1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "signal-common.h" 22 #include "linux-user/trace.h" 23 24 /* A Sparc register window */ 25 struct target_reg_window { 26 abi_ulong locals[8]; 27 abi_ulong ins[8]; 28 }; 29 30 /* A Sparc stack frame. */ 31 struct target_stackf { 32 /* 33 * Since qemu does not reference fp or callers_pc directly, 34 * it's simpler to treat fp and callers_pc as elements of ins[], 35 * and then bundle locals[] and ins[] into reg_window. 36 */ 37 struct target_reg_window win; 38 /* 39 * Similarly, bundle structptr and xxargs into xargs[]. 40 * This portion of the struct is part of the function call abi, 41 * and belongs to the callee for spilling argument registers. 42 */ 43 abi_ulong xargs[8]; 44 }; 45 46 struct target_siginfo_fpu { 47 #ifdef TARGET_SPARC64 48 uint64_t si_double_regs[32]; 49 uint64_t si_fsr; 50 uint64_t si_gsr; 51 uint64_t si_fprs; 52 #else 53 /* It is more convenient for qemu to move doubles, not singles. */ 54 uint64_t si_double_regs[16]; 55 uint32_t si_fsr; 56 uint32_t si_fpqdepth; 57 struct { 58 uint32_t insn_addr; 59 uint32_t insn; 60 } si_fpqueue [16]; 61 #endif 62 }; 63 64 struct target_signal_frame { 65 struct target_stackf ss; 66 struct target_pt_regs regs; 67 uint32_t si_mask; 68 abi_ulong fpu_save; 69 uint32_t insns[2] QEMU_ALIGNED(8); 70 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 71 abi_ulong extra_size; /* Should be 0 */ 72 abi_ulong rwin_save; 73 }; 74 75 static abi_ulong get_sigframe(struct target_sigaction *sa, 76 CPUSPARCState *env, 77 size_t framesize) 78 { 79 abi_ulong sp = get_sp_from_cpustate(env); 80 81 /* 82 * If we are on the alternate signal stack and would overflow it, don't. 83 * Return an always-bogus address instead so we will die with SIGSEGV. 84 */ 85 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { 86 return -1; 87 } 88 89 /* This is the X/Open sanctioned signal stack switching. */ 90 sp = target_sigsp(sp, sa) - framesize; 91 92 /* 93 * Always align the stack frame. This handles two cases. First, 94 * sigaltstack need not be mindful of platform specific stack 95 * alignment. Second, if we took this signal because the stack 96 * is not aligned properly, we'd like to take the signal cleanly 97 * and report that. 98 */ 99 sp &= ~15UL; 100 101 return sp; 102 } 103 104 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 105 { 106 int i; 107 108 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 109 __put_user(sparc64_tstate(env), ®s->tstate); 110 /* TODO: magic should contain PT_REG_MAGIC + %tt. */ 111 __put_user(0, ®s->magic); 112 #else 113 __put_user(cpu_get_psr(env), ®s->psr); 114 #endif 115 116 __put_user(env->pc, ®s->pc); 117 __put_user(env->npc, ®s->npc); 118 __put_user(env->y, ®s->y); 119 120 for (i = 0; i < 8; i++) { 121 __put_user(env->gregs[i], ®s->u_regs[i]); 122 } 123 for (i = 0; i < 8; i++) { 124 __put_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 125 } 126 } 127 128 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) 129 { 130 int i; 131 132 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 133 /* User can only change condition codes and %asi in %tstate. */ 134 uint64_t tstate; 135 __get_user(tstate, ®s->tstate); 136 cpu_put_ccr(env, tstate >> 32); 137 env->asi = extract64(tstate, 24, 8); 138 #else 139 /* 140 * User can only change condition codes and FPU enabling in %psr. 141 * But don't bother with FPU enabling, since a real kernel would 142 * just re-enable the FPU upon the next fpu trap. 143 */ 144 uint32_t psr; 145 __get_user(psr, ®s->psr); 146 env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC); 147 #endif 148 149 /* Note that pc and npc are handled in the caller. */ 150 151 __get_user(env->y, ®s->y); 152 153 for (i = 0; i < 8; i++) { 154 __get_user(env->gregs[i], ®s->u_regs[i]); 155 } 156 for (i = 0; i < 8; i++) { 157 __get_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); 158 } 159 } 160 161 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env) 162 { 163 int i; 164 165 for (i = 0; i < 8; i++) { 166 __put_user(env->regwptr[i + WREG_L0], &win->locals[i]); 167 } 168 for (i = 0; i < 8; i++) { 169 __put_user(env->regwptr[i + WREG_I0], &win->ins[i]); 170 } 171 } 172 173 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 174 { 175 int i; 176 177 #ifdef TARGET_SPARC64 178 for (i = 0; i < 32; ++i) { 179 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 180 } 181 __put_user(env->fsr, &fpu->si_fsr); 182 __put_user(env->gsr, &fpu->si_gsr); 183 __put_user(env->fprs, &fpu->si_fprs); 184 #else 185 for (i = 0; i < 16; ++i) { 186 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 187 } 188 __put_user(env->fsr, &fpu->si_fsr); 189 __put_user(0, &fpu->si_fpqdepth); 190 #endif 191 } 192 193 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) 194 { 195 int i; 196 197 #ifdef TARGET_SPARC64 198 uint64_t fprs; 199 __get_user(fprs, &fpu->si_fprs); 200 201 /* In case the user mucks about with FPRS, restore as directed. */ 202 if (fprs & FPRS_DL) { 203 for (i = 0; i < 16; ++i) { 204 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 205 } 206 } 207 if (fprs & FPRS_DU) { 208 for (i = 16; i < 32; ++i) { 209 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 210 } 211 } 212 __get_user(env->fsr, &fpu->si_fsr); 213 __get_user(env->gsr, &fpu->si_gsr); 214 env->fprs |= fprs; 215 #else 216 for (i = 0; i < 16; ++i) { 217 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); 218 } 219 __get_user(env->fsr, &fpu->si_fsr); 220 #endif 221 } 222 223 void setup_frame(int sig, struct target_sigaction *ka, 224 target_sigset_t *set, CPUSPARCState *env) 225 { 226 abi_ulong sf_addr; 227 struct target_signal_frame *sf; 228 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); 229 int i; 230 231 sf_addr = get_sigframe(ka, env, sf_size); 232 trace_user_setup_frame(env, sf_addr); 233 234 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); 235 if (!sf) { 236 force_sigsegv(sig); 237 return; 238 } 239 240 /* 2. Save the current process state */ 241 save_pt_regs(&sf->regs, env); 242 __put_user(0, &sf->extra_size); 243 244 save_fpu((struct target_siginfo_fpu *)(sf + 1), env); 245 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); 246 247 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */ 248 249 __put_user(set->sig[0], &sf->si_mask); 250 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 251 __put_user(set->sig[i + 1], &sf->extramask[i]); 252 } 253 254 save_reg_win(&sf->ss.win, env); 255 256 /* 3. signal handler back-trampoline and parameters */ 257 env->regwptr[WREG_SP] = sf_addr; 258 env->regwptr[WREG_O0] = sig; 259 env->regwptr[WREG_O1] = sf_addr + 260 offsetof(struct target_signal_frame, regs); 261 env->regwptr[WREG_O2] = sf_addr + 262 offsetof(struct target_signal_frame, regs); 263 264 /* 4. signal handler */ 265 env->pc = ka->_sa_handler; 266 env->npc = env->pc + 4; 267 268 /* 5. return to kernel instructions */ 269 if (ka->ka_restorer) { 270 env->regwptr[WREG_O7] = ka->ka_restorer; 271 } else { 272 env->regwptr[WREG_O7] = sf_addr + 273 offsetof(struct target_signal_frame, insns) - 2 * 4; 274 275 /* mov __NR_sigreturn, %g1 */ 276 __put_user(0x821020d8u, &sf->insns[0]); 277 /* t 0x10 */ 278 __put_user(0x91d02010u, &sf->insns[1]); 279 } 280 unlock_user(sf, sf_addr, sf_size); 281 } 282 283 void setup_rt_frame(int sig, struct target_sigaction *ka, 284 target_siginfo_t *info, 285 target_sigset_t *set, CPUSPARCState *env) 286 { 287 qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n"); 288 } 289 290 long do_sigreturn(CPUSPARCState *env) 291 { 292 abi_ulong sf_addr; 293 struct target_signal_frame *sf = NULL; 294 abi_ulong pc, npc, ptr; 295 target_sigset_t set; 296 sigset_t host_set; 297 int i; 298 299 sf_addr = env->regwptr[WREG_SP]; 300 trace_user_do_sigreturn(env, sf_addr); 301 302 /* 1. Make sure we are not getting garbage from the user */ 303 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 304 goto segv_and_exit; 305 } 306 307 /* Make sure stack pointer is aligned. */ 308 __get_user(ptr, &sf->regs.u_regs[14]); 309 if (ptr & 7) { 310 goto segv_and_exit; 311 } 312 313 /* Make sure instruction pointers are aligned. */ 314 __get_user(pc, &sf->regs.pc); 315 __get_user(npc, &sf->regs.npc); 316 if ((pc | npc) & 3) { 317 goto segv_and_exit; 318 } 319 320 /* 2. Restore the state */ 321 restore_pt_regs(&sf->regs, env); 322 env->pc = pc; 323 env->npc = npc; 324 325 __get_user(ptr, &sf->fpu_save); 326 if (ptr) { 327 struct target_siginfo_fpu *fpu; 328 if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { 329 goto segv_and_exit; 330 } 331 restore_fpu(fpu, env); 332 unlock_user_struct(fpu, ptr, 0); 333 } 334 335 __get_user(ptr, &sf->rwin_save); 336 if (ptr) { 337 goto segv_and_exit; /* TODO: restore_rwin */ 338 } 339 340 __get_user(set.sig[0], &sf->si_mask); 341 for (i = 1; i < TARGET_NSIG_WORDS; i++) { 342 __get_user(set.sig[i], &sf->extramask[i - 1]); 343 } 344 345 target_to_host_sigset_internal(&host_set, &set); 346 set_sigmask(&host_set); 347 348 unlock_user_struct(sf, sf_addr, 0); 349 return -TARGET_QEMU_ESIGRETURN; 350 351 segv_and_exit: 352 unlock_user_struct(sf, sf_addr, 0); 353 force_sig(TARGET_SIGSEGV); 354 return -TARGET_QEMU_ESIGRETURN; 355 } 356 357 long do_rt_sigreturn(CPUSPARCState *env) 358 { 359 trace_user_do_rt_sigreturn(env, 0); 360 qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n"); 361 return -TARGET_ENOSYS; 362 } 363 364 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 365 #define SPARC_MC_TSTATE 0 366 #define SPARC_MC_PC 1 367 #define SPARC_MC_NPC 2 368 #define SPARC_MC_Y 3 369 #define SPARC_MC_G1 4 370 #define SPARC_MC_G2 5 371 #define SPARC_MC_G3 6 372 #define SPARC_MC_G4 7 373 #define SPARC_MC_G5 8 374 #define SPARC_MC_G6 9 375 #define SPARC_MC_G7 10 376 #define SPARC_MC_O0 11 377 #define SPARC_MC_O1 12 378 #define SPARC_MC_O2 13 379 #define SPARC_MC_O3 14 380 #define SPARC_MC_O4 15 381 #define SPARC_MC_O5 16 382 #define SPARC_MC_O6 17 383 #define SPARC_MC_O7 18 384 #define SPARC_MC_NGREG 19 385 386 typedef abi_ulong target_mc_greg_t; 387 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; 388 389 struct target_mc_fq { 390 abi_ulong mcfq_addr; 391 uint32_t mcfq_insn; 392 }; 393 394 /* 395 * Note the manual 16-alignment; the kernel gets this because it 396 * includes a "long double qregs[16]" in the mcpu_fregs union, 397 * which we can't do. 398 */ 399 struct target_mc_fpu { 400 union { 401 uint32_t sregs[32]; 402 uint64_t dregs[32]; 403 //uint128_t qregs[16]; 404 } mcfpu_fregs; 405 abi_ulong mcfpu_fsr; 406 abi_ulong mcfpu_fprs; 407 abi_ulong mcfpu_gsr; 408 abi_ulong mcfpu_fq; 409 unsigned char mcfpu_qcnt; 410 unsigned char mcfpu_qentsz; 411 unsigned char mcfpu_enab; 412 } __attribute__((aligned(16))); 413 typedef struct target_mc_fpu target_mc_fpu_t; 414 415 typedef struct { 416 target_mc_gregset_t mc_gregs; 417 target_mc_greg_t mc_fp; 418 target_mc_greg_t mc_i7; 419 target_mc_fpu_t mc_fpregs; 420 } target_mcontext_t; 421 422 struct target_ucontext { 423 abi_ulong tuc_link; 424 abi_ulong tuc_flags; 425 target_sigset_t tuc_sigmask; 426 target_mcontext_t tuc_mcontext; 427 }; 428 429 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 430 void sparc64_set_context(CPUSPARCState *env) 431 { 432 abi_ulong ucp_addr; 433 struct target_ucontext *ucp; 434 target_mc_gregset_t *grp; 435 target_mc_fpu_t *fpup; 436 abi_ulong pc, npc, tstate; 437 unsigned int i; 438 unsigned char fenab; 439 440 ucp_addr = env->regwptr[WREG_O0]; 441 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 442 goto do_sigsegv; 443 } 444 grp = &ucp->tuc_mcontext.mc_gregs; 445 __get_user(pc, &((*grp)[SPARC_MC_PC])); 446 __get_user(npc, &((*grp)[SPARC_MC_NPC])); 447 if ((pc | npc) & 3) { 448 goto do_sigsegv; 449 } 450 if (env->regwptr[WREG_O1]) { 451 target_sigset_t target_set; 452 sigset_t set; 453 454 if (TARGET_NSIG_WORDS == 1) { 455 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 456 } else { 457 abi_ulong *src, *dst; 458 src = ucp->tuc_sigmask.sig; 459 dst = target_set.sig; 460 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 461 __get_user(*dst, src); 462 } 463 } 464 target_to_host_sigset_internal(&set, &target_set); 465 set_sigmask(&set); 466 } 467 env->pc = pc; 468 env->npc = npc; 469 __get_user(env->y, &((*grp)[SPARC_MC_Y])); 470 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); 471 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */ 472 env->asi = (tstate >> 24) & 0xff; 473 cpu_put_ccr(env, (tstate >> 32) & 0xff); 474 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); 475 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); 476 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); 477 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); 478 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); 479 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); 480 /* Skip g7 as that's the thread register in userspace */ 481 482 /* 483 * Note that unlike the kernel, we didn't need to mess with the 484 * guest register window state to save it into a pt_regs to run 485 * the kernel. So for us the guest's O regs are still in WREG_O* 486 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 487 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 488 * need to be written back to userspace memory. 489 */ 490 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); 491 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); 492 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); 493 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); 494 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); 495 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); 496 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); 497 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); 498 499 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); 500 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); 501 502 fpup = &ucp->tuc_mcontext.mc_fpregs; 503 504 __get_user(fenab, &(fpup->mcfpu_enab)); 505 if (fenab) { 506 abi_ulong fprs; 507 508 /* 509 * We use the FPRS from the guest only in deciding whether 510 * to restore the upper, lower, or both banks of the FPU regs. 511 * The kernel here writes the FPU register data into the 512 * process's current_thread_info state and unconditionally 513 * clears FPRS and TSTATE_PEF: this disables the FPU so that the 514 * next FPU-disabled trap will copy the data out of 515 * current_thread_info and into the real FPU registers. 516 * QEMU doesn't need to handle lazy-FPU-state-restoring like that, 517 * so we always load the data directly into the FPU registers 518 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled). 519 * Note that because we (and the kernel) always write zeroes for 520 * the fenab and fprs in sparc64_get_context() none of this code 521 * will execute unless the guest manually constructed or changed 522 * the context structure. 523 */ 524 __get_user(fprs, &(fpup->mcfpu_fprs)); 525 if (fprs & FPRS_DL) { 526 for (i = 0; i < 16; i++) { 527 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 528 } 529 } 530 if (fprs & FPRS_DU) { 531 for (i = 16; i < 32; i++) { 532 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); 533 } 534 } 535 __get_user(env->fsr, &(fpup->mcfpu_fsr)); 536 __get_user(env->gsr, &(fpup->mcfpu_gsr)); 537 } 538 unlock_user_struct(ucp, ucp_addr, 0); 539 return; 540 do_sigsegv: 541 unlock_user_struct(ucp, ucp_addr, 0); 542 force_sig(TARGET_SIGSEGV); 543 } 544 545 void sparc64_get_context(CPUSPARCState *env) 546 { 547 abi_ulong ucp_addr; 548 struct target_ucontext *ucp; 549 target_mc_gregset_t *grp; 550 target_mcontext_t *mcp; 551 int err; 552 unsigned int i; 553 target_sigset_t target_set; 554 sigset_t set; 555 556 ucp_addr = env->regwptr[WREG_O0]; 557 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 558 goto do_sigsegv; 559 } 560 561 memset(ucp, 0, sizeof(*ucp)); 562 563 mcp = &ucp->tuc_mcontext; 564 grp = &mcp->mc_gregs; 565 566 /* Skip over the trap instruction, first. */ 567 env->pc = env->npc; 568 env->npc += 4; 569 570 /* If we're only reading the signal mask then do_sigprocmask() 571 * is guaranteed not to fail, which is important because we don't 572 * have any way to signal a failure or restart this operation since 573 * this is not a normal syscall. 574 */ 575 err = do_sigprocmask(0, NULL, &set); 576 assert(err == 0); 577 host_to_target_sigset_internal(&target_set, &set); 578 if (TARGET_NSIG_WORDS == 1) { 579 __put_user(target_set.sig[0], 580 (abi_ulong *)&ucp->tuc_sigmask); 581 } else { 582 abi_ulong *src, *dst; 583 src = target_set.sig; 584 dst = ucp->tuc_sigmask.sig; 585 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 586 __put_user(*src, dst); 587 } 588 } 589 590 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE])); 591 __put_user(env->pc, &((*grp)[SPARC_MC_PC])); 592 __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); 593 __put_user(env->y, &((*grp)[SPARC_MC_Y])); 594 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); 595 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); 596 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); 597 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); 598 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); 599 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); 600 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); 601 602 /* 603 * Note that unlike the kernel, we didn't need to mess with the 604 * guest register window state to save it into a pt_regs to run 605 * the kernel. So for us the guest's O regs are still in WREG_O* 606 * (unlike the kernel which has put them in UREG_I* in a pt_regs) 607 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't 608 * need to be fished out of userspace memory. 609 */ 610 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); 611 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); 612 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); 613 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); 614 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); 615 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); 616 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); 617 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); 618 619 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); 620 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); 621 622 /* 623 * We don't write out the FPU state. This matches the kernel's 624 * implementation (which has the code for doing this but 625 * hidden behind an "if (fenab)" where fenab is always 0). 626 */ 627 628 unlock_user_struct(ucp, ucp_addr, 1); 629 return; 630 do_sigsegv: 631 unlock_user_struct(ucp, ucp_addr, 1); 632 force_sig(TARGET_SIGSEGV); 633 } 634 #endif 635