu_t *fpup;
400     abi_ulong pc, npc, tstate;
401     unsigned int i;
402     unsigned char fenab;
403 
404     ucp_addr = env->regwptr[WREG_O0];
405     if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
406         goto do_sigsegv;
407     }
408     grp  = &ucp->tuc_mcontext.mc_gregs;
409     __get_user(pc, &((*grp)[SPARC_MC_PC]));
410     __get_user(npc, &((*grp)[SPARC_MC_NPC]));
411     if ((pc | npc) & 3) {
412         goto do_sigsegv;
413     }
414     if (env->regwptr[WREG_O1]) {
415         target_sigset_t target_set;
416         sigset_t set;
417 
418         if (TARGET_NSIG_WORDS == 1) {
419             __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
420         } else {
421             abi_ulong *src, *dst;
422             src = ucp->tuc_sigmask.sig;
423             dst = target_set.sig;
424             for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
425                 __get_user(*dst, src);
426             }
427         }
428         target_to_host_sigset_internal(&set, &target_set);
429         set_sigmask(&set);
430     }
431     env->pc = pc;
432     env->npc = npc;
433     __get_user(env->y, &((*grp)[SPARC_MC_Y]));
434     __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
435     /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
436     env->asi = (tstate >> 24) & 0xff;
437     cpu_put_ccr(env, (tstate >> 32) & 0xff);
438     __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
439     __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
440     __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
441     __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
442     __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
443     __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
444     /* Skip g7 as that's the thread register in userspace */
445 
446     /*
447      * Note that unlike the kernel, we didn't need to mess with the
448      * guest register window state to save it into a pt_regs to run
449      * the kernel. So for us the guest's O regs are still in WREG_O*
450      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
451      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
452      * need to be written back to userspace memory.
453      */
454     __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
455     __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
456     __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
457     __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
458     __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
459     __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
460     __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
461     __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
462 
463     __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
464     __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
465 
466     fpup = &ucp->tuc_mcontext.mc_fpregs;
467 
468     __get_user(fenab, &(fpup->mcfpu_enab));
469     if (fenab) {
470         abi_ulong fprs;
471 
472         /*
473          * We use the FPRS from the guest only in deciding whether
474          * to restore the upper, lower, or both banks of the FPU regs.
475          * The kernel here writes the FPU register data into the
476          * process's current_thread_info state and unconditionally
477          * clears FPRS and TSTATE_PEF: this disables the FPU so that the
478          * next FPU-disabled trap will copy the data out of
479          * current_thread_info and into the real FPU registers.
480          * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
481          * so we always load the data directly into the FPU registers
482          * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
483          * Note that because we (and the kernel) always write zeroes for
484          * the fenab and fprs in sparc64_get_context() none of this code
485          * will execute unless the guest manually constructed or changed
486          * the context structure.
487          */
488         __get_user(fprs, &(fpup->mcfpu_fprs));
489         if (fprs & FPRS_DL) {
490             for (i = 0; i < 16; i++) {
491                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
492             }
493         }
494         if (fprs & FPRS_DU) {
495             for (i = 16; i < 32; i++) {
496                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
497             }
498         }
499         __get_user(env->fsr, &(fpup->mcfpu_fsr));
500         __get_user(env->gsr, &(fpup->mcfpu_gsr));
501     }
502     unlock_user_struct(ucp, ucp_addr, 0);
503     return;
504 do_sigsegv:
505     unlock_user_struct(ucp, ucp_addr, 0);
506     force_sig(TARGET_SIGSEGV);
507 }
508 
509 void sparc64_get_context(CPUSPARCState *env)
510 {
511     abi_ulong ucp_addr;
512     struct target_ucontext *ucp;
513     target_mc_gregset_t *grp;
514     target_mcontext_t *mcp;
515     int err;
516     unsigned int i;
517     target_sigset_t target_set;
518     sigset_t set;
519 
520     ucp_addr = env->regwptr[WREG_O0];
521     if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
522         goto do_sigsegv;
523     }
524 
525     memset(ucp, 0, sizeof(*ucp));
526 
527     mcp = &ucp->tuc_mcontext;
528     grp = &mcp->mc_gregs;
529 
530     /* Skip over the trap instruction, first. */
531     env->pc = env->npc;
532     env->npc += 4;
533 
534     /* If we're only reading the signal mask then do_sigprocmask()
535      * is guaranteed not to fail, which is important because we don't
536      * have any way to signal a failure or restart this operation since
537      * this is not a normal syscall.
538      */
539     err = do_sigprocmask(0, NULL, &set);
540     assert(err == 0);
541     host_to_target_sigset_internal(&target_set, &set);
542     if (TARGET_NSIG_WORDS == 1) {
543         __put_user(target_set.sig[0],
544                    (abi_ulong *)&ucp->tuc_sigmask);
545     } else {
546         abi_ulong *src, *dst;
547         src = target_set.sig;
548         dst = ucp->tuc_sigmask.sig;
549         for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
550             __put_user(*src, dst);
551         }
552     }
553 
554     __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
555     __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
556     __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
557     __put_user(env->y, &((*grp)[SPARC_MC_Y]));
558     __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
559     __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
560     __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
561     __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
562     __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
563     __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
564     __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
565 
566     /*
567      * Note that unlike the kernel, we didn't need to mess with the
568      * guest register window state to save it into a pt_regs to run
569      * the kernel. So for us the guest's O regs are still in WREG_O*
570      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
571      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
572      * need to be fished out of userspace memory.
573      */
574     __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
575     __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
576     __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
577     __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
578     __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
579     __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
580     __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
581     __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
582 
583     __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
584     __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
585 
586     /*
587      * We don't write out the FPU state. This matches the kernel's
588      * implementation (which has the code for doing this but
589      * hidden behind an "if (fenab)" where fenab is always 0).
590      */
591 
592     unlock_user_struct(ucp, ucp_addr, 1);
593     return;
594 do_sigsegv:
595     unlock_user_struct(ucp, ucp_addr, 1);
596     force_sig(TARGET_SIGSEGV);
597 }
598 #endif
599