1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include <sys/ucontext.h> 22 #include <sys/resource.h> 23 24 #include "qemu.h" 25 #include "trace.h" 26 #include "signal-common.h" 27 28 static struct target_sigaction sigact_table[TARGET_NSIG]; 29 30 static void host_signal_handler(int host_signum, siginfo_t *info, 31 void *puc); 32 33 34 /* 35 * System includes define _NSIG as SIGRTMAX + 1, 36 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX 37 * and the first signal is SIGHUP defined as 1 38 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 39 * a process exists without sending it a signal. 40 */ 41 #ifdef __SIGRTMAX 42 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 43 #endif 44 static uint8_t host_to_target_signal_table[_NSIG] = { 45 [SIGHUP] = TARGET_SIGHUP, 46 [SIGINT] = TARGET_SIGINT, 47 [SIGQUIT] = TARGET_SIGQUIT, 48 [SIGILL] = TARGET_SIGILL, 49 [SIGTRAP] = TARGET_SIGTRAP, 50 [SIGABRT] = TARGET_SIGABRT, 51 /* [SIGIOT] = TARGET_SIGIOT,*/ 52 [SIGBUS] = TARGET_SIGBUS, 53 [SIGFPE] = TARGET_SIGFPE, 54 [SIGKILL] = TARGET_SIGKILL, 55 [SIGUSR1] = TARGET_SIGUSR1, 56 [SIGSEGV] = TARGET_SIGSEGV, 57 [SIGUSR2] = TARGET_SIGUSR2, 58 [SIGPIPE] = TARGET_SIGPIPE, 59 [SIGALRM] = TARGET_SIGALRM, 60 [SIGTERM] = TARGET_SIGTERM, 61 #ifdef SIGSTKFLT 62 [SIGSTKFLT] = TARGET_SIGSTKFLT, 63 #endif 64 [SIGCHLD] = TARGET_SIGCHLD, 65 [SIGCONT] = TARGET_SIGCONT, 66 [SIGSTOP] = TARGET_SIGSTOP, 67 [SIGTSTP] = TARGET_SIGTSTP, 68 [SIGTTIN] = TARGET_SIGTTIN, 69 [SIGTTOU] = TARGET_SIGTTOU, 70 [SIGURG] = TARGET_SIGURG, 71 [SIGXCPU] = TARGET_SIGXCPU, 72 [SIGXFSZ] = TARGET_SIGXFSZ, 73 [SIGVTALRM] = TARGET_SIGVTALRM, 74 [SIGPROF] = TARGET_SIGPROF, 75 [SIGWINCH] = TARGET_SIGWINCH, 76 [SIGIO] = TARGET_SIGIO, 77 [SIGPWR] = TARGET_SIGPWR, 78 [SIGSYS] = TARGET_SIGSYS, 79 /* next signals stay the same */ 80 }; 81 82 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 83 84 /* valid sig is between 1 and _NSIG - 1 */ 85 int host_to_target_signal(int sig) 86 { 87 if (sig < 1 || sig >= _NSIG) { 88 return sig; 89 } 90 return host_to_target_signal_table[sig]; 91 } 92 93 /* valid sig is between 1 and TARGET_NSIG */ 94 int target_to_host_signal(int sig) 95 { 96 if (sig < 1 || sig > TARGET_NSIG) { 97 return sig; 98 } 99 return target_to_host_signal_table[sig]; 100 } 101 102 static inline void target_sigaddset(target_sigset_t *set, int signum) 103 { 104 signum--; 105 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 106 set->sig[signum / TARGET_NSIG_BPW] |= mask; 107 } 108 109 static inline int target_sigismember(const target_sigset_t *set, int signum) 110 { 111 signum--; 112 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 113 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 114 } 115 116 void host_to_target_sigset_internal(target_sigset_t *d, 117 const sigset_t *s) 118 { 119 int host_sig, target_sig; 120 target_sigemptyset(d); 121 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 122 target_sig = host_to_target_signal(host_sig); 123 if (target_sig < 1 || target_sig > TARGET_NSIG) { 124 continue; 125 } 126 if (sigismember(s, host_sig)) { 127 target_sigaddset(d, target_sig); 128 } 129 } 130 } 131 132 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 133 { 134 target_sigset_t d1; 135 int i; 136 137 host_to_target_sigset_internal(&d1, s); 138 for(i = 0;i < TARGET_NSIG_WORDS; i++) 139 d->sig[i] = tswapal(d1.sig[i]); 140 } 141 142 void target_to_host_sigset_internal(sigset_t *d, 143 const target_sigset_t *s) 144 { 145 int host_sig, target_sig; 146 sigemptyset(d); 147 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 148 host_sig = target_to_host_signal(target_sig); 149 if (host_sig < 1 || host_sig >= _NSIG) { 150 continue; 151 } 152 if (target_sigismember(s, target_sig)) { 153 sigaddset(d, host_sig); 154 } 155 } 156 } 157 158 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 159 { 160 target_sigset_t s1; 161 int i; 162 163 for(i = 0;i < TARGET_NSIG_WORDS; i++) 164 s1.sig[i] = tswapal(s->sig[i]); 165 target_to_host_sigset_internal(d, &s1); 166 } 167 168 void host_to_target_old_sigset(abi_ulong *old_sigset, 169 const sigset_t *sigset) 170 { 171 target_sigset_t d; 172 host_to_target_sigset(&d, sigset); 173 *old_sigset = d.sig[0]; 174 } 175 176 void target_to_host_old_sigset(sigset_t *sigset, 177 const abi_ulong *old_sigset) 178 { 179 target_sigset_t d; 180 int i; 181 182 d.sig[0] = *old_sigset; 183 for(i = 1;i < TARGET_NSIG_WORDS; i++) 184 d.sig[i] = 0; 185 target_to_host_sigset(sigset, &d); 186 } 187 188 int block_signals(void) 189 { 190 TaskState *ts = (TaskState *)thread_cpu->opaque; 191 sigset_t set; 192 193 /* It's OK to block everything including SIGSEGV, because we won't 194 * run any further guest code before unblocking signals in 195 * process_pending_signals(). 196 */ 197 sigfillset(&set); 198 sigprocmask(SIG_SETMASK, &set, 0); 199 200 return qatomic_xchg(&ts->signal_pending, 1); 201 } 202 203 /* Wrapper for sigprocmask function 204 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 205 * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if 206 * a signal was already pending and the syscall must be restarted, or 207 * 0 on success. 208 * If set is NULL, this is guaranteed not to fail. 209 */ 210 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 211 { 212 TaskState *ts = (TaskState *)thread_cpu->opaque; 213 214 if (oldset) { 215 *oldset = ts->signal_mask; 216 } 217 218 if (set) { 219 int i; 220 221 if (block_signals()) { 222 return -TARGET_ERESTARTSYS; 223 } 224 225 switch (how) { 226 case SIG_BLOCK: 227 sigorset(&ts->signal_mask, &ts->signal_mask, set); 228 break; 229 case SIG_UNBLOCK: 230 for (i = 1; i <= NSIG; ++i) { 231 if (sigismember(set, i)) { 232 sigdelset(&ts->signal_mask, i); 233 } 234 } 235 break; 236 case SIG_SETMASK: 237 ts->signal_mask = *set; 238 break; 239 default: 240 g_assert_not_reached(); 241 } 242 243 /* Silently ignore attempts to change blocking status of KILL or STOP */ 244 sigdelset(&ts->signal_mask, SIGKILL); 245 sigdelset(&ts->signal_mask, SIGSTOP); 246 } 247 return 0; 248 } 249 250 #if !defined(TARGET_NIOS2) 251 /* Just set the guest's signal mask to the specified value; the 252 * caller is assumed to have called block_signals() already. 253 */ 254 void set_sigmask(const sigset_t *set) 255 { 256 TaskState *ts = (TaskState *)thread_cpu->opaque; 257 258 ts->signal_mask = *set; 259 } 260 #endif 261 262 /* sigaltstack management */ 263 264 int on_sig_stack(unsigned long sp) 265 { 266 TaskState *ts = (TaskState *)thread_cpu->opaque; 267 268 return (sp - ts->sigaltstack_used.ss_sp 269 < ts->sigaltstack_used.ss_size); 270 } 271 272 int sas_ss_flags(unsigned long sp) 273 { 274 TaskState *ts = (TaskState *)thread_cpu->opaque; 275 276 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 277 : on_sig_stack(sp) ? SS_ONSTACK : 0); 278 } 279 280 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 281 { 282 /* 283 * This is the X/Open sanctioned signal stack switching. 284 */ 285 TaskState *ts = (TaskState *)thread_cpu->opaque; 286 287 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 288 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 289 } 290 return sp; 291 } 292 293 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 294 { 295 TaskState *ts = (TaskState *)thread_cpu->opaque; 296 297 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 298 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 299 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 300 } 301 302 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 303 { 304 TaskState *ts = (TaskState *)thread_cpu->opaque; 305 size_t minstacksize = TARGET_MINSIGSTKSZ; 306 target_stack_t ss; 307 308 #if defined(TARGET_PPC64) 309 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 310 struct image_info *image = ts->info; 311 if (get_ppc64_abi(image) > 1) { 312 minstacksize = 4096; 313 } 314 #endif 315 316 __get_user(ss.ss_sp, &uss->ss_sp); 317 __get_user(ss.ss_size, &uss->ss_size); 318 __get_user(ss.ss_flags, &uss->ss_flags); 319 320 if (on_sig_stack(get_sp_from_cpustate(env))) { 321 return -TARGET_EPERM; 322 } 323 324 switch (ss.ss_flags) { 325 default: 326 return -TARGET_EINVAL; 327 328 case TARGET_SS_DISABLE: 329 ss.ss_size = 0; 330 ss.ss_sp = 0; 331 break; 332 333 case TARGET_SS_ONSTACK: 334 case 0: 335 if (ss.ss_size < minstacksize) { 336 return -TARGET_ENOMEM; 337 } 338 break; 339 } 340 341 ts->sigaltstack_used.ss_sp = ss.ss_sp; 342 ts->sigaltstack_used.ss_size = ss.ss_size; 343 return 0; 344 } 345 346 /* siginfo conversion */ 347 348 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 349 const siginfo_t *info) 350 { 351 int sig = host_to_target_signal(info->si_signo); 352 int si_code = info->si_code; 353 int si_type; 354 tinfo->si_signo = sig; 355 tinfo->si_errno = 0; 356 tinfo->si_code = info->si_code; 357 358 /* This memset serves two purposes: 359 * (1) ensure we don't leak random junk to the guest later 360 * (2) placate false positives from gcc about fields 361 * being used uninitialized if it chooses to inline both this 362 * function and tswap_siginfo() into host_to_target_siginfo(). 363 */ 364 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 365 366 /* This is awkward, because we have to use a combination of 367 * the si_code and si_signo to figure out which of the union's 368 * members are valid. (Within the host kernel it is always possible 369 * to tell, but the kernel carefully avoids giving userspace the 370 * high 16 bits of si_code, so we don't have the information to 371 * do this the easy way...) We therefore make our best guess, 372 * bearing in mind that a guest can spoof most of the si_codes 373 * via rt_sigqueueinfo() if it likes. 374 * 375 * Once we have made our guess, we record it in the top 16 bits of 376 * the si_code, so that tswap_siginfo() later can use it. 377 * tswap_siginfo() will strip these top bits out before writing 378 * si_code to the guest (sign-extending the lower bits). 379 */ 380 381 switch (si_code) { 382 case SI_USER: 383 case SI_TKILL: 384 case SI_KERNEL: 385 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 386 * These are the only unspoofable si_code values. 387 */ 388 tinfo->_sifields._kill._pid = info->si_pid; 389 tinfo->_sifields._kill._uid = info->si_uid; 390 si_type = QEMU_SI_KILL; 391 break; 392 default: 393 /* Everything else is spoofable. Make best guess based on signal */ 394 switch (sig) { 395 case TARGET_SIGCHLD: 396 tinfo->_sifields._sigchld._pid = info->si_pid; 397 tinfo->_sifields._sigchld._uid = info->si_uid; 398 tinfo->_sifields._sigchld._status = info->si_status; 399 tinfo->_sifields._sigchld._utime = info->si_utime; 400 tinfo->_sifields._sigchld._stime = info->si_stime; 401 si_type = QEMU_SI_CHLD; 402 break; 403 case TARGET_SIGIO: 404 tinfo->_sifields._sigpoll._band = info->si_band; 405 tinfo->_sifields._sigpoll._fd = info->si_fd; 406 si_type = QEMU_SI_POLL; 407 break; 408 default: 409 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 410 tinfo->_sifields._rt._pid = info->si_pid; 411 tinfo->_sifields._rt._uid = info->si_uid; 412 /* XXX: potential problem if 64 bit */ 413 tinfo->_sifields._rt._sigval.sival_ptr 414 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 415 si_type = QEMU_SI_RT; 416 break; 417 } 418 break; 419 } 420 421 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 422 } 423 424 void tswap_siginfo(target_siginfo_t *tinfo, 425 const target_siginfo_t *info) 426 { 427 int si_type = extract32(info->si_code, 16, 16); 428 int si_code = sextract32(info->si_code, 0, 16); 429 430 __put_user(info->si_signo, &tinfo->si_signo); 431 __put_user(info->si_errno, &tinfo->si_errno); 432 __put_user(si_code, &tinfo->si_code); 433 434 /* We can use our internal marker of which fields in the structure 435 * are valid, rather than duplicating the guesswork of 436 * host_to_target_siginfo_noswap() here. 437 */ 438 switch (si_type) { 439 case QEMU_SI_KILL: 440 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 441 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 442 break; 443 case QEMU_SI_TIMER: 444 __put_user(info->_sifields._timer._timer1, 445 &tinfo->_sifields._timer._timer1); 446 __put_user(info->_sifields._timer._timer2, 447 &tinfo->_sifields._timer._timer2); 448 break; 449 case QEMU_SI_POLL: 450 __put_user(info->_sifields._sigpoll._band, 451 &tinfo->_sifields._sigpoll._band); 452 __put_user(info->_sifields._sigpoll._fd, 453 &tinfo->_sifields._sigpoll._fd); 454 break; 455 case QEMU_SI_FAULT: 456 __put_user(info->_sifields._sigfault._addr, 457 &tinfo->_sifields._sigfault._addr); 458 break; 459 case QEMU_SI_CHLD: 460 __put_user(info->_sifields._sigchld._pid, 461 &tinfo->_sifields._sigchld._pid); 462 __put_user(info->_sifields._sigchld._uid, 463 &tinfo->_sifields._sigchld._uid); 464 __put_user(info->_sifields._sigchld._status, 465 &tinfo->_sifields._sigchld._status); 466 __put_user(info->_sifields._sigchld._utime, 467 &tinfo->_sifields._sigchld._utime); 468 __put_user(info->_sifields._sigchld._stime, 469 &tinfo->_sifields._sigchld._stime); 470 break; 471 case QEMU_SI_RT: 472 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 473 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 474 __put_user(info->_sifields._rt._sigval.sival_ptr, 475 &tinfo->_sifields._rt._sigval.sival_ptr); 476 break; 477 default: 478 g_assert_not_reached(); 479 } 480 } 481 482 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 483 { 484 target_siginfo_t tgt_tmp; 485 host_to_target_siginfo_noswap(&tgt_tmp, info); 486 tswap_siginfo(tinfo, &tgt_tmp); 487 } 488 489 /* XXX: we support only POSIX RT signals are used. */ 490 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 491 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 492 { 493 /* This conversion is used only for the rt_sigqueueinfo syscall, 494 * and so we know that the _rt fields are the valid ones. 495 */ 496 abi_ulong sival_ptr; 497 498 __get_user(info->si_signo, &tinfo->si_signo); 499 __get_user(info->si_errno, &tinfo->si_errno); 500 __get_user(info->si_code, &tinfo->si_code); 501 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 502 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 503 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 504 info->si_value.sival_ptr = (void *)(long)sival_ptr; 505 } 506 507 static int fatal_signal (int sig) 508 { 509 switch (sig) { 510 case TARGET_SIGCHLD: 511 case TARGET_SIGURG: 512 case TARGET_SIGWINCH: 513 /* Ignored by default. */ 514 return 0; 515 case TARGET_SIGCONT: 516 case TARGET_SIGSTOP: 517 case TARGET_SIGTSTP: 518 case TARGET_SIGTTIN: 519 case TARGET_SIGTTOU: 520 /* Job control signals. */ 521 return 0; 522 default: 523 return 1; 524 } 525 } 526 527 /* returns 1 if given signal should dump core if not handled */ 528 static int core_dump_signal(int sig) 529 { 530 switch (sig) { 531 case TARGET_SIGABRT: 532 case TARGET_SIGFPE: 533 case TARGET_SIGILL: 534 case TARGET_SIGQUIT: 535 case TARGET_SIGSEGV: 536 case TARGET_SIGTRAP: 537 case TARGET_SIGBUS: 538 return (1); 539 default: 540 return (0); 541 } 542 } 543 544 static void signal_table_init(void) 545 { 546 int host_sig, target_sig, count; 547 548 /* 549 * Signals are supported starting from TARGET_SIGRTMIN and going up 550 * until we run out of host realtime signals. 551 * glibc at least uses only the lower 2 rt signals and probably 552 * nobody's using the upper ones. 553 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) 554 * To fix this properly we need to do manual signal delivery multiplexed 555 * over a single host signal. 556 * Attempts for configure "missing" signals via sigaction will be 557 * silently ignored. 558 */ 559 for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) { 560 target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; 561 if (target_sig <= TARGET_NSIG) { 562 host_to_target_signal_table[host_sig] = target_sig; 563 } 564 } 565 566 /* generate signal conversion tables */ 567 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 568 target_to_host_signal_table[target_sig] = _NSIG; /* poison */ 569 } 570 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 571 if (host_to_target_signal_table[host_sig] == 0) { 572 host_to_target_signal_table[host_sig] = host_sig; 573 } 574 target_sig = host_to_target_signal_table[host_sig]; 575 if (target_sig <= TARGET_NSIG) { 576 target_to_host_signal_table[target_sig] = host_sig; 577 } 578 } 579 580 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { 581 for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) { 582 if (target_to_host_signal_table[target_sig] == _NSIG) { 583 count++; 584 } 585 } 586 trace_signal_table_init(count); 587 } 588 } 589 590 void signal_init(void) 591 { 592 TaskState *ts = (TaskState *)thread_cpu->opaque; 593 struct sigaction act; 594 struct sigaction oact; 595 int i; 596 int host_sig; 597 598 /* initialize signal conversion tables */ 599 signal_table_init(); 600 601 /* Set the signal mask from the host mask. */ 602 sigprocmask(0, 0, &ts->signal_mask); 603 604 sigfillset(&act.sa_mask); 605 act.sa_flags = SA_SIGINFO; 606 act.sa_sigaction = host_signal_handler; 607 for(i = 1; i <= TARGET_NSIG; i++) { 608 #ifdef CONFIG_GPROF 609 if (i == TARGET_SIGPROF) { 610 continue; 611 } 612 #endif 613 host_sig = target_to_host_signal(i); 614 sigaction(host_sig, NULL, &oact); 615 if (oact.sa_sigaction == (void *)SIG_IGN) { 616 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 617 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 618 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 619 } 620 /* If there's already a handler installed then something has 621 gone horribly wrong, so don't even try to handle that case. */ 622 /* Install some handlers for our own use. We need at least 623 SIGSEGV and SIGBUS, to detect exceptions. We can not just 624 trap all signals because it affects syscall interrupt 625 behavior. But do trap all default-fatal signals. */ 626 if (fatal_signal (i)) 627 sigaction(host_sig, &act, NULL); 628 } 629 } 630 631 /* Force a synchronously taken signal. The kernel force_sig() function 632 * also forces the signal to "not blocked, not ignored", but for QEMU 633 * that work is done in process_pending_signals(). 634 */ 635 void force_sig(int sig) 636 { 637 CPUState *cpu = thread_cpu; 638 CPUArchState *env = cpu->env_ptr; 639 target_siginfo_t info; 640 641 info.si_signo = sig; 642 info.si_errno = 0; 643 info.si_code = TARGET_SI_KERNEL; 644 info._sifields._kill._pid = 0; 645 info._sifields._kill._uid = 0; 646 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); 647 } 648 649 /* Force a SIGSEGV if we couldn't write to memory trying to set 650 * up the signal frame. oldsig is the signal we were trying to handle 651 * at the point of failure. 652 */ 653 #if !defined(TARGET_RISCV) 654 void force_sigsegv(int oldsig) 655 { 656 if (oldsig == SIGSEGV) { 657 /* Make sure we don't try to deliver the signal again; this will 658 * end up with handle_pending_signal() calling dump_core_and_abort(). 659 */ 660 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 661 } 662 force_sig(TARGET_SIGSEGV); 663 } 664 665 #endif 666 667 /* abort execution with signal */ 668 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 669 { 670 CPUState *cpu = thread_cpu; 671 CPUArchState *env = cpu->env_ptr; 672 TaskState *ts = (TaskState *)cpu->opaque; 673 int host_sig, core_dumped = 0; 674 struct sigaction act; 675 676 host_sig = target_to_host_signal(target_sig); 677 trace_user_force_sig(env, target_sig, host_sig); 678 gdb_signalled(env, target_sig); 679 680 /* dump core if supported by target binary format */ 681 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 682 stop_all_tasks(); 683 core_dumped = 684 ((*ts->bprm->core_dump)(target_sig, env) == 0); 685 } 686 if (core_dumped) { 687 /* we already dumped the core of target process, we don't want 688 * a coredump of qemu itself */ 689 struct rlimit nodump; 690 getrlimit(RLIMIT_CORE, &nodump); 691 nodump.rlim_cur=0; 692 setrlimit(RLIMIT_CORE, &nodump); 693 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 694 target_sig, strsignal(host_sig), "core dumped" ); 695 } 696 697 /* The proper exit code for dying from an uncaught signal is 698 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 699 * a negative value. To get the proper exit code we need to 700 * actually die from an uncaught signal. Here the default signal 701 * handler is installed, we send ourself a signal and we wait for 702 * it to arrive. */ 703 sigfillset(&act.sa_mask); 704 act.sa_handler = SIG_DFL; 705 act.sa_flags = 0; 706 sigaction(host_sig, &act, NULL); 707 708 /* For some reason raise(host_sig) doesn't send the signal when 709 * statically linked on x86-64. */ 710 kill(getpid(), host_sig); 711 712 /* Make sure the signal isn't masked (just reuse the mask inside 713 of act) */ 714 sigdelset(&act.sa_mask, host_sig); 715 sigsuspend(&act.sa_mask); 716 717 /* unreachable */ 718 abort(); 719 } 720 721 /* queue a signal so that it will be send to the virtual CPU as soon 722 as possible */ 723 int queue_signal(CPUArchState *env, int sig, int si_type, 724 target_siginfo_t *info) 725 { 726 CPUState *cpu = env_cpu(env); 727 TaskState *ts = cpu->opaque; 728 729 trace_user_queue_signal(env, sig); 730 731 info->si_code = deposit32(info->si_code, 16, 16, si_type); 732 733 ts->sync_signal.info = *info; 734 ts->sync_signal.pending = sig; 735 /* signal that a new signal is pending */ 736 qatomic_set(&ts->signal_pending, 1); 737 return 1; /* indicates that the signal was queued */ 738 } 739 740 #ifndef HAVE_SAFE_SYSCALL 741 static inline void rewind_if_in_safe_syscall(void *puc) 742 { 743 /* Default version: never rewind */ 744 } 745 #endif 746 747 static void host_signal_handler(int host_signum, siginfo_t *info, 748 void *puc) 749 { 750 CPUArchState *env = thread_cpu->env_ptr; 751 CPUState *cpu = env_cpu(env); 752 TaskState *ts = cpu->opaque; 753 754 int sig; 755 target_siginfo_t tinfo; 756 ucontext_t *uc = puc; 757 struct emulated_sigtable *k; 758 759 /* the CPU emulator uses some host signals to detect exceptions, 760 we forward to it some signals */ 761 if ((host_signum == SIGSEGV || host_signum == SIGBUS) 762 && info->si_code > 0) { 763 if (cpu_signal_handler(host_signum, info, puc)) 764 return; 765 } 766 767 /* get target signal number */ 768 sig = host_to_target_signal(host_signum); 769 if (sig < 1 || sig > TARGET_NSIG) 770 return; 771 trace_user_host_signal(env, host_signum, sig); 772 773 rewind_if_in_safe_syscall(puc); 774 775 host_to_target_siginfo_noswap(&tinfo, info); 776 k = &ts->sigtab[sig - 1]; 777 k->info = tinfo; 778 k->pending = sig; 779 ts->signal_pending = 1; 780 781 /* Block host signals until target signal handler entered. We 782 * can't block SIGSEGV or SIGBUS while we're executing guest 783 * code in case the guest code provokes one in the window between 784 * now and it getting out to the main loop. Signals will be 785 * unblocked again in process_pending_signals(). 786 * 787 * WARNING: we cannot use sigfillset() here because the uc_sigmask 788 * field is a kernel sigset_t, which is much smaller than the 789 * libc sigset_t which sigfillset() operates on. Using sigfillset() 790 * would write 0xff bytes off the end of the structure and trash 791 * data on the struct. 792 * We can't use sizeof(uc->uc_sigmask) either, because the libc 793 * headers define the struct field with the wrong (too large) type. 794 */ 795 memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE); 796 sigdelset(&uc->uc_sigmask, SIGSEGV); 797 sigdelset(&uc->uc_sigmask, SIGBUS); 798 799 /* interrupt the virtual CPU as soon as possible */ 800 cpu_exit(thread_cpu); 801 } 802 803 /* do_sigaltstack() returns target values and errnos. */ 804 /* compare linux/kernel/signal.c:do_sigaltstack() */ 805 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 806 CPUArchState *env) 807 { 808 target_stack_t oss, *uoss = NULL; 809 abi_long ret = -TARGET_EFAULT; 810 811 if (uoss_addr) { 812 /* Verify writability now, but do not alter user memory yet. */ 813 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 814 goto out; 815 } 816 target_save_altstack(&oss, env); 817 } 818 819 if (uss_addr) { 820 target_stack_t *uss; 821 822 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 823 goto out; 824 } 825 ret = target_restore_altstack(uss, env); 826 if (ret) { 827 goto out; 828 } 829 } 830 831 if (uoss_addr) { 832 memcpy(uoss, &oss, sizeof(oss)); 833 unlock_user_struct(uoss, uoss_addr, 1); 834 uoss = NULL; 835 } 836 ret = 0; 837 838 out: 839 if (uoss) { 840 unlock_user_struct(uoss, uoss_addr, 0); 841 } 842 return ret; 843 } 844 845 /* do_sigaction() return target values and host errnos */ 846 int do_sigaction(int sig, const struct target_sigaction *act, 847 struct target_sigaction *oact, abi_ulong ka_restorer) 848 { 849 struct target_sigaction *k; 850 struct sigaction act1; 851 int host_sig; 852 int ret = 0; 853 854 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 855 856 if (sig < 1 || sig > TARGET_NSIG) { 857 return -TARGET_EINVAL; 858 } 859 860 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 861 return -TARGET_EINVAL; 862 } 863 864 if (block_signals()) { 865 return -TARGET_ERESTARTSYS; 866 } 867 868 k = &sigact_table[sig - 1]; 869 if (oact) { 870 __put_user(k->_sa_handler, &oact->_sa_handler); 871 __put_user(k->sa_flags, &oact->sa_flags); 872 #ifdef TARGET_ARCH_HAS_SA_RESTORER 873 __put_user(k->sa_restorer, &oact->sa_restorer); 874 #endif 875 /* Not swapped. */ 876 oact->sa_mask = k->sa_mask; 877 } 878 if (act) { 879 /* FIXME: This is not threadsafe. */ 880 __get_user(k->_sa_handler, &act->_sa_handler); 881 __get_user(k->sa_flags, &act->sa_flags); 882 #ifdef TARGET_ARCH_HAS_SA_RESTORER 883 __get_user(k->sa_restorer, &act->sa_restorer); 884 #endif 885 #ifdef TARGET_ARCH_HAS_KA_RESTORER 886 k->ka_restorer = ka_restorer; 887 #endif 888 /* To be swapped in target_to_host_sigset. */ 889 k->sa_mask = act->sa_mask; 890 891 /* we update the host linux signal state */ 892 host_sig = target_to_host_signal(sig); 893 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 894 if (host_sig > SIGRTMAX) { 895 /* we don't have enough host signals to map all target signals */ 896 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 897 sig); 898 /* 899 * we don't return an error here because some programs try to 900 * register an handler for all possible rt signals even if they 901 * don't need it. 902 * An error here can abort them whereas there can be no problem 903 * to not have the signal available later. 904 * This is the case for golang, 905 * See https://github.com/golang/go/issues/33746 906 * So we silently ignore the error. 907 */ 908 return 0; 909 } 910 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 911 sigfillset(&act1.sa_mask); 912 act1.sa_flags = SA_SIGINFO; 913 if (k->sa_flags & TARGET_SA_RESTART) 914 act1.sa_flags |= SA_RESTART; 915 /* NOTE: it is important to update the host kernel signal 916 ignore state to avoid getting unexpected interrupted 917 syscalls */ 918 if (k->_sa_handler == TARGET_SIG_IGN) { 919 act1.sa_sigaction = (void *)SIG_IGN; 920 } else if (k->_sa_handler == TARGET_SIG_DFL) { 921 if (fatal_signal (sig)) 922 act1.sa_sigaction = host_signal_handler; 923 else 924 act1.sa_sigaction = (void *)SIG_DFL; 925 } else { 926 act1.sa_sigaction = host_signal_handler; 927 } 928 ret = sigaction(host_sig, &act1, NULL); 929 } 930 } 931 return ret; 932 } 933 934 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 935 struct emulated_sigtable *k) 936 { 937 CPUState *cpu = env_cpu(cpu_env); 938 abi_ulong handler; 939 sigset_t set; 940 target_sigset_t target_old_set; 941 struct target_sigaction *sa; 942 TaskState *ts = cpu->opaque; 943 944 trace_user_handle_signal(cpu_env, sig); 945 /* dequeue signal */ 946 k->pending = 0; 947 948 sig = gdb_handlesig(cpu, sig); 949 if (!sig) { 950 sa = NULL; 951 handler = TARGET_SIG_IGN; 952 } else { 953 sa = &sigact_table[sig - 1]; 954 handler = sa->_sa_handler; 955 } 956 957 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 958 print_taken_signal(sig, &k->info); 959 } 960 961 if (handler == TARGET_SIG_DFL) { 962 /* default handler : ignore some signal. The other are job control or fatal */ 963 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 964 kill(getpid(),SIGSTOP); 965 } else if (sig != TARGET_SIGCHLD && 966 sig != TARGET_SIGURG && 967 sig != TARGET_SIGWINCH && 968 sig != TARGET_SIGCONT) { 969 dump_core_and_abort(sig); 970 } 971 } else if (handler == TARGET_SIG_IGN) { 972 /* ignore sig */ 973 } else if (handler == TARGET_SIG_ERR) { 974 dump_core_and_abort(sig); 975 } else { 976 /* compute the blocked signals during the handler execution */ 977 sigset_t *blocked_set; 978 979 target_to_host_sigset(&set, &sa->sa_mask); 980 /* SA_NODEFER indicates that the current signal should not be 981 blocked during the handler */ 982 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 983 sigaddset(&set, target_to_host_signal(sig)); 984 985 /* save the previous blocked signal state to restore it at the 986 end of the signal execution (see do_sigreturn) */ 987 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 988 989 /* block signals in the handler */ 990 blocked_set = ts->in_sigsuspend ? 991 &ts->sigsuspend_mask : &ts->signal_mask; 992 sigorset(&ts->signal_mask, blocked_set, &set); 993 ts->in_sigsuspend = 0; 994 995 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 996 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 997 { 998 CPUX86State *env = cpu_env; 999 if (env->eflags & VM_MASK) 1000 save_v86_state(env); 1001 } 1002 #endif 1003 /* prepare the stack frame of the virtual CPU */ 1004 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1005 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1006 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1007 } else { 1008 setup_frame(sig, sa, &target_old_set, cpu_env); 1009 } 1010 #else 1011 /* These targets do not have traditional signals. */ 1012 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1013 #endif 1014 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1015 sa->_sa_handler = TARGET_SIG_DFL; 1016 } 1017 } 1018 } 1019 1020 void process_pending_signals(CPUArchState *cpu_env) 1021 { 1022 CPUState *cpu = env_cpu(cpu_env); 1023 int sig; 1024 TaskState *ts = cpu->opaque; 1025 sigset_t set; 1026 sigset_t *blocked_set; 1027 1028 while (qatomic_read(&ts->signal_pending)) { 1029 /* FIXME: This is not threadsafe. */ 1030 sigfillset(&set); 1031 sigprocmask(SIG_SETMASK, &set, 0); 1032 1033 restart_scan: 1034 sig = ts->sync_signal.pending; 1035 if (sig) { 1036 /* Synchronous signals are forced, 1037 * see force_sig_info() and callers in Linux 1038 * Note that not all of our queue_signal() calls in QEMU correspond 1039 * to force_sig_info() calls in Linux (some are send_sig_info()). 1040 * However it seems like a kernel bug to me to allow the process 1041 * to block a synchronous signal since it could then just end up 1042 * looping round and round indefinitely. 1043 */ 1044 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1045 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1046 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1047 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1048 } 1049 1050 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1051 } 1052 1053 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1054 blocked_set = ts->in_sigsuspend ? 1055 &ts->sigsuspend_mask : &ts->signal_mask; 1056 1057 if (ts->sigtab[sig - 1].pending && 1058 (!sigismember(blocked_set, 1059 target_to_host_signal_table[sig]))) { 1060 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1061 /* Restart scan from the beginning, as handle_pending_signal 1062 * might have resulted in a new synchronous signal (eg SIGSEGV). 1063 */ 1064 goto restart_scan; 1065 } 1066 } 1067 1068 /* if no signal is pending, unblock signals and recheck (the act 1069 * of unblocking might cause us to take another host signal which 1070 * will set signal_pending again). 1071 */ 1072 qatomic_set(&ts->signal_pending, 0); 1073 ts->in_sigsuspend = 0; 1074 set = ts->signal_mask; 1075 sigdelset(&set, SIGSEGV); 1076 sigdelset(&set, SIGBUS); 1077 sigprocmask(SIG_SETMASK, &set, 0); 1078 } 1079 ts->in_sigsuspend = 0; 1080 } 1081