1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include <sys/ucontext.h> 22 #include <sys/resource.h> 23 24 #include "qemu.h" 25 #include "qemu-common.h" 26 #include "target_signal.h" 27 #include "trace.h" 28 29 static struct target_sigaltstack target_sigaltstack_used = { 30 .ss_sp = 0, 31 .ss_size = 0, 32 .ss_flags = TARGET_SS_DISABLE, 33 }; 34 35 static struct target_sigaction sigact_table[TARGET_NSIG]; 36 37 static void host_signal_handler(int host_signum, siginfo_t *info, 38 void *puc); 39 40 static uint8_t host_to_target_signal_table[_NSIG] = { 41 [SIGHUP] = TARGET_SIGHUP, 42 [SIGINT] = TARGET_SIGINT, 43 [SIGQUIT] = TARGET_SIGQUIT, 44 [SIGILL] = TARGET_SIGILL, 45 [SIGTRAP] = TARGET_SIGTRAP, 46 [SIGABRT] = TARGET_SIGABRT, 47 /* [SIGIOT] = TARGET_SIGIOT,*/ 48 [SIGBUS] = TARGET_SIGBUS, 49 [SIGFPE] = TARGET_SIGFPE, 50 [SIGKILL] = TARGET_SIGKILL, 51 [SIGUSR1] = TARGET_SIGUSR1, 52 [SIGSEGV] = TARGET_SIGSEGV, 53 [SIGUSR2] = TARGET_SIGUSR2, 54 [SIGPIPE] = TARGET_SIGPIPE, 55 [SIGALRM] = TARGET_SIGALRM, 56 [SIGTERM] = TARGET_SIGTERM, 57 #ifdef SIGSTKFLT 58 [SIGSTKFLT] = TARGET_SIGSTKFLT, 59 #endif 60 [SIGCHLD] = TARGET_SIGCHLD, 61 [SIGCONT] = TARGET_SIGCONT, 62 [SIGSTOP] = TARGET_SIGSTOP, 63 [SIGTSTP] = TARGET_SIGTSTP, 64 [SIGTTIN] = TARGET_SIGTTIN, 65 [SIGTTOU] = TARGET_SIGTTOU, 66 [SIGURG] = TARGET_SIGURG, 67 [SIGXCPU] = TARGET_SIGXCPU, 68 [SIGXFSZ] = TARGET_SIGXFSZ, 69 [SIGVTALRM] = TARGET_SIGVTALRM, 70 [SIGPROF] = TARGET_SIGPROF, 71 [SIGWINCH] = TARGET_SIGWINCH, 72 [SIGIO] = TARGET_SIGIO, 73 [SIGPWR] = TARGET_SIGPWR, 74 [SIGSYS] = TARGET_SIGSYS, 75 /* next signals stay the same */ 76 /* Nasty hack: Reverse SIGRTMIN and SIGRTMAX to avoid overlap with 77 host libpthread signals. This assumes no one actually uses SIGRTMAX :-/ 78 To fix this properly we need to do manual signal delivery multiplexed 79 over a single host signal. */ 80 [__SIGRTMIN] = __SIGRTMAX, 81 [__SIGRTMAX] = __SIGRTMIN, 82 }; 83 static uint8_t target_to_host_signal_table[_NSIG]; 84 85 static inline int on_sig_stack(unsigned long sp) 86 { 87 return (sp - target_sigaltstack_used.ss_sp 88 < target_sigaltstack_used.ss_size); 89 } 90 91 static inline int sas_ss_flags(unsigned long sp) 92 { 93 return (target_sigaltstack_used.ss_size == 0 ? SS_DISABLE 94 : on_sig_stack(sp) ? SS_ONSTACK : 0); 95 } 96 97 int host_to_target_signal(int sig) 98 { 99 if (sig < 0 || sig >= _NSIG) 100 return sig; 101 return host_to_target_signal_table[sig]; 102 } 103 104 int target_to_host_signal(int sig) 105 { 106 if (sig < 0 || sig >= _NSIG) 107 return sig; 108 return target_to_host_signal_table[sig]; 109 } 110 111 static inline void target_sigemptyset(target_sigset_t *set) 112 { 113 memset(set, 0, sizeof(*set)); 114 } 115 116 static inline void target_sigaddset(target_sigset_t *set, int signum) 117 { 118 signum--; 119 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 120 set->sig[signum / TARGET_NSIG_BPW] |= mask; 121 } 122 123 static inline int target_sigismember(const target_sigset_t *set, int signum) 124 { 125 signum--; 126 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 127 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 128 } 129 130 static void host_to_target_sigset_internal(target_sigset_t *d, 131 const sigset_t *s) 132 { 133 int i; 134 target_sigemptyset(d); 135 for (i = 1; i <= TARGET_NSIG; i++) { 136 if (sigismember(s, i)) { 137 target_sigaddset(d, host_to_target_signal(i)); 138 } 139 } 140 } 141 142 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 143 { 144 target_sigset_t d1; 145 int i; 146 147 host_to_target_sigset_internal(&d1, s); 148 for(i = 0;i < TARGET_NSIG_WORDS; i++) 149 d->sig[i] = tswapal(d1.sig[i]); 150 } 151 152 static void target_to_host_sigset_internal(sigset_t *d, 153 const target_sigset_t *s) 154 { 155 int i; 156 sigemptyset(d); 157 for (i = 1; i <= TARGET_NSIG; i++) { 158 if (target_sigismember(s, i)) { 159 sigaddset(d, target_to_host_signal(i)); 160 } 161 } 162 } 163 164 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 165 { 166 target_sigset_t s1; 167 int i; 168 169 for(i = 0;i < TARGET_NSIG_WORDS; i++) 170 s1.sig[i] = tswapal(s->sig[i]); 171 target_to_host_sigset_internal(d, &s1); 172 } 173 174 void host_to_target_old_sigset(abi_ulong *old_sigset, 175 const sigset_t *sigset) 176 { 177 target_sigset_t d; 178 host_to_target_sigset(&d, sigset); 179 *old_sigset = d.sig[0]; 180 } 181 182 void target_to_host_old_sigset(sigset_t *sigset, 183 const abi_ulong *old_sigset) 184 { 185 target_sigset_t d; 186 int i; 187 188 d.sig[0] = *old_sigset; 189 for(i = 1;i < TARGET_NSIG_WORDS; i++) 190 d.sig[i] = 0; 191 target_to_host_sigset(sigset, &d); 192 } 193 194 int block_signals(void) 195 { 196 TaskState *ts = (TaskState *)thread_cpu->opaque; 197 sigset_t set; 198 199 /* It's OK to block everything including SIGSEGV, because we won't 200 * run any further guest code before unblocking signals in 201 * process_pending_signals(). 202 */ 203 sigfillset(&set); 204 sigprocmask(SIG_SETMASK, &set, 0); 205 206 return atomic_xchg(&ts->signal_pending, 1); 207 } 208 209 /* Wrapper for sigprocmask function 210 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 211 * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if 212 * a signal was already pending and the syscall must be restarted, or 213 * 0 on success. 214 * If set is NULL, this is guaranteed not to fail. 215 */ 216 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 217 { 218 TaskState *ts = (TaskState *)thread_cpu->opaque; 219 220 if (oldset) { 221 *oldset = ts->signal_mask; 222 } 223 224 if (set) { 225 int i; 226 227 if (block_signals()) { 228 return -TARGET_ERESTARTSYS; 229 } 230 231 switch (how) { 232 case SIG_BLOCK: 233 sigorset(&ts->signal_mask, &ts->signal_mask, set); 234 break; 235 case SIG_UNBLOCK: 236 for (i = 1; i <= NSIG; ++i) { 237 if (sigismember(set, i)) { 238 sigdelset(&ts->signal_mask, i); 239 } 240 } 241 break; 242 case SIG_SETMASK: 243 ts->signal_mask = *set; 244 break; 245 default: 246 g_assert_not_reached(); 247 } 248 249 /* Silently ignore attempts to change blocking status of KILL or STOP */ 250 sigdelset(&ts->signal_mask, SIGKILL); 251 sigdelset(&ts->signal_mask, SIGSTOP); 252 } 253 return 0; 254 } 255 256 #if !defined(TARGET_OPENRISC) && !defined(TARGET_UNICORE32) && \ 257 !defined(TARGET_X86_64) 258 /* Just set the guest's signal mask to the specified value; the 259 * caller is assumed to have called block_signals() already. 260 */ 261 static void set_sigmask(const sigset_t *set) 262 { 263 TaskState *ts = (TaskState *)thread_cpu->opaque; 264 265 ts->signal_mask = *set; 266 } 267 #endif 268 269 /* siginfo conversion */ 270 271 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 272 const siginfo_t *info) 273 { 274 int sig = host_to_target_signal(info->si_signo); 275 int si_code = info->si_code; 276 int si_type; 277 tinfo->si_signo = sig; 278 tinfo->si_errno = 0; 279 tinfo->si_code = info->si_code; 280 281 /* This memset serves two purposes: 282 * (1) ensure we don't leak random junk to the guest later 283 * (2) placate false positives from gcc about fields 284 * being used uninitialized if it chooses to inline both this 285 * function and tswap_siginfo() into host_to_target_siginfo(). 286 */ 287 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 288 289 /* This is awkward, because we have to use a combination of 290 * the si_code and si_signo to figure out which of the union's 291 * members are valid. (Within the host kernel it is always possible 292 * to tell, but the kernel carefully avoids giving userspace the 293 * high 16 bits of si_code, so we don't have the information to 294 * do this the easy way...) We therefore make our best guess, 295 * bearing in mind that a guest can spoof most of the si_codes 296 * via rt_sigqueueinfo() if it likes. 297 * 298 * Once we have made our guess, we record it in the top 16 bits of 299 * the si_code, so that tswap_siginfo() later can use it. 300 * tswap_siginfo() will strip these top bits out before writing 301 * si_code to the guest (sign-extending the lower bits). 302 */ 303 304 switch (si_code) { 305 case SI_USER: 306 case SI_TKILL: 307 case SI_KERNEL: 308 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 309 * These are the only unspoofable si_code values. 310 */ 311 tinfo->_sifields._kill._pid = info->si_pid; 312 tinfo->_sifields._kill._uid = info->si_uid; 313 si_type = QEMU_SI_KILL; 314 break; 315 default: 316 /* Everything else is spoofable. Make best guess based on signal */ 317 switch (sig) { 318 case TARGET_SIGCHLD: 319 tinfo->_sifields._sigchld._pid = info->si_pid; 320 tinfo->_sifields._sigchld._uid = info->si_uid; 321 tinfo->_sifields._sigchld._status 322 = host_to_target_waitstatus(info->si_status); 323 tinfo->_sifields._sigchld._utime = info->si_utime; 324 tinfo->_sifields._sigchld._stime = info->si_stime; 325 si_type = QEMU_SI_CHLD; 326 break; 327 case TARGET_SIGIO: 328 tinfo->_sifields._sigpoll._band = info->si_band; 329 tinfo->_sifields._sigpoll._fd = info->si_fd; 330 si_type = QEMU_SI_POLL; 331 break; 332 default: 333 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 334 tinfo->_sifields._rt._pid = info->si_pid; 335 tinfo->_sifields._rt._uid = info->si_uid; 336 /* XXX: potential problem if 64 bit */ 337 tinfo->_sifields._rt._sigval.sival_ptr 338 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 339 si_type = QEMU_SI_RT; 340 break; 341 } 342 break; 343 } 344 345 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 346 } 347 348 static void tswap_siginfo(target_siginfo_t *tinfo, 349 const target_siginfo_t *info) 350 { 351 int si_type = extract32(info->si_code, 16, 16); 352 int si_code = sextract32(info->si_code, 0, 16); 353 354 __put_user(info->si_signo, &tinfo->si_signo); 355 __put_user(info->si_errno, &tinfo->si_errno); 356 __put_user(si_code, &tinfo->si_code); 357 358 /* We can use our internal marker of which fields in the structure 359 * are valid, rather than duplicating the guesswork of 360 * host_to_target_siginfo_noswap() here. 361 */ 362 switch (si_type) { 363 case QEMU_SI_KILL: 364 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 365 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 366 break; 367 case QEMU_SI_TIMER: 368 __put_user(info->_sifields._timer._timer1, 369 &tinfo->_sifields._timer._timer1); 370 __put_user(info->_sifields._timer._timer2, 371 &tinfo->_sifields._timer._timer2); 372 break; 373 case QEMU_SI_POLL: 374 __put_user(info->_sifields._sigpoll._band, 375 &tinfo->_sifields._sigpoll._band); 376 __put_user(info->_sifields._sigpoll._fd, 377 &tinfo->_sifields._sigpoll._fd); 378 break; 379 case QEMU_SI_FAULT: 380 __put_user(info->_sifields._sigfault._addr, 381 &tinfo->_sifields._sigfault._addr); 382 break; 383 case QEMU_SI_CHLD: 384 __put_user(info->_sifields._sigchld._pid, 385 &tinfo->_sifields._sigchld._pid); 386 __put_user(info->_sifields._sigchld._uid, 387 &tinfo->_sifields._sigchld._uid); 388 __put_user(info->_sifields._sigchld._status, 389 &tinfo->_sifields._sigchld._status); 390 __put_user(info->_sifields._sigchld._utime, 391 &tinfo->_sifields._sigchld._utime); 392 __put_user(info->_sifields._sigchld._stime, 393 &tinfo->_sifields._sigchld._stime); 394 break; 395 case QEMU_SI_RT: 396 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 397 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 398 __put_user(info->_sifields._rt._sigval.sival_ptr, 399 &tinfo->_sifields._rt._sigval.sival_ptr); 400 break; 401 default: 402 g_assert_not_reached(); 403 } 404 } 405 406 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 407 { 408 target_siginfo_t tgt_tmp; 409 host_to_target_siginfo_noswap(&tgt_tmp, info); 410 tswap_siginfo(tinfo, &tgt_tmp); 411 } 412 413 /* XXX: we support only POSIX RT signals are used. */ 414 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 415 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 416 { 417 /* This conversion is used only for the rt_sigqueueinfo syscall, 418 * and so we know that the _rt fields are the valid ones. 419 */ 420 abi_ulong sival_ptr; 421 422 __get_user(info->si_signo, &tinfo->si_signo); 423 __get_user(info->si_errno, &tinfo->si_errno); 424 __get_user(info->si_code, &tinfo->si_code); 425 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 426 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 427 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 428 info->si_value.sival_ptr = (void *)(long)sival_ptr; 429 } 430 431 static int fatal_signal (int sig) 432 { 433 switch (sig) { 434 case TARGET_SIGCHLD: 435 case TARGET_SIGURG: 436 case TARGET_SIGWINCH: 437 /* Ignored by default. */ 438 return 0; 439 case TARGET_SIGCONT: 440 case TARGET_SIGSTOP: 441 case TARGET_SIGTSTP: 442 case TARGET_SIGTTIN: 443 case TARGET_SIGTTOU: 444 /* Job control signals. */ 445 return 0; 446 default: 447 return 1; 448 } 449 } 450 451 /* returns 1 if given signal should dump core if not handled */ 452 static int core_dump_signal(int sig) 453 { 454 switch (sig) { 455 case TARGET_SIGABRT: 456 case TARGET_SIGFPE: 457 case TARGET_SIGILL: 458 case TARGET_SIGQUIT: 459 case TARGET_SIGSEGV: 460 case TARGET_SIGTRAP: 461 case TARGET_SIGBUS: 462 return (1); 463 default: 464 return (0); 465 } 466 } 467 468 void signal_init(void) 469 { 470 TaskState *ts = (TaskState *)thread_cpu->opaque; 471 struct sigaction act; 472 struct sigaction oact; 473 int i, j; 474 int host_sig; 475 476 /* generate signal conversion tables */ 477 for(i = 1; i < _NSIG; i++) { 478 if (host_to_target_signal_table[i] == 0) 479 host_to_target_signal_table[i] = i; 480 } 481 for(i = 1; i < _NSIG; i++) { 482 j = host_to_target_signal_table[i]; 483 target_to_host_signal_table[j] = i; 484 } 485 486 /* Set the signal mask from the host mask. */ 487 sigprocmask(0, 0, &ts->signal_mask); 488 489 /* set all host signal handlers. ALL signals are blocked during 490 the handlers to serialize them. */ 491 memset(sigact_table, 0, sizeof(sigact_table)); 492 493 sigfillset(&act.sa_mask); 494 act.sa_flags = SA_SIGINFO; 495 act.sa_sigaction = host_signal_handler; 496 for(i = 1; i <= TARGET_NSIG; i++) { 497 host_sig = target_to_host_signal(i); 498 sigaction(host_sig, NULL, &oact); 499 if (oact.sa_sigaction == (void *)SIG_IGN) { 500 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 501 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 502 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 503 } 504 /* If there's already a handler installed then something has 505 gone horribly wrong, so don't even try to handle that case. */ 506 /* Install some handlers for our own use. We need at least 507 SIGSEGV and SIGBUS, to detect exceptions. We can not just 508 trap all signals because it affects syscall interrupt 509 behavior. But do trap all default-fatal signals. */ 510 if (fatal_signal (i)) 511 sigaction(host_sig, &act, NULL); 512 } 513 } 514 515 #if !(defined(TARGET_X86_64) || defined(TARGET_UNICORE32)) 516 /* Force a synchronously taken signal. The kernel force_sig() function 517 * also forces the signal to "not blocked, not ignored", but for QEMU 518 * that work is done in process_pending_signals(). 519 */ 520 static void force_sig(int sig) 521 { 522 CPUState *cpu = thread_cpu; 523 CPUArchState *env = cpu->env_ptr; 524 target_siginfo_t info; 525 526 info.si_signo = sig; 527 info.si_errno = 0; 528 info.si_code = TARGET_SI_KERNEL; 529 info._sifields._kill._pid = 0; 530 info._sifields._kill._uid = 0; 531 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); 532 } 533 534 /* Force a SIGSEGV if we couldn't write to memory trying to set 535 * up the signal frame. oldsig is the signal we were trying to handle 536 * at the point of failure. 537 */ 538 static void force_sigsegv(int oldsig) 539 { 540 if (oldsig == SIGSEGV) { 541 /* Make sure we don't try to deliver the signal again; this will 542 * end up with handle_pending_signal() calling dump_core_and_abort(). 543 */ 544 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 545 } 546 force_sig(TARGET_SIGSEGV); 547 } 548 #endif 549 550 /* abort execution with signal */ 551 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 552 { 553 CPUState *cpu = thread_cpu; 554 CPUArchState *env = cpu->env_ptr; 555 TaskState *ts = (TaskState *)cpu->opaque; 556 int host_sig, core_dumped = 0; 557 struct sigaction act; 558 559 host_sig = target_to_host_signal(target_sig); 560 trace_user_force_sig(env, target_sig, host_sig); 561 gdb_signalled(env, target_sig); 562 563 /* dump core if supported by target binary format */ 564 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 565 stop_all_tasks(); 566 core_dumped = 567 ((*ts->bprm->core_dump)(target_sig, env) == 0); 568 } 569 if (core_dumped) { 570 /* we already dumped the core of target process, we don't want 571 * a coredump of qemu itself */ 572 struct rlimit nodump; 573 getrlimit(RLIMIT_CORE, &nodump); 574 nodump.rlim_cur=0; 575 setrlimit(RLIMIT_CORE, &nodump); 576 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 577 target_sig, strsignal(host_sig), "core dumped" ); 578 } 579 580 /* The proper exit code for dying from an uncaught signal is 581 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 582 * a negative value. To get the proper exit code we need to 583 * actually die from an uncaught signal. Here the default signal 584 * handler is installed, we send ourself a signal and we wait for 585 * it to arrive. */ 586 sigfillset(&act.sa_mask); 587 act.sa_handler = SIG_DFL; 588 act.sa_flags = 0; 589 sigaction(host_sig, &act, NULL); 590 591 /* For some reason raise(host_sig) doesn't send the signal when 592 * statically linked on x86-64. */ 593 kill(getpid(), host_sig); 594 595 /* Make sure the signal isn't masked (just reuse the mask inside 596 of act) */ 597 sigdelset(&act.sa_mask, host_sig); 598 sigsuspend(&act.sa_mask); 599 600 /* unreachable */ 601 abort(); 602 } 603 604 /* queue a signal so that it will be send to the virtual CPU as soon 605 as possible */ 606 int queue_signal(CPUArchState *env, int sig, int si_type, 607 target_siginfo_t *info) 608 { 609 CPUState *cpu = ENV_GET_CPU(env); 610 TaskState *ts = cpu->opaque; 611 612 trace_user_queue_signal(env, sig); 613 614 info->si_code = deposit32(info->si_code, 16, 16, si_type); 615 616 ts->sync_signal.info = *info; 617 ts->sync_signal.pending = sig; 618 /* signal that a new signal is pending */ 619 atomic_set(&ts->signal_pending, 1); 620 return 1; /* indicates that the signal was queued */ 621 } 622 623 #ifndef HAVE_SAFE_SYSCALL 624 static inline void rewind_if_in_safe_syscall(void *puc) 625 { 626 /* Default version: never rewind */ 627 } 628 #endif 629 630 static void host_signal_handler(int host_signum, siginfo_t *info, 631 void *puc) 632 { 633 CPUArchState *env = thread_cpu->env_ptr; 634 CPUState *cpu = ENV_GET_CPU(env); 635 TaskState *ts = cpu->opaque; 636 637 int sig; 638 target_siginfo_t tinfo; 639 ucontext_t *uc = puc; 640 struct emulated_sigtable *k; 641 642 /* the CPU emulator uses some host signals to detect exceptions, 643 we forward to it some signals */ 644 if ((host_signum == SIGSEGV || host_signum == SIGBUS) 645 && info->si_code > 0) { 646 if (cpu_signal_handler(host_signum, info, puc)) 647 return; 648 } 649 650 /* get target signal number */ 651 sig = host_to_target_signal(host_signum); 652 if (sig < 1 || sig > TARGET_NSIG) 653 return; 654 trace_user_host_signal(env, host_signum, sig); 655 656 rewind_if_in_safe_syscall(puc); 657 658 host_to_target_siginfo_noswap(&tinfo, info); 659 k = &ts->sigtab[sig - 1]; 660 k->info = tinfo; 661 k->pending = sig; 662 ts->signal_pending = 1; 663 664 /* Block host signals until target signal handler entered. We 665 * can't block SIGSEGV or SIGBUS while we're executing guest 666 * code in case the guest code provokes one in the window between 667 * now and it getting out to the main loop. Signals will be 668 * unblocked again in process_pending_signals(). 669 * 670 * WARNING: we cannot use sigfillset() here because the uc_sigmask 671 * field is a kernel sigset_t, which is much smaller than the 672 * libc sigset_t which sigfillset() operates on. Using sigfillset() 673 * would write 0xff bytes off the end of the structure and trash 674 * data on the struct. 675 * We can't use sizeof(uc->uc_sigmask) either, because the libc 676 * headers define the struct field with the wrong (too large) type. 677 */ 678 memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE); 679 sigdelset(&uc->uc_sigmask, SIGSEGV); 680 sigdelset(&uc->uc_sigmask, SIGBUS); 681 682 /* interrupt the virtual CPU as soon as possible */ 683 cpu_exit(thread_cpu); 684 } 685 686 /* do_sigaltstack() returns target values and errnos. */ 687 /* compare linux/kernel/signal.c:do_sigaltstack() */ 688 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) 689 { 690 int ret; 691 struct target_sigaltstack oss; 692 693 /* XXX: test errors */ 694 if(uoss_addr) 695 { 696 __put_user(target_sigaltstack_used.ss_sp, &oss.ss_sp); 697 __put_user(target_sigaltstack_used.ss_size, &oss.ss_size); 698 __put_user(sas_ss_flags(sp), &oss.ss_flags); 699 } 700 701 if(uss_addr) 702 { 703 struct target_sigaltstack *uss; 704 struct target_sigaltstack ss; 705 size_t minstacksize = TARGET_MINSIGSTKSZ; 706 707 #if defined(TARGET_PPC64) 708 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 709 struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; 710 if (get_ppc64_abi(image) > 1) { 711 minstacksize = 4096; 712 } 713 #endif 714 715 ret = -TARGET_EFAULT; 716 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 717 goto out; 718 } 719 __get_user(ss.ss_sp, &uss->ss_sp); 720 __get_user(ss.ss_size, &uss->ss_size); 721 __get_user(ss.ss_flags, &uss->ss_flags); 722 unlock_user_struct(uss, uss_addr, 0); 723 724 ret = -TARGET_EPERM; 725 if (on_sig_stack(sp)) 726 goto out; 727 728 ret = -TARGET_EINVAL; 729 if (ss.ss_flags != TARGET_SS_DISABLE 730 && ss.ss_flags != TARGET_SS_ONSTACK 731 && ss.ss_flags != 0) 732 goto out; 733 734 if (ss.ss_flags == TARGET_SS_DISABLE) { 735 ss.ss_size = 0; 736 ss.ss_sp = 0; 737 } else { 738 ret = -TARGET_ENOMEM; 739 if (ss.ss_size < minstacksize) { 740 goto out; 741 } 742 } 743 744 target_sigaltstack_used.ss_sp = ss.ss_sp; 745 target_sigaltstack_used.ss_size = ss.ss_size; 746 } 747 748 if (uoss_addr) { 749 ret = -TARGET_EFAULT; 750 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) 751 goto out; 752 } 753 754 ret = 0; 755 out: 756 return ret; 757 } 758 759 /* do_sigaction() return target values and host errnos */ 760 int do_sigaction(int sig, const struct target_sigaction *act, 761 struct target_sigaction *oact) 762 { 763 struct target_sigaction *k; 764 struct sigaction act1; 765 int host_sig; 766 int ret = 0; 767 768 if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) { 769 return -TARGET_EINVAL; 770 } 771 772 if (block_signals()) { 773 return -TARGET_ERESTARTSYS; 774 } 775 776 k = &sigact_table[sig - 1]; 777 if (oact) { 778 __put_user(k->_sa_handler, &oact->_sa_handler); 779 __put_user(k->sa_flags, &oact->sa_flags); 780 #if !defined(TARGET_MIPS) 781 __put_user(k->sa_restorer, &oact->sa_restorer); 782 #endif 783 /* Not swapped. */ 784 oact->sa_mask = k->sa_mask; 785 } 786 if (act) { 787 /* FIXME: This is not threadsafe. */ 788 __get_user(k->_sa_handler, &act->_sa_handler); 789 __get_user(k->sa_flags, &act->sa_flags); 790 #if !defined(TARGET_MIPS) 791 __get_user(k->sa_restorer, &act->sa_restorer); 792 #endif 793 /* To be swapped in target_to_host_sigset. */ 794 k->sa_mask = act->sa_mask; 795 796 /* we update the host linux signal state */ 797 host_sig = target_to_host_signal(sig); 798 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 799 sigfillset(&act1.sa_mask); 800 act1.sa_flags = SA_SIGINFO; 801 if (k->sa_flags & TARGET_SA_RESTART) 802 act1.sa_flags |= SA_RESTART; 803 /* NOTE: it is important to update the host kernel signal 804 ignore state to avoid getting unexpected interrupted 805 syscalls */ 806 if (k->_sa_handler == TARGET_SIG_IGN) { 807 act1.sa_sigaction = (void *)SIG_IGN; 808 } else if (k->_sa_handler == TARGET_SIG_DFL) { 809 if (fatal_signal (sig)) 810 act1.sa_sigaction = host_signal_handler; 811 else 812 act1.sa_sigaction = (void *)SIG_DFL; 813 } else { 814 act1.sa_sigaction = host_signal_handler; 815 } 816 ret = sigaction(host_sig, &act1, NULL); 817 } 818 } 819 return ret; 820 } 821 822 #if defined(TARGET_I386) && TARGET_ABI_BITS == 32 823 824 /* from the Linux kernel */ 825 826 struct target_fpreg { 827 uint16_t significand[4]; 828 uint16_t exponent; 829 }; 830 831 struct target_fpxreg { 832 uint16_t significand[4]; 833 uint16_t exponent; 834 uint16_t padding[3]; 835 }; 836 837 struct target_xmmreg { 838 abi_ulong element[4]; 839 }; 840 841 struct target_fpstate { 842 /* Regular FPU environment */ 843 abi_ulong cw; 844 abi_ulong sw; 845 abi_ulong tag; 846 abi_ulong ipoff; 847 abi_ulong cssel; 848 abi_ulong dataoff; 849 abi_ulong datasel; 850 struct target_fpreg _st[8]; 851 uint16_t status; 852 uint16_t magic; /* 0xffff = regular FPU data only */ 853 854 /* FXSR FPU environment */ 855 abi_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */ 856 abi_ulong mxcsr; 857 abi_ulong reserved; 858 struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */ 859 struct target_xmmreg _xmm[8]; 860 abi_ulong padding[56]; 861 }; 862 863 #define X86_FXSR_MAGIC 0x0000 864 865 struct target_sigcontext { 866 uint16_t gs, __gsh; 867 uint16_t fs, __fsh; 868 uint16_t es, __esh; 869 uint16_t ds, __dsh; 870 abi_ulong edi; 871 abi_ulong esi; 872 abi_ulong ebp; 873 abi_ulong esp; 874 abi_ulong ebx; 875 abi_ulong edx; 876 abi_ulong ecx; 877 abi_ulong eax; 878 abi_ulong trapno; 879 abi_ulong err; 880 abi_ulong eip; 881 uint16_t cs, __csh; 882 abi_ulong eflags; 883 abi_ulong esp_at_signal; 884 uint16_t ss, __ssh; 885 abi_ulong fpstate; /* pointer */ 886 abi_ulong oldmask; 887 abi_ulong cr2; 888 }; 889 890 struct target_ucontext { 891 abi_ulong tuc_flags; 892 abi_ulong tuc_link; 893 target_stack_t tuc_stack; 894 struct target_sigcontext tuc_mcontext; 895 target_sigset_t tuc_sigmask; /* mask last for extensibility */ 896 }; 897 898 struct sigframe 899 { 900 abi_ulong pretcode; 901 int sig; 902 struct target_sigcontext sc; 903 struct target_fpstate fpstate; 904 abi_ulong extramask[TARGET_NSIG_WORDS-1]; 905 char retcode[8]; 906 }; 907 908 struct rt_sigframe 909 { 910 abi_ulong pretcode; 911 int sig; 912 abi_ulong pinfo; 913 abi_ulong puc; 914 struct target_siginfo info; 915 struct target_ucontext uc; 916 struct target_fpstate fpstate; 917 char retcode[8]; 918 }; 919 920 /* 921 * Set up a signal frame. 922 */ 923 924 /* XXX: save x87 state */ 925 static void setup_sigcontext(struct target_sigcontext *sc, 926 struct target_fpstate *fpstate, CPUX86State *env, abi_ulong mask, 927 abi_ulong fpstate_addr) 928 { 929 CPUState *cs = CPU(x86_env_get_cpu(env)); 930 uint16_t magic; 931 932 /* already locked in setup_frame() */ 933 __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs); 934 __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs); 935 __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es); 936 __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds); 937 __put_user(env->regs[R_EDI], &sc->edi); 938 __put_user(env->regs[R_ESI], &sc->esi); 939 __put_user(env->regs[R_EBP], &sc->ebp); 940 __put_user(env->regs[R_ESP], &sc->esp); 941 __put_user(env->regs[R_EBX], &sc->ebx); 942 __put_user(env->regs[R_EDX], &sc->edx); 943 __put_user(env->regs[R_ECX], &sc->ecx); 944 __put_user(env->regs[R_EAX], &sc->eax); 945 __put_user(cs->exception_index, &sc->trapno); 946 __put_user(env->error_code, &sc->err); 947 __put_user(env->eip, &sc->eip); 948 __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs); 949 __put_user(env->eflags, &sc->eflags); 950 __put_user(env->regs[R_ESP], &sc->esp_at_signal); 951 __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss); 952 953 cpu_x86_fsave(env, fpstate_addr, 1); 954 fpstate->status = fpstate->sw; 955 magic = 0xffff; 956 __put_user(magic, &fpstate->magic); 957 __put_user(fpstate_addr, &sc->fpstate); 958 959 /* non-iBCS2 extensions.. */ 960 __put_user(mask, &sc->oldmask); 961 __put_user(env->cr[2], &sc->cr2); 962 } 963 964 /* 965 * Determine which stack to use.. 966 */ 967 968 static inline abi_ulong 969 get_sigframe(struct target_sigaction *ka, CPUX86State *env, size_t frame_size) 970 { 971 unsigned long esp; 972 973 /* Default to using normal stack */ 974 esp = env->regs[R_ESP]; 975 /* This is the X/Open sanctioned signal stack switching. */ 976 if (ka->sa_flags & TARGET_SA_ONSTACK) { 977 if (sas_ss_flags(esp) == 0) { 978 esp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 979 } 980 } else { 981 982 /* This is the legacy signal stack switching. */ 983 if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && 984 !(ka->sa_flags & TARGET_SA_RESTORER) && 985 ka->sa_restorer) { 986 esp = (unsigned long) ka->sa_restorer; 987 } 988 } 989 return (esp - frame_size) & -8ul; 990 } 991 992 /* compare linux/arch/i386/kernel/signal.c:setup_frame() */ 993 static void setup_frame(int sig, struct target_sigaction *ka, 994 target_sigset_t *set, CPUX86State *env) 995 { 996 abi_ulong frame_addr; 997 struct sigframe *frame; 998 int i; 999 1000 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 1001 trace_user_setup_frame(env, frame_addr); 1002 1003 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) 1004 goto give_sigsegv; 1005 1006 __put_user(sig, &frame->sig); 1007 1008 setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0], 1009 frame_addr + offsetof(struct sigframe, fpstate)); 1010 1011 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 1012 __put_user(set->sig[i], &frame->extramask[i - 1]); 1013 } 1014 1015 /* Set up to return from userspace. If provided, use a stub 1016 already in userspace. */ 1017 if (ka->sa_flags & TARGET_SA_RESTORER) { 1018 __put_user(ka->sa_restorer, &frame->pretcode); 1019 } else { 1020 uint16_t val16; 1021 abi_ulong retcode_addr; 1022 retcode_addr = frame_addr + offsetof(struct sigframe, retcode); 1023 __put_user(retcode_addr, &frame->pretcode); 1024 /* This is popl %eax ; movl $,%eax ; int $0x80 */ 1025 val16 = 0xb858; 1026 __put_user(val16, (uint16_t *)(frame->retcode+0)); 1027 __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2)); 1028 val16 = 0x80cd; 1029 __put_user(val16, (uint16_t *)(frame->retcode+6)); 1030 } 1031 1032 1033 /* Set up registers for signal handler */ 1034 env->regs[R_ESP] = frame_addr; 1035 env->eip = ka->_sa_handler; 1036 1037 cpu_x86_load_seg(env, R_DS, __USER_DS); 1038 cpu_x86_load_seg(env, R_ES, __USER_DS); 1039 cpu_x86_load_seg(env, R_SS, __USER_DS); 1040 cpu_x86_load_seg(env, R_CS, __USER_CS); 1041 env->eflags &= ~TF_MASK; 1042 1043 unlock_user_struct(frame, frame_addr, 1); 1044 1045 return; 1046 1047 give_sigsegv: 1048 force_sigsegv(sig); 1049 } 1050 1051 /* compare linux/arch/i386/kernel/signal.c:setup_rt_frame() */ 1052 static void setup_rt_frame(int sig, struct target_sigaction *ka, 1053 target_siginfo_t *info, 1054 target_sigset_t *set, CPUX86State *env) 1055 { 1056 abi_ulong frame_addr, addr; 1057 struct rt_sigframe *frame; 1058 int i; 1059 1060 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 1061 trace_user_setup_rt_frame(env, frame_addr); 1062 1063 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) 1064 goto give_sigsegv; 1065 1066 __put_user(sig, &frame->sig); 1067 addr = frame_addr + offsetof(struct rt_sigframe, info); 1068 __put_user(addr, &frame->pinfo); 1069 addr = frame_addr + offsetof(struct rt_sigframe, uc); 1070 __put_user(addr, &frame->puc); 1071 tswap_siginfo(&frame->info, info); 1072 1073 /* Create the ucontext. */ 1074 __put_user(0, &frame->uc.tuc_flags); 1075 __put_user(0, &frame->uc.tuc_link); 1076 __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); 1077 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), 1078 &frame->uc.tuc_stack.ss_flags); 1079 __put_user(target_sigaltstack_used.ss_size, 1080 &frame->uc.tuc_stack.ss_size); 1081 setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate, env, 1082 set->sig[0], frame_addr + offsetof(struct rt_sigframe, fpstate)); 1083 1084 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 1085 __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); 1086 } 1087 1088 /* Set up to return from userspace. If provided, use a stub 1089 already in userspace. */ 1090 if (ka->sa_flags & TARGET_SA_RESTORER) { 1091 __put_user(ka->sa_restorer, &frame->pretcode); 1092 } else { 1093 uint16_t val16; 1094 addr = frame_addr + offsetof(struct rt_sigframe, retcode); 1095 __put_user(addr, &frame->pretcode); 1096 /* This is movl $,%eax ; int $0x80 */ 1097 __put_user(0xb8, (char *)(frame->retcode+0)); 1098 __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1)); 1099 val16 = 0x80cd; 1100 __put_user(val16, (uint16_t *)(frame->retcode+5)); 1101 } 1102 1103 /* Set up registers for signal handler */ 1104 env->regs[R_ESP] = frame_addr; 1105 env->eip = ka->_sa_handler; 1106 1107 cpu_x86_load_seg(env, R_DS, __USER_DS); 1108 cpu_x86_load_seg(env, R_ES, __USER_DS); 1109 cpu_x86_load_seg(env, R_SS, __USER_DS); 1110 cpu_x86_load_seg(env, R_CS, __USER_CS); 1111 env->eflags &= ~TF_MASK; 1112 1113 unlock_user_struct(frame, frame_addr, 1); 1114 1115 return; 1116 1117 give_sigsegv: 1118 force_sigsegv(sig); 1119 } 1120 1121 static int 1122 restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc) 1123 { 1124 unsigned int err = 0; 1125 abi_ulong fpstate_addr; 1126 unsigned int tmpflags; 1127 1128 cpu_x86_load_seg(env, R_GS, tswap16(sc->gs)); 1129 cpu_x86_load_seg(env, R_FS, tswap16(sc->fs)); 1130 cpu_x86_load_seg(env, R_ES, tswap16(sc->es)); 1131 cpu_x86_load_seg(env, R_DS, tswap16(sc->ds)); 1132 1133 env->regs[R_EDI] = tswapl(sc->edi); 1134 env->regs[R_ESI] = tswapl(sc->esi); 1135 env->regs[R_EBP] = tswapl(sc->ebp); 1136 env->regs[R_ESP] = tswapl(sc->esp); 1137 env->regs[R_EBX] = tswapl(sc->ebx); 1138 env->regs[R_EDX] = tswapl(sc->edx); 1139 env->regs[R_ECX] = tswapl(sc->ecx); 1140 env->regs[R_EAX] = tswapl(sc->eax); 1141 env->eip = tswapl(sc->eip); 1142 1143 cpu_x86_load_seg(env, R_CS, lduw_p(&sc->cs) | 3); 1144 cpu_x86_load_seg(env, R_SS, lduw_p(&sc->ss) | 3); 1145 1146 tmpflags = tswapl(sc->eflags); 1147 env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); 1148 // regs->orig_eax = -1; /* disable syscall checks */ 1149 1150 fpstate_addr = tswapl(sc->fpstate); 1151 if (fpstate_addr != 0) { 1152 if (!access_ok(VERIFY_READ, fpstate_addr, 1153 sizeof(struct target_fpstate))) 1154 goto badframe; 1155 cpu_x86_frstor(env, fpstate_addr, 1); 1156 } 1157 1158 return err; 1159 badframe: 1160 return 1; 1161 } 1162 1163 long do_sigreturn(CPUX86State *env) 1164 { 1165 struct sigframe *frame; 1166 abi_ulong frame_addr = env->regs[R_ESP] - 8; 1167 target_sigset_t target_set; 1168 sigset_t set; 1169 int i; 1170 1171 trace_user_do_sigreturn(env, frame_addr); 1172 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) 1173 goto badframe; 1174 /* set blocked signals */ 1175 __get_user(target_set.sig[0], &frame->sc.oldmask); 1176 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 1177 __get_user(target_set.sig[i], &frame->extramask[i - 1]); 1178 } 1179 1180 target_to_host_sigset_internal(&set, &target_set); 1181 set_sigmask(&set); 1182 1183 /* restore registers */ 1184 if (restore_sigcontext(env, &frame->sc)) 1185 goto badframe; 1186 unlock_user_struct(frame, frame_addr, 0); 1187 return -TARGET_QEMU_ESIGRETURN; 1188 1189 badframe: 1190 unlock_user_struct(frame, frame_addr, 0); 1191 force_sig(TARGET_SIGSEGV); 1192 return -TARGET_QEMU_ESIGRETURN; 1193 } 1194 1195 long do_rt_sigreturn(CPUX86State *env) 1196 { 1197 abi_ulong frame_addr; 1198 struct rt_sigframe *frame; 1199 sigset_t set; 1200 1201 frame_addr = env->regs[R_ESP] - 4; 1202 trace_user_do_rt_sigreturn(env, frame_addr); 1203 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) 1204 goto badframe; 1205 target_to_host_sigset(&set, &frame->uc.tuc_sigmask); 1206 set_sigmask(&set); 1207 1208 if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) { 1209 goto badframe; 1210 } 1211 1212 if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe, uc.tuc_stack), 0, 1213 get_sp_from_cpustate(env)) == -EFAULT) { 1214 goto badframe; 1215 } 1216 1217 unlock_user_struct(frame, frame_addr, 0); 1218 return -TARGET_QEMU_ESIGRETURN; 1219 1220 badframe: 1221 unlock_user_struct(frame, frame_addr, 0); 1222 force_sig(TARGET_SIGSEGV); 1223 return -TARGET_QEMU_ESIGRETURN; 1224 } 1225 1226 #elif defined(TARGET_AARCH64) 1227 1228 struct target_sigcontext { 1229 uint64_t fault_address; 1230 /* AArch64 registers */ 1231 uint64_t regs[31]; 1232 uint64_t sp; 1233 uint64_t pc; 1234 uint64_t pstate; 1235 /* 4K reserved for FP/SIMD state and future expansion */ 1236 char __reserved[4096] __attribute__((__aligned__(16))); 1237 }; 1238 1239 struct target_ucontext { 1240 abi_ulong tuc_flags; 1241 abi_ulong tuc_link; 1242 target_stack_t tuc_stack; 1243 target_sigset_t tuc_sigmask; 1244 /* glibc uses a 1024-bit sigset_t */ 1245 char __unused[1024 / 8 - sizeof(target_sigset_t)]; 1246 /* last for future expansion */ 1247 struct target_sigcontext tuc_mcontext; 1248 }; 1249 1250 /* 1251 * Header to be used at the beginning of structures extending the user 1252 * context. Such structures must be placed after the rt_sigframe on the stack 1253 * and be 16-byte aligned. The last structure must be a dummy one with the 1254 * magic and size set to 0. 1255 */ 1256 struct target_aarch64_ctx { 1257 uint32_t magic; 1258 uint32_t size; 1259 }; 1260 1261 #define TARGET_FPSIMD_MAGIC 0x46508001 1262 1263 struct target_fpsimd_context { 1264 struct target_aarch64_ctx head; 1265 uint32_t fpsr; 1266 uint32_t fpcr; 1267 uint64_t vregs[32 * 2]; /* really uint128_t vregs[32] */ 1268 }; 1269 1270 /* 1271 * Auxiliary context saved in the sigcontext.__reserved array. Not exported to 1272 * user space as it will change with the addition of new context. User space 1273 * should check the magic/size information. 1274 */ 1275 struct target_aux_context { 1276 struct target_fpsimd_context fpsimd; 1277 /* additional context to be added before "end" */ 1278 struct target_aarch64_ctx end; 1279 }; 1280 1281 struct target_rt_sigframe { 1282 struct target_siginfo info; 1283 struct target_ucontext uc; 1284 uint64_t fp; 1285 uint64_t lr; 1286 uint32_t tramp[2]; 1287 }; 1288 1289 static int target_setup_sigframe(struct target_rt_sigframe *sf, 1290 CPUARMState *env, target_sigset_t *set) 1291 { 1292 int i; 1293 struct target_aux_context *aux = 1294 (struct target_aux_context *)sf->uc.tuc_mcontext.__reserved; 1295 1296 /* set up the stack frame for unwinding */ 1297 __put_user(env->xregs[29], &sf->fp); 1298 __put_user(env->xregs[30], &sf->lr); 1299 1300 for (i = 0; i < 31; i++) { 1301 __put_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); 1302 } 1303 __put_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); 1304 __put_user(env->pc, &sf->uc.tuc_mcontext.pc); 1305 __put_user(pstate_read(env), &sf->uc.tuc_mcontext.pstate); 1306 1307 __put_user(env->exception.vaddress, &sf->uc.tuc_mcontext.fault_address); 1308 1309 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 1310 __put_user(set->sig[i], &sf->uc.tuc_sigmask.sig[i]); 1311 } 1312 1313 for (i = 0; i < 32; i++) { 1314 #ifdef TARGET_WORDS_BIGENDIAN 1315 __put_user(env->vfp.regs[i * 2], &aux->fpsimd.vregs[i * 2 + 1]); 1316 __put_user(env->vfp.regs[i * 2 + 1], &aux->fpsimd.vregs[i * 2]); 1317 #else 1318 __put_user(env->vfp.regs[i * 2], &aux->fpsimd.vregs[i * 2]); 1319 __put_user(env->vfp.regs[i * 2 + 1], &aux->fpsimd.vregs[i * 2 + 1]); 1320 #endif 1321 } 1322 __put_user(vfp_get_fpsr(env), &aux->fpsimd.fpsr); 1323 __put_user(vfp_get_fpcr(env), &aux->fpsimd.fpcr); 1324 __put_user(TARGET_FPSIMD_MAGIC, &aux->fpsimd.head.magic); 1325 __put_user(sizeof(struct target_fpsimd_context), 1326 &aux->fpsimd.head.size); 1327 1328 /* set the "end" magic */ 1329 __put_user(0, &aux->end.magic); 1330 __put_user(0, &aux->end.size); 1331 1332 return 0; 1333 } 1334 1335 static int target_restore_sigframe(CPUARMState *env, 1336 struct target_rt_sigframe *sf) 1337 { 1338 sigset_t set; 1339 int i; 1340 struct target_aux_context *aux = 1341 (struct target_aux_context *)sf->uc.tuc_mcontext.__reserved; 1342 uint32_t magic, size, fpsr, fpcr; 1343 uint64_t pstate; 1344 1345 target_to_host_sigset(&set, &sf->uc.tuc_sigmask); 1346 set_sigmask(&set); 1347 1348 for (i = 0; i < 31; i++) { 1349 __get_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); 1350 } 1351 1352 __get_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); 1353 __get_user(env->pc, &sf->uc.tuc_mcontext.pc); 1354 __get_user(pstate, &sf->uc.tuc_mcontext.pstate); 1355 pstate_write(env, pstate); 1356 1357 __get_user(magic, &aux->fpsimd.head.magic); 1358 __get_user(size, &aux->fpsimd.head.size); 1359 1360 if (magic != TARGET_FPSIMD_MAGIC 1361 || size != sizeof(struct target_fpsimd_context)) { 1362 return 1; 1363 } 1364 1365 for (i = 0; i < 32; i++) { 1366 #ifdef TARGET_WORDS_BIGENDIAN 1367 __get_user(env->vfp.regs[i * 2], &aux->fpsimd.vregs[i * 2 + 1]); 1368 __get_user(env->vfp.regs[i * 2 + 1], &aux->fpsimd.vregs[i * 2]); 1369 #else 1370 __get_user(env->vfp.regs[i * 2], &aux->fpsimd.vregs[i * 2]); 1371 __get_user(env->vfp.regs[i * 2 + 1], &aux->fpsimd.vregs[i * 2 + 1]); 1372 #endif 1373 } 1374 __get_user(fpsr, &aux->fpsimd.fpsr); 1375 vfp_set_fpsr(env, fpsr); 1376 __get_user(fpcr, &aux->fpsimd.fpcr); 1377 vfp_set_fpcr(env, fpcr); 1378 1379 return 0; 1380 } 1381 1382 static abi_ulong get_sigframe(struct target_sigaction *ka, CPUARMState *env) 1383 { 1384 abi_ulong sp; 1385 1386 sp = env->xregs[31]; 1387 1388 /* 1389 * This is the X/Open sanctioned signal stack switching. 1390 */ 1391 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 1392 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 1393 } 1394 1395 sp = (sp - sizeof(struct target_rt_sigframe)) & ~15; 1396 1397 return sp; 1398 } 1399 1400 static void target_setup_frame(int usig, struct target_sigaction *ka, 1401 target_siginfo_t *info, target_sigset_t *set, 1402 CPUARMState *env) 1403 { 1404 struct target_rt_sigframe *frame; 1405 abi_ulong frame_addr, return_addr; 1406 1407 frame_addr = get_sigframe(ka, env); 1408 trace_user_setup_frame(env, frame_addr); 1409 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 1410 goto give_sigsegv; 1411 } 1412 1413 __put_user(0, &frame->uc.tuc_flags); 1414 __put_user(0, &frame->uc.tuc_link); 1415 1416 __put_user(target_sigaltstack_used.ss_sp, 1417 &frame->uc.tuc_stack.ss_sp); 1418 __put_user(sas_ss_flags(env->xregs[31]), 1419 &frame->uc.tuc_stack.ss_flags); 1420 __put_user(target_sigaltstack_used.ss_size, 1421 &frame->uc.tuc_stack.ss_size); 1422 target_setup_sigframe(frame, env, set); 1423 if (ka->sa_flags & TARGET_SA_RESTORER) { 1424 return_addr = ka->sa_restorer; 1425 } else { 1426 /* mov x8,#__NR_rt_sigreturn; svc #0 */ 1427 __put_user(0xd2801168, &frame->tramp[0]); 1428 __put_user(0xd4000001, &frame->tramp[1]); 1429 return_addr = frame_addr + offsetof(struct target_rt_sigframe, tramp); 1430 } 1431 env->xregs[0] = usig; 1432 env->xregs[31] = frame_addr; 1433 env->xregs[29] = env->xregs[31] + offsetof(struct target_rt_sigframe, fp); 1434 env->pc = ka->_sa_handler; 1435 env->xregs[30] = return_addr; 1436 if (info) { 1437 tswap_siginfo(&frame->info, info); 1438 env->xregs[1] = frame_addr + offsetof(struct target_rt_sigframe, info); 1439 env->xregs[2] = frame_addr + offsetof(struct target_rt_sigframe, uc); 1440 } 1441 1442 unlock_user_struct(frame, frame_addr, 1); 1443 return; 1444 1445 give_sigsegv: 1446 unlock_user_struct(frame, frame_addr, 1); 1447 force_sigsegv(usig); 1448 } 1449 1450 static void setup_rt_frame(int sig, struct target_sigaction *ka, 1451 target_siginfo_t *info, target_sigset_t *set, 1452 CPUARMState *env) 1453 { 1454 target_setup_frame(sig, ka, info, set, env); 1455 } 1456 1457 static void setup_frame(int sig, struct target_sigaction *ka, 1458 target_sigset_t *set, CPUARMState *env) 1459 { 1460 target_setup_frame(sig, ka, 0, set, env); 1461 } 1462 1463 long do_rt_sigreturn(CPUARMState *env) 1464 { 1465 struct target_rt_sigframe *frame = NULL; 1466 abi_ulong frame_addr = env->xregs[31]; 1467 1468 trace_user_do_rt_sigreturn(env, frame_addr); 1469 if (frame_addr & 15) { 1470 goto badframe; 1471 } 1472 1473 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 1474 goto badframe; 1475 } 1476 1477 if (target_restore_sigframe(env, frame)) { 1478 goto badframe; 1479 } 1480 1481 if (do_sigaltstack(frame_addr + 1482 offsetof(struct target_rt_sigframe, uc.tuc_stack), 1483 0, get_sp_from_cpustate(env)) == -EFAULT) { 1484 goto badframe; 1485 } 1486 1487 unlock_user_struct(frame, frame_addr, 0); 1488 return -TARGET_QEMU_ESIGRETURN; 1489 1490 badframe: 1491 unlock_user_struct(frame, frame_addr, 0); 1492 force_sig(TARGET_SIGSEGV); 1493 return -TARGET_QEMU_ESIGRETURN; 1494 } 1495 1496 long do_sigreturn(CPUARMState *env) 1497 { 1498 return do_rt_sigreturn(env); 1499 } 1500 1501 #elif defined(TARGET_ARM) 1502 1503 struct target_sigcontext { 1504 abi_ulong trap_no; 1505 abi_ulong error_code; 1506 abi_ulong oldmask; 1507 abi_ulong arm_r0; 1508 abi_ulong arm_r1; 1509 abi_ulong arm_r2; 1510 abi_ulong arm_r3; 1511 abi_ulong arm_r4; 1512 abi_ulong arm_r5; 1513 abi_ulong arm_r6; 1514 abi_ulong arm_r7; 1515 abi_ulong arm_r8; 1516 abi_ulong arm_r9; 1517 abi_ulong arm_r10; 1518 abi_ulong arm_fp; 1519 abi_ulong arm_ip; 1520 abi_ulong arm_sp; 1521 abi_ulong arm_lr; 1522 abi_ulong arm_pc; 1523 abi_ulong arm_cpsr; 1524 abi_ulong fault_address; 1525 }; 1526 1527 struct target_ucontext_v1 { 1528 abi_ulong tuc_flags; 1529 abi_ulong tuc_link; 1530 target_stack_t tuc_stack; 1531 struct target_sigcontext tuc_mcontext; 1532 target_sigset_t tuc_sigmask; /* mask last for extensibility */ 1533 }; 1534 1535 struct target_ucontext_v2 { 1536 abi_ulong tuc_flags; 1537 abi_ulong tuc_link; 1538 target_stack_t tuc_stack; 1539 struct target_sigcontext tuc_mcontext; 1540 target_sigset_t tuc_sigmask; /* mask last for extensibility */ 1541 char __unused[128 - sizeof(target_sigset_t)]; 1542 abi_ulong tuc_regspace[128] __attribute__((__aligned__(8))); 1543 }; 1544 1545 struct target_user_vfp { 1546 uint64_t fpregs[32]; 1547 abi_ulong fpscr; 1548 }; 1549 1550 struct target_user_vfp_exc { 1551 abi_ulong fpexc; 1552 abi_ulong fpinst; 1553 abi_ulong fpinst2; 1554 }; 1555 1556 struct target_vfp_sigframe { 1557 abi_ulong magic; 1558 abi_ulong size; 1559 struct target_user_vfp ufp; 1560 struct target_user_vfp_exc ufp_exc; 1561 } __attribute__((__aligned__(8))); 1562 1563 struct target_iwmmxt_sigframe { 1564 abi_ulong magic; 1565 abi_ulong size; 1566 uint64_t regs[16]; 1567 /* Note that not all the coprocessor control registers are stored here */ 1568 uint32_t wcssf; 1569 uint32_t wcasf; 1570 uint32_t wcgr0; 1571 uint32_t wcgr1; 1572 uint32_t wcgr2; 1573 uint32_t wcgr3; 1574 } __attribute__((__aligned__(8))); 1575 1576 #define TARGET_VFP_MAGIC 0x56465001 1577 #define TARGET_IWMMXT_MAGIC 0x12ef842a 1578 1579 struct sigframe_v1 1580 { 1581 struct target_sigcontext sc; 1582 abi_ulong extramask[TARGET_NSIG_WORDS-1]; 1583 abi_ulong retcode; 1584 }; 1585 1586 struct sigframe_v2 1587 { 1588 struct target_ucontext_v2 uc; 1589 abi_ulong retcode; 1590 }; 1591 1592 struct rt_sigframe_v1 1593 { 1594 abi_ulong pinfo; 1595 abi_ulong puc; 1596 struct target_siginfo info; 1597 struct target_ucontext_v1 uc; 1598 abi_ulong retcode; 1599 }; 1600 1601 struct rt_sigframe_v2 1602 { 1603 struct target_siginfo info; 1604 struct target_ucontext_v2 uc; 1605 abi_ulong retcode; 1606 }; 1607 1608 #define TARGET_CONFIG_CPU_32 1 1609 1610 /* 1611 * For ARM syscalls, we encode the syscall number into the instruction. 1612 */ 1613 #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE)) 1614 #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE)) 1615 1616 /* 1617 * For Thumb syscalls, we pass the syscall number via r7. We therefore 1618 * need two 16-bit instructions. 1619 */ 1620 #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn)) 1621 #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn)) 1622 1623 static const abi_ulong retcodes[4] = { 1624 SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN, 1625 SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN 1626 }; 1627 1628 1629 static inline int valid_user_regs(CPUARMState *regs) 1630 { 1631 return 1; 1632 } 1633 1634 static void 1635 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ 1636 CPUARMState *env, abi_ulong mask) 1637 { 1638 __put_user(env->regs[0], &sc->arm_r0); 1639 __put_user(env->regs[1], &sc->arm_r1); 1640 __put_user(env->regs[2], &sc->arm_r2); 1641 __put_user(env->regs[3], &sc->arm_r3); 1642 __put_user(env->regs[4], &sc->arm_r4); 1643 __put_user(env->regs[5], &sc->arm_r5); 1644 __put_user(env->regs[6], &sc->arm_r6); 1645 __put_user(env->regs[7], &sc->arm_r7); 1646 __put_user(env->regs[8], &sc->arm_r8); 1647 __put_user(env->regs[9], &sc->arm_r9); 1648 __put_user(env->regs[10], &sc->arm_r10); 1649 __put_user(env->regs[11], &sc->arm_fp); 1650 __put_user(env->regs[12], &sc->arm_ip); 1651 __put_user(env->regs[13], &sc->arm_sp); 1652 __put_user(env->regs[14], &sc->arm_lr); 1653 __put_user(env->regs[15], &sc->arm_pc); 1654 #ifdef TARGET_CONFIG_CPU_32 1655 __put_user(cpsr_read(env), &sc->arm_cpsr); 1656 #endif 1657 1658 __put_user(/* current->thread.trap_no */ 0, &sc->trap_no); 1659 __put_user(/* current->thread.error_code */ 0, &sc->error_code); 1660 __put_user(/* current->thread.address */ 0, &sc->fault_address); 1661 __put_user(mask, &sc->oldmask); 1662 } 1663 1664 static inline abi_ulong 1665 get_sigframe(struct target_sigaction *ka, CPUARMState *regs, int framesize) 1666 { 1667 unsigned long sp = regs->regs[13]; 1668 1669 /* 1670 * This is the X/Open sanctioned signal stack switching. 1671 */ 1672 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 1673 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 1674 } 1675 /* 1676 * ATPCS B01 mandates 8-byte alignment 1677 */ 1678 return (sp - framesize) & ~7; 1679 } 1680 1681 static void 1682 setup_return(CPUARMState *env, struct target_sigaction *ka, 1683 abi_ulong *rc, abi_ulong frame_addr, int usig, abi_ulong rc_addr) 1684 { 1685 abi_ulong handler = ka->_sa_handler; 1686 abi_ulong retcode; 1687 int thumb = handler & 1; 1688 uint32_t cpsr = cpsr_read(env); 1689 1690 cpsr &= ~CPSR_IT; 1691 if (thumb) { 1692 cpsr |= CPSR_T; 1693 } else { 1694 cpsr &= ~CPSR_T; 1695 } 1696 1697 if (ka->sa_flags & TARGET_SA_RESTORER) { 1698 retcode = ka->sa_restorer; 1699 } else { 1700 unsigned int idx = thumb; 1701 1702 if (ka->sa_flags & TARGET_SA_SIGINFO) { 1703 idx += 2; 1704 } 1705 1706 __put_user(retcodes[idx], rc); 1707 1708 retcode = rc_addr + thumb; 1709 } 1710 1711 env->regs[0] = usig; 1712 env->regs[13] = frame_addr; 1713 env->regs[14] = retcode; 1714 env->regs[15] = handler & (thumb ? ~1 : ~3); 1715 cpsr_write(env, cpsr, CPSR_IT | CPSR_T, CPSRWriteByInstr); 1716 } 1717 1718 static abi_ulong *setup_sigframe_v2_vfp(abi_ulong *regspace, CPUARMState *env) 1719 { 1720 int i; 1721 struct target_vfp_sigframe *vfpframe; 1722 vfpframe = (struct target_vfp_sigframe *)regspace; 1723 __put_user(TARGET_VFP_MAGIC, &vfpframe->magic); 1724 __put_user(sizeof(*vfpframe), &vfpframe->size); 1725 for (i = 0; i < 32; i++) { 1726 __put_user(float64_val(env->vfp.regs[i]), &vfpframe->ufp.fpregs[i]); 1727 } 1728 __put_user(vfp_get_fpscr(env), &vfpframe->ufp.fpscr); 1729 __put_user(env->vfp.xregs[ARM_VFP_FPEXC], &vfpframe->ufp_exc.fpexc); 1730 __put_user(env->vfp.xregs[ARM_VFP_FPINST], &vfpframe->ufp_exc.fpinst); 1731 __put_user(env->vfp.xregs[ARM_VFP_FPINST2], &vfpframe->ufp_exc.fpinst2); 1732 return (abi_ulong*)(vfpframe+1); 1733 } 1734 1735 static abi_ulong *setup_sigframe_v2_iwmmxt(abi_ulong *regspace, 1736 CPUARMState *env) 1737 { 1738 int i; 1739 struct target_iwmmxt_sigframe *iwmmxtframe; 1740 iwmmxtframe = (struct target_iwmmxt_sigframe *)regspace; 1741 __put_user(TARGET_IWMMXT_MAGIC, &iwmmxtframe->magic); 1742 __put_user(sizeof(*iwmmxtframe), &iwmmxtframe->size); 1743 for (i = 0; i < 16; i++) { 1744 __put_user(env->iwmmxt.regs[i], &iwmmxtframe->regs[i]); 1745 } 1746 __put_user(env->vfp.xregs[ARM_IWMMXT_wCSSF], &iwmmxtframe->wcssf); 1747 __put_user(env->vfp.xregs[ARM_IWMMXT_wCASF], &iwmmxtframe->wcssf); 1748 __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR0], &iwmmxtframe->wcgr0); 1749 __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR1], &iwmmxtframe->wcgr1); 1750 __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR2], &iwmmxtframe->wcgr2); 1751 __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR3], &iwmmxtframe->wcgr3); 1752 return (abi_ulong*)(iwmmxtframe+1); 1753 } 1754 1755 static void setup_sigframe_v2(struct target_ucontext_v2 *uc, 1756 target_sigset_t *set, CPUARMState *env) 1757 { 1758 struct target_sigaltstack stack; 1759 int i; 1760 abi_ulong *regspace; 1761 1762 /* Clear all the bits of the ucontext we don't use. */ 1763 memset(uc, 0, offsetof(struct target_ucontext_v2, tuc_mcontext)); 1764 1765 memset(&stack, 0, sizeof(stack)); 1766 __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); 1767 __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); 1768 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); 1769 memcpy(&uc->tuc_stack, &stack, sizeof(stack)); 1770 1771 setup_sigcontext(&uc->tuc_mcontext, env, set->sig[0]); 1772 /* Save coprocessor signal frame. */ 1773 regspace = uc->tuc_regspace; 1774 if (arm_feature(env, ARM_FEATURE_VFP)) { 1775 regspace = setup_sigframe_v2_vfp(regspace, env); 1776 } 1777 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 1778 regspace = setup_sigframe_v2_iwmmxt(regspace, env); 1779 } 1780 1781 /* Write terminating magic word */ 1782 __put_user(0, regspace); 1783 1784 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 1785 __put_user(set->sig[i], &uc->tuc_sigmask.sig[i]); 1786 } 1787 } 1788 1789 /* compare linux/arch/arm/kernel/signal.c:setup_frame() */ 1790 static void setup_frame_v1(int usig, struct target_sigaction *ka, 1791 target_sigset_t *set, CPUARMState *regs) 1792 { 1793 struct sigframe_v1 *frame; 1794 abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); 1795 int i; 1796 1797 trace_user_setup_frame(regs, frame_addr); 1798 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 1799 goto sigsegv; 1800 } 1801 1802 setup_sigcontext(&frame->sc, regs, set->sig[0]); 1803 1804 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 1805 __put_user(set->sig[i], &frame->extramask[i - 1]); 1806 } 1807 1808 setup_return(regs, ka, &frame->retcode, frame_addr, usig, 1809 frame_addr + offsetof(struct sigframe_v1, retcode)); 1810 1811 unlock_user_struct(frame, frame_addr, 1); 1812 return; 1813 sigsegv: 1814 force_sigsegv(usig); 1815 } 1816 1817 static void setup_frame_v2(int usig, struct target_sigaction *ka, 1818 target_sigset_t *set, CPUARMState *regs) 1819 { 1820 struct sigframe_v2 *frame; 1821 abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); 1822 1823 trace_user_setup_frame(regs, frame_addr); 1824 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 1825 goto sigsegv; 1826 } 1827 1828 setup_sigframe_v2(&frame->uc, set, regs); 1829 1830 setup_return(regs, ka, &frame->retcode, frame_addr, usig, 1831 frame_addr + offsetof(struct sigframe_v2, retcode)); 1832 1833 unlock_user_struct(frame, frame_addr, 1); 1834 return; 1835 sigsegv: 1836 force_sigsegv(usig); 1837 } 1838 1839 static void setup_frame(int usig, struct target_sigaction *ka, 1840 target_sigset_t *set, CPUARMState *regs) 1841 { 1842 if (get_osversion() >= 0x020612) { 1843 setup_frame_v2(usig, ka, set, regs); 1844 } else { 1845 setup_frame_v1(usig, ka, set, regs); 1846 } 1847 } 1848 1849 /* compare linux/arch/arm/kernel/signal.c:setup_rt_frame() */ 1850 static void setup_rt_frame_v1(int usig, struct target_sigaction *ka, 1851 target_siginfo_t *info, 1852 target_sigset_t *set, CPUARMState *env) 1853 { 1854 struct rt_sigframe_v1 *frame; 1855 abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); 1856 struct target_sigaltstack stack; 1857 int i; 1858 abi_ulong info_addr, uc_addr; 1859 1860 trace_user_setup_rt_frame(env, frame_addr); 1861 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 1862 goto sigsegv; 1863 } 1864 1865 info_addr = frame_addr + offsetof(struct rt_sigframe_v1, info); 1866 __put_user(info_addr, &frame->pinfo); 1867 uc_addr = frame_addr + offsetof(struct rt_sigframe_v1, uc); 1868 __put_user(uc_addr, &frame->puc); 1869 tswap_siginfo(&frame->info, info); 1870 1871 /* Clear all the bits of the ucontext we don't use. */ 1872 memset(&frame->uc, 0, offsetof(struct target_ucontext_v1, tuc_mcontext)); 1873 1874 memset(&stack, 0, sizeof(stack)); 1875 __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); 1876 __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); 1877 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); 1878 memcpy(&frame->uc.tuc_stack, &stack, sizeof(stack)); 1879 1880 setup_sigcontext(&frame->uc.tuc_mcontext, env, set->sig[0]); 1881 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 1882 __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); 1883 } 1884 1885 setup_return(env, ka, &frame->retcode, frame_addr, usig, 1886 frame_addr + offsetof(struct rt_sigframe_v1, retcode)); 1887 1888 env->regs[1] = info_addr; 1889 env->regs[2] = uc_addr; 1890 1891 unlock_user_struct(frame, frame_addr, 1); 1892 return; 1893 sigsegv: 1894 force_sigsegv(usig); 1895 } 1896 1897 static void setup_rt_frame_v2(int usig, struct target_sigaction *ka, 1898 target_siginfo_t *info, 1899 target_sigset_t *set, CPUARMState *env) 1900 { 1901 struct rt_sigframe_v2 *frame; 1902 abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); 1903 abi_ulong info_addr, uc_addr; 1904 1905 trace_user_setup_rt_frame(env, frame_addr); 1906 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 1907 goto sigsegv; 1908 } 1909 1910 info_addr = frame_addr + offsetof(struct rt_sigframe_v2, info); 1911 uc_addr = frame_addr + offsetof(struct rt_sigframe_v2, uc); 1912 tswap_siginfo(&frame->info, info); 1913 1914 setup_sigframe_v2(&frame->uc, set, env); 1915 1916 setup_return(env, ka, &frame->retcode, frame_addr, usig, 1917 frame_addr + offsetof(struct rt_sigframe_v2, retcode)); 1918 1919 env->regs[1] = info_addr; 1920 env->regs[2] = uc_addr; 1921 1922 unlock_user_struct(frame, frame_addr, 1); 1923 return; 1924 sigsegv: 1925 force_sigsegv(usig); 1926 } 1927 1928 static void setup_rt_frame(int usig, struct target_sigaction *ka, 1929 target_siginfo_t *info, 1930 target_sigset_t *set, CPUARMState *env) 1931 { 1932 if (get_osversion() >= 0x020612) { 1933 setup_rt_frame_v2(usig, ka, info, set, env); 1934 } else { 1935 setup_rt_frame_v1(usig, ka, info, set, env); 1936 } 1937 } 1938 1939 static int 1940 restore_sigcontext(CPUARMState *env, struct target_sigcontext *sc) 1941 { 1942 int err = 0; 1943 uint32_t cpsr; 1944 1945 __get_user(env->regs[0], &sc->arm_r0); 1946 __get_user(env->regs[1], &sc->arm_r1); 1947 __get_user(env->regs[2], &sc->arm_r2); 1948 __get_user(env->regs[3], &sc->arm_r3); 1949 __get_user(env->regs[4], &sc->arm_r4); 1950 __get_user(env->regs[5], &sc->arm_r5); 1951 __get_user(env->regs[6], &sc->arm_r6); 1952 __get_user(env->regs[7], &sc->arm_r7); 1953 __get_user(env->regs[8], &sc->arm_r8); 1954 __get_user(env->regs[9], &sc->arm_r9); 1955 __get_user(env->regs[10], &sc->arm_r10); 1956 __get_user(env->regs[11], &sc->arm_fp); 1957 __get_user(env->regs[12], &sc->arm_ip); 1958 __get_user(env->regs[13], &sc->arm_sp); 1959 __get_user(env->regs[14], &sc->arm_lr); 1960 __get_user(env->regs[15], &sc->arm_pc); 1961 #ifdef TARGET_CONFIG_CPU_32 1962 __get_user(cpsr, &sc->arm_cpsr); 1963 cpsr_write(env, cpsr, CPSR_USER | CPSR_EXEC, CPSRWriteByInstr); 1964 #endif 1965 1966 err |= !valid_user_regs(env); 1967 1968 return err; 1969 } 1970 1971 static long do_sigreturn_v1(CPUARMState *env) 1972 { 1973 abi_ulong frame_addr; 1974 struct sigframe_v1 *frame = NULL; 1975 target_sigset_t set; 1976 sigset_t host_set; 1977 int i; 1978 1979 /* 1980 * Since we stacked the signal on a 64-bit boundary, 1981 * then 'sp' should be word aligned here. If it's 1982 * not, then the user is trying to mess with us. 1983 */ 1984 frame_addr = env->regs[13]; 1985 trace_user_do_sigreturn(env, frame_addr); 1986 if (frame_addr & 7) { 1987 goto badframe; 1988 } 1989 1990 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 1991 goto badframe; 1992 } 1993 1994 __get_user(set.sig[0], &frame->sc.oldmask); 1995 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 1996 __get_user(set.sig[i], &frame->extramask[i - 1]); 1997 } 1998 1999 target_to_host_sigset_internal(&host_set, &set); 2000 set_sigmask(&host_set); 2001 2002 if (restore_sigcontext(env, &frame->sc)) { 2003 goto badframe; 2004 } 2005 2006 #if 0 2007 /* Send SIGTRAP if we're single-stepping */ 2008 if (ptrace_cancel_bpt(current)) 2009 send_sig(SIGTRAP, current, 1); 2010 #endif 2011 unlock_user_struct(frame, frame_addr, 0); 2012 return -TARGET_QEMU_ESIGRETURN; 2013 2014 badframe: 2015 force_sig(TARGET_SIGSEGV); 2016 return -TARGET_QEMU_ESIGRETURN; 2017 } 2018 2019 static abi_ulong *restore_sigframe_v2_vfp(CPUARMState *env, abi_ulong *regspace) 2020 { 2021 int i; 2022 abi_ulong magic, sz; 2023 uint32_t fpscr, fpexc; 2024 struct target_vfp_sigframe *vfpframe; 2025 vfpframe = (struct target_vfp_sigframe *)regspace; 2026 2027 __get_user(magic, &vfpframe->magic); 2028 __get_user(sz, &vfpframe->size); 2029 if (magic != TARGET_VFP_MAGIC || sz != sizeof(*vfpframe)) { 2030 return 0; 2031 } 2032 for (i = 0; i < 32; i++) { 2033 __get_user(float64_val(env->vfp.regs[i]), &vfpframe->ufp.fpregs[i]); 2034 } 2035 __get_user(fpscr, &vfpframe->ufp.fpscr); 2036 vfp_set_fpscr(env, fpscr); 2037 __get_user(fpexc, &vfpframe->ufp_exc.fpexc); 2038 /* Sanitise FPEXC: ensure VFP is enabled, FPINST2 is invalid 2039 * and the exception flag is cleared 2040 */ 2041 fpexc |= (1 << 30); 2042 fpexc &= ~((1 << 31) | (1 << 28)); 2043 env->vfp.xregs[ARM_VFP_FPEXC] = fpexc; 2044 __get_user(env->vfp.xregs[ARM_VFP_FPINST], &vfpframe->ufp_exc.fpinst); 2045 __get_user(env->vfp.xregs[ARM_VFP_FPINST2], &vfpframe->ufp_exc.fpinst2); 2046 return (abi_ulong*)(vfpframe + 1); 2047 } 2048 2049 static abi_ulong *restore_sigframe_v2_iwmmxt(CPUARMState *env, 2050 abi_ulong *regspace) 2051 { 2052 int i; 2053 abi_ulong magic, sz; 2054 struct target_iwmmxt_sigframe *iwmmxtframe; 2055 iwmmxtframe = (struct target_iwmmxt_sigframe *)regspace; 2056 2057 __get_user(magic, &iwmmxtframe->magic); 2058 __get_user(sz, &iwmmxtframe->size); 2059 if (magic != TARGET_IWMMXT_MAGIC || sz != sizeof(*iwmmxtframe)) { 2060 return 0; 2061 } 2062 for (i = 0; i < 16; i++) { 2063 __get_user(env->iwmmxt.regs[i], &iwmmxtframe->regs[i]); 2064 } 2065 __get_user(env->vfp.xregs[ARM_IWMMXT_wCSSF], &iwmmxtframe->wcssf); 2066 __get_user(env->vfp.xregs[ARM_IWMMXT_wCASF], &iwmmxtframe->wcssf); 2067 __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR0], &iwmmxtframe->wcgr0); 2068 __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR1], &iwmmxtframe->wcgr1); 2069 __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR2], &iwmmxtframe->wcgr2); 2070 __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR3], &iwmmxtframe->wcgr3); 2071 return (abi_ulong*)(iwmmxtframe + 1); 2072 } 2073 2074 static int do_sigframe_return_v2(CPUARMState *env, 2075 target_ulong context_addr, 2076 struct target_ucontext_v2 *uc) 2077 { 2078 sigset_t host_set; 2079 abi_ulong *regspace; 2080 2081 target_to_host_sigset(&host_set, &uc->tuc_sigmask); 2082 set_sigmask(&host_set); 2083 2084 if (restore_sigcontext(env, &uc->tuc_mcontext)) 2085 return 1; 2086 2087 /* Restore coprocessor signal frame */ 2088 regspace = uc->tuc_regspace; 2089 if (arm_feature(env, ARM_FEATURE_VFP)) { 2090 regspace = restore_sigframe_v2_vfp(env, regspace); 2091 if (!regspace) { 2092 return 1; 2093 } 2094 } 2095 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2096 regspace = restore_sigframe_v2_iwmmxt(env, regspace); 2097 if (!regspace) { 2098 return 1; 2099 } 2100 } 2101 2102 if (do_sigaltstack(context_addr 2103 + offsetof(struct target_ucontext_v2, tuc_stack), 2104 0, get_sp_from_cpustate(env)) == -EFAULT) { 2105 return 1; 2106 } 2107 2108 #if 0 2109 /* Send SIGTRAP if we're single-stepping */ 2110 if (ptrace_cancel_bpt(current)) 2111 send_sig(SIGTRAP, current, 1); 2112 #endif 2113 2114 return 0; 2115 } 2116 2117 static long do_sigreturn_v2(CPUARMState *env) 2118 { 2119 abi_ulong frame_addr; 2120 struct sigframe_v2 *frame = NULL; 2121 2122 /* 2123 * Since we stacked the signal on a 64-bit boundary, 2124 * then 'sp' should be word aligned here. If it's 2125 * not, then the user is trying to mess with us. 2126 */ 2127 frame_addr = env->regs[13]; 2128 trace_user_do_sigreturn(env, frame_addr); 2129 if (frame_addr & 7) { 2130 goto badframe; 2131 } 2132 2133 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 2134 goto badframe; 2135 } 2136 2137 if (do_sigframe_return_v2(env, 2138 frame_addr 2139 + offsetof(struct sigframe_v2, uc), 2140 &frame->uc)) { 2141 goto badframe; 2142 } 2143 2144 unlock_user_struct(frame, frame_addr, 0); 2145 return -TARGET_QEMU_ESIGRETURN; 2146 2147 badframe: 2148 unlock_user_struct(frame, frame_addr, 0); 2149 force_sig(TARGET_SIGSEGV); 2150 return -TARGET_QEMU_ESIGRETURN; 2151 } 2152 2153 long do_sigreturn(CPUARMState *env) 2154 { 2155 if (get_osversion() >= 0x020612) { 2156 return do_sigreturn_v2(env); 2157 } else { 2158 return do_sigreturn_v1(env); 2159 } 2160 } 2161 2162 static long do_rt_sigreturn_v1(CPUARMState *env) 2163 { 2164 abi_ulong frame_addr; 2165 struct rt_sigframe_v1 *frame = NULL; 2166 sigset_t host_set; 2167 2168 /* 2169 * Since we stacked the signal on a 64-bit boundary, 2170 * then 'sp' should be word aligned here. If it's 2171 * not, then the user is trying to mess with us. 2172 */ 2173 frame_addr = env->regs[13]; 2174 trace_user_do_rt_sigreturn(env, frame_addr); 2175 if (frame_addr & 7) { 2176 goto badframe; 2177 } 2178 2179 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 2180 goto badframe; 2181 } 2182 2183 target_to_host_sigset(&host_set, &frame->uc.tuc_sigmask); 2184 set_sigmask(&host_set); 2185 2186 if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) { 2187 goto badframe; 2188 } 2189 2190 if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe_v1, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) 2191 goto badframe; 2192 2193 #if 0 2194 /* Send SIGTRAP if we're single-stepping */ 2195 if (ptrace_cancel_bpt(current)) 2196 send_sig(SIGTRAP, current, 1); 2197 #endif 2198 unlock_user_struct(frame, frame_addr, 0); 2199 return -TARGET_QEMU_ESIGRETURN; 2200 2201 badframe: 2202 unlock_user_struct(frame, frame_addr, 0); 2203 force_sig(TARGET_SIGSEGV); 2204 return -TARGET_QEMU_ESIGRETURN; 2205 } 2206 2207 static long do_rt_sigreturn_v2(CPUARMState *env) 2208 { 2209 abi_ulong frame_addr; 2210 struct rt_sigframe_v2 *frame = NULL; 2211 2212 /* 2213 * Since we stacked the signal on a 64-bit boundary, 2214 * then 'sp' should be word aligned here. If it's 2215 * not, then the user is trying to mess with us. 2216 */ 2217 frame_addr = env->regs[13]; 2218 trace_user_do_rt_sigreturn(env, frame_addr); 2219 if (frame_addr & 7) { 2220 goto badframe; 2221 } 2222 2223 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 2224 goto badframe; 2225 } 2226 2227 if (do_sigframe_return_v2(env, 2228 frame_addr 2229 + offsetof(struct rt_sigframe_v2, uc), 2230 &frame->uc)) { 2231 goto badframe; 2232 } 2233 2234 unlock_user_struct(frame, frame_addr, 0); 2235 return -TARGET_QEMU_ESIGRETURN; 2236 2237 badframe: 2238 unlock_user_struct(frame, frame_addr, 0); 2239 force_sig(TARGET_SIGSEGV); 2240 return -TARGET_QEMU_ESIGRETURN; 2241 } 2242 2243 long do_rt_sigreturn(CPUARMState *env) 2244 { 2245 if (get_osversion() >= 0x020612) { 2246 return do_rt_sigreturn_v2(env); 2247 } else { 2248 return do_rt_sigreturn_v1(env); 2249 } 2250 } 2251 2252 #elif defined(TARGET_SPARC) 2253 2254 #define __SUNOS_MAXWIN 31 2255 2256 /* This is what SunOS does, so shall I. */ 2257 struct target_sigcontext { 2258 abi_ulong sigc_onstack; /* state to restore */ 2259 2260 abi_ulong sigc_mask; /* sigmask to restore */ 2261 abi_ulong sigc_sp; /* stack pointer */ 2262 abi_ulong sigc_pc; /* program counter */ 2263 abi_ulong sigc_npc; /* next program counter */ 2264 abi_ulong sigc_psr; /* for condition codes etc */ 2265 abi_ulong sigc_g1; /* User uses these two registers */ 2266 abi_ulong sigc_o0; /* within the trampoline code. */ 2267 2268 /* Now comes information regarding the users window set 2269 * at the time of the signal. 2270 */ 2271 abi_ulong sigc_oswins; /* outstanding windows */ 2272 2273 /* stack ptrs for each regwin buf */ 2274 char *sigc_spbuf[__SUNOS_MAXWIN]; 2275 2276 /* Windows to restore after signal */ 2277 struct { 2278 abi_ulong locals[8]; 2279 abi_ulong ins[8]; 2280 } sigc_wbuf[__SUNOS_MAXWIN]; 2281 }; 2282 /* A Sparc stack frame */ 2283 struct sparc_stackf { 2284 abi_ulong locals[8]; 2285 abi_ulong ins[8]; 2286 /* It's simpler to treat fp and callers_pc as elements of ins[] 2287 * since we never need to access them ourselves. 2288 */ 2289 char *structptr; 2290 abi_ulong xargs[6]; 2291 abi_ulong xxargs[1]; 2292 }; 2293 2294 typedef struct { 2295 struct { 2296 abi_ulong psr; 2297 abi_ulong pc; 2298 abi_ulong npc; 2299 abi_ulong y; 2300 abi_ulong u_regs[16]; /* globals and ins */ 2301 } si_regs; 2302 int si_mask; 2303 } __siginfo_t; 2304 2305 typedef struct { 2306 abi_ulong si_float_regs[32]; 2307 unsigned long si_fsr; 2308 unsigned long si_fpqdepth; 2309 struct { 2310 unsigned long *insn_addr; 2311 unsigned long insn; 2312 } si_fpqueue [16]; 2313 } qemu_siginfo_fpu_t; 2314 2315 2316 struct target_signal_frame { 2317 struct sparc_stackf ss; 2318 __siginfo_t info; 2319 abi_ulong fpu_save; 2320 abi_ulong insns[2] __attribute__ ((aligned (8))); 2321 abi_ulong extramask[TARGET_NSIG_WORDS - 1]; 2322 abi_ulong extra_size; /* Should be 0 */ 2323 qemu_siginfo_fpu_t fpu_state; 2324 }; 2325 struct target_rt_signal_frame { 2326 struct sparc_stackf ss; 2327 siginfo_t info; 2328 abi_ulong regs[20]; 2329 sigset_t mask; 2330 abi_ulong fpu_save; 2331 unsigned int insns[2]; 2332 stack_t stack; 2333 unsigned int extra_size; /* Should be 0 */ 2334 qemu_siginfo_fpu_t fpu_state; 2335 }; 2336 2337 #define UREG_O0 16 2338 #define UREG_O6 22 2339 #define UREG_I0 0 2340 #define UREG_I1 1 2341 #define UREG_I2 2 2342 #define UREG_I3 3 2343 #define UREG_I4 4 2344 #define UREG_I5 5 2345 #define UREG_I6 6 2346 #define UREG_I7 7 2347 #define UREG_L0 8 2348 #define UREG_FP UREG_I6 2349 #define UREG_SP UREG_O6 2350 2351 static inline abi_ulong get_sigframe(struct target_sigaction *sa, 2352 CPUSPARCState *env, 2353 unsigned long framesize) 2354 { 2355 abi_ulong sp; 2356 2357 sp = env->regwptr[UREG_FP]; 2358 2359 /* This is the X/Open sanctioned signal stack switching. */ 2360 if (sa->sa_flags & TARGET_SA_ONSTACK) { 2361 if (!on_sig_stack(sp) 2362 && !((target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size) & 7)) { 2363 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 2364 } 2365 } 2366 return sp - framesize; 2367 } 2368 2369 static int 2370 setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask) 2371 { 2372 int err = 0, i; 2373 2374 __put_user(env->psr, &si->si_regs.psr); 2375 __put_user(env->pc, &si->si_regs.pc); 2376 __put_user(env->npc, &si->si_regs.npc); 2377 __put_user(env->y, &si->si_regs.y); 2378 for (i=0; i < 8; i++) { 2379 __put_user(env->gregs[i], &si->si_regs.u_regs[i]); 2380 } 2381 for (i=0; i < 8; i++) { 2382 __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]); 2383 } 2384 __put_user(mask, &si->si_mask); 2385 return err; 2386 } 2387 2388 #if 0 2389 static int 2390 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ 2391 CPUSPARCState *env, unsigned long mask) 2392 { 2393 int err = 0; 2394 2395 __put_user(mask, &sc->sigc_mask); 2396 __put_user(env->regwptr[UREG_SP], &sc->sigc_sp); 2397 __put_user(env->pc, &sc->sigc_pc); 2398 __put_user(env->npc, &sc->sigc_npc); 2399 __put_user(env->psr, &sc->sigc_psr); 2400 __put_user(env->gregs[1], &sc->sigc_g1); 2401 __put_user(env->regwptr[UREG_O0], &sc->sigc_o0); 2402 2403 return err; 2404 } 2405 #endif 2406 #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) 2407 2408 static void setup_frame(int sig, struct target_sigaction *ka, 2409 target_sigset_t *set, CPUSPARCState *env) 2410 { 2411 abi_ulong sf_addr; 2412 struct target_signal_frame *sf; 2413 int sigframe_size, err, i; 2414 2415 /* 1. Make sure everything is clean */ 2416 //synchronize_user_stack(); 2417 2418 sigframe_size = NF_ALIGNEDSZ; 2419 sf_addr = get_sigframe(ka, env, sigframe_size); 2420 trace_user_setup_frame(env, sf_addr); 2421 2422 sf = lock_user(VERIFY_WRITE, sf_addr, 2423 sizeof(struct target_signal_frame), 0); 2424 if (!sf) { 2425 goto sigsegv; 2426 } 2427 #if 0 2428 if (invalid_frame_pointer(sf, sigframe_size)) 2429 goto sigill_and_return; 2430 #endif 2431 /* 2. Save the current process state */ 2432 err = setup___siginfo(&sf->info, env, set->sig[0]); 2433 __put_user(0, &sf->extra_size); 2434 2435 //save_fpu_state(regs, &sf->fpu_state); 2436 //__put_user(&sf->fpu_state, &sf->fpu_save); 2437 2438 __put_user(set->sig[0], &sf->info.si_mask); 2439 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 2440 __put_user(set->sig[i + 1], &sf->extramask[i]); 2441 } 2442 2443 for (i = 0; i < 8; i++) { 2444 __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); 2445 } 2446 for (i = 0; i < 8; i++) { 2447 __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); 2448 } 2449 if (err) 2450 goto sigsegv; 2451 2452 /* 3. signal handler back-trampoline and parameters */ 2453 env->regwptr[UREG_FP] = sf_addr; 2454 env->regwptr[UREG_I0] = sig; 2455 env->regwptr[UREG_I1] = sf_addr + 2456 offsetof(struct target_signal_frame, info); 2457 env->regwptr[UREG_I2] = sf_addr + 2458 offsetof(struct target_signal_frame, info); 2459 2460 /* 4. signal handler */ 2461 env->pc = ka->_sa_handler; 2462 env->npc = (env->pc + 4); 2463 /* 5. return to kernel instructions */ 2464 if (ka->sa_restorer) { 2465 env->regwptr[UREG_I7] = ka->sa_restorer; 2466 } else { 2467 uint32_t val32; 2468 2469 env->regwptr[UREG_I7] = sf_addr + 2470 offsetof(struct target_signal_frame, insns) - 2 * 4; 2471 2472 /* mov __NR_sigreturn, %g1 */ 2473 val32 = 0x821020d8; 2474 __put_user(val32, &sf->insns[0]); 2475 2476 /* t 0x10 */ 2477 val32 = 0x91d02010; 2478 __put_user(val32, &sf->insns[1]); 2479 if (err) 2480 goto sigsegv; 2481 2482 /* Flush instruction space. */ 2483 // flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0])); 2484 // tb_flush(env); 2485 } 2486 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); 2487 return; 2488 #if 0 2489 sigill_and_return: 2490 force_sig(TARGET_SIGILL); 2491 #endif 2492 sigsegv: 2493 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); 2494 force_sigsegv(sig); 2495 } 2496 2497 static void setup_rt_frame(int sig, struct target_sigaction *ka, 2498 target_siginfo_t *info, 2499 target_sigset_t *set, CPUSPARCState *env) 2500 { 2501 fprintf(stderr, "setup_rt_frame: not implemented\n"); 2502 } 2503 2504 long do_sigreturn(CPUSPARCState *env) 2505 { 2506 abi_ulong sf_addr; 2507 struct target_signal_frame *sf; 2508 uint32_t up_psr, pc, npc; 2509 target_sigset_t set; 2510 sigset_t host_set; 2511 int err=0, i; 2512 2513 sf_addr = env->regwptr[UREG_FP]; 2514 trace_user_do_sigreturn(env, sf_addr); 2515 if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { 2516 goto segv_and_exit; 2517 } 2518 2519 /* 1. Make sure we are not getting garbage from the user */ 2520 2521 if (sf_addr & 3) 2522 goto segv_and_exit; 2523 2524 __get_user(pc, &sf->info.si_regs.pc); 2525 __get_user(npc, &sf->info.si_regs.npc); 2526 2527 if ((pc | npc) & 3) { 2528 goto segv_and_exit; 2529 } 2530 2531 /* 2. Restore the state */ 2532 __get_user(up_psr, &sf->info.si_regs.psr); 2533 2534 /* User can only change condition codes and FPU enabling in %psr. */ 2535 env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) 2536 | (env->psr & ~(PSR_ICC /* | PSR_EF */)); 2537 2538 env->pc = pc; 2539 env->npc = npc; 2540 __get_user(env->y, &sf->info.si_regs.y); 2541 for (i=0; i < 8; i++) { 2542 __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); 2543 } 2544 for (i=0; i < 8; i++) { 2545 __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]); 2546 } 2547 2548 /* FIXME: implement FPU save/restore: 2549 * __get_user(fpu_save, &sf->fpu_save); 2550 * if (fpu_save) 2551 * err |= restore_fpu_state(env, fpu_save); 2552 */ 2553 2554 /* This is pretty much atomic, no amount locking would prevent 2555 * the races which exist anyways. 2556 */ 2557 __get_user(set.sig[0], &sf->info.si_mask); 2558 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 2559 __get_user(set.sig[i], &sf->extramask[i - 1]); 2560 } 2561 2562 target_to_host_sigset_internal(&host_set, &set); 2563 set_sigmask(&host_set); 2564 2565 if (err) { 2566 goto segv_and_exit; 2567 } 2568 unlock_user_struct(sf, sf_addr, 0); 2569 return -TARGET_QEMU_ESIGRETURN; 2570 2571 segv_and_exit: 2572 unlock_user_struct(sf, sf_addr, 0); 2573 force_sig(TARGET_SIGSEGV); 2574 return -TARGET_QEMU_ESIGRETURN; 2575 } 2576 2577 long do_rt_sigreturn(CPUSPARCState *env) 2578 { 2579 trace_user_do_rt_sigreturn(env, 0); 2580 fprintf(stderr, "do_rt_sigreturn: not implemented\n"); 2581 return -TARGET_ENOSYS; 2582 } 2583 2584 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 2585 #define MC_TSTATE 0 2586 #define MC_PC 1 2587 #define MC_NPC 2 2588 #define MC_Y 3 2589 #define MC_G1 4 2590 #define MC_G2 5 2591 #define MC_G3 6 2592 #define MC_G4 7 2593 #define MC_G5 8 2594 #define MC_G6 9 2595 #define MC_G7 10 2596 #define MC_O0 11 2597 #define MC_O1 12 2598 #define MC_O2 13 2599 #define MC_O3 14 2600 #define MC_O4 15 2601 #define MC_O5 16 2602 #define MC_O6 17 2603 #define MC_O7 18 2604 #define MC_NGREG 19 2605 2606 typedef abi_ulong target_mc_greg_t; 2607 typedef target_mc_greg_t target_mc_gregset_t[MC_NGREG]; 2608 2609 struct target_mc_fq { 2610 abi_ulong *mcfq_addr; 2611 uint32_t mcfq_insn; 2612 }; 2613 2614 struct target_mc_fpu { 2615 union { 2616 uint32_t sregs[32]; 2617 uint64_t dregs[32]; 2618 //uint128_t qregs[16]; 2619 } mcfpu_fregs; 2620 abi_ulong mcfpu_fsr; 2621 abi_ulong mcfpu_fprs; 2622 abi_ulong mcfpu_gsr; 2623 struct target_mc_fq *mcfpu_fq; 2624 unsigned char mcfpu_qcnt; 2625 unsigned char mcfpu_qentsz; 2626 unsigned char mcfpu_enab; 2627 }; 2628 typedef struct target_mc_fpu target_mc_fpu_t; 2629 2630 typedef struct { 2631 target_mc_gregset_t mc_gregs; 2632 target_mc_greg_t mc_fp; 2633 target_mc_greg_t mc_i7; 2634 target_mc_fpu_t mc_fpregs; 2635 } target_mcontext_t; 2636 2637 struct target_ucontext { 2638 struct target_ucontext *tuc_link; 2639 abi_ulong tuc_flags; 2640 target_sigset_t tuc_sigmask; 2641 target_mcontext_t tuc_mcontext; 2642 }; 2643 2644 /* A V9 register window */ 2645 struct target_reg_window { 2646 abi_ulong locals[8]; 2647 abi_ulong ins[8]; 2648 }; 2649 2650 #define TARGET_STACK_BIAS 2047 2651 2652 /* {set, get}context() needed for 64-bit SparcLinux userland. */ 2653 void sparc64_set_context(CPUSPARCState *env) 2654 { 2655 abi_ulong ucp_addr; 2656 struct target_ucontext *ucp; 2657 target_mc_gregset_t *grp; 2658 abi_ulong pc, npc, tstate; 2659 abi_ulong fp, i7, w_addr; 2660 unsigned int i; 2661 2662 ucp_addr = env->regwptr[UREG_I0]; 2663 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { 2664 goto do_sigsegv; 2665 } 2666 grp = &ucp->tuc_mcontext.mc_gregs; 2667 __get_user(pc, &((*grp)[MC_PC])); 2668 __get_user(npc, &((*grp)[MC_NPC])); 2669 if ((pc | npc) & 3) { 2670 goto do_sigsegv; 2671 } 2672 if (env->regwptr[UREG_I1]) { 2673 target_sigset_t target_set; 2674 sigset_t set; 2675 2676 if (TARGET_NSIG_WORDS == 1) { 2677 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); 2678 } else { 2679 abi_ulong *src, *dst; 2680 src = ucp->tuc_sigmask.sig; 2681 dst = target_set.sig; 2682 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 2683 __get_user(*dst, src); 2684 } 2685 } 2686 target_to_host_sigset_internal(&set, &target_set); 2687 set_sigmask(&set); 2688 } 2689 env->pc = pc; 2690 env->npc = npc; 2691 __get_user(env->y, &((*grp)[MC_Y])); 2692 __get_user(tstate, &((*grp)[MC_TSTATE])); 2693 env->asi = (tstate >> 24) & 0xff; 2694 cpu_put_ccr(env, tstate >> 32); 2695 cpu_put_cwp64(env, tstate & 0x1f); 2696 __get_user(env->gregs[1], (&(*grp)[MC_G1])); 2697 __get_user(env->gregs[2], (&(*grp)[MC_G2])); 2698 __get_user(env->gregs[3], (&(*grp)[MC_G3])); 2699 __get_user(env->gregs[4], (&(*grp)[MC_G4])); 2700 __get_user(env->gregs[5], (&(*grp)[MC_G5])); 2701 __get_user(env->gregs[6], (&(*grp)[MC_G6])); 2702 __get_user(env->gregs[7], (&(*grp)[MC_G7])); 2703 __get_user(env->regwptr[UREG_I0], (&(*grp)[MC_O0])); 2704 __get_user(env->regwptr[UREG_I1], (&(*grp)[MC_O1])); 2705 __get_user(env->regwptr[UREG_I2], (&(*grp)[MC_O2])); 2706 __get_user(env->regwptr[UREG_I3], (&(*grp)[MC_O3])); 2707 __get_user(env->regwptr[UREG_I4], (&(*grp)[MC_O4])); 2708 __get_user(env->regwptr[UREG_I5], (&(*grp)[MC_O5])); 2709 __get_user(env->regwptr[UREG_I6], (&(*grp)[MC_O6])); 2710 __get_user(env->regwptr[UREG_I7], (&(*grp)[MC_O7])); 2711 2712 __get_user(fp, &(ucp->tuc_mcontext.mc_fp)); 2713 __get_user(i7, &(ucp->tuc_mcontext.mc_i7)); 2714 2715 w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; 2716 if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), 2717 abi_ulong) != 0) { 2718 goto do_sigsegv; 2719 } 2720 if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), 2721 abi_ulong) != 0) { 2722 goto do_sigsegv; 2723 } 2724 /* FIXME this does not match how the kernel handles the FPU in 2725 * its sparc64_set_context implementation. In particular the FPU 2726 * is only restored if fenab is non-zero in: 2727 * __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab)); 2728 */ 2729 __get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs)); 2730 { 2731 uint32_t *src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; 2732 for (i = 0; i < 64; i++, src++) { 2733 if (i & 1) { 2734 __get_user(env->fpr[i/2].l.lower, src); 2735 } else { 2736 __get_user(env->fpr[i/2].l.upper, src); 2737 } 2738 } 2739 } 2740 __get_user(env->fsr, 2741 &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr)); 2742 __get_user(env->gsr, 2743 &(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr)); 2744 unlock_user_struct(ucp, ucp_addr, 0); 2745 return; 2746 do_sigsegv: 2747 unlock_user_struct(ucp, ucp_addr, 0); 2748 force_sig(TARGET_SIGSEGV); 2749 } 2750 2751 void sparc64_get_context(CPUSPARCState *env) 2752 { 2753 abi_ulong ucp_addr; 2754 struct target_ucontext *ucp; 2755 target_mc_gregset_t *grp; 2756 target_mcontext_t *mcp; 2757 abi_ulong fp, i7, w_addr; 2758 int err; 2759 unsigned int i; 2760 target_sigset_t target_set; 2761 sigset_t set; 2762 2763 ucp_addr = env->regwptr[UREG_I0]; 2764 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { 2765 goto do_sigsegv; 2766 } 2767 2768 mcp = &ucp->tuc_mcontext; 2769 grp = &mcp->mc_gregs; 2770 2771 /* Skip over the trap instruction, first. */ 2772 env->pc = env->npc; 2773 env->npc += 4; 2774 2775 /* If we're only reading the signal mask then do_sigprocmask() 2776 * is guaranteed not to fail, which is important because we don't 2777 * have any way to signal a failure or restart this operation since 2778 * this is not a normal syscall. 2779 */ 2780 err = do_sigprocmask(0, NULL, &set); 2781 assert(err == 0); 2782 host_to_target_sigset_internal(&target_set, &set); 2783 if (TARGET_NSIG_WORDS == 1) { 2784 __put_user(target_set.sig[0], 2785 (abi_ulong *)&ucp->tuc_sigmask); 2786 } else { 2787 abi_ulong *src, *dst; 2788 src = target_set.sig; 2789 dst = ucp->tuc_sigmask.sig; 2790 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { 2791 __put_user(*src, dst); 2792 } 2793 if (err) 2794 goto do_sigsegv; 2795 } 2796 2797 /* XXX: tstate must be saved properly */ 2798 // __put_user(env->tstate, &((*grp)[MC_TSTATE])); 2799 __put_user(env->pc, &((*grp)[MC_PC])); 2800 __put_user(env->npc, &((*grp)[MC_NPC])); 2801 __put_user(env->y, &((*grp)[MC_Y])); 2802 __put_user(env->gregs[1], &((*grp)[MC_G1])); 2803 __put_user(env->gregs[2], &((*grp)[MC_G2])); 2804 __put_user(env->gregs[3], &((*grp)[MC_G3])); 2805 __put_user(env->gregs[4], &((*grp)[MC_G4])); 2806 __put_user(env->gregs[5], &((*grp)[MC_G5])); 2807 __put_user(env->gregs[6], &((*grp)[MC_G6])); 2808 __put_user(env->gregs[7], &((*grp)[MC_G7])); 2809 __put_user(env->regwptr[UREG_I0], &((*grp)[MC_O0])); 2810 __put_user(env->regwptr[UREG_I1], &((*grp)[MC_O1])); 2811 __put_user(env->regwptr[UREG_I2], &((*grp)[MC_O2])); 2812 __put_user(env->regwptr[UREG_I3], &((*grp)[MC_O3])); 2813 __put_user(env->regwptr[UREG_I4], &((*grp)[MC_O4])); 2814 __put_user(env->regwptr[UREG_I5], &((*grp)[MC_O5])); 2815 __put_user(env->regwptr[UREG_I6], &((*grp)[MC_O6])); 2816 __put_user(env->regwptr[UREG_I7], &((*grp)[MC_O7])); 2817 2818 w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; 2819 fp = i7 = 0; 2820 if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), 2821 abi_ulong) != 0) { 2822 goto do_sigsegv; 2823 } 2824 if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), 2825 abi_ulong) != 0) { 2826 goto do_sigsegv; 2827 } 2828 __put_user(fp, &(mcp->mc_fp)); 2829 __put_user(i7, &(mcp->mc_i7)); 2830 2831 { 2832 uint32_t *dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; 2833 for (i = 0; i < 64; i++, dst++) { 2834 if (i & 1) { 2835 __put_user(env->fpr[i/2].l.lower, dst); 2836 } else { 2837 __put_user(env->fpr[i/2].l.upper, dst); 2838 } 2839 } 2840 } 2841 __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); 2842 __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); 2843 __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); 2844 2845 if (err) 2846 goto do_sigsegv; 2847 unlock_user_struct(ucp, ucp_addr, 1); 2848 return; 2849 do_sigsegv: 2850 unlock_user_struct(ucp, ucp_addr, 1); 2851 force_sig(TARGET_SIGSEGV); 2852 } 2853 #endif 2854 #elif defined(TARGET_MIPS) || defined(TARGET_MIPS64) 2855 2856 # if defined(TARGET_ABI_MIPSO32) 2857 struct target_sigcontext { 2858 uint32_t sc_regmask; /* Unused */ 2859 uint32_t sc_status; 2860 uint64_t sc_pc; 2861 uint64_t sc_regs[32]; 2862 uint64_t sc_fpregs[32]; 2863 uint32_t sc_ownedfp; /* Unused */ 2864 uint32_t sc_fpc_csr; 2865 uint32_t sc_fpc_eir; /* Unused */ 2866 uint32_t sc_used_math; 2867 uint32_t sc_dsp; /* dsp status, was sc_ssflags */ 2868 uint32_t pad0; 2869 uint64_t sc_mdhi; 2870 uint64_t sc_mdlo; 2871 target_ulong sc_hi1; /* Was sc_cause */ 2872 target_ulong sc_lo1; /* Was sc_badvaddr */ 2873 target_ulong sc_hi2; /* Was sc_sigset[4] */ 2874 target_ulong sc_lo2; 2875 target_ulong sc_hi3; 2876 target_ulong sc_lo3; 2877 }; 2878 # else /* N32 || N64 */ 2879 struct target_sigcontext { 2880 uint64_t sc_regs[32]; 2881 uint64_t sc_fpregs[32]; 2882 uint64_t sc_mdhi; 2883 uint64_t sc_hi1; 2884 uint64_t sc_hi2; 2885 uint64_t sc_hi3; 2886 uint64_t sc_mdlo; 2887 uint64_t sc_lo1; 2888 uint64_t sc_lo2; 2889 uint64_t sc_lo3; 2890 uint64_t sc_pc; 2891 uint32_t sc_fpc_csr; 2892 uint32_t sc_used_math; 2893 uint32_t sc_dsp; 2894 uint32_t sc_reserved; 2895 }; 2896 # endif /* O32 */ 2897 2898 struct sigframe { 2899 uint32_t sf_ass[4]; /* argument save space for o32 */ 2900 uint32_t sf_code[2]; /* signal trampoline */ 2901 struct target_sigcontext sf_sc; 2902 target_sigset_t sf_mask; 2903 }; 2904 2905 struct target_ucontext { 2906 target_ulong tuc_flags; 2907 target_ulong tuc_link; 2908 target_stack_t tuc_stack; 2909 target_ulong pad0; 2910 struct target_sigcontext tuc_mcontext; 2911 target_sigset_t tuc_sigmask; 2912 }; 2913 2914 struct target_rt_sigframe { 2915 uint32_t rs_ass[4]; /* argument save space for o32 */ 2916 uint32_t rs_code[2]; /* signal trampoline */ 2917 struct target_siginfo rs_info; 2918 struct target_ucontext rs_uc; 2919 }; 2920 2921 /* Install trampoline to jump back from signal handler */ 2922 static inline int install_sigtramp(unsigned int *tramp, unsigned int syscall) 2923 { 2924 int err = 0; 2925 2926 /* 2927 * Set up the return code ... 2928 * 2929 * li v0, __NR__foo_sigreturn 2930 * syscall 2931 */ 2932 2933 __put_user(0x24020000 + syscall, tramp + 0); 2934 __put_user(0x0000000c , tramp + 1); 2935 return err; 2936 } 2937 2938 static inline void setup_sigcontext(CPUMIPSState *regs, 2939 struct target_sigcontext *sc) 2940 { 2941 int i; 2942 2943 __put_user(exception_resume_pc(regs), &sc->sc_pc); 2944 regs->hflags &= ~MIPS_HFLAG_BMASK; 2945 2946 __put_user(0, &sc->sc_regs[0]); 2947 for (i = 1; i < 32; ++i) { 2948 __put_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); 2949 } 2950 2951 __put_user(regs->active_tc.HI[0], &sc->sc_mdhi); 2952 __put_user(regs->active_tc.LO[0], &sc->sc_mdlo); 2953 2954 /* Rather than checking for dsp existence, always copy. The storage 2955 would just be garbage otherwise. */ 2956 __put_user(regs->active_tc.HI[1], &sc->sc_hi1); 2957 __put_user(regs->active_tc.HI[2], &sc->sc_hi2); 2958 __put_user(regs->active_tc.HI[3], &sc->sc_hi3); 2959 __put_user(regs->active_tc.LO[1], &sc->sc_lo1); 2960 __put_user(regs->active_tc.LO[2], &sc->sc_lo2); 2961 __put_user(regs->active_tc.LO[3], &sc->sc_lo3); 2962 { 2963 uint32_t dsp = cpu_rddsp(0x3ff, regs); 2964 __put_user(dsp, &sc->sc_dsp); 2965 } 2966 2967 __put_user(1, &sc->sc_used_math); 2968 2969 for (i = 0; i < 32; ++i) { 2970 __put_user(regs->active_fpu.fpr[i].d, &sc->sc_fpregs[i]); 2971 } 2972 } 2973 2974 static inline void 2975 restore_sigcontext(CPUMIPSState *regs, struct target_sigcontext *sc) 2976 { 2977 int i; 2978 2979 __get_user(regs->CP0_EPC, &sc->sc_pc); 2980 2981 __get_user(regs->active_tc.HI[0], &sc->sc_mdhi); 2982 __get_user(regs->active_tc.LO[0], &sc->sc_mdlo); 2983 2984 for (i = 1; i < 32; ++i) { 2985 __get_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); 2986 } 2987 2988 __get_user(regs->active_tc.HI[1], &sc->sc_hi1); 2989 __get_user(regs->active_tc.HI[2], &sc->sc_hi2); 2990 __get_user(regs->active_tc.HI[3], &sc->sc_hi3); 2991 __get_user(regs->active_tc.LO[1], &sc->sc_lo1); 2992 __get_user(regs->active_tc.LO[2], &sc->sc_lo2); 2993 __get_user(regs->active_tc.LO[3], &sc->sc_lo3); 2994 { 2995 uint32_t dsp; 2996 __get_user(dsp, &sc->sc_dsp); 2997 cpu_wrdsp(dsp, 0x3ff, regs); 2998 } 2999 3000 for (i = 0; i < 32; ++i) { 3001 __get_user(regs->active_fpu.fpr[i].d, &sc->sc_fpregs[i]); 3002 } 3003 } 3004 3005 /* 3006 * Determine which stack to use.. 3007 */ 3008 static inline abi_ulong 3009 get_sigframe(struct target_sigaction *ka, CPUMIPSState *regs, size_t frame_size) 3010 { 3011 unsigned long sp; 3012 3013 /* Default to using normal stack */ 3014 sp = regs->active_tc.gpr[29]; 3015 3016 /* 3017 * FPU emulator may have its own trampoline active just 3018 * above the user stack, 16-bytes before the next lowest 3019 * 16 byte boundary. Try to avoid trashing it. 3020 */ 3021 sp -= 32; 3022 3023 /* This is the X/Open sanctioned signal stack switching. */ 3024 if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { 3025 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 3026 } 3027 3028 return (sp - frame_size) & ~7; 3029 } 3030 3031 static void mips_set_hflags_isa_mode_from_pc(CPUMIPSState *env) 3032 { 3033 if (env->insn_flags & (ASE_MIPS16 | ASE_MICROMIPS)) { 3034 env->hflags &= ~MIPS_HFLAG_M16; 3035 env->hflags |= (env->active_tc.PC & 1) << MIPS_HFLAG_M16_SHIFT; 3036 env->active_tc.PC &= ~(target_ulong) 1; 3037 } 3038 } 3039 3040 # if defined(TARGET_ABI_MIPSO32) 3041 /* compare linux/arch/mips/kernel/signal.c:setup_frame() */ 3042 static void setup_frame(int sig, struct target_sigaction * ka, 3043 target_sigset_t *set, CPUMIPSState *regs) 3044 { 3045 struct sigframe *frame; 3046 abi_ulong frame_addr; 3047 int i; 3048 3049 frame_addr = get_sigframe(ka, regs, sizeof(*frame)); 3050 trace_user_setup_frame(regs, frame_addr); 3051 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 3052 goto give_sigsegv; 3053 } 3054 3055 install_sigtramp(frame->sf_code, TARGET_NR_sigreturn); 3056 3057 setup_sigcontext(regs, &frame->sf_sc); 3058 3059 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 3060 __put_user(set->sig[i], &frame->sf_mask.sig[i]); 3061 } 3062 3063 /* 3064 * Arguments to signal handler: 3065 * 3066 * a0 = signal number 3067 * a1 = 0 (should be cause) 3068 * a2 = pointer to struct sigcontext 3069 * 3070 * $25 and PC point to the signal handler, $29 points to the 3071 * struct sigframe. 3072 */ 3073 regs->active_tc.gpr[ 4] = sig; 3074 regs->active_tc.gpr[ 5] = 0; 3075 regs->active_tc.gpr[ 6] = frame_addr + offsetof(struct sigframe, sf_sc); 3076 regs->active_tc.gpr[29] = frame_addr; 3077 regs->active_tc.gpr[31] = frame_addr + offsetof(struct sigframe, sf_code); 3078 /* The original kernel code sets CP0_EPC to the handler 3079 * since it returns to userland using eret 3080 * we cannot do this here, and we must set PC directly */ 3081 regs->active_tc.PC = regs->active_tc.gpr[25] = ka->_sa_handler; 3082 mips_set_hflags_isa_mode_from_pc(regs); 3083 unlock_user_struct(frame, frame_addr, 1); 3084 return; 3085 3086 give_sigsegv: 3087 force_sigsegv(sig); 3088 } 3089 3090 long do_sigreturn(CPUMIPSState *regs) 3091 { 3092 struct sigframe *frame; 3093 abi_ulong frame_addr; 3094 sigset_t blocked; 3095 target_sigset_t target_set; 3096 int i; 3097 3098 frame_addr = regs->active_tc.gpr[29]; 3099 trace_user_do_sigreturn(regs, frame_addr); 3100 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) 3101 goto badframe; 3102 3103 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 3104 __get_user(target_set.sig[i], &frame->sf_mask.sig[i]); 3105 } 3106 3107 target_to_host_sigset_internal(&blocked, &target_set); 3108 set_sigmask(&blocked); 3109 3110 restore_sigcontext(regs, &frame->sf_sc); 3111 3112 #if 0 3113 /* 3114 * Don't let your children do this ... 3115 */ 3116 __asm__ __volatile__( 3117 "move\t$29, %0\n\t" 3118 "j\tsyscall_exit" 3119 :/* no outputs */ 3120 :"r" (®s)); 3121 /* Unreached */ 3122 #endif 3123 3124 regs->active_tc.PC = regs->CP0_EPC; 3125 mips_set_hflags_isa_mode_from_pc(regs); 3126 /* I am not sure this is right, but it seems to work 3127 * maybe a problem with nested signals ? */ 3128 regs->CP0_EPC = 0; 3129 return -TARGET_QEMU_ESIGRETURN; 3130 3131 badframe: 3132 force_sig(TARGET_SIGSEGV); 3133 return -TARGET_QEMU_ESIGRETURN; 3134 } 3135 # endif /* O32 */ 3136 3137 static void setup_rt_frame(int sig, struct target_sigaction *ka, 3138 target_siginfo_t *info, 3139 target_sigset_t *set, CPUMIPSState *env) 3140 { 3141 struct target_rt_sigframe *frame; 3142 abi_ulong frame_addr; 3143 int i; 3144 3145 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 3146 trace_user_setup_rt_frame(env, frame_addr); 3147 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 3148 goto give_sigsegv; 3149 } 3150 3151 install_sigtramp(frame->rs_code, TARGET_NR_rt_sigreturn); 3152 3153 tswap_siginfo(&frame->rs_info, info); 3154 3155 __put_user(0, &frame->rs_uc.tuc_flags); 3156 __put_user(0, &frame->rs_uc.tuc_link); 3157 __put_user(target_sigaltstack_used.ss_sp, &frame->rs_uc.tuc_stack.ss_sp); 3158 __put_user(target_sigaltstack_used.ss_size, &frame->rs_uc.tuc_stack.ss_size); 3159 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), 3160 &frame->rs_uc.tuc_stack.ss_flags); 3161 3162 setup_sigcontext(env, &frame->rs_uc.tuc_mcontext); 3163 3164 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 3165 __put_user(set->sig[i], &frame->rs_uc.tuc_sigmask.sig[i]); 3166 } 3167 3168 /* 3169 * Arguments to signal handler: 3170 * 3171 * a0 = signal number 3172 * a1 = pointer to siginfo_t 3173 * a2 = pointer to struct ucontext 3174 * 3175 * $25 and PC point to the signal handler, $29 points to the 3176 * struct sigframe. 3177 */ 3178 env->active_tc.gpr[ 4] = sig; 3179 env->active_tc.gpr[ 5] = frame_addr 3180 + offsetof(struct target_rt_sigframe, rs_info); 3181 env->active_tc.gpr[ 6] = frame_addr 3182 + offsetof(struct target_rt_sigframe, rs_uc); 3183 env->active_tc.gpr[29] = frame_addr; 3184 env->active_tc.gpr[31] = frame_addr 3185 + offsetof(struct target_rt_sigframe, rs_code); 3186 /* The original kernel code sets CP0_EPC to the handler 3187 * since it returns to userland using eret 3188 * we cannot do this here, and we must set PC directly */ 3189 env->active_tc.PC = env->active_tc.gpr[25] = ka->_sa_handler; 3190 mips_set_hflags_isa_mode_from_pc(env); 3191 unlock_user_struct(frame, frame_addr, 1); 3192 return; 3193 3194 give_sigsegv: 3195 unlock_user_struct(frame, frame_addr, 1); 3196 force_sigsegv(sig); 3197 } 3198 3199 long do_rt_sigreturn(CPUMIPSState *env) 3200 { 3201 struct target_rt_sigframe *frame; 3202 abi_ulong frame_addr; 3203 sigset_t blocked; 3204 3205 frame_addr = env->active_tc.gpr[29]; 3206 trace_user_do_rt_sigreturn(env, frame_addr); 3207 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 3208 goto badframe; 3209 } 3210 3211 target_to_host_sigset(&blocked, &frame->rs_uc.tuc_sigmask); 3212 set_sigmask(&blocked); 3213 3214 restore_sigcontext(env, &frame->rs_uc.tuc_mcontext); 3215 3216 if (do_sigaltstack(frame_addr + 3217 offsetof(struct target_rt_sigframe, rs_uc.tuc_stack), 3218 0, get_sp_from_cpustate(env)) == -EFAULT) 3219 goto badframe; 3220 3221 env->active_tc.PC = env->CP0_EPC; 3222 mips_set_hflags_isa_mode_from_pc(env); 3223 /* I am not sure this is right, but it seems to work 3224 * maybe a problem with nested signals ? */ 3225 env->CP0_EPC = 0; 3226 return -TARGET_QEMU_ESIGRETURN; 3227 3228 badframe: 3229 force_sig(TARGET_SIGSEGV); 3230 return -TARGET_QEMU_ESIGRETURN; 3231 } 3232 3233 #elif defined(TARGET_SH4) 3234 3235 /* 3236 * code and data structures from linux kernel: 3237 * include/asm-sh/sigcontext.h 3238 * arch/sh/kernel/signal.c 3239 */ 3240 3241 struct target_sigcontext { 3242 target_ulong oldmask; 3243 3244 /* CPU registers */ 3245 target_ulong sc_gregs[16]; 3246 target_ulong sc_pc; 3247 target_ulong sc_pr; 3248 target_ulong sc_sr; 3249 target_ulong sc_gbr; 3250 target_ulong sc_mach; 3251 target_ulong sc_macl; 3252 3253 /* FPU registers */ 3254 target_ulong sc_fpregs[16]; 3255 target_ulong sc_xfpregs[16]; 3256 unsigned int sc_fpscr; 3257 unsigned int sc_fpul; 3258 unsigned int sc_ownedfp; 3259 }; 3260 3261 struct target_sigframe 3262 { 3263 struct target_sigcontext sc; 3264 target_ulong extramask[TARGET_NSIG_WORDS-1]; 3265 uint16_t retcode[3]; 3266 }; 3267 3268 3269 struct target_ucontext { 3270 target_ulong tuc_flags; 3271 struct target_ucontext *tuc_link; 3272 target_stack_t tuc_stack; 3273 struct target_sigcontext tuc_mcontext; 3274 target_sigset_t tuc_sigmask; /* mask last for extensibility */ 3275 }; 3276 3277 struct target_rt_sigframe 3278 { 3279 struct target_siginfo info; 3280 struct target_ucontext uc; 3281 uint16_t retcode[3]; 3282 }; 3283 3284 3285 #define MOVW(n) (0x9300|((n)-2)) /* Move mem word at PC+n to R3 */ 3286 #define TRAP_NOARG 0xc310 /* Syscall w/no args (NR in R3) SH3/4 */ 3287 3288 static abi_ulong get_sigframe(struct target_sigaction *ka, 3289 unsigned long sp, size_t frame_size) 3290 { 3291 if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags(sp) == 0)) { 3292 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 3293 } 3294 3295 return (sp - frame_size) & -8ul; 3296 } 3297 3298 static void setup_sigcontext(struct target_sigcontext *sc, 3299 CPUSH4State *regs, unsigned long mask) 3300 { 3301 int i; 3302 3303 #define COPY(x) __put_user(regs->x, &sc->sc_##x) 3304 COPY(gregs[0]); COPY(gregs[1]); 3305 COPY(gregs[2]); COPY(gregs[3]); 3306 COPY(gregs[4]); COPY(gregs[5]); 3307 COPY(gregs[6]); COPY(gregs[7]); 3308 COPY(gregs[8]); COPY(gregs[9]); 3309 COPY(gregs[10]); COPY(gregs[11]); 3310 COPY(gregs[12]); COPY(gregs[13]); 3311 COPY(gregs[14]); COPY(gregs[15]); 3312 COPY(gbr); COPY(mach); 3313 COPY(macl); COPY(pr); 3314 COPY(sr); COPY(pc); 3315 #undef COPY 3316 3317 for (i=0; i<16; i++) { 3318 __put_user(regs->fregs[i], &sc->sc_fpregs[i]); 3319 } 3320 __put_user(regs->fpscr, &sc->sc_fpscr); 3321 __put_user(regs->fpul, &sc->sc_fpul); 3322 3323 /* non-iBCS2 extensions.. */ 3324 __put_user(mask, &sc->oldmask); 3325 } 3326 3327 static void restore_sigcontext(CPUSH4State *regs, struct target_sigcontext *sc) 3328 { 3329 int i; 3330 3331 #define COPY(x) __get_user(regs->x, &sc->sc_##x) 3332 COPY(gregs[0]); COPY(gregs[1]); 3333 COPY(gregs[2]); COPY(gregs[3]); 3334 COPY(gregs[4]); COPY(gregs[5]); 3335 COPY(gregs[6]); COPY(gregs[7]); 3336 COPY(gregs[8]); COPY(gregs[9]); 3337 COPY(gregs[10]); COPY(gregs[11]); 3338 COPY(gregs[12]); COPY(gregs[13]); 3339 COPY(gregs[14]); COPY(gregs[15]); 3340 COPY(gbr); COPY(mach); 3341 COPY(macl); COPY(pr); 3342 COPY(sr); COPY(pc); 3343 #undef COPY 3344 3345 for (i=0; i<16; i++) { 3346 __get_user(regs->fregs[i], &sc->sc_fpregs[i]); 3347 } 3348 __get_user(regs->fpscr, &sc->sc_fpscr); 3349 __get_user(regs->fpul, &sc->sc_fpul); 3350 3351 regs->tra = -1; /* disable syscall checks */ 3352 } 3353 3354 static void setup_frame(int sig, struct target_sigaction *ka, 3355 target_sigset_t *set, CPUSH4State *regs) 3356 { 3357 struct target_sigframe *frame; 3358 abi_ulong frame_addr; 3359 int i; 3360 3361 frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); 3362 trace_user_setup_frame(regs, frame_addr); 3363 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 3364 goto give_sigsegv; 3365 } 3366 3367 setup_sigcontext(&frame->sc, regs, set->sig[0]); 3368 3369 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { 3370 __put_user(set->sig[i + 1], &frame->extramask[i]); 3371 } 3372 3373 /* Set up to return from userspace. If provided, use a stub 3374 already in userspace. */ 3375 if (ka->sa_flags & TARGET_SA_RESTORER) { 3376 regs->pr = (unsigned long) ka->sa_restorer; 3377 } else { 3378 /* Generate return code (system call to sigreturn) */ 3379 abi_ulong retcode_addr = frame_addr + 3380 offsetof(struct target_sigframe, retcode); 3381 __put_user(MOVW(2), &frame->retcode[0]); 3382 __put_user(TRAP_NOARG, &frame->retcode[1]); 3383 __put_user((TARGET_NR_sigreturn), &frame->retcode[2]); 3384 regs->pr = (unsigned long) retcode_addr; 3385 } 3386 3387 /* Set up registers for signal handler */ 3388 regs->gregs[15] = frame_addr; 3389 regs->gregs[4] = sig; /* Arg for signal handler */ 3390 regs->gregs[5] = 0; 3391 regs->gregs[6] = frame_addr += offsetof(typeof(*frame), sc); 3392 regs->pc = (unsigned long) ka->_sa_handler; 3393 3394 unlock_user_struct(frame, frame_addr, 1); 3395 return; 3396 3397 give_sigsegv: 3398 unlock_user_struct(frame, frame_addr, 1); 3399 force_sigsegv(sig); 3400 } 3401 3402 static void setup_rt_frame(int sig, struct target_sigaction *ka, 3403 target_siginfo_t *info, 3404 target_sigset_t *set, CPUSH4State *regs) 3405 { 3406 struct target_rt_sigframe *frame; 3407 abi_ulong frame_addr; 3408 int i; 3409 3410 frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); 3411 trace_user_setup_rt_frame(regs, frame_addr); 3412 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 3413 goto give_sigsegv; 3414 } 3415 3416 tswap_siginfo(&frame->info, info); 3417 3418 /* Create the ucontext. */ 3419 __put_user(0, &frame->uc.tuc_flags); 3420 __put_user(0, (unsigned long *)&frame->uc.tuc_link); 3421 __put_user((unsigned long)target_sigaltstack_used.ss_sp, 3422 &frame->uc.tuc_stack.ss_sp); 3423 __put_user(sas_ss_flags(regs->gregs[15]), 3424 &frame->uc.tuc_stack.ss_flags); 3425 __put_user(target_sigaltstack_used.ss_size, 3426 &frame->uc.tuc_stack.ss_size); 3427 setup_sigcontext(&frame->uc.tuc_mcontext, 3428 regs, set->sig[0]); 3429 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 3430 __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); 3431 } 3432 3433 /* Set up to return from userspace. If provided, use a stub 3434 already in userspace. */ 3435 if (ka->sa_flags & TARGET_SA_RESTORER) { 3436 regs->pr = (unsigned long) ka->sa_restorer; 3437 } else { 3438 /* Generate return code (system call to sigreturn) */ 3439 abi_ulong retcode_addr = frame_addr + 3440 offsetof(struct target_rt_sigframe, retcode); 3441 __put_user(MOVW(2), &frame->retcode[0]); 3442 __put_user(TRAP_NOARG, &frame->retcode[1]); 3443 __put_user((TARGET_NR_rt_sigreturn), &frame->retcode[2]); 3444 regs->pr = (unsigned long) retcode_addr; 3445 } 3446 3447 /* Set up registers for signal handler */ 3448 regs->gregs[15] = frame_addr; 3449 regs->gregs[4] = sig; /* Arg for signal handler */ 3450 regs->gregs[5] = frame_addr + offsetof(typeof(*frame), info); 3451 regs->gregs[6] = frame_addr + offsetof(typeof(*frame), uc); 3452 regs->pc = (unsigned long) ka->_sa_handler; 3453 3454 unlock_user_struct(frame, frame_addr, 1); 3455 return; 3456 3457 give_sigsegv: 3458 unlock_user_struct(frame, frame_addr, 1); 3459 force_sigsegv(sig); 3460 } 3461 3462 long do_sigreturn(CPUSH4State *regs) 3463 { 3464 struct target_sigframe *frame; 3465 abi_ulong frame_addr; 3466 sigset_t blocked; 3467 target_sigset_t target_set; 3468 int i; 3469 int err = 0; 3470 3471 frame_addr = regs->gregs[15]; 3472 trace_user_do_sigreturn(regs, frame_addr); 3473 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 3474 goto badframe; 3475 } 3476 3477 __get_user(target_set.sig[0], &frame->sc.oldmask); 3478 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 3479 __get_user(target_set.sig[i], &frame->extramask[i - 1]); 3480 } 3481 3482 if (err) 3483 goto badframe; 3484 3485 target_to_host_sigset_internal(&blocked, &target_set); 3486 set_sigmask(&blocked); 3487 3488 restore_sigcontext(regs, &frame->sc); 3489 3490 unlock_user_struct(frame, frame_addr, 0); 3491 return -TARGET_QEMU_ESIGRETURN; 3492 3493 badframe: 3494 unlock_user_struct(frame, frame_addr, 0); 3495 force_sig(TARGET_SIGSEGV); 3496 return -TARGET_QEMU_ESIGRETURN; 3497 } 3498 3499 long do_rt_sigreturn(CPUSH4State *regs) 3500 { 3501 struct target_rt_sigframe *frame; 3502 abi_ulong frame_addr; 3503 sigset_t blocked; 3504 3505 frame_addr = regs->gregs[15]; 3506 trace_user_do_rt_sigreturn(regs, frame_addr); 3507 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 3508 goto badframe; 3509 } 3510 3511 target_to_host_sigset(&blocked, &frame->uc.tuc_sigmask); 3512 set_sigmask(&blocked); 3513 3514 restore_sigcontext(regs, &frame->uc.tuc_mcontext); 3515 3516 if (do_sigaltstack(frame_addr + 3517 offsetof(struct target_rt_sigframe, uc.tuc_stack), 3518 0, get_sp_from_cpustate(regs)) == -EFAULT) { 3519 goto badframe; 3520 } 3521 3522 unlock_user_struct(frame, frame_addr, 0); 3523 return -TARGET_QEMU_ESIGRETURN; 3524 3525 badframe: 3526 unlock_user_struct(frame, frame_addr, 0); 3527 force_sig(TARGET_SIGSEGV); 3528 return -TARGET_QEMU_ESIGRETURN; 3529 } 3530 #elif defined(TARGET_MICROBLAZE) 3531 3532 struct target_sigcontext { 3533 struct target_pt_regs regs; /* needs to be first */ 3534 uint32_t oldmask; 3535 }; 3536 3537 struct target_stack_t { 3538 abi_ulong ss_sp; 3539 int ss_flags; 3540 unsigned int ss_size; 3541 }; 3542 3543 struct target_ucontext { 3544 abi_ulong tuc_flags; 3545 abi_ulong tuc_link; 3546 struct target_stack_t tuc_stack; 3547 struct target_sigcontext tuc_mcontext; 3548 uint32_t tuc_extramask[TARGET_NSIG_WORDS - 1]; 3549 }; 3550 3551 /* Signal frames. */ 3552 struct target_signal_frame { 3553 struct target_ucontext uc; 3554 uint32_t extramask[TARGET_NSIG_WORDS - 1]; 3555 uint32_t tramp[2]; 3556 }; 3557 3558 struct rt_signal_frame { 3559 siginfo_t info; 3560 struct ucontext uc; 3561 uint32_t tramp[2]; 3562 }; 3563 3564 static void setup_sigcontext(struct target_sigcontext *sc, CPUMBState *env) 3565 { 3566 __put_user(env->regs[0], &sc->regs.r0); 3567 __put_user(env->regs[1], &sc->regs.r1); 3568 __put_user(env->regs[2], &sc->regs.r2); 3569 __put_user(env->regs[3], &sc->regs.r3); 3570 __put_user(env->regs[4], &sc->regs.r4); 3571 __put_user(env->regs[5], &sc->regs.r5); 3572 __put_user(env->regs[6], &sc->regs.r6); 3573 __put_user(env->regs[7], &sc->regs.r7); 3574 __put_user(env->regs[8], &sc->regs.r8); 3575 __put_user(env->regs[9], &sc->regs.r9); 3576 __put_user(env->regs[10], &sc->regs.r10); 3577 __put_user(env->regs[11], &sc->regs.r11); 3578 __put_user(env->regs[12], &sc->regs.r12); 3579 __put_user(env->regs[13], &sc->regs.r13); 3580 __put_user(env->regs[14], &sc->regs.r14); 3581 __put_user(env->regs[15], &sc->regs.r15); 3582 __put_user(env->regs[16], &sc->regs.r16); 3583 __put_user(env->regs[17], &sc->regs.r17); 3584 __put_user(env->regs[18], &sc->regs.r18); 3585 __put_user(env->regs[19], &sc->regs.r19); 3586 __put_user(env->regs[20], &sc->regs.r20); 3587 __put_user(env->regs[21], &sc->regs.r21); 3588 __put_user(env->regs[22], &sc->regs.r22); 3589 __put_user(env->regs[23], &sc->regs.r23); 3590 __put_user(env->regs[24], &sc->regs.r24); 3591 __put_user(env->regs[25], &sc->regs.r25); 3592 __put_user(env->regs[26], &sc->regs.r26); 3593 __put_user(env->regs[27], &sc->regs.r27); 3594 __put_user(env->regs[28], &sc->regs.r28); 3595 __put_user(env->regs[29], &sc->regs.r29); 3596 __put_user(env->regs[30], &sc->regs.r30); 3597 __put_user(env->regs[31], &sc->regs.r31); 3598 __put_user(env->sregs[SR_PC], &sc->regs.pc); 3599 } 3600 3601 static void restore_sigcontext(struct target_sigcontext *sc, CPUMBState *env) 3602 { 3603 __get_user(env->regs[0], &sc->regs.r0); 3604 __get_user(env->regs[1], &sc->regs.r1); 3605 __get_user(env->regs[2], &sc->regs.r2); 3606 __get_user(env->regs[3], &sc->regs.r3); 3607 __get_user(env->regs[4], &sc->regs.r4); 3608 __get_user(env->regs[5], &sc->regs.r5); 3609 __get_user(env->regs[6], &sc->regs.r6); 3610 __get_user(env->regs[7], &sc->regs.r7); 3611 __get_user(env->regs[8], &sc->regs.r8); 3612 __get_user(env->regs[9], &sc->regs.r9); 3613 __get_user(env->regs[10], &sc->regs.r10); 3614 __get_user(env->regs[11], &sc->regs.r11); 3615 __get_user(env->regs[12], &sc->regs.r12); 3616 __get_user(env->regs[13], &sc->regs.r13); 3617 __get_user(env->regs[14], &sc->regs.r14); 3618 __get_user(env->regs[15], &sc->regs.r15); 3619 __get_user(env->regs[16], &sc->regs.r16); 3620 __get_user(env->regs[17], &sc->regs.r17); 3621 __get_user(env->regs[18], &sc->regs.r18); 3622 __get_user(env->regs[19], &sc->regs.r19); 3623 __get_user(env->regs[20], &sc->regs.r20); 3624 __get_user(env->regs[21], &sc->regs.r21); 3625 __get_user(env->regs[22], &sc->regs.r22); 3626 __get_user(env->regs[23], &sc->regs.r23); 3627 __get_user(env->regs[24], &sc->regs.r24); 3628 __get_user(env->regs[25], &sc->regs.r25); 3629 __get_user(env->regs[26], &sc->regs.r26); 3630 __get_user(env->regs[27], &sc->regs.r27); 3631 __get_user(env->regs[28], &sc->regs.r28); 3632 __get_user(env->regs[29], &sc->regs.r29); 3633 __get_user(env->regs[30], &sc->regs.r30); 3634 __get_user(env->regs[31], &sc->regs.r31); 3635 __get_user(env->sregs[SR_PC], &sc->regs.pc); 3636 } 3637 3638 static abi_ulong get_sigframe(struct target_sigaction *ka, 3639 CPUMBState *env, int frame_size) 3640 { 3641 abi_ulong sp = env->regs[1]; 3642 3643 if ((ka->sa_flags & TARGET_SA_ONSTACK) != 0 && !on_sig_stack(sp)) { 3644 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 3645 } 3646 3647 return ((sp - frame_size) & -8UL); 3648 } 3649 3650 static void setup_frame(int sig, struct target_sigaction *ka, 3651 target_sigset_t *set, CPUMBState *env) 3652 { 3653 struct target_signal_frame *frame; 3654 abi_ulong frame_addr; 3655 int i; 3656 3657 frame_addr = get_sigframe(ka, env, sizeof *frame); 3658 trace_user_setup_frame(env, frame_addr); 3659 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) 3660 goto badframe; 3661 3662 /* Save the mask. */ 3663 __put_user(set->sig[0], &frame->uc.tuc_mcontext.oldmask); 3664 3665 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 3666 __put_user(set->sig[i], &frame->extramask[i - 1]); 3667 } 3668 3669 setup_sigcontext(&frame->uc.tuc_mcontext, env); 3670 3671 /* Set up to return from userspace. If provided, use a stub 3672 already in userspace. */ 3673 /* minus 8 is offset to cater for "rtsd r15,8" offset */ 3674 if (ka->sa_flags & TARGET_SA_RESTORER) { 3675 env->regs[15] = ((unsigned long)ka->sa_restorer)-8; 3676 } else { 3677 uint32_t t; 3678 /* Note, these encodings are _big endian_! */ 3679 /* addi r12, r0, __NR_sigreturn */ 3680 t = 0x31800000UL | TARGET_NR_sigreturn; 3681 __put_user(t, frame->tramp + 0); 3682 /* brki r14, 0x8 */ 3683 t = 0xb9cc0008UL; 3684 __put_user(t, frame->tramp + 1); 3685 3686 /* Return from sighandler will jump to the tramp. 3687 Negative 8 offset because return is rtsd r15, 8 */ 3688 env->regs[15] = frame_addr + offsetof(struct target_signal_frame, tramp) 3689 - 8; 3690 } 3691 3692 /* Set up registers for signal handler */ 3693 env->regs[1] = frame_addr; 3694 /* Signal handler args: */ 3695 env->regs[5] = sig; /* Arg 0: signum */ 3696 env->regs[6] = 0; 3697 /* arg 1: sigcontext */ 3698 env->regs[7] = frame_addr += offsetof(typeof(*frame), uc); 3699 3700 /* Offset of 4 to handle microblaze rtid r14, 0 */ 3701 env->sregs[SR_PC] = (unsigned long)ka->_sa_handler; 3702 3703 unlock_user_struct(frame, frame_addr, 1); 3704 return; 3705 badframe: 3706 force_sigsegv(sig); 3707 } 3708 3709 static void setup_rt_frame(int sig, struct target_sigaction *ka, 3710 target_siginfo_t *info, 3711 target_sigset_t *set, CPUMBState *env) 3712 { 3713 fprintf(stderr, "Microblaze setup_rt_frame: not implemented\n"); 3714 } 3715 3716 long do_sigreturn(CPUMBState *env) 3717 { 3718 struct target_signal_frame *frame; 3719 abi_ulong frame_addr; 3720 target_sigset_t target_set; 3721 sigset_t set; 3722 int i; 3723 3724 frame_addr = env->regs[R_SP]; 3725 trace_user_do_sigreturn(env, frame_addr); 3726 /* Make sure the guest isn't playing games. */ 3727 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) 3728 goto badframe; 3729 3730 /* Restore blocked signals */ 3731 __get_user(target_set.sig[0], &frame->uc.tuc_mcontext.oldmask); 3732 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 3733 __get_user(target_set.sig[i], &frame->extramask[i - 1]); 3734 } 3735 target_to_host_sigset_internal(&set, &target_set); 3736 set_sigmask(&set); 3737 3738 restore_sigcontext(&frame->uc.tuc_mcontext, env); 3739 /* We got here through a sigreturn syscall, our path back is via an 3740 rtb insn so setup r14 for that. */ 3741 env->regs[14] = env->sregs[SR_PC]; 3742 3743 unlock_user_struct(frame, frame_addr, 0); 3744 return -TARGET_QEMU_ESIGRETURN; 3745 badframe: 3746 force_sig(TARGET_SIGSEGV); 3747 return -TARGET_QEMU_ESIGRETURN; 3748 } 3749 3750 long do_rt_sigreturn(CPUMBState *env) 3751 { 3752 trace_user_do_rt_sigreturn(env, 0); 3753 fprintf(stderr, "Microblaze do_rt_sigreturn: not implemented\n"); 3754 return -TARGET_ENOSYS; 3755 } 3756 3757 #elif defined(TARGET_CRIS) 3758 3759 struct target_sigcontext { 3760 struct target_pt_regs regs; /* needs to be first */ 3761 uint32_t oldmask; 3762 uint32_t usp; /* usp before stacking this gunk on it */ 3763 }; 3764 3765 /* Signal frames. */ 3766 struct target_signal_frame { 3767 struct target_sigcontext sc; 3768 uint32_t extramask[TARGET_NSIG_WORDS - 1]; 3769 uint16_t retcode[4]; /* Trampoline code. */ 3770 }; 3771 3772 struct rt_signal_frame { 3773 siginfo_t *pinfo; 3774 void *puc; 3775 siginfo_t info; 3776 struct ucontext uc; 3777 uint16_t retcode[4]; /* Trampoline code. */ 3778 }; 3779 3780 static void setup_sigcontext(struct target_sigcontext *sc, CPUCRISState *env) 3781 { 3782 __put_user(env->regs[0], &sc->regs.r0); 3783 __put_user(env->regs[1], &sc->regs.r1); 3784 __put_user(env->regs[2], &sc->regs.r2); 3785 __put_user(env->regs[3], &sc->regs.r3); 3786 __put_user(env->regs[4], &sc->regs.r4); 3787 __put_user(env->regs[5], &sc->regs.r5); 3788 __put_user(env->regs[6], &sc->regs.r6); 3789 __put_user(env->regs[7], &sc->regs.r7); 3790 __put_user(env->regs[8], &sc->regs.r8); 3791 __put_user(env->regs[9], &sc->regs.r9); 3792 __put_user(env->regs[10], &sc->regs.r10); 3793 __put_user(env->regs[11], &sc->regs.r11); 3794 __put_user(env->regs[12], &sc->regs.r12); 3795 __put_user(env->regs[13], &sc->regs.r13); 3796 __put_user(env->regs[14], &sc->usp); 3797 __put_user(env->regs[15], &sc->regs.acr); 3798 __put_user(env->pregs[PR_MOF], &sc->regs.mof); 3799 __put_user(env->pregs[PR_SRP], &sc->regs.srp); 3800 __put_user(env->pc, &sc->regs.erp); 3801 } 3802 3803 static void restore_sigcontext(struct target_sigcontext *sc, CPUCRISState *env) 3804 { 3805 __get_user(env->regs[0], &sc->regs.r0); 3806 __get_user(env->regs[1], &sc->regs.r1); 3807 __get_user(env->regs[2], &sc->regs.r2); 3808 __get_user(env->regs[3], &sc->regs.r3); 3809 __get_user(env->regs[4], &sc->regs.r4); 3810 __get_user(env->regs[5], &sc->regs.r5); 3811 __get_user(env->regs[6], &sc->regs.r6); 3812 __get_user(env->regs[7], &sc->regs.r7); 3813 __get_user(env->regs[8], &sc->regs.r8); 3814 __get_user(env->regs[9], &sc->regs.r9); 3815 __get_user(env->regs[10], &sc->regs.r10); 3816 __get_user(env->regs[11], &sc->regs.r11); 3817 __get_user(env->regs[12], &sc->regs.r12); 3818 __get_user(env->regs[13], &sc->regs.r13); 3819 __get_user(env->regs[14], &sc->usp); 3820 __get_user(env->regs[15], &sc->regs.acr); 3821 __get_user(env->pregs[PR_MOF], &sc->regs.mof); 3822 __get_user(env->pregs[PR_SRP], &sc->regs.srp); 3823 __get_user(env->pc, &sc->regs.erp); 3824 } 3825 3826 static abi_ulong get_sigframe(CPUCRISState *env, int framesize) 3827 { 3828 abi_ulong sp; 3829 /* Align the stack downwards to 4. */ 3830 sp = (env->regs[R_SP] & ~3); 3831 return sp - framesize; 3832 } 3833 3834 static void setup_frame(int sig, struct target_sigaction *ka, 3835 target_sigset_t *set, CPUCRISState *env) 3836 { 3837 struct target_signal_frame *frame; 3838 abi_ulong frame_addr; 3839 int i; 3840 3841 frame_addr = get_sigframe(env, sizeof *frame); 3842 trace_user_setup_frame(env, frame_addr); 3843 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) 3844 goto badframe; 3845 3846 /* 3847 * The CRIS signal return trampoline. A real linux/CRIS kernel doesn't 3848 * use this trampoline anymore but it sets it up for GDB. 3849 * In QEMU, using the trampoline simplifies things a bit so we use it. 3850 * 3851 * This is movu.w __NR_sigreturn, r9; break 13; 3852 */ 3853 __put_user(0x9c5f, frame->retcode+0); 3854 __put_user(TARGET_NR_sigreturn, 3855 frame->retcode + 1); 3856 __put_user(0xe93d, frame->retcode + 2); 3857 3858 /* Save the mask. */ 3859 __put_user(set->sig[0], &frame->sc.oldmask); 3860 3861 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 3862 __put_user(set->sig[i], &frame->extramask[i - 1]); 3863 } 3864 3865 setup_sigcontext(&frame->sc, env); 3866 3867 /* Move the stack and setup the arguments for the handler. */ 3868 env->regs[R_SP] = frame_addr; 3869 env->regs[10] = sig; 3870 env->pc = (unsigned long) ka->_sa_handler; 3871 /* Link SRP so the guest returns through the trampoline. */ 3872 env->pregs[PR_SRP] = frame_addr + offsetof(typeof(*frame), retcode); 3873 3874 unlock_user_struct(frame, frame_addr, 1); 3875 return; 3876 badframe: 3877 force_sigsegv(sig); 3878 } 3879 3880 static void setup_rt_frame(int sig, struct target_sigaction *ka, 3881 target_siginfo_t *info, 3882 target_sigset_t *set, CPUCRISState *env) 3883 { 3884 fprintf(stderr, "CRIS setup_rt_frame: not implemented\n"); 3885 } 3886 3887 long do_sigreturn(CPUCRISState *env) 3888 { 3889 struct target_signal_frame *frame; 3890 abi_ulong frame_addr; 3891 target_sigset_t target_set; 3892 sigset_t set; 3893 int i; 3894 3895 frame_addr = env->regs[R_SP]; 3896 trace_user_do_sigreturn(env, frame_addr); 3897 /* Make sure the guest isn't playing games. */ 3898 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) { 3899 goto badframe; 3900 } 3901 3902 /* Restore blocked signals */ 3903 __get_user(target_set.sig[0], &frame->sc.oldmask); 3904 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 3905 __get_user(target_set.sig[i], &frame->extramask[i - 1]); 3906 } 3907 target_to_host_sigset_internal(&set, &target_set); 3908 set_sigmask(&set); 3909 3910 restore_sigcontext(&frame->sc, env); 3911 unlock_user_struct(frame, frame_addr, 0); 3912 return -TARGET_QEMU_ESIGRETURN; 3913 badframe: 3914 force_sig(TARGET_SIGSEGV); 3915 return -TARGET_QEMU_ESIGRETURN; 3916 } 3917 3918 long do_rt_sigreturn(CPUCRISState *env) 3919 { 3920 trace_user_do_rt_sigreturn(env, 0); 3921 fprintf(stderr, "CRIS do_rt_sigreturn: not implemented\n"); 3922 return -TARGET_ENOSYS; 3923 } 3924 3925 #elif defined(TARGET_OPENRISC) 3926 3927 struct target_sigcontext { 3928 struct target_pt_regs regs; 3929 abi_ulong oldmask; 3930 abi_ulong usp; 3931 }; 3932 3933 struct target_ucontext { 3934 abi_ulong tuc_flags; 3935 abi_ulong tuc_link; 3936 target_stack_t tuc_stack; 3937 struct target_sigcontext tuc_mcontext; 3938 target_sigset_t tuc_sigmask; /* mask last for extensibility */ 3939 }; 3940 3941 struct target_rt_sigframe { 3942 abi_ulong pinfo; 3943 uint64_t puc; 3944 struct target_siginfo info; 3945 struct target_sigcontext sc; 3946 struct target_ucontext uc; 3947 unsigned char retcode[16]; /* trampoline code */ 3948 }; 3949 3950 /* This is the asm-generic/ucontext.h version */ 3951 #if 0 3952 static int restore_sigcontext(CPUOpenRISCState *regs, 3953 struct target_sigcontext *sc) 3954 { 3955 unsigned int err = 0; 3956 unsigned long old_usp; 3957 3958 /* Alwys make any pending restarted system call return -EINTR */ 3959 current_thread_info()->restart_block.fn = do_no_restart_syscall; 3960 3961 /* restore the regs from &sc->regs (same as sc, since regs is first) 3962 * (sc is already checked for VERIFY_READ since the sigframe was 3963 * checked in sys_sigreturn previously) 3964 */ 3965 3966 if (copy_from_user(regs, &sc, sizeof(struct target_pt_regs))) { 3967 goto badframe; 3968 } 3969 3970 /* make sure the U-flag is set so user-mode cannot fool us */ 3971 3972 regs->sr &= ~SR_SM; 3973 3974 /* restore the old USP as it was before we stacked the sc etc. 3975 * (we cannot just pop the sigcontext since we aligned the sp and 3976 * stuff after pushing it) 3977 */ 3978 3979 __get_user(old_usp, &sc->usp); 3980 phx_signal("old_usp 0x%lx", old_usp); 3981 3982 __PHX__ REALLY /* ??? */ 3983 wrusp(old_usp); 3984 regs->gpr[1] = old_usp; 3985 3986 /* TODO: the other ports use regs->orig_XX to disable syscall checks 3987 * after this completes, but we don't use that mechanism. maybe we can 3988 * use it now ? 3989 */ 3990 3991 return err; 3992 3993 badframe: 3994 return 1; 3995 } 3996 #endif 3997 3998 /* Set up a signal frame. */ 3999 4000 static void setup_sigcontext(struct target_sigcontext *sc, 4001 CPUOpenRISCState *regs, 4002 unsigned long mask) 4003 { 4004 unsigned long usp = regs->gpr[1]; 4005 4006 /* copy the regs. they are first in sc so we can use sc directly */ 4007 4008 /*copy_to_user(&sc, regs, sizeof(struct target_pt_regs));*/ 4009 4010 /* Set the frametype to CRIS_FRAME_NORMAL for the execution of 4011 the signal handler. The frametype will be restored to its previous 4012 value in restore_sigcontext. */ 4013 /*regs->frametype = CRIS_FRAME_NORMAL;*/ 4014 4015 /* then some other stuff */ 4016 __put_user(mask, &sc->oldmask); 4017 __put_user(usp, &sc->usp); 4018 } 4019 4020 static inline unsigned long align_sigframe(unsigned long sp) 4021 { 4022 return sp & ~3UL; 4023 } 4024 4025 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 4026 CPUOpenRISCState *regs, 4027 size_t frame_size) 4028 { 4029 unsigned long sp = regs->gpr[1]; 4030 int onsigstack = on_sig_stack(sp); 4031 4032 /* redzone */ 4033 /* This is the X/Open sanctioned signal stack switching. */ 4034 if ((ka->sa_flags & TARGET_SA_ONSTACK) != 0 && !onsigstack) { 4035 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 4036 } 4037 4038 sp = align_sigframe(sp - frame_size); 4039 4040 /* 4041 * If we are on the alternate signal stack and would overflow it, don't. 4042 * Return an always-bogus address instead so we will die with SIGSEGV. 4043 */ 4044 4045 if (onsigstack && !likely(on_sig_stack(sp))) { 4046 return -1L; 4047 } 4048 4049 return sp; 4050 } 4051 4052 static void setup_rt_frame(int sig, struct target_sigaction *ka, 4053 target_siginfo_t *info, 4054 target_sigset_t *set, CPUOpenRISCState *env) 4055 { 4056 int err = 0; 4057 abi_ulong frame_addr; 4058 unsigned long return_ip; 4059 struct target_rt_sigframe *frame; 4060 abi_ulong info_addr, uc_addr; 4061 4062 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 4063 trace_user_setup_rt_frame(env, frame_addr); 4064 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 4065 goto give_sigsegv; 4066 } 4067 4068 info_addr = frame_addr + offsetof(struct target_rt_sigframe, info); 4069 __put_user(info_addr, &frame->pinfo); 4070 uc_addr = frame_addr + offsetof(struct target_rt_sigframe, uc); 4071 __put_user(uc_addr, &frame->puc); 4072 4073 if (ka->sa_flags & SA_SIGINFO) { 4074 tswap_siginfo(&frame->info, info); 4075 } 4076 4077 /*err |= __clear_user(&frame->uc, offsetof(struct ucontext, uc_mcontext));*/ 4078 __put_user(0, &frame->uc.tuc_flags); 4079 __put_user(0, &frame->uc.tuc_link); 4080 __put_user(target_sigaltstack_used.ss_sp, 4081 &frame->uc.tuc_stack.ss_sp); 4082 __put_user(sas_ss_flags(env->gpr[1]), &frame->uc.tuc_stack.ss_flags); 4083 __put_user(target_sigaltstack_used.ss_size, 4084 &frame->uc.tuc_stack.ss_size); 4085 setup_sigcontext(&frame->sc, env, set->sig[0]); 4086 4087 /*err |= copy_to_user(frame->uc.tuc_sigmask, set, sizeof(*set));*/ 4088 4089 /* trampoline - the desired return ip is the retcode itself */ 4090 return_ip = (unsigned long)&frame->retcode; 4091 /* This is l.ori r11,r0,__NR_sigreturn, l.sys 1 */ 4092 __put_user(0xa960, (short *)(frame->retcode + 0)); 4093 __put_user(TARGET_NR_rt_sigreturn, (short *)(frame->retcode + 2)); 4094 __put_user(0x20000001, (unsigned long *)(frame->retcode + 4)); 4095 __put_user(0x15000000, (unsigned long *)(frame->retcode + 8)); 4096 4097 if (err) { 4098 goto give_sigsegv; 4099 } 4100 4101 /* TODO what is the current->exec_domain stuff and invmap ? */ 4102 4103 /* Set up registers for signal handler */ 4104 env->pc = (unsigned long)ka->_sa_handler; /* what we enter NOW */ 4105 env->gpr[9] = (unsigned long)return_ip; /* what we enter LATER */ 4106 env->gpr[3] = (unsigned long)sig; /* arg 1: signo */ 4107 env->gpr[4] = (unsigned long)&frame->info; /* arg 2: (siginfo_t*) */ 4108 env->gpr[5] = (unsigned long)&frame->uc; /* arg 3: ucontext */ 4109 4110 /* actually move the usp to reflect the stacked frame */ 4111 env->gpr[1] = (unsigned long)frame; 4112 4113 return; 4114 4115 give_sigsegv: 4116 unlock_user_struct(frame, frame_addr, 1); 4117 force_sigsegv(sig); 4118 } 4119 4120 long do_sigreturn(CPUOpenRISCState *env) 4121 { 4122 trace_user_do_sigreturn(env, 0); 4123 fprintf(stderr, "do_sigreturn: not implemented\n"); 4124 return -TARGET_ENOSYS; 4125 } 4126 4127 long do_rt_sigreturn(CPUOpenRISCState *env) 4128 { 4129 trace_user_do_rt_sigreturn(env, 0); 4130 fprintf(stderr, "do_rt_sigreturn: not implemented\n"); 4131 return -TARGET_ENOSYS; 4132 } 4133 /* TARGET_OPENRISC */ 4134 4135 #elif defined(TARGET_S390X) 4136 4137 #define __NUM_GPRS 16 4138 #define __NUM_FPRS 16 4139 #define __NUM_ACRS 16 4140 4141 #define S390_SYSCALL_SIZE 2 4142 #define __SIGNAL_FRAMESIZE 160 /* FIXME: 31-bit mode -> 96 */ 4143 4144 #define _SIGCONTEXT_NSIG 64 4145 #define _SIGCONTEXT_NSIG_BPW 64 /* FIXME: 31-bit mode -> 32 */ 4146 #define _SIGCONTEXT_NSIG_WORDS (_SIGCONTEXT_NSIG / _SIGCONTEXT_NSIG_BPW) 4147 #define _SIGMASK_COPY_SIZE (sizeof(unsigned long)*_SIGCONTEXT_NSIG_WORDS) 4148 #define PSW_ADDR_AMODE 0x0000000000000000UL /* 0x80000000UL for 31-bit */ 4149 #define S390_SYSCALL_OPCODE ((uint16_t)0x0a00) 4150 4151 typedef struct { 4152 target_psw_t psw; 4153 target_ulong gprs[__NUM_GPRS]; 4154 unsigned int acrs[__NUM_ACRS]; 4155 } target_s390_regs_common; 4156 4157 typedef struct { 4158 unsigned int fpc; 4159 double fprs[__NUM_FPRS]; 4160 } target_s390_fp_regs; 4161 4162 typedef struct { 4163 target_s390_regs_common regs; 4164 target_s390_fp_regs fpregs; 4165 } target_sigregs; 4166 4167 struct target_sigcontext { 4168 target_ulong oldmask[_SIGCONTEXT_NSIG_WORDS]; 4169 target_sigregs *sregs; 4170 }; 4171 4172 typedef struct { 4173 uint8_t callee_used_stack[__SIGNAL_FRAMESIZE]; 4174 struct target_sigcontext sc; 4175 target_sigregs sregs; 4176 int signo; 4177 uint8_t retcode[S390_SYSCALL_SIZE]; 4178 } sigframe; 4179 4180 struct target_ucontext { 4181 target_ulong tuc_flags; 4182 struct target_ucontext *tuc_link; 4183 target_stack_t tuc_stack; 4184 target_sigregs tuc_mcontext; 4185 target_sigset_t tuc_sigmask; /* mask last for extensibility */ 4186 }; 4187 4188 typedef struct { 4189 uint8_t callee_used_stack[__SIGNAL_FRAMESIZE]; 4190 uint8_t retcode[S390_SYSCALL_SIZE]; 4191 struct target_siginfo info; 4192 struct target_ucontext uc; 4193 } rt_sigframe; 4194 4195 static inline abi_ulong 4196 get_sigframe(struct target_sigaction *ka, CPUS390XState *env, size_t frame_size) 4197 { 4198 abi_ulong sp; 4199 4200 /* Default to using normal stack */ 4201 sp = env->regs[15]; 4202 4203 /* This is the X/Open sanctioned signal stack switching. */ 4204 if (ka->sa_flags & TARGET_SA_ONSTACK) { 4205 if (!sas_ss_flags(sp)) { 4206 sp = target_sigaltstack_used.ss_sp + 4207 target_sigaltstack_used.ss_size; 4208 } 4209 } 4210 4211 /* This is the legacy signal stack switching. */ 4212 else if (/* FIXME !user_mode(regs) */ 0 && 4213 !(ka->sa_flags & TARGET_SA_RESTORER) && 4214 ka->sa_restorer) { 4215 sp = (abi_ulong) ka->sa_restorer; 4216 } 4217 4218 return (sp - frame_size) & -8ul; 4219 } 4220 4221 static void save_sigregs(CPUS390XState *env, target_sigregs *sregs) 4222 { 4223 int i; 4224 //save_access_regs(current->thread.acrs); FIXME 4225 4226 /* Copy a 'clean' PSW mask to the user to avoid leaking 4227 information about whether PER is currently on. */ 4228 __put_user(env->psw.mask, &sregs->regs.psw.mask); 4229 __put_user(env->psw.addr, &sregs->regs.psw.addr); 4230 for (i = 0; i < 16; i++) { 4231 __put_user(env->regs[i], &sregs->regs.gprs[i]); 4232 } 4233 for (i = 0; i < 16; i++) { 4234 __put_user(env->aregs[i], &sregs->regs.acrs[i]); 4235 } 4236 /* 4237 * We have to store the fp registers to current->thread.fp_regs 4238 * to merge them with the emulated registers. 4239 */ 4240 //save_fp_regs(¤t->thread.fp_regs); FIXME 4241 for (i = 0; i < 16; i++) { 4242 __put_user(get_freg(env, i)->ll, &sregs->fpregs.fprs[i]); 4243 } 4244 } 4245 4246 static void setup_frame(int sig, struct target_sigaction *ka, 4247 target_sigset_t *set, CPUS390XState *env) 4248 { 4249 sigframe *frame; 4250 abi_ulong frame_addr; 4251 4252 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 4253 trace_user_setup_frame(env, frame_addr); 4254 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 4255 goto give_sigsegv; 4256 } 4257 4258 __put_user(set->sig[0], &frame->sc.oldmask[0]); 4259 4260 save_sigregs(env, &frame->sregs); 4261 4262 __put_user((abi_ulong)(unsigned long)&frame->sregs, 4263 (abi_ulong *)&frame->sc.sregs); 4264 4265 /* Set up to return from userspace. If provided, use a stub 4266 already in userspace. */ 4267 if (ka->sa_flags & TARGET_SA_RESTORER) { 4268 env->regs[14] = (unsigned long) 4269 ka->sa_restorer | PSW_ADDR_AMODE; 4270 } else { 4271 env->regs[14] = (frame_addr + offsetof(sigframe, retcode)) 4272 | PSW_ADDR_AMODE; 4273 __put_user(S390_SYSCALL_OPCODE | TARGET_NR_sigreturn, 4274 (uint16_t *)(frame->retcode)); 4275 } 4276 4277 /* Set up backchain. */ 4278 __put_user(env->regs[15], (abi_ulong *) frame); 4279 4280 /* Set up registers for signal handler */ 4281 env->regs[15] = frame_addr; 4282 env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE; 4283 4284 env->regs[2] = sig; //map_signal(sig); 4285 env->regs[3] = frame_addr += offsetof(typeof(*frame), sc); 4286 4287 /* We forgot to include these in the sigcontext. 4288 To avoid breaking binary compatibility, they are passed as args. */ 4289 env->regs[4] = 0; // FIXME: no clue... current->thread.trap_no; 4290 env->regs[5] = 0; // FIXME: no clue... current->thread.prot_addr; 4291 4292 /* Place signal number on stack to allow backtrace from handler. */ 4293 __put_user(env->regs[2], &frame->signo); 4294 unlock_user_struct(frame, frame_addr, 1); 4295 return; 4296 4297 give_sigsegv: 4298 force_sigsegv(sig); 4299 } 4300 4301 static void setup_rt_frame(int sig, struct target_sigaction *ka, 4302 target_siginfo_t *info, 4303 target_sigset_t *set, CPUS390XState *env) 4304 { 4305 int i; 4306 rt_sigframe *frame; 4307 abi_ulong frame_addr; 4308 4309 frame_addr = get_sigframe(ka, env, sizeof *frame); 4310 trace_user_setup_rt_frame(env, frame_addr); 4311 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 4312 goto give_sigsegv; 4313 } 4314 4315 tswap_siginfo(&frame->info, info); 4316 4317 /* Create the ucontext. */ 4318 __put_user(0, &frame->uc.tuc_flags); 4319 __put_user((abi_ulong)0, (abi_ulong *)&frame->uc.tuc_link); 4320 __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); 4321 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), 4322 &frame->uc.tuc_stack.ss_flags); 4323 __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); 4324 save_sigregs(env, &frame->uc.tuc_mcontext); 4325 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 4326 __put_user((abi_ulong)set->sig[i], 4327 (abi_ulong *)&frame->uc.tuc_sigmask.sig[i]); 4328 } 4329 4330 /* Set up to return from userspace. If provided, use a stub 4331 already in userspace. */ 4332 if (ka->sa_flags & TARGET_SA_RESTORER) { 4333 env->regs[14] = (unsigned long) ka->sa_restorer | PSW_ADDR_AMODE; 4334 } else { 4335 env->regs[14] = (unsigned long) frame->retcode | PSW_ADDR_AMODE; 4336 __put_user(S390_SYSCALL_OPCODE | TARGET_NR_rt_sigreturn, 4337 (uint16_t *)(frame->retcode)); 4338 } 4339 4340 /* Set up backchain. */ 4341 __put_user(env->regs[15], (abi_ulong *) frame); 4342 4343 /* Set up registers for signal handler */ 4344 env->regs[15] = frame_addr; 4345 env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE; 4346 4347 env->regs[2] = sig; //map_signal(sig); 4348 env->regs[3] = frame_addr + offsetof(typeof(*frame), info); 4349 env->regs[4] = frame_addr + offsetof(typeof(*frame), uc); 4350 return; 4351 4352 give_sigsegv: 4353 force_sigsegv(sig); 4354 } 4355 4356 static int 4357 restore_sigregs(CPUS390XState *env, target_sigregs *sc) 4358 { 4359 int err = 0; 4360 int i; 4361 4362 for (i = 0; i < 16; i++) { 4363 __get_user(env->regs[i], &sc->regs.gprs[i]); 4364 } 4365 4366 __get_user(env->psw.mask, &sc->regs.psw.mask); 4367 trace_user_s390x_restore_sigregs(env, (unsigned long long)sc->regs.psw.addr, 4368 (unsigned long long)env->psw.addr); 4369 __get_user(env->psw.addr, &sc->regs.psw.addr); 4370 /* FIXME: 31-bit -> | PSW_ADDR_AMODE */ 4371 4372 for (i = 0; i < 16; i++) { 4373 __get_user(env->aregs[i], &sc->regs.acrs[i]); 4374 } 4375 for (i = 0; i < 16; i++) { 4376 __get_user(get_freg(env, i)->ll, &sc->fpregs.fprs[i]); 4377 } 4378 4379 return err; 4380 } 4381 4382 long do_sigreturn(CPUS390XState *env) 4383 { 4384 sigframe *frame; 4385 abi_ulong frame_addr = env->regs[15]; 4386 target_sigset_t target_set; 4387 sigset_t set; 4388 4389 trace_user_do_sigreturn(env, frame_addr); 4390 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 4391 goto badframe; 4392 } 4393 __get_user(target_set.sig[0], &frame->sc.oldmask[0]); 4394 4395 target_to_host_sigset_internal(&set, &target_set); 4396 set_sigmask(&set); /* ~_BLOCKABLE? */ 4397 4398 if (restore_sigregs(env, &frame->sregs)) { 4399 goto badframe; 4400 } 4401 4402 unlock_user_struct(frame, frame_addr, 0); 4403 return -TARGET_QEMU_ESIGRETURN; 4404 4405 badframe: 4406 force_sig(TARGET_SIGSEGV); 4407 return -TARGET_QEMU_ESIGRETURN; 4408 } 4409 4410 long do_rt_sigreturn(CPUS390XState *env) 4411 { 4412 rt_sigframe *frame; 4413 abi_ulong frame_addr = env->regs[15]; 4414 sigset_t set; 4415 4416 trace_user_do_rt_sigreturn(env, frame_addr); 4417 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 4418 goto badframe; 4419 } 4420 target_to_host_sigset(&set, &frame->uc.tuc_sigmask); 4421 4422 set_sigmask(&set); /* ~_BLOCKABLE? */ 4423 4424 if (restore_sigregs(env, &frame->uc.tuc_mcontext)) { 4425 goto badframe; 4426 } 4427 4428 if (do_sigaltstack(frame_addr + offsetof(rt_sigframe, uc.tuc_stack), 0, 4429 get_sp_from_cpustate(env)) == -EFAULT) { 4430 goto badframe; 4431 } 4432 unlock_user_struct(frame, frame_addr, 0); 4433 return -TARGET_QEMU_ESIGRETURN; 4434 4435 badframe: 4436 unlock_user_struct(frame, frame_addr, 0); 4437 force_sig(TARGET_SIGSEGV); 4438 return -TARGET_QEMU_ESIGRETURN; 4439 } 4440 4441 #elif defined(TARGET_PPC) 4442 4443 /* Size of dummy stack frame allocated when calling signal handler. 4444 See arch/powerpc/include/asm/ptrace.h. */ 4445 #if defined(TARGET_PPC64) 4446 #define SIGNAL_FRAMESIZE 128 4447 #else 4448 #define SIGNAL_FRAMESIZE 64 4449 #endif 4450 4451 /* See arch/powerpc/include/asm/ucontext.h. Only used for 32-bit PPC; 4452 on 64-bit PPC, sigcontext and mcontext are one and the same. */ 4453 struct target_mcontext { 4454 target_ulong mc_gregs[48]; 4455 /* Includes fpscr. */ 4456 uint64_t mc_fregs[33]; 4457 #if defined(TARGET_PPC64) 4458 /* Pointer to the vector regs */ 4459 target_ulong v_regs; 4460 #else 4461 target_ulong mc_pad[2]; 4462 #endif 4463 /* We need to handle Altivec and SPE at the same time, which no 4464 kernel needs to do. Fortunately, the kernel defines this bit to 4465 be Altivec-register-large all the time, rather than trying to 4466 twiddle it based on the specific platform. */ 4467 union { 4468 /* SPE vector registers. One extra for SPEFSCR. */ 4469 uint32_t spe[33]; 4470 /* Altivec vector registers. The packing of VSCR and VRSAVE 4471 varies depending on whether we're PPC64 or not: PPC64 splits 4472 them apart; PPC32 stuffs them together. 4473 We also need to account for the VSX registers on PPC64 4474 */ 4475 #if defined(TARGET_PPC64) 4476 #define QEMU_NVRREG (34 + 16) 4477 /* On ppc64, this mcontext structure is naturally *unaligned*, 4478 * or rather it is aligned on a 8 bytes boundary but not on 4479 * a 16 bytes one. This pad fixes it up. This is also why the 4480 * vector regs are referenced by the v_regs pointer above so 4481 * any amount of padding can be added here 4482 */ 4483 target_ulong pad; 4484 #else 4485 /* On ppc32, we are already aligned to 16 bytes */ 4486 #define QEMU_NVRREG 33 4487 #endif 4488 /* We cannot use ppc_avr_t here as we do *not* want the implied 4489 * 16-bytes alignment that would result from it. This would have 4490 * the effect of making the whole struct target_mcontext aligned 4491 * which breaks the layout of struct target_ucontext on ppc64. 4492 */ 4493 uint64_t altivec[QEMU_NVRREG][2]; 4494 #undef QEMU_NVRREG 4495 } mc_vregs; 4496 }; 4497 4498 /* See arch/powerpc/include/asm/sigcontext.h. */ 4499 struct target_sigcontext { 4500 target_ulong _unused[4]; 4501 int32_t signal; 4502 #if defined(TARGET_PPC64) 4503 int32_t pad0; 4504 #endif 4505 target_ulong handler; 4506 target_ulong oldmask; 4507 target_ulong regs; /* struct pt_regs __user * */ 4508 #if defined(TARGET_PPC64) 4509 struct target_mcontext mcontext; 4510 #endif 4511 }; 4512 4513 /* Indices for target_mcontext.mc_gregs, below. 4514 See arch/powerpc/include/asm/ptrace.h for details. */ 4515 enum { 4516 TARGET_PT_R0 = 0, 4517 TARGET_PT_R1 = 1, 4518 TARGET_PT_R2 = 2, 4519 TARGET_PT_R3 = 3, 4520 TARGET_PT_R4 = 4, 4521 TARGET_PT_R5 = 5, 4522 TARGET_PT_R6 = 6, 4523 TARGET_PT_R7 = 7, 4524 TARGET_PT_R8 = 8, 4525 TARGET_PT_R9 = 9, 4526 TARGET_PT_R10 = 10, 4527 TARGET_PT_R11 = 11, 4528 TARGET_PT_R12 = 12, 4529 TARGET_PT_R13 = 13, 4530 TARGET_PT_R14 = 14, 4531 TARGET_PT_R15 = 15, 4532 TARGET_PT_R16 = 16, 4533 TARGET_PT_R17 = 17, 4534 TARGET_PT_R18 = 18, 4535 TARGET_PT_R19 = 19, 4536 TARGET_PT_R20 = 20, 4537 TARGET_PT_R21 = 21, 4538 TARGET_PT_R22 = 22, 4539 TARGET_PT_R23 = 23, 4540 TARGET_PT_R24 = 24, 4541 TARGET_PT_R25 = 25, 4542 TARGET_PT_R26 = 26, 4543 TARGET_PT_R27 = 27, 4544 TARGET_PT_R28 = 28, 4545 TARGET_PT_R29 = 29, 4546 TARGET_PT_R30 = 30, 4547 TARGET_PT_R31 = 31, 4548 TARGET_PT_NIP = 32, 4549 TARGET_PT_MSR = 33, 4550 TARGET_PT_ORIG_R3 = 34, 4551 TARGET_PT_CTR = 35, 4552 TARGET_PT_LNK = 36, 4553 TARGET_PT_XER = 37, 4554 TARGET_PT_CCR = 38, 4555 /* Yes, there are two registers with #39. One is 64-bit only. */ 4556 TARGET_PT_MQ = 39, 4557 TARGET_PT_SOFTE = 39, 4558 TARGET_PT_TRAP = 40, 4559 TARGET_PT_DAR = 41, 4560 TARGET_PT_DSISR = 42, 4561 TARGET_PT_RESULT = 43, 4562 TARGET_PT_REGS_COUNT = 44 4563 }; 4564 4565 4566 struct target_ucontext { 4567 target_ulong tuc_flags; 4568 target_ulong tuc_link; /* struct ucontext __user * */ 4569 struct target_sigaltstack tuc_stack; 4570 #if !defined(TARGET_PPC64) 4571 int32_t tuc_pad[7]; 4572 target_ulong tuc_regs; /* struct mcontext __user * 4573 points to uc_mcontext field */ 4574 #endif 4575 target_sigset_t tuc_sigmask; 4576 #if defined(TARGET_PPC64) 4577 target_sigset_t unused[15]; /* Allow for uc_sigmask growth */ 4578 struct target_sigcontext tuc_sigcontext; 4579 #else 4580 int32_t tuc_maskext[30]; 4581 int32_t tuc_pad2[3]; 4582 struct target_mcontext tuc_mcontext; 4583 #endif 4584 }; 4585 4586 /* See arch/powerpc/kernel/signal_32.c. */ 4587 struct target_sigframe { 4588 struct target_sigcontext sctx; 4589 struct target_mcontext mctx; 4590 int32_t abigap[56]; 4591 }; 4592 4593 #if defined(TARGET_PPC64) 4594 4595 #define TARGET_TRAMP_SIZE 6 4596 4597 struct target_rt_sigframe { 4598 /* sys_rt_sigreturn requires the ucontext be the first field */ 4599 struct target_ucontext uc; 4600 target_ulong _unused[2]; 4601 uint32_t trampoline[TARGET_TRAMP_SIZE]; 4602 target_ulong pinfo; /* struct siginfo __user * */ 4603 target_ulong puc; /* void __user * */ 4604 struct target_siginfo info; 4605 /* 64 bit ABI allows for 288 bytes below sp before decrementing it. */ 4606 char abigap[288]; 4607 } __attribute__((aligned(16))); 4608 4609 #else 4610 4611 struct target_rt_sigframe { 4612 struct target_siginfo info; 4613 struct target_ucontext uc; 4614 int32_t abigap[56]; 4615 }; 4616 4617 #endif 4618 4619 #if defined(TARGET_PPC64) 4620 4621 struct target_func_ptr { 4622 target_ulong entry; 4623 target_ulong toc; 4624 }; 4625 4626 #endif 4627 4628 /* We use the mc_pad field for the signal return trampoline. */ 4629 #define tramp mc_pad 4630 4631 /* See arch/powerpc/kernel/signal.c. */ 4632 static target_ulong get_sigframe(struct target_sigaction *ka, 4633 CPUPPCState *env, 4634 int frame_size) 4635 { 4636 target_ulong oldsp; 4637 4638 oldsp = env->gpr[1]; 4639 4640 if ((ka->sa_flags & TARGET_SA_ONSTACK) && 4641 (sas_ss_flags(oldsp) == 0)) { 4642 oldsp = (target_sigaltstack_used.ss_sp 4643 + target_sigaltstack_used.ss_size); 4644 } 4645 4646 return (oldsp - frame_size) & ~0xFUL; 4647 } 4648 4649 #if ((defined(TARGET_WORDS_BIGENDIAN) && defined(HOST_WORDS_BIGENDIAN)) || \ 4650 (!defined(HOST_WORDS_BIGENDIAN) && !defined(TARGET_WORDS_BIGENDIAN))) 4651 #define PPC_VEC_HI 0 4652 #define PPC_VEC_LO 1 4653 #else 4654 #define PPC_VEC_HI 1 4655 #define PPC_VEC_LO 0 4656 #endif 4657 4658 4659 static void save_user_regs(CPUPPCState *env, struct target_mcontext *frame) 4660 { 4661 target_ulong msr = env->msr; 4662 int i; 4663 target_ulong ccr = 0; 4664 4665 /* In general, the kernel attempts to be intelligent about what it 4666 needs to save for Altivec/FP/SPE registers. We don't care that 4667 much, so we just go ahead and save everything. */ 4668 4669 /* Save general registers. */ 4670 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 4671 __put_user(env->gpr[i], &frame->mc_gregs[i]); 4672 } 4673 __put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); 4674 __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); 4675 __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); 4676 __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); 4677 4678 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 4679 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 4680 } 4681 __put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); 4682 4683 /* Save Altivec registers if necessary. */ 4684 if (env->insns_flags & PPC_ALTIVEC) { 4685 uint32_t *vrsave; 4686 for (i = 0; i < ARRAY_SIZE(env->avr); i++) { 4687 ppc_avr_t *avr = &env->avr[i]; 4688 ppc_avr_t *vreg = (ppc_avr_t *)&frame->mc_vregs.altivec[i]; 4689 4690 __put_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); 4691 __put_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); 4692 } 4693 /* Set MSR_VR in the saved MSR value to indicate that 4694 frame->mc_vregs contains valid data. */ 4695 msr |= MSR_VR; 4696 #if defined(TARGET_PPC64) 4697 vrsave = (uint32_t *)&frame->mc_vregs.altivec[33]; 4698 /* 64-bit needs to put a pointer to the vectors in the frame */ 4699 __put_user(h2g(frame->mc_vregs.altivec), &frame->v_regs); 4700 #else 4701 vrsave = (uint32_t *)&frame->mc_vregs.altivec[32]; 4702 #endif 4703 __put_user((uint32_t)env->spr[SPR_VRSAVE], vrsave); 4704 } 4705 4706 /* Save VSX second halves */ 4707 if (env->insns_flags2 & PPC2_VSX) { 4708 uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; 4709 for (i = 0; i < ARRAY_SIZE(env->vsr); i++) { 4710 __put_user(env->vsr[i], &vsregs[i]); 4711 } 4712 } 4713 4714 /* Save floating point registers. */ 4715 if (env->insns_flags & PPC_FLOAT) { 4716 for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { 4717 __put_user(env->fpr[i], &frame->mc_fregs[i]); 4718 } 4719 __put_user((uint64_t) env->fpscr, &frame->mc_fregs[32]); 4720 } 4721 4722 /* Save SPE registers. The kernel only saves the high half. */ 4723 if (env->insns_flags & PPC_SPE) { 4724 #if defined(TARGET_PPC64) 4725 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 4726 __put_user(env->gpr[i] >> 32, &frame->mc_vregs.spe[i]); 4727 } 4728 #else 4729 for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { 4730 __put_user(env->gprh[i], &frame->mc_vregs.spe[i]); 4731 } 4732 #endif 4733 /* Set MSR_SPE in the saved MSR value to indicate that 4734 frame->mc_vregs contains valid data. */ 4735 msr |= MSR_SPE; 4736 __put_user(env->spe_fscr, &frame->mc_vregs.spe[32]); 4737 } 4738 4739 /* Store MSR. */ 4740 __put_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); 4741 } 4742 4743 static void encode_trampoline(int sigret, uint32_t *tramp) 4744 { 4745 /* Set up the sigreturn trampoline: li r0,sigret; sc. */ 4746 if (sigret) { 4747 __put_user(0x38000000 | sigret, &tramp[0]); 4748 __put_user(0x44000002, &tramp[1]); 4749 } 4750 } 4751 4752 static void restore_user_regs(CPUPPCState *env, 4753 struct target_mcontext *frame, int sig) 4754 { 4755 target_ulong save_r2 = 0; 4756 target_ulong msr; 4757 target_ulong ccr; 4758 4759 int i; 4760 4761 if (!sig) { 4762 save_r2 = env->gpr[2]; 4763 } 4764 4765 /* Restore general registers. */ 4766 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 4767 __get_user(env->gpr[i], &frame->mc_gregs[i]); 4768 } 4769 __get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); 4770 __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); 4771 __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); 4772 __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); 4773 __get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); 4774 4775 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 4776 env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf; 4777 } 4778 4779 if (!sig) { 4780 env->gpr[2] = save_r2; 4781 } 4782 /* Restore MSR. */ 4783 __get_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); 4784 4785 /* If doing signal return, restore the previous little-endian mode. */ 4786 if (sig) 4787 env->msr = (env->msr & ~(1ull << MSR_LE)) | (msr & (1ull << MSR_LE)); 4788 4789 /* Restore Altivec registers if necessary. */ 4790 if (env->insns_flags & PPC_ALTIVEC) { 4791 ppc_avr_t *v_regs; 4792 uint32_t *vrsave; 4793 #if defined(TARGET_PPC64) 4794 uint64_t v_addr; 4795 /* 64-bit needs to recover the pointer to the vectors from the frame */ 4796 __get_user(v_addr, &frame->v_regs); 4797 v_regs = g2h(v_addr); 4798 #else 4799 v_regs = (ppc_avr_t *)frame->mc_vregs.altivec; 4800 #endif 4801 for (i = 0; i < ARRAY_SIZE(env->avr); i++) { 4802 ppc_avr_t *avr = &env->avr[i]; 4803 ppc_avr_t *vreg = &v_regs[i]; 4804 4805 __get_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); 4806 __get_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); 4807 } 4808 /* Set MSR_VEC in the saved MSR value to indicate that 4809 frame->mc_vregs contains valid data. */ 4810 #if defined(TARGET_PPC64) 4811 vrsave = (uint32_t *)&v_regs[33]; 4812 #else 4813 vrsave = (uint32_t *)&v_regs[32]; 4814 #endif 4815 __get_user(env->spr[SPR_VRSAVE], vrsave); 4816 } 4817 4818 /* Restore VSX second halves */ 4819 if (env->insns_flags2 & PPC2_VSX) { 4820 uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; 4821 for (i = 0; i < ARRAY_SIZE(env->vsr); i++) { 4822 __get_user(env->vsr[i], &vsregs[i]); 4823 } 4824 } 4825 4826 /* Restore floating point registers. */ 4827 if (env->insns_flags & PPC_FLOAT) { 4828 uint64_t fpscr; 4829 for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { 4830 __get_user(env->fpr[i], &frame->mc_fregs[i]); 4831 } 4832 __get_user(fpscr, &frame->mc_fregs[32]); 4833 env->fpscr = (uint32_t) fpscr; 4834 } 4835 4836 /* Save SPE registers. The kernel only saves the high half. */ 4837 if (env->insns_flags & PPC_SPE) { 4838 #if defined(TARGET_PPC64) 4839 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 4840 uint32_t hi; 4841 4842 __get_user(hi, &frame->mc_vregs.spe[i]); 4843 env->gpr[i] = ((uint64_t)hi << 32) | ((uint32_t) env->gpr[i]); 4844 } 4845 #else 4846 for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { 4847 __get_user(env->gprh[i], &frame->mc_vregs.spe[i]); 4848 } 4849 #endif 4850 __get_user(env->spe_fscr, &frame->mc_vregs.spe[32]); 4851 } 4852 } 4853 4854 #if !defined(TARGET_PPC64) 4855 static void setup_frame(int sig, struct target_sigaction *ka, 4856 target_sigset_t *set, CPUPPCState *env) 4857 { 4858 struct target_sigframe *frame; 4859 struct target_sigcontext *sc; 4860 target_ulong frame_addr, newsp; 4861 int err = 0; 4862 4863 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 4864 trace_user_setup_frame(env, frame_addr); 4865 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) 4866 goto sigsegv; 4867 sc = &frame->sctx; 4868 4869 __put_user(ka->_sa_handler, &sc->handler); 4870 __put_user(set->sig[0], &sc->oldmask); 4871 __put_user(set->sig[1], &sc->_unused[3]); 4872 __put_user(h2g(&frame->mctx), &sc->regs); 4873 __put_user(sig, &sc->signal); 4874 4875 /* Save user regs. */ 4876 save_user_regs(env, &frame->mctx); 4877 4878 /* Construct the trampoline code on the stack. */ 4879 encode_trampoline(TARGET_NR_sigreturn, (uint32_t *)&frame->mctx.tramp); 4880 4881 /* The kernel checks for the presence of a VDSO here. We don't 4882 emulate a vdso, so use a sigreturn system call. */ 4883 env->lr = (target_ulong) h2g(frame->mctx.tramp); 4884 4885 /* Turn off all fp exceptions. */ 4886 env->fpscr = 0; 4887 4888 /* Create a stack frame for the caller of the handler. */ 4889 newsp = frame_addr - SIGNAL_FRAMESIZE; 4890 err |= put_user(env->gpr[1], newsp, target_ulong); 4891 4892 if (err) 4893 goto sigsegv; 4894 4895 /* Set up registers for signal handler. */ 4896 env->gpr[1] = newsp; 4897 env->gpr[3] = sig; 4898 env->gpr[4] = frame_addr + offsetof(struct target_sigframe, sctx); 4899 4900 env->nip = (target_ulong) ka->_sa_handler; 4901 4902 /* Signal handlers are entered in big-endian mode. */ 4903 env->msr &= ~(1ull << MSR_LE); 4904 4905 unlock_user_struct(frame, frame_addr, 1); 4906 return; 4907 4908 sigsegv: 4909 unlock_user_struct(frame, frame_addr, 1); 4910 force_sigsegv(sig); 4911 } 4912 #endif /* !defined(TARGET_PPC64) */ 4913 4914 static void setup_rt_frame(int sig, struct target_sigaction *ka, 4915 target_siginfo_t *info, 4916 target_sigset_t *set, CPUPPCState *env) 4917 { 4918 struct target_rt_sigframe *rt_sf; 4919 uint32_t *trampptr = 0; 4920 struct target_mcontext *mctx = 0; 4921 target_ulong rt_sf_addr, newsp = 0; 4922 int i, err = 0; 4923 #if defined(TARGET_PPC64) 4924 struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; 4925 #endif 4926 4927 rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf)); 4928 if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1)) 4929 goto sigsegv; 4930 4931 tswap_siginfo(&rt_sf->info, info); 4932 4933 __put_user(0, &rt_sf->uc.tuc_flags); 4934 __put_user(0, &rt_sf->uc.tuc_link); 4935 __put_user((target_ulong)target_sigaltstack_used.ss_sp, 4936 &rt_sf->uc.tuc_stack.ss_sp); 4937 __put_user(sas_ss_flags(env->gpr[1]), 4938 &rt_sf->uc.tuc_stack.ss_flags); 4939 __put_user(target_sigaltstack_used.ss_size, 4940 &rt_sf->uc.tuc_stack.ss_size); 4941 #if !defined(TARGET_PPC64) 4942 __put_user(h2g (&rt_sf->uc.tuc_mcontext), 4943 &rt_sf->uc.tuc_regs); 4944 #endif 4945 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 4946 __put_user(set->sig[i], &rt_sf->uc.tuc_sigmask.sig[i]); 4947 } 4948 4949 #if defined(TARGET_PPC64) 4950 mctx = &rt_sf->uc.tuc_sigcontext.mcontext; 4951 trampptr = &rt_sf->trampoline[0]; 4952 #else 4953 mctx = &rt_sf->uc.tuc_mcontext; 4954 trampptr = (uint32_t *)&rt_sf->uc.tuc_mcontext.tramp; 4955 #endif 4956 4957 save_user_regs(env, mctx); 4958 encode_trampoline(TARGET_NR_rt_sigreturn, trampptr); 4959 4960 /* The kernel checks for the presence of a VDSO here. We don't 4961 emulate a vdso, so use a sigreturn system call. */ 4962 env->lr = (target_ulong) h2g(trampptr); 4963 4964 /* Turn off all fp exceptions. */ 4965 env->fpscr = 0; 4966 4967 /* Create a stack frame for the caller of the handler. */ 4968 newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16); 4969 err |= put_user(env->gpr[1], newsp, target_ulong); 4970 4971 if (err) 4972 goto sigsegv; 4973 4974 /* Set up registers for signal handler. */ 4975 env->gpr[1] = newsp; 4976 env->gpr[3] = (target_ulong) sig; 4977 env->gpr[4] = (target_ulong) h2g(&rt_sf->info); 4978 env->gpr[5] = (target_ulong) h2g(&rt_sf->uc); 4979 env->gpr[6] = (target_ulong) h2g(rt_sf); 4980 4981 #if defined(TARGET_PPC64) 4982 if (get_ppc64_abi(image) < 2) { 4983 /* ELFv1 PPC64 function pointers are pointers to OPD entries. */ 4984 struct target_func_ptr *handler = 4985 (struct target_func_ptr *)g2h(ka->_sa_handler); 4986 env->nip = tswapl(handler->entry); 4987 env->gpr[2] = tswapl(handler->toc); 4988 } else { 4989 /* ELFv2 PPC64 function pointers are entry points, but R12 4990 * must also be set */ 4991 env->nip = tswapl((target_ulong) ka->_sa_handler); 4992 env->gpr[12] = env->nip; 4993 } 4994 #else 4995 env->nip = (target_ulong) ka->_sa_handler; 4996 #endif 4997 4998 /* Signal handlers are entered in big-endian mode. */ 4999 env->msr &= ~(1ull << MSR_LE); 5000 5001 unlock_user_struct(rt_sf, rt_sf_addr, 1); 5002 return; 5003 5004 sigsegv: 5005 unlock_user_struct(rt_sf, rt_sf_addr, 1); 5006 force_sigsegv(sig); 5007 5008 } 5009 5010 #if !defined(TARGET_PPC64) 5011 long do_sigreturn(CPUPPCState *env) 5012 { 5013 struct target_sigcontext *sc = NULL; 5014 struct target_mcontext *sr = NULL; 5015 target_ulong sr_addr = 0, sc_addr; 5016 sigset_t blocked; 5017 target_sigset_t set; 5018 5019 sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE; 5020 if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) 5021 goto sigsegv; 5022 5023 #if defined(TARGET_PPC64) 5024 set.sig[0] = sc->oldmask + ((uint64_t)(sc->_unused[3]) << 32); 5025 #else 5026 __get_user(set.sig[0], &sc->oldmask); 5027 __get_user(set.sig[1], &sc->_unused[3]); 5028 #endif 5029 target_to_host_sigset_internal(&blocked, &set); 5030 set_sigmask(&blocked); 5031 5032 __get_user(sr_addr, &sc->regs); 5033 if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1)) 5034 goto sigsegv; 5035 restore_user_regs(env, sr, 1); 5036 5037 unlock_user_struct(sr, sr_addr, 1); 5038 unlock_user_struct(sc, sc_addr, 1); 5039 return -TARGET_QEMU_ESIGRETURN; 5040 5041 sigsegv: 5042 unlock_user_struct(sr, sr_addr, 1); 5043 unlock_user_struct(sc, sc_addr, 1); 5044 force_sig(TARGET_SIGSEGV); 5045 return -TARGET_QEMU_ESIGRETURN; 5046 } 5047 #endif /* !defined(TARGET_PPC64) */ 5048 5049 /* See arch/powerpc/kernel/signal_32.c. */ 5050 static int do_setcontext(struct target_ucontext *ucp, CPUPPCState *env, int sig) 5051 { 5052 struct target_mcontext *mcp; 5053 target_ulong mcp_addr; 5054 sigset_t blocked; 5055 target_sigset_t set; 5056 5057 if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, tuc_sigmask), 5058 sizeof (set))) 5059 return 1; 5060 5061 #if defined(TARGET_PPC64) 5062 mcp_addr = h2g(ucp) + 5063 offsetof(struct target_ucontext, tuc_sigcontext.mcontext); 5064 #else 5065 __get_user(mcp_addr, &ucp->tuc_regs); 5066 #endif 5067 5068 if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1)) 5069 return 1; 5070 5071 target_to_host_sigset_internal(&blocked, &set); 5072 set_sigmask(&blocked); 5073 restore_user_regs(env, mcp, sig); 5074 5075 unlock_user_struct(mcp, mcp_addr, 1); 5076 return 0; 5077 } 5078 5079 long do_rt_sigreturn(CPUPPCState *env) 5080 { 5081 struct target_rt_sigframe *rt_sf = NULL; 5082 target_ulong rt_sf_addr; 5083 5084 rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16; 5085 if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1)) 5086 goto sigsegv; 5087 5088 if (do_setcontext(&rt_sf->uc, env, 1)) 5089 goto sigsegv; 5090 5091 do_sigaltstack(rt_sf_addr 5092 + offsetof(struct target_rt_sigframe, uc.tuc_stack), 5093 0, env->gpr[1]); 5094 5095 unlock_user_struct(rt_sf, rt_sf_addr, 1); 5096 return -TARGET_QEMU_ESIGRETURN; 5097 5098 sigsegv: 5099 unlock_user_struct(rt_sf, rt_sf_addr, 1); 5100 force_sig(TARGET_SIGSEGV); 5101 return -TARGET_QEMU_ESIGRETURN; 5102 } 5103 5104 #elif defined(TARGET_M68K) 5105 5106 struct target_sigcontext { 5107 abi_ulong sc_mask; 5108 abi_ulong sc_usp; 5109 abi_ulong sc_d0; 5110 abi_ulong sc_d1; 5111 abi_ulong sc_a0; 5112 abi_ulong sc_a1; 5113 unsigned short sc_sr; 5114 abi_ulong sc_pc; 5115 }; 5116 5117 struct target_sigframe 5118 { 5119 abi_ulong pretcode; 5120 int sig; 5121 int code; 5122 abi_ulong psc; 5123 char retcode[8]; 5124 abi_ulong extramask[TARGET_NSIG_WORDS-1]; 5125 struct target_sigcontext sc; 5126 }; 5127 5128 typedef int target_greg_t; 5129 #define TARGET_NGREG 18 5130 typedef target_greg_t target_gregset_t[TARGET_NGREG]; 5131 5132 typedef struct target_fpregset { 5133 int f_fpcntl[3]; 5134 int f_fpregs[8*3]; 5135 } target_fpregset_t; 5136 5137 struct target_mcontext { 5138 int version; 5139 target_gregset_t gregs; 5140 target_fpregset_t fpregs; 5141 }; 5142 5143 #define TARGET_MCONTEXT_VERSION 2 5144 5145 struct target_ucontext { 5146 abi_ulong tuc_flags; 5147 abi_ulong tuc_link; 5148 target_stack_t tuc_stack; 5149 struct target_mcontext tuc_mcontext; 5150 abi_long tuc_filler[80]; 5151 target_sigset_t tuc_sigmask; 5152 }; 5153 5154 struct target_rt_sigframe 5155 { 5156 abi_ulong pretcode; 5157 int sig; 5158 abi_ulong pinfo; 5159 abi_ulong puc; 5160 char retcode[8]; 5161 struct target_siginfo info; 5162 struct target_ucontext uc; 5163 }; 5164 5165 static void setup_sigcontext(struct target_sigcontext *sc, CPUM68KState *env, 5166 abi_ulong mask) 5167 { 5168 __put_user(mask, &sc->sc_mask); 5169 __put_user(env->aregs[7], &sc->sc_usp); 5170 __put_user(env->dregs[0], &sc->sc_d0); 5171 __put_user(env->dregs[1], &sc->sc_d1); 5172 __put_user(env->aregs[0], &sc->sc_a0); 5173 __put_user(env->aregs[1], &sc->sc_a1); 5174 __put_user(env->sr, &sc->sc_sr); 5175 __put_user(env->pc, &sc->sc_pc); 5176 } 5177 5178 static void 5179 restore_sigcontext(CPUM68KState *env, struct target_sigcontext *sc) 5180 { 5181 int temp; 5182 5183 __get_user(env->aregs[7], &sc->sc_usp); 5184 __get_user(env->dregs[0], &sc->sc_d0); 5185 __get_user(env->dregs[1], &sc->sc_d1); 5186 __get_user(env->aregs[0], &sc->sc_a0); 5187 __get_user(env->aregs[1], &sc->sc_a1); 5188 __get_user(env->pc, &sc->sc_pc); 5189 __get_user(temp, &sc->sc_sr); 5190 env->sr = (env->sr & 0xff00) | (temp & 0xff); 5191 } 5192 5193 /* 5194 * Determine which stack to use.. 5195 */ 5196 static inline abi_ulong 5197 get_sigframe(struct target_sigaction *ka, CPUM68KState *regs, 5198 size_t frame_size) 5199 { 5200 unsigned long sp; 5201 5202 sp = regs->aregs[7]; 5203 5204 /* This is the X/Open sanctioned signal stack switching. */ 5205 if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { 5206 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 5207 } 5208 5209 return ((sp - frame_size) & -8UL); 5210 } 5211 5212 static void setup_frame(int sig, struct target_sigaction *ka, 5213 target_sigset_t *set, CPUM68KState *env) 5214 { 5215 struct target_sigframe *frame; 5216 abi_ulong frame_addr; 5217 abi_ulong retcode_addr; 5218 abi_ulong sc_addr; 5219 int i; 5220 5221 frame_addr = get_sigframe(ka, env, sizeof *frame); 5222 trace_user_setup_frame(env, frame_addr); 5223 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 5224 goto give_sigsegv; 5225 } 5226 5227 __put_user(sig, &frame->sig); 5228 5229 sc_addr = frame_addr + offsetof(struct target_sigframe, sc); 5230 __put_user(sc_addr, &frame->psc); 5231 5232 setup_sigcontext(&frame->sc, env, set->sig[0]); 5233 5234 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 5235 __put_user(set->sig[i], &frame->extramask[i - 1]); 5236 } 5237 5238 /* Set up to return from userspace. */ 5239 5240 retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); 5241 __put_user(retcode_addr, &frame->pretcode); 5242 5243 /* moveq #,d0; trap #0 */ 5244 5245 __put_user(0x70004e40 + (TARGET_NR_sigreturn << 16), 5246 (uint32_t *)(frame->retcode)); 5247 5248 /* Set up to return from userspace */ 5249 5250 env->aregs[7] = frame_addr; 5251 env->pc = ka->_sa_handler; 5252 5253 unlock_user_struct(frame, frame_addr, 1); 5254 return; 5255 5256 give_sigsegv: 5257 force_sigsegv(sig); 5258 } 5259 5260 static inline int target_rt_setup_ucontext(struct target_ucontext *uc, 5261 CPUM68KState *env) 5262 { 5263 target_greg_t *gregs = uc->tuc_mcontext.gregs; 5264 5265 __put_user(TARGET_MCONTEXT_VERSION, &uc->tuc_mcontext.version); 5266 __put_user(env->dregs[0], &gregs[0]); 5267 __put_user(env->dregs[1], &gregs[1]); 5268 __put_user(env->dregs[2], &gregs[2]); 5269 __put_user(env->dregs[3], &gregs[3]); 5270 __put_user(env->dregs[4], &gregs[4]); 5271 __put_user(env->dregs[5], &gregs[5]); 5272 __put_user(env->dregs[6], &gregs[6]); 5273 __put_user(env->dregs[7], &gregs[7]); 5274 __put_user(env->aregs[0], &gregs[8]); 5275 __put_user(env->aregs[1], &gregs[9]); 5276 __put_user(env->aregs[2], &gregs[10]); 5277 __put_user(env->aregs[3], &gregs[11]); 5278 __put_user(env->aregs[4], &gregs[12]); 5279 __put_user(env->aregs[5], &gregs[13]); 5280 __put_user(env->aregs[6], &gregs[14]); 5281 __put_user(env->aregs[7], &gregs[15]); 5282 __put_user(env->pc, &gregs[16]); 5283 __put_user(env->sr, &gregs[17]); 5284 5285 return 0; 5286 } 5287 5288 static inline int target_rt_restore_ucontext(CPUM68KState *env, 5289 struct target_ucontext *uc) 5290 { 5291 int temp; 5292 target_greg_t *gregs = uc->tuc_mcontext.gregs; 5293 5294 __get_user(temp, &uc->tuc_mcontext.version); 5295 if (temp != TARGET_MCONTEXT_VERSION) 5296 goto badframe; 5297 5298 /* restore passed registers */ 5299 __get_user(env->dregs[0], &gregs[0]); 5300 __get_user(env->dregs[1], &gregs[1]); 5301 __get_user(env->dregs[2], &gregs[2]); 5302 __get_user(env->dregs[3], &gregs[3]); 5303 __get_user(env->dregs[4], &gregs[4]); 5304 __get_user(env->dregs[5], &gregs[5]); 5305 __get_user(env->dregs[6], &gregs[6]); 5306 __get_user(env->dregs[7], &gregs[7]); 5307 __get_user(env->aregs[0], &gregs[8]); 5308 __get_user(env->aregs[1], &gregs[9]); 5309 __get_user(env->aregs[2], &gregs[10]); 5310 __get_user(env->aregs[3], &gregs[11]); 5311 __get_user(env->aregs[4], &gregs[12]); 5312 __get_user(env->aregs[5], &gregs[13]); 5313 __get_user(env->aregs[6], &gregs[14]); 5314 __get_user(env->aregs[7], &gregs[15]); 5315 __get_user(env->pc, &gregs[16]); 5316 __get_user(temp, &gregs[17]); 5317 env->sr = (env->sr & 0xff00) | (temp & 0xff); 5318 5319 return 0; 5320 5321 badframe: 5322 return 1; 5323 } 5324 5325 static void setup_rt_frame(int sig, struct target_sigaction *ka, 5326 target_siginfo_t *info, 5327 target_sigset_t *set, CPUM68KState *env) 5328 { 5329 struct target_rt_sigframe *frame; 5330 abi_ulong frame_addr; 5331 abi_ulong retcode_addr; 5332 abi_ulong info_addr; 5333 abi_ulong uc_addr; 5334 int err = 0; 5335 int i; 5336 5337 frame_addr = get_sigframe(ka, env, sizeof *frame); 5338 trace_user_setup_rt_frame(env, frame_addr); 5339 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 5340 goto give_sigsegv; 5341 } 5342 5343 __put_user(sig, &frame->sig); 5344 5345 info_addr = frame_addr + offsetof(struct target_rt_sigframe, info); 5346 __put_user(info_addr, &frame->pinfo); 5347 5348 uc_addr = frame_addr + offsetof(struct target_rt_sigframe, uc); 5349 __put_user(uc_addr, &frame->puc); 5350 5351 tswap_siginfo(&frame->info, info); 5352 5353 /* Create the ucontext */ 5354 5355 __put_user(0, &frame->uc.tuc_flags); 5356 __put_user(0, &frame->uc.tuc_link); 5357 __put_user(target_sigaltstack_used.ss_sp, 5358 &frame->uc.tuc_stack.ss_sp); 5359 __put_user(sas_ss_flags(env->aregs[7]), 5360 &frame->uc.tuc_stack.ss_flags); 5361 __put_user(target_sigaltstack_used.ss_size, 5362 &frame->uc.tuc_stack.ss_size); 5363 err |= target_rt_setup_ucontext(&frame->uc, env); 5364 5365 if (err) 5366 goto give_sigsegv; 5367 5368 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 5369 __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); 5370 } 5371 5372 /* Set up to return from userspace. */ 5373 5374 retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); 5375 __put_user(retcode_addr, &frame->pretcode); 5376 5377 /* moveq #,d0; notb d0; trap #0 */ 5378 5379 __put_user(0x70004600 + ((TARGET_NR_rt_sigreturn ^ 0xff) << 16), 5380 (uint32_t *)(frame->retcode + 0)); 5381 __put_user(0x4e40, (uint16_t *)(frame->retcode + 4)); 5382 5383 if (err) 5384 goto give_sigsegv; 5385 5386 /* Set up to return from userspace */ 5387 5388 env->aregs[7] = frame_addr; 5389 env->pc = ka->_sa_handler; 5390 5391 unlock_user_struct(frame, frame_addr, 1); 5392 return; 5393 5394 give_sigsegv: 5395 unlock_user_struct(frame, frame_addr, 1); 5396 force_sigsegv(sig); 5397 } 5398 5399 long do_sigreturn(CPUM68KState *env) 5400 { 5401 struct target_sigframe *frame; 5402 abi_ulong frame_addr = env->aregs[7] - 4; 5403 target_sigset_t target_set; 5404 sigset_t set; 5405 int i; 5406 5407 trace_user_do_sigreturn(env, frame_addr); 5408 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) 5409 goto badframe; 5410 5411 /* set blocked signals */ 5412 5413 __get_user(target_set.sig[0], &frame->sc.sc_mask); 5414 5415 for(i = 1; i < TARGET_NSIG_WORDS; i++) { 5416 __get_user(target_set.sig[i], &frame->extramask[i - 1]); 5417 } 5418 5419 target_to_host_sigset_internal(&set, &target_set); 5420 set_sigmask(&set); 5421 5422 /* restore registers */ 5423 5424 restore_sigcontext(env, &frame->sc); 5425 5426 unlock_user_struct(frame, frame_addr, 0); 5427 return -TARGET_QEMU_ESIGRETURN; 5428 5429 badframe: 5430 force_sig(TARGET_SIGSEGV); 5431 return -TARGET_QEMU_ESIGRETURN; 5432 } 5433 5434 long do_rt_sigreturn(CPUM68KState *env) 5435 { 5436 struct target_rt_sigframe *frame; 5437 abi_ulong frame_addr = env->aregs[7] - 4; 5438 target_sigset_t target_set; 5439 sigset_t set; 5440 5441 trace_user_do_rt_sigreturn(env, frame_addr); 5442 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) 5443 goto badframe; 5444 5445 target_to_host_sigset_internal(&set, &target_set); 5446 set_sigmask(&set); 5447 5448 /* restore registers */ 5449 5450 if (target_rt_restore_ucontext(env, &frame->uc)) 5451 goto badframe; 5452 5453 if (do_sigaltstack(frame_addr + 5454 offsetof(struct target_rt_sigframe, uc.tuc_stack), 5455 0, get_sp_from_cpustate(env)) == -EFAULT) 5456 goto badframe; 5457 5458 unlock_user_struct(frame, frame_addr, 0); 5459 return -TARGET_QEMU_ESIGRETURN; 5460 5461 badframe: 5462 unlock_user_struct(frame, frame_addr, 0); 5463 force_sig(TARGET_SIGSEGV); 5464 return -TARGET_QEMU_ESIGRETURN; 5465 } 5466 5467 #elif defined(TARGET_ALPHA) 5468 5469 struct target_sigcontext { 5470 abi_long sc_onstack; 5471 abi_long sc_mask; 5472 abi_long sc_pc; 5473 abi_long sc_ps; 5474 abi_long sc_regs[32]; 5475 abi_long sc_ownedfp; 5476 abi_long sc_fpregs[32]; 5477 abi_ulong sc_fpcr; 5478 abi_ulong sc_fp_control; 5479 abi_ulong sc_reserved1; 5480 abi_ulong sc_reserved2; 5481 abi_ulong sc_ssize; 5482 abi_ulong sc_sbase; 5483 abi_ulong sc_traparg_a0; 5484 abi_ulong sc_traparg_a1; 5485 abi_ulong sc_traparg_a2; 5486 abi_ulong sc_fp_trap_pc; 5487 abi_ulong sc_fp_trigger_sum; 5488 abi_ulong sc_fp_trigger_inst; 5489 }; 5490 5491 struct target_ucontext { 5492 abi_ulong tuc_flags; 5493 abi_ulong tuc_link; 5494 abi_ulong tuc_osf_sigmask; 5495 target_stack_t tuc_stack; 5496 struct target_sigcontext tuc_mcontext; 5497 target_sigset_t tuc_sigmask; 5498 }; 5499 5500 struct target_sigframe { 5501 struct target_sigcontext sc; 5502 unsigned int retcode[3]; 5503 }; 5504 5505 struct target_rt_sigframe { 5506 target_siginfo_t info; 5507 struct target_ucontext uc; 5508 unsigned int retcode[3]; 5509 }; 5510 5511 #define INSN_MOV_R30_R16 0x47fe0410 5512 #define INSN_LDI_R0 0x201f0000 5513 #define INSN_CALLSYS 0x00000083 5514 5515 static void setup_sigcontext(struct target_sigcontext *sc, CPUAlphaState *env, 5516 abi_ulong frame_addr, target_sigset_t *set) 5517 { 5518 int i; 5519 5520 __put_user(on_sig_stack(frame_addr), &sc->sc_onstack); 5521 __put_user(set->sig[0], &sc->sc_mask); 5522 __put_user(env->pc, &sc->sc_pc); 5523 __put_user(8, &sc->sc_ps); 5524 5525 for (i = 0; i < 31; ++i) { 5526 __put_user(env->ir[i], &sc->sc_regs[i]); 5527 } 5528 __put_user(0, &sc->sc_regs[31]); 5529 5530 for (i = 0; i < 31; ++i) { 5531 __put_user(env->fir[i], &sc->sc_fpregs[i]); 5532 } 5533 __put_user(0, &sc->sc_fpregs[31]); 5534 __put_user(cpu_alpha_load_fpcr(env), &sc->sc_fpcr); 5535 5536 __put_user(0, &sc->sc_traparg_a0); /* FIXME */ 5537 __put_user(0, &sc->sc_traparg_a1); /* FIXME */ 5538 __put_user(0, &sc->sc_traparg_a2); /* FIXME */ 5539 } 5540 5541 static void restore_sigcontext(CPUAlphaState *env, 5542 struct target_sigcontext *sc) 5543 { 5544 uint64_t fpcr; 5545 int i; 5546 5547 __get_user(env->pc, &sc->sc_pc); 5548 5549 for (i = 0; i < 31; ++i) { 5550 __get_user(env->ir[i], &sc->sc_regs[i]); 5551 } 5552 for (i = 0; i < 31; ++i) { 5553 __get_user(env->fir[i], &sc->sc_fpregs[i]); 5554 } 5555 5556 __get_user(fpcr, &sc->sc_fpcr); 5557 cpu_alpha_store_fpcr(env, fpcr); 5558 } 5559 5560 static inline abi_ulong get_sigframe(struct target_sigaction *sa, 5561 CPUAlphaState *env, 5562 unsigned long framesize) 5563 { 5564 abi_ulong sp = env->ir[IR_SP]; 5565 5566 /* This is the X/Open sanctioned signal stack switching. */ 5567 if ((sa->sa_flags & TARGET_SA_ONSTACK) != 0 && !sas_ss_flags(sp)) { 5568 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 5569 } 5570 return (sp - framesize) & -32; 5571 } 5572 5573 static void setup_frame(int sig, struct target_sigaction *ka, 5574 target_sigset_t *set, CPUAlphaState *env) 5575 { 5576 abi_ulong frame_addr, r26; 5577 struct target_sigframe *frame; 5578 int err = 0; 5579 5580 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 5581 trace_user_setup_frame(env, frame_addr); 5582 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 5583 goto give_sigsegv; 5584 } 5585 5586 setup_sigcontext(&frame->sc, env, frame_addr, set); 5587 5588 if (ka->sa_restorer) { 5589 r26 = ka->sa_restorer; 5590 } else { 5591 __put_user(INSN_MOV_R30_R16, &frame->retcode[0]); 5592 __put_user(INSN_LDI_R0 + TARGET_NR_sigreturn, 5593 &frame->retcode[1]); 5594 __put_user(INSN_CALLSYS, &frame->retcode[2]); 5595 /* imb() */ 5596 r26 = frame_addr; 5597 } 5598 5599 unlock_user_struct(frame, frame_addr, 1); 5600 5601 if (err) { 5602 give_sigsegv: 5603 force_sigsegv(sig); 5604 return; 5605 } 5606 5607 env->ir[IR_RA] = r26; 5608 env->ir[IR_PV] = env->pc = ka->_sa_handler; 5609 env->ir[IR_A0] = sig; 5610 env->ir[IR_A1] = 0; 5611 env->ir[IR_A2] = frame_addr + offsetof(struct target_sigframe, sc); 5612 env->ir[IR_SP] = frame_addr; 5613 } 5614 5615 static void setup_rt_frame(int sig, struct target_sigaction *ka, 5616 target_siginfo_t *info, 5617 target_sigset_t *set, CPUAlphaState *env) 5618 { 5619 abi_ulong frame_addr, r26; 5620 struct target_rt_sigframe *frame; 5621 int i, err = 0; 5622 5623 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 5624 trace_user_setup_rt_frame(env, frame_addr); 5625 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 5626 goto give_sigsegv; 5627 } 5628 5629 tswap_siginfo(&frame->info, info); 5630 5631 __put_user(0, &frame->uc.tuc_flags); 5632 __put_user(0, &frame->uc.tuc_link); 5633 __put_user(set->sig[0], &frame->uc.tuc_osf_sigmask); 5634 __put_user(target_sigaltstack_used.ss_sp, 5635 &frame->uc.tuc_stack.ss_sp); 5636 __put_user(sas_ss_flags(env->ir[IR_SP]), 5637 &frame->uc.tuc_stack.ss_flags); 5638 __put_user(target_sigaltstack_used.ss_size, 5639 &frame->uc.tuc_stack.ss_size); 5640 setup_sigcontext(&frame->uc.tuc_mcontext, env, frame_addr, set); 5641 for (i = 0; i < TARGET_NSIG_WORDS; ++i) { 5642 __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); 5643 } 5644 5645 if (ka->sa_restorer) { 5646 r26 = ka->sa_restorer; 5647 } else { 5648 __put_user(INSN_MOV_R30_R16, &frame->retcode[0]); 5649 __put_user(INSN_LDI_R0 + TARGET_NR_rt_sigreturn, 5650 &frame->retcode[1]); 5651 __put_user(INSN_CALLSYS, &frame->retcode[2]); 5652 /* imb(); */ 5653 r26 = frame_addr; 5654 } 5655 5656 if (err) { 5657 give_sigsegv: 5658 force_sigsegv(sig); 5659 return; 5660 } 5661 5662 env->ir[IR_RA] = r26; 5663 env->ir[IR_PV] = env->pc = ka->_sa_handler; 5664 env->ir[IR_A0] = sig; 5665 env->ir[IR_A1] = frame_addr + offsetof(struct target_rt_sigframe, info); 5666 env->ir[IR_A2] = frame_addr + offsetof(struct target_rt_sigframe, uc); 5667 env->ir[IR_SP] = frame_addr; 5668 } 5669 5670 long do_sigreturn(CPUAlphaState *env) 5671 { 5672 struct target_sigcontext *sc; 5673 abi_ulong sc_addr = env->ir[IR_A0]; 5674 target_sigset_t target_set; 5675 sigset_t set; 5676 5677 if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) { 5678 goto badframe; 5679 } 5680 5681 target_sigemptyset(&target_set); 5682 __get_user(target_set.sig[0], &sc->sc_mask); 5683 5684 target_to_host_sigset_internal(&set, &target_set); 5685 set_sigmask(&set); 5686 5687 restore_sigcontext(env, sc); 5688 unlock_user_struct(sc, sc_addr, 0); 5689 return -TARGET_QEMU_ESIGRETURN; 5690 5691 badframe: 5692 force_sig(TARGET_SIGSEGV); 5693 return -TARGET_QEMU_ESIGRETURN; 5694 } 5695 5696 long do_rt_sigreturn(CPUAlphaState *env) 5697 { 5698 abi_ulong frame_addr = env->ir[IR_A0]; 5699 struct target_rt_sigframe *frame; 5700 sigset_t set; 5701 5702 trace_user_do_rt_sigreturn(env, frame_addr); 5703 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 5704 goto badframe; 5705 } 5706 target_to_host_sigset(&set, &frame->uc.tuc_sigmask); 5707 set_sigmask(&set); 5708 5709 restore_sigcontext(env, &frame->uc.tuc_mcontext); 5710 if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, 5711 uc.tuc_stack), 5712 0, env->ir[IR_SP]) == -EFAULT) { 5713 goto badframe; 5714 } 5715 5716 unlock_user_struct(frame, frame_addr, 0); 5717 return -TARGET_QEMU_ESIGRETURN; 5718 5719 5720 badframe: 5721 unlock_user_struct(frame, frame_addr, 0); 5722 force_sig(TARGET_SIGSEGV); 5723 return -TARGET_QEMU_ESIGRETURN; 5724 } 5725 5726 #elif defined(TARGET_TILEGX) 5727 5728 struct target_sigcontext { 5729 union { 5730 /* General-purpose registers. */ 5731 abi_ulong gregs[56]; 5732 struct { 5733 abi_ulong __gregs[53]; 5734 abi_ulong tp; /* Aliases gregs[TREG_TP]. */ 5735 abi_ulong sp; /* Aliases gregs[TREG_SP]. */ 5736 abi_ulong lr; /* Aliases gregs[TREG_LR]. */ 5737 }; 5738 }; 5739 abi_ulong pc; /* Program counter. */ 5740 abi_ulong ics; /* In Interrupt Critical Section? */ 5741 abi_ulong faultnum; /* Fault number. */ 5742 abi_ulong pad[5]; 5743 }; 5744 5745 struct target_ucontext { 5746 abi_ulong tuc_flags; 5747 abi_ulong tuc_link; 5748 target_stack_t tuc_stack; 5749 struct target_sigcontext tuc_mcontext; 5750 target_sigset_t tuc_sigmask; /* mask last for extensibility */ 5751 }; 5752 5753 struct target_rt_sigframe { 5754 unsigned char save_area[16]; /* caller save area */ 5755 struct target_siginfo info; 5756 struct target_ucontext uc; 5757 abi_ulong retcode[2]; 5758 }; 5759 5760 #define INSN_MOVELI_R10_139 0x00045fe551483000ULL /* { moveli r10, 139 } */ 5761 #define INSN_SWINT1 0x286b180051485000ULL /* { swint1 } */ 5762 5763 5764 static void setup_sigcontext(struct target_sigcontext *sc, 5765 CPUArchState *env, int signo) 5766 { 5767 int i; 5768 5769 for (i = 0; i < TILEGX_R_COUNT; ++i) { 5770 __put_user(env->regs[i], &sc->gregs[i]); 5771 } 5772 5773 __put_user(env->pc, &sc->pc); 5774 __put_user(0, &sc->ics); 5775 __put_user(signo, &sc->faultnum); 5776 } 5777 5778 static void restore_sigcontext(CPUTLGState *env, struct target_sigcontext *sc) 5779 { 5780 int i; 5781 5782 for (i = 0; i < TILEGX_R_COUNT; ++i) { 5783 __get_user(env->regs[i], &sc->gregs[i]); 5784 } 5785 5786 __get_user(env->pc, &sc->pc); 5787 } 5788 5789 static abi_ulong get_sigframe(struct target_sigaction *ka, CPUArchState *env, 5790 size_t frame_size) 5791 { 5792 unsigned long sp = env->regs[TILEGX_R_SP]; 5793 5794 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - frame_size))) { 5795 return -1UL; 5796 } 5797 5798 if ((ka->sa_flags & SA_ONSTACK) && !sas_ss_flags(sp)) { 5799 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; 5800 } 5801 5802 sp -= frame_size; 5803 sp &= -16UL; 5804 return sp; 5805 } 5806 5807 static void setup_rt_frame(int sig, struct target_sigaction *ka, 5808 target_siginfo_t *info, 5809 target_sigset_t *set, CPUArchState *env) 5810 { 5811 abi_ulong frame_addr; 5812 struct target_rt_sigframe *frame; 5813 unsigned long restorer; 5814 5815 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 5816 trace_user_setup_rt_frame(env, frame_addr); 5817 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 5818 goto give_sigsegv; 5819 } 5820 5821 /* Always write at least the signal number for the stack backtracer. */ 5822 if (ka->sa_flags & TARGET_SA_SIGINFO) { 5823 /* At sigreturn time, restore the callee-save registers too. */ 5824 tswap_siginfo(&frame->info, info); 5825 /* regs->flags |= PT_FLAGS_RESTORE_REGS; FIXME: we can skip it? */ 5826 } else { 5827 __put_user(info->si_signo, &frame->info.si_signo); 5828 } 5829 5830 /* Create the ucontext. */ 5831 __put_user(0, &frame->uc.tuc_flags); 5832 __put_user(0, &frame->uc.tuc_link); 5833 __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); 5834 __put_user(sas_ss_flags(env->regs[TILEGX_R_SP]), 5835 &frame->uc.tuc_stack.ss_flags); 5836 __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); 5837 setup_sigcontext(&frame->uc.tuc_mcontext, env, info->si_signo); 5838 5839 if (ka->sa_flags & TARGET_SA_RESTORER) { 5840 restorer = (unsigned long) ka->sa_restorer; 5841 } else { 5842 __put_user(INSN_MOVELI_R10_139, &frame->retcode[0]); 5843 __put_user(INSN_SWINT1, &frame->retcode[1]); 5844 restorer = frame_addr + offsetof(struct target_rt_sigframe, retcode); 5845 } 5846 env->pc = (unsigned long) ka->_sa_handler; 5847 env->regs[TILEGX_R_SP] = (unsigned long) frame; 5848 env->regs[TILEGX_R_LR] = restorer; 5849 env->regs[0] = (unsigned long) sig; 5850 env->regs[1] = (unsigned long) &frame->info; 5851 env->regs[2] = (unsigned long) &frame->uc; 5852 /* regs->flags |= PT_FLAGS_CALLER_SAVES; FIXME: we can skip it? */ 5853 5854 unlock_user_struct(frame, frame_addr, 1); 5855 return; 5856 5857 give_sigsegv: 5858 force_sigsegv(sig); 5859 } 5860 5861 long do_rt_sigreturn(CPUTLGState *env) 5862 { 5863 abi_ulong frame_addr = env->regs[TILEGX_R_SP]; 5864 struct target_rt_sigframe *frame; 5865 sigset_t set; 5866 5867 trace_user_do_rt_sigreturn(env, frame_addr); 5868 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 5869 goto badframe; 5870 } 5871 target_to_host_sigset(&set, &frame->uc.tuc_sigmask); 5872 set_sigmask(&set); 5873 5874 restore_sigcontext(env, &frame->uc.tuc_mcontext); 5875 if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, 5876 uc.tuc_stack), 5877 0, env->regs[TILEGX_R_SP]) == -EFAULT) { 5878 goto badframe; 5879 } 5880 5881 unlock_user_struct(frame, frame_addr, 0); 5882 return -TARGET_QEMU_ESIGRETURN; 5883 5884 5885 badframe: 5886 unlock_user_struct(frame, frame_addr, 0); 5887 force_sig(TARGET_SIGSEGV); 5888 return -TARGET_QEMU_ESIGRETURN; 5889 } 5890 5891 #elif defined(TARGET_HPPA) 5892 5893 struct target_sigcontext { 5894 abi_ulong sc_flags; 5895 abi_ulong sc_gr[32]; 5896 uint64_t sc_fr[32]; 5897 abi_ulong sc_iasq[2]; 5898 abi_ulong sc_iaoq[2]; 5899 abi_ulong sc_sar; 5900 }; 5901 5902 struct target_ucontext { 5903 abi_uint tuc_flags; 5904 abi_ulong tuc_link; 5905 target_stack_t tuc_stack; 5906 abi_uint pad[1]; 5907 struct target_sigcontext tuc_mcontext; 5908 target_sigset_t tuc_sigmask; 5909 }; 5910 5911 struct target_rt_sigframe { 5912 abi_uint tramp[9]; 5913 target_siginfo_t info; 5914 struct target_ucontext uc; 5915 /* hidden location of upper halves of pa2.0 64-bit gregs */ 5916 }; 5917 5918 static void setup_sigcontext(struct target_sigcontext *sc, CPUArchState *env) 5919 { 5920 int flags = 0; 5921 int i; 5922 5923 /* ??? if on_sig_stack, flags |= 1 (PARISC_SC_FLAG_ONSTACK). */ 5924 5925 if (env->iaoq_f < TARGET_PAGE_SIZE) { 5926 /* In the gateway page, executing a syscall. */ 5927 flags |= 2; /* PARISC_SC_FLAG_IN_SYSCALL */ 5928 __put_user(env->gr[31], &sc->sc_iaoq[0]); 5929 __put_user(env->gr[31] + 4, &sc->sc_iaoq[1]); 5930 } else { 5931 __put_user(env->iaoq_f, &sc->sc_iaoq[0]); 5932 __put_user(env->iaoq_b, &sc->sc_iaoq[1]); 5933 } 5934 __put_user(0, &sc->sc_iasq[0]); 5935 __put_user(0, &sc->sc_iasq[1]); 5936 __put_user(flags, &sc->sc_flags); 5937 5938 __put_user(cpu_hppa_get_psw(env), &sc->sc_gr[0]); 5939 for (i = 1; i < 32; ++i) { 5940 __put_user(env->gr[i], &sc->sc_gr[i]); 5941 } 5942 5943 __put_user((uint64_t)env->fr0_shadow << 32, &sc->sc_fr[0]); 5944 for (i = 1; i < 32; ++i) { 5945 __put_user(env->fr[i], &sc->sc_fr[i]); 5946 } 5947 5948 __put_user(env->sar, &sc->sc_sar); 5949 } 5950 5951 static void restore_sigcontext(CPUArchState *env, struct target_sigcontext *sc) 5952 { 5953 target_ulong psw; 5954 int i; 5955 5956 __get_user(psw, &sc->sc_gr[0]); 5957 cpu_hppa_put_psw(env, psw); 5958 5959 for (i = 1; i < 32; ++i) { 5960 __get_user(env->gr[i], &sc->sc_gr[i]); 5961 } 5962 for (i = 0; i < 32; ++i) { 5963 __get_user(env->fr[i], &sc->sc_fr[i]); 5964 } 5965 cpu_hppa_loaded_fr0(env); 5966 5967 __get_user(env->iaoq_f, &sc->sc_iaoq[0]); 5968 __get_user(env->iaoq_b, &sc->sc_iaoq[1]); 5969 __get_user(env->sar, &sc->sc_sar); 5970 } 5971 5972 /* No, this doesn't look right, but it's copied straight from the kernel. */ 5973 #define PARISC_RT_SIGFRAME_SIZE32 \ 5974 ((sizeof(struct target_rt_sigframe) + 48 + 64) & -64) 5975 5976 static void setup_rt_frame(int sig, struct target_sigaction *ka, 5977 target_siginfo_t *info, 5978 target_sigset_t *set, CPUArchState *env) 5979 { 5980 abi_ulong frame_addr, sp, haddr; 5981 struct target_rt_sigframe *frame; 5982 int i; 5983 5984 sp = env->gr[30]; 5985 if (ka->sa_flags & TARGET_SA_ONSTACK) { 5986 if (sas_ss_flags(sp) == 0) { 5987 sp = (target_sigaltstack_used.ss_sp + 0x7f) & ~0x3f; 5988 } 5989 } 5990 frame_addr = QEMU_ALIGN_UP(sp, 64); 5991 sp = frame_addr + PARISC_RT_SIGFRAME_SIZE32; 5992 5993 trace_user_setup_rt_frame(env, frame_addr); 5994 5995 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 5996 goto give_sigsegv; 5997 } 5998 5999 tswap_siginfo(&frame->info, info); 6000 frame->uc.tuc_flags = 0; 6001 frame->uc.tuc_link = 0; 6002 6003 __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); 6004 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), 6005 &frame->uc.tuc_stack.ss_flags); 6006 __put_user(target_sigaltstack_used.ss_size, 6007 &frame->uc.tuc_stack.ss_size); 6008 6009 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 6010 __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); 6011 } 6012 6013 setup_sigcontext(&frame->uc.tuc_mcontext, env); 6014 6015 __put_user(0x34190000, frame->tramp + 0); /* ldi 0,%r25 */ 6016 __put_user(0x3414015a, frame->tramp + 1); /* ldi __NR_rt_sigreturn,%r20 */ 6017 __put_user(0xe4008200, frame->tramp + 2); /* be,l 0x100(%sr2,%r0) */ 6018 __put_user(0x08000240, frame->tramp + 3); /* nop */ 6019 6020 unlock_user_struct(frame, frame_addr, 1); 6021 6022 env->gr[2] = h2g(frame->tramp); 6023 env->gr[30] = sp; 6024 env->gr[26] = sig; 6025 env->gr[25] = h2g(&frame->info); 6026 env->gr[24] = h2g(&frame->uc); 6027 6028 haddr = ka->_sa_handler; 6029 if (haddr & 2) { 6030 /* Function descriptor. */ 6031 target_ulong *fdesc, dest; 6032 6033 haddr &= -4; 6034 if (!lock_user_struct(VERIFY_READ, fdesc, haddr, 1)) { 6035 goto give_sigsegv; 6036 } 6037 __get_user(dest, fdesc); 6038 __get_user(env->gr[19], fdesc + 1); 6039 unlock_user_struct(fdesc, haddr, 1); 6040 haddr = dest; 6041 } 6042 env->iaoq_f = haddr; 6043 env->iaoq_b = haddr + 4;; 6044 return; 6045 6046 give_sigsegv: 6047 force_sigsegv(sig); 6048 } 6049 6050 long do_rt_sigreturn(CPUArchState *env) 6051 { 6052 abi_ulong frame_addr = env->gr[30] - PARISC_RT_SIGFRAME_SIZE32; 6053 struct target_rt_sigframe *frame; 6054 sigset_t set; 6055 6056 trace_user_do_rt_sigreturn(env, frame_addr); 6057 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 6058 goto badframe; 6059 } 6060 target_to_host_sigset(&set, &frame->uc.tuc_sigmask); 6061 set_sigmask(&set); 6062 6063 restore_sigcontext(env, &frame->uc.tuc_mcontext); 6064 unlock_user_struct(frame, frame_addr, 0); 6065 6066 if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, 6067 uc.tuc_stack), 6068 0, env->gr[30]) == -EFAULT) { 6069 goto badframe; 6070 } 6071 6072 unlock_user_struct(frame, frame_addr, 0); 6073 return -TARGET_QEMU_ESIGRETURN; 6074 6075 badframe: 6076 force_sig(TARGET_SIGSEGV); 6077 return -TARGET_QEMU_ESIGRETURN; 6078 } 6079 6080 #else 6081 6082 static void setup_frame(int sig, struct target_sigaction *ka, 6083 target_sigset_t *set, CPUArchState *env) 6084 { 6085 fprintf(stderr, "setup_frame: not implemented\n"); 6086 } 6087 6088 static void setup_rt_frame(int sig, struct target_sigaction *ka, 6089 target_siginfo_t *info, 6090 target_sigset_t *set, CPUArchState *env) 6091 { 6092 fprintf(stderr, "setup_rt_frame: not implemented\n"); 6093 } 6094 6095 long do_sigreturn(CPUArchState *env) 6096 { 6097 fprintf(stderr, "do_sigreturn: not implemented\n"); 6098 return -TARGET_ENOSYS; 6099 } 6100 6101 long do_rt_sigreturn(CPUArchState *env) 6102 { 6103 fprintf(stderr, "do_rt_sigreturn: not implemented\n"); 6104 return -TARGET_ENOSYS; 6105 } 6106 6107 #endif 6108 6109 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 6110 struct emulated_sigtable *k) 6111 { 6112 CPUState *cpu = ENV_GET_CPU(cpu_env); 6113 abi_ulong handler; 6114 sigset_t set; 6115 target_sigset_t target_old_set; 6116 struct target_sigaction *sa; 6117 TaskState *ts = cpu->opaque; 6118 6119 trace_user_handle_signal(cpu_env, sig); 6120 /* dequeue signal */ 6121 k->pending = 0; 6122 6123 sig = gdb_handlesig(cpu, sig); 6124 if (!sig) { 6125 sa = NULL; 6126 handler = TARGET_SIG_IGN; 6127 } else { 6128 sa = &sigact_table[sig - 1]; 6129 handler = sa->_sa_handler; 6130 } 6131 6132 if (do_strace) { 6133 print_taken_signal(sig, &k->info); 6134 } 6135 6136 if (handler == TARGET_SIG_DFL) { 6137 /* default handler : ignore some signal. The other are job control or fatal */ 6138 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 6139 kill(getpid(),SIGSTOP); 6140 } else if (sig != TARGET_SIGCHLD && 6141 sig != TARGET_SIGURG && 6142 sig != TARGET_SIGWINCH && 6143 sig != TARGET_SIGCONT) { 6144 dump_core_and_abort(sig); 6145 } 6146 } else if (handler == TARGET_SIG_IGN) { 6147 /* ignore sig */ 6148 } else if (handler == TARGET_SIG_ERR) { 6149 dump_core_and_abort(sig); 6150 } else { 6151 /* compute the blocked signals during the handler execution */ 6152 sigset_t *blocked_set; 6153 6154 target_to_host_sigset(&set, &sa->sa_mask); 6155 /* SA_NODEFER indicates that the current signal should not be 6156 blocked during the handler */ 6157 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 6158 sigaddset(&set, target_to_host_signal(sig)); 6159 6160 /* save the previous blocked signal state to restore it at the 6161 end of the signal execution (see do_sigreturn) */ 6162 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 6163 6164 /* block signals in the handler */ 6165 blocked_set = ts->in_sigsuspend ? 6166 &ts->sigsuspend_mask : &ts->signal_mask; 6167 sigorset(&ts->signal_mask, blocked_set, &set); 6168 ts->in_sigsuspend = 0; 6169 6170 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 6171 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 6172 { 6173 CPUX86State *env = cpu_env; 6174 if (env->eflags & VM_MASK) 6175 save_v86_state(env); 6176 } 6177 #endif 6178 /* prepare the stack frame of the virtual CPU */ 6179 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) \ 6180 || defined(TARGET_OPENRISC) || defined(TARGET_TILEGX) \ 6181 || defined(TARGET_PPC64) || defined(TARGET_HPPA) 6182 /* These targets do not have traditional signals. */ 6183 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 6184 #else 6185 if (sa->sa_flags & TARGET_SA_SIGINFO) 6186 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 6187 else 6188 setup_frame(sig, sa, &target_old_set, cpu_env); 6189 #endif 6190 if (sa->sa_flags & TARGET_SA_RESETHAND) { 6191 sa->_sa_handler = TARGET_SIG_DFL; 6192 } 6193 } 6194 } 6195 6196 void process_pending_signals(CPUArchState *cpu_env) 6197 { 6198 CPUState *cpu = ENV_GET_CPU(cpu_env); 6199 int sig; 6200 TaskState *ts = cpu->opaque; 6201 sigset_t set; 6202 sigset_t *blocked_set; 6203 6204 while (atomic_read(&ts->signal_pending)) { 6205 /* FIXME: This is not threadsafe. */ 6206 sigfillset(&set); 6207 sigprocmask(SIG_SETMASK, &set, 0); 6208 6209 restart_scan: 6210 sig = ts->sync_signal.pending; 6211 if (sig) { 6212 /* Synchronous signals are forced, 6213 * see force_sig_info() and callers in Linux 6214 * Note that not all of our queue_signal() calls in QEMU correspond 6215 * to force_sig_info() calls in Linux (some are send_sig_info()). 6216 * However it seems like a kernel bug to me to allow the process 6217 * to block a synchronous signal since it could then just end up 6218 * looping round and round indefinitely. 6219 */ 6220 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 6221 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 6222 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 6223 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 6224 } 6225 6226 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 6227 } 6228 6229 for (sig = 1; sig <= TARGET_NSIG; sig++) { 6230 blocked_set = ts->in_sigsuspend ? 6231 &ts->sigsuspend_mask : &ts->signal_mask; 6232 6233 if (ts->sigtab[sig - 1].pending && 6234 (!sigismember(blocked_set, 6235 target_to_host_signal_table[sig]))) { 6236 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 6237 /* Restart scan from the beginning, as handle_pending_signal 6238 * might have resulted in a new synchronous signal (eg SIGSEGV). 6239 */ 6240 goto restart_scan; 6241 } 6242 } 6243 6244 /* if no signal is pending, unblock signals and recheck (the act 6245 * of unblocking might cause us to take another host signal which 6246 * will set signal_pending again). 6247 */ 6248 atomic_set(&ts->signal_pending, 0); 6249 ts->in_sigsuspend = 0; 6250 set = ts->signal_mask; 6251 sigdelset(&set, SIGSEGV); 6252 sigdelset(&set, SIGBUS); 6253 sigprocmask(SIG_SETMASK, &set, 0); 6254 } 6255 ts->in_sigsuspend = 0; 6256 } 6257